1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-05 03:35:55 +01:00

Simplified operation of meson module. Result has been modified to output one contraction at a time for each pair of gamma insertions at source and sink.

This commit is contained in:
Lanny91 2017-01-20 16:38:50 +00:00
parent 07f2ebea1b
commit af29be2c90

View File

@ -35,6 +35,22 @@ See the full license in the file "LICENSE" in the top level distribution directo
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
namespace Grid {
// Overload >> to extract gamma pair from "[g1 g2]" string.
template <typename T1, typename T2>
inline std::istringstream &operator>>(std::istringstream &sstr,
std::pair<T1, T2> &buf)
{
T1 buf1;
T2 buf2;
char c;
sstr >> c >> buf1 >> buf2 >> c;
sstr.peek();
buf = std::make_pair(buf1, buf2);
return sstr;
}
}
BEGIN_HADRONS_NAMESPACE
/*
@ -45,9 +61,9 @@ BEGIN_HADRONS_NAMESPACE
* options:
- q1: input propagator 1 (string)
- q2: input propagator 2 (string)
- gammas: gamma products to insert at source & sink, pairs of gamma matrices
(space-separated integers) in square brackets, in a sequence
(e.g. "[15 7][7 15][7 7]").
- gammas: gamma products to insert at sink & source, pairs of gamma matrices
(space-separated integers) in square brackets (i.e. [g_sink g_src]),
in a sequence (e.g. "[15 7][7 15][7 7]").
Special values: "all" - perform all possible contractions.
@ -58,6 +74,8 @@ BEGIN_HADRONS_NAMESPACE
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
typedef std::pair<unsigned int, unsigned int> GammaPair;
class MesonPar: Serializable
{
public:
@ -78,7 +96,9 @@ public:
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Result,
std::vector<std::vector<std::vector<Complex>>>, corr);
unsigned int, gamma_snk,
unsigned int, gamma_src,
std::vector<Complex>, corr);
};
public:
// constructor
@ -88,10 +108,7 @@ public:
// dependencies/products
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
virtual void parseGammaString(SpinMatrix*,
unsigned int &,
unsigned int &,
std::vector<std::vector<bool>> &);
virtual void parseGammaString(std::vector<GammaPair> &gammaList);
// execution
virtual void execute(void);
};
@ -124,75 +141,27 @@ std::vector<std::string> TMeson<FImpl1, FImpl2>::getOutput(void)
return output;
}
template <typename T>
std::vector<std::pair<T, T>> strToVecPair(const std::string s)
{
std::vector<std::pair<T, T>> v;
return v;
}
template <typename FImpl1, typename FImpl2>
void TMeson<FImpl1, FImpl2>::parseGammaString(SpinMatrix *g,
unsigned int &n_snk,
unsigned int &n_src,
std::vector<std::vector<bool>> &toDo)
void TMeson<FImpl1, FImpl2>::parseGammaString(std::vector<GammaPair> &gammaList)
{
// Initialise counters for parsing gamma insertions at source & sink.
int empty = -1;
std::vector<int> gamma_inds(Ns*Ns, empty);
unsigned int n_gam = 0;
// Determine gamma matrices to insert at source/sink.
if (par().gammas.compare("all") == 0)
{
// Do all contractions.
toDo.resize(Ns*Ns);
for (int i = 0; i < Ns*Ns; ++i)
unsigned int n_gam = Ns*Ns;
gammaList.resize(n_gam*n_gam);
for (unsigned int i = 0; i < n_gam; ++i)
{
g[i] = makeGammaProd(i);
toDo[i].assign(Ns*Ns, true);
for (unsigned int j = 0; j < n_gam; ++j)
{
gammaList.push_back(std::make_pair(i, j));
}
}
}
else
{
// Parse individual contractions from input string.
std::vector<std::pair<int, int>> gamma_pairs;
gamma_pairs = strToVecPair<int>(par().gammas);
// Function for gamma matrix counting & indexing at source/sink.
auto index_gamma = [&empty, &g, &gamma_inds, &n_gam](int i,
unsigned int &n)
{
if (i >= gamma_inds.size())
{
HADRON_ERROR("Invalid gamma matrix index " << i);
}
if (gamma_inds[i] == empty)
{
g[n_gam] = makeGammaProd(i);
gamma_inds[i] = n_gam;
++n_gam;
++n;
}
};
// Count no. of unique gamma matrices, then construct matrix of
// contractions to do.
for (unsigned int i = 0; i < gamma_inds.size(); ++i)
{
index_gamma(gamma_pairs[i].first, n_snk);
index_gamma(gamma_pairs[i].second, n_src);
}
toDo.resize(n_gam);
for (int i = 0; i < n_gam; ++i)
{
toDo[i].assign(n_gam, false);
}
for (int i = 0; i < gamma_inds.size(); ++i)
{
toDo[gamma_inds[gamma_pairs[i].first]]
[gamma_inds[gamma_pairs[i].second]] = true;
}
gammaList = strToVec<GammaPair>(par().gammas);
}
}
@ -205,38 +174,37 @@ void TMeson<FImpl1, FImpl2>::execute(void)
<< " quarks '" << par().q1 << "' and '" << par().q2 << "'"
<< std::endl;
XmlWriter writer(par().output);
PropagatorField1 &q1 = *env().template getObject<PropagatorField1>(par().q1);
PropagatorField2 &q2 = *env().template getObject<PropagatorField2>(par().q2);
LatticeComplex c(env().getGrid());
SpinMatrix g[Ns*Ns], g5;
std::vector<std::vector<bool>> toDo;
std::vector<TComplex> buf;
Result result;
unsigned int n_snk, n_src;
XmlWriter writer(par().output);
PropagatorField1 &q1 = *env().template getObject<PropagatorField1>(par().q1);
PropagatorField2 &q2 = *env().template getObject<PropagatorField2>(par().q2);
LatticeComplex c(env().getGrid());
SpinMatrix g[Ns*Ns], g5;
std::vector<GammaPair> gammaList;
std::vector<TComplex> buf;
std::vector<Result> result;
g5 = makeGammaProd(Ns*Ns - 1);
parseGammaString(g, n_snk, n_src, toDo);
result.corr.resize(n_snk);
for (unsigned int iSink = 0; iSink < toDo.size(); ++iSink)
for (int i = 0; i < Ns*Ns; ++i)
{
result.corr[iSink].resize(n_src);
for (unsigned int iSrc = 0; iSrc < toDo.size(); ++iSrc)
{
if (toDo[iSink][iSrc])
{
c = trace(g[iSink]*q1*g[iSrc]*g5*adj(q2)*g5);
sliceSum(c, buf, Tp);
result.corr[iSink][iSrc].resize(buf.size());
for (unsigned int t = 0; t < buf.size(); ++t)
{
result.corr[iSink][iSrc][t] = TensorRemove(buf[t]);
}
}
}
g[i] = makeGammaProd(i);
}
parseGammaString(gammaList);
result.resize(gammaList.size());
for (unsigned int i = 0; i < result.size(); ++i)
{
c = trace(g[gammaList[i].first]*q1*g[gammaList[i].second]*g5*adj(q2)*g5);
sliceSum(c, buf, Tp);
result[i].gamma_snk = gammaList[i].first;
result[i].gamma_src = gammaList[i].second;
result[i].corr.resize(buf.size());
for (unsigned int t = 0; t < buf.size(); ++t)
{
result[i].corr[t] = TensorRemove(buf[t]);
}
write(writer, "meson", result[i]);
}
write(writer, "meson", result);
}
END_MODULE_NAMESPACE