1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-09 23:45:36 +00:00

Unify TwoIndex

This commit is contained in:
Julian Lenz 2023-05-12 14:35:50 +01:00
parent aa9df63a05
commit e8ad1fef53
4 changed files with 112 additions and 368 deletions

View File

@ -16,7 +16,7 @@
//
// (iT_a)^(ij)(lk) = i * ( tr[e^(ij)^dag e^(lk) T^trasp_a] +
// tr[e^(lk)e^(ij)^dag T_a] ) //
//
//
//
////////////////////////////////////////////////////////////////////////
@ -25,63 +25,73 @@
#ifndef QCD_UTIL_SUN2INDEX_H
#define QCD_UTIL_SUN2INDEX_H
NAMESPACE_BEGIN(Grid);
enum TwoIndexSymmetry { Symmetric = 1, AntiSymmetric = -1 };
inline Real delta(int a, int b) { return (a == b) ? 1.0 : 0.0; }
template <int ncolour, TwoIndexSymmetry S>
class SU_TwoIndex : public SU<ncolour> {
public:
static const int Dimension = ncolour * (ncolour + S) / 2;
static const int NumGenerators = SU<ncolour>::AdjointDimension;
template <int ncolour, TwoIndexSymmetry S, class group_name>
class GaugeGroupTwoIndex : public GaugeGroup<ncolour, group_name> {
public:
// The chosen convention is that we are taking ncolour to be N in SU<N> but 2N
// in Sp(2N). ngroup is equal to N for SU but 2N/2 = N for Sp(2N).
static_assert(std::is_same<group_name, GroupName::SU>::value or
std::is_same<group_name, GroupName::Sp>::value,
"ngroup is only implemented for SU and Sp currently.");
static const int ngroup =
std::is_same<group_name, GroupName::SU>::value ? ncolour : ncolour / 2;
static const int Dimension = ngroup * (ncolour + S) / 2;
static const int NumGenerators =
GaugeGroup<ncolour, group_name>::AlgebraDimension;
template <typename vtype>
using iSUnTwoIndexMatrix = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
using iGroupTwoIndexMatrix = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
typedef iSUnTwoIndexMatrix<Complex> TIMatrix;
typedef iSUnTwoIndexMatrix<ComplexF> TIMatrixF;
typedef iSUnTwoIndexMatrix<ComplexD> TIMatrixD;
typedef iGroupTwoIndexMatrix<Complex> TIMatrix;
typedef iGroupTwoIndexMatrix<ComplexF> TIMatrixF;
typedef iGroupTwoIndexMatrix<ComplexD> TIMatrixD;
typedef iSUnTwoIndexMatrix<vComplex> vTIMatrix;
typedef iSUnTwoIndexMatrix<vComplexF> vTIMatrixF;
typedef iSUnTwoIndexMatrix<vComplexD> vTIMatrixD;
typedef iGroupTwoIndexMatrix<vComplex> vTIMatrix;
typedef iGroupTwoIndexMatrix<vComplexF> vTIMatrixF;
typedef iGroupTwoIndexMatrix<vComplexD> vTIMatrixD;
typedef Lattice<vTIMatrix> LatticeTwoIndexMatrix;
typedef Lattice<vTIMatrixF> LatticeTwoIndexMatrixF;
typedef Lattice<vTIMatrixD> LatticeTwoIndexMatrixD;
typedef Lattice<iVector<iScalar<iMatrix<vComplex, Dimension> >, Nd> >
LatticeTwoIndexField;
LatticeTwoIndexField;
typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> >
LatticeTwoIndexFieldF;
LatticeTwoIndexFieldF;
typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> >
LatticeTwoIndexFieldD;
LatticeTwoIndexFieldD;
template <typename vtype>
using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
using iGroupMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
typedef iSUnMatrix<Complex> Matrix;
typedef iSUnMatrix<ComplexF> MatrixF;
typedef iSUnMatrix<ComplexD> MatrixD;
typedef iGroupMatrix<Complex> Matrix;
typedef iGroupMatrix<ComplexF> MatrixF;
typedef iGroupMatrix<ComplexD> MatrixD;
template <class cplx>
static void base(int Index, iSUnMatrix<cplx> &eij) {
static void base(int Index, iGroupMatrix<cplx> &eij) {
// returns (e)^(ij)_{kl} necessary for change of base U_F -> U_R
assert(Index < NumGenerators);
eij = Zero();
// for the linearisation of the 2 indexes
static int a[ncolour * (ncolour - 1) / 2][2]; // store the a <-> i,j
// for the linearisation of the 2 indexes
static int a[ncolour * (ncolour - 1) / 2][2]; // store the a <-> i,j
static bool filled = false;
if (!filled) {
int counter = 0;
for (int i = 1; i < ncolour; i++) {
for (int j = 0; j < i; j++) {
a[counter][0] = i;
a[counter][1] = j;
a[counter][1] =
i == ngroup ? j + 1
: j; // this will only ever trigger for Sp because
// ngroup == ncolour is out of range for SU
counter++;
}
}
@ -89,26 +99,65 @@ public:
}
if (Index < ncolour * (ncolour - 1) / 2) {
baseOffDiagonal(a[Index][0], a[Index][1], eij);
baseOffDiagonal(a[Index][0], a[Index][1], eij, group_name());
} else {
baseDiagonal(Index, eij);
}
}
template <class cplx>
static void baseDiagonal(int Index, iSUnMatrix<cplx> &eij) {
static void baseDiagonal(int Index, iGroupMatrix<cplx> &eij) {
eij = Zero();
eij()()(Index - ncolour * (ncolour - 1) / 2,
Index - ncolour * (ncolour - 1) / 2) = 1.0;
}
template <class cplx>
static void baseOffDiagonal(int i, int j, iSUnMatrix<cplx> &eij) {
static void baseOffDiagonal(int i, int j, iGroupMatrix<cplx> &eij,
GroupName::Sp) {
eij = Zero();
RealD tmp;
if ((i == ngroup + j) && (1 <= j) && (j < ngroup)) {
for (int k = 0; k < ngroup; k++) {
if (k < j) {
tmp = sqrt(2 * j * (j + 1));
tmp = 1 / tmp;
tmp *= std::sqrt(2.0);
eij()()(k, k + ngroup) = tmp;
eij()()(k + ngroup, k) = -tmp;
}
if (k == j) {
tmp = sqrt(2 * j * (j + 1));
tmp = -j / tmp;
tmp *= std::sqrt(2.0);
eij()()(k, k + ngroup) = tmp;
eij()()(k + ngroup, k) = -tmp;
}
}
}
else if (i != ngroup + j) {
for (int k = 0; k < ncolour; k++)
for (int l = 0; l < ncolour; l++) {
eij()()(l, k) =
delta(i, k) * delta(j, l) + S * delta(j, k) * delta(i, l);
}
}
RealD nrm = 1. / std::sqrt(2.0);
eij = eij * nrm;
}
template <class cplx>
static void baseOffDiagonal(int i, int j, iGroupMatrix<cplx> &eij,
GroupName::SU) {
eij = Zero();
for (int k = 0; k < ncolour; k++)
for (int l = 0; l < ncolour; l++)
eij()()(l, k) = delta(i, k) * delta(j, l) +
S * delta(j, k) * delta(i, l);
eij()()(l, k) =
delta(i, k) * delta(j, l) + S * delta(j, k) * delta(i, l);
RealD nrm = 1. / std::sqrt(2.0);
eij = eij * nrm;
@ -125,22 +174,21 @@ public:
}
template <class cplx>
static void generator(int Index, iSUnTwoIndexMatrix<cplx> &i2indTa) {
Vector<iSUnMatrix<cplx> > ta(ncolour * ncolour - 1);
Vector<iSUnMatrix<cplx> > eij(Dimension);
iSUnMatrix<cplx> tmp;
