1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-22 17:52:02 +01:00

Compare commits

..

84 Commits

Author SHA1 Message Date
4fefae1745 Test_evec_compression changes:
Added ability to choose one of a variety of preselected basis sizes from the command line
	Fine lanczos now checks enough evecs are generated and resizes the output to Nstop and not the actual amount that converged (which can be larger)
2022-04-06 06:33:26 -07:00
758e2edcad Test_evec_compression enhancements:
In testing the compressed evecs, a Cheybshev smoothing is now applied first to remove high mode noise
	Added a second test where the uncompressed evecs are compared directly to the original evecs
	Generalized the test to allow for either DWF or Mobius with or without GPBC, switched by command line options
2022-03-29 06:16:15 -07:00
1538b15f3b 48ID evo main program now uses reliable update CG 2022-03-14 06:45:28 -07:00
deac621c2c Merge branch 'develop' into gparity_HMC_merge_develop 2022-02-22 14:25:27 -05:00
ba974960e6 Added an HMC checkpoint start option that loads the fields and then reseeds the RNGs, suitable for creating new evolution streams
Added option to choose RNG seeds in 40ID main binary
2022-02-14 08:09:01 -08:00
6755dc57f8 Added methods to compute spatial plaquette and timeslice spatial plaquette to WilsonLoops 2022-01-24 13:57:39 -05:00
aa620ca52c Fixed compilation error in observables resulting from changes in Wilson flow code
Modified light quark mass on 40ID HMC binary
2022-01-24 09:56:24 -08:00
2c46c942cc Reworked WilsonFlow:
Both smear and smear_adaptive now maintain the Wilson flow time as a function variable rather than a class member variable. smear_adaptive does likewise for the current time step. This allows the evolve and smear functions to be const
	Fixed smear_adaptive setting initial time to epsilon rather than 0
	Added ability to assign generic measurement actions at user specified frequencies during the smearing and reimplemented current energy density / topq output in this framework
	Reimplemented the "flowMeasure" methods using the above framework
Fixed const correctness for WilsonLoops::TopologicalCharge
2022-01-24 12:06:05 -05:00
adeba8059a Added calculation of timeslice topological charge 2022-01-20 14:29:07 -05:00
c4ac528126 Added cloverleaf energy density calculation to WilsonFlow 2021-12-27 10:33:33 -05:00
551b93ba8e To HMC/Mobius2p1fIDSDRGparityEOFA_40ID, added input param to change trajectory length and increased integrator steps for DSDR 2021-12-10 09:06:06 -08:00
ddf7540510 Added calculation of 5Li topological charge
WilsonFlow code now calls topological charge calculation with correct gauge implementation rather than assuming periodic
Added version of WilsonFlow::flowMeasureEnergyDensityPlaquette that outputs the smeared gauge field at the end
2021-12-06 17:56:42 -05:00
de68d12c3d 1x1 topological charge calculation now respects gauge boundary conditions 2021-12-06 13:42:09 -05:00
6d26a2a1ad Merge branch 'feature/gparity_HMC' of https://github.com/paboyle/Grid into gparity_HMC 2021-11-16 07:32:47 -08:00
a1211cdcce Gparity 48ID tuning and exposure of trajectory length as input variable 2021-11-16 07:31:41 -08:00
e78acf77ff To LocalCoherenceLanczos, added a method to reconstruct the fine eigenvector and added some comments to aid the user
Added a test code for local coherence Lanczos with G-parity BCs
Added a test code for block eigenvector compression
2021-11-08 07:26:35 -08:00
f7e9621492 40ID ensemble tuning: now use 5 Hasenbusch steps, parameters now separately tunable in param file 2021-10-18 08:17:36 -07:00
f14be15f8b Updates to Gparity HMC main programs 2021-10-15 08:10:17 -07:00
6a3aaa52ef Test_dwf_lanczos can now run either G-parity Mobius or non-Gparity DWF according to cmdline switch
Fixed copyStream intialization
2021-10-12 12:59:54 -07:00
9ba47b4696 Merge branch 'develop' into gparity_HMC 2021-09-29 20:07:55 -07:00
e85af80c39 Added return value checks on all cuda api calls
Test_dwf_lanczos can now run with either regular DWF or Mobius+Gparity based on cmdline arg
2021-09-29 19:57:43 -07:00
0b91e90dd4 Merge branch 'develop' into feature/gparity_HMC 2021-09-27 07:16:26 -07:00
d184b8c921 Merge branch 'develop' into gparity_HMC 2021-09-08 06:14:08 -07:00
c92e390b08 Added initial main binary code for 40ID and 48ID Gparity HMC 2021-09-08 09:00:13 -04:00
5b36a8af54 Added a CshiftLink function to the GaugeImplementations and boundary condition classes that offers a boundary aware C-shift
Modified gauge fixing code to use CshiftLink internally such that the steepest descent algorithm is universal
Modified gauge transformation code to use CshiftLink for a universal definition
Improved comprehensibility of Test_fft_gfix and generalized to use either periodic or charge conjugation BCs based on cmdline option
Added cmdline options to Test_fft_gfix to tune alpha and optionally disable the Fourier acceleration tests
2021-07-12 17:13:40 -04:00
75a1f85162 Added method to compute and return the Wilson flow energy density over some number of steps 2021-06-30 17:24:00 -04:00
ac4f2d9798 Fixed EOFA approx test square rooting the result inappropriately thus failing when it shouldn't
To MDWF+ID GPBC evol main program, added routine to compute the lower bound of the EOFA using the power method with a command line toggle
2021-06-09 09:08:37 -04:00
c3b99de33f In EOFA pseudofermion action, implemented M^{-1} (this costs the same as M for EOFA!)
Added tests/solver/Test_eofa_inv.cc to test the above
In MDWF+ID GPBC binary, tests of RHMC approx for the action / MD approxs can be performed separately using a cmdline toggle
2021-06-03 11:11:14 -04:00
e1a02bb80a Added main program to reproduce 32ID ensemble with 240MeV pions and GPBC
Allowed EOFA to accept different solvers for the L and R operations in the heatbath step
Fixed EOFA Meofa operating on member Phi rather than input field
Added derived EOFA pseudofermion variant that allows for mixed prec CG to be used in the heatbath
Added forces/Test_mobius_gparity_eofa_mixed testing the above reproduces the regular EOFA
To Test_gamma, added checks for the various properties of the charge conjugation matrix C=-gamma2*gamma4 in Grid basis
2021-06-01 11:44:34 -04:00
86f08c6b9a Added a check that the initial EOFA action agrees with |eta|^2, thus checking the quality of the rational approximation in the heatbath 2021-05-18 13:57:44 -04:00
9f0271039f Completed implementation of Meofa method of ExactOneFlavourRatio pseudofermion action
Added tests to tests/forces/Test_mobius_force_eofa.cc testing that the EOFA heatbath results in Phi = M^{-1/2} eta
2021-05-18 12:27:51 -04:00
24df770f74 Added tests/IO/Test_field_array_io.cc testing/demonstrating parallel IO of an array of 5D fermion fields 2021-05-13 12:32:45 -04:00
45b6c7effc Added a test code forces/Test_gpdwf_force_1f_2f that compares the action and force for DWF, EOFA and DSDR actions between the 1f and 2f implementations of G-parity BCs
Broke up ExactOneFlavourRatio refresh into a virtual routine that generates eta and one that uses it as with the ratio and RHMC actions
Added accessors to the pseudofermion field to TwoFlavourEvenOddRatio and ExactOneFlavourRatio
2021-05-12 16:34:07 -04:00
1c70d8c4d9 Warning remove 2021-05-05 19:56:04 -04:00
f0e9a5299f Happy on GCC I hope 2021-05-05 19:55:34 -04:00
f1b8ba45e7 Warning on GCC suppress unrelated to my code so why doesn't it shut up about its ABI fix 2021-05-05 19:54:21 -04:00
fe998ab578 Merge branch 'feature/gparity_HMC' of https://github.com/paboyle/Grid into feature/gparity_HMC 2021-05-05 17:36:51 -04:00
c2ee2b5fd1 Random chhanges 2021-05-05 17:36:38 -04:00
3b734ee397 two point function example 2021-05-05 17:36:19 -04:00
8637a9512a Freeze Gaussian implementation 2021-05-05 17:34:54 -04:00
7f6e2ee03e Drop normal_distribution, standardise 2021-05-05 17:34:17 -04:00
7b02acb2bd Merge branch 'feature/gparity_HMC' of https://github.com/paboyle/Grid into feature/gparity_HMC 2021-05-04 13:45:11 -04:00
86948c6ea0 CRC for finger print fields - aids debug / version diff 2021-05-04 13:44:38 -04:00
53d226924a CRC added 2021-05-04 13:44:07 -04:00
80176b1b39 RHMC now outputs some initial norms to the logs
Fixed DWF+I Gparity binaries not correctly assigning twist directions (thanks Peter!)
2021-05-04 13:12:23 -04:00
29ddafd0fc Added variant of G-parity DWF+I ensemble gen code using double prec RHMC 2021-04-30 13:12:24 -04:00
0f08364e4f Mom filter refresh sRNG 2021-04-26 23:18:11 +02:00
a198d59381 Merge branch 'feature/gparity_HMC' of https://github.com/paboyle/Grid into feature/gparity_HMC 2021-04-26 21:05:52 +02:00
3a4f5f2324 Merge develop, strengthen force tests 2021-04-22 18:54:00 -04:00
824d84473f Merge branch 'develop' into feature/gparity_HMC 2021-04-22 16:32:41 -04:00
38964a4076 Switch twist direction 2021-04-22 15:57:37 -04:00
0d9aa87228 Reduce momentum to the GP plane 2021-04-22 15:56:59 -04:00
0e959d9b94 Update plaquette analysis 2021-04-22 15:55:47 -04:00
752f70cd48 Merge branch 'develop' into feature/gparity_HMC 2021-04-22 01:58:11 +02:00
e0e42873c1 Const correctness for Lattice::Replicate
Adapted GeneralEvenOddRationalRatio and Test_rhmc_EOWilsonRatio_doubleVsMixedPrec to recent changes that require passing in serial RNG

For GeneralEvenOddRationalRatio and TwoFlavourEvenOddRatio, broke refresh into two stages, the first of which generates the random field and the second that computes the pseudofermion field.
This allows derived classes to override the generation of the random field, for example in testing.

Test_dwf_gpforce now uses Gparity in x-direction and APBC in time as opposed to G-parity in time

Added Test_action_dwf_gparity2fvs1f that compares the DWF fermion action with the 2f and the 1f (doubled-lattice) implementations of Gparity
2021-04-14 16:41:27 -04:00
0ff3bf6dc5 Merge branch 'develop' into feature/gparity_HMC 2021-03-22 15:33:13 -04:00
351eab02ae Comment fix 2021-03-22 14:39:17 -04:00
feee5ccde2 Added Gparity flavour Pauli matrix algebra and associated tensor types mirroring strategy used for Gamma matrices
Added test program for the above
2021-03-03 15:39:41 -05:00
e0f6a146d8 To DWF+I G-parity evolution code, added ability to specify number of MD steps in params and an optional usage mode that reads the config and checks the plaq/checksum agree then exits 2021-02-16 10:41:52 -05:00
daa095c519 Fixed an obscure but reproducible hang in the RHMC caused by the bounds check being activated by a random number that wasn't synchronized over the nodes
HMC now also reports the "L-infinity norm" of the impulse, aka the largest site norm
2021-02-09 12:55:46 -05:00
c2676853ca Merge branch 'bugfix/maxnorm2' into feature/gparity_HMC 2021-02-08 12:17:33 -05:00
6a824033f8 Merge branch 'develop' into feature/gparity_HMC 2021-02-08 09:31:49 -05:00
cee6a37639 Added a logging tag for HMC
As the integrator logger is active by default the cmdline option to activate had no effect. Changed option to *de*activate on request ("NoIntegrator")
Cleaned up generating rational approxs in the general RHMC code
As the tolerance of the rational approx is not related to the CG tolerance, regenerating approxs for MD and MC if they differ only by the CG tolerance is not necessary; this has been fixed
In DWF+I Gparity evolution code, added cmdline options to check the rational approximations and compute the lowest/highest eigenvalues of M^dagM for RHMC tuning
In the above, changed the integrator layout to a much simpler one that completes much faster; may need additional tuning
2021-02-08 09:30:35 -05:00
6cc3ad110c Improved logging output for RHMC bounds checks
In GenericHMCRunner, exposed functionality for initializing gauge fields and RNG for external use
2021-01-29 12:35:00 -05:00
e6c6f82c52 Gparity DWF+I HMC main program now has option to specify parameter file 2021-01-27 11:18:41 -05:00
d10d0c4e7f Merge branch 'develop' into feature/gparity_HMC 2021-01-25 15:13:29 -05:00
9c106d625a Added HMC main program designed to reproduce the 16^3x32x16 DWF+I ensembles with beta=2.13 and Gparity BCs 2021-01-25 15:07:44 -05:00
6795bbca31 Generalized GeneralEvenOddRatioRationalPseudoFermionAction such that the multi-shift CG algorithm can be overridden by derived classes
Added a mixed-precision variant of GeneralEvenOddRatioRationalPseudoFermionAction and a verification test against double prec class
Fixed non-const reference used in passing RHMC approx to multishift classes
2021-01-25 14:22:31 -05:00
d161c2dc35 Improved formating of timing output in mixed-prec multishift
In test of mixed-prec multishift, added comparison against full double precision multishift both for timing and to cross-check the results
2021-01-20 15:42:06 -05:00
7a06826cf1 Added option to NerscIO to disable exit on failing plaquette check allowing for circumvention of factor of 2 error in CPS-generated G-parity config headers
Adapted mixed-prec multi-shift test to new way to pass gauge BC directions and added cmdline option to perform the G-parity plaquette comparison with the corrected plaquette when loading config
2021-01-20 13:31:50 -05:00
c3712b8e06 Merge branch 'develop' into feature/gparity_HMC 2021-01-20 11:48:52 -05:00
901ee77b84 Mixed precision multishift test can now be performed with/without G-parity using cmdline check and can load a pregenerated configuration 2021-01-20 11:45:44 -05:00
1b84f59273 Added a mixed precision multishift algorithm for which the matrix multiplies are performed in single precision but the search directions are accumulated in double precision.
A reliable update step is performed at a tunable frequency to correct the residual. A final mixed-prec single-shift solve is performed on each pole to perform cleanup if necessary.
A test is provided to demonstrate the algorithm.
2021-01-06 12:24:44 -05:00
1fb41a4300 Added copyLane function to Tensor_extract_merge.h which copies one lane of data from an input tensor object to a different lane of an output tensor object of potentially different precision
precisionChange lattice function now uses copyLane to remove need for temporary scalar objects, reducing register footprint and significantly improving performance
2021-01-06 11:50:56 -05:00
287bac946f ConjugateGradientMixedPrec now stores final true residual and uses the precisionChange workspaces for improved efficiency 2021-01-06 09:50:41 -05:00
80c14be65e Added core test to check precision change 2021-01-06 09:34:44 -05:00
d7a2a4852d Reimplemented precisionChange to run on GPUs. A workspace containing the mapping table can be optionally precomputed and reused for improved performance. 2021-01-06 09:30:49 -05:00
d185f2eaa7 OneFlavourEvenOddRatioRationalPseudoFermionAction now derives from GeneralEvenOddRatioRationalPseudoFermionAction, simply performs transcription of parameters 2020-12-23 16:26:10 -05:00
813d4cd900 Added test program that ensures the generic checkerboarded RHMC (with parameters set appropriately) gives the same answer as the existing 1f code 2020-12-23 16:01:42 -05:00
75c6c6b173 General RHMC pseudofermion action now allows for different rational approximations to be used in the MD and action evaluation 2020-12-23 11:19:26 -05:00
220ad5e3ee Added more verbose log output to GeneralEvenOddRatioRationalPseudoFermionAction
In GeneralEvenOddRatioRationalPseudoFermionAction, setting the bounds check frequency to 0 now disables the check
2020-12-22 11:08:22 -05:00
ba5dc670a5 Reimplemented GparityWilsonImpl::InsertForce5D to run efficiently on GPUs
Swapped order of templated tensor code and c-number specializations in Tensor_outer.h to fix compile issue with type deduction on Summit
2020-12-22 10:10:07 -05:00
a0ca362690 Added an RHMC pseudofermion action, GeneralEvenOddRatioRationalPseudoFermionAction, that works for an arbitrary fractional power, not just a square root
Added a test evolution for the above, Test_rhmc_EOWilsonRatioPowQuarter, demonstrating conservation of Hamiltonian
Fixed HMC ignoring the MetropolisTest parameter of HMCparameters
2020-12-17 16:21:58 -05:00
249b6e61ec For G-parity BCs the Nd-1 direction is now assumed to be the time direction and setting a twist in this direction will apply antiperiodic BCs
Added option to run Test_gparity with antiperiodic time BCs
2020-12-17 14:09:00 -05:00
125 changed files with 11006 additions and 2907 deletions

View File

@ -34,6 +34,9 @@ directory
#if defined __GNUC__ && __GNUC__>=6 #if defined __GNUC__ && __GNUC__>=6
#pragma GCC diagnostic ignored "-Wignored-attributes" #pragma GCC diagnostic ignored "-Wignored-attributes"
#endif
#if defined __GNUC__
#pragma GCC diagnostic ignored "-Wpsabi"
#endif #endif
//disables and intel compiler specific warning (in json.hpp) //disables and intel compiler specific warning (in json.hpp)

View File

@ -36,6 +36,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#include <Grid/GridCore.h> #include <Grid/GridCore.h>
#include <Grid/qcd/QCD.h> #include <Grid/qcd/QCD.h>
#include <Grid/qcd/spin/Spin.h> #include <Grid/qcd/spin/Spin.h>
#include <Grid/qcd/gparity/Gparity.h>
#include <Grid/qcd/utils/Utils.h> #include <Grid/qcd/utils/Utils.h>
#include <Grid/qcd/representations/Representations.h> #include <Grid/qcd/representations/Representations.h>
NAMESPACE_CHECK(GridQCDCore); NAMESPACE_CHECK(GridQCDCore);

View File

@ -54,6 +54,7 @@ NAMESPACE_CHECK(BiCGSTAB);
#include <Grid/algorithms/iterative/SchurRedBlack.h> #include <Grid/algorithms/iterative/SchurRedBlack.h>
#include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h> #include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h>
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h> #include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
#include <Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h>
#include <Grid/algorithms/iterative/BiCGSTABMixedPrec.h> #include <Grid/algorithms/iterative/BiCGSTABMixedPrec.h>
#include <Grid/algorithms/iterative/BlockConjugateGradient.h> #include <Grid/algorithms/iterative/BlockConjugateGradient.h>
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h> #include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>

View File

@ -292,6 +292,7 @@ public:
template<class Field> template<class Field>
class ChebyshevLanczos : public Chebyshev<Field> { class ChebyshevLanczos : public Chebyshev<Field> {
private: private:
std::vector<RealD> Coeffs; std::vector<RealD> Coeffs;
int order; int order;
RealD alpha; RealD alpha;

View File

@ -49,6 +49,7 @@ NAMESPACE_BEGIN(Grid);
Integer TotalInnerIterations; //Number of inner CG iterations Integer TotalInnerIterations; //Number of inner CG iterations
Integer TotalOuterIterations; //Number of restarts Integer TotalOuterIterations; //Number of restarts
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
RealD TrueResidual;
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess //Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
LinearFunction<FieldF> *guesser; LinearFunction<FieldF> *guesser;
@ -68,6 +69,7 @@ NAMESPACE_BEGIN(Grid);
} }
void operator() (const FieldD &src_d_in, FieldD &sol_d){ void operator() (const FieldD &src_d_in, FieldD &sol_d){
std::cout << GridLogMessage << "MixedPrecisionConjugateGradient: Starting mixed precision CG with outer tolerance " << Tolerance << " and inner tolerance " << InnerTolerance << std::endl;
TotalInnerIterations = 0; TotalInnerIterations = 0;
GridStopWatch TotalTimer; GridStopWatch TotalTimer;
@ -80,6 +82,11 @@ NAMESPACE_BEGIN(Grid);
RealD stop = src_norm * Tolerance*Tolerance; RealD stop = src_norm * Tolerance*Tolerance;
GridBase* DoublePrecGrid = src_d_in.Grid(); GridBase* DoublePrecGrid = src_d_in.Grid();
//Generate precision change workspaces
precisionChangeWorkspace wk_dp_from_sp(DoublePrecGrid, SinglePrecGrid);
precisionChangeWorkspace wk_sp_from_dp(SinglePrecGrid, DoublePrecGrid);
FieldD tmp_d(DoublePrecGrid); FieldD tmp_d(DoublePrecGrid);
tmp_d.Checkerboard() = cb; tmp_d.Checkerboard() = cb;
@ -97,6 +104,7 @@ NAMESPACE_BEGIN(Grid);
FieldF sol_f(SinglePrecGrid); FieldF sol_f(SinglePrecGrid);
sol_f.Checkerboard() = cb; sol_f.Checkerboard() = cb;
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Starting initial inner CG with tolerance " << inner_tol << std::endl;
ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations); ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
CG_f.ErrorOnNoConverge = false; CG_f.ErrorOnNoConverge = false;
@ -120,7 +128,7 @@ NAMESPACE_BEGIN(Grid);
while(norm * inner_tol * inner_tol < stop) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ?? while(norm * inner_tol * inner_tol < stop) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ??
PrecChangeTimer.Start(); PrecChangeTimer.Start();
precisionChange(src_f, src_d); precisionChange(src_f, src_d, wk_sp_from_dp);
PrecChangeTimer.Stop(); PrecChangeTimer.Stop();
sol_f = Zero(); sol_f = Zero();
@ -130,6 +138,7 @@ NAMESPACE_BEGIN(Grid);
(*guesser)(src_f, sol_f); (*guesser)(src_f, sol_f);
//Inner CG //Inner CG
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " << outer_iter << " starting inner CG with tolerance " << inner_tol << std::endl;
CG_f.Tolerance = inner_tol; CG_f.Tolerance = inner_tol;
InnerCGtimer.Start(); InnerCGtimer.Start();
CG_f(Linop_f, src_f, sol_f); CG_f(Linop_f, src_f, sol_f);
@ -138,7 +147,7 @@ NAMESPACE_BEGIN(Grid);
//Convert sol back to double and add to double prec solution //Convert sol back to double and add to double prec solution
PrecChangeTimer.Start(); PrecChangeTimer.Start();
precisionChange(tmp_d, sol_f); precisionChange(tmp_d, sol_f, wk_dp_from_sp);
PrecChangeTimer.Stop(); PrecChangeTimer.Stop();
axpy(sol_d, 1.0, tmp_d, sol_d); axpy(sol_d, 1.0, tmp_d, sol_d);
@ -150,6 +159,7 @@ NAMESPACE_BEGIN(Grid);
ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations); ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations);
CG_d(Linop_d, src_d_in, sol_d); CG_d(Linop_d, src_d_in, sol_d);
TotalFinalStepIterations = CG_d.IterationsToComplete; TotalFinalStepIterations = CG_d.IterationsToComplete;
TrueResidual = CG_d.TrueResidual;
TotalTimer.Stop(); TotalTimer.Stop();
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl; std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;

View File

@ -52,7 +52,7 @@ public:
MultiShiftFunction shifts; MultiShiftFunction shifts;
std::vector<RealD> TrueResidualShift; std::vector<RealD> TrueResidualShift;
ConjugateGradientMultiShift(Integer maxit,MultiShiftFunction &_shifts) : ConjugateGradientMultiShift(Integer maxit, const MultiShiftFunction &_shifts) :
MaxIterations(maxit), MaxIterations(maxit),
shifts(_shifts) shifts(_shifts)
{ {
@ -182,6 +182,9 @@ public:
for(int s=0;s<nshift;s++) { for(int s=0;s<nshift;s++) {
axpby(psi[s],0.,-bs[s]*alpha[s],src,src); axpby(psi[s],0.,-bs[s]*alpha[s],src,src);
} }
std::cout << GridLogIterative << "ConjugateGradientMultiShift: initial rn (|src|^2) =" << rn << " qq (|MdagM src|^2) =" << qq << " d ( dot(src, [MdagM + m_0]src) ) =" << d << " c=" << c << std::endl;
/////////////////////////////////////// ///////////////////////////////////////
// Timers // Timers

View File

@ -0,0 +1,411 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Christopher Kelly <ckelly@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
#define GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
NAMESPACE_BEGIN(Grid);
//CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision.
//The residual is stored in single precision, but the search directions and solution are stored in double precision.
//Every update_freq iterations the residual is corrected in double precision.
//For safety the a final regular CG is applied to clean up if necessary
//Linop to add shift to input linop, used in cleanup CG
namespace ConjugateGradientMultiShiftMixedPrecSupport{
template<typename Field>
class ShiftedLinop: public LinearOperatorBase<Field>{
public:
LinearOperatorBase<Field> &linop_base;
RealD shift;
ShiftedLinop(LinearOperatorBase<Field> &_linop_base, RealD _shift): linop_base(_linop_base), shift(_shift){}
void OpDiag (const Field &in, Field &out){ assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
void Op (const Field &in, Field &out){ assert(0); }
void AdjOp (const Field &in, Field &out){ assert(0); }
void HermOp(const Field &in, Field &out){
linop_base.HermOp(in, out);
axpy(out, shift, in, out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
HermOp(in,out);
ComplexD dot = innerProduct(in,out);
n1=real(dot);
n2=norm2(out);
}
};
};
template<class FieldD, class FieldF,
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class ConjugateGradientMultiShiftMixedPrec : public OperatorMultiFunction<FieldD>,
public OperatorFunction<FieldD>
{
public:
using OperatorFunction<FieldD>::operator();
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
std::vector<int> IterationsToCompleteShift; // Iterations for this shift
int verbose;
MultiShiftFunction shifts;
std::vector<RealD> TrueResidualShift;
int ReliableUpdateFreq; //number of iterations between reliable updates
GridBase* SinglePrecGrid; //Grid for single-precision fields
LinearOperatorBase<FieldF> &Linop_f; //single precision
ConjugateGradientMultiShiftMixedPrec(Integer maxit, const MultiShiftFunction &_shifts,
GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f,
int _ReliableUpdateFreq
) :
MaxIterations(maxit), shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq)
{
verbose=1;
IterationsToCompleteShift.resize(_shifts.order);
TrueResidualShift.resize(_shifts.order);
}
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi)
{
GridBase *grid = src.Grid();
int nshift = shifts.order;
std::vector<FieldD> results(nshift,grid);
(*this)(Linop,src,results,psi);
}
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi)
{
int nshift = shifts.order;
(*this)(Linop,src,results);
psi = shifts.norm*src;
for(int i=0;i<nshift;i++){
psi = psi + shifts.residues[i]*results[i];
}
return;
}
void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d)
{
GridBase *DoublePrecGrid = src_d.Grid();
precisionChangeWorkspace wk_f_from_d(SinglePrecGrid, DoublePrecGrid);
precisionChangeWorkspace wk_d_from_f(DoublePrecGrid, SinglePrecGrid);
////////////////////////////////////////////////////////////////////////
// Convenience references to the info stored in "MultiShiftFunction"
////////////////////////////////////////////////////////////////////////
int nshift = shifts.order;
std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
std::vector<RealD> &mresidual(shifts.tolerances);
std::vector<RealD> alpha(nshift,1.0);
//Double precision search directions
FieldD p_d(DoublePrecGrid);
std::vector<FieldD> ps_d(nshift, DoublePrecGrid);// Search directions (double precision)
FieldD tmp_d(DoublePrecGrid);
FieldD r_d(DoublePrecGrid);
FieldD mmp_d(DoublePrecGrid);
assert(psi_d.size()==nshift);
assert(mass.size()==nshift);
assert(mresidual.size()==nshift);
// dynamic sized arrays on stack; 2d is a pain with vector
RealD bs[nshift];
RealD rsq[nshift];
RealD z[nshift][2];
int converged[nshift];
const int primary =0;
//Primary shift fields CG iteration
RealD a,b,c,d;
RealD cp,bp,qq; //prev
// Matrix mult fields
FieldF r_f(SinglePrecGrid);
FieldF p_f(SinglePrecGrid);
FieldF tmp_f(SinglePrecGrid);
FieldF mmp_f(SinglePrecGrid);
FieldF src_f(SinglePrecGrid);
precisionChange(src_f, src_d, wk_f_from_d);
// Check lightest mass
for(int s=0;s<nshift;s++){
assert( mass[s]>= mass[primary] );
converged[s]=0;
}
// Wire guess to zero
// Residuals "r" are src
// First search direction "p" is also src
cp = norm2(src_d);
// Handle trivial case of zero src.
if( cp == 0. ){
for(int s=0;s<nshift;s++){
psi_d[s] = Zero();
IterationsToCompleteShift[s] = 1;
TrueResidualShift[s] = 0.;
}
return;
}
for(int s=0;s<nshift;s++){
rsq[s] = cp * mresidual[s] * mresidual[s];
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift "<< s <<" target resid "<<rsq[s]<<std::endl;
ps_d[s] = src_d;
}
// r and p for primary
r_f=src_f; //residual maintained in single
p_f=src_f;
p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys
//MdagM+m[0]
Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
axpy(mmp_f,mass[0],p_f,mmp_f);
RealD rn = norm2(p_f);
d += rn*mass[0];
b = -cp /d;
// Set up the various shift variables
int iz=0;
z[0][1-iz] = 1.0;
z[0][iz] = 1.0;
bs[0] = b;
for(int s=1;s<nshift;s++){
z[s][1-iz] = 1.0;
z[s][iz] = 1.0/( 1.0 - b*(mass[s]-mass[0]));
bs[s] = b*z[s][iz];
}
// r += b[0] A.p[0]
// c= norm(r)
c=axpy_norm(r_f,b,mmp_f,r_f);
for(int s=0;s<nshift;s++) {
axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d);
}
///////////////////////////////////////
// Timers
///////////////////////////////////////
GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer;
SolverTimer.Start();
// Iteration loop
int k;
for (k=1;k<=MaxIterations;k++){
a = c /cp;
//Update double precision search direction by residual
PrecChangeTimer.Start();
precisionChange(r_d, r_f, wk_d_from_f);
PrecChangeTimer.Stop();
AXPYTimer.Start();
axpy(p_d,a,p_d,r_d);
for(int s=0;s<nshift;s++){
if ( ! converged[s] ) {
if (s==0){
axpy(ps_d[s],a,ps_d[s],r_d);
} else{
RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
axpby(ps_d[s],z[s][iz],as,r_d,ps_d[s]);
}
}
}
AXPYTimer.Stop();
PrecChangeTimer.Start();
precisionChange(p_f, p_d, wk_f_from_d); //get back single prec search direction for linop
PrecChangeTimer.Stop();
cp=c;
MatrixTimer.Start();
Linop_f.HermOp(p_f,mmp_f);
d=real(innerProduct(p_f,mmp_f));
MatrixTimer.Stop();
AXPYTimer.Start();
axpy(mmp_f,mass[0],p_f,mmp_f);
AXPYTimer.Stop();
RealD rn = norm2(p_f);
d += rn*mass[0];
bp=b;
b=-cp/d;
// Toggle the recurrence history
bs[0] = b;
iz = 1-iz;
ShiftTimer.Start();
for(int s=1;s<nshift;s++){
if((!converged[s])){
RealD z0 = z[s][1-iz];
RealD z1 = z[s][iz];
z[s][iz] = z0*z1*bp
/ (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b));
bs[s] = b*z[s][iz]/z0; // NB sign rel to Mike
}
}
ShiftTimer.Stop();
//Update double precision solutions
AXPYTimer.Start();
for(int s=0;s<nshift;s++){
int ss = s;
if( (!converged[s]) ) {
axpy(psi_d[ss],-bs[s]*alpha[s],ps_d[s],psi_d[ss]);
}
}
//Perform reliable update if necessary; otherwise update residual from single-prec mmp
RealD c_f = axpy_norm(r_f,b,mmp_f,r_f);
AXPYTimer.Stop();
c = c_f;
if(k % ReliableUpdateFreq == 0){
//Replace r with true residual
MatrixTimer.Start();
Linop_d.HermOp(psi_d[0],mmp_d);
MatrixTimer.Stop();
AXPYTimer.Start();
axpy(mmp_d,mass[0],psi_d[0],mmp_d);
RealD c_d = axpy_norm(r_d, -1.0, mmp_d, src_d);
AXPYTimer.Stop();
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<< ", replaced |r|^2 = "<<c_f <<" with |r|^2 = "<<c_d<<std::endl;
PrecChangeTimer.Start();
precisionChange(r_f, r_d, wk_f_from_d);
PrecChangeTimer.Stop();
c = c_d;
}
// Convergence checks
int all_converged = 1;
for(int s=0;s<nshift;s++){
if ( (!converged[s]) ){
IterationsToCompleteShift[s] = k;
RealD css = c * z[s][iz]* z[s][iz];
if(css<rsq[s]){
if ( ! converged[s] )
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
converged[s]=1;
} else {
all_converged=0;
}
}
}
if ( all_converged ){
SolverTimer.Stop();
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: All shifts have converged iteration "<<k<<std::endl;
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Checking solutions"<<std::endl;
// Check answers
for(int s=0; s < nshift; s++) {
Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq);
axpy(tmp_d,mass[s],psi_d[s],mmp_d);
axpy(r_d,-alpha[s],src_d,tmp_d);
RealD rn = norm2(r_d);
RealD cn = norm2(src_d);
TrueResidualShift[s] = std::sqrt(rn/cn);
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl;
//If we have not reached the desired tolerance, do a (mixed precision) CG cleanup
if(rn >= rsq[s]){
CleanupTimer.Start();
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: performing cleanup step for shift " << s << std::endl;
//Setup linear operators for final cleanup
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]);
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]);
MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d);
cg(src_d, psi_d[s]);
TrueResidualShift[s] = cg.TrueResidual;
CleanupTimer.Stop();
}
}
std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrec: Time Breakdown for body"<<std::endl;
std::cout << GridLogMessage << "\tSolver " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tAXPY " << AXPYTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tShift " << ShiftTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl;
IterationsToComplete = k;
return;
}
}
// ugly hack
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
// assert(0);
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -113,43 +113,7 @@ public:
blockPromote(guess_coarse,guess,subspace); blockPromote(guess_coarse,guess,subspace);
guess.Checkerboard() = src.Checkerboard(); guess.Checkerboard() = src.Checkerboard();
}; };
};
void operator()(const std::vector<FineField> &src,std::vector<FineField> &guess) {
int Nevec = (int)evec_coarse.size();
int Nsrc = (int)src.size();
// make temp variables
std::vector<CoarseField> src_coarse(Nsrc,evec_coarse[0].Grid());
std::vector<CoarseField> guess_coarse(Nsrc,evec_coarse[0].Grid());
//Preporcessing
std::cout << GridLogMessage << "Start BlockProject for loop" << std::endl;
for (int j=0;j<Nsrc;j++)
{
guess_coarse[j] = Zero();
std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl;
blockProject(src_coarse[j],src[j],subspace);
}
//deflation set up for eigen vector batchsize 1 and source batch size equal number of sources
std::cout << GridLogMessage << "Start ProjectAccum for loop" << std::endl;
for (int i=0;i<Nevec;i++)
{
std::cout << GridLogMessage << "ProjectAccum Nvec: " << i << std::endl;
const CoarseField & tmp = evec_coarse[i];
for (int j=0;j<Nsrc;j++)
{
axpy(guess_coarse[j],TensorRemove(innerProduct(tmp,src_coarse[j])) / eval_coarse[i],tmp,guess_coarse[j]);
}
}
//postprocessing
std::cout << GridLogMessage << "Start BlockPromote for loop" << std::endl;
for (int j=0;j<Nsrc;j++)
{
std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl;
blockPromote(guess_coarse[j],guess[j],subspace);
guess[j].Checkerboard() = src[j].Checkerboard();
}
};
};

View File

@ -44,6 +44,7 @@ public:
int, MinRes); // Must restart int, MinRes); // Must restart
}; };
//This class is the input parameter class for some testing programs
struct LocalCoherenceLanczosParams : Serializable { struct LocalCoherenceLanczosParams : Serializable {
public: public:
GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams, GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams,
@ -155,6 +156,7 @@ public:
_coarse_relax_tol(coarse_relax_tol) _coarse_relax_tol(coarse_relax_tol)
{ }; { };
//evalMaxApprox: approximation of largest eval of the fine Chebyshev operator (suitably wrapped by block projection)
int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox) int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
{ {
CoarseField v(B); CoarseField v(B);
@ -181,8 +183,16 @@ public:
if( (vv<eresid*eresid) ) conv = 1; if( (vv<eresid*eresid) ) conv = 1;
return conv; return conv;
} }
int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
//This function is called at the end of the coarse grid Lanczos. It promotes the coarse eigenvector 'B' to the fine grid,
//applies a smoother to the result then computes the computes the *fine grid* eigenvalue (output as 'eval').
//evalMaxApprox should be the approximation of the largest eval of the fine Hermop. However when this function is called by IRL it actually passes the largest eval of the *Chebyshev* operator (as this is the max approx used for the TestConvergence above)
//As the largest eval of the Chebyshev is typically several orders of magnitude larger this makes the convergence test pass even when it should not.
//We therefore ignore evalMaxApprox here and use a value of 1.0 (note this value is already used by TestCoarse)
int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
{ {
evalMaxApprox = 1.0; //cf above
GridBase *FineGrid = _subspace[0].Grid(); GridBase *FineGrid = _subspace[0].Grid();
int checkerboard = _subspace[0].Checkerboard(); int checkerboard = _subspace[0].Checkerboard();
FineField fB(FineGrid);fB.Checkerboard() =checkerboard; FineField fB(FineGrid);fB.Checkerboard() =checkerboard;
@ -201,13 +211,13 @@ public:
eval = vnum/vden; eval = vnum/vden;
fv -= eval*fB; fv -= eval*fB;
RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0); RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0);
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
std::cout.precision(13); std::cout.precision(13);
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] " std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")" <<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv << " target " << eresid*eresid
<<std::endl; <<std::endl;
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
if( (vv<eresid*eresid) ) return 1; if( (vv<eresid*eresid) ) return 1;
return 0; return 0;
} }
@ -285,6 +295,10 @@ public:
evals_coarse.resize(0); evals_coarse.resize(0);
}; };
//The block inner product is the inner product on the fine grid locally summed over the blocks
//to give a Lattice<Scalar> on the coarse grid. This function orthnormalizes the fine-grid subspace
//vectors under the block inner product. This step must be performed after computing the fine grid
//eigenvectors and before computing the coarse grid eigenvectors.
void Orthogonalise(void ) { void Orthogonalise(void ) {
CoarseScalar InnerProd(_CoarseGrid); CoarseScalar InnerProd(_CoarseGrid);
std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl; std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
@ -328,6 +342,8 @@ public:
} }
} }
//While this method serves to check the coarse eigenvectors, it also recomputes the eigenvalues from the smoothed reconstructed eigenvectors
//hence the smoother can be tuned after running the coarse Lanczos by using a different smoother here
void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax) void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax)
{ {
assert(evals_fine.size() == nbasis); assert(evals_fine.size() == nbasis);
@ -376,25 +392,31 @@ public:
evals_fine.resize(nbasis); evals_fine.resize(nbasis);
subspace.resize(nbasis,_FineGrid); subspace.resize(nbasis,_FineGrid);
} }
//cheby_op: Parameters of the fine grid Chebyshev polynomial used for the Lanczos acceleration
//cheby_smooth: Parameters of a separate Chebyshev polynomial used after the Lanczos has completed to smooth out high frequency noise in the reconstructed fine grid eigenvectors prior to computing the eigenvalue
//relax: Reconstructed eigenvectors (post smoothing) are naturally not as precise as true eigenvectors. This factor acts as a multiplier on the stopping condition when determining whether the results satisfy the user provided stopping condition
void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax, void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax,
int Nstop, int Nk, int Nm,RealD resid, int Nstop, int Nk, int Nm,RealD resid,
RealD MaxIt, RealD betastp, int MinRes) RealD MaxIt, RealD betastp, int MinRes)
{ {
Chebyshev<FineField> Cheby(cheby_op); Chebyshev<FineField> Cheby(cheby_op); //Chebyshev of fine operator on fine grid
ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,subspace); ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,subspace); //Fine operator on coarse grid with intermediate fine grid conversion
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace); ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace); //Chebyshev of fine operator on coarse grid with intermediate fine grid conversion
////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL // create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////
Chebyshev<FineField> ChebySmooth(cheby_smooth); Chebyshev<FineField> ChebySmooth(cheby_smooth); //lower order Chebyshev of fine operator on fine grid used to smooth regenerated eigenvectors
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax); ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax);
evals_coarse.resize(Nm); evals_coarse.resize(Nm);
evec_coarse.resize(Nm,_CoarseGrid); evec_coarse.resize(Nm,_CoarseGrid);
CoarseField src(_CoarseGrid); src=1.0; CoarseField src(_CoarseGrid); src=1.0;
//Note the "tester" here is also responsible for generating the fine grid eigenvalues which are output into the "evals_coarse" array
ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes); ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
int Nconv=0; int Nconv=0;
IRL.calc(evals_coarse,evec_coarse,src,Nconv,false); IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
@ -405,6 +427,14 @@ public:
std::cout << i << " Coarse eval = " << evals_coarse[i] << std::endl; std::cout << i << " Coarse eval = " << evals_coarse[i] << std::endl;
} }
} }
//Get the fine eigenvector 'i' by reconstruction
void getFineEvecEval(FineField &evec, RealD &eval, const int i) const{
blockPromote(evec_coarse[i],evec,subspace);
eval = evals_coarse[i];
}
}; };
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -29,6 +29,8 @@ template<class Field> class PowerMethod
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp. RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
RealD vden = norm2(src_n); RealD vden = norm2(src_n);
RealD na = vnum/vden; RealD na = vnum/vden;
std::cout << GridLogIterative << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) { if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) {
evalMaxApprox = na; evalMaxApprox = na;

View File

@ -46,3 +46,4 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/lattice/Lattice_unary.h> #include <Grid/lattice/Lattice_unary.h>
#include <Grid/lattice/Lattice_transfer.h> #include <Grid/lattice/Lattice_transfer.h>
#include <Grid/lattice/Lattice_basis.h> #include <Grid/lattice/Lattice_basis.h>
#include <Grid/lattice/Lattice_crc.h>

View File

@ -0,0 +1,42 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_crc.h
Copyright (C) 2021
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template<class vobj> uint32_t crc(Lattice<vobj> & buf)
{
autoView( buf_v , buf, CpuRead);
return ::crc32(0L,(unsigned char *)&buf_v[0],(size_t)sizeof(vobj)*buf.oSites());
}
#define CRC(U) std::cout << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
NAMESPACE_END(Grid);

View File

@ -142,15 +142,6 @@ inline typename vobj::scalar_objectD sumD(const vobj *arg, Integer osites)
return sumD_cpu(arg,osites); return sumD_cpu(arg,osites);
#endif #endif
} }
template<class vobj>
inline typename vobj::scalar_objectD sumD_large(const vobj *arg, Integer osites)
{
#if defined(GRID_CUDA)||defined(GRID_HIP)
return sumD_gpu_large(arg,osites);
#else
return sumD_cpu(arg,osites);
#endif
}
template<class vobj> template<class vobj>
inline typename vobj::scalar_object sum(const Lattice<vobj> &arg) inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
@ -168,22 +159,6 @@ inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
return ssum; return ssum;
} }
template<class vobj>
inline typename vobj::scalar_object sum_large(const Lattice<vobj> &arg)
{
#if defined(GRID_CUDA)||defined(GRID_HIP)
autoView( arg_v, arg, AcceleratorRead);
Integer osites = arg.Grid()->oSites();
auto ssum= sum_gpu_large(&arg_v[0],osites);
#else
autoView(arg_v, arg, CpuRead);
Integer osites = arg.Grid()->oSites();
auto ssum= sum_cpu(&arg_v[0],osites);
#endif
arg.Grid()->GlobalSum(ssum);
return ssum;
}
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
// Deterministic Reduction operations // Deterministic Reduction operations
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////

View File

@ -23,7 +23,7 @@ unsigned int nextPow2(Iterator x) {
} }
template <class Iterator> template <class Iterator>
int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &threads, Iterator &blocks) { void getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &threads, Iterator &blocks) {
int device; int device;
#ifdef GRID_CUDA #ifdef GRID_CUDA
@ -37,13 +37,13 @@ int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &
Iterator sharedMemPerBlock = gpu_props[device].sharedMemPerBlock; Iterator sharedMemPerBlock = gpu_props[device].sharedMemPerBlock;
Iterator maxThreadsPerBlock = gpu_props[device].maxThreadsPerBlock; Iterator maxThreadsPerBlock = gpu_props[device].maxThreadsPerBlock;
Iterator multiProcessorCount = gpu_props[device].multiProcessorCount; Iterator multiProcessorCount = gpu_props[device].multiProcessorCount;
/*
std::cout << GridLogDebug << "GPU has:" << std::endl; std::cout << GridLogDebug << "GPU has:" << std::endl;
std::cout << GridLogDebug << "\twarpSize = " << warpSize << std::endl; std::cout << GridLogDebug << "\twarpSize = " << warpSize << std::endl;
std::cout << GridLogDebug << "\tsharedMemPerBlock = " << sharedMemPerBlock << std::endl; std::cout << GridLogDebug << "\tsharedMemPerBlock = " << sharedMemPerBlock << std::endl;
std::cout << GridLogDebug << "\tmaxThreadsPerBlock = " << maxThreadsPerBlock << std::endl; std::cout << GridLogDebug << "\tmaxThreadsPerBlock = " << maxThreadsPerBlock << std::endl;
std::cout << GridLogDebug << "\tmultiProcessorCount = " << multiProcessorCount << std::endl; std::cout << GridLogDebug << "\tmultiProcessorCount = " << multiProcessorCount << std::endl;
*/
if (warpSize != WARP_SIZE) { if (warpSize != WARP_SIZE) {
std::cout << GridLogError << "The warp size of the GPU in use does not match the warp size set when compiling Grid." << std::endl; std::cout << GridLogError << "The warp size of the GPU in use does not match the warp size set when compiling Grid." << std::endl;
exit(EXIT_FAILURE); exit(EXIT_FAILURE);
@ -53,12 +53,12 @@ int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &
threads = warpSize; threads = warpSize;
if ( threads*sizeofsobj > sharedMemPerBlock ) { if ( threads*sizeofsobj > sharedMemPerBlock ) {
std::cout << GridLogError << "The object is too large for the shared memory." << std::endl; std::cout << GridLogError << "The object is too large for the shared memory." << std::endl;
return 0; exit(EXIT_FAILURE);
} }
while( 2*threads*sizeofsobj < sharedMemPerBlock && 2*threads <= maxThreadsPerBlock ) threads *= 2; while( 2*threads*sizeofsobj < sharedMemPerBlock && 2*threads <= maxThreadsPerBlock ) threads *= 2;
// keep all the streaming multiprocessors busy // keep all the streaming multiprocessors busy
blocks = nextPow2(multiProcessorCount); blocks = nextPow2(multiProcessorCount);
return 1;
} }
template <class sobj, class Iterator> template <class sobj, class Iterator>
@ -198,7 +198,7 @@ __global__ void reduceKernel(const vobj *lat, sobj *buffer, Iterator n) {
// Possibly promote to double and sum // Possibly promote to double and sum
///////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////////////
template <class vobj> template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osites) inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
{ {
typedef typename vobj::scalar_objectD sobj; typedef typename vobj::scalar_objectD sobj;
typedef decltype(lat) Iterator; typedef decltype(lat) Iterator;
@ -207,9 +207,7 @@ inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osi
Integer size = osites*nsimd; Integer size = osites*nsimd;
Integer numThreads, numBlocks; Integer numThreads, numBlocks;
int ok = getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks); getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
assert(ok);
Integer smemSize = numThreads * sizeof(sobj); Integer smemSize = numThreads * sizeof(sobj);
Vector<sobj> buffer(numBlocks); Vector<sobj> buffer(numBlocks);
@ -220,54 +218,6 @@ inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osi
auto result = buffer_v[0]; auto result = buffer_v[0];
return result; return result;
} }
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osites)
{
typedef typename vobj::vector_type vector;
typedef typename vobj::scalar_typeD scalarD;
typedef typename vobj::scalar_objectD sobj;
sobj ret;
scalarD *ret_p = (scalarD *)&ret;
const int words = sizeof(vobj)/sizeof(vector);
Vector<vector> buffer(osites);
vector *dat = (vector *)lat;
vector *buf = &buffer[0];
iScalar<vector> *tbuf =(iScalar<vector> *) &buffer[0];
for(int w=0;w<words;w++) {
accelerator_for(ss,osites,1,{
buf[ss] = dat[ss*words+w];
});
ret_p[w] = sumD_gpu_small(tbuf,osites);
}
return ret;
}
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
{
typedef typename vobj::vector_type vector;
typedef typename vobj::scalar_typeD scalarD;
typedef typename vobj::scalar_objectD sobj;
sobj ret;
Integer nsimd= vobj::Nsimd();
Integer size = osites*nsimd;
Integer numThreads, numBlocks;
int ok = getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
if ( ok ) {
ret = sumD_gpu_small(lat,osites);
} else {
ret = sumD_gpu_large(lat,osites);
}
return ret;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////////////
// Return as same precision as input performing reduction in double precision though // Return as same precision as input performing reduction in double precision though
///////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////////////
@ -280,13 +230,6 @@ inline typename vobj::scalar_object sum_gpu(const vobj *lat, Integer osites)
return result; return result;
} }
template <class vobj>
inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osites)
{
typedef typename vobj::scalar_object sobj;
sobj result;
result = sumD_gpu_large(lat,osites);
return result;
}
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -32,8 +32,9 @@
#include <random> #include <random>
#ifdef RNG_SITMO #ifdef RNG_SITMO
#include <Grid/sitmo_rng/sitmo_prng_engine.hpp> #include <Grid/random/sitmo_prng_engine.hpp>
#endif #endif
#include <Grid/random/gaussian.h>
#if defined(RNG_SITMO) #if defined(RNG_SITMO)
#define RNG_FAST_DISCARD #define RNG_FAST_DISCARD
@ -142,8 +143,8 @@ public:
std::vector<RngEngine> _generators; std::vector<RngEngine> _generators;
std::vector<std::uniform_real_distribution<RealD> > _uniform; std::vector<std::uniform_real_distribution<RealD> > _uniform;
std::vector<std::normal_distribution<RealD> > _gaussian; std::vector<Grid::gaussian_distribution<RealD> > _gaussian;
std::vector<std::discrete_distribution<int32_t> > _bernoulli; // std::vector<std::discrete_distribution<int32_t> > _bernoulli;
std::vector<std::uniform_int_distribution<uint32_t> > _uid; std::vector<std::uniform_int_distribution<uint32_t> > _uid;
/////////////////////// ///////////////////////
@ -243,8 +244,8 @@ public:
GridSerialRNG() : GridRNGbase() { GridSerialRNG() : GridRNGbase() {
_generators.resize(1); _generators.resize(1);
_uniform.resize(1,std::uniform_real_distribution<RealD>{0,1}); _uniform.resize(1,std::uniform_real_distribution<RealD>{0,1});
_gaussian.resize(1,std::normal_distribution<RealD>(0.0,1.0) ); _gaussian.resize(1,gaussian_distribution<RealD>(0.0,1.0) );
_bernoulli.resize(1,std::discrete_distribution<int32_t>{1,1}); // _bernoulli.resize(1,std::discrete_distribution<int32_t>{1,1});
_uid.resize(1,std::uniform_int_distribution<uint32_t>() ); _uid.resize(1,std::uniform_int_distribution<uint32_t>() );
} }
@ -357,8 +358,8 @@ public:
_generators.resize(_vol); _generators.resize(_vol);
_uniform.resize(_vol,std::uniform_real_distribution<RealD>{0,1}); _uniform.resize(_vol,std::uniform_real_distribution<RealD>{0,1});
_gaussian.resize(_vol,std::normal_distribution<RealD>(0.0,1.0) ); _gaussian.resize(_vol,gaussian_distribution<RealD>(0.0,1.0) );
_bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1}); // _bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
_uid.resize(_vol,std::uniform_int_distribution<uint32_t>() ); _uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
} }
@ -515,11 +516,11 @@ public:
template <class vobj> inline void random(GridParallelRNG &rng,Lattice<vobj> &l) { rng.fill(l,rng._uniform); } template <class vobj> inline void random(GridParallelRNG &rng,Lattice<vobj> &l) { rng.fill(l,rng._uniform); }
template <class vobj> inline void gaussian(GridParallelRNG &rng,Lattice<vobj> &l) { rng.fill(l,rng._gaussian); } template <class vobj> inline void gaussian(GridParallelRNG &rng,Lattice<vobj> &l) { rng.fill(l,rng._gaussian); }
template <class vobj> inline void bernoulli(GridParallelRNG &rng,Lattice<vobj> &l){ rng.fill(l,rng._bernoulli);} //template <class vobj> inline void bernoulli(GridParallelRNG &rng,Lattice<vobj> &l){ rng.fill(l,rng._bernoulli);}
template <class sobj> inline void random(GridSerialRNG &rng,sobj &l) { rng.fill(l,rng._uniform ); } template <class sobj> inline void random(GridSerialRNG &rng,sobj &l) { rng.fill(l,rng._uniform ); }
template <class sobj> inline void gaussian(GridSerialRNG &rng,sobj &l) { rng.fill(l,rng._gaussian ); } template <class sobj> inline void gaussian(GridSerialRNG &rng,sobj &l) { rng.fill(l,rng._gaussian ); }
template <class sobj> inline void bernoulli(GridSerialRNG &rng,sobj &l){ rng.fill(l,rng._bernoulli); } //template <class sobj> inline void bernoulli(GridSerialRNG &rng,sobj &l){ rng.fill(l,rng._bernoulli); }
NAMESPACE_END(Grid); NAMESPACE_END(Grid);
#endif #endif

