1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00

Added support for the Two index Symmetric and Antisymmetric representations

Tested for HMC convergence: OK
Added also a test file showing an example for mixed representations
This commit is contained in:
Guido Cossu 2016-09-22 14:17:37 +01:00
parent fda408ee6f
commit b6597b74e7
13 changed files with 850 additions and 174 deletions

File diff suppressed because one or more lines are too long

View File

@ -45,7 +45,7 @@ namespace QCD {
static const int Zm = 6;
static const int Tm = 7;
static const int Nc=3;
static const int Nc=2;
static const int Ns=4;
static const int Nd=4;
static const int Nhs=2; // half spinor
@ -499,12 +499,13 @@ namespace QCD {
#include <Grid/qcd/spin/TwoSpinor.h>
#include <Grid/qcd/utils/LinalgUtils.h>
#include <Grid/qcd/utils/CovariantCshift.h>
// Include representations
#include <Grid/qcd/utils/SUn.h>
#include <Grid/qcd/utils/SUnAdjoint.h>
#include <Grid/qcd/utils/SUnTwoIndex.h>
#include <Grid/qcd/representations/hmc_types.h>
#include <Grid/qcd/action/Actions.h>
#include <Grid/qcd/smearing/Smearing.h>

View File

@ -120,6 +120,10 @@ typedef SymanzikGaugeAction<ConjugateGimplD> ConjugateSymanzikGaugeAction
template class A<WilsonAdjImplF>; \
template class A<WilsonAdjImplD>;
#define TwoIndexFermOpTemplateInstantiate(A) \
template class A<WilsonTwoIndexSymmetricImplF>; \
template class A<WilsonTwoIndexSymmetricImplD>;
#define FermOp5dVecTemplateInstantiate(A) \
template class A<DomainWallVec5dImplF>; \
template class A<DomainWallVec5dImplD>; \
@ -180,6 +184,10 @@ typedef WilsonFermion<WilsonAdjImplR> WilsonAdjFermionR;
typedef WilsonFermion<WilsonAdjImplF> WilsonAdjFermionF;
typedef WilsonFermion<WilsonAdjImplD> WilsonAdjFermionD;
typedef WilsonFermion<WilsonTwoIndexSymmetricImplR> WilsonTwoIndexSymmetricFermionR;
typedef WilsonFermion<WilsonTwoIndexSymmetricImplF> WilsonTwoIndexSymmetricFermionF;
typedef WilsonFermion<WilsonTwoIndexSymmetricImplD> WilsonTwoIndexSymmetricFermionD;
typedef WilsonTMFermion<WilsonImplR> WilsonTMFermionR;
typedef WilsonTMFermion<WilsonImplF> WilsonTMFermionF;
typedef WilsonTMFermion<WilsonImplD> WilsonTMFermionD;

View File

@ -522,7 +522,11 @@ namespace Grid {
typedef WilsonImpl<vComplex, AdjointRepresentation > WilsonAdjImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, AdjointRepresentation > WilsonAdjImplF; // Float
typedef WilsonImpl<vComplexD, AdjointRepresentation > WilsonAdjImplD; // Double
typedef WilsonImpl<vComplex, TwoIndexSymmetricRepresentation > WilsonTwoIndexSymmetricImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, TwoIndexSymmetricRepresentation > WilsonTwoIndexSymmetricImplF; // Float
typedef WilsonImpl<vComplexD, TwoIndexSymmetricRepresentation > WilsonTwoIndexSymmetricImplD; // Double
typedef DomainWallVec5dImpl<vComplex ,Nc> DomainWallVec5dImplR; // Real.. whichever prec
typedef DomainWallVec5dImpl<vComplexF,Nc> DomainWallVec5dImplF; // Float
typedef DomainWallVec5dImpl<vComplexD,Nc> DomainWallVec5dImplD; // Double

View File

@ -309,6 +309,7 @@ void WilsonFermion<Impl>::DhopInternal(StencilImpl &st, LebesgueOrder &lo,
FermOpTemplateInstantiate(WilsonFermion);
AdjointFermOpTemplateInstantiate(WilsonFermion);
TwoIndexFermOpTemplateInstantiate(WilsonFermion);
GparityFermOpTemplateInstantiate(WilsonFermion);
}
}

View File

@ -526,6 +526,7 @@ void WilsonKernels<Impl>::DiracOptDhopDir(
FermOpTemplateInstantiate(WilsonKernels);
AdjointFermOpTemplateInstantiate(WilsonKernels);
TwoIndexFermOpTemplateInstantiate(WilsonKernels);
}}

View File

@ -2,6 +2,7 @@
#define HMC_TYPES_H
#include <Grid/qcd/representations/adjoint.h>
#include <Grid/qcd/representations/two_index.h>
#include <Grid/qcd/representations/fundamental.h>
#include <tuple>
#include <utility>

