mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-11 03:46:55 +01:00
Tested smeared RHMC Wilson1p1, accepting
This commit is contained in:
@ -1,212 +1,214 @@
|
||||
/*************************************************************************************
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/pseudofermion/OneFlavourEvenOddRational.h
|
||||
Source file: ./lib/qcd/action/pseudofermion/OneFlavourEvenOddRational.h
|
||||
|
||||
Copyright (C) 2015
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef QCD_PSEUDOFERMION_ONE_FLAVOUR_EVEN_ODD_RATIONAL_H
|
||||
#define QCD_PSEUDOFERMION_ONE_FLAVOUR_EVEN_ODD_RATIONAL_H
|
||||
|
||||
namespace Grid{
|
||||
namespace QCD{
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
///////////////////////////////////////
|
||||
// One flavour rational
|
||||
///////////////////////////////////////
|
||||
///////////////////////////////////////
|
||||
// One flavour rational
|
||||
///////////////////////////////////////
|
||||
|
||||
// S_f = chi^dag * N(Mpc^dag*Mpc)/D(Mpc^dag*Mpc) * chi
|
||||
// S_f = chi^dag * N(Mpc^dag*Mpc)/D(Mpc^dag*Mpc) * chi
|
||||
//
|
||||
// Here, M is some operator
|
||||
// N and D makeup the rat. poly
|
||||
//
|
||||
|
||||
template <class Impl>
|
||||
class OneFlavourEvenOddRationalPseudoFermionAction
|
||||
: public Action<typename Impl::GaugeField> {
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
typedef OneFlavourRationalParams Params;
|
||||
Params param;
|
||||
|
||||
MultiShiftFunction PowerHalf;
|
||||
MultiShiftFunction PowerNegHalf;
|
||||
MultiShiftFunction PowerQuarter;
|
||||
MultiShiftFunction PowerNegQuarter;
|
||||
|
||||
private:
|
||||
FermionOperator<Impl> &FermOp; // the basic operator
|
||||
|
||||
// NOT using "Nroots"; IroIro is -- perhaps later, but this wasn't good for us
|
||||
// historically
|
||||
// and hasenbusch works better
|
||||
|
||||
FermionField PhiEven; // the pseudo fermion field for this trajectory
|
||||
FermionField PhiOdd; // the pseudo fermion field for this trajectory
|
||||
|
||||
public:
|
||||
OneFlavourEvenOddRationalPseudoFermionAction(FermionOperator<Impl> &Op,
|
||||
Params &p)
|
||||
: FermOp(Op),
|
||||
PhiEven(Op.FermionRedBlackGrid()),
|
||||
PhiOdd(Op.FermionRedBlackGrid()),
|
||||
param(p) {
|
||||
AlgRemez remez(param.lo, param.hi, param.precision);
|
||||
|
||||
// MdagM^(+- 1/2)
|
||||
std::cout << GridLogMessage << "Generating degree " << param.degree
|
||||
<< " for x^(1/2)" << std::endl;
|
||||
remez.generateApprox(param.degree, 1, 2);
|
||||
PowerHalf.Init(remez, param.tolerance, false);
|
||||
PowerNegHalf.Init(remez, param.tolerance, true);
|
||||
|
||||
// MdagM^(+- 1/4)
|
||||
std::cout << GridLogMessage << "Generating degree " << param.degree
|
||||
<< " for x^(1/4)" << std::endl;
|
||||
remez.generateApprox(param.degree, 1, 4);
|
||||
PowerQuarter.Init(remez, param.tolerance, false);
|
||||
PowerNegQuarter.Init(remez, param.tolerance, true);
|
||||
};
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridParallelRNG &pRNG) {
|
||||
// P(phi) = e^{- phi^dag (MpcdagMpc)^-1/2 phi}
|
||||
// = e^{- phi^dag (MpcdagMpc)^-1/4 (MpcdagMpc)^-1/4 phi}
|
||||
// Phi = MpcdagMpc^{1/4} eta
|
||||
//
|
||||
// Here, M is some operator
|
||||
// N and D makeup the rat. poly
|
||||
// P(eta) = e^{- eta^dag eta}
|
||||
//
|
||||
|
||||
template<class Impl>
|
||||
class OneFlavourEvenOddRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
//
|
||||
// So eta should be of width sig = 1/sqrt(2).
