1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-05 19:55:56 +01:00

Save current state in Wilson MG test file

This commit is contained in:
Daniel Richtmann 2018-01-17 17:56:34 +01:00
parent 10f7a17ae4
commit fa4eeb28c4
No known key found for this signature in database
GPG Key ID: B33C490AF0772057

View File

@ -26,27 +26,29 @@ Author: Daniel Richtmann <daniel.richtmann@ur.de>
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
// #include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidual.h>
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidual.h>
//#include <algorithms/iterative/PrecConjugateResidual.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
template<class Field>
template<class Field, int nbasis>
class TestVectorAnalyzer {
public:
void operator()(LinearOperatorBase<Field> &Linop, std::vector<Field> const & vectors)
void operator()(LinearOperatorBase<Field> &Linop, std::vector<Field> const & vectors, int nn=nbasis)
{
// this function corresponds to testvector_analysis_PRECISION from the
// DD-αAMG codebase
auto positiveOnes = 0;
std::vector<Field> tmp(4, vectors[0]._grid); // bit hacky?
Gamma g5(Gamma::Algebra::Gamma5);
std::cout << GridLogMessage << "Test vector analysis:" << std::endl;
for (auto i = 0; i < vectors.size(); ++i) {
for (auto i = 0; i < nn; ++i) {
Linop.Op(vectors[i], tmp[3]);
@ -58,10 +60,16 @@ public:
auto mu = ::sqrt(norm2(tmp[1]) / norm2(vectors[i]));
std::cout << GridLogMessage << std::setprecision(2) << "vector " << i << ": "
auto nrm = ::sqrt(norm2(vectors[i]));
if(real(lambda) > 0)
positiveOnes++;
std::cout << GridLogMessage << std::scientific << std::setprecision(2) << std::setw(2) << std::showpos << "vector " << i << ": "
<< "singular value: " << lambda
<< " singular vector precision: " << mu << std::endl;
<< ", singular vector precision: " << mu << ", norm: " << nrm << std::endl;
}
std::cout << GridLogMessage << std::scientific << std::setprecision(2) << std::setw(2) << std::showpos << positiveOnes << " out of " << nn << " vectors were positive" << std::endl;
}
};
@ -71,7 +79,8 @@ public:
GRID_SERIALIZABLE_CLASS_MEMBERS(myclass,
int, domaindecompose,
int, domainsize,
int, order,
int, coarsegrids,
int, order,
int, Ls,
double, mq,
double, lo,
@ -87,6 +96,48 @@ RealD InverseApproximation(RealD x){
return 1.0/x;
}
template <int nbasis>
struct CoarseGrids
{
public:
// typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
// typedef CoarsenedMatrix<vSpinColourVector,vTComplex,nbasis>
// CoarseOperator; typedef typename CoarseOperator::CoarseVector
// CoarseVector;
std::vector<std::vector<int>> LattSizes;
std::vector<std::vector<int>> Seeds;
std::vector<GridCartesian *> Grids;
std::vector<GridParallelRNG> PRNGs;
CoarseGrids(std::vector<std::vector<int>> const &blockSizes,int coarsegrids = 1)
{
assert( blockSizes.size() == coarsegrids );
std::cout << GridLogMessage << "Constructing " << coarsegrids << " CoarseGrids" << std::endl;
for(int cl=0; cl<coarsegrids; ++cl) { // may be a bit ugly and slow but not perf critical
LattSizes.push_back({GridDefaultLatt()});
Seeds.push_back(std::vector<int>(LattSizes[cl].size()));
for(int d=0; d<LattSizes[cl].size(); ++d) {
LattSizes[cl][d] = LattSizes[cl][d] / blockSizes[cl][d];
Seeds[cl][d] = (cl + 1) * LattSizes[cl].size() + d + 1; // unimportant, just to get. e.g., {5, // 6, 7, 8} for first coarse level and // so on
}
Grids.push_back(SpaceTimeGrid::makeFourDimGrid(LattSizes[cl], GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi()));
