1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-07-15 12:36:55 +01:00

Compare commits

..

116 Commits

Author SHA1 Message Date
Christopher Kelly
4fefae1745 Test_evec_compression changes:
Added ability to choose one of a variety of preselected basis sizes from the command line
	Fine lanczos now checks enough evecs are generated and resizes the output to Nstop and not the actual amount that converged (which can be larger)
2022-04-06 06:33:26 -07:00
Christopher Kelly
758e2edcad Test_evec_compression enhancements:
In testing the compressed evecs, a Cheybshev smoothing is now applied first to remove high mode noise
	Added a second test where the uncompressed evecs are compared directly to the original evecs
	Generalized the test to allow for either DWF or Mobius with or without GPBC, switched by command line options
2022-03-29 06:16:15 -07:00
Christopher Kelly
1538b15f3b 48ID evo main program now uses reliable update CG 2022-03-14 06:45:28 -07:00
Christopher Kelly
deac621c2c Merge branch 'develop' into gparity_HMC_merge_develop 2022-02-22 14:25:27 -05:00
Peter Boyle
63dbaeefaa Extra barrier prior to finalize just in case it fixes an issue on Tursa 2022-02-16 14:01:43 +00:00
Peter Boyle
e8c187b323 SyCL happier? 2022-02-15 11:24:38 -05:00
Peter Boyle
0c1618197f Faster intranode MPI works now 2022-02-15 08:52:07 -05:00
Peter Boyle
f49d5c2d22 Updated scripts for crusher 2022-02-14 17:55:16 -05:00
Peter Boyle
a3b022d469 Crusher compile 2022-02-14 15:09:08 -05:00
Christopher Kelly
ba974960e6 Added an HMC checkpoint start option that loads the fields and then reseeds the RNGs, suitable for creating new evolution streams
Added option to choose RNG seeds in 40ID main binary
2022-02-14 08:09:01 -08:00
Peter Boyle
48772f0976 Merge pull request #384 from jdmaia/hip_launchbounds
Changing thread block order and adding launch_bounds
2022-02-14 11:08:28 -05:00
Peter Boyle
c322420580 Dont instantiate an Nc=3 and non-GP hardwired code for other implementations 2022-02-14 16:04:08 +00:00
Julio Maia
86f4e17928 Changing thread block order and adding launch_bounds 2022-02-07 11:29:37 -06:00
Peter Boyle
215df671be Merge pull request #382 from DanielRichtmann/feature/compact-clover
Compact Clover Fermions
2022-02-01 21:45:38 -05:00
Daniel Richtmann
1b6b12589f Get splitting up into implementation and instantiation files correct 2022-02-02 00:51:11 +01:00
Daniel Richtmann
3082ab8252 Check in compact version of wilson clover fermions 2022-02-02 00:50:05 +01:00
Daniel Richtmann
add86cd7f4 Abandon ET for clover application, use construct similar to multLink 2022-02-01 23:09:06 +01:00
Daniel Richtmann
0b6fd20c54 Enable memory coalescing in clover term generation 2022-02-01 23:09:06 +01:00
Daniel Richtmann
e83423fee6 Refactor clover to align with other files and prepare for upcoming changes 2022-02-01 23:09:06 +01:00
Daniel Richtmann
b4f8e87982 Have Grid's cli interface understand floats 2022-02-01 23:09:06 +01:00
Christopher Kelly
6755dc57f8 Added methods to compute spatial plaquette and timeslice spatial plaquette to WilsonLoops 2022-01-24 13:57:39 -05:00
Christopher Kelly
aa620ca52c Fixed compilation error in observables resulting from changes in Wilson flow code
Modified light quark mass on 40ID HMC binary
2022-01-24 09:56:24 -08:00
Christopher Kelly
2c46c942cc Reworked WilsonFlow:
Both smear and smear_adaptive now maintain the Wilson flow time as a function variable rather than a class member variable. smear_adaptive does likewise for the current time step. This allows the evolve and smear functions to be const
	Fixed smear_adaptive setting initial time to epsilon rather than 0
	Added ability to assign generic measurement actions at user specified frequencies during the smearing and reimplemented current energy density / topq output in this framework
	Reimplemented the "flowMeasure" methods using the above framework
Fixed const correctness for WilsonLoops::TopologicalCharge
2022-01-24 12:06:05 -05:00
Christopher Kelly
adeba8059a Added calculation of timeslice topological charge 2022-01-20 14:29:07 -05:00
Christopher Kelly
c4ac528126 Added cloverleaf energy density calculation to WilsonFlow 2021-12-27 10:33:33 -05:00
Christopher Kelly
551b93ba8e To HMC/Mobius2p1fIDSDRGparityEOFA_40ID, added input param to change trajectory length and increased integrator steps for DSDR 2021-12-10 09:06:06 -08:00
Peter Boyle
135808dcfa Less verbose 2021-12-07 16:24:24 -05:00
Peter Boyle
7f7d06d963 Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2021-12-07 09:06:42 -08:00
Peter Boyle
2bf3b4d576 Update to reduce memory footpring in benchmark test 2021-12-07 09:02:02 -08:00
Christopher Kelly
ddf7540510 Added calculation of 5Li topological charge
WilsonFlow code now calls topological charge calculation with correct gauge implementation rather than assuming periodic
Added version of WilsonFlow::flowMeasureEnergyDensityPlaquette that outputs the smeared gauge field at the end
2021-12-06 17:56:42 -05:00
Christopher Kelly
de68d12c3d 1x1 topological charge calculation now respects gauge boundary conditions 2021-12-06 13:42:09 -05:00
Peter Boyle
f34d34bd17 2 nodes 2021-11-22 22:27:16 -05:00
Peter Boyle
e32d5141b4 Updated to make MPI reliable still gives good perf, but MPI will be slow
intranode
2021-11-22 21:46:31 -05:00
Peter Boyle
6d5277f2d7 Update to Spock 2021-11-22 20:58:02 -05:00
Peter Boyle
14d82777e0 Best modules for spock 2021-11-22 20:47:16 -05:00
Peter Boyle
2a4e739513 Enable XGMI copy (need to rename nvlink to cover NVLINK/XGMI/XeLink) 2021-11-22 20:46:09 -05:00
Peter Boyle
8079dc2a14 Cray MPI not working right yet 2021-11-22 20:45:44 -05:00
Peter Boyle
6ceb556684 Intranode asynch hipMemCopy 2021-11-22 20:45:12 -05:00
Peter Boyle
76cde73705 HIP improvements on messaging and intranode hipMemCopyAsynch 2021-11-22 20:44:39 -05:00
Christopher Kelly
6d26a2a1ad Merge branch 'feature/gparity_HMC' of https://github.com/paboyle/Grid into gparity_HMC 2021-11-16 07:32:47 -08:00
Christopher Kelly
a1211cdcce Gparity 48ID tuning and exposure of trajectory length as input variable 2021-11-16 07:31:41 -08:00
Peter Boyle
cc094366a9 Merge pull request #375 from JPRichings/develop
Lattice object ACCcache probe
2021-11-09 18:19:32 -05:00
41a575ff9b Format edit 2021-11-09 21:56:23 +00:00
12ef413065 fix to deflation.h 2021-11-09 21:20:36 +00:00
829a328451 remove deflation timing 2021-11-09 20:46:57 +00:00
402523c62e Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2021-11-09 12:57:40 +00:00
d7bef70b5c Helper functions to allow probe of cache state of lattice objects. 2021-11-09 12:57:09 +00:00
2ad1811642 Added timing to deflation code. 2021-11-09 12:33:25 +00:00
Christopher Kelly
e78acf77ff To LocalCoherenceLanczos, added a method to reconstruct the fine eigenvector and added some comments to aid the user
Added a test code for local coherence Lanczos with G-parity BCs
Added a test code for block eigenvector compression
2021-11-08 07:26:35 -08:00
a65a497bae Merge branch 'develop' of github.com:paboyle/Grid into develop 2021-10-29 13:01:34 +01:00
b27b12828e reverse previous "fix", missing statement was probably intentional, added a comment to that effect 2021-10-29 13:01:31 +01:00
Peter Boyle
fe9edf8526 Merge branch 'develop' of https://www.github.com/paboyle/Grid into develop 2021-10-29 02:03:27 +01:00
Peter Boyle
44204c7e06 Extra code 2021-10-29 02:02:56 +01:00
Peter Boyle
33b3789598 Merge pull request #364 from AndrewYongZhenNing/develop
CayleyFermion5D Conserved current fix
2021-10-27 20:27:20 -04:00
Peter Boyle
195ab2888d Merge branch 'develop' into develop 2021-10-27 20:26:57 -04:00
Peter Boyle
85f750d753 Merge branch 'develop' of https://www.github.com/paboyle/Grid into develop 2021-10-27 00:28:05 +01:00
Peter Boyle
a4ce6e42c7 Warning free compile on make all and make tests under nvcc 2021-10-27 00:27:03 +01:00
Peter Boyle
5398b7e7e3 Max 128 size 2021-10-26 09:16:29 -07:00
fd13a3f2be Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2021-10-26 10:45:46 +01:00
c144b32368 deflation timers 2021-10-26 10:37:24 +01:00
Peter Boyle
ba7e371b90 Warning free compile on Tursa.
Hopefully got all reqd virtual dtors
2021-10-21 19:56:52 +01:00
Peter Boyle
99e7a5d18a Merge pull request #371 from edbennett/hmc-documentation-update
update documentation for GenericHMCRunner - thanks
2021-10-18 14:36:43 -04:00
Christopher Kelly
f7e9621492 40ID ensemble tuning: now use 5 Hasenbusch steps, parameters now separately tunable in param file 2021-10-18 08:17:36 -07:00
Ed Bennett
f824d99059 update documentation for GenericHMCRunner 2021-10-18 09:50:16 +01:00
Peter Boyle
749b8022a4 Linear operator and SparseMatrix virtual destructors 2021-10-15 20:47:18 +01:00
Peter Boyle
7e0057d2c4 Merge branch 'develop' of https://www.github.com/paboyle/Grid into develop 2021-10-15 20:46:51 +01:00
Peter Boyle
cfe9e870d3 Stream 2021-10-15 20:46:44 +01:00
Christopher Kelly
f14be15f8b Updates to Gparity HMC main programs 2021-10-15 08:10:17 -07:00
Peter Boyle
e9c4f06cbf Merge pull request #370 from fjosw/bugfix/gpu_sum_shm
Error Handling sum_Dgpu large objects
2021-10-14 09:12:47 -04:00
1f9688417a Error message added when attempting to sum object which is too large for
the shared memory
2021-10-13 20:45:46 +01:00
Christopher Kelly
6a3aaa52ef Test_dwf_lanczos can now run either G-parity Mobius or non-Gparity DWF according to cmdline switch
Fixed copyStream intialization
2021-10-12 12:59:54 -07:00
Peter Boyle
16c2a99965 Overlap cudamemcpy - didn't set up stream right 2021-10-11 13:31:26 -07:00
Peter Boyle
cda915a345 Better options 2021-10-07 20:29:09 +01:00
Peter Boyle
7c16189e16 Merge pull request #368 from Heinrich-BR/develop
Accelerated Pick-Set Checkerboard functions
2021-10-07 15:13:09 -04:00
Peter Boyle
ecbfccea43 Merge pull request #369 from paboyle/gauge-group-covariance
expose gauge group in GImpl and generic Nc fix
2021-10-07 15:11:12 -04:00
Peter Boyle
a8eda8f6da Summit scripts 2021-10-05 21:22:10 -04:00
Peter Boyle
9b1a0653cf Summit results 2021-10-05 21:22:01 -04:00
Peter Boyle
7cb1ff7395 Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2021-10-05 20:13:42 -04:00
Peter Boyle
ab6ea29913 Print removal 2021-10-05 20:13:25 -04:00
b5c81a02b6 Merge branch 'develop' of github.com:paboyle/Grid into develop 2021-10-05 21:13:01 +01:00
d899ee80fc skip record fixed to include norm metadata 2021-10-05 21:12:47 +01:00
a976fa6746 expose gauge group in GImpl and generic Nc fix 2021-10-05 14:19:47 +01:00
Christopher Kelly
9ba47b4696 Merge branch 'develop' into gparity_HMC 2021-09-29 20:07:55 -07:00
Christopher Kelly
e85af80c39 Added return value checks on all cuda api calls
Test_dwf_lanczos can now run with either regular DWF or Mobius+Gparity based on cmdline arg
2021-09-29 19:57:43 -07:00
Christopher Kelly
0b91e90dd4 Merge branch 'develop' into feature/gparity_HMC 2021-09-27 07:16:26 -07:00
7e130076d6 Fixed line left behind 2021-09-24 17:26:31 +01:00
6efdad6f21 Removed Halo benchmark 2021-09-24 17:18:04 +01:00
a822c48565 Added accelerated pick-set checkerboard functions 2021-09-24 17:13:25 +01:00
014fb76e88 Merge branch 'develop' of https://github.com/Heinrich-BR/Grid into develop 2021-09-24 16:45:25 +01:00
30e5311b43 Update from the gods upstream 2021-09-24 16:39:56 +01:00
Christopher Kelly
d184b8c921 Merge branch 'develop' into gparity_HMC 2021-09-08 06:14:08 -07:00
Christopher Kelly
c92e390b08 Added initial main binary code for 40ID and 48ID Gparity HMC 2021-09-08 09:00:13 -04:00
11ee8a1061 Merge remote-tracking branch 'upstream/develop' into develop 2021-09-02 16:57:42 +01:00
Andrew Yong
770680669d Whitespace removal. 2021-08-04 09:21:59 +01:00
Andrew Yong
0cdfc5cf22 Merge remote-tracking branch 'upstream/develop' into develop 2021-07-30 14:40:55 +01:00
Christopher Kelly
5b36a8af54 Added a CshiftLink function to the GaugeImplementations and boundary condition classes that offers a boundary aware C-shift
Modified gauge fixing code to use CshiftLink internally such that the steepest descent algorithm is universal
Modified gauge transformation code to use CshiftLink for a universal definition
Improved comprehensibility of Test_fft_gfix and generalized to use either periodic or charge conjugation BCs based on cmdline option
Added cmdline options to Test_fft_gfix to tune alpha and optionally disable the Fourier acceleration tests
2021-07-12 17:13:40 -04:00
Christopher Kelly
75a1f85162 Added method to compute and return the Wilson flow energy density over some number of steps 2021-06-30 17:24:00 -04:00
428b8ba907 Updated from upstream and added halo benchmark 2021-06-29 01:05:12 +01:00
Christopher Kelly
ac4f2d9798 Fixed EOFA approx test square rooting the result inappropriately thus failing when it shouldn't
To MDWF+ID GPBC evol main program, added routine to compute the lower bound of the EOFA using the power method with a command line toggle
2021-06-09 09:08:37 -04:00
Christopher Kelly
c3b99de33f In EOFA pseudofermion action, implemented M^{-1} (this costs the same as M for EOFA!)
Added tests/solver/Test_eofa_inv.cc to test the above
In MDWF+ID GPBC binary, tests of RHMC approx for the action / MD approxs can be performed separately using a cmdline toggle
2021-06-03 11:11:14 -04:00
Christopher Kelly
e1a02bb80a Added main program to reproduce 32ID ensemble with 240MeV pions and GPBC
Allowed EOFA to accept different solvers for the L and R operations in the heatbath step
Fixed EOFA Meofa operating on member Phi rather than input field
Added derived EOFA pseudofermion variant that allows for mixed prec CG to be used in the heatbath
Added forces/Test_mobius_gparity_eofa_mixed testing the above reproduces the regular EOFA
To Test_gamma, added checks for the various properties of the charge conjugation matrix C=-gamma2*gamma4 in Grid basis
2021-06-01 11:44:34 -04:00
Christopher Kelly
86f08c6b9a Added a check that the initial EOFA action agrees with |eta|^2, thus checking the quality of the rational approximation in the heatbath 2021-05-18 13:57:44 -04:00
Christopher Kelly
9f0271039f Completed implementation of Meofa method of ExactOneFlavourRatio pseudofermion action
Added tests to tests/forces/Test_mobius_force_eofa.cc testing that the EOFA heatbath results in Phi = M^{-1/2} eta
2021-05-18 12:27:51 -04:00
Christopher Kelly
24df770f74 Added tests/IO/Test_field_array_io.cc testing/demonstrating parallel IO of an array of 5D fermion fields 2021-05-13 12:32:45 -04:00
Christopher Kelly
45b6c7effc Added a test code forces/Test_gpdwf_force_1f_2f that compares the action and force for DWF, EOFA and DSDR actions between the 1f and 2f implementations of G-parity BCs
Broke up ExactOneFlavourRatio refresh into a virtual routine that generates eta and one that uses it as with the ratio and RHMC actions
Added accessors to the pseudofermion field to TwoFlavourEvenOddRatio and ExactOneFlavourRatio
2021-05-12 16:34:07 -04:00
54c6b1376d Quick fix of conserved current implementation in CayleyFermion5D. Now function treats current insertion with appropriate periodic boundary conditions in the mu=3 direction. 2021-04-21 16:56:46 +01:00
f3f11b586f Tadpole sign now in front of forward hopping term to be consistent with previous implementation and analytic form. 2021-04-17 12:44:27 +01:00
8083e3f7e8 Sign factor for tadpole implementation corrected. 2021-04-15 11:14:31 +01:00
364793154b Reverted checkerboard changes 2021-04-09 15:47:17 +01:00
3e2ae1e9af Added profiling messages to pick and set checkerboard functions 2021-04-08 16:58:47 +01:00
Henrique Rocha
d38ae2fd18 Merge branch 'develop' of https://github.com/Heinrich-BR/Grid into develop 2021-04-06 17:18:39 +01:00
Henrique Rocha
030e7754e4 Merge remote-tracking branch 'upstream/develop' into develop 2021-04-06 17:16:13 +01:00
3b7fce1e76 Reverted checkerboard changes 2021-04-02 14:38:41 +01:00
4d15417f93 Merge remote-tracking branch 'upstream/develop' into develop 2021-04-01 18:28:15 +01:00
ab3c855f65 Merge branch 'develop' of https://github.com/Heinrich-BR/Grid into develop 2021-04-01 18:22:05 +01:00
92e2c517d8 Changed pick- and setCheckerboard to use accelerator_for 2021-04-01 18:21:19 +01:00
193 changed files with 10285 additions and 6529 deletions

View File

@@ -35,7 +35,7 @@ directory
#if defined __GNUC__ && __GNUC__>=6
#pragma GCC diagnostic ignored "-Wignored-attributes"
#endif
#if defined __GNUC__ && __GNUC__>=6
#if defined __GNUC__
#pragma GCC diagnostic ignored "-Wpsabi"
#endif

View File

@@ -358,7 +358,7 @@ public:
autoView( in_v , in, AcceleratorRead);
autoView( out_v , out, AcceleratorWrite);
autoView( Stencil_v , Stencil, AcceleratorRead);
auto& geom_v = geom;
int npoint = geom.npoint;
typedef LatticeView<Cobj> Aview;
Vector<Aview> AcceleratorViewContainer;
@@ -380,7 +380,7 @@ public:
int ptype;
StencilEntry *SE;
for(int point=0;point<geom_v.npoint;point++){
for(int point=0;point<npoint;point++){
SE=Stencil_v.GetEntry(ptype,point,ss);
@@ -424,7 +424,7 @@ public:
autoView( in_v , in, AcceleratorRead);
autoView( out_v , out, AcceleratorWrite);
autoView( Stencil_v , Stencil, AcceleratorRead);
auto& geom_v = geom;
int npoint = geom.npoint;
typedef LatticeView<Cobj> Aview;
Vector<Aview> AcceleratorViewContainer;
@@ -454,7 +454,7 @@ public:
int ptype;
StencilEntry *SE;
for(int p=0;p<geom_v.npoint;p++){
for(int p=0;p<npoint;p++){
int point = points_p[p];
SE=Stencil_v.GetEntry(ptype,point,ss);

View File

@@ -52,6 +52,7 @@ public:
virtual void AdjOp (const Field &in, Field &out) = 0; // Abstract base
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2)=0;
virtual void HermOp(const Field &in, Field &out)=0;
virtual ~LinearOperatorBase(){};
};
@@ -223,14 +224,9 @@ class SchurOperatorBase : public LinearOperatorBase<Field> {
Mpc(in,tmp);
MpcDag(tmp,out);
}
virtual void MpcMpcDag(const Field &in, Field &out) {
Field tmp(in.Grid());
tmp.Checkerboard() = in.Checkerboard();
MpcDag(in,tmp);
Mpc(tmp,out);
}
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
HermOp(in,out);
out.Checkerboard() = in.Checkerboard();
MpcDagMpc(in,out);
ComplexD dot= innerProduct(in,out);
n1=real(dot);
n2=norm2(out);
@@ -281,16 +277,6 @@ template<class Matrix,class Field>
axpy(out,-1.0,tmp,out);
}
};
// Mpc MpcDag system presented as the HermOp
template<class Matrix,class Field>
class SchurDiagMooeeDagOperator : public SchurDiagMooeeOperator<Matrix,Field> {
public:
virtual void HermOp(const Field &in, Field &out){
out.Checkerboard() = in.Checkerboard();
this->MpcMpcDag(in,out);
}
SchurDiagMooeeDagOperator (Matrix &Mat): SchurDiagMooeeOperator<Matrix,Field>(Mat){};
};
template<class Matrix,class Field>
class SchurDiagOneOperator : public SchurOperatorBase<Field> {
protected:
@@ -522,7 +508,7 @@ class SchurStaggeredOperator : public SchurOperatorBase<Field> {
virtual void MpcDag (const Field &in, Field &out){
Mpc(in,out);
}
virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
virtual void MpcDagMpc(const Field &in, Field &out) {
assert(0);// Never need with staggered
}
};
@@ -600,6 +586,7 @@ class HermOpOperatorFunction : public OperatorFunction<Field> {
template<typename Field>
class PlainHermOp : public LinearFunction<Field> {
public:
using LinearFunction<Field>::operator();
LinearOperatorBase<Field> &_Linop;
PlainHermOp(LinearOperatorBase<Field>& linop) : _Linop(linop)
@@ -613,6 +600,7 @@ public:
template<typename Field>
class FunctionHermOp : public LinearFunction<Field> {
public:
using LinearFunction<Field>::operator();
OperatorFunction<Field> & _poly;
LinearOperatorBase<Field> &_Linop;

View File

@@ -30,13 +30,19 @@ Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
template<class Field> class Preconditioner : public LinearFunction<Field> {
template<class Field> using Preconditioner = LinearFunction<Field> ;
/*
template<class Field> class Preconditioner : public LinearFunction<Field> {
using LinearFunction<Field>::operator();
virtual void operator()(const Field &src, Field & psi)=0;
};
*/
template<class Field> class TrivialPrecon : public Preconditioner<Field> {
public:
void operator()(const Field &src, Field & psi){
using Preconditioner<Field>::operator();
virtual void operator()(const Field &src, Field & psi){
psi = src;
}
TrivialPrecon(void){};

View File

@@ -48,6 +48,7 @@ public:
virtual void Mdiag (const Field &in, Field &out)=0;
virtual void Mdir (const Field &in, Field &out,int dir, int disp)=0;
virtual void MdirAll (const Field &in, std::vector<Field> &out)=0;
virtual ~SparseMatrixBase() {};
};
/////////////////////////////////////////////////////////////////////////////////////////////
@@ -72,7 +73,7 @@ public:
virtual void MeooeDag (const Field &in, Field &out)=0;
virtual void MooeeDag (const Field &in, Field &out)=0;
virtual void MooeeInvDag (const Field &in, Field &out)=0;
virtual ~CheckerBoardedSparseMatrixBase() {};
};
NAMESPACE_END(Grid);

View File

@@ -36,7 +36,8 @@ NAMESPACE_BEGIN(Grid);
template<class FieldD, class FieldF, typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0, typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class MixedPrecisionBiCGSTAB : public LinearFunction<FieldD>
{
public:
public:
using LinearFunction<FieldD>::operator();
RealD Tolerance;
RealD InnerTolerance; // Initial tolerance for inner CG. Defaults to Tolerance but can be changed
Integer MaxInnerIterations;

View File

@@ -102,7 +102,7 @@ public:
// Check if guess is really REALLY good :)
if (cp <= rsq) {
TrueResidual = std::sqrt(a/ssq);
std::cout << GridLogMessage << "ConjugateGradient guess is converged already "<<TrueResidual<< " tol "<< Tolerance<< std::endl;
std::cout << GridLogMessage << "ConjugateGradient guess is converged already " << std::endl;
IterationsToComplete = 0;
return;
}

View File

@@ -35,7 +35,8 @@ NAMESPACE_BEGIN(Grid);
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class MixedPrecisionConjugateGradient : public LinearFunction<FieldD> {
public:
public:
using LinearFunction<FieldD>::operator();
RealD Tolerance;
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
Integer MaxInnerIterations;
@@ -52,31 +53,23 @@ NAMESPACE_BEGIN(Grid);
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
LinearFunction<FieldF> *guesser;
MixedPrecisionConjugateGradient(RealD Tol,
Integer maxinnerit,
Integer maxouterit,
GridBase* _sp_grid,
LinearOperatorBase<FieldF> &_Linop_f,
LinearOperatorBase<FieldD> &_Linop_d) :
MixedPrecisionConjugateGradient(Tol, Tol, maxinnerit, maxouterit, _sp_grid, _Linop_f, _Linop_d) {};
MixedPrecisionConjugateGradient(RealD Tol,
RealD InnerTol,
MixedPrecisionConjugateGradient(RealD tol,
Integer maxinnerit,
Integer maxouterit,
GridBase* _sp_grid,
LinearOperatorBase<FieldF> &_Linop_f,
LinearOperatorBase<FieldD> &_Linop_d) :
Linop_f(_Linop_f), Linop_d(_Linop_d),
Tolerance(Tol), InnerTolerance(InnerTol), MaxInnerIterations(maxinnerit), MaxOuterIterations(maxouterit), SinglePrecGrid(_sp_grid),
OuterLoopNormMult(100.), guesser(NULL){ assert(InnerTol < 1.0e-1);};
Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit), MaxOuterIterations(maxouterit), SinglePrecGrid(_sp_grid),
OuterLoopNormMult(100.), guesser(NULL){ };
void useGuesser(LinearFunction<FieldF> &g){
guesser = &g;
}
void operator() (const FieldD &src_d_in, FieldD &sol_d){
std::cout << GridLogMessage << "MixedPrecisionConjugateGradient: Starting mixed precision CG with outer tolerance " << Tolerance << " and inner tolerance " << InnerTolerance << std::endl;
TotalInnerIterations = 0;
GridStopWatch TotalTimer;
@@ -111,6 +104,7 @@ NAMESPACE_BEGIN(Grid);
FieldF sol_f(SinglePrecGrid);
sol_f.Checkerboard() = cb;
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Starting initial inner CG with tolerance " << inner_tol << std::endl;
ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
CG_f.ErrorOnNoConverge = false;
@@ -144,6 +138,7 @@ NAMESPACE_BEGIN(Grid);
(*guesser)(src_f, sol_f);
//Inner CG
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " << outer_iter << " starting inner CG with tolerance " << inner_tol << std::endl;
CG_f.Tolerance = inner_tol;
InnerCGtimer.Start();
CG_f(Linop_f, src_f, sol_f);

View File

@@ -33,16 +33,19 @@ namespace Grid {
template<class Field>
class ZeroGuesser: public LinearFunction<Field> {
public:
using LinearFunction<Field>::operator();
virtual void operator()(const Field &src, Field &guess) { guess = Zero(); };
};
template<class Field>
class DoNothingGuesser: public LinearFunction<Field> {
public:
using LinearFunction<Field>::operator();
virtual void operator()(const Field &src, Field &guess) { };
};
template<class Field>
class SourceGuesser: public LinearFunction<Field> {
public:
using LinearFunction<Field>::operator();
virtual void operator()(const Field &src, Field &guess) { guess = src; };
};
@@ -57,6 +60,7 @@ private:
const unsigned int N;
public:
using LinearFunction<Field>::operator();
DeflatedGuesser(const std::vector<Field> & _evec,const std::vector<RealD> & _eval)
: DeflatedGuesser(_evec, _eval, _evec.size())
@@ -87,6 +91,7 @@ private:
const std::vector<RealD> &eval_coarse;
public:
using LinearFunction<FineField>::operator();
LocalCoherenceDeflatedGuesser(const std::vector<FineField> &_subspace,
const std::vector<CoarseField> &_evec_coarse,
const std::vector<RealD> &_eval_coarse)

View File

@@ -44,6 +44,7 @@ public:
int, MinRes); // Must restart
};
//This class is the input parameter class for some testing programs
struct LocalCoherenceLanczosParams : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams,
@@ -67,6 +68,7 @@ public:
template<class Fobj,class CComplex,int nbasis>
class ProjectedHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
public:
using LinearFunction<Lattice<iVector<CComplex,nbasis > > >::operator();
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
@@ -97,6 +99,7 @@ public:
template<class Fobj,class CComplex,int nbasis>
class ProjectedFunctionHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
public:
using LinearFunction<Lattice<iVector<CComplex,nbasis > > >::operator();
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
@@ -153,6 +156,7 @@ public:
_coarse_relax_tol(coarse_relax_tol)
{ };
//evalMaxApprox: approximation of largest eval of the fine Chebyshev operator (suitably wrapped by block projection)
int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
{
CoarseField v(B);
@@ -179,8 +183,16 @@ public:
if( (vv<eresid*eresid) ) conv = 1;
return conv;
}
int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
//This function is called at the end of the coarse grid Lanczos. It promotes the coarse eigenvector 'B' to the fine grid,
//applies a smoother to the result then computes the computes the *fine grid* eigenvalue (output as 'eval').
//evalMaxApprox should be the approximation of the largest eval of the fine Hermop. However when this function is called by IRL it actually passes the largest eval of the *Chebyshev* operator (as this is the max approx used for the TestConvergence above)
//As the largest eval of the Chebyshev is typically several orders of magnitude larger this makes the convergence test pass even when it should not.
//We therefore ignore evalMaxApprox here and use a value of 1.0 (note this value is already used by TestCoarse)
int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
{
evalMaxApprox = 1.0; //cf above
GridBase *FineGrid = _subspace[0].Grid();
int checkerboard = _subspace[0].Checkerboard();
FineField fB(FineGrid);fB.Checkerboard() =checkerboard;
@@ -199,13 +211,13 @@ public:
eval = vnum/vden;
fv -= eval*fB;
RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0);
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
std::cout.precision(13);
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv << " target " << eresid*eresid
<<std::endl;
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
if( (vv<eresid*eresid) ) return 1;
return 0;
}
@@ -283,6 +295,10 @@ public:
evals_coarse.resize(0);
};
//The block inner product is the inner product on the fine grid locally summed over the blocks
//to give a Lattice<Scalar> on the coarse grid. This function orthnormalizes the fine-grid subspace
//vectors under the block inner product. This step must be performed after computing the fine grid
//eigenvectors and before computing the coarse grid eigenvectors.
void Orthogonalise(void ) {
CoarseScalar InnerProd(_CoarseGrid);
std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
@@ -326,6 +342,8 @@ public:
}
}
//While this method serves to check the coarse eigenvectors, it also recomputes the eigenvalues from the smoothed reconstructed eigenvectors
//hence the smoother can be tuned after running the coarse Lanczos by using a different smoother here
void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax)
{
assert(evals_fine.size() == nbasis);
@@ -374,25 +392,31 @@ public:
evals_fine.resize(nbasis);
subspace.resize(nbasis,_FineGrid);
}
//cheby_op: Parameters of the fine grid Chebyshev polynomial used for the Lanczos acceleration
//cheby_smooth: Parameters of a separate Chebyshev polynomial used after the Lanczos has completed to smooth out high frequency noise in the reconstructed fine grid eigenvectors prior to computing the eigenvalue
//relax: Reconstructed eigenvectors (post smoothing) are naturally not as precise as true eigenvectors. This factor acts as a multiplier on the stopping condition when determining whether the results satisfy the user provided stopping condition
void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax,
int Nstop, int Nk, int Nm,RealD resid,
RealD MaxIt, RealD betastp, int MinRes)
{
Chebyshev<FineField> Cheby(cheby_op);
ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,subspace);
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace);
Chebyshev<FineField> Cheby(cheby_op); //Chebyshev of fine operator on fine grid
ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,subspace); //Fine operator on coarse grid with intermediate fine grid conversion
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace); //Chebyshev of fine operator on coarse grid with intermediate fine grid conversion
//////////////////////////////////////////////////////////////////////////////////////////////////
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
//////////////////////////////////////////////////////////////////////////////////////////////////
Chebyshev<FineField> ChebySmooth(cheby_smooth);
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax);
Chebyshev<FineField> ChebySmooth(cheby_smooth); //lower order Chebyshev of fine operator on fine grid used to smooth regenerated eigenvectors
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax);
evals_coarse.resize(Nm);
evec_coarse.resize(Nm,_CoarseGrid);
CoarseField src(_CoarseGrid); src=1.0;
//Note the "tester" here is also responsible for generating the fine grid eigenvalues which are output into the "evals_coarse" array
ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
int Nconv=0;
IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
@@ -403,6 +427,14 @@ public:
std::cout << i << " Coarse eval = " << evals_coarse[i] << std::endl;
}
}
//Get the fine eigenvector 'i' by reconstruction
void getFineEvecEval(FineField &evec, RealD &eval, const int i) const{
blockPromote(evec_coarse[i],evec,subspace);
eval = evals_coarse[i];
}
};
NAMESPACE_END(Grid);

View File

@@ -29,6 +29,8 @@ template<class Field> class PowerMethod
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
RealD vden = norm2(src_n);
RealD na = vnum/vden;
std::cout << GridLogIterative << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) {
evalMaxApprox = na;

View File

@@ -43,7 +43,7 @@ NAMESPACE_BEGIN(Grid);
template<class Field>
class PrecGeneralisedConjugateResidual : public LinearFunction<Field> {
public:
using LinearFunction<Field>::operator();
RealD Tolerance;
Integer MaxIterations;
int verbose;

View File

@@ -43,7 +43,7 @@ NAMESPACE_BEGIN(Grid);
template<class Field>
class PrecGeneralisedConjugateResidualNonHermitian : public LinearFunction<Field> {
public:
using LinearFunction<Field>::operator();
RealD Tolerance;
Integer MaxIterations;
int verbose;
@@ -119,7 +119,8 @@ public:
RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
RealD cp;
ComplexD a, b, zAz;
ComplexD a, b;
// ComplexD zAz;
RealD zAAz;
ComplexD rq;
@@ -146,7 +147,7 @@ public:
//////////////////////////////////
MatTimer.Start();
Linop.Op(psi,Az);
zAz = innerProduct(Az,psi);
// zAz = innerProduct(Az,psi);
zAAz= norm2(Az);
MatTimer.Stop();
@@ -170,7 +171,7 @@ public:
LinalgTimer.Start();
zAz = innerProduct(Az,psi);
// zAz = innerProduct(Az,psi);
zAAz= norm2(Az);
//p[0],q[0],qq[0]
@@ -212,7 +213,7 @@ public:
MatTimer.Start();
Linop.Op(z,Az);
MatTimer.Stop();
zAz = innerProduct(Az,psi);
// zAz = innerProduct(Az,psi);
zAAz= norm2(Az);
LinalgTimer.Start();

View File

@@ -40,7 +40,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
* (-MoeMee^{-1} 1 )
* L^{dag} = ( 1 Mee^{-dag} Moe^{dag} )
* ( 0 1 )
* L^{-dag}= ( 1 -Mee^{-dag} Moe^{dag} )
* L^{-d} = ( 1 -Mee^{-dag} Moe^{dag} )
* ( 0 1 )
*
* U^-1 = (1 -Mee^{-1} Meo)
@@ -82,8 +82,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
* c) M_oo^-dag Doo^{dag} Doo Moo^-1 phi_0 = M_oo^-dag (D_oo)^dag L^{-1} eta_o
* eta_o' = M_oo^-dag (D_oo)^dag (eta_o - Moe Mee^{-1} eta_e)
* psi_o = M_oo^-1 phi_o
*
*
* TODO: Deflation
*/
namespace Grid {
@@ -98,7 +97,6 @@ namespace Grid {
protected:
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
OperatorFunction<Field> & _HermitianRBSolver;
int CBfactorise;
bool subGuess;
bool useSolnAsInitGuess; // if true user-supplied solution vector is used as initial guess for solver
@@ -221,20 +219,13 @@ namespace Grid {
/////////////////////////////////////////////////
// Check unprec residual if possible
/////////////////////////////////////////////////
if ( ! subGuess ) {
if ( this->adjoint() ) _Matrix.Mdag(out[b],resid);
else _Matrix.M(out[b],resid);
if ( ! subGuess ) {
_Matrix.M(out[b],resid);
resid = resid-in[b];
RealD ns = norm2(in[b]);
RealD nr = norm2(resid);
std::cout<<GridLogMessage<< "SchurRedBlackBase adjoint "<< this->adjoint() << std::endl;
if ( this->adjoint() )
std::cout<<GridLogMessage<< "SchurRedBlackBase adjoint solver true unprec resid["<<b<<"] "<<std::sqrt(nr/ns) << std::endl;
else
std::cout<<GridLogMessage<< "SchurRedBlackBase solver true unprec resid["<<b<<"] "<<std::sqrt(nr/ns) << std::endl;
std::cout<<GridLogMessage<< "SchurRedBlackBase solver true unprec resid["<<b<<"] "<<std::sqrt(nr/ns) << std::endl;
} else {
std::cout<<GridLogMessage<< "SchurRedBlackBase Guess subtracted after solve["<<b<<"] " << std::endl;
}
@@ -288,21 +279,12 @@ namespace Grid {
// Verify the unprec residual
if ( ! subGuess ) {
std::cout<<GridLogMessage<< "SchurRedBlackBase adjoint "<< this->adjoint() << std::endl;
if ( this->adjoint() ) _Matrix.Mdag(out,resid);
else _Matrix.M(out,resid);
_Matrix.M(out,resid);
resid = resid-in;
RealD ns = norm2(in);
RealD nr = norm2(resid);
if ( this->adjoint() )
std::cout<<GridLogMessage<< "SchurRedBlackBase adjoint solver true unprec resid "<<std::sqrt(nr/ns) << std::endl;
else
std::cout<<GridLogMessage<< "SchurRedBlackBase solver true unprec resid "<<std::sqrt(nr/ns) << std::endl;
std::cout<<GridLogMessage << "SchurRedBlackBase solver true unprec resid "<< std::sqrt(nr/ns) << std::endl;
} else {
std::cout << GridLogMessage << "SchurRedBlackBase Guess subtracted after solve." << std::endl;
}
@@ -311,7 +293,6 @@ namespace Grid {
/////////////////////////////////////////////////////////////
// Override in derived.
/////////////////////////////////////////////////////////////
virtual bool adjoint(void) { return false; }
virtual void RedBlackSource (Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o) =0;
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol) =0;
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o) =0;
@@ -665,127 +646,6 @@ namespace Grid {
this->_HermitianRBSolver(_OpEO, src_o, sol_o);
}
};
/*
* Red black Schur decomposition
*
* M = (Mee Meo) = (1 0 ) (Mee 0 ) (1 Mee^{-1} Meo)
* (Moe Moo) (Moe Mee^-1 1 ) (0 Moo-Moe Mee^-1 Meo) (0 1 )
* = L D U
*
* L^-1 = (1 0 )
* (-MoeMee^{-1} 1 )
* L^{dag} = ( 1 Mee^{-dag} Moe^{dag} )
* ( 0 1 )
*
* U^-1 = (1 -Mee^{-1} Meo)
* (0 1 )
* U^{dag} = ( 1 0)
* (Meo^dag Mee^{-dag} 1)
* U^{-dag} = ( 1 0)
* (-Meo^dag Mee^{-dag} 1)
*
*
***********************
* M^dag psi = eta
***********************
*
* Really for Mobius: (Wilson - easier to just use gamma 5 hermiticity)
*
* Mdag psi = Udag Ddag Ldag psi = eta
*
* U^{-dag} = ( 1 0)
* (-Meo^dag Mee^{-dag} 1)
*
*
* i) D^dag phi = (U^{-dag} eta)
* eta'_e = eta_e
* eta'_o = (eta_o - Meo^dag Mee^{-dag} eta_e)
*
* phi_o = D_oo^-dag eta'_o = D_oo^-dag (eta_o - Meo^dag Mee^{-dag} eta_e)
*
* phi_e = D_ee^-dag eta'_e = D_ee^-dag eta_e
*
* Solve:
*
* D_oo D_oo^dag phi_o = D_oo (eta_o - Meo^dag Mee^{-dag} eta_e)
*
* ii)
* phi = L^dag psi => psi = L^-dag phi.
*
* L^{-dag} = ( 1 -Mee^{-dag} Moe^{dag} )
* ( 0 1 )
*
* => sol_e = M_ee^-dag * ( src_e - Moe^dag phi_o )...
* => sol_o = phi_o
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Site diagonal has Mooee on it, but solve the Adjoint system
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SchurRedBlackDiagMooeeDagSolve : public SchurRedBlackBase<Field> {
public:
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
virtual bool adjoint(void) { return true; }
SchurRedBlackDiagMooeeDagSolve(OperatorFunction<Field> &HermitianRBSolver,
const bool initSubGuess = false,
const bool _solnAsInitGuess = false)
: SchurRedBlackBase<Field> (HermitianRBSolver,initSubGuess,_solnAsInitGuess) {};
//////////////////////////////////////////////////////
// Override RedBlack specialisation
//////////////////////////////////////////////////////
virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
Field tmp(grid);
Field Mtmp(grid);
pickCheckerboard(Even,src_e,src);
pickCheckerboard(Odd ,src_o,src);
/////////////////////////////////////////////////////
// src_o = (source_o - Moe^dag MeeInvDag source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInvDag(src_e,tmp); assert( tmp.Checkerboard() ==Even);
_Matrix.MeooeDag (tmp,Mtmp); assert( Mtmp.Checkerboard() ==Odd);
tmp=src_o-Mtmp; assert( tmp.Checkerboard() ==Odd);
// get the right Mpc
SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
_HermOpEO.Mpc(tmp,src_o); assert(src_o.Checkerboard() ==Odd);
}
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
{
SchurDiagMooeeDagOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
};
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
{
SchurDiagMooeeDagOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
}
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
Field sol_e(grid);
Field tmp(grid);
///////////////////////////////////////////////////
// sol_e = M_ee^-dag * ( src_e - Moe^dag phi_o )...
// sol_o = phi_o
///////////////////////////////////////////////////
_Matrix.MeooeDag(sol_o,tmp); assert(tmp.Checkerboard()==Even);
tmp = src_e-tmp; assert(tmp.Checkerboard()==Even);
_Matrix.MooeeInvDag(tmp,sol_e); assert(sol_e.Checkerboard()==Even);
setCheckerboard(sol,sol_e); assert( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_o); assert( sol_o.Checkerboard() ==Odd );
}
};
}
#endif

View File

@@ -159,7 +159,6 @@ void MemoryManager::Init(void)
char * str;
int Nc;
int NcS;
str= getenv("GRID_ALLOC_NCACHE_LARGE");
if ( str ) {

View File

@@ -170,6 +170,7 @@ private:
public:
static void Print(void);
static void PrintState( void* CpuPtr);
static int isOpen (void* CpuPtr);
static void ViewClose(void* CpuPtr,ViewMode mode);
static void *ViewOpen (void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);

View File

@@ -474,6 +474,32 @@ int MemoryManager::isOpen (void* _CpuPtr)
}
}
void MemoryManager::PrintState(void* _CpuPtr)
{
uint64_t CpuPtr = (uint64_t)_CpuPtr;
if ( EntryPresent(CpuPtr) ){
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
std::string str;
if ( AccCache.state==Empty ) str = std::string("Empty");
if ( AccCache.state==CpuDirty ) str = std::string("CpuDirty");
if ( AccCache.state==AccDirty ) str = std::string("AccDirty");
if ( AccCache.state==Consistent)str = std::string("Consistent");
if ( AccCache.state==EvictNext) str = std::string("EvictNext");
std::cout << GridLogMessage << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl;
std::cout << GridLogMessage << "0x"<<std::hex<<AccCache.CpuPtr<<std::dec
<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
<< "\t" << AccCache.cpuLock
<< "\t" << AccCache.accLock
<< "\t" << AccCache.LRU_valid<<std::endl;
} else {
std::cout << GridLogMessage << "No Entry in AccCache table." << std::endl;
}
}
NAMESPACE_END(Grid);
#endif

View File

@@ -16,6 +16,10 @@ uint64_t MemoryManager::DeviceToHostXfer;
void MemoryManager::ViewClose(void* AccPtr,ViewMode mode){};
void *MemoryManager::ViewOpen(void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint){ return CpuPtr; };
int MemoryManager::isOpen (void* CpuPtr) { return 0;}
void MemoryManager::PrintState(void* CpuPtr)
{
std::cout << GridLogMessage << "Host<->Device memory movement not currently managed by Grid." << std::endl;
};
void MemoryManager::Print(void){};
void MemoryManager::NotifyDeletion(void *ptr){};

View File

@@ -388,8 +388,8 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
// TODO : make a OMP loop on CPU, call threaded bcopy
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
assert(shm!=NULL);
// std::cout <<"acceleratorCopyDeviceToDeviceAsynch"<< std::endl;
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,bytes);
acceleratorCopySynchronise(); // MPI prob slower
}
if ( CommunicatorPolicy == CommunicatorPolicySequential ) {
@@ -400,6 +400,9 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
}
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
{
// std::cout << "Copy Synchronised\n"<<std::endl;
acceleratorCopySynchronise();
int nreq=list.size();
if (nreq==0) return;

View File

@@ -88,6 +88,13 @@ public:
LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this),mode);
accessor.ViewClose();
}
// Helper function to print the state of this object in the AccCache
void PrintCacheState(void)
{
MemoryManager::PrintState(this->_odata);
}
/////////////////////////////////////////////////////////////////////////////////
// Return a view object that may be dereferenced in site loops.
// The view is trivially copy constructible and may be copied to an accelerator device

View File

@@ -29,19 +29,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
template<class vobj> void DumpSliceNorm(std::string s,Lattice<vobj> &f,int mu=-1)
{
auto ff = localNorm2(f);
if ( mu==-1 ) mu = f.Grid()->Nd()-1;
typedef typename vobj::tensor_reduced normtype;
typedef typename normtype::scalar_object scalar;
std::vector<scalar> sff;
sliceSum(ff,sff,mu);
for(int t=0;t<sff.size();t++){
std::cout << s<<" "<<t<<" "<<sff[t]<<std::endl;
}
}
template<class vobj> uint32_t crc(Lattice<vobj> & buf)
{
autoView( buf_v , buf, CpuRead);

View File

@@ -42,7 +42,6 @@ void getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator
std::cout << GridLogDebug << "\twarpSize = " << warpSize << std::endl;
std::cout << GridLogDebug << "\tsharedMemPerBlock = " << sharedMemPerBlock << std::endl;
std::cout << GridLogDebug << "\tmaxThreadsPerBlock = " << maxThreadsPerBlock << std::endl;
std::cout << GridLogDebug << "\tmaxThreadsPerBlock = " << warpSize << std::endl;
std::cout << GridLogDebug << "\tmultiProcessorCount = " << multiProcessorCount << std::endl;
if (warpSize != WARP_SIZE) {
@@ -52,6 +51,10 @@ void getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator
// let the number of threads in a block be a multiple of 2, starting from warpSize
threads = warpSize;
if ( threads*sizeofsobj > sharedMemPerBlock ) {
std::cout << GridLogError << "The object is too large for the shared memory." << std::endl;
exit(EXIT_FAILURE);
}
while( 2*threads*sizeofsobj < sharedMemPerBlock && 2*threads <= maxThreadsPerBlock ) threads *= 2;
// keep all the streaming multiprocessors busy
blocks = nextPow2(multiProcessorCount);