View File

@ -1,53 +1,62 @@
/*
* Policy classes for the HMC
* Author: Guido Cossu
* Authors: Guido Cossu, David Preti
*/
#ifndef ADJOINT_H
#define ADJOINT_H
#ifndef SUN2INDEX_H_H
#define SUN2INDEX_H_H
namespace Grid {
namespace QCD {
/*
* This is an helper class for the HMC
* Should contain only the data for the adjoint representation
* and the facility to convert from the fundamental -> adjoint
*/
* This is an helper class for the HMC
* Should contain only the data for the two index representations
* and the facility to convert from the fundamental -> two index
* The templated parameter TwoIndexSymmetry choses between the
* symmetric and antisymmetric representations
*
* There is an
* enum TwoIndexSymmetry { Symmetric = 1, AntiSymmetric = -1 };
* in the SUnTwoIndex.h file
*/
template <int ncolour, TwoIndexSymmetry S>
class TwoIndexSymmetricRep {
class TwoIndexRep {
public:
// typdef to be used by the Representations class in HMC to get the
// types for the higher representation fields
typedef typename SU_TwoIndex<ncolour,S>::LatticeTwoIndexMatrix LatticeMatrix;
typedef typename SU_TwoIndex<ncolour,S>::LatticeTwoIndexField LatticeField;
typedef typename SU_TwoIndex<ncolour, S>::LatticeTwoIndexMatrix LatticeMatrix;
typedef typename SU_TwoIndex<ncolour, S>::LatticeTwoIndexField LatticeField;
static const int Dimension = ncolour * (ncolour + S) / 2;
LatticeField U;
explicit TwoIndexSymmetricRep(GridBase *grid) : U(grid) {}
explicit TwoIndexRep(GridBase *grid) : U(grid) {}
void update_representation(const LatticeGaugeField &Uin) {
std::cout << GridLogDebug << "Updating TwoIndex representation\n";
// Uin is in the fundamental representation
// get the U in AdjointRep
// (U)(ij)_(lk) =
// e^a =
// get the U in TwoIndexRep
// (U)_{(ij)(lk)} = tr [ adj(e^(ij)) U e^(lk) transpose(U) ]
conformable(U, Uin);
U = zero;
LatticeColourMatrix tmp(Uin._grid);
Vector<typename SU<ncolour>::Matrix> ta(Dimension);
Vector<typename SU<ncolour>::Matrix> eij(Dimension);
// FIXME probably not very efficient to get all the generators
// everytime
for (int a = 0; a < Dimension; a++) SU<ncolour>::generator(a, ta[a]);
for (int a = 0; a < Dimension; a++)
SU_TwoIndex<ncolour, S>::base(a, eij[a]);
for (int mu = 0; mu < Nd; mu++) {
auto Uin_mu = peekLorentz(Uin, mu);
auto U_mu = peekLorentz(U, mu);
for (int a = 0; a < Dimension; a++) {
tmp = transpose(Uin_mu) * adj(eij[a]) * Uin_mu;
for (int b = 0; b < Dimension; b++)
pokeColour(U_mu, trace(tmp * eij[b]), a, b);
}
pokeLorentz(U, U_mu, mu);
}
}
@ -63,8 +72,8 @@ class TwoIndexSymmetricRep {
out_mu = zero;
typename SU<ncolour>::LatticeAlgebraVector h(in._grid);
projectOnAlgebra(h, in_mu, double(Nc + 2*S) ); // factor T(r)/T(fund)
FundamentalLieAlgebraMatrix(h, out_mu); // apply scale only once
projectOnAlgebra(h, in_mu, double(Nc + 2 * S)); // factor T(r)/T(fund)
FundamentalLieAlgebraMatrix(h, out_mu); // apply scale only once
pokeLorentz(out, out_mu, mu);
}
return out;
@ -73,7 +82,7 @@ class TwoIndexSymmetricRep {
private:
void projectOnAlgebra(typename SU<ncolour>::LatticeAlgebraVector &h_out,
const LatticeMatrix &in, Real scale = 1.0) const {
SU_TwoIndex<ncolour,S>::projectOnAlgebra(h_out, in, scale);
SU_TwoIndex<ncolour, S>::projectOnAlgebra(h_out, in, scale);
}
void FundamentalLieAlgebraMatrix(
@ -83,9 +92,8 @@ class TwoIndexSymmetricRep {
}
};
typedef TwoIndexRep< Nc, Symmetric > TwoIndexSymmetricRepresentation;
typedef TwoIndexRep< Nc, AntiSymmetric > TwoIndexAntiSymmetricRepresentation;
typedef TwoIndexRep<Nc, Symmetric> TwoIndexSymmetricRepresentation;
typedef TwoIndexRep<Nc, AntiSymmetric> TwoIndexAntiSymmetricRepresentation;
}
}
#endif

