1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-07-14 20:17:06 +01:00

Compare commits

..

146 Commits

Author SHA1 Message Date
c04de86d07 Merge branch 'feature/ddhmc' of https://github.com/paboyle/Grid into feature/ddhmc 2022-02-14 17:33:17 +01:00
53e1b00cde Several updates 2022-02-14 17:29:41 +01:00
1257c9f2f0 Correct mass 2021-11-17 21:40:04 +00:00
44b0988f9b Update HMC runs 2021-10-07 20:06:55 +01:00
98766851c3 Config improvements 2021-10-07 20:06:17 +01:00
f36e984278 Update 2021-10-07 20:05:56 +01:00
c234a7f913 Accidental verbose 2021-10-07 20:04:57 +01:00
0bf0c65b7d Don't know why off 2021-10-07 20:04:28 +01:00
3355ceea9f Speed zones 2021-10-06 20:52:15 +02:00
e4cbfe3d4b Blocking change 2021-10-06 20:51:42 +02:00
4867e02dfb Merge branch 'develop' into feature/ddhmc 2021-10-05 23:12:23 +01:00
ed68cf6268 Updates 2021-10-05 22:11:23 +01:00
7760417312 Production jobs 2021-08-12 00:18:34 +02:00
8cc0defb69 Reorg headers 2021-06-10 14:28:49 -04:00
e0c9d01123 Build tests works 2021-06-10 14:28:26 -04:00
91bf1df018 Rename changes 2021-06-09 22:58:01 -04:00
386a89c668 Updated mixed prec 2021-06-09 17:14:24 -04:00
670f4985fd DDHMC test update 2021-06-09 16:35:53 -04:00
dcd48a0435 Domain decomposed benchmark 2021-06-09 16:35:24 -04:00
87ec14c353 Update for mixed precison solve 2021-06-09 16:34:44 -04:00
4f5ad73501 Mixed prec update 2021-06-09 16:33:02 -04:00
096bb98f78 Remove 2021-06-09 16:32:35 -04:00
76837ffc65 Working (I think) version 2021-06-09 16:31:37 -04:00
81bd0d7906 Default to mixed precision now 2021-06-09 16:31:19 -04:00
7d8d250389 Complete ? 2021-06-09 16:30:39 -04:00
ad406b2c3e Provide a call back for subdomain solve / local domain pseudofermion restriction 2021-06-09 16:29:15 -04:00
e6366b98a5 Mixed precision & domain changes 2021-06-09 16:27:59 -04:00
302356189c Reduce verbose 2021-06-09 14:56:49 -04:00
9394450c1a Verbose changes 2021-06-09 13:30:42 -04:00
6cf3edef00 More logging 2021-06-09 12:59:27 -04:00
31cc227dd2 Domain definition class 2021-06-09 12:58:57 -04:00
c690e66325 Mobius two flavour 2021-06-09 12:58:24 -04:00
5fdbb924f0 Mixed prec tolerance changes 2021-06-09 12:57:03 -04:00
6dcaed621c General detection for arbitrary domains.
Can simplify and make specific if performance matters
2021-06-09 12:54:43 -04:00
f9cda24781 Cleaner 2021-06-08 21:50:43 -04:00
cd5e3fbd82 berrier for debug code 2021-06-08 21:18:22 -04:00
f68036c79f Inner mixed tolerance 2021-06-08 21:17:06 -04:00
216c178c16 Clean up 2021-06-08 20:59:00 -04:00
990d976241 More precision to convince Chris Kelly it's right 2021-06-08 20:29:27 -04:00
f2fe2573a7 Constructor control of inner tolerance 2021-06-08 20:27:52 -04:00
11c55a0476 More verbose 2021-06-08 20:26:52 -04:00
1cc706b2f4 Better precision 2021-06-03 17:27:49 -04:00
9e51fa5681 Mixed precision changes 2021-06-01 13:41:02 -04:00
9164cfbfc6 Mixed precision changes 2021-06-01 13:39:33 -04:00
2f3a96e5de Mixed precision changes 2021-06-01 13:38:00 -04:00
26aa89cb0c HMC logging 2021-06-01 13:36:17 -04:00
426d2365d1 Schur factored matrix 2021-06-01 13:35:38 -04:00
81bbd4e4ce Force logging improvements 2021-06-01 13:34:43 -04:00
b83bbe2dd1 Mixed precision 2021-06-01 13:34:05 -04:00
3f2d8eb727 Mixed precision change 2021-06-01 13:33:18 -04:00
60f9bf69cd These are not acccessible from device 2021-06-01 13:32:34 -04:00
38d8cd228e Reusable mixed precision wrapper 2021-06-01 13:31:18 -04:00
4e1e242025 Short term hack while testing force sizes 2021-06-01 13:30:42 -04:00
20c6f19bb2 Virtual fix 2021-06-01 13:29:44 -04:00
036270a0c5 Bug fix must preserve "virtual" 2021-06-01 13:25:44 -04:00
6c506601c5 Logging the forces each trajectory useful 2021-06-01 13:25:03 -04:00
e4ff4c902a 2f Mixed precision DDHMC running and conserving hamiltonian 2021-05-27 17:10:04 -04:00
2e4d4625b6 correct multinode 2021-05-25 21:08:50 -04:00
10f2c2530b Temporary debug / display force structure 2021-05-25 21:08:09 -04:00
375e0698dc 2 deep cleaner coding 2021-05-25 19:51:52 -04:00
64b3b37476 Force test - try degenerate ratio and check for zero force 2021-05-25 18:27:46 -04:00
59e1a9be4e Locally periodic option 2021-05-25 18:25:51 -04:00
aac1736617 Double or single 2021-05-25 18:21:48 -04:00
60f814733d Could maybe simplify and require theh params always containn locally_periodic 2021-05-25 18:18:15 -04:00
612e9a178a Should maybe require the params always contain locally_periodic 2021-05-25 18:17:31 -04:00
21af9cf83c GetDoubledGaugeField 2021-05-25 18:16:37 -04:00
3b8cb929d6 Doubled GaugeField option 2021-05-25 18:15:47 -04:00
5d3046eae8 Locally periodic override option 2021-05-25 18:15:17 -04:00
d73063682e GetDoubledGaugeField 2021-05-25 18:14:55 -04:00
59584b6605 GetDoubledGaugeField 2021-05-25 18:14:34 -04:00
f6d7188615 GetDoubledGaugeField useful for mixed precision or generally retrieving the double stored gauge field 2021-05-25 18:13:37 -04:00
b810b6f6bd Dirichlet working multinode now 2021-05-25 18:13:01 -04:00
e0a92dff32 update action params 2021-05-25 18:12:11 -04:00
e125f0f738 Running with small dH aand Luscher's gauge link freezing scheme 2021-05-18 16:38:07 -04:00
5f081d87b0 MacOS file system capitals got me. Will rename filter to Filter later 2021-05-18 16:36:58 -04:00
84e246a963 Allow dimensions to be periodic 2021-05-18 16:36:29 -04:00
c18025c0b8 Luscher's filter - will tune this later 2021-05-18 16:35:39 -04:00
a918955020 Typo in assert 2021-05-18 16:35:01 -04:00
e3c18ce872 Adding boundary det 2021-05-15 09:06:58 -04:00
07a61e8826 renamed 2021-05-15 09:06:22 -04:00
58cb7c0732 passes force test and conserves in HMC plaquette looks odd 2021-05-15 09:05:34 -04:00
10339fd775 Rename 2021-05-15 08:53:39 -04:00
9400c207f7 Force test passing for boundary det 2021-05-15 08:38:26 -04:00
1fa89a2e7d Numerator pseudofermion 2021-05-15 08:37:47 -04:00
09b233b82e RdagR inverse 2021-05-14 22:21:23 -04:00
34ca4dd53a Nexp=20 default. Need a test for this. 2021-05-14 22:20:41 -04:00
c19cf46169 Cayley causes problems if the argument is exactly ZERO 2021-05-14 22:19:22 -04:00
c8db9ddb33 Massively improved test 2021-05-14 21:56:24 -04:00
104986b53d Prep for storing refresh actoin 2021-05-14 12:02:15 -04:00
91fd44419b Prep for storing action from the pseudofermion refresh 2021-05-14 11:52:11 -04:00
d1daa0e3f7 Allow DD only in subset of dimensions 2021-05-14 11:47:27 -04:00
05e1aed326 commenting 2021-05-14 11:45:06 -04:00
d3fd23117a Better block dimension checking and if Block >= Global dims implement non-Dirichlet 2021-05-14 11:28:24 -04:00
def51267e9 Starting the DDHMC filter. This will be seriously subject to tuning as force in
Omega and force in Omega bar appears to have different structure
2021-05-14 11:26:47 -04:00
5b52f29b2f Prepare to store the action in refresh 2021-05-14 11:18:49 -04:00
25bd03f201 Add LorentzVector 2021-05-14 10:48:45 -04:00
d5edd100a5 Useful debug fingerprints 2021-05-14 10:48:14 -04:00
e39e326b79 sRNG compile fix 2021-05-12 11:00:43 -04:00
8458e13a23 Improved - untested 2021-05-12 11:00:04 -04:00
3575278b57 Small change 2021-05-12 10:57:04 -04:00
69a2c8769a Testing out the DDHMC constituent parts 2021-05-11 13:56:52 -04:00
d4eaea00cf 2flavour local determinant ratio 2021-05-11 13:56:21 -04:00
347ccdc468 Delete file, replaced by SchurFactoredFermionOperator 2021-05-11 13:55:52 -04:00
bf034ce239 The Dirichlet BC filter 2021-05-11 13:55:27 -04:00
791d0ab0b5 Provides the DDHMC lexicon for a pair of non-Dirichlet and Dirichlet operators 2021-05-11 13:54:49 -04:00
94a2a645bd Dirichlet BC wrapper for any Fermion Operator 2021-05-11 13:54:15 -04:00
281b55df04 srng changes 2021-05-11 13:52:24 -04:00
a36e797bfc Use Integer 2021-05-11 13:52:05 -04:00
0bade717bf Added the momentum filter to resources 2021-05-11 13:50:38 -04:00
84fe791519 put momentum filter into the HMC resources 2021-05-11 13:49:49 -04:00
e009a37f6e Moving the code to SchurFactorizedFermionOperator 2021-05-11 13:46:40 -04:00
d7a887baf1 Better include guard 2021-05-11 13:45:53 -04:00
060bb59535 GCC warnings 2021-05-11 13:38:27 -04:00
bac36399c1 Compiles 2021-05-07 00:36:28 +02:00
b5b930d5bb Merge branch 'feature/ddhmc' of https://github.com/paboyle/Grid into feature/ddhmc 2021-05-06 23:51:25 +02:00
4fca66a7c6 Implement Dirichlet Comms option 2021-05-06 23:44:45 +02:00
bd181b9481 Merge branch 'feature/ddhmc' of https://github.com/paboyle/Grid into feature/ddhmc 2021-05-06 23:42:39 +02:00
919ced1c31 Move the momentum filter to a better location for DDHMC 2021-05-06 23:29:03 +02:00
b32fd473f8 Start at the Domain decomposed supprt 2021-05-06 23:28:28 +02:00
ffcab64890 DDHMC filter 2021-05-06 23:27:57 +02:00
374fb325f3 Remove LIME dependency 2021-05-06 23:26:42 +02:00
bab88bc4f7 Fix compile 2021-05-06 23:25:12 +02:00
7533f66b54 Fix compile 2021-05-06 23:24:39 +02:00
805cde5899 Fix compile 2021-05-06 23:24:19 +02:00
a0534e03f9 Augmented test 2021-05-06 23:23:57 +02:00
ebba195e0d Code prettier 2021-05-06 23:23:30 +02:00
3b433fe6fb Better force logging 2021-05-06 23:22:09 +02:00
07d1030660 Schur solver for Mdag 2021-05-06 23:21:15 +02:00
f8d7d23893 4D pseudofermion options 2021-05-06 23:19:53 +02:00
cdeb718229 4D pseudo fermion, with Schur red black solvers 2021-05-06 23:15:16 +02:00
cb28568198 Tuning integrator 2021-05-06 23:12:57 +02:00
45440da79d Tuning integrator 2021-05-06 23:12:34 +02:00
6fe8533414 Mdagger solve support 2021-05-06 23:10:36 +02:00
f776a7fe4a Merge branch 'feature/gparity_HMC' into feature/ddhmc 2021-05-06 20:55:03 +02:00
cff884929c Merge branch 'develop' into feature/ddhmc 2021-05-05 23:40:23 -04:00
9c991c7e29 First half quarter cut 2021-05-05 23:37:21 -04:00
21165ed489 Better logging and moving momentumfilter 2021-04-10 01:08:23 +02:00
09288d633c 4D pseudofermoin 2021-04-10 01:06:52 +02:00
fe00c96435 4D Pseudofermion support 2021-04-10 01:06:11 +02:00
0765f30308 4D pseudo fermion support 2021-04-10 01:05:42 +02:00
a6326b664e Move momenutm filter to earlier in the include sequence so it can be used by DDHMC 2021-04-10 01:04:16 +02:00
ccd30e1485 4D pseudofermion in Cayley action 2021-04-10 01:03:01 +02:00
3060887a37 Merge branch 'develop' into feature/ddhmc 2021-03-31 19:48:31 +02:00
b53059344e Better test on non-unit gauge 2021-03-31 13:45:06 -04:00
aaf5ebf345 Small hack 2021-03-31 19:32:57 +02:00
48edb8f72e HMC prep for DDHMC 2021-03-31 19:31:46 +02:00
193 changed files with 6528 additions and 10284 deletions

View File

@ -35,7 +35,7 @@ directory
#if defined __GNUC__ && __GNUC__>=6
#pragma GCC diagnostic ignored "-Wignored-attributes"
#endif
#if defined __GNUC__
#if defined __GNUC__ && __GNUC__>=6
#pragma GCC diagnostic ignored "-Wpsabi"
#endif

View File

@ -358,7 +358,7 @@ public:
autoView( in_v , in, AcceleratorRead);
autoView( out_v , out, AcceleratorWrite);
autoView( Stencil_v , Stencil, AcceleratorRead);
int npoint = geom.npoint;
auto& geom_v = geom;
typedef LatticeView<Cobj> Aview;
Vector<Aview> AcceleratorViewContainer;
@ -380,7 +380,7 @@ public:
int ptype;
StencilEntry *SE;
for(int point=0;point<npoint;point++){
for(int point=0;point<geom_v.npoint;point++){
SE=Stencil_v.GetEntry(ptype,point,ss);
@ -424,7 +424,7 @@ public:
autoView( in_v , in, AcceleratorRead);
autoView( out_v , out, AcceleratorWrite);
autoView( Stencil_v , Stencil, AcceleratorRead);
int npoint = geom.npoint;
auto& geom_v = geom;
typedef LatticeView<Cobj> Aview;
Vector<Aview> AcceleratorViewContainer;
@ -454,7 +454,7 @@ public:
int ptype;
StencilEntry *SE;
for(int p=0;p<npoint;p++){
for(int p=0;p<geom_v.npoint;p++){
int point = points_p[p];
SE=Stencil_v.GetEntry(ptype,point,ss);

View File

@ -52,7 +52,6 @@ public:
virtual void AdjOp (const Field &in, Field &out) = 0; // Abstract base
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2)=0;
virtual void HermOp(const Field &in, Field &out)=0;
virtual ~LinearOperatorBase(){};
};
@ -224,9 +223,14 @@ class SchurOperatorBase : public LinearOperatorBase<Field> {
Mpc(in,tmp);
MpcDag(tmp,out);
}
virtual void MpcMpcDag(const Field &in, Field &out) {
Field tmp(in.Grid());
tmp.Checkerboard() = in.Checkerboard();
MpcDag(in,tmp);
Mpc(tmp,out);
}
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
out.Checkerboard() = in.Checkerboard();
MpcDagMpc(in,out);
HermOp(in,out);
ComplexD dot= innerProduct(in,out);
n1=real(dot);
n2=norm2(out);
@ -277,6 +281,16 @@ template<class Matrix,class Field>
axpy(out,-1.0,tmp,out);
}
};
// Mpc MpcDag system presented as the HermOp
template<class Matrix,class Field>
class SchurDiagMooeeDagOperator : public SchurDiagMooeeOperator<Matrix,Field> {
public:
virtual void HermOp(const Field &in, Field &out){
out.Checkerboard() = in.Checkerboard();
this->MpcMpcDag(in,out);
}
SchurDiagMooeeDagOperator (Matrix &Mat): SchurDiagMooeeOperator<Matrix,Field>(Mat){};
};
template<class Matrix,class Field>
class SchurDiagOneOperator : public SchurOperatorBase<Field> {
protected:
@ -508,7 +522,7 @@ class SchurStaggeredOperator : public SchurOperatorBase<Field> {
virtual void MpcDag (const Field &in, Field &out){
Mpc(in,out);
}
virtual void MpcDagMpc(const Field &in, Field &out) {
virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
assert(0);// Never need with staggered
}
};
@ -586,7 +600,6 @@ class HermOpOperatorFunction : public OperatorFunction<Field> {
template<typename Field>
class PlainHermOp : public LinearFunction<Field> {
public:
using LinearFunction<Field>::operator();
LinearOperatorBase<Field> &_Linop;
PlainHermOp(LinearOperatorBase<Field>& linop) : _Linop(linop)
@ -600,7 +613,6 @@ public:
template<typename Field>
class FunctionHermOp : public LinearFunction<Field> {
public:
using LinearFunction<Field>::operator();
OperatorFunction<Field> & _poly;
LinearOperatorBase<Field> &_Linop;

View File

@ -30,19 +30,13 @@ Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
template<class Field> using Preconditioner = LinearFunction<Field> ;
/*
template<class Field> class Preconditioner : public LinearFunction<Field> {
using LinearFunction<Field>::operator();
template<class Field> class Preconditioner : public LinearFunction<Field> {
virtual void operator()(const Field &src, Field & psi)=0;
};
*/
template<class Field> class TrivialPrecon : public Preconditioner<Field> {
public:
using Preconditioner<Field>::operator();
virtual void operator()(const Field &src, Field & psi){
void operator()(const Field &src, Field & psi){
psi = src;
}
TrivialPrecon(void){};

View File

@ -48,7 +48,6 @@ public:
virtual void Mdiag (const Field &in, Field &out)=0;
virtual void Mdir (const Field &in, Field &out,int dir, int disp)=0;
virtual void MdirAll (const Field &in, std::vector<Field> &out)=0;
virtual ~SparseMatrixBase() {};
};
/////////////////////////////////////////////////////////////////////////////////////////////
@ -73,7 +72,7 @@ public:
virtual void MeooeDag (const Field &in, Field &out)=0;
virtual void MooeeDag (const Field &in, Field &out)=0;
virtual void MooeeInvDag (const Field &in, Field &out)=0;
virtual ~CheckerBoardedSparseMatrixBase() {};
};
NAMESPACE_END(Grid);

View File

@ -36,8 +36,7 @@ NAMESPACE_BEGIN(Grid);
template<class FieldD, class FieldF, typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0, typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class MixedPrecisionBiCGSTAB : public LinearFunction<FieldD>
{
public:
using LinearFunction<FieldD>::operator();
public:
RealD Tolerance;
RealD InnerTolerance; // Initial tolerance for inner CG. Defaults to Tolerance but can be changed
Integer MaxInnerIterations;

View File

@ -102,7 +102,7 @@ public:
// Check if guess is really REALLY good :)
if (cp <= rsq) {
TrueResidual = std::sqrt(a/ssq);
std::cout << GridLogMessage << "ConjugateGradient guess is converged already " << std::endl;
std::cout << GridLogMessage << "ConjugateGradient guess is converged already "<<TrueResidual<< " tol "<< Tolerance<< std::endl;
IterationsToComplete = 0;
return;
}

View File

@ -35,8 +35,7 @@ NAMESPACE_BEGIN(Grid);
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class MixedPrecisionConjugateGradient : public LinearFunction<FieldD> {
public:
using LinearFunction<FieldD>::operator();
public:
RealD Tolerance;
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
Integer MaxInnerIterations;
@ -53,23 +52,31 @@ NAMESPACE_BEGIN(Grid);
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
LinearFunction<FieldF> *guesser;
MixedPrecisionConjugateGradient(RealD tol,
MixedPrecisionConjugateGradient(RealD Tol,
Integer maxinnerit,
Integer maxouterit,
GridBase* _sp_grid,
LinearOperatorBase<FieldF> &_Linop_f,
LinearOperatorBase<FieldD> &_Linop_d) :
MixedPrecisionConjugateGradient(Tol, Tol, maxinnerit, maxouterit, _sp_grid, _Linop_f, _Linop_d) {};
MixedPrecisionConjugateGradient(RealD Tol,
RealD InnerTol,
Integer maxinnerit,
Integer maxouterit,
GridBase* _sp_grid,
LinearOperatorBase<FieldF> &_Linop_f,
LinearOperatorBase<FieldD> &_Linop_d) :
Linop_f(_Linop_f), Linop_d(_Linop_d),
Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit), MaxOuterIterations(maxouterit), SinglePrecGrid(_sp_grid),
OuterLoopNormMult(100.), guesser(NULL){ };
Tolerance(Tol), InnerTolerance(InnerTol), MaxInnerIterations(maxinnerit), MaxOuterIterations(maxouterit), SinglePrecGrid(_sp_grid),
OuterLoopNormMult(100.), guesser(NULL){ assert(InnerTol < 1.0e-1);};
void useGuesser(LinearFunction<FieldF> &g){
guesser = &g;
}
void operator() (const FieldD &src_d_in, FieldD &sol_d){
std::cout << GridLogMessage << "MixedPrecisionConjugateGradient: Starting mixed precision CG with outer tolerance " << Tolerance << " and inner tolerance " << InnerTolerance << std::endl;
TotalInnerIterations = 0;
GridStopWatch TotalTimer;
@ -104,7 +111,6 @@ NAMESPACE_BEGIN(Grid);
FieldF sol_f(SinglePrecGrid);
sol_f.Checkerboard() = cb;
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Starting initial inner CG with tolerance " << inner_tol << std::endl;
ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
CG_f.ErrorOnNoConverge = false;
@ -138,7 +144,6 @@ NAMESPACE_BEGIN(Grid);
(*guesser)(src_f, sol_f);
//Inner CG
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " << outer_iter << " starting inner CG with tolerance " << inner_tol << std::endl;
CG_f.Tolerance = inner_tol;
InnerCGtimer.Start();
CG_f(Linop_f, src_f, sol_f);

View File

@ -33,19 +33,16 @@ namespace Grid {
template<class Field>
class ZeroGuesser: public LinearFunction<Field> {
public:
using LinearFunction<Field>::operator();
virtual void operator()(const Field &src, Field &guess) { guess = Zero(); };
};
template<class Field>
class DoNothingGuesser: public LinearFunction<Field> {
public:
using LinearFunction<Field>::operator();
virtual void operator()(const Field &src, Field &guess) { };
};
template<class Field>
class SourceGuesser: public LinearFunction<Field> {
public:
using LinearFunction<Field>::operator();
virtual void operator()(const Field &src, Field &guess) { guess = src; };
};
@ -60,7 +57,6 @@ private:
const unsigned int N;
public:
using LinearFunction<Field>::operator();
DeflatedGuesser(const std::vector<Field> & _evec,const std::vector<RealD> & _eval)
: DeflatedGuesser(_evec, _eval, _evec.size())
@ -91,7 +87,6 @@ private:
const std::vector<RealD> &eval_coarse;
public:
using LinearFunction<FineField>::operator();
LocalCoherenceDeflatedGuesser(const std::vector<FineField> &_subspace,
const std::vector<CoarseField> &_evec_coarse,
const std::vector<RealD> &_eval_coarse)

View File

@ -44,7 +44,6 @@ public:
int, MinRes); // Must restart
};
//This class is the input parameter class for some testing programs
struct LocalCoherenceLanczosParams : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams,
@ -68,7 +67,6 @@ public:
template<class Fobj,class CComplex,int nbasis>
class ProjectedHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
public:
using LinearFunction<Lattice<iVector<CComplex,nbasis > > >::operator();
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
@ -99,7 +97,6 @@ public:
template<class Fobj,class CComplex,int nbasis>
class ProjectedFunctionHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
public:
using LinearFunction<Lattice<iVector<CComplex,nbasis > > >::operator();
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
@ -156,7 +153,6 @@ public:
_coarse_relax_tol(coarse_relax_tol)
{ };
//evalMaxApprox: approximation of largest eval of the fine Chebyshev operator (suitably wrapped by block projection)
int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
{
CoarseField v(B);
@ -183,16 +179,8 @@ public:
if( (vv<eresid*eresid) ) conv = 1;
return conv;
}
//This function is called at the end of the coarse grid Lanczos. It promotes the coarse eigenvector 'B' to the fine grid,
//applies a smoother to the result then computes the computes the *fine grid* eigenvalue (output as 'eval').
//evalMaxApprox should be the approximation of the largest eval of the fine Hermop. However when this function is called by IRL it actually passes the largest eval of the *Chebyshev* operator (as this is the max approx used for the TestConvergence above)
//As the largest eval of the Chebyshev is typically several orders of magnitude larger this makes the convergence test pass even when it should not.
//We therefore ignore evalMaxApprox here and use a value of 1.0 (note this value is already used by TestCoarse)
int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
{
evalMaxApprox = 1.0; //cf above
GridBase *FineGrid = _subspace[0].Grid();
int checkerboard = _subspace[0].Checkerboard();
FineField fB(FineGrid);fB.Checkerboard() =checkerboard;
@ -211,13 +199,13 @@ public:
eval = vnum/vden;
fv -= eval*fB;
RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0);
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
std::cout.precision(13);
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv << " target " << eresid*eresid
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
<<std::endl;
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
if( (vv<eresid*eresid) ) return 1;
return 0;
}
@ -295,10 +283,6 @@ public:
evals_coarse.resize(0);
};
//The block inner product is the inner product on the fine grid locally summed over the blocks
//to give a Lattice<Scalar> on the coarse grid. This function orthnormalizes the fine-grid subspace
//vectors under the block inner product. This step must be performed after computing the fine grid
//eigenvectors and before computing the coarse grid eigenvectors.
void Orthogonalise(void ) {
CoarseScalar InnerProd(_CoarseGrid);
std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
@ -342,8 +326,6 @@ public:
}
}
//While this method serves to check the coarse eigenvectors, it also recomputes the eigenvalues from the smoothed reconstructed eigenvectors
//hence the smoother can be tuned after running the coarse Lanczos by using a different smoother here
void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax)
{
assert(evals_fine.size() == nbasis);
@ -392,31 +374,25 @@ public:
evals_fine.resize(nbasis);
subspace.resize(nbasis,_FineGrid);
}
//cheby_op: Parameters of the fine grid Chebyshev polynomial used for the Lanczos acceleration
//cheby_smooth: Parameters of a separate Chebyshev polynomial used after the Lanczos has completed to smooth out high frequency noise in the reconstructed fine grid eigenvectors prior to computing the eigenvalue
//relax: Reconstructed eigenvectors (post smoothing) are naturally not as precise as true eigenvectors. This factor acts as a multiplier on the stopping condition when determining whether the results satisfy the user provided stopping condition
void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax,
int Nstop, int Nk, int Nm,RealD resid,
RealD MaxIt, RealD betastp, int MinRes)
{
Chebyshev<FineField> Cheby(cheby_op); //Chebyshev of fine operator on fine grid
ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,subspace); //Fine operator on coarse grid with intermediate fine grid conversion
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace); //Chebyshev of fine operator on coarse grid with intermediate fine grid conversion
Chebyshev<FineField> Cheby(cheby_op);
ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,subspace);
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace);
//////////////////////////////////////////////////////////////////////////////////////////////////
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
//////////////////////////////////////////////////////////////////////////////////////////////////
Chebyshev<FineField> ChebySmooth(cheby_smooth); //lower order Chebyshev of fine operator on fine grid used to smooth regenerated eigenvectors
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax);
Chebyshev<FineField> ChebySmooth(cheby_smooth);
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax);
evals_coarse.resize(Nm);
evec_coarse.resize(Nm,_CoarseGrid);
CoarseField src(_CoarseGrid); src=1.0;
//Note the "tester" here is also responsible for generating the fine grid eigenvalues which are output into the "evals_coarse" array
ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
int Nconv=0;
IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
@ -427,14 +403,6 @@ public:
std::cout << i << " Coarse eval = " << evals_coarse[i] << std::endl;
}
}
//Get the fine eigenvector 'i' by reconstruction
void getFineEvecEval(FineField &evec, RealD &eval, const int i) const{
blockPromote(evec_coarse[i],evec,subspace);
eval = evals_coarse[i];
}
};
NAMESPACE_END(Grid);

View File

@ -29,8 +29,6 @@ template<class Field> class PowerMethod
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
RealD vden = norm2(src_n);
RealD na = vnum/vden;
std::cout << GridLogIterative << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) {
evalMaxApprox = na;

View File

@ -43,7 +43,7 @@ NAMESPACE_BEGIN(Grid);
template<class Field>
class PrecGeneralisedConjugateResidual : public LinearFunction<Field> {
public:
using LinearFunction<Field>::operator();
RealD Tolerance;
Integer MaxIterations;
int verbose;

View File

@ -43,7 +43,7 @@ NAMESPACE_BEGIN(Grid);
template<class Field>
class PrecGeneralisedConjugateResidualNonHermitian : public LinearFunction<Field> {
public:
using LinearFunction<Field>::operator();
RealD Tolerance;
Integer MaxIterations;
int verbose;
@ -119,8 +119,7 @@ public:
RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
RealD cp;
ComplexD a, b;
// ComplexD zAz;
ComplexD a, b, zAz;
RealD zAAz;
ComplexD rq;
@ -147,7 +146,7 @@ public:
//////////////////////////////////
MatTimer.Start();
Linop.Op(psi,Az);
// zAz = innerProduct(Az,psi);
zAz = innerProduct(Az,psi);
zAAz= norm2(Az);
MatTimer.Stop();
@ -171,7 +170,7 @@ public:
LinalgTimer.Start();
// zAz = innerProduct(Az,psi);
zAz = innerProduct(Az,psi);
zAAz= norm2(Az);
//p[0],q[0],qq[0]
@ -213,7 +212,7 @@ public:
MatTimer.Start();
Linop.Op(z,Az);
MatTimer.Stop();
// zAz = innerProduct(Az,psi);
zAz = innerProduct(Az,psi);
zAAz= norm2(Az);
LinalgTimer.Start();

View File

@ -40,7 +40,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
* (-MoeMee^{-1} 1 )
* L^{dag} = ( 1 Mee^{-dag} Moe^{dag} )
* ( 0 1 )
* L^{-d} = ( 1 -Mee^{-dag} Moe^{dag} )
* L^{-dag}= ( 1 -Mee^{-dag} Moe^{dag} )
* ( 0 1 )
*
* U^-1 = (1 -Mee^{-1} Meo)
@ -82,7 +82,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
* c) M_oo^-dag Doo^{dag} Doo Moo^-1 phi_0 = M_oo^-dag (D_oo)^dag L^{-1} eta_o
* eta_o' = M_oo^-dag (D_oo)^dag (eta_o - Moe Mee^{-1} eta_e)
* psi_o = M_oo^-1 phi_o
* TODO: Deflation
*
*
*/
namespace Grid {
@ -97,6 +98,7 @@ namespace Grid {
protected:
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
OperatorFunction<Field> & _HermitianRBSolver;
int CBfactorise;
bool subGuess;
bool useSolnAsInitGuess; // if true user-supplied solution vector is used as initial guess for solver
@ -219,13 +221,20 @@ namespace Grid {
/////////////////////////////////////////////////
// Check unprec residual if possible
/////////////////////////////////////////////////
if ( ! subGuess ) {
_Matrix.M(out[b],resid);
if ( ! subGuess ) {
if ( this->adjoint() ) _Matrix.Mdag(out[b],resid);
else _Matrix.M(out[b],resid);
resid = resid-in[b];
RealD ns = norm2(in[b]);
RealD nr = norm2(resid);
std::cout<<GridLogMessage<< "SchurRedBlackBase solver true unprec resid["<<b<<"] "<<std::sqrt(nr/ns) << std::endl;
std::cout<<GridLogMessage<< "SchurRedBlackBase adjoint "<< this->adjoint() << std::endl;
if ( this->adjoint() )
std::cout<<GridLogMessage<< "SchurRedBlackBase adjoint solver true unprec resid["<<b<<"] "<<std::sqrt(nr/ns) << std::endl;
else
std::cout<<GridLogMessage<< "SchurRedBlackBase solver true unprec resid["<<b<<"] "<<std::sqrt(nr/ns) << std::endl;
} else {
std::cout<<GridLogMessage<< "SchurRedBlackBase Guess subtracted after solve["<<b<<"] " << std::endl;
}
@ -279,12 +288,21 @@ namespace Grid {
// Verify the unprec residual
if ( ! subGuess ) {
_Matrix.M(out,resid);
std::cout<<GridLogMessage<< "SchurRedBlackBase adjoint "<< this->adjoint() << std::endl;
if ( this->adjoint() ) _Matrix.Mdag(out,resid);
else _Matrix.M(out,resid);
resid = resid-in;
RealD ns = norm2(in);
RealD nr = norm2(resid);
std::cout<<GridLogMessage << "SchurRedBlackBase solver true unprec resid "<< std::sqrt(nr/ns) << std::endl;
if ( this->adjoint() )
std::cout<<GridLogMessage<< "SchurRedBlackBase adjoint solver true unprec resid "<<std::sqrt(nr/ns) << std::endl;
else
std::cout<<GridLogMessage<< "SchurRedBlackBase solver true unprec resid "<<std::sqrt(nr/ns) << std::endl;
} else {
std::cout << GridLogMessage << "SchurRedBlackBase Guess subtracted after solve." << std::endl;
}
@ -293,6 +311,7 @@ namespace Grid {
/////////////////////////////////////////////////////////////
// Override in derived.
/////////////////////////////////////////////////////////////
virtual bool adjoint(void) { return false; }
virtual void RedBlackSource (Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o) =0;
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol) =0;
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o) =0;
@ -646,6 +665,127 @@ namespace Grid {
this->_HermitianRBSolver(_OpEO, src_o, sol_o);
}
};
/*
* Red black Schur decomposition
*
* M = (Mee Meo) = (1 0 ) (Mee 0 ) (1 Mee^{-1} Meo)
* (Moe Moo) (Moe Mee^-1 1 ) (0 Moo-Moe Mee^-1 Meo) (0 1 )
* = L D U
*
* L^-1 = (1 0 )
* (-MoeMee^{-1} 1 )
* L^{dag} = ( 1 Mee^{-dag} Moe^{dag} )
* ( 0 1 )
*
* U^-1 = (1 -Mee^{-1} Meo)
* (0 1 )
* U^{dag} = ( 1 0)
* (Meo^dag Mee^{-dag} 1)
* U^{-dag} = ( 1 0)
* (-Meo^dag Mee^{-dag} 1)
*
*
***********************
* M^dag psi = eta
***********************
*
* Really for Mobius: (Wilson - easier to just use gamma 5 hermiticity)
*
* Mdag psi = Udag Ddag Ldag psi = eta
*
* U^{-dag} = ( 1 0)
* (-Meo^dag Mee^{-dag} 1)
*
*
* i) D^dag phi = (U^{-dag} eta)
* eta'_e = eta_e
* eta'_o = (eta_o - Meo^dag Mee^{-dag} eta_e)
*
* phi_o = D_oo^-dag eta'_o = D_oo^-dag (eta_o - Meo^dag Mee^{-dag} eta_e)
*
* phi_e = D_ee^-dag eta'_e = D_ee^-dag eta_e
*
* Solve:
*
* D_oo D_oo^dag phi_o = D_oo (eta_o - Meo^dag Mee^{-dag} eta_e)
*
* ii)
* phi = L^dag psi => psi = L^-dag phi.
*
* L^{-dag} = ( 1 -Mee^{-dag} Moe^{dag} )
* ( 0 1 )
*
* => sol_e = M_ee^-dag * ( src_e - Moe^dag phi_o )...
* => sol_o = phi_o
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Site diagonal has Mooee on it, but solve the Adjoint system
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SchurRedBlackDiagMooeeDagSolve : public SchurRedBlackBase<Field> {
public:
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
virtual bool adjoint(void) { return true; }
SchurRedBlackDiagMooeeDagSolve(OperatorFunction<Field> &HermitianRBSolver,
const bool initSubGuess = false,
const bool _solnAsInitGuess = false)
: SchurRedBlackBase<Field> (HermitianRBSolver,initSubGuess,_solnAsInitGuess) {};
//////////////////////////////////////////////////////
// Override RedBlack specialisation
//////////////////////////////////////////////////////
virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
Field tmp(grid);
Field Mtmp(grid);
pickCheckerboard(Even,src_e,src);
pickCheckerboard(Odd ,src_o,src);
/////////////////////////////////////////////////////
// src_o = (source_o - Moe^dag MeeInvDag source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInvDag(src_e,tmp); assert( tmp.Checkerboard() ==Even);
_Matrix.MeooeDag (tmp,Mtmp); assert( Mtmp.Checkerboard() ==Odd);
tmp=src_o-Mtmp; assert( tmp.Checkerboard() ==Odd);
// get the right Mpc
SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
_HermOpEO.Mpc(tmp,src_o); assert(src_o.Checkerboard() ==Odd);
}
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
{
SchurDiagMooeeDagOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
};
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
{
SchurDiagMooeeDagOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
}
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
Field sol_e(grid);
Field tmp(grid);
///////////////////////////////////////////////////
// sol_e = M_ee^-dag * ( src_e - Moe^dag phi_o )...
// sol_o = phi_o
///////////////////////////////////////////////////
_Matrix.MeooeDag(sol_o,tmp); assert(tmp.Checkerboard()==Even);
tmp = src_e-tmp; assert(tmp.Checkerboard()==Even);
_Matrix.MooeeInvDag(tmp,sol_e); assert(sol_e.Checkerboard()==Even);
setCheckerboard(sol,sol_e); assert( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_o); assert( sol_o.Checkerboard() ==Odd );
}
};
}
#endif

View File

@ -159,6 +159,7 @@ void MemoryManager::Init(void)
char * str;
int Nc;
int NcS;
str= getenv("GRID_ALLOC_NCACHE_LARGE");
if ( str ) {

View File

@ -170,7 +170,6 @@ private:
public:
static void Print(void);
static void PrintState( void* CpuPtr);
static int isOpen (void* CpuPtr);
static void ViewClose(void* CpuPtr,ViewMode mode);
static void *ViewOpen (void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);

View File

@ -474,32 +474,6 @@ int MemoryManager::isOpen (void* _CpuPtr)
}
}
void MemoryManager::PrintState(void* _CpuPtr)
{
uint64_t CpuPtr = (uint64_t)_CpuPtr;
if ( EntryPresent(CpuPtr) ){
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
std::string str;
if ( AccCache.state==Empty ) str = std::string("Empty");
if ( AccCache.state==CpuDirty ) str = std::string("CpuDirty");
if ( AccCache.state==AccDirty ) str = std::string("AccDirty");
if ( AccCache.state==Consistent)str = std::string("Consistent");
if ( AccCache.state==EvictNext) str = std::string("EvictNext");
std::cout << GridLogMessage << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl;
std::cout << GridLogMessage << "0x"<<std::hex<<AccCache.CpuPtr<<std::dec
<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
<< "\t" << AccCache.cpuLock
<< "\t" << AccCache.accLock
<< "\t" << AccCache.LRU_valid<<std::endl;
} else {
std::cout << GridLogMessage << "No Entry in AccCache table." << std::endl;
}
}
NAMESPACE_END(Grid);
#endif

View File

@ -16,10 +16,6 @@ uint64_t MemoryManager::DeviceToHostXfer;
void MemoryManager::ViewClose(void* AccPtr,ViewMode mode){};
void *MemoryManager::ViewOpen(void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint){ return CpuPtr; };
int MemoryManager::isOpen (void* CpuPtr) { return 0;}
void MemoryManager::PrintState(void* CpuPtr)
{
std::cout << GridLogMessage << "Host<->Device memory movement not currently managed by Grid." << std::endl;
};
void MemoryManager::Print(void){};
void MemoryManager::NotifyDeletion(void *ptr){};

View File

@ -388,8 +388,8 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
// TODO : make a OMP loop on CPU, call threaded bcopy
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
assert(shm!=NULL);
// std::cout <<"acceleratorCopyDeviceToDeviceAsynch"<< std::endl;
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,bytes);
acceleratorCopySynchronise(); // MPI prob slower
}
if ( CommunicatorPolicy == CommunicatorPolicySequential ) {
@ -400,9 +400,6 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
}
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
{
// std::cout << "Copy Synchronised\n"<<std::endl;
acceleratorCopySynchronise();
int nreq=list.size();
if (nreq==0) return;

View File

@ -88,13 +88,6 @@ public:
LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this),mode);
accessor.ViewClose();
}
// Helper function to print the state of this object in the AccCache
void PrintCacheState(void)
{
MemoryManager::PrintState(this->_odata);
}
/////////////////////////////////////////////////////////////////////////////////
// Return a view object that may be dereferenced in site loops.
// The view is trivially copy constructible and may be copied to an accelerator device

View File

@ -29,6 +29,19 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
template<class vobj> void DumpSliceNorm(std::string s,Lattice<vobj> &f,int mu=-1)
{
auto ff = localNorm2(f);
if ( mu==-1 ) mu = f.Grid()->Nd()-1;
typedef typename vobj::tensor_reduced normtype;
typedef typename normtype::scalar_object scalar;
std::vector<scalar> sff;
sliceSum(ff,sff,mu);
for(int t=0;t<sff.size();t++){
std::cout << s<<" "<<t<<" "<<sff[t]<<std::endl;
}
}
template<class vobj> uint32_t crc(Lattice<vobj> & buf)
{
autoView( buf_v , buf, CpuRead);

View File

@ -42,6 +42,7 @@ void getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator
std::cout << GridLogDebug << "\twarpSize = " << warpSize << std::endl;
std::cout << GridLogDebug << "\tsharedMemPerBlock = " << sharedMemPerBlock << std::endl;
std::cout << GridLogDebug << "\tmaxThreadsPerBlock = " << maxThreadsPerBlock << std::endl;
std::cout << GridLogDebug << "\tmaxThreadsPerBlock = " << warpSize << std::endl;
std::cout << GridLogDebug << "\tmultiProcessorCount = " << multiProcessorCount << std::endl;
if (warpSize != WARP_SIZE) {
@ -51,10 +52,6 @@ void getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator
// let the number of threads in a block be a multiple of 2, starting from warpSize
threads = warpSize;
if ( threads*sizeofsobj > sharedMemPerBlock ) {
std::cout << GridLogError << "The object is too large for the shared memory." << std::endl;
exit(EXIT_FAILURE);
}
while( 2*threads*sizeofsobj < sharedMemPerBlock && 2*threads <= maxThreadsPerBlock ) threads *= 2;
// keep all the streaming multiprocessors busy
blocks = nextPow2(multiProcessorCount);

View File

@ -143,8 +143,8 @@ public:
std::vector<RngEngine> _generators;
std::vector<std::uniform_real_distribution<RealD> > _uniform;
std::vector<Grid::gaussian_distribution<RealD> > _gaussian;
// std::vector<std::discrete_distribution<int32_t> > _bernoulli;
std::vector<Grid::gaussian_distribution<RealD> > _gaussian;
std::vector<std::discrete_distribution<int32_t> > _bernoulli;
std::vector<std::uniform_int_distribution<uint32_t> > _uid;
///////////////////////
@ -245,7 +245,7 @@ public:
_generators.resize(1);
_uniform.resize(1,std::uniform_real_distribution<RealD>{0,1});
_gaussian.resize(1,gaussian_distribution<RealD>(0.0,1.0) );
// _bernoulli.resize(1,std::discrete_distribution<int32_t>{1,1});
_bernoulli.resize(1,std::discrete_distribution<int32_t>{1,1});
_uid.resize(1,std::uniform_int_distribution<uint32_t>() );
}
@ -359,7 +359,7 @@ public:
_generators.resize(_vol);
_uniform.resize(_vol,std::uniform_real_distribution<RealD>{0,1});
_gaussian.resize(_vol,gaussian_distribution<RealD>(0.0,1.0) );
// _bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
_bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
_uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
}
@ -516,11 +516,11 @@ public:
template <class vobj> inline void random(GridParallelRNG &rng,Lattice<vobj> &l) { rng.fill(l,rng._uniform); }
template <class vobj> inline void gaussian(GridParallelRNG &rng,Lattice<vobj> &l) { rng.fill(l,rng._gaussian); }
//template <class vobj> inline void bernoulli(GridParallelRNG &rng,Lattice<vobj> &l){ rng.fill(l,rng._bernoulli);}
template <class vobj> inline void bernoulli(GridParallelRNG &rng,Lattice<vobj> &l){ rng.fill(l,rng._bernoulli);}
template <class sobj> inline void random(GridSerialRNG &rng,sobj &l) { rng.fill(l,rng._uniform ); }
template <class sobj> inline void gaussian(GridSerialRNG &rng,sobj &l) { rng.fill(l,rng._gaussian ); }
//template <class sobj> inline void bernoulli(GridSerialRNG &rng,sobj &l){ rng.fill(l,rng._bernoulli); }
template <class sobj> inline void bernoulli(GridSerialRNG &rng,sobj &l){ rng.fill(l,rng._bernoulli); }
NAMESPACE_END(Grid);
#endif

View File

@ -85,76 +85,6 @@ template<class vobj> inline void setCheckerboard(Lattice<vobj> &full,const Latti
});
}
template<class vobj> inline void acceleratorPickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full, int checker_dim_half=0)
{
half.Checkerboard() = cb;
autoView(half_v, half, AcceleratorWrite);
autoView(full_v, full, AcceleratorRead);
Coordinate rdim_full = full.Grid()->_rdimensions;
Coordinate rdim_half = half.Grid()->_rdimensions;
unsigned long ndim_half = half.Grid()->_ndimension;
Coordinate checker_dim_mask_half = half.Grid()->_checker_dim_mask;
Coordinate ostride_half = half.Grid()->_ostride;
accelerator_for(ss, full.Grid()->oSites(),full.Grid()->Nsimd(),{
Coordinate coor;
int cbos;
int linear=0;
Lexicographic::CoorFromIndex(coor,ss,rdim_full);
assert(coor.size()==ndim_half);
for(int d=0;d<ndim_half;d++){
if(checker_dim_mask_half[d]) linear += coor[d];
}
cbos = (linear&0x1);
if (cbos==cb) {
int ssh=0;
for(int d=0;d<ndim_half;d++) {
if (d == checker_dim_half) ssh += ostride_half[d] * ((coor[d] / 2) % rdim_half[d]);
else ssh += ostride_half[d] * (coor[d] % rdim_half[d]);
}
coalescedWrite(half_v[ssh],full_v(ss));
}
});
}
template<class vobj> inline void acceleratorSetCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half, int checker_dim_half=0)
{
int cb = half.Checkerboard();
autoView(half_v , half, AcceleratorRead);
autoView(full_v , full, AcceleratorWrite);
Coordinate rdim_full = full.Grid()->_rdimensions;
Coordinate rdim_half = half.Grid()->_rdimensions;
unsigned long ndim_half = half.Grid()->_ndimension;
Coordinate checker_dim_mask_half = half.Grid()->_checker_dim_mask;
Coordinate ostride_half = half.Grid()->_ostride;
accelerator_for(ss,full.Grid()->oSites(),full.Grid()->Nsimd(),{
Coordinate coor;
int cbos;
int linear=0;
Lexicographic::CoorFromIndex(coor,ss,rdim_full);
assert(coor.size()==ndim_half);
for(int d=0;d<ndim_half;d++){
if(checker_dim_mask_half[d]) linear += coor[d];
}
cbos = (linear&0x1);
if (cbos==cb) {
int ssh=0;
for(int d=0;d<ndim_half;d++){
if (d == checker_dim_half) ssh += ostride_half[d] * ((coor[d] / 2) % rdim_half[d]);
else ssh += ostride_half[d] * (coor[d] % rdim_half[d]);
}
coalescedWrite(full_v[ss],half_v(ssh));
}
});
}
////////////////////////////////////////////////////////////////////////////////////////////
// Flexible Type Conversion for internal promotion to double as well as graceful
// treatment of scalar-compatible types

