1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-15 02:05:37 +00:00

Merge branch 'feature/Lanczos' into ckelly_develop4

This commit is contained in:
Christopher Kelly 2017-10-10 13:41:43 -04:00
commit ef61b549e6
14 changed files with 3374 additions and 2 deletions

View File

@ -5,7 +5,7 @@ EIGEN_URL='http://bitbucket.org/eigen/eigen/get/3.3.3.tar.bz2'
echo "-- deploying Eigen source..." echo "-- deploying Eigen source..."
wget ${EIGEN_URL} --no-check-certificate wget ${EIGEN_URL} --no-check-certificate
./scripts/update_eigen.sh `basename ${EIGEN_URL}` ./scripts/update_eigen.sh `basename ${EIGEN_URL}`
rm `basename ${EIGEN_URL}` #rm `basename ${EIGEN_URL}`
echo '-- generating Make.inc files...' echo '-- generating Make.inc files...'
./scripts/filelist ./scripts/filelist

View File

@ -39,6 +39,10 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/algorithms/approx/MultiShiftFunction.h> #include <Grid/algorithms/approx/MultiShiftFunction.h>
#include <Grid/algorithms/approx/Forecast.h> #include <Grid/algorithms/approx/Forecast.h>
#include <Grid/algorithms/densematrix/DenseMatrix.h>
#include <Grid/algorithms/densematrix/Francis.h>
#include <Grid/algorithms/densematrix/Householder.h>
#include <Grid/algorithms/iterative/ConjugateGradient.h> #include <Grid/algorithms/iterative/ConjugateGradient.h>
#include <Grid/algorithms/iterative/ConjugateResidual.h> #include <Grid/algorithms/iterative/ConjugateResidual.h>
#include <Grid/algorithms/iterative/NormalEquations.h> #include <Grid/algorithms/iterative/NormalEquations.h>
@ -48,6 +52,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/algorithms/iterative/BlockConjugateGradient.h> #include <Grid/algorithms/iterative/BlockConjugateGradient.h>
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h> #include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h> #include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczosCJ.h>
#include <Grid/algorithms/iterative/SimpleLanczos.h>
#include <Grid/algorithms/CoarsenedMatrix.h> #include <Grid/algorithms/CoarsenedMatrix.h>
#include <Grid/algorithms/FFT.h> #include <Grid/algorithms/FFT.h>

View File

@ -332,6 +332,75 @@ namespace Grid {
}; };
template<class Matrix,class Field> using SchurStagOperator = SchurStaggeredOperator<Matrix,Field>; template<class Matrix,class Field> using SchurStagOperator = SchurStaggeredOperator<Matrix,Field>;
#if 0
// This is specific to (Z)mobius fermions
template<class Matrix, class Field>
class KappaSimilarityTransform {
public:
// INHERIT_IMPL_TYPES(Matrix);
typedef typename Matrix::Coeff_t Coeff_t;
std::vector<Coeff_t> kappa, kappaDag, kappaInv, kappaInvDag;
KappaSimilarityTransform (Matrix &zmob) {
for (int i=0;i<(int)zmob.bs.size();i++) {
Coeff_t k = 1.0 / ( 2.0 * (zmob.bs[i] *(4 - zmob.M5) + 1.0) );
kappa.push_back( k );
kappaDag.push_back( conj(k) );
kappaInv.push_back( 1.0 / k );
kappaInvDag.push_back( 1.0 / conj(k) );
}
}
template<typename vobj>
void sscale(const Lattice<vobj>& in, Lattice<vobj>& out, Coeff_t* s) {
GridBase *grid=out._grid;
out.checkerboard = in.checkerboard;
assert(grid->_simd_layout[0] == 1); // should be fine for ZMobius for now
int Ls = grid->_rdimensions[0];
parallel_for(int ss=0;ss<grid->oSites();ss++){
vobj tmp = s[ss % Ls]*in._odata[ss];
vstream(out._odata[ss],tmp);
}
}
RealD sscale_norm(const Field& in, Field& out, Coeff_t* s) {
sscale(in,out,s);
return norm2(out);
}
virtual RealD M (const Field& in, Field& out) { return sscale_norm(in,out,&kappa[0]); }
virtual RealD MDag (const Field& in, Field& out) { return sscale_norm(in,out,&kappaDag[0]);}
virtual RealD MInv (const Field& in, Field& out) { return sscale_norm(in,out,&kappaInv[0]);}
virtual RealD MInvDag (const Field& in, Field& out) { return sscale_norm(in,out,&kappaInvDag[0]);}
};
template<class Matrix,class Field>
class SchurDiagTwoKappaOperator : public SchurOperatorBase<Field> {
public:
KappaSimilarityTransform<Matrix, Field> _S;
SchurDiagTwoOperator<Matrix, Field> _Mat;
SchurDiagTwoKappaOperator (Matrix &Mat): _S(Mat), _Mat(Mat) {};
virtual RealD Mpc (const Field &in, Field &out) {
Field tmp(in._grid);
_S.MInv(in,out);
_Mat.Mpc(out,tmp);
return _S.M(tmp,out);
}
virtual RealD MpcDag (const Field &in, Field &out){
Field tmp(in._grid);
_S.MDag(in,out);
_Mat.MpcDag(out,tmp);
return _S.MInvDag(tmp,out);
}
};
#endif
///////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////
// Base classes for functions of operators // Base classes for functions of operators

View File

@ -0,0 +1,137 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/DenseMatrix.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_DENSE_MATRIX_H
#define GRID_DENSE_MATRIX_H
namespace Grid {
/////////////////////////////////////////////////////////////
// Matrix untils
/////////////////////////////////////////////////////////////
template<class T> using DenseVector = std::vector<T>;
template<class T> using DenseMatrix = DenseVector<DenseVector<T> >;
template<class T> void Size(DenseVector<T> & vec, int &N)
{
N= vec.size();
}
template<class T> void Size(DenseMatrix<T> & mat, int &N,int &M)
{
N= mat.size();
M= mat[0].size();
}
template<class T> void SizeSquare(DenseMatrix<T> & mat, int &N)
{
int M; Size(mat,N,M);
assert(N==M);
}
template<class T> void Resize(DenseVector<T > & mat, int N) {
mat.resize(N);
}
template<class T> void Resize(DenseMatrix<T > & mat, int N, int M) {
mat.resize(N);
for(int i=0;i<N;i++){
mat[i].resize(M);
}
}
template<class T> void Fill(DenseMatrix<T> & mat, T&val) {
int N,M;
Size(mat,N,M);
for(int i=0;i<N;i++){
for(int j=0;j<M;j++){
mat[i][j] = val;
}}
}
/** Transpose of a matrix **/
template<class T> DenseMatrix<T> Transpose(DenseMatrix<T> & mat){
int N,M;
Size(mat,N,M);
DenseMatrix<T> C; Resize(C,M,N);
for(int i=0;i<M;i++){
for(int j=0;j<N;j++){
C[i][j] = mat[j][i];
}}
return C;
}
/** Set DenseMatrix to unit matrix **/
template<class T> void Unity(DenseMatrix<T> &A){
int N; SizeSquare(A,N);
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
if ( i==j ) A[i][j] = 1;
else A[i][j] = 0;
}
}
}
/** Add C * I to matrix **/
template<class T>
void PlusUnit(DenseMatrix<T> & A,T c){
int dim; SizeSquare(A,dim);
for(int i=0;i<dim;i++){A[i][i] = A[i][i] + c;}
}
/** return the Hermitian conjugate of matrix **/
template<class T>
DenseMatrix<T> HermitianConj(DenseMatrix<T> &mat){
int dim; SizeSquare(mat,dim);
DenseMatrix<T> C; Resize(C,dim,dim);
for(int i=0;i<dim;i++){
for(int j=0;j<dim;j++){
C[i][j] = conj(mat[j][i]);
}
}
return C;
}
/**Get a square submatrix**/
template <class T>
DenseMatrix<T> GetSubMtx(DenseMatrix<T> &A,int row_st, int row_end, int col_st, int col_end)
{
DenseMatrix<T> H; Resize(H,row_end - row_st,col_end-col_st);
for(int i = row_st; i<row_end; i++){
for(int j = col_st; j<col_end; j++){
H[i-row_st][j-col_st]=A[i][j];
}}
return H;
}
}
#include "Householder.h"
#include "Francis.h"
#endif

