1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-19 00:07:05 +01:00

Merge remote-tracking branch 'LupoA/develop' into LupoA-develop

This commit is contained in:
Peter Boyle
2023-10-02 16:22:35 -04:00
71 changed files with 3259 additions and 1454 deletions

View File

@ -66,6 +66,10 @@ if BUILD_FERMION_REPS
extra_sources+=$(ADJ_FERMION_FILES)
extra_sources+=$(TWOIND_FERMION_FILES)
endif
if BUILD_SP
extra_sources+=$(SP_FERMION_FILES)
extra_sources+=$(SP_TWOIND_FERMION_FILES)
endif
lib_LIBRARIES = libGrid.a

View File

@ -345,7 +345,9 @@ GridUnopClass(UnaryNot, Not(a));
GridUnopClass(UnaryTrace, trace(a));
GridUnopClass(UnaryTranspose, transpose(a));
GridUnopClass(UnaryTa, Ta(a));
GridUnopClass(UnarySpTa, SpTa(a));
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
GridUnopClass(UnaryProjectOnSpGroup, ProjectOnSpGroup(a));
GridUnopClass(UnaryTimesI, timesI(a));
GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
GridUnopClass(UnaryAbs, abs(a));
@ -456,7 +458,9 @@ GRID_DEF_UNOP(operator!, UnaryNot);
GRID_DEF_UNOP(trace, UnaryTrace);
GRID_DEF_UNOP(transpose, UnaryTranspose);
GRID_DEF_UNOP(Ta, UnaryTa);
GRID_DEF_UNOP(SpTa, UnarySpTa);
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
GRID_DEF_UNOP(ProjectOnSpGroup, UnaryProjectOnSpGroup);
GRID_DEF_UNOP(timesI, UnaryTimesI);
GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
GRID_DEF_UNOP(abs, UnaryAbs); // abs overloaded in cmath C++98; DON'T do the

View File

@ -66,6 +66,65 @@ inline auto TraceIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<
return ret;
};
template<int N, class Vec>
Lattice<iScalar<iScalar<iScalar<Vec> > > > Determinant(const Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu)
{
GridBase *grid=Umu.Grid();
auto lvol = grid->lSites();
Lattice<iScalar<iScalar<iScalar<Vec> > > > ret(grid);
typedef typename Vec::scalar_type scalar;
autoView(Umu_v,Umu,CpuRead);
autoView(ret_v,ret,CpuWrite);
thread_for(site,lvol,{
Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
Coordinate lcoor;
grid->LocalIndexToLocalCoor(site, lcoor);
iScalar<iScalar<iMatrix<scalar, N> > > Us;
peekLocalSite(Us, Umu_v, lcoor);
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
scalar tmp= Us()()(i,j);
ComplexD ztmp(real(tmp),imag(tmp));
EigenU(i,j)=ztmp;
}}
ComplexD detD = EigenU.determinant();
typename Vec::scalar_type det(detD.real(),detD.imag());
pokeLocalSite(det,ret_v,lcoor);
});
return ret;
}
template<int N>
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > Inverse(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu)
{
GridBase *grid=Umu.Grid();
auto lvol = grid->lSites();
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > ret(grid);
autoView(Umu_v,Umu,CpuRead);
autoView(ret_v,ret,CpuWrite);
thread_for(site,lvol,{
Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
Coordinate lcoor;
grid->LocalIndexToLocalCoor(site, lcoor);
iScalar<iScalar<iMatrix<ComplexD, N> > > Us;
iScalar<iScalar<iMatrix<ComplexD, N> > > Ui;
peekLocalSite(Us, Umu_v, lcoor);
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
EigenU(i,j) = Us()()(i,j);
}}
Eigen::MatrixXcd EigenUinv = EigenU.inverse();
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
Ui()()(i,j) = EigenUinv(i,j);
}}
pokeLocalSite(Ui,ret_v,lcoor);
});
return ret;
}
NAMESPACE_END(Grid);
#endif

View File

@ -126,6 +126,16 @@ typedef WilsonFermion<WilsonTwoIndexSymmetricImplD> WilsonTwoIndexSymmetricFermi
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonTwoIndexAntiSymmetricFermionF;
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonTwoIndexAntiSymmetricFermionD;
// Sp(2n)
typedef WilsonFermion<SpWilsonImplF> SpWilsonFermionF;
typedef WilsonFermion<SpWilsonImplD> SpWilsonFermionD;
typedef WilsonFermion<SpWilsonTwoIndexAntiSymmetricImplF> SpWilsonTwoIndexAntiSymmetricFermionF;
typedef WilsonFermion<SpWilsonTwoIndexAntiSymmetricImplD> SpWilsonTwoIndexAntiSymmetricFermionD;
typedef WilsonFermion<SpWilsonTwoIndexSymmetricImplF> SpWilsonTwoIndexSymmetricFermionF;
typedef WilsonFermion<SpWilsonTwoIndexSymmetricImplD> SpWilsonTwoIndexSymmetricFermionD;
// Twisted mass fermion
typedef WilsonTMFermion<WilsonImplD2> WilsonTMFermionD2;
typedef WilsonTMFermion<WilsonImplF> WilsonTMFermionF;

View File

@ -261,6 +261,22 @@ typedef WilsonImpl<vComplex, TwoIndexAntiSymmetricRepresentation, CoeffReal > W
typedef WilsonImpl<vComplexF, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplF; // Float
typedef WilsonImpl<vComplexD, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplD; // Double
//sp 2n
typedef WilsonImpl<vComplex, SpFundamentalRepresentation, CoeffReal > SpWilsonImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, SpFundamentalRepresentation, CoeffReal > SpWilsonImplF; // Float
typedef WilsonImpl<vComplexD, SpFundamentalRepresentation, CoeffReal > SpWilsonImplD; // Double
typedef WilsonImpl<vComplex, SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplF; // Float
typedef WilsonImpl<vComplexD, SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplD; // Double
typedef WilsonImpl<vComplex, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplF; // Float
typedef WilsonImpl<vComplexD, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplD; // Double
typedef WilsonImpl<vComplex, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplR; // Real.. whichever prec // adj = 2indx symmetric for Sp(2N)
typedef WilsonImpl<vComplexF, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplF; // Float // adj = 2indx symmetric for Sp(2N)
typedef WilsonImpl<vComplexD, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplD; // Double // adj = 2indx symmetric for Sp(2N)
NAMESPACE_END(Grid);

View File

@ -0,0 +1 @@
../WilsonCloverFermionInstantiation.cc.master

View File

@ -0,0 +1 @@
../WilsonFermionInstantiation.cc.master

View File

@ -0,0 +1 @@
../WilsonKernelsInstantiation.cc.master

View File

@ -0,0 +1 @@
../WilsonTMFermionInstantiation.cc.master

View File

@ -0,0 +1 @@
#define IMPLEMENTATION SpWilsonImplD

View File

@ -0,0 +1 @@
../WilsonCloverFermionInstantiation.cc.master

View File

@ -0,0 +1 @@
../WilsonFermionInstantiation.cc.master

View File

@ -0,0 +1 @@
../WilsonKernelsInstantiation.cc.master

View File

@ -0,0 +1 @@
../WilsonTMFermionInstantiation.cc.master

View File

@ -0,0 +1 @@
#define IMPLEMENTATION SpWilsonImplF

View File

@ -0,0 +1 @@
#define IMPLEMENTATION SpWilsonTwoIndexAntiSymmetricImplD

View File

@ -0,0 +1 @@
#define IMPLEMENTATION SpWilsonTwoIndexAntiSymmetricImplF

View File

@ -0,0 +1 @@
#define IMPLEMENTATION SpWilsonTwoIndexSymmetricImplD

View File

@ -0,0 +1 @@
#define IMPLEMENTATION SpWilsonTwoIndexSymmetricImplF

View File

@ -10,12 +10,18 @@ WILSON_IMPL_LIST=" \
WilsonImplF \
WilsonImplD \
WilsonImplD2 \
SpWilsonImplF \
SpWilsonImplD \
WilsonAdjImplF \
WilsonAdjImplD \
WilsonTwoIndexSymmetricImplF \
WilsonTwoIndexSymmetricImplD \
WilsonTwoIndexAntiSymmetricImplF \
WilsonTwoIndexAntiSymmetricImplD \
SpWilsonTwoIndexAntiSymmetricImplF \
SpWilsonTwoIndexAntiSymmetricImplD \
SpWilsonTwoIndexSymmetricImplF \
SpWilsonTwoIndexSymmetricImplD \
GparityWilsonImplF \
GparityWilsonImplD "

View File

@ -39,6 +39,9 @@ NAMESPACE_BEGIN(Grid);
typedef WilsonGaugeAction<PeriodicGimplR> WilsonGaugeActionR;
typedef WilsonGaugeAction<PeriodicGimplF> WilsonGaugeActionF;
typedef WilsonGaugeAction<PeriodicGimplD> WilsonGaugeActionD;
typedef WilsonGaugeAction<SpPeriodicGimplR> SpWilsonGaugeActionR;
typedef WilsonGaugeAction<SpPeriodicGimplF> SpWilsonGaugeActionF;
typedef WilsonGaugeAction<SpPeriodicGimplD> SpWilsonGaugeActionD;
typedef PlaqPlusRectangleAction<PeriodicGimplR> PlaqPlusRectangleActionR;
typedef PlaqPlusRectangleAction<PeriodicGimplF> PlaqPlusRectangleActionF;
typedef PlaqPlusRectangleAction<PeriodicGimplD> PlaqPlusRectangleActionD;

View File

@ -61,7 +61,7 @@ NAMESPACE_BEGIN(Grid);
typedef typename Impl::Field Field;
// hardcodes the exponential approximation in the template
template <class S, int Nrepresentation = Nc, int Nexp = 12 > class GaugeImplTypes {
template <class S, int Nrepresentation = Nc, int Nexp = 12, class Group = SU<Nc> > class GaugeImplTypes {
public:
typedef S Simd;
typedef typename Simd::scalar_type scalar_type;
@ -78,8 +78,6 @@ public:
typedef Lattice<SiteLink> LinkField;
typedef Lattice<SiteField> Field;
typedef SU<Nrepresentation> Group;
// Guido: we can probably separate the types from the HMC functions
// this will create 2 kind of implementations
// probably confusing the users
@ -119,6 +117,7 @@ public:
//
LinkField Pmu(P.Grid());
Pmu = Zero();
for (int mu = 0; mu < Nd; mu++) {
Group::GaussianFundamentalLieAlgebraMatrix(pRNG, Pmu);
RealD scale = ::sqrt(HMC_MOMENTUM_DENOMINATOR) ;
@ -126,8 +125,12 @@ public:
PokeIndex<LorentzIndex>(P, Pmu, mu);
}
}
static inline Field projectForce(Field &P) { return Ta(P); }
static inline Field projectForce(Field &P) {
Field ret(P.Grid());
Group::taProj(P, ret);
return ret;
}
static inline void update_field(Field& P, Field& U, double ep){
//static std::chrono::duration<double> diff;
@ -137,14 +140,15 @@ public:
autoView(P_v,P,AcceleratorRead);
accelerator_for(ss, P.Grid()->oSites(),1,{
for (int mu = 0; mu < Nd; mu++) {
U_v[ss](mu) = ProjectOnGroup(Exponentiate(P_v[ss](mu), ep, Nexp) * U_v[ss](mu));
U_v[ss](mu) = Exponentiate(P_v[ss](mu), ep, Nexp) * U_v[ss](mu);
U_v[ss](mu) = Group::ProjectOnGeneralGroup(U_v[ss](mu));
}
});
//auto end = std::chrono::high_resolution_clock::now();
// diff += end - start;
// std::cout << "Time to exponentiate matrix " << diff.count() << " s\n";
}
static inline RealD FieldSquareNorm(Field& U){
LatticeComplex Hloc(U.Grid());
Hloc = Zero();
@ -157,7 +161,7 @@ public:
}
static inline void Project(Field &U) {
ProjectSUn(U);
Group::ProjectOnSpecialGroup(U);
}
static inline void HotConfiguration(GridParallelRNG &pRNG, Field &U) {
@ -171,6 +175,7 @@ public:
static inline void ColdConfiguration(GridParallelRNG &pRNG, Field &U) {
Group::ColdConfiguration(pRNG, U);
}
};
@ -178,10 +183,17 @@ typedef GaugeImplTypes<vComplex, Nc> GimplTypesR;
typedef GaugeImplTypes<vComplexF, Nc> GimplTypesF;
typedef GaugeImplTypes<vComplexD, Nc> GimplTypesD;
typedef GaugeImplTypes<vComplex, Nc, 12, Sp<Nc> > SpGimplTypesR;
typedef GaugeImplTypes<vComplexF, Nc, 12, Sp<Nc> > SpGimplTypesF;
typedef GaugeImplTypes<vComplexD, Nc, 12, Sp<Nc> > SpGimplTypesD;
typedef GaugeImplTypes<vComplex, SU<Nc>::AdjointDimension> GimplAdjointTypesR;
typedef GaugeImplTypes<vComplexF, SU<Nc>::AdjointDimension> GimplAdjointTypesF;
typedef GaugeImplTypes<vComplexD, SU<Nc>::AdjointDimension> GimplAdjointTypesD;
NAMESPACE_END(Grid);
#endif // GRID_GAUGE_IMPL_TYPES_H

View File

@ -193,6 +193,11 @@ typedef ConjugateGaugeImpl<GimplTypesR> ConjugateGimplR; // Real.. whichever pre
typedef ConjugateGaugeImpl<GimplTypesF> ConjugateGimplF; // Float
typedef ConjugateGaugeImpl<GimplTypesD> ConjugateGimplD; // Double
typedef PeriodicGaugeImpl<SpGimplTypesR> SpPeriodicGimplR; // Real.. whichever prec
typedef PeriodicGaugeImpl<SpGimplTypesF> SpPeriodicGimplF; // Float
typedef PeriodicGaugeImpl<SpGimplTypesD> SpPeriodicGimplD; // Double
NAMESPACE_END(Grid);
#endif

View File

@ -225,6 +225,18 @@ template <class RepresentationsPolicy,
using GenericHMCRunnerHirep =
HMCWrapperTemplate<PeriodicGimplR, Integrator, RepresentationsPolicy>;
// sp2n
template <template <typename, typename, typename> class Integrator>
using GenericSpHMCRunner = HMCWrapperTemplate<SpPeriodicGimplR, Integrator>;
template <class RepresentationsPolicy,
template <typename, typename, typename> class Integrator>
using GenericSpHMCRunnerHirep =
HMCWrapperTemplate<SpPeriodicGimplR, Integrator, RepresentationsPolicy>;
template <class Implementation, class RepresentationsPolicy,
template <typename, typename, typename> class Integrator>
using GenericHMCRunnerTemplate = HMCWrapperTemplate<Implementation, Integrator, RepresentationsPolicy>;

View File

@ -13,7 +13,7 @@ NAMESPACE_BEGIN(Grid);
* Empty since HMC updates already the fundamental representation
*/
template <int ncolour>
template <int ncolour, class group_name>
class FundamentalRep {
public:
static const int Dimension = ncolour;
@ -21,7 +21,7 @@ public:
// typdef to be used by the Representations class in HMC to get the
// types for the higher representation fields
typedef typename SU<ncolour>::LatticeMatrix LatticeMatrix;
typedef typename GaugeGroup<ncolour,group_name>::LatticeMatrix LatticeMatrix;
typedef LatticeGaugeField LatticeField;
explicit FundamentalRep(GridBase* grid) {} //do nothing
@ -45,7 +45,8 @@ public:
typedef FundamentalRep<Nc> FundamentalRepresentation;
typedef FundamentalRep<Nc,GroupName::SU> FundamentalRepresentation;
typedef FundamentalRep<Nc,GroupName::Sp> SpFundamentalRepresentation;
NAMESPACE_END(Grid);

