mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-21 01:02:02 +01:00
Compare commits
3 Commits
25f71913b7
...
feature/bo
Author | SHA1 | Date | |
---|---|---|---|
6815e138b4 | |||
e29b97b3ea | |||
ad2b699d2b |
@ -66,10 +66,6 @@ if BUILD_FERMION_REPS
|
|||||||
extra_sources+=$(ADJ_FERMION_FILES)
|
extra_sources+=$(ADJ_FERMION_FILES)
|
||||||
extra_sources+=$(TWOIND_FERMION_FILES)
|
extra_sources+=$(TWOIND_FERMION_FILES)
|
||||||
endif
|
endif
|
||||||
if BUILD_SP
|
|
||||||
extra_sources+=$(SP_FERMION_FILES)
|
|
||||||
extra_sources+=$(SP_TWOIND_FERMION_FILES)
|
|
||||||
endif
|
|
||||||
|
|
||||||
lib_LIBRARIES = libGrid.a
|
lib_LIBRARIES = libGrid.a
|
||||||
|
|
||||||
|
@ -69,8 +69,7 @@ NAMESPACE_CHECK(BiCGSTAB);
|
|||||||
#include <Grid/algorithms/iterative/PowerMethod.h>
|
#include <Grid/algorithms/iterative/PowerMethod.h>
|
||||||
|
|
||||||
NAMESPACE_CHECK(PowerMethod);
|
NAMESPACE_CHECK(PowerMethod);
|
||||||
#include <Grid/algorithms/multigrid/MultiGrid.h>
|
#include <Grid/algorithms/CoarsenedMatrix.h>
|
||||||
|
|
||||||
NAMESPACE_CHECK(CoarsendMatrix);
|
NAMESPACE_CHECK(CoarsendMatrix);
|
||||||
#include <Grid/algorithms/FFT.h>
|
#include <Grid/algorithms/FFT.h>
|
||||||
|
|
||||||
|
@ -56,6 +56,243 @@ inline void blockMaskedInnerProduct(Lattice<CComplex> &CoarseInner,
|
|||||||
blockSum(CoarseInner,fine_inner_msk);
|
blockSum(CoarseInner,fine_inner_msk);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class Geometry {
|
||||||
|
public:
|
||||||
|
int npoint;
|
||||||
|
int base;
|
||||||
|
std::vector<int> directions ;
|
||||||
|
std::vector<int> displacements;
|
||||||
|
std::vector<int> points_dagger;
|
||||||
|
|
||||||
|
Geometry(int _d) {
|
||||||
|
|
||||||
|
base = (_d==5) ? 1:0;
|
||||||
|
|
||||||
|
// make coarse grid stencil for 4d , not 5d
|
||||||
|
if ( _d==5 ) _d=4;
|
||||||
|
|
||||||
|
npoint = 2*_d+1;
|
||||||
|
directions.resize(npoint);
|
||||||
|
displacements.resize(npoint);
|
||||||
|
points_dagger.resize(npoint);
|
||||||
|
for(int d=0;d<_d;d++){
|
||||||
|
directions[d ] = d+base;
|
||||||
|
directions[d+_d] = d+base;
|
||||||
|
displacements[d ] = +1;
|
||||||
|
displacements[d+_d]= -1;
|
||||||
|
points_dagger[d ] = d+_d;
|
||||||
|
points_dagger[d+_d] = d;
|
||||||
|
}
|
||||||
|
directions [2*_d]=0;
|
||||||
|
displacements[2*_d]=0;
|
||||||
|
points_dagger[2*_d]=2*_d;
|
||||||
|
}
|
||||||
|
|
||||||
|
int point(int dir, int disp) {
|
||||||
|
assert(disp == -1 || disp == 0 || disp == 1);
|
||||||
|
assert(base+0 <= dir && dir < base+4);
|
||||||
|
|
||||||
|
// directions faster index = new indexing
|
||||||
|
// 4d (base = 0):
|
||||||
|
// point 0 1 2 3 4 5 6 7 8
|
||||||
|
// dir 0 1 2 3 0 1 2 3 0
|
||||||
|
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
|
||||||
|
// 5d (base = 1):
|
||||||
|
// point 0 1 2 3 4 5 6 7 8
|
||||||
|
// dir 1 2 3 4 1 2 3 4 0
|
||||||
|
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
|
||||||
|
|
||||||
|
// displacements faster index = old indexing
|
||||||
|
// 4d (base = 0):
|
||||||
|
// point 0 1 2 3 4 5 6 7 8
|
||||||
|
// dir 0 0 1 1 2 2 3 3 0
|
||||||
|
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
|
||||||
|
// 5d (base = 1):
|
||||||
|
// point 0 1 2 3 4 5 6 7 8
|
||||||
|
// dir 1 1 2 2 3 3 4 4 0
|
||||||
|
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
|
||||||
|
|
||||||
|
if(dir == 0 and disp == 0)
|
||||||
|
return 8;
|
||||||
|
else // New indexing
|
||||||
|
return (1 - disp) / 2 * 4 + dir - base;
|
||||||
|
// else // Old indexing
|
||||||
|
// return (4 * (dir - base) + 1 - disp) / 2;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template<class Fobj,class CComplex,int nbasis>
|
||||||
|
class Aggregation {
|
||||||
|
public:
|
||||||
|
typedef iVector<CComplex,nbasis > siteVector;
|
||||||
|
typedef Lattice<siteVector> CoarseVector;
|
||||||
|
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
|
||||||
|
|
||||||
|
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
|
||||||
|
typedef Lattice<Fobj > FineField;
|
||||||
|
|
||||||
|
GridBase *CoarseGrid;
|
||||||
|
GridBase *FineGrid;
|
||||||
|
std::vector<Lattice<Fobj> > subspace;
|
||||||
|
int checkerboard;
|
||||||
|
int Checkerboard(void){return checkerboard;}
|
||||||
|
Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :
|
||||||
|
CoarseGrid(_CoarseGrid),
|
||||||
|
FineGrid(_FineGrid),
|
||||||
|
subspace(nbasis,_FineGrid),
|
||||||
|
checkerboard(_checkerboard)
|
||||||
|
{
|
||||||
|
};
|
||||||
|
|
||||||
|
void Orthogonalise(void){
|
||||||
|
CoarseScalar InnerProd(CoarseGrid);
|
||||||
|
std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
|
||||||
|
blockOrthogonalise(InnerProd,subspace);
|
||||||
|
}
|
||||||
|
void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
|
||||||
|
blockProject(CoarseVec,FineVec,subspace);
|
||||||
|
}
|
||||||
|
void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
|
||||||
|
FineVec.Checkerboard() = subspace[0].Checkerboard();
|
||||||
|
blockPromote(CoarseVec,FineVec,subspace);
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual void CreateSubspace(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) {
|
||||||
|
|
||||||
|
RealD scale;
|
||||||
|
|
||||||
|
ConjugateGradient<FineField> CG(1.0e-2,100,false);
|
||||||
|
FineField noise(FineGrid);
|
||||||
|
FineField Mn(FineGrid);
|
||||||
|
|
||||||
|
for(int b=0;b<nn;b++){
|
||||||
|
|
||||||
|
subspace[b] = Zero();
|
||||||
|
gaussian(RNG,noise);
|
||||||
|
scale = std::pow(norm2(noise),-0.5);
|
||||||
|
noise=noise*scale;
|
||||||
|
|
||||||
|
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||||
|
|
||||||
|
for(int i=0;i<1;i++){
|
||||||
|
|
||||||
|
CG(hermop,noise,subspace[b]);
|
||||||
|
|
||||||
|
noise = subspace[b];
|
||||||
|
scale = std::pow(norm2(noise),-0.5);
|
||||||
|
noise=noise*scale;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
|
||||||
|
subspace[b] = noise;
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
// World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
|
||||||
|
// and this is the best I found
|
||||||
|
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||||
|
int nn,
|
||||||
|
double hi,
|
||||||
|
double lo,
|
||||||
|
int orderfilter,
|
||||||
|
int ordermin,
|
||||||
|
int orderstep,
|
||||||
|
double filterlo
|
||||||
|
) {
|
||||||
|
|
||||||
|
RealD scale;
|
||||||
|
|
||||||
|
FineField noise(FineGrid);
|
||||||
|
FineField Mn(FineGrid);
|
||||||
|
FineField tmp(FineGrid);
|
||||||
|
|
||||||
|
// New normalised noise
|
||||||
|
gaussian(RNG,noise);
|
||||||
|
scale = std::pow(norm2(noise),-0.5);
|
||||||
|
noise=noise*scale;
|
||||||
|
|
||||||
|
// Initial matrix element
|
||||||
|
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||||
|
|
||||||
|
int b =0;
|
||||||
|
{
|
||||||
|
// Filter
|
||||||
|
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
|
||||||
|
Cheb(hermop,noise,Mn);
|
||||||
|
// normalise
|
||||||
|
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||||
|
subspace[b] = Mn;
|
||||||
|
hermop.Op(Mn,tmp);
|
||||||
|
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||||
|
b++;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Generate a full sequence of Chebyshevs
|
||||||
|
{
|
||||||
|
lo=filterlo;
|
||||||
|
noise=Mn;
|
||||||
|
|
||||||
|
FineField T0(FineGrid); T0 = noise;
|
||||||
|
FineField T1(FineGrid);
|
||||||
|
FineField T2(FineGrid);
|
||||||
|
FineField y(FineGrid);
|
||||||
|
|
||||||
|
FineField *Tnm = &T0;
|
||||||
|
FineField *Tn = &T1;
|
||||||
|
FineField *Tnp = &T2;
|
||||||
|
|
||||||
|
// Tn=T1 = (xscale M + mscale)in
|
||||||
|
RealD xscale = 2.0/(hi-lo);
|
||||||
|
RealD mscale = -(hi+lo)/(hi-lo);
|
||||||
|
hermop.HermOp(T0,y);
|
||||||
|
T1=y*xscale+noise*mscale;
|
||||||
|
|
||||||
|
for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
|
||||||
|
|
||||||
|
hermop.HermOp(*Tn,y);
|
||||||
|
|
||||||
|
autoView( y_v , y, AcceleratorWrite);
|
||||||
|
autoView( Tn_v , (*Tn), AcceleratorWrite);
|
||||||
|
autoView( Tnp_v , (*Tnp), AcceleratorWrite);
|
||||||
|
autoView( Tnm_v , (*Tnm), AcceleratorWrite);
|
||||||
|
const int Nsimd = CComplex::Nsimd();
|
||||||
|
accelerator_for(ss, FineGrid->oSites(), Nsimd, {
|
||||||
|
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
|
||||||
|
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
|
||||||
|
});
|
||||||
|
|
||||||
|
// Possible more fine grained control is needed than a linear sweep,
|
||||||
|
// but huge productivity gain if this is simple algorithm and not a tunable
|
||||||
|
int m =1;
|
||||||
|
if ( n>=ordermin ) m=n-ordermin;
|
||||||
|
if ( (m%orderstep)==0 ) {
|
||||||
|
Mn=*Tnp;
|
||||||
|
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||||
|
subspace[b] = Mn;
|
||||||
|
hermop.Op(Mn,tmp);
|
||||||
|
std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||||
|
b++;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Cycle pointers to avoid copies
|
||||||
|
FineField *swizzle = Tnm;
|
||||||
|
Tnm =Tn;
|
||||||
|
Tn =Tnp;
|
||||||
|
Tnp =swizzle;
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
assert(b==nn);
|
||||||
|
}
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
// Fine Object == (per site) type of fine field
|
// Fine Object == (per site) type of fine field
|
||||||
// nbasis == number of deflation vectors
|
// nbasis == number of deflation vectors
|
||||||
template<class Fobj,class CComplex,int nbasis>
|
template<class Fobj,class CComplex,int nbasis>
|
@ -145,44 +145,6 @@ public:
|
|||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////
|
|
||||||
// Create a shifted HermOp
|
|
||||||
////////////////////////////////////////////////////////////////////
|
|
||||||
template<class Field>
|
|
||||||
class ShiftedHermOpLinearOperator : public LinearOperatorBase<Field> {
|
|
||||||
LinearOperatorBase<Field> &_Mat;
|
|
||||||
RealD _shift;
|
|
||||||
public:
|
|
||||||
ShiftedHermOpLinearOperator(LinearOperatorBase<Field> &Mat,RealD shift): _Mat(Mat), _shift(shift){};
|
|
||||||
// Support for coarsening to a multigrid
|
|
||||||
void OpDiag (const Field &in, Field &out) {
|
|
||||||
assert(0);
|
|
||||||
}
|
|
||||||
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
|
||||||
assert(0);
|
|
||||||
}
|
|
||||||
void OpDirAll (const Field &in, std::vector<Field> &out){
|
|
||||||
assert(0);
|
|
||||||
};
|
|
||||||
void Op (const Field &in, Field &out){
|
|
||||||
assert(0);
|
|
||||||
}
|
|
||||||
void AdjOp (const Field &in, Field &out){
|
|
||||||
assert(0);
|
|
||||||
}
|
|
||||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
|
||||||
HermOp(in,out);
|
|
||||||
ComplexD dot = innerProduct(in,out);
|
|
||||||
n1=real(dot);
|
|
||||||
n2=norm2(out);
|
|
||||||
}
|
|
||||||
void HermOp(const Field &in, Field &out){
|
|
||||||
_Mat.HermOp(in,out);
|
|
||||||
out = out + _shift*in;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////
|
||||||
// Wrap an already herm matrix
|
// Wrap an already herm matrix
|
||||||
////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////
|
||||||
|
@ -90,8 +90,9 @@ public:
|
|||||||
order=_order;
|
order=_order;
|
||||||
|
|
||||||
if(order < 2) exit(-1);
|
if(order < 2) exit(-1);
|
||||||
Coeffs.resize(order,0.0);
|
Coeffs.resize(order);
|
||||||
Coeffs[order-1] = 1.0;
|
Coeffs.assign(0.,order);
|
||||||
|
Coeffs[order-1] = 1.;
|
||||||
};
|
};
|
||||||
|
|
||||||
// PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's.
|
// PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's.
|
||||||
|
@ -40,7 +40,7 @@ public:
|
|||||||
RealD norm;
|
RealD norm;
|
||||||
RealD lo,hi;
|
RealD lo,hi;
|
||||||
|
|
||||||
MultiShiftFunction(int n,RealD _lo,RealD _hi): poles(n), residues(n), tolerances(n), lo(_lo), hi(_hi) {;};
|
MultiShiftFunction(int n,RealD _lo,RealD _hi): poles(n), residues(n), lo(_lo), hi(_hi) {;};
|
||||||
RealD approx(RealD x);
|
RealD approx(RealD x);
|
||||||
void csv(std::ostream &out);
|
void csv(std::ostream &out);
|
||||||
void gnuplot(std::ostream &out);
|
void gnuplot(std::ostream &out);
|
||||||
|
@ -33,110 +33,109 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|||||||
* Script A = SolverMatrix
|
* Script A = SolverMatrix
|
||||||
* Script P = Preconditioner
|
* Script P = Preconditioner
|
||||||
*
|
*
|
||||||
|
* Deflation methods considered
|
||||||
|
* -- Solve P A x = P b [ like Luscher ]
|
||||||
|
* DEF-1 M P A x = M P b [i.e. left precon]
|
||||||
|
* DEF-2 P^T M A x = P^T M b
|
||||||
|
* ADEF-1 Preconditioner = M P + Q [ Q + M + M A Q]
|
||||||
|
* ADEF-2 Preconditioner = P^T M + Q
|
||||||
|
* BNN Preconditioner = P^T M P + Q
|
||||||
|
* BNN2 Preconditioner = M P + P^TM +Q - M P A M
|
||||||
|
*
|
||||||
* Implement ADEF-2
|
* Implement ADEF-2
|
||||||
*
|
*
|
||||||
* Vstart = P^Tx + Qb
|
* Vstart = P^Tx + Qb
|
||||||
* M1 = P^TM + Q
|
* M1 = P^TM + Q
|
||||||
* M2=M3=1
|
* M2=M3=1
|
||||||
|
* Vout = x
|
||||||
*/
|
*/
|
||||||
NAMESPACE_BEGIN(Grid);
|
|
||||||
|
|
||||||
template<class Field>
|
// abstract base
|
||||||
class TwoLevelCG : public LinearFunction<Field>
|
template<class Field, class CoarseField>
|
||||||
|
class TwoLevelFlexiblePcg : public LinearFunction<Field>
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
|
int verbose;
|
||||||
RealD Tolerance;
|
RealD Tolerance;
|
||||||
Integer MaxIterations;
|
Integer MaxIterations;
|
||||||
|
const int mmax = 5;
|
||||||
GridBase *grid;
|
GridBase *grid;
|
||||||
|
GridBase *coarsegrid;
|
||||||
|
|
||||||
// Fine operator, Smoother, CoarseSolver
|
LinearOperatorBase<Field> *_Linop
|
||||||
LinearOperatorBase<Field> &_FineLinop;
|
OperatorFunction<Field> *_Smoother,
|
||||||
LinearFunction<Field> &_Smoother;
|
LinearFunction<CoarseField> *_CoarseSolver;
|
||||||
|
|
||||||
|
// Need somthing that knows how to get from Coarse to fine and back again
|
||||||
|
|
||||||
// more most opertor functions
|
// more most opertor functions
|
||||||
TwoLevelCG(RealD tol,
|
TwoLevelFlexiblePcg(RealD tol,
|
||||||
Integer maxit,
|
Integer maxit,
|
||||||
LinearOperatorBase<Field> &FineLinop,
|
LinearOperatorBase<Field> *Linop,
|
||||||
LinearFunction<Field> &Smoother,
|
LinearOperatorBase<Field> *SmootherLinop,
|
||||||
GridBase *fine) :
|
OperatorFunction<Field> *Smoother,
|
||||||
|
OperatorFunction<CoarseField> CoarseLinop
|
||||||
|
) :
|
||||||
Tolerance(tol),
|
Tolerance(tol),
|
||||||
MaxIterations(maxit),
|
MaxIterations(maxit),
|
||||||
_FineLinop(FineLinop),
|
_Linop(Linop),
|
||||||
_Smoother(Smoother)
|
_PreconditionerLinop(PrecLinop),
|
||||||
{
|
_Preconditioner(Preconditioner)
|
||||||
grid = fine;
|
{
|
||||||
|
verbose=0;
|
||||||
};
|
};
|
||||||
|
|
||||||
virtual void operator() (const Field &src, Field &x)
|
// The Pcg routine is common to all, but the various matrices differ from derived
|
||||||
{
|
// implementation to derived implmentation
|
||||||
std::cout << GridLogMessage<<"HDCG: fPcg starting"<<std::endl;
|
void operator() (const Field &src, Field &psi){
|
||||||
|
void operator() (const Field &src, Field &psi){
|
||||||
|
|
||||||
|
psi.Checkerboard() = src.Checkerboard();
|
||||||
|
grid = src.Grid();
|
||||||
|
|
||||||
RealD f;
|
RealD f;
|
||||||
RealD rtzp,rtz,a,d,b;
|
RealD rtzp,rtz,a,d,b;
|
||||||
RealD rptzp;
|
RealD rptzp;
|
||||||
|
RealD tn;
|
||||||
|
RealD guess = norm2(psi);
|
||||||
|
RealD ssq = norm2(src);
|
||||||
|
RealD rsq = ssq*Tolerance*Tolerance;
|
||||||
|
|
||||||
/////////////////////////////
|
/////////////////////////////
|
||||||
// Set up history vectors
|
// Set up history vectors
|
||||||
/////////////////////////////
|
/////////////////////////////
|
||||||
int mmax = 5;
|
std::vector<Field> p (mmax,grid);
|
||||||
std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
|
|
||||||
std::vector<Field> p(mmax,grid);
|
|
||||||
std::vector<Field> mmp(mmax,grid);
|
std::vector<Field> mmp(mmax,grid);
|
||||||
std::vector<RealD> pAp(mmax);
|
std::vector<RealD> pAp(mmax);
|
||||||
Field z(grid);
|
|
||||||
|
Field x (grid); x = psi;
|
||||||
|
Field z (grid);
|
||||||
Field tmp(grid);
|
Field tmp(grid);
|
||||||
Field mp (grid);
|
Field r (grid);
|
||||||
Field r (grid);
|
Field mu (grid);
|
||||||
Field mu (grid);
|
|
||||||
|
|
||||||
std::cout << GridLogMessage<<"HDCG: fPcg allocated"<<std::endl;
|
|
||||||
//Initial residual computation & set up
|
|
||||||
RealD guess = norm2(x);
|
|
||||||
std::cout << GridLogMessage<<"HDCG: fPcg guess nrm "<<guess<<std::endl;
|
|
||||||
RealD src_nrm = norm2(src);
|
|
||||||
std::cout << GridLogMessage<<"HDCG: fPcg src nrm "<<src_nrm<<std::endl;
|
|
||||||
|
|
||||||
if ( src_nrm == 0.0 ) {
|
|
||||||
std::cout << GridLogMessage<<"HDCG: fPcg given trivial source norm "<<src_nrm<<std::endl;
|
|
||||||
x=Zero();
|
|
||||||
}
|
|
||||||
RealD tn;
|
|
||||||
|
|
||||||
GridStopWatch HDCGTimer;
|
|
||||||
HDCGTimer.Start();
|
|
||||||
//////////////////////////
|
//////////////////////////
|
||||||
// x0 = Vstart -- possibly modify guess
|
// x0 = Vstart -- possibly modify guess
|
||||||
//////////////////////////
|
//////////////////////////
|
||||||
|
x=src;
|
||||||
Vstart(x,src);
|
Vstart(x,src);
|
||||||
|
|
||||||
// r0 = b -A x0
|
// r0 = b -A x0
|
||||||
_FineLinop.HermOp(x,mmp[0]);
|
HermOp(x,mmp); // Shouldn't this be something else?
|
||||||
axpy (r, -1.0,mmp[0], src); // Recomputes r=src-Ax0
|
axpy (r, -1.0,mmp[0], src); // Recomputes r=src-Ax0
|
||||||
{
|
|
||||||
double n1 = norm2(x);
|
|
||||||
double n2 = norm2(mmp[0]);
|
|
||||||
double n3 = norm2(r);
|
|
||||||
std::cout<<GridLogMessage<<"x,vstart,r = "<<n1<<" "<<n2<<" "<<n3<<std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
//////////////////////////////////
|
//////////////////////////////////
|
||||||
// Compute z = M1 x
|
// Compute z = M1 x
|
||||||
//////////////////////////////////
|
//////////////////////////////////
|
||||||
PcgM1(r,z);
|
M1(r,z,tmp,mp,SmootherMirs);
|
||||||
rtzp =real(innerProduct(r,z));
|
rtzp =real(innerProduct(r,z));
|
||||||
|
|
||||||
///////////////////////////////////////
|
///////////////////////////////////////
|
||||||
// Solve for Mss mu = P A z and set p = z-mu
|
// Solve for Mss mu = P A z and set p = z-mu
|
||||||
// Def2 p = 1 - Q Az = Pright z
|
// Def2: p = 1 - Q Az = Pright z
|
||||||
// Other algos M2 is trivial
|
// Other algos M2 is trivial
|
||||||
///////////////////////////////////////
|
///////////////////////////////////////
|
||||||
PcgM2(z,p[0]);
|
M2(z,p[0]);
|
||||||
|
|
||||||
RealD ssq = norm2(src);
|
|
||||||
RealD rsq = ssq*Tolerance*Tolerance;
|
|
||||||
|
|
||||||
std::cout << GridLogMessage<<"HDCG: k=0 residual "<<rtzp<<" rsq "<<rsq<<"\n";
|
|
||||||
|
|
||||||
Field pp(grid);
|
|
||||||
|
|
||||||
for (int k=0;k<=MaxIterations;k++){
|
for (int k=0;k<=MaxIterations;k++){
|
||||||
|
|
||||||
@ -144,46 +143,31 @@ class TwoLevelCG : public LinearFunction<Field>
|
|||||||
int peri_kp = (k+1) % mmax;
|
int peri_kp = (k+1) % mmax;
|
||||||
|
|
||||||
rtz=rtzp;
|
rtz=rtzp;
|
||||||
d= PcgM3(p[peri_k],mmp[peri_k]);
|
d= M3(p[peri_k],mp,mmp[peri_k],tmp);
|
||||||
a = rtz/d;
|
a = rtz/d;
|
||||||
|
|
||||||
// Memorise this
|
// Memorise this
|
||||||
pAp[peri_k] = d;
|
pAp[peri_k] = d;
|
||||||
|
|
||||||
axpy(x,a,p[peri_k],x);
|
axpy(x,a,p[peri_k],x);
|
||||||
RealD rn = axpy_norm(r,-a,mmp[peri_k],r);
|
RealD rn = axpy_norm(r,-a,mmp[peri_k],r);
|
||||||
|
|
||||||
// Compute z = M x
|
// Compute z = M x
|
||||||
PcgM1(r,z);
|
M1(r,z,tmp,mp);
|
||||||
|
|
||||||
{
|
|
||||||
RealD n1,n2;
|
|
||||||
n1=norm2(r);
|
|
||||||
n2=norm2(z);
|
|
||||||
std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : vector r,z "<<n1<<" "<<n2<<"\n";
|
|
||||||
}
|
|
||||||
rtzp =real(innerProduct(r,z));
|
rtzp =real(innerProduct(r,z));
|
||||||
std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : inner rtzp "<<rtzp<<"\n";
|
|
||||||
|
|
||||||
// PcgM2(z,p[0]);
|
M2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
|
||||||
PcgM2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
|
|
||||||
|
|
||||||
p[peri_kp]=mu;
|
|
||||||
|
|
||||||
// Standard search direction p -> z + b p
|
p[peri_kp]=p[peri_k];
|
||||||
|
|
||||||
|
// Standard search direction p -> z + b p ; b =
|
||||||
b = (rtzp)/rtz;
|
b = (rtzp)/rtz;
|
||||||
|
|
||||||
int northog;
|
|
||||||
// k=zero <=> peri_kp=1; northog = 1
|
|
||||||
// k=1 <=> peri_kp=2; northog = 2
|
|
||||||
// ... ... ...
|
|
||||||
// k=mmax-2<=> peri_kp=mmax-1; northog = mmax-1
|
|
||||||
// k=mmax-1<=> peri_kp=0; northog = 1
|
|
||||||
|
|
||||||
|
int northog;
|
||||||
// northog = (peri_kp==0)?1:peri_kp; // This is the fCG(mmax) algorithm
|
// northog = (peri_kp==0)?1:peri_kp; // This is the fCG(mmax) algorithm
|
||||||
northog = (k>mmax-1)?(mmax-1):k; // This is the fCG-Tr(mmax-1) algorithm
|
northog = (k>mmax-1)?(mmax-1):k; // This is the fCG-Tr(mmax-1) algorithm
|
||||||
|
|
||||||
std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n";
|
|
||||||
for(int back=0; back < northog; back++){
|
for(int back=0; back < northog; back++){
|
||||||
int peri_back = (k-back)%mmax;
|
int peri_back = (k-back)%mmax;
|
||||||
RealD pbApk= real(innerProduct(mmp[peri_back],p[peri_kp]));
|
RealD pbApk= real(innerProduct(mmp[peri_back],p[peri_kp]));
|
||||||
@ -192,315 +176,75 @@ class TwoLevelCG : public LinearFunction<Field>
|
|||||||
}
|
}
|
||||||
|
|
||||||
RealD rrn=sqrt(rn/ssq);
|
RealD rrn=sqrt(rn/ssq);
|
||||||
RealD rtn=sqrt(rtz/ssq);
|
std::cout<<GridLogMessage<<"TwoLevelfPcg: k= "<<k<<" residual = "<<rrn<<std::endl;
|
||||||
RealD rtnp=sqrt(rtzp/ssq);
|
|
||||||
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: fPcg k= "<<k<<" residual = "<<rrn<<"\n";
|
|
||||||
|
|
||||||
// Stopping condition
|
// Stopping condition
|
||||||
if ( rn <= rsq ) {
|
if ( rn <= rsq ) {
|
||||||
|
|
||||||
HDCGTimer.Stop();
|
HermOp(x,mmp); // Shouldn't this be something else?
|
||||||
std::cout<<GridLogMessage<<"HDCG: fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
|
|
||||||
|
|
||||||
_FineLinop.HermOp(x,mmp[0]);
|
|
||||||
axpy(tmp,-1.0,src,mmp[0]);
|
axpy(tmp,-1.0,src,mmp[0]);
|
||||||
|
|
||||||
RealD mmpnorm = sqrt(norm2(mmp[0]));
|
RealD psinorm = sqrt(norm2(x));
|
||||||
RealD xnorm = sqrt(norm2(x));
|
RealD srcnorm = sqrt(norm2(src));
|
||||||
RealD srcnorm = sqrt(norm2(src));
|
RealD tmpnorm = sqrt(norm2(tmp));
|
||||||
RealD tmpnorm = sqrt(norm2(tmp));
|
RealD true_residual = tmpnorm/srcnorm;
|
||||||
RealD true_residual = tmpnorm/srcnorm;
|
std::cout<<GridLogMessage<<"TwoLevelfPcg: true residual is "<<true_residual<<std::endl;
|
||||||
std::cout<<GridLogMessage
|
std::cout<<GridLogMessage<<"TwoLevelfPcg: target residual was"<<Tolerance<<std::endl;
|
||||||
<<"HDCG: true residual is "<<true_residual
|
return k;
|
||||||
<<" solution "<<xnorm
|
|
||||||
<<" source "<<srcnorm
|
|
||||||
<<" mmp "<<mmpnorm
|
|
||||||
<<std::endl;
|
|
||||||
|
|
||||||
return;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
HDCGTimer.Stop();
|
// Non-convergence
|
||||||
std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
|
assert(0);
|
||||||
RealD xnorm = sqrt(norm2(x));
|
|
||||||
RealD srcnorm = sqrt(norm2(src));
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
|
|
||||||
{
|
|
||||||
std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl;
|
|
||||||
src[0].Grid()->Barrier();
|
|
||||||
int nrhs = src.size();
|
|
||||||
std::vector<RealD> f(nrhs);
|
|
||||||
std::vector<RealD> rtzp(nrhs);
|
|
||||||
std::vector<RealD> rtz(nrhs);
|
|
||||||
std::vector<RealD> a(nrhs);
|
|
||||||
std::vector<RealD> d(nrhs);
|
|
||||||
std::vector<RealD> b(nrhs);
|
|
||||||
std::vector<RealD> rptzp(nrhs);
|
|
||||||
/////////////////////////////
|
|
||||||
// Set up history vectors
|
|
||||||
/////////////////////////////
|
|
||||||
int mmax = 2;
|
|
||||||
std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
|
|
||||||
src[0].Grid()->Barrier();
|
|
||||||
std::vector<std::vector<Field> > p(nrhs); for(int r=0;r<nrhs;r++) p[r].resize(mmax,grid);
|
|
||||||
std::cout << GridLogMessage<<"HDCG: fPcg allocated p"<<std::endl;
|
|
||||||
src[0].Grid()->Barrier();
|
|
||||||
std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid);
|
|
||||||
std::cout << GridLogMessage<<"HDCG: fPcg allocated mmp"<<std::endl;
|
|
||||||
src[0].Grid()->Barrier();
|
|
||||||
std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax);
|
|
||||||
std::cout << GridLogMessage<<"HDCG: fPcg allocated pAp"<<std::endl;
|
|
||||||
src[0].Grid()->Barrier();
|
|
||||||
std::vector<Field> z(nrhs,grid);
|
|
||||||
std::vector<Field> mp (nrhs,grid);
|
|
||||||
std::vector<Field> r (nrhs,grid);
|
|
||||||
std::vector<Field> mu (nrhs,grid);
|
|
||||||
std::cout << GridLogMessage<<"HDCG: fPcg allocated z,mp,r,mu"<<std::endl;
|
|
||||||
src[0].Grid()->Barrier();
|
|
||||||
|
|
||||||
//Initial residual computation & set up
|
|
||||||
std::vector<RealD> src_nrm(nrhs);
|
|
||||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
|
||||||
src_nrm[rhs]=norm2(src[rhs]);
|
|
||||||
assert(src_nrm[rhs]!=0.0);
|
|
||||||
}
|
|
||||||
std::vector<RealD> tn(nrhs);
|
|
||||||
|
|
||||||
GridStopWatch HDCGTimer;
|
|
||||||
HDCGTimer.Start();
|
|
||||||
//////////////////////////
|
|
||||||
// x0 = Vstart -- possibly modify guess
|
|
||||||
//////////////////////////
|
|
||||||
for(int rhs=0;rhs<nrhs;rhs++){
|
|
||||||
Vstart(x[rhs],src[rhs]);
|
|
||||||
|
|
||||||
// r0 = b -A x0
|
|
||||||
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
|
|
||||||
axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]); // Recomputes r=src-Ax0
|
|
||||||
}
|
|
||||||
|
|
||||||
//////////////////////////////////
|
|
||||||
// Compute z = M1 x
|
|
||||||
//////////////////////////////////
|
|
||||||
// This needs a multiRHS version for acceleration
|
|
||||||
PcgM1(r,z);
|
|
||||||
|
|
||||||
std::vector<RealD> ssq(nrhs);
|
|
||||||
std::vector<RealD> rsq(nrhs);
|
|
||||||
std::vector<Field> pp(nrhs,grid);
|
|
||||||
|
|
||||||
for(int rhs=0;rhs<nrhs;rhs++){
|
|
||||||
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
|
|
||||||
p[rhs][0]=z[rhs];
|
|
||||||
ssq[rhs]=norm2(src[rhs]);
|
|
||||||
rsq[rhs]= ssq[rhs]*Tolerance*Tolerance;
|
|
||||||
std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n";
|
|
||||||
}
|
|
||||||
|
|
||||||
std::vector<RealD> rn(nrhs);
|
|
||||||
for (int k=0;k<=MaxIterations;k++){
|
|
||||||
|
|
||||||
int peri_k = k % mmax;
|
|
||||||
int peri_kp = (k+1) % mmax;
|
|
||||||
|
|
||||||
for(int rhs=0;rhs<nrhs;rhs++){
|
|
||||||
rtz[rhs]=rtzp[rhs];
|
|
||||||
d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]);
|
|
||||||
a[rhs] = rtz[rhs]/d[rhs];
|
|
||||||
|
|
||||||
// Memorise this
|
|
||||||
pAp[rhs][peri_k] = d[rhs];
|
|
||||||
|
|
||||||
axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]);
|
|
||||||
rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Compute z = M x (for *all* RHS)
|
|
||||||
PcgM1(r,z);
|
|
||||||
|
|
||||||
RealD max_rn=0.0;
|
|
||||||
for(int rhs=0;rhs<nrhs;rhs++){
|
|
||||||
|
|
||||||
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
|
|
||||||
|
|
||||||
std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n";
|
|
||||||
|
|
||||||
mu[rhs]=z[rhs];
|
|
||||||
|
|
||||||
p[rhs][peri_kp]=mu[rhs];
|
|
||||||
|
|
||||||
// Standard search direction p == z + b p
|
|
||||||
b[rhs] = (rtzp[rhs])/rtz[rhs];
|
|
||||||
|
|
||||||
int northog = (k>mmax-1)?(mmax-1):k; // This is the fCG-Tr(mmax-1) algorithm
|
|
||||||
std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n";
|
|
||||||
for(int back=0; back < northog; back++){
|
|
||||||
int peri_back = (k-back)%mmax;
|
|
||||||
RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp]));
|
|
||||||
RealD beta = -pbApk/pAp[rhs][peri_back];
|
|
||||||
axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]);
|
|
||||||
}
|
|
||||||
|
|
||||||
RealD rrn=sqrt(rn[rhs]/ssq[rhs]);
|
|
||||||
RealD rtn=sqrt(rtz[rhs]/ssq[rhs]);
|
|
||||||
RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]);
|
|
||||||
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: rhs "<<rhs<<"fPcg k= "<<k<<" residual = "<<rrn<<"\n";
|
|
||||||
if ( rrn > max_rn ) max_rn = rrn;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Stopping condition based on worst case
|
|
||||||
if ( max_rn <= Tolerance ) {
|
|
||||||
|
|
||||||
HDCGTimer.Stop();
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
|
|
||||||
|
|
||||||
for(int rhs=0;rhs<nrhs;rhs++){
|
|
||||||
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
|
|
||||||
Field tmp(grid);
|
|
||||||
axpy(tmp,-1.0,src[rhs],mmp[rhs][0]);
|
|
||||||
|
|
||||||
RealD mmpnorm = sqrt(norm2(mmp[rhs][0]));
|
|
||||||
RealD xnorm = sqrt(norm2(x[rhs]));
|
|
||||||
RealD srcnorm = sqrt(norm2(src[rhs]));
|
|
||||||
RealD tmpnorm = sqrt(norm2(tmp));
|
|
||||||
RealD true_residual = tmpnorm/srcnorm;
|
|
||||||
std::cout<<GridLogMessage
|
|
||||||
<<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
|
|
||||||
<<" solution "<<xnorm
|
|
||||||
<<" source "<<srcnorm
|
|
||||||
<<" mmp "<<mmpnorm
|
|
||||||
<<std::endl;
|
|
||||||
}
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
HDCGTimer.Stop();
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
|
|
||||||
for(int rhs=0;rhs<nrhs;rhs++){
|
|
||||||
RealD xnorm = sqrt(norm2(x[rhs]));
|
|
||||||
RealD srcnorm = sqrt(norm2(src[rhs]));
|
|
||||||
std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
public:
|
public:
|
||||||
|
|
||||||
virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out)
|
virtual void M(Field & in,Field & out,Field & tmp) {
|
||||||
{
|
|
||||||
std::cout << "PcgM1 default (cheat) mrhs versoin"<<std::endl;
|
|
||||||
for(int rhs=0;rhs<in.size();rhs++){
|
|
||||||
this->PcgM1(in[rhs],out[rhs]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
virtual void PcgM1(Field & in, Field & out) =0;
|
|
||||||
virtual void Vstart(Field & x,const Field & src)=0;
|
|
||||||
|
|
||||||
virtual void PcgM2(const Field & in, Field & out) {
|
|
||||||
out=in;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
virtual RealD PcgM3(const Field & p, Field & mmp){
|
virtual void M1(Field & in, Field & out) {// the smoother
|
||||||
RealD dd;
|
|
||||||
_FineLinop.HermOp(p,mmp);
|
|
||||||
ComplexD dot = innerProduct(p,mmp);
|
|
||||||
dd=real(dot);
|
|
||||||
return dd;
|
|
||||||
}
|
|
||||||
|
|
||||||
/////////////////////////////////////////////////////////////////////
|
|
||||||
// Only Def1 has non-trivial Vout.
|
|
||||||
/////////////////////////////////////////////////////////////////////
|
|
||||||
|
|
||||||
};
|
|
||||||
|
|
||||||
template<class Field, class CoarseField, class Aggregation>
|
|
||||||
class TwoLevelADEF2 : public TwoLevelCG<Field>
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
///////////////////////////////////////////////////////////////////////////////////
|
|
||||||
// Need something that knows how to get from Coarse to fine and back again
|
|
||||||
// void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
|
|
||||||
// void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
|
|
||||||
///////////////////////////////////////////////////////////////////////////////////
|
|
||||||
GridBase *coarsegrid;
|
|
||||||
Aggregation &_Aggregates;
|
|
||||||
LinearFunction<CoarseField> &_CoarseSolver;
|
|
||||||
LinearFunction<CoarseField> &_CoarseSolverPrecise;
|
|
||||||
///////////////////////////////////////////////////////////////////////////////////
|
|
||||||
|
|
||||||
// more most opertor functions
|
|
||||||
TwoLevelADEF2(RealD tol,
|
|
||||||
Integer maxit,
|
|
||||||
LinearOperatorBase<Field> &FineLinop,
|
|
||||||
LinearFunction<Field> &Smoother,
|
|
||||||
LinearFunction<CoarseField> &CoarseSolver,
|
|
||||||
LinearFunction<CoarseField> &CoarseSolverPrecise,
|
|
||||||
Aggregation &Aggregates
|
|
||||||
) :
|
|
||||||
TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,Aggregates.FineGrid),
|
|
||||||
_CoarseSolver(CoarseSolver),
|
|
||||||
_CoarseSolverPrecise(CoarseSolverPrecise),
|
|
||||||
_Aggregates(Aggregates)
|
|
||||||
{
|
|
||||||
coarsegrid = Aggregates.CoarseGrid;
|
|
||||||
};
|
|
||||||
|
|
||||||
virtual void PcgM1(Field & in, Field & out)
|
|
||||||
{
|
|
||||||
GRID_TRACE("MultiGridPreconditioner ");
|
|
||||||
// [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
|
// [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
|
||||||
|
Field tmp(grid);
|
||||||
|
Field Min(grid);
|
||||||
|
|
||||||
Field tmp(this->grid);
|
PcgM(in,Min); // Smoother call
|
||||||
Field Min(this->grid);
|
|
||||||
CoarseField PleftProj(this->coarsegrid);
|
|
||||||
CoarseField PleftMss_proj(this->coarsegrid);
|
|
||||||
|
|
||||||
GridStopWatch SmootherTimer;
|
HermOp(Min,out);
|
||||||
GridStopWatch MatrixTimer;
|
|
||||||
SmootherTimer.Start();
|
|
||||||
this->_Smoother(in,Min);
|
|
||||||
SmootherTimer.Stop();
|
|
||||||
|
|
||||||
MatrixTimer.Start();
|
|
||||||
this->_FineLinop.HermOp(Min,out);
|
|
||||||
MatrixTimer.Stop();
|
|
||||||
axpy(tmp,-1.0,out,in); // tmp = in - A Min
|
axpy(tmp,-1.0,out,in); // tmp = in - A Min
|
||||||
|
|
||||||
GridStopWatch ProjTimer;
|
ProjectToSubspace(tmp,PleftProj);
|
||||||
GridStopWatch CoarseTimer;
|
ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
|
||||||
GridStopWatch PromTimer;
|
PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]
|
||||||
ProjTimer.Start();
|
|
||||||
this->_Aggregates.ProjectToSubspace(PleftProj,tmp);
|
|
||||||
ProjTimer.Stop();
|
|
||||||
CoarseTimer.Start();
|
|
||||||
this->_CoarseSolver(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
|
|
||||||
CoarseTimer.Stop();
|
|
||||||
PromTimer.Start();
|
|
||||||
this->_Aggregates.PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]
|
|
||||||
PromTimer.Stop();
|
|
||||||
std::cout << GridLogPerformance << "PcgM1 breakdown "<<std::endl;
|
|
||||||
std::cout << GridLogPerformance << "\tSmoother " << SmootherTimer.Elapsed() <<std::endl;
|
|
||||||
std::cout << GridLogPerformance << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
|
||||||
std::cout << GridLogPerformance << "\tProj " << ProjTimer.Elapsed() <<std::endl;
|
|
||||||
std::cout << GridLogPerformance << "\tCoarse " << CoarseTimer.Elapsed() <<std::endl;
|
|
||||||
std::cout << GridLogPerformance << "\tProm " << PromTimer.Elapsed() <<std::endl;
|
|
||||||
|
|
||||||
axpy(out,1.0,Min,tmp); // Min+tmp
|
axpy(out,1.0,Min,tmp); // Min+tmp
|
||||||
}
|
}
|
||||||
|
|
||||||
virtual void Vstart(Field & x,const Field & src)
|
virtual void M2(const Field & in, Field & out) {
|
||||||
{
|
out=in;
|
||||||
std::cout << GridLogMessage<<"HDCG: fPcg Vstart "<<std::endl;
|
// Must override for Def2 only
|
||||||
|
// case PcgDef2:
|
||||||
|
// Pright(in,out);
|
||||||
|
// break;
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual RealD M3(const Field & p, Field & mmp){
|
||||||
|
double d,dd;
|
||||||
|
HermOpAndNorm(p,mmp,d,dd);
|
||||||
|
return dd;
|
||||||
|
// Must override for Def1 only
|
||||||
|
// case PcgDef1:
|
||||||
|
// d=linop_d->Mprec(p,mmp,tmp,0,1);// Dag no
|
||||||
|
// linop_d->Mprec(mmp,mp,tmp,1);// Dag yes
|
||||||
|
// Pleft(mp,mmp);
|
||||||
|
// d=real(linop_d->inner(p,mmp));
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual void VstartDef2(Field & xconst Field & src){
|
||||||
|
//case PcgDef2:
|
||||||
|
//case PcgAdef2:
|
||||||
|
//case PcgAdef2f:
|
||||||
|
//case PcgV11f:
|
||||||
///////////////////////////////////
|
///////////////////////////////////
|
||||||
// Choose x_0 such that
|
// Choose x_0 such that
|
||||||
// x_0 = guess + (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
|
// x_0 = guess + (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
|
||||||
@ -512,157 +256,142 @@ class TwoLevelADEF2 : public TwoLevelCG<Field>
|
|||||||
// = src_s - (A guess)_s - src_s + (A guess)_s
|
// = src_s - (A guess)_s - src_s + (A guess)_s
|
||||||
// = 0
|
// = 0
|
||||||
///////////////////////////////////
|
///////////////////////////////////
|
||||||
Field r(this->grid);
|
Field r(grid);
|
||||||
Field mmp(this->grid);
|
Field mmp(grid);
|
||||||
CoarseField PleftProj(this->coarsegrid);
|
|
||||||
CoarseField PleftMss_proj(this->coarsegrid);
|
HermOp(x,mmp);
|
||||||
|
axpy (r, -1.0, mmp, src); // r_{-1} = src - A x
|
||||||
std::cout << GridLogMessage<<"HDCG: fPcg Vstart projecting "<<std::endl;
|
ProjectToSubspace(r,PleftProj);
|
||||||
this->_Aggregates.ProjectToSubspace(PleftProj,src);
|
ApplyInverseCG(PleftProj,PleftMss_proj); // Ass^{-1} r_s
|
||||||
std::cout << GridLogMessage<<"HDCG: fPcg Vstart coarse solve "<<std::endl;
|
PromoteFromSubspace(PleftMss_proj,mmp);
|
||||||
this->_CoarseSolverPrecise(PleftProj,PleftMss_proj); // Ass^{-1} r_s
|
x=x+mmp;
|
||||||
std::cout << GridLogMessage<<"HDCG: fPcg Vstart promote "<<std::endl;
|
|
||||||
this->_Aggregates.PromoteFromSubspace(PleftMss_proj,x);
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
};
|
|
||||||
|
|
||||||
template<class Field, class CoarseField, class Aggregation>
|
|
||||||
class TwoLevelADEF2mrhs : public TwoLevelADEF2<Field,CoarseField,Aggregation>
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
GridBase *coarsegridmrhs;
|
|
||||||
LinearFunction<CoarseField> &_CoarseSolverMrhs;
|
|
||||||
LinearFunction<CoarseField> &_CoarseGuesser;
|
|
||||||
TwoLevelADEF2mrhs(RealD tol,
|
|
||||||
Integer maxit,
|
|
||||||
LinearOperatorBase<Field> &FineLinop,
|
|
||||||
LinearFunction<Field> &Smoother,
|
|
||||||
LinearFunction<CoarseField> &CoarseSolver,
|
|
||||||
LinearFunction<CoarseField> &CoarseSolverPrecise,
|
|
||||||
LinearFunction<CoarseField> &CoarseSolverMrhs,
|
|
||||||
LinearFunction<CoarseField> &CoarseGuesser,
|
|
||||||
GridBase *rhsgrid,
|
|
||||||
Aggregation &Aggregates) :
|
|
||||||
TwoLevelADEF2<Field,CoarseField,Aggregation>(tol, maxit,FineLinop,Smoother,CoarseSolver,CoarseSolverPrecise,Aggregates),
|
|
||||||
_CoarseSolverMrhs(CoarseSolverMrhs),
|
|
||||||
_CoarseGuesser(CoarseGuesser)
|
|
||||||
{
|
|
||||||
coarsegridmrhs = rhsgrid;
|
|
||||||
};
|
|
||||||
|
|
||||||
virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out){
|
|
||||||
|
|
||||||
int nrhs=in.size();
|
|
||||||
std::cout << " mrhs PcgM1 for "<<nrhs<<" right hand sides"<<std::endl;
|
|
||||||
// [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
|
|
||||||
Field tmp(this->grid);
|
|
||||||
std::vector<Field> Min(nrhs,this->grid);
|
|
||||||
CoarseField PleftProj(this->coarsegrid);
|
|
||||||
CoarseField PleftMss_proj(this->coarsegrid);
|
|
||||||
|
|
||||||
CoarseField PleftProjMrhs(this->coarsegridmrhs);
|
|
||||||
CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
|
|
||||||
|
|
||||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
|
||||||
this->grid->Barrier();
|
|
||||||
std::cout << " Calling smoother for "<<rhs<<std::endl;
|
|
||||||
this->grid->Barrier();
|
|
||||||
this->_Smoother(in[rhs],Min[rhs]);
|
|
||||||
this->grid->Barrier();
|
|
||||||
std::cout << " smoother done "<<rhs<<std::endl;
|
|
||||||
this->grid->Barrier();
|
|
||||||
this->_FineLinop.HermOp(Min[rhs],out[rhs]);
|
|
||||||
this->grid->Barrier();
|
|
||||||
std::cout << " Hermop for "<<rhs<<std::endl;
|
|
||||||
this->grid->Barrier();
|
|
||||||
axpy(tmp,-1.0,out[rhs],in[rhs]); // tmp = in - A Min
|
|
||||||
this->grid->Barrier();
|
|
||||||
std::cout << " axpy "<<rhs<<std::endl;
|
|
||||||
this->grid->Barrier();
|
|
||||||
this->_Aggregates.ProjectToSubspace(PleftProj,tmp); // can optimise later
|
|
||||||
this->grid->Barrier();
|
|
||||||
std::cout << " project "<<rhs<<std::endl;
|
|
||||||
this->grid->Barrier();
|
|
||||||
InsertSlice(PleftProj,PleftProjMrhs,rhs,0);
|
|
||||||
this->grid->Barrier();
|
|
||||||
std::cout << " insert rhs "<<rhs<<std::endl;
|
|
||||||
this->grid->Barrier();
|
|
||||||
this->_CoarseGuesser(PleftProj,PleftMss_proj);
|
|
||||||
this->grid->Barrier();
|
|
||||||
std::cout << " insert guess "<<rhs<<std::endl;
|
|
||||||
this->grid->Barrier();
|
|
||||||
InsertSlice(PleftMss_proj,PleftMss_projMrhs,rhs,0);
|
|
||||||
}
|
|
||||||
|
|
||||||
std::cout << " Coarse solve "<<std::endl;
|
|
||||||
this->_CoarseSolverMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} [in - A Min]_s
|
|
||||||
|
|
||||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
|
||||||
ExtractSlice(PleftMss_proj,PleftMss_projMrhs,rhs,0);
|
|
||||||
this->_Aggregates.PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]
|
|
||||||
axpy(out[rhs],1.0,Min[rhs],tmp); // Min+tmp
|
|
||||||
}
|
|
||||||
std::cout << " Extracted "<<std::endl;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
template<class Field>
|
|
||||||
class TwoLevelADEF1defl : public TwoLevelCG<Field>
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
const std::vector<Field> &evec;
|
|
||||||
const std::vector<RealD> &eval;
|
|
||||||
|
|
||||||
TwoLevelADEF1defl(RealD tol,
|
|
||||||
Integer maxit,
|
|
||||||
LinearOperatorBase<Field> &FineLinop,
|
|
||||||
LinearFunction<Field> &Smoother,
|
|
||||||
std::vector<Field> &_evec,
|
|
||||||
std::vector<RealD> &_eval) :
|
|
||||||
TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,_evec[0].Grid()),
|
|
||||||
evec(_evec),
|
|
||||||
eval(_eval)
|
|
||||||
{};
|
|
||||||
|
|
||||||
// Can just inherit existing M2
|
|
||||||
// Can just inherit existing M3
|
|
||||||
|
|
||||||
// Simple vstart - do nothing
|
|
||||||
virtual void Vstart(Field & x,const Field & src){
|
virtual void Vstart(Field & x,const Field & src){
|
||||||
x=src; // Could apply Q
|
return;
|
||||||
};
|
|
||||||
|
|
||||||
// Override PcgM1
|
|
||||||
virtual void PcgM1(Field & in, Field & out)
|
|
||||||
{
|
|
||||||
GRID_TRACE("EvecPreconditioner ");
|
|
||||||
int N=evec.size();
|
|
||||||
Field Pin(this->grid);
|
|
||||||
Field Qin(this->grid);
|
|
||||||
|
|
||||||
//MP + Q = M(1-AQ) + Q = M
|
|
||||||
// // If we are eigenvector deflating in coarse space
|
|
||||||
// // Q = Sum_i |phi_i> 1/lambda_i <phi_i|
|
|
||||||
// // A Q = Sum_i |phi_i> <phi_i|
|
|
||||||
// // M(1-AQ) = M(1-proj) + Q
|
|
||||||
Qin.Checkerboard()=in.Checkerboard();
|
|
||||||
Qin = Zero();
|
|
||||||
Pin = in;
|
|
||||||
for (int i=0;i<N;i++) {
|
|
||||||
const Field& tmp = evec[i];
|
|
||||||
auto ip = TensorRemove(innerProduct(tmp,in));
|
|
||||||
axpy(Qin, ip / eval[i],tmp,Qin);
|
|
||||||
axpy(Pin, -ip ,tmp,Pin);
|
|
||||||
}
|
|
||||||
|
|
||||||
this->_Smoother(Pin,out);
|
|
||||||
|
|
||||||
out = out + Qin;
|
|
||||||
}
|
}
|
||||||
};
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
/////////////////////////////////////////////////////////////////////
|
||||||
|
// Only Def1 has non-trivial Vout. Override in Def1
|
||||||
|
/////////////////////////////////////////////////////////////////////
|
||||||
|
virtual void Vout (Field & in, Field & out,Field & src){
|
||||||
|
out = in;
|
||||||
|
//case PcgDef1:
|
||||||
|
// //Qb + PT x
|
||||||
|
// ProjectToSubspace(src,PleftProj);
|
||||||
|
// ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} r_s
|
||||||
|
// PromoteFromSubspace(PleftMss_proj,tmp);
|
||||||
|
//
|
||||||
|
// Pright(in,out);
|
||||||
|
//
|
||||||
|
// linop_d->axpy(out,tmp,out,1.0);
|
||||||
|
// break;
|
||||||
|
}
|
||||||
|
|
||||||
|
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
// Pright and Pleft are common to all implementations
|
||||||
|
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
virtual void Pright(Field & in,Field & out){
|
||||||
|
// P_R = [ 1 0 ]
|
||||||
|
// [ -Mss^-1 Msb 0 ]
|
||||||
|
Field in_sbar(grid);
|
||||||
|
|
||||||
|
ProjectToSubspace(in,PleftProj);
|
||||||
|
PromoteFromSubspace(PleftProj,out);
|
||||||
|
axpy(in_sbar,-1.0,out,in); // in_sbar = in - in_s
|
||||||
|
|
||||||
|
HermOp(in_sbar,out);
|
||||||
|
ProjectToSubspace(out,PleftProj); // Mssbar in_sbar (project)
|
||||||
|
|
||||||
|
ApplyInverse (PleftProj,PleftMss_proj); // Mss^{-1} Mssbar
|
||||||
|
PromoteFromSubspace(PleftMss_proj,out); //
|
||||||
|
|
||||||
|
axpy(out,-1.0,out,in_sbar); // in_sbar - Mss^{-1} Mssbar in_sbar
|
||||||
|
}
|
||||||
|
virtual void Pleft (Field & in,Field & out){
|
||||||
|
// P_L = [ 1 -Mbs Mss^-1]
|
||||||
|
// [ 0 0 ]
|
||||||
|
Field in_sbar(grid);
|
||||||
|
Field tmp2(grid);
|
||||||
|
Field Mtmp(grid);
|
||||||
|
|
||||||
|
ProjectToSubspace(in,PleftProj);
|
||||||
|
PromoteFromSubspace(PleftProj,out);
|
||||||
|
axpy(in_sbar,-1.0,out,in); // in_sbar = in - in_s
|
||||||
|
|
||||||
|
ApplyInverse(PleftProj,PleftMss_proj); // Mss^{-1} in_s
|
||||||
|
PromoteFromSubspace(PleftMss_proj,out);
|
||||||
|
|
||||||
|
HermOp(out,Mtmp);
|
||||||
|
|
||||||
|
ProjectToSubspace(Mtmp,PleftProj); // Msbar s Mss^{-1}
|
||||||
|
PromoteFromSubspace(PleftProj,tmp2);
|
||||||
|
|
||||||
|
axpy(out,-1.0,tmp2,Mtmp);
|
||||||
|
axpy(out,-1.0,out,in_sbar); // in_sbar - Msbars Mss^{-1} in_s
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template<class Field>
|
||||||
|
class TwoLevelFlexiblePcgADef2 : public TwoLevelFlexiblePcg<Field> {
|
||||||
|
public:
|
||||||
|
virtual void M(Field & in,Field & out,Field & tmp){
|
||||||
|
|
||||||
|
}
|
||||||
|
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp){
|
||||||
|
|
||||||
|
}
|
||||||
|
virtual void M2(Field & in, Field & out){
|
||||||
|
|
||||||
|
}
|
||||||
|
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp){
|
||||||
|
|
||||||
|
}
|
||||||
|
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp){
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/*
|
||||||
|
template<class Field>
|
||||||
|
class TwoLevelFlexiblePcgAD : public TwoLevelFlexiblePcg<Field> {
|
||||||
|
public:
|
||||||
|
virtual void M(Field & in,Field & out,Field & tmp);
|
||||||
|
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
|
||||||
|
virtual void M2(Field & in, Field & out);
|
||||||
|
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
|
||||||
|
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<class Field>
|
||||||
|
class TwoLevelFlexiblePcgDef1 : public TwoLevelFlexiblePcg<Field> {
|
||||||
|
public:
|
||||||
|
virtual void M(Field & in,Field & out,Field & tmp);
|
||||||
|
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
|
||||||
|
virtual void M2(Field & in, Field & out);
|
||||||
|
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
|
||||||
|
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
|
||||||
|
virtual void Vout (Field & in, Field & out,Field & src,Field & tmp);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<class Field>
|
||||||
|
class TwoLevelFlexiblePcgDef2 : public TwoLevelFlexiblePcg<Field> {
|
||||||
|
public:
|
||||||
|
virtual void M(Field & in,Field & out,Field & tmp);
|
||||||
|
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
|
||||||
|
virtual void M2(Field & in, Field & out);
|
||||||
|
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
|
||||||
|
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<class Field>
|
||||||
|
class TwoLevelFlexiblePcgV11: public TwoLevelFlexiblePcg<Field> {
|
||||||
|
public:
|
||||||
|
virtual void M(Field & in,Field & out,Field & tmp);
|
||||||
|
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
|
||||||
|
virtual void M2(Field & in, Field & out);
|
||||||
|
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
|
||||||
|
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
|
||||||
|
}
|
||||||
|
*/
|
||||||
#endif
|
#endif
|
||||||
|
@ -183,13 +183,13 @@ public:
|
|||||||
<< "\tTrue residual " << true_residual
|
<< "\tTrue residual " << true_residual
|
||||||
<< "\tTarget " << Tolerance << std::endl;
|
<< "\tTarget " << Tolerance << std::endl;
|
||||||
|
|
||||||
|
std::cout << GridLogMessage << "Time breakdown "<<std::endl;
|
||||||
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||||
std::cout << GridLogPerformance << "Time breakdown "<<std::endl;
|
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||||
std::cout << GridLogPerformance << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
||||||
std::cout << GridLogPerformance << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
std::cout << GridLogMessage << "\tInner " << InnerTimer.Elapsed() <<std::endl;
|
||||||
std::cout << GridLogPerformance << "\tInner " << InnerTimer.Elapsed() <<std::endl;
|
std::cout << GridLogMessage << "\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
|
||||||
std::cout << GridLogPerformance << "\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
|
std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
|
||||||
std::cout << GridLogPerformance << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
|
|
||||||
|
|
||||||
std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl;
|
std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl;
|
||||||
|
|
||||||
@ -207,8 +207,7 @@ public:
|
|||||||
|
|
||||||
TrueResidual = sqrt(norm2(p)/ssq);
|
TrueResidual = sqrt(norm2(p)/ssq);
|
||||||
|
|
||||||
std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations
|
std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations<< std::endl;
|
||||||
<<" residual "<< TrueResidual<< std::endl;
|
|
||||||
|
|
||||||
if (ErrorOnNoConverge) assert(0);
|
if (ErrorOnNoConverge) assert(0);
|
||||||
IterationsToComplete = k;
|
IterationsToComplete = k;
|
||||||
|
@ -144,7 +144,7 @@ public:
|
|||||||
for(int s=0;s<nshift;s++){
|
for(int s=0;s<nshift;s++){
|
||||||
rsq[s] = cp * mresidual[s] * mresidual[s];
|
rsq[s] = cp * mresidual[s] * mresidual[s];
|
||||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShift: shift "<<s
|
std::cout<<GridLogMessage<<"ConjugateGradientMultiShift: shift "<<s
|
||||||
<<" target resid^2 "<<rsq[s]<<std::endl;
|
<<" target resid "<<rsq[s]<<std::endl;
|
||||||
ps[s] = src;
|
ps[s] = src;
|
||||||
}
|
}
|
||||||
// r and p for primary
|
// r and p for primary
|
||||||
|
@ -79,16 +79,14 @@ template<class Field> class ImplicitlyRestartedLanczosHermOpTester : public Imp
|
|||||||
RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
|
RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
|
||||||
|
|
||||||
std::cout.precision(13);
|
std::cout.precision(13);
|
||||||
|
|
||||||
int conv=0;
|
|
||||||
if( (vv<eresid*eresid) ) conv = 1;
|
|
||||||
|
|
||||||
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
|
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
|
||||||
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
|
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
|
||||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
|
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
|
||||||
<<" target " << eresid*eresid << " conv " <<conv
|
|
||||||
<<std::endl;
|
<<std::endl;
|
||||||
|
|
||||||
|
int conv=0;
|
||||||
|
if( (vv<eresid*eresid) ) conv = 1;
|
||||||
|
|
||||||
return conv;
|
return conv;
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
@ -459,7 +457,7 @@ until convergence
|
|||||||
std::vector<Field>& evec,
|
std::vector<Field>& evec,
|
||||||
Field& w,int Nm,int k)
|
Field& w,int Nm,int k)
|
||||||
{
|
{
|
||||||
std::cout<<GridLogDebug << "Lanczos step " <<k<<std::endl;
|
std::cout<<GridLogIRL << "Lanczos step " <<k<<std::endl;
|
||||||
const RealD tiny = 1.0e-20;
|
const RealD tiny = 1.0e-20;
|
||||||
assert( k< Nm );
|
assert( k< Nm );
|
||||||
|
|
||||||
@ -467,7 +465,7 @@ until convergence
|
|||||||
|
|
||||||
Field& evec_k = evec[k];
|
Field& evec_k = evec[k];
|
||||||
|
|
||||||
_PolyOp(evec_k,w); std::cout<<GridLogDebug << "PolyOp" <<std::endl;
|
_PolyOp(evec_k,w); std::cout<<GridLogIRL << "PolyOp" <<std::endl;
|
||||||
|
|
||||||
if(k>0) w -= lme[k-1] * evec[k-1];
|
if(k>0) w -= lme[k-1] * evec[k-1];
|
||||||
|
|
||||||
@ -482,18 +480,18 @@ until convergence
|
|||||||
lme[k] = beta;
|
lme[k] = beta;
|
||||||
|
|
||||||
if ( (k>0) && ( (k % orth_period) == 0 )) {
|
if ( (k>0) && ( (k % orth_period) == 0 )) {
|
||||||
std::cout<<GridLogDebug << "Orthogonalising " <<k<<std::endl;
|
std::cout<<GridLogIRL << "Orthogonalising " <<k<<std::endl;
|
||||||
orthogonalize(w,evec,k); // orthonormalise
|
orthogonalize(w,evec,k); // orthonormalise
|
||||||
std::cout<<GridLogDebug << "Orthogonalised " <<k<<std::endl;
|
std::cout<<GridLogIRL << "Orthogonalised " <<k<<std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
if(k < Nm-1) evec[k+1] = w;
|
if(k < Nm-1) evec[k+1] = w;
|
||||||
|
|
||||||
std::cout<<GridLogIRL << "Lanczos step alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
|
std::cout<<GridLogIRL << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
|
||||||
if ( beta < tiny )
|
if ( beta < tiny )
|
||||||
std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl;
|
std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl;
|
||||||
|
|
||||||
std::cout<<GridLogDebug << "Lanczos step complete " <<k<<std::endl;
|
std::cout<<GridLogIRL << "Lanczos step complete " <<k<<std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
||||||
|
@ -33,7 +33,7 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
// Take a matrix and form an NE solver calling a Herm solver
|
// Take a matrix and form an NE solver calling a Herm solver
|
||||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
template<class Field> class NormalEquations : public LinearFunction<Field>{
|
template<class Field> class NormalEquations {
|
||||||
private:
|
private:
|
||||||
SparseMatrixBase<Field> & _Matrix;
|
SparseMatrixBase<Field> & _Matrix;
|
||||||
OperatorFunction<Field> & _HermitianSolver;
|
OperatorFunction<Field> & _HermitianSolver;
|
||||||
@ -60,7 +60,7 @@ public:
|
|||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
template<class Field> class HPDSolver : public LinearFunction<Field> {
|
template<class Field> class HPDSolver {
|
||||||
private:
|
private:
|
||||||
LinearOperatorBase<Field> & _Matrix;
|
LinearOperatorBase<Field> & _Matrix;
|
||||||
OperatorFunction<Field> & _HermitianSolver;
|
OperatorFunction<Field> & _HermitianSolver;
|
||||||
@ -78,13 +78,13 @@ public:
|
|||||||
void operator() (const Field &in, Field &out){
|
void operator() (const Field &in, Field &out){
|
||||||
|
|
||||||
_Guess(in,out);
|
_Guess(in,out);
|
||||||
_HermitianSolver(_Matrix,in,out); //M out = in
|
_HermitianSolver(_Matrix,in,out); // Mdag M out = Mdag in
|
||||||
|
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
template<class Field> class MdagMSolver : public LinearFunction<Field> {
|
template<class Field> class MdagMSolver {
|
||||||
private:
|
private:
|
||||||
SparseMatrixBase<Field> & _Matrix;
|
SparseMatrixBase<Field> & _Matrix;
|
||||||
OperatorFunction<Field> & _HermitianSolver;
|
OperatorFunction<Field> & _HermitianSolver;
|
||||||
|
@ -20,7 +20,7 @@ template<class Field> class PowerMethod
|
|||||||
RealD evalMaxApprox = 0.0;
|
RealD evalMaxApprox = 0.0;
|
||||||
auto src_n = src;
|
auto src_n = src;
|
||||||
auto tmp = src;
|
auto tmp = src;
|
||||||
const int _MAX_ITER_EST_ = 100;
|
const int _MAX_ITER_EST_ = 50;
|
||||||
|
|
||||||
for (int i=0;i<_MAX_ITER_EST_;i++) {
|
for (int i=0;i<_MAX_ITER_EST_;i++) {
|
||||||
|
|
||||||
|
@ -1,381 +0,0 @@
|
|||||||
/*************************************************************************************
|
|
||||||
|
|
||||||
Grid physics library, www.github.com/paboyle/Grid
|
|
||||||
|
|
||||||
Source file: ./lib/algorithms/Aggregates.h
|
|
||||||
|
|
||||||
Copyright (C) 2015
|
|
||||||
|
|
||||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
|
||||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
||||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
|
||||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
|
||||||
|
|
||||||
This program is free software; you can redistribute it and/or modify
|
|
||||||
it under the terms of the GNU General Public License as published by
|
|
||||||
the Free Software Foundation; either version 2 of the License, or
|
|
||||||
(at your option) any later version.