View File

@ -1,11 +1,8 @@
#ifndef QCD_UTIL_SUNADJOINT_H
#define QCD_UTIL_SUNADJOINT_H
////////////////////////////////////////////////////////////////////////
//
// * Two index representation generators
//
// * Normalisation for the fundamental generators:
// * Normalisation for the fundamental generators:
// trace ta tb = 1/2 delta_ab = T_F delta_ab
// T_F = 1/2 for SU(N) groups
//
@ -17,147 +14,262 @@
//
// Then the generators are written as
//
// (iT^(ij))_lk = i
// (iT_a)^(ij)(lk) = i * ( tr[e^(ij)^dag e^(lk) T^trasp_a] +
// tr[e^(lk)e^(ij)^dag T_a] ) //
//
//
////////////////////////////////////////////////////////////////////////
// Authors: David Preti, Guido Cossu
#ifndef QCD_UTIL_SUN2INDEX_H
#define QCD_UTIL_SUN2INDEX_H
namespace Grid {
namespace QCD {
namespace QCD {
enum TwoIndexSymmetry {Symmetric = 1, AntiSymmetric = -1};
template <int ncolour, TwoIndexSymmetry S>
class SU_TwoIndex : public SU<ncolour> {
public:
static const int Dimension = ncolour * (ncolour + S) / 2;
template <typename vtype>
using iSUnTwoIndexMatrix =
iScalar<iScalar<iMatrix<vtype, Dimension > > >;
typedef iSUnTwoIndexMatrix<Complex> TIMatrix;
typedef iSUnTwoIndexMatrix<ComplexF> TIMatrixF;
typedef iSUnTwoIndexMatrix<ComplexD> TIMatrixD;
typedef iSUnTwoIndexMatrix<vComplex> vTIMatrix;
typedef iSUnTwoIndexMatrix<vComplexF> vTIMatrixF;
typedef iSUnTwoIndexMatrix<vComplexD> vTIMatrixD;
typedef Lattice<vAMatrix> LatticeTwoIndexMatrix;
typedef Lattice<vAMatrixF> LatticeTwoIndexMatrixF;
typedef Lattice<vAMatrixD> LatticeTwoIndexMatrixD;
typedef Lattice<iVector<iScalar<iMatrix<vComplex, Dimension> >, Nd> >
enum TwoIndexSymmetry { Symmetric = 1, AntiSymmetric = -1 };
inline Real delta(int a, int b) { return (a == b) ? 1.0 : 0.0; }
template <int ncolour, TwoIndexSymmetry S>
class SU_TwoIndex : public SU<ncolour> {
public:
static const int Dimension = ncolour * (ncolour + S) / 2;
static const int NumGenerators = SU<ncolour>::AdjointDimension;
template <typename vtype>
using iSUnTwoIndexMatrix = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
typedef iSUnTwoIndexMatrix<Complex> TIMatrix;
typedef iSUnTwoIndexMatrix<ComplexF> TIMatrixF;
typedef iSUnTwoIndexMatrix<ComplexD> TIMatrixD;
typedef iSUnTwoIndexMatrix<vComplex> vTIMatrix;
typedef iSUnTwoIndexMatrix<vComplexF> vTIMatrixF;
typedef iSUnTwoIndexMatrix<vComplexD> vTIMatrixD;
typedef Lattice<vTIMatrix> LatticeTwoIndexMatrix;
typedef Lattice<vTIMatrixF> LatticeTwoIndexMatrixF;
typedef Lattice<vTIMatrixD> LatticeTwoIndexMatrixD;
typedef Lattice<iVector<iScalar<iMatrix<vComplex, Dimension> >, Nd> >
LatticeTwoIndexField;
typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> >
typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> >
LatticeTwoIndexFieldF;
typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> >
typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> >
LatticeTwoIndexFieldD;
template <typename vtype>
using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
template <class cplx>
static void generator(int Index, iSUnTwoIndexMatrix<cplx> &iTwoIdxTa) {
// returns i(T)^(ij) necessary for the projectors
// see definitions above
iTwoIdxTa = zero;
Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > tij(Dimension);
typename SU<ncolour>::template iSUnMatrix<cplx> tmp;
typedef iSUnMatrix<Complex> Matrix;
typedef iSUnMatrix<ComplexF> MatrixF;
typedef iSUnMatrix<ComplexD> MatrixD;
template <class cplx>
static void base(int Index, iSUnMatrix<cplx> &eij) {
// returns (e)^(ij)_{kl} necessary for change of base U_F -> U_R
assert(Index < NumGenerators);
eij = zero;
for (int a = 0; a < Dimension; a++) {
}
// for the linearisation of the 2 indexes
static int a[ncolour * (ncolour - 1) / 2][2]; // store the a <-> i,j
static bool filled = false;
if (!filled) {
int counter = 0;
for (int i = 1; i < ncolour; i++) {
for (int j = 0; j < i; j++) {
a[counter++][0] = i;
a[counter++][1] = j;
}
}
filled = true;
}
static void printGenerators(void) {
for (int gen = 0; gen < Dimension; gen++) {
AMatrix ta;
generator(gen, ta);
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
<< std::endl;
std::cout << GridLogMessage << ta << std::endl;
}
}
static void testGenerators(void) {
TIMatrix TwoIndexTa;
}
static void TwoIndexLieAlgebraMatrix(const typename SU<ncolour>::LatticeAlgebraVector &h,
LatticeTwoIndexMatrix &out, Real scale = 1.0) {
conformable(h, out);
GridBase *grid = out._grid;
LatticeAdjMatrix la(grid);
TIMatrix iTa;
out = zero;
for (int a = 0; a < Dimension; a++) {
generator(a, iTa);
la = peekColour(h, a) * iTa;
out += la;
}
out *= scale;
}
// Projects the algebra components a lattice matrix (of dimension ncol*ncol -1 )
static void projectOnAlgebra(typename SU<ncolour>::LatticeAlgebraVector &h_out, const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
h_out = zero;
TIMatrix iTa;
Real coefficient = - 2.0/(ncolour + 2*S) * scale;// 2/(Nc +/- 2) for the normalization of the trace in the two index rep
for (int a = 0; a < Dimension; a++) {
generator(a, iTa);
auto tmp = real(trace(iTa * in)) * coefficient;
pokeColour(h_out, tmp, a);
}
}
// a projector that keeps the generators stored to avoid the overhead of recomputing them
static void projector(typename SU<ncolour>::LatticeAlgebraVector &h_out, const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
static std::vector<TIMatrix> iTa(Dimension); // to store the generators
h_out = zero;
static bool precalculated = false;
if (!precalculated){
precalculated = true;
for (int a = 0; a < Dimension; a++) generator(a, iTa[a]);
}
Real coefficient = - 2.0/(ncolour + 2*S) * scale; // 2/(Nc +/- 2) for the normalization of the trace in the two index rep
for (int a = 0; a < Dimension; a++) {
auto tmp = real(trace(iTa[a] * in)) * coefficient;
pokeColour(h_out, tmp, a);
}
}
};
