1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 09:15:38 +01:00

Add Wilson, DWF, Overlap feynman rule tests

This commit is contained in:
paboyle 2016-10-10 23:48:35 +01:00
parent dc389e467c
commit db749f103f

View File

@ -1,6 +1,6 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
grid` physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_cshift.cc
@ -61,18 +61,22 @@ int main (int argc, char ** argv)
LatticeSpinMatrixD S(&GRID);
LatticeSpinMatrixD Stilde(&GRID);
std::vector<int> p({1,2,3,2});
std::vector<int> p({1,3,2,3});
one = ComplexD(1.0,0.0);
zz = ComplexD(0.0,0.0);
ComplexD ci(0.0,1.0);
std::cout<<"*************************************************"<<std::endl;
std::cout<<"Testing Fourier xfrom of known plane wave "<<std::endl;
std::cout<<"*************************************************"<<std::endl;
C=zero;
for(int mu=0;mu<4;mu++){
RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
LatticeCoordinate(coor,mu);
C = C - (TwoPiL * p[mu]) * coor;
C = C + (TwoPiL * p[mu]) * coor;
}
C = exp(C*ci);
@ -82,11 +86,11 @@ int main (int argc, char ** argv)
FFT theFFT(&GRID);
theFFT.FFT_dim(Ctilde,C,0,FFT::forward); C=Ctilde;
std::cout<<" Benchmarking FFT of LatticeComplex "<<std::endl;
theFFT.FFT_dim(Ctilde,C,0,FFT::forward); C=Ctilde; std::cout << theFFT.MFlops()<<" Mflops "<<std::endl;
theFFT.FFT_dim(Ctilde,C,1,FFT::forward); C=Ctilde; std::cout << theFFT.MFlops()<<" Mflops "<<std::endl;
theFFT.FFT_dim(Ctilde,C,2,FFT::forward); C=Ctilde;
theFFT.FFT_dim(Ctilde,C,3,FFT::forward);
theFFT.FFT_dim(Ctilde,C,2,FFT::forward); C=Ctilde; std::cout << theFFT.MFlops()<<" Mflops "<<std::endl;
theFFT.FFT_dim(Ctilde,C,3,FFT::forward); std::cout << theFFT.MFlops()<<" Mflops "<<std::endl;
// C=zero;
// Ctilde = where(abs(Ctilde)<1.0e-10,C,Ctilde);
@ -95,9 +99,11 @@ int main (int argc, char ** argv)
Cref=zero;
pokeSite(cVol,Cref,p);
// std::cout <<"Ctilde "<< Ctilde <<std::endl;
// std::cout <<"Cref "<< Cref <<std::endl;
Cref=Cref-Ctilde;
std::cout << "diff scalar "<<norm2(Cref) << std::endl;
C=Csav;
theFFT.FFT_all_dim(Ctilde,C,FFT::forward);
theFFT.FFT_all_dim(Cref,Ctilde,FFT::backward);
@ -107,10 +113,11 @@ int main (int argc, char ** argv)
Cref= Cref - C;
std::cout << " invertible check " << norm2(Cref)<<std::endl;
theFFT.FFT_dim(Stilde,S,0,FFT::forward); S=Stilde;
std::cout<<" Benchmarking FFT of LatticeSpinMatrix "<<std::endl;
theFFT.FFT_dim(Stilde,S,0,FFT::forward); S=Stilde;std::cout << theFFT.MFlops()<<" mflops "<<std::endl;
theFFT.FFT_dim(Stilde,S,1,FFT::forward); S=Stilde;std::cout << theFFT.MFlops()<<" mflops "<<std::endl;
theFFT.FFT_dim(Stilde,S,2,FFT::forward); S=Stilde;
theFFT.FFT_dim(Stilde,S,3,FFT::forward);
theFFT.FFT_dim(Stilde,S,2,FFT::forward); S=Stilde;std::cout << theFFT.MFlops()<<" mflops "<<std::endl;
theFFT.FFT_dim(Stilde,S,3,FFT::forward);std::cout << theFFT.MFlops()<<" mflops "<<std::endl;
SpinMatrixD Sp;
Sp = zero; Sp = Sp+cVol;
@ -124,94 +131,319 @@ int main (int argc, char ** argv)
/*
*/
std::vector<int> seeds({1,2,3,4});
GridSerialRNG sRNG; sRNG.SeedFixedIntegers(seeds); // naughty seeding
GridParallelRNG pRNG(&GRID);
pRNG.SeedFixedIntegers(seeds);
LatticeGaugeFieldD Umu(&GRID);
SU3::ColdConfiguration(pRNG,Umu); // Unit gauge
// Umu=zero;
////////////////////////////////////////////////////
// Wilson test
////////////////////////////////////////////////////
{
LatticeFermionD src(&GRID); gaussian(pRNG,src);
LatticeFermionD tmp(&GRID);
LatticeFermionD ref(&GRID);
RealD mass=0.1;
RealD mass=0.01;