View File

@ -576,8 +576,6 @@ class ScidacReader : public GridLimeReader {
std::string rec_name(ILDG_BINARY_DATA);
while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) {
if ( !strncmp(limeReaderType(LimeR), rec_name.c_str(),strlen(rec_name.c_str()) ) ) {
// in principle should do the line below, but that breaks backard compatibility with old data
// skipPastObjectRecord(std::string(GRID_FIELD_NORM));
skipPastObjectRecord(std::string(SCIDAC_CHECKSUM));
return;
}

View File

@ -104,6 +104,7 @@ template<typename vtype> using iSpinMatrix = iScalar<iMatrix<iSca
template<typename vtype> using iColourMatrix = iScalar<iScalar<iMatrix<vtype, Nc> > > ;
template<typename vtype> using iSpinColourMatrix = iScalar<iMatrix<iMatrix<vtype, Nc>, Ns> >;
template<typename vtype> using iLorentzColourMatrix = iVector<iScalar<iMatrix<vtype, Nc> >, Nd > ;
template<typename vtype> using iLorentzVector = iVector<iScalar<iScalar<vtype> >, Nd > ;
template<typename vtype> using iDoubleStoredColourMatrix = iVector<iScalar<iMatrix<vtype, Nc> >, Nds > ;
template<typename vtype> using iSpinVector = iScalar<iVector<iScalar<vtype>, Ns> >;
template<typename vtype> using iColourVector = iScalar<iScalar<iVector<vtype, Nc> > >;
@ -163,7 +164,16 @@ typedef iSpinColourSpinColourMatrix<vComplex > vSpinColourSpinColourMatrix;
typedef iSpinColourSpinColourMatrix<vComplexF> vSpinColourSpinColourMatrixF;
typedef iSpinColourSpinColourMatrix<vComplexD> vSpinColourSpinColourMatrixD;
// LorentzColour
// LorentzVector
typedef iLorentzVector<Complex > LorentzVector;
typedef iLorentzVector<ComplexF > LorentzVectorF;
typedef iLorentzVector<ComplexD > LorentzVectorD;
typedef iLorentzVector<vComplex > vLorentzVector;
typedef iLorentzVector<vComplexF> vLorentzVectorF;
typedef iLorentzVector<vComplexD> vLorentzVectorD;
// LorentzColourMatrix
typedef iLorentzColourMatrix<Complex > LorentzColourMatrix;
typedef iLorentzColourMatrix<ComplexF > LorentzColourMatrixF;
typedef iLorentzColourMatrix<ComplexD > LorentzColourMatrixD;
@ -288,6 +298,10 @@ typedef Lattice<vLorentzColourMatrix> LatticeLorentzColourMatrix;
typedef Lattice<vLorentzColourMatrixF> LatticeLorentzColourMatrixF;
typedef Lattice<vLorentzColourMatrixD> LatticeLorentzColourMatrixD;
typedef Lattice<vLorentzVector> LatticeLorentzVector;
typedef Lattice<vLorentzVectorF> LatticeLorentzVectorF;
typedef Lattice<vLorentzVectorD> LatticeLorentzVectorD;
// DoubleStored gauge field
typedef Lattice<vDoubleStoredColourMatrix> LatticeDoubleStoredColourMatrix;
typedef Lattice<vDoubleStoredColourMatrixF> LatticeDoubleStoredColourMatrixF;

View File

@ -30,8 +30,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_QCD_ACTION_H
#define GRID_QCD_ACTION_H
#pragma once
////////////////////////////////////////////
// Abstract base interface
@ -51,4 +50,4 @@ NAMESPACE_CHECK(Fermion);
#include <Grid/qcd/action/pseudofermion/PseudoFermion.h>
NAMESPACE_CHECK(PseudoFermion);
#endif

View File

@ -40,6 +40,29 @@ class Action
public:
bool is_smeared = false;
RealD deriv_norm_sum;
RealD deriv_max_sum;
int deriv_num;
RealD deriv_us;
RealD S_us;
RealD refresh_us;
void reset_timer(void) {
deriv_us = S_us = refresh_us = 0.0;
deriv_num=0;
deriv_norm_sum = deriv_max_sum=0.0;
}
void deriv_log(RealD nrm, RealD max) { deriv_max_sum+=max; deriv_norm_sum+=nrm; deriv_num++;}
RealD deriv_max_average(void) { return deriv_max_sum/deriv_num; };
RealD deriv_norm_average(void) { return deriv_norm_sum/deriv_num; };
RealD deriv_timer(void) { return deriv_us; };
RealD S_timer(void) { return deriv_us; };
RealD refresh_timer(void) { return deriv_us; };
void deriv_timer_start(void) { deriv_us-=usecond(); }
void deriv_timer_stop(void) { deriv_us+=usecond(); }
void refresh_timer_start(void) { refresh_us-=usecond(); }
void refresh_timer_stop(void) { refresh_us+=usecond(); }
void S_timer_start(void) { S_us-=usecond(); }
void S_timer_stop(void) { S_us+=usecond(); }
// Heatbath?
virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) = 0; // refresh pseudofermions
virtual RealD S(const GaugeField& U) = 0; // evaluate the action

View File

@ -58,6 +58,8 @@ NAMESPACE_CHECK(Scalar);
////////////////////////////////////////////
// Utility functions
////////////////////////////////////////////
#include <Grid/qcd/action/domains/Domains.h>
#include <Grid/qcd/utils/Metric.h>
NAMESPACE_CHECK(Metric);
#include <Grid/qcd/utils/CovariantLaplacian.h>

View File

@ -38,27 +38,32 @@ NAMESPACE_BEGIN(Grid);
struct GparityWilsonImplParams {
Coordinate twists; //Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction.
//mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
GparityWilsonImplParams() : twists(Nd, 0) {};
bool locally_periodic;
GparityWilsonImplParams() : twists(Nd, 0), locally_periodic(false) {};
};
struct WilsonImplParams {
bool overlapCommsCompute;
bool locally_periodic;
AcceleratorVector<Real,Nd> twist_n_2pi_L;
AcceleratorVector<Complex,Nd> boundary_phases;
WilsonImplParams() {
boundary_phases.resize(Nd, 1.0);
twist_n_2pi_L.resize(Nd, 0.0);
locally_periodic = false;
};
WilsonImplParams(const AcceleratorVector<Complex,Nd> phi) : boundary_phases(phi), overlapCommsCompute(false) {
twist_n_2pi_L.resize(Nd, 0.0);
locally_periodic = false;
}
};
struct StaggeredImplParams {
StaggeredImplParams() {};
bool locally_periodic;
StaggeredImplParams() : locally_periodic(false) {};
};
struct OneFlavourRationalParams : Serializable {
struct OneFlavourRationalParams : Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(OneFlavourRationalParams,
RealD, lo,
RealD, hi,
@ -66,8 +71,7 @@ struct StaggeredImplParams {
RealD, tolerance,
int, degree,
int, precision,
int, BoundsCheckFreq,
RealD, BoundsCheckTol);
int, BoundsCheckFreq);
// MaxIter and tolerance, vectors??
@ -78,16 +82,14 @@ struct StaggeredImplParams {
RealD tol = 1.0e-8,
int _degree = 10,
int _precision = 64,
int _BoundsCheckFreq=20,
double _BoundsCheckTol=1e-6)
int _BoundsCheckFreq=20)
: lo(_lo),
hi(_hi),
MaxIter(_maxit),
tolerance(tol),
degree(_degree),
precision(_precision),
BoundsCheckFreq(_BoundsCheckFreq),
BoundsCheckTol(_BoundsCheckTol){};
BoundsCheckFreq(_BoundsCheckFreq){};
};

View File

@ -0,0 +1,52 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/hmc/DDHMC.h
Copyright (C) 2021
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Christopher Kelly
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////
// DDHMC filter with sub-block size B[mu]
////////////////////////////////////////////////////
template<typename MomentaField>
struct DDHMCFilter: public MomentumFilterBase<MomentaField>
{
Coordinate Block;
int Width;
DDHMCFilter(const Coordinate &_Block): Block(_Block) {}
void applyFilter(MomentaField &P) const override
{
DomainDecomposition Domains(Block);
Domains.ProjectDDHMC(P);
}
};
NAMESPACE_END(Grid);

View File

@ -0,0 +1,98 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/momentum/DirichletFilter.h
Copyright (C) 2021
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
////////////////////////////////////////////////////
// Dirichlet filter with sub-block size B[mu]
////////////////////////////////////////////////////
#pragma once
#include <Grid/qcd/action/domains/DomainDecomposition.h>
NAMESPACE_BEGIN(Grid);
template<typename MomentaField>
struct DirichletFilter: public MomentumFilterBase<MomentaField>
{
Coordinate Block;
DirichletFilter(const Coordinate &_Block): Block(_Block) {}
// Edge detect using domain projectors
void applyFilter (MomentaField &U) const override
{
DomainDecomposition Domains(Block);
GridBase *grid = U.Grid();
LatticeInteger coor(grid);
LatticeInteger face(grid);
LatticeInteger one(grid); one = 1;
LatticeInteger zero(grid); zero = 0;
LatticeInteger omega(grid);
LatticeInteger omegabar(grid);
LatticeInteger tmp(grid);
omega=one; Domains.ProjectDomain(omega,0);
omegabar=one; Domains.ProjectDomain(omegabar,1);
LatticeInteger nface(grid); nface=Zero();
MomentaField projected(grid); projected=Zero();
typedef decltype(PeekIndex<LorentzIndex>(U,0)) MomentaLinkField;
MomentaLinkField Umu(grid);
MomentaLinkField zz(grid); zz=Zero();
int dims = grid->Nd();
Coordinate Global=grid->GlobalDimensions();
assert(dims==Nd);
for(int mu=0;mu<Nd;mu++){
if ( Block[mu]!=0 ) {
Umu = PeekIndex<LorentzIndex>(U,mu);
// Upper face
tmp = Cshift(omegabar,mu,1);
tmp = tmp + omega;
face = where(tmp == Integer(2),one,zero );
tmp = Cshift(omega,mu,1);
tmp = tmp + omegabar;
face = where(tmp == Integer(2),one,face );
Umu = where(face,zz,Umu);
PokeIndex<LorentzIndex>(U, Umu, mu);
}
}
}
};
NAMESPACE_END(Grid);

View File

@ -0,0 +1,187 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/domains/DomainDecomposition.h
Copyright (C) 2021
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
////////////////////////////////////////////////////
// Dirichlet filter with sub-block size B[mu]
////////////////////////////////////////////////////
#pragma once
NAMESPACE_BEGIN(Grid);
struct DomainDecomposition
{
Coordinate Block;
static constexpr RealD factor = 0.6;
DomainDecomposition(const Coordinate &_Block): Block(_Block){ assert(Block.size()==Nd);};
template<class Field>
void ProjectDomain(Field &f,Integer domain)
{
GridBase *grid = f.Grid();
int dims = grid->Nd();
int isDWF= (dims==Nd+1);
assert((dims==Nd)||(dims==Nd+1));
Field zz(grid); zz = Zero();
LatticeInteger coor(grid);
LatticeInteger domaincoor(grid);
LatticeInteger mask(grid); mask = Integer(1);
LatticeInteger zi(grid); zi = Integer(0);
for(int d=0;d<Nd;d++){
Integer B= Block[d];
if ( B ) {
LatticeCoordinate(coor,d+isDWF);
domaincoor = mod(coor,B);
mask = where(domaincoor==Integer(0),zi,mask);
mask = where(domaincoor==Integer(B-1),zi,mask);
}
}
if ( !domain )
f = where(mask==Integer(1),f,zz);
else
f = where(mask==Integer(0),f,zz);
};
template<class GaugeField>
void ProjectDDHMC(GaugeField &U)
{
GridBase *grid = U.Grid();
Coordinate Global=grid->GlobalDimensions();
GaugeField zzz(grid); zzz = Zero();
LatticeInteger coor(grid);
GaugeField Uorg(grid); Uorg = U;
auto zzz_mu = PeekIndex<LorentzIndex>(zzz,0);
////////////////////////////////////////////////////
// Zero BDY layers
////////////////////////////////////////////////////
for(int mu=0;mu<Nd;mu++) {
Integer B1 = Block[mu];
if ( B1 && (B1 <= Global[mu]) ) {
LatticeCoordinate(coor,mu);
////////////////////////////////
// OmegaBar - zero all links contained in slice B-1,0 and
// mu links connecting to Omega
////////////////////////////////
U = where(mod(coor,B1)==Integer(B1-1),zzz,U);
U = where(mod(coor,B1)==Integer(0) ,zzz,U);
auto U_mu = PeekIndex<LorentzIndex>(U,mu);
U_mu = where(mod(coor,B1)==Integer(B1-2),zzz_mu,U_mu);
PokeIndex<LorentzIndex>(U, U_mu, mu);
}
}
////////////////////////////////////////////
// Omega interior slow the evolution
// Tricky as we need to take the smallest of values imposed by each cut
// Do them in order or largest to smallest and smallest writes last
////////////////////////////////////////////
RealD f= factor;
#if 0
for(int mu=0;mu<Nd;mu++) {
Integer B1 = Block[mu];
if ( B1 && (B1 <= Global[mu]) ) {
auto U_mu = PeekIndex<LorentzIndex>(U,mu);
auto Uorg_mu= PeekIndex<LorentzIndex>(Uorg,mu);
// In the plane
U = where(mod(coor,B1)==Integer(B1-5),Uorg*f,U);
U = where(mod(coor,B1)==Integer(4) ,Uorg*f,U);
// Perp links
U_mu = where(mod(coor,B1)==Integer(B1-6),Uorg_mu*f,U_mu);
U_mu = where(mod(coor,B1)==Integer(4) ,Uorg_mu*f,U_mu);
PokeIndex<LorentzIndex>(U, U_mu, mu);
}
}
#endif
for(int mu=0;mu<Nd;mu++) {
Integer B1 = Block[mu];
if ( B1 && (B1 <= Global[mu]) ) {
auto U_mu = PeekIndex<LorentzIndex>(U,mu);
auto Uorg_mu= PeekIndex<LorentzIndex>(Uorg,mu);
// In the plane
U = where(mod(coor,B1)==Integer(B1-4),Uorg*f*f,U);
U = where(mod(coor,B1)==Integer(3) ,Uorg*f*f,U);
// Perp links
U_mu = where(mod(coor,B1)==Integer(B1-5),Uorg_mu*f*f,U_mu);
U_mu = where(mod(coor,B1)==Integer(3) ,Uorg_mu*f*f,U_mu);
PokeIndex<LorentzIndex>(U, U_mu, mu);
}
}
for(int mu=0;mu<Nd;mu++) {
Integer B1 = Block[mu];
if ( B1 && (B1 <= Global[mu]) ) {
auto U_mu = PeekIndex<LorentzIndex>(U,mu);
auto Uorg_mu= PeekIndex<LorentzIndex>(Uorg,mu);
// In the plane
U = where(mod(coor,B1)==Integer(B1-3),Uorg*f*f*f,U);
U = where(mod(coor,B1)==Integer(2) ,Uorg*f*f*f,U);
// Perp links
U_mu = where(mod(coor,B1)==Integer(B1-4),Uorg_mu*f*f*f,U_mu);
U_mu = where(mod(coor,B1)==Integer(2) ,Uorg_mu*f*f*f,U_mu);
PokeIndex<LorentzIndex>(U, U_mu, mu);
}
}
for(int mu=0;mu<Nd;mu++) {
Integer B1 = Block[mu];
if ( B1 && (B1 <= Global[mu]) ) {
auto U_mu = PeekIndex<LorentzIndex>(U,mu);
auto Uorg_mu= PeekIndex<LorentzIndex>(Uorg,mu);
// In the plane
U = where(mod(coor,B1)==Integer(B1-2),zzz,U);
U = where(mod(coor,B1)==Integer(1) ,zzz,U);
// Perp links
U_mu = where(mod(coor,B1)==Integer(B1-3),Uorg_mu*f*f*f*f,U_mu);
U_mu = where(mod(coor,B1)==Integer(1) ,Uorg_mu*f*f*f*f,U_mu);
PokeIndex<LorentzIndex>(U, U_mu, mu);
}
}
}
};
NAMESPACE_END(Grid);

View File

@ -0,0 +1,39 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/momentum/Domains.h
Copyright (C) 2021
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
////////////////////////////////////////////////////
// Dirichlet filter with sub-block size B[mu]
////////////////////////////////////////////////////
#pragma once
#include <Grid/qcd/action/domains/DomainDecomposition.h>
#include <Grid/qcd/action/domains/MomentumFilter.h>
#include <Grid/qcd/action/domains/DirichletFilter.h>
#include <Grid/qcd/action/domains/DDHMCFilter.h>

View File

@ -28,8 +28,7 @@ directory
*************************************************************************************/
/* END LEGAL */
//--------------------------------------------------------------------
#ifndef MOMENTUM_FILTER
#define MOMENTUM_FILTER
#pragma once
NAMESPACE_BEGIN(Grid);
@ -37,7 +36,7 @@ NAMESPACE_BEGIN(Grid);
template<typename MomentaField>
struct MomentumFilterBase{
virtual void applyFilter(MomentaField &P) const;
virtual void applyFilter(MomentaField &P) const = 0;
};
//Do nothing
@ -90,5 +89,3 @@ struct MomentumFilterApplyPhase: public MomentumFilterBase<MomentaField>{
NAMESPACE_END(Grid);
#endif

View File

@ -60,6 +60,8 @@ public:
///////////////////////////////////////////////////////////////
virtual void Dminus(const FermionField &psi, FermionField &chi);
virtual void DminusDag(const FermionField &psi, FermionField &chi);
virtual void ImportFourDimPseudoFermion(const FermionField &input,FermionField &imported);
virtual void ExportFourDimPseudoFermion(const FermionField &solution,FermionField &exported);
virtual void ExportPhysicalFermionSolution(const FermionField &solution5d,FermionField &exported4d);
virtual void ExportPhysicalFermionSource(const FermionField &solution5d, FermionField &exported4d);
virtual void ImportPhysicalFermionSource(const FermionField &input4d,FermionField &imported5d);

View File

@ -1,240 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/CompactWilsonCloverFermion.h
Copyright (C) 2020 - 2022
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
Author: Nils Meyer <nils.meyer@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/qcd/action/fermion/WilsonCloverTypes.h>
#include <Grid/qcd/action/fermion/WilsonCloverHelpers.h>
NAMESPACE_BEGIN(Grid);
// see Grid/qcd/action/fermion/WilsonCloverFermion.h for description
//
// Modifications done here:
//
// Original: clover term = 12x12 matrix per site
//
// But: Only two diagonal 6x6 hermitian blocks are non-zero (also true for original, verified by running)
// Sufficient to store/transfer only the real parts of the diagonal and one triangular part
// 2 * (6 + 15 * 2) = 72 real or 36 complex words to be stored/transfered
//
// Here: Above but diagonal as complex numbers, i.e., need to store/transfer
// 2 * (6 * 2 + 15 * 2) = 84 real or 42 complex words
//
// Words per site and improvement compared to original (combined with the input and output spinors):
//
// - Original: 2*12 + 12*12 = 168 words -> 1.00 x less
// - Minimal: 2*12 + 36 = 60 words -> 2.80 x less
// - Here: 2*12 + 42 = 66 words -> 2.55 x less
//
// These improvements directly translate to wall-clock time
//
// Data layout:
//
// - diagonal and triangle part as separate lattice fields,
// this was faster than as 1 combined field on all tested machines
// - diagonal: as expected
// - triangle: store upper right triangle in row major order
// - graphical:
// 0 1 2 3 4
// 5 6 7 8
// 9 10 11 = upper right triangle indices
// 12 13
// 14
// 0
// 1
// 2
// 3 = diagonal indices
// 4
// 5
// 0
// 1 5
// 2 6 9 = lower left triangle indices
// 3 7 10 12
// 4 8 11 13 14
//
// Impact on total memory consumption:
// - Original: (2 * 1 + 8 * 1/2) 12x12 matrices = 6 12x12 matrices = 864 complex words per site
// - Here: (2 * 1 + 4 * 1/2) diagonal parts = 4 diagonal parts = 24 complex words per site
// + (2 * 1 + 4 * 1/2) triangle parts = 4 triangle parts = 60 complex words per site
// = 84 complex words per site
template<class Impl>
class CompactWilsonCloverFermion : public WilsonFermion<Impl>,
public WilsonCloverHelpers<Impl>,
public CompactWilsonCloverHelpers<Impl> {
/////////////////////////////////////////////
// Sizes
/////////////////////////////////////////////
public:
INHERIT_COMPACT_CLOVER_SIZES(Impl);
/////////////////////////////////////////////
// Type definitions
/////////////////////////////////////////////
public:
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
INHERIT_COMPACT_CLOVER_TYPES(Impl);
typedef WilsonFermion<Impl> WilsonBase;
typedef WilsonCloverHelpers<Impl> Helpers;
typedef CompactWilsonCloverHelpers<Impl> CompactHelpers;
/////////////////////////////////////////////
// Constructors
/////////////////////////////////////////////
public:
CompactWilsonCloverFermion(GaugeField& _Umu,
GridCartesian& Fgrid,
GridRedBlackCartesian& Hgrid,
const RealD _mass,
const RealD _csw_r = 0.0,
const RealD _csw_t = 0.0,
const RealD _cF = 1.0,
const WilsonAnisotropyCoefficients& clover_anisotropy = WilsonAnisotropyCoefficients(),
const ImplParams& impl_p = ImplParams());
/////////////////////////////////////////////
// Member functions (implementing interface)
/////////////////////////////////////////////
public:
virtual void Instantiatable() {};
int ConstEE() override { return 0; };
int isTrivialEE() override { return 0; };
void Dhop(const FermionField& in, FermionField& out, int dag) override;
void DhopOE(const FermionField& in, FermionField& out, int dag) override;
void DhopEO(const FermionField& in, FermionField& out, int dag) override;
void DhopDir(const FermionField& in, FermionField& out, int dir, int disp) override;
void DhopDirAll(const FermionField& in, std::vector<FermionField>& out) /* override */;
void M(const FermionField& in, FermionField& out) override;
void Mdag(const FermionField& in, FermionField& out) override;
void Meooe(const FermionField& in, FermionField& out) override;
void MeooeDag(const FermionField& in, FermionField& out) override;
void Mooee(const FermionField& in, FermionField& out) override;
void MooeeDag(const FermionField& in, FermionField& out) override;
void MooeeInv(const FermionField& in, FermionField& out) override;
void MooeeInvDag(const FermionField& in, FermionField& out) override;
void Mdir(const FermionField& in, FermionField& out, int dir, int disp) override;
void MdirAll(const FermionField& in, std::vector<FermionField>& out) override;
void MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) override;
void MooDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) override;
void MeeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) override;
/////////////////////////////////////////////
// Member functions (internals)
/////////////////////////////////////////////
void MooeeInternal(const FermionField& in,
FermionField& out,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle);
/////////////////////////////////////////////
// Helpers
/////////////////////////////////////////////
void ImportGauge(const GaugeField& _Umu) override;
/////////////////////////////////////////////
// Helpers
/////////////////////////////////////////////
private:
template<class Field>
const MaskField* getCorrectMaskField(const Field &in) const {
if(in.Grid()->_isCheckerBoarded) {
if(in.Checkerboard() == Odd) {
return &this->BoundaryMaskOdd;
} else {
return &this->BoundaryMaskEven;
}
} else {
return &this->BoundaryMask;
}
}
template<class Field>
void ApplyBoundaryMask(Field& f) {
const MaskField* m = getCorrectMaskField(f); assert(m != nullptr);
assert(m != nullptr);
CompactHelpers::ApplyBoundaryMask(f, *m);
}
/////////////////////////////////////////////
// Member Data
/////////////////////////////////////////////
public:
RealD csw_r;
RealD csw_t;
RealD cF;
bool open_boundaries;
CloverDiagonalField Diagonal, DiagonalEven, DiagonalOdd;
CloverDiagonalField DiagonalInv, DiagonalInvEven, DiagonalInvOdd;
CloverTriangleField Triangle, TriangleEven, TriangleOdd;
CloverTriangleField TriangleInv, TriangleInvEven, TriangleInvOdd;
FermionField Tmp;
MaskField BoundaryMask, BoundaryMaskEven, BoundaryMaskOdd;
};
NAMESPACE_END(Grid);

View File

@ -0,0 +1,185 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/DirichletFermionOperator.h
Copyright (C) 2021
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////////////////
// Wrap a fermion operator in Dirichlet BC's at node boundary
////////////////////////////////////////////////////////////////
template<class Impl>
class DirichletFermionOperator : public FermionOperator<Impl>
{
public:
INHERIT_IMPL_TYPES(Impl);
// Data members
int CommsMode;
Coordinate Block;
DirichletFilter<GaugeField> Filter;
FermionOperator<Impl> & FermOp;
// Constructor / bespoke
DirichletFermionOperator(FermionOperator<Impl> & _FermOp, Coordinate &_Block)
: FermOp(_FermOp), Block(_Block), Filter(Block)
{
// Save what the comms mode should be under normal BCs
CommsMode = WilsonKernelsStatic::Comms;
assert((CommsMode == WilsonKernelsStatic::CommsAndCompute)
||(CommsMode == WilsonKernelsStatic::CommsThenCompute));
// Check the block size divides local lattice
GridBase *grid = FermOp.GaugeGrid();
int blocks_per_rank = 1;
Coordinate LocalDims = grid->LocalDimensions();
Coordinate GlobalDims= grid->GlobalDimensions();
assert(Block.size()==LocalDims.size());
for(int d=0;d<LocalDims.size();d++){
if (Block[d]&&(Block[d]<=GlobalDims[d])){
int r = LocalDims[d] % Block[d];
assert(r == 0);
blocks_per_rank *= (LocalDims[d] / Block[d]);
}
}
// Even blocks per node required // could be relaxed but inefficient use of hardware as idle nodes in boundary operator R
assert( blocks_per_rank != 0);
// Possible checks that SIMD lanes are used with full occupancy???
};
virtual ~DirichletFermionOperator(void) = default;
void DirichletOn(void) {
assert(WilsonKernelsStatic::Comms!= WilsonKernelsStatic::CommsDirichlet);
// WilsonKernelsStatic::Comms = WilsonKernelsStatic::CommsDirichlet;
}
void DirichletOff(void) {
// assert(WilsonKernelsStatic::Comms== WilsonKernelsStatic::CommsDirichlet);
// WilsonKernelsStatic::Comms = CommsMode;
}
// Implement the full interface
virtual FermionField &tmp(void) { return FermOp.tmp(); };
virtual GridBase *FermionGrid(void) { return FermOp.FermionGrid(); }
virtual GridBase *FermionRedBlackGrid(void) { return FermOp.FermionRedBlackGrid(); }
virtual GridBase *GaugeGrid(void) { return FermOp.GaugeGrid(); }
virtual GridBase *GaugeRedBlackGrid(void) { return FermOp.GaugeRedBlackGrid(); }
// override multiply
virtual void M (const FermionField &in, FermionField &out) { DirichletOn(); FermOp.M(in,out); DirichletOff(); };
virtual void Mdag (const FermionField &in, FermionField &out) { DirichletOn(); FermOp.Mdag(in,out); DirichletOff(); };
// half checkerboard operaions
virtual void Meooe (const FermionField &in, FermionField &out) { DirichletOn(); FermOp.Meooe(in,out); DirichletOff(); };
virtual void MeooeDag (const FermionField &in, FermionField &out) { DirichletOn(); FermOp.MeooeDag(in,out); DirichletOff(); };
virtual void Mooee (const FermionField &in, FermionField &out) { DirichletOn(); FermOp.Mooee(in,out); DirichletOff(); };
virtual void MooeeDag (const FermionField &in, FermionField &out) { DirichletOn(); FermOp.MooeeDag(in,out); DirichletOff(); };
virtual void MooeeInv (const FermionField &in, FermionField &out) { DirichletOn(); FermOp.MooeeInv(in,out); DirichletOff(); };
virtual void MooeeInvDag (const FermionField &in, FermionField &out) { DirichletOn(); FermOp.MooeeInvDag(in,out); DirichletOff(); };
// non-hermitian hopping term; half cb or both
virtual void Dhop (const FermionField &in, FermionField &out,int dag) { DirichletOn(); FermOp.Dhop(in,out,dag); DirichletOff(); };
virtual void DhopOE(const FermionField &in, FermionField &out,int dag) { DirichletOn(); FermOp.DhopOE(in,out,dag); DirichletOff(); };
virtual void DhopEO(const FermionField &in, FermionField &out,int dag) { DirichletOn(); FermOp.DhopEO(in,out,dag); DirichletOff(); };
virtual void DhopDir(const FermionField &in, FermionField &out,int dir,int disp) { DirichletOn(); FermOp.DhopDir(in,out,dir,disp); DirichletOff(); };
// force terms; five routines; default to Dhop on diagonal
virtual void MDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag){FermOp.MDeriv(mat,U,V,dag);};
virtual void MoeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){FermOp.MoeDeriv(mat,U,V,dag);};
virtual void MeoDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){FermOp.MeoDeriv(mat,U,V,dag);};
virtual void MooDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){FermOp.MooDeriv(mat,U,V,dag);};
virtual void MeeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){FermOp.MeeDeriv(mat,U,V,dag);};
virtual void DhopDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag){FermOp.DhopDeriv(mat,U,V,dag);};
virtual void DhopDerivEO(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){FermOp.DhopDerivEO(mat,U,V,dag);};
virtual void DhopDerivOE(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){FermOp.DhopDerivOE(mat,U,V,dag);};
virtual void Mdiag (const FermionField &in, FermionField &out) { Mooee(in,out);};
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp){FermOp.Mdir(in,out,dir,disp);};
virtual void MdirAll(const FermionField &in, std::vector<FermionField> &out) {FermOp.MdirAll(in,out);};
///////////////////////////////////////////////
// Updates gauge field during HMC
///////////////////////////////////////////////
DoubledGaugeField &GetDoubledGaugeField(void){ return FermOp.GetDoubledGaugeField(); };
DoubledGaugeField &GetDoubledGaugeFieldE(void){ return FermOp.GetDoubledGaugeFieldE(); };
DoubledGaugeField &GetDoubledGaugeFieldO(void){ return FermOp.GetDoubledGaugeFieldO(); };
virtual void ImportGauge(const GaugeField & _U)
{
GaugeField U = _U;
// Filter gauge field to apply Dirichlet
Filter.applyFilter(U);
FermOp.ImportGauge(U);
}
///////////////////////////////////////////////
// Physical field import/export
///////////////////////////////////////////////
virtual void Dminus(const FermionField &psi, FermionField &chi) { FermOp.Dminus(psi,chi); }
virtual void DminusDag(const FermionField &psi, FermionField &chi) { FermOp.DminusDag(psi,chi); }
virtual void ImportFourDimPseudoFermion(const FermionField &input,FermionField &imported) { FermOp.ImportFourDimPseudoFermion(input,imported);}
virtual void ExportFourDimPseudoFermion(const FermionField &solution,FermionField &exported){ FermOp.ExportFourDimPseudoFermion(solution,exported);}
virtual void ImportPhysicalFermionSource(const FermionField &input,FermionField &imported) { FermOp.ImportPhysicalFermionSource(input,imported);}
virtual void ImportUnphysicalFermion(const FermionField &input,FermionField &imported) { FermOp.ImportUnphysicalFermion(input,imported);}
virtual void ExportPhysicalFermionSolution(const FermionField &solution,FermionField &exported) {FermOp.ExportPhysicalFermionSolution(solution,exported);}
virtual void ExportPhysicalFermionSource(const FermionField &solution,FermionField &exported) {FermOp.ExportPhysicalFermionSource(solution,exported);}
//////////////////////////////////////////////////////////////////////
// Should never be used
//////////////////////////////////////////////////////////////////////
virtual void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) { assert(0);};
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary,std::vector<double> twist) {assert(0);}
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) { assert(0);}
virtual void ContractConservedCurrent(PropagatorField &q_in_1,
PropagatorField &q_in_2,
PropagatorField &q_out,
PropagatorField &phys_src,
Current curr_type,
unsigned int mu)
{assert(0);};
virtual void SeqConservedCurrent(PropagatorField &q_in,
PropagatorField &q_out,
PropagatorField &phys_src,
Current curr_type,
unsigned int mu,
unsigned int tmin,
unsigned int tmax,
ComplexField &lattice_cmplx)
{assert(0);};
// Only reimplemented in Wilson5D
// Default to just a zero correlation function
virtual void ContractJ5q(FermionField &q_in ,ComplexField &J5q) { J5q=Zero(); };
virtual void ContractJ5q(PropagatorField &q_in,ComplexField &J5q) { J5q=Zero(); };
};
NAMESPACE_END(Grid);

View File

@ -53,7 +53,6 @@ NAMESPACE_CHECK(Wilson);
#include <Grid/qcd/action/fermion/WilsonTMFermion.h> // 4d wilson like
NAMESPACE_CHECK(WilsonTM);
#include <Grid/qcd/action/fermion/WilsonCloverFermion.h> // 4d wilson clover fermions
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h> // 4d compact wilson clover fermions
NAMESPACE_CHECK(WilsonClover);
#include <Grid/qcd/action/fermion/WilsonFermion5D.h> // 5d base used by all 5d overlap types
NAMESPACE_CHECK(Wilson5D);
@ -102,6 +101,12 @@ NAMESPACE_CHECK(WilsonTM5);
#include <Grid/qcd/action/fermion/PauliVillarsInverters.h>
#include <Grid/qcd/action/fermion/Reconstruct5Dprop.h>
#include <Grid/qcd/action/fermion/MADWF.h>
////////////////////////////////////////////////////////////////////
// DDHMC related
////////////////////////////////////////////////////////////////////
#include <Grid/qcd/action/fermion/DirichletFermionOperator.h>
#include <Grid/qcd/action/fermion/SchurFactoredFermionOperator.h>
NAMESPACE_CHECK(DWFutils);
////////////////////////////////////////////////////////////////////////////////////////////////////
@ -154,23 +159,6 @@ typedef WilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplR> WilsonCloverTwoInd
typedef WilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonCloverTwoIndexAntiSymmetricFermionF;
typedef WilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiSymmetricFermionD;
// Compact Clover fermions
typedef CompactWilsonCloverFermion<WilsonImplR> CompactWilsonCloverFermionR;
typedef CompactWilsonCloverFermion<WilsonImplF> CompactWilsonCloverFermionF;
typedef CompactWilsonCloverFermion<WilsonImplD> CompactWilsonCloverFermionD;
typedef CompactWilsonCloverFermion<WilsonAdjImplR> CompactWilsonCloverAdjFermionR;
typedef CompactWilsonCloverFermion<WilsonAdjImplF> CompactWilsonCloverAdjFermionF;
typedef CompactWilsonCloverFermion<WilsonAdjImplD> CompactWilsonCloverAdjFermionD;
typedef CompactWilsonCloverFermion<WilsonTwoIndexSymmetricImplR> CompactWilsonCloverTwoIndexSymmetricFermionR;
typedef CompactWilsonCloverFermion<WilsonTwoIndexSymmetricImplF> CompactWilsonCloverTwoIndexSymmetricFermionF;
typedef CompactWilsonCloverFermion<WilsonTwoIndexSymmetricImplD> CompactWilsonCloverTwoIndexSymmetricFermionD;
typedef CompactWilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplR> CompactWilsonCloverTwoIndexAntiSymmetricFermionR;
typedef CompactWilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplF> CompactWilsonCloverTwoIndexAntiSymmetricFermionF;
typedef CompactWilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplD> CompactWilsonCloverTwoIndexAntiSymmetricFermionD;
// Domain Wall fermions
typedef DomainWallFermion<WilsonImplR> DomainWallFermionR;
typedef DomainWallFermion<WilsonImplF> DomainWallFermionF;

View File

@ -25,8 +25,7 @@ Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_QCD_FERMION_CORE_H
#define GRID_QCD_FERMION_CORE_H
#pragma once
#include <Grid/GridCore.h>
#include <Grid/GridQCDcore.h>
@ -45,4 +44,3 @@ NAMESPACE_CHECK(FermionOperator);
#include <Grid/qcd/action/fermion/StaggeredKernels.h> //used by all wilson type fermions
NAMESPACE_CHECK(Kernels);
#endif

View File

@ -140,6 +140,9 @@ public:
// Updates gauge field during HMC
///////////////////////////////////////////////
virtual void ImportGauge(const GaugeField & _U)=0;
virtual DoubledGaugeField &GetDoubledGaugeField(void) =0;
virtual DoubledGaugeField &GetDoubledGaugeFieldE(void) =0;
virtual DoubledGaugeField &GetDoubledGaugeFieldO(void) =0;
//////////////////////////////////////////////////////////////////////
// Conserved currents, either contract at sink or insert sequentially.
@ -171,6 +174,16 @@ public:
///////////////////////////////////////////////
virtual void Dminus(const FermionField &psi, FermionField &chi) { chi=psi; }
virtual void DminusDag(const FermionField &psi, FermionField &chi) { chi=psi; }
virtual void ImportFourDimPseudoFermion(const FermionField &input,FermionField &imported)
{
imported = input;
};
virtual void ExportFourDimPseudoFermion(const FermionField &solution,FermionField &exported)
{
exported=solution;
};
virtual void ImportPhysicalFermionSource(const FermionField &input,FermionField &imported)
{
imported = input;

View File

@ -141,8 +141,11 @@ public:
void ImportGauge(const GaugeField &_Uthin, const GaugeField &_Ufat);
void ImportGaugeSimple(const GaugeField &_UUU ,const GaugeField &_U);
void ImportGaugeSimple(const DoubledGaugeField &_UUU,const DoubledGaugeField &_U);
DoubledGaugeField &GetU(void) { return Umu ; } ;
DoubledGaugeField &GetUUU(void) { return UUUmu; };
virtual DoubledGaugeField &GetDoubledGaugeField(void) override { return Umu; };
virtual DoubledGaugeField &GetDoubledGaugeFieldE(void) override { return UmuEven; };
virtual DoubledGaugeField &GetDoubledGaugeFieldO(void) override { return UmuOdd; };
virtual DoubledGaugeField &GetU(void) { return Umu ; } ;
virtual DoubledGaugeField &GetUUU(void) { return UUUmu; };
void CopyGaugeCheckerboards(void);
///////////////////////////////////////////////////////////////

View File

@ -160,17 +160,20 @@ public:
RealD _c1=1.0, RealD _c2=1.0,RealD _u0=1.0,
const ImplParams &p= ImplParams());
// DoubleStore gauge field in operator
void ImportGauge (const GaugeField &_Uthin ) { assert(0); }
// DoubleStore gauge field in operator
void ImportGauge (const GaugeField &_Uthin ) { assert(0); }
void ImportGauge(const GaugeField &_Uthin,const GaugeField &_Ufat);
void ImportGaugeSimple(const GaugeField &_UUU,const GaugeField &_U);
void ImportGaugeSimple(const DoubledGaugeField &_UUU,const DoubledGaugeField &_U);
// Give a reference; can be used to do an assignment or copy back out after import
// if Carleton wants to cache them and not use the ImportSimple
DoubledGaugeField &GetU(void) { return Umu ; } ;
DoubledGaugeField &GetUUU(void) { return UUUmu; };
void CopyGaugeCheckerboards(void);
void ImportGaugeSimple(const GaugeField &_UUU,const GaugeField &_U);
void ImportGaugeSimple(const DoubledGaugeField &_UUU,const DoubledGaugeField &_U);
// Give a reference; can be used to do an assignment or copy back out after import
// if Carleton wants to cache them and not use the ImportSimple
virtual DoubledGaugeField &GetDoubledGaugeField(void) override { return Umu; };
virtual DoubledGaugeField &GetDoubledGaugeFieldE(void) override { return UmuEven; };
virtual DoubledGaugeField &GetDoubledGaugeFieldO(void) override { return UmuOdd; };
DoubledGaugeField &GetU(void) { return Umu ; } ;
DoubledGaugeField &GetUUU(void) { return UUUmu; };
void CopyGaugeCheckerboards(void);
///////////////////////////////////////////////////////////////
// Data members require to support the functionality
///////////////////////////////////////////////////////////////

View File

@ -135,6 +135,9 @@ public:
// DoubleStore impl dependent
void ImportGauge (const GaugeField &_U );
DoubledGaugeField &GetDoubledGaugeField(void){ return Umu; };
DoubledGaugeField &GetDoubledGaugeFieldE(void){ return UmuEven; };
DoubledGaugeField &GetDoubledGaugeFieldO(void){ return UmuOdd; };
DoubledGaugeField &GetU(void) { return Umu ; } ;
void CopyGaugeCheckerboards(void);

