mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-14 09:45:36 +00:00
Merge branch 'dev-IRBL-ypj' of https://github.com/yongchull/Grid into merge
This commit is contained in:
commit
bc1f5be265
6
.gitignore
vendored
6
.gitignore
vendored
@ -88,12 +88,18 @@ Thumbs.db
|
||||
###################
|
||||
build*/*
|
||||
|
||||
# bootstrap #
|
||||
#############
|
||||
*.tar.bz2*
|
||||
|
||||
# IDE related files #
|
||||
#####################
|
||||
*.xcodeproj/*
|
||||
build.sh
|
||||
.vscode
|
||||
*.code-workspace
|
||||
.ctags
|
||||
tags
|
||||
|
||||
# Eigen source #
|
||||
################
|
||||
|
14
bootstrap.sh
14
bootstrap.sh
@ -1,10 +1,16 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
EIGEN_URL='http://bitbucket.org/eigen/eigen/get/3.3.3.tar.bz2'
|
||||
EIGEN_SRC='3.3.3.tar.bz2'
|
||||
EIGEN_URL="http://bitbucket.org/eigen/eigen/get/${EIGEN_SRC}"
|
||||
|
||||
echo "-- deploying Eigen source..."
|
||||
wget ${EIGEN_URL} --no-check-certificate && ./scripts/update_eigen.sh `basename ${EIGEN_URL}` && rm `basename ${EIGEN_URL}`
|
||||
#rm `basename ${EIGEN_URL}`
|
||||
if [ -f ${EIGEN_SRC} ]; then
|
||||
echo "-- skip deploying Eigen source..."
|
||||
else
|
||||
echo "-- deploying Eigen source..."
|
||||
wget ${EIGEN_URL} --no-check-certificate
|
||||
./scripts/update_eigen.sh `basename ${EIGEN_URL}`
|
||||
#rm `basename ${EIGEN_URL}`
|
||||
fi
|
||||
|
||||
echo '-- generating Make.inc files...'
|
||||
./scripts/filelist
|
||||
|
@ -50,6 +50,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>
|
||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
|
||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczosCJ.h>
|
||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h>
|
||||
#include <Grid/algorithms/CoarsenedMatrix.h>
|
||||
#include <Grid/algorithms/FFT.h>
|
||||
|
||||
|
@ -54,10 +54,16 @@ struct ChebyParams : Serializable {
|
||||
|
||||
public:
|
||||
void csv(std::ostream &out){
|
||||
RealD diff = hi-lo;
|
||||
|
||||
#if 0
|
||||
RealD delta = (hi-lo)*1.0e-9;
|
||||
for (RealD x=lo; x<hi; x+=delta) {
|
||||
delta*=1.1;
|
||||
#else
|
||||
RealD diff = hi-lo;
|
||||
//for (RealD x=lo-0.2*diff; x<hi+0.2*diff; x+=(hi-lo)/1000) {
|
||||
for (RealD x=lo-0.2*diff; x<hi+0.2*diff; x+=diff/1000.0) { // ypj [note] divide by float
|
||||
#endif
|
||||
RealD f = approx(x);
|
||||
out<< x<<" "<<f<<std::endl;
|
||||
}
|
||||
@ -89,7 +95,7 @@ struct ChebyParams : Serializable {
|
||||
|
||||
if(order < 2) exit(-1);
|
||||
Coeffs.resize(order);
|
||||
Coeffs.assign(order,0.);
|
||||
Coeffs.assign(order,0.);
|
||||
Coeffs[order-1] = 1.;
|
||||
};
|
||||
|
||||
|
979
lib/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h
Normal file
979
lib/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h
Normal file
@ -0,0 +1,979 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Chulwoo Jung
|
||||
Author: Yong-Chull Jang <ypj@quark.phy.bnl.gov>
|
||||
Author: Guido Cossu
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_IRBL_H
|
||||
#define GRID_IRBL_H
|
||||
|
||||
#include <string.h> //memset
|
||||
|
||||
#define Glog std::cout << GridLogMessage
|
||||
|
||||
namespace Grid {
|
||||
|
||||
enum class LanczosType { irbl, rbl };
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Implicitly restarted block lanczos
|
||||
/////////////////////////////////////////////////////////////
|
||||
template<class Field>
|
||||
class ImplicitlyRestartedBlockLanczos {
|
||||
|
||||
private:
|
||||
|
||||
std::string cname = std::string("ImplicitlyRestartedBlockLanczos");
|
||||
int MaxIter; // Max iterations
|
||||
int Nstop; // Number of evecs checked for convergence
|
||||
int Nu; // Numbeer of vecs in the unit block
|
||||
int Nk; // Number of converged sought
|
||||
int Nm; // total number of vectors
|
||||
int Nblock_k; // Nk/Nu
|
||||
int Nblock_m; // Nm/Nu
|
||||
int Nconv_test_interval; // Number of skipped vectors when checking a convergence
|
||||
RealD eresid;
|
||||
IRLdiagonalisation diagonalisation;
|
||||
////////////////////////////////////
|
||||
// Embedded objects
|
||||
////////////////////////////////////
|
||||
SortEigen<Field> _sort;
|
||||
LinearOperatorBase<Field> &_Linop;
|
||||
OperatorFunction<Field> &_poly;
|
||||
|
||||
/////////////////////////
|
||||
// Constructor
|
||||
/////////////////////////
|
||||
public:
|
||||
ImplicitlyRestartedBlockLanczos(LinearOperatorBase<Field> &Linop, // op
|
||||
OperatorFunction<Field> & poly, // polynomial
|
||||
int _Nstop, // really sought vecs
|
||||
int _Nconv_test_interval, // conv check interval
|
||||
int _Nu, // vecs in the unit block
|
||||
int _Nk, // sought vecs
|
||||
int _Nm, // total vecs
|
||||
RealD _eresid, // resid in lmd deficit
|
||||
int _MaxIter, // Max iterations
|
||||
IRLdiagonalisation _diagonalisation = IRLdiagonaliseWithEigen)
|
||||
: _Linop(Linop), _poly(poly),
|
||||
Nstop(_Nstop), Nconv_test_interval(_Nconv_test_interval),
|
||||
Nu(_Nu), Nk(_Nk), Nm(_Nm),
|
||||
Nblock_m(_Nm/_Nu), Nblock_k(_Nk/_Nu),
|
||||
//eresid(_eresid), MaxIter(10),
|
||||
eresid(_eresid), MaxIter(_MaxIter),
|
||||
diagonalisation(_diagonalisation)
|
||||
{ assert( (Nk%Nu==0) && (Nm%Nu==0) ); };
|
||||
|
||||
////////////////////////////////
|
||||
// Helpers
|
||||
////////////////////////////////
|
||||
static RealD normalize(Field& v)
|
||||
{
|
||||
RealD nn = norm2(v);
|
||||
nn = sqrt(nn);
|
||||
v = v * (1.0/nn);
|
||||
return nn;
|
||||
}
|
||||
|
||||
void orthogonalize(Field& w, std::vector<Field>& evec, int k)
|
||||
{
|
||||
typedef typename Field::scalar_type MyComplex;
|
||||
MyComplex ip;
|
||||
|
||||
for(int j=0; j<k; ++j){
|
||||
ip = innerProduct(evec[j],w);
|
||||
w = w - ip * evec[j];
|
||||
}
|
||||
normalize(w);
|
||||
}
|
||||
|
||||
void orthogonalize_blockhead(Field& w, std::vector<Field>& evec, int k, int Nu)
|
||||
{
|
||||
typedef typename Field::scalar_type MyComplex;
|
||||
MyComplex ip;
|
||||
|
||||
for(int j=0; j<k; ++j){
|
||||
ip = innerProduct(evec[j*Nu],w);
|
||||
w = w - ip * evec[j*Nu];
|
||||
}
|
||||
normalize(w);
|
||||
}
|
||||
|
||||
void calc(std::vector<RealD>& eval,
|
||||
std::vector<Field>& evec,
|
||||
const std::vector<Field>& src, int& Nconv, LanczosType Impl)
|
||||
{
|
||||
switch (Impl) {
|
||||
case LanczosType::irbl:
|
||||
calc_irbl(eval,evec,src,Nconv);
|
||||
break;
|
||||
|
||||
case LanczosType::rbl:
|
||||
calc_rbl(eval,evec,src,Nconv);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void calc_irbl(std::vector<RealD>& eval,
|
||||
std::vector<Field>& evec,
|
||||
const std::vector<Field>& src, int& Nconv)
|
||||
{
|
||||
std::string fname = std::string(cname+"::calc_irbl()");
|
||||
GridBase *grid = evec[0]._grid;
|
||||
assert(grid == src[0]._grid);
|
||||
assert( Nu = src.size() );
|
||||
|
||||
Glog << std::string(74,'*') << std::endl;
|
||||
Glog << fname + " starting iteration 0 / "<< MaxIter<< std::endl;
|
||||
Glog << std::string(74,'*') << std::endl;
|
||||
Glog <<" -- seek Nk = "<< Nk <<" vectors"<< std::endl;
|
||||
Glog <<" -- accept Nstop = "<< Nstop <<" vectors"<< std::endl;
|
||||
Glog <<" -- total Nm = "<< Nm <<" vectors"<< std::endl;
|
||||
Glog <<" -- size of eval = "<< eval.size() << std::endl;
|
||||
Glog <<" -- size of evec = "<< evec.size() << std::endl;
|
||||
if ( diagonalisation == IRLdiagonaliseWithEigen ) {
|
||||
Glog << "Diagonalisation is Eigen "<< std::endl;
|
||||
} else {
|
||||
abort();
|
||||
}
|
||||
Glog << std::string(74,'*') << std::endl;
|
||||
|
||||
assert(Nm == evec.size() && Nm == eval.size());
|
||||
|
||||
std::vector<std::vector<ComplexD>> lmd(Nu,std::vector<ComplexD>(Nm,0.0));
|
||||
std::vector<std::vector<ComplexD>> lme(Nu,std::vector<ComplexD>(Nm,0.0));
|
||||
std::vector<std::vector<ComplexD>> lmd2(Nu,std::vector<ComplexD>(Nm,0.0));
|
||||
std::vector<std::vector<ComplexD>> lme2(Nu,std::vector<ComplexD>(Nm,0.0));
|
||||
std::vector<RealD> eval2(Nm);
|
||||
std::vector<RealD> resid(Nk);
|
||||
|
||||
Eigen::MatrixXcd Qt = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||||
Eigen::MatrixXcd Q = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||||
|
||||
std::vector<int> Iconv(Nm);
|
||||
std::vector<Field> B(Nm,grid); // waste of space replicating
|
||||
|
||||
std::vector<Field> f(Nu,grid);
|
||||
std::vector<Field> f_copy(Nu,grid);
|
||||
Field v(grid);
|
||||
|
||||
Nconv = 0;
|
||||
|
||||
RealD beta_k;
|
||||
|
||||
// set initial vector
|
||||
for (int i=0; i<Nu; ++i) {
|
||||
Glog << "norm2(src[" << i << "])= "<< norm2(src[i]) << std::endl;
|
||||
evec[i] = src[i];
|
||||
orthogonalize(evec[i],evec,i);
|
||||
Glog << "norm2(evec[" << i << "])= "<< norm2(evec[i]) << std::endl;
|
||||
}
|
||||
|
||||
// initial Nblock_k steps
|
||||
for(int b=0; b<Nblock_k; ++b) blockwiseStep(lmd,lme,evec,f,f_copy,b);
|
||||
|
||||
// restarting loop begins
|
||||
int iter;
|
||||
for(iter = 0; iter<MaxIter; ++iter){
|
||||
|
||||
Glog <<"#Restart iteration = "<< iter << std::endl;
|
||||
// additional (Nblock_m - Nblock_k) steps
|
||||
for(int b=Nblock_k; b<Nblock_m; ++b) blockwiseStep(lmd,lme,evec,f,f_copy,b);
|
||||
|
||||
// getting eigenvalues
|
||||
for(int u=0; u<Nu; ++u){
|
||||
for(int k=0; k<Nm; ++k){
|
||||
lmd2[u][k] = lmd[u][k];
|
||||
lme2[u][k] = lme[u][k];
|
||||
}
|
||||
}
|
||||
Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
|
||||
diagonalize(eval2,lmd2,lme2,Nu,Nm,Nm,Qt,grid);
|
||||
_sort.push(eval2,Nm);
|
||||
Glog << "#Ritz value before shift: "<< std::endl;
|
||||
for(int i=0; i<Nm; ++i){
|
||||
std::cout.precision(13);
|
||||
std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
|
||||
std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl;
|
||||
}
|
||||
|
||||
//----------------------------------------------------------------------
|
||||
if ( Nm>Nk ) {
|
||||
Glog <<" #Apply shifted QR transformations "<<std::endl;
|
||||
//int k2 = Nk+Nu;
|
||||
int k2 = Nk;
|
||||
|
||||
Eigen::MatrixXcd BTDM = Eigen::MatrixXcd::Identity(Nm,Nm);
|
||||
Q = Eigen::MatrixXcd::Identity(Nm,Nm);
|
||||
|
||||
unpackHermitBlockTriDiagMatToEigen(lmd,lme,Nu,Nblock_m,Nm,Nm,BTDM);
|
||||
|
||||
for(int ip=Nk; ip<Nm; ++ip){
|
||||
shiftedQRDecompEigen(BTDM,Nu,Nm,eval2[ip],Q);
|
||||
}
|
||||
|
||||
packHermitBlockTriDiagMatfromEigen(lmd,lme,Nu,Nblock_m,Nm,Nm,BTDM);
|
||||
|
||||
for(int i=0; i<k2; ++i) B[i] = 0.0;
|
||||
for(int j=0; j<k2; ++j){
|
||||
for(int k=0; k<Nm; ++k){
|
||||
B[j].checkerboard = evec[k].checkerboard;
|
||||
B[j] += evec[k]*Q(k,j);
|
||||
}
|
||||
}
|
||||
for(int i=0; i<k2; ++i) evec[i] = B[i];
|
||||
|
||||
// reconstruct initial vector for additional pole space
|
||||
blockwiseStep(lmd,lme,evec,f,f_copy,Nblock_k-1);
|
||||
|
||||
// getting eigenvalues
|
||||
for(int u=0; u<Nu; ++u){
|
||||
for(int k=0; k<Nm; ++k){
|
||||
lmd2[u][k] = lmd[u][k];
|
||||
lme2[u][k] = lme[u][k];
|
||||
}
|
||||
}
|
||||
Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
|
||||
diagonalize(eval2,lmd2,lme2,Nu,Nk,Nm,Qt,grid);
|
||||
_sort.push(eval2,Nk);
|
||||
Glog << "#Ritz value after shift: "<< std::endl;
|
||||
for(int i=0; i<Nk; ++i){
|
||||
std::cout.precision(13);
|
||||
std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
|
||||
std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl;
|
||||
}
|
||||
}
|
||||
//----------------------------------------------------------------------
|
||||
|
||||
// Convergence test
|
||||
Glog <<" #Convergence test: "<<std::endl;
|
||||
for(int k = 0; k<Nk; ++k) B[k]=0.0;
|
||||
for(int j = 0; j<Nk; ++j){
|
||||
for(int k = 0; k<Nk; ++k){
|
||||
B[j].checkerboard = evec[k].checkerboard;
|
||||
B[j] += evec[k]*Qt(k,j);
|
||||
}
|
||||
}
|
||||
|
||||
Nconv = 0;
|
||||
for(int i=0; i<Nk; ++i){
|
||||
|
||||
_Linop.HermOp(B[i],v);
|
||||
RealD vnum = real(innerProduct(B[i],v)); // HermOp.
|
||||
RealD vden = norm2(B[i]);
|
||||
eval2[i] = vnum/vden;
|
||||
v -= eval2[i]*B[i];
|
||||
RealD vv = norm2(v);
|
||||
resid[i] = vv;
|
||||
|
||||
std::cout.precision(13);
|
||||
std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
|
||||
std::cout << "eval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i];
|
||||
std::cout << " resid^2 = "<< std::setw(20)<< std::setiosflags(std::ios_base::right)<< vv<< std::endl;
|
||||
|
||||
// change the criteria as evals are supposed to be sorted, all evals smaller(larger) than Nstop should have converged
|
||||
//if( (vv<eresid*eresid) && (i == Nconv) ){
|
||||
if (vv<eresid*eresid) {
|
||||
Iconv[Nconv] = i;
|
||||
++Nconv;
|
||||
}
|
||||
|
||||
} // i-loop end
|
||||
|
||||
Glog <<" #modes converged: "<<Nconv<<std::endl;
|
||||
for(int i=0; i<Nconv; ++i){
|
||||
std::cout.precision(13);
|
||||
std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<Iconv[i]<<"] ";
|
||||
std::cout << "eval_conv = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[Iconv[i]];
|
||||
std::cout << " resid^2 = "<< std::setw(20)<< std::setiosflags(std::ios_base::right)<< resid[Iconv[i]]<< std::endl;
|
||||
}
|
||||
|
||||
if ( Nconv>=Nstop ) break;
|
||||
|
||||
} // end of iter loop
|
||||
|
||||
Glog << std::string(74,'*') << std::endl;
|
||||
if ( Nconv<Nstop ) {
|
||||
Glog << fname + " NOT converged ; Summary :\n";
|
||||
} else {
|
||||
Glog << fname + " CONVERGED ; Summary :\n";
|
||||
// Sort convered eigenpairs.
