1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00

removed comments

This commit is contained in:
Nils Meyer 2017-06-27 20:58:48 +02:00
parent bf729766dd
commit e43a8b6b8a

857
Grid_vector_types.h Normal file
View File

@ -0,0 +1,857 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/simd/Grid_vector_type.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Guido Cossu <cossu@iroiro-pc.kek.jp>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
//---------------------------------------------------------------------------
/*! @file Grid_vector_types.h
@brief Defines templated class Grid_simd to deal with inner vector types
*/
// Time-stamp: <2015-07-10 17:45:33 neo>
//---------------------------------------------------------------------------
#ifndef GRID_VECTOR_TYPES
#define GRID_VECTOR_TYPES
#ifdef GEN
#include "Grid_generic.h"
#endif
#ifdef SSE4
#include "Grid_sse4.h"
#endif
#if defined(AVX1) || defined (AVXFMA) || defined(AVX2) || defined(AVXFMA4)
#include "Grid_avx.h"
#endif
#if defined AVX512
#include "Grid_avx512.h"
#endif
#if defined IMCI
#include "Grid_imci.h"
#endif
#ifdef NEONv8
#include "Grid_neon.h"
#endif
#if defined QPX
#include "Grid_qpx.h"
#endif
#include "l1p.h"
namespace Grid {
//////////////////////////////////////
// To take the floating point type of real/complex type
//////////////////////////////////////
template <typename T>
struct RealPart {
typedef T type;
};
template <typename T>
struct RealPart<std::complex<T> > {
typedef T type;
};
#include <type_traits>
//////////////////////////////////////
// demote a vector to real type
//////////////////////////////////////
// type alias used to simplify the syntax of std::enable_if
template <typename T> using Invoke = typename T::type;
template <typename Condition, typename ReturnType> using EnableIf = Invoke<std::enable_if<Condition::value, ReturnType> >;
template <typename Condition, typename ReturnType> using NotEnableIf = Invoke<std::enable_if<!Condition::value, ReturnType> >;
////////////////////////////////////////////////////////
// Check for complexity with type traits
template <typename T> struct is_complex : public std::false_type {};
template <> struct is_complex<std::complex<double> > : public std::true_type {};
template <> struct is_complex<std::complex<float> > : public std::true_type {};
template <typename T> using IfReal = Invoke<std::enable_if<std::is_floating_point<T>::value, int> >;
template <typename T> using IfComplex = Invoke<std::enable_if<is_complex<T>::value, int> >;
template <typename T> using IfInteger = Invoke<std::enable_if<std::is_integral<T>::value, int> >;
template <typename T1,typename T2> using IfSame = Invoke<std::enable_if<std::is_same<T1,T2>::value, int> >;
template <typename T> using IfNotReal = Invoke<std::enable_if<!std::is_floating_point<T>::value, int> >;
template <typename T> using IfNotComplex = Invoke<std::enable_if<!is_complex<T>::value, int> >;
template <typename T> using IfNotInteger = Invoke<std::enable_if<!std::is_integral<T>::value, int> >;
template <typename T1,typename T2> using IfNotSame = Invoke<std::enable_if<!std::is_same<T1,T2>::value, int> >;
////////////////////////////////////////////////////////
// Define the operation templates functors
// general forms to allow for vsplat syntax
// need explicit declaration of types when used since
// clang cannot automatically determine the output type sometimes
template <class Out, class Input1, class Input2, class Input3, class Operation>
Out trinary(Input1 src_1, Input2 src_2, Input3 src_3, Operation op) {
return op(src_1, src_2, src_3);
}
template <class Out, class Input1, class Input2, class Operation>
Out binary(Input1 src_1, Input2 src_2, Operation op) {
return op(src_1, src_2);
}
template <class Out, class Input, class Operation>
Out unary(Input src, Operation op) {
return op(src);
}
///////////////////////////////////////////////
/*
@brief Grid_simd class for the SIMD vector type operations
*/
template <class Scalar_type, class Vector_type>
class Grid_simd {
public:
typedef typename RealPart<Scalar_type>::type Real;
typedef Vector_type vector_type;
typedef Scalar_type scalar_type;
typedef union conv_t_union {
Vector_type v;
Scalar_type s[sizeof(Vector_type) / sizeof(Scalar_type)];
conv_t_union(){};
} conv_t;
Vector_type v;
static inline constexpr int Nsimd(void) {
return sizeof(Vector_type) / sizeof(Scalar_type);
}
Grid_simd &operator=(const Grid_simd &&rhs) {
v = rhs.v;
return *this;
};
Grid_simd &operator=(const Grid_simd &rhs) {
v = rhs.v;
return *this;
}; // faster than not declaring it and leaving to the compiler
Grid_simd() = default;
Grid_simd(const Grid_simd &rhs) : v(rhs.v){}; // compiles in movaps
Grid_simd(const Grid_simd &&rhs) : v(rhs.v){};
/////////////////////////////
// Constructors
/////////////////////////////
Grid_simd &operator=(Zero &z) {
vzero(*this);
return (*this);
}
// Enable if complex type
template <typename S = Scalar_type>
Grid_simd(const typename std::enable_if<is_complex<S>::value, S>::type a) {
vsplat(*this, a);
};
Grid_simd(const Real a) { vsplat(*this, Scalar_type(a)); };
///////////////////////////////////////////////
// mac, mult, sub, add, adj
///////////////////////////////////////////////
// FIXME -- alias this to an inline MAC struct.
