mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 07:55:35 +00:00
ALl codes compile against the new Lanczos call signature
This commit is contained in:
parent
47af3565f4
commit
e325929851
@ -346,6 +346,7 @@ namespace Grid {
|
||||
virtual void operator() (const Field &in, Field &out) = 0;
|
||||
};
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Base classes for Multishift solvers for operators
|
||||
/////////////////////////////////////////////////////////////
|
||||
@ -368,6 +369,64 @@ namespace Grid {
|
||||
};
|
||||
*/
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Hermitian operator Linear function and operator function
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field>
|
||||
class HermOpOperatorFunction : public OperatorFunction<Field> {
|
||||
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
|
||||
Linop.HermOp(in,out);
|
||||
};
|
||||
};
|
||||
|
||||
template<typename Field>
|
||||
class PlainHermOp : public LinearFunction<Field> {
|
||||
public:
|
||||
LinearOperatorBase<Field> &_Linop;
|
||||
|
||||
PlainHermOp(LinearOperatorBase<Field>& linop) : _Linop(linop)
|
||||
{}
|
||||
|
||||
void operator()(const Field& in, Field& out) {
|
||||
_Linop.HermOp(in,out);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Field>
|
||||
class FunctionHermOp : public LinearFunction<Field> {
|
||||
public:
|
||||
OperatorFunction<Field> & _poly;
|
||||
LinearOperatorBase<Field> &_Linop;
|
||||
|
||||
FunctionHermOp(OperatorFunction<Field> & poly,LinearOperatorBase<Field>& linop)
|
||||
: _poly(poly), _Linop(linop) {};
|
||||
|
||||
void operator()(const Field& in, Field& out) {
|
||||
_poly(_Linop,in,out);
|
||||
}
|
||||
};
|
||||
|
||||
template<class Field>
|
||||
class Polynomial : public OperatorFunction<Field> {
|
||||
private:
|
||||
std::vector<RealD> Coeffs;
|
||||
public:
|
||||
Polynomial(std::vector<RealD> &_Coeffs) : Coeffs(_Coeffs) { };
|
||||
|
||||
// Implement the required interface
|
||||
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
|
||||
|
||||
Field AtoN(in._grid);
|
||||
Field Mtmp(in._grid);
|
||||
AtoN = in;
|
||||
out = AtoN*Coeffs[0];
|
||||
for(int n=1;n<Coeffs.size();n++){
|
||||
Mtmp = AtoN;
|
||||
Linop.HermOp(Mtmp,AtoN);
|
||||
out=out+AtoN*Coeffs[n];
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
|
@ -34,41 +34,6 @@ Author: Christoph Lehner <clehner@bnl.gov>
|
||||
|
||||
namespace Grid {
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Simple general polynomial with user supplied coefficients
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field>
|
||||
class HermOpOperatorFunction : public OperatorFunction<Field> {
|
||||
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
|
||||
Linop.HermOp(in,out);
|
||||
};
|
||||
};
|
||||
|
||||
template<class Field>
|
||||
class Polynomial : public OperatorFunction<Field> {
|
||||
private:
|
||||
std::vector<RealD> Coeffs;
|
||||
public:
|
||||
Polynomial(std::vector<RealD> &_Coeffs) : Coeffs(_Coeffs) { };
|
||||
|
||||
// Implement the required interface
|
||||
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
|
||||
|
||||
Field AtoN(in._grid);
|
||||
Field Mtmp(in._grid);
|
||||
AtoN = in;
|
||||
out = AtoN*Coeffs[0];
