1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 09:15:38 +01:00

Merge pull request #172 from fionnoh/feature/hadrons

feature/hadrons -> feature/hadrons-a2a
This commit is contained in:
Antonin Portelli 2018-07-25 17:20:19 +00:00 committed by GitHub
commit cce339deaf
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
19 changed files with 1766 additions and 180 deletions

View File

@ -0,0 +1,252 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./benchmarks/Benchmark_wilson.cc
Copyright (C) 2018
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
#include "Grid/util/Profiling.h"
template<class vobj>
void sliceInnerProductMesonField(std::vector< std::vector<ComplexD> > &mat,
const std::vector<Lattice<vobj> > &lhs,
const std::vector<Lattice<vobj> > &rhs,
int orthogdim)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Lblock = lhs.size();
int Rblock = rhs.size();
GridBase *grid = lhs[0]._grid;
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
int Nt = grid->GlobalDimensions()[orthogdim];
assert(mat.size()==Lblock*Rblock);
for(int t=0;t<mat.size();t++){
assert(mat[t].size()==Nt);
}
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
// will locally sum vectors first
// sum across these down to scalars
// splitting the SIMD
std::vector<vector_type,alignedAllocator<vector_type> > lvSum(rd*Lblock*Rblock);
for (int r = 0; r < rd * Lblock * Rblock; r++){
lvSum[r] = zero;
}
std::vector<scalar_type > lsSum(ld*Lblock*Rblock,scalar_type(0.0));
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
std::cout << GridLogMessage << " Entering first parallel loop "<<std::endl;
// Parallelise over t-direction doesn't expose as much parallelism as needed for KNL
parallel_for(int r=0;r<rd;r++){
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
for(int i=0;i<Lblock;i++){
auto left = conjugate(lhs[i]._odata[ss]);
for(int j=0;j<Rblock;j++){
int idx = i+Lblock*j+Lblock*Rblock*r;
auto right = rhs[j]._odata[ss];
#if 1
vector_type vv = left()(0)(0) * right()(0)(0)
+ left()(0)(1) * right()(0)(1)
+ left()(0)(2) * right()(0)(2)
+ left()(1)(0) * right()(1)(0)
+ left()(1)(1) * right()(1)(1)
+ left()(1)(2) * right()(1)(2)
+ left()(2)(0) * right()(2)(0)
+ left()(2)(1) * right()(2)(1)
+ left()(2)(2) * right()(2)(2)
+ left()(3)(0) * right()(3)(0)
+ left()(3)(1) * right()(3)(1)
+ left()(3)(2) * right()(3)(2);
#else
vector_type vv = TensorRemove(innerProduct(left,right));
#endif
lvSum[idx]=lvSum[idx]+vv;
}
}
}
}
}
std::cout << GridLogMessage << " Entering second parallel loop "<<std::endl;
// Sum across simd lanes in the plane, breaking out orthog dir.
parallel_for(int rt=0;rt<rd;rt++){
std::vector<int> icoor(Nd);
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
iScalar<vector_type> temp;
std::vector<iScalar<scalar_type> > extracted(Nsimd);
temp._internal = lvSum[i+Lblock*j+Lblock*Rblock*rt];
extract(temp,extracted);
for(int idx=0;idx<Nsimd;idx++){
grid->iCoorFromIindex(icoor,idx);
int ldx =rt+icoor[orthogdim]*rd;
int ij_dx = i+Lblock*j+Lblock*Rblock*ldx;
lsSum[ij_dx]=lsSum[ij_dx]+extracted[idx]._internal;
}
}}
}
std::cout << GridLogMessage << " Entering non parallel loop "<<std::endl;
for(int t=0;t<fd;t++)
{
int pt = t / ld; // processor plane
int lt = t % ld;
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
if (pt == grid->_processor_coor[orthogdim]){
int ij_dx = i + Lblock * j + Lblock * Rblock * lt;
mat[i+j*Lblock][t] = lsSum[ij_dx];
}
else{
mat[i+j*Lblock][t] = scalar_type(0.0);
}
}}
}
std::cout << GridLogMessage << " Done "<<std::endl;
// defer sum over nodes.
return;
}
/*
template void sliceInnerProductMesonField<SpinColourVector>(std::vector< std::vector<ComplexD> > &mat,
const std::vector<Lattice<SpinColourVector> > &lhs,
const std::vector<Lattice<SpinColourVector> > &rhs,
int orthogdim) ;
*/
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
int nt = latt_size[Tp];
uint64_t vol = 1;
for(int d=0;d<Nd;d++){
vol = vol*latt_size[d];
}
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid);
pRNG.SeedFixedIntegers(seeds);
const int Nm = 32; // number of all modes (high + low)
std::vector<LatticeFermion> v(Nm,&Grid);
std::vector<LatticeFermion> w(Nm,&Grid);
for(int i=0;i<Nm;i++) {
random(pRNG,v[i]);
random(pRNG,w[i]);
}
double flops = vol * (11.0 * 8.0 + 6.0) * Nm*Nm;
double byte = vol * (12.0 * sizeof(Complex) ) * Nm*Nm;
std::vector<ComplexD> ip(nt);
std::vector<std::vector<ComplexD> > MesonFields (Nm*Nm);
std::vector<std::vector<ComplexD> > MesonFieldsRef(Nm*Nm);
for(int i=0;i<Nm;i++) {
for(int j=0;j<Nm;j++) {
MesonFields [i+j*Nm].resize(nt);
MesonFieldsRef[i+j*Nm].resize(nt);
}}
GridLogMessage.TimingMode(1);
std::cout<<GridLogMessage << "Running loop with sliceInnerProductVector"<<std::endl;
double t0 = usecond();
for(int i=0;i<Nm;i++) {
for(int j=0;j<Nm;j++) {
sliceInnerProductVector(ip, w[i],v[j],Tp);
for(int t=0;t<nt;t++){
MesonFieldsRef[i+j*Nm][t] = ip[t];
}
}}
double t1 = usecond();
std::cout<<GridLogMessage << "Done "<< flops/(t1-t0) <<" mflops " <<std::endl;
std::cout<<GridLogMessage << "Done "<< byte /(t1-t0) <<" MB/s " <<std::endl;
std::cout<<GridLogMessage << "Running loop with new code for Nt="<<nt<<std::endl;
double t2 = usecond();
sliceInnerProductMesonField(MesonFields,w,v,Tp);
double t3 = usecond();
std::cout<<GridLogMessage << "Done "<< flops/(t3-t2) <<" mflops " <<std::endl;
std::cout<<GridLogMessage << "Done "<< byte /(t3-t2) <<" MB/s " <<std::endl;
RealD err = 0;
ComplexD diff;
for(int i=0;i<Nm;i++) {
for(int j=0;j<Nm;j++) {
for(int t=0;t<nt;t++){
diff = MesonFields[i+Nm*j][t] - MesonFieldsRef[i+Nm*j][t];
err += real(diff*conj(diff));
}
}}
std::cout<<GridLogMessage << "Norm error "<< err <<std::endl;
Grid_finalize();
}

View File

@ -0,0 +1,146 @@
#ifndef A2A_Reduction_hpp_
#define A2A_Reduction_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Environment.hpp>
#include <Grid/Hadrons/Solver.hpp>
BEGIN_HADRONS_NAMESPACE
////////////////////////////////////////////
// A2A Meson Field Inner Product
////////////////////////////////////////////
template <class FermionField>
void sliceInnerProductMesonField(std::vector<std::vector<ComplexD>> &mat,
const std::vector<Lattice<FermionField>> &lhs,
const std::vector<Lattice<FermionField>> &rhs,
int orthogdim)
{
typedef typename FermionField::scalar_type scalar_type;
typedef typename FermionField::vector_type vector_type;
int Lblock = lhs.size();
int Rblock = rhs.size();
GridBase *grid = lhs[0]._grid;
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
int Nt = grid->GlobalDimensions()[orthogdim];
assert(mat.size() == Lblock * Rblock);
for (int t = 0; t < mat.size(); t++)
{
assert(mat[t].size() == Nt);
}
int fd = grid->_fdimensions[orthogdim];
int ld = grid->_ldimensions[orthogdim];
int rd = grid->_rdimensions[orthogdim];
// will locally sum vectors first
// sum across these down to scalars
// splitting the SIMD
std::vector<vector_type, alignedAllocator<vector_type>> lvSum(rd * Lblock * Rblock);
for(int r=0;r<rd * Lblock * Rblock;r++)
{
lvSum[r]=zero;
}
std::vector<scalar_type> lsSum(ld * Lblock * Rblock, scalar_type(0.0));
int e1 = grid->_slice_nblock[orthogdim];
int e2 = grid->_slice_block[orthogdim];
int stride = grid->_slice_stride[orthogdim];
// std::cout << GridLogMessage << " Entering first parallel loop " << std::endl;
// Parallelise over t-direction doesn't expose as much parallelism as needed for KNL
parallel_for(int r = 0; r < rd; r++)
{
int so = r * grid->_ostride[orthogdim]; // base offset for start of plane
for (int n = 0; n < e1; n++)
{
for (int b = 0; b < e2; b++)
{
int ss = so + n * stride + b;
for (int i = 0; i < Lblock; i++)
{
auto left = conjugate(lhs[i]._odata[ss]);
for (int j = 0; j < Rblock; j++)
{
int idx = i + Lblock * j + Lblock * Rblock * r;
auto right = rhs[j]._odata[ss];
vector_type vv = left()(0)(0) * right()(0)(0)
+ left()(0)(1) * right()(0)(1)
+ left()(0)(2) * right()(0)(2)
+ left()(1)(0) * right()(1)(0)
+ left()(1)(1) * right()(1)(1)
+ left()(1)(2) * right()(1)(2)
+ left()(2)(0) * right()(2)(0)
+ left()(2)(1) * right()(2)(1)
+ left()(2)(2) * right()(2)(2)
+ left()(3)(0) * right()(3)(0)
+ left()(3)(1) * right()(3)(1)
+ left()(3)(2) * right()(3)(2);
lvSum[idx] = lvSum[idx] + vv;
}
}
}
}
}
// std::cout << GridLogMessage << " Entering second parallel loop " << std::endl;
// Sum across simd lanes in the plane, breaking out orthog dir.
parallel_for(int rt = 0; rt < rd; rt++)
{
std::vector<int> icoor(Nd);
for (int i = 0; i < Lblock; i++)
{
for (int j = 0; j < Rblock; j++)
{
iScalar<vector_type> temp;
std::vector<iScalar<scalar_type>> extracted(Nsimd);
temp._internal = lvSum[i + Lblock * j + Lblock * Rblock * rt];
extract(temp, extracted);
for (int idx = 0; idx < Nsimd; idx++)
{
grid->iCoorFromIindex(icoor, idx);
int ldx = rt + icoor[orthogdim] * rd;
int ij_dx = i + Lblock * j + Lblock * Rblock * ldx;
lsSum[ij_dx] = lsSum[ij_dx] + extracted[idx]._internal;
}
}
}
}
// std::cout << GridLogMessage << " Entering non parallel loop " << std::endl;
for (int t = 0; t < fd; t++)
{
int pt = t/ld; // processor plane
int lt = t%ld;
for (int i = 0; i < Lblock; i++)
{
for (int j = 0; j < Rblock; j++)
{
if (pt == grid->_processor_coor[orthogdim])
{
int ij_dx = i + Lblock * j + Lblock * Rblock * lt;
mat[i + j * Lblock][t] = lsSum[ij_dx];
}
else
{
mat[i + j * Lblock][t] = scalar_type(0.0);
}
}
}
}
// std::cout << GridLogMessage << " Done " << std::endl;
// defer sum over nodes.
return;
}
END_HADRONS_NAMESPACE
#endif // A2A_Reduction_hpp_