WilsonFermionD Dw(Umu,GRID,RBGRID,mass);
Dw.M(src,tmp);
std::cout << " src = " <<norm2(src)<<std::endl;
std::cout << " tmp = " <<norm2(tmp)<<std::endl;
std::cout << "Dw src = " <<norm2(src)<<std::endl;
std::cout << "Dw tmp = " <<norm2(tmp)<<std::endl;
Dw.FreePropagator(tmp,ref);
Dw.FreePropagator(tmp,ref,mass);
std::cout << " ref = " <<norm2(ref)<<std::endl;
std::cout << "Dw ref = " <<norm2(ref)<<std::endl;
ref = ref - src;
std::cout << " ref-src = " <<norm2(ref)<<std::endl;
std::cout << "Dw ref-src = " <<norm2(ref)<<std::endl;
}
////////////////////////////////////////////////////
// Dwf matrix
////////////////////////////////////////////////////
{
LatticeFermionD src(&GRID); gaussian(pRNG,src);
LatticeFermionD tmp(&GRID);
LatticeFermionD ref(&GRID);
std::cout<<"****************************************"<<std::endl;
std::cout<<"Testing Fourier representation of Ddwf"<<std::endl;
std::cout<<"****************************************"<<std::endl;
const int Ls=16;
const int sdir=0;
RealD mass=0.01;
RealD M5 =1.0;
Gamma G5(Gamma::Gamma5);
const int Ls=8;
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,&GRID);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,&GRID);
RealD mass=0.1;
RealD M5 =0.9;
std::cout<<"Making Ddwf"<<std::endl;
DomainWallFermionD Ddwf(Umu,*FGrid,*FrbGrid,GRID,RBGRID,mass,M5);
// Need to solve and project 4d. New test required.
Ddwf.MomentumSpacePropagatorHw(ref,src) ;
std::cout << " Hw Mom space \n";
Ddwf.MomentumSpacePropagatorHt(ref,src) ;
std::cout << " Ht Mom space \n";
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds);
LatticeFermionD src5(FGrid); gaussian(RNG5,src5);
LatticeFermionD src5_p(FGrid);
LatticeFermionD result5(FGrid);
LatticeFermionD ref5(FGrid);
LatticeFermionD tmp5(FGrid);
/////////////////////////////////////////////////////////////////
// result5 is the non pert operator in 4d mom space
/////////////////////////////////////////////////////////////////
Ddwf.M(src5,tmp5);
ref5 = tmp5;
FFT theFFT5(FGrid);
{
Gamma G5(Gamma::Gamma5);
theFFT5.FFT_dim(result5,tmp5,1,FFT::forward); tmp5 = result5;
theFFT5.FFT_dim(result5,tmp5,2,FFT::forward); tmp5 = result5;
theFFT5.FFT_dim(result5,tmp5,3,FFT::forward); tmp5 = result5;
theFFT5.FFT_dim(result5,tmp5,4,FFT::forward); result5 = result5*ComplexD(::sqrt(1.0/vol),0.0);
std::cout<<"Fourier xformed Ddwf"<<std::endl;
tmp5 = src5;
theFFT5.FFT_dim(src5_p,tmp5,1,FFT::forward); tmp5 = src5_p;
theFFT5.FFT_dim(src5_p,tmp5,2,FFT::forward); tmp5 = src5_p;
theFFT5.FFT_dim(src5_p,tmp5,3,FFT::forward); tmp5 = src5_p;
theFFT5.FFT_dim(src5_p,tmp5,4,FFT::forward); src5_p = src5_p*ComplexD(::sqrt(1.0/vol),0.0);
LatticeFermionD src5(FGrid); src5=zero;
LatticeFermionD result5(FGrid); result5=zero;
LatticeFermionD result4(&GRID);
const int sdir=0;
std::cout<<"Fourier xformed src5"<<std::endl;
tmp = (src + G5*src)*0.5;
InsertSlice(tmp,src5,Ls-1,sdir);
/////////////////////////////////////////////////////////////////
// work out the predicted from Fourier
/////////////////////////////////////////////////////////////////
Gamma::GammaMatrix Gmu [] = {
Gamma::GammaX,
Gamma::GammaY,
Gamma::GammaZ,
Gamma::GammaT,
Gamma::Gamma5
};
LatticeFermionD Kinetic(FGrid); Kinetic = zero;
LatticeComplexD kmu(FGrid);
LatticeInteger scoor(FGrid);
LatticeComplexD sk (FGrid); sk = zero;
LatticeComplexD sk2(FGrid); sk2= zero;
LatticeComplexD W(FGrid); W= zero;
// LatticeComplexD a(FGrid); a= zero;
LatticeComplexD one(FGrid); one =ComplexD(1.0,0.0);
ComplexD ci(0.0,1.0);