View File

@@ -143,8 +143,8 @@ public:
std::vector<RngEngine> _generators;
std::vector<std::uniform_real_distribution<RealD> > _uniform;
std::vector<Grid::gaussian_distribution<RealD> > _gaussian;
std::vector<std::discrete_distribution<int32_t> > _bernoulli;
std::vector<Grid::gaussian_distribution<RealD> > _gaussian;
// std::vector<std::discrete_distribution<int32_t> > _bernoulli;
std::vector<std::uniform_int_distribution<uint32_t> > _uid;
///////////////////////
@@ -245,7 +245,7 @@ public:
_generators.resize(1);
_uniform.resize(1,std::uniform_real_distribution<RealD>{0,1});
_gaussian.resize(1,gaussian_distribution<RealD>(0.0,1.0) );
_bernoulli.resize(1,std::discrete_distribution<int32_t>{1,1});
// _bernoulli.resize(1,std::discrete_distribution<int32_t>{1,1});
_uid.resize(1,std::uniform_int_distribution<uint32_t>() );
}
@@ -359,7 +359,7 @@ public:
_generators.resize(_vol);
_uniform.resize(_vol,std::uniform_real_distribution<RealD>{0,1});
_gaussian.resize(_vol,gaussian_distribution<RealD>(0.0,1.0) );
_bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
// _bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
_uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
}
@@ -516,11 +516,11 @@ public:
template <class vobj> inline void random(GridParallelRNG &rng,Lattice<vobj> &l) { rng.fill(l,rng._uniform); }
template <class vobj> inline void gaussian(GridParallelRNG &rng,Lattice<vobj> &l) { rng.fill(l,rng._gaussian); }
template <class vobj> inline void bernoulli(GridParallelRNG &rng,Lattice<vobj> &l){ rng.fill(l,rng._bernoulli);}
//template <class vobj> inline void bernoulli(GridParallelRNG &rng,Lattice<vobj> &l){ rng.fill(l,rng._bernoulli);}
template <class sobj> inline void random(GridSerialRNG &rng,sobj &l) { rng.fill(l,rng._uniform ); }
template <class sobj> inline void gaussian(GridSerialRNG &rng,sobj &l) { rng.fill(l,rng._gaussian ); }
template <class sobj> inline void bernoulli(GridSerialRNG &rng,sobj &l){ rng.fill(l,rng._bernoulli); }
//template <class sobj> inline void bernoulli(GridSerialRNG &rng,sobj &l){ rng.fill(l,rng._bernoulli); }
NAMESPACE_END(Grid);
#endif

View File

@@ -85,6 +85,76 @@ template<class vobj> inline void setCheckerboard(Lattice<vobj> &full,const Latti
});
}
template<class vobj> inline void acceleratorPickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full, int checker_dim_half=0)
{
half.Checkerboard() = cb;
autoView(half_v, half, AcceleratorWrite);
autoView(full_v, full, AcceleratorRead);
Coordinate rdim_full = full.Grid()->_rdimensions;
Coordinate rdim_half = half.Grid()->_rdimensions;
unsigned long ndim_half = half.Grid()->_ndimension;
Coordinate checker_dim_mask_half = half.Grid()->_checker_dim_mask;
Coordinate ostride_half = half.Grid()->_ostride;
accelerator_for(ss, full.Grid()->oSites(),full.Grid()->Nsimd(),{
Coordinate coor;
int cbos;
int linear=0;
Lexicographic::CoorFromIndex(coor,ss,rdim_full);
assert(coor.size()==ndim_half);
for(int d=0;d<ndim_half;d++){
if(checker_dim_mask_half[d]) linear += coor[d];
}
cbos = (linear&0x1);
if (cbos==cb) {
int ssh=0;
for(int d=0;d<ndim_half;d++) {
if (d == checker_dim_half) ssh += ostride_half[d] * ((coor[d] / 2) % rdim_half[d]);
else ssh += ostride_half[d] * (coor[d] % rdim_half[d]);
}
coalescedWrite(half_v[ssh],full_v(ss));
}
});
}
template<class vobj> inline void acceleratorSetCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half, int checker_dim_half=0)
{
int cb = half.Checkerboard();
autoView(half_v , half, AcceleratorRead);
autoView(full_v , full, AcceleratorWrite);
Coordinate rdim_full = full.Grid()->_rdimensions;
Coordinate rdim_half = half.Grid()->_rdimensions;
unsigned long ndim_half = half.Grid()->_ndimension;
Coordinate checker_dim_mask_half = half.Grid()->_checker_dim_mask;
Coordinate ostride_half = half.Grid()->_ostride;
accelerator_for(ss,full.Grid()->oSites(),full.Grid()->Nsimd(),{
Coordinate coor;
int cbos;
int linear=0;
Lexicographic::CoorFromIndex(coor,ss,rdim_full);
assert(coor.size()==ndim_half);
for(int d=0;d<ndim_half;d++){
if(checker_dim_mask_half[d]) linear += coor[d];
}
cbos = (linear&0x1);
if (cbos==cb) {
int ssh=0;
for(int d=0;d<ndim_half;d++){
if (d == checker_dim_half) ssh += ostride_half[d] * ((coor[d] / 2) % rdim_half[d]);
else ssh += ostride_half[d] * (coor[d] % rdim_half[d]);
}
coalescedWrite(full_v[ss],half_v(ssh));
}
});
}
////////////////////////////////////////////////////////////////////////////////////////////
// Flexible Type Conversion for internal promotion to double as well as graceful
// treatment of scalar-compatible types

View File

@@ -576,6 +576,8 @@ class ScidacReader : public GridLimeReader {
std::string rec_name(ILDG_BINARY_DATA);
while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) {
if ( !strncmp(limeReaderType(LimeR), rec_name.c_str(),strlen(rec_name.c_str()) ) ) {
// in principle should do the line below, but that breaks backard compatibility with old data
// skipPastObjectRecord(std::string(GRID_FIELD_NORM));
skipPastObjectRecord(std::string(SCIDAC_CHECKSUM));
return;
}

View File

@@ -104,7 +104,6 @@ template<typename vtype> using iSpinMatrix = iScalar<iMatrix<iSca
template<typename vtype> using iColourMatrix = iScalar<iScalar<iMatrix<vtype, Nc> > > ;
template<typename vtype> using iSpinColourMatrix = iScalar<iMatrix<iMatrix<vtype, Nc>, Ns> >;
template<typename vtype> using iLorentzColourMatrix = iVector<iScalar<iMatrix<vtype, Nc> >, Nd > ;
template<typename vtype> using iLorentzVector = iVector<iScalar<iScalar<vtype> >, Nd > ;
template<typename vtype> using iDoubleStoredColourMatrix = iVector<iScalar<iMatrix<vtype, Nc> >, Nds > ;
template<typename vtype> using iSpinVector = iScalar<iVector<iScalar<vtype>, Ns> >;
template<typename vtype> using iColourVector = iScalar<iScalar<iVector<vtype, Nc> > >;
@@ -164,16 +163,7 @@ typedef iSpinColourSpinColourMatrix<vComplex > vSpinColourSpinColourMatrix;
typedef iSpinColourSpinColourMatrix<vComplexF> vSpinColourSpinColourMatrixF;
typedef iSpinColourSpinColourMatrix<vComplexD> vSpinColourSpinColourMatrixD;
// LorentzVector
typedef iLorentzVector<Complex > LorentzVector;
typedef iLorentzVector<ComplexF > LorentzVectorF;
typedef iLorentzVector<ComplexD > LorentzVectorD;
typedef iLorentzVector<vComplex > vLorentzVector;
typedef iLorentzVector<vComplexF> vLorentzVectorF;
typedef iLorentzVector<vComplexD> vLorentzVectorD;
// LorentzColourMatrix
// LorentzColour
typedef iLorentzColourMatrix<Complex > LorentzColourMatrix;
typedef iLorentzColourMatrix<ComplexF > LorentzColourMatrixF;
typedef iLorentzColourMatrix<ComplexD > LorentzColourMatrixD;
@@ -298,10 +288,6 @@ typedef Lattice<vLorentzColourMatrix> LatticeLorentzColourMatrix;
typedef Lattice<vLorentzColourMatrixF> LatticeLorentzColourMatrixF;
typedef Lattice<vLorentzColourMatrixD> LatticeLorentzColourMatrixD;
typedef Lattice<vLorentzVector> LatticeLorentzVector;
typedef Lattice<vLorentzVectorF> LatticeLorentzVectorF;
typedef Lattice<vLorentzVectorD> LatticeLorentzVectorD;
// DoubleStored gauge field
typedef Lattice<vDoubleStoredColourMatrix> LatticeDoubleStoredColourMatrix;
typedef Lattice<vDoubleStoredColourMatrixF> LatticeDoubleStoredColourMatrixF;

View File

@@ -30,7 +30,8 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#ifndef GRID_QCD_ACTION_H
#define GRID_QCD_ACTION_H
////////////////////////////////////////////
// Abstract base interface
@@ -50,4 +51,4 @@ NAMESPACE_CHECK(Fermion);
#include <Grid/qcd/action/pseudofermion/PseudoFermion.h>
NAMESPACE_CHECK(PseudoFermion);
#endif

View File

@@ -40,29 +40,6 @@ class Action
public:
bool is_smeared = false;
RealD deriv_norm_sum;
RealD deriv_max_sum;
int deriv_num;
RealD deriv_us;
RealD S_us;
RealD refresh_us;
void reset_timer(void) {
deriv_us = S_us = refresh_us = 0.0;
deriv_num=0;
deriv_norm_sum = deriv_max_sum=0.0;
}
void deriv_log(RealD nrm, RealD max) { deriv_max_sum+=max; deriv_norm_sum+=nrm; deriv_num++;}
RealD deriv_max_average(void) { return deriv_max_sum/deriv_num; };
RealD deriv_norm_average(void) { return deriv_norm_sum/deriv_num; };
RealD deriv_timer(void) { return deriv_us; };
RealD S_timer(void) { return deriv_us; };
RealD refresh_timer(void) { return deriv_us; };
void deriv_timer_start(void) { deriv_us-=usecond(); }
void deriv_timer_stop(void) { deriv_us+=usecond(); }
void refresh_timer_start(void) { refresh_us-=usecond(); }
void refresh_timer_stop(void) { refresh_us+=usecond(); }
void S_timer_start(void) { S_us-=usecond(); }
void S_timer_stop(void) { S_us+=usecond(); }
// Heatbath?
virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) = 0; // refresh pseudofermions
virtual RealD S(const GaugeField& U) = 0; // evaluate the action

View File

@@ -58,8 +58,6 @@ NAMESPACE_CHECK(Scalar);
////////////////////////////////////////////
// Utility functions
////////////////////////////////////////////
#include <Grid/qcd/action/domains/Domains.h>
#include <Grid/qcd/utils/Metric.h>
NAMESPACE_CHECK(Metric);
#include <Grid/qcd/utils/CovariantLaplacian.h>

View File

@@ -38,32 +38,27 @@ NAMESPACE_BEGIN(Grid);
struct GparityWilsonImplParams {
Coordinate twists; //Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction.
//mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
bool locally_periodic;
GparityWilsonImplParams() : twists(Nd, 0), locally_periodic(false) {};
GparityWilsonImplParams() : twists(Nd, 0) {};
};
struct WilsonImplParams {
bool overlapCommsCompute;
bool locally_periodic;
AcceleratorVector<Real,Nd> twist_n_2pi_L;
AcceleratorVector<Complex,Nd> boundary_phases;
WilsonImplParams() {
boundary_phases.resize(Nd, 1.0);
twist_n_2pi_L.resize(Nd, 0.0);
locally_periodic = false;
};
WilsonImplParams(const AcceleratorVector<Complex,Nd> phi) : boundary_phases(phi), overlapCommsCompute(false) {
twist_n_2pi_L.resize(Nd, 0.0);
locally_periodic = false;
}
};
struct StaggeredImplParams {
bool locally_periodic;
StaggeredImplParams() : locally_periodic(false) {};
StaggeredImplParams() {};
};
struct OneFlavourRationalParams : Serializable {
struct OneFlavourRationalParams : Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(OneFlavourRationalParams,
RealD, lo,
RealD, hi,
@@ -71,7 +66,8 @@ struct OneFlavourRationalParams : Serializable {
RealD, tolerance,
int, degree,
int, precision,
int, BoundsCheckFreq);
int, BoundsCheckFreq,
RealD, BoundsCheckTol);
// MaxIter and tolerance, vectors??
@@ -82,14 +78,16 @@ struct OneFlavourRationalParams : Serializable {
RealD tol = 1.0e-8,
int _degree = 10,
int _precision = 64,
int _BoundsCheckFreq=20)
int _BoundsCheckFreq=20,
double _BoundsCheckTol=1e-6)
: lo(_lo),
hi(_hi),
MaxIter(_maxit),
tolerance(tol),
degree(_degree),
precision(_precision),
BoundsCheckFreq(_BoundsCheckFreq){};
BoundsCheckFreq(_BoundsCheckFreq),
BoundsCheckTol(_BoundsCheckTol){};
};

View File

@@ -1,52 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/hmc/DDHMC.h
Copyright (C) 2021
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Christopher Kelly
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////
// DDHMC filter with sub-block size B[mu]
////////////////////////////////////////////////////
template<typename MomentaField>
struct DDHMCFilter: public MomentumFilterBase<MomentaField>
{
Coordinate Block;
int Width;
DDHMCFilter(const Coordinate &_Block): Block(_Block) {}
void applyFilter(MomentaField &P) const override
{
DomainDecomposition Domains(Block);
Domains.ProjectDDHMC(P);
}
};
NAMESPACE_END(Grid);

View File

@@ -1,98 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/momentum/DirichletFilter.h
Copyright (C) 2021
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
////////////////////////////////////////////////////
// Dirichlet filter with sub-block size B[mu]
////////////////////////////////////////////////////
#pragma once
#include <Grid/qcd/action/domains/DomainDecomposition.h>
NAMESPACE_BEGIN(Grid);
template<typename MomentaField>
struct DirichletFilter: public MomentumFilterBase<MomentaField>
{
Coordinate Block;
DirichletFilter(const Coordinate &_Block): Block(_Block) {}
// Edge detect using domain projectors
void applyFilter (MomentaField &U) const override
{
DomainDecomposition Domains(Block);
GridBase *grid = U.Grid();
LatticeInteger coor(grid);
LatticeInteger face(grid);
LatticeInteger one(grid); one = 1;
LatticeInteger zero(grid); zero = 0;
LatticeInteger omega(grid);
LatticeInteger omegabar(grid);
LatticeInteger tmp(grid);
omega=one; Domains.ProjectDomain(omega,0);
omegabar=one; Domains.ProjectDomain(omegabar,1);
LatticeInteger nface(grid); nface=Zero();
MomentaField projected(grid); projected=Zero();
typedef decltype(PeekIndex<LorentzIndex>(U,0)) MomentaLinkField;
MomentaLinkField Umu(grid);
MomentaLinkField zz(grid); zz=Zero();
int dims = grid->Nd();
Coordinate Global=grid->GlobalDimensions();
assert(dims==Nd);
for(int mu=0;mu<Nd;mu++){
if ( Block[mu]!=0 ) {
Umu = PeekIndex<LorentzIndex>(U,mu);
// Upper face
tmp = Cshift(omegabar,mu,1);
tmp = tmp + omega;
face = where(tmp == Integer(2),one,zero );
tmp = Cshift(omega,mu,1);
tmp = tmp + omegabar;
face = where(tmp == Integer(2),one,face );
Umu = where(face,zz,Umu);
PokeIndex<LorentzIndex>(U, Umu, mu);
}
}
}
};
NAMESPACE_END(Grid);

View File

@@ -1,187 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/domains/DomainDecomposition.h
Copyright (C) 2021
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
////////////////////////////////////////////////////
// Dirichlet filter with sub-block size B[mu]
////////////////////////////////////////////////////
#pragma once
NAMESPACE_BEGIN(Grid);
struct DomainDecomposition
{
Coordinate Block;
static constexpr RealD factor = 0.6;
DomainDecomposition(const Coordinate &_Block): Block(_Block){ assert(Block.size()==Nd);};
template<class Field>
void ProjectDomain(Field &f,Integer domain)
{
GridBase *grid = f.Grid();
int dims = grid->Nd();
int isDWF= (dims==Nd+1);
assert((dims==Nd)||(dims==Nd+1));
Field zz(grid); zz = Zero();
LatticeInteger coor(grid);
LatticeInteger domaincoor(grid);
LatticeInteger mask(grid); mask = Integer(1);
LatticeInteger zi(grid); zi = Integer(0);
for(int d=0;d<Nd;d++){
Integer B= Block[d];
if ( B ) {
LatticeCoordinate(coor,d+isDWF);
domaincoor = mod(coor,B);
mask = where(domaincoor==Integer(0),zi,mask);
mask = where(domaincoor==Integer(B-1),zi,mask);
}
}
if ( !domain )
f = where(mask==Integer(1),f,zz);
else
f = where(mask==Integer(0),f,zz);
};
template<class GaugeField>
void ProjectDDHMC(GaugeField &U)
{
GridBase *grid = U.Grid();
Coordinate Global=grid->GlobalDimensions();
GaugeField zzz(grid); zzz = Zero();
LatticeInteger coor(grid);
GaugeField Uorg(grid); Uorg = U;
auto zzz_mu = PeekIndex<LorentzIndex>(zzz,0);
////////////////////////////////////////////////////
// Zero BDY layers
////////////////////////////////////////////////////
for(int mu=0;mu<Nd;mu++) {
Integer B1 = Block[mu];
if ( B1 && (B1 <= Global[mu]) ) {
LatticeCoordinate(coor,mu);
////////////////////////////////
// OmegaBar - zero all links contained in slice B-1,0 and
// mu links connecting to Omega
////////////////////////////////
U = where(mod(coor,B1)==Integer(B1-1),zzz,U);
U = where(mod(coor,B1)==Integer(0) ,zzz,U);
auto U_mu = PeekIndex<LorentzIndex>(U,mu);
U_mu = where(mod(coor,B1)==Integer(B1-2),zzz_mu,U_mu);
PokeIndex<LorentzIndex>(U, U_mu, mu);
}
}
////////////////////////////////////////////
// Omega interior slow the evolution
// Tricky as we need to take the smallest of values imposed by each cut
// Do them in order or largest to smallest and smallest writes last
////////////////////////////////////////////
RealD f= factor;
#if 0
for(int mu=0;mu<Nd;mu++) {
Integer B1 = Block[mu];
if ( B1 && (B1 <= Global[mu]) ) {
auto U_mu = PeekIndex<LorentzIndex>(U,mu);
auto Uorg_mu= PeekIndex<LorentzIndex>(Uorg,mu);
// In the plane
U = where(mod(coor,B1)==Integer(B1-5),Uorg*f,U);
U = where(mod(coor,B1)==Integer(4) ,Uorg*f,U);
// Perp links
U_mu = where(mod(coor,B1)==Integer(B1-6),Uorg_mu*f,U_mu);
U_mu = where(mod(coor,B1)==Integer(4) ,Uorg_mu*f,U_mu);
PokeIndex<LorentzIndex>(U, U_mu, mu);
}
}
#endif
for(int mu=0;mu<Nd;mu++) {
Integer B1 = Block[mu];
if ( B1 && (B1 <= Global[mu]) ) {
auto U_mu = PeekIndex<LorentzIndex>(U,mu);
auto Uorg_mu= PeekIndex<LorentzIndex>(Uorg,mu);
// In the plane
U = where(mod(coor,B1)==Integer(B1-4),Uorg*f*f,U);
U = where(mod(coor,B1)==Integer(3) ,Uorg*f*f,U);
// Perp links
U_mu = where(mod(coor,B1)==Integer(B1-5),Uorg_mu*f*f,U_mu);
U_mu = where(mod(coor,B1)==Integer(3) ,Uorg_mu*f*f,U_mu);
PokeIndex<LorentzIndex>(U, U_mu, mu);
}
}
for(int mu=0;mu<Nd;mu++) {
Integer B1 = Block[mu];
if ( B1 && (B1 <= Global[mu]) ) {
auto U_mu = PeekIndex<LorentzIndex>(U,mu);
auto Uorg_mu= PeekIndex<LorentzIndex>(Uorg,mu);
// In the plane
U = where(mod(coor,B1)==Integer(B1-3),Uorg*f*f*f,U);
U = where(mod(coor,B1)==Integer(2) ,Uorg*f*f*f,U);
// Perp links
U_mu = where(mod(coor,B1)==Integer(B1-4),Uorg_mu*f*f*f,U_mu);
U_mu = where(mod(coor,B1)==Integer(2) ,Uorg_mu*f*f*f,U_mu);
PokeIndex<LorentzIndex>(U, U_mu, mu);
}
}
for(int mu=0;mu<Nd;mu++) {
Integer B1 = Block[mu];
if ( B1 && (B1 <= Global[mu]) ) {
auto U_mu = PeekIndex<LorentzIndex>(U,mu);
auto Uorg_mu= PeekIndex<LorentzIndex>(Uorg,mu);
// In the plane
U = where(mod(coor,B1)==Integer(B1-2),zzz,U);
U = where(mod(coor,B1)==Integer(1) ,zzz,U);
// Perp links
U_mu = where(mod(coor,B1)==Integer(B1-3),Uorg_mu*f*f*f*f,U_mu);
U_mu = where(mod(coor,B1)==Integer(1) ,Uorg_mu*f*f*f*f,U_mu);
PokeIndex<LorentzIndex>(U, U_mu, mu);
}
}
}
};
NAMESPACE_END(Grid);

View File

@@ -1,39 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/momentum/Domains.h
Copyright (C) 2021
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
////////////////////////////////////////////////////
// Dirichlet filter with sub-block size B[mu]
////////////////////////////////////////////////////
#pragma once
#include <Grid/qcd/action/domains/DomainDecomposition.h>
#include <Grid/qcd/action/domains/MomentumFilter.h>
#include <Grid/qcd/action/domains/DirichletFilter.h>
#include <Grid/qcd/action/domains/DDHMCFilter.h>

View File

@@ -60,8 +60,6 @@ public:
///////////////////////////////////////////////////////////////
virtual void Dminus(const FermionField &psi, FermionField &chi);
virtual void DminusDag(const FermionField &psi, FermionField &chi);
virtual void ImportFourDimPseudoFermion(const FermionField &input,FermionField &imported);
virtual void ExportFourDimPseudoFermion(const FermionField &solution,FermionField &exported);
virtual void ExportPhysicalFermionSolution(const FermionField &solution5d,FermionField &exported4d);
virtual void ExportPhysicalFermionSource(const FermionField &solution5d, FermionField &exported4d);
virtual void ImportPhysicalFermionSource(const FermionField &input4d,FermionField &imported5d);

View File

@@ -0,0 +1,240 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/CompactWilsonCloverFermion.h
Copyright (C) 2020 - 2022
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
Author: Nils Meyer <nils.meyer@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/qcd/action/fermion/WilsonCloverTypes.h>
#include <Grid/qcd/action/fermion/WilsonCloverHelpers.h>
NAMESPACE_BEGIN(Grid);
// see Grid/qcd/action/fermion/WilsonCloverFermion.h for description
//
// Modifications done here:
//
// Original: clover term = 12x12 matrix per site
//
// But: Only two diagonal 6x6 hermitian blocks are non-zero (also true for original, verified by running)
// Sufficient to store/transfer only the real parts of the diagonal and one triangular part
// 2 * (6 + 15 * 2) = 72 real or 36 complex words to be stored/transfered
//
// Here: Above but diagonal as complex numbers, i.e., need to store/transfer
// 2 * (6 * 2 + 15 * 2) = 84 real or 42 complex words
//
// Words per site and improvement compared to original (combined with the input and output spinors):
//
// - Original: 2*12 + 12*12 = 168 words -> 1.00 x less
// - Minimal: 2*12 + 36 = 60 words -> 2.80 x less
// - Here: 2*12 + 42 = 66 words -> 2.55 x less
//
// These improvements directly translate to wall-clock time
//
// Data layout:
//
// - diagonal and triangle part as separate lattice fields,
// this was faster than as 1 combined field on all tested machines
// - diagonal: as expected
// - triangle: store upper right triangle in row major order
// - graphical:
// 0 1 2 3 4
// 5 6 7 8
// 9 10 11 = upper right triangle indices
// 12 13
// 14
// 0
// 1
// 2
// 3 = diagonal indices
// 4
// 5
// 0
// 1 5
// 2 6 9 = lower left triangle indices
// 3 7 10 12
// 4 8 11 13 14
//
// Impact on total memory consumption:
// - Original: (2 * 1 + 8 * 1/2) 12x12 matrices = 6 12x12 matrices = 864 complex words per site
// - Here: (2 * 1 + 4 * 1/2) diagonal parts = 4 diagonal parts = 24 complex words per site
// + (2 * 1 + 4 * 1/2) triangle parts = 4 triangle parts = 60 complex words per site
// = 84 complex words per site
template<class Impl>
class CompactWilsonCloverFermion : public WilsonFermion<Impl>,
public WilsonCloverHelpers<Impl>,
public CompactWilsonCloverHelpers<Impl> {
/////////////////////////////////////////////
// Sizes
/////////////////////////////////////////////
public:
INHERIT_COMPACT_CLOVER_SIZES(Impl);
/////////////////////////////////////////////
// Type definitions
/////////////////////////////////////////////
public:
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
INHERIT_COMPACT_CLOVER_TYPES(Impl);
typedef WilsonFermion<Impl> WilsonBase;
typedef WilsonCloverHelpers<Impl> Helpers;
typedef CompactWilsonCloverHelpers<Impl> CompactHelpers;
/////////////////////////////////////////////
// Constructors
/////////////////////////////////////////////
public:
CompactWilsonCloverFermion(GaugeField& _Umu,
GridCartesian& Fgrid,
GridRedBlackCartesian& Hgrid,
const RealD _mass,
const RealD _csw_r = 0.0,
const RealD _csw_t = 0.0,
const RealD _cF = 1.0,
const WilsonAnisotropyCoefficients& clover_anisotropy = WilsonAnisotropyCoefficients(),
const ImplParams& impl_p = ImplParams());
/////////////////////////////////////////////
// Member functions (implementing interface)
/////////////////////////////////////////////
public:
virtual void Instantiatable() {};
int ConstEE() override { return 0; };
int isTrivialEE() override { return 0; };
void Dhop(const FermionField& in, FermionField& out, int dag) override;
void DhopOE(const FermionField& in, FermionField& out, int dag) override;
void DhopEO(const FermionField& in, FermionField& out, int dag) override;
void DhopDir(const FermionField& in, FermionField& out, int dir, int disp) override;
void DhopDirAll(const FermionField& in, std::vector<FermionField>& out) /* override */;
void M(const FermionField& in, FermionField& out) override;
void Mdag(const FermionField& in, FermionField& out) override;
void Meooe(const FermionField& in, FermionField& out) override;
void MeooeDag(const FermionField& in, FermionField& out) override;
void Mooee(const FermionField& in, FermionField& out) override;
void MooeeDag(const FermionField& in, FermionField& out) override;
void MooeeInv(const FermionField& in, FermionField& out) override;
void MooeeInvDag(const FermionField& in, FermionField& out) override;
void Mdir(const FermionField& in, FermionField& out, int dir, int disp) override;
void MdirAll(const FermionField& in, std::vector<FermionField>& out) override;
void MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) override;
void MooDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) override;
void MeeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) override;
/////////////////////////////////////////////
// Member functions (internals)
/////////////////////////////////////////////
void MooeeInternal(const FermionField& in,
FermionField& out,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle);
/////////////////////////////////////////////
// Helpers
/////////////////////////////////////////////
void ImportGauge(const GaugeField& _Umu) override;
/////////////////////////////////////////////
// Helpers
/////////////////////////////////////////////
private:
template<class Field>
const MaskField* getCorrectMaskField(const Field &in) const {
if(in.Grid()->_isCheckerBoarded) {
if(in.Checkerboard() == Odd) {
return &this->BoundaryMaskOdd;
} else {
return &this->BoundaryMaskEven;
}
} else {
return &this->BoundaryMask;
}
}
template<class Field>
void ApplyBoundaryMask(Field& f) {
const MaskField* m = getCorrectMaskField(f); assert(m != nullptr);
assert(m != nullptr);
CompactHelpers::ApplyBoundaryMask(f, *m);
}
/////////////////////////////////////////////
// Member Data
/////////////////////////////////////////////
public:
RealD csw_r;
RealD csw_t;
RealD cF;
bool open_boundaries;
CloverDiagonalField Diagonal, DiagonalEven, DiagonalOdd;
CloverDiagonalField DiagonalInv, DiagonalInvEven, DiagonalInvOdd;
CloverTriangleField Triangle, TriangleEven, TriangleOdd;
CloverTriangleField TriangleInv, TriangleInvEven, TriangleInvOdd;
FermionField Tmp;
MaskField BoundaryMask, BoundaryMaskEven, BoundaryMaskOdd;
};
NAMESPACE_END(Grid);

View File

@@ -1,185 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/DirichletFermionOperator.h
Copyright (C) 2021
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////////////////
// Wrap a fermion operator in Dirichlet BC's at node boundary
////////////////////////////////////////////////////////////////
template<class Impl>
class DirichletFermionOperator : public FermionOperator<Impl>
{
public:
INHERIT_IMPL_TYPES(Impl);
// Data members
int CommsMode;
Coordinate Block;
DirichletFilter<GaugeField> Filter;
FermionOperator<Impl> & FermOp;
// Constructor / bespoke
DirichletFermionOperator(FermionOperator<Impl> & _FermOp, Coordinate &_Block)
: FermOp(_FermOp), Block(_Block), Filter(Block)
{
// Save what the comms mode should be under normal BCs
CommsMode = WilsonKernelsStatic::Comms;
assert((CommsMode == WilsonKernelsStatic::CommsAndCompute)
||(CommsMode == WilsonKernelsStatic::CommsThenCompute));
// Check the block size divides local lattice
GridBase *grid = FermOp.GaugeGrid();
int blocks_per_rank = 1;
Coordinate LocalDims = grid->LocalDimensions();
Coordinate GlobalDims= grid->GlobalDimensions();
assert(Block.size()==LocalDims.size());
for(int d=0;d<LocalDims.size();d++){
if (Block[d]&&(Block[d]<=GlobalDims[d])){
int r = LocalDims[d] % Block[d];
assert(r == 0);
blocks_per_rank *= (LocalDims[d] / Block[d]);
}
}
// Even blocks per node required // could be relaxed but inefficient use of hardware as idle nodes in boundary operator R
assert( blocks_per_rank != 0);
// Possible checks that SIMD lanes are used with full occupancy???
};
virtual ~DirichletFermionOperator(void) = default;
void DirichletOn(void) {
assert(WilsonKernelsStatic::Comms!= WilsonKernelsStatic::CommsDirichlet);
// WilsonKernelsStatic::Comms = WilsonKernelsStatic::CommsDirichlet;
}
void DirichletOff(void) {
// assert(WilsonKernelsStatic::Comms== WilsonKernelsStatic::CommsDirichlet);
// WilsonKernelsStatic::Comms = CommsMode;
}
// Implement the full interface
virtual FermionField &tmp(void) { return FermOp.tmp(); };
virtual GridBase *FermionGrid(void) { return FermOp.FermionGrid(); }
virtual GridBase *FermionRedBlackGrid(void) { return FermOp.FermionRedBlackGrid(); }
virtual GridBase *GaugeGrid(void) { return FermOp.GaugeGrid(); }
virtual GridBase *GaugeRedBlackGrid(void) { return FermOp.GaugeRedBlackGrid(); }
// override multiply
virtual void M (const FermionField &in, FermionField &out) { DirichletOn(); FermOp.M(in,out); DirichletOff(); };
virtual void Mdag (const FermionField &in, FermionField &out) { DirichletOn(); FermOp.Mdag(in,out); DirichletOff(); };
// half checkerboard operaions
virtual void Meooe (const FermionField &in, FermionField &out) { DirichletOn(); FermOp.Meooe(in,out); DirichletOff(); };
virtual void MeooeDag (const FermionField &in, FermionField &out) { DirichletOn(); FermOp.MeooeDag(in,out); DirichletOff(); };
virtual void Mooee (const FermionField &in, FermionField &out) { DirichletOn(); FermOp.Mooee(in,out); DirichletOff(); };
virtual void MooeeDag (const FermionField &in, FermionField &out) { DirichletOn(); FermOp.MooeeDag(in,out); DirichletOff(); };
virtual void MooeeInv (const FermionField &in, FermionField &out) { DirichletOn(); FermOp.MooeeInv(in,out); DirichletOff(); };
virtual void MooeeInvDag (const FermionField &in, FermionField &out) { DirichletOn(); FermOp.MooeeInvDag(in,out); DirichletOff(); };
// non-hermitian hopping term; half cb or both
virtual void Dhop (const FermionField &in, FermionField &out,int dag) { DirichletOn(); FermOp.Dhop(in,out,dag); DirichletOff(); };
virtual void DhopOE(const FermionField &in, FermionField &out,int dag) { DirichletOn(); FermOp.DhopOE(in,out,dag); DirichletOff(); };
virtual void DhopEO(const FermionField &in, FermionField &out,int dag) { DirichletOn(); FermOp.DhopEO(in,out,dag); DirichletOff(); };
virtual void DhopDir(const FermionField &in, FermionField &out,int dir,int disp) { DirichletOn(); FermOp.DhopDir(in,out,dir,disp); DirichletOff(); };
// force terms; five routines; default to Dhop on diagonal
virtual void MDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag){FermOp.MDeriv(mat,U,V,dag);};
virtual void MoeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){FermOp.MoeDeriv(mat,U,V,dag);};
virtual void MeoDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){FermOp.MeoDeriv(mat,U,V,dag);};
virtual void MooDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){FermOp.MooDeriv(mat,U,V,dag);};
virtual void MeeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){FermOp.MeeDeriv(mat,U,V,dag);};
virtual void DhopDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag){FermOp.DhopDeriv(mat,U,V,dag);};
virtual void DhopDerivEO(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){FermOp.DhopDerivEO(mat,U,V,dag);};
virtual void DhopDerivOE(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){FermOp.DhopDerivOE(mat,U,V,dag);};
virtual void Mdiag (const FermionField &in, FermionField &out) { Mooee(in,out);};
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp){FermOp.Mdir(in,out,dir,disp);};
virtual void MdirAll(const FermionField &in, std::vector<FermionField> &out) {FermOp.MdirAll(in,out);};
///////////////////////////////////////////////
// Updates gauge field during HMC
///////////////////////////////////////////////
DoubledGaugeField &GetDoubledGaugeField(void){ return FermOp.GetDoubledGaugeField(); };
DoubledGaugeField &GetDoubledGaugeFieldE(void){ return FermOp.GetDoubledGaugeFieldE(); };
DoubledGaugeField &GetDoubledGaugeFieldO(void){ return FermOp.GetDoubledGaugeFieldO(); };
virtual void ImportGauge(const GaugeField & _U)
{
GaugeField U = _U;
// Filter gauge field to apply Dirichlet
Filter.applyFilter(U);
FermOp.ImportGauge(U);
}
///////////////////////////////////////////////
// Physical field import/export
///////////////////////////////////////////////
virtual void Dminus(const FermionField &psi, FermionField &chi) { FermOp.Dminus(psi,chi); }
virtual void DminusDag(const FermionField &psi, FermionField &chi) { FermOp.DminusDag(psi,chi); }
virtual void ImportFourDimPseudoFermion(const FermionField &input,FermionField &imported) { FermOp.ImportFourDimPseudoFermion(input,imported);}
virtual void ExportFourDimPseudoFermion(const FermionField &solution,FermionField &exported){ FermOp.ExportFourDimPseudoFermion(solution,exported);}
virtual void ImportPhysicalFermionSource(const FermionField &input,FermionField &imported) { FermOp.ImportPhysicalFermionSource(input,imported);}
virtual void ImportUnphysicalFermion(const FermionField &input,FermionField &imported) { FermOp.ImportUnphysicalFermion(input,imported);}
virtual void ExportPhysicalFermionSolution(const FermionField &solution,FermionField &exported) {FermOp.ExportPhysicalFermionSolution(solution,exported);}
virtual void ExportPhysicalFermionSource(const FermionField &solution,FermionField &exported) {FermOp.ExportPhysicalFermionSource(solution,exported);}
//////////////////////////////////////////////////////////////////////
// Should never be used
//////////////////////////////////////////////////////////////////////
virtual void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) { assert(0);};
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary,std::vector<double> twist) {assert(0);}
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) { assert(0);}
virtual void ContractConservedCurrent(PropagatorField &q_in_1,
PropagatorField &q_in_2,
PropagatorField &q_out,
PropagatorField &phys_src,
Current curr_type,
unsigned int mu)
{assert(0);};
virtual void SeqConservedCurrent(PropagatorField &q_in,
PropagatorField &q_out,
PropagatorField &phys_src,
Current curr_type,
unsigned int mu,
unsigned int tmin,
unsigned int tmax,
ComplexField &lattice_cmplx)
{assert(0);};
// Only reimplemented in Wilson5D
// Default to just a zero correlation function
virtual void ContractJ5q(FermionField &q_in ,ComplexField &J5q) { J5q=Zero(); };
virtual void ContractJ5q(PropagatorField &q_in,ComplexField &J5q) { J5q=Zero(); };
};
NAMESPACE_END(Grid);

View File

@@ -53,6 +53,7 @@ NAMESPACE_CHECK(Wilson);
#include <Grid/qcd/action/fermion/WilsonTMFermion.h> // 4d wilson like
NAMESPACE_CHECK(WilsonTM);
#include <Grid/qcd/action/fermion/WilsonCloverFermion.h> // 4d wilson clover fermions
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h> // 4d compact wilson clover fermions
NAMESPACE_CHECK(WilsonClover);
#include <Grid/qcd/action/fermion/WilsonFermion5D.h> // 5d base used by all 5d overlap types
NAMESPACE_CHECK(Wilson5D);
@@ -101,12 +102,6 @@ NAMESPACE_CHECK(WilsonTM5);
#include <Grid/qcd/action/fermion/PauliVillarsInverters.h>
#include <Grid/qcd/action/fermion/Reconstruct5Dprop.h>
#include <Grid/qcd/action/fermion/MADWF.h>
////////////////////////////////////////////////////////////////////
// DDHMC related
////////////////////////////////////////////////////////////////////
#include <Grid/qcd/action/fermion/DirichletFermionOperator.h>
#include <Grid/qcd/action/fermion/SchurFactoredFermionOperator.h>
NAMESPACE_CHECK(DWFutils);
////////////////////////////////////////////////////////////////////////////////////////////////////
@@ -159,6 +154,23 @@ typedef WilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplR> WilsonCloverTwoInd
typedef WilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonCloverTwoIndexAntiSymmetricFermionF;
typedef WilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiSymmetricFermionD;
// Compact Clover fermions
typedef CompactWilsonCloverFermion<WilsonImplR> CompactWilsonCloverFermionR;
typedef CompactWilsonCloverFermion<WilsonImplF> CompactWilsonCloverFermionF;
typedef CompactWilsonCloverFermion<WilsonImplD> CompactWilsonCloverFermionD;
typedef CompactWilsonCloverFermion<WilsonAdjImplR> CompactWilsonCloverAdjFermionR;
typedef CompactWilsonCloverFermion<WilsonAdjImplF> CompactWilsonCloverAdjFermionF;
typedef CompactWilsonCloverFermion<WilsonAdjImplD> CompactWilsonCloverAdjFermionD;
typedef CompactWilsonCloverFermion<WilsonTwoIndexSymmetricImplR> CompactWilsonCloverTwoIndexSymmetricFermionR;
typedef CompactWilsonCloverFermion<WilsonTwoIndexSymmetricImplF> CompactWilsonCloverTwoIndexSymmetricFermionF;
typedef CompactWilsonCloverFermion<WilsonTwoIndexSymmetricImplD> CompactWilsonCloverTwoIndexSymmetricFermionD;
typedef CompactWilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplR> CompactWilsonCloverTwoIndexAntiSymmetricFermionR;
typedef CompactWilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplF> CompactWilsonCloverTwoIndexAntiSymmetricFermionF;
typedef CompactWilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplD> CompactWilsonCloverTwoIndexAntiSymmetricFermionD;
// Domain Wall fermions
typedef DomainWallFermion<WilsonImplR> DomainWallFermionR;
typedef DomainWallFermion<WilsonImplF> DomainWallFermionF;

View File

@@ -25,7 +25,8 @@ Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#ifndef GRID_QCD_FERMION_CORE_H
#define GRID_QCD_FERMION_CORE_H
#include <Grid/GridCore.h>
#include <Grid/GridQCDcore.h>
@@ -44,3 +45,4 @@ NAMESPACE_CHECK(FermionOperator);
#include <Grid/qcd/action/fermion/StaggeredKernels.h> //used by all wilson type fermions
NAMESPACE_CHECK(Kernels);
#endif

View File

@@ -140,9 +140,6 @@ public:
// Updates gauge field during HMC
///////////////////////////////////////////////
virtual void ImportGauge(const GaugeField & _U)=0;
virtual DoubledGaugeField &GetDoubledGaugeField(void) =0;
virtual DoubledGaugeField &GetDoubledGaugeFieldE(void) =0;
virtual DoubledGaugeField &GetDoubledGaugeFieldO(void) =0;
//////////////////////////////////////////////////////////////////////
// Conserved currents, either contract at sink or insert sequentially.
@@ -174,16 +171,6 @@ public:
///////////////////////////////////////////////
virtual void Dminus(const FermionField &psi, FermionField &chi) { chi=psi; }
virtual void DminusDag(const FermionField &psi, FermionField &chi) { chi=psi; }
virtual void ImportFourDimPseudoFermion(const FermionField &input,FermionField &imported)
{
imported = input;
};
virtual void ExportFourDimPseudoFermion(const FermionField &solution,FermionField &exported)
{
exported=solution;
};
virtual void ImportPhysicalFermionSource(const FermionField &input,FermionField &imported)
{
imported = input;

View File

@@ -141,11 +141,8 @@ public:
void ImportGauge(const GaugeField &_Uthin, const GaugeField &_Ufat);
void ImportGaugeSimple(const GaugeField &_UUU ,const GaugeField &_U);
void ImportGaugeSimple(const DoubledGaugeField &_UUU,const DoubledGaugeField &_U);
virtual DoubledGaugeField &GetDoubledGaugeField(void) override { return Umu; };
virtual DoubledGaugeField &GetDoubledGaugeFieldE(void) override { return UmuEven; };
virtual DoubledGaugeField &GetDoubledGaugeFieldO(void) override { return UmuOdd; };
virtual DoubledGaugeField &GetU(void) { return Umu ; } ;
virtual DoubledGaugeField &GetUUU(void) { return UUUmu; };
DoubledGaugeField &GetU(void) { return Umu ; } ;
DoubledGaugeField &GetUUU(void) { return UUUmu; };
void CopyGaugeCheckerboards(void);
///////////////////////////////////////////////////////////////

View File

@@ -160,20 +160,17 @@ public:
RealD _c1=1.0, RealD _c2=1.0,RealD _u0=1.0,
const ImplParams &p= ImplParams());
// DoubleStore gauge field in operator
void ImportGauge (const GaugeField &_Uthin ) { assert(0); }
// DoubleStore gauge field in operator
void ImportGauge (const GaugeField &_Uthin ) { assert(0); }
void ImportGauge(const GaugeField &_Uthin,const GaugeField &_Ufat);
void ImportGaugeSimple(const GaugeField &_UUU,const GaugeField &_U);
void ImportGaugeSimple(const DoubledGaugeField &_UUU,const DoubledGaugeField &_U);
// Give a reference; can be used to do an assignment or copy back out after import
// if Carleton wants to cache them and not use the ImportSimple
virtual DoubledGaugeField &GetDoubledGaugeField(void) override { return Umu; };
virtual DoubledGaugeField &GetDoubledGaugeFieldE(void) override { return UmuEven; };
virtual DoubledGaugeField &GetDoubledGaugeFieldO(void) override { return UmuOdd; };
DoubledGaugeField &GetU(void) { return Umu ; } ;
DoubledGaugeField &GetUUU(void) { return UUUmu; };
void CopyGaugeCheckerboards(void);
void ImportGaugeSimple(const GaugeField &_UUU,const GaugeField &_U);
void ImportGaugeSimple(const DoubledGaugeField &_UUU,const DoubledGaugeField &_U);
// Give a reference; can be used to do an assignment or copy back out after import
// if Carleton wants to cache them and not use the ImportSimple
DoubledGaugeField &GetU(void) { return Umu ; } ;
DoubledGaugeField &GetUUU(void) { return UUUmu; };
void CopyGaugeCheckerboards(void);
///////////////////////////////////////////////////////////////
// Data members require to support the functionality
///////////////////////////////////////////////////////////////

View File

@@ -135,9 +135,6 @@ public:
// DoubleStore impl dependent
void ImportGauge (const GaugeField &_U );
DoubledGaugeField &GetDoubledGaugeField(void){ return Umu; };
DoubledGaugeField &GetDoubledGaugeFieldE(void){ return UmuEven; };
DoubledGaugeField &GetDoubledGaugeFieldO(void){ return UmuOdd; };
DoubledGaugeField &GetU(void) { return Umu ; } ;
void CopyGaugeCheckerboards(void);