View File

@ -20,14 +20,14 @@ NAMESPACE_BEGIN(Grid);
* in the SUnTwoIndex.h file
*/
template <int ncolour, TwoIndexSymmetry S>
template <int ncolour, TwoIndexSymmetry S, class group_name = GroupName::SU>
class TwoIndexRep {
public:
// typdef to be used by the Representations class in HMC to get the
// types for the higher representation fields
typedef typename SU_TwoIndex<ncolour, S>::LatticeTwoIndexMatrix LatticeMatrix;
typedef typename SU_TwoIndex<ncolour, S>::LatticeTwoIndexField LatticeField;
static const int Dimension = ncolour * (ncolour + S) / 2;
typedef typename GaugeGroupTwoIndex<ncolour, S, group_name>::LatticeTwoIndexMatrix LatticeMatrix;
typedef typename GaugeGroupTwoIndex<ncolour, S, group_name>::LatticeTwoIndexField LatticeField;
static const int Dimension = GaugeGroupTwoIndex<ncolour,S,group_name>::Dimension;
static const bool isFundamental = false;
LatticeField U;
@ -43,10 +43,10 @@ public:
U = Zero();
LatticeColourMatrix tmp(Uin.Grid());
Vector<typename SU<ncolour>::Matrix> eij(Dimension);
Vector<typename GaugeGroup<ncolour,group_name>::Matrix> eij(Dimension);
for (int a = 0; a < Dimension; a++)
SU_TwoIndex<ncolour, S>::base(a, eij[a]);
GaugeGroupTwoIndex<ncolour, S, group_name>::base(a, eij[a]);
for (int mu = 0; mu < Nd; mu++) {
auto Uin_mu = peekLorentz(Uin, mu);
@ -71,7 +71,7 @@ public:
out_mu = Zero();
typename SU<ncolour>::LatticeAlgebraVector h(in.Grid());
typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector h(in.Grid());
projectOnAlgebra(h, in_mu, double(Nc + 2 * S)); // factor T(r)/T(fund)
FundamentalLieAlgebraMatrix(h, out_mu); // apply scale only once
pokeLorentz(out, out_mu, mu);
@ -80,20 +80,23 @@ public:
}
private:
void projectOnAlgebra(typename SU<ncolour>::LatticeAlgebraVector &h_out,
void projectOnAlgebra(typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h_out,
const LatticeMatrix &in, Real scale = 1.0) const {
SU_TwoIndex<ncolour, S>::projectOnAlgebra(h_out, in, scale);
GaugeGroupTwoIndex<ncolour, S,group_name>::projectOnAlgebra(h_out, in, scale);
}
void FundamentalLieAlgebraMatrix(
typename SU<ncolour>::LatticeAlgebraVector &h,
typename SU<ncolour>::LatticeMatrix &out, Real scale = 1.0) const {
SU<ncolour>::FundamentalLieAlgebraMatrix(h, out, scale);
typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h,
typename GaugeGroup<ncolour, group_name>::LatticeMatrix &out, Real scale = 1.0) const {
GaugeGroup<ncolour,group_name>::FundamentalLieAlgebraMatrix(h, out, scale);
}
};
typedef TwoIndexRep<Nc, Symmetric> TwoIndexSymmetricRepresentation;
typedef TwoIndexRep<Nc, AntiSymmetric> TwoIndexAntiSymmetricRepresentation;
typedef TwoIndexRep<Nc, Symmetric, GroupName::SU> TwoIndexSymmetricRepresentation;
typedef TwoIndexRep<Nc, AntiSymmetric, GroupName::SU> TwoIndexAntiSymmetricRepresentation;
typedef TwoIndexRep<Nc, Symmetric, GroupName::Sp> SpTwoIndexSymmetricRepresentation;
typedef TwoIndexRep<Nc, AntiSymmetric, GroupName::Sp> SpTwoIndexAntiSymmetricRepresentation;
NAMESPACE_END(Grid);

470
Grid/qcd/utils/GaugeGroup.h Normal file
View File

@ -0,0 +1,470 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/utils/GaugeGroup.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_UTIL_GAUGEGROUP_H
#define QCD_UTIL_GAUGEGROUP_H
// Important detail: nvcc requires all template parameters to have names.
// This is the only reason why the second template parameter has a name.
#define ONLY_IF_SU \
typename dummy_name = group_name, \
typename named_dummy = std::enable_if_t < \
std::is_same<dummy_name, group_name>::value && \
is_su<dummy_name>::value >
#define ONLY_IF_Sp \
typename dummy_name = group_name, \
typename named_dummy = std::enable_if_t < \
std::is_same<dummy_name, group_name>::value && \
is_sp<dummy_name>::value >
NAMESPACE_BEGIN(Grid);
namespace GroupName {
class SU {};
class Sp {};
} // namespace GroupName
template <typename group_name>
struct is_su {
static const bool value = false;
};
template <>
struct is_su<GroupName::SU> {
static const bool value = true;
};
template <typename group_name>
struct is_sp {
static const bool value = false;
};
template <>
struct is_sp<GroupName::Sp> {
static const bool value = true;
};
template <typename group_name>
constexpr int compute_adjoint_dimension(int ncolour);
template <>
constexpr int compute_adjoint_dimension<GroupName::SU>(int ncolour) {
return ncolour * ncolour - 1;
}
template <>
constexpr int compute_adjoint_dimension<GroupName::Sp>(int ncolour) {
return ncolour / 2 * (ncolour + 1);
}
template <int ncolour, class group_name>
class GaugeGroup {
public:
static const int Dimension = ncolour;
static const int AdjointDimension =
compute_adjoint_dimension<group_name>(ncolour);
static const int AlgebraDimension =
compute_adjoint_dimension<group_name>(ncolour);
template <typename vtype>
using iSU2Matrix = iScalar<iScalar<iMatrix<vtype, 2> > >;
template <typename vtype>
using iGroupMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
template <typename vtype>
using iAlgebraVector = iScalar<iScalar<iVector<vtype, AdjointDimension> > >;
static int su2subgroups(void) { return su2subgroups(group_name()); }
//////////////////////////////////////////////////////////////////////////////////////////////////
// Types can be accessed as SU<2>::Matrix , SU<2>::vSUnMatrix,
// SU<2>::LatticeMatrix etc...
//////////////////////////////////////////////////////////////////////////////////////////////////
typedef iGroupMatrix<Complex> Matrix;
typedef iGroupMatrix<ComplexF> MatrixF;
typedef iGroupMatrix<ComplexD> MatrixD;
typedef iGroupMatrix<vComplex> vMatrix;
typedef iGroupMatrix<vComplexF> vMatrixF;
typedef iGroupMatrix<vComplexD> vMatrixD;
// For the projectors to the algebra
// these should be real...
// keeping complex for consistency with the SIMD vector types
typedef iAlgebraVector<Complex> AlgebraVector;
typedef iAlgebraVector<ComplexF> AlgebraVectorF;
typedef iAlgebraVector<ComplexD> AlgebraVectorD;
typedef iAlgebraVector<vComplex> vAlgebraVector;
typedef iAlgebraVector<vComplexF> vAlgebraVectorF;
typedef iAlgebraVector<vComplexD> vAlgebraVectorD;
typedef Lattice<vMatrix> LatticeMatrix;
typedef Lattice<vMatrixF> LatticeMatrixF;
typedef Lattice<vMatrixD> LatticeMatrixD;
typedef Lattice<vAlgebraVector> LatticeAlgebraVector;
typedef Lattice<vAlgebraVectorF> LatticeAlgebraVectorF;
typedef Lattice<vAlgebraVectorD> LatticeAlgebraVectorD;
typedef iSU2Matrix<Complex> SU2Matrix;
typedef iSU2Matrix<ComplexF> SU2MatrixF;
typedef iSU2Matrix<ComplexD> SU2MatrixD;
typedef iSU2Matrix<vComplex> vSU2Matrix;
typedef iSU2Matrix<vComplexF> vSU2MatrixF;
typedef iSU2Matrix<vComplexD> vSU2MatrixD;
typedef Lattice<vSU2Matrix> LatticeSU2Matrix;
typedef Lattice<vSU2MatrixF> LatticeSU2MatrixF;
typedef Lattice<vSU2MatrixD> LatticeSU2MatrixD;
// Private implementation details are specified in the following files:
// Grid/qcd/utils/SUn.impl
// Grid/qcd/utils/SUn.impl
// The public part of the interface follows below and refers to these
// private member functions.
#include "Grid/qcd/utils/SUn.impl"
#include "Grid/qcd/utils/Sp2n.impl"
public:
template <class cplx>
static void generator(int lieIndex, iGroupMatrix<cplx> &ta) {
return generator(lieIndex, ta, group_name());
}
static void su2SubGroupIndex(int &i1, int &i2, int su2_index) {
return su2SubGroupIndex(i1, i2, su2_index, group_name());
}
static void testGenerators(void) { testGenerators(group_name()); }
static void printGenerators(void) {
for (int gen = 0; gen < AlgebraDimension; gen++) {
Matrix ta;
generator(gen, ta);
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
<< std::endl;
std::cout << GridLogMessage << ta << std::endl;
}
}
template <typename LatticeMatrixType>
static void LieRandomize(GridParallelRNG &pRNG, LatticeMatrixType &out,
double scale = 1.0) {
GridBase *grid = out.Grid();
typedef typename LatticeMatrixType::vector_type vector_type;
typedef iSinglet<vector_type> vTComplexType;
typedef Lattice<vTComplexType> LatticeComplexType;
typedef typename GridTypeMapper<
typename LatticeMatrixType::vector_object>::scalar_object MatrixType;
LatticeComplexType ca(grid);
LatticeMatrixType lie(grid);
LatticeMatrixType la(grid);
ComplexD ci(0.0, scale);
MatrixType ta;
lie = Zero();
for (int a = 0; a < AlgebraDimension; a++) {
random(pRNG, ca);
ca = (ca + conjugate(ca)) * 0.5;
ca = ca - 0.5;
generator(a, ta);
la = ci * ca * ta;
lie = lie + la; // e^{i la ta}
}
taExp(lie, out);
}
static void GaussianFundamentalLieAlgebraMatrix(GridParallelRNG &pRNG,
LatticeMatrix &out,
Real scale = 1.0) {
GridBase *grid = out.Grid();
LatticeReal ca(grid);
LatticeMatrix la(grid);
Complex ci(0.0, scale);
Matrix ta;
out = Zero();
for (int a = 0; a < AlgebraDimension; a++) {
gaussian(pRNG, ca);
generator(a, ta);
la = toComplex(ca) * ta;
out += la;
}
out *= ci;
}
static void FundamentalLieAlgebraMatrix(const LatticeAlgebraVector &h,
LatticeMatrix &out,
Real scale = 1.0) {
conformable(h, out);
GridBase *grid = out.Grid();
LatticeMatrix la(grid);
Matrix ta;
out = Zero();
for (int a = 0; a < AlgebraDimension; a++) {
generator(a, ta);
la = peekColour(h, a) * timesI(ta) * scale;
out += la;
}
}
// Projects the algebra components a lattice matrix (of dimension ncol*ncol -1
// ) inverse operation: FundamentalLieAlgebraMatrix
static void projectOnAlgebra(LatticeAlgebraVector &h_out,
const LatticeMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
h_out = Zero();
Matrix Ta;
for (int a = 0; a < AlgebraDimension; a++) {
generator(a, Ta);
pokeColour(h_out, -2.0 * (trace(timesI(Ta) * in)) * scale, a);
}
}
template <class vtype>
accelerator_inline static iScalar<vtype> ProjectOnGeneralGroup(const iScalar<vtype> &r) {
return ProjectOnGeneralGroup(r, group_name());
}
template <class vtype, int N>
accelerator_inline static iVector<vtype,N> ProjectOnGeneralGroup(const iVector<vtype,N> &r) {
return ProjectOnGeneralGroup(r, group_name());
}
template <class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
accelerator_inline static iMatrix<vtype,N> ProjectOnGeneralGroup(const iMatrix<vtype,N> &arg) {
return ProjectOnGeneralGroup(arg, group_name());
}
template <int N,class vComplex_t> // Projects on the general groups U(N), Sp(2N)xZ2 i.e. determinant is allowed a complex phase.
static void ProjectOnGeneralGroup(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >, Nd> > &U) {
for (int mu = 0; mu < Nd; mu++) {
auto Umu = PeekIndex<LorentzIndex>(U, mu);
Umu = ProjectOnGeneralGroup(Umu);
}
}
template <int N,class vComplex_t>
static Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > ProjectOnGeneralGroup(const Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu) {
return ProjectOnGeneralGroup(Umu, group_name());
}
template <int N,class vComplex_t> // Projects on SU(N), Sp(2N), with unit determinant, by first projecting on general group and then enforcing unit determinant
static void ProjectOnSpecialGroup(Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu) {
Umu = ProjectOnGeneralGroup(Umu);
auto det = Determinant(Umu);
det = conjugate(det);
for (int i = 0; i < N; i++) {
auto element = PeekIndex<ColourIndex>(Umu, N - 1, i);
element = element * det;
PokeIndex<ColourIndex>(Umu, element, Nc - 1, i);
}
}
template <int N,class vComplex_t> // reunitarise, resimplectify... previously ProjectSUn
static void ProjectOnSpecialGroup(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >, Nd> > &U) {
// Reunitarise
for (int mu = 0; mu < Nd; mu++) {
auto Umu = PeekIndex<LorentzIndex>(U, mu);
ProjectOnSpecialGroup(Umu);
PokeIndex<LorentzIndex>(U, Umu, mu);
}
}
template <typename GaugeField>
static void HotConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
typedef typename GaugeField::vector_type vector_type;
typedef iGroupMatrix<vector_type> vMatrixType;
typedef Lattice<vMatrixType> LatticeMatrixType;
LatticeMatrixType Umu(out.Grid());
LatticeMatrixType tmp(out.Grid());
for (int mu = 0; mu < Nd; mu++) {
// LieRandomize(pRNG, Umu, 1.0);
// PokeIndex<LorentzIndex>(out, Umu, mu);
gaussian(pRNG,Umu);
tmp = Ta(Umu);
taExp(tmp,Umu);
ProjectOnSpecialGroup(Umu);
// ProjectSUn(Umu);
PokeIndex<LorentzIndex>(out, Umu, mu);
}
}
template <typename GaugeField>
static void TepidConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
typedef typename GaugeField::vector_type vector_type;
typedef iGroupMatrix<vector_type> vMatrixType;
typedef Lattice<vMatrixType> LatticeMatrixType;
LatticeMatrixType Umu(out.Grid());
for (int mu = 0; mu < Nd; mu++) {
LieRandomize(pRNG, Umu, 0.01);
PokeIndex<LorentzIndex>(out, Umu, mu);
}
}
template <typename GaugeField>
static void ColdConfiguration(GaugeField &out) {
typedef typename GaugeField::vector_type vector_type;
typedef iGroupMatrix<vector_type> vMatrixType;
typedef Lattice<vMatrixType> LatticeMatrixType;
LatticeMatrixType Umu(out.Grid());
Umu = 1.0;
for (int mu = 0; mu < Nd; mu++) {
PokeIndex<LorentzIndex>(out, Umu, mu);
}
}
template <typename GaugeField>
static void ColdConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
ColdConfiguration(out);
}
template <typename LatticeMatrixType>
static void taProj(const LatticeMatrixType &in, LatticeMatrixType &out) {
taProj(in, out, group_name());
}
template <typename LatticeMatrixType>
static void taExp(const LatticeMatrixType &x, LatticeMatrixType &ex) {
typedef typename LatticeMatrixType::scalar_type ComplexType;
LatticeMatrixType xn(x.Grid());
RealD nfac = 1.0;
xn = x;
ex = xn + ComplexType(1.0); // 1+x
// Do a 12th order exponentiation
for (int i = 2; i <= 12; ++i) {
nfac = nfac / RealD(i); // 1/2, 1/2.3 ...
xn = xn * x; // x2, x3,x4....
ex = ex + xn * nfac; // x2/2!, x3/3!....
}
}
};
template <int ncolour>
using SU = GaugeGroup<ncolour, GroupName::SU>;
template <int ncolour>
using Sp = GaugeGroup<ncolour, GroupName::Sp>;
typedef SU<2> SU2;
typedef SU<3> SU3;
typedef SU<4> SU4;
typedef SU<5> SU5;
typedef SU<Nc> FundamentalMatrices;
typedef Sp<2> Sp2;
typedef Sp<4> Sp4;
typedef Sp<6> Sp6;
typedef Sp<8> Sp8;
template <int N,class vComplex_t>
static void ProjectSUn(Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu)
{
GaugeGroup<N,GroupName::SU>::ProjectOnSpecialGroup(Umu);
}
template <int N,class vComplex_t>
static void ProjectSUn(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >,Nd> > &U)
{
GaugeGroup<N,GroupName::SU>::ProjectOnSpecialGroup(U);
}
template <int N,class vComplex_t>
static void ProjectSpn(Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu)
{
GaugeGroup<N,GroupName::Sp>::ProjectOnSpecialGroup(Umu);
}
template <int N,class vComplex_t>
static void ProjectSpn(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >,Nd> > &U)
{
GaugeGroup<N,GroupName::Sp>::ProjectOnSpecialGroup(U);
}
// Explicit specialisation for SU(3).
static void ProjectSU3(Lattice<iScalar<iScalar<iMatrix<vComplexD, 3> > > > &Umu)
{
GridBase *grid = Umu.Grid();
const int x = 0;
const int y = 1;
const int z = 2;
// Reunitarise
Umu = ProjectOnGroup(Umu);
autoView(Umu_v, Umu, CpuWrite);
thread_for(ss, grid->oSites(), {
auto cm = Umu_v[ss];
cm()()(2, x) = adj(cm()()(0, y) * cm()()(1, z) -
cm()()(0, z) * cm()()(1, y)); // x= yz-zy
cm()()(2, y) = adj(cm()()(0, z) * cm()()(1, x) -
cm()()(0, x) * cm()()(1, z)); // y= zx-xz
cm()()(2, z) = adj(cm()()(0, x) * cm()()(1, y) -
cm()()(0, y) * cm()()(1, x)); // z= xy-yx
Umu_v[ss] = cm;
});
}
static void ProjectSU3(Lattice<iVector<iScalar<iMatrix<vComplexD, 3> >, Nd> > &U)
{
GridBase *grid = U.Grid();
// Reunitarise
for (int mu = 0; mu < Nd; mu++) {
auto Umu = PeekIndex<LorentzIndex>(U, mu);
Umu = ProjectOnGroup(Umu);
ProjectSU3(Umu);
PokeIndex<LorentzIndex>(U, Umu, mu);
}
}
NAMESPACE_END(Grid);
#endif

