1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-04 19:25:56 +01:00

CLeanup and no QCD namespace

This commit is contained in:
paboyle 2018-01-15 00:23:51 +00:00
parent 21251f2e1b
commit d0e357ef89
5 changed files with 1012 additions and 1011 deletions

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -26,455 +26,455 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_ALGORITHM_COARSENED_MATRIX_H
#define GRID_ALGORITHM_COARSENED_MATRIX_H
namespace Grid {
NAMESPACE_BEGIN(Grid);
class Geometry {
// int dimension;
public:
int npoint;
std::vector<int> directions ;
std::vector<int> displacements;
class Geometry {
// int dimension;
public:
int npoint;
std::vector<int> directions ;
std::vector<int> displacements;
Geometry(int _d) {
int base = (_d==5) ? 1:0;
int base = (_d==5) ? 1:0;
// make coarse grid stencil for 4d , not 5d
if ( _d==5 ) _d=4;
// make coarse grid stencil for 4d , not 5d
if ( _d==5 ) _d=4;
npoint = 2*_d+1;
directions.resize(npoint);
displacements.resize(npoint);
for(int d=0;d<_d;d++){
directions[2*d ] = d+base;
directions[2*d+1] = d+base;
displacements[2*d ] = +1;
displacements[2*d+1] = -1;
}
directions [2*_d]=0;
displacements[2*_d]=0;
npoint = 2*_d+1;
directions.resize(npoint);
displacements.resize(npoint);
for(int d=0;d<_d;d++){
directions[2*d ] = d+base;
directions[2*d+1] = d+base;
displacements[2*d ] = +1;
displacements[2*d+1] = -1;
}
directions [2*_d]=0;
displacements[2*_d]=0;
//// report back
std::cout<<GridLogMessage<<"directions :";
for(int d=0;d<npoint;d++) std::cout<< directions[d]<< " ";
std::cout <<std::endl;
std::cout<<GridLogMessage<<"displacements :";
for(int d=0;d<npoint;d++) std::cout<< displacements[d]<< " ";
std::cout<<std::endl;
}
//// report back
std::cout<<GridLogMessage<<"directions :";
for(int d=0;d<npoint;d++) std::cout<< directions[d]<< " ";
std::cout <<std::endl;
std::cout<<GridLogMessage<<"displacements :";
for(int d=0;d<npoint;d++) std::cout<< displacements[d]<< " ";
std::cout<<std::endl;
}
/*
// Original cleaner code
Geometry(int _d) : dimension(_d), npoint(2*_d+1), directions(npoint), displacements(npoint) {
for(int d=0;d<dimension;d++){
directions[2*d ] = d;
directions[2*d+1] = d;
displacements[2*d ] = +1;
displacements[2*d+1] = -1;
}
directions [2*dimension]=0;
displacements[2*dimension]=0;
}
std::vector<int> GetDelta(int point) {
std::vector<int> delta(dimension,0);
delta[directions[point]] = displacements[point];
return delta;
};
*/
/*
// Original cleaner code
Geometry(int _d) : dimension(_d), npoint(2*_d+1), directions(npoint), displacements(npoint) {
for(int d=0;d<dimension;d++){
directions[2*d ] = d;
directions[2*d+1] = d;
displacements[2*d ] = +1;
displacements[2*d+1] = -1;
}
directions [2*dimension]=0;
displacements[2*dimension]=0;
}
std::vector<int> GetDelta(int point) {
std::vector<int> delta(dimension,0);
delta[directions[point]] = displacements[point];
return delta;
};
*/
};
template<class Fobj,class CComplex,int nbasis>
class Aggregation {
public:
typedef iVector<CComplex,nbasis > siteVector;
typedef Lattice<siteVector> CoarseVector;
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
template<class Fobj,class CComplex,int nbasis>
class Aggregation {
public:
typedef iVector<CComplex,nbasis > siteVector;
typedef Lattice<siteVector> CoarseVector;
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj > FineField;
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj > FineField;
GridBase *CoarseGrid;
GridBase *FineGrid;
std::vector<Lattice<Fobj> > subspace;
int checkerboard;
GridBase *CoarseGrid;
GridBase *FineGrid;
std::vector<Lattice<Fobj> > subspace;
int checkerboard;
Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :
CoarseGrid(_CoarseGrid),
FineGrid(_FineGrid),
subspace(nbasis,_FineGrid),
checkerboard(_checkerboard)
{
};
FineGrid(_FineGrid),
subspace(nbasis,_FineGrid),
checkerboard(_checkerboard)
{
};
void Orthogonalise(void){
CoarseScalar InnerProd(CoarseGrid);
std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
blockOrthogonalise(InnerProd,subspace);
std::cout << GridLogMessage <<" Gramm-Schmidt pass 2"<<std::endl;
blockOrthogonalise(InnerProd,subspace);
// std::cout << GridLogMessage <<" Gramm-Schmidt checking orthogonality"<<std::endl;
// CheckOrthogonal();
}
void CheckOrthogonal(void){
CoarseVector iProj(CoarseGrid);
CoarseVector eProj(CoarseGrid);
for(int i=0;i<nbasis;i++){
blockProject(iProj,subspace[i],subspace);
eProj=zero;
parallel_for(int ss=0;ss<CoarseGrid->oSites();ss++){
eProj._odata[ss](i)=CComplex(1.0);
}
eProj=eProj - iProj;
std::cout<<GridLogMessage<<"Orthog check error "<<i<<" " << norm2(eProj)<<std::endl;
void Orthogonalise(void){
CoarseScalar InnerProd(CoarseGrid);
std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
blockOrthogonalise(InnerProd,subspace);
std::cout << GridLogMessage <<" Gramm-Schmidt pass 2"<<std::endl;
blockOrthogonalise(InnerProd,subspace);
// std::cout << GridLogMessage <<" Gramm-Schmidt checking orthogonality"<<std::endl;
// CheckOrthogonal();
}
void CheckOrthogonal(void){
CoarseVector iProj(CoarseGrid);
CoarseVector eProj(CoarseGrid);
for(int i=0;i<nbasis;i++){
blockProject(iProj,subspace[i],subspace);
eProj=zero;
parallel_for(int ss=0;ss<CoarseGrid->oSites();ss++){
eProj._odata[ss](i)=CComplex(1.0);
}
std::cout<<GridLogMessage <<"CheckOrthog done"<<std::endl;
eProj=eProj - iProj;
std::cout<<GridLogMessage<<"Orthog check error "<<i<<" " << norm2(eProj)<<std::endl;
}
void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
blockProject(CoarseVec,FineVec,subspace);
}
void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
FineVec.checkerboard = subspace[0].checkerboard;
blockPromote(CoarseVec,FineVec,subspace);
}
void CreateSubspaceRandom(GridParallelRNG &RNG){
for(int i=0;i<nbasis;i++){
random(RNG,subspace[i]);
std::cout<<GridLogMessage<<" norm subspace["<<i<<"] "<<norm2(subspace[i])<<std::endl;
}
Orthogonalise();
std::cout<<GridLogMessage <<"CheckOrthog done"<<std::endl;
}
void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
blockProject(CoarseVec,FineVec,subspace);
}
void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
FineVec.checkerboard = subspace[0].checkerboard;
blockPromote(CoarseVec,FineVec,subspace);
}
void CreateSubspaceRandom(GridParallelRNG &RNG){
for(int i=0;i<nbasis;i++){
random(RNG,subspace[i]);
std::cout<<GridLogMessage<<" norm subspace["<<i<<"] "<<norm2(subspace[i])<<std::endl;
}
Orthogonalise();
}
/*
/*
virtual void CreateSubspaceLanczos(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis)
{
// Run a Lanczos with sloppy convergence
const int Nstop = nn;
const int Nk = nn+20;
const int Np = nn+20;
const int Nm = Nk+Np;
const int MaxIt= 10000;
RealD resid = 1.0e-3;
// Run a Lanczos with sloppy convergence
const int Nstop = nn;
const int Nk = nn+20;
const int Np = nn+20;
const int Nm = Nk+Np;
const int MaxIt= 10000;
RealD resid = 1.0e-3;
Chebyshev<FineField> Cheb(0.5,64.0,21);