View File

@ -0,0 +1,525 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/Francis.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef FRANCIS_H
#define FRANCIS_H
#include <cstdlib>
#include <string>
#include <cmath>
#include <iostream>
#include <sstream>
#include <stdexcept>
#include <fstream>
#include <complex>
#include <algorithm>
//#include <timer.h>
//#include <lapacke.h>
//#include <Eigen/Dense>
namespace Grid {
template <class T> int SymmEigensystem(DenseMatrix<T > &Ain, DenseVector<T> &evals, DenseMatrix<T> &evecs, RealD small);
template <class T> int Eigensystem(DenseMatrix<T > &Ain, DenseVector<T> &evals, DenseMatrix<T> &evecs, RealD small);
/**
Find the eigenvalues of an upper hessenberg matrix using the Francis QR algorithm.
H =
x x x x x x x x x
x x x x x x x x x
0 x x x x x x x x
0 0 x x x x x x x
0 0 0 x x x x x x
0 0 0 0 x x x x x
0 0 0 0 0 x x x x
0 0 0 0 0 0 x x x
0 0 0 0 0 0 0 x x
Factorization is P T P^H where T is upper triangular (mod cc blocks) and P is orthagonal/unitary.
**/
template <class T>
int QReigensystem(DenseMatrix<T> &Hin, DenseVector<T> &evals, DenseMatrix<T> &evecs, RealD small)
{
DenseMatrix<T> H = Hin;
int N ; SizeSquare(H,N);
int M = N;
Fill(evals,0);
Fill(evecs,0);
T s,t,x=0,y=0,z=0;
T u,d;
T apd,amd,bc;
DenseVector<T> p(N,0);
T nrm = Norm(H); ///DenseMatrix Norm
int n, m;
int e = 0;
int it = 0;
int tot_it = 0;
int l = 0;
int r = 0;
DenseMatrix<T> P; Resize(P,N,N); Unity(P);
DenseVector<int> trows(N,0);
/// Check if the matrix is really hessenberg, if not abort
RealD sth = 0;
for(int j=0;j<N;j++){
for(int i=j+2;i<N;i++){
sth = abs(H[i][j]);
if(sth > small){
std::cout << "Non hessenberg H = " << sth << " > " << small << std::endl;
exit(1);
}
}
}
do{
std::cout << "Francis QR Step N = " << N << std::endl;
/** Check for convergence
x x x x x
0 x x x x
0 0 x x x
0 0 x x x
0 0 0 0 x
for this matrix l = 4
**/
do{
l = Chop_subdiag(H,nrm,e,small);
r = 0; ///May have converged on more than one eval
///Single eval
if(l == N-1){
evals[e] = H[l][l];
N--; e++; r++; it = 0;
}
///RealD eval
if(l == N-2){
trows[l+1] = 1; ///Needed for UTSolve
apd = H[l][l] + H[l+1][l+1];
amd = H[l][l] - H[l+1][l+1];
bc = (T)4.0*H[l+1][l]*H[l][l+1];
evals[e] = (T)0.5*( apd + sqrt(amd*amd + bc) );
evals[e+1] = (T)0.5*( apd - sqrt(amd*amd + bc) );
N-=2; e+=2; r++; it = 0;
}
} while(r>0);
if(N ==0) break;
DenseVector<T > ck; Resize(ck,3);
DenseVector<T> v; Resize(v,3);
for(int m = N-3; m >= l; m--){
///Starting vector essentially random shift.
if(it%10 == 0 && N >= 3 && it > 0){
s = (T)1.618033989*( abs( H[N-1][N-2] ) + abs( H[N-2][N-3] ) );
t = (T)0.618033989*( abs( H[N-1][N-2] ) + abs( H[N-2][N-3] ) );
x = H[m][m]*H[m][m] + H[m][m+1]*H[m+1][m] - s*H[m][m] + t;
y = H[m+1][m]*(H[m][m] + H[m+1][m+1] - s);
z = H[m+1][m]*H[m+2][m+1];
}
///Starting vector implicit Q theorem
else{
s = (H[N-2][N-2] + H[N-1][N-1]);
t = (H[N-2][N-2]*H[N-1][N-1] - H[N-2][N-1]*H[N-1][N-2]);
x = H[m][m]*H[m][m] + H[m][m+1]*H[m+1][m] - s*H[m][m] + t;
y = H[m+1][m]*(H[m][m] + H[m+1][m+1] - s);
z = H[m+1][m]*H[m+2][m+1];
}
ck[0] = x; ck[1] = y; ck[2] = z;
if(m == l) break;
/** Some stupid thing from numerical recipies, seems to work**/
// PAB.. for heaven's sake quote page, purpose, evidence it works.
// what sort of comment is that!?!?!?
u=abs(H[m][m-1])*(abs(y)+abs(z));
d=abs(x)*(abs(H[m-1][m-1])+abs(H[m][m])+abs(H[m+1][m+1]));
if ((T)abs(u+d) == (T)abs(d) ){
l = m; break;
}
//if (u < small){l = m; break;}
}
if(it > 100000){
std::cout << "QReigensystem: bugger it got stuck after 100000 iterations" << std::endl;
std::cout << "got " << e << " evals " << l << " " << N << std::endl;
exit(1);
}
normalize(ck); ///Normalization cancels in PHP anyway
T beta;
Householder_vector<T >(ck, 0, 2, v, beta);
Householder_mult<T >(H,v,beta,0,l,l+2,0);
Householder_mult<T >(H,v,beta,0,l,l+2,1);
///Accumulate eigenvector
Householder_mult<T >(P,v,beta,0,l,l+2,1);
int sw = 0; ///Are we on the last row?
for(int k=l;k<N-2;k++){
x = H[k+1][k];
y = H[k+2][k];
z = (T)0.0;
if(k+3 <= N-1){
z = H[k+3][k];
} else{
sw = 1;
v[2] = (T)0.0;
}
ck[0] = x; ck[1] = y; ck[2] = z;
normalize(ck);
Householder_vector<T >(ck, 0, 2-sw, v, beta);
Householder_mult<T >(H,v, beta,0,k+1,k+3-sw,0);
Householder_mult<T >(H,v, beta,0,k+1,k+3-sw,1);
///Accumulate eigenvector
Householder_mult<T >(P,v, beta,0,k+1,k+3-sw,1);
}
it++;
tot_it++;
}while(N > 1);
N = evals.size();
///Annoying - UT solves in reverse order;
DenseVector<T> tmp; Resize(tmp,N);
for(int i=0;i<N;i++){
tmp[i] = evals[N-i-1];
}
evals = tmp;
UTeigenvectors(H, trows, evals, evecs);
for(int i=0;i<evals.size();i++){evecs[i] = P*evecs[i]; normalize(evecs[i]);}
return tot_it;
}
template <class T>
int my_Wilkinson(DenseMatrix<T> &Hin, DenseVector<T> &evals, DenseMatrix<T> &evecs, RealD small)
{
/**
Find the eigenvalues of an upper Hessenberg matrix using the Wilkinson QR algorithm.
H =
x x 0 0 0 0
x x x 0 0 0
0 x x x 0 0
0 0 x x x 0
0 0 0 x x x
0 0 0 0 x x
Factorization is P T P^H where T is upper triangular (mod cc blocks) and P is orthagonal/unitary. **/
return my_Wilkinson(Hin, evals, evecs, small, small);
}
template <class T>
int my_Wilkinson(DenseMatrix<T> &Hin, DenseVector<T> &evals, DenseMatrix<T> &evecs, RealD small, RealD tol)
{
int N; SizeSquare(Hin,N);
int M = N;
///I don't want to modify the input but matricies must be passed by reference
//Scale a matrix by its "norm"
//RealD Hnorm = abs( Hin.LargestDiag() ); H = H*(1.0/Hnorm);
DenseMatrix<T> H; H = Hin;
RealD Hnorm = abs(Norm(Hin));
H = H * (1.0 / Hnorm);
// TODO use openmp and memset
Fill(evals,0);
Fill(evecs,0);
T s, t, x = 0, y = 0, z = 0;
T u, d;
T apd, amd, bc;
DenseVector<T> p; Resize(p,N); Fill(p,0);
T nrm = Norm(H); ///DenseMatrix Norm
int n, m;
int e = 0;
int it = 0;
int tot_it = 0;
int l = 0;
int r = 0;
DenseMatrix<T> P; Resize(P,N,N);
Unity(P);
DenseVector<int> trows(N, 0);
/// Check if the matrix is really symm tridiag
RealD sth = 0;
for(int j = 0; j < N; ++j)
{