View File

@ -0,0 +1,205 @@
#ifndef A2A_Vectors_hpp_
#define A2A_Vectors_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Environment.hpp>
#include <Grid/Hadrons/Solver.hpp>
BEGIN_HADRONS_NAMESPACE
////////////////////////////////
// A2A Modes
////////////////////////////////
template <class Field, class Matrix, class Solver>
class A2AModesSchurDiagTwo
{
private:
const std::vector<Field> *evec;
const std::vector<RealD> *eval;
Matrix &action;
Solver &solver;
std::vector<Field> w_high_5d, v_high_5d, w_high_4d, v_high_4d;
const int Nl, Nh;
const bool return_5d;
public:
A2AModesSchurDiagTwo(const std::vector<Field> *_evec, const std::vector<RealD> *_eval,
Matrix &_action,
Solver &_solver,
std::vector<Field> _w_high_5d, std::vector<Field> _v_high_5d,
std::vector<Field> _w_high_4d, std::vector<Field> _v_high_4d,
const int _Nl, const int _Nh,
const bool _return_5d)
: evec(_evec), eval(_eval),
action(_action),
solver(_solver),
w_high_5d(_w_high_5d), v_high_5d(_v_high_5d),
w_high_4d(_w_high_4d), v_high_4d(_v_high_4d),
Nl(_Nl), Nh(_Nh),
return_5d(_return_5d){};
void high_modes(Field &source_5d, Field &w_source_5d, Field &source_4d, int i)
{
int i5d;
LOG(Message) << "A2A high modes for i = " << i << std::endl;
i5d = 0;
if (return_5d) i5d = i;
this->high_mode_v(action, solver, source_5d, v_high_5d[i5d], v_high_4d[i]);
this->high_mode_w(w_source_5d, source_4d, w_high_5d[i5d], w_high_4d[i]);
}
void return_v(int i, Field &vout_5d, Field &vout_4d)
{
if (i < Nl)
{
this->low_mode_v(action, evec->at(i), eval->at(i), vout_5d, vout_4d);
}
else
{
vout_4d = v_high_4d[i - Nl];
if (!(return_5d)) i = Nl;
vout_5d = v_high_5d[i - Nl];
}
}
void return_w(int i, Field &wout_5d, Field &wout_4d)
{
if (i < Nl)
{
this->low_mode_w(action, evec->at(i), eval->at(i), wout_5d, wout_4d);
}
else
{
wout_4d = w_high_4d[i - Nl];
if (!(return_5d)) i = Nl;
wout_5d = w_high_5d[i - Nl];
}
}
void low_mode_v(Matrix &action, const Field &evec, const RealD &eval, Field &vout_5d, Field &vout_4d)
{
GridBase *grid = action.RedBlackGrid();
Field src_o(grid);
Field sol_e(grid);
Field sol_o(grid);
Field tmp(grid);
src_o = evec;
src_o.checkerboard = Odd;
pickCheckerboard(Even, sol_e, vout_5d);
pickCheckerboard(Odd, sol_o, vout_5d);
/////////////////////////////////////////////////////
// v_ie = -(1/eval_i) * MeeInv Meo MooInv evec_i
/////////////////////////////////////////////////////
action.MooeeInv(src_o, tmp);
assert(tmp.checkerboard == Odd);
action.Meooe(tmp, sol_e);
assert(sol_e.checkerboard == Even);
action.MooeeInv(sol_e, tmp);
assert(tmp.checkerboard == Even);
sol_e = (-1.0 / eval) * tmp;
assert(sol_e.checkerboard == Even);
/////////////////////////////////////////////////////
// v_io = (1/eval_i) * MooInv evec_i
/////////////////////////////////////////////////////
action.MooeeInv(src_o, tmp);
assert(tmp.checkerboard == Odd);
sol_o = (1.0 / eval) * tmp;
assert(sol_o.checkerboard == Odd);
setCheckerboard(vout_5d, sol_e);
assert(sol_e.checkerboard == Even);
setCheckerboard(vout_5d, sol_o);
assert(sol_o.checkerboard == Odd);
action.ExportPhysicalFermionSolution(vout_5d, vout_4d);
}
void low_mode_w(Matrix &action, const Field &evec, const RealD &eval, Field &wout_5d, Field &wout_4d)
{
GridBase *grid = action.RedBlackGrid();
SchurDiagTwoOperator<Matrix, Field> _HermOpEO(action);
Field src_o(grid);
Field sol_e(grid);
Field sol_o(grid);
Field tmp(grid);
GridBase *fgrid = action.Grid();
Field tmp_wout(fgrid);
src_o = evec;
src_o.checkerboard = Odd;
pickCheckerboard(Even, sol_e, tmp_wout);
pickCheckerboard(Odd, sol_o, tmp_wout);
/////////////////////////////////////////////////////
// w_ie = - MeeInvDag MoeDag Doo evec_i
/////////////////////////////////////////////////////
_HermOpEO.Mpc(src_o, tmp);
assert(tmp.checkerboard == Odd);
action.MeooeDag(tmp, sol_e);
assert(sol_e.checkerboard == Even);
action.MooeeInvDag(sol_e, tmp);
assert(tmp.checkerboard == Even);
sol_e = (-1.0) * tmp;
/////////////////////////////////////////////////////
// w_io = Doo evec_i
/////////////////////////////////////////////////////
_HermOpEO.Mpc(src_o, sol_o);
assert(sol_o.checkerboard == Odd);
setCheckerboard(tmp_wout, sol_e);
assert(sol_e.checkerboard == Even);
setCheckerboard(tmp_wout, sol_o);
assert(sol_o.checkerboard == Odd);
action.DminusDag(tmp_wout, wout_5d);
action.ExportPhysicalFermionSource(wout_5d, wout_4d);
}
void high_mode_v(Matrix &action, Solver &solver, const Field &source, Field &vout_5d, Field &vout_4d)
{
GridBase *fgrid = action.Grid();
solver(vout_5d, source); // Note: solver is solver(out, in)
action.ExportPhysicalFermionSolution(vout_5d, vout_4d);
}
void high_mode_w(const Field &w_source_5d, const Field &source_4d, Field &wout_5d, Field &wout_4d)
{
wout_5d = w_source_5d;
wout_4d = source_4d;
}
};
// TODO: A2A for coarse eigenvectors
// template <class FineField, class CoarseField, class Matrix, class Solver>
// class A2ALMSchurDiagTwoCoarse : public A2AModesSchurDiagTwo<FineField, Matrix, Solver>
// {
// private:
// const std::vector<FineField> &subspace;
// const std::vector<CoarseField> &evec_coarse;
// const std::vector<RealD> &eval_coarse;
// Matrix &action;
// public:
// A2ALMSchurDiagTwoCoarse(const std::vector<FineField> &_subspace, const std::vector<CoarseField> &_evec_coarse, const std::vector<RealD> &_eval_coarse, Matrix &_action)
// : subspace(_subspace), evec_coarse(_evec_coarse), eval_coarse(_eval_coarse), action(_action){};
// void operator()(int i, FineField &vout, FineField &wout)
// {
// FineField prom_evec(subspace[0]._grid);
// blockPromote(evec_coarse[i], prom_evec, subspace);
// this->low_mode_v(action, prom_evec, eval_coarse[i], vout);
// this->low_mode_w(action, prom_evec, eval_coarse[i], wout);
// }
// };
END_HADRONS_NAMESPACE
#endif // A2A_Vectors_hpp_

View File

@ -14,6 +14,8 @@ libHadrons_a_SOURCES = \
libHadrons_adir = $(pkgincludedir)/Hadrons
nobase_libHadrons_a_HEADERS = \
$(modules_hpp) \
AllToAllVectors.hpp \
AllToAllReduction.hpp \
Application.hpp \
EigenPack.hpp \
Environment.hpp \

