mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 07:55:35 +00:00
Writing of Eigen::Tensor of grid objects now works (for Hdf5)
This commit is contained in:
parent
9a225235b6
commit
fb2cb3015e
@ -65,12 +65,20 @@ namespace Grid {
|
||||
template <typename ETensor>
|
||||
typename std::enable_if<std::is_base_of<Eigen::TensorBase<ETensor, Eigen::ReadOnlyAccessors>, ETensor>::value && (std::is_arithmetic<typename ETensor::Scalar>::value || Grid::is_complex<typename ETensor::Scalar>::value), void>::type
|
||||
write(const std::string &s, const ETensor &output);
|
||||
template<typename U, int NumIndices_, int Options_, typename IndexType_>
|
||||
void write(const std::string &s, const Eigen::Tensor<iScalar<U>, NumIndices_, Options_, IndexType_> &output);
|
||||
template<typename U, int N, int NumIndices_, int Options_, typename IndexType_>
|
||||
void write(const std::string &s, const Eigen::Tensor<iVector<U, N>, NumIndices_, Options_, IndexType_> &output);
|
||||
template<typename U, int N, int NumIndices_, int Options_, typename IndexType_>
|
||||
void write(const std::string &s, const Eigen::Tensor<iMatrix<U, N>, NumIndices_, Options_, IndexType_> &output);
|
||||
template <typename ETensor/*, typename U, int N*/>
|
||||
typename std::enable_if<std::is_base_of<Eigen::TensorBase<ETensor, Eigen::ReadOnlyAccessors>, ETensor>::value && !(std::is_arithmetic<typename ETensor::Scalar>::value || Grid::is_complex<typename ETensor::Scalar>::value)
|
||||
/*&& ( std::is_base_of<typename ETensor::Scalar, iScalar<U> >::value
|
||||
|| std::is_base_of<typename ETensor::Scalar, iVector<U, N>>::value
|
||||
|| std::is_base_of<typename ETensor::Scalar, iMatrix<U, N>>::value )*/, void>::type
|
||||
write(const std::string &s, const ETensor &output);
|
||||
/*template <typename ETensor, typename U, int N>
|
||||
typename std::enable_if<std::is_base_of<Eigen::TensorBase<ETensor, Eigen::ReadOnlyAccessors>, ETensor>::value
|
||||
&& std::is_base_of<typename ETensor::Scalar, iVector<U, N>>::value, void>::type
|
||||
write(const std::string &s, const ETensor &output);
|
||||
template <typename ETensor, typename U, int N>
|
||||
typename std::enable_if<std::is_base_of<Eigen::TensorBase<ETensor, Eigen::ReadOnlyAccessors>, ETensor>::value
|
||||
&& std::is_base_of<typename ETensor::Scalar, iMatrix<U, N>>::value, void>::type
|
||||
write(const std::string &s, const ETensor &output);*/
|
||||
|
||||
void scientificFormat(const bool set);
|
||||
bool isScientific(void);
|
||||
@ -182,13 +190,12 @@ namespace Grid {
|
||||
typename std::enable_if<std::is_base_of<Eigen::TensorBase<ETensor, Eigen::ReadOnlyAccessors>, ETensor>::value && (std::is_arithmetic<typename ETensor::Scalar>::value || Grid::is_complex<typename ETensor::Scalar>::value), void>::type
|
||||
Writer<T>::write(const std::string &s, const ETensor &output)
|
||||
{
|
||||
std::cout << "Eigen::Tensors of arithmetic/complex base type" << std::endl;
|
||||
const typename ETensor::Index NumElements{output.size()};
|
||||
assert( NumElements > 0 );
|
||||
if( NumElements == 1 )
|
||||
upcast->writeDefault(s, * output.data());
|
||||
else {
|
||||
// Create a single, flat vector to hold all the data
|
||||
std::vector<typename ETensor::Scalar> flat(NumElements);
|
||||
// We're not interested in trivial dimensions, i.e. dimensions = 1
|
||||
unsigned int TrivialDimCount{0};
|
||||
std::vector<size_t> ReducedDims;
|
||||