friend inline void mac(Grid_simd *__restrict__ y,
const Grid_simd *__restrict__ a,
const Grid_simd *__restrict__ x) {
*y = (*a) * (*x) + (*y);
};
friend inline void mult(Grid_simd *__restrict__ y,
const Grid_simd *__restrict__ l,
const Grid_simd *__restrict__ r) {
*y = (*l) * (*r);
}
friend inline void sub(Grid_simd *__restrict__ y,
const Grid_simd *__restrict__ l,
const Grid_simd *__restrict__ r) {
*y = (*l) - (*r);
}
friend inline void add(Grid_simd *__restrict__ y,
const Grid_simd *__restrict__ l,
const Grid_simd *__restrict__ r) {
*y = (*l) + (*r);
}
friend inline void mac(Grid_simd *__restrict__ y,
const Scalar_type *__restrict__ a,
const Grid_simd *__restrict__ x) {
*y = (*a) * (*x) + (*y);
};
friend inline void mult(Grid_simd *__restrict__ y,
const Scalar_type *__restrict__ l,
const Grid_simd *__restrict__ r) {
*y = (*l) * (*r);
}
friend inline void sub(Grid_simd *__restrict__ y,
const Scalar_type *__restrict__ l,
const Grid_simd *__restrict__ r) {
*y = (*l) - (*r);
}
friend inline void add(Grid_simd *__restrict__ y,
const Scalar_type *__restrict__ l,
const Grid_simd *__restrict__ r) {
*y = (*l) + (*r);
}
friend inline void mac(Grid_simd *__restrict__ y,
const Grid_simd *__restrict__ a,
const Scalar_type *__restrict__ x) {
*y = (*a) * (*x) + (*y);
};
friend inline void mult(Grid_simd *__restrict__ y,
const Grid_simd *__restrict__ l,
const Scalar_type *__restrict__ r) {
*y = (*l) * (*r);
}
friend inline void sub(Grid_simd *__restrict__ y,
const Grid_simd *__restrict__ l,
const Scalar_type *__restrict__ r) {
*y = (*l) - (*r);
}
friend inline void add(Grid_simd *__restrict__ y,
const Grid_simd *__restrict__ l,
const Scalar_type *__restrict__ r) {
*y = (*l) + (*r);
}
////////////////////////////////////////////////////////////////////////
// FIXME: gonna remove these load/store, get, set, prefetch
////////////////////////////////////////////////////////////////////////
friend inline void vset(Grid_simd &ret, Scalar_type *a) {
ret.v = unary<Vector_type>(a, VsetSIMD());
}
///////////////////////
// Vstore
///////////////////////
friend inline void vstore(const Grid_simd &ret, Scalar_type *a) {
binary<void>(ret.v, (Real *)a, VstoreSIMD());
}
///////////////////////
// Vprefetch
///////////////////////
friend inline void vprefetch(const Grid_simd &v) {
prefetch_HINT_T0((const char *)&v.v);
}
///////////////////////
// Reduce
///////////////////////
friend inline Scalar_type Reduce(const Grid_simd &in) {
return unary<Scalar_type>(in.v, ReduceSIMD<Scalar_type, Vector_type>());
}
////////////////////////////
// operator scalar * simd
////////////////////////////
friend inline Grid_simd operator*(const Scalar_type &a, Grid_simd b) {
Grid_simd va;
vsplat(va, a);
return va * b;
}
friend inline Grid_simd operator*(Grid_simd b, const Scalar_type &a) {
return a * b;
}
//////////////////////////////////
// Divides
//////////////////////////////////
friend inline Grid_simd operator/(const Scalar_type &a, Grid_simd b) {
Grid_simd va;
vsplat(va, a);
return va / b;
}
friend inline Grid_simd operator/(Grid_simd b, const Scalar_type &a) {
Grid_simd va;
vsplat(va, a);
return b / a;
}
///////////////////////
// Unary negation
///////////////////////
friend inline Grid_simd operator-(const Grid_simd &r) {
Grid_simd ret;
vzero(ret);
ret = ret - r;
return ret;
}
// *=,+=,-= operators
inline Grid_simd &operator*=(const Grid_simd &r) {
*this = (*this) * r;
return *this;
// return (*this)*r; ?