View File

@ -1,57 +1,60 @@
#include <Grid/Hadrons/Modules/MContraction/Baryon.hpp>
#include <Grid/Hadrons/Modules/MContraction/Meson.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonian.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonianNonEye.hpp>
#include <Grid/Hadrons/Modules/MContraction/DiscLoop.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakNeutral4ptDisc.hpp>
#include <Grid/Hadrons/Modules/MContraction/Gamma3pt.hpp>
#include <Grid/Hadrons/Modules/MContraction/WardIdentity.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonianEye.hpp>
#include <Grid/Hadrons/Modules/MFermion/FreeProp.hpp>
#include <Grid/Hadrons/Modules/MFermion/GaugeProp.hpp>
#include <Grid/Hadrons/Modules/MSource/SeqConserved.hpp>
#include <Grid/Hadrons/Modules/MSource/SeqGamma.hpp>
#include <Grid/Hadrons/Modules/MSource/Z2.hpp>
#include <Grid/Hadrons/Modules/MSource/Point.hpp>
#include <Grid/Hadrons/Modules/MSource/Wall.hpp>
#include <Grid/Hadrons/Modules/MSource/Z2.hpp>
#include <Grid/Hadrons/Modules/MSource/SeqConserved.hpp>
#include <Grid/Hadrons/Modules/MSink/Smear.hpp>
#include <Grid/Hadrons/Modules/MSink/Point.hpp>
#include <Grid/Hadrons/Modules/MSolver/LocalCoherenceLanczos.hpp>
#include <Grid/Hadrons/Modules/MSolver/RBPrecCG.hpp>
#include <Grid/Hadrons/Modules/MGauge/UnitEm.hpp>
#include <Grid/Hadrons/Modules/MGauge/StoutSmearing.hpp>
#include <Grid/Hadrons/Modules/MGauge/Unit.hpp>
#include <Grid/Hadrons/Modules/MGauge/Random.hpp>
#include <Grid/Hadrons/Modules/MGauge/FundtoHirep.hpp>
#include <Grid/Hadrons/Modules/MGauge/StochEm.hpp>
#include <Grid/Hadrons/Modules/MUtilities/TestSeqGamma.hpp>
#include <Grid/Hadrons/Modules/MUtilities/TestSeqConserved.hpp>
#include <Grid/Hadrons/Modules/MLoop/NoiseLoop.hpp>
#include <Grid/Hadrons/Modules/MScalar/FreeProp.hpp>
#include <Grid/Hadrons/Modules/MScalar/VPCounterTerms.hpp>
#include <Grid/Hadrons/Modules/MScalar/ScalarVP.hpp>
#include <Grid/Hadrons/Modules/MScalar/Scalar.hpp>
#include <Grid/Hadrons/Modules/MScalar/ChargedProp.hpp>
#include <Grid/Hadrons/Modules/MAction/DWF.hpp>
#include <Grid/Hadrons/Modules/MAction/MobiusDWF.hpp>
#include <Grid/Hadrons/Modules/MAction/Wilson.hpp>
#include <Grid/Hadrons/Modules/MAction/WilsonClover.hpp>
#include <Grid/Hadrons/Modules/MAction/ZMobiusDWF.hpp>
#include <Grid/Hadrons/Modules/MAction/ScaledDWF.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/StochFreeField.hpp>
#include <Grid/Hadrons/Modules/MIO/LoadBinary.hpp>
#include <Grid/Hadrons/Modules/MIO/LoadEigenPack.hpp>
#include <Grid/Hadrons/Modules/MIO/LoadCoarseEigenPack.hpp>
#include <Grid/Hadrons/Modules/MIO/LoadNersc.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/Utils.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/Grad.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/TrPhi.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/TwoPointNPR.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/TwoPoint.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/TransProj.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/TrKinetic.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/StochFreeField.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/ShiftProbe.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/Div.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/TimeMomProbe.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/Div.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/TrMag.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/EMT.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/TwoPoint.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/TrPhi.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/Utils.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/TransProj.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/Grad.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/TrKinetic.hpp>
#include <Grid/Hadrons/Modules/MIO/LoadEigenPack.hpp>
#include <Grid/Hadrons/Modules/MIO/LoadNersc.hpp>
#include <Grid/Hadrons/Modules/MIO/LoadCoarseEigenPack.hpp>
#include <Grid/Hadrons/Modules/MIO/LoadBinary.hpp>
#include <Grid/Hadrons/Modules/MAction/ZMobiusDWF.hpp>
#include <Grid/Hadrons/Modules/MAction/ScaledDWF.hpp>
#include <Grid/Hadrons/Modules/MAction/Wilson.hpp>
#include <Grid/Hadrons/Modules/MAction/WilsonClover.hpp>
#include <Grid/Hadrons/Modules/MAction/MobiusDWF.hpp>
#include <Grid/Hadrons/Modules/MAction/DWF.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonian.hpp>
#include <Grid/Hadrons/Modules/MContraction/DiscLoop.hpp>
#include <Grid/Hadrons/Modules/MContraction/Meson.hpp>
#include <Grid/Hadrons/Modules/MContraction/WardIdentity.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonianEye.hpp>
#include <Grid/Hadrons/Modules/MContraction/Gamma3pt.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonianNonEye.hpp>
#include <Grid/Hadrons/Modules/MContraction/MesonFieldGamma.hpp>
#include <Grid/Hadrons/Modules/MContraction/Baryon.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakNeutral4ptDisc.hpp>
#include <Grid/Hadrons/Modules/MContraction/A2AMeson.hpp>
#include <Grid/Hadrons/Modules/MScalar/ScalarVP.hpp>
#include <Grid/Hadrons/Modules/MScalar/Scalar.hpp>
#include <Grid/Hadrons/Modules/MScalar/FreeProp.hpp>
#include <Grid/Hadrons/Modules/MScalar/ChargedProp.hpp>
#include <Grid/Hadrons/Modules/MScalar/VPCounterTerms.hpp>
#include <Grid/Hadrons/Modules/MUtilities/TestSeqConserved.hpp>
#include <Grid/Hadrons/Modules/MUtilities/TestSeqGamma.hpp>
#include <Grid/Hadrons/Modules/MFermion/FreeProp.hpp>
#include <Grid/Hadrons/Modules/MFermion/GaugeProp.hpp>
#include <Grid/Hadrons/Modules/MSolver/A2AVectors.hpp>
#include <Grid/Hadrons/Modules/MSolver/RBPrecCG.hpp>
#include <Grid/Hadrons/Modules/MSolver/LocalCoherenceLanczos.hpp>
#include <Grid/Hadrons/Modules/MLoop/NoiseLoop.hpp>
#include <Grid/Hadrons/Modules/MGauge/StoutSmearing.hpp>
#include <Grid/Hadrons/Modules/MGauge/StochEm.hpp>
#include <Grid/Hadrons/Modules/MGauge/FundtoHirep.hpp>
#include <Grid/Hadrons/Modules/MGauge/Unit.hpp>
#include <Grid/Hadrons/Modules/MGauge/Random.hpp>
#include <Grid/Hadrons/Modules/MGauge/UnitEm.hpp>

View File

@ -0,0 +1,8 @@
#include <Grid/Hadrons/Modules/MContraction/A2AMeson.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
template class Grid::Hadrons::MContraction::TA2AMeson<FIMPL>;
template class Grid::Hadrons::MContraction::TA2AMeson<ZFIMPL>;