PRNGs.push_back(GridParallelRNG(Grids[cl]));
PRNGs[cl].SeedFixedIntegers(Seeds[cl]);
std::cout << GridLogMessage << "cl = " << cl << ": LattSize = " << LattSizes[cl] << std::endl;
std::cout << GridLogMessage << "cl = " << cl << ": Seeds = " << Seeds[cl] << std::endl;
}
}
};
// template < class Fobj, class CComplex, int coarseSpins, int nbasis, class Matrix >
// class MultiGridPreconditioner : public LinearFunction< Lattice< Fobj > > {
template<class Fobj,class CComplex,int nbasis, class Matrix>
class MultiGridPreconditioner : public LinearFunction< Lattice<Fobj> > {
public:
@ -498,51 +549,62 @@ public:
};
struct MGParams
{
std::vector< std::vector< int > > blockSizes;
const int nbasis;
MGParams()
: blockSizes( { { 1, 1, 1, 2 } } )
// : blockSizes({ {1,1,1,2}, {1,1,1,2} })
// : blockSizes({ {1,1,1,2}, {1,1,1,2}, {1,1,1,2} })
, nbasis( 20 )
{
}
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
params.domaindecompose = 1;
params.domainsize= 1;
params.order = 1;
params.coarsegrids= 1;
params.domaindecompose = 0;
params.order = 30;
params.Ls = 1;
params.mq = 1;
params.lo = 1;
params.hi = 1;
// params.mq = .13;
params.mq = .5;
params.lo = 0.5;
params.hi = 70.0;
params.steps = 1;
const int Ls=params.Ls;
const int ds=params.domainsize;
auto mgp = MGParams{};
GridCartesian * FGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
std::cout << GridLogMessage << "**************************************************" << std::endl;
std::cout << GridLogMessage << "Params: " << std::endl;
std::cout << GridLogMessage << "**************************************************" << std::endl;
std::cout << params << std::endl;
std::cout << GridLogMessage << "**************************************************" << std::endl;
std::cout << GridLogMessage << "Set up some fine level stuff: " << std::endl;
std::cout << GridLogMessage << "**************************************************" << std::endl;
GridCartesian * FGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),GridDefaultSimd(Nd, vComplex::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(FGrid);
///////////////////////////////////////////////////
// Construct a coarsened grid; utility for this?
///////////////////////////////////////////////////
std::vector<int> blockSize({2,2,2,2});
const int nbasis= 16;
std::vector<int> cLattSize = GridDefaultLatt();
for(int d=0;d<cLattSize.size();d++){
cLattSize[d] = cLattSize[d]/blockSize[d];
}
GridCartesian *CGrid = SpaceTimeGrid::makeFourDimGrid(cLattSize, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());;
std::vector<int> seedsFine({1,2,3,4});
std::vector<int> seedsCoarse({5,6,7,8});
GridParallelRNG pRNGFine(FGrid); pRNGFine.SeedFixedIntegers(seedsFine);
GridParallelRNG pRNGCoarse(CGrid); pRNGCoarse.SeedFixedIntegers(seedsCoarse);
std::vector<int> fSeeds( {1, 2, 3, 4} );
GridParallelRNG fPRNG( FGrid );
fPRNG.SeedFixedIntegers( fSeeds );
Gamma g5(Gamma::Algebra::Gamma5);
LatticeFermion src(FGrid); gaussian(pRNGFine,src);// src=src+g5*src;
LatticeFermion result(FGrid); result=zero;
LatticeFermion ref(FGrid); ref=zero;
LatticeFermion src(FGrid); gaussian(fPRNG, src); // src=src+g5*src;
LatticeFermion result(FGrid); result = zero;
LatticeFermion ref(FGrid); ref = zero;
LatticeFermion tmp(FGrid);
LatticeFermion err(FGrid);
LatticeGaugeField Umu(FGrid); SU3::HotConfiguration(pRNGFine,Umu);
LatticeGaugeField Umu(FGrid); SU3::HotConfiguration(fPRNG, Umu);
LatticeGaugeField UmuDD(FGrid);
LatticeColourMatrix U(FGrid);
LatticeColourMatrix zz(FGrid);
