mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 07:55:35 +00:00
removed comments
This commit is contained in:
parent
bf729766dd
commit
e43a8b6b8a
857
Grid_vector_types.h
Normal file
857
Grid_vector_types.h
Normal file
@ -0,0 +1,857 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/simd/Grid_vector_type.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Guido Cossu <cossu@iroiro-pc.kek.jp>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: neo <cossu@post.kek.jp>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
//---------------------------------------------------------------------------
|
||||
/*! @file Grid_vector_types.h
|
||||
@brief Defines templated class Grid_simd to deal with inner vector types
|
||||
*/
|
||||
// Time-stamp: <2015-07-10 17:45:33 neo>
|
||||
//---------------------------------------------------------------------------
|
||||
#ifndef GRID_VECTOR_TYPES
|
||||
#define GRID_VECTOR_TYPES
|
||||
|
||||
#ifdef GEN
|
||||
#include "Grid_generic.h"
|
||||
#endif
|
||||
#ifdef SSE4
|
||||
#include "Grid_sse4.h"
|
||||
#endif
|
||||
#if defined(AVX1) || defined (AVXFMA) || defined(AVX2) || defined(AVXFMA4)
|
||||
#include "Grid_avx.h"
|
||||
#endif
|
||||
#if defined AVX512
|
||||
#include "Grid_avx512.h"
|
||||
#endif
|
||||
#if defined IMCI
|
||||
#include "Grid_imci.h"
|
||||
#endif
|
||||
#ifdef NEONv8
|
||||
#include "Grid_neon.h"
|
||||
#endif
|
||||
#if defined QPX
|
||||
#include "Grid_qpx.h"
|
||||
#endif
|
||||
|
||||
#include "l1p.h"
|
||||
|
||||
namespace Grid {
|
||||
|
||||
//////////////////////////////////////
|
||||
// To take the floating point type of real/complex type
|
||||
//////////////////////////////////////
|
||||
template <typename T>
|
||||
struct RealPart {
|
||||
typedef T type;
|
||||
};
|
||||
template <typename T>
|
||||
struct RealPart<std::complex<T> > {
|
||||
typedef T type;
|
||||
};
|
||||
|
||||
#include <type_traits>
|
||||
|
||||
//////////////////////////////////////
|
||||
// demote a vector to real type
|
||||
//////////////////////////////////////
|
||||
// type alias used to simplify the syntax of std::enable_if
|
||||
template <typename T> using Invoke = typename T::type;
|
||||
template <typename Condition, typename ReturnType> using EnableIf = Invoke<std::enable_if<Condition::value, ReturnType> >;
|
||||
template <typename Condition, typename ReturnType> using NotEnableIf = Invoke<std::enable_if<!Condition::value, ReturnType> >;
|
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// Check for complexity with type traits
|
||||
template <typename T> struct is_complex : public std::false_type {};
|
||||
template <> struct is_complex<std::complex<double> > : public std::true_type {};
|
||||
template <> struct is_complex<std::complex<float> > : public std::true_type {};
|
||||
|
||||
template <typename T> using IfReal = Invoke<std::enable_if<std::is_floating_point<T>::value, int> >;
|
||||
template <typename T> using IfComplex = Invoke<std::enable_if<is_complex<T>::value, int> >;
|
||||
template <typename T> using IfInteger = Invoke<std::enable_if<std::is_integral<T>::value, int> >;
|
||||
template <typename T1,typename T2> using IfSame = Invoke<std::enable_if<std::is_same<T1,T2>::value, int> >;
|
||||
|
||||
template <typename T> using IfNotReal = Invoke<std::enable_if<!std::is_floating_point<T>::value, int> >;
|
||||
template <typename T> using IfNotComplex = Invoke<std::enable_if<!is_complex<T>::value, int> >;
|
||||
template <typename T> using IfNotInteger = Invoke<std::enable_if<!std::is_integral<T>::value, int> >;
|
||||
template <typename T1,typename T2> using IfNotSame = Invoke<std::enable_if<!std::is_same<T1,T2>::value, int> >;
|
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// Define the operation templates functors
|
||||