View File

@@ -1,534 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/SchurFactoredFermionOperator.h
Copyright (C) 2021
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/qcd/utils/MixedPrecisionOperatorFunction.h>
#include <Grid/qcd/action/domains/Domains.h>
NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////////
// Some explanation of class structure for domain decomposition:
//
// Need a dirichlet operator for two flavour determinant - acts on both Omega and OmegaBar.
//
// Possible gain if the global sums and CG are run independently?? Could measure this.
//
// Types of operations
//
// 1) assemble local det dOmega det dOmegaBar pseudofermion
//
// - DirichletFermionOperator - can either do a global solve, or independent/per cell coefficients.
//
// 2) assemble dOmegaInverse and dOmegaBarInverse in R
//
// - DirichletFermionOperator - can also be used to
// - need two or more cells per node. Options
// - a) solve one cell at a time, no new code, CopyRegion and reduced /split Grids
// - b) solve multiple cells in parallel. predicated dslash implementation
//
// - b) has more parallelism, experience with block solver suggest might not be aalgorithmically inefficient
// a) has more cache friendly and easier code.
// b) is easy to implement in a "trial" or inefficient code with projection.
//
// 3) Additional functionality for domain operations
//
// - SchurFactoredFermionOperator - Need a DDHMC utility - whether used in two flavour or one flavour
//
// - dBoundary - needs non-dirichlet operator
// - Contains one Dirichlet Op, and one non-Dirichlet op. Implements dBoundary etc...
// - The Dirichlet ops can be passed to dOmega(Bar) solvers etc...
//
////////////////////////////////////////////////////////
template<class ImplD,class ImplF>
class SchurFactoredFermionOperator : public ImplD
{
INHERIT_IMPL_TYPES(ImplD);
typedef typename ImplF::FermionField FermionFieldF;
typedef typename ImplD::FermionField FermionFieldD;
typedef SchurDiagMooeeOperator<FermionOperator<ImplD>,FermionFieldD> LinearOperatorD;
typedef SchurDiagMooeeOperator<FermionOperator<ImplF>,FermionFieldF> LinearOperatorF;
typedef SchurDiagMooeeDagOperator<FermionOperator<ImplD>,FermionFieldD> LinearOperatorDagD;
typedef SchurDiagMooeeDagOperator<FermionOperator<ImplF>,FermionFieldF> LinearOperatorDagF;
typedef MixedPrecisionConjugateGradientOperatorFunction<FermionOperator<ImplD>,
FermionOperator<ImplF>,
LinearOperatorD,
LinearOperatorF> MxPCG;
typedef MixedPrecisionConjugateGradientOperatorFunction<FermionOperator<ImplD>,
FermionOperator<ImplF>,
LinearOperatorDagD,
LinearOperatorDagF> MxDagPCG;
public:
GridBase *FermionGrid(void) { return PeriodicFermOpD.FermionGrid(); };
GridBase *GaugeGrid(void) { return PeriodicFermOpD.GaugeGrid(); };
FermionOperator<ImplD> & DirichletFermOpD;
FermionOperator<ImplF> & DirichletFermOpF;
FermionOperator<ImplD> & PeriodicFermOpD;
FermionOperator<ImplF> & PeriodicFermOpF;
LinearOperatorD DirichletLinOpD;
LinearOperatorF DirichletLinOpF;
LinearOperatorD PeriodicLinOpD;
LinearOperatorF PeriodicLinOpF;
LinearOperatorDagD DirichletLinOpDagD;
LinearOperatorDagF DirichletLinOpDagF;
LinearOperatorDagD PeriodicLinOpDagD;
LinearOperatorDagF PeriodicLinOpDagF;
// Can tinker with these in the pseudofermion for force vs. action solves
Integer maxinnerit;
Integer maxouterit;
RealD tol;
RealD tolinner;
Coordinate Block;
DomainDecomposition Domains;
SchurFactoredFermionOperator(FermionOperator<ImplD> & _PeriodicFermOpD,
FermionOperator<ImplF> & _PeriodicFermOpF,
FermionOperator<ImplD> & _DirichletFermOpD,
FermionOperator<ImplF> & _DirichletFermOpF,
Coordinate &_Block)
: Block(_Block), Domains(Block),
PeriodicFermOpD(_PeriodicFermOpD),
PeriodicFermOpF(_PeriodicFermOpF),
DirichletFermOpD(_DirichletFermOpD),
DirichletFermOpF(_DirichletFermOpF),
DirichletLinOpD(DirichletFermOpD),
DirichletLinOpF(DirichletFermOpF),
PeriodicLinOpD(PeriodicFermOpD),
PeriodicLinOpF(PeriodicFermOpF),
DirichletLinOpDagD(DirichletFermOpD),
DirichletLinOpDagF(DirichletFermOpF),
PeriodicLinOpDagD(PeriodicFermOpD),
PeriodicLinOpDagF(PeriodicFermOpF)
{
tol=1.0e-10;
tolinner=1.0e-6;
maxinnerit=1000;
maxouterit=10;
assert(PeriodicFermOpD.FermionGrid() == DirichletFermOpD.FermionGrid());
assert(PeriodicFermOpF.FermionGrid() == DirichletFermOpF.FermionGrid());
};
enum Domain { Omega=0, OmegaBar=1 };
void ImportGauge(const GaugeField &Umu)
{
// Single precision will update in the mixed prec CG
PeriodicFermOpD.ImportGauge(Umu);
GaugeField dUmu(Umu.Grid());
dUmu=Umu;
// DirchletBCs(dUmu);
DirichletFilter<GaugeField> Filter(Block);
Filter.applyFilter(dUmu);
DirichletFermOpD.ImportGauge(dUmu);
}
/*
void ProjectBoundaryBothDomains (FermionField &f,int sgn)
{
assert((sgn==1)||(sgn==-1));
Real rsgn = sgn;
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
GridBase *grid = f.Grid();
LatticeInteger coor(grid);
LatticeInteger face(grid);
LatticeInteger one(grid); one = 1;
LatticeInteger zero(grid); zero = 0;
LatticeInteger nface(grid); nface=Zero();
FermionField projected(grid); projected=Zero();
FermionField sp_proj (grid);
int dims = grid->Nd();
int isDWF= (dims==Nd+1);
assert((dims==Nd)||(dims==Nd+1));
Coordinate Global=grid->GlobalDimensions();
for(int mu=0;mu<Nd;mu++){
if ( Block[mu] <= Global[mu+isDWF] ) {
// need to worry about DWF 5th dim first
LatticeCoordinate(coor,mu+isDWF);
face = where(mod(coor,Block[mu]) == Integer(0),one,zero );
nface = nface + face;
Gamma G(Gmu[mu]);
// Lower face receives (1-gamma)/2 in normal forward hopping term
sp_proj = 0.5*(f-G*f*rsgn);
projected= where(face,sp_proj,projected);
//projected= where(face,f,projected);
face = where(mod(coor,Block[mu]) == Integer(Block[mu]-1) ,one,zero );
nface = nface + face;
// Upper face receives (1+gamma)/2 in normal backward hopping term
sp_proj = 0.5*(f+G*f*rsgn);
projected= where(face,sp_proj,projected);
//projected= where(face,f,projected);
}
}
// Initial Zero() where nface==0.
// Keep the spin projected faces where nface==1
// Full spinor where nface>=2
projected = where(nface>Integer(1),f,projected);
f=projected;
}
*/
void ProjectBoundaryBothDomains (FermionField &f,int sgn)
{
assert((sgn==1)||(sgn==-1));
Real rsgn = sgn;
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
GridBase *grid = f.Grid();
LatticeInteger coor(grid);
LatticeInteger face(grid);
LatticeInteger one(grid); one = 1;
LatticeInteger zero(grid); zero = 0;
LatticeInteger omega(grid);
LatticeInteger omegabar(grid);
LatticeInteger tmp(grid);
omega=one; Domains.ProjectDomain(omega,0);
omegabar=one; Domains.ProjectDomain(omegabar,1);
LatticeInteger nface(grid); nface=Zero();
FermionField projected(grid); projected=Zero();
FermionField sp_proj (grid);
int dims = grid->Nd();
int isDWF= (dims==Nd+1);
assert((dims==Nd)||(dims==Nd+1));
Coordinate Global=grid->GlobalDimensions();
for(int mmu=0;mmu<Nd;mmu++){
Gamma G(Gmu[mmu]);
// need to worry about DWF 5th dim first
int mu = mmu+isDWF;
if ( Block[mmu] && (Block[mmu] <= Global[mu]) ) {
// Lower face receives (1-gamma)/2 in normal forward hopping term
tmp = Cshift(omegabar,mu,-1);
tmp = tmp + omega;
face = where(tmp == Integer(2),one,zero );
tmp = Cshift(omega,mu,-1);
tmp = tmp + omegabar;
face = where(tmp == Integer(2),one,face );
nface = nface + face;
sp_proj = 0.5*(f-G*f*rsgn);
projected= where(face,sp_proj,projected);
// Upper face receives (1+gamma)/2 in normal backward hopping term
tmp = Cshift(omegabar,mu,1);
tmp = tmp + omega;
face = where(tmp == Integer(2),one,zero );
tmp = Cshift(omega,mu,1);
tmp = tmp + omegabar;
face = where(tmp == Integer(2),one,face );
nface = nface + face;
sp_proj = 0.5*(f+G*f*rsgn);
projected= where(face,sp_proj,projected);
}
}
// Initial Zero() where nface==0.
// Keep the spin projected faces where nface==1
// Full spinor where nface>=2
projected = where(nface>Integer(1),f,projected);
f=projected;
}
void ProjectDomain(FermionField &f,int domain)
{
/*
GridBase *grid = f.Grid();
int dims = grid->Nd();
int isDWF= (dims==Nd+1);
assert((dims==Nd)||(dims==Nd+1));
FermionField zz(grid); zz=Zero();
LatticeInteger coor(grid);
LatticeInteger domaincb(grid); domaincb=Zero();
for(int d=0;d<Nd;d++){
LatticeCoordinate(coor,d+isDWF);
domaincb = domaincb + div(coor,Block[d]);
}
f = where(mod(domaincb,2)==Integer(domain),f,zz);
*/
Domains.ProjectDomain(f,domain);
};
void ProjectOmegaBar (FermionField &f) {ProjectDomain(f,OmegaBar);}
void ProjectOmega (FermionField &f) {ProjectDomain(f,Omega);}
// See my notes(!).
// Notation: Following Luscher, we introduce projectors $\hPdb$ with both spinor and space structure
// projecting all spinor elements in $\Omega$ connected by $\Ddb$ to $\bar{\Omega}$,
void ProjectBoundaryBar(FermionField &f)
{
ProjectBoundaryBothDomains(f,1);
ProjectOmega(f);
}
// and $\hPd$ projecting all spinor elements in $\bar{\Omega}$ connected by $\Dd$ to $\Omega$.
void ProjectBoundary (FermionField &f)
{
ProjectBoundaryBothDomains(f,1);
ProjectOmegaBar(f);
// DumpSliceNorm("ProjectBoundary",f,f.Grid()->Nd()-1);
};
void dBoundary (FermionField &in,FermionField &out)
{
FermionField tmp(in);
ProjectOmegaBar(tmp);
PeriodicFermOpD.M(tmp,out);
ProjectOmega(out);
};
void dBoundaryDag (FermionField &in,FermionField &out)
{
FermionField tmp(in);
ProjectOmega(tmp);
PeriodicFermOpD.Mdag(tmp,out);
ProjectOmegaBar(out);
};
void dBoundaryBar (FermionField &in,FermionField &out)
{
FermionField tmp(in);
ProjectOmega(tmp);
PeriodicFermOpD.M(tmp,out);
ProjectOmegaBar(out);
};
void dBoundaryBarDag (FermionField &in,FermionField &out)
{
FermionField tmp(in);
ProjectOmegaBar(tmp);
PeriodicFermOpD.Mdag(tmp,out);
ProjectOmega(out);
};
void dOmega (FermionField &in,FermionField &out)
{
FermionField tmp(in);
ProjectOmega(tmp);
DirichletFermOpD.M(tmp,out);
ProjectOmega(out);
};
void dOmegaBar (FermionField &in,FermionField &out)
{
FermionField tmp(in);
ProjectOmegaBar(tmp);
DirichletFermOpD.M(tmp,out);
ProjectOmegaBar(out);
};
void dOmegaDag (FermionField &in,FermionField &out)
{
FermionField tmp(in);
ProjectOmega(tmp);
DirichletFermOpD.Mdag(tmp,out);
ProjectOmega(out);
};
void dOmegaBarDag (FermionField &in,FermionField &out)
{
FermionField tmp(in);
ProjectOmegaBar(tmp);
DirichletFermOpD.Mdag(tmp,out);
ProjectOmegaBar(out);
};
void dOmegaInv (FermionField &in,FermionField &out)
{
FermionField tmp(in);
ProjectOmega(tmp);
dOmegaInvAndOmegaBarInv(tmp,out); // Inefficient warning
ProjectOmega(out);
};
void dOmegaBarInv(FermionField &in,FermionField &out)
{
FermionField tmp(in);
ProjectOmegaBar(tmp);
dOmegaInvAndOmegaBarInv(tmp,out);
ProjectOmegaBar(out);
};
void dOmegaDagInv (FermionField &in,FermionField &out)
{
FermionField tmp(in);
ProjectOmega(tmp);
dOmegaDagInvAndOmegaBarDagInv(tmp,out);
ProjectOmega(out);
};
void dOmegaBarDagInv(FermionField &in,FermionField &out)
{
FermionField tmp(in);
ProjectOmegaBar(tmp);
dOmegaDagInvAndOmegaBarDagInv(tmp,out);
ProjectOmegaBar(out);
};
void dOmegaInvAndOmegaBarInv(FermionField &in,FermionField &out)
{
MxPCG OmegaSolver(tol,
tolinner,
maxinnerit,
maxouterit,
DirichletFermOpF.FermionRedBlackGrid(),
DirichletFermOpF,
DirichletFermOpD,
DirichletLinOpF,
DirichletLinOpD);
SchurRedBlackDiagMooeeSolve<FermionField> PrecSolve(OmegaSolver);
PrecSolve(DirichletFermOpD,in,out);
};
void dOmegaDagInvAndOmegaBarDagInv(FermionField &in,FermionField &out)
{
MxDagPCG OmegaDagSolver(tol,
tolinner,
maxinnerit,
maxouterit,
DirichletFermOpF.FermionRedBlackGrid(),
DirichletFermOpF,
DirichletFermOpD,
DirichletLinOpDagF,
DirichletLinOpDagD);
SchurRedBlackDiagMooeeDagSolve<FermionField> PrecSolve(OmegaDagSolver);
PrecSolve(DirichletFermOpD,in,out);
};
// Rdag = Pdbar - DdbarDag DomegabarDagInv DdDag DomegaDagInv Pdbar
void RDag(FermionField &in,FermionField &out)
{
FermionField tmp1(PeriodicFermOpD.FermionGrid());
FermionField tmp2(PeriodicFermOpD.FermionGrid());
out = in;
ProjectBoundaryBar(out);
dOmegaDagInv(out,tmp1);
dBoundaryDag(tmp1,tmp2);
dOmegaBarDagInv(tmp2,tmp1);
dBoundaryBarDag(tmp1,tmp2);
out = out - tmp2;
};
// R = Pdbar - Pdbar DomegaInv Dd DomegabarInv Ddbar
void R(FermionField &in,FermionField &out)
{
FermionField tmp1(PeriodicFermOpD.FermionGrid());
FermionField tmp2(PeriodicFermOpD.FermionGrid());
out = in;
ProjectBoundaryBar(out);
dBoundaryBar(out,tmp1);
dOmegaBarInv(tmp1,tmp2);
dBoundary(tmp2,tmp1);
dOmegaInv(tmp1,tmp2);
out = in - tmp2 ;
ProjectBoundaryBar(out);
// DumpSliceNorm("R",out,out.Grid()->Nd()-1);
};
// R = Pdbar - Pdbar Dinv Ddbar
void RInv(FermionField &in,FermionField &out)
{
FermionField tmp1(PeriodicFermOpD.FermionGrid());
dBoundaryBar(in,out);
Dinverse(out,tmp1);
out =in -tmp1;
ProjectBoundaryBar(out);
};
// R = Pdbar - DdbarDag DinvDag Pdbar
void RDagInv(FermionField &in,FermionField &out)
{
FermionField tmp(PeriodicFermOpD.FermionGrid());
FermionField Pin(PeriodicFermOpD.FermionGrid());
Pin = in; ProjectBoundaryBar(Pin);
DinverseDag(Pin,out);
dBoundaryBarDag(out,tmp);
out =Pin -tmp;
};
// Non-dirichlet inverter using red-black preconditioning
void Dinverse(FermionField &in,FermionField &out)
{
MxPCG DSolver(tol,
tolinner,
maxinnerit,
maxouterit,
PeriodicFermOpF.FermionRedBlackGrid(),
PeriodicFermOpF,
PeriodicFermOpD,
PeriodicLinOpF,
PeriodicLinOpD);
SchurRedBlackDiagMooeeSolve<FermionField> Solve(DSolver);
Solve(PeriodicFermOpD,in,out);
}
void DinverseDag(FermionField &in,FermionField &out)
{
MxDagPCG DdagSolver(tol,
tolinner,
maxinnerit,
maxouterit,
PeriodicFermOpF.FermionRedBlackGrid(),
PeriodicFermOpF,
PeriodicFermOpD,
PeriodicLinOpDagF,
PeriodicLinOpDagD);
SchurRedBlackDiagMooeeDagSolve<FermionField> Solve(DdagSolver);
Solve(PeriodicFermOpD,in,out);
}
};
NAMESPACE_END(Grid);

View File

@@ -4,10 +4,11 @@
Source file: ./lib/qcd/action/fermion/WilsonCloverFermion.h
Copyright (C) 2017
Copyright (C) 2017 - 2022
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: David Preti <>
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@@ -29,7 +30,8 @@
#pragma once
#include <Grid/Grid.h>
#include <Grid/qcd/action/fermion/WilsonCloverTypes.h>
#include <Grid/qcd/action/fermion/WilsonCloverHelpers.h>
NAMESPACE_BEGIN(Grid);
@@ -50,18 +52,15 @@ NAMESPACE_BEGIN(Grid);
//////////////////////////////////////////////////////////////////
template <class Impl>
class WilsonCloverFermion : public WilsonFermion<Impl>
class WilsonCloverFermion : public WilsonFermion<Impl>,
public WilsonCloverHelpers<Impl>
{
public:
// Types definitions
INHERIT_IMPL_TYPES(Impl);
template <typename vtype>
using iImplClover = iScalar<iMatrix<iMatrix<vtype, Impl::Dimension>, Ns>>;
typedef iImplClover<Simd> SiteCloverType;
typedef Lattice<SiteCloverType> CloverFieldType;
INHERIT_CLOVER_TYPES(Impl);
public:
typedef WilsonFermion<Impl> WilsonBase;
typedef WilsonFermion<Impl> WilsonBase;
typedef WilsonCloverHelpers<Impl> Helpers;
virtual int ConstEE(void) { return 0; };
virtual void Instantiatable(void){};
@@ -72,42 +71,7 @@ public:
const RealD _csw_r = 0.0,
const RealD _csw_t = 0.0,
const WilsonAnisotropyCoefficients &clover_anisotropy = WilsonAnisotropyCoefficients(),
const ImplParams &impl_p = ImplParams()) : WilsonFermion<Impl>(_Umu,
Fgrid,
Hgrid,
_mass, impl_p, clover_anisotropy),
CloverTerm(&Fgrid),
CloverTermInv(&Fgrid),
CloverTermEven(&Hgrid),
CloverTermOdd(&Hgrid),
CloverTermInvEven(&Hgrid),
CloverTermInvOdd(&Hgrid),
CloverTermDagEven(&Hgrid),
CloverTermDagOdd(&Hgrid),
CloverTermInvDagEven(&Hgrid),
CloverTermInvDagOdd(&Hgrid)
{
assert(Nd == 4); // require 4 dimensions
if (clover_anisotropy.isAnisotropic)
{
csw_r = _csw_r * 0.5 / clover_anisotropy.xi_0;
diag_mass = _mass + 1.0 + (Nd - 1) * (clover_anisotropy.nu / clover_anisotropy.xi_0);
}
else
{
csw_r = _csw_r * 0.5;
diag_mass = 4.0 + _mass;
}
csw_t = _csw_t * 0.5;
if (csw_r == 0)
std::cout << GridLogWarning << "Initializing WilsonCloverFermion with csw_r = 0" << std::endl;
if (csw_t == 0)
std::cout << GridLogWarning << "Initializing WilsonCloverFermion with csw_t = 0" << std::endl;
ImportGauge(_Umu);
}
const ImplParams &impl_p = ImplParams());
virtual void M(const FermionField &in, FermionField &out);
virtual void Mdag(const FermionField &in, FermionField &out);
@@ -124,250 +88,21 @@ public:
void ImportGauge(const GaugeField &_Umu);
// Derivative parts unpreconditioned pseudofermions
void MDeriv(GaugeField &force, const FermionField &X, const FermionField &Y, int dag)
{
conformable(X.Grid(), Y.Grid());
conformable(X.Grid(), force.Grid());
GaugeLinkField force_mu(force.Grid()), lambda(force.Grid());
GaugeField clover_force(force.Grid());
PropagatorField Lambda(force.Grid());
void MDeriv(GaugeField &force, const FermionField &X, const FermionField &Y, int dag);
// Guido: Here we are hitting some performance issues:
// need to extract the components of the DoubledGaugeField
// for each call
// Possible solution
// Create a vector object to store them? (cons: wasting space)
std::vector<GaugeLinkField> U(Nd, this->Umu.Grid());
Impl::extractLinkField(U, this->Umu);
force = Zero();
// Derivative of the Wilson hopping term
this->DhopDeriv(force, X, Y, dag);
///////////////////////////////////////////////////////////
// Clover term derivative
///////////////////////////////////////////////////////////
Impl::outerProductImpl(Lambda, X, Y);
//std::cout << "Lambda:" << Lambda << std::endl;
Gamma::Algebra sigma[] = {
Gamma::Algebra::SigmaXY,
Gamma::Algebra::SigmaXZ,
Gamma::Algebra::SigmaXT,
Gamma::Algebra::MinusSigmaXY,
Gamma::Algebra::SigmaYZ,
Gamma::Algebra::SigmaYT,
Gamma::Algebra::MinusSigmaXZ,
Gamma::Algebra::MinusSigmaYZ,
Gamma::Algebra::SigmaZT,
Gamma::Algebra::MinusSigmaXT,
Gamma::Algebra::MinusSigmaYT,
Gamma::Algebra::MinusSigmaZT};
/*
sigma_{\mu \nu}=
| 0 sigma[0] sigma[1] sigma[2] |
| sigma[3] 0 sigma[4] sigma[5] |
| sigma[6] sigma[7] 0 sigma[8] |
| sigma[9] sigma[10] sigma[11] 0 |
*/
int count = 0;
clover_force = Zero();
for (int mu = 0; mu < 4; mu++)
{
force_mu = Zero();
for (int nu = 0; nu < 4; nu++)
{
if (mu == nu)
continue;
RealD factor;
if (nu == 4 || mu == 4)
{
factor = 2.0 * csw_t;
}
else
{
factor = 2.0 * csw_r;
}
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
force_mu -= factor*Cmunu(U, lambda, mu, nu); // checked
count++;
}
pokeLorentz(clover_force, U[mu] * force_mu, mu);
}
//clover_force *= csw;
force += clover_force;
}
// Computing C_{\mu \nu}(x) as in Eq.(B.39) in Zbigniew Sroczynski's PhD thesis
GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu)
{
conformable(lambda.Grid(), U[0].Grid());
GaugeLinkField out(lambda.Grid()), tmp(lambda.Grid());
// insertion in upper staple
// please check redundancy of shift operations
// C1+
tmp = lambda * U[nu];
out = Impl::ShiftStaple(Impl::CovShiftForward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
// C2+
tmp = U[mu] * Impl::ShiftStaple(adj(lambda), mu);
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(tmp, mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
// C3+
tmp = U[nu] * Impl::ShiftStaple(adj(lambda), nu);
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(tmp, nu))), mu);
// C4+
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu) * lambda;
// insertion in lower staple
// C1-
out -= Impl::ShiftStaple(lambda, mu) * Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu);
// C2-
tmp = adj(lambda) * U[nu];
out -= Impl::ShiftStaple(Impl::CovShiftBackward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu);
// C3-
tmp = lambda * U[nu];
out -= Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, tmp)), mu);
// C4-
out -= Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu) * lambda;
return out;
}
protected:
public:
// here fixing the 4 dimensions, make it more general?
RealD csw_r; // Clover coefficient - spatial
RealD csw_t; // Clover coefficient - temporal
RealD diag_mass; // Mass term
CloverFieldType CloverTerm, CloverTermInv; // Clover term
CloverFieldType CloverTermEven, CloverTermOdd; // Clover term EO
CloverFieldType CloverTermInvEven, CloverTermInvOdd; // Clover term Inv EO
CloverFieldType CloverTermDagEven, CloverTermDagOdd; // Clover term Dag EO
CloverFieldType CloverTermInvDagEven, CloverTermInvDagOdd; // Clover term Inv Dag EO
public:
// eventually these can be compressed into 6x6 blocks instead of the 12x12
// using the DeGrand-Rossi basis for the gamma matrices
CloverFieldType fillCloverYZ(const GaugeLinkField &F)
{
CloverFieldType T(F.Grid());
T = Zero();
autoView(T_v,T,AcceleratorWrite);
autoView(F_v,F,AcceleratorRead);
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
{
T_v[i]()(0, 1) = timesMinusI(F_v[i]()());
T_v[i]()(1, 0) = timesMinusI(F_v[i]()());
T_v[i]()(2, 3) = timesMinusI(F_v[i]()());
T_v[i]()(3, 2) = timesMinusI(F_v[i]()());
});
return T;
}
CloverFieldType fillCloverXZ(const GaugeLinkField &F)
{
CloverFieldType T(F.Grid());
T = Zero();
autoView(T_v, T,AcceleratorWrite);
autoView(F_v, F,AcceleratorRead);
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
{
T_v[i]()(0, 1) = -F_v[i]()();
T_v[i]()(1, 0) = F_v[i]()();
T_v[i]()(2, 3) = -F_v[i]()();
T_v[i]()(3, 2) = F_v[i]()();
});
return T;
}
CloverFieldType fillCloverXY(const GaugeLinkField &F)
{
CloverFieldType T(F.Grid());
T = Zero();
autoView(T_v,T,AcceleratorWrite);
autoView(F_v,F,AcceleratorRead);
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
{
T_v[i]()(0, 0) = timesMinusI(F_v[i]()());
T_v[i]()(1, 1) = timesI(F_v[i]()());
T_v[i]()(2, 2) = timesMinusI(F_v[i]()());
T_v[i]()(3, 3) = timesI(F_v[i]()());
});
return T;
}
CloverFieldType fillCloverXT(const GaugeLinkField &F)
{
CloverFieldType T(F.Grid());
T = Zero();
autoView( T_v , T, AcceleratorWrite);
autoView( F_v , F, AcceleratorRead);
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
{
T_v[i]()(0, 1) = timesI(F_v[i]()());
T_v[i]()(1, 0) = timesI(F_v[i]()());
T_v[i]()(2, 3) = timesMinusI(F_v[i]()());
T_v[i]()(3, 2) = timesMinusI(F_v[i]()());
});
return T;
}
CloverFieldType fillCloverYT(const GaugeLinkField &F)
{
CloverFieldType T(F.Grid());
T = Zero();
autoView( T_v ,T,AcceleratorWrite);
autoView( F_v ,F,AcceleratorRead);
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
{
T_v[i]()(0, 1) = -(F_v[i]()());
T_v[i]()(1, 0) = (F_v[i]()());
T_v[i]()(2, 3) = (F_v[i]()());
T_v[i]()(3, 2) = -(F_v[i]()());
});
return T;
}
CloverFieldType fillCloverZT(const GaugeLinkField &F)
{
CloverFieldType T(F.Grid());
T = Zero();
autoView( T_v , T,AcceleratorWrite);
autoView( F_v , F,AcceleratorRead);
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
{
T_v[i]()(0, 0) = timesI(F_v[i]()());
T_v[i]()(1, 1) = timesMinusI(F_v[i]()());
T_v[i]()(2, 2) = timesMinusI(F_v[i]()());
T_v[i]()(3, 3) = timesI(F_v[i]()());
});
return T;
}
CloverField CloverTerm, CloverTermInv; // Clover term
CloverField CloverTermEven, CloverTermOdd; // Clover term EO
CloverField CloverTermInvEven, CloverTermInvOdd; // Clover term Inv EO
CloverField CloverTermDagEven, CloverTermDagOdd; // Clover term Dag EO
CloverField CloverTermInvDagEven, CloverTermInvDagOdd; // Clover term Inv Dag EO
};
NAMESPACE_END(Grid);

View File

@@ -0,0 +1,761 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonCloverHelpers.h
Copyright (C) 2021 - 2022
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
// Helper routines that implement common clover functionality
NAMESPACE_BEGIN(Grid);
template<class Impl> class WilsonCloverHelpers {
public:
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
// Computing C_{\mu \nu}(x) as in Eq.(B.39) in Zbigniew Sroczynski's PhD thesis
static GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu)
{
conformable(lambda.Grid(), U[0].Grid());
GaugeLinkField out(lambda.Grid()), tmp(lambda.Grid());
// insertion in upper staple
// please check redundancy of shift operations
// C1+
tmp = lambda * U[nu];
out = Impl::ShiftStaple(Impl::CovShiftForward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
// C2+
tmp = U[mu] * Impl::ShiftStaple(adj(lambda), mu);
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(tmp, mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
// C3+
tmp = U[nu] * Impl::ShiftStaple(adj(lambda), nu);
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(tmp, nu))), mu);
// C4+
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu) * lambda;
// insertion in lower staple
// C1-
out -= Impl::ShiftStaple(lambda, mu) * Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu);
// C2-
tmp = adj(lambda) * U[nu];
out -= Impl::ShiftStaple(Impl::CovShiftBackward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu);
// C3-
tmp = lambda * U[nu];
out -= Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, tmp)), mu);
// C4-
out -= Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu) * lambda;
return out;
}
static CloverField fillCloverYZ(const GaugeLinkField &F)
{
CloverField T(F.Grid());
T = Zero();
autoView(T_v,T,AcceleratorWrite);
autoView(F_v,F,AcceleratorRead);
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
{
coalescedWrite(T_v[i]()(0, 1), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(1, 0), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(2, 3), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(3, 2), coalescedRead(timesMinusI(F_v[i]()())));
});
return T;
}
static CloverField fillCloverXZ(const GaugeLinkField &F)
{
CloverField T(F.Grid());
T = Zero();
autoView(T_v, T,AcceleratorWrite);
autoView(F_v, F,AcceleratorRead);
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
{
coalescedWrite(T_v[i]()(0, 1), coalescedRead(-F_v[i]()()));
coalescedWrite(T_v[i]()(1, 0), coalescedRead(F_v[i]()()));
coalescedWrite(T_v[i]()(2, 3), coalescedRead(-F_v[i]()()));
coalescedWrite(T_v[i]()(3, 2), coalescedRead(F_v[i]()()));
});
return T;
}
static CloverField fillCloverXY(const GaugeLinkField &F)
{
CloverField T(F.Grid());
T = Zero();
autoView(T_v,T,AcceleratorWrite);
autoView(F_v,F,AcceleratorRead);
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
{
coalescedWrite(T_v[i]()(0, 0), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(1, 1), coalescedRead(timesI(F_v[i]()())));
coalescedWrite(T_v[i]()(2, 2), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(3, 3), coalescedRead(timesI(F_v[i]()())));
});
return T;
}
static CloverField fillCloverXT(const GaugeLinkField &F)
{
CloverField T(F.Grid());
T = Zero();
autoView( T_v , T, AcceleratorWrite);
autoView( F_v , F, AcceleratorRead);
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
{
coalescedWrite(T_v[i]()(0, 1), coalescedRead(timesI(F_v[i]()())));
coalescedWrite(T_v[i]()(1, 0), coalescedRead(timesI(F_v[i]()())));
coalescedWrite(T_v[i]()(2, 3), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(3, 2), coalescedRead(timesMinusI(F_v[i]()())));
});
return T;
}
static CloverField fillCloverYT(const GaugeLinkField &F)
{
CloverField T(F.Grid());
T = Zero();
autoView( T_v ,T,AcceleratorWrite);
autoView( F_v ,F,AcceleratorRead);
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
{
coalescedWrite(T_v[i]()(0, 1), coalescedRead(-(F_v[i]()())));
coalescedWrite(T_v[i]()(1, 0), coalescedRead((F_v[i]()())));
coalescedWrite(T_v[i]()(2, 3), coalescedRead((F_v[i]()())));
coalescedWrite(T_v[i]()(3, 2), coalescedRead(-(F_v[i]()())));
});
return T;
}
static CloverField fillCloverZT(const GaugeLinkField &F)
{
CloverField T(F.Grid());
T = Zero();
autoView( T_v , T,AcceleratorWrite);
autoView( F_v , F,AcceleratorRead);
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
{
coalescedWrite(T_v[i]()(0, 0), coalescedRead(timesI(F_v[i]()())));
coalescedWrite(T_v[i]()(1, 1), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(2, 2), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(3, 3), coalescedRead(timesI(F_v[i]()())));
});
return T;
}
template<class _Spinor>
static accelerator_inline void multClover(_Spinor& phi, const SiteClover& C, const _Spinor& chi) {
auto CC = coalescedRead(C);
mult(&phi, &CC, &chi);
}
template<class _SpinorField>
inline void multCloverField(_SpinorField& out, const CloverField& C, const _SpinorField& phi) {
const int Nsimd = SiteSpinor::Nsimd();
autoView(out_v, out, AcceleratorWrite);
autoView(phi_v, phi, AcceleratorRead);
autoView(C_v, C, AcceleratorRead);
typedef decltype(coalescedRead(out_v[0])) calcSpinor;
accelerator_for(sss,out.Grid()->oSites(),Nsimd,{
calcSpinor tmp;
multClover(tmp,C_v[sss],phi_v(sss));
coalescedWrite(out_v[sss],tmp);
});
}
};
template<class Impl> class CompactWilsonCloverHelpers {
public:
INHERIT_COMPACT_CLOVER_SIZES(Impl);
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
INHERIT_COMPACT_CLOVER_TYPES(Impl);
#if 0
static accelerator_inline typename SiteCloverTriangle::vector_type triangle_elem(const SiteCloverTriangle& triangle, int block, int i, int j) {
assert(i != j);
if(i < j) {
return triangle()(block)(triangle_index(i, j));
} else { // i > j
return conjugate(triangle()(block)(triangle_index(i, j)));
}
}
#else
template<typename vobj>
static accelerator_inline vobj triangle_elem(const iImplCloverTriangle<vobj>& triangle, int block, int i, int j) {
assert(i != j);
if(i < j) {
return triangle()(block)(triangle_index(i, j));
} else { // i > j
return conjugate(triangle()(block)(triangle_index(i, j)));
}
}
#endif
static accelerator_inline int triangle_index(int i, int j) {
if(i == j)
return 0;
else if(i < j)
return Nred * (Nred - 1) / 2 - (Nred - i) * (Nred - i - 1) / 2 + j - i - 1;
else // i > j
return Nred * (Nred - 1) / 2 - (Nred - j) * (Nred - j - 1) / 2 + i - j - 1;
}
static void MooeeKernel_gpu(int Nsite,
int Ls,
const FermionField& in,
FermionField& out,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle) {
autoView(diagonal_v, diagonal, AcceleratorRead);
autoView(triangle_v, triangle, AcceleratorRead);
autoView(in_v, in, AcceleratorRead);
autoView(out_v, out, AcceleratorWrite);
typedef decltype(coalescedRead(out_v[0])) CalcSpinor;
const uint64_t NN = Nsite * Ls;
accelerator_for(ss, NN, Simd::Nsimd(), {
int sF = ss;
int sU = ss/Ls;
CalcSpinor res;
CalcSpinor in_t = in_v(sF);
auto diagonal_t = diagonal_v(sU);
auto triangle_t = triangle_v(sU);
for(int block=0; block<Nhs; block++) {
int s_start = block*Nhs;
for(int i=0; i<Nred; i++) {
int si = s_start + i/Nc, ci = i%Nc;
res()(si)(ci) = diagonal_t()(block)(i) * in_t()(si)(ci);
for(int j=0; j<Nred; j++) {
if (j == i) continue;
int sj = s_start + j/Nc, cj = j%Nc;
res()(si)(ci) = res()(si)(ci) + triangle_elem(triangle_t, block, i, j) * in_t()(sj)(cj);
};
};
};
coalescedWrite(out_v[sF], res);
});
}
static void MooeeKernel_cpu(int Nsite,
int Ls,
const FermionField& in,
FermionField& out,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle) {
autoView(diagonal_v, diagonal, CpuRead);
autoView(triangle_v, triangle, CpuRead);
autoView(in_v, in, CpuRead);
autoView(out_v, out, CpuWrite);
typedef SiteSpinor CalcSpinor;
#if defined(A64FX) || defined(A64FXFIXEDSIZE)
#define PREFETCH_CLOVER(BASE) { \
uint64_t base; \
int pf_dist_L1 = 1; \
int pf_dist_L2 = -5; /* -> penalty -> disable */ \
\
if ((pf_dist_L1 >= 0) && (sU + pf_dist_L1 < Nsite)) { \
base = (uint64_t)&diag_t()(pf_dist_L1+BASE)(0); \
svprfd(svptrue_b64(), (int64_t*)(base + 0), SV_PLDL1STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 256), SV_PLDL1STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 512), SV_PLDL1STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 768), SV_PLDL1STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 1024), SV_PLDL1STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 1280), SV_PLDL1STRM); \
} \
\
if ((pf_dist_L2 >= 0) && (sU + pf_dist_L2 < Nsite)) { \
base = (uint64_t)&diag_t()(pf_dist_L2+BASE)(0); \
svprfd(svptrue_b64(), (int64_t*)(base + 0), SV_PLDL2STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 256), SV_PLDL2STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 512), SV_PLDL2STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 768), SV_PLDL2STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 1024), SV_PLDL2STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 1280), SV_PLDL2STRM); \
} \
}
// TODO: Implement/generalize this for other architectures
// I played around a bit on KNL (see below) but didn't bring anything
// #elif defined(AVX512)
// #define PREFETCH_CLOVER(BASE) { \
// uint64_t base; \
// int pf_dist_L1 = 1; \
// int pf_dist_L2 = +4; \
// \
// if ((pf_dist_L1 >= 0) && (sU + pf_dist_L1 < Nsite)) { \
// base = (uint64_t)&diag_t()(pf_dist_L1+BASE)(0); \
// _mm_prefetch((const char*)(base + 0), _MM_HINT_T0); \
// _mm_prefetch((const char*)(base + 64), _MM_HINT_T0); \
// _mm_prefetch((const char*)(base + 128), _MM_HINT_T0); \
// _mm_prefetch((const char*)(base + 192), _MM_HINT_T0); \
// _mm_prefetch((const char*)(base + 256), _MM_HINT_T0); \
// _mm_prefetch((const char*)(base + 320), _MM_HINT_T0); \
// } \
// \
// if ((pf_dist_L2 >= 0) && (sU + pf_dist_L2 < Nsite)) { \
// base = (uint64_t)&diag_t()(pf_dist_L2+BASE)(0); \
// _mm_prefetch((const char*)(base + 0), _MM_HINT_T1); \
// _mm_prefetch((const char*)(base + 64), _MM_HINT_T1); \
// _mm_prefetch((const char*)(base + 128), _MM_HINT_T1); \
// _mm_prefetch((const char*)(base + 192), _MM_HINT_T1); \
// _mm_prefetch((const char*)(base + 256), _MM_HINT_T1); \
// _mm_prefetch((const char*)(base + 320), _MM_HINT_T1); \
// } \
// }
#else
#define PREFETCH_CLOVER(BASE)
#endif
const uint64_t NN = Nsite * Ls;
thread_for(ss, NN, {
int sF = ss;
int sU = ss/Ls;
CalcSpinor res;
CalcSpinor in_t = in_v[sF];
auto diag_t = diagonal_v[sU]; // "diag" instead of "diagonal" here to make code below easier to read
auto triangle_t = triangle_v[sU];
// upper half
PREFETCH_CLOVER(0);
auto in_cc_0_0 = conjugate(in_t()(0)(0)); // Nils: reduces number
auto in_cc_0_1 = conjugate(in_t()(0)(1)); // of conjugates from
auto in_cc_0_2 = conjugate(in_t()(0)(2)); // 30 to 20
auto in_cc_1_0 = conjugate(in_t()(1)(0));
auto in_cc_1_1 = conjugate(in_t()(1)(1));
res()(0)(0) = diag_t()(0)( 0) * in_t()(0)(0)
+ triangle_t()(0)( 0) * in_t()(0)(1)
+ triangle_t()(0)( 1) * in_t()(0)(2)
+ triangle_t()(0)( 2) * in_t()(1)(0)
+ triangle_t()(0)( 3) * in_t()(1)(1)
+ triangle_t()(0)( 4) * in_t()(1)(2);
res()(0)(1) = triangle_t()(0)( 0) * in_cc_0_0;
res()(0)(1) = diag_t()(0)( 1) * in_t()(0)(1)
+ triangle_t()(0)( 5) * in_t()(0)(2)
+ triangle_t()(0)( 6) * in_t()(1)(0)
+ triangle_t()(0)( 7) * in_t()(1)(1)
+ triangle_t()(0)( 8) * in_t()(1)(2)
+ conjugate( res()(0)( 1));
res()(0)(2) = triangle_t()(0)( 1) * in_cc_0_0
+ triangle_t()(0)( 5) * in_cc_0_1;
res()(0)(2) = diag_t()(0)( 2) * in_t()(0)(2)
+ triangle_t()(0)( 9) * in_t()(1)(0)
+ triangle_t()(0)(10) * in_t()(1)(1)
+ triangle_t()(0)(11) * in_t()(1)(2)
+ conjugate( res()(0)( 2));
res()(1)(0) = triangle_t()(0)( 2) * in_cc_0_0
+ triangle_t()(0)( 6) * in_cc_0_1
+ triangle_t()(0)( 9) * in_cc_0_2;
res()(1)(0) = diag_t()(0)( 3) * in_t()(1)(0)
+ triangle_t()(0)(12) * in_t()(1)(1)
+ triangle_t()(0)(13) * in_t()(1)(2)
+ conjugate( res()(1)( 0));
res()(1)(1) = triangle_t()(0)( 3) * in_cc_0_0
+ triangle_t()(0)( 7) * in_cc_0_1
+ triangle_t()(0)(10) * in_cc_0_2
+ triangle_t()(0)(12) * in_cc_1_0;
res()(1)(1) = diag_t()(0)( 4) * in_t()(1)(1)
+ triangle_t()(0)(14) * in_t()(1)(2)
+ conjugate( res()(1)( 1));
res()(1)(2) = triangle_t()(0)( 4) * in_cc_0_0
+ triangle_t()(0)( 8) * in_cc_0_1
+ triangle_t()(0)(11) * in_cc_0_2
+ triangle_t()(0)(13) * in_cc_1_0
+ triangle_t()(0)(14) * in_cc_1_1;
res()(1)(2) = diag_t()(0)( 5) * in_t()(1)(2)
+ conjugate( res()(1)( 2));
vstream(out_v[sF]()(0)(0), res()(0)(0));
vstream(out_v[sF]()(0)(1), res()(0)(1));
vstream(out_v[sF]()(0)(2), res()(0)(2));
vstream(out_v[sF]()(1)(0), res()(1)(0));
vstream(out_v[sF]()(1)(1), res()(1)(1));
vstream(out_v[sF]()(1)(2), res()(1)(2));
// lower half
PREFETCH_CLOVER(1);
auto in_cc_2_0 = conjugate(in_t()(2)(0));
auto in_cc_2_1 = conjugate(in_t()(2)(1));
auto in_cc_2_2 = conjugate(in_t()(2)(2));
auto in_cc_3_0 = conjugate(in_t()(3)(0));
auto in_cc_3_1 = conjugate(in_t()(3)(1));
res()(2)(0) = diag_t()(1)( 0) * in_t()(2)(0)
+ triangle_t()(1)( 0) * in_t()(2)(1)
+ triangle_t()(1)( 1) * in_t()(2)(2)
+ triangle_t()(1)( 2) * in_t()(3)(0)
+ triangle_t()(1)( 3) * in_t()(3)(1)
+ triangle_t()(1)( 4) * in_t()(3)(2);
res()(2)(1) = triangle_t()(1)( 0) * in_cc_2_0;
res()(2)(1) = diag_t()(1)( 1) * in_t()(2)(1)
+ triangle_t()(1)( 5) * in_t()(2)(2)
+ triangle_t()(1)( 6) * in_t()(3)(0)
+ triangle_t()(1)( 7) * in_t()(3)(1)
+ triangle_t()(1)( 8) * in_t()(3)(2)
+ conjugate( res()(2)( 1));
res()(2)(2) = triangle_t()(1)( 1) * in_cc_2_0
+ triangle_t()(1)( 5) * in_cc_2_1;
res()(2)(2) = diag_t()(1)( 2) * in_t()(2)(2)
+ triangle_t()(1)( 9) * in_t()(3)(0)
+ triangle_t()(1)(10) * in_t()(3)(1)
+ triangle_t()(1)(11) * in_t()(3)(2)
+ conjugate( res()(2)( 2));
res()(3)(0) = triangle_t()(1)( 2) * in_cc_2_0
+ triangle_t()(1)( 6) * in_cc_2_1
+ triangle_t()(1)( 9) * in_cc_2_2;
res()(3)(0) = diag_t()(1)( 3) * in_t()(3)(0)
+ triangle_t()(1)(12) * in_t()(3)(1)
+ triangle_t()(1)(13) * in_t()(3)(2)
+ conjugate( res()(3)( 0));
res()(3)(1) = triangle_t()(1)( 3) * in_cc_2_0
+ triangle_t()(1)( 7) * in_cc_2_1
+ triangle_t()(1)(10) * in_cc_2_2
+ triangle_t()(1)(12) * in_cc_3_0;
res()(3)(1) = diag_t()(1)( 4) * in_t()(3)(1)
+ triangle_t()(1)(14) * in_t()(3)(2)
+ conjugate( res()(3)( 1));
res()(3)(2) = triangle_t()(1)( 4) * in_cc_2_0
+ triangle_t()(1)( 8) * in_cc_2_1
+ triangle_t()(1)(11) * in_cc_2_2
+ triangle_t()(1)(13) * in_cc_3_0
+ triangle_t()(1)(14) * in_cc_3_1;
res()(3)(2) = diag_t()(1)( 5) * in_t()(3)(2)
+ conjugate( res()(3)( 2));
vstream(out_v[sF]()(2)(0), res()(2)(0));
vstream(out_v[sF]()(2)(1), res()(2)(1));
vstream(out_v[sF]()(2)(2), res()(2)(2));
vstream(out_v[sF]()(3)(0), res()(3)(0));
vstream(out_v[sF]()(3)(1), res()(3)(1));
vstream(out_v[sF]()(3)(2), res()(3)(2));
});
}
static void MooeeKernel(int Nsite,
int Ls,
const FermionField& in,
FermionField& out,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle) {
#if defined(GRID_CUDA) || defined(GRID_HIP)
MooeeKernel_gpu(Nsite, Ls, in, out, diagonal, triangle);
#else
MooeeKernel_cpu(Nsite, Ls, in, out, diagonal, triangle);
#endif
}
static void Invert(const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle,
CloverDiagonalField& diagonalInv,
CloverTriangleField& triangleInv) {
conformable(diagonal, diagonalInv);
conformable(triangle, triangleInv);
conformable(diagonal, triangle);
diagonalInv.Checkerboard() = diagonal.Checkerboard();
triangleInv.Checkerboard() = triangle.Checkerboard();
GridBase* grid = diagonal.Grid();
long lsites = grid->lSites();
typedef typename SiteCloverDiagonal::scalar_object scalar_object_diagonal;
typedef typename SiteCloverTriangle::scalar_object scalar_object_triangle;
autoView(diagonal_v, diagonal, CpuRead);
autoView(triangle_v, triangle, CpuRead);
autoView(diagonalInv_v, diagonalInv, CpuWrite);
autoView(triangleInv_v, triangleInv, CpuWrite);
thread_for(site, lsites, { // NOTE: Not on GPU because of Eigen & (peek/poke)LocalSite
Eigen::MatrixXcd clover_inv_eigen = Eigen::MatrixXcd::Zero(Ns*Nc, Ns*Nc);
Eigen::MatrixXcd clover_eigen = Eigen::MatrixXcd::Zero(Ns*Nc, Ns*Nc);
scalar_object_diagonal diagonal_tmp = Zero();
scalar_object_diagonal diagonal_inv_tmp = Zero();
scalar_object_triangle triangle_tmp = Zero();
scalar_object_triangle triangle_inv_tmp = Zero();
Coordinate lcoor;
grid->LocalIndexToLocalCoor(site, lcoor);
peekLocalSite(diagonal_tmp, diagonal_v, lcoor);
peekLocalSite(triangle_tmp, triangle_v, lcoor);
// TODO: can we save time here by inverting the two 6x6 hermitian matrices separately?
for (long s_row=0;s_row<Ns;s_row++) {
for (long s_col=0;s_col<Ns;s_col++) {
if(abs(s_row - s_col) > 1 || s_row + s_col == 3) continue;
int block = s_row / Nhs;
int s_row_block = s_row % Nhs;
int s_col_block = s_col % Nhs;
for (long c_row=0;c_row<Nc;c_row++) {
for (long c_col=0;c_col<Nc;c_col++) {
int i = s_row_block * Nc + c_row;
int j = s_col_block * Nc + c_col;
if(i == j)
clover_eigen(s_row*Nc+c_row, s_col*Nc+c_col) = static_cast<ComplexD>(TensorRemove(diagonal_tmp()(block)(i)));
else
clover_eigen(s_row*Nc+c_row, s_col*Nc+c_col) = static_cast<ComplexD>(TensorRemove(triangle_elem(triangle_tmp, block, i, j)));
}
}
}
}
clover_inv_eigen = clover_eigen.inverse();
for (long s_row=0;s_row<Ns;s_row++) {
for (long s_col=0;s_col<Ns;s_col++) {
if(abs(s_row - s_col) > 1 || s_row + s_col == 3) continue;
int block = s_row / Nhs;
int s_row_block = s_row % Nhs;
int s_col_block = s_col % Nhs;
for (long c_row=0;c_row<Nc;c_row++) {
for (long c_col=0;c_col<Nc;c_col++) {
int i = s_row_block * Nc + c_row;
int j = s_col_block * Nc + c_col;
if(i == j)
diagonal_inv_tmp()(block)(i) = clover_inv_eigen(s_row*Nc+c_row, s_col*Nc+c_col);
else if(i < j)
triangle_inv_tmp()(block)(triangle_index(i, j)) = clover_inv_eigen(s_row*Nc+c_row, s_col*Nc+c_col);
else
continue;
}
}
}
}
pokeLocalSite(diagonal_inv_tmp, diagonalInv_v, lcoor);
pokeLocalSite(triangle_inv_tmp, triangleInv_v, lcoor);
});
}
static void ConvertLayout(const CloverField& full,
CloverDiagonalField& diagonal,
CloverTriangleField& triangle) {
conformable(full, diagonal);
conformable(full, triangle);
diagonal.Checkerboard() = full.Checkerboard();
triangle.Checkerboard() = full.Checkerboard();
autoView(full_v, full, AcceleratorRead);
autoView(diagonal_v, diagonal, AcceleratorWrite);
autoView(triangle_v, triangle, AcceleratorWrite);
// NOTE: this function cannot be 'private' since nvcc forbids this for kernels
accelerator_for(ss, full.Grid()->oSites(), 1, {
for(int s_row = 0; s_row < Ns; s_row++) {
for(int s_col = 0; s_col < Ns; s_col++) {
if(abs(s_row - s_col) > 1 || s_row + s_col == 3) continue;
int block = s_row / Nhs;
int s_row_block = s_row % Nhs;
int s_col_block = s_col % Nhs;
for(int c_row = 0; c_row < Nc; c_row++) {
for(int c_col = 0; c_col < Nc; c_col++) {
int i = s_row_block * Nc + c_row;
int j = s_col_block * Nc + c_col;
if(i == j)
diagonal_v[ss]()(block)(i) = full_v[ss]()(s_row, s_col)(c_row, c_col);
else if(i < j)
triangle_v[ss]()(block)(triangle_index(i, j)) = full_v[ss]()(s_row, s_col)(c_row, c_col);
else
continue;
}
}
}
}
});
}
static void ConvertLayout(const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle,
CloverField& full) {
conformable(full, diagonal);
conformable(full, triangle);
full.Checkerboard() = diagonal.Checkerboard();
full = Zero();
autoView(diagonal_v, diagonal, AcceleratorRead);
autoView(triangle_v, triangle, AcceleratorRead);
autoView(full_v, full, AcceleratorWrite);
// NOTE: this function cannot be 'private' since nvcc forbids this for kernels
accelerator_for(ss, full.Grid()->oSites(), 1, {
for(int s_row = 0; s_row < Ns; s_row++) {
for(int s_col = 0; s_col < Ns; s_col++) {
if(abs(s_row - s_col) > 1 || s_row + s_col == 3) continue;
int block = s_row / Nhs;
int s_row_block = s_row % Nhs;
int s_col_block = s_col % Nhs;
for(int c_row = 0; c_row < Nc; c_row++) {
for(int c_col = 0; c_col < Nc; c_col++) {
int i = s_row_block * Nc + c_row;
int j = s_col_block * Nc + c_col;
if(i == j)
full_v[ss]()(s_row, s_col)(c_row, c_col) = diagonal_v[ss]()(block)(i);
else
full_v[ss]()(s_row, s_col)(c_row, c_col) = triangle_elem(triangle_v[ss], block, i, j);
}
}
}
}
});
}
static void ModifyBoundaries(CloverDiagonalField& diagonal, CloverTriangleField& triangle, RealD csw_t, RealD cF, RealD diag_mass) {
// Checks/grid
double t0 = usecond();
conformable(diagonal, triangle);
GridBase* grid = diagonal.Grid();
// Determine the boundary coordinates/sites
double t1 = usecond();
int t_dir = Nd - 1;
Lattice<iScalar<vInteger>> t_coor(grid);
LatticeCoordinate(t_coor, t_dir);
int T = grid->GlobalDimensions()[t_dir];
// Set off-diagonal parts at boundary to zero -- OK
double t2 = usecond();
CloverTriangleField zeroTriangle(grid);
zeroTriangle.Checkerboard() = triangle.Checkerboard();
zeroTriangle = Zero();
triangle = where(t_coor == 0, zeroTriangle, triangle);
triangle = where(t_coor == T-1, zeroTriangle, triangle);
// Set diagonal to unity (scaled correctly) -- OK
double t3 = usecond();
CloverDiagonalField tmp(grid);
tmp.Checkerboard() = diagonal.Checkerboard();
tmp = -1.0 * csw_t + diag_mass;
diagonal = where(t_coor == 0, tmp, diagonal);
diagonal = where(t_coor == T-1, tmp, diagonal);
// Correct values next to boundary
double t4 = usecond();
if(cF != 1.0) {
tmp = cF - 1.0;
tmp += diagonal;
diagonal = where(t_coor == 1, tmp, diagonal);
diagonal = where(t_coor == T-2, tmp, diagonal);
}
// Report timings
double t5 = usecond();
#if 0
std::cout << GridLogMessage << "CompactWilsonCloverHelpers::ModifyBoundaries timings:"
<< " checks = " << (t1 - t0) / 1e6
<< ", coordinate = " << (t2 - t1) / 1e6
<< ", off-diag zero = " << (t3 - t2) / 1e6
<< ", diagonal unity = " << (t4 - t3) / 1e6
<< ", near-boundary = " << (t5 - t4) / 1e6
<< ", total = " << (t5 - t0) / 1e6
<< std::endl;
#endif
}
template<class Field, class Mask>
static strong_inline void ApplyBoundaryMask(Field& f, const Mask& m) {
conformable(f, m);
auto grid = f.Grid();
const uint32_t Nsite = grid->oSites();
const uint32_t Nsimd = grid->Nsimd();
autoView(f_v, f, AcceleratorWrite);
autoView(m_v, m, AcceleratorRead);
// NOTE: this function cannot be 'private' since nvcc forbids this for kernels
accelerator_for(ss, Nsite, Nsimd, {
coalescedWrite(f_v[ss], m_v(ss) * f_v(ss));
});
}
template<class MaskField>
static void SetupMasks(MaskField& full, MaskField& even, MaskField& odd) {
assert(even.Grid()->_isCheckerBoarded && even.Checkerboard() == Even);
assert(odd.Grid()->_isCheckerBoarded && odd.Checkerboard() == Odd);
assert(!full.Grid()->_isCheckerBoarded);
GridBase* grid = full.Grid();
int t_dir = Nd-1;
Lattice<iScalar<vInteger>> t_coor(grid);
LatticeCoordinate(t_coor, t_dir);
int T = grid->GlobalDimensions()[t_dir];
MaskField zeroMask(grid); zeroMask = Zero();
full = 1.0;
full = where(t_coor == 0, zeroMask, full);
full = where(t_coor == T-1, zeroMask, full);
pickCheckerboard(Even, even, full);
pickCheckerboard(Odd, odd, full);
}
};
NAMESPACE_END(Grid);