View File

@ -0,0 +1,534 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/SchurFactoredFermionOperator.h
Copyright (C) 2021
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/qcd/utils/MixedPrecisionOperatorFunction.h>
#include <Grid/qcd/action/domains/Domains.h>
NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////////
// Some explanation of class structure for domain decomposition:
//
// Need a dirichlet operator for two flavour determinant - acts on both Omega and OmegaBar.
//
// Possible gain if the global sums and CG are run independently?? Could measure this.
//
// Types of operations
//
// 1) assemble local det dOmega det dOmegaBar pseudofermion
//
// - DirichletFermionOperator - can either do a global solve, or independent/per cell coefficients.
//
// 2) assemble dOmegaInverse and dOmegaBarInverse in R
//
// - DirichletFermionOperator - can also be used to
// - need two or more cells per node. Options
// - a) solve one cell at a time, no new code, CopyRegion and reduced /split Grids
// - b) solve multiple cells in parallel. predicated dslash implementation
//
// - b) has more parallelism, experience with block solver suggest might not be aalgorithmically inefficient
// a) has more cache friendly and easier code.
// b) is easy to implement in a "trial" or inefficient code with projection.
//
// 3) Additional functionality for domain operations
//
// - SchurFactoredFermionOperator - Need a DDHMC utility - whether used in two flavour or one flavour
//
// - dBoundary - needs non-dirichlet operator
// - Contains one Dirichlet Op, and one non-Dirichlet op. Implements dBoundary etc...
// - The Dirichlet ops can be passed to dOmega(Bar) solvers etc...
//
////////////////////////////////////////////////////////
template<class ImplD,class ImplF>
class SchurFactoredFermionOperator : public ImplD
{
INHERIT_IMPL_TYPES(ImplD);
typedef typename ImplF::FermionField FermionFieldF;
typedef typename ImplD::FermionField FermionFieldD;
typedef SchurDiagMooeeOperator<FermionOperator<ImplD>,FermionFieldD> LinearOperatorD;
typedef SchurDiagMooeeOperator<FermionOperator<ImplF>,FermionFieldF> LinearOperatorF;
typedef SchurDiagMooeeDagOperator<FermionOperator<ImplD>,FermionFieldD> LinearOperatorDagD;
typedef SchurDiagMooeeDagOperator<FermionOperator<ImplF>,FermionFieldF> LinearOperatorDagF;
typedef MixedPrecisionConjugateGradientOperatorFunction<FermionOperator<ImplD>,
FermionOperator<ImplF>,
LinearOperatorD,
LinearOperatorF> MxPCG;
typedef MixedPrecisionConjugateGradientOperatorFunction<FermionOperator<ImplD>,
FermionOperator<ImplF>,
LinearOperatorDagD,
LinearOperatorDagF> MxDagPCG;
public:
GridBase *FermionGrid(void) { return PeriodicFermOpD.FermionGrid(); };
GridBase *GaugeGrid(void) { return PeriodicFermOpD.GaugeGrid(); };
FermionOperator<ImplD> & DirichletFermOpD;
FermionOperator<ImplF> & DirichletFermOpF;
FermionOperator<ImplD> & PeriodicFermOpD;
FermionOperator<ImplF> & PeriodicFermOpF;
LinearOperatorD DirichletLinOpD;
LinearOperatorF DirichletLinOpF;
LinearOperatorD PeriodicLinOpD;
LinearOperatorF PeriodicLinOpF;
LinearOperatorDagD DirichletLinOpDagD;
LinearOperatorDagF DirichletLinOpDagF;
LinearOperatorDagD PeriodicLinOpDagD;
LinearOperatorDagF PeriodicLinOpDagF;
// Can tinker with these in the pseudofermion for force vs. action solves
Integer maxinnerit;
Integer maxouterit;
RealD tol;
RealD tolinner;
Coordinate Block;
DomainDecomposition Domains;
SchurFactoredFermionOperator(FermionOperator<ImplD> & _PeriodicFermOpD,
FermionOperator<ImplF> & _PeriodicFermOpF,
FermionOperator<ImplD> & _DirichletFermOpD,
FermionOperator<ImplF> & _DirichletFermOpF,
Coordinate &_Block)
: Block(_Block), Domains(Block),
PeriodicFermOpD(_PeriodicFermOpD),
PeriodicFermOpF(_PeriodicFermOpF),
DirichletFermOpD(_DirichletFermOpD),
DirichletFermOpF(_DirichletFermOpF),
DirichletLinOpD(DirichletFermOpD),
DirichletLinOpF(DirichletFermOpF),
PeriodicLinOpD(PeriodicFermOpD),
PeriodicLinOpF(PeriodicFermOpF),
DirichletLinOpDagD(DirichletFermOpD),
DirichletLinOpDagF(DirichletFermOpF),
PeriodicLinOpDagD(PeriodicFermOpD),
PeriodicLinOpDagF(PeriodicFermOpF)
{
tol=1.0e-10;
tolinner=1.0e-6;
maxinnerit=1000;
maxouterit=10;
assert(PeriodicFermOpD.FermionGrid() == DirichletFermOpD.FermionGrid());
assert(PeriodicFermOpF.FermionGrid() == DirichletFermOpF.FermionGrid());
};
enum Domain { Omega=0, OmegaBar=1 };
void ImportGauge(const GaugeField &Umu)
{
// Single precision will update in the mixed prec CG
PeriodicFermOpD.ImportGauge(Umu);
GaugeField dUmu(Umu.Grid());
dUmu=Umu;
// DirchletBCs(dUmu);
DirichletFilter<GaugeField> Filter(Block);
Filter.applyFilter(dUmu);
DirichletFermOpD.ImportGauge(dUmu);
}
/*
void ProjectBoundaryBothDomains (FermionField &f,int sgn)
{
assert((sgn==1)||(sgn==-1));
Real rsgn = sgn;
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
GridBase *grid = f.Grid();
LatticeInteger coor(grid);
LatticeInteger face(grid);
LatticeInteger one(grid); one = 1;
LatticeInteger zero(grid); zero = 0;
LatticeInteger nface(grid); nface=Zero();
FermionField projected(grid); projected=Zero();
FermionField sp_proj (grid);
int dims = grid->Nd();
int isDWF= (dims==Nd+1);
assert((dims==Nd)||(dims==Nd+1));
Coordinate Global=grid->GlobalDimensions();
for(int mu=0;mu<Nd;mu++){
if ( Block[mu] <= Global[mu+isDWF] ) {
// need to worry about DWF 5th dim first
LatticeCoordinate(coor,mu+isDWF);
face = where(mod(coor,Block[mu]) == Integer(0),one,zero );
nface = nface + face;
Gamma G(Gmu[mu]);
// Lower face receives (1-gamma)/2 in normal forward hopping term
sp_proj = 0.5*(f-G*f*rsgn);
projected= where(face,sp_proj,projected);
//projected= where(face,f,projected);
face = where(mod(coor,Block[mu]) == Integer(Block[mu]-1) ,one,zero );
nface = nface + face;
// Upper face receives (1+gamma)/2 in normal backward hopping term
sp_proj = 0.5*(f+G*f*rsgn);
projected= where(face,sp_proj,projected);
//projected= where(face,f,projected);
}
}
// Initial Zero() where nface==0.
// Keep the spin projected faces where nface==1
// Full spinor where nface>=2
projected = where(nface>Integer(1),f,projected);
f=projected;
}
*/
void ProjectBoundaryBothDomains (FermionField &f,int sgn)
{
assert((sgn==1)||(sgn==-1));
Real rsgn = sgn;
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
GridBase *grid = f.Grid();
LatticeInteger coor(grid);
LatticeInteger face(grid);
LatticeInteger one(grid); one = 1;
LatticeInteger zero(grid); zero = 0;
LatticeInteger omega(grid);
LatticeInteger omegabar(grid);
LatticeInteger tmp(grid);
omega=one; Domains.ProjectDomain(omega,0);
omegabar=one; Domains.ProjectDomain(omegabar,1);
LatticeInteger nface(grid); nface=Zero();
FermionField projected(grid); projected=Zero();
FermionField sp_proj (grid);
int dims = grid->Nd();
int isDWF= (dims==Nd+1);
assert((dims==Nd)||(dims==Nd+1));
Coordinate Global=grid->GlobalDimensions();
for(int mmu=0;mmu<Nd;mmu++){
Gamma G(Gmu[mmu]);
// need to worry about DWF 5th dim first
int mu = mmu+isDWF;
if ( Block[mmu] && (Block[mmu] <= Global[mu]) ) {
// Lower face receives (1-gamma)/2 in normal forward hopping term
tmp = Cshift(omegabar,mu,-1);
tmp = tmp + omega;
face = where(tmp == Integer(2),one,zero );
tmp = Cshift(omega,mu,-1);
tmp = tmp + omegabar;
face = where(tmp == Integer(2),one,face );
nface = nface + face;
sp_proj = 0.5*(f-G*f*rsgn);
projected= where(face,sp_proj,projected);
// Upper face receives (1+gamma)/2 in normal backward hopping term
tmp = Cshift(omegabar,mu,1);
tmp = tmp + omega;
face = where(tmp == Integer(2),one,zero );
tmp = Cshift(omega,mu,1);
tmp = tmp + omegabar;
face = where(tmp == Integer(2),one,face );
nface = nface + face;
sp_proj = 0.5*(f+G*f*rsgn);
projected= where(face,sp_proj,projected);
}
}
// Initial Zero() where nface==0.
// Keep the spin projected faces where nface==1
// Full spinor where nface>=2
projected = where(nface>Integer(1),f,projected);
f=projected;
}
void ProjectDomain(FermionField &f,int domain)
{
/*
GridBase *grid = f.Grid();
int dims = grid->Nd();
int isDWF= (dims==Nd+1);
assert((dims==Nd)||(dims==Nd+1));
FermionField zz(grid); zz=Zero();
LatticeInteger coor(grid);
LatticeInteger domaincb(grid); domaincb=Zero();
for(int d=0;d<Nd;d++){
LatticeCoordinate(coor,d+isDWF);
domaincb = domaincb + div(coor,Block[d]);
}
f = where(mod(domaincb,2)==Integer(domain),f,zz);
*/
Domains.ProjectDomain(f,domain);
};
void ProjectOmegaBar (FermionField &f) {ProjectDomain(f,OmegaBar);}
void ProjectOmega (FermionField &f) {ProjectDomain(f,Omega);}
// See my notes(!).
// Notation: Following Luscher, we introduce projectors $\hPdb$ with both spinor and space structure
// projecting all spinor elements in $\Omega$ connected by $\Ddb$ to $\bar{\Omega}$,
void ProjectBoundaryBar(FermionField &f)
{
ProjectBoundaryBothDomains(f,1);
ProjectOmega(f);
}
// and $\hPd$ projecting all spinor elements in $\bar{\Omega}$ connected by $\Dd$ to $\Omega$.
void ProjectBoundary (FermionField &f)
{
ProjectBoundaryBothDomains(f,1);
ProjectOmegaBar(f);
// DumpSliceNorm("ProjectBoundary",f,f.Grid()->Nd()-1);
};
void dBoundary (FermionField &in,FermionField &out)
{
FermionField tmp(in);
ProjectOmegaBar(tmp);
PeriodicFermOpD.M(tmp,out);
ProjectOmega(out);
};
void dBoundaryDag (FermionField &in,FermionField &out)
{
FermionField tmp(in);
ProjectOmega(tmp);
PeriodicFermOpD.Mdag(tmp,out);
ProjectOmegaBar(out);
};
void dBoundaryBar (FermionField &in,FermionField &out)
{
FermionField tmp(in);
ProjectOmega(tmp);
PeriodicFermOpD.M(tmp,out);
ProjectOmegaBar(out);
};
void dBoundaryBarDag (FermionField &in,FermionField &out)
{
FermionField tmp(in);
ProjectOmegaBar(tmp);
PeriodicFermOpD.Mdag(tmp,out);
ProjectOmega(out);
};
void dOmega (FermionField &in,FermionField &out)
{
FermionField tmp(in);
ProjectOmega(tmp);
DirichletFermOpD.M(tmp,out);
ProjectOmega(out);
};
void dOmegaBar (FermionField &in,FermionField &out)
{
FermionField tmp(in);
ProjectOmegaBar(tmp);
DirichletFermOpD.M(tmp,out);
ProjectOmegaBar(out);
};
void dOmegaDag (FermionField &in,FermionField &out)
{
FermionField tmp(in);
ProjectOmega(tmp);
DirichletFermOpD.Mdag(tmp,out);
ProjectOmega(out);
};
void dOmegaBarDag (FermionField &in,FermionField &out)
{
FermionField tmp(in);
ProjectOmegaBar(tmp);
DirichletFermOpD.Mdag(tmp,out);
ProjectOmegaBar(out);
};
void dOmegaInv (FermionField &in,FermionField &out)
{
FermionField tmp(in);
ProjectOmega(tmp);
dOmegaInvAndOmegaBarInv(tmp,out); // Inefficient warning
ProjectOmega(out);
};
void dOmegaBarInv(FermionField &in,FermionField &out)
{
FermionField tmp(in);
ProjectOmegaBar(tmp);
dOmegaInvAndOmegaBarInv(tmp,out);
ProjectOmegaBar(out);
};
void dOmegaDagInv (FermionField &in,FermionField &out)
{
FermionField tmp(in);
ProjectOmega(tmp);
dOmegaDagInvAndOmegaBarDagInv(tmp,out);
ProjectOmega(out);
};
void dOmegaBarDagInv(FermionField &in,FermionField &out)
{
FermionField tmp(in);
ProjectOmegaBar(tmp);
dOmegaDagInvAndOmegaBarDagInv(tmp,out);
ProjectOmegaBar(out);
};
void dOmegaInvAndOmegaBarInv(FermionField &in,FermionField &out)
{
MxPCG OmegaSolver(tol,
tolinner,
maxinnerit,
maxouterit,
DirichletFermOpF.FermionRedBlackGrid(),
DirichletFermOpF,
DirichletFermOpD,
DirichletLinOpF,
DirichletLinOpD);
SchurRedBlackDiagMooeeSolve<FermionField> PrecSolve(OmegaSolver);
PrecSolve(DirichletFermOpD,in,out);
};
void dOmegaDagInvAndOmegaBarDagInv(FermionField &in,FermionField &out)
{
MxDagPCG OmegaDagSolver(tol,
tolinner,
maxinnerit,
maxouterit,
DirichletFermOpF.FermionRedBlackGrid(),
DirichletFermOpF,
DirichletFermOpD,
DirichletLinOpDagF,
DirichletLinOpDagD);
SchurRedBlackDiagMooeeDagSolve<FermionField> PrecSolve(OmegaDagSolver);
PrecSolve(DirichletFermOpD,in,out);
};
// Rdag = Pdbar - DdbarDag DomegabarDagInv DdDag DomegaDagInv Pdbar
void RDag(FermionField &in,FermionField &out)
{
FermionField tmp1(PeriodicFermOpD.FermionGrid());
FermionField tmp2(PeriodicFermOpD.FermionGrid());
out = in;
ProjectBoundaryBar(out);
dOmegaDagInv(out,tmp1);
dBoundaryDag(tmp1,tmp2);
dOmegaBarDagInv(tmp2,tmp1);
dBoundaryBarDag(tmp1,tmp2);
out = out - tmp2;
};
// R = Pdbar - Pdbar DomegaInv Dd DomegabarInv Ddbar
void R(FermionField &in,FermionField &out)
{
FermionField tmp1(PeriodicFermOpD.FermionGrid());
FermionField tmp2(PeriodicFermOpD.FermionGrid());
out = in;
ProjectBoundaryBar(out);
dBoundaryBar(out,tmp1);
dOmegaBarInv(tmp1,tmp2);
dBoundary(tmp2,tmp1);
dOmegaInv(tmp1,tmp2);
out = in - tmp2 ;
ProjectBoundaryBar(out);
// DumpSliceNorm("R",out,out.Grid()->Nd()-1);
};
// R = Pdbar - Pdbar Dinv Ddbar
void RInv(FermionField &in,FermionField &out)
{
FermionField tmp1(PeriodicFermOpD.FermionGrid());
dBoundaryBar(in,out);
Dinverse(out,tmp1);
out =in -tmp1;
ProjectBoundaryBar(out);
};
// R = Pdbar - DdbarDag DinvDag Pdbar
void RDagInv(FermionField &in,FermionField &out)
{
FermionField tmp(PeriodicFermOpD.FermionGrid());
FermionField Pin(PeriodicFermOpD.FermionGrid());
Pin = in; ProjectBoundaryBar(Pin);
DinverseDag(Pin,out);
dBoundaryBarDag(out,tmp);
out =Pin -tmp;
};
// Non-dirichlet inverter using red-black preconditioning
void Dinverse(FermionField &in,FermionField &out)
{
MxPCG DSolver(tol,
tolinner,
maxinnerit,
maxouterit,
PeriodicFermOpF.FermionRedBlackGrid(),
PeriodicFermOpF,
PeriodicFermOpD,
PeriodicLinOpF,
PeriodicLinOpD);
SchurRedBlackDiagMooeeSolve<FermionField> Solve(DSolver);
Solve(PeriodicFermOpD,in,out);
}
void DinverseDag(FermionField &in,FermionField &out)
{
MxDagPCG DdagSolver(tol,
tolinner,
maxinnerit,
maxouterit,
PeriodicFermOpF.FermionRedBlackGrid(),
PeriodicFermOpF,
PeriodicFermOpD,
PeriodicLinOpDagF,
PeriodicLinOpDagD);
SchurRedBlackDiagMooeeDagSolve<FermionField> Solve(DdagSolver);
Solve(PeriodicFermOpD,in,out);
}
};
NAMESPACE_END(Grid);

View File

@ -4,11 +4,10 @@
Source file: ./lib/qcd/action/fermion/WilsonCloverFermion.h
Copyright (C) 2017 - 2022
Copyright (C) 2017
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: David Preti <>
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -30,8 +29,7 @@
#pragma once
#include <Grid/qcd/action/fermion/WilsonCloverTypes.h>
#include <Grid/qcd/action/fermion/WilsonCloverHelpers.h>
#include <Grid/Grid.h>
NAMESPACE_BEGIN(Grid);
@ -52,15 +50,18 @@ NAMESPACE_BEGIN(Grid);
//////////////////////////////////////////////////////////////////
template <class Impl>
class WilsonCloverFermion : public WilsonFermion<Impl>,
public WilsonCloverHelpers<Impl>
class WilsonCloverFermion : public WilsonFermion<Impl>
{
public:
// Types definitions
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
template <typename vtype>
using iImplClover = iScalar<iMatrix<iMatrix<vtype, Impl::Dimension>, Ns>>;
typedef iImplClover<Simd> SiteCloverType;
typedef Lattice<SiteCloverType> CloverFieldType;
typedef WilsonFermion<Impl> WilsonBase;
typedef WilsonCloverHelpers<Impl> Helpers;
public:
typedef WilsonFermion<Impl> WilsonBase;
virtual int ConstEE(void) { return 0; };
virtual void Instantiatable(void){};
@ -71,7 +72,42 @@ public:
const RealD _csw_r = 0.0,
const RealD _csw_t = 0.0,
const WilsonAnisotropyCoefficients &clover_anisotropy = WilsonAnisotropyCoefficients(),
const ImplParams &impl_p = ImplParams());
const ImplParams &impl_p = ImplParams()) : WilsonFermion<Impl>(_Umu,
Fgrid,
Hgrid,
_mass, impl_p, clover_anisotropy),
CloverTerm(&Fgrid),
CloverTermInv(&Fgrid),
CloverTermEven(&Hgrid),
CloverTermOdd(&Hgrid),
CloverTermInvEven(&Hgrid),
CloverTermInvOdd(&Hgrid),
CloverTermDagEven(&Hgrid),
CloverTermDagOdd(&Hgrid),
CloverTermInvDagEven(&Hgrid),
CloverTermInvDagOdd(&Hgrid)
{
assert(Nd == 4); // require 4 dimensions
if (clover_anisotropy.isAnisotropic)
{
csw_r = _csw_r * 0.5 / clover_anisotropy.xi_0;
diag_mass = _mass + 1.0 + (Nd - 1) * (clover_anisotropy.nu / clover_anisotropy.xi_0);
}
else
{
csw_r = _csw_r * 0.5;
diag_mass = 4.0 + _mass;
}
csw_t = _csw_t * 0.5;
if (csw_r == 0)
std::cout << GridLogWarning << "Initializing WilsonCloverFermion with csw_r = 0" << std::endl;
if (csw_t == 0)
std::cout << GridLogWarning << "Initializing WilsonCloverFermion with csw_t = 0" << std::endl;
ImportGauge(_Umu);
}
virtual void M(const FermionField &in, FermionField &out);
virtual void Mdag(const FermionField &in, FermionField &out);
@ -88,21 +124,250 @@ public:
void ImportGauge(const GaugeField &_Umu);
// Derivative parts unpreconditioned pseudofermions
void MDeriv(GaugeField &force, const FermionField &X, const FermionField &Y, int dag);
void MDeriv(GaugeField &force, const FermionField &X, const FermionField &Y, int dag)
{
conformable(X.Grid(), Y.Grid());
conformable(X.Grid(), force.Grid());
GaugeLinkField force_mu(force.Grid()), lambda(force.Grid());
GaugeField clover_force(force.Grid());
PropagatorField Lambda(force.Grid());
public:
// Guido: Here we are hitting some performance issues:
// need to extract the components of the DoubledGaugeField
// for each call
// Possible solution
// Create a vector object to store them? (cons: wasting space)
std::vector<GaugeLinkField> U(Nd, this->Umu.Grid());
Impl::extractLinkField(U, this->Umu);
force = Zero();
// Derivative of the Wilson hopping term
this->DhopDeriv(force, X, Y, dag);
///////////////////////////////////////////////////////////
// Clover term derivative
///////////////////////////////////////////////////////////
Impl::outerProductImpl(Lambda, X, Y);
//std::cout << "Lambda:" << Lambda << std::endl;
Gamma::Algebra sigma[] = {
Gamma::Algebra::SigmaXY,
Gamma::Algebra::SigmaXZ,
Gamma::Algebra::SigmaXT,
Gamma::Algebra::MinusSigmaXY,
Gamma::Algebra::SigmaYZ,
Gamma::Algebra::SigmaYT,
Gamma::Algebra::MinusSigmaXZ,
Gamma::Algebra::MinusSigmaYZ,
Gamma::Algebra::SigmaZT,
Gamma::Algebra::MinusSigmaXT,
Gamma::Algebra::MinusSigmaYT,
Gamma::Algebra::MinusSigmaZT};
/*
sigma_{\mu \nu}=
| 0 sigma[0] sigma[1] sigma[2] |
| sigma[3] 0 sigma[4] sigma[5] |
| sigma[6] sigma[7] 0 sigma[8] |
| sigma[9] sigma[10] sigma[11] 0 |
*/
int count = 0;
clover_force = Zero();
for (int mu = 0; mu < 4; mu++)
{
force_mu = Zero();
for (int nu = 0; nu < 4; nu++)
{
if (mu == nu)
continue;
RealD factor;
if (nu == 4 || mu == 4)
{
factor = 2.0 * csw_t;
}
else
{
factor = 2.0 * csw_r;
}
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
force_mu -= factor*Cmunu(U, lambda, mu, nu); // checked
count++;
}
pokeLorentz(clover_force, U[mu] * force_mu, mu);
}
//clover_force *= csw;
force += clover_force;
}
// Computing C_{\mu \nu}(x) as in Eq.(B.39) in Zbigniew Sroczynski's PhD thesis
GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu)
{
conformable(lambda.Grid(), U[0].Grid());
GaugeLinkField out(lambda.Grid()), tmp(lambda.Grid());
// insertion in upper staple
// please check redundancy of shift operations
// C1+
tmp = lambda * U[nu];
out = Impl::ShiftStaple(Impl::CovShiftForward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
// C2+
tmp = U[mu] * Impl::ShiftStaple(adj(lambda), mu);
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(tmp, mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
// C3+
tmp = U[nu] * Impl::ShiftStaple(adj(lambda), nu);
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(tmp, nu))), mu);
// C4+
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu) * lambda;
// insertion in lower staple
// C1-
out -= Impl::ShiftStaple(lambda, mu) * Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu);
// C2-
tmp = adj(lambda) * U[nu];
out -= Impl::ShiftStaple(Impl::CovShiftBackward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu);
// C3-
tmp = lambda * U[nu];
out -= Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, tmp)), mu);
// C4-
out -= Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu) * lambda;
return out;
}
protected:
// here fixing the 4 dimensions, make it more general?
RealD csw_r; // Clover coefficient - spatial
RealD csw_t; // Clover coefficient - temporal
RealD diag_mass; // Mass term
CloverField CloverTerm, CloverTermInv; // Clover term
CloverField CloverTermEven, CloverTermOdd; // Clover term EO
CloverField CloverTermInvEven, CloverTermInvOdd; // Clover term Inv EO
CloverField CloverTermDagEven, CloverTermDagOdd; // Clover term Dag EO
CloverField CloverTermInvDagEven, CloverTermInvDagOdd; // Clover term Inv Dag EO
};
CloverFieldType CloverTerm, CloverTermInv; // Clover term
CloverFieldType CloverTermEven, CloverTermOdd; // Clover term EO
CloverFieldType CloverTermInvEven, CloverTermInvOdd; // Clover term Inv EO
CloverFieldType CloverTermDagEven, CloverTermDagOdd; // Clover term Dag EO
CloverFieldType CloverTermInvDagEven, CloverTermInvDagOdd; // Clover term Inv Dag EO
public:
// eventually these can be compressed into 6x6 blocks instead of the 12x12
// using the DeGrand-Rossi basis for the gamma matrices
CloverFieldType fillCloverYZ(const GaugeLinkField &F)
{
CloverFieldType T(F.Grid());
T = Zero();
autoView(T_v,T,AcceleratorWrite);
autoView(F_v,F,AcceleratorRead);
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
{
T_v[i]()(0, 1) = timesMinusI(F_v[i]()());
T_v[i]()(1, 0) = timesMinusI(F_v[i]()());
T_v[i]()(2, 3) = timesMinusI(F_v[i]()());
T_v[i]()(3, 2) = timesMinusI(F_v[i]()());
});
return T;
}
CloverFieldType fillCloverXZ(const GaugeLinkField &F)
{
CloverFieldType T(F.Grid());
T = Zero();
autoView(T_v, T,AcceleratorWrite);
autoView(F_v, F,AcceleratorRead);
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
{
T_v[i]()(0, 1) = -F_v[i]()();
T_v[i]()(1, 0) = F_v[i]()();
T_v[i]()(2, 3) = -F_v[i]()();
T_v[i]()(3, 2) = F_v[i]()();
});
return T;
}
CloverFieldType fillCloverXY(const GaugeLinkField &F)
{
CloverFieldType T(F.Grid());
T = Zero();
autoView(T_v,T,AcceleratorWrite);
autoView(F_v,F,AcceleratorRead);
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
{
T_v[i]()(0, 0) = timesMinusI(F_v[i]()());
T_v[i]()(1, 1) = timesI(F_v[i]()());
T_v[i]()(2, 2) = timesMinusI(F_v[i]()());
T_v[i]()(3, 3) = timesI(F_v[i]()());
});
return T;
}
CloverFieldType fillCloverXT(const GaugeLinkField &F)
{
CloverFieldType T(F.Grid());
T = Zero();
autoView( T_v , T, AcceleratorWrite);
autoView( F_v , F, AcceleratorRead);
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
{
T_v[i]()(0, 1) = timesI(F_v[i]()());
T_v[i]()(1, 0) = timesI(F_v[i]()());
T_v[i]()(2, 3) = timesMinusI(F_v[i]()());
T_v[i]()(3, 2) = timesMinusI(F_v[i]()());
});
return T;
}
CloverFieldType fillCloverYT(const GaugeLinkField &F)
{
CloverFieldType T(F.Grid());
T = Zero();
autoView( T_v ,T,AcceleratorWrite);
autoView( F_v ,F,AcceleratorRead);
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
{
T_v[i]()(0, 1) = -(F_v[i]()());
T_v[i]()(1, 0) = (F_v[i]()());
T_v[i]()(2, 3) = (F_v[i]()());
T_v[i]()(3, 2) = -(F_v[i]()());
});
return T;
}
CloverFieldType fillCloverZT(const GaugeLinkField &F)
{
CloverFieldType T(F.Grid());
T = Zero();
autoView( T_v , T,AcceleratorWrite);
autoView( F_v , F,AcceleratorRead);
accelerator_for(i, CloverTerm.Grid()->oSites(),1,
{
T_v[i]()(0, 0) = timesI(F_v[i]()());
T_v[i]()(1, 1) = timesMinusI(F_v[i]()());
T_v[i]()(2, 2) = timesMinusI(F_v[i]()());
T_v[i]()(3, 3) = timesI(F_v[i]()());
});
return T;
}
};
NAMESPACE_END(Grid);

View File

@ -1,761 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonCloverHelpers.h
Copyright (C) 2021 - 2022
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
// Helper routines that implement common clover functionality
NAMESPACE_BEGIN(Grid);
template<class Impl> class WilsonCloverHelpers {
public:
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
// Computing C_{\mu \nu}(x) as in Eq.(B.39) in Zbigniew Sroczynski's PhD thesis
static GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu)
{
conformable(lambda.Grid(), U[0].Grid());
GaugeLinkField out(lambda.Grid()), tmp(lambda.Grid());
// insertion in upper staple
// please check redundancy of shift operations
// C1+
tmp = lambda * U[nu];
out = Impl::ShiftStaple(Impl::CovShiftForward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
// C2+
tmp = U[mu] * Impl::ShiftStaple(adj(lambda), mu);
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(tmp, mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
// C3+
tmp = U[nu] * Impl::ShiftStaple(adj(lambda), nu);
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(tmp, nu))), mu);
// C4+
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu) * lambda;
// insertion in lower staple
// C1-
out -= Impl::ShiftStaple(lambda, mu) * Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu);
// C2-
tmp = adj(lambda) * U[nu];
out -= Impl::ShiftStaple(Impl::CovShiftBackward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu);
// C3-
tmp = lambda * U[nu];
out -= Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, tmp)), mu);
// C4-
out -= Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu) * lambda;
return out;
}
static CloverField fillCloverYZ(const GaugeLinkField &F)
{
CloverField T(F.Grid());
T = Zero();
autoView(T_v,T,AcceleratorWrite);
autoView(F_v,F,AcceleratorRead);
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
{
coalescedWrite(T_v[i]()(0, 1), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(1, 0), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(2, 3), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(3, 2), coalescedRead(timesMinusI(F_v[i]()())));
});
return T;
}
static CloverField fillCloverXZ(const GaugeLinkField &F)
{
CloverField T(F.Grid());
T = Zero();
autoView(T_v, T,AcceleratorWrite);
autoView(F_v, F,AcceleratorRead);
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
{
coalescedWrite(T_v[i]()(0, 1), coalescedRead(-F_v[i]()()));
coalescedWrite(T_v[i]()(1, 0), coalescedRead(F_v[i]()()));
coalescedWrite(T_v[i]()(2, 3), coalescedRead(-F_v[i]()()));
coalescedWrite(T_v[i]()(3, 2), coalescedRead(F_v[i]()()));
});
return T;
}
static CloverField fillCloverXY(const GaugeLinkField &F)
{
CloverField T(F.Grid());
T = Zero();
autoView(T_v,T,AcceleratorWrite);
autoView(F_v,F,AcceleratorRead);
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
{
coalescedWrite(T_v[i]()(0, 0), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(1, 1), coalescedRead(timesI(F_v[i]()())));
coalescedWrite(T_v[i]()(2, 2), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(3, 3), coalescedRead(timesI(F_v[i]()())));
});
return T;
}
static CloverField fillCloverXT(const GaugeLinkField &F)
{
CloverField T(F.Grid());
T = Zero();
autoView( T_v , T, AcceleratorWrite);
autoView( F_v , F, AcceleratorRead);
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
{
coalescedWrite(T_v[i]()(0, 1), coalescedRead(timesI(F_v[i]()())));
coalescedWrite(T_v[i]()(1, 0), coalescedRead(timesI(F_v[i]()())));
coalescedWrite(T_v[i]()(2, 3), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(3, 2), coalescedRead(timesMinusI(F_v[i]()())));
});
return T;
}
static CloverField fillCloverYT(const GaugeLinkField &F)
{
CloverField T(F.Grid());
T = Zero();
autoView( T_v ,T,AcceleratorWrite);
autoView( F_v ,F,AcceleratorRead);
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
{
coalescedWrite(T_v[i]()(0, 1), coalescedRead(-(F_v[i]()())));
coalescedWrite(T_v[i]()(1, 0), coalescedRead((F_v[i]()())));
coalescedWrite(T_v[i]()(2, 3), coalescedRead((F_v[i]()())));
coalescedWrite(T_v[i]()(3, 2), coalescedRead(-(F_v[i]()())));
});
return T;
}
static CloverField fillCloverZT(const GaugeLinkField &F)
{
CloverField T(F.Grid());
T = Zero();
autoView( T_v , T,AcceleratorWrite);
autoView( F_v , F,AcceleratorRead);
accelerator_for(i, T.Grid()->oSites(),CloverField::vector_type::Nsimd(),
{
coalescedWrite(T_v[i]()(0, 0), coalescedRead(timesI(F_v[i]()())));
coalescedWrite(T_v[i]()(1, 1), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(2, 2), coalescedRead(timesMinusI(F_v[i]()())));
coalescedWrite(T_v[i]()(3, 3), coalescedRead(timesI(F_v[i]()())));
});
return T;
}
template<class _Spinor>
static accelerator_inline void multClover(_Spinor& phi, const SiteClover& C, const _Spinor& chi) {
auto CC = coalescedRead(C);
mult(&phi, &CC, &chi);
}
template<class _SpinorField>
inline void multCloverField(_SpinorField& out, const CloverField& C, const _SpinorField& phi) {
const int Nsimd = SiteSpinor::Nsimd();
autoView(out_v, out, AcceleratorWrite);
autoView(phi_v, phi, AcceleratorRead);
autoView(C_v, C, AcceleratorRead);
typedef decltype(coalescedRead(out_v[0])) calcSpinor;
accelerator_for(sss,out.Grid()->oSites(),Nsimd,{
calcSpinor tmp;
multClover(tmp,C_v[sss],phi_v(sss));
coalescedWrite(out_v[sss],tmp);
});
}
};
template<class Impl> class CompactWilsonCloverHelpers {
public:
INHERIT_COMPACT_CLOVER_SIZES(Impl);
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
INHERIT_COMPACT_CLOVER_TYPES(Impl);
#if 0
static accelerator_inline typename SiteCloverTriangle::vector_type triangle_elem(const SiteCloverTriangle& triangle, int block, int i, int j) {
assert(i != j);
if(i < j) {
return triangle()(block)(triangle_index(i, j));
} else { // i > j
return conjugate(triangle()(block)(triangle_index(i, j)));
}
}
#else
template<typename vobj>
static accelerator_inline vobj triangle_elem(const iImplCloverTriangle<vobj>& triangle, int block, int i, int j) {
assert(i != j);
if(i < j) {
return triangle()(block)(triangle_index(i, j));
} else { // i > j
return conjugate(triangle()(block)(triangle_index(i, j)));
}
}
#endif
static accelerator_inline int triangle_index(int i, int j) {
if(i == j)
return 0;
else if(i < j)
return Nred * (Nred - 1) / 2 - (Nred - i) * (Nred - i - 1) / 2 + j - i - 1;
else // i > j
return Nred * (Nred - 1) / 2 - (Nred - j) * (Nred - j - 1) / 2 + i - j - 1;
}
static void MooeeKernel_gpu(int Nsite,
int Ls,
const FermionField& in,
FermionField& out,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle) {
autoView(diagonal_v, diagonal, AcceleratorRead);
autoView(triangle_v, triangle, AcceleratorRead);
autoView(in_v, in, AcceleratorRead);
autoView(out_v, out, AcceleratorWrite);
typedef decltype(coalescedRead(out_v[0])) CalcSpinor;
const uint64_t NN = Nsite * Ls;
accelerator_for(ss, NN, Simd::Nsimd(), {
int sF = ss;
int sU = ss/Ls;
CalcSpinor res;
CalcSpinor in_t = in_v(sF);
auto diagonal_t = diagonal_v(sU);
auto triangle_t = triangle_v(sU);
for(int block=0; block<Nhs; block++) {
int s_start = block*Nhs;
for(int i=0; i<Nred; i++) {
int si = s_start + i/Nc, ci = i%Nc;
res()(si)(ci) = diagonal_t()(block)(i) * in_t()(si)(ci);
for(int j=0; j<Nred; j++) {
if (j == i) continue;
int sj = s_start + j/Nc, cj = j%Nc;
res()(si)(ci) = res()(si)(ci) + triangle_elem(triangle_t, block, i, j) * in_t()(sj)(cj);
};
};
};
coalescedWrite(out_v[sF], res);
});
}
static void MooeeKernel_cpu(int Nsite,
int Ls,
const FermionField& in,
FermionField& out,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle) {
autoView(diagonal_v, diagonal, CpuRead);
autoView(triangle_v, triangle, CpuRead);
autoView(in_v, in, CpuRead);
autoView(out_v, out, CpuWrite);
typedef SiteSpinor CalcSpinor;
#if defined(A64FX) || defined(A64FXFIXEDSIZE)
#define PREFETCH_CLOVER(BASE) { \
uint64_t base; \
int pf_dist_L1 = 1; \
int pf_dist_L2 = -5; /* -> penalty -> disable */ \
\
if ((pf_dist_L1 >= 0) && (sU + pf_dist_L1 < Nsite)) { \
base = (uint64_t)&diag_t()(pf_dist_L1+BASE)(0); \
svprfd(svptrue_b64(), (int64_t*)(base + 0), SV_PLDL1STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 256), SV_PLDL1STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 512), SV_PLDL1STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 768), SV_PLDL1STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 1024), SV_PLDL1STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 1280), SV_PLDL1STRM); \
} \
\
if ((pf_dist_L2 >= 0) && (sU + pf_dist_L2 < Nsite)) { \
base = (uint64_t)&diag_t()(pf_dist_L2+BASE)(0); \
svprfd(svptrue_b64(), (int64_t*)(base + 0), SV_PLDL2STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 256), SV_PLDL2STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 512), SV_PLDL2STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 768), SV_PLDL2STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 1024), SV_PLDL2STRM); \
svprfd(svptrue_b64(), (int64_t*)(base + 1280), SV_PLDL2STRM); \
} \
}
// TODO: Implement/generalize this for other architectures
// I played around a bit on KNL (see below) but didn't bring anything
// #elif defined(AVX512)
// #define PREFETCH_CLOVER(BASE) { \
// uint64_t base; \
// int pf_dist_L1 = 1; \
// int pf_dist_L2 = +4; \
// \
// if ((pf_dist_L1 >= 0) && (sU + pf_dist_L1 < Nsite)) { \
// base = (uint64_t)&diag_t()(pf_dist_L1+BASE)(0); \
// _mm_prefetch((const char*)(base + 0), _MM_HINT_T0); \
// _mm_prefetch((const char*)(base + 64), _MM_HINT_T0); \
// _mm_prefetch((const char*)(base + 128), _MM_HINT_T0); \
// _mm_prefetch((const char*)(base + 192), _MM_HINT_T0); \
// _mm_prefetch((const char*)(base + 256), _MM_HINT_T0); \
// _mm_prefetch((const char*)(base + 320), _MM_HINT_T0); \
// } \
// \
// if ((pf_dist_L2 >= 0) && (sU + pf_dist_L2 < Nsite)) { \
// base = (uint64_t)&diag_t()(pf_dist_L2+BASE)(0); \
// _mm_prefetch((const char*)(base + 0), _MM_HINT_T1); \
// _mm_prefetch((const char*)(base + 64), _MM_HINT_T1); \
// _mm_prefetch((const char*)(base + 128), _MM_HINT_T1); \
// _mm_prefetch((const char*)(base + 192), _MM_HINT_T1); \
// _mm_prefetch((const char*)(base + 256), _MM_HINT_T1); \
// _mm_prefetch((const char*)(base + 320), _MM_HINT_T1); \
// } \
// }
#else
#define PREFETCH_CLOVER(BASE)
#endif
const uint64_t NN = Nsite * Ls;
thread_for(ss, NN, {
int sF = ss;
int sU = ss/Ls;
CalcSpinor res;
CalcSpinor in_t = in_v[sF];
auto diag_t = diagonal_v[sU]; // "diag" instead of "diagonal" here to make code below easier to read
auto triangle_t = triangle_v[sU];
// upper half
PREFETCH_CLOVER(0);
auto in_cc_0_0 = conjugate(in_t()(0)(0)); // Nils: reduces number
auto in_cc_0_1 = conjugate(in_t()(0)(1)); // of conjugates from
auto in_cc_0_2 = conjugate(in_t()(0)(2)); // 30 to 20
auto in_cc_1_0 = conjugate(in_t()(1)(0));
auto in_cc_1_1 = conjugate(in_t()(1)(1));
res()(0)(0) = diag_t()(0)( 0) * in_t()(0)(0)
+ triangle_t()(0)( 0) * in_t()(0)(1)
+ triangle_t()(0)( 1) * in_t()(0)(2)
+ triangle_t()(0)( 2) * in_t()(1)(0)
+ triangle_t()(0)( 3) * in_t()(1)(1)
+ triangle_t()(0)( 4) * in_t()(1)(2);
res()(0)(1) = triangle_t()(0)( 0) * in_cc_0_0;
res()(0)(1) = diag_t()(0)( 1) * in_t()(0)(1)
+ triangle_t()(0)( 5) * in_t()(0)(2)
+ triangle_t()(0)( 6) * in_t()(1)(0)
+ triangle_t()(0)( 7) * in_t()(1)(1)
+ triangle_t()(0)( 8) * in_t()(1)(2)
+ conjugate( res()(0)( 1));
res()(0)(2) = triangle_t()(0)( 1) * in_cc_0_0
+ triangle_t()(0)( 5) * in_cc_0_1;
res()(0)(2) = diag_t()(0)( 2) * in_t()(0)(2)
+ triangle_t()(0)( 9) * in_t()(1)(0)
+ triangle_t()(0)(10) * in_t()(1)(1)
+ triangle_t()(0)(11) * in_t()(1)(2)
+ conjugate( res()(0)( 2));
res()(1)(0) = triangle_t()(0)( 2) * in_cc_0_0
+ triangle_t()(0)( 6) * in_cc_0_1
+ triangle_t()(0)( 9) * in_cc_0_2;
res()(1)(0) = diag_t()(0)( 3) * in_t()(1)(0)
+ triangle_t()(0)(12) * in_t()(1)(1)
+ triangle_t()(0)(13) * in_t()(1)(2)
+ conjugate( res()(1)( 0));
res()(1)(1) = triangle_t()(0)( 3) * in_cc_0_0
+ triangle_t()(0)( 7) * in_cc_0_1
+ triangle_t()(0)(10) * in_cc_0_2
+ triangle_t()(0)(12) * in_cc_1_0;
res()(1)(1) = diag_t()(0)( 4) * in_t()(1)(1)
+ triangle_t()(0)(14) * in_t()(1)(2)
+ conjugate( res()(1)( 1));
res()(1)(2) = triangle_t()(0)( 4) * in_cc_0_0
+ triangle_t()(0)( 8) * in_cc_0_1
+ triangle_t()(0)(11) * in_cc_0_2
+ triangle_t()(0)(13) * in_cc_1_0
+ triangle_t()(0)(14) * in_cc_1_1;
res()(1)(2) = diag_t()(0)( 5) * in_t()(1)(2)
+ conjugate( res()(1)( 2));
vstream(out_v[sF]()(0)(0), res()(0)(0));
vstream(out_v[sF]()(0)(1), res()(0)(1));
vstream(out_v[sF]()(0)(2), res()(0)(2));
vstream(out_v[sF]()(1)(0), res()(1)(0));
vstream(out_v[sF]()(1)(1), res()(1)(1));
vstream(out_v[sF]()(1)(2), res()(1)(2));
// lower half
PREFETCH_CLOVER(1);
auto in_cc_2_0 = conjugate(in_t()(2)(0));
auto in_cc_2_1 = conjugate(in_t()(2)(1));
auto in_cc_2_2 = conjugate(in_t()(2)(2));
auto in_cc_3_0 = conjugate(in_t()(3)(0));
auto in_cc_3_1 = conjugate(in_t()(3)(1));
res()(2)(0) = diag_t()(1)( 0) * in_t()(2)(0)
+ triangle_t()(1)( 0) * in_t()(2)(1)
+ triangle_t()(1)( 1) * in_t()(2)(2)
+ triangle_t()(1)( 2) * in_t()(3)(0)
+ triangle_t()(1)( 3) * in_t()(3)(1)
+ triangle_t()(1)( 4) * in_t()(3)(2);
res()(2)(1) = triangle_t()(1)( 0) * in_cc_2_0;
res()(2)(1) = diag_t()(1)( 1) * in_t()(2)(1)
+ triangle_t()(1)( 5) * in_t()(2)(2)
+ triangle_t()(1)( 6) * in_t()(3)(0)
+ triangle_t()(1)( 7) * in_t()(3)(1)
+ triangle_t()(1)( 8) * in_t()(3)(2)
+ conjugate( res()(2)( 1));
res()(2)(2) = triangle_t()(1)( 1) * in_cc_2_0
+ triangle_t()(1)( 5) * in_cc_2_1;
res()(2)(2) = diag_t()(1)( 2) * in_t()(2)(2)
+ triangle_t()(1)( 9) * in_t()(3)(0)
+ triangle_t()(1)(10) * in_t()(3)(1)
+ triangle_t()(1)(11) * in_t()(3)(2)
+ conjugate( res()(2)( 2));
res()(3)(0) = triangle_t()(1)( 2) * in_cc_2_0
+ triangle_t()(1)( 6) * in_cc_2_1
+ triangle_t()(1)( 9) * in_cc_2_2;
res()(3)(0) = diag_t()(1)( 3) * in_t()(3)(0)
+ triangle_t()(1)(12) * in_t()(3)(1)
+ triangle_t()(1)(13) * in_t()(3)(2)
+ conjugate( res()(3)( 0));
res()(3)(1) = triangle_t()(1)( 3) * in_cc_2_0
+ triangle_t()(1)( 7) * in_cc_2_1
+ triangle_t()(1)(10) * in_cc_2_2
+ triangle_t()(1)(12) * in_cc_3_0;
res()(3)(1) = diag_t()(1)( 4) * in_t()(3)(1)
+ triangle_t()(1)(14) * in_t()(3)(2)
+ conjugate( res()(3)( 1));
res()(3)(2) = triangle_t()(1)( 4) * in_cc_2_0
+ triangle_t()(1)( 8) * in_cc_2_1
+ triangle_t()(1)(11) * in_cc_2_2
+ triangle_t()(1)(13) * in_cc_3_0
+ triangle_t()(1)(14) * in_cc_3_1;
res()(3)(2) = diag_t()(1)( 5) * in_t()(3)(2)
+ conjugate( res()(3)( 2));
vstream(out_v[sF]()(2)(0), res()(2)(0));
vstream(out_v[sF]()(2)(1), res()(2)(1));
vstream(out_v[sF]()(2)(2), res()(2)(2));
vstream(out_v[sF]()(3)(0), res()(3)(0));
vstream(out_v[sF]()(3)(1), res()(3)(1));
vstream(out_v[sF]()(3)(2), res()(3)(2));
});
}
static void MooeeKernel(int Nsite,
int Ls,
const FermionField& in,
FermionField& out,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle) {
#if defined(GRID_CUDA) || defined(GRID_HIP)
MooeeKernel_gpu(Nsite, Ls, in, out, diagonal, triangle);
#else
MooeeKernel_cpu(Nsite, Ls, in, out, diagonal, triangle);
#endif
}
static void Invert(const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle,
CloverDiagonalField& diagonalInv,
CloverTriangleField& triangleInv) {
conformable(diagonal, diagonalInv);
conformable(triangle, triangleInv);
conformable(diagonal, triangle);
diagonalInv.Checkerboard() = diagonal.Checkerboard();
triangleInv.Checkerboard() = triangle.Checkerboard();
GridBase* grid = diagonal.Grid();
long lsites = grid->lSites();
typedef typename SiteCloverDiagonal::scalar_object scalar_object_diagonal;
typedef typename SiteCloverTriangle::scalar_object scalar_object_triangle;
autoView(diagonal_v, diagonal, CpuRead);
autoView(triangle_v, triangle, CpuRead);
autoView(diagonalInv_v, diagonalInv, CpuWrite);
autoView(triangleInv_v, triangleInv, CpuWrite);
thread_for(site, lsites, { // NOTE: Not on GPU because of Eigen & (peek/poke)LocalSite
Eigen::MatrixXcd clover_inv_eigen = Eigen::MatrixXcd::Zero(Ns*Nc, Ns*Nc);
Eigen::MatrixXcd clover_eigen = Eigen::MatrixXcd::Zero(Ns*Nc, Ns*Nc);
scalar_object_diagonal diagonal_tmp = Zero();
scalar_object_diagonal diagonal_inv_tmp = Zero();
scalar_object_triangle triangle_tmp = Zero();
scalar_object_triangle triangle_inv_tmp = Zero();
Coordinate lcoor;
grid->LocalIndexToLocalCoor(site, lcoor);
peekLocalSite(diagonal_tmp, diagonal_v, lcoor);
peekLocalSite(triangle_tmp, triangle_v, lcoor);
// TODO: can we save time here by inverting the two 6x6 hermitian matrices separately?
for (long s_row=0;s_row<Ns;s_row++) {
for (long s_col=0;s_col<Ns;s_col++) {
if(abs(s_row - s_col) > 1 || s_row + s_col == 3) continue;
int block = s_row / Nhs;
int s_row_block = s_row % Nhs;
int s_col_block = s_col % Nhs;
for (long c_row=0;c_row<Nc;c_row++) {
for (long c_col=0;c_col<Nc;c_col++) {
int i = s_row_block * Nc + c_row;
int j = s_col_block * Nc + c_col;
if(i == j)
clover_eigen(s_row*Nc+c_row, s_col*Nc+c_col) = static_cast<ComplexD>(TensorRemove(diagonal_tmp()(block)(i)));
else
clover_eigen(s_row*Nc+c_row, s_col*Nc+c_col) = static_cast<ComplexD>(TensorRemove(triangle_elem(triangle_tmp, block, i, j)));
}
}
}
}
clover_inv_eigen = clover_eigen.inverse();
for (long s_row=0;s_row<Ns;s_row++) {
for (long s_col=0;s_col<Ns;s_col++) {
if(abs(s_row - s_col) > 1 || s_row + s_col == 3) continue;
int block = s_row / Nhs;
int s_row_block = s_row % Nhs;
int s_col_block = s_col % Nhs;
for (long c_row=0;c_row<Nc;c_row++) {
for (long c_col=0;c_col<Nc;c_col++) {
int i = s_row_block * Nc + c_row;
int j = s_col_block * Nc + c_col;
if(i == j)
diagonal_inv_tmp()(block)(i) = clover_inv_eigen(s_row*Nc+c_row, s_col*Nc+c_col);
else if(i < j)
triangle_inv_tmp()(block)(triangle_index(i, j)) = clover_inv_eigen(s_row*Nc+c_row, s_col*Nc+c_col);
else
continue;
}
}
}
}
pokeLocalSite(diagonal_inv_tmp, diagonalInv_v, lcoor);
pokeLocalSite(triangle_inv_tmp, triangleInv_v, lcoor);
});
}
static void ConvertLayout(const CloverField& full,
CloverDiagonalField& diagonal,
CloverTriangleField& triangle) {
conformable(full, diagonal);
conformable(full, triangle);
diagonal.Checkerboard() = full.Checkerboard();
triangle.Checkerboard() = full.Checkerboard();
autoView(full_v, full, AcceleratorRead);
autoView(diagonal_v, diagonal, AcceleratorWrite);
autoView(triangle_v, triangle, AcceleratorWrite);
// NOTE: this function cannot be 'private' since nvcc forbids this for kernels
accelerator_for(ss, full.Grid()->oSites(), 1, {
for(int s_row = 0; s_row < Ns; s_row++) {
for(int s_col = 0; s_col < Ns; s_col++) {
if(abs(s_row - s_col) > 1 || s_row + s_col == 3) continue;
int block = s_row / Nhs;
int s_row_block = s_row % Nhs;
int s_col_block = s_col % Nhs;
for(int c_row = 0; c_row < Nc; c_row++) {
for(int c_col = 0; c_col < Nc; c_col++) {
int i = s_row_block * Nc + c_row;
int j = s_col_block * Nc + c_col;
if(i == j)
diagonal_v[ss]()(block)(i) = full_v[ss]()(s_row, s_col)(c_row, c_col);
else if(i < j)
triangle_v[ss]()(block)(triangle_index(i, j)) = full_v[ss]()(s_row, s_col)(c_row, c_col);
else
continue;
}
}
}
}
});
}
static void ConvertLayout(const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle,
CloverField& full) {
conformable(full, diagonal);
conformable(full, triangle);
full.Checkerboard() = diagonal.Checkerboard();
full = Zero();
autoView(diagonal_v, diagonal, AcceleratorRead);
autoView(triangle_v, triangle, AcceleratorRead);
autoView(full_v, full, AcceleratorWrite);
// NOTE: this function cannot be 'private' since nvcc forbids this for kernels
accelerator_for(ss, full.Grid()->oSites(), 1, {
for(int s_row = 0; s_row < Ns; s_row++) {
for(int s_col = 0; s_col < Ns; s_col++) {
if(abs(s_row - s_col) > 1 || s_row + s_col == 3) continue;
int block = s_row / Nhs;
int s_row_block = s_row % Nhs;
int s_col_block = s_col % Nhs;
for(int c_row = 0; c_row < Nc; c_row++) {
for(int c_col = 0; c_col < Nc; c_col++) {
int i = s_row_block * Nc + c_row;
int j = s_col_block * Nc + c_col;
if(i == j)
full_v[ss]()(s_row, s_col)(c_row, c_col) = diagonal_v[ss]()(block)(i);
else
full_v[ss]()(s_row, s_col)(c_row, c_col) = triangle_elem(triangle_v[ss], block, i, j);
}
}
}
}
});
}
static void ModifyBoundaries(CloverDiagonalField& diagonal, CloverTriangleField& triangle, RealD csw_t, RealD cF, RealD diag_mass) {
// Checks/grid
double t0 = usecond();
conformable(diagonal, triangle);
GridBase* grid = diagonal.Grid();
// Determine the boundary coordinates/sites
double t1 = usecond();
int t_dir = Nd - 1;
Lattice<iScalar<vInteger>> t_coor(grid);
LatticeCoordinate(t_coor, t_dir);
int T = grid->GlobalDimensions()[t_dir];
// Set off-diagonal parts at boundary to zero -- OK
double t2 = usecond();
CloverTriangleField zeroTriangle(grid);
zeroTriangle.Checkerboard() = triangle.Checkerboard();
zeroTriangle = Zero();
triangle = where(t_coor == 0, zeroTriangle, triangle);
triangle = where(t_coor == T-1, zeroTriangle, triangle);
// Set diagonal to unity (scaled correctly) -- OK
double t3 = usecond();
CloverDiagonalField tmp(grid);
tmp.Checkerboard() = diagonal.Checkerboard();
tmp = -1.0 * csw_t + diag_mass;
diagonal = where(t_coor == 0, tmp, diagonal);
diagonal = where(t_coor == T-1, tmp, diagonal);
// Correct values next to boundary
double t4 = usecond();
if(cF != 1.0) {
tmp = cF - 1.0;
tmp += diagonal;
diagonal = where(t_coor == 1, tmp, diagonal);
diagonal = where(t_coor == T-2, tmp, diagonal);
}
// Report timings
double t5 = usecond();
#if 0
std::cout << GridLogMessage << "CompactWilsonCloverHelpers::ModifyBoundaries timings:"
<< " checks = " << (t1 - t0) / 1e6
<< ", coordinate = " << (t2 - t1) / 1e6
<< ", off-diag zero = " << (t3 - t2) / 1e6
<< ", diagonal unity = " << (t4 - t3) / 1e6
<< ", near-boundary = " << (t5 - t4) / 1e6
<< ", total = " << (t5 - t0) / 1e6
<< std::endl;
#endif
}
template<class Field, class Mask>
static strong_inline void ApplyBoundaryMask(Field& f, const Mask& m) {
conformable(f, m);
auto grid = f.Grid();
const uint32_t Nsite = grid->oSites();
const uint32_t Nsimd = grid->Nsimd();
autoView(f_v, f, AcceleratorWrite);
autoView(m_v, m, AcceleratorRead);
// NOTE: this function cannot be 'private' since nvcc forbids this for kernels
accelerator_for(ss, Nsite, Nsimd, {
coalescedWrite(f_v[ss], m_v(ss) * f_v(ss));
});
}
template<class MaskField>
static void SetupMasks(MaskField& full, MaskField& even, MaskField& odd) {
assert(even.Grid()->_isCheckerBoarded && even.Checkerboard() == Even);
assert(odd.Grid()->_isCheckerBoarded && odd.Checkerboard() == Odd);
assert(!full.Grid()->_isCheckerBoarded);
GridBase* grid = full.Grid();
int t_dir = Nd-1;
Lattice<iScalar<vInteger>> t_coor(grid);
LatticeCoordinate(t_coor, t_dir);
int T = grid->GlobalDimensions()[t_dir];
MaskField zeroMask(grid); zeroMask = Zero();
full = 1.0;
full = where(t_coor == 0, zeroMask, full);
full = where(t_coor == T-1, zeroMask, full);
pickCheckerboard(Even, even, full);
pickCheckerboard(Odd, odd, full);
}
};
NAMESPACE_END(Grid);