|
||||
|
||||
typedef OneFlavourRationalParams Params;
|
||||
Params param;
|
||||
RealD scale = std::sqrt(0.5);
|
||||
|
||||
MultiShiftFunction PowerHalf ;
|
||||
MultiShiftFunction PowerNegHalf;
|
||||
MultiShiftFunction PowerQuarter;
|
||||
MultiShiftFunction PowerNegQuarter;
|
||||
FermionField eta(FermOp.FermionGrid());
|
||||
FermionField etaOdd(FermOp.FermionRedBlackGrid());
|
||||
FermionField etaEven(FermOp.FermionRedBlackGrid());
|
||||
|
||||
private:
|
||||
|
||||
FermionOperator<Impl> & FermOp;// the basic operator
|
||||
gaussian(pRNG, eta);
|
||||
eta = eta * scale;
|
||||
|
||||
// NOT using "Nroots"; IroIro is -- perhaps later, but this wasn't good for us historically
|
||||
// and hasenbusch works better
|
||||
pickCheckerboard(Even, etaEven, eta);
|
||||
pickCheckerboard(Odd, etaOdd, eta);
|
||||
|
||||
FermionField PhiEven; // the pseudo fermion field for this trajectory
|
||||
FermionField PhiOdd; // the pseudo fermion field for this trajectory
|
||||
|
||||
FermOp.ImportGauge(U);
|
||||
|
||||
public:
|
||||
// mutishift CG
|
||||
SchurDifferentiableOperator<Impl> Mpc(FermOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter, PowerQuarter);
|
||||
msCG(Mpc, etaOdd, PhiOdd);
|
||||
|
||||
OneFlavourEvenOddRationalPseudoFermionAction(FermionOperator<Impl> &Op,
|
||||
Params & p ) : FermOp(Op),
|
||||
PhiEven(Op.FermionRedBlackGrid()),
|
||||
PhiOdd (Op.FermionRedBlackGrid()),
|
||||
param(p)
|
||||
{
|
||||
AlgRemez remez(param.lo,param.hi,param.precision);
|
||||
//////////////////////////////////////////////////////
|
||||
// FIXME : Clover term not yet..
|
||||
//////////////////////////////////////////////////////
|
||||
|
||||
// MdagM^(+- 1/2)
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,2);
|
||||
PowerHalf.Init(remez,param.tolerance,false);
|
||||
PowerNegHalf.Init(remez,param.tolerance,true);
|
||||
assert(FermOp.ConstEE() == 1);
|
||||
PhiEven = zero;
|
||||
};
|
||||
|
||||
// MdagM^(+- 1/4)
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,4);
|
||||
PowerQuarter.Init(remez,param.tolerance,false);
|
||||
PowerNegQuarter.Init(remez,param.tolerance,true);
|
||||
};
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
|
||||
//////////////////////////////////////////////////////
|
||||
// S = phi^dag (Mdag M)^-1/2 phi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
FermOp.ImportGauge(U);
|
||||
|
||||
// P(phi) = e^{- phi^dag (MpcdagMpc)^-1/2 phi}
|
||||
// = e^{- phi^dag (MpcdagMpc)^-1/4 (MpcdagMpc)^-1/4 phi}
|
||||
// Phi = MpcdagMpc^{1/4} eta
|
||||
//
|
||||
// P(eta) = e^{- eta^dag eta}
|
||||
//
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
//
|
||||
// So eta should be of width sig = 1/sqrt(2).
|
||||
FermionField Y(FermOp.FermionRedBlackGrid());
|
||||
|
||||
RealD scale = std::sqrt(0.5);
|
||||
SchurDifferentiableOperator<Impl> Mpc(FermOp);
|
||||
|
||||
FermionField eta (FermOp.FermionGrid());
|
||||
FermionField etaOdd (FermOp.FermionRedBlackGrid());
|
||||
FermionField etaEven(FermOp.FermionRedBlackGrid());
|
||||
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,
|
||||
PowerNegQuarter);
|
||||
|
||||
gaussian(pRNG,eta); eta=eta*scale;
|
||||
msCG(Mpc, PhiOdd, Y);
|
||||
|
||||
pickCheckerboard(Even,etaEven,eta);
|
||||
pickCheckerboard(Odd,etaOdd,eta);
|
||||
RealD action = norm2(Y);
|
||||
std::cout << GridLogMessage << "Pseudofermion action FIXME -- is -1/4 "
|
||||
"solve or -1/2 solve faster??? "
|
||||
<< action << std::endl;
|
||||
|
||||
FermOp.ImportGauge(U);
|
||||
return action;
|
||||
};
|
||||
|
||||
// mutishift CG
|
||||
SchurDifferentiableOperator<Impl> Mpc(FermOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerQuarter);
|
||||
msCG(Mpc,etaOdd,PhiOdd);
|
||||
//////////////////////////////////////////////////////
|
||||
// Need
|
||||
// dS_f/dU = chi^dag d[N/D] chi
|
||||
//
|
||||
// N/D is expressed as partial fraction expansion:
|
||||
//
|
||||
// a0 + \sum_k ak/(M^dagM + bk)
|
||||
//
|
||||
// d[N/D] is then
|
||||
//
|
||||
// \sum_k -ak [M^dagM+bk]^{-1} [ dM^dag M + M^dag dM ] [M^dag M +
|
||||
// bk]^{-1}
|
||||
//
|
||||
// Need
|
||||
// Mf Phi_k = [MdagM+bk]^{-1} Phi
|
||||
// Mf Phi = \sum_k ak [MdagM+bk]^{-1} Phi
|
||||
//
|
||||
// With these building blocks
|
||||
//
|
||||
// dS/dU = \sum_k -ak Mf Phi_k^dag [ dM^dag M + M^dag dM ] Mf
|
||||
// Phi_k
|
||||
// S = innerprodReal(Phi,Mf Phi);
|
||||
//////////////////////////////////////////////////////
|
||||
virtual void deriv(const GaugeField &U, GaugeField &dSdU) {
|
||||
const int Npole = PowerNegHalf.poles.size();
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// FIXME : Clover term not yet..
