1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00

ALl codes compile against the new Lanczos call signature

This commit is contained in:
paboyle 2017-10-13 14:02:43 +01:00
parent 47af3565f4
commit e325929851
7 changed files with 82 additions and 78 deletions

View File

@ -346,6 +346,7 @@ namespace Grid {
virtual void operator() (const Field &in, Field &out) = 0;
};
/////////////////////////////////////////////////////////////
// Base classes for Multishift solvers for operators
/////////////////////////////////////////////////////////////
@ -368,6 +369,64 @@ namespace Grid {
};
*/
////////////////////////////////////////////////////////////////////////////////////////////
// Hermitian operator Linear function and operator function
////////////////////////////////////////////////////////////////////////////////////////////
template<class Field>
class HermOpOperatorFunction : public OperatorFunction<Field> {
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
Linop.HermOp(in,out);
};
};
template<typename Field>
class PlainHermOp : public LinearFunction<Field> {
public:
LinearOperatorBase<Field> &_Linop;
PlainHermOp(LinearOperatorBase<Field>& linop) : _Linop(linop)
{}
void operator()(const Field& in, Field& out) {
_Linop.HermOp(in,out);
}
};
template<typename Field>
class FunctionHermOp : public LinearFunction<Field> {
public:
OperatorFunction<Field> & _poly;
LinearOperatorBase<Field> &_Linop;
FunctionHermOp(OperatorFunction<Field> & poly,LinearOperatorBase<Field>& linop)
: _poly(poly), _Linop(linop) {};
void operator()(const Field& in, Field& out) {
_poly(_Linop,in,out);
}
};
template<class Field>
class Polynomial : public OperatorFunction<Field> {
private:
std::vector<RealD> Coeffs;
public:
Polynomial(std::vector<RealD> &_Coeffs) : Coeffs(_Coeffs) { };
// Implement the required interface
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
Field AtoN(in._grid);
Field Mtmp(in._grid);
AtoN = in;
out = AtoN*Coeffs[0];
for(int n=1;n<Coeffs.size();n++){
Mtmp = AtoN;
Linop.HermOp(Mtmp,AtoN);
out=out+AtoN*Coeffs[n];
}
};
};
}

View File

@ -34,41 +34,6 @@ Author: Christoph Lehner <clehner@bnl.gov>
namespace Grid {
////////////////////////////////////////////////////////////////////////////////////////////
// Simple general polynomial with user supplied coefficients
////////////////////////////////////////////////////////////////////////////////////////////
template<class Field>
class HermOpOperatorFunction : public OperatorFunction<Field> {
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
Linop.HermOp(in,out);
};
};
template<class Field>
class Polynomial : public OperatorFunction<Field> {
private:
std::vector<RealD> Coeffs;
public:
Polynomial(std::vector<RealD> &_Coeffs) : Coeffs(_Coeffs) { };
// Implement the required interface
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
Field AtoN(in._grid);
Field Mtmp(in._grid);
AtoN = in;
out = AtoN*Coeffs[0];
// std::cout <<"Poly in " <<norm2(in)<<" size "<< Coeffs.size()<<std::endl;
// std::cout <<"Coeffs[0]= "<<Coeffs[0]<< " 0 " <<norm2(out)<<std::endl;
for(int n=1;n<Coeffs.size();n++){
Mtmp = AtoN;
Linop.HermOp(Mtmp,AtoN);
out=out+AtoN*Coeffs[n];
// std::cout <<"Coeffs "<<n<<"= "<< Coeffs[n]<< " 0 " <<std::endl;
// std::cout << n<<" " <<norm2(out)<<std::endl;
}
};
};
////////////////////////////////////////////////////////////////////////////////////////////
// Generic Chebyshev approximations

View File

@ -186,9 +186,9 @@ public:
int _Nk, // sought vecs
int _Nm, // spare vecs
RealD _eresid, // resid in lmdue deficit
RealD _betastp, // if beta(k) < betastp: converged
int _MaxIter, // Max iterations
int _MinRestart, int _orth_period = 1,
RealD _betastp=0.0, // if beta(k) < betastp: converged
int _MinRestart=1, int _orth_period = 1,
IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen) :
_HermOp(HermOp), _HermOpTest(HermOpTest),
Nstop(_Nstop) , Nk(_Nk), Nm(_Nm),
@ -232,7 +232,7 @@ repeat
AVK =VKHK +fKeK Extend to an M = K + P step factorization AVM = VMHM + fMeM
until convergence
*/
void calc(std::vector<RealD>& eval, std::vector<Field>& evec, const Field& src, int& Nconv, bool reverse, int SkipTest)
void calc(std::vector<RealD>& eval, std::vector<Field>& evec, const Field& src, int& Nconv, bool reverse=true, int SkipTest=0)
{
GridBase *grid = src._grid;
assert(grid == evec[0]._grid);