// general forms to allow for vsplat syntax
|
||||
// need explicit declaration of types when used since
|
||||
// clang cannot automatically determine the output type sometimes
|
||||
template <class Out, class Input1, class Input2, class Input3, class Operation>
|
||||
Out trinary(Input1 src_1, Input2 src_2, Input3 src_3, Operation op) {
|
||||
return op(src_1, src_2, src_3);
|
||||
}
|
||||
|
||||
template <class Out, class Input1, class Input2, class Operation>
|
||||
Out binary(Input1 src_1, Input2 src_2, Operation op) {
|
||||
return op(src_1, src_2);
|
||||
}
|
||||
|
||||
template <class Out, class Input, class Operation>
|
||||
Out unary(Input src, Operation op) {
|
||||
return op(src);
|
||||
}
|
||||
///////////////////////////////////////////////
|
||||
|
||||
/*
|
||||
@brief Grid_simd class for the SIMD vector type operations
|
||||
*/
|
||||
template <class Scalar_type, class Vector_type>
|
||||
class Grid_simd {
|
||||
public:
|
||||
typedef typename RealPart<Scalar_type>::type Real;
|
||||
typedef Vector_type vector_type;
|
||||
typedef Scalar_type scalar_type;
|
||||
|
||||
typedef union conv_t_union {
|
||||
Vector_type v;
|
||||
Scalar_type s[sizeof(Vector_type) / sizeof(Scalar_type)];
|
||||
conv_t_union(){};
|
||||
} conv_t;
|
||||
|
||||
Vector_type v;
|
||||
|
||||
static inline constexpr int Nsimd(void) {
|
||||
return sizeof(Vector_type) / sizeof(Scalar_type);
|
||||
}
|
||||
|
||||
Grid_simd &operator=(const Grid_simd &&rhs) {
|
||||
v = rhs.v;
|
||||
return *this;
|
||||
};
|
||||
Grid_simd &operator=(const Grid_simd &rhs) {
|
||||
v = rhs.v;
|
||||
return *this;
|
||||
}; // faster than not declaring it and leaving to the compiler
|
||||
Grid_simd() = default;
|
||||
Grid_simd(const Grid_simd &rhs) : v(rhs.v){}; // compiles in movaps
|
||||
Grid_simd(const Grid_simd &&rhs) : v(rhs.v){};
|
||||
|
||||
/////////////////////////////
|
||||
// Constructors
|
||||
/////////////////////////////
|
||||
Grid_simd &operator=(Zero &z) {
|
||||
vzero(*this);
|
||||
return (*this);
|
||||
}
|
||||
|
||||
// Enable if complex type
|
||||
template <typename S = Scalar_type>
|
||||
Grid_simd(const typename std::enable_if<is_complex<S>::value, S>::type a) {
|
||||
vsplat(*this, a);
|
||||
};
|
||||
|
||||
Grid_simd(const Real a) { vsplat(*this, Scalar_type(a)); };
|
||||
|
||||
///////////////////////////////////////////////
|
||||
// mac, mult, sub, add, adj
|
||||
///////////////////////////////////////////////
|
||||
|
||||
// FIXME -- alias this to an inline MAC struct.
|
||||
friend inline void mac(Grid_simd *__restrict__ y,
|
||||
const Grid_simd *__restrict__ a,
|
||||
const Grid_simd *__restrict__ x) {
|
||||
*y = (*a) * (*x) + (*y);
|
||||
};
|
||||
|
||||
friend inline void mult(Grid_simd *__restrict__ y,
|
||||
const Grid_simd *__restrict__ l,
|
||||
const Grid_simd *__restrict__ r) {
|
||||
*y = (*l) * (*r);
|
||||
}
|
||||
|
||||
friend inline void sub(Grid_simd *__restrict__ y,
|
||||
const Grid_simd *__restrict__ l,
|
||||
const Grid_simd *__restrict__ r) {
|
||||
*y = (*l) - (*r);
|
||||
}
|
||||
friend inline void add(Grid_simd *__restrict__ y,
|
||||
const Grid_simd *__restrict__ l,
|
||||
const Grid_simd *__restrict__ r) {
|
||||
*y = (*l) + (*r);
|
||||
}
|
||||
friend inline void mac(Grid_simd *__restrict__ y,
|
||||
const Scalar_type *__restrict__ a,
|
||||
const Grid_simd *__restrict__ x) {
|
||||
*y = (*a) * (*x) + (*y);
|
||||
};
|
||||
friend inline void mult(Grid_simd *__restrict__ y,
|
||||
const Scalar_type *__restrict__ l,
|
||||
const Grid_simd *__restrict__ r) {
|
||||
*y = (*l) * (*r);
|
||||
}
|
||||
friend inline void sub(Grid_simd *__restrict__ y,
|
||||
const Scalar_type *__restrict__ l,
|
||||
const Grid_simd *__restrict__ r) {
|
||||
*y = (*l) - (*r);
|
||||
}
|
||||
friend inline void add(Grid_simd *__restrict__ y,
