1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00

Namespace

This commit is contained in:
paboyle 2018-01-14 21:58:47 +00:00
parent 66f8a2f082
commit b331ecea78

View File

@ -28,16 +28,15 @@ with this program; if not, write to the Free Software Foundation, Inc.,
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
/* END LEGAL */
#ifndef QCD_UTIL_SUN_H
#define QCD_UTIL_SUN_H
namespace Grid {
namespace QCD {
NAMESPACE_BEGIN(Grid);
template <int ncolour>
class SU {
public:
public:
static const int Dimension = ncolour;
static const int AdjointDimension = ncolour * ncolour - 1;
static int su2subgroups(void) { return (ncolour * (ncolour - 1)) / 2; }
@ -48,7 +47,7 @@ class SU {
using iSU2Matrix = iScalar<iScalar<iMatrix<vtype, 2> > >;
template <typename vtype>
using iSUnAlgebraVector =
iScalar<iScalar<iVector<vtype, AdjointDimension> > >;
iScalar<iScalar<iVector<vtype, AdjointDimension> > >;
//////////////////////////////////////////////////////////////////////////////////////////////////
// Types can be accessed as SU<2>::Matrix , SU<2>::vSUnMatrix,
@ -238,7 +237,7 @@ class SU {
// this should be purely real
Determinant._odata[ss] =
Sigma()()(0, 0) * Sigma()()(1, 1) - Sigma()()(0, 1) * Sigma()()(1, 0);
Sigma()()(0, 0) * Sigma()()(1, 1) - Sigma()()(0, 1) * Sigma()()(1, 0);
}
}
@ -273,11 +272,11 @@ class SU {
//
///////////////////////////////////////////////
static void SubGroupHeatBath(
GridSerialRNG &sRNG, GridParallelRNG &pRNG,
RealD beta, // coeff multiplying staple in action (with no 1/Nc)
LatticeMatrix &link,
const LatticeMatrix &barestaple, // multiplied by action coeffs so th
int su2_subgroup, int nheatbath, LatticeInteger &wheremask) {
GridSerialRNG &sRNG, GridParallelRNG &pRNG,
RealD beta, // coeff multiplying staple in action (with no 1/Nc)
LatticeMatrix &link,
const LatticeMatrix &barestaple, // multiplied by action coeffs so th
int su2_subgroup, int nheatbath, LatticeInteger &wheremask) {
GridBase *grid = link._grid;
int ntrials = 0;
@ -293,7 +292,7 @@ class SU {
// Subgroup manipulation in the lie algebra space
LatticeSU2Matrix u(
grid); // Kennedy pendleton "u" real projected normalised Sigma
grid); // Kennedy pendleton "u" real projected normalised Sigma
LatticeSU2Matrix uinv(grid);
LatticeSU2Matrix ua(grid); // a in pauli form
LatticeSU2Matrix b(grid); // rotated matrix after hb
@ -314,41 +313,41 @@ class SU {
mask_false = 0;
/*
PLB 156 P393 (1985) (Kennedy and Pendleton)
PLB 156 P393 (1985) (Kennedy and Pendleton)
Note: absorb "beta" into the def of sigma compared to KP paper; staple
passed to this routine has "beta" already multiplied in
Note: absorb "beta" into the def of sigma compared to KP paper; staple
passed to this routine has "beta" already multiplied in
Action linear in links h and of form:
Action linear in links h and of form:
beta S = beta Sum_p (1 - 1/Nc Re Tr Plaq )
Writing Sigma = 1/Nc (beta Sigma') where sum over staples is "Sigma' "
Writing Sigma = 1/Nc (beta Sigma') where sum over staples is "Sigma' "
beta S = const - beta/Nc Re Tr h Sigma'
= const - Re Tr h Sigma
beta S = const - beta/Nc Re Tr h Sigma'
= const - Re Tr h Sigma
Decompose h and Sigma into (1, sigma_j) ; h_i real, h^2=1, Sigma_i complex
arbitrary.
Decompose h and Sigma into (1, sigma_j) ; h_i real, h^2=1, Sigma_i complex
arbitrary.
Tr h Sigma = h_i Sigma_j Tr (sigma_i sigma_j) = h_i Sigma_j 2 delta_ij
Re Tr h Sigma = 2 h_j Re Sigma_j
Re Tr h Sigma = 2 h_j Re Sigma_j
Normalised re Sigma_j = xi u_j
Normalised re Sigma_j = xi u_j
With u_j a unit vector and U can be in SU(2);
With u_j a unit vector and U can be in SU(2);
Re Tr h Sigma = 2 h_j Re Sigma_j = 2 xi (h.u)
Re Tr h Sigma = 2 h_j Re Sigma_j = 2 xi (h.u)
4xi^2 = Det [ Sig - Sig^dag + 1 Tr Sigdag]
u = 1/2xi [ Sig - Sig^dag + 1 Tr Sigdag]
4xi^2 = Det [ Sig - Sig^dag + 1 Tr Sigdag]
u = 1/2xi [ Sig - Sig^dag + 1 Tr Sigdag]
xi = sqrt(Det)/2;
xi = sqrt(Det)/2;
Write a= u h in SU(2); a has pauli decomp a_j;
Write a= u h in SU(2); a has pauli decomp a_j;
Note: Product b' xi is unvariant because scaling Sigma leaves