View File

@ -0,0 +1,371 @@
////////////////////////////////////////////////////////////////////////
//
// * Two index representation generators
//
// * Normalisation for the fundamental generators:
// trace ta tb = 1/2 delta_ab = T_F delta_ab
// T_F = 1/2 for SU(N) groups
//
//
// base for NxN two index (anti-symmetric) matrices
// normalized to 1 (d_ij is the kroenecker delta)
//
// (e^(ij)_{kl} = 1 / sqrt(2) (d_ik d_jl +/- d_jk d_il)
//
// Then the generators are written as
//
// (iT_a)^(ij)(lk) = i * ( tr[e^(ij)^dag e^(lk) T^trasp_a] +
// tr[e^(lk)e^(ij)^dag T_a] ) //
//
//
////////////////////////////////////////////////////////////////////////
// Authors: David Preti, Guido Cossu
#ifndef QCD_UTIL_GAUGEGROUPTWOINDEX_H
#define QCD_UTIL_GAUGEGROUPTWOINDEX_H
NAMESPACE_BEGIN(Grid);
enum TwoIndexSymmetry { Symmetric = 1, AntiSymmetric = -1 };
constexpr inline Real delta(int a, int b) { return (a == b) ? 1.0 : 0.0; }
namespace detail {
template <class cplx, int nc, TwoIndexSymmetry S>
struct baseOffDiagonalSpHelper;
template <class cplx, int nc>
struct baseOffDiagonalSpHelper<cplx, nc, AntiSymmetric> {
static const int ngroup = nc / 2;
static void baseOffDiagonalSp(int i, int j, iScalar<iScalar<iMatrix<cplx, nc> > > &eij) {
eij = Zero();
RealD tmp;
if ((i == ngroup + j) && (1 <= j) && (j < ngroup)) {
for (int k = 0; k < j+1; k++) {
if (k < j) {
tmp = 1 / sqrt(j * (j + 1));
eij()()(k, k + ngroup) = tmp;
eij()()(k + ngroup, k) = -tmp;
}
if (k == j) {
tmp = -j / sqrt(j * (j + 1));
eij()()(k, k + ngroup) = tmp;
eij()()(k + ngroup, k) = -tmp;
}
}
}
else if (i != ngroup + j) {
for (int k = 0; k < nc; k++)
for (int l = 0; l < nc; l++) {
eij()()(l, k) =
delta(i, k) * delta(j, l) - delta(j, k) * delta(i, l);
}
}
RealD nrm = 1. / std::sqrt(2.0);
eij = eij * nrm;
}
};
template <class cplx, int nc>
struct baseOffDiagonalSpHelper<cplx, nc, Symmetric> {
static void baseOffDiagonalSp(int i, int j, iScalar<iScalar<iMatrix<cplx, nc> > > &eij) {
eij = Zero();
for (int k = 0; k < nc; k++)
for (int l = 0; l < nc; l++)
eij()()(l, k) =
delta(i, k) * delta(j, l) + delta(j, k) * delta(i, l);
RealD nrm = 1. / std::sqrt(2.0);
eij = eij * nrm;
}
};
} // closing detail namespace
template <int ncolour, TwoIndexSymmetry S, class group_name>
class GaugeGroupTwoIndex : public GaugeGroup<ncolour, group_name> {
public:
// The chosen convention is that we are taking ncolour to be N in SU<N> but 2N
// in Sp(2N). ngroup is equal to N for SU but 2N/2 = N for Sp(2N).
static_assert(std::is_same<group_name, GroupName::SU>::value or
std::is_same<group_name, GroupName::Sp>::value,
"ngroup is only implemented for SU and Sp currently.");
static const int ngroup =
std::is_same<group_name, GroupName::SU>::value ? ncolour : ncolour / 2;
static const int Dimension =
(ncolour * (ncolour + S) / 2) + (std::is_same<group_name, GroupName::Sp>::value ? (S - 1) / 2 : 0);
static const int DimensionAS =
(ncolour * (ncolour - 1) / 2) + (std::is_same<group_name, GroupName::Sp>::value ? (- 1) : 0);
static const int DimensionS =
ncolour * (ncolour + 1) / 2;
static const int NumGenerators =
GaugeGroup<ncolour, group_name>::AlgebraDimension;
template <typename vtype>
using iGroupTwoIndexMatrix = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
typedef iGroupTwoIndexMatrix<Complex> TIMatrix;
typedef iGroupTwoIndexMatrix<ComplexF> TIMatrixF;
typedef iGroupTwoIndexMatrix<ComplexD> TIMatrixD;
typedef iGroupTwoIndexMatrix<vComplex> vTIMatrix;
typedef iGroupTwoIndexMatrix<vComplexF> vTIMatrixF;
typedef iGroupTwoIndexMatrix<vComplexD> vTIMatrixD;
typedef Lattice<vTIMatrix> LatticeTwoIndexMatrix;
typedef Lattice<vTIMatrixF> LatticeTwoIndexMatrixF;
typedef Lattice<vTIMatrixD> LatticeTwoIndexMatrixD;
typedef Lattice<iVector<iScalar<iMatrix<vComplex, Dimension> >, Nd> >
LatticeTwoIndexField;
typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> >
LatticeTwoIndexFieldF;
typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> >
LatticeTwoIndexFieldD;
template <typename vtype>
using iGroupMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
typedef iGroupMatrix<Complex> Matrix;
typedef iGroupMatrix<ComplexF> MatrixF;
typedef iGroupMatrix<ComplexD> MatrixD;
private:
template <class cplx>
static void baseDiagonal(int Index, iGroupMatrix<cplx> &eij) {
eij = Zero();
eij()()(Index - ncolour * (ncolour - 1) / 2,
Index - ncolour * (ncolour - 1) / 2) = 1.0;
}
template <class cplx>
static void baseOffDiagonal(int i, int j, iGroupMatrix<cplx> &eij, GroupName::SU) {
eij = Zero();
for (int k = 0; k < ncolour; k++)
for (int l = 0; l < ncolour; l++)
eij()()(l, k) =
delta(i, k) * delta(j, l) + S * delta(j, k) * delta(i, l);
RealD nrm = 1. / std::sqrt(2.0);
eij = eij * nrm;
}
template <class cplx>
static void baseOffDiagonal(int i, int j, iGroupMatrix<cplx> &eij, GroupName::Sp) {
detail::baseOffDiagonalSpHelper<cplx, ncolour, S>::baseOffDiagonalSp(i, j, eij);
}
public:
template <class cplx>
static void base(int Index, iGroupMatrix<cplx> &eij) {
// returns (e)^(ij)_{kl} necessary for change of base U_F -> U_R
assert(Index < Dimension);
eij = Zero();
// for the linearisation of the 2 indexes
static int a[ncolour * (ncolour - 1) / 2][2]; // store the a <-> i,j
static bool filled = false;
if (!filled) {
int counter = 0;
for (int i = 1; i < ncolour; i++) {
for (int j = 0; j < i; j++) {
if (std::is_same<group_name, GroupName::Sp>::value)
{
if (j==0 && i==ngroup+j && S==-1) {
//std::cout << "skipping" << std::endl; // for Sp2n this vanishes identically.
j = j+1;
}
}
a[counter][0] = i;
a[counter][1] = j;
counter++;
}
}
filled = true;
}
if (Index < ncolour*ncolour - DimensionS)
{
baseOffDiagonal(a[Index][0], a[Index][1], eij, group_name());
} else {
baseDiagonal(Index, eij);
}
}
static void printBase(void) {
for (int gen = 0; gen < Dimension; gen++) {
Matrix tmp;
base(gen, tmp);
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
<< std::endl;
std::cout << GridLogMessage << tmp << std::endl;
}
}
template <class cplx>
static void generator(int Index, iGroupTwoIndexMatrix<cplx> &i2indTa) {
Vector<iGroupMatrix<cplx> > ta(NumGenerators);
Vector<iGroupMatrix<cplx> > eij(Dimension);
iGroupMatrix<cplx> tmp;
for (int a = 0; a < NumGenerators; a++)
GaugeGroup<ncolour, group_name>::generator(a, ta[a]);
for (int a = 0; a < Dimension; a++) base(a, eij[a]);
for (int a = 0; a < Dimension; a++) {
tmp = transpose(eij[a]*ta[Index]) + transpose(eij[a]) * ta[Index];
for (int b = 0; b < Dimension; b++) {
Complex iTr = TensorRemove(timesI(trace(tmp * eij[b])));
i2indTa()()(a, b) = iTr;
}
}
}
static void printGenerators(void) {
for (int gen = 0; gen < NumGenerators; gen++) {
TIMatrix i2indTa;
generator(gen, i2indTa);
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
<< std::endl;
std::cout << GridLogMessage << i2indTa << std::endl;
}
}
static void testGenerators(void) {
TIMatrix i2indTa, i2indTb;
std::cout << GridLogMessage << "2IndexRep - Checking if traceless"
<< std::endl;
for (int a = 0; a < NumGenerators; a++) {
generator(a, i2indTa);
std::cout << GridLogMessage << a << std::endl;
assert(norm2(trace(i2indTa)) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage << "2IndexRep - Checking if antihermitean"
<< std::endl;
for (int a = 0; a < NumGenerators; a++) {
generator(a, i2indTa);
std::cout << GridLogMessage << a << std::endl;
assert(norm2(adj(i2indTa) + i2indTa) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage
<< "2IndexRep - Checking Tr[Ta*Tb]=delta(a,b)*(N +- 2)/2"
<< std::endl;
for (int a = 0; a < NumGenerators; a++) {
for (int b = 0; b < NumGenerators; b++) {
generator(a, i2indTa);
generator(b, i2indTb);
// generator returns iTa, so we need a minus sign here
Complex Tr = -TensorRemove(trace(i2indTa * i2indTb));
std::cout << GridLogMessage << "a=" << a << "b=" << b << "Tr=" << Tr
<< std::endl;
if (a == b) {
assert(real(Tr) - ((ncolour + S * 2) * 0.5) < 1e-8);
} else {
assert(real(Tr) < 1e-8);
}
assert(imag(Tr) < 1e-8);
}
}
std::cout << GridLogMessage << std::endl;
}
static void TwoIndexLieAlgebraMatrix(
const typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h,
LatticeTwoIndexMatrix &out, Real scale = 1.0) {
conformable(h, out);
GridBase *grid = out.Grid();
LatticeTwoIndexMatrix la(grid);
TIMatrix i2indTa;
out = Zero();
for (int a = 0; a < NumGenerators; a++) {
generator(a, i2indTa);
la = peekColour(h, a) * i2indTa;
out += la;
}
out *= scale;
}
// Projects the algebra components
// of a lattice matrix ( of dimension ncol*ncol -1 )
static void projectOnAlgebra(
typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h_out,
const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
h_out = Zero();
TIMatrix i2indTa;
Real coefficient = -2.0 / (ncolour + 2 * S) * scale;
// 2/(Nc +/- 2) for the normalization of the trace in the two index rep
for (int a = 0; a < NumGenerators; a++) {
generator(a, i2indTa);
pokeColour(h_out, real(trace(i2indTa * in)) * coefficient, a);
}
}
// a projector that keeps the generators stored to avoid the overhead of
// recomputing them
static void projector(
typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h_out,
const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
// to store the generators
static std::vector<TIMatrix> i2indTa(NumGenerators);
h_out = Zero();
static bool precalculated = false;
if (!precalculated) {
precalculated = true;
for (int a = 0; a < NumGenerators; a++) generator(a, i2indTa[a]);
}
Real coefficient =
-2.0 / (ncolour + 2 * S) * scale; // 2/(Nc +/- 2) for the normalization
// of the trace in the two index rep
for (int a = 0; a < NumGenerators; a++) {
auto tmp = real(trace(i2indTa[a] * in)) * coefficient;
pokeColour(h_out, tmp, a);
}
}
};
template <int ncolour, TwoIndexSymmetry S>
using SU_TwoIndex = GaugeGroupTwoIndex<ncolour, S, GroupName::SU>;
// Some useful type names
typedef SU_TwoIndex<Nc, Symmetric> TwoIndexSymmMatrices;
typedef SU_TwoIndex<Nc, AntiSymmetric> TwoIndexAntiSymmMatrices;
typedef SU_TwoIndex<2, Symmetric> SU2TwoIndexSymm;
typedef SU_TwoIndex<3, Symmetric> SU3TwoIndexSymm;
typedef SU_TwoIndex<4, Symmetric> SU4TwoIndexSymm;
typedef SU_TwoIndex<5, Symmetric> SU5TwoIndexSymm;
typedef SU_TwoIndex<2, AntiSymmetric> SU2TwoIndexAntiSymm;
typedef SU_TwoIndex<3, AntiSymmetric> SU3TwoIndexAntiSymm;
typedef SU_TwoIndex<4, AntiSymmetric> SU4TwoIndexAntiSymm;
typedef SU_TwoIndex<5, AntiSymmetric> SU5TwoIndexAntiSymm;
template <int ncolour, TwoIndexSymmetry S>
using Sp_TwoIndex = GaugeGroupTwoIndex<ncolour, S, GroupName::Sp>;
typedef Sp_TwoIndex<Nc, Symmetric> SpTwoIndexSymmMatrices;
typedef Sp_TwoIndex<Nc, AntiSymmetric> SpTwoIndexAntiSymmMatrices;
typedef Sp_TwoIndex<2, Symmetric> Sp2TwoIndexSymm;
typedef Sp_TwoIndex<4, Symmetric> Sp4TwoIndexSymm;
typedef Sp_TwoIndex<4, AntiSymmetric> Sp4TwoIndexAntiSymm;
NAMESPACE_END(Grid);
#endif