for(int mu=0;mu<Nd;mu++) {
tmp = (src - G5*src)*0.5;
InsertSlice(tmp,src5,0,sdir);
LatticeCoordinate(kmu,mu+1);
MdagMLinearOperator<DomainWallFermionD,LatticeFermionD> HermOp(Ddwf);
ConjugateGradient<LatticeFermionD> CG(1.0e-4,1000);
CG(HermOp,src5,result5);
result5 = zero;
ExtractSlice(tmp,result5,0,sdir);
result4 = (tmp+G5*tmp)*0.5;
RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
kmu = TwoPiL * kmu;
sk2 = sk2 + 2.0*sin(kmu*0.5)*sin(kmu*0.5);
sk = sk + sin(kmu) *sin(kmu);
// -1/2 Dw -> 1/2 gmu (eip - emip) = i sinp gmu
Kinetic = Kinetic + sin(kmu)*ci*(Gamma(Gmu[mu])*src5_p);
ExtractSlice(tmp,result5,Ls-1,sdir);
result4 = result4+(tmp-G5*tmp)*0.5;
std::cout << "src "<<norm2(src)<<std::endl;
std::cout << "src5 "<<norm2(src5)<<std::endl;
std::cout << "result4 "<<norm2(result4)<<std::endl;
std::cout << "ref "<<norm2(ref)<<std::endl;
}
// NB implicit sum over mu
//
// 1-1/2 Dw = 1 - 1/2 ( eip+emip)
// = - 1/2 (ei - 2 + emi)
// = - 1/4 2 (eih - eimh)(eih - eimh)
// = 2 sink/2 ink/2 = sk2
W = one - M5 + sk2;
Kinetic = Kinetic + W * src5_p;
LatticeCoordinate(scoor,sdir);
tmp5 = Cshift(src5_p,sdir,+1);
tmp5 = (tmp5 - G5*tmp5)*0.5;
tmp5 = where(scoor==Integer(Ls-1),mass*tmp5,-tmp5);
Kinetic = Kinetic + tmp5;
tmp5 = Cshift(src5_p,sdir,-1);
tmp5 = (tmp5 + G5*tmp5)*0.5;
tmp5 = where(scoor==Integer(0),mass*tmp5,-tmp5);
Kinetic = Kinetic + tmp5;
std::cout<<"Momentum space Ddwf "<< norm2(Kinetic)<<std::endl;
std::cout<<"Stencil Ddwf "<< norm2(result5)<<std::endl;
result5 = result5 - Kinetic;
std::cout<<"diff "<< norm2(result5)<<std::endl;
}
////////////////////////////////////////////////////
// Dwf prop
////////////////////////////////////////////////////
{
std::cout<<"****************************************"<<std::endl;
std::cout << "Testing Ddwf Ht Mom space 4d propagator \n";
std::cout<<"****************************************"<<std::endl;
LatticeFermionD src(&GRID); gaussian(pRNG,src);
LatticeFermionD tmp(&GRID);
LatticeFermionD ref(&GRID);
LatticeFermionD diff(&GRID);
std::vector<int> point(4,0);
src=zero;
SpinColourVectorD ferm; gaussian(sRNG,ferm);
pokeSite(ferm,src,point);
const int Ls=32;
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,&GRID);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,&GRID);
RealD mass=0.01;
RealD M5 =0.8;
DomainWallFermionD Ddwf(Umu,*FGrid,*FrbGrid,GRID,RBGRID,mass,M5);
// Momentum space prop
std::cout << " Solving by FFT and Feynman rules" <<std::endl;
Ddwf.FreePropagator(src,ref,mass) ;
Gamma G5(Gamma::Gamma5);
LatticeFermionD src5(FGrid); src5=zero;
LatticeFermionD tmp5(FGrid);
LatticeFermionD result5(FGrid); result5=zero;
LatticeFermionD result4(&GRID);
const int sdir=0;
////////////////////////////////////////////////////////////////////////
// Domain wall physical field source
////////////////////////////////////////////////////////////////////////
/*
chi_5[0] = chiralProjectPlus(chi);
chi_5[Ls-1]= chiralProjectMinus(chi);
*/
tmp = (src + G5*src)*0.5; InsertSlice(tmp,src5, 0,sdir);
tmp = (src - G5*src)*0.5; InsertSlice(tmp,src5,Ls-1,sdir);
////////////////////////////////////////////////////////////////////////
// Conjugate gradient on normal equations system
////////////////////////////////////////////////////////////////////////
std::cout << " Solving by Conjugate Gradient (CGNE)" <<std::endl;
Ddwf.Mdag(src5,tmp5);
src5=tmp5;
MdagMLinearOperator<DomainWallFermionD,LatticeFermionD> HermOp(Ddwf);
ConjugateGradient<LatticeFermionD> CG(1.0e-16,10000);
CG(HermOp,src5,result5);