ImplicitlyRestartedLanczos<FineField> IRL(hermop,Cheb,Nstop,Nk,Nm,resid,MaxIt);
// IRL.lock = 1;
Chebyshev<FineField> Cheb(0.5,64.0,21);
ImplicitlyRestartedLanczos<FineField> IRL(hermop,Cheb,Nstop,Nk,Nm,resid,MaxIt);
// IRL.lock = 1;
FineField noise(FineGrid); gaussian(RNG,noise);
FineField tmp(FineGrid);
std::vector<RealD> eval(Nm);
std::vector<FineField> evec(Nm,FineGrid);
FineField noise(FineGrid); gaussian(RNG,noise);
FineField tmp(FineGrid);
std::vector<RealD> eval(Nm);
std::vector<FineField> evec(Nm,FineGrid);
int Nconv;
IRL.calc(eval,evec,
noise,
Nconv);
int Nconv;
IRL.calc(eval,evec,
noise,
Nconv);
// pull back nn vectors
for(int b=0;b<nn;b++){
// pull back nn vectors
for(int b=0;b<nn;b++){
subspace[b] = evec[b];
subspace[b] = evec[b];
std::cout << GridLogMessage <<"subspace["<<b<<"] = "<<norm2(subspace[b])<<std::endl;
std::cout << GridLogMessage <<"subspace["<<b<<"] = "<<norm2(subspace[b])<<std::endl;
hermop.Op(subspace[b],tmp);
std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(tmp)<<std::endl;
hermop.Op(subspace[b],tmp);
std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(tmp)<<std::endl;
noise = tmp - sqrt(eval[b])*subspace[b] ;
noise = tmp - sqrt(eval[b])*subspace[b] ;
std::cout<<GridLogMessage << " lambda_"<<b<<" = "<< eval[b] <<" ; [ M - Lambda ]_"<<b<<" vec_"<<b<<" = " <<norm2(noise)<<std::endl;
std::cout<<GridLogMessage << " lambda_"<<b<<" = "<< eval[b] <<" ; [ M - Lambda ]_"<<b<<" vec_"<<b<<" = " <<norm2(noise)<<std::endl;
noise = tmp + eval[b]*subspace[b] ;
noise = tmp + eval[b]*subspace[b] ;
std::cout<<GridLogMessage << " lambda_"<<b<<" = "<< eval[b] <<" ; [ M - Lambda ]_"<<b<<" vec_"<<b<<" = " <<norm2(noise)<<std::endl;
std::cout<<GridLogMessage << " lambda_"<<b<<" = "<< eval[b] <<" ; [ M - Lambda ]_"<<b<<" vec_"<<b<<" = " <<norm2(noise)<<std::endl;
}
Orthogonalise();
for(int b=0;b<nn;b++){
std::cout << GridLogMessage <<"subspace["<<b<<"] = "<<norm2(subspace[b])<<std::endl;
}
}
*/
virtual void CreateSubspace(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) {
Orthogonalise();
for(int b=0;b<nn;b++){
std::cout << GridLogMessage <<"subspace["<<b<<"] = "<<norm2(subspace[b])<<std::endl;
}
}
*/
virtual void CreateSubspace(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) {
RealD scale;
RealD scale;
ConjugateGradient<FineField> CG(1.0e-2,10000);
FineField noise(FineGrid);
FineField Mn(FineGrid);
ConjugateGradient<FineField> CG(1.0e-2,10000);
FineField noise(FineGrid);
FineField Mn(FineGrid);
for(int b=0;b<nn;b++){
for(int b=0;b<nn;b++){
gaussian(RNG,noise);
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
for(int i=0;i<1;i++){
CG(hermop,noise,subspace[b]);
noise = subspace[b];
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
for(int i=0;i<1;i++){
CG(hermop,noise,subspace[b]);
noise = subspace[b];
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
}
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
subspace[b] = noise;
}
Orthogonalise();
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
subspace[b] = noise;
}
};
// Fine Object == (per site) type of fine field
// nbasis == number of deflation vectors
template<class Fobj,class CComplex,int nbasis>
class CoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
public:
Orthogonalise();
}
};
// Fine Object == (per site) type of fine field
// nbasis == number of deflation vectors
template<class Fobj,class CComplex,int nbasis>
class CoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
public:
typedef iVector<CComplex,nbasis > siteVector;
typedef Lattice<siteVector> CoarseVector;
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
typedef iVector<CComplex,nbasis > siteVector;
typedef Lattice<siteVector> CoarseVector;
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj > FineField;
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj > FineField;
////////////////////
// Data members
////////////////////
Geometry geom;
GridBase * _grid;
CartesianStencil<siteVector,siteVector> Stencil;
////////////////////
// Data members
////////////////////
Geometry geom;
GridBase * _grid;
CartesianStencil<siteVector,siteVector> Stencil;
std::vector<CoarseMatrix> A;
std::vector<CoarseMatrix> A;
///////////////////////
// Interface
///////////////////////
GridBase * Grid(void) { return _grid; }; // this is all the linalg routines need to know
///////////////////////
// Interface
///////////////////////
GridBase * Grid(void) { return _grid; }; // this is all the linalg routines need to know
RealD M (const CoarseVector &in, CoarseVector &out){
RealD M (const CoarseVector &in, CoarseVector &out){
conformable(_grid,in._grid);
conformable(in._grid,out._grid);
conformable(_grid,in._grid);
conformable(in._grid,out._grid);
SimpleCompressor<siteVector> compressor;
Stencil.HaloExchange(in,compressor);
SimpleCompressor<siteVector> compressor;
Stencil.HaloExchange(in,compressor);
parallel_for(int ss=0;ss<Grid()->oSites();ss++){
siteVector res = zero;
siteVector nbr;
int ptype;
StencilEntry *SE;
for(int point=0;point<geom.npoint;point++){
parallel_for(int ss=0;ss<Grid()->oSites();ss++){
siteVector res = zero;
siteVector nbr;
int ptype;
StencilEntry *SE;
for(int point=0;point<geom.npoint;point++){
SE=Stencil.GetEntry(ptype,point,ss);
SE=Stencil.GetEntry(ptype,point,ss);
if(SE->_is_local&&SE->_permute) {
permute(nbr,in._odata[SE->_offset],ptype);
} else if(SE->_is_local) {
nbr = in._odata[SE->_offset];
} else {
nbr = Stencil.CommBuf()[SE->_offset];
}
res = res + A[point]._odata[ss]*nbr;
if(SE->_is_local&&SE->_permute) {
permute(nbr,in._odata[SE->_offset],ptype);
} else if(SE->_is_local) {
nbr = in._odata[SE->_offset];
} else {
nbr = Stencil.CommBuf()[SE->_offset];
}
vstream(out._odata[ss],res);
res = res + A[point]._odata[ss]*nbr;
}
return norm2(out);
};
RealD Mdag (const CoarseVector &in, CoarseVector &out){
return M(in,out);
};
// Defer support for further coarsening for now
void Mdiag (const CoarseVector &in, CoarseVector &out){};
void Mdir (const CoarseVector &in, CoarseVector &out,int dir, int disp){};
CoarsenedMatrix(GridCartesian &CoarseGrid) :
_grid(&CoarseGrid),
geom(CoarseGrid._ndimension),
Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements),
A(geom.npoint,&CoarseGrid)
{
};
void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop,
Aggregation<Fobj,CComplex,nbasis> & Subspace){
FineField iblock(FineGrid); // contributions from within this block
FineField oblock(FineGrid); // contributions from outwith this block
FineField phi(FineGrid);
FineField tmp(FineGrid);
FineField zz(FineGrid); zz=zero;
FineField Mphi(FineGrid);
Lattice<iScalar<vInteger> > coor(FineGrid);
CoarseVector iProj(Grid());
CoarseVector oProj(Grid());
CoarseScalar InnerProd(Grid());
// Orthogonalise the subblocks over the basis
blockOrthogonalise(InnerProd,Subspace.subspace);
// Compute the matrix elements of linop between this orthonormal
// set of vectors.