View File

@ -0,0 +1,207 @@
#ifndef Hadrons_MContraction_A2AMeson_hpp_
#define Hadrons_MContraction_A2AMeson_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
#include <Grid/Hadrons/AllToAllVectors.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* A2AMeson *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
typedef std::pair<Gamma::Algebra, Gamma::Algebra> GammaPair;
class A2AMesonPar : Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(A2AMesonPar,
int, Nl,
int, N,
std::string, A2A1,
std::string, A2A2,
std::string, gammas,
std::string, output);
};
template <typename FImpl>
class TA2AMeson : public Module<A2AMesonPar>
{
public:
FERM_TYPE_ALIASES(FImpl, );
SOLVER_TYPE_ALIASES(FImpl, );
typedef A2AModesSchurDiagTwo<typename FImpl::FermionField, FMat, Solver> A2ABase;
class Result : Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Result,
Gamma::Algebra, gamma_snk,
Gamma::Algebra, gamma_src,
std::vector<Complex>, corr);
};
public:
// constructor
TA2AMeson(const std::string name);
// destructor
virtual ~TA2AMeson(void){};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
virtual void parseGammaString(std::vector<GammaPair> &gammaList);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER(A2AMeson, ARG(TA2AMeson<FIMPL>), MContraction);
MODULE_REGISTER(ZA2AMeson, ARG(TA2AMeson<ZFIMPL>), MContraction);
/******************************************************************************
* TA2AMeson implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TA2AMeson<FImpl>::TA2AMeson(const std::string name)
: Module<A2AMesonPar>(name)
{
}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TA2AMeson<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().A2A1 + "_class", par().A2A2 + "_class"};
in.push_back(par().A2A1 + "_w_high_4d");
in.push_back(par().A2A2 + "_v_high_4d");
return in;
}
template <typename FImpl>
std::vector<std::string> TA2AMeson<FImpl>::getOutput(void)
{
std::vector<std::string> out = {};
return out;
}
template <typename FImpl>
void TA2AMeson<FImpl>::parseGammaString(std::vector<GammaPair> &gammaList)
{
gammaList.clear();
// Parse individual contractions from input string.
gammaList = strToVec<GammaPair>(par().gammas);
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2AMeson<FImpl>::setup(void)
{
int nt = env().getDim(Tp);
int N = par().N;
int Ls_ = env().getObjectLs(par().A2A1 + "_class");
envTmp(std::vector<FermionField>, "w1", 1, N, FermionField(env().getGrid(1)));
envTmp(std::vector<FermionField>, "v1", 1, N, FermionField(env().getGrid(1)));
envTmpLat(FermionField, "tmpv_5d", Ls_);
envTmpLat(FermionField, "tmpw_5d", Ls_);
envTmp(std::vector<ComplexD>, "MF_x", 1, nt);
envTmp(std::vector<ComplexD>, "MF_y", 1, nt);
envTmp(std::vector<ComplexD>, "tmp", 1, nt);
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2AMeson<FImpl>::execute(void)
{
LOG(Message) << "Computing A2A meson contractions" << std::endl;
Result result;
Gamma g5(Gamma::Algebra::Gamma5);
std::vector<GammaPair> gammaList;
int nt = env().getDim(Tp);
parseGammaString(gammaList);
result.gamma_snk = gammaList[0].first;
result.gamma_src = gammaList[0].second;
result.corr.resize(nt);
int Nl = par().Nl;
int N = par().N;
LOG(Message) << "N for A2A cont: " << N << std::endl;
envGetTmp(std::vector<ComplexD>, MF_x);
envGetTmp(std::vector<ComplexD>, MF_y);
envGetTmp(std::vector<ComplexD>, tmp);
for (unsigned int t = 0; t < nt; ++t)
{
tmp[t] = TensorRemove(MF_x[t] * MF_y[t] * 0.0);
}
Gamma gSnk(gammaList[0].first);
Gamma gSrc(gammaList[0].second);
auto &a2a1_fn = envGet(A2ABase, par().A2A1 + "_class");
envGetTmp(std::vector<FermionField>, w1);
envGetTmp(std::vector<FermionField>, v1);
envGetTmp(FermionField, tmpv_5d);
envGetTmp(FermionField, tmpw_5d);
LOG(Message) << "Finding v and w vectors for N = " << N << std::endl;
for (int i = 0; i < N; i++)
{
a2a1_fn.return_v(i, tmpv_5d, v1[i]);
a2a1_fn.return_w(i, tmpw_5d, w1[i]);
}
LOG(Message) << "Found v and w vectors for N = " << N << std::endl;
for (unsigned int i = 0; i < N; i++)
{
v1[i] = gSnk * v1[i];
}
int ty;
for (unsigned int i = 0; i < N; i++)
{
for (unsigned int j = 0; j < N; j++)
{
mySliceInnerProductVector(MF_x, w1[i], v1[j], Tp);
mySliceInnerProductVector(MF_y, w1[j], v1[i], Tp);
for (unsigned int t = 0; t < nt; ++t)
{
for (unsigned int tx = 0; tx < nt; tx++)
{
ty = (tx + t) % nt;
tmp[t] += TensorRemove((MF_x[tx]) * (MF_y[ty]));
}
}
}
if (i % 10 == 0)
{
LOG(Message) << "MF for i = " << i << " of " << N << std::endl;
}
}
double NTinv = 1.0 / static_cast<double>(nt);
for (unsigned int t = 0; t < nt; ++t)
{
result.corr[t] = NTinv * tmp[t];
}
saveResult(par().output, "meson", result);
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MContraction_A2AMeson_hpp_

View File

@ -0,0 +1,8 @@
#include <Grid/Hadrons/Modules/MContraction/MesonFieldGamma.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
template class Grid::Hadrons::MContraction::TMesonFieldGamma<FIMPL>;
template class Grid::Hadrons::MContraction::TMesonFieldGamma<ZFIMPL>;

View File

@ -0,0 +1,269 @@
#ifndef Hadrons_MContraction_MesonFieldGamma_hpp_
#define Hadrons_MContraction_MesonFieldGamma_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
#include <Grid/Hadrons/AllToAllVectors.hpp>
#include <Grid/Hadrons/AllToAllReduction.hpp>
#include <Grid/Grid_Eigen_Dense.h>
#include <fstream>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* MesonFieldGamma *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
class MesonFieldPar : Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(MesonFieldPar,
int, Nl,
int, N,
int, Nblock,
std::string, A2A1,
std::string, A2A2,
std::string, gammas,
std::string, output);
};
template <typename FImpl>
class TMesonFieldGamma : public Module<MesonFieldPar>
{
public:
FERM_TYPE_ALIASES(FImpl, );
SOLVER_TYPE_ALIASES(FImpl, );
typedef A2AModesSchurDiagTwo<typename FImpl::FermionField, FMat, Solver> A2ABase;
class Result : Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Result,
Gamma::Algebra, gamma,
std::vector<std::vector<std::vector<ComplexD>>>, MesonField);
};
public:
// constructor
TMesonFieldGamma(const std::string name);
// destructor
virtual ~TMesonFieldGamma(void){};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
virtual void parseGammaString(std::vector<Gamma::Algebra> &gammaList);
virtual void vectorOfWs(std::vector<FermionField> &w, int i, int Nblock, FermionField &tmpw_5d, std::vector<FermionField> &vec_w);
virtual void vectorOfVs(std::vector<FermionField> &v, int j, int Nblock, FermionField &tmpv_5d, std::vector<FermionField> &vec_v);
virtual void gammaMult(std::vector<FermionField> &v, Gamma gamma);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER(MesonFieldGamma, ARG(TMesonFieldGamma<FIMPL>), MContraction);
MODULE_REGISTER(ZMesonFieldGamma, ARG(TMesonFieldGamma<ZFIMPL>), MContraction);
/******************************************************************************
* TMesonFieldGamma implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TMesonFieldGamma<FImpl>::TMesonFieldGamma(const std::string name)
: Module<MesonFieldPar>(name)
{
}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TMesonFieldGamma<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().A2A1 + "_class", par().A2A2 + "_class"};
in.push_back(par().A2A1 + "_w_high_4d");
in.push_back(par().A2A2 + "_v_high_4d");
return in;
}
template <typename FImpl>
std::vector<std::string> TMesonFieldGamma<FImpl>::getOutput(void)
{
std::vector<std::string> out = {};
return out;
}
template <typename FImpl>
void TMesonFieldGamma<FImpl>::parseGammaString(std::vector<Gamma::Algebra> &gammaList)
{
gammaList.clear();
// Determine gamma matrices to insert at source/sink.
if (par().gammas.compare("all") == 0)
{
// Do all contractions.
for (unsigned int i = 1; i < Gamma::nGamma; i += 2)
{
gammaList.push_back(((Gamma::Algebra)i));
}
}
else
{
// Parse individual contractions from input string.
gammaList = strToVec<Gamma::Algebra>(par().gammas);
}
}
template <typename FImpl>
void TMesonFieldGamma<FImpl>::vectorOfWs(std::vector<FermionField> &w, int i, int Nblock, FermionField &tmpw_5d, std::vector<FermionField> &vec_w)
{
for (unsigned int ni = 0; ni < Nblock; ni++)
{
vec_w[ni] = w[i + ni];
}
}
template <typename FImpl>
void TMesonFieldGamma<FImpl>::vectorOfVs(std::vector<FermionField> &v, int j, int Nblock, FermionField &tmpv_5d, std::vector<FermionField> &vec_v)
{
for (unsigned int nj = 0; nj < Nblock; nj++)
{
vec_v[nj] = v[j+nj];
}
}
template <typename FImpl>
void TMesonFieldGamma<FImpl>::gammaMult(std::vector<FermionField> &v, Gamma gamma)
{
int Nblock = v.size();
for (unsigned int nj = 0; nj < Nblock; nj++)
{
v[nj] = gamma * v[nj];
}
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TMesonFieldGamma<FImpl>::setup(void)
{
int nt = env().getDim(Tp);
int N = par().N;
int Nblock = par().Nblock;
int Ls_ = env().getObjectLs(par().A2A1 + "_class");
envTmpLat(FermionField, "tmpv_5d", Ls_);
envTmpLat(FermionField, "tmpw_5d", Ls_);
envTmp(std::vector<FermionField>, "w", 1, N, FermionField(env().getGrid(1)));
envTmp(std::vector<FermionField>, "v", 1, N, FermionField(env().getGrid(1)));
envTmp(Eigen::MatrixXcd, "MF", 1, Eigen::MatrixXcd::Zero(nt, N * N));
envTmp(std::vector<FermionField>, "w_block", 1, Nblock, FermionField(env().getGrid(1)));
envTmp(std::vector<FermionField>, "v_block", 1, Nblock, FermionField(env().getGrid(1)));
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TMesonFieldGamma<FImpl>::execute(void)
{
LOG(Message) << "Computing A2A meson field for gamma = " << par().gammas << ", taking w from " << par().A2A1 << " and v from " << par().A2A2 << std::endl;
int N = par().N;
int nt = env().getDim(Tp);
int Nblock = par().Nblock;
std::vector<Result> result;
std::vector<Gamma::Algebra> gammaResultList;
std::vector<Gamma> gammaList;
parseGammaString(gammaResultList);
result.resize(gammaResultList.size());
Gamma g5(Gamma::Algebra::Gamma5);
gammaList.resize(gammaResultList.size(), g5);
for (unsigned int i = 0; i < result.size(); ++i)
{
result[i].gamma = gammaResultList[i];
result[i].MesonField.resize(N, std::vector<std::vector<ComplexD>>(N, std::vector<ComplexD>(nt)));
Gamma gamma(gammaResultList[i]);
gammaList[i] = gamma;
}
auto &a2a1 = envGet(A2ABase, par().A2A1 + "_class");
auto &a2a2 = envGet(A2ABase, par().A2A2 + "_class");
envGetTmp(FermionField, tmpv_5d);
envGetTmp(FermionField, tmpw_5d);
envGetTmp(std::vector<FermionField>, v);
envGetTmp(std::vector<FermionField>, w);
LOG(Message) << "Finding v and w vectors for N = " << N << std::endl;
for (int i = 0; i < N; i++)
{
a2a2.return_v(i, tmpv_5d, v[i]);
a2a1.return_w(i, tmpw_5d, w[i]);
}
LOG(Message) << "Found v and w vectors for N = " << N << std::endl;
std::vector<std::vector<ComplexD>> MesonField_ij;
LOG(Message) << "Before blocked MFs, Nblock = " << Nblock << std::endl;
envGetTmp(std::vector<FermionField>, v_block);
envGetTmp(std::vector<FermionField>, w_block);
MesonField_ij.resize(Nblock * Nblock, std::vector<ComplexD>(nt));
envGetTmp(Eigen::MatrixXcd, MF);
LOG(Message) << "Before blocked MFs, Nblock = " << Nblock << std::endl;
for (unsigned int i = 0; i < N; i += Nblock)
{
vectorOfWs(w, i, Nblock, tmpw_5d, w_block);
for (unsigned int j = 0; j < N; j += Nblock)
{
vectorOfVs(v, j, Nblock, tmpv_5d, v_block);
for (unsigned int k = 0; k < result.size(); k++)
{
gammaMult(v_block, gammaList[k]);
sliceInnerProductMesonField(MesonField_ij, w_block, v_block, Tp);
for (unsigned int nj = 0; nj < Nblock; nj++)
{
for (unsigned int ni = 0; ni < Nblock; ni++)
{
MF.col((i + ni) + (j + nj) * N) = Eigen::VectorXcd::Map(&MesonField_ij[nj * Nblock + ni][0], MesonField_ij[nj * Nblock + ni].size());
}
}
}
}
if (i % 10 == 0)
{
LOG(Message) << "MF for i = " << i << " of " << N << std::endl;
}
}
LOG(Message) << "Before Global sum, Nblock = " << Nblock << std::endl;
v_block[0]._grid->GlobalSumVector(MF.data(), MF.size());
LOG(Message) << "After Global sum, Nblock = " << Nblock << std::endl;
for (unsigned int i = 0; i < N; i++)
{
for (unsigned int j = 0; j < N; j++)
{
for (unsigned int k = 0; k < result.size(); k++)
{
for (unsigned int t = 0; t < nt; t++)
{
result[k].MesonField[i][j][t] = MF.col(i + N * j)[t];
}
}
}
}
saveResult(par().output, "meson", result);
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MContraction_MesonFieldGm_hpp_