static void generator(int Index, iGroupTwoIndexMatrix<cplx> &i2indTa) {
Vector<iGroupMatrix<cplx> > ta(NumGenerators);
Vector<iGroupMatrix<cplx> > eij(Dimension);
iGroupMatrix<cplx> tmp;
i2indTa = Zero();
for (int a = 0; a < ncolour * ncolour - 1; a++)
SU<ncolour>::generator(a, ta[a]);
GaugeGroup<ncolour, group_name>::generator(a, ta[a]);
for (int a = 0; a < Dimension; a++) base(a, eij[a]);
for (int a = 0; a < Dimension; a++) {
tmp = transpose(ta[Index]) * adj(eij[a]) + adj(eij[a]) * ta[Index];
for (int b = 0; b < Dimension; b++) {
iSUnMatrix<cplx> tmp1 =
tmp * eij[b];
iGroupMatrix<cplx> tmp1 = tmp * eij[b];
Complex iTr = TensorRemove(timesI(trace(tmp1)));
i2indTa()()(a, b) = iTr;
}
@ -195,8 +243,8 @@ public:
}
static void TwoIndexLieAlgebraMatrix(
const typename SU<ncolour>::LatticeAlgebraVector &h,
LatticeTwoIndexMatrix &out, Real scale = 1.0) {
const typename SU<ncolour>::LatticeAlgebraVector &h,
LatticeTwoIndexMatrix &out, Real scale = 1.0) {
conformable(h, out);
GridBase *grid = out.Grid();
LatticeTwoIndexMatrix la(grid);
@ -211,11 +259,11 @@ public:
out *= scale;
}
// Projects the algebra components
// Projects the algebra components
// of a lattice matrix ( of dimension ncol*ncol -1 )
static void projectOnAlgebra(
typename SU<ncolour>::LatticeAlgebraVector &h_out,
const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
typename SU<ncolour>::LatticeAlgebraVector &h_out,
const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
h_out = Zero();
TIMatrix i2indTa;
@ -233,7 +281,7 @@ public:
const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
// to store the generators
static std::vector<TIMatrix> i2indTa(ncolour * ncolour -1);
static std::vector<TIMatrix> i2indTa(ncolour * ncolour - 1);
h_out = Zero();
static bool precalculated = false;
if (!precalculated) {
@ -242,7 +290,7 @@ public:
}
Real coefficient =
-2.0 / (ncolour + 2 * S) * scale; // 2/(Nc +/- 2) for the normalization
-2.0 / (ncolour + 2 * S) * scale; // 2/(Nc +/- 2) for the normalization
// of the trace in the two index rep
for (int a = 0; a < ncolour * ncolour - 1; a++) {
@ -252,6 +300,9 @@ public:
}
};
template <int ncolour, TwoIndexSymmetry S>
using SU_TwoIndex = GaugeGroupTwoIndex<ncolour, S, GroupName::SU>;
// Some useful type names
typedef SU_TwoIndex<Nc, Symmetric> TwoIndexSymmMatrices;
typedef SU_TwoIndex<Nc, AntiSymmetric> TwoIndexAntiSymmMatrices;
@ -266,6 +317,19 @@ typedef SU_TwoIndex<3, AntiSymmetric> SU3TwoIndexAntiSymm;
typedef SU_TwoIndex<4, AntiSymmetric> SU4TwoIndexAntiSymm;
typedef SU_TwoIndex<5, AntiSymmetric> SU5TwoIndexAntiSymm;
template <int ncolour, TwoIndexSymmetry S>
using Sp_TwoIndex = GaugeGroupTwoIndex<ncolour, S, GroupName::Sp>;
typedef Sp_TwoIndex<Nc, Symmetric> SpTwoIndexSymmMatrices;
typedef Sp_TwoIndex<Nc, AntiSymmetric> SpTwoIndexAntiSymmMatrices;
typedef Sp_TwoIndex<2, Symmetric> Sp2TwoIndexSymm;
typedef Sp_TwoIndex<4, Symmetric> Sp4TwoIndexSymm;
typedef Sp_TwoIndex<2, AntiSymmetric> Sp2TwoIndexAntiSymm;