|
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License along
|
|
||||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
||||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
||||||
|
|
||||||
See the full license in the file "LICENSE" in the top level distribution directory
|
|
||||||
*************************************************************************************/
|
|
||||||
/* END LEGAL */
|
|
||||||
#pragma once
|
|
||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
|
||||||
|
|
||||||
inline RealD AggregatePowerLaw(RealD x)
|
|
||||||
{
|
|
||||||
// return std::pow(x,-4);
|
|
||||||
// return std::pow(x,-3);
|
|
||||||
return std::pow(x,-5);
|
|
||||||
}
|
|
||||||
|
|
||||||
template<class Fobj,class CComplex,int nbasis>
|
|
||||||
class Aggregation {
|
|
||||||
public:
|
|
||||||
typedef iVector<CComplex,nbasis > siteVector;
|
|
||||||
typedef Lattice<siteVector> CoarseVector;
|
|
||||||
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
|
|
||||||
|
|
||||||
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
|
|
||||||
typedef Lattice<Fobj > FineField;
|
|
||||||
|
|
||||||
GridBase *CoarseGrid;
|
|
||||||
GridBase *FineGrid;
|
|
||||||
std::vector<Lattice<Fobj> > subspace;
|
|
||||||
int checkerboard;
|
|
||||||
int Checkerboard(void){return checkerboard;}
|
|
||||||
Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :
|
|
||||||
CoarseGrid(_CoarseGrid),
|
|
||||||
FineGrid(_FineGrid),
|
|
||||||
subspace(nbasis,_FineGrid),
|
|
||||||
checkerboard(_checkerboard)
|
|
||||||
{
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
void Orthogonalise(void){
|
|
||||||
CoarseScalar InnerProd(CoarseGrid);
|
|
||||||
// std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
|
|
||||||
blockOrthogonalise(InnerProd,subspace);
|
|
||||||
}
|
|
||||||
void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
|
|
||||||
blockProject(CoarseVec,FineVec,subspace);
|
|
||||||
}
|
|
||||||
void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
|
|
||||||
FineVec.Checkerboard() = subspace[0].Checkerboard();
|
|
||||||
blockPromote(CoarseVec,FineVec,subspace);
|
|
||||||
}
|
|
||||||
|
|
||||||
virtual void CreateSubspaceRandom(GridParallelRNG &RNG) {
|
|
||||||
int nn=nbasis;
|
|
||||||
RealD scale;
|
|
||||||
FineField noise(FineGrid);
|
|
||||||
for(int b=0;b<nn;b++){
|
|
||||||
subspace[b] = Zero();
|
|
||||||
gaussian(RNG,noise);
|
|
||||||
scale = std::pow(norm2(noise),-0.5);
|
|
||||||
noise=noise*scale;
|
|
||||||
subspace[b] = noise;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
virtual void CreateSubspace(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis)
|
|
||||||
{
|
|
||||||
|
|
||||||
RealD scale;
|
|
||||||
|
|
||||||
ConjugateGradient<FineField> CG(1.0e-2,100,false);
|
|
||||||
FineField noise(FineGrid);
|
|
||||||
FineField Mn(FineGrid);
|
|
||||||
|
|
||||||
for(int b=0;b<nn;b++){
|
|
||||||
|
|
||||||
subspace[b] = Zero();
|
|
||||||
gaussian(RNG,noise);
|
|
||||||
scale = std::pow(norm2(noise),-0.5);
|
|
||||||
noise=noise*scale;
|
|
||||||
|
|
||||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
|
||||||
|
|
||||||
for(int i=0;i<1;i++){
|
|
||||||
|
|
||||||
CG(hermop,noise,subspace[b]);
|
|
||||||
|
|
||||||
noise = subspace[b];
|
|
||||||
scale = std::pow(norm2(noise),-0.5);
|
|
||||||
noise=noise*scale;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
|
|
||||||
subspace[b] = noise;
|
|
||||||
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
// World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
|
|
||||||
// and this is the best I found
|
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
|
|
||||||
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
|
||||||
int nn,
|
|
||||||
double hi,
|
|
||||||
double lo,
|
|
||||||
int orderfilter,
|
|
||||||
int ordermin,
|
|
||||||
int orderstep,
|
|
||||||
double filterlo
|
|
||||||
) {
|
|
||||||
|
|
||||||
RealD scale;
|
|
||||||
|
|
||||||
FineField noise(FineGrid);
|
|
||||||
FineField Mn(FineGrid);
|
|
||||||
FineField tmp(FineGrid);
|
|
||||||
|
|
||||||
// New normalised noise
|
|
||||||
gaussian(RNG,noise);
|
|
||||||
scale = std::pow(norm2(noise),-0.5);
|
|
||||||
noise=noise*scale;
|
|
||||||
|
|
||||||
std::cout << GridLogMessage<<" Chebyshev subspace pass-1 : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<" Chebyshev subspace pass-2 : nbasis"<<nn<<" min "
|
|
||||||
<<ordermin<<" step "<<orderstep
|
|
||||||
<<" lo"<<filterlo<<std::endl;
|
|
||||||
|
|
||||||
// Initial matrix element
|
|
||||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
|
||||||
|
|
||||||
int b =0;
|
|
||||||
{
|
|
||||||
// Filter
|
|
||||||
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
|
|
||||||
Cheb(hermop,noise,Mn);
|
|
||||||
// normalise
|
|
||||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
|
||||||
subspace[b] = Mn;
|
|
||||||
hermop.Op(Mn,tmp);
|
|
||||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
|
||||||
b++;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Generate a full sequence of Chebyshevs
|
|
||||||
{
|
|
||||||
lo=filterlo;
|
|
||||||
noise=Mn;
|
|
||||||
|
|
||||||
FineField T0(FineGrid); T0 = noise;
|
|
||||||
FineField T1(FineGrid);
|
|
||||||
FineField T2(FineGrid);
|
|
||||||
FineField y(FineGrid);
|
|
||||||
|
|
||||||
FineField *Tnm = &T0;
|
|
||||||
FineField *Tn = &T1;
|
|
||||||
FineField *Tnp = &T2;
|
|
||||||
|
|
||||||
// Tn=T1 = (xscale M + mscale)in
|
|
||||||
RealD xscale = 2.0/(hi-lo);
|
|
||||||
RealD mscale = -(hi+lo)/(hi-lo);
|
|
||||||
hermop.HermOp(T0,y);
|
|
||||||
T1=y*xscale+noise*mscale;
|
|
||||||
|
|
||||||
for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
|
|
||||||
|
|
||||||
hermop.HermOp(*Tn,y);
|
|
||||||
|
|
||||||
autoView( y_v , y, AcceleratorWrite);
|
|
||||||
autoView( Tn_v , (*Tn), AcceleratorWrite);
|
|
||||||
autoView( Tnp_v , (*Tnp), AcceleratorWrite);
|
|
||||||
autoView( Tnm_v , (*Tnm), AcceleratorWrite);
|
|
||||||
const int Nsimd = CComplex::Nsimd();
|
|
||||||
accelerator_for(ss, FineGrid->oSites(), Nsimd, {
|
|
||||||
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
|
|
||||||
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
|
|
||||||
});
|
|
||||||
|
|
||||||
// Possible more fine grained control is needed than a linear sweep,
|
|
||||||
// but huge productivity gain if this is simple algorithm and not a tunable
|
|
||||||
int m =1;
|
|
||||||
if ( n>=ordermin ) m=n-ordermin;
|
|
||||||
if ( (m%orderstep)==0 ) {
|
|
||||||
Mn=*Tnp;
|
|
||||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
|
||||||
subspace[b] = Mn;
|
|
||||||
hermop.Op(Mn,tmp);
|
|
||||||
std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
|
||||||
b++;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Cycle pointers to avoid copies
|
|
||||||
FineField *swizzle = Tnm;
|
|
||||||
Tnm =Tn;
|
|
||||||
Tn =Tnp;
|
|
||||||
Tnp =swizzle;
|
|
||||||
|
|
||||||
}
|
|
||||||
}
|
|
||||||
assert(b==nn);
|
|
||||||
}
|
|
||||||
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
|
||||||
int nn,
|
|
||||||
double hi,
|
|
||||||
double lo,
|
|
||||||
int orderfilter
|
|
||||||
) {
|
|
||||||
|
|
||||||
RealD scale;
|
|
||||||
|
|
||||||
FineField noise(FineGrid);
|
|
||||||
FineField Mn(FineGrid);
|
|
||||||
FineField tmp(FineGrid);
|
|
||||||
|
|
||||||
// New normalised noise
|
|
||||||
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : nbasis "<<nn<<std::endl;
|
|
||||||
|
|
||||||
|
|
||||||
for(int b =0;b<nbasis;b++)
|
|
||||||
{
|
|
||||||
gaussian(RNG,noise);
|
|
||||||
scale = std::pow(norm2(noise),-0.5);
|
|
||||||
noise=noise*scale;
|
|
||||||
|
|
||||||
// Initial matrix element
|
|
||||||
hermop.Op(noise,Mn);
|
|
||||||
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
|
||||||
|
|
||||||
// Filter
|
|
||||||
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
|
|
||||||
Cheb(hermop,noise,Mn);
|
|
||||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
|
||||||
|
|
||||||
// Refine
|
|
||||||
Chebyshev<FineField> PowerLaw(lo,hi,1000,AggregatePowerLaw);
|
|
||||||
noise = Mn;
|
|
||||||
PowerLaw(hermop,noise,Mn);
|
|
||||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
|
||||||
|
|
||||||
// normalise
|
|
||||||
subspace[b] = Mn;
|
|
||||||
hermop.Op(Mn,tmp);
|
|
||||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
virtual void CreateSubspaceChebyshevPowerLaw(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
|
||||||
int nn,
|
|
||||||
double hi,
|
|
||||||
int orderfilter
|
|
||||||
) {
|
|
||||||
|
|
||||||
RealD scale;
|
|
||||||
|
|
||||||
FineField noise(FineGrid);
|
|
||||||
FineField Mn(FineGrid);
|
|
||||||
FineField tmp(FineGrid);
|
|
||||||
|
|
||||||
// New normalised noise
|
|
||||||
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" [0,"<<hi<<"]"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : nbasis "<<nn<<std::endl;
|
|
||||||
|
|
||||||
for(int b =0;b<nbasis;b++)
|
|
||||||
{
|
|
||||||
gaussian(RNG,noise);
|
|
||||||
scale = std::pow(norm2(noise),-0.5);
|
|
||||||
noise=noise*scale;
|
|
||||||
|
|
||||||
// Initial matrix element
|
|
||||||
hermop.Op(noise,Mn);
|
|
||||||
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
|
||||||
// Filter
|
|
||||||
Chebyshev<FineField> Cheb(0.0,hi,orderfilter,AggregatePowerLaw);
|
|
||||||
Cheb(hermop,noise,Mn);
|
|
||||||
// normalise
|
|
||||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
|
||||||
subspace[b] = Mn;
|
|
||||||
hermop.Op(Mn,tmp);
|
|
||||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
virtual void CreateSubspaceMultishift(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
|
||||||
double Lo,double tol,int maxit)
|
|
||||||
{
|
|
||||||
|
|
||||||
RealD scale;
|
|
||||||
|
|
||||||
FineField noise(FineGrid);
|
|
||||||
FineField Mn(FineGrid);
|
|
||||||
FineField tmp(FineGrid);
|
|
||||||
|
|
||||||
// New normalised noise
|
|
||||||
std::cout << GridLogMessage<<" Multishift subspace : Lo "<<Lo<<std::endl;
|
|
||||||
|
|
||||||
// Filter
|
|
||||||
// [ 1/6(x+Lo) - 1/2(x+2Lo) + 1/2(x+3Lo) -1/6(x+4Lo) = Lo^3 /[ (x+1Lo)(x+2Lo)(x+3Lo)(x+4Lo) ]
|
|
||||||
//
|
|
||||||
// 1/(x+Lo) - 1/(x+2 Lo)
|
|
||||||
double epsilon = Lo/3;
|
|
||||||
std::vector<RealD> alpha({1.0/6.0,-1.0/2.0,1.0/2.0,-1.0/6.0});
|
|
||||||
std::vector<RealD> shifts({Lo,Lo+epsilon,Lo+2*epsilon,Lo+3*epsilon});
|
|
||||||
std::vector<RealD> tols({tol,tol,tol,tol});
|
|
||||||
std::cout << "sizes "<<alpha.size()<<" "<<shifts.size()<<" "<<tols.size()<<std::endl;
|
|
||||||
|
|
||||||
MultiShiftFunction msf(4,0.0,95.0);
|
|
||||||
std::cout << "msf constructed "<<std::endl;
|
|
||||||
msf.poles=shifts;
|
|
||||||
msf.residues=alpha;
|
|
||||||
msf.tolerances=tols;
|
|
||||||
msf.norm=0.0;
|
|
||||||
msf.order=alpha.size();
|
|
||||||
ConjugateGradientMultiShift<FineField> MSCG(maxit,msf);
|
|
||||||
|
|
||||||
for(int b =0;b<nbasis;b++)
|
|
||||||
{
|
|
||||||
gaussian(RNG,noise);
|
|
||||||
scale = std::pow(norm2(noise),-0.5);
|
|
||||||
noise=noise*scale;
|
|
||||||
|
|
||||||
// Initial matrix element
|
|
||||||
hermop.Op(noise,Mn);
|
|
||||||
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
|
||||||
|
|
||||||
MSCG(hermop,noise,Mn);
|
|
||||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
|
||||||
subspace[b] = Mn;
|
|
||||||
hermop.Op(Mn,tmp);
|
|
||||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
virtual void RefineSubspace(LinearOperatorBase<FineField> &hermop,
|
|
||||||
double Lo,double tol,int maxit)
|
|
||||||
{
|
|
||||||
FineField tmp(FineGrid);
|
|
||||||
for(int b =0;b<nbasis;b++)
|
|
||||||
{
|
|
||||||
RealD MirsShift = Lo;
|
|
||||||
ConjugateGradient<FineField> CGsloppy(tol,maxit,false);
|
|
||||||
ShiftedHermOpLinearOperator<FineField> ShiftedFineHermOp(hermop,MirsShift);
|
|
||||||
CGsloppy(hermop,subspace[b],tmp);
|
|
||||||
subspace[b]=tmp;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
};
|
|
||||||
NAMESPACE_END(Grid);
|
|
@ -1,537 +0,0 @@
|
|||||||
/*************************************************************************************
|
|
||||||
|
|
||||||
Grid physics library, www.github.com/paboyle/Grid
|
|
||||||
|
|
||||||
Source file: BatchedBlas.h
|
|
||||||
|
|
||||||
Copyright (C) 2023
|
|
||||||
|
|
||||||
Author: Peter Boyle <pboyle@bnl.gov>
|
|
||||||
|
|
||||||
This program is free software; you can redistribute it and/or modify
|
|
||||||
it under the terms of the GNU General Public License as published by
|
|
||||||
the Free Software Foundation; either version 2 of the License, or
|
|
||||||
(at your option) any later version.
|
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License along
|
|
||||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
||||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
||||||
|
|
||||||
See the full license in the file "LICENSE" in the top level distribution directory
|
|
||||||
*************************************************************************************/
|
|
||||||
/* END LEGAL */
|
|
||||||
#pragma once
|
|
||||||
|
|
||||||
#ifdef GRID_HIP
|
|
||||||
#include <hipblas/hipblas.h>
|
|
||||||
#endif
|
|
||||||
#ifdef GRID_CUDA
|
|
||||||
#include <hipblas/hipblas.h>
|
|
||||||
#endif
|
|
||||||
#ifdef GRID_SYCL
|
|
||||||
#error // need oneMKL version
|
|
||||||
#endif
|
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////////////
|
|
||||||
// Need to rearrange lattice data to be in the right format for a
|
|
||||||
// batched multiply. Might as well make these static, dense packed
|
|
||||||
///////////////////////////////////////////////////////////////////////
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
|
||||||
#ifdef GRID_HIP
|
|
||||||
typedef hipblasHandle_t gridblasHandle_t;
|
|
||||||
#endif
|
|
||||||
#ifdef GRID_CUDA
|
|
||||||
typedef cudablasHandle_t gridblasHandle_t;
|
|
||||||
#endif
|
|
||||||
#ifdef GRID_SYCL
|
|
||||||
typedef int32_t gridblasHandle_t;
|
|
||||||
#endif
|
|
||||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
|
||||||
typedef int32_t gridblasHandle_t;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
class GridBLAS {
|
|
||||||
public:
|
|
||||||
|
|
||||||
static gridblasHandle_t gridblasHandle;
|
|
||||||
static int gridblasInit;
|
|
||||||
|
|
||||||
static void Init(void)
|
|
||||||
{
|
|
||||||
if ( ! gridblasInit ) {
|
|
||||||
#ifdef GRID_CUDA
|
|
||||||
std::cout << "cublasCreate"<<std::endl;
|
|
||||||
cublasCreate(&gridblasHandle);
|
|
||||||
#endif
|
|
||||||
#ifdef GRID_HIP
|
|
||||||
std::cout << "hipblasCreate"<<std::endl;
|
|
||||||
hipblasCreate(&gridblasHandle);
|
|
||||||
#endif
|
|
||||||
#ifdef GRID_SYCL
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Force construct once
|
|
||||||
GridBLAS() { Init(); };
|
|
||||||
~GridBLAS() { };
|
|
||||||
|
|
||||||
/////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
// BLAS GEMM conventions:
|
|
||||||
/////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
// - C = alpha A * B + beta C
|
|
||||||
// Dimensions:
|
|
||||||
// - C_m.n
|
|
||||||
// - A_m.k
|
|
||||||
// - B_k.n
|
|
||||||
// - Flops = 8 M N K
|
|
||||||
// - Bytes = 2*sizeof(word) * (MN+MK+KN)
|
|
||||||
// M=60, N=12
|
|
||||||
// Flop/Byte = 8 . 60.60.12 / (60.12+60.60+60.12)/16 = 4 so expect about 4 TF/s on a GCD
|
|
||||||
/////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
void synchronise(void)
|
|
||||||
{
|
|
||||||
#ifdef GRID_HIP
|
|
||||||
auto err = hipDeviceSynchronize();
|
|
||||||
assert(err==hipSuccess);
|
|
||||||
#endif
|
|
||||||
#ifdef GRID_CUDA
|
|
||||||
auto err = cudaDeviceSynchronize();
|
|
||||||
assert(err==cudaSuccess);
|
|
||||||
#endif
|
|
||||||
#ifdef GRID_SYCL
|
|
||||||
accelerator_barrier();
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
void benchmark(int nbasis, int nrhs, int coarseVol, int nstencil)
|
|
||||||
{
|
|
||||||
int32_t N_A = nbasis*nbasis*coarseVol*nstencil;
|
|
||||||
int32_t N_B = nbasis*nrhs*coarseVol*nstencil; // One leg of stencil at a time
|
|
||||||
int32_t N_C = nbasis*nrhs*coarseVol*nstencil;
|
|
||||||
deviceVector<ComplexD> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(ComplexD));
|
|
||||||
deviceVector<ComplexD> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(ComplexD));
|
|
||||||
deviceVector<ComplexD> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(ComplexD));
|
|
||||||
ComplexD alpha(1.0);
|
|
||||||
ComplexD beta (1.0);
|
|
||||||
for(int i=0;i<10;i++){
|
|
||||||
RealD t0 = usecond();
|
|
||||||
for(int s=0;s<nstencil;s++){
|
|
||||||
gemmStridedBatched(nbasis,nrhs,nbasis,
|
|
||||||
alpha,
|
|
||||||
&A[0], // m x k
|
|
||||||
&B[0], // k x n
|
|
||||||
beta,
|
|
||||||
&C[0], // m x n
|
|
||||||
coarseVol);
|
|
||||||
}
|
|
||||||
synchronise();
|
|
||||||
RealD t1 = usecond();
|
|
||||||
RealD flops = 8.0*nbasis*nbasis*nrhs*coarseVol*nstencil;
|
|
||||||
RealD bytes = 1.0*sizeof(ComplexD)*(nbasis*nbasis+nbasis*nrhs*3)*coarseVol*nstencil;
|
|
||||||
std::cout << " batched Blas call "<<i<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
|
|
||||||
std::cout << " batched Blas call "<<i<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void gemmBatched(int m,int n, int k,
|
|
||||||
ComplexD alpha,
|
|
||||||
deviceVector<ComplexD*> &Amk, // pointer list to matrices
|
|
||||||
deviceVector<ComplexD*> &Bkn,
|
|
||||||
ComplexD beta,
|
|
||||||
deviceVector<ComplexD*> &Cmn)
|
|
||||||
{
|
|
||||||
RealD t2=usecond();
|
|
||||||
int32_t batchCount = Amk.size();
|
|
||||||
// Use C-row major storage, so transpose calls
|
|
||||||
int lda = m; // m x k column major
|
|
||||||
int ldb = k; // k x n column major
|
|
||||||
int ldc = m; // m x b column major
|
|
||||||
static deviceVector<ComplexD> alpha_p(1);
|
|
||||||
static deviceVector<ComplexD> beta_p(1);
|
|
||||||
// can prestore the 1 and the zero on device
|
|
||||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
|
|
||||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
|
|
||||||
RealD t0=usecond();
|
|
||||||
// std::cout << "hipblasZgemmBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
|
|
||||||
assert(Bkn.size()==batchCount);
|
|
||||||
assert(Cmn.size()==batchCount);
|
|
||||||
#ifdef GRID_HIP
|
|
||||||
auto err = hipblasZgemmBatched(gridblasHandle,
|
|
||||||
HIPBLAS_OP_N,
|
|
||||||
HIPBLAS_OP_N,
|
|
||||||
m,n,k,
|
|
||||||
(hipblasDoubleComplex *) &alpha_p[0],
|
|
||||||
(hipblasDoubleComplex **)&Amk[0], lda,
|
|
||||||
(hipblasDoubleComplex **)&Bkn[0], ldb,
|
|
||||||
(hipblasDoubleComplex *) &beta_p[0],
|
|
||||||
(hipblasDoubleComplex **)&Cmn[0], ldc,
|
|
||||||
batchCount);
|
|
||||||
// std::cout << " hipblas return code " <<(int)err<<std::endl;
|
|
||||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
|
||||||
#endif
|
|
||||||
#ifdef GRID_CUDA
|
|
||||||
auto err = cublasZgemmBatched(gridblasHandle,
|
|
||||||
CUBLAS_OP_N,
|
|
||||||
CUBLAS_OP_N,
|
|
||||||
m,n,k,
|
|
||||||
(cuDoubleComplex *) &alpha_p[0],
|
|
||||||
(cuDoubleComplex **)&Amk[0], lda,
|
|
||||||
(cuDoubleComplex **)&Bkn[0], ldb,
|
|
||||||
(cuDoubleComplex *) &beta_p[0],
|
|
||||||
(cuDoubleComplex **)&Cmn[0], ldc,
|
|
||||||
batchCount);
|
|
||||||
assert(err==CUBLAS_STATUS_SUCCESS);
|
|
||||||
#endif
|
|
||||||
#ifdef GRID_SYCL
|
|
||||||
//MKL’s cblas_<T>gemm_batch & OneAPI
|
|
||||||
#warning "oneMKL implementation not built "
|
|
||||||
#endif
|
|
||||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
|
||||||
// Need a default/reference implementation
|
|
||||||
for (int p = 0; p < batchCount; ++p) {
|
|
||||||
for (int mm = 0; mm < m; ++mm) {
|
|
||||||
for (int nn = 0; nn < n; ++nn) {
|
|
||||||
ComplexD c_mn(0.0);
|
|
||||||
for (int kk = 0; kk < k, ++kk)
|
|
||||||
c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
|
|
||||||
Cmn[mm + nn*ldc + p*sdc] = (*alpha_p)*c_mn + (*beta_p)*Cmn[mm + nn*ldc + p*sdc];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
RealD t1=usecond();
|
|
||||||
RealD flops = 8.0*m*n*k*batchCount;
|
|
||||||
RealD bytes = 1.0*sizeof(ComplexD)*(m*k+k*n+m*n)*batchCount;
|
|
||||||
// std::cout <<GridLogPerformance<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl;
|
|
||||||
// std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
|
|
||||||
// std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
void gemmBatched(int m,int n, int k,
|
|
||||||
ComplexF alpha,
|
|
||||||
deviceVector<ComplexF*> &Amk, // pointer list to matrices
|
|
||||||
deviceVector<ComplexF*> &Bkn,
|
|
||||||
ComplexF beta,
|
|
||||||
deviceVector<ComplexF*> &Cmn)
|
|
||||||
{
|
|
||||||
RealD t2=usecond();
|
|
||||||
int32_t batchCount = Amk.size();
|
|
||||||
// Use C-row major storage, so transpose calls
|
|
||||||
int lda = m; // m x k column major
|
|
||||||
int ldb = k; // k x n column major
|
|
||||||
int ldc = m; // m x b column major
|
|
||||||
static deviceVector<ComplexF> alpha_p(1);
|
|
||||||
static deviceVector<ComplexF> beta_p(1);
|
|
||||||
// can prestore the 1 and the zero on device
|
|
||||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexF));
|
|
||||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexF));
|
|
||||||
RealD t0=usecond();
|
|
||||||
// std::cout << "hipblasZgemmBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
|
|
||||||
assert(Bkn.size()==batchCount);
|
|
||||||
assert(Cmn.size()==batchCount);
|
|
||||||
#ifdef GRID_HIP
|
|
||||||
auto err = hipblasCgemmBatched(gridblasHandle,
|
|
||||||
HIPBLAS_OP_N,
|
|
||||||
HIPBLAS_OP_N,
|
|
||||||
m,n,k,
|
|
||||||
(hipblasComplex *) &alpha_p[0],
|
|
||||||
(hipblasComplex **)&Amk[0], lda,
|
|
||||||
(hipblasComplex **)&Bkn[0], ldb,
|
|
||||||
(hipblasComplex *) &beta_p[0],
|
|
||||||
(hipblasComplex **)&Cmn[0], ldc,
|
|
||||||
batchCount);
|
|
||||||
// std::cout << " hipblas return code " <<(int)err<<std::endl;
|
|
||||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
|
||||||
#endif
|
|
||||||
#ifdef GRID_CUDA
|
|
||||||
auto err = cublasCgemmBatched(gridblasHandle,
|
|
||||||
CUBLAS_OP_N,
|
|
||||||
CUBLAS_OP_N,
|
|
||||||
m,n,k,
|
|
||||||
(cuComplex *) &alpha_p[0],
|
|
||||||
(cuComplex **)&Amk[0], lda,
|
|
||||||
(cuComplex **)&Bkn[0], ldb,
|
|
||||||
(cuComplex *) &beta_p[0],
|
|
||||||
(cuComplex **)&Cmn[0], ldc,
|
|
||||||
batchCount);
|
|
||||||
assert(err==CUBLAS_STATUS_SUCCESS);
|
|
||||||
#endif
|
|
||||||
#ifdef GRID_SYCL
|
|
||||||
//MKL’s cblas_<T>gemm_batch & OneAPI
|
|
||||||
#warning "oneMKL implementation not built "
|
|
||||||
#endif
|
|
||||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
|
||||||
// Need a default/reference implementation
|
|
||||||
for (int p = 0; p < batchCount; ++p) {
|
|
||||||
for (int mm = 0; mm < m; ++mm) {
|
|
||||||
for (int nn = 0; nn < n; ++nn) {
|
|
||||||
ComplexD c_mn(0.0);
|
|
||||||
for (int kk = 0; kk < k, ++kk)
|
|
||||||
c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
|
|
||||||
Cmn[mm + nn*ldc + p*sdc] = (*alpha_p)*c_mn + (*beta_p)*Cmn[mm + nn*ldc + p*sdc];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
RealD t1=usecond();
|
|
||||||
RealD flops = 8.0*m*n*k*batchCount;
|
|
||||||
RealD bytes = 1.0*sizeof(ComplexF)*(m*k+k*n+m*n)*batchCount;
|
|
||||||
// std::cout <<GridLogPerformance<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl;
|
|
||||||
// std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
|
|
||||||
// std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////////////////
|
|
||||||
// Single precision real GEMM
|
|
||||||
///////////////////////////////////////////////////////////////////////////
|
|
||||||
|
|
||||||
void gemmBatched(int m,int n, int k,
|
|
||||||
RealF alpha,
|
|
||||||
deviceVector<RealF*> &Amk, // pointer list to matrices
|
|
||||||
deviceVector<RealF*> &Bkn,
|
|
||||||
RealF beta,
|
|
||||||
deviceVector<RealF*> &Cmn)
|
|
||||||
{
|
|
||||||
RealD t2=usecond();
|
|
||||||
int32_t batchCount = Amk.size();
|
|
||||||
// Use C-row major storage, so transpose calls
|
|
||||||
int lda = m; // m x k column major
|
|
||||||
int ldb = k; // k x n column major
|
|
||||||
int ldc = m; // m x b column major
|
|
||||||
static deviceVector<RealF> alpha_p(1);
|
|
||||||
static deviceVector<RealF> beta_p(1);
|
|
||||||
// can prestore the 1 and the zero on device
|
|
||||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealF));
|
|
||||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealF));
|
|
||||||
RealD t0=usecond();
|
|
||||||
// std::cout << "hipblasZgemmBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
|
|
||||||
assert(Bkn.size()==batchCount);
|
|
||||||
assert(Cmn.size()==batchCount);
|
|
||||||
#ifdef GRID_HIP
|
|
||||||
auto err = hipblasSgemmBatched(gridblasHandle,
|
|
||||||
HIPBLAS_OP_N,
|
|
||||||
HIPBLAS_OP_N,
|
|
||||||
m,n,k,
|
|
||||||
(float *) &alpha_p[0],
|
|
||||||
(float **)&Amk[0], lda,
|
|
||||||
(float **)&Bkn[0], ldb,
|
|
||||||
(float *) &beta_p[0],
|
|
||||||
(float **)&Cmn[0], ldc,
|
|
||||||
batchCount);
|
|
||||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
|
||||||
#endif
|
|
||||||
#ifdef GRID_CUDA
|
|
||||||
auto err = cublasSgemmBatched(gridblasHandle,
|
|
||||||
CUBLAS_OP_N,
|
|
||||||
CUBLAS_OP_N,
|
|
||||||
m,n,k,
|
|
||||||
(float *) &alpha_p[0],
|
|
||||||
(float **)&Amk[0], lda,
|
|
||||||
(float **)&Bkn[0], ldb,
|
|
||||||
(float *) &beta_p[0],
|
|
||||||
(float **)&Cmn[0], ldc,
|
|
||||||
batchCount);
|
|
||||||
assert(err==CUBLAS_STATUS_SUCCESS);
|
|
||||||
#endif
|
|
||||||
#ifdef GRID_SYCL
|
|
||||||
//MKL’s cblas_<T>gemm_batch & OneAPI
|
|
||||||
#warning "oneMKL implementation not built "
|
|
||||||
#endif
|
|
||||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
|
||||||
// Need a default/reference implementation
|
|
||||||
for (int p = 0; p < batchCount; ++p) {
|
|
||||||
for (int mm = 0; mm < m; ++mm) {
|
|
||||||
for (int nn = 0; nn < n; ++nn) {
|
|
||||||
RealD c_mn(0.0);
|
|
||||||
for (int kk = 0; kk < k, ++kk)
|
|
||||||
c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
|
|
||||||
Cmn[mm + nn*ldc + p*sdc] = (*alpha_p)*c_mn + (*beta_p)*Cmn[mm + nn*ldc + p*sdc];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
RealD t1=usecond();
|
|
||||||
RealD flops = 2.0*m*n*k*batchCount;
|
|
||||||
RealD bytes = 1.0*sizeof(RealF)*(m*k+k*n+m*n)*batchCount;
|
|
||||||
// std::cout <<GridLogPerformance<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl;
|
|
||||||
// std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
|
|
||||||
// std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////////////////
|
|
||||||
// Double precision real GEMM
|
|
||||||
///////////////////////////////////////////////////////////////////////////
|
|
||||||
|
|
||||||
void gemmBatched(int m,int n, int k,
|
|
||||||
RealD alpha,
|
|
||||||
deviceVector<RealD*> &Amk, // pointer list to matrices
|
|
||||||
deviceVector<RealD*> &Bkn,
|
|
||||||
RealD beta,
|
|
||||||
deviceVector<RealD*> &Cmn)
|
|
||||||
{
|
|
||||||
RealD t2=usecond();
|
|
||||||
int32_t batchCount = Amk.size();
|
|
||||||
// Use C-row major storage, so transpose calls
|
|
||||||
int lda = m; // m x k column major
|
|
||||||
int ldb = k; // k x n column major
|
|
||||||
int ldc = m; // m x b column major
|
|
||||||
static deviceVector<RealD> alpha_p(1);
|
|
||||||
static deviceVector<RealD> beta_p(1);
|
|
||||||
// can prestore the 1 and the zero on device
|
|
||||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealD));
|
|
||||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealD));
|
|
||||||
RealD t0=usecond();
|
|
||||||
// std::cout << "hipblasZgemmBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
|
|
||||||
assert(Bkn.size()==batchCount);
|
|
||||||
assert(Cmn.size()==batchCount);
|
|
||||||
#ifdef GRID_HIP
|
|
||||||
auto err = hipblasDgemmBatched(gridblasHandle,
|
|
||||||
HIPBLAS_OP_N,
|
|
||||||
HIPBLAS_OP_N,
|
|
||||||
m,n,k,
|
|
||||||
(double *) &alpha_p[0],
|
|
||||||
(double **)&Amk[0], lda,
|
|
||||||
(double **)&Bkn[0], ldb,
|
|
||||||
(double *) &beta_p[0],
|
|
||||||
(double **)&Cmn[0], ldc,
|
|
||||||
batchCount);
|
|
||||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
|
||||||
#endif
|
|
||||||
#ifdef GRID_CUDA
|
|
||||||
auto err = cublasDgemmBatched(gridblasHandle,
|
|
||||||
CUBLAS_OP_N,
|
|
||||||
CUBLAS_OP_N,
|
|
||||||
m,n,k,
|
|
||||||
(double *) &alpha_p[0],
|
|
||||||
(double **)&Amk[0], lda,
|
|
||||||
(double **)&Bkn[0], ldb,
|
|
||||||
(double *) &beta_p[0],
|
|
||||||
(double **)&Cmn[0], ldc,
|
|
||||||
batchCount);
|
|
||||||
assert(err==CUBLAS_STATUS_SUCCESS);
|
|
||||||
#endif
|
|
||||||
#ifdef GRID_SYCL
|
|
||||||
/*
|
|
||||||
int64_t m64=m;
|
|
||||||
int64_t n64=n;
|
|
||||||
int64_t k64=k;
|
|
||||||
int64_t batchCount64=batchCount;
|
|
||||||
oneapi::mkl::blas::column_major::gemm_batch(*theGridAccelerator,
|
|
||||||
onemkl::transpose::N,
|
|
||||||
onemkl::transpose::N,
|
|
||||||
&m64,&n64,&k64,
|
|
||||||
(double *) &alpha_p[0],
|
|
||||||
(double **)&Amk[0], lda,
|
|
||||||
(double **)&Bkn[0], ldb,
|
|
||||||
(double *) &beta_p[0],
|
|
||||||
(double **)&Cmn[0], ldc,
|
|
||||||
1,&batchCount64);
|
|
||||||
*/
|
|
||||||
//MKL’s cblas_<T>gemm_batch & OneAPI
|
|
||||||
#warning "oneMKL implementation not built "
|
|
||||||
#endif
|
|
||||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
|
||||||
// Need a default/reference implementation
|
|
||||||
for (int p = 0; p < batchCount; ++p) {
|
|
||||||
for (int mm = 0; mm < m; ++mm) {
|
|
||||||
for (int nn = 0; nn < n; ++nn) {
|
|
||||||
RealD c_mn(0.0);
|
|
||||||
for (int kk = 0; kk < k, ++kk)
|
|
||||||
c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
|
|
||||||
Cmn[mm + nn*ldc + p*sdc] = (*alpha_p)*c_mn + (*beta_p)*Cmn[mm + nn*ldc + p*sdc];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
RealD t1=usecond();
|
|
||||||
RealD flops = 2.0*m*n*k*batchCount;
|
|
||||||
RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount;
|
|
||||||
// std::cout <<GridLogPerformance<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl;
|
|
||||||
// std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
|
|
||||||
// std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
// Strided case used by benchmark, but generally unused in Grid
|
|
||||||
// Keep a code example in double complex, but don't generate the single and real variants for now
|
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
|
|
||||||
void gemmStridedBatched(int m,int n, int k,
|
|
||||||
ComplexD alpha,
|
|
||||||
ComplexD* Amk, // pointer list to matrices
|
|
||||||
ComplexD* Bkn,
|
|
||||||
ComplexD beta,
|
|
||||||
ComplexD* Cmn,
|
|
||||||
int batchCount)
|
|
||||||
{
|
|
||||||
// Use C-row major storage, so transpose calls
|
|
||||||
int lda = m; // m x k column major
|
|
||||||
int ldb = k; // k x n column major
|
|
||||||
int ldc = m; // m x b column major
|
|
||||||
int sda = m*k;
|
|
||||||
int sdb = k*n;
|
|
||||||
int sdc = m*n;
|
|
||||||
deviceVector<ComplexD> alpha_p(1);
|
|
||||||
deviceVector<ComplexD> beta_p(1);
|
|
||||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
|
|
||||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
|
|
||||||
std::cout << "blasZgemmStridedBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
|
|
||||||
std::cout << "blasZgemmStridedBatched ld "<<lda<<","<<ldb<<","<<ldc<<std::endl;
|
|
||||||
std::cout << "blasZgemmStridedBatched sd "<<sda<<","<<sdb<<","<<sdc<<std::endl;
|
|
||||||
#ifdef GRID_HIP
|
|
||||||
auto err = hipblasZgemmStridedBatched(gridblasHandle,
|
|
||||||
HIPBLAS_OP_N,
|
|
||||||
HIPBLAS_OP_N,
|
|
||||||
m,n,k,
|
|
||||||
(hipblasDoubleComplex *) &alpha_p[0],
|
|
||||||
(hipblasDoubleComplex *) Amk, lda, sda,
|
|
||||||
(hipblasDoubleComplex *) Bkn, ldb, sdb,
|
|
||||||
(hipblasDoubleComplex *) &beta_p[0],
|
|
||||||
(hipblasDoubleComplex *) Cmn, ldc, sdc,
|
|
||||||
batchCount);
|
|
||||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
|
||||||
#endif
|
|
||||||
#ifdef GRID_CUDA
|
|
||||||
cublasZgemmStridedBatched(gridblasHandle,
|
|
||||||
CUBLAS_OP_N,
|
|
||||||
CUBLAS_OP_N,
|
|
||||||
m,n,k,
|
|
||||||
(cuDoubleComplex *) &alpha_p[0],
|
|
||||||
(cuDoubleComplex *) Amk, lda, sda,
|
|
||||||
(cuDoubleComplex *) Bkn, ldb, sdb,
|
|
||||||
(cuDoubleComplex *) &beta_p[0],
|
|
||||||
(cuDoubleComplex *) Cmn, ldc, sdc,
|
|
||||||
batchCount);
|
|
||||||
#endif
|
|
||||||
#ifdef GRID_SYCL
|
|
||||||
#warning "oneMKL implementation not made "
|
|
||||||
#endif
|
|
||||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
|
||||||
// Need a default/reference implementation
|
|
||||||
for (int p = 0; p < batchCount; ++p) {
|
|
||||||
for (int mm = 0; mm < m; ++mm) {
|
|
||||||
for (int nn = 0; nn < n; ++nn) {
|
|
||||||
ComplexD c_mn(0.0);
|
|
||||||
for (int kk = 0; kk < k, ++kk)
|
|
||||||
c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
|
|
||||||
Cmn[mm + nn*ldc + p*sdc] = (*alpha_p)*c_mn + (*beta_p)*Cmn[mm + nn*ldc + p*sdc];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
};
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
|
@ -1,467 +0,0 @@
|
|||||||
/*************************************************************************************
|
|
||||||
|
|
||||||
Grid physics library, www.github.com/paboyle/Grid
|
|
||||||
|
|
||||||
Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
|
|
||||||
|
|
||||||
Copyright (C) 2015
|
|
||||||
|
|
||||||
Author: Peter Boyle <pboyle@bnl.gov>
|
|
||||||
|
|
||||||
This program is free software; you can redistribute it and/or modify
|
|
||||||
it under the terms of the GNU General Public License as published by
|
|
||||||
the Free Software Foundation; either version 2 of the License, or
|
|
||||||
(at your option) any later version.
|
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License along
|
|
||||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
||||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
||||||
|
|
||||||
See the full license in the file "LICENSE" in the top level distribution directory
|
|
||||||
*************************************************************************************/
|
|
||||||
/* END LEGAL */
|
|
||||||
#pragma once
|
|
||||||
|
|
||||||
#include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No)
|
|
||||||
|
|
||||||
#include <Grid/lattice/PaddedCell.h>
|
|
||||||
#include <Grid/stencil/GeneralLocalStencil.h>
|
|
||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
|
||||||
|
|
||||||
// Fine Object == (per site) type of fine field
|
|
||||||
// nbasis == number of deflation vectors
|
|
||||||
template<class Fobj,class CComplex,int nbasis>
|
|
||||||
class GeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
|
|
||||||
public:
|
|
||||||
|
|
||||||
typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
|
|
||||||
typedef iVector<CComplex,nbasis > siteVector;
|
|
||||||
typedef iMatrix<CComplex,nbasis > siteMatrix;
|
|
||||||
typedef Lattice<iScalar<CComplex> > CoarseComplexField;
|
|
||||||
typedef Lattice<siteVector> CoarseVector;
|
|
||||||
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
|
|
||||||
typedef iMatrix<CComplex,nbasis > Cobj;
|
|
||||||
typedef iVector<CComplex,nbasis > Cvec;
|
|
||||||
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
|
|
||||||
typedef Lattice<Fobj > FineField;
|
|
||||||
typedef Lattice<CComplex > FineComplexField;
|
|
||||||
typedef CoarseVector Field;
|
|
||||||
////////////////////
|
|
||||||
// Data members
|
|
||||||
////////////////////
|
|
||||||
int hermitian;
|
|
||||||
GridBase * _FineGrid;
|
|
||||||
GridCartesian * _CoarseGrid;
|
|
||||||
NonLocalStencilGeometry &geom;
|
|
||||||
PaddedCell Cell;
|
|
||||||
GeneralLocalStencil Stencil;
|
|
||||||
|
|
||||||
std::vector<CoarseMatrix> _A;
|
|
||||||
std::vector<CoarseMatrix> _Adag;
|
|
||||||
std::vector<CoarseVector> MultTemporaries;
|
|
||||||
|
|
||||||
///////////////////////
|
|
||||||
// Interface
|
|
||||||
///////////////////////
|
|
||||||
GridBase * Grid(void) { return _CoarseGrid; }; // this is all the linalg routines need to know
|
|
||||||
GridBase * FineGrid(void) { return _FineGrid; }; // this is all the linalg routines need to know
|
|
||||||
GridCartesian * CoarseGrid(void) { return _CoarseGrid; }; // this is all the linalg routines need to know
|
|
||||||
|
|
||||||
void ShiftMatrix(RealD shift)
|
|
||||||
{
|
|
||||||
int Nd=_FineGrid->Nd();
|
|
||||||
Coordinate zero_shift(Nd,0);
|
|
||||||
for(int p=0;p<geom.npoint;p++){
|
|
||||||
if ( zero_shift==geom.shifts[p] ) {
|
|
||||||
_A[p] = _A[p]+shift;
|
|
||||||
_Adag[p] = _Adag[p]+shift;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
void ProjectNearestNeighbour(RealD shift, GeneralCoarseOp &CopyMe)
|
|
||||||
{
|
|
||||||
int nfound=0;
|
|
||||||
std::cout << GridLogMessage <<"GeneralCoarsenedMatrix::ProjectNearestNeighbour "<< CopyMe._A[0].Grid()<<std::endl;
|
|
||||||
for(int p=0;p<geom.npoint;p++){
|
|
||||||
for(int pp=0;pp<CopyMe.geom.npoint;pp++){
|
|
||||||
// Search for the same relative shift
|
|
||||||
// Avoids brutal handling of Grid pointers
|
|
||||||
if ( CopyMe.geom.shifts[pp]==geom.shifts[p] ) {
|
|
||||||
_A[p] = CopyMe.Cell.Extract(CopyMe._A[pp]);
|
|
||||||
_Adag[p] = CopyMe.Cell.Extract(CopyMe._Adag[pp]);
|
|
||||||
nfound++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
assert(nfound==geom.npoint);
|
|
||||||
ExchangeCoarseLinks();
|
|
||||||
}
|
|
||||||
|
|
||||||
GeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridBase *FineGrid, GridCartesian * CoarseGrid)
|
|
||||||
: geom(_geom),
|
|
||||||
_FineGrid(FineGrid),
|
|
||||||
_CoarseGrid(CoarseGrid),
|
|
||||||
hermitian(1),
|
|
||||||
Cell(_geom.Depth(),_CoarseGrid),
|
|
||||||
Stencil(Cell.grids.back(),geom.shifts)
|
|
||||||
{
|
|
||||||
{
|
|
||||||
int npoint = _geom.npoint;
|
|
||||||
}
|
|
||||||
_A.resize(geom.npoint,CoarseGrid);
|
|
||||||
_Adag.resize(geom.npoint,CoarseGrid);
|
|
||||||
}
|
|
||||||
void M (const CoarseVector &in, CoarseVector &out)
|
|
||||||
{
|
|
||||||
Mult(_A,in,out);
|
|
||||||
}
|
|
||||||
void Mdag (const CoarseVector &in, CoarseVector &out)
|
|
||||||
{
|
|
||||||
if ( hermitian ) M(in,out);
|
|
||||||
else Mult(_Adag,in,out);
|
|
||||||
}
|
|
||||||
void Mult (std::vector<CoarseMatrix> &A,const CoarseVector &in, CoarseVector &out)
|
|
||||||
{
|
|
||||||
RealD tviews=0; RealD ttot=0; RealD tmult=0; RealD texch=0; RealD text=0; RealD ttemps=0; RealD tcopy=0;
|
|
||||||
RealD tmult2=0;
|
|
||||||
|
|
||||||
ttot=-usecond();
|
|
||||||
conformable(CoarseGrid(),in.Grid());
|
|
||||||
conformable(in.Grid(),out.Grid());
|
|
||||||
out.Checkerboard() = in.Checkerboard();
|
|
||||||
CoarseVector tin=in;
|
|
||||||
|
|
||||||
texch-=usecond();
|
|
||||||
CoarseVector pin = Cell.ExchangePeriodic(tin);
|
|
||||||
texch+=usecond();
|
|
||||||
|
|
||||||
CoarseVector pout(pin.Grid());
|
|
||||||
|
|
||||||
int npoint = geom.npoint;
|
|
||||||
typedef LatticeView<Cobj> Aview;
|
|
||||||
typedef LatticeView<Cvec> Vview;
|
|
||||||
|
|
||||||
const int Nsimd = CComplex::Nsimd();
|
|
||||||
|
|
||||||
int64_t osites=pin.Grid()->oSites();
|
|
||||||
|
|
||||||
RealD flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
|
|
||||||
RealD bytes = 1.0*osites*sizeof(siteMatrix)*npoint
|
|
||||||
+ 2.0*osites*sizeof(siteVector)*npoint;
|
|
||||||
|
|
||||||
{
|
|
||||||
tviews-=usecond();
|
|
||||||
autoView( in_v , pin, AcceleratorRead);
|
|
||||||
autoView( out_v , pout, AcceleratorWriteDiscard);
|
|
||||||
autoView( Stencil_v , Stencil, AcceleratorRead);
|
|
||||||
tviews+=usecond();
|
|
||||||
|
|
||||||
// Static and prereserve to keep UVM region live and not resized across multiple calls
|
|
||||||
ttemps-=usecond();
|
|
||||||
MultTemporaries.resize(npoint,pin.Grid());
|
|
||||||
ttemps+=usecond();
|
|
||||||
std::vector<Aview> AcceleratorViewContainer_h;
|
|
||||||
std::vector<Vview> AcceleratorVecViewContainer_h;
|
|
||||||
|
|
||||||
tviews-=usecond();
|
|
||||||
for(int p=0;p<npoint;p++) {
|
|
||||||
AcceleratorViewContainer_h.push_back( A[p].View(AcceleratorRead));
|
|
||||||
AcceleratorVecViewContainer_h.push_back(MultTemporaries[p].View(AcceleratorWrite));
|
|
||||||
}
|
|
||||||
tviews+=usecond();
|
|
||||||
|
|
||||||
static deviceVector<Aview> AcceleratorViewContainer; AcceleratorViewContainer.resize(npoint);
|
|
||||||
static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(npoint);
|
|
||||||
|
|
||||||
auto Aview_p = &AcceleratorViewContainer[0];
|
|
||||||
auto Vview_p = &AcceleratorVecViewContainer[0];
|
|
||||||
tcopy-=usecond();
|
|
||||||
acceleratorCopyToDevice(&AcceleratorViewContainer_h[0],&AcceleratorViewContainer[0],npoint *sizeof(Aview));
|
|
||||||
acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],npoint *sizeof(Vview));
|
|
||||||
tcopy+=usecond();
|
|
||||||
|
|
||||||
tmult-=usecond();
|
|
||||||
accelerator_for(spb, osites*nbasis*npoint, Nsimd, {
|
|
||||||
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
|
|
||||||
int32_t ss = spb/(nbasis*npoint);
|
|
||||||
int32_t bp = spb%(nbasis*npoint);
|
|
||||||
int32_t point= bp/nbasis;
|
|
||||||
int32_t b = bp%nbasis;
|
|
||||||
auto SE = Stencil_v.GetEntry(point,ss);
|
|
||||||
auto nbr = coalescedReadGeneralPermute(in_v[SE->_offset],SE->_permute,Nd);
|
|
||||||
auto res = coalescedRead(Aview_p[point][ss](0,b))*nbr(0);
|
|
||||||
for(int bb=1;bb<nbasis;bb++) {
|
|
||||||
res = res + coalescedRead(Aview_p[point][ss](bb,b))*nbr(bb);
|
|
||||||
}
|
|
||||||
coalescedWrite(Vview_p[point][ss](b),res);
|
|
||||||
});
|
|
||||||
tmult2-=usecond();
|
|
||||||
accelerator_for(sb, osites*nbasis, Nsimd, {
|
|
||||||
int ss = sb/nbasis;
|
|
||||||
int b = sb%nbasis;
|
|
||||||
auto res = coalescedRead(Vview_p[0][ss](b));
|
|
||||||
for(int point=1;point<npoint;point++){
|
|
||||||
res = res + coalescedRead(Vview_p[point][ss](b));
|
|
||||||
}
|
|
||||||
coalescedWrite(out_v[ss](b),res);
|
|
||||||
});
|
|
||||||
tmult2+=usecond();
|
|
||||||
tmult+=usecond();
|
|
||||||
for(int p=0;p<npoint;p++) {
|
|
||||||
AcceleratorViewContainer_h[p].ViewClose();
|
|
||||||
AcceleratorVecViewContainer_h[p].ViewClose();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
text-=usecond();
|
|
||||||
out = Cell.Extract(pout);
|
|
||||||
text+=usecond();
|
|
||||||
ttot+=usecond();
|
|
||||||
|
|
||||||
std::cout << GridLogPerformance<<"Coarse 1rhs Mult Aviews "<<tviews<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance<<"Coarse Mult exch "<<texch<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance<<"Coarse Mult mult "<<tmult<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance<<" of which mult2 "<<tmult2<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance<<"Coarse Mult ext "<<text<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance<<"Coarse Mult temps "<<ttemps<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance<<"Coarse Mult copy "<<tcopy<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance<<"Coarse Mult tot "<<ttot<<" us"<<std::endl;
|
|
||||||
// std::cout << GridLogPerformance<<std::endl;
|
|
||||||
std::cout << GridLogPerformance<<"Coarse Kernel flops "<< flops<<std::endl;
|
|
||||||
std::cout << GridLogPerformance<<"Coarse Kernel flop/s "<< flops/tmult<<" mflop/s"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance<<"Coarse Kernel bytes/s "<< bytes/tmult<<" MB/s"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance<<"Coarse overall flops/s "<< flops/ttot<<" mflop/s"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance<<"Coarse total bytes "<< bytes/1e6<<" MB"<<std::endl;
|
|
||||||
|
|
||||||
};
|
|
||||||
|
|
||||||
void PopulateAdag(void)
|
|
||||||
{
|
|
||||||
for(int64_t bidx=0;bidx<CoarseGrid()->gSites() ;bidx++){
|
|
||||||
Coordinate bcoor;
|
|
||||||
CoarseGrid()->GlobalIndexToGlobalCoor(bidx,bcoor);
|
|
||||||
|
|
||||||
for(int p=0;p<geom.npoint;p++){
|
|
||||||
Coordinate scoor = bcoor;
|
|
||||||
for(int mu=0;mu<bcoor.size();mu++){
|
|
||||||
int L = CoarseGrid()->GlobalDimensions()[mu];
|
|
||||||
scoor[mu] = (bcoor[mu] - geom.shifts[p][mu] + L) % L; // Modulo arithmetic
|
|
||||||
}
|
|
||||||
// Flip to poke/peekLocalSite and not too bad
|
|
||||||
auto link = peekSite(_A[p],scoor);
|
|
||||||
int pp = geom.Reverse(p);
|
|
||||||
pokeSite(adj(link),_Adag[pp],bcoor);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
/////////////////////////////////////////////////////////////
|
|
||||||
//
|
|
||||||
// A) Only reduced flops option is to use a padded cell of depth 4
|
|
||||||
// and apply MpcDagMpc in the padded cell.
|
|
||||||
//
|
|
||||||
// Makes for ONE application of MpcDagMpc per vector instead of 30 or 80.
|
|
||||||
// With the effective cell size around (B+8)^4 perhaps 12^4/4^4 ratio
|
|
||||||
// Cost is 81x more, same as stencil size.
