1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 01:05:38 +01:00

include missing staple orientations; invert path direction, which was backwards

This commit is contained in:
david clarke 2023-06-22 14:57:10 -06:00
parent d536c67b9d
commit df99f227c1

View File

@ -104,101 +104,106 @@ public:
int depth = 1;
PaddedCell Ghost(depth,this->_grid);
LGF Ughost = Ghost.Exchange(u_thin);
// Array for <tr U_mu_nu>(x)
GridBase *GhostGrid = Ughost.Grid();
LatticeComplex gplaq(GhostGrid);
// This is where the 3-link constructs will be stored
LGF Ughost_fat(Ughost.Grid());
// Create 3-link stencil (class will build its own stencils)
// writing your own stencil, you're hard-coding the periodic BCs, so you don't need
// the policy-based stuff, at least for now
// Create 3-link stencil. Writing your own stencil, you're hard-coding the
// periodic BCs, so you don't need the policy-based stuff, at least for now.
// Loop over all orientations, i.e. demand mu != nu.
std::vector<Coordinate> shifts;
for(int mu=0;mu<Nd;mu++){
for(int nu=mu+1;nu<Nd;nu++){
// forward shifts
Coordinate shift_0(Nd,0);
Coordinate shift_mu(Nd,0); shift_mu[mu]=1;
Coordinate shift_nu(Nd,0); shift_nu[nu]=1;
// push_back creates an element at the end of shifts and
// assigns the data in the argument to it.
shifts.push_back(shift_mu);
shifts.push_back(shift_nu);
shifts.push_back(shift_0);
// reverse shifts
shift_nu[nu]=-1;
Coordinate shift_munu(Nd,0); shift_munu[mu]=1; shift_munu[nu]=-1;
shifts.push_back(shift_munu);
shifts.push_back(shift_nu); // in principle you don't need both of these grid points,
shifts.push_back(shift_nu); // but it helps the reader keep track of offsets
}
for(int mu=0;mu<Nd;mu++)
for(int nu=0;nu<Nd;nu++) {
if(mu==nu) continue;
// forward shifts
Coordinate shift_0(Nd,0);
Coordinate shift_mu(Nd,0); shift_mu[mu]=1;
Coordinate shift_nu(Nd,0); shift_nu[nu]=1;
// push_back creates an element at the end of shifts and
// assigns the data in the argument to it.
shifts.push_back(shift_mu);
shifts.push_back(shift_nu);
shifts.push_back(shift_0);
// reverse shifts
shift_nu[nu]=-1;
Coordinate shift_munu(Nd,0); shift_munu[mu]=1; shift_munu[nu]=-1;
shifts.push_back(shift_munu);
shifts.push_back(shift_nu); // in principle you don't need both of these grid points,
shifts.push_back(shift_nu); // but it helps the reader keep track of offsets
}
GeneralLocalStencil gStencil(GhostGrid,shifts);
Ughost_fat=Zero();
// Create the accessors, here U_v and U_fat_v
autoView(U_v , Ughost , CpuRead);
autoView(U_fat_v, Ughost_fat, CpuWrite);
// This is a loop over local sites.
for(int ss=0;ss<U_v.size();ss++){
// This is the stencil index. It increases as we make our way through the spacetime sites,
// plaquette orientations, and as we travel around a plaquette.
int s=0;
for(int mu=0;mu<Nd;mu++){
for(int nu=mu+1;nu<Nd;nu++){
// shift_mu; shift_mu[mu]=1
// shift_nu; shift_nu[nu]=1
// shift_0
// shift_munu; shift_munu[mu]= 1; shift_munu[nu]=-1;
// shift_nu ; shift_nu[nu]=-1;
// shift_nu ; shift_nu[nu]=-1;
auto SE0 = gStencil.GetEntry(s+0,ss);
auto SE1 = gStencil.GetEntry(s+1,ss);
auto SE2 = gStencil.GetEntry(s+2,ss);
auto SE3 = gStencil.GetEntry(s+3,ss);
auto SE4 = gStencil.GetEntry(s+4,ss);
auto SE5 = gStencil.GetEntry(s+5,ss);
// Each offset corresponds to a site around the plaquette.
int o0 = SE0->_offset;
int o1 = SE1->_offset;
int o2 = SE2->_offset;
int o3 = SE3->_offset;
int o4 = SE4->_offset;
int o5 = SE5->_offset;
auto U0 = U_v[o0](nu);
auto U1 = adj(U_v[o1](mu));
auto U2 = adj(U_v[o2](nu));
gpermute(U0,SE0->_permute);
