mirror of
https://github.com/paboyle/Grid.git
synced 2025-04-05 11:45:56 +01:00
Clean up of acceleration and threading primitives
This commit is contained in:
parent
cefaacbc07
commit
d836ce3b78
@ -34,138 +34,54 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
#endif
|
||||
|
||||
#define strong_inline __attribute__((always_inline)) inline
|
||||
#define UNROLL _Pragma("unroll")
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////
|
||||
// New primitives; explicit host thread calls, and accelerator data parallel calls
|
||||
//////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#ifdef _OPENMP
|
||||
#define GRID_OMP
|
||||
#include <omp.h>
|
||||
#endif
|
||||
|
||||
#ifdef __NVCC__
|
||||
#define GRID_NVCC
|
||||
#endif
|
||||
|
||||
#define UNROLL _Pragma("unroll")
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////
|
||||
// New primitives; explicit host thread calls, and accelerator data parallel calls
|
||||
//////////////////////////////////////////////////////////////////////////////////
|
||||
#ifdef GRID_OMP
|
||||
|
||||
#define DO_PRAGMA_(x) _Pragma (#x)
|
||||
#define DO_PRAGMA(x) DO_PRAGMA_(x)
|
||||
|
||||
#define thread_loop( range , ... ) DO_PRAGMA(omp parallel for schedule(static))for range { __VA_ARGS__ };
|
||||
#define thread_loop_collapse2( range , ... ) DO_PRAGMA(omp parallel for collapse(2)) for range { __VA_ARGS__ };
|
||||
#define thread_loop_collapse( N , range , ... ) DO_PRAGMA(omp parallel for collapse ( N ) ) for range { __VA_ARGS__ };
|
||||
#define thread_loop_in_region( range , ... ) DO_PRAGMA(omp for schedule(static)) for range { __VA_ARGS__ };
|
||||
#define thread_loop_collapse_in_region( N , range , ... ) DO_PRAGMA(omp for collapse ( N )) for range { __VA_ARGS__ };
|
||||
#define thread_region DO_PRAGMA(omp parallel)
|
||||
#define thread_critical DO_PRAGMA(omp critical)
|
||||
#define thread_num(a) omp_get_thread_num()
|
||||
#define thread_max(a) omp_get_max_threads()
|
||||
#else
|
||||
#define thread_loop( range , ... ) for range { __VA_ARGS__ ; };
|
||||
#define thread_loop_collapse2( range , ... ) for range { __VA_ARGS__ ; };
|
||||
#define thread_loop_collapse( N , range , ... ) for range { __VA_ARGS__ ; };
|
||||
#define thread_region
|
||||
#define thread_loop_in_region( range , ... ) for range { __VA_ARGS__ ; };
|
||||
#define thread_loop_collapse_in_region( N, range , ... ) for range { __VA_ARGS__ ; };
|
||||
|
||||
#define thread_critical
|
||||
#else
|
||||
#define DO_PRAGMA_(x)
|
||||
#define DO_PRAGMA(x)
|
||||
#define thread_num(a) (0)
|
||||
#define thread_max(a) (1)
|
||||
#endif
|
||||
|
||||
#define naked_for(i,num,...) for ( uint64_t i=0;i<num;i++) { __VA_ARGS__ } ;
|
||||
#define naked_foreach(i,container,...) for ( uint64_t i=container.begin();i<container.end();i++) { __VA_ARGS__ } ;
|
||||
#define thread_for( i, num, ... ) DO_PRAGMA(omp parallel for schedule(static)) naked_for(i,num,{__VA_ARGS__});
|
||||
#define thread_foreach( i, num, ... ) DO_PRAGMA(omp parallel for schedule(static)) naked_foreach(i,num,{__VA_ARGS__});
|
||||
#define thread_for_in_region( i, num, ... ) DO_PRAGMA(omp for schedule(static)) naked_for(i,num,{__VA_ARGS__});
|
||||
#define thread_for_collapse2( i, num, ... ) DO_PRAGMA(omp parallel for collapse(2)) naked_for(i,num,{__VA_ARGS__});
|
||||