View File

@ -855,7 +855,7 @@ void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int
template<class vobj> template<class vobj>
void Replicate(Lattice<vobj> &coarse,Lattice<vobj> & fine) void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine)
{ {
typedef typename vobj::scalar_object sobj; typedef typename vobj::scalar_object sobj;
@ -1080,54 +1080,96 @@ vectorizeFromRevLexOrdArray( std::vector<sobj> &in, Lattice<vobj> &out)
}); });
} }
//Convert a Lattice from one precision to another //The workspace for a precision change operation allowing for the reuse of the mapping to save time on subsequent calls
template<class VobjOut, class VobjIn> class precisionChangeWorkspace{
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in) std::pair<Integer,Integer>* fmap_device; //device pointer
{ public:
assert(out.Grid()->Nd() == in.Grid()->Nd()); precisionChangeWorkspace(GridBase *out_grid, GridBase *in_grid){
for(int d=0;d<out.Grid()->Nd();d++){ //Build a map between the sites and lanes of the output field and the input field as we cannot use the Grids on the device
assert(out.Grid()->FullDimensions()[d] == in.Grid()->FullDimensions()[d]); assert(out_grid->Nd() == in_grid->Nd());
} for(int d=0;d<out_grid->Nd();d++){
out.Checkerboard() = in.Checkerboard(); assert(out_grid->FullDimensions()[d] == in_grid->FullDimensions()[d]);
GridBase *in_grid=in.Grid();
GridBase *out_grid = out.Grid();
typedef typename VobjOut::scalar_object SobjOut;
typedef typename VobjIn::scalar_object SobjIn;
int ndim = out.Grid()->Nd();
int out_nsimd = out_grid->Nsimd();
std::vector<Coordinate > out_icoor(out_nsimd);
for(int lane=0; lane < out_nsimd; lane++){
out_icoor[lane].resize(ndim);
out_grid->iCoorFromIindex(out_icoor[lane], lane);
}
std::vector<SobjOut> in_slex_conv(in_grid->lSites());
unvectorizeToLexOrdArray(in_slex_conv, in);
autoView( out_v , out, CpuWrite);
thread_for(out_oidx,out_grid->oSites(),{
Coordinate out_ocoor(ndim);
out_grid->oCoorFromOindex(out_ocoor, out_oidx);
ExtractPointerArray<SobjOut> ptrs(out_nsimd);
Coordinate lcoor(out_grid->Nd());
for(int lane=0; lane < out_nsimd; lane++){
for(int mu=0;mu<ndim;mu++)
lcoor[mu] = out_ocoor[mu] + out_grid->_rdimensions[mu]*out_icoor[lane][mu];
int llex; Lexicographic::IndexFromCoor(lcoor, llex, out_grid->_ldimensions);
ptrs[lane] = &in_slex_conv[llex];
} }
merge(out_v[out_oidx], ptrs, 0); int Nsimd_out = out_grid->Nsimd();
});
std::vector<Coordinate> out_icorrs(out_grid->Nsimd()); //reuse these
for(int lane=0; lane < out_grid->Nsimd(); lane++)
out_grid->iCoorFromIindex(out_icorrs[lane], lane);
std::vector<std::pair<Integer,Integer> > fmap_host(out_grid->lSites()); //lsites = osites*Nsimd
thread_for(out_oidx,out_grid->oSites(),{
Coordinate out_ocorr;
out_grid->oCoorFromOindex(out_ocorr, out_oidx);
Coordinate lcorr; //the local coordinate (common to both in and out as full coordinate)
for(int out_lane=0; out_lane < Nsimd_out; out_lane++){
out_grid->InOutCoorToLocalCoor(out_ocorr, out_icorrs[out_lane], lcorr);
//int in_oidx = in_grid->oIndex(lcorr), in_lane = in_grid->iIndex(lcorr);
//Note oIndex and OcorrFromOindex (and same for iIndex) are not inverse for checkerboarded lattice, the former coordinates being defined on the full lattice and the latter on the reduced lattice
//Until this is fixed we need to circumvent the problem locally. Here I will use the coordinates defined on the reduced lattice for simplicity
int in_oidx = 0, in_lane = 0;
for(int d=0;d<in_grid->_ndimension;d++){
in_oidx += in_grid->_ostride[d] * ( lcorr[d] % in_grid->_rdimensions[d] );
in_lane += in_grid->_istride[d] * ( lcorr[d] / in_grid->_rdimensions[d] );
}
fmap_host[out_lane + Nsimd_out*out_oidx] = std::pair<Integer,Integer>( in_oidx, in_lane );
}
});
//Copy the map to the device (if we had a way to tell if an accelerator is in use we could avoid this copy for CPU-only machines)
size_t fmap_bytes = out_grid->lSites() * sizeof(std::pair<Integer,Integer>);
fmap_device = (std::pair<Integer,Integer>*)acceleratorAllocDevice(fmap_bytes);
acceleratorCopyToDevice(fmap_host.data(), fmap_device, fmap_bytes);
}
//Prevent moving or copying
precisionChangeWorkspace(const precisionChangeWorkspace &r) = delete;
precisionChangeWorkspace(precisionChangeWorkspace &&r) = delete;
precisionChangeWorkspace &operator=(const precisionChangeWorkspace &r) = delete;
precisionChangeWorkspace &operator=(precisionChangeWorkspace &&r) = delete;
std::pair<Integer,Integer> const* getMap() const{ return fmap_device; }
~precisionChangeWorkspace(){
acceleratorFreeDevice(fmap_device);
}
};
//Convert a lattice of one precision to another. The input workspace contains the mapping data.
template<class VobjOut, class VobjIn>
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in, const precisionChangeWorkspace &workspace){
static_assert( std::is_same<typename VobjOut::DoublePrecision, typename VobjIn::DoublePrecision>::value == 1, "copyLane: tensor types must be the same" ); //if tensor types are same the DoublePrecision type must be the same
out.Checkerboard() = in.Checkerboard();
constexpr int Nsimd_out = VobjOut::Nsimd();
std::pair<Integer,Integer> const* fmap_device = workspace.getMap();
//Do the copy/precision change
autoView( out_v , out, AcceleratorWrite);
autoView( in_v , in, AcceleratorRead);
accelerator_for(out_oidx, out.Grid()->oSites(), 1,{
std::pair<Integer,Integer> const* fmap_osite = fmap_device + out_oidx*Nsimd_out;
for(int out_lane=0; out_lane < Nsimd_out; out_lane++){
int in_oidx = fmap_osite[out_lane].first;
int in_lane = fmap_osite[out_lane].second;
copyLane(out_v[out_oidx], out_lane, in_v[in_oidx], in_lane);
}
});
} }
//Convert a Lattice from one precision to another
//Generate the workspace in place; if multiple calls with the same mapping are performed, consider pregenerating the workspace and reusing
template<class VobjOut, class VobjIn>
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in){
precisionChangeWorkspace workspace(out.Grid(), in.Grid());
precisionChange(out, in, workspace);
}
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
// Communicate between grids // Communicate between grids
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////

View File

@ -69,6 +69,7 @@ GridLogger GridLogDebug (1, "Debug", GridLogColours, "PURPLE");
GridLogger GridLogPerformance(1, "Performance", GridLogColours, "GREEN"); GridLogger GridLogPerformance(1, "Performance", GridLogColours, "GREEN");
GridLogger GridLogIterative (1, "Iterative", GridLogColours, "BLUE"); GridLogger GridLogIterative (1, "Iterative", GridLogColours, "BLUE");
GridLogger GridLogIntegrator (1, "Integrator", GridLogColours, "BLUE"); GridLogger GridLogIntegrator (1, "Integrator", GridLogColours, "BLUE");
GridLogger GridLogHMC (1, "HMC", GridLogColours, "BLUE");
void GridLogConfigure(std::vector<std::string> &logstreams) { void GridLogConfigure(std::vector<std::string> &logstreams) {
GridLogError.Active(0); GridLogError.Active(0);
@ -79,6 +80,7 @@ void GridLogConfigure(std::vector<std::string> &logstreams) {
GridLogPerformance.Active(0); GridLogPerformance.Active(0);
GridLogIntegrator.Active(1); GridLogIntegrator.Active(1);
GridLogColours.Active(0); GridLogColours.Active(0);
GridLogHMC.Active(1);
for (int i = 0; i < logstreams.size(); i++) { for (int i = 0; i < logstreams.size(); i++) {
if (logstreams[i] == std::string("Error")) GridLogError.Active(1); if (logstreams[i] == std::string("Error")) GridLogError.Active(1);
@ -87,7 +89,8 @@ void GridLogConfigure(std::vector<std::string> &logstreams) {
if (logstreams[i] == std::string("Iterative")) GridLogIterative.Active(1); if (logstreams[i] == std::string("Iterative")) GridLogIterative.Active(1);
if (logstreams[i] == std::string("Debug")) GridLogDebug.Active(1); if (logstreams[i] == std::string("Debug")) GridLogDebug.Active(1);
if (logstreams[i] == std::string("Performance")) GridLogPerformance.Active(1); if (logstreams[i] == std::string("Performance")) GridLogPerformance.Active(1);
if (logstreams[i] == std::string("Integrator")) GridLogIntegrator.Active(1); if (logstreams[i] == std::string("NoIntegrator")) GridLogIntegrator.Active(0);
if (logstreams[i] == std::string("NoHMC")) GridLogHMC.Active(0);
if (logstreams[i] == std::string("Colours")) GridLogColours.Active(1); if (logstreams[i] == std::string("Colours")) GridLogColours.Active(1);
} }
} }

View File

@ -182,6 +182,7 @@ extern GridLogger GridLogDebug ;
extern GridLogger GridLogPerformance; extern GridLogger GridLogPerformance;
extern GridLogger GridLogIterative ; extern GridLogger GridLogIterative ;
extern GridLogger GridLogIntegrator ; extern GridLogger GridLogIntegrator ;
extern GridLogger GridLogHMC;
extern Colours GridLogColours; extern Colours GridLogColours;
std::string demangle(const char* name) ; std::string demangle(const char* name) ;

View File

@ -31,7 +31,6 @@ directory
#include <fstream> #include <fstream>
#include <iomanip> #include <iomanip>
#include <iostream> #include <iostream>
#include <string>
#include <map> #include <map>
#include <pwd.h> #include <pwd.h>
@ -655,8 +654,7 @@ class IldgWriter : public ScidacWriter {
// Fill ILDG header data struct // Fill ILDG header data struct
////////////////////////////////////////////////////// //////////////////////////////////////////////////////
ildgFormat ildgfmt ; ildgFormat ildgfmt ;
const std::string stNC = std::to_string( Nc ) ; ildgfmt.field = std::string("su3gauge");
ildgfmt.field = std::string("su"+stNC+"gauge");
if ( format == std::string("IEEE32BIG") ) { if ( format == std::string("IEEE32BIG") ) {
ildgfmt.precision = 32; ildgfmt.precision = 32;
@ -873,8 +871,7 @@ class IldgReader : public GridLimeReader {
} else { } else {
assert(found_ildgFormat); assert(found_ildgFormat);
const std::string stNC = std::to_string( Nc ) ; assert ( ildgFormat_.field == std::string("su3gauge") );
assert ( ildgFormat_.field == std::string("su"+stNC+"gauge") );
/////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////
// Populate our Grid metadata as best we can // Populate our Grid metadata as best we can
@ -882,7 +879,7 @@ class IldgReader : public GridLimeReader {
std::ostringstream vers; vers << ildgFormat_.version; std::ostringstream vers; vers << ildgFormat_.version;
FieldMetaData_.hdr_version = vers.str(); FieldMetaData_.hdr_version = vers.str();
FieldMetaData_.data_type = std::string("4D_SU"+stNC+"_GAUGE_"+stNC+"x"+stNC); FieldMetaData_.data_type = std::string("4D_SU3_GAUGE_3X3");
FieldMetaData_.nd=4; FieldMetaData_.nd=4;
FieldMetaData_.dimension.resize(4); FieldMetaData_.dimension.resize(4);

View File

@ -6,8 +6,8 @@
Copyright (C) 2015 Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk> Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Jamie Hudspith <renwick.james.hudspth@gmail.com>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
@ -182,8 +182,8 @@ class GaugeStatistics
public: public:
void operator()(Lattice<vLorentzColourMatrixD> & data,FieldMetaData &header) void operator()(Lattice<vLorentzColourMatrixD> & data,FieldMetaData &header)
{ {
header.link_trace = WilsonLoops<Impl>::linkTrace(data); header.link_trace=WilsonLoops<Impl>::linkTrace(data);
header.plaquette = WilsonLoops<Impl>::avgPlaquette(data); header.plaquette =WilsonLoops<Impl>::avgPlaquette(data);
} }
}; };
typedef GaugeStatistics<PeriodicGimplD> PeriodicGaugeStatistics; typedef GaugeStatistics<PeriodicGimplD> PeriodicGaugeStatistics;
@ -203,24 +203,20 @@ template<> inline void PrepareMetaData<vLorentzColourMatrixD>(Lattice<vLorentzCo
////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////
inline void reconstruct3(LorentzColourMatrix & cm) inline void reconstruct3(LorentzColourMatrix & cm)
{ {
assert( Nc < 4 && Nc > 1 ) ; const int x=0;
const int y=1;
const int z=2;
for(int mu=0;mu<Nd;mu++){ for(int mu=0;mu<Nd;mu++){
#if Nc == 2 cm(mu)()(2,x) = adj(cm(mu)()(0,y)*cm(mu)()(1,z)-cm(mu)()(0,z)*cm(mu)()(1,y)); //x= yz-zy
cm(mu)()(1,0) = -adj(cm(mu)()(0,y)) ; cm(mu)()(2,y) = adj(cm(mu)()(0,z)*cm(mu)()(1,x)-cm(mu)()(0,x)*cm(mu)()(1,z)); //y= zx-xz
cm(mu)()(1,1) = adj(cm(mu)()(0,x)) ; cm(mu)()(2,z) = adj(cm(mu)()(0,x)*cm(mu)()(1,y)-cm(mu)()(0,y)*cm(mu)()(1,x)); //z= xy-yx
#else
const int x=0 , y=1 , z=2 ; // a little disinenuous labelling
cm(mu)()(2,x) = adj(cm(mu)()(0,y)*cm(mu)()(1,z)-cm(mu)()(0,z)*cm(mu)()(1,y)); //x= yz-zy
cm(mu)()(2,y) = adj(cm(mu)()(0,z)*cm(mu)()(1,x)-cm(mu)()(0,x)*cm(mu)()(1,z)); //y= zx-xz
cm(mu)()(2,z) = adj(cm(mu)()(0,x)*cm(mu)()(1,y)-cm(mu)()(0,y)*cm(mu)()(1,x)); //z= xy-yx
#endif
} }
} }
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
// Some data types for intermediate storage // Some data types for intermediate storage
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
template<typename vtype> using iLorentzColour2x3 = iVector<iVector<iVector<vtype, Nc>, Nc-1>, Nd >; template<typename vtype> using iLorentzColour2x3 = iVector<iVector<iVector<vtype, Nc>, 2>, Nd >;
typedef iLorentzColour2x3<Complex> LorentzColour2x3; typedef iLorentzColour2x3<Complex> LorentzColour2x3;
typedef iLorentzColour2x3<ComplexF> LorentzColour2x3F; typedef iLorentzColour2x3<ComplexF> LorentzColour2x3F;
@ -282,6 +278,7 @@ struct GaugeSimpleMunger{
template <class fobj, class sobj> template <class fobj, class sobj>
struct GaugeSimpleUnmunger { struct GaugeSimpleUnmunger {
void operator()(sobj &in, fobj &out) { void operator()(sobj &in, fobj &out) {
for (int mu = 0; mu < Nd; mu++) { for (int mu = 0; mu < Nd; mu++) {
for (int i = 0; i < Nc; i++) { for (int i = 0; i < Nc; i++) {
@ -320,8 +317,8 @@ template<class fobj,class sobj>
struct Gauge3x2munger{ struct Gauge3x2munger{
void operator() (fobj &in,sobj &out){ void operator() (fobj &in,sobj &out){
for(int mu=0;mu<Nd;mu++){ for(int mu=0;mu<Nd;mu++){
for(int i=0;i<Nc-1;i++){ for(int i=0;i<2;i++){
for(int j=0;j<Nc;j++){ for(int j=0;j<3;j++){
out(mu)()(i,j) = in(mu)(i)(j); out(mu)()(i,j) = in(mu)(i)(j);
}} }}
} }
@ -333,8 +330,8 @@ template<class fobj,class sobj>
struct Gauge3x2unmunger{ struct Gauge3x2unmunger{
void operator() (sobj &in,fobj &out){ void operator() (sobj &in,fobj &out){
for(int mu=0;mu<Nd;mu++){ for(int mu=0;mu<Nd;mu++){
for(int i=0;i<Nc-1;i++){ for(int i=0;i<2;i++){
for(int j=0;j<Nc;j++){ for(int j=0;j<3;j++){
out(mu)(i)(j) = in(mu)()(i,j); out(mu)(i)(j) = in(mu)()(i,j);
}} }}
} }

View File

@ -9,7 +9,6 @@
Author: Matt Spraggs <matthew.spraggs@gmail.com> Author: Matt Spraggs <matthew.spraggs@gmail.com>
Author: Peter Boyle <paboyle@ph.ed.ac.uk> Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk> Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Jamie Hudspith <renwick.james.hudspth@gmail.com>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
@ -31,8 +30,6 @@
#ifndef GRID_NERSC_IO_H #ifndef GRID_NERSC_IO_H
#define GRID_NERSC_IO_H #define GRID_NERSC_IO_H
#include <string>
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
using namespace Grid; using namespace Grid;
@ -42,9 +39,11 @@ using namespace Grid;
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
class NerscIO : public BinaryIO { class NerscIO : public BinaryIO {
public: public:
typedef Lattice<vLorentzColourMatrixD> GaugeField; typedef Lattice<vLorentzColourMatrixD> GaugeField;
// Enable/disable exiting if the plaquette in the header does not match the value computed (default true)
static bool & exitOnReadPlaquetteMismatch(){ static bool v=true; return v; }
static inline void truncate(std::string file){ static inline void truncate(std::string file){
std::ofstream fout(file,std::ios::out); std::ofstream fout(file,std::ios::out);
} }
@ -148,17 +147,15 @@ public:
std::string format(header.floating_point); std::string format(header.floating_point);
const int ieee32big = (format == std::string("IEEE32BIG")); int ieee32big = (format == std::string("IEEE32BIG"));
const int ieee32 = (format == std::string("IEEE32")); int ieee32 = (format == std::string("IEEE32"));
const int ieee64big = (format == std::string("IEEE64BIG")); int ieee64big = (format == std::string("IEEE64BIG"));
const int ieee64 = (format == std::string("IEEE64") || \ int ieee64 = (format == std::string("IEEE64") || format == std::string("IEEE64LITTLE"));
format == std::string("IEEE64LITTLE"));
uint32_t nersc_csum,scidac_csuma,scidac_csumb; uint32_t nersc_csum,scidac_csuma,scidac_csumb;
// depending on datatype, set up munger; // depending on datatype, set up munger;
// munger is a function of <floating point, Real, data_type> // munger is a function of <floating point, Real, data_type>
const std::string stNC = std::to_string( Nc ) ; if ( header.data_type == std::string("4D_SU3_GAUGE") ) {
if ( header.data_type == std::string("4D_SU"+stNC+"_GAUGE") ) {
if ( ieee32 || ieee32big ) { if ( ieee32 || ieee32big ) {
BinaryIO::readLatticeObject<vLorentzColourMatrixD, LorentzColour2x3F> BinaryIO::readLatticeObject<vLorentzColourMatrixD, LorentzColour2x3F>
(Umu,file,Gauge3x2munger<LorentzColour2x3F,LorentzColourMatrix>(), offset,format, (Umu,file,Gauge3x2munger<LorentzColour2x3F,LorentzColourMatrix>(), offset,format,
@ -169,7 +166,7 @@ public:
(Umu,file,Gauge3x2munger<LorentzColour2x3D,LorentzColourMatrix>(),offset,format, (Umu,file,Gauge3x2munger<LorentzColour2x3D,LorentzColourMatrix>(),offset,format,
nersc_csum,scidac_csuma,scidac_csumb); nersc_csum,scidac_csuma,scidac_csumb);
} }
} else if ( header.data_type == std::string("4D_SU"+stNC+"_GAUGE_"+stNC+"x"+stNC) ) { } else if ( header.data_type == std::string("4D_SU3_GAUGE_3x3") ) {
if ( ieee32 || ieee32big ) { if ( ieee32 || ieee32big ) {
BinaryIO::readLatticeObject<vLorentzColourMatrixD,LorentzColourMatrixF> BinaryIO::readLatticeObject<vLorentzColourMatrixD,LorentzColourMatrixF>
(Umu,file,GaugeSimpleMunger<LorentzColourMatrixF,LorentzColourMatrix>(),offset,format, (Umu,file,GaugeSimpleMunger<LorentzColourMatrixF,LorentzColourMatrix>(),offset,format,
@ -203,7 +200,7 @@ public:
std::cerr << " nersc_csum " <<std::hex<< nersc_csum << " " << header.checksum<< std::dec<< std::endl; std::cerr << " nersc_csum " <<std::hex<< nersc_csum << " " << header.checksum<< std::dec<< std::endl;
exit(0); exit(0);
} }
assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 ); if(exitOnReadPlaquetteMismatch()) assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
assert(fabs(clone.link_trace-header.link_trace) < 1.0e-6 ); assert(fabs(clone.link_trace-header.link_trace) < 1.0e-6 );
assert(nersc_csum == header.checksum ); assert(nersc_csum == header.checksum );
@ -214,29 +211,27 @@ public:
template<class GaugeStats=PeriodicGaugeStatistics> template<class GaugeStats=PeriodicGaugeStatistics>
static inline void writeConfiguration(Lattice<vLorentzColourMatrixD > &Umu, static inline void writeConfiguration(Lattice<vLorentzColourMatrixD > &Umu,
std::string file, std::string file,
std::string ens_label = std::string("DWF"), std::string ens_label = std::string("DWF"))
std::string ens_id = std::string("UKQCD"),
unsigned int sequence_number = 1)
{ {
writeConfiguration(Umu,file,0,1,ens_label,ens_id,sequence_number); writeConfiguration(Umu,file,0,1,ens_label);
} }
template<class GaugeStats=PeriodicGaugeStatistics> template<class GaugeStats=PeriodicGaugeStatistics>
static inline void writeConfiguration(Lattice<vLorentzColourMatrixD > &Umu, static inline void writeConfiguration(Lattice<vLorentzColourMatrixD > &Umu,
std::string file, std::string file,
int two_row, int two_row,
int bits32, int bits32,
std::string ens_label = std::string("DWF"), std::string ens_label = std::string("DWF"))
std::string ens_id = std::string("UKQCD"),
unsigned int sequence_number = 1)
{ {
typedef vLorentzColourMatrixD vobj; typedef vLorentzColourMatrixD vobj;
typedef typename vobj::scalar_object sobj; typedef typename vobj::scalar_object sobj;
FieldMetaData header; FieldMetaData header;
header.sequence_number = sequence_number; ///////////////////////////////////////////
header.ensemble_id = ens_id; // Following should become arguments
///////////////////////////////////////////
header.sequence_number = 1;
header.ensemble_id = std::string("UKQCD");
header.ensemble_label = ens_label; header.ensemble_label = ens_label;
header.hdr_version = "1.0" ;
typedef LorentzColourMatrixD fobj3D; typedef LorentzColourMatrixD fobj3D;
typedef LorentzColour2x3D fobj2D; typedef LorentzColour2x3D fobj2D;
@ -250,14 +245,10 @@ public:
uint64_t offset; uint64_t offset;
// Sod it -- always write NcxNc double // Sod it -- always write 3x3 double
header.floating_point = std::string("IEEE64BIG"); header.floating_point = std::string("IEEE64BIG");
const std::string stNC = std::to_string( Nc ) ; header.data_type = std::string("4D_SU3_GAUGE_3x3");
if( two_row ) { GaugeSimpleUnmunger<fobj3D,sobj> munge;
header.data_type = std::string("4D_SU" + stNC + "_GAUGE" );
} else {
header.data_type = std::string("4D_SU" + stNC + "_GAUGE_" + stNC + "x" + stNC );
}
if ( grid->IsBoss() ) { if ( grid->IsBoss() ) {
truncate(file); truncate(file);
offset = writeHeader(header,file); offset = writeHeader(header,file);
@ -265,15 +256,8 @@ public:
grid->Broadcast(0,(void *)&offset,sizeof(offset)); grid->Broadcast(0,(void *)&offset,sizeof(offset));
uint32_t nersc_csum,scidac_csuma,scidac_csumb; uint32_t nersc_csum,scidac_csuma,scidac_csumb;
if( two_row ) { BinaryIO::writeLatticeObject<vobj,fobj3D>(Umu,file,munge,offset,header.floating_point,
Gauge3x2unmunger<fobj2D,sobj> munge; nersc_csum,scidac_csuma,scidac_csumb);
BinaryIO::writeLatticeObject<vobj,fobj2D>(Umu,file,munge,offset,header.floating_point,
nersc_csum,scidac_csuma,scidac_csumb);
} else {
GaugeSimpleUnmunger<fobj3D,sobj> munge;
BinaryIO::writeLatticeObject<vobj,fobj3D>(Umu,file,munge,offset,header.floating_point,
nersc_csum,scidac_csuma,scidac_csumb);
}
header.checksum = nersc_csum; header.checksum = nersc_csum;
if ( grid->IsBoss() ) { if ( grid->IsBoss() ) {
writeHeader(header,file); writeHeader(header,file);
@ -305,7 +289,8 @@ public:
header.plaquette=0.0; header.plaquette=0.0;
MachineCharacteristics(header); MachineCharacteristics(header);
uint64_t offset; uint64_t offset;
#ifdef RNG_RANLUX #ifdef RNG_RANLUX
header.floating_point = std::string("UINT64"); header.floating_point = std::string("UINT64");
header.data_type = std::string("RANLUX48"); header.data_type = std::string("RANLUX48");
@ -345,7 +330,7 @@ public:
GridBase *grid = parallel.Grid(); GridBase *grid = parallel.Grid();
uint64_t offset = readHeader(file,grid,header); uint64_t offset = readHeader(file,grid,header);
FieldMetaData clone(header); FieldMetaData clone(header);

View File

@ -63,6 +63,7 @@ static constexpr int Ngp=2; // gparity index range
#define ColourIndex (2) #define ColourIndex (2)
#define SpinIndex (1) #define SpinIndex (1)
#define LorentzIndex (0) #define LorentzIndex (0)
#define GparityFlavourIndex (0)
// Also should make these a named enum type // Also should make these a named enum type
static constexpr int DaggerNo=0; static constexpr int DaggerNo=0;
@ -87,6 +88,8 @@ template<typename T> struct isCoarsened {
template <typename T> using IfCoarsened = Invoke<std::enable_if< isCoarsened<T>::value,int> > ; template <typename T> using IfCoarsened = Invoke<std::enable_if< isCoarsened<T>::value,int> > ;
template <typename T> using IfNotCoarsened = Invoke<std::enable_if<!isCoarsened<T>::value,int> > ; template <typename T> using IfNotCoarsened = Invoke<std::enable_if<!isCoarsened<T>::value,int> > ;
const int GparityFlavourTensorIndex = 3; //TensorLevel counts from the bottom!
// ChrisK very keen to add extra space for Gparity doubling. // ChrisK very keen to add extra space for Gparity doubling.
// //
// Also add domain wall index, in a way where Wilson operator // Also add domain wall index, in a way where Wilson operator
@ -110,8 +113,10 @@ template<typename vtype> using iHalfSpinColourVector = iScalar<iVector<iVec
template<typename vtype> using iSpinColourSpinColourMatrix = iScalar<iMatrix<iMatrix<iMatrix<iMatrix<vtype, Nc>, Ns>, Nc>, Ns> >; template<typename vtype> using iSpinColourSpinColourMatrix = iScalar<iMatrix<iMatrix<iMatrix<iMatrix<vtype, Nc>, Ns>, Nc>, Ns> >;
template<typename vtype> using iGparityFlavourVector = iVector<iScalar<iScalar<vtype> >, Ngp>;
template<typename vtype> using iGparitySpinColourVector = iVector<iVector<iVector<vtype, Nc>, Ns>, Ngp >; template<typename vtype> using iGparitySpinColourVector = iVector<iVector<iVector<vtype, Nc>, Ns>, Ngp >;
template<typename vtype> using iGparityHalfSpinColourVector = iVector<iVector<iVector<vtype, Nc>, Nhs>, Ngp >; template<typename vtype> using iGparityHalfSpinColourVector = iVector<iVector<iVector<vtype, Nc>, Nhs>, Ngp >;
template<typename vtype> using iGparityFlavourMatrix = iMatrix<iScalar<iScalar<vtype> >, Ngp>;
// Spin matrix // Spin matrix
typedef iSpinMatrix<Complex > SpinMatrix; typedef iSpinMatrix<Complex > SpinMatrix;
@ -176,6 +181,16 @@ typedef iDoubleStoredColourMatrix<vComplex > vDoubleStoredColourMatrix;
typedef iDoubleStoredColourMatrix<vComplexF> vDoubleStoredColourMatrixF; typedef iDoubleStoredColourMatrix<vComplexF> vDoubleStoredColourMatrixF;
typedef iDoubleStoredColourMatrix<vComplexD> vDoubleStoredColourMatrixD; typedef iDoubleStoredColourMatrix<vComplexD> vDoubleStoredColourMatrixD;
//G-parity flavour matrix
typedef iGparityFlavourMatrix<Complex> GparityFlavourMatrix;
typedef iGparityFlavourMatrix<ComplexF> GparityFlavourMatrixF;
typedef iGparityFlavourMatrix<ComplexD> GparityFlavourMatrixD;
typedef iGparityFlavourMatrix<vComplex> vGparityFlavourMatrix;
typedef iGparityFlavourMatrix<vComplexF> vGparityFlavourMatrixF;
typedef iGparityFlavourMatrix<vComplexD> vGparityFlavourMatrixD;
// Spin vector // Spin vector
typedef iSpinVector<Complex > SpinVector; typedef iSpinVector<Complex > SpinVector;
typedef iSpinVector<ComplexF> SpinVectorF; typedef iSpinVector<ComplexF> SpinVectorF;
@ -220,6 +235,16 @@ typedef iHalfSpinColourVector<ComplexD> HalfSpinColourVectorD;
typedef iHalfSpinColourVector<vComplex > vHalfSpinColourVector; typedef iHalfSpinColourVector<vComplex > vHalfSpinColourVector;
typedef iHalfSpinColourVector<vComplexF> vHalfSpinColourVectorF; typedef iHalfSpinColourVector<vComplexF> vHalfSpinColourVectorF;
typedef iHalfSpinColourVector<vComplexD> vHalfSpinColourVectorD; typedef iHalfSpinColourVector<vComplexD> vHalfSpinColourVectorD;
//G-parity flavour vector
typedef iGparityFlavourVector<Complex > GparityFlavourVector;
typedef iGparityFlavourVector<ComplexF> GparityFlavourVectorF;
typedef iGparityFlavourVector<ComplexD> GparityFlavourVectorD;
typedef iGparityFlavourVector<vComplex > vGparityFlavourVector;
typedef iGparityFlavourVector<vComplexF> vGparityFlavourVectorF;
typedef iGparityFlavourVector<vComplexD> vGparityFlavourVectorD;
// singlets // singlets
typedef iSinglet<Complex > TComplex; // FIXME This is painful. Tensor singlet complex type. typedef iSinglet<Complex > TComplex; // FIXME This is painful. Tensor singlet complex type.

View File

@ -36,7 +36,8 @@ NAMESPACE_BEGIN(Grid);
// These can move into a params header and be given MacroMagic serialisation // These can move into a params header and be given MacroMagic serialisation
struct GparityWilsonImplParams { struct GparityWilsonImplParams {
Coordinate twists; Coordinate twists; //Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction.
//mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
GparityWilsonImplParams() : twists(Nd, 0) {}; GparityWilsonImplParams() : twists(Nd, 0) {};
}; };
@ -65,7 +66,8 @@ struct StaggeredImplParams {
RealD, tolerance, RealD, tolerance,
int, degree, int, degree,
int, precision, int, precision,
int, BoundsCheckFreq); int, BoundsCheckFreq,
RealD, BoundsCheckTol);
// MaxIter and tolerance, vectors?? // MaxIter and tolerance, vectors??
@ -76,15 +78,61 @@ struct StaggeredImplParams {
RealD tol = 1.0e-8, RealD tol = 1.0e-8,
int _degree = 10, int _degree = 10,
int _precision = 64, int _precision = 64,
int _BoundsCheckFreq=20) int _BoundsCheckFreq=20,
double _BoundsCheckTol=1e-6)
: lo(_lo), : lo(_lo),
hi(_hi), hi(_hi),
MaxIter(_maxit), MaxIter(_maxit),
tolerance(tol), tolerance(tol),
degree(_degree), degree(_degree),
precision(_precision), precision(_precision),
BoundsCheckFreq(_BoundsCheckFreq){}; BoundsCheckFreq(_BoundsCheckFreq),
BoundsCheckTol(_BoundsCheckTol){};
}; };
/*Action parameters for the generalized rational action
The approximation is for (M^dag M)^{1/inv_pow}
where inv_pow is the denominator of the fractional power.
Default inv_pow=2 for square root, making this equivalent to
the OneFlavourRational action
*/
struct RationalActionParams : Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(RationalActionParams,
int, inv_pow,
RealD, lo, //low eigenvalue bound of rational approx
RealD, hi, //high eigenvalue bound of rational approx
int, MaxIter, //maximum iterations in msCG
RealD, action_tolerance, //msCG tolerance in action evaluation
int, action_degree, //rational approx tolerance in action evaluation
RealD, md_tolerance, //msCG tolerance in MD integration
int, md_degree, //rational approx tolerance in MD integration
int, precision, //precision of floating point arithmetic
int, BoundsCheckFreq); //frequency the approximation is tested (with Metropolis degree/tolerance); 0 disables the check
// constructor
RationalActionParams(int _inv_pow = 2,
RealD _lo = 0.0,
RealD _hi = 1.0,
int _maxit = 1000,
RealD _action_tolerance = 1.0e-8,
int _action_degree = 10,
RealD _md_tolerance = 1.0e-8,
int _md_degree = 10,
int _precision = 64,
int _BoundsCheckFreq=20)
: inv_pow(_inv_pow),
lo(_lo),
hi(_hi),
MaxIter(_maxit),
action_tolerance(_action_tolerance),
action_degree(_action_degree),
md_tolerance(_md_tolerance),
md_degree(_md_degree),
precision(_precision),
BoundsCheckFreq(_BoundsCheckFreq){};
};
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -68,16 +68,9 @@ public:
/////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////
// Support for MADWF tricks // Support for MADWF tricks
/////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////
RealD Mass(void) { return (mass_plus + mass_minus) / 2.0; }; RealD Mass(void) { return mass; };
RealD MassPlus(void) { return mass_plus; };
RealD MassMinus(void) { return mass_minus; };
void SetMass(RealD _mass) { void SetMass(RealD _mass) {
mass_plus=mass_minus=_mass; mass=_mass;
SetCoefficientsInternal(_zolo_hi,_gamma,_b,_c); // Reset coeffs
} ;
void SetMass(RealD _mass_plus, RealD _mass_minus) {
mass_plus=_mass_plus;
mass_minus=_mass_minus;
SetCoefficientsInternal(_zolo_hi,_gamma,_b,_c); // Reset coeffs SetCoefficientsInternal(_zolo_hi,_gamma,_b,_c); // Reset coeffs
} ; } ;
void P(const FermionField &psi, FermionField &chi); void P(const FermionField &psi, FermionField &chi);
@ -115,7 +108,7 @@ public:
void MeooeDag5D (const FermionField &in, FermionField &out); void MeooeDag5D (const FermionField &in, FermionField &out);
// protected: // protected:
RealD mass_plus, mass_minus; RealD mass;
// Save arguments to SetCoefficientsInternal // Save arguments to SetCoefficientsInternal
Vector<Coeff_t> _gamma; Vector<Coeff_t> _gamma;

View File

@ -1,433 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonCloverFermionImplementation.h
Copyright (C) 2017 - 2022
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
Author: Mattia Bruno <mattia.bruno@cern.ch>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/Grid.h>
#include <Grid/qcd/spin/Dirac.h>
#include <Grid/qcd/action/fermion/WilsonCloverHelpers.h>
////////////////////////////////////////////
// Standard Clover
// (4+m0) + csw * clover_term
// Exp Clover
// (4+m0) * exp(csw/(4+m0) clover_term)
// = (4+m0) + csw * clover_term + ...
////////////////////////////////////////////
NAMESPACE_BEGIN(Grid);
//////////////////////////////////
// Generic Standard Clover
//////////////////////////////////
template<class Impl>
class CloverHelpers: public WilsonCloverHelpers<Impl> {
public:
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
typedef WilsonCloverHelpers<Impl> Helpers;
static void Instantiate(CloverField& CloverTerm, CloverField& CloverTermInv, RealD csw_t, RealD diag_mass) {
GridBase *grid = CloverTerm.Grid();
CloverTerm += diag_mass;
int lvol = grid->lSites();
int DimRep = Impl::Dimension;
{
autoView(CTv,CloverTerm,CpuRead);
autoView(CTIv,CloverTermInv,CpuWrite);
thread_for(site, lvol, {
Coordinate lcoor;
grid->LocalIndexToLocalCoor(site, lcoor);
Eigen::MatrixXcd EigenCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
Eigen::MatrixXcd EigenInvCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
typename SiteClover::scalar_object Qx = Zero(), Qxinv = Zero();
peekLocalSite(Qx, CTv, lcoor);
for (int j = 0; j < Ns; j++)
for (int k = 0; k < Ns; k++)
for (int a = 0; a < DimRep; a++)
for (int b = 0; b < DimRep; b++){
auto zz = Qx()(j, k)(a, b);
EigenCloverOp(a + j * DimRep, b + k * DimRep) = std::complex<double>(zz);
}
EigenInvCloverOp = EigenCloverOp.inverse();
for (int j = 0; j < Ns; j++)
for (int k = 0; k < Ns; k++)
for (int a = 0; a < DimRep; a++)
for (int b = 0; b < DimRep; b++)
Qxinv()(j, k)(a, b) = EigenInvCloverOp(a + j * DimRep, b + k * DimRep);
pokeLocalSite(Qxinv, CTIv, lcoor);
});
}
}
static GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu) {
return Helpers::Cmunu(U, lambda, mu, nu);
}
};
//////////////////////////////////
// Generic Exp Clover
//////////////////////////////////
template<class Impl>
class ExpCloverHelpers: public WilsonCloverHelpers<Impl> {
public:
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
template <typename vtype> using iImplClover = iScalar<iMatrix<iMatrix<vtype, Impl::Dimension>, Ns>>;
typedef WilsonCloverHelpers<Impl> Helpers;
// Can this be avoided?
static void IdentityTimesC(const CloverField& in, RealD c) {
int DimRep = Impl::Dimension;
autoView(in_v, in, AcceleratorWrite);
accelerator_for(ss, in.Grid()->oSites(), 1, {
for (int sa=0; sa<Ns; sa++)
for (int ca=0; ca<DimRep; ca++)
in_v[ss]()(sa,sa)(ca,ca) = c;
});
}
static int getNMAX(RealD prec, RealD R) {
/* compute stop condition for exponential */
int NMAX=1;
RealD cond=R*R/2.;
while (cond*std::exp(R)>prec) {
NMAX++;
cond*=R/(double)(NMAX+1);
}
return NMAX;
}
static int getNMAX(Lattice<iImplClover<vComplexD>> &t, RealD R) {return getNMAX(1e-12,R);}
static int getNMAX(Lattice<iImplClover<vComplexF>> &t, RealD R) {return getNMAX(1e-6,R);}
static void Instantiate(CloverField& Clover, CloverField& CloverInv, RealD csw_t, RealD diag_mass) {
GridBase* grid = Clover.Grid();
CloverField ExpClover(grid);
int NMAX = getNMAX(Clover, 3.*csw_t/diag_mass);
Clover *= (1.0/diag_mass);
// Taylor expansion, slow but generic
// Horner scheme: a0 + a1 x + a2 x^2 + .. = a0 + x (a1 + x(...))
// qN = cN
// qn = cn + qn+1 X
std::vector<RealD> cn(NMAX+1);
cn[0] = 1.0;
for (int i=1; i<=NMAX; i++)
cn[i] = cn[i-1] / RealD(i);
ExpClover = Zero();
IdentityTimesC(ExpClover, cn[NMAX]);
for (int i=NMAX-1; i>=0; i--)
ExpClover = ExpClover * Clover + cn[i];
// prepare inverse
CloverInv = (-1.0)*Clover;
Clover = ExpClover * diag_mass;
ExpClover = Zero();
IdentityTimesC(ExpClover, cn[NMAX]);
for (int i=NMAX-1; i>=0; i--)
ExpClover = ExpClover * CloverInv + cn[i];
CloverInv = ExpClover * (1.0/diag_mass);
}
static GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu) {
assert(0);
}
};
//////////////////////////////////
// Compact Standard Clover
//////////////////////////////////
template<class Impl>
class CompactCloverHelpers: public CompactWilsonCloverHelpers<Impl>,
public WilsonCloverHelpers<Impl> {
public:
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
INHERIT_COMPACT_CLOVER_TYPES(Impl);
typedef WilsonCloverHelpers<Impl> Helpers;
typedef CompactWilsonCloverHelpers<Impl> CompactHelpers;
static void MassTerm(CloverField& Clover, RealD diag_mass) {
Clover += diag_mass;
}
static void Exponentiate_Clover(CloverDiagonalField& Diagonal,
CloverTriangleField& Triangle,
RealD csw_t, RealD diag_mass) {
// Do nothing
}
// TODO: implement Cmunu for better performances with compact layout, but don't do it
// here, but rather in WilsonCloverHelpers.h -> CompactWilsonCloverHelpers
static GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu) {
return Helpers::Cmunu(U, lambda, mu, nu);
}
};
//////////////////////////////////
// Compact Exp Clover
//////////////////////////////////
template<class Impl>
class CompactExpCloverHelpers: public CompactWilsonCloverHelpers<Impl> {
public:
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
INHERIT_COMPACT_CLOVER_TYPES(Impl);
template <typename vtype> using iImplClover = iScalar<iMatrix<iMatrix<vtype, Impl::Dimension>, Ns>>;
typedef CompactWilsonCloverHelpers<Impl> CompactHelpers;
static void MassTerm(CloverField& Clover, RealD diag_mass) {
// do nothing!
// mass term is multiplied to exp(Clover) below
}
static int getNMAX(RealD prec, RealD R) {
/* compute stop condition for exponential */
int NMAX=1;
RealD cond=R*R/2.;
while (cond*std::exp(R)>prec) {
NMAX++;
cond*=R/(double)(NMAX+1);
}
return NMAX;
}
static int getNMAX(Lattice<iImplCloverDiagonal<vComplexD>> &t, RealD R) {return getNMAX(1e-12,R);}
static int getNMAX(Lattice<iImplCloverDiagonal<vComplexF>> &t, RealD R) {return getNMAX(1e-6,R);}
static void ExponentiateHermitean6by6(const iMatrix<ComplexD,6> &arg, const RealD& alpha, const std::vector<RealD>& cN, const int Niter, iMatrix<ComplexD,6>& dest){
typedef iMatrix<ComplexD,6> mat;
RealD qn[6];
RealD qnold[6];
RealD p[5];
RealD trA2, trA3, trA4;
mat A2, A3, A4, A5;
A2 = alpha * alpha * arg * arg;
A3 = alpha * arg * A2;
A4 = A2 * A2;
A5 = A2 * A3;
trA2 = toReal( trace(A2) );
trA3 = toReal( trace(A3) );
trA4 = toReal( trace(A4));
p[0] = toReal( trace(A3 * A3)) / 6.0 - 0.125 * trA4 * trA2 - trA3 * trA3 / 18.0 + trA2 * trA2 * trA2/ 48.0;
p[1] = toReal( trace(A5)) / 5.0 - trA3 * trA2 / 6.0;
p[2] = toReal( trace(A4)) / 4.0 - 0.125 * trA2 * trA2;
p[3] = trA3 / 3.0;
p[4] = 0.5 * trA2;
qnold[0] = cN[Niter];
qnold[1] = 0.0;
qnold[2] = 0.0;
qnold[3] = 0.0;
qnold[4] = 0.0;
qnold[5] = 0.0;
for(int i = Niter-1; i >= 0; i--)
{
qn[0] = p[0] * qnold[5] + cN[i];
qn[1] = p[1] * qnold[5] + qnold[0];
qn[2] = p[2] * qnold[5] + qnold[1];
qn[3] = p[3] * qnold[5] + qnold[2];
qn[4] = p[4] * qnold[5] + qnold[3];
qn[5] = qnold[4];
qnold[0] = qn[0];
qnold[1] = qn[1];
qnold[2] = qn[2];
qnold[3] = qn[3];
qnold[4] = qn[4];
qnold[5] = qn[5];
}
mat unit(1.0);
dest = (qn[0] * unit + qn[1] * alpha * arg + qn[2] * A2 + qn[3] * A3 + qn[4] * A4 + qn[5] * A5);
}
static void Exponentiate_Clover(CloverDiagonalField& Diagonal, CloverTriangleField& Triangle, RealD csw_t, RealD diag_mass) {
GridBase* grid = Diagonal.Grid();
int NMAX = getNMAX(Diagonal, 3.*csw_t/diag_mass);
//
// Implementation completely in Daniel's layout
//
// Taylor expansion with Cayley-Hamilton recursion
// underlying Horner scheme as above
std::vector<RealD> cn(NMAX+1);
cn[0] = 1.0;
for (int i=1; i<=NMAX; i++){
cn[i] = cn[i-1] / RealD(i);
}
// Taken over from Daniel's implementation
conformable(Diagonal, Triangle);
long lsites = grid->lSites();
{
typedef typename SiteCloverDiagonal::scalar_object scalar_object_diagonal;
typedef typename SiteCloverTriangle::scalar_object scalar_object_triangle;
typedef iMatrix<ComplexD,6> mat;
autoView(diagonal_v, Diagonal, CpuRead);
autoView(triangle_v, Triangle, CpuRead);
autoView(diagonalExp_v, Diagonal, CpuWrite);
autoView(triangleExp_v, Triangle, CpuWrite);
thread_for(site, lsites, { // NOTE: Not on GPU because of (peek/poke)LocalSite
mat srcCloverOpUL(0.0); // upper left block
mat srcCloverOpLR(0.0); // lower right block
mat ExpCloverOp;
scalar_object_diagonal diagonal_tmp = Zero();
scalar_object_diagonal diagonal_exp_tmp = Zero();
scalar_object_triangle triangle_tmp = Zero();
scalar_object_triangle triangle_exp_tmp = Zero();
Coordinate lcoor;
grid->LocalIndexToLocalCoor(site, lcoor);
peekLocalSite(diagonal_tmp, diagonal_v, lcoor);
peekLocalSite(triangle_tmp, triangle_v, lcoor);
int block;
block = 0;
for(int i = 0; i < 6; i++){
for(int j = 0; j < 6; j++){
if (i == j){
srcCloverOpUL(i,j) = static_cast<ComplexD>(TensorRemove(diagonal_tmp()(block)(i)));
}
else{
srcCloverOpUL(i,j) = static_cast<ComplexD>(TensorRemove(CompactHelpers::triangle_elem(triangle_tmp, block, i, j)));
}
}
}
block = 1;
for(int i = 0; i < 6; i++){
for(int j = 0; j < 6; j++){
if (i == j){
srcCloverOpLR(i,j) = static_cast<ComplexD>(TensorRemove(diagonal_tmp()(block)(i)));
}
else{
srcCloverOpLR(i,j) = static_cast<ComplexD>(TensorRemove(CompactHelpers::triangle_elem(triangle_tmp, block, i, j)));
}
}
}
// exp(Clover)
ExponentiateHermitean6by6(srcCloverOpUL,1.0/diag_mass,cn,NMAX,ExpCloverOp);
block = 0;
for(int i = 0; i < 6; i++){
for(int j = 0; j < 6; j++){
if (i == j){
diagonal_exp_tmp()(block)(i) = ExpCloverOp(i,j);
}
else if(i < j){
triangle_exp_tmp()(block)(CompactHelpers::triangle_index(i, j)) = ExpCloverOp(i,j);
}
}
}
ExponentiateHermitean6by6(srcCloverOpLR,1.0/diag_mass,cn,NMAX,ExpCloverOp);
block = 1;
for(int i = 0; i < 6; i++){
for(int j = 0; j < 6; j++){
if (i == j){
diagonal_exp_tmp()(block)(i) = ExpCloverOp(i,j);
}
else if(i < j){
triangle_exp_tmp()(block)(CompactHelpers::triangle_index(i, j)) = ExpCloverOp(i,j);
}
}
}
pokeLocalSite(diagonal_exp_tmp, diagonalExp_v, lcoor);
pokeLocalSite(triangle_exp_tmp, triangleExp_v, lcoor);
});
}
Diagonal *= diag_mass;
Triangle *= diag_mass;
}
static GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu) {
assert(0);
}
};
NAMESPACE_END(Grid);

View File

@ -31,7 +31,6 @@
#include <Grid/qcd/action/fermion/WilsonCloverTypes.h> #include <Grid/qcd/action/fermion/WilsonCloverTypes.h>
#include <Grid/qcd/action/fermion/WilsonCloverHelpers.h> #include <Grid/qcd/action/fermion/WilsonCloverHelpers.h>
#include <Grid/qcd/action/fermion/CloverHelpers.h>
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
@ -86,7 +85,7 @@ NAMESPACE_BEGIN(Grid);
// + (2 * 1 + 4 * 1/2) triangle parts = 4 triangle parts = 60 complex words per site // + (2 * 1 + 4 * 1/2) triangle parts = 4 triangle parts = 60 complex words per site
// = 84 complex words per site // = 84 complex words per site
template<class Impl, class CloverHelpers> template<class Impl>
class CompactWilsonCloverFermion : public WilsonFermion<Impl>, class CompactWilsonCloverFermion : public WilsonFermion<Impl>,
public WilsonCloverHelpers<Impl>, public WilsonCloverHelpers<Impl>,
public CompactWilsonCloverHelpers<Impl> { public CompactWilsonCloverHelpers<Impl> {

View File

@ -138,52 +138,38 @@ typedef WilsonTMFermion<WilsonImplF> WilsonTMFermionF;
typedef WilsonTMFermion<WilsonImplD> WilsonTMFermionD; typedef WilsonTMFermion<WilsonImplD> WilsonTMFermionD;
// Clover fermions // Clover fermions
template <typename WImpl> using WilsonClover = WilsonCloverFermion<WImpl, CloverHelpers<WImpl>>; typedef WilsonCloverFermion<WilsonImplR> WilsonCloverFermionR;
template <typename WImpl> using WilsonExpClover = WilsonCloverFermion<WImpl, ExpCloverHelpers<WImpl>>; typedef WilsonCloverFermion<WilsonImplF> WilsonCloverFermionF;
typedef WilsonCloverFermion<WilsonImplD> WilsonCloverFermionD;
typedef WilsonClover<WilsonImplR> WilsonCloverFermionR; typedef WilsonCloverFermion<WilsonAdjImplR> WilsonCloverAdjFermionR;
typedef WilsonClover<WilsonImplF> WilsonCloverFermionF; typedef WilsonCloverFermion<WilsonAdjImplF> WilsonCloverAdjFermionF;
typedef WilsonClover<WilsonImplD> WilsonCloverFermionD; typedef WilsonCloverFermion<WilsonAdjImplD> WilsonCloverAdjFermionD;
typedef WilsonExpClover<WilsonImplR> WilsonExpCloverFermionR; typedef WilsonCloverFermion<WilsonTwoIndexSymmetricImplR> WilsonCloverTwoIndexSymmetricFermionR;
typedef WilsonExpClover<WilsonImplF> WilsonExpCloverFermionF; typedef WilsonCloverFermion<WilsonTwoIndexSymmetricImplF> WilsonCloverTwoIndexSymmetricFermionF;
typedef WilsonExpClover<WilsonImplD> WilsonExpCloverFermionD; typedef WilsonCloverFermion<WilsonTwoIndexSymmetricImplD> WilsonCloverTwoIndexSymmetricFermionD;
typedef WilsonClover<WilsonAdjImplR> WilsonCloverAdjFermionR; typedef WilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplR> WilsonCloverTwoIndexAntiSymmetricFermionR;
typedef WilsonClover<WilsonAdjImplF> WilsonCloverAdjFermionF; typedef WilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonCloverTwoIndexAntiSymmetricFermionF;
typedef WilsonClover<WilsonAdjImplD> WilsonCloverAdjFermionD; typedef WilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiSymmetricFermionD;
typedef WilsonClover<WilsonTwoIndexSymmetricImplR> WilsonCloverTwoIndexSymmetricFermionR;
typedef WilsonClover<WilsonTwoIndexSymmetricImplF> WilsonCloverTwoIndexSymmetricFermionF;
typedef WilsonClover<WilsonTwoIndexSymmetricImplD> WilsonCloverTwoIndexSymmetricFermionD;
typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplR> WilsonCloverTwoIndexAntiSymmetricFermionR;
typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplF> WilsonCloverTwoIndexAntiSymmetricFermionF;
typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiSymmetricFermionD;
// Compact Clover fermions // Compact Clover fermions
template <typename WImpl> using CompactWilsonClover = CompactWilsonCloverFermion<WImpl, CompactCloverHelpers<WImpl>>; typedef CompactWilsonCloverFermion<WilsonImplR> CompactWilsonCloverFermionR;
template <typename WImpl> using CompactWilsonExpClover = CompactWilsonCloverFermion<WImpl, CompactExpCloverHelpers<WImpl>>; typedef CompactWilsonCloverFermion<WilsonImplF> CompactWilsonCloverFermionF;
typedef CompactWilsonCloverFermion<WilsonImplD> CompactWilsonCloverFermionD;
typedef CompactWilsonClover<WilsonImplR> CompactWilsonCloverFermionR; typedef CompactWilsonCloverFermion<WilsonAdjImplR> CompactWilsonCloverAdjFermionR;
typedef CompactWilsonClover<WilsonImplF> CompactWilsonCloverFermionF; typedef CompactWilsonCloverFermion<WilsonAdjImplF> CompactWilsonCloverAdjFermionF;
typedef CompactWilsonClover<WilsonImplD> CompactWilsonCloverFermionD; typedef CompactWilsonCloverFermion<WilsonAdjImplD> CompactWilsonCloverAdjFermionD;
typedef CompactWilsonExpClover<WilsonImplR> CompactWilsonExpCloverFermionR; typedef CompactWilsonCloverFermion<WilsonTwoIndexSymmetricImplR> CompactWilsonCloverTwoIndexSymmetricFermionR;
typedef CompactWilsonExpClover<WilsonImplF> CompactWilsonExpCloverFermionF; typedef CompactWilsonCloverFermion<WilsonTwoIndexSymmetricImplF> CompactWilsonCloverTwoIndexSymmetricFermionF;
typedef CompactWilsonExpClover<WilsonImplD> CompactWilsonExpCloverFermionD; typedef CompactWilsonCloverFermion<WilsonTwoIndexSymmetricImplD> CompactWilsonCloverTwoIndexSymmetricFermionD;
typedef CompactWilsonClover<WilsonAdjImplR> CompactWilsonCloverAdjFermionR; typedef CompactWilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplR> CompactWilsonCloverTwoIndexAntiSymmetricFermionR;
typedef CompactWilsonClover<WilsonAdjImplF> CompactWilsonCloverAdjFermionF; typedef CompactWilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplF> CompactWilsonCloverTwoIndexAntiSymmetricFermionF;
typedef CompactWilsonClover<WilsonAdjImplD> CompactWilsonCloverAdjFermionD; typedef CompactWilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplD> CompactWilsonCloverTwoIndexAntiSymmetricFermionD;
typedef CompactWilsonClover<WilsonTwoIndexSymmetricImplR> CompactWilsonCloverTwoIndexSymmetricFermionR;
typedef CompactWilsonClover<WilsonTwoIndexSymmetricImplF> CompactWilsonCloverTwoIndexSymmetricFermionF;
typedef CompactWilsonClover<WilsonTwoIndexSymmetricImplD> CompactWilsonCloverTwoIndexSymmetricFermionD;
typedef CompactWilsonClover<WilsonTwoIndexAntiSymmetricImplR> CompactWilsonCloverTwoIndexAntiSymmetricFermionR;
typedef CompactWilsonClover<WilsonTwoIndexAntiSymmetricImplF> CompactWilsonCloverTwoIndexAntiSymmetricFermionF;
typedef CompactWilsonClover<WilsonTwoIndexAntiSymmetricImplD> CompactWilsonCloverTwoIndexAntiSymmetricFermionD;
// Domain Wall fermions // Domain Wall fermions
typedef DomainWallFermion<WilsonImplR> DomainWallFermionR; typedef DomainWallFermion<WilsonImplR> DomainWallFermionR;