for(int i = j + 2; i < N; ++i)
{
if(abs(H[i][j]) > tol || abs(H[j][i]) > tol)
{
std::cout << "Non Tridiagonal H(" << i << ","<< j << ") = |" << Real( real( H[j][i] ) ) << "| > " << tol << std::endl;
std::cout << "Warning tridiagonalize and call again" << std::endl;
// exit(1); // see what is going on
//return;
}
}
}
do{
do{
//Jasper
//Check if the subdiagonal term is small enough (<small)
//if true then it is converged.
//check start from H.dim - e - 1
//How to deal with more than 2 are converged?
//What if Chop_symm_subdiag return something int the middle?
//--------------
l = Chop_symm_subdiag(H,nrm, e, small);
r = 0; ///May have converged on more than one eval
//Jasper
//In this case
// x x 0 0 0 0
// x x x 0 0 0
// 0 x x x 0 0
// 0 0 x x x 0
// 0 0 0 x x 0
// 0 0 0 0 0 x <- l
//--------------
///Single eval
if(l == N - 1)
{
evals[e] = H[l][l];
N--;
e++;
r++;
it = 0;
}
//Jasper
// x x 0 0 0 0
// x x x 0 0 0
// 0 x x x 0 0
// 0 0 x x 0 0
// 0 0 0 0 x x <- l
// 0 0 0 0 x x
//--------------
///RealD eval
if(l == N - 2)
{
trows[l + 1] = 1; ///Needed for UTSolve
apd = H[l][l] + H[l + 1][ l + 1];
amd = H[l][l] - H[l + 1][l + 1];
bc = (T) 4.0 * H[l + 1][l] * H[l][l + 1];
evals[e] = (T) 0.5 * (apd + sqrt(amd * amd + bc));
evals[e + 1] = (T) 0.5 * (apd - sqrt(amd * amd + bc));
N -= 2;
e += 2;
r++;
it = 0;
}
}while(r > 0);
//Jasper
//Already converged
//--------------
if(N == 0) break;
DenseVector<T> ck,v; Resize(ck,2); Resize(v,2);
for(int m = N - 3; m >= l; m--)
{
///Starting vector essentially random shift.
if(it%10 == 0 && N >= 3 && it > 0)
{
t = abs(H[N - 1][N - 2]) + abs(H[N - 2][N - 3]);
x = H[m][m] - t;
z = H[m + 1][m];
} else {
///Starting vector implicit Q theorem
d = (H[N - 2][N - 2] - H[N - 1][N - 1]) * (T) 0.5;
t = H[N - 1][N - 1] - H[N - 1][N - 2] * H[N - 1][N - 2]
/ (d + sign(d) * sqrt(d * d + H[N - 1][N - 2] * H[N - 1][N - 2]));
x = H[m][m] - t;
z = H[m + 1][m];
}
//Jasper
//why it is here????
//-----------------------
if(m == l)
break;
u = abs(H[m][m - 1]) * (abs(y) + abs(z));
d = abs(x) * (abs(H[m - 1][m - 1]) + abs(H[m][m]) + abs(H[m + 1][m + 1]));
if ((T)abs(u + d) == (T)abs(d))
{
l = m;
break;
}
}
//Jasper
if(it > 1000000)
{
std::cout << "Wilkinson: bugger it got stuck after 100000 iterations" << std::endl;
std::cout << "got " << e << " evals " << l << " " << N << std::endl;
exit(1);
}
//
T s, c;
Givens_calc<T>(x, z, c, s);
Givens_mult<T>(H, l, l + 1, c, -s, 0);
Givens_mult<T>(H, l, l + 1, c, s, 1);
Givens_mult<T>(P, l, l + 1, c, s, 1);
//
for(int k = l; k < N - 2; ++k)
{
x = H.A[k + 1][k];
z = H.A[k + 2][k];
Givens_calc<T>(x, z, c, s);
Givens_mult<T>(H, k + 1, k + 2, c, -s, 0);
Givens_mult<T>(H, k + 1, k + 2, c, s, 1);
Givens_mult<T>(P, k + 1, k + 2, c, s, 1);
}
it++;
tot_it++;
}while(N > 1);
N = evals.size();
///Annoying - UT solves in reverse order;
DenseVector<T> tmp(N);
for(int i = 0; i < N; ++i)
tmp[i] = evals[N-i-1];
evals = tmp;
//
UTeigenvectors(H, trows, evals, evecs);
//UTSymmEigenvectors(H, trows, evals, evecs);
for(int i = 0; i < evals.size(); ++i)
{
evecs[i] = P * evecs[i];
normalize(evecs[i]);
evals[i] = evals[i] * Hnorm;
}
// // FIXME this is to test
// Hin.write("evecs3", evecs);
// Hin.write("evals3", evals);
// // check rsd
// for(int i = 0; i < M; i++) {
// vector<T> Aevec = Hin * evecs[i];
// RealD norm2(0.);
// for(int j = 0; j < M; j++) {
// norm2 += (Aevec[j] - evals[i] * evecs[i][j]) * (Aevec[j] - evals[i] * evecs[i][j]);
// }
// }
return tot_it;
}
template <class T>
void Hess(DenseMatrix<T > &A, DenseMatrix<T> &Q, int start){
/**
turn a matrix A =
x x x x x
x x x x x
x x x x x
x x x x x
x x x x x
into
x x x x x
x x x x x
0 x x x x
0 0 x x x
0 0 0 x x
with householder rotations
Slow.
*/
int N ; SizeSquare(A,N);
DenseVector<T > p; Resize(p,N); Fill(p,0);
for(int k=start;k<N-2;k++){
//cerr << "hess" << k << std::endl;
DenseVector<T > ck,v; Resize(ck,N-k-1); Resize(v,N-k-1);
for(int i=k+1;i<N;i++){ck[i-k-1] = A(i,k);} ///kth column
normalize(ck); ///Normalization cancels in PHP anyway
T beta;
Householder_vector<T >(ck, 0, ck.size()-1, v, beta); ///Householder vector
Householder_mult<T>(A,v,beta,start,k+1,N-1,0); ///A -> PA
Householder_mult<T >(A,v,beta,start,k+1,N-1,1); ///PA -> PAP^H
///Accumulate eigenvector
Householder_mult<T >(Q,v,beta,start,k+1,N-1,1); ///Q -> QP^H
}
/*for(int l=0;l<N-2;l++){
for(int k=l+2;k<N;k++){
A(0,k,l);
}
}*/
}
template <class T>
void Tri(DenseMatrix<T > &A, DenseMatrix<T> &Q, int start){
///Tridiagonalize a matrix
int N; SizeSquare(A,N);
Hess(A,Q,start);
/*for(int l=0;l<N-2;l++){
for(int k=l+2;k<N;k++){
A(0,l,k);
}
}*/
}
template <class T>
void ForceTridiagonal(DenseMatrix<T> &A){
///Tridiagonalize a matrix
int N ; SizeSquare(A,N);
for(int l=0;l<N-2;l++){
for(int k=l+2;k<N;k++){
A[l][k]=0;
A[k][l]=0;
}
}
}
template <class T>
int my_SymmEigensystem(DenseMatrix<T > &Ain, DenseVector<T> &evals, DenseVector<DenseVector<T> > &evecs, RealD small){
///Solve a symmetric eigensystem, not necessarily in tridiagonal form
int N; SizeSquare(Ain,N);
DenseMatrix<T > A; A = Ain;
DenseMatrix<T > Q; Resize(Q,N,N); Unity(Q);
Tri(A,Q,0);
int it = my_Wilkinson<T>(A, evals, evecs, small);
for(int k=0;k<N;k++){evecs[k] = Q*evecs[k];}
return it;
}
template <class T>
int Wilkinson(DenseMatrix<T> &Ain, DenseVector<T> &evals, DenseVector<DenseVector<T> > &evecs, RealD small){
return my_Wilkinson(Ain, evals, evecs, small);
}
template <class T>
int SymmEigensystem(DenseMatrix<T> &Ain, DenseVector<T> &evals, DenseVector<DenseVector<T> > &evecs, RealD small){
return my_SymmEigensystem(Ain, evals, evecs, small);
}
template <class T>
int Eigensystem(DenseMatrix<T > &Ain, DenseVector<T> &evals, DenseVector<DenseVector<T> > &evecs, RealD small){
///Solve a general eigensystem, not necessarily in tridiagonal form
int N = Ain.dim;
DenseMatrix<T > A(N); A = Ain;
DenseMatrix<T > Q(N);Q.Unity();
Hess(A,Q,0);
int it = QReigensystem<T>(A, evals, evecs, small);
for(int k=0;k<N;k++){evecs[k] = Q*evecs[k];}
return it;
}
}
#endif