#define thread_for_collapse( N , i, num, ... ) DO_PRAGMA(omp parallel for collapse ( N ) ) naked_for(i,num,{__VA_ARGS__});
|
||||
#define thread_for_collapse_in_region( N , i, num, ... ) DO_PRAGMA(omp for collapse ( N )) naked_for(i,num,{__VA_ARGS__});
|
||||
#define thread_region DO_PRAGMA(omp parallel)
|
||||
#define thread_critical DO_PRAGMA(omp critical)
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////
|
||||
// Accelerator primitives; fall back to threading
|
||||
//////////////////////////////////////////////////////////////////////////////////
|
||||
#ifdef __NVCC__
|
||||
#define GRID_NVCC
|
||||
#endif
|
||||
|
||||
#ifdef GRID_NVCC
|
||||
|
||||
extern uint32_t gpu_threads;
|
||||
|
||||
template<typename lambda> __global__
|
||||
void LambdaApply(uint64_t base, uint64_t Num, lambda Lambda)
|
||||
{
|
||||
uint64_t ss = blockIdx.x*blockDim.x + threadIdx.x;
|
||||
if ( ss < Num ) {
|
||||
Lambda(ss+base);
|
||||
}
|
||||
}
|
||||
|
||||
#define accelerator __host__ __device__
|
||||
#define accelerator_inline __host__ __device__ inline
|
||||
#define accelerator_loop( iterator, range, ... ) \
|
||||
typedef decltype(range.begin()) Iterator; \
|
||||
auto lambda = [=] accelerator (Iterator iterator) mutable { \
|
||||
__VA_ARGS__; \
|
||||
}; \
|
||||
Iterator num = range.end() - range.begin(); \
|
||||
Iterator base = range.begin(); \
|
||||
Iterator num_block = (num+gpu_threads-1)/gpu_threads; \
|
||||
LambdaApply<<<num_block,gpu_threads>>>(base,num,lambda); \
|
||||
cudaDeviceSynchronize(); \
|
||||
cudaError err = cudaGetLastError(); \
|
||||
if ( cudaSuccess != err ) { \
|
||||
printf("Cuda error %s\n",cudaGetErrorString( err )); \
|
||||
exit(0); \
|
||||
}
|
||||
|
||||
#define accelerator_loopN( iterator, num, ... ) \
|
||||
typedef decltype(num) Iterator; \
|
||||
if ( num > 0 ) { \
|
||||
auto lambda = [=] accelerator (Iterator iterator) mutable { \
|
||||
__VA_ARGS__; \
|
||||
}; \
|
||||
Iterator base = 0; \
|
||||
Iterator num_block = (num+gpu_threads-1)/gpu_threads; \
|
||||
LambdaApply<<<num_block,gpu_threads>>>(base,num,lambda); \
|
||||
cudaDeviceSynchronize(); \
|
||||
cudaError err = cudaGetLastError(); \
|
||||
if ( cudaSuccess != err ) { \
|
||||
printf("Cuda error %s\n",cudaGetErrorString( err )); \
|
||||
exit(0); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define accelerator_loopNB( iterator, num, ... ) \
|
||||
typedef decltype(num) Iterator; \
|
||||
if ( num > 0 ) { \
|
||||
auto lambda = [=] accelerator (Iterator iterator) mutable { \
|
||||
__VA_ARGS__; \
|
||||
}; \
|
||||
Iterator base = 0; \
|
||||
Iterator num_block = (num+gpu_threads-1)/gpu_threads; \
|
||||
LambdaApply<<<num_block,gpu_threads>>>(base,num,lambda); \
|
||||
}
|
||||
|
||||
#define cpu_loop( iterator, range, ... ) thread_loop( (auto iterator = range.begin();iterator<range.end();iterator++), { __VA_ARGS__ });
|
||||
|
||||
template<typename lambda> __global__
|
||||
void LambdaApply2D(uint64_t Osites, uint64_t Isites, lambda Lambda)
|
||||
{
|
||||
uint64_t site = threadIdx.x + blockIdx.x*blockDim.x;
|
||||
uint64_t osite = site / Isites;
|
||||
if ( (osite <Osites) ) {
|
||||
Lambda(osite);
|
||||
}
|
||||
}
|
||||
|
||||
#define coalesce_loop( iterator, range, nsimd, ... ) \
|
||||
typedef uint64_t Iterator; \
|
||||
auto lambda = [=] accelerator (Iterator iterator) mutable { \
|
||||
__VA_ARGS__; \
|
||||
}; \
|
||||
Iterator num = range.end() - range.begin(); \