// Some useful type names
typedef SU_TwoIndex<2, Symmetric> SU2TwoIndexSymm;
typedef SU_TwoIndex<3, Symmetric> SU3TwoIndexSymm;
typedef SU_TwoIndex<4, Symmetric> SU4TwoIndexSymm;
typedef SU_TwoIndex<5, Symmetric> SU5TwoIndexSymm;
typedef SU_TwoIndex<Nc, Symmetric> TwoIndexSymmMatrices;
typedef SU_TwoIndex<2, AntiSymmetric> SU2TwoIndexAntiSymm;
typedef SU_TwoIndex<3, AntiSymmetric> SU3TwoIndexAntiSymm;
typedef SU_TwoIndex<4, AntiSymmetric> SU4TwoIndexAntiSymm;
typedef SU_TwoIndex<5, AntiSymmetric> SU5TwoIndexAntiSymm;
typedef SU_TwoIndex<Nc, AntiSymmetric> TwoIndexAntiSymmMatrices;
if (Index < ncolour * (ncolour - 1) / 2) {
baseOffDiagonal(a[Index][0], a[Index][1], eij);
} else {
baseDiagonal(Index, eij);
}
}
template <class cplx>
static void baseDiagonal(int Index, iSUnMatrix<cplx> &eij) {
eij = zero;
eij()()(Index - ncolour * (ncolour - 1) / 2,
Index - ncolour * (ncolour - 1) / 2) = 1.0;
}
template <class cplx>
static void baseOffDiagonal(int i, int j, iSUnMatrix<cplx> &eij) {
eij = zero;
for (int k = 0; k < ncolour; k++)
for (int l = 0; l < ncolour; l++)
eij()()(l, k) = delta(i, k) * delta(j, l) +
S * delta(j, k) * delta(i, l);
RealD nrm = 1. / std::sqrt(2.0);
eij = eij * nrm;
}
static void printBase(void) {
for (int gen = 0; gen < Dimension; gen++) {
Matrix tmp;
base(gen, tmp);
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
<< std::endl;
std::cout << GridLogMessage << tmp << std::endl;
}
}
template <class cplx>
static void generator(int Index, iSUnTwoIndexMatrix<cplx> &i2indTa) {
Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > ta(
ncolour * ncolour - 1);
Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > eij(Dimension);
typename SU<ncolour>::template iSUnMatrix<cplx> tmp;
i2indTa = zero;
for (int a = 0; a < ncolour * ncolour - 1; a++)
SU<ncolour>::generator(a, ta[a]);
for (int a = 0; a < Dimension; a++) base(a, eij[a]);
for (int a = 0; a < Dimension; a++) {
tmp = transpose(ta[Index]) * adj(eij[a]) + adj(eij[a]) * ta[Index];
for (int b = 0; b < Dimension; b++) {
typename SU<ncolour>::template iSUnMatrix<cplx> tmp1 =
tmp * eij[b];
Complex iTr = TensorRemove(timesI(trace(tmp1)));
i2indTa()()(a, b) = iTr;
}
}
}
static void printGenerators(void) {
for (int gen = 0; gen < ncolour * ncolour - 1; gen++) {
TIMatrix i2indTa;
generator(gen, i2indTa);
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
<< std::endl;
std::cout << GridLogMessage << i2indTa << std::endl;
}
}
static void testGenerators(void) {
TIMatrix i2indTa, i2indTb;
std::cout << GridLogMessage << "2IndexRep - Checking if traceless"
<< std::endl;
for (int a = 0; a < ncolour * ncolour - 1; a++) {
generator(a, i2indTa);
std::cout << GridLogMessage << a << std::endl;
assert(norm2(trace(i2indTa)) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage << "2IndexRep - Checking if antihermitean"
<< std::endl;
for (int a = 0; a < ncolour * ncolour - 1; a++) {
generator(a, i2indTa);
std::cout << GridLogMessage << a << std::endl;
assert(norm2(adj(i2indTa) + i2indTa) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage
<< "2IndexRep - Checking Tr[Ta*Tb]=delta(a,b)*(N +- 2)/2"
<< std::endl;
for (int a = 0; a < ncolour * ncolour - 1; a++) {
for (int b = 0; b < ncolour * ncolour - 1; b++) {
generator(a, i2indTa);
generator(b, i2indTb);
// generator returns iTa, so we need a minus sign here
Complex Tr = -TensorRemove(trace(i2indTa * i2indTb));
std::cout << GridLogMessage << "a=" << a << "b=" << b << "Tr=" << Tr
<< std::endl;
}
}
std::cout << GridLogMessage << std::endl;
}
static void TwoIndexLieAlgebraMatrix(
const typename SU<ncolour>::LatticeAlgebraVector &h,
LatticeTwoIndexMatrix &out, Real scale = 1.0) {
conformable(h, out);
GridBase *grid = out._grid;
LatticeTwoIndexMatrix la(grid);
TIMatrix i2indTa;
out = zero;
for (int a = 0; a < ncolour * ncolour - 1; a++) {
generator(a, i2indTa);
la = peekColour(h, a) * i2indTa;
out += la;
}
out *= scale;
}
// Projects the algebra components
// of a lattice matrix ( of dimension ncol*ncol -1 )
static void projectOnAlgebra(
typename SU<ncolour>::LatticeAlgebraVector &h_out,
const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
h_out = zero;
TIMatrix i2indTa;
Real coefficient = -2.0 / (ncolour + 2 * S) * scale;
// 2/(Nc +/- 2) for the normalization of the trace in the two index rep
for (int a = 0; a < ncolour * ncolour - 1; a++) {
generator(a, i2indTa);
auto tmp = real(trace(i2indTa * in)) * coefficient;
pokeColour(h_out, tmp, a);
}
}
// a projector that keeps the generators stored to avoid the overhead of
// recomputing them
static void projector(typename SU<ncolour>::LatticeAlgebraVector &h_out,
const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
// to store the generators
static std::vector<TIMatrix> i2indTa(ncolour * ncolour -1);
h_out = zero;
static bool precalculated = false;
if (!precalculated) {
precalculated = true;
for (int a = 0; a < ncolour * ncolour - 1; a++) generator(a, i2indTa[a]);
}
Real coefficient =
-2.0 / (ncolour + 2 * S) * scale; // 2/(Nc +/- 2) for the normalization
// of the trace in the two index rep
for (int a = 0; a < ncolour * ncolour - 1; a++) {
auto tmp = real(trace(i2indTa[a] * in)) * coefficient;
pokeColour(h_out, tmp, a);
}
}
};
// Some useful type names
typedef SU_TwoIndex<Nc, Symmetric> TwoIndexSymmMatrices;
typedef SU_TwoIndex<Nc, AntiSymmetric> TwoIndexAntiSymmMatrices;
typedef SU_TwoIndex<2, Symmetric> SU2TwoIndexSymm;
typedef SU_TwoIndex<3, Symmetric> SU3TwoIndexSymm;
typedef SU_TwoIndex<4, Symmetric> SU4TwoIndexSymm;
typedef SU_TwoIndex<5, Symmetric> SU5TwoIndexSymm;
typedef SU_TwoIndex<2, AntiSymmetric> SU2TwoIndexAntiSymm;
typedef SU_TwoIndex<3, AntiSymmetric> SU3TwoIndexAntiSymm;
typedef SU_TwoIndex<4, AntiSymmetric> SU4TwoIndexAntiSymm;
typedef SU_TwoIndex<5, AntiSymmetric> SU5TwoIndexAntiSymm;
}
}
#endif