|
||||
eval.resize(Nconv);
|
||||
evec.resize(Nconv,grid);
|
||||
for(int i=0; i<Nconv; ++i){
|
||||
eval[i] = eval2[Iconv[i]];
|
||||
evec[i] = B[Iconv[i]];
|
||||
}
|
||||
_sort.push(eval,evec,Nconv);
|
||||
}
|
||||
Glog << std::string(74,'*') << std::endl;
|
||||
Glog << " -- Iterations = "<< iter << "\n";
|
||||
//Glog << " -- beta(k) = "<< beta_k << "\n";
|
||||
Glog << " -- Nconv = "<< Nconv << "\n";
|
||||
Glog << std::string(74,'*') << std::endl;
|
||||
|
||||
}
|
||||
|
||||
|
||||
void calc_rbl(std::vector<RealD>& eval,
|
||||
std::vector<Field>& evec,
|
||||
const std::vector<Field>& src, int& Nconv)
|
||||
{
|
||||
std::string fname = std::string(cname+"::calc_rbl()");
|
||||
GridBase *grid = evec[0]._grid;
|
||||
assert(grid == src[0]._grid);
|
||||
assert( Nu = src.size() );
|
||||
|
||||
int Np = (Nm-Nk);
|
||||
if (Np > 0 && MaxIter > 1) Np /= MaxIter;
|
||||
int Nblock_p = Np/Nu;
|
||||
|
||||
Glog << std::string(74,'*') << std::endl;
|
||||
Glog << fname + " starting iteration 0 / "<< MaxIter<< std::endl;
|
||||
Glog << std::string(74,'*') << std::endl;
|
||||
Glog <<" -- seek (min) Nk = "<< Nk <<" vectors"<< std::endl;
|
||||
Glog <<" -- seek (inc) Np = "<< Np <<" vectors"<< std::endl;
|
||||
Glog <<" -- seek (max) Nm = "<< Nm <<" vectors"<< std::endl;
|
||||
Glog <<" -- accept Nstop = "<< Nstop <<" vectors"<< std::endl;
|
||||
Glog <<" -- size of eval = "<< eval.size() << std::endl;
|
||||
Glog <<" -- size of evec = "<< evec.size() << std::endl;
|
||||
if ( diagonalisation == IRLdiagonaliseWithEigen ) {
|
||||
Glog << "Diagonalisation is Eigen "<< std::endl;
|
||||
} else {
|
||||
abort();
|
||||
}
|
||||
Glog << std::string(74,'*') << std::endl;
|
||||
|
||||
assert(Nm == evec.size() && Nm == eval.size());
|
||||
|
||||
std::vector<std::vector<ComplexD>> lmd(Nu,std::vector<ComplexD>(Nm,0.0));
|
||||
std::vector<std::vector<ComplexD>> lme(Nu,std::vector<ComplexD>(Nm,0.0));
|
||||
std::vector<std::vector<ComplexD>> lmd2(Nu,std::vector<ComplexD>(Nm,0.0));
|
||||
std::vector<std::vector<ComplexD>> lme2(Nu,std::vector<ComplexD>(Nm,0.0));
|
||||
std::vector<RealD> eval2(Nk);
|
||||
std::vector<RealD> resid(Nm);
|
||||
|
||||
Eigen::MatrixXcd Qt = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||||
Eigen::MatrixXcd Q = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||||
|
||||
std::vector<int> Iconv(Nm);
|
||||
std::vector<Field> B(Nm,grid); // waste of space replicating
|
||||
|
||||
std::vector<Field> f(Nu,grid);
|
||||
std::vector<Field> f_copy(Nu,grid);
|
||||
Field v(grid);
|
||||
|
||||
Nconv = 0;
|
||||
|
||||
RealD beta_k;
|
||||
|
||||
// set initial vector
|
||||
for (int i=0; i<Nu; ++i) {
|
||||
Glog << "norm2(src[" << i << "])= "<< norm2(src[i]) << std::endl;
|
||||
evec[i] = src[i];
|
||||
orthogonalize(evec[i],evec,i);
|
||||
Glog << "norm2(evec[" << i << "])= "<< norm2(evec[i]) << std::endl;
|
||||
}
|
||||
|
||||
// initial Nblock_k steps
|
||||
for(int b=0; b<Nblock_k; ++b) blockwiseStep(lmd,lme,evec,f,f_copy,b);
|
||||
|
||||
// restarting loop begins
|
||||
int iter;
|
||||
int Nblock_l, Nblock_r;
|
||||
int Nl, Nr;
|
||||
int Nconv_guess = 0;
|
||||
|
||||
for(iter = 0; iter<MaxIter; ++iter){
|
||||
|
||||
Glog <<"#Restart iteration = "<< iter << std::endl;
|
||||
|
||||
Nblock_l = Nblock_k + iter*Nblock_p;
|
||||
Nblock_r = Nblock_l + Nblock_p;
|
||||
Nl = Nblock_l*Nu;
|
||||
Nr = Nblock_r*Nu;
|
||||
eval2.resize(Nr);
|
||||
|
||||
// additional Nblock_p steps
|
||||
for(int b=Nblock_l; b<Nblock_r; ++b) blockwiseStep(lmd,lme,evec,f,f_copy,b);
|
||||
|
||||
// getting eigenvalues
|
||||
for(int u=0; u<Nu; ++u){
|
||||
for(int k=0; k<Nr; ++k){
|
||||
lmd2[u][k] = lmd[u][k];
|
||||
lme2[u][k] = lme[u][k];
|
||||
}
|
||||
}
|
||||
Qt = Eigen::MatrixXcd::Identity(Nr,Nr);
|
||||
diagonalize(eval2,lmd2,lme2,Nu,Nr,Nr,Qt,grid);
|
||||
_sort.push(eval2,Nr);
|
||||
Glog << "#Ritz value: "<< std::endl;
|
||||
for(int i=0; i<Nr; ++i){
|
||||
std::cout.precision(13);
|
||||
std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
|
||||
std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl;
|
||||
}
|
||||
|
||||
// Convergence test
|
||||
Glog <<" #Convergence test: "<<std::endl;
|
||||
Nconv = 0;
|
||||
for(int k = 0; k<Nr; ++k) B[k]=0.0;
|
||||
for(int j = 0; j<Nr; j+=Nconv_test_interval){
|
||||
if ( j/Nconv_test_interval == Nconv ) {
|
||||
Glog <<" #rotation for next check point evec"
|
||||
<< std::setw(4)<< std::setiosflags(std::ios_base::right)
|
||||
<< "["<< j <<"]" <<std::endl;
|
||||
for(int k = 0; k<Nr; ++k){
|
||||
B[j].checkerboard = evec[k].checkerboard;
|
||||
B[j] += evec[k]*Qt(k,j);
|
||||
}
|
||||
|
||||
_Linop.HermOp(B[j],v);
|
||||
RealD vnum = real(innerProduct(B[j],v)); // HermOp.
|
||||
RealD vden = norm2(B[j]);
|
||||
eval2[j] = vnum/vden;
|
||||
v -= eval2[j]*B[j];
|
||||
RealD vv = norm2(v);
|
||||
resid[j] = vv;
|
||||
|
||||
std::cout.precision(13);
|
||||
std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<j<<"] ";
|
||||
std::cout << "eval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[j];
|
||||
std::cout << " resid^2 = "<< std::setw(20)<< std::setiosflags(std::ios_base::right)<< vv<< std::endl;
|
||||
|
||||
// change the criteria as evals are supposed to be sorted, all evals smaller(larger) than Nstop should have converged
|
||||
//if( (vv<eresid*eresid) && (i == Nconv) ){
|
||||
if (vv<eresid*eresid) {
|
||||
Iconv[Nconv] = j;
|
||||
++Nconv;
|
||||
}
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
} // j-loop end
|
||||
|
||||
Glog <<" #modes converged: "<<Nconv<<std::endl;
|
||||
for(int i=0; i<Nconv; ++i){
|
||||
std::cout.precision(13);
|
||||
std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<Iconv[i]<<"] ";
|
||||
std::cout << "eval_conv = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[Iconv[i]];
|
||||
std::cout << " resid^2 = "<< std::setw(20)<< std::setiosflags(std::ios_base::right)<< resid[Iconv[i]]<< std::endl;
|
||||
}
|
||||
|
||||
(Nconv > 0 ) ? Nconv_guess = 1 + (Nconv-1)*Nconv_test_interval : Nconv_guess = 0;
|
||||
if ( Nconv_guess >= Nstop ) break;
|
||||
|
||||
} // end of iter loop
|
||||
|
||||
Glog << std::string(74,'*') << std::endl;
|
||||
if ( Nconv_guess < Nstop ) {
|
||||
Glog << fname + " NOT converged ; Summary :\n";
|
||||
} else {
|
||||
Glog << fname + " CONVERGED ; Summary :\n";
|
||||
// Sort convered eigenpairs.
|
||||
eval.resize(Nconv);
|
||||
evec.resize(Nconv,grid);
|
||||
for(int i=0; i<Nconv; ++i){
|
||||
eval[i] = eval2[Iconv[i]];
|
||||
evec[i] = B[Iconv[i]];
|
||||
}
|
||||
_sort.push(eval,evec,Nconv);
|
||||
}
|
||||
Glog << std::string(74,'*') << std::endl;
|
||||
Glog << " -- Iterations = "<< iter << "\n";
|
||||
//Glog << " -- beta(k) = "<< beta_k << "\n";
|
||||
Glog << " -- Nconv = "<< Nconv << "\n";
|
||||
Glog << " -- Nconv (guess) = "<< Nconv_guess << "\n";
|
||||
Glog << std::string(74,'*') << std::endl;
|
||||
|
||||
}
|
||||
|
||||
private:
|
||||
void blockwiseStep(std::vector<std::vector<ComplexD>>& lmd,
|
||||
std::vector<std::vector<ComplexD>>& lme,
|
||||
std::vector<Field>& evec,
|
||||
std::vector<Field>& w,
|
||||
std::vector<Field>& w_copy,
|
||||
int b)
|
||||
{
|
||||
const RealD tiny = 1.0e-20;
|
||||
|
||||
int Nu = w.size();
|
||||
int Nm = evec.size();
|
||||
assert( b < Nm/Nu );
|
||||
|
||||
// converts block index to full indicies for an interval [L,R)
|
||||
int L = Nu*b;
|
||||
int R = Nu*(b+1);
|
||||
|
||||
Real beta;
|
||||
|
||||
// 3. wk:=Avk−βkv_{k−1}
|
||||
for (int k=L, u=0; k<R; ++k, ++u) {
|
||||
_poly(_Linop,evec[k],w[u]);
|
||||
}
|
||||
|
||||
if (b>0) {
|
||||
for (int u=0; u<Nu; ++u) {
|
||||
//for (int k=L-Nu; k<L; ++k) {
|
||||
for (int k=L-Nu+u; k<L; ++k) {
|
||||
w[u] = w[u] - evec[k] * conjugate(lme[u][k]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 4. αk:=(vk,wk)
|
||||
//for (int u=0; u<Nu; ++u) {
|
||||
// for (int k=L; k<R; ++k) {
|
||||
// lmd[u][k] = innerProduct(evec[k],w[u]); // lmd = transpose of alpha
|
||||
// }
|
||||
// lmd[u][L+u] = real(lmd[u][L+u]); // force diagonal to be real
|
||||
//}
|
||||
for (int u=0; u<Nu; ++u) {
|
||||
for (int k=L+u; k<R; ++k) {
|
||||
lmd[u][k] = innerProduct(evec[k],w[u]); // lmd = transpose of alpha
|
||||
lmd[k-L][u+L] = conjugate(lmd[u][k]); // force hermicity
|
||||
}
|
||||
lmd[u][L+u] = real(lmd[u][L+u]); // force diagonal to be real
|
||||
}
|
||||
|
||||
// 5. wk:=wk−αkvk
|
||||
for (int u=0; u<Nu; ++u) {
|
||||
for (int k=L; k<R; ++k) {
|
||||
w[u] = w[u] - evec[k]*lmd[u][k];
|
||||
}
|
||||
w_copy[u] = w[u];
|
||||
}
|
||||
|
||||
// In block version, the steps 6 and 7 in Lanczos construction is
|
||||
// replaced by the QR decomposition of new basis block.
|
||||
// It results block version beta and orthonormal block basis.
|
||||
// Here, QR decomposition is done by using Gram-Schmidt.
|
||||
for (int u=0; u<Nu; ++u) {
|
||||
for (int k=L; k<R; ++k) {
|
||||
lme[u][k] = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
#if 0
|
||||
beta = normalize(w[0]);
|
||||
for (int u=1; u<Nu; ++u) {
|
||||
//orthogonalize(w[u],w_copy,u);
|
||||
orthogonalize(w[u],w,u);
|
||||
}
|
||||
#else
|
||||
// re-orthogonalization for numerical stability
|
||||
for (int u=0; u<Nu; ++u) {
|
||||
orthogonalize(w[u],evec,R);
|
||||
}
|
||||
// QR part
|
||||
for (int u=1; u<Nu; ++u) {
|
||||
orthogonalize(w[u],w,u);
|
||||
}
|
||||
#endif
|
||||
|
||||
for (int u=0; u<Nu; ++u) {
|
||||
//for (int v=0; v<Nu; ++v) {
|
||||
for (int v=u; v<Nu; ++v) {
|
||||
lme[u][L+v] = innerProduct(w[u],w_copy[v]);
|
||||
}
|
||||
lme[u][L+u] = real(lme[u][L+u]); // force diagonal to be real
|
||||
}
|
||||
//lme[0][L] = beta;
|
||||
|
||||
for (int u=0; u<Nu; ++u) {
|
||||
Glog << "norm2(w[" << u << "])= "<< norm2(w[u]) << std::endl;
|
||||
for (int k=L+u; k<R; ++k) {
|
||||
Glog <<" In block "<< b << ",";
|
||||
std::cout <<" beta[" << u << "," << k-L << "] = ";
|
||||
std::cout << lme[u][k] << std::endl;
|
||||
}
|
||||
}
|
||||
#if 0
|
||||
// re-orthogonalization for numerical stability
|
||||
if (b>0) {
|
||||
for (int u=0; u<Nu; ++u) {
|
||||
orthogonalize(w[u],evec,R);
|
||||
}
|
||||
for (int u=1; u<Nu; ++u) {
|
||||
orthogonalize(w[u],w,u);
|
||||
}
|
||||
}
|
||||
//if (b>0) {
|
||||
// orthogonalize_blockhead(w[0],evec,b,Nu);
|
||||
// for (int u=1; u<Nu; ++u) {
|
||||
// orthogonalize(w[u],w,u);
|
||||
// }
|
||||
//}
|
||||
#endif
|
||||
|
||||
if (b < Nm/Nu-1) {
|
||||
for (int u=0; u<Nu; ++u) {
|
||||
evec[R+u] = w[u];
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
void diagonalize_Eigen(std::vector<RealD>& eval,
|
||||
std::vector<std::vector<ComplexD>>& lmd,
|
||||
std::vector<std::vector<ComplexD>>& lme,
|
||||
int Nu, int Nk, int Nm,
|
||||
Eigen::MatrixXcd & Qt, // Nm x Nm
|
||||
GridBase *grid)
|
||||
{
|
||||
assert( Nk%Nu == 0 && Nm%Nu == 0 );
|
||||
assert( Nk <= Nm );
|
||||
Eigen::MatrixXcd BlockTriDiag = Eigen::MatrixXcd::Zero(Nk,Nk);
|
||||
|
||||
for ( int u=0; u<Nu; ++u ) {
|
||||
for (int k=0; k<Nk; ++k ) {
|
||||
BlockTriDiag(k,u+(k/Nu)*Nu) = lmd[u][k];
|
||||
}
|
||||
}
|
||||
|
||||
for ( int u=0; u<Nu; ++u ) {
|
||||
for (int k=Nu; k<Nk; ++k ) {
|
||||
BlockTriDiag(k-Nu,u+(k/Nu)*Nu) = conjugate(lme[u][k-Nu]);
|
||||
BlockTriDiag(u+(k/Nu)*Nu,k-Nu) = lme[u][k-Nu];
|
||||
}
|
||||
}
|
||||
//std::cout << BlockTriDiag << std::endl;
|
||||
|
||||
Eigen::SelfAdjointEigenSolver<Eigen::MatrixXcd> eigensolver(BlockTriDiag);
|
||||
|
||||
for (int i = 0; i < Nk; i++) {
|
||||
eval[Nk-1-i] = eigensolver.eigenvalues()(i);
|
||||
}
|
||||
for (int i = 0; i < Nk; i++) {
|
||||
for (int j = 0; j < Nk; j++) {
|
||||
Qt(j,Nk-1-i) = eigensolver.eigenvectors()(j,i);
|
||||
//Qt(Nk-1-i,j) = eigensolver.eigenvectors()(i,j);
|
||||
//Qt(i,j) = eigensolver.eigenvectors()(i,j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void diagonalize(std::vector<RealD>& eval,
|
||||
std::vector<std::vector<ComplexD>>& lmd,
|
||||
std::vector<std::vector<ComplexD>>& lme,
|
||||
int Nu, int Nk, int Nm,
|
||||
Eigen::MatrixXcd & Qt,
|
||||
GridBase *grid)
|
||||
{
|
||||
Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
|
||||
if ( diagonalisation == IRLdiagonaliseWithEigen ) {
|
||||
diagonalize_Eigen(eval,lmd,lme,Nu,Nk,Nm,Qt,grid);
|
||||
} else {
|
||||
assert(0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void unpackHermitBlockTriDiagMatToEigen(
|
||||
std::vector<std::vector<ComplexD>>& lmd,
|
||||
std::vector<std::vector<ComplexD>>& lme,
|
||||
int Nu, int Nb, int Nk, int Nm,
|
||||
Eigen::MatrixXcd& M)
|
||||
{
|
||||
//Glog << "unpackHermitBlockTriDiagMatToEigen() begin" << '\n';
|
||||
assert( Nk%Nu == 0 && Nm%Nu == 0 );
|
||||
assert( Nk <= Nm );
|
||||
M = Eigen::MatrixXcd::Zero(Nk,Nk);
|
||||
|
||||
// rearrange
|
||||
for ( int u=0; u<Nu; ++u ) {
|
||||
for (int k=0; k<Nk; ++k ) {
|
||||
M(k,u+(k/Nu)*Nu) = lmd[u][k];
|
||||
}
|
||||
}
|
||||
|
||||
for ( int u=0; u<Nu; ++u ) {
|
||||
for (int k=Nu; k<Nk; ++k ) {
|
||||
M(k-Nu,u+(k/Nu)*Nu) = conjugate(lme[u][k-Nu]);
|
||||
M(u+(k/Nu)*Nu,k-Nu) = lme[u][k-Nu];
|
||||
}
|
||||
}
|
||||
//Glog << "unpackHermitBlockTriDiagMatToEigen() end" << endl;
|
||||
}
|
||||
|
||||
|
||||
void packHermitBlockTriDiagMatfromEigen(
|
||||
std::vector<std::vector<ComplexD>>& lmd,
|
||||
std::vector<std::vector<ComplexD>>& lme,
|
||||
int Nu, int Nb, int Nk, int Nm,
|
||||
Eigen::MatrixXcd& M)
|
||||
{
|
||||
//Glog << "packHermitBlockTriDiagMatfromEigen() begin" << '\n';
|
||||
assert( Nk%Nu == 0 && Nm%Nu == 0 );
|
||||
assert( Nk <= Nm );
|
||||
|
||||
// rearrange
|
||||
for ( int u=0; u<Nu; ++u ) {
|
||||
for (int k=0; k<Nk; ++k ) {
|
||||
lmd[u][k] = M(k,u+(k/Nu)*Nu);
|
||||
}
|
||||
}
|
||||
|
||||
for ( int u=0; u<Nu; ++u ) {
|
||||
for (int k=Nu; k<Nk; ++k ) {
|
||||
lme[u][k-Nu] = M(u+(k/Nu)*Nu,k-Nu);
|
||||
}
|
||||
}
|
||||
//Glog << "packHermitBlockTriDiagMatfromEigen() end" << endl;
|
||||
}
|
||||
|
||||
|
||||
// assume the input matrix M is a band matrix
|
||||
void shiftedQRDecompEigen(Eigen::MatrixXcd& M, int Nu, int Nm,
|
||||
RealD Dsh,
|
||||
Eigen::MatrixXcd& Qprod)
|
||||
{
|
||||
//Glog << "shiftedQRDecompEigen() begin" << '\n';
|
||||
Eigen::MatrixXcd Q = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||||
Eigen::MatrixXcd R = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||||
Eigen::MatrixXcd Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||||
|
||||
Mtmp = M;
|
||||
for (int i=0; i<Nm; ++i ) {
|
||||
Mtmp(i,i) = M(i,i) - Dsh;
|
||||
}
|
||||
|
||||
Eigen::HouseholderQR<Eigen::MatrixXcd> QRD(Mtmp);
|
||||
Q = QRD.householderQ();
|
||||
R = QRD.matrixQR(); // upper triangular part is the R matrix.