|
|
||||||
//
|
|
||||||
// But: can eliminate comms and do as local dirichlet.
|
|
||||||
//
|
|
||||||
// Local exchange gauge field once.
|
|
||||||
// Apply to all vectors, local only computation.
|
|
||||||
// Must exchange ghost subcells in reverse process of PaddedCell to take inner products
|
|
||||||
//
|
|
||||||
// B) Can reduce cost: pad by 1, apply Deo (4^4+6^4+8^4+8^4 )/ (4x 4^4)
|
|
||||||
// pad by 2, apply Doe
|
|
||||||
// pad by 3, apply Deo
|
|
||||||
// then break out 8x directions; cost is ~10x MpcDagMpc per vector
|
|
||||||
//
|
|
||||||
// => almost factor of 10 in setup cost, excluding data rearrangement
|
|
||||||
//
|
|
||||||
// Intermediates -- ignore the corner terms, leave approximate and force Hermitian
|
|
||||||
// Intermediates -- pad by 2 and apply 1+8+24 = 33 times.
|
|
||||||
/////////////////////////////////////////////////////////////
|
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////
|
|
||||||
// BFM HDCG style approach: Solve a system of equations to get Aij
|
|
||||||
//////////////////////////////////////////////////////////
|
|
||||||
/*
|
|
||||||
* Here, k,l index which possible shift within the 3^Nd "ball" connected by MdagM.
|
|
||||||
*
|
|
||||||
* conj(phases[block]) proj[k][ block*Nvec+j ] = \sum_ball e^{i q_k . delta} < phi_{block,j} | MdagM | phi_{(block+delta),i} >
|
|
||||||
* = \sum_ball e^{iqk.delta} A_ji
|
|
||||||
*
|
|
||||||
* Must invert matrix M_k,l = e^[i q_k . delta_l]
|
|
||||||
*
|
|
||||||
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
|
|
||||||
*/
|
|
||||||
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
|
|
||||||
Aggregation<Fobj,CComplex,nbasis> & Subspace)
|
|
||||||
{
|
|
||||||
std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
|
|
||||||
GridBase *grid = FineGrid();
|
|
||||||
|
|
||||||
RealD tproj=0.0;
|
|
||||||
RealD teigen=0.0;
|
|
||||||
RealD tmat=0.0;
|
|
||||||
RealD tphase=0.0;
|
|
||||||
RealD tphaseBZ=0.0;
|
|
||||||
RealD tinv=0.0;
|
|
||||||
|
|
||||||
/////////////////////////////////////////////////////////////
|
|
||||||
// Orthogonalise the subblocks over the basis
|
|
||||||
/////////////////////////////////////////////////////////////
|
|
||||||
CoarseScalar InnerProd(CoarseGrid());
|
|
||||||
blockOrthogonalise(InnerProd,Subspace.subspace);
|
|
||||||
|
|
||||||
const int npoint = geom.npoint;
|
|
||||||
|
|
||||||
Coordinate clatt = CoarseGrid()->GlobalDimensions();
|
|
||||||
int Nd = CoarseGrid()->Nd();
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
|
|
||||||
* Matrix index i is mapped to this shift via
|
|
||||||
* geom.shifts[i]
|
|
||||||
*
|
|
||||||
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
|
|
||||||
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
|
|
||||||
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
|
|
||||||
* = M_{kl} A_ji^{b.b+l}
|
|
||||||
*
|
|
||||||
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
|
|
||||||
*
|
|
||||||
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
|
|
||||||
*
|
|
||||||
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
|
|
||||||
*/
|
|
||||||
teigen-=usecond();
|
|
||||||
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
|
||||||
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
|
||||||
ComplexD ci(0.0,1.0);
|
|
||||||
for(int k=0;k<npoint;k++){ // Loop over momenta
|
|
||||||
|
|
||||||
for(int l=0;l<npoint;l++){ // Loop over nbr relative
|
|
||||||
ComplexD phase(0.0,0.0);
|
|
||||||
for(int mu=0;mu<Nd;mu++){
|
|
||||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
|
||||||
phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
|
|
||||||
}
|
|
||||||
phase=exp(phase*ci);
|
|
||||||
Mkl(k,l) = phase;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
invMkl = Mkl.inverse();
|
|
||||||
teigen+=usecond();
|
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////////////
|
|
||||||
// Now compute the matrix elements of linop between the orthonormal
|
|
||||||
// set of vectors.
|
|
||||||
///////////////////////////////////////////////////////////////////////
|
|
||||||
FineField phaV(grid); // Phased block basis vector
|
|
||||||
FineField MphaV(grid);// Matrix applied
|
|
||||||
std::vector<FineComplexField> phaF(npoint,grid);
|
|
||||||
std::vector<CoarseComplexField> pha(npoint,CoarseGrid());
|
|
||||||
|
|
||||||
CoarseVector coarseInner(CoarseGrid());
|
|
||||||
|
|
||||||
typedef typename CComplex::scalar_type SComplex;
|
|
||||||
FineComplexField one(grid); one=SComplex(1.0);
|
|
||||||
FineComplexField zz(grid); zz = Zero();
|
|
||||||
tphase=-usecond();
|
|
||||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
|
||||||
/////////////////////////////////////////////////////
|
|
||||||
// Stick a phase on every block
|
|
||||||
/////////////////////////////////////////////////////
|
|
||||||
CoarseComplexField coor(CoarseGrid());
|
|
||||||
pha[p]=Zero();
|
|
||||||
for(int mu=0;mu<Nd;mu++){
|
|
||||||
LatticeCoordinate(coor,mu);
|
|
||||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
|
||||||
pha[p] = pha[p] + (TwoPiL * geom.shifts[p][mu]) * coor;
|
|
||||||
}
|
|
||||||
pha[p] =exp(pha[p]*ci);
|
|
||||||
|
|
||||||
blockZAXPY(phaF[p],pha[p],one,zz);
|
|
||||||
|
|
||||||
}
|
|
||||||
tphase+=usecond();
|
|
||||||
|
|
||||||
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
|
|
||||||
std::vector<CoarseVector> FT(npoint,CoarseGrid());
|
|
||||||
for(int i=0;i<nbasis;i++){// Loop over basis vectors
|
|
||||||
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
|
|
||||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
|
||||||
tphaseBZ-=usecond();
|
|
||||||
phaV = phaF[p]*Subspace.subspace[i];
|
|
||||||
tphaseBZ+=usecond();
|
|
||||||
|
|
||||||
/////////////////////////////////////////////////////////////////////
|
|
||||||
// Multiple phased subspace vector by matrix and project to subspace
|
|
||||||
// Remove local bulk phase to leave relative phases
|
|
||||||
/////////////////////////////////////////////////////////////////////
|
|
||||||
tmat-=usecond();
|
|
||||||
linop.Op(phaV,MphaV);
|
|
||||||
tmat+=usecond();
|
|
||||||
|
|
||||||
tproj-=usecond();
|
|
||||||
blockProjectFast(coarseInner,MphaV,Subspace.subspace);
|
|
||||||
coarseInner = conjugate(pha[p]) * coarseInner;
|
|
||||||
|
|
||||||
ComputeProj[p] = coarseInner;
|
|
||||||
tproj+=usecond();
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
tinv-=usecond();
|
|
||||||
for(int k=0;k<npoint;k++){
|
|
||||||
FT[k] = Zero();
|
|
||||||
for(int l=0;l<npoint;l++){
|
|
||||||
FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
|
|
||||||
}
|
|
||||||
|
|
||||||
int osites=CoarseGrid()->oSites();
|
|
||||||
autoView( A_v , _A[k], AcceleratorWrite);
|
|
||||||
autoView( FT_v , FT[k], AcceleratorRead);
|
|
||||||
accelerator_for(sss, osites, 1, {
|
|
||||||
for(int j=0;j<nbasis;j++){
|
|
||||||
A_v[sss](i,j) = FT_v[sss](j);
|
|
||||||
}
|
|
||||||
});
|
|
||||||
}
|
|
||||||
tinv+=usecond();
|
|
||||||
}
|
|
||||||
|
|
||||||
// Only needed if nonhermitian
|
|
||||||
if ( ! hermitian ) {
|
|
||||||
std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
|
|
||||||
PopulateAdag();
|
|
||||||
}
|
|
||||||
|
|
||||||
// Need to write something to populate Adag from A
|
|
||||||
ExchangeCoarseLinks();
|
|
||||||
std::cout << GridLogMessage<<"CoarsenOperator eigen "<<teigen<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<"CoarsenOperator phase "<<tphase<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<"CoarsenOperator mat "<<tmat <<" us"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<"CoarsenOperator proj "<<tproj<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
|
|
||||||
}
|
|
||||||
void ExchangeCoarseLinks(void){
|
|
||||||
for(int p=0;p<geom.npoint;p++){
|
|
||||||
_A[p] = Cell.ExchangePeriodic(_A[p]);
|
|
||||||
_Adag[p]= Cell.ExchangePeriodic(_Adag[p]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
virtual void Mdiag (const Field &in, Field &out){ assert(0);};
|
|
||||||
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);};
|
|
||||||
virtual void MdirAll (const Field &in, std::vector<Field> &out){assert(0);};
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
|
@ -1,402 +0,0 @@
|
|||||||
/*************************************************************************************
|
|
||||||
|
|
||||||
Grid physics library, www.github.com/paboyle/Grid
|
|
||||||
|
|
||||||
Source file: ./lib/algorithms/GeneralCoarsenedMatrixMultiRHS.h
|
|
||||||
|
|
||||||
Copyright (C) 2015
|
|
||||||
|
|
||||||
Author: Peter Boyle <pboyle@bnl.gov>
|
|
||||||
|
|
||||||
This program is free software; you can redistribute it and/or modify
|
|
||||||
it under the terms of the GNU General Public License as published by
|
|
||||||
the Free Software Foundation; either version 2 of the License, or
|
|
||||||
(at your option) any later version.
|
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License along
|
|
||||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
||||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
||||||
|
|
||||||
See the full license in the file "LICENSE" in the top level distribution directory
|
|
||||||
*************************************************************************************/
|
|
||||||
/* END LEGAL */
|
|
||||||
#pragma once
|
|
||||||
|
|
||||||
#include <Grid/algorithms/multigrid/BatchedBlas.h>
|
|
||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
|
||||||
|
|
||||||
|
|
||||||
// Move this to accelerator.h
|
|
||||||
// Also give a copy device.
|
|
||||||
// Rename acceleratorPut
|
|
||||||
// Rename acceleratorGet
|
|
||||||
template<class T> void deviceSet(T& dev,T&host)
|
|
||||||
{
|
|
||||||
acceleratorCopyToDevice(&host,&dev,sizeof(T));
|
|
||||||
}
|
|
||||||
template<class T> T deviceGet(T& dev)
|
|
||||||
{
|
|
||||||
T host;
|
|
||||||
acceleratorCopyFromDevice(&dev,&host,sizeof(T));
|
|
||||||
return host;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Fine Object == (per site) type of fine field
|
|
||||||
// nbasis == number of deflation vectors
|
|
||||||
template<class Fobj,class CComplex,int nbasis>
|
|
||||||
class MultiGeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
|
|
||||||
public:
|
|
||||||
typedef typename CComplex::scalar_object SComplex;
|
|
||||||
typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
|
|
||||||
typedef MultiGeneralCoarsenedMatrix<Fobj,CComplex,nbasis> MultiGeneralCoarseOp;
|
|
||||||
|
|
||||||
typedef iVector<CComplex,nbasis > siteVector;
|
|
||||||
typedef iMatrix<CComplex,nbasis > siteMatrix;
|
|
||||||
typedef iVector<SComplex,nbasis > calcVector;
|
|
||||||
typedef iMatrix<SComplex,nbasis > calcMatrix;
|
|
||||||
typedef Lattice<iScalar<CComplex> > CoarseComplexField;
|
|
||||||
typedef Lattice<siteVector> CoarseVector;
|
|
||||||
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
|
|
||||||
typedef iMatrix<CComplex,nbasis > Cobj;
|
|
||||||
typedef iVector<CComplex,nbasis > Cvec;
|
|
||||||
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
|
|
||||||
typedef Lattice<Fobj > FineField;
|
|
||||||
typedef CoarseVector Field;
|
|
||||||
|
|
||||||
////////////////////
|
|
||||||
// Data members
|
|
||||||
////////////////////
|
|
||||||
GridCartesian * _CoarseGridMulti;
|
|
||||||
GridCartesian * _CoarseGrid;
|
|
||||||
GeneralCoarseOp & _Op;
|
|
||||||
NonLocalStencilGeometry geom;
|
|
||||||
PaddedCell Cell;
|
|
||||||
GeneralLocalStencil Stencil;
|
|
||||||
|
|
||||||
deviceVector<calcVector> BLAS_B;
|
|
||||||
deviceVector<calcVector> BLAS_C;
|
|
||||||
std::vector<deviceVector<calcMatrix> > BLAS_A;
|
|
||||||
|
|
||||||
std::vector<deviceVector<ComplexD *> > BLAS_AP;
|
|
||||||
std::vector<deviceVector<ComplexD *> > BLAS_BP;
|
|
||||||
deviceVector<ComplexD *> BLAS_CP;
|
|
||||||
|
|
||||||
///////////////////////
|
|
||||||
// Interface
|
|
||||||
///////////////////////
|
|
||||||
GridBase * Grid(void) { return _CoarseGridMulti; }; // this is all the linalg routines need to know
|
|
||||||
GridCartesian * CoarseGrid(void) { return _CoarseGridMulti; }; // this is all the linalg routines need to know
|
|
||||||
|
|
||||||
MultiGeneralCoarsenedMatrix(GeneralCoarseOp & Op,GridCartesian *CoarseGridMulti) :
|
|
||||||
_Op(Op),
|
|
||||||
_CoarseGrid(Op.CoarseGrid()),
|
|
||||||
_CoarseGridMulti(CoarseGridMulti),
|
|
||||||
geom(_CoarseGridMulti,Op.geom.hops,Op.geom.skip+1),
|
|
||||||
Cell(Op.geom.Depth(),_CoarseGridMulti),
|
|
||||||
Stencil(Cell.grids.back(),geom.shifts) // padded cell stencil
|
|
||||||
{
|
|
||||||
int32_t padded_sites = _Op._A[0].Grid()->lSites();
|
|
||||||
int32_t unpadded_sites = _CoarseGrid->lSites();
|
|
||||||
|
|
||||||
int32_t nrhs = CoarseGridMulti->FullDimensions()[0]; // # RHS
|
|
||||||
int32_t orhs = nrhs/CComplex::Nsimd();
|
|
||||||
|
|
||||||
/////////////////////////////////////////////////
|
|
||||||
// Device data vector storage
|
|
||||||
/////////////////////////////////////////////////
|
|
||||||
BLAS_A.resize(geom.npoint);
|
|
||||||
for(int p=0;p<geom.npoint;p++){
|
|
||||||
BLAS_A[p].resize (unpadded_sites); // no ghost zone, npoint elements
|
|
||||||
}
|
|
||||||
BLAS_B.resize(nrhs *padded_sites); // includes ghost zone
|
|
||||||
BLAS_C.resize(nrhs *unpadded_sites); // no ghost zone
|
|
||||||
|
|
||||||
BLAS_AP.resize(geom.npoint);
|
|
||||||
BLAS_BP.resize(geom.npoint);
|
|
||||||
for(int p=0;p<geom.npoint;p++){
|
|
||||||
BLAS_AP[p].resize(unpadded_sites);
|
|
||||||
BLAS_BP[p].resize(unpadded_sites);
|
|
||||||
}
|
|
||||||
BLAS_CP.resize(unpadded_sites);
|
|
||||||
|
|
||||||
/////////////////////////////////////////////////
|
|
||||||
// Pointers to data
|
|
||||||
/////////////////////////////////////////////////
|
|
||||||
|
|
||||||
// Site identity mapping for A, C
|
|
||||||
for(int p=0;p<geom.npoint;p++){
|
|
||||||
for(int ss=0;ss<unpadded_sites;ss++){
|
|
||||||
ComplexD *ptr = (ComplexD *)&BLAS_A[p][ss];
|
|
||||||
//ComplexD *ptr = (ComplexD *)&BLAS_A[p][0]; std::cout << " A ptr "<<std::hex<<ptr<<std::dec<<" "<<ss<<"/"<<BLAS_A[p].size()<<std::endl;
|
|
||||||
deviceSet(BLAS_AP[p][ss],ptr);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
for(int ss=0;ss<unpadded_sites;ss++){
|
|
||||||
ComplexD *ptr = (ComplexD *)&BLAS_C[ss*nrhs];
|
|
||||||
//ComplexD *ptr = (ComplexD *)&BLAS_C[0]; std::cout << " C ptr "<<std::hex<<ptr<<std::dec<<" "<<ss<<"/"<<BLAS_C.size()<<std::endl;
|
|
||||||
deviceSet(BLAS_CP[ss],ptr);
|
|
||||||
}
|
|
||||||
|
|
||||||
/////////////////////////////////////////////////
|
|
||||||
// Neighbour table is more complicated
|
|
||||||
/////////////////////////////////////////////////
|
|
||||||
int32_t j=0; // Interior point counter (unpadded)
|
|
||||||
for(int32_t s=0;s<padded_sites;s++){ // 4 volume, padded
|
|
||||||
int ghost_zone=0;
|
|
||||||
for(int32_t point = 0 ; point < geom.npoint; point++){
|
|
||||||
int i=s*orhs*geom.npoint+point;
|
|
||||||
if( Stencil._entries[i]._wrap ) { // stencil is indexed by the oSite of the CoarseGridMulti, hence orhs factor
|
|
||||||
ghost_zone=1; // If general stencil wrapped in any direction, wrap=1
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// GeneralStencilEntryReordered tmp;
|
|
||||||
if( ghost_zone==0) {
|
|
||||||
for(int32_t point = 0 ; point < geom.npoint; point++){
|
|
||||||
int i=s*orhs*geom.npoint+point;
|
|
||||||
int32_t nbr = Stencil._entries[i]._offset*CComplex::Nsimd(); // oSite -> lSite
|
|
||||||
// std::cout << " B ptr "<< nbr<<"/"<<BLAS_B.size()<<std::endl;
|
|
||||||
assert(nbr<BLAS_B.size());
|
|
||||||
ComplexD * ptr = (ComplexD *)&BLAS_B[nbr];
|
|
||||||
// ComplexD * ptr = (ComplexD *)&BLAS_B[0];
|
|
||||||
// std::cout << " B ptr unpadded "<<std::hex<<ptr<<std::dec<<" "<<s<<"/"<<padded_sites<<std::endl;
|
|
||||||
// std::cout << " B ptr padded "<<std::hex<<ptr<<std::dec<<" "<<j<<"/"<<unpadded_sites<<std::endl;
|
|
||||||
deviceSet(BLAS_BP[point][j],ptr); // neighbour indexing in ghost zone volume
|
|
||||||
// auto tmp = deviceGet(*BLAS_BP[point][j]); // debug trigger SEGV if bad ptr
|
|
||||||
}
|
|
||||||
j++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
assert(j==unpadded_sites);
|
|
||||||
CopyMatrix();
|
|
||||||
}
|
|
||||||
template<class vobj> void GridtoBLAS(const Lattice<vobj> &from,deviceVector<typename vobj::scalar_object> &to)
|
|
||||||
{
|
|
||||||
#if 0
|
|
||||||
std::vector<typename vobj::scalar_object> tmp;
|
|
||||||
unvectorizeToLexOrdArray(tmp,from);
|
|
||||||
assert(tmp.size()==from.Grid()->lSites());
|
|
||||||
assert(tmp.size()==to.size());
|
|
||||||
to.resize(tmp.size());
|
|
||||||
acceleratorCopyToDevice(&tmp[0],&to[0],sizeof(typename vobj::scalar_object)*tmp.size());
|
|
||||||
#else
|
|
||||||
typedef typename vobj::scalar_object sobj;
|
|
||||||
typedef typename vobj::scalar_type scalar_type;
|
|
||||||
typedef typename vobj::vector_type vector_type;
|
|
||||||
|
|
||||||
GridBase *Fg = from.Grid();
|
|
||||||
assert(!Fg->_isCheckerBoarded);
|
|
||||||
int nd = Fg->_ndimension;
|
|
||||||
|
|
||||||
to.resize(Fg->lSites());
|
|
||||||
|
|
||||||
Coordinate LocalLatt = Fg->LocalDimensions();
|
|
||||||
size_t nsite = 1;
|
|
||||||
for(int i=0;i<nd;i++) nsite *= LocalLatt[i];
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
// do the index calc on the GPU
|
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
Coordinate f_ostride = Fg->_ostride;
|
|
||||||
Coordinate f_istride = Fg->_istride;
|
|
||||||
Coordinate f_rdimensions = Fg->_rdimensions;
|
|
||||||
|
|
||||||
autoView(from_v,from,AcceleratorRead);
|
|
||||||
auto to_v = &to[0];
|
|
||||||
|
|
||||||
const int words=sizeof(vobj)/sizeof(vector_type);
|
|
||||||
accelerator_for(idx,nsite,1,{
|
|
||||||
|
|
||||||
Coordinate from_coor, base;
|
|
||||||
Lexicographic::CoorFromIndex(base,idx,LocalLatt);
|
|
||||||
for(int i=0;i<nd;i++){
|
|
||||||
from_coor[i] = base[i];
|
|
||||||
}
|
|
||||||
int from_oidx = 0; for(int d=0;d<nd;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
|
|
||||||
int from_lane = 0; for(int d=0;d<nd;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
|
|
||||||
|
|
||||||
const vector_type* from = (const vector_type *)&from_v[from_oidx];
|
|
||||||
scalar_type* to = (scalar_type *)&to_v[idx];
|
|
||||||
|
|
||||||
scalar_type stmp;
|
|
||||||
for(int w=0;w<words;w++){
|
|
||||||
stmp = getlane(from[w], from_lane);
|
|
||||||
to[w] = stmp;
|
|
||||||
}
|
|
||||||
});
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
template<class vobj> void BLAStoGrid(Lattice<vobj> &grid,deviceVector<typename vobj::scalar_object> &in)
|
|
||||||
{
|
|
||||||
#if 0
|
|
||||||
std::vector<typename vobj::scalar_object> tmp;
|
|
||||||
tmp.resize(in.size());
|
|
||||||
// std::cout << "BLAStoGrid volume " <<tmp.size()<<" "<< grid.Grid()->lSites()<<std::endl;
|
|
||||||
assert(in.size()==grid.Grid()->lSites());
|
|
||||||
acceleratorCopyFromDevice(&in[0],&tmp[0],sizeof(typename vobj::scalar_object)*in.size());
|
|
||||||
vectorizeFromLexOrdArray(tmp,grid);
|
|
||||||
#else
|
|
||||||
typedef typename vobj::scalar_object sobj;
|
|
||||||
typedef typename vobj::scalar_type scalar_type;
|
|
||||||
typedef typename vobj::vector_type vector_type;
|
|
||||||
|
|
||||||
GridBase *Tg = grid.Grid();
|
|
||||||
assert(!Tg->_isCheckerBoarded);
|
|
||||||
int nd = Tg->_ndimension;
|
|
||||||
|
|
||||||
assert(in.size()==Tg->lSites());
|
|
||||||
|
|
||||||
Coordinate LocalLatt = Tg->LocalDimensions();
|
|
||||||
size_t nsite = 1;
|
|
||||||
for(int i=0;i<nd;i++) nsite *= LocalLatt[i];
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
// do the index calc on the GPU
|
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
Coordinate t_ostride = Tg->_ostride;
|
|
||||||
Coordinate t_istride = Tg->_istride;
|
|
||||||
Coordinate t_rdimensions = Tg->_rdimensions;
|
|
||||||
|
|
||||||
autoView(to_v,grid,AcceleratorWrite);
|
|
||||||
auto from_v = &in[0];
|
|
||||||
|
|
||||||
const int words=sizeof(vobj)/sizeof(vector_type);
|
|
||||||
accelerator_for(idx,nsite,1,{
|
|
||||||
|
|
||||||
Coordinate to_coor, base;
|
|
||||||
Lexicographic::CoorFromIndex(base,idx,LocalLatt);
|
|
||||||
for(int i=0;i<nd;i++){
|
|
||||||
to_coor[i] = base[i];
|
|
||||||
}
|
|
||||||
int to_oidx = 0; for(int d=0;d<nd;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
|
|
||||||
int to_lane = 0; for(int d=0;d<nd;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
|
|
||||||
|
|
||||||
vector_type* to = (vector_type *)&to_v[to_oidx];
|
|
||||||
scalar_type* from = (scalar_type *)&from_v[idx];
|
|
||||||
|
|
||||||
scalar_type stmp;
|
|
||||||
for(int w=0;w<words;w++){
|
|
||||||
stmp=from[w];
|
|
||||||
putlane(to[w], stmp, to_lane);
|
|
||||||
}
|
|
||||||
});
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
void CopyMatrix (void)
|
|
||||||
{
|
|
||||||
// Clone "A" to be lexicographic in the physics coords
|
|
||||||
// Use unvectorisetolexordarray
|
|
||||||
// Copy to device
|
|
||||||
for(int p=0;p<geom.npoint;p++){
|
|
||||||
//Unpadded
|
|
||||||
auto Aup = _Op.Cell.Extract(_Op._A[p]);
|
|
||||||
// Coordinate coor({0,0,0,0,0});
|
|
||||||
// auto sval = peekSite(Aup,coor);
|
|
||||||
// std::cout << "CopyMatrix: p "<<p<<" Aup[0] :"<<sval<<std::endl;
|
|
||||||
// sval = peekSite(_Op._A[p],coor);
|
|
||||||
// std::cout << "CopyMatrix: p "<<p<<" _Op._Ap[0] :"<<sval<<std::endl;
|
|
||||||
GridtoBLAS(Aup,BLAS_A[p]);
|
|
||||||
// std::cout << "Copy Matrix p "<<p<<" "<< deviceGet(BLAS_A[p][0])<<std::endl;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
void Mdag(const CoarseVector &in, CoarseVector &out)
|
|
||||||
{
|
|
||||||
this->M(in,out);
|
|
||||||
}
|
|
||||||
void M (const CoarseVector &in, CoarseVector &out)
|
|
||||||
{
|
|
||||||
std::cout << GridLogMessage << "New Mrhs coarse"<<std::endl;
|
|
||||||
conformable(CoarseGrid(),in.Grid());
|
|
||||||
conformable(in.Grid(),out.Grid());
|
|
||||||
out.Checkerboard() = in.Checkerboard();
|
|
||||||
|
|
||||||
RealD t_tot;
|
|
||||||
RealD t_exch;
|
|
||||||
RealD t_GtoB;
|
|
||||||
RealD t_BtoG;
|
|
||||||
RealD t_mult;
|
|
||||||
|
|
||||||
t_tot=-usecond();
|
|
||||||
CoarseVector tin=in;
|
|
||||||
t_exch=-usecond();
|
|
||||||
CoarseVector pin = Cell.ExchangePeriodic(tin); //padded input
|
|
||||||
t_exch+=usecond();
|
|
||||||
|
|
||||||
CoarseVector pout(pin.Grid());
|
|
||||||
|
|
||||||
int npoint = geom.npoint;
|
|
||||||
typedef calcMatrix* Aview;
|
|
||||||
typedef LatticeView<Cvec> Vview;
|
|
||||||
|
|
||||||
const int Nsimd = CComplex::Nsimd();
|
|
||||||
|
|
||||||
RealD flops,bytes;
|
|
||||||
int64_t osites=in.Grid()->oSites(); // unpadded
|
|
||||||
int64_t unpadded_vol = _CoarseGrid->lSites();
|
|
||||||
|
|
||||||
flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
|
|
||||||
bytes = 1.0*osites*sizeof(siteMatrix)*npoint/pin.Grid()->GlobalDimensions()[0]
|
|
||||||
+ 2.0*osites*sizeof(siteVector)*npoint;
|
|
||||||
|
|
||||||
int64_t nrhs =pin.Grid()->GlobalDimensions()[0];
|
|
||||||
assert(nrhs>=1);
|
|
||||||
|
|
||||||
std::cout << GridLogMessage << "New Mrhs GridtoBLAS in sizes "<<in.Grid()->lSites()<<" "<<pin.Grid()->lSites()<<std::endl;
|
|
||||||
t_GtoB=-usecond();
|
|
||||||
GridtoBLAS(pin,BLAS_B);
|
|
||||||
// out = Zero();
|
|
||||||
// GridtoBLAS(out,BLAS_C);
|
|
||||||
t_GtoB+=usecond();
|
|
||||||
|
|
||||||
GridBLAS BLAS;
|
|
||||||
|
|
||||||
t_mult=-usecond();
|
|
||||||
for(int p=0;p<geom.npoint;p++){
|
|
||||||
RealD c = 1.0;
|
|
||||||
if (p==0) c = 0.0;
|
|
||||||
ComplexD beta(c);
|
|
||||||
// std::cout << GridLogMessage << "New Mrhs coarse gemmBatched "<<p<<std::endl;
|
|
||||||
BLAS.gemmBatched(nbasis,nrhs,nbasis,
|
|
||||||
ComplexD(1.0),
|
|
||||||
BLAS_AP[p],
|
|
||||||
BLAS_BP[p],
|
|
||||||
ComplexD(c),
|
|
||||||
BLAS_CP);
|
|
||||||
}
|
|
||||||
BLAS.synchronise();
|
|
||||||
t_mult+=usecond();
|
|
||||||
// std::cout << GridLogMessage << "New Mrhs coarse BLAStoGrid "<<std::endl;
|
|
||||||
t_BtoG=-usecond();
|
|
||||||
BLAStoGrid(out,BLAS_C);
|
|
||||||
t_BtoG+=usecond();
|
|
||||||
t_tot+=usecond();
|
|
||||||
// auto check =deviceGet(BLAS_C[0]);
|
|
||||||
// std::cout << "C[0] "<<check<<std::endl;
|
|
||||||
// Coordinate coor({0,0,0,0,0,0});
|
|
||||||
// peekLocalSite(check,out,coor);
|
|
||||||
// std::cout << "C[0] "<< check<<std::endl;
|
|
||||||
std::cout << GridLogMessage << "New Mrhs coarse DONE "<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<"Coarse Mult exch "<<t_exch<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<"Coarse Mult mult "<<t_mult<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<"Coarse Mult GtoB "<<t_GtoB<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<"Coarse Mult BtoG "<<t_BtoG<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<"Coarse Mult tot "<<t_tot<<" us"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<"Coarse Kernel flops "<< flops<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<"Coarse Kernel flop/s "<< flops/t_mult<<" mflop/s"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<"Coarse Kernel bytes/s "<< bytes/t_mult/1000<<" GB/s"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<"Coarse overall flops/s "<< flops/t_tot<<" mflop/s"<<std::endl;
|
|
||||||
std::cout << GridLogMessage<<"Coarse total bytes "<< bytes/1e6<<" MB"<<std::endl;
|
|
||||||
};
|
|
||||||
virtual void Mdiag (const Field &in, Field &out){ assert(0);};
|
|
||||||
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);};
|
|
||||||
virtual void MdirAll (const Field &in, std::vector<Field> &out){assert(0);};
|
|
||||||
|
|
||||||
};
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
|
@ -1,238 +0,0 @@
|
|||||||
/*************************************************************************************
|
|
||||||
|
|
||||||
Grid physics library, www.github.com/paboyle/Grid
|
|
||||||
|
|
||||||
Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
|
|
||||||
|
|
||||||
Copyright (C) 2015
|
|
||||||
|
|
||||||
Author: Peter Boyle <pboyle@bnl.gov>
|
|
||||||
|
|
||||||
This program is free software; you can redistribute it and/or modify
|
|
||||||
it under the terms of the GNU General Public License as published by
|
|
||||||
the Free Software Foundation; either version 2 of the License, or
|
|
||||||
(at your option) any later version.
|
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License along
|
|
||||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
||||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
||||||
|
|
||||||
See the full license in the file "LICENSE" in the top level distribution directory
|
|
||||||
*************************************************************************************/
|
|
||||||
/* END LEGAL */
|
|
||||||
#pragma once
|
|
||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
|
||||||
|
|
||||||
|
|
||||||
/////////////////////////////////////////////////////////////////
|
|
||||||
// Geometry class in cartesian case
|
|
||||||
/////////////////////////////////////////////////////////////////
|
|
||||||
|
|
||||||
class Geometry {
|
|
||||||
public:
|
|
||||||
int npoint;
|
|
||||||
int base;
|
|
||||||
std::vector<int> directions ;
|
|
||||||
std::vector<int> displacements;
|
|
||||||
std::vector<int> points_dagger;
|
|
||||||
|
|
||||||
Geometry(int _d) {
|
|
||||||
|
|
||||||
base = (_d==5) ? 1:0;
|
|
||||||
|
|
||||||
// make coarse grid stencil for 4d , not 5d
|
|
||||||
if ( _d==5 ) _d=4;
|
|
||||||
|
|
||||||
npoint = 2*_d+1;
|
|
||||||
directions.resize(npoint);
|
|
||||||
displacements.resize(npoint);
|
|
||||||
points_dagger.resize(npoint);
|
|
||||||
for(int d=0;d<_d;d++){
|
|
||||||
directions[d ] = d+base;
|
|
||||||
directions[d+_d] = d+base;
|
|
||||||
displacements[d ] = +1;
|
|
||||||
displacements[d+_d]= -1;
|
|
||||||
points_dagger[d ] = d+_d;
|
|
||||||
points_dagger[d+_d] = d;
|
|
||||||
}
|
|
||||||
directions [2*_d]=0;
|
|
||||||
displacements[2*_d]=0;
|
|
||||||
points_dagger[2*_d]=2*_d;
|
|
||||||
}
|
|
||||||
|
|
||||||
int point(int dir, int disp) {
|
|
||||||
assert(disp == -1 || disp == 0 || disp == 1);
|
|
||||||
assert(base+0 <= dir && dir < base+4);
|
|
||||||
|
|
||||||
// directions faster index = new indexing
|
|
||||||
// 4d (base = 0):
|
|
||||||
// point 0 1 2 3 4 5 6 7 8
|
|
||||||
// dir 0 1 2 3 0 1 2 3 0
|
|
||||||
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
|
|
||||||
// 5d (base = 1):
|
|
||||||
// point 0 1 2 3 4 5 6 7 8
|
|
||||||
// dir 1 2 3 4 1 2 3 4 0
|
|
||||||
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
|
|
||||||
|
|
||||||
// displacements faster index = old indexing
|
|
||||||
// 4d (base = 0):
|
|
||||||
// point 0 1 2 3 4 5 6 7 8
|
|
||||||
// dir 0 0 1 1 2 2 3 3 0
|
|
||||||
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
|
|
||||||
// 5d (base = 1):
|
|
||||||
// point 0 1 2 3 4 5 6 7 8
|
|
||||||
// dir 1 1 2 2 3 3 4 4 0
|
|
||||||
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
|
|
||||||
|
|
||||||
if(dir == 0 and disp == 0)
|
|
||||||
return 8;
|
|
||||||
else // New indexing
|
|
||||||
return (1 - disp) / 2 * 4 + dir - base;
|
|
||||||
// else // Old indexing
|
|
||||||
// return (4 * (dir - base) + 1 - disp) / 2;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
/////////////////////////////////////////////////////////////////
|
|
||||||
// Less local equivalent of Geometry class in cartesian case
|
|
||||||
/////////////////////////////////////////////////////////////////
|
|
||||||
class NonLocalStencilGeometry {
|
|
||||||
public:
|
|
||||||
// int depth;
|
|
||||||
int skip;
|
|
||||||
int hops;
|
|
||||||
int npoint;
|
|
||||||
std::vector<Coordinate> shifts;
|
|
||||||
Coordinate stencil_size;
|
|
||||||
Coordinate stencil_lo;
|
|
||||||
Coordinate stencil_hi;
|
|
||||||
GridCartesian *grid;
|
|
||||||
GridCartesian *Grid() {return grid;};
|
|
||||||
int Depth(void){return 1;}; // Ghost zone depth
|
|
||||||
int Hops(void){return hops;}; // # of hops=> level of corner fill in in stencil
|
|
||||||
int DimSkip(void){return skip;};
|
|
||||||
|
|
||||||
virtual ~NonLocalStencilGeometry() {};
|
|
||||||
|
|
||||||
int Reverse(int point)
|
|
||||||
{
|
|
||||||
int Nd = Grid()->Nd();
|
|
||||||
Coordinate shft = shifts[point];
|
|
||||||
Coordinate rev(Nd);
|
|
||||||
for(int mu=0;mu<Nd;mu++) rev[mu]= -shft[mu];
|
|
||||||
for(int p=0;p<npoint;p++){
|
|
||||||
if(rev==shifts[p]){
|
|
||||||
return p;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
assert(0);
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
void BuildShifts(void)
|
|
||||||
{
|
|
||||||
this->shifts.resize(0);
|
|
||||||
int Nd = this->grid->Nd();
|
|
||||||
|
|
||||||
int dd = this->DimSkip();
|
|
||||||
for(int s0=this->stencil_lo[dd+0];s0<=this->stencil_hi[dd+0];s0++){
|
|
||||||
for(int s1=this->stencil_lo[dd+1];s1<=this->stencil_hi[dd+1];s1++){
|
|
||||||
for(int s2=this->stencil_lo[dd+2];s2<=this->stencil_hi[dd+2];s2++){
|
|
||||||
for(int s3=this->stencil_lo[dd+3];s3<=this->stencil_hi[dd+3];s3++){
|
|
||||||
Coordinate sft(Nd,0);
|
|
||||||
sft[dd+0] = s0;
|
|
||||||
sft[dd+1] = s1;
|
|
||||||
sft[dd+2] = s2;
|
|
||||||
sft[dd+3] = s3;
|
|
||||||
int nhops = abs(s0)+abs(s1)+abs(s2)+abs(s3);
|
|
||||||
if(nhops<=this->hops) this->shifts.push_back(sft);
|
|
||||||
}}}}
|
|
||||||
this->npoint = this->shifts.size();
|
|
||||||
std::cout << GridLogMessage << "NonLocalStencilGeometry has "<< this->npoint << " terms in stencil "<<std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
NonLocalStencilGeometry(GridCartesian *_coarse_grid,int _hops,int _skip) : grid(_coarse_grid), hops(_hops), skip(_skip)
|
|
||||||
{
|
|
||||||
Coordinate latt = grid->GlobalDimensions();
|
|
||||||
stencil_size.resize(grid->Nd());
|
|
||||||
stencil_lo.resize(grid->Nd());
|
|
||||||
stencil_hi.resize(grid->Nd());
|
|
||||||
for(int d=0;d<grid->Nd();d++){
|
|
||||||
if ( latt[d] == 1 ) {
|
|
||||||
stencil_lo[d] = 0;
|
|
||||||
stencil_hi[d] = 0;
|
|
||||||
stencil_size[d]= 1;
|
|
||||||
} else if ( latt[d] == 2 ) {
|
|
||||||
stencil_lo[d] = -1;
|
|
||||||
stencil_hi[d] = 0;
|
|
||||||
stencil_size[d]= 2;
|
|
||||||
} else if ( latt[d] > 2 ) {
|
|
||||||
stencil_lo[d] = -1;
|
|
||||||
stencil_hi[d] = 1;
|
|
||||||
stencil_size[d]= 3;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
this->BuildShifts();
|
|
||||||
};
|
|
||||||
|
|
||||||
};
|
|
||||||
|
|
||||||
// Need to worry about red-black now
|
|
||||||
class NonLocalStencilGeometry4D : public NonLocalStencilGeometry {
|
|
||||||
public:
|
|
||||||
virtual int DerivedDimSkip(void) { return 0;};
|
|
||||||
NonLocalStencilGeometry4D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,0) { };
|
|
||||||
virtual ~NonLocalStencilGeometry4D() {};
|
|
||||||
};
|
|
||||||
class NonLocalStencilGeometry5D : public NonLocalStencilGeometry {
|
|
||||||
public:
|
|
||||||
virtual int DerivedDimSkip(void) { return 1; };
|
|
||||||
NonLocalStencilGeometry5D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,1) { };
|
|
||||||
virtual ~NonLocalStencilGeometry5D() {};
|
|
||||||
};
|
|
||||||
/*
|
|
||||||
* Bunch of different options classes
|
|
||||||
*/
|
|
||||||
class NextToNextToNextToNearestStencilGeometry4D : public NonLocalStencilGeometry4D {
|
|
||||||
public:
|
|
||||||
NextToNextToNextToNearestStencilGeometry4D(GridCartesian *Coarse) : NonLocalStencilGeometry4D(Coarse,4)
|
|
||||||
{
|
|
||||||
};
|
|
||||||
};
|
|
||||||
class NextToNextToNextToNearestStencilGeometry5D : public NonLocalStencilGeometry5D {
|
|
||||||
public:
|
|
||||||
NextToNextToNextToNearestStencilGeometry5D(GridCartesian *Coarse) : NonLocalStencilGeometry5D(Coarse,4)
|
|
||||||
{
|
|
||||||
};
|
|
||||||
};
|
|
||||||
class NextToNearestStencilGeometry4D : public NonLocalStencilGeometry4D {
|
|
||||||
public:
|
|
||||||
NextToNearestStencilGeometry4D(GridCartesian *Coarse) : NonLocalStencilGeometry4D(Coarse,2)
|
|
||||||
{
|
|
||||||
};
|
|
||||||
};
|
|
||||||
class NextToNearestStencilGeometry5D : public NonLocalStencilGeometry5D {
|
|
||||||
public:
|
|
||||||
NextToNearestStencilGeometry5D(GridCartesian *Coarse) : NonLocalStencilGeometry5D(Coarse,2)
|
|
||||||
{
|
|
||||||
};
|
|
||||||
};
|
|
||||||
class NearestStencilGeometry4D : public NonLocalStencilGeometry4D {
|
|
||||||
public:
|
|
||||||
NearestStencilGeometry4D(GridCartesian *Coarse) : NonLocalStencilGeometry4D(Coarse,1)
|
|
||||||
{
|
|
||||||
};
|
|
||||||
};
|
|
||||||
class NearestStencilGeometry5D : public NonLocalStencilGeometry5D {
|
|
||||||
public:
|
|
||||||
NearestStencilGeometry5D(GridCartesian *Coarse) : NonLocalStencilGeometry5D(Coarse,1)
|
|
||||||
{
|
|
||||||
};
|
|
||||||
};
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
|
@ -1,35 +0,0 @@
|
|||||||
/*************************************************************************************
|
|
||||||
|
|
||||||
Grid physics library, www.github.com/paboyle/Grid
|
|
||||||
|
|
||||||
Source file: Grid/algorithms/multigrid/MultiGrid.h
|
|
||||||
|
|
||||||
Copyright (C) 2023
|
|
||||||
|
|
||||||
Author: Peter Boyle <pboyle@bnl.gov>
|
|
||||||
|
|
||||||
This program is free software; you can redistribute it and/or modify
|
|
||||||
it under the terms of the GNU General Public License as published by
|
|
||||||
the Free Software Foundation; either version 2 of the License, or
|
|
||||||
(at your option) any later version.
|
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License along
|
|
||||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
||||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
||||||
|
|
||||||
See the full license in the file "LICENSE" in the top level distribution directory
|
|
||||||
*************************************************************************************/
|
|
||||||
/* END LEGAL */
|
|
||||||
#pragma once
|
|
||||||
|
|
||||||
#include <Grid/algorithms/multigrid/Aggregates.h>
|
|
||||||
#include <Grid/algorithms/multigrid/Geometry.h>
|
|
||||||
#include <Grid/algorithms/multigrid/BatchedBlas.h>
|
|
||||||
#include <Grid/algorithms/multigrid/CoarsenedMatrix.h>
|
|
||||||
#include <Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h>
|
|
||||||
#include <Grid/algorithms/multigrid/GeneralCoarsenedMatrixMultiRHS.h>
|
|
@ -175,56 +175,8 @@ template<class T> using cshiftAllocator = std::allocator<T>;
|
|||||||
|
|
||||||
template<class T> using Vector = std::vector<T,uvmAllocator<T> >;
|
template<class T> using Vector = std::vector<T,uvmAllocator<T> >;
|
||||||
template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;
|
template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;
|
||||||
template<class T> using commVector = std::vector<T,devAllocator<T> >;
|
template<class T> using commVector = std::vector<T,devAllocator<T> >;
|
||||||
template<class T> using deviceVector = std::vector<T,devAllocator<T> >;
|
template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >;
|
||||||
template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >;
|
|
||||||
|
|
||||||
/*
|
|
||||||
template<class T> class vecView
|
|
||||||
{
|
|
||||||
protected:
|
|
||||||
T * data;
|
|
||||||
uint64_t size;
|
|
||||||
ViewMode mode;
|
|
||||||
void * cpu_ptr;
|
|
||||||
public:
|
|
||||||
accelerator_inline T & operator[](size_t i) const { return this->data[i]; };
|
|
||||||
vecView(std::vector<T> &refer_to_me,ViewMode _mode)
|
|
||||||
{
|
|
||||||
cpu_ptr = &refer_to_me[0];
|
|
||||||
size = refer_to_me.size();
|
|
||||||
mode = _mode;
|
|
||||||
data =(T *) MemoryManager::ViewOpen(cpu_ptr,
|
|
||||||
size*sizeof(T),
|
|
||||||
mode,
|
|
||||||
AdviseDefault);
|
|
||||||
}
|
|
||||||
void ViewClose(void)
|
|
||||||
{ // Inform the manager
|
|
||||||
MemoryManager::ViewClose(this->cpu_ptr,this->mode);
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
template<class T> vecView<T> VectorView(std::vector<T> &vec,ViewMode _mode)
|
|
||||||
{
|
|
||||||
vecView<T> ret(vec,_mode); // does the open
|
|
||||||
return ret; // must be closed
|
|
||||||
}
|
|
||||||
|
|
||||||
// Little autoscope assister
|
|
||||||
template<class View>
|
|
||||||
class VectorViewCloser
|
|
||||||
{
|
|
||||||
View v; // Take a copy of view and call view close when I go out of scope automatically
|
|
||||||
public:
|
|
||||||
VectorViewCloser(View &_v) : v(_v) {};
|
|
||||||
~VectorViewCloser() { auto ptr = v.cpu_ptr; v.ViewClose(); MemoryManager::NotifyDeletion(ptr);}
|
|
||||||
};
|
|
||||||
|
|
||||||
#define autoVecView(v_v,v,mode) \
|
|
||||||
auto v_v = VectorView(v,mode); \
|
|
||||||
ViewCloser<decltype(v_v)> _autoView##v_v(v_v);
|
|
||||||
*/
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
|
||||||
|
@ -209,9 +209,9 @@ private:
|
|||||||
static void CpuViewClose(uint64_t Ptr);
|
static void CpuViewClose(uint64_t Ptr);
|
||||||
static uint64_t CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
|
static uint64_t CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
|
||||||
#endif
|
#endif
|
||||||
|
static void NotifyDeletion(void * CpuPtr);
|
||||||
|
|
||||||
public:
|
public:
|
||||||
static void NotifyDeletion(void * CpuPtr);
|
|
||||||
static void Print(void);
|
static void Print(void);
|
||||||
static void PrintAll(void);
|
static void PrintAll(void);
|
||||||
static void PrintState( void* CpuPtr);
|
static void PrintState( void* CpuPtr);
|
||||||
|
@ -8,7 +8,7 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
static char print_buffer [ MAXLINE ];
|
static char print_buffer [ MAXLINE ];
|
||||||
|
|
||||||
#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer;
|
#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer;
|
||||||
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug << print_buffer;
|
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer;
|
||||||
//#define dprintf(...)
|
//#define dprintf(...)
|
||||||
|
|
||||||
|
|
||||||
@ -111,7 +111,7 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
|
|||||||
///////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////
|
||||||
assert(AccCache.state!=Empty);
|
assert(AccCache.state!=Empty);
|
||||||
|
|
||||||
dprintf("MemoryManager: Discard(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
|
mprintf("MemoryManager: Discard(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
|
||||||
assert(AccCache.accLock==0);
|
assert(AccCache.accLock==0);
|
||||||
assert(AccCache.cpuLock==0);
|
assert(AccCache.cpuLock==0);
|
||||||
assert(AccCache.CpuPtr!=(uint64_t)NULL);
|
assert(AccCache.CpuPtr!=(uint64_t)NULL);
|
||||||
@ -141,7 +141,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
|
|||||||
///////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////
|
||||||
assert(AccCache.state!=Empty);
|
assert(AccCache.state!=Empty);
|
||||||
|
|
||||||
mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld\n",
|
mprintf("MemoryManager: Evict cpu %lx acc %lx cpuLock %ld accLock %ld\n",
|
||||||
(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr,
|
(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr,
|
||||||
(uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock);
|
(uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock);
|
||||||
if (AccCache.accLock!=0) return;
|
if (AccCache.accLock!=0) return;
|
||||||
@ -155,7 +155,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
|
|||||||
AccCache.AccPtr=(uint64_t)NULL;
|
AccCache.AccPtr=(uint64_t)NULL;
|
||||||
AccCache.state=CpuDirty; // CPU primary now
|
AccCache.state=CpuDirty; // CPU primary now
|
||||||
DeviceBytes -=AccCache.bytes;
|
DeviceBytes -=AccCache.bytes;
|
||||||
dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);
|
dprintf("MemoryManager: Free(%lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);
|
||||||
}
|
}
|
||||||
// uint64_t CpuPtr = AccCache.CpuPtr;
|
// uint64_t CpuPtr = AccCache.CpuPtr;
|
||||||
DeviceEvictions++;
|
DeviceEvictions++;
|
||||||
@ -169,7 +169,7 @@ void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
|
|||||||
assert(AccCache.AccPtr!=(uint64_t)NULL);
|
assert(AccCache.AccPtr!=(uint64_t)NULL);
|
||||||
assert(AccCache.CpuPtr!=(uint64_t)NULL);
|
assert(AccCache.CpuPtr!=(uint64_t)NULL);
|
||||||
acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
|
acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
|
||||||
mprintf("MemoryManager: acceleratorCopyFromDevice Flush AccPtr %lx -> CpuPtr %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
|
mprintf("MemoryManager: Flush %lx -> %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
|
||||||
DeviceToHostBytes+=AccCache.bytes;
|
DeviceToHostBytes+=AccCache.bytes;
|
||||||
DeviceToHostXfer++;
|
DeviceToHostXfer++;
|
||||||
AccCache.state=Consistent;
|
AccCache.state=Consistent;
|
||||||
@ -184,7 +184,7 @@ void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
|
|||||||
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
|
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
|
||||||
DeviceBytes+=AccCache.bytes;
|
DeviceBytes+=AccCache.bytes;
|
||||||
}
|
}
|
||||||
mprintf("MemoryManager: acceleratorCopyToDevice Clone AccPtr %lx <- CpuPtr %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
|
mprintf("MemoryManager: Clone %lx <- %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
|
||||||
acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
|
acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
|
||||||
HostToDeviceBytes+=AccCache.bytes;
|
HostToDeviceBytes+=AccCache.bytes;
|
||||||
HostToDeviceXfer++;
|
HostToDeviceXfer++;
|
||||||
|
@ -70,8 +70,8 @@ public:
|
|||||||
Coordinate _istride; // Inner stride i.e. within simd lane
|
Coordinate _istride; // Inner stride i.e. within simd lane
|
||||||
int _osites; // _isites*_osites = product(dimensions).
|
int _osites; // _isites*_osites = product(dimensions).
|
||||||
int _isites;
|
int _isites;
|
||||||
int64_t _fsites; // _isites*_osites = product(dimensions).
|
int _fsites; // _isites*_osites = product(dimensions).