View File

@ -8,6 +8,7 @@ Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -30,9 +31,13 @@ directory
#include <Grid/Grid.h>
#include <Grid/qcd/utils/CovariantCshift.h>
#include <Grid/qcd/utils/SUn.h>
#include <Grid/qcd/utils/SUnAdjoint.h>
#include <Grid/qcd/utils/SUnTwoIndex.h>
#include <Grid/qcd/representations/adjoint.h>
#include <Grid/qcd/representations/two_index.h>
#include <Grid/qcd/utils/WilsonLoops.h>
using namespace std;
@ -79,13 +84,6 @@ int main(int argc, char** argv) {
SU4::testGenerators();
SU4Adjoint::testGenerators();
// std::cout<<GridLogMessage<<"*********************************************"<<std::endl;
// std::cout<<GridLogMessage<<"* Generators for SU(5)"<<std::endl;
// std::cout<<GridLogMessage<<"*********************************************"<<std::endl;
// SU5::printGenerators();
// SU5::testGenerators();
// Projectors
GridParallelRNG gridRNG(grid);
gridRNG.SeedRandomDevice();
@ -112,12 +110,14 @@ int main(int argc, char** argv) {
AdjointRep<Nc> AdjRep(grid);
// AdjointRepresentation has the predefined number of colours Nc
Representations<FundamentalRepresentation, AdjointRepresentation> RepresentationTypes(grid);
Representations<FundamentalRepresentation, AdjointRepresentation, TwoIndexSymmetricRepresentation> RepresentationTypes(grid);
LatticeGaugeField U(grid), V(grid);
SU<Nc>::HotConfiguration<LatticeGaugeField>(gridRNG, U);
SU<Nc>::HotConfiguration<LatticeGaugeField>(gridRNG, V);
// Adjoint representation
// Test group structure
// (U_f * V_f)_r = U_r * V_r
LatticeGaugeField UV(grid);
@ -129,7 +129,7 @@ int main(int argc, char** argv) {
}
AdjRep.update_representation(UV);
typename AdjointRep<Nc>::LatticeField UVr = AdjRep.U; // (U_f * V_f)_r
typename AdjointRep<Nc>::LatticeField UVr = AdjRep.U; // (U_f * V_f)_r
AdjRep.update_representation(U);
@ -147,7 +147,7 @@ int main(int argc, char** argv) {
}
typename AdjointRep<Nc>::LatticeField Diff_check = UVr - UrVr;
std::cout << GridLogMessage << "Group structure SU("<<Nc<<") check difference : " << norm2(Diff_check) << std::endl;
std::cout << GridLogMessage << "Group structure SU("<<Nc<<") check difference (Adjoint representation) : " << norm2(Diff_check) << std::endl;
// Check correspondence of algebra and group transformations
// Create a random vector
@ -161,7 +161,7 @@ int main(int argc, char** argv) {
SU<Nc>::LatticeAlgebraVector h_adj2(grid);
SU_Adjoint<Nc>::projectOnAlgebra(h_adj2, Ar);
SU<Nc>::LatticeAlgebraVector h_diff = h_adj - h_adj2;
std::cout << GridLogMessage << "Projections structure check vector difference : " << norm2(h_diff) << std::endl;
std::cout << GridLogMessage << "Projections structure check vector difference (Adjoint representation) : " << norm2(h_diff) << std::endl;
// Exponentiate
typename AdjointRep<Nc>::LatticeMatrix Uadj(grid);
@ -210,5 +210,323 @@ int main(int argc, char** argv) {
typename AdjointRep<Nc>::LatticeMatrix Diff_check_mat = Ur0 - Uadj;
std::cout << GridLogMessage << "Projections structure check group difference : " << norm2(Diff_check_mat) << std::endl;
// TwoIndexRep tests
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
std::cout << GridLogMessage << "* eS^{ij} base for SU(2)" << std::endl;
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
std::cout << GridLogMessage << "Dimension of Two Index Symmetric representation: "<< SU2TwoIndexSymm::Dimension << std::endl;
SU2TwoIndexSymm::printBase();
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
std::cout << GridLogMessage << "Generators of Two Index Symmetric representation: "<< SU2TwoIndexSymm::Dimension << std::endl;
SU2TwoIndexSymm::printGenerators();
std::cout << GridLogMessage << "Test of Two Index Symmetric Generators: "<< SU2TwoIndexSymm::Dimension << std::endl;
SU2TwoIndexSymm::testGenerators();
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
std::cout << GridLogMessage << "* eAS^{ij} base for SU(2)" << std::endl;
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
std::cout << GridLogMessage << "Dimension of Two Index anti-Symmetric representation: "<< SU2TwoIndexAntiSymm::Dimension << std::endl;
SU2TwoIndexAntiSymm::printBase();
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
std::cout << GridLogMessage << "Dimension of Two Index anti-Symmetric representation: "<< SU2TwoIndexAntiSymm::Dimension << std::endl;
SU2TwoIndexAntiSymm::printGenerators();
std::cout << GridLogMessage << "Test of Two Index anti-Symmetric Generators: "<< SU2TwoIndexAntiSymm::Dimension << std::endl;
SU2TwoIndexAntiSymm::testGenerators();
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
std::cout << GridLogMessage << "Test for the Two Index Symmetric projectors"
<< std::endl;
// Projectors
SU3TwoIndexSymm::LatticeTwoIndexMatrix Gauss2(grid);
random(gridRNG,Gauss2);
std::cout << GridLogMessage << "Start projectOnAlgebra" << std::endl;
SU3TwoIndexSymm::projectOnAlgebra(ha, Gauss2);
std::cout << GridLogMessage << "end projectOnAlgebra" << std::endl;
std::cout << GridLogMessage << "Start projector" << std::endl;
SU3TwoIndexSymm::projector(hb, Gauss2);
std::cout << GridLogMessage << "end projector" << std::endl;
std::cout << GridLogMessage << "ReStart projector" << std::endl;
SU3TwoIndexSymm::projector(hb, Gauss2);
std::cout << GridLogMessage << "end projector" << std::endl;
SU3::LatticeAlgebraVector diff2 = ha - hb;
std::cout << GridLogMessage << "Difference: " << norm2(diff) << std::endl;
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
std::cout << GridLogMessage << "Test for the Two index anti-Symmetric projectors"
<< std::endl;
// Projectors
SU3TwoIndexAntiSymm::LatticeTwoIndexMatrix Gauss2a(grid);
random(gridRNG,Gauss2a);
std::cout << GridLogMessage << "Start projectOnAlgebra" << std::endl;
SU3TwoIndexAntiSymm::projectOnAlgebra(ha, Gauss2a);
std::cout << GridLogMessage << "end projectOnAlgebra" << std::endl;
std::cout << GridLogMessage << "Start projector" << std::endl;
SU3TwoIndexAntiSymm::projector(hb, Gauss2a);
std::cout << GridLogMessage << "end projector" << std::endl;
std::cout << GridLogMessage << "ReStart projector" << std::endl;
SU3TwoIndexAntiSymm::projector(hb, Gauss2a);
std::cout << GridLogMessage << "end projector" << std::endl;
SU3::LatticeAlgebraVector diff2a = ha - hb;
std::cout << GridLogMessage << "Difference: " << norm2(diff2a) << std::endl;
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
std::cout << GridLogMessage << "Two index Symmetric: Checking Group Structure"
<< std::endl;
// Testing HMC representation classes
TwoIndexRep< Nc, Symmetric > TIndexRep(grid);
// Test group structure
// (U_f * V_f)_r = U_r * V_r
LatticeGaugeField U2(grid), V2(grid);
SU<Nc>::HotConfiguration<LatticeGaugeField>(gridRNG, U2);
SU<Nc>::HotConfiguration<LatticeGaugeField>(gridRNG, V2);
LatticeGaugeField UV2(grid);
UV2 = zero;
for (int mu = 0; mu < Nd; mu++) {
SU<Nc>::LatticeMatrix Umu2 = peekLorentz(U2,mu);
SU<Nc>::LatticeMatrix Vmu2 = peekLorentz(V2,mu);
pokeLorentz(UV2,Umu2*Vmu2, mu);
}
TIndexRep.update_representation(UV2);
typename TwoIndexRep< Nc, Symmetric >::LatticeField UVr2 = TIndexRep.U; // (U_f * V_f)_r
TIndexRep.update_representation(U2);
typename TwoIndexRep< Nc, Symmetric >::LatticeField Ur2 = TIndexRep.U; // U_r
TIndexRep.update_representation(V2);
typename TwoIndexRep< Nc, Symmetric >::LatticeField Vr2 = TIndexRep.U; // V_r