|
||||
const Scalar_type *__restrict__ l,
|
||||
const Grid_simd *__restrict__ r) {
|
||||
*y = (*l) + (*r);
|
||||
}
|
||||
|
||||
friend inline void mac(Grid_simd *__restrict__ y,
|
||||
const Grid_simd *__restrict__ a,
|
||||
const Scalar_type *__restrict__ x) {
|
||||
*y = (*a) * (*x) + (*y);
|
||||
};
|
||||
friend inline void mult(Grid_simd *__restrict__ y,
|
||||
const Grid_simd *__restrict__ l,
|
||||
const Scalar_type *__restrict__ r) {
|
||||
*y = (*l) * (*r);
|
||||
}
|
||||
friend inline void sub(Grid_simd *__restrict__ y,
|
||||
const Grid_simd *__restrict__ l,
|
||||
const Scalar_type *__restrict__ r) {
|
||||
*y = (*l) - (*r);
|
||||
}
|
||||
friend inline void add(Grid_simd *__restrict__ y,
|
||||
const Grid_simd *__restrict__ l,
|
||||
const Scalar_type *__restrict__ r) {
|
||||
*y = (*l) + (*r);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// FIXME: gonna remove these load/store, get, set, prefetch
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
friend inline void vset(Grid_simd &ret, Scalar_type *a) {
|
||||
ret.v = unary<Vector_type>(a, VsetSIMD());
|
||||
}
|
||||
|
||||
///////////////////////
|
||||
// Vstore
|
||||
///////////////////////
|
||||
friend inline void vstore(const Grid_simd &ret, Scalar_type *a) {
|
||||
binary<void>(ret.v, (Real *)a, VstoreSIMD());
|
||||
}
|
||||
|
||||
///////////////////////
|
||||
// Vprefetch
|
||||
///////////////////////
|
||||
friend inline void vprefetch(const Grid_simd &v) {
|
||||
prefetch_HINT_T0((const char *)&v.v);
|
||||
}
|
||||
|
||||
///////////////////////
|
||||
// Reduce
|
||||
///////////////////////
|
||||
friend inline Scalar_type Reduce(const Grid_simd &in) {
|
||||
return unary<Scalar_type>(in.v, ReduceSIMD<Scalar_type, Vector_type>());
|
||||
}
|
||||
|
||||
////////////////////////////
|
||||
// operator scalar * simd
|
||||
////////////////////////////
|
||||
friend inline Grid_simd operator*(const Scalar_type &a, Grid_simd b) {
|
||||
Grid_simd va;
|
||||
vsplat(va, a);
|
||||
return va * b;
|
||||
}
|
||||
friend inline Grid_simd operator*(Grid_simd b, const Scalar_type &a) {
|
||||
return a * b;
|
||||
}
|
||||
|
||||
//////////////////////////////////
|
||||
// Divides
|
||||
//////////////////////////////////
|
||||
friend inline Grid_simd operator/(const Scalar_type &a, Grid_simd b) {
|
||||
Grid_simd va;
|
||||
vsplat(va, a);
|
||||
return va / b;
|
||||
}
|
||||
friend inline Grid_simd operator/(Grid_simd b, const Scalar_type &a) {
|
||||
Grid_simd va;
|
||||
vsplat(va, a);
|
||||
return b / a;
|
||||
}
|
||||
|
||||
///////////////////////
|
||||
// Unary negation
|
||||
///////////////////////
|
||||
friend inline Grid_simd operator-(const Grid_simd &r) {
|
||||
Grid_simd ret;
|
||||
vzero(ret);
|
||||
ret = ret - r;
|
||||
return ret;
|
||||
}
|
||||
// *=,+=,-= operators
|
||||
inline Grid_simd &operator*=(const Grid_simd &r) {
|
||||
*this = (*this) * r;
|
||||
return *this;
|
||||
// return (*this)*r; ?
|
||||
}
|
||||
inline Grid_simd &operator+=(const Grid_simd &r) {
|
||||
*this = *this + r;
|
||||
return *this;
|
||||
}
|
||||
inline Grid_simd &operator-=(const Grid_simd &r) {
|
||||
*this = *this - r;
|
||||
return *this;
|
||||
}
|
||||
|
||||
///////////////////////////////////////
|
||||
// Not all functions are supported
|
||||
// through SIMD and must breakout to
|
||||
// scalar type and back again. This
|
||||
// provides support
|
||||
///////////////////////////////////////
|
||||
|
||||
template <class functor>
|
||||
friend inline Grid_simd SimdApply(const functor &func, const Grid_simd &v) {
|
||||
Grid_simd ret;
|
||||
Grid_simd::conv_t conv;
|
||||
Grid_simd::scalar_type s;
|
||||
|
||||
conv.v = v.v;
|
||||
for (int i = 0; i < Nsimd(); i++) {
|
||||
s = conv.s[i];
|
||||
conv.s[i] = func(s);