|
||||||
int64_t _gsites;
|
int _gsites;
|
||||||
Coordinate _slice_block;// subslice information
|
Coordinate _slice_block;// subslice information
|
||||||
Coordinate _slice_stride;
|
Coordinate _slice_stride;
|
||||||
Coordinate _slice_nblock;
|
Coordinate _slice_nblock;
|
||||||
@ -183,7 +183,7 @@ public:
|
|||||||
inline int Nsimd(void) const { return _isites; };// Synonymous with iSites
|
inline int Nsimd(void) const { return _isites; };// Synonymous with iSites
|
||||||
inline int oSites(void) const { return _osites; };
|
inline int oSites(void) const { return _osites; };
|
||||||
inline int lSites(void) const { return _isites*_osites; };
|
inline int lSites(void) const { return _isites*_osites; };
|
||||||
inline int64_t gSites(void) const { return (int64_t)_isites*(int64_t)_osites*(int64_t)_Nprocessors; };
|
inline int gSites(void) const { return _isites*_osites*_Nprocessors; };
|
||||||
inline int Nd (void) const { return _ndimension;};
|
inline int Nd (void) const { return _ndimension;};
|
||||||
|
|
||||||
inline const Coordinate LocalStarts(void) { return _lstart; };
|
inline const Coordinate LocalStarts(void) { return _lstart; };
|
||||||
@ -214,7 +214,7 @@ public:
|
|||||||
////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////
|
||||||
// Global addressing
|
// Global addressing
|
||||||
////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////
|
||||||
void GlobalIndexToGlobalCoor(int64_t gidx,Coordinate &gcoor){
|
void GlobalIndexToGlobalCoor(int gidx,Coordinate &gcoor){
|
||||||
assert(gidx< gSites());
|
assert(gidx< gSites());
|
||||||
Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
|
Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
|
||||||
}
|
}
|
||||||
@ -222,7 +222,7 @@ public:
|
|||||||
assert(lidx<lSites());
|
assert(lidx<lSites());
|
||||||
Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
|
Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
|
||||||
}
|
}
|
||||||
void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int64_t & gidx){
|
void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int & gidx){
|
||||||
gidx=0;
|
gidx=0;
|
||||||
int mult=1;
|
int mult=1;
|
||||||
for(int mu=0;mu<_ndimension;mu++) {
|
for(int mu=0;mu<_ndimension;mu++) {
|
||||||
|
@ -138,14 +138,6 @@ public:
|
|||||||
////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////
|
||||||
// Face exchange, buffer swap in translational invariant way
|
// Face exchange, buffer swap in translational invariant way
|
||||||
////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////
|
||||||
void CommsComplete(std::vector<CommsRequest_t> &list);
|
|
||||||
void SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
|
||||||
void *xmit,
|
|
||||||
int dest,
|
|
||||||
void *recv,
|
|
||||||
int from,
|
|
||||||
int bytes,int dir);
|
|
||||||
|
|
||||||
void SendToRecvFrom(void *xmit,
|
void SendToRecvFrom(void *xmit,
|
||||||
int xmit_to_rank,
|
int xmit_to_rank,
|
||||||
void *recv,
|
void *recv,
|
||||||
|
@ -306,44 +306,6 @@ void CartesianCommunicator::GlobalSumVector(double *d,int N)
|
|||||||
int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
|
int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
|
||||||
assert(ierr==0);
|
assert(ierr==0);
|
||||||
}
|
}
|
||||||
|
|
||||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
|
||||||
void *xmit,
|
|
||||||
int dest,
|
|
||||||
void *recv,
|
|
||||||
int from,
|
|
||||||
int bytes,int dir)
|
|
||||||
{
|
|
||||||
MPI_Request xrq;
|
|
||||||
MPI_Request rrq;
|
|
||||||
|
|
||||||
assert(dest != _processor);
|
|
||||||
assert(from != _processor);
|
|
||||||
|
|
||||||
int tag;
|
|
||||||
|
|
||||||
tag= dir+from*32;
|
|
||||||
int ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator,&rrq);
|
|
||||||
assert(ierr==0);
|
|
||||||
list.push_back(rrq);
|
|
||||||
|
|
||||||
tag= dir+_processor*32;
|
|
||||||
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator,&xrq);
|
|
||||||
assert(ierr==0);
|
|
||||||
list.push_back(xrq);
|
|
||||||
}
|
|
||||||
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list)
|
|
||||||
{
|
|
||||||
int nreq=list.size();
|
|
||||||
|
|
||||||
if (nreq==0) return;
|
|
||||||
|
|
||||||
std::vector<MPI_Status> status(nreq);
|
|
||||||
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
|
|
||||||
assert(ierr==0);
|
|
||||||
list.resize(0);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Basic Halo comms primitive
|
// Basic Halo comms primitive
|
||||||
void CartesianCommunicator::SendToRecvFrom(void *xmit,
|
void CartesianCommunicator::SendToRecvFrom(void *xmit,
|
||||||
int dest,
|
int dest,
|
||||||
|
@ -91,17 +91,6 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
|
|||||||
{
|
{
|
||||||
assert(0);
|
assert(0);
|
||||||
}
|
}
|
||||||
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ assert(0);}
|
|
||||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
|
||||||
void *xmit,
|
|
||||||
int dest,
|
|
||||||
void *recv,
|
|
||||||
int from,
|
|
||||||
int bytes,int dir)
|
|
||||||
{
|
|
||||||
assert(0);
|
|
||||||
}
|
|
||||||
|
|
||||||
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes)
|
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes)
|
||||||
{
|
{
|
||||||
bcopy(in,out,bytes*words);
|
bcopy(in,out,bytes*words);
|
||||||
|
@ -604,8 +604,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
|||||||
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
|
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
|
||||||
typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t;
|
typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t;
|
||||||
|
|
||||||
auto zeDevice = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device());
|
auto zeDevice = cl::sycl::get_native<cl::sycl::backend::level_zero>(theGridAccelerator->get_device());
|
||||||
auto zeContext = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context());
|
auto zeContext = cl::sycl::get_native<cl::sycl::backend::level_zero>(theGridAccelerator->get_context());
|
||||||
|
|
||||||
ze_ipc_mem_handle_t ihandle;
|
ze_ipc_mem_handle_t ihandle;
|
||||||
clone_mem_t handle;
|
clone_mem_t handle;
|
||||||
|
@ -47,4 +47,3 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|||||||
#include <Grid/lattice/Lattice_transfer.h>
|
#include <Grid/lattice/Lattice_transfer.h>
|
||||||
#include <Grid/lattice/Lattice_basis.h>
|
#include <Grid/lattice/Lattice_basis.h>
|
||||||
#include <Grid/lattice/Lattice_crc.h>
|
#include <Grid/lattice/Lattice_crc.h>
|
||||||
#include <Grid/lattice/PaddedCell.h>
|
|
||||||
|
@ -345,9 +345,7 @@ GridUnopClass(UnaryNot, Not(a));
|
|||||||
GridUnopClass(UnaryTrace, trace(a));
|
GridUnopClass(UnaryTrace, trace(a));
|
||||||
GridUnopClass(UnaryTranspose, transpose(a));
|
GridUnopClass(UnaryTranspose, transpose(a));
|
||||||
GridUnopClass(UnaryTa, Ta(a));
|
GridUnopClass(UnaryTa, Ta(a));
|
||||||
GridUnopClass(UnarySpTa, SpTa(a));
|
|
||||||
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
|
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
|
||||||
GridUnopClass(UnaryProjectOnSpGroup, ProjectOnSpGroup(a));
|
|
||||||
GridUnopClass(UnaryTimesI, timesI(a));
|
GridUnopClass(UnaryTimesI, timesI(a));
|
||||||
GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
|
GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
|
||||||
GridUnopClass(UnaryAbs, abs(a));
|
GridUnopClass(UnaryAbs, abs(a));
|
||||||
@ -458,9 +456,7 @@ GRID_DEF_UNOP(operator!, UnaryNot);
|
|||||||
GRID_DEF_UNOP(trace, UnaryTrace);
|
GRID_DEF_UNOP(trace, UnaryTrace);
|
||||||
GRID_DEF_UNOP(transpose, UnaryTranspose);
|
GRID_DEF_UNOP(transpose, UnaryTranspose);
|
||||||
GRID_DEF_UNOP(Ta, UnaryTa);
|
GRID_DEF_UNOP(Ta, UnaryTa);
|
||||||
GRID_DEF_UNOP(SpTa, UnarySpTa);
|
|
||||||
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
|
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
|
||||||
GRID_DEF_UNOP(ProjectOnSpGroup, UnaryProjectOnSpGroup);
|
|
||||||
GRID_DEF_UNOP(timesI, UnaryTimesI);
|
GRID_DEF_UNOP(timesI, UnaryTimesI);
|
||||||
GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
|
GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
|
||||||
GRID_DEF_UNOP(abs, UnaryAbs); // abs overloaded in cmath C++98; DON'T do the
|
GRID_DEF_UNOP(abs, UnaryAbs); // abs overloaded in cmath C++98; DON'T do the
|
||||||
|
@ -360,7 +360,7 @@ public:
|
|||||||
|
|
||||||
template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
|
template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
|
||||||
typedef typename vobj::scalar_object sobj;
|
typedef typename vobj::scalar_object sobj;
|
||||||
for(int64_t g=0;g<o.Grid()->_gsites;g++){
|
for(int g=0;g<o.Grid()->_gsites;g++){
|
||||||
|
|
||||||
Coordinate gcoor;
|
Coordinate gcoor;
|
||||||
o.Grid()->GlobalIndexToGlobalCoor(g,gcoor);
|
o.Grid()->GlobalIndexToGlobalCoor(g,gcoor);
|
||||||
|
@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
template<class vobj> void DumpSliceNorm(std::string s,const Lattice<vobj> &f,int mu=-1)
|
template<class vobj> void DumpSliceNorm(std::string s,Lattice<vobj> &f,int mu=-1)
|
||||||
{
|
{
|
||||||
auto ff = localNorm2(f);
|
auto ff = localNorm2(f);
|
||||||
if ( mu==-1 ) mu = f.Grid()->Nd()-1;
|
if ( mu==-1 ) mu = f.Grid()->Nd()-1;
|
||||||
|
@ -203,27 +203,6 @@ template<class vobj> inline RealD norm2(const Lattice<vobj> &arg){
|
|||||||
return real(nrm);
|
return real(nrm);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
template<class Op,class T1>
|
|
||||||
inline auto norm2(const LatticeUnaryExpression<Op,T1> & expr) ->RealD
|
|
||||||
{
|
|
||||||
return norm2(closure(expr));
|
|
||||||
}
|
|
||||||
|
|
||||||
template<class Op,class T1,class T2>
|
|
||||||
inline auto norm2(const LatticeBinaryExpression<Op,T1,T2> & expr) ->RealD
|
|
||||||
{
|
|
||||||
return norm2(closure(expr));
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
template<class Op,class T1,class T2,class T3>
|
|
||||||
inline auto norm2(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr) ->RealD
|
|
||||||
{
|
|
||||||
return norm2(closure(expr));
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
//The global maximum of the site norm2
|
//The global maximum of the site norm2
|
||||||
template<class vobj> inline RealD maxLocalNorm2(const Lattice<vobj> &arg)
|
template<class vobj> inline RealD maxLocalNorm2(const Lattice<vobj> &arg)
|
||||||
{
|
{
|
||||||
|
@ -30,7 +30,7 @@ int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &
|
|||||||
cudaGetDevice(&device);
|
cudaGetDevice(&device);
|
||||||
#endif
|
#endif
|
||||||
#ifdef GRID_HIP
|
#ifdef GRID_HIP
|
||||||
auto discard=hipGetDevice(&device);
|
hipGetDevice(&device);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
Iterator warpSize = gpu_props[device].warpSize;
|
Iterator warpSize = gpu_props[device].warpSize;
|
||||||
|
@ -361,14 +361,9 @@ public:
|
|||||||
_bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
|
_bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
|
||||||
_uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
|
_uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
|
||||||
}
|
}
|
||||||
template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist)
|
|
||||||
{
|
template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist){
|
||||||
if ( l.Grid()->_isCheckerBoarded ) {
|
|
||||||
Lattice<vobj> tmp(_grid);
|
|
||||||
fill(tmp,dist);
|
|
||||||
pickCheckerboard(l.Checkerboard(),l,tmp);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
typedef typename vobj::scalar_object scalar_object;
|
typedef typename vobj::scalar_object scalar_object;
|
||||||
typedef typename vobj::scalar_type scalar_type;
|
typedef typename vobj::scalar_type scalar_type;
|
||||||
typedef typename vobj::vector_type vector_type;
|
typedef typename vobj::vector_type vector_type;
|
||||||
@ -432,7 +427,7 @@ public:
|
|||||||
#if 1
|
#if 1
|
||||||
thread_for( lidx, _grid->lSites(), {
|
thread_for( lidx, _grid->lSites(), {
|
||||||
|
|
||||||
int64_t gidx;
|
int gidx;
|
||||||
int o_idx;
|
int o_idx;
|
||||||
int i_idx;
|
int i_idx;
|
||||||
int rank;
|
int rank;
|
||||||
|
@ -66,65 +66,6 @@ inline auto TraceIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<
|
|||||||
return ret;
|
return ret;
|
||||||
};
|
};
|
||||||
|
|
||||||
template<int N, class Vec>
|
|
||||||
Lattice<iScalar<iScalar<iScalar<Vec> > > > Determinant(const Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu)
|
|
||||||
{
|
|
||||||
GridBase *grid=Umu.Grid();
|
|
||||||
auto lvol = grid->lSites();
|
|
||||||
Lattice<iScalar<iScalar<iScalar<Vec> > > > ret(grid);
|
|
||||||
typedef typename Vec::scalar_type scalar;
|
|
||||||
autoView(Umu_v,Umu,CpuRead);
|
|
||||||
autoView(ret_v,ret,CpuWrite);
|
|
||||||
thread_for(site,lvol,{
|
|
||||||
Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
|
|
||||||
Coordinate lcoor;
|
|
||||||
grid->LocalIndexToLocalCoor(site, lcoor);
|
|
||||||
iScalar<iScalar<iMatrix<scalar, N> > > Us;
|
|
||||||
peekLocalSite(Us, Umu_v, lcoor);
|
|
||||||
for(int i=0;i<N;i++){
|
|
||||||
for(int j=0;j<N;j++){
|
|
||||||
scalar tmp= Us()()(i,j);
|
|
||||||
ComplexD ztmp(real(tmp),imag(tmp));
|
|
||||||
EigenU(i,j)=ztmp;
|
|
||||||
}}
|
|
||||||
ComplexD detD = EigenU.determinant();
|
|
||||||
typename Vec::scalar_type det(detD.real(),detD.imag());
|
|
||||||
pokeLocalSite(det,ret_v,lcoor);
|
|
||||||
});
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
|
|
||||||
template<int N>
|
|
||||||
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > Inverse(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu)
|
|
||||||
{
|
|
||||||
GridBase *grid=Umu.Grid();
|
|
||||||
auto lvol = grid->lSites();
|
|
||||||
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > ret(grid);
|
|
||||||
|
|
||||||
autoView(Umu_v,Umu,CpuRead);
|
|
||||||
autoView(ret_v,ret,CpuWrite);
|
|
||||||
thread_for(site,lvol,{
|
|
||||||
Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
|
|
||||||
Coordinate lcoor;
|
|
||||||
grid->LocalIndexToLocalCoor(site, lcoor);
|
|
||||||
iScalar<iScalar<iMatrix<ComplexD, N> > > Us;
|
|
||||||
iScalar<iScalar<iMatrix<ComplexD, N> > > Ui;
|
|
||||||
peekLocalSite(Us, Umu_v, lcoor);
|
|
||||||
for(int i=0;i<N;i++){
|
|
||||||
for(int j=0;j<N;j++){
|
|
||||||
EigenU(i,j) = Us()()(i,j);
|
|
||||||
}}
|
|
||||||
Eigen::MatrixXcd EigenUinv = EigenU.inverse();
|
|
||||||
for(int i=0;i<N;i++){
|
|
||||||
for(int j=0;j<N;j++){
|
|
||||||
Ui()()(i,j) = EigenUinv(i,j);
|
|
||||||
}}
|
|
||||||
pokeLocalSite(Ui,ret_v,lcoor);
|
|
||||||
});
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
@ -265,8 +265,8 @@ inline auto localInnerProductD(const Lattice<vobj> &lhs,const Lattice<vobj> &rhs
|
|||||||
////////////////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
template<class vobj,class CComplex,int nbasis,class VLattice>
|
template<class vobj,class CComplex,int nbasis,class VLattice>
|
||||||
inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
|
inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
|
||||||
const Lattice<vobj> &fineData,
|
const Lattice<vobj> &fineData,
|
||||||
const VLattice &Basis)
|
const VLattice &Basis)
|
||||||
{
|
{
|
||||||
GridBase * fine = fineData.Grid();
|
GridBase * fine = fineData.Grid();
|
||||||
GridBase * coarse= coarseData.Grid();
|
GridBase * coarse= coarseData.Grid();
|
||||||
@ -276,65 +276,18 @@ inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
|
|||||||
|
|
||||||
autoView( coarseData_ , coarseData, AcceleratorWrite);
|
autoView( coarseData_ , coarseData, AcceleratorWrite);
|
||||||
autoView( ip_ , ip, AcceleratorWrite);
|
autoView( ip_ , ip, AcceleratorWrite);
|
||||||
RealD t_IP=0;
|
|
||||||
RealD t_co=0;
|
|
||||||
RealD t_za=0;
|
|
||||||
for(int v=0;v<nbasis;v++) {
|
for(int v=0;v<nbasis;v++) {
|
||||||
t_IP-=usecond();
|
|
||||||
blockInnerProductD(ip,Basis[v],fineDataRed); // ip = <basis|fine>
|
blockInnerProductD(ip,Basis[v],fineDataRed); // ip = <basis|fine>
|
||||||
t_IP+=usecond();
|
|
||||||
t_co-=usecond();
|
|
||||||
accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
|
accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
|
||||||
convertType(coarseData_[sc](v),ip_[sc]);
|
convertType(coarseData_[sc](v),ip_[sc]);
|
||||||
});
|
});
|
||||||
t_co+=usecond();
|
|
||||||
|
|
||||||
// improve numerical stability of projection
|
// improve numerical stability of projection
|
||||||
// |fine> = |fine> - <basis|fine> |basis>
|
// |fine> = |fine> - <basis|fine> |basis>
|
||||||
ip=-ip;
|
ip=-ip;
|
||||||
t_za-=usecond();
|
|
||||||
blockZAXPY(fineDataRed,ip,Basis[v],fineDataRed);
|
blockZAXPY(fineDataRed,ip,Basis[v],fineDataRed);
|
||||||
t_za+=usecond();
|
|
||||||
}
|
}
|
||||||
// std::cout << GridLogPerformance << " blockProject : blockInnerProduct : "<<t_IP<<" us"<<std::endl;
|
|
||||||
// std::cout << GridLogPerformance << " blockProject : conv : "<<t_co<<" us"<<std::endl;
|
|
||||||
// std::cout << GridLogPerformance << " blockProject : blockZaxpy : "<<t_za<<" us"<<std::endl;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
template<class vobj,class CComplex,int nbasis,class VLattice>
|
|
||||||
inline void blockProjectFast(Lattice<iVector<CComplex,nbasis > > &coarseData,
|
|
||||||
const Lattice<vobj> &fineData,
|
|
||||||
const VLattice &Basis)
|
|
||||||
{
|
|
||||||
GridBase * fine = fineData.Grid();
|
|
||||||
GridBase * coarse= coarseData.Grid();
|
|
||||||
|
|
||||||
Lattice<iScalar<CComplex>> ip(coarse);
|
|
||||||
Lattice<vobj> fineDataRed = fineData;
|
|
||||||
|
|
||||||
autoView( coarseData_ , coarseData, AcceleratorWrite);
|
|
||||||
autoView( ip_ , ip, AcceleratorWrite);
|
|
||||||
RealD t_IP=0;
|
|
||||||
RealD t_co=0;
|
|
||||||
for(int v=0;v<nbasis;v++) {
|
|
||||||
t_IP-=usecond();
|
|
||||||
blockInnerProductD(ip,Basis[v],fineData); // ip = <basis|fine>
|
|
||||||
t_IP+=usecond();
|
|
||||||
t_co-=usecond();
|
|
||||||
accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
|
|
||||||
convertType(coarseData_[sc](v),ip_[sc]);
|
|
||||||
});
|
|
||||||
t_co+=usecond();
|
|
||||||
}
|
|
||||||
// std::cout << GridLogPerformance << " blockProjectFast : blockInnerProduct : "<<t_IP<<" us"<<std::endl;
|
|
||||||
// std::cout << GridLogPerformance << " blockProjectFast : conv : "<<t_co<<" us"<<std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
// This only minimises data motion from CPU to GPU
|
|
||||||
// there is chance of better implementation that does a vxk loop of inner products to data share
|
|
||||||
// at the GPU thread level
|
|
||||||
template<class vobj,class CComplex,int nbasis,class VLattice>
|
template<class vobj,class CComplex,int nbasis,class VLattice>
|
||||||
inline void batchBlockProject(std::vector<Lattice<iVector<CComplex,nbasis>>> &coarseData,
|
inline void batchBlockProject(std::vector<Lattice<iVector<CComplex,nbasis>>> &coarseData,
|
||||||
const std::vector<Lattice<vobj>> &fineData,
|
const std::vector<Lattice<vobj>> &fineData,
|
||||||
@ -440,15 +393,8 @@ template<class vobj,class CComplex>
|
|||||||
Lattice<dotp> coarse_inner(coarse);
|
Lattice<dotp> coarse_inner(coarse);
|
||||||
|
|
||||||
// Precision promotion
|
// Precision promotion
|
||||||
RealD t;
|
|
||||||
t=-usecond();
|
|
||||||
fine_inner = localInnerProductD<vobj>(fineX,fineY);
|
fine_inner = localInnerProductD<vobj>(fineX,fineY);
|
||||||
// t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : localInnerProductD "<<t<<" us"<<std::endl;
|
|
||||||
|
|
||||||
t=-usecond();
|
|
||||||
blockSum(coarse_inner,fine_inner);
|
blockSum(coarse_inner,fine_inner);
|
||||||
// t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : blockSum "<<t<<" us"<<std::endl;
|
|
||||||
t=-usecond();
|
|
||||||
{
|
{
|
||||||
autoView( CoarseInner_ , CoarseInner,AcceleratorWrite);
|
autoView( CoarseInner_ , CoarseInner,AcceleratorWrite);
|
||||||
autoView( coarse_inner_ , coarse_inner,AcceleratorRead);
|
autoView( coarse_inner_ , coarse_inner,AcceleratorRead);
|
||||||
@ -456,7 +402,6 @@ template<class vobj,class CComplex>
|
|||||||
convertType(CoarseInner_[ss], TensorRemove(coarse_inner_[ss]));
|
convertType(CoarseInner_[ss], TensorRemove(coarse_inner_[ss]));
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
// t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : convertType "<<t<<" us"<<std::endl;
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -499,9 +444,6 @@ inline void blockNormalise(Lattice<CComplex> &ip,Lattice<vobj> &fineX)
|
|||||||
template<class vobj>
|
template<class vobj>
|
||||||
inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
|
inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
|
||||||
{
|
{
|
||||||
const int maxsubsec=256;
|
|
||||||
typedef iVector<vobj,maxsubsec> vSubsec;
|
|
||||||
|
|
||||||
GridBase * fine = fineData.Grid();
|
GridBase * fine = fineData.Grid();
|
||||||
GridBase * coarse= coarseData.Grid();
|
GridBase * coarse= coarseData.Grid();
|
||||||
|
|
||||||
@ -521,62 +463,37 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
|
|||||||
autoView( coarseData_ , coarseData, AcceleratorWrite);
|
autoView( coarseData_ , coarseData, AcceleratorWrite);
|
||||||
autoView( fineData_ , fineData, AcceleratorRead);
|
autoView( fineData_ , fineData, AcceleratorRead);
|
||||||
|
|
||||||
auto coarseData_p = &coarseData_[0];
|
auto coarseData_p = &coarseData_[0];
|
||||||
auto fineData_p = &fineData_[0];
|
auto fineData_p = &fineData_[0];
|
||||||
|
|
||||||
Coordinate fine_rdimensions = fine->_rdimensions;
|
Coordinate fine_rdimensions = fine->_rdimensions;
|
||||||
Coordinate coarse_rdimensions = coarse->_rdimensions;
|
Coordinate coarse_rdimensions = coarse->_rdimensions;
|
||||||
|
|
||||||
vobj zz = Zero();
|
vobj zz = Zero();
|
||||||
|
|
||||||
// Somewhat lazy calculation
|
|
||||||
// Find the biggest power of two subsection divisor less than or equal to maxsubsec
|
|
||||||
int subsec=maxsubsec;
|
|
||||||
int subvol;
|
|
||||||
subvol=blockVol/subsec;
|
|
||||||
while(subvol*subsec!=blockVol){
|
|
||||||
subsec = subsec/2;
|
|
||||||
subvol=blockVol/subsec;
|
|
||||||
};
|
|
||||||
|
|
||||||
Lattice<vSubsec> coarseTmp(coarse);
|
|
||||||
autoView( coarseTmp_, coarseTmp, AcceleratorWriteDiscard);
|
|
||||||
auto coarseTmp_p= &coarseTmp_[0];
|
|
||||||
|
|
||||||
// Sum within subsecs in a first kernel
|
accelerator_for(sc,coarse->oSites(),1,{
|
||||||
accelerator_for(sce,subsec*coarse->oSites(),vobj::Nsimd(),{
|
|
||||||
|
|
||||||
int sc=sce/subsec;
|
|
||||||
int e=sce%subsec;
|
|
||||||
|
|
||||||
// One thread per sub block
|
// One thread per sub block
|
||||||
Coordinate coor_c(_ndimension);
|
Coordinate coor_c(_ndimension);
|
||||||
Lexicographic::CoorFromIndex(coor_c,sc,coarse_rdimensions); // Block coordinate
|
Lexicographic::CoorFromIndex(coor_c,sc,coarse_rdimensions); // Block coordinate
|
||||||
|
|
||||||
auto cd = coalescedRead(zz);
|
vobj cd = zz;
|
||||||
for(int sb=e*subvol;sb<MIN((e+1)*subvol,blockVol);sb++){
|
|
||||||
|
for(int sb=0;sb<blockVol;sb++){
|
||||||
|
|
||||||
int sf;
|
int sf;
|
||||||
Coordinate coor_b(_ndimension);
|
Coordinate coor_b(_ndimension);
|
||||||
Coordinate coor_f(_ndimension);
|
Coordinate coor_f(_ndimension);
|
||||||
Lexicographic::CoorFromIndex(coor_b,sb,block_r); // Block sub coordinate
|
Lexicographic::CoorFromIndex(coor_b,sb,block_r); // Block sub coordinate
|
||||||
for(int d=0;d<_ndimension;d++) coor_f[d]=coor_c[d]*block_r[d] + coor_b[d];
|
for(int d=0;d<_ndimension;d++) coor_f[d]=coor_c[d]*block_r[d] + coor_b[d];
|
||||||
Lexicographic::IndexFromCoor(coor_f,sf,fine_rdimensions);
|
Lexicographic::IndexFromCoor(coor_f,sf,fine_rdimensions);
|
||||||
|
|
||||||
cd=cd+coalescedRead(fineData_p[sf]);
|
cd=cd+fineData_p[sf];
|
||||||
}
|
}
|
||||||
|
|
||||||
coalescedWrite(coarseTmp_[sc](e),cd);
|
coarseData_p[sc] = cd;
|
||||||
|
|
||||||
});
|
});
|
||||||
// Sum across subsecs in a second kernel
|
|
||||||
accelerator_for(sc,coarse->oSites(),vobj::Nsimd(),{
|
|
||||||
auto cd = coalescedRead(coarseTmp_p[sc](0));
|
|
||||||
for(int e=1;e<subsec;e++){
|
|
||||||
cd=cd+coalescedRead(coarseTmp_p[sc](e));
|
|
||||||
}
|
|
||||||
coalescedWrite(coarseData_p[sc],cd);
|
|
||||||
});
|
|
||||||
|
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -633,7 +550,7 @@ inline void blockOrthogonalise(Lattice<CComplex> &ip,std::vector<Lattice<vobj> >
|
|||||||
blockOrthonormalize(ip,Basis);
|
blockOrthonormalize(ip,Basis);
|
||||||
}
|
}
|
||||||
|
|
||||||
#ifdef GRID_ACCELERATED
|
#if 0
|
||||||
// TODO: CPU optimized version here
|
// TODO: CPU optimized version here
|
||||||
template<class vobj,class CComplex,int nbasis>
|
template<class vobj,class CComplex,int nbasis>
|
||||||
inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
|
inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
|
||||||
@ -659,37 +576,26 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
|
|||||||
autoView( fineData_ , fineData, AcceleratorWrite);
|
autoView( fineData_ , fineData, AcceleratorWrite);
|
||||||
autoView( coarseData_ , coarseData, AcceleratorRead);
|
autoView( coarseData_ , coarseData, AcceleratorRead);
|
||||||
|
|
||||||
typedef LatticeView<vobj> Vview;
|
|
||||||
std::vector<Vview> AcceleratorVecViewContainer_h;
|
|
||||||
for(int v=0;v<nbasis;v++) {
|
|
||||||
AcceleratorVecViewContainer_h.push_back(Basis[v].View(AcceleratorRead));
|
|
||||||
}
|
|
||||||
static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(nbasis);
|
|
||||||
acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],nbasis *sizeof(Vview));
|
|
||||||
auto Basis_p = &AcceleratorVecViewContainer[0];
|
|
||||||
// Loop with a cache friendly loop ordering
|
// Loop with a cache friendly loop ordering
|
||||||
Coordinate frdimensions=fine->_rdimensions;
|
accelerator_for(sf,fine->oSites(),1,{
|
||||||
Coordinate crdimensions=coarse->_rdimensions;
|
|
||||||
accelerator_for(sf,fine->oSites(),vobj::Nsimd(),{
|
|
||||||
int sc;
|
int sc;
|
||||||
Coordinate coor_c(_ndimension);
|
Coordinate coor_c(_ndimension);
|
||||||
Coordinate coor_f(_ndimension);
|
Coordinate coor_f(_ndimension);
|
||||||
|
|
||||||
Lexicographic::CoorFromIndex(coor_f,sf,frdimensions);
|
Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
|
||||||
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
|
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
|
||||||
Lexicographic::IndexFromCoor(coor_c,sc,crdimensions);
|
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
|
||||||
|
|
||||||
auto sum= coarseData_(sc)(0) *Basis_p[0](sf);
|
for(int i=0;i<nbasis;i++) {
|
||||||
for(int i=1;i<nbasis;i++) sum = sum + coarseData_(sc)(i)*Basis_p[i](sf);
|
/* auto basis_ = Basis[i], );*/
|
||||||
coalescedWrite(fineData_[sf],sum);
|
if(i==0) fineData_[sf]=coarseData_[sc](i) *basis_[sf]);
|
||||||
|
else fineData_[sf]=fineData_[sf]+coarseData_[sc](i)*basis_[sf]);
|
||||||
|
}
|
||||||
});
|
});
|
||||||
for(int v=0;v<nbasis;v++) {
|
|
||||||
AcceleratorVecViewContainer_h[v].ViewClose();
|
|
||||||
}
|
|
||||||
return;
|
return;
|
||||||
|
|
||||||
}
|
}
|
||||||
#else
|
#else
|
||||||
// CPU version
|
|
||||||
template<class vobj,class CComplex,int nbasis,class VLattice>
|
template<class vobj,class CComplex,int nbasis,class VLattice>
|
||||||
inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
|
inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
|
||||||
Lattice<vobj> &fineData,
|
Lattice<vobj> &fineData,
|
||||||
@ -776,9 +682,8 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
|
|||||||
typedef typename vobj::scalar_type scalar_type;
|
typedef typename vobj::scalar_type scalar_type;
|
||||||
typedef typename vobj::vector_type vector_type;
|
typedef typename vobj::vector_type vector_type;
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
static const int words=sizeof(vobj)/sizeof(vector_type);
|
||||||
// the checks should guarantee that the operations are local
|
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
GridBase *Fg = From.Grid();
|
GridBase *Fg = From.Grid();
|
||||||
GridBase *Tg = To.Grid();
|
GridBase *Tg = To.Grid();
|
||||||
assert(!Fg->_isCheckerBoarded);
|
assert(!Fg->_isCheckerBoarded);
|
||||||
@ -792,48 +697,47 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
|
|||||||
for(int d=0;d<nd;d++){
|
for(int d=0;d<nd;d++){
|
||||||
assert(Fg->_processors[d] == Tg->_processors[d]);
|
assert(Fg->_processors[d] == Tg->_processors[d]);
|
||||||
}
|
}
|
||||||
size_t nsite = 1;
|
|
||||||
for(int i=0;i<nd;i++) nsite *= RegionSize[i];
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
// the above should guarantee that the operations are local
|
||||||
// do the index calc on the GPU
|
Coordinate ldf = Fg->_ldimensions;
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
Coordinate rdf = Fg->_rdimensions;
|
||||||
Coordinate f_ostride = Fg->_ostride;
|
Coordinate isf = Fg->_istride;
|
||||||
Coordinate f_istride = Fg->_istride;
|
Coordinate osf = Fg->_ostride;
|
||||||
Coordinate f_rdimensions = Fg->_rdimensions;
|
Coordinate rdt = Tg->_rdimensions;
|
||||||
Coordinate t_ostride = Tg->_ostride;
|
Coordinate ist = Tg->_istride;
|
||||||
Coordinate t_istride = Tg->_istride;
|
Coordinate ost = Tg->_ostride;
|
||||||
Coordinate t_rdimensions = Tg->_rdimensions;
|
|
||||||
|
|
||||||
typedef typename vobj::vector_type vector_type;
|
autoView( t_v , To, CpuWrite);
|
||||||
typedef typename vobj::scalar_type scalar_type;
|
autoView( f_v , From, CpuRead);
|
||||||
|
thread_for(idx,Fg->lSites(),{
|
||||||
autoView(from_v,From,AcceleratorRead);
|
sobj s;
|
||||||
autoView(to_v,To,AcceleratorWrite);
|
Coordinate Fcoor(nd);
|
||||||
|
Coordinate Tcoor(nd);
|
||||||
const int words=sizeof(vobj)/sizeof(vector_type);
|
Lexicographic::CoorFromIndex(Fcoor,idx,ldf);
|
||||||
accelerator_for(idx,nsite,1,{
|
int in_region=1;
|
||||||
|
for(int d=0;d<nd;d++){
|
||||||
Coordinate from_coor, to_coor, base;
|
if ( (Fcoor[d] < FromLowerLeft[d]) || (Fcoor[d]>=FromLowerLeft[d]+RegionSize[d]) ){
|
||||||
Lexicographic::CoorFromIndex(base,idx,RegionSize);
|
in_region=0;
|
||||||
for(int i=0;i<nd;i++){
|
|
||||||
from_coor[i] = base[i] + FromLowerLeft[i];
|
|
||||||
to_coor[i] = base[i] + ToLowerLeft[i];
|
|
||||||
}
|
}
|
||||||
int from_oidx = 0; for(int d=0;d<nd;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
|
Tcoor[d] = ToLowerLeft[d]+ Fcoor[d]-FromLowerLeft[d];
|
||||||
int from_lane = 0; for(int d=0;d<nd;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
|
}
|
||||||
int to_oidx = 0; for(int d=0;d<nd;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
|
if (in_region) {
|
||||||
int to_lane = 0; for(int d=0;d<nd;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
|
#if 0
|
||||||
|
Integer idx_f = 0; for(int d=0;d<nd;d++) idx_f+=isf[d]*(Fcoor[d]/rdf[d]); // inner index from
|
||||||
const vector_type* from = (const vector_type *)&from_v[from_oidx];
|
Integer idx_t = 0; for(int d=0;d<nd;d++) idx_t+=ist[d]*(Tcoor[d]/rdt[d]); // inner index to
|
||||||
vector_type* to = (vector_type *)&to_v[to_oidx];
|
Integer odx_f = 0; for(int d=0;d<nd;d++) odx_f+=osf[d]*(Fcoor[d]%rdf[d]); // outer index from
|
||||||
|
Integer odx_t = 0; for(int d=0;d<nd;d++) odx_t+=ost[d]*(Tcoor[d]%rdt[d]); // outer index to
|
||||||
scalar_type stmp;
|
scalar_type * fp = (scalar_type *)&f_v[odx_f];
|
||||||
|
scalar_type * tp = (scalar_type *)&t_v[odx_t];
|
||||||
for(int w=0;w<words;w++){
|
for(int w=0;w<words;w++){
|
||||||
stmp = getlane(from[w], from_lane);
|
tp[w].putlane(fp[w].getlane(idx_f),idx_t);
|
||||||
putlane(to[w], stmp, to_lane);
|
|
||||||
}
|
}
|
||||||
});
|
#else
|
||||||
|
peekLocalSite(s,f_v,Fcoor);
|
||||||
|
pokeLocalSite(s,t_v,Tcoor);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@ -925,9 +829,7 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
|
|||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
//FIXME: make this run entirely on GPU
|
|
||||||
//Insert subvolume orthogonal to direction 'orthog' with slice index 'slice_lo' from 'lowDim' onto slice index 'slice_hi' of higherDim
|
|
||||||
//The local dimensions of both 'lowDim' and 'higherDim' orthogonal to 'orthog' should be the same
|
|
||||||
template<class vobj>
|
template<class vobj>
|
||||||
void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
|
void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
|
||||||
{
|
{
|
||||||
@ -949,65 +851,6 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#if 1
|
|
||||||
size_t nsite = lg->lSites()/lg->LocalDimensions()[orthog];
|
|
||||||
size_t tbytes = 4*nsite*sizeof(int);
|
|
||||||
int *table = (int*)malloc(tbytes);
|
|
||||||
|
|
||||||
thread_for(idx,nsite,{
|
|
||||||
Coordinate lcoor(nl);
|
|
||||||
Coordinate hcoor(nh);
|
|
||||||
lcoor[orthog] = slice_lo;
|
|
||||||
hcoor[orthog] = slice_hi;
|
|
||||||
size_t rem = idx;
|
|
||||||
for(int mu=0;mu<nl;mu++){
|
|
||||||
if(mu != orthog){
|
|
||||||
int xmu = rem % lg->LocalDimensions()[mu]; rem /= lg->LocalDimensions()[mu];
|
|
||||||
lcoor[mu] = hcoor[mu] = xmu;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
int loidx = lg->oIndex(lcoor);
|
|
||||||
int liidx = lg->iIndex(lcoor);
|
|
||||||
int hoidx = hg->oIndex(hcoor);
|
|
||||||
int hiidx = hg->iIndex(hcoor);
|
|
||||||
int* tt = table + 4*idx;
|
|
||||||
tt[0] = loidx;
|
|
||||||
tt[1] = liidx;
|
|
||||||
tt[2] = hoidx;
|
|
||||||
tt[3] = hiidx;
|
|
||||||
});
|
|
||||||
|
|
||||||
int* table_d = (int*)acceleratorAllocDevice(tbytes);
|
|
||||||
acceleratorCopyToDevice(table,table_d,tbytes);
|
|
||||||
|
|
||||||
typedef typename vobj::vector_type vector_type;
|
|
||||||
typedef typename vobj::scalar_type scalar_type;
|
|
||||||
|
|
||||||
autoView(lowDim_v,lowDim,AcceleratorRead);
|
|
||||||
autoView(higherDim_v,higherDim,AcceleratorWrite);
|
|
||||||
|
|
||||||
accelerator_for(idx,nsite,1,{
|
|
||||||
static const int words=sizeof(vobj)/sizeof(vector_type);
|
|
||||||
int* tt = table_d + 4*idx;
|
|
||||||
int from_oidx = *tt++;
|
|
||||||
int from_lane = *tt++;
|
|
||||||
int to_oidx = *tt++;
|
|
||||||
int to_lane = *tt;
|
|
||||||
|
|
||||||
const vector_type* from = (const vector_type *)&lowDim_v[from_oidx];
|
|
||||||
vector_type* to = (vector_type *)&higherDim_v[to_oidx];
|
|
||||||
|
|
||||||
scalar_type stmp;
|
|
||||||
for(int w=0;w<words;w++){
|
|
||||||
stmp = getlane(from[w], from_lane);
|
|
||||||
putlane(to[w], stmp, to_lane);
|
|
||||||
}
|
|
||||||
});
|
|
||||||
|
|
||||||
acceleratorFreeDevice(table_d);
|
|
||||||
free(table);
|
|
||||||
|
|
||||||
#else
|
|
||||||
// the above should guarantee that the operations are local
|
// the above should guarantee that the operations are local
|
||||||
autoView(lowDimv,lowDim,CpuRead);
|
autoView(lowDimv,lowDim,CpuRead);
|
||||||
autoView(higherDimv,higherDim,CpuWrite);
|
autoView(higherDimv,higherDim,CpuWrite);
|
||||||
@ -1023,7 +866,6 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
|
|||||||
pokeLocalSite(s,higherDimv,hcoor);
|
pokeLocalSite(s,higherDimv,hcoor);
|
||||||
}
|
}
|
||||||
});
|
});
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@ -1088,7 +930,7 @@ void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine)
|
|||||||
|
|
||||||
Coordinate fcoor(nd);
|
Coordinate fcoor(nd);
|
||||||
Coordinate ccoor(nd);
|
Coordinate ccoor(nd);
|
||||||
for(int64_t g=0;g<fg->gSites();g++){
|
for(int g=0;g<fg->gSites();g++){
|
||||||
|
|
||||||
fg->GlobalIndexToGlobalCoor(g,fcoor);
|
fg->GlobalIndexToGlobalCoor(g,fcoor);
|
||||||
for(int d=0;d<nd;d++){
|
for(int d=0;d<nd;d++){
|
||||||
@ -1774,32 +1616,5 @@ void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
//////////////////////////////////////////////////////
|
|
||||||
// MultiRHS interface support for coarse space
|
|
||||||
// -- Simplest possible implementation to begin with
|
|
||||||
//////////////////////////////////////////////////////
|
|
||||||
template<class vobj,class CComplex,int nbasis,class VLattice>
|
|
||||||
inline void blockProjectMany(Lattice<iVector<CComplex,nbasis > > &coarseIP,
|
|
||||||
Lattice<iVector<CComplex,nbasis > > &coarseTMP,
|
|
||||||
const VLattice &fineData, // Basis and fineData necessarily same type
|
|
||||||
const VLattice &Basis)
|
|
||||||
{
|
|
||||||
for(int r=0;r<fineData.size();r++){
|
|
||||||
blockProject(coarseTMP,fineData[r],Basis);
|
|
||||||
InsertSliceLocal(coarseTMP, coarseIP,r,r,0);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
template<class vobj,class CComplex,int nbasis,class VLattice>
|
|
||||||
inline void blockPromoteMany(Lattice<iVector<CComplex,nbasis > > &coarseIP,
|
|
||||||
Lattice<iVector<CComplex,nbasis > > &coarseTMP,
|
|
||||||
const VLattice &fineData, // Basis and fineData necessarily same type
|
|
||||||
const VLattice &Basis)
|
|
||||||
{
|
|
||||||
for(int r=0;r<fineData.size();r++){
|
|
||||||
ExtractSliceLocal(coarseTMP, coarseIP,r,r,0);
|
|
||||||
blockPromote(coarseTMP,fineData[r],Basis);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
|
||||||
|
@ -26,214 +26,14 @@ Author: Peter Boyle pboyle@bnl.gov
|
|||||||
/* END LEGAL */
|
/* END LEGAL */
|
||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
#include<Grid/cshift/Cshift.h>
|
|
||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
//Allow the user to specify how the C-shift is performed, e.g. to respect the appropriate boundary conditions
|
|
||||||
template<typename vobj>
|
|
||||||
struct CshiftImplBase{
|
|
||||||
virtual Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const = 0;
|
|
||||||
virtual ~CshiftImplBase(){}
|
|
||||||
};
|
|
||||||
template<typename vobj>
|
|
||||||
struct CshiftImplDefault: public CshiftImplBase<vobj>{
|
|
||||||
Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const override{ return Grid::Cshift(in,dir,shift); }
|
|
||||||
};
|
|
||||||
template<typename Gimpl>
|
|
||||||
struct CshiftImplGauge: public CshiftImplBase<typename Gimpl::GaugeLinkField::vector_object>{
|
|
||||||
typename Gimpl::GaugeLinkField Cshift(const typename Gimpl::GaugeLinkField &in, int dir, int shift) const override{ return Gimpl::CshiftLink(in,dir,shift); }
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
/*
|
|
||||||
*
|
|
||||||
* TODO:
|
|
||||||
* -- address elementsof vobj via thread block in Scatter/Gather
|
|
||||||
* -- overlap comms with motion in Face_exchange
|
|
||||||
*
|
|
||||||
*/
|
|
||||||
|
|
||||||
template<class vobj> inline void ScatterSlice(const cshiftVector<vobj> &buf,
|
|
||||||
Lattice<vobj> &lat,
|
|
||||||
int x,
|
|
||||||
int dim,
|
|
||||||
int offset=0)
|
|
||||||
{
|
|
||||||
const int Nsimd=vobj::Nsimd();
|
|
||||||
typedef typename vobj::scalar_object sobj;
|
|
||||||
typedef typename vobj::scalar_type scalar_type;
|
|
||||||
typedef typename vobj::vector_type vector_type;
|
|
||||||
|
|
||||||
GridBase *grid = lat.Grid();
|
|
||||||
Coordinate simd = grid->_simd_layout;
|
|
||||||
int Nd = grid->Nd();
|
|
||||||
int block = grid->_slice_block[dim];
|
|
||||||
int stride = grid->_slice_stride[dim];
|
|
||||||
int nblock = grid->_slice_nblock[dim];
|
|
||||||
int rd = grid->_rdimensions[dim];
|
|
||||||
|
|
||||||
int ox = x%rd;
|
|
||||||
int ix = x/rd;
|
|
||||||
|
|
||||||
int isites = 1; for(int d=0;d<Nd;d++) if( d!=dim) isites*=simd[d];
|
|
||||||
|
|
||||||
Coordinate rsimd= simd; rsimd[dim]=1; // maybe reduce Nsimd
|
|
||||||
|
|
||||||
int rNsimd = 1; for(int d=0;d<Nd;d++) rNsimd*=rsimd[d];
|
|
||||||
int rNsimda= Nsimd/simd[dim]; // should be equal
|
|
||||||
assert(rNsimda==rNsimd);
|
|
||||||
int face_ovol=block*nblock;
|
|
||||||
|
|
||||||
// assert(buf.size()==face_ovol*rNsimd);
|
|
||||||
|
|
||||||
/*This will work GPU ONLY unless rNsimd is put in the lexico index*/
|
|
||||||
//Let's make it work on GPU and then make a special accelerator_for that
|
|
||||||
//doesn't hide the SIMD direction and keeps explicit in the threadIdx
|
|
||||||
//for cross platform
|
|
||||||
// FIXME -- can put internal indices into thread loop
|
|
||||||
auto buf_p = & buf[0];
|
|
||||||
autoView(lat_v, lat, AcceleratorWrite);
|
|
||||||
accelerator_for(ss, face_ovol/simd[dim],Nsimd,{
|
|
||||||
|
|
||||||
// scalar layout won't coalesce
|
|
||||||
#ifdef GRID_SIMT
|
|
||||||
{
|
|
||||||
int blane=acceleratorSIMTlane(Nsimd); // buffer lane
|
|
||||||
#else
|
|
||||||
for(int blane=0;blane<Nsimd;blane++) {
|
|
||||||
#endif
|
|
||||||
int olane=blane%rNsimd; // reduced lattice lane
|
|
||||||
int obit =blane/rNsimd;
|
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////
|
|
||||||
// osite -- potentially one bit from simd in the buffer: (ss<<1)|obit
|
|
||||||
///////////////////////////////////////////////////////////////
|
|
||||||
int ssp = ss*simd[dim]+obit;
|
|
||||||
int b = ssp%block;
|
|
||||||
int n = ssp/block;
|
|
||||||
int osite= b+n*stride + ox*block;
|
|
||||||
|
|
||||||
////////////////////////////////////////////
|
|
||||||
// isite -- map lane within buffer to lane within lattice
|
|
||||||
////////////////////////////////////////////
|
|
||||||
Coordinate icoor;
|
|
||||||
int lane;
|
|
||||||
Lexicographic::CoorFromIndex(icoor,olane,rsimd);
|
|
||||||
icoor[dim]=ix;
|
|
||||||
Lexicographic::IndexFromCoor(icoor,lane,simd);
|
|
||||||
|
|
||||||
///////////////////////////////////////////
|
|
||||||
// Transfer into lattice - will coalesce
|
|
||||||
///////////////////////////////////////////
|
|
||||||
// sobj obj = extractLane(blane,buf_p[ss+offset]);
|
|
||||||
// insertLane(lane,lat_v[osite],obj);
|
|
||||||
const int words=sizeof(vobj)/sizeof(vector_type);
|
|
||||||
vector_type * from = (vector_type *)&buf_p[ss+offset];
|
|
||||||
vector_type * to = (vector_type *)&lat_v[osite];
|
|
||||||
scalar_type stmp;
|
|
||||||
for(int w=0;w<words;w++){
|
|
||||||
stmp = getlane(from[w], blane);
|
|
||||||
putlane(to[w], stmp, lane);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
template<class vobj> inline void GatherSlice(cshiftVector<vobj> &buf,
|
|
||||||
const Lattice<vobj> &lat,
|
|
||||||
int x,
|
|
||||||
int dim,
|
|
||||||
int offset=0)
|
|
||||||
{
|
|
||||||
const int Nsimd=vobj::Nsimd();
|
|
||||||
typedef typename vobj::scalar_object sobj;
|
|
||||||
typedef typename vobj::scalar_type scalar_type;
|
|
||||||
typedef typename vobj::vector_type vector_type;
|
|
||||||
|
|
||||||
autoView(lat_v, lat, AcceleratorRead);
|
|
||||||
|
|
||||||
GridBase *grid = lat.Grid();
|
|
||||||
Coordinate simd = grid->_simd_layout;
|
|
||||||
int Nd = grid->Nd();
|
|
||||||
int block = grid->_slice_block[dim];
|
|
||||||
int stride = grid->_slice_stride[dim];
|
|
||||||
int nblock = grid->_slice_nblock[dim];
|
|
||||||
int rd = grid->_rdimensions[dim];
|
|
||||||
|
|
||||||
int ox = x%rd;
|
|
||||||
int ix = x/rd;
|
|
||||||
|
|
||||||
int isites = 1; for(int d=0;d<Nd;d++) if( d!=dim) isites*=simd[d];
|
|
||||||
|
|
||||||
Coordinate rsimd= simd; rsimd[dim]=1; // maybe reduce Nsimd
|
|
||||||
|
|
||||||
int rNsimd = 1; for(int d=0;d<Nd;d++) rNsimd*=rsimd[d];
|
|
||||||
|
|
||||||
int face_ovol=block*nblock;
|
|
||||||
|
|
||||||
// assert(buf.size()==face_ovol*rNsimd);
|
|
||||||
|
|
||||||
/*This will work GPU ONLY unless rNsimd is put in the lexico index*/
|
|
||||||
//Let's make it work on GPU and then make a special accelerator_for that
|
|
||||||
//doesn't hide the SIMD direction and keeps explicit in the threadIdx
|
|
||||||
//for cross platform
|
|
||||||
//For CPU perhaps just run a loop over Nsimd
|
|
||||||
auto buf_p = & buf[0];
|
|
||||||
accelerator_for(ss, face_ovol/simd[dim],Nsimd,{
|
|
||||||
|
|
||||||
// scalar layout won't coalesce
|
|
||||||
#ifdef GRID_SIMT
|
|
||||||
{
|
|
||||||
int blane=acceleratorSIMTlane(Nsimd); // buffer lane
|
|
||||||
#else
|
|
||||||
for(int blane=0;blane<Nsimd;blane++) {
|
|
||||||
#endif
|
|
||||||
int olane=blane%rNsimd; // reduced lattice lane
|
|
||||||
int obit =blane/rNsimd;
|
|
||||||
|
|
||||||
////////////////////////////////////////////
|
|
||||||
// osite
|
|
||||||
////////////////////////////////////////////
|
|
||||||
int ssp = ss*simd[dim]+obit;
|
|
||||||
int b = ssp%block;
|
|
||||||
int n = ssp/block;
|
|
||||||
int osite= b+n*stride + ox*block;
|
|
||||||
|
|
||||||
////////////////////////////////////////////
|
|
||||||
// isite -- map lane within buffer to lane within lattice
|
|
||||||
////////////////////////////////////////////
|
|
||||||
Coordinate icoor;
|
|
||||||
int lane;
|
|
||||||
Lexicographic::CoorFromIndex(icoor,olane,rsimd);
|
|
||||||
icoor[dim]=ix;
|
|
||||||
Lexicographic::IndexFromCoor(icoor,lane,simd);
|
|
||||||
|
|
||||||
///////////////////////////////////////////
|
|
||||||
// Take out of lattice
|
|
||||||
///////////////////////////////////////////
|
|
||||||
// sobj obj = extractLane(lane,lat_v[osite]);
|
|
||||||
// insertLane(blane,buf_p[ss+offset],obj);
|
|
||||||
const int words=sizeof(vobj)/sizeof(vector_type);
|
|
||||||
vector_type * to = (vector_type *)&buf_p[ss+offset];
|
|
||||||
vector_type * from = (vector_type *)&lat_v[osite];
|
|
||||||
scalar_type stmp;
|
|
||||||
for(int w=0;w<words;w++){
|
|
||||||
stmp = getlane(from[w], lane);
|
|
||||||
putlane(to[w], stmp, blane);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
class PaddedCell {
|
class PaddedCell {
|
||||||
public:
|
public:
|
||||||
GridCartesian * unpadded_grid;
|
GridCartesian * unpadded_grid;
|
||||||
int dims;
|
int dims;
|
||||||
int depth;
|
int depth;
|
||||||
std::vector<GridCartesian *> grids;
|
std::vector<GridCartesian *> grids;
|
||||||
|
|
||||||
~PaddedCell()
|
~PaddedCell()
|
||||||
{
|
{
|
||||||
DeleteGrids();
|
DeleteGrids();
|
||||||
@ -245,18 +45,14 @@ public:
|
|||||||
dims=_grid->Nd();
|
dims=_grid->Nd();
|
||||||
AllocateGrids();
|
AllocateGrids();
|
||||||
Coordinate local =unpadded_grid->LocalDimensions();
|
Coordinate local =unpadded_grid->LocalDimensions();
|
||||||
Coordinate procs =unpadded_grid->ProcessorGrid();
|
|
||||||
for(int d=0;d<dims;d++){
|
for(int d=0;d<dims;d++){
|
||||||
if ( procs[d] > 1 ) assert(local[d]>=depth);
|
assert(local[d]>=depth);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
void DeleteGrids(void)
|
void DeleteGrids(void)
|
||||||
{
|
{
|
||||||
Coordinate processors=unpadded_grid->_processors;
|
|
||||||
for(int d=0;d<grids.size();d++){
|
for(int d=0;d<grids.size();d++){
|
||||||
if ( processors[d] > 1 ) {
|
delete grids[d];
|
||||||
delete grids[d];
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
grids.resize(0);
|
grids.resize(0);
|
||||||
};
|
};
|
||||||
@ -267,66 +63,45 @@ public:
|
|||||||
Coordinate processors=unpadded_grid->_processors;
|
Coordinate processors=unpadded_grid->_processors;
|
||||||
Coordinate plocal =unpadded_grid->LocalDimensions();
|
Coordinate plocal =unpadded_grid->LocalDimensions();
|
||||||
Coordinate global(dims);
|
Coordinate global(dims);
|
||||||
GridCartesian *old_grid = unpadded_grid;
|
|
||||||
// expand up one dim at a time
|
// expand up one dim at a time
|
||||||
for(int d=0;d<dims;d++){
|
for(int d=0;d<dims;d++){
|
||||||
|
|
||||||
if ( processors[d] > 1 ) {
|
plocal[d] += 2*depth;
|
||||||
plocal[d] += 2*depth;
|
|
||||||
|
|
||||||
for(int d=0;d<dims;d++){
|
|
||||||
global[d] = plocal[d]*processors[d];
|
|
||||||
}
|
|
||||||
|
|
||||||
old_grid = new GridCartesian(global,simd,processors);
|
for(int d=0;d<dims;d++){
|
||||||
|
global[d] = plocal[d]*processors[d];
|
||||||
}
|
}
|
||||||
grids.push_back(old_grid);
|
|
||||||
|
grids.push_back(new GridCartesian(global,simd,processors));
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
template<class vobj>
|
template<class vobj>
|
||||||
inline Lattice<vobj> Extract(const Lattice<vobj> &in) const
|
inline Lattice<vobj> Extract(Lattice<vobj> &in)
|
||||||
{
|
{
|
||||||
Coordinate processors=unpadded_grid->_processors;
|
|
||||||
|
|
||||||
Lattice<vobj> out(unpadded_grid);
|
Lattice<vobj> out(unpadded_grid);
|
||||||
|
|
||||||
Coordinate local =unpadded_grid->LocalDimensions();
|
Coordinate local =unpadded_grid->LocalDimensions();
|
||||||
// depends on the MPI spread
|
Coordinate fll(dims,depth); // depends on the MPI spread
|
||||||
Coordinate fll(dims,depth);
|
|
||||||
Coordinate tll(dims,0); // depends on the MPI spread
|
Coordinate tll(dims,0); // depends on the MPI spread
|
||||||
for(int d=0;d<dims;d++){
|
|
||||||
if( processors[d]==1 ) fll[d]=0;
|
|
||||||
}
|
|
||||||
localCopyRegion(in,out,fll,tll,local);
|
localCopyRegion(in,out,fll,tll,local);
|
||||||
return out;
|
return out;
|
||||||
}
|
}
|
||||||
template<class vobj>
|
template<class vobj>
|
||||||
inline Lattice<vobj> Exchange(const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const
|
inline Lattice<vobj> Exchange(Lattice<vobj> &in)
|
||||||
{
|
{
|
||||||
GridBase *old_grid = in.Grid();
|
GridBase *old_grid = in.Grid();
|
||||||
int dims = old_grid->Nd();
|
int dims = old_grid->Nd();
|
||||||
Lattice<vobj> tmp = in;
|
Lattice<vobj> tmp = in;
|
||||||
for(int d=0;d<dims;d++){
|
for(int d=0;d<dims;d++){
|
||||||
tmp = Expand(d,tmp,cshift); // rvalue && assignment
|
tmp = Expand(d,tmp); // rvalue && assignment
|
||||||
}
|
|
||||||
return tmp;
|
|
||||||
}
|
|
||||||
template<class vobj>
|
|
||||||
inline Lattice<vobj> ExchangePeriodic(const Lattice<vobj> &in) const
|
|
||||||
{
|
|
||||||
GridBase *old_grid = in.Grid();
|
|
||||||
int dims = old_grid->Nd();
|
|
||||||
Lattice<vobj> tmp = in;
|
|
||||||
for(int d=0;d<dims;d++){
|
|
||||||
tmp = ExpandPeriodic(d,tmp); // rvalue && assignment
|
|
||||||
}
|
}
|
||||||
return tmp;
|
return tmp;
|
||||||
}
|
}
|
||||||
// expand up one dim at a time
|
// expand up one dim at a time
|
||||||
template<class vobj>
|
template<class vobj>
|
||||||
inline Lattice<vobj> Expand(int dim, const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const
|
inline Lattice<vobj> Expand(int dim,Lattice<vobj> &in)
|
||||||
{
|
{
|
||||||
Coordinate processors=unpadded_grid->_processors;
|
|
||||||
GridBase *old_grid = in.Grid();
|
GridBase *old_grid = in.Grid();
|
||||||
GridCartesian *new_grid = grids[dim];//These are new grids
|
GridCartesian *new_grid = grids[dim];//These are new grids
|
||||||
Lattice<vobj> padded(new_grid);
|
Lattice<vobj> padded(new_grid);
|
||||||
@ -336,236 +111,26 @@ public:
|
|||||||
if(dim==0) conformable(old_grid,unpadded_grid);
|
if(dim==0) conformable(old_grid,unpadded_grid);
|
||||||
else conformable(old_grid,grids[dim-1]);
|
else conformable(old_grid,grids[dim-1]);
|
||||||
|
|
||||||
double tins=0, tshift=0;
|
std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl;
|
||||||
|
// Middle bit
|
||||||
int islocal = 0 ;
|
for(int x=0;x<local[dim];x++){
|
||||||
if ( processors[dim] == 1 ) islocal = 1;
|
InsertSliceLocal(in,padded,x,depth+x,dim);
|
||||||
|
|
||||||
if ( islocal ) {
|
|
||||||
|
|
||||||
// replace with a copy and maybe grid swizzle
|
|
||||||
// return in;??
|
|
||||||
double t = usecond();
|
|
||||||
padded = in;
|
|
||||||
tins += usecond() - t;
|
|
||||||
|
|
||||||
} else {
|
|
||||||
|
|
||||||
//////////////////////////////////////////////
|
|
||||||
// Replace sequence with
|
|
||||||
// ---------------------
|
|
||||||
// (i) Gather high face(s); start comms
|
|
||||||
// (ii) Gather low face(s); start comms
|
|
||||||
// (iii) Copy middle bit with localCopyRegion
|
|
||||||
// (iv) Complete high face(s), insert slice(s)
|
|
||||||
// (iv) Complete low face(s), insert slice(s)
|
|
||||||
//////////////////////////////////////////////
|
|
||||||
// Middle bit
|
|
||||||
double t = usecond();
|
|
||||||
for(int x=0;x<local[dim];x++){
|
|
||||||
InsertSliceLocal(in,padded,x,depth+x,dim);
|
|
||||||
}
|
|
||||||
tins += usecond() - t;
|
|
||||||
|
|
||||||
// High bit
|
|
||||||
t = usecond();
|
|
||||||
shifted = cshift.Cshift(in,dim,depth);
|
|
||||||
tshift += usecond() - t;
|
|
||||||
|
|
||||||
t=usecond();
|
|
||||||
for(int x=0;x<depth;x++){
|
|
||||||
InsertSliceLocal(shifted,padded,local[dim]-depth+x,depth+local[dim]+x,dim);
|
|
||||||
}
|
|
||||||
tins += usecond() - t;
|
|
||||||
|
|
||||||
// Low bit
|
|
||||||
t = usecond();
|
|
||||||
shifted = cshift.Cshift(in,dim,-depth);
|
|
||||||
tshift += usecond() - t;
|
|
||||||
|
|
||||||
t = usecond();
|
|
||||||
for(int x=0;x<depth;x++){
|
|
||||||
InsertSliceLocal(shifted,padded,x,x,dim);
|
|
||||||
}
|
|
||||||
tins += usecond() - t;
|
|
||||||
|
|
||||||
}
|
}
|
||||||
std::cout << GridLogPerformance << "PaddedCell::Expand timings: cshift:" << tshift/1000 << "ms, insert-slice:" << tins/1000 << "ms" << std::endl;
|
// High bit
|
||||||
|
shifted = Cshift(in,dim,depth);
|
||||||
return padded;
|
for(int x=0;x<depth;x++){
|
||||||
}
|
InsertSliceLocal(shifted,padded,local[dim]-depth+x,depth+local[dim]+x,dim);
|
||||||
|
}
|
||||||
template<class vobj>
|
// Low bit
|
||||||
inline Lattice<vobj> ExpandPeriodic(int dim, const Lattice<vobj> &in) const
|
shifted = Cshift(in,dim,-depth);
|
||||||
{
|
for(int x=0;x<depth;x++){
|
||||||
Coordinate processors=unpadded_grid->_processors;
|
InsertSliceLocal(shifted,padded,x,x,dim);
|
||||||
GridBase *old_grid = in.Grid();
|
|
||||||
GridCartesian *new_grid = grids[dim];//These are new grids
|
|
||||||
Lattice<vobj> padded(new_grid);
|
|
||||||
// Lattice<vobj> shifted(old_grid);
|
|
||||||
Coordinate local =old_grid->LocalDimensions();
|
|
||||||
Coordinate plocal =new_grid->LocalDimensions();
|
|
||||||
if(dim==0) conformable(old_grid,unpadded_grid);
|
|
||||||
else conformable(old_grid,grids[dim-1]);
|
|
||||||
|
|
||||||
// std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl;
|
|
||||||
double tins=0, tshift=0;
|
|
||||||
|
|
||||||
int islocal = 0 ;
|
|
||||||
if ( processors[dim] == 1 ) islocal = 1;
|
|
||||||
|
|
||||||
if ( islocal ) {
|
|
||||||
padded=in; // slightly different interface could avoid a copy operation
|
|
||||||
} else {
|
|
||||||
Face_exchange(in,padded,dim,depth);
|
|
||||||
return padded;
|
|
||||||
}
|
}
|
||||||
return padded;
|
return padded;
|
||||||
}
|
}
|
||||||
template<class vobj>
|
|
||||||
void Face_exchange(const Lattice<vobj> &from,
|
|
||||||
Lattice<vobj> &to,
|
|
||||||
int dimension,int depth) const
|
|
||||||
{
|
|
||||||
typedef typename vobj::vector_type vector_type;
|
|
||||||
typedef typename vobj::scalar_type scalar_type;
|
|
||||||
typedef typename vobj::scalar_object sobj;
|
|
||||||
|
|
||||||
RealD t_gather=0.0;
|
|
||||||
RealD t_scatter=0.0;
|
|
||||||
RealD t_comms=0.0;
|
|
||||||
RealD t_copy=0.0;
|
|
||||||
|
|
||||||
// std::cout << GridLogMessage << "dimension " <<dimension<<std::endl;
|
|
||||||
// DumpSliceNorm(std::string("Face_exchange from"),from,dimension);
|
|
||||||
GridBase *grid=from.Grid();
|
|
||||||
GridBase *new_grid=to.Grid();
|
|
||||||
|
|
||||||
Coordinate lds = from.Grid()->_ldimensions;
|
|
||||||
Coordinate nlds= to.Grid()->_ldimensions;
|
|
||||||
Coordinate simd= from.Grid()->_simd_layout;
|
|
||||||
int ld = lds[dimension];
|
|
||||||
int nld = to.Grid()->_ldimensions[dimension];
|
|
||||||
const int Nsimd = vobj::Nsimd();
|
|
||||||
|
|
||||||
assert(depth<=lds[dimension]); // A must be on neighbouring node
|
|
||||||
assert(depth>0); // A caller bug if zero
|
|
||||||
assert(ld+2*depth==nld);
|
|
||||||
////////////////////////////////////////////////////////////////////////////
|
|
||||||
// Face size and byte calculations
|
|
||||||
////////////////////////////////////////////////////////////////////////////
|
|
||||||
int buffer_size = 1;
|
|
||||||
for(int d=0;d<lds.size();d++){
|
|
||||||
if ( d!= dimension) buffer_size=buffer_size*lds[d];
|
|
||||||
}
|
|
||||||
buffer_size = buffer_size / Nsimd;
|
|
||||||
int rNsimd = Nsimd / simd[dimension];
|
|
||||||
assert( buffer_size == from.Grid()->_slice_nblock[dimension]*from.Grid()->_slice_block[dimension] / simd[dimension]);
|
|
||||||
|
|
||||||
static cshiftVector<vobj> send_buf;
|
|
||||||
static cshiftVector<vobj> recv_buf;
|
|
||||||
send_buf.resize(buffer_size*2*depth);
|
|
||||||
recv_buf.resize(buffer_size*2*depth);
|
|
||||||
|
|
||||||
std::vector<CommsRequest_t> fwd_req;
|
|
||||||
std::vector<CommsRequest_t> bwd_req;
|
|
||||||
|
|
||||||
int words = buffer_size;
|
|
||||||
int bytes = words * sizeof(vobj);
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////
|
|
||||||
// Communication coords
|
|
||||||
////////////////////////////////////////////////////////////////////////////
|
|
||||||
int comm_proc = 1;
|
|
||||||
int xmit_to_rank;
|
|
||||||
int recv_from_rank;
|
|
||||||
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////
|
|
||||||
// Gather all surface terms up to depth "d"
|
|
||||||
////////////////////////////////////////////////////////////////////////////
|
|
||||||
RealD t;
|
|
||||||
RealD t_tot=-usecond();
|
|
||||||
int plane=0;
|
|
||||||
for ( int d=0;d < depth ; d ++ ) {
|
|
||||||
int tag = d*1024 + dimension*2+0;
|
|
||||||
|
|
||||||
t=usecond();
|
|
||||||
GatherSlice(send_buf,from,d,dimension,plane*buffer_size); plane++;
|
|
||||||
t_gather+=usecond()-t;
|
|
||||||
|
|
||||||
t=usecond();
|
|
||||||
grid->SendToRecvFromBegin(fwd_req,
|
|
||||||
(void *)&send_buf[d*buffer_size], xmit_to_rank,
|
|
||||||
(void *)&recv_buf[d*buffer_size], recv_from_rank, bytes, tag);
|
|
||||||
t_comms+=usecond()-t;
|
|
||||||
}
|
|
||||||
for ( int d=0;d < depth ; d ++ ) {
|
|
||||||
int tag = d*1024 + dimension*2+1;
|
|
||||||
|
|
||||||
t=usecond();
|
|
||||||
GatherSlice(send_buf,from,ld-depth+d,dimension,plane*buffer_size); plane++;
|
|
||||||
t_gather+= usecond() - t;
|
|
||||||
|
|
||||||
t=usecond();
|
|
||||||
grid->SendToRecvFromBegin(bwd_req,
|
|
||||||
(void *)&send_buf[(d+depth)*buffer_size], recv_from_rank,
|
|
||||||
(void *)&recv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag);
|
|
||||||
t_comms+=usecond()-t;
|
|
||||||
}
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////
|
|
||||||
// Copy interior -- overlap this with comms
|
|
||||||
////////////////////////////////////////////////////////////////////////////
|
|
||||||
int Nd = new_grid->Nd();
|
|
||||||
Coordinate LL(Nd,0);
|
|
||||||
Coordinate sz = grid->_ldimensions;
|
|
||||||
Coordinate toLL(Nd,0);
|
|
||||||
toLL[dimension]=depth;
|
|
||||||
t=usecond();
|
|
||||||
localCopyRegion(from,to,LL,toLL,sz);
|
|
||||||
t_copy= usecond() - t;
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////
|
|
||||||
// Scatter all faces
|
|
||||||
////////////////////////////////////////////////////////////////////////////
|
|
||||||
plane=0;
|
|
||||||
|
|
||||||
t=usecond();
|
|
||||||
grid->CommsComplete(fwd_req);
|
|
||||||
t_comms+= usecond() - t;
|
|
||||||
|
|
||||||
t=usecond();
|
|
||||||
for ( int d=0;d < depth ; d ++ ) {
|
|
||||||
ScatterSlice(recv_buf,to,nld-depth+d,dimension,plane*buffer_size); plane++;
|
|
||||||
}
|
|
||||||
t_scatter= usecond() - t;
|
|
||||||
|
|
||||||
t=usecond();
|
|
||||||
grid->CommsComplete(bwd_req);
|
|
||||||
t_comms+= usecond() - t;
|
|
||||||
|
|
||||||
t=usecond();
|
|
||||||
for ( int d=0;d < depth ; d ++ ) {
|
|
||||||
ScatterSlice(recv_buf,to,d,dimension,plane*buffer_size); plane++;
|
|
||||||
}
|
|
||||||
t_scatter+= usecond() - t;
|
|
||||||
t_tot+=usecond();
|
|
||||||
|
|
||||||
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: gather :" << t_gather/1000 << "ms"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: scatter:" << t_scatter/1000 << "ms"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: copy :" << t_copy/1000 << "ms"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: comms :" << t_comms/1000 << "ms"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: total :" << t_tot/1000 << "ms"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: gather :" << depth*4.0*bytes/t_gather << "MB/s"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: scatter:" << depth*4.0*bytes/t_scatter<< "MB/s"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: comms :" << (RealD)4.0*bytes/t_comms << "MB/s"<<std::endl;
|
|
||||||
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: face bytes :" << depth*bytes/1e6 << "MB"<<std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
|
||||||
|
|
||||||
|
@ -165,7 +165,7 @@ class BinaryIO {
|
|||||||
* FIXME -- 128^3 x 256 x 16 will overflow.