@ -203,8 +210,9 @@ namespace Grid {
|
||||
ReducedDims.push_back(s);
|
||||
}
|
||||
}
|
||||
const unsigned int ReducedDimCount{output.NumDimensions - TrivialDimCount};
|
||||
assert( ReducedDimCount > 0 ); // NB: NumElements > 1 implies this is not a scalar
|
||||
assert( output.NumDimensions > TrivialDimCount > 0 ); // NB: NumElements > 1 implies this is not a scalar, so some dims should be left
|
||||
// Create a single, flat vector to hold all the data
|
||||
std::vector<typename ETensor::Scalar> flat(NumElements);
|
||||
// Now copy all the data to my flat vector
|
||||
// Regardless of the Eigen::Tensor storage order, the copy will be Row Major
|
||||
std::array<typename ETensor::Index, ETensor::NumIndices> MyIndex;
|
||||
@ -221,17 +229,71 @@ namespace Grid {
|
||||
|
||||
// Eigen::Tensors of iScalar<U>
|
||||
template <typename T>
|
||||
template<typename U, int NumIndices_, int Options_, typename IndexType_>
|
||||
void Writer<T>::write(const std::string &s, const Eigen::Tensor<iScalar<U>, NumIndices_, Options_, IndexType_> &output)
|
||||
template <typename ETensor/*, typename U, int N*/>
|
||||
typename std::enable_if<std::is_base_of<Eigen::TensorBase<ETensor, Eigen::ReadOnlyAccessors>, ETensor>::value && !(std::is_arithmetic<typename ETensor::Scalar>::value || Grid::is_complex<typename ETensor::Scalar>::value)
|
||||
/*&& ( std::is_base_of<typename ETensor::Scalar, iScalar<U> >::value
|
||||
|| std::is_base_of<typename ETensor::Scalar, iVector<U, N>>::value
|
||||
|| std::is_base_of<typename ETensor::Scalar, iMatrix<U, N>>::value )*/, void>::type
|
||||
Writer<T>::write(const std::string &s, const ETensor &output)
|
||||
{
|
||||
//upcast->writeDefault(s, tensorToVec(output));
|
||||
std::cout << "I really should add code to write Eigen::Tensor (iScalar) ..." << std::endl;
|
||||
std::cout << "Eigen::Tensors of iScalar<U>" << std::endl;
|
||||
const typename ETensor::Index NumElements{output.size()};
|
||||
assert( NumElements > 0 );
|
||||
if( NumElements == 1 )
|
||||
upcast->writeDefault(s, tensorToVec(* output.data()));
|
||||
else {
|
||||
// We're not interested in trivial dimensions, i.e. dimensions = 1
|
||||
unsigned int TrivialDimCount{0};
|
||||
std::vector<size_t> ReducedDims;
|
||||
for(auto i = 0; i < output.NumDimensions; i++ ) {
|
||||
auto dim = output.dimension(i);
|
||||
if( dim <= 1 ) {
|
||||
TrivialDimCount++;
|
||||
assert( dim == 1 ); // Not expecting dimension to be <= 0
|
||||
} else {
|
||||
size_t s = static_cast<size_t>(dim);
|
||||
assert( s == dim ); // check we didn't lose anything in the conversion
|
||||
ReducedDims.push_back(s);
|
||||
}
|
||||
}
|
||||
assert( output.NumDimensions > TrivialDimCount > 0 ); // NB: NumElements > 1 implies this is not a scalar, so some dims should be left
|
||||
// Now add the extra dimensions, based on object zero
|
||||
typename TensorToVec<typename ETensor::Scalar>::type ttv = tensorToVec(* output.data());
|
||||
Flatten<typename TensorToVec<typename ETensor::Scalar>::type> f(ttv);
|
||||
const std::vector<size_t> & ExtraDims{f.getDim()};
|
||||
size_t ExtraCount{1};
|
||||
for( auto i : ExtraDims ) {
|
||||
assert( i > 0 );
|
||||
ExtraCount *= i;
|
||||
ReducedDims.push_back(i);
|
||||
}
|
||||
typedef typename ETensor::Scalar::scalar_type Scalar;
|
||||
assert( sizeof( typename ETensor::Scalar ) == ExtraCount * sizeof( Scalar ) );
|
||||
// Create a single, flat vector to hold all the data