View File

@@ -0,0 +1,92 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonCloverTypes.h
Copyright (C) 2021 - 2022
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template<class Impl>
class WilsonCloverTypes {
public:
INHERIT_IMPL_TYPES(Impl);
template <typename vtype> using iImplClover = iScalar<iMatrix<iMatrix<vtype, Impl::Dimension>, Ns>>;
typedef iImplClover<Simd> SiteClover;
typedef Lattice<SiteClover> CloverField;
};
template<class Impl>
class CompactWilsonCloverTypes {
public:
INHERIT_IMPL_TYPES(Impl);
static_assert(Nd == 4 && Nc == 3 && Ns == 4 && Impl::Dimension == 3, "Wrong dimensions");
static constexpr int Nred = Nc * Nhs; // 6
static constexpr int Nblock = Nhs; // 2
static constexpr int Ndiagonal = Nred; // 6
static constexpr int Ntriangle = (Nred - 1) * Nc; // 15
template<typename vtype> using iImplCloverDiagonal = iScalar<iVector<iVector<vtype, Ndiagonal>, Nblock>>;
template<typename vtype> using iImplCloverTriangle = iScalar<iVector<iVector<vtype, Ntriangle>, Nblock>>;
typedef iImplCloverDiagonal<Simd> SiteCloverDiagonal;
typedef iImplCloverTriangle<Simd> SiteCloverTriangle;
typedef iSinglet<Simd> SiteMask;
typedef Lattice<SiteCloverDiagonal> CloverDiagonalField;
typedef Lattice<SiteCloverTriangle> CloverTriangleField;
typedef Lattice<SiteMask> MaskField;
};
#define INHERIT_CLOVER_TYPES(Impl) \
typedef typename WilsonCloverTypes<Impl>::SiteClover SiteClover; \
typedef typename WilsonCloverTypes<Impl>::CloverField CloverField;
#define INHERIT_COMPACT_CLOVER_TYPES(Impl) \
typedef typename CompactWilsonCloverTypes<Impl>::SiteCloverDiagonal SiteCloverDiagonal; \
typedef typename CompactWilsonCloverTypes<Impl>::SiteCloverTriangle SiteCloverTriangle; \
typedef typename CompactWilsonCloverTypes<Impl>::SiteMask SiteMask; \
typedef typename CompactWilsonCloverTypes<Impl>::CloverDiagonalField CloverDiagonalField; \
typedef typename CompactWilsonCloverTypes<Impl>::CloverTriangleField CloverTriangleField; \
typedef typename CompactWilsonCloverTypes<Impl>::MaskField MaskField; \
/* ugly duplication but needed inside functionality classes */ \
template<typename vtype> using iImplCloverDiagonal = \
iScalar<iVector<iVector<vtype, CompactWilsonCloverTypes<Impl>::Ndiagonal>, CompactWilsonCloverTypes<Impl>::Nblock>>; \
template<typename vtype> using iImplCloverTriangle = \
iScalar<iVector<iVector<vtype, CompactWilsonCloverTypes<Impl>::Ntriangle>, CompactWilsonCloverTypes<Impl>::Nblock>>;
#define INHERIT_COMPACT_CLOVER_SIZES(Impl) \
static constexpr int Nred = CompactWilsonCloverTypes<Impl>::Nred; \
static constexpr int Nblock = CompactWilsonCloverTypes<Impl>::Nblock; \
static constexpr int Ndiagonal = CompactWilsonCloverTypes<Impl>::Ndiagonal; \
static constexpr int Ntriangle = CompactWilsonCloverTypes<Impl>::Ntriangle;
NAMESPACE_END(Grid);

View File

@@ -303,11 +303,9 @@ public:
int npoints,
int checkerboard,
const std::vector<int> &directions,
const std::vector<int> &distances,
bool locally_periodic,
Parameters p)
: CartesianStencil<vobj,cobj,Parameters> (grid,npoints,checkerboard,directions,distances,locally_periodic,p)
{
const std::vector<int> &distances,Parameters p)
: CartesianStencil<vobj,cobj,Parameters> (grid,npoints,checkerboard,directions,distances,p)
{
ZeroCountersi();
surface_list.resize(0);
this->same_node.resize(npoints);

View File

@@ -146,11 +146,8 @@ public:
void DhopInternalSerial(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
void DhopInternalDirichletComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
void DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
const FermionField &in, FermionField &out, int dag);
// Constructor
WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
@@ -160,10 +157,7 @@ public:
// DoubleStore impl dependent
void ImportGauge(const GaugeField &_Umu);
DoubledGaugeField &GetDoubledGaugeField(void){ return Umu; };
DoubledGaugeField &GetDoubledGaugeFieldE(void){ return UmuEven; };
DoubledGaugeField &GetDoubledGaugeFieldO(void){ return UmuOdd; };
///////////////////////////////////////////////////////////////
// Data members require to support the functionality
///////////////////////////////////////////////////////////////

View File

@@ -165,14 +165,7 @@ public:
const FermionField &in,
FermionField &out,
int dag);
void DhopInternalDirichletComms(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out,
int dag);
// Constructors
WilsonFermion5D(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
@@ -181,11 +174,19 @@ public:
GridRedBlackCartesian &FourDimRedBlackGrid,
double _M5,const ImplParams &p= ImplParams());
// Constructors
/*
WilsonFermion5D(int simd,
GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
double _M5,const ImplParams &p= ImplParams());
*/
// DoubleStore
void ImportGauge(const GaugeField &_Umu);
DoubledGaugeField &GetDoubledGaugeField(void){ return Umu; };
DoubledGaugeField &GetDoubledGaugeFieldE(void){ return UmuEven; };
DoubledGaugeField &GetDoubledGaugeFieldO(void){ return UmuOdd; };
///////////////////////////////////////////////////////////////
// Data members require to support the functionality
///////////////////////////////////////////////////////////////

View File

@@ -39,7 +39,7 @@ NAMESPACE_BEGIN(Grid);
class WilsonKernelsStatic {
public:
enum { OptGeneric, OptHandUnroll, OptInlineAsm };
enum { CommsAndCompute, CommsThenCompute, CommsDirichlet };
enum { CommsAndCompute, CommsThenCompute };
static int Opt;
static int Comms;
};

View File

@@ -112,6 +112,7 @@ void CayleyFermion5D<Impl>::ImportUnphysicalFermion(const FermionField &input4d,
axpby_ssp_pminus(tmp, 0., tmp, 1., tmp, Ls-1, Ls-1);
imported5d=tmp;
}
template<class Impl>
void CayleyFermion5D<Impl>::ImportPhysicalFermionSource(const FermionField &input4d,FermionField &imported5d)
{
@@ -126,37 +127,6 @@ void CayleyFermion5D<Impl>::ImportPhysicalFermionSource(const FermionField &inpu
axpby_ssp_pminus(tmp, 0., tmp, 1., tmp, Ls-1, Ls-1);
Dminus(tmp,imported5d);
}
////////////////////////////////////////////////////
// Added for fourD pseudofermion det estimation
////////////////////////////////////////////////////
template<class Impl>
void CayleyFermion5D<Impl>::ImportFourDimPseudoFermion(const FermionField &input4d,FermionField &imported5d)
{
int Ls = this->Ls;
FermionField tmp(this->FermionGrid());
conformable(imported5d.Grid(),this->FermionGrid());
conformable(input4d.Grid() ,this->GaugeGrid());
tmp = Zero();
InsertSlice(input4d, tmp, 0 , 0);
InsertSlice(input4d, tmp, Ls-1, 0);
axpby_ssp_pminus(tmp, 0., tmp, 1., tmp, 0, 0);
axpby_ssp_pplus (tmp, 0., tmp, 1., tmp, Ls-1, Ls-1);
imported5d=tmp;
}
template<class Impl>
void CayleyFermion5D<Impl>::ExportFourDimPseudoFermion(const FermionField &solution5d,FermionField &exported4d)
{
int Ls = this->Ls;
FermionField tmp(this->FermionGrid());
tmp = solution5d;
conformable(solution5d.Grid(),this->FermionGrid());
conformable(exported4d.Grid(),this->GaugeGrid());
axpby_ssp_pminus(tmp, 0., solution5d, 1., solution5d, 0, 0);
axpby_ssp_pplus (tmp, 1., tmp , 1., solution5d, 0, Ls-1);
ExtractSlice(exported4d, tmp, 0, 0);
}
// Dminus
template<class Impl>
void CayleyFermion5D<Impl>::Dminus(const FermionField &psi, FermionField &chi)
{
@@ -858,6 +828,7 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
#if (!defined(GRID_HIP))
int tshift = (mu == Nd-1) ? 1 : 0;
unsigned int LLt = GridDefaultLatt()[Tp];
////////////////////////////////////////////////
// GENERAL CAYLEY CASE
////////////////////////////////////////////////
@@ -910,7 +881,7 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
}
std::vector<RealD> G_s(Ls,1.0);
RealD sign = 1; // sign flip for vector/tadpole
RealD sign = 1.0; // sign flip for vector/tadpole
if ( curr_type == Current::Axial ) {
for(int s=0;s<Ls/2;s++){
G_s[s] = -1.0;
@@ -920,7 +891,7 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
auto b=this->_b;
auto c=this->_c;
if ( b == 1 && c == 0 ) {
sign = -1;
sign = -1.0;
}
else {
std::cerr << "Error: Tadpole implementation currently unavailable for non-Shamir actions." << std::endl;
@@ -964,7 +935,13 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
tmp = Cshift(tmp,mu,-1);
Impl::multLinkField(Utmp,this->Umu,tmp,mu+Nd); // Adjoint link
tmp = -G_s[s]*( Utmp + gmu*Utmp );
tmp = where((lcoor>=tmin+tshift),tmp,zz); // Mask the time
// Mask the time
if (tmax == LLt - 1 && tshift == 1){ // quick fix to include timeslice 0 if tmax + tshift is over the last timeslice
unsigned int t0 = 0;
tmp = where(((lcoor==t0) || (lcoor>=tmin+tshift)),tmp,zz);
} else {
tmp = where((lcoor>=tmin+tshift),tmp,zz);
}
L_Q += where((lcoor<=tmax+tshift),tmp,zz); // Position of current complicated
InsertSlice(L_Q, q_out, s , 0);

View File

@@ -0,0 +1,363 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/CompactWilsonCloverFermionImplementation.h
Copyright (C) 2017 - 2022
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/qcd/spin/Dirac.h>
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h>
NAMESPACE_BEGIN(Grid);
template<class Impl>
CompactWilsonCloverFermion<Impl>::CompactWilsonCloverFermion(GaugeField& _Umu,
GridCartesian& Fgrid,
GridRedBlackCartesian& Hgrid,
const RealD _mass,
const RealD _csw_r,
const RealD _csw_t,
const RealD _cF,
const WilsonAnisotropyCoefficients& clover_anisotropy,
const ImplParams& impl_p)
: WilsonBase(_Umu, Fgrid, Hgrid, _mass, impl_p, clover_anisotropy)
, csw_r(_csw_r)
, csw_t(_csw_t)
, cF(_cF)
, open_boundaries(impl_p.boundary_phases[Nd-1] == 0.0)
, Diagonal(&Fgrid), Triangle(&Fgrid)
, DiagonalEven(&Hgrid), TriangleEven(&Hgrid)
, DiagonalOdd(&Hgrid), TriangleOdd(&Hgrid)
, DiagonalInv(&Fgrid), TriangleInv(&Fgrid)
, DiagonalInvEven(&Hgrid), TriangleInvEven(&Hgrid)
, DiagonalInvOdd(&Hgrid), TriangleInvOdd(&Hgrid)
, Tmp(&Fgrid)
, BoundaryMask(&Fgrid)
, BoundaryMaskEven(&Hgrid), BoundaryMaskOdd(&Hgrid)
{
csw_r *= 0.5;
csw_t *= 0.5;
if (clover_anisotropy.isAnisotropic)
csw_r /= clover_anisotropy.xi_0;
ImportGauge(_Umu);
if (open_boundaries)
CompactHelpers::SetupMasks(this->BoundaryMask, this->BoundaryMaskEven, this->BoundaryMaskOdd);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::Dhop(const FermionField& in, FermionField& out, int dag) {
WilsonBase::Dhop(in, out, dag);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::DhopOE(const FermionField& in, FermionField& out, int dag) {
WilsonBase::DhopOE(in, out, dag);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::DhopEO(const FermionField& in, FermionField& out, int dag) {
WilsonBase::DhopEO(in, out, dag);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::DhopDir(const FermionField& in, FermionField& out, int dir, int disp) {
WilsonBase::DhopDir(in, out, dir, disp);
if(this->open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::DhopDirAll(const FermionField& in, std::vector<FermionField>& out) {
WilsonBase::DhopDirAll(in, out);
if(this->open_boundaries) {
for(auto& o : out) ApplyBoundaryMask(o);
}
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::M(const FermionField& in, FermionField& out) {
out.Checkerboard() = in.Checkerboard();
WilsonBase::Dhop(in, out, DaggerNo); // call base to save applying bc
Mooee(in, Tmp);
axpy(out, 1.0, out, Tmp);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::Mdag(const FermionField& in, FermionField& out) {
out.Checkerboard() = in.Checkerboard();
WilsonBase::Dhop(in, out, DaggerYes); // call base to save applying bc
MooeeDag(in, Tmp);
axpy(out, 1.0, out, Tmp);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::Meooe(const FermionField& in, FermionField& out) {
WilsonBase::Meooe(in, out);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MeooeDag(const FermionField& in, FermionField& out) {
WilsonBase::MeooeDag(in, out);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::Mooee(const FermionField& in, FermionField& out) {
if(in.Grid()->_isCheckerBoarded) {
if(in.Checkerboard() == Odd) {
MooeeInternal(in, out, DiagonalOdd, TriangleOdd);
} else {
MooeeInternal(in, out, DiagonalEven, TriangleEven);
}
} else {
MooeeInternal(in, out, Diagonal, Triangle);
}
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MooeeDag(const FermionField& in, FermionField& out) {
Mooee(in, out); // blocks are hermitian
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MooeeInv(const FermionField& in, FermionField& out) {
if(in.Grid()->_isCheckerBoarded) {
if(in.Checkerboard() == Odd) {
MooeeInternal(in, out, DiagonalInvOdd, TriangleInvOdd);
} else {
MooeeInternal(in, out, DiagonalInvEven, TriangleInvEven);
}
} else {
MooeeInternal(in, out, DiagonalInv, TriangleInv);
}
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MooeeInvDag(const FermionField& in, FermionField& out) {
MooeeInv(in, out); // blocks are hermitian
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::Mdir(const FermionField& in, FermionField& out, int dir, int disp) {
DhopDir(in, out, dir, disp);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MdirAll(const FermionField& in, std::vector<FermionField>& out) {
DhopDirAll(in, out);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) {
assert(!open_boundaries); // TODO check for changes required for open bc
// NOTE: code copied from original clover term
conformable(X.Grid(), Y.Grid());
conformable(X.Grid(), force.Grid());
GaugeLinkField force_mu(force.Grid()), lambda(force.Grid());
GaugeField clover_force(force.Grid());
PropagatorField Lambda(force.Grid());
// Guido: Here we are hitting some performance issues:
// need to extract the components of the DoubledGaugeField
// for each call
// Possible solution
// Create a vector object to store them? (cons: wasting space)
std::vector<GaugeLinkField> U(Nd, this->Umu.Grid());
Impl::extractLinkField(U, this->Umu);
force = Zero();
// Derivative of the Wilson hopping term
this->DhopDeriv(force, X, Y, dag);
///////////////////////////////////////////////////////////
// Clover term derivative
///////////////////////////////////////////////////////////
Impl::outerProductImpl(Lambda, X, Y);
//std::cout << "Lambda:" << Lambda << std::endl;
Gamma::Algebra sigma[] = {
Gamma::Algebra::SigmaXY,
Gamma::Algebra::SigmaXZ,
Gamma::Algebra::SigmaXT,
Gamma::Algebra::MinusSigmaXY,
Gamma::Algebra::SigmaYZ,
Gamma::Algebra::SigmaYT,
Gamma::Algebra::MinusSigmaXZ,
Gamma::Algebra::MinusSigmaYZ,
Gamma::Algebra::SigmaZT,
Gamma::Algebra::MinusSigmaXT,
Gamma::Algebra::MinusSigmaYT,
Gamma::Algebra::MinusSigmaZT};
/*
sigma_{\mu \nu}=
| 0 sigma[0] sigma[1] sigma[2] |
| sigma[3] 0 sigma[4] sigma[5] |
| sigma[6] sigma[7] 0 sigma[8] |
| sigma[9] sigma[10] sigma[11] 0 |
*/
int count = 0;
clover_force = Zero();
for (int mu = 0; mu < 4; mu++)
{
force_mu = Zero();
for (int nu = 0; nu < 4; nu++)
{
if (mu == nu)
continue;
RealD factor;
if (nu == 4 || mu == 4)
{
factor = 2.0 * csw_t;
}
else
{
factor = 2.0 * csw_r;
}
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
force_mu -= factor*Helpers::Cmunu(U, lambda, mu, nu); // checked
count++;
}
pokeLorentz(clover_force, U[mu] * force_mu, mu);
}
//clover_force *= csw;
force += clover_force;
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MooDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) {
assert(0);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MeeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) {
assert(0);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MooeeInternal(const FermionField& in,
FermionField& out,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle) {
assert(in.Checkerboard() == Odd || in.Checkerboard() == Even);
out.Checkerboard() = in.Checkerboard();
conformable(in, out);
conformable(in, diagonal);
conformable(in, triangle);
CompactHelpers::MooeeKernel(diagonal.oSites(), 1, in, out, diagonal, triangle);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::ImportGauge(const GaugeField& _Umu) {
// NOTE: parts copied from original implementation
// Import gauge into base class
double t0 = usecond();
WilsonBase::ImportGauge(_Umu); // NOTE: called here and in wilson constructor -> performed twice, but can't avoid that
// Initialize temporary variables
double t1 = usecond();
conformable(_Umu.Grid(), this->GaugeGrid());
GridBase* grid = _Umu.Grid();
typename Impl::GaugeLinkField Bx(grid), By(grid), Bz(grid), Ex(grid), Ey(grid), Ez(grid);
CloverField TmpOriginal(grid);
// Compute the field strength terms mu>nu
double t2 = usecond();
WilsonLoops<Impl>::FieldStrength(Bx, _Umu, Zdir, Ydir);
WilsonLoops<Impl>::FieldStrength(By, _Umu, Zdir, Xdir);
WilsonLoops<Impl>::FieldStrength(Bz, _Umu, Ydir, Xdir);
WilsonLoops<Impl>::FieldStrength(Ex, _Umu, Tdir, Xdir);
WilsonLoops<Impl>::FieldStrength(Ey, _Umu, Tdir, Ydir);
WilsonLoops<Impl>::FieldStrength(Ez, _Umu, Tdir, Zdir);
// Compute the Clover Operator acting on Colour and Spin
// multiply here by the clover coefficients for the anisotropy
double t3 = usecond();
TmpOriginal = Helpers::fillCloverYZ(Bx) * csw_r;
TmpOriginal += Helpers::fillCloverXZ(By) * csw_r;
TmpOriginal += Helpers::fillCloverXY(Bz) * csw_r;
TmpOriginal += Helpers::fillCloverXT(Ex) * csw_t;
TmpOriginal += Helpers::fillCloverYT(Ey) * csw_t;
TmpOriginal += Helpers::fillCloverZT(Ez) * csw_t;
TmpOriginal += this->diag_mass;
// Convert the data layout of the clover term
double t4 = usecond();
CompactHelpers::ConvertLayout(TmpOriginal, Diagonal, Triangle);
// Possible modify the boundary values
double t5 = usecond();
if(open_boundaries) CompactHelpers::ModifyBoundaries(Diagonal, Triangle, csw_t, cF, this->diag_mass);
// Invert the clover term in the improved layout
double t6 = usecond();
CompactHelpers::Invert(Diagonal, Triangle, DiagonalInv, TriangleInv);
// Fill the remaining clover fields
double t7 = usecond();
pickCheckerboard(Even, DiagonalEven, Diagonal);
pickCheckerboard(Even, TriangleEven, Triangle);
pickCheckerboard(Odd, DiagonalOdd, Diagonal);
pickCheckerboard(Odd, TriangleOdd, Triangle);
pickCheckerboard(Even, DiagonalInvEven, DiagonalInv);
pickCheckerboard(Even, TriangleInvEven, TriangleInv);
pickCheckerboard(Odd, DiagonalInvOdd, DiagonalInv);
pickCheckerboard(Odd, TriangleInvOdd, TriangleInv);
// Report timings
double t8 = usecond();
#if 0
std::cout << GridLogMessage << "CompactWilsonCloverFermion::ImportGauge timings:"
<< " WilsonFermion::Importgauge = " << (t1 - t0) / 1e6
<< ", allocations = " << (t2 - t1) / 1e6
<< ", field strength = " << (t3 - t2) / 1e6
<< ", fill clover = " << (t4 - t3) / 1e6
<< ", convert = " << (t5 - t4) / 1e6
<< ", boundaries = " << (t6 - t5) / 1e6
<< ", inversions = " << (t7 - t6) / 1e6
<< ", pick cbs = " << (t8 - t7) / 1e6
<< ", total = " << (t8 - t0) / 1e6
<< std::endl;
#endif
}
NAMESPACE_END(Grid);

View File

@@ -2,12 +2,13 @@
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonCloverFermion.cc
Source file: ./lib/qcd/action/fermion/WilsonCloverFermionImplementation.h
Copyright (C) 2017
Copyright (C) 2017 - 2022
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@@ -33,6 +34,45 @@
NAMESPACE_BEGIN(Grid);
template<class Impl>
WilsonCloverFermion<Impl>::WilsonCloverFermion(GaugeField& _Umu,
GridCartesian& Fgrid,
GridRedBlackCartesian& Hgrid,
const RealD _mass,
const RealD _csw_r,
const RealD _csw_t,
const WilsonAnisotropyCoefficients& clover_anisotropy,
const ImplParams& impl_p)
: WilsonFermion<Impl>(_Umu, Fgrid, Hgrid, _mass, impl_p, clover_anisotropy)
, CloverTerm(&Fgrid)
, CloverTermInv(&Fgrid)
, CloverTermEven(&Hgrid)
, CloverTermOdd(&Hgrid)
, CloverTermInvEven(&Hgrid)
, CloverTermInvOdd(&Hgrid)
, CloverTermDagEven(&Hgrid)
, CloverTermDagOdd(&Hgrid)
, CloverTermInvDagEven(&Hgrid)
, CloverTermInvDagOdd(&Hgrid) {
assert(Nd == 4); // require 4 dimensions
if(clover_anisotropy.isAnisotropic) {
csw_r = _csw_r * 0.5 / clover_anisotropy.xi_0;
diag_mass = _mass + 1.0 + (Nd - 1) * (clover_anisotropy.nu / clover_anisotropy.xi_0);
} else {
csw_r = _csw_r * 0.5;
diag_mass = 4.0 + _mass;
}
csw_t = _csw_t * 0.5;
if(csw_r == 0)
std::cout << GridLogWarning << "Initializing WilsonCloverFermion with csw_r = 0" << std::endl;
if(csw_t == 0)
std::cout << GridLogWarning << "Initializing WilsonCloverFermion with csw_t = 0" << std::endl;
ImportGauge(_Umu);
}
// *NOT* EO
template <class Impl>
void WilsonCloverFermion<Impl>::M(const FermionField &in, FermionField &out)
@@ -67,10 +107,13 @@ void WilsonCloverFermion<Impl>::Mdag(const FermionField &in, FermionField &out)
template <class Impl>
void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
{
double t0 = usecond();
WilsonFermion<Impl>::ImportGauge(_Umu);
double t1 = usecond();
GridBase *grid = _Umu.Grid();
typename Impl::GaugeLinkField Bx(grid), By(grid), Bz(grid), Ex(grid), Ey(grid), Ez(grid);
double t2 = usecond();
// Compute the field strength terms mu>nu
WilsonLoops<Impl>::FieldStrength(Bx, _Umu, Zdir, Ydir);
WilsonLoops<Impl>::FieldStrength(By, _Umu, Zdir, Xdir);
@@ -79,19 +122,22 @@ void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
WilsonLoops<Impl>::FieldStrength(Ey, _Umu, Tdir, Ydir);
WilsonLoops<Impl>::FieldStrength(Ez, _Umu, Tdir, Zdir);
double t3 = usecond();
// Compute the Clover Operator acting on Colour and Spin
// multiply here by the clover coefficients for the anisotropy
CloverTerm = fillCloverYZ(Bx) * csw_r;
CloverTerm += fillCloverXZ(By) * csw_r;
CloverTerm += fillCloverXY(Bz) * csw_r;
CloverTerm += fillCloverXT(Ex) * csw_t;
CloverTerm += fillCloverYT(Ey) * csw_t;
CloverTerm += fillCloverZT(Ez) * csw_t;
CloverTerm = Helpers::fillCloverYZ(Bx) * csw_r;
CloverTerm += Helpers::fillCloverXZ(By) * csw_r;
CloverTerm += Helpers::fillCloverXY(Bz) * csw_r;
CloverTerm += Helpers::fillCloverXT(Ex) * csw_t;
CloverTerm += Helpers::fillCloverYT(Ey) * csw_t;
CloverTerm += Helpers::fillCloverZT(Ez) * csw_t;
CloverTerm += diag_mass;
double t4 = usecond();
int lvol = _Umu.Grid()->lSites();
int DimRep = Impl::Dimension;
double t5 = usecond();
{
autoView(CTv,CloverTerm,CpuRead);
autoView(CTIv,CloverTermInv,CpuWrite);
@@ -100,7 +146,7 @@ void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
grid->LocalIndexToLocalCoor(site, lcoor);
Eigen::MatrixXcd EigenCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
Eigen::MatrixXcd EigenInvCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
typename SiteCloverType::scalar_object Qx = Zero(), Qxinv = Zero();
typename SiteClover::scalar_object Qx = Zero(), Qxinv = Zero();
peekLocalSite(Qx, CTv, lcoor);
//if (csw!=0){
for (int j = 0; j < Ns; j++)
@@ -125,6 +171,7 @@ void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
});
}
double t6 = usecond();
// Separate the even and odd parts
pickCheckerboard(Even, CloverTermEven, CloverTerm);
pickCheckerboard(Odd, CloverTermOdd, CloverTerm);
@@ -137,6 +184,20 @@ void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
pickCheckerboard(Even, CloverTermInvDagEven, adj(CloverTermInv));
pickCheckerboard(Odd, CloverTermInvDagOdd, adj(CloverTermInv));
double t7 = usecond();
#if 0
std::cout << GridLogMessage << "WilsonCloverFermion::ImportGauge timings:"
<< " WilsonFermion::Importgauge = " << (t1 - t0) / 1e6
<< ", allocations = " << (t2 - t1) / 1e6
<< ", field strength = " << (t3 - t2) / 1e6
<< ", fill clover = " << (t4 - t3) / 1e6
<< ", misc = " << (t5 - t4) / 1e6
<< ", inversions = " << (t6 - t5) / 1e6
<< ", pick cbs = " << (t7 - t6) / 1e6
<< ", total = " << (t7 - t0) / 1e6
<< std::endl;
#endif
}
template <class Impl>
@@ -167,7 +228,7 @@ template <class Impl>
void WilsonCloverFermion<Impl>::MooeeInternal(const FermionField &in, FermionField &out, int dag, int inv)
{
out.Checkerboard() = in.Checkerboard();
CloverFieldType *Clover;
CloverField *Clover;
assert(in.Checkerboard() == Odd || in.Checkerboard() == Even);
if (dag)
@@ -182,12 +243,12 @@ void WilsonCloverFermion<Impl>::MooeeInternal(const FermionField &in, FermionFie
{
Clover = (inv) ? &CloverTermInvDagEven : &CloverTermDagEven;
}
out = *Clover * in;
Helpers::multCloverField(out, *Clover, in);
}
else
{
Clover = (inv) ? &CloverTermInv : &CloverTerm;
out = adj(*Clover) * in;
Helpers::multCloverField(out, *Clover, in); // don't bother with adj, hermitian anyway
}
}
else
@@ -205,18 +266,98 @@ void WilsonCloverFermion<Impl>::MooeeInternal(const FermionField &in, FermionFie
// std::cout << "Calling clover term Even" << std::endl;
Clover = (inv) ? &CloverTermInvEven : &CloverTermEven;
}
out = *Clover * in;
Helpers::multCloverField(out, *Clover, in);
// std::cout << GridLogMessage << "*Clover.Checkerboard() " << (*Clover).Checkerboard() << std::endl;
}
else
{
Clover = (inv) ? &CloverTermInv : &CloverTerm;
out = *Clover * in;
Helpers::multCloverField(out, *Clover, in);
}
}
} // MooeeInternal
// Derivative parts unpreconditioned pseudofermions
template <class Impl>
void WilsonCloverFermion<Impl>::MDeriv(GaugeField &force, const FermionField &X, const FermionField &Y, int dag)
{
conformable(X.Grid(), Y.Grid());
conformable(X.Grid(), force.Grid());
GaugeLinkField force_mu(force.Grid()), lambda(force.Grid());
GaugeField clover_force(force.Grid());
PropagatorField Lambda(force.Grid());
// Guido: Here we are hitting some performance issues:
// need to extract the components of the DoubledGaugeField
// for each call
// Possible solution
// Create a vector object to store them? (cons: wasting space)
std::vector<GaugeLinkField> U(Nd, this->Umu.Grid());
Impl::extractLinkField(U, this->Umu);
force = Zero();
// Derivative of the Wilson hopping term
this->DhopDeriv(force, X, Y, dag);
///////////////////////////////////////////////////////////
// Clover term derivative
///////////////////////////////////////////////////////////
Impl::outerProductImpl(Lambda, X, Y);
//std::cout << "Lambda:" << Lambda << std::endl;
Gamma::Algebra sigma[] = {
Gamma::Algebra::SigmaXY,
Gamma::Algebra::SigmaXZ,
Gamma::Algebra::SigmaXT,
Gamma::Algebra::MinusSigmaXY,
Gamma::Algebra::SigmaYZ,
Gamma::Algebra::SigmaYT,
Gamma::Algebra::MinusSigmaXZ,
Gamma::Algebra::MinusSigmaYZ,
Gamma::Algebra::SigmaZT,
Gamma::Algebra::MinusSigmaXT,
Gamma::Algebra::MinusSigmaYT,
Gamma::Algebra::MinusSigmaZT};
/*
sigma_{\mu \nu}=
| 0 sigma[0] sigma[1] sigma[2] |
| sigma[3] 0 sigma[4] sigma[5] |
| sigma[6] sigma[7] 0 sigma[8] |
| sigma[9] sigma[10] sigma[11] 0 |
*/
int count = 0;
clover_force = Zero();
for (int mu = 0; mu < 4; mu++)
{
force_mu = Zero();
for (int nu = 0; nu < 4; nu++)
{
if (mu == nu)
continue;
RealD factor;
if (nu == 4 || mu == 4)
{
factor = 2.0 * csw_t;
}
else
{
factor = 2.0 * csw_r;
}
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
force_mu -= factor*Helpers::Cmunu(U, lambda, mu, nu); // checked
count++;
}
pokeLorentz(clover_force, U[mu] * force_mu, mu);
}
//clover_force *= csw;
force += clover_force;
}
// Derivative parts
template <class Impl>

View File

@@ -51,9 +51,9 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
_FiveDimRedBlackGrid(&FiveDimRedBlackGrid),
_FourDimGrid (&FourDimGrid),
_FourDimRedBlackGrid(&FourDimRedBlackGrid),
Stencil (_FiveDimGrid,npoint,Even,directions,displacements,p.locally_periodic,p),
StencilEven(_FiveDimRedBlackGrid,npoint,Even,directions,displacements,p.locally_periodic,p), // source is Even
StencilOdd (_FiveDimRedBlackGrid,npoint,Odd ,directions,displacements,p.locally_periodic,p), // source is Odd
Stencil (_FiveDimGrid,npoint,Even,directions,displacements,p),
StencilEven(_FiveDimRedBlackGrid,npoint,Even,directions,displacements,p), // source is Even
StencilOdd (_FiveDimRedBlackGrid,npoint,Odd ,directions,displacements,p), // source is Odd
M5(_M5),
Umu(_FourDimGrid),
UmuEven(_FourDimRedBlackGrid),
@@ -361,21 +361,10 @@ void WilsonFermion5D<Impl>::DhopInternal(StencilImpl & st, LebesgueOrder &lo,
const FermionField &in, FermionField &out,int dag)
{
DhopTotalTime-=usecond();
assert( (WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute)
||(WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsThenCompute)
||(WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsDirichlet) );
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute ) {
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute )
DhopInternalOverlappedComms(st,lo,U,in,out,dag);
}
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsThenCompute ) {
else
DhopInternalSerialComms(st,lo,U,in,out,dag);
}
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsDirichlet ) {
DhopInternalDirichletComms(st,lo,U,in,out,dag);
}
DhopTotalTime+=usecond();
}
@@ -442,30 +431,6 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, Lebesg
DhopComputeTime2+=usecond();
}
template<class Impl>
void WilsonFermion5D<Impl>::DhopInternalDirichletComms(StencilImpl & st, LebesgueOrder &lo,
DoubledGaugeField & U,
const FermionField &in, FermionField &out,int dag)
{
Compressor compressor(dag);
int LLs = in.Grid()->_rdimensions[0];
int len = U.Grid()->oSites();
/////////////////////////////
// do the compute interior
/////////////////////////////
int Opt = WilsonKernelsStatic::Opt; // Why pass this. Kernels should know
DhopComputeTime-=usecond();
if (dag == DaggerYes) {
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,1,0);
} else {
Kernels::DhopKernel (Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,1,0);
}
accelerator_barrier();
DhopComputeTime+=usecond();
}
template<class Impl>
void WilsonFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st, LebesgueOrder &lo,

View File

@@ -47,9 +47,9 @@ WilsonFermion<Impl>::WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
Kernels(p),
_grid(&Fgrid),
_cbgrid(&Hgrid),
Stencil(&Fgrid, npoint, Even, directions, displacements,p.locally_periodic,p),
StencilEven(&Hgrid, npoint, Even, directions,displacements,p.locally_periodic,p), // source is Even
StencilOdd(&Hgrid, npoint, Odd, directions,displacements,p.locally_periodic,p), // source is Odd
Stencil(&Fgrid, npoint, Even, directions, displacements,p),
StencilEven(&Hgrid, npoint, Even, directions,displacements,p), // source is Even
StencilOdd(&Hgrid, npoint, Odd, directions,displacements,p), // source is Odd
mass(_mass),
Lebesgue(_grid),
LebesgueEvenOdd(_cbgrid),
@@ -488,21 +488,12 @@ void WilsonFermion<Impl>::DhopInternal(StencilImpl &st, LebesgueOrder &lo,
FermionField &out, int dag)
{
DhopTotalTime-=usecond();
assert( (WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute)
||(WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsThenCompute)
||(WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsDirichlet) );
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute ) {
#ifdef GRID_OMP
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute )
DhopInternalOverlappedComms(st,lo,U,in,out,dag);
}
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsThenCompute ) {
else
#endif
DhopInternalSerial(st,lo,U,in,out,dag);
}
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsDirichlet ) {
DhopInternalDirichletComms(st,lo,U,in,out,dag);
}
DhopTotalTime+=usecond();
}
@@ -571,29 +562,6 @@ void WilsonFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, LebesgueO
DhopComputeTime2+=usecond();
};
template <class Impl>
void WilsonFermion<Impl>::DhopInternalDirichletComms(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out, int dag)
{
assert((dag == DaggerNo) || (dag == DaggerYes));
Compressor compressor(dag);
int len = U.Grid()->oSites();
/////////////////////////////
// do the compute interior
/////////////////////////////
int Opt = WilsonKernelsStatic::Opt;
DhopComputeTime-=usecond();
if (dag == DaggerYes) {
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,1,0);
} else {
Kernels::DhopKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,1,0);
}
DhopComputeTime+=usecond();
};
template <class Impl>
void WilsonFermion<Impl>::DhopInternalSerial(StencilImpl &st, LebesgueOrder &lo,