View File

@ -1,92 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonCloverTypes.h
Copyright (C) 2021 - 2022
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template<class Impl>
class WilsonCloverTypes {
public:
INHERIT_IMPL_TYPES(Impl);
template <typename vtype> using iImplClover = iScalar<iMatrix<iMatrix<vtype, Impl::Dimension>, Ns>>;
typedef iImplClover<Simd> SiteClover;
typedef Lattice<SiteClover> CloverField;
};
template<class Impl>
class CompactWilsonCloverTypes {
public:
INHERIT_IMPL_TYPES(Impl);
static_assert(Nd == 4 && Nc == 3 && Ns == 4 && Impl::Dimension == 3, "Wrong dimensions");
static constexpr int Nred = Nc * Nhs; // 6
static constexpr int Nblock = Nhs; // 2
static constexpr int Ndiagonal = Nred; // 6
static constexpr int Ntriangle = (Nred - 1) * Nc; // 15
template<typename vtype> using iImplCloverDiagonal = iScalar<iVector<iVector<vtype, Ndiagonal>, Nblock>>;
template<typename vtype> using iImplCloverTriangle = iScalar<iVector<iVector<vtype, Ntriangle>, Nblock>>;
typedef iImplCloverDiagonal<Simd> SiteCloverDiagonal;
typedef iImplCloverTriangle<Simd> SiteCloverTriangle;
typedef iSinglet<Simd> SiteMask;
typedef Lattice<SiteCloverDiagonal> CloverDiagonalField;
typedef Lattice<SiteCloverTriangle> CloverTriangleField;
typedef Lattice<SiteMask> MaskField;
};
#define INHERIT_CLOVER_TYPES(Impl) \
typedef typename WilsonCloverTypes<Impl>::SiteClover SiteClover; \
typedef typename WilsonCloverTypes<Impl>::CloverField CloverField;
#define INHERIT_COMPACT_CLOVER_TYPES(Impl) \
typedef typename CompactWilsonCloverTypes<Impl>::SiteCloverDiagonal SiteCloverDiagonal; \
typedef typename CompactWilsonCloverTypes<Impl>::SiteCloverTriangle SiteCloverTriangle; \
typedef typename CompactWilsonCloverTypes<Impl>::SiteMask SiteMask; \
typedef typename CompactWilsonCloverTypes<Impl>::CloverDiagonalField CloverDiagonalField; \
typedef typename CompactWilsonCloverTypes<Impl>::CloverTriangleField CloverTriangleField; \
typedef typename CompactWilsonCloverTypes<Impl>::MaskField MaskField; \
/* ugly duplication but needed inside functionality classes */ \
template<typename vtype> using iImplCloverDiagonal = \
iScalar<iVector<iVector<vtype, CompactWilsonCloverTypes<Impl>::Ndiagonal>, CompactWilsonCloverTypes<Impl>::Nblock>>; \
template<typename vtype> using iImplCloverTriangle = \
iScalar<iVector<iVector<vtype, CompactWilsonCloverTypes<Impl>::Ntriangle>, CompactWilsonCloverTypes<Impl>::Nblock>>;
#define INHERIT_COMPACT_CLOVER_SIZES(Impl) \
static constexpr int Nred = CompactWilsonCloverTypes<Impl>::Nred; \
static constexpr int Nblock = CompactWilsonCloverTypes<Impl>::Nblock; \
static constexpr int Ndiagonal = CompactWilsonCloverTypes<Impl>::Ndiagonal; \
static constexpr int Ntriangle = CompactWilsonCloverTypes<Impl>::Ntriangle;
NAMESPACE_END(Grid);

View File

@ -303,9 +303,11 @@ public:
int npoints,
int checkerboard,
const std::vector<int> &directions,
const std::vector<int> &distances,Parameters p)
: CartesianStencil<vobj,cobj,Parameters> (grid,npoints,checkerboard,directions,distances,p)
{
const std::vector<int> &distances,
bool locally_periodic,
Parameters p)
: CartesianStencil<vobj,cobj,Parameters> (grid,npoints,checkerboard,directions,distances,locally_periodic,p)
{
ZeroCountersi();
surface_list.resize(0);
this->same_node.resize(npoints);

View File

@ -146,8 +146,11 @@ public:
void DhopInternalSerial(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
void DhopInternalDirichletComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
void DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
const FermionField &in, FermionField &out, int dag);
// Constructor
WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
@ -157,7 +160,10 @@ public:
// DoubleStore impl dependent
void ImportGauge(const GaugeField &_Umu);
DoubledGaugeField &GetDoubledGaugeField(void){ return Umu; };
DoubledGaugeField &GetDoubledGaugeFieldE(void){ return UmuEven; };
DoubledGaugeField &GetDoubledGaugeFieldO(void){ return UmuOdd; };
///////////////////////////////////////////////////////////////
// Data members require to support the functionality
///////////////////////////////////////////////////////////////

View File

@ -165,7 +165,14 @@ public:
const FermionField &in,
FermionField &out,
int dag);
void DhopInternalDirichletComms(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out,
int dag);
// Constructors
WilsonFermion5D(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
@ -174,19 +181,11 @@ public:
GridRedBlackCartesian &FourDimRedBlackGrid,
double _M5,const ImplParams &p= ImplParams());
// Constructors
/*
WilsonFermion5D(int simd,
GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
double _M5,const ImplParams &p= ImplParams());
*/
// DoubleStore
void ImportGauge(const GaugeField &_Umu);
DoubledGaugeField &GetDoubledGaugeField(void){ return Umu; };
DoubledGaugeField &GetDoubledGaugeFieldE(void){ return UmuEven; };
DoubledGaugeField &GetDoubledGaugeFieldO(void){ return UmuOdd; };
///////////////////////////////////////////////////////////////
// Data members require to support the functionality
///////////////////////////////////////////////////////////////

View File

@ -39,7 +39,7 @@ NAMESPACE_BEGIN(Grid);
class WilsonKernelsStatic {
public:
enum { OptGeneric, OptHandUnroll, OptInlineAsm };
enum { CommsAndCompute, CommsThenCompute };
enum { CommsAndCompute, CommsThenCompute, CommsDirichlet };
static int Opt;
static int Comms;
};

View File

@ -112,7 +112,6 @@ void CayleyFermion5D<Impl>::ImportUnphysicalFermion(const FermionField &input4d,
axpby_ssp_pminus(tmp, 0., tmp, 1., tmp, Ls-1, Ls-1);
imported5d=tmp;
}
template<class Impl>
void CayleyFermion5D<Impl>::ImportPhysicalFermionSource(const FermionField &input4d,FermionField &imported5d)
{
@ -127,6 +126,37 @@ void CayleyFermion5D<Impl>::ImportPhysicalFermionSource(const FermionField &inpu
axpby_ssp_pminus(tmp, 0., tmp, 1., tmp, Ls-1, Ls-1);
Dminus(tmp,imported5d);
}
////////////////////////////////////////////////////
// Added for fourD pseudofermion det estimation
////////////////////////////////////////////////////
template<class Impl>
void CayleyFermion5D<Impl>::ImportFourDimPseudoFermion(const FermionField &input4d,FermionField &imported5d)
{
int Ls = this->Ls;
FermionField tmp(this->FermionGrid());
conformable(imported5d.Grid(),this->FermionGrid());
conformable(input4d.Grid() ,this->GaugeGrid());
tmp = Zero();
InsertSlice(input4d, tmp, 0 , 0);
InsertSlice(input4d, tmp, Ls-1, 0);
axpby_ssp_pminus(tmp, 0., tmp, 1., tmp, 0, 0);
axpby_ssp_pplus (tmp, 0., tmp, 1., tmp, Ls-1, Ls-1);
imported5d=tmp;
}
template<class Impl>
void CayleyFermion5D<Impl>::ExportFourDimPseudoFermion(const FermionField &solution5d,FermionField &exported4d)
{
int Ls = this->Ls;
FermionField tmp(this->FermionGrid());
tmp = solution5d;
conformable(solution5d.Grid(),this->FermionGrid());
conformable(exported4d.Grid(),this->GaugeGrid());
axpby_ssp_pminus(tmp, 0., solution5d, 1., solution5d, 0, 0);
axpby_ssp_pplus (tmp, 1., tmp , 1., solution5d, 0, Ls-1);
ExtractSlice(exported4d, tmp, 0, 0);
}
// Dminus
template<class Impl>
void CayleyFermion5D<Impl>::Dminus(const FermionField &psi, FermionField &chi)
{
@ -828,7 +858,6 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
#if (!defined(GRID_HIP))
int tshift = (mu == Nd-1) ? 1 : 0;
unsigned int LLt = GridDefaultLatt()[Tp];
////////////////////////////////////////////////
// GENERAL CAYLEY CASE
////////////////////////////////////////////////
@ -881,7 +910,7 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
}
std::vector<RealD> G_s(Ls,1.0);
RealD sign = 1.0; // sign flip for vector/tadpole
RealD sign = 1; // sign flip for vector/tadpole
if ( curr_type == Current::Axial ) {
for(int s=0;s<Ls/2;s++){
G_s[s] = -1.0;
@ -891,7 +920,7 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
auto b=this->_b;
auto c=this->_c;
if ( b == 1 && c == 0 ) {
sign = -1.0;
sign = -1;
}
else {
std::cerr << "Error: Tadpole implementation currently unavailable for non-Shamir actions." << std::endl;
@ -935,13 +964,7 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
tmp = Cshift(tmp,mu,-1);
Impl::multLinkField(Utmp,this->Umu,tmp,mu+Nd); // Adjoint link
tmp = -G_s[s]*( Utmp + gmu*Utmp );
// Mask the time
if (tmax == LLt - 1 && tshift == 1){ // quick fix to include timeslice 0 if tmax + tshift is over the last timeslice
unsigned int t0 = 0;
tmp = where(((lcoor==t0) || (lcoor>=tmin+tshift)),tmp,zz);
} else {
tmp = where((lcoor>=tmin+tshift),tmp,zz);
}
tmp = where((lcoor>=tmin+tshift),tmp,zz); // Mask the time
L_Q += where((lcoor<=tmax+tshift),tmp,zz); // Position of current complicated
InsertSlice(L_Q, q_out, s , 0);

View File

@ -1,363 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/CompactWilsonCloverFermionImplementation.h
Copyright (C) 2017 - 2022
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/qcd/spin/Dirac.h>
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h>
NAMESPACE_BEGIN(Grid);
template<class Impl>
CompactWilsonCloverFermion<Impl>::CompactWilsonCloverFermion(GaugeField& _Umu,
GridCartesian& Fgrid,
GridRedBlackCartesian& Hgrid,
const RealD _mass,
const RealD _csw_r,
const RealD _csw_t,
const RealD _cF,
const WilsonAnisotropyCoefficients& clover_anisotropy,
const ImplParams& impl_p)
: WilsonBase(_Umu, Fgrid, Hgrid, _mass, impl_p, clover_anisotropy)
, csw_r(_csw_r)
, csw_t(_csw_t)
, cF(_cF)
, open_boundaries(impl_p.boundary_phases[Nd-1] == 0.0)
, Diagonal(&Fgrid), Triangle(&Fgrid)
, DiagonalEven(&Hgrid), TriangleEven(&Hgrid)
, DiagonalOdd(&Hgrid), TriangleOdd(&Hgrid)
, DiagonalInv(&Fgrid), TriangleInv(&Fgrid)
, DiagonalInvEven(&Hgrid), TriangleInvEven(&Hgrid)
, DiagonalInvOdd(&Hgrid), TriangleInvOdd(&Hgrid)
, Tmp(&Fgrid)
, BoundaryMask(&Fgrid)
, BoundaryMaskEven(&Hgrid), BoundaryMaskOdd(&Hgrid)
{
csw_r *= 0.5;
csw_t *= 0.5;
if (clover_anisotropy.isAnisotropic)
csw_r /= clover_anisotropy.xi_0;
ImportGauge(_Umu);
if (open_boundaries)
CompactHelpers::SetupMasks(this->BoundaryMask, this->BoundaryMaskEven, this->BoundaryMaskOdd);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::Dhop(const FermionField& in, FermionField& out, int dag) {
WilsonBase::Dhop(in, out, dag);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::DhopOE(const FermionField& in, FermionField& out, int dag) {
WilsonBase::DhopOE(in, out, dag);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::DhopEO(const FermionField& in, FermionField& out, int dag) {
WilsonBase::DhopEO(in, out, dag);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::DhopDir(const FermionField& in, FermionField& out, int dir, int disp) {
WilsonBase::DhopDir(in, out, dir, disp);
if(this->open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::DhopDirAll(const FermionField& in, std::vector<FermionField>& out) {
WilsonBase::DhopDirAll(in, out);
if(this->open_boundaries) {
for(auto& o : out) ApplyBoundaryMask(o);
}
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::M(const FermionField& in, FermionField& out) {
out.Checkerboard() = in.Checkerboard();
WilsonBase::Dhop(in, out, DaggerNo); // call base to save applying bc
Mooee(in, Tmp);
axpy(out, 1.0, out, Tmp);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::Mdag(const FermionField& in, FermionField& out) {
out.Checkerboard() = in.Checkerboard();
WilsonBase::Dhop(in, out, DaggerYes); // call base to save applying bc
MooeeDag(in, Tmp);
axpy(out, 1.0, out, Tmp);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::Meooe(const FermionField& in, FermionField& out) {
WilsonBase::Meooe(in, out);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MeooeDag(const FermionField& in, FermionField& out) {
WilsonBase::MeooeDag(in, out);
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::Mooee(const FermionField& in, FermionField& out) {
if(in.Grid()->_isCheckerBoarded) {
if(in.Checkerboard() == Odd) {
MooeeInternal(in, out, DiagonalOdd, TriangleOdd);
} else {
MooeeInternal(in, out, DiagonalEven, TriangleEven);
}
} else {
MooeeInternal(in, out, Diagonal, Triangle);
}
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MooeeDag(const FermionField& in, FermionField& out) {
Mooee(in, out); // blocks are hermitian
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MooeeInv(const FermionField& in, FermionField& out) {
if(in.Grid()->_isCheckerBoarded) {
if(in.Checkerboard() == Odd) {
MooeeInternal(in, out, DiagonalInvOdd, TriangleInvOdd);
} else {
MooeeInternal(in, out, DiagonalInvEven, TriangleInvEven);
}
} else {
MooeeInternal(in, out, DiagonalInv, TriangleInv);
}
if(open_boundaries) ApplyBoundaryMask(out);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MooeeInvDag(const FermionField& in, FermionField& out) {
MooeeInv(in, out); // blocks are hermitian
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::Mdir(const FermionField& in, FermionField& out, int dir, int disp) {
DhopDir(in, out, dir, disp);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MdirAll(const FermionField& in, std::vector<FermionField>& out) {
DhopDirAll(in, out);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) {
assert(!open_boundaries); // TODO check for changes required for open bc
// NOTE: code copied from original clover term
conformable(X.Grid(), Y.Grid());
conformable(X.Grid(), force.Grid());
GaugeLinkField force_mu(force.Grid()), lambda(force.Grid());
GaugeField clover_force(force.Grid());
PropagatorField Lambda(force.Grid());
// Guido: Here we are hitting some performance issues:
// need to extract the components of the DoubledGaugeField
// for each call
// Possible solution
// Create a vector object to store them? (cons: wasting space)
std::vector<GaugeLinkField> U(Nd, this->Umu.Grid());
Impl::extractLinkField(U, this->Umu);
force = Zero();
// Derivative of the Wilson hopping term
this->DhopDeriv(force, X, Y, dag);
///////////////////////////////////////////////////////////
// Clover term derivative
///////////////////////////////////////////////////////////
Impl::outerProductImpl(Lambda, X, Y);
//std::cout << "Lambda:" << Lambda << std::endl;
Gamma::Algebra sigma[] = {
Gamma::Algebra::SigmaXY,
Gamma::Algebra::SigmaXZ,
Gamma::Algebra::SigmaXT,
Gamma::Algebra::MinusSigmaXY,
Gamma::Algebra::SigmaYZ,
Gamma::Algebra::SigmaYT,
Gamma::Algebra::MinusSigmaXZ,
Gamma::Algebra::MinusSigmaYZ,
Gamma::Algebra::SigmaZT,
Gamma::Algebra::MinusSigmaXT,
Gamma::Algebra::MinusSigmaYT,
Gamma::Algebra::MinusSigmaZT};
/*
sigma_{\mu \nu}=
| 0 sigma[0] sigma[1] sigma[2] |
| sigma[3] 0 sigma[4] sigma[5] |
| sigma[6] sigma[7] 0 sigma[8] |
| sigma[9] sigma[10] sigma[11] 0 |
*/
int count = 0;
clover_force = Zero();
for (int mu = 0; mu < 4; mu++)
{
force_mu = Zero();
for (int nu = 0; nu < 4; nu++)
{
if (mu == nu)
continue;
RealD factor;
if (nu == 4 || mu == 4)
{
factor = 2.0 * csw_t;
}
else
{
factor = 2.0 * csw_r;
}
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
force_mu -= factor*Helpers::Cmunu(U, lambda, mu, nu); // checked
count++;
}
pokeLorentz(clover_force, U[mu] * force_mu, mu);
}
//clover_force *= csw;
force += clover_force;
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MooDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) {
assert(0);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MeeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) {
assert(0);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::MooeeInternal(const FermionField& in,
FermionField& out,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle) {
assert(in.Checkerboard() == Odd || in.Checkerboard() == Even);
out.Checkerboard() = in.Checkerboard();
conformable(in, out);
conformable(in, diagonal);
conformable(in, triangle);
CompactHelpers::MooeeKernel(diagonal.oSites(), 1, in, out, diagonal, triangle);
}
template<class Impl>
void CompactWilsonCloverFermion<Impl>::ImportGauge(const GaugeField& _Umu) {
// NOTE: parts copied from original implementation
// Import gauge into base class
double t0 = usecond();
WilsonBase::ImportGauge(_Umu); // NOTE: called here and in wilson constructor -> performed twice, but can't avoid that
// Initialize temporary variables
double t1 = usecond();
conformable(_Umu.Grid(), this->GaugeGrid());
GridBase* grid = _Umu.Grid();
typename Impl::GaugeLinkField Bx(grid), By(grid), Bz(grid), Ex(grid), Ey(grid), Ez(grid);
CloverField TmpOriginal(grid);
// Compute the field strength terms mu>nu
double t2 = usecond();
WilsonLoops<Impl>::FieldStrength(Bx, _Umu, Zdir, Ydir);
WilsonLoops<Impl>::FieldStrength(By, _Umu, Zdir, Xdir);
WilsonLoops<Impl>::FieldStrength(Bz, _Umu, Ydir, Xdir);
WilsonLoops<Impl>::FieldStrength(Ex, _Umu, Tdir, Xdir);
WilsonLoops<Impl>::FieldStrength(Ey, _Umu, Tdir, Ydir);
WilsonLoops<Impl>::FieldStrength(Ez, _Umu, Tdir, Zdir);
// Compute the Clover Operator acting on Colour and Spin
// multiply here by the clover coefficients for the anisotropy
double t3 = usecond();
TmpOriginal = Helpers::fillCloverYZ(Bx) * csw_r;
TmpOriginal += Helpers::fillCloverXZ(By) * csw_r;
TmpOriginal += Helpers::fillCloverXY(Bz) * csw_r;
TmpOriginal += Helpers::fillCloverXT(Ex) * csw_t;
TmpOriginal += Helpers::fillCloverYT(Ey) * csw_t;
TmpOriginal += Helpers::fillCloverZT(Ez) * csw_t;
TmpOriginal += this->diag_mass;
// Convert the data layout of the clover term
double t4 = usecond();
CompactHelpers::ConvertLayout(TmpOriginal, Diagonal, Triangle);
// Possible modify the boundary values
double t5 = usecond();
if(open_boundaries) CompactHelpers::ModifyBoundaries(Diagonal, Triangle, csw_t, cF, this->diag_mass);
// Invert the clover term in the improved layout
double t6 = usecond();
CompactHelpers::Invert(Diagonal, Triangle, DiagonalInv, TriangleInv);
// Fill the remaining clover fields
double t7 = usecond();
pickCheckerboard(Even, DiagonalEven, Diagonal);
pickCheckerboard(Even, TriangleEven, Triangle);
pickCheckerboard(Odd, DiagonalOdd, Diagonal);
pickCheckerboard(Odd, TriangleOdd, Triangle);
pickCheckerboard(Even, DiagonalInvEven, DiagonalInv);
pickCheckerboard(Even, TriangleInvEven, TriangleInv);
pickCheckerboard(Odd, DiagonalInvOdd, DiagonalInv);
pickCheckerboard(Odd, TriangleInvOdd, TriangleInv);
// Report timings
double t8 = usecond();
#if 0
std::cout << GridLogMessage << "CompactWilsonCloverFermion::ImportGauge timings:"
<< " WilsonFermion::Importgauge = " << (t1 - t0) / 1e6
<< ", allocations = " << (t2 - t1) / 1e6
<< ", field strength = " << (t3 - t2) / 1e6
<< ", fill clover = " << (t4 - t3) / 1e6
<< ", convert = " << (t5 - t4) / 1e6
<< ", boundaries = " << (t6 - t5) / 1e6
<< ", inversions = " << (t7 - t6) / 1e6
<< ", pick cbs = " << (t8 - t7) / 1e6
<< ", total = " << (t8 - t0) / 1e6
<< std::endl;
#endif
}
NAMESPACE_END(Grid);

View File

@ -2,13 +2,12 @@
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonCloverFermionImplementation.h
Source file: ./lib/qcd/action/fermion/WilsonCloverFermion.cc
Copyright (C) 2017 - 2022
Copyright (C) 2017
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -34,45 +33,6 @@
NAMESPACE_BEGIN(Grid);
template<class Impl>
WilsonCloverFermion<Impl>::WilsonCloverFermion(GaugeField& _Umu,
GridCartesian& Fgrid,
GridRedBlackCartesian& Hgrid,
const RealD _mass,
const RealD _csw_r,
const RealD _csw_t,
const WilsonAnisotropyCoefficients& clover_anisotropy,
const ImplParams& impl_p)
: WilsonFermion<Impl>(_Umu, Fgrid, Hgrid, _mass, impl_p, clover_anisotropy)
, CloverTerm(&Fgrid)
, CloverTermInv(&Fgrid)
, CloverTermEven(&Hgrid)
, CloverTermOdd(&Hgrid)
, CloverTermInvEven(&Hgrid)
, CloverTermInvOdd(&Hgrid)
, CloverTermDagEven(&Hgrid)
, CloverTermDagOdd(&Hgrid)
, CloverTermInvDagEven(&Hgrid)
, CloverTermInvDagOdd(&Hgrid) {
assert(Nd == 4); // require 4 dimensions
if(clover_anisotropy.isAnisotropic) {
csw_r = _csw_r * 0.5 / clover_anisotropy.xi_0;
diag_mass = _mass + 1.0 + (Nd - 1) * (clover_anisotropy.nu / clover_anisotropy.xi_0);
} else {
csw_r = _csw_r * 0.5;
diag_mass = 4.0 + _mass;
}
csw_t = _csw_t * 0.5;
if(csw_r == 0)
std::cout << GridLogWarning << "Initializing WilsonCloverFermion with csw_r = 0" << std::endl;
if(csw_t == 0)
std::cout << GridLogWarning << "Initializing WilsonCloverFermion with csw_t = 0" << std::endl;
ImportGauge(_Umu);
}
// *NOT* EO
template <class Impl>
void WilsonCloverFermion<Impl>::M(const FermionField &in, FermionField &out)
@ -107,13 +67,10 @@ void WilsonCloverFermion<Impl>::Mdag(const FermionField &in, FermionField &out)
template <class Impl>
void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
{
double t0 = usecond();
WilsonFermion<Impl>::ImportGauge(_Umu);
double t1 = usecond();
GridBase *grid = _Umu.Grid();
typename Impl::GaugeLinkField Bx(grid), By(grid), Bz(grid), Ex(grid), Ey(grid), Ez(grid);
double t2 = usecond();
// Compute the field strength terms mu>nu
WilsonLoops<Impl>::FieldStrength(Bx, _Umu, Zdir, Ydir);
WilsonLoops<Impl>::FieldStrength(By, _Umu, Zdir, Xdir);
@ -122,22 +79,19 @@ void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
WilsonLoops<Impl>::FieldStrength(Ey, _Umu, Tdir, Ydir);
WilsonLoops<Impl>::FieldStrength(Ez, _Umu, Tdir, Zdir);
double t3 = usecond();
// Compute the Clover Operator acting on Colour and Spin
// multiply here by the clover coefficients for the anisotropy
CloverTerm = Helpers::fillCloverYZ(Bx) * csw_r;
CloverTerm += Helpers::fillCloverXZ(By) * csw_r;
CloverTerm += Helpers::fillCloverXY(Bz) * csw_r;
CloverTerm += Helpers::fillCloverXT(Ex) * csw_t;
CloverTerm += Helpers::fillCloverYT(Ey) * csw_t;
CloverTerm += Helpers::fillCloverZT(Ez) * csw_t;
CloverTerm = fillCloverYZ(Bx) * csw_r;
CloverTerm += fillCloverXZ(By) * csw_r;
CloverTerm += fillCloverXY(Bz) * csw_r;
CloverTerm += fillCloverXT(Ex) * csw_t;
CloverTerm += fillCloverYT(Ey) * csw_t;
CloverTerm += fillCloverZT(Ez) * csw_t;
CloverTerm += diag_mass;
double t4 = usecond();
int lvol = _Umu.Grid()->lSites();
int DimRep = Impl::Dimension;
double t5 = usecond();
{
autoView(CTv,CloverTerm,CpuRead);
autoView(CTIv,CloverTermInv,CpuWrite);
@ -146,7 +100,7 @@ void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
grid->LocalIndexToLocalCoor(site, lcoor);
Eigen::MatrixXcd EigenCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
Eigen::MatrixXcd EigenInvCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
typename SiteClover::scalar_object Qx = Zero(), Qxinv = Zero();
typename SiteCloverType::scalar_object Qx = Zero(), Qxinv = Zero();
peekLocalSite(Qx, CTv, lcoor);
//if (csw!=0){
for (int j = 0; j < Ns; j++)
@ -171,7 +125,6 @@ void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
});
}
double t6 = usecond();
// Separate the even and odd parts
pickCheckerboard(Even, CloverTermEven, CloverTerm);
pickCheckerboard(Odd, CloverTermOdd, CloverTerm);
@ -184,20 +137,6 @@ void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
pickCheckerboard(Even, CloverTermInvDagEven, adj(CloverTermInv));
pickCheckerboard(Odd, CloverTermInvDagOdd, adj(CloverTermInv));
double t7 = usecond();
#if 0
std::cout << GridLogMessage << "WilsonCloverFermion::ImportGauge timings:"
<< " WilsonFermion::Importgauge = " << (t1 - t0) / 1e6
<< ", allocations = " << (t2 - t1) / 1e6
<< ", field strength = " << (t3 - t2) / 1e6
<< ", fill clover = " << (t4 - t3) / 1e6
<< ", misc = " << (t5 - t4) / 1e6
<< ", inversions = " << (t6 - t5) / 1e6
<< ", pick cbs = " << (t7 - t6) / 1e6
<< ", total = " << (t7 - t0) / 1e6
<< std::endl;
#endif
}
template <class Impl>
@ -228,7 +167,7 @@ template <class Impl>
void WilsonCloverFermion<Impl>::MooeeInternal(const FermionField &in, FermionField &out, int dag, int inv)
{
out.Checkerboard() = in.Checkerboard();
CloverField *Clover;
CloverFieldType *Clover;
assert(in.Checkerboard() == Odd || in.Checkerboard() == Even);
if (dag)
@ -243,12 +182,12 @@ void WilsonCloverFermion<Impl>::MooeeInternal(const FermionField &in, FermionFie
{
Clover = (inv) ? &CloverTermInvDagEven : &CloverTermDagEven;
}
Helpers::multCloverField(out, *Clover, in);
out = *Clover * in;
}
else
{
Clover = (inv) ? &CloverTermInv : &CloverTerm;
Helpers::multCloverField(out, *Clover, in); // don't bother with adj, hermitian anyway
out = adj(*Clover) * in;
}
}
else
@ -266,98 +205,18 @@ void WilsonCloverFermion<Impl>::MooeeInternal(const FermionField &in, FermionFie
// std::cout << "Calling clover term Even" << std::endl;
Clover = (inv) ? &CloverTermInvEven : &CloverTermEven;
}
Helpers::multCloverField(out, *Clover, in);
out = *Clover * in;
// std::cout << GridLogMessage << "*Clover.Checkerboard() " << (*Clover).Checkerboard() << std::endl;
}
else
{
Clover = (inv) ? &CloverTermInv : &CloverTerm;
Helpers::multCloverField(out, *Clover, in);
out = *Clover * in;
}
}
} // MooeeInternal
// Derivative parts unpreconditioned pseudofermions
template <class Impl>
void WilsonCloverFermion<Impl>::MDeriv(GaugeField &force, const FermionField &X, const FermionField &Y, int dag)
{
conformable(X.Grid(), Y.Grid());
conformable(X.Grid(), force.Grid());
GaugeLinkField force_mu(force.Grid()), lambda(force.Grid());
GaugeField clover_force(force.Grid());
PropagatorField Lambda(force.Grid());
// Guido: Here we are hitting some performance issues:
// need to extract the components of the DoubledGaugeField
// for each call
// Possible solution
// Create a vector object to store them? (cons: wasting space)
std::vector<GaugeLinkField> U(Nd, this->Umu.Grid());
Impl::extractLinkField(U, this->Umu);
force = Zero();
// Derivative of the Wilson hopping term
this->DhopDeriv(force, X, Y, dag);
///////////////////////////////////////////////////////////
// Clover term derivative
///////////////////////////////////////////////////////////
Impl::outerProductImpl(Lambda, X, Y);
//std::cout << "Lambda:" << Lambda << std::endl;
Gamma::Algebra sigma[] = {
Gamma::Algebra::SigmaXY,
Gamma::Algebra::SigmaXZ,
Gamma::Algebra::SigmaXT,
Gamma::Algebra::MinusSigmaXY,
Gamma::Algebra::SigmaYZ,
Gamma::Algebra::SigmaYT,
Gamma::Algebra::MinusSigmaXZ,
Gamma::Algebra::MinusSigmaYZ,
Gamma::Algebra::SigmaZT,
Gamma::Algebra::MinusSigmaXT,
Gamma::Algebra::MinusSigmaYT,
Gamma::Algebra::MinusSigmaZT};
/*
sigma_{\mu \nu}=
| 0 sigma[0] sigma[1] sigma[2] |
| sigma[3] 0 sigma[4] sigma[5] |
| sigma[6] sigma[7] 0 sigma[8] |
| sigma[9] sigma[10] sigma[11] 0 |
*/
int count = 0;
clover_force = Zero();
for (int mu = 0; mu < 4; mu++)
{
force_mu = Zero();
for (int nu = 0; nu < 4; nu++)
{
if (mu == nu)
continue;
RealD factor;
if (nu == 4 || mu == 4)
{
factor = 2.0 * csw_t;
}
else
{
factor = 2.0 * csw_r;
}
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
force_mu -= factor*Helpers::Cmunu(U, lambda, mu, nu); // checked
count++;
}
pokeLorentz(clover_force, U[mu] * force_mu, mu);
}
//clover_force *= csw;
force += clover_force;
}
// Derivative parts
template <class Impl>

View File

@ -51,9 +51,9 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
_FiveDimRedBlackGrid(&FiveDimRedBlackGrid),
_FourDimGrid (&FourDimGrid),
_FourDimRedBlackGrid(&FourDimRedBlackGrid),
Stencil (_FiveDimGrid,npoint,Even,directions,displacements,p),
StencilEven(_FiveDimRedBlackGrid,npoint,Even,directions,displacements,p), // source is Even
StencilOdd (_FiveDimRedBlackGrid,npoint,Odd ,directions,displacements,p), // source is Odd
Stencil (_FiveDimGrid,npoint,Even,directions,displacements,p.locally_periodic,p),
StencilEven(_FiveDimRedBlackGrid,npoint,Even,directions,displacements,p.locally_periodic,p), // source is Even
StencilOdd (_FiveDimRedBlackGrid,npoint,Odd ,directions,displacements,p.locally_periodic,p), // source is Odd
M5(_M5),
Umu(_FourDimGrid),
UmuEven(_FourDimRedBlackGrid),
@ -361,10 +361,21 @@ void WilsonFermion5D<Impl>::DhopInternal(StencilImpl & st, LebesgueOrder &lo,
const FermionField &in, FermionField &out,int dag)
{
DhopTotalTime-=usecond();
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute )
assert( (WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute)
||(WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsThenCompute)
||(WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsDirichlet) );
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute ) {
DhopInternalOverlappedComms(st,lo,U,in,out,dag);
else
}
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsThenCompute ) {
DhopInternalSerialComms(st,lo,U,in,out,dag);
}
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsDirichlet ) {
DhopInternalDirichletComms(st,lo,U,in,out,dag);
}
DhopTotalTime+=usecond();
}
@ -431,6 +442,30 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, Lebesg
DhopComputeTime2+=usecond();
}
template<class Impl>
void WilsonFermion5D<Impl>::DhopInternalDirichletComms(StencilImpl & st, LebesgueOrder &lo,
DoubledGaugeField & U,
const FermionField &in, FermionField &out,int dag)
{
Compressor compressor(dag);
int LLs = in.Grid()->_rdimensions[0];
int len = U.Grid()->oSites();
/////////////////////////////
// do the compute interior
/////////////////////////////
int Opt = WilsonKernelsStatic::Opt; // Why pass this. Kernels should know
DhopComputeTime-=usecond();
if (dag == DaggerYes) {
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,1,0);
} else {
Kernels::DhopKernel (Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,1,0);
}
accelerator_barrier();
DhopComputeTime+=usecond();
}
template<class Impl>
void WilsonFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st, LebesgueOrder &lo,

View File

@ -47,9 +47,9 @@ WilsonFermion<Impl>::WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
Kernels(p),
_grid(&Fgrid),
_cbgrid(&Hgrid),
Stencil(&Fgrid, npoint, Even, directions, displacements,p),
StencilEven(&Hgrid, npoint, Even, directions,displacements,p), // source is Even
StencilOdd(&Hgrid, npoint, Odd, directions,displacements,p), // source is Odd
Stencil(&Fgrid, npoint, Even, directions, displacements,p.locally_periodic,p),
StencilEven(&Hgrid, npoint, Even, directions,displacements,p.locally_periodic,p), // source is Even
StencilOdd(&Hgrid, npoint, Odd, directions,displacements,p.locally_periodic,p), // source is Odd
mass(_mass),
Lebesgue(_grid),
LebesgueEvenOdd(_cbgrid),
@ -488,12 +488,21 @@ void WilsonFermion<Impl>::DhopInternal(StencilImpl &st, LebesgueOrder &lo,
FermionField &out, int dag)
{
DhopTotalTime-=usecond();
#ifdef GRID_OMP
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute )
assert( (WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute)
||(WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsThenCompute)
||(WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsDirichlet) );
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute ) {
DhopInternalOverlappedComms(st,lo,U,in,out,dag);
else
#endif
}
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsThenCompute ) {
DhopInternalSerial(st,lo,U,in,out,dag);
}
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsDirichlet ) {
DhopInternalDirichletComms(st,lo,U,in,out,dag);
}
DhopTotalTime+=usecond();
}
@ -562,6 +571,29 @@ void WilsonFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, LebesgueO
DhopComputeTime2+=usecond();
};
template <class Impl>
void WilsonFermion<Impl>::DhopInternalDirichletComms(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out, int dag)
{
assert((dag == DaggerNo) || (dag == DaggerYes));
Compressor compressor(dag);
int len = U.Grid()->oSites();
/////////////////////////////
// do the compute interior
/////////////////////////////
int Opt = WilsonKernelsStatic::Opt;
DhopComputeTime-=usecond();
if (dag == DaggerYes) {
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,1,0);
} else {
Kernels::DhopKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,1,0);
}
DhopComputeTime+=usecond();
};
template <class Impl>
void WilsonFermion<Impl>::DhopInternalSerial(StencilImpl &st, LebesgueOrder &lo,