|
||||
//////////////////////////////////////////////////////
|
||||
std::vector<FermionField> MPhi_k(Npole, FermOp.FermionRedBlackGrid());
|
||||
|
||||
assert(FermOp.ConstEE() == 1);
|
||||
PhiEven = zero;
|
||||
|
||||
};
|
||||
FermionField X(FermOp.FermionRedBlackGrid());
|
||||
FermionField Y(FermOp.FermionRedBlackGrid());
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// S = phi^dag (Mdag M)^-1/2 phi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
GaugeField tmp(FermOp.GaugeGrid());
|
||||
|
||||
FermOp.ImportGauge(U);
|
||||
FermOp.ImportGauge(U);
|
||||
|
||||
FermionField Y(FermOp.FermionRedBlackGrid());
|
||||
|
||||
SchurDifferentiableOperator<Impl> Mpc(FermOp);
|
||||
SchurDifferentiableOperator<Impl> Mpc(FermOp);
|
||||
|
||||
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerNegQuarter);
|
||||
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter, PowerNegHalf);
|
||||
|
||||
msCG(Mpc,PhiOdd,Y);
|
||||
msCG(Mpc, PhiOdd, MPhi_k);
|
||||
|
||||
RealD action = norm2(Y);
|
||||
std::cout << GridLogMessage << "Pseudofermion action FIXME -- is -1/4 solve or -1/2 solve faster??? "<<action<<std::endl;
|
||||
dSdU = zero;
|
||||
for (int k = 0; k < Npole; k++) {
|
||||
RealD ak = PowerNegHalf.residues[k];
|
||||
|
||||
return action;
|
||||
};
|
||||
X = MPhi_k[k];
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// Need
|
||||
// dS_f/dU = chi^dag d[N/D] chi
|
||||
//
|
||||
// N/D is expressed as partial fraction expansion:
|
||||
//
|
||||
// a0 + \sum_k ak/(M^dagM + bk)
|
||||
//
|
||||
// d[N/D] is then
|
||||
//
|
||||
// \sum_k -ak [M^dagM+bk]^{-1} [ dM^dag M + M^dag dM ] [M^dag M + bk]^{-1}
|
||||
//
|
||||
// Need
|
||||
// Mf Phi_k = [MdagM+bk]^{-1} Phi
|
||||
// Mf Phi = \sum_k ak [MdagM+bk]^{-1} Phi
|
||||
//
|
||||
// With these building blocks
|
||||
//
|
||||
// dS/dU = \sum_k -ak Mf Phi_k^dag [ dM^dag M + M^dag dM ] Mf Phi_k
|
||||
// S = innerprodReal(Phi,Mf Phi);
|
||||
//////////////////////////////////////////////////////
|
||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
||||
Mpc.Mpc(X, Y);
|
||||
Mpc.MpcDeriv(tmp, Y, X);
|
||||
dSdU = dSdU + ak * tmp;
|
||||
Mpc.MpcDagDeriv(tmp, X, Y);
|
||||
dSdU = dSdU + ak * tmp;
|
||||
}
|
||||
|
||||
const int Npole = PowerNegHalf.poles.size();
|
||||
|
||||
std::vector<FermionField> MPhi_k (Npole,FermOp.FermionRedBlackGrid());
|
||||
|
||||
FermionField X(FermOp.FermionRedBlackGrid());
|
||||
FermionField Y(FermOp.FermionRedBlackGrid());
|
||||
|
||||
GaugeField tmp(FermOp.GaugeGrid());
|
||||
|
||||
FermOp.ImportGauge(U);
|
||||
|
||||
SchurDifferentiableOperator<Impl> Mpc(FermOp);
|
||||
|
||||
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerNegHalf);
|
||||
|
||||
msCG(Mpc,PhiOdd,MPhi_k);
|
||||
|
||||
dSdU = zero;
|
||||
for(int k=0;k<Npole;k++){
|
||||
|
||||
RealD ak = PowerNegHalf.residues[k];
|
||||
|
||||
X = MPhi_k[k];
|
||||
|
||||
Mpc.Mpc(X,Y);
|
||||
Mpc.MpcDeriv (tmp , Y, X ); dSdU=dSdU+ak*tmp;
|
||||
Mpc.MpcDagDeriv(tmp , X, Y ); dSdU=dSdU+ak*tmp;
|
||||
|
||||
}
|
||||
|
||||
//dSdU = Ta(dSdU);
|
||||
|
||||
};
|
||||
};
|
||||
}
|
||||
// dSdU = Ta(dSdU);
|
||||
};
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#endif
|
||||
|
Reference in New Issue
Block a user