typedef Sp_TwoIndex<4, AntiSymmetric> Sp4TwoIndexAntiSymm;
NAMESPACE_END(Grid);
#endif

View File

@ -1,319 +0,0 @@
////////////////////////////////////////////////////////////////////////
//
// * Two index representation generators
//
// * Normalisation for the fundamental generators:
// trace ta tb = 1/2 delta_ab = T_F delta_ab
// T_F = 1/2 for SU(N) groups
//
//
// base for NxN two index (anti-symmetric) matrices
// normalized to 1 (d_ij is the kroenecker delta)
//
// (e^(ij)_{kl} = 1 / sqrt(2) (d_ik d_jl +/- d_jk d_il)
//
// Then the generators are written as
//
// (iT_a)^(ij)(lk) = i * ( tr[e^(ij)^dag e^(lk) T^trasp_a] +
// tr[e^(lk)e^(ij)^dag T_a] ) //
//
//
////////////////////////////////////////////////////////////////////////
// Authors: David Preti, Guido Cossu
#ifndef QCD_UTIL_SP2N2INDEX_H
#define QCD_UTIL_SP2N2INDEX_H
NAMESPACE_BEGIN(Grid);
//enum SpTwoIndexSymmetry { S = 1, AS = -1 };
//inline Real delta(int a, int b) { return (a == b) ? 1.0 : 0.0; }
template <int ncolour, TwoIndexSymmetry S>
class Sp_TwoIndex : public Sp<ncolour> {
public:
static const int nsp = ncolour/2;
static const int Dimension = nsp * (ncolour + S) - 1 ;
static const int NumGenerators = Sp<ncolour>::AlgebraDimension;
template <typename vtype>
using iSp2nTwoIndexMatrix = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
typedef iSp2nTwoIndexMatrix<Complex> TIMatrix;
typedef iSp2nTwoIndexMatrix<ComplexF> TIMatrixF;
typedef iSp2nTwoIndexMatrix<ComplexD> TIMatrixD;
typedef iSp2nTwoIndexMatrix<vComplex> vTIMatrix;
typedef iSp2nTwoIndexMatrix<vComplexF> vTIMatrixF;
typedef iSp2nTwoIndexMatrix<vComplexD> vTIMatrixD;
typedef Lattice<vTIMatrix> LatticeTwoIndexMatrix;
typedef Lattice<vTIMatrixF> LatticeTwoIndexMatrixF;
typedef Lattice<vTIMatrixD> LatticeTwoIndexMatrixD;
typedef Lattice<iVector<iScalar<iMatrix<vComplex, Dimension> >, Nd> >
LatticeTwoIndexField;
typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> >
LatticeTwoIndexFieldF;
typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> >
LatticeTwoIndexFieldD;
template <typename vtype>
using iSp2nMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
typedef iSp2nMatrix<Complex> Matrix;
typedef iSp2nMatrix<ComplexF> MatrixF;
typedef iSp2nMatrix<ComplexD> MatrixD;
template <class cplx>
static void base(int Index, iSp2nMatrix<cplx> &eij) {
// returns (e)^(ij)_{kl} necessary for change of base U_F -> U_R
assert(Index < NumGenerators);
eij = Zero();
// for the linearisation of the 2 indexes
static int a[ncolour * (ncolour - 1) / 2][2]; // store the a <-> i,j
static bool filled = false;
if (!filled) {
int counter = 0;
for (int i = 1; i < ncolour; i++) {
for (int j = 0; j < i; j++) {
if (i==nsp)
{
j = j+1;
}
a[counter][0] = i;
a[counter][1] = j;
counter++;
}
}
filled = true;
}
if (Index < ncolour * (ncolour - 1) / 2) {
baseOffDiagonal(a[Index][0], a[Index][1], eij);
} else {
baseDiagonal(Index, eij);
}
}
template <class cplx>
static void baseDiagonal(int Index, iSp2nMatrix<cplx> &eij) {