View File

@ -0,0 +1,8 @@
#include <Grid/Hadrons/Modules/MSolver/A2AVectors.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MSolver;
template class Grid::Hadrons::MSolver::TA2AVectors<FIMPL, HADRONS_DEFAULT_LANCZOS_NBASIS>;
template class Grid::Hadrons::MSolver::TA2AVectors<ZFIMPL, HADRONS_DEFAULT_LANCZOS_NBASIS>;

View File

@ -0,0 +1,253 @@
#ifndef Hadrons_MSolver_A2AVectors_hpp_
#define Hadrons_MSolver_A2AVectors_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
#include <Grid/Hadrons/Solver.hpp>
#include <Grid/Hadrons/EigenPack.hpp>
#include <Grid/Hadrons/AllToAllVectors.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* A2AVectors *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MSolver)
class A2AVectorsPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(A2AVectorsPar,
bool, return_5d,
int, Nl,
int, N,
std::vector<std::string>, sources,
std::string, action,
std::string, eigenPack,
std::string, solver);
};
template <typename FImpl, int nBasis>
class TA2AVectors : public Module<A2AVectorsPar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
SOLVER_TYPE_ALIASES(FImpl,);
typedef FermionEigenPack<FImpl> EPack;
typedef CoarseFermionEigenPack<FImpl, nBasis> CoarseEPack;
typedef A2AModesSchurDiagTwo<typename FImpl::FermionField, FMat, Solver> A2ABase;
public:
// constructor
TA2AVectors(const std::string name);
// destructor
virtual ~TA2AVectors(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getReference(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
private:
unsigned int Ls_;
std::string className_;
};
MODULE_REGISTER_TMP(A2AVectors, ARG(TA2AVectors<FIMPL, HADRONS_DEFAULT_LANCZOS_NBASIS>), MSolver);
MODULE_REGISTER_TMP(ZA2AVectors, ARG(TA2AVectors<ZFIMPL, HADRONS_DEFAULT_LANCZOS_NBASIS>), MSolver);
/******************************************************************************
* TA2AVectors implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl, int nBasis>
TA2AVectors<FImpl, nBasis>::TA2AVectors(const std::string name)
: Module<A2AVectorsPar>(name)
, className_ (name + "_class")
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl, int nBasis>
std::vector<std::string> TA2AVectors<FImpl, nBasis>::getInput(void)
{
int Nl = par().Nl;
std::string sub_string = "";
if (Nl > 0) sub_string = "_subtract";
std::vector<std::string> in = {par().solver + sub_string};
int n = par().sources.size();
for (unsigned int t = 0; t < n; t += 1)
{
in.push_back(par().sources[t]);
}
return in;
}
template <typename FImpl, int nBasis>
std::vector<std::string> TA2AVectors<FImpl, nBasis>::getReference(void)
{
std::vector<std::string> ref = {par().action};
if (!par().eigenPack.empty())
{
ref.push_back(par().eigenPack);
}
return ref;
}
template <typename FImpl, int nBasis>
std::vector<std::string> TA2AVectors<FImpl, nBasis>::getOutput(void)
{
std::vector<std::string> out = {getName(), className_,
getName() + "_w_high_5d", getName() + "_v_high_5d",
getName() + "_w_high_4d", getName() + "_v_high_4d"};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl, int nBasis>
void TA2AVectors<FImpl, nBasis>::setup(void)
{
int N = par().N;
int Nl = par().Nl;
int Nh = N - Nl;
bool return_5d = par().return_5d;
int Ls;
std::string sub_string = "";
if (Nl > 0) sub_string = "_subtract";
auto &solver = envGet(Solver, par().solver + sub_string);
Ls = env().getObjectLs(par().solver + sub_string);
auto &action = envGet(FMat, par().action);
envTmpLat(FermionField, "ferm_src", Ls);
envTmpLat(FermionField, "unphys_ferm", Ls);
envTmpLat(FermionField, "tmp");
envTmpLat(FermionField, "tmp2");
std::vector<FermionField> *evec;
const std::vector<RealD> *eval;
if (Nl > 0)
{
// Low modes
auto &epack = envGet(EPack, par().eigenPack);
LOG(Message) << "Creating a2a vectors " << getName() <<
" using eigenpack '" << par().eigenPack << "' ("
<< epack.evec.size() << " modes)" <<
" and " << Nh << " high modes." << std::endl;
evec = &epack.evec;
eval = &epack.eval;
}
else
{
LOG(Message) << "Creating a2a vectors " << getName() <<
" using " << Nh << " high modes only." << std::endl;
}
int size_5d = 1;
if (return_5d) size_5d = Nh;
envCreate(std::vector<FermionField>, getName() + "_w_high_5d", Ls, size_5d, FermionField(env().getGrid(Ls)));
envCreate(std::vector<FermionField>, getName() + "_v_high_5d", Ls, size_5d, FermionField(env().getGrid(Ls)));
envCreate(std::vector<FermionField>, getName() + "_w_high_4d", 1, Nh, FermionField(env().getGrid(1)));
envCreate(std::vector<FermionField>, getName() + "_v_high_4d", 1, Nh, FermionField(env().getGrid(1)));
auto &w_high_5d = envGet(std::vector<FermionField>, getName() + "_w_high_5d");
auto &v_high_5d = envGet(std::vector<FermionField>, getName() + "_v_high_5d");
auto &w_high_4d = envGet(std::vector<FermionField>, getName() + "_w_high_4d");
auto &v_high_4d = envGet(std::vector<FermionField>, getName() + "_v_high_4d");
envCreate(A2ABase, className_, Ls,
evec, eval,
action,
solver,
w_high_5d, v_high_5d,
w_high_4d, v_high_4d,
Nl, Nh,
return_5d);
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl, int nBasis>
void TA2AVectors<FImpl, nBasis>::execute(void)
{
auto &action = envGet(FMat, par().action);
int Nt = env().getDim(Tp);
int Nc = FImpl::Dimension;
int Ls_;
int Nl = par().Nl;
std::string sub_string = "";
if (Nl > 0) sub_string = "_subtract";
Ls_ = env().getObjectLs(par().solver + sub_string);
auto &a2areturn = envGet(A2ABase, className_);
// High modes
auto sources = par().sources;
int Nsrc = par().sources.size();
envGetTmp(FermionField, ferm_src);
envGetTmp(FermionField, unphys_ferm);
envGetTmp(FermionField, tmp);
envGetTmp(FermionField, tmp2);
int N_count = 0;
for (unsigned int s = 0; s < Ns; ++s)
for (unsigned int c = 0; c < Nc; ++c)
for (unsigned int T = 0; T < Nsrc; T++)
{
auto &prop_src = envGet(PropagatorField, sources[T]);
LOG(Message) << "A2A src for s = " << s << " , c = " << c << ", T = " << T << std::endl;
// source conversion for 4D sources
if (!env().isObject5d(sources[T]))
{
if (Ls_ == 1)
{
PropToFerm<FImpl>(ferm_src, prop_src, s, c);
tmp = ferm_src;
}
else
{
PropToFerm<FImpl>(tmp, prop_src, s, c);
action.ImportPhysicalFermionSource(tmp, ferm_src);
action.ImportUnphysicalFermion(tmp, unphys_ferm);
}
}
// source conversion for 5D sources
else
{
if (Ls_ != env().getObjectLs(sources[T]))
{
HADRONS_ERROR(Size, "Ls mismatch between quark action and source");
}
else
{
PropToFerm<FImpl>(ferm_src, prop_src, s, c);
action.ExportPhysicalFermionSolution(ferm_src, tmp);
unphys_ferm = ferm_src;
}
}
LOG(Message) << "a2areturn.high_modes Ncount = " << N_count << std::endl;
a2areturn.high_modes(ferm_src, unphys_ferm, tmp, N_count);
N_count++;
}
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MSolver_A2AVectors_hpp_