}
inline Grid_simd &operator+=(const Grid_simd &r) {
*this = *this + r;
return *this;
}
inline Grid_simd &operator-=(const Grid_simd &r) {
*this = *this - r;
return *this;
}
///////////////////////////////////////
// Not all functions are supported
// through SIMD and must breakout to
// scalar type and back again. This
// provides support
///////////////////////////////////////
template <class functor>
friend inline Grid_simd SimdApply(const functor &func, const Grid_simd &v) {
Grid_simd ret;
Grid_simd::conv_t conv;
Grid_simd::scalar_type s;
conv.v = v.v;
for (int i = 0; i < Nsimd(); i++) {
s = conv.s[i];
conv.s[i] = func(s);
}
ret.v = conv.v;
return ret;
}
template <class functor>
friend inline Grid_simd SimdApplyBinop(const functor &func,
const Grid_simd &x,
const Grid_simd &y) {
Grid_simd ret;
Grid_simd::conv_t cx;
Grid_simd::conv_t cy;
Grid_simd::scalar_type sx,sy;
cx.v = x.v;
cy.v = y.v;
for (int i = 0; i < Nsimd(); i++) {
sx = cx.s[i];
sy = cy.s[i];
cx.s[i] = func(sx,sy);
}
ret.v = cx.v;
return ret;
}
///////////////////////
// Exchange
// Al Ah , Bl Bh -> Al Bl Ah,Bh
///////////////////////
friend inline void exchange(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2,int n)
{
if (n==3) {
Optimization::Exchange::Exchange3(out1.v,out2.v,in1.v,in2.v);
} else if(n==2) {
Optimization::Exchange::Exchange2(out1.v,out2.v,in1.v,in2.v);
} else if(n==1) {
Optimization::Exchange::Exchange1(out1.v,out2.v,in1.v,in2.v);
} else if(n==0) {
Optimization::Exchange::Exchange0(out1.v,out2.v,in1.v,in2.v);
}
}
////////////////////////////////////////////////////////////////////
// General permute; assumes vector length is same across
// all subtypes; may not be a good assumption, but could
// add the vector width as a template param for BG/Q for example
////////////////////////////////////////////////////////////////////
friend inline void permute0(Grid_simd &y, Grid_simd b) {
y.v = Optimization::Permute::Permute0(b.v);
}
friend inline void permute1(Grid_simd &y, Grid_simd b) {
y.v = Optimization::Permute::Permute1(b.v);
}
friend inline void permute2(Grid_simd &y, Grid_simd b) {
y.v = Optimization::Permute::Permute2(b.v);
}
friend inline void permute3(Grid_simd &y, Grid_simd b) {
y.v = Optimization::Permute::Permute3(b.v);
}
friend inline void permute(Grid_simd &y, Grid_simd b, int perm) {
if (perm & RotateBit) {
int dist = perm & 0xF;
y = rotate(b, dist);
return;
}
else if(perm==3) permute3(y, b);
else if(perm==2) permute2(y, b);
else if(perm==1) permute1(y, b);
else if(perm==0) permute0(y, b);
}
///////////////////////////////
// Getting single lanes
///////////////////////////////
inline Scalar_type getlane(int lane) {
return ((Scalar_type*)&v)[lane];
}
inline void putlane(const Scalar_type &S, int lane){
((Scalar_type*)&v)[lane] = S;
}
}; // end of Grid_simd class definition