View File

@ -0,0 +1,242 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/Householder.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef HOUSEHOLDER_H
#define HOUSEHOLDER_H
#define TIMER(A) std::cout << GridLogMessage << __FUNC__ << " file "<< __FILE__ <<" line " << __LINE__ << std::endl;
#define ENTER() std::cout << GridLogMessage << "ENTRY "<<__FUNC__ << " file "<< __FILE__ <<" line " << __LINE__ << std::endl;
#define LEAVE() std::cout << GridLogMessage << "EXIT "<<__FUNC__ << " file "<< __FILE__ <<" line " << __LINE__ << std::endl;
#include <cstdlib>
#include <string>
#include <cmath>
#include <iostream>
#include <sstream>
#include <stdexcept>
#include <fstream>
#include <complex>
#include <algorithm>
namespace Grid {
/** Comparison function for finding the max element in a vector **/
template <class T> bool cf(T i, T j) {
return abs(i) < abs(j);
}
/**
Calculate a real Givens angle
**/
template <class T> inline void Givens_calc(T y, T z, T &c, T &s){
RealD mz = (RealD)abs(z);
if(mz==0.0){
c = 1; s = 0;
}
if(mz >= (RealD)abs(y)){
T t = -y/z;
s = (T)1.0 / sqrt ((T)1.0 + t * t);
c = s * t;
} else {
T t = -z/y;
c = (T)1.0 / sqrt ((T)1.0 + t * t);
s = c * t;
}
}
template <class T> inline void Givens_mult(DenseMatrix<T> &A, int i, int k, T c, T s, int dir)
{
int q ; SizeSquare(A,q);
if(dir == 0){
for(int j=0;j<q;j++){
T nu = A[i][j];
T w = A[k][j];
A[i][j] = (c*nu + s*w);
A[k][j] = (-s*nu + c*w);
}
}
if(dir == 1){
for(int j=0;j<q;j++){
T nu = A[j][i];
T w = A[j][k];
A[j][i] = (c*nu - s*w);
A[j][k] = (s*nu + c*w);
}
}
}
/**
from input = x;
Compute the complex Householder vector, v, such that
P = (I - b v transpose(v) )
b = 2/v.v
P | x | | x | k = 0
| x | | 0 |
| x | = | 0 |
| x | | 0 | j = 3
| x | | x |
These are the "Unreduced" Householder vectors.
**/
template <class T> inline void Householder_vector(DenseVector<T> input, int k, int j, DenseVector<T> &v, T &beta)
{
int N ; Size(input,N);
T m = *max_element(input.begin() + k, input.begin() + j + 1, cf<T> );
if(abs(m) > 0.0){
T alpha = 0;
for(int i=k; i<j+1; i++){
v[i] = input[i]/m;
alpha = alpha + v[i]*conj(v[i]);
}
alpha = sqrt(alpha);
beta = (T)1.0/(alpha*(alpha + abs(v[k]) ));
if(abs(v[k]) > 0.0) v[k] = v[k] + (v[k]/abs(v[k]))*alpha;
else v[k] = -alpha;
} else{
for(int i=k; i<j+1; i++){
v[i] = 0.0;
}
}
}
/**
from input = x;
Compute the complex Householder vector, v, such that
P = (I - b v transpose(v) )
b = 2/v.v
Px = alpha*e_dir
These are the "Unreduced" Householder vectors.
**/
template <class T> inline void Householder_vector(DenseVector<T> input, int k, int j, int dir, DenseVector<T> &v, T &beta)
{
int N = input.size();
T m = *max_element(input.begin() + k, input.begin() + j + 1, cf);
if(abs(m) > 0.0){
T alpha = 0;
for(int i=k; i<j+1; i++){
v[i] = input[i]/m;
alpha = alpha + v[i]*conj(v[i]);
}
alpha = sqrt(alpha);
beta = 1.0/(alpha*(alpha + abs(v[dir]) ));
if(abs(v[dir]) > 0.0) v[dir] = v[dir] + (v[dir]/abs(v[dir]))*alpha;
else v[dir] = -alpha;
}else{
for(int i=k; i<j+1; i++){
v[i] = 0.0;
}
}
}
/**
Compute the product PA if trans = 0
AP if trans = 1
P = (I - b v transpose(v) )
b = 2/v.v
start at element l of matrix A
v is of length j - k + 1 of v are nonzero
**/
template <class T> inline void Householder_mult(DenseMatrix<T> &A , DenseVector<T> v, T beta, int l, int k, int j, int trans)
{
int N ; SizeSquare(A,N);
if(abs(beta) > 0.0){
for(int p=l; p<N; p++){
T s = 0;
if(trans==0){
for(int i=k;i<j+1;i++) s += conj(v[i-k])*A[i][p];
s *= beta;
for(int i=k;i<j+1;i++){ A[i][p] = A[i][p]-s*conj(v[i-k]);}
} else {
for(int i=k;i<j+1;i++){ s += conj(v[i-k])*A[p][i];}
s *= beta;
for(int i=k;i<j+1;i++){ A[p][i]=A[p][i]-s*conj(v[i-k]);}
}
}
}
}
/**
Compute the product PA if trans = 0
AP if trans = 1
P = (I - b v transpose(v) )
b = 2/v.v
start at element l of matrix A
v is of length j - k + 1 of v are nonzero
A is tridiagonal
**/
template <class T> inline void Householder_mult_tri(DenseMatrix<T> &A , DenseVector<T> v, T beta, int l, int M, int k, int j, int trans)
{
if(abs(beta) > 0.0){
int N ; SizeSquare(A,N);
DenseMatrix<T> tmp; Resize(tmp,N,N); Fill(tmp,0);
T s;
for(int p=l; p<M; p++){
s = 0;
if(trans==0){
for(int i=k;i<j+1;i++) s = s + conj(v[i-k])*A[i][p];
}else{
for(int i=k;i<j+1;i++) s = s + v[i-k]*A[p][i];
}
s = beta*s;
if(trans==0){
for(int i=k;i<j+1;i++) tmp[i][p] = tmp(i,p) - s*v[i-k];
}else{
for(int i=k;i<j+1;i++) tmp[p][i] = tmp[p][i] - s*conj(v[i-k]);
}
}
for(int p=l; p<M; p++){
if(trans==0){
for(int i=k;i<j+1;i++) A[i][p] = A[i][p] + tmp[i][p];
}else{
for(int i=k;i<j+1;i++) A[p][i] = A[p][i] + tmp[p][i];
}
}
}
}
}
#endif

View File

@ -60,6 +60,7 @@ namespace Grid {
} }
void operator() (const FieldD &src_d_in, FieldD &sol_d){ void operator() (const FieldD &src_d_in, FieldD &sol_d){
TotalInnerIterations = 0; TotalInnerIterations = 0;
GridStopWatch TotalTimer; GridStopWatch TotalTimer;