|
||||
const typename ETensor::Index TotalNumElements = NumElements * ExtraCount;
|
||||
std::vector<Scalar> flat(TotalNumElements);
|
||||
// Now copy all the data to my flat vector
|
||||
// Regardless of the Eigen::Tensor storage order, the copy will be Row Major
|
||||
std::array<typename ETensor::Index, ETensor::NumIndices> MyIndex;
|
||||
for( int i = 0 ; i < output.NumDimensions ; i++ ) MyIndex[i] = 0;
|
||||
for( typename ETensor::Index n = 0; n < TotalNumElements; ) {
|
||||
const Scalar * p = reinterpret_cast<const Scalar *>( &output( MyIndex ));
|
||||
for( auto j = 0; j < ExtraCount ; j++ )
|
||||
flat[n++] = * p++;
|
||||
// Now increment the index
|
||||
for( int i = output.NumDimensions - 1; i >= 0 && ++MyIndex[i] == output.dimension(i); i-- )
|
||||
MyIndex[i] = 0;
|
||||
}
|
||||
upcast->template writeMultiDim<Scalar>(s, ReducedDims, flat);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Eigen::Tensors of iVector<U, N>
|
||||
template <typename T>
|
||||
template<typename U, int N, int NumIndices_, int Options_, typename IndexType_>
|
||||
void Writer<T>::write(const std::string &s, const Eigen::Tensor<iVector<U, N>, NumIndices_, Options_, IndexType_> &output)
|
||||
/*template <typename T>
|
||||
template <typename ETensor, typename U, int N>
|
||||
typename std::enable_if<std::is_base_of<Eigen::TensorBase<ETensor, Eigen::ReadOnlyAccessors>, ETensor>::value
|
||||
&& std::is_base_of<typename ETensor::Scalar, iVector<U, N>>::value, void>::type
|
||||
Writer<T>::write(const std::string &s, const ETensor &output)
|
||||
{
|
||||
//upcast->writeDefault(s, tensorToVec(output));
|
||||
std::cout << "I really should add code to write Eigen::Tensor (iVector) ..." << std::endl;
|
||||
@ -239,12 +301,14 @@ namespace Grid {
|
||||
|
||||
// Eigen::Tensors of iMatrix<U, N>
|
||||
template <typename T>
|
||||
template<typename U, int N, int NumIndices_, int Options_, typename IndexType_>
|
||||
void Writer<T>::write(const std::string &s, const Eigen::Tensor<iMatrix<U, N>, NumIndices_, Options_, IndexType_> &output)
|
||||
template <typename ETensor, typename U, int N>
|
||||
typename std::enable_if<std::is_base_of<Eigen::TensorBase<ETensor, Eigen::ReadOnlyAccessors>, ETensor>::value
|
||||
&& std::is_base_of<typename ETensor::Scalar, iMatrix<U, N>>::value, void>::type
|
||||
Writer<T>::write(const std::string &s, const ETensor &output)
|
||||
{
|
||||
//upcast->writeDefault(s, tensorToVec(output));
|
||||
std::cout << "I really should add code to write Eigen::Tensor (iMatrix) ..." << std::endl;
|
||||
}
|
||||
}*/
|
||||
|
||||
template <typename T>
|
||||
void Writer<T>::scientificFormat(const bool set)
|
||||
@ -398,6 +462,18 @@ namespace Grid {
|
||||
}
|
||||
return bResult;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static inline typename std::enable_if<!std::is_base_of<Eigen::TensorBase<T, Eigen::ReadOnlyAccessors>, T>::value, void>::type
|
||||
WriteMember(std::ostream &os, const T &object) {
|
||||
os << object;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static inline typename std::enable_if<std::is_base_of<Eigen::TensorBase<T, Eigen::ReadOnlyAccessors>, T>::value, void>::type
|
||||
WriteMember(std::ostream &os, const T &object) {
|
||||
os << "Eigen::Tensor";
|
||||
}
|
||||
};
|
||||
|
||||
// Generic writer interface //////////////////////////////////////////////////
|
||||
|
@ -110,7 +110,7 @@ THE SOFTWARE.