View File

@ -77,23 +77,23 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#define REGISTER
#ifdef GRID_SIMT
#define LOAD_CHIMU(Ptype) \
#define LOAD_CHIMU(ptype) \
{const SiteSpinor & ref (in[offset]); \
Chimu_00=coalescedReadPermute<Ptype>(ref()(0)(0),perm,lane); \
Chimu_01=coalescedReadPermute<Ptype>(ref()(0)(1),perm,lane); \
Chimu_02=coalescedReadPermute<Ptype>(ref()(0)(2),perm,lane); \
Chimu_10=coalescedReadPermute<Ptype>(ref()(1)(0),perm,lane); \
Chimu_11=coalescedReadPermute<Ptype>(ref()(1)(1),perm,lane); \
Chimu_12=coalescedReadPermute<Ptype>(ref()(1)(2),perm,lane); \
Chimu_20=coalescedReadPermute<Ptype>(ref()(2)(0),perm,lane); \
Chimu_21=coalescedReadPermute<Ptype>(ref()(2)(1),perm,lane); \
Chimu_22=coalescedReadPermute<Ptype>(ref()(2)(2),perm,lane); \
Chimu_30=coalescedReadPermute<Ptype>(ref()(3)(0),perm,lane); \
Chimu_31=coalescedReadPermute<Ptype>(ref()(3)(1),perm,lane); \
Chimu_32=coalescedReadPermute<Ptype>(ref()(3)(2),perm,lane); }
Chimu_00=coalescedReadPermute<ptype>(ref()(0)(0),perm,lane); \
Chimu_01=coalescedReadPermute<ptype>(ref()(0)(1),perm,lane); \
Chimu_02=coalescedReadPermute<ptype>(ref()(0)(2),perm,lane); \
Chimu_10=coalescedReadPermute<ptype>(ref()(1)(0),perm,lane); \
Chimu_11=coalescedReadPermute<ptype>(ref()(1)(1),perm,lane); \
Chimu_12=coalescedReadPermute<ptype>(ref()(1)(2),perm,lane); \
Chimu_20=coalescedReadPermute<ptype>(ref()(2)(0),perm,lane); \
Chimu_21=coalescedReadPermute<ptype>(ref()(2)(1),perm,lane); \
Chimu_22=coalescedReadPermute<ptype>(ref()(2)(2),perm,lane); \
Chimu_30=coalescedReadPermute<ptype>(ref()(3)(0),perm,lane); \
Chimu_31=coalescedReadPermute<ptype>(ref()(3)(1),perm,lane); \
Chimu_32=coalescedReadPermute<ptype>(ref()(3)(2),perm,lane); }
#define PERMUTE_DIR(dir) ;
#else
#define LOAD_CHIMU(Ptype) \
#define LOAD_CHIMU(ptype) \
{const SiteSpinor & ref (in[offset]); \
Chimu_00=ref()(0)(0);\
Chimu_01=ref()(0)(1);\
@ -109,12 +109,12 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
Chimu_32=ref()(3)(2);}
#define PERMUTE_DIR(dir) \
permute##dir(Chi_00,Chi_00); \
permute##dir(Chi_01,Chi_01); \
permute##dir(Chi_02,Chi_02); \
permute##dir(Chi_10,Chi_10); \
permute##dir(Chi_11,Chi_11); \
permute##dir(Chi_12,Chi_12);
permute##dir(Chi_00,Chi_00); \
permute##dir(Chi_01,Chi_01);\
permute##dir(Chi_02,Chi_02);\
permute##dir(Chi_10,Chi_10); \
permute##dir(Chi_11,Chi_11);\
permute##dir(Chi_12,Chi_12);
#endif
@ -371,91 +371,88 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
result_32-= UChi_12;
#define HAND_STENCIL_LEGB(PROJ,PERM,DIR,RECON) \
{int ptype; \
SE=st.GetEntry(ptype,DIR,ss); \
auto offset = SE->_offset; \
auto local = SE->_is_local; \
auto perm = SE->_permute; \
if ( local ) { \
LOAD_CHIMU(PERM); \
PROJ; \
if ( perm) { \
PERMUTE_DIR(PERM); \
} \
} else { \
LOAD_CHI; \
} \
acceleratorSynchronise(); \
MULT_2SPIN(DIR); \
RECON; }
SE=st.GetEntry(ptype,DIR,ss); \
offset = SE->_offset; \
local = SE->_is_local; \
perm = SE->_permute; \
if ( local ) { \
LOAD_CHIMU(PERM); \
PROJ; \
if ( perm) { \
PERMUTE_DIR(PERM); \
} \
} else { \
LOAD_CHI; \
} \
acceleratorSynchronise(); \
MULT_2SPIN(DIR); \
RECON;
#define HAND_STENCIL_LEG(PROJ,PERM,DIR,RECON) \
{ SE=&st_p[DIR+8*ss]; \
auto ptype=st_perm[DIR]; \
auto offset = SE->_offset; \
auto local = SE->_is_local; \
auto perm = SE->_permute; \
if ( local ) { \
LOAD_CHIMU(PERM); \
PROJ; \
if ( perm) { \
PERMUTE_DIR(PERM); \
} \
} else { \
LOAD_CHI; \
} \
acceleratorSynchronise(); \
MULT_2SPIN(DIR); \
RECON; }
#define HAND_STENCIL_LEG(PROJ,PERM,DIR,RECON) \
SE=&st_p[DIR+8*ss]; \
ptype=st_perm[DIR]; \
offset = SE->_offset; \
local = SE->_is_local; \
perm = SE->_permute; \
if ( local ) { \
LOAD_CHIMU(PERM); \
PROJ; \
if ( perm) { \
PERMUTE_DIR(PERM); \
} \
} else { \
LOAD_CHI; \
} \
acceleratorSynchronise(); \
MULT_2SPIN(DIR); \
RECON;
#define HAND_STENCIL_LEGA(PROJ,PERM,DIR,RECON) \
{ SE=&st_p[DIR+8*ss]; \
auto ptype=st_perm[DIR]; \
/*SE=st.GetEntry(ptype,DIR,ss);*/ \
auto offset = SE->_offset; \
auto perm = SE->_permute; \
LOAD_CHIMU(PERM); \
PROJ; \
MULT_2SPIN(DIR); \
RECON; }
SE=&st_p[DIR+8*ss]; \
ptype=st_perm[DIR]; \
/*SE=st.GetEntry(ptype,DIR,ss);*/ \
offset = SE->_offset; \
perm = SE->_permute; \
LOAD_CHIMU(PERM); \
PROJ; \
MULT_2SPIN(DIR); \
RECON;
#define HAND_STENCIL_LEG_INT(PROJ,PERM,DIR,RECON) \
{ int ptype; \
SE=st.GetEntry(ptype,DIR,ss); \
auto offset = SE->_offset; \
auto local = SE->_is_local; \
auto perm = SE->_permute; \
if ( local ) { \
LOAD_CHIMU(PERM); \
PROJ; \
if ( perm) { \
PERMUTE_DIR(PERM); \
} \
} else if ( st.same_node[DIR] ) { \
LOAD_CHI; \
} \
acceleratorSynchronise(); \
if (local || st.same_node[DIR] ) { \
MULT_2SPIN(DIR); \
RECON; \
} \
acceleratorSynchronise(); }
SE=st.GetEntry(ptype,DIR,ss); \
offset = SE->_offset; \
local = SE->_is_local; \
perm = SE->_permute; \
if ( local ) { \
LOAD_CHIMU(PERM); \
PROJ; \
if ( perm) { \
PERMUTE_DIR(PERM); \
} \
} else if ( st.same_node[DIR] ) { \
LOAD_CHI; \
} \
acceleratorSynchronise(); \
if (local || st.same_node[DIR] ) { \
MULT_2SPIN(DIR); \
RECON; \
} \
acceleratorSynchronise();
#define HAND_STENCIL_LEG_EXT(PROJ,PERM,DIR,RECON) \
{ int ptype; \
SE=st.GetEntry(ptype,DIR,ss); \
auto offset = SE->_offset; \
if((!SE->_is_local)&&(!st.same_node[DIR]) ) { \
LOAD_CHI; \
MULT_2SPIN(DIR); \
RECON; \
nmu++; \
} \
acceleratorSynchronise(); }
SE=st.GetEntry(ptype,DIR,ss); \
offset = SE->_offset; \
if((!SE->_is_local)&&(!st.same_node[DIR]) ) { \
LOAD_CHI; \
MULT_2SPIN(DIR); \
RECON; \
nmu++; \
} \
acceleratorSynchronise();
#define HAND_RESULT(ss) \
{ \
SiteSpinor & ref (out[ss]); \
#define HAND_RESULT(ss) \
{ \
SiteSpinor & ref (out[ss]); \
coalescedWrite(ref()(0)(0),result_00,lane); \
coalescedWrite(ref()(0)(1),result_01,lane); \
coalescedWrite(ref()(0)(2),result_02,lane); \
@ -566,6 +563,7 @@ WilsonKernels<Impl>::HandDhopSiteSycl(StencilVector st_perm,StencilEntry *st_p,
HAND_DECLARATIONS(Simt);
int offset,local,perm, ptype;
StencilEntry *SE;
HAND_STENCIL_LEG(XM_PROJ,3,Xp,XM_RECON);
HAND_STENCIL_LEG(YM_PROJ,2,Yp,YM_RECON_ACCUM);
@ -595,7 +593,9 @@ WilsonKernels<Impl>::HandDhopSite(StencilView &st, DoubledGaugeFieldView &U,Site
HAND_DECLARATIONS(Simt);
int offset,local,perm, ptype;
StencilEntry *SE;
HAND_STENCIL_LEG(XM_PROJ,3,Xp,XM_RECON);
HAND_STENCIL_LEG(YM_PROJ,2,Yp,YM_RECON_ACCUM);
HAND_STENCIL_LEG(ZM_PROJ,1,Zp,ZM_RECON_ACCUM);
@ -623,6 +623,8 @@ void WilsonKernels<Impl>::HandDhopSiteDag(StencilView &st,DoubledGaugeFieldView
HAND_DECLARATIONS(Simt);
StencilEntry *SE;
int offset,local,perm, ptype;
HAND_STENCIL_LEG(XP_PROJ,3,Xp,XP_RECON);
HAND_STENCIL_LEG(YP_PROJ,2,Yp,YP_RECON_ACCUM);
HAND_STENCIL_LEG(ZP_PROJ,1,Zp,ZP_RECON_ACCUM);
@ -638,8 +640,8 @@ template<class Impl> accelerator_inline void
WilsonKernels<Impl>::HandDhopSiteInt(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
{
// auto st_p = st._entries_p;
// auto st_perm = st._permute_type;
auto st_p = st._entries_p;
auto st_perm = st._permute_type;
// T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
@ -650,6 +652,7 @@ WilsonKernels<Impl>::HandDhopSiteInt(StencilView &st,DoubledGaugeFieldView &U,Si
HAND_DECLARATIONS(Simt);
int offset,local,perm, ptype;
StencilEntry *SE;
ZERO_RESULT;
HAND_STENCIL_LEG_INT(XM_PROJ,3,Xp,XM_RECON_ACCUM);
@ -667,8 +670,8 @@ template<class Impl> accelerator_inline
void WilsonKernels<Impl>::HandDhopSiteDagInt(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
{
// auto st_p = st._entries_p;
// auto st_perm = st._permute_type;
auto st_p = st._entries_p;
auto st_perm = st._permute_type;
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
typedef decltype( coalescedRead( in[0]()(0)(0) )) Simt;
@ -679,6 +682,7 @@ void WilsonKernels<Impl>::HandDhopSiteDagInt(StencilView &st,DoubledGaugeFieldVi
HAND_DECLARATIONS(Simt);
StencilEntry *SE;
int offset,local,perm, ptype;
ZERO_RESULT;
HAND_STENCIL_LEG_INT(XP_PROJ,3,Xp,XP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(YP_PROJ,2,Yp,YP_RECON_ACCUM);
@ -695,8 +699,8 @@ template<class Impl> accelerator_inline void
WilsonKernels<Impl>::HandDhopSiteExt(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
{
// auto st_p = st._entries_p;
// auto st_perm = st._permute_type;
auto st_p = st._entries_p;
auto st_perm = st._permute_type;
// T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
@ -707,7 +711,7 @@ WilsonKernels<Impl>::HandDhopSiteExt(StencilView &st,DoubledGaugeFieldView &U,Si
HAND_DECLARATIONS(Simt);
// int offset, ptype;
int offset, ptype;
StencilEntry *SE;
int nmu=0;
ZERO_RESULT;
@ -726,8 +730,8 @@ template<class Impl> accelerator_inline
void WilsonKernels<Impl>::HandDhopSiteDagExt(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionFieldView &in, FermionFieldView &out)
{
// auto st_p = st._entries_p;
// auto st_perm = st._permute_type;
auto st_p = st._entries_p;
auto st_perm = st._permute_type;
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
typedef decltype( coalescedRead( in[0]()(0)(0) )) Simt;
@ -738,7 +742,7 @@ void WilsonKernels<Impl>::HandDhopSiteDagExt(StencilView &st,DoubledGaugeFieldVi
HAND_DECLARATIONS(Simt);
StencilEntry *SE;
// int offset, ptype;
int offset, ptype;
int nmu=0;
ZERO_RESULT;
HAND_STENCIL_LEG_EXT(XP_PROJ,3,Xp,XP_RECON_ACCUM);

View File

@ -1,41 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/ qcd/action/fermion/instantiation/CompactWilsonCloverFermionInstantiation.cc.master
Copyright (C) 2017 - 2022
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/qcd/spin/Dirac.h>
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h>
#include <Grid/qcd/action/fermion/implementation/CompactWilsonCloverFermionImplementation.h>
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class CompactWilsonCloverFermion<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@ -1 +0,0 @@
../CompactWilsonCloverFermionInstantiation.cc.master

View File

@ -1 +0,0 @@
../CompactWilsonCloverFermionInstantiation.cc.master

View File

@ -40,7 +40,7 @@ EOF
done
CC_LIST="WilsonCloverFermionInstantiation CompactWilsonCloverFermionInstantiation WilsonFermionInstantiation WilsonKernelsInstantiation WilsonTMFermionInstantiation"
CC_LIST="WilsonCloverFermionInstantiation WilsonFermionInstantiation WilsonKernelsInstantiation WilsonTMFermionInstantiation"
for impl in $WILSON_IMPL_LIST
do

View File

@ -61,7 +61,7 @@ NAMESPACE_BEGIN(Grid);
typedef typename Impl::Field Field;
// hardcodes the exponential approximation in the template
template <class S, int Nrepresentation = Nc, int Nexp = 12 > class GaugeImplTypes {
template <class S, int Nrepresentation = Nc, int Nexp = 20 > class GaugeImplTypes {
public:
typedef S Simd;
typedef typename Simd::scalar_type scalar_type;
@ -78,8 +78,6 @@ public:
typedef Lattice<SiteLink> LinkField;
typedef Lattice<SiteField> Field;
typedef SU<Nrepresentation> Group;
// Guido: we can probably separate the types from the HMC functions
// this will create 2 kind of implementations
// probably confusing the users
@ -120,7 +118,7 @@ public:
LinkField Pmu(P.Grid());
Pmu = Zero();
for (int mu = 0; mu < Nd; mu++) {
Group::GaussianFundamentalLieAlgebraMatrix(pRNG, Pmu);
SU<Nrepresentation>::GaussianFundamentalLieAlgebraMatrix(pRNG, Pmu);
RealD scale = ::sqrt(HMC_MOMENTUM_DENOMINATOR) ;
Pmu = Pmu*scale;
PokeIndex<LorentzIndex>(P, Pmu, mu);
@ -161,15 +159,15 @@ public:
}
static inline void HotConfiguration(GridParallelRNG &pRNG, Field &U) {
Group::HotConfiguration(pRNG, U);
SU<Nc>::HotConfiguration(pRNG, U);
}
static inline void TepidConfiguration(GridParallelRNG &pRNG, Field &U) {
Group::TepidConfiguration(pRNG, U);
SU<Nc>::TepidConfiguration(pRNG, U);
}
static inline void ColdConfiguration(GridParallelRNG &pRNG, Field &U) {
Group::ColdConfiguration(pRNG, U);
SU<Nc>::ColdConfiguration(pRNG, U);
}
};

View File

@ -69,11 +69,6 @@ public:
return PeriodicBC::ShiftStaple(Link,mu);
}
//Same as Cshift for periodic BCs
static inline GaugeLinkField CshiftLink(const GaugeLinkField &Link, int mu, int shift){
return PeriodicBC::CshiftLink(Link,mu,shift);
}
static inline bool isPeriodicGaugeField(void) { return true; }
};
@ -115,11 +110,6 @@ public:
return PeriodicBC::CovShiftBackward(Link, mu, field);
}
//If mu is a conjugate BC direction
//Out(x) = U^dag_\mu(x-mu) | x_\mu != 0
// = U^T_\mu(L-1) | x_\mu == 0
//else
//Out(x) = U^dag_\mu(x-mu mod L)
static inline GaugeLinkField
CovShiftIdentityBackward(const GaugeLinkField &Link, int mu)
{
@ -139,13 +129,6 @@ public:
return PeriodicBC::CovShiftIdentityForward(Link,mu);
}
//If mu is a conjugate BC direction
//Out(x) = S_\mu(x+mu) | x_\mu != L-1
// = S*_\mu(x+mu) | x_\mu == L-1
//else
//Out(x) = S_\mu(x+mu mod L)
//Note: While this is used for Staples it is also applicable for shifting gauge links or gauge transformation matrices
static inline GaugeLinkField ShiftStaple(const GaugeLinkField &Link, int mu)
{
assert(_conjDirs.size() == Nd);
@ -155,27 +138,6 @@ public:
return PeriodicBC::ShiftStaple(Link,mu);
}
//Boundary-aware C-shift of gauge links / gauge transformation matrices
//For conjugate BC direction
//shift = 1
//Out(x) = U_\mu(x+\hat\mu) | x_\mu != L-1
// = U*_\mu(0) | x_\mu == L-1
//shift = -1
//Out(x) = U_\mu(x-mu) | x_\mu != 0
// = U*_\mu(L-1) | x_\mu == 0
//else
//shift = 1
//Out(x) = U_\mu(x+\hat\mu mod L)
//shift = -1
//Out(x) = U_\mu(x-\hat\mu mod L)
static inline GaugeLinkField CshiftLink(const GaugeLinkField &Link, int mu, int shift){
assert(_conjDirs.size() == Nd);
if(_conjDirs[mu])
return ConjugateBC::CshiftLink(Link,mu,shift);
else
return PeriodicBC::CshiftLink(Link,mu,shift);
}
static inline void setDirections(std::vector<int> &conjDirs) { _conjDirs=conjDirs; }
static inline std::vector<int> getDirections(void) { return _conjDirs; }
static inline bool isPeriodicGaugeField(void) { return false; }

View File

@ -0,0 +1,163 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/DomainDecomposedTwoFlavourBoundaryBoson.h
Copyright (C) 2021
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////
// Two flavour ratio
///////////////////////////////////////
template<class ImplD,class ImplF>
class DomainDecomposedBoundaryTwoFlavourBosonPseudoFermion : public Action<typename ImplD::GaugeField> {
public:
INHERIT_IMPL_TYPES(ImplD);
private:
SchurFactoredFermionOperator<ImplD,ImplF> & NumOp;// the basic operator
RealD InnerStoppingCondition;
RealD ActionStoppingCondition;
RealD DerivativeStoppingCondition;
FermionField Phi; // the pseudo fermion field for this trajectory
public:
DomainDecomposedBoundaryTwoFlavourBosonPseudoFermion(SchurFactoredFermionOperator<ImplD,ImplF> &_NumOp,RealD _DerivativeTol, RealD _ActionTol, RealD _InnerTol=1.0e-6)
: NumOp(_NumOp),
DerivativeStoppingCondition(_DerivativeTol),
ActionStoppingCondition(_ActionTol),
InnerStoppingCondition(_InnerTol),
Phi(_NumOp.FermionGrid()) {};
virtual std::string action_name(){return "DomainDecomposedBoundaryTwoFlavourBosonPseudoFermion";}
virtual std::string LogParameters(){
std::stringstream sstream;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridSerialRNG& sRNG, GridParallelRNG& pRNG)
{
// P(phi) = e^{- phi^dag P^dag P phi}
//
// NumOp == P
//
// Take phi = P^{-1} eta ; eta = P Phi
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
//
RealD scale = std::sqrt(0.5);
NumOp.tolinner=InnerStoppingCondition;
NumOp.tol=ActionStoppingCondition;
NumOp.ImportGauge(U);
FermionField eta(NumOp.FermionGrid());
gaussian(pRNG,eta); eta=eta*scale;
NumOp.ProjectBoundaryBar(eta);
//DumpSliceNorm("eta",eta);
NumOp.RInv(eta,Phi);
//DumpSliceNorm("Phi",Phi);
};
//////////////////////////////////////////////////////
// S = phi^dag Pdag P phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
NumOp.tolinner=InnerStoppingCondition;
NumOp.tol=ActionStoppingCondition;
NumOp.ImportGauge(U);
FermionField Y(NumOp.FermionGrid());
NumOp.R(Phi,Y);
RealD action = norm2(Y);
return action;
};
virtual void deriv(const GaugeField &U,GaugeField & dSdU)
{
NumOp.tolinner=InnerStoppingCondition;
NumOp.tol=DerivativeStoppingCondition;
NumOp.ImportGauge(U);
GridBase *fgrid = NumOp.FermionGrid();
GridBase *ugrid = NumOp.GaugeGrid();
FermionField X(fgrid);
FermionField Y(fgrid);
FermionField tmp(fgrid);
GaugeField force(ugrid);
FermionField DobiDdbPhi(fgrid); // Vector A in my notes
FermionField DoiDdDobiDdbPhi(fgrid); // Vector B in my notes
FermionField DoidP_Phi(fgrid); // Vector E in my notes
FermionField DobidDddDoidP_Phi(fgrid); // Vector F in my notes
FermionField P_Phi(fgrid);
// P term
NumOp.dBoundaryBar(Phi,tmp);
NumOp.dOmegaBarInv(tmp,DobiDdbPhi); // Vector A
NumOp.dBoundary(DobiDdbPhi,tmp);
NumOp.dOmegaInv(tmp,DoiDdDobiDdbPhi); // Vector B
P_Phi = Phi - DoiDdDobiDdbPhi;
NumOp.ProjectBoundaryBar(P_Phi);
// P^dag P term
NumOp.dOmegaDagInv(P_Phi,DoidP_Phi); // Vector E
NumOp.dBoundaryDag(DoidP_Phi,tmp);
NumOp.dOmegaBarDagInv(tmp,DobidDddDoidP_Phi); // Vector F
NumOp.dBoundaryBarDag(DobidDddDoidP_Phi,tmp);
X = DobiDdbPhi;
Y = DobidDddDoidP_Phi;
NumOp.DirichletFermOpD.MDeriv(force,Y,X,DaggerNo); dSdU=force;
NumOp.DirichletFermOpD.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU+force;
X = DoiDdDobiDdbPhi;
Y = DoidP_Phi;
NumOp.DirichletFermOpD.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU+force;
NumOp.DirichletFermOpD.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU+force;
dSdU *= -1.0;
};
};
NAMESPACE_END(Grid);

View File

@ -0,0 +1,158 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/DomainDecomposedTwoFlavourBoundary.h
Copyright (C) 2021
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////
// Two flavour ratio
///////////////////////////////////////
template<class ImplD,class ImplF>
class DomainDecomposedBoundaryTwoFlavourPseudoFermion : public Action<typename ImplD::GaugeField> {
public:
INHERIT_IMPL_TYPES(ImplD);
private:
SchurFactoredFermionOperator<ImplD,ImplF> & DenOp;// the basic operator
RealD ActionStoppingCondition;
RealD DerivativeStoppingCondition;
RealD InnerStoppingCondition;
FermionField Phi; // the pseudo fermion field for this trajectory
RealD refresh_action;
public:
DomainDecomposedBoundaryTwoFlavourPseudoFermion(SchurFactoredFermionOperator<ImplD,ImplF> &_DenOp,RealD _DerivativeTol, RealD _ActionTol, RealD _InnerTol = 1.0e-6 )
: DenOp(_DenOp),
DerivativeStoppingCondition(_DerivativeTol),
ActionStoppingCondition(_ActionTol),
InnerStoppingCondition(_InnerTol),
Phi(_DenOp.FermionGrid()) {};
virtual std::string action_name(){return "DomainDecomposedBoundaryTwoFlavourPseudoFermion";}
virtual std::string LogParameters(){
std::stringstream sstream;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridSerialRNG& sRNG, GridParallelRNG& pRNG)
{
// P(phi) = e^{- phi^dag Rdag^-1 R^-1 phi}
//
// DenOp == R
//
// Take phi = R eta ; eta = R^-1 Phi
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
//
RealD scale = std::sqrt(0.5);
DenOp.tolinner=InnerStoppingCondition;
DenOp.tol =ActionStoppingCondition;
DenOp.ImportGauge(U);
FermionField eta(DenOp.FermionGrid());
gaussian(pRNG,eta); eta=eta*scale;
DenOp.ProjectBoundaryBar(eta);
DenOp.R(eta,Phi);
//DumpSliceNorm("Phi",Phi);
refresh_action = norm2(eta);
};
//////////////////////////////////////////////////////
// S = phi^dag Rdag^-1 R^-1 phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
DenOp.tolinner=InnerStoppingCondition;
DenOp.tol=ActionStoppingCondition;
DenOp.ImportGauge(U);
FermionField X(DenOp.FermionGrid());
DenOp.RInv(Phi,X);
RealD action = norm2(X);
return action;
};
virtual void deriv(const GaugeField &U,GaugeField & dSdU)
{
DenOp.tolinner=InnerStoppingCondition;
DenOp.tol=DerivativeStoppingCondition;
DenOp.ImportGauge(U);
GridBase *fgrid = DenOp.FermionGrid();
GridBase *ugrid = DenOp.GaugeGrid();
FermionField X(fgrid);
FermionField Y(fgrid);
FermionField tmp(fgrid);
GaugeField force(ugrid);
FermionField DiDdb_Phi(fgrid); // Vector C in my notes
FermionField DidRinv_Phi(fgrid); // Vector D in my notes
FermionField Rinv_Phi(fgrid);
// FermionField RinvDagRinv_Phi(fgrid);
// FermionField DdbdDidRinv_Phi(fgrid);
// R^-1 term
DenOp.dBoundaryBar(Phi,tmp);
DenOp.Dinverse(tmp,DiDdb_Phi); // Vector C
Rinv_Phi = Phi - DiDdb_Phi;
DenOp.ProjectBoundaryBar(Rinv_Phi);
// R^-dagger R^-1 term
DenOp.DinverseDag(Rinv_Phi,DidRinv_Phi); // Vector D
/*
DenOp.dBoundaryBarDag(DidRinv_Phi,DdbdDidRinv_Phi);
RinvDagRinv_Phi = Rinv_Phi - DdbdDidRinv_Phi;
DenOp.ProjectBoundaryBar(RinvDagRinv_Phi);
*/
X = DiDdb_Phi;
Y = DidRinv_Phi;
DenOp.PeriodicFermOpD.MDeriv(force,Y,X,DaggerNo); dSdU=force;
DenOp.PeriodicFermOpD.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU+force;
DumpSliceNorm("force",dSdU);
dSdU *= -1.0;
};
};
NAMESPACE_END(Grid);

View File

@ -0,0 +1,237 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/DomainDecomposedTwoFlavourBoundary.h
Copyright (C) 2021
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////
// Two flavour ratio
///////////////////////////////////////
template<class ImplD,class ImplF>
class DomainDecomposedBoundaryTwoFlavourRatioPseudoFermion : public Action<typename ImplD::GaugeField> {
public:
INHERIT_IMPL_TYPES(ImplD);
private:
SchurFactoredFermionOperator<ImplD,ImplF> & NumOp;// the basic operator
SchurFactoredFermionOperator<ImplD,ImplF> & DenOp;// the basic operator
RealD InnerStoppingCondition;
RealD ActionStoppingCondition;
RealD DerivativeStoppingCondition;
FermionField Phi; // the pseudo fermion field for this trajectory
public:
DomainDecomposedBoundaryTwoFlavourRatioPseudoFermion(SchurFactoredFermionOperator<ImplD,ImplF> &_NumOp,
SchurFactoredFermionOperator<ImplD,ImplF> &_DenOp,
RealD _DerivativeTol, RealD _ActionTol, RealD _InnerTol=1.0e-6)
: NumOp(_NumOp), DenOp(_DenOp),
Phi(_NumOp.PeriodicFermOpD.FermionGrid()),
InnerStoppingCondition(_InnerTol),
DerivativeStoppingCondition(_DerivativeTol),
ActionStoppingCondition(_ActionTol)
{};
virtual std::string action_name(){return "DomainDecomposedBoundaryTwoFlavourRatioPseudoFermion";}
virtual std::string LogParameters(){
std::stringstream sstream;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridSerialRNG& sRNG, GridParallelRNG& pRNG)
{
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
FermionField eta(NumOp.PeriodicFermOpD.FermionGrid());
FermionField tmp(NumOp.PeriodicFermOpD.FermionGrid());
// P(phi) = e^{- phi^dag P^dag Rdag^-1 R^-1 P phi}
//
// NumOp == P
// DenOp == R
//
// Take phi = P^{-1} R eta ; eta = R^-1 P Phi
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
//
RealD scale = std::sqrt(0.5);
gaussian(pRNG,eta); eta=eta*scale;
NumOp.ProjectBoundaryBar(eta);
NumOp.tolinner=InnerStoppingCondition;
DenOp.tolinner=InnerStoppingCondition;
DenOp.tol = ActionStoppingCondition;
NumOp.tol = ActionStoppingCondition;
DenOp.R(eta,tmp);
NumOp.RInv(tmp,Phi);
DumpSliceNorm("Phi",Phi);
};
//////////////////////////////////////////////////////
// S = phi^dag Pdag Rdag^-1 R^-1 P phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
FermionField X(NumOp.PeriodicFermOpD.FermionGrid());
FermionField Y(NumOp.PeriodicFermOpD.FermionGrid());
NumOp.tolinner=InnerStoppingCondition;
DenOp.tolinner=InnerStoppingCondition;
DenOp.tol = ActionStoppingCondition;
NumOp.tol = ActionStoppingCondition;
NumOp.R(Phi,Y);
DenOp.RInv(Y,X);
RealD action = norm2(X);
// std::cout << " DD boundary action is " <<action<<std::endl;
return action;
};
virtual void deriv(const GaugeField &U,GaugeField & dSdU)
{
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
GridBase *fgrid = NumOp.PeriodicFermOpD.FermionGrid();
GridBase *ugrid = NumOp.PeriodicFermOpD.GaugeGrid();
FermionField X(fgrid);
FermionField Y(fgrid);
FermionField tmp(fgrid);
GaugeField force(ugrid);
FermionField DobiDdbPhi(fgrid); // Vector A in my notes
FermionField DoiDdDobiDdbPhi(fgrid); // Vector B in my notes
FermionField DiDdbP_Phi(fgrid); // Vector C in my notes
FermionField DidRinvP_Phi(fgrid); // Vector D in my notes
FermionField DdbdDidRinvP_Phi(fgrid);
FermionField DoidRinvDagRinvP_Phi(fgrid); // Vector E in my notes
FermionField DobidDddDoidRinvDagRinvP_Phi(fgrid); // Vector F in my notes
FermionField P_Phi(fgrid);
FermionField RinvP_Phi(fgrid);
FermionField RinvDagRinvP_Phi(fgrid);
FermionField PdagRinvDagRinvP_Phi(fgrid);
// RealD action = S(U);
NumOp.tolinner=InnerStoppingCondition;
DenOp.tolinner=InnerStoppingCondition;
DenOp.tol = DerivativeStoppingCondition;
NumOp.tol = DerivativeStoppingCondition;
// P term
NumOp.dBoundaryBar(Phi,tmp);
NumOp.dOmegaBarInv(tmp,DobiDdbPhi); // Vector A
NumOp.dBoundary(DobiDdbPhi,tmp);
NumOp.dOmegaInv(tmp,DoiDdDobiDdbPhi); // Vector B
P_Phi = Phi - DoiDdDobiDdbPhi;
NumOp.ProjectBoundaryBar(P_Phi);
// R^-1 P term
DenOp.dBoundaryBar(P_Phi,tmp);
DenOp.Dinverse(tmp,DiDdbP_Phi); // Vector C
RinvP_Phi = P_Phi - DiDdbP_Phi;
DenOp.ProjectBoundaryBar(RinvP_Phi); // Correct to here
// R^-dagger R^-1 P term
DenOp.DinverseDag(RinvP_Phi,DidRinvP_Phi); // Vector D
DenOp.dBoundaryBarDag(DidRinvP_Phi,DdbdDidRinvP_Phi);
RinvDagRinvP_Phi = RinvP_Phi - DdbdDidRinvP_Phi;
DenOp.ProjectBoundaryBar(RinvDagRinvP_Phi);
// P^dag R^-dagger R^-1 P term
NumOp.dOmegaDagInv(RinvDagRinvP_Phi,DoidRinvDagRinvP_Phi); // Vector E
NumOp.dBoundaryDag(DoidRinvDagRinvP_Phi,tmp);
NumOp.dOmegaBarDagInv(tmp,DobidDddDoidRinvDagRinvP_Phi); // Vector F
NumOp.dBoundaryBarDag(DobidDddDoidRinvDagRinvP_Phi,tmp);
PdagRinvDagRinvP_Phi = RinvDagRinvP_Phi- tmp;
NumOp.ProjectBoundaryBar(PdagRinvDagRinvP_Phi);
/*
std::cout << "S eval "<< action << std::endl;
std::cout << "S - IP1 "<< innerProduct(Phi,PdagRinvDagRinvP_Phi) << std::endl;
std::cout << "S - IP2 "<< norm2(RinvP_Phi) << std::endl;
NumOp.R(Phi,tmp);
tmp = tmp - P_Phi;
std::cout << "diff1 "<<norm2(tmp) <<std::endl;
DenOp.RInv(P_Phi,tmp);
tmp = tmp - RinvP_Phi;
std::cout << "diff2 "<<norm2(tmp) <<std::endl;
DenOp.RDagInv(RinvP_Phi,tmp);
tmp = tmp - RinvDagRinvP_Phi;
std::cout << "diff3 "<<norm2(tmp) <<std::endl;
DenOp.RDag(RinvDagRinvP_Phi,tmp);
tmp = tmp - PdagRinvDagRinvP_Phi;
std::cout << "diff4 "<<norm2(tmp) <<std::endl;
*/
dSdU=Zero();
X = DobiDdbPhi;
Y = DobidDddDoidRinvDagRinvP_Phi;
NumOp.DirichletFermOpD.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU+force;
NumOp.DirichletFermOpD.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU+force;
X = DoiDdDobiDdbPhi;
Y = DoidRinvDagRinvP_Phi;
NumOp.DirichletFermOpD.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU+force;
NumOp.DirichletFermOpD.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU+force;
X = DiDdbP_Phi;
Y = DidRinvP_Phi;
DenOp.PeriodicFermOpD.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU+force;
DenOp.PeriodicFermOpD.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU+force;
dSdU *= -1.0;
};
};
NAMESPACE_END(Grid);

View File

@ -44,10 +44,6 @@ NAMESPACE_BEGIN(Grid);
// Exact one flavour implementation of DWF determinant ratio //
///////////////////////////////////////////////////////////////
//Note: using mixed prec CG for the heatbath solver in this action class will not work
// because the L, R operators must have their shift coefficients updated throughout the heatbath step
// You will find that the heatbath solver simply won't converge.
// To use mixed precision here use the ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction variant below
template<class Impl>
class ExactOneFlavourRatioPseudoFermionAction : public Action<typename Impl::GaugeField>
{
@ -61,60 +57,37 @@ NAMESPACE_BEGIN(Grid);
bool use_heatbath_forecasting;
AbstractEOFAFermion<Impl>& Lop; // the basic LH operator
AbstractEOFAFermion<Impl>& Rop; // the basic RH operator
SchurRedBlackDiagMooeeSolve<FermionField> SolverHBL;
SchurRedBlackDiagMooeeSolve<FermionField> SolverHBR;
SchurRedBlackDiagMooeeSolve<FermionField> SolverHB;
SchurRedBlackDiagMooeeSolve<FermionField> SolverL;
SchurRedBlackDiagMooeeSolve<FermionField> SolverR;
SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverL;
SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverR;
FermionField Phi; // the pseudofermion field for this trajectory
RealD norm2_eta; //|eta|^2 where eta is the random gaussian field used to generate the pseudofermion field
bool initial_action; //true for the first call to S after refresh, for which the identity S = |eta|^2 holds provided the rational approx is good
public:
//Used in the heatbath, refresh the shift coefficients of the L (LorR=0) or R (LorR=1) operator
virtual void heatbathRefreshShiftCoefficients(int LorR, RealD to){
AbstractEOFAFermion<Impl>&op = LorR == 0 ? Lop : Rop;
op.RefreshShiftCoefficients(to);
}
//Use the same solver for L,R in all cases
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
AbstractEOFAFermion<Impl>& _Rop,
OperatorFunction<FermionField>& CG,
Params& p,
bool use_fc=false)
: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,CG,CG,CG,CG,CG,CG,p,use_fc) {};
//Use the same solver for L,R in the heatbath but different solvers elsewhere
: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,CG,CG,CG,CG,CG,p,use_fc) {};
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
AbstractEOFAFermion<Impl>& _Rop,
OperatorFunction<FermionField>& HeatbathCG,
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
Params& p,
bool use_fc=false)
: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,HeatbathCG,HeatbathCG, ActionCGL, ActionCGR, DerivCGL,DerivCGR,p,use_fc) {};
//Use different solvers for L,R in all cases
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
AbstractEOFAFermion<Impl>& _Rop,
OperatorFunction<FermionField>& HeatbathCGL, OperatorFunction<FermionField>& HeatbathCGR,
OperatorFunction<FermionField>& HeatbathCG,
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
Params& p,
bool use_fc=false) :
Lop(_Lop),
Rop(_Rop),
SolverHBL(HeatbathCGL,false,true), SolverHBR(HeatbathCGR,false,true),
SolverHB(HeatbathCG,false,true),
SolverL(ActionCGL, false, true), SolverR(ActionCGR, false, true),
DerivativeSolverL(DerivCGL, false, true), DerivativeSolverR(DerivCGR, false, true),
Phi(_Lop.FermionGrid()),
param(p),
use_heatbath_forecasting(use_fc),
initial_action(false)
use_heatbath_forecasting(use_fc)
{
AlgRemez remez(param.lo, param.hi, param.precision);
@ -124,8 +97,6 @@ NAMESPACE_BEGIN(Grid);
PowerNegHalf.Init(remez, param.tolerance, true);
};
const FermionField &getPhi() const{ return Phi; }
virtual std::string action_name() { return "ExactOneFlavourRatioPseudoFermionAction"; }
virtual std::string LogParameters() {
@ -146,19 +117,6 @@ NAMESPACE_BEGIN(Grid);
else{ for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(out, 0.0, in, 1.0, in, s, s); } }
}
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
// P(eta_o) = e^{- eta_o^dag eta_o}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
RealD scale = std::sqrt(0.5);
FermionField eta (Lop.FermionGrid());
gaussian(pRNG,eta); eta = eta * scale;
refresh(U,eta);
}
// EOFA heatbath: see Eqn. (29) of arXiv:1706.05843
// We generate a Gaussian noise vector \eta, and then compute
// \Phi = M_{\rm EOFA}^{-1/2} * \eta
@ -166,10 +124,12 @@ NAMESPACE_BEGIN(Grid);
//
// As a check of rational require \Phi^dag M_{EOFA} \Phi == eta^dag M^-1/2^dag M M^-1/2 eta = eta^dag eta
//
void refresh(const GaugeField &U, const FermionField &eta) {
virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG)
{
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField eta (Lop.FermionGrid());
FermionField CG_src (Lop.FermionGrid());
FermionField CG_soln (Lop.FermionGrid());
FermionField Forecast_src(Lop.FermionGrid());
@ -180,6 +140,11 @@ NAMESPACE_BEGIN(Grid);
if(use_heatbath_forecasting){ prev_solns.reserve(param.degree); }
ChronoForecast<AbstractEOFAFermion<Impl>, FermionField> Forecast;
// Seed with Gaussian noise vector (var = 0.5)
RealD scale = std::sqrt(0.5);
gaussian(pRNG,eta);
eta = eta * scale;
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
RealD N(PowerNegHalf.norm);
for(int k=0; k<param.degree; ++k){ N += PowerNegHalf.residues[k] / ( 1.0 + PowerNegHalf.poles[k] ); }
@ -195,16 +160,15 @@ NAMESPACE_BEGIN(Grid);
tmp[1] = Zero();
for(int k=0; k<param.degree; ++k){
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
heatbathRefreshShiftCoefficients(0, -gamma_l);
//Lop.RefreshShiftCoefficients(-gamma_l);
Lop.RefreshShiftCoefficients(-gamma_l);
if(use_heatbath_forecasting){ // Forecast CG guess using solutions from previous poles
Lop.Mdag(CG_src, Forecast_src);
CG_soln = Forecast(Lop, Forecast_src, prev_solns);
SolverHBL(Lop, CG_src, CG_soln);
SolverHB(Lop, CG_src, CG_soln);
prev_solns.push_back(CG_soln);
} else {
CG_soln = Zero(); // Just use zero as the initial guess
SolverHBL(Lop, CG_src, CG_soln);
SolverHB(Lop, CG_src, CG_soln);
}
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = tmp[1] + ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Lop.k ) * tmp[0];
@ -223,16 +187,15 @@ NAMESPACE_BEGIN(Grid);
if(use_heatbath_forecasting){ prev_solns.clear(); } // empirically, LH solns don't help for RH solves
for(int k=0; k<param.degree; ++k){
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
heatbathRefreshShiftCoefficients(1, -gamma_l*PowerNegHalf.poles[k]);
//Rop.RefreshShiftCoefficients(-gamma_l*PowerNegHalf.poles[k]);
Rop.RefreshShiftCoefficients(-gamma_l*PowerNegHalf.poles[k]);
if(use_heatbath_forecasting){
Rop.Mdag(CG_src, Forecast_src);
CG_soln = Forecast(Rop, Forecast_src, prev_solns);
SolverHBR(Rop, CG_src, CG_soln);
SolverHB(Rop, CG_src, CG_soln);
prev_solns.push_back(CG_soln);
} else {
CG_soln = Zero();
SolverHBR(Rop, CG_src, CG_soln);
SolverHB(Rop, CG_src, CG_soln);
}
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = tmp[1] - ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Rop.k ) * tmp[0];
@ -242,119 +205,49 @@ NAMESPACE_BEGIN(Grid);
Phi = Phi + tmp[1];
// Reset shift coefficients for energy and force evals
//Lop.RefreshShiftCoefficients(0.0);
//Rop.RefreshShiftCoefficients(-1.0);
heatbathRefreshShiftCoefficients(0, 0.0);
heatbathRefreshShiftCoefficients(1, -1.0);
//Mark that the next call to S is the first after refresh
initial_action = true;
Lop.RefreshShiftCoefficients(0.0);
Rop.RefreshShiftCoefficients(-1.0);
// Bounds check
RealD EtaDagEta = norm2(eta);
norm2_eta = EtaDagEta;
// RealD PhiDagMPhi= norm2(eta);
};
void Meofa(const GaugeField& U,const FermionField &in, FermionField & out)
void Meofa(const GaugeField& U,const FermionField &phi, FermionField & Mphi)
{
#if 0
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField spProj_in(Lop.FermionGrid());
FermionField spProj_Phi(Lop.FermionGrid());
FermionField mPhi(Lop.FermionGrid());
std::vector<FermionField> tmp(2, Lop.FermionGrid());
out = in;
mPhi = phi;
// LH term: S = S - k <\Phi| P_{-} \Omega_{-}^{\dagger} H(mf)^{-1} \Omega_{-} P_{-} |\Phi>
spProj(in, spProj_in, -1, Lop.Ls);
Lop.Omega(spProj_in, tmp[0], -1, 0);
spProj(Phi, spProj_Phi, -1, Lop.Ls);
Lop.Omega(spProj_Phi, tmp[0], -1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = Zero();
SolverL(Lop, tmp[1], tmp[0]);
Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
Lop.Omega(tmp[1], tmp[0], -1, 1);
spProj(tmp[0], tmp[1], -1, Lop.Ls);
out = out - Lop.k * tmp[1];
mPhi = mPhi - Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} |\Phi>
spProj(in, spProj_in, 1, Rop.Ls);
Rop.Omega(spProj_in, tmp[0], 1, 0);
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
spProj(Phi, spProj_Phi, 1, Rop.Ls);
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = Zero();
SolverR(Rop, tmp[1], tmp[0]);
Rop.Dtilde(tmp[0], tmp[1]);
Rop.Omega(tmp[1], tmp[0], 1, 1);
spProj(tmp[0], tmp[1], 1, Rop.Ls);
out = out + Rop.k * tmp[1];
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
#endif
}
//Due to the structure of EOFA, it is no more expensive to compute the inverse of Meofa
//To ensure correctness we can simply reuse the heatbath code but use the rational approx
//f(x) = 1/x which corresponds to alpha_0=0, alpha_1=1, beta_1=0 => gamma_1=1
void MeofaInv(const GaugeField &U, const FermionField &in, FermionField &out) {
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField CG_src (Lop.FermionGrid());
FermionField CG_soln (Lop.FermionGrid());
std::vector<FermionField> tmp(2, Lop.FermionGrid());
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
// = 1 * \eta
out = in;
// LH terms:
// \Phi = \Phi + k \sum_{k=1}^{N_{p}} P_{-} \Omega_{-}^{\dagger} ( H(mf)
// - \gamma_{l} \Delta_{-}(mf,mb) P_{-} )^{-1} \Omega_{-} P_{-} \eta
spProj(in, tmp[0], -1, Lop.Ls);
Lop.Omega(tmp[0], tmp[1], -1, 0);
G5R5(CG_src, tmp[1]);
{
heatbathRefreshShiftCoefficients(0, -1.); //-gamma_1 = -1.
CG_soln = Zero(); // Just use zero as the initial guess
SolverHBL(Lop, CG_src, CG_soln);
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = Lop.k * tmp[0];
}
Lop.Omega(tmp[1], tmp[0], -1, 1);
spProj(tmp[0], tmp[1], -1, Lop.Ls);
out = out + tmp[1];
// RH terms:
// \Phi = \Phi - k \sum_{k=1}^{N_{p}} P_{+} \Omega_{+}^{\dagger} ( H(mb)
// - \beta_l\gamma_{l} \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \eta
spProj(in, tmp[0], 1, Rop.Ls);
Rop.Omega(tmp[0], tmp[1], 1, 0);
G5R5(CG_src, tmp[1]);
{
heatbathRefreshShiftCoefficients(1, 0.); //-gamma_1 * beta_1 = 0
CG_soln = Zero();
SolverHBR(Rop, CG_src, CG_soln);
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = - Rop.k * tmp[0];
}
Rop.Omega(tmp[1], tmp[0], 1, 1);
spProj(tmp[0], tmp[1], 1, Rop.Ls);
out = out + tmp[1];
// Reset shift coefficients for energy and force evals
heatbathRefreshShiftCoefficients(0, 0.0);
heatbathRefreshShiftCoefficients(1, -1.0);
};
// EOFA action: see Eqn. (10) of arXiv:1706.05843
virtual RealD S(const GaugeField& U)
{
@ -378,7 +271,7 @@ NAMESPACE_BEGIN(Grid);
action -= Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} |\Phi>
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
spProj(Phi, spProj_Phi, 1, Rop.Ls);
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
G5R5(tmp[1], tmp[0]);
@ -388,26 +281,6 @@ NAMESPACE_BEGIN(Grid);
Rop.Omega(tmp[1], tmp[0], 1, 1);
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
if(initial_action){
//For the first call to S after refresh, S = |eta|^2. We can use this to ensure the rational approx is good
RealD diff = action - norm2_eta;
//S_init = eta^dag M^{-1/2} M M^{-1/2} eta
//S_init - eta^dag eta = eta^dag ( M^{-1/2} M M^{-1/2} - 1 ) eta
//If approximate solution
//S_init - eta^dag eta = eta^dag ( [M^{-1/2}+\delta M^{-1/2}] M [M^{-1/2}+\delta M^{-1/2}] - 1 ) eta
// \approx eta^dag ( \delta M^{-1/2} M^{1/2} + M^{1/2}\delta M^{-1/2} ) eta
// We divide out |eta|^2 to remove source scaling but the tolerance on this check should still be somewhat higher than the actual approx tolerance
RealD test = fabs(diff)/norm2_eta; //test the quality of the rational approx
std::cout << GridLogMessage << action_name() << " initial action " << action << " expect " << norm2_eta << "; diff " << diff << std::endl;
std::cout << GridLogMessage << action_name() << "[ eta^dag ( M^{-1/2} M M^{-1/2} - 1 ) eta ]/|eta^2| = " << test << " expect 0 (tol " << param.BoundsCheckTol << ")" << std::endl;
assert( ( test < param.BoundsCheckTol ) && " Initial action check failed" );
initial_action = false;
}
return action;
};
@ -456,40 +329,6 @@ NAMESPACE_BEGIN(Grid);
};
};
template<class ImplD, class ImplF>
class ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction : public ExactOneFlavourRatioPseudoFermionAction<ImplD>{
public:
INHERIT_IMPL_TYPES(ImplD);
typedef OneFlavourRationalParams Params;
private:
AbstractEOFAFermion<ImplF>& LopF; // the basic LH operator
AbstractEOFAFermion<ImplF>& RopF; // the basic RH operator
public:
virtual std::string action_name() { return "ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction"; }
//Used in the heatbath, refresh the shift coefficients of the L (LorR=0) or R (LorR=1) operator
virtual void heatbathRefreshShiftCoefficients(int LorR, RealD to){
AbstractEOFAFermion<ImplF> &op = LorR == 0 ? LopF : RopF;
op.RefreshShiftCoefficients(to);
this->ExactOneFlavourRatioPseudoFermionAction<ImplD>::heatbathRefreshShiftCoefficients(LorR,to);
}
ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction(AbstractEOFAFermion<ImplF>& _LopF,
AbstractEOFAFermion<ImplF>& _RopF,
AbstractEOFAFermion<ImplD>& _LopD,
AbstractEOFAFermion<ImplD>& _RopD,
OperatorFunction<FermionField>& HeatbathCGL, OperatorFunction<FermionField>& HeatbathCGR,
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
Params& p,
bool use_fc=false) :
LopF(_LopF), RopF(_RopF), ExactOneFlavourRatioPseudoFermionAction<ImplD>(_LopD, _RopD, HeatbathCGL, HeatbathCGR, ActionCGL, ActionCGR, DerivCGL, DerivCGR, p, use_fc){}
};
NAMESPACE_END(Grid);
#endif

View File

@ -26,8 +26,7 @@ See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_PSEUDOFERMION_AGGREGATE_H
#define QCD_PSEUDOFERMION_AGGREGATE_H
#pragma once
// Rational functions
#include <Grid/qcd/action/pseudofermion/Bounds.h>
@ -44,5 +43,10 @@ directory
#include <Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatioMixedPrec.h>
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRationalRatio.h>
#include <Grid/qcd/action/pseudofermion/ExactOneFlavourRatio.h>
#include <Grid/qcd/action/pseudofermion/DomainDecomposedBoundaryTwoFlavourPseudoFermion.h>
#include <Grid/qcd/action/pseudofermion/DomainDecomposedBoundaryTwoFlavourBosonPseudoFermion.h>
#include <Grid/qcd/action/pseudofermion/DomainDecomposedBoundaryTwoFlavourRatioPseudoFermion.h>
#endif

View File

@ -98,6 +98,7 @@ public:
FermOp.ImportGauge(U);
FermOp.Mdag(eta, Phi);
std::cout << GridLogMessage << "Pseudofermion action refresh " << norm2(eta) << std::endl;
};
//////////////////////////////////////////////////////

View File

@ -50,6 +50,8 @@ NAMESPACE_BEGIN(Grid);
FermionField PhiOdd; // the pseudo fermion field for this trajectory
FermionField PhiEven; // the pseudo fermion field for this trajectory
virtual void refreshRestrict(FermionField &eta) {};
public:
TwoFlavourEvenOddRatioPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
@ -60,7 +62,8 @@ NAMESPACE_BEGIN(Grid);
TwoFlavourEvenOddRatioPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
OperatorFunction<FermionField> & DS,
OperatorFunction<FermionField> & AS, OperatorFunction<FermionField> & HS) :
OperatorFunction<FermionField> & AS,
OperatorFunction<FermionField> & HS) :
NumOp(_NumOp),
DenOp(_DenOp),
DerivativeSolver(DS),
@ -83,9 +86,6 @@ NAMESPACE_BEGIN(Grid);
return sstream.str();
}
//Access the fermion field
const FermionField &getPhiOdd() const{ return PhiOdd; }
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
// P(eta_o) = e^{- eta_o^dag eta_o}
//
@ -96,6 +96,7 @@ NAMESPACE_BEGIN(Grid);
FermionField eta (NumOp.FermionGrid());
gaussian(pRNG,eta); eta = eta * scale;
refreshRestrict(eta); // Used by DDHMC
refresh(U,eta);
}
@ -131,6 +132,7 @@ NAMESPACE_BEGIN(Grid);
//PhiOdd =PhiOdd*scale;
//PhiEven=PhiEven*scale;
std::cout << GridLogMessage<<" TwoFlavourEvenOddRatio Expect action to be "<<norm2(etaOdd) + norm2(etaEven)<<std::endl;
};
@ -165,6 +167,8 @@ NAMESPACE_BEGIN(Grid);
DenOp.MooeeInvDag(X,Y);
action = action + norm2(Y);
std::cout << GridLogMessage<<" TwoFlavourEvenOddRatio action is "<<action<<std::endl;
return action;
};
@ -177,7 +181,7 @@ NAMESPACE_BEGIN(Grid);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
SchurDifferentiableOperator<Impl> Mpc(DenOp);
SchurDifferentiableOperator<Impl> Vpc(NumOp);
@ -212,7 +216,7 @@ NAMESPACE_BEGIN(Grid);
assert(DenOp.ConstEE() == 1);
dSdU = -dSdU;
};
};
NAMESPACE_END(Grid);