View File

@ -30,6 +30,18 @@ directory
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
/*
Policy implementation for G-parity boundary conditions
Rather than treating the gauge field as a flavored field, the Grid implementation of G-parity treats the gauge field as a regular
field with complex conjugate boundary conditions. In order to ensure the second flavor interacts with the conjugate links and the first
with the regular links we overload the functionality of doubleStore, whose purpose is to store the gauge field and the barrel-shifted gauge field
to avoid communicating links when applying the Dirac operator, such that the double-stored field contains also a flavor index which maps to
either the link or the conjugate link. This flavored field is then used by multLink to apply the correct link to a spinor.
Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction.
mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
*/
template <class S, class Representation = FundamentalRepresentation, class Options=CoeffReal> template <class S, class Representation = FundamentalRepresentation, class Options=CoeffReal>
class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Representation::Dimension> > { class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Representation::Dimension> > {
public: public:
@ -113,7 +125,7 @@ public:
|| ((distance== 1)&&(icoor[direction]==1)) || ((distance== 1)&&(icoor[direction]==1))
|| ((distance==-1)&&(icoor[direction]==0)); || ((distance==-1)&&(icoor[direction]==0));
permute_lane = permute_lane && SE->_around_the_world && St.parameters.twists[mmu]; //only if we are going around the world permute_lane = permute_lane && SE->_around_the_world && St.parameters.twists[mmu] && mmu < Nd-1; //only if we are going around the world in a spatial direction
//Apply the links //Apply the links
int f_upper = permute_lane ? 1 : 0; int f_upper = permute_lane ? 1 : 0;
@ -139,10 +151,10 @@ public:
assert((distance == 1) || (distance == -1)); // nearest neighbour stencil hard code assert((distance == 1) || (distance == -1)); // nearest neighbour stencil hard code
assert((sl == 1) || (sl == 2)); assert((sl == 1) || (sl == 2));
if ( SE->_around_the_world && St.parameters.twists[mmu] ) { //If this site is an global boundary site, perform the G-parity flavor twist
if ( mmu < Nd-1 && SE->_around_the_world && St.parameters.twists[mmu] ) {
if ( sl == 2 ) { if ( sl == 2 ) {
//Only do the twist for lanes on the edge of the physical node
ExtractBuffer<sobj> vals(Nsimd); ExtractBuffer<sobj> vals(Nsimd);
extract(chi,vals); extract(chi,vals);
@ -197,6 +209,19 @@ public:
reg = memory; reg = memory;
} }
//Poke 'poke_f0' onto flavor 0 and 'poke_f1' onto flavor 1 in direction mu of the doubled gauge field Uds
inline void pokeGparityDoubledGaugeField(DoubledGaugeField &Uds, const GaugeLinkField &poke_f0, const GaugeLinkField &poke_f1, const int mu){
autoView(poke_f0_v, poke_f0, CpuRead);
autoView(poke_f1_v, poke_f1, CpuRead);
autoView(Uds_v, Uds, CpuWrite);
thread_foreach(ss,poke_f0_v,{
Uds_v[ss](0)(mu) = poke_f0_v[ss]();
Uds_v[ss](1)(mu) = poke_f1_v[ss]();
});
}
inline void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu) inline void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
{ {
conformable(Uds.Grid(),GaugeGrid); conformable(Uds.Grid(),GaugeGrid);
@ -207,14 +232,19 @@ public:
GaugeLinkField Uconj(GaugeGrid); GaugeLinkField Uconj(GaugeGrid);
Lattice<iScalar<vInteger> > coor(GaugeGrid); Lattice<iScalar<vInteger> > coor(GaugeGrid);
for(int mu=0;mu<Nd;mu++){ //Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction.
//mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
LatticeCoordinate(coor,mu); for(int mu=0;mu<Nd-1;mu++){
if( Params.twists[mu] ){
LatticeCoordinate(coor,mu);
}
U = PeekIndex<LorentzIndex>(Umu,mu); U = PeekIndex<LorentzIndex>(Umu,mu);
Uconj = conjugate(U); Uconj = conjugate(U);
// Implement the isospin rotation sign on the boundary between f=1 and f=0
// This phase could come from a simple bc 1,1,-1,1 .. // This phase could come from a simple bc 1,1,-1,1 ..
int neglink = GaugeGrid->GlobalDimensions()[mu]-1; int neglink = GaugeGrid->GlobalDimensions()[mu]-1;
if ( Params.twists[mu] ) { if ( Params.twists[mu] ) {
@ -229,7 +259,7 @@ public:
thread_foreach(ss,U_v,{ thread_foreach(ss,U_v,{
Uds_v[ss](0)(mu) = U_v[ss](); Uds_v[ss](0)(mu) = U_v[ss]();
Uds_v[ss](1)(mu) = Uconj_v[ss](); Uds_v[ss](1)(mu) = Uconj_v[ss]();
}); });
} }
U = adj(Cshift(U ,mu,-1)); // correct except for spanning the boundary U = adj(Cshift(U ,mu,-1)); // correct except for spanning the boundary
@ -260,6 +290,38 @@ public:
}); });
} }
} }
{ //periodic / antiperiodic temporal BCs
int mu = Nd-1;
int L = GaugeGrid->GlobalDimensions()[mu];
int Lmu = L - 1;
LatticeCoordinate(coor, mu);
U = PeekIndex<LorentzIndex>(Umu, mu); //Get t-directed links
GaugeLinkField *Upoke = &U;
if(Params.twists[mu]){ //antiperiodic
Utmp = where(coor == Lmu, -U, U);
Upoke = &Utmp;
}
Uconj = conjugate(*Upoke); //second flavor interacts with conjugate links
pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu);
//Get the barrel-shifted field
Utmp = adj(Cshift(U, mu, -1)); //is a forward shift!
Upoke = &Utmp;
if(Params.twists[mu]){
U = where(coor == 0, -Utmp, Utmp); //boundary phase
Upoke = &U;
}
Uconj = conjugate(*Upoke);
pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu + 4);
}
} }
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A, int mu) { inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A, int mu) {
@ -298,28 +360,48 @@ public:
inline void extractLinkField(std::vector<GaugeLinkField> &mat, DoubledGaugeField &Uds){ inline void extractLinkField(std::vector<GaugeLinkField> &mat, DoubledGaugeField &Uds){
assert(0); assert(0);
} }
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField &Atilde, int mu) { inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField &Atilde, int mu) {
int Ls=Btilde.Grid()->_fdimensions[0];
int Ls = Btilde.Grid()->_fdimensions[0];
GaugeLinkField tmp(mat.Grid());
tmp = Zero();
{ {
autoView( tmp_v , tmp, CpuWrite); GridBase *GaugeGrid = mat.Grid();
autoView( Atilde_v , Atilde, CpuRead); Lattice<iScalar<vInteger> > coor(GaugeGrid);
autoView( Btilde_v , Btilde, CpuRead);
thread_for(ss,tmp.Grid()->oSites(),{ if( Params.twists[mu] ){
for (int s = 0; s < Ls; s++) { LatticeCoordinate(coor,mu);
int sF = s + Ls * ss; }
auto ttmp = traceIndex<SpinIndex>(outerProduct(Btilde_v[sF], Atilde_v[sF]));
tmp_v[ss]() = tmp_v[ss]() + ttmp(0, 0) + conjugate(ttmp(1, 1)); autoView( mat_v , mat, AcceleratorWrite);
} autoView( Btilde_v , Btilde, AcceleratorRead);
}); autoView( Atilde_v , Atilde, AcceleratorRead);
accelerator_for(sss,mat.Grid()->oSites(), FermionField::vector_type::Nsimd(),{
int sU=sss;
typedef decltype(coalescedRead(mat_v[sU](mu)() )) ColorMatrixType;
ColorMatrixType sum;
zeroit(sum);
for(int s=0;s<Ls;s++){
int sF = s+Ls*sU;
for(int spn=0;spn<Ns;spn++){ //sum over spin
//Flavor 0
auto bb = coalescedRead(Btilde_v[sF](0)(spn) ); //color vector
auto aa = coalescedRead(Atilde_v[sF](0)(spn) );
sum = sum + outerProduct(bb,aa);
//Flavor 1
bb = coalescedRead(Btilde_v[sF](1)(spn) );
aa = coalescedRead(Atilde_v[sF](1)(spn) );
sum = sum + conjugate(outerProduct(bb,aa));
}
}
coalescedWrite(mat_v[sU](mu)(), sum);
});
} }
PokeIndex<LorentzIndex>(mat, tmp, mu);
return;
} }
}; };

View File

@ -32,7 +32,6 @@
#include <Grid/qcd/action/fermion/WilsonCloverTypes.h> #include <Grid/qcd/action/fermion/WilsonCloverTypes.h>
#include <Grid/qcd/action/fermion/WilsonCloverHelpers.h> #include <Grid/qcd/action/fermion/WilsonCloverHelpers.h>
#include <Grid/qcd/action/fermion/CloverHelpers.h>
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
@ -52,7 +51,7 @@ NAMESPACE_BEGIN(Grid);
// csw_r = csw_t to recover the isotropic version // csw_r = csw_t to recover the isotropic version
////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////
template<class Impl, class CloverHelpers> template <class Impl>
class WilsonCloverFermion : public WilsonFermion<Impl>, class WilsonCloverFermion : public WilsonFermion<Impl>,
public WilsonCloverHelpers<Impl> public WilsonCloverHelpers<Impl>
{ {

View File

@ -209,8 +209,6 @@ public:
}; };
////////////////////////////////////////////////////////
template<class Impl> class CompactWilsonCloverHelpers { template<class Impl> class CompactWilsonCloverHelpers {
public: public:

View File

@ -47,6 +47,8 @@ class CompactWilsonCloverTypes {
public: public:
INHERIT_IMPL_TYPES(Impl); INHERIT_IMPL_TYPES(Impl);
static_assert(Nd == 4 && Nc == 3 && Ns == 4 && Impl::Dimension == 3, "Wrong dimensions");
static constexpr int Nred = Nc * Nhs; // 6 static constexpr int Nred = Nc * Nhs; // 6
static constexpr int Nblock = Nhs; // 2 static constexpr int Nblock = Nhs; // 2
static constexpr int Ndiagonal = Nred; // 6 static constexpr int Ndiagonal = Nred; // 6

View File

@ -47,7 +47,7 @@ CayleyFermion5D<Impl>::CayleyFermion5D(GaugeField &_Umu,
FiveDimRedBlackGrid, FiveDimRedBlackGrid,
FourDimGrid, FourDimGrid,
FourDimRedBlackGrid,_M5,p), FourDimRedBlackGrid,_M5,p),
mass_plus(_mass), mass_minus(_mass) mass(_mass)
{ {
} }
@ -209,8 +209,8 @@ void CayleyFermion5D<Impl>::M5D (const FermionField &psi, FermionField &chi)
{ {
int Ls=this->Ls; int Ls=this->Ls;
Vector<Coeff_t> diag (Ls,1.0); Vector<Coeff_t> diag (Ls,1.0);
Vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1]=mass_minus; Vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1]=mass;
Vector<Coeff_t> lower(Ls,-1.0); lower[0] =mass_plus; Vector<Coeff_t> lower(Ls,-1.0); lower[0] =mass;
M5D(psi,chi,chi,lower,diag,upper); M5D(psi,chi,chi,lower,diag,upper);
} }
template<class Impl> template<class Impl>
@ -220,8 +220,8 @@ void CayleyFermion5D<Impl>::Meooe5D (const FermionField &psi, FermionField &D
Vector<Coeff_t> diag = bs; Vector<Coeff_t> diag = bs;
Vector<Coeff_t> upper= cs; Vector<Coeff_t> upper= cs;
Vector<Coeff_t> lower= cs; Vector<Coeff_t> lower= cs;
upper[Ls-1]=-mass_minus*upper[Ls-1]; upper[Ls-1]=-mass*upper[Ls-1];
lower[0] =-mass_plus*lower[0]; lower[0] =-mass*lower[0];
M5D(psi,psi,Din,lower,diag,upper); M5D(psi,psi,Din,lower,diag,upper);
} }
// FIXME Redunant with the above routine; check this and eliminate // FIXME Redunant with the above routine; check this and eliminate
@ -235,8 +235,8 @@ template<class Impl> void CayleyFermion5D<Impl>::Meo5D (const FermionField &
upper[i]=-ceo[i]; upper[i]=-ceo[i];
lower[i]=-ceo[i]; lower[i]=-ceo[i];
} }
upper[Ls-1]=-mass_minus*upper[Ls-1]; upper[Ls-1]=-mass*upper[Ls-1];
lower[0] =-mass_plus*lower[0]; lower[0] =-mass*lower[0];
M5D(psi,psi,chi,lower,diag,upper); M5D(psi,psi,chi,lower,diag,upper);
} }
template<class Impl> template<class Impl>
@ -250,8 +250,8 @@ void CayleyFermion5D<Impl>::Mooee (const FermionField &psi, FermionField &
upper[i]=-cee[i]; upper[i]=-cee[i];
lower[i]=-cee[i]; lower[i]=-cee[i];
} }
upper[Ls-1]=-mass_minus*upper[Ls-1]; upper[Ls-1]=-mass*upper[Ls-1];
lower[0] =-mass_plus*lower[0]; lower[0] =-mass*lower[0];
M5D(psi,psi,chi,lower,diag,upper); M5D(psi,psi,chi,lower,diag,upper);
} }
template<class Impl> template<class Impl>
@ -266,9 +266,9 @@ void CayleyFermion5D<Impl>::MooeeDag (const FermionField &psi, FermionField &
// Assemble the 5d matrix // Assemble the 5d matrix
if ( s==0 ) { if ( s==0 ) {
upper[s] = -cee[s+1] ; upper[s] = -cee[s+1] ;
lower[s] = mass_minus*cee[Ls-1]; lower[s] = mass*cee[Ls-1];
} else if ( s==(Ls-1)) { } else if ( s==(Ls-1)) {
upper[s] = mass_plus*cee[0]; upper[s] = mass*cee[0];
lower[s] = -cee[s-1]; lower[s] = -cee[s-1];
} else { } else {
upper[s]=-cee[s+1]; upper[s]=-cee[s+1];
@ -291,8 +291,8 @@ void CayleyFermion5D<Impl>::M5Ddag (const FermionField &psi, FermionField &chi)
Vector<Coeff_t> diag(Ls,1.0); Vector<Coeff_t> diag(Ls,1.0);
Vector<Coeff_t> upper(Ls,-1.0); Vector<Coeff_t> upper(Ls,-1.0);
Vector<Coeff_t> lower(Ls,-1.0); Vector<Coeff_t> lower(Ls,-1.0);
upper[Ls-1]=-mass_plus*upper[Ls-1]; upper[Ls-1]=-mass*upper[Ls-1];
lower[0] =-mass_minus*lower[0]; lower[0] =-mass*lower[0];
M5Ddag(psi,chi,chi,lower,diag,upper); M5Ddag(psi,chi,chi,lower,diag,upper);
} }
@ -307,9 +307,9 @@ void CayleyFermion5D<Impl>::MeooeDag5D (const FermionField &psi, FermionField
for (int s=0;s<Ls;s++){ for (int s=0;s<Ls;s++){
if ( s== 0 ) { if ( s== 0 ) {
upper[s] = cs[s+1]; upper[s] = cs[s+1];
lower[s] =-mass_minus*cs[Ls-1]; lower[s] =-mass*cs[Ls-1];
} else if ( s==(Ls-1) ) { } else if ( s==(Ls-1) ) {
upper[s] =-mass_plus*cs[0]; upper[s] =-mass*cs[0];
lower[s] = cs[s-1]; lower[s] = cs[s-1];
} else { } else {
upper[s] = cs[s+1]; upper[s] = cs[s+1];
@ -552,7 +552,7 @@ void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,Vector<Coeff_t
lee[i] =-cee[i+1]/bee[i]; // sub-diag entry on the ith column lee[i] =-cee[i+1]/bee[i]; // sub-diag entry on the ith column
leem[i]=mass_minus*cee[Ls-1]/bee[0]; leem[i]=mass*cee[Ls-1]/bee[0];
for(int j=0;j<i;j++) { for(int j=0;j<i;j++) {
assert(bee[j+1]!=Coeff_t(0.0)); assert(bee[j+1]!=Coeff_t(0.0));
leem[i]*= aee[j]/bee[j+1]; leem[i]*= aee[j]/bee[j+1];
@ -560,7 +560,7 @@ void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,Vector<Coeff_t
uee[i] =-aee[i]/bee[i]; // up-diag entry on the ith row uee[i] =-aee[i]/bee[i]; // up-diag entry on the ith row
ueem[i]=mass_plus; ueem[i]=mass;
for(int j=1;j<=i;j++) ueem[i]*= cee[j]/bee[j]; for(int j=1;j<=i;j++) ueem[i]*= cee[j]/bee[j];
ueem[i]*= aee[0]/bee[0]; ueem[i]*= aee[0]/bee[0];
@ -573,7 +573,7 @@ void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,Vector<Coeff_t
} }
{ {
Coeff_t delta_d=mass_minus*cee[Ls-1]; Coeff_t delta_d=mass*cee[Ls-1];
for(int j=0;j<Ls-1;j++) { for(int j=0;j<Ls-1;j++) {
assert(bee[j] != Coeff_t(0.0)); assert(bee[j] != Coeff_t(0.0));
delta_d *= cee[j]/bee[j]; delta_d *= cee[j]/bee[j];
@ -642,10 +642,6 @@ void CayleyFermion5D<Impl>::ContractConservedCurrent( PropagatorField &q_in_1,
Current curr_type, Current curr_type,
unsigned int mu) unsigned int mu)
{ {
assert(mass_plus == mass_minus);
RealD mass = mass_plus;
#if (!defined(GRID_HIP)) #if (!defined(GRID_HIP))
Gamma::Algebra Gmu [] = { Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX, Gamma::Algebra::GammaX,
@ -781,8 +777,6 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
assert(mu>=0); assert(mu>=0);
assert(mu<Nd); assert(mu<Nd);
assert(mass_plus == mass_minus);
RealD mass = mass_plus;
#if 0 #if 0
int tshift = (mu == Nd-1) ? 1 : 0; int tshift = (mu == Nd-1) ? 1 : 0;

View File

@ -32,18 +32,17 @@
#include <Grid/qcd/spin/Dirac.h> #include <Grid/qcd/spin/Dirac.h>
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h> #include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h>
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
template<class Impl, class CloverHelpers> template<class Impl>
CompactWilsonCloverFermion<Impl, CloverHelpers>::CompactWilsonCloverFermion(GaugeField& _Umu, CompactWilsonCloverFermion<Impl>::CompactWilsonCloverFermion(GaugeField& _Umu,
GridCartesian& Fgrid, GridCartesian& Fgrid,
GridRedBlackCartesian& Hgrid, GridRedBlackCartesian& Hgrid,
const RealD _mass, const RealD _mass,
const RealD _csw_r, const RealD _csw_r,
const RealD _csw_t, const RealD _csw_t,
const RealD _cF, const RealD _cF,
const WilsonAnisotropyCoefficients& clover_anisotropy, const WilsonAnisotropyCoefficients& clover_anisotropy,
const ImplParams& impl_p) const ImplParams& impl_p)
: WilsonBase(_Umu, Fgrid, Hgrid, _mass, impl_p, clover_anisotropy) : WilsonBase(_Umu, Fgrid, Hgrid, _mass, impl_p, clover_anisotropy)
, csw_r(_csw_r) , csw_r(_csw_r)
, csw_t(_csw_t) , csw_t(_csw_t)
@ -59,55 +58,50 @@ CompactWilsonCloverFermion<Impl, CloverHelpers>::CompactWilsonCloverFermion(Gaug
, BoundaryMask(&Fgrid) , BoundaryMask(&Fgrid)
, BoundaryMaskEven(&Hgrid), BoundaryMaskOdd(&Hgrid) , BoundaryMaskEven(&Hgrid), BoundaryMaskOdd(&Hgrid)
{ {
assert(Nd == 4 && Nc == 3 && Ns == 4 && Impl::Dimension == 3);
csw_r *= 0.5; csw_r *= 0.5;
csw_t *= 0.5; csw_t *= 0.5;
if (clover_anisotropy.isAnisotropic) if (clover_anisotropy.isAnisotropic)
csw_r /= clover_anisotropy.xi_0; csw_r /= clover_anisotropy.xi_0;
ImportGauge(_Umu); ImportGauge(_Umu);
if (open_boundaries) { if (open_boundaries)
this->BoundaryMaskEven.Checkerboard() = Even;
this->BoundaryMaskOdd.Checkerboard() = Odd;
CompactHelpers::SetupMasks(this->BoundaryMask, this->BoundaryMaskEven, this->BoundaryMaskOdd); CompactHelpers::SetupMasks(this->BoundaryMask, this->BoundaryMaskEven, this->BoundaryMaskOdd);
}
} }
template<class Impl, class CloverHelpers> template<class Impl>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::Dhop(const FermionField& in, FermionField& out, int dag) { void CompactWilsonCloverFermion<Impl>::Dhop(const FermionField& in, FermionField& out, int dag) {
WilsonBase::Dhop(in, out, dag); WilsonBase::Dhop(in, out, dag);
if(open_boundaries) ApplyBoundaryMask(out); if(open_boundaries) ApplyBoundaryMask(out);
} }
template<class Impl, class CloverHelpers> template<class Impl>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::DhopOE(const FermionField& in, FermionField& out, int dag) { void CompactWilsonCloverFermion<Impl>::DhopOE(const FermionField& in, FermionField& out, int dag) {
WilsonBase::DhopOE(in, out, dag); WilsonBase::DhopOE(in, out, dag);
if(open_boundaries) ApplyBoundaryMask(out); if(open_boundaries) ApplyBoundaryMask(out);
} }
template<class Impl, class CloverHelpers> template<class Impl>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::DhopEO(const FermionField& in, FermionField& out, int dag) { void CompactWilsonCloverFermion<Impl>::DhopEO(const FermionField& in, FermionField& out, int dag) {
WilsonBase::DhopEO(in, out, dag); WilsonBase::DhopEO(in, out, dag);
if(open_boundaries) ApplyBoundaryMask(out); if(open_boundaries) ApplyBoundaryMask(out);
} }
template<class Impl, class CloverHelpers> template<class Impl>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::DhopDir(const FermionField& in, FermionField& out, int dir, int disp) { void CompactWilsonCloverFermion<Impl>::DhopDir(const FermionField& in, FermionField& out, int dir, int disp) {
WilsonBase::DhopDir(in, out, dir, disp); WilsonBase::DhopDir(in, out, dir, disp);
if(this->open_boundaries) ApplyBoundaryMask(out); if(this->open_boundaries) ApplyBoundaryMask(out);
} }
template<class Impl, class CloverHelpers> template<class Impl>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::DhopDirAll(const FermionField& in, std::vector<FermionField>& out) { void CompactWilsonCloverFermion<Impl>::DhopDirAll(const FermionField& in, std::vector<FermionField>& out) {
WilsonBase::DhopDirAll(in, out); WilsonBase::DhopDirAll(in, out);
if(this->open_boundaries) { if(this->open_boundaries) {
for(auto& o : out) ApplyBoundaryMask(o); for(auto& o : out) ApplyBoundaryMask(o);
} }
} }
template<class Impl, class CloverHelpers> template<class Impl>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::M(const FermionField& in, FermionField& out) { void CompactWilsonCloverFermion<Impl>::M(const FermionField& in, FermionField& out) {
out.Checkerboard() = in.Checkerboard(); out.Checkerboard() = in.Checkerboard();
WilsonBase::Dhop(in, out, DaggerNo); // call base to save applying bc WilsonBase::Dhop(in, out, DaggerNo); // call base to save applying bc
Mooee(in, Tmp); Mooee(in, Tmp);
@ -115,8 +109,8 @@ void CompactWilsonCloverFermion<Impl, CloverHelpers>::M(const FermionField& in,
if(open_boundaries) ApplyBoundaryMask(out); if(open_boundaries) ApplyBoundaryMask(out);
} }
template<class Impl, class CloverHelpers> template<class Impl>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::Mdag(const FermionField& in, FermionField& out) { void CompactWilsonCloverFermion<Impl>::Mdag(const FermionField& in, FermionField& out) {
out.Checkerboard() = in.Checkerboard(); out.Checkerboard() = in.Checkerboard();
WilsonBase::Dhop(in, out, DaggerYes); // call base to save applying bc WilsonBase::Dhop(in, out, DaggerYes); // call base to save applying bc
MooeeDag(in, Tmp); MooeeDag(in, Tmp);
@ -124,20 +118,20 @@ void CompactWilsonCloverFermion<Impl, CloverHelpers>::Mdag(const FermionField& i
if(open_boundaries) ApplyBoundaryMask(out); if(open_boundaries) ApplyBoundaryMask(out);
} }
template<class Impl, class CloverHelpers> template<class Impl>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::Meooe(const FermionField& in, FermionField& out) { void CompactWilsonCloverFermion<Impl>::Meooe(const FermionField& in, FermionField& out) {
WilsonBase::Meooe(in, out); WilsonBase::Meooe(in, out);
if(open_boundaries) ApplyBoundaryMask(out); if(open_boundaries) ApplyBoundaryMask(out);
} }
template<class Impl, class CloverHelpers> template<class Impl>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MeooeDag(const FermionField& in, FermionField& out) { void CompactWilsonCloverFermion<Impl>::MeooeDag(const FermionField& in, FermionField& out) {
WilsonBase::MeooeDag(in, out); WilsonBase::MeooeDag(in, out);
if(open_boundaries) ApplyBoundaryMask(out); if(open_boundaries) ApplyBoundaryMask(out);
} }
template<class Impl, class CloverHelpers> template<class Impl>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::Mooee(const FermionField& in, FermionField& out) { void CompactWilsonCloverFermion<Impl>::Mooee(const FermionField& in, FermionField& out) {
if(in.Grid()->_isCheckerBoarded) { if(in.Grid()->_isCheckerBoarded) {
if(in.Checkerboard() == Odd) { if(in.Checkerboard() == Odd) {
MooeeInternal(in, out, DiagonalOdd, TriangleOdd); MooeeInternal(in, out, DiagonalOdd, TriangleOdd);
@ -150,13 +144,13 @@ void CompactWilsonCloverFermion<Impl, CloverHelpers>::Mooee(const FermionField&
if(open_boundaries) ApplyBoundaryMask(out); if(open_boundaries) ApplyBoundaryMask(out);
} }
template<class Impl, class CloverHelpers> template<class Impl>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MooeeDag(const FermionField& in, FermionField& out) { void CompactWilsonCloverFermion<Impl>::MooeeDag(const FermionField& in, FermionField& out) {
Mooee(in, out); // blocks are hermitian Mooee(in, out); // blocks are hermitian
} }
template<class Impl, class CloverHelpers> template<class Impl>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MooeeInv(const FermionField& in, FermionField& out) { void CompactWilsonCloverFermion<Impl>::MooeeInv(const FermionField& in, FermionField& out) {
if(in.Grid()->_isCheckerBoarded) { if(in.Grid()->_isCheckerBoarded) {
if(in.Checkerboard() == Odd) { if(in.Checkerboard() == Odd) {
MooeeInternal(in, out, DiagonalInvOdd, TriangleInvOdd); MooeeInternal(in, out, DiagonalInvOdd, TriangleInvOdd);
@ -169,23 +163,23 @@ void CompactWilsonCloverFermion<Impl, CloverHelpers>::MooeeInv(const FermionFiel
if(open_boundaries) ApplyBoundaryMask(out); if(open_boundaries) ApplyBoundaryMask(out);
} }
template<class Impl, class CloverHelpers> template<class Impl>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MooeeInvDag(const FermionField& in, FermionField& out) { void CompactWilsonCloverFermion<Impl>::MooeeInvDag(const FermionField& in, FermionField& out) {
MooeeInv(in, out); // blocks are hermitian MooeeInv(in, out); // blocks are hermitian
} }
template<class Impl, class CloverHelpers> template<class Impl>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::Mdir(const FermionField& in, FermionField& out, int dir, int disp) { void CompactWilsonCloverFermion<Impl>::Mdir(const FermionField& in, FermionField& out, int dir, int disp) {
DhopDir(in, out, dir, disp); DhopDir(in, out, dir, disp);
} }
template<class Impl, class CloverHelpers> template<class Impl>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MdirAll(const FermionField& in, std::vector<FermionField>& out) { void CompactWilsonCloverFermion<Impl>::MdirAll(const FermionField& in, std::vector<FermionField>& out) {
DhopDirAll(in, out); DhopDirAll(in, out);
} }
template<class Impl, class CloverHelpers> template<class Impl>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) { void CompactWilsonCloverFermion<Impl>::MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) {
assert(!open_boundaries); // TODO check for changes required for open bc assert(!open_boundaries); // TODO check for changes required for open bc
// NOTE: code copied from original clover term // NOTE: code copied from original clover term
@ -257,7 +251,7 @@ void CompactWilsonCloverFermion<Impl, CloverHelpers>::MDeriv(GaugeField& force,
} }
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
force_mu -= factor*CloverHelpers::Cmunu(U, lambda, mu, nu); // checked force_mu -= factor*Helpers::Cmunu(U, lambda, mu, nu); // checked
count++; count++;
} }
@ -267,18 +261,18 @@ void CompactWilsonCloverFermion<Impl, CloverHelpers>::MDeriv(GaugeField& force,
force += clover_force; force += clover_force;
} }
template<class Impl, class CloverHelpers> template<class Impl>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MooDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) { void CompactWilsonCloverFermion<Impl>::MooDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) {
assert(0); assert(0);
} }
template<class Impl, class CloverHelpers> template<class Impl>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MeeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) { void CompactWilsonCloverFermion<Impl>::MeeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) {
assert(0); assert(0);
} }
template<class Impl, class CloverHelpers> template<class Impl>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MooeeInternal(const FermionField& in, void CompactWilsonCloverFermion<Impl>::MooeeInternal(const FermionField& in,
FermionField& out, FermionField& out,
const CloverDiagonalField& diagonal, const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle) { const CloverTriangleField& triangle) {
@ -291,8 +285,8 @@ void CompactWilsonCloverFermion<Impl, CloverHelpers>::MooeeInternal(const Fermio
CompactHelpers::MooeeKernel(diagonal.oSites(), 1, in, out, diagonal, triangle); CompactHelpers::MooeeKernel(diagonal.oSites(), 1, in, out, diagonal, triangle);
} }
template<class Impl, class CloverHelpers> template<class Impl>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::ImportGauge(const GaugeField& _Umu) { void CompactWilsonCloverFermion<Impl>::ImportGauge(const GaugeField& _Umu) {
// NOTE: parts copied from original implementation // NOTE: parts copied from original implementation
// Import gauge into base class // Import gauge into base class
@ -324,27 +318,22 @@ void CompactWilsonCloverFermion<Impl, CloverHelpers>::ImportGauge(const GaugeFie
TmpOriginal += Helpers::fillCloverXT(Ex) * csw_t; TmpOriginal += Helpers::fillCloverXT(Ex) * csw_t;
TmpOriginal += Helpers::fillCloverYT(Ey) * csw_t; TmpOriginal += Helpers::fillCloverYT(Ey) * csw_t;
TmpOriginal += Helpers::fillCloverZT(Ez) * csw_t; TmpOriginal += Helpers::fillCloverZT(Ez) * csw_t;
// Handle mass term based on clover policy TmpOriginal += this->diag_mass;
CloverHelpers::MassTerm(TmpOriginal, this->diag_mass);
// Convert the data layout of the clover term // Convert the data layout of the clover term
double t4 = usecond(); double t4 = usecond();
CompactHelpers::ConvertLayout(TmpOriginal, Diagonal, Triangle); CompactHelpers::ConvertLayout(TmpOriginal, Diagonal, Triangle);
// Exponentiate the clover (nothing happens in case of the standard clover)
double t5 = usecond();
CloverHelpers::Exponentiate_Clover(Diagonal, Triangle, csw_t, this->diag_mass);
// Possible modify the boundary values // Possible modify the boundary values
double t6 = usecond(); double t5 = usecond();
if(open_boundaries) CompactHelpers::ModifyBoundaries(Diagonal, Triangle, csw_t, cF, this->diag_mass); if(open_boundaries) CompactHelpers::ModifyBoundaries(Diagonal, Triangle, csw_t, cF, this->diag_mass);
// Invert the Clover term (explicit inversion needed for the improvement in case of open boundary conditions) // Invert the clover term in the improved layout
double t7 = usecond(); double t6 = usecond();
CompactHelpers::Invert(Diagonal, Triangle, DiagonalInv, TriangleInv); CompactHelpers::Invert(Diagonal, Triangle, DiagonalInv, TriangleInv);
// Fill the remaining clover fields // Fill the remaining clover fields
double t8 = usecond(); double t7 = usecond();
pickCheckerboard(Even, DiagonalEven, Diagonal); pickCheckerboard(Even, DiagonalEven, Diagonal);
pickCheckerboard(Even, TriangleEven, Triangle); pickCheckerboard(Even, TriangleEven, Triangle);
pickCheckerboard(Odd, DiagonalOdd, Diagonal); pickCheckerboard(Odd, DiagonalOdd, Diagonal);
@ -355,19 +344,20 @@ void CompactWilsonCloverFermion<Impl, CloverHelpers>::ImportGauge(const GaugeFie
pickCheckerboard(Odd, TriangleInvOdd, TriangleInv); pickCheckerboard(Odd, TriangleInvOdd, TriangleInv);
// Report timings // Report timings
double t9 = usecond(); double t8 = usecond();
#if 0
std::cout << GridLogDebug << "CompactWilsonCloverFermion::ImportGauge timings:" << std::endl; std::cout << GridLogMessage << "CompactWilsonCloverFermion::ImportGauge timings:"
std::cout << GridLogDebug << "WilsonFermion::Importgauge = " << (t1 - t0) / 1e6 << std::endl; << " WilsonFermion::Importgauge = " << (t1 - t0) / 1e6
std::cout << GridLogDebug << "allocations = " << (t2 - t1) / 1e6 << std::endl; << ", allocations = " << (t2 - t1) / 1e6
std::cout << GridLogDebug << "field strength = " << (t3 - t2) / 1e6 << std::endl; << ", field strength = " << (t3 - t2) / 1e6
std::cout << GridLogDebug << "fill clover = " << (t4 - t3) / 1e6 << std::endl; << ", fill clover = " << (t4 - t3) / 1e6
std::cout << GridLogDebug << "convert = " << (t5 - t4) / 1e6 << std::endl; << ", convert = " << (t5 - t4) / 1e6
std::cout << GridLogDebug << "exponentiation = " << (t6 - t5) / 1e6 << std::endl; << ", boundaries = " << (t6 - t5) / 1e6
std::cout << GridLogDebug << "boundaries = " << (t7 - t6) / 1e6 << std::endl; << ", inversions = " << (t7 - t6) / 1e6
std::cout << GridLogDebug << "inversions = " << (t8 - t7) / 1e6 << std::endl; << ", pick cbs = " << (t8 - t7) / 1e6
std::cout << GridLogDebug << "pick cbs = " << (t9 - t8) / 1e6 << std::endl; << ", total = " << (t8 - t0) / 1e6
std::cout << GridLogDebug << "total = " << (t9 - t0) / 1e6 << std::endl; << std::endl;
#endif
} }
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -34,8 +34,8 @@
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
template<class Impl, class CloverHelpers> template<class Impl>
WilsonCloverFermion<Impl, CloverHelpers>::WilsonCloverFermion(GaugeField& _Umu, WilsonCloverFermion<Impl>::WilsonCloverFermion(GaugeField& _Umu,
GridCartesian& Fgrid, GridCartesian& Fgrid,
GridRedBlackCartesian& Hgrid, GridRedBlackCartesian& Hgrid,
const RealD _mass, const RealD _mass,
@ -74,8 +74,8 @@ WilsonCloverFermion<Impl, CloverHelpers>::WilsonCloverFermion(GaugeField&
} }
// *NOT* EO // *NOT* EO
template<class Impl, class CloverHelpers> template <class Impl>
void WilsonCloverFermion<Impl, CloverHelpers>::M(const FermionField &in, FermionField &out) void WilsonCloverFermion<Impl>::M(const FermionField &in, FermionField &out)
{ {
FermionField temp(out.Grid()); FermionField temp(out.Grid());
@ -89,8 +89,8 @@ void WilsonCloverFermion<Impl, CloverHelpers>::M(const FermionField &in, Fermion
out += temp; out += temp;
} }
template<class Impl, class CloverHelpers> template <class Impl>
void WilsonCloverFermion<Impl, CloverHelpers>::Mdag(const FermionField &in, FermionField &out) void WilsonCloverFermion<Impl>::Mdag(const FermionField &in, FermionField &out)
{ {
FermionField temp(out.Grid()); FermionField temp(out.Grid());
@ -104,8 +104,8 @@ void WilsonCloverFermion<Impl, CloverHelpers>::Mdag(const FermionField &in, Ferm
out += temp; out += temp;
} }
template<class Impl, class CloverHelpers> template <class Impl>
void WilsonCloverFermion<Impl, CloverHelpers>::ImportGauge(const GaugeField &_Umu) void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
{ {
double t0 = usecond(); double t0 = usecond();
WilsonFermion<Impl>::ImportGauge(_Umu); WilsonFermion<Impl>::ImportGauge(_Umu);
@ -131,11 +131,47 @@ void WilsonCloverFermion<Impl, CloverHelpers>::ImportGauge(const GaugeField &_Um
CloverTerm += Helpers::fillCloverXT(Ex) * csw_t; CloverTerm += Helpers::fillCloverXT(Ex) * csw_t;
CloverTerm += Helpers::fillCloverYT(Ey) * csw_t; CloverTerm += Helpers::fillCloverYT(Ey) * csw_t;
CloverTerm += Helpers::fillCloverZT(Ez) * csw_t; CloverTerm += Helpers::fillCloverZT(Ez) * csw_t;
CloverTerm += diag_mass;
double t4 = usecond(); double t4 = usecond();
CloverHelpers::Instantiate(CloverTerm, CloverTermInv, csw_t, this->diag_mass); int lvol = _Umu.Grid()->lSites();
int DimRep = Impl::Dimension;
double t5 = usecond(); double t5 = usecond();
{
autoView(CTv,CloverTerm,CpuRead);
autoView(CTIv,CloverTermInv,CpuWrite);
thread_for(site, lvol, {
Coordinate lcoor;
grid->LocalIndexToLocalCoor(site, lcoor);
Eigen::MatrixXcd EigenCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
Eigen::MatrixXcd EigenInvCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
typename SiteClover::scalar_object Qx = Zero(), Qxinv = Zero();
peekLocalSite(Qx, CTv, lcoor);
//if (csw!=0){
for (int j = 0; j < Ns; j++)
for (int k = 0; k < Ns; k++)
for (int a = 0; a < DimRep; a++)
for (int b = 0; b < DimRep; b++){
auto zz = Qx()(j, k)(a, b);
EigenCloverOp(a + j * DimRep, b + k * DimRep) = std::complex<double>(zz);
}
// if (site==0) std::cout << "site =" << site << "\n" << EigenCloverOp << std::endl;
EigenInvCloverOp = EigenCloverOp.inverse();
//std::cout << EigenInvCloverOp << std::endl;
for (int j = 0; j < Ns; j++)
for (int k = 0; k < Ns; k++)
for (int a = 0; a < DimRep; a++)
for (int b = 0; b < DimRep; b++)
Qxinv()(j, k)(a, b) = EigenInvCloverOp(a + j * DimRep, b + k * DimRep);
// if (site==0) std::cout << "site =" << site << "\n" << EigenInvCloverOp << std::endl;
// }
pokeLocalSite(Qxinv, CTIv, lcoor);
});
}
double t6 = usecond();
// Separate the even and odd parts // Separate the even and odd parts
pickCheckerboard(Even, CloverTermEven, CloverTerm); pickCheckerboard(Even, CloverTermEven, CloverTerm);
pickCheckerboard(Odd, CloverTermOdd, CloverTerm); pickCheckerboard(Odd, CloverTermOdd, CloverTerm);
@ -148,44 +184,48 @@ void WilsonCloverFermion<Impl, CloverHelpers>::ImportGauge(const GaugeField &_Um
pickCheckerboard(Even, CloverTermInvDagEven, adj(CloverTermInv)); pickCheckerboard(Even, CloverTermInvDagEven, adj(CloverTermInv));
pickCheckerboard(Odd, CloverTermInvDagOdd, adj(CloverTermInv)); pickCheckerboard(Odd, CloverTermInvDagOdd, adj(CloverTermInv));
double t6 = usecond(); double t7 = usecond();
std::cout << GridLogDebug << "WilsonCloverFermion::ImportGauge timings:" << std::endl; #if 0
std::cout << GridLogDebug << "WilsonFermion::Importgauge = " << (t1 - t0) / 1e6 << std::endl; std::cout << GridLogMessage << "WilsonCloverFermion::ImportGauge timings:"
std::cout << GridLogDebug << "allocations = " << (t2 - t1) / 1e6 << std::endl; << " WilsonFermion::Importgauge = " << (t1 - t0) / 1e6
std::cout << GridLogDebug << "field strength = " << (t3 - t2) / 1e6 << std::endl; << ", allocations = " << (t2 - t1) / 1e6
std::cout << GridLogDebug << "fill clover = " << (t4 - t3) / 1e6 << std::endl; << ", field strength = " << (t3 - t2) / 1e6
std::cout << GridLogDebug << "instantiation = " << (t5 - t4) / 1e6 << std::endl; << ", fill clover = " << (t4 - t3) / 1e6
std::cout << GridLogDebug << "pick cbs = " << (t6 - t5) / 1e6 << std::endl; << ", misc = " << (t5 - t4) / 1e6
std::cout << GridLogDebug << "total = " << (t6 - t0) / 1e6 << std::endl; << ", inversions = " << (t6 - t5) / 1e6
<< ", pick cbs = " << (t7 - t6) / 1e6
<< ", total = " << (t7 - t0) / 1e6
<< std::endl;
#endif
} }
template<class Impl, class CloverHelpers> template <class Impl>
void WilsonCloverFermion<Impl, CloverHelpers>::Mooee(const FermionField &in, FermionField &out) void WilsonCloverFermion<Impl>::Mooee(const FermionField &in, FermionField &out)
{ {
this->MooeeInternal(in, out, DaggerNo, InverseNo); this->MooeeInternal(in, out, DaggerNo, InverseNo);
} }
template<class Impl, class CloverHelpers> template <class Impl>
void WilsonCloverFermion<Impl, CloverHelpers>::MooeeDag(const FermionField &in, FermionField &out) void WilsonCloverFermion<Impl>::MooeeDag(const FermionField &in, FermionField &out)
{ {
this->MooeeInternal(in, out, DaggerYes, InverseNo); this->MooeeInternal(in, out, DaggerYes, InverseNo);
} }
template<class Impl, class CloverHelpers> template <class Impl>
void WilsonCloverFermion<Impl, CloverHelpers>::MooeeInv(const FermionField &in, FermionField &out) void WilsonCloverFermion<Impl>::MooeeInv(const FermionField &in, FermionField &out)
{ {
this->MooeeInternal(in, out, DaggerNo, InverseYes); this->MooeeInternal(in, out, DaggerNo, InverseYes);
} }
template<class Impl, class CloverHelpers> template <class Impl>
void WilsonCloverFermion<Impl, CloverHelpers>::MooeeInvDag(const FermionField &in, FermionField &out) void WilsonCloverFermion<Impl>::MooeeInvDag(const FermionField &in, FermionField &out)
{ {
this->MooeeInternal(in, out, DaggerYes, InverseYes); this->MooeeInternal(in, out, DaggerYes, InverseYes);
} }
template<class Impl, class CloverHelpers> template <class Impl>
void WilsonCloverFermion<Impl, CloverHelpers>::MooeeInternal(const FermionField &in, FermionField &out, int dag, int inv) void WilsonCloverFermion<Impl>::MooeeInternal(const FermionField &in, FermionField &out, int dag, int inv)
{ {
out.Checkerboard() = in.Checkerboard(); out.Checkerboard() = in.Checkerboard();
CloverField *Clover; CloverField *Clover;
@ -238,8 +278,8 @@ void WilsonCloverFermion<Impl, CloverHelpers>::MooeeInternal(const FermionField
} // MooeeInternal } // MooeeInternal
// Derivative parts unpreconditioned pseudofermions // Derivative parts unpreconditioned pseudofermions
template<class Impl, class CloverHelpers> template <class Impl>
void WilsonCloverFermion<Impl, CloverHelpers>::MDeriv(GaugeField &force, const FermionField &X, const FermionField &Y, int dag) void WilsonCloverFermion<Impl>::MDeriv(GaugeField &force, const FermionField &X, const FermionField &Y, int dag)
{ {
conformable(X.Grid(), Y.Grid()); conformable(X.Grid(), Y.Grid());
conformable(X.Grid(), force.Grid()); conformable(X.Grid(), force.Grid());
@ -309,7 +349,7 @@ void WilsonCloverFermion<Impl, CloverHelpers>::MDeriv(GaugeField &force, const F
} }
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
force_mu -= factor*CloverHelpers::Cmunu(U, lambda, mu, nu); // checked force_mu -= factor*Helpers::Cmunu(U, lambda, mu, nu); // checked
count++; count++;
} }
@ -320,15 +360,15 @@ void WilsonCloverFermion<Impl, CloverHelpers>::MDeriv(GaugeField &force, const F
} }
// Derivative parts // Derivative parts
template<class Impl, class CloverHelpers> template <class Impl>
void WilsonCloverFermion<Impl, CloverHelpers>::MooDeriv(GaugeField &mat, const FermionField &X, const FermionField &Y, int dag) void WilsonCloverFermion<Impl>::MooDeriv(GaugeField &mat, const FermionField &X, const FermionField &Y, int dag)
{ {
assert(0); assert(0);
} }
// Derivative parts // Derivative parts
template<class Impl, class CloverHelpers> template <class Impl>
void WilsonCloverFermion<Impl, CloverHelpers>::MeeDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag) void WilsonCloverFermion<Impl>::MeeDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag)
{ {
assert(0); // not implemented yet assert(0); // not implemented yet
} }

View File

@ -4,13 +4,12 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonFermion.cc Source file: ./lib/qcd/action/fermion/WilsonFermion.cc
Copyright (C) 2022 Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk> Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk> Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local> Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk> Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Fabian Joswig <fabian.joswig@ed.ac.uk>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
@ -600,47 +599,11 @@ void WilsonFermion<Impl>::ContractConservedCurrent(PropagatorField &q_in_1,
Current curr_type, Current curr_type,
unsigned int mu) unsigned int mu)
{ {
if(curr_type != Current::Vector)
{
std::cout << GridLogError << "Only the conserved vector current is implemented so far." << std::endl;
exit(1);
}
Gamma g5(Gamma::Algebra::Gamma5); Gamma g5(Gamma::Algebra::Gamma5);
conformable(_grid, q_in_1.Grid()); conformable(_grid, q_in_1.Grid());
conformable(_grid, q_in_2.Grid()); conformable(_grid, q_in_2.Grid());
conformable(_grid, q_out.Grid()); conformable(_grid, q_out.Grid());
auto UGrid= this->GaugeGrid(); assert(0);
PropagatorField tmp_shifted(UGrid);
PropagatorField g5Lg5(UGrid);
PropagatorField R(UGrid);
PropagatorField gmuR(UGrid);
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT,
};
Gamma gmu=Gamma(Gmu[mu]);
g5Lg5=g5*q_in_1*g5;
tmp_shifted=Cshift(q_in_2,mu,1);
Impl::multLinkField(R,this->Umu,tmp_shifted,mu);
gmuR=gmu*R;
q_out=adj(g5Lg5)*R;
q_out-=adj(g5Lg5)*gmuR;
tmp_shifted=Cshift(q_in_1,mu,1);
Impl::multLinkField(g5Lg5,this->Umu,tmp_shifted,mu);
g5Lg5=g5*g5Lg5*g5;
R=q_in_2;
gmuR=gmu*R;
q_out-=adj(g5Lg5)*R;
q_out-=adj(g5Lg5)*gmuR;
} }
@ -654,51 +617,9 @@ void WilsonFermion<Impl>::SeqConservedCurrent(PropagatorField &q_in,
unsigned int tmax, unsigned int tmax,
ComplexField &lattice_cmplx) ComplexField &lattice_cmplx)
{ {
if(curr_type != Current::Vector)
{
std::cout << GridLogError << "Only the conserved vector current is implemented so far." << std::endl;
exit(1);
}
int tshift = (mu == Nd-1) ? 1 : 0;
unsigned int LLt = GridDefaultLatt()[Tp];
conformable(_grid, q_in.Grid()); conformable(_grid, q_in.Grid());
conformable(_grid, q_out.Grid()); conformable(_grid, q_out.Grid());
auto UGrid= this->GaugeGrid(); assert(0);
PropagatorField tmp(UGrid);
PropagatorField Utmp(UGrid);
PropagatorField L(UGrid);
PropagatorField zz (UGrid);
zz=Zero();
LatticeInteger lcoor(UGrid); LatticeCoordinate(lcoor,Nd-1);
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT,
};
Gamma gmu=Gamma(Gmu[mu]);
tmp = Cshift(q_in,mu,1);
Impl::multLinkField(Utmp,this->Umu,tmp,mu);
tmp = ( Utmp*lattice_cmplx - gmu*Utmp*lattice_cmplx ); // Forward hop
tmp = where((lcoor>=tmin),tmp,zz); // Mask the time
q_out = where((lcoor<=tmax),tmp,zz); // Position of current complicated
tmp = q_in *lattice_cmplx;
tmp = Cshift(tmp,mu,-1);
Impl::multLinkField(Utmp,this->Umu,tmp,mu+Nd); // Adjoint link
tmp = -( Utmp + gmu*Utmp );
// Mask the time
if (tmax == LLt - 1 && tshift == 1){ // quick fix to include timeslice 0 if tmax + tshift is over the last timeslice
unsigned int t0 = 0;
tmp = where(((lcoor==t0) || (lcoor>=tmin+tshift)),tmp,zz);
} else {
tmp = where((lcoor>=tmin+tshift),tmp,zz);
}
q_out+= where((lcoor<=tmax+tshift),tmp,zz); // Position of current complicated
} }
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -9,7 +9,6 @@
Author: paboyle <paboyle@ph.ed.ac.uk> Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk> Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Daniel Richtmann <daniel.richtmann@gmail.com> Author: Daniel Richtmann <daniel.richtmann@gmail.com>
Author: Mattia Bruno <mattia.bruno@cern.ch>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
@ -33,12 +32,10 @@
#include <Grid/qcd/spin/Dirac.h> #include <Grid/qcd/spin/Dirac.h>
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h> #include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h>
#include <Grid/qcd/action/fermion/implementation/CompactWilsonCloverFermionImplementation.h> #include <Grid/qcd/action/fermion/implementation/CompactWilsonCloverFermionImplementation.h>
#include <Grid/qcd/action/fermion/CloverHelpers.h>
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
#include "impl.h" #include "impl.h"
template class CompactWilsonCloverFermion<IMPLEMENTATION, CompactCloverHelpers<IMPLEMENTATION>>; template class CompactWilsonCloverFermion<IMPLEMENTATION>;
template class CompactWilsonCloverFermion<IMPLEMENTATION, CompactExpCloverHelpers<IMPLEMENTATION>>;
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -1 +0,0 @@
../WilsonKernelsInstantiation.cc.master

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -1 +0,0 @@
../WilsonKernelsInstantiation.cc.master

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -8,8 +8,7 @@
Author: paboyle <paboyle@ph.ed.ac.uk> Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk> Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Mattia Bruno <mattia.bruno@cern.ch>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or the Free Software Foundation; either version 2 of the License, or
@ -32,12 +31,10 @@
#include <Grid/qcd/spin/Dirac.h> #include <Grid/qcd/spin/Dirac.h>
#include <Grid/qcd/action/fermion/WilsonCloverFermion.h> #include <Grid/qcd/action/fermion/WilsonCloverFermion.h>
#include <Grid/qcd/action/fermion/implementation/WilsonCloverFermionImplementation.h> #include <Grid/qcd/action/fermion/implementation/WilsonCloverFermionImplementation.h>
#include <Grid/qcd/action/fermion/CloverHelpers.h>
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
#include "impl.h" #include "impl.h"
template class WilsonCloverFermion<IMPLEMENTATION, CloverHelpers<IMPLEMENTATION>>; template class WilsonCloverFermion<IMPLEMENTATION>;
template class WilsonCloverFermion<IMPLEMENTATION, ExpCloverHelpers<IMPLEMENTATION>>;
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -1 +0,0 @@
../WilsonKernelsInstantiation.cc.master

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -1 +0,0 @@
../WilsonKernelsInstantiation.cc.master

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -1 +0,0 @@
../WilsonKernelsInstantiation.cc.master

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -1 +0,0 @@
../WilsonKernelsInstantiation.cc.master

View File

@ -0,0 +1,51 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsImplementation.h>
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsHandImplementation.h>
#ifndef AVX512
#ifndef QPX
#ifndef A64FX
#ifndef A64FXFIXEDSIZE
#include <Grid/qcd/action/fermion/implementation/WilsonKernelsAsmImplementation.h>
#endif
#endif
#endif
#endif
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class WilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -18,10 +18,6 @@ WILSON_IMPL_LIST=" \
GparityWilsonImplF \ GparityWilsonImplF \
GparityWilsonImplD " GparityWilsonImplD "
COMPACT_WILSON_IMPL_LIST=" \
WilsonImplF \
WilsonImplD "
DWF_IMPL_LIST=" \ DWF_IMPL_LIST=" \
WilsonImplF \ WilsonImplF \
WilsonImplD \ WilsonImplD \
@ -44,23 +40,13 @@ EOF
done done
CC_LIST="WilsonCloverFermionInstantiation WilsonFermionInstantiation WilsonKernelsInstantiation WilsonTMFermionInstantiation" CC_LIST="WilsonCloverFermionInstantiation CompactWilsonCloverFermionInstantiation WilsonFermionInstantiation WilsonKernelsInstantiation WilsonTMFermionInstantiation"
for impl in $WILSON_IMPL_LIST for impl in $WILSON_IMPL_LIST
do do
for f in $CC_LIST for f in $CC_LIST
do do
ln -f -s ../$f.cc.master $impl/$f$impl.cc ln -f -s ../$f.cc.master $impl/$f$impl.cc
done
done
CC_LIST="CompactWilsonCloverFermionInstantiation"
for impl in $COMPACT_WILSON_IMPL_LIST
do
for f in $CC_LIST
do
ln -f -s ../$f.cc.master $impl/$f$impl.cc
done done
done done
@ -77,14 +63,14 @@ for impl in $DWF_IMPL_LIST $GDWF_IMPL_LIST
do do
for f in $CC_LIST for f in $CC_LIST
do do
ln -f -s ../$f.cc.master $impl/$f$impl.cc ln -f -s ../$f.cc.master $impl/$f$impl.cc
done done
done done
# overwrite the .cc file in Gparity directories # overwrite the .cc file in Gparity directories
for impl in $GDWF_IMPL_LIST for impl in $GDWF_IMPL_LIST
do do
ln -f -s ../WilsonKernelsInstantiationGparity.cc.master $impl/WilsonKernelsInstantiation$impl.cc ln -f -s ../WilsonKernelsInstantiationGparity.cc.master $impl/WilsonKernelsInstantiation$impl.cc
done done
@ -98,7 +84,7 @@ for impl in $STAG_IMPL_LIST
do do
for f in $CC_LIST for f in $CC_LIST
do do
ln -f -s ../$f.cc.master $impl/$f$impl.cc ln -f -s ../$f.cc.master $impl/$f$impl.cc
done done
done done