gpermute(U1,SE1->_permute);
gpermute(U2,SE2->_permute);
auto U3 = adj(U_v[o3](nu));
auto U4 = adj(U_v[o4](mu));
auto U5 = U_v[o5](nu);
gpermute(U3,SE3->_permute);
gpermute(U4,SE4->_permute);
gpermute(U5,SE5->_permute);
// forward backward
auto W = U0*U1*U2 + U3*U4*U5;
U_fat_v[ss](mu) = U_fat_v[ss](mu) + W;
s=s+6;
}
for(int mu=0;mu<Nd;mu++)
for(int nu=0;nu<Nd;nu++) {
if(mu==nu) continue;
// shift_mu; shift_mu[mu]=1
// shift_nu; shift_nu[nu]=1
// shift_0
// shift_munu; shift_munu[mu]= 1; shift_munu[nu]=-1;
// shift_nu ; shift_nu[nu]=-1;
// shift_nu ; shift_nu[nu]=-1;
auto SE0 = gStencil.GetEntry(s+0,ss);
auto SE1 = gStencil.GetEntry(s+1,ss);
auto SE2 = gStencil.GetEntry(s+2,ss);
auto SE3 = gStencil.GetEntry(s+3,ss);
auto SE4 = gStencil.GetEntry(s+4,ss);
auto SE5 = gStencil.GetEntry(s+5,ss);
// Each offset corresponds to a site around the plaquette.
int o0 = SE0->_offset;
int o1 = SE1->_offset;
int o2 = SE2->_offset;
int o3 = SE3->_offset;
int o4 = SE4->_offset;
int o5 = SE5->_offset;
// When you're deciding whether to take an adjoint, the question is: how is the
// stored link oriented compared to the one you want? If I imagine myself travelling
// with the to-be-updated link, I have two possible, alternative 3-link paths I can
// take, one starting by going to the left, the other starting by going to the right.
auto U0 = adj(U_v[o0](nu));
auto U1 = U_v[o1](mu);
auto U2 = U_v[o2](nu);
gpermute(U0,SE0->_permute);
gpermute(U1,SE1->_permute);
gpermute(U2,SE2->_permute);
auto U3 = U_v[o3](nu);
auto U4 = U_v[o4](mu);
auto U5 = adj(U_v[o5](nu));
gpermute(U3,SE3->_permute);
gpermute(U4,SE4->_permute);
gpermute(U5,SE5->_permute);
// "left" "right"
auto W = U2*U1*U0 + U5*U4*U3;
U_fat_v[ss](mu) = U_fat_v[ss](mu) + W;
s=s+6;
}
}
u_smr = lt.c_3*Ghost.Extract(Ughost_fat) + lt.c_1*u_thin;
};
@ -261,23 +266,23 @@ public:
}
}
GeneralLocalStencil gStencil(GhostGrid,shifts);
Ughost_naik=Zero();
// Create the accessors, here U_v and U_fat_v
autoView(U_v , Ughost , CpuRead);
autoView(U_naik_v, Ughost_naik, CpuWrite);
// This is a loop over local sites.
for(int ss=0;ss<U_v.size();ss++){
// This is the stencil index. It increases as we make our way through the spacetime sites,
// plaquette orientations, and as we travel around a plaquette.
int s=0;
for(int mu=0;mu<Nd;mu++){
for(int nu=mu+1;nu<Nd;nu++){
// shift_mu; shift_mu[mu]=1
// shift_nu; shift_nu[nu]=1
// shift_0
@ -290,7 +295,7 @@ public:
auto SE3 = gStencil.GetEntry(s+3,ss);
auto SE4 = gStencil.GetEntry(s+4,ss);
auto SE5 = gStencil.GetEntry(s+5,ss);
// Each offset corresponds to a site around the plaquette.
int o0 = SE0->_offset;
int o1 = SE1->_offset;
@ -298,36 +303,36 @@ public:
int o3 = SE3->_offset;
int o4 = SE4->_offset;
int o5 = SE5->_offset;
auto U0 = U_v[o0](nu);
auto U1 = adj(U_v[o1](mu));
auto U2 = adj(U_v[o2](nu));
gpermute(U0,SE0->_permute);
gpermute(U1,SE1->_permute);
gpermute(U2,SE2->_permute);
auto U3 = adj(U_v[o3](nu));
auto U4 = adj(U_v[o4](mu));
auto U5 = U_v[o5](nu);
gpermute(U3,SE3->_permute);
gpermute(U4,SE4->_permute);
gpermute(U5,SE5->_permute);
// Forward contribution from this orientation
auto W = U0*U1*U2;
U_naik_v[ss](mu) = U_naik_v[ss](mu) + W;
// Backward contribution from this orientation
W = U3*U4*U5;
U_naik_v[ss](mu) = U_naik_v[ss](mu) + W;
s=s+6;
}
}
}
// Here is my understanding of this part: The padded cell has its own periodic BCs, so
// if I take a step to the right at the right-most side of the cell, I end up on the
// left-most side. This means that the plaquettes in the padding are wrong. Luckily