View File

@@ -77,23 +77,23 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#define REGISTER
#ifdef GRID_SIMT
#define LOAD_CHIMU(ptype) \
#define LOAD_CHIMU(Ptype) \
{const SiteSpinor & ref (in[offset]); \
Chimu_00=coalescedReadPermute<ptype>(ref()(0)(0),perm,lane); \
Chimu_01=coalescedReadPermute<ptype>(ref()(0)(1),perm,lane); \
Chimu_02=coalescedReadPermute<ptype>(ref()(0)(2),perm,lane); \
Chimu_10=coalescedReadPermute<ptype>(ref()(1)(0),perm,lane); \
Chimu_11=coalescedReadPermute<ptype>(ref()(1)(1),perm,lane); \
Chimu_12=coalescedReadPermute<ptype>(ref()(1)(2),perm,lane); \
Chimu_20=coalescedReadPermute<ptype>(ref()(2)(0),perm,lane); \
Chimu_21=coalescedReadPermute<ptype>(ref()(2)(1),perm,lane); \
Chimu_22=coalescedReadPermute<ptype>(ref()(2)(2),perm,lane); \
Chimu_30=coalescedReadPermute<ptype>(ref()(3)(0),perm,lane); \
Chimu_31=coalescedReadPermute<ptype>(ref()(3)(1),perm,lane); \
Chimu_32=coalescedReadPermute<ptype>(ref()(3)(2),perm,lane); }
Chimu_00=coalescedReadPermute<Ptype>(ref()(0)(0),perm,lane); \
Chimu_01=coalescedReadPermute<Ptype>(ref()(0)(1),perm,lane); \
Chimu_02=coalescedReadPermute<Ptype>(ref()(0)(2),perm,lane); \
Chimu_10=coalescedReadPermute<Ptype>(ref()(1)(0),perm,lane); \
Chimu_11=coalescedReadPermute<Ptype>(ref()(1)(1),perm,lane); \
Chimu_12=coalescedReadPermute<Ptype>(ref()(1)(2),perm,lane); \
Chimu_20=coalescedReadPermute<Ptype>(ref()(2)(0),perm,lane); \
Chimu_21=coalescedReadPermute<Ptype>(ref()(2)(1),perm,lane); \
Chimu_22=coalescedReadPermute<Ptype>(ref()(2)(2),perm,lane); \
Chimu_30=coalescedReadPermute<Ptype>(ref()(3)(0),perm,lane); \
Chimu_31=coalescedReadPermute<Ptype>(ref()(3)(1),perm,lane); \
Chimu_32=coalescedReadPermute<Ptype>(ref()(3)(2),perm,lane); }
#define PERMUTE_DIR(dir) ;
#else
#define LOAD_CHIMU(ptype) \
#define LOAD_CHIMU(Ptype) \
{const SiteSpinor & ref (in[offset]); \
Chimu_00=ref()(0)(0);\
Chimu_01=ref()(0)(1);\
@@ -109,12 +109,12 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
Chimu_32=ref()(3)(2);}
#define PERMUTE_DIR(dir) \
permute##dir(Chi_00,Chi_00); \
permute##dir(Chi_01,Chi_01);\
permute##dir(Chi_02,Chi_02);\
permute##dir(Chi_10,Chi_10); \
permute##dir(Chi_11,Chi_11);\
permute##dir(Chi_12,Chi_12);
permute##dir(Chi_00,Chi_00); \
permute##dir(Chi_01,Chi_01); \
permute##dir(Chi_02,Chi_02); \
permute##dir(Chi_10,Chi_10); \
permute##dir(Chi_11,Chi_11); \
permute##dir(Chi_12,Chi_12);
#endif
@@ -371,88 +371,91 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
result_32-= UChi_12;
#define HAND_STENCIL_LEGB(PROJ,PERM,DIR,RECON) \
SE=st.GetEntry(ptype,DIR,ss); \
offset = SE->_offset; \
local = SE->_is_local; \
perm = SE->_permute; \
if ( local ) { \
LOAD_CHIMU(PERM); \
PROJ; \
if ( perm) { \
PERMUTE_DIR(PERM); \
} \
} else { \
LOAD_CHI; \
} \
acceleratorSynchronise(); \
MULT_2SPIN(DIR); \
RECON;
{int ptype; \
SE=st.GetEntry(ptype,DIR,ss); \
auto offset = SE->_offset; \
auto local = SE->_is_local; \
auto perm = SE->_permute; \
if ( local ) { \
LOAD_CHIMU(PERM); \
PROJ; \
if ( perm) { \
PERMUTE_DIR(PERM); \
} \
} else { \
LOAD_CHI; \
} \
acceleratorSynchronise(); \
MULT_2SPIN(DIR); \
RECON; }
#define HAND_STENCIL_LEG(PROJ,PERM,DIR,RECON) \
SE=&st_p[DIR+8*ss]; \
ptype=st_perm[DIR]; \
offset = SE->_offset; \
local = SE->_is_local; \
perm = SE->_permute; \
if ( local ) { \
LOAD_CHIMU(PERM); \
PROJ; \
if ( perm) { \
PERMUTE_DIR(PERM); \
} \
} else { \
LOAD_CHI; \
} \
acceleratorSynchronise(); \
MULT_2SPIN(DIR); \
RECON;
#define HAND_STENCIL_LEG(PROJ,PERM,DIR,RECON) \
{ SE=&st_p[DIR+8*ss]; \
auto ptype=st_perm[DIR]; \
auto offset = SE->_offset; \
auto local = SE->_is_local; \
auto perm = SE->_permute; \
if ( local ) { \
LOAD_CHIMU(PERM); \
PROJ; \
if ( perm) { \
PERMUTE_DIR(PERM); \
} \
} else { \
LOAD_CHI; \
} \
acceleratorSynchronise(); \
MULT_2SPIN(DIR); \
RECON; }
#define HAND_STENCIL_LEGA(PROJ,PERM,DIR,RECON) \
SE=&st_p[DIR+8*ss]; \
ptype=st_perm[DIR]; \
/*SE=st.GetEntry(ptype,DIR,ss);*/ \
offset = SE->_offset; \
perm = SE->_permute; \
LOAD_CHIMU(PERM); \
PROJ; \
MULT_2SPIN(DIR); \
RECON;
{ SE=&st_p[DIR+8*ss]; \
auto ptype=st_perm[DIR]; \
/*SE=st.GetEntry(ptype,DIR,ss);*/ \
auto offset = SE->_offset; \
auto perm = SE->_permute; \
LOAD_CHIMU(PERM); \
PROJ; \
MULT_2SPIN(DIR); \
RECON; }
#define HAND_STENCIL_LEG_INT(PROJ,PERM,DIR,RECON) \
SE=st.GetEntry(ptype,DIR,ss); \
offset = SE->_offset; \
local = SE->_is_local; \
perm = SE->_permute; \
if ( local ) { \
LOAD_CHIMU(PERM); \
PROJ; \
if ( perm) { \
PERMUTE_DIR(PERM); \
} \
} else if ( st.same_node[DIR] ) { \
LOAD_CHI; \
} \
acceleratorSynchronise(); \
if (local || st.same_node[DIR] ) { \
MULT_2SPIN(DIR); \
RECON; \
} \
acceleratorSynchronise();
{ int ptype; \
SE=st.GetEntry(ptype,DIR,ss); \
auto offset = SE->_offset; \
auto local = SE->_is_local; \
auto perm = SE->_permute; \
if ( local ) { \
LOAD_CHIMU(PERM); \
PROJ; \
if ( perm) { \
PERMUTE_DIR(PERM); \
} \
} else if ( st.same_node[DIR] ) { \
LOAD_CHI; \
} \
acceleratorSynchronise(); \
if (local || st.same_node[DIR] ) { \
MULT_2SPIN(DIR); \
RECON; \
} \
acceleratorSynchronise(); }
#define HAND_STENCIL_LEG_EXT(PROJ,PERM,DIR,RECON) \
SE=st.GetEntry(ptype,DIR,ss); \
offset = SE->_offset; \
if((!SE->_is_local)&&(!st.same_node[DIR]) ) { \
LOAD_CHI; \
MULT_2SPIN(DIR); \
RECON; \
nmu++; \
} \
acceleratorSynchronise();
{ int ptype; \
SE=st.GetEntry(ptype,DIR,ss); \
auto offset = SE->_offset; \
if((!SE->_is_local)&&(!st.same_node[DIR]) ) { \
LOAD_CHI; \
MULT_2SPIN(DIR); \
RECON; \
nmu++; \
} \
acceleratorSynchronise(); }
#define HAND_RESULT(ss) \
{ \
SiteSpinor & ref (out[ss]); \
#define HAND_RESULT(ss) \
{ \
SiteSpinor & ref (out[ss]); \
coalescedWrite(ref()(0)(0),result_00,lane); \
coalescedWrite(ref()(0)(1),result_01,lane); \
coalescedWrite(ref()(0)(2),result_02,lane); \
@@ -563,7 +566,6 @@ WilsonKernels<Impl>::HandDhopSiteSycl(StencilVector st_perm,StencilEntry *st_p,
HAND_DECLARATIONS(Simt);
int offset,local,perm, ptype;
StencilEntry *SE;
HAND_STENCIL_LEG(XM_PROJ,3,Xp,XM_RECON);
HAND_STENCIL_LEG(YM_PROJ,2,Yp,YM_RECON_ACCUM);
@@ -593,9 +595,7 @@ WilsonKernels<Impl>::HandDhopSite(StencilView &st, DoubledGaugeFieldView &U,Site
HAND_DECLARATIONS(Simt);
int offset,local,perm, ptype;
StencilEntry *SE;
HAND_STENCIL_LEG(XM_PROJ,3,Xp,XM_RECON);
HAND_STENCIL_LEG(YM_PROJ,2,Yp,YM_RECON_ACCUM);
HAND_STENCIL_LEG(ZM_PROJ,1,Zp,ZM_RECON_ACCUM);
@@ -623,8 +623,6 @@ void WilsonKernels<Impl>::HandDhopSiteDag(StencilView &st,DoubledGaugeFieldView
HAND_DECLARATIONS(Simt);
StencilEntry *SE;
int offset,local,perm, ptype;
HAND_STENCIL_LEG(XP_PROJ,3,Xp,XP_RECON);
HAND_STENCIL_LEG(YP_PROJ,2,Yp,YP_RECON_ACCUM);
HAND_STENCIL_LEG(ZP_PROJ,1,Zp,ZP_RECON_ACCUM);
@@ -640,8 +638,8 @@ template<class Impl> accelerator_inline void
WilsonKernels<Impl>::HandDhopSiteInt(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
{
auto st_p = st._entries_p;
auto st_perm = st._permute_type;
// auto st_p = st._entries_p;
// auto st_perm = st._permute_type;
// T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
@@ -652,7 +650,6 @@ WilsonKernels<Impl>::HandDhopSiteInt(StencilView &st,DoubledGaugeFieldView &U,Si
HAND_DECLARATIONS(Simt);
int offset,local,perm, ptype;
StencilEntry *SE;
ZERO_RESULT;
HAND_STENCIL_LEG_INT(XM_PROJ,3,Xp,XM_RECON_ACCUM);
@@ -670,8 +667,8 @@ template<class Impl> accelerator_inline
void WilsonKernels<Impl>::HandDhopSiteDagInt(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
{
auto st_p = st._entries_p;
auto st_perm = st._permute_type;
// auto st_p = st._entries_p;
// auto st_perm = st._permute_type;
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
typedef decltype( coalescedRead( in[0]()(0)(0) )) Simt;
@@ -682,7 +679,6 @@ void WilsonKernels<Impl>::HandDhopSiteDagInt(StencilView &st,DoubledGaugeFieldVi
HAND_DECLARATIONS(Simt);
StencilEntry *SE;
int offset,local,perm, ptype;
ZERO_RESULT;
HAND_STENCIL_LEG_INT(XP_PROJ,3,Xp,XP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(YP_PROJ,2,Yp,YP_RECON_ACCUM);
@@ -699,8 +695,8 @@ template<class Impl> accelerator_inline void
WilsonKernels<Impl>::HandDhopSiteExt(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
{
auto st_p = st._entries_p;
auto st_perm = st._permute_type;
// auto st_p = st._entries_p;
// auto st_perm = st._permute_type;
// T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
@@ -711,7 +707,7 @@ WilsonKernels<Impl>::HandDhopSiteExt(StencilView &st,DoubledGaugeFieldView &U,Si
HAND_DECLARATIONS(Simt);
int offset, ptype;
// int offset, ptype;
StencilEntry *SE;
int nmu=0;
ZERO_RESULT;
@@ -730,8 +726,8 @@ template<class Impl> accelerator_inline
void WilsonKernels<Impl>::HandDhopSiteDagExt(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
{
auto st_p = st._entries_p;
auto st_perm = st._permute_type;
// auto st_p = st._entries_p;
// auto st_perm = st._permute_type;
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
typedef decltype( coalescedRead( in[0]()(0)(0) )) Simt;
@@ -742,7 +738,7 @@ void WilsonKernels<Impl>::HandDhopSiteDagExt(StencilView &st,DoubledGaugeFieldVi
HAND_DECLARATIONS(Simt);
StencilEntry *SE;
int offset, ptype;
// int offset, ptype;
int nmu=0;
ZERO_RESULT;
HAND_STENCIL_LEG_EXT(XP_PROJ,3,Xp,XP_RECON_ACCUM);

View File

@@ -0,0 +1,41 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/ qcd/action/fermion/instantiation/CompactWilsonCloverFermionInstantiation.cc.master
Copyright (C) 2017 - 2022
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/qcd/spin/Dirac.h>
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h>
#include <Grid/qcd/action/fermion/implementation/CompactWilsonCloverFermionImplementation.h>
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class CompactWilsonCloverFermion<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@@ -0,0 +1 @@
../CompactWilsonCloverFermionInstantiation.cc.master

View File

@@ -0,0 +1 @@
../CompactWilsonCloverFermionInstantiation.cc.master

View File

@@ -40,7 +40,7 @@ EOF
done
CC_LIST="WilsonCloverFermionInstantiation WilsonFermionInstantiation WilsonKernelsInstantiation WilsonTMFermionInstantiation"
CC_LIST="WilsonCloverFermionInstantiation CompactWilsonCloverFermionInstantiation WilsonFermionInstantiation WilsonKernelsInstantiation WilsonTMFermionInstantiation"
for impl in $WILSON_IMPL_LIST
do

View File

@@ -61,7 +61,7 @@ NAMESPACE_BEGIN(Grid);
typedef typename Impl::Field Field;
// hardcodes the exponential approximation in the template
template <class S, int Nrepresentation = Nc, int Nexp = 20 > class GaugeImplTypes {
template <class S, int Nrepresentation = Nc, int Nexp = 12 > class GaugeImplTypes {
public:
typedef S Simd;
typedef typename Simd::scalar_type scalar_type;
@@ -78,6 +78,8 @@ public:
typedef Lattice<SiteLink> LinkField;
typedef Lattice<SiteField> Field;
typedef SU<Nrepresentation> Group;
// Guido: we can probably separate the types from the HMC functions
// this will create 2 kind of implementations
// probably confusing the users
@@ -118,7 +120,7 @@ public:
LinkField Pmu(P.Grid());
Pmu = Zero();
for (int mu = 0; mu < Nd; mu++) {
SU<Nrepresentation>::GaussianFundamentalLieAlgebraMatrix(pRNG, Pmu);
Group::GaussianFundamentalLieAlgebraMatrix(pRNG, Pmu);
RealD scale = ::sqrt(HMC_MOMENTUM_DENOMINATOR) ;
Pmu = Pmu*scale;
PokeIndex<LorentzIndex>(P, Pmu, mu);
@@ -159,15 +161,15 @@ public:
}
static inline void HotConfiguration(GridParallelRNG &pRNG, Field &U) {
SU<Nc>::HotConfiguration(pRNG, U);
Group::HotConfiguration(pRNG, U);
}
static inline void TepidConfiguration(GridParallelRNG &pRNG, Field &U) {
SU<Nc>::TepidConfiguration(pRNG, U);
Group::TepidConfiguration(pRNG, U);
}
static inline void ColdConfiguration(GridParallelRNG &pRNG, Field &U) {
SU<Nc>::ColdConfiguration(pRNG, U);
Group::ColdConfiguration(pRNG, U);
}
};

View File

@@ -69,6 +69,11 @@ public:
return PeriodicBC::ShiftStaple(Link,mu);
}
//Same as Cshift for periodic BCs
static inline GaugeLinkField CshiftLink(const GaugeLinkField &Link, int mu, int shift){
return PeriodicBC::CshiftLink(Link,mu,shift);
}
static inline bool isPeriodicGaugeField(void) { return true; }
};
@@ -110,6 +115,11 @@ public:
return PeriodicBC::CovShiftBackward(Link, mu, field);
}
//If mu is a conjugate BC direction
//Out(x) = U^dag_\mu(x-mu) | x_\mu != 0
// = U^T_\mu(L-1) | x_\mu == 0
//else
//Out(x) = U^dag_\mu(x-mu mod L)
static inline GaugeLinkField
CovShiftIdentityBackward(const GaugeLinkField &Link, int mu)
{
@@ -129,6 +139,13 @@ public:
return PeriodicBC::CovShiftIdentityForward(Link,mu);
}
//If mu is a conjugate BC direction
//Out(x) = S_\mu(x+mu) | x_\mu != L-1
// = S*_\mu(x+mu) | x_\mu == L-1
//else
//Out(x) = S_\mu(x+mu mod L)
//Note: While this is used for Staples it is also applicable for shifting gauge links or gauge transformation matrices
static inline GaugeLinkField ShiftStaple(const GaugeLinkField &Link, int mu)
{
assert(_conjDirs.size() == Nd);
@@ -138,6 +155,27 @@ public:
return PeriodicBC::ShiftStaple(Link,mu);
}
//Boundary-aware C-shift of gauge links / gauge transformation matrices
//For conjugate BC direction
//shift = 1
//Out(x) = U_\mu(x+\hat\mu) | x_\mu != L-1
// = U*_\mu(0) | x_\mu == L-1
//shift = -1
//Out(x) = U_\mu(x-mu) | x_\mu != 0
// = U*_\mu(L-1) | x_\mu == 0
//else
//shift = 1
//Out(x) = U_\mu(x+\hat\mu mod L)
//shift = -1
//Out(x) = U_\mu(x-\hat\mu mod L)
static inline GaugeLinkField CshiftLink(const GaugeLinkField &Link, int mu, int shift){
assert(_conjDirs.size() == Nd);
if(_conjDirs[mu])
return ConjugateBC::CshiftLink(Link,mu,shift);
else
return PeriodicBC::CshiftLink(Link,mu,shift);
}
static inline void setDirections(std::vector<int> &conjDirs) { _conjDirs=conjDirs; }
static inline std::vector<int> getDirections(void) { return _conjDirs; }
static inline bool isPeriodicGaugeField(void) { return false; }

View File

@@ -1,163 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/DomainDecomposedTwoFlavourBoundaryBoson.h
Copyright (C) 2021
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////
// Two flavour ratio
///////////////////////////////////////
template<class ImplD,class ImplF>
class DomainDecomposedBoundaryTwoFlavourBosonPseudoFermion : public Action<typename ImplD::GaugeField> {
public:
INHERIT_IMPL_TYPES(ImplD);
private:
SchurFactoredFermionOperator<ImplD,ImplF> & NumOp;// the basic operator
RealD InnerStoppingCondition;
RealD ActionStoppingCondition;
RealD DerivativeStoppingCondition;
FermionField Phi; // the pseudo fermion field for this trajectory
public:
DomainDecomposedBoundaryTwoFlavourBosonPseudoFermion(SchurFactoredFermionOperator<ImplD,ImplF> &_NumOp,RealD _DerivativeTol, RealD _ActionTol, RealD _InnerTol=1.0e-6)
: NumOp(_NumOp),
DerivativeStoppingCondition(_DerivativeTol),
ActionStoppingCondition(_ActionTol),
InnerStoppingCondition(_InnerTol),
Phi(_NumOp.FermionGrid()) {};
virtual std::string action_name(){return "DomainDecomposedBoundaryTwoFlavourBosonPseudoFermion";}
virtual std::string LogParameters(){
std::stringstream sstream;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridSerialRNG& sRNG, GridParallelRNG& pRNG)
{
// P(phi) = e^{- phi^dag P^dag P phi}
//
// NumOp == P
//
// Take phi = P^{-1} eta ; eta = P Phi
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
//
RealD scale = std::sqrt(0.5);
NumOp.tolinner=InnerStoppingCondition;
NumOp.tol=ActionStoppingCondition;
NumOp.ImportGauge(U);
FermionField eta(NumOp.FermionGrid());
gaussian(pRNG,eta); eta=eta*scale;
NumOp.ProjectBoundaryBar(eta);
//DumpSliceNorm("eta",eta);
NumOp.RInv(eta,Phi);
//DumpSliceNorm("Phi",Phi);
};
//////////////////////////////////////////////////////
// S = phi^dag Pdag P phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
NumOp.tolinner=InnerStoppingCondition;
NumOp.tol=ActionStoppingCondition;
NumOp.ImportGauge(U);
FermionField Y(NumOp.FermionGrid());
NumOp.R(Phi,Y);
RealD action = norm2(Y);
return action;
};
virtual void deriv(const GaugeField &U,GaugeField & dSdU)
{
NumOp.tolinner=InnerStoppingCondition;
NumOp.tol=DerivativeStoppingCondition;
NumOp.ImportGauge(U);
GridBase *fgrid = NumOp.FermionGrid();
GridBase *ugrid = NumOp.GaugeGrid();
FermionField X(fgrid);
FermionField Y(fgrid);
FermionField tmp(fgrid);
GaugeField force(ugrid);
FermionField DobiDdbPhi(fgrid); // Vector A in my notes
FermionField DoiDdDobiDdbPhi(fgrid); // Vector B in my notes
FermionField DoidP_Phi(fgrid); // Vector E in my notes
FermionField DobidDddDoidP_Phi(fgrid); // Vector F in my notes
FermionField P_Phi(fgrid);
// P term
NumOp.dBoundaryBar(Phi,tmp);
NumOp.dOmegaBarInv(tmp,DobiDdbPhi); // Vector A
NumOp.dBoundary(DobiDdbPhi,tmp);
NumOp.dOmegaInv(tmp,DoiDdDobiDdbPhi); // Vector B
P_Phi = Phi - DoiDdDobiDdbPhi;
NumOp.ProjectBoundaryBar(P_Phi);
// P^dag P term
NumOp.dOmegaDagInv(P_Phi,DoidP_Phi); // Vector E
NumOp.dBoundaryDag(DoidP_Phi,tmp);
NumOp.dOmegaBarDagInv(tmp,DobidDddDoidP_Phi); // Vector F
NumOp.dBoundaryBarDag(DobidDddDoidP_Phi,tmp);
X = DobiDdbPhi;
Y = DobidDddDoidP_Phi;
NumOp.DirichletFermOpD.MDeriv(force,Y,X,DaggerNo); dSdU=force;
NumOp.DirichletFermOpD.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU+force;
X = DoiDdDobiDdbPhi;
Y = DoidP_Phi;
NumOp.DirichletFermOpD.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU+force;
NumOp.DirichletFermOpD.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU+force;
dSdU *= -1.0;
};
};
NAMESPACE_END(Grid);

View File

@@ -1,158 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/DomainDecomposedTwoFlavourBoundary.h
Copyright (C) 2021
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////
// Two flavour ratio
///////////////////////////////////////
template<class ImplD,class ImplF>
class DomainDecomposedBoundaryTwoFlavourPseudoFermion : public Action<typename ImplD::GaugeField> {
public:
INHERIT_IMPL_TYPES(ImplD);
private:
SchurFactoredFermionOperator<ImplD,ImplF> & DenOp;// the basic operator
RealD ActionStoppingCondition;
RealD DerivativeStoppingCondition;
RealD InnerStoppingCondition;
FermionField Phi; // the pseudo fermion field for this trajectory
RealD refresh_action;
public:
DomainDecomposedBoundaryTwoFlavourPseudoFermion(SchurFactoredFermionOperator<ImplD,ImplF> &_DenOp,RealD _DerivativeTol, RealD _ActionTol, RealD _InnerTol = 1.0e-6 )
: DenOp(_DenOp),
DerivativeStoppingCondition(_DerivativeTol),
ActionStoppingCondition(_ActionTol),
InnerStoppingCondition(_InnerTol),
Phi(_DenOp.FermionGrid()) {};
virtual std::string action_name(){return "DomainDecomposedBoundaryTwoFlavourPseudoFermion";}
virtual std::string LogParameters(){
std::stringstream sstream;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridSerialRNG& sRNG, GridParallelRNG& pRNG)
{
// P(phi) = e^{- phi^dag Rdag^-1 R^-1 phi}
//
// DenOp == R
//
// Take phi = R eta ; eta = R^-1 Phi
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
//
RealD scale = std::sqrt(0.5);
DenOp.tolinner=InnerStoppingCondition;
DenOp.tol =ActionStoppingCondition;
DenOp.ImportGauge(U);
FermionField eta(DenOp.FermionGrid());
gaussian(pRNG,eta); eta=eta*scale;
DenOp.ProjectBoundaryBar(eta);
DenOp.R(eta,Phi);
//DumpSliceNorm("Phi",Phi);
refresh_action = norm2(eta);
};
//////////////////////////////////////////////////////
// S = phi^dag Rdag^-1 R^-1 phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
DenOp.tolinner=InnerStoppingCondition;
DenOp.tol=ActionStoppingCondition;
DenOp.ImportGauge(U);
FermionField X(DenOp.FermionGrid());
DenOp.RInv(Phi,X);
RealD action = norm2(X);
return action;
};
virtual void deriv(const GaugeField &U,GaugeField & dSdU)
{
DenOp.tolinner=InnerStoppingCondition;
DenOp.tol=DerivativeStoppingCondition;
DenOp.ImportGauge(U);
GridBase *fgrid = DenOp.FermionGrid();
GridBase *ugrid = DenOp.GaugeGrid();
FermionField X(fgrid);
FermionField Y(fgrid);
FermionField tmp(fgrid);
GaugeField force(ugrid);
FermionField DiDdb_Phi(fgrid); // Vector C in my notes
FermionField DidRinv_Phi(fgrid); // Vector D in my notes
FermionField Rinv_Phi(fgrid);
// FermionField RinvDagRinv_Phi(fgrid);
// FermionField DdbdDidRinv_Phi(fgrid);
// R^-1 term
DenOp.dBoundaryBar(Phi,tmp);
DenOp.Dinverse(tmp,DiDdb_Phi); // Vector C
Rinv_Phi = Phi - DiDdb_Phi;
DenOp.ProjectBoundaryBar(Rinv_Phi);
// R^-dagger R^-1 term
DenOp.DinverseDag(Rinv_Phi,DidRinv_Phi); // Vector D
/*
DenOp.dBoundaryBarDag(DidRinv_Phi,DdbdDidRinv_Phi);
RinvDagRinv_Phi = Rinv_Phi - DdbdDidRinv_Phi;
DenOp.ProjectBoundaryBar(RinvDagRinv_Phi);
*/
X = DiDdb_Phi;
Y = DidRinv_Phi;
DenOp.PeriodicFermOpD.MDeriv(force,Y,X,DaggerNo); dSdU=force;
DenOp.PeriodicFermOpD.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU+force;
DumpSliceNorm("force",dSdU);
dSdU *= -1.0;
};
};
NAMESPACE_END(Grid);

View File

@@ -1,237 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/DomainDecomposedTwoFlavourBoundary.h
Copyright (C) 2021
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////
// Two flavour ratio
///////////////////////////////////////
template<class ImplD,class ImplF>
class DomainDecomposedBoundaryTwoFlavourRatioPseudoFermion : public Action<typename ImplD::GaugeField> {
public:
INHERIT_IMPL_TYPES(ImplD);
private:
SchurFactoredFermionOperator<ImplD,ImplF> & NumOp;// the basic operator
SchurFactoredFermionOperator<ImplD,ImplF> & DenOp;// the basic operator
RealD InnerStoppingCondition;
RealD ActionStoppingCondition;
RealD DerivativeStoppingCondition;
FermionField Phi; // the pseudo fermion field for this trajectory
public:
DomainDecomposedBoundaryTwoFlavourRatioPseudoFermion(SchurFactoredFermionOperator<ImplD,ImplF> &_NumOp,
SchurFactoredFermionOperator<ImplD,ImplF> &_DenOp,
RealD _DerivativeTol, RealD _ActionTol, RealD _InnerTol=1.0e-6)
: NumOp(_NumOp), DenOp(_DenOp),
Phi(_NumOp.PeriodicFermOpD.FermionGrid()),
InnerStoppingCondition(_InnerTol),
DerivativeStoppingCondition(_DerivativeTol),
ActionStoppingCondition(_ActionTol)
{};
virtual std::string action_name(){return "DomainDecomposedBoundaryTwoFlavourRatioPseudoFermion";}
virtual std::string LogParameters(){
std::stringstream sstream;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridSerialRNG& sRNG, GridParallelRNG& pRNG)
{
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
FermionField eta(NumOp.PeriodicFermOpD.FermionGrid());
FermionField tmp(NumOp.PeriodicFermOpD.FermionGrid());
// P(phi) = e^{- phi^dag P^dag Rdag^-1 R^-1 P phi}
//
// NumOp == P
// DenOp == R
//
// Take phi = P^{-1} R eta ; eta = R^-1 P Phi
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
//
RealD scale = std::sqrt(0.5);
gaussian(pRNG,eta); eta=eta*scale;
NumOp.ProjectBoundaryBar(eta);
NumOp.tolinner=InnerStoppingCondition;
DenOp.tolinner=InnerStoppingCondition;
DenOp.tol = ActionStoppingCondition;
NumOp.tol = ActionStoppingCondition;
DenOp.R(eta,tmp);
NumOp.RInv(tmp,Phi);
DumpSliceNorm("Phi",Phi);
};
//////////////////////////////////////////////////////
// S = phi^dag Pdag Rdag^-1 R^-1 P phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
FermionField X(NumOp.PeriodicFermOpD.FermionGrid());
FermionField Y(NumOp.PeriodicFermOpD.FermionGrid());
NumOp.tolinner=InnerStoppingCondition;
DenOp.tolinner=InnerStoppingCondition;
DenOp.tol = ActionStoppingCondition;
NumOp.tol = ActionStoppingCondition;
NumOp.R(Phi,Y);
DenOp.RInv(Y,X);
RealD action = norm2(X);
// std::cout << " DD boundary action is " <<action<<std::endl;
return action;
};
virtual void deriv(const GaugeField &U,GaugeField & dSdU)
{
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
GridBase *fgrid = NumOp.PeriodicFermOpD.FermionGrid();
GridBase *ugrid = NumOp.PeriodicFermOpD.GaugeGrid();
FermionField X(fgrid);
FermionField Y(fgrid);
FermionField tmp(fgrid);
GaugeField force(ugrid);
FermionField DobiDdbPhi(fgrid); // Vector A in my notes
FermionField DoiDdDobiDdbPhi(fgrid); // Vector B in my notes
FermionField DiDdbP_Phi(fgrid); // Vector C in my notes
FermionField DidRinvP_Phi(fgrid); // Vector D in my notes
FermionField DdbdDidRinvP_Phi(fgrid);
FermionField DoidRinvDagRinvP_Phi(fgrid); // Vector E in my notes
FermionField DobidDddDoidRinvDagRinvP_Phi(fgrid); // Vector F in my notes
FermionField P_Phi(fgrid);
FermionField RinvP_Phi(fgrid);
FermionField RinvDagRinvP_Phi(fgrid);
FermionField PdagRinvDagRinvP_Phi(fgrid);
// RealD action = S(U);
NumOp.tolinner=InnerStoppingCondition;
DenOp.tolinner=InnerStoppingCondition;
DenOp.tol = DerivativeStoppingCondition;
NumOp.tol = DerivativeStoppingCondition;
// P term
NumOp.dBoundaryBar(Phi,tmp);
NumOp.dOmegaBarInv(tmp,DobiDdbPhi); // Vector A
NumOp.dBoundary(DobiDdbPhi,tmp);
NumOp.dOmegaInv(tmp,DoiDdDobiDdbPhi); // Vector B
P_Phi = Phi - DoiDdDobiDdbPhi;
NumOp.ProjectBoundaryBar(P_Phi);
// R^-1 P term
DenOp.dBoundaryBar(P_Phi,tmp);
DenOp.Dinverse(tmp,DiDdbP_Phi); // Vector C
RinvP_Phi = P_Phi - DiDdbP_Phi;
DenOp.ProjectBoundaryBar(RinvP_Phi); // Correct to here
// R^-dagger R^-1 P term
DenOp.DinverseDag(RinvP_Phi,DidRinvP_Phi); // Vector D
DenOp.dBoundaryBarDag(DidRinvP_Phi,DdbdDidRinvP_Phi);
RinvDagRinvP_Phi = RinvP_Phi - DdbdDidRinvP_Phi;
DenOp.ProjectBoundaryBar(RinvDagRinvP_Phi);
// P^dag R^-dagger R^-1 P term
NumOp.dOmegaDagInv(RinvDagRinvP_Phi,DoidRinvDagRinvP_Phi); // Vector E
NumOp.dBoundaryDag(DoidRinvDagRinvP_Phi,tmp);
NumOp.dOmegaBarDagInv(tmp,DobidDddDoidRinvDagRinvP_Phi); // Vector F
NumOp.dBoundaryBarDag(DobidDddDoidRinvDagRinvP_Phi,tmp);
PdagRinvDagRinvP_Phi = RinvDagRinvP_Phi- tmp;
NumOp.ProjectBoundaryBar(PdagRinvDagRinvP_Phi);
/*
std::cout << "S eval "<< action << std::endl;
std::cout << "S - IP1 "<< innerProduct(Phi,PdagRinvDagRinvP_Phi) << std::endl;
std::cout << "S - IP2 "<< norm2(RinvP_Phi) << std::endl;
NumOp.R(Phi,tmp);
tmp = tmp - P_Phi;
std::cout << "diff1 "<<norm2(tmp) <<std::endl;
DenOp.RInv(P_Phi,tmp);
tmp = tmp - RinvP_Phi;
std::cout << "diff2 "<<norm2(tmp) <<std::endl;
DenOp.RDagInv(RinvP_Phi,tmp);
tmp = tmp - RinvDagRinvP_Phi;
std::cout << "diff3 "<<norm2(tmp) <<std::endl;
DenOp.RDag(RinvDagRinvP_Phi,tmp);
tmp = tmp - PdagRinvDagRinvP_Phi;
std::cout << "diff4 "<<norm2(tmp) <<std::endl;
*/
dSdU=Zero();
X = DobiDdbPhi;
Y = DobidDddDoidRinvDagRinvP_Phi;
NumOp.DirichletFermOpD.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU+force;
NumOp.DirichletFermOpD.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU+force;
X = DoiDdDobiDdbPhi;
Y = DoidRinvDagRinvP_Phi;
NumOp.DirichletFermOpD.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU+force;
NumOp.DirichletFermOpD.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU+force;
X = DiDdbP_Phi;
Y = DidRinvP_Phi;
DenOp.PeriodicFermOpD.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU+force;
DenOp.PeriodicFermOpD.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU+force;
dSdU *= -1.0;
};
};
NAMESPACE_END(Grid);

View File

@@ -44,6 +44,10 @@ NAMESPACE_BEGIN(Grid);
// Exact one flavour implementation of DWF determinant ratio //
///////////////////////////////////////////////////////////////
//Note: using mixed prec CG for the heatbath solver in this action class will not work
// because the L, R operators must have their shift coefficients updated throughout the heatbath step
// You will find that the heatbath solver simply won't converge.
// To use mixed precision here use the ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction variant below
template<class Impl>
class ExactOneFlavourRatioPseudoFermionAction : public Action<typename Impl::GaugeField>
{
@@ -57,37 +61,60 @@ NAMESPACE_BEGIN(Grid);
bool use_heatbath_forecasting;
AbstractEOFAFermion<Impl>& Lop; // the basic LH operator
AbstractEOFAFermion<Impl>& Rop; // the basic RH operator
SchurRedBlackDiagMooeeSolve<FermionField> SolverHB;
SchurRedBlackDiagMooeeSolve<FermionField> SolverHBL;
SchurRedBlackDiagMooeeSolve<FermionField> SolverHBR;
SchurRedBlackDiagMooeeSolve<FermionField> SolverL;
SchurRedBlackDiagMooeeSolve<FermionField> SolverR;
SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverL;
SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverR;
FermionField Phi; // the pseudofermion field for this trajectory
RealD norm2_eta; //|eta|^2 where eta is the random gaussian field used to generate the pseudofermion field
bool initial_action; //true for the first call to S after refresh, for which the identity S = |eta|^2 holds provided the rational approx is good
public:
//Used in the heatbath, refresh the shift coefficients of the L (LorR=0) or R (LorR=1) operator
virtual void heatbathRefreshShiftCoefficients(int LorR, RealD to){
AbstractEOFAFermion<Impl>&op = LorR == 0 ? Lop : Rop;
op.RefreshShiftCoefficients(to);
}
//Use the same solver for L,R in all cases
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
AbstractEOFAFermion<Impl>& _Rop,
OperatorFunction<FermionField>& CG,
Params& p,
bool use_fc=false)
: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,CG,CG,CG,CG,CG,p,use_fc) {};
: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,CG,CG,CG,CG,CG,CG,p,use_fc) {};
//Use the same solver for L,R in the heatbath but different solvers elsewhere
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
AbstractEOFAFermion<Impl>& _Rop,
OperatorFunction<FermionField>& HeatbathCG,
OperatorFunction<FermionField>& HeatbathCG,
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
Params& p,
bool use_fc=false)
: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,HeatbathCG,HeatbathCG, ActionCGL, ActionCGR, DerivCGL,DerivCGR,p,use_fc) {};
//Use different solvers for L,R in all cases
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
AbstractEOFAFermion<Impl>& _Rop,
OperatorFunction<FermionField>& HeatbathCGL, OperatorFunction<FermionField>& HeatbathCGR,
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
Params& p,
bool use_fc=false) :
Lop(_Lop),
Rop(_Rop),
SolverHB(HeatbathCG,false,true),
SolverHBL(HeatbathCGL,false,true), SolverHBR(HeatbathCGR,false,true),
SolverL(ActionCGL, false, true), SolverR(ActionCGR, false, true),
DerivativeSolverL(DerivCGL, false, true), DerivativeSolverR(DerivCGR, false, true),
Phi(_Lop.FermionGrid()),
param(p),
use_heatbath_forecasting(use_fc)
use_heatbath_forecasting(use_fc),
initial_action(false)
{
AlgRemez remez(param.lo, param.hi, param.precision);
@@ -97,6 +124,8 @@ NAMESPACE_BEGIN(Grid);
PowerNegHalf.Init(remez, param.tolerance, true);
};
const FermionField &getPhi() const{ return Phi; }
virtual std::string action_name() { return "ExactOneFlavourRatioPseudoFermionAction"; }
virtual std::string LogParameters() {
@@ -117,6 +146,19 @@ NAMESPACE_BEGIN(Grid);
else{ for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(out, 0.0, in, 1.0, in, s, s); } }
}
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
// P(eta_o) = e^{- eta_o^dag eta_o}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
RealD scale = std::sqrt(0.5);
FermionField eta (Lop.FermionGrid());
gaussian(pRNG,eta); eta = eta * scale;
refresh(U,eta);
}
// EOFA heatbath: see Eqn. (29) of arXiv:1706.05843
// We generate a Gaussian noise vector \eta, and then compute
// \Phi = M_{\rm EOFA}^{-1/2} * \eta
@@ -124,12 +166,10 @@ NAMESPACE_BEGIN(Grid);
//
// As a check of rational require \Phi^dag M_{EOFA} \Phi == eta^dag M^-1/2^dag M M^-1/2 eta = eta^dag eta
//
virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG)
{
void refresh(const GaugeField &U, const FermionField &eta) {
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField eta (Lop.FermionGrid());
FermionField CG_src (Lop.FermionGrid());
FermionField CG_soln (Lop.FermionGrid());
FermionField Forecast_src(Lop.FermionGrid());
@@ -140,11 +180,6 @@ NAMESPACE_BEGIN(Grid);
if(use_heatbath_forecasting){ prev_solns.reserve(param.degree); }
ChronoForecast<AbstractEOFAFermion<Impl>, FermionField> Forecast;
// Seed with Gaussian noise vector (var = 0.5)
RealD scale = std::sqrt(0.5);
gaussian(pRNG,eta);
eta = eta * scale;
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
RealD N(PowerNegHalf.norm);
for(int k=0; k<param.degree; ++k){ N += PowerNegHalf.residues[k] / ( 1.0 + PowerNegHalf.poles[k] ); }
@@ -160,15 +195,16 @@ NAMESPACE_BEGIN(Grid);
tmp[1] = Zero();
for(int k=0; k<param.degree; ++k){
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
Lop.RefreshShiftCoefficients(-gamma_l);
heatbathRefreshShiftCoefficients(0, -gamma_l);
//Lop.RefreshShiftCoefficients(-gamma_l);
if(use_heatbath_forecasting){ // Forecast CG guess using solutions from previous poles
Lop.Mdag(CG_src, Forecast_src);
CG_soln = Forecast(Lop, Forecast_src, prev_solns);
SolverHB(Lop, CG_src, CG_soln);
SolverHBL(Lop, CG_src, CG_soln);
prev_solns.push_back(CG_soln);
} else {
CG_soln = Zero(); // Just use zero as the initial guess
SolverHB(Lop, CG_src, CG_soln);
SolverHBL(Lop, CG_src, CG_soln);
}
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = tmp[1] + ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Lop.k ) * tmp[0];
@@ -187,15 +223,16 @@ NAMESPACE_BEGIN(Grid);
if(use_heatbath_forecasting){ prev_solns.clear(); } // empirically, LH solns don't help for RH solves
for(int k=0; k<param.degree; ++k){
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
Rop.RefreshShiftCoefficients(-gamma_l*PowerNegHalf.poles[k]);
heatbathRefreshShiftCoefficients(1, -gamma_l*PowerNegHalf.poles[k]);
//Rop.RefreshShiftCoefficients(-gamma_l*PowerNegHalf.poles[k]);
if(use_heatbath_forecasting){
Rop.Mdag(CG_src, Forecast_src);
CG_soln = Forecast(Rop, Forecast_src, prev_solns);
SolverHB(Rop, CG_src, CG_soln);
SolverHBR(Rop, CG_src, CG_soln);
prev_solns.push_back(CG_soln);
} else {
CG_soln = Zero();
SolverHB(Rop, CG_src, CG_soln);
SolverHBR(Rop, CG_src, CG_soln);
}
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = tmp[1] - ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Rop.k ) * tmp[0];
@@ -205,49 +242,119 @@ NAMESPACE_BEGIN(Grid);
Phi = Phi + tmp[1];
// Reset shift coefficients for energy and force evals
Lop.RefreshShiftCoefficients(0.0);
Rop.RefreshShiftCoefficients(-1.0);
//Lop.RefreshShiftCoefficients(0.0);
//Rop.RefreshShiftCoefficients(-1.0);
heatbathRefreshShiftCoefficients(0, 0.0);
heatbathRefreshShiftCoefficients(1, -1.0);
//Mark that the next call to S is the first after refresh
initial_action = true;
// Bounds check
RealD EtaDagEta = norm2(eta);
norm2_eta = EtaDagEta;
// RealD PhiDagMPhi= norm2(eta);
};
void Meofa(const GaugeField& U,const FermionField &phi, FermionField & Mphi)
void Meofa(const GaugeField& U,const FermionField &in, FermionField & out)
{
#if 0
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField spProj_Phi(Lop.FermionGrid());
FermionField mPhi(Lop.FermionGrid());
FermionField spProj_in(Lop.FermionGrid());
std::vector<FermionField> tmp(2, Lop.FermionGrid());
mPhi = phi;
out = in;
// LH term: S = S - k <\Phi| P_{-} \Omega_{-}^{\dagger} H(mf)^{-1} \Omega_{-} P_{-} |\Phi>
spProj(Phi, spProj_Phi, -1, Lop.Ls);
Lop.Omega(spProj_Phi, tmp[0], -1, 0);
spProj(in, spProj_in, -1, Lop.Ls);
Lop.Omega(spProj_in, tmp[0], -1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = Zero();
SolverL(Lop, tmp[1], tmp[0]);
Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
Lop.Omega(tmp[1], tmp[0], -1, 1);
mPhi = mPhi - Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
spProj(tmp[0], tmp[1], -1, Lop.Ls);
out = out - Lop.k * tmp[1];
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
spProj(Phi, spProj_Phi, 1, Rop.Ls);
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} |\Phi>
spProj(in, spProj_in, 1, Rop.Ls);
Rop.Omega(spProj_in, tmp[0], 1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = Zero();
SolverR(Rop, tmp[1], tmp[0]);
Rop.Dtilde(tmp[0], tmp[1]);
Rop.Omega(tmp[1], tmp[0], 1, 1);
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
#endif
spProj(tmp[0], tmp[1], 1, Rop.Ls);
out = out + Rop.k * tmp[1];
}
//Due to the structure of EOFA, it is no more expensive to compute the inverse of Meofa
//To ensure correctness we can simply reuse the heatbath code but use the rational approx
//f(x) = 1/x which corresponds to alpha_0=0, alpha_1=1, beta_1=0 => gamma_1=1
void MeofaInv(const GaugeField &U, const FermionField &in, FermionField &out) {
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField CG_src (Lop.FermionGrid());
FermionField CG_soln (Lop.FermionGrid());
std::vector<FermionField> tmp(2, Lop.FermionGrid());
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
// = 1 * \eta
out = in;
// LH terms:
// \Phi = \Phi + k \sum_{k=1}^{N_{p}} P_{-} \Omega_{-}^{\dagger} ( H(mf)
// - \gamma_{l} \Delta_{-}(mf,mb) P_{-} )^{-1} \Omega_{-} P_{-} \eta
spProj(in, tmp[0], -1, Lop.Ls);
Lop.Omega(tmp[0], tmp[1], -1, 0);
G5R5(CG_src, tmp[1]);
{
heatbathRefreshShiftCoefficients(0, -1.); //-gamma_1 = -1.
CG_soln = Zero(); // Just use zero as the initial guess
SolverHBL(Lop, CG_src, CG_soln);
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = Lop.k * tmp[0];
}
Lop.Omega(tmp[1], tmp[0], -1, 1);
spProj(tmp[0], tmp[1], -1, Lop.Ls);
out = out + tmp[1];
// RH terms:
// \Phi = \Phi - k \sum_{k=1}^{N_{p}} P_{+} \Omega_{+}^{\dagger} ( H(mb)
// - \beta_l\gamma_{l} \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \eta
spProj(in, tmp[0], 1, Rop.Ls);
Rop.Omega(tmp[0], tmp[1], 1, 0);
G5R5(CG_src, tmp[1]);
{
heatbathRefreshShiftCoefficients(1, 0.); //-gamma_1 * beta_1 = 0
CG_soln = Zero();
SolverHBR(Rop, CG_src, CG_soln);
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = - Rop.k * tmp[0];
}
Rop.Omega(tmp[1], tmp[0], 1, 1);
spProj(tmp[0], tmp[1], 1, Rop.Ls);
out = out + tmp[1];
// Reset shift coefficients for energy and force evals
heatbathRefreshShiftCoefficients(0, 0.0);
heatbathRefreshShiftCoefficients(1, -1.0);
};
// EOFA action: see Eqn. (10) of arXiv:1706.05843
virtual RealD S(const GaugeField& U)
{
@@ -271,7 +378,7 @@ NAMESPACE_BEGIN(Grid);
action -= Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} |\Phi>
spProj(Phi, spProj_Phi, 1, Rop.Ls);
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
G5R5(tmp[1], tmp[0]);
@@ -281,6 +388,26 @@ NAMESPACE_BEGIN(Grid);
Rop.Omega(tmp[1], tmp[0], 1, 1);
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
if(initial_action){
//For the first call to S after refresh, S = |eta|^2. We can use this to ensure the rational approx is good
RealD diff = action - norm2_eta;
//S_init = eta^dag M^{-1/2} M M^{-1/2} eta
//S_init - eta^dag eta = eta^dag ( M^{-1/2} M M^{-1/2} - 1 ) eta
//If approximate solution
//S_init - eta^dag eta = eta^dag ( [M^{-1/2}+\delta M^{-1/2}] M [M^{-1/2}+\delta M^{-1/2}] - 1 ) eta
// \approx eta^dag ( \delta M^{-1/2} M^{1/2} + M^{1/2}\delta M^{-1/2} ) eta
// We divide out |eta|^2 to remove source scaling but the tolerance on this check should still be somewhat higher than the actual approx tolerance
RealD test = fabs(diff)/norm2_eta; //test the quality of the rational approx
std::cout << GridLogMessage << action_name() << " initial action " << action << " expect " << norm2_eta << "; diff " << diff << std::endl;
std::cout << GridLogMessage << action_name() << "[ eta^dag ( M^{-1/2} M M^{-1/2} - 1 ) eta ]/|eta^2| = " << test << " expect 0 (tol " << param.BoundsCheckTol << ")" << std::endl;
assert( ( test < param.BoundsCheckTol ) && " Initial action check failed" );
initial_action = false;
}
return action;
};
@@ -329,6 +456,40 @@ NAMESPACE_BEGIN(Grid);
};
};
template<class ImplD, class ImplF>
class ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction : public ExactOneFlavourRatioPseudoFermionAction<ImplD>{
public:
INHERIT_IMPL_TYPES(ImplD);
typedef OneFlavourRationalParams Params;
private:
AbstractEOFAFermion<ImplF>& LopF; // the basic LH operator
AbstractEOFAFermion<ImplF>& RopF; // the basic RH operator
public:
virtual std::string action_name() { return "ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction"; }
//Used in the heatbath, refresh the shift coefficients of the L (LorR=0) or R (LorR=1) operator
virtual void heatbathRefreshShiftCoefficients(int LorR, RealD to){
AbstractEOFAFermion<ImplF> &op = LorR == 0 ? LopF : RopF;
op.RefreshShiftCoefficients(to);
this->ExactOneFlavourRatioPseudoFermionAction<ImplD>::heatbathRefreshShiftCoefficients(LorR,to);
}
ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction(AbstractEOFAFermion<ImplF>& _LopF,
AbstractEOFAFermion<ImplF>& _RopF,
AbstractEOFAFermion<ImplD>& _LopD,
AbstractEOFAFermion<ImplD>& _RopD,
OperatorFunction<FermionField>& HeatbathCGL, OperatorFunction<FermionField>& HeatbathCGR,
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
Params& p,
bool use_fc=false) :
LopF(_LopF), RopF(_RopF), ExactOneFlavourRatioPseudoFermionAction<ImplD>(_LopD, _RopD, HeatbathCGL, HeatbathCGR, ActionCGL, ActionCGR, DerivCGL, DerivCGR, p, use_fc){}
};
NAMESPACE_END(Grid);
#endif

View File

@@ -26,7 +26,8 @@ See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#ifndef QCD_PSEUDOFERMION_AGGREGATE_H
#define QCD_PSEUDOFERMION_AGGREGATE_H
// Rational functions
#include <Grid/qcd/action/pseudofermion/Bounds.h>
@@ -43,10 +44,5 @@ directory
#include <Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatioMixedPrec.h>
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRationalRatio.h>
#include <Grid/qcd/action/pseudofermion/ExactOneFlavourRatio.h>
#include <Grid/qcd/action/pseudofermion/DomainDecomposedBoundaryTwoFlavourPseudoFermion.h>
#include <Grid/qcd/action/pseudofermion/DomainDecomposedBoundaryTwoFlavourBosonPseudoFermion.h>
#include <Grid/qcd/action/pseudofermion/DomainDecomposedBoundaryTwoFlavourRatioPseudoFermion.h>
#endif

View File

@@ -98,7 +98,6 @@ public:
FermOp.ImportGauge(U);
FermOp.Mdag(eta, Phi);
std::cout << GridLogMessage << "Pseudofermion action refresh " << norm2(eta) << std::endl;
};
//////////////////////////////////////////////////////