View File

@ -1,932 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/utils/SUn.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_UTIL_SUN_H
#define QCD_UTIL_SUN_H
NAMESPACE_BEGIN(Grid);
template<int N, class Vec>
Lattice<iScalar<iScalar<iScalar<Vec> > > > Determinant(const Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu)
{
GridBase *grid=Umu.Grid();
auto lvol = grid->lSites();
Lattice<iScalar<iScalar<iScalar<Vec> > > > ret(grid);
typedef typename Vec::scalar_type scalar;
autoView(Umu_v,Umu,CpuRead);
autoView(ret_v,ret,CpuWrite);
thread_for(site,lvol,{
Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
Coordinate lcoor;
grid->LocalIndexToLocalCoor(site, lcoor);
iScalar<iScalar<iMatrix<scalar, N> > > Us;
peekLocalSite(Us, Umu_v, lcoor);
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
scalar tmp= Us()()(i,j);
ComplexD ztmp(real(tmp),imag(tmp));
EigenU(i,j)=ztmp;
}}
ComplexD detD = EigenU.determinant();
typename Vec::scalar_type det(detD.real(),detD.imag());
pokeLocalSite(det,ret_v,lcoor);
});
return ret;
}
template<int N, class Vec>
static void ProjectSUn(Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu)
{
Umu = ProjectOnGroup(Umu);
auto det = Determinant(Umu);
det = conjugate(det);
for(int i=0;i<N;i++){
auto element = PeekIndex<ColourIndex>(Umu,N-1,i);
element = element * det;
PokeIndex<ColourIndex>(Umu,element,Nc-1,i);
}
}
template<int N,class Vec>
static void ProjectSUn(Lattice<iVector<iScalar<iMatrix<Vec, N> >,Nd> > &U)
{
GridBase *grid=U.Grid();
// Reunitarise
for(int mu=0;mu<Nd;mu++){
auto Umu = PeekIndex<LorentzIndex>(U,mu);
Umu = ProjectOnGroup(Umu);
ProjectSUn(Umu);
PokeIndex<LorentzIndex>(U,Umu,mu);
}
}
template <int ncolour>
class SU {
public:
static const int Dimension = ncolour;
static const int AdjointDimension = ncolour * ncolour - 1;
static int su2subgroups(void) { return (ncolour * (ncolour - 1)) / 2; }
template <typename vtype>
using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
template <typename vtype>
using iSU2Matrix = iScalar<iScalar<iMatrix<vtype, 2> > >;
template <typename vtype>
using iSUnAlgebraVector =
iScalar<iScalar<iVector<vtype, AdjointDimension> > >;
//////////////////////////////////////////////////////////////////////////////////////////////////
// Types can be accessed as SU<2>::Matrix , SU<2>::vSUnMatrix,
// SU<2>::LatticeMatrix etc...
//////////////////////////////////////////////////////////////////////////////////////////////////
typedef iSUnMatrix<Complex> Matrix;
typedef iSUnMatrix<ComplexF> MatrixF;
typedef iSUnMatrix<ComplexD> MatrixD;
typedef iSUnMatrix<vComplex> vMatrix;
typedef iSUnMatrix<vComplexF> vMatrixF;
typedef iSUnMatrix<vComplexD> vMatrixD;
// For the projectors to the algebra
// these should be real...
// keeping complex for consistency with the SIMD vector types
typedef iSUnAlgebraVector<Complex> AlgebraVector;
typedef iSUnAlgebraVector<ComplexF> AlgebraVectorF;
typedef iSUnAlgebraVector<ComplexD> AlgebraVectorD;
typedef iSUnAlgebraVector<vComplex> vAlgebraVector;
typedef iSUnAlgebraVector<vComplexF> vAlgebraVectorF;
typedef iSUnAlgebraVector<vComplexD> vAlgebraVectorD;
typedef Lattice<vMatrix> LatticeMatrix;
typedef Lattice<vMatrixF> LatticeMatrixF;
typedef Lattice<vMatrixD> LatticeMatrixD;
typedef Lattice<vAlgebraVector> LatticeAlgebraVector;
typedef Lattice<vAlgebraVectorF> LatticeAlgebraVectorF;
typedef Lattice<vAlgebraVectorD> LatticeAlgebraVectorD;
typedef iSU2Matrix<Complex> SU2Matrix;
typedef iSU2Matrix<ComplexF> SU2MatrixF;
typedef iSU2Matrix<ComplexD> SU2MatrixD;
typedef iSU2Matrix<vComplex> vSU2Matrix;
typedef iSU2Matrix<vComplexF> vSU2MatrixF;
typedef iSU2Matrix<vComplexD> vSU2MatrixD;
typedef Lattice<vSU2Matrix> LatticeSU2Matrix;
typedef Lattice<vSU2MatrixF> LatticeSU2MatrixF;
typedef Lattice<vSU2MatrixD> LatticeSU2MatrixD;
////////////////////////////////////////////////////////////////////////
// There are N^2-1 generators for SU(N).
//
// We take a traceless hermitian generator basis as follows
//
// * Normalisation: trace ta tb = 1/2 delta_ab = T_F delta_ab
// T_F = 1/2 for SU(N) groups
//
// * Off diagonal
// - pairs of rows i1,i2 behaving like pauli matrices signma_x, sigma_y
//
// - there are (Nc-1-i1) slots for i2 on each row [ x 0 x ]
// direct count off each row
//
// - Sum of all pairs is Nc(Nc-1)/2: proof arithmetic series
//
// (Nc-1) + (Nc-2)+... 1 ==> Nc*(Nc-1)/2
// 1+ 2+ + + Nc-1
//
// - There are 2 x Nc (Nc-1)/ 2 of these = Nc^2 - Nc
//
// - We enumerate the row-col pairs.
// - for each row col pair there is a (sigma_x) and a (sigma_y) like
// generator
//
//
// t^a_ij = { in 0.. Nc(Nc-1)/2 -1} => 1/2(delta_{i,i1} delta_{j,i2} +
// delta_{i,i1} delta_{j,i2})
// t^a_ij = { in Nc(Nc-1)/2 ... Nc(Nc-1) - 1} => i/2( delta_{i,i1}
// delta_{j,i2} - i delta_{i,i1} delta_{j,i2})
//
// * Diagonal; must be traceless and normalised
// - Sequence is
// N (1,-1,0,0...)
// N (1, 1,-2,0...)
// N (1, 1, 1,-3,0...)
// N (1, 1, 1, 1,-4,0...)
//
// where 1/2 = N^2 (1+.. m^2)etc.... for the m-th diagonal generator
// NB this gives the famous SU3 result for su2 index 8
//
// N= sqrt(1/2 . 1/6 ) = 1/2 . 1/sqrt(3)
//
// ( 1 )
// ( 1 ) / sqrt(3) /2 = 1/2 lambda_8
// ( -2)
//
////////////////////////////////////////////////////////////////////////
template <class cplx>
static void generator(int lieIndex, iSUnMatrix<cplx> &ta) {
// map lie index to which type of generator
int diagIndex;
int su2Index;
int sigxy;
int NNm1 = ncolour * (ncolour - 1);
if (lieIndex >= NNm1) {
diagIndex = lieIndex - NNm1;
generatorDiagonal(diagIndex, ta);
return;
}
sigxy = lieIndex & 0x1; // even or odd
su2Index = lieIndex >> 1;
if (sigxy)
generatorSigmaY(su2Index, ta);
else
generatorSigmaX(su2Index, ta);
}
template <class cplx>
static void generatorSigmaY(int su2Index, iSUnMatrix<cplx> &ta) {
ta = Zero();
int i1, i2;
su2SubGroupIndex(i1, i2, su2Index);
ta()()(i1, i2) = 1.0;
ta()()(i2, i1) = 1.0;
ta = ta * 0.5;
}
template <class cplx>
static void generatorSigmaX(int su2Index, iSUnMatrix<cplx> &ta) {
ta = Zero();
cplx i(0.0, 1.0);
int i1, i2;
su2SubGroupIndex(i1, i2, su2Index);
ta()()(i1, i2) = i;
ta()()(i2, i1) = -i;
ta = ta * 0.5;
}
template <class cplx>
static void generatorDiagonal(int diagIndex, iSUnMatrix<cplx> &ta) {
// diag ({1, 1, ..., 1}(k-times), -k, 0, 0, ...)
ta = Zero();
int k = diagIndex + 1; // diagIndex starts from 0
for (int i = 0; i <= diagIndex; i++) { // k iterations
ta()()(i, i) = 1.0;
}
ta()()(k, k) = -k; // indexing starts from 0
RealD nrm = 1.0 / std::sqrt(2.0 * k * (k + 1));
ta = ta * nrm;
}
////////////////////////////////////////////////////////////////////////
// Map a su2 subgroup number to the pair of rows that are non zero
////////////////////////////////////////////////////////////////////////
static void su2SubGroupIndex(int &i1, int &i2, int su2_index) {
assert((su2_index >= 0) && (su2_index < (ncolour * (ncolour - 1)) / 2));
int spare = su2_index;
for (i1 = 0; spare >= (ncolour - 1 - i1); i1++) {
spare = spare - (ncolour - 1 - i1); // remove the Nc-1-i1 terms
}
i2 = i1 + 1 + spare;
}
//////////////////////////////////////////////////////////////////////////////////////////
// Pull out a subgroup and project on to real coeffs x pauli basis
//////////////////////////////////////////////////////////////////////////////////////////
template <class vcplx>
static void su2Extract(Lattice<iSinglet<vcplx> > &Determinant,
Lattice<iSU2Matrix<vcplx> > &subgroup,
const Lattice<iSUnMatrix<vcplx> > &source,
int su2_index) {
GridBase *grid(source.Grid());
conformable(subgroup, source);
conformable(subgroup, Determinant);
int i0, i1;
su2SubGroupIndex(i0, i1, su2_index);
autoView( subgroup_v , subgroup,AcceleratorWrite);
autoView( source_v , source,AcceleratorRead);
autoView( Determinant_v , Determinant,AcceleratorWrite);
accelerator_for(ss, grid->oSites(), 1, {
subgroup_v[ss]()()(0, 0) = source_v[ss]()()(i0, i0);
subgroup_v[ss]()()(0, 1) = source_v[ss]()()(i0, i1);
subgroup_v[ss]()()(1, 0) = source_v[ss]()()(i1, i0);
subgroup_v[ss]()()(1, 1) = source_v[ss]()()(i1, i1);
iSU2Matrix<vcplx> Sigma = subgroup_v[ss];
Sigma = Sigma - adj(Sigma) + trace(adj(Sigma));
subgroup_v[ss] = Sigma;
// this should be purely real
Determinant_v[ss] =
Sigma()()(0, 0) * Sigma()()(1, 1) - Sigma()()(0, 1) * Sigma()()(1, 0);
});
}
//////////////////////////////////////////////////////////////////////////////////////////
// Set matrix to one and insert a pauli subgroup
//////////////////////////////////////////////////////////////////////////////////////////
template <class vcplx>
static void su2Insert(const Lattice<iSU2Matrix<vcplx> > &subgroup,
Lattice<iSUnMatrix<vcplx> > &dest, int su2_index) {
GridBase *grid(dest.Grid());
conformable(subgroup, dest);
int i0, i1;
su2SubGroupIndex(i0, i1, su2_index);
dest = 1.0; // start out with identity
autoView( dest_v , dest, AcceleratorWrite);
autoView( subgroup_v, subgroup, AcceleratorRead);
accelerator_for(ss, grid->oSites(),1,
{
dest_v[ss]()()(i0, i0) = subgroup_v[ss]()()(0, 0);
dest_v[ss]()()(i0, i1) = subgroup_v[ss]()()(0, 1);
dest_v[ss]()()(i1, i0) = subgroup_v[ss]()()(1, 0);
dest_v[ss]()()(i1, i1) = subgroup_v[ss]()()(1, 1);
});
}
///////////////////////////////////////////////
// Generate e^{ Re Tr Staple Link} dlink
//
// *** Note Staple should be appropriate linear compbination between all
// staples.
// *** If already by beta pass coefficient 1.0.
// *** This routine applies the additional 1/Nc factor that comes after trace
// in action.
//
///////////////////////////////////////////////
static void SubGroupHeatBath(GridSerialRNG &sRNG, GridParallelRNG &pRNG,
RealD beta, // coeff multiplying staple in action (with no 1/Nc)
LatticeMatrix &link,
const LatticeMatrix &barestaple, // multiplied by action coeffs so th
int su2_subgroup, int nheatbath, LatticeInteger &wheremask)
{
GridBase *grid = link.Grid();
const RealD twopi = 2.0 * M_PI;
LatticeMatrix staple(grid);
staple = barestaple * (beta / ncolour);
LatticeMatrix V(grid);
V = link * staple;
// Subgroup manipulation in the lie algebra space
LatticeSU2Matrix u(grid); // Kennedy pendleton "u" real projected normalised Sigma
LatticeSU2Matrix uinv(grid);
LatticeSU2Matrix ua(grid); // a in pauli form
LatticeSU2Matrix b(grid); // rotated matrix after hb
// Some handy constant fields
LatticeComplex ones(grid);
ones = 1.0;
LatticeComplex zeros(grid);
zeros = Zero();
LatticeReal rones(grid);
rones = 1.0;
LatticeReal rzeros(grid);
rzeros = Zero();
LatticeComplex udet(grid); // determinant of real(staple)
LatticeInteger mask_true(grid);
mask_true = 1;
LatticeInteger mask_false(grid);
mask_false = 0;
/*
PLB 156 P393 (1985) (Kennedy and Pendleton)
Note: absorb "beta" into the def of sigma compared to KP paper; staple
passed to this routine has "beta" already multiplied in
Action linear in links h and of form:
beta S = beta Sum_p (1 - 1/Nc Re Tr Plaq )
Writing Sigma = 1/Nc (beta Sigma') where sum over staples is "Sigma' "
beta S = const - beta/Nc Re Tr h Sigma'
= const - Re Tr h Sigma
Decompose h and Sigma into (1, sigma_j) ; h_i real, h^2=1, Sigma_i complex
arbitrary.
Tr h Sigma = h_i Sigma_j Tr (sigma_i sigma_j) = h_i Sigma_j 2 delta_ij
Re Tr h Sigma = 2 h_j Re Sigma_j
Normalised re Sigma_j = xi u_j
With u_j a unit vector and U can be in SU(2);
Re Tr h Sigma = 2 h_j Re Sigma_j = 2 xi (h.u)
4xi^2 = Det [ Sig - Sig^dag + 1 Tr Sigdag]
u = 1/2xi [ Sig - Sig^dag + 1 Tr Sigdag]
xi = sqrt(Det)/2;
Write a= u h in SU(2); a has pauli decomp a_j;
Note: Product b' xi is unvariant because scaling Sigma leaves
normalised vector "u" fixed; Can rescale Sigma so b' = 1.
*/
////////////////////////////////////////////////////////
// Real part of Pauli decomposition
// Note a subgroup can project to zero in cold start
////////////////////////////////////////////////////////
su2Extract(udet, u, V, su2_subgroup);
//////////////////////////////////////////////////////
// Normalising this vector if possible; else identity
//////////////////////////////////////////////////////
LatticeComplex xi(grid);
LatticeSU2Matrix lident(grid);
SU2Matrix ident = Complex(1.0);
SU2Matrix pauli1;
SU<2>::generator(0, pauli1);
SU2Matrix pauli2;
SU<2>::generator(1, pauli2);
SU2Matrix pauli3;
SU<2>::generator(2, pauli3);
pauli1 = timesI(pauli1) * 2.0;
pauli2 = timesI(pauli2) * 2.0;
pauli3 = timesI(pauli3) * 2.0;
LatticeComplex cone(grid);
LatticeReal adet(grid);
adet = abs(toReal(udet));
lident = Complex(1.0);
cone = Complex(1.0);
Real machine_epsilon = 1.0e-7;
u = where(adet > machine_epsilon, u, lident);
udet = where(adet > machine_epsilon, udet, cone);
xi = 0.5 * sqrt(udet); // 4xi^2 = Det [ Sig - Sig^dag + 1 Tr Sigdag]
u = 0.5 * u *
pow(xi, -1.0); // u = 1/2xi [ Sig - Sig^dag + 1 Tr Sigdag]
// Debug test for sanity
uinv = adj(u);
b = u * uinv - 1.0;
assert(norm2(b) < 1.0e-4);