////////////////////////////////////////////////////////////////////////
// Domain wall physical field propagator
////////////////////////////////////////////////////////////////////////
/*
psi = chiralProjectMinus(psi_5[0]);
psi += chiralProjectPlus(psi_5[Ls-1]);
*/
ExtractSlice(tmp,result5,0 ,sdir); result4 = (tmp-G5*tmp)*0.5;
ExtractSlice(tmp,result5,Ls-1,sdir); result4 = result4+(tmp+G5*tmp)*0.5;
std::cout << " Taking difference" <<std::endl;
std::cout << "Ddwf result4 "<<norm2(result4)<<std::endl;
std::cout << "Ddwf ref "<<norm2(ref)<<std::endl;
diff = ref - result4;
std::cout << "result - ref "<<norm2(diff)<<std::endl;
}
////////////////////////////////////////////////////
// Dwf prop
////////////////////////////////////////////////////
{
std::cout<<"****************************************"<<std::endl;
std::cout << "Testing Dov Ht Mom space 4d propagator \n";
std::cout<<"****************************************"<<std::endl;
LatticeFermionD src(&GRID); gaussian(pRNG,src);
LatticeFermionD tmp(&GRID);
LatticeFermionD ref(&GRID);
LatticeFermionD diff(&GRID);
std::vector<int> point(4,0);
src=zero;
SpinColourVectorD ferm; gaussian(sRNG,ferm);
pokeSite(ferm,src,point);
const int Ls=48;
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,&GRID);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,&GRID);
RealD mass=0.01;
RealD M5 =0.8;
OverlapWilsonCayleyTanhFermionD Dov(Umu,*FGrid,*FrbGrid,GRID,RBGRID,mass,M5,1.0);
// Momentum space prop
std::cout << " Solving by FFT and Feynman rules" <<std::endl;
Dov.FreePropagator(src,ref,mass) ;
Gamma G5(Gamma::Gamma5);
LatticeFermionD src5(FGrid); src5=zero;
LatticeFermionD tmp5(FGrid);
LatticeFermionD result5(FGrid); result5=zero;
LatticeFermionD result4(&GRID);
const int sdir=0;
////////////////////////////////////////////////////////////////////////
// Domain wall physical field source; need D_minus
////////////////////////////////////////////////////////////////////////
/*
chi_5[0] = chiralProjectPlus(chi);
chi_5[Ls-1]= chiralProjectMinus(chi);
*/
tmp = (src + G5*src)*0.5; InsertSlice(tmp,src5, 0,sdir);
tmp = (src - G5*src)*0.5; InsertSlice(tmp,src5,Ls-1,sdir);
////////////////////////////////////////////////////////////////////////
// Conjugate gradient on normal equations system
////////////////////////////////////////////////////////////////////////
std::cout << " Solving by Conjugate Gradient (CGNE)" <<std::endl;
Dov.Dminus(src5,tmp5);
src5=tmp5;
Dov.Mdag(src5,tmp5);
src5=tmp5;
MdagMLinearOperator<OverlapWilsonCayleyTanhFermionD,LatticeFermionD> HermOp(Dov);
ConjugateGradient<LatticeFermionD> CG(1.0e-16,10000);
CG(HermOp,src5,result5);
////////////////////////////////////////////////////////////////////////
// Domain wall physical field propagator
////////////////////////////////////////////////////////////////////////
/*
psi = chiralProjectMinus(psi_5[0]);
psi += chiralProjectPlus(psi_5[Ls-1]);
*/
ExtractSlice(tmp,result5,0 ,sdir); result4 = (tmp-G5*tmp)*0.5;
ExtractSlice(tmp,result5,Ls-1,sdir); result4 = result4+(tmp+G5*tmp)*0.5;
std::cout << " Taking difference" <<std::endl;
std::cout << "Dov result4 "<<norm2(result4)<<std::endl;
std::cout << "Dov ref "<<norm2(ref)<<std::endl;
diff = ref - result4;
std::cout << "result - ref "<<norm2(diff)<<std::endl;
}
{
typedef GaugeImplTypes<vComplexD, 1> QEDGimplTypesD;
typedef Photon<QEDGimplTypesD> QEDGaction;
QEDGaction Maxwell(QEDGaction::FEYNMAN_L);
QEDGaction::GaugeField Prop(&GRID);Prop=zero;
QEDGaction::GaugeField Source(&GRID);Source=zero;