View File

@ -118,7 +118,7 @@ std::vector<std::string> TRBPrecCG<FImpl, nBasis>::getReference(void)
template <typename FImpl, int nBasis>
std::vector<std::string> TRBPrecCG<FImpl, nBasis>::getOutput(void)
{
std::vector<std::string> out = {getName()};
std::vector<std::string> out = {getName(), getName() + "_subtract"};
return out;
}
@ -168,19 +168,22 @@ void TRBPrecCG<FImpl, nBasis>::setup(void)
guesser.reset(new FineGuesser(epack.evec, epack.eval));
}
}
auto solver = [&mat, guesser, this](FermionField &sol,
const FermionField &source)
{
ConjugateGradient<FermionField> cg(par().residual,
par().maxIteration);
HADRONS_DEFAULT_SCHUR_SOLVE<FermionField> schurSolver(cg);
schurSolver(mat, source, sol, *guesser);
auto makeSolver = [&mat, guesser, this](bool subGuess) {
return [&mat, guesser, subGuess, this](FermionField &sol,
const FermionField &source) {
ConjugateGradient<FermionField> cg(par().residual,
par().maxIteration);
HADRONS_DEFAULT_SCHUR_SOLVE<FermionField> schurSolver(cg);
schurSolver.subtractGuess(subGuess);
schurSolver(mat, source, sol, *guesser);
};
};
auto solver = makeSolver(false);
envCreate(Solver, getName(), Ls, solver, mat);
auto solver_subtract = makeSolver(true);
envCreate(Solver, getName() + "_subtract", Ls, solver_subtract, mat);
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl, int nBasis>
void TRBPrecCG<FImpl, nBasis>::execute(void)

View File

@ -1,115 +1,121 @@
modules_cc =\
Modules/MContraction/WeakHamiltonianEye.cc \
Modules/MContraction/Baryon.cc \
Modules/MContraction/Meson.cc \
Modules/MContraction/WeakNeutral4ptDisc.cc \
Modules/MContraction/WeakHamiltonianNonEye.cc \
Modules/MContraction/WardIdentity.cc \
Modules/MContraction/DiscLoop.cc \
Modules/MContraction/Gamma3pt.cc \
Modules/MFermion/FreeProp.cc \
Modules/MFermion/GaugeProp.cc \
Modules/MSource/Point.cc \
Modules/MSource/Wall.cc \
Modules/MSource/SeqConserved.cc \
Modules/MSource/SeqGamma.cc \
Modules/MSource/Point.cc \
Modules/MSource/Z2.cc \
Modules/MSource/Wall.cc \
Modules/MSink/Point.cc \
Modules/MSink/Smear.cc \
Modules/MSolver/RBPrecCG.cc \
Modules/MSolver/LocalCoherenceLanczos.cc \
Modules/MGauge/StoutSmearing.cc \
Modules/MGauge/Unit.cc \
Modules/MGauge/UnitEm.cc \
Modules/MGauge/StochEm.cc \
Modules/MGauge/Random.cc \
Modules/MGauge/FundtoHirep.cc \
Modules/MUtilities/TestSeqGamma.cc \
Modules/MUtilities/TestSeqConserved.cc \
Modules/MLoop/NoiseLoop.cc \
Modules/MScalar/FreeProp.cc \
Modules/MScalar/VPCounterTerms.cc \
Modules/MScalar/ChargedProp.cc \
Modules/MScalar/ScalarVP.cc \
Modules/MAction/Wilson.cc \
Modules/MIO/LoadNersc.cc \
Modules/MIO/LoadEigenPack.cc \
Modules/MIO/LoadCoarseEigenPack.cc \
Modules/MIO/LoadBinary.cc \
Modules/MScalarSUN/TwoPointNPR.cc \
Modules/MScalarSUN/TrPhi.cc \
Modules/MScalarSUN/StochFreeField.cc \
Modules/MScalarSUN/TrMag.cc \
Modules/MScalarSUN/Div.cc \
Modules/MScalarSUN/ShiftProbe.cc \
Modules/MScalarSUN/Grad.cc \
Modules/MScalarSUN/TwoPoint.cc \
Modules/MScalarSUN/TimeMomProbe.cc \
Modules/MScalarSUN/EMT.cc \
Modules/MScalarSUN/TransProj.cc \
Modules/MScalarSUN/TrKinetic.cc \
Modules/MAction/DWF.cc \
Modules/MAction/MobiusDWF.cc \
Modules/MAction/ZMobiusDWF.cc \
Modules/MAction/WilsonClover.cc \
Modules/MAction/DWF.cc \
Modules/MAction/Wilson.cc \
Modules/MAction/ScaledDWF.cc \
Modules/MScalarSUN/TrPhi.cc \
Modules/MScalarSUN/Grad.cc \
Modules/MScalarSUN/TimeMomProbe.cc \
Modules/MScalarSUN/TrMag.cc \
Modules/MScalarSUN/TrKinetic.cc \
Modules/MScalarSUN/EMT.cc \
Modules/MScalarSUN/ShiftProbe.cc \
Modules/MScalarSUN/TransProj.cc \
Modules/MScalarSUN/StochFreeField.cc \
Modules/MScalarSUN/TwoPoint.cc \
Modules/MScalarSUN/TwoPointNPR.cc \
Modules/MScalarSUN/Div.cc \
Modules/MIO/LoadEigenPack.cc \
Modules/MIO/LoadBinary.cc \
Modules/MIO/LoadNersc.cc \
Modules/MIO/LoadCoarseEigenPack.cc
Modules/MAction/WilsonClover.cc \
Modules/MContraction/WeakHamiltonianNonEye.cc \
Modules/MContraction/WardIdentity.cc \
Modules/MContraction/WeakHamiltonianEye.cc \
Modules/MContraction/DiscLoop.cc \
Modules/MContraction/A2AMeson.cc \
Modules/MContraction/Baryon.cc \
Modules/MContraction/MesonFieldGamma.cc \
Modules/MContraction/Gamma3pt.cc \
Modules/MContraction/WeakNeutral4ptDisc.cc \
Modules/MContraction/Meson.cc \
Modules/MScalar/VPCounterTerms.cc \
Modules/MScalar/ChargedProp.cc \
Modules/MScalar/FreeProp.cc \
Modules/MScalar/ScalarVP.cc \
Modules/MUtilities/TestSeqGamma.cc \
Modules/MUtilities/TestSeqConserved.cc \
Modules/MFermion/FreeProp.cc \
Modules/MFermion/GaugeProp.cc \
Modules/MSolver/RBPrecCG.cc \
Modules/MSolver/LocalCoherenceLanczos.cc \
Modules/MSolver/A2AVectors.cc \
Modules/MLoop/NoiseLoop.cc \
Modules/MGauge/Unit.cc \
Modules/MGauge/Random.cc \
Modules/MGauge/UnitEm.cc \
Modules/MGauge/StochEm.cc \
Modules/MGauge/FundtoHirep.cc \
Modules/MGauge/StoutSmearing.cc
modules_hpp =\
Modules/MContraction/Baryon.hpp \
Modules/MContraction/Meson.hpp \
Modules/MContraction/WeakHamiltonian.hpp \
Modules/MContraction/WeakHamiltonianNonEye.hpp \
Modules/MContraction/DiscLoop.hpp \
Modules/MContraction/WeakNeutral4ptDisc.hpp \
Modules/MContraction/Gamma3pt.hpp \
Modules/MContraction/WardIdentity.hpp \
Modules/MContraction/WeakHamiltonianEye.hpp \
Modules/MFermion/FreeProp.hpp \
Modules/MFermion/GaugeProp.hpp \
Modules/MSource/SeqConserved.hpp \
Modules/MSource/SeqGamma.hpp \
Modules/MSource/Z2.hpp \
Modules/MSource/Point.hpp \
Modules/MSource/Wall.hpp \
Modules/MSource/Z2.hpp \
Modules/MSource/SeqConserved.hpp \
Modules/MSink/Smear.hpp \
Modules/MSink/Point.hpp \
Modules/MSolver/LocalCoherenceLanczos.hpp \
Modules/MSolver/RBPrecCG.hpp \
Modules/MGauge/UnitEm.hpp \
Modules/MGauge/StoutSmearing.hpp \
Modules/MGauge/Unit.hpp \
Modules/MGauge/Random.hpp \
Modules/MGauge/FundtoHirep.hpp \
Modules/MGauge/StochEm.hpp \
Modules/MUtilities/TestSeqGamma.hpp \
Modules/MUtilities/TestSeqConserved.hpp \
Modules/MLoop/NoiseLoop.hpp \
Modules/MScalar/FreeProp.hpp \
Modules/MScalar/VPCounterTerms.hpp \
Modules/MScalar/ScalarVP.hpp \
Modules/MScalar/Scalar.hpp \
Modules/MScalar/ChargedProp.hpp \
Modules/MAction/DWF.hpp \
Modules/MAction/MobiusDWF.hpp \
Modules/MAction/Wilson.hpp \
Modules/MAction/WilsonClover.hpp \
Modules/MAction/ZMobiusDWF.hpp \
Modules/MAction/ScaledDWF.hpp \
Modules/MScalarSUN/StochFreeField.hpp \
Modules/MIO/LoadBinary.hpp \
Modules/MIO/LoadEigenPack.hpp \
Modules/MIO/LoadCoarseEigenPack.hpp \
Modules/MIO/LoadNersc.hpp \
Modules/MScalarSUN/Utils.hpp \
Modules/MScalarSUN/Grad.hpp \
Modules/MScalarSUN/TrPhi.hpp \
Modules/MScalarSUN/TwoPointNPR.hpp \
Modules/MScalarSUN/TwoPoint.hpp \
Modules/MScalarSUN/TransProj.hpp \
Modules/MScalarSUN/TrKinetic.hpp \
Modules/MScalarSUN/StochFreeField.hpp \
Modules/MScalarSUN/ShiftProbe.hpp \
Modules/MScalarSUN/Div.hpp \
Modules/MScalarSUN/TimeMomProbe.hpp \
Modules/MScalarSUN/Div.hpp \
Modules/MScalarSUN/TrMag.hpp \
Modules/MScalarSUN/EMT.hpp \
Modules/MScalarSUN/TwoPoint.hpp \
Modules/MScalarSUN/TrPhi.hpp \
Modules/MScalarSUN/Utils.hpp \
Modules/MScalarSUN/TransProj.hpp \
Modules/MScalarSUN/Grad.hpp \
Modules/MScalarSUN/TrKinetic.hpp \
Modules/MIO/LoadEigenPack.hpp \
Modules/MIO/LoadNersc.hpp \
Modules/MIO/LoadCoarseEigenPack.hpp \
Modules/MIO/LoadBinary.hpp
Modules/MAction/ZMobiusDWF.hpp \
Modules/MAction/ScaledDWF.hpp \
Modules/MAction/Wilson.hpp \
Modules/MAction/WilsonClover.hpp \
Modules/MAction/MobiusDWF.hpp \
Modules/MAction/DWF.hpp \
Modules/MContraction/WeakHamiltonian.hpp \
Modules/MContraction/DiscLoop.hpp \
Modules/MContraction/Meson.hpp \
Modules/MContraction/WardIdentity.hpp \
Modules/MContraction/WeakHamiltonianEye.hpp \
Modules/MContraction/Gamma3pt.hpp \
Modules/MContraction/WeakHamiltonianNonEye.hpp \
Modules/MContraction/MesonFieldGamma.hpp \
Modules/MContraction/Baryon.hpp \
Modules/MContraction/WeakNeutral4ptDisc.hpp \
Modules/MContraction/A2AMeson.hpp \
Modules/MScalar/ScalarVP.hpp \
Modules/MScalar/Scalar.hpp \
Modules/MScalar/FreeProp.hpp \
Modules/MScalar/ChargedProp.hpp \
Modules/MScalar/VPCounterTerms.hpp \
Modules/MUtilities/TestSeqConserved.hpp \
Modules/MUtilities/TestSeqGamma.hpp \
Modules/MFermion/FreeProp.hpp \
Modules/MFermion/GaugeProp.hpp \
Modules/MSolver/A2AVectors.hpp \
Modules/MSolver/RBPrecCG.hpp \
Modules/MSolver/LocalCoherenceLanczos.hpp \
Modules/MLoop/NoiseLoop.hpp \
Modules/MGauge/StoutSmearing.hpp \
Modules/MGauge/StochEm.hpp \
Modules/MGauge/FundtoHirep.hpp \
Modules/MGauge/Unit.hpp \
Modules/MGauge/Random.hpp \
Modules/MGauge/UnitEm.hpp