|
||||
// lower triangular part used to represent series
|
||||
// of Q sequence.
|
||||
|
||||
// equivalent operation of Qprod *= Q
|
||||
//M = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||||
|
||||
//for (int i=0; i<Nm; ++i) {
|
||||
// for (int j=0; j<Nm-2*(Nu+1); ++j) {
|
||||
// for (int k=0; k<2*(Nu+1)+j; ++k) {
|
||||
// M(i,j) += Qprod(i,k)*Q(k,j);
|
||||
// }
|
||||
// }
|
||||
//}
|
||||
//for (int i=0; i<Nm; ++i) {
|
||||
// for (int j=Nm-2*(Nu+1); j<Nm; ++j) {
|
||||
// for (int k=0; k<Nm; ++k) {
|
||||
// M(i,j) += Qprod(i,k)*Q(k,j);
|
||||
// }
|
||||
// }
|
||||
//}
|
||||
|
||||
Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||||
|
||||
for (int i=0; i<Nm; ++i) {
|
||||
for (int j=0; j<Nm-(Nu+1); ++j) {
|
||||
for (int k=0; k<Nu+1+j; ++k) {
|
||||
Mtmp(i,j) += Qprod(i,k)*Q(k,j);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int i=0; i<Nm; ++i) {
|
||||
for (int j=Nm-(Nu+1); j<Nm; ++j) {
|
||||
for (int k=0; k<Nm; ++k) {
|
||||
Mtmp(i,j) += Qprod(i,k)*Q(k,j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//static int ntimes = 2;
|
||||
//for (int j=0; j<Nm-(ntimes*Nu); ++j) {
|
||||
// for (int i=ntimes*Nu+j; i<Nm; ++i) {
|
||||
// Mtmp(i,j) = 0.0;
|
||||
// }
|
||||
//}
|
||||
//ntimes++;
|
||||
|
||||
Qprod = Mtmp;
|
||||
|
||||
// equivalent operation of M = Q.adjoint()*(M*Q)
|
||||
Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||||
|
||||
for (int a=0, i=0, kmax=0; a<Nu+1; ++a) {
|
||||
for (int j=0; j<Nm-a; ++j) {
|
||||
i = j+a;
|
||||
kmax = (Nu+1)+j;
|
||||
if (kmax > Nm) kmax = Nm;
|
||||
for (int k=i; k<kmax; ++k) {
|
||||
Mtmp(i,j) += R(i,k)*Q(k,j);
|
||||
}
|
||||
Mtmp(j,i) = conj(Mtmp(i,j));
|
||||
}
|
||||
}
|
||||
|
||||
for (int i=0; i<Nm; ++i) {
|
||||
Mtmp(i,i) = real(Mtmp(i,i)) + Dsh;
|
||||
}
|
||||
|
||||
M = Mtmp;
|
||||
|
||||
//M = Q.adjoint()*(M*Q);
|
||||
//for (int i=0; i<Nm; ++i) {
|
||||
// for (int j=0; j<Nm; ++j) {
|
||||
// if (i==j) M(i,i) = real(M(i,i));
|
||||
// if (j>i) M(i,j) = conj(M(j,i));
|
||||
// if (i-j > Nu || j-i > Nu) M(i,j) = 0.;
|
||||
// }
|
||||
//}
|
||||
|
||||
//Glog << "shiftedQRDecompEigen() end" << endl;
|
||||
}
|
||||
|
||||
void exampleQRDecompEigen(void)
|
||||
{
|
||||
Eigen::MatrixXd A = Eigen::MatrixXd::Zero(3,3);
|
||||
Eigen::MatrixXd Q = Eigen::MatrixXd::Zero(3,3);
|
||||
Eigen::MatrixXd R = Eigen::MatrixXd::Zero(3,3);
|
||||
Eigen::MatrixXd P = Eigen::MatrixXd::Zero(3,3);
|
||||
|
||||
A(0,0) = 12.0;
|
||||
A(0,1) = -51.0;
|
||||
A(0,2) = 4.0;
|
||||
A(1,0) = 6.0;
|
||||
A(1,1) = 167.0;
|
||||
A(1,2) = -68.0;
|
||||
A(2,0) = -4.0;
|
||||
A(2,1) = 24.0;
|
||||
A(2,2) = -41.0;
|
||||
|
||||
Glog << "matrix A before ColPivHouseholder" << std::endl;
|
||||
for ( int i=0; i<3; i++ ) {
|
||||
for ( int j=0; j<3; j++ ) {
|
||||
Glog << "A[" << i << "," << j << "] = " << A(i,j) << '\n';
|
||||
}
|
||||
}
|
||||
Glog << std::endl;
|
||||
|
||||
Eigen::ColPivHouseholderQR<Eigen::MatrixXd> QRD(A);
|
||||
|
||||
Glog << "matrix A after ColPivHouseholder" << std::endl;
|
||||
for ( int i=0; i<3; i++ ) {
|
||||
for ( int j=0; j<3; j++ ) {
|
||||
Glog << "A[" << i << "," << j << "] = " << A(i,j) << '\n';
|
||||
}
|
||||
}
|
||||
Glog << std::endl;
|
||||
|
||||
Glog << "HouseholderQ with sequence lenth = nonzeroPiviots" << std::endl;
|
||||
Q = QRD.householderQ().setLength(QRD.nonzeroPivots());
|
||||
for ( int i=0; i<3; i++ ) {
|
||||
for ( int j=0; j<3; j++ ) {
|
||||
Glog << "Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
|
||||
}
|
||||
}
|
||||
Glog << std::endl;
|
||||
|
||||
Glog << "HouseholderQ with sequence lenth = 1" << std::endl;
|
||||
Q = QRD.householderQ().setLength(1);
|
||||
for ( int i=0; i<3; i++ ) {
|
||||
for ( int j=0; j<3; j++ ) {
|
||||
Glog << "Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
|
||||
}
|
||||
}
|
||||
Glog << std::endl;
|
||||
|
||||
Glog << "HouseholderQ with sequence lenth = 2" << std::endl;
|
||||
Q = QRD.householderQ().setLength(2);
|
||||
for ( int i=0; i<3; i++ ) {
|
||||
for ( int j=0; j<3; j++ ) {
|
||||
Glog << "Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
|
||||
}
|
||||
}
|
||||
Glog << std::endl;
|
||||
|
||||
Glog << "matrixR" << std::endl;
|
||||
R = QRD.matrixR();
|
||||
for ( int i=0; i<3; i++ ) {
|
||||
for ( int j=0; j<3; j++ ) {
|
||||
Glog << "R[" << i << "," << j << "] = " << R(i,j) << '\n';
|
||||
}
|
||||
}
|
||||
Glog << std::endl;
|
||||
|
||||
Glog << "rank = " << QRD.rank() << std::endl;
|
||||
Glog << "threshold = " << QRD.threshold() << std::endl;
|
||||
|
||||
Glog << "matrixP" << std::endl;
|
||||
P = QRD.colsPermutation();
|
||||
for ( int i=0; i<3; i++ ) {
|
||||
for ( int j=0; j<3; j++ ) {
|
||||
Glog << "P[" << i << "," << j << "] = " << P(i,j) << '\n';
|
||||
}
|
||||
}
|
||||
Glog << std::endl;
|
||||
|
||||
|
||||
Glog << "QR decomposition without column pivoting" << std::endl;
|
||||
|
||||
A(0,0) = 12.0;
|
||||
A(0,1) = -51.0;
|
||||
A(0,2) = 4.0;
|
||||
A(1,0) = 6.0;
|
||||
A(1,1) = 167.0;
|
||||
A(1,2) = -68.0;
|
||||
A(2,0) = -4.0;
|
||||
A(2,1) = 24.0;
|
||||
A(2,2) = -41.0;
|
||||
|
||||
Glog << "matrix A before Householder" << std::endl;
|
||||
for ( int i=0; i<3; i++ ) {
|
||||
for ( int j=0; j<3; j++ ) {
|
||||
Glog << "A[" << i << "," << j << "] = " << A(i,j) << '\n';
|
||||
}
|
||||
}
|
||||
Glog << std::endl;
|
||||
|
||||
Eigen::HouseholderQR<Eigen::MatrixXd> QRDplain(A);
|
||||
|
||||
Glog << "HouseholderQ" << std::endl;
|
||||
Q = QRDplain.householderQ();
|
||||
for ( int i=0; i<3; i++ ) {
|
||||
for ( int j=0; j<3; j++ ) {
|
||||
Glog << "Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
|
||||
}
|
||||
}
|
||||
Glog << std::endl;
|
||||
|
||||
Glog << "matrix A after Householder" << std::endl;
|
||||
for ( int i=0; i<3; i++ ) {
|
||||
for ( int j=0; j<3; j++ ) {
|
||||
Glog << "A[" << i << "," << j << "] = " << A(i,j) << '\n';
|
||||
}
|
||||
}
|
||||
Glog << std::endl;
|
||||
}
|
||||
|
||||
};
|
||||
}
|
||||
#undef Glog
|
||||
#endif
|
835
lib/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h.bak
Normal file
835
lib/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h.bak
Normal file
@ -0,0 +1,835 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Chulwoo Jung
|
||||
Author: Yong-Chull Jang <ypj@quark.phy.bnl.gov>
|
||||
Author: Guido Cossu
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_IRBL_H
|
||||
#define GRID_IRBL_H
|
||||
|
||||
#include <string.h> //memset
|
||||
|
||||
#define clog std::cout << GridLogMessage
|
||||
|
||||
namespace Grid {
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Implicitly restarted block lanczos
|
||||
/////////////////////////////////////////////////////////////
|
||||
template<class Field>
|
||||
class ImplicitlyRestartedBlockLanczos {
|
||||
|
||||
private:
|
||||
|
||||
std::string cname = std::string("ImplicitlyRestartedBlockLanczos");
|
||||
int MaxIter; // Max iterations
|
||||
int Nstop; // Number of evecs checked for convergence
|
||||
int Nu; // Numbeer of vecs in the unit block
|
||||
int Nk; // Number of converged sought
|
||||
int Nm; // total number of vectors
|
||||
int Nblock_k; // Nk/Nu
|
||||
int Nblock_m; // Nm/Nu
|
||||
RealD eresid;
|
||||
IRLdiagonalisation diagonalisation;
|
||||
////////////////////////////////////
|
||||
// Embedded objects
|
||||
////////////////////////////////////
|
||||
SortEigen<Field> _sort;
|
||||
LinearOperatorBase<Field> &_Linop;
|
||||
OperatorFunction<Field> &_poly;
|
||||
|
||||
/////////////////////////
|
||||
// Constructor
|
||||
/////////////////////////
|
||||
public:
|
||||
ImplicitlyRestartedBlockLanczos(LinearOperatorBase<Field> &Linop, // op
|
||||
OperatorFunction<Field> & poly, // polynomial
|
||||
int _Nstop, // really sought vecs
|
||||
int _Nu, // vecs in the unit block
|
||||
int _Nk, // sought vecs
|
||||
int _Nm, // total vecs
|
||||
RealD _eresid, // resid in lmd deficit
|
||||
int _MaxIter, // Max iterations
|
||||
IRLdiagonalisation _diagonalisation = IRLdiagonaliseWithEigen)
|
||||
: _Linop(Linop), _poly(poly),
|
||||
Nstop(_Nstop), Nu(_Nu), Nk(_Nk), Nm(_Nm),
|
||||
Nblock_m(_Nm/_Nu), Nblock_k(_Nk/_Nu),
|
||||
//eresid(_eresid), MaxIter(10),
|
||||
eresid(_eresid), MaxIter(_MaxIter),
|
||||
diagonalisation(_diagonalisation)
|
||||
{ assert( (Nk%Nu==0) && (Nm%Nu==0) ); };
|
||||
|
||||
////////////////////////////////
|
||||
// Helpers
|
||||
////////////////////////////////
|
||||
static RealD normalize(Field& v)
|
||||
{
|
||||
RealD nn = norm2(v);
|
||||
nn = sqrt(nn);
|
||||
v = v * (1.0/nn);
|
||||
return nn;
|
||||
}
|
||||
|
||||
void orthogonalize(Field& w, std::vector<Field>& evec, int k)
|
||||
{
|
||||
typedef typename Field::scalar_type MyComplex;
|
||||
MyComplex ip;
|
||||
|
||||
for(int j=0; j<k; ++j){
|
||||
ip = innerProduct(evec[j],w);
|
||||
w = w - ip * evec[j];
|
||||
}
|
||||
normalize(w);
|
||||
}
|
||||
|
||||
/* Rudy Arthur's thesis pp.137
|
||||
------------------------
|
||||
Require: M > K P = M − K †
|
||||
Compute the factorization AVM = VM HM + fM eM
|
||||
repeat
|
||||
Q=I
|
||||
for i = 1,...,P do
|
||||
QiRi =HM −θiI Q = QQi
|
||||
H M = Q †i H M Q i
|
||||
end for
|
||||
βK =HM(K+1,K) σK =Q(M,K)
|
||||
r=vK+1βK +rσK
|
||||
VK =VM(1:M)Q(1:M,1:K)
|
||||
HK =HM(1:K,1:K)
|
||||
→AVK =VKHK +fKe†K † Extend to an M = K + P step factorization AVM = VMHM + fMeM
|
||||
until convergence
|
||||
*/
|
||||
void calc(std::vector<RealD>& eval,
|
||||
std::vector<Field>& evec,
|
||||
const std::vector<Field>& src, int& Nconv)
|
||||
{
|
||||
std::string fname = std::string(cname+"::calc()");
|
||||
GridBase *grid = evec[0]._grid;
|
||||
assert(grid == src[0]._grid);
|
||||
assert( Nu = src.size() );
|
||||
|
||||
clog << std::string(74,'*') << std::endl;
|
||||
clog << fname + " starting iteration 0 / "<< MaxIter<< std::endl;
|
||||
clog << std::string(74,'*') << std::endl;
|
||||
clog <<" -- seek Nk = "<< Nk <<" vectors"<< std::endl;
|
||||
clog <<" -- accept Nstop = "<< Nstop <<" vectors"<< std::endl;
|
||||
clog <<" -- total Nm = "<< Nm <<" vectors"<< std::endl;
|
||||
clog <<" -- size of eval = "<< eval.size() << std::endl;
|
||||
clog <<" -- size of evec = "<< evec.size() << std::endl;
|
||||
if ( diagonalisation == IRLdiagonaliseWithEigen ) {
|
||||
clog << "Diagonalisation is Eigen "<< std::endl;
|
||||
} else {
|
||||
abort();
|
||||
}
|
||||
clog << std::string(74,'*') << std::endl;
|
||||
|
||||
assert(Nm == evec.size() && Nm == eval.size());
|
||||
|
||||
