mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-13 20:57:06 +01:00
Added one flavour rational ratios (unprec)
This commit is contained in:
@ -14,11 +14,14 @@ namespace QCD {
|
||||
struct OneFlavourRationalParams {
|
||||
RealD lo;
|
||||
RealD hi;
|
||||
int precision=64;
|
||||
int degree=10;
|
||||
int MaxIter; // Vector?
|
||||
RealD tolerance; // Vector?
|
||||
RealD MaxIter; // Vector?
|
||||
OneFlavourRationalParams (RealD lo,RealD hi,int precision=64,int degree = 10);
|
||||
int degree=10;
|
||||
int precision=64;
|
||||
|
||||
OneFlavourRationalParams (RealD _lo,RealD _hi,int _maxit,RealD tol=1.0e-8,int _degree = 10,int _precision=64) :
|
||||
lo(_lo), hi(_hi), MaxIter(_maxit), tolerance(tol), degree(_degree), precision(_precision)
|
||||
{};
|
||||
};
|
||||
|
||||
}}
|
||||
|
@ -159,8 +159,8 @@ typedef DomainWallFermion<GparityWilsonImplD> GparityDomainWallFermionD;
|
||||
|
||||
//Todo: RHMC
|
||||
#include <qcd/action/pseudofermion/OneFlavourRational.h>
|
||||
//#include <qcd/action/pseudofermion/OneFlavourRationalRatio.h>
|
||||
//#include <qcd/action/pseudofermion/OneFlavourEvenOddRational.h>
|
||||
#include <qcd/action/pseudofermion/OneFlavourEvenOddRational.h>
|
||||
#include <qcd/action/pseudofermion/OneFlavourRationalRatio.h>
|
||||
//#include <qcd/action/pseudofermion/OneFlavourEvenOddRationalRatio.h>
|
||||
|
||||
#endif
|
||||
|
226
lib/qcd/action/pseudofermion/OneFlavourRationalRatio.h
Normal file
226
lib/qcd/action/pseudofermion/OneFlavourRationalRatio.h
Normal file
@ -0,0 +1,226 @@
|
||||
#ifndef QCD_PSEUDOFERMION_ONE_FLAVOUR_RATIONAL_RATIO_H
|
||||
#define QCD_PSEUDOFERMION_ONE_FLAVOUR_RATIONAL_RATIO_H
|
||||
|
||||
namespace Grid{
|
||||
namespace QCD{
|
||||
|
||||
///////////////////////////////////////
|
||||
// One flavour rational
|
||||
///////////////////////////////////////
|
||||
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//
|
||||
// Here P/Q \sim R_{1/4} ~ (V^dagV)^{1/4}
|
||||
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
|
||||
|
||||
template<class Impl>
|
||||
class OneFlavourRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
||||
public:
|
||||
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
typedef OneFlavourRationalParams Params;
|
||||
Params param;
|
||||
|
||||
MultiShiftFunction PowerHalf ;
|
||||
MultiShiftFunction PowerNegHalf;
|
||||
MultiShiftFunction PowerQuarter;
|
||||
MultiShiftFunction PowerNegQuarter;
|
||||
|
||||
private:
|
||||
|
||||
FermionOperator<Impl> & NumOp;// the basic operator
|
||||
FermionOperator<Impl> & DenOp;// the basic operator
|
||||
FermionField Phi; // the pseudo fermion field for this trajectory
|
||||
|
||||
public:
|
||||
|
||||
OneFlavourRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||
FermionOperator<Impl> &_DenOp,
|
||||
Params & p
|
||||
) : NumOp(_NumOp), DenOp(_DenOp), Phi(_NumOp.FermionGrid()), param(p)
|
||||
{
|
||||
AlgRemez remez(param.lo,param.hi,param.precision);
|
||||
|
||||
// MdagM^(+- 1/2)
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,2);
|
||||
PowerHalf.Init(remez,param.tolerance,false);
|
||||
PowerNegHalf.Init(remez,param.tolerance,true);
|
||||
|
||||
// MdagM^(+- 1/4)
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,4);
|
||||
PowerQuarter.Init(remez,param.tolerance,false);
|
||||
PowerNegQuarter.Init(remez,param.tolerance,true);
|
||||
};
|
||||
|
||||
virtual void init(const GaugeField &U, GridParallelRNG& pRNG) {
|
||||
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//
|
||||
// P(phi) = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/2 (VdagV)^1/4 phi}
|
||||
// = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/4 (MdagM)^-1/4 (VdagV)^1/4 phi}
|
||||
//
|
||||
// Phi = (VdagV)^-1/4 Mdag^{1/4} eta
|
||||
//
|
||||
// P(eta) = e^{- eta^dag eta}
|
||||
//
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
//
|
||||
// So eta should be of width sig = 1/sqrt(2).