|
||||
}
|
||||
ret.v = conv.v;
|
||||
return ret;
|
||||
}
|
||||
template <class functor>
|
||||
friend inline Grid_simd SimdApplyBinop(const functor &func,
|
||||
const Grid_simd &x,
|
||||
const Grid_simd &y) {
|
||||
Grid_simd ret;
|
||||
Grid_simd::conv_t cx;
|
||||
Grid_simd::conv_t cy;
|
||||
Grid_simd::scalar_type sx,sy;
|
||||
|
||||
cx.v = x.v;
|
||||
cy.v = y.v;
|
||||
for (int i = 0; i < Nsimd(); i++) {
|
||||
sx = cx.s[i];
|
||||
sy = cy.s[i];
|
||||
cx.s[i] = func(sx,sy);
|
||||
}
|
||||
ret.v = cx.v;
|
||||
return ret;
|
||||
}
|
||||
///////////////////////
|
||||
// Exchange
|
||||
// Al Ah , Bl Bh -> Al Bl Ah,Bh
|
||||
///////////////////////
|
||||
friend inline void exchange(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2,int n)
|
||||
{
|
||||
if (n==3) {
|
||||
Optimization::Exchange::Exchange3(out1.v,out2.v,in1.v,in2.v);
|
||||
} else if(n==2) {
|
||||
Optimization::Exchange::Exchange2(out1.v,out2.v,in1.v,in2.v);
|
||||
} else if(n==1) {
|
||||
Optimization::Exchange::Exchange1(out1.v,out2.v,in1.v,in2.v);
|
||||
} else if(n==0) {
|
||||
Optimization::Exchange::Exchange0(out1.v,out2.v,in1.v,in2.v);
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// General permute; assumes vector length is same across
|
||||
// all subtypes; may not be a good assumption, but could
|
||||
// add the vector width as a template param for BG/Q for example
|
||||
////////////////////////////////////////////////////////////////////
|
||||
friend inline void permute0(Grid_simd &y, Grid_simd b) {
|
||||
y.v = Optimization::Permute::Permute0(b.v);
|
||||
}
|
||||
friend inline void permute1(Grid_simd &y, Grid_simd b) {
|
||||
y.v = Optimization::Permute::Permute1(b.v);
|
||||
}
|
||||
friend inline void permute2(Grid_simd &y, Grid_simd b) {
|
||||
y.v = Optimization::Permute::Permute2(b.v);
|
||||
}
|
||||
friend inline void permute3(Grid_simd &y, Grid_simd b) {
|
||||
y.v = Optimization::Permute::Permute3(b.v);
|
||||
}
|
||||
friend inline void permute(Grid_simd &y, Grid_simd b, int perm) {
|
||||
if (perm & RotateBit) {
|
||||
int dist = perm & 0xF;
|
||||
y = rotate(b, dist);
|
||||
return;
|
||||
}
|
||||
else if(perm==3) permute3(y, b);
|
||||
else if(perm==2) permute2(y, b);
|
||||
else if(perm==1) permute1(y, b);
|
||||
else if(perm==0) permute0(y, b);
|
||||
}
|
||||
|
||||
///////////////////////////////
|
||||
// Getting single lanes
|
||||
///////////////////////////////
|
||||
inline Scalar_type getlane(int lane) {
|
||||
return ((Scalar_type*)&v)[lane];
|
||||
}
|
||||
|
||||
inline void putlane(const Scalar_type &S, int lane){
|
||||
((Scalar_type*)&v)[lane] = S;
|
||||
}
|
||||
|
||||
|
||||
|
||||
}; // end of Grid_simd class definition
|
||||
|
||||
inline void permute(ComplexD &y,ComplexD b, int perm) { y=b; }
|
||||
inline void permute(ComplexF &y,ComplexF b, int perm) { y=b; }
|
||||
inline void permute(RealD &y,RealD b, int perm) { y=b; }
|
||||
inline void permute(RealF &y,RealF b, int perm) { y=b; }
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// General rotate
|
||||
////////////////////////////////////////////////////////////////////
|
||||
template <class S, class V, IfNotComplex<S> = 0>
|
||||
inline Grid_simd<S, V> rotate(Grid_simd<S, V> b, int nrot) {
|
||||
nrot = nrot % Grid_simd<S, V>::Nsimd();
|
||||
Grid_simd<S, V> ret;
|
||||
ret.v = Optimization::Rotate::rotate(b.v, nrot);
|
||||
return ret;
|
||||
}
|
||||
template <class S, class V, IfComplex<S> = 0>
|
||||
inline Grid_simd<S, V> rotate(Grid_simd<S, V> b, int nrot) {
|
||||
nrot = nrot % Grid_simd<S, V>::Nsimd();
|
||||
Grid_simd<S, V> ret;
|
||||
ret.v = Optimization::Rotate::rotate(b.v, 2 * nrot);
|
||||
return ret;
|
||||
}
|
||||
template <class S, class V, IfNotComplex<S> =0>
|
||||