View File

@ -69,6 +69,11 @@ public:
return PeriodicBC::ShiftStaple(Link,mu); return PeriodicBC::ShiftStaple(Link,mu);
} }
//Same as Cshift for periodic BCs
static inline GaugeLinkField CshiftLink(const GaugeLinkField &Link, int mu, int shift){
return PeriodicBC::CshiftLink(Link,mu,shift);
}
static inline bool isPeriodicGaugeField(void) { return true; } static inline bool isPeriodicGaugeField(void) { return true; }
}; };
@ -110,6 +115,11 @@ public:
return PeriodicBC::CovShiftBackward(Link, mu, field); return PeriodicBC::CovShiftBackward(Link, mu, field);
} }
//If mu is a conjugate BC direction
//Out(x) = U^dag_\mu(x-mu) | x_\mu != 0
// = U^T_\mu(L-1) | x_\mu == 0
//else
//Out(x) = U^dag_\mu(x-mu mod L)
static inline GaugeLinkField static inline GaugeLinkField
CovShiftIdentityBackward(const GaugeLinkField &Link, int mu) CovShiftIdentityBackward(const GaugeLinkField &Link, int mu)
{ {
@ -129,6 +139,13 @@ public:
return PeriodicBC::CovShiftIdentityForward(Link,mu); return PeriodicBC::CovShiftIdentityForward(Link,mu);
} }
//If mu is a conjugate BC direction
//Out(x) = S_\mu(x+mu) | x_\mu != L-1
// = S*_\mu(x+mu) | x_\mu == L-1
//else
//Out(x) = S_\mu(x+mu mod L)
//Note: While this is used for Staples it is also applicable for shifting gauge links or gauge transformation matrices
static inline GaugeLinkField ShiftStaple(const GaugeLinkField &Link, int mu) static inline GaugeLinkField ShiftStaple(const GaugeLinkField &Link, int mu)
{ {
assert(_conjDirs.size() == Nd); assert(_conjDirs.size() == Nd);
@ -138,6 +155,27 @@ public:
return PeriodicBC::ShiftStaple(Link,mu); return PeriodicBC::ShiftStaple(Link,mu);
} }
//Boundary-aware C-shift of gauge links / gauge transformation matrices
//For conjugate BC direction
//shift = 1
//Out(x) = U_\mu(x+\hat\mu) | x_\mu != L-1
// = U*_\mu(0) | x_\mu == L-1
//shift = -1
//Out(x) = U_\mu(x-mu) | x_\mu != 0
// = U*_\mu(L-1) | x_\mu == 0
//else
//shift = 1
//Out(x) = U_\mu(x+\hat\mu mod L)
//shift = -1
//Out(x) = U_\mu(x-\hat\mu mod L)
static inline GaugeLinkField CshiftLink(const GaugeLinkField &Link, int mu, int shift){
assert(_conjDirs.size() == Nd);
if(_conjDirs[mu])
return ConjugateBC::CshiftLink(Link,mu,shift);
else
return PeriodicBC::CshiftLink(Link,mu,shift);
}
static inline void setDirections(std::vector<int> &conjDirs) { _conjDirs=conjDirs; } static inline void setDirections(std::vector<int> &conjDirs) { _conjDirs=conjDirs; }
static inline std::vector<int> getDirections(void) { return _conjDirs; } static inline std::vector<int> getDirections(void) { return _conjDirs; }
static inline bool isPeriodicGaugeField(void) { return false; } static inline bool isPeriodicGaugeField(void) { return false; }

View File

@ -40,13 +40,66 @@ NAMESPACE_BEGIN(Grid);
X=X-Y; X=X-Y;
RealD Nd = norm2(X); RealD Nd = norm2(X);
std::cout << "************************* "<<std::endl; std::cout << "************************* "<<std::endl;
std::cout << " noise = "<<Nx<<std::endl; std::cout << " | noise |^2 = "<<Nx<<std::endl;
std::cout << " (MdagM^-1/2)^2 noise = "<<Nz<<std::endl; std::cout << " | (MdagM^-1/2)^2 noise |^2 = "<<Nz<<std::endl;
std::cout << " MdagM (MdagM^-1/2)^2 noise = "<<Ny<<std::endl; std::cout << " | MdagM (MdagM^-1/2)^2 noise |^2 = "<<Ny<<std::endl;
std::cout << " noise - MdagM (MdagM^-1/2)^2 noise = "<<Nd<<std::endl; std::cout << " | noise - MdagM (MdagM^-1/2)^2 noise |^2 = "<<Nd<<std::endl;
std::cout << " | noise - MdagM (MdagM^-1/2)^2 noise|/|noise| = " << std::sqrt(Nd/Nx) << std::endl;
std::cout << "************************* "<<std::endl; std::cout << "************************* "<<std::endl;
assert( (std::sqrt(Nd/Nx)<tol) && " InverseSqrtBoundsCheck "); assert( (std::sqrt(Nd/Nx)<tol) && " InverseSqrtBoundsCheck ");
} }
/* For a HermOp = M^dag M, check the approximation of HermOp^{-1/inv_pow}
by computing |X - HermOp * [ Hermop^{-1/inv_pow} ]^{inv_pow} X| < tol
for noise X (aka GaussNoise).
ApproxNegPow should be the rational approximation for X^{-1/inv_pow}
*/
template<class Field> void InversePowerBoundsCheck(int inv_pow,
int MaxIter,double tol,
LinearOperatorBase<Field> &HermOp,
Field &GaussNoise,
MultiShiftFunction &ApproxNegPow)
{
GridBase *FermionGrid = GaussNoise.Grid();
Field X(FermionGrid);
Field Y(FermionGrid);
Field Z(FermionGrid);
Field tmp1(FermionGrid), tmp2(FermionGrid);
X=GaussNoise;
RealD Nx = norm2(X);
ConjugateGradientMultiShift<Field> msCG(MaxIter,ApproxNegPow);
tmp1 = X;
Field* in = &tmp1;
Field* out = &tmp2;
for(int i=0;i<inv_pow;i++){ //apply [ Hermop^{-1/inv_pow} ]^{inv_pow} X = HermOp^{-1} X
msCG(HermOp, *in, *out); //backwards conventions!
if(i!=inv_pow-1) std::swap(in, out);
}
Z = *out;
RealD Nz = norm2(Z);
HermOp.HermOp(Z,Y);
RealD Ny = norm2(Y);
X=X-Y;
RealD Nd = norm2(X);
std::cout << "************************* "<<std::endl;
std::cout << " | noise |^2 = "<<Nx<<std::endl;
std::cout << " | (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |^2 = "<<Nz<<std::endl;
std::cout << " | MdagM (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |^2 = "<<Ny<<std::endl;
std::cout << " | noise - MdagM (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |^2 = "<<Nd<<std::endl;
std::cout << " | noise - MdagM (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |/| noise | = "<<std::sqrt(Nd/Nx)<<std::endl;
std::cout << "************************* "<<std::endl;
assert( (std::sqrt(Nd/Nx)<tol) && " InversePowerBoundsCheck ");
}
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -44,6 +44,10 @@ NAMESPACE_BEGIN(Grid);
// Exact one flavour implementation of DWF determinant ratio // // Exact one flavour implementation of DWF determinant ratio //
/////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////
//Note: using mixed prec CG for the heatbath solver in this action class will not work
// because the L, R operators must have their shift coefficients updated throughout the heatbath step
// You will find that the heatbath solver simply won't converge.
// To use mixed precision here use the ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction variant below
template<class Impl> template<class Impl>
class ExactOneFlavourRatioPseudoFermionAction : public Action<typename Impl::GaugeField> class ExactOneFlavourRatioPseudoFermionAction : public Action<typename Impl::GaugeField>
{ {
@ -57,37 +61,60 @@ NAMESPACE_BEGIN(Grid);
bool use_heatbath_forecasting; bool use_heatbath_forecasting;
AbstractEOFAFermion<Impl>& Lop; // the basic LH operator AbstractEOFAFermion<Impl>& Lop; // the basic LH operator
AbstractEOFAFermion<Impl>& Rop; // the basic RH operator AbstractEOFAFermion<Impl>& Rop; // the basic RH operator
SchurRedBlackDiagMooeeSolve<FermionField> SolverHB; SchurRedBlackDiagMooeeSolve<FermionField> SolverHBL;
SchurRedBlackDiagMooeeSolve<FermionField> SolverHBR;
SchurRedBlackDiagMooeeSolve<FermionField> SolverL; SchurRedBlackDiagMooeeSolve<FermionField> SolverL;
SchurRedBlackDiagMooeeSolve<FermionField> SolverR; SchurRedBlackDiagMooeeSolve<FermionField> SolverR;
SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverL; SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverL;
SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverR; SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverR;
FermionField Phi; // the pseudofermion field for this trajectory FermionField Phi; // the pseudofermion field for this trajectory
RealD norm2_eta; //|eta|^2 where eta is the random gaussian field used to generate the pseudofermion field
bool initial_action; //true for the first call to S after refresh, for which the identity S = |eta|^2 holds provided the rational approx is good
public: public:
//Used in the heatbath, refresh the shift coefficients of the L (LorR=0) or R (LorR=1) operator
virtual void heatbathRefreshShiftCoefficients(int LorR, RealD to){
AbstractEOFAFermion<Impl>&op = LorR == 0 ? Lop : Rop;
op.RefreshShiftCoefficients(to);
}
//Use the same solver for L,R in all cases
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop, ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
AbstractEOFAFermion<Impl>& _Rop, AbstractEOFAFermion<Impl>& _Rop,
OperatorFunction<FermionField>& CG, OperatorFunction<FermionField>& CG,
Params& p, Params& p,
bool use_fc=false) bool use_fc=false)
: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,CG,CG,CG,CG,CG,p,use_fc) {}; : ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,CG,CG,CG,CG,CG,CG,p,use_fc) {};
//Use the same solver for L,R in the heatbath but different solvers elsewhere
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop, ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
AbstractEOFAFermion<Impl>& _Rop, AbstractEOFAFermion<Impl>& _Rop,
OperatorFunction<FermionField>& HeatbathCG, OperatorFunction<FermionField>& HeatbathCG,
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
Params& p,
bool use_fc=false)
: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,HeatbathCG,HeatbathCG, ActionCGL, ActionCGR, DerivCGL,DerivCGR,p,use_fc) {};
//Use different solvers for L,R in all cases
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
AbstractEOFAFermion<Impl>& _Rop,
OperatorFunction<FermionField>& HeatbathCGL, OperatorFunction<FermionField>& HeatbathCGR,
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR, OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR, OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
Params& p, Params& p,
bool use_fc=false) : bool use_fc=false) :
Lop(_Lop), Lop(_Lop),
Rop(_Rop), Rop(_Rop),
SolverHB(HeatbathCG,false,true), SolverHBL(HeatbathCGL,false,true), SolverHBR(HeatbathCGR,false,true),
SolverL(ActionCGL, false, true), SolverR(ActionCGR, false, true), SolverL(ActionCGL, false, true), SolverR(ActionCGR, false, true),
DerivativeSolverL(DerivCGL, false, true), DerivativeSolverR(DerivCGR, false, true), DerivativeSolverL(DerivCGL, false, true), DerivativeSolverR(DerivCGR, false, true),
Phi(_Lop.FermionGrid()), Phi(_Lop.FermionGrid()),
param(p), param(p),
use_heatbath_forecasting(use_fc) use_heatbath_forecasting(use_fc),
initial_action(false)
{ {
AlgRemez remez(param.lo, param.hi, param.precision); AlgRemez remez(param.lo, param.hi, param.precision);
@ -97,6 +124,8 @@ NAMESPACE_BEGIN(Grid);
PowerNegHalf.Init(remez, param.tolerance, true); PowerNegHalf.Init(remez, param.tolerance, true);
}; };
const FermionField &getPhi() const{ return Phi; }
virtual std::string action_name() { return "ExactOneFlavourRatioPseudoFermionAction"; } virtual std::string action_name() { return "ExactOneFlavourRatioPseudoFermionAction"; }
virtual std::string LogParameters() { virtual std::string LogParameters() {
@ -117,6 +146,19 @@ NAMESPACE_BEGIN(Grid);
else{ for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(out, 0.0, in, 1.0, in, s, s); } } else{ for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(out, 0.0, in, 1.0, in, s, s); } }
} }
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
// P(eta_o) = e^{- eta_o^dag eta_o}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
RealD scale = std::sqrt(0.5);
FermionField eta (Lop.FermionGrid());
gaussian(pRNG,eta); eta = eta * scale;
refresh(U,eta);
}
// EOFA heatbath: see Eqn. (29) of arXiv:1706.05843 // EOFA heatbath: see Eqn. (29) of arXiv:1706.05843
// We generate a Gaussian noise vector \eta, and then compute // We generate a Gaussian noise vector \eta, and then compute
// \Phi = M_{\rm EOFA}^{-1/2} * \eta // \Phi = M_{\rm EOFA}^{-1/2} * \eta
@ -124,12 +166,10 @@ NAMESPACE_BEGIN(Grid);
// //
// As a check of rational require \Phi^dag M_{EOFA} \Phi == eta^dag M^-1/2^dag M M^-1/2 eta = eta^dag eta // As a check of rational require \Phi^dag M_{EOFA} \Phi == eta^dag M^-1/2^dag M M^-1/2 eta = eta^dag eta
// //
virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) void refresh(const GaugeField &U, const FermionField &eta) {
{
Lop.ImportGauge(U); Lop.ImportGauge(U);
Rop.ImportGauge(U); Rop.ImportGauge(U);
FermionField eta (Lop.FermionGrid());
FermionField CG_src (Lop.FermionGrid()); FermionField CG_src (Lop.FermionGrid());
FermionField CG_soln (Lop.FermionGrid()); FermionField CG_soln (Lop.FermionGrid());
FermionField Forecast_src(Lop.FermionGrid()); FermionField Forecast_src(Lop.FermionGrid());
@ -140,11 +180,6 @@ NAMESPACE_BEGIN(Grid);
if(use_heatbath_forecasting){ prev_solns.reserve(param.degree); } if(use_heatbath_forecasting){ prev_solns.reserve(param.degree); }
ChronoForecast<AbstractEOFAFermion<Impl>, FermionField> Forecast; ChronoForecast<AbstractEOFAFermion<Impl>, FermionField> Forecast;
// Seed with Gaussian noise vector (var = 0.5)
RealD scale = std::sqrt(0.5);
gaussian(pRNG,eta);
eta = eta * scale;
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta // \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
RealD N(PowerNegHalf.norm); RealD N(PowerNegHalf.norm);
for(int k=0; k<param.degree; ++k){ N += PowerNegHalf.residues[k] / ( 1.0 + PowerNegHalf.poles[k] ); } for(int k=0; k<param.degree; ++k){ N += PowerNegHalf.residues[k] / ( 1.0 + PowerNegHalf.poles[k] ); }
@ -160,15 +195,16 @@ NAMESPACE_BEGIN(Grid);
tmp[1] = Zero(); tmp[1] = Zero();
for(int k=0; k<param.degree; ++k){ for(int k=0; k<param.degree; ++k){
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] ); gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
Lop.RefreshShiftCoefficients(-gamma_l); heatbathRefreshShiftCoefficients(0, -gamma_l);
//Lop.RefreshShiftCoefficients(-gamma_l);
if(use_heatbath_forecasting){ // Forecast CG guess using solutions from previous poles if(use_heatbath_forecasting){ // Forecast CG guess using solutions from previous poles
Lop.Mdag(CG_src, Forecast_src); Lop.Mdag(CG_src, Forecast_src);
CG_soln = Forecast(Lop, Forecast_src, prev_solns); CG_soln = Forecast(Lop, Forecast_src, prev_solns);
SolverHB(Lop, CG_src, CG_soln); SolverHBL(Lop, CG_src, CG_soln);
prev_solns.push_back(CG_soln); prev_solns.push_back(CG_soln);
} else { } else {
CG_soln = Zero(); // Just use zero as the initial guess CG_soln = Zero(); // Just use zero as the initial guess
SolverHB(Lop, CG_src, CG_soln); SolverHBL(Lop, CG_src, CG_soln);
} }
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = tmp[1] + ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Lop.k ) * tmp[0]; tmp[1] = tmp[1] + ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Lop.k ) * tmp[0];
@ -187,15 +223,16 @@ NAMESPACE_BEGIN(Grid);
if(use_heatbath_forecasting){ prev_solns.clear(); } // empirically, LH solns don't help for RH solves if(use_heatbath_forecasting){ prev_solns.clear(); } // empirically, LH solns don't help for RH solves
for(int k=0; k<param.degree; ++k){ for(int k=0; k<param.degree; ++k){
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] ); gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
Rop.RefreshShiftCoefficients(-gamma_l*PowerNegHalf.poles[k]); heatbathRefreshShiftCoefficients(1, -gamma_l*PowerNegHalf.poles[k]);
//Rop.RefreshShiftCoefficients(-gamma_l*PowerNegHalf.poles[k]);
if(use_heatbath_forecasting){ if(use_heatbath_forecasting){
Rop.Mdag(CG_src, Forecast_src); Rop.Mdag(CG_src, Forecast_src);
CG_soln = Forecast(Rop, Forecast_src, prev_solns); CG_soln = Forecast(Rop, Forecast_src, prev_solns);
SolverHB(Rop, CG_src, CG_soln); SolverHBR(Rop, CG_src, CG_soln);
prev_solns.push_back(CG_soln); prev_solns.push_back(CG_soln);
} else { } else {
CG_soln = Zero(); CG_soln = Zero();
SolverHB(Rop, CG_src, CG_soln); SolverHBR(Rop, CG_src, CG_soln);
} }
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = tmp[1] - ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Rop.k ) * tmp[0]; tmp[1] = tmp[1] - ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Rop.k ) * tmp[0];
@ -205,49 +242,119 @@ NAMESPACE_BEGIN(Grid);
Phi = Phi + tmp[1]; Phi = Phi + tmp[1];
// Reset shift coefficients for energy and force evals // Reset shift coefficients for energy and force evals
Lop.RefreshShiftCoefficients(0.0); //Lop.RefreshShiftCoefficients(0.0);
Rop.RefreshShiftCoefficients(-1.0); //Rop.RefreshShiftCoefficients(-1.0);
heatbathRefreshShiftCoefficients(0, 0.0);
heatbathRefreshShiftCoefficients(1, -1.0);
//Mark that the next call to S is the first after refresh
initial_action = true;
// Bounds check // Bounds check
RealD EtaDagEta = norm2(eta); RealD EtaDagEta = norm2(eta);
norm2_eta = EtaDagEta;
// RealD PhiDagMPhi= norm2(eta); // RealD PhiDagMPhi= norm2(eta);
}; };
void Meofa(const GaugeField& U,const FermionField &phi, FermionField & Mphi) void Meofa(const GaugeField& U,const FermionField &in, FermionField & out)
{ {
#if 0
Lop.ImportGauge(U); Lop.ImportGauge(U);
Rop.ImportGauge(U); Rop.ImportGauge(U);
FermionField spProj_Phi(Lop.FermionGrid()); FermionField spProj_in(Lop.FermionGrid());
FermionField mPhi(Lop.FermionGrid());
std::vector<FermionField> tmp(2, Lop.FermionGrid()); std::vector<FermionField> tmp(2, Lop.FermionGrid());
mPhi = phi; out = in;
// LH term: S = S - k <\Phi| P_{-} \Omega_{-}^{\dagger} H(mf)^{-1} \Omega_{-} P_{-} |\Phi> // LH term: S = S - k <\Phi| P_{-} \Omega_{-}^{\dagger} H(mf)^{-1} \Omega_{-} P_{-} |\Phi>
spProj(Phi, spProj_Phi, -1, Lop.Ls); spProj(in, spProj_in, -1, Lop.Ls);
Lop.Omega(spProj_Phi, tmp[0], -1, 0); Lop.Omega(spProj_in, tmp[0], -1, 0);
G5R5(tmp[1], tmp[0]); G5R5(tmp[1], tmp[0]);
tmp[0] = Zero(); tmp[0] = Zero();
SolverL(Lop, tmp[1], tmp[0]); SolverL(Lop, tmp[1], tmp[0]);
Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
Lop.Omega(tmp[1], tmp[0], -1, 1); Lop.Omega(tmp[1], tmp[0], -1, 1);
mPhi = mPhi - Lop.k * innerProduct(spProj_Phi, tmp[0]).real(); spProj(tmp[0], tmp[1], -1, Lop.Ls);
out = out - Lop.k * tmp[1];
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb) // RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi> // - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} |\Phi>
spProj(Phi, spProj_Phi, 1, Rop.Ls); spProj(in, spProj_in, 1, Rop.Ls);
Rop.Omega(spProj_Phi, tmp[0], 1, 0); Rop.Omega(spProj_in, tmp[0], 1, 0);
G5R5(tmp[1], tmp[0]); G5R5(tmp[1], tmp[0]);
tmp[0] = Zero(); tmp[0] = Zero();
SolverR(Rop, tmp[1], tmp[0]); SolverR(Rop, tmp[1], tmp[0]);
Rop.Dtilde(tmp[0], tmp[1]); Rop.Dtilde(tmp[0], tmp[1]);
Rop.Omega(tmp[1], tmp[0], 1, 1); Rop.Omega(tmp[1], tmp[0], 1, 1);
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real(); spProj(tmp[0], tmp[1], 1, Rop.Ls);
#endif
out = out + Rop.k * tmp[1];
} }
//Due to the structure of EOFA, it is no more expensive to compute the inverse of Meofa
//To ensure correctness we can simply reuse the heatbath code but use the rational approx
//f(x) = 1/x which corresponds to alpha_0=0, alpha_1=1, beta_1=0 => gamma_1=1
void MeofaInv(const GaugeField &U, const FermionField &in, FermionField &out) {
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField CG_src (Lop.FermionGrid());
FermionField CG_soln (Lop.FermionGrid());
std::vector<FermionField> tmp(2, Lop.FermionGrid());
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
// = 1 * \eta
out = in;
// LH terms:
// \Phi = \Phi + k \sum_{k=1}^{N_{p}} P_{-} \Omega_{-}^{\dagger} ( H(mf)
// - \gamma_{l} \Delta_{-}(mf,mb) P_{-} )^{-1} \Omega_{-} P_{-} \eta
spProj(in, tmp[0], -1, Lop.Ls);
Lop.Omega(tmp[0], tmp[1], -1, 0);
G5R5(CG_src, tmp[1]);
{
heatbathRefreshShiftCoefficients(0, -1.); //-gamma_1 = -1.
CG_soln = Zero(); // Just use zero as the initial guess
SolverHBL(Lop, CG_src, CG_soln);
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = Lop.k * tmp[0];
}
Lop.Omega(tmp[1], tmp[0], -1, 1);
spProj(tmp[0], tmp[1], -1, Lop.Ls);
out = out + tmp[1];
// RH terms:
// \Phi = \Phi - k \sum_{k=1}^{N_{p}} P_{+} \Omega_{+}^{\dagger} ( H(mb)
// - \beta_l\gamma_{l} \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \eta
spProj(in, tmp[0], 1, Rop.Ls);
Rop.Omega(tmp[0], tmp[1], 1, 0);
G5R5(CG_src, tmp[1]);
{
heatbathRefreshShiftCoefficients(1, 0.); //-gamma_1 * beta_1 = 0
CG_soln = Zero();
SolverHBR(Rop, CG_src, CG_soln);
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = - Rop.k * tmp[0];
}
Rop.Omega(tmp[1], tmp[0], 1, 1);
spProj(tmp[0], tmp[1], 1, Rop.Ls);
out = out + tmp[1];
// Reset shift coefficients for energy and force evals
heatbathRefreshShiftCoefficients(0, 0.0);
heatbathRefreshShiftCoefficients(1, -1.0);
};
// EOFA action: see Eqn. (10) of arXiv:1706.05843 // EOFA action: see Eqn. (10) of arXiv:1706.05843
virtual RealD S(const GaugeField& U) virtual RealD S(const GaugeField& U)
{ {
@ -271,7 +378,7 @@ NAMESPACE_BEGIN(Grid);
action -= Lop.k * innerProduct(spProj_Phi, tmp[0]).real(); action -= Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb) // RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi> // - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} |\Phi>
spProj(Phi, spProj_Phi, 1, Rop.Ls); spProj(Phi, spProj_Phi, 1, Rop.Ls);
Rop.Omega(spProj_Phi, tmp[0], 1, 0); Rop.Omega(spProj_Phi, tmp[0], 1, 0);
G5R5(tmp[1], tmp[0]); G5R5(tmp[1], tmp[0]);
@ -281,6 +388,26 @@ NAMESPACE_BEGIN(Grid);
Rop.Omega(tmp[1], tmp[0], 1, 1); Rop.Omega(tmp[1], tmp[0], 1, 1);
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real(); action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
if(initial_action){
//For the first call to S after refresh, S = |eta|^2. We can use this to ensure the rational approx is good
RealD diff = action - norm2_eta;
//S_init = eta^dag M^{-1/2} M M^{-1/2} eta
//S_init - eta^dag eta = eta^dag ( M^{-1/2} M M^{-1/2} - 1 ) eta
//If approximate solution
//S_init - eta^dag eta = eta^dag ( [M^{-1/2}+\delta M^{-1/2}] M [M^{-1/2}+\delta M^{-1/2}] - 1 ) eta
// \approx eta^dag ( \delta M^{-1/2} M^{1/2} + M^{1/2}\delta M^{-1/2} ) eta
// We divide out |eta|^2 to remove source scaling but the tolerance on this check should still be somewhat higher than the actual approx tolerance
RealD test = fabs(diff)/norm2_eta; //test the quality of the rational approx
std::cout << GridLogMessage << action_name() << " initial action " << action << " expect " << norm2_eta << "; diff " << diff << std::endl;
std::cout << GridLogMessage << action_name() << "[ eta^dag ( M^{-1/2} M M^{-1/2} - 1 ) eta ]/|eta^2| = " << test << " expect 0 (tol " << param.BoundsCheckTol << ")" << std::endl;
assert( ( test < param.BoundsCheckTol ) && " Initial action check failed" );
initial_action = false;
}
return action; return action;
}; };
@ -329,6 +456,40 @@ NAMESPACE_BEGIN(Grid);
}; };
}; };
template<class ImplD, class ImplF>
class ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction : public ExactOneFlavourRatioPseudoFermionAction<ImplD>{
public:
INHERIT_IMPL_TYPES(ImplD);
typedef OneFlavourRationalParams Params;
private:
AbstractEOFAFermion<ImplF>& LopF; // the basic LH operator
AbstractEOFAFermion<ImplF>& RopF; // the basic RH operator
public:
virtual std::string action_name() { return "ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction"; }
//Used in the heatbath, refresh the shift coefficients of the L (LorR=0) or R (LorR=1) operator
virtual void heatbathRefreshShiftCoefficients(int LorR, RealD to){
AbstractEOFAFermion<ImplF> &op = LorR == 0 ? LopF : RopF;
op.RefreshShiftCoefficients(to);
this->ExactOneFlavourRatioPseudoFermionAction<ImplD>::heatbathRefreshShiftCoefficients(LorR,to);
}
ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction(AbstractEOFAFermion<ImplF>& _LopF,
AbstractEOFAFermion<ImplF>& _RopF,
AbstractEOFAFermion<ImplD>& _LopD,
AbstractEOFAFermion<ImplD>& _RopD,
OperatorFunction<FermionField>& HeatbathCGL, OperatorFunction<FermionField>& HeatbathCGR,
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
Params& p,
bool use_fc=false) :
LopF(_LopF), RopF(_RopF), ExactOneFlavourRatioPseudoFermionAction<ImplD>(_LopD, _RopD, HeatbathCGL, HeatbathCGR, ActionCGL, ActionCGR, DerivCGL, DerivCGR, p, use_fc){}
};
NAMESPACE_END(Grid); NAMESPACE_END(Grid);
#endif #endif

View File

@ -0,0 +1,372 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h
Copyright (C) 2015
Author: Christopher Kelly <ckelly@bnl.gov>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_H
#define QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_H
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////
// Generic rational approximation for ratios of operators
/////////////////////////////////////////////////////////
/* S_f = -log( det( [M^dag M]/[V^dag V] )^{1/inv_pow} )
= chi^dag ( [M^dag M]/[V^dag V] )^{-1/inv_pow} chi\
= chi^dag ( [V^dag V]^{-1/2} [M^dag M] [V^dag V]^{-1/2} )^{-1/inv_pow} chi\
= chi^dag [V^dag V]^{1/(2*inv_pow)} [M^dag M]^{-1/inv_pow} [V^dag V]^{1/(2*inv_pow)} chi\
S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
BIG WARNING:
Here V^dag V is referred to in this code as the "numerator" operator and M^dag M is the *denominator* operator.
this refers to their position in the pseudofermion action, which is the *inverse* of what appears in the determinant
Thus for DWF the numerator operator is the Pauli-Villars operator
Here P/Q \sim R_{1/(2*inv_pow)} ~ (V^dagV)^{1/(2*inv_pow)}
Here N/D \sim R_{-1/inv_pow} ~ (M^dagM)^{-1/inv_pow}
*/
template<class Impl>
class GeneralEvenOddRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
typedef RationalActionParams Params;
Params param;
//For action evaluation
MultiShiftFunction ApproxPowerAction ; //rational approx for X^{1/inv_pow}
MultiShiftFunction ApproxNegPowerAction; //rational approx for X^{-1/inv_pow}
MultiShiftFunction ApproxHalfPowerAction; //rational approx for X^{1/(2*inv_pow)}
MultiShiftFunction ApproxNegHalfPowerAction; //rational approx for X^{-1/(2*inv_pow)}
//For the MD integration
MultiShiftFunction ApproxPowerMD ; //rational approx for X^{1/inv_pow}
MultiShiftFunction ApproxNegPowerMD; //rational approx for X^{-1/inv_pow}
MultiShiftFunction ApproxHalfPowerMD; //rational approx for X^{1/(2*inv_pow)}
MultiShiftFunction ApproxNegHalfPowerMD; //rational approx for X^{-1/(2*inv_pow)}
private:
FermionOperator<Impl> & NumOp;// the basic operator
FermionOperator<Impl> & DenOp;// the basic operator
FermionField PhiEven; // the pseudo fermion field for this trajectory
FermionField PhiOdd; // the pseudo fermion field for this trajectory
//Generate the approximation to x^{1/inv_pow} (->approx) and x^{-1/inv_pow} (-> approx_inv) by an approx_degree degree rational approximation
//CG_tolerance is used to issue a warning if the approximation error is larger than the tolerance of the CG and is otherwise just stored in the MultiShiftFunction for use by the multi-shift
static void generateApprox(MultiShiftFunction &approx, MultiShiftFunction &approx_inv, int inv_pow, int approx_degree, double CG_tolerance, AlgRemez &remez){
std::cout<<GridLogMessage << "Generating degree "<< approx_degree<<" approximation for x^(1/" << inv_pow << ")"<<std::endl;
double error = remez.generateApprox(approx_degree,1,inv_pow);
if(error > CG_tolerance)
std::cout<<GridLogMessage << "WARNING: Remez approximation has a larger error " << error << " than the CG tolerance " << CG_tolerance << "! Try increasing the number of poles" << std::endl;
approx.Init(remez, CG_tolerance,false);
approx_inv.Init(remez, CG_tolerance,true);
}
protected:
static constexpr bool Numerator = true;
static constexpr bool Denominator = false;
//Allow derived classes to override the multishift CG
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionField &in, FermionField &out){
SchurDifferentiableOperator<Impl> schurOp(numerator ? NumOp : DenOp);
ConjugateGradientMultiShift<FermionField> msCG(MaxIter, approx);
msCG(schurOp,in, out);
}
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionField &in, std::vector<FermionField> &out_elems, FermionField &out){
SchurDifferentiableOperator<Impl> schurOp(numerator ? NumOp : DenOp);
ConjugateGradientMultiShift<FermionField> msCG(MaxIter, approx);
msCG(schurOp,in, out_elems, out);
}
//Allow derived classes to override the gauge import
virtual void ImportGauge(const GaugeField &U){
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
}
public:
GeneralEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
const Params & p
) :
NumOp(_NumOp),
DenOp(_DenOp),
PhiOdd (_NumOp.FermionRedBlackGrid()),
PhiEven(_NumOp.FermionRedBlackGrid()),
param(p)
{
std::cout<<GridLogMessage << action_name() << " initialize: starting" << std::endl;
AlgRemez remez(param.lo,param.hi,param.precision);
//Generate approximations for action eval
generateApprox(ApproxPowerAction, ApproxNegPowerAction, param.inv_pow, param.action_degree, param.action_tolerance, remez);
generateApprox(ApproxHalfPowerAction, ApproxNegHalfPowerAction, 2*param.inv_pow, param.action_degree, param.action_tolerance, remez);
//Generate approximations for MD
if(param.md_degree != param.action_degree){ //note the CG tolerance is unrelated to the stopping condition of the Remez algorithm
generateApprox(ApproxPowerMD, ApproxNegPowerMD, param.inv_pow, param.md_degree, param.md_tolerance, remez);
generateApprox(ApproxHalfPowerMD, ApproxNegHalfPowerMD, 2*param.inv_pow, param.md_degree, param.md_tolerance, remez);
}else{
std::cout<<GridLogMessage << "Using same rational approximations for MD as for action evaluation" << std::endl;
ApproxPowerMD = ApproxPowerAction;
ApproxNegPowerMD = ApproxNegPowerAction;
for(int i=0;i<ApproxPowerMD.tolerances.size();i++)
ApproxNegPowerMD.tolerances[i] = ApproxPowerMD.tolerances[i] = param.md_tolerance; //used for multishift
ApproxHalfPowerMD = ApproxHalfPowerAction;
ApproxNegHalfPowerMD = ApproxNegHalfPowerAction;
for(int i=0;i<ApproxPowerMD.tolerances.size();i++)
ApproxNegHalfPowerMD.tolerances[i] = ApproxHalfPowerMD.tolerances[i] = param.md_tolerance;
}
std::cout<<GridLogMessage << action_name() << " initialize: complete" << std::endl;
};
virtual std::string action_name(){return "GeneralEvenOddRatioRationalPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] Power : 1/" << param.inv_pow << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance (Action) :" << param.action_tolerance << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Degree (Action) :" << param.action_degree << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance (MD) :" << param.md_tolerance << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Degree (MD) :" << param.md_degree << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
return sstream.str();
}
//Access the fermion field
const FermionField &getPhiOdd() const{ return PhiOdd; }
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
std::cout<<GridLogMessage << action_name() << " refresh: starting" << std::endl;
FermionField eta(NumOp.FermionGrid());
// P(eta) \propto e^{- eta^dag eta}
//
// The gaussian function draws from P(x) \propto e^{- x^2 / 2 } [i.e. sigma=1]
// Thus eta = x/sqrt{2} = x * sqrt(1/2)
RealD scale = std::sqrt(0.5);
gaussian(pRNG,eta); eta=eta*scale;
refresh(U,eta);
}
//Allow for manual specification of random field for testing
void refresh(const GaugeField &U, const FermionField &eta) {
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// P(phi) = e^{- phi^dag (VdagV)^1/(2*inv_pow) (MdagM)^-1/inv_pow (VdagV)^1/(2*inv_pow) phi}
// = e^{- phi^dag (VdagV)^1/(2*inv_pow) (MdagM)^-1/(2*inv_pow) (MdagM)^-1/(2*inv_pow) (VdagV)^1/(2*inv_pow) phi}
//
// Phi = (VdagV)^-1/(2*inv_pow) Mdag^{1/(2*inv_pow)} eta
std::cout<<GridLogMessage << action_name() << " refresh: starting" << std::endl;
FermionField etaOdd (NumOp.FermionRedBlackGrid());
FermionField etaEven(NumOp.FermionRedBlackGrid());
FermionField tmp(NumOp.FermionRedBlackGrid());
pickCheckerboard(Even,etaEven,eta);
pickCheckerboard(Odd,etaOdd,eta);
ImportGauge(U);
// MdagM^1/(2*inv_pow) eta
std::cout<<GridLogMessage << action_name() << " refresh: doing (M^dag M)^{1/" << 2*param.inv_pow << "} eta" << std::endl;
multiShiftInverse(Denominator, ApproxHalfPowerAction, param.MaxIter, etaOdd, tmp);
// VdagV^-1/(2*inv_pow) MdagM^1/(2*inv_pow) eta
std::cout<<GridLogMessage << action_name() << " refresh: doing (V^dag V)^{-1/" << 2*param.inv_pow << "} ( (M^dag M)^{1/" << 2*param.inv_pow << "} eta)" << std::endl;
multiShiftInverse(Numerator, ApproxNegHalfPowerAction, param.MaxIter, tmp, PhiOdd);
assert(NumOp.ConstEE() == 1);
assert(DenOp.ConstEE() == 1);
PhiEven = Zero();
std::cout<<GridLogMessage << action_name() << " refresh: starting" << std::endl;
};
//////////////////////////////////////////////////////
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
std::cout<<GridLogMessage << action_name() << " compute action: starting" << std::endl;
ImportGauge(U);
FermionField X(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
// VdagV^1/(2*inv_pow) Phi
std::cout<<GridLogMessage << action_name() << " compute action: doing (V^dag V)^{1/" << 2*param.inv_pow << "} Phi" << std::endl;
multiShiftInverse(Numerator, ApproxHalfPowerAction, param.MaxIter, PhiOdd,X);
// MdagM^-1/(2*inv_pow) VdagV^1/(2*inv_pow) Phi
std::cout<<GridLogMessage << action_name() << " compute action: doing (M^dag M)^{-1/" << 2*param.inv_pow << "} ( (V^dag V)^{1/" << 2*param.inv_pow << "} Phi)" << std::endl;
multiShiftInverse(Denominator, ApproxNegHalfPowerAction, param.MaxIter, X,Y);
// Randomly apply rational bounds checks.
int rcheck = rand();
auto grid = NumOp.FermionGrid();
auto r=rand();
grid->Broadcast(0,r);
if ( param.BoundsCheckFreq != 0 && (r % param.BoundsCheckFreq)==0 ) {
std::cout<<GridLogMessage << action_name() << " compute action: doing bounds check" << std::endl;
FermionField gauss(NumOp.FermionRedBlackGrid());
gauss = PhiOdd;
SchurDifferentiableOperator<Impl> MdagM(DenOp);
std::cout<<GridLogMessage << action_name() << " compute action: checking high bounds" << std::endl;
HighBoundCheck(MdagM,gauss,param.hi);
std::cout<<GridLogMessage << action_name() << " compute action: full approximation" << std::endl;
InversePowerBoundsCheck(param.inv_pow,param.MaxIter,param.action_tolerance*100,MdagM,gauss,ApproxNegPowerAction);
std::cout<<GridLogMessage << action_name() << " compute action: bounds check complete" << std::endl;
}
// Phidag VdagV^1/(2*inv_pow) MdagM^-1/(2*inv_pow) MdagM^-1/(2*inv_pow) VdagV^1/(2*inv_pow) Phi
RealD action = norm2(Y);
std::cout<<GridLogMessage << action_name() << " compute action: complete" << std::endl;
return action;
};
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// Here, M is some 5D operator and V is the Pauli-Villars field
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
//
// Need
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
// + chi^dag P/Q d[N/D] P/Q chi
// + chi^dag P/Q N/D d[P/Q] chi
//
// P/Q is expressed as partial fraction expansion:
//
// a0 + \sum_k ak/(V^dagV + bk)
//
// d[P/Q] is then
//
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
//
// and similar for N/D.
//
// Need
// MpvPhi_k = [Vdag V + bk]^{-1} chi
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
//
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
//
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
//
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
std::cout<<GridLogMessage << action_name() << " deriv: starting" << std::endl;
const int n_f = ApproxNegPowerMD.poles.size();
const int n_pv = ApproxHalfPowerMD.poles.size();
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionRedBlackGrid());
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionRedBlackGrid());
std::vector<FermionField> MfMpvPhi_k (n_f ,NumOp.FermionRedBlackGrid());
FermionField MpvPhi(NumOp.FermionRedBlackGrid());
FermionField MfMpvPhi(NumOp.FermionRedBlackGrid());
FermionField MpvMfMpvPhi(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
GaugeField tmp(NumOp.GaugeGrid());
ImportGauge(U);
std::cout<<GridLogMessage << action_name() << " deriv: doing (V^dag V)^{1/" << 2*param.inv_pow << "} Phi" << std::endl;
multiShiftInverse(Numerator, ApproxHalfPowerMD, param.MaxIter, PhiOdd,MpvPhi_k,MpvPhi);
std::cout<<GridLogMessage << action_name() << " deriv: doing (M^dag M)^{-1/" << param.inv_pow << "} ( (V^dag V)^{1/" << 2*param.inv_pow << "} Phi)" << std::endl;
multiShiftInverse(Denominator, ApproxNegPowerMD, param.MaxIter, MpvPhi,MfMpvPhi_k,MfMpvPhi);
std::cout<<GridLogMessage << action_name() << " deriv: doing (V^dag V)^{1/" << 2*param.inv_pow << "} ( (M^dag M)^{-1/" << param.inv_pow << "} (V^dag V)^{1/" << 2*param.inv_pow << "} Phi)" << std::endl;
multiShiftInverse(Numerator, ApproxHalfPowerMD, param.MaxIter, MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
SchurDifferentiableOperator<Impl> MdagM(DenOp);
SchurDifferentiableOperator<Impl> VdagV(NumOp);
RealD ak;
dSdU = Zero();
// With these building blocks
//
// dS/dU =
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
//(1)
std::cout<<GridLogMessage << action_name() << " deriv: doing dS/dU part (1)" << std::endl;
for(int k=0;k<n_f;k++){
ak = ApproxNegPowerMD.residues[k];
MdagM.Mpc(MfMpvPhi_k[k],Y);
MdagM.MpcDagDeriv(tmp , MfMpvPhi_k[k], Y ); dSdU=dSdU+ak*tmp;
MdagM.MpcDeriv(tmp , Y, MfMpvPhi_k[k] ); dSdU=dSdU+ak*tmp;
}
//(2)
//(3)
std::cout<<GridLogMessage << action_name() << " deriv: doing dS/dU part (2)+(3)" << std::endl;
for(int k=0;k<n_pv;k++){
ak = ApproxHalfPowerMD.residues[k];
VdagV.Mpc(MpvPhi_k[k],Y);
VdagV.MpcDagDeriv(tmp,MpvMfMpvPhi_k[k],Y); dSdU=dSdU+ak*tmp;
VdagV.MpcDeriv (tmp,Y,MpvMfMpvPhi_k[k]); dSdU=dSdU+ak*tmp;
VdagV.Mpc(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
VdagV.MpcDeriv (tmp,Y, MpvPhi_k[k]); dSdU=dSdU+ak*tmp;
VdagV.MpcDagDeriv(tmp,MpvPhi_k[k], Y); dSdU=dSdU+ak*tmp;
}
//dSdU = Ta(dSdU);
std::cout<<GridLogMessage << action_name() << " deriv: complete" << std::endl;
};
};
NAMESPACE_END(Grid);
#endif

View File

@ -0,0 +1,93 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/GeneralEvenOddRationalRatioMixedPrec.h
Copyright (C) 2015
Author: Christopher Kelly <ckelly@bnl.gov>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_MIXED_PREC_H
#define QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_MIXED_PREC_H
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Generic rational approximation for ratios of operators utilizing the mixed precision multishift algorithm
// cf. GeneralEvenOddRational.h for details
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
template<class ImplD, class ImplF>
class GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction : public GeneralEvenOddRatioRationalPseudoFermionAction<ImplD> {
private:
typedef typename ImplD::FermionField FermionFieldD;
typedef typename ImplF::FermionField FermionFieldF;
FermionOperator<ImplD> & NumOpD;
FermionOperator<ImplD> & DenOpD;
FermionOperator<ImplF> & NumOpF;
FermionOperator<ImplF> & DenOpF;
Integer ReliableUpdateFreq;
protected:
//Allow derived classes to override the multishift CG
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionFieldD &in, FermionFieldD &out){
SchurDifferentiableOperator<ImplD> schurOpD(numerator ? NumOpD : DenOpD);
SchurDifferentiableOperator<ImplF> schurOpF(numerator ? NumOpF : DenOpF);
ConjugateGradientMultiShiftMixedPrec<FermionFieldD, FermionFieldF> msCG(MaxIter, approx, NumOpF.FermionRedBlackGrid(), schurOpF, ReliableUpdateFreq);
msCG(schurOpD, in, out);
}
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionFieldD &in, std::vector<FermionFieldD> &out_elems, FermionFieldD &out){
SchurDifferentiableOperator<ImplD> schurOpD(numerator ? NumOpD : DenOpD);
SchurDifferentiableOperator<ImplF> schurOpF(numerator ? NumOpF : DenOpF);
ConjugateGradientMultiShiftMixedPrec<FermionFieldD, FermionFieldF> msCG(MaxIter, approx, NumOpF.FermionRedBlackGrid(), schurOpF, ReliableUpdateFreq);
msCG(schurOpD, in, out_elems, out);
}
//Allow derived classes to override the gauge import
virtual void ImportGauge(const typename ImplD::GaugeField &Ud){
typename ImplF::GaugeField Uf(NumOpF.GaugeGrid());
precisionChange(Uf, Ud);
NumOpD.ImportGauge(Ud);
DenOpD.ImportGauge(Ud);
NumOpF.ImportGauge(Uf);
DenOpF.ImportGauge(Uf);
}
public:
GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction(FermionOperator<ImplD> &_NumOpD, FermionOperator<ImplD> &_DenOpD,
FermionOperator<ImplF> &_NumOpF, FermionOperator<ImplF> &_DenOpF,
const RationalActionParams & p, Integer _ReliableUpdateFreq
) : GeneralEvenOddRatioRationalPseudoFermionAction<ImplD>(_NumOpD, _DenOpD, p),
ReliableUpdateFreq(_ReliableUpdateFreq), NumOpD(_NumOpD), DenOpD(_DenOpD), NumOpF(_NumOpF), DenOpF(_DenOpF){}
virtual std::string action_name(){return "GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction";}
};
NAMESPACE_END(Grid);
#endif

View File

@ -40,249 +40,31 @@ NAMESPACE_BEGIN(Grid);
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2} // Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
template<class Impl> template<class Impl>
class OneFlavourEvenOddRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> { class OneFlavourEvenOddRatioRationalPseudoFermionAction : public GeneralEvenOddRatioRationalPseudoFermionAction<Impl> {
public: public:
INHERIT_IMPL_TYPES(Impl);
typedef OneFlavourRationalParams Params; typedef OneFlavourRationalParams Params;
Params param;
MultiShiftFunction PowerHalf ;
MultiShiftFunction PowerNegHalf;
MultiShiftFunction PowerQuarter;
MultiShiftFunction PowerNegQuarter;
private: private:
static RationalActionParams transcribe(const Params &in){
FermionOperator<Impl> & NumOp;// the basic operator RationalActionParams out;
FermionOperator<Impl> & DenOp;// the basic operator out.inv_pow = 2;
FermionField PhiEven; // the pseudo fermion field for this trajectory out.lo = in.lo;
FermionField PhiOdd; // the pseudo fermion field for this trajectory out.hi = in.hi;
out.MaxIter = in.MaxIter;
out.action_tolerance = out.md_tolerance = in.tolerance;
out.action_degree = out.md_degree = in.degree;
out.precision = in.precision;
out.BoundsCheckFreq = in.BoundsCheckFreq;
return out;
}
public: public:
OneFlavourEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp, OneFlavourEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp, FermionOperator<Impl> &_DenOp,
Params & p const Params & p
) : ) :
NumOp(_NumOp), GeneralEvenOddRatioRationalPseudoFermionAction<Impl>(_NumOp, _DenOp, transcribe(p)){}
DenOp(_DenOp),
PhiOdd (_NumOp.FermionRedBlackGrid()),
PhiEven(_NumOp.FermionRedBlackGrid()),
param(p)
{
AlgRemez remez(param.lo,param.hi,param.precision);
// MdagM^(+- 1/2) virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
remez.generateApprox(param.degree,1,2);
PowerHalf.Init(remez,param.tolerance,false);
PowerNegHalf.Init(remez,param.tolerance,true);
// MdagM^(+- 1/4)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
remez.generateApprox(param.degree,1,4);
PowerQuarter.Init(remez,param.tolerance,false);
PowerNegQuarter.Init(remez,param.tolerance,true);
};
virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// P(phi) = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/2 (VdagV)^1/4 phi}
// = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/4 (MdagM)^-1/4 (VdagV)^1/4 phi}
//
// Phi = (VdagV)^-1/4 Mdag^{1/4} eta
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2).
RealD scale = std::sqrt(0.5);
FermionField eta(NumOp.FermionGrid());
FermionField etaOdd (NumOp.FermionRedBlackGrid());
FermionField etaEven(NumOp.FermionRedBlackGrid());
FermionField tmp(NumOp.FermionRedBlackGrid());
gaussian(pRNG,eta); eta=eta*scale;
pickCheckerboard(Even,etaEven,eta);
pickCheckerboard(Odd,etaOdd,eta);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
// MdagM^1/4 eta
SchurDifferentiableOperator<Impl> MdagM(DenOp);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerQuarter);
msCG_M(MdagM,etaOdd,tmp);
// VdagV^-1/4 MdagM^1/4 eta
SchurDifferentiableOperator<Impl> VdagV(NumOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerNegQuarter);
msCG_V(VdagV,tmp,PhiOdd);
assert(NumOp.ConstEE() == 1);
assert(DenOp.ConstEE() == 1);
PhiEven = Zero();
};
//////////////////////////////////////////////////////
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
FermionField X(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
// VdagV^1/4 Phi
SchurDifferentiableOperator<Impl> VdagV(NumOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
msCG_V(VdagV,PhiOdd,X);
// MdagM^-1/4 VdagV^1/4 Phi
SchurDifferentiableOperator<Impl> MdagM(DenOp);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegQuarter);
msCG_M(MdagM,X,Y);
// Randomly apply rational bounds checks.
auto grid = NumOp.FermionGrid();
auto r=rand();
grid->Broadcast(0,r);
if ( (r%param.BoundsCheckFreq)==0 ) {
FermionField gauss(NumOp.FermionRedBlackGrid());
gauss = PhiOdd;
HighBoundCheck(MdagM,gauss,param.hi);
InverseSqrtBoundsCheck(param.MaxIter,param.tolerance*100,MdagM,gauss,PowerNegHalf);
}
// Phidag VdagV^1/4 MdagM^-1/4 MdagM^-1/4 VdagV^1/4 Phi
RealD action = norm2(Y);
return action;
};
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// Here, M is some 5D operator and V is the Pauli-Villars field
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
//
// Need
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
// + chi^dag P/Q d[N/D] P/Q chi
// + chi^dag P/Q N/D d[P/Q] chi
//
// P/Q is expressed as partial fraction expansion:
//
// a0 + \sum_k ak/(V^dagV + bk)
//
// d[P/Q] is then
//
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
//
// and similar for N/D.
//
// Need
// MpvPhi_k = [Vdag V + bk]^{-1} chi
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
//
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
//
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
//
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
const int n_f = PowerNegHalf.poles.size();
const int n_pv = PowerQuarter.poles.size();
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionRedBlackGrid());
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionRedBlackGrid());
std::vector<FermionField> MfMpvPhi_k (n_f ,NumOp.FermionRedBlackGrid());
FermionField MpvPhi(NumOp.FermionRedBlackGrid());
FermionField MfMpvPhi(NumOp.FermionRedBlackGrid());
FermionField MpvMfMpvPhi(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
GaugeField tmp(NumOp.GaugeGrid());
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
SchurDifferentiableOperator<Impl> VdagV(NumOp);
SchurDifferentiableOperator<Impl> MdagM(DenOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegHalf);
msCG_V(VdagV,PhiOdd,MpvPhi_k,MpvPhi);
msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi);
msCG_V(VdagV,MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
RealD ak;
dSdU = Zero();
// With these building blocks
//
// dS/dU =
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
//(1)
for(int k=0;k<n_f;k++){
ak = PowerNegHalf.residues[k];
MdagM.Mpc(MfMpvPhi_k[k],Y);
MdagM.MpcDagDeriv(tmp , MfMpvPhi_k[k], Y ); dSdU=dSdU+ak*tmp;
MdagM.MpcDeriv(tmp , Y, MfMpvPhi_k[k] ); dSdU=dSdU+ak*tmp;
}
//(2)
//(3)
for(int k=0;k<n_pv;k++){
ak = PowerQuarter.residues[k];
VdagV.Mpc(MpvPhi_k[k],Y);
VdagV.MpcDagDeriv(tmp,MpvMfMpvPhi_k[k],Y); dSdU=dSdU+ak*tmp;
VdagV.MpcDeriv (tmp,Y,MpvMfMpvPhi_k[k]); dSdU=dSdU+ak*tmp;
VdagV.Mpc(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
VdagV.MpcDeriv (tmp,Y, MpvPhi_k[k]); dSdU=dSdU+ak*tmp;
VdagV.MpcDagDeriv(tmp,MpvPhi_k[k], Y); dSdU=dSdU+ak*tmp;
}
//dSdU = Ta(dSdU);
};
}; };
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -40,6 +40,8 @@ directory
#include <Grid/qcd/action/pseudofermion/OneFlavourRational.h> #include <Grid/qcd/action/pseudofermion/OneFlavourRational.h>
#include <Grid/qcd/action/pseudofermion/OneFlavourRationalRatio.h> #include <Grid/qcd/action/pseudofermion/OneFlavourRationalRatio.h>
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRational.h> #include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRational.h>
#include <Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h>
#include <Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatioMixedPrec.h>
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRationalRatio.h> #include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRationalRatio.h>
#include <Grid/qcd/action/pseudofermion/ExactOneFlavourRatio.h> #include <Grid/qcd/action/pseudofermion/ExactOneFlavourRatio.h>

View File

@ -83,16 +83,10 @@ NAMESPACE_BEGIN(Grid);
return sstream.str(); return sstream.str();
} }
//Access the fermion field
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) { const FermionField &getPhiOdd() const{ return PhiOdd; }
// P(phi) = e^{- phi^dag Vpc (MpcdagMpc)^-1 Vpcdag phi} virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
//
// NumOp == V
// DenOp == M
//
// Take phi_o = Vpcdag^{-1} Mpcdag eta_o ; eta_o = Mpcdag^{-1} Vpcdag Phi
//
// P(eta_o) = e^{- eta_o^dag eta_o} // P(eta_o) = e^{- eta_o^dag eta_o}
// //
// e^{x^2/2 sig^2} => sig^2 = 0.5. // e^{x^2/2 sig^2} => sig^2 = 0.5.
@ -100,12 +94,22 @@ NAMESPACE_BEGIN(Grid);
RealD scale = std::sqrt(0.5); RealD scale = std::sqrt(0.5);
FermionField eta (NumOp.FermionGrid()); FermionField eta (NumOp.FermionGrid());
gaussian(pRNG,eta); eta = eta * scale;
refresh(U,eta);
}
void refresh(const GaugeField &U, const FermionField &eta) {
// P(phi) = e^{- phi^dag Vpc (MpcdagMpc)^-1 Vpcdag phi}
//
// NumOp == V
// DenOp == M
//
// Take phi_o = Vpcdag^{-1} Mpcdag eta_o ; eta_o = Mpcdag^{-1} Vpcdag Phi
FermionField etaOdd (NumOp.FermionRedBlackGrid()); FermionField etaOdd (NumOp.FermionRedBlackGrid());
FermionField etaEven(NumOp.FermionRedBlackGrid()); FermionField etaEven(NumOp.FermionRedBlackGrid());
FermionField tmp (NumOp.FermionRedBlackGrid()); FermionField tmp (NumOp.FermionRedBlackGrid());
gaussian(pRNG,eta);
pickCheckerboard(Even,etaEven,eta); pickCheckerboard(Even,etaEven,eta);
pickCheckerboard(Odd,etaOdd,eta); pickCheckerboard(Odd,etaOdd,eta);
@ -125,8 +129,8 @@ NAMESPACE_BEGIN(Grid);
DenOp.MooeeDag(etaEven,tmp); DenOp.MooeeDag(etaEven,tmp);
NumOp.MooeeInvDag(tmp,PhiEven); NumOp.MooeeInvDag(tmp,PhiEven);
PhiOdd =PhiOdd*scale; //PhiOdd =PhiOdd*scale;
PhiEven=PhiEven*scale; //PhiEven=PhiEven*scale;
}; };

