mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-22 01:32:03 +01:00
Merge remote-tracking branch 'LupoA/develop' into LupoA-develop
This commit is contained in:
@ -66,13 +66,61 @@ template<class vtype,int N> accelerator_inline iMatrix<vtype,N> Ta(const iMatrix
|
||||
return ret;
|
||||
}
|
||||
|
||||
template<class vtype> accelerator_inline iScalar<vtype> SpTa(const iScalar<vtype>&r)
|
||||
{
|
||||
iScalar<vtype> ret;
|
||||
ret._internal = SpTa(r._internal);
|
||||
return ret;
|
||||
}
|
||||
template<class vtype,int N> accelerator_inline iVector<vtype,N> SpTa(const iVector<vtype,N>&r)
|
||||
{
|
||||
iVector<vtype,N> ret;
|
||||
for(int i=0;i<N;i++){
|
||||
ret._internal[i] = SpTa(r._internal[i]);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
|
||||
accelerator_inline iMatrix<vtype,N> SpTa(const iMatrix<vtype,N> &arg)
|
||||
{
|
||||
// Generalises Ta to Sp2n
|
||||
// Applies the following projections
|
||||
// P_{antihermitian} P_{antihermitian-Sp-algebra} P_{traceless}
|
||||
// where the ordering matters
|
||||
// P_{traceless} subtracts the trace
|
||||
// P_{antihermitian-Sp-algebra} provides the block structure of the algebra based on U = exp(T) i.e. anti-hermitian generators
|
||||
// P_{antihermitian} does in-adj(in) / 2
|
||||
iMatrix<vtype,N> ret(arg);
|
||||
double factor = (1.0/(double)N);
|
||||
vtype nrm;
|
||||
nrm = 0.5;
|
||||
|
||||
ret = arg - (trace(arg)*factor);
|
||||
|
||||
for(int c1=0;c1<N/2;c1++)
|
||||
{
|
||||
for(int c2=0;c2<N/2;c2++)
|
||||
{
|
||||
ret._internal[c1][c2] = nrm*(conjugate(ret._internal[c1+N/2][c2+N/2]) + ret._internal[c1][c2]); // new[up-left] = old[up-left]+old*[down-right]
|
||||
ret._internal[c1][c2+N/2] = nrm*(ret._internal[c1][c2+N/2] - conjugate(ret._internal[c1+N/2][c2])); // new[up-right] = old[up-right]-old*[down-left]
|
||||
}
|
||||
for(int c2=N/2;c2<N;c2++)
|
||||
{
|
||||
ret._internal[c1+N/2][c2-N/2] = -conjugate(ret._internal[c1][c2]); // reconstructs lower blocks
|
||||
ret._internal[c1+N/2][c2] = conjugate(ret._internal[c1][c2-N/2]); // from upper blocks
|
||||
}
|
||||
}
|
||||
|
||||
ret = (ret - adj(ret))*0.5;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////
|
||||
// ProjectOnGroup function for scalar, vector, matrix
|
||||
// Projects on orthogonal, unitary group
|
||||
///////////////////////////////////////////////
|
||||
|
||||
|
||||
template<class vtype> accelerator_inline iScalar<vtype> ProjectOnGroup(const iScalar<vtype>&r)
|
||||
{
|
||||
iScalar<vtype> ret;
|
||||
@ -137,6 +185,85 @@ accelerator_inline iMatrix<vtype,N> ProjectOnGroup(const iMatrix<vtype,N> &arg)
|
||||
return ret;
|
||||
}
|
||||
|
||||
// re-do for sp2n
|
||||
|
||||
// Ta cannot be defined here for Sp2n because I need the generators from the Sp class
|
||||
// It is defined in gauge impl types
|
||||
|
||||
template<class vtype> accelerator_inline iScalar<vtype> ProjectOnSpGroup(const iScalar<vtype>&r)
|
||||
{
|
||||
iScalar<vtype> ret;
|
||||
ret._internal = ProjectOnSpGroup(r._internal);
|
||||
return ret;
|
||||
}
|
||||
template<class vtype,int N> accelerator_inline iVector<vtype,N> ProjectOnSpGroup(const iVector<vtype,N>&r)
|
||||
{
|
||||
iVector<vtype,N> ret;
|
||||
for(int i=0;i<N;i++){
|
||||
ret._internal[i] = ProjectOnSpGroup(r._internal[i]);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
// int N is 2n in Sp(2n)
|
||||
template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
|
||||
accelerator_inline iMatrix<vtype,N> ProjectOnSpGroup(const iMatrix<vtype,N> &arg)
|
||||
{
|
||||
// need a check for the group type?
|
||||
iMatrix<vtype,N> ret(arg);
|
||||
vtype nrm;
|
||||
vtype inner;
|
||||
|
||||
for(int c1=0;c1<N/2;c1++)
|
||||
{
|
||||
|
||||
for (int b=0; b<c1; b++) // remove the b-rows from U_c1
|
||||
{
|
||||
decltype(ret._internal[b][b]*ret._internal[b][b]) pr;
|
||||
decltype(ret._internal[b][b]*ret._internal[b][b]) prn;
|
||||
zeroit(pr);
|
||||
zeroit(prn);
|
||||
|
||||
for(int c=0; c<N; c++)
|
||||
{
|
||||
pr += conjugate(ret._internal[c1][c])*ret._internal[b][c]; // <U_c1 | U_b >
|
||||
prn += conjugate(ret._internal[c1][c])*ret._internal[b+N/2][c]; // <U_c1 | U_{b+N} >
|
||||
}
|
||||
|
||||
|
||||
for(int c=0; c<N; c++)
|
||||
{
|
||||
ret._internal[c1][c] -= (conjugate(pr) * ret._internal[b][c] + conjugate(prn) * ret._internal[b+N/2][c] ); // U_c1 -= ( <U_c1 | U_b > U_b + <U_c1 | U_{b+N} > U_{b+N} )
|
||||
}
|
||||
}
|
||||
|
||||
zeroit(inner);
|
||||
for(int c2=0;c2<N;c2++)
|
||||
{
|
||||
inner += innerProduct(ret._internal[c1][c2],ret._internal[c1][c2]);
|
||||
}
|
||||
|
||||
nrm = sqrt(inner);
|
||||
nrm = 1.0/nrm;
|
||||
for(int c2=0;c2<N;c2++)
|
||||
{
|
||||
ret._internal[c1][c2]*= nrm;
|
||||
}
|
||||
|
||||
for(int c2=0;c2<N/2;c2++)
|
||||
{
|
||||
ret._internal[c1+N/2][c2+N/2] = conjugate(ret._internal[c1][c2]); // down right in the new matrix = (up-left)* of the old matrix
|
||||
}
|
||||
|
||||
for(int c2=N/2;c2<N;c2++)
|
||||
{
|
||||
ret._internal[c1+N/2][c2-N/2] = -conjugate(ret._internal[c1][c2]);; // down left in the new matrix = -(up-right)* of the old
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
||||
|
Reference in New Issue
Block a user