inline void permute(ComplexD &y,ComplexD b, int perm) { y=b; }
inline void permute(ComplexF &y,ComplexF b, int perm) { y=b; }
inline void permute(RealD &y,RealD b, int perm) { y=b; }
inline void permute(RealF &y,RealF b, int perm) { y=b; }
////////////////////////////////////////////////////////////////////
// General rotate
////////////////////////////////////////////////////////////////////
template <class S, class V, IfNotComplex<S> = 0>
inline Grid_simd<S, V> rotate(Grid_simd<S, V> b, int nrot) {
nrot = nrot % Grid_simd<S, V>::Nsimd();
Grid_simd<S, V> ret;
ret.v = Optimization::Rotate::rotate(b.v, nrot);
return ret;
}
template <class S, class V, IfComplex<S> = 0>
inline Grid_simd<S, V> rotate(Grid_simd<S, V> b, int nrot) {
nrot = nrot % Grid_simd<S, V>::Nsimd();
Grid_simd<S, V> ret;
ret.v = Optimization::Rotate::rotate(b.v, 2 * nrot);
return ret;
}
template <class S, class V, IfNotComplex<S> =0>
inline void rotate( Grid_simd<S,V> &ret,Grid_simd<S,V> b,int nrot)
{
nrot = nrot % Grid_simd<S,V>::Nsimd();
ret.v = Optimization::Rotate::rotate(b.v,nrot);
}
template <class S, class V, IfComplex<S> =0>
inline void rotate(Grid_simd<S,V> &ret,Grid_simd<S,V> b,int nrot)
{
nrot = nrot % Grid_simd<S,V>::Nsimd();
ret.v = Optimization::Rotate::rotate(b.v,2*nrot);
}
template <class S, class V>
inline void vbroadcast(Grid_simd<S,V> &ret,const Grid_simd<S,V> &src,int lane){
S* typepun =(S*) &src;
vsplat(ret,typepun[lane]);
}
template <class S, class V, IfComplex<S> =0>
inline void rbroadcast(Grid_simd<S,V> &ret,const Grid_simd<S,V> &src,int lane){
S* typepun =(S*) &src;
ret.v = unary<V>(real(typepun[lane]), VsplatSIMD());
}
///////////////////////
// Splat
///////////////////////
// this is only for the complex version
template <class S, class V, IfComplex<S> = 0, class ABtype>
inline void vsplat(Grid_simd<S, V> &ret, ABtype a, ABtype b) {
ret.v = binary<V>(a, b, VsplatSIMD());
}
// overload if complex
template <class S, class V>
inline void vsplat(Grid_simd<S, V> &ret, EnableIf<is_complex<S>, S> c) {
vsplat(ret, real(c), imag(c));
}
template <class S, class V>
inline void rsplat(Grid_simd<S, V> &ret, EnableIf<is_complex<S>, S> c) {
vsplat(ret, real(c), real(c));
}
// if real fill with a, if complex fill with a in the real part (first function
// above)
template <class S, class V>
inline void vsplat(Grid_simd<S, V> &ret, NotEnableIf<is_complex<S>, S> a) {
ret.v = unary<V>(a, VsplatSIMD());
}
//////////////////////////
///////////////////////////////////////////////
// Initialise to 1,0,i for the correct types
///////////////////////////////////////////////
// For complex types
template <class S, class V, IfComplex<S> = 0>
inline void vone(Grid_simd<S, V> &ret) {
vsplat(ret, S(1.0, 0.0));
}
template <class S, class V, IfComplex<S> = 0>
inline void vzero(Grid_simd<S, V> &ret) {
vsplat(ret, S(0.0, 0.0));
} // use xor?