int self_stencil=-1;
for(int p=0;p<geom.npoint;p++){
A[p]=zero;
if( geom.displacements[p]==0){
self_stencil=p;
}
}
assert(self_stencil!=-1);
for(int i=0;i<nbasis;i++){
phi=Subspace.subspace[i];
std::cout<<GridLogMessage<<"("<<i<<").."<<std::endl;
for(int p=0;p<geom.npoint;p++){
int dir = geom.directions[p];
int disp = geom.displacements[p];
Integer block=(FineGrid->_rdimensions[dir])/(Grid()->_rdimensions[dir]);
LatticeCoordinate(coor,dir);
if ( disp==0 ){
linop.OpDiag(phi,Mphi);
}
else {
linop.OpDir(phi,Mphi,dir,disp);
}
////////////////////////////////////////////////////////////////////////
// Pick out contributions coming from this cell and neighbour cell
////////////////////////////////////////////////////////////////////////
if ( disp==0 ) {
iblock = Mphi;
oblock = zero;
} else if ( disp==1 ) {
oblock = where(mod(coor,block)==(block-1),Mphi,zz);
iblock = where(mod(coor,block)!=(block-1),Mphi,zz);
} else if ( disp==-1 ) {
oblock = where(mod(coor,block)==(Integer)0,Mphi,zz);
iblock = where(mod(coor,block)!=(Integer)0,Mphi,zz);
} else {
assert(0);
}
Subspace.ProjectToSubspace(iProj,iblock);
Subspace.ProjectToSubspace(oProj,oblock);
// blockProject(iProj,iblock,Subspace.subspace);
// blockProject(oProj,oblock,Subspace.subspace);
parallel_for(int ss=0;ss<Grid()->oSites();ss++){
for(int j=0;j<nbasis;j++){
if( disp!= 0 ) {
A[p]._odata[ss](j,i) = oProj._odata[ss](j);
}
A[self_stencil]._odata[ss](j,i) = A[self_stencil]._odata[ss](j,i) + iProj._odata[ss](j);
}
}
}
}
#if 0
///////////////////////////
// test code worth preserving in if block
///////////////////////////
std::cout<<GridLogMessage<< " Computed matrix elements "<< self_stencil <<std::endl;
for(int p=0;p<geom.npoint;p++){
std::cout<<GridLogMessage<< "A["<<p<<"]" << std::endl;
std::cout<<GridLogMessage<< A[p] << std::endl;
}
std::cout<<GridLogMessage<< " picking by block0 "<< self_stencil <<std::endl;
phi=Subspace.subspace[0];
std::vector<int> bc(FineGrid->_ndimension,0);
blockPick(Grid(),phi,tmp,bc); // Pick out a block
linop.Op(tmp,Mphi); // Apply big dop
blockProject(iProj,Mphi,Subspace.subspace); // project it and print it
std::cout<<GridLogMessage<< " Computed matrix elements from block zero only "<<std::endl;
std::cout<<GridLogMessage<< iProj <<std::endl;
std::cout<<GridLogMessage<<"Computed Coarse Operator"<<std::endl;
#endif
// ForceHermitian();
AssertHermitian();
// ForceDiagonal();
vstream(out._odata[ss],res);
}
void ForceDiagonal(void) {
std::cout<<GridLogMessage<<"**************************************************"<<std::endl;
std::cout<<GridLogMessage<<"**** Forcing coarse operator to be diagonal ****"<<std::endl;
std::cout<<GridLogMessage<<"**************************************************"<<std::endl;
for(int p=0;p<8;p++){
A[p]=zero;
}
GridParallelRNG RNG(Grid()); RNG.SeedFixedIntegers(std::vector<int>({55,72,19,17,34}));
Lattice<iScalar<CComplex> > val(Grid()); random(RNG,val);
Complex one(1.0);
iMatrix<CComplex,nbasis> ident; ident=one;
val = val*adj(val);
val = val + 1.0;
A[8] = val*ident;
// for(int s=0;s<Grid()->oSites();s++) {
// A[8]._odata[s]=val._odata[s];
// }
}
void ForceHermitian(void) {
for(int d=0;d<4;d++){
int dd=d+1;
A[2*d] = adj(Cshift(A[2*d+1],dd,1));
}
// A[8] = 0.5*(A[8] + adj(A[8]));
}
void AssertHermitian(void) {
CoarseMatrix AA (Grid());
CoarseMatrix AAc (Grid());
CoarseMatrix Diff (Grid());
for(int d=0;d<4;d++){
int dd=d+1;
AAc = Cshift(A[2*d+1],dd,1);
AA = A[2*d];
Diff = AA - adj(AAc);
std::cout<<GridLogMessage<<"Norm diff dim "<<d<<" "<< norm2(Diff)<<std::endl;
std::cout<<GridLogMessage<<"Norm dim "<<d<<" "<< norm2(AA)<<std::endl;
}
Diff = A[8] - adj(A[8]);
std::cout<<GridLogMessage<<"Norm diff local "<< norm2(Diff)<<std::endl;
std::cout<<GridLogMessage<<"Norm local "<< norm2(A[8])<<std::endl;
}
return norm2(out);
};
}
RealD Mdag (const CoarseVector &in, CoarseVector &out){
return M(in,out);
};
// Defer support for further coarsening for now
void Mdiag (const CoarseVector &in, CoarseVector &out){};
void Mdir (const CoarseVector &in, CoarseVector &out,int dir, int disp){};
CoarsenedMatrix(GridCartesian &CoarseGrid) :
_grid(&CoarseGrid),
geom(CoarseGrid._ndimension),
Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements),
A(geom.npoint,&CoarseGrid)
{
};
void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop,
Aggregation<Fobj,CComplex,nbasis> & Subspace){
FineField iblock(FineGrid); // contributions from within this block
FineField oblock(FineGrid); // contributions from outwith this block
FineField phi(FineGrid);
FineField tmp(FineGrid);
FineField zz(FineGrid); zz=zero;
FineField Mphi(FineGrid);
Lattice<iScalar<vInteger> > coor(FineGrid);
CoarseVector iProj(Grid());
CoarseVector oProj(Grid());
CoarseScalar InnerProd(Grid());
// Orthogonalise the subblocks over the basis
blockOrthogonalise(InnerProd,Subspace.subspace);
// Compute the matrix elements of linop between this orthonormal
// set of vectors.
int self_stencil=-1;
for(int p=0;p<geom.npoint;p++){
A[p]=zero;
if( geom.displacements[p]==0){
self_stencil=p;
}
}
assert(self_stencil!=-1);
for(int i=0;i<nbasis;i++){
phi=Subspace.subspace[i];
std::cout<<GridLogMessage<<"("<<i<<").."<<std::endl;
for(int p=0;p<geom.npoint;p++){
int dir = geom.directions[p];
int disp = geom.displacements[p];
Integer block=(FineGrid->_rdimensions[dir])/(Grid()->_rdimensions[dir]);
LatticeCoordinate(coor,dir);
if ( disp==0 ){
linop.OpDiag(phi,Mphi);
}
else {
linop.OpDir(phi,Mphi,dir,disp);
}
////////////////////////////////////////////////////////////////////////
// Pick out contributions coming from this cell and neighbour cell
////////////////////////////////////////////////////////////////////////
if ( disp==0 ) {
iblock = Mphi;
oblock = zero;
} else if ( disp==1 ) {
oblock = where(mod(coor,block)==(block-1),Mphi,zz);
iblock = where(mod(coor,block)!=(block-1),Mphi,zz);
} else if ( disp==-1 ) {
oblock = where(mod(coor,block)==(Integer)0,Mphi,zz);
iblock = where(mod(coor,block)!=(Integer)0,Mphi,zz);
} else {
assert(0);
}
Subspace.ProjectToSubspace(iProj,iblock);
Subspace.ProjectToSubspace(oProj,oblock);
// blockProject(iProj,iblock,Subspace.subspace);
// blockProject(oProj,oblock,Subspace.subspace);
parallel_for(int ss=0;ss<Grid()->oSites();ss++){
for(int j=0;j<nbasis;j++){
if( disp!= 0 ) {
A[p]._odata[ss](j,i) = oProj._odata[ss](j);
}
A[self_stencil]._odata[ss](j,i) = A[self_stencil]._odata[ss](j,i) + iProj._odata[ss](j);
}
}
}
}
#if 0
///////////////////////////
// test code worth preserving in if block
///////////////////////////
std::cout<<GridLogMessage<< " Computed matrix elements "<< self_stencil <<std::endl;
for(int p=0;p<geom.npoint;p++){
std::cout<<GridLogMessage<< "A["<<p<<"]" << std::endl;
std::cout<<GridLogMessage<< A[p] << std::endl;
}
std::cout<<GridLogMessage<< " picking by block0 "<< self_stencil <<std::endl;
phi=Subspace.subspace[0];
std::vector<int> bc(FineGrid->_ndimension,0);
blockPick(Grid(),phi,tmp,bc); // Pick out a block
linop.Op(tmp,Mphi); // Apply big dop
blockProject(iProj,Mphi,Subspace.subspace); // project it and print it
std::cout<<GridLogMessage<< " Computed matrix elements from block zero only "<<std::endl;
std::cout<<GridLogMessage<< iProj <<std::endl;
std::cout<<GridLogMessage<<"Computed Coarse Operator"<<std::endl;
#endif
// ForceHermitian();
AssertHermitian();
// ForceDiagonal();
}
void ForceDiagonal(void) {
std::cout<<GridLogMessage<<"**************************************************"<<std::endl;
std::cout<<GridLogMessage<<"**** Forcing coarse operator to be diagonal ****"<<std::endl;
std::cout<<GridLogMessage<<"**************************************************"<<std::endl;
for(int p=0;p<8;p++){
A[p]=zero;
}
GridParallelRNG RNG(Grid()); RNG.SeedFixedIntegers(std::vector<int>({55,72,19,17,34}));
Lattice<iScalar<CComplex> > val(Grid()); random(RNG,val);
Complex one(1.0);
iMatrix<CComplex,nbasis> ident; ident=one;