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,933 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ImplicitlyRestartedLanczos.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Chulwoo Jung <chulwoo@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LANC_H
#define GRID_LANC_H
#include <string.h> //memset
#ifdef USE_LAPACK
#ifdef USE_MKL
#include<mkl_lapack.h>
#else
void LAPACK_dstegr (char *jobz, char *range, int *n, double *d, double *e,
double *vl, double *vu, int *il, int *iu, double *abstol,
int *m, double *w, double *z, int *ldz, int *isuppz,
double *work, int *lwork, int *iwork, int *liwork,
int *info);
//#include <lapacke/lapacke.h>
#endif
#endif
#include <Grid/algorithms/densematrix/DenseMatrix.h>
//#include <Grid/algorithms/iterative/EigenSort.h>
// eliminate temorary vector in calc()
#define MEM_SAVE
namespace Grid
{
struct Bisection
{
#if 0
static void get_eig2 (int row_num, std::vector < RealD > &ALPHA,
std::vector < RealD > &BETA,
std::vector < RealD > &eig)
{
int i, j;
std::vector < RealD > evec1 (row_num + 3);
std::vector < RealD > evec2 (row_num + 3);
RealD eps2;
ALPHA[1] = 0.;
BETHA[1] = 0.;
for (i = 0; i < row_num - 1; i++)
{
ALPHA[i + 1] = A[i * (row_num + 1)].real ();
BETHA[i + 2] = A[i * (row_num + 1) + 1].real ();
}
ALPHA[row_num] = A[(row_num - 1) * (row_num + 1)].real ();
bisec (ALPHA, BETHA, row_num, 1, row_num, 1e-10, 1e-10, evec1, eps2);
bisec (ALPHA, BETHA, row_num, 1, row_num, 1e-16, 1e-16, evec2, eps2);
// Do we really need to sort here?
int begin = 1;
int end = row_num;
int swapped = 1;
while (swapped)
{
swapped = 0;
for (i = begin; i < end; i++)
{
if (mag (evec2[i]) > mag (evec2[i + 1]))
{
swap (evec2 + i, evec2 + i + 1);
swapped = 1;
}
}
end--;
for (i = end - 1; i >= begin; i--)
{
if (mag (evec2[i]) > mag (evec2[i + 1]))
{
swap (evec2 + i, evec2 + i + 1);
swapped = 1;
}
}
begin++;
}
for (i = 0; i < row_num; i++)
{
for (j = 0; j < row_num; j++)
{
if (i == j)
H[i * row_num + j] = evec2[i + 1];
else
H[i * row_num + j] = 0.;
}
}
}
#endif
static void bisec (std::vector < RealD > &c,
std::vector < RealD > &b,
int n,
int m1,
int m2,
RealD eps1,
RealD relfeh, std::vector < RealD > &x, RealD & eps2)
{
std::vector < RealD > wu (n + 2);
RealD h, q, x1, xu, x0, xmin, xmax;
int i, a, k;
b[1] = 0.0;
xmin = c[n] - fabs (b[n]);
xmax = c[n] + fabs (b[n]);
for (i = 1; i < n; i++)
{
h = fabs (b[i]) + fabs (b[i + 1]);
if (c[i] + h > xmax)
xmax = c[i] + h;
if (c[i] - h < xmin)
xmin = c[i] - h;
}
xmax *= 2.;
eps2 = relfeh * ((xmin + xmax) > 0.0 ? xmax : -xmin);
if (eps1 <= 0.0)
eps1 = eps2;
eps2 = 0.5 * eps1 + 7.0 * (eps2);
x0 = xmax;
for (i = m1; i <= m2; i++)
{
x[i] = xmax;
wu[i] = xmin;
}
for (k = m2; k >= m1; k--)
{
xu = xmin;
i = k;
do
{
if (xu < wu[i])
{
xu = wu[i];
i = m1 - 1;
}
i--;
}
while (i >= m1);
if (x0 > x[k])
x0 = x[k];
while ((x0 - xu) > 2 * relfeh * (fabs (xu) + fabs (x0)) + eps1)
{
x1 = (xu + x0) / 2;
a = 0;
q = 1.0;
for (i = 1; i <= n; i++)
{
q =
c[i] - x1 -
((q != 0.0) ? b[i] * b[i] / q : fabs (b[i]) / relfeh);
if (q < 0)
a++;
}
// printf("x1=%0.14e a=%d\n",x1,a);
if (a < k)
{
if (a < m1)
{
xu = x1;
wu[m1] = x1;
}
else
{
xu = x1;
wu[a + 1] = x1;
if (x[a] > x1)
x[a] = x1;
}
}
else
x0 = x1;
}
printf ("x0=%0.14e xu=%0.14e k=%d\n", x0, xu, k);
x[k] = (x0 + xu) / 2;
}
}
};
/////////////////////////////////////////////////////////////
// Implicitly restarted lanczos
/////////////////////////////////////////////////////////////
template < class Field > class SimpleLanczos
{
const RealD small = 1.0e-16;
public:
int lock;
int get;
int Niter;
int converged;
int Nstop; // Number of evecs checked for convergence
int Nk; // Number of converged sought
int Np; // Np -- Number of spare vecs in kryloc space
int Nm; // Nm -- total number of vectors
RealD OrthoTime;
RealD eresid;
SortEigen < Field > _sort;
LinearOperatorBase < Field > &_Linop;
OperatorFunction < Field > &_poly;
/////////////////////////
// Constructor
/////////////////////////
void init (void)
{
};
void Abort (int ff, DenseVector < RealD > &evals,
DenseVector < DenseVector < RealD > >&evecs);
SimpleLanczos (LinearOperatorBase < Field > &Linop, // op
OperatorFunction < Field > &poly, // polynmial
int _Nstop, // sought vecs
int _Nk, // sought vecs
int _Nm, // spare vecs
RealD _eresid, // resid in lmdue deficit
int _Niter): // Max iterations
_Linop (Linop),
_poly (poly),
Nstop (_Nstop), Nk (_Nk), Nm (_Nm), eresid (_eresid), Niter (_Niter)
{
Np = Nm - Nk;
assert (Np > 0);
};
/////////////////////////
// Sanity checked this routine (step) against Saad.
/////////////////////////
void RitzMatrix (DenseVector < Field > &evec, int k)
{
if (1)
return;
GridBase *grid = evec[0]._grid;
Field w (grid);
std::cout << GridLogMessage << "RitzMatrix " << std::endl;
for (int i = 0; i < k; i++)
{
_Linop.HermOp (evec[i], w);
// _poly(_Linop,evec[i],w);
std::cout << GridLogMessage << "[" << i << "] ";
for (int j = 0; j < k; j++)
{
ComplexD in = innerProduct (evec[j], w);
if (fabs ((double) i - j) > 1)
{
if (abs (in) > 1.0e-9)
{
std::cout << GridLogMessage << "oops" << std::endl;
abort ();
}
else
std::cout << GridLogMessage << " 0 ";
}
else
{
std::cout << GridLogMessage << " " << in << " ";
}
}
std::cout << GridLogMessage << std::endl;
}
}
void step (DenseVector < RealD > &lmd,
DenseVector < RealD > &lme,
Field & last, Field & current, Field & next, uint64_t k)
{
if (lmd.size () <= k)
lmd.resize (k + Nm);
if (lme.size () <= k)
lme.resize (k + Nm);
// _poly(_Linop,current,next ); // 3. wk:=Avkβkv_{k1}
_Linop.HermOp (current, next); // 3. wk:=Avkβkv_{k1}
if (k > 0)
{
next -= lme[k - 1] * last;
}
// std::cout<<GridLogMessage << "<last|next>" << innerProduct(last,next) <<std::endl;
ComplexD zalph = innerProduct (current, next); // 4. αk:=(wk,vk)
RealD alph = real (zalph);
next = next - alph * current; // 5. wk:=wkαkvk
// std::cout<<GridLogMessage << "<current|next>" << innerProduct(current,next) <<std::endl;
RealD beta = normalise (next); // 6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
// 7. vk+1 := wk/βk+1
// norm=beta;