std::vector<std::vector<ComplexD>> lmd(Nu,std::vector<ComplexD>(Nm,0.0));
|
||||
std::vector<std::vector<ComplexD>> lme(Nu,std::vector<ComplexD>(Nm,0.0));
|
||||
std::vector<std::vector<ComplexD>> lmd2(Nu,std::vector<ComplexD>(Nm,0.0));
|
||||
std::vector<std::vector<ComplexD>> lme2(Nu,std::vector<ComplexD>(Nm,0.0));
|
||||
std::vector<RealD> eval2(Nm);
|
||||
|
||||
Eigen::MatrixXcd Qt = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||||
Eigen::MatrixXcd Q = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||||
|
||||
std::vector<int> Iconv(Nm);
|
||||
std::vector<Field> B(Nm,grid); // waste of space replicating
|
||||
|
||||
std::vector<Field> f(Nu,grid);
|
||||
std::vector<Field> f_copy(Nu,grid);
|
||||
Field v(grid);
|
||||
|
||||
Nconv = 0;
|
||||
|
||||
RealD beta_k;
|
||||
|
||||
// set initial vector
|
||||
for (int i=0; i<Nu; ++i) {
|
||||
clog << "norm2(src[" << i << "])= "<< norm2(src[i]) << std::endl;
|
||||
evec[i] = src[i];
|
||||
orthogonalize(evec[i],evec,i);
|
||||
clog << "norm2(evec[" << i << "])= "<< norm2(evec[i]) << std::endl;
|
||||
}
|
||||
|
||||
// initial Nblock_k steps
|
||||
for(int b=0; b<Nblock_k; ++b) blockwiseStep(lmd,lme,evec,f,f_copy,b);
|
||||
|
||||
// restarting loop begins
|
||||
int iter;
|
||||
for(iter = 0; iter<MaxIter; ++iter){
|
||||
|
||||
clog <<" **********************"<< std::endl;
|
||||
clog <<" Restart iteration = "<< iter << std::endl;
|
||||
clog <<" **********************"<< std::endl;
|
||||
|
||||
// additional (Nblock_m - Nblock_k) steps
|
||||
for(int b=Nblock_k; b<Nblock_m; ++b) blockwiseStep(lmd,lme,evec,f,f_copy,b);
|
||||
|
||||
for(int k=0; k<Nm; ++k) {
|
||||
clog << "ckpt A1: lme[" << k << "] = " << lme[0][k] << '\n';
|
||||
}
|
||||
for(int k=0; k<Nm; ++k) {
|
||||
clog << "ckpt A2: lmd[" << k << "] = " << lmd[0][k] << '\n';
|
||||
}
|
||||
|
||||
// residual vector
|
||||
#if 1 // ypj[fixme] temporary to check a case when block has one vector
|
||||
for ( int i=0; i<Nu; ++i) f_copy[i] = f[i];
|
||||
for ( int i=0; i<Nu; ++i) {
|
||||
f[i] = f_copy[0]*lme[0][Nm-Nu+i];
|
||||
for ( int j=1; j<Nu; ++j) {
|
||||
f[i] += f_copy[j]*lme[j][Nm-Nu+i];
|
||||
}
|
||||
//clog << "ckpt C (i= " << i << ")" << '\n';
|
||||
//clog << "norm2(f) = " << norm2(f[i]) << std::endl;
|
||||
}
|
||||
#endif
|
||||
|
||||
// getting eigenvalues
|
||||
for(int u=0; u<Nu; ++u){
|
||||
for(int k=0; k<Nm; ++k){
|
||||
lmd2[u][k] = lmd[u][k];
|
||||
lme2[u][k] = lme[u][k];
|
||||
}
|
||||
}
|
||||
Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
|
||||
diagonalize(eval2,lmd2,lme2,Nu,Nm,Nm,Qt,grid);
|
||||
|
||||
//for(int k=0; k<Nm; ++k){
|
||||
// clog << "ckpt D " << '\n';
|
||||
// clog << "eval2 [" << k << "] = " << eval2[k] << std::endl;
|
||||
//}
|
||||
|
||||
// sorting
|
||||
_sort.push(eval2,Nm);
|
||||
|
||||
//for(int k=0; k<Nm; ++k){
|
||||
// clog << "ckpt E " << '\n';
|
||||
// clog << "eval2 [" << k << "] = " << eval2[k] << std::endl;
|
||||
//}
|
||||
|
||||
// Implicitly shifted QR transformations
|
||||
Eigen::MatrixXcd BTDM = Eigen::MatrixXcd::Identity(Nm,Nm);
|
||||
Q = Eigen::MatrixXcd::Identity(Nm,Nm);
|
||||
|
||||
unpackHermitBlockTriDiagMatToEigen(lmd,lme,Nu,Nblock_m,Nm,Nm,BTDM);
|
||||
|
||||
for(int ip=Nk; ip<Nm; ++ip){
|
||||
clog << "ckpt B1: shift[" << ip << "] = " << eval2[ip] << endl;
|
||||
shiftedQRDecompEigen(BTDM,Nm,eval2[ip],Q);
|
||||
}
|
||||
BTDM = Q.adjoint()*(BTDM*Q);
|
||||
for (int i=0; i<Nm; ++i ) {
|
||||
for (int j=i+1; j<Nm; ++j ) {
|
||||
BTDM(i,j) = BTDM(j,i);
|
||||
}
|
||||
//BTDM(i,i) = real(BTDM(i,i));
|
||||
}
|
||||
|
||||
packHermitBlockTriDiagMatfromEigen(lmd,lme,Nu,Nblock_m,Nm,Nm,BTDM);
|
||||
|
||||
//for (int i=0; i<Nm; ++i) {
|
||||
// for (int j=0; j<Nm; ++j) {
|
||||
// clog << "ckpt G1: M[" << i << "," << j << "] = " << BTDM(i,j) << '\n';
|
||||
// }
|
||||
//}
|
||||
//for (int i=0; i<Nm; ++i) {
|
||||
// for (int j=0; j<Nm; ++j) {
|
||||
// clog << "ckpt G2: Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
|
||||
// }
|
||||
//}
|
||||
for (int i=0; i<Nm; ++i) {
|
||||
clog << "ckpt C1: lme[" << i << "] = " << lme[0][i] << '\n';
|
||||
}
|
||||
for (int i=0; i<Nm; ++i) {
|
||||
clog << "ckpt C2: lmd[" << i << "] = " << lmd[0][i] << '\n';
|
||||
}
|
||||
|
||||
for(int i=0; i<Nk+Nu; ++i) B[i] = 0.0;
|
||||
for(int j=0; j<Nk+Nu; ++j){
|
||||
for(int k=0; k<Nm; ++k){
|
||||
B[j].checkerboard = evec[k].checkerboard;
|
||||
B[j] += evec[k]*Q(k,j);
|
||||
}
|
||||
}
|
||||
for(int i=0; i<Nk+Nu; ++i) {
|
||||
evec[i] = B[i];
|
||||
//clog << "ckpt F: norm2_evec[= " << i << "]" << norm2(evec[i]) << std::endl;
|
||||
}
|
||||
|
||||
#if 1 // ypj[fixme] temporary to check a case when block has one vector
|
||||
// Compressed vector f and beta(k2)
|
||||
f[0] *= Q(Nm-1,Nk-1);
|
||||
f[0] += lme[0][Nk-1] * evec[Nk]; // was commented out
|
||||
std::cout<< GridLogMessage<<"ckpt D1: Q[Nm-1,Nk-1] = "<<Q(Nm-1,Nk-1)<<std::endl;
|
||||
beta_k = norm2(f[0]);
|
||||
beta_k = sqrt(beta_k);
|
||||
std::cout<< GridLogMessage<<"ckpt D2: beta(k) = "<<beta_k<<std::endl;
|
||||
|
||||
RealD betar = 1.0/beta_k;
|
||||
evec[Nk] = betar * f[0];
|
||||
lme[0][Nk-1] = beta_k;
|
||||
#endif
|
||||
|
||||
// Convergence test
|
||||
for(int u=0; u<Nu; ++u){
|
||||
for(int k=0; k<Nm; ++k){
|
||||
lmd2[u][k] = lmd[u][k];
|
||||
lme2[u][k] = lme[u][k];
|
||||
}
|
||||
}
|
||||
Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
|
||||
diagonalize(eval2,lmd2,lme2,Nu,Nk,Nm,Qt,grid);
|
||||
|
||||
for(int k = 0; k<Nk; ++k) B[k]=0.0;
|
||||
for(int j = 0; j<Nk; ++j){
|
||||
for(int k = 0; k<Nk; ++k){
|
||||
B[j].checkerboard = evec[k].checkerboard;
|
||||
B[j] += evec[k]*Qt(k,j);
|
||||
}
|
||||
}
|
||||
|
||||
//for (int i=0; i<Nk; ++i) {
|
||||
// for (int j=0; j<Nk; ++j) {
|
||||
// clog << "ckpt H1: R[" << i << "," << j << "] = " << Qt(i,j) << '\n';
|
||||
// }
|
||||
//}
|
||||
//for (int i=0; i<Nk; ++i) {
|
||||
// clog << "ckpt H2: eval2[" << i << "] = " << eval2[i] << '\n';
|
||||
//}
|
||||
|
||||
//for(int j=0; j<Nk; ++j) {
|
||||
// clog << "ckpt I: norm2_B[ " << j << "]" << norm2(B[j]) << std::endl;
|
||||
//}
|
||||
|
||||
Nconv = 0;
|
||||
for(int i=0; i<Nk; ++i){
|
||||
|
||||
_Linop.HermOp(B[i],v);
|
||||
|
||||
RealD vnum = real(innerProduct(B[i],v)); // HermOp.
|
||||
RealD vden = norm2(B[i]);
|
||||
eval2[i] = vnum/vden;
|
||||
v -= eval2[i]*B[i];
|
||||
RealD vv = norm2(v);
|
||||
|
||||
std::cout.precision(13);
|
||||
clog << "[" << std::setw(3)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
|
||||
std::cout << "eval = "<<std::setw(25)<< std::setiosflags(std::ios_base::left)<< eval2[i];
|
||||
std::cout << " |H B[i] - eval[i]B[i]|^2 "<< std::setw(25)<< std::setiosflags(std::ios_base::right)<< vv<< std::endl;
|
||||
|
||||
// change the criteria as evals are supposed to be sorted, all evals smaller(larger) than Nstop should have converged
|
||||
if( (vv<eresid*eresid) && (i == Nconv) ){
|
||||
//if( (vv<eresid*eresid) ){
|
||||
Iconv[Nconv] = i;
|
||||
++Nconv;
|
||||
}
|
||||
|
||||
} // i-loop end
|
||||
|
||||
clog <<" #modes converged: "<<Nconv<<std::endl;
|
||||
|
||||
if( Nconv>=Nstop ){
|
||||
goto converged;
|
||||
}
|
||||
|
||||
} // end of iter loop
|
||||
|
||||
clog <<"**************************************************************************"<< std::endl;
|
||||
std::cout<< GridLogError << fname + " NOT converged.";
|
||||
clog <<"**************************************************************************"<< std::endl;
|
||||
abort();
|
||||
|
||||
converged:
|
||||
// Sorting
|
||||
eval.resize(Nconv);
|
||||
evec.resize(Nconv,grid);
|
||||
for(int i=0; i<Nconv; ++i){
|
||||
eval[i] = eval2[Iconv[i]];
|
||||
evec[i] = B[Iconv[i]];
|
||||
}
|
||||
_sort.push(eval,evec,Nconv);
|
||||
|
||||
clog <<"**************************************************************************"<< std::endl;
|
||||
clog << fname + " CONVERGED ; Summary :\n";
|
||||
clog <<"**************************************************************************"<< std::endl;
|
||||
clog << " -- Iterations = "<< iter << "\n";
|
||||
clog << " -- beta(k) = "<< beta_k << "\n";
|
||||
clog << " -- Nconv = "<< Nconv << "\n";
|
||||
clog <<"**************************************************************************"<< std::endl;
|
||||
}
|
||||
|
||||
private:
|
||||
/* Saad PP. 195
|
||||
1. Choose an initial vector v1 of 2-norm unity. Set β1 ≡ 0, v0 ≡ 0
|
||||
2. For k = 1,2,...,m Do:
|
||||
3. wk:=Avk−βkv_{k−1}
|
||||
4. αk:=(wk,vk) //
|
||||
5. wk:=wk−αkvk // wk orthog vk
|
||||
6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
|
||||
7. vk+1 := wk/βk+1
|
||||
8. EndDo
|
||||
*/
|
||||
void blockwiseStep(std::vector<std::vector<ComplexD>>& lmd,
|
||||
std::vector<std::vector<ComplexD>>& lme,
|
||||
std::vector<Field>& evec,
|
||||
std::vector<Field>& w,
|
||||
std::vector<Field>& w_copy,
|
||||
int b)
|
||||
{
|
||||
const RealD tiny = 1.0e-20;
|
||||
|
||||
int Nu = w.size();
|
||||
int Nm = evec.size();
|
||||
assert( b < Nm/Nu );
|
||||
|
||||
// converts block index to full indicies for an interval [L,R)
|
||||
int L = Nu*b;
|
||||
int R = Nu*(b+1);
|
||||
|
||||
Real beta;
|
||||
|
||||
// 3. wk:=Avk−βkv_{k−1}
|
||||
for (int k=L, u=0; k<R; ++k, ++u) {
|
||||
_poly(_Linop,evec[k],w[u]);
|
||||
}
|
||||
|
||||
if (b>0) {
|
||||
for (int u=0; u<Nu; ++u) {
|
||||
for (int k=L-Nu; k<L; ++k) {
|
||||
w[u] = w[u] - evec[k] * conjugate(lme[u][k]);
|
||||
//clog << "ckpt A (k= " << k+1 << ")" << '\n';
|
||||
//clog << "lme = " << lme[u][k] << '\n';
|
||||
//clog << "lme = " << conjugate(lme[u][k]) << '\n';
|
||||
}
|
||||
//clog << "norm(w) = " << norm2(w[u]) << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
// 4. αk:=(vk,wk)
|
||||
for (int u=0; u<Nu; ++u) {
|
||||
for (int k=L; k<R; ++k) {
|
||||
lmd[u][k] = innerProduct(evec[k],w[u]); // lmd = transpose of alpha
|
||||
}
|
||||
lmd[u][L+u] = real(lmd[u][L+u]); // force diagonal to be real
|
||||
//clog << "ckpt B (k= " << L+u << ")" << '\n';
|
||||
//clog << "lmd = " << lmd[u][L+u] << std::endl;
|
||||
}
|
||||
|
||||
// 5. wk:=wk−αkvk
|
||||
for (int u=0; u<Nu; ++u) {
|
||||
for (int k=L; k<R; ++k) {
|
||||
w[u] = w[u] - evec[k]*lmd[u][k];
|
||||
}
|
||||
w_copy[u] = w[u];
|
||||
}
|
||||
|
||||
// In block version, the steps 6 and 7 in Lanczos construction is
|
||||
// replaced by the QR decomposition of new basis block.
|
||||
// It results block version beta and orthonormal block basis.