|
||||
|
||||
RealD scale = std::sqrt(0.5);
|
||||
|
||||
FermionField tmp(NumOp.FermionGrid());
|
||||
FermionField eta(NumOp.FermionGrid());
|
||||
|
||||
gaussian(pRNG,eta);
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
// MdagM^1/4 eta
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagM(DenOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerQuarter);
|
||||
msCG_M(MdagM,eta,tmp);
|
||||
|
||||
// VdagV^-1/4 MdagM^1/4 eta
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> VdagV(NumOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerNegQuarter);
|
||||
msCG_V(VdagV,tmp,Phi);
|
||||
|
||||
Phi=Phi*scale;
|
||||
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
FermionField X(NumOp.FermionGrid());
|
||||
FermionField Y(NumOp.FermionGrid());
|
||||
|
||||
// VdagV^1/4 Phi
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> VdagV(NumOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
|
||||
msCG_V(VdagV,Phi,X);
|
||||
|
||||
// MdagM^-1/4 VdagV^1/4 Phi
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagM(DenOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegQuarter);
|
||||
msCG_M(MdagM,X,Y);
|
||||
|
||||
// Phidag VdagV^1/4 MdagM^-1/4 MdagM^-1/4 VdagV^1/4 Phi
|
||||
RealD action = norm2(Y);
|
||||
|
||||
return action;
|
||||
};
|
||||
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//
|
||||
// Here, M is some 5D operator and V is the Pauli-Villars field
|
||||
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
|
||||
//
|
||||
// Need
|
||||
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
|
||||
// + chi^dag P/Q d[N/D] P/Q chi
|
||||
// + chi^dag P/Q N/D d[P/Q] chi
|
||||
//
|
||||
// P/Q is expressed as partial fraction expansion:
|
||||
//
|
||||
// a0 + \sum_k ak/(V^dagV + bk)
|
||||
//
|
||||
// d[P/Q] is then
|
||||
//
|
||||
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
|
||||
//
|
||||
// and similar for N/D.
|
||||
//
|
||||
// Need
|
||||
// MpvPhi_k = [Vdag V + bk]^{-1} chi
|
||||
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
|
||||
//
|
||||
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
|
||||
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
|
||||
//
|
||||
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
|
||||
//
|
||||
|
||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
||||
|
||||
const int n_f = PowerNegHalf.poles.size();
|
||||
const int n_pv = PowerQuarter.poles.size();
|
||||
|
||||
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionGrid());
|
||||
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionGrid());
|
||||
std::vector<FermionField> MfMpvPhi_k (n_f,NumOp.FermionGrid());
|
||||
|
||||
FermionField MpvPhi(NumOp.FermionGrid());
|
||||
FermionField MfMpvPhi(NumOp.FermionGrid());
|
||||
FermionField MpvMfMpvPhi(NumOp.FermionGrid());
|
||||
FermionField Y(NumOp.FermionGrid());
|
||||
|
||||
GaugeField tmp(NumOp.GaugeGrid());
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagM(DenOp);
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> VdagV(NumOp);
|
||||
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegHalf);
|
||||
|
||||
msCG_V(VdagV,Phi,MpvPhi_k,MpvPhi);
|
||||
msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi);
|
||||
msCG_V(VdagV,MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
|
||||
|
||||
RealD ak;
|
||||
|
||||
dSdU = zero;
|
||||
|
||||
// With these building blocks
|
||||
//
|
||||
// dS/dU =
|
||||
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
|
||||
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
|
||||
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
|
||||
|
||||
//(1)
|
||||
for(int k=0;k<n_f;k++){
|
||||
ak = PowerNegHalf.residues[k];
|
||||
DenOp.M(MfMpvPhi_k[k],Y);
|
||||
DenOp.MDeriv(tmp , MfMpvPhi_k[k], Y,DaggerYes ); dSdU=dSdU+ak*tmp;
|
||||
DenOp.MDeriv(tmp , Y, MfMpvPhi_k[k], DaggerNo ); dSdU=dSdU+ak*tmp;
|
||||
}
|
||||
|
||||
//(2)
|
||||
//(3)
|
||||
for(int k=0;k<n_pv;k++){
|
||||
|
||||
ak = PowerQuarter.residues[k];
|
||||
|
||||
NumOp.M(MpvPhi_k[k],Y);
|
||||
NumOp.MDeriv(tmp,MpvMfMpvPhi_k[k],Y,DaggerYes); dSdU=dSdU+ak*tmp;
|
||||
NumOp.MDeriv(tmp,Y,MpvMfMpvPhi_k[k],DaggerNo); dSdU=dSdU+ak*tmp;
|
||||
|
||||
NumOp.M(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
|
||||
NumOp.MDeriv(tmp,Y, MpvPhi_k[k], DaggerNo); dSdU=dSdU+ak*tmp;
|
||||
NumOp.MDeriv(tmp,MpvPhi_k[k], Y,DaggerYes); dSdU=dSdU+ak*tmp;
|
||||
|
||||
}
|
||||
|
||||
dSdU = Ta(dSdU);
|
||||
|
||||
};
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#endif
|
@ -62,9 +62,9 @@ namespace Grid{
|
||||
pickCheckerboard(Even,etaEven,eta);
|
||||
pickCheckerboard(Odd,etaOdd,eta);
|
||||
|
||||
FermOp.ImportGauge(U);
|
||||
SchurDifferentiableOperator<Impl> PCop(FermOp);
|
||||
|
||||
FermOp.ImportGauge(U);
|
||||
|
||||
PCop.MpcDag(etaOdd,PhiOdd);
|
||||
|
||||
|
Reference in New Issue
Block a user