/*
Measure: Haar measure dh has d^4a delta(1-|a^2|)
In polars:
da = da0 r^2 sin theta dr dtheta dphi delta( 1 - r^2 -a0^2)
= da0 r^2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r)(sqrt(1-a0^) +
r) )
= da0 r/2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r) )
Action factor Q(h) dh = e^-S[h] dh = e^{ xi Tr uh} dh // beta enters
through xi
= e^{2 xi (h.u)} dh
= e^{2 xi h0u0}.e^{2 xi h1u1}.e^{2 xi
h2u2}.e^{2 xi h3u3} dh
Therefore for each site, take xi for that site
i) generate |a0|<1 with dist
(1-a0^2)^0.5 e^{2 xi a0 } da0
Take alpha = 2 xi = 2 xi [ recall 2 beta/Nc unmod staple norm]; hence 2.0/Nc
factor in Chroma ]
A. Generate two uniformly distributed pseudo-random numbers R and R', R'',
R''' in the unit interval;
B. Set X = -(ln R)/alpha, X' =-(ln R')/alpha;
C. Set C = cos^2(2pi R"), with R" another uniform random number in [0,1] ;
D. Set A = XC;
E. Let d = X'+A;
F. If R'''^2 :> 1 - 0.5 d, go back to A;
G. Set a0 = 1 - d;
Note that in step D setting B ~ X - A and using B in place of A in step E will
generate a second independent a 0 value.
*/
/////////////////////////////////////////////////////////
// count the number of sites by picking "1"'s out of hat
/////////////////////////////////////////////////////////
Integer hit = 0;
LatticeReal rtmp(grid);
rtmp = where(wheremask, rones, rzeros);
RealD numSites = sum(rtmp);
RealD numAccepted;
LatticeInteger Accepted(grid);
Accepted = Zero();
LatticeInteger newlyAccepted(grid);
std::vector<LatticeReal> xr(4, grid);
std::vector<LatticeReal> a(4, grid);
LatticeReal d(grid);
d = Zero();
LatticeReal alpha(grid);
// std::cout<<GridLogMessage<<"xi "<<xi <<std::endl;
xi = 2.0 *xi;
alpha = toReal(xi);
do {
// A. Generate two uniformly distributed pseudo-random numbers R and R',
// R'', R''' in the unit interval;
random(pRNG, xr[0]);
random(pRNG, xr[1]);
random(pRNG, xr[2]);
random(pRNG, xr[3]);
// B. Set X = - ln R/alpha, X' = -ln R'/alpha
xr[1] = -log(xr[1]) / alpha;
xr[2] = -log(xr[2]) / alpha;
// C. Set C = cos^2(2piR'')
xr[3] = cos(xr[3] * twopi);
xr[3] = xr[3] * xr[3];
LatticeReal xrsq(grid);
// D. Set A = XC;
// E. Let d = X'+A;
xrsq = xr[2] + xr[1] * xr[3];
d = where(Accepted, d, xr[2] + xr[1] * xr[3]);
// F. If R'''^2 :> 1 - 0.5 d, go back to A;
LatticeReal thresh(grid);
thresh = 1.0 - d * 0.5;
xrsq = xr[0] * xr[0];
LatticeInteger ione(grid);
ione = 1;
LatticeInteger izero(grid);
izero = Zero();
newlyAccepted = where(xrsq < thresh, ione, izero);
Accepted = where(newlyAccepted, newlyAccepted, Accepted);
Accepted = where(wheremask, Accepted, izero);
// FIXME need an iSum for integer to avoid overload on return type??
rtmp = where(Accepted, rones, rzeros);
numAccepted = sum(rtmp);
hit++;
} while ((numAccepted < numSites) && (hit < nheatbath));
// G. Set a0 = 1 - d;
a[0] = Zero();
a[0] = where(wheremask, 1.0 - d, a[0]);
//////////////////////////////////////////
// ii) generate a_i uniform on two sphere radius (1-a0^2)^0.5
//////////////////////////////////////////
LatticeReal a123mag(grid);
a123mag = sqrt(abs(1.0 - a[0] * a[0]));
LatticeReal cos_theta(grid);
LatticeReal sin_theta(grid);
LatticeReal phi(grid);
random(pRNG, phi);
phi = phi * twopi; // uniform in [0,2pi]
random(pRNG, cos_theta);
cos_theta = (cos_theta * 2.0) - 1.0; // uniform in [-1,1]
sin_theta = sqrt(abs(1.0 - cos_theta * cos_theta));
a[1] = a123mag * sin_theta * cos(phi);
a[2] = a123mag * sin_theta * sin(phi);
a[3] = a123mag * cos_theta;
ua = toComplex(a[0]) * ident + toComplex(a[1]) * pauli1 +
toComplex(a[2]) * pauli2 + toComplex(a[3]) * pauli3;
b = 1.0;
b = where(wheremask, uinv * ua, b);
su2Insert(b, V, su2_subgroup);
// mask the assignment back based on Accptance
link = where(Accepted, V * link, link);
//////////////////////////////
// Debug Checks
// SU2 check
LatticeSU2Matrix check(grid); // rotated matrix after hb
u = Zero();
check = ua * adj(ua) - 1.0;
check = where(Accepted, check, u);
assert(norm2(check) < 1.0e-4);
check = b * adj(b) - 1.0;
check = where(Accepted, check, u);
assert(norm2(check) < 1.0e-4);
LatticeMatrix Vcheck(grid);
Vcheck = Zero();
Vcheck = where(Accepted, V * adj(V) - 1.0, Vcheck);
// std::cout<<GridLogMessage << "SU3 check " <<norm2(Vcheck)<<std::endl;
assert(norm2(Vcheck) < 1.0e-4);
// Verify the link stays in SU(3)
// std::cout<<GridLogMessage <<"Checking the modified link"<<std::endl;
Vcheck = link * adj(link) - 1.0;
assert(norm2(Vcheck) < 1.0e-4);
/////////////////////////////////
}
static void printGenerators(void) {
for (int gen = 0; gen < AdjointDimension; gen++) {
Matrix ta;
generator(gen, ta);
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
<< std::endl;
std::cout << GridLogMessage << ta << std::endl;
}
}
static void testGenerators(void) {
Matrix ta;
Matrix tb;
std::cout << GridLogMessage
<< "Fundamental - Checking trace ta tb is 0.5 delta_ab"
<< std::endl;
for (int a = 0; a < AdjointDimension; a++) {
for (int b = 0; b < AdjointDimension; b++) {
generator(a, ta);
generator(b, tb);
Complex tr = TensorRemove(trace(ta * tb));
std::cout << GridLogMessage << "(" << a << "," << b << ") = " << tr
<< std::endl;
if (a == b) assert(abs(tr - Complex(0.5)) < 1.0e-6);
if (a != b) assert(abs(tr) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
}
std::cout << GridLogMessage << "Fundamental - Checking if hermitian"
<< std::endl;
for (int a = 0; a < AdjointDimension; a++) {
generator(a, ta);
std::cout << GridLogMessage << a << std::endl;
assert(norm2(ta - adj(ta)) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage << "Fundamental - Checking if traceless"
<< std::endl;
for (int a = 0; a < AdjointDimension; a++) {
generator(a, ta);
Complex tr = TensorRemove(trace(ta));
std::cout << GridLogMessage << a << " " << std::endl;
assert(abs(tr) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
}
// reunitarise??
template <typename LatticeMatrixType>
static void LieRandomize(GridParallelRNG &pRNG, LatticeMatrixType &out, double scale = 1.0)
{
GridBase *grid = out.Grid();
typedef typename LatticeMatrixType::vector_type vector_type;
typedef iSinglet<vector_type> vTComplexType;
typedef Lattice<vTComplexType> LatticeComplexType;
typedef typename GridTypeMapper<typename LatticeMatrixType::vector_object>::scalar_object MatrixType;
LatticeComplexType ca(grid);
LatticeMatrixType lie(grid);
LatticeMatrixType la(grid);
ComplexD ci(0.0, scale);
// ComplexD cone(1.0, 0.0);
MatrixType ta;
lie = Zero();
for (int a = 0; a < AdjointDimension; a++) {
random(pRNG, ca);
ca = (ca + conjugate(ca)) * 0.5;
ca = ca - 0.5;
generator(a, ta);
la = ci * ca * ta;
lie = lie + la; // e^{i la ta}
}
taExp(lie, out);
}
static void GaussianFundamentalLieAlgebraMatrix(GridParallelRNG &pRNG,
LatticeMatrix &out,
Real scale = 1.0) {
GridBase *grid = out.Grid();
LatticeReal ca(grid);
LatticeMatrix la(grid);
Complex ci(0.0, scale);
Matrix ta;
out = Zero();
for (int a = 0; a < AdjointDimension; a++) {
gaussian(pRNG, ca);
generator(a, ta);
la = toComplex(ca) * ta;
out += la;
}
out *= ci;
}
static void FundamentalLieAlgebraMatrix(const LatticeAlgebraVector &h,
LatticeMatrix &out,
Real scale = 1.0) {
conformable(h, out);
GridBase *grid = out.Grid();
LatticeMatrix la(grid);
Matrix ta;
out = Zero();
for (int a = 0; a < AdjointDimension; a++) {
generator(a, ta);
la = peekColour(h, a) * timesI(ta) * scale;
out += la;
}
}
/*
* Fundamental rep gauge xform
*/
template<typename Fundamental,typename GaugeMat>
static void GaugeTransformFundamental( Fundamental &ferm, GaugeMat &g){
GridBase *grid = ferm._grid;
conformable(grid,g._grid);
ferm = g*ferm;
}
/*
* Adjoint rep gauge xform
*/
template<typename Gimpl>
static void GaugeTransform(typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
GridBase *grid = Umu.Grid();
conformable(grid,g.Grid());
typename Gimpl::GaugeLinkField U(grid);
typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
for(int mu=0;mu<Nd;mu++){
U= PeekIndex<LorentzIndex>(Umu,mu);
U = g*U*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
PokeIndex<LorentzIndex>(Umu,U,mu);
}
}
template<typename Gimpl>
static void GaugeTransform( std::vector<typename Gimpl::GaugeLinkField> &U, typename Gimpl::GaugeLinkField &g){
GridBase *grid = g.Grid();
typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
for(int mu=0;mu<Nd;mu++){
U[mu] = g*U[mu]*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
}
}
template<typename Gimpl>
static void RandomGaugeTransform(GridParallelRNG &pRNG, typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
LieRandomize(pRNG,g,1.0);
GaugeTransform<Gimpl>(Umu,g);
}
// Projects the algebra components a lattice matrix (of dimension ncol*ncol -1 )
// inverse operation: FundamentalLieAlgebraMatrix
static void projectOnAlgebra(LatticeAlgebraVector &h_out, const LatticeMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
h_out = Zero();
Matrix Ta;
for (int a = 0; a < AdjointDimension; a++) {
generator(a, Ta);
pokeColour(h_out, - 2.0 * (trace(timesI(Ta) * in)) * scale, a);
}
}
template <typename GaugeField>
static void HotConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
typedef typename GaugeField::vector_type vector_type;
typedef iSUnMatrix<vector_type> vMatrixType;
typedef Lattice<vMatrixType> LatticeMatrixType;
LatticeMatrixType Umu(out.Grid());
LatticeMatrixType tmp(out.Grid());
for (int mu = 0; mu < Nd; mu++) {
// LieRandomize(pRNG, Umu, 1.0);
// PokeIndex<LorentzIndex>(out, Umu, mu);
gaussian(pRNG,Umu);
tmp = Ta(Umu);
taExp(tmp,Umu);
ProjectSUn(Umu);
PokeIndex<LorentzIndex>(out, Umu, mu);
}
}
template<typename GaugeField>
static void TepidConfiguration(GridParallelRNG &pRNG,GaugeField &out){
typedef typename GaugeField::vector_type vector_type;
typedef iSUnMatrix<vector_type> vMatrixType;
typedef Lattice<vMatrixType> LatticeMatrixType;
LatticeMatrixType Umu(out.Grid());
for(int mu=0;mu<Nd;mu++){
LieRandomize(pRNG,Umu,0.01);
PokeIndex<LorentzIndex>(out,Umu,mu);
}
}
template<typename GaugeField>
static void ColdConfiguration(GaugeField &out){
typedef typename GaugeField::vector_type vector_type;
typedef iSUnMatrix<vector_type> vMatrixType;
typedef Lattice<vMatrixType> LatticeMatrixType;
LatticeMatrixType Umu(out.Grid());
Umu=1.0;
for(int mu=0;mu<Nd;mu++){
PokeIndex<LorentzIndex>(out,Umu,mu);
}
}
template<typename GaugeField>
static void ColdConfiguration(GridParallelRNG &pRNG,GaugeField &out){
ColdConfiguration(out);
}
template<typename LatticeMatrixType>
static void taProj( const LatticeMatrixType &in, LatticeMatrixType &out){
out = Ta(in);
}
template <typename LatticeMatrixType>
static void taExp(const LatticeMatrixType &x, LatticeMatrixType &ex) {
typedef typename LatticeMatrixType::scalar_type ComplexType;
LatticeMatrixType xn(x.Grid());
RealD nfac = 1.0;
xn = x;
ex = xn + ComplexType(1.0); // 1+x
// Do a 12th order exponentiation
for (int i = 2; i <= 12; ++i) {
nfac = nfac / RealD(i); // 1/2, 1/2.3 ...
xn = xn * x; // x2, x3,x4....
ex = ex + xn * nfac; // x2/2!, x3/3!....
}
}
};
template<int N>
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > Inverse(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu)
{
GridBase *grid=Umu.Grid();
auto lvol = grid->lSites();
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > ret(grid);
autoView(Umu_v,Umu,CpuRead);
autoView(ret_v,ret,CpuWrite);
thread_for(site,lvol,{
Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
Coordinate lcoor;
grid->LocalIndexToLocalCoor(site, lcoor);
iScalar<iScalar<iMatrix<ComplexD, N> > > Us;
iScalar<iScalar<iMatrix<ComplexD, N> > > Ui;
peekLocalSite(Us, Umu_v, lcoor);
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
EigenU(i,j) = Us()()(i,j);
}}
Eigen::MatrixXcd EigenUinv = EigenU.inverse();
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
Ui()()(i,j) = EigenUinv(i,j);
}}
pokeLocalSite(Ui,ret_v,lcoor);
});
return ret;
}
// Explicit specialisation for SU(3).
// Explicit specialisation for SU(3).
static void
ProjectSU3 (Lattice<iScalar<iScalar<iMatrix<vComplexD, 3> > > > &Umu)
{
GridBase *grid=Umu.Grid();
const int x=0;
const int y=1;
const int z=2;
// Reunitarise
Umu = ProjectOnGroup(Umu);
autoView(Umu_v,Umu,CpuWrite);
thread_for(ss,grid->oSites(),{
auto cm = Umu_v[ss];
cm()()(2,x) = adj(cm()()(0,y)*cm()()(1,z)-cm()()(0,z)*cm()()(1,y)); //x= yz-zy
cm()()(2,y) = adj(cm()()(0,z)*cm()()(1,x)-cm()()(0,x)*cm()()(1,z)); //y= zx-xz
cm()()(2,z) = adj(cm()()(0,x)*cm()()(1,y)-cm()()(0,y)*cm()()(1,x)); //z= xy-yx
Umu_v[ss]=cm;
});
}
static void ProjectSU3(Lattice<iVector<iScalar<iMatrix<vComplexD, 3> >,Nd> > &U)
{
GridBase *grid=U.Grid();
// Reunitarise
for(int mu=0;mu<Nd;mu++){
auto Umu = PeekIndex<LorentzIndex>(U,mu);
Umu = ProjectOnGroup(Umu);
ProjectSU3(Umu);
PokeIndex<LorentzIndex>(U,Umu,mu);
}
}
typedef SU<2> SU2;
typedef SU<3> SU3;
typedef SU<4> SU4;
typedef SU<5> SU5;
typedef SU<Nc> FundamentalMatrices;
NAMESPACE_END(Grid);
#endif