View File

@@ -50,8 +50,6 @@ NAMESPACE_BEGIN(Grid);
FermionField PhiOdd; // the pseudo fermion field for this trajectory
FermionField PhiEven; // the pseudo fermion field for this trajectory
virtual void refreshRestrict(FermionField &eta) {};
public:
TwoFlavourEvenOddRatioPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
@@ -62,8 +60,7 @@ NAMESPACE_BEGIN(Grid);
TwoFlavourEvenOddRatioPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
OperatorFunction<FermionField> & DS,
OperatorFunction<FermionField> & AS,
OperatorFunction<FermionField> & HS) :
OperatorFunction<FermionField> & AS, OperatorFunction<FermionField> & HS) :
NumOp(_NumOp),
DenOp(_DenOp),
DerivativeSolver(DS),
@@ -86,6 +83,9 @@ NAMESPACE_BEGIN(Grid);
return sstream.str();
}
//Access the fermion field
const FermionField &getPhiOdd() const{ return PhiOdd; }
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
// P(eta_o) = e^{- eta_o^dag eta_o}
//
@@ -96,7 +96,6 @@ NAMESPACE_BEGIN(Grid);
FermionField eta (NumOp.FermionGrid());
gaussian(pRNG,eta); eta = eta * scale;
refreshRestrict(eta); // Used by DDHMC
refresh(U,eta);
}
@@ -132,7 +131,6 @@ NAMESPACE_BEGIN(Grid);
//PhiOdd =PhiOdd*scale;
//PhiEven=PhiEven*scale;
std::cout << GridLogMessage<<" TwoFlavourEvenOddRatio Expect action to be "<<norm2(etaOdd) + norm2(etaEven)<<std::endl;
};
@@ -167,8 +165,6 @@ NAMESPACE_BEGIN(Grid);
DenOp.MooeeInvDag(X,Y);
action = action + norm2(Y);
std::cout << GridLogMessage<<" TwoFlavourEvenOddRatio action is "<<action<<std::endl;
return action;
};
@@ -181,7 +177,7 @@ NAMESPACE_BEGIN(Grid);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
SchurDifferentiableOperator<Impl> Mpc(DenOp);
SchurDifferentiableOperator<Impl> Vpc(NumOp);
@@ -216,7 +212,7 @@ NAMESPACE_BEGIN(Grid);
assert(DenOp.ConstEE() == 1);
dSdU = -dSdU;
};
};
NAMESPACE_END(Grid);

View File

@@ -99,7 +99,7 @@ public:
NumOp.M(tmp,Phi); // Vdag^-1 Mdag eta
Phi=Phi*scale;
std::cout << GridLogMessage<<" TwoFlavourRatio Expect action to be "<<norm2(eta)*scale*scale<<std::endl;
};
//////////////////////////////////////////////////////
@@ -121,7 +121,6 @@ public:
DenOp.M(X,Y); // Y= Mdag^-1 Vdag phi
RealD action = norm2(Y);
std::cout << GridLogMessage<<" TwoFlavourRatio action is "<<action<<std::endl;
return action;
};

View File

@@ -1,197 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/TwoFlavourRatio.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////
// Two flavour ratio
///////////////////////////////////////
template<class Impl>
class TwoFlavourRatio4DPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
private:
FermionOperator<Impl> & NumOp;// the basic operator
FermionOperator<Impl> & DenOp;// the basic operator
OperatorFunction<FermionField> &DerivativeSolver;
OperatorFunction<FermionField> &ActionSolver;
FermionField phi4; // the pseudo fermion field for this trajectory
public:
TwoFlavourRatio4DPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
OperatorFunction<FermionField> & DS,
OperatorFunction<FermionField> & AS
) : NumOp(_NumOp),
DenOp(_DenOp),
DerivativeSolver(DS),
ActionSolver(AS),
phi4(_NumOp.GaugeGrid())
{};
virtual std::string action_name(){return "TwoFlavourRatio4DPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] has no parameters" << std::endl;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
// P(phi) = e^{- phi^dag (V^dag M^-dag)_11 (M^-1 V)_11 phi}
//
// NumOp == V
// DenOp == M
//
// Take phi = (V^{-1} M)_11 eta ; eta = (M^{-1} V)_11 Phi
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
//
RealD scale = std::sqrt(0.5);
FermionField eta4(NumOp.GaugeGrid());
FermionField eta5(NumOp.FermionGrid());
FermionField tmp(NumOp.FermionGrid());
FermionField phi5(NumOp.FermionGrid());
gaussian(pRNG,eta4);
NumOp.ImportFourDimPseudoFermion(eta4,eta5);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(NumOp);
DenOp.M(eta5,phi5); // M eta
NumOp.Mdag(phi5,tmp); // Vdag M eta
phi5 = Zero();
ActionSolver(MdagMOp,tmp,phi5); // (VdagV)^-1 M eta = V^-1 Vdag^-1 Vdag M eta = V^-1 M eta
phi5=phi5*scale;
// Project to 4d
NumOp.ExportFourDimPseudoFermion(phi5,phi4);
};
//////////////////////////////////////////////////////
// S = phi^dag (V^dag M^-dag)_11 (M^-1 V)_11 phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
FermionField Y4(NumOp.GaugeGrid());
FermionField X(NumOp.FermionGrid());
FermionField Y(NumOp.FermionGrid());
FermionField phi5(NumOp.FermionGrid());
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(DenOp);
NumOp.ImportFourDimPseudoFermion(phi4,phi5);
NumOp.M(phi5,Y); // Y= V phi
DenOp.Mdag(Y,X); // X= Mdag V phi
Y=Zero();
ActionSolver(MdagMOp,X,Y); // Y= (MdagM)^-1 Mdag Vdag phi = M^-1 V phi
NumOp.ExportFourDimPseudoFermion(Y,Y4);
RealD action = norm2(Y4);
return action;
};
//////////////////////////////////////////////////////
// dS/du = 2 Re phi^dag (V^dag M^-dag)_11 (M^-1 d V)_11 phi
// - 2 Re phi^dag (dV^dag M^-dag)_11 (M^-1 dM M^-1 V)_11 phi
//////////////////////////////////////////////////////
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(DenOp);
FermionField X(NumOp.FermionGrid());
FermionField Y(NumOp.FermionGrid());
FermionField phi(NumOp.FermionGrid());
FermionField Vphi(NumOp.FermionGrid());
FermionField MinvVphi(NumOp.FermionGrid());
FermionField tmp4(NumOp.GaugeGrid());
FermionField MdagInvMinvVphi(NumOp.FermionGrid());
GaugeField force(NumOp.GaugeGrid());
//Y=V phi
//X = (Mdag V phi
//Y = (Mdag M)^-1 Mdag V phi = M^-1 V Phi
NumOp.ImportFourDimPseudoFermion(phi4,phi);
NumOp.M(phi,Vphi); // V phi
DenOp.Mdag(Vphi,X); // X= Mdag V phi
Y=Zero();
DerivativeSolver(MdagMOp,X,MinvVphi);// M^-1 V phi
// Projects onto the physical space and back
NumOp.ExportFourDimPseudoFermion(MinvVphi,tmp4);
NumOp.ImportFourDimPseudoFermion(tmp4,Y);
X=Zero();
DerivativeSolver(MdagMOp,Y,X);// X = (MdagM)^-1 proj M^-1 V phi
DenOp.M(X,MdagInvMinvVphi);
// phi^dag (Vdag Mdag^-1) (M^-1 dV) phi
NumOp.MDeriv(force ,MdagInvMinvVphi , phi, DaggerNo ); dSdU=force;
// phi^dag (dVdag Mdag^-1) (M^-1 V) phi
NumOp.MDeriv(force , phi, MdagInvMinvVphi ,DaggerYes ); dSdU=dSdU+force;
// - 2 Re phi^dag (dV^dag M^-dag)_11 (M^-1 dM M^-1 V)_11 phi
DenOp.MDeriv(force,MdagInvMinvVphi,MinvVphi,DaggerNo); dSdU=dSdU-force;
DenOp.MDeriv(force,MinvVphi,MdagInvMinvVphi,DaggerYes); dSdU=dSdU-force;
dSdU *= -1.0;
//dSdU = - Ta(dSdU);
};
};
NAMESPACE_END(Grid);

View File

@@ -1,203 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/TwoFlavourRatio.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////
// Two flavour ratio
///////////////////////////////////////
template<class Impl>
class TwoFlavourRatioEO4DPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
private:
typedef FermionOperator<Impl> FermOp;
FermionOperator<Impl> & NumOp;// the basic operator
FermionOperator<Impl> & DenOp;// the basic operator
OperatorFunction<FermionField> &DerivativeSolver;
OperatorFunction<FermionField> &DerivativeDagSolver;
OperatorFunction<FermionField> &ActionSolver;
OperatorFunction<FermionField> &HeatbathSolver;
FermionField phi4; // the pseudo fermion field for this trajectory
public:
TwoFlavourRatioEO4DPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
OperatorFunction<FermionField> & DS,
OperatorFunction<FermionField> & AS ) :
TwoFlavourRatioEO4DPseudoFermionAction(_NumOp,_DenOp, DS,DS,AS,AS) {};
TwoFlavourRatioEO4DPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
OperatorFunction<FermionField> & DS,
OperatorFunction<FermionField> & DDS,
OperatorFunction<FermionField> & AS,
OperatorFunction<FermionField> & HS
) : NumOp(_NumOp),
DenOp(_DenOp),
DerivativeSolver(DS),
DerivativeDagSolver(DDS),
ActionSolver(AS),
HeatbathSolver(HS),
phi4(_NumOp.GaugeGrid())
{};
virtual std::string action_name(){return "TwoFlavourRatioEO4DPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] has no parameters" << std::endl;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
// P(phi) = e^{- phi^dag (V^dag M^-dag)_11 (M^-1 V)_11 phi}
//
// NumOp == V
// DenOp == M
//
// Take phi = (V^{-1} M)_11 eta ; eta = (M^{-1} V)_11 Phi
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
//
RealD scale = std::sqrt(0.5);
FermionField eta4(NumOp.GaugeGrid());
FermionField eta5(NumOp.FermionGrid());
FermionField tmp(NumOp.FermionGrid());
FermionField phi5(NumOp.FermionGrid());
gaussian(pRNG,eta4);
NumOp.ImportFourDimPseudoFermion(eta4,eta5);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
SchurRedBlackDiagMooeeSolve<FermionField> PrecSolve(HeatbathSolver);
DenOp.M(eta5,tmp); // M eta
PrecSolve(NumOp,tmp,phi5); // phi = V^-1 M eta
phi5=phi5*scale;
std::cout << GridLogMessage << "4d pf refresh "<< norm2(phi5)<<"\n";
// Project to 4d
NumOp.ExportFourDimPseudoFermion(phi5,phi4);
};
//////////////////////////////////////////////////////
// S = phi^dag (V^dag M^-dag)_11 (M^-1 V)_11 phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
FermionField Y4(NumOp.GaugeGrid());
FermionField X(NumOp.FermionGrid());
FermionField Y(NumOp.FermionGrid());
FermionField phi5(NumOp.FermionGrid());
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(DenOp);
SchurRedBlackDiagMooeeSolve<FermionField> PrecSolve(ActionSolver);
NumOp.ImportFourDimPseudoFermion(phi4,phi5);
NumOp.M(phi5,X); // X= V phi
PrecSolve(DenOp,X,Y); // Y= (MdagM)^-1 Mdag Vdag phi = M^-1 V phi
NumOp.ExportFourDimPseudoFermion(Y,Y4);
RealD action = norm2(Y4);
return action;
};
//////////////////////////////////////////////////////
// dS/du = 2 Re phi^dag (V^dag M^-dag)_11 (M^-1 d V)_11 phi
// - 2 Re phi^dag (dV^dag M^-dag)_11 (M^-1 dM M^-1 V)_11 phi
//////////////////////////////////////////////////////
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
FermionField X(NumOp.FermionGrid());
FermionField Y(NumOp.FermionGrid());
FermionField phi(NumOp.FermionGrid());
FermionField Vphi(NumOp.FermionGrid());
FermionField MinvVphi(NumOp.FermionGrid());
FermionField tmp4(NumOp.GaugeGrid());
FermionField MdagInvMinvVphi(NumOp.FermionGrid());
GaugeField force(NumOp.GaugeGrid());
//Y=V phi
//X = (Mdag V phi
//Y = (Mdag M)^-1 Mdag V phi = M^-1 V Phi
NumOp.ImportFourDimPseudoFermion(phi4,phi);
NumOp.M(phi,Vphi); // V phi
SchurRedBlackDiagMooeeSolve<FermionField> PrecSolve(DerivativeSolver);
PrecSolve(DenOp,Vphi,MinvVphi);// M^-1 V phi
std::cout << GridLogMessage << "4d deriv solve "<< norm2(MinvVphi)<<"\n";
// Projects onto the physical space and back
NumOp.ExportFourDimPseudoFermion(MinvVphi,tmp4);
NumOp.ImportFourDimPseudoFermion(tmp4,Y);
SchurRedBlackDiagMooeeDagSolve<FermionField> PrecDagSolve(DerivativeDagSolver);
// X = proj M^-dag V phi
// Need an adjoint solve
PrecDagSolve(DenOp,Y,MdagInvMinvVphi);
std::cout << GridLogMessage << "4d deriv solve dag "<< norm2(MdagInvMinvVphi)<<"\n";
// phi^dag (Vdag Mdag^-1) (M^-1 dV) phi
NumOp.MDeriv(force ,MdagInvMinvVphi , phi, DaggerNo ); dSdU=force;
// phi^dag (dVdag Mdag^-1) (M^-1 V) phi
NumOp.MDeriv(force , phi, MdagInvMinvVphi ,DaggerYes ); dSdU=dSdU+force;
// - 2 Re phi^dag (dV^dag M^-dag)_11 (M^-1 dM M^-1 V)_11 phi
DenOp.MDeriv(force,MdagInvMinvVphi,MinvVphi,DaggerNo); dSdU=dSdU-force;
DenOp.MDeriv(force,MinvVphi,MdagInvMinvVphi,DaggerYes); dSdU=dSdU-force;
dSdU *= -1.0;
//dSdU = - Ta(dSdU);
};
};
NAMESPACE_END(Grid);

View File

@@ -151,12 +151,22 @@ public:
Resources.GetCheckPointer()->CheckpointRestore(Parameters.StartTrajectory, U,
Resources.GetSerialRNG(),
Resources.GetParallelRNG());
} else if (Parameters.StartingType == "CheckpointStartReseed") {
// Same as CheckpointRestart but reseed the RNGs using the fixed integer seeding used for ColdStart and HotStart
// Useful for creating new evolution streams from an existing stream
// WARNING: Unfortunately because the checkpointer doesn't presently allow us to separately restore the RNG and gauge fields we have to load
// an existing RNG checkpoint first; make sure one is available and named correctly
Resources.GetCheckPointer()->CheckpointRestore(Parameters.StartTrajectory, U,
Resources.GetSerialRNG(),
Resources.GetParallelRNG());
Resources.SeedFixedIntegers();
} else {
// others
std::cout << GridLogError << "Unrecognized StartingType\n";
std::cout
<< GridLogError
<< "Valid [HotStart, ColdStart, TepidStart, CheckpointStart]\n";
<< "Valid [HotStart, ColdStart, TepidStart, CheckpointStart, CheckpointStartReseed]\n";
exit(1);
}
}
@@ -176,9 +186,6 @@ private:
typedef IntegratorType<SmearingPolicy> TheIntegrator;
TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing);
// Sets the momentum filter
MDynamics.setMomentumFilter(*(Resources.GetMomentumFilter()));
Smearing.set_Field(U);
HybridMonteCarlo<TheIntegrator> HMC(Parameters, MDynamics,

View File

@@ -34,7 +34,6 @@ directory
* @brief Classes for Hybrid Monte Carlo update
*
* @author Guido Cossu
* @author Peter Boyle
*/
//--------------------------------------------------------------------
#pragma once
@@ -116,17 +115,22 @@ private:
random(sRNG, rn_test);
std::cout << GridLogHMC << "--------------------------------------------------\n";
std::cout << GridLogHMC << "exp(-dH) = " << prob << " Random = " << rn_test << "\n";
std::cout << GridLogHMC << "Acc. Probability = " << ((prob < 1.0) ? prob : 1.0) << "\n";
std::cout << GridLogHMC
<< "--------------------------------------------------\n";
std::cout << GridLogHMC << "exp(-dH) = " << prob
<< " Random = " << rn_test << "\n";
std::cout << GridLogHMC
<< "Acc. Probability = " << ((prob < 1.0) ? prob : 1.0) << "\n";
if ((prob > 1.0) || (rn_test <= prob)) { // accepted
std::cout << GridLogHMC << "Metropolis_test -- ACCEPTED\n";
std::cout << GridLogHMC << "--------------------------------------------------\n";
std::cout << GridLogHMC
<< "--------------------------------------------------\n";
return true;
} else { // rejected
std::cout << GridLogHMC << "Metropolis_test -- REJECTED\n";
std::cout << GridLogHMC << "--------------------------------------------------\n";
std::cout << GridLogHMC
<< "--------------------------------------------------\n";
return false;
}
}
@@ -135,68 +139,19 @@ private:
// Evolution
/////////////////////////////////////////////////////////
RealD evolve_hmc_step(Field &U) {
TheIntegrator.refresh(U, sRNG, pRNG); // set U and initialize P and phi's
GridBase *Grid = U.Grid();
//////////////////////////////////////////////////////////////////////////////////////////////////////
// Mainly for DDHMC perform a random translation of U modulo volume
//////////////////////////////////////////////////////////////////////////////////////////////////////
std::cout << GridLogMessage << "--------------------------------------------------\n";
std::cout << GridLogMessage << "Random shifting gauge field by [";
for(int d=0;d<Grid->Nd();d++) {
int L = Grid->GlobalDimensions()[d];
RealD rn_uniform; random(sRNG, rn_uniform);
int shift = (int) (rn_uniform*L);
std::cout << shift;
if(d<Grid->Nd()-1) std::cout <<",";
else std::cout <<"]\n";
U = Cshift(U,d,shift);
}
std::cout << GridLogMessage << "--------------------------------------------------\n";
TheIntegrator.reset_timer();
//////////////////////////////////////////////////////////////////////////////////////////////////////
// set U and initialize P and phi's
//////////////////////////////////////////////////////////////////////////////////////////////////////
std::cout << GridLogMessage << "--------------------------------------------------\n";
std::cout << GridLogMessage << "Refresh momenta and pseudofermions";
TheIntegrator.refresh(U, sRNG, pRNG);
std::cout << GridLogMessage << "--------------------------------------------------\n";
//////////////////////////////////////////////////////////////////////////////////////////////////////
// initial state action
//////////////////////////////////////////////////////////////////////////////////////////////////////
std::cout << GridLogMessage << "--------------------------------------------------\n";
std::cout << GridLogMessage << "Compute initial action";
RealD H0 = TheIntegrator.S(U);
std::cout << GridLogMessage << "--------------------------------------------------\n";
RealD H0 = TheIntegrator.S(U); // initial state action
std::streamsize current_precision = std::cout.precision();
std::cout.precision(15);
std::cout << GridLogHMC << "Total H before trajectory = " << H0 << "\n";
std::cout.precision(current_precision);
std::cout << GridLogMessage << "--------------------------------------------------\n";
std::cout << GridLogMessage << " Molecular Dynamics evolution ";
TheIntegrator.integrate(U);
std::cout << GridLogMessage << "--------------------------------------------------\n";
//////////////////////////////////////////////////////////////////////////////////////////////////////
// updated state action
//////////////////////////////////////////////////////////////////////////////////////////////////////
std::cout << GridLogMessage << "--------------------------------------------------\n";
std::cout << GridLogMessage << "Compute final action";
RealD H1 = TheIntegrator.S(U);
std::cout << GridLogMessage << "--------------------------------------------------\n";
RealD H1 = TheIntegrator.S(U); // updated state action
///////////////////////////////////////////////////////////
if(0){
std::cout << "------------------------- Reversibility test" << std::endl;
@@ -208,16 +163,17 @@ private:
}
///////////////////////////////////////////////////////////
std::cout.precision(15);
std::cout << GridLogHMC << "--------------------------------------------------\n";
std::cout << GridLogHMC << "Total H after trajectory = " << H1 << " dH = " << H1 - H0 << "\n";
std::cout << GridLogHMC << "--------------------------------------------------\n";
std::cout << GridLogHMC << "Total H after trajectory = " << H1
<< " dH = " << H1 - H0 << "\n";
std::cout.precision(current_precision);
return (H1 - H0);
}
public:
/////////////////////////////////////////
@@ -239,11 +195,8 @@ public:
// Actual updates (evolve a copy Ucopy then copy back eventually)
unsigned int FinalTrajectory = Params.Trajectories + Params.NoMetropolisUntil + Params.StartTrajectory;
for (int traj = Params.StartTrajectory; traj < FinalTrajectory; ++traj) {
std::cout << GridLogHMC << "-- # Trajectory = " << traj << "\n";
if (traj < Params.StartTrajectory + Params.NoMetropolisUntil) {
std::cout << GridLogHMC << "-- Thermalization" << std::endl;
}
@@ -263,10 +216,11 @@ public:
if (accept)
Ucur = Ucopy;
double t1=usecond();
std::cout << GridLogHMC << "Total time for trajectory (s): " << (t1-t0)/1e6 << std::endl;
TheIntegrator.print_timer();
for (int obs = 0; obs < Observables.size(); obs++) {
std::cout << GridLogDebug << "Observables # " << obs << std::endl;

View File

@@ -80,7 +80,9 @@ public:
std::cout << GridLogError << "Seeds not initialized" << std::endl;
exit(1);
}
std::cout << GridLogMessage << "Reseeding serial RNG with seed vector " << SerialSeeds << std::endl;
sRNG_.SeedFixedIntegers(SerialSeeds);
std::cout << GridLogMessage << "Reseeding parallel RNG with seed vector " << ParallelSeeds << std::endl;
pRNG_->SeedFixedIntegers(ParallelSeeds);
}
};

View File

@@ -72,8 +72,6 @@ class HMCResourceManager {
typedef HMCModuleBase< BaseHmcCheckpointer<ImplementationPolicy> > CheckpointerBaseModule;
typedef HMCModuleBase< HmcObservable<typename ImplementationPolicy::Field> > ObservableBaseModule;
typedef ActionModuleBase< Action<typename ImplementationPolicy::Field>, GridModule > ActionBaseModule;
typedef typename ImplementationPolicy::Field MomentaField;
typedef typename ImplementationPolicy::Field Field;
// Named storage for grid pairs (std + red-black)
std::unordered_map<std::string, GridModule> Grids;
@@ -82,9 +80,6 @@ class HMCResourceManager {
// SmearingModule<ImplementationPolicy> Smearing;
std::unique_ptr<CheckpointerBaseModule> CP;
// Momentum filter
std::unique_ptr<MomentumFilterBase<typename ImplementationPolicy::Field> > Filter;
// A vector of HmcObservable modules
std::vector<std::unique_ptr<ObservableBaseModule> > ObservablesList;
@@ -95,7 +90,6 @@ class HMCResourceManager {
bool have_RNG;
bool have_CheckPointer;
bool have_Filter;
// NOTE: operator << is not overloaded for std::vector<string>
// so this function is necessary
@@ -107,7 +101,7 @@ class HMCResourceManager {
public:
HMCResourceManager() : have_RNG(false), have_CheckPointer(false), have_Filter(false) {}
HMCResourceManager() : have_RNG(false), have_CheckPointer(false) {}
template <class ReaderClass, class vector_type = vComplex >
void initialize(ReaderClass &Read){
@@ -135,7 +129,6 @@ public:
RNGModuleParameters RNGpar(Read);
SetRNGSeeds(RNGpar);
// Observables
auto &ObsFactory = HMC_ObservablesModuleFactory<observable_string, typename ImplementationPolicy::Field, ReaderClass>::getInstance();
Read.push(observable_string);// here must check if existing...
@@ -215,16 +208,6 @@ public:
AddGrid(s, Mod);
}
void SetMomentumFilter( MomentumFilterBase<typename ImplementationPolicy::Field> * MomFilter) {
assert(have_Filter==false);
Filter = std::unique_ptr<MomentumFilterBase<typename ImplementationPolicy::Field> >(MomFilter);
have_Filter = true;
}
MomentumFilterBase<typename ImplementationPolicy::Field> *GetMomentumFilter(void) {
if ( !have_Filter)
SetMomentumFilter(new MomentumFilterNone<typename ImplementationPolicy::Field>());
return Filter.get();
}
GridCartesian* GetCartesian(std::string s = "") {
if (s.empty()) s = Grids.begin()->first;

View File

@@ -1,61 +1,63 @@
Using HMC in Grid version 0.5.1
# Using HMC in Grid
These are the instructions to use the Generalised HMC on Grid version 0.5.1.
Disclaimer: GRID is still under active development so any information here can be changed in future releases.
These are the instructions to use the Generalised HMC on Grid as of commit `749b802`.
Disclaimer: Grid is still under active development so any information here can be changed in future releases.
Command line options
===================
(relevant file GenericHMCrunner.h)
## Command line options
(relevant file `GenericHMCrunner.h`)
The initial configuration can be changed at the command line using
--StartType <your choice>
valid choices, one among these
HotStart, ColdStart, TepidStart, CheckpointStart
default: HotStart
`--StartingType STARTING_TYPE`, where `STARTING_TYPE` is one of
`HotStart`, `ColdStart`, `TepidStart`, and `CheckpointStart`.
Default: `--StartingType HotStart`
example
./My_hmc_exec --StartType HotStart
Example:
```
./My_hmc_exec --StartingType HotStart
```
The CheckpointStart option uses the prefix for the configurations and rng seed files defined in your executable and the initial configuration is specified by
--StartTrajectory <integer>
default: 0
The `CheckpointStart` option uses the prefix for the configurations and rng seed files defined in your executable and the initial configuration is specified by
`--StartingTrajectory STARTING_TRAJECTORY`, where `STARTING_TRAJECTORY` is an integer.
Default: `--StartingTrajectory 0`
The number of trajectories for a specific run are specified at command line by
--Trajectories <integer>
default: 1
`--Trajectories TRAJECTORIES`, where `TRAJECTORIES` is an integer.
Default: `--Trajectories 1`
The number of thermalization steps (i.e. steps when the Metropolis acceptance check is turned off) is specified by
--Thermalizations <integer>
default: 10
`--Thermalizations THERMALIZATIONS`, where `THERMALIZATIONS` is an integer.
Default: `--Thermalizations 10`
Any other parameter is defined in the source for the executable.
HMC controls
===========
## HMC controls
The lines
```
std::vector<int> SerSeed({1, 2, 3, 4, 5});
std::vector<int> ParSeed({6, 7, 8, 9, 10});
```
define the seeds for the serial and the parallel RNG.
The line
```
TheHMC.MDparameters.set(20, 1.0);// MDsteps, traj length
```
declares the number of molecular dynamics steps and the total trajectory length.
Actions
======
## Actions
Action names are defined in the file
lib/qcd/Actions.h
Action names are defined in the directory `Grid/qcd/action`.
Gauge actions list:
Gauge actions list (from `Grid/qcd/action/gauge/Gauge.h`):
```
WilsonGaugeActionR;
WilsonGaugeActionF;
WilsonGaugeActionD;
@@ -68,8 +70,9 @@ IwasakiGaugeActionD;
SymanzikGaugeActionR;
SymanzikGaugeActionF;
SymanzikGaugeActionD;
```
```
ConjugateWilsonGaugeActionR;
ConjugateWilsonGaugeActionF;
ConjugateWilsonGaugeActionD;
@@ -82,26 +85,23 @@ ConjugateIwasakiGaugeActionD;
ConjugateSymanzikGaugeActionR;
ConjugateSymanzikGaugeActionF;
ConjugateSymanzikGaugeActionD;
```
Each of these action accepts one single parameter at creation time (beta).
Example for creating a Symanzik action with beta=4.0
```
SymanzikGaugeActionR(4.0)
```
Scalar actions list (from `Grid/qcd/action/scalar/Scalar.h`):
```
ScalarActionR;
ScalarActionF;
ScalarActionD;
```
each of these action accept one single parameter at creation time (beta).
Example for creating a Symanzik action with beta=4.0
SymanzikGaugeActionR(4.0)
The suffixes R,F,D in the action names refer to the Real
(the precision is defined at compile time by the --enable-precision flag in the configure),
Float and Double, that force the precision of the action to be 32, 64 bit respectively.
The suffixes `R`, `F`, `D` in the action names refer to the `Real`
(the precision is defined at compile time by the `--enable-precision` flag in the configure),
`Float` and `Double`, that force the precision of the action to be 32, 64 bit respectively.

View File

@@ -33,6 +33,7 @@ directory
#define INTEGRATOR_INCLUDED
#include <memory>
#include "MomentumFilter.h"
NAMESPACE_BEGIN(Grid);
@@ -66,7 +67,6 @@ public:
template <class FieldImplementation, class SmearingPolicy, class RepresentationPolicy>
class Integrator {
protected:
typedef typename FieldImplementation::Field MomentaField; //for readability
typedef typename FieldImplementation::Field Field;
@@ -119,7 +119,6 @@ protected:
}
} update_P_hireps{};
void update_P(MomentaField& Mom, Field& U, int level, double ep) {
// input U actually not used in the fundamental case
// Fundamental updates, include smearing
@@ -131,45 +130,31 @@ protected:
Field& Us = Smearer.get_U(as[level].actions.at(a)->is_smeared);
double start_force = usecond();
as[level].actions.at(a)->deriv_timer_start();
as[level].actions.at(a)->deriv(Us, force); // deriv should NOT include Ta
as[level].actions.at(a)->deriv_timer_stop();
std::cout << GridLogIntegrator << "Smearing (on/off): " << as[level].actions.at(a)->is_smeared << std::endl;
auto name = as[level].actions.at(a)->action_name();
if (as[level].actions.at(a)->is_smeared) Smearer.smeared_force(force);
DumpSliceNorm("force before Ta",force,Nd-1);
force = FieldImplementation::projectForce(force); // Ta for gauge fields
double end_force = usecond();
DumpSliceNorm("force before filter",force,Nd-1);
MomFilter->applyFilter(force);
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites()); //average per-site norm. nb. norm2(latt) = \sum_x norm2(latt[x])
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites()); //average per-site norm. nb. norm2(latt) = \sum_x norm2(latt[x])
Real impulse_abs = force_abs * ep * HMC_MOMENTUM_DENOMINATOR;
Real force_max = std::sqrt(maxLocalNorm2(force));
Real impulse_max = force_max * ep * HMC_MOMENTUM_DENOMINATOR;
as[level].actions.at(a)->deriv_log(force_abs,force_max);
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Force average: " << force_abs <<" "<<name<<std::endl;
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Force max : " << force_max <<" "<<name<<std::endl;
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Fdt average : " << impulse_abs <<" "<<name<<std::endl;
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Fdt max : " << impulse_max <<" "<<name<<std::endl;
Real max_force_abs = std::sqrt(maxLocalNorm2(force));
Real max_impulse_abs = max_force_abs * ep * HMC_MOMENTUM_DENOMINATOR;
std::cout << GridLogIntegrator << "["<<level<<"]["<<a<<"] Force average: " << force_abs << " Max force: " << max_force_abs << " Time step: " << ep << " Impulse average: " << impulse_abs << " Max impulse: " << max_impulse_abs << std::endl;
Mom -= force * ep* HMC_MOMENTUM_DENOMINATOR;;
double end_full = usecond();
double time_full = (end_full - start_full) / 1e3;
double time_force = (end_force - start_force) / 1e3;
std::cout << GridLogMessage << "["<<level<<"]["<<a<<"] P update elapsed time: " << time_full << " ms (force: " << time_force << " ms)" << std::endl;
DumpSliceNorm("force after filter",force,Nd-1);
}
// Force from the other representations
as[level].apply(update_P_hireps, Representations, Mom, U, ep);
MomFilter->applyFilter(Mom);
}
void update_U(Field& U, double ep)
@@ -183,12 +168,8 @@ protected:
void update_U(MomentaField& Mom, Field& U, double ep)
{
MomentaField MomFiltered(Mom.Grid());
MomFiltered = Mom;
MomFilter->applyFilter(MomFiltered);
// exponential of Mom*U in the gauge fields case
FieldImplementation::update_field(MomFiltered, U, ep);
FieldImplementation::update_field(Mom, U, ep);
// Update the smeared fields, can be implemented as observer
Smearer.set_Field(U);
@@ -231,66 +212,6 @@ public:
const MomentaField & getMomentum() const{ return P; }
void reset_timer(void)
{
for (int level = 0; level < as.size(); ++level) {
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
as[level].actions.at(actionID)->reset_timer();
}
}
}
void print_timer(void)
{
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::" << std::endl;
std::cout << GridLogMessage << " Refresh cumulative timings "<<std::endl;
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
for (int level = 0; level < as.size(); ++level) {
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
std::cout << GridLogMessage
<< as[level].actions.at(actionID)->action_name()
<<"["<<level<<"]["<< actionID<<"] "
<< as[level].actions.at(actionID)->refresh_us*1.0e-6<<" s"<< std::endl;
}
}
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
std::cout << GridLogMessage << " Action cumulative timings "<<std::endl;
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
for (int level = 0; level < as.size(); ++level) {
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
std::cout << GridLogMessage
<< as[level].actions.at(actionID)->action_name()
<<"["<<level<<"]["<< actionID<<"] "
<< as[level].actions.at(actionID)->S_us*1.0e-6<<" s"<< std::endl;
}
}
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
std::cout << GridLogMessage << " Force cumulative timings "<<std::endl;
std::cout << GridLogMessage << "------------------------- "<<std::endl;
for (int level = 0; level < as.size(); ++level) {
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
std::cout << GridLogMessage
<< as[level].actions.at(actionID)->action_name()
<<"["<<level<<"]["<< actionID<<"] "
<< as[level].actions.at(actionID)->deriv_us*1.0e-6<<" s"<< std::endl;
}
}
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
std::cout << GridLogMessage << " Force average size "<<std::endl;
std::cout << GridLogMessage << "------------------------- "<<std::endl;
for (int level = 0; level < as.size(); ++level) {
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
std::cout << GridLogMessage
<< as[level].actions.at(actionID)->action_name()
<<"["<<level<<"]["<< actionID<<"] : "
<<" force max " << as[level].actions.at(actionID)->deriv_max_average()
<<" norm " << as[level].actions.at(actionID)->deriv_norm_average()
<<" calls " << as[level].actions.at(actionID)->deriv_num
<< std::endl;
}
}
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::"<< std::endl;
}
void print_parameters()
{
std::cout << GridLogMessage << "[Integrator] Name : "<< integrator_name() << std::endl;
@@ -309,6 +230,7 @@ public:
}
}
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::"<< std::endl;
}
void reverse_momenta()
@@ -333,15 +255,19 @@ public:
void refresh(Field& U, GridSerialRNG & sRNG, GridParallelRNG& pRNG)
{
assert(P.Grid() == U.Grid());
std::cout << GridLogIntegrator << "Integrator refresh\n";
std::cout << GridLogIntegrator << "Integrator refresh" << std::endl;
std::cout << GridLogIntegrator << "Generating momentum" << std::endl;
FieldImplementation::generate_momenta(P, sRNG, pRNG);
// Update the smeared fields, can be implemented as observer
// necessary to keep the fields updated even after a reject
// of the Metropolis
std::cout << GridLogIntegrator << "Updating smeared fields" << std::endl;
Smearer.set_Field(U);
// Set the (eventual) representations gauge fields
std::cout << GridLogIntegrator << "Updating representations" << std::endl;
Representations.update(U);
// The Smearer is attached to a pointer of the gauge field
@@ -351,19 +277,16 @@ public:
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
// get gauge field from the SmearingPolicy and
// based on the boolean is_smeared in actionID
auto name = as[level].actions.at(actionID)->action_name();
std::cout << GridLogMessage << "refresh [" << level << "][" << actionID << "] "<<name << std::endl;
std::cout << GridLogIntegrator << "Refreshing integrator level " << level << " index " << actionID << std::endl;
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
as[level].actions.at(actionID)->refresh_timer_start();
as[level].actions.at(actionID)->refresh(Us, sRNG, pRNG);
as[level].actions.at(actionID)->refresh_timer_stop();
}
// Refresh the higher representation actions
as[level].apply(refresh_hireps, Representations, sRNG, pRNG);
}
MomFilter->applyFilter(P);
}
// to be used by the actionlevel class to iterate
@@ -398,9 +321,7 @@ public:
// based on the boolean is_smeared in actionID
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] action eval " << std::endl;
as[level].actions.at(actionID)->S_timer_start();
Hterm = as[level].actions.at(actionID)->S(Us);
as[level].actions.at(actionID)->S_timer_stop();
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] H = " << Hterm << std::endl;
H += Hterm;
}

View File

@@ -28,7 +28,8 @@ directory
*************************************************************************************/
/* END LEGAL */
//--------------------------------------------------------------------
#pragma once
#ifndef MOMENTUM_FILTER
#define MOMENTUM_FILTER
NAMESPACE_BEGIN(Grid);
@@ -36,7 +37,7 @@ NAMESPACE_BEGIN(Grid);
template<typename MomentaField>
struct MomentumFilterBase{
virtual void applyFilter(MomentaField &P) const = 0;
virtual void applyFilter(MomentaField &P) const;
};
//Do nothing
@@ -89,3 +90,5 @@ struct MomentumFilterApplyPhase: public MomentumFilterBase<MomentaField>{
NAMESPACE_END(Grid);
#endif

View File

@@ -99,7 +99,7 @@ public:
// using wilson flow by default here
WilsonFlow<PeriodicGimplR> WF(Pars.Smearing.steps, Pars.Smearing.step_size, Pars.Smearing.meas_interval);
WF.smear_adaptive(Usmear, U, Pars.Smearing.maxTau);
Real T0 = WF.energyDensityPlaquette(Usmear);
Real T0 = WF.energyDensityPlaquette(Pars.Smearing.maxTau, Usmear);
std::cout << GridLogMessage << std::setprecision(std::numeric_limits<Real>::digits10 + 1)
<< "T0 : [ " << traj << " ] "<< T0 << std::endl;
}

View File

@@ -7,6 +7,7 @@ Source file: ./lib/qcd/modules/plaquette.h
Copyright (C) 2017
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Christopher Kelly <ckelly@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@@ -33,28 +34,44 @@ NAMESPACE_BEGIN(Grid);
template <class Gimpl>
class WilsonFlow: public Smear<Gimpl>{
public:
//Store generic measurements to take during smearing process using std::function
typedef std::function<void(int, RealD, const typename Gimpl::GaugeField &)> FunctionType; //int: step, RealD: flow time, GaugeField : the gauge field
private:
unsigned int Nstep;
unsigned int measure_interval;
mutable RealD epsilon, taus;
RealD epsilon; //for regular smearing this is the time step, for adaptive it is the initial time step
std::vector< std::pair<int, FunctionType> > functions; //The int maps to the measurement frequency
mutable WilsonGaugeAction<Gimpl> SG;
void evolve_step(typename Gimpl::GaugeField&) const;
void evolve_step_adaptive(typename Gimpl::GaugeField&, RealD);
RealD tau(unsigned int t)const {return epsilon*(t+1.0); }
//Evolve the gauge field by 1 step and update tau
void evolve_step(typename Gimpl::GaugeField &U, RealD &tau) const;
//Evolve the gauge field by 1 step and update tau and the current time step eps
void evolve_step_adaptive(typename Gimpl::GaugeField&U, RealD &tau, RealD &eps, RealD maxTau) const;
public:
INHERIT_GIMPL_TYPES(Gimpl)
void resetActions(){ functions.clear(); }
void addMeasurement(int meas_interval, FunctionType meas){ functions.push_back({meas_interval, meas}); }
//Set the class to perform the default measurements:
//the plaquette energy density every step
//the plaquette topological charge every 'topq_meas_interval' steps
//and output to stdout
void setDefaultMeasurements(int topq_meas_interval = 1);
explicit WilsonFlow(unsigned int Nstep, RealD epsilon, unsigned int interval = 1):
Nstep(Nstep),
epsilon(epsilon),
measure_interval(interval),
SG(WilsonGaugeAction<Gimpl>(3.0)) {
// WilsonGaugeAction with beta 3.0
assert(epsilon > 0.0);
LogMessage();
setDefaultMeasurements(interval);
}
void LogMessage() {
@@ -73,9 +90,29 @@ public:
// undefined for WilsonFlow
}
void smear_adaptive(GaugeField&, const GaugeField&, RealD maxTau);
RealD energyDensityPlaquette(unsigned int step, const GaugeField& U) const;
RealD energyDensityPlaquette(const GaugeField& U) const;
void smear_adaptive(GaugeField&, const GaugeField&, RealD maxTau) const;
//Compute t^2 <E(t)> for time t from the plaquette
static RealD energyDensityPlaquette(const RealD t, const GaugeField& U);
//Compute t^2 <E(t)> for time t from the 1x1 cloverleaf form
//t is the Wilson flow time
static RealD energyDensityCloverleaf(const RealD t, const GaugeField& U);
//Evolve the gauge field by Nstep steps of epsilon and return the energy density computed every interval steps
//The smeared field is output as V
std::vector<RealD> flowMeasureEnergyDensityPlaquette(GaugeField &V, const GaugeField& U, int measure_interval = 1);
//Version that does not return the smeared field
std::vector<RealD> flowMeasureEnergyDensityPlaquette(const GaugeField& U, int measure_interval = 1);
//Evolve the gauge field by Nstep steps of epsilon and return the Cloverleaf energy density computed every interval steps
//The smeared field is output as V
std::vector<RealD> flowMeasureEnergyDensityCloverleaf(GaugeField &V, const GaugeField& U, int measure_interval = 1);
//Version that does not return the smeared field
std::vector<RealD> flowMeasureEnergyDensityCloverleaf(const GaugeField& U, int measure_interval = 1);
};
@@ -83,7 +120,7 @@ public:
// Implementations
////////////////////////////////////////////////////////////////////////////////
template <class Gimpl>
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U, RealD &tau) const{
GaugeField Z(U.Grid());
GaugeField tmp(U.Grid());
SG.deriv(U, Z);
@@ -99,12 +136,13 @@ void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2
Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
Gimpl::update_field(Z, U, -2.0*epsilon); // V(t+e) = exp(ep*Z)*W2
tau += epsilon;
}
template <class Gimpl>
void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, RealD maxTau) {
if (maxTau - taus < epsilon){
epsilon = maxTau-taus;
void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, RealD &tau, RealD &eps, RealD maxTau) const{
if (maxTau - tau < eps){
eps = maxTau-tau;
}
//std::cout << GridLogMessage << "Integration epsilon : " << epsilon << std::endl;
GaugeField Z(U.Grid());
@@ -114,95 +152,151 @@ void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, Real
SG.deriv(U, Z);
Zprime = -Z;
Z *= 0.25; // Z0 = 1/4 * F(U)
Gimpl::update_field(Z, U, -2.0*epsilon); // U = W1 = exp(ep*Z0)*W0
Gimpl::update_field(Z, U, -2.0*eps); // U = W1 = exp(ep*Z0)*W0
Z *= -17.0/8.0;
SG.deriv(U, tmp); Z += tmp; // -17/32*Z0 +Z1
Zprime += 2.0*tmp;
Z *= 8.0/9.0; // Z = -17/36*Z0 +8/9*Z1
Gimpl::update_field(Z, U, -2.0*epsilon); // U_= W2 = exp(ep*Z)*W1
Gimpl::update_field(Z, U, -2.0*eps); // U_= W2 = exp(ep*Z)*W1
Z *= -4.0/3.0;
SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2
Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
Gimpl::update_field(Z, U, -2.0*epsilon); // V(t+e) = exp(ep*Z)*W2
Gimpl::update_field(Z, U, -2.0*eps); // V(t+e) = exp(ep*Z)*W2
// Ramos
Gimpl::update_field(Zprime, Uprime, -2.0*epsilon); // V'(t+e) = exp(ep*Z')*W0
Gimpl::update_field(Zprime, Uprime, -2.0*eps); // V'(t+e) = exp(ep*Z')*W0
// Compute distance as norm^2 of the difference
GaugeField diffU = U - Uprime;
RealD diff = norm2(diffU);
// adjust integration step
taus += epsilon;
tau += eps;
//std::cout << GridLogMessage << "Adjusting integration step with distance: " << diff << std::endl;
epsilon = epsilon*0.95*std::pow(1e-4/diff,1./3.);
eps = eps*0.95*std::pow(1e-4/diff,1./3.);
//std::cout << GridLogMessage << "New epsilon : " << epsilon << std::endl;
}
template <class Gimpl>
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(unsigned int step, const GaugeField& U) const {
RealD td = tau(step);
return 2.0 * td * td * SG.S(U)/U.Grid()->gSites();
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(const RealD t, const GaugeField& U){
static WilsonGaugeAction<Gimpl> SG(3.0);
return 2.0 * t * t * SG.S(U)/U.Grid()->gSites();
}
//Compute t^2 <E(t)> for time from the 1x1 cloverleaf form
template <class Gimpl>
RealD WilsonFlow<Gimpl>::energyDensityCloverleaf(const RealD t, const GaugeField& U){
typedef typename Gimpl::GaugeLinkField GaugeMat;
typedef typename Gimpl::GaugeField GaugeLorentz;
assert(Nd == 4);
//E = 1/2 tr( F_munu F_munu )
//However as F_numu = -F_munu, only need to sum the trace of the squares of the following 6 field strengths:
//F_01 F_02 F_03 F_12 F_13 F_23
GaugeMat F(U.Grid());
LatticeComplexD R(U.Grid());
R = Zero();
for(int mu=0;mu<3;mu++){
for(int nu=mu+1;nu<4;nu++){
WilsonLoops<Gimpl>::FieldStrength(F, U, mu, nu);
R = R + trace(F*F);
}
}
ComplexD out = sum(R);
out = t*t*out / RealD(U.Grid()->gSites());
return -real(out); //minus sign necessary for +ve energy
}
template <class Gimpl>
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityPlaquette(GaugeField &V, const GaugeField& U, int measure_interval){
std::vector<RealD> out;
resetActions();
addMeasurement(measure_interval, [&out](int step, RealD t, const typename Gimpl::GaugeField &U){
std::cout << GridLogMessage << "[WilsonFlow] Computing plaquette energy density for step " << step << std::endl;
out.push_back( energyDensityPlaquette(t,U) );
});
smear(V,U);
return out;
}
template <class Gimpl>
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(const GaugeField& U) const {
return 2.0 * taus * taus * SG.S(U)/U.Grid()->gSites();
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityPlaquette(const GaugeField& U, int measure_interval){
GaugeField V(U);
return flowMeasureEnergyDensityPlaquette(V,U, measure_interval);
}
template <class Gimpl>
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityCloverleaf(GaugeField &V, const GaugeField& U, int measure_interval){
std::vector<RealD> out;
resetActions();
addMeasurement(measure_interval, [&out](int step, RealD t, const typename Gimpl::GaugeField &U){
std::cout << GridLogMessage << "[WilsonFlow] Computing Cloverleaf energy density for step " << step << std::endl;
out.push_back( energyDensityCloverleaf(t,U) );
});
smear(V,U);
return out;
}
template <class Gimpl>
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityCloverleaf(const GaugeField& U, int measure_interval){
GaugeField V(U);
return flowMeasureEnergyDensityCloverleaf(V,U, measure_interval);
}
//#define WF_TIMING
template <class Gimpl>
void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const {
void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const{
out = in;
for (unsigned int step = 1; step <= Nstep; step++) {
RealD taus = 0.;
for (unsigned int step = 1; step <= Nstep; step++) { //step indicates the number of smearing steps applied at the time of measurement
auto start = std::chrono::high_resolution_clock::now();
evolve_step(out);
evolve_step(out, taus);
auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> diff = end - start;
#ifdef WF_TIMING
std::cout << "Time to evolve " << diff.count() << " s\n";
#endif
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : "
<< step << " " << tau(step) << " "
<< energyDensityPlaquette(step,out) << std::endl;
if( step % measure_interval == 0){
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : "
<< step << " "
<< WilsonLoops<PeriodicGimplR>::TopologicalCharge(out) << std::endl;
}
//Perform measurements
for(auto const &meas : functions)
if( step % meas.first == 0 ) meas.second(step,taus,out);
}
}
template <class Gimpl>
void WilsonFlow<Gimpl>::smear_adaptive(GaugeField& out, const GaugeField& in, RealD maxTau){
void WilsonFlow<Gimpl>::smear_adaptive(GaugeField& out, const GaugeField& in, RealD maxTau) const{
out = in;
taus = epsilon;
RealD taus = 0.;
RealD eps = epsilon;
unsigned int step = 0;
do{
step++;
//std::cout << GridLogMessage << "Evolution time :"<< taus << std::endl;
evolve_step_adaptive(out, maxTau);
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : "
<< step << " " << taus << " "
<< energyDensityPlaquette(out) << std::endl;
if( step % measure_interval == 0){
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : "
<< step << " "
<< WilsonLoops<PeriodicGimplR>::TopologicalCharge(out) << std::endl;
}
evolve_step_adaptive(out, taus, eps, maxTau);
//Perform measurements
for(auto const &meas : functions)
if( step % meas.first == 0 ) meas.second(step,taus,out);
} while (taus < maxTau);
}
template <class Gimpl>
void WilsonFlow<Gimpl>::setDefaultMeasurements(int topq_meas_interval){
addMeasurement(1, [](int step, RealD t, const typename Gimpl::GaugeField &U){
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : " << step << " " << t << " " << energyDensityPlaquette(t,U) << std::endl;
});
addMeasurement(topq_meas_interval, [](int step, RealD t, const typename Gimpl::GaugeField &U){
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : " << step << " " << WilsonLoops<Gimpl>::TopologicalCharge(U) << std::endl;
});
}
NAMESPACE_END(Grid);