@ -562,25 +624,97 @@ int main (int argc, char ** argv)
RealD mass=params.mq;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Params: "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout << GridLogMessage << "**************************************************" << std::endl;
std::cout << GridLogMessage << "Set up some coarser levels stuff: " << std::endl;
std::cout << GridLogMessage << "**************************************************" << std::endl;
std::cout << params << std::endl;
std::vector< std::vector< int > > blockSizes({ { 1, 1, 1, 2 } } ); // corresponds to two level algorithm
// std::vector< std::vector<int> > blockSizes({ {1,1,1,2}, // // corresponds to three level algorithm
// {1,1,1,2} });
const int nbasis = 20; // we fix the number of test vector to the same
// number on every level for now
// // some stuff we need for every coarser lattice
// std::vector<std::vector<int>> cLattSizes({GridDefaultLatt()});;
// std::vector<GridCartesian *> cGrids(params.coarsegrids);
// std::vector<std::vector<int>> cSeeds({ {5,6,7,8} });
// std::vector<GridParallelRNG> cPRNGs;(params.coarsegrids);
// assert(cLattSizes.size() == params.coarsegrids);
// assert( cGrids.size() == params.coarsegrids);
// assert( cSeeds.size() == params.coarsegrids);
// assert( cPRNGs.size() == params.coarsegrids);
// for(int cl=0;cl<cLattSizes.size();cl++){
// for(int d=0;d<cLattSizes[cl].size();d++){
// // std::cout << cl << " " << d << " " << cLattSizes[cl][d] << " " <<
// blockSizes[cl][d] << std::endl; cLattSizes[cl][d] =
// cLattSizes[cl][d]/blockSizes[cl][d];
// }
// cGrids[cl] = SpaceTimeGrid::makeFourDimGrid(cLattSizes[cl],
// GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());;
// // std::cout << cLattSizes[cl] << std::endl;
// }
// GridParallelRNG cPRNG(CGrid); cPRNG.SeedFixedIntegers(cSeeds);
CoarseGrids< nbasis > cGrids( blockSizes );
// assert(0);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Building the wilson operator" <<std::endl;
std::cout<<GridLogMessage << "Building the wilson operator on the fine grid" <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
WilsonFermionR Dw(Umu,*FGrid,*FrbGrid,mass);
WilsonFermionR DwDD(UmuDD,*FGrid,*FrbGrid,mass);
std::cout<<GridLogMessage<< "**************************************************"<< std::endl;
std::cout<<GridLogMessage<< "Some typedefs" <<std::endl;
std::cout<<GridLogMessage<< "**************************************************"<< std::endl;
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
typedef CoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> CoarseOperator;
typedef CoarseOperator::CoarseVector CoarseVector;
typedef TestVectorAnalyzer<LatticeFermion,nbasis> TVA;
// typedef Aggregation<vSpinColourVector,vTComplex,1,nbasis> Subspace;
// typedef CoarsenedMatrix<vSpinColourVector,vTComplex,1,nbasis> CoarseOperator;
// typedef CoarseOperator::CoarseVector CoarseVector;
// typedef CoarseOperator::CoarseG5PVector
// CoarseG5PVector; // P = preserving typedef
// CoarseOperator::CoarseG5PMatrix CoarseG5PMatrix;
#if 1
std::cout << std::endl;
std::cout << "type_name<decltype(vTComplex{})>() = " << type_name<decltype(vTComplex{})>() << std::endl;
std::cout << "type_name<GridTypeMapper<vTComplex>::scalar_type>() = " << type_name<GridTypeMapper<vTComplex>::scalar_type>() << std::endl;
std::cout << "type_name<GridTypeMapper<vTComplex>::vector_type>() = " << type_name<GridTypeMapper<vTComplex>::vector_type>() << std::endl;
std::cout << "type_name<GridTypeMapper<vTComplex>::vector_typeD>() = " << type_name<GridTypeMapper<vTComplex>::vector_typeD>() << std::endl;