|
||||
// Here, QR decomposition is done by using Gram-Schmidt
|
||||
for (int u=0; u<Nu; ++u) {
|
||||
for (int k=L; k<R; ++k) {
|
||||
lme[u][k] = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
beta = normalize(w[0]);
|
||||
for (int u=1; u<Nu; ++u) {
|
||||
//orthogonalize(w[u],w_copy,u);
|
||||
orthogonalize(w[u],w,u);
|
||||
}
|
||||
|
||||
for (int u=0; u<Nu; ++u) {
|
||||
for (int v=0; v<Nu; ++v) {
|
||||
lme[u][L+v] = innerProduct(w[u],w_copy[v]);
|
||||
}
|
||||
}
|
||||
lme[0][L] = beta;
|
||||
|
||||
#if 0
|
||||
for (int u=0; u<Nu; ++u) {
|
||||
for (int k=L+u; k<R; ++k) {
|
||||
if (lme[u][k] < tiny) {
|
||||
clog <<" In block "<< b << ",";
|
||||
std::cout <<" beta[" << u << "," << k-L << "] = ";
|
||||
std::cout << lme[u][k] << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
for (int u=0; u<Nu; ++u) {
|
||||
clog << "norm2(w[" << u << "])= "<< norm2(w[u]) << std::endl;
|
||||
for (int k=L+u; k<R; ++k) {
|
||||
clog <<" In block "<< b << ",";
|
||||
std::cout <<" beta[" << u << "," << k-L << "] = ";
|
||||
std::cout << lme[u][k] << std::endl;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
// re-orthogonalization for numerical stability
|
||||
if (b>0) {
|
||||
for (int u=0; u<Nu; ++u) {
|
||||
orthogonalize(w[u],evec,R);
|
||||
}
|
||||
}
|
||||
|
||||
if (b < Nm/Nu-1) {
|
||||
for (int u=0; u<Nu; ++u) {
|
||||
evec[R+u] = w[u];
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
void diagonalize_Eigen(std::vector<RealD>& eval,
|
||||
std::vector<std::vector<ComplexD>>& lmd,
|
||||
std::vector<std::vector<ComplexD>>& lme,
|
||||
int Nu, int Nk, int Nm,
|
||||
Eigen::MatrixXcd & Qt, // Nm x Nm
|
||||
GridBase *grid)
|
||||
{
|
||||
assert( Nk%Nu == 0 && Nm%Nu == 0 );
|
||||
assert( Nk <= Nm );
|
||||
Eigen::MatrixXcd BlockTriDiag = Eigen::MatrixXcd::Zero(Nk,Nk);
|
||||
|
||||
for ( int u=0; u<Nu; ++u ) {
|
||||
for (int k=0; k<Nk; ++k ) {
|
||||
BlockTriDiag(k,u+(k/Nu)*Nu) = lmd[u][k];
|
||||
}
|
||||
}
|
||||
|
||||
for ( int u=0; u<Nu; ++u ) {
|
||||
for (int k=Nu; k<Nk; ++k ) {
|
||||
BlockTriDiag(k-Nu,u+(k/Nu)*Nu) = conjugate(lme[u][k-Nu]);
|
||||
BlockTriDiag(u+(k/Nu)*Nu,k-Nu) = lme[u][k-Nu];
|
||||
}
|
||||
}
|
||||
//std::cout << BlockTriDiag << std::endl;
|
||||
|
||||
Eigen::SelfAdjointEigenSolver<Eigen::MatrixXcd> eigensolver(BlockTriDiag);
|
||||
|
||||
for (int i = 0; i < Nk; i++) {
|
||||
eval[Nk-1-i] = eigensolver.eigenvalues()(i);
|
||||
}
|
||||
for (int i = 0; i < Nk; i++) {
|
||||
for (int j = 0; j < Nk; j++) {
|
||||
Qt(j,Nk-1-i) = eigensolver.eigenvectors()(j,i);
|
||||
//Qt(Nk-1-i,j) = eigensolver.eigenvectors()(i,j);
|
||||
//Qt(i,j) = eigensolver.eigenvectors()(i,j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void diagonalize(std::vector<RealD>& eval,
|
||||
std::vector<std::vector<ComplexD>>& lmd,
|
||||
std::vector<std::vector<ComplexD>>& lme,
|
||||
int Nu, int Nk, int Nm,
|
||||
Eigen::MatrixXcd & Qt,
|
||||
GridBase *grid)
|
||||
{
|
||||
Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
|
||||
if ( diagonalisation == IRLdiagonaliseWithEigen ) {
|
||||
diagonalize_Eigen(eval,lmd,lme,Nu,Nk,Nm,Qt,grid);
|
||||
} else {
|
||||
assert(0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void unpackHermitBlockTriDiagMatToEigen(
|
||||
std::vector<std::vector<ComplexD>>& lmd,
|
||||
std::vector<std::vector<ComplexD>>& lme,
|
||||
int Nu, int Nb, int Nk, int Nm,
|
||||
Eigen::MatrixXcd& M)
|
||||
{
|
||||
//clog << "unpackHermitBlockTriDiagMatToEigen() begin" << '\n';
|
||||
assert( Nk%Nu == 0 && Nm%Nu == 0 );
|
||||
assert( Nk <= Nm );
|
||||
M = Eigen::MatrixXcd::Zero(Nk,Nk);
|
||||
|
||||
// rearrange
|
||||
for ( int u=0; u<Nu; ++u ) {
|
||||
for (int k=0; k<Nk; ++k ) {
|
||||
M(k,u+(k/Nu)*Nu) = lmd[u][k];
|
||||
}
|
||||
}
|
||||
|
||||
for ( int u=0; u<Nu; ++u ) {
|
||||
for (int k=Nu; k<Nk; ++k ) {
|
||||
M(k-Nu,u+(k/Nu)*Nu) = conjugate(lme[u][k-Nu]);
|
||||
M(u+(k/Nu)*Nu,k-Nu) = lme[u][k-Nu];
|
||||
}
|
||||
}
|
||||
//clog << "unpackHermitBlockTriDiagMatToEigen() end" << endl;
|
||||
}
|
||||
|
||||
|
||||
void packHermitBlockTriDiagMatfromEigen(
|
||||
std::vector<std::vector<ComplexD>>& lmd,
|
||||
std::vector<std::vector<ComplexD>>& lme,
|
||||
int Nu, int Nb, int Nk, int Nm,
|
||||
Eigen::MatrixXcd& M)
|
||||
{
|
||||
//clog << "packHermitBlockTriDiagMatfromEigen() begin" << '\n';
|
||||
assert( Nk%Nu == 0 && Nm%Nu == 0 );
|
||||
assert( Nk <= Nm );
|
||||
|
||||
// rearrange
|
||||
for ( int u=0; u<Nu; ++u ) {
|
||||
for (int k=0; k<Nk; ++k ) {
|
||||
lmd[u][k] = M(k,u+(k/Nu)*Nu);
|
||||
}
|
||||
}
|
||||
|
||||
for ( int u=0; u<Nu; ++u ) {
|
||||
for (int k=Nu; k<Nk; ++k ) {
|
||||
lme[u][k-Nu] = M(u+(k/Nu)*Nu,k-Nu);
|
||||
}
|
||||
}
|
||||
//clog << "packHermitBlockTriDiagMatfromEigen() end" << endl;
|
||||
}
|
||||
|
||||
|
||||
// void shiftedQRDecompEigen(Eigen::MatrixXcd& M, int Nm,
|
||||
// RealD Dsh,
|
||||
// Eigen::MatrixXcd& Qprod, int Nk)
|
||||
// {
|
||||
// //clog << "shiftedQRDecompEigen() begin" << '\n';
|
||||
// Eigen::MatrixXcd Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||||
// Eigen::MatrixXcd Q = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||||
//
|
||||
// Mtmp = M;
|
||||
// for (int i=0; i<Nm; ++i ) {
|
||||
// Mtmp(i,i) = M(i,i) - Dsh;
|
||||
// }
|
||||
//
|
||||
// Eigen::HouseholderQR<Eigen::MatrixXcd> QRD(Mtmp);
|
||||
// Q = QRD.householderQ();
|
||||
//
|
||||
// M = Q.adjoint()*(M*Q);
|
||||
//#if 0
|
||||
// Qprod *= Q;
|
||||
//#else
|
||||
// Mtmp = Qprod*Q;
|
||||
//
|
||||
// Eigen::HouseholderQR<Eigen::MatrixXcd> QRD2(Mtmp);
|
||||
// Qprod = QRD2.householderQ();
|
||||
//
|
||||
// Mtmp -= Qprod;
|
||||
// clog << "Frobenius norm ||Qprod(after) - Qprod|| = " << Mtmp.norm() << std::endl;
|
||||
//#endif
|
||||
// //clog << "shiftedQRDecompEigen() end" << endl;
|
||||
// }
|
||||
void shiftedQRDecompEigen(Eigen::MatrixXcd& M, int Nm,
|
||||
RealD Dsh,
|
||||
Eigen::MatrixXcd& Qprod)
|
||||
{
|
||||
//clog << "shiftedQRDecompEigen() begin" << '\n';
|
||||
Eigen::MatrixXcd Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||||
//Eigen::MatrixXcd Qtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||||
|
||||
Mtmp = Qprod.adjoint()*(M*Qprod);
|
||||
for (int i=0; i<Nm; ++i ) {
|
||||
for (int j=i+1; j<Nm; ++j ) {
|
||||
Mtmp(i,j) = Mtmp(j,i);
|
||||
}
|
||||
}
|
||||
|
||||
for (int i=0; i<Nm; ++i ) {
|
||||
Mtmp(i,i) -= Dsh;
|
||||
//Mtmp(i,i) = real(Mtmp(i,i)-Dsh);
|
||||
}
|
||||
|
||||
Eigen::HouseholderQR<Eigen::MatrixXcd> QRD(Mtmp);
|
||||
//Qtmp = Qprod*QRD.householderQ();
|
||||
|
||||
//Eigen::HouseholderQR<Eigen::MatrixXcd> QRD2(Qtmp);
|
||||
//Qprod = QRD2.householderQ();
|
||||
|
||||
Qprod *= QRD.householderQ();
|
||||
//ComplexD p;
|
||||
//RealD r;
|
||||
|
||||
//r = 0.;
|
||||
//for (int k=0; k<Nm; ++k) r += real(conj(Qprod(k,0))*Qprod(k,0));
|
||||
//r = sqrt(r);
|
||||
//for (int k=0; k<Nm; ++k) Qprod(k,0) /= r;
|
||||
//
|
||||
//for (int i=1; i<Nm; ++i) {
|
||||
// for (int j=0; j<i; ++j) {
|
||||
// p = 0.;
|
||||
// for (int k=0; k<Nm; ++k) {
|
||||
// p += conj(Qprod(k,j))*Qprod(k,i);
|
||||
// }
|
||||
// for (int k=0; k<Nm; ++k) {
|
||||
// Qprod(k,i) -= p*Qprod(k,j);
|
||||
// }
|
||||
// }
|
||||
// r = 0.;
|
||||
// for (int k=0; k<Nm; ++k) r += real(conj(Qprod(k,i))*Qprod(k,i));
|
||||
// r = sqrt(r);
|
||||
// for (int k=0; k<Nm; ++k) Qprod(k,i) /= r;
|
||||
//}
|
||||
|
||||
//clog << "shiftedQRDecompEigen() end" << endl;
|
||||
}
|
||||
|
||||
|
||||
void exampleQRDecompEigen(void)
|
||||
{
|
||||
Eigen::MatrixXd A = Eigen::MatrixXd::Zero(3,3);
|
||||
Eigen::MatrixXd Q = Eigen::MatrixXd::Zero(3,3);
|
||||
Eigen::MatrixXd R = Eigen::MatrixXd::Zero(3,3);
|
||||
Eigen::MatrixXd P = Eigen::MatrixXd::Zero(3,3);
|
||||
|
||||
A(0,0) = 12.0;
|
||||
A(0,1) = -51.0;
|
||||
A(0,2) = 4.0;
|
||||
A(1,0) = 6.0;
|
||||
A(1,1) = 167.0;
|
||||
A(1,2) = -68.0;
|
||||
A(2,0) = -4.0;
|
||||
A(2,1) = 24.0;
|
||||
A(2,2) = -41.0;
|
||||
|
||||
clog << "matrix A before ColPivHouseholder" << std::endl;
|
||||
for ( int i=0; i<3; i++ ) {
|
||||
for ( int j=0; j<3; j++ ) {
|
||||
clog << "A[" << i << "," << j << "] = " << A(i,j) << '\n';
|
||||
}
|
||||
}
|
||||
clog << std::endl;
|
||||
|
||||
Eigen::ColPivHouseholderQR<Eigen::MatrixXd> QRD(A);
|
||||
|
||||
clog << "matrix A after ColPivHouseholder" << std::endl;
|
||||
for ( int i=0; i<3; i++ ) {
|
||||
for ( int j=0; j<3; j++ ) {
|
||||
clog << "A[" << i << "," << j << "] = " << A(i,j) << '\n';
|
||||
}
|
||||
}
|
||||
clog << std::endl;
|
||||
|
||||
clog << "HouseholderQ with sequence lenth = nonzeroPiviots" << std::endl;
|
||||
Q = QRD.householderQ().setLength(QRD.nonzeroPivots());
|
||||
for ( int i=0; i<3; i++ ) {
|
||||
for ( int j=0; j<3; j++ ) {
|
||||
clog << "Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
|
||||
}
|
||||
}
|
||||
clog << std::endl;
|
||||
|
||||
clog << "HouseholderQ with sequence lenth = 1" << std::endl;
|
||||
Q = QRD.householderQ().setLength(1);
|
||||
for ( int i=0; i<3; i++ ) {
|
||||
for ( int j=0; j<3; j++ ) {
|
||||
clog << "Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
|
||||
}
|
||||
}
|
||||
clog << std::endl;
|
||||
|
||||
clog << "HouseholderQ with sequence lenth = 2" << std::endl;
|
||||
Q = QRD.householderQ().setLength(2);
|
||||
for ( int i=0; i<3; i++ ) {
|
||||
for ( int j=0; j<3; j++ ) {
|
||||
clog << "Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
|
||||
}
|
||||
}
|
||||
clog << std::endl;
|
||||
|
||||
clog << "matrixR" << std::endl;
|
||||
R = QRD.matrixR();
|
||||
for ( int i=0; i<3; i++ ) {
|
||||
for ( int j=0; j<3; j++ ) {
|
||||
clog << "R[" << i << "," << j << "] = " << R(i,j) << '\n';
|
||||
}
|
||||
}
|
||||
clog << std::endl;
|
||||
|
||||
clog << "rank = " << QRD.rank() << std::endl;
|
||||
clog << "threshold = " << QRD.threshold() << std::endl;
|
||||
|
||||
clog << "matrixP" << std::endl;
|
||||
P = QRD.colsPermutation();
|
||||
for ( int i=0; i<3; i++ ) {
|
||||
for ( int j=0; j<3; j++ ) {
|
||||
clog << "P[" << i << "," << j << "] = " << P(i,j) << '\n';
|
||||
}
|
||||
}
|
||||
clog << std::endl;
|
||||
|
||||
|
||||
clog << "QR decomposition without column pivoting" << std::endl;
|
||||
|
||||
A(0,0) = 12.0;
|
||||
A(0,1) = -51.0;
|
||||
A(0,2) = 4.0;
|
||||
A(1,0) = 6.0;
|
||||
A(1,1) = 167.0;
|
||||
A(1,2) = -68.0;
|
||||
A(2,0) = -4.0;
|
||||
A(2,1) = 24.0;
|
||||
A(2,2) = -41.0;
|
||||
|
||||
clog << "matrix A before Householder" << std::endl;
|
||||
for ( int i=0; i<3; i++ ) {
|
||||
for ( int j=0; j<3; j++ ) {
|
||||
clog << "A[" << i << "," << j << "] = " << A(i,j) << '\n';
|
||||
}
|
||||
}
|
||||
clog << std::endl;
|
||||
|
||||
Eigen::HouseholderQR<Eigen::MatrixXd> QRDplain(A);
|
||||
|
||||
clog << "HouseholderQ" << std::endl;
|
||||
Q = QRDplain.householderQ();
|
||||
for ( int i=0; i<3; i++ ) {
|
||||
for ( int j=0; j<3; j++ ) {
|
||||
clog << "Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
|
||||
}
|
||||
}
|
||||
clog << std::endl;
|
||||
|
||||
clog << "matrix A after Householder" << std::endl;
|
||||
for ( int i=0; i<3; i++ ) {
|
||||
for ( int j=0; j<3; j++ ) {
|
||||
clog << "A[" << i << "," << j << "] = " << A(i,j) << '\n';
|
||||
}
|
||||
}
|
||||
clog << std::endl;
|
||||
}
|
||||
|
||||
};
|
||||
}
|
||||
#undef clog
|
||||
#endif
|
1041
lib/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h.bak2
Normal file
1041
lib/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h.bak2
Normal file
File diff suppressed because it is too large
Load Diff
@ -35,6 +35,8 @@ Author: Christoph Lehner <clehner@bnl.gov>
|
||||
//#include <zlib.h>
|
||||
#include <sys/stat.h>
|
||||
|
||||
#define clog std::cout << GridLogMessage
|
||||
|
||||
namespace Grid {
|
||||
|
||||
////////////////////////////////////////////////////////
|
||||
@ -401,7 +403,16 @@ until convergence
|
||||
|
||||
std::cout<<GridLogIRL <<" running "<<Nm-Nk <<" steps: "<<std::endl;
|
||||
for(int k=Nk; k<Nm; ++k) step(eval,lme,evec,f,Nm,k);
|
||||
for(int k=0; k<Nm; ++k) {
|
||||
clog << "ckpt A1: lme[" << k << "] = " << lme[k] << '\n';
|
||||
}
|
||||
for(int k=0; k<Nm; ++k) {
|
||||
clog << "ckpt A2: lmd[" << k << "] = " << eval[k] << '\n';
|
||||
}
|
||||
|
||||
f *= lme[Nm-1];
|
||||
//clog << "ckpt C " << '\n';
|
||||
//clog << "norm2(f) = " << norm2(f) << std::endl;
|
||||
|
||||
std::cout<<GridLogIRL <<" "<<Nm-Nk <<" steps done "<<std::endl;
|
||||
std::cout<<GridLogIRL <<"Initial steps:OrthoTime "<<OrthoTime<< "seconds"<<std::endl;
|
||||
@ -416,8 +427,12 @@ until convergence
|
||||
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
|
||||
diagonalize(eval2,lme2,Nm,Nm,Qt,grid);
|
||||
std::cout<<GridLogIRL <<" diagonalized "<<std::endl;
|