View File

@ -0,0 +1,6 @@
#ifndef GRID_GPARITY_H_
#define GRID_GPARITY_H_
#include<Grid/qcd/gparity/GparityFlavour.h>
#endif

View File

@ -0,0 +1,34 @@
#include <Grid/Grid.h>
NAMESPACE_BEGIN(Grid);
const std::array<const GparityFlavour, 3> GparityFlavour::sigma_mu = {{
GparityFlavour(GparityFlavour::Algebra::SigmaX),
GparityFlavour(GparityFlavour::Algebra::SigmaY),
GparityFlavour(GparityFlavour::Algebra::SigmaZ)
}};
const std::array<const GparityFlavour, 6> GparityFlavour::sigma_all = {{
GparityFlavour(GparityFlavour::Algebra::Identity),
GparityFlavour(GparityFlavour::Algebra::SigmaX),
GparityFlavour(GparityFlavour::Algebra::SigmaY),
GparityFlavour(GparityFlavour::Algebra::SigmaZ),
GparityFlavour(GparityFlavour::Algebra::ProjPlus),
GparityFlavour(GparityFlavour::Algebra::ProjMinus)
}};
const std::array<const char *, GparityFlavour::nSigma> GparityFlavour::name = {{
"SigmaX",
"MinusSigmaX",
"SigmaY",
"MinusSigmaY",
"SigmaZ",
"MinusSigmaZ",
"Identity",
"MinusIdentity",
"ProjPlus",
"MinusProjPlus",
"ProjMinus",
"MinusProjMinus"}};
NAMESPACE_END(Grid);

View File

@ -0,0 +1,475 @@
#ifndef GRID_QCD_GPARITY_FLAVOUR_H
#define GRID_QCD_GPARITY_FLAVOUR_H
//Support for flavour-matrix operations acting on the G-parity flavour index
#include <array>
NAMESPACE_BEGIN(Grid);
class GparityFlavour {
public:
GRID_SERIALIZABLE_ENUM(Algebra, undef,
SigmaX, 0,
MinusSigmaX, 1,
SigmaY, 2,
MinusSigmaY, 3,
SigmaZ, 4,
MinusSigmaZ, 5,
Identity, 6,
MinusIdentity, 7,
ProjPlus, 8,
MinusProjPlus, 9,
ProjMinus, 10,
MinusProjMinus, 11
);
static constexpr unsigned int nSigma = 12;
static const std::array<const char *, nSigma> name;
static const std::array<const GparityFlavour, 3> sigma_mu;
static const std::array<const GparityFlavour, 6> sigma_all;
Algebra g;
public:
accelerator GparityFlavour(Algebra initg): g(initg) {}
};
// 0 1 x vector
// 1 0
template<class vtype>
accelerator_inline void multFlavourSigmaX(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = rhs(1);
ret(1) = rhs(0);
};
template<class vtype>
accelerator_inline void lmultFlavourSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = rhs(1,0);
ret(0,1) = rhs(1,1);
ret(1,0) = rhs(0,0);
ret(1,1) = rhs(0,1);
};
template<class vtype>
accelerator_inline void rmultFlavourSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = rhs(0,1);
ret(0,1) = rhs(0,0);
ret(1,0) = rhs(1,1);
ret(1,1) = rhs(1,0);
};
template<class vtype>
accelerator_inline void multFlavourMinusSigmaX(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = -rhs(1);
ret(1) = -rhs(0);
};
template<class vtype>
accelerator_inline void lmultFlavourMinusSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -rhs(1,0);
ret(0,1) = -rhs(1,1);
ret(1,0) = -rhs(0,0);
ret(1,1) = -rhs(0,1);
};
template<class vtype>
accelerator_inline void rmultFlavourMinusSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -rhs(0,1);
ret(0,1) = -rhs(0,0);
ret(1,0) = -rhs(1,1);
ret(1,1) = -rhs(1,0);
};
// 0 -i x vector
// i 0
template<class vtype>
accelerator_inline void multFlavourSigmaY(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = timesMinusI(rhs(1));
ret(1) = timesI(rhs(0));
};
template<class vtype>
accelerator_inline void lmultFlavourSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = timesMinusI(rhs(1,0));
ret(0,1) = timesMinusI(rhs(1,1));
ret(1,0) = timesI(rhs(0,0));
ret(1,1) = timesI(rhs(0,1));
};
template<class vtype>
accelerator_inline void rmultFlavourSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = timesI(rhs(0,1));
ret(0,1) = timesMinusI(rhs(0,0));
ret(1,0) = timesI(rhs(1,1));
ret(1,1) = timesMinusI(rhs(1,0));
};
template<class vtype>
accelerator_inline void multFlavourMinusSigmaY(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = timesI(rhs(1));
ret(1) = timesMinusI(rhs(0));
};
template<class vtype>
accelerator_inline void lmultFlavourMinusSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = timesI(rhs(1,0));
ret(0,1) = timesI(rhs(1,1));
ret(1,0) = timesMinusI(rhs(0,0));
ret(1,1) = timesMinusI(rhs(0,1));
};
template<class vtype>
accelerator_inline void rmultFlavourMinusSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = timesMinusI(rhs(0,1));
ret(0,1) = timesI(rhs(0,0));
ret(1,0) = timesMinusI(rhs(1,1));
ret(1,1) = timesI(rhs(1,0));
};
// 1 0 x vector
// 0 -1
template<class vtype>
accelerator_inline void multFlavourSigmaZ(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = rhs(0);
ret(1) = -rhs(1);
};
template<class vtype>
accelerator_inline void lmultFlavourSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = rhs(0,0);
ret(0,1) = rhs(0,1);
ret(1,0) = -rhs(1,0);
ret(1,1) = -rhs(1,1);
};
template<class vtype>
accelerator_inline void rmultFlavourSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = rhs(0,0);
ret(0,1) = -rhs(0,1);
ret(1,0) = rhs(1,0);
ret(1,1) = -rhs(1,1);
};
template<class vtype>
accelerator_inline void multFlavourMinusSigmaZ(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = -rhs(0);
ret(1) = rhs(1);
};
template<class vtype>
accelerator_inline void lmultFlavourMinusSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -rhs(0,0);
ret(0,1) = -rhs(0,1);
ret(1,0) = rhs(1,0);
ret(1,1) = rhs(1,1);
};
template<class vtype>
accelerator_inline void rmultFlavourMinusSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -rhs(0,0);
ret(0,1) = rhs(0,1);
ret(1,0) = -rhs(1,0);
ret(1,1) = rhs(1,1);
};
template<class vtype>
accelerator_inline void multFlavourIdentity(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = rhs(0);
ret(1) = rhs(1);
};
template<class vtype>
accelerator_inline void lmultFlavourIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = rhs(0,0);
ret(0,1) = rhs(0,1);
ret(1,0) = rhs(1,0);
ret(1,1) = rhs(1,1);
};
template<class vtype>
accelerator_inline void rmultFlavourIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = rhs(0,0);
ret(0,1) = rhs(0,1);
ret(1,0) = rhs(1,0);
ret(1,1) = rhs(1,1);
};
template<class vtype>
accelerator_inline void multFlavourMinusIdentity(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = -rhs(0);
ret(1) = -rhs(1);
};
template<class vtype>
accelerator_inline void lmultFlavourMinusIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -rhs(0,0);
ret(0,1) = -rhs(0,1);
ret(1,0) = -rhs(1,0);
ret(1,1) = -rhs(1,1);
};
template<class vtype>
accelerator_inline void rmultFlavourMinusIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -rhs(0,0);
ret(0,1) = -rhs(0,1);
ret(1,0) = -rhs(1,0);
ret(1,1) = -rhs(1,1);
};
//G-parity flavour projection 1/2(1+\sigma_2)
//1 -i
//i 1
template<class vtype>
accelerator_inline void multFlavourProjPlus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = 0.5*rhs(0) + 0.5*timesMinusI(rhs(1));
ret(1) = 0.5*timesI(rhs(0)) + 0.5*rhs(1);
};
template<class vtype>
accelerator_inline void lmultFlavourProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesMinusI(rhs(1,0));
ret(0,1) = 0.5*rhs(0,1) + 0.5*timesMinusI(rhs(1,1));
ret(1,0) = 0.5*timesI(rhs(0,0)) + 0.5*rhs(1,0);
ret(1,1) = 0.5*timesI(rhs(0,1)) + 0.5*rhs(1,1);
};
template<class vtype>
accelerator_inline void rmultFlavourProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesI(rhs(0,1));
ret(0,1) = 0.5*timesMinusI(rhs(0,0)) + 0.5*rhs(0,1);
ret(1,0) = 0.5*rhs(1,0) + 0.5*timesI(rhs(1,1));
ret(1,1) = 0.5*timesMinusI(rhs(1,0)) + 0.5*rhs(1,1);
};
template<class vtype>
accelerator_inline void multFlavourMinusProjPlus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = -0.5*rhs(0) + 0.5*timesI(rhs(1));
ret(1) = 0.5*timesMinusI(rhs(0)) - 0.5*rhs(1);
};
template<class vtype>
accelerator_inline void lmultFlavourMinusProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesI(rhs(1,0));
ret(0,1) = -0.5*rhs(0,1) + 0.5*timesI(rhs(1,1));
ret(1,0) = 0.5*timesMinusI(rhs(0,0)) - 0.5*rhs(1,0);
ret(1,1) = 0.5*timesMinusI(rhs(0,1)) - 0.5*rhs(1,1);
};
template<class vtype>
accelerator_inline void rmultFlavourMinusProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesMinusI(rhs(0,1));
ret(0,1) = 0.5*timesI(rhs(0,0)) - 0.5*rhs(0,1);
ret(1,0) = -0.5*rhs(1,0) + 0.5*timesMinusI(rhs(1,1));
ret(1,1) = 0.5*timesI(rhs(1,0)) - 0.5*rhs(1,1);
};
//G-parity flavour projection 1/2(1-\sigma_2)
//1 i
//-i 1
template<class vtype>
accelerator_inline void multFlavourProjMinus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = 0.5*rhs(0) + 0.5*timesI(rhs(1));
ret(1) = 0.5*timesMinusI(rhs(0)) + 0.5*rhs(1);
};
template<class vtype>
accelerator_inline void lmultFlavourProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesI(rhs(1,0));
ret(0,1) = 0.5*rhs(0,1) + 0.5*timesI(rhs(1,1));
ret(1,0) = 0.5*timesMinusI(rhs(0,0)) + 0.5*rhs(1,0);
ret(1,1) = 0.5*timesMinusI(rhs(0,1)) + 0.5*rhs(1,1);
};
template<class vtype>
accelerator_inline void rmultFlavourProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesMinusI(rhs(0,1));
ret(0,1) = 0.5*timesI(rhs(0,0)) + 0.5*rhs(0,1);
ret(1,0) = 0.5*rhs(1,0) + 0.5*timesMinusI(rhs(1,1));
ret(1,1) = 0.5*timesI(rhs(1,0)) + 0.5*rhs(1,1);
};
template<class vtype>
accelerator_inline void multFlavourMinusProjMinus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
{
ret(0) = -0.5*rhs(0) + 0.5*timesMinusI(rhs(1));
ret(1) = 0.5*timesI(rhs(0)) - 0.5*rhs(1);
};
template<class vtype>
accelerator_inline void lmultFlavourMinusProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesMinusI(rhs(1,0));
ret(0,1) = -0.5*rhs(0,1) + 0.5*timesMinusI(rhs(1,1));
ret(1,0) = 0.5*timesI(rhs(0,0)) - 0.5*rhs(1,0);
ret(1,1) = 0.5*timesI(rhs(0,1)) - 0.5*rhs(1,1);
};
template<class vtype>
accelerator_inline void rmultFlavourMinusProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
{
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesI(rhs(0,1));
ret(0,1) = 0.5*timesMinusI(rhs(0,0)) - 0.5*rhs(0,1);
ret(1,0) = -0.5*rhs(1,0) + 0.5*timesI(rhs(1,1));
ret(1,1) = 0.5*timesMinusI(rhs(1,0)) - 0.5*rhs(1,1);
};
template<class vtype>
accelerator_inline auto operator*(const GparityFlavour &G, const iVector<vtype, Ngp> &arg)
->typename std::enable_if<matchGridTensorIndex<iVector<vtype, Ngp>, GparityFlavourTensorIndex>::value, iVector<vtype, Ngp>>::type
{
iVector<vtype, Ngp> ret;
switch (G.g)
{
case GparityFlavour::Algebra::SigmaX:
multFlavourSigmaX(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaX:
multFlavourMinusSigmaX(ret, arg); break;
case GparityFlavour::Algebra::SigmaY:
multFlavourSigmaY(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaY:
multFlavourMinusSigmaY(ret, arg); break;
case GparityFlavour::Algebra::SigmaZ:
multFlavourSigmaZ(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaZ:
multFlavourMinusSigmaZ(ret, arg); break;
case GparityFlavour::Algebra::Identity:
multFlavourIdentity(ret, arg); break;
case GparityFlavour::Algebra::MinusIdentity:
multFlavourMinusIdentity(ret, arg); break;
case GparityFlavour::Algebra::ProjPlus:
multFlavourProjPlus(ret, arg); break;
case GparityFlavour::Algebra::MinusProjPlus:
multFlavourMinusProjPlus(ret, arg); break;
case GparityFlavour::Algebra::ProjMinus:
multFlavourProjMinus(ret, arg); break;
case GparityFlavour::Algebra::MinusProjMinus:
multFlavourMinusProjMinus(ret, arg); break;
default: assert(0);
}
return ret;
}
template<class vtype>
accelerator_inline auto operator*(const GparityFlavour &G, const iMatrix<vtype, Ngp> &arg)
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype, Ngp>, GparityFlavourTensorIndex>::value, iMatrix<vtype, Ngp>>::type
{
iMatrix<vtype, Ngp> ret;
switch (G.g)
{
case GparityFlavour::Algebra::SigmaX:
lmultFlavourSigmaX(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaX:
lmultFlavourMinusSigmaX(ret, arg); break;
case GparityFlavour::Algebra::SigmaY:
lmultFlavourSigmaY(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaY:
lmultFlavourMinusSigmaY(ret, arg); break;
case GparityFlavour::Algebra::SigmaZ:
lmultFlavourSigmaZ(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaZ:
lmultFlavourMinusSigmaZ(ret, arg); break;
case GparityFlavour::Algebra::Identity:
lmultFlavourIdentity(ret, arg); break;
case GparityFlavour::Algebra::MinusIdentity:
lmultFlavourMinusIdentity(ret, arg); break;
case GparityFlavour::Algebra::ProjPlus:
lmultFlavourProjPlus(ret, arg); break;
case GparityFlavour::Algebra::MinusProjPlus:
lmultFlavourMinusProjPlus(ret, arg); break;
case GparityFlavour::Algebra::ProjMinus:
lmultFlavourProjMinus(ret, arg); break;
case GparityFlavour::Algebra::MinusProjMinus:
lmultFlavourMinusProjMinus(ret, arg); break;
default: assert(0);
}
return ret;
}
template<class vtype>
accelerator_inline auto operator*(const iMatrix<vtype, Ngp> &arg, const GparityFlavour &G)
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype, Ngp>, GparityFlavourTensorIndex>::value, iMatrix<vtype, Ngp>>::type
{
iMatrix<vtype, Ngp> ret;
switch (G.g)
{
case GparityFlavour::Algebra::SigmaX:
rmultFlavourSigmaX(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaX:
rmultFlavourMinusSigmaX(ret, arg); break;
case GparityFlavour::Algebra::SigmaY:
rmultFlavourSigmaY(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaY:
rmultFlavourMinusSigmaY(ret, arg); break;
case GparityFlavour::Algebra::SigmaZ:
rmultFlavourSigmaZ(ret, arg); break;
case GparityFlavour::Algebra::MinusSigmaZ:
rmultFlavourMinusSigmaZ(ret, arg); break;
case GparityFlavour::Algebra::Identity:
rmultFlavourIdentity(ret, arg); break;
case GparityFlavour::Algebra::MinusIdentity:
rmultFlavourMinusIdentity(ret, arg); break;
case GparityFlavour::Algebra::ProjPlus:
rmultFlavourProjPlus(ret, arg); break;
case GparityFlavour::Algebra::MinusProjPlus:
rmultFlavourMinusProjPlus(ret, arg); break;
case GparityFlavour::Algebra::ProjMinus:
rmultFlavourProjMinus(ret, arg); break;
case GparityFlavour::Algebra::MinusProjMinus:
rmultFlavourMinusProjMinus(ret, arg); break;
default: assert(0);
}
return ret;
}
NAMESPACE_END(Grid);
#endif // include guard

View File

@ -129,18 +129,10 @@ public:
Runner(S); Runner(S);
} }
////////////////////////////////////////////////////////////////// //Use the checkpointer to initialize the RNGs and the gauge field, writing the resulting gauge field into U.
//This is called automatically by Run but may be useful elsewhere, e.g. for integrator tuning experiments
private: void initializeGaugeFieldAndRNGs(Field &U){
template <class SmearingPolicy> if(!Resources.haveRNGs()) Resources.AddRNGs();
void Runner(SmearingPolicy &Smearing) {
auto UGrid = Resources.GetCartesian();
Resources.AddRNGs();
Field U(UGrid);
// Can move this outside?
typedef IntegratorType<SmearingPolicy> TheIntegrator;
TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing);
if (Parameters.StartingType == "HotStart") { if (Parameters.StartingType == "HotStart") {
// Hot start // Hot start
@ -159,14 +151,40 @@ private:
Resources.GetCheckPointer()->CheckpointRestore(Parameters.StartTrajectory, U, Resources.GetCheckPointer()->CheckpointRestore(Parameters.StartTrajectory, U,
Resources.GetSerialRNG(), Resources.GetSerialRNG(),
Resources.GetParallelRNG()); Resources.GetParallelRNG());
} else if (Parameters.StartingType == "CheckpointStartReseed") {
// Same as CheckpointRestart but reseed the RNGs using the fixed integer seeding used for ColdStart and HotStart
// Useful for creating new evolution streams from an existing stream
// WARNING: Unfortunately because the checkpointer doesn't presently allow us to separately restore the RNG and gauge fields we have to load
// an existing RNG checkpoint first; make sure one is available and named correctly
Resources.GetCheckPointer()->CheckpointRestore(Parameters.StartTrajectory, U,
Resources.GetSerialRNG(),
Resources.GetParallelRNG());
Resources.SeedFixedIntegers();
} else { } else {
// others // others
std::cout << GridLogError << "Unrecognized StartingType\n"; std::cout << GridLogError << "Unrecognized StartingType\n";
std::cout std::cout
<< GridLogError << GridLogError
<< "Valid [HotStart, ColdStart, TepidStart, CheckpointStart]\n"; << "Valid [HotStart, ColdStart, TepidStart, CheckpointStart, CheckpointStartReseed]\n";
exit(1); exit(1);
} }
}
//////////////////////////////////////////////////////////////////
private:
template <class SmearingPolicy>
void Runner(SmearingPolicy &Smearing) {
auto UGrid = Resources.GetCartesian();
Field U(UGrid);
initializeGaugeFieldAndRNGs(U);
typedef IntegratorType<SmearingPolicy> TheIntegrator;
TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing);
Smearing.set_Field(U); Smearing.set_Field(U);

View File

@ -115,21 +115,21 @@ private:
random(sRNG, rn_test); random(sRNG, rn_test);
std::cout << GridLogMessage std::cout << GridLogHMC
<< "--------------------------------------------------\n"; << "--------------------------------------------------\n";
std::cout << GridLogMessage << "exp(-dH) = " << prob std::cout << GridLogHMC << "exp(-dH) = " << prob
<< " Random = " << rn_test << "\n"; << " Random = " << rn_test << "\n";
std::cout << GridLogMessage std::cout << GridLogHMC
<< "Acc. Probability = " << ((prob < 1.0) ? prob : 1.0) << "\n"; << "Acc. Probability = " << ((prob < 1.0) ? prob : 1.0) << "\n";
if ((prob > 1.0) || (rn_test <= prob)) { // accepted if ((prob > 1.0) || (rn_test <= prob)) { // accepted
std::cout << GridLogMessage << "Metropolis_test -- ACCEPTED\n"; std::cout << GridLogHMC << "Metropolis_test -- ACCEPTED\n";
std::cout << GridLogMessage std::cout << GridLogHMC
<< "--------------------------------------------------\n"; << "--------------------------------------------------\n";
return true; return true;
} else { // rejected } else { // rejected
std::cout << GridLogMessage << "Metropolis_test -- REJECTED\n"; std::cout << GridLogHMC << "Metropolis_test -- REJECTED\n";
std::cout << GridLogMessage std::cout << GridLogHMC
<< "--------------------------------------------------\n"; << "--------------------------------------------------\n";
return false; return false;
} }
@ -145,7 +145,7 @@ private:
std::streamsize current_precision = std::cout.precision(); std::streamsize current_precision = std::cout.precision();
std::cout.precision(15); std::cout.precision(15);
std::cout << GridLogMessage << "Total H before trajectory = " << H0 << "\n"; std::cout << GridLogHMC << "Total H before trajectory = " << H0 << "\n";
std::cout.precision(current_precision); std::cout.precision(current_precision);
TheIntegrator.integrate(U); TheIntegrator.integrate(U);
@ -165,7 +165,7 @@ private:
std::cout.precision(15); std::cout.precision(15);
std::cout << GridLogMessage << "Total H after trajectory = " << H1 std::cout << GridLogHMC << "Total H after trajectory = " << H1
<< " dH = " << H1 - H0 << "\n"; << " dH = " << H1 - H0 << "\n";
std::cout.precision(current_precision); std::cout.precision(current_precision);
@ -196,9 +196,9 @@ public:
// Actual updates (evolve a copy Ucopy then copy back eventually) // Actual updates (evolve a copy Ucopy then copy back eventually)
unsigned int FinalTrajectory = Params.Trajectories + Params.NoMetropolisUntil + Params.StartTrajectory; unsigned int FinalTrajectory = Params.Trajectories + Params.NoMetropolisUntil + Params.StartTrajectory;
for (int traj = Params.StartTrajectory; traj < FinalTrajectory; ++traj) { for (int traj = Params.StartTrajectory; traj < FinalTrajectory; ++traj) {
std::cout << GridLogMessage << "-- # Trajectory = " << traj << "\n"; std::cout << GridLogHMC << "-- # Trajectory = " << traj << "\n";
if (traj < Params.StartTrajectory + Params.NoMetropolisUntil) { if (traj < Params.StartTrajectory + Params.NoMetropolisUntil) {
std::cout << GridLogMessage << "-- Thermalization" << std::endl; std::cout << GridLogHMC << "-- Thermalization" << std::endl;
} }
double t0=usecond(); double t0=usecond();
@ -207,10 +207,10 @@ public:
DeltaH = evolve_hmc_step(Ucopy); DeltaH = evolve_hmc_step(Ucopy);
// Metropolis-Hastings test // Metropolis-Hastings test
bool accept = true; bool accept = true;
if (traj >= Params.StartTrajectory + Params.NoMetropolisUntil) { if (Params.MetropolisTest && traj >= Params.StartTrajectory + Params.NoMetropolisUntil) {
accept = metropolis_test(DeltaH); accept = metropolis_test(DeltaH);
} else { } else {
std::cout << GridLogMessage << "Skipping Metropolis test" << std::endl; std::cout << GridLogHMC << "Skipping Metropolis test" << std::endl;
} }
if (accept) if (accept)
@ -219,7 +219,7 @@ public:
double t1=usecond(); double t1=usecond();
std::cout << GridLogMessage << "Total time for trajectory (s): " << (t1-t0)/1e6 << std::endl; std::cout << GridLogHMC << "Total time for trajectory (s): " << (t1-t0)/1e6 << std::endl;
for (int obs = 0; obs < Observables.size(); obs++) { for (int obs = 0; obs < Observables.size(); obs++) {
@ -228,7 +228,7 @@ public:
std::cout << GridLogDebug << "Observables pointer " << Observables[obs] << std::endl; std::cout << GridLogDebug << "Observables pointer " << Observables[obs] << std::endl;
Observables[obs]->TrajectoryComplete(traj + 1, Ucur, sRNG, pRNG); Observables[obs]->TrajectoryComplete(traj + 1, Ucur, sRNG, pRNG);
} }
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::::" << std::endl; std::cout << GridLogHMC << ":::::::::::::::::::::::::::::::::::::::::::" << std::endl;
} }
} }

View File

@ -80,7 +80,9 @@ public:
std::cout << GridLogError << "Seeds not initialized" << std::endl; std::cout << GridLogError << "Seeds not initialized" << std::endl;
exit(1); exit(1);
} }
std::cout << GridLogMessage << "Reseeding serial RNG with seed vector " << SerialSeeds << std::endl;
sRNG_.SeedFixedIntegers(SerialSeeds); sRNG_.SeedFixedIntegers(SerialSeeds);
std::cout << GridLogMessage << "Reseeding parallel RNG with seed vector " << ParallelSeeds << std::endl;
pRNG_->SeedFixedIntegers(ParallelSeeds); pRNG_->SeedFixedIntegers(ParallelSeeds);
} }
}; };

View File

@ -226,6 +226,9 @@ public:
////////////////////////////////////////////////////// //////////////////////////////////////////////////////
// Random number generators // Random number generators
////////////////////////////////////////////////////// //////////////////////////////////////////////////////
//Return true if the RNG objects have been instantiated
bool haveRNGs() const{ return have_RNG; }
void AddRNGs(std::string s = "") { void AddRNGs(std::string s = "") {
// Couple the RNGs to the GridModule tagged by s // Couple the RNGs to the GridModule tagged by s

View File

@ -136,8 +136,14 @@ protected:
if (as[level].actions.at(a)->is_smeared) Smearer.smeared_force(force); if (as[level].actions.at(a)->is_smeared) Smearer.smeared_force(force);
force = FieldImplementation::projectForce(force); // Ta for gauge fields force = FieldImplementation::projectForce(force); // Ta for gauge fields
double end_force = usecond(); double end_force = usecond();
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites());
std::cout << GridLogIntegrator << "["<<level<<"]["<<a<<"] Force average: " << force_abs << std::endl; Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites()); //average per-site norm. nb. norm2(latt) = \sum_x norm2(latt[x])
Real impulse_abs = force_abs * ep * HMC_MOMENTUM_DENOMINATOR;
Real max_force_abs = std::sqrt(maxLocalNorm2(force));
Real max_impulse_abs = max_force_abs * ep * HMC_MOMENTUM_DENOMINATOR;
std::cout << GridLogIntegrator << "["<<level<<"]["<<a<<"] Force average: " << force_abs << " Max force: " << max_force_abs << " Time step: " << ep << " Impulse average: " << impulse_abs << " Max impulse: " << max_impulse_abs << std::endl;
Mom -= force * ep* HMC_MOMENTUM_DENOMINATOR;; Mom -= force * ep* HMC_MOMENTUM_DENOMINATOR;;
double end_full = usecond(); double end_full = usecond();
double time_full = (end_full - start_full) / 1e3; double time_full = (end_full - start_full) / 1e3;
@ -249,15 +255,19 @@ public:
void refresh(Field& U, GridSerialRNG & sRNG, GridParallelRNG& pRNG) void refresh(Field& U, GridSerialRNG & sRNG, GridParallelRNG& pRNG)
{ {
assert(P.Grid() == U.Grid()); assert(P.Grid() == U.Grid());
std::cout << GridLogIntegrator << "Integrator refresh\n"; std::cout << GridLogIntegrator << "Integrator refresh" << std::endl;
std::cout << GridLogIntegrator << "Generating momentum" << std::endl;
FieldImplementation::generate_momenta(P, sRNG, pRNG); FieldImplementation::generate_momenta(P, sRNG, pRNG);
// Update the smeared fields, can be implemented as observer // Update the smeared fields, can be implemented as observer
// necessary to keep the fields updated even after a reject // necessary to keep the fields updated even after a reject
// of the Metropolis // of the Metropolis
std::cout << GridLogIntegrator << "Updating smeared fields" << std::endl;
Smearer.set_Field(U); Smearer.set_Field(U);
// Set the (eventual) representations gauge fields // Set the (eventual) representations gauge fields
std::cout << GridLogIntegrator << "Updating representations" << std::endl;
Representations.update(U); Representations.update(U);
// The Smearer is attached to a pointer of the gauge field // The Smearer is attached to a pointer of the gauge field
@ -267,6 +277,7 @@ public:
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) { for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
// get gauge field from the SmearingPolicy and // get gauge field from the SmearingPolicy and
// based on the boolean is_smeared in actionID // based on the boolean is_smeared in actionID
std::cout << GridLogIntegrator << "Refreshing integrator level " << level << " index " << actionID << std::endl;
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared); Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
as[level].actions.at(actionID)->refresh(Us, sRNG, pRNG); as[level].actions.at(actionID)->refresh(Us, sRNG, pRNG);
} }

View File

@ -99,7 +99,7 @@ public:
// using wilson flow by default here // using wilson flow by default here
WilsonFlow<PeriodicGimplR> WF(Pars.Smearing.steps, Pars.Smearing.step_size, Pars.Smearing.meas_interval); WilsonFlow<PeriodicGimplR> WF(Pars.Smearing.steps, Pars.Smearing.step_size, Pars.Smearing.meas_interval);
WF.smear_adaptive(Usmear, U, Pars.Smearing.maxTau); WF.smear_adaptive(Usmear, U, Pars.Smearing.maxTau);
Real T0 = WF.energyDensityPlaquette(Usmear); Real T0 = WF.energyDensityPlaquette(Pars.Smearing.maxTau, Usmear);
std::cout << GridLogMessage << std::setprecision(std::numeric_limits<Real>::digits10 + 1) std::cout << GridLogMessage << std::setprecision(std::numeric_limits<Real>::digits10 + 1)
<< "T0 : [ " << traj << " ] "<< T0 << std::endl; << "T0 : [ " << traj << " ] "<< T0 << std::endl;
} }

View File

@ -7,6 +7,7 @@ Source file: ./lib/qcd/modules/plaquette.h
Copyright (C) 2017 Copyright (C) 2017
Author: Guido Cossu <guido.cossu@ed.ac.uk> Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Christopher Kelly <ckelly@bnl.gov>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
@ -33,28 +34,44 @@ NAMESPACE_BEGIN(Grid);
template <class Gimpl> template <class Gimpl>
class WilsonFlow: public Smear<Gimpl>{ class WilsonFlow: public Smear<Gimpl>{
public:
//Store generic measurements to take during smearing process using std::function
typedef std::function<void(int, RealD, const typename Gimpl::GaugeField &)> FunctionType; //int: step, RealD: flow time, GaugeField : the gauge field
private:
unsigned int Nstep; unsigned int Nstep;
unsigned int measure_interval; RealD epsilon; //for regular smearing this is the time step, for adaptive it is the initial time step
mutable RealD epsilon, taus;
std::vector< std::pair<int, FunctionType> > functions; //The int maps to the measurement frequency
mutable WilsonGaugeAction<Gimpl> SG; mutable WilsonGaugeAction<Gimpl> SG;
void evolve_step(typename Gimpl::GaugeField&) const; //Evolve the gauge field by 1 step and update tau
void evolve_step_adaptive(typename Gimpl::GaugeField&, RealD); void evolve_step(typename Gimpl::GaugeField &U, RealD &tau) const;
RealD tau(unsigned int t)const {return epsilon*(t+1.0); } //Evolve the gauge field by 1 step and update tau and the current time step eps
void evolve_step_adaptive(typename Gimpl::GaugeField&U, RealD &tau, RealD &eps, RealD maxTau) const;
public: public:
INHERIT_GIMPL_TYPES(Gimpl) INHERIT_GIMPL_TYPES(Gimpl)
void resetActions(){ functions.clear(); }
void addMeasurement(int meas_interval, FunctionType meas){ functions.push_back({meas_interval, meas}); }
//Set the class to perform the default measurements:
//the plaquette energy density every step
//the plaquette topological charge every 'topq_meas_interval' steps
//and output to stdout
void setDefaultMeasurements(int topq_meas_interval = 1);
explicit WilsonFlow(unsigned int Nstep, RealD epsilon, unsigned int interval = 1): explicit WilsonFlow(unsigned int Nstep, RealD epsilon, unsigned int interval = 1):
Nstep(Nstep), Nstep(Nstep),
epsilon(epsilon), epsilon(epsilon),
measure_interval(interval),
SG(WilsonGaugeAction<Gimpl>(3.0)) { SG(WilsonGaugeAction<Gimpl>(3.0)) {
// WilsonGaugeAction with beta 3.0 // WilsonGaugeAction with beta 3.0
assert(epsilon > 0.0); assert(epsilon > 0.0);
LogMessage(); LogMessage();
setDefaultMeasurements(interval);
} }
void LogMessage() { void LogMessage() {
@ -73,9 +90,29 @@ public:
// undefined for WilsonFlow // undefined for WilsonFlow
} }
void smear_adaptive(GaugeField&, const GaugeField&, RealD maxTau); void smear_adaptive(GaugeField&, const GaugeField&, RealD maxTau) const;
RealD energyDensityPlaquette(unsigned int step, const GaugeField& U) const;
RealD energyDensityPlaquette(const GaugeField& U) const; //Compute t^2 <E(t)> for time t from the plaquette
static RealD energyDensityPlaquette(const RealD t, const GaugeField& U);
//Compute t^2 <E(t)> for time t from the 1x1 cloverleaf form
//t is the Wilson flow time
static RealD energyDensityCloverleaf(const RealD t, const GaugeField& U);
//Evolve the gauge field by Nstep steps of epsilon and return the energy density computed every interval steps
//The smeared field is output as V
std::vector<RealD> flowMeasureEnergyDensityPlaquette(GaugeField &V, const GaugeField& U, int measure_interval = 1);
//Version that does not return the smeared field
std::vector<RealD> flowMeasureEnergyDensityPlaquette(const GaugeField& U, int measure_interval = 1);
//Evolve the gauge field by Nstep steps of epsilon and return the Cloverleaf energy density computed every interval steps
//The smeared field is output as V
std::vector<RealD> flowMeasureEnergyDensityCloverleaf(GaugeField &V, const GaugeField& U, int measure_interval = 1);
//Version that does not return the smeared field
std::vector<RealD> flowMeasureEnergyDensityCloverleaf(const GaugeField& U, int measure_interval = 1);
}; };
@ -83,7 +120,7 @@ public:
// Implementations // Implementations
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
template <class Gimpl> template <class Gimpl>
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{ void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U, RealD &tau) const{
GaugeField Z(U.Grid()); GaugeField Z(U.Grid());
GaugeField tmp(U.Grid()); GaugeField tmp(U.Grid());
SG.deriv(U, Z); SG.deriv(U, Z);
@ -99,12 +136,13 @@ void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2 SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2
Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2 Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
Gimpl::update_field(Z, U, -2.0*epsilon); // V(t+e) = exp(ep*Z)*W2 Gimpl::update_field(Z, U, -2.0*epsilon); // V(t+e) = exp(ep*Z)*W2
tau += epsilon;
} }
template <class Gimpl> template <class Gimpl>
void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, RealD maxTau) { void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, RealD &tau, RealD &eps, RealD maxTau) const{
if (maxTau - taus < epsilon){ if (maxTau - tau < eps){
epsilon = maxTau-taus; eps = maxTau-tau;
} }
//std::cout << GridLogMessage << "Integration epsilon : " << epsilon << std::endl; //std::cout << GridLogMessage << "Integration epsilon : " << epsilon << std::endl;
GaugeField Z(U.Grid()); GaugeField Z(U.Grid());
@ -114,95 +152,151 @@ void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, Real
SG.deriv(U, Z); SG.deriv(U, Z);
Zprime = -Z; Zprime = -Z;
Z *= 0.25; // Z0 = 1/4 * F(U) Z *= 0.25; // Z0 = 1/4 * F(U)
Gimpl::update_field(Z, U, -2.0*epsilon); // U = W1 = exp(ep*Z0)*W0 Gimpl::update_field(Z, U, -2.0*eps); // U = W1 = exp(ep*Z0)*W0
Z *= -17.0/8.0; Z *= -17.0/8.0;
SG.deriv(U, tmp); Z += tmp; // -17/32*Z0 +Z1 SG.deriv(U, tmp); Z += tmp; // -17/32*Z0 +Z1
Zprime += 2.0*tmp; Zprime += 2.0*tmp;
Z *= 8.0/9.0; // Z = -17/36*Z0 +8/9*Z1 Z *= 8.0/9.0; // Z = -17/36*Z0 +8/9*Z1
Gimpl::update_field(Z, U, -2.0*epsilon); // U_= W2 = exp(ep*Z)*W1 Gimpl::update_field(Z, U, -2.0*eps); // U_= W2 = exp(ep*Z)*W1
Z *= -4.0/3.0; Z *= -4.0/3.0;
SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2 SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2
Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2 Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
Gimpl::update_field(Z, U, -2.0*epsilon); // V(t+e) = exp(ep*Z)*W2 Gimpl::update_field(Z, U, -2.0*eps); // V(t+e) = exp(ep*Z)*W2
// Ramos // Ramos
Gimpl::update_field(Zprime, Uprime, -2.0*epsilon); // V'(t+e) = exp(ep*Z')*W0 Gimpl::update_field(Zprime, Uprime, -2.0*eps); // V'(t+e) = exp(ep*Z')*W0
// Compute distance as norm^2 of the difference // Compute distance as norm^2 of the difference
GaugeField diffU = U - Uprime; GaugeField diffU = U - Uprime;
RealD diff = norm2(diffU); RealD diff = norm2(diffU);
// adjust integration step // adjust integration step
taus += epsilon; tau += eps;
//std::cout << GridLogMessage << "Adjusting integration step with distance: " << diff << std::endl; //std::cout << GridLogMessage << "Adjusting integration step with distance: " << diff << std::endl;
epsilon = epsilon*0.95*std::pow(1e-4/diff,1./3.); eps = eps*0.95*std::pow(1e-4/diff,1./3.);
//std::cout << GridLogMessage << "New epsilon : " << epsilon << std::endl; //std::cout << GridLogMessage << "New epsilon : " << epsilon << std::endl;
} }
template <class Gimpl> template <class Gimpl>
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(unsigned int step, const GaugeField& U) const { RealD WilsonFlow<Gimpl>::energyDensityPlaquette(const RealD t, const GaugeField& U){
RealD td = tau(step); static WilsonGaugeAction<Gimpl> SG(3.0);
return 2.0 * td * td * SG.S(U)/U.Grid()->gSites(); return 2.0 * t * t * SG.S(U)/U.Grid()->gSites();
}
//Compute t^2 <E(t)> for time from the 1x1 cloverleaf form
template <class Gimpl>
RealD WilsonFlow<Gimpl>::energyDensityCloverleaf(const RealD t, const GaugeField& U){
typedef typename Gimpl::GaugeLinkField GaugeMat;
typedef typename Gimpl::GaugeField GaugeLorentz;
assert(Nd == 4);
//E = 1/2 tr( F_munu F_munu )
//However as F_numu = -F_munu, only need to sum the trace of the squares of the following 6 field strengths:
//F_01 F_02 F_03 F_12 F_13 F_23
GaugeMat F(U.Grid());
LatticeComplexD R(U.Grid());
R = Zero();
for(int mu=0;mu<3;mu++){
for(int nu=mu+1;nu<4;nu++){
WilsonLoops<Gimpl>::FieldStrength(F, U, mu, nu);
R = R + trace(F*F);
}
}
ComplexD out = sum(R);
out = t*t*out / RealD(U.Grid()->gSites());
return -real(out); //minus sign necessary for +ve energy
}
template <class Gimpl>
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityPlaquette(GaugeField &V, const GaugeField& U, int measure_interval){
std::vector<RealD> out;
resetActions();
addMeasurement(measure_interval, [&out](int step, RealD t, const typename Gimpl::GaugeField &U){
std::cout << GridLogMessage << "[WilsonFlow] Computing plaquette energy density for step " << step << std::endl;
out.push_back( energyDensityPlaquette(t,U) );
});
smear(V,U);
return out;
} }
template <class Gimpl> template <class Gimpl>
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(const GaugeField& U) const { std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityPlaquette(const GaugeField& U, int measure_interval){
return 2.0 * taus * taus * SG.S(U)/U.Grid()->gSites(); GaugeField V(U);
return flowMeasureEnergyDensityPlaquette(V,U, measure_interval);
} }
template <class Gimpl>
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityCloverleaf(GaugeField &V, const GaugeField& U, int measure_interval){
std::vector<RealD> out;
resetActions();
addMeasurement(measure_interval, [&out](int step, RealD t, const typename Gimpl::GaugeField &U){
std::cout << GridLogMessage << "[WilsonFlow] Computing Cloverleaf energy density for step " << step << std::endl;
out.push_back( energyDensityCloverleaf(t,U) );
});
smear(V,U);
return out;
}
template <class Gimpl>
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityCloverleaf(const GaugeField& U, int measure_interval){
GaugeField V(U);
return flowMeasureEnergyDensityCloverleaf(V,U, measure_interval);
}
//#define WF_TIMING //#define WF_TIMING
template <class Gimpl> template <class Gimpl>
void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const { void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const{
out = in; out = in;
for (unsigned int step = 1; step <= Nstep; step++) { RealD taus = 0.;
for (unsigned int step = 1; step <= Nstep; step++) { //step indicates the number of smearing steps applied at the time of measurement
auto start = std::chrono::high_resolution_clock::now(); auto start = std::chrono::high_resolution_clock::now();
evolve_step(out); evolve_step(out, taus);
auto end = std::chrono::high_resolution_clock::now(); auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> diff = end - start; std::chrono::duration<double> diff = end - start;
#ifdef WF_TIMING #ifdef WF_TIMING
std::cout << "Time to evolve " << diff.count() << " s\n"; std::cout << "Time to evolve " << diff.count() << " s\n";
#endif #endif
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : " //Perform measurements
<< step << " " << tau(step) << " " for(auto const &meas : functions)
<< energyDensityPlaquette(step,out) << std::endl; if( step % meas.first == 0 ) meas.second(step,taus,out);
if( step % measure_interval == 0){
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : "
<< step << " "
<< WilsonLoops<PeriodicGimplR>::TopologicalCharge(out) << std::endl;
}
} }
} }
template <class Gimpl> template <class Gimpl>
void WilsonFlow<Gimpl>::smear_adaptive(GaugeField& out, const GaugeField& in, RealD maxTau){ void WilsonFlow<Gimpl>::smear_adaptive(GaugeField& out, const GaugeField& in, RealD maxTau) const{
out = in; out = in;
taus = epsilon; RealD taus = 0.;
RealD eps = epsilon;
unsigned int step = 0; unsigned int step = 0;
do{ do{
step++; step++;
//std::cout << GridLogMessage << "Evolution time :"<< taus << std::endl; //std::cout << GridLogMessage << "Evolution time :"<< taus << std::endl;
evolve_step_adaptive(out, maxTau); evolve_step_adaptive(out, taus, eps, maxTau);
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : " //Perform measurements
<< step << " " << taus << " " for(auto const &meas : functions)
<< energyDensityPlaquette(out) << std::endl; if( step % meas.first == 0 ) meas.second(step,taus,out);
if( step % measure_interval == 0){
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : "
<< step << " "
<< WilsonLoops<PeriodicGimplR>::TopologicalCharge(out) << std::endl;
}
} while (taus < maxTau); } while (taus < maxTau);
} }
template <class Gimpl>
void WilsonFlow<Gimpl>::setDefaultMeasurements(int topq_meas_interval){
addMeasurement(1, [](int step, RealD t, const typename Gimpl::GaugeField &U){
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : " << step << " " << t << " " << energyDensityPlaquette(t,U) << std::endl;
});
addMeasurement(topq_meas_interval, [](int step, RealD t, const typename Gimpl::GaugeField &U){
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : " << step << " " << WilsonLoops<Gimpl>::TopologicalCharge(U) << std::endl;
});
}
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -88,6 +88,12 @@ namespace PeriodicBC {
return CovShiftBackward(Link,mu,arg); return CovShiftBackward(Link,mu,arg);
} }
//Boundary-aware C-shift of gauge links / gauge transformation matrices
template<class gauge> Lattice<gauge>
CshiftLink(const Lattice<gauge> &Link, int mu, int shift)
{
return Cshift(Link, mu, shift);
}
} }
@ -158,6 +164,9 @@ namespace ConjugateBC {
// std::cout<<"Gparity::CovCshiftBackward mu="<<mu<<std::endl; // std::cout<<"Gparity::CovCshiftBackward mu="<<mu<<std::endl;
return Cshift(tmp,mu,-1);// moves towards positive mu return Cshift(tmp,mu,-1);// moves towards positive mu
} }
//Out(x) = U^dag_\mu(x-mu) | x_\mu != 0
// = U^T_\mu(L-1) | x_\mu == 0
template<class gauge> Lattice<gauge> template<class gauge> Lattice<gauge>
CovShiftIdentityBackward(const Lattice<gauge> &Link, int mu) { CovShiftIdentityBackward(const Lattice<gauge> &Link, int mu) {
GridBase *grid = Link.Grid(); GridBase *grid = Link.Grid();
@ -176,6 +185,9 @@ namespace ConjugateBC {
return Link; return Link;
} }
//Out(x) = S_\mu(x+\hat\mu) | x_\mu != L-1
// = S*_\mu(0) | x_\mu == L-1
//Note: While this is used for Staples it is also applicable for shifting gauge links or gauge transformation matrices
template<class gauge> Lattice<gauge> template<class gauge> Lattice<gauge>
ShiftStaple(const Lattice<gauge> &Link, int mu) ShiftStaple(const Lattice<gauge> &Link, int mu)
{ {
@ -208,6 +220,35 @@ namespace ConjugateBC {
return CovShiftBackward(Link,mu,arg); return CovShiftBackward(Link,mu,arg);
} }
//Boundary-aware C-shift of gauge links / gauge transformation matrices
//shift = 1
//Out(x) = U_\mu(x+\hat\mu) | x_\mu != L-1
// = U*_\mu(0) | x_\mu == L-1
//shift = -1
//Out(x) = U_\mu(x-mu) | x_\mu != 0
// = U*_\mu(L-1) | x_\mu == 0
template<class gauge> Lattice<gauge>
CshiftLink(const Lattice<gauge> &Link, int mu, int shift)
{
GridBase *grid = Link.Grid();
int Lmu = grid->GlobalDimensions()[mu] - 1;
Lattice<iScalar<vInteger>> coor(grid);
LatticeCoordinate(coor, mu);
Lattice<gauge> tmp(grid);
if(shift == 1){
tmp = Cshift(Link, mu, 1);
tmp = where(coor == Lmu, conjugate(tmp), tmp);
return tmp;
}else if(shift == -1){
tmp = Link;
tmp = where(coor == Lmu, conjugate(tmp), tmp);
return Cshift(tmp, mu, -1);
}else assert(0 && "Invalid shift value");
return tmp; //shuts up the compiler fussing about the return type
}
} }

View File

@ -40,27 +40,46 @@ public:
typedef typename Gimpl::GaugeLinkField GaugeMat; typedef typename Gimpl::GaugeLinkField GaugeMat;
typedef typename Gimpl::GaugeField GaugeLorentz; typedef typename Gimpl::GaugeField GaugeLorentz;
static void GaugeLinkToLieAlgebraField(const std::vector<GaugeMat> &U,std::vector<GaugeMat> &A) { //A_\mu(x) = -i Ta(U_\mu(x) ) where Ta(U) = 1/2( U - U^dag ) - 1/2N tr(U - U^dag) is the traceless antihermitian part. This is an O(A^3) approximation to the logarithm of U
for(int mu=0;mu<Nd;mu++){ static void GaugeLinkToLieAlgebraField(const GaugeMat &U, GaugeMat &A) {
Complex cmi(0.0,-1.0); Complex cmi(0.0,-1.0);
A[mu] = Ta(U[mu]) * cmi; A = Ta(U) * cmi;
}
} }
static void DmuAmu(const std::vector<GaugeMat> &A,GaugeMat &dmuAmu,int orthog) {
//The derivative of the Lie algebra field
static void DmuAmu(const std::vector<GaugeMat> &U, GaugeMat &dmuAmu,int orthog) {
GridBase* grid = U[0].Grid();
GaugeMat Ax(grid);
GaugeMat Axm1(grid);
GaugeMat Utmp(grid);
dmuAmu=Zero(); dmuAmu=Zero();
for(int mu=0;mu<Nd;mu++){ for(int mu=0;mu<Nd;mu++){
if ( mu != orthog ) { if ( mu != orthog ) {
dmuAmu = dmuAmu + A[mu] - Cshift(A[mu],mu,-1); //Rather than define functionality to work out how the BCs apply to A_\mu we simply use the BC-aware Cshift to the gauge links and compute A_\mu(x) and A_\mu(x-1) separately
//Ax = A_\mu(x)
GaugeLinkToLieAlgebraField(U[mu], Ax);
//Axm1 = A_\mu(x_\mu-1)
Utmp = Gimpl::CshiftLink(U[mu], mu, -1);
GaugeLinkToLieAlgebraField(Utmp, Axm1);
//Derivative
dmuAmu = dmuAmu + Ax - Axm1;
} }
} }
} }
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1,bool err_on_no_converge=true) { //Fix the gauge field Umu
//0 < alpha < 1 is related to the step size, cf https://arxiv.org/pdf/1405.5812.pdf
static void SteepestDescentGaugeFix(GaugeLorentz &Umu, Real alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1) {
GridBase *grid = Umu.Grid(); GridBase *grid = Umu.Grid();
GaugeMat xform(grid); GaugeMat xform(grid);
SteepestDescentGaugeFix(Umu,xform,alpha,maxiter,Omega_tol,Phi_tol,Fourier,orthog,err_on_no_converge); SteepestDescentGaugeFix(Umu,xform,alpha,maxiter,Omega_tol,Phi_tol,Fourier,orthog);
} }
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,GaugeMat &xform,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1,bool err_on_no_converge=true) {
//Fix the gauge field Umu and also return the gauge transformation from the original gauge field, xform
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,GaugeMat &xform, Real alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1) {
GridBase *grid = Umu.Grid(); GridBase *grid = Umu.Grid();
@ -122,29 +141,24 @@ public:
} }
} }
std::cout << GridLogError << "Gauge fixing did not converge in " << maxiter << " iterations." << std::endl; assert(0 && "Gauge fixing did not converge within the specified number of iterations");
if (err_on_no_converge) assert(0);
}; };
static Real SteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform,Real & alpha, GaugeMat & dmuAmu,int orthog) { static Real SteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform, Real alpha, GaugeMat & dmuAmu,int orthog) {
GridBase *grid = U[0].Grid(); GridBase *grid = U[0].Grid();
std::vector<GaugeMat> A(Nd,grid);
GaugeMat g(grid); GaugeMat g(grid);
ExpiAlphaDmuAmu(U,g,alpha,dmuAmu,orthog);
GaugeLinkToLieAlgebraField(U,A);
ExpiAlphaDmuAmu(A,g,alpha,dmuAmu,orthog);
Real vol = grid->gSites(); Real vol = grid->gSites();
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc; Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
xform = g*xform ; xform = g*xform ;
SU<Nc>::GaugeTransform(U,g); SU<Nc>::GaugeTransform<Gimpl>(U,g);
return trG; return trG;
} }
static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform,Real & alpha, GaugeMat & dmuAmu,int orthog) { static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform, Real alpha, GaugeMat & dmuAmu,int orthog) {
GridBase *grid = U[0].Grid(); GridBase *grid = U[0].Grid();
@ -159,11 +173,7 @@ public:
GaugeMat g(grid); GaugeMat g(grid);
GaugeMat dmuAmu_p(grid); GaugeMat dmuAmu_p(grid);
std::vector<GaugeMat> A(Nd,grid); DmuAmu(U,dmuAmu,orthog);
GaugeLinkToLieAlgebraField(U,A);
DmuAmu(A,dmuAmu,orthog);
std::vector<int> mask(Nd,1); std::vector<int> mask(Nd,1);
for(int mu=0;mu<Nd;mu++) if (mu==orthog) mask[mu]=0; for(int mu=0;mu<Nd;mu++) if (mu==orthog) mask[mu]=0;
@ -207,16 +217,16 @@ public:
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc; Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
xform = g*xform ; xform = g*xform ;
SU<Nc>::GaugeTransform(U,g); SU<Nc>::GaugeTransform<Gimpl>(U,g);
return trG; return trG;
} }
static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &A,GaugeMat &g,Real & alpha, GaugeMat &dmuAmu,int orthog) { static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &U,GaugeMat &g, Real alpha, GaugeMat &dmuAmu,int orthog) {
GridBase *grid = g.Grid(); GridBase *grid = g.Grid();
Complex cialpha(0.0,-alpha); Complex cialpha(0.0,-alpha);
GaugeMat ciadmam(grid); GaugeMat ciadmam(grid);
DmuAmu(A,dmuAmu,orthog); DmuAmu(U,dmuAmu,orthog);
ciadmam = dmuAmu*cialpha; ciadmam = dmuAmu*cialpha;
SU<Nc>::taExp(ciadmam,g); SU<Nc>::taExp(ciadmam,g);
} }

View File

@ -694,32 +694,32 @@ public:
* Adjoint rep gauge xform * Adjoint rep gauge xform
*/ */
template<typename GaugeField,typename GaugeMat> template<typename Gimpl>
static void GaugeTransform( GaugeField &Umu, GaugeMat &g){ static void GaugeTransform(typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
GridBase *grid = Umu.Grid(); GridBase *grid = Umu.Grid();
conformable(grid,g.Grid()); conformable(grid,g.Grid());
GaugeMat U(grid); typename Gimpl::GaugeLinkField U(grid);
GaugeMat ag(grid); ag = adj(g); typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
for(int mu=0;mu<Nd;mu++){ for(int mu=0;mu<Nd;mu++){
U= PeekIndex<LorentzIndex>(Umu,mu); U= PeekIndex<LorentzIndex>(Umu,mu);
U = g*U*Cshift(ag, mu, 1); U = g*U*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
PokeIndex<LorentzIndex>(Umu,U,mu); PokeIndex<LorentzIndex>(Umu,U,mu);
} }
} }
template<typename GaugeMat> template<typename Gimpl>
static void GaugeTransform( std::vector<GaugeMat> &U, GaugeMat &g){ static void GaugeTransform( std::vector<typename Gimpl::GaugeLinkField> &U, typename Gimpl::GaugeLinkField &g){
GridBase *grid = g.Grid(); GridBase *grid = g.Grid();
GaugeMat ag(grid); ag = adj(g); typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
for(int mu=0;mu<Nd;mu++){ for(int mu=0;mu<Nd;mu++){
U[mu] = g*U[mu]*Cshift(ag, mu, 1); U[mu] = g*U[mu]*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
} }
} }
template<typename GaugeField,typename GaugeMat> template<typename Gimpl>
static void RandomGaugeTransform(GridParallelRNG &pRNG, GaugeField &Umu, GaugeMat &g){ static void RandomGaugeTransform(GridParallelRNG &pRNG, typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
LieRandomize(pRNG,g,1.0); LieRandomize(pRNG,g,1.0);
GaugeTransform(Umu,g); GaugeTransform<Gimpl>(Umu,g);
} }
// Projects the algebra components a lattice matrix (of dimension ncol*ncol -1 ) // Projects the algebra components a lattice matrix (of dimension ncol*ncol -1 )