View File

@ -63,7 +63,7 @@ public:
DeflatedGuesser(const std::vector<Field> & _evec,const std::vector<RealD> & _eval) : evec(_evec), eval(_eval) {};
virtual void operator()(const Field &src,Field &guess) {
virtual void operator()(const Field &src,Field &guess) {
guess = zero;
assert(evec.size()==eval.size());
auto N = evec.size();
@ -71,6 +71,7 @@ public:
const Field& tmp = evec[i];
axpy(guess,TensorRemove(innerProduct(tmp,src)) / eval[i],tmp,guess);
}
guess.checkerboard = src.checkerboard;
}
};
@ -101,6 +102,7 @@ public:
axpy(guess_coarse,TensorRemove(innerProduct(tmp,src_coarse)) / eval_coarse[i],tmp,guess_coarse);
}
blockPromote(guess_coarse,guess,subspace);
guess.checkerboard = src.checkerboard;
};
};

View File

@ -95,16 +95,26 @@ namespace Grid {
private:
OperatorFunction<Field> & _HermitianRBSolver;
int CBfactorise;
bool subGuess;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations Schur trick
/////////////////////////////////////////////////////
SchurRedBlackStaggeredSolve(OperatorFunction<Field> &HermitianRBSolver) :
SchurRedBlackStaggeredSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false) :
_HermitianRBSolver(HermitianRBSolver)
{
CBfactorise=0;
subtractGuess(initSubGuess);
};
void subtractGuess(const bool initSubGuess)
{
subGuess = initSubGuess;
}
bool isSubtractGuess(void)
{
return subGuess;
}
template<class Matrix>
void operator() (Matrix & _Matrix,const Field &in, Field &out){
@ -150,9 +160,12 @@ namespace Grid {
// Call the red-black solver
//////////////////////////////////////////////////////////////
std::cout<<GridLogMessage << "SchurRedBlackStaggeredSolver calling the Mpc solver" <<std::endl;
guess(src_o,sol_o);
guess(src_o, sol_o);
Mtmp = sol_o;
_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
std::cout<<GridLogMessage << "SchurRedBlackStaggeredSolver called the Mpc solver" <<std::endl;
// Fionn A2A boolean behavioural control
if (subGuess) sol_o = sol_o-Mtmp;
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
@ -167,11 +180,15 @@ namespace Grid {
std::cout<<GridLogMessage << "SchurRedBlackStaggeredSolver inserted solution" <<std::endl;
// Verify the unprec residual
_Matrix.M(out,resid);
resid = resid-in;
RealD ns = norm2(in);
RealD nr = norm2(resid);
std::cout<<GridLogMessage << "SchurRedBlackStaggered solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
if ( ! subGuess ) {
_Matrix.M(out,resid);
resid = resid-in;
RealD ns = norm2(in);
RealD nr = norm2(resid);
std::cout<<GridLogMessage << "SchurRedBlackStaggered solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
} else {
std::cout << GridLogMessage << "Guess subtracted after solve." << std::endl;
}
}
};
template<class Field> using SchurRedBlackStagSolve = SchurRedBlackStaggeredSolve<Field>;
@ -184,15 +201,25 @@ namespace Grid {
private:
OperatorFunction<Field> & _HermitianRBSolver;
int CBfactorise;
bool subGuess;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations Schur trick
/////////////////////////////////////////////////////
SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver,int cb=0) : _HermitianRBSolver(HermitianRBSolver)
SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver,int cb=0, const bool initSubGuess = false) : _HermitianRBSolver(HermitianRBSolver)
{
CBfactorise=cb;
subtractGuess(initSubGuess);
};
void subtractGuess(const bool initSubGuess)
{
subGuess = initSubGuess;
}
bool isSubtractGuess(void)
{
return subGuess;
}
template<class Matrix>
void operator() (Matrix & _Matrix,const Field &in, Field &out){
ZeroGuesser<Field> guess;
@ -236,7 +263,10 @@ namespace Grid {
//////////////////////////////////////////////////////////////
std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl;
guess(src_o,sol_o);
Mtmp = sol_o;
_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
// Fionn A2A boolean behavioural control
if (subGuess) sol_o = sol_o-Mtmp;
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
@ -249,12 +279,16 @@ namespace Grid {
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd );
// Verify the unprec residual
_Matrix.M(out,resid);
resid = resid-in;
RealD ns = norm2(in);
RealD nr = norm2(resid);
if ( ! subGuess ) {
_Matrix.M(out,resid);
resid = resid-in;
RealD ns = norm2(in);
RealD nr = norm2(resid);
std::cout<<GridLogMessage << "SchurRedBlackDiagMooee solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
std::cout<<GridLogMessage << "SchurRedBlackDiagMooee solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
} else {
std::cout << GridLogMessage << "Guess subtracted after solve." << std::endl;
}
}
};
@ -267,16 +301,26 @@ namespace Grid {
private:
OperatorFunction<Field> & _HermitianRBSolver;
int CBfactorise;
bool subGuess;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations Schur trick
/////////////////////////////////////////////////////
SchurRedBlackDiagTwoSolve(OperatorFunction<Field> &HermitianRBSolver) :
SchurRedBlackDiagTwoSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false) :
_HermitianRBSolver(HermitianRBSolver)
{
CBfactorise=0;
CBfactorise = 0;
subtractGuess(initSubGuess);
};
void subtractGuess(const bool initSubGuess)
{
subGuess = initSubGuess;
}
bool isSubtractGuess(void)
{
return subGuess;
}
template<class Matrix>
void operator() (Matrix & _Matrix,const Field &in, Field &out){
@ -322,8 +366,11 @@ namespace Grid {
std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl;
// _HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
guess(src_o,tmp);
Mtmp = tmp;
_HermitianRBSolver(_HermOpEO,src_o,tmp); assert(tmp.checkerboard==Odd);
_Matrix.MooeeInv(tmp,sol_o); assert( sol_o.checkerboard ==Odd);
// Fionn A2A boolean behavioural control
if (subGuess) tmp = tmp-Mtmp;
_Matrix.MooeeInv(tmp,sol_o); assert( sol_o.checkerboard ==Odd);
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
@ -336,12 +383,16 @@ namespace Grid {
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd );
// Verify the unprec residual
_Matrix.M(out,resid);
resid = resid-in;
RealD ns = norm2(in);
RealD nr = norm2(resid);
if ( ! subGuess ) {
_Matrix.M(out,resid);
resid = resid-in;
RealD ns = norm2(in);
RealD nr = norm2(resid);
std::cout<<GridLogMessage << "SchurRedBlackDiagTwo solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
std::cout<<GridLogMessage << "SchurRedBlackDiagTwo solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
} else {
std::cout << GridLogMessage << "Guess subtracted after solve." << std::endl;
}
}
};
///////////////////////////////////////////////////////////////////////////////////////////////////////
@ -352,16 +403,26 @@ namespace Grid {
private:
LinearFunction<Field> & _HermitianRBSolver;
int CBfactorise;
bool subGuess;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations Schur trick
/////////////////////////////////////////////////////
SchurRedBlackDiagTwoMixed(LinearFunction<Field> &HermitianRBSolver) :
SchurRedBlackDiagTwoMixed(LinearFunction<Field> &HermitianRBSolver, const bool initSubGuess = false) :
_HermitianRBSolver(HermitianRBSolver)
{
CBfactorise=0;
subtractGuess(initSubGuess);
};
void subtractGuess(const bool initSubGuess)
{
subGuess = initSubGuess;
}
bool isSubtractGuess(void)
{
return subGuess;
}
template<class Matrix>
void operator() (Matrix & _Matrix,const Field &in, Field &out){
@ -408,7 +469,10 @@ namespace Grid {
// _HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
// _HermitianRBSolver(_HermOpEO,src_o,tmp); assert(tmp.checkerboard==Odd);
guess(src_o,tmp);
_HermitianRBSolver(src_o,tmp); assert(tmp.checkerboard==Odd);
Mtmp = tmp;
_HermitianRBSolver(_HermOpEO,src_o,tmp); assert(tmp.checkerboard==Odd);
// Fionn A2A boolean behavioural control
if (subGuess) tmp = tmp-Mtmp;
_Matrix.MooeeInv(tmp,sol_o); assert( sol_o.checkerboard ==Odd);
///////////////////////////////////////////////////
@ -422,12 +486,16 @@ namespace Grid {
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd );
// Verify the unprec residual
_Matrix.M(out,resid);
resid = resid-in;
RealD ns = norm2(in);
RealD nr = norm2(resid);
if ( ! subGuess ) {
_Matrix.M(out,resid);
resid = resid-in;
RealD ns = norm2(in);
RealD nr = norm2(resid);
std::cout<<GridLogMessage << "SchurRedBlackDiagTwo solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
std::cout << GridLogMessage << "SchurRedBlackDiagTwo solver true unprec resid " << std::sqrt(nr / ns) << " nr " << nr << " ns " << ns << std::endl;
} else {
std::cout << GridLogMessage << "Guess subtracted after solve." << std::endl;
}
}
};