||||
|
||||
|
||||
//////////////////////////////////
|
||||
// clog << "ckpt D " << '\n';
|
||||
// clog << "eval2 [" << k << "] = " << eval2[k] << std::endl;
|
||||
//}
|
||||
|
||||
// sorting
|
||||
//////////////////////////////////
|
||||
eval2_copy = eval2;
|
||||
@ -434,24 +449,44 @@ until convergence
|
||||
}
|
||||
|
||||
//////////////////////////////////
|
||||
// clog << "ckpt E " << '\n';
|
||||
// clog << "eval2 [" << k << "] = " << eval2[k] << std::endl;
|
||||
//}
|
||||
|
||||
// Implicitly shifted QR transformations
|
||||
//////////////////////////////////
|
||||
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
|
||||
for(int ip=k2; ip<Nm; ++ip){
|
||||
QR_decomp(eval,lme,Nm,Nm,Qt,eval2[ip],k1,Nm);
|
||||
clog << "ckpt B1: shift[" << ip << "] = " << eval2[ip] << std::endl;
|
||||
}
|
||||
std::cout<<GridLogIRL <<"QR decomposed "<<std::endl;
|
||||
|
||||
assert(k2<Nm); assert(k2<Nm); assert(k1>0);
|
||||
// for (int j=0; j<Nm; ++j) {
|
||||
// clog << "ckpt G2: Q[" << i << "," << j << "] = " << Qt(j,i) << '\n';
|
||||
// }
|
||||
//}
|
||||
for (int i=0; i<Nm; ++i) {
|
||||
clog << "ckpt C1: lme[" << i << "] = " << lme[i] << '\n';
|
||||
}
|
||||
for (int i=0; i<Nm; ++i) {
|
||||
clog << "ckpt C2: lmd[" << i << "] = " << eval[i] << '\n';
|
||||
}
|
||||
|
||||
|
||||
basisRotate(evec,Qt,k1-1,k2+1,0,Nm,Nm); /// big constraint on the basis
|
||||
std::cout<<GridLogIRL <<"basisRotated by Qt"<<std::endl;
|
||||
evec[j] = B[j];
|
||||
//clog << "ckpt F: norm2_evec[ " << j << "]" << norm2(evec[j]) << std::endl;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////
|
||||
// Compressed vector f and beta(k2)
|
||||
////////////////////////////////////////////////////
|
||||
f *= Qt(k2-1,Nm-1);
|
||||
f += lme[k2-1] * evec[k2];
|
||||
f += lme[k2-1] * evec[k2]; // was commented out
|
||||
std::cout<< GridLogMessage<<"ckpt D1: Q[Nm-1,Nk-1] = "<<Qt(Nk-1,Nm-1)<<std::endl;
|
||||
beta_k = norm2(f);
|
||||
beta_k = sqrt(beta_k);
|
||||
std::cout<<GridLogIRL<<" beta(k) = "<<beta_k<<std::endl;
|
||||
@ -471,6 +506,19 @@ until convergence
|
||||
diagonalize(eval2,lme2,Nk,Nm,Qt,grid);
|
||||
std::cout<<GridLogIRL <<" Diagonalized "<<std::endl;
|
||||
|
||||
//for (int i=0; i<Nk; ++i) {
|
||||
// for (int j=0; j<Nk; ++j) {
|
||||
// clog << "ckpt H1: R[" << i << "," << j << "] = " << Qt(j,i) << '\n';
|
||||
// }
|
||||
//}
|
||||
//for (int i=0; i<Nk; ++i) {
|
||||
// clog << "ckpt H2: eval2[" << i << "] = " << eval2[i] << '\n';
|
||||
//}
|
||||
|
||||
//for(int j=0; j<Nk; ++j) {
|
||||
// clog << "ckpt I: norm2_B[ " << j << "]" << norm2(B[j]) << std::endl;
|
||||
//}
|
||||
|
||||
Nconv = 0;
|
||||
if (iter >= MinRestart) {
|
||||
|
||||
@ -574,10 +622,17 @@ until convergence
|
||||
|
||||
_PolyOp(evec_k,w); std::cout<<GridLogIRL << "PolyOp" <<std::endl;
|
||||
|
||||
if(k>0) w -= lme[k-1] * evec[k-1];
|
||||
if(k>0) {
|
||||
w -= lme[k-1] * evec[k-1];
|
||||
//clog << "ckpt A (k= " << k << ")" << '\n';
|
||||
//clog << "lme = " << lme[k-1] << '\n';
|
||||
//clog << "norm(w) = " << norm2(w) << std::endl;
|
||||
}
|
||||
|
||||
ComplexD zalph = innerProduct(evec_k,w); // 4. αk:=(wk,vk)
|
||||
RealD alph = real(zalph);
|
||||
//clog << "ckpt B (k= " << k << ")" << '\n';
|
||||
//clog << "lmd = " << alph << std::endl;
|
||||
|
||||
w = w - alph * evec_k;// 5. wk:=wk−αkvk
|
||||
|
||||
@ -838,4 +893,5 @@ void diagonalize_QR(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
||||
}
|
||||
};
|
||||
}
|
||||
#undef clog
|
||||
#endif
|
||||
|
625
lib/algorithms/iterative/ImplicitlyRestartedLanczos.h.bak
Normal file
625
lib/algorithms/iterative/ImplicitlyRestartedLanczos.h.bak
Normal file
@ -0,0 +1,625 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/ImplicitlyRestartedLanczos.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Chulwoo Jung
|
||||
Author: Guido Cossu
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_IRL_H
|
||||
#define GRID_IRL_H
|
||||
|
||||
#include <string.h> //memset
|
||||
|
||||
namespace Grid {
|
||||
|
||||
enum IRLdiagonalisation {
|
||||
IRLdiagonaliseWithDSTEGR,
|
||||
IRLdiagonaliseWithQR,
|
||||
IRLdiagonaliseWithEigen
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Helper class for sorting the evalues AND evectors by Field
|
||||
// Use pointer swizzle on vectors
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field>
|
||||
class SortEigen {
|
||||
private:
|
||||
static bool less_lmd(RealD left,RealD right){
|
||||
return left > right;
|
||||
}
|
||||
static bool less_pair(std::pair<RealD,Field const*>& left,
|
||||
std::pair<RealD,Field const*>& right){
|
||||
return left.first > (right.first);
|
||||
}
|
||||
|
||||
public:
|
||||
void push(std::vector<RealD>& lmd,std::vector<Field>& evec,int N) {
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// PAB: FIXME: VERY VERY VERY wasteful: takes a copy of the entire vector set.
|
||||
// : The vector reorder should be done by pointer swizzle somehow
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
std::vector<Field> cpy(lmd.size(),evec[0]._grid);
|
||||
for(int i=0;i<lmd.size();i++) cpy[i] = evec[i];
|
||||
|
||||
std::vector<std::pair<RealD, Field const*> > emod(lmd.size());
|
||||
|
||||
for(int i=0;i<lmd.size();++i) emod[i] = std::pair<RealD,Field const*>(lmd[i],&cpy[i]);
|
||||
|
||||
partial_sort(emod.begin(),emod.begin()+N,emod.end(),less_pair);
|
||||
|
||||
typename std::vector<std::pair<RealD, Field const*> >::iterator it = emod.begin();
|
||||
for(int i=0;i<N;++i){
|
||||
lmd[i]=it->first;
|
||||
evec[i]=*(it->second);
|
||||
++it;
|
||||
}
|
||||
}
|
||||
void push(std::vector<RealD>& lmd,int N) {
|
||||
std::partial_sort(lmd.begin(),lmd.begin()+N,lmd.end(),less_lmd);
|
||||
}
|
||||
bool saturated(RealD lmd, RealD thrs) {
|
||||
return fabs(lmd) > fabs(thrs);
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Implicitly restarted lanczos
|
||||
/////////////////////////////////////////////////////////////
|
||||
template<class Field>
|
||||
class ImplicitlyRestartedLanczos {
|
||||
|
||||
private:
|
||||
|
||||
int MaxIter; // Max iterations
|
||||
int Nstop; // Number of evecs checked for convergence
|
||||
int Nk; // Number of converged sought
|
||||
int Nm; // Nm -- total number of vectors
|
||||
RealD eresid;
|
||||
IRLdiagonalisation diagonalisation;
|
||||
////////////////////////////////////
|
||||
// Embedded objects
|
||||
////////////////////////////////////
|
||||
SortEigen<Field> _sort;
|
||||
LinearOperatorBase<Field> &_Linop;
|
||||
OperatorFunction<Field> &_poly;
|
||||
|
||||
/////////////////////////
|
||||
// Constructor
|
||||
/////////////////////////
|
||||
public:
|
||||
ImplicitlyRestartedLanczos(LinearOperatorBase<Field> &Linop, // op
|
||||
OperatorFunction<Field> & poly, // polynomial
|
||||
int _Nstop, // really sought vecs
|
||||
int _Nk, // sought vecs
|
||||
int _Nm, // total vecs
|
||||
RealD _eresid, // resid in lmd deficit
|
||||
int _MaxIter, // Max iterations
|
||||
IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen ) :
|
||||
_Linop(Linop), _poly(poly),
|
||||
Nstop(_Nstop), Nk(_Nk), Nm(_Nm),
|
||||
eresid(_eresid), MaxIter(_MaxIter),
|
||||
diagonalisation(_diagonalisation)
|
||||
{ };
|
||||
|
||||
////////////////////////////////
|
||||
// Helpers
|
||||
////////////////////////////////
|
||||
static RealD normalise(Field& v)
|
||||
{
|
||||
RealD nn = norm2(v);
|
||||
nn = sqrt(nn);
|
||||
v = v * (1.0/nn);
|
||||
return nn;
|
||||
}
|
||||
|
||||
void orthogonalize(Field& w, std::vector<Field>& evec, int k)
|
||||
{
|
||||
typedef typename Field::scalar_type MyComplex;
|
||||
MyComplex ip;
|
||||
|
||||
for(int j=0; j<k; ++j){
|
||||
ip = innerProduct(evec[j],w);
|
||||
w = w - ip * evec[j];
|
||||
}
|
||||
normalise(w);
|
||||
}
|
||||
|
||||
/* Rudy Arthur's thesis pp.137
|
||||
------------------------
|
||||
Require: M > K P = M − K †
|
||||
Compute the factorization AVM = VM HM + fM eM
|
||||
repeat
|
||||
Q=I
|
||||
for i = 1,...,P do
|
||||
QiRi =HM −θiI Q = QQi
|
||||
H M = Q †i H M Q i
|
||||
end for
|
||||
βK =HM(K+1,K) σK =Q(M,K)
|
||||
r=vK+1βK +rσK
|
||||
VK =VM(1:M)Q(1:M,1:K)
|
||||
HK =HM(1:K,1:K)
|
||||
→AVK =VKHK +fKe†K † Extend to an M = K + P step factorization AVM = VMHM + fMeM
|
||||
until convergence
|
||||
*/
|
||||
void calc(std::vector<RealD>& eval, std::vector<Field>& evec, const Field& src, int& Nconv)
|
||||
{
|
||||
|
||||
GridBase *grid = evec[0]._grid;
|
||||
assert(grid == src._grid);
|
||||
|
||||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogMessage <<" ImplicitlyRestartedLanczos::calc() starting iteration 0 / "<< MaxIter<< std::endl;
|
||||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogMessage <<" -- seek Nk = " << Nk <<" vectors"<< std::endl;
|
||||
std::cout << GridLogMessage <<" -- accept Nstop = " << Nstop <<" vectors"<< std::endl;
|
||||
std::cout << GridLogMessage <<" -- total Nm = " << Nm <<" vectors"<< std::endl;
|
||||
std::cout << GridLogMessage <<" -- size of eval = " << eval.size() << std::endl;
|
||||
std::cout << GridLogMessage <<" -- size of evec = " << evec.size() << std::endl;
|
||||
if ( diagonalisation == IRLdiagonaliseWithDSTEGR ) {
|
||||
std::cout << GridLogMessage << "Diagonalisation is DSTEGR "<<std::endl;
|
||||
} else if ( diagonalisation == IRLdiagonaliseWithQR ) {
|
||||
std::cout << GridLogMessage << "Diagonalisation is QR "<<std::endl;
|
||||
} else if ( diagonalisation == IRLdiagonaliseWithEigen ) {
|
||||
std::cout << GridLogMessage << "Diagonalisation is Eigen "<<std::endl;
|
||||
}
|
||||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||||
|
||||
assert(Nm == evec.size() && Nm == eval.size());
|
||||
|
||||
std::vector<RealD> lme(Nm);
|
||||
std::vector<RealD> lme2(Nm);
|
||||
std::vector<RealD> eval2(Nm);
|
||||
|
||||
Eigen::MatrixXd Qt = Eigen::MatrixXd::Zero(Nm,Nm);
|
||||
|
||||
std::vector<int> Iconv(Nm);
|
||||
std::vector<Field> B(Nm,grid); // waste of space replicating
|
||||
|
||||
Field f(grid);
|
||||
Field v(grid);
|
||||
|
||||
int k1 = 1;
|
||||
int k2 = Nk;
|
||||
|
||||
Nconv = 0;
|
||||
|
||||
RealD beta_k;
|
||||
|
||||
// Set initial vector
|
||||
evec[0] = src;
|
||||
std::cout << GridLogMessage <<"norm2(src)= " << norm2(src)<<std::endl;
|
||||
|
||||
normalise(evec[0]);
|
||||
std::cout << GridLogMessage <<"norm2(evec[0])= " << norm2(evec[0]) <<std::endl;
|
||||
|
||||
// Initial Nk steps
|
||||
for(int k=0; k<Nk; ++k) step(eval,lme,evec,f,Nm,k);
|
||||
|
||||
// Restarting loop begins
|
||||
int iter;
|
||||
for(iter = 0; iter<MaxIter; ++iter){
|
||||
|
||||
std::cout<< GridLogMessage <<" **********************"<< std::endl;
|
||||
std::cout<< GridLogMessage <<" Restart iteration = "<< iter << std::endl;
|
||||
std::cout<< GridLogMessage <<" **********************"<< std::endl;
|
||||
|
||||
for(int k=Nk; k<Nm; ++k) step(eval,lme,evec,f,Nm,k);
|
||||
|
||||
f *= lme[Nm-1];
|
||||
|
||||
// getting eigenvalues
|
||||
for(int k=0; k<Nm; ++k){
|
||||
eval2[k] = eval[k+k1-1];
|
||||
lme2[k] = lme[k+k1-1];
|
||||
}
|
||||
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
|
||||
diagonalize(eval2,lme2,Nm,Nm,Qt,grid);
|
||||
|
||||
// sorting
|
||||
_sort.push(eval2,Nm);
|
||||
|
||||
// Implicitly shifted QR transformations
|
||||
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
|
||||
for(int ip=k2; ip<Nm; ++ip){
|
||||
// Eigen replacement for qr_decomp ???
|
||||
qr_decomp(eval,lme,Nm,Nm,Qt,eval2[ip],k1,Nm);
|
||||
}
|
||||
|
||||
for(int i=0; i<(Nk+1); ++i) B[i] = 0.0;
|
||||
|
||||
for(int j=k1-1; j<k2+1; ++j){
|
||||
for(int k=0; k<Nm; ++k){
|
||||
B[j].checkerboard = evec[k].checkerboard;
|
||||
B[j] += Qt(j,k) * evec[k];
|
||||
}
|
||||
}
|
||||
for(int j=k1-1; j<k2+1; ++j) evec[j] = B[j];
|
||||
|
||||
// Compressed vector f and beta(k2)
|
||||
f *= Qt(k2-1,Nm-1);
|
||||
f += lme[k2-1] * evec[k2];
|
||||
beta_k = norm2(f);
|
||||
beta_k = sqrt(beta_k);
|
||||
std::cout<< GridLogMessage<<" beta(k) = "<<beta_k<<std::endl;
|
||||
|
||||
RealD betar = 1.0/beta_k;
|
||||
evec[k2] = betar * f;
|
||||
lme[k2-1] = beta_k;
|
||||
|
||||
// Convergence test
|
||||
for(int k=0; k<Nm; ++k){
|
||||
eval2[k] = eval[k];
|
||||
lme2[k] = lme[k];
|
||||
}
|
||||
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
|
||||
diagonalize(eval2,lme2,Nk,Nm,Qt,grid);
|
||||
|
||||
for(int k = 0; k<Nk; ++k) B[k]=0.0;
|
||||
|
||||
for(int j = 0; j<Nk; ++j){
|
||||
for(int k = 0; k<Nk; ++k){
|
||||
B[j].checkerboard = evec[k].checkerboard;
|
||||
B[j] += Qt(j,k) * evec[k];
|
||||
}
|
||||
}
|
||||
|
||||
Nconv = 0;
|
||||
for(int i=0; i<Nk; ++i){
|
||||
|
||||
_Linop.HermOp(B[i],v);
|
||||
|
||||
RealD vnum = real(innerProduct(B[i],v)); // HermOp.