View File

@ -125,6 +125,57 @@ public:
return sumplaq / vol / faces / Nc; // Nd , Nc dependent... FIXME return sumplaq / vol / faces / Nc; // Nd , Nc dependent... FIXME
} }
//////////////////////////////////////////////////
// sum over all spatial planes of plaquette
//////////////////////////////////////////////////
static void siteSpatialPlaquette(ComplexField &Plaq,
const std::vector<GaugeMat> &U) {
ComplexField sitePlaq(U[0].Grid());
Plaq = Zero();
for (int mu = 1; mu < Nd-1; mu++) {
for (int nu = 0; nu < mu; nu++) {
traceDirPlaquette(sitePlaq, U, mu, nu);
Plaq = Plaq + sitePlaq;
}
}
}
////////////////////////////////////
// sum over all x,y,z and over all spatial planes of plaquette
//////////////////////////////////////////////////
static std::vector<RealD> timesliceSumSpatialPlaquette(const GaugeLorentz &Umu) {
std::vector<GaugeMat> U(Nd, Umu.Grid());
// inefficient here
for (int mu = 0; mu < Nd; mu++) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
}
ComplexField Plaq(Umu.Grid());
siteSpatialPlaquette(Plaq, U);
typedef typename ComplexField::scalar_object sobj;
std::vector<sobj> Tq;
sliceSum(Plaq, Tq, Nd-1);
std::vector<Real> out(Tq.size());
for(int t=0;t<Tq.size();t++) out[t] = TensorRemove(Tq[t]).real();
return out;
}
//////////////////////////////////////////////////
// average over all x,y,z and over all spatial planes of plaquette
//////////////////////////////////////////////////
static std::vector<RealD> timesliceAvgSpatialPlaquette(const GaugeLorentz &Umu) {
std::vector<RealD> sumplaq = timesliceSumSpatialPlaquette(Umu);
int Lt = Umu.Grid()->FullDimensions()[Nd-1];
assert(sumplaq.size() == Lt);
double vol = Umu.Grid()->gSites() / Lt;
double faces = (1.0 * (Nd - 1)* (Nd - 2)) / 2.0;
for(int t=0;t<Lt;t++)
sumplaq[t] = sumplaq[t] / vol / faces / Nc; // Nd , Nc dependent... FIXME
return sumplaq;
}
////////////////////////////////////////////////// //////////////////////////////////////////////////
// average over all x,y,z the temporal loop // average over all x,y,z the temporal loop
////////////////////////////////////////////////// //////////////////////////////////////////////////
@ -164,7 +215,7 @@ public:
double vol = Umu.Grid()->gSites(); double vol = Umu.Grid()->gSites();
return p.real() / vol / (4.0 * Nc ) ; return p.real() / vol / 4.0 / 3.0;
}; };
////////////////////////////////////////////////// //////////////////////////////////////////////////
@ -362,11 +413,11 @@ public:
GaugeMat u = PeekIndex<LorentzIndex>(Umu, mu); // some redundant copies GaugeMat u = PeekIndex<LorentzIndex>(Umu, mu); // some redundant copies
GaugeMat vu = v*u; GaugeMat vu = v*u;
//FS = 0.25*Ta(u*v + Cshift(vu, mu, -1)); //FS = 0.25*Ta(u*v + Cshift(vu, mu, -1));
FS = (u*v + Cshift(vu, mu, -1)); FS = (u*v + Gimpl::CshiftLink(vu, mu, -1));
FS = 0.125*(FS - adj(FS)); FS = 0.125*(FS - adj(FS));
} }
static Real TopologicalCharge(GaugeLorentz &U){ static Real TopologicalCharge(const GaugeLorentz &U){
// 4d topological charge // 4d topological charge
assert(Nd==4); assert(Nd==4);
// Bx = -iF(y,z), By = -iF(z,y), Bz = -iF(x,y) // Bx = -iF(y,z), By = -iF(z,y), Bz = -iF(x,y)
@ -389,6 +440,203 @@ public:
} }
//Clover-leaf Wilson loop combination for arbitrary mu-extent M and nu extent N, mu >= nu
//cf https://arxiv.org/pdf/hep-lat/9701012.pdf Eq 7 for 1x2 Wilson loop
//Clockwise ordering
static void CloverleafMxN(GaugeMat &FS, const GaugeMat &Umu, const GaugeMat &Unu, int mu, int nu, int M, int N){
#define Fmu(A) Gimpl::CovShiftForward(Umu, mu, A)
#define Bmu(A) Gimpl::CovShiftBackward(Umu, mu, A)
#define Fnu(A) Gimpl::CovShiftForward(Unu, nu, A)
#define Bnu(A) Gimpl::CovShiftBackward(Unu, nu, A)
#define FmuI Gimpl::CovShiftIdentityForward(Umu, mu)
#define BmuI Gimpl::CovShiftIdentityBackward(Umu, mu)
#define FnuI Gimpl::CovShiftIdentityForward(Unu, nu)
#define BnuI Gimpl::CovShiftIdentityBackward(Unu, nu)
//Upper right loop
GaugeMat tmp = BmuI;
for(int i=1;i<M;i++)
tmp = Bmu(tmp);
for(int j=0;j<N;j++)
tmp = Bnu(tmp);
for(int i=0;i<M;i++)
tmp = Fmu(tmp);
for(int j=0;j<N;j++)
tmp = Fnu(tmp);
FS = tmp;
//Upper left loop
tmp = BnuI;
for(int j=1;j<N;j++)
tmp = Bnu(tmp);
for(int i=0;i<M;i++)
tmp = Fmu(tmp);
for(int j=0;j<N;j++)
tmp = Fnu(tmp);
for(int i=0;i<M;i++)
tmp = Bmu(tmp);
FS = FS + tmp;
//Lower right loop
tmp = FnuI;
for(int j=1;j<N;j++)
tmp = Fnu(tmp);
for(int i=0;i<M;i++)
tmp = Bmu(tmp);
for(int j=0;j<N;j++)
tmp = Bnu(tmp);
for(int i=0;i<M;i++)
tmp = Fmu(tmp);
FS = FS + tmp;
//Lower left loop
tmp = FmuI;
for(int i=1;i<M;i++)
tmp = Fmu(tmp);
for(int j=0;j<N;j++)
tmp = Fnu(tmp);
for(int i=0;i<M;i++)
tmp = Bmu(tmp);
for(int j=0;j<N;j++)
tmp = Bnu(tmp);
FS = FS + tmp;
#undef Fmu
#undef Bmu
#undef Fnu
#undef Bnu
#undef FmuI
#undef BmuI
#undef FnuI
#undef BnuI
}
//Field strength from MxN Wilson loop
//Note F_numu = - F_munu
static void FieldStrengthMxN(GaugeMat &FS, const GaugeLorentz &U, int mu, int nu, int M, int N){
GaugeMat Umu = PeekIndex<LorentzIndex>(U, mu);
GaugeMat Unu = PeekIndex<LorentzIndex>(U, nu);
if(M == N){
GaugeMat F(Umu.Grid());
CloverleafMxN(F, Umu, Unu, mu, nu, M, N);
FS = 0.125 * ( F - adj(F) );
}else{
//Average over both orientations
GaugeMat horizontal(Umu.Grid()), vertical(Umu.Grid());
CloverleafMxN(horizontal, Umu, Unu, mu, nu, M, N);
CloverleafMxN(vertical, Umu, Unu, mu, nu, N, M);
FS = 0.0625 * ( horizontal - adj(horizontal) + vertical - adj(vertical) );
}
}
//Topological charge contribution from MxN Wilson loops
//cf https://arxiv.org/pdf/hep-lat/9701012.pdf Eq 6
//output is the charge by timeslice: sum over timeslices to obtain the total
static std::vector<Real> TimesliceTopologicalChargeMxN(const GaugeLorentz &U, int M, int N){
assert(Nd == 4);
std::vector<std::vector<GaugeMat*> > F(Nd,std::vector<GaugeMat*>(Nd,nullptr));
//Note F_numu = - F_munu
//hence we only need to loop over mu,nu,rho,sigma that aren't related by permuting mu,nu or rho,sigma
//Use nu > mu
for(int mu=0;mu<Nd-1;mu++){
for(int nu=mu+1; nu<Nd; nu++){
F[mu][nu] = new GaugeMat(U.Grid());
FieldStrengthMxN(*F[mu][nu], U, mu, nu, M, N);
}
}
Real coeff = -1./(32 * M_PI*M_PI * M*M * N*N); //overall sign to match CPS and Grid conventions, possibly related to time direction = 3 vs 0
static const int combs[3][4] = { {0,1,2,3}, {0,2,1,3}, {0,3,1,2} };
static const int signs[3] = { 1, -1, 1 }; //epsilon_{mu nu rho sigma}
ComplexField fsum(U.Grid());
fsum = Zero();
for(int c=0;c<3;c++){
int mu = combs[c][0], nu = combs[c][1], rho = combs[c][2], sigma = combs[c][3];
int eps = signs[c];
fsum = fsum + (8. * coeff * eps) * trace( (*F[mu][nu]) * (*F[rho][sigma]) );
}
for(int mu=0;mu<Nd-1;mu++)
for(int nu=mu+1; nu<Nd; nu++)
delete F[mu][nu];
typedef typename ComplexField::scalar_object sobj;
std::vector<sobj> Tq;
sliceSum(fsum, Tq, Nd-1);
std::vector<Real> out(Tq.size());
for(int t=0;t<Tq.size();t++) out[t] = TensorRemove(Tq[t]).real();
return out;
}
static Real TopologicalChargeMxN(const GaugeLorentz &U, int M, int N){
std::vector<Real> Tq = TimesliceTopologicalChargeMxN(U,M,N);
Real out(0);
for(int t=0;t<Tq.size();t++) out += Tq[t];
return out;
}
//Generate the contributions to the 5Li topological charge from Wilson loops of the following sizes
//Use coefficients from hep-lat/9701012
//1x1 : c1=(19.-55.*c5)/9.
//2x2 : c2=(1-64.*c5)/9.
//1x2 : c3=(-64.+640.*c5)/45.
//1x3 : c4=1./5.-2.*c5
//3x3 : c5=1./20.
//Output array outer index contains the loops in the above order
//Inner index is the time coordinate
static std::vector<std::vector<Real> > TimesliceTopologicalCharge5LiContributions(const GaugeLorentz &U){
static const int exts[5][2] = { {1,1}, {2,2}, {1,2}, {1,3}, {3,3} };
std::vector<std::vector<Real> > out(5);
for(int i=0;i<5;i++){
out[i] = TimesliceTopologicalChargeMxN(U,exts[i][0],exts[i][1]);
}
return out;
}
static std::vector<Real> TopologicalCharge5LiContributions(const GaugeLorentz &U){
static const int exts[5][2] = { {1,1}, {2,2}, {1,2}, {1,3}, {3,3} };
std::vector<Real> out(5);
std::cout << GridLogMessage << "Computing topological charge" << std::endl;
for(int i=0;i<5;i++){
out[i] = TopologicalChargeMxN(U,exts[i][0],exts[i][1]);
std::cout << GridLogMessage << exts[i][0] << "x" << exts[i][1] << " Wilson loop contribution " << out[i] << std::endl;
}
return out;
}
//Compute the 5Li topological charge
static std::vector<Real> TimesliceTopologicalCharge5Li(const GaugeLorentz &U){
std::vector<std::vector<Real> > loops = TimesliceTopologicalCharge5LiContributions(U);
double c5=1./20.;
double c4=1./5.-2.*c5;
double c3=(-64.+640.*c5)/45.;
double c2=(1-64.*c5)/9.;
double c1=(19.-55.*c5)/9.;
int Lt = loops[0].size();
std::vector<Real> out(Lt,0.);
for(int t=0;t<Lt;t++)
out[t] += c1*loops[0][t] + c2*loops[1][t] + c3*loops[2][t] + c4*loops[3][t] + c5*loops[4][t];
return out;
}
static Real TopologicalCharge5Li(const GaugeLorentz &U){
std::vector<Real> Qt = TimesliceTopologicalCharge5Li(U);
Real Q = 0.;
for(int t=0;t<Qt.size();t++) Q += Qt[t];
std::cout << GridLogMessage << "5Li Topological charge: " << Q << std::endl;
return Q;
}
////////////////////////////////////////////////////// //////////////////////////////////////////////////////
// Similar to above for rectangle is required // Similar to above for rectangle is required
////////////////////////////////////////////////////// //////////////////////////////////////////////////////

200
Grid/random/gaussian.h Normal file
View File

@ -0,0 +1,200 @@
// -*- C++ -*-
//===--------------------------- random -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Peter Boyle: Taken from libc++ in Clang/LLVM.
// Reason is that libstdc++ and clang differ in their return order in the normal_distribution / box mueller type step.
// standardise on one and call it "gaussian_distribution".
#pragma once
#include <cstddef>
#include <cstdint>
#include <cmath>
#include <type_traits>
#include <initializer_list>
#include <limits>
#include <algorithm>
#include <numeric>
#include <vector>
#include <string>
#include <istream>
#include <ostream>
#include <random>
// normal_distribution -> gaussian distribution
namespace Grid {
template<class _RealType = double>
class gaussian_distribution
{
public:
// types
typedef _RealType result_type;
class param_type
{
result_type __mean_;
result_type __stddev_;
public:
typedef gaussian_distribution distribution_type;
strong_inline
explicit param_type(result_type __mean = 0, result_type __stddev = 1)
: __mean_(__mean), __stddev_(__stddev) {}
strong_inline
result_type mean() const {return __mean_;}
strong_inline
result_type stddev() const {return __stddev_;}
friend strong_inline
bool operator==(const param_type& __x, const param_type& __y)
{return __x.__mean_ == __y.__mean_ && __x.__stddev_ == __y.__stddev_;}
friend strong_inline
bool operator!=(const param_type& __x, const param_type& __y)
{return !(__x == __y);}
};
private:
param_type __p_;
result_type _V_;
bool _V_hot_;
public:
// constructors and reset functions
strong_inline
explicit gaussian_distribution(result_type __mean = 0, result_type __stddev = 1)
: __p_(param_type(__mean, __stddev)), _V_hot_(false) {}
strong_inline
explicit gaussian_distribution(const param_type& __p)
: __p_(__p), _V_hot_(false) {}
strong_inline
void reset() {_V_hot_ = false;}
// generating functions
template<class _URNG>
strong_inline
result_type operator()(_URNG& __g)
{return (*this)(__g, __p_);}
template<class _URNG> result_type operator()(_URNG& __g, const param_type& __p);
// property functions
strong_inline
result_type mean() const {return __p_.mean();}
strong_inline
result_type stddev() const {return __p_.stddev();}
strong_inline
param_type param() const {return __p_;}
strong_inline
void param(const param_type& __p) {__p_ = __p;}
strong_inline
result_type min() const {return -std::numeric_limits<result_type>::infinity();}
strong_inline
result_type max() const {return std::numeric_limits<result_type>::infinity();}
friend strong_inline
bool operator==(const gaussian_distribution& __x,
const gaussian_distribution& __y)
{return __x.__p_ == __y.__p_ && __x._V_hot_ == __y._V_hot_ &&
(!__x._V_hot_ || __x._V_ == __y._V_);}
friend strong_inline
bool operator!=(const gaussian_distribution& __x,
const gaussian_distribution& __y)
{return !(__x == __y);}
template <class _CharT, class _Traits, class _RT>
friend
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const gaussian_distribution<_RT>& __x);
template <class _CharT, class _Traits, class _RT>
friend
std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
gaussian_distribution<_RT>& __x);
};
template <class _RealType>
template<class _URNG>
_RealType
gaussian_distribution<_RealType>::operator()(_URNG& __g, const param_type& __p)
{
result_type _Up;
if (_V_hot_)
{
_V_hot_ = false;
_Up = _V_;
}
else
{
std::uniform_real_distribution<result_type> _Uni(-1, 1);
result_type __u;
result_type __v;
result_type __s;
do
{
__u = _Uni(__g);
__v = _Uni(__g);
__s = __u * __u + __v * __v;
} while (__s > 1 || __s == 0);
result_type _Fp = std::sqrt(-2 * std::log(__s) / __s);
_V_ = __v * _Fp;
_V_hot_ = true;
_Up = __u * _Fp;
}
return _Up * __p.stddev() + __p.mean();
}
template <class _CharT, class _Traits, class _RT>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const gaussian_distribution<_RT>& __x)
{
auto __save_flags = __os.flags();
__os.flags(std::ios_base::dec | std::ios_base::left | std::ios_base::fixed |
std::ios_base::scientific);
_CharT __sp = __os.widen(' ');
__os.fill(__sp);
__os << __x.mean() << __sp << __x.stddev() << __sp << __x._V_hot_;
if (__x._V_hot_)
__os << __sp << __x._V_;
__os.flags(__save_flags);
return __os;
}
template <class _CharT, class _Traits, class _RT>
std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
gaussian_distribution<_RT>& __x)
{
typedef gaussian_distribution<_RT> _Eng;
typedef typename _Eng::result_type result_type;
typedef typename _Eng::param_type param_type;
auto __save_flags = __is.flags();
__is.flags(std::ios_base::dec | std::ios_base::skipws);
result_type __mean;
result_type __stddev;
result_type _Vp = 0;
bool _V_hot = false;
__is >> __mean >> __stddev >> _V_hot;
if (_V_hot)
__is >> _Vp;
if (!__is.fail())
{
__x.param(param_type(__mean, __stddev));
__x._V_hot_ = _V_hot;
__x._V_ = _Vp;
}
__is.flags(__save_flags);
return __is;
}
}

View File

@ -208,5 +208,46 @@ void merge(vobj &vec,const ExtractPointerArray<sobj> &extracted, int offset)
} }
//////////////////////////////////////////////////////////////////////////////////
//Copy a single lane of a SIMD tensor type from one object to another
//Output object must be of the same tensor type but may be of a different precision (i.e. it can have a different root data type)
///////////////////////////////////////////////////////////////////////////////////
template<class vobjOut, class vobjIn>
accelerator_inline
void copyLane(vobjOut & __restrict__ vecOut, int lane_out, const vobjIn & __restrict__ vecIn, int lane_in)
{
static_assert( std::is_same<typename vobjOut::DoublePrecision, typename vobjIn::DoublePrecision>::value == 1, "copyLane: tensor types must be the same" ); //if tensor types are same the DoublePrecision type must be the same
typedef typename vobjOut::vector_type ovector_type;
typedef typename vobjIn::vector_type ivector_type;
constexpr int owords=sizeof(vobjOut)/sizeof(ovector_type);
constexpr int iwords=sizeof(vobjIn)/sizeof(ivector_type);
static_assert( owords == iwords, "copyLane: Expected number of vector words in input and output objects to be equal" );
typedef typename vobjOut::scalar_type oscalar_type;
typedef typename vobjIn::scalar_type iscalar_type;
typedef typename ExtractTypeMap<oscalar_type>::extract_type oextract_type;
typedef typename ExtractTypeMap<iscalar_type>::extract_type iextract_type;
typedef oextract_type * opointer;
typedef iextract_type * ipointer;
constexpr int oNsimd=ovector_type::Nsimd();
constexpr int iNsimd=ivector_type::Nsimd();
iscalar_type itmp;
oscalar_type otmp;
opointer __restrict__ op = (opointer)&vecOut;
ipointer __restrict__ ip = (ipointer)&vecIn;
for(int w=0;w<owords;w++){
memcpy( (char*)&itmp, (char*)(ip + lane_in + iNsimd*w), sizeof(iscalar_type) );
otmp = itmp; //potential precision change
memcpy( (char*)(op + lane_out + oNsimd*w), (char*)&otmp, sizeof(oscalar_type) );
}
}
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -206,7 +206,8 @@ inline void *acceleratorAllocShared(size_t bytes)
auto err = cudaMallocManaged((void **)&ptr,bytes); auto err = cudaMallocManaged((void **)&ptr,bytes);
if( err != cudaSuccess ) { if( err != cudaSuccess ) {
ptr = (void *) NULL; ptr = (void *) NULL;
printf(" cudaMallocManaged failed for %d %s \n",bytes,cudaGetErrorString(err)); printf(" cudaMallocManaged failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
} }
return ptr; return ptr;
}; };
@ -216,15 +217,47 @@ inline void *acceleratorAllocDevice(size_t bytes)
auto err = cudaMalloc((void **)&ptr,bytes); auto err = cudaMalloc((void **)&ptr,bytes);
if( err != cudaSuccess ) { if( err != cudaSuccess ) {
ptr = (void *) NULL; ptr = (void *) NULL;
printf(" cudaMalloc failed for %d %s \n",bytes,cudaGetErrorString(err)); printf(" cudaMalloc failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
} }
return ptr; return ptr;
}; };
inline void acceleratorFreeShared(void *ptr){ cudaFree(ptr);}; inline void acceleratorFreeShared(void *ptr){
inline void acceleratorFreeDevice(void *ptr){ cudaFree(ptr);}; auto err = cudaFree(ptr);
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { cudaMemcpy(to,from,bytes, cudaMemcpyHostToDevice);} if( err != cudaSuccess ) {
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ cudaMemcpy(to,from,bytes, cudaMemcpyDeviceToHost);} printf(" cudaFree(Shared) failed %s \n",cudaGetErrorString(err)); fflush(stdout);
inline void acceleratorMemSet(void *base,int value,size_t bytes) { cudaMemset(base,value,bytes);} if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
}
};
inline void acceleratorFreeDevice(void *ptr){
auto err = cudaFree(ptr);
if( err != cudaSuccess ) {
printf(" cudaFree(Device) failed %s \n",cudaGetErrorString(err)); fflush(stdout);
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
}
};
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) {
auto err = cudaMemcpy(to,from,bytes, cudaMemcpyHostToDevice);
if( err != cudaSuccess ) {
printf(" cudaMemcpy(host->device) failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
}
}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){
auto err = cudaMemcpy(to,from,bytes, cudaMemcpyDeviceToHost);
if( err != cudaSuccess ) {
printf(" cudaMemcpy(device->host) failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
}
}
inline void acceleratorMemSet(void *base,int value,size_t bytes) {
auto err = cudaMemset(base,value,bytes);
if( err != cudaSuccess ) {
printf(" cudaMemSet failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
}
}
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) // Asynch inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) // Asynch
{ {
cudaMemcpyAsync(to,from,bytes, cudaMemcpyDeviceToDevice,copyStream); cudaMemcpyAsync(to,from,bytes, cudaMemcpyDeviceToDevice,copyStream);
@ -481,10 +514,9 @@ inline void acceleratorCopySynchronise(void) { hipStreamSynchronize(copyStream);
#define accelerator_for2d(iter1, num1, iter2, num2, nsimd, ... ) thread_for2d(iter1,num1,iter2,num2,{ __VA_ARGS__ }); #define accelerator_for2d(iter1, num1, iter2, num2, nsimd, ... ) thread_for2d(iter1,num1,iter2,num2,{ __VA_ARGS__ });
accelerator_inline int acceleratorSIMTlane(int Nsimd) { return 0; } // CUDA specific accelerator_inline int acceleratorSIMTlane(int Nsimd) { return 0; } // CUDA specific
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { memcpy(to,from,bytes);}
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { thread_bcopy(from,to,bytes); } inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ memcpy(to,from,bytes);}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ thread_bcopy(from,to,bytes);} inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) { memcpy(to,from,bytes);}
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) { thread_bcopy(from,to,bytes);}
inline void acceleratorCopySynchronise(void) {}; inline void acceleratorCopySynchronise(void) {};
inline int acceleratorIsCommunicable(void *ptr){ return 1; } inline int acceleratorIsCommunicable(void *ptr){ return 1; }

View File

@ -72,20 +72,3 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#define thread_region DO_PRAGMA(omp parallel) #define thread_region DO_PRAGMA(omp parallel)
#define thread_critical DO_PRAGMA(omp critical) #define thread_critical DO_PRAGMA(omp critical)
#ifdef GRID_OMP
inline void thread_bcopy(void *from, void *to,size_t bytes)
{
uint64_t *ufrom = (uint64_t *)from;
uint64_t *uto = (uint64_t *)to;
assert(bytes%8==0);
uint64_t words=bytes/8;
thread_for(w,words,{
uto[w] = ufrom[w];
});
}
#else
inline void thread_bcopy(void *from, void *to,size_t bytes)
{
bcopy(from,to,bytes);
}
#endif

View File

@ -0,0 +1,473 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./HMC/DWF2p1fIwasakiGparity.cc
Copyright (C) 2015-2016
Author: Christopher Kelly <ckelly@bnl.gov>
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
//2+1f DWF+I ensemble with G-parity BCs
//designed to reproduce ensembles in https://arxiv.org/pdf/1908.08640.pdf
struct RatQuoParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(RatQuoParameters,
double, bnd_lo,
double, bnd_hi,
Integer, action_degree,
double, action_tolerance,
Integer, md_degree,
double, md_tolerance,
Integer, reliable_update_freq,
Integer, bnd_check_freq);
RatQuoParameters() {
bnd_lo = 1e-2;
bnd_hi = 30;
action_degree = 10;
action_tolerance = 1e-10;
md_degree = 10;
md_tolerance = 1e-8;
bnd_check_freq = 20;
reliable_update_freq = 50;
}
void Export(RationalActionParams &into) const{
into.lo = bnd_lo;
into.hi = bnd_hi;
into.action_degree = action_degree;
into.action_tolerance = action_tolerance;
into.md_degree = md_degree;
into.md_tolerance = md_tolerance;
into.BoundsCheckFreq = bnd_check_freq;
}
};
struct EvolParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(EvolParameters,
Integer, StartTrajectory,
Integer, Trajectories,
Integer, SaveInterval,
Integer, Steps,
bool, MetropolisTest,
std::string, StartingType,
std::vector<Integer>, GparityDirs,
RatQuoParameters, rat_quo_l,
RatQuoParameters, rat_quo_s);
EvolParameters() {
//For initial thermalization; afterwards user should switch Metropolis on and use StartingType=CheckpointStart
MetropolisTest = false;
StartTrajectory = 0;
Trajectories = 50;
SaveInterval = 5;
StartingType = "ColdStart";
GparityDirs.resize(3, 1); //1 for G-parity, 0 for periodic
Steps = 5;
}
};
bool fileExists(const std::string &fn){
std::ifstream f(fn);
return f.good();
}
struct LanczosParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParameters,
double, alpha,
double, beta,
double, mu,
int, ord,
int, n_stop,
int, n_want,
int, n_use,
double, tolerance);
LanczosParameters() {
alpha = 35;
beta = 5;
mu = 0;
ord = 100;
n_stop = 10;
n_want = 10;
n_use = 15;
tolerance = 1e-6;
}
};
template<typename FermionActionD, typename FermionFieldD>
void computeEigenvalues(std::string param_file,
GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
FermionActionD &action, GridParallelRNG &rng){
LanczosParameters params;
if(fileExists(param_file)){
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
Grid::XmlReader rd(param_file);
read(rd, "LanczosParameters", params);
}else if(!GlobalSharedMemory::WorldRank){
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
Grid::XmlWriter wr(param_file + ".templ");
write(wr, "LanczosParameters", params);
}
FermionFieldD gauss_o(rbGrid);
FermionFieldD gauss(Grid);
gaussian(rng, gauss);
pickCheckerboard(Odd, gauss_o, gauss);
action.ImportGauge(latt);
SchurDiagMooeeOperator<FermionActionD, FermionFieldD> hermop(action);
PlainHermOp<FermionFieldD> hermop_wrap(hermop);
//ChebyshevLanczos<FermionFieldD> Cheb(params.alpha, params.beta, params.mu, params.ord);
assert(params.mu == 0.0);
Chebyshev<FermionFieldD> Cheb(params.beta*params.beta, params.alpha*params.alpha, params.ord+1);
FunctionHermOp<FermionFieldD> Cheb_wrap(Cheb, hermop);
std::cout << "IRL: alpha=" << params.alpha << " beta=" << params.beta << " mu=" << params.mu << " ord=" << params.ord << std::endl;
ImplicitlyRestartedLanczos<FermionFieldD> IRL(Cheb_wrap, hermop_wrap, params.n_stop, params.n_want, params.n_use, params.tolerance, 10000);
std::vector<RealD> eval(params.n_use);
std::vector<FermionFieldD> evec(params.n_use, rbGrid);
int Nconv;
IRL.calc(eval, evec, gauss_o, Nconv);
std::cout << "Eigenvalues:" << std::endl;
for(int i=0;i<params.n_want;i++){
std::cout << i << " " << eval[i] << std::endl;
}
}
//Check the quality of the RHMC approx
template<typename FermionActionD, typename FermionFieldD, typename RHMCtype>
void checkRHMC(GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
FermionActionD &numOp, FermionActionD &denOp, RHMCtype &rhmc, GridParallelRNG &rng,
int inv_pow, const std::string &quark_descr){
FermionFieldD gauss_o(rbGrid);
FermionFieldD gauss(Grid);
gaussian(rng, gauss);
pickCheckerboard(Odd, gauss_o, gauss);
numOp.ImportGauge(latt);
denOp.ImportGauge(latt);
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
SchurDifferentiableOperator<FermionImplPolicyD> MdagM(numOp);
SchurDifferentiableOperator<FermionImplPolicyD> VdagV(denOp);
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerAction); //use large tolerance to prevent exit on fail; we are trying to tune here!
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerAction);
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerAction);
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerAction);
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
std::cout << "-------------------------------------------------------------------------------" << std::endl;
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerMD);
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerMD);
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerMD);
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerMD);
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
}
int main(int argc, char **argv) {
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
// here make a routine to print all the relevant information on the run
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
std::string param_file = "params.xml";
bool file_load_check = false;
for(int i=1;i<argc;i++){
std::string sarg(argv[i]);
if(sarg == "--param_file"){
assert(i!=argc-1);
param_file = argv[i+1];
}else if(sarg == "--read_check"){ //check the fields load correctly and pass checksum/plaquette repro
file_load_check = true;
}
}
//Read the user parameters
EvolParameters user_params;
if(fileExists(param_file)){
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
Grid::XmlReader rd(param_file);
read(rd, "Params", user_params);
}else if(!GlobalSharedMemory::WorldRank){
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
Grid::XmlWriter wr(param_file + ".templ");
write(wr, "Params", user_params);
std::cout << GridLogMessage << " Done" << std::endl;
Grid_finalize();
return 0;
}
//Check the parameters
if(user_params.GparityDirs.size() != Nd-1){
std::cerr << "Error in input parameters: expect GparityDirs to have size = " << Nd-1 << std::endl;
exit(1);
}
for(int i=0;i<Nd-1;i++)
if(user_params.GparityDirs[i] != 0 && user_params.GparityDirs[i] != 1){
std::cerr << "Error in input parameters: expect GparityDirs values to be 0 (periodic) or 1 (G-parity)" << std::endl;
exit(1);
}
// Typedefs to simplify notation
typedef GparityDomainWallFermionD FermionActionD;
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
typedef typename FermionActionD::FermionField FermionFieldD;
typedef GparityDomainWallFermionF FermionActionF;
typedef typename FermionActionF::Impl_t FermionImplPolicyF;
typedef typename FermionActionF::FermionField FermionFieldF;
typedef GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<FermionImplPolicyD,FermionImplPolicyF> MixedPrecRHMC;
typedef GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicyD> DoublePrecRHMC;
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
IntegratorParameters MD;
typedef ConjugateHMCRunnerD<MinimumNorm2> HMCWrapper; //NB: This is the "Omelyan integrator"
typedef HMCWrapper::ImplPolicy GaugeImplPolicy;
MD.name = std::string("MinimumNorm2");
MD.MDsteps = user_params.Steps;
MD.trajL = 1.0;
HMCparameters HMCparams;
HMCparams.StartTrajectory = user_params.StartTrajectory;
HMCparams.Trajectories = user_params.Trajectories;
HMCparams.NoMetropolisUntil= 0;
HMCparams.StartingType = user_params.StartingType;
HMCparams.MetropolisTest = user_params.MetropolisTest;
HMCparams.MD = MD;
HMCWrapper TheHMC(HMCparams);
// Grid from the command line arguments --grid and --mpi
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
CheckpointerParameters CPparams;
CPparams.config_prefix = "ckpoint_lat";
CPparams.rng_prefix = "ckpoint_rng";
CPparams.saveInterval = user_params.SaveInterval;
CPparams.format = "IEEE64BIG";
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
//Note that checkpointing saves the RNG state so that this initialization is required only for the very first configuration
RNGModuleParameters RNGpar;
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
typedef PlaquetteMod<GaugeImplPolicy> PlaqObs;
TheHMC.Resources.AddObservable<PlaqObs>();
//////////////////////////////////////////////
const int Ls = 16;
Real beta = 2.13;
Real light_mass = 0.01;
Real strange_mass = 0.032;
Real pv_mass = 1.0;
RealD M5 = 1.8;
//Setup the Grids
auto GridPtrD = TheHMC.Resources.GetCartesian();
auto GridRBPtrD = TheHMC.Resources.GetRBCartesian();
auto FGridD = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtrD);
auto FrbGridD = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtrD);
GridCartesian* GridPtrF = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian* GridRBPtrF = SpaceTimeGrid::makeFourDimRedBlackGrid(GridPtrF);
auto FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtrF);
auto FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtrF);
ConjugateIwasakiGaugeActionD GaugeAction(beta);
// temporarily need a gauge field
LatticeGaugeFieldD Ud(GridPtrD);
LatticeGaugeFieldF Uf(GridPtrF);
//Setup the BCs
FermionActionD::ImplParams Params;
for(int i=0;i<Nd-1;i++) Params.twists[i] = user_params.GparityDirs[i]; //G-parity directions
Params.twists[Nd-1] = 1; //APBC in time direction
std::vector<int> dirs4(Nd);
for(int i=0;i<Nd-1;i++) dirs4[i] = user_params.GparityDirs[i];
dirs4[Nd-1] = 0; //periodic gauge BC in time
GaugeImplPolicy::setDirections(dirs4); //gauge BC
//Run optional gauge field checksum checker and exit
if(file_load_check){
TheHMC.initializeGaugeFieldAndRNGs(Ud);
std::cout << GridLogMessage << " Done" << std::endl;
Grid_finalize();
return 0;
}
////////////////////////////////////
// Collect actions
////////////////////////////////////
ActionLevel<HMCWrapper::Field> Level1(1); //light quark + strange quark
ActionLevel<HMCWrapper::Field> Level2(8); //gauge (8 increments per step)
/////////////////////////////////////////////////////////////
// Light action
/////////////////////////////////////////////////////////////
FermionActionD Numerator_lD(Ud,*FGridD,*FrbGridD,*GridPtrD,*GridRBPtrD, light_mass,M5,Params);
FermionActionD Denominator_lD(Ud,*FGridD,*FrbGridD,*GridPtrD,*GridRBPtrD, pv_mass,M5,Params);
FermionActionF Numerator_lF(Uf,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF, light_mass,M5,Params);
FermionActionF Denominator_lF(Uf,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF, pv_mass,M5,Params);
RationalActionParams rat_act_params_l;
rat_act_params_l.inv_pow = 2; // (M^dag M)^{1/2}
rat_act_params_l.precision= 60;
rat_act_params_l.MaxIter = 10000;
user_params.rat_quo_l.Export(rat_act_params_l);
std::cout << GridLogMessage << " Light quark bounds check every " << rat_act_params_l.BoundsCheckFreq << " trajectories (avg)" << std::endl;
MixedPrecRHMC Quotient_l(Denominator_lD, Numerator_lD, Denominator_lF, Numerator_lF, rat_act_params_l, user_params.rat_quo_l.reliable_update_freq);
//DoublePrecRHMC Quotient_l(Denominator_lD, Numerator_lD, rat_act_params_l);
Level1.push_back(&Quotient_l);
////////////////////////////////////
// Strange action
////////////////////////////////////
FermionActionD Numerator_sD(Ud,*FGridD,*FrbGridD,*GridPtrD,*GridRBPtrD,strange_mass,M5,Params);
FermionActionD Denominator_sD(Ud,*FGridD,*FrbGridD,*GridPtrD,*GridRBPtrD, pv_mass,M5,Params);
FermionActionF Numerator_sF(Uf,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,strange_mass,M5,Params);
FermionActionF Denominator_sF(Uf,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF, pv_mass,M5,Params);
RationalActionParams rat_act_params_s;
rat_act_params_s.inv_pow = 4; // (M^dag M)^{1/4}
rat_act_params_s.precision= 60;
rat_act_params_s.MaxIter = 10000;
user_params.rat_quo_s.Export(rat_act_params_s);
std::cout << GridLogMessage << " Heavy quark bounds check every " << rat_act_params_l.BoundsCheckFreq << " trajectories (avg)" << std::endl;
MixedPrecRHMC Quotient_s(Denominator_sD, Numerator_sD, Denominator_sF, Numerator_sF, rat_act_params_s, user_params.rat_quo_s.reliable_update_freq);
//DoublePrecRHMC Quotient_s(Denominator_sD, Numerator_sD, rat_act_params_s);
Level1.push_back(&Quotient_s);
/////////////////////////////////////////////////////////////
// Gauge action
/////////////////////////////////////////////////////////////
Level2.push_back(&GaugeAction);
TheHMC.TheAction.push_back(Level1);
TheHMC.TheAction.push_back(Level2);
std::cout << GridLogMessage << " Action complete "<< std::endl;
//Action tuning
bool tune_rhmc_l=false, tune_rhmc_s=false, eigenrange_l=false, eigenrange_s=false;
std::string lanc_params_l, lanc_params_s;
for(int i=1;i<argc;i++){
std::string sarg(argv[i]);
if(sarg == "--tune_rhmc_l") tune_rhmc_l=true;
else if(sarg == "--tune_rhmc_s") tune_rhmc_s=true;
else if(sarg == "--eigenrange_l"){
assert(i < argc-1);
eigenrange_l=true;
lanc_params_l = argv[i+1];
}
else if(sarg == "--eigenrange_s"){
assert(i < argc-1);
eigenrange_s=true;
lanc_params_s = argv[i+1];
}
}
if(tune_rhmc_l || tune_rhmc_s || eigenrange_l || eigenrange_s){
TheHMC.initializeGaugeFieldAndRNGs(Ud);
if(eigenrange_l) computeEigenvalues<FermionActionD, FermionFieldD>(lanc_params_l, FGridD, FrbGridD, Ud, Numerator_lD, TheHMC.Resources.GetParallelRNG());
if(eigenrange_s) computeEigenvalues<FermionActionD, FermionFieldD>(lanc_params_s, FGridD, FrbGridD, Ud, Numerator_sD, TheHMC.Resources.GetParallelRNG());
if(tune_rhmc_l) checkRHMC<FermionActionD, FermionFieldD, decltype(Quotient_l)>(FGridD, FrbGridD, Ud, Numerator_lD, Denominator_lD, Quotient_l, TheHMC.Resources.GetParallelRNG(), 2, "light");
if(tune_rhmc_s) checkRHMC<FermionActionD, FermionFieldD, decltype(Quotient_s)>(FGridD, FrbGridD, Ud, Numerator_sD, Denominator_sD, Quotient_s, TheHMC.Resources.GetParallelRNG(), 4, "strange");
std::cout << GridLogMessage << " Done" << std::endl;
Grid_finalize();
return 0;
}
//Run the HMC
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
TheHMC.Run();
std::cout << GridLogMessage << " Done" << std::endl;
Grid_finalize();
return 0;
} // main

View File

@ -0,0 +1,473 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./HMC/DWF2p1fIwasakiGparity.cc
Copyright (C) 2015-2016
Author: Christopher Kelly <ckelly@bnl.gov>
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
//2+1f DWF+I ensemble with G-parity BCs
//designed to reproduce ensembles in https://arxiv.org/pdf/1908.08640.pdf
struct RatQuoParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(RatQuoParameters,
double, bnd_lo,
double, bnd_hi,
Integer, action_degree,
double, action_tolerance,
Integer, md_degree,
double, md_tolerance,
Integer, reliable_update_freq,
Integer, bnd_check_freq);
RatQuoParameters() {
bnd_lo = 1e-2;
bnd_hi = 30;
action_degree = 10;
action_tolerance = 1e-10;
md_degree = 10;
md_tolerance = 1e-8;
bnd_check_freq = 20;
reliable_update_freq = 50;
}
void Export(RationalActionParams &into) const{
into.lo = bnd_lo;
into.hi = bnd_hi;
into.action_degree = action_degree;
into.action_tolerance = action_tolerance;
into.md_degree = md_degree;
into.md_tolerance = md_tolerance;
into.BoundsCheckFreq = bnd_check_freq;
}
};
struct EvolParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(EvolParameters,
Integer, StartTrajectory,
Integer, Trajectories,
Integer, SaveInterval,
Integer, Steps,
bool, MetropolisTest,
std::string, StartingType,
std::vector<Integer>, GparityDirs,
RatQuoParameters, rat_quo_l,
RatQuoParameters, rat_quo_s);
EvolParameters() {
//For initial thermalization; afterwards user should switch Metropolis on and use StartingType=CheckpointStart
MetropolisTest = false;
StartTrajectory = 0;
Trajectories = 50;
SaveInterval = 5;
StartingType = "ColdStart";
GparityDirs.resize(3, 1); //1 for G-parity, 0 for periodic
Steps = 5;
}
};
bool fileExists(const std::string &fn){
std::ifstream f(fn);
return f.good();
}
struct LanczosParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParameters,
double, alpha,
double, beta,
double, mu,
int, ord,
int, n_stop,
int, n_want,
int, n_use,
double, tolerance);
LanczosParameters() {
alpha = 35;
beta = 5;
mu = 0;
ord = 100;
n_stop = 10;
n_want = 10;
n_use = 15;
tolerance = 1e-6;
}
};
template<typename FermionActionD, typename FermionFieldD>
void computeEigenvalues(std::string param_file,
GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
FermionActionD &action, GridParallelRNG &rng){
LanczosParameters params;
if(fileExists(param_file)){
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
Grid::XmlReader rd(param_file);
read(rd, "LanczosParameters", params);
}else if(!GlobalSharedMemory::WorldRank){
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
Grid::XmlWriter wr(param_file + ".templ");
write(wr, "LanczosParameters", params);
}
FermionFieldD gauss_o(rbGrid);
FermionFieldD gauss(Grid);
gaussian(rng, gauss);
pickCheckerboard(Odd, gauss_o, gauss);
action.ImportGauge(latt);
SchurDiagMooeeOperator<FermionActionD, FermionFieldD> hermop(action);
PlainHermOp<FermionFieldD> hermop_wrap(hermop);
//ChebyshevLanczos<FermionFieldD> Cheb(params.alpha, params.beta, params.mu, params.ord);
assert(params.mu == 0.0);
Chebyshev<FermionFieldD> Cheb(params.beta*params.beta, params.alpha*params.alpha, params.ord+1);
FunctionHermOp<FermionFieldD> Cheb_wrap(Cheb, hermop);
std::cout << "IRL: alpha=" << params.alpha << " beta=" << params.beta << " mu=" << params.mu << " ord=" << params.ord << std::endl;
ImplicitlyRestartedLanczos<FermionFieldD> IRL(Cheb_wrap, hermop_wrap, params.n_stop, params.n_want, params.n_use, params.tolerance, 10000);
std::vector<RealD> eval(params.n_use);
std::vector<FermionFieldD> evec(params.n_use, rbGrid);
int Nconv;
IRL.calc(eval, evec, gauss_o, Nconv);
std::cout << "Eigenvalues:" << std::endl;
for(int i=0;i<params.n_want;i++){
std::cout << i << " " << eval[i] << std::endl;
}
}
//Check the quality of the RHMC approx
template<typename FermionActionD, typename FermionFieldD, typename RHMCtype>
void checkRHMC(GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
FermionActionD &numOp, FermionActionD &denOp, RHMCtype &rhmc, GridParallelRNG &rng,
int inv_pow, const std::string &quark_descr){
FermionFieldD gauss_o(rbGrid);
FermionFieldD gauss(Grid);
gaussian(rng, gauss);
pickCheckerboard(Odd, gauss_o, gauss);
numOp.ImportGauge(latt);
denOp.ImportGauge(latt);
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
SchurDifferentiableOperator<FermionImplPolicyD> MdagM(numOp);
SchurDifferentiableOperator<FermionImplPolicyD> VdagV(denOp);
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerAction); //use large tolerance to prevent exit on fail; we are trying to tune here!
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerAction);
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerAction);
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerAction);
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
std::cout << "-------------------------------------------------------------------------------" << std::endl;
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerMD);
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerMD);
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerMD);
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerMD);
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
}
int main(int argc, char **argv) {
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
// here make a routine to print all the relevant information on the run
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
std::string param_file = "params.xml";
bool file_load_check = false;
for(int i=1;i<argc;i++){
std::string sarg(argv[i]);
if(sarg == "--param_file"){
assert(i!=argc-1);
param_file = argv[i+1];
}else if(sarg == "--read_check"){ //check the fields load correctly and pass checksum/plaquette repro
file_load_check = true;
}
}
//Read the user parameters
EvolParameters user_params;
if(fileExists(param_file)){
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
Grid::XmlReader rd(param_file);
read(rd, "Params", user_params);
}else if(!GlobalSharedMemory::WorldRank){
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
Grid::XmlWriter wr(param_file + ".templ");
write(wr, "Params", user_params);
std::cout << GridLogMessage << " Done" << std::endl;
Grid_finalize();
return 0;
}
//Check the parameters
if(user_params.GparityDirs.size() != Nd-1){
std::cerr << "Error in input parameters: expect GparityDirs to have size = " << Nd-1 << std::endl;
exit(1);
}
for(int i=0;i<Nd-1;i++)
if(user_params.GparityDirs[i] != 0 && user_params.GparityDirs[i] != 1){
std::cerr << "Error in input parameters: expect GparityDirs values to be 0 (periodic) or 1 (G-parity)" << std::endl;
exit(1);
}
// Typedefs to simplify notation
typedef GparityDomainWallFermionD FermionActionD;
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
typedef typename FermionActionD::FermionField FermionFieldD;
typedef GparityDomainWallFermionF FermionActionF;
typedef typename FermionActionF::Impl_t FermionImplPolicyF;
typedef typename FermionActionF::FermionField FermionFieldF;
typedef GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<FermionImplPolicyD,FermionImplPolicyF> MixedPrecRHMC;
typedef GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicyD> DoublePrecRHMC;
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
IntegratorParameters MD;
typedef ConjugateHMCRunnerD<MinimumNorm2> HMCWrapper; //NB: This is the "Omelyan integrator"
typedef HMCWrapper::ImplPolicy GaugeImplPolicy;
MD.name = std::string("MinimumNorm2");
MD.MDsteps = user_params.Steps;
MD.trajL = 1.0;
HMCparameters HMCparams;
HMCparams.StartTrajectory = user_params.StartTrajectory;
HMCparams.Trajectories = user_params.Trajectories;
HMCparams.NoMetropolisUntil= 0;
HMCparams.StartingType = user_params.StartingType;
HMCparams.MetropolisTest = user_params.MetropolisTest;
HMCparams.MD = MD;
HMCWrapper TheHMC(HMCparams);
// Grid from the command line arguments --grid and --mpi
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
CheckpointerParameters CPparams;
CPparams.config_prefix = "ckpoint_lat";
CPparams.rng_prefix = "ckpoint_rng";
CPparams.saveInterval = user_params.SaveInterval;
CPparams.format = "IEEE64BIG";
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
//Note that checkpointing saves the RNG state so that this initialization is required only for the very first configuration
RNGModuleParameters RNGpar;
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
typedef PlaquetteMod<GaugeImplPolicy> PlaqObs;
TheHMC.Resources.AddObservable<PlaqObs>();
//////////////////////////////////////////////
const int Ls = 16;
Real beta = 2.13;
Real light_mass = 0.01;
Real strange_mass = 0.032;
Real pv_mass = 1.0;
RealD M5 = 1.8;
//Setup the Grids
auto GridPtrD = TheHMC.Resources.GetCartesian();
auto GridRBPtrD = TheHMC.Resources.GetRBCartesian();
auto FGridD = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtrD);
auto FrbGridD = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtrD);
GridCartesian* GridPtrF = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian* GridRBPtrF = SpaceTimeGrid::makeFourDimRedBlackGrid(GridPtrF);
auto FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtrF);
auto FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtrF);
ConjugateIwasakiGaugeActionD GaugeAction(beta);
// temporarily need a gauge field
LatticeGaugeFieldD Ud(GridPtrD);
LatticeGaugeFieldF Uf(GridPtrF);
//Setup the BCs
FermionActionD::ImplParams Params;
for(int i=0;i<Nd-1;i++) Params.twists[i] = user_params.GparityDirs[i]; //G-parity directions
Params.twists[Nd-1] = 1; //APBC in time direction
std::vector<int> dirs4(Nd);
for(int i=0;i<Nd-1;i++) dirs4[i] = user_params.GparityDirs[i];
dirs4[Nd-1] = 0; //periodic gauge BC in time
GaugeImplPolicy::setDirections(dirs4); //gauge BC
//Run optional gauge field checksum checker and exit
if(file_load_check){
TheHMC.initializeGaugeFieldAndRNGs(Ud);
std::cout << GridLogMessage << " Done" << std::endl;
Grid_finalize();
return 0;
}
////////////////////////////////////
// Collect actions
////////////////////////////////////
ActionLevel<HMCWrapper::Field> Level1(1); //light quark + strange quark
ActionLevel<HMCWrapper::Field> Level2(8); //gauge (8 increments per step)
/////////////////////////////////////////////////////////////
// Light action
/////////////////////////////////////////////////////////////
FermionActionD Numerator_lD(Ud,*FGridD,*FrbGridD,*GridPtrD,*GridRBPtrD, light_mass,M5,Params);
FermionActionD Denominator_lD(Ud,*FGridD,*FrbGridD,*GridPtrD,*GridRBPtrD, pv_mass,M5,Params);
FermionActionF Numerator_lF(Uf,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF, light_mass,M5,Params);
FermionActionF Denominator_lF(Uf,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF, pv_mass,M5,Params);
RationalActionParams rat_act_params_l;
rat_act_params_l.inv_pow = 2; // (M^dag M)^{1/2}
rat_act_params_l.precision= 60;
rat_act_params_l.MaxIter = 10000;
user_params.rat_quo_l.Export(rat_act_params_l);
std::cout << GridLogMessage << " Light quark bounds check every " << rat_act_params_l.BoundsCheckFreq << " trajectories (avg)" << std::endl;
//MixedPrecRHMC Quotient_l(Denominator_lD, Numerator_lD, Denominator_lF, Numerator_lF, rat_act_params_l, user_params.rat_quo_l.reliable_update_freq);
DoublePrecRHMC Quotient_l(Denominator_lD, Numerator_lD, rat_act_params_l);
Level1.push_back(&Quotient_l);
////////////////////////////////////
// Strange action
////////////////////////////////////
FermionActionD Numerator_sD(Ud,*FGridD,*FrbGridD,*GridPtrD,*GridRBPtrD,strange_mass,M5,Params);
FermionActionD Denominator_sD(Ud,*FGridD,*FrbGridD,*GridPtrD,*GridRBPtrD, pv_mass,M5,Params);
FermionActionF Numerator_sF(Uf,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,strange_mass,M5,Params);
FermionActionF Denominator_sF(Uf,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF, pv_mass,M5,Params);
RationalActionParams rat_act_params_s;
rat_act_params_s.inv_pow = 4; // (M^dag M)^{1/4}
rat_act_params_s.precision= 60;
rat_act_params_s.MaxIter = 10000;
user_params.rat_quo_s.Export(rat_act_params_s);
std::cout << GridLogMessage << " Heavy quark bounds check every " << rat_act_params_l.BoundsCheckFreq << " trajectories (avg)" << std::endl;
//MixedPrecRHMC Quotient_s(Denominator_sD, Numerator_sD, Denominator_sF, Numerator_sF, rat_act_params_s, user_params.rat_quo_s.reliable_update_freq);
DoublePrecRHMC Quotient_s(Denominator_sD, Numerator_sD, rat_act_params_s);
Level1.push_back(&Quotient_s);
/////////////////////////////////////////////////////////////
// Gauge action
/////////////////////////////////////////////////////////////
Level2.push_back(&GaugeAction);
TheHMC.TheAction.push_back(Level1);
TheHMC.TheAction.push_back(Level2);
std::cout << GridLogMessage << " Action complete "<< std::endl;
//Action tuning
bool tune_rhmc_l=false, tune_rhmc_s=false, eigenrange_l=false, eigenrange_s=false;
std::string lanc_params_l, lanc_params_s;
for(int i=1;i<argc;i++){
std::string sarg(argv[i]);
if(sarg == "--tune_rhmc_l") tune_rhmc_l=true;
else if(sarg == "--tune_rhmc_s") tune_rhmc_s=true;
else if(sarg == "--eigenrange_l"){
assert(i < argc-1);
eigenrange_l=true;
lanc_params_l = argv[i+1];
}
else if(sarg == "--eigenrange_s"){
assert(i < argc-1);
eigenrange_s=true;
lanc_params_s = argv[i+1];
}
}
if(tune_rhmc_l || tune_rhmc_s || eigenrange_l || eigenrange_s){
TheHMC.initializeGaugeFieldAndRNGs(Ud);
if(eigenrange_l) computeEigenvalues<FermionActionD, FermionFieldD>(lanc_params_l, FGridD, FrbGridD, Ud, Numerator_lD, TheHMC.Resources.GetParallelRNG());
if(eigenrange_s) computeEigenvalues<FermionActionD, FermionFieldD>(lanc_params_s, FGridD, FrbGridD, Ud, Numerator_sD, TheHMC.Resources.GetParallelRNG());
if(tune_rhmc_l) checkRHMC<FermionActionD, FermionFieldD, decltype(Quotient_l)>(FGridD, FrbGridD, Ud, Numerator_lD, Denominator_lD, Quotient_l, TheHMC.Resources.GetParallelRNG(), 2, "light");
if(tune_rhmc_s) checkRHMC<FermionActionD, FermionFieldD, decltype(Quotient_s)>(FGridD, FrbGridD, Ud, Numerator_sD, Denominator_sD, Quotient_s, TheHMC.Resources.GetParallelRNG(), 4, "strange");
std::cout << GridLogMessage << " Done" << std::endl;
Grid_finalize();
return 0;
}
//Run the HMC
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
TheHMC.Run();
std::cout << GridLogMessage << " Done" << std::endl;
Grid_finalize();
return 0;
} // main