|
* FIXME -- 128^3 x 256 x 16 will overflow.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
int64_t global_site;
|
int global_site;
|
||||||
|
|
||||||
Lexicographic::CoorFromIndex(coor,local_site,local_vol);
|
Lexicographic::CoorFromIndex(coor,local_site,local_vol);
|
||||||
|
|
||||||
@ -175,8 +175,8 @@ class BinaryIO {
|
|||||||
|
|
||||||
Lexicographic::IndexFromCoor(coor,global_site,global_vol);
|
Lexicographic::IndexFromCoor(coor,global_site,global_vol);
|
||||||
|
|
||||||
uint64_t gsite29 = global_site%29;
|
uint32_t gsite29 = global_site%29;
|
||||||
uint64_t gsite31 = global_site%31;
|
uint32_t gsite31 = global_site%31;
|
||||||
|
|
||||||
site_crc = crc32(0,(unsigned char *)site_buf,sizeof(fobj));
|
site_crc = crc32(0,(unsigned char *)site_buf,sizeof(fobj));
|
||||||
// std::cout << "Site "<<local_site << " crc "<<std::hex<<site_crc<<std::dec<<std::endl;
|
// std::cout << "Site "<<local_site << " crc "<<std::hex<<site_crc<<std::dec<<std::endl;
|
||||||
@ -545,9 +545,7 @@ class BinaryIO {
|
|||||||
const std::string &format,
|
const std::string &format,
|
||||||
uint32_t &nersc_csum,
|
uint32_t &nersc_csum,
|
||||||
uint32_t &scidac_csuma,
|
uint32_t &scidac_csuma,
|
||||||
uint32_t &scidac_csumb,
|
uint32_t &scidac_csumb)
|
||||||
int control=BINARYIO_LEXICOGRAPHIC
|
|
||||||
)
|
|
||||||
{
|
{
|
||||||
typedef typename vobj::scalar_object sobj;
|
typedef typename vobj::scalar_object sobj;
|
||||||
typedef typename vobj::Realified::scalar_type word; word w=0;
|
typedef typename vobj::Realified::scalar_type word; word w=0;
|
||||||
@ -558,7 +556,7 @@ class BinaryIO {
|
|||||||
std::vector<sobj> scalardata(lsites);
|
std::vector<sobj> scalardata(lsites);
|
||||||
std::vector<fobj> iodata(lsites); // Munge, checksum, byte order in here
|
std::vector<fobj> iodata(lsites); // Munge, checksum, byte order in here
|
||||||
|
|
||||||
IOobject(w,grid,iodata,file,offset,format,BINARYIO_READ|control,
|
IOobject(w,grid,iodata,file,offset,format,BINARYIO_READ|BINARYIO_LEXICOGRAPHIC,
|
||||||
nersc_csum,scidac_csuma,scidac_csumb);
|
nersc_csum,scidac_csuma,scidac_csumb);
|
||||||
|
|
||||||
GridStopWatch timer;
|
GridStopWatch timer;
|
||||||
@ -584,8 +582,7 @@ class BinaryIO {
|
|||||||
const std::string &format,
|
const std::string &format,
|
||||||
uint32_t &nersc_csum,
|
uint32_t &nersc_csum,
|
||||||
uint32_t &scidac_csuma,
|
uint32_t &scidac_csuma,
|
||||||
uint32_t &scidac_csumb,
|
uint32_t &scidac_csumb)
|
||||||
int control=BINARYIO_LEXICOGRAPHIC)
|
|
||||||
{
|
{
|
||||||
typedef typename vobj::scalar_object sobj;
|
typedef typename vobj::scalar_object sobj;
|
||||||
typedef typename vobj::Realified::scalar_type word; word w=0;
|
typedef typename vobj::Realified::scalar_type word; word w=0;
|
||||||
@ -610,7 +607,7 @@ class BinaryIO {
|
|||||||
while (attemptsLeft >= 0)
|
while (attemptsLeft >= 0)
|
||||||
{
|
{
|
||||||
grid->Barrier();
|
grid->Barrier();
|
||||||
IOobject(w,grid,iodata,file,offset,format,BINARYIO_WRITE|control,
|
IOobject(w,grid,iodata,file,offset,format,BINARYIO_WRITE|BINARYIO_LEXICOGRAPHIC,
|
||||||
nersc_csum,scidac_csuma,scidac_csumb);
|
nersc_csum,scidac_csuma,scidac_csumb);
|
||||||
if (checkWrite)
|
if (checkWrite)
|
||||||
{
|
{
|
||||||
@ -620,7 +617,7 @@ class BinaryIO {
|
|||||||
|
|
||||||
std::cout << GridLogMessage << "writeLatticeObject: read back object" << std::endl;
|
std::cout << GridLogMessage << "writeLatticeObject: read back object" << std::endl;
|
||||||
grid->Barrier();
|
grid->Barrier();
|
||||||
IOobject(w,grid,ckiodata,file,ckoffset,format,BINARYIO_READ|control,
|
IOobject(w,grid,ckiodata,file,ckoffset,format,BINARYIO_READ|BINARYIO_LEXICOGRAPHIC,
|
||||||
cknersc_csum,ckscidac_csuma,ckscidac_csumb);
|
cknersc_csum,ckscidac_csuma,ckscidac_csumb);
|
||||||
if ((cknersc_csum != nersc_csum) or (ckscidac_csuma != scidac_csuma) or (ckscidac_csumb != scidac_csumb))
|
if ((cknersc_csum != nersc_csum) or (ckscidac_csuma != scidac_csuma) or (ckscidac_csumb != scidac_csumb))
|
||||||
{
|
{
|
||||||
|
@ -206,7 +206,7 @@ class GridLimeReader : public BinaryIO {
|
|||||||
// Read a generic lattice field and verify checksum
|
// Read a generic lattice field and verify checksum
|
||||||
////////////////////////////////////////////
|
////////////////////////////////////////////
|
||||||
template<class vobj>
|
template<class vobj>
|
||||||
void readLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name,int control=BINARYIO_LEXICOGRAPHIC)
|
void readLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name)
|
||||||
{
|
{
|
||||||
typedef typename vobj::scalar_object sobj;
|
typedef typename vobj::scalar_object sobj;
|
||||||
scidacChecksum scidacChecksum_;
|
scidacChecksum scidacChecksum_;
|
||||||
@ -238,7 +238,7 @@ class GridLimeReader : public BinaryIO {
|
|||||||
uint64_t offset= ftello(File);
|
uint64_t offset= ftello(File);
|
||||||
// std::cout << " ReadLatticeObject from offset "<<offset << std::endl;
|
// std::cout << " ReadLatticeObject from offset "<<offset << std::endl;
|
||||||
BinarySimpleMunger<sobj,sobj> munge;
|
BinarySimpleMunger<sobj,sobj> munge;
|
||||||
BinaryIO::readLatticeObject< vobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb,control);
|
BinaryIO::readLatticeObject< vobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
|
||||||
std::cout << GridLogMessage << "SciDAC checksum A " << std::hex << scidac_csuma << std::dec << std::endl;
|
std::cout << GridLogMessage << "SciDAC checksum A " << std::hex << scidac_csuma << std::dec << std::endl;
|
||||||
std::cout << GridLogMessage << "SciDAC checksum B " << std::hex << scidac_csumb << std::dec << std::endl;
|
std::cout << GridLogMessage << "SciDAC checksum B " << std::hex << scidac_csumb << std::dec << std::endl;
|
||||||
/////////////////////////////////////////////
|
/////////////////////////////////////////////
|
||||||
@ -408,7 +408,7 @@ class GridLimeWriter : public BinaryIO
|
|||||||
// in communicator used by the field.Grid()
|
// in communicator used by the field.Grid()
|
||||||
////////////////////////////////////////////////////
|
////////////////////////////////////////////////////
|
||||||
template<class vobj>
|
template<class vobj>
|
||||||
void writeLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name,int control=BINARYIO_LEXICOGRAPHIC)
|
void writeLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name)
|
||||||
{
|
{
|
||||||
////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////
|
||||||
// NB: FILE and iostream are jointly writing disjoint sequences in the
|
// NB: FILE and iostream are jointly writing disjoint sequences in the
|
||||||
@ -459,7 +459,7 @@ class GridLimeWriter : public BinaryIO
|
|||||||
///////////////////////////////////////////
|
///////////////////////////////////////////
|
||||||
std::string format = getFormatString<vobj>();
|
std::string format = getFormatString<vobj>();
|
||||||
BinarySimpleMunger<sobj,sobj> munge;
|
BinarySimpleMunger<sobj,sobj> munge;
|
||||||
BinaryIO::writeLatticeObject<vobj,sobj>(field, filename, munge, offset1, format,nersc_csum,scidac_csuma,scidac_csumb,control);
|
BinaryIO::writeLatticeObject<vobj,sobj>(field, filename, munge, offset1, format,nersc_csum,scidac_csuma,scidac_csumb);
|
||||||
|
|
||||||
///////////////////////////////////////////
|
///////////////////////////////////////////
|
||||||
// Wind forward and close the record
|
// Wind forward and close the record
|
||||||
@ -512,8 +512,7 @@ class ScidacWriter : public GridLimeWriter {
|
|||||||
////////////////////////////////////////////////
|
////////////////////////////////////////////////
|
||||||
template <class vobj, class userRecord>
|
template <class vobj, class userRecord>
|
||||||
void writeScidacFieldRecord(Lattice<vobj> &field,userRecord _userRecord,
|
void writeScidacFieldRecord(Lattice<vobj> &field,userRecord _userRecord,
|
||||||
const unsigned int recordScientificPrec = 0,
|
const unsigned int recordScientificPrec = 0)
|
||||||
int control=BINARYIO_LEXICOGRAPHIC)
|
|
||||||
{
|
{
|
||||||
GridBase * grid = field.Grid();
|
GridBase * grid = field.Grid();
|
||||||
|
|
||||||
@ -535,7 +534,7 @@ class ScidacWriter : public GridLimeWriter {
|
|||||||
writeLimeObject(0,0,_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
|
writeLimeObject(0,0,_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
|
||||||
}
|
}
|
||||||
// Collective call
|
// Collective call
|
||||||
writeLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA),control); // Closes message with checksum
|
writeLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA)); // Closes message with checksum
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -554,8 +553,7 @@ class ScidacReader : public GridLimeReader {
|
|||||||
// Write generic lattice field in scidac format
|
// Write generic lattice field in scidac format
|
||||||
////////////////////////////////////////////////
|
////////////////////////////////////////////////
|
||||||
template <class vobj, class userRecord>
|
template <class vobj, class userRecord>
|
||||||
void readScidacFieldRecord(Lattice<vobj> &field,userRecord &_userRecord,
|
void readScidacFieldRecord(Lattice<vobj> &field,userRecord &_userRecord)
|
||||||
int control=BINARYIO_LEXICOGRAPHIC)
|
|
||||||
{
|
{
|
||||||
typedef typename vobj::scalar_object sobj;
|
typedef typename vobj::scalar_object sobj;
|
||||||
GridBase * grid = field.Grid();
|
GridBase * grid = field.Grid();
|
||||||
@ -573,7 +571,7 @@ class ScidacReader : public GridLimeReader {
|
|||||||
readLimeObject(header ,std::string("FieldMetaData"),std::string(GRID_FORMAT)); // Open message
|
readLimeObject(header ,std::string("FieldMetaData"),std::string(GRID_FORMAT)); // Open message
|
||||||
readLimeObject(_userRecord,_userRecord.SerialisableClassName(),std::string(SCIDAC_RECORD_XML));
|
readLimeObject(_userRecord,_userRecord.SerialisableClassName(),std::string(SCIDAC_RECORD_XML));
|
||||||
readLimeObject(_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
|
readLimeObject(_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
|
||||||
readLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA),control);
|
readLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA));
|
||||||
}
|
}
|
||||||
void skipPastBinaryRecord(void) {
|
void skipPastBinaryRecord(void) {
|
||||||
std::string rec_name(ILDG_BINARY_DATA);
|
std::string rec_name(ILDG_BINARY_DATA);
|
||||||
|
@ -124,6 +124,11 @@ public:
|
|||||||
RealD _b;
|
RealD _b;
|
||||||
RealD _c;
|
RealD _c;
|
||||||
|
|
||||||
|
// possible boost
|
||||||
|
std::vector<ComplexD> qmu;
|
||||||
|
void set_qmu(std::vector<ComplexD> _qmu) { qmu=_qmu; assert(qmu.size()==Nd);};
|
||||||
|
void addQmu(const FermionField &in, FermionField &out, int dag);
|
||||||
|
|
||||||
// Cayley form Moebius (tanh and zolotarev)
|
// Cayley form Moebius (tanh and zolotarev)
|
||||||
Vector<Coeff_t> omega;
|
Vector<Coeff_t> omega;
|
||||||
Vector<Coeff_t> bs; // S dependent coeffs
|
Vector<Coeff_t> bs; // S dependent coeffs
|
||||||
|
@ -60,6 +60,50 @@ public:
|
|||||||
// virtual void Instantiatable(void)=0;
|
// virtual void Instantiatable(void)=0;
|
||||||
virtual void Instantiatable(void) =0;
|
virtual void Instantiatable(void) =0;
|
||||||
|
|
||||||
|
void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary, std::vector<double> twist)
|
||||||
|
{
|
||||||
|
std::cout << "Free Propagator for PartialFraction"<<std::endl;
|
||||||
|
FermionField in_k(in.Grid());
|
||||||
|
FermionField prop_k(in.Grid());
|
||||||
|
|
||||||
|
FFT theFFT((GridCartesian *) in.Grid());
|
||||||
|
|
||||||
|
//phase for boundary condition
|
||||||
|
ComplexField coor(in.Grid());
|
||||||
|
ComplexField ph(in.Grid()); ph = Zero();
|
||||||
|
FermionField in_buf(in.Grid()); in_buf = Zero();
|
||||||
|
typedef typename Simd::scalar_type Scalar;
|
||||||
|
Scalar ci(0.0,1.0);
|
||||||
|
assert(twist.size() == Nd);//check that twist is Nd
|
||||||
|
assert(boundary.size() == Nd);//check that boundary conditions is Nd
|
||||||
|
int shift = 0;
|
||||||
|
for(unsigned int nu = 0; nu < Nd; nu++)
|
||||||
|
{
|
||||||
|
// Shift coordinate lattice index by 1 to account for 5th dimension.
|
||||||
|
LatticeCoordinate(coor, nu + shift);
|
||||||
|
double boundary_phase = ::acos(real(boundary[nu]));
|
||||||
|
ph = ph + boundary_phase*coor*((1./(in.Grid()->_fdimensions[nu+shift])));
|
||||||
|
//momenta for propagator shifted by twist+boundary
|
||||||
|
twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI));
|
||||||
|
}
|
||||||
|
in_buf = exp(ci*ph*(-1.0))*in;
|
||||||
|
|
||||||
|
theFFT.FFT_all_dim(in_k,in,FFT::forward);
|
||||||
|
this->MomentumSpacePropagatorHw(prop_k,in_k,mass,twist);
|
||||||
|
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
|
||||||
|
|
||||||
|
//phase for boundary condition
|
||||||
|
out = out * exp(ci*ph);
|
||||||
|
};
|
||||||
|
|
||||||
|
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {
|
||||||
|
std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
|
||||||
|
std::vector<Complex> boundary;
|
||||||
|
for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions
|
||||||
|
FreePropagator(in,out,mass,boundary,twist);
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
// Efficient support for multigrid coarsening
|
// Efficient support for multigrid coarsening
|
||||||
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp);
|
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp);
|
||||||
virtual void MdirAll(const FermionField &in, std::vector<FermionField> &out);
|
virtual void MdirAll(const FermionField &in, std::vector<FermionField> &out);
|
||||||
|
@ -126,16 +126,6 @@ typedef WilsonFermion<WilsonTwoIndexSymmetricImplD> WilsonTwoIndexSymmetricFermi
|
|||||||
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonTwoIndexAntiSymmetricFermionF;
|
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonTwoIndexAntiSymmetricFermionF;
|
||||||
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonTwoIndexAntiSymmetricFermionD;
|
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonTwoIndexAntiSymmetricFermionD;
|
||||||
|
|
||||||
// Sp(2n)
|
|
||||||
typedef WilsonFermion<SpWilsonImplF> SpWilsonFermionF;
|
|
||||||
typedef WilsonFermion<SpWilsonImplD> SpWilsonFermionD;
|
|
||||||
|
|
||||||
typedef WilsonFermion<SpWilsonTwoIndexAntiSymmetricImplF> SpWilsonTwoIndexAntiSymmetricFermionF;
|
|
||||||
typedef WilsonFermion<SpWilsonTwoIndexAntiSymmetricImplD> SpWilsonTwoIndexAntiSymmetricFermionD;
|
|
||||||
|
|
||||||
typedef WilsonFermion<SpWilsonTwoIndexSymmetricImplF> SpWilsonTwoIndexSymmetricFermionF;
|
|
||||||
typedef WilsonFermion<SpWilsonTwoIndexSymmetricImplD> SpWilsonTwoIndexSymmetricFermionD;
|
|
||||||
|
|
||||||
// Twisted mass fermion
|
// Twisted mass fermion
|
||||||
typedef WilsonTMFermion<WilsonImplD2> WilsonTMFermionD2;
|
typedef WilsonTMFermion<WilsonImplD2> WilsonTMFermionD2;
|
||||||
typedef WilsonTMFermion<WilsonImplF> WilsonTMFermionF;
|
typedef WilsonTMFermion<WilsonImplF> WilsonTMFermionF;
|
||||||
|
@ -39,7 +39,7 @@ class PartialFractionFermion5D : public WilsonFermion5D<Impl>
|
|||||||
public:
|
public:
|
||||||
INHERIT_IMPL_TYPES(Impl);
|
INHERIT_IMPL_TYPES(Impl);
|
||||||
|
|
||||||
const int part_frac_chroma_convention=1;
|
const int part_frac_chroma_convention=0;
|
||||||
|
|
||||||
void Meooe_internal(const FermionField &in, FermionField &out,int dag);
|
void Meooe_internal(const FermionField &in, FermionField &out,int dag);
|
||||||
void Mooee_internal(const FermionField &in, FermionField &out,int dag);
|
void Mooee_internal(const FermionField &in, FermionField &out,int dag);
|
||||||
@ -83,12 +83,63 @@ public:
|
|||||||
GridRedBlackCartesian &FourDimRedBlackGrid,
|
GridRedBlackCartesian &FourDimRedBlackGrid,
|
||||||
RealD _mass,RealD M5,const ImplParams &p= ImplParams());
|
RealD _mass,RealD M5,const ImplParams &p= ImplParams());
|
||||||
|
|
||||||
|
PartialFractionFermion5D(GaugeField &_Umu,
|
||||||
|
GridCartesian &FiveDimGrid,
|
||||||
|
GridRedBlackCartesian &FiveDimRedBlackGrid,
|
||||||
|
GridCartesian &FourDimGrid,
|
||||||
|
GridRedBlackCartesian &FourDimRedBlackGrid,
|
||||||
|
RealD _mass,RealD M5,std::vector<RealD> &_qmu,const ImplParams &p= ImplParams());
|
||||||
|
|
||||||
|
void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary, std::vector<double> twist)
|
||||||
|
{
|
||||||
|
std::cout << "Free Propagator for PartialFraction"<<std::endl;
|
||||||
|
FermionField in_k(in.Grid());
|
||||||
|
FermionField prop_k(in.Grid());
|
||||||
|
|
||||||
|
FFT theFFT((GridCartesian *) in.Grid());
|
||||||
|
|
||||||
|
//phase for boundary condition
|
||||||
|
ComplexField coor(in.Grid());
|
||||||
|
ComplexField ph(in.Grid()); ph = Zero();
|
||||||
|
FermionField in_buf(in.Grid()); in_buf = Zero();
|
||||||
|
typedef typename Simd::scalar_type Scalar;
|
||||||
|
Scalar ci(0.0,1.0);
|
||||||
|
assert(twist.size() == Nd);//check that twist is Nd
|
||||||
|
assert(boundary.size() == Nd);//check that boundary conditions is Nd
|
||||||
|
int shift = 0;
|
||||||
|
for(unsigned int nu = 0; nu < Nd; nu++)
|
||||||
|
{
|
||||||
|
// Shift coordinate lattice index by 1 to account for 5th dimension.
|
||||||
|
LatticeCoordinate(coor, nu + shift);
|
||||||
|
double boundary_phase = ::acos(real(boundary[nu]));
|
||||||
|
ph = ph + boundary_phase*coor*((1./(in.Grid()->_fdimensions[nu+shift])));
|
||||||
|
//momenta for propagator shifted by twist+boundary
|
||||||
|
twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI));
|
||||||
|
}
|
||||||
|
in_buf = exp(ci*ph*(-1.0))*in;
|
||||||
|
|
||||||
|
theFFT.FFT_all_dim(in_k,in,FFT::forward);
|
||||||
|
this->MomentumSpacePropagatorHw(prop_k,in_k,mass,twist);
|
||||||
|
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
|
||||||
|
|
||||||
|
//phase for boundary condition
|
||||||
|
out = out * exp(ci*ph);
|
||||||
|
};
|
||||||
|
|
||||||
|
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {
|
||||||
|
std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
|
||||||
|
std::vector<Complex> boundary;
|
||||||
|
for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions
|
||||||
|
FreePropagator(in,out,mass,boundary,twist);
|
||||||
|
};
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
|
|
||||||
virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale);
|
virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale);
|
||||||
virtual void SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata);
|
virtual void SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata);
|
||||||
|
|
||||||
// Part frac
|
// Part frac
|
||||||
|
std::vector<RealD> qmu;
|
||||||
RealD mass;
|
RealD mass;
|
||||||
RealD dw_diag;
|
RealD dw_diag;
|
||||||
RealD R;
|
RealD R;
|
||||||
|
@ -261,22 +261,6 @@ typedef WilsonImpl<vComplex, TwoIndexAntiSymmetricRepresentation, CoeffReal > W
|
|||||||
typedef WilsonImpl<vComplexF, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplF; // Float
|
typedef WilsonImpl<vComplexF, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplF; // Float
|
||||||
typedef WilsonImpl<vComplexD, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplD; // Double
|
typedef WilsonImpl<vComplexD, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplD; // Double
|
||||||
|
|
||||||
//sp 2n
|
|
||||||
|
|
||||||
typedef WilsonImpl<vComplex, SpFundamentalRepresentation, CoeffReal > SpWilsonImplR; // Real.. whichever prec
|
|
||||||
typedef WilsonImpl<vComplexF, SpFundamentalRepresentation, CoeffReal > SpWilsonImplF; // Float
|
|
||||||
typedef WilsonImpl<vComplexD, SpFundamentalRepresentation, CoeffReal > SpWilsonImplD; // Double
|
|
||||||
|
|
||||||
typedef WilsonImpl<vComplex, SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplR; // Real.. whichever prec
|
|
||||||
typedef WilsonImpl<vComplexF, SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplF; // Float
|
|
||||||
typedef WilsonImpl<vComplexD, SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplD; // Double
|
|
||||||
|
|
||||||
typedef WilsonImpl<vComplex, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplR; // Real.. whichever prec
|
|
||||||
typedef WilsonImpl<vComplexF, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplF; // Float
|
|
||||||
typedef WilsonImpl<vComplexD, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplD; // Double
|
|
||||||
|
|
||||||
typedef WilsonImpl<vComplex, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplR; // Real.. whichever prec // adj = 2indx symmetric for Sp(2N)
|
|
||||||
typedef WilsonImpl<vComplexF, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplF; // Float // adj = 2indx symmetric for Sp(2N)
|
|
||||||
typedef WilsonImpl<vComplexD, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplD; // Double // adj = 2indx symmetric for Sp(2N)
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
|
||||||
|
@ -48,7 +48,8 @@ CayleyFermion5D<Impl>::CayleyFermion5D(GaugeField &_Umu,
|
|||||||
FourDimGrid,
|
FourDimGrid,
|
||||||
FourDimRedBlackGrid,_M5,p),
|
FourDimRedBlackGrid,_M5,p),
|
||||||
mass_plus(_mass), mass_minus(_mass)
|
mass_plus(_mass), mass_minus(_mass)
|
||||||
{
|
{
|
||||||
|
// qmu defaults to zero size;
|
||||||
}
|
}
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////
|
||||||
@ -270,6 +271,34 @@ void CayleyFermion5D<Impl>::MeooeDag5D (const FermionField &psi, FermionField
|
|||||||
M5Ddag(psi,psi,Din,lower,diag,upper);
|
M5Ddag(psi,psi,Din,lower,diag,upper);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template<class Impl>
|
||||||
|
void CayleyFermion5D<Impl>::addQmu(const FermionField &psi,FermionField &chi, int dag)
|
||||||
|
{
|
||||||
|
if ( qmu.size() ) {
|
||||||
|
|
||||||
|
Gamma::Algebra Gmu [] = {
|
||||||
|
Gamma::Algebra::GammaX,
|
||||||
|
Gamma::Algebra::GammaY,
|
||||||
|
Gamma::Algebra::GammaZ,
|
||||||
|
Gamma::Algebra::GammaT
|
||||||
|
};
|
||||||
|
std::vector<ComplexD> coeff(Nd);
|
||||||
|
ComplexD ci(0,1);
|
||||||
|
|
||||||
|
assert(qmu.size()==Nd);
|
||||||
|
|
||||||
|
for(int mu=0;mu<Nd;mu++){
|
||||||
|
coeff[mu] = ci*qmu[mu];
|
||||||
|
if ( dag ) coeff[mu] = conjugate(coeff[mu]);
|
||||||
|
}
|
||||||
|
|
||||||
|
chi = chi + Gamma(Gmu[0])*psi*coeff[0];
|
||||||
|
for(int mu=1;mu<Nd;mu++){
|
||||||
|
chi = chi + Gamma(Gmu[mu])*psi*coeff[mu];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
template<class Impl>
|
template<class Impl>
|
||||||
void CayleyFermion5D<Impl>::M (const FermionField &psi, FermionField &chi)
|
void CayleyFermion5D<Impl>::M (const FermionField &psi, FermionField &chi)
|
||||||
{
|
{
|
||||||
@ -277,8 +306,12 @@ void CayleyFermion5D<Impl>::M (const FermionField &psi, FermionField &chi)
|
|||||||
|
|
||||||
// Assemble Din
|
// Assemble Din
|
||||||
Meooe5D(psi,Din);
|
Meooe5D(psi,Din);
|
||||||
|
|
||||||
this->DW(Din,chi,DaggerNo);
|
this->DW(Din,chi,DaggerNo);
|
||||||
|
|
||||||
|
// add i q_mu gamma_mu here
|
||||||
|
addQmu(Din,chi,DaggerNo);
|
||||||
|
|
||||||
// ((b D_W + D_w hop terms +1) on s-diag
|
// ((b D_W + D_w hop terms +1) on s-diag
|
||||||
axpby(chi,1.0,1.0,chi,psi);
|
axpby(chi,1.0,1.0,chi,psi);
|
||||||
|
|
||||||
@ -295,6 +328,9 @@ void CayleyFermion5D<Impl>::Mdag (const FermionField &psi, FermionField &chi)
|
|||||||
FermionField Din(psi.Grid());
|
FermionField Din(psi.Grid());
|
||||||
// Apply Dw
|
// Apply Dw
|
||||||
this->DW(psi,Din,DaggerYes);
|
this->DW(psi,Din,DaggerYes);
|
||||||
|
|
||||||
|
// add -i conj(q_mu) gamma_mu here ... if qmu is real, gammm_5 hermitian, otherwise not.
|
||||||
|
addQmu(psi,Din,DaggerYes);
|
||||||
|
|
||||||
MeooeDag5D(Din,chi);
|
MeooeDag5D(Din,chi);
|
||||||
|
|
||||||
|
@ -42,13 +42,13 @@ template<class Impl>
|
|||||||
void ContinuedFractionFermion5D<Impl>::SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata)
|
void ContinuedFractionFermion5D<Impl>::SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata)
|
||||||
{
|
{
|
||||||
// How to check Ls matches??
|
// How to check Ls matches??
|
||||||
// std::cout<<GridLogMessage << Ls << " Ls"<<std::endl;
|
std::cout<<GridLogMessage << zdata->n << " - n"<<std::endl;
|
||||||
// std::cout<<GridLogMessage << zdata->n << " - n"<<std::endl;
|
std::cout<<GridLogMessage << zdata->da << " -da "<<std::endl;
|
||||||
// std::cout<<GridLogMessage << zdata->da << " -da "<<std::endl;
|
std::cout<<GridLogMessage << zdata->db << " -db"<<std::endl;
|
||||||
// std::cout<<GridLogMessage << zdata->db << " -db"<<std::endl;
|
std::cout<<GridLogMessage << zdata->dn << " -dn"<<std::endl;
|
||||||
// std::cout<<GridLogMessage << zdata->dn << " -dn"<<std::endl;
|
std::cout<<GridLogMessage << zdata->dd << " -dd"<<std::endl;
|
||||||
// std::cout<<GridLogMessage << zdata->dd << " -dd"<<std::endl;
|
|
||||||
int Ls = this->Ls;
|
int Ls = this->Ls;
|
||||||
|
std::cout<<GridLogMessage << Ls << " Ls"<<std::endl;
|
||||||
assert(zdata->db==Ls);// Beta has Ls coeffs
|
assert(zdata->db==Ls);// Beta has Ls coeffs
|
||||||
|
|
||||||
R=(1+this->mass)/(1-this->mass);
|
R=(1+this->mass)/(1-this->mass);
|
||||||
@ -320,7 +320,7 @@ ContinuedFractionFermion5D<Impl>::ContinuedFractionFermion5D(
|
|||||||
int Ls = this->Ls;
|
int Ls = this->Ls;
|
||||||
conformable(solution5d.Grid(),this->FermionGrid());
|
conformable(solution5d.Grid(),this->FermionGrid());
|
||||||
conformable(exported4d.Grid(),this->GaugeGrid());
|
conformable(exported4d.Grid(),this->GaugeGrid());
|
||||||
ExtractSlice(exported4d, solution5d, Ls-1, Ls-1);
|
ExtractSlice(exported4d, solution5d, Ls-1, 0);
|
||||||
}
|
}
|
||||||
template<class Impl>
|
template<class Impl>
|
||||||
void ContinuedFractionFermion5D<Impl>::ImportPhysicalFermionSource(const FermionField &input4d,FermionField &imported5d)
|
void ContinuedFractionFermion5D<Impl>::ImportPhysicalFermionSource(const FermionField &input4d,FermionField &imported5d)
|
||||||
@ -330,7 +330,7 @@ ContinuedFractionFermion5D<Impl>::ContinuedFractionFermion5D(
|
|||||||
conformable(input4d.Grid() ,this->GaugeGrid());
|
conformable(input4d.Grid() ,this->GaugeGrid());
|
||||||
FermionField tmp(this->FermionGrid());
|
FermionField tmp(this->FermionGrid());
|
||||||
tmp=Zero();
|
tmp=Zero();
|
||||||
InsertSlice(input4d, tmp, Ls-1, Ls-1);
|
InsertSlice(input4d, tmp, Ls-1, 0);
|
||||||
tmp=Gamma(Gamma::Algebra::Gamma5)*tmp;
|
tmp=Gamma(Gamma::Algebra::Gamma5)*tmp;
|
||||||
this->Dminus(tmp,imported5d);
|
this->Dminus(tmp,imported5d);
|
||||||
}
|
}
|
||||||
|
@ -255,15 +255,76 @@ void PartialFractionFermion5D<Impl>::M_internal(const FermionField &psi, Fermi
|
|||||||
}
|
}
|
||||||
|
|
||||||
{
|
{
|
||||||
|
// The 'conventional' Cayley overlap operator is
|
||||||
|
//
|
||||||
|
// Dov = (1+m)/2 + (1-m)/2 g5 sgn Hw
|
||||||
|
//
|
||||||
|
//
|
||||||
|
// With massless limit 1/2(1+g5 sgnHw)
|
||||||
|
//
|
||||||
|
// Luscher shows quite neatly that 1+g5 sgn Hw has tree level propagator i qslash +O(a^2)
|
||||||
|
//
|
||||||
|
// However, the conventional normalisation has both a leading order factor of 2 in Zq
|
||||||
|
// at tree level AND a mass dependent (1-m) that are convenient to absorb.
|
||||||
|
//
|
||||||
|
// In WilsonFermion5DImplementation.h, the tree level propagator for Hw is
|
||||||
|
//
|
||||||
|
// num = -i sin kmu gmu
|
||||||
|
//
|
||||||
|
// denom ( sqrt(sk^2 + (2shk^2 - 1)^2
|
||||||
|
// b_k = sk2 - M5;
|
||||||
|
//
|
||||||
|
// w_k = sqrt(sk + b_k*b_k);
|
||||||
|
//
|
||||||
|
// denom= ( w_k + b_k + mass*mass) ;
|
||||||
|
//
|
||||||
|
// denom= one/denom;
|
||||||
|
// out = num*denom;
|
||||||
|
//
|
||||||
|
// Chroma, and Grid define partial fraction via 4d operator
|
||||||
|
//
|
||||||
|
// Dpf = 2/(1-m) x Dov = (1+m)/(1-m) + g5 sgn Hw
|
||||||
|
//
|
||||||
|
// Now since:
|
||||||
|
//
|
||||||
|
// (1+m)/(1-m) = (1-m)/(1-m) + 2m/(1-m) = 1 + 2m/(1-m)
|
||||||
|
//
|
||||||
|
// This corresponds to a modified mass parameter
|
||||||
|
//
|
||||||
|
// It has an annoying
|
||||||
|
//
|
||||||
|
//
|
||||||
double R=(1+this->mass)/(1-this->mass);
|
double R=(1+this->mass)/(1-this->mass);
|
||||||
//R g5 psi[Ls] + p[0] H
|
//R g5 psi[Ls] + p[0] H
|
||||||
ag5xpbg5y_ssp(chi,R*scale,psi,p[nblock]*scale/amax,D,Ls-1,Ls-1);
|
ag5xpbg5y_ssp(chi,R*scale,psi,p[nblock]*scale/amax,D,Ls-1,Ls-1);
|
||||||
|
|
||||||
for(int b=0;b<nblock;b++){
|
for(int b=0;b<nblock;b++){
|
||||||
int s = 2*b+1;
|
int s = 2*b+1;
|
||||||
double pp = p[nblock-1-b];
|
double pp = p[nblock-1-b];
|
||||||
axpby_ssp(chi,1.0,chi,-sqrt(amax*pp)*scale*sign,psi,Ls-1,s);
|
axpby_ssp(chi,1.0,chi,-sqrt(amax*pp)*scale*sign,psi,Ls-1,s);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if ( qmu.size() ) {
|
||||||
|
|
||||||
|
FermionField qslash_psi(psi.Grid());
|
||||||
|
|
||||||
|
Gamma::Algebra Gmu [] = {
|
||||||
|
Gamma::Algebra::GammaX,
|
||||||
|
Gamma::Algebra::GammaY,
|
||||||
|
Gamma::Algebra::GammaZ,
|
||||||
|
Gamma::Algebra::GammaT
|
||||||
|
};
|
||||||
|
ComplexD ci(0,1);
|
||||||
|
assert(qmu.size()==Nd);
|
||||||
|
qslash_psi = Gamma(Gmu[0])*psi;
|
||||||
|
for(int mu=1;mu<Nd;mu++){
|
||||||
|
qslash_psi = Gamma(Gmu[mu])*psi;
|
||||||
|
}
|
||||||
|
// RealD coeff = 1.0;
|
||||||
|
qslash_psi = Gamma(Gamma::Algebra::Gamma5)*qslash_psi*ci ; // i g5 qslash -- 1-m factor???
|
||||||
|
axpby_ssp(chi,1.0,chi,1.0, qslash_psi,Ls-1,Ls-1);
|
||||||
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
@ -411,7 +472,7 @@ void PartialFractionFermion5D<Impl>::SetCoefficientsZolotarev(RealD zolo_hi,App
|
|||||||
int Ls = this->Ls;
|
int Ls = this->Ls;
|
||||||
conformable(solution5d.Grid(),this->FermionGrid());
|
conformable(solution5d.Grid(),this->FermionGrid());
|
||||||
conformable(exported4d.Grid(),this->GaugeGrid());
|
conformable(exported4d.Grid(),this->GaugeGrid());
|
||||||
ExtractSlice(exported4d, solution5d, Ls-1, Ls-1);
|
ExtractSlice(exported4d, solution5d, Ls-1, 0);
|
||||||
}
|
}
|
||||||
template<class Impl>
|
template<class Impl>
|
||||||
void PartialFractionFermion5D<Impl>::ImportPhysicalFermionSource(const FermionField &input4d,FermionField &imported5d)
|
void PartialFractionFermion5D<Impl>::ImportPhysicalFermionSource(const FermionField &input4d,FermionField &imported5d)
|
||||||
@ -421,7 +482,8 @@ void PartialFractionFermion5D<Impl>::SetCoefficientsZolotarev(RealD zolo_hi,App
|
|||||||
conformable(input4d.Grid() ,this->GaugeGrid());
|
conformable(input4d.Grid() ,this->GaugeGrid());
|
||||||
FermionField tmp(this->FermionGrid());
|
FermionField tmp(this->FermionGrid());
|
||||||
tmp=Zero();
|
tmp=Zero();
|
||||||
InsertSlice(input4d, tmp, Ls-1, Ls-1);
|
std::cout << " importing to slice " << Ls-1 <<std::endl;
|
||||||
|
InsertSlice(input4d, tmp, Ls-1, 0);
|
||||||
tmp=Gamma(Gamma::Algebra::Gamma5)*tmp;
|
tmp=Gamma(Gamma::Algebra::Gamma5)*tmp;
|
||||||
this->Dminus(tmp,imported5d);
|
this->Dminus(tmp,imported5d);
|
||||||
}
|
}
|
||||||
@ -442,7 +504,7 @@ PartialFractionFermion5D<Impl>::PartialFractionFermion5D(GaugeField &_Umu,
|
|||||||
|
|
||||||
{
|
{
|
||||||
int Ls = this->Ls;
|
int Ls = this->Ls;
|
||||||
|
qmu.resize(0);
|
||||||
assert((Ls&0x1)==1); // Odd Ls required
|
assert((Ls&0x1)==1); // Odd Ls required
|
||||||
int nrational=Ls-1;
|
int nrational=Ls-1;
|
||||||
|
|
||||||
@ -460,6 +522,22 @@ PartialFractionFermion5D<Impl>::PartialFractionFermion5D(GaugeField &_Umu,
|
|||||||
Approx::zolotarev_free(zdata);
|
Approx::zolotarev_free(zdata);
|
||||||
|
|
||||||
}
|
}
|
||||||
|
template<class Impl>
|
||||||
|
PartialFractionFermion5D<Impl>::PartialFractionFermion5D(GaugeField &_Umu,
|
||||||
|
GridCartesian &FiveDimGrid,
|
||||||
|
GridRedBlackCartesian &FiveDimRedBlackGrid,
|
||||||
|
GridCartesian &FourDimGrid,
|
||||||
|
GridRedBlackCartesian &FourDimRedBlackGrid,
|
||||||
|
RealD _mass,RealD M5,
|
||||||
|
std::vector<RealD> &_qmu,
|
||||||
|
const ImplParams &p)
|
||||||
|
: PartialFractionFermion5D<Impl>(_Umu,
|
||||||
|
FiveDimGrid,FiveDimRedBlackGrid,
|
||||||
|
FourDimGrid,FourDimRedBlackGrid,
|
||||||
|
_mass,M5,p)
|
||||||
|
{
|
||||||
|
qmu=_qmu;
|
||||||
|
}
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
|
||||||
|
@ -1 +0,0 @@
|
|||||||
../WilsonCloverFermionInstantiation.cc.master
|
|
@ -1 +0,0 @@
|
|||||||
../WilsonFermionInstantiation.cc.master
|
|
@ -1 +0,0 @@
|
|||||||
../WilsonKernelsInstantiation.cc.master
|
|
@ -1 +0,0 @@
|
|||||||
../WilsonTMFermionInstantiation.cc.master
|
|
@ -1 +0,0 @@
|
|||||||
#define IMPLEMENTATION SpWilsonImplD
|
|
@ -1 +0,0 @@
|
|||||||
../WilsonCloverFermionInstantiation.cc.master
|
|
@ -1 +0,0 @@
|
|||||||
../WilsonFermionInstantiation.cc.master
|
|
@ -1 +0,0 @@
|
|||||||
../WilsonKernelsInstantiation.cc.master
|
|
@ -1 +0,0 @@
|
|||||||
../WilsonTMFermionInstantiation.cc.master
|
|
@ -1 +0,0 @@
|
|||||||
#define IMPLEMENTATION SpWilsonImplF
|
|
@ -1 +0,0 @@
|
|||||||
../WilsonCloverFermionInstantiation.cc.master
|
|
@ -1 +0,0 @@
|
|||||||
../WilsonFermionInstantiation.cc.master
|
|
@ -1 +0,0 @@
|
|||||||
../WilsonKernelsInstantiation.cc.master
|
|
@ -1 +0,0 @@
|
|||||||
../WilsonTMFermionInstantiation.cc.master
|
|
@ -1 +0,0 @@
|
|||||||
#define IMPLEMENTATION SpWilsonTwoIndexAntiSymmetricImplD
|
|
@ -1 +0,0 @@
|
|||||||
../WilsonCloverFermionInstantiation.cc.master
|
|
@ -1 +0,0 @@
|
|||||||
../WilsonFermionInstantiation.cc.master
|
|
@ -1 +0,0 @@
|
|||||||
../WilsonKernelsInstantiation.cc.master
|
|
@ -1 +0,0 @@
|
|||||||
../WilsonTMFermionInstantiation.cc.master
|
|
@ -1 +0,0 @@
|
|||||||
#define IMPLEMENTATION SpWilsonTwoIndexAntiSymmetricImplF
|
|
@ -1 +0,0 @@
|
|||||||
../WilsonCloverFermionInstantiation.cc.master
|
|
@ -1 +0,0 @@
|
|||||||
../WilsonFermionInstantiation.cc.master
|
|
@ -1 +0,0 @@
|
|||||||
../WilsonKernelsInstantiation.cc.master
|
|
@ -1 +0,0 @@
|
|||||||
../WilsonTMFermionInstantiation.cc.master
|
|
@ -1 +0,0 @@
|
|||||||
#define IMPLEMENTATION SpWilsonTwoIndexSymmetricImplD
|
|
@ -1 +0,0 @@
|
|||||||
../WilsonCloverFermionInstantiation.cc.master
|
|
@ -1 +0,0 @@
|
|||||||
../WilsonFermionInstantiation.cc.master
|
|
@ -1 +0,0 @@
|
|||||||
../WilsonKernelsInstantiation.cc.master
|
|
@ -1 +0,0 @@
|
|||||||
../WilsonTMFermionInstantiation.cc.master
|
|
@ -1 +0,0 @@
|
|||||||
#define IMPLEMENTATION SpWilsonTwoIndexSymmetricImplF
|
|
@ -10,18 +10,12 @@ WILSON_IMPL_LIST=" \
|
|||||||
WilsonImplF \
|
WilsonImplF \
|
||||||
WilsonImplD \
|
WilsonImplD \
|
||||||
WilsonImplD2 \
|
WilsonImplD2 \
|
||||||
SpWilsonImplF \
|
|
||||||
SpWilsonImplD \
|
|
||||||
WilsonAdjImplF \
|
WilsonAdjImplF \
|
||||||
WilsonAdjImplD \
|
WilsonAdjImplD \
|
||||||
WilsonTwoIndexSymmetricImplF \
|
WilsonTwoIndexSymmetricImplF \
|
||||||
WilsonTwoIndexSymmetricImplD \
|
WilsonTwoIndexSymmetricImplD \
|
||||||
WilsonTwoIndexAntiSymmetricImplF \
|
WilsonTwoIndexAntiSymmetricImplF \
|
||||||
WilsonTwoIndexAntiSymmetricImplD \
|
WilsonTwoIndexAntiSymmetricImplD \
|
||||||
SpWilsonTwoIndexAntiSymmetricImplF \
|
|
||||||
SpWilsonTwoIndexAntiSymmetricImplD \
|
|
||||||
SpWilsonTwoIndexSymmetricImplF \
|
|
||||||
SpWilsonTwoIndexSymmetricImplD \
|
|
||||||
GparityWilsonImplF \
|
GparityWilsonImplF \
|
||||||
GparityWilsonImplD "
|
GparityWilsonImplD "
|
||||||
|
|
||||||
|
@ -39,9 +39,6 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
typedef WilsonGaugeAction<PeriodicGimplR> WilsonGaugeActionR;
|
typedef WilsonGaugeAction<PeriodicGimplR> WilsonGaugeActionR;
|
||||||
typedef WilsonGaugeAction<PeriodicGimplF> WilsonGaugeActionF;
|
typedef WilsonGaugeAction<PeriodicGimplF> WilsonGaugeActionF;
|
||||||
typedef WilsonGaugeAction<PeriodicGimplD> WilsonGaugeActionD;
|
typedef WilsonGaugeAction<PeriodicGimplD> WilsonGaugeActionD;
|
||||||
typedef WilsonGaugeAction<SpPeriodicGimplR> SpWilsonGaugeActionR;
|
|
||||||
typedef WilsonGaugeAction<SpPeriodicGimplF> SpWilsonGaugeActionF;
|
|
||||||
typedef WilsonGaugeAction<SpPeriodicGimplD> SpWilsonGaugeActionD;
|
|
||||||
typedef PlaqPlusRectangleAction<PeriodicGimplR> PlaqPlusRectangleActionR;
|
typedef PlaqPlusRectangleAction<PeriodicGimplR> PlaqPlusRectangleActionR;
|
||||||
typedef PlaqPlusRectangleAction<PeriodicGimplF> PlaqPlusRectangleActionF;
|
typedef PlaqPlusRectangleAction<PeriodicGimplF> PlaqPlusRectangleActionF;
|
||||||
typedef PlaqPlusRectangleAction<PeriodicGimplD> PlaqPlusRectangleActionD;
|
typedef PlaqPlusRectangleAction<PeriodicGimplD> PlaqPlusRectangleActionD;
|
||||||
|
@ -61,7 +61,7 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
typedef typename Impl::Field Field;
|
typedef typename Impl::Field Field;
|
||||||
|
|
||||||
// hardcodes the exponential approximation in the template
|
// hardcodes the exponential approximation in the template
|
||||||
template <class S, int Nrepresentation = Nc, int Nexp = 12, class Group = SU<Nc> > class GaugeImplTypes {
|
template <class S, int Nrepresentation = Nc, int Nexp = 12 > class GaugeImplTypes {
|
||||||
public:
|
public:
|
||||||
typedef S Simd;
|
typedef S Simd;
|
||||||
typedef typename Simd::scalar_type scalar_type;
|
typedef typename Simd::scalar_type scalar_type;
|
||||||
@ -78,6 +78,8 @@ public:
|
|||||||
typedef Lattice<SiteLink> LinkField;
|
typedef Lattice<SiteLink> LinkField;
|
||||||
typedef Lattice<SiteField> Field;
|
typedef Lattice<SiteField> Field;
|
||||||
|
|
||||||
|
typedef SU<Nrepresentation> Group;
|
||||||
|
|
||||||
// Guido: we can probably separate the types from the HMC functions
|
// Guido: we can probably separate the types from the HMC functions
|
||||||
// this will create 2 kind of implementations
|
// this will create 2 kind of implementations
|
||||||
// probably confusing the users
|
// probably confusing the users
|
||||||
@ -117,7 +119,6 @@ public:
|
|||||||
//
|
//
|
||||||
LinkField Pmu(P.Grid());
|
LinkField Pmu(P.Grid());
|
||||||
Pmu = Zero();
|
Pmu = Zero();
|
||||||
|
|
||||||
for (int mu = 0; mu < Nd; mu++) {
|
for (int mu = 0; mu < Nd; mu++) {
|
||||||
Group::GaussianFundamentalLieAlgebraMatrix(pRNG, Pmu);
|
Group::GaussianFundamentalLieAlgebraMatrix(pRNG, Pmu);
|
||||||
RealD scale = ::sqrt(HMC_MOMENTUM_DENOMINATOR) ;
|
RealD scale = ::sqrt(HMC_MOMENTUM_DENOMINATOR) ;
|
||||||
@ -125,12 +126,8 @@ public:
|
|||||||
PokeIndex<LorentzIndex>(P, Pmu, mu);
|
PokeIndex<LorentzIndex>(P, Pmu, mu);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static inline Field projectForce(Field &P) {
|
static inline Field projectForce(Field &P) { return Ta(P); }
|
||||||
Field ret(P.Grid());
|
|
||||||
Group::taProj(P, ret);
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
|
|
||||||
static inline void update_field(Field& P, Field& U, double ep){
|
static inline void update_field(Field& P, Field& U, double ep){
|
||||||
//static std::chrono::duration<double> diff;
|
//static std::chrono::duration<double> diff;
|
||||||
@ -140,15 +137,14 @@ public:
|
|||||||
autoView(P_v,P,AcceleratorRead);
|
autoView(P_v,P,AcceleratorRead);
|
||||||
accelerator_for(ss, P.Grid()->oSites(),1,{
|
accelerator_for(ss, P.Grid()->oSites(),1,{
|
||||||
for (int mu = 0; mu < Nd; mu++) {
|
for (int mu = 0; mu < Nd; mu++) {
|
||||||
U_v[ss](mu) = Exponentiate(P_v[ss](mu), ep, Nexp) * U_v[ss](mu);
|
U_v[ss](mu) = ProjectOnGroup(Exponentiate(P_v[ss](mu), ep, Nexp) * U_v[ss](mu));
|
||||||
U_v[ss](mu) = Group::ProjectOnGeneralGroup(U_v[ss](mu));
|
|
||||||
}
|
}
|
||||||
});
|
});
|
||||||
//auto end = std::chrono::high_resolution_clock::now();
|
//auto end = std::chrono::high_resolution_clock::now();
|
||||||
// diff += end - start;
|
// diff += end - start;
|
||||||
// std::cout << "Time to exponentiate matrix " << diff.count() << " s\n";
|
// std::cout << "Time to exponentiate matrix " << diff.count() << " s\n";
|
||||||
}
|
}
|
||||||
|
|
||||||
static inline RealD FieldSquareNorm(Field& U){
|
static inline RealD FieldSquareNorm(Field& U){
|
||||||
LatticeComplex Hloc(U.Grid());
|
LatticeComplex Hloc(U.Grid());
|
||||||
Hloc = Zero();
|
Hloc = Zero();
|
||||||
@ -161,7 +157,7 @@ public:
|
|||||||
}
|
}
|
||||||
|
|
||||||
static inline void Project(Field &U) {
|
static inline void Project(Field &U) {
|
||||||
Group::ProjectOnSpecialGroup(U);
|
ProjectSUn(U);
|
||||||
}
|
}
|
||||||
|
|
||||||
static inline void HotConfiguration(GridParallelRNG &pRNG, Field &U) {
|
static inline void HotConfiguration(GridParallelRNG &pRNG, Field &U) {
|
||||||
@ -175,7 +171,6 @@ public:
|
|||||||
static inline void ColdConfiguration(GridParallelRNG &pRNG, Field &U) {
|
static inline void ColdConfiguration(GridParallelRNG &pRNG, Field &U) {
|
||||||
Group::ColdConfiguration(pRNG, U);
|
Group::ColdConfiguration(pRNG, U);
|
||||||
}
|
}
|
||||||
|
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
@ -183,17 +178,10 @@ typedef GaugeImplTypes<vComplex, Nc> GimplTypesR;
|
|||||||
typedef GaugeImplTypes<vComplexF, Nc> GimplTypesF;
|
typedef GaugeImplTypes<vComplexF, Nc> GimplTypesF;
|
||||||
typedef GaugeImplTypes<vComplexD, Nc> GimplTypesD;
|
typedef GaugeImplTypes<vComplexD, Nc> GimplTypesD;
|
||||||
|
|
||||||
typedef GaugeImplTypes<vComplex, Nc, 12, Sp<Nc> > SpGimplTypesR;
|
|
||||||
typedef GaugeImplTypes<vComplexF, Nc, 12, Sp<Nc> > SpGimplTypesF;
|
|
||||||
typedef GaugeImplTypes<vComplexD, Nc, 12, Sp<Nc> > SpGimplTypesD;
|
|
||||||
|
|
||||||
typedef GaugeImplTypes<vComplex, SU<Nc>::AdjointDimension> GimplAdjointTypesR;
|
typedef GaugeImplTypes<vComplex, SU<Nc>::AdjointDimension> GimplAdjointTypesR;
|
||||||
typedef GaugeImplTypes<vComplexF, SU<Nc>::AdjointDimension> GimplAdjointTypesF;
|
typedef GaugeImplTypes<vComplexF, SU<Nc>::AdjointDimension> GimplAdjointTypesF;
|
||||||
typedef GaugeImplTypes<vComplexD, SU<Nc>::AdjointDimension> GimplAdjointTypesD;
|
typedef GaugeImplTypes<vComplexD, SU<Nc>::AdjointDimension> GimplAdjointTypesD;
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
|
||||||
#endif // GRID_GAUGE_IMPL_TYPES_H
|
#endif // GRID_GAUGE_IMPL_TYPES_H
|
||||||
|
@ -176,7 +176,7 @@ public:
|
|||||||
return PeriodicBC::CshiftLink(Link,mu,shift);
|
return PeriodicBC::CshiftLink(Link,mu,shift);
|
||||||
}
|
}
|
||||||
|
|
||||||
static inline void setDirections(const std::vector<int> &conjDirs) { _conjDirs=conjDirs; }
|
static inline void setDirections(std::vector<int> &conjDirs) { _conjDirs=conjDirs; }
|
||||||
static inline std::vector<int> getDirections(void) { return _conjDirs; }
|
static inline std::vector<int> getDirections(void) { return _conjDirs; }
|
||||||
static inline bool isPeriodicGaugeField(void) { return false; }
|
static inline bool isPeriodicGaugeField(void) { return false; }
|
||||||
};
|
};
|
||||||
@ -193,11 +193,6 @@ typedef ConjugateGaugeImpl<GimplTypesR> ConjugateGimplR; // Real.. whichever pre
|
|||||||
typedef ConjugateGaugeImpl<GimplTypesF> ConjugateGimplF; // Float
|
typedef ConjugateGaugeImpl<GimplTypesF> ConjugateGimplF; // Float
|
||||||
typedef ConjugateGaugeImpl<GimplTypesD> ConjugateGimplD; // Double
|
typedef ConjugateGaugeImpl<GimplTypesD> ConjugateGimplD; // Double
|
||||||
|
|
||||||
typedef PeriodicGaugeImpl<SpGimplTypesR> SpPeriodicGimplR; // Real.. whichever prec
|
|
||||||
typedef PeriodicGaugeImpl<SpGimplTypesF> SpPeriodicGimplF; // Float
|
|
||||||
typedef PeriodicGaugeImpl<SpGimplTypesD> SpPeriodicGimplD; // Double
|
|
||||||
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
@ -43,7 +43,7 @@ public:
|
|||||||
private:
|
private:
|
||||||
RealD c_plaq;
|
RealD c_plaq;
|
||||||
RealD c_rect;
|
RealD c_rect;
|
||||||
typename WilsonLoops<Gimpl>::StapleAndRectStapleAllWorkspace workspace;
|
|
||||||
public:
|
public:
|
||||||
PlaqPlusRectangleAction(RealD b,RealD c): c_plaq(b),c_rect(c){};
|
PlaqPlusRectangleAction(RealD b,RealD c): c_plaq(b),c_rect(c){};
|
||||||
|
|
||||||
@ -79,18 +79,27 @@ public:
|
|||||||
GridBase *grid = Umu.Grid();
|
GridBase *grid = Umu.Grid();
|
||||||
|
|
||||||
std::vector<GaugeLinkField> U (Nd,grid);
|
std::vector<GaugeLinkField> U (Nd,grid);
|
||||||
|
std::vector<GaugeLinkField> U2(Nd,grid);
|
||||||
|
|
||||||
for(int mu=0;mu<Nd;mu++){
|
for(int mu=0;mu<Nd;mu++){
|
||||||
U[mu] = PeekIndex<LorentzIndex>(Umu,mu);
|
U[mu] = PeekIndex<LorentzIndex>(Umu,mu);
|
||||||
|
WilsonLoops<Gimpl>::RectStapleDouble(U2[mu],U[mu],mu);
|
||||||
}
|
}
|
||||||
std::vector<GaugeLinkField> RectStaple(Nd,grid), Staple(Nd,grid);
|
|
||||||
WilsonLoops<Gimpl>::StapleAndRectStapleAll(Staple, RectStaple, U, workspace);
|
|
||||||
|
|
||||||
GaugeLinkField dSdU_mu(grid);
|
GaugeLinkField dSdU_mu(grid);
|
||||||
GaugeLinkField staple(grid);
|
GaugeLinkField staple(grid);
|
||||||
|
|
||||||
for (int mu=0; mu < Nd; mu++){
|
for (int mu=0; mu < Nd; mu++){
|
||||||
dSdU_mu = Ta(U[mu]*Staple[mu])*factor_p;
|
|
||||||
dSdU_mu = dSdU_mu + Ta(U[mu]*RectStaple[mu])*factor_r;
|
// Staple in direction mu
|
||||||
|
|
||||||
|
WilsonLoops<Gimpl>::Staple(staple,Umu,mu);
|
||||||
|
|
||||||
|
dSdU_mu = Ta(U[mu]*staple)*factor_p;
|
||||||
|
|
||||||
|
WilsonLoops<Gimpl>::RectStaple(Umu,staple,U2,U,mu);
|
||||||
|
|
||||||
|
dSdU_mu = dSdU_mu + Ta(U[mu]*staple)*factor_r;
|
||||||
|
|
||||||
PokeIndex<LorentzIndex>(dSdU, dSdU_mu, mu);
|
PokeIndex<LorentzIndex>(dSdU, dSdU_mu, mu);
|
||||||
}
|
}
|
||||||
|
@ -225,18 +225,6 @@ template <class RepresentationsPolicy,
|
|||||||
using GenericHMCRunnerHirep =
|
using GenericHMCRunnerHirep =
|
||||||
HMCWrapperTemplate<PeriodicGimplR, Integrator, RepresentationsPolicy>;
|
HMCWrapperTemplate<PeriodicGimplR, Integrator, RepresentationsPolicy>;
|
||||||
|
|
||||||
// sp2n
|
|
||||||
|
|
||||||
template <template <typename, typename, typename> class Integrator>
|
|
||||||
using GenericSpHMCRunner = HMCWrapperTemplate<SpPeriodicGimplR, Integrator>;
|
|
||||||
|
|
||||||
template <class RepresentationsPolicy,
|
|
||||||
template <typename, typename, typename> class Integrator>
|
|
||||||
using GenericSpHMCRunnerHirep =
|
|
||||||
HMCWrapperTemplate<SpPeriodicGimplR, Integrator, RepresentationsPolicy>;
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
template <class Implementation, class RepresentationsPolicy,
|
template <class Implementation, class RepresentationsPolicy,
|
||||||
template <typename, typename, typename> class Integrator>
|
template <typename, typename, typename> class Integrator>
|
||||||
using GenericHMCRunnerTemplate = HMCWrapperTemplate<Implementation, Integrator, RepresentationsPolicy>;
|
using GenericHMCRunnerTemplate = HMCWrapperTemplate<Implementation, Integrator, RepresentationsPolicy>;
|
||||||
|
@ -13,7 +13,7 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
* Empty since HMC updates already the fundamental representation
|
* Empty since HMC updates already the fundamental representation
|
||||||
*/
|
*/
|
||||||
|
|
||||||
template <int ncolour, class group_name>
|
template <int ncolour>
|
||||||
class FundamentalRep {
|
class FundamentalRep {
|
||||||
public:
|
public:
|
||||||
static const int Dimension = ncolour;
|
static const int Dimension = ncolour;
|
||||||
@ -21,7 +21,7 @@ public:
|
|||||||
|
|
||||||
// typdef to be used by the Representations class in HMC to get the
|
// typdef to be used by the Representations class in HMC to get the
|
||||||
// types for the higher representation fields
|
// types for the higher representation fields
|
||||||
typedef typename GaugeGroup<ncolour,group_name>::LatticeMatrix LatticeMatrix;
|
typedef typename SU<ncolour>::LatticeMatrix LatticeMatrix;
|
||||||
typedef LatticeGaugeField LatticeField;
|
typedef LatticeGaugeField LatticeField;
|
||||||
|
|
||||||
explicit FundamentalRep(GridBase* grid) {} //do nothing
|
explicit FundamentalRep(GridBase* grid) {} //do nothing
|
||||||
@ -45,8 +45,7 @@ public:
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
typedef FundamentalRep<Nc,GroupName::SU> FundamentalRepresentation;
|
typedef FundamentalRep<Nc> FundamentalRepresentation;
|
||||||
typedef FundamentalRep<Nc,GroupName::Sp> SpFundamentalRepresentation;
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
|
||||||
|
@ -20,14 +20,14 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
* in the SUnTwoIndex.h file
|
* in the SUnTwoIndex.h file
|
||||||
*/
|
*/
|
||||||
|
|
||||||
template <int ncolour, TwoIndexSymmetry S, class group_name = GroupName::SU>
|
template <int ncolour, TwoIndexSymmetry S>
|
||||||
class TwoIndexRep {
|
class TwoIndexRep {
|
||||||
public:
|
public:
|
||||||
// typdef to be used by the Representations class in HMC to get the
|
// typdef to be used by the Representations class in HMC to get the
|
||||||
// types for the higher representation fields
|
// types for the higher representation fields
|
||||||
typedef typename GaugeGroupTwoIndex<ncolour, S, group_name>::LatticeTwoIndexMatrix LatticeMatrix;
|
typedef typename SU_TwoIndex<ncolour, S>::LatticeTwoIndexMatrix LatticeMatrix;
|
||||||
typedef typename GaugeGroupTwoIndex<ncolour, S, group_name>::LatticeTwoIndexField LatticeField;
|
typedef typename SU_TwoIndex<ncolour, S>::LatticeTwoIndexField LatticeField;
|
||||||
static const int Dimension = GaugeGroupTwoIndex<ncolour,S,group_name>::Dimension;
|
static const int Dimension = ncolour * (ncolour + S) / 2;
|
||||||
static const bool isFundamental = false;
|
static const bool isFundamental = false;
|
||||||
|
|
||||||
LatticeField U;
|
LatticeField U;
|
||||||
@ -43,10 +43,10 @@ public:
|
|||||||
U = Zero();
|
U = Zero();
|
||||||
LatticeColourMatrix tmp(Uin.Grid());
|
LatticeColourMatrix tmp(Uin.Grid());
|
||||||
|
|
||||||
Vector<typename GaugeGroup<ncolour,group_name>::Matrix> eij(Dimension);
|
Vector<typename SU<ncolour>::Matrix> eij(Dimension);
|
||||||
|
|
||||||
for (int a = 0; a < Dimension; a++)
|
for (int a = 0; a < Dimension; a++)
|
||||||
GaugeGroupTwoIndex<ncolour, S, group_name>::base(a, eij[a]);
|
SU_TwoIndex<ncolour, S>::base(a, eij[a]);
|
||||||
|
|
||||||
for (int mu = 0; mu < Nd; mu++) {
|
for (int mu = 0; mu < Nd; mu++) {
|
||||||
auto Uin_mu = peekLorentz(Uin, mu);
|
auto Uin_mu = peekLorentz(Uin, mu);
|
||||||
@ -71,7 +71,7 @@ public:
|
|||||||
|
|
||||||
out_mu = Zero();
|
out_mu = Zero();
|
||||||
|
|
||||||
typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector h(in.Grid());
|
typename SU<ncolour>::LatticeAlgebraVector h(in.Grid());
|
||||||
projectOnAlgebra(h, in_mu, double(Nc + 2 * S)); // factor T(r)/T(fund)
|
projectOnAlgebra(h, in_mu, double(Nc + 2 * S)); // factor T(r)/T(fund)
|
||||||
FundamentalLieAlgebraMatrix(h, out_mu); // apply scale only once
|
FundamentalLieAlgebraMatrix(h, out_mu); // apply scale only once
|
||||||
pokeLorentz(out, out_mu, mu);
|
pokeLorentz(out, out_mu, mu);
|
||||||
@ -80,23 +80,20 @@ public:
|
|||||||
}
|
}
|
||||||
|
|
||||||
private:
|
private:
|
||||||
void projectOnAlgebra(typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h_out,
|
void projectOnAlgebra(typename SU<ncolour>::LatticeAlgebraVector &h_out,
|
||||||
const LatticeMatrix &in, Real scale = 1.0) const {
|
const LatticeMatrix &in, Real scale = 1.0) const {
|
||||||
GaugeGroupTwoIndex<ncolour, S,group_name>::projectOnAlgebra(h_out, in, scale);
|
SU_TwoIndex<ncolour, S>::projectOnAlgebra(h_out, in, scale);
|
||||||
}
|
}
|
||||||
|
|
||||||
void FundamentalLieAlgebraMatrix(
|
void FundamentalLieAlgebraMatrix(
|
||||||
typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h,
|
typename SU<ncolour>::LatticeAlgebraVector &h,
|
||||||
typename GaugeGroup<ncolour, group_name>::LatticeMatrix &out, Real scale = 1.0) const {
|
typename SU<ncolour>::LatticeMatrix &out, Real scale = 1.0) const {
|
||||||
GaugeGroup<ncolour,group_name>::FundamentalLieAlgebraMatrix(h, out, scale);
|
SU<ncolour>::FundamentalLieAlgebraMatrix(h, out, scale);
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
typedef TwoIndexRep<Nc, Symmetric, GroupName::SU> TwoIndexSymmetricRepresentation;
|
typedef TwoIndexRep<Nc, Symmetric> TwoIndexSymmetricRepresentation;
|
||||||
typedef TwoIndexRep<Nc, AntiSymmetric, GroupName::SU> TwoIndexAntiSymmetricRepresentation;
|
typedef TwoIndexRep<Nc, AntiSymmetric> TwoIndexAntiSymmetricRepresentation;
|
||||||
|
|
||||||
typedef TwoIndexRep<Nc, Symmetric, GroupName::Sp> SpTwoIndexSymmetricRepresentation;
|
|
||||||
typedef TwoIndexRep<Nc, AntiSymmetric, GroupName::Sp> SpTwoIndexAntiSymmetricRepresentation;
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
|
||||||
|
@ -37,14 +37,13 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
// Make these members of an Impl class for BC's.