|
||||
// std::cout <<"Poly in " <<norm2(in)<<" size "<< Coeffs.size()<<std::endl;
|
||||
// std::cout <<"Coeffs[0]= "<<Coeffs[0]<< " 0 " <<norm2(out)<<std::endl;
|
||||
for(int n=1;n<Coeffs.size();n++){
|
||||
Mtmp = AtoN;
|
||||
Linop.HermOp(Mtmp,AtoN);
|
||||
out=out+AtoN*Coeffs[n];
|
||||
// std::cout <<"Coeffs "<<n<<"= "<< Coeffs[n]<< " 0 " <<std::endl;
|
||||
// std::cout << n<<" " <<norm2(out)<<std::endl;
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Generic Chebyshev approximations
|
||||
|
@ -186,9 +186,9 @@ public:
|
||||
int _Nk, // sought vecs
|
||||
int _Nm, // spare vecs
|
||||
RealD _eresid, // resid in lmdue deficit
|
||||
RealD _betastp, // if beta(k) < betastp: converged
|
||||
int _MaxIter, // Max iterations
|
||||
int _MinRestart, int _orth_period = 1,
|
||||
RealD _betastp=0.0, // if beta(k) < betastp: converged
|
||||
int _MinRestart=1, int _orth_period = 1,
|
||||
IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen) :
|
||||
_HermOp(HermOp), _HermOpTest(HermOpTest),
|
||||
Nstop(_Nstop) , Nk(_Nk), Nm(_Nm),
|
||||
@ -232,7 +232,7 @@ repeat
|
||||
→AVK =VKHK +fKe†K † Extend to an M = K + P step factorization AVM = VMHM + fMeM
|
||||
until convergence
|
||||
*/
|
||||
void calc(std::vector<RealD>& eval, std::vector<Field>& evec, const Field& src, int& Nconv, bool reverse, int SkipTest)
|
||||
void calc(std::vector<RealD>& eval, std::vector<Field>& evec, const Field& src, int& Nconv, bool reverse=true, int SkipTest=0)
|
||||
{
|
||||
GridBase *grid = src._grid;
|
||||
assert(grid == evec[0]._grid);
|
||||
|
@ -100,19 +100,6 @@ void write_history(char* fn, std::vector<RealD>& hist) {
|
||||
fclose(f);
|
||||
}
|
||||
|
||||
template<typename Field>
|
||||
class FunctionHermOp : public LinearFunction<Field> {
|
||||
public:
|
||||
OperatorFunction<Field> & _poly;
|
||||
LinearOperatorBase<Field> &_Linop;
|
||||
|
||||
FunctionHermOp(OperatorFunction<Field> & poly,LinearOperatorBase<Field>& linop) : _poly(poly), _Linop(linop) {
|
||||
}
|
||||
|
||||
void operator()(const Field& in, Field& out) {
|
||||
_poly(_Linop,in,out);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Field>
|
||||
class CheckpointedLinearFunction : public LinearFunction<Field> {
|
||||
@ -268,19 +255,6 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Field>
|
||||
class PlainHermOp : public LinearFunction<Field> {
|
||||
public:
|
||||
LinearOperatorBase<Field> &_Linop;
|
||||
|
||||
PlainHermOp(LinearOperatorBase<Field>& linop) : _Linop(linop) {
|
||||
}
|
||||
|
||||
void operator()(const Field& in, Field& out) {
|
||||
_Linop.HermOp(in,out);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename vtype, int N > using CoarseSiteFieldGeneral = iScalar< iVector<vtype, N> >;
|
||||
template<int N> using CoarseSiteFieldD = CoarseSiteFieldGeneral< vComplexD, N >;
|
||||
template<int N> using CoarseSiteFieldF = CoarseSiteFieldGeneral< vComplexF, N >;
|
||||
@ -326,7 +300,7 @@ void CoarseGridLanczos(BlockProjector<Field>& pr,RealD alpha2,RealD beta,int Npo
|
||||
Op2 = &Op2plain;
|
||||
}
|
||||
ProjectedHermOp<CoarseLatticeFermion<Nstop1>,LatticeFermion> Op2nopoly(pr,HermOp);
|
||||