View File

@ -99,7 +99,7 @@ public:
NumOp.M(tmp,Phi); // Vdag^-1 Mdag eta
Phi=Phi*scale;
std::cout << GridLogMessage<<" TwoFlavourRatio Expect action to be "<<norm2(eta)*scale*scale<<std::endl;
};
//////////////////////////////////////////////////////
@ -121,6 +121,7 @@ public:
DenOp.M(X,Y); // Y= Mdag^-1 Vdag phi
RealD action = norm2(Y);
std::cout << GridLogMessage<<" TwoFlavourRatio action is "<<action<<std::endl;
return action;
};

View File

@ -0,0 +1,197 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/TwoFlavourRatio.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////
// Two flavour ratio
///////////////////////////////////////
template<class Impl>
class TwoFlavourRatio4DPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
private:
FermionOperator<Impl> & NumOp;// the basic operator
FermionOperator<Impl> & DenOp;// the basic operator
OperatorFunction<FermionField> &DerivativeSolver;
OperatorFunction<FermionField> &ActionSolver;
FermionField phi4; // the pseudo fermion field for this trajectory
public:
TwoFlavourRatio4DPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
OperatorFunction<FermionField> & DS,
OperatorFunction<FermionField> & AS
) : NumOp(_NumOp),
DenOp(_DenOp),
DerivativeSolver(DS),
ActionSolver(AS),
phi4(_NumOp.GaugeGrid())
{};
virtual std::string action_name(){return "TwoFlavourRatio4DPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] has no parameters" << std::endl;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
// P(phi) = e^{- phi^dag (V^dag M^-dag)_11 (M^-1 V)_11 phi}
//
// NumOp == V
// DenOp == M
//
// Take phi = (V^{-1} M)_11 eta ; eta = (M^{-1} V)_11 Phi
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
//
RealD scale = std::sqrt(0.5);
FermionField eta4(NumOp.GaugeGrid());
FermionField eta5(NumOp.FermionGrid());
FermionField tmp(NumOp.FermionGrid());
FermionField phi5(NumOp.FermionGrid());
gaussian(pRNG,eta4);
NumOp.ImportFourDimPseudoFermion(eta4,eta5);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(NumOp);
DenOp.M(eta5,phi5); // M eta
NumOp.Mdag(phi5,tmp); // Vdag M eta
phi5 = Zero();
ActionSolver(MdagMOp,tmp,phi5); // (VdagV)^-1 M eta = V^-1 Vdag^-1 Vdag M eta = V^-1 M eta
phi5=phi5*scale;
// Project to 4d
NumOp.ExportFourDimPseudoFermion(phi5,phi4);
};
//////////////////////////////////////////////////////
// S = phi^dag (V^dag M^-dag)_11 (M^-1 V)_11 phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
FermionField Y4(NumOp.GaugeGrid());
FermionField X(NumOp.FermionGrid());
FermionField Y(NumOp.FermionGrid());
FermionField phi5(NumOp.FermionGrid());
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(DenOp);
NumOp.ImportFourDimPseudoFermion(phi4,phi5);
NumOp.M(phi5,Y); // Y= V phi
DenOp.Mdag(Y,X); // X= Mdag V phi
Y=Zero();
ActionSolver(MdagMOp,X,Y); // Y= (MdagM)^-1 Mdag Vdag phi = M^-1 V phi
NumOp.ExportFourDimPseudoFermion(Y,Y4);
RealD action = norm2(Y4);
return action;
};
//////////////////////////////////////////////////////
// dS/du = 2 Re phi^dag (V^dag M^-dag)_11 (M^-1 d V)_11 phi
// - 2 Re phi^dag (dV^dag M^-dag)_11 (M^-1 dM M^-1 V)_11 phi
//////////////////////////////////////////////////////
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(DenOp);
FermionField X(NumOp.FermionGrid());
FermionField Y(NumOp.FermionGrid());
FermionField phi(NumOp.FermionGrid());
FermionField Vphi(NumOp.FermionGrid());
FermionField MinvVphi(NumOp.FermionGrid());
FermionField tmp4(NumOp.GaugeGrid());
FermionField MdagInvMinvVphi(NumOp.FermionGrid());
GaugeField force(NumOp.GaugeGrid());
//Y=V phi
//X = (Mdag V phi
//Y = (Mdag M)^-1 Mdag V phi = M^-1 V Phi
NumOp.ImportFourDimPseudoFermion(phi4,phi);
NumOp.M(phi,Vphi); // V phi
DenOp.Mdag(Vphi,X); // X= Mdag V phi
Y=Zero();
DerivativeSolver(MdagMOp,X,MinvVphi);// M^-1 V phi
// Projects onto the physical space and back
NumOp.ExportFourDimPseudoFermion(MinvVphi,tmp4);
NumOp.ImportFourDimPseudoFermion(tmp4,Y);
X=Zero();
DerivativeSolver(MdagMOp,Y,X);// X = (MdagM)^-1 proj M^-1 V phi
DenOp.M(X,MdagInvMinvVphi);
// phi^dag (Vdag Mdag^-1) (M^-1 dV) phi
NumOp.MDeriv(force ,MdagInvMinvVphi , phi, DaggerNo ); dSdU=force;
// phi^dag (dVdag Mdag^-1) (M^-1 V) phi
NumOp.MDeriv(force , phi, MdagInvMinvVphi ,DaggerYes ); dSdU=dSdU+force;
// - 2 Re phi^dag (dV^dag M^-dag)_11 (M^-1 dM M^-1 V)_11 phi
DenOp.MDeriv(force,MdagInvMinvVphi,MinvVphi,DaggerNo); dSdU=dSdU-force;
DenOp.MDeriv(force,MinvVphi,MdagInvMinvVphi,DaggerYes); dSdU=dSdU-force;
dSdU *= -1.0;
//dSdU = - Ta(dSdU);
};
};
NAMESPACE_END(Grid);

View File

@ -0,0 +1,203 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/TwoFlavourRatio.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////
// Two flavour ratio
///////////////////////////////////////
template<class Impl>
class TwoFlavourRatioEO4DPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
private:
typedef FermionOperator<Impl> FermOp;
FermionOperator<Impl> & NumOp;// the basic operator
FermionOperator<Impl> & DenOp;// the basic operator
OperatorFunction<FermionField> &DerivativeSolver;
OperatorFunction<FermionField> &DerivativeDagSolver;
OperatorFunction<FermionField> &ActionSolver;
OperatorFunction<FermionField> &HeatbathSolver;
FermionField phi4; // the pseudo fermion field for this trajectory
public:
TwoFlavourRatioEO4DPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
OperatorFunction<FermionField> & DS,
OperatorFunction<FermionField> & AS ) :
TwoFlavourRatioEO4DPseudoFermionAction(_NumOp,_DenOp, DS,DS,AS,AS) {};
TwoFlavourRatioEO4DPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
OperatorFunction<FermionField> & DS,
OperatorFunction<FermionField> & DDS,
OperatorFunction<FermionField> & AS,
OperatorFunction<FermionField> & HS
) : NumOp(_NumOp),
DenOp(_DenOp),
DerivativeSolver(DS),
DerivativeDagSolver(DDS),
ActionSolver(AS),
HeatbathSolver(HS),
phi4(_NumOp.GaugeGrid())
{};
virtual std::string action_name(){return "TwoFlavourRatioEO4DPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] has no parameters" << std::endl;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
// P(phi) = e^{- phi^dag (V^dag M^-dag)_11 (M^-1 V)_11 phi}
//
// NumOp == V
// DenOp == M
//
// Take phi = (V^{-1} M)_11 eta ; eta = (M^{-1} V)_11 Phi
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
//
RealD scale = std::sqrt(0.5);
FermionField eta4(NumOp.GaugeGrid());
FermionField eta5(NumOp.FermionGrid());
FermionField tmp(NumOp.FermionGrid());
FermionField phi5(NumOp.FermionGrid());
gaussian(pRNG,eta4);
NumOp.ImportFourDimPseudoFermion(eta4,eta5);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
SchurRedBlackDiagMooeeSolve<FermionField> PrecSolve(HeatbathSolver);
DenOp.M(eta5,tmp); // M eta
PrecSolve(NumOp,tmp,phi5); // phi = V^-1 M eta
phi5=phi5*scale;
std::cout << GridLogMessage << "4d pf refresh "<< norm2(phi5)<<"\n";
// Project to 4d
NumOp.ExportFourDimPseudoFermion(phi5,phi4);
};
//////////////////////////////////////////////////////
// S = phi^dag (V^dag M^-dag)_11 (M^-1 V)_11 phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
FermionField Y4(NumOp.GaugeGrid());
FermionField X(NumOp.FermionGrid());
FermionField Y(NumOp.FermionGrid());
FermionField phi5(NumOp.FermionGrid());
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(DenOp);
SchurRedBlackDiagMooeeSolve<FermionField> PrecSolve(ActionSolver);
NumOp.ImportFourDimPseudoFermion(phi4,phi5);
NumOp.M(phi5,X); // X= V phi
PrecSolve(DenOp,X,Y); // Y= (MdagM)^-1 Mdag Vdag phi = M^-1 V phi
NumOp.ExportFourDimPseudoFermion(Y,Y4);
RealD action = norm2(Y4);
return action;
};
//////////////////////////////////////////////////////
// dS/du = 2 Re phi^dag (V^dag M^-dag)_11 (M^-1 d V)_11 phi
// - 2 Re phi^dag (dV^dag M^-dag)_11 (M^-1 dM M^-1 V)_11 phi
//////////////////////////////////////////////////////
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
FermionField X(NumOp.FermionGrid());
FermionField Y(NumOp.FermionGrid());
FermionField phi(NumOp.FermionGrid());
FermionField Vphi(NumOp.FermionGrid());
FermionField MinvVphi(NumOp.FermionGrid());
FermionField tmp4(NumOp.GaugeGrid());
FermionField MdagInvMinvVphi(NumOp.FermionGrid());
GaugeField force(NumOp.GaugeGrid());
//Y=V phi
//X = (Mdag V phi
//Y = (Mdag M)^-1 Mdag V phi = M^-1 V Phi
NumOp.ImportFourDimPseudoFermion(phi4,phi);
NumOp.M(phi,Vphi); // V phi
SchurRedBlackDiagMooeeSolve<FermionField> PrecSolve(DerivativeSolver);
PrecSolve(DenOp,Vphi,MinvVphi);// M^-1 V phi
std::cout << GridLogMessage << "4d deriv solve "<< norm2(MinvVphi)<<"\n";
// Projects onto the physical space and back
NumOp.ExportFourDimPseudoFermion(MinvVphi,tmp4);
NumOp.ImportFourDimPseudoFermion(tmp4,Y);
SchurRedBlackDiagMooeeDagSolve<FermionField> PrecDagSolve(DerivativeDagSolver);
// X = proj M^-dag V phi
// Need an adjoint solve
PrecDagSolve(DenOp,Y,MdagInvMinvVphi);
std::cout << GridLogMessage << "4d deriv solve dag "<< norm2(MdagInvMinvVphi)<<"\n";
// phi^dag (Vdag Mdag^-1) (M^-1 dV) phi
NumOp.MDeriv(force ,MdagInvMinvVphi , phi, DaggerNo ); dSdU=force;
// phi^dag (dVdag Mdag^-1) (M^-1 V) phi
NumOp.MDeriv(force , phi, MdagInvMinvVphi ,DaggerYes ); dSdU=dSdU+force;
// - 2 Re phi^dag (dV^dag M^-dag)_11 (M^-1 dM M^-1 V)_11 phi
DenOp.MDeriv(force,MdagInvMinvVphi,MinvVphi,DaggerNo); dSdU=dSdU-force;
DenOp.MDeriv(force,MinvVphi,MdagInvMinvVphi,DaggerYes); dSdU=dSdU-force;
dSdU *= -1.0;
//dSdU = - Ta(dSdU);
};
};
NAMESPACE_END(Grid);

View File

@ -151,22 +151,12 @@ public:
Resources.GetCheckPointer()->CheckpointRestore(Parameters.StartTrajectory, U,
Resources.GetSerialRNG(),
Resources.GetParallelRNG());
} else if (Parameters.StartingType == "CheckpointStartReseed") {
// Same as CheckpointRestart but reseed the RNGs using the fixed integer seeding used for ColdStart and HotStart
// Useful for creating new evolution streams from an existing stream
// WARNING: Unfortunately because the checkpointer doesn't presently allow us to separately restore the RNG and gauge fields we have to load
// an existing RNG checkpoint first; make sure one is available and named correctly
Resources.GetCheckPointer()->CheckpointRestore(Parameters.StartTrajectory, U,
Resources.GetSerialRNG(),
Resources.GetParallelRNG());
Resources.SeedFixedIntegers();
} else {
// others
std::cout << GridLogError << "Unrecognized StartingType\n";
std::cout
<< GridLogError
<< "Valid [HotStart, ColdStart, TepidStart, CheckpointStart, CheckpointStartReseed]\n";
<< "Valid [HotStart, ColdStart, TepidStart, CheckpointStart]\n";
exit(1);
}
}
@ -186,6 +176,9 @@ private:
typedef IntegratorType<SmearingPolicy> TheIntegrator;
TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing);
// Sets the momentum filter
MDynamics.setMomentumFilter(*(Resources.GetMomentumFilter()));
Smearing.set_Field(U);
HybridMonteCarlo<TheIntegrator> HMC(Parameters, MDynamics,

View File

@ -34,6 +34,7 @@ directory
* @brief Classes for Hybrid Monte Carlo update
*
* @author Guido Cossu
* @author Peter Boyle
*/
//--------------------------------------------------------------------
#pragma once
@ -115,22 +116,17 @@ private:
random(sRNG, rn_test);
std::cout << GridLogHMC
<< "--------------------------------------------------\n";
std::cout << GridLogHMC << "exp(-dH) = " << prob
<< " Random = " << rn_test << "\n";
std::cout << GridLogHMC
<< "Acc. Probability = " << ((prob < 1.0) ? prob : 1.0) << "\n";
std::cout << GridLogHMC << "--------------------------------------------------\n";
std::cout << GridLogHMC << "exp(-dH) = " << prob << " Random = " << rn_test << "\n";
std::cout << GridLogHMC << "Acc. Probability = " << ((prob < 1.0) ? prob : 1.0) << "\n";
if ((prob > 1.0) || (rn_test <= prob)) { // accepted
std::cout << GridLogHMC << "Metropolis_test -- ACCEPTED\n";
std::cout << GridLogHMC
<< "--------------------------------------------------\n";
std::cout << GridLogHMC << "--------------------------------------------------\n";
return true;
} else { // rejected
std::cout << GridLogHMC << "Metropolis_test -- REJECTED\n";
std::cout << GridLogHMC
<< "--------------------------------------------------\n";
std::cout << GridLogHMC << "--------------------------------------------------\n";
return false;
}
}
@ -139,19 +135,68 @@ private:
// Evolution
/////////////////////////////////////////////////////////
RealD evolve_hmc_step(Field &U) {
TheIntegrator.refresh(U, sRNG, pRNG); // set U and initialize P and phi's
RealD H0 = TheIntegrator.S(U); // initial state action
GridBase *Grid = U.Grid();
//////////////////////////////////////////////////////////////////////////////////////////////////////
// Mainly for DDHMC perform a random translation of U modulo volume
//////////////////////////////////////////////////////////////////////////////////////////////////////
std::cout << GridLogMessage << "--------------------------------------------------\n";
std::cout << GridLogMessage << "Random shifting gauge field by [";
for(int d=0;d<Grid->Nd();d++) {
int L = Grid->GlobalDimensions()[d];
RealD rn_uniform; random(sRNG, rn_uniform);
int shift = (int) (rn_uniform*L);
std::cout << shift;
if(d<Grid->Nd()-1) std::cout <<",";
else std::cout <<"]\n";
U = Cshift(U,d,shift);
}
std::cout << GridLogMessage << "--------------------------------------------------\n";
TheIntegrator.reset_timer();
//////////////////////////////////////////////////////////////////////////////////////////////////////
// set U and initialize P and phi's
//////////////////////////////////////////////////////////////////////////////////////////////////////
std::cout << GridLogMessage << "--------------------------------------------------\n";
std::cout << GridLogMessage << "Refresh momenta and pseudofermions";
TheIntegrator.refresh(U, sRNG, pRNG);
std::cout << GridLogMessage << "--------------------------------------------------\n";
//////////////////////////////////////////////////////////////////////////////////////////////////////
// initial state action
//////////////////////////////////////////////////////////////////////////////////////////////////////
std::cout << GridLogMessage << "--------------------------------------------------\n";
std::cout << GridLogMessage << "Compute initial action";
RealD H0 = TheIntegrator.S(U);
std::cout << GridLogMessage << "--------------------------------------------------\n";
std::streamsize current_precision = std::cout.precision();
std::cout.precision(15);
std::cout << GridLogHMC << "Total H before trajectory = " << H0 << "\n";
std::cout.precision(current_precision);
std::cout << GridLogMessage << "--------------------------------------------------\n";
std::cout << GridLogMessage << " Molecular Dynamics evolution ";
TheIntegrator.integrate(U);
std::cout << GridLogMessage << "--------------------------------------------------\n";
RealD H1 = TheIntegrator.S(U); // updated state action
//////////////////////////////////////////////////////////////////////////////////////////////////////
// updated state action
//////////////////////////////////////////////////////////////////////////////////////////////////////
std::cout << GridLogMessage << "--------------------------------------------------\n";
std::cout << GridLogMessage << "Compute final action";
RealD H1 = TheIntegrator.S(U);
std::cout << GridLogMessage << "--------------------------------------------------\n";
///////////////////////////////////////////////////////////
if(0){
std::cout << "------------------------- Reversibility test" << std::endl;
@ -163,17 +208,16 @@ private:
}
///////////////////////////////////////////////////////////
std::cout.precision(15);
std::cout << GridLogHMC << "Total H after trajectory = " << H1
<< " dH = " << H1 - H0 << "\n";
std::cout << GridLogHMC << "--------------------------------------------------\n";
std::cout << GridLogHMC << "Total H after trajectory = " << H1 << " dH = " << H1 - H0 << "\n";
std::cout << GridLogHMC << "--------------------------------------------------\n";
std::cout.precision(current_precision);
return (H1 - H0);
}
public:
/////////////////////////////////////////
@ -195,8 +239,11 @@ public:
// Actual updates (evolve a copy Ucopy then copy back eventually)
unsigned int FinalTrajectory = Params.Trajectories + Params.NoMetropolisUntil + Params.StartTrajectory;
for (int traj = Params.StartTrajectory; traj < FinalTrajectory; ++traj) {
std::cout << GridLogHMC << "-- # Trajectory = " << traj << "\n";
if (traj < Params.StartTrajectory + Params.NoMetropolisUntil) {
std::cout << GridLogHMC << "-- Thermalization" << std::endl;
}
@ -216,11 +263,10 @@ public:
if (accept)
Ucur = Ucopy;
double t1=usecond();
std::cout << GridLogHMC << "Total time for trajectory (s): " << (t1-t0)/1e6 << std::endl;
TheIntegrator.print_timer();
for (int obs = 0; obs < Observables.size(); obs++) {
std::cout << GridLogDebug << "Observables # " << obs << std::endl;

View File

@ -80,9 +80,7 @@ public:
std::cout << GridLogError << "Seeds not initialized" << std::endl;
exit(1);
}
std::cout << GridLogMessage << "Reseeding serial RNG with seed vector " << SerialSeeds << std::endl;
sRNG_.SeedFixedIntegers(SerialSeeds);
std::cout << GridLogMessage << "Reseeding parallel RNG with seed vector " << ParallelSeeds << std::endl;
pRNG_->SeedFixedIntegers(ParallelSeeds);
}
};

View File

@ -72,6 +72,8 @@ class HMCResourceManager {
typedef HMCModuleBase< BaseHmcCheckpointer<ImplementationPolicy> > CheckpointerBaseModule;
typedef HMCModuleBase< HmcObservable<typename ImplementationPolicy::Field> > ObservableBaseModule;
typedef ActionModuleBase< Action<typename ImplementationPolicy::Field>, GridModule > ActionBaseModule;
typedef typename ImplementationPolicy::Field MomentaField;
typedef typename ImplementationPolicy::Field Field;
// Named storage for grid pairs (std + red-black)
std::unordered_map<std::string, GridModule> Grids;
@ -80,6 +82,9 @@ class HMCResourceManager {
// SmearingModule<ImplementationPolicy> Smearing;
std::unique_ptr<CheckpointerBaseModule> CP;
// Momentum filter
std::unique_ptr<MomentumFilterBase<typename ImplementationPolicy::Field> > Filter;
// A vector of HmcObservable modules
std::vector<std::unique_ptr<ObservableBaseModule> > ObservablesList;
@ -90,6 +95,7 @@ class HMCResourceManager {
bool have_RNG;
bool have_CheckPointer;
bool have_Filter;
// NOTE: operator << is not overloaded for std::vector<string>
// so this function is necessary
@ -101,7 +107,7 @@ class HMCResourceManager {
public:
HMCResourceManager() : have_RNG(false), have_CheckPointer(false) {}
HMCResourceManager() : have_RNG(false), have_CheckPointer(false), have_Filter(false) {}
template <class ReaderClass, class vector_type = vComplex >
void initialize(ReaderClass &Read){
@ -129,6 +135,7 @@ public:
RNGModuleParameters RNGpar(Read);
SetRNGSeeds(RNGpar);
// Observables
auto &ObsFactory = HMC_ObservablesModuleFactory<observable_string, typename ImplementationPolicy::Field, ReaderClass>::getInstance();
Read.push(observable_string);// here must check if existing...
@ -208,6 +215,16 @@ public:
AddGrid(s, Mod);
}
void SetMomentumFilter( MomentumFilterBase<typename ImplementationPolicy::Field> * MomFilter) {
assert(have_Filter==false);
Filter = std::unique_ptr<MomentumFilterBase<typename ImplementationPolicy::Field> >(MomFilter);
have_Filter = true;
}
MomentumFilterBase<typename ImplementationPolicy::Field> *GetMomentumFilter(void) {
if ( !have_Filter)
SetMomentumFilter(new MomentumFilterNone<typename ImplementationPolicy::Field>());
return Filter.get();
}
GridCartesian* GetCartesian(std::string s = "") {
if (s.empty()) s = Grids.begin()->first;

View File

@ -1,63 +1,61 @@
# Using HMC in Grid
Using HMC in Grid version 0.5.1
These are the instructions to use the Generalised HMC on Grid as of commit `749b802`.
Disclaimer: Grid is still under active development so any information here can be changed in future releases.
These are the instructions to use the Generalised HMC on Grid version 0.5.1.
Disclaimer: GRID is still under active development so any information here can be changed in future releases.
## Command line options
(relevant file `GenericHMCrunner.h`)
Command line options
===================
(relevant file GenericHMCrunner.h)
The initial configuration can be changed at the command line using
`--StartingType STARTING_TYPE`, where `STARTING_TYPE` is one of
`HotStart`, `ColdStart`, `TepidStart`, and `CheckpointStart`.
Default: `--StartingType HotStart`
--StartType <your choice>
valid choices, one among these
HotStart, ColdStart, TepidStart, CheckpointStart
default: HotStart
Example:
```
./My_hmc_exec --StartingType HotStart
```
example
./My_hmc_exec --StartType HotStart
The `CheckpointStart` option uses the prefix for the configurations and rng seed files defined in your executable and the initial configuration is specified by
`--StartingTrajectory STARTING_TRAJECTORY`, where `STARTING_TRAJECTORY` is an integer.
Default: `--StartingTrajectory 0`
The CheckpointStart option uses the prefix for the configurations and rng seed files defined in your executable and the initial configuration is specified by
--StartTrajectory <integer>
default: 0
The number of trajectories for a specific run are specified at command line by
`--Trajectories TRAJECTORIES`, where `TRAJECTORIES` is an integer.
Default: `--Trajectories 1`
--Trajectories <integer>
default: 1
The number of thermalization steps (i.e. steps when the Metropolis acceptance check is turned off) is specified by
`--Thermalizations THERMALIZATIONS`, where `THERMALIZATIONS` is an integer.
Default: `--Thermalizations 10`
--Thermalizations <integer>
default: 10
Any other parameter is defined in the source for the executable.
## HMC controls
HMC controls
===========
The lines
```
std::vector<int> SerSeed({1, 2, 3, 4, 5});
std::vector<int> ParSeed({6, 7, 8, 9, 10});
```
define the seeds for the serial and the parallel RNG.
The line
```
TheHMC.MDparameters.set(20, 1.0);// MDsteps, traj length
```
declares the number of molecular dynamics steps and the total trajectory length.
## Actions
Actions
======
Action names are defined in the directory `Grid/qcd/action`.
Action names are defined in the file
lib/qcd/Actions.h
Gauge actions list (from `Grid/qcd/action/gauge/Gauge.h`):
Gauge actions list:
```
WilsonGaugeActionR;
WilsonGaugeActionF;
WilsonGaugeActionD;
@ -70,9 +68,8 @@ IwasakiGaugeActionD;
SymanzikGaugeActionR;
SymanzikGaugeActionF;
SymanzikGaugeActionD;
```
```
ConjugateWilsonGaugeActionR;
ConjugateWilsonGaugeActionF;
ConjugateWilsonGaugeActionD;
@ -85,23 +82,26 @@ ConjugateIwasakiGaugeActionD;
ConjugateSymanzikGaugeActionR;
ConjugateSymanzikGaugeActionF;
ConjugateSymanzikGaugeActionD;
```
Each of these action accepts one single parameter at creation time (beta).
Example for creating a Symanzik action with beta=4.0
```
SymanzikGaugeActionR(4.0)
```
Scalar actions list (from `Grid/qcd/action/scalar/Scalar.h`):
```
ScalarActionR;
ScalarActionF;
ScalarActionD;
```
The suffixes `R`, `F`, `D` in the action names refer to the `Real`
(the precision is defined at compile time by the `--enable-precision` flag in the configure),
`Float` and `Double`, that force the precision of the action to be 32, 64 bit respectively.
each of these action accept one single parameter at creation time (beta).
Example for creating a Symanzik action with beta=4.0
SymanzikGaugeActionR(4.0)
The suffixes R,F,D in the action names refer to the Real
(the precision is defined at compile time by the --enable-precision flag in the configure),
Float and Double, that force the precision of the action to be 32, 64 bit respectively.

View File

@ -33,7 +33,6 @@ directory
#define INTEGRATOR_INCLUDED
#include <memory>
#include "MomentumFilter.h"
NAMESPACE_BEGIN(Grid);
@ -67,6 +66,7 @@ public:
template <class FieldImplementation, class SmearingPolicy, class RepresentationPolicy>
class Integrator {
protected:
typedef typename FieldImplementation::Field MomentaField; //for readability
typedef typename FieldImplementation::Field Field;
@ -119,6 +119,7 @@ protected:
}
} update_P_hireps{};
void update_P(MomentaField& Mom, Field& U, int level, double ep) {
// input U actually not used in the fundamental case
// Fundamental updates, include smearing
@ -130,31 +131,45 @@ protected:
Field& Us = Smearer.get_U(as[level].actions.at(a)->is_smeared);
double start_force = usecond();
as[level].actions.at(a)->deriv_timer_start();
as[level].actions.at(a)->deriv(Us, force); // deriv should NOT include Ta
as[level].actions.at(a)->deriv_timer_stop();
std::cout << GridLogIntegrator << "Smearing (on/off): " << as[level].actions.at(a)->is_smeared << std::endl;
auto name = as[level].actions.at(a)->action_name();
if (as[level].actions.at(a)->is_smeared) Smearer.smeared_force(force);
DumpSliceNorm("force before Ta",force,Nd-1);
force = FieldImplementation::projectForce(force); // Ta for gauge fields
double end_force = usecond();
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites()); //average per-site norm. nb. norm2(latt) = \sum_x norm2(latt[x])
DumpSliceNorm("force before filter",force,Nd-1);
MomFilter->applyFilter(force);
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites()); //average per-site norm. nb. norm2(latt) = \sum_x norm2(latt[x])
Real impulse_abs = force_abs * ep * HMC_MOMENTUM_DENOMINATOR;
Real max_force_abs = std::sqrt(maxLocalNorm2(force));
Real max_impulse_abs = max_force_abs * ep * HMC_MOMENTUM_DENOMINATOR;
Real force_max = std::sqrt(maxLocalNorm2(force));
Real impulse_max = force_max * ep * HMC_MOMENTUM_DENOMINATOR;
as[level].actions.at(a)->deriv_log(force_abs,force_max);
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Force average: " << force_abs <<" "<<name<<std::endl;
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Force max : " << force_max <<" "<<name<<std::endl;
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Fdt average : " << impulse_abs <<" "<<name<<std::endl;
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Fdt max : " << impulse_max <<" "<<name<<std::endl;
std::cout << GridLogIntegrator << "["<<level<<"]["<<a<<"] Force average: " << force_abs << " Max force: " << max_force_abs << " Time step: " << ep << " Impulse average: " << impulse_abs << " Max impulse: " << max_impulse_abs << std::endl;
Mom -= force * ep* HMC_MOMENTUM_DENOMINATOR;;
double end_full = usecond();
double time_full = (end_full - start_full) / 1e3;
double time_force = (end_force - start_force) / 1e3;
std::cout << GridLogMessage << "["<<level<<"]["<<a<<"] P update elapsed time: " << time_full << " ms (force: " << time_force << " ms)" << std::endl;
DumpSliceNorm("force after filter",force,Nd-1);
}
// Force from the other representations
as[level].apply(update_P_hireps, Representations, Mom, U, ep);
MomFilter->applyFilter(Mom);
}
void update_U(Field& U, double ep)
@ -168,8 +183,12 @@ protected:
void update_U(MomentaField& Mom, Field& U, double ep)
{
MomentaField MomFiltered(Mom.Grid());
MomFiltered = Mom;
MomFilter->applyFilter(MomFiltered);
// exponential of Mom*U in the gauge fields case
FieldImplementation::update_field(Mom, U, ep);
FieldImplementation::update_field(MomFiltered, U, ep);
// Update the smeared fields, can be implemented as observer
Smearer.set_Field(U);
@ -212,6 +231,66 @@ public:
const MomentaField & getMomentum() const{ return P; }
void reset_timer(void)
{
for (int level = 0; level < as.size(); ++level) {
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
as[level].actions.at(actionID)->reset_timer();
}
}
}
void print_timer(void)
{
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::" << std::endl;
std::cout << GridLogMessage << " Refresh cumulative timings "<<std::endl;
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
for (int level = 0; level < as.size(); ++level) {
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
std::cout << GridLogMessage
<< as[level].actions.at(actionID)->action_name()
<<"["<<level<<"]["<< actionID<<"] "
<< as[level].actions.at(actionID)->refresh_us*1.0e-6<<" s"<< std::endl;
}
}
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
std::cout << GridLogMessage << " Action cumulative timings "<<std::endl;
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
for (int level = 0; level < as.size(); ++level) {
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
std::cout << GridLogMessage
<< as[level].actions.at(actionID)->action_name()
<<"["<<level<<"]["<< actionID<<"] "
<< as[level].actions.at(actionID)->S_us*1.0e-6<<" s"<< std::endl;
}
}
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
std::cout << GridLogMessage << " Force cumulative timings "<<std::endl;
std::cout << GridLogMessage << "------------------------- "<<std::endl;
for (int level = 0; level < as.size(); ++level) {
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
std::cout << GridLogMessage
<< as[level].actions.at(actionID)->action_name()
<<"["<<level<<"]["<< actionID<<"] "
<< as[level].actions.at(actionID)->deriv_us*1.0e-6<<" s"<< std::endl;
}
}
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
std::cout << GridLogMessage << " Force average size "<<std::endl;
std::cout << GridLogMessage << "------------------------- "<<std::endl;
for (int level = 0; level < as.size(); ++level) {
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
std::cout << GridLogMessage
<< as[level].actions.at(actionID)->action_name()
<<"["<<level<<"]["<< actionID<<"] : "
<<" force max " << as[level].actions.at(actionID)->deriv_max_average()
<<" norm " << as[level].actions.at(actionID)->deriv_norm_average()
<<" calls " << as[level].actions.at(actionID)->deriv_num
<< std::endl;
}
}
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::"<< std::endl;
}
void print_parameters()
{
std::cout << GridLogMessage << "[Integrator] Name : "<< integrator_name() << std::endl;
@ -230,7 +309,6 @@ public:
}
}
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::"<< std::endl;
}
void reverse_momenta()
@ -255,19 +333,15 @@ public:
void refresh(Field& U, GridSerialRNG & sRNG, GridParallelRNG& pRNG)
{
assert(P.Grid() == U.Grid());
std::cout << GridLogIntegrator << "Integrator refresh" << std::endl;
std::cout << GridLogIntegrator << "Integrator refresh\n";
std::cout << GridLogIntegrator << "Generating momentum" << std::endl;
FieldImplementation::generate_momenta(P, sRNG, pRNG);
// Update the smeared fields, can be implemented as observer
// necessary to keep the fields updated even after a reject
// of the Metropolis
std::cout << GridLogIntegrator << "Updating smeared fields" << std::endl;
Smearer.set_Field(U);
// Set the (eventual) representations gauge fields
std::cout << GridLogIntegrator << "Updating representations" << std::endl;
Representations.update(U);
// The Smearer is attached to a pointer of the gauge field
@ -277,16 +351,19 @@ public:
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
// get gauge field from the SmearingPolicy and
// based on the boolean is_smeared in actionID
std::cout << GridLogIntegrator << "Refreshing integrator level " << level << " index " << actionID << std::endl;
auto name = as[level].actions.at(actionID)->action_name();
std::cout << GridLogMessage << "refresh [" << level << "][" << actionID << "] "<<name << std::endl;
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
as[level].actions.at(actionID)->refresh_timer_start();
as[level].actions.at(actionID)->refresh(Us, sRNG, pRNG);
as[level].actions.at(actionID)->refresh_timer_stop();
}
// Refresh the higher representation actions
as[level].apply(refresh_hireps, Representations, sRNG, pRNG);
}
MomFilter->applyFilter(P);
}
// to be used by the actionlevel class to iterate
@ -321,7 +398,9 @@ public:
// based on the boolean is_smeared in actionID
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] action eval " << std::endl;
as[level].actions.at(actionID)->S_timer_start();
Hterm = as[level].actions.at(actionID)->S(Us);
as[level].actions.at(actionID)->S_timer_stop();
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] H = " << Hterm << std::endl;
H += Hterm;
}

View File

@ -99,7 +99,7 @@ public:
// using wilson flow by default here
WilsonFlow<PeriodicGimplR> WF(Pars.Smearing.steps, Pars.Smearing.step_size, Pars.Smearing.meas_interval);
WF.smear_adaptive(Usmear, U, Pars.Smearing.maxTau);
Real T0 = WF.energyDensityPlaquette(Pars.Smearing.maxTau, Usmear);
Real T0 = WF.energyDensityPlaquette(Usmear);
std::cout << GridLogMessage << std::setprecision(std::numeric_limits<Real>::digits10 + 1)
<< "T0 : [ " << traj << " ] "<< T0 << std::endl;
}

View File

@ -7,7 +7,6 @@ Source file: ./lib/qcd/modules/plaquette.h
Copyright (C) 2017
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Christopher Kelly <ckelly@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -34,44 +33,28 @@ NAMESPACE_BEGIN(Grid);
template <class Gimpl>
class WilsonFlow: public Smear<Gimpl>{
public:
//Store generic measurements to take during smearing process using std::function
typedef std::function<void(int, RealD, const typename Gimpl::GaugeField &)> FunctionType; //int: step, RealD: flow time, GaugeField : the gauge field
private:
unsigned int Nstep;
RealD epsilon; //for regular smearing this is the time step, for adaptive it is the initial time step
std::vector< std::pair<int, FunctionType> > functions; //The int maps to the measurement frequency
unsigned int measure_interval;
mutable RealD epsilon, taus;
mutable WilsonGaugeAction<Gimpl> SG;
//Evolve the gauge field by 1 step and update tau
void evolve_step(typename Gimpl::GaugeField &U, RealD &tau) const;
//Evolve the gauge field by 1 step and update tau and the current time step eps
void evolve_step_adaptive(typename Gimpl::GaugeField&U, RealD &tau, RealD &eps, RealD maxTau) const;
void evolve_step(typename Gimpl::GaugeField&) const;
void evolve_step_adaptive(typename Gimpl::GaugeField&, RealD);
RealD tau(unsigned int t)const {return epsilon*(t+1.0); }
public:
INHERIT_GIMPL_TYPES(Gimpl)
void resetActions(){ functions.clear(); }
void addMeasurement(int meas_interval, FunctionType meas){ functions.push_back({meas_interval, meas}); }
//Set the class to perform the default measurements:
//the plaquette energy density every step
//the plaquette topological charge every 'topq_meas_interval' steps
//and output to stdout
void setDefaultMeasurements(int topq_meas_interval = 1);
explicit WilsonFlow(unsigned int Nstep, RealD epsilon, unsigned int interval = 1):
Nstep(Nstep),
epsilon(epsilon),
measure_interval(interval),
SG(WilsonGaugeAction<Gimpl>(3.0)) {
// WilsonGaugeAction with beta 3.0
assert(epsilon > 0.0);
LogMessage();
setDefaultMeasurements(interval);
}
void LogMessage() {
@ -90,29 +73,9 @@ public:
// undefined for WilsonFlow
}
void smear_adaptive(GaugeField&, const GaugeField&, RealD maxTau) const;
//Compute t^2 <E(t)> for time t from the plaquette
static RealD energyDensityPlaquette(const RealD t, const GaugeField& U);
//Compute t^2 <E(t)> for time t from the 1x1 cloverleaf form
//t is the Wilson flow time
static RealD energyDensityCloverleaf(const RealD t, const GaugeField& U);
//Evolve the gauge field by Nstep steps of epsilon and return the energy density computed every interval steps
//The smeared field is output as V
std::vector<RealD> flowMeasureEnergyDensityPlaquette(GaugeField &V, const GaugeField& U, int measure_interval = 1);
//Version that does not return the smeared field
std::vector<RealD> flowMeasureEnergyDensityPlaquette(const GaugeField& U, int measure_interval = 1);
//Evolve the gauge field by Nstep steps of epsilon and return the Cloverleaf energy density computed every interval steps
//The smeared field is output as V
std::vector<RealD> flowMeasureEnergyDensityCloverleaf(GaugeField &V, const GaugeField& U, int measure_interval = 1);
//Version that does not return the smeared field
std::vector<RealD> flowMeasureEnergyDensityCloverleaf(const GaugeField& U, int measure_interval = 1);
void smear_adaptive(GaugeField&, const GaugeField&, RealD maxTau);
RealD energyDensityPlaquette(unsigned int step, const GaugeField& U) const;
RealD energyDensityPlaquette(const GaugeField& U) const;
};
@ -120,7 +83,7 @@ public:
// Implementations
////////////////////////////////////////////////////////////////////////////////
template <class Gimpl>
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U, RealD &tau) const{
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
GaugeField Z(U.Grid());
GaugeField tmp(U.Grid());
SG.deriv(U, Z);
@ -136,13 +99,12 @@ void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U, RealD &tau) c
SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2
Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
Gimpl::update_field(Z, U, -2.0*epsilon); // V(t+e) = exp(ep*Z)*W2
tau += epsilon;
}
template <class Gimpl>
void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, RealD &tau, RealD &eps, RealD maxTau) const{
if (maxTau - tau < eps){
eps = maxTau-tau;
void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, RealD maxTau) {
if (maxTau - taus < epsilon){
epsilon = maxTau-taus;
}
//std::cout << GridLogMessage << "Integration epsilon : " << epsilon << std::endl;
GaugeField Z(U.Grid());
@ -152,151 +114,95 @@ void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, Real
SG.deriv(U, Z);
Zprime = -Z;
Z *= 0.25; // Z0 = 1/4 * F(U)
Gimpl::update_field(Z, U, -2.0*eps); // U = W1 = exp(ep*Z0)*W0
Gimpl::update_field(Z, U, -2.0*epsilon); // U = W1 = exp(ep*Z0)*W0
Z *= -17.0/8.0;
SG.deriv(U, tmp); Z += tmp; // -17/32*Z0 +Z1
Zprime += 2.0*tmp;
Z *= 8.0/9.0; // Z = -17/36*Z0 +8/9*Z1
Gimpl::update_field(Z, U, -2.0*eps); // U_= W2 = exp(ep*Z)*W1
Gimpl::update_field(Z, U, -2.0*epsilon); // U_= W2 = exp(ep*Z)*W1
Z *= -4.0/3.0;
SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2
Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
Gimpl::update_field(Z, U, -2.0*eps); // V(t+e) = exp(ep*Z)*W2
Gimpl::update_field(Z, U, -2.0*epsilon); // V(t+e) = exp(ep*Z)*W2
// Ramos
Gimpl::update_field(Zprime, Uprime, -2.0*eps); // V'(t+e) = exp(ep*Z')*W0
Gimpl::update_field(Zprime, Uprime, -2.0*epsilon); // V'(t+e) = exp(ep*Z')*W0
// Compute distance as norm^2 of the difference
GaugeField diffU = U - Uprime;
RealD diff = norm2(diffU);
// adjust integration step
tau += eps;
taus += epsilon;
//std::cout << GridLogMessage << "Adjusting integration step with distance: " << diff << std::endl;
eps = eps*0.95*std::pow(1e-4/diff,1./3.);
epsilon = epsilon*0.95*std::pow(1e-4/diff,1./3.);
//std::cout << GridLogMessage << "New epsilon : " << epsilon << std::endl;
}
template <class Gimpl>
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(const RealD t, const GaugeField& U){
static WilsonGaugeAction<Gimpl> SG(3.0);
return 2.0 * t * t * SG.S(U)/U.Grid()->gSites();
}
//Compute t^2 <E(t)> for time from the 1x1 cloverleaf form
template <class Gimpl>
RealD WilsonFlow<Gimpl>::energyDensityCloverleaf(const RealD t, const GaugeField& U){
typedef typename Gimpl::GaugeLinkField GaugeMat;
typedef typename Gimpl::GaugeField GaugeLorentz;
assert(Nd == 4);
//E = 1/2 tr( F_munu F_munu )
//However as F_numu = -F_munu, only need to sum the trace of the squares of the following 6 field strengths:
//F_01 F_02 F_03 F_12 F_13 F_23
GaugeMat F(U.Grid());
LatticeComplexD R(U.Grid());
R = Zero();
for(int mu=0;mu<3;mu++){
for(int nu=mu+1;nu<4;nu++){
WilsonLoops<Gimpl>::FieldStrength(F, U, mu, nu);
R = R + trace(F*F);
}
}
ComplexD out = sum(R);
out = t*t*out / RealD(U.Grid()->gSites());
return -real(out); //minus sign necessary for +ve energy
}
template <class Gimpl>
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityPlaquette(GaugeField &V, const GaugeField& U, int measure_interval){
std::vector<RealD> out;
resetActions();
addMeasurement(measure_interval, [&out](int step, RealD t, const typename Gimpl::GaugeField &U){
std::cout << GridLogMessage << "[WilsonFlow] Computing plaquette energy density for step " << step << std::endl;
out.push_back( energyDensityPlaquette(t,U) );
});
smear(V,U);
return out;
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(unsigned int step, const GaugeField& U) const {
RealD td = tau(step);
return 2.0 * td * td * SG.S(U)/U.Grid()->gSites();
}
template <class Gimpl>
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityPlaquette(const GaugeField& U, int measure_interval){
GaugeField V(U);
return flowMeasureEnergyDensityPlaquette(V,U, measure_interval);
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(const GaugeField& U) const {
return 2.0 * taus * taus * SG.S(U)/U.Grid()->gSites();
}
template <class Gimpl>
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityCloverleaf(GaugeField &V, const GaugeField& U, int measure_interval){
std::vector<RealD> out;
resetActions();
addMeasurement(measure_interval, [&out](int step, RealD t, const typename Gimpl::GaugeField &U){
std::cout << GridLogMessage << "[WilsonFlow] Computing Cloverleaf energy density for step " << step << std::endl;
out.push_back( energyDensityCloverleaf(t,U) );
});
smear(V,U);
return out;
}
template <class Gimpl>
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityCloverleaf(const GaugeField& U, int measure_interval){
GaugeField V(U);
return flowMeasureEnergyDensityCloverleaf(V,U, measure_interval);
}
//#define WF_TIMING
template <class Gimpl>
void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const{
void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const {
out = in;
RealD taus = 0.;
for (unsigned int step = 1; step <= Nstep; step++) { //step indicates the number of smearing steps applied at the time of measurement
for (unsigned int step = 1; step <= Nstep; step++) {
auto start = std::chrono::high_resolution_clock::now();
evolve_step(out, taus);
evolve_step(out);
auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> diff = end - start;
#ifdef WF_TIMING
std::cout << "Time to evolve " << diff.count() << " s\n";
#endif
//Perform measurements
for(auto const &meas : functions)
if( step % meas.first == 0 ) meas.second(step,taus,out);
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : "
<< step << " " << tau(step) << " "
<< energyDensityPlaquette(step,out) << std::endl;
if( step % measure_interval == 0){
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : "
<< step << " "
<< WilsonLoops<PeriodicGimplR>::TopologicalCharge(out) << std::endl;
}
}
}
template <class Gimpl>
void WilsonFlow<Gimpl>::smear_adaptive(GaugeField& out, const GaugeField& in, RealD maxTau) const{
void WilsonFlow<Gimpl>::smear_adaptive(GaugeField& out, const GaugeField& in, RealD maxTau){
out = in;
RealD taus = 0.;
RealD eps = epsilon;
taus = epsilon;
unsigned int step = 0;
do{
step++;
//std::cout << GridLogMessage << "Evolution time :"<< taus << std::endl;
evolve_step_adaptive(out, taus, eps, maxTau);
//Perform measurements
for(auto const &meas : functions)
if( step % meas.first == 0 ) meas.second(step,taus,out);
evolve_step_adaptive(out, maxTau);
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : "
<< step << " " << taus << " "
<< energyDensityPlaquette(out) << std::endl;
if( step % measure_interval == 0){
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : "
<< step << " "
<< WilsonLoops<PeriodicGimplR>::TopologicalCharge(out) << std::endl;
}
} while (taus < maxTau);
}
template <class Gimpl>
void WilsonFlow<Gimpl>::setDefaultMeasurements(int topq_meas_interval){
addMeasurement(1, [](int step, RealD t, const typename Gimpl::GaugeField &U){
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : " << step << " " << t << " " << energyDensityPlaquette(t,U) << std::endl;
});
addMeasurement(topq_meas_interval, [](int step, RealD t, const typename Gimpl::GaugeField &U){
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : " << step << " " << WilsonLoops<Gimpl>::TopologicalCharge(U) << std::endl;
});
}
}
NAMESPACE_END(Grid);