val = val*adj(val);
val = val + 1.0;
A[8] = val*ident;
// for(int s=0;s<Grid()->oSites();s++) {
// A[8]._odata[s]=val._odata[s];
// }
}
void ForceHermitian(void) {
for(int d=0;d<4;d++){
int dd=d+1;
A[2*d] = adj(Cshift(A[2*d+1],dd,1));
}
// A[8] = 0.5*(A[8] + adj(A[8]));
}
void AssertHermitian(void) {
CoarseMatrix AA (Grid());
CoarseMatrix AAc (Grid());
CoarseMatrix Diff (Grid());
for(int d=0;d<4;d++){
int dd=d+1;
AAc = Cshift(A[2*d+1],dd,1);
AA = A[2*d];
Diff = AA - adj(AAc);
std::cout<<GridLogMessage<<"Norm diff dim "<<d<<" "<< norm2(Diff)<<std::endl;
std::cout<<GridLogMessage<<"Norm dim "<<d<<" "<< norm2(AA)<<std::endl;
}
Diff = A[8] - adj(A[8]);
std::cout<<GridLogMessage<<"Norm diff local "<< norm2(Diff)<<std::endl;
std::cout<<GridLogMessage<<"Norm local "<< norm2(A[8])<<std::endl;
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,5 +1,5 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -24,8 +24,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef _GRID_FFT_H_
#define _GRID_FFT_H_
@ -38,64 +38,64 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#endif
namespace Grid {
NAMESPACE_BEGIN(Grid);
template<class scalar> struct FFTW { };
template<class scalar> struct FFTW { };
#ifdef HAVE_FFTW
template<> struct FFTW<ComplexD> {
public:
template<> struct FFTW<ComplexD> {
public:
typedef fftw_complex FFTW_scalar;
typedef fftw_plan FFTW_plan;
typedef fftw_complex FFTW_scalar;
typedef fftw_plan FFTW_plan;
static FFTW_plan fftw_plan_many_dft(int rank, const int *n,int howmany,
FFTW_scalar *in, const int *inembed,
int istride, int idist,
FFTW_scalar *out, const int *onembed,
int ostride, int odist,
int sign, unsigned flags) {
return ::fftw_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags);
}
static FFTW_plan fftw_plan_many_dft(int rank, const int *n,int howmany,
FFTW_scalar *in, const int *inembed,
int istride, int idist,
FFTW_scalar *out, const int *onembed,
int ostride, int odist,
int sign, unsigned flags) {
return ::fftw_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags);
}
static void fftw_flops(const FFTW_plan p,double *add, double *mul, double *fmas){
::fftw_flops(p,add,mul,fmas);
}
static void fftw_flops(const FFTW_plan p,double *add, double *mul, double *fmas){
::fftw_flops(p,add,mul,fmas);
}
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out) {
::fftw_execute_dft(p,in,out);
}
inline static void fftw_destroy_plan(const FFTW_plan p) {
::fftw_destroy_plan(p);
}
};
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out) {
::fftw_execute_dft(p,in,out);
}
inline static void fftw_destroy_plan(const FFTW_plan p) {
::fftw_destroy_plan(p);
}
};
template<> struct FFTW<ComplexF> {
public:
template<> struct FFTW<ComplexF> {
public:
typedef fftwf_complex FFTW_scalar;
typedef fftwf_plan FFTW_plan;
typedef fftwf_complex FFTW_scalar;
typedef fftwf_plan FFTW_plan;
static FFTW_plan fftw_plan_many_dft(int rank, const int *n,int howmany,
FFTW_scalar *in, const int *inembed,
int istride, int idist,
FFTW_scalar *out, const int *onembed,
int ostride, int odist,
int sign, unsigned flags) {
return ::fftwf_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags);
}
static FFTW_plan fftw_plan_many_dft(int rank, const int *n,int howmany,
FFTW_scalar *in, const int *inembed,
int istride, int idist,
FFTW_scalar *out, const int *onembed,
int ostride, int odist,
int sign, unsigned flags) {
return ::fftwf_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags);
}
static void fftw_flops(const FFTW_plan p,double *add, double *mul, double *fmas){
::fftwf_flops(p,add,mul,fmas);
}
static void fftw_flops(const FFTW_plan p,double *add, double *mul, double *fmas){
::fftwf_flops(p,add,mul,fmas);
}
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out) {
::fftwf_execute_dft(p,in,out);
}
inline static void fftw_destroy_plan(const FFTW_plan p) {
::fftwf_destroy_plan(p);
}
};
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out) {
::fftwf_execute_dft(p,in,out);
}
inline static void fftw_destroy_plan(const FFTW_plan p) {
::fftwf_destroy_plan(p);
}
};
#endif
@ -104,203 +104,204 @@ namespace Grid {
#define FFTW_BACKWARD (+1)
#endif
class FFT {
private:
class FFT {
private:
GridCartesian *vgrid;
GridCartesian *sgrid;
GridCartesian *vgrid;
GridCartesian *sgrid;
int Nd;
double flops;
double flops_call;
uint64_t usec;
int Nd;
double flops;
double flops_call;
uint64_t usec;
std::vector<int> dimensions;
std::vector<int> processors;
std::vector<int> processor_coor;
std::vector<int> dimensions;
std::vector<int> processors;
std::vector<int> processor_coor;
public:
public:
static const int forward=FFTW_FORWARD;
static const int backward=FFTW_BACKWARD;
static const int forward=FFTW_FORWARD;
static const int backward=FFTW_BACKWARD;
double Flops(void) {return flops;}
double MFlops(void) {return flops/usec;}
double USec(void) {return (double)usec;}
double Flops(void) {return flops;}
double MFlops(void) {return flops/usec;}
double USec(void) {return (double)usec;}
FFT ( GridCartesian * grid ) :
FFT ( GridCartesian * grid ) :
vgrid(grid),
Nd(grid->_ndimension),
dimensions(grid->_fdimensions),
processors(grid->_processors),
processor_coor(grid->_processor_coor)
{
flops=0;
usec =0;
std::vector<int> layout(Nd,1);
sgrid = new GridCartesian(dimensions,layout,processors);
};
{
flops=0;
usec =0;
std::vector<int> layout(Nd,1);
sgrid = new GridCartesian(dimensions,layout,processors);
};
~FFT ( void) {
delete sgrid;
}
~FFT ( void) {
delete sgrid;
}
template<class vobj>
void FFT_dim_mask(Lattice<vobj> &result,const Lattice<vobj> &source,std::vector<int> mask,int sign){
template<class vobj>
void FFT_dim_mask(Lattice<vobj> &result,const Lattice<vobj> &source,std::vector<int> mask,int sign){
conformable(result._grid,vgrid);
conformable(source._grid,vgrid);
Lattice<vobj> tmp(vgrid);
tmp = source;
for(int d=0;d<Nd;d++){
if( mask[d] ) {
FFT_dim(result,tmp,d,sign);
tmp=result;
}
conformable(result._grid,vgrid);
conformable(source._grid,vgrid);
Lattice<vobj> tmp(vgrid);
tmp = source;
for(int d=0;d<Nd;d++){
if( mask[d] ) {
FFT_dim(result,tmp,d,sign);
tmp=result;
}
}
}
template<class vobj>
void FFT_all_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int sign){
std::vector<int> mask(Nd,1);
FFT_dim_mask(result,source,mask,sign);
}
template<class vobj>
void FFT_all_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int sign){
std::vector<int> mask(Nd,1);
FFT_dim_mask(result,source,mask,sign);
}
template<class vobj>
void FFT_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int dim, int sign){
template<class vobj>
void FFT_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int dim, int sign){
#ifndef HAVE_FFTW
assert(0);
assert(0);
#else
conformable(result._grid,vgrid);
conformable(source._grid,vgrid);
conformable(result._grid,vgrid);
conformable(source._grid,vgrid);
int L = vgrid->_ldimensions[dim];
int G = vgrid->_fdimensions[dim];
int L = vgrid->_ldimensions[dim];
int G = vgrid->_fdimensions[dim];
std::vector<int> layout(Nd,1);
std::vector<int> pencil_gd(vgrid->_fdimensions);
std::vector<int> layout(Nd,1);
std::vector<int> pencil_gd(vgrid->_fdimensions);
pencil_gd[dim] = G*processors[dim];
pencil_gd[dim] = G*processors[dim];
// Pencil global vol LxLxGxLxL per node
GridCartesian pencil_g(pencil_gd,layout,processors);
// Pencil global vol LxLxGxLxL per node
GridCartesian pencil_g(pencil_gd,layout,processors);
// Construct pencils
typedef typename vobj::scalar_object sobj;
typedef typename sobj::scalar_type scalar;
// Construct pencils
typedef typename vobj::scalar_object sobj;
typedef typename sobj::scalar_type scalar;
Lattice<sobj> pgbuf(&pencil_g);
Lattice<sobj> pgbuf(&pencil_g);
typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
typedef typename FFTW<scalar>::FFTW_plan FFTW_plan;
typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
typedef typename FFTW<scalar>::FFTW_plan FFTW_plan;