eij = Zero();
eij()()(Index - ncolour * (ncolour - 1) / 2,
Index - ncolour * (ncolour - 1) / 2) = 1.0;
}
template <class cplx>
static void baseOffDiagonal(int i, int j, iSp2nMatrix<cplx> &eij) {
eij = Zero();
//std::cout << GridLogMessage << " doing i j = " << i << j << std::endl;
RealD tmp;
if ( (i == nsp + j) && (1 <= j) && (j < nsp) )
{
for (int k = 0; k < nsp; k++)
{
if (k < j)
{
//std::cout << GridLogMessage << "b=N+a 1"<< std::endl;
//std::cout << GridLogMessage << "j i "<< j << i << std::endl;
tmp = sqrt( 2*j*(j+1) );
tmp = 1/tmp;
tmp *= std::sqrt(2.0);
eij()()(k,k+nsp) = tmp;
eij()()(k+nsp,k) = - tmp;
}
if (k == j)
{
//std::cout << GridLogMessage << "b=N+a 2"<< std::endl;
//std::cout << GridLogMessage << "j i "<< j << i << std::endl;
tmp = sqrt(2*j*(j+1) );
tmp = -j/tmp;
tmp *= std::sqrt(2.0);
eij()()(k,k+nsp) = tmp ;
eij()()(k+nsp,k) = - tmp ;
}
}
}
else if (i != nsp+j)
{
for (int k = 0; k < ncolour; k++)
for (int l = 0; l < ncolour; l++)
{
eij()()(l, k) = delta(i, k) * delta(j, l) + S * delta(j, k) * delta(i, l);
}
}
RealD nrm = 1. / std::sqrt(2.0);
eij = eij * nrm;
}
static void printBase(void) {
for (int gen = 0; gen < Dimension; gen++) {
Matrix tmp;
base(gen, tmp);
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
<< std::endl;
std::cout << GridLogMessage << tmp << std::endl;
}
}
template <class cplx>
static void generator(int Index, iSp2nTwoIndexMatrix<cplx> &i2indTa) {
Vector<iSp2nMatrix<cplx> > ta(
NumGenerators);
Vector<iSp2nMatrix<cplx> > eij(Dimension);
iSp2nMatrix<cplx> tmp;
i2indTa = Zero();
for (int a = 0; a < NumGenerators; a++)
Sp<ncolour>::generator(a, ta[a]);
for (int a = 0; a < Dimension; a++) base(a, eij[a]);
for (int a = 0; a < Dimension; a++) {
tmp = transpose(ta[Index]) * adj(eij[a]) + adj(eij[a]) * ta[Index];
for (int b = 0; b < Dimension; b++) {
iSp2nMatrix<cplx> tmp1 =
tmp * eij[b];
Complex iTr = TensorRemove(timesI(trace(tmp1)));
i2indTa()()(a, b) = iTr;
}
}
}
static void printGenerators(void) {
for (int gen = 0; gen < NumGenerators; gen++) {
TIMatrix i2indTa;
generator(gen, i2indTa);
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
<< std::endl;
std::cout << GridLogMessage << i2indTa << std::endl;
}
}
static void testGenerators(void) {
TIMatrix i2indTa, i2indTb;
std::cout << GridLogMessage << "2IndexRep - Checking if traceless"
<< std::endl;
for (int a = 0; a < NumGenerators; a++) {
generator(a, i2indTa);
std::cout << GridLogMessage << a << std::endl;
assert(norm2(trace(i2indTa)) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage << "2IndexRep - Checking if antihermitean"
<< std::endl;
for (int a = 0; a < NumGenerators; a++) {
generator(a, i2indTa);
std::cout << GridLogMessage << a << std::endl;
assert(norm2(adj(i2indTa) + i2indTa) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage
<< "2IndexRep - Checking Tr[Ta*Tb]=delta(a,b)*(N +- 2)/2"
<< std::endl;
for (int a = 0; a < NumGenerators; a++) {
for (int b = 0; b < NumGenerators; b++) {