View File

@ -88,12 +88,6 @@ namespace PeriodicBC {
return CovShiftBackward(Link,mu,arg);
}
//Boundary-aware C-shift of gauge links / gauge transformation matrices
template<class gauge> Lattice<gauge>
CshiftLink(const Lattice<gauge> &Link, int mu, int shift)
{
return Cshift(Link, mu, shift);
}
}
@ -164,9 +158,6 @@ namespace ConjugateBC {
// std::cout<<"Gparity::CovCshiftBackward mu="<<mu<<std::endl;
return Cshift(tmp,mu,-1);// moves towards positive mu
}
//Out(x) = U^dag_\mu(x-mu) | x_\mu != 0
// = U^T_\mu(L-1) | x_\mu == 0
template<class gauge> Lattice<gauge>
CovShiftIdentityBackward(const Lattice<gauge> &Link, int mu) {
GridBase *grid = Link.Grid();
@ -185,16 +176,13 @@ namespace ConjugateBC {
return Link;
}
//Out(x) = S_\mu(x+\hat\mu) | x_\mu != L-1
// = S*_\mu(0) | x_\mu == L-1
//Note: While this is used for Staples it is also applicable for shifting gauge links or gauge transformation matrices
template<class gauge> Lattice<gauge>
ShiftStaple(const Lattice<gauge> &Link, int mu)
{
GridBase *grid = Link.Grid();
int Lmu = grid->GlobalDimensions()[mu] - 1;
Lattice<iScalar<vInteger>> coor(grid);
Lattice<iScalar<vInteger> > coor(grid);
LatticeCoordinate(coor, mu);
Lattice<gauge> tmp(grid);
@ -220,35 +208,6 @@ namespace ConjugateBC {
return CovShiftBackward(Link,mu,arg);
}
//Boundary-aware C-shift of gauge links / gauge transformation matrices
//shift = 1
//Out(x) = U_\mu(x+\hat\mu) | x_\mu != L-1
// = U*_\mu(0) | x_\mu == L-1
//shift = -1
//Out(x) = U_\mu(x-mu) | x_\mu != 0
// = U*_\mu(L-1) | x_\mu == 0
template<class gauge> Lattice<gauge>
CshiftLink(const Lattice<gauge> &Link, int mu, int shift)
{
GridBase *grid = Link.Grid();
int Lmu = grid->GlobalDimensions()[mu] - 1;
Lattice<iScalar<vInteger>> coor(grid);
LatticeCoordinate(coor, mu);
Lattice<gauge> tmp(grid);
if(shift == 1){
tmp = Cshift(Link, mu, 1);
tmp = where(coor == Lmu, conjugate(tmp), tmp);
return tmp;
}else if(shift == -1){
tmp = Link;
tmp = where(coor == Lmu, conjugate(tmp), tmp);
return Cshift(tmp, mu, -1);
}else assert(0 && "Invalid shift value");
return tmp; //shuts up the compiler fussing about the return type
}
}

View File

@ -40,46 +40,27 @@ public:
typedef typename Gimpl::GaugeLinkField GaugeMat;
typedef typename Gimpl::GaugeField GaugeLorentz;
//A_\mu(x) = -i Ta(U_\mu(x) ) where Ta(U) = 1/2( U - U^dag ) - 1/2N tr(U - U^dag) is the traceless antihermitian part. This is an O(A^3) approximation to the logarithm of U
static void GaugeLinkToLieAlgebraField(const GaugeMat &U, GaugeMat &A) {
Complex cmi(0.0,-1.0);
A = Ta(U) * cmi;
static void GaugeLinkToLieAlgebraField(const std::vector<GaugeMat> &U,std::vector<GaugeMat> &A) {
for(int mu=0;mu<Nd;mu++){
Complex cmi(0.0,-1.0);
A[mu] = Ta(U[mu]) * cmi;
}
}
//The derivative of the Lie algebra field
static void DmuAmu(const std::vector<GaugeMat> &U, GaugeMat &dmuAmu,int orthog) {
GridBase* grid = U[0].Grid();
GaugeMat Ax(grid);
GaugeMat Axm1(grid);
GaugeMat Utmp(grid);
static void DmuAmu(const std::vector<GaugeMat> &A,GaugeMat &dmuAmu,int orthog) {
dmuAmu=Zero();
for(int mu=0;mu<Nd;mu++){
if ( mu != orthog ) {
//Rather than define functionality to work out how the BCs apply to A_\mu we simply use the BC-aware Cshift to the gauge links and compute A_\mu(x) and A_\mu(x-1) separately
//Ax = A_\mu(x)
GaugeLinkToLieAlgebraField(U[mu], Ax);
//Axm1 = A_\mu(x_\mu-1)
Utmp = Gimpl::CshiftLink(U[mu], mu, -1);
GaugeLinkToLieAlgebraField(Utmp, Axm1);
//Derivative
dmuAmu = dmuAmu + Ax - Axm1;
dmuAmu = dmuAmu + A[mu] - Cshift(A[mu],mu,-1);
}
}
}
//Fix the gauge field Umu
//0 < alpha < 1 is related to the step size, cf https://arxiv.org/pdf/1405.5812.pdf
static void SteepestDescentGaugeFix(GaugeLorentz &Umu, Real alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1) {
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1) {
GridBase *grid = Umu.Grid();
GaugeMat xform(grid);
SteepestDescentGaugeFix(Umu,xform,alpha,maxiter,Omega_tol,Phi_tol,Fourier,orthog);
}
//Fix the gauge field Umu and also return the gauge transformation from the original gauge field, xform
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,GaugeMat &xform, Real alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1) {
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,GaugeMat &xform,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1) {
GridBase *grid = Umu.Grid();
@ -141,24 +122,27 @@ public:
}
}
assert(0 && "Gauge fixing did not converge within the specified number of iterations");
};
static Real SteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform, Real alpha, GaugeMat & dmuAmu,int orthog) {
static Real SteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform,Real & alpha, GaugeMat & dmuAmu,int orthog) {
GridBase *grid = U[0].Grid();
std::vector<GaugeMat> A(Nd,grid);
GaugeMat g(grid);
ExpiAlphaDmuAmu(U,g,alpha,dmuAmu,orthog);
GaugeLinkToLieAlgebraField(U,A);
ExpiAlphaDmuAmu(A,g,alpha,dmuAmu,orthog);
Real vol = grid->gSites();
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
xform = g*xform ;
SU<Nc>::GaugeTransform<Gimpl>(U,g);
SU<Nc>::GaugeTransform(U,g);
return trG;
}
static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform, Real alpha, GaugeMat & dmuAmu,int orthog) {
static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform,Real & alpha, GaugeMat & dmuAmu,int orthog) {
GridBase *grid = U[0].Grid();
@ -173,7 +157,11 @@ public:
GaugeMat g(grid);
GaugeMat dmuAmu_p(grid);
DmuAmu(U,dmuAmu,orthog);
std::vector<GaugeMat> A(Nd,grid);
GaugeLinkToLieAlgebraField(U,A);
DmuAmu(A,dmuAmu,orthog);
std::vector<int> mask(Nd,1);
for(int mu=0;mu<Nd;mu++) if (mu==orthog) mask[mu]=0;
@ -217,16 +205,16 @@ public:
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
xform = g*xform ;
SU<Nc>::GaugeTransform<Gimpl>(U,g);
SU<Nc>::GaugeTransform(U,g);
return trG;
}
static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &U,GaugeMat &g, Real alpha, GaugeMat &dmuAmu,int orthog) {
static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &A,GaugeMat &g,Real & alpha, GaugeMat &dmuAmu,int orthog) {
GridBase *grid = g.Grid();
Complex cialpha(0.0,-alpha);
GaugeMat ciadmam(grid);
DmuAmu(U,dmuAmu,orthog);
DmuAmu(A,dmuAmu,orthog);
ciadmam = dmuAmu*cialpha;
SU<Nc>::taExp(ciadmam,g);
}

View File

@ -0,0 +1,111 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file:
Copyright (C) 2015-2016
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class SchurOperatorF>
class MixedPrecisionConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
public:
typedef typename FermionOperatorD::FermionField FieldD;
typedef typename FermionOperatorF::FermionField FieldF;
using OperatorFunction<FieldD>::operator();
RealD Tolerance;
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
Integer MaxInnerIterations;
Integer MaxOuterIterations;
GridBase* SinglePrecGrid;
RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
FermionOperatorF &FermOpF;
FermionOperatorD &FermOpD;;
SchurOperatorF &LinOpF;
SchurOperatorD &LinOpD;
Integer TotalInnerIterations; //Number of inner CG iterations
Integer TotalOuterIterations; //Number of restarts
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
MixedPrecisionConjugateGradientOperatorFunction(RealD tol, RealD tolInner,
Integer maxinnerit,
Integer maxouterit,
GridBase *_SinglePrecGrid,
FermionOperatorF &_FermOpF,
FermionOperatorD &_FermOpD,
SchurOperatorF &_LinOpF,
SchurOperatorD &_LinOpD) :
LinOpF(_LinOpF),
LinOpD(_LinOpD),
FermOpF(_FermOpF),
FermOpD(_FermOpD),
Tolerance(tol),
InnerTolerance(tolInner),
MaxInnerIterations(maxinnerit),
MaxOuterIterations(maxouterit),
SinglePrecGrid(_SinglePrecGrid),
OuterLoopNormMult(100.)
{ assert(tolInner<0.01); };
void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi)
{
SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
// Assumption made in code to extract gauge field
// We could avoid storing LinopD reference alltogether ?
assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
////////////////////////////////////////////////////////////////////////////////////
// Moving this to a Clone method of fermion operator would allow to duplicate the
// physics parameters and decrease gauge field copies
////////////////////////////////////////////////////////////////////////////////////
auto &Umu_d = FermOpD.GetDoubledGaugeField();
auto &Umu_f = FermOpF.GetDoubledGaugeField();
auto &Umu_fe= FermOpF.GetDoubledGaugeFieldE();
auto &Umu_fo= FermOpF.GetDoubledGaugeFieldO();
precisionChange(Umu_f,Umu_d);
pickCheckerboard(Even,Umu_fe,Umu_f);
pickCheckerboard(Odd ,Umu_fo,Umu_f);
//////////////////////////////////////////////////////////////////////////////////////////
// Make a mixed precision conjugate gradient
//////////////////////////////////////////////////////////////////////////////////////////
// Could assume red black solver here and remove the SinglePrecGrid parameter???
MixedPrecisionConjugateGradient<FieldD,FieldF> MPCG(Tolerance, InnerTolerance,MaxInnerIterations,MaxOuterIterations,SinglePrecGrid,LinOpF,LinOpD);
std::cout << GridLogMessage << "Calling mixed precision Conjugate Gradient src "<<norm2(src) <<std::endl;
psi=Zero();
MPCG(src,psi);
}
};
NAMESPACE_END(Grid);

View File

@ -694,32 +694,32 @@ public:
* Adjoint rep gauge xform
*/
template<typename Gimpl>
static void GaugeTransform(typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
template<typename GaugeField,typename GaugeMat>
static void GaugeTransform( GaugeField &Umu, GaugeMat &g){
GridBase *grid = Umu.Grid();
conformable(grid,g.Grid());
typename Gimpl::GaugeLinkField U(grid);
typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
GaugeMat U(grid);
GaugeMat ag(grid); ag = adj(g);
for(int mu=0;mu<Nd;mu++){
U= PeekIndex<LorentzIndex>(Umu,mu);
U = g*U*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
U = g*U*Cshift(ag, mu, 1);
PokeIndex<LorentzIndex>(Umu,U,mu);
}
}
template<typename Gimpl>
static void GaugeTransform( std::vector<typename Gimpl::GaugeLinkField> &U, typename Gimpl::GaugeLinkField &g){
template<typename GaugeMat>
static void GaugeTransform( std::vector<GaugeMat> &U, GaugeMat &g){
GridBase *grid = g.Grid();
typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
GaugeMat ag(grid); ag = adj(g);
for(int mu=0;mu<Nd;mu++){
U[mu] = g*U[mu]*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
U[mu] = g*U[mu]*Cshift(ag, mu, 1);
}
}
template<typename Gimpl>
static void RandomGaugeTransform(GridParallelRNG &pRNG, typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
template<typename GaugeField,typename GaugeMat>
static void RandomGaugeTransform(GridParallelRNG &pRNG, GaugeField &Umu, GaugeMat &g){
LieRandomize(pRNG,g,1.0);
GaugeTransform<Gimpl>(Umu,g);
GaugeTransform(Umu,g);
}
// Projects the algebra components a lattice matrix (of dimension ncol*ncol -1 )

View File

@ -125,56 +125,6 @@ public:
return sumplaq / vol / faces / Nc; // Nd , Nc dependent... FIXME
}
//////////////////////////////////////////////////
// sum over all spatial planes of plaquette
//////////////////////////////////////////////////
static void siteSpatialPlaquette(ComplexField &Plaq,
const std::vector<GaugeMat> &U) {
ComplexField sitePlaq(U[0].Grid());
Plaq = Zero();
for (int mu = 1; mu < Nd-1; mu++) {
for (int nu = 0; nu < mu; nu++) {
traceDirPlaquette(sitePlaq, U, mu, nu);
Plaq = Plaq + sitePlaq;
}
}
}
////////////////////////////////////
// sum over all x,y,z and over all spatial planes of plaquette
//////////////////////////////////////////////////
static std::vector<RealD> timesliceSumSpatialPlaquette(const GaugeLorentz &Umu) {
std::vector<GaugeMat> U(Nd, Umu.Grid());
// inefficient here
for (int mu = 0; mu < Nd; mu++) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
}
ComplexField Plaq(Umu.Grid());
siteSpatialPlaquette(Plaq, U);
typedef typename ComplexField::scalar_object sobj;
std::vector<sobj> Tq;
sliceSum(Plaq, Tq, Nd-1);
std::vector<Real> out(Tq.size());
for(int t=0;t<Tq.size();t++) out[t] = TensorRemove(Tq[t]).real();
return out;
}
//////////////////////////////////////////////////
// average over all x,y,z and over all spatial planes of plaquette
//////////////////////////////////////////////////
static std::vector<RealD> timesliceAvgSpatialPlaquette(const GaugeLorentz &Umu) {
std::vector<RealD> sumplaq = timesliceSumSpatialPlaquette(Umu);
int Lt = Umu.Grid()->FullDimensions()[Nd-1];
assert(sumplaq.size() == Lt);
double vol = Umu.Grid()->gSites() / Lt;
double faces = (1.0 * (Nd - 1)* (Nd - 2)) / 2.0;
for(int t=0;t<Lt;t++)
sumplaq[t] = sumplaq[t] / vol / faces / Nc; // Nd , Nc dependent... FIXME
return sumplaq;
}
//////////////////////////////////////////////////
// average over all x,y,z the temporal loop
@ -413,11 +363,11 @@ public:
GaugeMat u = PeekIndex<LorentzIndex>(Umu, mu); // some redundant copies
GaugeMat vu = v*u;
//FS = 0.25*Ta(u*v + Cshift(vu, mu, -1));
FS = (u*v + Gimpl::CshiftLink(vu, mu, -1));
FS = (u*v + Cshift(vu, mu, -1));
FS = 0.125*(FS - adj(FS));
}
static Real TopologicalCharge(const GaugeLorentz &U){
static Real TopologicalCharge(GaugeLorentz &U){
// 4d topological charge
assert(Nd==4);
// Bx = -iF(y,z), By = -iF(z,y), Bz = -iF(x,y)
@ -440,203 +390,6 @@ public:
}
//Clover-leaf Wilson loop combination for arbitrary mu-extent M and nu extent N, mu >= nu
//cf https://arxiv.org/pdf/hep-lat/9701012.pdf Eq 7 for 1x2 Wilson loop
//Clockwise ordering
static void CloverleafMxN(GaugeMat &FS, const GaugeMat &Umu, const GaugeMat &Unu, int mu, int nu, int M, int N){
#define Fmu(A) Gimpl::CovShiftForward(Umu, mu, A)
#define Bmu(A) Gimpl::CovShiftBackward(Umu, mu, A)
#define Fnu(A) Gimpl::CovShiftForward(Unu, nu, A)
#define Bnu(A) Gimpl::CovShiftBackward(Unu, nu, A)
#define FmuI Gimpl::CovShiftIdentityForward(Umu, mu)
#define BmuI Gimpl::CovShiftIdentityBackward(Umu, mu)
#define FnuI Gimpl::CovShiftIdentityForward(Unu, nu)
#define BnuI Gimpl::CovShiftIdentityBackward(Unu, nu)
//Upper right loop
GaugeMat tmp = BmuI;
for(int i=1;i<M;i++)
tmp = Bmu(tmp);
for(int j=0;j<N;j++)
tmp = Bnu(tmp);
for(int i=0;i<M;i++)
tmp = Fmu(tmp);
for(int j=0;j<N;j++)
tmp = Fnu(tmp);
FS = tmp;
//Upper left loop
tmp = BnuI;
for(int j=1;j<N;j++)
tmp = Bnu(tmp);
for(int i=0;i<M;i++)
tmp = Fmu(tmp);
for(int j=0;j<N;j++)
tmp = Fnu(tmp);
for(int i=0;i<M;i++)
tmp = Bmu(tmp);
FS = FS + tmp;
//Lower right loop
tmp = FnuI;
for(int j=1;j<N;j++)
tmp = Fnu(tmp);
for(int i=0;i<M;i++)
tmp = Bmu(tmp);
for(int j=0;j<N;j++)
tmp = Bnu(tmp);
for(int i=0;i<M;i++)
tmp = Fmu(tmp);
FS = FS + tmp;
//Lower left loop
tmp = FmuI;
for(int i=1;i<M;i++)
tmp = Fmu(tmp);
for(int j=0;j<N;j++)
tmp = Fnu(tmp);
for(int i=0;i<M;i++)
tmp = Bmu(tmp);
for(int j=0;j<N;j++)
tmp = Bnu(tmp);
FS = FS + tmp;
#undef Fmu
#undef Bmu
#undef Fnu
#undef Bnu
#undef FmuI
#undef BmuI
#undef FnuI
#undef BnuI
}
//Field strength from MxN Wilson loop
//Note F_numu = - F_munu
static void FieldStrengthMxN(GaugeMat &FS, const GaugeLorentz &U, int mu, int nu, int M, int N){
GaugeMat Umu = PeekIndex<LorentzIndex>(U, mu);
GaugeMat Unu = PeekIndex<LorentzIndex>(U, nu);
if(M == N){
GaugeMat F(Umu.Grid());
CloverleafMxN(F, Umu, Unu, mu, nu, M, N);
FS = 0.125 * ( F - adj(F) );
}else{
//Average over both orientations
GaugeMat horizontal(Umu.Grid()), vertical(Umu.Grid());
CloverleafMxN(horizontal, Umu, Unu, mu, nu, M, N);
CloverleafMxN(vertical, Umu, Unu, mu, nu, N, M);
FS = 0.0625 * ( horizontal - adj(horizontal) + vertical - adj(vertical) );
}
}
//Topological charge contribution from MxN Wilson loops
//cf https://arxiv.org/pdf/hep-lat/9701012.pdf Eq 6
//output is the charge by timeslice: sum over timeslices to obtain the total
static std::vector<Real> TimesliceTopologicalChargeMxN(const GaugeLorentz &U, int M, int N){
assert(Nd == 4);
std::vector<std::vector<GaugeMat*> > F(Nd,std::vector<GaugeMat*>(Nd,nullptr));
//Note F_numu = - F_munu
//hence we only need to loop over mu,nu,rho,sigma that aren't related by permuting mu,nu or rho,sigma
//Use nu > mu
for(int mu=0;mu<Nd-1;mu++){
for(int nu=mu+1; nu<Nd; nu++){
F[mu][nu] = new GaugeMat(U.Grid());
FieldStrengthMxN(*F[mu][nu], U, mu, nu, M, N);
}
}
Real coeff = -1./(32 * M_PI*M_PI * M*M * N*N); //overall sign to match CPS and Grid conventions, possibly related to time direction = 3 vs 0
static const int combs[3][4] = { {0,1,2,3}, {0,2,1,3}, {0,3,1,2} };
static const int signs[3] = { 1, -1, 1 }; //epsilon_{mu nu rho sigma}
ComplexField fsum(U.Grid());
fsum = Zero();
for(int c=0;c<3;c++){
int mu = combs[c][0], nu = combs[c][1], rho = combs[c][2], sigma = combs[c][3];
int eps = signs[c];
fsum = fsum + (8. * coeff * eps) * trace( (*F[mu][nu]) * (*F[rho][sigma]) );
}
for(int mu=0;mu<Nd-1;mu++)
for(int nu=mu+1; nu<Nd; nu++)
delete F[mu][nu];
typedef typename ComplexField::scalar_object sobj;
std::vector<sobj> Tq;
sliceSum(fsum, Tq, Nd-1);
std::vector<Real> out(Tq.size());
for(int t=0;t<Tq.size();t++) out[t] = TensorRemove(Tq[t]).real();
return out;
}
static Real TopologicalChargeMxN(const GaugeLorentz &U, int M, int N){
std::vector<Real> Tq = TimesliceTopologicalChargeMxN(U,M,N);
Real out(0);
for(int t=0;t<Tq.size();t++) out += Tq[t];
return out;
}
//Generate the contributions to the 5Li topological charge from Wilson loops of the following sizes
//Use coefficients from hep-lat/9701012
//1x1 : c1=(19.-55.*c5)/9.
//2x2 : c2=(1-64.*c5)/9.
//1x2 : c3=(-64.+640.*c5)/45.
//1x3 : c4=1./5.-2.*c5
//3x3 : c5=1./20.
//Output array outer index contains the loops in the above order
//Inner index is the time coordinate
static std::vector<std::vector<Real> > TimesliceTopologicalCharge5LiContributions(const GaugeLorentz &U){
static const int exts[5][2] = { {1,1}, {2,2}, {1,2}, {1,3}, {3,3} };
std::vector<std::vector<Real> > out(5);
for(int i=0;i<5;i++){
out[i] = TimesliceTopologicalChargeMxN(U,exts[i][0],exts[i][1]);
}
return out;
}
static std::vector<Real> TopologicalCharge5LiContributions(const GaugeLorentz &U){
static const int exts[5][2] = { {1,1}, {2,2}, {1,2}, {1,3}, {3,3} };
std::vector<Real> out(5);
std::cout << GridLogMessage << "Computing topological charge" << std::endl;
for(int i=0;i<5;i++){
out[i] = TopologicalChargeMxN(U,exts[i][0],exts[i][1]);
std::cout << GridLogMessage << exts[i][0] << "x" << exts[i][1] << " Wilson loop contribution " << out[i] << std::endl;
}
return out;
}
//Compute the 5Li topological charge
static std::vector<Real> TimesliceTopologicalCharge5Li(const GaugeLorentz &U){
std::vector<std::vector<Real> > loops = TimesliceTopologicalCharge5LiContributions(U);
double c5=1./20.;
double c4=1./5.-2.*c5;
double c3=(-64.+640.*c5)/45.;
double c2=(1-64.*c5)/9.;
double c1=(19.-55.*c5)/9.;
int Lt = loops[0].size();
std::vector<Real> out(Lt,0.);
for(int t=0;t<Lt;t++)
out[t] += c1*loops[0][t] + c2*loops[1][t] + c3*loops[2][t] + c4*loops[3][t] + c5*loops[4][t];
return out;
}
static Real TopologicalCharge5Li(const GaugeLorentz &U){
std::vector<Real> Qt = TimesliceTopologicalCharge5Li(U);
Real Q = 0.;
for(int t=0;t<Qt.size();t++) Q += Qt[t];
std::cout << GridLogMessage << "5Li Topological charge: " << Q << std::endl;
return Q;
}
//////////////////////////////////////////////////////
// Similar to above for rectangle is required
//////////////////////////////////////////////////////

View File

@ -263,7 +263,8 @@ public:
int face_table_computed;
std::vector<commVector<std::pair<int,int> > > face_table ;
Vector<int> surface_list;
bool locally_periodic;
stencilVector<StencilEntry> _entries; // Resident in managed memory
commVector<StencilEntry> _entries_device; // Resident in managed memory
std::vector<Packet> Packets;
@ -320,14 +321,15 @@ public:
int ld = _grid->_ldimensions[dimension];
int rd = _grid->_rdimensions[dimension];
int simd_layout = _grid->_simd_layout[dimension];
int comm_dim = _grid->_processors[dimension] >1 ;
int comm_dim = _grid->_processors[dimension] >1 && (!locally_periodic);
// int recv_from_rank;
// int xmit_to_rank;
int recv_from_rank;
int xmit_to_rank;
if ( ! comm_dim ) return 1;
if ( displacement == 0 ) return 1;
return 0;
}
//////////////////////////////////////////
@ -473,7 +475,7 @@ public:
// the permute type
int simd_layout = _grid->_simd_layout[dimension];
int comm_dim = _grid->_processors[dimension] >1 ;
int comm_dim = _grid->_processors[dimension] >1 && (!locally_periodic);
int splice_dim = _grid->_simd_layout[dimension]>1 && (comm_dim);
int is_same_node = 1;
@ -657,6 +659,20 @@ public:
const std::vector<int> &directions,
const std::vector<int> &distances,
Parameters p)
: CartesianStencil(grid,
npoints,
checkerboard,
directions,
distances,
false,
p){};
CartesianStencil(GridBase *grid,
int npoints,
int checkerboard,
const std::vector<int> &directions,
const std::vector<int> &distances,
bool _locally_periodic,
Parameters p)
: shm_bytes_thr(npoints),
comm_bytes_thr(npoints),
comm_enter_thr(npoints),
@ -665,6 +681,7 @@ public:
{
face_table_computed=0;
_grid = grid;
this->locally_periodic=_locally_periodic;
this->parameters=p;
/////////////////////////////////////
// Initialise the base
@ -690,6 +707,8 @@ public:
int point = i;
int dimension = directions[i];
assert(dimension>=0 && dimension<_grid->Nd());
int displacement = distances[i];
int shift = displacement;
@ -703,7 +722,7 @@ public:
// the permute type
//////////////////////////
int simd_layout = _grid->_simd_layout[dimension];
int comm_dim = _grid->_processors[dimension] >1 ;
int comm_dim = _grid->_processors[dimension] >1 && (!locally_periodic);
int splice_dim = _grid->_simd_layout[dimension]>1 && (comm_dim);
int rotate_dim = _grid->_simd_layout[dimension]>2;
@ -817,7 +836,7 @@ public:
int pd = _grid->_processors[dimension];
int simd_layout = _grid->_simd_layout[dimension];
int comm_dim = _grid->_processors[dimension] >1 ;
assert(locally_periodic==false);
assert(comm_dim==1);
int shift = (shiftpm + fd) %fd;
assert(shift>=0);
@ -997,6 +1016,7 @@ public:
int pd = _grid->_processors[dimension];
int simd_layout = _grid->_simd_layout[dimension];
int comm_dim = _grid->_processors[dimension] >1 ;
assert(locally_periodic==false);
assert(simd_layout==1);
assert(comm_dim==1);
assert(shift>=0);
@ -1089,6 +1109,7 @@ public:
int pd = _grid->_processors[dimension];
int simd_layout = _grid->_simd_layout[dimension];
int comm_dim = _grid->_processors[dimension] >1 ;
assert(locally_periodic==false);
assert(comm_dim==1);
// This will not work with a rotate dim
assert(simd_layout==maxl);

View File

@ -52,12 +52,17 @@ template<class vtype, int N> accelerator_inline iVector<vtype, N> Exponentiate(c
return ret;
}
// Specialisation: Cayley-Hamilton exponential for SU(3)
#ifndef GRID_CUDA
#if 0
template<class vtype, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0>::type * =nullptr>
accelerator_inline iMatrix<vtype,3> Exponentiate(const iMatrix<vtype,3> &arg, RealD alpha , Integer Nexp = DEFAULT_MAT_EXP )
accelerator_inline iMatrix<vtype,3> Exponentiated(const iMatrix<vtype,3> &arg, RealD alpha , Integer Nexp = DEFAULT_MAT_EXP )
{
return ExponentiateCayleyHamilton(arg,alpha);
}
#endif
template<class vtype, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0>::type * =nullptr>
accelerator_inline iMatrix<vtype,3> ExponentiateCayleyHamilton(const iMatrix<vtype,3> &arg, RealD alpha )
{
// for SU(3) 2x faster than the std implementation using Nexp=12
// notice that it actually computes
@ -115,8 +120,6 @@ accelerator_inline iMatrix<vtype,3> Exponentiate(const iMatrix<vtype,3> &arg, Re
return (f0 * unit + timesMinusI(f1) * arg*alpha - f2 * iQ2);
}
#endif
// General exponential
template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
@ -129,8 +132,8 @@ accelerator_inline iMatrix<vtype,N> Exponentiate(const iMatrix<vtype,N> &arg, Re
typedef iMatrix<vtype,N> mat;
mat unit(1.0);
mat temp(unit);
for(int i=Nexp; i>=1;--i){
temp *= alpha/RealD(i);
for(int n=Nexp; n>=1;--n){
temp *= alpha/RealD(n);
temp = unit + temp*arg;
}
return temp;

View File

@ -47,20 +47,20 @@ NAMESPACE_BEGIN(Grid);
class TypePair {
public:
T _internal[2];
accelerator TypePair<T>& operator=(const Grid::Zero& o) {
TypePair<T>& operator=(const Grid::Zero& o) {
_internal[0] = Zero();
_internal[1] = Zero();
return *this;
}
accelerator TypePair<T> operator+(const TypePair<T>& o) const {
TypePair<T> operator+(const TypePair<T>& o) const {
TypePair<T> r;
r._internal[0] = _internal[0] + o._internal[0];
r._internal[1] = _internal[1] + o._internal[1];
return r;
}
accelerator TypePair<T>& operator+=(const TypePair<T>& o) {
TypePair<T>& operator+=(const TypePair<T>& o) {
_internal[0] += o._internal[0];
_internal[1] += o._internal[1];
return *this;

View File

@ -84,8 +84,7 @@ void acceleratorInit(void)
// IBM Jsrun makes cuda Device numbering screwy and not match rank
if ( world_rank == 0 ) {
printf("AcceleratorCudaInit: using default device \n");
printf("AcceleratorCudaInit: assume user either uses\n");
printf("AcceleratorCudaInit: a) IBM jsrun, or \n");
printf("AcceleratorCudaInit: assume user either uses a) IBM jsrun, or \n");
printf("AcceleratorCudaInit: b) invokes through a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding \n");
printf("AcceleratorCudaInit: Configure options --enable-setdevice=no \n");
}
@ -96,7 +95,7 @@ void acceleratorInit(void)
#endif
cudaSetDevice(device);
cudaStreamCreate(&copyStream);
const int len=64;
char busid[len];
if( rank == world_rank ) {
@ -110,7 +109,6 @@ void acceleratorInit(void)
#ifdef GRID_HIP
hipDeviceProp_t *gpu_props;
hipStream_t copyStream;
void acceleratorInit(void)
{
int nDevices = 1;
@ -168,25 +166,16 @@ void acceleratorInit(void)
#ifdef GRID_DEFAULT_GPU
if ( world_rank == 0 ) {
printf("AcceleratorHipInit: using default device \n");
printf("AcceleratorHipInit: assume user or srun sets ROCR_VISIBLE_DEVICES and numa binding \n");
printf("AcceleratorHipInit: Configure options --enable-setdevice=no \n");
printf("AcceleratorHipInit: assume user either uses a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding \n");
printf("AcceleratorHipInit: Configure options --enable-summit, --enable-select-gpu=no \n");
}
int device = 0;
#else
if ( world_rank == 0 ) {
printf("AcceleratorHipInit: rank %d setting device to node rank %d\n",world_rank,rank);
printf("AcceleratorHipInit: Configure options --enable-setdevice=yes \n");
printf("AcceleratorHipInit: Configure options --enable-select-gpu=yes \n");
}
int device = rank;
hipSetDevice(rank);
#endif
hipSetDevice(device);
hipStreamCreate(&copyStream);
const int len=64;
char busid[len];
if( rank == world_rank ) {
hipDeviceGetPCIBusId(busid, len, device);
printf("local rank %d device %d bus id: %s\n", rank, device, busid);
}
if ( world_rank == 0 ) printf("AcceleratorHipInit: ================================================\n");
}
#endif

View File

@ -95,7 +95,6 @@ void acceleratorInit(void);
//////////////////////////////////////////////
#ifdef GRID_CUDA
#include <cuda.h>
#ifdef __CUDA_ARCH__
@ -206,8 +205,7 @@ inline void *acceleratorAllocShared(size_t bytes)
auto err = cudaMallocManaged((void **)&ptr,bytes);
if( err != cudaSuccess ) {
ptr = (void *) NULL;
printf(" cudaMallocManaged failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
printf(" cudaMallocManaged failed for %lu %s \n",bytes,cudaGetErrorString(err));
}
return ptr;
};
@ -217,53 +215,20 @@ inline void *acceleratorAllocDevice(size_t bytes)
auto err = cudaMalloc((void **)&ptr,bytes);
if( err != cudaSuccess ) {
ptr = (void *) NULL;
printf(" cudaMalloc failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
printf(" cudaMalloc failed for %lu %s \n",bytes,cudaGetErrorString(err));
}
return ptr;
};
inline void acceleratorFreeShared(void *ptr){
auto err = cudaFree(ptr);
if( err != cudaSuccess ) {
printf(" cudaFree(Shared) failed %s \n",cudaGetErrorString(err)); fflush(stdout);
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
}
};
inline void acceleratorFreeDevice(void *ptr){
auto err = cudaFree(ptr);
if( err != cudaSuccess ) {
printf(" cudaFree(Device) failed %s \n",cudaGetErrorString(err)); fflush(stdout);
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
}
};
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) {
auto err = cudaMemcpy(to,from,bytes, cudaMemcpyHostToDevice);
if( err != cudaSuccess ) {
printf(" cudaMemcpy(host->device) failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
}
}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){
auto err = cudaMemcpy(to,from,bytes, cudaMemcpyDeviceToHost);
if( err != cudaSuccess ) {
printf(" cudaMemcpy(device->host) failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
}
}
inline void acceleratorMemSet(void *base,int value,size_t bytes) {
auto err = cudaMemset(base,value,bytes);
if( err != cudaSuccess ) {
printf(" cudaMemSet failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
}
}
inline void acceleratorFreeShared(void *ptr){ cudaFree(ptr);};
inline void acceleratorFreeDevice(void *ptr){ cudaFree(ptr);};
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { cudaMemcpy(to,from,bytes, cudaMemcpyHostToDevice);}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ cudaMemcpy(to,from,bytes, cudaMemcpyDeviceToHost);}
inline void acceleratorMemSet(void *base,int value,size_t bytes) { cudaMemset(base,value,bytes);}
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) // Asynch
{
cudaMemcpyAsync(to,from,bytes, cudaMemcpyDeviceToDevice,copyStream);
}
inline void acceleratorCopySynchronise(void) { cudaStreamSynchronize(copyStream); };
inline int acceleratorIsCommunicable(void *ptr)
{
// int uvm=0;
@ -340,7 +305,7 @@ inline void acceleratorFreeDevice(void *ptr){free(ptr,*theGridAccelerator);};
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) {
theGridAccelerator->memcpy(to,from,bytes);
}
inline void acceleratorCopySynchronise(void) { theGridAccelerator->wait(); std::cout<<"acceleratorCopySynchronise() wait "<<std::endl; }
inline void acceleratorCopySynchronise(void) { theGridAccelerator->wait(); }
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { theGridAccelerator->memcpy(to,from,bytes); theGridAccelerator->wait();}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ theGridAccelerator->memcpy(to,from,bytes); theGridAccelerator->wait();}
inline void acceleratorMemSet(void *base,int value,size_t bytes) { theGridAccelerator->memset(base,value,bytes); theGridAccelerator->wait();}
@ -371,11 +336,10 @@ NAMESPACE_BEGIN(Grid);
#define accelerator __host__ __device__
#define accelerator_inline __host__ __device__ inline
extern hipStream_t copyStream;
/*These routines define mapping from thread grid to loop & vector lane indexing */
accelerator_inline int acceleratorSIMTlane(int Nsimd) {
#ifdef GRID_SIMT
return hipThreadIdx_x;
return hipThreadIdx_z;
#else
return 0;
#endif
@ -389,41 +353,19 @@ accelerator_inline int acceleratorSIMTlane(int Nsimd) {
{ __VA_ARGS__;} \
}; \
int nt=acceleratorThreads(); \
dim3 hip_threads(nsimd, nt, 1); \
dim3 hip_blocks ((num1+nt-1)/nt,num2,1); \
if(hip_threads.x * hip_threads.y * hip_threads.z <= 64){ \
hipLaunchKernelGGL(LambdaApply64,hip_blocks,hip_threads, \
0,0, \
num1,num2,nsimd, lambda); \
} else { \
hipLaunchKernelGGL(LambdaApply,hip_blocks,hip_threads, \
0,0, \
num1,num2,nsimd, lambda); \
} \
dim3 hip_threads(nt,1,nsimd); \
dim3 hip_blocks ((num1+nt-1)/nt,num2,1); \
hipLaunchKernelGGL(LambdaApply,hip_blocks,hip_threads, \
0,0, \
num1,num2,nsimd,lambda); \
}
template<typename lambda> __global__
__launch_bounds__(64,1)
void LambdaApply64(uint64_t numx, uint64_t numy, uint64_t numz, lambda Lambda)
{
// Following the same scheme as CUDA for now
uint64_t x = threadIdx.y + blockDim.y*blockIdx.x;
uint64_t y = threadIdx.z + blockDim.z*blockIdx.y;
uint64_t z = threadIdx.x;
if ( (x < numx) && (y<numy) && (z<numz) ) {
Lambda(x,y,z);
}
}
template<typename lambda> __global__
__launch_bounds__(1024,1)
void LambdaApply(uint64_t numx, uint64_t numy, uint64_t numz, lambda Lambda)
{
// Following the same scheme as CUDA for now
uint64_t x = threadIdx.y + blockDim.y*blockIdx.x;
uint64_t y = threadIdx.z + blockDim.z*blockIdx.y;
uint64_t z = threadIdx.x;
uint64_t x = hipThreadIdx_x + hipBlockDim_x*hipBlockIdx_x;
uint64_t y = hipThreadIdx_y + hipBlockDim_y*hipBlockIdx_y;
uint64_t z = hipThreadIdx_z ;//+ hipBlockDim_z*hipBlockIdx_z;
if ( (x < numx) && (y<numy) && (z<numz) ) {
Lambda(x,y,z);
}
@ -468,16 +410,10 @@ inline void acceleratorFreeShared(void *ptr){ hipFree(ptr);};
inline void acceleratorFreeDevice(void *ptr){ hipFree(ptr);};
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { hipMemcpy(to,from,bytes, hipMemcpyHostToDevice);}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ hipMemcpy(to,from,bytes, hipMemcpyDeviceToHost);}
//inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) { hipMemcpy(to,from,bytes, hipMemcpyDeviceToDevice);}
//inline void acceleratorCopySynchronise(void) { }
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) { hipMemcpy(to,from,bytes, hipMemcpyDeviceToDevice);}
inline void acceleratorCopySynchronise(void) { }
inline void acceleratorMemSet(void *base,int value,size_t bytes) { hipMemset(base,value,bytes);}
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) // Asynch
{
hipMemcpyAsync(to,from,bytes, hipMemcpyDeviceToDevice,copyStream);
}
inline void acceleratorCopySynchronise(void) { hipStreamSynchronize(copyStream); };
#endif
//////////////////////////////////////////////
@ -548,12 +484,18 @@ inline void acceleratorFreeCpu (void *ptr){free(ptr);};
///////////////////////////////////////////////////
// Synchronise across local threads for divergence resynch
///////////////////////////////////////////////////
accelerator_inline void acceleratorSynchronise(void) // Only Nvidia needs
accelerator_inline void acceleratorSynchronise(void)
{
#ifdef GRID_SIMT
#ifdef GRID_CUDA
__syncwarp();
#endif
#ifdef GRID_SYCL
//cl::sycl::detail::workGroupBarrier();
#endif
#ifdef GRID_HIP
__syncthreads();
#endif
#endif
return;
}

View File

@ -88,7 +88,7 @@ public:
// Coordinate class, maxdims = 8 for now.
////////////////////////////////////////////////////////////////
#define GRID_MAX_LATTICE_DIMENSION (8)
#define GRID_MAX_SIMD (32)
#define GRID_MAX_SIMD (16)
static constexpr int MaxDims = GRID_MAX_LATTICE_DIMENSION;

View File

@ -167,13 +167,6 @@ void GridCmdOptionInt(std::string &str,int & val)
return;
}
void GridCmdOptionFloat(std::string &str,float & val)
{
std::stringstream ss(str);
ss>>val;
return;
}
void GridParseLayout(char **argv,int argc,
Coordinate &latt_c,
@ -534,7 +527,6 @@ void Grid_init(int *argc,char ***argv)
void Grid_finalize(void)
{
#if defined (GRID_COMMS_MPI) || defined (GRID_COMMS_MPI3) || defined (GRID_COMMS_MPIT)
MPI_Barrier(MPI_COMM_WORLD);
MPI_Finalize();
Grid_unquiesce_nodes();
#endif

View File

@ -57,7 +57,6 @@ void GridCmdOptionCSL(std::string str,std::vector<std::string> & vec);
template<class VectorInt>
void GridCmdOptionIntVector(const std::string &str,VectorInt & vec);
void GridCmdOptionInt(std::string &str,int & val);
void GridCmdOptionFloat(std::string &str,float & val);
void GridParseLayout(char **argv,int argc,

170
HMC/Mobius2f.cc Normal file
View File

@ -0,0 +1,170 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_hmc_EODWFRatio.cc
Copyright (C) 2015-2016
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
int main(int argc, char **argv) {
using namespace Grid;
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
// here make a routine to print all the relevant information on the run
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
// Typedefs to simplify notation
typedef WilsonImplR FermionImplPolicy;
typedef MobiusFermionR FermionAction;
typedef typename FermionAction::FermionField FermionField;
typedef Grid::XmlReader Serialiser;
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
IntegratorParameters MD;
// typedef GenericHMCRunner<LeapFrog> HMCWrapper;
// MD.name = std::string("Leap Frog");
// typedef GenericHMCRunner<ForceGradient> HMCWrapper;
// MD.name = std::string("Force Gradient");
typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;
MD.name = std::string("MinimumNorm2");
MD.MDsteps = 12;
MD.trajL = 1.0;
HMCparameters HMCparams;
HMCparams.StartTrajectory = 17;
HMCparams.Trajectories = 200;
HMCparams.NoMetropolisUntil= 0;
// "[HotStart, ColdStart, TepidStart, CheckpointStart]\n";
// HMCparams.StartingType =std::string("ColdStart");
HMCparams.StartingType =std::string("CheckpointStart");
HMCparams.MD = MD;
HMCWrapper TheHMC(HMCparams);
// Grid from the command line arguments --grid and --mpi
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
CheckpointerParameters CPparams;
CPparams.config_prefix = "ckpoint_2fDWF_lat";
CPparams.rng_prefix = "ckpoint_2fDWF_rng";
CPparams.saveInterval = 1;
CPparams.format = "IEEE64BIG";
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables
// here there is too much indirection
typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs;
TheHMC.Resources.AddObservable<PlaqObs>();
//////////////////////////////////////////////
const int Ls = 16;
Real beta = 2.13;
Real light_mass = 0.01;
Real pv_mass = 1.0;
RealD M5 = 1.8;
RealD b = 1.0;
RealD c = 0.0;
std::vector<Real> hasenbusch({ 0.1, 0.4, 0.7 });
auto GridPtr = TheHMC.Resources.GetCartesian();
auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
auto FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtr);
auto FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtr);
IwasakiGaugeActionR GaugeAction(beta);
// temporarily need a gauge field
LatticeGaugeField U(GridPtr);
// These lines are unecessary if BC are all periodic
std::vector<Complex> boundary = {1,1,1,-1};
FermionAction::ImplParams Params(boundary);
double StoppingCondition = 1e-10;
double MaxCGIterations = 30000;
ConjugateGradient<FermionField> CG(StoppingCondition,MaxCGIterations);
////////////////////////////////////
// Collect actions
////////////////////////////////////
ActionLevel<HMCWrapper::Field> Level1(1);
ActionLevel<HMCWrapper::Field> Level2(8);
////////////////////////////////////
// up down action
////////////////////////////////////
std::vector<Real> light_den;
std::vector<Real> light_num;
int n_hasenbusch = hasenbusch.size();
light_den.push_back(light_mass);
for(int h=0;h<n_hasenbusch;h++){
light_den.push_back(hasenbusch[h]);
light_num.push_back(hasenbusch[h]);
}
light_num.push_back(pv_mass);
std::vector<FermionAction *> Numerators;
std::vector<FermionAction *> Denominators;
std::vector<TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy> *> Quotients;
for(int h=0;h<n_hasenbusch+1;h++){
std::cout << GridLogMessage << " 2f quotient Action "<< light_num[h] << " / " << light_den[h]<< std::endl;
Numerators.push_back (new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_num[h],M5,b,c, Params));
Denominators.push_back(new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_den[h],M5,b,c, Params));
Quotients.push_back (new TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],CG,CG));
}
for(int h=0;h<n_hasenbusch+1;h++){
Level1.push_back(Quotients[h]);
}
/////////////////////////////////////////////////////////////
// Gauge action
/////////////////////////////////////////////////////////////
Level2.push_back(&GaugeAction);
TheHMC.TheAction.push_back(Level1);
TheHMC.TheAction.push_back(Level2);
std::cout << GridLogMessage << " Action complete "<< std::endl;
/////////////////////////////////////////////////////////////
// HMC parameters are serialisable
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
TheHMC.Run(); // no smearing
Grid_finalize();
} // main