int Ncomp = sizeof(sobj)/sizeof(scalar);
int Nlow = 1;
for(int d=0;d<dim;d++){
Nlow*=vgrid->_ldimensions[d];
}
int Ncomp = sizeof(sobj)/sizeof(scalar);
int Nlow = 1;
for(int d=0;d<dim;d++){
Nlow*=vgrid->_ldimensions[d];
}
int rank = 1; /* 1d transforms */
int n[] = {G}; /* 1d transforms of length G */
int howmany = Ncomp;
int odist,idist,istride,ostride;
idist = odist = 1; /* Distance between consecutive FT's */
istride = ostride = Ncomp*Nlow; /* distance between two elements in the same FT */
int *inembed = n, *onembed = n;
int rank = 1; /* 1d transforms */
int n[] = {G}; /* 1d transforms of length G */
int howmany = Ncomp;
int odist,idist,istride,ostride;
idist = odist = 1; /* Distance between consecutive FT's */
istride = ostride = Ncomp*Nlow; /* distance between two elements in the same FT */
int *inembed = n, *onembed = n;
scalar div;
if ( sign == backward ) div = 1.0/G;
else if ( sign == forward ) div = 1.0;
else assert(0);
scalar div;
if ( sign == backward ) div = 1.0/G;
else if ( sign == forward ) div = 1.0;
else assert(0);
FFTW_plan p;
{
FFTW_scalar *in = (FFTW_scalar *)&pgbuf._odata[0];
FFTW_scalar *out= (FFTW_scalar *)&pgbuf._odata[0];
p = FFTW<scalar>::fftw_plan_many_dft(rank,n,howmany,
in,inembed,
istride,idist,
out,onembed,
ostride, odist,
sign,FFTW_ESTIMATE);
}
FFTW_plan p;
{
FFTW_scalar *in = (FFTW_scalar *)&pgbuf._odata[0];
FFTW_scalar *out= (FFTW_scalar *)&pgbuf._odata[0];
p = FFTW<scalar>::fftw_plan_many_dft(rank,n,howmany,
in,inembed,
istride,idist,
out,onembed,
ostride, odist,
sign,FFTW_ESTIMATE);
}
// Barrel shift and collect global pencil
std::vector<int> lcoor(Nd), gcoor(Nd);
result = source;
int pc = processor_coor[dim];
for(int p=0;p<processors[dim];p++) {
PARALLEL_REGION
// Barrel shift and collect global pencil
std::vector<int> lcoor(Nd), gcoor(Nd);
result = source;
int pc = processor_coor[dim];
for(int p=0;p<processors[dim];p++) {
PARALLEL_REGION
{
std::vector<int> cbuf(Nd);
sobj s;
PARALLEL_FOR_LOOP_INTERN
for(int idx=0;idx<sgrid->lSites();idx++) {
sgrid->LocalIndexToLocalCoor(idx,cbuf);
peekLocalSite(s,result,cbuf);
cbuf[dim]+=((pc+p) % processors[dim])*L;
// cbuf[dim]+=p*L;
pokeLocalSite(s,pgbuf,cbuf);
}
for(int idx=0;idx<sgrid->lSites();idx++) {
sgrid->LocalIndexToLocalCoor(idx,cbuf);
peekLocalSite(s,result,cbuf);
cbuf[dim]+=((pc+p) % processors[dim])*L;
// cbuf[dim]+=p*L;
pokeLocalSite(s,pgbuf,cbuf);
}
}
if (p != processors[dim] - 1)
if (p != processors[dim] - 1)
{
result = Cshift(result,dim,L);
}
}
}
// Loop over orthog coords
int NN=pencil_g.lSites();
GridStopWatch timer;
timer.Start();
PARALLEL_REGION
// Loop over orthog coords
int NN=pencil_g.lSites();
GridStopWatch timer;
timer.Start();
PARALLEL_REGION
{
std::vector<int> cbuf(Nd);
PARALLEL_FOR_LOOP_INTERN
for(int idx=0;idx<NN;idx++) {
pencil_g.LocalIndexToLocalCoor(idx, cbuf);
if ( cbuf[dim] == 0 ) { // restricts loop to plane at lcoor[dim]==0
FFTW_scalar *in = (FFTW_scalar *)&pgbuf._odata[idx];
FFTW_scalar *out= (FFTW_scalar *)&pgbuf._odata[idx];
FFTW<scalar>::fftw_execute_dft(p,in,out);
}
}
for(int idx=0;idx<NN;idx++) {
pencil_g.LocalIndexToLocalCoor(idx, cbuf);
if ( cbuf[dim] == 0 ) { // restricts loop to plane at lcoor[dim]==0
FFTW_scalar *in = (FFTW_scalar *)&pgbuf._odata[idx];
FFTW_scalar *out= (FFTW_scalar *)&pgbuf._odata[idx];
FFTW<scalar>::fftw_execute_dft(p,in,out);
}
}
}
timer.Stop();
timer.Stop();
// performance counting
double add,mul,fma;
FFTW<scalar>::fftw_flops(p,&add,&mul,&fma);
flops_call = add+mul+2.0*fma;
usec += timer.useconds();
flops+= flops_call*NN;
// performance counting
double add,mul,fma;
FFTW<scalar>::fftw_flops(p,&add,&mul,&fma);
flops_call = add+mul+2.0*fma;
usec += timer.useconds();
flops+= flops_call*NN;
// writing out result
PARALLEL_REGION
// writing out result
PARALLEL_REGION
{
std::vector<int> clbuf(Nd), cgbuf(Nd);
sobj s;
PARALLEL_FOR_LOOP_INTERN
for(int idx=0;idx<sgrid->lSites();idx++) {
sgrid->LocalIndexToLocalCoor(idx,clbuf);
cgbuf = clbuf;
cgbuf[dim] = clbuf[dim]+L*pc;
peekLocalSite(s,pgbuf,cgbuf);
pokeLocalSite(s,result,clbuf);
}
for(int idx=0;idx<sgrid->lSites();idx++) {
sgrid->LocalIndexToLocalCoor(idx,clbuf);
cgbuf = clbuf;
cgbuf[dim] = clbuf[dim]+L*pc;
peekLocalSite(s,pgbuf,cgbuf);
pokeLocalSite(s,result,clbuf);
}
}
result = result*div;
result = result*div;
// destroying plan
FFTW<scalar>::fftw_destroy_plan(p);
// destroying plan
FFTW<scalar>::fftw_destroy_plan(p);
#endif
}
};
}
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -24,431 +24,431 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_ALGORITHM_LINEAR_OP_H
#define GRID_ALGORITHM_LINEAR_OP_H
namespace Grid {
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////////////////////////////////
// LinearOperators Take a something and return a something.
/////////////////////////////////////////////////////////////////////////////////////////////
//
// Hopefully linearity is satisfied and the AdjOp is indeed the Hermitian conjugateugate (transpose if real):
//SBase
// i) F(a x + b y) = aF(x) + b F(y).
// ii) <x|Op|y> = <y|AdjOp|x>^\ast
//
// Would be fun to have a test linearity & Herm Conj function!
/////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class LinearOperatorBase {
public:
/////////////////////////////////////////////////////////////////////////////////////////////
// LinearOperators Take a something and return a something.
/////////////////////////////////////////////////////////////////////////////////////////////
//
// Hopefully linearity is satisfied and the AdjOp is indeed the Hermitian conjugateugate (transpose if real):
//SBase
// i) F(a x + b y) = aF(x) + b F(y).
// ii) <x|Op|y> = <y|AdjOp|x>^\ast
//
// Would be fun to have a test linearity & Herm Conj function!
/////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class LinearOperatorBase {
public:
// Support for coarsening to a multigrid
virtual void OpDiag (const Field &in, Field &out) = 0; // Abstract base
virtual void OpDir (const Field &in, Field &out,int dir,int disp) = 0; // Abstract base
// Support for coarsening to a multigrid
virtual void OpDiag (const Field &in, Field &out) = 0; // Abstract base
virtual void OpDir (const Field &in, Field &out,int dir,int disp) = 0; // Abstract base
virtual void Op (const Field &in, Field &out) = 0; // Abstract base
virtual void AdjOp (const Field &in, Field &out) = 0; // Abstract base
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2)=0;
virtual void HermOp(const Field &in, Field &out)=0;
};
virtual void Op (const Field &in, Field &out) = 0; // Abstract base
virtual void AdjOp (const Field &in, Field &out) = 0; // Abstract base
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2)=0;
virtual void HermOp(const Field &in, Field &out)=0;
};
/////////////////////////////////////////////////////////////////////////////////////////////
// By sharing the class for Sparse Matrix across multiple operator wrappers, we can share code
// between RB and non-RB variants. Sparse matrix is like the fermion action def, and then
// the wrappers implement the specialisation of "Op" and "AdjOp" to the cases minimising
// replication of code.
//
// I'm not entirely happy with implementation; to share the Schur code between herm and non-herm
// while still having a "OpAndNorm" in the abstract base I had to implement it in both cases
// with an assert trap in the non-herm. This isn't right; there must be a better C++ way to
// do it, but I fear it required multiple inheritance and mixed in abstract base classes
/////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////////
// By sharing the class for Sparse Matrix across multiple operator wrappers, we can share code
// between RB and non-RB variants. Sparse matrix is like the fermion action def, and then
// the wrappers implement the specialisation of "Op" and "AdjOp" to the cases minimising
// replication of code.