ImplicitlyRestartedLanczos<CoarseLatticeFermion<Nstop1> > IRL2(*Op2,*Op2,Nstop2,Nk2,Nm2,resid2,betastp2,MaxIt,MinRes2);
|
||||
ImplicitlyRestartedLanczos<CoarseLatticeFermion<Nstop1> > IRL2(*Op2,*Op2,Nstop2,Nk2,Nm2,resid2,MaxIt,betastp2,MinRes2);
|
||||
|
||||
|
||||
src_coarse = 1.0;
|
||||
@ -648,7 +622,7 @@ int main (int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// First round of Lanczos to get low mode basis
|
||||
ImplicitlyRestartedLanczos<LatticeFermion> IRL1(Op1,Op1test,Nstop1,Nk1,Nm1,resid1,betastp1,MaxIt,MinRes1);
|
||||
ImplicitlyRestartedLanczos<LatticeFermion> IRL1(Op1,Op1test,Nstop1,Nk1,Nm1,resid1,MaxIt,betastp1,MinRes1);
|
||||
int Nconv;
|
||||
|
||||
char tag[1024];
|
||||
|
@ -84,11 +84,12 @@ int main (int argc, char ** argv)
|
||||
|
||||
std::vector<double> Coeffs { 0.,-1.};
|
||||
Polynomial<FermionField> PolyX(Coeffs);
|
||||
Chebyshev<FermionField> Cheb(0.2,5.,11);
|
||||
// ChebyshevLanczos<LatticeFermion> Cheb(9.,1.,0.,20);
|
||||
// Cheb.csv(std::cout);
|
||||
// exit(-24);
|
||||
ImplicitlyRestartedLanczos<FermionField> IRL(HermOp,Cheb,Nstop,Nk,Nm,resid,MaxIt);
|
||||
Chebyshev<FermionField> Cheby(0.2,5.,11);
|
||||
|
||||
FunctionHermOp<FermionField> OpCheby(Cheby,HermOp);
|
||||
PlainHermOp<FermionField> Op (HermOp);
|
||||
|
||||
ImplicitlyRestartedLanczos<FermionField> IRL(OpCheby,Op,Nstop,Nk,Nm,resid,MaxIt);
|
||||
|
||||
|
||||
std::vector<RealD> eval(Nm);
|
||||
|
@ -119,12 +119,13 @@ int main (int argc, char ** argv)
|
||||
RealD beta = 0.1;
|
||||
RealD mu = 0.0;
|
||||
int order = 11;
|
||||
ChebyshevLanczos<LatticeComplex> Cheby(alpha,beta,mu,order);
|
||||
Chebyshev<LatticeComplex> Cheby(alpha,beta,order);
|
||||
std::ofstream file("cheby.dat");
|
||||
Cheby.csv(file);
|
||||
|
||||
HermOpOperatorFunction<LatticeComplex> X;
|
||||
DumbOperator<LatticeComplex> HermOp(grid);
|
||||
FunctionHermOp<LatticeComplex> OpCheby(Cheby,HermOp);
|
||||
PlainHermOp<LatticeComplex> Op(HermOp);
|
||||
|
||||
const int Nk = 40;
|
||||
const int Nm = 80;
|
||||
@ -133,8 +134,9 @@ int main (int argc, char ** argv)
|
||||
int Nconv;
|
||||
RealD eresid = 1.0e-6;
|
||||
|
||||
ImplicitlyRestartedLanczos<LatticeComplex> IRL(HermOp,X,Nk,Nk,Nm,eresid,Nit);
|
||||
ImplicitlyRestartedLanczos<LatticeComplex> ChebyIRL(HermOp,Cheby,Nk,Nk,Nm,eresid,Nit);
|
||||
|
||||
ImplicitlyRestartedLanczos<LatticeComplex> IRL(Op,Op,Nk,Nk,Nm,eresid,Nit);
|
||||
ImplicitlyRestartedLanczos<LatticeComplex> ChebyIRL(OpCheby,Op,Nk,Nk,Nm,eresid,Nit);
|
||||
|
||||
LatticeComplex src(grid); gaussian(RNG,src);
|
||||
{
|
||||
|
@ -86,9 +86,12 @@ int main(int argc, char** argv) {
|
||||
|
||||
std::vector<double> Coeffs{0, 1.};
|
||||
Polynomial<FermionField> PolyX(Coeffs);
|
||||
Chebyshev<FermionField> Cheb(0.0, 10., 12);
|
||||
ImplicitlyRestartedLanczos<FermionField> IRL(HermOp, PolyX, Nstop, Nk, Nm,
|
||||
resid, MaxIt);
|
||||
Chebyshev<FermionField> Cheby(0.0, 10., 12);
|
||||
|
||||
FunctionHermOp<FermionField> OpCheby(Cheby,HermOp);
|
||||
PlainHermOp<FermionField> Op (HermOp);
|
||||
|
||||
ImplicitlyRestartedLanczos<FermionField> IRL(OpCheby, Op, Nstop, Nk, Nm, resid, MaxIt);
|
||||
|
||||
std::vector<RealD> eval(Nm);
|
||||
FermionField src(FGrid);
|
||||
|
Loading…
Reference in New Issue
Block a user