386
HMC/Mobius2f_DDHMC_mixed.cc Normal file
View File

@ -0,0 +1,386 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
nnSource file:
Copyright (C) 2015-2016
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
NAMESPACE_BEGIN(Grid);
template<class Impl>
class DomainLocalTwoFlavourEvenOddRatioPseudoFermionAction
: public TwoFlavourEvenOddRatioPseudoFermionAction<Impl>
{
public:
INHERIT_IMPL_TYPES(Impl);
Coordinate Block;
DomainDecomposition Domains;
DomainLocalTwoFlavourEvenOddRatioPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
OperatorFunction<FermionField> & DS,
OperatorFunction<FermionField> & AS,
OperatorFunction<FermionField> & HS,
Coordinate &_Block ) :
Block(_Block),
Domains(_Block),
TwoFlavourEvenOddRatioPseudoFermionAction<Impl>(_NumOp,_DenOp,DS,AS,HS)
{};
virtual void refreshRestrict(FermionField &eta)
{
Domains.ProjectDomain(eta,0);
DumpSliceNorm("refresh Restrict eta",eta);
};
};
#define MIXED_PRECISION
NAMESPACE_END(Grid);
int main(int argc, char **argv)
{
using namespace Grid;
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
// here make a routine to print all the relevant information on the run
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
// Typedefs to simplify notation
typedef WilsonImplR FimplD;
typedef WilsonImplF FimplF;
typedef FermionOperator<FimplF> FermionOperatorF;
typedef FermionOperator<FimplD> FermionOperatorD;
typedef MobiusFermionR FermionActionD;
typedef MobiusFermionF FermionActionF;
typedef DirichletFermionOperator<WilsonImplR> DirichletFermionD;
typedef DirichletFermionOperator<WilsonImplF> DirichletFermionF;
typedef MobiusEOFAFermionR FermionEOFAAction;
typedef typename FermionActionD::FermionField FermionFieldD;
typedef typename FermionActionF::FermionField FermionFieldF;
typedef SchurDiagMooeeOperator<FermionOperator<FimplF>,FermionFieldF> LinearOperatorF;
typedef SchurDiagMooeeOperator<FermionOperator<FimplD>,FermionFieldD> LinearOperatorD;
typedef SchurDiagMooeeDagOperator<FermionOperator<FimplF>,FermionFieldF> LinearOperatorDagF;
typedef SchurDiagMooeeDagOperator<FermionOperator<FimplD>,FermionFieldD> LinearOperatorDagD;
typedef Grid::XmlReader Serialiser;
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
IntegratorParameters MD;
// typedef GenericHMCRunner<LeapFrog> HMCWrapper;
// MD.name = std::string("Leap Frog");
// typedef GenericHMCRunner<ForceGradient> HMCWrapper;
// MD.name = std::string("Force Gradient");
typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;
/*
MD.name = std::string("MinimumNorm2");
MD.MDsteps = 4; // dH = 0.08
// MD.MDsteps = 3; // dH = 0.8
MD.trajL = 1.0;
*/
HMCparameters HMCparams;
{
XmlReader HMCrd("HMCparameters.xml");
read(HMCrd,"HMCparameters",HMCparams);
std::cout << GridLogMessage<< HMCparams <<std::endl;
}
HMCWrapper TheHMC(HMCparams);
/*
HMCparams.StartTrajectory = 66;
HMCparams.Trajectories = 200;
HMCparams.NoMetropolisUntil= 0;
// "[HotStart, ColdStart, TepidStart, CheckpointStart]\n";
// HMCparams.StartingType =std::string("ColdStart");
HMCparams.StartingType =std::string("CheckpointStart");
HMCparams.MD = MD;
*/
// Grid from the command line arguments --grid and --mpi
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
CheckpointerParameters CPparams;
CPparams.config_prefix = "ckpoint_DDHMC_lat";
CPparams.rng_prefix = "ckpoint_DDHMC_rng";
CPparams.saveInterval = 1;
CPparams.format = "IEEE64BIG";
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Momentum Dirichlet
Coordinate Block({0,0,0,24});
TheHMC.Resources.SetMomentumFilter(new DDHMCFilter<WilsonImplR::Field>(Block));
// Construct observables
// here there is too much indirection
typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs;
TheHMC.Resources.AddObservable<PlaqObs>();
//////////////////////////////////////////////
const int Ls = 16;
Real beta = 2.13;
// Real light_mass = 0.04;
Real light_mass = 0.01;
Real pv_mass = 1.0;
RealD M5 = 1.8;
RealD b = 1.0;
RealD c = 0.0;
std::vector<Real> hasenbusch({ 0.1, 0.4, 0.7 });
auto GridPtr = TheHMC.Resources.GetCartesian();
auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
auto FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtr);
auto FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtr);
Coordinate latt = GridDefaultLatt();
Coordinate mpi = GridDefaultMpi();
Coordinate simdF = GridDefaultSimd(Nd,vComplexF::Nsimd());
Coordinate simdD = GridDefaultSimd(Nd,vComplexD::Nsimd());
auto GridPtrF = SpaceTimeGrid::makeFourDimGrid(latt,simdF,mpi);
auto GridRBPtrF = SpaceTimeGrid::makeFourDimRedBlackGrid(GridPtrF);
auto FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtrF);
auto FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtrF);
IwasakiGaugeActionR GaugeAction(beta);
// temporarily need a gauge field
LatticeGaugeField U(GridPtr);
LatticeGaugeFieldF UF(GridPtrF);
// These lines are unecessary if BC are all periodic
std::vector<Complex> boundary = {1,1,1,-1};
FermionActionD::ImplParams Params(boundary);
FermionActionD::ImplParams DirichletParams(boundary);
DirichletParams.locally_periodic=true;
double ActionStoppingCondition = 1e-10;
double DerivativeStoppingCondition = 1e-10;
// double BoundaryDerivativeStoppingCondition = 1e-10; decent acceptance
double BoundaryDerivativeStoppingCondition = 1e-7; // decent acceptance
// double BoundaryDerivativeStoppingCondition = 1e-6; // bit bigger not huge
// double BoundaryDerivativeStoppingCondition = 1e-5; // Large dH poor acceptance
double MaxCGIterations = 30000;
////////////////////////////////////
// Collect actions
////////////////////////////////////
ActionLevel<HMCWrapper::Field> Level1(1);
ActionLevel<HMCWrapper::Field> Level2(3);
ActionLevel<HMCWrapper::Field> Level3(8);
ConjugateGradient<FermionFieldD> ActionCG(ActionStoppingCondition,MaxCGIterations);
ConjugateGradient<FermionFieldD> DerivativeCG(DerivativeStoppingCondition,MaxCGIterations);
////////////////////////////////////
// up down action
////////////////////////////////////
std::vector<Real> light_den;
std::vector<Real> light_num;
int n_hasenbusch = hasenbusch.size();
light_den.push_back(light_mass);
for(int h=0;h<n_hasenbusch;h++){
light_den.push_back(hasenbusch[h]);
light_num.push_back(hasenbusch[h]);
}
light_num.push_back(pv_mass);
//////////////////////////////////////////////////////////////
// Forced to replicate the MxPCG and DenominatorsF etc.. because
// there is no convenient way to "Clone" physics params from double op
// into single op for any operator pair.
// Same issue prevents using MxPCG in the Heatbath step
//////////////////////////////////////////////////////////////
/////////////////////////////////////////////////
// These are consumed/owned by the Dirichlet wrappers
/////////////////////////////////////////////////
std::vector<FermionActionD *> DNumeratorsD;
std::vector<FermionActionF *> DNumeratorsF;
std::vector<FermionActionD *> DDenominatorsD;
std::vector<FermionActionF *> DDenominatorsF;
/////////////////////////////////////////////////
// Dirichlet wrappers
/////////////////////////////////////////////////
std::vector<DirichletFermionD *> DirichletNumeratorsD;
std::vector<DirichletFermionF *> DirichletNumeratorsF;
std::vector<DirichletFermionD *> DirichletDenominatorsD;
std::vector<DirichletFermionF *> DirichletDenominatorsF;
std::vector<DomainLocalTwoFlavourEvenOddRatioPseudoFermionAction<FimplD> *> Quotients;
typedef MixedPrecisionConjugateGradientOperatorFunction<FermionOperatorD,
FermionOperatorF,
LinearOperatorD,
LinearOperatorF> MxPCG;
std::vector<MxPCG *> ActionMPCG;
std::vector<MxPCG *> MPCG;
std::vector<LinearOperatorD *> LinOpD;
std::vector<LinearOperatorF *> LinOpF;
int MX_inner = 1000;
RealD MX_tol = 1.0e-5;
for(int h=0;h<n_hasenbusch+1;h++){
std::cout << GridLogMessage << " 2f quotient Action "<< light_num[h] << " / " << light_den[h]<< std::endl;
DNumeratorsD.push_back (new FermionActionD(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_num[h],M5,b,c, DirichletParams));
DNumeratorsF.push_back (new FermionActionF(UF,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,light_num[h],M5,b,c, DirichletParams));
DDenominatorsD.push_back(new FermionActionD(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_den[h],M5,b,c, DirichletParams));
DDenominatorsF.push_back(new FermionActionF(UF,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,light_den[h],M5,b,c, DirichletParams));
DirichletNumeratorsD.push_back (new DirichletFermionD(*DNumeratorsD[h],Block));
DirichletNumeratorsF.push_back (new DirichletFermionF(*DNumeratorsF[h],Block));
DirichletDenominatorsD.push_back(new DirichletFermionD(*DDenominatorsD[h],Block));
DirichletDenominatorsF.push_back(new DirichletFermionF(*DDenominatorsF[h],Block));
// Dirichlet Schur even odd MpsDagMpc operators on local domains
LinOpD.push_back(new LinearOperatorD(*DirichletDenominatorsD[h]));
LinOpF.push_back(new LinearOperatorF(*DirichletDenominatorsF[h]));
// Derivative
MPCG.push_back(new MxPCG(DerivativeStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
FrbGridF,
*DirichletDenominatorsF[h],*DirichletDenominatorsD[h],
*LinOpF[h], *LinOpD[h]) );
// Action
ActionMPCG.push_back(new MxPCG(ActionStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
FrbGridF,
*DirichletDenominatorsF[h],*DirichletDenominatorsD[h],
*LinOpF[h], *LinOpD[h]) );
////////////////////////////////////////////////////////////////////////////
// Standard CG for 2f force
////////////////////////////////////////////////////////////////////////////
Quotients.push_back (new
DomainLocalTwoFlavourEvenOddRatioPseudoFermionAction<FimplD>
(*DirichletNumeratorsD[h],
*DirichletDenominatorsD[h],
*MPCG[h],
*ActionMPCG[h],
ActionCG,Block));
Level2.push_back(Quotients[h]);
}
/////////////////////////////////////////////////////////////
// Boundary action
/////////////////////////////////////////////////////////////
int l_idx = 0;
int pv_idx = n_hasenbusch;
RealD h_mass = 0.012;
std::cout << GridLogMessage<<" Boundary action masses " <<light_num[l_idx]<<" / "<<light_den[pv_idx]<<std::endl;
// OmegaBar cross domain boundary and is used in Boundary operator, so no locally_periodic hack in the boundary det
// Dirichlet is applied in gauge link only. OmegaBar solve is too expensive. Monitor cost.
FermionActionD PeriNumeratorD (U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_num[pv_idx],M5,b,c, Params);
FermionActionF PeriNumeratorF (UF,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,light_num[pv_idx],M5,b,c, Params);
FermionActionD DirichletNumeratorDD(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_num[pv_idx],M5,b,c, Params);
FermionActionF DirichletNumeratorFF(UF,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,light_num[pv_idx],M5,b,c, Params);
DirichletFermionD DirichletNumeratorD (DirichletNumeratorDD,Block);
DirichletFermionF DirichletNumeratorF (DirichletNumeratorFF,Block);
FermionActionD PeriDenominatorD(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_den[l_idx] ,M5,b,c, Params);
FermionActionF PeriDenominatorF(UF,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,light_den[l_idx] ,M5,b,c, Params);
FermionActionD DirichletDenominatorDD(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_den[l_idx] ,M5,b,c, Params);
FermionActionF DirichletDenominatorFF(UF,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,light_den[l_idx] ,M5,b,c, Params);
DirichletFermionD DirichletDenominatorD(DirichletDenominatorDD,Block);
DirichletFermionF DirichletDenominatorF(DirichletDenominatorFF,Block);
FermionActionD PeriHasenD (U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,h_mass ,M5,b,c, Params);
FermionActionF PeriHasenF (UF,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,h_mass,M5,b,c, Params);
FermionActionD DHasenD(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,h_mass,M5,b,c, Params);
FermionActionF DHasenF(UF,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,h_mass,M5,b,c, Params);
DirichletFermionD DirichletHasenD(DHasenD,Block);
DirichletFermionF DirichletHasenF(DHasenF,Block);
SchurFactoredFermionOperator<FimplD,FimplF> BoundaryNumerator(PeriNumeratorD,PeriNumeratorF,
DirichletNumeratorD,DirichletNumeratorF,
Block);
SchurFactoredFermionOperator<FimplD,FimplF> BoundaryDenominator(PeriDenominatorD,PeriDenominatorF,
DirichletDenominatorD,DirichletDenominatorF,
Block);
SchurFactoredFermionOperator<FimplD,FimplF> BoundaryHasen(PeriHasenD,PeriHasenF,
DirichletHasenD,DirichletHasenF,
Block);
#if 1
std::cout << GridLogMessage << " Boundary NO ratio "<< std::endl;
MX_tol = 1.0e-5;
Level1.push_back(new
DomainDecomposedBoundaryTwoFlavourPseudoFermion<FimplD,FimplF>
(BoundaryDenominator,
BoundaryDerivativeStoppingCondition,ActionStoppingCondition,MX_tol));
Level1.push_back(new
DomainDecomposedBoundaryTwoFlavourBosonPseudoFermion<FimplD,FimplF>
(BoundaryNumerator,
BoundaryDerivativeStoppingCondition,ActionStoppingCondition,MX_tol));
#else
Level1.push_back(new
DomainDecomposedBoundaryTwoFlavourRatioPseudoFermion<FimplD,FimplF>
(BoundaryNumerator,
BoundaryDenominator,
BoundaryDerivativeStoppingCondition,ActionStoppingCondition));
#endif
/////////////////////////////////////////////////////////////
// Gauge action
/////////////////////////////////////////////////////////////
Level3.push_back(&GaugeAction);
TheHMC.TheAction.push_back(Level1);
TheHMC.TheAction.push_back(Level2);
TheHMC.TheAction.push_back(Level3);
std::cout << GridLogMessage << " Action complete "<< std::endl;
/////////////////////////////////////////////////////////////
// HMC parameters are serialisable
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
TheHMC.Run(); // no smearing
Grid_finalize();
} // main

View File

@ -33,137 +33,8 @@ directory
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
#define MIXED_PRECISION
#endif
#include <Grid/qcd/utils/MixedPrecisionOperatorFunction.h>
NAMESPACE_BEGIN(Grid);
/*
* Need a plan for gauge field update for mixed precision in HMC (2x speed up)
* -- Store the single prec action operator.
* -- Clone the gauge field from the operator function argument.
* -- Build the mixed precision operator dynamically from the passed operator and single prec clone.
*/
template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class SchurOperatorF>
class MixedPrecisionConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
public:
typedef typename FermionOperatorD::FermionField FieldD;
typedef typename FermionOperatorF::FermionField FieldF;
using OperatorFunction<FieldD>::operator();
RealD Tolerance;
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
Integer MaxInnerIterations;
Integer MaxOuterIterations;
GridBase* SinglePrecGrid4; //Grid for single-precision fields
GridBase* SinglePrecGrid5; //Grid for single-precision fields
RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
FermionOperatorF &FermOpF;
FermionOperatorD &FermOpD;;
SchurOperatorF &LinOpF;
SchurOperatorD &LinOpD;
Integer TotalInnerIterations; //Number of inner CG iterations
Integer TotalOuterIterations; //Number of restarts
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
MixedPrecisionConjugateGradientOperatorFunction(RealD tol,
Integer maxinnerit,
Integer maxouterit,
GridBase* _sp_grid4,
GridBase* _sp_grid5,
FermionOperatorF &_FermOpF,
FermionOperatorD &_FermOpD,
SchurOperatorF &_LinOpF,
SchurOperatorD &_LinOpD):
LinOpF(_LinOpF),
LinOpD(_LinOpD),
FermOpF(_FermOpF),
FermOpD(_FermOpD),
Tolerance(tol),
InnerTolerance(tol),
MaxInnerIterations(maxinnerit),
MaxOuterIterations(maxouterit),
SinglePrecGrid4(_sp_grid4),
SinglePrecGrid5(_sp_grid5),
OuterLoopNormMult(100.)
{
/* Debugging instances of objects; references are stored
std::cout << GridLogMessage << " Mixed precision CG wrapper LinOpF " <<std::hex<< &LinOpF<<std::dec <<std::endl;
std::cout << GridLogMessage << " Mixed precision CG wrapper LinOpD " <<std::hex<< &LinOpD<<std::dec <<std::endl;
std::cout << GridLogMessage << " Mixed precision CG wrapper FermOpF " <<std::hex<< &FermOpF<<std::dec <<std::endl;
std::cout << GridLogMessage << " Mixed precision CG wrapper FermOpD " <<std::hex<< &FermOpD<<std::dec <<std::endl;
*/
};
void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
std::cout << GridLogMessage << " Mixed precision CG wrapper operator() "<<std::endl;
SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
// std::cout << GridLogMessage << " Mixed precision CG wrapper operator() FermOpU " <<std::hex<< &(SchurOpU->_Mat)<<std::dec <<std::endl;
// std::cout << GridLogMessage << " Mixed precision CG wrapper operator() FermOpD " <<std::hex<< &(LinOpD._Mat) <<std::dec <<std::endl;
// Assumption made in code to extract gauge field
// We could avoid storing LinopD reference alltogether ?
assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
////////////////////////////////////////////////////////////////////////////////////
// Must snarf a single precision copy of the gauge field in Linop_d argument
////////////////////////////////////////////////////////////////////////////////////
typedef typename FermionOperatorF::GaugeField GaugeFieldF;
typedef typename FermionOperatorF::GaugeLinkField GaugeLinkFieldF;
typedef typename FermionOperatorD::GaugeField GaugeFieldD;
typedef typename FermionOperatorD::GaugeLinkField GaugeLinkFieldD;
GridBase * GridPtrF = SinglePrecGrid4;
GridBase * GridPtrD = FermOpD.Umu.Grid();
GaugeFieldF U_f (GridPtrF);
GaugeLinkFieldF Umu_f(GridPtrF);
// std::cout << " Dim gauge field "<<GridPtrF->Nd()<<std::endl; // 4d
// std::cout << " Dim gauge field "<<GridPtrD->Nd()<<std::endl; // 4d
////////////////////////////////////////////////////////////////////////////////////
// Moving this to a Clone method of fermion operator would allow to duplicate the
// physics parameters and decrease gauge field copies
////////////////////////////////////////////////////////////////////////////////////
GaugeLinkFieldD Umu_d(GridPtrD);
for(int mu=0;mu<Nd*2;mu++){
Umu_d = PeekIndex<LorentzIndex>(FermOpD.Umu, mu);
precisionChange(Umu_f,Umu_d);
PokeIndex<LorentzIndex>(FermOpF.Umu, Umu_f, mu);
}
pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
////////////////////////////////////////////////////////////////////////////////////
// Could test to make sure that LinOpF and LinOpD agree to single prec?
////////////////////////////////////////////////////////////////////////////////////
/*
GridBase *Fgrid = psi._grid;
FieldD tmp2(Fgrid);
FieldD tmp1(Fgrid);
LinOpU.Op(src,tmp1);
LinOpD.Op(src,tmp2);
std::cout << " Double gauge field "<< norm2(FermOpD.Umu)<<std::endl;
std::cout << " Single gauge field "<< norm2(FermOpF.Umu)<<std::endl;
std::cout << " Test of operators "<<norm2(tmp1)<<std::endl;
std::cout << " Test of operators "<<norm2(tmp2)<<std::endl;
tmp1=tmp1-tmp2;
std::cout << " Test of operators diff "<<norm2(tmp1)<<std::endl;
*/
////////////////////////////////////////////////////////////////////////////////////
// Make a mixed precision conjugate gradient
////////////////////////////////////////////////////////////////////////////////////
MixedPrecisionConjugateGradient<FieldD,FieldF> MPCG(Tolerance,MaxInnerIterations,MaxOuterIterations,SinglePrecGrid5,LinOpF,LinOpD);
std::cout << GridLogMessage << "Calling mixed precision Conjugate Gradient" <<std::endl;
MPCG(src,psi);
}
};
NAMESPACE_END(Grid);
int main(int argc, char **argv) {
using namespace Grid;
@ -190,18 +61,18 @@ int main(int argc, char **argv) {
// MD.name = std::string("Leap Frog");
typedef GenericHMCRunner<ForceGradient> HMCWrapper;
MD.name = std::string("Force Gradient");
// typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;
// MD.name = std::string("MinimumNorm2");
MD.MDsteps = 6;
//typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;
//MD.name = std::string("MinimumNorm2");
MD.MDsteps = 15;
MD.trajL = 1.0;
HMCparameters HMCparams;
HMCparams.StartTrajectory = 590;
HMCparams.StartTrajectory = 0;
HMCparams.Trajectories = 1000;
HMCparams.NoMetropolisUntil= 0;
HMCparams.NoMetropolisUntil= 10;
// "[HotStart, ColdStart, TepidStart, CheckpointStart]\n";
// HMCparams.StartingType =std::string("ColdStart");
HMCparams.StartingType =std::string("CheckpointStart");
HMCparams.StartingType =std::string("ColdStart");
//HMCparams.StartingType =std::string("CheckpointStart");
HMCparams.MD = MD;
HMCWrapper TheHMC(HMCparams);
@ -209,9 +80,9 @@ int main(int argc, char **argv) {
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
CheckpointerParameters CPparams;
CPparams.config_prefix = "ckpoint_EODWF_lat";
CPparams.rng_prefix = "ckpoint_EODWF_rng";
CPparams.saveInterval = 10;
CPparams.config_prefix = "ckpoint_EOFA_lat";
CPparams.rng_prefix = "ckpoint_EOFA_rng";
CPparams.saveInterval = 1;
CPparams.format = "IEEE64BIG";
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
@ -226,16 +97,16 @@ int main(int argc, char **argv) {
TheHMC.Resources.AddObservable<PlaqObs>();
//////////////////////////////////////////////
const int Ls = 16;
const int Ls = 24;
Real beta = 2.13;
Real light_mass = 0.01;
Real strange_mass = 0.04;
Real light_mass = 0.005;
Real strange_mass = 0.0362;
Real pv_mass = 1.0;
RealD M5 = 1.8;
RealD b = 1.0;
RealD c = 0.0;
RealD b = 1.5;
RealD c = 0.5;
std::vector<Real> hasenbusch({ 0.1, 0.3, 0.6 });
std::vector<Real> hasenbusch({ 0.02, 0.2, 0.6 });
auto GridPtr = TheHMC.Resources.GetCartesian();
auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
@ -263,7 +134,7 @@ int main(int argc, char **argv) {
FermionActionF::ImplParams ParamsF(boundary);
double ActionStoppingCondition = 1e-10;
double DerivativeStoppingCondition = 1e-6;
double DerivativeStoppingCondition = 1e-8;
double MaxCGIterations = 30000;
////////////////////////////////////
@ -302,40 +173,37 @@ int main(int argc, char **argv) {
ConjugateGradient<FermionField> DerivativeCG(DerivativeStoppingCondition,MaxCGIterations);
#ifdef MIXED_PRECISION
const int MX_inner = 1000;
const RealD MX_tol = 1.0e-6;
// Mixed precision EOFA
LinearOperatorEOFAD Strange_LinOp_L (Strange_Op_L);
LinearOperatorEOFAD Strange_LinOp_R (Strange_Op_R);
LinearOperatorEOFAF Strange_LinOp_LF(Strange_Op_LF);
LinearOperatorEOFAF Strange_LinOp_RF(Strange_Op_RF);
MxPCG_EOFA ActionCGL(ActionStoppingCondition,
MxPCG_EOFA ActionCGL(ActionStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
GridPtrF,
FrbGridF,
Strange_Op_LF,Strange_Op_L,
Strange_LinOp_LF,Strange_LinOp_L);
MxPCG_EOFA DerivativeCGL(DerivativeStoppingCondition,
MxPCG_EOFA DerivativeCGL(DerivativeStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
GridPtrF,
FrbGridF,
Strange_Op_LF,Strange_Op_L,
Strange_LinOp_LF,Strange_LinOp_L);
MxPCG_EOFA ActionCGR(ActionStoppingCondition,
MxPCG_EOFA ActionCGR(ActionStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
GridPtrF,
FrbGridF,
Strange_Op_RF,Strange_Op_R,
Strange_LinOp_RF,Strange_LinOp_R);
MxPCG_EOFA DerivativeCGR(DerivativeStoppingCondition,
MxPCG_EOFA DerivativeCGR(DerivativeStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
GridPtrF,
FrbGridF,
Strange_Op_RF,Strange_Op_R,
Strange_LinOp_RF,Strange_LinOp_R);
@ -401,18 +269,16 @@ int main(int argc, char **argv) {
LinOpD.push_back(new LinearOperatorD(*Denominators[h]));
LinOpF.push_back(new LinearOperatorF(*DenominatorsF[h]));
MPCG.push_back(new MxPCG(DerivativeStoppingCondition,
MPCG.push_back(new MxPCG(DerivativeStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
GridPtrF,
FrbGridF,
*DenominatorsF[h],*Denominators[h],
*LinOpF[h], *LinOpD[h]) );
ActionMPCG.push_back(new MxPCG(ActionStoppingCondition,
ActionMPCG.push_back(new MxPCG(ActionStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
GridPtrF,
FrbGridF,
*DenominatorsF[h],*Denominators[h],
*LinOpF[h], *LinOpD[h]) );

View File

@ -0,0 +1,338 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file:
Copyright (C) 2015-2016
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Guido Cossu
Author: David Murphy
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/qcd/action/pseudofermion/TwoFlavourRatioEO4DPseudoFermion.h>
#include <Grid/qcd/action/pseudofermion/TwoFlavourRatio4DPseudoFermion.h>
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
#define MIXED_PRECISION
#endif
#include <Grid/qcd/utils/MixedPrecisionOperatorFunction.h>
int main(int argc, char **argv) {
using namespace Grid;
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
// here make a routine to print all the relevant information on the run
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
// Typedefs to simplify notation
typedef WilsonImplR FermionImplPolicy;
typedef MobiusFermionR FermionAction;
typedef MobiusFermionF FermionActionF;
typedef MobiusEOFAFermionR FermionEOFAAction;
typedef MobiusEOFAFermionF FermionEOFAActionF;
typedef typename FermionAction::FermionField FermionField;
typedef typename FermionActionF::FermionField FermionFieldF;
typedef Grid::XmlReader Serialiser;
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
IntegratorParameters MD;
// typedef GenericHMCRunner<LeapFrog> HMCWrapper;
// MD.name = std::string("Leap Frog");
// typedef GenericHMCRunner<ForceGradient> HMCWrapper;
// MD.name = std::string("Force Gradient");
typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;
MD.name = std::string("MinimumNorm2");
MD.MDsteps = 12;
MD.trajL = 1.0;
HMCparameters HMCparams;
HMCparams.StartTrajectory = 211;
HMCparams.Trajectories = 1000;
HMCparams.NoMetropolisUntil= 0;
// "[HotStart, ColdStart, TepidStart, CheckpointStart]\n";
// HMCparams.StartingType =std::string("ColdStart");
HMCparams.StartingType =std::string("CheckpointStart");
HMCparams.MD = MD;
HMCWrapper TheHMC(HMCparams);
// Grid from the command line arguments --grid and --mpi
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
CheckpointerParameters CPparams;
CPparams.config_prefix = "ckpoint_EOFA4D_lat";
CPparams.rng_prefix = "ckpoint_EOFA4D_rng";
CPparams.saveInterval = 1;
CPparams.format = "IEEE64BIG";
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables
// here there is too much indirection
typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs;
TheHMC.Resources.AddObservable<PlaqObs>();
//////////////////////////////////////////////
const int Ls = 16;
Real beta = 2.13;
Real light_mass = 0.01;
Real strange_mass = 0.04;
Real pv_mass = 1.0;
RealD M5 = 1.8;
RealD b = 1.0;
RealD c = 0.0;
std::vector<Real> hasenbusch({ 0.1, 0.3, 0.6 });
auto GridPtr = TheHMC.Resources.GetCartesian();
auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
auto FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtr);
auto FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtr);
Coordinate latt = GridDefaultLatt();
Coordinate mpi = GridDefaultMpi();
Coordinate simdF = GridDefaultSimd(Nd,vComplexF::Nsimd());
Coordinate simdD = GridDefaultSimd(Nd,vComplexD::Nsimd());
auto GridPtrF = SpaceTimeGrid::makeFourDimGrid(latt,simdF,mpi);
auto GridRBPtrF = SpaceTimeGrid::makeFourDimRedBlackGrid(GridPtrF);
auto FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtrF);
auto FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtrF);
IwasakiGaugeActionR GaugeAction(beta);
// temporarily need a gauge field
LatticeGaugeField U(GridPtr);
LatticeGaugeFieldF UF(GridPtrF);
// These lines are unecessary if BC are all periodic
std::vector<Complex> boundary = {1,1,1,-1};
FermionAction::ImplParams Params(boundary);
FermionActionF::ImplParams ParamsF(boundary);
double ActionStoppingCondition = 1e-10;
double DerivativeStoppingCondition = 1e-8;
double MaxCGIterations = 30000;
////////////////////////////////////
// Collect actions
////////////////////////////////////
ActionLevel<HMCWrapper::Field> Level1(1);
ActionLevel<HMCWrapper::Field> Level2(8);
////////////////////////////////////
// Strange action
////////////////////////////////////
typedef SchurDiagMooeeOperator<FermionActionF,FermionFieldF> LinearOperatorF;
typedef SchurDiagMooeeOperator<FermionAction ,FermionField > LinearOperatorD;
typedef SchurDiagMooeeDagOperator<FermionActionF,FermionFieldF> LinearOperatorDagF;
typedef SchurDiagMooeeDagOperator<FermionAction ,FermionField > LinearOperatorDagD;
typedef SchurDiagMooeeOperator<FermionEOFAActionF,FermionFieldF> LinearOperatorEOFAF;
typedef SchurDiagMooeeOperator<FermionEOFAAction ,FermionField > LinearOperatorEOFAD;
typedef MixedPrecisionConjugateGradientOperatorFunction<MobiusFermionD,MobiusFermionF,LinearOperatorD,LinearOperatorF> MxPCG;
typedef MixedPrecisionConjugateGradientOperatorFunction<MobiusFermionD,MobiusFermionF,LinearOperatorDagD,LinearOperatorDagF> MxDagPCG;
typedef MixedPrecisionConjugateGradientOperatorFunction<MobiusEOFAFermionD,MobiusEOFAFermionF,LinearOperatorEOFAD,LinearOperatorEOFAF> MxPCG_EOFA;
// DJM: setup for EOFA ratio (Mobius)
OneFlavourRationalParams OFRp;
OFRp.lo = 0.1;
OFRp.hi = 25.0;
OFRp.MaxIter = 10000;
OFRp.tolerance= 1.0e-9;
OFRp.degree = 14;
OFRp.precision= 50;
MobiusEOFAFermionR Strange_Op_L (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , strange_mass, strange_mass, pv_mass, 0.0, -1, M5, b, c);
MobiusEOFAFermionF Strange_Op_LF(UF, *FGridF, *FrbGridF, *GridPtrF, *GridRBPtrF, strange_mass, strange_mass, pv_mass, 0.0, -1, M5, b, c);
MobiusEOFAFermionR Strange_Op_R (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , pv_mass, strange_mass, pv_mass, -1.0, 1, M5, b, c);
MobiusEOFAFermionF Strange_Op_RF(UF, *FGridF, *FrbGridF, *GridPtrF, *GridRBPtrF, pv_mass, strange_mass, pv_mass, -1.0, 1, M5, b, c);
ConjugateGradient<FermionField> ActionCG(ActionStoppingCondition,MaxCGIterations);
ConjugateGradient<FermionField> DerivativeCG(DerivativeStoppingCondition,MaxCGIterations);
#ifdef MIXED_PRECISION
const int MX_inner = 1000;
const RealD MX_tol = 1.0e-4;
// Mixed precision EOFA
LinearOperatorEOFAD Strange_LinOp_L (Strange_Op_L);
LinearOperatorEOFAD Strange_LinOp_R (Strange_Op_R);
LinearOperatorEOFAF Strange_LinOp_LF(Strange_Op_LF);
LinearOperatorEOFAF Strange_LinOp_RF(Strange_Op_RF);
MxPCG_EOFA ActionCGL(ActionStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
FrbGridF,
Strange_Op_LF,Strange_Op_L,
Strange_LinOp_LF,Strange_LinOp_L);
MxPCG_EOFA DerivativeCGL(DerivativeStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
FrbGridF,
Strange_Op_LF,Strange_Op_L,
Strange_LinOp_LF,Strange_LinOp_L);
MxPCG_EOFA ActionCGR(ActionStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
FrbGridF,
Strange_Op_RF,Strange_Op_R,
Strange_LinOp_RF,Strange_LinOp_R);
MxPCG_EOFA DerivativeCGR(DerivativeStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
FrbGridF,
Strange_Op_RF,Strange_Op_R,
Strange_LinOp_RF,Strange_LinOp_R);
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy>
EOFA(Strange_Op_L, Strange_Op_R,
ActionCG,
ActionCGL, ActionCGR,
DerivativeCGL, DerivativeCGR,
OFRp, true);
#else
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy>
EOFA(Strange_Op_L, Strange_Op_R,
ActionCG,
ActionCG, ActionCG,
DerivativeCG, DerivativeCG,
OFRp, true);
#endif
Level1.push_back(&EOFA);
////////////////////////////////////
// up down action
////////////////////////////////////
std::vector<Real> light_den;
std::vector<Real> light_num;
int n_hasenbusch = hasenbusch.size();
light_den.push_back(light_mass);
for(int h=0;h<n_hasenbusch;h++){
light_den.push_back(hasenbusch[h]);
light_num.push_back(hasenbusch[h]);
}
light_num.push_back(pv_mass);
//////////////////////////////////////////////////////////////
// Forced to replicate the MxPCG and DenominatorsF etc.. because
// there is no convenient way to "Clone" physics params from double op
// into single op for any operator pair.
// Same issue prevents using MxPCG in the Heatbath step
//////////////////////////////////////////////////////////////
std::vector<FermionAction *> Numerators;
std::vector<FermionAction *> Denominators;
std::vector<TwoFlavourRatioEO4DPseudoFermionAction<FermionImplPolicy> *> Quotients;
std::vector<MxPCG *> ActionMPCG;
std::vector<MxPCG *> MPCG;
std::vector<MxDagPCG *> MPCGdag;
std::vector<FermionActionF *> DenominatorsF;
std::vector<LinearOperatorD *> LinOpD;
std::vector<LinearOperatorF *> LinOpF;
std::vector<LinearOperatorDagD *> LinOpDagD;
std::vector<LinearOperatorDagF *> LinOpDagF;
for(int h=0;h<n_hasenbusch+1;h++){
std::cout << GridLogMessage << " 2f quotient Action "<< light_num[h] << " / " << light_den[h]<< std::endl;
Numerators.push_back (new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_num[h],M5,b,c, Params));
Denominators.push_back(new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_den[h],M5,b,c, Params));
#ifdef MIXED_PRECISION
////////////////////////////////////////////////////////////////////////////
// Mixed precision CG for 2f force
////////////////////////////////////////////////////////////////////////////
DenominatorsF.push_back(new FermionActionF(UF,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,light_den[h],M5,b,c, ParamsF));
LinOpD.push_back(new LinearOperatorD(*Denominators[h]));
LinOpF.push_back(new LinearOperatorF(*DenominatorsF[h]));
LinOpDagD.push_back(new LinearOperatorDagD(*Denominators[h]));
LinOpDagF.push_back(new LinearOperatorDagF(*DenominatorsF[h]));
MPCG.push_back(new MxPCG(DerivativeStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
FrbGridF,
*DenominatorsF[h],*Denominators[h],
*LinOpF[h], *LinOpD[h]) );
MPCGdag.push_back(new MxDagPCG(DerivativeStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
FrbGridF,
*DenominatorsF[h],*Denominators[h],
*LinOpDagF[h], *LinOpDagD[h]) );
ActionMPCG.push_back(new MxPCG(ActionStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
FrbGridF,
*DenominatorsF[h],*Denominators[h],
*LinOpF[h], *LinOpD[h]) );
// Heatbath not mixed yet. As inverts numerators not so important as raised mass.
Quotients.push_back (new TwoFlavourRatioEO4DPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],*MPCG[h],*MPCGdag[h],*ActionMPCG[h],ActionCG));
#else
////////////////////////////////////////////////////////////////////////////
// Standard CG for 2f force
////////////////////////////////////////////////////////////////////////////
Quotients.push_back (new TwoFlavourRatioEO4DPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],DerivativeCG,ActionCG));
#endif
}
for(int h=0;h<n_hasenbusch+1;h++){
Level1.push_back(Quotients[h]);
}
/////////////////////////////////////////////////////////////
// Gauge action
/////////////////////////////////////////////////////////////
Level2.push_back(&GaugeAction);
TheHMC.TheAction.push_back(Level1);
TheHMC.TheAction.push_back(Level2);
std::cout << GridLogMessage << " Action complete "<< std::endl;
/////////////////////////////////////////////////////////////
// HMC parameters are serialisable
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
TheHMC.Run(); // no smearing
Grid_finalize();
} // main

312
HMC/Mobius2p1fEOFA_C1M.cc Normal file
View File

@ -0,0 +1,312 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file:
Copyright (C) 2015-2016
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Guido Cossu
Author: David Murphy
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
#define MIXED_PRECISION
#endif
#include <Grid/qcd/utils/MixedPrecisionOperatorFunction.h>
int main(int argc, char **argv) {
using namespace Grid;
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
// here make a routine to print all the relevant information on the run
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
// Typedefs to simplify notation
typedef WilsonImplR FermionImplPolicy;
typedef MobiusFermionR FermionAction;
typedef MobiusFermionF FermionActionF;
typedef MobiusEOFAFermionR FermionEOFAAction;
typedef MobiusEOFAFermionF FermionEOFAActionF;
typedef typename FermionAction::FermionField FermionField;
typedef typename FermionActionF::FermionField FermionFieldF;
typedef Grid::XmlReader Serialiser;
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
IntegratorParameters MD;
// typedef GenericHMCRunner<LeapFrog> HMCWrapper;
// MD.name = std::string("Leap Frog");
typedef GenericHMCRunner<ForceGradient> HMCWrapper;
HMCparameters HMCparams;
{
XmlReader HMCrd("HMCparameters.xml");
read(HMCrd,"HMCparameters",HMCparams);
std::cout << GridLogMessage<< HMCparams <<std::endl;
}
HMCWrapper TheHMC(HMCparams);
// Grid from the command line arguments --grid and --mpi
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
CheckpointerParameters CPparams;
CPparams.config_prefix = "ckpoint_C1M_lat";
CPparams.rng_prefix = "ckpoint_C1M_rng";
CPparams.saveInterval = 1;
CPparams.format = "IEEE64BIG";
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables
// here there is too much indirection
typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs;
TheHMC.Resources.AddObservable<PlaqObs>();
//////////////////////////////////////////////
const int Ls = 24;
Real beta = 2.13;
Real light_mass = 0.005;
Real strange_mass = 0.0362;
Real pv_mass = 1.0;
RealD M5 = 1.8;
RealD b = 1.5;
RealD c = 0.5;
std::vector<Real> hasenbusch({ 0.02, 0.2, 0.6 });
auto GridPtr = TheHMC.Resources.GetCartesian();
auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
auto FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtr);
auto FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtr);
Coordinate latt = GridDefaultLatt();
Coordinate mpi = GridDefaultMpi();
Coordinate simdF = GridDefaultSimd(Nd,vComplexF::Nsimd());
Coordinate simdD = GridDefaultSimd(Nd,vComplexD::Nsimd());
auto GridPtrF = SpaceTimeGrid::makeFourDimGrid(latt,simdF,mpi);
auto GridRBPtrF = SpaceTimeGrid::makeFourDimRedBlackGrid(GridPtrF);
auto FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtrF);
auto FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtrF);
IwasakiGaugeActionR GaugeAction(beta);
// temporarily need a gauge field
LatticeGaugeField U(GridPtr);
LatticeGaugeFieldF UF(GridPtrF);
// These lines are unecessary if BC are all periodic
std::vector<Complex> boundary = {1,1,1,-1};
FermionAction::ImplParams Params(boundary);
FermionActionF::ImplParams ParamsF(boundary);
double ActionStoppingCondition = 1e-10;
double DerivativeStoppingCondition = 1e-8;
double MaxCGIterations = 30000;
////////////////////////////////////
// Collect actions
////////////////////////////////////
ActionLevel<HMCWrapper::Field> Level1(1);
ActionLevel<HMCWrapper::Field> Level2(8);
////////////////////////////////////
// Strange action
////////////////////////////////////
typedef SchurDiagMooeeOperator<FermionActionF,FermionFieldF> LinearOperatorF;
typedef SchurDiagMooeeOperator<FermionAction ,FermionField > LinearOperatorD;
typedef SchurDiagMooeeOperator<FermionEOFAActionF,FermionFieldF> LinearOperatorEOFAF;
typedef SchurDiagMooeeOperator<FermionEOFAAction ,FermionField > LinearOperatorEOFAD;
typedef MixedPrecisionConjugateGradientOperatorFunction<MobiusFermionD,MobiusFermionF,LinearOperatorD,LinearOperatorF> MxPCG;
typedef MixedPrecisionConjugateGradientOperatorFunction<MobiusEOFAFermionD,MobiusEOFAFermionF,LinearOperatorEOFAD,LinearOperatorEOFAF> MxPCG_EOFA;
// DJM: setup for EOFA ratio (Mobius)
OneFlavourRationalParams OFRp;
OFRp.lo = 0.1;
OFRp.hi = 25.0;
OFRp.MaxIter = 10000;
OFRp.tolerance= 1.0e-9;
OFRp.degree = 14;
OFRp.precision= 50;
MobiusEOFAFermionR Strange_Op_L (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , strange_mass, strange_mass, pv_mass, 0.0, -1, M5, b, c);
MobiusEOFAFermionF Strange_Op_LF(UF, *FGridF, *FrbGridF, *GridPtrF, *GridRBPtrF, strange_mass, strange_mass, pv_mass, 0.0, -1, M5, b, c);
MobiusEOFAFermionR Strange_Op_R (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , pv_mass, strange_mass, pv_mass, -1.0, 1, M5, b, c);
MobiusEOFAFermionF Strange_Op_RF(UF, *FGridF, *FrbGridF, *GridPtrF, *GridRBPtrF, pv_mass, strange_mass, pv_mass, -1.0, 1, M5, b, c);
ConjugateGradient<FermionField> ActionCG(ActionStoppingCondition,MaxCGIterations);
ConjugateGradient<FermionField> DerivativeCG(DerivativeStoppingCondition,MaxCGIterations);
#ifdef MIXED_PRECISION
const int MX_inner = 1000;
const RealD MX_tol = 1.0e-6;
// Mixed precision EOFA
LinearOperatorEOFAD Strange_LinOp_L (Strange_Op_L);
LinearOperatorEOFAD Strange_LinOp_R (Strange_Op_R);
LinearOperatorEOFAF Strange_LinOp_LF(Strange_Op_LF);
LinearOperatorEOFAF Strange_LinOp_RF(Strange_Op_RF);
MxPCG_EOFA ActionCGL(ActionStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
FrbGridF,
Strange_Op_LF,Strange_Op_L,
Strange_LinOp_LF,Strange_LinOp_L);
MxPCG_EOFA DerivativeCGL(DerivativeStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
FrbGridF,
Strange_Op_LF,Strange_Op_L,
Strange_LinOp_LF,Strange_LinOp_L);
MxPCG_EOFA ActionCGR(ActionStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
FrbGridF,
Strange_Op_RF,Strange_Op_R,
Strange_LinOp_RF,Strange_LinOp_R);
MxPCG_EOFA DerivativeCGR(DerivativeStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
FrbGridF,
Strange_Op_RF,Strange_Op_R,
Strange_LinOp_RF,Strange_LinOp_R);
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy>
EOFA(Strange_Op_L, Strange_Op_R,
ActionCG,
ActionCGL, ActionCGR,
DerivativeCGL, DerivativeCGR,
OFRp, true);
#else
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy>
EOFA(Strange_Op_L, Strange_Op_R,
ActionCG,
ActionCG, ActionCG,
DerivativeCG, DerivativeCG,
OFRp, true);
#endif
Level1.push_back(&EOFA);
////////////////////////////////////
// up down action
////////////////////////////////////
std::vector<Real> light_den;
std::vector<Real> light_num;
int n_hasenbusch = hasenbusch.size();
light_den.push_back(light_mass);
for(int h=0;h<n_hasenbusch;h++){
light_den.push_back(hasenbusch[h]);
light_num.push_back(hasenbusch[h]);
}
light_num.push_back(pv_mass);
//////////////////////////////////////////////////////////////
// Forced to replicate the MxPCG and DenominatorsF etc.. because
// there is no convenient way to "Clone" physics params from double op
// into single op for any operator pair.
// Same issue prevents using MxPCG in the Heatbath step
//////////////////////////////////////////////////////////////
std::vector<FermionAction *> Numerators;
std::vector<FermionAction *> Denominators;
std::vector<TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy> *> Quotients;
std::vector<MxPCG *> ActionMPCG;
std::vector<MxPCG *> MPCG;
std::vector<FermionActionF *> DenominatorsF;
std::vector<LinearOperatorD *> LinOpD;
std::vector<LinearOperatorF *> LinOpF;
for(int h=0;h<n_hasenbusch+1;h++){
std::cout << GridLogMessage << " 2f quotient Action "<< light_num[h] << " / " << light_den[h]<< std::endl;
Numerators.push_back (new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_num[h],M5,b,c, Params));
Denominators.push_back(new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_den[h],M5,b,c, Params));
#ifdef MIXED_PRECISION
////////////////////////////////////////////////////////////////////////////
// Mixed precision CG for 2f force
////////////////////////////////////////////////////////////////////////////
DenominatorsF.push_back(new FermionActionF(UF,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,light_den[h],M5,b,c, ParamsF));
LinOpD.push_back(new LinearOperatorD(*Denominators[h]));
LinOpF.push_back(new LinearOperatorF(*DenominatorsF[h]));
MPCG.push_back(new MxPCG(DerivativeStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
FrbGridF,
*DenominatorsF[h],*Denominators[h],
*LinOpF[h], *LinOpD[h]) );
ActionMPCG.push_back(new MxPCG(ActionStoppingCondition,MX_tol,
MX_inner,
MaxCGIterations,
FrbGridF,
*DenominatorsF[h],*Denominators[h],
*LinOpF[h], *LinOpD[h]) );
// Heatbath not mixed yet. As inverts numerators not so important as raised mass.
Quotients.push_back (new TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],*MPCG[h],*ActionMPCG[h],ActionCG));
#else
////////////////////////////////////////////////////////////////////////////
// Standard CG for 2f force
////////////////////////////////////////////////////////////////////////////
Quotients.push_back (new TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],DerivativeCG,ActionCG));
#endif
}
for(int h=0;h<n_hasenbusch+1;h++){
Level1.push_back(Quotients[h]);
}
/////////////////////////////////////////////////////////////
// Gauge action
/////////////////////////////////////////////////////////////
Level2.push_back(&GaugeAction);
TheHMC.TheAction.push_back(Level1);
TheHMC.TheAction.push_back(Level2);
std::cout << GridLogMessage << " Action complete "<< std::endl;
/////////////////////////////////////////////////////////////
// HMC parameters are serialisable
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
TheHMC.Run(); // no smearing
Grid_finalize();
} // main

Some files were not shown because too many files have changed in this diff Show More