std::cout << "type_name<GridTypeMapper<vTComplex>::tensor_reduced>() = " << type_name<GridTypeMapper<vTComplex>::tensor_reduced>() << std::endl;
std::cout << "type_name<GridTypeMapper<vTComplex>::scalar_object>() = " << type_name<GridTypeMapper<vTComplex>::scalar_object>() << std::endl;
std::cout << "type_name<GridTypeMapper<vTComplex>::Complexified>() = " << type_name<GridTypeMapper<vTComplex>::Complexified>() << std::endl;
std::cout << "type_name<GridTypeMapper<vTComplex>::Realified>() = " << type_name<GridTypeMapper<vTComplex>::Realified>() << std::endl;
std::cout << "type_name<GridTypeMapper<vTComplex>::DoublePrecision>() = " << type_name<GridTypeMapper<vTComplex>::DoublePrecision>() << std::endl;
std::cout << std::endl;
std::cout << std::endl;
std::cout << "type_name<decltype(TComplex{})>() = " << type_name<decltype(TComplex{})>() << std::endl;
std::cout << "type_name<GridTypeMapper<TComplex>::scalar_type>() = " << type_name<GridTypeMapper<TComplex>::scalar_type>() << std::endl;
std::cout << "type_name<GridTypeMapper<TComplex>::vector_type>() = " << type_name<GridTypeMapper<TComplex>::vector_type>() << std::endl;
std::cout << "type_name<GridTypeMapper<TComplex>::vector_typeD>() = " << type_name<GridTypeMapper<TComplex>::vector_typeD>() << std::endl;
std::cout << "type_name<GridTypeMapper<TComplex>::tensor_reduced>() = " << type_name<GridTypeMapper<TComplex>::tensor_reduced>() << std::endl;
std::cout << "type_name<GridTypeMapper<TComplex>::scalar_object>() = " << type_name<GridTypeMapper<TComplex>::scalar_object>() << std::endl;
std::cout << "type_name<GridTypeMapper<TComplex>::Complexified>() = " << type_name<GridTypeMapper<TComplex>::Complexified>() << std::endl;
std::cout << "type_name<GridTypeMapper<TComplex>::Realified>() = " << type_name<GridTypeMapper<TComplex>::Realified>() << std::endl;
std::cout << "type_name<GridTypeMapper<TComplex>::DoublePrecision>() = " << type_name<GridTypeMapper<TComplex>::DoublePrecision>() << std::endl;
std::cout << std::endl;
#endif
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Calling Aggregation class to build subspace" <<std::endl;
std::cout<<GridLogMessage << "Calling Aggregation class to build subspaces" <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
// • TODO: need some way to run the smoother on the "test vectors" for a few
@ -589,16 +723,16 @@ int main (int argc, char ** argv)
// • In WMG, the vectors are normalized but not orthogonalized, but here they
// are constructed randomly and then orthogonalized (rather orthonormalized) against each other
MdagMLinearOperator<WilsonFermionR,LatticeFermion> HermOp(Dw);
Subspace Aggregates(CGrid,FGrid,0);
Subspace Aggregates(cGrids.Grids[0],FGrid,0);
assert ((nbasis & 0x1)==0);
int nb=nbasis/2;
std::cout<<GridLogMessage << " nbasis/2 = "<<nb<<std::endl;
Aggregates.CreateSubspaceRandom(pRNGFine); // creates subspace randomly and orthogonalizes it
auto testVectorAnalyzer = TestVectorAnalyzer<LatticeFermion>{};
Aggregates.CreateSubspace(fPRNG, HermOp /*, nb */); // Don't specify nb to see the orthogonalization check
// tva(HermOp, Aggregates.subspace);
testVectorAnalyzer(HermOp, Aggregates.subspace);
TVA testVectorAnalyzer;
testVectorAnalyzer(HermOp, Aggregates.subspace, nb);
for(int n=0;n<nb;n++){
Aggregates.subspace[n+nb] = g5 * Aggregates.subspace[n]; // multiply with g5 normally instead of G5R5 since this specific to DWF
@ -609,6 +743,7 @@ int main (int argc, char ** argv)
}