|
||||
RealD vden = norm2(B[i]);
|
||||
eval2[i] = vnum/vden;
|
||||
v -= eval2[i]*B[i];
|
||||
RealD vv = norm2(v);
|
||||
|
||||
std::cout.precision(13);
|
||||
std::cout << GridLogMessage << "[" << std::setw(3)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
|
||||
std::cout << "eval = "<<std::setw(25)<< std::setiosflags(std::ios_base::left)<< eval2[i];
|
||||
std::cout << " |H B[i] - eval[i]B[i]|^2 "<< std::setw(25)<< std::setiosflags(std::ios_base::right)<< vv<< std::endl;
|
||||
|
||||
// change the criteria as evals are supposed to be sorted, all evals smaller(larger) than Nstop should have converged
|
||||
if((vv<eresid*eresid) && (i == Nconv) ){
|
||||
Iconv[Nconv] = i;
|
||||
++Nconv;
|
||||
}
|
||||
|
||||
} // i-loop end
|
||||
|
||||
std::cout<< GridLogMessage <<" #modes converged: "<<Nconv<<std::endl;
|
||||
|
||||
if( Nconv>=Nstop ){
|
||||
goto converged;
|
||||
}
|
||||
} // end of iter loop
|
||||
|
||||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||||
std::cout<< GridLogError <<" ImplicitlyRestartedLanczos::calc() NOT converged.";
|
||||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||||
abort();
|
||||
|
||||
converged:
|
||||
// Sorting
|
||||
eval.resize(Nconv);
|
||||
evec.resize(Nconv,grid);
|
||||
for(int i=0; i<Nconv; ++i){
|
||||
eval[i] = eval2[Iconv[i]];
|
||||
evec[i] = B[Iconv[i]];
|
||||
}
|
||||
_sort.push(eval,evec,Nconv);
|
||||
|
||||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogMessage << "ImplicitlyRestartedLanczos CONVERGED ; Summary :\n";
|
||||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogMessage << " -- Iterations = "<< iter << "\n";
|
||||
std::cout << GridLogMessage << " -- beta(k) = "<< beta_k << "\n";
|
||||
std::cout << GridLogMessage << " -- Nconv = "<< Nconv << "\n";
|
||||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||||
}
|
||||
|
||||
private:
|
||||
/* Saad PP. 195
|
||||
1. Choose an initial vector v1 of 2-norm unity. Set β1 ≡ 0, v0 ≡ 0
|
||||
2. For k = 1,2,...,m Do:
|
||||
3. wk:=Avk−βkv_{k−1}
|
||||
4. αk:=(wk,vk) //
|
||||
5. wk:=wk−αkvk // wk orthog vk
|
||||
6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
|
||||
7. vk+1 := wk/βk+1
|
||||
8. EndDo
|
||||
*/
|
||||
void step(std::vector<RealD>& lmd,
|
||||
std::vector<RealD>& lme,
|
||||
std::vector<Field>& evec,
|
||||
Field& w,int Nm,int k)
|
||||
{
|
||||
const RealD tiny = 1.0e-20;
|
||||
assert( k< Nm );
|
||||
|
||||
_poly(_Linop,evec[k],w); // 3. wk:=Avk−βkv_{k−1}
|
||||
|
||||
if(k>0) w -= lme[k-1] * evec[k-1];
|
||||
|
||||
ComplexD zalph = innerProduct(evec[k],w); // 4. αk:=(wk,vk)
|
||||
RealD alph = real(zalph);
|
||||
|
||||
w = w - alph * evec[k];// 5. wk:=wk−αkvk
|
||||
|
||||
RealD beta = normalise(w); // 6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
|
||||
// 7. vk+1 := wk/βk+1
|
||||
|
||||
lmd[k] = alph;
|
||||
lme[k] = beta;
|
||||
|
||||
if ( k > 0 ) orthogonalize(w,evec,k); // orthonormalise
|
||||
if ( k < Nm-1) evec[k+1] = w;
|
||||
|
||||
if ( beta < tiny ) std::cout << GridLogMessage << " beta is tiny "<<beta<<std::endl;
|
||||
}
|
||||
|
||||
void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
||||
int Nk, int Nm,
|
||||
Eigen::MatrixXd & Qt, // Nm x Nm
|
||||
GridBase *grid)
|
||||
{
|
||||
Eigen::MatrixXd TriDiag = Eigen::MatrixXd::Zero(Nk,Nk);
|
||||
|
||||
for(int i=0;i<Nk;i++) TriDiag(i,i) = lmd[i];
|
||||
for(int i=0;i<Nk-1;i++) TriDiag(i,i+1) = lme[i];
|
||||
for(int i=0;i<Nk-1;i++) TriDiag(i+1,i) = lme[i];
|
||||
|
||||
Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> eigensolver(TriDiag);
|
||||
|
||||
for (int i = 0; i < Nk; i++) {
|
||||
lmd[Nk-1-i] = eigensolver.eigenvalues()(i);
|
||||
}
|
||||
for (int i = 0; i < Nk; i++) {
|
||||
for (int j = 0; j < Nk; j++) {
|
||||
Qt(Nk-1-i,j) = eigensolver.eigenvectors()(j,i);
|
||||
}
|
||||
}
|
||||
}
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// File could end here if settle on Eigen ???
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void qr_decomp(std::vector<RealD>& lmd, // Nm
|
||||
std::vector<RealD>& lme, // Nm
|
||||
int Nk, int Nm, // Nk, Nm
|
||||
Eigen::MatrixXd& Qt, // Nm x Nm matrix
|
||||
RealD Dsh, int kmin, int kmax)
|
||||
{
|
||||
int k = kmin-1;
|
||||
RealD x;
|
||||
|
||||
RealD Fden = 1.0/hypot(lmd[k]-Dsh,lme[k]);
|
||||
RealD c = ( lmd[k] -Dsh) *Fden;
|
||||
RealD s = -lme[k] *Fden;
|
||||
|
||||
RealD tmpa1 = lmd[k];
|
||||
RealD tmpa2 = lmd[k+1];
|
||||
RealD tmpb = lme[k];
|
||||
|
||||
lmd[k] = c*c*tmpa1 +s*s*tmpa2 -2.0*c*s*tmpb;
|
||||
lmd[k+1] = s*s*tmpa1 +c*c*tmpa2 +2.0*c*s*tmpb;
|
||||
lme[k] = c*s*(tmpa1-tmpa2) +(c*c-s*s)*tmpb;
|
||||
x =-s*lme[k+1];
|
||||
lme[k+1] = c*lme[k+1];
|
||||
|
||||
for(int i=0; i<Nk; ++i){
|
||||
RealD Qtmp1 = Qt(k,i);
|
||||
RealD Qtmp2 = Qt(k+1,i);
|
||||
Qt(k,i) = c*Qtmp1 - s*Qtmp2;
|
||||
Qt(k+1,i)= s*Qtmp1 + c*Qtmp2;
|
||||
}
|
||||
|
||||
// Givens transformations
|
||||
for(int k = kmin; k < kmax-1; ++k){
|
||||
|
||||
RealD Fden = 1.0/hypot(x,lme[k-1]);
|
||||
RealD c = lme[k-1]*Fden;
|
||||
RealD s = - x*Fden;
|
||||
|
||||
RealD tmpa1 = lmd[k];
|
||||
RealD tmpa2 = lmd[k+1];
|
||||
RealD tmpb = lme[k];
|
||||
|
||||
lmd[k] = c*c*tmpa1 +s*s*tmpa2 -2.0*c*s*tmpb;
|
||||
lmd[k+1] = s*s*tmpa1 +c*c*tmpa2 +2.0*c*s*tmpb;
|
||||
lme[k] = c*s*(tmpa1-tmpa2) +(c*c-s*s)*tmpb;
|
||||
lme[k-1] = c*lme[k-1] -s*x;
|
||||
|
||||
if(k != kmax-2){
|
||||
x = -s*lme[k+1];
|
||||
lme[k+1] = c*lme[k+1];
|
||||
}
|
||||
|
||||
for(int i=0; i<Nk; ++i){
|
||||
RealD Qtmp1 = Qt(k,i);
|
||||
RealD Qtmp2 = Qt(k+1,i);
|
||||
Qt(k,i) = c*Qtmp1 -s*Qtmp2;
|
||||
Qt(k+1,i) = s*Qtmp1 +c*Qtmp2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void diagonalize(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
||||
int Nk, int Nm,
|
||||
Eigen::MatrixXd & Qt,
|
||||
GridBase *grid)
|
||||
{
|
||||
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
|
||||
if ( diagonalisation == IRLdiagonaliseWithDSTEGR ) {
|
||||
diagonalize_lapack(lmd,lme,Nk,Nm,Qt,grid);
|
||||
} else if ( diagonalisation == IRLdiagonaliseWithQR ) {
|
||||
diagonalize_QR(lmd,lme,Nk,Nm,Qt,grid);
|
||||
} else if ( diagonalisation == IRLdiagonaliseWithEigen ) {
|
||||
diagonalize_Eigen(lmd,lme,Nk,Nm,Qt,grid);
|
||||
} else {
|
||||
assert(0);
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef USE_LAPACK
|
||||
void LAPACK_dstegr(char *jobz, char *range, int *n, double *d, double *e,
|
||||
double *vl, double *vu, int *il, int *iu, double *abstol,
|
||||
int *m, double *w, double *z, int *ldz, int *isuppz,
|
||||
double *work, int *lwork, int *iwork, int *liwork,
|
||||
int *info);
|
||||
#endif
|
||||
|
||||
void diagonalize_lapack(std::vector<RealD>& lmd,
|
||||
std::vector<RealD>& lme,
|
||||
int Nk, int Nm,
|
||||
Eigen::MatrixXd& Qt,
|
||||
GridBase *grid)
|
||||
{
|
||||
#ifdef USE_LAPACK
|
||||
const int size = Nm;
|
||||
int NN = Nk;
|
||||
double evals_tmp[NN];
|
||||
double evec_tmp[NN][NN];
|
||||
memset(evec_tmp[0],0,sizeof(double)*NN*NN);
|
||||
double DD[NN];
|
||||
double EE[NN];
|
||||
for (int i = 0; i< NN; i++) {
|
||||
for (int j = i - 1; j <= i + 1; j++) {
|
||||
if ( j < NN && j >= 0 ) {
|
||||
if (i==j) DD[i] = lmd[i];
|
||||
if (i==j) evals_tmp[i] = lmd[i];
|
||||
if (j==(i-1)) EE[j] = lme[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
int evals_found;
|
||||
int lwork = ( (18*NN) > (1+4*NN+NN*NN)? (18*NN):(1+4*NN+NN*NN)) ;
|
||||
int liwork = 3+NN*10 ;
|
||||
int iwork[liwork];
|
||||
double work[lwork];
|
||||
int isuppz[2*NN];
|
||||
char jobz = 'V'; // calculate evals & evecs
|
||||
char range = 'I'; // calculate all evals
|
||||
// char range = 'A'; // calculate all evals
|
||||
char uplo = 'U'; // refer to upper half of original matrix
|
||||
char compz = 'I'; // Compute eigenvectors of tridiagonal matrix
|
||||
int ifail[NN];
|
||||
int info;
|
||||
int total = grid->_Nprocessors;
|
||||
int node = grid->_processor;
|
||||
int interval = (NN/total)+1;
|
||||
double vl = 0.0, vu = 0.0;
|
||||
int il = interval*node+1 , iu = interval*(node+1);
|
||||
if (iu > NN) iu=NN;
|
||||
double tol = 0.0;
|
||||
if (1) {
|
||||
memset(evals_tmp,0,sizeof(double)*NN);
|
||||
if ( il <= NN){
|
||||
LAPACK_dstegr(&jobz, &range, &NN,
|
||||
(double*)DD, (double*)EE,
|
||||
&vl, &vu, &il, &iu, // these four are ignored if second parameteris 'A'
|
||||
&tol, // tolerance
|
||||
&evals_found, evals_tmp, (double*)evec_tmp, &NN,
|
||||
isuppz,
|
||||
work, &lwork, iwork, &liwork,
|
||||
&info);
|
||||
for (int i = iu-1; i>= il-1; i--){
|
||||
evals_tmp[i] = evals_tmp[i - (il-1)];
|
||||
if (il>1) evals_tmp[i-(il-1)]=0.;
|
||||
for (int j = 0; j< NN; j++){
|
||||
evec_tmp[i][j] = evec_tmp[i - (il-1)][j];
|
||||
if (il>1) evec_tmp[i-(il-1)][j]=0.;
|
||||
}
|
||||
}
|
||||
}
|
||||
{
|
||||
grid->GlobalSumVector(evals_tmp,NN);
|
||||
grid->GlobalSumVector((double*)evec_tmp,NN*NN);
|
||||
}
|
||||
}
|
||||
// Safer to sort instead of just reversing it,
|
||||
// but the document of the routine says evals are sorted in increasing order.
|
||||
// qr gives evals in decreasing order.