inline void rotate( Grid_simd<S,V> &ret,Grid_simd<S,V> b,int nrot)
|
||||
{
|
||||
nrot = nrot % Grid_simd<S,V>::Nsimd();
|
||||
ret.v = Optimization::Rotate::rotate(b.v,nrot);
|
||||
}
|
||||
template <class S, class V, IfComplex<S> =0>
|
||||
inline void rotate(Grid_simd<S,V> &ret,Grid_simd<S,V> b,int nrot)
|
||||
{
|
||||
nrot = nrot % Grid_simd<S,V>::Nsimd();
|
||||
ret.v = Optimization::Rotate::rotate(b.v,2*nrot);
|
||||
}
|
||||
|
||||
template <class S, class V>
|
||||
inline void vbroadcast(Grid_simd<S,V> &ret,const Grid_simd<S,V> &src,int lane){
|
||||
S* typepun =(S*) &src;
|
||||
vsplat(ret,typepun[lane]);
|
||||
}
|
||||
template <class S, class V, IfComplex<S> =0>
|
||||
inline void rbroadcast(Grid_simd<S,V> &ret,const Grid_simd<S,V> &src,int lane){
|
||||
S* typepun =(S*) &src;
|
||||
ret.v = unary<V>(real(typepun[lane]), VsplatSIMD());
|
||||
}
|
||||
|
||||
|
||||
|
||||
///////////////////////
|
||||
// Splat
|
||||
///////////////////////
|
||||
|
||||
// this is only for the complex version
|
||||
template <class S, class V, IfComplex<S> = 0, class ABtype>
|
||||
inline void vsplat(Grid_simd<S, V> &ret, ABtype a, ABtype b) {
|
||||
ret.v = binary<V>(a, b, VsplatSIMD());
|
||||
}
|
||||
|
||||
// overload if complex
|
||||
template <class S, class V>
|
||||
inline void vsplat(Grid_simd<S, V> &ret, EnableIf<is_complex<S>, S> c) {
|
||||
vsplat(ret, real(c), imag(c));
|
||||
}
|
||||
template <class S, class V>
|
||||
inline void rsplat(Grid_simd<S, V> &ret, EnableIf<is_complex<S>, S> c) {
|
||||
vsplat(ret, real(c), real(c));
|
||||
}
|
||||
|
||||
// if real fill with a, if complex fill with a in the real part (first function
|
||||
// above)
|
||||
template <class S, class V>
|
||||
inline void vsplat(Grid_simd<S, V> &ret, NotEnableIf<is_complex<S>, S> a) {
|
||||
ret.v = unary<V>(a, VsplatSIMD());
|
||||
}
|
||||
//////////////////////////
|
||||
|
||||
///////////////////////////////////////////////
|
||||
// Initialise to 1,0,i for the correct types
|
||||
///////////////////////////////////////////////
|
||||
// For complex types
|
||||
template <class S, class V, IfComplex<S> = 0>
|
||||
inline void vone(Grid_simd<S, V> &ret) {
|
||||
vsplat(ret, S(1.0, 0.0));
|
||||
}
|
||||
template <class S, class V, IfComplex<S> = 0>
|
||||
inline void vzero(Grid_simd<S, V> &ret) {
|
||||
vsplat(ret, S(0.0, 0.0));
|
||||
} // use xor?
|
||||
template <class S, class V, IfComplex<S> = 0>
|
||||
inline void vcomplex_i(Grid_simd<S, V> &ret) {
|
||||
vsplat(ret, S(0.0, 1.0));
|
||||
}
|
||||
|
||||
template <class S, class V, IfComplex<S> = 0>
|
||||
inline void visign(Grid_simd<S, V> &ret) {
|
||||
vsplat(ret, S(1.0, -1.0));
|
||||
}
|
||||
template <class S, class V, IfComplex<S> = 0>
|
||||
inline void vrsign(Grid_simd<S, V> &ret) {
|
||||
vsplat(ret, S(-1.0, 1.0));
|
||||
}
|
||||
|
||||
// if not complex overload here
|
||||
template <class S, class V, IfReal<S> = 0>
|
||||
inline void vone(Grid_simd<S, V> &ret) {
|
||||
vsplat(ret, S(1.0));
|
||||
}
|
||||
template <class S, class V, IfReal<S> = 0>
|
||||
inline void vzero(Grid_simd<S, V> &ret) {
|
||||
vsplat(ret, S(0.0));
|
||||
}
|
||||
|
||||
// For integral types
|
||||
template <class S, class V, IfInteger<S> = 0>
|
||||
inline void vone(Grid_simd<S, V> &ret) {
|
||||
vsplat(ret, 1);
|
||||
}
|
||||
template <class S, class V, IfInteger<S> = 0>
|
||||
inline void vzero(Grid_simd<S, V> &ret) {
|
||||
vsplat(ret, 0);
|
||||
}
|
||||
template <class S, class V, IfInteger<S> = 0>
|
||||
inline void vtrue(Grid_simd<S, V> &ret) {
|
||||
vsplat(ret, 0xFFFFFFFF);
|
||||
}
|
||||
template <class S, class V, IfInteger<S> = 0>
|
||||
inline void vfalse(Grid_simd<S, V> &ret) {
|
||||
vsplat(ret, 0);
|
||||
}
|
||||
template <class S, class V>
|
||||
inline void zeroit(Grid_simd<S, V> &z) {
|
||||
vzero(z);
|