//
// I'm not entirely happy with implementation; to share the Schur code between herm and non-herm
// while still having a "OpAndNorm" in the abstract base I had to implement it in both cases
// with an assert trap in the non-herm. This isn't right; there must be a better C++ way to
// do it, but I fear it required multiple inheritance and mixed in abstract base classes
/////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////
// Construct herm op from non-herm matrix
////////////////////////////////////////////////////////////////////
template<class Matrix,class Field>
class MdagMLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
public:
MdagMLinearOperator(Matrix &Mat): _Mat(Mat){};
////////////////////////////////////////////////////////////////////
// Construct herm op from non-herm matrix
////////////////////////////////////////////////////////////////////
template<class Matrix,class Field>
class MdagMLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
public:
MdagMLinearOperator(Matrix &Mat): _Mat(Mat){};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
_Mat.Mdiag(in,out);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
_Mat.Mdir(in,out,dir,disp);
}
void Op (const Field &in, Field &out){
_Mat.M(in,out);
}
void AdjOp (const Field &in, Field &out){
_Mat.Mdag(in,out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
_Mat.MdagM(in,out,n1,n2);
}
void HermOp(const Field &in, Field &out){
RealD n1,n2;
HermOpAndNorm(in,out,n1,n2);
}
};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
_Mat.Mdiag(in,out);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
_Mat.Mdir(in,out,dir,disp);
}
void Op (const Field &in, Field &out){
_Mat.M(in,out);
}
void AdjOp (const Field &in, Field &out){
_Mat.Mdag(in,out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
_Mat.MdagM(in,out,n1,n2);
}
void HermOp(const Field &in, Field &out){
RealD n1,n2;
HermOpAndNorm(in,out,n1,n2);
}
};
////////////////////////////////////////////////////////////////////
// Construct herm op and shift it for mgrid smoother
////////////////////////////////////////////////////////////////////
template<class Matrix,class Field>
class ShiftedMdagMLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
RealD _shift;
public:
ShiftedMdagMLinearOperator(Matrix &Mat,RealD shift): _Mat(Mat), _shift(shift){};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
_Mat.Mdiag(in,out);
assert(0);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
_Mat.Mdir(in,out,dir,disp);
assert(0);
}
void Op (const Field &in, Field &out){
_Mat.M(in,out);
assert(0);
}
void AdjOp (const Field &in, Field &out){
_Mat.Mdag(in,out);
assert(0);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
_Mat.MdagM(in,out,n1,n2);
out = out + _shift*in;
////////////////////////////////////////////////////////////////////
// Construct herm op and shift it for mgrid smoother
////////////////////////////////////////////////////////////////////
template<class Matrix,class Field>
class ShiftedMdagMLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
RealD _shift;
public:
ShiftedMdagMLinearOperator(Matrix &Mat,RealD shift): _Mat(Mat), _shift(shift){};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
_Mat.Mdiag(in,out);
assert(0);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
_Mat.Mdir(in,out,dir,disp);
assert(0);
}
void Op (const Field &in, Field &out){
_Mat.M(in,out);
assert(0);
}
void AdjOp (const Field &in, Field &out){
_Mat.Mdag(in,out);
assert(0);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
_Mat.MdagM(in,out,n1,n2);
out = out + _shift*in;
ComplexD dot;
dot= innerProduct(in,out);
n1=real(dot);
n2=norm2(out);
}
void HermOp(const Field &in, Field &out){
RealD n1,n2;
HermOpAndNorm(in,out,n1,n2);
}
};
ComplexD dot;
dot= innerProduct(in,out);
n1=real(dot);
n2=norm2(out);
}
void HermOp(const Field &in, Field &out){
RealD n1,n2;
HermOpAndNorm(in,out,n1,n2);
}
};
////////////////////////////////////////////////////////////////////
// Wrap an already herm matrix
////////////////////////////////////////////////////////////////////
template<class Matrix,class Field>
class HermitianLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
public:
HermitianLinearOperator(Matrix &Mat): _Mat(Mat){};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
_Mat.Mdiag(in,out);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
_Mat.Mdir(in,out,dir,disp);
}
void Op (const Field &in, Field &out){
_Mat.M(in,out);
}
void AdjOp (const Field &in, Field &out){
_Mat.M(in,out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
_Mat.M(in,out);
////////////////////////////////////////////////////////////////////
// Wrap an already herm matrix
////////////////////////////////////////////////////////////////////
template<class Matrix,class Field>
class HermitianLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
public:
HermitianLinearOperator(Matrix &Mat): _Mat(Mat){};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
_Mat.Mdiag(in,out);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
_Mat.Mdir(in,out,dir,disp);
}
void Op (const Field &in, Field &out){
_Mat.M(in,out);
}
void AdjOp (const Field &in, Field &out){
_Mat.M(in,out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
_Mat.M(in,out);
ComplexD dot= innerProduct(in,out); n1=real(dot);
n2=norm2(out);
}
void HermOp(const Field &in, Field &out){
_Mat.M(in,out);
}
};
ComplexD dot= innerProduct(in,out); n1=real(dot);
n2=norm2(out);
}
void HermOp(const Field &in, Field &out){
_Mat.M(in,out);
}
};
//////////////////////////////////////////////////////////
// Even Odd Schur decomp operators; there are several
// ways to introduce the even odd checkerboarding
//////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////
// Even Odd Schur decomp operators; there are several
// ways to introduce the even odd checkerboarding
//////////////////////////////////////////////////////////
template<class Field>
class SchurOperatorBase : public LinearOperatorBase<Field> {
public:
virtual RealD Mpc (const Field &in, Field &out) =0;
virtual RealD MpcDag (const Field &in, Field &out) =0;
virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
Field tmp(in._grid);
ni=Mpc(in,tmp);
no=MpcDag(tmp,out);
}
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
MpcDagMpc(in,out,n1,n2);
}
virtual void HermOp(const Field &in, Field &out){
RealD n1,n2;
HermOpAndNorm(in,out,n1,n2);
}
void Op (const Field &in, Field &out){
Mpc(in,out);
}
void AdjOp (const Field &in, Field &out){
MpcDag(in,out);
}
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
assert(0); // must coarsen the unpreconditioned system
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
assert(0);
}
};
template<class Matrix,class Field>
class SchurDiagMooeeOperator : public SchurOperatorBase<Field> {
protected:
Matrix &_Mat;
public:
SchurDiagMooeeOperator (Matrix &Mat): _Mat(Mat){};
virtual RealD Mpc (const Field &in, Field &out) {
Field tmp(in._grid);
// std::cout <<"grid pointers: in._grid="<< in._grid << " out._grid=" << out._grid << " _Mat.Grid=" << _Mat.Grid() << " _Mat.RedBlackGrid=" << _Mat.RedBlackGrid() << std::endl;
template<class Field>
class SchurOperatorBase : public LinearOperatorBase<Field> {
public:
virtual RealD Mpc (const Field &in, Field &out) =0;
virtual RealD MpcDag (const Field &in, Field &out) =0;
virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
Field tmp(in._grid);
ni=Mpc(in,tmp);
no=MpcDag(tmp,out);
}
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
MpcDagMpc(in,out,n1,n2);
}
virtual void HermOp(const Field &in, Field &out){
RealD n1,n2;
HermOpAndNorm(in,out,n1,n2);
}
void Op (const Field &in, Field &out){
Mpc(in,out);
}
void AdjOp (const Field &in, Field &out){
MpcDag(in,out);
}
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
assert(0); // must coarsen the unpreconditioned system
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
assert(0);
}
};
template<class Matrix,class Field>
class SchurDiagMooeeOperator : public SchurOperatorBase<Field> {
protected:
Matrix &_Mat;
public:
SchurDiagMooeeOperator (Matrix &Mat): _Mat(Mat){};
virtual RealD Mpc (const Field &in, Field &out) {
Field tmp(in._grid);
// std::cout <<"grid pointers: in._grid="<< in._grid << " out._grid=" << out._grid << " _Mat.Grid=" << _Mat.Grid() << " _Mat.RedBlackGrid=" << _Mat.RedBlackGrid() << std::endl;
_Mat.Meooe(in,tmp);
_Mat.MooeeInv(tmp,out);
_Mat.Meooe(out,tmp);
_Mat.Meooe(in,tmp);
_Mat.MooeeInv(tmp,out);
_Mat.Meooe(out,tmp);
_Mat.Mooee(in,out);
return axpy_norm(out,-1.0,tmp,out);
}
virtual RealD MpcDag (const Field &in, Field &out){