template <class S, class V, IfComplex<S> = 0>
inline void vcomplex_i(Grid_simd<S, V> &ret) {
vsplat(ret, S(0.0, 1.0));
}
template <class S, class V, IfComplex<S> = 0>
inline void visign(Grid_simd<S, V> &ret) {
vsplat(ret, S(1.0, -1.0));
}
template <class S, class V, IfComplex<S> = 0>
inline void vrsign(Grid_simd<S, V> &ret) {
vsplat(ret, S(-1.0, 1.0));
}
// if not complex overload here
template <class S, class V, IfReal<S> = 0>
inline void vone(Grid_simd<S, V> &ret) {
vsplat(ret, S(1.0));
}
template <class S, class V, IfReal<S> = 0>
inline void vzero(Grid_simd<S, V> &ret) {
vsplat(ret, S(0.0));
}
// For integral types
template <class S, class V, IfInteger<S> = 0>
inline void vone(Grid_simd<S, V> &ret) {
vsplat(ret, 1);
}
template <class S, class V, IfInteger<S> = 0>
inline void vzero(Grid_simd<S, V> &ret) {
vsplat(ret, 0);
}
template <class S, class V, IfInteger<S> = 0>
inline void vtrue(Grid_simd<S, V> &ret) {
vsplat(ret, 0xFFFFFFFF);
}
template <class S, class V, IfInteger<S> = 0>
inline void vfalse(Grid_simd<S, V> &ret) {
vsplat(ret, 0);
}
template <class S, class V>
inline void zeroit(Grid_simd<S, V> &z) {
vzero(z);
}
///////////////////////
// Vstream
///////////////////////
template <class S, class V, IfReal<S> = 0>
inline void vstream(Grid_simd<S, V> &out, const Grid_simd<S, V> &in) {
binary<void>((S *)&out.v, in.v, VstreamSIMD());
}
template <class S, class V, IfComplex<S> = 0>
inline void vstream(Grid_simd<S, V> &out, const Grid_simd<S, V> &in) {
typedef typename S::value_type T;
binary<void>((T *)&out.v, in.v, VstreamSIMD());
}
template <class S, class V, IfInteger<S> = 0>
inline void vstream(Grid_simd<S, V> &out, const Grid_simd<S, V> &in) {
out = in;
}
////////////////////////////////////
// Arithmetic operator overloads +,-,*
////////////////////////////////////
template <class S, class V>
inline Grid_simd<S, V> operator+(Grid_simd<S, V> a, Grid_simd<S, V> b) {
Grid_simd<S, V> ret;
ret.v = binary<V>(a.v, b.v, SumSIMD());
return ret;
};
template <class S, class V>
inline Grid_simd<S, V> operator-(Grid_simd<S, V> a, Grid_simd<S, V> b) {
Grid_simd<S, V> ret;
ret.v = binary<V>(a.v, b.v, SubSIMD());
return ret;
};
// Distinguish between complex types and others
template <class S, class V, IfComplex<S> = 0>
inline Grid_simd<S, V> real_mult(Grid_simd<S, V> a, Grid_simd<S, V> b) {
Grid_simd<S, V> ret;
ret.v = binary<V>(a.v, b.v, MultRealPartSIMD());
return ret;
};
template <class S, class V, IfComplex<S> = 0>
inline Grid_simd<S, V> real_madd(Grid_simd<S, V> a, Grid_simd<S, V> b, Grid_simd<S,V> c) {
Grid_simd<S, V> ret;
ret.v = trinary<V>(a.v, b.v, c.v, MaddRealPartSIMD());
return ret;
};
// Distinguish between complex types and others
template <class S, class V, IfComplex<S> = 0>
inline Grid_simd<S, V> operator*(Grid_simd<S, V> a, Grid_simd<S, V> b) {
Grid_simd<S, V> ret;
ret.v = binary<V>(a.v, b.v, MultComplexSIMD());
return ret;
};
// Real/Integer types
template <class S, class V, IfNotComplex<S> = 0>
inline Grid_simd<S, V> operator*(Grid_simd<S, V> a, Grid_simd<S, V> b) {
Grid_simd<S, V> ret;
ret.v = binary<V>(a.v, b.v, MultSIMD());
return ret;
};
// Distinguish between complex types and others
template <class S, class V, IfComplex<S> = 0>
inline Grid_simd<S, V> operator/(Grid_simd<S, V> a, Grid_simd<S, V> b) {
typedef Grid_simd<S, V> simd;
simd ret;
simd den;
typename simd::conv_t conv;
ret = a * conjugate(b) ;
den = b * conjugate(b) ;
auto real_den = toReal(den);
ret.v=binary<V>(ret.v, real_den.v, DivSIMD());
return ret;
};
// Real/Integer types
template <class S, class V, IfNotComplex<S> = 0>
inline Grid_simd<S, V> operator/(Grid_simd<S, V> a, Grid_simd<S, V> b) {
Grid_simd<S, V> ret;
ret.v = binary<V>(a.v, b.v, DivSIMD());
return ret;
};
///////////////////////
// Conjugate
///////////////////////
template <class S, class V, IfComplex<S> = 0>
inline Grid_simd<S, V> conjugate(const Grid_simd<S, V> &in) {
Grid_simd<S, V> ret;
ret.v = unary<V>(in.v, ConjSIMD());
return ret;
}
template <class S, class V, IfNotComplex<S> = 0>
inline Grid_simd<S, V> conjugate(const Grid_simd<S, V> &in) {
return in; // for real objects
}
// Suppress adj for integer types... // odd; why conjugate above but not adj??