normalised vector "u" fixed; Can rescale Sigma so b' = 1.
Note: Product b' xi is unvariant because scaling Sigma leaves
normalised vector "u" fixed; Can rescale Sigma so b' = 1.
*/
////////////////////////////////////////////////////////
@ -386,7 +385,7 @@ class SU {
xi = 0.5 * sqrt(udet); // 4xi^2 = Det [ Sig - Sig^dag + 1 Tr Sigdag]
u = 0.5 * u *
pow(xi, -1.0); // u = 1/2xi [ Sig - Sig^dag + 1 Tr Sigdag]
pow(xi, -1.0); // u = 1/2xi [ Sig - Sig^dag + 1 Tr Sigdag]
// Debug test for sanity
uinv = adj(u);
@ -394,36 +393,36 @@ class SU {
assert(norm2(b) < 1.0e-4);
/*
Measure: Haar measure dh has d^4a delta(1-|a^2|)
In polars:
da = da0 r^2 sin theta dr dtheta dphi delta( 1 - r^2 -a0^2)
= da0 r^2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r)(sqrt(1-a0^) +
r) )
= da0 r/2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r) )
Measure: Haar measure dh has d^4a delta(1-|a^2|)
In polars:
da = da0 r^2 sin theta dr dtheta dphi delta( 1 - r^2 -a0^2)
= da0 r^2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r)(sqrt(1-a0^) +
r) )
= da0 r/2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r) )
Action factor Q(h) dh = e^-S[h] dh = e^{ xi Tr uh} dh // beta enters
through xi
= e^{2 xi (h.u)} dh
= e^{2 xi h0u0}.e^{2 xi h1u1}.e^{2 xi
h2u2}.e^{2 xi h3u3} dh
Action factor Q(h) dh = e^-S[h] dh = e^{ xi Tr uh} dh // beta enters
through xi
= e^{2 xi (h.u)} dh
= e^{2 xi h0u0}.e^{2 xi h1u1}.e^{2 xi
h2u2}.e^{2 xi h3u3} dh
Therefore for each site, take xi for that site
i) generate |a0|<1 with dist
(1-a0^2)^0.5 e^{2 xi a0 } da0
Therefore for each site, take xi for that site
i) generate |a0|<1 with dist
(1-a0^2)^0.5 e^{2 xi a0 } da0
Take alpha = 2 xi = 2 xi [ recall 2 beta/Nc unmod staple norm]; hence 2.0/Nc
factor in Chroma ]
A. Generate two uniformly distributed pseudo-random numbers R and R', R'',
R''' in the unit interval;
B. Set X = -(ln R)/alpha, X' =-(ln R')/alpha;
C. Set C = cos^2(2pi R"), with R" another uniform random number in [0,1] ;
D. Set A = XC;
E. Let d = X'+A;
F. If R'''^2 :> 1 - 0.5 d, go back to A;
G. Set a0 = 1 - d;
Take alpha = 2 xi = 2 xi [ recall 2 beta/Nc unmod staple norm]; hence 2.0/Nc
factor in Chroma ]
A. Generate two uniformly distributed pseudo-random numbers R and R', R'',
R''' in the unit interval;
B. Set X = -(ln R)/alpha, X' =-(ln R')/alpha;
C. Set C = cos^2(2pi R"), with R" another uniform random number in [0,1] ;
D. Set A = XC;
E. Let d = X'+A;
F. If R'''^2 :> 1 - 0.5 d, go back to A;
G. Set a0 = 1 - d;
Note that in step D setting B ~ X - A and using B in place of A in step E will
generate a second independent a 0 value.
Note that in step D setting B ~ X - A and using B in place of A in step E will
generate a second independent a 0 value.
*/
/////////////////////////////////////////////////////////
@ -518,7 +517,7 @@ class SU {
a[3] = a123mag * cos_theta;
ua = toComplex(a[0]) * ident + toComplex(a[1]) * pauli1 +
toComplex(a[2]) * pauli2 + toComplex(a[3]) * pauli3;
toComplex(a[2]) * pauli2 + toComplex(a[3]) * pauli3;
b = 1.0;
b = where(wheremask, uinv * ua, b);
@ -616,7 +615,7 @@ class SU {
typedef Lattice<vTComplexType> LatticeComplexType;
typedef typename GridTypeMapper<
typename LatticeMatrixType::vector_object>::scalar_object MatrixType;
typename LatticeMatrixType::vector_object>::scalar_object MatrixType;
LatticeComplexType ca(grid);
LatticeMatrixType lie(grid);
@ -675,11 +674,11 @@ class SU {
out += la;
}
}
/*
add GaugeTrans
*/
/*
add GaugeTrans
*/
template<typename GaugeField,typename GaugeMat>
template<typename GaugeField,typename GaugeMat>
static void GaugeTransform( GaugeField &Umu, GaugeMat &g){
GridBase *grid = Umu._grid;
conformable(grid,g._grid);
@ -694,7 +693,7 @@ template<typename GaugeField,typename GaugeMat>
}
}
template<typename GaugeMat>
static void GaugeTransform( std::vector<GaugeMat> &U, GaugeMat &g){
static void GaugeTransform( std::vector<GaugeMat> &U, GaugeMat &g){
GridBase *grid = g._grid;
GaugeMat ag(grid); ag = adj(g);
for(int mu=0;mu<Nd;mu++){
@ -793,6 +792,5 @@ typedef SU<5> SU5;
typedef SU<Nc> FundamentalMatrices;
}
}
NAMESPACE_END(Grid);
#endif