||||
}
|
||||
|
||||
///////////////////////
|
||||
// Vstream
|
||||
///////////////////////
|
||||
template <class S, class V, IfReal<S> = 0>
|
||||
inline void vstream(Grid_simd<S, V> &out, const Grid_simd<S, V> &in) {
|
||||
binary<void>((S *)&out.v, in.v, VstreamSIMD());
|
||||
}
|
||||
template <class S, class V, IfComplex<S> = 0>
|
||||
inline void vstream(Grid_simd<S, V> &out, const Grid_simd<S, V> &in) {
|
||||
typedef typename S::value_type T;
|
||||
binary<void>((T *)&out.v, in.v, VstreamSIMD());
|
||||
}
|
||||
template <class S, class V, IfInteger<S> = 0>
|
||||
inline void vstream(Grid_simd<S, V> &out, const Grid_simd<S, V> &in) {
|
||||
out = in;
|
||||
}
|
||||
|
||||
////////////////////////////////////
|
||||
// Arithmetic operator overloads +,-,*
|
||||
////////////////////////////////////
|
||||
template <class S, class V>
|
||||
inline Grid_simd<S, V> operator+(Grid_simd<S, V> a, Grid_simd<S, V> b) {
|
||||
Grid_simd<S, V> ret;
|
||||
ret.v = binary<V>(a.v, b.v, SumSIMD());
|
||||
return ret;
|
||||
};
|
||||
|
||||
template <class S, class V>
|
||||
inline Grid_simd<S, V> operator-(Grid_simd<S, V> a, Grid_simd<S, V> b) {
|
||||
Grid_simd<S, V> ret;
|
||||
ret.v = binary<V>(a.v, b.v, SubSIMD());
|
||||
return ret;
|
||||
};
|
||||
|
||||
// Distinguish between complex types and others
|
||||
template <class S, class V, IfComplex<S> = 0>
|
||||
inline Grid_simd<S, V> real_mult(Grid_simd<S, V> a, Grid_simd<S, V> b) {
|
||||
Grid_simd<S, V> ret;
|
||||
ret.v = binary<V>(a.v, b.v, MultRealPartSIMD());
|
||||
return ret;
|
||||
};
|
||||
template <class S, class V, IfComplex<S> = 0>
|
||||
inline Grid_simd<S, V> real_madd(Grid_simd<S, V> a, Grid_simd<S, V> b, Grid_simd<S,V> c) {
|
||||
Grid_simd<S, V> ret;
|
||||
ret.v = trinary<V>(a.v, b.v, c.v, MaddRealPartSIMD());
|
||||
return ret;
|
||||
};
|
||||
|
||||
|
||||
// Distinguish between complex types and others
|
||||
template <class S, class V, IfComplex<S> = 0>
|
||||
inline Grid_simd<S, V> operator*(Grid_simd<S, V> a, Grid_simd<S, V> b) {
|
||||
Grid_simd<S, V> ret;
|
||||
ret.v = binary<V>(a.v, b.v, MultComplexSIMD());
|
||||
return ret;
|
||||
};
|
||||
|
||||
// Real/Integer types
|
||||
template <class S, class V, IfNotComplex<S> = 0>
|
||||
inline Grid_simd<S, V> operator*(Grid_simd<S, V> a, Grid_simd<S, V> b) {
|
||||
Grid_simd<S, V> ret;
|
||||
ret.v = binary<V>(a.v, b.v, MultSIMD());
|
||||
return ret;
|
||||
};
|
||||
|
||||
// Distinguish between complex types and others
|
||||
template <class S, class V, IfComplex<S> = 0>
|
||||
inline Grid_simd<S, V> operator/(Grid_simd<S, V> a, Grid_simd<S, V> b) {
|
||||
typedef Grid_simd<S, V> simd;
|
||||
|
||||
simd ret;
|
||||
simd den;
|
||||
typename simd::conv_t conv;
|
||||
|
||||
ret = a * conjugate(b) ;
|
||||
den = b * conjugate(b) ;
|
||||
|
||||
|
||||
auto real_den = toReal(den);
|
||||
|
||||
ret.v=binary<V>(ret.v, real_den.v, DivSIMD());
|
||||
|
||||
return ret;
|
||||
};
|
||||
|
||||
// Real/Integer types
|
||||
template <class S, class V, IfNotComplex<S> = 0>
|
||||
inline Grid_simd<S, V> operator/(Grid_simd<S, V> a, Grid_simd<S, V> b) {
|
||||
Grid_simd<S, V> ret;
|
||||
ret.v = binary<V>(a.v, b.v, DivSIMD());
|
||||
return ret;
|
||||
};
|
||||
|
||||
///////////////////////
|
||||
// Conjugate
|
||||
///////////////////////
|
||||
template <class S, class V, IfComplex<S> = 0>
|
||||
inline Grid_simd<S, V> conjugate(const Grid_simd<S, V> &in) {
|
||||
Grid_simd<S, V> ret;
|
||||
ret.v = unary<V>(in.v, ConjSIMD());
|
||||
return ret;
|
||||
}
|
||||
template <class S, class V, IfNotComplex<S> = 0>
|
||||
inline Grid_simd<S, V> conjugate(const Grid_simd<S, V> &in) {
|
||||
return in; // for real objects
|
||||
}
|
||||
// Suppress adj for integer types... // odd; why conjugate above but not adj??