578
Grid/qcd/utils/SUn.impl Normal file
View File

@ -0,0 +1,578 @@
// This file is #included into the body of the class template definition of
// GaugeGroup. So, image there to be
//
// template <int ncolour, class group_name>
// class GaugeGroup {
//
// around it.
//
// Please note that the unconventional file extension makes sure that it
// doesn't get found by the scripts/filelist during bootstrapping.
private:
template <ONLY_IF_SU>
static int su2subgroups(GroupName::SU) { return (ncolour * (ncolour - 1)) / 2; }
////////////////////////////////////////////////////////////////////////
// There are N^2-1 generators for SU(N).
//
// We take a traceless hermitian generator basis as follows
//
// * Normalisation: trace ta tb = 1/2 delta_ab = T_F delta_ab
// T_F = 1/2 for SU(N) groups
//
// * Off diagonal
// - pairs of rows i1,i2 behaving like pauli matrices signma_x, sigma_y
//
// - there are (Nc-1-i1) slots for i2 on each row [ x 0 x ]
// direct count off each row
//
// - Sum of all pairs is Nc(Nc-1)/2: proof arithmetic series
//
// (Nc-1) + (Nc-2)+... 1 ==> Nc*(Nc-1)/2
// 1+ 2+ + + Nc-1
//
// - There are 2 x Nc (Nc-1)/ 2 of these = Nc^2 - Nc
//
// - We enumerate the row-col pairs.
// - for each row col pair there is a (sigma_x) and a (sigma_y) like
// generator
//
//
// t^a_ij = { in 0.. Nc(Nc-1)/2 -1} => 1/2(delta_{i,i1} delta_{j,i2} +
// delta_{i,i1} delta_{j,i2})
// t^a_ij = { in Nc(Nc-1)/2 ... Nc(Nc-1) - 1} => i/2( delta_{i,i1}
// delta_{j,i2} - i delta_{i,i1} delta_{j,i2})
//
// * Diagonal; must be traceless and normalised
// - Sequence is
// N (1,-1,0,0...)
// N (1, 1,-2,0...)
// N (1, 1, 1,-3,0...)
// N (1, 1, 1, 1,-4,0...)
//
// where 1/2 = N^2 (1+.. m^2)etc.... for the m-th diagonal generator
// NB this gives the famous SU3 result for su2 index 8
//
// N= sqrt(1/2 . 1/6 ) = 1/2 . 1/sqrt(3)
//
// ( 1 )
// ( 1 ) / sqrt(3) /2 = 1/2 lambda_8
// ( -2)
//
////////////////////////////////////////////////////////////////////////
template <class cplx, ONLY_IF_SU>
static void generator(int lieIndex, iGroupMatrix<cplx> &ta, GroupName::SU) {
// map lie index to which type of generator
int diagIndex;
int su2Index;
int sigxy;
int NNm1 = ncolour * (ncolour - 1);
if (lieIndex >= NNm1) {
diagIndex = lieIndex - NNm1;
generatorDiagonal(diagIndex, ta);
return;
}
sigxy = lieIndex & 0x1; // even or odd
su2Index = lieIndex >> 1;
if (sigxy)
generatorSigmaY(su2Index, ta);
else
generatorSigmaX(su2Index, ta);
}
template <class cplx, ONLY_IF_SU>
static void generatorSigmaY(int su2Index, iGroupMatrix<cplx> &ta) {
ta = Zero();
int i1, i2;
su2SubGroupIndex(i1, i2, su2Index);
ta()()(i1, i2) = 1.0;
ta()()(i2, i1) = 1.0;
ta = ta * 0.5;
}
template <class cplx, ONLY_IF_SU>
static void generatorSigmaX(int su2Index, iGroupMatrix<cplx> &ta) {
ta = Zero();
cplx i(0.0, 1.0);
int i1, i2;
su2SubGroupIndex(i1, i2, su2Index);
ta()()(i1, i2) = i;
ta()()(i2, i1) = -i;
ta = ta * 0.5;
}
template <class cplx, ONLY_IF_SU>
static void generatorDiagonal(int diagIndex, iGroupMatrix<cplx> &ta) {
// diag ({1, 1, ..., 1}(k-times), -k, 0, 0, ...)
ta = Zero();
int k = diagIndex + 1; // diagIndex starts from 0
for (int i = 0; i <= diagIndex; i++) { // k iterations
ta()()(i, i) = 1.0;
}
ta()()(k, k) = -k; // indexing starts from 0
RealD nrm = 1.0 / std::sqrt(2.0 * k * (k + 1));
ta = ta * nrm;
}
////////////////////////////////////////////////////////////////////////
// Map a su2 subgroup number to the pair of rows that are non zero
////////////////////////////////////////////////////////////////////////
static void su2SubGroupIndex(int &i1, int &i2, int su2_index, GroupName::SU) {
assert((su2_index >= 0) && (su2_index < (ncolour * (ncolour - 1)) / 2));
int spare = su2_index;
for (i1 = 0; spare >= (ncolour - 1 - i1); i1++) {
spare = spare - (ncolour - 1 - i1); // remove the Nc-1-i1 terms
}
i2 = i1 + 1 + spare;
}
public:
//////////////////////////////////////////////////////////////////////////////////////////
// Pull out a subgroup and project on to real coeffs x pauli basis
//////////////////////////////////////////////////////////////////////////////////////////
template <class vcplx, ONLY_IF_SU>
static void su2Extract(Lattice<iSinglet<vcplx> > &Determinant,
Lattice<iSU2Matrix<vcplx> > &subgroup,
const Lattice<iGroupMatrix<vcplx> > &source,
int su2_index) {
GridBase *grid(source.Grid());
conformable(subgroup, source);
conformable(subgroup, Determinant);
int i0, i1;
su2SubGroupIndex(i0, i1, su2_index);
autoView(subgroup_v, subgroup, AcceleratorWrite);
autoView(source_v, source, AcceleratorRead);
autoView(Determinant_v, Determinant, AcceleratorWrite);
accelerator_for(ss, grid->oSites(), 1, {
subgroup_v[ss]()()(0, 0) = source_v[ss]()()(i0, i0);
subgroup_v[ss]()()(0, 1) = source_v[ss]()()(i0, i1);
subgroup_v[ss]()()(1, 0) = source_v[ss]()()(i1, i0);
subgroup_v[ss]()()(1, 1) = source_v[ss]()()(i1, i1);
iSU2Matrix<vcplx> Sigma = subgroup_v[ss];
Sigma = Sigma - adj(Sigma) + trace(adj(Sigma));
subgroup_v[ss] = Sigma;
// this should be purely real
Determinant_v[ss] =
Sigma()()(0, 0) * Sigma()()(1, 1) - Sigma()()(0, 1) * Sigma()()(1, 0);
});
}
//////////////////////////////////////////////////////////////////////////////////////////
// Set matrix to one and insert a pauli subgroup
//////////////////////////////////////////////////////////////////////////////////////////
template <class vcplx, ONLY_IF_SU>
static void su2Insert(const Lattice<iSU2Matrix<vcplx> > &subgroup,
Lattice<iGroupMatrix<vcplx> > &dest, int su2_index) {
GridBase *grid(dest.Grid());
conformable(subgroup, dest);
int i0, i1;
su2SubGroupIndex(i0, i1, su2_index);
dest = 1.0; // start out with identity
autoView(dest_v, dest, AcceleratorWrite);
autoView(subgroup_v, subgroup, AcceleratorRead);
accelerator_for(ss, grid->oSites(), 1, {
dest_v[ss]()()(i0, i0) = subgroup_v[ss]()()(0, 0);
dest_v[ss]()()(i0, i1) = subgroup_v[ss]()()(0, 1);
dest_v[ss]()()(i1, i0) = subgroup_v[ss]()()(1, 0);
dest_v[ss]()()(i1, i1) = subgroup_v[ss]()()(1, 1);
});
}
///////////////////////////////////////////////
// Generate e^{ Re Tr Staple Link} dlink
//
// *** Note Staple should be appropriate linear compbination between all
// staples.
// *** If already by beta pass coefficient 1.0.
// *** This routine applies the additional 1/Nc factor that comes after trace
// in action.
//
///////////////////////////////////////////////
template <ONLY_IF_SU>
static void SubGroupHeatBath(
GridSerialRNG &sRNG, GridParallelRNG &pRNG,
RealD beta, // coeff multiplying staple in action (with no 1/Nc)
LatticeMatrix &link,
const LatticeMatrix &barestaple, // multiplied by action coeffs so th
int su2_subgroup, int nheatbath, LatticeInteger &wheremask) {
GridBase *grid = link.Grid();
const RealD twopi = 2.0 * M_PI;
LatticeMatrix staple(grid);
staple = barestaple * (beta / ncolour);
LatticeMatrix V(grid);
V = link * staple;
// Subgroup manipulation in the lie algebra space
LatticeSU2Matrix u(
grid); // Kennedy pendleton "u" real projected normalised Sigma
LatticeSU2Matrix uinv(grid);
LatticeSU2Matrix ua(grid); // a in pauli form
LatticeSU2Matrix b(grid); // rotated matrix after hb
// Some handy constant fields
LatticeComplex ones(grid);
ones = 1.0;
LatticeComplex zeros(grid);
zeros = Zero();
LatticeReal rones(grid);
rones = 1.0;
LatticeReal rzeros(grid);
rzeros = Zero();
LatticeComplex udet(grid); // determinant of real(staple)
LatticeInteger mask_true(grid);
mask_true = 1;
LatticeInteger mask_false(grid);
mask_false = 0;
/*
PLB 156 P393 (1985) (Kennedy and Pendleton)
Note: absorb "beta" into the def of sigma compared to KP paper; staple
passed to this routine has "beta" already multiplied in
Action linear in links h and of form:
beta S = beta Sum_p (1 - 1/Nc Re Tr Plaq )
Writing Sigma = 1/Nc (beta Sigma') where sum over staples is "Sigma' "
beta S = const - beta/Nc Re Tr h Sigma'
= const - Re Tr h Sigma
Decompose h and Sigma into (1, sigma_j) ; h_i real, h^2=1, Sigma_i complex
arbitrary.
Tr h Sigma = h_i Sigma_j Tr (sigma_i sigma_j) = h_i Sigma_j 2 delta_ij
Re Tr h Sigma = 2 h_j Re Sigma_j
Normalised re Sigma_j = xi u_j
With u_j a unit vector and U can be in SU(2);
Re Tr h Sigma = 2 h_j Re Sigma_j = 2 xi (h.u)
4xi^2 = Det [ Sig - Sig^dag + 1 Tr Sigdag]
u = 1/2xi [ Sig - Sig^dag + 1 Tr Sigdag]
xi = sqrt(Det)/2;
Write a= u h in SU(2); a has pauli decomp a_j;
Note: Product b' xi is unvariant because scaling Sigma leaves
normalised vector "u" fixed; Can rescale Sigma so b' = 1.
*/
////////////////////////////////////////////////////////
// Real part of Pauli decomposition
// Note a subgroup can project to zero in cold start
////////////////////////////////////////////////////////
su2Extract(udet, u, V, su2_subgroup);
//////////////////////////////////////////////////////
// Normalising this vector if possible; else identity
//////////////////////////////////////////////////////
LatticeComplex xi(grid);
LatticeSU2Matrix lident(grid);
SU2Matrix ident = Complex(1.0);
SU2Matrix pauli1;
GaugeGroup<2, GroupName::SU>::generator(0, pauli1);
SU2Matrix pauli2;
GaugeGroup<2, GroupName::SU>::generator(1, pauli2);
SU2Matrix pauli3;
GaugeGroup<2, GroupName::SU>::generator(2, pauli3);
pauli1 = timesI(pauli1) * 2.0;
pauli2 = timesI(pauli2) * 2.0;
pauli3 = timesI(pauli3) * 2.0;
LatticeComplex cone(grid);
LatticeReal adet(grid);
adet = abs(toReal(udet));
lident = Complex(1.0);
cone = Complex(1.0);
Real machine_epsilon = 1.0e-7;
u = where(adet > machine_epsilon, u, lident);
udet = where(adet > machine_epsilon, udet, cone);
xi = 0.5 * sqrt(udet); // 4xi^2 = Det [ Sig - Sig^dag + 1 Tr Sigdag]
u = 0.5 * u * pow(xi, -1.0); // u = 1/2xi [ Sig - Sig^dag + 1 Tr Sigdag]
// Debug test for sanity
uinv = adj(u);
b = u * uinv - 1.0;
assert(norm2(b) < 1.0e-4);
/*
Measure: Haar measure dh has d^4a delta(1-|a^2|)
In polars:
da = da0 r^2 sin theta dr dtheta dphi delta( 1 - r^2 -a0^2)
= da0 r^2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r)(sqrt(1-a0^) +
r) )
= da0 r/2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r) )
Action factor Q(h) dh = e^-S[h] dh = e^{ xi Tr uh} dh // beta
enters through xi = e^{2 xi (h.u)} dh = e^{2 xi h0u0}.e^{2 xi h1u1}.e^{2
xi h2u2}.e^{2 xi h3u3} dh
Therefore for each site, take xi for that site
i) generate |a0|<1 with dist
(1-a0^2)^0.5 e^{2 xi a0 } da0
Take alpha = 2 xi = 2 xi [ recall 2 beta/Nc unmod staple norm];
hence 2.0/Nc factor in Chroma ] A. Generate two uniformly distributed
pseudo-random numbers R and R', R'', R''' in the unit interval; B. Set X =
-(ln R)/alpha, X' =-(ln R')/alpha; C. Set C = cos^2(2pi R"), with R"
another uniform random number in [0,1] ; D. Set A = XC; E. Let d = X'+A;
F. If R'''^2 :> 1 - 0.5 d, go back to A;
G. Set a0 = 1 - d;
Note that in step D setting B ~ X - A and using B in place of A in step E
will generate a second independent a 0 value.
*/
/////////////////////////////////////////////////////////
// count the number of sites by picking "1"'s out of hat
/////////////////////////////////////////////////////////
Integer hit = 0;
LatticeReal rtmp(grid);
rtmp = where(wheremask, rones, rzeros);
RealD numSites = sum(rtmp);
RealD numAccepted;
LatticeInteger Accepted(grid);
Accepted = Zero();
LatticeInteger newlyAccepted(grid);
std::vector<LatticeReal> xr(4, grid);
std::vector<LatticeReal> a(4, grid);
LatticeReal d(grid);
d = Zero();
LatticeReal alpha(grid);
// std::cout<<GridLogMessage<<"xi "<<xi <<std::endl;
xi = 2.0 * xi;
alpha = toReal(xi);
do {
// A. Generate two uniformly distributed pseudo-random numbers R and R',
// R'', R''' in the unit interval;
random(pRNG, xr[0]);
random(pRNG, xr[1]);
random(pRNG, xr[2]);
random(pRNG, xr[3]);
// B. Set X = - ln R/alpha, X' = -ln R'/alpha
xr[1] = -log(xr[1]) / alpha;
xr[2] = -log(xr[2]) / alpha;
// C. Set C = cos^2(2piR'')
xr[3] = cos(xr[3] * twopi);
xr[3] = xr[3] * xr[3];
LatticeReal xrsq(grid);
// D. Set A = XC;
// E. Let d = X'+A;
xrsq = xr[2] + xr[1] * xr[3];
d = where(Accepted, d, xr[2] + xr[1] * xr[3]);
// F. If R'''^2 :> 1 - 0.5 d, go back to A;
LatticeReal thresh(grid);
thresh = 1.0 - d * 0.5;
xrsq = xr[0] * xr[0];
LatticeInteger ione(grid);
ione = 1;
LatticeInteger izero(grid);
izero = Zero();
newlyAccepted = where(xrsq < thresh, ione, izero);
Accepted = where(newlyAccepted, newlyAccepted, Accepted);
Accepted = where(wheremask, Accepted, izero);
// FIXME need an iSum for integer to avoid overload on return type??
rtmp = where(Accepted, rones, rzeros);
numAccepted = sum(rtmp);
hit++;
} while ((numAccepted < numSites) && (hit < nheatbath));
// G. Set a0 = 1 - d;
a[0] = Zero();
a[0] = where(wheremask, 1.0 - d, a[0]);
//////////////////////////////////////////
// ii) generate a_i uniform on two sphere radius (1-a0^2)^0.5
//////////////////////////////////////////
LatticeReal a123mag(grid);
a123mag = sqrt(abs(1.0 - a[0] * a[0]));
LatticeReal cos_theta(grid);
LatticeReal sin_theta(grid);
LatticeReal phi(grid);
random(pRNG, phi);
phi = phi * twopi; // uniform in [0,2pi]
random(pRNG, cos_theta);
cos_theta = (cos_theta * 2.0) - 1.0; // uniform in [-1,1]
sin_theta = sqrt(abs(1.0 - cos_theta * cos_theta));
a[1] = a123mag * sin_theta * cos(phi);
a[2] = a123mag * sin_theta * sin(phi);
a[3] = a123mag * cos_theta;
ua = toComplex(a[0]) * ident + toComplex(a[1]) * pauli1 +
toComplex(a[2]) * pauli2 + toComplex(a[3]) * pauli3;
b = 1.0;
b = where(wheremask, uinv * ua, b);
su2Insert(b, V, su2_subgroup);
// mask the assignment back based on Accptance
link = where(Accepted, V * link, link);
//////////////////////////////
// Debug Checks
// SU2 check
LatticeSU2Matrix check(grid); // rotated matrix after hb
u = Zero();
check = ua * adj(ua) - 1.0;
check = where(Accepted, check, u);
assert(norm2(check) < 1.0e-4);
check = b * adj(b) - 1.0;
check = where(Accepted, check, u);
assert(norm2(check) < 1.0e-4);
LatticeMatrix Vcheck(grid);
Vcheck = Zero();
Vcheck = where(Accepted, V * adj(V) - 1.0, Vcheck);
// std::cout<<GridLogMessage << "SU3 check " <<norm2(Vcheck)<<std::endl;
assert(norm2(Vcheck) < 1.0e-4);
// Verify the link stays in SU(3)
// std::cout<<GridLogMessage <<"Checking the modified link"<<std::endl;
Vcheck = link * adj(link) - 1.0;
assert(norm2(Vcheck) < 1.0e-4);
/////////////////////////////////
}
template <ONLY_IF_SU>
static void testGenerators(GroupName::SU) {
Matrix ta;
Matrix tb;
std::cout << GridLogMessage
<< "Fundamental - Checking trace ta tb is 0.5 delta_ab"
<< std::endl;
for (int a = 0; a < AdjointDimension; a++) {
for (int b = 0; b < AdjointDimension; b++) {
generator(a, ta);
generator(b, tb);
Complex tr = TensorRemove(trace(ta * tb));
std::cout << GridLogMessage << "(" << a << "," << b << ") = " << tr
<< std::endl;
if (a == b) assert(abs(tr - Complex(0.5)) < 1.0e-6);
if (a != b) assert(abs(tr) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
}
std::cout << GridLogMessage << "Fundamental - Checking if hermitian"
<< std::endl;
for (int a = 0; a < AdjointDimension; a++) {
generator(a, ta);
std::cout << GridLogMessage << a << std::endl;
assert(norm2(ta - adj(ta)) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage << "Fundamental - Checking if traceless"
<< std::endl;
for (int a = 0; a < AdjointDimension; a++) {
generator(a, ta);
Complex tr = TensorRemove(trace(ta));
std::cout << GridLogMessage << a << " " << std::endl;
assert(abs(tr) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
}
template <int N, class vtype>
static Lattice<iScalar<iScalar<iMatrix<vtype, N> > > >
ProjectOnGeneralGroup(const Lattice<iScalar<iScalar<iMatrix<vtype, N> > > > &Umu, GroupName::SU) {
return ProjectOnGroup(Umu);
}
template <class vtype>
accelerator_inline static iScalar<vtype> ProjectOnGeneralGroup(const iScalar<vtype> &r, GroupName::SU) {
return ProjectOnGroup(r);
}
template <class vtype, int N>
accelerator_inline static iVector<vtype,N> ProjectOnGeneralGroup(const iVector<vtype,N> &r, GroupName::SU) {
return ProjectOnGroup(r);
}
template <class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
accelerator_inline static iMatrix<vtype,N> ProjectOnGeneralGroup(const iMatrix<vtype,N> &arg, GroupName::SU) {
return ProjectOnGroup(arg);
}
template <typename LatticeMatrixType>
static void taProj(const LatticeMatrixType &in, LatticeMatrixType &out, GroupName::SU) {
out = Ta(in);
}
/*
* Fundamental rep gauge xform
*/
template<typename Fundamental,typename GaugeMat>
static void GaugeTransformFundamental( Fundamental &ferm, GaugeMat &g){
GridBase *grid = ferm._grid;
conformable(grid,g._grid);
ferm = g*ferm;
}
/*
* Adjoint rep gauge xform
*/
template<typename Gimpl>
static void GaugeTransform(typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
GridBase *grid = Umu.Grid();
conformable(grid,g.Grid());
typename Gimpl::GaugeLinkField U(grid);
typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
for(int mu=0;mu<Nd;mu++){
U= PeekIndex<LorentzIndex>(Umu,mu);
U = g*U*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
PokeIndex<LorentzIndex>(Umu,U,mu);
}
}
template<typename Gimpl>
static void GaugeTransform( std::vector<typename Gimpl::GaugeLinkField> &U, typename Gimpl::GaugeLinkField &g){
GridBase *grid = g.Grid();
typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
for(int mu=0;mu<Nd;mu++){
U[mu] = g*U[mu]*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
}
}
template<typename Gimpl>
static void RandomGaugeTransform(GridParallelRNG &pRNG, typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
LieRandomize(pRNG,g,1.0);
GaugeTransform<Gimpl>(Umu,g);
}