View File

@ -39,7 +39,7 @@ template<class vobj> inline RealD norm2(const Lattice<vobj> &arg){
// Double inner product
template<class vobj>
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right)
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right)
{
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_typeD vector_type;
@ -274,6 +274,115 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
}
}
template<class vobj>
static void mySliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)
{
// std::cout << GridLogMessage << "Start mySliceInnerProductVector" << std::endl;
typedef typename vobj::scalar_type scalar_type;
std::vector<scalar_type> lsSum;
localSliceInnerProductVector(result, lhs, rhs, lsSum, orthogdim);
globalSliceInnerProductVector(result, lhs, lsSum, orthogdim);
// std::cout << GridLogMessage << "End mySliceInnerProductVector" << std::endl;
}
template <class vobj>
static void localSliceInnerProductVector(std::vector<ComplexD> &result, const Lattice<vobj> &lhs, const Lattice<vobj> &rhs, std::vector<typename vobj::scalar_type> &lsSum, int orthogdim)
{
// std::cout << GridLogMessage << "Start prep" << std::endl;
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
GridBase *grid = lhs._grid;
assert(grid!=NULL);
conformable(grid,rhs._grid);
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
assert(orthogdim >= 0);
assert(orthogdim < Nd);
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
// std::cout << GridLogMessage << "Start alloc" << std::endl;
std::vector<vector_type,alignedAllocator<vector_type> > lvSum(rd); // will locally sum vectors first
lsSum.resize(ld,scalar_type(0.0)); // sum across these down to scalars
std::vector<iScalar<scalar_type>> extracted(Nsimd); // splitting the SIMD
// std::cout << GridLogMessage << "End alloc" << std::endl;
result.resize(fd); // And then global sum to return the same vector to every node for IO to file
for(int r=0;r<rd;r++){
lvSum[r]=zero;
}
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
// std::cout << GridLogMessage << "End prep" << std::endl;
// std::cout << GridLogMessage << "Start parallel inner product, _rd = " << rd << std::endl;
vector_type vv;
parallel_for(int r=0;r<rd;r++)
{
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss = so + n * stride + b;
vv = TensorRemove(innerProduct(lhs._odata[ss], rhs._odata[ss]));
lvSum[r] = lvSum[r] + vv;
}
}
}
// std::cout << GridLogMessage << "End parallel inner product" << std::endl;
// Sum across simd lanes in the plane, breaking out orthog dir.
std::vector<int> icoor(Nd);
for(int rt=0;rt<rd;rt++){
iScalar<vector_type> temp;
temp._internal = lvSum[rt];
extract(temp,extracted);
for(int idx=0;idx<Nsimd;idx++){
grid->iCoorFromIindex(icoor,idx);
int ldx =rt+icoor[orthogdim]*rd;
lsSum[ldx]=lsSum[ldx]+extracted[idx]._internal;
}
}
// std::cout << GridLogMessage << "End sum over simd lanes" << std::endl;
}
template <class vobj>
static void globalSliceInnerProductVector(std::vector<ComplexD> &result, const Lattice<vobj> &lhs, std::vector<typename vobj::scalar_type> &lsSum, int orthogdim)
{
typedef typename vobj::scalar_type scalar_type;
GridBase *grid = lhs._grid;
int fd = result.size();
int ld = lsSum.size();
// sum over nodes.
std::vector<scalar_type> gsum;
gsum.resize(fd, scalar_type(0.0));
// std::cout << GridLogMessage << "Start of gsum[t] creation:" << std::endl;
for(int t=0;t<fd;t++){
int pt = t/ld; // processor plane
int lt = t%ld;
if ( pt == grid->_processor_coor[orthogdim] ) {
gsum[t]=lsSum[lt];
}
}
// std::cout << GridLogMessage << "End of gsum[t] creation:" << std::endl;
// std::cout << GridLogMessage << "Start of GlobalSumVector:" << std::endl;
grid->GlobalSumVector(&gsum[0], fd);
// std::cout << GridLogMessage << "End of GlobalSumVector:" << std::endl;
result = gsum;
}
template<class vobj>
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)
{

View File

@ -67,6 +67,33 @@ void CayleyFermion5D<Impl>::ExportPhysicalFermionSolution(const FermionField &so
axpby_ssp_pplus (tmp, 1., tmp , 1., solution5d, 0, Ls-1);
ExtractSlice(exported4d, tmp, 0, 0);
}
template<class Impl>
void CayleyFermion5D<Impl>::ExportPhysicalFermionSource(const FermionField &solution5d,FermionField &exported4d)
{
int Ls = this->Ls;
FermionField tmp(this->FermionGrid());
tmp = solution5d;
conformable(solution5d._grid,this->FermionGrid());
conformable(exported4d._grid,this->GaugeGrid());
axpby_ssp_pplus (tmp, 0., solution5d, 1., solution5d, 0, 0);
axpby_ssp_pminus(tmp, 1., tmp , 1., solution5d, 0, Ls-1);
ExtractSlice(exported4d, tmp, 0, 0);
}
template<class Impl>
void CayleyFermion5D<Impl>::ImportUnphysicalFermion(const FermionField &input4d,FermionField &imported5d)
{
int Ls = this->Ls;
FermionField tmp(this->FermionGrid());
conformable(imported5d._grid,this->FermionGrid());
conformable(input4d._grid ,this->GaugeGrid());
tmp = zero;
InsertSlice(input4d, tmp, 0 , 0);
InsertSlice(input4d, tmp, Ls-1, 0);
axpby_ssp_pplus (tmp, 0., tmp, 1., tmp, 0, 0);
axpby_ssp_pminus(tmp, 0., tmp, 1., tmp, Ls-1, Ls-1);
imported5d=tmp;
}
template<class Impl>
void CayleyFermion5D<Impl>::ImportPhysicalFermionSource(const FermionField &input4d,FermionField &imported5d)
{

View File

@ -89,7 +89,9 @@ namespace Grid {
virtual void Dminus(const FermionField &psi, FermionField &chi);
virtual void DminusDag(const FermionField &psi, FermionField &chi);
virtual void ExportPhysicalFermionSolution(const FermionField &solution5d,FermionField &exported4d);
virtual void ExportPhysicalFermionSource(const FermionField &solution5d, FermionField &exported4d);
virtual void ImportPhysicalFermionSource(const FermionField &input4d,FermionField &imported5d);
virtual void ImportUnphysicalFermion(const FermionField &solution5d, FermionField &exported4d);
/////////////////////////////////////////////////////
// Instantiate different versions depending on Impl

View File

@ -162,10 +162,18 @@ namespace Grid {
{
imported = input;
};
virtual void ImportUnphysicalFermion(const FermionField &input,FermionField &imported)
{
imported=input;
};
virtual void ExportPhysicalFermionSolution(const FermionField &solution,FermionField &exported)
{
exported=solution;
};
virtual void ExportPhysicalFermionSource(const FermionField &solution,FermionField &exported)
{
exported=solution;
};
};
}