|
// Make these members of an Impl class for BC's.
|
||||||
|
|
||||||
namespace PeriodicBC {
|
namespace PeriodicBC {
|
||||||
//Out(x) = Link(x)*field(x+mu)
|
|
||||||
template<class covariant,class gauge> Lattice<covariant> CovShiftForward(const Lattice<gauge> &Link,
|
template<class covariant,class gauge> Lattice<covariant> CovShiftForward(const Lattice<gauge> &Link,
|
||||||
int mu,
|
int mu,
|
||||||
const Lattice<covariant> &field)
|
const Lattice<covariant> &field)
|
||||||
{
|
{
|
||||||
return Link*Cshift(field,mu,1);// moves towards negative mu
|
return Link*Cshift(field,mu,1);// moves towards negative mu
|
||||||
}
|
}
|
||||||
//Out(x) = Link^dag(x-mu)*field(x-mu)
|
|
||||||
template<class covariant,class gauge> Lattice<covariant> CovShiftBackward(const Lattice<gauge> &Link,
|
template<class covariant,class gauge> Lattice<covariant> CovShiftBackward(const Lattice<gauge> &Link,
|
||||||
int mu,
|
int mu,
|
||||||
const Lattice<covariant> &field)
|
const Lattice<covariant> &field)
|
||||||
@ -53,19 +52,19 @@ namespace PeriodicBC {
|
|||||||
tmp = adj(Link)*field;
|
tmp = adj(Link)*field;
|
||||||
return Cshift(tmp,mu,-1);// moves towards positive mu
|
return Cshift(tmp,mu,-1);// moves towards positive mu
|
||||||
}
|
}
|
||||||
//Out(x) = Link^dag(x-mu)
|
|
||||||
template<class gauge> Lattice<gauge>
|
template<class gauge> Lattice<gauge>
|
||||||
CovShiftIdentityBackward(const Lattice<gauge> &Link, int mu)
|
CovShiftIdentityBackward(const Lattice<gauge> &Link, int mu)
|
||||||
{
|
{
|
||||||
return Cshift(adj(Link), mu, -1);
|
return Cshift(adj(Link), mu, -1);
|
||||||
}
|
}
|
||||||
//Out(x) = Link(x)
|
|
||||||
template<class gauge> Lattice<gauge>
|
template<class gauge> Lattice<gauge>
|
||||||
CovShiftIdentityForward(const Lattice<gauge> &Link, int mu)
|
CovShiftIdentityForward(const Lattice<gauge> &Link, int mu)
|
||||||
{
|
{
|
||||||
return Link;
|
return Link;
|
||||||
}
|
}
|
||||||
//Link(x) = Link(x+mu)
|
|
||||||
template<class gauge> Lattice<gauge>
|
template<class gauge> Lattice<gauge>
|
||||||
ShiftStaple(const Lattice<gauge> &Link, int mu)
|
ShiftStaple(const Lattice<gauge> &Link, int mu)
|
||||||
{
|
{
|
||||||
|
@ -1,470 +0,0 @@
|
|||||||
/*************************************************************************************
|
|
||||||
|
|
||||||
Grid physics library, www.github.com/paboyle/Grid
|
|
||||||
|
|
||||||
Source file: ./lib/qcd/utils/GaugeGroup.h
|
|
||||||
|
|
||||||
Copyright (C) 2015
|
|
||||||
|
|
||||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
|
||||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
||||||
Author: neo <cossu@post.kek.jp>
|
|
||||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
|
||||||
|
|
||||||
This program is free software; you can redistribute it and/or modify
|
|
||||||
it under the terms of the GNU General Public License as published by
|
|
||||||
the Free Software Foundation; either version 2 of the License, or
|
|
||||||
(at your option) any later version.
|
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License along
|
|
||||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
||||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
||||||
|
|
||||||
See the full license in the file "LICENSE" in the top level distribution
|
|
||||||
directory
|
|
||||||
*************************************************************************************/
|
|
||||||
/* END LEGAL */
|
|
||||||
#ifndef QCD_UTIL_GAUGEGROUP_H
|
|
||||||
#define QCD_UTIL_GAUGEGROUP_H
|
|
||||||
|
|
||||||
// Important detail: nvcc requires all template parameters to have names.
|
|
||||||
// This is the only reason why the second template parameter has a name.
|
|
||||||
#define ONLY_IF_SU \
|
|
||||||
typename dummy_name = group_name, \
|
|
||||||
typename named_dummy = std::enable_if_t < \
|
|
||||||
std::is_same<dummy_name, group_name>::value && \
|
|
||||||
is_su<dummy_name>::value >
|
|
||||||
|
|
||||||
#define ONLY_IF_Sp \
|
|
||||||
typename dummy_name = group_name, \
|
|
||||||
typename named_dummy = std::enable_if_t < \
|
|
||||||
std::is_same<dummy_name, group_name>::value && \
|
|
||||||
is_sp<dummy_name>::value >
|
|
||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
|
||||||
namespace GroupName {
|
|
||||||
class SU {};
|
|
||||||
class Sp {};
|
|
||||||
} // namespace GroupName
|
|
||||||
|
|
||||||
template <typename group_name>
|
|
||||||
struct is_su {
|
|
||||||
static const bool value = false;
|
|
||||||
};
|
|
||||||
|
|
||||||
template <>
|
|
||||||
struct is_su<GroupName::SU> {
|
|
||||||
static const bool value = true;
|
|
||||||
};
|
|
||||||
|
|
||||||
template <typename group_name>
|
|
||||||
struct is_sp {
|
|
||||||
static const bool value = false;
|
|
||||||
};
|
|
||||||
|
|
||||||
template <>
|
|
||||||
struct is_sp<GroupName::Sp> {
|
|
||||||
static const bool value = true;
|
|
||||||
};
|
|
||||||
|
|
||||||
template <typename group_name>
|
|
||||||
constexpr int compute_adjoint_dimension(int ncolour);
|
|
||||||
|
|
||||||
template <>
|
|
||||||
constexpr int compute_adjoint_dimension<GroupName::SU>(int ncolour) {
|
|
||||||
return ncolour * ncolour - 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
template <>
|
|
||||||
constexpr int compute_adjoint_dimension<GroupName::Sp>(int ncolour) {
|
|
||||||
return ncolour / 2 * (ncolour + 1);
|
|
||||||
}
|
|
||||||
|
|
||||||
template <int ncolour, class group_name>
|
|
||||||
class GaugeGroup {
|
|
||||||
public:
|
|
||||||
static const int Dimension = ncolour;
|
|
||||||
static const int AdjointDimension =
|
|
||||||
compute_adjoint_dimension<group_name>(ncolour);
|
|
||||||
static const int AlgebraDimension =
|
|
||||||
compute_adjoint_dimension<group_name>(ncolour);
|
|
||||||
|
|
||||||
template <typename vtype>
|
|
||||||
using iSU2Matrix = iScalar<iScalar<iMatrix<vtype, 2> > >;
|
|
||||||
template <typename vtype>
|
|
||||||
using iGroupMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
|
|
||||||
template <typename vtype>
|
|
||||||
using iAlgebraVector = iScalar<iScalar<iVector<vtype, AdjointDimension> > >;
|
|
||||||
static int su2subgroups(void) { return su2subgroups(group_name()); }
|
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
// Types can be accessed as SU<2>::Matrix , SU<2>::vSUnMatrix,
|
|
||||||
// SU<2>::LatticeMatrix etc...
|
|
||||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
typedef iGroupMatrix<Complex> Matrix;
|
|
||||||
typedef iGroupMatrix<ComplexF> MatrixF;
|
|
||||||
typedef iGroupMatrix<ComplexD> MatrixD;
|
|
||||||
|
|
||||||
typedef iGroupMatrix<vComplex> vMatrix;
|
|
||||||
typedef iGroupMatrix<vComplexF> vMatrixF;
|
|
||||||
typedef iGroupMatrix<vComplexD> vMatrixD;
|
|
||||||
|
|
||||||
// For the projectors to the algebra
|
|
||||||
// these should be real...
|
|
||||||
// keeping complex for consistency with the SIMD vector types
|
|
||||||
typedef iAlgebraVector<Complex> AlgebraVector;
|
|
||||||
typedef iAlgebraVector<ComplexF> AlgebraVectorF;
|
|
||||||
typedef iAlgebraVector<ComplexD> AlgebraVectorD;
|
|
||||||
|
|
||||||
typedef iAlgebraVector<vComplex> vAlgebraVector;
|
|
||||||
typedef iAlgebraVector<vComplexF> vAlgebraVectorF;
|
|
||||||
typedef iAlgebraVector<vComplexD> vAlgebraVectorD;
|
|
||||||
|
|
||||||
typedef Lattice<vMatrix> LatticeMatrix;
|
|
||||||
typedef Lattice<vMatrixF> LatticeMatrixF;
|
|
||||||
typedef Lattice<vMatrixD> LatticeMatrixD;
|
|
||||||
|
|
||||||
typedef Lattice<vAlgebraVector> LatticeAlgebraVector;
|
|
||||||
typedef Lattice<vAlgebraVectorF> LatticeAlgebraVectorF;
|
|
||||||
typedef Lattice<vAlgebraVectorD> LatticeAlgebraVectorD;
|
|
||||||
|
|
||||||
typedef iSU2Matrix<Complex> SU2Matrix;
|
|
||||||
typedef iSU2Matrix<ComplexF> SU2MatrixF;
|
|
||||||
typedef iSU2Matrix<ComplexD> SU2MatrixD;
|
|
||||||
|
|
||||||
typedef iSU2Matrix<vComplex> vSU2Matrix;
|
|
||||||
typedef iSU2Matrix<vComplexF> vSU2MatrixF;
|
|
||||||
typedef iSU2Matrix<vComplexD> vSU2MatrixD;
|
|
||||||
|
|
||||||
typedef Lattice<vSU2Matrix> LatticeSU2Matrix;
|
|
||||||
typedef Lattice<vSU2MatrixF> LatticeSU2MatrixF;
|
|
||||||
typedef Lattice<vSU2MatrixD> LatticeSU2MatrixD;
|
|
||||||
|
|
||||||
// Private implementation details are specified in the following files:
|
|
||||||
// Grid/qcd/utils/SUn.impl
|
|
||||||
// Grid/qcd/utils/SUn.impl
|
|
||||||
// The public part of the interface follows below and refers to these
|
|
||||||
// private member functions.
|
|
||||||
|
|
||||||
#include <Grid/qcd/utils/SUn.impl.h>
|
|
||||||
#include <Grid/qcd/utils/Sp2n.impl.h>
|
|
||||||
|
|
||||||
public:
|
|
||||||
template <class cplx>
|
|
||||||
static void generator(int lieIndex, iGroupMatrix<cplx> &ta) {
|
|
||||||
return generator(lieIndex, ta, group_name());
|
|
||||||
}
|
|
||||||
|
|
||||||
static void su2SubGroupIndex(int &i1, int &i2, int su2_index) {
|
|
||||||
return su2SubGroupIndex(i1, i2, su2_index, group_name());
|
|
||||||
}
|
|
||||||
|
|
||||||
static void testGenerators(void) { testGenerators(group_name()); }
|
|
||||||
|
|
||||||
static void printGenerators(void) {
|
|
||||||
for (int gen = 0; gen < AlgebraDimension; gen++) {
|
|
||||||
Matrix ta;
|
|
||||||
generator(gen, ta);
|
|
||||||
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
|
|
||||||
<< std::endl;
|
|
||||||
std::cout << GridLogMessage << ta << std::endl;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename LatticeMatrixType>
|
|
||||||
static void LieRandomize(GridParallelRNG &pRNG, LatticeMatrixType &out,
|
|
||||||
double scale = 1.0) {
|
|
||||||
GridBase *grid = out.Grid();
|
|
||||||
|
|
||||||
typedef typename LatticeMatrixType::vector_type vector_type;
|
|
||||||
|
|
||||||
typedef iSinglet<vector_type> vTComplexType;
|
|
||||||
|
|
||||||
typedef Lattice<vTComplexType> LatticeComplexType;
|
|
||||||
typedef typename GridTypeMapper<
|
|
||||||
typename LatticeMatrixType::vector_object>::scalar_object MatrixType;
|
|
||||||
|
|
||||||
LatticeComplexType ca(grid);
|
|
||||||
LatticeMatrixType lie(grid);
|
|
||||||
LatticeMatrixType la(grid);
|
|
||||||
ComplexD ci(0.0, scale);
|
|
||||||
MatrixType ta;
|
|
||||||
|
|
||||||
lie = Zero();
|
|
||||||
|
|
||||||
for (int a = 0; a < AlgebraDimension; a++) {
|
|
||||||
random(pRNG, ca);
|
|
||||||
|
|
||||||
ca = (ca + conjugate(ca)) * 0.5;
|
|
||||||
ca = ca - 0.5;
|
|
||||||
|
|
||||||
generator(a, ta);
|
|
||||||
|
|
||||||
la = ci * ca * ta;
|
|
||||||
|
|
||||||
lie = lie + la; // e^{i la ta}
|
|
||||||
}
|
|
||||||
taExp(lie, out);
|
|
||||||
}
|
|
||||||
|
|
||||||
static void GaussianFundamentalLieAlgebraMatrix(GridParallelRNG &pRNG,
|
|
||||||
LatticeMatrix &out,
|
|
||||||
Real scale = 1.0) {
|
|
||||||
GridBase *grid = out.Grid();
|
|
||||||
LatticeReal ca(grid);
|
|
||||||
LatticeMatrix la(grid);
|
|
||||||
Complex ci(0.0, scale);
|
|
||||||
Matrix ta;
|
|
||||||
|
|
||||||
out = Zero();
|
|
||||||
for (int a = 0; a < AlgebraDimension; a++) {
|
|
||||||
gaussian(pRNG, ca);
|
|
||||||
generator(a, ta);
|
|
||||||
la = toComplex(ca) * ta;
|
|
||||||
out += la;
|
|
||||||
}
|
|
||||||
out *= ci;
|
|
||||||
}
|
|
||||||
|
|
||||||
static void FundamentalLieAlgebraMatrix(const LatticeAlgebraVector &h,
|
|
||||||
LatticeMatrix &out,
|
|
||||||
Real scale = 1.0) {
|
|
||||||
conformable(h, out);
|
|
||||||
GridBase *grid = out.Grid();
|
|
||||||
LatticeMatrix la(grid);
|
|
||||||
Matrix ta;
|
|
||||||
|
|
||||||
out = Zero();
|
|
||||||
for (int a = 0; a < AlgebraDimension; a++) {
|
|
||||||
generator(a, ta);
|
|
||||||
la = peekColour(h, a) * timesI(ta) * scale;
|
|
||||||
out += la;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Projects the algebra components a lattice matrix (of dimension ncol*ncol -1
|
|
||||||
// ) inverse operation: FundamentalLieAlgebraMatrix
|
|
||||||
static void projectOnAlgebra(LatticeAlgebraVector &h_out,
|
|
||||||
const LatticeMatrix &in, Real scale = 1.0) {
|
|
||||||
conformable(h_out, in);
|
|
||||||
h_out = Zero();
|
|
||||||
Matrix Ta;
|
|
||||||
|
|
||||||
for (int a = 0; a < AlgebraDimension; a++) {
|
|
||||||
generator(a, Ta);
|
|
||||||
pokeColour(h_out, -2.0 * (trace(timesI(Ta) * in)) * scale, a);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
template <class vtype>
|
|
||||||
accelerator_inline static iScalar<vtype> ProjectOnGeneralGroup(const iScalar<vtype> &r) {
|
|
||||||
return ProjectOnGeneralGroup(r, group_name());
|
|
||||||
}
|
|
||||||
|
|
||||||
template <class vtype, int N>
|
|
||||||
accelerator_inline static iVector<vtype,N> ProjectOnGeneralGroup(const iVector<vtype,N> &r) {
|
|
||||||
return ProjectOnGeneralGroup(r, group_name());
|
|
||||||
}
|
|
||||||
|
|
||||||
template <class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
|
|
||||||
accelerator_inline static iMatrix<vtype,N> ProjectOnGeneralGroup(const iMatrix<vtype,N> &arg) {
|
|
||||||
return ProjectOnGeneralGroup(arg, group_name());
|
|
||||||
}
|
|
||||||
|
|
||||||
template <int N,class vComplex_t> // Projects on the general groups U(N), Sp(2N)xZ2 i.e. determinant is allowed a complex phase.
|
|
||||||
static void ProjectOnGeneralGroup(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >, Nd> > &U) {
|
|
||||||
for (int mu = 0; mu < Nd; mu++) {
|
|
||||||
auto Umu = PeekIndex<LorentzIndex>(U, mu);
|
|
||||||
Umu = ProjectOnGeneralGroup(Umu);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
template <int N,class vComplex_t>
|
|
||||||
static Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > ProjectOnGeneralGroup(const Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu) {
|
|
||||||
return ProjectOnGeneralGroup(Umu, group_name());
|
|
||||||
}
|
|
||||||
|
|
||||||
template <int N,class vComplex_t> // Projects on SU(N), Sp(2N), with unit determinant, by first projecting on general group and then enforcing unit determinant
|
|
||||||
static void ProjectOnSpecialGroup(Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu) {
|
|
||||||
Umu = ProjectOnGeneralGroup(Umu);
|
|
||||||
auto det = Determinant(Umu);
|
|
||||||
|
|
||||||
det = conjugate(det);
|
|
||||||
|
|
||||||
for (int i = 0; i < N; i++) {
|
|
||||||
auto element = PeekIndex<ColourIndex>(Umu, N - 1, i);
|
|
||||||
element = element * det;
|
|
||||||
PokeIndex<ColourIndex>(Umu, element, Nc - 1, i);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <int N,class vComplex_t> // reunitarise, resimplectify... previously ProjectSUn
|
|
||||||
static void ProjectOnSpecialGroup(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >, Nd> > &U) {
|
|
||||||
// Reunitarise
|
|
||||||
for (int mu = 0; mu < Nd; mu++) {
|
|
||||||
auto Umu = PeekIndex<LorentzIndex>(U, mu);
|
|
||||||
ProjectOnSpecialGroup(Umu);
|
|
||||||
PokeIndex<LorentzIndex>(U, Umu, mu);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename GaugeField>
|
|
||||||
static void HotConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
|
|
||||||
typedef typename GaugeField::vector_type vector_type;
|
|
||||||
typedef iGroupMatrix<vector_type> vMatrixType;
|
|
||||||
typedef Lattice<vMatrixType> LatticeMatrixType;
|
|
||||||
|
|
||||||
LatticeMatrixType Umu(out.Grid());
|
|
||||||
LatticeMatrixType tmp(out.Grid());
|
|
||||||
for (int mu = 0; mu < Nd; mu++) {
|
|
||||||
// LieRandomize(pRNG, Umu, 1.0);
|
|
||||||
// PokeIndex<LorentzIndex>(out, Umu, mu);
|
|
||||||
gaussian(pRNG,Umu);
|
|
||||||
tmp = Ta(Umu);
|
|
||||||
taExp(tmp,Umu);
|
|
||||||
ProjectOnSpecialGroup(Umu);
|
|
||||||
// ProjectSUn(Umu);
|
|
||||||
PokeIndex<LorentzIndex>(out, Umu, mu);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
template <typename GaugeField>
|
|
||||||
static void TepidConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
|
|
||||||
typedef typename GaugeField::vector_type vector_type;
|
|
||||||
typedef iGroupMatrix<vector_type> vMatrixType;
|
|
||||||
typedef Lattice<vMatrixType> LatticeMatrixType;
|
|
||||||
|
|
||||||
LatticeMatrixType Umu(out.Grid());
|
|
||||||
for (int mu = 0; mu < Nd; mu++) {
|
|
||||||
LieRandomize(pRNG, Umu, 0.01);
|
|
||||||
PokeIndex<LorentzIndex>(out, Umu, mu);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename GaugeField>
|
|
||||||
static void ColdConfiguration(GaugeField &out) {
|
|
||||||
typedef typename GaugeField::vector_type vector_type;
|
|
||||||
typedef iGroupMatrix<vector_type> vMatrixType;
|
|
||||||
typedef Lattice<vMatrixType> LatticeMatrixType;
|
|
||||||
|
|
||||||
LatticeMatrixType Umu(out.Grid());
|
|
||||||
Umu = 1.0;
|
|
||||||
for (int mu = 0; mu < Nd; mu++) {
|
|
||||||
PokeIndex<LorentzIndex>(out, Umu, mu);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename GaugeField>
|
|
||||||
static void ColdConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
|
|
||||||
ColdConfiguration(out);
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename LatticeMatrixType>
|
|
||||||
static void taProj(const LatticeMatrixType &in, LatticeMatrixType &out) {
|
|
||||||
taProj(in, out, group_name());
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename LatticeMatrixType>
|
|
||||||
static void taExp(const LatticeMatrixType &x, LatticeMatrixType &ex) {
|
|
||||||
typedef typename LatticeMatrixType::scalar_type ComplexType;
|
|
||||||
|
|
||||||
LatticeMatrixType xn(x.Grid());
|
|
||||||
RealD nfac = 1.0;
|
|
||||||
|
|
||||||
xn = x;
|
|
||||||
ex = xn + ComplexType(1.0); // 1+x
|
|
||||||
|
|
||||||
// Do a 12th order exponentiation
|
|
||||||
for (int i = 2; i <= 12; ++i) {
|
|
||||||
nfac = nfac / RealD(i); // 1/2, 1/2.3 ...
|
|
||||||
xn = xn * x; // x2, x3,x4....
|
|
||||||
ex = ex + xn * nfac; // x2/2!, x3/3!....
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
};
|
|
||||||
|
|
||||||
template <int ncolour>
|
|
||||||
using SU = GaugeGroup<ncolour, GroupName::SU>;
|
|
||||||
|
|
||||||
template <int ncolour>
|
|
||||||
using Sp = GaugeGroup<ncolour, GroupName::Sp>;
|
|
||||||
|
|
||||||
typedef SU<2> SU2;
|
|
||||||
typedef SU<3> SU3;
|
|
||||||
typedef SU<4> SU4;
|
|
||||||
typedef SU<5> SU5;
|
|
||||||
|
|
||||||
typedef SU<Nc> FundamentalMatrices;
|
|
||||||
|
|
||||||
typedef Sp<2> Sp2;
|
|
||||||
typedef Sp<4> Sp4;
|
|
||||||
typedef Sp<6> Sp6;
|
|
||||||
typedef Sp<8> Sp8;
|
|
||||||
|
|
||||||
template <int N,class vComplex_t>
|
|
||||||
static void ProjectSUn(Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu)
|
|
||||||
{
|
|
||||||
GaugeGroup<N,GroupName::SU>::ProjectOnSpecialGroup(Umu);
|
|
||||||
}
|
|
||||||
|
|
||||||
template <int N,class vComplex_t>
|
|
||||||
static void ProjectSUn(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >,Nd> > &U)
|
|
||||||
{
|
|
||||||
GaugeGroup<N,GroupName::SU>::ProjectOnSpecialGroup(U);
|
|
||||||
}
|
|
||||||
|
|
||||||
template <int N,class vComplex_t>
|
|
||||||
static void ProjectSpn(Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu)
|
|
||||||
{
|
|
||||||
GaugeGroup<N,GroupName::Sp>::ProjectOnSpecialGroup(Umu);
|
|
||||||
}
|
|
||||||
|
|
||||||
template <int N,class vComplex_t>
|
|
||||||
static void ProjectSpn(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >,Nd> > &U)
|
|
||||||
{
|
|
||||||
GaugeGroup<N,GroupName::Sp>::ProjectOnSpecialGroup(U);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Explicit specialisation for SU(3).
|
|
||||||
static void ProjectSU3(Lattice<iScalar<iScalar<iMatrix<vComplexD, 3> > > > &Umu)
|
|
||||||
{
|
|
||||||
GridBase *grid = Umu.Grid();
|
|
||||||
const int x = 0;
|
|
||||||
const int y = 1;
|
|
||||||
const int z = 2;
|
|
||||||
// Reunitarise
|
|
||||||
Umu = ProjectOnGroup(Umu);
|
|
||||||
autoView(Umu_v, Umu, CpuWrite);
|
|
||||||
thread_for(ss, grid->oSites(), {
|
|
||||||
auto cm = Umu_v[ss];
|
|
||||||
cm()()(2, x) = adj(cm()()(0, y) * cm()()(1, z) -
|
|
||||||
cm()()(0, z) * cm()()(1, y)); // x= yz-zy
|
|
||||||
cm()()(2, y) = adj(cm()()(0, z) * cm()()(1, x) -
|
|
||||||
cm()()(0, x) * cm()()(1, z)); // y= zx-xz
|
|
||||||
cm()()(2, z) = adj(cm()()(0, x) * cm()()(1, y) -
|
|
||||||
cm()()(0, y) * cm()()(1, x)); // z= xy-yx
|
|
||||||
Umu_v[ss] = cm;
|
|
||||||
});
|
|
||||||
}
|
|
||||||
static void ProjectSU3(Lattice<iVector<iScalar<iMatrix<vComplexD, 3> >, Nd> > &U)
|
|
||||||
{
|
|
||||||
GridBase *grid = U.Grid();
|
|
||||||
// Reunitarise
|
|
||||||
for (int mu = 0; mu < Nd; mu++) {
|
|
||||||
auto Umu = PeekIndex<LorentzIndex>(U, mu);
|
|
||||||
Umu = ProjectOnGroup(Umu);
|
|
||||||
ProjectSU3(Umu);
|
|
||||||
PokeIndex<LorentzIndex>(U, Umu, mu);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
|
||||||
#endif
|
|
@ -1,371 +0,0 @@
|
|||||||
////////////////////////////////////////////////////////////////////////
|
|
||||||
//
|
|
||||||
// * Two index representation generators
|
|
||||||
//
|
|
||||||
// * Normalisation for the fundamental generators:
|
|
||||||
// trace ta tb = 1/2 delta_ab = T_F delta_ab
|
|
||||||
// T_F = 1/2 for SU(N) groups
|
|
||||||
//
|
|
||||||
//
|
|
||||||
// base for NxN two index (anti-symmetric) matrices
|
|
||||||
// normalized to 1 (d_ij is the kroenecker delta)
|
|
||||||
//
|
|
||||||
// (e^(ij)_{kl} = 1 / sqrt(2) (d_ik d_jl +/- d_jk d_il)
|
|
||||||
//
|
|
||||||
// Then the generators are written as
|
|
||||||
//
|
|
||||||
// (iT_a)^(ij)(lk) = i * ( tr[e^(ij)^dag e^(lk) T^trasp_a] +
|
|
||||||
// tr[e^(lk)e^(ij)^dag T_a] ) //
|
|
||||||
//
|
|
||||||
//
|
|
||||||
////////////////////////////////////////////////////////////////////////
|
|
||||||
|
|
||||||
// Authors: David Preti, Guido Cossu
|
|
||||||
|
|
||||||
#ifndef QCD_UTIL_GAUGEGROUPTWOINDEX_H
|
|
||||||
#define QCD_UTIL_GAUGEGROUPTWOINDEX_H
|
|
||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
|
||||||
|
|
||||||
enum TwoIndexSymmetry { Symmetric = 1, AntiSymmetric = -1 };
|
|
||||||
|
|
||||||
constexpr inline Real delta(int a, int b) { return (a == b) ? 1.0 : 0.0; }
|
|
||||||
|
|
||||||
namespace detail {
|
|
||||||
|
|
||||||
template <class cplx, int nc, TwoIndexSymmetry S>
|
|
||||||
struct baseOffDiagonalSpHelper;
|
|
||||||
|
|
||||||
template <class cplx, int nc>
|
|
||||||
struct baseOffDiagonalSpHelper<cplx, nc, AntiSymmetric> {
|
|
||||||
static const int ngroup = nc / 2;
|
|
||||||
static void baseOffDiagonalSp(int i, int j, iScalar<iScalar<iMatrix<cplx, nc> > > &eij) {
|
|
||||||
eij = Zero();
|
|
||||||
RealD tmp;
|
|
||||||
|
|
||||||
if ((i == ngroup + j) && (1 <= j) && (j < ngroup)) {
|
|
||||||
for (int k = 0; k < j+1; k++) {
|
|
||||||
if (k < j) {
|
|
||||||
tmp = 1 / sqrt(j * (j + 1));
|
|
||||||
eij()()(k, k + ngroup) = tmp;
|
|
||||||
eij()()(k + ngroup, k) = -tmp;
|
|
||||||
}
|
|
||||||
if (k == j) {
|
|
||||||
tmp = -j / sqrt(j * (j + 1));
|
|
||||||
eij()()(k, k + ngroup) = tmp;
|
|
||||||
eij()()(k + ngroup, k) = -tmp;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
else if (i != ngroup + j) {
|
|
||||||
for (int k = 0; k < nc; k++)
|
|
||||||
for (int l = 0; l < nc; l++) {
|
|
||||||
eij()()(l, k) =
|
|
||||||
delta(i, k) * delta(j, l) - delta(j, k) * delta(i, l);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
RealD nrm = 1. / std::sqrt(2.0);
|
|
||||||
eij = eij * nrm;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
template <class cplx, int nc>
|
|
||||||
struct baseOffDiagonalSpHelper<cplx, nc, Symmetric> {
|
|
||||||
static void baseOffDiagonalSp(int i, int j, iScalar<iScalar<iMatrix<cplx, nc> > > &eij) {
|
|
||||||
eij = Zero();
|
|
||||||
for (int k = 0; k < nc; k++)
|
|
||||||
for (int l = 0; l < nc; l++)
|
|
||||||
eij()()(l, k) =
|
|
||||||
delta(i, k) * delta(j, l) + delta(j, k) * delta(i, l);
|
|
||||||
|
|
||||||
RealD nrm = 1. / std::sqrt(2.0);
|
|
||||||
eij = eij * nrm;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
} // closing detail namespace
|
|
||||||
|
|
||||||
template <int ncolour, TwoIndexSymmetry S, class group_name>
|
|
||||||
class GaugeGroupTwoIndex : public GaugeGroup<ncolour, group_name> {
|
|
||||||
public:
|
|
||||||
// The chosen convention is that we are taking ncolour to be N in SU<N> but 2N
|
|
||||||
// in Sp(2N). ngroup is equal to N for SU but 2N/2 = N for Sp(2N).
|
|
||||||
static_assert(std::is_same<group_name, GroupName::SU>::value or
|
|
||||||
std::is_same<group_name, GroupName::Sp>::value,
|
|
||||||
"ngroup is only implemented for SU and Sp currently.");
|
|
||||||
static const int ngroup =
|
|
||||||
std::is_same<group_name, GroupName::SU>::value ? ncolour : ncolour / 2;
|
|
||||||
static const int Dimension =
|
|
||||||
(ncolour * (ncolour + S) / 2) + (std::is_same<group_name, GroupName::Sp>::value ? (S - 1) / 2 : 0);
|
|
||||||
static const int DimensionAS =
|
|
||||||
(ncolour * (ncolour - 1) / 2) + (std::is_same<group_name, GroupName::Sp>::value ? (- 1) : 0);
|
|
||||||
static const int DimensionS =
|
|
||||||
ncolour * (ncolour + 1) / 2;
|
|
||||||
static const int NumGenerators =
|
|
||||||
GaugeGroup<ncolour, group_name>::AlgebraDimension;
|
|
||||||
|
|
||||||
template <typename vtype>
|
|
||||||
using iGroupTwoIndexMatrix = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
|
|
||||||
|
|
||||||
typedef iGroupTwoIndexMatrix<Complex> TIMatrix;
|
|
||||||
typedef iGroupTwoIndexMatrix<ComplexF> TIMatrixF;
|
|
||||||
typedef iGroupTwoIndexMatrix<ComplexD> TIMatrixD;
|
|
||||||
|
|
||||||
typedef iGroupTwoIndexMatrix<vComplex> vTIMatrix;
|
|
||||||
typedef iGroupTwoIndexMatrix<vComplexF> vTIMatrixF;
|
|
||||||
typedef iGroupTwoIndexMatrix<vComplexD> vTIMatrixD;
|
|
||||||
|
|
||||||
typedef Lattice<vTIMatrix> LatticeTwoIndexMatrix;
|
|
||||||
typedef Lattice<vTIMatrixF> LatticeTwoIndexMatrixF;
|
|
||||||
typedef Lattice<vTIMatrixD> LatticeTwoIndexMatrixD;
|
|
||||||
|
|
||||||
typedef Lattice<iVector<iScalar<iMatrix<vComplex, Dimension> >, Nd> >
|
|
||||||
LatticeTwoIndexField;
|
|
||||||
typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> >
|
|
||||||
LatticeTwoIndexFieldF;
|
|
||||||
typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> >
|
|
||||||
LatticeTwoIndexFieldD;
|
|
||||||
|
|
||||||
template <typename vtype>
|
|
||||||
using iGroupMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
|
|
||||||
|
|
||||||
typedef iGroupMatrix<Complex> Matrix;
|
|
||||||
typedef iGroupMatrix<ComplexF> MatrixF;
|
|
||||||
typedef iGroupMatrix<ComplexD> MatrixD;
|
|
||||||
|
|
||||||
private:
|
|
||||||
template <class cplx>
|
|
||||||
static void baseDiagonal(int Index, iGroupMatrix<cplx> &eij) {
|
|
||||||
eij = Zero();
|
|
||||||
eij()()(Index - ncolour * (ncolour - 1) / 2,
|
|
||||||
Index - ncolour * (ncolour - 1) / 2) = 1.0;
|
|
||||||
}
|
|
||||||
|
|
||||||
template <class cplx>
|
|
||||||
static void baseOffDiagonal(int i, int j, iGroupMatrix<cplx> &eij, GroupName::SU) {
|
|
||||||
eij = Zero();
|
|
||||||
for (int k = 0; k < ncolour; k++)
|
|
||||||
for (int l = 0; l < ncolour; l++)
|
|
||||||
eij()()(l, k) =
|
|
||||||
delta(i, k) * delta(j, l) + S * delta(j, k) * delta(i, l);
|
|
||||||
|
|
||||||
RealD nrm = 1. / std::sqrt(2.0);
|
|
||||||
eij = eij * nrm;
|
|
||||||
}
|
|
||||||
|
|
||||||
template <class cplx>
|
|
||||||
static void baseOffDiagonal(int i, int j, iGroupMatrix<cplx> &eij, GroupName::Sp) {
|
|
||||||
detail::baseOffDiagonalSpHelper<cplx, ncolour, S>::baseOffDiagonalSp(i, j, eij);
|
|
||||||
}
|
|
||||||
|
|
||||||
public:
|
|
||||||
|
|
||||||
template <class cplx>
|
|
||||||
static void base(int Index, iGroupMatrix<cplx> &eij) {
|
|
||||||
// returns (e)^(ij)_{kl} necessary for change of base U_F -> U_R
|
|
||||||
assert(Index < Dimension);
|
|
||||||
eij = Zero();
|
|
||||||
// for the linearisation of the 2 indexes
|
|
||||||
static int a[ncolour * (ncolour - 1) / 2][2]; // store the a <-> i,j
|
|
||||||
static bool filled = false;
|
|
||||||
if (!filled) {
|
|
||||||
int counter = 0;
|
|
||||||
for (int i = 1; i < ncolour; i++) {
|
|
||||||
for (int j = 0; j < i; j++) {
|
|
||||||
if (std::is_same<group_name, GroupName::Sp>::value)
|
|
||||||
{
|
|
||||||
if (j==0 && i==ngroup+j && S==-1) {
|
|
||||||
//std::cout << "skipping" << std::endl; // for Sp2n this vanishes identically.
|
|
||||||
j = j+1;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
a[counter][0] = i;
|
|
||||||
a[counter][1] = j;
|
|
||||||
counter++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
filled = true;
|
|
||||||
}
|
|
||||||
if (Index < ncolour*ncolour - DimensionS)
|
|
||||||
{
|
|
||||||
baseOffDiagonal(a[Index][0], a[Index][1], eij, group_name());
|
|
||||||
} else {
|
|
||||||
baseDiagonal(Index, eij);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
static void printBase(void) {
|
|
||||||
for (int gen = 0; gen < Dimension; gen++) {
|
|
||||||
Matrix tmp;
|
|
||||||
base(gen, tmp);
|
|
||||||
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
|
|
||||||
<< std::endl;
|
|
||||||
std::cout << GridLogMessage << tmp << std::endl;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <class cplx>
|
|
||||||
static void generator(int Index, iGroupTwoIndexMatrix<cplx> &i2indTa) {
|
|
||||||
Vector<iGroupMatrix<cplx> > ta(NumGenerators);
|
|
||||||
Vector<iGroupMatrix<cplx> > eij(Dimension);
|
|
||||||
iGroupMatrix<cplx> tmp;
|
|
||||||
|
|
||||||
for (int a = 0; a < NumGenerators; a++)
|
|
||||||
GaugeGroup<ncolour, group_name>::generator(a, ta[a]);
|
|
||||||
|
|
||||||
for (int a = 0; a < Dimension; a++) base(a, eij[a]);
|
|
||||||
|
|
||||||
for (int a = 0; a < Dimension; a++) {
|
|
||||||
tmp = transpose(eij[a]*ta[Index]) + transpose(eij[a]) * ta[Index];
|
|
||||||
for (int b = 0; b < Dimension; b++) {
|
|
||||||
Complex iTr = TensorRemove(timesI(trace(tmp * eij[b])));
|
|
||||||
i2indTa()()(a, b) = iTr;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
static void printGenerators(void) {
|
|
||||||
for (int gen = 0; gen < NumGenerators; gen++) {
|
|
||||||
TIMatrix i2indTa;
|
|
||||||
generator(gen, i2indTa);
|
|
||||||
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
|
|
||||||
<< std::endl;
|
|
||||||
std::cout << GridLogMessage << i2indTa << std::endl;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
static void testGenerators(void) {
|
|
||||||
TIMatrix i2indTa, i2indTb;
|
|
||||||
std::cout << GridLogMessage << "2IndexRep - Checking if traceless"
|
|
||||||
<< std::endl;
|
|
||||||
for (int a = 0; a < NumGenerators; a++) {
|
|
||||||
generator(a, i2indTa);
|
|
||||||
std::cout << GridLogMessage << a << std::endl;
|
|
||||||
assert(norm2(trace(i2indTa)) < 1.0e-6);
|
|
||||||
}
|
|
||||||
std::cout << GridLogMessage << std::endl;
|
|
||||||
|
|
||||||
std::cout << GridLogMessage << "2IndexRep - Checking if antihermitean"
|
|
||||||
<< std::endl;
|
|
||||||
for (int a = 0; a < NumGenerators; a++) {
|
|
||||||
generator(a, i2indTa);
|
|
||||||
std::cout << GridLogMessage << a << std::endl;
|
|
||||||
assert(norm2(adj(i2indTa) + i2indTa) < 1.0e-6);
|
|
||||||
}
|
|
||||||
|
|
||||||
std::cout << GridLogMessage << std::endl;
|
|
||||||
std::cout << GridLogMessage
|
|
||||||
<< "2IndexRep - Checking Tr[Ta*Tb]=delta(a,b)*(N +- 2)/2"
|
|
||||||
<< std::endl;
|
|
||||||
for (int a = 0; a < NumGenerators; a++) {
|
|
||||||
for (int b = 0; b < NumGenerators; b++) {
|
|
||||||
generator(a, i2indTa);
|
|
||||||
generator(b, i2indTb);
|
|
||||||
|
|
||||||
// generator returns iTa, so we need a minus sign here
|
|
||||||
Complex Tr = -TensorRemove(trace(i2indTa * i2indTb));
|
|
||||||
std::cout << GridLogMessage << "a=" << a << "b=" << b << "Tr=" << Tr
|
|
||||||
<< std::endl;
|
|
||||||
if (a == b) {
|
|
||||||
assert(real(Tr) - ((ncolour + S * 2) * 0.5) < 1e-8);
|
|
||||||
} else {
|
|
||||||
assert(real(Tr) < 1e-8);
|
|
||||||
}
|
|
||||||
assert(imag(Tr) < 1e-8);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
std::cout << GridLogMessage << std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
static void TwoIndexLieAlgebraMatrix(
|
|
||||||
const typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h,
|
|
||||||
LatticeTwoIndexMatrix &out, Real scale = 1.0) {
|
|
||||||
conformable(h, out);
|
|
||||||
GridBase *grid = out.Grid();
|
|
||||||
LatticeTwoIndexMatrix la(grid);
|
|
||||||
TIMatrix i2indTa;
|
|
||||||
|
|
||||||
out = Zero();
|
|
||||||
for (int a = 0; a < NumGenerators; a++) {
|
|
||||||
generator(a, i2indTa);
|
|
||||||
la = peekColour(h, a) * i2indTa;
|
|
||||||
out += la;
|
|
||||||
}
|
|
||||||
out *= scale;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Projects the algebra components
|
|
||||||
// of a lattice matrix ( of dimension ncol*ncol -1 )
|
|
||||||
static void projectOnAlgebra(
|
|
||||||
typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h_out,
|
|
||||||
const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
|
|
||||||
conformable(h_out, in);
|
|
||||||
h_out = Zero();
|
|
||||||
TIMatrix i2indTa;
|
|
||||||
Real coefficient = -2.0 / (ncolour + 2 * S) * scale;
|
|
||||||
// 2/(Nc +/- 2) for the normalization of the trace in the two index rep
|
|
||||||
for (int a = 0; a < NumGenerators; a++) {
|
|
||||||
generator(a, i2indTa);
|
|
||||||
pokeColour(h_out, real(trace(i2indTa * in)) * coefficient, a);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// a projector that keeps the generators stored to avoid the overhead of
|
|
||||||
// recomputing them
|
|
||||||
static void projector(
|
|
||||||
typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h_out,
|
|
||||||
const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
|
|
||||||
conformable(h_out, in);
|
|
||||||
// to store the generators
|
|
||||||
static std::vector<TIMatrix> i2indTa(NumGenerators);
|
|
||||||
h_out = Zero();
|
|
||||||
static bool precalculated = false;
|
|
||||||
if (!precalculated) {
|
|
||||||
precalculated = true;
|
|
||||||
for (int a = 0; a < NumGenerators; a++) generator(a, i2indTa[a]);
|
|
||||||
}
|
|
||||||
|
|
||||||
Real coefficient =
|
|
||||||
-2.0 / (ncolour + 2 * S) * scale; // 2/(Nc +/- 2) for the normalization
|
|
||||||
// of the trace in the two index rep
|
|
||||||
|
|
||||||
for (int a = 0; a < NumGenerators; a++) {
|
|
||||||
auto tmp = real(trace(i2indTa[a] * in)) * coefficient;
|
|
||||||
pokeColour(h_out, tmp, a);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
template <int ncolour, TwoIndexSymmetry S>
|
|
||||||
using SU_TwoIndex = GaugeGroupTwoIndex<ncolour, S, GroupName::SU>;
|
|
||||||
|
|
||||||
// Some useful type names
|
|
||||||
typedef SU_TwoIndex<Nc, Symmetric> TwoIndexSymmMatrices;
|
|
||||||
typedef SU_TwoIndex<Nc, AntiSymmetric> TwoIndexAntiSymmMatrices;
|
|
||||||
|
|
||||||
typedef SU_TwoIndex<2, Symmetric> SU2TwoIndexSymm;
|
|
||||||
typedef SU_TwoIndex<3, Symmetric> SU3TwoIndexSymm;
|
|
||||||
typedef SU_TwoIndex<4, Symmetric> SU4TwoIndexSymm;
|
|
||||||
typedef SU_TwoIndex<5, Symmetric> SU5TwoIndexSymm;
|
|
||||||
|
|
||||||
typedef SU_TwoIndex<2, AntiSymmetric> SU2TwoIndexAntiSymm;
|
|
||||||
typedef SU_TwoIndex<3, AntiSymmetric> SU3TwoIndexAntiSymm;
|
|
||||||
typedef SU_TwoIndex<4, AntiSymmetric> SU4TwoIndexAntiSymm;
|
|
||||||
typedef SU_TwoIndex<5, AntiSymmetric> SU5TwoIndexAntiSymm;
|
|
||||||
|
|
||||||
template <int ncolour, TwoIndexSymmetry S>
|
|
||||||
using Sp_TwoIndex = GaugeGroupTwoIndex<ncolour, S, GroupName::Sp>;
|
|
||||||
|
|
||||||
typedef Sp_TwoIndex<Nc, Symmetric> SpTwoIndexSymmMatrices;
|
|
||||||
typedef Sp_TwoIndex<Nc, AntiSymmetric> SpTwoIndexAntiSymmMatrices;
|
|
||||||
|
|
||||||
typedef Sp_TwoIndex<2, Symmetric> Sp2TwoIndexSymm;
|
|
||||||
typedef Sp_TwoIndex<4, Symmetric> Sp4TwoIndexSymm;
|
|
||||||
|
|
||||||
typedef Sp_TwoIndex<4, AntiSymmetric> Sp4TwoIndexAntiSymm;
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
|
||||||
|
|
||||||
#endif
|
|
932
Grid/qcd/utils/SUn.h
Normal file
932
Grid/qcd/utils/SUn.h
Normal file
@ -0,0 +1,932 @@
|
|||||||
|
/*************************************************************************************
|
||||||
|
|
||||||
|
Grid physics library, www.github.com/paboyle/Grid
|
||||||
|
|
||||||
|
Source file: ./lib/qcd/utils/SUn.h
|
||||||
|
|
||||||
|
Copyright (C) 2015
|
||||||
|
|
||||||
|
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||||
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||||
|
Author: neo <cossu@post.kek.jp>
|
||||||
|
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||||
|
|
||||||
|
This program is free software; you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation; either version 2 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License along
|
||||||
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||||
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||||
|
|
||||||
|
See the full license in the file "LICENSE" in the top level distribution
|
||||||
|
directory
|
||||||
|
*************************************************************************************/
|
||||||
|
/* END LEGAL */
|
||||||
|
#ifndef QCD_UTIL_SUN_H
|
||||||
|
#define QCD_UTIL_SUN_H
|
||||||
|
|
||||||
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
|
template<int N, class Vec>
|
||||||
|
Lattice<iScalar<iScalar<iScalar<Vec> > > > Determinant(const Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu)
|
||||||
|
{
|
||||||
|
GridBase *grid=Umu.Grid();
|
||||||
|
auto lvol = grid->lSites();
|
||||||
|
Lattice<iScalar<iScalar<iScalar<Vec> > > > ret(grid);
|
||||||
|
typedef typename Vec::scalar_type scalar;
|
||||||
|
autoView(Umu_v,Umu,CpuRead);
|
||||||
|
autoView(ret_v,ret,CpuWrite);
|
||||||
|
thread_for(site,lvol,{
|
||||||
|
Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
|
||||||
|
Coordinate lcoor;
|
||||||
|
grid->LocalIndexToLocalCoor(site, lcoor);
|
||||||
|
iScalar<iScalar<iMatrix<scalar, N> > > Us;
|
||||||
|
peekLocalSite(Us, Umu_v, lcoor);
|
||||||
|
for(int i=0;i<N;i++){
|
||||||
|
for(int j=0;j<N;j++){
|
||||||
|
scalar tmp= Us()()(i,j);
|
||||||
|
ComplexD ztmp(real(tmp),imag(tmp));
|
||||||
|
EigenU(i,j)=ztmp;
|
||||||
|
}}
|
||||||
|
ComplexD detD = EigenU.determinant();
|
||||||
|
typename Vec::scalar_type det(detD.real(),detD.imag());
|
||||||
|
pokeLocalSite(det,ret_v,lcoor);
|
||||||
|
});
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<int N, class Vec>
|
||||||
|
static void ProjectSUn(Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu)
|
||||||
|
{
|
||||||
|
Umu = ProjectOnGroup(Umu);
|
||||||
|
auto det = Determinant(Umu);
|
||||||
|
|
||||||
|
det = conjugate(det);
|
||||||
|
|
||||||
|
for(int i=0;i<N;i++){
|
||||||
|
auto element = PeekIndex<ColourIndex>(Umu,N-1,i);
|
||||||
|
element = element * det;
|
||||||
|
PokeIndex<ColourIndex>(Umu,element,Nc-1,i);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
template<int N,class Vec>
|
||||||
|
static void ProjectSUn(Lattice<iVector<iScalar<iMatrix<Vec, N> >,Nd> > &U)
|
||||||
|
{
|
||||||
|
GridBase *grid=U.Grid();
|
||||||
|
// Reunitarise
|
||||||
|
for(int mu=0;mu<Nd;mu++){
|
||||||
|
auto Umu = PeekIndex<LorentzIndex>(U,mu);
|
||||||
|
Umu = ProjectOnGroup(Umu);
|
||||||
|
ProjectSUn(Umu);
|
||||||
|
PokeIndex<LorentzIndex>(U,Umu,mu);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <int ncolour>
|
||||||
|
class SU {
|
||||||
|
public:
|
||||||
|
static const int Dimension = ncolour;
|
||||||
|
static const int AdjointDimension = ncolour * ncolour - 1;
|
||||||
|
static int su2subgroups(void) { return (ncolour * (ncolour - 1)) / 2; }
|
||||||
|
|
||||||
|
template <typename vtype>
|
||||||
|
using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
|
||||||
|
template <typename vtype>
|
||||||
|
using iSU2Matrix = iScalar<iScalar<iMatrix<vtype, 2> > >;
|
||||||
|
template <typename vtype>
|
||||||
|
using iSUnAlgebraVector =
|
||||||
|
iScalar<iScalar<iVector<vtype, AdjointDimension> > >;
|
||||||
|
|
||||||
|
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
// Types can be accessed as SU<2>::Matrix , SU<2>::vSUnMatrix,
|
||||||
|
// SU<2>::LatticeMatrix etc...
|
||||||
|
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
typedef iSUnMatrix<Complex> Matrix;
|
||||||
|
typedef iSUnMatrix<ComplexF> MatrixF;
|
||||||
|
typedef iSUnMatrix<ComplexD> MatrixD;
|
||||||
|
|
||||||
|
typedef iSUnMatrix<vComplex> vMatrix;
|
||||||
|
typedef iSUnMatrix<vComplexF> vMatrixF;
|
||||||
|
typedef iSUnMatrix<vComplexD> vMatrixD;
|
||||||
|
|
||||||
|
// For the projectors to the algebra
|
||||||
|
// these should be real...
|
||||||
|
// keeping complex for consistency with the SIMD vector types
|
||||||
|
typedef iSUnAlgebraVector<Complex> AlgebraVector;
|
||||||
|
typedef iSUnAlgebraVector<ComplexF> AlgebraVectorF;
|
||||||
|
typedef iSUnAlgebraVector<ComplexD> AlgebraVectorD;
|
||||||
|
|
||||||
|
typedef iSUnAlgebraVector<vComplex> vAlgebraVector;
|
||||||
|
typedef iSUnAlgebraVector<vComplexF> vAlgebraVectorF;
|
||||||
|
typedef iSUnAlgebraVector<vComplexD> vAlgebraVectorD;
|
||||||
|
|
||||||
|
typedef Lattice<vMatrix> LatticeMatrix;
|
||||||
|
typedef Lattice<vMatrixF> LatticeMatrixF;
|
||||||
|
typedef Lattice<vMatrixD> LatticeMatrixD;
|
||||||
|
|
||||||
|
typedef Lattice<vAlgebraVector> LatticeAlgebraVector;
|
||||||
|
typedef Lattice<vAlgebraVectorF> LatticeAlgebraVectorF;
|
||||||
|
typedef Lattice<vAlgebraVectorD> LatticeAlgebraVectorD;
|
||||||
|
|
||||||
|
typedef iSU2Matrix<Complex> SU2Matrix;
|
||||||
|
typedef iSU2Matrix<ComplexF> SU2MatrixF;
|
||||||
|
typedef iSU2Matrix<ComplexD> SU2MatrixD;
|
||||||
|
|
||||||
|
typedef iSU2Matrix<vComplex> vSU2Matrix;
|
||||||
|
typedef iSU2Matrix<vComplexF> vSU2MatrixF;
|
||||||
|
typedef iSU2Matrix<vComplexD> vSU2MatrixD;
|
||||||
|
|
||||||
|
typedef Lattice<vSU2Matrix> LatticeSU2Matrix;
|
||||||
|
typedef Lattice<vSU2MatrixF> LatticeSU2MatrixF;
|
||||||
|
typedef Lattice<vSU2MatrixD> LatticeSU2MatrixD;
|
||||||
|
|
||||||
|
////////////////////////////////////////////////////////////////////////
|
||||||
|
// There are N^2-1 generators for SU(N).
|
||||||
|
//
|
||||||
|
// We take a traceless hermitian generator basis as follows
|
||||||
|
//
|
||||||
|
// * Normalisation: trace ta tb = 1/2 delta_ab = T_F delta_ab
|
||||||
|
// T_F = 1/2 for SU(N) groups
|
||||||
|
//
|
||||||
|
// * Off diagonal
|
||||||
|
// - pairs of rows i1,i2 behaving like pauli matrices signma_x, sigma_y
|
||||||
|
//
|
||||||
|
// - there are (Nc-1-i1) slots for i2 on each row [ x 0 x ]
|
||||||
|
// direct count off each row
|
||||||
|
//
|
||||||
|
// - Sum of all pairs is Nc(Nc-1)/2: proof arithmetic series
|
||||||
|
//
|
||||||
|
// (Nc-1) + (Nc-2)+... 1 ==> Nc*(Nc-1)/2
|
||||||
|
// 1+ 2+ + + Nc-1
|
||||||
|
//
|
||||||
|
// - There are 2 x Nc (Nc-1)/ 2 of these = Nc^2 - Nc
|
||||||
|
//
|
||||||
|
// - We enumerate the row-col pairs.