View File

@ -0,0 +1,765 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./HMC/Mobius2p1fIDSDRGparityEOFA.cc
Copyright (C) 2015-2016
Author: Christopher Kelly <ckelly@bnl.gov>
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
//We try to reproduce with G-parity BCs the 246 MeV 1.37 GeV ensemble
//To speed things up we will use Mobius DWF with b+c=32/12 and Ls=12 to match the Ls=32 of the original
//These parameters match those used in the 2020 K->pipi paper
struct RatQuoParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(RatQuoParameters,
double, bnd_lo,
double, bnd_hi,
Integer, action_degree,
double, action_tolerance,
Integer, md_degree,
double, md_tolerance,
Integer, reliable_update_freq,
Integer, bnd_check_freq);
RatQuoParameters() {
bnd_lo = 1e-2;
bnd_hi = 30;
action_degree = 10;
action_tolerance = 1e-10;
md_degree = 10;
md_tolerance = 1e-8;
bnd_check_freq = 20;
reliable_update_freq = 50;
}
void Export(RationalActionParams &into) const{
into.lo = bnd_lo;
into.hi = bnd_hi;
into.action_degree = action_degree;
into.action_tolerance = action_tolerance;
into.md_degree = md_degree;
into.md_tolerance = md_tolerance;
into.BoundsCheckFreq = bnd_check_freq;
}
};
struct EOFAparameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(EOFAparameters,
OneFlavourRationalParams, rat_params,
double, action_tolerance,
double, action_mixcg_inner_tolerance,
double, md_tolerance,
double, md_mixcg_inner_tolerance);
EOFAparameters() {
action_mixcg_inner_tolerance = 1e-8;
action_tolerance = 1e-10;
md_tolerance = 1e-8;
md_mixcg_inner_tolerance = 1e-8;
rat_params.lo = 0.1;
rat_params.hi = 25.0;
rat_params.MaxIter = 10000;
rat_params.tolerance= 1.0e-9;
rat_params.degree = 14;
rat_params.precision= 50;
}
};
struct EvolParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(EvolParameters,
Integer, StartTrajectory,
Integer, Trajectories,
Integer, SaveInterval,
Integer, Steps,
bool, MetropolisTest,
std::string, StartingType,
std::vector<Integer>, GparityDirs,
EOFAparameters, eofa_l,
RatQuoParameters, rat_quo_s,
RatQuoParameters, rat_quo_DSDR);
EvolParameters() {
//For initial thermalization; afterwards user should switch Metropolis on and use StartingType=CheckpointStart
MetropolisTest = false;
StartTrajectory = 0;
Trajectories = 50;
SaveInterval = 5;
StartingType = "ColdStart";
GparityDirs.resize(3, 1); //1 for G-parity, 0 for periodic
Steps = 5;
}
};
bool fileExists(const std::string &fn){
std::ifstream f(fn);
return f.good();
}
struct LanczosParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParameters,
double, alpha,
double, beta,
double, mu,
int, ord,
int, n_stop,
int, n_want,
int, n_use,
double, tolerance);
LanczosParameters() {
alpha = 35;
beta = 5;
mu = 0;
ord = 100;
n_stop = 10;
n_want = 10;
n_use = 15;
tolerance = 1e-6;
}
};
template<typename FermionActionD, typename FermionFieldD>
void computeEigenvalues(std::string param_file,
GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
FermionActionD &action, GridParallelRNG &rng){
LanczosParameters params;
if(fileExists(param_file)){
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
Grid::XmlReader rd(param_file);
read(rd, "LanczosParameters", params);
}else if(!GlobalSharedMemory::WorldRank){
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
Grid::XmlWriter wr(param_file + ".templ");
write(wr, "LanczosParameters", params);
}
FermionFieldD gauss_o(rbGrid);
FermionFieldD gauss(Grid);
gaussian(rng, gauss);
pickCheckerboard(Odd, gauss_o, gauss);
action.ImportGauge(latt);
SchurDiagMooeeOperator<FermionActionD, FermionFieldD> hermop(action);
PlainHermOp<FermionFieldD> hermop_wrap(hermop);
//ChebyshevLanczos<FermionFieldD> Cheb(params.alpha, params.beta, params.mu, params.ord);
assert(params.mu == 0.0);
Chebyshev<FermionFieldD> Cheb(params.beta*params.beta, params.alpha*params.alpha, params.ord+1);
FunctionHermOp<FermionFieldD> Cheb_wrap(Cheb, hermop);
std::cout << "IRL: alpha=" << params.alpha << " beta=" << params.beta << " mu=" << params.mu << " ord=" << params.ord << std::endl;
ImplicitlyRestartedLanczos<FermionFieldD> IRL(Cheb_wrap, hermop_wrap, params.n_stop, params.n_want, params.n_use, params.tolerance, 10000);
std::vector<RealD> eval(params.n_use);
std::vector<FermionFieldD> evec(params.n_use, rbGrid);
int Nconv;
IRL.calc(eval, evec, gauss_o, Nconv);
std::cout << "Eigenvalues:" << std::endl;
for(int i=0;i<params.n_want;i++){
std::cout << i << " " << eval[i] << std::endl;
}
}
//Check the quality of the RHMC approx
//action_or_md toggles checking the action (0), MD (1) or both (2) setups
template<typename FermionActionD, typename FermionFieldD, typename RHMCtype>
void checkRHMC(GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
FermionActionD &numOp, FermionActionD &denOp, RHMCtype &rhmc, GridParallelRNG &rng,
int inv_pow, const std::string &quark_descr, int action_or_md){
assert(action_or_md == 0 || action_or_md == 1 || action_or_md == 2);
FermionFieldD gauss_o(rbGrid);
FermionFieldD gauss(Grid);
gaussian(rng, gauss);
pickCheckerboard(Odd, gauss_o, gauss);
numOp.ImportGauge(latt);
denOp.ImportGauge(latt);
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
SchurDifferentiableOperator<FermionImplPolicyD> MdagM(numOp);
SchurDifferentiableOperator<FermionImplPolicyD> VdagV(denOp);
PowerMethod<FermionFieldD> power_method;
RealD lambda_max;
std::cout << "Starting: Get RHMC high bound approx for " << quark_descr << " numerator" << std::endl;
lambda_max = power_method(MdagM,gauss_o);
std::cout << GridLogMessage << "Got lambda_max "<<lambda_max<<std::endl;
std::cout << "Starting: Get RHMC high bound approx for " << quark_descr << " denominator" << std::endl;
lambda_max = power_method(VdagV,gauss_o);
std::cout << GridLogMessage << "Got lambda_max "<<lambda_max<<std::endl;
if(action_or_md == 0 || action_or_md == 2){
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerAction); //use large tolerance to prevent exit on fail; we are trying to tune here!
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerAction);
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerAction);
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerAction);
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
}
std::cout << "-------------------------------------------------------------------------------" << std::endl;
if(action_or_md == 1 || action_or_md == 2){
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerMD);
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerMD);
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerMD);
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerMD);
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
}
}
template<typename FermionImplPolicy>
void checkEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
GridCartesian* FGrid, GridParallelRNG &rng, const LatticeGaugeFieldD &latt){
std::cout << GridLogMessage << "Starting EOFA action/bounds check" << std::endl;
typename FermionImplPolicy::FermionField eta(FGrid);
RealD scale = std::sqrt(0.5);
gaussian(rng,eta); eta = eta * scale;
//Use the inbuilt check
EOFA.refresh(latt, eta);
EOFA.S(latt);
std::cout << GridLogMessage << "Finished EOFA upper action/bounds check" << std::endl;
}
template<typename FermionImplPolicy>
class EOFAlinop: public LinearOperatorBase<typename FermionImplPolicy::FermionField>{
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA;
LatticeGaugeFieldD &U;
public:
EOFAlinop(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA, LatticeGaugeFieldD &U): EOFA(EOFA), U(U){}
typedef typename FermionImplPolicy::FermionField Field;
void OpDiag (const Field &in, Field &out){ assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
void Op (const Field &in, Field &out){ assert(0); }
void AdjOp (const Field &in, Field &out){ assert(0); }
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
void HermOp(const Field &in, Field &out){ EOFA.Meofa(U, in, out); }
};
template<typename FermionImplPolicy>
void upperBoundEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
GridCartesian* FGrid, GridParallelRNG &rng, LatticeGaugeFieldD &latt){
std::cout << GridLogMessage << "Starting EOFA upper bound compute" << std::endl;
EOFAlinop<FermionImplPolicy> linop(EOFA, latt);
typename FermionImplPolicy::FermionField eta(FGrid);
gaussian(rng,eta);
PowerMethod<typename FermionImplPolicy::FermionField> power_method;
auto lambda_max = power_method(linop,eta);
std::cout << GridLogMessage << "Upper bound of EOFA operator " << lambda_max << std::endl;
}
//Applications of M^{-1} cost the same as M for EOFA!
template<typename FermionImplPolicy>
class EOFAinvLinop: public LinearOperatorBase<typename FermionImplPolicy::FermionField>{
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA;
LatticeGaugeFieldD &U;
public:
EOFAinvLinop(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA, LatticeGaugeFieldD &U): EOFA(EOFA), U(U){}
typedef typename FermionImplPolicy::FermionField Field;
void OpDiag (const Field &in, Field &out){ assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
void Op (const Field &in, Field &out){ assert(0); }
void AdjOp (const Field &in, Field &out){ assert(0); }
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
void HermOp(const Field &in, Field &out){ EOFA.MeofaInv(U, in, out); }
};
template<typename FermionImplPolicy>
void lowerBoundEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
GridCartesian* FGrid, GridParallelRNG &rng, LatticeGaugeFieldD &latt){
std::cout << GridLogMessage << "Starting EOFA lower bound compute using power method on M^{-1}. Inverse of highest eigenvalue is the lowest eigenvalue of M" << std::endl;
EOFAinvLinop<FermionImplPolicy> linop(EOFA, latt);
typename FermionImplPolicy::FermionField eta(FGrid);
gaussian(rng,eta);
PowerMethod<typename FermionImplPolicy::FermionField> power_method;
auto lambda_max = power_method(linop,eta);
std::cout << GridLogMessage << "Lower bound of EOFA operator " << 1./lambda_max << std::endl;
}
NAMESPACE_BEGIN(Grid);
template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class SchurOperatorF>
class MixedPrecisionConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
public:
typedef typename FermionOperatorD::FermionField FieldD;
typedef typename FermionOperatorF::FermionField FieldF;
using OperatorFunction<FieldD>::operator();
RealD Tolerance;
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
Integer MaxInnerIterations;
Integer MaxOuterIterations;
GridBase* SinglePrecGrid4; //Grid for single-precision fields
GridBase* SinglePrecGrid5; //Grid for single-precision fields
RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
FermionOperatorF &FermOpF;
FermionOperatorD &FermOpD;;
SchurOperatorF &LinOpF;
SchurOperatorD &LinOpD;
Integer TotalInnerIterations; //Number of inner CG iterations
Integer TotalOuterIterations; //Number of restarts
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
MixedPrecisionConjugateGradientOperatorFunction(RealD tol,
Integer maxinnerit,
Integer maxouterit,
GridBase* _sp_grid4,
GridBase* _sp_grid5,
FermionOperatorF &_FermOpF,
FermionOperatorD &_FermOpD,
SchurOperatorF &_LinOpF,
SchurOperatorD &_LinOpD):
LinOpF(_LinOpF),
LinOpD(_LinOpD),
FermOpF(_FermOpF),
FermOpD(_FermOpD),
Tolerance(tol),
InnerTolerance(tol),
MaxInnerIterations(maxinnerit),
MaxOuterIterations(maxouterit),
SinglePrecGrid4(_sp_grid4),
SinglePrecGrid5(_sp_grid5),
OuterLoopNormMult(100.)
{
};
void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
std::cout << GridLogMessage << " Mixed precision CG wrapper operator() "<<std::endl;
SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
precisionChange(FermOpF.Umu, FermOpD.Umu);
pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
////////////////////////////////////////////////////////////////////////////////////
// Make a mixed precision conjugate gradient
////////////////////////////////////////////////////////////////////////////////////
MixedPrecisionConjugateGradient<FieldD,FieldF> MPCG(Tolerance,MaxInnerIterations,MaxOuterIterations,SinglePrecGrid5,LinOpF,LinOpD);
MPCG.InnerTolerance = InnerTolerance;
std::cout << GridLogMessage << "Calling mixed precision Conjugate Gradient" <<std::endl;
MPCG(src,psi);
}
};
NAMESPACE_END(Grid);
int main(int argc, char **argv) {
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
// here make a routine to print all the relevant information on the run
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
std::string param_file = "params.xml";
bool file_load_check = false;
for(int i=1;i<argc;i++){
std::string sarg(argv[i]);
if(sarg == "--param_file"){
assert(i!=argc-1);
param_file = argv[i+1];
}else if(sarg == "--read_check"){ //check the fields load correctly and pass checksum/plaquette repro
file_load_check = true;
}
}
//Read the user parameters
EvolParameters user_params;
if(fileExists(param_file)){
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
Grid::XmlReader rd(param_file);
read(rd, "Params", user_params);
}else if(!GlobalSharedMemory::WorldRank){
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
{
Grid::XmlWriter wr(param_file + ".templ");
write(wr, "Params", user_params);
}
std::cout << GridLogMessage << " Done" << std::endl;
Grid_finalize();
return 0;
}
//Check the parameters
if(user_params.GparityDirs.size() != Nd-1){
std::cerr << "Error in input parameters: expect GparityDirs to have size = " << Nd-1 << std::endl;
exit(1);
}
for(int i=0;i<Nd-1;i++)
if(user_params.GparityDirs[i] != 0 && user_params.GparityDirs[i] != 1){
std::cerr << "Error in input parameters: expect GparityDirs values to be 0 (periodic) or 1 (G-parity)" << std::endl;
exit(1);
}
typedef GparityMobiusEOFAFermionD EOFAactionD;
typedef GparityMobiusFermionD FermionActionD;
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
typedef typename FermionActionD::FermionField FermionFieldD;
typedef GparityMobiusEOFAFermionF EOFAactionF;
typedef GparityMobiusFermionF FermionActionF;
typedef typename FermionActionF::Impl_t FermionImplPolicyF;
typedef typename FermionActionF::FermionField FermionFieldF;
typedef GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<FermionImplPolicyD,FermionImplPolicyF> MixedPrecRHMC;
typedef GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicyD> DoublePrecRHMC;
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
IntegratorParameters MD;
typedef ConjugateHMCRunnerD<MinimumNorm2> HMCWrapper; //NB: This is the "Omelyan integrator"
typedef HMCWrapper::ImplPolicy GaugeImplPolicy;
MD.name = std::string("MinimumNorm2");
MD.MDsteps = user_params.Steps;
MD.trajL = 1.0;
HMCparameters HMCparams;
HMCparams.StartTrajectory = user_params.StartTrajectory;
HMCparams.Trajectories = user_params.Trajectories;
HMCparams.NoMetropolisUntil= 0;
HMCparams.StartingType = user_params.StartingType;
HMCparams.MetropolisTest = user_params.MetropolisTest;
HMCparams.MD = MD;
HMCWrapper TheHMC(HMCparams);
// Grid from the command line arguments --grid and --mpi
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
CheckpointerParameters CPparams;
CPparams.config_prefix = "ckpoint_lat";
CPparams.rng_prefix = "ckpoint_rng";
CPparams.saveInterval = user_params.SaveInterval;
CPparams.format = "IEEE64BIG";
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
//Note that checkpointing saves the RNG state so that this initialization is required only for the very first configuration
RNGModuleParameters RNGpar;
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
typedef PlaquetteMod<GaugeImplPolicy> PlaqObs;
TheHMC.Resources.AddObservable<PlaqObs>();
//////////////////////////////////////////////
const int Ls = 12;
Real beta = 1.75;
Real light_mass = 0.0042; //240 MeV
Real strange_mass = 0.045;
Real pv_mass = 1.0;
RealD M5 = 1.8;
RealD mobius_scale = 32./12.; //b+c
RealD mob_bmc = 1.0;
RealD mob_b = (mobius_scale + mob_bmc)/2.;
RealD mob_c = (mobius_scale - mob_bmc)/2.;
//Setup the Grids
auto UGridD = TheHMC.Resources.GetCartesian();
auto UrbGridD = TheHMC.Resources.GetRBCartesian();
auto FGridD = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridD);
auto FrbGridD = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridD);
GridCartesian* UGridF = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian* UrbGridF = SpaceTimeGrid::makeFourDimRedBlackGrid(UGridF);
auto FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridF);
auto FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridF);
ConjugateIwasakiGaugeActionD GaugeAction(beta);
// temporarily need a gauge field
LatticeGaugeFieldD Ud(UGridD);
LatticeGaugeFieldF Uf(UGridF);
//Setup the BCs
FermionActionD::ImplParams Params;
for(int i=0;i<Nd-1;i++) Params.twists[i] = user_params.GparityDirs[i]; //G-parity directions
Params.twists[Nd-1] = 1; //APBC in time direction
std::vector<int> dirs4(Nd);
for(int i=0;i<Nd-1;i++) dirs4[i] = user_params.GparityDirs[i];
dirs4[Nd-1] = 0; //periodic gauge BC in time
GaugeImplPolicy::setDirections(dirs4); //gauge BC
//Run optional gauge field checksum checker and exit
if(file_load_check){
TheHMC.initializeGaugeFieldAndRNGs(Ud);
std::cout << GridLogMessage << " Done" << std::endl;
Grid_finalize();
return 0;
}
////////////////////////////////////
// Collect actions
////////////////////////////////////
ActionLevel<HMCWrapper::Field> Level1(1); //light quark + strange quark
ActionLevel<HMCWrapper::Field> Level2(1); //DSDR
ActionLevel<HMCWrapper::Field> Level3(8); //gauge (8 increments per step)
/////////////////////////////////////////////////////////////
// Light EOFA action
// have to be careful with the parameters, cf. Test_dwf_gpforce_eofa.cc
/////////////////////////////////////////////////////////////
EOFAactionD LopD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, light_mass, light_mass, pv_mass, 0.0, -1, M5, mob_b, mob_c, Params);
EOFAactionF LopF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, light_mass, light_mass, pv_mass, 0.0, -1, M5, mob_b, mob_c, Params);
EOFAactionD RopD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, pv_mass, light_mass, pv_mass, -1.0, 1, M5, mob_b, mob_c, Params);
EOFAactionF RopF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, pv_mass, light_mass, pv_mass, -1.0, 1, M5, mob_b, mob_c, Params);
typedef SchurDiagMooeeOperator<EOFAactionD,FermionFieldD> EOFAschuropD;
typedef SchurDiagMooeeOperator<EOFAactionF,FermionFieldF> EOFAschuropF;
EOFAschuropD linopL_D(LopD);
EOFAschuropD linopR_D(RopD);
EOFAschuropF linopL_F(LopF);
EOFAschuropF linopR_F(RopF);
typedef MixedPrecisionConjugateGradientOperatorFunction<EOFAactionD, EOFAactionF, EOFAschuropD, EOFAschuropF> EOFA_mxCG;
EOFA_mxCG ActionMCG_L(user_params.eofa_l.action_tolerance, 10000, 1000, UGridF, FrbGridF, LopF, LopD, linopL_F, linopL_D);
ActionMCG_L.InnerTolerance = user_params.eofa_l.action_mixcg_inner_tolerance;
EOFA_mxCG ActionMCG_R(user_params.eofa_l.action_tolerance, 10000, 1000, UGridF, FrbGridF, RopF, RopD, linopR_F, linopR_D);
ActionMCG_R.InnerTolerance = user_params.eofa_l.action_mixcg_inner_tolerance;
EOFA_mxCG DerivMCG_L(user_params.eofa_l.md_tolerance, 10000, 1000, UGridF, FrbGridF, LopF, LopD, linopL_F, linopL_D);
DerivMCG_L.InnerTolerance = user_params.eofa_l.md_mixcg_inner_tolerance;
EOFA_mxCG DerivMCG_R(user_params.eofa_l.md_tolerance, 10000, 1000, UGridF, FrbGridF, RopF, RopD, linopR_F, linopR_D);
DerivMCG_R.InnerTolerance = user_params.eofa_l.md_mixcg_inner_tolerance;
std::cout << GridLogMessage << "Set EOFA action solver action tolerance outer=" << ActionMCG_L.Tolerance << " inner=" << ActionMCG_L.InnerTolerance << std::endl;
std::cout << GridLogMessage << "Set EOFA MD solver tolerance outer=" << DerivMCG_L.Tolerance << " inner=" << DerivMCG_L.InnerTolerance << std::endl;
ConjugateGradient<FermionFieldD> ActionCG(user_params.eofa_l.action_tolerance, 10000);
ConjugateGradient<FermionFieldD> DerivativeCG(user_params.eofa_l.md_tolerance, 10000);
// ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicyD> EOFA(LopD, RopD,
// ActionCG, ActionCG, ActionCG,
// DerivativeCG, DerivativeCG,
// user_params.eofa_l.rat_params, true);
// ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicyD> EOFA(LopD, RopD,
// ActionMCG_L, ActionMCG_R,
// ActionMCG_L, ActionMCG_R,
// DerivMCG_L, DerivMCG_R,
// user_params.eofa_l.rat_params, true);
ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction<FermionImplPolicyD, FermionImplPolicyF> EOFA(LopF, RopF,
LopD, RopD,
ActionMCG_L, ActionMCG_R,
ActionMCG_L, ActionMCG_R,
DerivMCG_L, DerivMCG_R,
user_params.eofa_l.rat_params, true);
Level1.push_back(&EOFA);
////////////////////////////////////
// Strange action
////////////////////////////////////
FermionActionD Numerator_sD(Ud,*FGridD,*FrbGridD,*UGridD,*UrbGridD,strange_mass,M5,mob_b,mob_c,Params);
FermionActionD Denominator_sD(Ud,*FGridD,*FrbGridD,*UGridD,*UrbGridD, pv_mass,M5,mob_b,mob_c,Params);
FermionActionF Numerator_sF(Uf,*FGridF,*FrbGridF,*UGridF,*UrbGridF,strange_mass,M5,mob_b,mob_c,Params);
FermionActionF Denominator_sF(Uf,*FGridF,*FrbGridF,*UGridF,*UrbGridF, pv_mass,M5,mob_b,mob_c,Params);
RationalActionParams rat_act_params_s;
rat_act_params_s.inv_pow = 4; // (M^dag M)^{1/4}
rat_act_params_s.precision= 60;
rat_act_params_s.MaxIter = 10000;
user_params.rat_quo_s.Export(rat_act_params_s);
std::cout << GridLogMessage << " Heavy quark bounds check every " << rat_act_params_s.BoundsCheckFreq << " trajectories (avg)" << std::endl;
//MixedPrecRHMC Quotient_s(Denominator_sD, Numerator_sD, Denominator_sF, Numerator_sF, rat_act_params_s, user_params.rat_quo_s.reliable_update_freq);
DoublePrecRHMC Quotient_s(Denominator_sD, Numerator_sD, rat_act_params_s);
Level1.push_back(&Quotient_s);
///////////////////////////////////
// DSDR action
///////////////////////////////////
RealD dsdr_mass=-1.8;
//Use same DSDR twists as https://arxiv.org/pdf/1208.4412.pdf
RealD dsdr_epsilon_f = 0.02; //numerator (in determinant)
RealD dsdr_epsilon_b = 0.5;
GparityWilsonTMFermionD Numerator_DSDR_D(Ud, *UGridD, *UrbGridD, dsdr_mass, dsdr_epsilon_f, Params);
GparityWilsonTMFermionF Numerator_DSDR_F(Uf, *UGridF, *UrbGridF, dsdr_mass, dsdr_epsilon_f, Params);
GparityWilsonTMFermionD Denominator_DSDR_D(Ud, *UGridD, *UrbGridD, dsdr_mass, dsdr_epsilon_b, Params);
GparityWilsonTMFermionF Denominator_DSDR_F(Uf, *UGridF, *UrbGridF, dsdr_mass, dsdr_epsilon_b, Params);
RationalActionParams rat_act_params_DSDR;
rat_act_params_DSDR.inv_pow = 2; // (M^dag M)^{1/2}
rat_act_params_DSDR.precision= 60;
rat_act_params_DSDR.MaxIter = 10000;
user_params.rat_quo_DSDR.Export(rat_act_params_DSDR);
std::cout << GridLogMessage << "DSDR quark bounds check every " << rat_act_params_DSDR.BoundsCheckFreq << " trajectories (avg)" << std::endl;
DoublePrecRHMC Quotient_DSDR(Denominator_DSDR_D, Numerator_DSDR_D, rat_act_params_DSDR);
Level2.push_back(&Quotient_DSDR);
/////////////////////////////////////////////////////////////
// Gauge action
/////////////////////////////////////////////////////////////
Level3.push_back(&GaugeAction);
TheHMC.TheAction.push_back(Level1);
TheHMC.TheAction.push_back(Level2);
TheHMC.TheAction.push_back(Level3);
std::cout << GridLogMessage << " Action complete "<< std::endl;
//Action tuning
bool
tune_rhmc_s=false, eigenrange_s=false,
tune_rhmc_DSDR=false, eigenrange_DSDR=false,
check_eofa=false,
upper_bound_eofa=false, lower_bound_eofa(false);
std::string lanc_params_s;
std::string lanc_params_DSDR;
int tune_rhmc_s_action_or_md;
int tune_rhmc_DSDR_action_or_md;
for(int i=1;i<argc;i++){
std::string sarg(argv[i]);
if(sarg == "--tune_rhmc_s"){
assert(i < argc-1);
tune_rhmc_s=true;
tune_rhmc_s_action_or_md = std::stoi(argv[i+1]);
}
else if(sarg == "--eigenrange_s"){
assert(i < argc-1);
eigenrange_s=true;
lanc_params_s = argv[i+1];
}
else if(sarg == "--tune_rhmc_DSDR"){
assert(i < argc-1);
tune_rhmc_DSDR=true;
tune_rhmc_DSDR_action_or_md = std::stoi(argv[i+1]);
}
else if(sarg == "--eigenrange_DSDR"){
assert(i < argc-1);
eigenrange_DSDR=true;
lanc_params_DSDR = argv[i+1];
}
else if(sarg == "--check_eofa") check_eofa = true;
else if(sarg == "--upper_bound_eofa") upper_bound_eofa = true;
else if(sarg == "--lower_bound_eofa") lower_bound_eofa = true;
}
if(tune_rhmc_s || eigenrange_s || tune_rhmc_DSDR || eigenrange_DSDR ||check_eofa || upper_bound_eofa || lower_bound_eofa) {
std::cout << GridLogMessage << "Running checks" << std::endl;
TheHMC.initializeGaugeFieldAndRNGs(Ud);
std::cout << GridLogMessage << "EOFA action solver action tolerance outer=" << ActionMCG_L.Tolerance << " inner=" << ActionMCG_L.InnerTolerance << std::endl;
std::cout << GridLogMessage << "EOFA MD solver tolerance outer=" << DerivMCG_L.Tolerance << " inner=" << DerivMCG_L.InnerTolerance << std::endl;
if(check_eofa) checkEOFA(EOFA, FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
if(upper_bound_eofa) upperBoundEOFA(EOFA, FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
if(lower_bound_eofa) lowerBoundEOFA(EOFA, FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
if(eigenrange_s) computeEigenvalues<FermionActionD, FermionFieldD>(lanc_params_s, FGridD, FrbGridD, Ud, Numerator_sD, TheHMC.Resources.GetParallelRNG());
if(tune_rhmc_s) checkRHMC<FermionActionD, FermionFieldD, decltype(Quotient_s)>(FGridD, FrbGridD, Ud, Numerator_sD, Denominator_sD, Quotient_s, TheHMC.Resources.GetParallelRNG(), 4, "strange", tune_rhmc_s_action_or_md);
if(eigenrange_DSDR) computeEigenvalues<GparityWilsonTMFermionD, GparityWilsonTMFermionD::FermionField>(lanc_params_DSDR, UGridD, UrbGridD, Ud, Numerator_DSDR_D, TheHMC.Resources.GetParallelRNG());
if(tune_rhmc_DSDR) checkRHMC<GparityWilsonTMFermionD, GparityWilsonTMFermionD::FermionField, decltype(Quotient_DSDR)>(UGridD, UrbGridD, Ud, Numerator_DSDR_D, Denominator_DSDR_D, Quotient_DSDR, TheHMC.Resources.GetParallelRNG(), 2, "DSDR", tune_rhmc_DSDR_action_or_md);
std::cout << GridLogMessage << " Done" << std::endl;
Grid_finalize();
return 0;
}
//Run the HMC
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
TheHMC.Run();
std::cout << GridLogMessage << " Done" << std::endl;
Grid_finalize();
return 0;
} // main

View File

@ -0,0 +1,918 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./HMC/Mobius2p1fIDSDRGparityEOFA.cc
Copyright (C) 2015-2016
Author: Christopher Kelly <ckelly@bnl.gov>
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
//Production binary for the 40ID G-parity ensemble
struct RatQuoParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(RatQuoParameters,
double, bnd_lo,
double, bnd_hi,
Integer, action_degree,
double, action_tolerance,
Integer, md_degree,
double, md_tolerance,
Integer, reliable_update_freq,
Integer, bnd_check_freq);
RatQuoParameters() {
bnd_lo = 1e-2;
bnd_hi = 30;
action_degree = 10;
action_tolerance = 1e-10;
md_degree = 10;
md_tolerance = 1e-8;
bnd_check_freq = 20;
reliable_update_freq = 50;
}
void Export(RationalActionParams &into) const{
into.lo = bnd_lo;
into.hi = bnd_hi;
into.action_degree = action_degree;
into.action_tolerance = action_tolerance;
into.md_degree = md_degree;
into.md_tolerance = md_tolerance;
into.BoundsCheckFreq = bnd_check_freq;
}
};
struct EOFAparameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(EOFAparameters,
OneFlavourRationalParams, rat_params,
double, action_tolerance,
double, action_mixcg_inner_tolerance,
double, md_tolerance,
double, md_mixcg_inner_tolerance);
EOFAparameters() {
action_mixcg_inner_tolerance = 1e-8;
action_tolerance = 1e-10;
md_tolerance = 1e-8;
md_mixcg_inner_tolerance = 1e-8;
rat_params.lo = 1.0;
rat_params.hi = 25.0;
rat_params.MaxIter = 50000;
rat_params.tolerance= 1.0e-9;
rat_params.degree = 14;
rat_params.precision= 50;
}
};
struct EvolParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(EvolParameters,
Integer, StartTrajectory,
Integer, Trajectories,
Integer, SaveInterval,
Integer, Steps,
RealD, TrajectoryLength,
bool, MetropolisTest,
std::string, StartingType,
std::vector<Integer>, GparityDirs,
std::vector<EOFAparameters>, eofa_l,
RatQuoParameters, rat_quo_s,
RatQuoParameters, rat_quo_DSDR);
EvolParameters() {
//For initial thermalization; afterwards user should switch Metropolis on and use StartingType=CheckpointStart
MetropolisTest = false;
StartTrajectory = 0;
Trajectories = 50;
SaveInterval = 5;
StartingType = "ColdStart";
GparityDirs.resize(3, 1); //1 for G-parity, 0 for periodic
Steps = 5;
TrajectoryLength = 1.0;
}
};
bool fileExists(const std::string &fn){
std::ifstream f(fn);
return f.good();
}
struct LanczosParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParameters,
double, alpha,
double, beta,
double, mu,
int, ord,
int, n_stop,
int, n_want,
int, n_use,
double, tolerance);
LanczosParameters() {
alpha = 35;
beta = 5;
mu = 0;
ord = 100;
n_stop = 10;
n_want = 10;
n_use = 15;
tolerance = 1e-6;
}
};
template<typename FermionActionD, typename FermionFieldD>
void computeEigenvalues(std::string param_file,
GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
FermionActionD &action, GridParallelRNG &rng){
LanczosParameters params;
if(fileExists(param_file)){
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
Grid::XmlReader rd(param_file);
read(rd, "LanczosParameters", params);
}else if(!GlobalSharedMemory::WorldRank){
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
Grid::XmlWriter wr(param_file + ".templ");
write(wr, "LanczosParameters", params);
}
FermionFieldD gauss_o(rbGrid);
FermionFieldD gauss(Grid);
gaussian(rng, gauss);
pickCheckerboard(Odd, gauss_o, gauss);
action.ImportGauge(latt);
SchurDiagMooeeOperator<FermionActionD, FermionFieldD> hermop(action);
PlainHermOp<FermionFieldD> hermop_wrap(hermop);
//ChebyshevLanczos<FermionFieldD> Cheb(params.alpha, params.beta, params.mu, params.ord);
assert(params.mu == 0.0);
Chebyshev<FermionFieldD> Cheb(params.beta*params.beta, params.alpha*params.alpha, params.ord+1);
FunctionHermOp<FermionFieldD> Cheb_wrap(Cheb, hermop);
std::cout << "IRL: alpha=" << params.alpha << " beta=" << params.beta << " mu=" << params.mu << " ord=" << params.ord << std::endl;
ImplicitlyRestartedLanczos<FermionFieldD> IRL(Cheb_wrap, hermop_wrap, params.n_stop, params.n_want, params.n_use, params.tolerance, 50000);
std::vector<RealD> eval(params.n_use);
std::vector<FermionFieldD> evec(params.n_use, rbGrid);
int Nconv;
IRL.calc(eval, evec, gauss_o, Nconv);
std::cout << "Eigenvalues:" << std::endl;
for(int i=0;i<params.n_want;i++){
std::cout << i << " " << eval[i] << std::endl;
}
}
//Check the quality of the RHMC approx
//action_or_md toggles checking the action (0), MD (1) or both (2) setups
template<typename FermionActionD, typename FermionFieldD, typename RHMCtype>
void checkRHMC(GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
FermionActionD &numOp, FermionActionD &denOp, RHMCtype &rhmc, GridParallelRNG &rng,
int inv_pow, const std::string &quark_descr, int action_or_md){
assert(action_or_md == 0 || action_or_md == 1 || action_or_md == 2);
FermionFieldD gauss_o(rbGrid);
FermionFieldD gauss(Grid);
gaussian(rng, gauss);
pickCheckerboard(Odd, gauss_o, gauss);
numOp.ImportGauge(latt);
denOp.ImportGauge(latt);
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
SchurDifferentiableOperator<FermionImplPolicyD> MdagM(numOp);
SchurDifferentiableOperator<FermionImplPolicyD> VdagV(denOp);
PowerMethod<FermionFieldD> power_method;
RealD lambda_max;
std::cout << "Starting: Get RHMC high bound approx for " << quark_descr << " numerator" << std::endl;
lambda_max = power_method(MdagM,gauss_o);
std::cout << GridLogMessage << "Got lambda_max "<<lambda_max<<std::endl;
std::cout << "Starting: Get RHMC high bound approx for " << quark_descr << " denominator" << std::endl;
lambda_max = power_method(VdagV,gauss_o);
std::cout << GridLogMessage << "Got lambda_max "<<lambda_max<<std::endl;
if(action_or_md == 0 || action_or_md == 2){
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
InversePowerBoundsCheck(inv_pow, 50000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerAction); //use large tolerance to prevent exit on fail; we are trying to tune here!
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
InversePowerBoundsCheck(2*inv_pow, 50000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerAction);
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
InversePowerBoundsCheck(inv_pow, 50000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerAction);
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
InversePowerBoundsCheck(2*inv_pow, 50000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerAction);
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
}
std::cout << "-------------------------------------------------------------------------------" << std::endl;
if(action_or_md == 1 || action_or_md == 2){
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
InversePowerBoundsCheck(inv_pow, 50000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerMD);
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
InversePowerBoundsCheck(2*inv_pow, 50000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerMD);
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
InversePowerBoundsCheck(inv_pow, 50000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerMD);
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
InversePowerBoundsCheck(2*inv_pow, 50000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerMD);
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
}
}
template<typename FermionImplPolicy>
void checkEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
GridCartesian* FGrid, GridParallelRNG &rng, const LatticeGaugeFieldD &latt){
std::cout << GridLogMessage << "Starting EOFA action/bounds check" << std::endl;
typename FermionImplPolicy::FermionField eta(FGrid);
RealD scale = std::sqrt(0.5);
gaussian(rng,eta); eta = eta * scale;
//Use the inbuilt check
EOFA.refresh(latt, eta);
EOFA.S(latt);
std::cout << GridLogMessage << "Finished EOFA upper action/bounds check" << std::endl;
}
template<typename FermionImplPolicy>
class EOFAlinop: public LinearOperatorBase<typename FermionImplPolicy::FermionField>{
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA;
LatticeGaugeFieldD &U;
public:
EOFAlinop(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA, LatticeGaugeFieldD &U): EOFA(EOFA), U(U){}
typedef typename FermionImplPolicy::FermionField Field;
void OpDiag (const Field &in, Field &out){ assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
void Op (const Field &in, Field &out){ assert(0); }
void AdjOp (const Field &in, Field &out){ assert(0); }
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
void HermOp(const Field &in, Field &out){ EOFA.Meofa(U, in, out); }
};
template<typename FermionImplPolicy>
void upperBoundEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
GridCartesian* FGrid, GridParallelRNG &rng, LatticeGaugeFieldD &latt){
std::cout << GridLogMessage << "Starting EOFA upper bound compute" << std::endl;
EOFAlinop<FermionImplPolicy> linop(EOFA, latt);
typename FermionImplPolicy::FermionField eta(FGrid);
gaussian(rng,eta);
PowerMethod<typename FermionImplPolicy::FermionField> power_method;
auto lambda_max = power_method(linop,eta);
std::cout << GridLogMessage << "Upper bound of EOFA operator " << lambda_max << std::endl;
}
//Applications of M^{-1} cost the same as M for EOFA!
template<typename FermionImplPolicy>
class EOFAinvLinop: public LinearOperatorBase<typename FermionImplPolicy::FermionField>{
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA;
LatticeGaugeFieldD &U;
public:
EOFAinvLinop(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA, LatticeGaugeFieldD &U): EOFA(EOFA), U(U){}
typedef typename FermionImplPolicy::FermionField Field;
void OpDiag (const Field &in, Field &out){ assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
void Op (const Field &in, Field &out){ assert(0); }
void AdjOp (const Field &in, Field &out){ assert(0); }
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
void HermOp(const Field &in, Field &out){ EOFA.MeofaInv(U, in, out); }
};
template<typename FermionImplPolicy>
void lowerBoundEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
GridCartesian* FGrid, GridParallelRNG &rng, LatticeGaugeFieldD &latt){
std::cout << GridLogMessage << "Starting EOFA lower bound compute using power method on M^{-1}. Inverse of highest eigenvalue is the lowest eigenvalue of M" << std::endl;
EOFAinvLinop<FermionImplPolicy> linop(EOFA, latt);
typename FermionImplPolicy::FermionField eta(FGrid);
gaussian(rng,eta);
PowerMethod<typename FermionImplPolicy::FermionField> power_method;
auto lambda_max = power_method(linop,eta);
std::cout << GridLogMessage << "Lower bound of EOFA operator " << 1./lambda_max << std::endl;
}
NAMESPACE_BEGIN(Grid);
template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class SchurOperatorF>
class MixedPrecisionConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
public:
typedef typename FermionOperatorD::FermionField FieldD;
typedef typename FermionOperatorF::FermionField FieldF;
using OperatorFunction<FieldD>::operator();
RealD Tolerance;
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
Integer MaxInnerIterations;
Integer MaxOuterIterations;
GridBase* SinglePrecGrid4; //Grid for single-precision fields
GridBase* SinglePrecGrid5; //Grid for single-precision fields
RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
FermionOperatorF &FermOpF;
FermionOperatorD &FermOpD;;
SchurOperatorF &LinOpF;
SchurOperatorD &LinOpD;
Integer TotalInnerIterations; //Number of inner CG iterations
Integer TotalOuterIterations; //Number of restarts
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
MixedPrecisionConjugateGradientOperatorFunction(RealD tol,
Integer maxinnerit,
Integer maxouterit,
GridBase* _sp_grid4,
GridBase* _sp_grid5,
FermionOperatorF &_FermOpF,
FermionOperatorD &_FermOpD,
SchurOperatorF &_LinOpF,
SchurOperatorD &_LinOpD):
LinOpF(_LinOpF),
LinOpD(_LinOpD),
FermOpF(_FermOpF),
FermOpD(_FermOpD),
Tolerance(tol),
InnerTolerance(tol),
MaxInnerIterations(maxinnerit),
MaxOuterIterations(maxouterit),
SinglePrecGrid4(_sp_grid4),
SinglePrecGrid5(_sp_grid5),
OuterLoopNormMult(100.)
{
};
void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
std::cout << GridLogMessage << " Mixed precision CG wrapper operator() "<<std::endl;
SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
precisionChange(FermOpF.Umu, FermOpD.Umu);
pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
////////////////////////////////////////////////////////////////////////////////////
// Make a mixed precision conjugate gradient
////////////////////////////////////////////////////////////////////////////////////
MixedPrecisionConjugateGradient<FieldD,FieldF> MPCG(Tolerance,MaxInnerIterations,MaxOuterIterations,SinglePrecGrid5,LinOpF,LinOpD);
MPCG.InnerTolerance = InnerTolerance;
std::cout << GridLogMessage << "Calling mixed precision Conjugate Gradient" <<std::endl;
MPCG(src,psi);
}
};
template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class SchurOperatorF>
class MixedPrecisionReliableUpdateConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
public:
typedef typename FermionOperatorD::FermionField FieldD;
typedef typename FermionOperatorF::FermionField FieldF;
using OperatorFunction<FieldD>::operator();
RealD Tolerance;
Integer MaxIterations;
RealD Delta; //reliable update parameter
GridBase* SinglePrecGrid4; //Grid for single-precision fields
GridBase* SinglePrecGrid5; //Grid for single-precision fields
FermionOperatorF &FermOpF;
FermionOperatorD &FermOpD;;
SchurOperatorF &LinOpF;
SchurOperatorD &LinOpD;
MixedPrecisionReliableUpdateConjugateGradientOperatorFunction(RealD tol,
RealD delta,
Integer maxit,
GridBase* _sp_grid4,
GridBase* _sp_grid5,
FermionOperatorF &_FermOpF,
FermionOperatorD &_FermOpD,
SchurOperatorF &_LinOpF,
SchurOperatorD &_LinOpD):
LinOpF(_LinOpF),
LinOpD(_LinOpD),
FermOpF(_FermOpF),
FermOpD(_FermOpD),
Tolerance(tol),
Delta(delta),
MaxIterations(maxit),
SinglePrecGrid4(_sp_grid4),
SinglePrecGrid5(_sp_grid5)
{
};
void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
std::cout << GridLogMessage << " Mixed precision reliable CG update wrapper operator() "<<std::endl;
SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
precisionChange(FermOpF.Umu, FermOpD.Umu);
pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
////////////////////////////////////////////////////////////////////////////////////
// Make a mixed precision conjugate gradient
////////////////////////////////////////////////////////////////////////////////////
ConjugateGradientReliableUpdate<FieldD,FieldF> MPCG(Tolerance,MaxIterations,Delta,SinglePrecGrid5,LinOpF,LinOpD);
std::cout << GridLogMessage << "Calling mixed precision reliable update Conjugate Gradient" <<std::endl;
MPCG(src,psi);
}
};
NAMESPACE_END(Grid);
int main(int argc, char **argv) {
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
// here make a routine to print all the relevant information on the run
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
std::string param_file = "params.xml";
bool file_load_check = false;
std::string serial_seeds = "1 2 3 4 5";
std::string parallel_seeds = "6 7 8 9 10";
int i=1;
while(i < argc){
std::string sarg(argv[i]);
if(sarg == "--param_file"){
assert(i!=argc-1);
param_file = argv[i+1];
i+=2;
}else if(sarg == "--read_check"){ //check the fields load correctly and pass checksum/plaquette repro
file_load_check = true;
i++;
}else if(sarg == "--set_seeds"){ //set the rng seeds. Expects two vector args, e.g. --set_seeds 1.2.3.4 5.6.7.8
assert(i < argc-2);
std::vector<int> tmp;
GridCmdOptionIntVector(argv[i+1],tmp);
{
std::stringstream ss;
for(int j=0;j<tmp.size()-1;j++) ss << tmp[j] << " ";
ss << tmp.back();
serial_seeds = ss.str();
}
GridCmdOptionIntVector(argv[i+2],tmp);
{
std::stringstream ss;
for(int j=0;j<tmp.size()-1;j++) ss << tmp[j] << " ";
ss << tmp.back();
parallel_seeds = ss.str();
}
i+=3;
std::cout << GridLogMessage << "Set serial seeds to " << serial_seeds << std::endl;
std::cout << GridLogMessage << "Set parallel seeds to " << parallel_seeds << std::endl;
}else{
i++;
}
}
//Read the user parameters
EvolParameters user_params;
if(fileExists(param_file)){
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
Grid::XmlReader rd(param_file);
read(rd, "Params", user_params);
}else if(!GlobalSharedMemory::WorldRank){
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
{
Grid::XmlWriter wr(param_file + ".templ");
write(wr, "Params", user_params);
}
std::cout << GridLogMessage << " Done" << std::endl;
Grid_finalize();
return 0;
}
//Check the parameters
if(user_params.GparityDirs.size() != Nd-1){
std::cerr << "Error in input parameters: expect GparityDirs to have size = " << Nd-1 << std::endl;
exit(1);
}
for(int i=0;i<Nd-1;i++)
if(user_params.GparityDirs[i] != 0 && user_params.GparityDirs[i] != 1){
std::cerr << "Error in input parameters: expect GparityDirs values to be 0 (periodic) or 1 (G-parity)" << std::endl;
exit(1);
}
typedef GparityMobiusEOFAFermionD EOFAactionD;
typedef GparityMobiusFermionD FermionActionD;
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
typedef typename FermionActionD::FermionField FermionFieldD;
typedef GparityMobiusEOFAFermionF EOFAactionF;
typedef GparityMobiusFermionF FermionActionF;
typedef typename FermionActionF::Impl_t FermionImplPolicyF;
typedef typename FermionActionF::FermionField FermionFieldF;
typedef GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<FermionImplPolicyD,FermionImplPolicyF> MixedPrecRHMC;
typedef GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicyD> DoublePrecRHMC;
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
IntegratorParameters MD;
typedef ConjugateHMCRunnerD<MinimumNorm2> HMCWrapper; //NB: This is the "Omelyan integrator"
MD.name = std::string("MinimumNorm2");
// typedef ConjugateHMCRunnerD<ForceGradient> HMCWrapper;
// MD.name = std::string("ForceGradient");
MD.MDsteps = user_params.Steps;
MD.trajL = user_params.TrajectoryLength;
typedef HMCWrapper::ImplPolicy GaugeImplPolicy;
HMCparameters HMCparams;
HMCparams.StartTrajectory = user_params.StartTrajectory;
HMCparams.Trajectories = user_params.Trajectories;
HMCparams.NoMetropolisUntil= 0;
HMCparams.StartingType = user_params.StartingType;
HMCparams.MetropolisTest = user_params.MetropolisTest;
HMCparams.MD = MD;
HMCWrapper TheHMC(HMCparams);
// Grid from the command line arguments --grid and --mpi
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
CheckpointerParameters CPparams;
CPparams.config_prefix = "ckpoint_lat";
CPparams.rng_prefix = "ckpoint_rng";
CPparams.saveInterval = user_params.SaveInterval;
CPparams.format = "IEEE64BIG";
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
//Note that checkpointing saves the RNG state so that this initialization is required only for the very first configuration
RNGModuleParameters RNGpar;
RNGpar.serial_seeds = serial_seeds;
RNGpar.parallel_seeds = parallel_seeds;
TheHMC.Resources.SetRNGSeeds(RNGpar);
typedef PlaquetteMod<GaugeImplPolicy> PlaqObs;
TheHMC.Resources.AddObservable<PlaqObs>();
//////////////////////////////////////////////
//aiming for ainv=1.723 GeV
// me bob
//Estimated a(ml+mres) [40ID] = 0.001305 0.00131
// a(mh+mres) [40ID] = 0.035910 0.03529
//Estimate Ls=12, b+c=2 mres~0.0011
//1/24/2022 initial mres measurement gives mres=0.001, adjusted light quark mass to 0.0003 from 0.0001
const int Ls = 12;
Real beta = 1.848;
Real light_mass = 0.0003;
Real strange_mass = 0.0342;
Real pv_mass = 1.0;
RealD M5 = 1.8;
RealD mobius_scale = 2.; //b+c
RealD mob_bmc = 1.0;
RealD mob_b = (mobius_scale + mob_bmc)/2.;
RealD mob_c = (mobius_scale - mob_bmc)/2.;
std::cout << GridLogMessage
<< "Ensemble parameters:" << std::endl
<< "Ls=" << Ls << std::endl
<< "beta=" << beta << std::endl
<< "light_mass=" << light_mass << std::endl
<< "strange_mass=" << strange_mass << std::endl
<< "mobius_scale=" << mobius_scale << std::endl;
//Setup the Grids
auto UGridD = TheHMC.Resources.GetCartesian();
auto UrbGridD = TheHMC.Resources.GetRBCartesian();
auto FGridD = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridD);
auto FrbGridD = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridD);
GridCartesian* UGridF = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian* UrbGridF = SpaceTimeGrid::makeFourDimRedBlackGrid(UGridF);
auto FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridF);
auto FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridF);
ConjugateIwasakiGaugeActionD GaugeAction(beta);
// temporarily need a gauge field
LatticeGaugeFieldD Ud(UGridD);
LatticeGaugeFieldF Uf(UGridF);
//Setup the BCs
FermionActionD::ImplParams Params;
for(int i=0;i<Nd-1;i++) Params.twists[i] = user_params.GparityDirs[i]; //G-parity directions
Params.twists[Nd-1] = 1; //APBC in time direction
std::vector<int> dirs4(Nd);
for(int i=0;i<Nd-1;i++) dirs4[i] = user_params.GparityDirs[i];
dirs4[Nd-1] = 0; //periodic gauge BC in time
GaugeImplPolicy::setDirections(dirs4); //gauge BC
//Run optional gauge field checksum checker and exit
if(file_load_check){
TheHMC.initializeGaugeFieldAndRNGs(Ud);
std::cout << GridLogMessage << " Done" << std::endl;
Grid_finalize();
return 0;
}
////////////////////////////////////
// Collect actions
////////////////////////////////////
ActionLevel<HMCWrapper::Field> Level1(1); //light quark + strange quark
ActionLevel<HMCWrapper::Field> Level2(4); //DSDR
ActionLevel<HMCWrapper::Field> Level3(2); //gauge
/////////////////////////////////////////////////////////////
// Light EOFA action
// have to be careful with the parameters, cf. Test_dwf_gpforce_eofa.cc
/////////////////////////////////////////////////////////////
typedef SchurDiagMooeeOperator<EOFAactionD,FermionFieldD> EOFAschuropD;
typedef SchurDiagMooeeOperator<EOFAactionF,FermionFieldF> EOFAschuropF;
typedef ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction<FermionImplPolicyD, FermionImplPolicyF> EOFAmixPrecPFaction;
typedef MixedPrecisionConjugateGradientOperatorFunction<EOFAactionD, EOFAactionF, EOFAschuropD, EOFAschuropF> EOFA_mxCG;
typedef MixedPrecisionReliableUpdateConjugateGradientOperatorFunction<EOFAactionD, EOFAactionF, EOFAschuropD, EOFAschuropF> EOFA_relupCG;
std::vector<RealD> eofa_light_masses = { light_mass , 0.004, 0.016, 0.064, 0.256 };
std::vector<RealD> eofa_pv_masses = { 0.004 , 0.016, 0.064, 0.256, 1.0 };
int n_light_hsb = 5;
assert(user_params.eofa_l.size() == n_light_hsb);
EOFAmixPrecPFaction* EOFA_pfactions[n_light_hsb];
for(int i=0;i<n_light_hsb;i++){
RealD iml = eofa_light_masses[i];
RealD ipv = eofa_pv_masses[i];
EOFAactionD* LopD = new EOFAactionD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, iml, iml, ipv, 0.0, -1, M5, mob_b, mob_c, Params);
EOFAactionF* LopF = new EOFAactionF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, iml, iml, ipv, 0.0, -1, M5, mob_b, mob_c, Params);
EOFAactionD* RopD = new EOFAactionD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, ipv, iml, ipv, -1.0, 1, M5, mob_b, mob_c, Params);
EOFAactionF* RopF = new EOFAactionF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, ipv, iml, ipv, -1.0, 1, M5, mob_b, mob_c, Params);
EOFAschuropD* linopL_D = new EOFAschuropD(*LopD);
EOFAschuropD* linopR_D = new EOFAschuropD(*RopD);
EOFAschuropF* linopL_F = new EOFAschuropF(*LopF);
EOFAschuropF* linopR_F = new EOFAschuropF(*RopF);
#if 1
//Note reusing user_params.eofa_l.action(|md)_mixcg_inner_tolerance as Delta for now
EOFA_relupCG* ActionMCG_L = new EOFA_relupCG(user_params.eofa_l[i].action_tolerance, user_params.eofa_l[i].action_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
EOFA_relupCG* ActionMCG_R = new EOFA_relupCG(user_params.eofa_l[i].action_tolerance, user_params.eofa_l[i].action_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
EOFA_relupCG* DerivMCG_L = new EOFA_relupCG(user_params.eofa_l[i].md_tolerance, user_params.eofa_l[i].md_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
EOFA_relupCG* DerivMCG_R = new EOFA_relupCG(user_params.eofa_l[i].md_tolerance, user_params.eofa_l[i].md_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
#else
EOFA_mxCG* ActionMCG_L = new EOFA_mxCG(user_params.eofa_l[i].action_tolerance, 50000, 1000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
ActionMCG_L->InnerTolerance = user_params.eofa_l[i].action_mixcg_inner_tolerance;
EOFA_mxCG* ActionMCG_R = new EOFA_mxCG(user_params.eofa_l[i].action_tolerance, 50000, 1000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
ActionMCG_R->InnerTolerance = user_params.eofa_l[i].action_mixcg_inner_tolerance;
EOFA_mxCG* DerivMCG_L = new EOFA_mxCG(user_params.eofa_l[i].md_tolerance, 50000, 1000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
DerivMCG_L->InnerTolerance = user_params.eofa_l[i].md_mixcg_inner_tolerance;
EOFA_mxCG* DerivMCG_R = new EOFA_mxCG(user_params.eofa_l[i].md_tolerance, 50000, 1000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
DerivMCG_R->InnerTolerance = user_params.eofa_l[i].md_mixcg_inner_tolerance;
std::cout << GridLogMessage << "Set EOFA action solver action tolerance outer=" << ActionMCG_L->Tolerance << " inner=" << ActionMCG_L->InnerTolerance << std::endl;
std::cout << GridLogMessage << "Set EOFA MD solver tolerance outer=" << DerivMCG_L->Tolerance << " inner=" << DerivMCG_L->InnerTolerance << std::endl;
#endif
EOFAmixPrecPFaction* EOFA = new EOFAmixPrecPFaction(*LopF, *RopF,
*LopD, *RopD,
*ActionMCG_L, *ActionMCG_R,
*ActionMCG_L, *ActionMCG_R,
*DerivMCG_L, *DerivMCG_R,
user_params.eofa_l[i].rat_params, true);
EOFA_pfactions[i] = EOFA;
Level1.push_back(EOFA);
}
////////////////////////////////////
// Strange action
////////////////////////////////////
FermionActionD Numerator_sD(Ud,*FGridD,*FrbGridD,*UGridD,*UrbGridD,strange_mass,M5,mob_b,mob_c,Params);
FermionActionD Denominator_sD(Ud,*FGridD,*FrbGridD,*UGridD,*UrbGridD, pv_mass,M5,mob_b,mob_c,Params);
FermionActionF Numerator_sF(Uf,*FGridF,*FrbGridF,*UGridF,*UrbGridF,strange_mass,M5,mob_b,mob_c,Params);
FermionActionF Denominator_sF(Uf,*FGridF,*FrbGridF,*UGridF,*UrbGridF, pv_mass,M5,mob_b,mob_c,Params);
RationalActionParams rat_act_params_s;
rat_act_params_s.inv_pow = 4; // (M^dag M)^{1/4}
rat_act_params_s.precision= 60;
rat_act_params_s.MaxIter = 50000;
user_params.rat_quo_s.Export(rat_act_params_s);
std::cout << GridLogMessage << " Heavy quark bounds check every " << rat_act_params_s.BoundsCheckFreq << " trajectories (avg)" << std::endl;
//MixedPrecRHMC Quotient_s(Denominator_sD, Numerator_sD, Denominator_sF, Numerator_sF, rat_act_params_s, user_params.rat_quo_s.reliable_update_freq);
DoublePrecRHMC Quotient_s(Denominator_sD, Numerator_sD, rat_act_params_s);
Level1.push_back(&Quotient_s);
///////////////////////////////////
// DSDR action
///////////////////////////////////
RealD dsdr_mass=-1.8;
//Use same DSDR twists as https://arxiv.org/pdf/1208.4412.pdf
RealD dsdr_epsilon_f = 0.02; //numerator (in determinant)
RealD dsdr_epsilon_b = 0.5;
GparityWilsonTMFermionD Numerator_DSDR_D(Ud, *UGridD, *UrbGridD, dsdr_mass, dsdr_epsilon_f, Params);
GparityWilsonTMFermionF Numerator_DSDR_F(Uf, *UGridF, *UrbGridF, dsdr_mass, dsdr_epsilon_f, Params);
GparityWilsonTMFermionD Denominator_DSDR_D(Ud, *UGridD, *UrbGridD, dsdr_mass, dsdr_epsilon_b, Params);
GparityWilsonTMFermionF Denominator_DSDR_F(Uf, *UGridF, *UrbGridF, dsdr_mass, dsdr_epsilon_b, Params);
RationalActionParams rat_act_params_DSDR;
rat_act_params_DSDR.inv_pow = 2; // (M^dag M)^{1/2}
rat_act_params_DSDR.precision= 60;
rat_act_params_DSDR.MaxIter = 50000;
user_params.rat_quo_DSDR.Export(rat_act_params_DSDR);
std::cout << GridLogMessage << "DSDR quark bounds check every " << rat_act_params_DSDR.BoundsCheckFreq << " trajectories (avg)" << std::endl;
DoublePrecRHMC Quotient_DSDR(Denominator_DSDR_D, Numerator_DSDR_D, rat_act_params_DSDR);
Level2.push_back(&Quotient_DSDR);
/////////////////////////////////////////////////////////////
// Gauge action
/////////////////////////////////////////////////////////////
Level3.push_back(&GaugeAction);
TheHMC.TheAction.push_back(Level1);
TheHMC.TheAction.push_back(Level2);
TheHMC.TheAction.push_back(Level3);
std::cout << GridLogMessage << " Action complete "<< std::endl;
//Action tuning
bool
tune_rhmc_s=false, eigenrange_s=false,
tune_rhmc_DSDR=false, eigenrange_DSDR=false,
check_eofa=false,
upper_bound_eofa=false, lower_bound_eofa(false);
std::string lanc_params_s;
std::string lanc_params_DSDR;
int tune_rhmc_s_action_or_md;
int tune_rhmc_DSDR_action_or_md;
int eofa_which_hsb;
for(int i=1;i<argc;i++){
std::string sarg(argv[i]);
if(sarg == "--tune_rhmc_s"){
assert(i < argc-1);
tune_rhmc_s=true;
tune_rhmc_s_action_or_md = std::stoi(argv[i+1]);
}
else if(sarg == "--eigenrange_s"){
assert(i < argc-1);
eigenrange_s=true;
lanc_params_s = argv[i+1];
}
else if(sarg == "--tune_rhmc_DSDR"){
assert(i < argc-1);
tune_rhmc_DSDR=true;
tune_rhmc_DSDR_action_or_md = std::stoi(argv[i+1]);
}
else if(sarg == "--eigenrange_DSDR"){
assert(i < argc-1);
eigenrange_DSDR=true;
lanc_params_DSDR = argv[i+1];
}
else if(sarg == "--check_eofa"){
assert(i < argc-1);
check_eofa = true;
eofa_which_hsb = std::stoi(argv[i+1]); //-1 indicates all hasenbusch
assert(eofa_which_hsb == -1 || (eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb) );
}
else if(sarg == "--upper_bound_eofa"){
assert(i < argc-1);
upper_bound_eofa = true;
eofa_which_hsb = std::stoi(argv[i+1]);
assert(eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb);
}
else if(sarg == "--lower_bound_eofa"){
assert(i < argc-1);
lower_bound_eofa = true;
eofa_which_hsb = std::stoi(argv[i+1]);
assert(eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb);
}
}
if(tune_rhmc_s || eigenrange_s || tune_rhmc_DSDR || eigenrange_DSDR ||check_eofa || upper_bound_eofa || lower_bound_eofa) {
std::cout << GridLogMessage << "Running checks" << std::endl;
TheHMC.initializeGaugeFieldAndRNGs(Ud);
//std::cout << GridLogMessage << "EOFA action solver action tolerance outer=" << ActionMCG_L.Tolerance << " inner=" << ActionMCG_L.InnerTolerance << std::endl;
//std::cout << GridLogMessage << "EOFA MD solver tolerance outer=" << DerivMCG_L.Tolerance << " inner=" << DerivMCG_L.InnerTolerance << std::endl;
if(check_eofa){
if(eofa_which_hsb >= 0){
std::cout << GridLogMessage << "Starting checking EOFA Hasenbusch " << eofa_which_hsb << std::endl;
checkEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
std::cout << GridLogMessage << "Finished checking EOFA Hasenbusch " << eofa_which_hsb << std::endl;
}else{
for(int i=0;i<n_light_hsb;i++){
std::cout << GridLogMessage << "Starting checking EOFA Hasenbusch " << i << std::endl;
checkEOFA(*EOFA_pfactions[i], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
std::cout << GridLogMessage << "Finished checking EOFA Hasenbusch " << i << std::endl;
}
}
}
if(upper_bound_eofa) upperBoundEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
if(lower_bound_eofa) lowerBoundEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
if(eigenrange_s) computeEigenvalues<FermionActionD, FermionFieldD>(lanc_params_s, FGridD, FrbGridD, Ud, Numerator_sD, TheHMC.Resources.GetParallelRNG());
if(tune_rhmc_s) checkRHMC<FermionActionD, FermionFieldD, decltype(Quotient_s)>(FGridD, FrbGridD, Ud, Numerator_sD, Denominator_sD, Quotient_s, TheHMC.Resources.GetParallelRNG(), 4, "strange", tune_rhmc_s_action_or_md);
if(eigenrange_DSDR) computeEigenvalues<GparityWilsonTMFermionD, GparityWilsonTMFermionD::FermionField>(lanc_params_DSDR, UGridD, UrbGridD, Ud, Numerator_DSDR_D, TheHMC.Resources.GetParallelRNG());
if(tune_rhmc_DSDR) checkRHMC<GparityWilsonTMFermionD, GparityWilsonTMFermionD::FermionField, decltype(Quotient_DSDR)>(UGridD, UrbGridD, Ud, Numerator_DSDR_D, Denominator_DSDR_D, Quotient_DSDR, TheHMC.Resources.GetParallelRNG(), 2, "DSDR", tune_rhmc_DSDR_action_or_md);
std::cout << GridLogMessage << " Done" << std::endl;
Grid_finalize();
return 0;
}
//Run the HMC
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
TheHMC.Run();
std::cout << GridLogMessage << " Done" << std::endl;
Grid_finalize();
return 0;
} // main