|
||||
for(int i=0;i<NN;i++){
|
||||
lmd [NN-1-i]=evals_tmp[i];
|
||||
for(int j=0;j<NN;j++){
|
||||
Qt((NN-1-i),j)=evec_tmp[i][j];
|
||||
}
|
||||
}
|
||||
#else
|
||||
assert(0);
|
||||
#endif
|
||||
}
|
||||
|
||||
void diagonalize_QR(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
||||
int Nk, int Nm,
|
||||
Eigen::MatrixXd & Qt,
|
||||
GridBase *grid)
|
||||
{
|
||||
int Niter = 100*Nm;
|
||||
int kmin = 1;
|
||||
int kmax = Nk;
|
||||
|
||||
// (this should be more sophisticated)
|
||||
for(int iter=0; iter<Niter; ++iter){
|
||||
|
||||
// determination of 2x2 leading submatrix
|
||||
RealD dsub = lmd[kmax-1]-lmd[kmax-2];
|
||||
RealD dd = sqrt(dsub*dsub + 4.0*lme[kmax-2]*lme[kmax-2]);
|
||||
RealD Dsh = 0.5*(lmd[kmax-2]+lmd[kmax-1] +dd*(dsub/fabs(dsub)));
|
||||
// (Dsh: shift)
|
||||
|
||||
// transformation
|
||||
qr_decomp(lmd,lme,Nk,Nm,Qt,Dsh,kmin,kmax); // Nk, Nm
|
||||
|
||||
// Convergence criterion (redef of kmin and kamx)
|
||||
for(int j=kmax-1; j>= kmin; --j){
|
||||
RealD dds = fabs(lmd[j-1])+fabs(lmd[j]);
|
||||
if(fabs(lme[j-1])+dds > dds){
|
||||
kmax = j+1;
|
||||
goto continued;
|
||||
}
|
||||
}
|
||||
Niter = iter;
|
||||
return;
|
||||
|
||||
continued:
|
||||
for(int j=0; j<kmax-1; ++j){
|
||||
RealD dds = fabs(lmd[j])+fabs(lmd[j+1]);
|
||||
if(fabs(lme[j])+dds > dds){
|
||||
kmin = j+1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
std::cout << GridLogError << "[QL method] Error - Too many iteration: "<<Niter<<"\n";
|
||||
abort();
|
||||
}
|
||||
|
||||
};
|
||||
}
|
||||
#endif
|
@ -470,6 +470,7 @@ void CayleyFermion5D<Impl>::MooeeInternalAsm(const FermionField &psi, FermionFie
|
||||
a0 = a0+incr;
|
||||
a1 = a1+incr;
|
||||
a2 = a2+sizeof(typename Simd::scalar_type);
|
||||
a2 = a2+sizeof(typename Simd::scalar_type); //ypj [debug]
|
||||
}}
|
||||
{
|
||||
int lexa = s1+LLs*site;
|
||||
@ -702,6 +703,7 @@ void CayleyFermion5D<Impl>::MooeeInternalZAsm(const FermionField &psi, FermionFi
|
||||
a0 = a0+incr;
|
||||
a1 = a1+incr;
|
||||
a2 = a2+sizeof(typename Simd::scalar_type);
|
||||
a2 = a2+sizeof(typename Simd::scalar_type); // ypj [debug]
|
||||
}}
|
||||
{
|
||||
int lexa = s1+LLs*site;
|
||||
|
@ -476,6 +476,7 @@ namespace QCD {
|
||||
a0 = a0 + incr;
|
||||
a1 = a1 + incr;
|
||||
a2 = a2 + sizeof(typename Simd::scalar_type);
|
||||
a2 = a2 + sizeof(typename Simd::scalar_type); // ypj [debug]
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -854,6 +854,7 @@ namespace QCD {
|
||||
a0 = a0 + incr;
|
||||
a1 = a1 + incr;
|
||||
a2 = a2 + sizeof(typename Simd::scalar_type);
|
||||
a2 = a2 + sizeof(typename Simd::scalar_type); // ypj [debug]
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -556,7 +556,7 @@ namespace Optimization {
|
||||
v3 = _mm256_add_epi32(v1, v2);
|
||||
v1 = _mm256_hadd_epi32(v3, v3);
|
||||
v2 = _mm256_hadd_epi32(v1, v1);
|
||||
u1 = _mm256_castsi256_si128(v2); // upper half
|
||||
u1 = _mm256_castsi256_si128(v2); // upper half ypj[debug] ; was missing
|
||||
u2 = _mm256_extracti128_si256(v2, 1); // lower half
|
||||
ret = _mm_add_epi32(u1, u2);
|
||||
return _mm_cvtsi128_si32(ret);
|
||||
|
@ -157,6 +157,14 @@ void GridCmdOptionInt(std::string &str,int & val)
|
||||
return;
|
||||
}
|
||||
|
||||
// ypj [add]
|
||||
void GridCmdOptionFloat(std::string &str,double & val)
|
||||
{
|
||||
std::stringstream ss(str);
|
||||
ss>>val;
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
void GridParseLayout(char **argv,int argc,
|
||||
std::vector<int> &latt,
|
||||
|
@ -54,6 +54,9 @@ namespace Grid {
|
||||
std::string GridCmdVectorIntToString(const std::vector<int> & vec);
|
||||
void GridCmdOptionCSL(std::string str,std::vector<std::string> & vec);
|
||||
void GridCmdOptionIntVector(std::string &str,std::vector<int> & vec);
|
||||
// ypj [add]
|
||||
void GridCmdOptionInt(std::string &str,int & val);
|
||||
void GridCmdOptionFloat(std::string &str,double & val);
|
||||
|
||||
|
||||
void GridParseLayout(char **argv,int argc,
|
||||
|
317
tests/lanczos/Test_dwf_block_lanczos.cc
Normal file
317
tests/lanczos/Test_dwf_block_lanczos.cc
Normal file
@ -0,0 +1,317 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/Test_dwf_block_lanczos.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
using namespace Grid::QCD;
|
||||
|
||||
//typedef typename GparityDomainWallFermionR::FermionField FermionField;
|
||||
typedef typename ZMobiusFermionR::FermionField FermionField;
|
||||
|
||||
RealD AllZero(RealD x){ return 0.;}
|
||||
|
||||
class CmdJobParams
|
||||
{
|
||||
public:
|
||||
std::string gaugefile;
|
||||
|
||||
int Ls;
|
||||
double mass;
|
||||
double M5;
|
||||
double mob_b;
|
||||
std::vector<ComplexD> omega;
|
||||
std::vector<ComplexD> boundary_phase;
|
||||
|
||||
LanczosType Impl;
|
||||
int Nu;
|
||||
int Nk;
|
||||
int Np;
|
||||
int Nm;
|
||||
int Nstop;
|
||||
int Ntest;
|
||||
int MaxIter;
|
||||
double resid;
|
||||
|
||||
double low;
|
||||
double high;
|
||||
int order;
|
||||
|
||||
CmdJobParams()
|
||||
: gaugefile("Hot"),
|
||||
Ls(8), mass(0.01), M5(1.8), mob_b(1.5),
|
||||
Impl(LanczosType::irbl),
|
||||
Nu(4), Nk(200), Np(200), Nstop(100), Ntest(1), MaxIter(10), resid(1.0e-8),
|
||||
low(0.2), high(5.5), order(11)
|
||||
{Nm=Nk+Np;};
|
||||
|
||||
void Parse(char **argv, int argc);
|
||||
};
|
||||
|
||||
|
||||
void CmdJobParams::Parse(char **argv,int argc)
|
||||
{
|
||||
std::string arg;
|
||||
std::vector<int> vi;
|
||||
double re,im;
|
||||
int expect, idx;
|
||||
std::string vstr;
|
||||
std::ifstream pfile;
|
||||
|
||||
if( GridCmdOptionExists(argv,argv+argc,"--gconf") ){
|
||||
gaugefile = GridCmdOptionPayload(argv,argv+argc,"--gconf");
|
||||
}
|
||||
|
||||
if( GridCmdOptionExists(argv,argv+argc,"--phase") ){
|
||||
arg = GridCmdOptionPayload(argv,argv+argc,"--phase");
|
||||
pfile.open(arg);
|
||||
assert(pfile);
|
||||
expect = 0;
|
||||
while( pfile >> vstr ) {
|
||||
if ( vstr.compare("boundary_phase") == 0 ) {
|
||||
pfile >> vstr;
|
||||
GridCmdOptionInt(vstr,idx);
|
||||
assert(expect==idx);
|
||||
pfile >> vstr;
|
||||
GridCmdOptionFloat(vstr,re);
|
||||
pfile >> vstr;
|
||||
GridCmdOptionFloat(vstr,im);
|
||||
boundary_phase.push_back({re,im});
|
||||
expect++;
|
||||
}
|
||||
}
|
||||
pfile.close();
|
||||
} else {
|
||||
for (int i=0; i<4; ++i) boundary_phase.push_back({1.,0.});
|
||||
}
|
||||
|
||||
if( GridCmdOptionExists(argv,argv+argc,"--omega") ){
|
||||
arg = GridCmdOptionPayload(argv,argv+argc,"--omega");
|
||||
pfile.open(arg);
|
||||
assert(pfile);
|
||||
Ls = 0;
|
||||
while( pfile >> vstr ) {
|
||||
if ( vstr.compare("omega") == 0 ) {
|
||||
pfile >> vstr;
|
||||
GridCmdOptionInt(vstr,idx);
|
||||
assert(Ls==idx);
|
||||
pfile >> vstr;
|
||||
GridCmdOptionFloat(vstr,re);
|
||||
pfile >> vstr;
|
||||
GridCmdOptionFloat(vstr,im);
|
||||
omega.push_back({re,im});
|
||||
Ls++;
|
||||
}
|
||||
}
|
||||
pfile.close();
|
||||
} else {
|
||||
if( GridCmdOptionExists(argv,argv+argc,"--Ls") ){
|
||||
arg = GridCmdOptionPayload(argv,argv+argc,"--Ls");
|
||||
GridCmdOptionInt(arg,Ls);
|
||||
}
|
||||
}
|
||||
|
||||
if( GridCmdOptionExists(argv,argv+argc,"--mass") ){
|
||||
arg = GridCmdOptionPayload(argv,argv+argc,"--mass");
|
||||
GridCmdOptionFloat(arg,mass);
|
||||
}
|
||||
|
||||
if( GridCmdOptionExists(argv,argv+argc,"--M5") ){
|
||||
arg = GridCmdOptionPayload(argv,argv+argc,"--M5");
|
||||
GridCmdOptionFloat(arg,M5);
|
||||
}
|
||||
|
||||
if( GridCmdOptionExists(argv,argv+argc,"--mob_b") ){
|
||||
arg = GridCmdOptionPayload(argv,argv+argc,"--mob_b");
|
||||
GridCmdOptionFloat(arg,mob_b);
|
||||
}
|
||||
|
||||
if( GridCmdOptionExists(argv,argv+argc,"--irbl") ){
|
||||
arg = GridCmdOptionPayload(argv,argv+argc,"--irbl");
|
||||
GridCmdOptionIntVector(arg,vi);
|
||||
Nu = vi[0];
|
||||
Nk = vi[1];
|
||||
Np = vi[2];
|
||||
Nstop = vi[3];
|
||||
MaxIter = vi[4];
|
||||
// ypj[fixme] mode overriding message is needed.
|
||||
Impl = LanczosType::irbl;
|
||||
Nm = Nk+Np;
|
||||
}
|
||||
|
||||
// block Lanczos with explicit extension of its dimensions
|
||||
if( GridCmdOptionExists(argv,argv+argc,"--rbl") ){
|
||||
arg = GridCmdOptionPayload(argv,argv+argc,"--rbl");
|
||||
GridCmdOptionIntVector(arg,vi);
|
||||
Nu = vi[0];
|
||||
Nk = vi[1];
|
||||
Np = vi[2]; // vector space is enlarged by adding Np vectors
|
||||
Nstop = vi[3];
|
||||
MaxIter = vi[4];
|
||||
// ypj[fixme] mode overriding message is needed.
|
||||
Impl = LanczosType::rbl;
|
||||
Nm = Nk+Np*MaxIter;
|
||||
}
|
||||
|
||||
if( GridCmdOptionExists(argv,argv+argc,"--check_int") ){
|
||||
arg = GridCmdOptionPayload(argv,argv+argc,"--check_int");
|
||||
GridCmdOptionInt(arg,Ntest);
|
||||
}
|
||||
|
||||
if( GridCmdOptionExists(argv,argv+argc,"--resid") ){
|
||||
arg = GridCmdOptionPayload(argv,argv+argc,"--resid");
|
||||
GridCmdOptionFloat(arg,resid);
|
||||
}
|
||||
|
||||
if( GridCmdOptionExists(argv,argv+argc,"--cheby_l") ){
|
||||
arg = GridCmdOptionPayload(argv,argv+argc,"--cheby_l");
|
||||
GridCmdOptionFloat(arg,low);
|
||||
}
|
||||
|
||||
if( GridCmdOptionExists(argv,argv+argc,"--cheby_u") ){
|
||||
arg = GridCmdOptionPayload(argv,argv+argc,"--cheby_u");
|
||||
GridCmdOptionFloat(arg,high);
|
||||
}
|
||||
|
||||
if( GridCmdOptionExists(argv,argv+argc,"--cheby_n") ){
|
||||
arg = GridCmdOptionPayload(argv,argv+argc,"--cheby_n");
|
||||
GridCmdOptionInt(arg,order);
|
||||
}
|
||||
|
||||
if ( CartesianCommunicator::RankWorld() == 0 ) {
|
||||
std::streamsize ss = std::cout.precision();
|
||||
std::cout << GridLogMessage <<" Gauge Configuration "<< gaugefile << '\n';
|
||||
std::cout.precision(15);
|
||||
for ( int i=0; i<4; ++i ) std::cout << GridLogMessage <<" boundary_phase["<< i << "] = " << boundary_phase[i] << '\n';
|
||||
std::cout.precision(ss);
|
||||
std::cout << GridLogMessage <<" Ls "<< Ls << '\n';
|
||||
std::cout << GridLogMessage <<" mass "<< mass << '\n';
|
||||
std::cout << GridLogMessage <<" M5 "<< M5 << '\n';
|
||||
std::cout << GridLogMessage <<" mob_b "<< mob_b << '\n';
|
||||
std::cout.precision(15);
|
||||
for ( int i=0; i<Ls; ++i ) std::cout << GridLogMessage <<" omega["<< i << "] = " << omega[i] << '\n';
|
||||
std::cout.precision(ss);
|
||||
std::cout << GridLogMessage <<" Nu "<< Nu << '\n';
|
||||
std::cout << GridLogMessage <<" Nk "<< Nk << '\n';
|
||||
std::cout << GridLogMessage <<" Np "<< Np << '\n';
|
||||
std::cout << GridLogMessage <<" Nm "<< Nm << '\n';
|
||||
std::cout << GridLogMessage <<" Nstop "<< Nstop << '\n';
|
||||
std::cout << GridLogMessage <<" Ntest "<< Ntest << '\n';
|
||||
std::cout << GridLogMessage <<" MaxIter "<< MaxIter << '\n';
|
||||
std::cout << GridLogMessage <<" resid "<< resid << '\n';
|
||||
std::cout << GridLogMessage <<" Cheby Poly "<< low << "," << high << "," << order << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
CmdJobParams JP;
|
||||
JP.Parse(argv,argc);
|
||||
|
||||
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
|
||||
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(JP.Ls,UGrid);
|
||||
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(JP.Ls,UGrid);
|
||||
printf("UGrid=%p UrbGrid=%p FGrid=%p FrbGrid=%p\n",UGrid,UrbGrid,FGrid,FrbGrid);
|
||||
|
||||
std::vector<int> seeds4({1,2,3,4});
|
||||
std::vector<int> seeds5({5,6,7,8});
|
||||
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
|
||||
GridParallelRNG RNG5rb(FrbGrid); RNG5.SeedFixedIntegers(seeds5);
|
||||
// ypj [note] why seed RNG5 again? bug? In this case, run with a default seed().
|
||||
//GridParallelRNG RNG5rb(FrbGrid); //RNG5rb.SeedFixedIntegers(seeds5);
|
||||
|
||||
LatticeGaugeField Umu(UGrid);
|
||||
std::vector<LatticeColourMatrix> U(4,UGrid);
|
||||
|
||||
if ( JP.gaugefile.compare("Hot") == 0 ) {
|
||||
SU3::HotConfiguration(RNG4, Umu);
|
||||
} else {
|
||||
FieldMetaData header;
|
||||
NerscIO::readConfiguration(Umu,header,JP.gaugefile);
|
||||
// ypj [fixme] additional checks for the loaded configuration?
|
||||
}
|
||||
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
U[mu] = PeekIndex<LorentzIndex>(Umu,mu);
|
||||
}
|
||||
|
||||
RealD mass = JP.mass;
|
||||
RealD M5 = JP.M5;
|
||||
|
||||
// ypj [fixme] flexible support for a various Fermions
|
||||
// RealD mob_b = JP.mob_b; // Gparity
|
||||
// std::vector<ComplexD> omega; // ZMobius
|
||||
|
||||
// GparityMobiusFermionD ::ImplParams params;
|
||||
// std::vector<int> twists({1,1,1,0});
|
||||
// params.twists = twists;
|
||||
// GparityMobiusFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,mob_b,mob_b-1.,params);
|
||||
// SchurDiagTwoOperator<GparityMobiusFermionR,FermionField> HermOp(Ddwf);
|
||||
|
||||
//WilsonFermionR::ImplParams params;
|
||||
ZMobiusFermionR::ImplParams params;
|
||||
params.overlapCommsCompute = true;
|
||||
params.boundary_phases = JP.boundary_phase;
|
||||
ZMobiusFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,JP.omega,1.,0.,params);
|
||||
SchurDiagTwoOperator<ZMobiusFermionR,FermionField> HermOp(Ddwf);
|
||||
|
||||
//std::vector<double> Coeffs { 0.,-1.};
|
||||
// ypj [note] this may not be supported by some compilers
|
||||
std::vector<double> Coeffs({ 0.,-1.});
|
||||
Polynomial<FermionField> PolyX(Coeffs);
|
||||
//Chebyshev<FermionField> Cheb(0.2,5.5,11);
|
||||
Chebyshev<FermionField> Cheb(JP.low,JP.high,JP.order);
|
||||
// Cheb.csv(std::cout);
|
||||
ImplicitlyRestartedBlockLanczos<FermionField> IRBL(HermOp,
|
||||
Cheb,
|
||||
JP.Nstop, JP.Ntest,
|
||||
JP.Nu, JP.Nk, JP.Nm,
|
||||
JP.resid,
|
||||
JP.MaxIter);
|
||||
|
||||
std::vector<RealD> eval(JP.Nm);
|
||||
|
||||
std::vector<FermionField> src(JP.Nu,FrbGrid);
|
||||
for ( int i=0; i<JP.Nu; ++i ) gaussian(RNG5rb,src[i]);
|
||||
|
||||
std::vector<FermionField> evec(JP.Nm,FrbGrid);
|
||||
for(int i=0;i<1;++i){
|
||||
std::cout << GridLogMessage << i <<" / "<< JP.Nm <<" grid pointer "<< evec[i]._grid << std::endl;
|
||||
};
|
||||
|
||||
int Nconv;
|
||||
IRBL.calc(eval,evec,src,Nconv,JP.Impl);
|
||||
|
||||
|
||||
Grid_finalize();
|
||||
}
|
@ -75,16 +75,16 @@ int main (int argc, char ** argv)
|
||||
SchurDiagTwoOperator<GparityMobiusFermionR,FermionField> HermOp(Ddwf);
|
||||
// SchurDiagMooeeOperator<DomainWallFermionR,LatticeFermion> HermOp(Ddwf);
|
||||
|
||||
const int Nstop = 30;
|
||||
const int Nk = 40;
|
||||
const int Np = 40;
|
||||
const int Nstop = 120;
|
||||
const int Nk = 240;
|
||||
const int Np = 240;
|
||||
const int Nm = Nk+Np;
|
||||
const int MaxIt= 10000;
|
||||
const int MaxIt= 10;
|
||||
RealD resid = 1.0e-8;
|
||||
|
||||
std::vector<double> Coeffs { 0.,-1.};
|
||||
Polynomial<FermionField> PolyX(Coeffs);
|
||||
Chebyshev<FermionField> Cheby(0.2,5.,11);
|
||||
Chebyshev<FermionField> Cheb(0.2,5.5,11);
|
||||
|
||||
FunctionHermOp<FermionField> OpCheby(Cheby,HermOp);
|
||||
PlainHermOp<FermionField> Op (HermOp);
|
||||
|
@ -58,7 +58,7 @@ int main(int argc, char** argv) {
|
||||
GridParallelRNG RNG4(UGrid);
|
||||
RNG4.SeedFixedIntegers(seeds4);
|
||||
GridParallelRNG RNG5rb(FrbGrid);
|
||||
RNG5.SeedFixedIntegers(seeds5);
|
||||
RNG5.SeedFixedIntegers(seeds5); // ypj [note] Does it mean RNG5rb? RNG5rb is never used.
|
||||
|
||||
LatticeGaugeField Umu(UGrid);
|
||||
SU3::HotConfiguration(RNG4, Umu);
|
||||
|
Loading…
Reference in New Issue
Block a user