View File

@ -51,6 +51,10 @@ public:
typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> > LatticeAdjFieldF;
typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> > LatticeAdjFieldD;
template <typename vtype>
using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
typedef Lattice<iScalar<iScalar<iVector<vComplex, Dimension> > > > LatticeAdjVector;
template <class cplx>
@ -58,8 +62,8 @@ public:
// returns i(T_Adj)^index necessary for the projectors
// see definitions above
iAdjTa = Zero();
Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > ta(ncolour * ncolour - 1);
typename SU<ncolour>::template iSUnMatrix<cplx> tmp;
Vector<iSUnMatrix<cplx> > ta(ncolour * ncolour - 1);
iSUnMatrix<cplx> tmp;
// FIXME not very efficient to get all the generators everytime
for (int a = 0; a < Dimension; a++) SU<ncolour>::generator(a, ta[a]);
@ -67,8 +71,7 @@ public:
for (int a = 0; a < Dimension; a++) {
tmp = ta[a] * ta[Index] - ta[Index] * ta[a];
for (int b = 0; b < (ncolour * ncolour - 1); b++) {
typename SU<ncolour>::template iSUnMatrix<cplx> tmp1 =
2.0 * tmp * ta[b]; // 2.0 from the normalization
iSUnMatrix<cplx> tmp1 = 2.0 * tmp * ta[b]; // 2.0 from the normalization
Complex iTr = TensorRemove(timesI(trace(tmp1)));
//iAdjTa()()(b, a) = iTr;
iAdjTa()()(a, b) = iTr;
@ -134,8 +137,7 @@ public:
for (int a = 0; a < Dimension; a++) {
generator(a, iTa);
LatticeComplex tmp = real(trace(iTa * in)) * coefficient;
pokeColour(h_out, tmp, a);
pokeColour(h_out, real(trace(iTa * in)) * coefficient, a);
}
}

View File

@ -1,273 +0,0 @@
////////////////////////////////////////////////////////////////////////
//
// * Two index representation generators
//
// * Normalisation for the fundamental generators:
// trace ta tb = 1/2 delta_ab = T_F delta_ab
// T_F = 1/2 for SU(N) groups
//
//
// base for NxN two index (anti-symmetric) matrices
// normalized to 1 (d_ij is the kroenecker delta)
//
// (e^(ij)_{kl} = 1 / sqrt(2) (d_ik d_jl +/- d_jk d_il)
//
// Then the generators are written as
//
// (iT_a)^(ij)(lk) = i * ( tr[e^(ij)^dag e^(lk) T^trasp_a] +
// tr[e^(lk)e^(ij)^dag T_a] ) //
//
//
////////////////////////////////////////////////////////////////////////
// Authors: David Preti, Guido Cossu
#ifndef QCD_UTIL_SUN2INDEX_H
#define QCD_UTIL_SUN2INDEX_H
NAMESPACE_BEGIN(Grid);
enum TwoIndexSymmetry { Symmetric = 1, AntiSymmetric = -1 };
inline Real delta(int a, int b) { return (a == b) ? 1.0 : 0.0; }
template <int ncolour, TwoIndexSymmetry S>
class SU_TwoIndex : public SU<ncolour> {
public:
static const int Dimension = ncolour * (ncolour + S) / 2;
static const int NumGenerators = SU<ncolour>::AdjointDimension;
template <typename vtype>
using iSUnTwoIndexMatrix = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
typedef iSUnTwoIndexMatrix<Complex> TIMatrix;
typedef iSUnTwoIndexMatrix<ComplexF> TIMatrixF;
typedef iSUnTwoIndexMatrix<ComplexD> TIMatrixD;
typedef iSUnTwoIndexMatrix<vComplex> vTIMatrix;
typedef iSUnTwoIndexMatrix<vComplexF> vTIMatrixF;
typedef iSUnTwoIndexMatrix<vComplexD> vTIMatrixD;
typedef Lattice<vTIMatrix> LatticeTwoIndexMatrix;
typedef Lattice<vTIMatrixF> LatticeTwoIndexMatrixF;
typedef Lattice<vTIMatrixD> LatticeTwoIndexMatrixD;
typedef Lattice<iVector<iScalar<iMatrix<vComplex, Dimension> >, Nd> >
LatticeTwoIndexField;
typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> >
LatticeTwoIndexFieldF;
typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> >
LatticeTwoIndexFieldD;
template <typename vtype>
using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
typedef iSUnMatrix<Complex> Matrix;
typedef iSUnMatrix<ComplexF> MatrixF;
typedef iSUnMatrix<ComplexD> MatrixD;
template <class cplx>
static void base(int Index, iSUnMatrix<cplx> &eij) {
// returns (e)^(ij)_{kl} necessary for change of base U_F -> U_R
assert(Index < NumGenerators);
eij = Zero();
// for the linearisation of the 2 indexes
static int a[ncolour * (ncolour - 1) / 2][2]; // store the a <-> i,j
static bool filled = false;
if (!filled) {
int counter = 0;
for (int i = 1; i < ncolour; i++) {
for (int j = 0; j < i; j++) {
a[counter][0] = i;
a[counter][1] = j;
counter++;
}
}
filled = true;
}
if (Index < ncolour * (ncolour - 1) / 2) {
baseOffDiagonal(a[Index][0], a[Index][1], eij);
} else {
baseDiagonal(Index, eij);
}
}
template <class cplx>
static void baseDiagonal(int Index, iSUnMatrix<cplx> &eij) {
eij = Zero();
eij()()(Index - ncolour * (ncolour - 1) / 2,
Index - ncolour * (ncolour - 1) / 2) = 1.0;
}
template <class cplx>
static void baseOffDiagonal(int i, int j, iSUnMatrix<cplx> &eij) {
eij = Zero();
for (int k = 0; k < ncolour; k++)
for (int l = 0; l < ncolour; l++)
eij()()(l, k) = delta(i, k) * delta(j, l) +
S * delta(j, k) * delta(i, l);
RealD nrm = 1. / std::sqrt(2.0);
eij = eij * nrm;
}
static void printBase(void) {
for (int gen = 0; gen < Dimension; gen++) {
Matrix tmp;
base(gen, tmp);
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
<< std::endl;
std::cout << GridLogMessage << tmp << std::endl;
}
}
template <class cplx>
static void generator(int Index, iSUnTwoIndexMatrix<cplx> &i2indTa) {
Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > ta(
ncolour * ncolour - 1);
Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > eij(Dimension);
typename SU<ncolour>::template iSUnMatrix<cplx> tmp;
i2indTa = Zero();
for (int a = 0; a < ncolour * ncolour - 1; a++)
SU<ncolour>::generator(a, ta[a]);
for (int a = 0; a < Dimension; a++) base(a, eij[a]);
for (int a = 0; a < Dimension; a++) {
tmp = transpose(ta[Index]) * adj(eij[a]) + adj(eij[a]) * ta[Index];
for (int b = 0; b < Dimension; b++) {
typename SU<ncolour>::template iSUnMatrix<cplx> tmp1 =
tmp * eij[b];
Complex iTr = TensorRemove(timesI(trace(tmp1)));
i2indTa()()(a, b) = iTr;
}
}
}
static void printGenerators(void) {
for (int gen = 0; gen < ncolour * ncolour - 1; gen++) {
TIMatrix i2indTa;
generator(gen, i2indTa);
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
<< std::endl;
std::cout << GridLogMessage << i2indTa << std::endl;
}
}
static void testGenerators(void) {
TIMatrix i2indTa, i2indTb;
std::cout << GridLogMessage << "2IndexRep - Checking if traceless"
<< std::endl;
for (int a = 0; a < ncolour * ncolour - 1; a++) {
generator(a, i2indTa);
std::cout << GridLogMessage << a << std::endl;
assert(norm2(trace(i2indTa)) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage << "2IndexRep - Checking if antihermitean"
<< std::endl;
for (int a = 0; a < ncolour * ncolour - 1; a++) {
generator(a, i2indTa);
std::cout << GridLogMessage << a << std::endl;
assert(norm2(adj(i2indTa) + i2indTa) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage
<< "2IndexRep - Checking Tr[Ta*Tb]=delta(a,b)*(N +- 2)/2"
<< std::endl;
for (int a = 0; a < ncolour * ncolour - 1; a++) {
for (int b = 0; b < ncolour * ncolour - 1; b++) {
generator(a, i2indTa);
generator(b, i2indTb);
// generator returns iTa, so we need a minus sign here
Complex Tr = -TensorRemove(trace(i2indTa * i2indTb));
std::cout << GridLogMessage << "a=" << a << "b=" << b << "Tr=" << Tr
<< std::endl;
}
}
std::cout << GridLogMessage << std::endl;
}
static void TwoIndexLieAlgebraMatrix(
const typename SU<ncolour>::LatticeAlgebraVector &h,
LatticeTwoIndexMatrix &out, Real scale = 1.0) {
conformable(h, out);
GridBase *grid = out.Grid();
LatticeTwoIndexMatrix la(grid);
TIMatrix i2indTa;
out = Zero();
for (int a = 0; a < ncolour * ncolour - 1; a++) {
generator(a, i2indTa);
la = peekColour(h, a) * i2indTa;
out += la;
}
out *= scale;
}
// Projects the algebra components
// of a lattice matrix ( of dimension ncol*ncol -1 )
static void projectOnAlgebra(
typename SU<ncolour>::LatticeAlgebraVector &h_out,
const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
h_out = Zero();
TIMatrix i2indTa;
Real coefficient = -2.0 / (ncolour + 2 * S) * scale;
// 2/(Nc +/- 2) for the normalization of the trace in the two index rep
for (int a = 0; a < ncolour * ncolour - 1; a++) {
generator(a, i2indTa);
auto tmp = real(trace(i2indTa * in)) * coefficient;
pokeColour(h_out, tmp, a);
}
}
// a projector that keeps the generators stored to avoid the overhead of
// recomputing them
static void projector(typename SU<ncolour>::LatticeAlgebraVector &h_out,
const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
// to store the generators
static std::vector<TIMatrix> i2indTa(ncolour * ncolour -1);
h_out = Zero();
static bool precalculated = false;
if (!precalculated) {
precalculated = true;
for (int a = 0; a < ncolour * ncolour - 1; a++) generator(a, i2indTa[a]);
}
Real coefficient =
-2.0 / (ncolour + 2 * S) * scale; // 2/(Nc +/- 2) for the normalization
// of the trace in the two index rep
for (int a = 0; a < ncolour * ncolour - 1; a++) {
auto tmp = real(trace(i2indTa[a] * in)) * coefficient;
pokeColour(h_out, tmp, a);
}
}
};
// Some useful type names
typedef SU_TwoIndex<Nc, Symmetric> TwoIndexSymmMatrices;
typedef SU_TwoIndex<Nc, AntiSymmetric> TwoIndexAntiSymmMatrices;
typedef SU_TwoIndex<2, Symmetric> SU2TwoIndexSymm;
typedef SU_TwoIndex<3, Symmetric> SU3TwoIndexSymm;
typedef SU_TwoIndex<4, Symmetric> SU4TwoIndexSymm;
typedef SU_TwoIndex<5, Symmetric> SU5TwoIndexSymm;
typedef SU_TwoIndex<2, AntiSymmetric> SU2TwoIndexAntiSymm;
typedef SU_TwoIndex<3, AntiSymmetric> SU3TwoIndexAntiSymm;
typedef SU_TwoIndex<4, AntiSymmetric> SU4TwoIndexAntiSymm;
typedef SU_TwoIndex<5, AntiSymmetric> SU5TwoIndexAntiSymm;
NAMESPACE_END(Grid);
#endif