|
||||
Iterator cu_threads= gpu_threads; \
|
||||
Iterator cu_blocks = num*nsimd/cu_threads; \
|
||||
LambdaApply2D<<<cu_blocks,cu_threads>>>(num,(uint64_t)nsimd,lambda); \
|
||||
cudaDeviceSynchronize(); \
|
||||
cudaError err = cudaGetLastError(); \
|
||||
if ( cudaSuccess != err ) { \
|
||||
printf("Cuda error %s\n",cudaGetErrorString( err )); \
|
||||
exit(0); \
|
||||
}
|
||||
|
||||
template<typename lambda> __global__
|
||||
void LambdaApplySIMT(uint64_t Isites, uint64_t Osites, lambda Lambda)
|
||||
@ -177,40 +93,39 @@ void LambdaApplySIMT(uint64_t Isites, uint64_t Osites, lambda Lambda)
|
||||
}
|
||||
}
|
||||
|
||||
#define SIMT_loop( iterator, num, nsimd, ... ) \
|
||||
/////////////////////////////////////////////////////////////////
|
||||
// Internal only really... but need to call when
|
||||
/////////////////////////////////////////////////////////////////
|
||||
#define accelerator_barrier(dummy) \
|
||||
{ \
|
||||
cudaDeviceSynchronize(); \
|
||||
cudaError err = cudaGetLastError(); \
|
||||
if ( cudaSuccess != err ) { \
|
||||
printf("Cuda error %s\n",cudaGetErrorString( err )); \
|
||||
exit(0); \
|
||||
} \
|
||||
}
|
||||
|
||||
// Copy the for_each_n style ; Non-blocking variant
|
||||
#define accelerator_forNB( iterator, num, nsimd, ... ) \
|
||||
typedef uint64_t Iterator; \
|
||||
auto lambda = [=] accelerator (Iterator lane,Iterator iterator) mutable { \
|
||||
__VA_ARGS__; \
|
||||
}; \
|
||||
dim3 cu_threads(gpu_threads,nsimd); \
|
||||
dim3 cu_blocks ((num+gpu_threads-1)/gpu_threads); \
|
||||
LambdaApplySIMT<<<cu_blocks,cu_threads>>>(nsimd,num,lambda); \
|
||||
cudaDeviceSynchronize(); \
|
||||
cudaError err = cudaGetLastError(); \
|
||||
if ( cudaSuccess != err ) { \
|
||||
printf("Cuda error %s\n",cudaGetErrorString( err )); \
|
||||
exit(0); \
|
||||
}
|
||||
LambdaApplySIMT<<<cu_blocks,cu_threads>>>(nsimd,num,lambda);
|
||||
|
||||
// Copy the for_each_n style ; Non-blocking variant (default
|
||||
#define accelerator_for( iterator, num, nsimd, ... ) \
|
||||
accelerator_forNB(iterator, num, nsimd, { __VA_ARGS__ } ); \
|
||||
accelerator_barrier(dummy);
|
||||
|
||||
#else
|
||||
|
||||
#define accelerator
|
||||
#define accelerator_inline strong_inline
|
||||
#define accelerator_loop( iterator, range, ... ) \
|
||||
thread_loop( (auto iterator = range.begin();iterator<range.end();iterator++), { __VA_ARGS__ });
|
||||
|
||||
#define accelerator_loopN( iterator, num, ... ) \
|
||||
thread_loop( (auto iterator = 0;iterator<num;iterator++), { __VA_ARGS__ });
|
||||
|
||||
#define accelerator_loopNB( iterator, num, ... ) \
|
||||
thread_loop( (auto iterator = 0;iterator<num;iterator++), { __VA_ARGS__ });
|
||||
|
||||
#define cpu_loop( iterator, range, ... ) \
|
||||
thread_loop( (auto iterator = range.begin();iterator<range.end();iterator++), { __VA_ARGS__ });
|
||||
|
||||
#define coalesce_loop( iterator, range, nsimd, ... ) cpu_loop(iterator,range,{__VA_ARGS__})
|
||||
|
||||
#define SIMT_loop( iterator, num, nsimd, ... ) accelerator_loopN( iterator, num, {__VA_ARGS__})
|
||||
|
||||
#define accelerator_for(iterator,num,nsimd, ... ) thread_for(iterator, num, { __VA_ARGS__ });
|
||||
#define accelerator_forNB(iterator,num,nsimd, ... ) thread_for(iterator, num, { __VA_ARGS__ });
|
||||
|
||||
#endif
|
||||
|
Loading…
x
Reference in New Issue
Block a user