int interval = Nm / 100 + 1;
if ((k % interval) == 0)
std::
cout << GridLogMessage << k << " : alpha = " << zalph << " beta " <<
beta << std::endl;
const RealD tiny = 1.0e-20;
if (beta < tiny)
{
std::cout << GridLogMessage << " beta is tiny " << beta << std::
endl;
}
lmd[k] = alph;
lme[k] = beta;
}
void qr_decomp (DenseVector < RealD > &lmd,
DenseVector < RealD > &lme,
int Nk,
int Nm,
DenseVector < RealD > &Qt, RealD Dsh, int kmin, int kmax)
{
int k = kmin - 1;
RealD x;
RealD Fden = 1.0 / hypot (lmd[k] - Dsh, lme[k]);
RealD c = (lmd[k] - Dsh) * Fden;
RealD s = -lme[k] * Fden;
RealD tmpa1 = lmd[k];
RealD tmpa2 = lmd[k + 1];
RealD tmpb = lme[k];
lmd[k] = c * c * tmpa1 + s * s * tmpa2 - 2.0 * c * s * tmpb;
lmd[k + 1] = s * s * tmpa1 + c * c * tmpa2 + 2.0 * c * s * tmpb;
lme[k] = c * s * (tmpa1 - tmpa2) + (c * c - s * s) * tmpb;
x = -s * lme[k + 1];
lme[k + 1] = c * lme[k + 1];
for (int i = 0; i < Nk; ++i)
{
RealD Qtmp1 = Qt[i + Nm * k];
RealD Qtmp2 = Qt[i + Nm * (k + 1)];
Qt[i + Nm * k] = c * Qtmp1 - s * Qtmp2;
Qt[i + Nm * (k + 1)] = s * Qtmp1 + c * Qtmp2;
}
// Givens transformations
for (int k = kmin; k < kmax - 1; ++k)
{
RealD Fden = 1.0 / hypot (x, lme[k - 1]);
RealD c = lme[k - 1] * Fden;
RealD s = -x * Fden;
RealD tmpa1 = lmd[k];
RealD tmpa2 = lmd[k + 1];
RealD tmpb = lme[k];
lmd[k] = c * c * tmpa1 + s * s * tmpa2 - 2.0 * c * s * tmpb;
lmd[k + 1] = s * s * tmpa1 + c * c * tmpa2 + 2.0 * c * s * tmpb;
lme[k] = c * s * (tmpa1 - tmpa2) + (c * c - s * s) * tmpb;
lme[k - 1] = c * lme[k - 1] - s * x;
if (k != kmax - 2)
{
x = -s * lme[k + 1];
lme[k + 1] = c * lme[k + 1];
}
for (int i = 0; i < Nk; ++i)
{
RealD Qtmp1 = Qt[i + Nm * k];
RealD Qtmp2 = Qt[i + Nm * (k + 1)];
Qt[i + Nm * k] = c * Qtmp1 - s * Qtmp2;
Qt[i + Nm * (k + 1)] = s * Qtmp1 + c * Qtmp2;
}
}
}
#ifdef USE_LAPACK
#ifdef USE_MKL
#define LAPACK_INT MKL_INT
#else
#define LAPACK_INT long long
#endif
void diagonalize_lapack (DenseVector < RealD > &lmd, DenseVector < RealD > &lme, int N1, // all
int N2, // get
GridBase * grid)
{
const int size = Nm;
LAPACK_INT NN = N1;
double evals_tmp[NN];
double DD[NN];
double EE[NN];
for (int i = 0; i < NN; i++)
for (int j = i - 1; j <= i + 1; j++)
if (j < NN && j >= 0)
{
if (i == j)
DD[i] = lmd[i];
if (i == j)
evals_tmp[i] = lmd[i];
if (j == (i - 1))
EE[j] = lme[j];
}
LAPACK_INT evals_found;
LAPACK_INT lwork =
((18 * NN) >
(1 + 4 * NN + NN * NN) ? (18 * NN) : (1 + 4 * NN + NN * NN));
LAPACK_INT liwork = 3 + NN * 10;
LAPACK_INT iwork[liwork];
double work[lwork];
LAPACK_INT isuppz[2 * NN];
char jobz = 'N'; // calculate evals only
char range = 'I'; // calculate il-th to iu-th evals
// char range = 'A'; // calculate all evals
char uplo = 'U'; // refer to upper half of original matrix
char compz = 'I'; // Compute eigenvectors of tridiagonal matrix
int ifail[NN];
LAPACK_INT info;
// int total = QMP_get_number_of_nodes();
// int node = QMP_get_node_number();
// GridBase *grid = evec[0]._grid;
int total = grid->_Nprocessors;
int node = grid->_processor;
int interval = (NN / total) + 1;
double vl = 0.0, vu = 0.0;
LAPACK_INT il = interval * node + 1, iu = interval * (node + 1);
if (iu > NN)
iu = NN;
double tol = 0.0;
if (1)
{
memset (evals_tmp, 0, sizeof (double) * NN);
if (il <= NN)
{
printf ("total=%d node=%d il=%d iu=%d\n", total, node, il, iu);
#ifdef USE_MKL
dstegr (&jobz, &range, &NN,
#else
LAPACK_dstegr (&jobz, &range, &NN,
#endif
(double *) DD, (double *) EE, &vl, &vu, &il, &iu, // these four are ignored if second parameteris 'A'
&tol, // tolerance
&evals_found, evals_tmp, (double *) NULL, &NN,
isuppz, work, &lwork, iwork, &liwork, &info);
for (int i = iu - 1; i >= il - 1; i--)
{
printf ("node=%d evals_found=%d evals_tmp[%d] = %g\n", node,
evals_found, i - (il - 1), evals_tmp[i - (il - 1)]);
evals_tmp[i] = evals_tmp[i - (il - 1)];
if (il > 1)
evals_tmp[i - (il - 1)] = 0.;
}
}
{
grid->GlobalSumVector (evals_tmp, NN);
}
}
// cheating a bit. It is better to sort instead of just reversing it, but the document of the routine says evals are sorted in increasing order. qr gives evals in decreasing order.
}
#undef LAPACK_INT
#endif
void diagonalize (DenseVector < RealD > &lmd,
DenseVector < RealD > &lme,
int N2, int N1, GridBase * grid)
{
#ifdef USE_LAPACK
const int check_lapack = 0; // just use lapack if 0, check against lapack if 1
if (!check_lapack)
return diagonalize_lapack (lmd, lme, N2, N1, grid);
// diagonalize_lapack(lmd2,lme2,Nm2,Nm,Qt,grid);
#endif
}
#if 1
static RealD normalise (Field & v)
{
RealD nn = norm2 (v);
nn = sqrt (nn);
v = v * (1.0 / nn);
return nn;
}
void orthogonalize (Field & w, DenseVector < Field > &evec, int k)
{
double t0 = -usecond () / 1e6;
typedef typename Field::scalar_type MyComplex;
MyComplex ip;
if (0)
{
for (int j = 0; j < k; ++j)
{
normalise (evec[j]);
for (int i = 0; i < j; i++)
{
ip = innerProduct (evec[i], evec[j]); // are the evecs normalised? ; this assumes so.
evec[j] = evec[j] - ip * evec[i];
}
}
}
for (int j = 0; j < k; ++j)
{
ip = innerProduct (evec[j], w); // are the evecs normalised? ; this assumes so.
w = w - ip * evec[j];
}
normalise (w);
t0 += usecond () / 1e6;
OrthoTime += t0;
}
void setUnit_Qt (int Nm, DenseVector < RealD > &Qt)
{
for (int i = 0; i < Qt.size (); ++i)
Qt[i] = 0.0;
for (int k = 0; k < Nm; ++k)
Qt[k + k * Nm] = 1.0;
}
void calc (DenseVector < RealD > &eval, const Field & src, int &Nconv)
{
GridBase *grid = src._grid;
// assert(grid == src._grid);
std::
cout << GridLogMessage << " -- Nk = " << Nk << " Np = " << Np << std::
endl;
std::cout << GridLogMessage << " -- Nm = " << Nm << std::endl;
std::cout << GridLogMessage << " -- size of eval = " << eval.
size () << std::endl;
// assert(c.size() && Nm == eval.size());
DenseVector < RealD > lme (Nm);
DenseVector < RealD > lmd (Nm);
Field current (grid);
Field last (grid);
Field next (grid);
Nconv = 0;
RealD beta_k;
// Set initial vector
// (uniform vector) Why not src??
// evec[0] = 1.0;
current = src;
std::cout << GridLogMessage << "norm2(src)= " << norm2 (src) << std::
endl;
normalise (current);
std::
cout << GridLogMessage << "norm2(evec[0])= " << norm2 (current) <<