View File

@@ -88,6 +88,12 @@ namespace PeriodicBC {
return CovShiftBackward(Link,mu,arg);
}
//Boundary-aware C-shift of gauge links / gauge transformation matrices
template<class gauge> Lattice<gauge>
CshiftLink(const Lattice<gauge> &Link, int mu, int shift)
{
return Cshift(Link, mu, shift);
}
}
@@ -158,6 +164,9 @@ namespace ConjugateBC {
// std::cout<<"Gparity::CovCshiftBackward mu="<<mu<<std::endl;
return Cshift(tmp,mu,-1);// moves towards positive mu
}
//Out(x) = U^dag_\mu(x-mu) | x_\mu != 0
// = U^T_\mu(L-1) | x_\mu == 0
template<class gauge> Lattice<gauge>
CovShiftIdentityBackward(const Lattice<gauge> &Link, int mu) {
GridBase *grid = Link.Grid();
@@ -176,13 +185,16 @@ namespace ConjugateBC {
return Link;
}
//Out(x) = S_\mu(x+\hat\mu) | x_\mu != L-1
// = S*_\mu(0) | x_\mu == L-1
//Note: While this is used for Staples it is also applicable for shifting gauge links or gauge transformation matrices
template<class gauge> Lattice<gauge>
ShiftStaple(const Lattice<gauge> &Link, int mu)
{
GridBase *grid = Link.Grid();
int Lmu = grid->GlobalDimensions()[mu] - 1;
Lattice<iScalar<vInteger> > coor(grid);
Lattice<iScalar<vInteger>> coor(grid);
LatticeCoordinate(coor, mu);
Lattice<gauge> tmp(grid);
@@ -208,6 +220,35 @@ namespace ConjugateBC {
return CovShiftBackward(Link,mu,arg);
}
//Boundary-aware C-shift of gauge links / gauge transformation matrices
//shift = 1
//Out(x) = U_\mu(x+\hat\mu) | x_\mu != L-1
// = U*_\mu(0) | x_\mu == L-1
//shift = -1
//Out(x) = U_\mu(x-mu) | x_\mu != 0
// = U*_\mu(L-1) | x_\mu == 0
template<class gauge> Lattice<gauge>
CshiftLink(const Lattice<gauge> &Link, int mu, int shift)
{
GridBase *grid = Link.Grid();
int Lmu = grid->GlobalDimensions()[mu] - 1;
Lattice<iScalar<vInteger>> coor(grid);
LatticeCoordinate(coor, mu);
Lattice<gauge> tmp(grid);
if(shift == 1){
tmp = Cshift(Link, mu, 1);
tmp = where(coor == Lmu, conjugate(tmp), tmp);
return tmp;
}else if(shift == -1){
tmp = Link;
tmp = where(coor == Lmu, conjugate(tmp), tmp);
return Cshift(tmp, mu, -1);
}else assert(0 && "Invalid shift value");
return tmp; //shuts up the compiler fussing about the return type
}
}

View File

@@ -40,27 +40,46 @@ public:
typedef typename Gimpl::GaugeLinkField GaugeMat;
typedef typename Gimpl::GaugeField GaugeLorentz;
static void GaugeLinkToLieAlgebraField(const std::vector<GaugeMat> &U,std::vector<GaugeMat> &A) {
for(int mu=0;mu<Nd;mu++){
Complex cmi(0.0,-1.0);
A[mu] = Ta(U[mu]) * cmi;
}
//A_\mu(x) = -i Ta(U_\mu(x) ) where Ta(U) = 1/2( U - U^dag ) - 1/2N tr(U - U^dag) is the traceless antihermitian part. This is an O(A^3) approximation to the logarithm of U
static void GaugeLinkToLieAlgebraField(const GaugeMat &U, GaugeMat &A) {
Complex cmi(0.0,-1.0);
A = Ta(U) * cmi;
}
static void DmuAmu(const std::vector<GaugeMat> &A,GaugeMat &dmuAmu,int orthog) {
//The derivative of the Lie algebra field
static void DmuAmu(const std::vector<GaugeMat> &U, GaugeMat &dmuAmu,int orthog) {
GridBase* grid = U[0].Grid();
GaugeMat Ax(grid);
GaugeMat Axm1(grid);
GaugeMat Utmp(grid);
dmuAmu=Zero();
for(int mu=0;mu<Nd;mu++){
if ( mu != orthog ) {
dmuAmu = dmuAmu + A[mu] - Cshift(A[mu],mu,-1);
//Rather than define functionality to work out how the BCs apply to A_\mu we simply use the BC-aware Cshift to the gauge links and compute A_\mu(x) and A_\mu(x-1) separately
//Ax = A_\mu(x)
GaugeLinkToLieAlgebraField(U[mu], Ax);
//Axm1 = A_\mu(x_\mu-1)
Utmp = Gimpl::CshiftLink(U[mu], mu, -1);
GaugeLinkToLieAlgebraField(Utmp, Axm1);
//Derivative
dmuAmu = dmuAmu + Ax - Axm1;
}
}
}
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1) {
//Fix the gauge field Umu
//0 < alpha < 1 is related to the step size, cf https://arxiv.org/pdf/1405.5812.pdf
static void SteepestDescentGaugeFix(GaugeLorentz &Umu, Real alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1) {
GridBase *grid = Umu.Grid();
GaugeMat xform(grid);
SteepestDescentGaugeFix(Umu,xform,alpha,maxiter,Omega_tol,Phi_tol,Fourier,orthog);
}
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,GaugeMat &xform,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1) {
//Fix the gauge field Umu and also return the gauge transformation from the original gauge field, xform
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,GaugeMat &xform, Real alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1) {
GridBase *grid = Umu.Grid();
@@ -122,27 +141,24 @@ public:
}
}
assert(0 && "Gauge fixing did not converge within the specified number of iterations");
};
static Real SteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform,Real & alpha, GaugeMat & dmuAmu,int orthog) {
static Real SteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform, Real alpha, GaugeMat & dmuAmu,int orthog) {
GridBase *grid = U[0].Grid();
std::vector<GaugeMat> A(Nd,grid);
GaugeMat g(grid);
GaugeLinkToLieAlgebraField(U,A);
ExpiAlphaDmuAmu(A,g,alpha,dmuAmu,orthog);
ExpiAlphaDmuAmu(U,g,alpha,dmuAmu,orthog);
Real vol = grid->gSites();
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
xform = g*xform ;
SU<Nc>::GaugeTransform(U,g);
SU<Nc>::GaugeTransform<Gimpl>(U,g);
return trG;
}
static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform,Real & alpha, GaugeMat & dmuAmu,int orthog) {
static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform, Real alpha, GaugeMat & dmuAmu,int orthog) {
GridBase *grid = U[0].Grid();
@@ -157,11 +173,7 @@ public:
GaugeMat g(grid);
GaugeMat dmuAmu_p(grid);
std::vector<GaugeMat> A(Nd,grid);
GaugeLinkToLieAlgebraField(U,A);
DmuAmu(A,dmuAmu,orthog);
DmuAmu(U,dmuAmu,orthog);
std::vector<int> mask(Nd,1);
for(int mu=0;mu<Nd;mu++) if (mu==orthog) mask[mu]=0;
@@ -205,16 +217,16 @@ public:
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
xform = g*xform ;
SU<Nc>::GaugeTransform(U,g);
SU<Nc>::GaugeTransform<Gimpl>(U,g);
return trG;
}
static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &A,GaugeMat &g,Real & alpha, GaugeMat &dmuAmu,int orthog) {
static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &U,GaugeMat &g, Real alpha, GaugeMat &dmuAmu,int orthog) {
GridBase *grid = g.Grid();
Complex cialpha(0.0,-alpha);
GaugeMat ciadmam(grid);
DmuAmu(A,dmuAmu,orthog);
DmuAmu(U,dmuAmu,orthog);
ciadmam = dmuAmu*cialpha;
SU<Nc>::taExp(ciadmam,g);
}

View File

@@ -1,111 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file:
Copyright (C) 2015-2016
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class SchurOperatorF>
class MixedPrecisionConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
public:
typedef typename FermionOperatorD::FermionField FieldD;
typedef typename FermionOperatorF::FermionField FieldF;
using OperatorFunction<FieldD>::operator();
RealD Tolerance;
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
Integer MaxInnerIterations;
Integer MaxOuterIterations;
GridBase* SinglePrecGrid;
RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
FermionOperatorF &FermOpF;
FermionOperatorD &FermOpD;;
SchurOperatorF &LinOpF;
SchurOperatorD &LinOpD;
Integer TotalInnerIterations; //Number of inner CG iterations
Integer TotalOuterIterations; //Number of restarts
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
MixedPrecisionConjugateGradientOperatorFunction(RealD tol, RealD tolInner,
Integer maxinnerit,
Integer maxouterit,
GridBase *_SinglePrecGrid,
FermionOperatorF &_FermOpF,
FermionOperatorD &_FermOpD,
SchurOperatorF &_LinOpF,
SchurOperatorD &_LinOpD) :
LinOpF(_LinOpF),
LinOpD(_LinOpD),
FermOpF(_FermOpF),
FermOpD(_FermOpD),
Tolerance(tol),
InnerTolerance(tolInner),
MaxInnerIterations(maxinnerit),
MaxOuterIterations(maxouterit),
SinglePrecGrid(_SinglePrecGrid),
OuterLoopNormMult(100.)
{ assert(tolInner<0.01); };
void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi)
{
SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
// Assumption made in code to extract gauge field
// We could avoid storing LinopD reference alltogether ?
assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
////////////////////////////////////////////////////////////////////////////////////
// Moving this to a Clone method of fermion operator would allow to duplicate the
// physics parameters and decrease gauge field copies
////////////////////////////////////////////////////////////////////////////////////
auto &Umu_d = FermOpD.GetDoubledGaugeField();
auto &Umu_f = FermOpF.GetDoubledGaugeField();
auto &Umu_fe= FermOpF.GetDoubledGaugeFieldE();
auto &Umu_fo= FermOpF.GetDoubledGaugeFieldO();
precisionChange(Umu_f,Umu_d);
pickCheckerboard(Even,Umu_fe,Umu_f);
pickCheckerboard(Odd ,Umu_fo,Umu_f);
//////////////////////////////////////////////////////////////////////////////////////////
// Make a mixed precision conjugate gradient
//////////////////////////////////////////////////////////////////////////////////////////
// Could assume red black solver here and remove the SinglePrecGrid parameter???
MixedPrecisionConjugateGradient<FieldD,FieldF> MPCG(Tolerance, InnerTolerance,MaxInnerIterations,MaxOuterIterations,SinglePrecGrid,LinOpF,LinOpD);
std::cout << GridLogMessage << "Calling mixed precision Conjugate Gradient src "<<norm2(src) <<std::endl;
psi=Zero();
MPCG(src,psi);
}
};
NAMESPACE_END(Grid);

View File

@@ -694,32 +694,32 @@ public:
* Adjoint rep gauge xform
*/
template<typename GaugeField,typename GaugeMat>
static void GaugeTransform( GaugeField &Umu, GaugeMat &g){
template<typename Gimpl>
static void GaugeTransform(typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
GridBase *grid = Umu.Grid();
conformable(grid,g.Grid());
GaugeMat U(grid);
GaugeMat ag(grid); ag = adj(g);
typename Gimpl::GaugeLinkField U(grid);
typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
for(int mu=0;mu<Nd;mu++){
U= PeekIndex<LorentzIndex>(Umu,mu);
U = g*U*Cshift(ag, mu, 1);
U = g*U*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
PokeIndex<LorentzIndex>(Umu,U,mu);
}
}
template<typename GaugeMat>
static void GaugeTransform( std::vector<GaugeMat> &U, GaugeMat &g){
template<typename Gimpl>
static void GaugeTransform( std::vector<typename Gimpl::GaugeLinkField> &U, typename Gimpl::GaugeLinkField &g){
GridBase *grid = g.Grid();
GaugeMat ag(grid); ag = adj(g);
typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
for(int mu=0;mu<Nd;mu++){
U[mu] = g*U[mu]*Cshift(ag, mu, 1);
U[mu] = g*U[mu]*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
}
}
template<typename GaugeField,typename GaugeMat>
static void RandomGaugeTransform(GridParallelRNG &pRNG, GaugeField &Umu, GaugeMat &g){
template<typename Gimpl>
static void RandomGaugeTransform(GridParallelRNG &pRNG, typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
LieRandomize(pRNG,g,1.0);
GaugeTransform(Umu,g);
GaugeTransform<Gimpl>(Umu,g);
}
// Projects the algebra components a lattice matrix (of dimension ncol*ncol -1 )

View File

@@ -125,6 +125,56 @@ public:
return sumplaq / vol / faces / Nc; // Nd , Nc dependent... FIXME
}
//////////////////////////////////////////////////
// sum over all spatial planes of plaquette
//////////////////////////////////////////////////
static void siteSpatialPlaquette(ComplexField &Plaq,
const std::vector<GaugeMat> &U) {
ComplexField sitePlaq(U[0].Grid());
Plaq = Zero();
for (int mu = 1; mu < Nd-1; mu++) {
for (int nu = 0; nu < mu; nu++) {
traceDirPlaquette(sitePlaq, U, mu, nu);
Plaq = Plaq + sitePlaq;
}
}
}
////////////////////////////////////
// sum over all x,y,z and over all spatial planes of plaquette
//////////////////////////////////////////////////
static std::vector<RealD> timesliceSumSpatialPlaquette(const GaugeLorentz &Umu) {
std::vector<GaugeMat> U(Nd, Umu.Grid());
// inefficient here
for (int mu = 0; mu < Nd; mu++) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
}
ComplexField Plaq(Umu.Grid());
siteSpatialPlaquette(Plaq, U);
typedef typename ComplexField::scalar_object sobj;
std::vector<sobj> Tq;
sliceSum(Plaq, Tq, Nd-1);
std::vector<Real> out(Tq.size());
for(int t=0;t<Tq.size();t++) out[t] = TensorRemove(Tq[t]).real();
return out;
}
//////////////////////////////////////////////////
// average over all x,y,z and over all spatial planes of plaquette
//////////////////////////////////////////////////
static std::vector<RealD> timesliceAvgSpatialPlaquette(const GaugeLorentz &Umu) {
std::vector<RealD> sumplaq = timesliceSumSpatialPlaquette(Umu);
int Lt = Umu.Grid()->FullDimensions()[Nd-1];
assert(sumplaq.size() == Lt);
double vol = Umu.Grid()->gSites() / Lt;
double faces = (1.0 * (Nd - 1)* (Nd - 2)) / 2.0;
for(int t=0;t<Lt;t++)
sumplaq[t] = sumplaq[t] / vol / faces / Nc; // Nd , Nc dependent... FIXME
return sumplaq;
}
//////////////////////////////////////////////////
// average over all x,y,z the temporal loop
@@ -363,11 +413,11 @@ public:
GaugeMat u = PeekIndex<LorentzIndex>(Umu, mu); // some redundant copies
GaugeMat vu = v*u;
//FS = 0.25*Ta(u*v + Cshift(vu, mu, -1));
FS = (u*v + Cshift(vu, mu, -1));
FS = (u*v + Gimpl::CshiftLink(vu, mu, -1));
FS = 0.125*(FS - adj(FS));
}
static Real TopologicalCharge(GaugeLorentz &U){
static Real TopologicalCharge(const GaugeLorentz &U){
// 4d topological charge
assert(Nd==4);
// Bx = -iF(y,z), By = -iF(z,y), Bz = -iF(x,y)
@@ -390,6 +440,203 @@ public:
}
//Clover-leaf Wilson loop combination for arbitrary mu-extent M and nu extent N, mu >= nu
//cf https://arxiv.org/pdf/hep-lat/9701012.pdf Eq 7 for 1x2 Wilson loop
//Clockwise ordering
static void CloverleafMxN(GaugeMat &FS, const GaugeMat &Umu, const GaugeMat &Unu, int mu, int nu, int M, int N){
#define Fmu(A) Gimpl::CovShiftForward(Umu, mu, A)
#define Bmu(A) Gimpl::CovShiftBackward(Umu, mu, A)
#define Fnu(A) Gimpl::CovShiftForward(Unu, nu, A)
#define Bnu(A) Gimpl::CovShiftBackward(Unu, nu, A)
#define FmuI Gimpl::CovShiftIdentityForward(Umu, mu)
#define BmuI Gimpl::CovShiftIdentityBackward(Umu, mu)
#define FnuI Gimpl::CovShiftIdentityForward(Unu, nu)
#define BnuI Gimpl::CovShiftIdentityBackward(Unu, nu)
//Upper right loop
GaugeMat tmp = BmuI;
for(int i=1;i<M;i++)
tmp = Bmu(tmp);
for(int j=0;j<N;j++)
tmp = Bnu(tmp);
for(int i=0;i<M;i++)
tmp = Fmu(tmp);
for(int j=0;j<N;j++)
tmp = Fnu(tmp);
FS = tmp;
//Upper left loop
tmp = BnuI;
for(int j=1;j<N;j++)
tmp = Bnu(tmp);
for(int i=0;i<M;i++)
tmp = Fmu(tmp);
for(int j=0;j<N;j++)
tmp = Fnu(tmp);
for(int i=0;i<M;i++)
tmp = Bmu(tmp);
FS = FS + tmp;
//Lower right loop
tmp = FnuI;
for(int j=1;j<N;j++)
tmp = Fnu(tmp);
for(int i=0;i<M;i++)
tmp = Bmu(tmp);
for(int j=0;j<N;j++)
tmp = Bnu(tmp);
for(int i=0;i<M;i++)
tmp = Fmu(tmp);
FS = FS + tmp;
//Lower left loop
tmp = FmuI;
for(int i=1;i<M;i++)
tmp = Fmu(tmp);
for(int j=0;j<N;j++)
tmp = Fnu(tmp);
for(int i=0;i<M;i++)
tmp = Bmu(tmp);
for(int j=0;j<N;j++)
tmp = Bnu(tmp);
FS = FS + tmp;
#undef Fmu
#undef Bmu
#undef Fnu
#undef Bnu
#undef FmuI
#undef BmuI
#undef FnuI
#undef BnuI
}
//Field strength from MxN Wilson loop
//Note F_numu = - F_munu
static void FieldStrengthMxN(GaugeMat &FS, const GaugeLorentz &U, int mu, int nu, int M, int N){
GaugeMat Umu = PeekIndex<LorentzIndex>(U, mu);
GaugeMat Unu = PeekIndex<LorentzIndex>(U, nu);
if(M == N){
GaugeMat F(Umu.Grid());
CloverleafMxN(F, Umu, Unu, mu, nu, M, N);
FS = 0.125 * ( F - adj(F) );
}else{
//Average over both orientations
GaugeMat horizontal(Umu.Grid()), vertical(Umu.Grid());
CloverleafMxN(horizontal, Umu, Unu, mu, nu, M, N);
CloverleafMxN(vertical, Umu, Unu, mu, nu, N, M);
FS = 0.0625 * ( horizontal - adj(horizontal) + vertical - adj(vertical) );
}
}
//Topological charge contribution from MxN Wilson loops
//cf https://arxiv.org/pdf/hep-lat/9701012.pdf Eq 6
//output is the charge by timeslice: sum over timeslices to obtain the total
static std::vector<Real> TimesliceTopologicalChargeMxN(const GaugeLorentz &U, int M, int N){
assert(Nd == 4);
std::vector<std::vector<GaugeMat*> > F(Nd,std::vector<GaugeMat*>(Nd,nullptr));
//Note F_numu = - F_munu
//hence we only need to loop over mu,nu,rho,sigma that aren't related by permuting mu,nu or rho,sigma
//Use nu > mu
for(int mu=0;mu<Nd-1;mu++){
for(int nu=mu+1; nu<Nd; nu++){
F[mu][nu] = new GaugeMat(U.Grid());
FieldStrengthMxN(*F[mu][nu], U, mu, nu, M, N);
}
}
Real coeff = -1./(32 * M_PI*M_PI * M*M * N*N); //overall sign to match CPS and Grid conventions, possibly related to time direction = 3 vs 0
static const int combs[3][4] = { {0,1,2,3}, {0,2,1,3}, {0,3,1,2} };
static const int signs[3] = { 1, -1, 1 }; //epsilon_{mu nu rho sigma}
ComplexField fsum(U.Grid());
fsum = Zero();
for(int c=0;c<3;c++){
int mu = combs[c][0], nu = combs[c][1], rho = combs[c][2], sigma = combs[c][3];
int eps = signs[c];
fsum = fsum + (8. * coeff * eps) * trace( (*F[mu][nu]) * (*F[rho][sigma]) );
}
for(int mu=0;mu<Nd-1;mu++)
for(int nu=mu+1; nu<Nd; nu++)
delete F[mu][nu];
typedef typename ComplexField::scalar_object sobj;
std::vector<sobj> Tq;
sliceSum(fsum, Tq, Nd-1);
std::vector<Real> out(Tq.size());
for(int t=0;t<Tq.size();t++) out[t] = TensorRemove(Tq[t]).real();
return out;
}
static Real TopologicalChargeMxN(const GaugeLorentz &U, int M, int N){
std::vector<Real> Tq = TimesliceTopologicalChargeMxN(U,M,N);
Real out(0);
for(int t=0;t<Tq.size();t++) out += Tq[t];
return out;
}
//Generate the contributions to the 5Li topological charge from Wilson loops of the following sizes
//Use coefficients from hep-lat/9701012
//1x1 : c1=(19.-55.*c5)/9.
//2x2 : c2=(1-64.*c5)/9.
//1x2 : c3=(-64.+640.*c5)/45.
//1x3 : c4=1./5.-2.*c5
//3x3 : c5=1./20.
//Output array outer index contains the loops in the above order
//Inner index is the time coordinate
static std::vector<std::vector<Real> > TimesliceTopologicalCharge5LiContributions(const GaugeLorentz &U){
static const int exts[5][2] = { {1,1}, {2,2}, {1,2}, {1,3}, {3,3} };
std::vector<std::vector<Real> > out(5);
for(int i=0;i<5;i++){
out[i] = TimesliceTopologicalChargeMxN(U,exts[i][0],exts[i][1]);
}
return out;
}
static std::vector<Real> TopologicalCharge5LiContributions(const GaugeLorentz &U){
static const int exts[5][2] = { {1,1}, {2,2}, {1,2}, {1,3}, {3,3} };
std::vector<Real> out(5);
std::cout << GridLogMessage << "Computing topological charge" << std::endl;
for(int i=0;i<5;i++){
out[i] = TopologicalChargeMxN(U,exts[i][0],exts[i][1]);
std::cout << GridLogMessage << exts[i][0] << "x" << exts[i][1] << " Wilson loop contribution " << out[i] << std::endl;
}
return out;
}
//Compute the 5Li topological charge
static std::vector<Real> TimesliceTopologicalCharge5Li(const GaugeLorentz &U){
std::vector<std::vector<Real> > loops = TimesliceTopologicalCharge5LiContributions(U);
double c5=1./20.;
double c4=1./5.-2.*c5;
double c3=(-64.+640.*c5)/45.;
double c2=(1-64.*c5)/9.;
double c1=(19.-55.*c5)/9.;
int Lt = loops[0].size();
std::vector<Real> out(Lt,0.);
for(int t=0;t<Lt;t++)
out[t] += c1*loops[0][t] + c2*loops[1][t] + c3*loops[2][t] + c4*loops[3][t] + c5*loops[4][t];
return out;
}
static Real TopologicalCharge5Li(const GaugeLorentz &U){
std::vector<Real> Qt = TimesliceTopologicalCharge5Li(U);
Real Q = 0.;
for(int t=0;t<Qt.size();t++) Q += Qt[t];
std::cout << GridLogMessage << "5Li Topological charge: " << Q << std::endl;
return Q;
}
//////////////////////////////////////////////////////
// Similar to above for rectangle is required
//////////////////////////////////////////////////////

View File

@@ -263,8 +263,7 @@ public:
int face_table_computed;
std::vector<commVector<std::pair<int,int> > > face_table ;
Vector<int> surface_list;
bool locally_periodic;
stencilVector<StencilEntry> _entries; // Resident in managed memory
commVector<StencilEntry> _entries_device; // Resident in managed memory
std::vector<Packet> Packets;
@@ -321,15 +320,14 @@ public:
int ld = _grid->_ldimensions[dimension];
int rd = _grid->_rdimensions[dimension];
int simd_layout = _grid->_simd_layout[dimension];
int comm_dim = _grid->_processors[dimension] >1 && (!locally_periodic);
int comm_dim = _grid->_processors[dimension] >1 ;
int recv_from_rank;
int xmit_to_rank;
// int recv_from_rank;
// int xmit_to_rank;
if ( ! comm_dim ) return 1;
if ( displacement == 0 ) return 1;
return 0;
}
//////////////////////////////////////////
@@ -475,7 +473,7 @@ public:
// the permute type
int simd_layout = _grid->_simd_layout[dimension];
int comm_dim = _grid->_processors[dimension] >1 && (!locally_periodic);
int comm_dim = _grid->_processors[dimension] >1 ;
int splice_dim = _grid->_simd_layout[dimension]>1 && (comm_dim);
int is_same_node = 1;
@@ -659,20 +657,6 @@ public:
const std::vector<int> &directions,
const std::vector<int> &distances,
Parameters p)
: CartesianStencil(grid,
npoints,
checkerboard,
directions,
distances,
false,
p){};
CartesianStencil(GridBase *grid,
int npoints,
int checkerboard,
const std::vector<int> &directions,
const std::vector<int> &distances,
bool _locally_periodic,
Parameters p)
: shm_bytes_thr(npoints),
comm_bytes_thr(npoints),
comm_enter_thr(npoints),
@@ -681,7 +665,6 @@ public:
{
face_table_computed=0;
_grid = grid;
this->locally_periodic=_locally_periodic;
this->parameters=p;
/////////////////////////////////////
// Initialise the base
@@ -707,8 +690,6 @@ public:
int point = i;
int dimension = directions[i];
assert(dimension>=0 && dimension<_grid->Nd());
int displacement = distances[i];
int shift = displacement;
@@ -722,7 +703,7 @@ public:
// the permute type
//////////////////////////
int simd_layout = _grid->_simd_layout[dimension];
int comm_dim = _grid->_processors[dimension] >1 && (!locally_periodic);
int comm_dim = _grid->_processors[dimension] >1 ;
int splice_dim = _grid->_simd_layout[dimension]>1 && (comm_dim);
int rotate_dim = _grid->_simd_layout[dimension]>2;
@@ -836,7 +817,7 @@ public:
int pd = _grid->_processors[dimension];
int simd_layout = _grid->_simd_layout[dimension];
int comm_dim = _grid->_processors[dimension] >1 ;
assert(locally_periodic==false);
assert(comm_dim==1);
int shift = (shiftpm + fd) %fd;
assert(shift>=0);
@@ -1016,7 +997,6 @@ public:
int pd = _grid->_processors[dimension];
int simd_layout = _grid->_simd_layout[dimension];
int comm_dim = _grid->_processors[dimension] >1 ;
assert(locally_periodic==false);
assert(simd_layout==1);
assert(comm_dim==1);
assert(shift>=0);
@@ -1109,7 +1089,6 @@ public:
int pd = _grid->_processors[dimension];
int simd_layout = _grid->_simd_layout[dimension];
int comm_dim = _grid->_processors[dimension] >1 ;
assert(locally_periodic==false);
assert(comm_dim==1);
// This will not work with a rotate dim
assert(simd_layout==maxl);

View File

@@ -52,17 +52,12 @@ template<class vtype, int N> accelerator_inline iVector<vtype, N> Exponentiate(c
return ret;
}
// Specialisation: Cayley-Hamilton exponential for SU(3)
#if 0
template<class vtype, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0>::type * =nullptr>
accelerator_inline iMatrix<vtype,3> Exponentiated(const iMatrix<vtype,3> &arg, RealD alpha , Integer Nexp = DEFAULT_MAT_EXP )
{
return ExponentiateCayleyHamilton(arg,alpha);
}
#endif
// Specialisation: Cayley-Hamilton exponential for SU(3)
#ifndef GRID_CUDA
template<class vtype, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0>::type * =nullptr>
accelerator_inline iMatrix<vtype,3> ExponentiateCayleyHamilton(const iMatrix<vtype,3> &arg, RealD alpha )
accelerator_inline iMatrix<vtype,3> Exponentiate(const iMatrix<vtype,3> &arg, RealD alpha , Integer Nexp = DEFAULT_MAT_EXP )
{
// for SU(3) 2x faster than the std implementation using Nexp=12
// notice that it actually computes
@@ -120,6 +115,8 @@ accelerator_inline iMatrix<vtype,3> ExponentiateCayleyHamilton(const iMatrix<vty
return (f0 * unit + timesMinusI(f1) * arg*alpha - f2 * iQ2);
}
#endif
// General exponential
template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
@@ -132,8 +129,8 @@ accelerator_inline iMatrix<vtype,N> Exponentiate(const iMatrix<vtype,N> &arg, Re
typedef iMatrix<vtype,N> mat;
mat unit(1.0);
mat temp(unit);
for(int n=Nexp; n>=1;--n){
temp *= alpha/RealD(n);
for(int i=Nexp; i>=1;--i){
temp *= alpha/RealD(i);
temp = unit + temp*arg;
}
return temp;

View File

@@ -47,20 +47,20 @@ NAMESPACE_BEGIN(Grid);
class TypePair {
public:
T _internal[2];
TypePair<T>& operator=(const Grid::Zero& o) {
accelerator TypePair<T>& operator=(const Grid::Zero& o) {
_internal[0] = Zero();
_internal[1] = Zero();
return *this;
}
TypePair<T> operator+(const TypePair<T>& o) const {
accelerator TypePair<T> operator+(const TypePair<T>& o) const {
TypePair<T> r;
r._internal[0] = _internal[0] + o._internal[0];
r._internal[1] = _internal[1] + o._internal[1];
return r;
}
TypePair<T>& operator+=(const TypePair<T>& o) {
accelerator TypePair<T>& operator+=(const TypePair<T>& o) {
_internal[0] += o._internal[0];
_internal[1] += o._internal[1];
return *this;

View File

@@ -84,7 +84,8 @@ void acceleratorInit(void)
// IBM Jsrun makes cuda Device numbering screwy and not match rank
if ( world_rank == 0 ) {
printf("AcceleratorCudaInit: using default device \n");
printf("AcceleratorCudaInit: assume user either uses a) IBM jsrun, or \n");
printf("AcceleratorCudaInit: assume user either uses\n");
printf("AcceleratorCudaInit: a) IBM jsrun, or \n");
printf("AcceleratorCudaInit: b) invokes through a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding \n");
printf("AcceleratorCudaInit: Configure options --enable-setdevice=no \n");
}
@@ -95,7 +96,7 @@ void acceleratorInit(void)
#endif
cudaSetDevice(device);
cudaStreamCreate(&copyStream);
const int len=64;
char busid[len];
if( rank == world_rank ) {
@@ -109,6 +110,7 @@ void acceleratorInit(void)
#ifdef GRID_HIP
hipDeviceProp_t *gpu_props;
hipStream_t copyStream;
void acceleratorInit(void)
{
int nDevices = 1;
@@ -166,16 +168,25 @@ void acceleratorInit(void)
#ifdef GRID_DEFAULT_GPU
if ( world_rank == 0 ) {
printf("AcceleratorHipInit: using default device \n");
printf("AcceleratorHipInit: assume user either uses a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding \n");
printf("AcceleratorHipInit: Configure options --enable-summit, --enable-select-gpu=no \n");
printf("AcceleratorHipInit: assume user or srun sets ROCR_VISIBLE_DEVICES and numa binding \n");
printf("AcceleratorHipInit: Configure options --enable-setdevice=no \n");
}
int device = 0;
#else
if ( world_rank == 0 ) {
printf("AcceleratorHipInit: rank %d setting device to node rank %d\n",world_rank,rank);
printf("AcceleratorHipInit: Configure options --enable-select-gpu=yes \n");
printf("AcceleratorHipInit: Configure options --enable-setdevice=yes \n");
}
hipSetDevice(rank);
int device = rank;
#endif
hipSetDevice(device);
hipStreamCreate(&copyStream);
const int len=64;
char busid[len];
if( rank == world_rank ) {
hipDeviceGetPCIBusId(busid, len, device);
printf("local rank %d device %d bus id: %s\n", rank, device, busid);
}
if ( world_rank == 0 ) printf("AcceleratorHipInit: ================================================\n");
}
#endif

View File

@@ -95,6 +95,7 @@ void acceleratorInit(void);
//////////////////////////////////////////////
#ifdef GRID_CUDA
#include <cuda.h>
#ifdef __CUDA_ARCH__
@@ -205,7 +206,8 @@ inline void *acceleratorAllocShared(size_t bytes)
auto err = cudaMallocManaged((void **)&ptr,bytes);
if( err != cudaSuccess ) {
ptr = (void *) NULL;
printf(" cudaMallocManaged failed for %lu %s \n",bytes,cudaGetErrorString(err));
printf(" cudaMallocManaged failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
}
return ptr;
};
@@ -215,20 +217,53 @@ inline void *acceleratorAllocDevice(size_t bytes)
auto err = cudaMalloc((void **)&ptr,bytes);
if( err != cudaSuccess ) {
ptr = (void *) NULL;
printf(" cudaMalloc failed for %lu %s \n",bytes,cudaGetErrorString(err));
printf(" cudaMalloc failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
}
return ptr;
};
inline void acceleratorFreeShared(void *ptr){ cudaFree(ptr);};
inline void acceleratorFreeDevice(void *ptr){ cudaFree(ptr);};
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { cudaMemcpy(to,from,bytes, cudaMemcpyHostToDevice);}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ cudaMemcpy(to,from,bytes, cudaMemcpyDeviceToHost);}
inline void acceleratorMemSet(void *base,int value,size_t bytes) { cudaMemset(base,value,bytes);}
inline void acceleratorFreeShared(void *ptr){
auto err = cudaFree(ptr);
if( err != cudaSuccess ) {
printf(" cudaFree(Shared) failed %s \n",cudaGetErrorString(err)); fflush(stdout);
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
}
};
inline void acceleratorFreeDevice(void *ptr){
auto err = cudaFree(ptr);
if( err != cudaSuccess ) {
printf(" cudaFree(Device) failed %s \n",cudaGetErrorString(err)); fflush(stdout);
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
}
};
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) {
auto err = cudaMemcpy(to,from,bytes, cudaMemcpyHostToDevice);
if( err != cudaSuccess ) {
printf(" cudaMemcpy(host->device) failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
}
}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){
auto err = cudaMemcpy(to,from,bytes, cudaMemcpyDeviceToHost);
if( err != cudaSuccess ) {
printf(" cudaMemcpy(device->host) failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
}
}
inline void acceleratorMemSet(void *base,int value,size_t bytes) {
auto err = cudaMemset(base,value,bytes);
if( err != cudaSuccess ) {
printf(" cudaMemSet failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
}
}
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) // Asynch
{
cudaMemcpyAsync(to,from,bytes, cudaMemcpyDeviceToDevice,copyStream);
}
inline void acceleratorCopySynchronise(void) { cudaStreamSynchronize(copyStream); };
inline int acceleratorIsCommunicable(void *ptr)
{
// int uvm=0;
@@ -305,7 +340,7 @@ inline void acceleratorFreeDevice(void *ptr){free(ptr,*theGridAccelerator);};
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) {
theGridAccelerator->memcpy(to,from,bytes);
}
inline void acceleratorCopySynchronise(void) { theGridAccelerator->wait(); }
inline void acceleratorCopySynchronise(void) { theGridAccelerator->wait(); std::cout<<"acceleratorCopySynchronise() wait "<<std::endl; }
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { theGridAccelerator->memcpy(to,from,bytes); theGridAccelerator->wait();}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ theGridAccelerator->memcpy(to,from,bytes); theGridAccelerator->wait();}
inline void acceleratorMemSet(void *base,int value,size_t bytes) { theGridAccelerator->memset(base,value,bytes); theGridAccelerator->wait();}
@@ -336,10 +371,11 @@ NAMESPACE_BEGIN(Grid);
#define accelerator __host__ __device__
#define accelerator_inline __host__ __device__ inline
extern hipStream_t copyStream;
/*These routines define mapping from thread grid to loop & vector lane indexing */
accelerator_inline int acceleratorSIMTlane(int Nsimd) {
#ifdef GRID_SIMT
return hipThreadIdx_z;
return hipThreadIdx_x;
#else
return 0;
#endif
@@ -353,19 +389,41 @@ accelerator_inline int acceleratorSIMTlane(int Nsimd) {
{ __VA_ARGS__;} \
}; \
int nt=acceleratorThreads(); \
dim3 hip_threads(nt,1,nsimd); \
dim3 hip_blocks ((num1+nt-1)/nt,num2,1); \
hipLaunchKernelGGL(LambdaApply,hip_blocks,hip_threads, \
0,0, \
num1,num2,nsimd,lambda); \
dim3 hip_threads(nsimd, nt, 1); \
dim3 hip_blocks ((num1+nt-1)/nt,num2,1); \
if(hip_threads.x * hip_threads.y * hip_threads.z <= 64){ \
hipLaunchKernelGGL(LambdaApply64,hip_blocks,hip_threads, \
0,0, \
num1,num2,nsimd, lambda); \
} else { \
hipLaunchKernelGGL(LambdaApply,hip_blocks,hip_threads, \
0,0, \
num1,num2,nsimd, lambda); \
} \
}
template<typename lambda> __global__
__launch_bounds__(64,1)
void LambdaApply64(uint64_t numx, uint64_t numy, uint64_t numz, lambda Lambda)
{
// Following the same scheme as CUDA for now
uint64_t x = threadIdx.y + blockDim.y*blockIdx.x;
uint64_t y = threadIdx.z + blockDim.z*blockIdx.y;
uint64_t z = threadIdx.x;
if ( (x < numx) && (y<numy) && (z<numz) ) {
Lambda(x,y,z);
}
}
template<typename lambda> __global__
__launch_bounds__(1024,1)
void LambdaApply(uint64_t numx, uint64_t numy, uint64_t numz, lambda Lambda)
{
uint64_t x = hipThreadIdx_x + hipBlockDim_x*hipBlockIdx_x;
uint64_t y = hipThreadIdx_y + hipBlockDim_y*hipBlockIdx_y;
uint64_t z = hipThreadIdx_z ;//+ hipBlockDim_z*hipBlockIdx_z;
// Following the same scheme as CUDA for now
uint64_t x = threadIdx.y + blockDim.y*blockIdx.x;
uint64_t y = threadIdx.z + blockDim.z*blockIdx.y;
uint64_t z = threadIdx.x;
if ( (x < numx) && (y<numy) && (z<numz) ) {
Lambda(x,y,z);
}
@@ -410,10 +468,16 @@ inline void acceleratorFreeShared(void *ptr){ hipFree(ptr);};
inline void acceleratorFreeDevice(void *ptr){ hipFree(ptr);};
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { hipMemcpy(to,from,bytes, hipMemcpyHostToDevice);}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ hipMemcpy(to,from,bytes, hipMemcpyDeviceToHost);}
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) { hipMemcpy(to,from,bytes, hipMemcpyDeviceToDevice);}
inline void acceleratorCopySynchronise(void) { }
//inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) { hipMemcpy(to,from,bytes, hipMemcpyDeviceToDevice);}
//inline void acceleratorCopySynchronise(void) { }
inline void acceleratorMemSet(void *base,int value,size_t bytes) { hipMemset(base,value,bytes);}
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) // Asynch
{
hipMemcpyAsync(to,from,bytes, hipMemcpyDeviceToDevice,copyStream);
}
inline void acceleratorCopySynchronise(void) { hipStreamSynchronize(copyStream); };
#endif
//////////////////////////////////////////////
@@ -484,18 +548,12 @@ inline void acceleratorFreeCpu (void *ptr){free(ptr);};
///////////////////////////////////////////////////
// Synchronise across local threads for divergence resynch
///////////////////////////////////////////////////
accelerator_inline void acceleratorSynchronise(void)
accelerator_inline void acceleratorSynchronise(void) // Only Nvidia needs
{
#ifdef GRID_SIMT
#ifdef GRID_CUDA
__syncwarp();
#endif
#ifdef GRID_SYCL
//cl::sycl::detail::workGroupBarrier();
#endif
#ifdef GRID_HIP
__syncthreads();
#endif
#endif
return;
}

View File

@@ -88,7 +88,7 @@ public:
// Coordinate class, maxdims = 8 for now.
////////////////////////////////////////////////////////////////
#define GRID_MAX_LATTICE_DIMENSION (8)
#define GRID_MAX_SIMD (16)
#define GRID_MAX_SIMD (32)
static constexpr int MaxDims = GRID_MAX_LATTICE_DIMENSION;

View File

@@ -167,6 +167,13 @@ void GridCmdOptionInt(std::string &str,int & val)
return;
}
void GridCmdOptionFloat(std::string &str,float & val)
{
std::stringstream ss(str);
ss>>val;
return;
}
void GridParseLayout(char **argv,int argc,
Coordinate &latt_c,
@@ -527,6 +534,7 @@ void Grid_init(int *argc,char ***argv)
void Grid_finalize(void)
{
#if defined (GRID_COMMS_MPI) || defined (GRID_COMMS_MPI3) || defined (GRID_COMMS_MPIT)
MPI_Barrier(MPI_COMM_WORLD);
MPI_Finalize();
Grid_unquiesce_nodes();
#endif

View File

@@ -57,6 +57,7 @@ void GridCmdOptionCSL(std::string str,std::vector<std::string> & vec);
template<class VectorInt>
void GridCmdOptionIntVector(const std::string &str,VectorInt & vec);
void GridCmdOptionInt(std::string &str,int & val);
void GridCmdOptionFloat(std::string &str,float & val);
void GridParseLayout(char **argv,int argc,

View File

@@ -1,170 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_hmc_EODWFRatio.cc
Copyright (C) 2015-2016
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
int main(int argc, char **argv) {
using namespace Grid;
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
// here make a routine to print all the relevant information on the run
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
// Typedefs to simplify notation
typedef WilsonImplR FermionImplPolicy;
typedef MobiusFermionR FermionAction;
typedef typename FermionAction::FermionField FermionField;
typedef Grid::XmlReader Serialiser;
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
IntegratorParameters MD;
// typedef GenericHMCRunner<LeapFrog> HMCWrapper;
// MD.name = std::string("Leap Frog");
// typedef GenericHMCRunner<ForceGradient> HMCWrapper;
// MD.name = std::string("Force Gradient");
typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;
MD.name = std::string("MinimumNorm2");
MD.MDsteps = 12;
MD.trajL = 1.0;
HMCparameters HMCparams;
HMCparams.StartTrajectory = 17;
HMCparams.Trajectories = 200;
HMCparams.NoMetropolisUntil= 0;
// "[HotStart, ColdStart, TepidStart, CheckpointStart]\n";
// HMCparams.StartingType =std::string("ColdStart");
HMCparams.StartingType =std::string("CheckpointStart");
HMCparams.MD = MD;
HMCWrapper TheHMC(HMCparams);
// Grid from the command line arguments --grid and --mpi
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
CheckpointerParameters CPparams;
CPparams.config_prefix = "ckpoint_2fDWF_lat";
CPparams.rng_prefix = "ckpoint_2fDWF_rng";
CPparams.saveInterval = 1;
CPparams.format = "IEEE64BIG";
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables
// here there is too much indirection
typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs;
TheHMC.Resources.AddObservable<PlaqObs>();
//////////////////////////////////////////////
const int Ls = 16;
Real beta = 2.13;
Real light_mass = 0.01;
Real pv_mass = 1.0;
RealD M5 = 1.8;
RealD b = 1.0;
RealD c = 0.0;
std::vector<Real> hasenbusch({ 0.1, 0.4, 0.7 });
auto GridPtr = TheHMC.Resources.GetCartesian();
auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
auto FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtr);
auto FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtr);
IwasakiGaugeActionR GaugeAction(beta);
// temporarily need a gauge field
LatticeGaugeField U(GridPtr);
// These lines are unecessary if BC are all periodic
std::vector<Complex> boundary = {1,1,1,-1};
FermionAction::ImplParams Params(boundary);
double StoppingCondition = 1e-10;
double MaxCGIterations = 30000;
ConjugateGradient<FermionField> CG(StoppingCondition,MaxCGIterations);
////////////////////////////////////
// Collect actions
////////////////////////////////////
ActionLevel<HMCWrapper::Field> Level1(1);
ActionLevel<HMCWrapper::Field> Level2(8);
////////////////////////////////////
// up down action
////////////////////////////////////
std::vector<Real> light_den;
std::vector<Real> light_num;
int n_hasenbusch = hasenbusch.size();
light_den.push_back(light_mass);
for(int h=0;h<n_hasenbusch;h++){
light_den.push_back(hasenbusch[h]);
light_num.push_back(hasenbusch[h]);
}
light_num.push_back(pv_mass);
std::vector<FermionAction *> Numerators;
std::vector<FermionAction *> Denominators;
std::vector<TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy> *> Quotients;
for(int h=0;h<n_hasenbusch+1;h++){
std::cout << GridLogMessage << " 2f quotient Action "<< light_num[h] << " / " << light_den[h]<< std::endl;
Numerators.push_back (new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_num[h],M5,b,c, Params));
Denominators.push_back(new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_den[h],M5,b,c, Params));
Quotients.push_back (new TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],CG,CG));
}
for(int h=0;h<n_hasenbusch+1;h++){
Level1.push_back(Quotients[h]);
}
/////////////////////////////////////////////////////////////
// Gauge action
/////////////////////////////////////////////////////////////
Level2.push_back(&GaugeAction);
TheHMC.TheAction.push_back(Level1);
TheHMC.TheAction.push_back(Level2);
std::cout << GridLogMessage << " Action complete "<< std::endl;
/////////////////////////////////////////////////////////////
// HMC parameters are serialisable
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
TheHMC.Run(); // no smearing
Grid_finalize();
} // main