317
Grid/qcd/utils/Sp2n.impl Normal file
View File

@ -0,0 +1,317 @@
// This file is #included into the body of the class template definition of
// GaugeGroup. So, image there to be
//
// template <int ncolour, class group_name>
// class GaugeGroup {
//
// around it.
//
// Please note that the unconventional file extension makes sure that it
// doesn't get found by the scripts/filelist during bootstrapping.
private:
template <ONLY_IF_Sp>
static int su2subgroups(GroupName::Sp) { return (ncolour/2 * (ncolour/2 - 1)) / 2; }
// Sp(2N) has N(2N+1) = 2N^2+N generators
//
// normalise the generators such that
// Trace ( Ta Tb) = 1/2 delta_ab
//
// N generators in the cartan, 2N^2 off
// off diagonal:
// there are 6 types named a,b,c,d and w,z
// abcd are N(N-1)/2 each while wz are N each
template <class cplx, ONLY_IF_Sp>
static void generator(int lieIndex, iGroupMatrix<cplx> &ta, GroupName::Sp) {
// map lie index into type of generators: diagonal, abcd type, wz type
const int nsp = ncolour/2;
int diagIndex;
int aIndex, bIndex, cIndex, dIndex;
int wIndex, zIndex; // a,b,c,d are N(N-1)/2 and w,z are N
const int mod = nsp * (nsp - 1) * 0.5;
const int offdiag =
2 * nsp * nsp; // number of generators not in the cartan subalgebra
const int wmod = 4 * mod;
const int zmod = wmod + nsp;
if (lieIndex >= offdiag) {
diagIndex = lieIndex - offdiag; // 0, ... ,N-1
// std::cout << GridLogMessage << "diag type " << std::endl;
generatorDiagtype(diagIndex, ta);
return;
}
if ((lieIndex >= wmod) && (lieIndex < zmod)) {
// std::cout << GridLogMessage << "w type " << std::endl;
wIndex = lieIndex - wmod; // 0, ... ,N-1
generatorWtype(wIndex, ta);
return;
}
if ((lieIndex >= zmod) && (lieIndex < offdiag)) {
// std::cout << GridLogMessage << "z type " << std::endl;
// std::cout << GridLogMessage << "lie index " << lieIndex << std::endl;
// std::cout << GridLogMessage << "z mod " << zmod << std::endl;
zIndex = lieIndex - zmod; // 0, ... ,N-1
generatorZtype(zIndex, ta);
return;
}
if (lieIndex < mod) { // atype 0, ... , N(N-1)/2=mod
// std::cout << GridLogMessage << "a type " << std::endl;
aIndex = lieIndex;
// std::cout << GridLogMessage << "a indx " << aIndex << std::endl;
generatorAtype(aIndex, ta);
return;
}
if ((lieIndex >= mod) && lieIndex < 2 * mod) { // btype mod, ... , 2mod-1
// std::cout << GridLogMessage << "b type " << std::endl;
bIndex = lieIndex - mod;
generatorBtype(bIndex, ta);
return;
}
if ((lieIndex >= 2 * mod) &&
lieIndex < 3 * mod) { // ctype 2mod, ... , 3mod-1
// std::cout << GridLogMessage << "c type " << std::endl;
cIndex = lieIndex - 2 * mod;
generatorCtype(cIndex, ta);
return;
}
if ((lieIndex >= 3 * mod) &&
lieIndex < wmod) { // ctype 3mod, ... , 4mod-1 = wmod-1
// std::cout << GridLogMessage << "d type " << std::endl;
dIndex = lieIndex - 3 * mod;
generatorDtype(dIndex, ta);
return;
}
} // end of generator
template <class cplx, ONLY_IF_Sp>
static void generatorDiagtype(int diagIndex, iGroupMatrix<cplx> &ta) {
// ta(i,i) = - ta(i+N,i+N) = 1/2 for each i index of the cartan subalgebra
const int nsp=ncolour/2;
ta = Zero();
RealD nrm = 1.0 / 2;
ta()()(diagIndex, diagIndex) = nrm;
ta()()(diagIndex + nsp, diagIndex + nsp) = -nrm;
}
template <class cplx, ONLY_IF_Sp>
static void generatorAtype(int aIndex, iGroupMatrix<cplx> &ta) {
// ta(i,j) = ta(j,i) = -ta(i+N,j+N) = -ta(j+N,i+N) = 1 / 2 sqrt(2)
// with i<j and i=0,...,N-2
// follows that j=i+1, ... , N
int i1, i2;
const int nsp=ncolour/2;
ta = Zero();
RealD nrm = 1 / (2 * std::sqrt(2));
su2SubGroupIndex(i1, i2, aIndex);
ta()()(i1, i2) = 1;
ta()()(i2, i1) = 1;
ta()()(i1 + nsp, i2 + nsp) = -1;
ta()()(i2 + nsp, i1 + nsp) = -1;
ta = ta * nrm;
}
template <class cplx, ONLY_IF_Sp>
static void generatorBtype(int bIndex, iGroupMatrix<cplx> &ta) {
// ta(i,j) = -ta(j,i) = ta(i+N,j+N) = -ta(j+N,i+N) = i / 1/ 2 sqrt(2)
// with i<j and i=0,...,N-2
// follows that j=i+1, ... , N-1
const int nsp=ncolour/2;
int i1, i2;
ta = Zero();
cplx i(0.0, 1.0);
RealD nrm = 1 / (2 * std::sqrt(2));
su2SubGroupIndex(i1, i2, bIndex);
ta()()(i1, i2) = i;
ta()()(i2, i1) = -i;
ta()()(i1 + nsp, i2 + nsp) = i;
ta()()(i2 + nsp, i1 + nsp) = -i;
ta = ta * nrm;
}
template <class cplx, ONLY_IF_Sp>
static void generatorCtype(int cIndex, iGroupMatrix<cplx> &ta) {
// ta(i,j+N) = ta(j,i+N) = ta(i+N,j) = ta(j+N,i) = 1 / 2 sqrt(2)
const int nsp=ncolour/2;
int i1, i2;
ta = Zero();
RealD nrm = 1 / (2 * std::sqrt(2));
su2SubGroupIndex(i1, i2, cIndex);
ta()()(i1, i2 + nsp) = 1;
ta()()(i2, i1 + nsp) = 1;
ta()()(i1 + nsp, i2) = 1;
ta()()(i2 + nsp, i1) = 1;
ta = ta * nrm;
}
template <class cplx, ONLY_IF_Sp>
static void generatorDtype(int dIndex, iGroupMatrix<cplx> &ta) {
// ta(i,j+N) = ta(j,i+N) = -ta(i+N,j) = -ta(j+N,i) = i / 2 sqrt(2)
const int nsp=ncolour/2;
int i1, i2;
ta = Zero();
cplx i(0.0, 1.0);
RealD nrm = 1 / (2 * std::sqrt(2));
su2SubGroupIndex(i1, i2, dIndex);
ta()()(i1, i2 + nsp) = i;
ta()()(i2, i1 + nsp) = i;
ta()()(i1 + nsp, i2) = -i;
ta()()(i2 + nsp, i1) = -i;
ta = ta * nrm;
}
template <class cplx, ONLY_IF_Sp>
static void generatorWtype(int wIndex, iGroupMatrix<cplx> &ta) {
// ta(i,i+N) = ta(i+N,i) = 1/2
const int nsp=ncolour/2;
ta = Zero();
RealD nrm = 1.0 / 2; // check
ta()()(wIndex, wIndex + nsp) = 1;
ta()()(wIndex + nsp, wIndex) = 1;
ta = ta * nrm;
}
template <class cplx, ONLY_IF_Sp>
static void generatorZtype(int zIndex, iGroupMatrix<cplx> &ta) {
// ta(i,i+N) = - ta(i+N,i) = i/2
const int nsp=ncolour/2;
ta = Zero();
RealD nrm = 1.0 / 2; // check
cplx i(0.0, 1.0);
ta()()(zIndex, zIndex + nsp) = i;
ta()()(zIndex + nsp, zIndex) = -i;
ta = ta * nrm;
}
////////////////////////////////////////////////////////////////////////
// Map a su2 subgroup number to the pair of rows that are non zero
////////////////////////////////////////////////////////////////////////
template <ONLY_IF_Sp>
static void su2SubGroupIndex(int &i1, int &i2, int su2_index, GroupName::Sp) {
const int nsp=ncolour/2;
assert((su2_index >= 0) && (su2_index < (nsp * (nsp - 1)) / 2));
int spare = su2_index;
for (i1 = 0; spare >= (nsp - 1 - i1); i1++) {
spare = spare - (nsp - 1 - i1); // remove the Nc-1-i1 terms
}
i2 = i1 + 1 + spare;
}
static void testGenerators(GroupName::Sp) {
Matrix ta;
Matrix tb;
std::cout << GridLogMessage
<< "Fundamental - Checking trace ta tb is 0.5 delta_ab "
<< std::endl;
for (int a = 0; a < AlgebraDimension; a++) {
for (int b = 0; b < AlgebraDimension; b++) {
generator(a, ta);
generator(b, tb);
Complex tr = TensorRemove(trace(ta * tb));
std::cout << GridLogMessage << "(" << a << "," << b << ") = " << tr
<< std::endl;
if (a == b) assert(abs(tr - Complex(0.5)) < 1.0e-6);
if (a != b) assert(abs(tr) < 1.0e-6);
}
}
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage << "Fundamental - Checking if hermitian"
<< std::endl;
for (int a = 0; a < AlgebraDimension; a++) {
generator(a, ta);
std::cout << GridLogMessage << a << std::endl;
assert(norm2(ta - adj(ta)) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage << "Fundamental - Checking if traceless"
<< std::endl;
for (int a = 0; a < AlgebraDimension; a++) {
generator(a, ta);
Complex tr = TensorRemove(trace(ta));
std::cout << GridLogMessage << a << std::endl;
assert(abs(tr) < 1.0e-6);
}
}
template <int N>
static Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > >
ProjectOnGeneralGroup(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu, GroupName::Sp) {
return ProjectOnSpGroup(Umu);
}
template <class vtype>
accelerator_inline static iScalar<vtype> ProjectOnGeneralGroup(const iScalar<vtype> &r, GroupName::Sp) {
return ProjectOnSpGroup(r);
}
template <class vtype, int N>
accelerator_inline static iVector<vtype,N> ProjectOnGeneralGroup(const iVector<vtype,N> &r, GroupName::Sp) {
return ProjectOnSpGroup(r);
}
template <class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
accelerator_inline static iMatrix<vtype,N> ProjectOnGeneralGroup(const iMatrix<vtype,N> &arg, GroupName::Sp) {
return ProjectOnSpGroup(arg);
}
template <typename LatticeMatrixType>
static void taProj(const LatticeMatrixType &in, LatticeMatrixType &out, GroupName::Sp) {
out = SpTa(in);
}
public:
template <ONLY_IF_Sp>
static void Omega(LatticeColourMatrixD &in) {
const int nsp=ncolour/2;
LatticeColourMatrixD OmegaLatt(in.Grid());
LatticeColourMatrixD identity(in.Grid());
ColourMatrix Omega;
OmegaLatt = Zero();
Omega = Zero();
identity = 1.;
for (int i = 0; i < nsp; i++) {
Omega()()(i, nsp + i) = 1.;
Omega()()(nsp + i, i) = -1;
}
OmegaLatt = OmegaLatt + (identity * Omega);
in = OmegaLatt;
}
template <ONLY_IF_Sp, class vtype, int N>
static void Omega(iScalar<iScalar<iMatrix<vtype, N> > > &in) {
const int nsp=ncolour/2;
iScalar<iScalar<iMatrix<vtype, N> > > Omega;
Omega = Zero();
for (int i = 0; i < nsp; i++) {
Omega()()(i, nsp + i) = 1.;
Omega()()(nsp + i, i) = -1;
}
in = Omega;
}

View File

@ -8,9 +8,9 @@
#include <Grid/qcd/utils/ScalarObjs.h>
// Include representations
#include <Grid/qcd/utils/SUn.h>
#include <Grid/qcd/utils/GaugeGroup.h>
#include <Grid/qcd/utils/SUnAdjoint.h>
#include <Grid/qcd/utils/SUnTwoIndex.h>
#include <Grid/qcd/utils/GaugeGroupTwoIndex.h>
// All-to-all contraction kernels that touch the
// internal lattice structure

View File

@ -66,13 +66,61 @@ template<class vtype,int N> accelerator_inline iMatrix<vtype,N> Ta(const iMatrix
return ret;
}
template<class vtype> accelerator_inline iScalar<vtype> SpTa(const iScalar<vtype>&r)
{
iScalar<vtype> ret;
ret._internal = SpTa(r._internal);
return ret;
}
template<class vtype,int N> accelerator_inline iVector<vtype,N> SpTa(const iVector<vtype,N>&r)
{
iVector<vtype,N> ret;
for(int i=0;i<N;i++){
ret._internal[i] = SpTa(r._internal[i]);
}
return ret;
}
template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
accelerator_inline iMatrix<vtype,N> SpTa(const iMatrix<vtype,N> &arg)
{
// Generalises Ta to Sp2n
// Applies the following projections
// P_{antihermitian} P_{antihermitian-Sp-algebra} P_{traceless}
// where the ordering matters
// P_{traceless} subtracts the trace
// P_{antihermitian-Sp-algebra} provides the block structure of the algebra based on U = exp(T) i.e. anti-hermitian generators
// P_{antihermitian} does in-adj(in) / 2
iMatrix<vtype,N> ret(arg);
double factor = (1.0/(double)N);
vtype nrm;
nrm = 0.5;
ret = arg - (trace(arg)*factor);
for(int c1=0;c1<N/2;c1++)
{
for(int c2=0;c2<N/2;c2++)
{
ret._internal[c1][c2] = nrm*(conjugate(ret._internal[c1+N/2][c2+N/2]) + ret._internal[c1][c2]); // new[up-left] = old[up-left]+old*[down-right]
ret._internal[c1][c2+N/2] = nrm*(ret._internal[c1][c2+N/2] - conjugate(ret._internal[c1+N/2][c2])); // new[up-right] = old[up-right]-old*[down-left]
}
for(int c2=N/2;c2<N;c2++)
{
ret._internal[c1+N/2][c2-N/2] = -conjugate(ret._internal[c1][c2]); // reconstructs lower blocks
ret._internal[c1+N/2][c2] = conjugate(ret._internal[c1][c2-N/2]); // from upper blocks
}
}
ret = (ret - adj(ret))*0.5;
return ret;
}
///////////////////////////////////////////////
// ProjectOnGroup function for scalar, vector, matrix
// Projects on orthogonal, unitary group
///////////////////////////////////////////////
template<class vtype> accelerator_inline iScalar<vtype> ProjectOnGroup(const iScalar<vtype>&r)
{
iScalar<vtype> ret;
@ -137,6 +185,85 @@ accelerator_inline iMatrix<vtype,N> ProjectOnGroup(const iMatrix<vtype,N> &arg)
return ret;
}
// re-do for sp2n
// Ta cannot be defined here for Sp2n because I need the generators from the Sp class
// It is defined in gauge impl types
template<class vtype> accelerator_inline iScalar<vtype> ProjectOnSpGroup(const iScalar<vtype>&r)
{
iScalar<vtype> ret;
ret._internal = ProjectOnSpGroup(r._internal);
return ret;
}
template<class vtype,int N> accelerator_inline iVector<vtype,N> ProjectOnSpGroup(const iVector<vtype,N>&r)
{
iVector<vtype,N> ret;
for(int i=0;i<N;i++){
ret._internal[i] = ProjectOnSpGroup(r._internal[i]);
}
return ret;
}
// int N is 2n in Sp(2n)
template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
accelerator_inline iMatrix<vtype,N> ProjectOnSpGroup(const iMatrix<vtype,N> &arg)
{
// need a check for the group type?
iMatrix<vtype,N> ret(arg);
vtype nrm;
vtype inner;
for(int c1=0;c1<N/2;c1++)
{
for (int b=0; b<c1; b++) // remove the b-rows from U_c1
{
decltype(ret._internal[b][b]*ret._internal[b][b]) pr;
decltype(ret._internal[b][b]*ret._internal[b][b]) prn;
zeroit(pr);
zeroit(prn);
for(int c=0; c<N; c++)
{
pr += conjugate(ret._internal[c1][c])*ret._internal[b][c]; // <U_c1 | U_b >
prn += conjugate(ret._internal[c1][c])*ret._internal[b+N/2][c]; // <U_c1 | U_{b+N} >
}
for(int c=0; c<N; c++)
{
ret._internal[c1][c] -= (conjugate(pr) * ret._internal[b][c] + conjugate(prn) * ret._internal[b+N/2][c] ); // U_c1 -= ( <U_c1 | U_b > U_b + <U_c1 | U_{b+N} > U_{b+N} )
}
}
zeroit(inner);
for(int c2=0;c2<N;c2++)
{
inner += innerProduct(ret._internal[c1][c2],ret._internal[c1][c2]);
}
nrm = sqrt(inner);
nrm = 1.0/nrm;
for(int c2=0;c2<N;c2++)
{
ret._internal[c1][c2]*= nrm;
}
for(int c2=0;c2<N/2;c2++)
{
ret._internal[c1+N/2][c2+N/2] = conjugate(ret._internal[c1][c2]); // down right in the new matrix = (up-left)* of the old matrix
}
for(int c2=N/2;c2<N;c2++)
{
ret._internal[c1+N/2][c2-N/2] = -conjugate(ret._internal[c1][c2]);; // down left in the new matrix = -(up-right)* of the old
}
}
return ret;
}
NAMESPACE_END(Grid);
#endif

View File

@ -53,7 +53,6 @@ template<class vtype, int N> accelerator_inline iVector<vtype, N> Exponentiate(c
}
// Specialisation: Cayley-Hamilton exponential for SU(3)
#if 0
template<class vtype, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0>::type * =nullptr>