mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-09 23:45:36 +00:00
Clean up finished. Could shrink Lanczos to around 400 lines at a push
This commit is contained in:
parent
7e35286860
commit
e8b95bd35b
@ -39,10 +39,11 @@ namespace Grid {
|
||||
IRLdiagonaliseWithQR,
|
||||
IRLdiagonaliseWithEigen
|
||||
};
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Helper class for sorting the evalues AND evectors by Field
|
||||
// Use pointer swizzle on vectors
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Helper class for sorting the evalues AND evectors by Field
|
||||
// Use pointer swizzle on vectors
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field>
|
||||
class SortEigen {
|
||||
private:
|
||||
@ -90,7 +91,9 @@ class SortEigen {
|
||||
/////////////////////////////////////////////////////////////
|
||||
template<class Field>
|
||||
class ImplicitlyRestartedLanczos {
|
||||
|
||||
private:
|
||||
|
||||
int MaxIter; // Max iterations
|
||||
int Nstop; // Number of evecs checked for convergence
|
||||
int Nk; // Number of converged sought
|
||||
@ -122,6 +125,29 @@ public:
|
||||
diagonalisation(_diagonalisation)
|
||||
{ };
|
||||
|
||||
////////////////////////////////
|
||||
// Helpers
|
||||
////////////////////////////////
|
||||
static RealD normalise(Field& v)
|
||||
{
|
||||
RealD nn = norm2(v);
|
||||
nn = sqrt(nn);
|
||||
v = v * (1.0/nn);
|
||||
return nn;
|
||||
}
|
||||
|
||||
void orthogonalize(Field& w, std::vector<Field>& evec, int k)
|
||||
{
|
||||
typedef typename Field::scalar_type MyComplex;
|
||||
MyComplex ip;
|
||||
|
||||
for(int j=0; j<k; ++j){
|
||||
ip = innerProduct(evec[j],w);
|
||||
w = w - ip * evec[j];
|
||||
}
|
||||
normalise(w);
|
||||
}
|
||||
|
||||
/* Rudy Arthur's thesis pp.137
|
||||
------------------------
|
||||
Require: M > K P = M − K †
|
||||
@ -167,9 +193,10 @@ until convergence
|
||||
std::vector<RealD> lme(Nm);
|
||||
std::vector<RealD> lme2(Nm);
|
||||
std::vector<RealD> eval2(Nm);
|
||||
Eigen::MatrixXd Qt = Eigen::MatrixXd::Zero(Nm,Nm);
|
||||
std::vector<int> Iconv(Nm);
|
||||
|
||||
Eigen::MatrixXd Qt = Eigen::MatrixXd::Zero(Nm,Nm);
|
||||
|
||||
std::vector<int> Iconv(Nm);
|
||||
std::vector<Field> B(Nm,grid); // waste of space replicating
|
||||
|
||||
Field f(grid);
|
||||
@ -218,6 +245,7 @@ until convergence
|
||||
// Implicitly shifted QR transformations
|
||||
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
|
||||
for(int ip=k2; ip<Nm; ++ip){
|
||||
// Eigen replacement for qr_decomp ???
|
||||
qr_decomp(eval,lme,Nm,Nm,Qt,eval2[ip],k1,Nm);
|
||||
}
|
||||
|
||||
@ -354,10 +382,32 @@ private:
|
||||
if ( beta < tiny ) std::cout << GridLogMessage << " beta is tiny "<<beta<<std::endl;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
//
|
||||
//
|
||||
///////////////////////////////////////////////////////////////////
|
||||
void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
||||
int Nk, int Nm,
|
||||
Eigen::MatrixXd & Qt, // Nm x Nm
|
||||
GridBase *grid)
|
||||
{
|
||||
Eigen::MatrixXd TriDiag = Eigen::MatrixXd::Zero(Nk,Nk);
|
||||
|
||||
for(int i=0;i<Nk;i++) TriDiag(i,i) = lmd[i];
|
||||
for(int i=0;i<Nk-1;i++) TriDiag(i,i+1) = lme[i];
|
||||
for(int i=0;i<Nk-1;i++) TriDiag(i+1,i) = lme[i];
|
||||
|
||||
Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> eigensolver(TriDiag);
|
||||
|
||||
for (int i = 0; i < Nk; i++) {
|
||||
lmd[Nk-1-i] = eigensolver.eigenvalues()(i);
|
||||
}
|
||||
for (int i = 0; i < Nk; i++) {
|
||||
for (int j = 0; j < Nk; j++) {
|
||||
Qt(Nk-1-i,j) = eigensolver.eigenvectors()(j,i);
|
||||
}
|
||||
}
|
||||
}
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// File could end here if settle on Eigen ???