Field tmp(in._grid);
_Mat.Mooee(in,out);
return axpy_norm(out,-1.0,tmp,out);
}
virtual RealD MpcDag (const Field &in, Field &out){
Field tmp(in._grid);
_Mat.MeooeDag(in,tmp);
_Mat.MooeeInvDag(tmp,out);
_Mat.MeooeDag(out,tmp);
_Mat.MeooeDag(in,tmp);
_Mat.MooeeInvDag(tmp,out);
_Mat.MeooeDag(out,tmp);
_Mat.MooeeDag(in,out);
return axpy_norm(out,-1.0,tmp,out);
}
};
template<class Matrix,class Field>
class SchurDiagOneOperator : public SchurOperatorBase<Field> {
protected:
Matrix &_Mat;
public:
SchurDiagOneOperator (Matrix &Mat): _Mat(Mat){};
_Mat.MooeeDag(in,out);
return axpy_norm(out,-1.0,tmp,out);
}
};
template<class Matrix,class Field>
class SchurDiagOneOperator : public SchurOperatorBase<Field> {
protected:
Matrix &_Mat;
public:
SchurDiagOneOperator (Matrix &Mat): _Mat(Mat){};
virtual RealD Mpc (const Field &in, Field &out) {
Field tmp(in._grid);
virtual RealD Mpc (const Field &in, Field &out) {
Field tmp(in._grid);
_Mat.Meooe(in,out);
_Mat.MooeeInv(out,tmp);
_Mat.Meooe(tmp,out);
_Mat.MooeeInv(out,tmp);
_Mat.Meooe(in,out);
_Mat.MooeeInv(out,tmp);
_Mat.Meooe(tmp,out);
_Mat.MooeeInv(out,tmp);
return axpy_norm(out,-1.0,tmp,in);
}
virtual RealD MpcDag (const Field &in, Field &out){
Field tmp(in._grid);
return axpy_norm(out,-1.0,tmp,in);
}
virtual RealD MpcDag (const Field &in, Field &out){
Field tmp(in._grid);
_Mat.MooeeInvDag(in,out);
_Mat.MeooeDag(out,tmp);
_Mat.MooeeInvDag(tmp,out);
_Mat.MeooeDag(out,tmp);
_Mat.MooeeInvDag(in,out);
_Mat.MeooeDag(out,tmp);
_Mat.MooeeInvDag(tmp,out);
_Mat.MeooeDag(out,tmp);
return axpy_norm(out,-1.0,tmp,in);
}
};
template<class Matrix,class Field>
class SchurDiagTwoOperator : public SchurOperatorBase<Field> {
protected:
Matrix &_Mat;
public:
SchurDiagTwoOperator (Matrix &Mat): _Mat(Mat){};
return axpy_norm(out,-1.0,tmp,in);
}
};
template<class Matrix,class Field>
class SchurDiagTwoOperator : public SchurOperatorBase<Field> {
protected:
Matrix &_Mat;
public:
SchurDiagTwoOperator (Matrix &Mat): _Mat(Mat){};
virtual RealD Mpc (const Field &in, Field &out) {
Field tmp(in._grid);
virtual RealD Mpc (const Field &in, Field &out) {
Field tmp(in._grid);
_Mat.MooeeInv(in,out);
_Mat.Meooe(out,tmp);
_Mat.MooeeInv(tmp,out);
_Mat.Meooe(out,tmp);
_Mat.MooeeInv(in,out);
_Mat.Meooe(out,tmp);
_Mat.MooeeInv(tmp,out);
_Mat.Meooe(out,tmp);
return axpy_norm(out,-1.0,tmp,in);
}
virtual RealD MpcDag (const Field &in, Field &out){
Field tmp(in._grid);
return axpy_norm(out,-1.0,tmp,in);
}
virtual RealD MpcDag (const Field &in, Field &out){
Field tmp(in._grid);
_Mat.MeooeDag(in,out);
_Mat.MooeeInvDag(out,tmp);
_Mat.MeooeDag(tmp,out);
_Mat.MooeeInvDag(out,tmp);
_Mat.MeooeDag(in,out);
_Mat.MooeeInvDag(out,tmp);
_Mat.MeooeDag(tmp,out);
_Mat.MooeeInvDag(out,tmp);
return axpy_norm(out,-1.0,tmp,in);
}
};
///////////////////////////////////////////////////////////////////////////////////////////////////
// Left handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) psi = eta --> ( 1 - Moo^-1 Moe Mee^-1 Meo ) psi = Moo^-1 eta
// Right handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) Moo^-1 Moo psi = eta --> ( 1 - Moe Mee^-1 Meo ) Moo^-1 phi=eta ; psi = Moo^-1 phi
///////////////////////////////////////////////////////////////////////////////////////////////////
template<class Matrix,class Field> using SchurDiagOneRH = SchurDiagTwoOperator<Matrix,Field> ;
template<class Matrix,class Field> using SchurDiagOneLH = SchurDiagOneOperator<Matrix,Field> ;
///////////////////////////////////////////////////////////////////////////////////////////////////
// Staggered use
///////////////////////////////////////////////////////////////////////////////////////////////////
template<class Matrix,class Field>
class SchurStaggeredOperator : public SchurOperatorBase<Field> {
protected:
Matrix &_Mat;
public:
SchurStaggeredOperator (Matrix &Mat): _Mat(Mat){};
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
GridLogIterative.TimingMode(1);
std::cout << GridLogIterative << " HermOpAndNorm "<<std::endl;
n2 = Mpc(in,out);
std::cout << GridLogIterative << " HermOpAndNorm.Mpc "<<std::endl;
ComplexD dot= innerProduct(in,out);
std::cout << GridLogIterative << " HermOpAndNorm.innerProduct "<<std::endl;
n1 = real(dot);
}
virtual void HermOp(const Field &in, Field &out){
std::cout << GridLogIterative << " HermOp "<<std::endl;
Mpc(in,out);
}
virtual RealD Mpc (const Field &in, Field &out) {
Field tmp(in._grid);
Field tmp2(in._grid);
return axpy_norm(out,-1.0,tmp,in);
}
};
///////////////////////////////////////////////////////////////////////////////////////////////////
// Left handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) psi = eta --> ( 1 - Moo^-1 Moe Mee^-1 Meo ) psi = Moo^-1 eta
// Right handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) Moo^-1 Moo psi = eta --> ( 1 - Moe Mee^-1 Meo ) Moo^-1 phi=eta ; psi = Moo^-1 phi
///////////////////////////////////////////////////////////////////////////////////////////////////
template<class Matrix,class Field> using SchurDiagOneRH = SchurDiagTwoOperator<Matrix,Field> ;
template<class Matrix,class Field> using SchurDiagOneLH = SchurDiagOneOperator<Matrix,Field> ;
///////////////////////////////////////////////////////////////////////////////////////////////////
// Staggered use
///////////////////////////////////////////////////////////////////////////////////////////////////
template<class Matrix,class Field>
class SchurStaggeredOperator : public SchurOperatorBase<Field> {
protected:
Matrix &_Mat;
public:
SchurStaggeredOperator (Matrix &Mat): _Mat(Mat){};
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
GridLogIterative.TimingMode(1);
std::cout << GridLogIterative << " HermOpAndNorm "<<std::endl;
n2 = Mpc(in,out);
std::cout << GridLogIterative << " HermOpAndNorm.Mpc "<<std::endl;
ComplexD dot= innerProduct(in,out);
std::cout << GridLogIterative << " HermOpAndNorm.innerProduct "<<std::endl;
n1 = real(dot);
}
virtual void HermOp(const Field &in, Field &out){
std::cout << GridLogIterative << " HermOp "<<std::endl;
Mpc(in,out);
}
virtual RealD Mpc (const Field &in, Field &out) {
Field tmp(in._grid);
Field tmp2(in._grid);
std::cout << GridLogIterative << " HermOp.Mpc "<<std::endl;
_Mat.Mooee(in,out);
_Mat.Mooee(out,tmp);
std::cout << GridLogIterative << " HermOp.MooeeMooee "<<std::endl;
std::cout << GridLogIterative << " HermOp.Mpc "<<std::endl;
_Mat.Mooee(in,out);
_Mat.Mooee(out,tmp);
std::cout << GridLogIterative << " HermOp.MooeeMooee "<<std::endl;
_Mat.Meooe(in,out);
_Mat.Meooe(out,tmp2);
std::cout << GridLogIterative << " HermOp.MeooeMeooe "<<std::endl;
_Mat.Meooe(in,out);
_Mat.Meooe(out,tmp2);
std::cout << GridLogIterative << " HermOp.MeooeMeooe "<<std::endl;
RealD nn=axpy_norm(out,-1.0,tmp2,tmp);
std::cout << GridLogIterative << " HermOp.axpy_norm "<<std::endl;
return nn;
}
virtual RealD MpcDag (const Field &in, Field &out){
return Mpc(in,out);
}
virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
assert(0);// Never need with staggered
}
};
template<class Matrix,class Field> using SchurStagOperator = SchurStaggeredOperator<Matrix,Field>;
RealD nn=axpy_norm(out,-1.0,tmp2,tmp);
std::cout << GridLogIterative << " HermOp.axpy_norm "<<std::endl;
return nn;
}
virtual RealD MpcDag (const Field &in, Field &out){
return Mpc(in,out);
}
virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
assert(0);// Never need with staggered
}
};
template<class Matrix,class Field> using SchurStagOperator = SchurStaggeredOperator<Matrix,Field>;
/////////////////////////////////////////////////////////////
// Base classes for functions of operators
/////////////////////////////////////////////////////////////
template<class Field> class OperatorFunction {
public:
virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) = 0;
};
/////////////////////////////////////////////////////////////
// Base classes for functions of operators
/////////////////////////////////////////////////////////////
template<class Field> class OperatorFunction {
public:
virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) = 0;
};
template<class Field> class LinearFunction {
public:
virtual void operator() (const Field &in, Field &out) = 0;
};
template<class Field> class LinearFunction {
public:
virtual void operator() (const Field &in, Field &out) = 0;
};
template<class Field> class IdentityLinearFunction : public LinearFunction<Field> {
public:
void operator() (const Field &in, Field &out){
out = in;
};
};
/////////////////////////////////////////////////////////////
// Base classes for Multishift solvers for operators