typename TwoIndexRep< Nc, Symmetric >::LatticeField Ur2Vr2(grid);
Ur2Vr2 = zero;
for (int mu = 0; mu < Nd; mu++) {
typename TwoIndexRep< Nc, Symmetric >::LatticeMatrix Urmu2 = peekLorentz(Ur2,mu);
typename TwoIndexRep< Nc, Symmetric >::LatticeMatrix Vrmu2 = peekLorentz(Vr2,mu);
pokeLorentz(Ur2Vr2,Urmu2*Vrmu2, mu);
}
typename TwoIndexRep< Nc, Symmetric >::LatticeField Diff_check2 = UVr2 - Ur2Vr2;
std::cout << GridLogMessage << "Group structure SU("<<Nc<<") check difference (Two Index Symmetric): " << norm2(Diff_check2) << std::endl;
// Check correspondence of algebra and group transformations
// Create a random vector
SU<Nc>::LatticeAlgebraVector h_sym(grid);
typename TwoIndexRep< Nc, Symmetric>::LatticeMatrix Ar_sym(grid);
random(gridRNG,h_sym);
h_sym = real(h_sym);
SU_TwoIndex<Nc,Symmetric>::TwoIndexLieAlgebraMatrix(h_sym,Ar_sym);
// Re-extract h_sym
SU<Nc>::LatticeAlgebraVector h_sym2(grid);
SU_TwoIndex< Nc, Symmetric>::projectOnAlgebra(h_sym2, Ar_sym);
SU<Nc>::LatticeAlgebraVector h_diff_sym = h_sym - h_sym2;
std::cout << GridLogMessage << "Projections structure check vector difference (Two Index Symmetric): " << norm2(h_diff_sym) << std::endl;
// Exponentiate
typename TwoIndexRep< Nc, Symmetric>::LatticeMatrix U2iS(grid);
U2iS = expMat(Ar_sym, 1.0, 16);
typename TwoIndexRep< Nc, Symmetric>::LatticeMatrix uno2iS(grid);
uno2iS = 1.0;
// Check matrix U2iS, must be real orthogonal
typename TwoIndexRep< Nc, Symmetric>::LatticeMatrix Ucheck2iS = U2iS - conjugate(U2iS);
std::cout << GridLogMessage << "Reality check: " << norm2(Ucheck2iS)
<< std::endl;
Ucheck2iS = U2iS * adj(U2iS) - uno2iS;
std::cout << GridLogMessage << "orthogonality check 1: " << norm2(Ucheck2iS)
<< std::endl;
Ucheck2iS = adj(U2iS) * U2iS - uno2iS;
std::cout << GridLogMessage << "orthogonality check 2: " << norm2(Ucheck2iS)
<< std::endl;
// Construct the fundamental matrix in the group
SU<Nc>::LatticeMatrix Af_sym(grid);
SU<Nc>::FundamentalLieAlgebraMatrix(h_sym,Af_sym);
SU<Nc>::LatticeMatrix Ufund2(grid);
Ufund2 = expMat(Af_sym, 1.0, 16);
SU<Nc>::LatticeMatrix UnitCheck2(grid);
UnitCheck2 = Ufund2 * adj(Ufund2) - uno_f;
std::cout << GridLogMessage << "unitarity check 1: " << norm2(UnitCheck2)
<< std::endl;
UnitCheck2 = adj(Ufund2) * Ufund2 - uno_f;
std::cout << GridLogMessage << "unitarity check 2: " << norm2(UnitCheck2)
<< std::endl;
// Tranform to the 2Index Sym representation
U = zero; // fill this with only one direction
pokeLorentz(U,Ufund2,0); // the representation transf acts on full gauge fields
TIndexRep.update_representation(U);
Ur2 = TIndexRep.U; // U_r
typename TwoIndexRep< Nc, Symmetric>::LatticeMatrix Ur02 = peekLorentz(Ur2,0); // this should be the same as U2iS
typename TwoIndexRep< Nc, Symmetric>::LatticeMatrix Diff_check_mat2 = Ur02 - U2iS;
std::cout << GridLogMessage << "Projections structure check group difference (Two Index Symmetric): " << norm2(Diff_check_mat2) << std::endl;
if (SU2TwoIndexAntiSymm::Dimension != 1){
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
std::cout << GridLogMessage << "Two Index anti-Symmetric: Check Group Structure"
<< std::endl;
// Testing HMC representation classes
TwoIndexRep< Nc, AntiSymmetric > TIndexRepA(grid);
// Test group structure
// (U_f * V_f)_r = U_r * V_r
LatticeGaugeField U2A(grid), V2A(grid);
SU<Nc>::HotConfiguration<LatticeGaugeField>(gridRNG, U2A);
SU<Nc>::HotConfiguration<LatticeGaugeField>(gridRNG, V2A);
LatticeGaugeField UV2A(grid);
UV2A = zero;
for (int mu = 0; mu < Nd; mu++) {
SU<Nc>::LatticeMatrix Umu2A = peekLorentz(U2,mu);
SU<Nc>::LatticeMatrix Vmu2A = peekLorentz(V2,mu);
pokeLorentz(UV2A,Umu2A*Vmu2A, mu);
}
TIndexRep.update_representation(UV2A);
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeField UVr2A = TIndexRepA.U; // (U_f * V_f)_r
TIndexRep.update_representation(U2A);
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeField Ur2A = TIndexRepA.U; // U_r
TIndexRep.update_representation(V2A);
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeField Vr2A = TIndexRepA.U; // V_r
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeField Ur2Vr2A(grid);
Ur2Vr2A = zero;
for (int mu = 0; mu < Nd; mu++) {
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeMatrix Urmu2A = peekLorentz(Ur2A,mu);
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeMatrix Vrmu2A = peekLorentz(Vr2A,mu);
pokeLorentz(Ur2Vr2A,Urmu2A*Vrmu2A, mu);
}
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeField Diff_check2A = UVr2A - Ur2Vr2A;
std::cout << GridLogMessage << "Group structure SU("<<Nc<<") check difference (Two Index anti-Symmetric): " << norm2(Diff_check2A) << std::endl;
// Check correspondence of algebra and group transformations
// Create a random vector
SU<Nc>::LatticeAlgebraVector h_Asym(grid);
typename TwoIndexRep< Nc, AntiSymmetric>::LatticeMatrix Ar_Asym(grid);
random(gridRNG,h_Asym);
h_Asym = real(h_Asym);
SU_TwoIndex< Nc, AntiSymmetric>::TwoIndexLieAlgebraMatrix(h_Asym,Ar_Asym);
// Re-extract h_sym
SU<Nc>::LatticeAlgebraVector h_Asym2(grid);
SU_TwoIndex< Nc, AntiSymmetric>::projectOnAlgebra(h_Asym2, Ar_Asym);
SU<Nc>::LatticeAlgebraVector h_diff_Asym = h_Asym - h_Asym2;
std::cout << GridLogMessage << "Projections structure check vector difference (Two Index anti-Symmetric): " << norm2(h_diff_Asym) << std::endl;
// Exponentiate
typename TwoIndexRep< Nc, AntiSymmetric>::LatticeMatrix U2iAS(grid);
U2iAS = expMat(Ar_Asym, 1.0, 16);
typename TwoIndexRep< Nc, AntiSymmetric>::LatticeMatrix uno2iAS(grid);
uno2iAS = 1.0;
// Check matrix U2iS, must be real orthogonal
typename TwoIndexRep< Nc, AntiSymmetric>::LatticeMatrix Ucheck2iAS = U2iAS - conjugate(U2iAS);
std::cout << GridLogMessage << "Reality check: " << norm2(Ucheck2iAS)
<< std::endl;
Ucheck2iAS = U2iAS * adj(U2iAS) - uno2iAS;
std::cout << GridLogMessage << "orthogonality check 1: " << norm2(Ucheck2iAS)
<< std::endl;
Ucheck2iAS = adj(U2iAS) * U2iAS - uno2iAS;
std::cout << GridLogMessage << "orthogonality check 2: " << norm2(Ucheck2iAS)
<< std::endl;
// Construct the fundamental matrix in the group
SU<Nc>::LatticeMatrix Af_Asym(grid);
SU<Nc>::FundamentalLieAlgebraMatrix(h_Asym,Af_Asym);
SU<Nc>::LatticeMatrix Ufund2A(grid);
Ufund2A = expMat(Af_Asym, 1.0, 16);
SU<Nc>::LatticeMatrix UnitCheck2A(grid);
UnitCheck2A = Ufund2A * adj(Ufund2A) - uno_f;
std::cout << GridLogMessage << "unitarity check 1: " << norm2(UnitCheck2A)
<< std::endl;
UnitCheck2A = adj(Ufund2A) * Ufund2A - uno_f;
std::cout << GridLogMessage << "unitarity check 2: " << norm2(UnitCheck2A)
<< std::endl;
// Tranform to the 2Index Sym representation
U = zero; // fill this with only one direction
pokeLorentz(U,Ufund2A,0); // the representation transf acts on full gauge fields
TIndexRepA.update_representation(U);
Ur2A = TIndexRepA.U; // U_r
typename TwoIndexRep< Nc, AntiSymmetric>::LatticeMatrix Ur02A = peekLorentz(Ur2A,0); // this should be the same as U2iS
typename TwoIndexRep< Nc, AntiSymmetric>::LatticeMatrix Diff_check_mat2A = Ur02A - U2iAS;
std::cout << GridLogMessage << "Projections structure check group difference (Two Index anti-Symmetric): " << norm2(Diff_check_mat2A) << std::endl;
} else {
std::cout << GridLogMessage << "Skipping Two Index anti-Symmetric tests "
"because representation is trivial (dim = 1)"
<< std::endl;
}
Grid_finalize();
}