std::endl;
// Initial Nk steps
OrthoTime = 0.;
double t0 = usecond () / 1e6;
RealD norm; // sqrt norm of last vector
uint64_t iter = 0;
bool initted = false;
std::vector < RealD > low (Nstop * 10);
std::vector < RealD > high (Nstop * 10);
RealD cont = 0.;
while (1) {
cont = 0.;
std::vector < RealD > lme2 (Nm);
std::vector < RealD > lmd2 (Nm);
for (uint64_t k = 0; k < Nm; ++k, iter++) {
step (lmd, lme, last, current, next, iter);
last = current;
current = next;
}
double t1 = usecond () / 1e6;
std::cout << GridLogMessage << "IRL::Initial steps: " << t1 -
t0 << "seconds" << std::endl;
t0 = t1;
std::
cout << GridLogMessage << "IRL::Initial steps:OrthoTime " <<
OrthoTime << "seconds" << std::endl;
// getting eigenvalues
lmd2.resize (iter + 2);
lme2.resize (iter + 2);
for (uint64_t k = 0; k < iter; ++k) {
lmd2[k + 1] = lmd[k];
lme2[k + 2] = lme[k];
}
t1 = usecond () / 1e6;
std::cout << GridLogMessage << "IRL:: copy: " << t1 -
t0 << "seconds" << std::endl;
t0 = t1;
{
int total = grid->_Nprocessors;
int node = grid->_processor;
int interval = (Nstop / total) + 1;
int iu = (iter + 1) - (interval * node + 1);
int il = (iter + 1) - (interval * (node + 1));
std::vector < RealD > eval2 (iter + 3);
RealD eps2;
Bisection::bisec (lmd2, lme2, iter, il, iu, 1e-16, 1e-10, eval2,
eps2);
// diagonalize(eval2,lme2,iter,Nk,grid);
RealD diff = 0.;
for (int i = il; i <= iu; i++) {
if (initted)
diff =
fabs (eval2[i] - high[iu-i]) / (fabs (eval2[i]) +
fabs (high[iu-i]));
if (initted && (diff > eresid))
cont = 1.;
if (initted)
printf ("eval[%d]=%0.14e %0.14e, %0.14e\n", i, eval2[i],
high[iu-i], diff);
high[iu-i] = eval2[i];
}
il = (interval * node + 1);
iu = (interval * (node + 1));
Bisection::bisec (lmd2, lme2, iter, il, iu, 1e-16, 1e-10, eval2,
eps2);
for (int i = il; i <= iu; i++) {
if (initted)
diff =
fabs (eval2[i] - low[i]) / (fabs (eval2[i]) +
fabs (low[i]));
if (initted && (diff > eresid))
cont = 1.;
if (initted)
printf ("eval[%d]=%0.14e %0.14e, %0.14e\n", i, eval2[i],
low[i], diff);
low[i] = eval2[i];
}
t1 = usecond () / 1e6;
std::cout << GridLogMessage << "IRL:: diagonalize: " << t1 -
t0 << "seconds" << std::endl;
t0 = t1;
}
for (uint64_t k = 0; k < Nk; ++k) {
// eval[k] = eval2[k];
}
if (initted)
{
grid->GlobalSumVector (&cont, 1);
if (cont < 1.) return;
}
initted = true;
}
}
/**
There is some matrix Q such that for any vector y
Q.e_1 = y and Q is unitary.
**/
template < class T >
static T orthQ (DenseMatrix < T > &Q, DenseVector < T > y)
{
int N = y.size (); //Matrix Size
Fill (Q, 0.0);
T tau;
for (int i = 0; i < N; i++)
{
Q[i][0] = y[i];
}
T sig = conj (y[0]) * y[0];
T tau0 = fabs (sqrt (sig));
for (int j = 1; j < N; j++)
{
sig += conj (y[j]) * y[j];
tau = abs (sqrt (sig));
if (abs (tau0) > 0.0)
{
T gam = conj ((y[j] / tau) / tau0);
for (int k = 0; k <= j - 1; k++)
{
Q[k][j] = -gam * y[k];
}
Q[j][j] = tau0 / tau;
}
else
{
Q[j - 1][j] = 1.0;
}
tau0 = tau;
}
return tau;
}
/**
There is some matrix Q such that for any vector y
Q.e_k = y and Q is unitary.
**/
template < class T >
static T orthU (DenseMatrix < T > &Q, DenseVector < T > y)
{
T tau = orthQ (Q, y);
SL (Q);
return tau;
}
/**
Wind up with a matrix with the first con rows untouched
say con = 2
Q is such that Qdag H Q has {x, x, val, 0, 0, 0, 0, ...} as 1st colum
and the matrix is upper hessenberg
and with f and Q appropriately modidied with Q is the arnoldi factorization
**/
template < class T > static void Lock (DenseMatrix < T > &H, ///Hess mtx
DenseMatrix < T > &Q, ///Lock Transform
T val, ///value to be locked
int con, ///number already locked
RealD small, int dfg, bool herm)
{
//ForceTridiagonal(H);
int M = H.dim;
DenseVector < T > vec;
Resize (vec, M - con);
DenseMatrix < T > AH;
Resize (AH, M - con, M - con);
AH = GetSubMtx (H, con, M, con, M);
DenseMatrix < T > QQ;
Resize (QQ, M - con, M - con);
Unity (Q);
Unity (QQ);
DenseVector < T > evals;
Resize (evals, M - con);
DenseMatrix < T > evecs;
Resize (evecs, M - con, M - con);
Wilkinson < T > (AH, evals, evecs, small);
int k = 0;
RealD cold = abs (val - evals[k]);
for (int i = 1; i < M - con; i++)
{
RealD cnew = abs (val - evals[i]);
if (cnew < cold)
{
k = i;
cold = cnew;
}
}
vec = evecs[k];
ComplexD tau;
orthQ (QQ, vec);
//orthQM(QQ,AH,vec);
AH = Hermitian (QQ) * AH;
AH = AH * QQ;
for (int i = con; i < M; i++)
{
for (int j = con; j < M; j++)
{
Q[i][j] = QQ[i - con][j - con];
H[i][j] = AH[i - con][j - con];
}
}
for (int j = M - 1; j > con + 2; j--)
{
DenseMatrix < T > U;
Resize (U, j - 1 - con, j - 1 - con);
DenseVector < T > z;
Resize (z, j - 1 - con);
T nm = norm (z);
for (int k = con + 0; k < j - 1; k++)
{
z[k - con] = conj (H (j, k + 1));
}
normalise (z);
RealD tmp = 0;
for (int i = 0; i < z.size () - 1; i++)
{
tmp = tmp + abs (z[i]);
}
if (tmp < small / ((RealD) z.size () - 1.0))
{
continue;
}
tau = orthU (U, z);
DenseMatrix < T > Hb;
Resize (Hb, j - 1 - con, M);
for (int a = 0; a < M; a++)
{
for (int b = 0; b < j - 1 - con; b++)
{
T sum = 0;
for (int c = 0; c < j - 1 - con; c++)
{
sum += H[a][con + 1 + c] * U[c][b];
} //sum += H(a,con+1+c)*U(c,b);}
Hb[b][a] = sum;
}
}
for (int k = con + 1; k < j; k++)
{
for (int l = 0; l < M; l++)
{
H[l][k] = Hb[k - 1 - con][l];
}
} //H(Hb[k-1-con][l] , l,k);}}
DenseMatrix < T > Qb;
Resize (Qb, M, M);
for (int a = 0; a < M; a++)
{
for (int b = 0; b < j - 1 - con; b++)
{
T sum = 0;
for (int c = 0; c < j - 1 - con; c++)
{
sum += Q[a][con + 1 + c] * U[c][b];
} //sum += Q(a,con+1+c)*U(c,b);}
Qb[b][a] = sum;
}
}
for (int k = con + 1; k < j; k++)
{
for (int l = 0; l < M; l++)
{
Q[l][k] = Qb[k - 1 - con][l];
}
} //Q(Qb[k-1-con][l] , l,k);}}
DenseMatrix < T > Hc;
Resize (Hc, M, M);
for (int a = 0; a < j - 1 - con; a++)
{
for (int b = 0; b < M; b++)
{
T sum = 0;
for (int c = 0; c < j - 1 - con; c++)
{
sum += conj (U[c][a]) * H[con + 1 + c][b];
} //sum += conj( U(c,a) )*H(con+1+c,b);}
Hc[b][a] = sum;
}
}
for (int k = 0; k < M; k++)
{
for (int l = con + 1; l < j; l++)
{
H[l][k] = Hc[k][l - 1 - con];
}
} //H(Hc[k][l-1-con] , l,k);}}
}
}
#endif
};
}
#endif