generator(a, i2indTa);
generator(b, i2indTb);
// generator returns iTa, so we need a minus sign here
Complex Tr = -TensorRemove(trace(i2indTa * i2indTb));
std::cout << GridLogMessage << "a=" << a << "b=" << b << "Tr=" << Tr
<< std::endl;
}
}
std::cout << GridLogMessage << std::endl;
}
static void TwoIndexLieAlgebraMatrix(
const typename Sp<ncolour>::LatticeAlgebraVector &h,
LatticeTwoIndexMatrix &out, Real scale = 1.0) {
conformable(h, out);
GridBase *grid = out.Grid();
LatticeTwoIndexMatrix la(grid);
TIMatrix i2indTa;
out = Zero();
for (int a = 0; a < NumGenerators; a++) {
generator(a, i2indTa);
la = peekColour(h, a) * i2indTa;
out += la;
}
out *= scale;
}
// Projects the algebra components
// of a lattice matrix ( of dimension ncol*ncol -1 )
static void projectOnAlgebra(
typename Sp<ncolour>::LatticeAlgebraVector &h_out,
const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
h_out = Zero();
TIMatrix i2indTa;
Real coefficient = -2.0 / (ncolour + 2 * S) * scale;
// 2/(Nc +/- 2) for the normalization of the trace in the two index rep
for (int a = 0; a < NumGenerators; a++) {
generator(a, i2indTa);
pokeColour(h_out, real(trace(i2indTa * in)) * coefficient, a);
}
}
// a projector that keeps the generators stored to avoid the overhead of
// recomputing them
static void projector(typename Sp<ncolour>::LatticeAlgebraVector &h_out,
const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
// to store the generators
static std::vector<TIMatrix> i2indTa(NumGenerators);
h_out = Zero();
static bool precalculated = false;
if (!precalculated) {
precalculated = true;
for (int a = 0; a < NumGenerators; a++) generator(a, i2indTa[a]);
}
Real coefficient =
-2.0 / (ncolour + 2 * S) * scale; // 2/(Nc +/- 2) for the normalization
// of the trace in the two index rep
for (int a = 0; a < NumGenerators; a++) {
auto tmp = real(trace(i2indTa[a] * in)) * coefficient;
pokeColour(h_out, tmp, a);
}
}
};
// Some useful type names
typedef Sp_TwoIndex<Nc, Symmetric> SpTwoIndexSymmMatrices;
typedef Sp_TwoIndex<Nc, AntiSymmetric> SpTwoIndexAntiSymmMatrices;
typedef Sp_TwoIndex<2, Symmetric> Sp2TwoIndexSymm;
typedef Sp_TwoIndex<4, Symmetric> Sp4TwoIndexSymm;
typedef Sp_TwoIndex<2, AntiSymmetric> Sp2TwoIndexAntiSymm;
typedef Sp_TwoIndex<4, AntiSymmetric> Sp4TwoIndexAntiSymm;
NAMESPACE_END(Grid);
#endif

View File

@ -10,8 +10,7 @@
// Include representations
#include <Grid/qcd/utils/GaugeGroup.h>
#include <Grid/qcd/utils/SUnAdjoint.h>
#include <Grid/qcd/utils/SUnTwoIndex.h>
#include <Grid/qcd/utils/Sp2nTwoIndex.h>
#include <Grid/qcd/utils/GaugeGroupTwoIndex.h>
// All-to-all contraction kernels that touch the
// internal lattice structure

View File

@ -35,7 +35,7 @@ directory
#include <Grid/qcd/utils/GaugeGroup.h>
#include <Grid/qcd/utils/SUnAdjoint.h>
#include <Grid/qcd/utils/SUnTwoIndex.h>
#include <Grid/qcd/utils/GaugeGroupTwoIndex.h>
#include <Grid/qcd/representations/adjoint.h>
#include <Grid/qcd/representations/two_index.h>