View File

@ -1,5 +1,5 @@
tests: Test_hmc_EODWFRatio Test_hmc_EODWFRatio_Gparity Test_hmc_EOWilsonFermionGauge Test_hmc_EOWilsonRatio Test_hmc_GparityIwasakiGauge Test_hmc_GparityWilsonGauge Test_hmc_IwasakiGauge Test_hmc_RectGauge Test_hmc_WilsonAdjointFermionGauge Test_hmc_WilsonFermionGauge Test_hmc_WilsonGauge Test_hmc_WilsonRatio Test_multishift_sqrt Test_remez Test_rhmc_EOWilson1p1 Test_rhmc_EOWilsonRatio Test_rhmc_Wilson1p1 Test_rhmc_WilsonRatio
EXTRA_PROGRAMS = Test_hmc_EODWFRatio Test_hmc_EODWFRatio_Gparity Test_hmc_EOWilsonFermionGauge Test_hmc_EOWilsonRatio Test_hmc_GparityIwasakiGauge Test_hmc_GparityWilsonGauge Test_hmc_IwasakiGauge Test_hmc_RectGauge Test_hmc_WilsonAdjointFermionGauge Test_hmc_WilsonFermionGauge Test_hmc_WilsonGauge Test_hmc_WilsonRatio Test_multishift_sqrt Test_remez Test_rhmc_EOWilson1p1 Test_rhmc_EOWilsonRatio Test_rhmc_Wilson1p1 Test_rhmc_WilsonRatio
tests: Test_hmc_EODWFRatio Test_hmc_EODWFRatio_Gparity Test_hmc_EOWilsonFermionGauge Test_hmc_EOWilsonRatio Test_hmc_GparityIwasakiGauge Test_hmc_GparityWilsonGauge Test_hmc_IwasakiGauge Test_hmc_RectGauge Test_hmc_WilsonAdjointFermionGauge Test_hmc_WilsonFermionGauge Test_hmc_WilsonGauge Test_hmc_WilsonMixedRepresentationsFermionGauge Test_hmc_WilsonRatio Test_hmc_WilsonTwoIndexSymmetricFermionGauge Test_multishift_sqrt Test_remez Test_rhmc_EOWilson1p1 Test_rhmc_EOWilsonRatio Test_rhmc_Wilson1p1 Test_rhmc_WilsonRatio
EXTRA_PROGRAMS = Test_hmc_EODWFRatio Test_hmc_EODWFRatio_Gparity Test_hmc_EOWilsonFermionGauge Test_hmc_EOWilsonRatio Test_hmc_GparityIwasakiGauge Test_hmc_GparityWilsonGauge Test_hmc_IwasakiGauge Test_hmc_RectGauge Test_hmc_WilsonAdjointFermionGauge Test_hmc_WilsonFermionGauge Test_hmc_WilsonGauge Test_hmc_WilsonMixedRepresentationsFermionGauge Test_hmc_WilsonRatio Test_hmc_WilsonTwoIndexSymmetricFermionGauge Test_multishift_sqrt Test_remez Test_rhmc_EOWilson1p1 Test_rhmc_EOWilsonRatio Test_rhmc_Wilson1p1 Test_rhmc_WilsonRatio
Test_hmc_EODWFRatio_SOURCES=Test_hmc_EODWFRatio.cc
Test_hmc_EODWFRatio_LDADD=-lGrid
@ -34,9 +34,15 @@ Test_hmc_WilsonFermionGauge_LDADD=-lGrid
Test_hmc_WilsonGauge_SOURCES=Test_hmc_WilsonGauge.cc
Test_hmc_WilsonGauge_LDADD=-lGrid
Test_hmc_WilsonMixedRepresentationsFermionGauge_SOURCES=Test_hmc_WilsonMixedRepresentationsFermionGauge.cc
Test_hmc_WilsonMixedRepresentationsFermionGauge_LDADD=-lGrid
Test_hmc_WilsonRatio_SOURCES=Test_hmc_WilsonRatio.cc
Test_hmc_WilsonRatio_LDADD=-lGrid
Test_hmc_WilsonTwoIndexSymmetricFermionGauge_SOURCES=Test_hmc_WilsonTwoIndexSymmetricFermionGauge.cc
Test_hmc_WilsonTwoIndexSymmetricFermionGauge_LDADD=-lGrid
Test_multishift_sqrt_SOURCES=Test_multishift_sqrt.cc
Test_multishift_sqrt_LDADD=-lGrid