|
||||
|
||||
#define GRID_MACRO_MEMBER(A,B) A B;
|
||||
#define GRID_MACRO_COMP_MEMBER(A,B) result = (result and CompareMember(lhs. B, rhs. B));
|
||||
#define GRID_MACRO_OS_WRITE_MEMBER(A,B) os<< #A <<" " #B << " = " << obj. B << " ; " <<std::endl;
|
||||
#define GRID_MACRO_OS_WRITE_MEMBER(A,B) os<< #A <<" " #B << " = "; WriteMember( os, obj. B ); os << " ; " <<std::endl;
|
||||
#define GRID_MACRO_READ_MEMBER(A,B) Grid::read(RD,#B,obj. B);
|
||||
#define GRID_MACRO_WRITE_MEMBER(A,B) Grid::write(WR,#B,obj. B);
|
||||
|
||||
|
@ -466,6 +466,8 @@ typedef std::complex<double> TestScalar;
|
||||
typedef Eigen::Tensor<TestScalar, 3> TestTensor;
|
||||
typedef Eigen::TensorFixedSize<TestScalar, Eigen::Sizes<9,4,2>> TestTensorFixed;
|
||||
typedef std::vector<TestTensorFixed> aTestTensorFixed;
|
||||
typedef Eigen::TensorFixedSize<SpinColourVector, Eigen::Sizes<11,3,2>> LSCTensor;
|
||||
typedef Eigen::TensorFixedSize<LorentzColourMatrix, Eigen::Sizes<5,7,2>> LCMTensor;
|
||||
// From Test_serialisation.cc
|
||||
class myclass: Serializable {
|
||||
public:
|
||||
@ -475,12 +477,15 @@ public:
|
||||
, TestTensor, Critter
|
||||
, TestTensorFixed, FixedCritter
|
||||
, aTestTensorFixed, aFixedCritter
|
||||
, LSCTensor, MyLSCTensor
|
||||
, LCMTensor, MyLCMTensor
|
||||
);
|
||||
myclass() : Critter(7,3,2), aFixedCritter(3) {}
|
||||
};
|
||||
|
||||
bool DebugIOTest(void) {
|
||||
SpinColourVector scv;
|
||||
SpinColourVector scv, scv2;
|
||||
scv2 = scv;
|
||||
ioTest<Hdf5Writer, Hdf5Reader, SpinColourVector>("iotest_vector.h5", scv, "SpinColourVector");
|
||||
SpinColourMatrix scm;
|
||||
ioTest<Hdf5Writer, Hdf5Reader, SpinColourMatrix>("iotest_matrix.h5", scm, "SpinColourMatrix");
|
||||
@ -512,6 +517,35 @@ bool DebugIOTest(void) {
|
||||
myclass o;
|
||||
ioTest<Hdf5Writer, Hdf5Reader, myclass>("iotest_object.h5", o, "myclass_object_instance_name");
|
||||
|
||||
// Tensor of spin colour
|
||||
LSCTensor l;
|
||||
Val = 0;
|
||||
for( int i = 0 ; i < l.dimension(0) ; i++)
|
||||
for( int j = 0 ; j < l.dimension(1) ; j++)
|
||||
for( int k = 0 ; k < l.dimension(2) ; k++)
|
||||
for( int s = 0 ; s < Ns ; s++ )
|
||||
for( int c = 0 ; c < Nc ; c++ )
|
||||
{
|
||||
l(i,j,k)()(s)(c) = Val;
|
||||
Val += Inc;
|
||||
}
|
||||
ioTest<Hdf5Writer, Hdf5Reader, LSCTensor>("iotest_LSCTensor.h5", l, "LSCTensor_object_instance_name");
|
||||
|
||||
// Tensor of spin colour
|
||||
LCMTensor l2;
|
||||
Val = 0;
|
||||
for( int i = 0 ; i < l2.dimension(0) ; i++)
|
||||
for( int j = 0 ; j < l2.dimension(1) ; j++)
|
||||
for( int k = 0 ; k < l2.dimension(2) ; k++)
|
||||
for( int l = 0 ; l < Ns ; l++ )
|
||||
for( int c = 0 ; c < Nc ; c++ )
|
||||
for( int c2 = 0 ; c2 < Nc ; c2++ )
|
||||
{
|
||||
l2(i,j,k)(l)()(c,c2) = Val;
|
||||
Val += Inc;
|
||||
}
|
||||
ioTest<Hdf5Writer, Hdf5Reader, LCMTensor>("iotest_LCMTensor.h5", l2, "LCMTensor_object_instance_name");
|
||||
|
||||
std::cout << "Wow!" << std::endl;
|
||||
|
||||
return true;
|
||||
|
Loading…
Reference in New Issue
Block a user