View File

@ -0,0 +1,873 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./HMC/Mobius2p1fIDSDRGparityEOFA.cc
Copyright (C) 2015-2016
Author: Christopher Kelly <ckelly@bnl.gov>
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
//Production binary for the 40ID G-parity ensemble
struct RatQuoParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(RatQuoParameters,
double, bnd_lo,
double, bnd_hi,
Integer, action_degree,
double, action_tolerance,
Integer, md_degree,
double, md_tolerance,
Integer, reliable_update_freq,
Integer, bnd_check_freq);
RatQuoParameters() {
bnd_lo = 1e-2;
bnd_hi = 30;
action_degree = 10;
action_tolerance = 1e-10;
md_degree = 10;
md_tolerance = 1e-8;
bnd_check_freq = 20;
reliable_update_freq = 50;
}
void Export(RationalActionParams &into) const{
into.lo = bnd_lo;
into.hi = bnd_hi;
into.action_degree = action_degree;
into.action_tolerance = action_tolerance;
into.md_degree = md_degree;
into.md_tolerance = md_tolerance;
into.BoundsCheckFreq = bnd_check_freq;
}
};
struct EOFAparameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(EOFAparameters,
OneFlavourRationalParams, rat_params,
double, action_tolerance,
double, action_mixcg_inner_tolerance,
double, md_tolerance,
double, md_mixcg_inner_tolerance);
EOFAparameters() {
action_mixcg_inner_tolerance = 1e-8;
action_tolerance = 1e-10;
md_tolerance = 1e-8;
md_mixcg_inner_tolerance = 1e-8;
rat_params.lo = 1.0;
rat_params.hi = 25.0;
rat_params.MaxIter = 10000;
rat_params.tolerance= 1.0e-9;
rat_params.degree = 14;
rat_params.precision= 50;
}
};
struct EvolParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(EvolParameters,
Integer, StartTrajectory,
Integer, Trajectories,
Integer, SaveInterval,
Integer, Steps,
RealD, TrajectoryLength,
bool, MetropolisTest,
std::string, StartingType,
std::vector<Integer>, GparityDirs,
std::vector<EOFAparameters>, eofa_l,
RatQuoParameters, rat_quo_s,
RatQuoParameters, rat_quo_DSDR);
EvolParameters() {
//For initial thermalization; afterwards user should switch Metropolis on and use StartingType=CheckpointStart
MetropolisTest = false;
StartTrajectory = 0;
Trajectories = 50;
SaveInterval = 5;
StartingType = "ColdStart";
GparityDirs.resize(3, 1); //1 for G-parity, 0 for periodic
Steps = 5;
TrajectoryLength = 1.0;
}
};
bool fileExists(const std::string &fn){
std::ifstream f(fn);
return f.good();
}
struct LanczosParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParameters,
double, alpha,
double, beta,
double, mu,
int, ord,
int, n_stop,
int, n_want,
int, n_use,
double, tolerance);
LanczosParameters() {
alpha = 35;
beta = 5;
mu = 0;
ord = 100;
n_stop = 10;
n_want = 10;
n_use = 15;
tolerance = 1e-6;
}
};
template<typename FermionActionD, typename FermionFieldD>
void computeEigenvalues(std::string param_file,
GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
FermionActionD &action, GridParallelRNG &rng){
LanczosParameters params;
if(fileExists(param_file)){
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
Grid::XmlReader rd(param_file);
read(rd, "LanczosParameters", params);
}else if(!GlobalSharedMemory::WorldRank){
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
Grid::XmlWriter wr(param_file + ".templ");
write(wr, "LanczosParameters", params);
}
FermionFieldD gauss_o(rbGrid);
FermionFieldD gauss(Grid);
gaussian(rng, gauss);
pickCheckerboard(Odd, gauss_o, gauss);
action.ImportGauge(latt);
SchurDiagMooeeOperator<FermionActionD, FermionFieldD> hermop(action);
PlainHermOp<FermionFieldD> hermop_wrap(hermop);
//ChebyshevLanczos<FermionFieldD> Cheb(params.alpha, params.beta, params.mu, params.ord);
assert(params.mu == 0.0);
Chebyshev<FermionFieldD> Cheb(params.beta*params.beta, params.alpha*params.alpha, params.ord+1);
FunctionHermOp<FermionFieldD> Cheb_wrap(Cheb, hermop);
std::cout << "IRL: alpha=" << params.alpha << " beta=" << params.beta << " mu=" << params.mu << " ord=" << params.ord << std::endl;
ImplicitlyRestartedLanczos<FermionFieldD> IRL(Cheb_wrap, hermop_wrap, params.n_stop, params.n_want, params.n_use, params.tolerance, 10000);
std::vector<RealD> eval(params.n_use);
std::vector<FermionFieldD> evec(params.n_use, rbGrid);
int Nconv;
IRL.calc(eval, evec, gauss_o, Nconv);
std::cout << "Eigenvalues:" << std::endl;
for(int i=0;i<params.n_want;i++){
std::cout << i << " " << eval[i] << std::endl;
}
}
//Check the quality of the RHMC approx
//action_or_md toggles checking the action (0), MD (1) or both (2) setups
template<typename FermionActionD, typename FermionFieldD, typename RHMCtype>
void checkRHMC(GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
FermionActionD &numOp, FermionActionD &denOp, RHMCtype &rhmc, GridParallelRNG &rng,
int inv_pow, const std::string &quark_descr, int action_or_md){
assert(action_or_md == 0 || action_or_md == 1 || action_or_md == 2);
FermionFieldD gauss_o(rbGrid);
FermionFieldD gauss(Grid);
gaussian(rng, gauss);
pickCheckerboard(Odd, gauss_o, gauss);
numOp.ImportGauge(latt);
denOp.ImportGauge(latt);
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
SchurDifferentiableOperator<FermionImplPolicyD> MdagM(numOp);
SchurDifferentiableOperator<FermionImplPolicyD> VdagV(denOp);
PowerMethod<FermionFieldD> power_method;
RealD lambda_max;
std::cout << "Starting: Get RHMC high bound approx for " << quark_descr << " numerator" << std::endl;
lambda_max = power_method(MdagM,gauss_o);
std::cout << GridLogMessage << "Got lambda_max "<<lambda_max<<std::endl;
std::cout << "Starting: Get RHMC high bound approx for " << quark_descr << " denominator" << std::endl;
lambda_max = power_method(VdagV,gauss_o);
std::cout << GridLogMessage << "Got lambda_max "<<lambda_max<<std::endl;
if(action_or_md == 0 || action_or_md == 2){
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerAction); //use large tolerance to prevent exit on fail; we are trying to tune here!
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerAction);
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerAction);
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerAction);
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
}
std::cout << "-------------------------------------------------------------------------------" << std::endl;
if(action_or_md == 1 || action_or_md == 2){
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerMD);
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerMD);
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerMD);
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerMD);
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
}
}
template<typename FermionImplPolicy>
void checkEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
GridCartesian* FGrid, GridParallelRNG &rng, const LatticeGaugeFieldD &latt){
std::cout << GridLogMessage << "Starting EOFA action/bounds check" << std::endl;
typename FermionImplPolicy::FermionField eta(FGrid);
RealD scale = std::sqrt(0.5);
gaussian(rng,eta); eta = eta * scale;
//Use the inbuilt check
EOFA.refresh(latt, eta);
EOFA.S(latt);
std::cout << GridLogMessage << "Finished EOFA upper action/bounds check" << std::endl;
}
template<typename FermionImplPolicy>
class EOFAlinop: public LinearOperatorBase<typename FermionImplPolicy::FermionField>{
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA;
LatticeGaugeFieldD &U;
public:
EOFAlinop(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA, LatticeGaugeFieldD &U): EOFA(EOFA), U(U){}
typedef typename FermionImplPolicy::FermionField Field;
void OpDiag (const Field &in, Field &out){ assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
void Op (const Field &in, Field &out){ assert(0); }
void AdjOp (const Field &in, Field &out){ assert(0); }
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
void HermOp(const Field &in, Field &out){ EOFA.Meofa(U, in, out); }
};
template<typename FermionImplPolicy>
void upperBoundEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
GridCartesian* FGrid, GridParallelRNG &rng, LatticeGaugeFieldD &latt){
std::cout << GridLogMessage << "Starting EOFA upper bound compute" << std::endl;
EOFAlinop<FermionImplPolicy> linop(EOFA, latt);
typename FermionImplPolicy::FermionField eta(FGrid);
gaussian(rng,eta);
PowerMethod<typename FermionImplPolicy::FermionField> power_method;
auto lambda_max = power_method(linop,eta);
std::cout << GridLogMessage << "Upper bound of EOFA operator " << lambda_max << std::endl;
}
//Applications of M^{-1} cost the same as M for EOFA!
template<typename FermionImplPolicy>
class EOFAinvLinop: public LinearOperatorBase<typename FermionImplPolicy::FermionField>{
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA;
LatticeGaugeFieldD &U;
public:
EOFAinvLinop(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA, LatticeGaugeFieldD &U): EOFA(EOFA), U(U){}
typedef typename FermionImplPolicy::FermionField Field;
void OpDiag (const Field &in, Field &out){ assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
void Op (const Field &in, Field &out){ assert(0); }
void AdjOp (const Field &in, Field &out){ assert(0); }
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
void HermOp(const Field &in, Field &out){ EOFA.MeofaInv(U, in, out); }
};
template<typename FermionImplPolicy>
void lowerBoundEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
GridCartesian* FGrid, GridParallelRNG &rng, LatticeGaugeFieldD &latt){
std::cout << GridLogMessage << "Starting EOFA lower bound compute using power method on M^{-1}. Inverse of highest eigenvalue is the lowest eigenvalue of M" << std::endl;
EOFAinvLinop<FermionImplPolicy> linop(EOFA, latt);
typename FermionImplPolicy::FermionField eta(FGrid);
gaussian(rng,eta);
PowerMethod<typename FermionImplPolicy::FermionField> power_method;
auto lambda_max = power_method(linop,eta);
std::cout << GridLogMessage << "Lower bound of EOFA operator " << 1./lambda_max << std::endl;
}
NAMESPACE_BEGIN(Grid);
template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class SchurOperatorF>
class MixedPrecisionConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
public:
typedef typename FermionOperatorD::FermionField FieldD;
typedef typename FermionOperatorF::FermionField FieldF;
using OperatorFunction<FieldD>::operator();
RealD Tolerance;
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
Integer MaxInnerIterations;
Integer MaxOuterIterations;
GridBase* SinglePrecGrid4; //Grid for single-precision fields
GridBase* SinglePrecGrid5; //Grid for single-precision fields
RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
FermionOperatorF &FermOpF;
FermionOperatorD &FermOpD;;
SchurOperatorF &LinOpF;
SchurOperatorD &LinOpD;
Integer TotalInnerIterations; //Number of inner CG iterations
Integer TotalOuterIterations; //Number of restarts
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
MixedPrecisionConjugateGradientOperatorFunction(RealD tol,
Integer maxinnerit,
Integer maxouterit,
GridBase* _sp_grid4,
GridBase* _sp_grid5,
FermionOperatorF &_FermOpF,
FermionOperatorD &_FermOpD,
SchurOperatorF &_LinOpF,
SchurOperatorD &_LinOpD):
LinOpF(_LinOpF),
LinOpD(_LinOpD),
FermOpF(_FermOpF),
FermOpD(_FermOpD),
Tolerance(tol),
InnerTolerance(tol),
MaxInnerIterations(maxinnerit),
MaxOuterIterations(maxouterit),
SinglePrecGrid4(_sp_grid4),
SinglePrecGrid5(_sp_grid5),
OuterLoopNormMult(100.)
{
};
void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
std::cout << GridLogMessage << " Mixed precision CG wrapper operator() "<<std::endl;
SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
precisionChange(FermOpF.Umu, FermOpD.Umu);
pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
////////////////////////////////////////////////////////////////////////////////////
// Make a mixed precision conjugate gradient
////////////////////////////////////////////////////////////////////////////////////
MixedPrecisionConjugateGradient<FieldD,FieldF> MPCG(Tolerance,MaxInnerIterations,MaxOuterIterations,SinglePrecGrid5,LinOpF,LinOpD);
MPCG.InnerTolerance = InnerTolerance;
std::cout << GridLogMessage << "Calling mixed precision Conjugate Gradient" <<std::endl;
MPCG(src,psi);
}
};
template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class SchurOperatorF>
class MixedPrecisionReliableUpdateConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
public:
typedef typename FermionOperatorD::FermionField FieldD;
typedef typename FermionOperatorF::FermionField FieldF;
using OperatorFunction<FieldD>::operator();
RealD Tolerance;
Integer MaxIterations;
RealD Delta; //reliable update parameter
GridBase* SinglePrecGrid4; //Grid for single-precision fields
GridBase* SinglePrecGrid5; //Grid for single-precision fields
FermionOperatorF &FermOpF;
FermionOperatorD &FermOpD;;
SchurOperatorF &LinOpF;
SchurOperatorD &LinOpD;
MixedPrecisionReliableUpdateConjugateGradientOperatorFunction(RealD tol,
RealD delta,
Integer maxit,
GridBase* _sp_grid4,
GridBase* _sp_grid5,
FermionOperatorF &_FermOpF,
FermionOperatorD &_FermOpD,
SchurOperatorF &_LinOpF,
SchurOperatorD &_LinOpD):
LinOpF(_LinOpF),
LinOpD(_LinOpD),
FermOpF(_FermOpF),
FermOpD(_FermOpD),
Tolerance(tol),
Delta(delta),
MaxIterations(maxit),
SinglePrecGrid4(_sp_grid4),
SinglePrecGrid5(_sp_grid5)
{
};
void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
std::cout << GridLogMessage << " Mixed precision reliable CG update wrapper operator() "<<std::endl;
SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
precisionChange(FermOpF.Umu, FermOpD.Umu);
pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
////////////////////////////////////////////////////////////////////////////////////
// Make a mixed precision conjugate gradient
////////////////////////////////////////////////////////////////////////////////////
ConjugateGradientReliableUpdate<FieldD,FieldF> MPCG(Tolerance,MaxIterations,Delta,SinglePrecGrid5,LinOpF,LinOpD);
std::cout << GridLogMessage << "Calling mixed precision reliable update Conjugate Gradient" <<std::endl;
MPCG(src,psi);
}
};
NAMESPACE_END(Grid);
int main(int argc, char **argv) {
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
// here make a routine to print all the relevant information on the run
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
std::string param_file = "params.xml";
bool file_load_check = false;
for(int i=1;i<argc;i++){
std::string sarg(argv[i]);
if(sarg == "--param_file"){
assert(i!=argc-1);
param_file = argv[i+1];
}else if(sarg == "--read_check"){ //check the fields load correctly and pass checksum/plaquette repro
file_load_check = true;
}
}
//Read the user parameters
EvolParameters user_params;
if(fileExists(param_file)){
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
Grid::XmlReader rd(param_file);
read(rd, "Params", user_params);
}else if(!GlobalSharedMemory::WorldRank){
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
{
Grid::XmlWriter wr(param_file + ".templ");
write(wr, "Params", user_params);
}
std::cout << GridLogMessage << " Done" << std::endl;
Grid_finalize();
return 0;
}
//Check the parameters
if(user_params.GparityDirs.size() != Nd-1){
std::cerr << "Error in input parameters: expect GparityDirs to have size = " << Nd-1 << std::endl;
exit(1);
}
for(int i=0;i<Nd-1;i++)
if(user_params.GparityDirs[i] != 0 && user_params.GparityDirs[i] != 1){
std::cerr << "Error in input parameters: expect GparityDirs values to be 0 (periodic) or 1 (G-parity)" << std::endl;
exit(1);
}
typedef GparityMobiusEOFAFermionD EOFAactionD;
typedef GparityMobiusFermionD FermionActionD;
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
typedef typename FermionActionD::FermionField FermionFieldD;
typedef GparityMobiusEOFAFermionF EOFAactionF;
typedef GparityMobiusFermionF FermionActionF;
typedef typename FermionActionF::Impl_t FermionImplPolicyF;
typedef typename FermionActionF::FermionField FermionFieldF;
typedef GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<FermionImplPolicyD,FermionImplPolicyF> MixedPrecRHMC;
typedef GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicyD> DoublePrecRHMC;
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
IntegratorParameters MD;
typedef ConjugateHMCRunnerD<MinimumNorm2> HMCWrapper; //NB: This is the "Omelyan integrator"
typedef HMCWrapper::ImplPolicy GaugeImplPolicy;
MD.name = std::string("MinimumNorm2");
MD.MDsteps = user_params.Steps;
MD.trajL = user_params.TrajectoryLength;
HMCparameters HMCparams;
HMCparams.StartTrajectory = user_params.StartTrajectory;
HMCparams.Trajectories = user_params.Trajectories;
HMCparams.NoMetropolisUntil= 0;
HMCparams.StartingType = user_params.StartingType;
HMCparams.MetropolisTest = user_params.MetropolisTest;
HMCparams.MD = MD;
HMCWrapper TheHMC(HMCparams);
// Grid from the command line arguments --grid and --mpi
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
CheckpointerParameters CPparams;
CPparams.config_prefix = "ckpoint_lat";
CPparams.rng_prefix = "ckpoint_rng";
CPparams.saveInterval = user_params.SaveInterval;
CPparams.format = "IEEE64BIG";
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
//Note that checkpointing saves the RNG state so that this initialization is required only for the very first configuration
RNGModuleParameters RNGpar;
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
typedef PlaquetteMod<GaugeImplPolicy> PlaqObs;
TheHMC.Resources.AddObservable<PlaqObs>();
//////////////////////////////////////////////
//aiming for ainv=2.068 me Bob
//Estimated a(ml+mres) [48ID] = 0.001048 0.00104
// a(mh+mres) [48ID] = 0.028847 0.02805
//Estimate Ls=12, b+c=2 mres~0.0003
const int Ls = 12;
Real beta = 1.946;
Real light_mass = 0.00074; //0.00104 - mres_approx;
Real strange_mass = 0.02775; //0.02805 - mres_approx
Real pv_mass = 1.0;
RealD M5 = 1.8;
RealD mobius_scale = 2.; //b+c
RealD mob_bmc = 1.0;
RealD mob_b = (mobius_scale + mob_bmc)/2.;
RealD mob_c = (mobius_scale - mob_bmc)/2.;
//Setup the Grids
auto UGridD = TheHMC.Resources.GetCartesian();
auto UrbGridD = TheHMC.Resources.GetRBCartesian();
auto FGridD = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridD);
auto FrbGridD = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridD);
GridCartesian* UGridF = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian* UrbGridF = SpaceTimeGrid::makeFourDimRedBlackGrid(UGridF);
auto FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridF);
auto FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridF);
ConjugateIwasakiGaugeActionD GaugeAction(beta);
// temporarily need a gauge field
LatticeGaugeFieldD Ud(UGridD);
LatticeGaugeFieldF Uf(UGridF);
//Setup the BCs
FermionActionD::ImplParams Params;
for(int i=0;i<Nd-1;i++) Params.twists[i] = user_params.GparityDirs[i]; //G-parity directions
Params.twists[Nd-1] = 1; //APBC in time direction
std::vector<int> dirs4(Nd);
for(int i=0;i<Nd-1;i++) dirs4[i] = user_params.GparityDirs[i];
dirs4[Nd-1] = 0; //periodic gauge BC in time
GaugeImplPolicy::setDirections(dirs4); //gauge BC
//Run optional gauge field checksum checker and exit
if(file_load_check){
TheHMC.initializeGaugeFieldAndRNGs(Ud);
std::cout << GridLogMessage << " Done" << std::endl;
Grid_finalize();
return 0;
}
////////////////////////////////////
// Collect actions
////////////////////////////////////
ActionLevel<HMCWrapper::Field> Level1(1); //light quark + strange quark
ActionLevel<HMCWrapper::Field> Level2(4); //DSDR
ActionLevel<HMCWrapper::Field> Level3(2); //gauge
/////////////////////////////////////////////////////////////
// Light EOFA action
// have to be careful with the parameters, cf. Test_dwf_gpforce_eofa.cc
/////////////////////////////////////////////////////////////
typedef SchurDiagMooeeOperator<EOFAactionD,FermionFieldD> EOFAschuropD;
typedef SchurDiagMooeeOperator<EOFAactionF,FermionFieldF> EOFAschuropF;
typedef ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction<FermionImplPolicyD, FermionImplPolicyF> EOFAmixPrecPFaction;
typedef MixedPrecisionConjugateGradientOperatorFunction<EOFAactionD, EOFAactionF, EOFAschuropD, EOFAschuropF> EOFA_mxCG;
typedef MixedPrecisionReliableUpdateConjugateGradientOperatorFunction<EOFAactionD, EOFAactionF, EOFAschuropD, EOFAschuropF> EOFA_relupCG;
std::vector<RealD> eofa_light_masses = { light_mass , 0.004, 0.016, 0.064, 0.256 };
std::vector<RealD> eofa_pv_masses = { 0.004 , 0.016, 0.064, 0.256, 1.0 };
int n_light_hsb = 5;
assert(user_params.eofa_l.size() == n_light_hsb);
EOFAmixPrecPFaction* EOFA_pfactions[n_light_hsb];
for(int i=0;i<n_light_hsb;i++){
RealD iml = eofa_light_masses[i];
RealD ipv = eofa_pv_masses[i];
EOFAactionD* LopD = new EOFAactionD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, iml, iml, ipv, 0.0, -1, M5, mob_b, mob_c, Params);
EOFAactionF* LopF = new EOFAactionF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, iml, iml, ipv, 0.0, -1, M5, mob_b, mob_c, Params);
EOFAactionD* RopD = new EOFAactionD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, ipv, iml, ipv, -1.0, 1, M5, mob_b, mob_c, Params);
EOFAactionF* RopF = new EOFAactionF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, ipv, iml, ipv, -1.0, 1, M5, mob_b, mob_c, Params);
EOFAschuropD* linopL_D = new EOFAschuropD(*LopD);
EOFAschuropD* linopR_D = new EOFAschuropD(*RopD);
EOFAschuropF* linopL_F = new EOFAschuropF(*LopF);
EOFAschuropF* linopR_F = new EOFAschuropF(*RopF);
#if 1
//Note reusing user_params.eofa_l.action(|md)_mixcg_inner_tolerance as Delta for now
EOFA_relupCG* ActionMCG_L = new EOFA_relupCG(user_params.eofa_l[i].action_tolerance, user_params.eofa_l[i].action_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
EOFA_relupCG* ActionMCG_R = new EOFA_relupCG(user_params.eofa_l[i].action_tolerance, user_params.eofa_l[i].action_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
EOFA_relupCG* DerivMCG_L = new EOFA_relupCG(user_params.eofa_l[i].md_tolerance, user_params.eofa_l[i].md_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
EOFA_relupCG* DerivMCG_R = new EOFA_relupCG(user_params.eofa_l[i].md_tolerance, user_params.eofa_l[i].md_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
#else
EOFA_mxCG* ActionMCG_L = new EOFA_mxCG(user_params.eofa_l[i].action_tolerance, 10000, 1000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
ActionMCG_L->InnerTolerance = user_params.eofa_l[i].action_mixcg_inner_tolerance;
EOFA_mxCG* ActionMCG_R = new EOFA_mxCG(user_params.eofa_l[i].action_tolerance, 10000, 1000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
ActionMCG_R->InnerTolerance = user_params.eofa_l[i].action_mixcg_inner_tolerance;
EOFA_mxCG* DerivMCG_L = new EOFA_mxCG(user_params.eofa_l[i].md_tolerance, 10000, 1000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
DerivMCG_L->InnerTolerance = user_params.eofa_l[i].md_mixcg_inner_tolerance;
EOFA_mxCG* DerivMCG_R = new EOFA_mxCG(user_params.eofa_l[i].md_tolerance, 10000, 1000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
DerivMCG_R->InnerTolerance = user_params.eofa_l[i].md_mixcg_inner_tolerance;
std::cout << GridLogMessage << "Set EOFA action solver action tolerance outer=" << ActionMCG_L->Tolerance << " inner=" << ActionMCG_L->InnerTolerance << std::endl;
std::cout << GridLogMessage << "Set EOFA MD solver tolerance outer=" << DerivMCG_L->Tolerance << " inner=" << DerivMCG_L->InnerTolerance << std::endl;
#endif
EOFAmixPrecPFaction* EOFA = new EOFAmixPrecPFaction(*LopF, *RopF,
*LopD, *RopD,
*ActionMCG_L, *ActionMCG_R,
*ActionMCG_L, *ActionMCG_R,
*DerivMCG_L, *DerivMCG_R,
user_params.eofa_l[i].rat_params, true);
EOFA_pfactions[i] = EOFA;
Level1.push_back(EOFA);
}
////////////////////////////////////
// Strange action
////////////////////////////////////
FermionActionD Numerator_sD(Ud,*FGridD,*FrbGridD,*UGridD,*UrbGridD,strange_mass,M5,mob_b,mob_c,Params);
FermionActionD Denominator_sD(Ud,*FGridD,*FrbGridD,*UGridD,*UrbGridD, pv_mass,M5,mob_b,mob_c,Params);
FermionActionF Numerator_sF(Uf,*FGridF,*FrbGridF,*UGridF,*UrbGridF,strange_mass,M5,mob_b,mob_c,Params);
FermionActionF Denominator_sF(Uf,*FGridF,*FrbGridF,*UGridF,*UrbGridF, pv_mass,M5,mob_b,mob_c,Params);
RationalActionParams rat_act_params_s;
rat_act_params_s.inv_pow = 4; // (M^dag M)^{1/4}
rat_act_params_s.precision= 60;
rat_act_params_s.MaxIter = 10000;
user_params.rat_quo_s.Export(rat_act_params_s);
std::cout << GridLogMessage << " Heavy quark bounds check every " << rat_act_params_s.BoundsCheckFreq << " trajectories (avg)" << std::endl;
//MixedPrecRHMC Quotient_s(Denominator_sD, Numerator_sD, Denominator_sF, Numerator_sF, rat_act_params_s, user_params.rat_quo_s.reliable_update_freq);
DoublePrecRHMC Quotient_s(Denominator_sD, Numerator_sD, rat_act_params_s);
Level1.push_back(&Quotient_s);
///////////////////////////////////
// DSDR action
///////////////////////////////////
RealD dsdr_mass=-1.8;
//Use same DSDR twists as https://arxiv.org/pdf/1208.4412.pdf
RealD dsdr_epsilon_f = 0.02; //numerator (in determinant)
RealD dsdr_epsilon_b = 0.5;
GparityWilsonTMFermionD Numerator_DSDR_D(Ud, *UGridD, *UrbGridD, dsdr_mass, dsdr_epsilon_f, Params);
GparityWilsonTMFermionF Numerator_DSDR_F(Uf, *UGridF, *UrbGridF, dsdr_mass, dsdr_epsilon_f, Params);
GparityWilsonTMFermionD Denominator_DSDR_D(Ud, *UGridD, *UrbGridD, dsdr_mass, dsdr_epsilon_b, Params);
GparityWilsonTMFermionF Denominator_DSDR_F(Uf, *UGridF, *UrbGridF, dsdr_mass, dsdr_epsilon_b, Params);
RationalActionParams rat_act_params_DSDR;
rat_act_params_DSDR.inv_pow = 2; // (M^dag M)^{1/2}
rat_act_params_DSDR.precision= 60;
rat_act_params_DSDR.MaxIter = 10000;
user_params.rat_quo_DSDR.Export(rat_act_params_DSDR);
std::cout << GridLogMessage << "DSDR quark bounds check every " << rat_act_params_DSDR.BoundsCheckFreq << " trajectories (avg)" << std::endl;
DoublePrecRHMC Quotient_DSDR(Denominator_DSDR_D, Numerator_DSDR_D, rat_act_params_DSDR);
Level2.push_back(&Quotient_DSDR);
/////////////////////////////////////////////////////////////
// Gauge action
/////////////////////////////////////////////////////////////
Level3.push_back(&GaugeAction);
TheHMC.TheAction.push_back(Level1);
TheHMC.TheAction.push_back(Level2);
TheHMC.TheAction.push_back(Level3);
std::cout << GridLogMessage << " Action complete "<< std::endl;
//Action tuning
bool
tune_rhmc_s=false, eigenrange_s=false,
tune_rhmc_DSDR=false, eigenrange_DSDR=false,
check_eofa=false,
upper_bound_eofa=false, lower_bound_eofa(false);
std::string lanc_params_s;
std::string lanc_params_DSDR;
int tune_rhmc_s_action_or_md;
int tune_rhmc_DSDR_action_or_md;
int eofa_which_hsb;
for(int i=1;i<argc;i++){
std::string sarg(argv[i]);
if(sarg == "--tune_rhmc_s"){
assert(i < argc-1);
tune_rhmc_s=true;
tune_rhmc_s_action_or_md = std::stoi(argv[i+1]);
}
else if(sarg == "--eigenrange_s"){
assert(i < argc-1);
eigenrange_s=true;
lanc_params_s = argv[i+1];
}
else if(sarg == "--tune_rhmc_DSDR"){
assert(i < argc-1);
tune_rhmc_DSDR=true;
tune_rhmc_DSDR_action_or_md = std::stoi(argv[i+1]);
}
else if(sarg == "--eigenrange_DSDR"){
assert(i < argc-1);
eigenrange_DSDR=true;
lanc_params_DSDR = argv[i+1];
}
else if(sarg == "--check_eofa"){
assert(i < argc-1);
check_eofa = true;
eofa_which_hsb = std::stoi(argv[i+1]); //-1 indicates all hasenbusch
assert(eofa_which_hsb == -1 || (eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb) );
}
else if(sarg == "--upper_bound_eofa"){
assert(i < argc-1);
upper_bound_eofa = true;
eofa_which_hsb = std::stoi(argv[i+1]);
assert(eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb);
}
else if(sarg == "--lower_bound_eofa"){
assert(i < argc-1);
lower_bound_eofa = true;
eofa_which_hsb = std::stoi(argv[i+1]);
assert(eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb);
}
}
if(tune_rhmc_s || eigenrange_s || tune_rhmc_DSDR || eigenrange_DSDR ||check_eofa || upper_bound_eofa || lower_bound_eofa) {
std::cout << GridLogMessage << "Running checks" << std::endl;
TheHMC.initializeGaugeFieldAndRNGs(Ud);
//std::cout << GridLogMessage << "EOFA action solver action tolerance outer=" << ActionMCG_L.Tolerance << " inner=" << ActionMCG_L.InnerTolerance << std::endl;
//std::cout << GridLogMessage << "EOFA MD solver tolerance outer=" << DerivMCG_L.Tolerance << " inner=" << DerivMCG_L.InnerTolerance << std::endl;
if(check_eofa){
if(eofa_which_hsb >= 0){
std::cout << GridLogMessage << "Starting checking EOFA Hasenbusch " << eofa_which_hsb << std::endl;
checkEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
std::cout << GridLogMessage << "Finished checking EOFA Hasenbusch " << eofa_which_hsb << std::endl;
}else{
for(int i=0;i<n_light_hsb;i++){
std::cout << GridLogMessage << "Starting checking EOFA Hasenbusch " << i << std::endl;
checkEOFA(*EOFA_pfactions[i], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
std::cout << GridLogMessage << "Finished checking EOFA Hasenbusch " << i << std::endl;
}
}
}
if(upper_bound_eofa) upperBoundEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
if(lower_bound_eofa) lowerBoundEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
if(eigenrange_s) computeEigenvalues<FermionActionD, FermionFieldD>(lanc_params_s, FGridD, FrbGridD, Ud, Numerator_sD, TheHMC.Resources.GetParallelRNG());
if(tune_rhmc_s) checkRHMC<FermionActionD, FermionFieldD, decltype(Quotient_s)>(FGridD, FrbGridD, Ud, Numerator_sD, Denominator_sD, Quotient_s, TheHMC.Resources.GetParallelRNG(), 4, "strange", tune_rhmc_s_action_or_md);
if(eigenrange_DSDR) computeEigenvalues<GparityWilsonTMFermionD, GparityWilsonTMFermionD::FermionField>(lanc_params_DSDR, UGridD, UrbGridD, Ud, Numerator_DSDR_D, TheHMC.Resources.GetParallelRNG());
if(tune_rhmc_DSDR) checkRHMC<GparityWilsonTMFermionD, GparityWilsonTMFermionD::FermionField, decltype(Quotient_DSDR)>(UGridD, UrbGridD, Ud, Numerator_DSDR_D, Denominator_DSDR_D, Quotient_DSDR, TheHMC.Resources.GetParallelRNG(), 2, "DSDR", tune_rhmc_DSDR_action_or_md);
std::cout << GridLogMessage << " Done" << std::endl;
Grid_finalize();
return 0;
}
//Run the HMC
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
TheHMC.Run();
std::cout << GridLogMessage << " Done" << std::endl;
Grid_finalize();
return 0;
} // main

View File

@ -81,8 +81,8 @@ int main (int argc, char ** argv)
Vector<Coeff_t> diag = Dw.bs; Vector<Coeff_t> diag = Dw.bs;
Vector<Coeff_t> upper= Dw.cs; Vector<Coeff_t> upper= Dw.cs;
Vector<Coeff_t> lower= Dw.cs; Vector<Coeff_t> lower= Dw.cs;
upper[Ls-1]=-Dw.mass_minus*upper[Ls-1]; upper[Ls-1]=-Dw.mass*upper[Ls-1];
lower[0] =-Dw.mass_plus*lower[0]; lower[0] =-Dw.mass*lower[0];
LatticeFermion r_eo(FGrid); LatticeFermion r_eo(FGrid);
LatticeFermion src_e (FrbGrid); LatticeFermion src_e (FrbGrid);

View File

@ -44,13 +44,6 @@ void bench_wilson (
double const volume, double const volume,
int const dag ); int const dag );
void bench_wilson_eo (
LatticeFermion & src,
LatticeFermion & result,
WilsonFermionR & Dw,
double const volume,
int const dag );
int main (int argc, char ** argv) int main (int argc, char ** argv)
{ {
Grid_init(&argc,&argv); Grid_init(&argc,&argv);
@ -117,8 +110,8 @@ int main (int argc, char ** argv)
bench_wilson(src,result,Dw,volume,DaggerYes); bench_wilson(src,result,Dw,volume,DaggerYes);
std::cout << "\t"; std::cout << "\t";
// EO // EO
bench_wilson_eo(src_o,result_e,Dw,volume,DaggerNo); bench_wilson(src,result,Dw,volume,DaggerNo);
bench_wilson_eo(src_o,result_e,Dw,volume,DaggerYes); bench_wilson(src,result,Dw,volume,DaggerYes);
std::cout << std::endl; std::cout << std::endl;
} }
} }

View File

@ -159,7 +159,7 @@ case ${ac_ZMOBIUS} in
esac esac
############### Nc ############### Nc
AC_ARG_ENABLE([Nc], AC_ARG_ENABLE([Nc],
[AC_HELP_STRING([--enable-Nc=2|3|4|5], [enable number of colours])], [AC_HELP_STRING([--enable-Nc=2|3|4], [enable number of colours])],
[ac_Nc=${enable_Nc}], [ac_Nc=3]) [ac_Nc=${enable_Nc}], [ac_Nc=3])
case ${ac_Nc} in case ${ac_Nc} in

View File

@ -1,19 +1,27 @@
#!/bin/bash #!/bin/bash
LOG=$1 LOG=$1
SWEEPS=`grep dH $LOG | wc -l` SWEEPS=`grep dH.= $LOG | wc -l`
SWEEPS=`expr $SWEEPS - 80` SWEEPS=`expr $SWEEPS - 100`
echo echo
echo $SWEEPS thermalised sweeps echo $SWEEPS thermalised sweeps
echo echo
plaq=`grep Plaq $LOG | tail -n $SWEEPS | awk '{ S=S+$10} END { print S/NR} ' ` plaq=`grep Plaq $LOG | tail -n $SWEEPS | awk '{ S=S+$12} END { print S/NR} ' `
plaqe=`grep Plaq $LOG | tail -n $SWEEPS | awk '{ S=S+$10 ; SS=SS+$10*$10 } END { print sqrt( (SS/NR - S*S/NR/NR)/NR) } ' ` plaqe=`grep Plaq $LOG | tail -n $SWEEPS | awk '{ S=S+$12 ; SS=SS+$12*$12 } END { print sqrt( (SS/NR - S*S/NR/NR)/NR) } ' `
echo "Plaquette: $plaq (${plaqe})" echo "Plaquette: $plaq (${plaqe})"
echo echo
dHv=`grep dH $LOG | tail -n $SWEEPS | awk '{ S=S+$10 ; SS=SS+$10*$10 } END { print sqrt(SS/NR) } ' ` grep Plaq $LOG | tail -n $SWEEPS | awk '{ S=S+$12/20; if(NR%20==0){ print NR/20, " ", S; S=0;} } ' > plaq.binned
edH=`grep dH $LOG | tail -n $SWEEPS | awk '{ S=S+exp(-$10)} END { print S/NR} '`
echo "<e-dH>: $edH" plaq=`cat plaq.binned | awk '{ S=S+$2} END { print S/NR} ' `
plaqe=`cat plaq.binned | awk '{ S=S+$2 ; SS=SS+$2*$2 } END { print sqrt( (SS/NR - S*S/NR/NR)/NR) } ' `
echo "Binned Plaquette: $plaq (${plaqe})"
echo
dHv=`grep dH.= $LOG | tail -n $SWEEPS | awk '{ S=S+$16 ; SS=SS+$16*$16 } END { print sqrt(SS/NR) } ' `
edH=`grep dH.= $LOG | tail -n $SWEEPS | awk '{ S=S+exp(-$16)} END { print S/NR} '`
dedH=`grep dH.= $LOG | tail -n $SWEEPS | awk '{ S=S+exp(-$16); SS=SS+exp(-$16)*exp(-$16)} END { print sqrt( (SS/NR - S*S/NR/NR)/NR) } '`
echo "<e-dH>: $edH (${dedH})"
echo "<rms dH>: $dHv" echo "<rms dH>: $dHv"
TRAJ=`grep Acc $LOG | wc -l` TRAJ=`grep Acc $LOG | wc -l`
@ -22,12 +30,13 @@ PACC=`expr 100 \* ${ACC} / ${TRAJ} `
echo echo
echo "Acceptance $PACC % $ACC / $TRAJ " echo "Acceptance $PACC % $ACC / $TRAJ "
grep Plaq $LOG | awk '{ print $10 }' | uniq > plaq.dat grep Plaq $LOG | awk '{ print $12 }' | uniq > plaq.dat
grep dH $LOG | awk '{ print $10 }' > dH.dat grep dH.= $LOG | awk '{ print $16 }' > dH.dat
echo set yrange [-0.2:1.0] > plot.gnu echo set yrange [0.58:0.60] > plot.gnu
echo set terminal 'pdf' >> plot.gnu echo set terminal 'pdf' >> plot.gnu
echo "f(x) =0.588" >> plot.gnu
echo "set output 'plaq.${LOG}.pdf'" >> plot.gnu echo "set output 'plaq.${LOG}.pdf'" >> plot.gnu
echo "plot 'plaq.dat' w l, 'dH.dat' w l " >> plot.gnu echo "plot 'plaq.dat' w l, f(x) " >> plot.gnu
echo echo
gnuplot plot.gnu >& gnu.errs gnuplot plot.gnu >& gnu.errs
open plaq.${LOG}.pdf open plaq.${LOG}.pdf

View File

@ -1 +0,0 @@
CXX=mpicxx-openmpi-mp CXXFLAGS=-I/opt/local/include/ LDFLAGS=-L/opt/local/lib/ ../../configure --enable-simd=GEN --enable-debug --enable-comms=mpi

View File

@ -0,0 +1,184 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/IO/Test_field_array_io.cc
Copyright (C) 2015
Author: Christopher Kelly <ckelly@bnl.gov>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
//This test demonstrates and checks a single-file write of an arbitrary array of fields
uint64_t writeHeader(const uint32_t size, const uint32_t checksum, const std::string &format, const std::string &file){
std::ofstream fout(file,std::ios::out|std::ios::in);
fout.seekp(0,std::ios::beg);
fout << std::setw(10) << size << std::endl;
fout << std::hex << std::setw(10) << checksum << std::endl;
fout << format << std::endl;
return fout.tellp();
}
uint64_t readHeader(uint32_t &size, uint32_t &checksum, std::string &format, const std::string &file){
std::ifstream fin(file);
std::string line;
getline(fin,line);
{
std::stringstream ss; ss <<line ; ss >> size;
}
getline(fin,line);
{
std::stringstream ss; ss <<line ; ss >> std::hex >> checksum;
}
getline(fin,format);
removeWhitespace(format);
return fin.tellg();
}
template<typename FieldType>
void writeFieldArray(const std::string &file, const std::vector<FieldType> &data){
typedef typename FieldType::vector_object vobj;
typedef typename FieldType::scalar_object sobj;
GridBase* grid = data[0].Grid(); //assume all fields have the same Grid
BinarySimpleMunger<sobj, sobj> munge; //straight copy
//We need a 2-pass header write, first to establish the size, the second pass writes the checksum
std::string format = getFormatString<typename FieldType::vector_object>();
uint64_t offset; //leave 64 bits for header
if ( grid->IsBoss() ) {
NerscIO::truncate(file);
offset = writeHeader(data.size(), 0, format, file);
}
grid->Broadcast(0,(void *)&offset,sizeof(offset)); //use as a barrier
std::cout << "Data offset write " << offset << std::endl;
std::cout << "Data size write " << data.size() << std::endl;
uint64_t field_size = uint64_t(grid->gSites()) * sizeof(sobj);
std::cout << "Field size = " << field_size << " B" << std::endl;
uint32_t checksum = 0;
for(int i=0;i<data.size();i++){
std::cout << "Data field write " << i << " offset " << offset << std::endl;
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
BinaryIO::writeLatticeObject<vobj,sobj>(const_cast<FieldType &>(data[i]),file,munge,offset,format,
nersc_csum,scidac_csuma,scidac_csumb);
offset += field_size;
checksum ^= nersc_csum + 0x9e3779b9 + (checksum<<6) + (checksum>>2);
}
std::cout << "Write checksum " << checksum << std::endl;
if ( grid->IsBoss() ) {
writeHeader(data.size(), checksum, format, file);
}
}
template<typename FieldType>
void readFieldArray(std::vector<FieldType> &data, const std::string &file){
typedef typename FieldType::vector_object vobj;
typedef typename FieldType::scalar_object sobj;
assert(data.size() > 0);
GridBase* grid = data[0].Grid(); //assume all fields have the same Grid
BinarySimpleUnmunger<sobj, sobj> munge; //straight copy
uint32_t hdr_checksum, hdr_size;
std::string format;
uint64_t offset = readHeader(hdr_size, hdr_checksum, format, file);
std::cout << "Data offset read " << offset << std::endl;
std::cout << "Data size read " << hdr_size << std::endl;
assert(data.size() == hdr_size);
uint64_t field_size = uint64_t(grid->gSites()) * sizeof(sobj);
uint32_t checksum = 0;
for(int i=0;i<data.size();i++){
std::cout << "Data field read " << i << " offset " << offset << std::endl;
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
BinaryIO::readLatticeObject<vobj,sobj>(data[i],file,munge,offset,format,
nersc_csum,scidac_csuma,scidac_csumb);
offset += field_size;
checksum ^= nersc_csum + 0x9e3779b9 + (checksum<<6) + (checksum>>2);
}
std::cout << "Header checksum " << hdr_checksum << std::endl;
std::cout << "Read checksum " << checksum << std::endl;
assert( hdr_checksum == checksum );
}
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
Coordinate latt = GridDefaultLatt();
Coordinate simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
Coordinate mpi_layout = GridDefaultMpi();
const int Ls=8;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(latt, simd_layout, mpi_layout);
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
typedef DomainWallFermionD::FermionField FermionField;
int nfield = 20;
std::vector<FermionField> data(nfield, FGrid);
for(int i=0;i<data.size();i++)
gaussian(RNG5, data[i]);
std::string file = "test_field_array_io.0";
writeFieldArray(file, data);
std::vector<FermionField> data_r(nfield, FGrid);
readFieldArray(data_r, file);
for(int i=0;i<nfield;i++){
FermionField diff = data_r[i] - data[i];
RealD norm_diff = norm2(diff);
std::cout << "Norm2 of difference between stored and loaded data index " << i << " : " << norm_diff << std::endl;
}
std::cout << "Done" << std::endl;
Grid_finalize();
}

View File

@ -147,7 +147,7 @@ int main (int argc, char ** argv)
Complex p = TensorRemove(Tp); Complex p = TensorRemove(Tp);
std::cout<<GridLogMessage << "calculated plaquettes " <<p*PlaqScale<<std::endl; std::cout<<GridLogMessage << "calculated plaquettes " <<p*PlaqScale<<std::endl;
Complex LinkTraceScale(1.0/vol/4.0/(Real)Nc); Complex LinkTraceScale(1.0/vol/4.0/3.0);
TComplex Tl = sum(LinkTrace); TComplex Tl = sum(LinkTrace);
Complex l = TensorRemove(Tl); Complex l = TensorRemove(Tl);
std::cout<<GridLogMessage << "calculated link trace " <<l*LinkTraceScale<<std::endl; std::cout<<GridLogMessage << "calculated link trace " <<l*LinkTraceScale<<std::endl;
@ -157,10 +157,8 @@ int main (int argc, char ** argv)
Complex ll= TensorRemove(TcP); Complex ll= TensorRemove(TcP);
std::cout<<GridLogMessage << "coarsened plaquettes sum to " <<ll*PlaqScale<<std::endl; std::cout<<GridLogMessage << "coarsened plaquettes sum to " <<ll*PlaqScale<<std::endl;
const string stNc = to_string( Nc ) ; std::string clone2x3("./ckpoint_clone2x3.4000");
const string stNcM1 = to_string( Nc-1 ) ; std::string clone3x3("./ckpoint_clone3x3.4000");
std::string clone2x3("./ckpoint_clone"+stNcM1+"x"+stNc+".4000");
std::string clone3x3("./ckpoint_clone"+stNc+"x"+stNc+".4000");
NerscIO::writeConfiguration(Umu,clone3x3,0,precision32); NerscIO::writeConfiguration(Umu,clone3x3,0,precision32);
NerscIO::writeConfiguration(Umu,clone2x3,1,precision32); NerscIO::writeConfiguration(Umu,clone2x3,1,precision32);

View File

@ -117,8 +117,8 @@ void runBenchmark(int* argc, char*** argv) {
// type definitions // type definitions
typedef WilsonImpl<vCoeff_t, FundamentalRepresentation, CoeffReal> WImpl; typedef WilsonImpl<vCoeff_t, FundamentalRepresentation, CoeffReal> WImpl;
typedef WilsonCloverFermion<WImpl, CloverHelpers<WImpl>> WilsonCloverOperator; typedef WilsonCloverFermion<WImpl> WilsonCloverOperator;
typedef CompactWilsonCloverFermion<WImpl, CompactCloverHelpers<WImpl>> CompactWilsonCloverOperator; typedef CompactWilsonCloverFermion<WImpl> CompactWilsonCloverOperator;
typedef typename WilsonCloverOperator::FermionField Fermion; typedef typename WilsonCloverOperator::FermionField Fermion;
typedef typename WilsonCloverOperator::GaugeField Gauge; typedef typename WilsonCloverOperator::GaugeField Gauge;

View File

@ -299,12 +299,12 @@ int main (int argc, char ** argv)
SpinColourVectorD ferm; gaussian(sRNG,ferm); SpinColourVectorD ferm; gaussian(sRNG,ferm);
pokeSite(ferm,src,point); pokeSite(ferm,src,point);
const int Ls=32; const int Ls=64;
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,&GRID); GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,&GRID);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,&GRID); GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,&GRID);
RealD mass=0.01; RealD mass=1.0;
RealD M5 =0.8; RealD M5 =0.99;
DomainWallFermionD Ddwf(Umu,*FGrid,*FrbGrid,GRID,RBGRID,mass,M5); DomainWallFermionD Ddwf(Umu,*FGrid,*FrbGrid,GRID,RBGRID,mass,M5);
// Momentum space prop // Momentum space prop
@ -353,6 +353,12 @@ int main (int argc, char ** argv)
std::cout << " Taking difference" <<std::endl; std::cout << " Taking difference" <<std::endl;
std::cout << "Ddwf result4 "<<norm2(result4)<<std::endl; std::cout << "Ddwf result4 "<<norm2(result4)<<std::endl;
std::cout << "Ddwf ref "<<norm2(ref)<<std::endl; std::cout << "Ddwf ref "<<norm2(ref)<<std::endl;
auto twopoint = localInnerProduct(result4,result4);
std::vector<TComplex> pion_prop;
sliceSum(twopoint,pion_prop,Nd-1);
for(int t=0;t<pion_prop.size();t++){
std::cout << "Pion_prop["<<t<<"]="<<pion_prop[t]<<std::endl;
}
diff = ref - result4; diff = ref - result4;
std::cout << "result - ref "<<norm2(diff)<<std::endl; std::cout << "result - ref "<<norm2(diff)<<std::endl;
@ -383,7 +389,7 @@ int main (int argc, char ** argv)
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,&GRID); GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,&GRID);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,&GRID); GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,&GRID);
RealD mass=0.01; RealD mass=1.0;
RealD M5 =0.8; RealD M5 =0.8;
OverlapWilsonCayleyTanhFermionD Dov(Umu,*FGrid,*FrbGrid,GRID,RBGRID,mass,M5,1.0); OverlapWilsonCayleyTanhFermionD Dov(Umu,*FGrid,*FrbGrid,GRID,RBGRID,mass,M5,1.0);

Some files were not shown because too many files have changed in this diff Show More