View File

@ -0,0 +1,113 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_hmc_WilsonAdjointFermionGauge.cc
Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include "Grid/Grid.h"
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
namespace Grid {
namespace QCD {
// Here change the allowed (higher) representations
typedef Representations< FundamentalRepresentation, AdjointRepresentation , TwoIndexSymmetricRepresentation> TheRepresentations;
class HmcRunner : public NerscHmcRunnerHirep< TheRepresentations > {
public:
void BuildTheAction(int argc, char **argv)
{
typedef WilsonAdjImplR AdjImplPolicy; // gauge field implemetation for the pseudofermions
typedef WilsonAdjFermionR AdjFermionAction; // type of lattice fermions (Wilson, DW, ...)
typedef WilsonTwoIndexSymmetricImplR SymmImplPolicy;
typedef WilsonTwoIndexSymmetricFermionR SymmFermionAction;
typedef typename AdjFermionAction::FermionField AdjFermionField;
typedef typename SymmFermionAction::FermionField SymmFermionField;
UGrid = SpaceTimeGrid::makeFourDimGrid(
GridDefaultLatt(), GridDefaultSimd(Nd, vComplex::Nsimd()),
GridDefaultMpi());
UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
FGrid = UGrid;
FrbGrid = UrbGrid;
// temporarily need a gauge field
//LatticeGaugeField U(UGrid);
AdjointRepresentation::LatticeField UA(UGrid);
TwoIndexSymmetricRepresentation::LatticeField US(UGrid);
// Gauge action
WilsonGaugeActionR Waction(2.25);
Real adjoint_mass = -0.1;
Real symm_mass = -0.5;
AdjFermionAction AdjFermOp(UA, *FGrid, *FrbGrid, adjoint_mass);
SymmFermionAction SymmFermOp(US, *FGrid, *FrbGrid, symm_mass);
ConjugateGradient<AdjFermionField> CG_adj(1.0e-8, 10000, false);
ConjugateGradient<SymmFermionField> CG_symm(1.0e-8, 10000, false);
// Pass two solvers: one for the force computation and one for the action
TwoFlavourPseudoFermionAction<AdjImplPolicy> Nf2_Adj(AdjFermOp, CG_adj, CG_adj);
TwoFlavourPseudoFermionAction<SymmImplPolicy> Nf2_Symm(SymmFermOp, CG_symm, CG_symm);
// Collect actions
ActionLevelHirep<LatticeGaugeField, TheRepresentations > Level1(1);
Level1.push_back(&Nf2_Adj);
Level1.push_back(&Nf2_Symm);
ActionLevelHirep<LatticeGaugeField, TheRepresentations > Level2(4);
Level2.push_back(&Waction);
TheAction.push_back(Level1);
TheAction.push_back(Level2);
Run(argc, argv);
};
};
}
}
int main(int argc, char **argv) {
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
std::cout << GridLogMessage << "Grid is setup to use " << threads
<< " threads" << std::endl;
HmcRunner TheHMC;
TheHMC.BuildTheAction(argc, argv);
}

View File

@ -0,0 +1,103 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_hmc_WilsonAdjointFermionGauge.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include "Grid/Grid.h"
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
namespace Grid {
namespace QCD {
// Here change the allowed (higher) representations
typedef Representations< FundamentalRepresentation, TwoIndexSymmetricRepresentation > TheRepresentations;
class HmcRunner : public NerscHmcRunnerHirep< TheRepresentations > {
public:
void BuildTheAction(int argc, char **argv)
{
typedef WilsonTwoIndexSymmetricImplR ImplPolicy; // gauge field implemetation for the pseudofermions
typedef WilsonTwoIndexSymmetricFermionR FermionAction; // type of lattice fermions (Wilson, DW, ...)
typedef typename FermionAction::FermionField FermionField;
UGrid = SpaceTimeGrid::makeFourDimGrid(
GridDefaultLatt(), GridDefaultSimd(Nd, vComplex::Nsimd()),
GridDefaultMpi());
UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
FGrid = UGrid;
FrbGrid = UrbGrid;
// temporarily need a gauge field
TwoIndexSymmetricRepresentation::LatticeField U(UGrid);
// Gauge action
WilsonGaugeActionR Waction(2.0);
Real mass = -0.0;
FermionAction FermOp(U, *FGrid, *FrbGrid, mass);
ConjugateGradient<FermionField> CG(1.0e-8, 10000, false);
// Pass two solvers: one for the force computation and one for the action
TwoFlavourPseudoFermionAction<ImplPolicy> Nf2(FermOp, CG, CG);
// Set smearing (true/false), default: false
Nf2.is_smeared = false;
// Collect actions
ActionLevelHirep<LatticeGaugeField, TheRepresentations > Level1(1);
Level1.push_back(&Nf2);
ActionLevelHirep<LatticeGaugeField, TheRepresentations > Level2(4);
Level2.push_back(&Waction);
TheAction.push_back(Level1);
TheAction.push_back(Level2);
Run(argc, argv);
};
};
}
}
int main(int argc, char **argv) {
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
std::cout << GridLogMessage << "Grid is setup to use " << threads
<< " threads" << std::endl;
HmcRunner TheHMC;
TheHMC.BuildTheAction(argc, argv);
}