|
||||||
|
// - for each row col pair there is a (sigma_x) and a (sigma_y) like
|
||||||
|
// generator
|
||||||
|
//
|
||||||
|
//
|
||||||
|
// t^a_ij = { in 0.. Nc(Nc-1)/2 -1} => 1/2(delta_{i,i1} delta_{j,i2} +
|
||||||
|
// delta_{i,i1} delta_{j,i2})
|
||||||
|
// t^a_ij = { in Nc(Nc-1)/2 ... Nc(Nc-1) - 1} => i/2( delta_{i,i1}
|
||||||
|
// delta_{j,i2} - i delta_{i,i1} delta_{j,i2})
|
||||||
|
//
|
||||||
|
// * Diagonal; must be traceless and normalised
|
||||||
|
// - Sequence is
|
||||||
|
// N (1,-1,0,0...)
|
||||||
|
// N (1, 1,-2,0...)
|
||||||
|
// N (1, 1, 1,-3,0...)
|
||||||
|
// N (1, 1, 1, 1,-4,0...)
|
||||||
|
//
|
||||||
|
// where 1/2 = N^2 (1+.. m^2)etc.... for the m-th diagonal generator
|
||||||
|
// NB this gives the famous SU3 result for su2 index 8
|
||||||
|
//
|
||||||
|
// N= sqrt(1/2 . 1/6 ) = 1/2 . 1/sqrt(3)
|
||||||
|
//
|
||||||
|
// ( 1 )
|
||||||
|
// ( 1 ) / sqrt(3) /2 = 1/2 lambda_8
|
||||||
|
// ( -2)
|
||||||
|
//
|
||||||
|
////////////////////////////////////////////////////////////////////////
|
||||||
|
template <class cplx>
|
||||||
|
static void generator(int lieIndex, iSUnMatrix<cplx> &ta) {
|
||||||
|
// map lie index to which type of generator
|
||||||
|
int diagIndex;
|
||||||
|
int su2Index;
|
||||||
|
int sigxy;
|
||||||
|
int NNm1 = ncolour * (ncolour - 1);
|
||||||
|
if (lieIndex >= NNm1) {
|
||||||
|
diagIndex = lieIndex - NNm1;
|
||||||
|
generatorDiagonal(diagIndex, ta);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
sigxy = lieIndex & 0x1; // even or odd
|
||||||
|
su2Index = lieIndex >> 1;
|
||||||
|
if (sigxy)
|
||||||
|
generatorSigmaY(su2Index, ta);
|
||||||
|
else
|
||||||
|
generatorSigmaX(su2Index, ta);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <class cplx>
|
||||||
|
static void generatorSigmaY(int su2Index, iSUnMatrix<cplx> &ta) {
|
||||||
|
ta = Zero();
|
||||||
|
int i1, i2;
|
||||||
|
su2SubGroupIndex(i1, i2, su2Index);
|
||||||
|
ta()()(i1, i2) = 1.0;
|
||||||
|
ta()()(i2, i1) = 1.0;
|
||||||
|
ta = ta * 0.5;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <class cplx>
|
||||||
|
static void generatorSigmaX(int su2Index, iSUnMatrix<cplx> &ta) {
|
||||||
|
ta = Zero();
|
||||||
|
cplx i(0.0, 1.0);
|
||||||
|
int i1, i2;
|
||||||
|
su2SubGroupIndex(i1, i2, su2Index);
|
||||||
|
ta()()(i1, i2) = i;
|
||||||
|
ta()()(i2, i1) = -i;
|
||||||
|
ta = ta * 0.5;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <class cplx>
|
||||||
|
static void generatorDiagonal(int diagIndex, iSUnMatrix<cplx> &ta) {
|
||||||
|
// diag ({1, 1, ..., 1}(k-times), -k, 0, 0, ...)
|
||||||
|
ta = Zero();
|
||||||
|
int k = diagIndex + 1; // diagIndex starts from 0
|
||||||
|
for (int i = 0; i <= diagIndex; i++) { // k iterations
|
||||||
|
ta()()(i, i) = 1.0;
|
||||||
|
}
|
||||||
|
ta()()(k, k) = -k; // indexing starts from 0
|
||||||
|
RealD nrm = 1.0 / std::sqrt(2.0 * k * (k + 1));
|
||||||
|
ta = ta * nrm;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
////////////////////////////////////////////////////////////////////////
|
||||||
|
// Map a su2 subgroup number to the pair of rows that are non zero
|
||||||
|
////////////////////////////////////////////////////////////////////////
|
||||||
|
static void su2SubGroupIndex(int &i1, int &i2, int su2_index) {
|
||||||
|
assert((su2_index >= 0) && (su2_index < (ncolour * (ncolour - 1)) / 2));
|
||||||
|
|
||||||
|
int spare = su2_index;
|
||||||
|
for (i1 = 0; spare >= (ncolour - 1 - i1); i1++) {
|
||||||
|
spare = spare - (ncolour - 1 - i1); // remove the Nc-1-i1 terms
|
||||||
|
}
|
||||||
|
i2 = i1 + 1 + spare;
|
||||||
|
}
|
||||||
|
|
||||||
|
//////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
// Pull out a subgroup and project on to real coeffs x pauli basis
|
||||||
|
//////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
template <class vcplx>
|
||||||
|
static void su2Extract(Lattice<iSinglet<vcplx> > &Determinant,
|
||||||
|
Lattice<iSU2Matrix<vcplx> > &subgroup,
|
||||||
|
const Lattice<iSUnMatrix<vcplx> > &source,
|
||||||
|
int su2_index) {
|
||||||
|
GridBase *grid(source.Grid());
|
||||||
|
conformable(subgroup, source);
|
||||||
|
conformable(subgroup, Determinant);
|
||||||
|
int i0, i1;
|
||||||
|
su2SubGroupIndex(i0, i1, su2_index);
|
||||||
|
|
||||||
|
autoView( subgroup_v , subgroup,AcceleratorWrite);
|
||||||
|
autoView( source_v , source,AcceleratorRead);
|
||||||
|
autoView( Determinant_v , Determinant,AcceleratorWrite);
|
||||||
|
accelerator_for(ss, grid->oSites(), 1, {
|
||||||
|
|
||||||
|
subgroup_v[ss]()()(0, 0) = source_v[ss]()()(i0, i0);
|
||||||
|
subgroup_v[ss]()()(0, 1) = source_v[ss]()()(i0, i1);
|
||||||
|
subgroup_v[ss]()()(1, 0) = source_v[ss]()()(i1, i0);
|
||||||
|
subgroup_v[ss]()()(1, 1) = source_v[ss]()()(i1, i1);
|
||||||
|
|
||||||
|
iSU2Matrix<vcplx> Sigma = subgroup_v[ss];
|
||||||
|
|
||||||
|
Sigma = Sigma - adj(Sigma) + trace(adj(Sigma));
|
||||||
|
|
||||||
|
subgroup_v[ss] = Sigma;
|
||||||
|
|
||||||
|
// this should be purely real
|
||||||
|
Determinant_v[ss] =
|
||||||
|
Sigma()()(0, 0) * Sigma()()(1, 1) - Sigma()()(0, 1) * Sigma()()(1, 0);
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
//////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
// Set matrix to one and insert a pauli subgroup
|
||||||
|
//////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
template <class vcplx>
|
||||||
|
static void su2Insert(const Lattice<iSU2Matrix<vcplx> > &subgroup,
|
||||||
|
Lattice<iSUnMatrix<vcplx> > &dest, int su2_index) {
|
||||||
|
GridBase *grid(dest.Grid());
|
||||||
|
conformable(subgroup, dest);
|
||||||
|
int i0, i1;
|
||||||
|
su2SubGroupIndex(i0, i1, su2_index);
|
||||||
|
|
||||||
|
dest = 1.0; // start out with identity
|
||||||
|
autoView( dest_v , dest, AcceleratorWrite);
|
||||||
|
autoView( subgroup_v, subgroup, AcceleratorRead);
|
||||||
|
accelerator_for(ss, grid->oSites(),1,
|
||||||
|
{
|
||||||
|
dest_v[ss]()()(i0, i0) = subgroup_v[ss]()()(0, 0);
|
||||||
|
dest_v[ss]()()(i0, i1) = subgroup_v[ss]()()(0, 1);
|
||||||
|
dest_v[ss]()()(i1, i0) = subgroup_v[ss]()()(1, 0);
|
||||||
|
dest_v[ss]()()(i1, i1) = subgroup_v[ss]()()(1, 1);
|
||||||
|
});
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
///////////////////////////////////////////////
|
||||||
|
// Generate e^{ Re Tr Staple Link} dlink
|
||||||
|
//
|
||||||
|
// *** Note Staple should be appropriate linear compbination between all
|
||||||
|
// staples.
|
||||||
|
// *** If already by beta pass coefficient 1.0.
|
||||||
|
// *** This routine applies the additional 1/Nc factor that comes after trace
|
||||||
|
// in action.
|
||||||
|
//
|
||||||
|
///////////////////////////////////////////////
|
||||||
|
static void SubGroupHeatBath(GridSerialRNG &sRNG, GridParallelRNG &pRNG,
|
||||||
|
RealD beta, // coeff multiplying staple in action (with no 1/Nc)
|
||||||
|
LatticeMatrix &link,
|
||||||
|
const LatticeMatrix &barestaple, // multiplied by action coeffs so th
|
||||||
|
int su2_subgroup, int nheatbath, LatticeInteger &wheremask)
|
||||||
|
{
|
||||||
|
GridBase *grid = link.Grid();
|
||||||
|
|
||||||
|
const RealD twopi = 2.0 * M_PI;
|
||||||
|
|
||||||
|
LatticeMatrix staple(grid);
|
||||||
|
|
||||||
|
staple = barestaple * (beta / ncolour);
|
||||||
|
|
||||||
|
LatticeMatrix V(grid);
|
||||||
|
V = link * staple;
|
||||||
|
|
||||||
|
// Subgroup manipulation in the lie algebra space
|
||||||
|
LatticeSU2Matrix u(grid); // Kennedy pendleton "u" real projected normalised Sigma
|
||||||
|
LatticeSU2Matrix uinv(grid);
|
||||||
|
LatticeSU2Matrix ua(grid); // a in pauli form
|
||||||
|
LatticeSU2Matrix b(grid); // rotated matrix after hb
|
||||||
|
|
||||||
|
// Some handy constant fields
|
||||||
|
LatticeComplex ones(grid);
|
||||||
|
ones = 1.0;
|
||||||
|
LatticeComplex zeros(grid);
|
||||||
|
zeros = Zero();
|
||||||
|
LatticeReal rones(grid);
|
||||||
|
rones = 1.0;
|
||||||
|
LatticeReal rzeros(grid);
|
||||||
|
rzeros = Zero();
|
||||||
|
LatticeComplex udet(grid); // determinant of real(staple)
|
||||||
|
LatticeInteger mask_true(grid);
|
||||||
|
mask_true = 1;
|
||||||
|
LatticeInteger mask_false(grid);
|
||||||
|
mask_false = 0;
|
||||||
|
|
||||||
|
/*
|
||||||
|
PLB 156 P393 (1985) (Kennedy and Pendleton)
|
||||||
|
|
||||||
|
Note: absorb "beta" into the def of sigma compared to KP paper; staple
|
||||||
|
passed to this routine has "beta" already multiplied in
|
||||||
|
|
||||||
|
Action linear in links h and of form:
|
||||||
|
|
||||||
|
beta S = beta Sum_p (1 - 1/Nc Re Tr Plaq )
|
||||||
|
|
||||||
|
Writing Sigma = 1/Nc (beta Sigma') where sum over staples is "Sigma' "
|
||||||
|
|
||||||
|
beta S = const - beta/Nc Re Tr h Sigma'
|
||||||
|
= const - Re Tr h Sigma
|
||||||
|
|
||||||
|
Decompose h and Sigma into (1, sigma_j) ; h_i real, h^2=1, Sigma_i complex
|
||||||
|
arbitrary.
|
||||||
|
|
||||||
|
Tr h Sigma = h_i Sigma_j Tr (sigma_i sigma_j) = h_i Sigma_j 2 delta_ij
|
||||||
|
Re Tr h Sigma = 2 h_j Re Sigma_j
|
||||||
|
|
||||||
|
Normalised re Sigma_j = xi u_j
|
||||||
|
|
||||||
|
With u_j a unit vector and U can be in SU(2);
|
||||||
|
|
||||||
|
Re Tr h Sigma = 2 h_j Re Sigma_j = 2 xi (h.u)
|
||||||
|
|
||||||
|
4xi^2 = Det [ Sig - Sig^dag + 1 Tr Sigdag]
|
||||||
|
u = 1/2xi [ Sig - Sig^dag + 1 Tr Sigdag]
|
||||||
|
|
||||||
|
xi = sqrt(Det)/2;
|
||||||
|
|
||||||
|
Write a= u h in SU(2); a has pauli decomp a_j;
|
||||||
|
|
||||||
|
Note: Product b' xi is unvariant because scaling Sigma leaves
|
||||||
|
normalised vector "u" fixed; Can rescale Sigma so b' = 1.
|
||||||
|
*/
|
||||||
|
|
||||||
|
////////////////////////////////////////////////////////
|
||||||
|
// Real part of Pauli decomposition
|
||||||
|
// Note a subgroup can project to zero in cold start
|
||||||
|
////////////////////////////////////////////////////////
|
||||||
|
su2Extract(udet, u, V, su2_subgroup);
|
||||||
|
|
||||||
|
//////////////////////////////////////////////////////
|
||||||
|
// Normalising this vector if possible; else identity
|
||||||
|
//////////////////////////////////////////////////////
|
||||||
|
LatticeComplex xi(grid);
|
||||||
|
|
||||||
|
LatticeSU2Matrix lident(grid);
|
||||||
|
|
||||||
|
SU2Matrix ident = Complex(1.0);
|
||||||
|
SU2Matrix pauli1;
|
||||||
|
SU<2>::generator(0, pauli1);
|
||||||
|
SU2Matrix pauli2;
|
||||||
|
SU<2>::generator(1, pauli2);
|
||||||
|
SU2Matrix pauli3;
|
||||||
|
SU<2>::generator(2, pauli3);
|
||||||
|
pauli1 = timesI(pauli1) * 2.0;
|
||||||
|
pauli2 = timesI(pauli2) * 2.0;
|
||||||
|
pauli3 = timesI(pauli3) * 2.0;
|
||||||
|
|
||||||
|
LatticeComplex cone(grid);
|
||||||
|
LatticeReal adet(grid);
|
||||||
|
adet = abs(toReal(udet));
|
||||||
|
lident = Complex(1.0);
|
||||||
|
cone = Complex(1.0);
|
||||||
|
Real machine_epsilon = 1.0e-7;
|
||||||
|
u = where(adet > machine_epsilon, u, lident);
|
||||||
|
udet = where(adet > machine_epsilon, udet, cone);
|
||||||
|
|
||||||
|
xi = 0.5 * sqrt(udet); // 4xi^2 = Det [ Sig - Sig^dag + 1 Tr Sigdag]
|
||||||
|
u = 0.5 * u *
|
||||||
|
pow(xi, -1.0); // u = 1/2xi [ Sig - Sig^dag + 1 Tr Sigdag]
|
||||||
|
|
||||||
|
// Debug test for sanity
|
||||||
|
uinv = adj(u);
|
||||||
|
b = u * uinv - 1.0;
|
||||||
|
assert(norm2(b) < 1.0e-4);
|
||||||
|
|
||||||
|
/*
|
||||||
|
Measure: Haar measure dh has d^4a delta(1-|a^2|)
|
||||||
|
In polars:
|
||||||
|
da = da0 r^2 sin theta dr dtheta dphi delta( 1 - r^2 -a0^2)
|
||||||
|
= da0 r^2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r)(sqrt(1-a0^) +
|
||||||
|
r) )
|
||||||
|
= da0 r/2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r) )
|
||||||
|
|
||||||
|
Action factor Q(h) dh = e^-S[h] dh = e^{ xi Tr uh} dh // beta enters
|
||||||
|
through xi
|
||||||
|
= e^{2 xi (h.u)} dh
|
||||||
|
= e^{2 xi h0u0}.e^{2 xi h1u1}.e^{2 xi
|
||||||
|
h2u2}.e^{2 xi h3u3} dh
|
||||||
|
|
||||||
|
Therefore for each site, take xi for that site
|
||||||
|
i) generate |a0|<1 with dist
|
||||||
|
(1-a0^2)^0.5 e^{2 xi a0 } da0
|
||||||
|
|
||||||
|
Take alpha = 2 xi = 2 xi [ recall 2 beta/Nc unmod staple norm]; hence 2.0/Nc
|
||||||
|
factor in Chroma ]
|
||||||
|
A. Generate two uniformly distributed pseudo-random numbers R and R', R'',
|
||||||
|
R''' in the unit interval;
|
||||||
|
B. Set X = -(ln R)/alpha, X' =-(ln R')/alpha;
|
||||||
|
C. Set C = cos^2(2pi R"), with R" another uniform random number in [0,1] ;
|
||||||
|
D. Set A = XC;
|
||||||
|
E. Let d = X'+A;
|
||||||
|
F. If R'''^2 :> 1 - 0.5 d, go back to A;
|
||||||
|
G. Set a0 = 1 - d;
|
||||||
|
|
||||||
|
Note that in step D setting B ~ X - A and using B in place of A in step E will
|
||||||
|
generate a second independent a 0 value.
|
||||||
|
*/
|
||||||
|
|
||||||
|
/////////////////////////////////////////////////////////
|
||||||
|
// count the number of sites by picking "1"'s out of hat
|
||||||
|
/////////////////////////////////////////////////////////
|
||||||
|
Integer hit = 0;
|
||||||
|
LatticeReal rtmp(grid);
|
||||||
|
rtmp = where(wheremask, rones, rzeros);
|
||||||
|
RealD numSites = sum(rtmp);
|
||||||
|
RealD numAccepted;
|
||||||
|
LatticeInteger Accepted(grid);
|
||||||
|
Accepted = Zero();
|
||||||
|
LatticeInteger newlyAccepted(grid);
|
||||||
|
|
||||||
|
std::vector<LatticeReal> xr(4, grid);
|
||||||
|
std::vector<LatticeReal> a(4, grid);
|
||||||
|
LatticeReal d(grid);
|
||||||
|
d = Zero();
|
||||||
|
LatticeReal alpha(grid);
|
||||||
|
|
||||||
|
// std::cout<<GridLogMessage<<"xi "<<xi <<std::endl;
|
||||||
|
xi = 2.0 *xi;
|
||||||
|
alpha = toReal(xi);
|
||||||
|
|
||||||
|
do {
|
||||||
|
// A. Generate two uniformly distributed pseudo-random numbers R and R',
|
||||||
|
// R'', R''' in the unit interval;
|
||||||
|
random(pRNG, xr[0]);
|
||||||
|
random(pRNG, xr[1]);
|
||||||
|
random(pRNG, xr[2]);
|
||||||
|
random(pRNG, xr[3]);
|
||||||
|
|
||||||
|
// B. Set X = - ln R/alpha, X' = -ln R'/alpha
|
||||||
|
xr[1] = -log(xr[1]) / alpha;
|
||||||
|
xr[2] = -log(xr[2]) / alpha;
|
||||||
|
|
||||||
|
// C. Set C = cos^2(2piR'')
|
||||||
|
xr[3] = cos(xr[3] * twopi);
|
||||||
|
xr[3] = xr[3] * xr[3];
|
||||||
|
|
||||||
|
LatticeReal xrsq(grid);
|
||||||
|
|
||||||
|
// D. Set A = XC;
|
||||||
|
// E. Let d = X'+A;
|
||||||
|
xrsq = xr[2] + xr[1] * xr[3];
|
||||||
|
|
||||||
|
d = where(Accepted, d, xr[2] + xr[1] * xr[3]);
|
||||||
|
|
||||||
|
// F. If R'''^2 :> 1 - 0.5 d, go back to A;
|
||||||
|
LatticeReal thresh(grid);
|
||||||
|
thresh = 1.0 - d * 0.5;
|
||||||
|
xrsq = xr[0] * xr[0];
|
||||||
|
LatticeInteger ione(grid);
|
||||||
|
ione = 1;
|
||||||
|
LatticeInteger izero(grid);
|
||||||
|
izero = Zero();
|
||||||
|
|
||||||
|
newlyAccepted = where(xrsq < thresh, ione, izero);
|
||||||
|
Accepted = where(newlyAccepted, newlyAccepted, Accepted);
|
||||||
|
Accepted = where(wheremask, Accepted, izero);
|
||||||
|
|
||||||
|
// FIXME need an iSum for integer to avoid overload on return type??
|
||||||
|
rtmp = where(Accepted, rones, rzeros);
|
||||||
|
numAccepted = sum(rtmp);
|
||||||
|
|
||||||
|
hit++;
|
||||||
|
|
||||||
|
} while ((numAccepted < numSites) && (hit < nheatbath));
|
||||||
|
|
||||||
|
// G. Set a0 = 1 - d;
|
||||||
|
a[0] = Zero();
|
||||||
|
a[0] = where(wheremask, 1.0 - d, a[0]);
|
||||||
|
|
||||||
|
//////////////////////////////////////////
|
||||||
|
// ii) generate a_i uniform on two sphere radius (1-a0^2)^0.5
|
||||||
|
//////////////////////////////////////////
|
||||||
|
|
||||||
|
LatticeReal a123mag(grid);
|
||||||
|
a123mag = sqrt(abs(1.0 - a[0] * a[0]));
|
||||||
|
|
||||||
|
LatticeReal cos_theta(grid);
|
||||||
|
LatticeReal sin_theta(grid);
|
||||||
|
LatticeReal phi(grid);
|
||||||
|
|
||||||
|
random(pRNG, phi);
|
||||||
|
phi = phi * twopi; // uniform in [0,2pi]
|
||||||
|
random(pRNG, cos_theta);
|
||||||
|
cos_theta = (cos_theta * 2.0) - 1.0; // uniform in [-1,1]
|
||||||
|
sin_theta = sqrt(abs(1.0 - cos_theta * cos_theta));
|
||||||
|
|
||||||
|
a[1] = a123mag * sin_theta * cos(phi);
|
||||||
|
a[2] = a123mag * sin_theta * sin(phi);
|
||||||
|
a[3] = a123mag * cos_theta;
|
||||||
|
|
||||||
|
ua = toComplex(a[0]) * ident + toComplex(a[1]) * pauli1 +
|
||||||
|
toComplex(a[2]) * pauli2 + toComplex(a[3]) * pauli3;
|
||||||
|
|
||||||
|
b = 1.0;
|
||||||
|
b = where(wheremask, uinv * ua, b);
|
||||||
|
su2Insert(b, V, su2_subgroup);
|
||||||
|
|
||||||
|
// mask the assignment back based on Accptance
|
||||||
|
link = where(Accepted, V * link, link);
|
||||||
|
|
||||||
|
//////////////////////////////
|
||||||
|
// Debug Checks
|
||||||
|
// SU2 check
|
||||||
|
LatticeSU2Matrix check(grid); // rotated matrix after hb
|
||||||
|
u = Zero();
|
||||||
|
check = ua * adj(ua) - 1.0;
|
||||||
|
check = where(Accepted, check, u);
|
||||||
|
assert(norm2(check) < 1.0e-4);
|
||||||
|
|
||||||
|
check = b * adj(b) - 1.0;
|
||||||
|
check = where(Accepted, check, u);
|
||||||
|
assert(norm2(check) < 1.0e-4);
|
||||||
|
|
||||||
|
LatticeMatrix Vcheck(grid);
|
||||||
|
Vcheck = Zero();
|
||||||
|
Vcheck = where(Accepted, V * adj(V) - 1.0, Vcheck);
|
||||||
|
// std::cout<<GridLogMessage << "SU3 check " <<norm2(Vcheck)<<std::endl;
|
||||||
|
assert(norm2(Vcheck) < 1.0e-4);
|
||||||
|
|
||||||
|
// Verify the link stays in SU(3)
|
||||||
|
// std::cout<<GridLogMessage <<"Checking the modified link"<<std::endl;
|
||||||
|
Vcheck = link * adj(link) - 1.0;
|
||||||
|
assert(norm2(Vcheck) < 1.0e-4);
|
||||||
|
/////////////////////////////////
|
||||||
|
}
|
||||||
|
|
||||||
|
static void printGenerators(void) {
|
||||||
|
for (int gen = 0; gen < AdjointDimension; gen++) {
|
||||||
|
Matrix ta;
|
||||||
|
generator(gen, ta);
|
||||||
|
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
|
||||||
|
<< std::endl;
|
||||||
|
std::cout << GridLogMessage << ta << std::endl;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
static void testGenerators(void) {
|
||||||
|
Matrix ta;
|
||||||
|
Matrix tb;
|
||||||
|
std::cout << GridLogMessage
|
||||||
|
<< "Fundamental - Checking trace ta tb is 0.5 delta_ab"
|
||||||
|
<< std::endl;
|
||||||
|
for (int a = 0; a < AdjointDimension; a++) {
|
||||||
|
for (int b = 0; b < AdjointDimension; b++) {
|
||||||
|
generator(a, ta);
|
||||||
|
generator(b, tb);
|
||||||
|
Complex tr = TensorRemove(trace(ta * tb));
|
||||||
|
std::cout << GridLogMessage << "(" << a << "," << b << ") = " << tr
|
||||||
|
<< std::endl;
|
||||||
|
if (a == b) assert(abs(tr - Complex(0.5)) < 1.0e-6);
|
||||||
|
if (a != b) assert(abs(tr) < 1.0e-6);
|
||||||
|
}
|
||||||
|
std::cout << GridLogMessage << std::endl;
|
||||||
|
}
|
||||||
|
std::cout << GridLogMessage << "Fundamental - Checking if hermitian"
|
||||||
|
<< std::endl;
|
||||||
|
for (int a = 0; a < AdjointDimension; a++) {
|
||||||
|
generator(a, ta);
|
||||||
|
std::cout << GridLogMessage << a << std::endl;
|
||||||
|
assert(norm2(ta - adj(ta)) < 1.0e-6);
|
||||||
|
}
|
||||||
|
std::cout << GridLogMessage << std::endl;
|
||||||
|
|
||||||
|
std::cout << GridLogMessage << "Fundamental - Checking if traceless"
|
||||||
|
<< std::endl;
|
||||||
|
for (int a = 0; a < AdjointDimension; a++) {
|
||||||
|
generator(a, ta);
|
||||||
|
Complex tr = TensorRemove(trace(ta));
|
||||||
|
std::cout << GridLogMessage << a << " " << std::endl;
|
||||||
|
assert(abs(tr) < 1.0e-6);
|
||||||
|
}
|
||||||
|
std::cout << GridLogMessage << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
// reunitarise??
|
||||||
|
template <typename LatticeMatrixType>
|
||||||
|
static void LieRandomize(GridParallelRNG &pRNG, LatticeMatrixType &out, double scale = 1.0)
|
||||||
|
{
|
||||||
|
GridBase *grid = out.Grid();
|
||||||
|
|
||||||
|
typedef typename LatticeMatrixType::vector_type vector_type;
|
||||||
|
|
||||||
|
typedef iSinglet<vector_type> vTComplexType;
|
||||||
|
|
||||||
|
typedef Lattice<vTComplexType> LatticeComplexType;
|
||||||
|
typedef typename GridTypeMapper<typename LatticeMatrixType::vector_object>::scalar_object MatrixType;
|
||||||
|
|
||||||
|
LatticeComplexType ca(grid);
|
||||||
|
LatticeMatrixType lie(grid);
|
||||||
|
LatticeMatrixType la(grid);
|
||||||
|
ComplexD ci(0.0, scale);
|
||||||
|
// ComplexD cone(1.0, 0.0);
|
||||||
|
MatrixType ta;
|
||||||
|
|
||||||
|
lie = Zero();
|
||||||
|
|
||||||
|
for (int a = 0; a < AdjointDimension; a++) {
|
||||||
|
random(pRNG, ca);
|
||||||
|
|
||||||
|
ca = (ca + conjugate(ca)) * 0.5;
|
||||||
|
ca = ca - 0.5;
|
||||||
|
|
||||||
|
generator(a, ta);
|
||||||
|
|
||||||
|
la = ci * ca * ta;
|
||||||
|
|
||||||
|
lie = lie + la; // e^{i la ta}
|
||||||
|
|
||||||
|
}
|
||||||
|
taExp(lie, out);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void GaussianFundamentalLieAlgebraMatrix(GridParallelRNG &pRNG,
|
||||||
|
LatticeMatrix &out,
|
||||||
|
Real scale = 1.0) {
|
||||||
|
GridBase *grid = out.Grid();
|
||||||
|
LatticeReal ca(grid);
|
||||||
|
LatticeMatrix la(grid);
|
||||||
|
Complex ci(0.0, scale);
|
||||||
|
Matrix ta;
|
||||||
|
|
||||||
|
out = Zero();
|
||||||
|
for (int a = 0; a < AdjointDimension; a++) {
|
||||||
|
gaussian(pRNG, ca);
|
||||||
|
generator(a, ta);
|
||||||
|
la = toComplex(ca) * ta;
|
||||||
|
out += la;
|
||||||
|
}
|
||||||
|
out *= ci;
|
||||||
|
}
|
||||||
|
|
||||||
|
static void FundamentalLieAlgebraMatrix(const LatticeAlgebraVector &h,
|
||||||
|
LatticeMatrix &out,
|
||||||
|
Real scale = 1.0) {
|
||||||
|
conformable(h, out);
|
||||||
|
GridBase *grid = out.Grid();
|
||||||
|
LatticeMatrix la(grid);
|
||||||
|
Matrix ta;
|
||||||
|
|
||||||
|
out = Zero();
|
||||||
|
for (int a = 0; a < AdjointDimension; a++) {
|
||||||
|
generator(a, ta);
|
||||||
|
la = peekColour(h, a) * timesI(ta) * scale;
|
||||||
|
out += la;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/*
|
||||||
|
* Fundamental rep gauge xform
|
||||||
|
*/
|
||||||
|
template<typename Fundamental,typename GaugeMat>
|
||||||
|
static void GaugeTransformFundamental( Fundamental &ferm, GaugeMat &g){
|
||||||
|
GridBase *grid = ferm._grid;
|
||||||
|
conformable(grid,g._grid);
|
||||||
|
ferm = g*ferm;
|
||||||
|
}
|
||||||
|
/*
|
||||||
|
* Adjoint rep gauge xform
|
||||||
|
*/
|
||||||
|
|
||||||
|
template<typename Gimpl>
|
||||||
|
static void GaugeTransform(typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
|
||||||
|
GridBase *grid = Umu.Grid();
|
||||||
|
conformable(grid,g.Grid());
|
||||||
|
|
||||||
|
typename Gimpl::GaugeLinkField U(grid);
|
||||||
|
typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
|
||||||
|
|
||||||
|
for(int mu=0;mu<Nd;mu++){
|
||||||
|
U= PeekIndex<LorentzIndex>(Umu,mu);
|
||||||
|
U = g*U*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
|
||||||
|
PokeIndex<LorentzIndex>(Umu,U,mu);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
template<typename Gimpl>
|
||||||
|
static void GaugeTransform( std::vector<typename Gimpl::GaugeLinkField> &U, typename Gimpl::GaugeLinkField &g){
|
||||||
|
GridBase *grid = g.Grid();
|
||||||
|
typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
|
||||||
|
for(int mu=0;mu<Nd;mu++){
|
||||||
|
U[mu] = g*U[mu]*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
|
||||||
|
}
|
||||||
|
}
|
||||||
|
template<typename Gimpl>
|
||||||
|
static void RandomGaugeTransform(GridParallelRNG &pRNG, typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
|
||||||
|
LieRandomize(pRNG,g,1.0);
|
||||||
|
GaugeTransform<Gimpl>(Umu,g);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Projects the algebra components a lattice matrix (of dimension ncol*ncol -1 )
|
||||||
|
// inverse operation: FundamentalLieAlgebraMatrix
|
||||||
|
static void projectOnAlgebra(LatticeAlgebraVector &h_out, const LatticeMatrix &in, Real scale = 1.0) {
|
||||||
|
conformable(h_out, in);
|
||||||
|
h_out = Zero();
|
||||||
|
Matrix Ta;
|
||||||
|
|
||||||
|
for (int a = 0; a < AdjointDimension; a++) {
|
||||||
|
generator(a, Ta);
|
||||||
|
pokeColour(h_out, - 2.0 * (trace(timesI(Ta) * in)) * scale, a);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename GaugeField>
|
||||||
|
static void HotConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
|
||||||
|
typedef typename GaugeField::vector_type vector_type;
|
||||||
|
typedef iSUnMatrix<vector_type> vMatrixType;
|
||||||
|
typedef Lattice<vMatrixType> LatticeMatrixType;
|
||||||
|
|
||||||
|
LatticeMatrixType Umu(out.Grid());
|
||||||
|
LatticeMatrixType tmp(out.Grid());
|
||||||
|
for (int mu = 0; mu < Nd; mu++) {
|
||||||
|
// LieRandomize(pRNG, Umu, 1.0);
|
||||||
|
// PokeIndex<LorentzIndex>(out, Umu, mu);
|
||||||
|
gaussian(pRNG,Umu);
|
||||||
|
tmp = Ta(Umu);
|
||||||
|
taExp(tmp,Umu);
|
||||||
|
ProjectSUn(Umu);
|
||||||
|
PokeIndex<LorentzIndex>(out, Umu, mu);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
template<typename GaugeField>
|
||||||
|
static void TepidConfiguration(GridParallelRNG &pRNG,GaugeField &out){
|
||||||
|
typedef typename GaugeField::vector_type vector_type;
|
||||||
|
typedef iSUnMatrix<vector_type> vMatrixType;
|
||||||
|
typedef Lattice<vMatrixType> LatticeMatrixType;
|
||||||
|
|
||||||
|
LatticeMatrixType Umu(out.Grid());
|
||||||
|
for(int mu=0;mu<Nd;mu++){
|
||||||
|
LieRandomize(pRNG,Umu,0.01);
|
||||||
|
PokeIndex<LorentzIndex>(out,Umu,mu);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
template<typename GaugeField>
|
||||||
|
static void ColdConfiguration(GaugeField &out){
|
||||||
|
typedef typename GaugeField::vector_type vector_type;
|
||||||
|
typedef iSUnMatrix<vector_type> vMatrixType;
|
||||||
|
typedef Lattice<vMatrixType> LatticeMatrixType;
|
||||||
|
|
||||||
|
LatticeMatrixType Umu(out.Grid());
|
||||||
|
Umu=1.0;
|
||||||
|
for(int mu=0;mu<Nd;mu++){
|
||||||
|
PokeIndex<LorentzIndex>(out,Umu,mu);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
template<typename GaugeField>
|
||||||
|
static void ColdConfiguration(GridParallelRNG &pRNG,GaugeField &out){
|
||||||
|
ColdConfiguration(out);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename LatticeMatrixType>
|
||||||
|
static void taProj( const LatticeMatrixType &in, LatticeMatrixType &out){
|
||||||
|
out = Ta(in);
|
||||||
|
}
|
||||||
|
template <typename LatticeMatrixType>
|
||||||
|
static void taExp(const LatticeMatrixType &x, LatticeMatrixType &ex) {
|
||||||
|
typedef typename LatticeMatrixType::scalar_type ComplexType;
|
||||||
|
|
||||||
|
LatticeMatrixType xn(x.Grid());
|
||||||
|
RealD nfac = 1.0;
|
||||||
|
|
||||||
|
xn = x;
|
||||||
|
ex = xn + ComplexType(1.0); // 1+x
|
||||||
|
|
||||||
|
// Do a 12th order exponentiation
|
||||||
|
for (int i = 2; i <= 12; ++i) {
|
||||||
|
nfac = nfac / RealD(i); // 1/2, 1/2.3 ...
|
||||||
|
xn = xn * x; // x2, x3,x4....
|
||||||
|
ex = ex + xn * nfac; // x2/2!, x3/3!....
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template<int N>
|
||||||
|
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > Inverse(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu)
|
||||||
|
{
|
||||||
|
GridBase *grid=Umu.Grid();
|
||||||
|
auto lvol = grid->lSites();
|
||||||
|
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > ret(grid);
|
||||||
|
|
||||||
|
autoView(Umu_v,Umu,CpuRead);
|
||||||
|
autoView(ret_v,ret,CpuWrite);
|
||||||
|
thread_for(site,lvol,{
|
||||||
|
Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
|
||||||
|
Coordinate lcoor;
|
||||||
|
grid->LocalIndexToLocalCoor(site, lcoor);
|
||||||
|
iScalar<iScalar<iMatrix<ComplexD, N> > > Us;
|
||||||
|
iScalar<iScalar<iMatrix<ComplexD, N> > > Ui;
|
||||||
|
peekLocalSite(Us, Umu_v, lcoor);
|
||||||
|
for(int i=0;i<N;i++){
|
||||||
|
for(int j=0;j<N;j++){
|
||||||
|
EigenU(i,j) = Us()()(i,j);
|
||||||
|
}}
|
||||||
|
Eigen::MatrixXcd EigenUinv = EigenU.inverse();
|
||||||
|
for(int i=0;i<N;i++){
|
||||||
|
for(int j=0;j<N;j++){
|
||||||
|
Ui()()(i,j) = EigenUinv(i,j);
|
||||||
|
}}
|
||||||
|
pokeLocalSite(Ui,ret_v,lcoor);
|
||||||
|
});
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
// Explicit specialisation for SU(3).
|
||||||
|
// Explicit specialisation for SU(3).
|
||||||
|
static void
|
||||||
|
ProjectSU3 (Lattice<iScalar<iScalar<iMatrix<vComplexD, 3> > > > &Umu)
|
||||||
|
{
|
||||||
|
GridBase *grid=Umu.Grid();
|
||||||
|
const int x=0;
|
||||||
|
const int y=1;
|
||||||
|
const int z=2;
|
||||||
|
// Reunitarise
|
||||||
|
Umu = ProjectOnGroup(Umu);
|
||||||
|
autoView(Umu_v,Umu,CpuWrite);
|
||||||
|
thread_for(ss,grid->oSites(),{
|
||||||
|
auto cm = Umu_v[ss];
|
||||||
|
cm()()(2,x) = adj(cm()()(0,y)*cm()()(1,z)-cm()()(0,z)*cm()()(1,y)); //x= yz-zy
|
||||||
|
cm()()(2,y) = adj(cm()()(0,z)*cm()()(1,x)-cm()()(0,x)*cm()()(1,z)); //y= zx-xz
|
||||||
|
cm()()(2,z) = adj(cm()()(0,x)*cm()()(1,y)-cm()()(0,y)*cm()()(1,x)); //z= xy-yx
|
||||||
|
Umu_v[ss]=cm;
|
||||||
|
});
|
||||||
|
}
|
||||||
|
static void ProjectSU3(Lattice<iVector<iScalar<iMatrix<vComplexD, 3> >,Nd> > &U)
|
||||||
|
{
|
||||||
|
GridBase *grid=U.Grid();
|
||||||
|
// Reunitarise
|
||||||
|
for(int mu=0;mu<Nd;mu++){
|
||||||
|
auto Umu = PeekIndex<LorentzIndex>(U,mu);
|
||||||
|
Umu = ProjectOnGroup(Umu);
|
||||||
|
ProjectSU3(Umu);
|
||||||
|
PokeIndex<LorentzIndex>(U,Umu,mu);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
typedef SU<2> SU2;
|
||||||
|
typedef SU<3> SU3;
|
||||||
|
typedef SU<4> SU4;
|
||||||
|
typedef SU<5> SU5;
|
||||||
|
|
||||||
|
|
||||||
|
typedef SU<Nc> FundamentalMatrices;
|
||||||
|
|
||||||
|
NAMESPACE_END(Grid);
|
||||||
|
#endif
|
@ -1,578 +0,0 @@
|
|||||||
// This file is #included into the body of the class template definition of
|
|
||||||
// GaugeGroup. So, image there to be
|
|
||||||
//
|
|
||||||
// template <int ncolour, class group_name>
|
|
||||||
// class GaugeGroup {
|
|
||||||
//
|
|
||||||
// around it.
|
|
||||||
//
|
|
||||||
// Please note that the unconventional file extension makes sure that it
|
|
||||||
// doesn't get found by the scripts/filelist during bootstrapping.
|
|
||||||
|
|
||||||
private:
|
|
||||||
template <ONLY_IF_SU>
|
|
||||||
static int su2subgroups(GroupName::SU) { return (ncolour * (ncolour - 1)) / 2; }
|
|
||||||
////////////////////////////////////////////////////////////////////////
|
|
||||||
// There are N^2-1 generators for SU(N).
|
|
||||||
//
|
|
||||||
// We take a traceless hermitian generator basis as follows
|
|
||||||
//
|
|
||||||
// * Normalisation: trace ta tb = 1/2 delta_ab = T_F delta_ab
|
|
||||||
// T_F = 1/2 for SU(N) groups
|
|
||||||
//
|
|
||||||
// * Off diagonal
|
|
||||||
// - pairs of rows i1,i2 behaving like pauli matrices signma_x, sigma_y
|
|
||||||
//
|
|
||||||
// - there are (Nc-1-i1) slots for i2 on each row [ x 0 x ]
|
|
||||||
// direct count off each row
|
|
||||||
//
|
|
||||||
// - Sum of all pairs is Nc(Nc-1)/2: proof arithmetic series
|
|
||||||
//
|
|
||||||
// (Nc-1) + (Nc-2)+... 1 ==> Nc*(Nc-1)/2
|
|
||||||
// 1+ 2+ + + Nc-1
|
|
||||||
//
|
|
||||||
// - There are 2 x Nc (Nc-1)/ 2 of these = Nc^2 - Nc
|
|
||||||
//
|
|
||||||
// - We enumerate the row-col pairs.
|
|
||||||
// - for each row col pair there is a (sigma_x) and a (sigma_y) like
|
|
||||||
// generator
|
|
||||||
//
|
|
||||||
//
|
|
||||||
// t^a_ij = { in 0.. Nc(Nc-1)/2 -1} => 1/2(delta_{i,i1} delta_{j,i2} +
|
|
||||||
// delta_{i,i1} delta_{j,i2})
|
|
||||||
// t^a_ij = { in Nc(Nc-1)/2 ... Nc(Nc-1) - 1} => i/2( delta_{i,i1}
|
|
||||||
// delta_{j,i2} - i delta_{i,i1} delta_{j,i2})
|
|
||||||
//
|
|
||||||
// * Diagonal; must be traceless and normalised
|
|
||||||
// - Sequence is
|
|
||||||
// N (1,-1,0,0...)
|
|
||||||
// N (1, 1,-2,0...)
|
|
||||||
// N (1, 1, 1,-3,0...)
|
|
||||||
// N (1, 1, 1, 1,-4,0...)
|
|
||||||
//
|
|
||||||
// where 1/2 = N^2 (1+.. m^2)etc.... for the m-th diagonal generator
|
|
||||||
// NB this gives the famous SU3 result for su2 index 8
|
|
||||||
//
|
|
||||||
// N= sqrt(1/2 . 1/6 ) = 1/2 . 1/sqrt(3)
|
|
||||||
//
|
|
||||||
// ( 1 )
|
|
||||||
// ( 1 ) / sqrt(3) /2 = 1/2 lambda_8
|
|
||||||
// ( -2)
|
|
||||||
//
|
|
||||||
////////////////////////////////////////////////////////////////////////
|
|
||||||
template <class cplx, ONLY_IF_SU>
|
|
||||||
static void generator(int lieIndex, iGroupMatrix<cplx> &ta, GroupName::SU) {
|
|
||||||
// map lie index to which type of generator
|
|
||||||
int diagIndex;
|
|
||||||
int su2Index;
|
|
||||||
int sigxy;
|
|
||||||
int NNm1 = ncolour * (ncolour - 1);
|
|
||||||
if (lieIndex >= NNm1) {
|
|
||||||
diagIndex = lieIndex - NNm1;
|
|
||||||
generatorDiagonal(diagIndex, ta);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
sigxy = lieIndex & 0x1; // even or odd
|
|
||||||
su2Index = lieIndex >> 1;
|
|
||||||
if (sigxy)
|
|
||||||
generatorSigmaY(su2Index, ta);
|
|
||||||
else
|
|
||||||
generatorSigmaX(su2Index, ta);
|
|
||||||
}
|
|
||||||
|
|
||||||
template <class cplx, ONLY_IF_SU>
|
|
||||||
static void generatorSigmaY(int su2Index, iGroupMatrix<cplx> &ta) {
|
|
||||||
ta = Zero();
|
|
||||||
int i1, i2;
|
|
||||||
su2SubGroupIndex(i1, i2, su2Index);
|
|
||||||
ta()()(i1, i2) = 1.0;
|
|
||||||
ta()()(i2, i1) = 1.0;
|
|
||||||
ta = ta * 0.5;
|
|
||||||
}
|
|
||||||
|
|
||||||
template <class cplx, ONLY_IF_SU>
|
|
||||||
static void generatorSigmaX(int su2Index, iGroupMatrix<cplx> &ta) {
|
|
||||||
ta = Zero();
|
|
||||||
cplx i(0.0, 1.0);
|
|
||||||
int i1, i2;
|
|
||||||
su2SubGroupIndex(i1, i2, su2Index);
|
|
||||||
ta()()(i1, i2) = i;
|
|
||||||
ta()()(i2, i1) = -i;
|
|
||||||
ta = ta * 0.5;
|
|
||||||
}
|
|
||||||
|
|
||||||
template <class cplx, ONLY_IF_SU>
|
|
||||||
static void generatorDiagonal(int diagIndex, iGroupMatrix<cplx> &ta) {
|
|
||||||
// diag ({1, 1, ..., 1}(k-times), -k, 0, 0, ...)
|
|
||||||
ta = Zero();
|
|
||||||
int k = diagIndex + 1; // diagIndex starts from 0
|
|
||||||
for (int i = 0; i <= diagIndex; i++) { // k iterations
|
|
||||||
ta()()(i, i) = 1.0;
|
|
||||||
}
|
|
||||||
ta()()(k, k) = -k; // indexing starts from 0
|
|
||||||
RealD nrm = 1.0 / std::sqrt(2.0 * k * (k + 1));
|
|
||||||
ta = ta * nrm;
|
|
||||||
}
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////
|
|
||||||
// Map a su2 subgroup number to the pair of rows that are non zero
|
|
||||||
////////////////////////////////////////////////////////////////////////
|
|
||||||
static void su2SubGroupIndex(int &i1, int &i2, int su2_index, GroupName::SU) {
|
|
||||||
assert((su2_index >= 0) && (su2_index < (ncolour * (ncolour - 1)) / 2));
|
|
||||||
|
|
||||||
int spare = su2_index;
|
|
||||||
for (i1 = 0; spare >= (ncolour - 1 - i1); i1++) {
|
|
||||||
spare = spare - (ncolour - 1 - i1); // remove the Nc-1-i1 terms
|
|
||||||
}
|
|
||||||
i2 = i1 + 1 + spare;
|
|
||||||
}
|
|
||||||
|
|
||||||
public:
|
|
||||||
//////////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
// Pull out a subgroup and project on to real coeffs x pauli basis
|
|
||||||
//////////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
template <class vcplx, ONLY_IF_SU>
|
|
||||||
static void su2Extract(Lattice<iSinglet<vcplx> > &Determinant,
|
|
||||||
Lattice<iSU2Matrix<vcplx> > &subgroup,
|
|
||||||
const Lattice<iGroupMatrix<vcplx> > &source,
|
|
||||||
int su2_index) {
|
|
||||||
GridBase *grid(source.Grid());
|
|
||||||
conformable(subgroup, source);
|
|
||||||
conformable(subgroup, Determinant);
|
|
||||||
int i0, i1;
|
|
||||||
su2SubGroupIndex(i0, i1, su2_index);
|
|
||||||
|
|
||||||
autoView(subgroup_v, subgroup, AcceleratorWrite);
|
|
||||||
autoView(source_v, source, AcceleratorRead);
|
|
||||||
autoView(Determinant_v, Determinant, AcceleratorWrite);
|
|
||||||
accelerator_for(ss, grid->oSites(), 1, {
|
|
||||||
subgroup_v[ss]()()(0, 0) = source_v[ss]()()(i0, i0);
|
|
||||||
subgroup_v[ss]()()(0, 1) = source_v[ss]()()(i0, i1);
|
|
||||||
subgroup_v[ss]()()(1, 0) = source_v[ss]()()(i1, i0);
|
|
||||||
subgroup_v[ss]()()(1, 1) = source_v[ss]()()(i1, i1);
|
|
||||||
|
|
||||||
iSU2Matrix<vcplx> Sigma = subgroup_v[ss];
|
|
||||||
|
|
||||||
Sigma = Sigma - adj(Sigma) + trace(adj(Sigma));
|
|
||||||
|
|
||||||
subgroup_v[ss] = Sigma;
|
|
||||||
|
|
||||||
// this should be purely real
|
|
||||||
Determinant_v[ss] =
|
|
||||||
Sigma()()(0, 0) * Sigma()()(1, 1) - Sigma()()(0, 1) * Sigma()()(1, 0);
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
// Set matrix to one and insert a pauli subgroup
|
|
||||||
//////////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
template <class vcplx, ONLY_IF_SU>
|
|
||||||
static void su2Insert(const Lattice<iSU2Matrix<vcplx> > &subgroup,
|
|
||||||
Lattice<iGroupMatrix<vcplx> > &dest, int su2_index) {
|
|
||||||
GridBase *grid(dest.Grid());
|
|
||||||
conformable(subgroup, dest);
|
|
||||||
int i0, i1;
|
|
||||||
su2SubGroupIndex(i0, i1, su2_index);
|
|
||||||
|
|
||||||
dest = 1.0; // start out with identity
|
|
||||||
autoView(dest_v, dest, AcceleratorWrite);
|
|
||||||
autoView(subgroup_v, subgroup, AcceleratorRead);
|
|
||||||
accelerator_for(ss, grid->oSites(), 1, {
|
|
||||||
dest_v[ss]()()(i0, i0) = subgroup_v[ss]()()(0, 0);
|
|
||||||
dest_v[ss]()()(i0, i1) = subgroup_v[ss]()()(0, 1);
|
|
||||||
dest_v[ss]()()(i1, i0) = subgroup_v[ss]()()(1, 0);
|
|
||||||
dest_v[ss]()()(i1, i1) = subgroup_v[ss]()()(1, 1);
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
///////////////////////////////////////////////
|
|
||||||
// Generate e^{ Re Tr Staple Link} dlink
|
|
||||||
//
|
|
||||||
// *** Note Staple should be appropriate linear compbination between all
|
|
||||||
// staples.
|
|
||||||
// *** If already by beta pass coefficient 1.0.
|
|
||||||
// *** This routine applies the additional 1/Nc factor that comes after trace
|
|
||||||
// in action.
|
|
||||||
//
|
|
||||||
///////////////////////////////////////////////
|
|
||||||
template <ONLY_IF_SU>
|
|
||||||
static void SubGroupHeatBath(
|
|
||||||
GridSerialRNG &sRNG, GridParallelRNG &pRNG,
|
|
||||||
RealD beta, // coeff multiplying staple in action (with no 1/Nc)
|
|
||||||
LatticeMatrix &link,
|
|
||||||
const LatticeMatrix &barestaple, // multiplied by action coeffs so th
|
|
||||||
int su2_subgroup, int nheatbath, LatticeInteger &wheremask) {
|
|
||||||
GridBase *grid = link.Grid();
|
|
||||||
|
|
||||||
const RealD twopi = 2.0 * M_PI;
|
|
||||||
|
|
||||||
LatticeMatrix staple(grid);
|
|
||||||
|
|
||||||
staple = barestaple * (beta / ncolour);
|
|
||||||
|
|
||||||
LatticeMatrix V(grid);
|
|
||||||
V = link * staple;
|
|
||||||
|
|
||||||
// Subgroup manipulation in the lie algebra space
|
|
||||||
LatticeSU2Matrix u(
|
|
||||||
grid); // Kennedy pendleton "u" real projected normalised Sigma
|
|
||||||
LatticeSU2Matrix uinv(grid);
|
|
||||||
LatticeSU2Matrix ua(grid); // a in pauli form
|
|
||||||
LatticeSU2Matrix b(grid); // rotated matrix after hb
|
|
||||||
|
|
||||||
// Some handy constant fields
|
|
||||||
LatticeComplex ones(grid);
|
|
||||||
ones = 1.0;
|
|
||||||
LatticeComplex zeros(grid);
|
|
||||||
zeros = Zero();
|
|
||||||
LatticeReal rones(grid);
|
|
||||||
rones = 1.0;
|
|
||||||
LatticeReal rzeros(grid);
|
|
||||||
rzeros = Zero();
|
|
||||||
LatticeComplex udet(grid); // determinant of real(staple)
|
|
||||||
LatticeInteger mask_true(grid);
|
|
||||||
mask_true = 1;
|
|
||||||
LatticeInteger mask_false(grid);
|
|
||||||
mask_false = 0;
|
|
||||||
|
|
||||||
/*
|
|
||||||
PLB 156 P393 (1985) (Kennedy and Pendleton)
|
|
||||||
|
|
||||||
Note: absorb "beta" into the def of sigma compared to KP paper; staple
|
|
||||||
passed to this routine has "beta" already multiplied in
|
|
||||||
|
|
||||||
Action linear in links h and of form:
|
|
||||||
|
|
||||||
beta S = beta Sum_p (1 - 1/Nc Re Tr Plaq )
|
|
||||||
|
|
||||||
Writing Sigma = 1/Nc (beta Sigma') where sum over staples is "Sigma' "
|
|
||||||
|
|
||||||
beta S = const - beta/Nc Re Tr h Sigma'
|
|
||||||
= const - Re Tr h Sigma
|
|
||||||
|
|
||||||
Decompose h and Sigma into (1, sigma_j) ; h_i real, h^2=1, Sigma_i complex
|
|
||||||
arbitrary.
|
|
||||||
|
|
||||||
Tr h Sigma = h_i Sigma_j Tr (sigma_i sigma_j) = h_i Sigma_j 2 delta_ij
|
|
||||||
Re Tr h Sigma = 2 h_j Re Sigma_j
|
|
||||||
|
|
||||||
Normalised re Sigma_j = xi u_j
|
|
||||||
|
|
||||||
With u_j a unit vector and U can be in SU(2);
|
|
||||||
|
|
||||||
Re Tr h Sigma = 2 h_j Re Sigma_j = 2 xi (h.u)
|
|
||||||
|
|
||||||
4xi^2 = Det [ Sig - Sig^dag + 1 Tr Sigdag]
|
|
||||||
u = 1/2xi [ Sig - Sig^dag + 1 Tr Sigdag]
|
|
||||||
|
|
||||||
xi = sqrt(Det)/2;
|
|
||||||
|
|
||||||
Write a= u h in SU(2); a has pauli decomp a_j;
|
|
||||||
|
|
||||||
Note: Product b' xi is unvariant because scaling Sigma leaves
|
|
||||||
normalised vector "u" fixed; Can rescale Sigma so b' = 1.
|
|
||||||
*/
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////
|
|
||||||
// Real part of Pauli decomposition
|
|
||||||
// Note a subgroup can project to zero in cold start
|
|
||||||
////////////////////////////////////////////////////////
|
|
||||||
su2Extract(udet, u, V, su2_subgroup);
|
|
||||||
|
|
||||||
//////////////////////////////////////////////////////
|
|
||||||
// Normalising this vector if possible; else identity
|
|
||||||
//////////////////////////////////////////////////////
|
|
||||||
LatticeComplex xi(grid);
|
|
||||||
|
|
||||||
LatticeSU2Matrix lident(grid);
|
|
||||||
|
|
||||||
SU2Matrix ident = Complex(1.0);
|
|
||||||
SU2Matrix pauli1;
|
|
||||||
GaugeGroup<2, GroupName::SU>::generator(0, pauli1);
|
|
||||||
SU2Matrix pauli2;
|
|
||||||
GaugeGroup<2, GroupName::SU>::generator(1, pauli2);
|
|
||||||
SU2Matrix pauli3;
|
|
||||||
GaugeGroup<2, GroupName::SU>::generator(2, pauli3);
|
|
||||||
pauli1 = timesI(pauli1) * 2.0;
|
|
||||||
pauli2 = timesI(pauli2) * 2.0;
|
|
||||||
pauli3 = timesI(pauli3) * 2.0;
|
|
||||||
|
|
||||||
LatticeComplex cone(grid);
|
|
||||||
LatticeReal adet(grid);
|
|
||||||
adet = abs(toReal(udet));
|
|
||||||
lident = Complex(1.0);
|
|
||||||
cone = Complex(1.0);
|
|
||||||
Real machine_epsilon = 1.0e-7;
|
|
||||||
u = where(adet > machine_epsilon, u, lident);
|
|
||||||
udet = where(adet > machine_epsilon, udet, cone);
|
|
||||||
|
|
||||||
xi = 0.5 * sqrt(udet); // 4xi^2 = Det [ Sig - Sig^dag + 1 Tr Sigdag]
|
|
||||||
u = 0.5 * u * pow(xi, -1.0); // u = 1/2xi [ Sig - Sig^dag + 1 Tr Sigdag]
|
|
||||||
|
|
||||||
// Debug test for sanity
|
|
||||||
uinv = adj(u);
|
|
||||||
b = u * uinv - 1.0;
|
|
||||||
assert(norm2(b) < 1.0e-4);
|
|
||||||
|
|
||||||
/*
|
|
||||||
Measure: Haar measure dh has d^4a delta(1-|a^2|)
|
|
||||||
In polars:
|
|
||||||
da = da0 r^2 sin theta dr dtheta dphi delta( 1 - r^2 -a0^2)
|
|
||||||
= da0 r^2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r)(sqrt(1-a0^) +
|
|
||||||
r) )
|
|
||||||
= da0 r/2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r) )
|
|
||||||
|
|
||||||
Action factor Q(h) dh = e^-S[h] dh = e^{ xi Tr uh} dh // beta
|
|
||||||
enters through xi = e^{2 xi (h.u)} dh = e^{2 xi h0u0}.e^{2 xi h1u1}.e^{2
|
|
||||||
xi h2u2}.e^{2 xi h3u3} dh
|
|
||||||
|
|
||||||
Therefore for each site, take xi for that site
|
|
||||||
i) generate |a0|<1 with dist
|
|
||||||
(1-a0^2)^0.5 e^{2 xi a0 } da0
|
|
||||||
|
|
||||||
Take alpha = 2 xi = 2 xi [ recall 2 beta/Nc unmod staple norm];
|
|
||||||
hence 2.0/Nc factor in Chroma ] A. Generate two uniformly distributed
|
|
||||||
pseudo-random numbers R and R', R'', R''' in the unit interval; B. Set X =
|
|
||||||
-(ln R)/alpha, X' =-(ln R')/alpha; C. Set C = cos^2(2pi R"), with R"
|
|
||||||
another uniform random number in [0,1] ; D. Set A = XC; E. Let d = X'+A;
|
|
||||||
F. If R'''^2 :> 1 - 0.5 d, go back to A;
|
|
||||||
G. Set a0 = 1 - d;
|
|
||||||
|
|
||||||
Note that in step D setting B ~ X - A and using B in place of A in step E
|
|
||||||
will generate a second independent a 0 value.