template <class S, class V, IfNotInteger<S> = 0>
inline Grid_simd<S, V> adj(const Grid_simd<S, V> &in) {
return conjugate(in);
}
///////////////////////
// timesMinusI
///////////////////////
template <class S, class V, IfComplex<S> = 0>
inline void timesMinusI(Grid_simd<S, V> &ret, const Grid_simd<S, V> &in) {
ret.v = binary<V>(in.v, ret.v, TimesMinusISIMD());
}
template <class S, class V, IfComplex<S> = 0>
inline Grid_simd<S, V> timesMinusI(const Grid_simd<S, V> &in) {
Grid_simd<S, V> ret;
timesMinusI(ret, in);
return ret;
}
template <class S, class V, IfNotComplex<S> = 0>
inline Grid_simd<S, V> timesMinusI(const Grid_simd<S, V> &in) {
return in;
}
///////////////////////
// timesI
///////////////////////
template <class S, class V, IfComplex<S> = 0>
inline void timesI(Grid_simd<S, V> &ret, const Grid_simd<S, V> &in) {
ret.v = binary<V>(in.v, ret.v, TimesISIMD());
}
template <class S, class V, IfComplex<S> = 0>
inline Grid_simd<S, V> timesI(const Grid_simd<S, V> &in) {
Grid_simd<S, V> ret;
timesI(ret, in);
return ret;
}
template <class S, class V, IfNotComplex<S> = 0>
inline Grid_simd<S, V> timesI(const Grid_simd<S, V> &in) {
return in;
}
/////////////////////
// Inner, outer
/////////////////////
template <class S, class V>
inline Grid_simd<S, V> innerProduct(const Grid_simd<S, V> &l,
const Grid_simd<S, V> &r) {
return conjugate(l) * r;
}
template <class S, class V>
inline Grid_simd<S, V> outerProduct(const Grid_simd<S, V> &l,
const Grid_simd<S, V> &r) {
return l * conjugate(r);
}
template <class S, class V>
inline Grid_simd<S, V> trace(const Grid_simd<S, V> &arg) {
return arg;
}
////////////////////////////////////////////////////////////
// copy/splat complex real parts into real;
// insert real into complex and zero imag;
////////////////////////////////////////////////////////////
// real = toReal( complex )
template <class S, class V, IfReal<S> = 0>
inline Grid_simd<S, V> toReal(const Grid_simd<std::complex<S>, V> &in) {
typedef Grid_simd<S, V> simd;
simd ret;
typename simd::conv_t conv;
conv.v = in.v; // copy the vector content (bytewise)
for (int i = 0; i < simd::Nsimd(); i += 2) {
conv.s[i + 1] = conv.s[i]; // duplicate (r,r);(r,r);(r,r); etc...