|
||||
template <class S, class V, IfNotInteger<S> = 0>
|
||||
inline Grid_simd<S, V> adj(const Grid_simd<S, V> &in) {
|
||||
return conjugate(in);
|
||||
}
|
||||
|
||||
///////////////////////
|
||||
// timesMinusI
|
||||
///////////////////////
|
||||
template <class S, class V, IfComplex<S> = 0>
|
||||
inline void timesMinusI(Grid_simd<S, V> &ret, const Grid_simd<S, V> &in) {
|
||||
ret.v = binary<V>(in.v, ret.v, TimesMinusISIMD());
|
||||
}
|
||||
template <class S, class V, IfComplex<S> = 0>
|
||||
inline Grid_simd<S, V> timesMinusI(const Grid_simd<S, V> &in) {
|
||||
Grid_simd<S, V> ret;
|
||||
timesMinusI(ret, in);
|
||||
return ret;
|
||||
}
|
||||
template <class S, class V, IfNotComplex<S> = 0>
|
||||
inline Grid_simd<S, V> timesMinusI(const Grid_simd<S, V> &in) {
|
||||
return in;
|
||||
}
|
||||
|
||||
///////////////////////
|
||||
// timesI
|
||||
///////////////////////
|
||||
template <class S, class V, IfComplex<S> = 0>
|
||||
inline void timesI(Grid_simd<S, V> &ret, const Grid_simd<S, V> &in) {
|
||||
ret.v = binary<V>(in.v, ret.v, TimesISIMD());
|
||||
}
|
||||
template <class S, class V, IfComplex<S> = 0>
|
||||
inline Grid_simd<S, V> timesI(const Grid_simd<S, V> &in) {
|
||||
Grid_simd<S, V> ret;
|
||||
timesI(ret, in);
|
||||
return ret;
|
||||
}
|
||||
template <class S, class V, IfNotComplex<S> = 0>
|
||||
inline Grid_simd<S, V> timesI(const Grid_simd<S, V> &in) {
|
||||
return in;
|
||||
}
|
||||
|
||||
/////////////////////
|
||||
// Inner, outer
|
||||
/////////////////////
|
||||
|
||||
template <class S, class V>
|
||||
inline Grid_simd<S, V> innerProduct(const Grid_simd<S, V> &l,
|
||||
const Grid_simd<S, V> &r) {
|
||||
return conjugate(l) * r;
|
||||
}
|
||||
template <class S, class V>
|
||||
inline Grid_simd<S, V> outerProduct(const Grid_simd<S, V> &l,
|
||||
const Grid_simd<S, V> &r) {
|
||||
return l * conjugate(r);
|
||||
}
|
||||
|
||||
template <class S, class V>
|
||||
inline Grid_simd<S, V> trace(const Grid_simd<S, V> &arg) {
|
||||
return arg;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// copy/splat complex real parts into real;
|
||||
// insert real into complex and zero imag;
|
||||
////////////////////////////////////////////////////////////
|
||||
|
||||
// real = toReal( complex )
|
||||
template <class S, class V, IfReal<S> = 0>
|
||||
inline Grid_simd<S, V> toReal(const Grid_simd<std::complex<S>, V> &in) {
|
||||
typedef Grid_simd<S, V> simd;
|
||||
simd ret;
|
||||
typename simd::conv_t conv;
|
||||
conv.v = in.v; // copy the vector content (bytewise)
|
||||
for (int i = 0; i < simd::Nsimd(); i += 2) {
|
||||
conv.s[i + 1] = conv.s[i]; // duplicate (r,r);(r,r);(r,r); etc...
|
||||
}
|
||||
ret.v = conv.v;
|
||||
return ret;
|
||||
}
|
||||
|
||||
// complex = toComplex( real )
|
||||
template <class R, class V, IfReal<R> = 0> // must be a real arg
|
||||
inline Grid_simd<std::complex<R>, V> toComplex(const Grid_simd<R, V> &in) {
|
||||
typedef Grid_simd<R, V> Rsimd;
|
||||
typedef Grid_simd<std::complex<R>, V> Csimd;
|
||||
typename Rsimd::conv_t conv; // address as real
|
||||
|
||||
conv.v = in.v;
|
||||
for (int i = 0; i < Rsimd::Nsimd(); i += 2) {
|
||||
assert(conv.s[i + 1] == conv.s[i]);
|
||||
// trap any cases where real was not duplicated
|
||||
// indicating the SIMD grids of real and imag assignment did not correctly
|
||||
// match
|
||||
conv.s[i + 1] = 0.0; // zero imaginary parts
|
||||
}
|
||||
Csimd ret;
|
||||
ret.v = conv.v;
|
||||
return ret;
|
||||
}
|
||||
|
||||
///////////////////////////////
|
||||
// Define available types
|
||||
///////////////////////////////
|
||||
typedef Grid_simd<float, SIMD_Ftype> vRealF;
|
||||
typedef Grid_simd<double, SIMD_Dtype> vRealD;
|
||||
typedef Grid_simd<std::complex<float>, SIMD_Ftype> vComplexF;
|
||||
typedef Grid_simd<std::complex<double>, SIMD_Dtype> vComplexD;
|
||||