View File

@@ -1,386 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
nnSource file:
Copyright (C) 2015-2016
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
NAMESPACE_BEGIN(Grid);
template<class Impl>
class DomainLocalTwoFlavourEvenOddRatioPseudoFermionAction
: public TwoFlavourEvenOddRatioPseudoFermionAction<Impl>
{
public:
INHERIT_IMPL_TYPES(Impl);
Coordinate Block;
DomainDecomposition Domains;
DomainLocalTwoFlavourEvenOddRatioPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
OperatorFunction<FermionField> & DS,
OperatorFunction<FermionField> & AS,
OperatorFunction<FermionField> & HS,
Coordinate &_Block ) :
Block(_Block),
Domains(_Block),
TwoFlavourEvenOddRatioPseudoFermionAction<Impl>(_NumOp,_DenOp,DS,AS,HS)
{};
virtual void refreshRestrict(FermionField &eta)
{
Domains.ProjectDomain(eta,0);
DumpSliceNorm("refresh Restrict eta",eta);
};
};
#define MIXED_PRECISION
NAMESPACE_END(Grid);
int main(int argc, char **argv)
{
using namespace Grid;
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
// here make a routine to print all the relevant information on the run
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
// Typedefs to simplify notation
typedef WilsonImplR FimplD;
typedef WilsonImplF FimplF;
typedef FermionOperator<FimplF> FermionOperatorF;
typedef FermionOperator<FimplD> FermionOperatorD;
typedef MobiusFermionR FermionActionD;
typedef MobiusFermionF FermionActionF;
typedef DirichletFermionOperator<WilsonImplR> DirichletFermionD;
typedef DirichletFermionOperator<WilsonImplF> DirichletFermionF;
typedef MobiusEOFAFermionR FermionEOFAAction;
typedef typename FermionActionD::FermionField FermionFieldD;
typedef typename FermionActionF::FermionField FermionFieldF;
typedef SchurDiagMooeeOperator<FermionOperator<FimplF>,FermionFieldF> LinearOperatorF;
typedef SchurDiagMooeeOperator<FermionOperator<FimplD>,FermionFieldD> LinearOperatorD;
typedef SchurDiagMooeeDagOperator<FermionOperator<FimplF>,FermionFieldF> LinearOperatorDagF;
typedef SchurDiagMooeeDagOperator<FermionOperator<FimplD>,FermionFieldD> LinearOperatorDagD;
typedef Grid::XmlReader Serialiser;
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
IntegratorParameters MD;
// typedef GenericHMCRunner<LeapFrog> HMCWrapper;
// MD.name = std::string("Leap Frog");
// typedef GenericHMCRunner<ForceGradient> HMCWrapper;
// MD.name = std::string("Force Gradient");
typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;
/*
MD.name = std::string("MinimumNorm2");
MD.MDsteps = 4; // dH = 0.08
// MD.MDsteps = 3; // dH = 0.8
MD.trajL = 1.0;
*/
HMCparameters HMCparams;
{
XmlReader HMCrd("HMCparameters.xml");
read(HMCrd,"HMCparameters",HMCparams);
std::cout << GridLogMessage<< HMCparams <<std::endl;
}
HMCWrapper TheHMC(HMCparams);
/*
HMCparams.StartTrajectory = 66;
HMCparams.Trajectories = 200;
HMCparams.NoMetropolisUntil= 0;
// "[HotStart, ColdStart, TepidStart, CheckpointStart]\n";
// HMCparams.StartingType =std::string("ColdStart");
HMCparams.StartingType =std::string("CheckpointStart");
HMCparams.MD = MD;
*/
// Grid from the command line arguments --grid and --mpi
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
CheckpointerParameters CPparams;
CPparams.config_prefix = "ckpoint_DDHMC_lat";
CPparams.rng_prefix = "ckpoint_DDHMC_rng";
CPparams.saveInterval = 1;
CPparams.format = "IEEE64BIG";
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Momentum Dirichlet
Coordinate Block({0,0,0,24});
TheHMC.Resources.SetMomentumFilter(new DDHMCFilter<WilsonImplR::Field>(Block));
// Construct observables
// here there is too much indirection
typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs;
TheHMC.Resources.AddObservable<PlaqObs>();
//////////////////////////////////////////////
const int Ls = 16;
Real beta = 2.13;
// Real light_mass = 0.04;
Real light_mass = 0.01;
Real pv_mass = 1.0;
RealD M5 = 1.8;
RealD b = 1.0;
RealD c = 0.0;
std::vector<Real> hasenbusch({ 0.1, 0.4, 0.7 });
auto GridPtr = TheHMC.Resources.GetCartesian();
auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
auto FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtr);
auto FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtr);
Coordinate latt = GridDefaultLatt();
Coordinate mpi = GridDefaultMpi();
Coordinate simdF = GridDefaultSimd(Nd,vComplexF::Nsimd());
Coordinate simdD = GridDefaultSimd(Nd,vComplexD::Nsimd());
auto GridPtrF = SpaceTimeGrid::makeFourDimGrid(latt,simdF,mpi);
auto GridRBPtrF = SpaceTimeGrid::makeFourDimRedBlackGrid(GridPtrF);
auto FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtrF);
auto FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtrF);
IwasakiGaugeActionR GaugeAction(beta);
// temporarily need a gauge field
LatticeGaugeField U(GridPtr);
LatticeGaugeFieldF UF(GridPtrF);
// These lines are unecessary if BC are all periodic
std::vector<Complex> boundary = {1,1,1,-1};
FermionActionD::ImplParams Params(boundary);
FermionActionD::ImplParams DirichletParams(boundary);
DirichletParams.locally_periodic=true;
double ActionStoppingCondition = 1e-10;
double DerivativeStoppingCondition = 1e-10;
// double BoundaryDerivativeStoppingCondition = 1e-10; decent acceptance
double BoundaryDerivativeStoppingCondition = 1e-7; // decent acceptance
// double BoundaryDerivativeStoppingCondition = 1e-6; // bit bigger not huge
// double BoundaryDerivativeStoppingCondition = 1e-5; // Large dH poor acceptance
double MaxCGIterations = 30000;
////////////////////////////////////
// Collect actions
////////////////////////////////////
ActionLevel<HMCWrapper::Field> Level1(1);
ActionLevel<HMCWrapper::Field> Level2(3);
ActionLevel<HMCWrapper::Field> Level3(8);
ConjugateGradient<FermionFieldD> ActionCG(ActionStoppingCondition,MaxCGIterations);
ConjugateGradient<FermionFieldD> DerivativeCG(DerivativeStoppingCondition,MaxCGIterations);
////////////////////////////////////
// up down action
////////////////////////////////////
std::vector<Real> light_den;
std::vector<Real> light_num;
int n_hasenbusch = hasenbusch.size();
light_den.push_back(light_mass);
for(int h=0;h<n_hasenbusch;h++){
light_den.push_back(hasenbusch[h]);
light_num.push_back(hasenbusch[h]);
}
light_num.push_back(pv_mass);
//////////////////////////////////////////////////////////////
// Forced to replicate the MxPCG and DenominatorsF etc.. because
// there is no convenient way to "Clone" physics params from double op
// into single op for any operator pair.
// Same issue prevents using MxPCG in the Heatbath step
//////////////////////////////////////////////////////////////
/////////////////////////////////////////////////
// These are consumed/owned by the Dirichlet wrappers
/////////////////////////////////////////////////
std::vector<FermionActionD *> DNumeratorsD;
std::vector<FermionActionF *> DNumeratorsF;
std::vector<FermionActionD *> DDenominatorsD;
std::vector<FermionActionF *> DDenominatorsF;
/////////////////////////////////////////////////
// Dirichlet wrappers
/////////////////////////////////////////////////
std::vector<DirichletFermionD *> DirichletNumeratorsD;
std::vector<DirichletFermionF *> DirichletNumeratorsF;
std::vector<DirichletFermionD *> DirichletDenominatorsD;
std::vector<DirichletFermionF *> DirichletDenominatorsF;
std::vector<DomainLocalTwoFlavourEvenOddRatioPseudoFermionAction<FimplD> *> Quotients;
typedef MixedPrecisionConjugateGradientOperatorFunction<FermionOperatorD,
FermionOperatorF,
LinearOperatorD,
LinearOperatorF> MxPCG;
std::vector<MxPCG *> ActionMPCG;
std::vector<MxPCG *> MPCG;
std::vector<LinearOperatorD *> LinOpD;
std::vector<LinearOperatorF *> LinOpF;
int MX_inner = 1000;
RealD MX_tol = 1.0e-5;
for(int h=0;h<n_hasenbusch+1;h++){
std::cout << GridLogMessage << " 2f quotient Action "<< light_num[h] << " / " << light_den[h]<< std::endl;
DNumeratorsD.push_back (new FermionActionD(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_num[h],M5,b,c, DirichletParams));
DNumeratorsF.push_back (new FermionActionF(UF,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,light_num[h],M5,b,c, DirichletParams));
DDenominatorsD.push_back(new FermionActionD(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_den[h],M5,b,c, DirichletParams));
DDenominatorsF.push_back(new FermionActionF(UF,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,light_den[h],M5,b,c, DirichletParams));
DirichletNumeratorsD.push_back (new DirichletFermionD(*DNumeratorsD[h],Block));
DirichletNumeratorsF.push_back (new DirichletFermionF(*DNumeratorsF[h],Block));
DirichletDenominatorsD.push_back(new DirichletFermionD(*DDenominatorsD[h],Block));
DirichletDenominatorsF.push_back(new DirichletFermionF(*DDenominatorsF[h],Block));
// Dirichlet Schur even odd MpsDagMpc operators on local domains
LinOpD.push_back(new LinearOperatorD(*DirichletDenominatorsD[h]));
LinOpF.push_back(new LinearOperatorF(*DirichletDenominatorsF[h]));
// Derivative
MPCG.push_back(new MxPCG(DerivativeStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
FrbGridF,
*DirichletDenominatorsF[h],*DirichletDenominatorsD[h],
*LinOpF[h], *LinOpD[h]) );
// Action
ActionMPCG.push_back(new MxPCG(ActionStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
FrbGridF,
*DirichletDenominatorsF[h],*DirichletDenominatorsD[h],
*LinOpF[h], *LinOpD[h]) );
////////////////////////////////////////////////////////////////////////////
// Standard CG for 2f force
////////////////////////////////////////////////////////////////////////////
Quotients.push_back (new
DomainLocalTwoFlavourEvenOddRatioPseudoFermionAction<FimplD>
(*DirichletNumeratorsD[h],
*DirichletDenominatorsD[h],
*MPCG[h],
*ActionMPCG[h],
ActionCG,Block));
Level2.push_back(Quotients[h]);
}
/////////////////////////////////////////////////////////////
// Boundary action
/////////////////////////////////////////////////////////////
int l_idx = 0;
int pv_idx = n_hasenbusch;
RealD h_mass = 0.012;
std::cout << GridLogMessage<<" Boundary action masses " <<light_num[l_idx]<<" / "<<light_den[pv_idx]<<std::endl;
// OmegaBar cross domain boundary and is used in Boundary operator, so no locally_periodic hack in the boundary det
// Dirichlet is applied in gauge link only. OmegaBar solve is too expensive. Monitor cost.
FermionActionD PeriNumeratorD (U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_num[pv_idx],M5,b,c, Params);
FermionActionF PeriNumeratorF (UF,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,light_num[pv_idx],M5,b,c, Params);
FermionActionD DirichletNumeratorDD(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_num[pv_idx],M5,b,c, Params);
FermionActionF DirichletNumeratorFF(UF,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,light_num[pv_idx],M5,b,c, Params);
DirichletFermionD DirichletNumeratorD (DirichletNumeratorDD,Block);
DirichletFermionF DirichletNumeratorF (DirichletNumeratorFF,Block);
FermionActionD PeriDenominatorD(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_den[l_idx] ,M5,b,c, Params);
FermionActionF PeriDenominatorF(UF,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,light_den[l_idx] ,M5,b,c, Params);
FermionActionD DirichletDenominatorDD(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_den[l_idx] ,M5,b,c, Params);
FermionActionF DirichletDenominatorFF(UF,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,light_den[l_idx] ,M5,b,c, Params);
DirichletFermionD DirichletDenominatorD(DirichletDenominatorDD,Block);
DirichletFermionF DirichletDenominatorF(DirichletDenominatorFF,Block);
FermionActionD PeriHasenD (U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,h_mass ,M5,b,c, Params);
FermionActionF PeriHasenF (UF,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,h_mass,M5,b,c, Params);
FermionActionD DHasenD(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,h_mass,M5,b,c, Params);
FermionActionF DHasenF(UF,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,h_mass,M5,b,c, Params);
DirichletFermionD DirichletHasenD(DHasenD,Block);
DirichletFermionF DirichletHasenF(DHasenF,Block);
SchurFactoredFermionOperator<FimplD,FimplF> BoundaryNumerator(PeriNumeratorD,PeriNumeratorF,
DirichletNumeratorD,DirichletNumeratorF,
Block);
SchurFactoredFermionOperator<FimplD,FimplF> BoundaryDenominator(PeriDenominatorD,PeriDenominatorF,
DirichletDenominatorD,DirichletDenominatorF,
Block);
SchurFactoredFermionOperator<FimplD,FimplF> BoundaryHasen(PeriHasenD,PeriHasenF,
DirichletHasenD,DirichletHasenF,
Block);
#if 1
std::cout << GridLogMessage << " Boundary NO ratio "<< std::endl;
MX_tol = 1.0e-5;
Level1.push_back(new
DomainDecomposedBoundaryTwoFlavourPseudoFermion<FimplD,FimplF>
(BoundaryDenominator,
BoundaryDerivativeStoppingCondition,ActionStoppingCondition,MX_tol));
Level1.push_back(new
DomainDecomposedBoundaryTwoFlavourBosonPseudoFermion<FimplD,FimplF>
(BoundaryNumerator,
BoundaryDerivativeStoppingCondition,ActionStoppingCondition,MX_tol));
#else
Level1.push_back(new
DomainDecomposedBoundaryTwoFlavourRatioPseudoFermion<FimplD,FimplF>
(BoundaryNumerator,
BoundaryDenominator,
BoundaryDerivativeStoppingCondition,ActionStoppingCondition));
#endif
/////////////////////////////////////////////////////////////
// Gauge action
/////////////////////////////////////////////////////////////
Level3.push_back(&GaugeAction);
TheHMC.TheAction.push_back(Level1);
TheHMC.TheAction.push_back(Level2);
TheHMC.TheAction.push_back(Level3);
std::cout << GridLogMessage << " Action complete "<< std::endl;
/////////////////////////////////////////////////////////////
// HMC parameters are serialisable
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
TheHMC.Run(); // no smearing
Grid_finalize();
} // main

View File

@@ -33,8 +33,137 @@ directory
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
#define MIXED_PRECISION
#endif
#include <Grid/qcd/utils/MixedPrecisionOperatorFunction.h>
NAMESPACE_BEGIN(Grid);
/*
* Need a plan for gauge field update for mixed precision in HMC (2x speed up)
* -- Store the single prec action operator.
* -- Clone the gauge field from the operator function argument.
* -- Build the mixed precision operator dynamically from the passed operator and single prec clone.
*/
template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class SchurOperatorF>
class MixedPrecisionConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
public:
typedef typename FermionOperatorD::FermionField FieldD;
typedef typename FermionOperatorF::FermionField FieldF;
using OperatorFunction<FieldD>::operator();
RealD Tolerance;
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
Integer MaxInnerIterations;
Integer MaxOuterIterations;
GridBase* SinglePrecGrid4; //Grid for single-precision fields
GridBase* SinglePrecGrid5; //Grid for single-precision fields
RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
FermionOperatorF &FermOpF;
FermionOperatorD &FermOpD;;
SchurOperatorF &LinOpF;
SchurOperatorD &LinOpD;
Integer TotalInnerIterations; //Number of inner CG iterations
Integer TotalOuterIterations; //Number of restarts
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
MixedPrecisionConjugateGradientOperatorFunction(RealD tol,
Integer maxinnerit,
Integer maxouterit,
GridBase* _sp_grid4,
GridBase* _sp_grid5,
FermionOperatorF &_FermOpF,
FermionOperatorD &_FermOpD,
SchurOperatorF &_LinOpF,
SchurOperatorD &_LinOpD):
LinOpF(_LinOpF),
LinOpD(_LinOpD),
FermOpF(_FermOpF),
FermOpD(_FermOpD),
Tolerance(tol),
InnerTolerance(tol),
MaxInnerIterations(maxinnerit),
MaxOuterIterations(maxouterit),
SinglePrecGrid4(_sp_grid4),
SinglePrecGrid5(_sp_grid5),
OuterLoopNormMult(100.)
{
/* Debugging instances of objects; references are stored
std::cout << GridLogMessage << " Mixed precision CG wrapper LinOpF " <<std::hex<< &LinOpF<<std::dec <<std::endl;
std::cout << GridLogMessage << " Mixed precision CG wrapper LinOpD " <<std::hex<< &LinOpD<<std::dec <<std::endl;
std::cout << GridLogMessage << " Mixed precision CG wrapper FermOpF " <<std::hex<< &FermOpF<<std::dec <<std::endl;
std::cout << GridLogMessage << " Mixed precision CG wrapper FermOpD " <<std::hex<< &FermOpD<<std::dec <<std::endl;
*/
};
void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
std::cout << GridLogMessage << " Mixed precision CG wrapper operator() "<<std::endl;
SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
// std::cout << GridLogMessage << " Mixed precision CG wrapper operator() FermOpU " <<std::hex<< &(SchurOpU->_Mat)<<std::dec <<std::endl;
// std::cout << GridLogMessage << " Mixed precision CG wrapper operator() FermOpD " <<std::hex<< &(LinOpD._Mat) <<std::dec <<std::endl;
// Assumption made in code to extract gauge field
// We could avoid storing LinopD reference alltogether ?
assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
////////////////////////////////////////////////////////////////////////////////////
// Must snarf a single precision copy of the gauge field in Linop_d argument
////////////////////////////////////////////////////////////////////////////////////
typedef typename FermionOperatorF::GaugeField GaugeFieldF;
typedef typename FermionOperatorF::GaugeLinkField GaugeLinkFieldF;
typedef typename FermionOperatorD::GaugeField GaugeFieldD;
typedef typename FermionOperatorD::GaugeLinkField GaugeLinkFieldD;
GridBase * GridPtrF = SinglePrecGrid4;
GridBase * GridPtrD = FermOpD.Umu.Grid();
GaugeFieldF U_f (GridPtrF);
GaugeLinkFieldF Umu_f(GridPtrF);
// std::cout << " Dim gauge field "<<GridPtrF->Nd()<<std::endl; // 4d
// std::cout << " Dim gauge field "<<GridPtrD->Nd()<<std::endl; // 4d
////////////////////////////////////////////////////////////////////////////////////
// Moving this to a Clone method of fermion operator would allow to duplicate the
// physics parameters and decrease gauge field copies
////////////////////////////////////////////////////////////////////////////////////
GaugeLinkFieldD Umu_d(GridPtrD);
for(int mu=0;mu<Nd*2;mu++){
Umu_d = PeekIndex<LorentzIndex>(FermOpD.Umu, mu);
precisionChange(Umu_f,Umu_d);
PokeIndex<LorentzIndex>(FermOpF.Umu, Umu_f, mu);
}
pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
////////////////////////////////////////////////////////////////////////////////////
// Could test to make sure that LinOpF and LinOpD agree to single prec?
////////////////////////////////////////////////////////////////////////////////////
/*
GridBase *Fgrid = psi._grid;
FieldD tmp2(Fgrid);
FieldD tmp1(Fgrid);
LinOpU.Op(src,tmp1);
LinOpD.Op(src,tmp2);
std::cout << " Double gauge field "<< norm2(FermOpD.Umu)<<std::endl;
std::cout << " Single gauge field "<< norm2(FermOpF.Umu)<<std::endl;
std::cout << " Test of operators "<<norm2(tmp1)<<std::endl;
std::cout << " Test of operators "<<norm2(tmp2)<<std::endl;
tmp1=tmp1-tmp2;
std::cout << " Test of operators diff "<<norm2(tmp1)<<std::endl;
*/
////////////////////////////////////////////////////////////////////////////////////
// Make a mixed precision conjugate gradient
////////////////////////////////////////////////////////////////////////////////////
MixedPrecisionConjugateGradient<FieldD,FieldF> MPCG(Tolerance,MaxInnerIterations,MaxOuterIterations,SinglePrecGrid5,LinOpF,LinOpD);
std::cout << GridLogMessage << "Calling mixed precision Conjugate Gradient" <<std::endl;
MPCG(src,psi);
}
};
NAMESPACE_END(Grid);
int main(int argc, char **argv) {
using namespace Grid;
@@ -61,18 +190,18 @@ int main(int argc, char **argv) {
// MD.name = std::string("Leap Frog");
typedef GenericHMCRunner<ForceGradient> HMCWrapper;
MD.name = std::string("Force Gradient");
//typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;
//MD.name = std::string("MinimumNorm2");
MD.MDsteps = 15;
// typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;
// MD.name = std::string("MinimumNorm2");
MD.MDsteps = 6;
MD.trajL = 1.0;
HMCparameters HMCparams;
HMCparams.StartTrajectory = 0;
HMCparams.StartTrajectory = 590;
HMCparams.Trajectories = 1000;
HMCparams.NoMetropolisUntil= 10;
HMCparams.NoMetropolisUntil= 0;
// "[HotStart, ColdStart, TepidStart, CheckpointStart]\n";
HMCparams.StartingType =std::string("ColdStart");
//HMCparams.StartingType =std::string("CheckpointStart");
// HMCparams.StartingType =std::string("ColdStart");
HMCparams.StartingType =std::string("CheckpointStart");
HMCparams.MD = MD;
HMCWrapper TheHMC(HMCparams);
@@ -80,9 +209,9 @@ int main(int argc, char **argv) {
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
CheckpointerParameters CPparams;
CPparams.config_prefix = "ckpoint_EOFA_lat";
CPparams.rng_prefix = "ckpoint_EOFA_rng";
CPparams.saveInterval = 1;
CPparams.config_prefix = "ckpoint_EODWF_lat";
CPparams.rng_prefix = "ckpoint_EODWF_rng";
CPparams.saveInterval = 10;
CPparams.format = "IEEE64BIG";
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
@@ -97,16 +226,16 @@ int main(int argc, char **argv) {
TheHMC.Resources.AddObservable<PlaqObs>();
//////////////////////////////////////////////
const int Ls = 24;
const int Ls = 16;
Real beta = 2.13;
Real light_mass = 0.005;
Real strange_mass = 0.0362;
Real light_mass = 0.01;
Real strange_mass = 0.04;
Real pv_mass = 1.0;
RealD M5 = 1.8;
RealD b = 1.5;
RealD c = 0.5;
RealD b = 1.0;
RealD c = 0.0;
std::vector<Real> hasenbusch({ 0.02, 0.2, 0.6 });
std::vector<Real> hasenbusch({ 0.1, 0.3, 0.6 });
auto GridPtr = TheHMC.Resources.GetCartesian();
auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
@@ -134,7 +263,7 @@ int main(int argc, char **argv) {
FermionActionF::ImplParams ParamsF(boundary);
double ActionStoppingCondition = 1e-10;
double DerivativeStoppingCondition = 1e-8;
double DerivativeStoppingCondition = 1e-6;
double MaxCGIterations = 30000;
////////////////////////////////////
@@ -173,37 +302,40 @@ int main(int argc, char **argv) {
ConjugateGradient<FermionField> DerivativeCG(DerivativeStoppingCondition,MaxCGIterations);
#ifdef MIXED_PRECISION
const int MX_inner = 1000;
const RealD MX_tol = 1.0e-6;
// Mixed precision EOFA
LinearOperatorEOFAD Strange_LinOp_L (Strange_Op_L);
LinearOperatorEOFAD Strange_LinOp_R (Strange_Op_R);
LinearOperatorEOFAF Strange_LinOp_LF(Strange_Op_LF);
LinearOperatorEOFAF Strange_LinOp_RF(Strange_Op_RF);
MxPCG_EOFA ActionCGL(ActionStoppingCondition,MX_tol,
MxPCG_EOFA ActionCGL(ActionStoppingCondition,
MX_inner,
MaxCGIterations,
GridPtrF,
FrbGridF,
Strange_Op_LF,Strange_Op_L,
Strange_LinOp_LF,Strange_LinOp_L);
MxPCG_EOFA DerivativeCGL(DerivativeStoppingCondition,MX_tol,
MxPCG_EOFA DerivativeCGL(DerivativeStoppingCondition,
MX_inner,
MaxCGIterations,
GridPtrF,
FrbGridF,
Strange_Op_LF,Strange_Op_L,
Strange_LinOp_LF,Strange_LinOp_L);
MxPCG_EOFA ActionCGR(ActionStoppingCondition,MX_tol,
MxPCG_EOFA ActionCGR(ActionStoppingCondition,
MX_inner,
MaxCGIterations,
GridPtrF,
FrbGridF,
Strange_Op_RF,Strange_Op_R,
Strange_LinOp_RF,Strange_LinOp_R);
MxPCG_EOFA DerivativeCGR(DerivativeStoppingCondition,MX_tol,
MxPCG_EOFA DerivativeCGR(DerivativeStoppingCondition,
MX_inner,
MaxCGIterations,
GridPtrF,
FrbGridF,
Strange_Op_RF,Strange_Op_R,
Strange_LinOp_RF,Strange_LinOp_R);
@@ -269,16 +401,18 @@ int main(int argc, char **argv) {
LinOpD.push_back(new LinearOperatorD(*Denominators[h]));
LinOpF.push_back(new LinearOperatorF(*DenominatorsF[h]));
MPCG.push_back(new MxPCG(DerivativeStoppingCondition,MX_tol,
MPCG.push_back(new MxPCG(DerivativeStoppingCondition,
MX_inner,
MaxCGIterations,
GridPtrF,
FrbGridF,
*DenominatorsF[h],*Denominators[h],
*LinOpF[h], *LinOpD[h]) );
ActionMPCG.push_back(new MxPCG(ActionStoppingCondition,MX_tol,
ActionMPCG.push_back(new MxPCG(ActionStoppingCondition,
MX_inner,
MaxCGIterations,
GridPtrF,
FrbGridF,
*DenominatorsF[h],*Denominators[h],
*LinOpF[h], *LinOpD[h]) );

View File

@@ -1,338 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file:
Copyright (C) 2015-2016
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Guido Cossu
Author: David Murphy
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/qcd/action/pseudofermion/TwoFlavourRatioEO4DPseudoFermion.h>
#include <Grid/qcd/action/pseudofermion/TwoFlavourRatio4DPseudoFermion.h>
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
#define MIXED_PRECISION
#endif
#include <Grid/qcd/utils/MixedPrecisionOperatorFunction.h>
int main(int argc, char **argv) {
using namespace Grid;
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
// here make a routine to print all the relevant information on the run
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
// Typedefs to simplify notation
typedef WilsonImplR FermionImplPolicy;
typedef MobiusFermionR FermionAction;
typedef MobiusFermionF FermionActionF;
typedef MobiusEOFAFermionR FermionEOFAAction;
typedef MobiusEOFAFermionF FermionEOFAActionF;
typedef typename FermionAction::FermionField FermionField;
typedef typename FermionActionF::FermionField FermionFieldF;
typedef Grid::XmlReader Serialiser;
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
IntegratorParameters MD;
// typedef GenericHMCRunner<LeapFrog> HMCWrapper;
// MD.name = std::string("Leap Frog");
// typedef GenericHMCRunner<ForceGradient> HMCWrapper;
// MD.name = std::string("Force Gradient");
typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;
MD.name = std::string("MinimumNorm2");
MD.MDsteps = 12;
MD.trajL = 1.0;
HMCparameters HMCparams;
HMCparams.StartTrajectory = 211;
HMCparams.Trajectories = 1000;
HMCparams.NoMetropolisUntil= 0;
// "[HotStart, ColdStart, TepidStart, CheckpointStart]\n";
// HMCparams.StartingType =std::string("ColdStart");
HMCparams.StartingType =std::string("CheckpointStart");
HMCparams.MD = MD;
HMCWrapper TheHMC(HMCparams);
// Grid from the command line arguments --grid and --mpi
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
CheckpointerParameters CPparams;
CPparams.config_prefix = "ckpoint_EOFA4D_lat";
CPparams.rng_prefix = "ckpoint_EOFA4D_rng";
CPparams.saveInterval = 1;
CPparams.format = "IEEE64BIG";
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables
// here there is too much indirection
typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs;
TheHMC.Resources.AddObservable<PlaqObs>();
//////////////////////////////////////////////
const int Ls = 16;
Real beta = 2.13;
Real light_mass = 0.01;
Real strange_mass = 0.04;
Real pv_mass = 1.0;
RealD M5 = 1.8;
RealD b = 1.0;
RealD c = 0.0;
std::vector<Real> hasenbusch({ 0.1, 0.3, 0.6 });
auto GridPtr = TheHMC.Resources.GetCartesian();
auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
auto FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtr);
auto FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtr);
Coordinate latt = GridDefaultLatt();
Coordinate mpi = GridDefaultMpi();
Coordinate simdF = GridDefaultSimd(Nd,vComplexF::Nsimd());
Coordinate simdD = GridDefaultSimd(Nd,vComplexD::Nsimd());
auto GridPtrF = SpaceTimeGrid::makeFourDimGrid(latt,simdF,mpi);
auto GridRBPtrF = SpaceTimeGrid::makeFourDimRedBlackGrid(GridPtrF);
auto FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtrF);
auto FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtrF);
IwasakiGaugeActionR GaugeAction(beta);
// temporarily need a gauge field
LatticeGaugeField U(GridPtr);
LatticeGaugeFieldF UF(GridPtrF);
// These lines are unecessary if BC are all periodic
std::vector<Complex> boundary = {1,1,1,-1};
FermionAction::ImplParams Params(boundary);
FermionActionF::ImplParams ParamsF(boundary);
double ActionStoppingCondition = 1e-10;
double DerivativeStoppingCondition = 1e-8;
double MaxCGIterations = 30000;
////////////////////////////////////
// Collect actions
////////////////////////////////////
ActionLevel<HMCWrapper::Field> Level1(1);
ActionLevel<HMCWrapper::Field> Level2(8);
////////////////////////////////////
// Strange action
////////////////////////////////////
typedef SchurDiagMooeeOperator<FermionActionF,FermionFieldF> LinearOperatorF;
typedef SchurDiagMooeeOperator<FermionAction ,FermionField > LinearOperatorD;
typedef SchurDiagMooeeDagOperator<FermionActionF,FermionFieldF> LinearOperatorDagF;
typedef SchurDiagMooeeDagOperator<FermionAction ,FermionField > LinearOperatorDagD;
typedef SchurDiagMooeeOperator<FermionEOFAActionF,FermionFieldF> LinearOperatorEOFAF;
typedef SchurDiagMooeeOperator<FermionEOFAAction ,FermionField > LinearOperatorEOFAD;
typedef MixedPrecisionConjugateGradientOperatorFunction<MobiusFermionD,MobiusFermionF,LinearOperatorD,LinearOperatorF> MxPCG;
typedef MixedPrecisionConjugateGradientOperatorFunction<MobiusFermionD,MobiusFermionF,LinearOperatorDagD,LinearOperatorDagF> MxDagPCG;
typedef MixedPrecisionConjugateGradientOperatorFunction<MobiusEOFAFermionD,MobiusEOFAFermionF,LinearOperatorEOFAD,LinearOperatorEOFAF> MxPCG_EOFA;
// DJM: setup for EOFA ratio (Mobius)
OneFlavourRationalParams OFRp;
OFRp.lo = 0.1;
OFRp.hi = 25.0;
OFRp.MaxIter = 10000;
OFRp.tolerance= 1.0e-9;
OFRp.degree = 14;
OFRp.precision= 50;
MobiusEOFAFermionR Strange_Op_L (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , strange_mass, strange_mass, pv_mass, 0.0, -1, M5, b, c);
MobiusEOFAFermionF Strange_Op_LF(UF, *FGridF, *FrbGridF, *GridPtrF, *GridRBPtrF, strange_mass, strange_mass, pv_mass, 0.0, -1, M5, b, c);
MobiusEOFAFermionR Strange_Op_R (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , pv_mass, strange_mass, pv_mass, -1.0, 1, M5, b, c);
MobiusEOFAFermionF Strange_Op_RF(UF, *FGridF, *FrbGridF, *GridPtrF, *GridRBPtrF, pv_mass, strange_mass, pv_mass, -1.0, 1, M5, b, c);
ConjugateGradient<FermionField> ActionCG(ActionStoppingCondition,MaxCGIterations);
ConjugateGradient<FermionField> DerivativeCG(DerivativeStoppingCondition,MaxCGIterations);
#ifdef MIXED_PRECISION
const int MX_inner = 1000;
const RealD MX_tol = 1.0e-4;
// Mixed precision EOFA
LinearOperatorEOFAD Strange_LinOp_L (Strange_Op_L);
LinearOperatorEOFAD Strange_LinOp_R (Strange_Op_R);
LinearOperatorEOFAF Strange_LinOp_LF(Strange_Op_LF);
LinearOperatorEOFAF Strange_LinOp_RF(Strange_Op_RF);
MxPCG_EOFA ActionCGL(ActionStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
FrbGridF,
Strange_Op_LF,Strange_Op_L,
Strange_LinOp_LF,Strange_LinOp_L);
MxPCG_EOFA DerivativeCGL(DerivativeStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
FrbGridF,
Strange_Op_LF,Strange_Op_L,
Strange_LinOp_LF,Strange_LinOp_L);
MxPCG_EOFA ActionCGR(ActionStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
FrbGridF,
Strange_Op_RF,Strange_Op_R,
Strange_LinOp_RF,Strange_LinOp_R);
MxPCG_EOFA DerivativeCGR(DerivativeStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
FrbGridF,
Strange_Op_RF,Strange_Op_R,
Strange_LinOp_RF,Strange_LinOp_R);
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy>
EOFA(Strange_Op_L, Strange_Op_R,
ActionCG,
ActionCGL, ActionCGR,
DerivativeCGL, DerivativeCGR,
OFRp, true);
#else
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy>
EOFA(Strange_Op_L, Strange_Op_R,
ActionCG,
ActionCG, ActionCG,
DerivativeCG, DerivativeCG,
OFRp, true);
#endif
Level1.push_back(&EOFA);
////////////////////////////////////
// up down action
////////////////////////////////////
std::vector<Real> light_den;
std::vector<Real> light_num;
int n_hasenbusch = hasenbusch.size();
light_den.push_back(light_mass);
for(int h=0;h<n_hasenbusch;h++){
light_den.push_back(hasenbusch[h]);
light_num.push_back(hasenbusch[h]);
}
light_num.push_back(pv_mass);
//////////////////////////////////////////////////////////////
// Forced to replicate the MxPCG and DenominatorsF etc.. because
// there is no convenient way to "Clone" physics params from double op
// into single op for any operator pair.
// Same issue prevents using MxPCG in the Heatbath step
//////////////////////////////////////////////////////////////
std::vector<FermionAction *> Numerators;
std::vector<FermionAction *> Denominators;
std::vector<TwoFlavourRatioEO4DPseudoFermionAction<FermionImplPolicy> *> Quotients;
std::vector<MxPCG *> ActionMPCG;
std::vector<MxPCG *> MPCG;
std::vector<MxDagPCG *> MPCGdag;
std::vector<FermionActionF *> DenominatorsF;
std::vector<LinearOperatorD *> LinOpD;
std::vector<LinearOperatorF *> LinOpF;
std::vector<LinearOperatorDagD *> LinOpDagD;
std::vector<LinearOperatorDagF *> LinOpDagF;
for(int h=0;h<n_hasenbusch+1;h++){
std::cout << GridLogMessage << " 2f quotient Action "<< light_num[h] << " / " << light_den[h]<< std::endl;
Numerators.push_back (new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_num[h],M5,b,c, Params));
Denominators.push_back(new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_den[h],M5,b,c, Params));
#ifdef MIXED_PRECISION
////////////////////////////////////////////////////////////////////////////
// Mixed precision CG for 2f force
////////////////////////////////////////////////////////////////////////////
DenominatorsF.push_back(new FermionActionF(UF,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,light_den[h],M5,b,c, ParamsF));
LinOpD.push_back(new LinearOperatorD(*Denominators[h]));
LinOpF.push_back(new LinearOperatorF(*DenominatorsF[h]));
LinOpDagD.push_back(new LinearOperatorDagD(*Denominators[h]));
LinOpDagF.push_back(new LinearOperatorDagF(*DenominatorsF[h]));
MPCG.push_back(new MxPCG(DerivativeStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
FrbGridF,
*DenominatorsF[h],*Denominators[h],
*LinOpF[h], *LinOpD[h]) );
MPCGdag.push_back(new MxDagPCG(DerivativeStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
FrbGridF,
*DenominatorsF[h],*Denominators[h],
*LinOpDagF[h], *LinOpDagD[h]) );
ActionMPCG.push_back(new MxPCG(ActionStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
FrbGridF,
*DenominatorsF[h],*Denominators[h],
*LinOpF[h], *LinOpD[h]) );
// Heatbath not mixed yet. As inverts numerators not so important as raised mass.
Quotients.push_back (new TwoFlavourRatioEO4DPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],*MPCG[h],*MPCGdag[h],*ActionMPCG[h],ActionCG));
#else
////////////////////////////////////////////////////////////////////////////
// Standard CG for 2f force
////////////////////////////////////////////////////////////////////////////
Quotients.push_back (new TwoFlavourRatioEO4DPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],DerivativeCG,ActionCG));
#endif
}
for(int h=0;h<n_hasenbusch+1;h++){
Level1.push_back(Quotients[h]);
}
/////////////////////////////////////////////////////////////
// Gauge action
/////////////////////////////////////////////////////////////
Level2.push_back(&GaugeAction);
TheHMC.TheAction.push_back(Level1);
TheHMC.TheAction.push_back(Level2);
std::cout << GridLogMessage << " Action complete "<< std::endl;
/////////////////////////////////////////////////////////////
// HMC parameters are serialisable
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
TheHMC.Run(); // no smearing
Grid_finalize();
} // main

View File

@@ -1,312 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file:
Copyright (C) 2015-2016
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Guido Cossu
Author: David Murphy
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
#define MIXED_PRECISION
#endif
#include <Grid/qcd/utils/MixedPrecisionOperatorFunction.h>
int main(int argc, char **argv) {
using namespace Grid;
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
// here make a routine to print all the relevant information on the run
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
// Typedefs to simplify notation
typedef WilsonImplR FermionImplPolicy;
typedef MobiusFermionR FermionAction;
typedef MobiusFermionF FermionActionF;
typedef MobiusEOFAFermionR FermionEOFAAction;
typedef MobiusEOFAFermionF FermionEOFAActionF;
typedef typename FermionAction::FermionField FermionField;
typedef typename FermionActionF::FermionField FermionFieldF;
typedef Grid::XmlReader Serialiser;
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
IntegratorParameters MD;
// typedef GenericHMCRunner<LeapFrog> HMCWrapper;
// MD.name = std::string("Leap Frog");
typedef GenericHMCRunner<ForceGradient> HMCWrapper;
HMCparameters HMCparams;
{
XmlReader HMCrd("HMCparameters.xml");
read(HMCrd,"HMCparameters",HMCparams);
std::cout << GridLogMessage<< HMCparams <<std::endl;
}
HMCWrapper TheHMC(HMCparams);
// Grid from the command line arguments --grid and --mpi
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
CheckpointerParameters CPparams;
CPparams.config_prefix = "ckpoint_C1M_lat";
CPparams.rng_prefix = "ckpoint_C1M_rng";
CPparams.saveInterval = 1;
CPparams.format = "IEEE64BIG";
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables
// here there is too much indirection
typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs;
TheHMC.Resources.AddObservable<PlaqObs>();
//////////////////////////////////////////////
const int Ls = 24;
Real beta = 2.13;
Real light_mass = 0.005;
Real strange_mass = 0.0362;
Real pv_mass = 1.0;
RealD M5 = 1.8;
RealD b = 1.5;
RealD c = 0.5;
std::vector<Real> hasenbusch({ 0.02, 0.2, 0.6 });
auto GridPtr = TheHMC.Resources.GetCartesian();
auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
auto FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtr);
auto FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtr);
Coordinate latt = GridDefaultLatt();
Coordinate mpi = GridDefaultMpi();
Coordinate simdF = GridDefaultSimd(Nd,vComplexF::Nsimd());
Coordinate simdD = GridDefaultSimd(Nd,vComplexD::Nsimd());
auto GridPtrF = SpaceTimeGrid::makeFourDimGrid(latt,simdF,mpi);
auto GridRBPtrF = SpaceTimeGrid::makeFourDimRedBlackGrid(GridPtrF);
auto FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtrF);
auto FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtrF);
IwasakiGaugeActionR GaugeAction(beta);
// temporarily need a gauge field
LatticeGaugeField U(GridPtr);
LatticeGaugeFieldF UF(GridPtrF);
// These lines are unecessary if BC are all periodic
std::vector<Complex> boundary = {1,1,1,-1};
FermionAction::ImplParams Params(boundary);
FermionActionF::ImplParams ParamsF(boundary);
double ActionStoppingCondition = 1e-10;
double DerivativeStoppingCondition = 1e-8;
double MaxCGIterations = 30000;
////////////////////////////////////
// Collect actions
////////////////////////////////////
ActionLevel<HMCWrapper::Field> Level1(1);
ActionLevel<HMCWrapper::Field> Level2(8);
////////////////////////////////////
// Strange action
////////////////////////////////////
typedef SchurDiagMooeeOperator<FermionActionF,FermionFieldF> LinearOperatorF;
typedef SchurDiagMooeeOperator<FermionAction ,FermionField > LinearOperatorD;
typedef SchurDiagMooeeOperator<FermionEOFAActionF,FermionFieldF> LinearOperatorEOFAF;
typedef SchurDiagMooeeOperator<FermionEOFAAction ,FermionField > LinearOperatorEOFAD;
typedef MixedPrecisionConjugateGradientOperatorFunction<MobiusFermionD,MobiusFermionF,LinearOperatorD,LinearOperatorF> MxPCG;
typedef MixedPrecisionConjugateGradientOperatorFunction<MobiusEOFAFermionD,MobiusEOFAFermionF,LinearOperatorEOFAD,LinearOperatorEOFAF> MxPCG_EOFA;
// DJM: setup for EOFA ratio (Mobius)
OneFlavourRationalParams OFRp;
OFRp.lo = 0.1;
OFRp.hi = 25.0;
OFRp.MaxIter = 10000;
OFRp.tolerance= 1.0e-9;
OFRp.degree = 14;
OFRp.precision= 50;
MobiusEOFAFermionR Strange_Op_L (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , strange_mass, strange_mass, pv_mass, 0.0, -1, M5, b, c);
MobiusEOFAFermionF Strange_Op_LF(UF, *FGridF, *FrbGridF, *GridPtrF, *GridRBPtrF, strange_mass, strange_mass, pv_mass, 0.0, -1, M5, b, c);
MobiusEOFAFermionR Strange_Op_R (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , pv_mass, strange_mass, pv_mass, -1.0, 1, M5, b, c);
MobiusEOFAFermionF Strange_Op_RF(UF, *FGridF, *FrbGridF, *GridPtrF, *GridRBPtrF, pv_mass, strange_mass, pv_mass, -1.0, 1, M5, b, c);
ConjugateGradient<FermionField> ActionCG(ActionStoppingCondition,MaxCGIterations);
ConjugateGradient<FermionField> DerivativeCG(DerivativeStoppingCondition,MaxCGIterations);
#ifdef MIXED_PRECISION
const int MX_inner = 1000;
const RealD MX_tol = 1.0e-6;
// Mixed precision EOFA
LinearOperatorEOFAD Strange_LinOp_L (Strange_Op_L);
LinearOperatorEOFAD Strange_LinOp_R (Strange_Op_R);
LinearOperatorEOFAF Strange_LinOp_LF(Strange_Op_LF);
LinearOperatorEOFAF Strange_LinOp_RF(Strange_Op_RF);
MxPCG_EOFA ActionCGL(ActionStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
FrbGridF,
Strange_Op_LF,Strange_Op_L,
Strange_LinOp_LF,Strange_LinOp_L);
MxPCG_EOFA DerivativeCGL(DerivativeStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
FrbGridF,
Strange_Op_LF,Strange_Op_L,
Strange_LinOp_LF,Strange_LinOp_L);
MxPCG_EOFA ActionCGR(ActionStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
FrbGridF,
Strange_Op_RF,Strange_Op_R,
Strange_LinOp_RF,Strange_LinOp_R);
MxPCG_EOFA DerivativeCGR(DerivativeStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
FrbGridF,
Strange_Op_RF,Strange_Op_R,
Strange_LinOp_RF,Strange_LinOp_R);
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy>
EOFA(Strange_Op_L, Strange_Op_R,
ActionCG,
ActionCGL, ActionCGR,
DerivativeCGL, DerivativeCGR,
OFRp, true);
#else
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy>
EOFA(Strange_Op_L, Strange_Op_R,
ActionCG,
ActionCG, ActionCG,
DerivativeCG, DerivativeCG,
OFRp, true);
#endif
Level1.push_back(&EOFA);
////////////////////////////////////
// up down action
////////////////////////////////////
std::vector<Real> light_den;
std::vector<Real> light_num;
int n_hasenbusch = hasenbusch.size();
light_den.push_back(light_mass);
for(int h=0;h<n_hasenbusch;h++){
light_den.push_back(hasenbusch[h]);
light_num.push_back(hasenbusch[h]);
}
light_num.push_back(pv_mass);
//////////////////////////////////////////////////////////////
// Forced to replicate the MxPCG and DenominatorsF etc.. because
// there is no convenient way to "Clone" physics params from double op
// into single op for any operator pair.
// Same issue prevents using MxPCG in the Heatbath step
//////////////////////////////////////////////////////////////
std::vector<FermionAction *> Numerators;
std::vector<FermionAction *> Denominators;
std::vector<TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy> *> Quotients;
std::vector<MxPCG *> ActionMPCG;
std::vector<MxPCG *> MPCG;
std::vector<FermionActionF *> DenominatorsF;
std::vector<LinearOperatorD *> LinOpD;
std::vector<LinearOperatorF *> LinOpF;
for(int h=0;h<n_hasenbusch+1;h++){
std::cout << GridLogMessage << " 2f quotient Action "<< light_num[h] << " / " << light_den[h]<< std::endl;
Numerators.push_back (new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_num[h],M5,b,c, Params));
Denominators.push_back(new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_den[h],M5,b,c, Params));
#ifdef MIXED_PRECISION
////////////////////////////////////////////////////////////////////////////
// Mixed precision CG for 2f force
////////////////////////////////////////////////////////////////////////////
DenominatorsF.push_back(new FermionActionF(UF,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,light_den[h],M5,b,c, ParamsF));
LinOpD.push_back(new LinearOperatorD(*Denominators[h]));
LinOpF.push_back(new LinearOperatorF(*DenominatorsF[h]));
MPCG.push_back(new MxPCG(DerivativeStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
FrbGridF,
*DenominatorsF[h],*Denominators[h],
*LinOpF[h], *LinOpD[h]) );
ActionMPCG.push_back(new MxPCG(ActionStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
FrbGridF,
*DenominatorsF[h],*Denominators[h],
*LinOpF[h], *LinOpD[h]) );
// Heatbath not mixed yet. As inverts numerators not so important as raised mass.
Quotients.push_back (new TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],*MPCG[h],*ActionMPCG[h],ActionCG));
#else
////////////////////////////////////////////////////////////////////////////
// Standard CG for 2f force
////////////////////////////////////////////////////////////////////////////
Quotients.push_back (new TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],DerivativeCG,ActionCG));
#endif
}
for(int h=0;h<n_hasenbusch+1;h++){
Level1.push_back(Quotients[h]);
}
/////////////////////////////////////////////////////////////
// Gauge action
/////////////////////////////////////////////////////////////
Level2.push_back(&GaugeAction);
TheHMC.TheAction.push_back(Level1);
TheHMC.TheAction.push_back(Level2);
std::cout << GridLogMessage << " Action complete "<< std::endl;
/////////////////////////////////////////////////////////////
// HMC parameters are serialisable
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
TheHMC.Run(); // no smearing
Grid_finalize();
} // main

Some files were not shown because too many files have changed in this diff Show More