/////////////////////////////////////////////////////////////
template<class Field> class OperatorMultiFunction {
public:
virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, std::vector<Field> &out) = 0;
};
// FIXME : To think about
// Chroma functionality list defining LinearOperator
/*
virtual void operator() (T& chi, const T& psi, enum PlusMinus isign) const = 0;
virtual void operator() (T& chi, const T& psi, enum PlusMinus isign, Real epsilon) const
virtual const Subset& subset() const = 0;
virtual unsigned long nFlops() const { return 0; }
virtual void deriv(P& ds_u, const T& chi, const T& psi, enum PlusMinus isign) const
class UnprecLinearOperator : public DiffLinearOperator<T,P,Q>
const Subset& subset() const {return all;}
};
*/
////////////////////////////////////////////////////////////////////////////////////////////
// Hermitian operator Linear function and operator function
////////////////////////////////////////////////////////////////////////////////////////////
template<class Field>
class HermOpOperatorFunction : public OperatorFunction<Field> {
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
Linop.HermOp(in,out);
};
};
template<typename Field>
class PlainHermOp : public LinearFunction<Field> {
public:
LinearOperatorBase<Field> &_Linop;
PlainHermOp(LinearOperatorBase<Field>& linop) : _Linop(linop)
{}
void operator()(const Field& in, Field& out) {
_Linop.HermOp(in,out);
}
};
template<typename Field>
class FunctionHermOp : public LinearFunction<Field> {
public:
OperatorFunction<Field> & _poly;
LinearOperatorBase<Field> &_Linop;
FunctionHermOp(OperatorFunction<Field> & poly,LinearOperatorBase<Field>& linop)
: _poly(poly), _Linop(linop) {};
void operator()(const Field& in, Field& out) {
_poly(_Linop,in,out);
}
};
template<class Field>
class Polynomial : public OperatorFunction<Field> {
private:
std::vector<RealD> Coeffs;
public:
Polynomial(std::vector<RealD> &_Coeffs) : Coeffs(_Coeffs) { };
// Implement the required interface
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
Field AtoN(in._grid);
Field Mtmp(in._grid);
AtoN = in;
out = AtoN*Coeffs[0];
for(int n=1;n<Coeffs.size();n++){
Mtmp = AtoN;
Linop.HermOp(Mtmp,AtoN);
out=out+AtoN*Coeffs[n];
}
};
template<class Field> class IdentityLinearFunction : public LinearFunction<Field> {
public:
void operator() (const Field &in, Field &out){
out = in;
};
};
}
/////////////////////////////////////////////////////////////
// Base classes for Multishift solvers for operators
/////////////////////////////////////////////////////////////
template<class Field> class OperatorMultiFunction {
public:
virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, std::vector<Field> &out) = 0;
};
// FIXME : To think about
// Chroma functionality list defining LinearOperator
/*
virtual void operator() (T& chi, const T& psi, enum PlusMinus isign) const = 0;
virtual void operator() (T& chi, const T& psi, enum PlusMinus isign, Real epsilon) const
virtual const Subset& subset() const = 0;
virtual unsigned long nFlops() const { return 0; }
virtual void deriv(P& ds_u, const T& chi, const T& psi, enum PlusMinus isign) const
class UnprecLinearOperator : public DiffLinearOperator<T,P,Q>
const Subset& subset() const {return all;}
};
*/
////////////////////////////////////////////////////////////////////////////////////////////
// Hermitian operator Linear function and operator function
////////////////////////////////////////////////////////////////////////////////////////////
template<class Field>
class HermOpOperatorFunction : public OperatorFunction<Field> {
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
Linop.HermOp(in,out);
};
};
template<typename Field>
class PlainHermOp : public LinearFunction<Field> {
public:
LinearOperatorBase<Field> &_Linop;
PlainHermOp(LinearOperatorBase<Field>& linop) : _Linop(linop)
{}
void operator()(const Field& in, Field& out) {
_Linop.HermOp(in,out);
}
};
template<typename Field>
class FunctionHermOp : public LinearFunction<Field> {
public:
OperatorFunction<Field> & _poly;
LinearOperatorBase<Field> &_Linop;
FunctionHermOp(OperatorFunction<Field> & poly,LinearOperatorBase<Field>& linop)
: _poly(poly), _Linop(linop) {};
void operator()(const Field& in, Field& out) {
_poly(_Linop,in,out);
}
};
template<class Field>
class Polynomial : public OperatorFunction<Field> {
private:
std::vector<RealD> Coeffs;
public:
Polynomial(std::vector<RealD> &_Coeffs) : Coeffs(_Coeffs) { };
// Implement the required interface
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
Field AtoN(in._grid);
Field Mtmp(in._grid);
AtoN = in;
out = AtoN*Coeffs[0];
for(int n=1;n<Coeffs.size();n++){
Mtmp = AtoN;
Linop.HermOp(Mtmp,AtoN);
out=out+AtoN*Coeffs[n];
}
};
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -23,24 +23,24 @@ Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_PRECONDITIONER_H
#define GRID_PRECONDITIONER_H
namespace Grid {
NAMESPACE_BEGIN(Grid);
template<class Field> class Preconditioner : public LinearFunction<Field> {
virtual void operator()(const Field &src, Field & psi)=0;
};
template<class Field> class Preconditioner : public LinearFunction<Field> {
virtual void operator()(const Field &src, Field & psi)=0;
};
template<class Field> class TrivialPrecon : public Preconditioner<Field> {
public:
void operator()(const Field &src, Field & psi){
psi = src;
}
TrivialPrecon(void){};
};
template<class Field> class TrivialPrecon : public Preconditioner<Field> {
public:
void operator()(const Field &src, Field & psi){
psi = src;
}
TrivialPrecon(void){};
};
}
NAMESPACE_END(Grid);
#endif

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -23,49 +23,49 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_ALGORITHM_SPARSE_MATRIX_H
#define GRID_ALGORITHM_SPARSE_MATRIX_H
namespace Grid {
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////////////////////////////////
// Interface defining what I expect of a general sparse matrix, such as a Fermion action
/////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SparseMatrixBase {
public:
virtual GridBase *Grid(void) =0;
// Full checkerboar operations
virtual RealD M (const Field &in, Field &out)=0;
virtual RealD Mdag (const Field &in, Field &out)=0;
virtual void MdagM(const Field &in, Field &out,RealD &ni,RealD &no) {
Field tmp (in._grid);
ni=M(in,tmp);
no=Mdag(tmp,out);
}
virtual void Mdiag (const Field &in, Field &out)=0;
virtual void Mdir (const Field &in, Field &out,int dir, int disp)=0;
};
/////////////////////////////////////////////////////////////////////////////////////////////
// Interface defining what I expect of a general sparse matrix, such as a Fermion action
/////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SparseMatrixBase {
public:
virtual GridBase *Grid(void) =0;
// Full checkerboar operations
virtual RealD M (const Field &in, Field &out)=0;
virtual RealD Mdag (const Field &in, Field &out)=0;
virtual void MdagM(const Field &in, Field &out,RealD &ni,RealD &no) {
Field tmp (in._grid);
ni=M(in,tmp);
no=Mdag(tmp,out);
}
virtual void Mdiag (const Field &in, Field &out)=0;
virtual void Mdir (const Field &in, Field &out,int dir, int disp)=0;
};
/////////////////////////////////////////////////////////////////////////////////////////////
// Interface augmented by a red black sparse matrix, such as a Fermion action
/////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class CheckerBoardedSparseMatrixBase : public SparseMatrixBase<Field> {
public:
virtual GridBase *RedBlackGrid(void)=0;
// half checkerboard operaions
virtual void Meooe (const Field &in, Field &out)=0;
virtual void Mooee (const Field &in, Field &out)=0;
virtual void MooeeInv (const Field &in, Field &out)=0;
/////////////////////////////////////////////////////////////////////////////////////////////
// Interface augmented by a red black sparse matrix, such as a Fermion action
/////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class CheckerBoardedSparseMatrixBase : public SparseMatrixBase<Field> {
public:
virtual GridBase *RedBlackGrid(void)=0;
// half checkerboard operaions
virtual void Meooe (const Field &in, Field &out)=0;
virtual void Mooee (const Field &in, Field &out)=0;
virtual void MooeeInv (const Field &in, Field &out)=0;
virtual void MeooeDag (const Field &in, Field &out)=0;
virtual void MooeeDag (const Field &in, Field &out)=0;
virtual void MooeeInvDag (const Field &in, Field &out)=0;
virtual void MeooeDag (const Field &in, Field &out)=0;
virtual void MooeeDag (const Field &in, Field &out)=0;
virtual void MooeeInvDag (const Field &in, Field &out)=0;
};
};
}
NAMESPACE_END(Grid);
#endif