View File

@ -100,19 +100,6 @@ void write_history(char* fn, std::vector<RealD>& hist) {
fclose(f);
}
template<typename Field>
class FunctionHermOp : public LinearFunction<Field> {
public:
OperatorFunction<Field> & _poly;
LinearOperatorBase<Field> &_Linop;
FunctionHermOp(OperatorFunction<Field> & poly,LinearOperatorBase<Field>& linop) : _poly(poly), _Linop(linop) {
}
void operator()(const Field& in, Field& out) {
_poly(_Linop,in,out);
}
};
template<typename Field>
class CheckpointedLinearFunction : public LinearFunction<Field> {
@ -268,19 +255,6 @@ public:
}
};
template<typename Field>
class PlainHermOp : public LinearFunction<Field> {
public:
LinearOperatorBase<Field> &_Linop;
PlainHermOp(LinearOperatorBase<Field>& linop) : _Linop(linop) {
}
void operator()(const Field& in, Field& out) {
_Linop.HermOp(in,out);
}
};
template<typename vtype, int N > using CoarseSiteFieldGeneral = iScalar< iVector<vtype, N> >;
template<int N> using CoarseSiteFieldD = CoarseSiteFieldGeneral< vComplexD, N >;
template<int N> using CoarseSiteFieldF = CoarseSiteFieldGeneral< vComplexF, N >;
@ -326,7 +300,7 @@ void CoarseGridLanczos(BlockProjector<Field>& pr,RealD alpha2,RealD beta,int Npo
Op2 = &Op2plain;
}
ProjectedHermOp<CoarseLatticeFermion<Nstop1>,LatticeFermion> Op2nopoly(pr,HermOp);
ImplicitlyRestartedLanczos<CoarseLatticeFermion<Nstop1> > IRL2(*Op2,*Op2,Nstop2,Nk2,Nm2,resid2,betastp2,MaxIt,MinRes2);
ImplicitlyRestartedLanczos<CoarseLatticeFermion<Nstop1> > IRL2(*Op2,*Op2,Nstop2,Nk2,Nm2,resid2,MaxIt,betastp2,MinRes2);
src_coarse = 1.0;
@ -648,7 +622,7 @@ int main (int argc, char ** argv) {
}
// First round of Lanczos to get low mode basis
ImplicitlyRestartedLanczos<LatticeFermion> IRL1(Op1,Op1test,Nstop1,Nk1,Nm1,resid1,betastp1,MaxIt,MinRes1);
ImplicitlyRestartedLanczos<LatticeFermion> IRL1(Op1,Op1test,Nstop1,Nk1,Nm1,resid1,MaxIt,betastp1,MinRes1);
int Nconv;
char tag[1024];

View File

@ -84,11 +84,12 @@ int main (int argc, char ** argv)
std::vector<double> Coeffs { 0.,-1.};
Polynomial<FermionField> PolyX(Coeffs);
Chebyshev<FermionField> Cheb(0.2,5.,11);
// ChebyshevLanczos<LatticeFermion> Cheb(9.,1.,0.,20);
// Cheb.csv(std::cout);
// exit(-24);
ImplicitlyRestartedLanczos<FermionField> IRL(HermOp,Cheb,Nstop,Nk,Nm,resid,MaxIt);
Chebyshev<FermionField> Cheby(0.2,5.,11);
FunctionHermOp<FermionField> OpCheby(Cheby,HermOp);
PlainHermOp<FermionField> Op (HermOp);
ImplicitlyRestartedLanczos<FermionField> IRL(OpCheby,Op,Nstop,Nk,Nm,resid,MaxIt);
std::vector<RealD> eval(Nm);

View File

@ -119,12 +119,13 @@ int main (int argc, char ** argv)
RealD beta = 0.1;
RealD mu = 0.0;
int order = 11;
ChebyshevLanczos<LatticeComplex> Cheby(alpha,beta,mu,order);
Chebyshev<LatticeComplex> Cheby(alpha,beta,order);
std::ofstream file("cheby.dat");
Cheby.csv(file);
HermOpOperatorFunction<LatticeComplex> X;
DumbOperator<LatticeComplex> HermOp(grid);
FunctionHermOp<LatticeComplex> OpCheby(Cheby,HermOp);
PlainHermOp<LatticeComplex> Op(HermOp);
const int Nk = 40;
const int Nm = 80;
@ -133,8 +134,9 @@ int main (int argc, char ** argv)
int Nconv;
RealD eresid = 1.0e-6;
ImplicitlyRestartedLanczos<LatticeComplex> IRL(HermOp,X,Nk,Nk,Nm,eresid,Nit);
ImplicitlyRestartedLanczos<LatticeComplex> ChebyIRL(HermOp,Cheby,Nk,Nk,Nm,eresid,Nit);
ImplicitlyRestartedLanczos<LatticeComplex> IRL(Op,Op,Nk,Nk,Nm,eresid,Nit);
ImplicitlyRestartedLanczos<LatticeComplex> ChebyIRL(OpCheby,Op,Nk,Nk,Nm,eresid,Nit);
LatticeComplex src(grid); gaussian(RNG,src);
{

View File

@ -86,9 +86,12 @@ int main(int argc, char** argv) {
std::vector<double> Coeffs{0, 1.};
Polynomial<FermionField> PolyX(Coeffs);
Chebyshev<FermionField> Cheb(0.0, 10., 12);
ImplicitlyRestartedLanczos<FermionField> IRL(HermOp, PolyX, Nstop, Nk, Nm,
resid, MaxIt);
Chebyshev<FermionField> Cheby(0.0, 10., 12);
FunctionHermOp<FermionField> OpCheby(Cheby,HermOp);
PlainHermOp<FermionField> Op (HermOp);
ImplicitlyRestartedLanczos<FermionField> IRL(OpCheby, Op, Nstop, Nk, Nm, resid, MaxIt);
std::vector<RealD> eval(Nm);
FermionField src(FGrid);