View File

@ -0,0 +1,122 @@
#include <math.h>
#include <stdlib.h>
#include <vector>
struct Bisection {
static void get_eig2(int row_num,std::vector<RealD> &ALPHA,std::vector<RealD> &BETA, std::vector<RealD> & eig)
{
int i,j;
std::vector<RealD> evec1(row_num+3);
std::vector<RealD> evec2(row_num+3);
RealD eps2;
ALPHA[1]=0.;
BETHA[1]=0.;
for(i=0;i<row_num-1;i++) {
ALPHA[i+1] = A[i*(row_num+1)].real();
BETHA[i+2] = A[i*(row_num+1)+1].real();
}
ALPHA[row_num] = A[(row_num-1)*(row_num+1)].real();
bisec(ALPHA,BETHA,row_num,1,row_num,1e-10,1e-10,evec1,eps2);
bisec(ALPHA,BETHA,row_num,1,row_num,1e-16,1e-16,evec2,eps2);
// Do we really need to sort here?
int begin=1;
int end = row_num;
int swapped=1;
while(swapped) {
swapped=0;
for(i=begin;i<end;i++){
if(mag(evec2[i])>mag(evec2[i+1])) {
swap(evec2+i,evec2+i+1);
swapped=1;
}
}
end--;
for(i=end-1;i>=begin;i--){
if(mag(evec2[i])>mag(evec2[i+1])) {
swap(evec2+i,evec2+i+1);
swapped=1;
}
}
begin++;
}
for(i=0;i<row_num;i++){
for(j=0;j<row_num;j++) {
if(i==j) H[i*row_num+j]=evec2[i+1];
else H[i*row_num+j]=0.;
}
}
}
static void bisec(std::vector<RealD> &c,
std::vector<RealD> &b,
int n,
int m1,
int m2,
RealD eps1,
RealD relfeh,
std::vector<RealD> &x,
RealD &eps2)
{
std::vector<RealD> wu(n+2);
RealD h,q,x1,xu,x0,xmin,xmax;
int i,a,k;
b[1]=0.0;
xmin=c[n]-fabs(b[n]);
xmax=c[n]+fabs(b[n]);
for(i=1;i<n;i++){
h=fabs(b[i])+fabs(b[i+1]);
if(c[i]+h>xmax) xmax= c[i]+h;
if(c[i]-h<xmin) xmin= c[i]-h;
}
xmax *=2.;
eps2=relfeh*((xmin+xmax)>0.0 ? xmax : -xmin);
if(eps1<=0.0) eps1=eps2;
eps2=0.5*eps1+7.0*(eps2);
x0=xmax;
for(i=m1;i<=m2;i++){
x[i]=xmax;
wu[i]=xmin;
}
for(k=m2;k>=m1;k--){
xu=xmin;
i=k;
do{
if(xu<wu[i]){
xu=wu[i];
i=m1-1;
}
i--;
}while(i>=m1);
if(x0>x[k]) x0=x[k];
while((x0-xu)>2*relfeh*(fabs(xu)+fabs(x0))+eps1){
x1=(xu+x0)/2;
a=0;
q=1.0;
for(i=1;i<=n;i++){
q=c[i]-x1-((q!=0.0)? b[i]*b[i]/q:fabs(b[i])/relfeh);
if(q<0) a++;
}
// printf("x1=%e a=%d\n",x1,a);
if(a<k){
if(a<m1){
xu=x1;
wu[m1]=x1;
}else {
xu=x1;
wu[a+1]=x1;
if(x[a]>x1) x[a]=x1;
}
}else x0=x1;
}
x[k]=(x0+xu)/2;
}
}
}

View File

@ -415,6 +415,8 @@ void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,std::vector<Co
assert(omega[i]!=Coeff_t(0.0)); assert(omega[i]!=Coeff_t(0.0));
bs[i] = 0.5*(bpc/omega[i] + bmc); bs[i] = 0.5*(bpc/omega[i] + bmc);
cs[i] = 0.5*(bpc/omega[i] - bmc); cs[i] = 0.5*(bpc/omega[i] - bmc);
std::cout<<GridLogMessage << "CayleyFermion5D "<<i<<" bs="<<bs[i]<<" cs="<<cs[i]<< std::endl;
} }
//////////////////////////////////////////////////////// ////////////////////////////////////////////////////////

View File

@ -61,8 +61,8 @@ Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
#include <Grid/qcd/action/fermion/MobiusFermion.h> #include <Grid/qcd/action/fermion/MobiusFermion.h>
#include <Grid/qcd/action/fermion/MobiusEOFAFermion.h> #include <Grid/qcd/action/fermion/MobiusEOFAFermion.h>
#include <Grid/qcd/action/fermion/ZMobiusFermion.h> #include <Grid/qcd/action/fermion/ZMobiusFermion.h>
#include <Grid/qcd/action/fermion/SchurDiagTwoKappa.h>
#include <Grid/qcd/action/fermion/ScaledShamirFermion.h> #include <Grid/qcd/action/fermion/ScaledShamirFermion.h>
//#include <Grid/qcd/action/fermion/SchurDiagTwoKappa.h>
#include <Grid/qcd/action/fermion/MobiusZolotarevFermion.h> #include <Grid/qcd/action/fermion/MobiusZolotarevFermion.h>
#include <Grid/qcd/action/fermion/ShamirZolotarevFermion.h> #include <Grid/qcd/action/fermion/ShamirZolotarevFermion.h>
#include <Grid/qcd/action/fermion/OverlapWilsonCayleyTanhFermion.h> #include <Grid/qcd/action/fermion/OverlapWilsonCayleyTanhFermion.h>

View File

@ -1,3 +1,4 @@
#if 1
/************************************************************************************* /*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid Grid physics library, www.github.com/paboyle/Grid
@ -97,6 +98,117 @@ namespace Grid {
} }
}; };
#if 0
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Copied from DiagTwoSolve
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SchurRedBlackDiagTwoSolve {
private:
OperatorFunction<Field> & _HermitianRBSolver;
int CBfactorise;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations Schur trick
/////////////////////////////////////////////////////
SchurRedBlackDiagTwoSolve(OperatorFunction<Field> &HermitianRBSolver) :
_HermitianRBSolver(HermitianRBSolver)
{
CBfactorise=0;
};
template<class Matrix>
void operator() (Matrix & _Matrix,const Field &in, Field &out){
// FIXME CGdiagonalMee not implemented virtual function
// FIXME use CBfactorise to control schur decomp
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
Field src_e(grid);
Field src_o(grid);
Field sol_e(grid);
Field sol_o(grid);
Field tmp(grid);
Field Mtmp(grid);
Field resid(fgrid);
pickCheckerboard(Even,src_e,in);
pickCheckerboard(Odd ,src_o,in);
pickCheckerboard(Even,sol_e,out);
pickCheckerboard(Odd ,sol_o,out);
/////////////////////////////////////////////////////
// src_o = Mdag * (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
// get the right MpcDag
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.checkerboard ==Odd);
//////////////////////////////////////////////////////////////
// Call the red-black solver
//////////////////////////////////////////////////////////////
std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl;
// _HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
_HermitianRBSolver(_HermOpEO,src_o,tmp); assert(tmp.checkerboard==Odd);
_Matrix.MooeeInv(tmp,sol_o); assert( sol_o.checkerboard ==Odd);
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
src_e = src_e-tmp; assert( src_e.checkerboard ==Even);
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(out,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd );
// Verify the unprec residual
_Matrix.M(out,resid);
resid = resid-in;
RealD ns = norm2(in);
RealD nr = norm2(resid);
std::cout<<GridLogMessage << "SchurRedBlackDiagTwoKappa solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
}
};
#endif
namespace QCD{
//
// Determinant is det of middle factor
// This assumes Mee is indept of U.
//
//
template<class Impl>
class SchurDifferentiableDiagTwo: public SchurDiagTwoOperator<FermionOperator<Impl>,typename Impl::FermionField>
{
public:
INHERIT_IMPL_TYPES(Impl);
typedef FermionOperator<Impl> Matrix;
SchurDifferentiableDiagTwo (Matrix &Mat) : SchurDiagTwoOperator<Matrix,FermionField>(Mat) {};
};
#if 0
template<class Impl>
class SchurDifferentiableDiagTwoKappa : public SchurDiagTwoKappaOperator<FermionOperator<Impl>,typename Impl::FermionField>
{
public:
INHERIT_IMPL_TYPES(Impl);
typedef FermionOperator<Impl> Matrix;
SchurDifferentiableDiagTwoKappa (Matrix &Mat) : SchurDiagTwoKappaOperator<Matrix,FermionField>(Mat) {};
};
#endif
}
} }
#endif #endif
#endif

View File

@ -140,6 +140,7 @@ namespace Grid{
}; };
} }
} }
#endif #endif