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void qr_decomp(std::vector<RealD>& lmd, // Nm
|
||||
std::vector<RealD>& lme, // Nm
|
||||
int Nk, int Nm, // Nk, Nm
|
||||
@ -570,50 +620,6 @@ void diagonalize_lapack(std::vector<RealD>& lmd,
|
||||
abort();
|
||||
}
|
||||
|
||||
void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
||||
int Nk, int Nm,
|
||||
Eigen::MatrixXd & Qt, // Nm x Nm
|
||||
GridBase *grid)
|
||||
{
|
||||
Eigen::MatrixXd TriDiag = Eigen::MatrixXd::Zero(Nk,Nk);
|
||||
|
||||
for(int i=0;i<Nk;i++) TriDiag(i,i) = lmd[i];
|
||||
for(int i=0;i<Nk-1;i++) TriDiag(i,i+1) = lme[i];
|
||||
for(int i=0;i<Nk-1;i++) TriDiag(i+1,i) = lme[i];
|
||||
|
||||
Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> eigensolver(TriDiag);
|
||||
|
||||
for (int i = 0; i < Nk; i++) {
|
||||
lmd[Nk-1-i] = eigensolver.eigenvalues()(i);
|
||||
}
|
||||
for (int i = 0; i < Nk; i++) {
|
||||
for (int j = 0; j < Nk; j++) {
|
||||
Qt(Nk-1-i,j) = eigensolver.eigenvectors()(j,i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static RealD normalise(Field& v)
|
||||
{
|
||||
RealD nn = norm2(v);
|
||||
nn = sqrt(nn);
|
||||
v = v * (1.0/nn);
|
||||
return nn;
|
||||
}
|
||||
|
||||
void orthogonalize(Field& w, std::vector<Field>& evec, int k)
|
||||
{
|
||||
typedef typename Field::scalar_type MyComplex;
|
||||
MyComplex ip;
|
||||
|
||||
for(int j=0; j<k; ++j){
|
||||
ip = innerProduct(evec[j],w); // are the evecs normalised? ; this assumes so.
|
||||
w = w - ip * evec[j];
|
||||
}
|
||||
normalise(w);
|
||||
}
|
||||
|
||||
};
|
||||
}
|
||||
#endif
|
||||
|
@ -133,8 +133,8 @@ int main (int argc, char ** argv)
|
||||
int Nconv;
|
||||
RealD eresid = 1.0e-6;
|
||||
|
||||
ImplicitlyRestartedLanczos<LatticeComplex> IRL(HermOp,X,Nk,Nm,eresid,Nit);
|
||||
ImplicitlyRestartedLanczos<LatticeComplex> ChebyIRL(HermOp,Cheby,Nk,Nm,eresid,Nit);
|
||||
ImplicitlyRestartedLanczos<LatticeComplex> IRL(HermOp,X,Nk,Nk,Nm,eresid,Nit);
|
||||
ImplicitlyRestartedLanczos<LatticeComplex> ChebyIRL(HermOp,Cheby,Nk,Nk,Nm,eresid,Nit);
|
||||
|
||||
LatticeComplex src(grid); gaussian(RNG,src);
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user