// tva(HermOp, Aggregates.subspace);
Aggregates.CheckOrthogonal();
testVectorAnalyzer(HermOp, Aggregates.subspace);
result=zero;
@ -617,50 +752,111 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "Building coarse representation of Dirac operator" <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
Gamma5HermitianLinearOperator<WilsonFermionR,LatticeFermion> Blah(Dw);
Gamma5HermitianLinearOperator<WilsonFermionR,LatticeFermion> BlahDD(DwDD);
CoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LDOp(*CGrid);
LDOp.CoarsenOperator(FGrid,Blah,Aggregates); // problem with this line since it enforces hermiticity
Gamma5HermitianLinearOperator<WilsonFermionR,LatticeFermion> HermIndefOp(Dw); // this corresponds to working with H = g5 * D
Gamma5HermitianLinearOperator<WilsonFermionR,LatticeFermion> HermIndefOpDD(DwDD);
CoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> CoarseOp(*cGrids.Grids[0]);
CoarseOp.CoarsenOperator(FGrid, HermIndefOp, Aggregates); // uses only linop.OpDiag & linop.OpDir
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Testing some coarse space solvers " <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout << GridLogMessage << "**************************************************" << std::endl;
std::cout << GridLogMessage << "Building coarse vectors" << std::endl;
std::cout << GridLogMessage << "**************************************************" << std::endl;
CoarseVector c_src (CGrid);
CoarseVector c_res (CGrid);
gaussian(pRNGCoarse,c_src);
CoarseVector c_src (cGrids.Grids[0]);
CoarseVector c_res (cGrids.Grids[0]);
gaussian(cGrids.PRNGs[0],c_src);
c_res=zero;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Solving posdef-CG on coarse space "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout << "type_name<decltype(c_src)>() = " << type_name< decltype( c_src ) >() << std::endl;
// MdagMLinearOperator<CoarseOperator,CoarseVector> PosdefLdop(LDOp);
// ConjugateGradient<CoarseVector> CG(1.0e-6,100000);
// // CG(PosdefLdop,c_src,c_res);
// c_res = g5 * c_src;
// // std::cout<<GridLogMessage << "**************************************************"<< std::endl;
// // std::cout<<GridLogMessage << "Solving indef-MCR on coarse space "<< std::endl;
// // std::cout<<GridLogMessage << "**************************************************"<< std::endl;
// // HermitianLinearOperator<CoarseOperator,CoarseVector> HermIndefLdop(LDOp);
// // ConjugateResidual<CoarseVector> MCR(1.0e-6,100000);
// //MCR(HermIndefLdop,c_src,c_res);
std::cout << GridLogMessage << "**************************************************" << std::endl;
std::cout << GridLogMessage << "Solving posdef-MR on coarse space " << std::endl;
std::cout << GridLogMessage << "**************************************************" << std::endl;
MdagMLinearOperator<CoarseOperator,CoarseVector> PosdefLdop(CoarseOp);
MinimalResidual<CoarseVector> MR(5.0e-2, 100, false);
ConjugateGradient<CoarseVector> CG(5.0e-2, 100, false);
MR(PosdefLdop, c_src, c_res);
gaussian(cGrids.PRNGs[0], c_src);
c_res = zero;
CG(PosdefLdop, c_src, c_res);
std::cout << GridLogMessage << "**************************************************" << std::endl;
std::cout << GridLogMessage << "Dummy testing for building second coarse level" << std::endl;
std::cout << GridLogMessage << "**************************************************" << std::endl;
// typedef Aggregation< CoarseVector, vTComplex, nbasis > SubspaceAgain;
// SubspaceAgain AggregatesCoarsenedAgain(cGrids.Grids[1], cGrids.Grids[0], 0);