typedef Grid_simd<Integer, SIMD_Itype> vInteger;
|
||||
|
||||
// Half precision; no arithmetic support
|
||||
typedef Grid_simd<uint16_t, SIMD_Htype> vRealH;
|
||||
typedef Grid_simd<std::complex<uint16_t>, SIMD_Htype> vComplexH;
|
||||
|
||||
inline void precisionChange(vRealF *out,vRealD *in,int nvec)
|
||||
{
|
||||
assert((nvec&0x1)==0);
|
||||
for(int m=0;m*2<nvec;m++){
|
||||
int n=m*2;
|
||||
out[m].v=Optimization::PrecisionChange::DtoS(in[n].v,in[n+1].v);
|
||||
}
|
||||
}
|
||||
inline void precisionChange(vRealH *out,vRealD *in,int nvec)
|
||||
{
|
||||
assert((nvec&0x3)==0);
|
||||
for(int m=0;m*4<nvec;m++){
|
||||
int n=m*4;
|
||||
out[m].v=Optimization::PrecisionChange::DtoH(in[n].v,in[n+1].v,in[n+2].v,in[n+3].v);
|
||||
}
|
||||
}
|
||||
inline void precisionChange(vRealH *out,vRealF *in,int nvec)
|
||||
{
|
||||
assert((nvec&0x1)==0);
|
||||
for(int m=0;m*2<nvec;m++){
|
||||
int n=m*2;
|
||||
out[m].v=Optimization::PrecisionChange::StoH(in[n].v,in[n+1].v);
|
||||
}
|
||||
}
|
||||
inline void precisionChange(vRealD *out,vRealF *in,int nvec)
|
||||
{
|
||||
assert((nvec&0x1)==0);
|
||||
for(int m=0;m*2<nvec;m++){
|
||||
int n=m*2;
|
||||
Optimization::PrecisionChange::StoD(in[m].v,out[n].v,out[n+1].v);
|
||||
}
|
||||
}
|
||||
inline void precisionChange(vRealD *out,vRealH *in,int nvec)
|
||||
{
|
||||
assert((nvec&0x3)==0);
|
||||
for(int m=0;m*4<nvec;m++){
|
||||
int n=m*4;
|
||||
Optimization::PrecisionChange::HtoD(in[m].v,out[n].v,out[n+1].v,out[n+2].v,out[n+3].v);
|
||||
}
|
||||
}
|
||||
inline void precisionChange(vRealF *out,vRealH *in,int nvec)
|
||||
{
|
||||
assert((nvec&0x1)==0);
|
||||
for(int m=0;m*2<nvec;m++){
|
||||
int n=m*2;
|
||||
Optimization::PrecisionChange::HtoS(in[m].v,out[n].v,out[n+1].v);
|
||||
}
|
||||
}
|
||||
inline void precisionChange(vComplexF *out,vComplexD *in,int nvec){ precisionChange((vRealF *)out,(vRealD *)in,nvec);}
|
||||
inline void precisionChange(vComplexH *out,vComplexD *in,int nvec){ precisionChange((vRealH *)out,(vRealD *)in,nvec);}
|
||||
inline void precisionChange(vComplexH *out,vComplexF *in,int nvec){ precisionChange((vRealH *)out,(vRealF *)in,nvec);}
|
||||
inline void precisionChange(vComplexD *out,vComplexF *in,int nvec){ precisionChange((vRealD *)out,(vRealF *)in,nvec);}
|
||||
inline void precisionChange(vComplexD *out,vComplexH *in,int nvec){ precisionChange((vRealD *)out,(vRealH *)in,nvec);}
|
||||
inline void precisionChange(vComplexF *out,vComplexH *in,int nvec){ precisionChange((vRealF *)out,(vRealH *)in,nvec);}
|
||||
|
||||
// Check our vector types are of an appropriate size.
|
||||
#if defined QPX
|
||||
static_assert(2*sizeof(SIMD_Ftype) == sizeof(SIMD_Dtype), "SIMD vector lengths incorrect");
|
||||
static_assert(2*sizeof(SIMD_Ftype) == sizeof(SIMD_Itype), "SIMD vector lengths incorrect");
|
||||
#else
|
||||
static_assert(sizeof(SIMD_Ftype) == sizeof(SIMD_Dtype), "SIMD vector lengths incorrect");
|
||||
static_assert(sizeof(SIMD_Ftype) == sizeof(SIMD_Itype), "SIMD vector lengths incorrect");
|
||||
#endif
|
||||
|
||||
/////////////////////////////////////////
|
||||
// Some traits to recognise the types
|
||||
/////////////////////////////////////////
|
||||
template <typename T>
|
||||
struct is_simd : public std::false_type {};
|
||||
template <> struct is_simd<vRealF> : public std::true_type {};
|
||||
template <> struct is_simd<vRealD> : public std::true_type {};
|
||||
template <> struct is_simd<vComplexF> : public std::true_type {};
|
||||
template <> struct is_simd<vComplexD> : public std::true_type {};
|
||||
template <> struct is_simd<vInteger> : public std::true_type {};
|
||||
|
||||
template <typename T> using IfSimd = Invoke<std::enable_if<is_simd<T>::value, int> >;
|
||||
template <typename T> using IfNotSimd = Invoke<std::enable_if<!is_simd<T>::value, unsigned> >;
|
||||
}
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user