}
ret.v = conv.v;
return ret;
}
// complex = toComplex( real )
template <class R, class V, IfReal<R> = 0> // must be a real arg
inline Grid_simd<std::complex<R>, V> toComplex(const Grid_simd<R, V> &in) {
typedef Grid_simd<R, V> Rsimd;
typedef Grid_simd<std::complex<R>, V> Csimd;
typename Rsimd::conv_t conv; // address as real
conv.v = in.v;
for (int i = 0; i < Rsimd::Nsimd(); i += 2) {
assert(conv.s[i + 1] == conv.s[i]);
// trap any cases where real was not duplicated
// indicating the SIMD grids of real and imag assignment did not correctly
// match
conv.s[i + 1] = 0.0; // zero imaginary parts
}
Csimd ret;
ret.v = conv.v;
return ret;
}
///////////////////////////////
// Define available types
///////////////////////////////
typedef Grid_simd<float, SIMD_Ftype> vRealF;
typedef Grid_simd<double, SIMD_Dtype> vRealD;
typedef Grid_simd<std::complex<float>, SIMD_Ftype> vComplexF;
typedef Grid_simd<std::complex<double>, SIMD_Dtype> vComplexD;
typedef Grid_simd<Integer, SIMD_Itype> vInteger;
// Half precision; no arithmetic support
typedef Grid_simd<uint16_t, SIMD_Htype> vRealH;
typedef Grid_simd<std::complex<uint16_t>, SIMD_Htype> vComplexH;
inline void precisionChange(vRealF *out,vRealD *in,int nvec)
{
assert((nvec&0x1)==0);
for(int m=0;m*2<nvec;m++){
int n=m*2;
out[m].v=Optimization::PrecisionChange::DtoS(in[n].v,in[n+1].v);
}
}
inline void precisionChange(vRealH *out,vRealD *in,int nvec)
{
assert((nvec&0x3)==0);
for(int m=0;m*4<nvec;m++){
int n=m*4;
out[m].v=Optimization::PrecisionChange::DtoH(in[n].v,in[n+1].v,in[n+2].v,in[n+3].v);
}
}
inline void precisionChange(vRealH *out,vRealF *in,int nvec)
{
assert((nvec&0x1)==0);
for(int m=0;m*2<nvec;m++){
int n=m*2;
out[m].v=Optimization::PrecisionChange::StoH(in[n].v,in[n+1].v);
}
}
inline void precisionChange(vRealD *out,vRealF *in,int nvec)
{
assert((nvec&0x1)==0);
for(int m=0;m*2<nvec;m++){
int n=m*2;
Optimization::PrecisionChange::StoD(in[m].v,out[n].v,out[n+1].v);
}
}
inline void precisionChange(vRealD *out,vRealH *in,int nvec)
{
assert((nvec&0x3)==0);
for(int m=0;m*4<nvec;m++){
int n=m*4;
Optimization::PrecisionChange::HtoD(in[m].v,out[n].v,out[n+1].v,out[n+2].v,out[n+3].v);
}
}
inline void precisionChange(vRealF *out,vRealH *in,int nvec)
{
assert((nvec&0x1)==0);
for(int m=0;m*2<nvec;m++){
int n=m*2;
Optimization::PrecisionChange::HtoS(in[m].v,out[n].v,out[n+1].v);
}
}
inline void precisionChange(vComplexF *out,vComplexD *in,int nvec){ precisionChange((vRealF *)out,(vRealD *)in,nvec);}
inline void precisionChange(vComplexH *out,vComplexD *in,int nvec){ precisionChange((vRealH *)out,(vRealD *)in,nvec);}
inline void precisionChange(vComplexH *out,vComplexF *in,int nvec){ precisionChange((vRealH *)out,(vRealF *)in,nvec);}
inline void precisionChange(vComplexD *out,vComplexF *in,int nvec){ precisionChange((vRealD *)out,(vRealF *)in,nvec);}
inline void precisionChange(vComplexD *out,vComplexH *in,int nvec){ precisionChange((vRealD *)out,(vRealH *)in,nvec);}
inline void precisionChange(vComplexF *out,vComplexH *in,int nvec){ precisionChange((vRealF *)out,(vRealH *)in,nvec);}
// Check our vector types are of an appropriate size.
#if defined QPX
static_assert(2*sizeof(SIMD_Ftype) == sizeof(SIMD_Dtype), "SIMD vector lengths incorrect");
static_assert(2*sizeof(SIMD_Ftype) == sizeof(SIMD_Itype), "SIMD vector lengths incorrect");
#else
static_assert(sizeof(SIMD_Ftype) == sizeof(SIMD_Dtype), "SIMD vector lengths incorrect");
static_assert(sizeof(SIMD_Ftype) == sizeof(SIMD_Itype), "SIMD vector lengths incorrect");
#endif
/////////////////////////////////////////
// Some traits to recognise the types
/////////////////////////////////////////
template <typename T>
struct is_simd : public std::false_type {};
template <> struct is_simd<vRealF> : public std::true_type {};
template <> struct is_simd<vRealD> : public std::true_type {};
template <> struct is_simd<vComplexF> : public std::true_type {};
template <> struct is_simd<vComplexD> : public std::true_type {};
template <> struct is_simd<vInteger> : public std::true_type {};
template <typename T> using IfSimd = Invoke<std::enable_if<is_simd<T>::value, int> >;
template <typename T> using IfNotSimd = Invoke<std::enable_if<!is_simd<T>::value, unsigned> >;
}
#endif