// AggregatesCoarsenedAgain.CreateSubspace(cGrids.PRNGs[0], PosdefLdop);
// for(int n=0;n<nb;n++){
// AggregatesCoarsenedAgain.subspace[n+nb] = g5 * AggregatesCoarsenedAgain.subspace[n]; // multiply with g5 normally instead of G5R5 since this specific to DWF
// std::cout<<GridLogMessage<<n<<" subspace "<<norm2(AggregatesCoarsenedAgain.subspace[n+nb])<<" "<<norm2(AggregatesCoarsenedAgain.subspace[n]) <<std::endl;
// }
// for(int n=0;n<nbasis;n++){
// std::cout<<GridLogMessage << "vec["<<n<<"] = "<<norm2(AggregatesCoarsenedAgain.subspace[n]) <<std::endl;
// }
// AggregatesCoarsenedAgain.CheckOrthogonal();
// std::cout<<GridLogMessage << "**************************************************"<< std::endl;
// std::cout<<GridLogMessage << "Solving indef-MCR on coarse space "<< std::endl;
// std::cout<<GridLogMessage << "**************************************************"<< std::endl;
// HermitianLinearOperator<CoarseOperator,CoarseVector> HermIndefLdop(CoarseOp);
// ConjugateResidual<CoarseVector> MCR(1.0e-6,100000);
// MCR(HermIndefLdop,c_src,c_res);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Building deflation preconditioner "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
MultiGridPreconditioner <vSpinColourVector,vTComplex,nbasis,WilsonFermionR> Precon (Aggregates, LDOp,
Blah,Dw,
BlahDD,DwDD);
MultiGridPreconditioner <vSpinColourVector,vTComplex,nbasis,WilsonFermionR> Precon (Aggregates, CoarseOp,
HermIndefOp,Dw,
HermIndefOp,Dw);
MultiGridPreconditioner <vSpinColourVector,vTComplex,nbasis,WilsonFermionR> PreconDD(Aggregates, LDOp,
Blah,Dw,
BlahDD,DwDD);
MultiGridPreconditioner <vSpinColourVector,vTComplex,nbasis,WilsonFermionR> PreconDD(Aggregates, CoarseOp,
HermIndefOp,Dw,
HermIndefOpDD,DwDD);
// MultiGridPreconditioner(Aggregates &Agg, CoarseOperator &Coarse,
// FineOperator &Fine,Matrix &FineMatrix,
// FineOperator &Smooth,Matrix &SmootherMatrix)
TrivialPrecon<LatticeFermion> simple;
TrivialPrecon<LatticeFermion> Simple;
std::cout << GridLogMessage << "**************************************************" << std::endl;
std::cout << GridLogMessage << "Building two level VPGCR and FGMRES solvers" << std::endl;
std::cout << GridLogMessage << "**************************************************" << std::endl;
PrecGeneralisedConjugateResidual<LatticeFermion> VPGCRMG(1.0e-12,100,Precon,8,8);
FlexibleGeneralisedMinimalResidual<LatticeFermion> FGMRESMG(1.0e-12,100,Precon,8);
std::cout << GridLogMessage << "checking norm src " << norm2(src) << std::endl;
std::cout << GridLogMessage << "**************************************************" << std::endl;
std::cout << GridLogMessage << "Building unpreconditioned VPGCR and FGMRES solvers" << std::endl;
std::cout << GridLogMessage << "**************************************************" << std::endl;
PrecGeneralisedConjugateResidual<LatticeFermion> VPGCRT(1.0e-12,4000000,Simple,8,8);
FlexibleGeneralisedMinimalResidual<LatticeFermion> FGMREST(1.0e-12,4000000,Simple,8);
std::cout << GridLogMessage << "**************************************************" << std::endl;
std::cout << GridLogMessage << "Testing the four solvers" << std::endl;
std::cout << GridLogMessage << "**************************************************" << std::endl;
std::vector< OperatorFunction<LatticeFermion>*> solvers;
solvers.push_back(&VPGCRMG);
solvers.push_back(&FGMRESMG);
solvers.push_back(&VPGCRT);
solvers.push_back(&FGMREST);
for(auto elem : solvers) {
result = zero;
(*elem)(HermIndefOp,src,result);
}
Grid_finalize();
}