|
|
||||||
*/
|
|
||||||
|
|
||||||
/////////////////////////////////////////////////////////
|
|
||||||
// count the number of sites by picking "1"'s out of hat
|
|
||||||
/////////////////////////////////////////////////////////
|
|
||||||
Integer hit = 0;
|
|
||||||
LatticeReal rtmp(grid);
|
|
||||||
rtmp = where(wheremask, rones, rzeros);
|
|
||||||
RealD numSites = sum(rtmp);
|
|
||||||
RealD numAccepted;
|
|
||||||
LatticeInteger Accepted(grid);
|
|
||||||
Accepted = Zero();
|
|
||||||
LatticeInteger newlyAccepted(grid);
|
|
||||||
|
|
||||||
std::vector<LatticeReal> xr(4, grid);
|
|
||||||
std::vector<LatticeReal> a(4, grid);
|
|
||||||
LatticeReal d(grid);
|
|
||||||
d = Zero();
|
|
||||||
LatticeReal alpha(grid);
|
|
||||||
|
|
||||||
// std::cout<<GridLogMessage<<"xi "<<xi <<std::endl;
|
|
||||||
xi = 2.0 * xi;
|
|
||||||
alpha = toReal(xi);
|
|
||||||
|
|
||||||
do {
|
|
||||||
// A. Generate two uniformly distributed pseudo-random numbers R and R',
|
|
||||||
// R'', R''' in the unit interval;
|
|
||||||
random(pRNG, xr[0]);
|
|
||||||
random(pRNG, xr[1]);
|
|
||||||
random(pRNG, xr[2]);
|
|
||||||
random(pRNG, xr[3]);
|
|
||||||
|
|
||||||
// B. Set X = - ln R/alpha, X' = -ln R'/alpha
|
|
||||||
xr[1] = -log(xr[1]) / alpha;
|
|
||||||
xr[2] = -log(xr[2]) / alpha;
|
|
||||||
|
|
||||||
// C. Set C = cos^2(2piR'')
|
|
||||||
xr[3] = cos(xr[3] * twopi);
|
|
||||||
xr[3] = xr[3] * xr[3];
|
|
||||||
|
|
||||||
LatticeReal xrsq(grid);
|
|
||||||
|
|
||||||
// D. Set A = XC;
|
|
||||||
// E. Let d = X'+A;
|
|
||||||
xrsq = xr[2] + xr[1] * xr[3];
|
|
||||||
|
|
||||||
d = where(Accepted, d, xr[2] + xr[1] * xr[3]);
|
|
||||||
|
|
||||||
// F. If R'''^2 :> 1 - 0.5 d, go back to A;
|
|
||||||
LatticeReal thresh(grid);
|
|
||||||
thresh = 1.0 - d * 0.5;
|
|
||||||
xrsq = xr[0] * xr[0];
|
|
||||||
LatticeInteger ione(grid);
|
|
||||||
ione = 1;
|
|
||||||
LatticeInteger izero(grid);
|
|
||||||
izero = Zero();
|
|
||||||
|
|
||||||
newlyAccepted = where(xrsq < thresh, ione, izero);
|
|
||||||
Accepted = where(newlyAccepted, newlyAccepted, Accepted);
|
|
||||||
Accepted = where(wheremask, Accepted, izero);
|
|
||||||
|
|
||||||
// FIXME need an iSum for integer to avoid overload on return type??
|
|
||||||
rtmp = where(Accepted, rones, rzeros);
|
|
||||||
numAccepted = sum(rtmp);
|
|
||||||
|
|
||||||
hit++;
|
|
||||||
|
|
||||||
} while ((numAccepted < numSites) && (hit < nheatbath));
|
|
||||||
|
|
||||||
// G. Set a0 = 1 - d;
|
|
||||||
a[0] = Zero();
|
|
||||||
a[0] = where(wheremask, 1.0 - d, a[0]);
|
|
||||||
|
|
||||||
//////////////////////////////////////////
|
|
||||||
// ii) generate a_i uniform on two sphere radius (1-a0^2)^0.5
|
|
||||||
//////////////////////////////////////////
|
|
||||||
|
|
||||||
LatticeReal a123mag(grid);
|
|
||||||
a123mag = sqrt(abs(1.0 - a[0] * a[0]));
|
|
||||||
|
|
||||||
LatticeReal cos_theta(grid);
|
|
||||||
LatticeReal sin_theta(grid);
|
|
||||||
LatticeReal phi(grid);
|
|
||||||
|
|
||||||
random(pRNG, phi);
|
|
||||||
phi = phi * twopi; // uniform in [0,2pi]
|
|
||||||
random(pRNG, cos_theta);
|
|
||||||
cos_theta = (cos_theta * 2.0) - 1.0; // uniform in [-1,1]
|
|
||||||
sin_theta = sqrt(abs(1.0 - cos_theta * cos_theta));
|
|
||||||
|
|
||||||
a[1] = a123mag * sin_theta * cos(phi);
|
|
||||||
a[2] = a123mag * sin_theta * sin(phi);
|
|
||||||
a[3] = a123mag * cos_theta;
|
|
||||||
|
|
||||||
ua = toComplex(a[0]) * ident + toComplex(a[1]) * pauli1 +
|
|
||||||
toComplex(a[2]) * pauli2 + toComplex(a[3]) * pauli3;
|
|
||||||
|
|
||||||
b = 1.0;
|
|
||||||
b = where(wheremask, uinv * ua, b);
|
|
||||||
su2Insert(b, V, su2_subgroup);
|
|
||||||
|
|
||||||
// mask the assignment back based on Accptance
|
|
||||||
link = where(Accepted, V * link, link);
|
|
||||||
|
|
||||||
//////////////////////////////
|
|
||||||
// Debug Checks
|
|
||||||
// SU2 check
|
|
||||||
LatticeSU2Matrix check(grid); // rotated matrix after hb
|
|
||||||
u = Zero();
|
|
||||||
check = ua * adj(ua) - 1.0;
|
|
||||||
check = where(Accepted, check, u);
|
|
||||||
assert(norm2(check) < 1.0e-4);
|
|
||||||
|
|
||||||
check = b * adj(b) - 1.0;
|
|
||||||
check = where(Accepted, check, u);
|
|
||||||
assert(norm2(check) < 1.0e-4);
|
|
||||||
|
|
||||||
LatticeMatrix Vcheck(grid);
|
|
||||||
Vcheck = Zero();
|
|
||||||
Vcheck = where(Accepted, V * adj(V) - 1.0, Vcheck);
|
|
||||||
// std::cout<<GridLogMessage << "SU3 check " <<norm2(Vcheck)<<std::endl;
|
|
||||||
assert(norm2(Vcheck) < 1.0e-4);
|
|
||||||
|
|
||||||
// Verify the link stays in SU(3)
|
|
||||||
// std::cout<<GridLogMessage <<"Checking the modified link"<<std::endl;
|
|
||||||
Vcheck = link * adj(link) - 1.0;
|
|
||||||
assert(norm2(Vcheck) < 1.0e-4);
|
|
||||||
/////////////////////////////////
|
|
||||||
}
|
|
||||||
|
|
||||||
template <ONLY_IF_SU>
|
|
||||||
static void testGenerators(GroupName::SU) {
|
|
||||||
Matrix ta;
|
|
||||||
Matrix tb;
|
|
||||||
std::cout << GridLogMessage
|
|
||||||
<< "Fundamental - Checking trace ta tb is 0.5 delta_ab"
|
|
||||||
<< std::endl;
|
|
||||||
for (int a = 0; a < AdjointDimension; a++) {
|
|
||||||
for (int b = 0; b < AdjointDimension; b++) {
|
|
||||||
generator(a, ta);
|
|
||||||
generator(b, tb);
|
|
||||||
Complex tr = TensorRemove(trace(ta * tb));
|
|
||||||
std::cout << GridLogMessage << "(" << a << "," << b << ") = " << tr
|
|
||||||
<< std::endl;
|
|
||||||
if (a == b) assert(abs(tr - Complex(0.5)) < 1.0e-6);
|
|
||||||
if (a != b) assert(abs(tr) < 1.0e-6);
|
|
||||||
}
|
|
||||||
std::cout << GridLogMessage << std::endl;
|
|
||||||
}
|
|
||||||
std::cout << GridLogMessage << "Fundamental - Checking if hermitian"
|
|
||||||
<< std::endl;
|
|
||||||
for (int a = 0; a < AdjointDimension; a++) {
|
|
||||||
generator(a, ta);
|
|
||||||
std::cout << GridLogMessage << a << std::endl;
|
|
||||||
assert(norm2(ta - adj(ta)) < 1.0e-6);
|
|
||||||
}
|
|
||||||
std::cout << GridLogMessage << std::endl;
|
|
||||||
|
|
||||||
std::cout << GridLogMessage << "Fundamental - Checking if traceless"
|
|
||||||
<< std::endl;
|
|
||||||
for (int a = 0; a < AdjointDimension; a++) {
|
|
||||||
generator(a, ta);
|
|
||||||
Complex tr = TensorRemove(trace(ta));
|
|
||||||
std::cout << GridLogMessage << a << " " << std::endl;
|
|
||||||
assert(abs(tr) < 1.0e-6);
|
|
||||||
}
|
|
||||||
std::cout << GridLogMessage << std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
template <int N, class vtype>
|
|
||||||
static Lattice<iScalar<iScalar<iMatrix<vtype, N> > > >
|
|
||||||
ProjectOnGeneralGroup(const Lattice<iScalar<iScalar<iMatrix<vtype, N> > > > &Umu, GroupName::SU) {
|
|
||||||
return ProjectOnGroup(Umu);
|
|
||||||
}
|
|
||||||
|
|
||||||
template <class vtype>
|
|
||||||
accelerator_inline static iScalar<vtype> ProjectOnGeneralGroup(const iScalar<vtype> &r, GroupName::SU) {
|
|
||||||
return ProjectOnGroup(r);
|
|
||||||
}
|
|
||||||
|
|
||||||
template <class vtype, int N>
|
|
||||||
accelerator_inline static iVector<vtype,N> ProjectOnGeneralGroup(const iVector<vtype,N> &r, GroupName::SU) {
|
|
||||||
return ProjectOnGroup(r);
|
|
||||||
}
|
|
||||||
|
|
||||||
template <class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
|
|
||||||
accelerator_inline static iMatrix<vtype,N> ProjectOnGeneralGroup(const iMatrix<vtype,N> &arg, GroupName::SU) {
|
|
||||||
return ProjectOnGroup(arg);
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename LatticeMatrixType>
|
|
||||||
static void taProj(const LatticeMatrixType &in, LatticeMatrixType &out, GroupName::SU) {
|
|
||||||
out = Ta(in);
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Fundamental rep gauge xform
|
|
||||||
*/
|
|
||||||
template<typename Fundamental,typename GaugeMat>
|
|
||||||
static void GaugeTransformFundamental( Fundamental &ferm, GaugeMat &g){
|
|
||||||
GridBase *grid = ferm._grid;
|
|
||||||
conformable(grid,g._grid);
|
|
||||||
ferm = g*ferm;
|
|
||||||
}
|
|
||||||
/*
|
|
||||||
* Adjoint rep gauge xform
|
|
||||||
*/
|
|
||||||
|
|
||||||
template<typename Gimpl>
|
|
||||||
static void GaugeTransform(typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
|
|
||||||
GridBase *grid = Umu.Grid();
|
|
||||||
conformable(grid,g.Grid());
|
|
||||||
|
|
||||||
typename Gimpl::GaugeLinkField U(grid);
|
|
||||||
typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
|
|
||||||
|
|
||||||
for(int mu=0;mu<Nd;mu++){
|
|
||||||
U= PeekIndex<LorentzIndex>(Umu,mu);
|
|
||||||
U = g*U*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
|
|
||||||
PokeIndex<LorentzIndex>(Umu,U,mu);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
template<typename Gimpl>
|
|
||||||
static void GaugeTransform( std::vector<typename Gimpl::GaugeLinkField> &U, typename Gimpl::GaugeLinkField &g){
|
|
||||||
GridBase *grid = g.Grid();
|
|
||||||
typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
|
|
||||||
for(int mu=0;mu<Nd;mu++){
|
|
||||||
U[mu] = g*U[mu]*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
|
|
||||||
}
|
|
||||||
}
|
|
||||||
template<typename Gimpl>
|
|
||||||
static void RandomGaugeTransform(GridParallelRNG &pRNG, typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
|
|
||||||
LieRandomize(pRNG,g,1.0);
|
|
||||||
GaugeTransform<Gimpl>(Umu,g);
|
|
||||||
}
|
|
@ -51,10 +51,6 @@ public:
|
|||||||
typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> > LatticeAdjFieldF;
|
typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> > LatticeAdjFieldF;
|
||||||
typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> > LatticeAdjFieldD;
|
typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> > LatticeAdjFieldD;
|
||||||
|
|
||||||
|
|
||||||
template <typename vtype>
|
|
||||||
using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
|
|
||||||
|
|
||||||
typedef Lattice<iScalar<iScalar<iVector<vComplex, Dimension> > > > LatticeAdjVector;
|
typedef Lattice<iScalar<iScalar<iVector<vComplex, Dimension> > > > LatticeAdjVector;
|
||||||
|
|
||||||
template <class cplx>
|
template <class cplx>
|
||||||
@ -62,8 +58,8 @@ public:
|
|||||||
// returns i(T_Adj)^index necessary for the projectors
|
// returns i(T_Adj)^index necessary for the projectors
|
||||||
// see definitions above
|
// see definitions above
|
||||||
iAdjTa = Zero();
|
iAdjTa = Zero();
|
||||||
Vector<iSUnMatrix<cplx> > ta(ncolour * ncolour - 1);
|
Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > ta(ncolour * ncolour - 1);
|
||||||
iSUnMatrix<cplx> tmp;
|
typename SU<ncolour>::template iSUnMatrix<cplx> tmp;
|
||||||
|
|
||||||
// FIXME not very efficient to get all the generators everytime
|
// FIXME not very efficient to get all the generators everytime
|
||||||
for (int a = 0; a < Dimension; a++) SU<ncolour>::generator(a, ta[a]);
|
for (int a = 0; a < Dimension; a++) SU<ncolour>::generator(a, ta[a]);
|
||||||
@ -71,7 +67,8 @@ public:
|
|||||||
for (int a = 0; a < Dimension; a++) {
|
for (int a = 0; a < Dimension; a++) {
|
||||||
tmp = ta[a] * ta[Index] - ta[Index] * ta[a];
|
tmp = ta[a] * ta[Index] - ta[Index] * ta[a];
|
||||||
for (int b = 0; b < (ncolour * ncolour - 1); b++) {
|
for (int b = 0; b < (ncolour * ncolour - 1); b++) {
|
||||||
iSUnMatrix<cplx> tmp1 = 2.0 * tmp * ta[b]; // 2.0 from the normalization
|
typename SU<ncolour>::template iSUnMatrix<cplx> tmp1 =
|
||||||
|
2.0 * tmp * ta[b]; // 2.0 from the normalization
|
||||||
Complex iTr = TensorRemove(timesI(trace(tmp1)));
|
Complex iTr = TensorRemove(timesI(trace(tmp1)));
|
||||||
//iAdjTa()()(b, a) = iTr;
|
//iAdjTa()()(b, a) = iTr;
|
||||||
iAdjTa()()(a, b) = iTr;
|
iAdjTa()()(a, b) = iTr;
|
||||||
@ -137,7 +134,8 @@ public:
|
|||||||
|
|
||||||
for (int a = 0; a < Dimension; a++) {
|
for (int a = 0; a < Dimension; a++) {
|
||||||
generator(a, iTa);
|
generator(a, iTa);
|
||||||
pokeColour(h_out, real(trace(iTa * in)) * coefficient, a);
|
LatticeComplex tmp = real(trace(iTa * in)) * coefficient;
|
||||||
|
pokeColour(h_out, tmp, a);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
273
Grid/qcd/utils/SUnTwoIndex.h
Normal file
273
Grid/qcd/utils/SUnTwoIndex.h
Normal file
@ -0,0 +1,273 @@
|
|||||||
|
////////////////////////////////////////////////////////////////////////
|
||||||
|
//
|
||||||
|
// * Two index representation generators
|
||||||
|
//
|
||||||
|
// * Normalisation for the fundamental generators:
|
||||||
|
// trace ta tb = 1/2 delta_ab = T_F delta_ab
|
||||||
|
// T_F = 1/2 for SU(N) groups
|
||||||
|
//
|
||||||
|
//
|
||||||
|
// base for NxN two index (anti-symmetric) matrices
|
||||||
|
// normalized to 1 (d_ij is the kroenecker delta)
|
||||||
|
//
|
||||||
|
// (e^(ij)_{kl} = 1 / sqrt(2) (d_ik d_jl +/- d_jk d_il)
|
||||||
|
//
|
||||||
|
// Then the generators are written as
|
||||||
|
//
|
||||||
|
// (iT_a)^(ij)(lk) = i * ( tr[e^(ij)^dag e^(lk) T^trasp_a] +
|
||||||
|
// tr[e^(lk)e^(ij)^dag T_a] ) //
|
||||||
|
//
|
||||||
|
//
|
||||||
|
////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
// Authors: David Preti, Guido Cossu
|
||||||
|
|
||||||
|
#ifndef QCD_UTIL_SUN2INDEX_H
|
||||||
|
#define QCD_UTIL_SUN2INDEX_H
|
||||||
|
|
||||||
|
|
||||||
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
|
enum TwoIndexSymmetry { Symmetric = 1, AntiSymmetric = -1 };
|
||||||
|
|
||||||
|
inline Real delta(int a, int b) { return (a == b) ? 1.0 : 0.0; }
|
||||||
|
|
||||||
|
template <int ncolour, TwoIndexSymmetry S>
|
||||||
|
class SU_TwoIndex : public SU<ncolour> {
|
||||||
|
public:
|
||||||
|
static const int Dimension = ncolour * (ncolour + S) / 2;
|
||||||
|
static const int NumGenerators = SU<ncolour>::AdjointDimension;
|
||||||
|
|
||||||
|
template <typename vtype>
|
||||||
|
using iSUnTwoIndexMatrix = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
|
||||||
|
|
||||||
|
typedef iSUnTwoIndexMatrix<Complex> TIMatrix;
|
||||||
|
typedef iSUnTwoIndexMatrix<ComplexF> TIMatrixF;
|
||||||
|
typedef iSUnTwoIndexMatrix<ComplexD> TIMatrixD;
|
||||||
|
|
||||||
|
typedef iSUnTwoIndexMatrix<vComplex> vTIMatrix;
|
||||||
|
typedef iSUnTwoIndexMatrix<vComplexF> vTIMatrixF;
|
||||||
|
typedef iSUnTwoIndexMatrix<vComplexD> vTIMatrixD;
|
||||||
|
|
||||||
|
typedef Lattice<vTIMatrix> LatticeTwoIndexMatrix;
|
||||||
|
typedef Lattice<vTIMatrixF> LatticeTwoIndexMatrixF;
|
||||||
|
typedef Lattice<vTIMatrixD> LatticeTwoIndexMatrixD;
|
||||||
|
|
||||||
|
typedef Lattice<iVector<iScalar<iMatrix<vComplex, Dimension> >, Nd> >
|
||||||
|
LatticeTwoIndexField;
|
||||||
|
typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> >
|
||||||
|
LatticeTwoIndexFieldF;
|
||||||
|
typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> >
|
||||||
|
LatticeTwoIndexFieldD;
|
||||||
|
|
||||||
|
template <typename vtype>
|
||||||
|
using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
|
||||||
|
|
||||||
|
typedef iSUnMatrix<Complex> Matrix;
|
||||||
|
typedef iSUnMatrix<ComplexF> MatrixF;
|
||||||
|
typedef iSUnMatrix<ComplexD> MatrixD;
|
||||||
|
|
||||||
|
template <class cplx>
|
||||||
|
static void base(int Index, iSUnMatrix<cplx> &eij) {
|
||||||
|
// returns (e)^(ij)_{kl} necessary for change of base U_F -> U_R
|
||||||
|
assert(Index < NumGenerators);
|
||||||
|
eij = Zero();
|
||||||
|
|
||||||
|
// for the linearisation of the 2 indexes
|
||||||
|
static int a[ncolour * (ncolour - 1) / 2][2]; // store the a <-> i,j
|
||||||
|
static bool filled = false;
|
||||||
|
if (!filled) {
|
||||||
|
int counter = 0;
|
||||||
|
for (int i = 1; i < ncolour; i++) {
|
||||||
|
for (int j = 0; j < i; j++) {
|
||||||
|
a[counter][0] = i;
|
||||||
|
a[counter][1] = j;
|
||||||
|
counter++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
filled = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (Index < ncolour * (ncolour - 1) / 2) {
|
||||||
|
baseOffDiagonal(a[Index][0], a[Index][1], eij);
|
||||||
|
} else {
|
||||||
|
baseDiagonal(Index, eij);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <class cplx>
|
||||||
|
static void baseDiagonal(int Index, iSUnMatrix<cplx> &eij) {
|
||||||
|
eij = Zero();
|
||||||
|
eij()()(Index - ncolour * (ncolour - 1) / 2,
|
||||||
|
Index - ncolour * (ncolour - 1) / 2) = 1.0;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <class cplx>
|
||||||
|
static void baseOffDiagonal(int i, int j, iSUnMatrix<cplx> &eij) {
|
||||||
|
eij = Zero();
|
||||||
|
for (int k = 0; k < ncolour; k++)
|
||||||
|
for (int l = 0; l < ncolour; l++)
|
||||||
|
eij()()(l, k) = delta(i, k) * delta(j, l) +
|
||||||
|
S * delta(j, k) * delta(i, l);
|
||||||
|
|
||||||
|
RealD nrm = 1. / std::sqrt(2.0);
|
||||||
|
eij = eij * nrm;
|
||||||
|
}
|
||||||
|
|
||||||
|
static void printBase(void) {
|
||||||
|
for (int gen = 0; gen < Dimension; gen++) {
|
||||||
|
Matrix tmp;
|
||||||
|
base(gen, tmp);
|
||||||
|
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
|
||||||
|
<< std::endl;
|
||||||
|
std::cout << GridLogMessage << tmp << std::endl;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <class cplx>
|
||||||
|
static void generator(int Index, iSUnTwoIndexMatrix<cplx> &i2indTa) {
|
||||||
|
Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > ta(
|
||||||
|
ncolour * ncolour - 1);
|
||||||
|
Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > eij(Dimension);
|
||||||
|
typename SU<ncolour>::template iSUnMatrix<cplx> tmp;
|
||||||
|
i2indTa = Zero();
|
||||||
|
|
||||||
|
for (int a = 0; a < ncolour * ncolour - 1; a++)
|
||||||
|
SU<ncolour>::generator(a, ta[a]);
|
||||||
|
|
||||||
|
for (int a = 0; a < Dimension; a++) base(a, eij[a]);
|
||||||
|
|
||||||
|
for (int a = 0; a < Dimension; a++) {
|
||||||
|
tmp = transpose(ta[Index]) * adj(eij[a]) + adj(eij[a]) * ta[Index];
|
||||||
|
for (int b = 0; b < Dimension; b++) {
|
||||||
|
typename SU<ncolour>::template iSUnMatrix<cplx> tmp1 =
|
||||||
|
tmp * eij[b];
|
||||||
|
Complex iTr = TensorRemove(timesI(trace(tmp1)));
|
||||||
|
i2indTa()()(a, b) = iTr;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void printGenerators(void) {
|
||||||
|
for (int gen = 0; gen < ncolour * ncolour - 1; gen++) {
|
||||||
|
TIMatrix i2indTa;
|
||||||
|
generator(gen, i2indTa);
|
||||||
|
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
|
||||||
|
<< std::endl;
|
||||||
|
std::cout << GridLogMessage << i2indTa << std::endl;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void testGenerators(void) {
|
||||||
|
TIMatrix i2indTa, i2indTb;
|
||||||
|
std::cout << GridLogMessage << "2IndexRep - Checking if traceless"
|
||||||
|
<< std::endl;
|
||||||
|
for (int a = 0; a < ncolour * ncolour - 1; a++) {
|
||||||
|
generator(a, i2indTa);
|
||||||
|
std::cout << GridLogMessage << a << std::endl;
|
||||||
|
assert(norm2(trace(i2indTa)) < 1.0e-6);
|
||||||
|
}
|
||||||
|
std::cout << GridLogMessage << std::endl;
|
||||||
|
|
||||||
|
std::cout << GridLogMessage << "2IndexRep - Checking if antihermitean"
|
||||||
|
<< std::endl;
|
||||||
|
for (int a = 0; a < ncolour * ncolour - 1; a++) {
|
||||||
|
generator(a, i2indTa);
|
||||||
|
std::cout << GridLogMessage << a << std::endl;
|
||||||
|
assert(norm2(adj(i2indTa) + i2indTa) < 1.0e-6);
|
||||||
|
}
|
||||||
|
|
||||||
|
std::cout << GridLogMessage << std::endl;
|
||||||
|
std::cout << GridLogMessage
|
||||||
|
<< "2IndexRep - Checking Tr[Ta*Tb]=delta(a,b)*(N +- 2)/2"
|
||||||
|
<< std::endl;
|
||||||
|
for (int a = 0; a < ncolour * ncolour - 1; a++) {
|
||||||
|
for (int b = 0; b < ncolour * ncolour - 1; b++) {
|
||||||
|
generator(a, i2indTa);
|
||||||
|
generator(b, i2indTb);
|
||||||
|
|
||||||
|
// generator returns iTa, so we need a minus sign here
|
||||||
|
Complex Tr = -TensorRemove(trace(i2indTa * i2indTb));
|
||||||
|
std::cout << GridLogMessage << "a=" << a << "b=" << b << "Tr=" << Tr
|
||||||
|
<< std::endl;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
std::cout << GridLogMessage << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
static void TwoIndexLieAlgebraMatrix(
|
||||||
|
const typename SU<ncolour>::LatticeAlgebraVector &h,
|
||||||
|
LatticeTwoIndexMatrix &out, Real scale = 1.0) {
|
||||||
|
conformable(h, out);
|
||||||
|
GridBase *grid = out.Grid();
|
||||||
|
LatticeTwoIndexMatrix la(grid);
|
||||||
|
TIMatrix i2indTa;
|
||||||
|
|
||||||
|
out = Zero();
|
||||||
|
for (int a = 0; a < ncolour * ncolour - 1; a++) {
|
||||||
|
generator(a, i2indTa);
|
||||||
|
la = peekColour(h, a) * i2indTa;
|
||||||
|
out += la;
|
||||||
|
}
|
||||||
|
out *= scale;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Projects the algebra components
|
||||||
|
// of a lattice matrix ( of dimension ncol*ncol -1 )
|
||||||
|
static void projectOnAlgebra(
|
||||||
|
typename SU<ncolour>::LatticeAlgebraVector &h_out,
|
||||||
|
const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
|
||||||
|
conformable(h_out, in);
|
||||||
|
h_out = Zero();
|
||||||
|
TIMatrix i2indTa;
|
||||||
|
Real coefficient = -2.0 / (ncolour + 2 * S) * scale;
|
||||||
|
// 2/(Nc +/- 2) for the normalization of the trace in the two index rep
|
||||||
|
for (int a = 0; a < ncolour * ncolour - 1; a++) {
|
||||||
|
generator(a, i2indTa);
|
||||||
|
auto tmp = real(trace(i2indTa * in)) * coefficient;
|
||||||
|
pokeColour(h_out, tmp, a);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// a projector that keeps the generators stored to avoid the overhead of
|
||||||
|
// recomputing them
|
||||||
|
static void projector(typename SU<ncolour>::LatticeAlgebraVector &h_out,
|
||||||
|
const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
|
||||||
|
conformable(h_out, in);
|
||||||
|
// to store the generators
|
||||||
|
static std::vector<TIMatrix> i2indTa(ncolour * ncolour -1);
|
||||||
|
h_out = Zero();
|
||||||
|
static bool precalculated = false;
|
||||||
|
if (!precalculated) {
|
||||||
|
precalculated = true;
|
||||||
|
for (int a = 0; a < ncolour * ncolour - 1; a++) generator(a, i2indTa[a]);
|
||||||
|
}
|
||||||
|
|
||||||
|
Real coefficient =
|
||||||
|
-2.0 / (ncolour + 2 * S) * scale; // 2/(Nc +/- 2) for the normalization
|
||||||
|
// of the trace in the two index rep
|
||||||
|
|
||||||
|
for (int a = 0; a < ncolour * ncolour - 1; a++) {
|
||||||
|
auto tmp = real(trace(i2indTa[a] * in)) * coefficient;
|
||||||
|
pokeColour(h_out, tmp, a);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
// Some useful type names
|
||||||
|
typedef SU_TwoIndex<Nc, Symmetric> TwoIndexSymmMatrices;
|
||||||
|
typedef SU_TwoIndex<Nc, AntiSymmetric> TwoIndexAntiSymmMatrices;
|
||||||
|
|
||||||
|
typedef SU_TwoIndex<2, Symmetric> SU2TwoIndexSymm;
|
||||||
|
typedef SU_TwoIndex<3, Symmetric> SU3TwoIndexSymm;
|
||||||
|
typedef SU_TwoIndex<4, Symmetric> SU4TwoIndexSymm;
|
||||||
|
typedef SU_TwoIndex<5, Symmetric> SU5TwoIndexSymm;
|
||||||
|
|
||||||
|
typedef SU_TwoIndex<2, AntiSymmetric> SU2TwoIndexAntiSymm;
|
||||||
|
typedef SU_TwoIndex<3, AntiSymmetric> SU3TwoIndexAntiSymm;
|
||||||
|
typedef SU_TwoIndex<4, AntiSymmetric> SU4TwoIndexAntiSymm;
|
||||||
|
typedef SU_TwoIndex<5, AntiSymmetric> SU5TwoIndexAntiSymm;
|
||||||
|
|
||||||
|
NAMESPACE_END(Grid);
|
||||||
|
|
||||||
|
#endif
|
@ -1,317 +0,0 @@
|
|||||||
// This file is #included into the body of the class template definition of
|
|
||||||
// GaugeGroup. So, image there to be
|
|
||||||
//
|
|
||||||
// template <int ncolour, class group_name>
|
|
||||||
// class GaugeGroup {
|
|
||||||
//
|
|
||||||
// around it.
|
|
||||||
//
|
|
||||||
// Please note that the unconventional file extension makes sure that it
|
|
||||||
// doesn't get found by the scripts/filelist during bootstrapping.
|
|
||||||
|
|
||||||
private:
|
|
||||||
template <ONLY_IF_Sp>
|
|
||||||
static int su2subgroups(GroupName::Sp) { return (ncolour/2 * (ncolour/2 - 1)) / 2; }
|
|
||||||
|
|
||||||
// Sp(2N) has N(2N+1) = 2N^2+N generators
|
|
||||||
//
|
|
||||||
// normalise the generators such that
|
|
||||||
// Trace ( Ta Tb) = 1/2 delta_ab
|
|
||||||
//
|
|
||||||
// N generators in the cartan, 2N^2 off
|
|
||||||
// off diagonal:
|
|
||||||
// there are 6 types named a,b,c,d and w,z
|
|
||||||
// abcd are N(N-1)/2 each while wz are N each
|
|
||||||
|
|
||||||
template <class cplx, ONLY_IF_Sp>
|
|
||||||
static void generator(int lieIndex, iGroupMatrix<cplx> &ta, GroupName::Sp) {
|
|
||||||
// map lie index into type of generators: diagonal, abcd type, wz type
|
|
||||||
|
|
||||||
const int nsp = ncolour/2;
|
|
||||||
int diagIndex;
|
|
||||||
int aIndex, bIndex, cIndex, dIndex;
|
|
||||||
int wIndex, zIndex; // a,b,c,d are N(N-1)/2 and w,z are N
|
|
||||||
const int mod = nsp * (nsp - 1) * 0.5;
|
|
||||||
const int offdiag =
|
|
||||||
2 * nsp * nsp; // number of generators not in the cartan subalgebra
|
|
||||||
const int wmod = 4 * mod;
|
|
||||||
const int zmod = wmod + nsp;
|
|
||||||
if (lieIndex >= offdiag) {
|
|
||||||
diagIndex = lieIndex - offdiag; // 0, ... ,N-1
|
|
||||||
// std::cout << GridLogMessage << "diag type " << std::endl;
|
|
||||||
generatorDiagtype(diagIndex, ta);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
if ((lieIndex >= wmod) && (lieIndex < zmod)) {
|
|
||||||
// std::cout << GridLogMessage << "w type " << std::endl;
|
|
||||||
wIndex = lieIndex - wmod; // 0, ... ,N-1
|
|
||||||
generatorWtype(wIndex, ta);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
if ((lieIndex >= zmod) && (lieIndex < offdiag)) {
|
|
||||||
// std::cout << GridLogMessage << "z type " << std::endl;
|
|
||||||
// std::cout << GridLogMessage << "lie index " << lieIndex << std::endl;
|
|
||||||
// std::cout << GridLogMessage << "z mod " << zmod << std::endl;
|
|
||||||
zIndex = lieIndex - zmod; // 0, ... ,N-1
|
|
||||||
generatorZtype(zIndex, ta);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
if (lieIndex < mod) { // atype 0, ... , N(N-1)/2=mod
|
|
||||||
// std::cout << GridLogMessage << "a type " << std::endl;
|
|
||||||
aIndex = lieIndex;
|
|
||||||
// std::cout << GridLogMessage << "a indx " << aIndex << std::endl;
|
|
||||||
generatorAtype(aIndex, ta);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
if ((lieIndex >= mod) && lieIndex < 2 * mod) { // btype mod, ... , 2mod-1
|
|
||||||
// std::cout << GridLogMessage << "b type " << std::endl;
|
|
||||||
bIndex = lieIndex - mod;
|
|
||||||
generatorBtype(bIndex, ta);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
if ((lieIndex >= 2 * mod) &&
|
|
||||||
lieIndex < 3 * mod) { // ctype 2mod, ... , 3mod-1
|
|
||||||
// std::cout << GridLogMessage << "c type " << std::endl;
|
|
||||||
cIndex = lieIndex - 2 * mod;
|
|
||||||
generatorCtype(cIndex, ta);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
if ((lieIndex >= 3 * mod) &&
|
|
||||||
lieIndex < wmod) { // ctype 3mod, ... , 4mod-1 = wmod-1
|
|
||||||
// std::cout << GridLogMessage << "d type " << std::endl;
|
|
||||||
dIndex = lieIndex - 3 * mod;
|
|
||||||
generatorDtype(dIndex, ta);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
} // end of generator
|
|
||||||
|
|
||||||
template <class cplx, ONLY_IF_Sp>
|
|
||||||
static void generatorDiagtype(int diagIndex, iGroupMatrix<cplx> &ta) {
|
|
||||||
// ta(i,i) = - ta(i+N,i+N) = 1/2 for each i index of the cartan subalgebra
|
|
||||||
|
|
||||||
const int nsp=ncolour/2;
|
|
||||||
ta = Zero();
|
|
||||||
RealD nrm = 1.0 / 2;
|
|
||||||
|
|
||||||
ta()()(diagIndex, diagIndex) = nrm;
|
|
||||||
ta()()(diagIndex + nsp, diagIndex + nsp) = -nrm;
|
|
||||||
}
|
|
||||||
|
|
||||||
template <class cplx, ONLY_IF_Sp>
|
|
||||||
static void generatorAtype(int aIndex, iGroupMatrix<cplx> &ta) {
|
|
||||||
// ta(i,j) = ta(j,i) = -ta(i+N,j+N) = -ta(j+N,i+N) = 1 / 2 sqrt(2)
|
|
||||||
// with i<j and i=0,...,N-2
|
|
||||||
// follows that j=i+1, ... , N
|
|
||||||
int i1, i2;
|
|
||||||
const int nsp=ncolour/2;
|
|
||||||
ta = Zero();
|
|
||||||
RealD nrm = 1 / (2 * std::sqrt(2));
|
|
||||||
|
|
||||||
su2SubGroupIndex(i1, i2, aIndex);
|
|
||||||
ta()()(i1, i2) = 1;
|
|
||||||
ta()()(i2, i1) = 1;
|
|
||||||
ta()()(i1 + nsp, i2 + nsp) = -1;
|
|
||||||
ta()()(i2 + nsp, i1 + nsp) = -1;
|
|
||||||
|
|
||||||
ta = ta * nrm;
|
|
||||||
}
|
|
||||||
|
|
||||||
template <class cplx, ONLY_IF_Sp>
|
|
||||||
static void generatorBtype(int bIndex, iGroupMatrix<cplx> &ta) {
|
|
||||||
// ta(i,j) = -ta(j,i) = ta(i+N,j+N) = -ta(j+N,i+N) = i / 1/ 2 sqrt(2)
|
|
||||||
// with i<j and i=0,...,N-2
|
|
||||||
// follows that j=i+1, ... , N-1
|
|
||||||
|
|
||||||
const int nsp=ncolour/2;
|
|
||||||
int i1, i2;
|
|
||||||
ta = Zero();
|
|
||||||
cplx i(0.0, 1.0);
|
|
||||||
RealD nrm = 1 / (2 * std::sqrt(2));
|
|
||||||
su2SubGroupIndex(i1, i2, bIndex);
|
|
||||||
|
|
||||||
ta()()(i1, i2) = i;
|
|
||||||
ta()()(i2, i1) = -i;
|
|
||||||
ta()()(i1 + nsp, i2 + nsp) = i;
|
|
||||||
ta()()(i2 + nsp, i1 + nsp) = -i;
|
|
||||||
|
|
||||||
ta = ta * nrm;
|
|
||||||
}
|
|
||||||
|
|
||||||
template <class cplx, ONLY_IF_Sp>
|
|
||||||
static void generatorCtype(int cIndex, iGroupMatrix<cplx> &ta) {
|
|
||||||
// ta(i,j+N) = ta(j,i+N) = ta(i+N,j) = ta(j+N,i) = 1 / 2 sqrt(2)
|
|
||||||
|
|
||||||
const int nsp=ncolour/2;
|
|
||||||
int i1, i2;
|
|
||||||
ta = Zero();
|
|
||||||
RealD nrm = 1 / (2 * std::sqrt(2));
|
|
||||||
su2SubGroupIndex(i1, i2, cIndex);
|
|
||||||
|
|
||||||
ta()()(i1, i2 + nsp) = 1;
|
|
||||||
ta()()(i2, i1 + nsp) = 1;
|
|
||||||
ta()()(i1 + nsp, i2) = 1;
|
|
||||||
ta()()(i2 + nsp, i1) = 1;
|
|
||||||
|
|
||||||
ta = ta * nrm;
|
|
||||||
}
|
|
||||||
|
|
||||||
template <class cplx, ONLY_IF_Sp>
|
|
||||||
static void generatorDtype(int dIndex, iGroupMatrix<cplx> &ta) {
|
|
||||||
// ta(i,j+N) = ta(j,i+N) = -ta(i+N,j) = -ta(j+N,i) = i / 2 sqrt(2)
|
|
||||||
|
|
||||||
const int nsp=ncolour/2;
|
|
||||||
int i1, i2;
|
|
||||||
ta = Zero();
|
|
||||||
cplx i(0.0, 1.0);
|
|
||||||
RealD nrm = 1 / (2 * std::sqrt(2));
|
|
||||||
su2SubGroupIndex(i1, i2, dIndex);
|
|
||||||
|
|
||||||
ta()()(i1, i2 + nsp) = i;
|
|
||||||
ta()()(i2, i1 + nsp) = i;
|
|
||||||
ta()()(i1 + nsp, i2) = -i;
|
|
||||||
ta()()(i2 + nsp, i1) = -i;
|
|
||||||
|
|
||||||
ta = ta * nrm;
|
|
||||||
}
|
|
||||||
|
|
||||||
template <class cplx, ONLY_IF_Sp>
|
|
||||||
static void generatorWtype(int wIndex, iGroupMatrix<cplx> &ta) {
|
|
||||||
// ta(i,i+N) = ta(i+N,i) = 1/2
|
|
||||||
|
|
||||||
const int nsp=ncolour/2;
|
|
||||||
ta = Zero();
|
|
||||||
RealD nrm = 1.0 / 2; // check
|
|
||||||
|
|
||||||
ta()()(wIndex, wIndex + nsp) = 1;
|
|
||||||
ta()()(wIndex + nsp, wIndex) = 1;
|
|
||||||
|
|
||||||
ta = ta * nrm;
|
|
||||||
}
|
|
||||||
|
|
||||||
template <class cplx, ONLY_IF_Sp>
|
|
||||||
static void generatorZtype(int zIndex, iGroupMatrix<cplx> &ta) {
|
|
||||||
// ta(i,i+N) = - ta(i+N,i) = i/2
|
|
||||||
|
|
||||||
const int nsp=ncolour/2;
|
|
||||||
ta = Zero();
|
|
||||||
RealD nrm = 1.0 / 2; // check
|
|
||||||
cplx i(0.0, 1.0);
|
|
||||||
ta()()(zIndex, zIndex + nsp) = i;
|
|
||||||
ta()()(zIndex + nsp, zIndex) = -i;
|
|
||||||
|
|
||||||
ta = ta * nrm;
|
|
||||||
}
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////
|
|
||||||
// Map a su2 subgroup number to the pair of rows that are non zero
|
|
||||||
////////////////////////////////////////////////////////////////////////
|
|
||||||
template <ONLY_IF_Sp>
|
|
||||||
static void su2SubGroupIndex(int &i1, int &i2, int su2_index, GroupName::Sp) {
|
|
||||||
const int nsp=ncolour/2;
|
|
||||||
assert((su2_index >= 0) && (su2_index < (nsp * (nsp - 1)) / 2));
|
|
||||||
|
|
||||||
int spare = su2_index;
|
|
||||||
for (i1 = 0; spare >= (nsp - 1 - i1); i1++) {
|
|
||||||
spare = spare - (nsp - 1 - i1); // remove the Nc-1-i1 terms
|
|
||||||
}
|
|
||||||
i2 = i1 + 1 + spare;
|
|
||||||
}
|
|
||||||
|
|
||||||
static void testGenerators(GroupName::Sp) {
|
|
||||||
Matrix ta;
|
|
||||||
Matrix tb;
|
|
||||||
std::cout << GridLogMessage
|
|
||||||
<< "Fundamental - Checking trace ta tb is 0.5 delta_ab "
|
|
||||||
<< std::endl;
|
|
||||||
for (int a = 0; a < AlgebraDimension; a++) {
|
|
||||||
for (int b = 0; b < AlgebraDimension; b++) {
|
|
||||||
generator(a, ta);
|
|
||||||
generator(b, tb);
|
|
||||||
Complex tr = TensorRemove(trace(ta * tb));
|
|
||||||
std::cout << GridLogMessage << "(" << a << "," << b << ") = " << tr
|
|
||||||
<< std::endl;
|
|
||||||
if (a == b) assert(abs(tr - Complex(0.5)) < 1.0e-6);
|
|
||||||
if (a != b) assert(abs(tr) < 1.0e-6);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
std::cout << GridLogMessage << std::endl;
|
|
||||||
std::cout << GridLogMessage << "Fundamental - Checking if hermitian"
|
|
||||||
<< std::endl;
|
|
||||||
for (int a = 0; a < AlgebraDimension; a++) {
|
|
||||||
generator(a, ta);
|
|
||||||
std::cout << GridLogMessage << a << std::endl;
|
|
||||||
assert(norm2(ta - adj(ta)) < 1.0e-6);
|
|
||||||
}
|
|
||||||
std::cout << GridLogMessage << std::endl;
|
|
||||||
std::cout << GridLogMessage << "Fundamental - Checking if traceless"
|
|
||||||
<< std::endl;
|
|
||||||
for (int a = 0; a < AlgebraDimension; a++) {
|
|
||||||
generator(a, ta);
|
|
||||||
Complex tr = TensorRemove(trace(ta));
|
|
||||||
std::cout << GridLogMessage << a << std::endl;
|
|
||||||
assert(abs(tr) < 1.0e-6);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <int N>
|
|
||||||
static Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > >
|
|
||||||
ProjectOnGeneralGroup(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu, GroupName::Sp) {
|
|
||||||
return ProjectOnSpGroup(Umu);
|
|
||||||
}
|
|
||||||
|
|
||||||
template <class vtype>
|
|
||||||
accelerator_inline static iScalar<vtype> ProjectOnGeneralGroup(const iScalar<vtype> &r, GroupName::Sp) {
|
|
||||||
return ProjectOnSpGroup(r);
|
|
||||||
}
|
|
||||||
|
|
||||||
template <class vtype, int N>
|
|
||||||
accelerator_inline static iVector<vtype,N> ProjectOnGeneralGroup(const iVector<vtype,N> &r, GroupName::Sp) {
|
|
||||||
return ProjectOnSpGroup(r);
|
|
||||||
}
|
|
||||||
|
|
||||||
template <class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
|
|
||||||
accelerator_inline static iMatrix<vtype,N> ProjectOnGeneralGroup(const iMatrix<vtype,N> &arg, GroupName::Sp) {
|
|
||||||
return ProjectOnSpGroup(arg);
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename LatticeMatrixType>
|
|
||||||
static void taProj(const LatticeMatrixType &in, LatticeMatrixType &out, GroupName::Sp) {
|
|
||||||
out = SpTa(in);
|
|
||||||
}
|
|
||||||
|
|
||||||
public:
|
|
||||||
|
|
||||||
template <ONLY_IF_Sp>
|
|
||||||
static void Omega(LatticeColourMatrixD &in) {
|
|
||||||
const int nsp=ncolour/2;
|
|
||||||
LatticeColourMatrixD OmegaLatt(in.Grid());
|
|
||||||
LatticeColourMatrixD identity(in.Grid());
|
|
||||||
ColourMatrix Omega;
|
|
||||||
|
|
||||||
OmegaLatt = Zero();
|
|
||||||
Omega = Zero();
|
|
||||||
identity = 1.;
|
|
||||||
|
|
||||||
for (int i = 0; i < nsp; i++) {
|
|
||||||
Omega()()(i, nsp + i) = 1.;
|
|
||||||
Omega()()(nsp + i, i) = -1;
|
|
||||||
}
|
|
||||||
OmegaLatt = OmegaLatt + (identity * Omega);
|
|
||||||
in = OmegaLatt;
|
|
||||||
}
|
|
||||||
|
|
||||||
template <ONLY_IF_Sp, class vtype, int N>
|
|
||||||
static void Omega(iScalar<iScalar<iMatrix<vtype, N> > > &in) {
|
|
||||||
const int nsp=ncolour/2;
|
|
||||||
|
|
||||||
iScalar<iScalar<iMatrix<vtype, N> > > Omega;
|
|
||||||
Omega = Zero();
|
|
||||||
|
|
||||||
for (int i = 0; i < nsp; i++) {
|
|
||||||
Omega()()(i, nsp + i) = 1.;
|
|
||||||
Omega()()(nsp + i, i) = -1;
|
|
||||||
}
|
|
||||||
|
|
||||||
in = Omega;
|
|
||||||
}
|
|
@ -8,9 +8,9 @@
|
|||||||
#include <Grid/qcd/utils/ScalarObjs.h>
|
#include <Grid/qcd/utils/ScalarObjs.h>
|
||||||
|
|
||||||
// Include representations
|
// Include representations
|
||||||
#include <Grid/qcd/utils/GaugeGroup.h>
|
#include <Grid/qcd/utils/SUn.h>
|
||||||
#include <Grid/qcd/utils/SUnAdjoint.h>
|
#include <Grid/qcd/utils/SUnAdjoint.h>
|
||||||
#include <Grid/qcd/utils/GaugeGroupTwoIndex.h>
|
#include <Grid/qcd/utils/SUnTwoIndex.h>
|
||||||
|
|
||||||
// All-to-all contraction kernels that touch the
|
// All-to-all contraction kernels that touch the
|
||||||
// internal lattice structure
|
// internal lattice structure
|
||||||
|
@ -290,7 +290,7 @@ public:
|
|||||||
}
|
}
|
||||||
*/
|
*/
|
||||||
//////////////////////////////////////////////////
|
//////////////////////////////////////////////////
|
||||||
// the sum over all nu-oriented staples for nu != mu on each site
|
// the sum over all staples on each site
|
||||||
//////////////////////////////////////////////////
|
//////////////////////////////////////////////////
|
||||||
static void Staple(GaugeMat &staple, const GaugeLorentz &Umu, int mu) {
|
static void Staple(GaugeMat &staple, const GaugeLorentz &Umu, int mu) {
|
||||||
|
|
||||||
@ -300,10 +300,6 @@ public:
|
|||||||
for (int d = 0; d < Nd; d++) {
|
for (int d = 0; d < Nd; d++) {
|
||||||
U[d] = PeekIndex<LorentzIndex>(Umu, d);
|
U[d] = PeekIndex<LorentzIndex>(Umu, d);
|
||||||
}
|
}
|
||||||
Staple(staple, U, mu);
|
|
||||||
}
|
|
||||||
|
|
||||||
static void Staple(GaugeMat &staple, const std::vector<GaugeMat> &U, int mu) {
|
|
||||||
staple = Zero();
|
staple = Zero();
|
||||||
|
|
||||||
for (int nu = 0; nu < Nd; nu++) {
|
for (int nu = 0; nu < Nd; nu++) {
|
||||||
@ -339,202 +335,6 @@ public:
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/////////////
|
|
||||||
//Staples for each direction mu, summed over nu != mu
|
|
||||||
//staple: output staples for each mu (Nd)
|
|
||||||
//U: link array (Nd)
|
|
||||||
/////////////
|
|
||||||
static void StapleAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U) {
|
|
||||||
assert(staple.size() == Nd); assert(U.size() == Nd);
|
|
||||||
for(int mu=0;mu<Nd;mu++) Staple(staple[mu], U, mu);
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
//A workspace class allowing reuse of the stencil
|
|
||||||
class WilsonLoopPaddedStencilWorkspace{
|
|
||||||
std::unique_ptr<GeneralLocalStencil> stencil;
|
|
||||||
size_t nshift;
|
|
||||||
|
|
||||||
void generateStencil(GridBase* padded_grid){
|
|
||||||
double t0 = usecond();
|
|
||||||
|
|
||||||
//Generate shift arrays
|
|
||||||
std::vector<Coordinate> shifts = this->getShifts();
|
|
||||||
nshift = shifts.size();
|
|
||||||
|
|
||||||
double t1 = usecond();
|
|
||||||
//Generate local stencil
|
|
||||||
stencil.reset(new GeneralLocalStencil(padded_grid,shifts));
|
|
||||||
double t2 = usecond();
|
|
||||||
std::cout << GridLogPerformance << " WilsonLoopPaddedWorkspace timings: coord:" << (t1-t0)/1000 << "ms, stencil:" << (t2-t1)/1000 << "ms" << std::endl;
|
|
||||||
}
|
|
||||||
public:
|
|
||||||
//Get the stencil. If not already generated, or if generated using a different Grid than in PaddedCell, it will be created on-the-fly
|
|
||||||
const GeneralLocalStencil & getStencil(const PaddedCell &pcell){
|
|
||||||
assert(pcell.depth >= this->paddingDepth());
|
|
||||||
if(!stencil || stencil->Grid() != (GridBase*)pcell.grids.back() ) generateStencil((GridBase*)pcell.grids.back());
|
|
||||||
return *stencil;
|
|
||||||
}
|
|
||||||
size_t Nshift() const{ return nshift; }
|
|
||||||
|
|
||||||
virtual std::vector<Coordinate> getShifts() const = 0;
|
|
||||||
virtual int paddingDepth() const = 0; //padding depth required
|
|
||||||
|
|
||||||
virtual ~WilsonLoopPaddedStencilWorkspace(){}
|
|
||||||
};
|
|
||||||
|
|
||||||
//This workspace allows the sharing of a common PaddedCell object between multiple stencil workspaces
|
|
||||||
class WilsonLoopPaddedWorkspace{
|
|
||||||
std::vector<WilsonLoopPaddedStencilWorkspace*> stencil_wk;
|
|
||||||
std::unique_ptr<PaddedCell> pcell;
|
|
||||||
|
|
||||||
void generatePcell(GridBase* unpadded_grid){
|
|
||||||
assert(stencil_wk.size());
|
|
||||||
int max_depth = 0;
|
|
||||||
for(auto const &s : stencil_wk) max_depth=std::max(max_depth, s->paddingDepth());
|
|
||||||
|
|
||||||
pcell.reset(new PaddedCell(max_depth, dynamic_cast<GridCartesian*>(unpadded_grid)));
|
|
||||||
}
|
|
||||||
|
|
||||||
public:
|
|
||||||
//Add a stencil definition. This should be done before the first call to retrieve a stencil object.
|
|
||||||
//Takes ownership of the pointer
|
|
||||||
void addStencil(WilsonLoopPaddedStencilWorkspace *stencil){
|
|
||||||
assert(!pcell);
|
|
||||||
stencil_wk.push_back(stencil);
|
|
||||||
}
|
|
||||||
|
|
||||||
const GeneralLocalStencil & getStencil(const size_t stencil_idx, GridBase* unpadded_grid){
|
|
||||||
if(!pcell || pcell->unpadded_grid != unpadded_grid) generatePcell(unpadded_grid);
|
|
||||||
return stencil_wk[stencil_idx]->getStencil(*pcell);
|
|
||||||
}
|
|
||||||
const PaddedCell & getPaddedCell(GridBase* unpadded_grid){
|
|
||||||
if(!pcell || pcell->unpadded_grid != unpadded_grid) generatePcell(unpadded_grid);
|
|
||||||
return *pcell;
|
|
||||||
}
|
|
||||||
|
|
||||||
~WilsonLoopPaddedWorkspace(){
|
|
||||||
for(auto &s : stencil_wk) delete s;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
//A workspace class allowing reuse of the stencil
|
|
||||||
class StaplePaddedAllWorkspace: public WilsonLoopPaddedStencilWorkspace{
|
|
||||||
public:
|
|
||||||
std::vector<Coordinate> getShifts() const override{
|
|
||||||
std::vector<Coordinate> shifts;
|
|
||||||
for(int mu=0;mu<Nd;mu++){
|
|
||||||
for(int nu=0;nu<Nd;nu++){
|
|
||||||
if(nu != mu){
|
|
||||||
Coordinate shift_0(Nd,0);
|
|
||||||
Coordinate shift_mu(Nd,0); shift_mu[mu]=1;
|
|
||||||
Coordinate shift_nu(Nd,0); shift_nu[nu]=1;
|
|
||||||
Coordinate shift_mnu(Nd,0); shift_mnu[nu]=-1;
|
|
||||||
Coordinate shift_mnu_pmu(Nd,0); shift_mnu_pmu[nu]=-1; shift_mnu_pmu[mu]=1;
|
|
||||||
|
|
||||||
//U_nu(x+mu)U^dag_mu(x+nu) U^dag_nu(x)
|
|
||||||
shifts.push_back(shift_0);
|
|
||||||
shifts.push_back(shift_nu);
|
|
||||||
shifts.push_back(shift_mu);
|
|
||||||
|
|
||||||
//U_nu^dag(x-nu+mu) U_mu^dag(x-nu) U_nu(x-nu)
|
|
||||||
shifts.push_back(shift_mnu);
|
|
||||||
shifts.push_back(shift_mnu);
|
|
||||||
shifts.push_back(shift_mnu_pmu);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return shifts;
|
|
||||||
}
|
|
||||||
|
|
||||||
int paddingDepth() const override{ return 1; }
|
|
||||||
};
|
|
||||||
|
|
||||||
//Padded cell implementation of the staple method for all mu, summed over nu != mu
|
|
||||||
//staple: output staple for each mu, summed over nu != mu (Nd)
|
|
||||||
//U_padded: the gauge link fields padded out using the PaddedCell class
|
|
||||||
//Cell: the padded cell class
|
|
||||||
static void StaplePaddedAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U_padded, const PaddedCell &Cell) {
|
|
||||||
StaplePaddedAllWorkspace wk;
|
|
||||||
StaplePaddedAll(staple,U_padded,Cell,wk.getStencil(Cell));
|
|
||||||
}
|
|
||||||
|
|
||||||
//Padded cell implementation of the staple method for all mu, summed over nu != mu
|
|
||||||
//staple: output staple for each mu, summed over nu != mu (Nd)
|
|
||||||
//U_padded: the gauge link fields padded out using the PaddedCell class
|
|
||||||
//Cell: the padded cell class
|
|
||||||
//gStencil: the precomputed generalized local stencil for the staple
|
|
||||||
static void StaplePaddedAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U_padded, const PaddedCell &Cell, const GeneralLocalStencil &gStencil) {
|
|
||||||
double t0 = usecond();
|
|
||||||
assert(U_padded.size() == Nd); assert(staple.size() == Nd);
|
|
||||||
assert(U_padded[0].Grid() == (GridBase*)Cell.grids.back());
|
|
||||||
assert(Cell.depth >= 1);
|
|
||||||
GridBase *ggrid = U_padded[0].Grid(); //padded cell grid
|
|
||||||
|
|
||||||
int shift_mu_off = gStencil._npoints/Nd;
|
|
||||||
|
|
||||||
//Open views to padded gauge links and keep open over mu loop
|
|
||||||
typedef LatticeView<typename GaugeMat::vector_object> GaugeViewType;
|
|
||||||
size_t vsize = Nd*sizeof(GaugeViewType);
|
|
||||||
GaugeViewType* Ug_dirs_v_host = (GaugeViewType*)malloc(vsize);
|
|
||||||
for(int i=0;i<Nd;i++) Ug_dirs_v_host[i] = U_padded[i].View(AcceleratorRead);
|
|
||||||
GaugeViewType* Ug_dirs_v = (GaugeViewType*)acceleratorAllocDevice(vsize);
|
|
||||||
acceleratorCopyToDevice(Ug_dirs_v_host,Ug_dirs_v,vsize);
|
|
||||||
|
|
||||||
GaugeMat gStaple(ggrid);
|
|
||||||
|
|
||||||
int outer_off = 0;
|
|
||||||
for(int mu=0;mu<Nd;mu++){
|
|
||||||
{ //view scope
|
|
||||||
autoView( gStaple_v , gStaple, AcceleratorWrite);
|
|
||||||
auto gStencil_v = gStencil.View(AcceleratorRead);
|
|
||||||
|
|
||||||
accelerator_for(ss, ggrid->oSites(), ggrid->Nsimd(), {
|
|
||||||
decltype(coalescedRead(Ug_dirs_v[0][0])) stencil_ss;
|
|
||||||
stencil_ss = Zero();
|
|
||||||
int off = outer_off;
|
|
||||||
|
|
||||||
for(int nu=0;nu<Nd;nu++){
|
|
||||||
if(nu != mu){
|
|
||||||
GeneralStencilEntry const* e = gStencil_v.GetEntry(off++,ss);
|
|
||||||
auto U0 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
|
|
||||||
e = gStencil_v.GetEntry(off++,ss);
|
|
||||||
auto U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
|
|
||||||
e = gStencil_v.GetEntry(off++,ss);
|
|
||||||
auto U2 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
|
|
||||||
|
|
||||||
stencil_ss = stencil_ss + U2 * U1 * U0;
|
|
||||||
|
|
||||||
e = gStencil_v.GetEntry(off++,ss);
|
|
||||||
U0 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
|
|
||||||
e = gStencil_v.GetEntry(off++,ss);
|
|
||||||
U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
|
|
||||||
e = gStencil_v.GetEntry(off++,ss);
|
|
||||||
U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
|
|
||||||
|
|
||||||
stencil_ss = stencil_ss + U2 * U1 * U0;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
coalescedWrite(gStaple_v[ss],stencil_ss);
|
|
||||||
}
|
|
||||||
);
|
|
||||||
} //ensure views are all closed!
|
|
||||||
|
|
||||||
staple[mu] = Cell.Extract(gStaple);
|
|
||||||
outer_off += shift_mu_off;
|
|
||||||
}//mu loop
|
|
||||||
|
|
||||||
for(int i=0;i<Nd;i++) Ug_dirs_v_host[i].ViewClose();
|
|
||||||
free(Ug_dirs_v_host);
|
|
||||||
acceleratorFreeDevice(Ug_dirs_v);
|
|
||||||
|
|
||||||
double t1=usecond();
|
|
||||||
|
|
||||||
std::cout << GridLogPerformance << "StaplePaddedAll timing:" << (t1-t0)/1000 << "ms" << std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
//////////////////////////////////////////////////
|
//////////////////////////////////////////////////
|
||||||
// the sum over all staples on each site in direction mu,nu, upper part
|
// the sum over all staples on each site in direction mu,nu, upper part
|
||||||
//////////////////////////////////////////////////
|
//////////////////////////////////////////////////
|
||||||
@ -907,14 +707,18 @@ public:
|
|||||||
// the sum over all staples on each site
|
// the sum over all staples on each site
|
||||||
//////////////////////////////////////////////////
|
//////////////////////////////////////////////////
|
||||||
static void RectStapleDouble(GaugeMat &U2, const GaugeMat &U, int mu) {
|
static void RectStapleDouble(GaugeMat &U2, const GaugeMat &U, int mu) {
|
||||||
U2 = U * Gimpl::CshiftLink(U, mu, 1);
|
U2 = U * Cshift(U, mu, 1);
|
||||||
}
|
}
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////
|
||||||
// Hop by two optimisation strategy. Use RectStapleDouble to obtain 'U2'
|
// Hop by two optimisation strategy does not work nicely with Gparity. (could
|
||||||
|
// do,
|
||||||
|
// but need to track two deep where cross boundary and apply a conjugation).
|
||||||
|
// Must differentiate this in Gimpl, and use Gimpl::isPeriodicGaugeField to do
|
||||||
|
// so .
|
||||||
////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////
|
||||||
static void RectStapleOptimised(GaugeMat &Stap, const std::vector<GaugeMat> &U2,
|
static void RectStapleOptimised(GaugeMat &Stap, std::vector<GaugeMat> &U2,
|
||||||
const std::vector<GaugeMat> &U, int mu) {
|
std::vector<GaugeMat> &U, int mu) {
|
||||||
|
|
||||||
Stap = Zero();
|
Stap = Zero();
|
||||||
|
|
||||||
@ -928,9 +732,9 @@ public:
|
|||||||
|
|
||||||
// Up staple ___ ___
|
// Up staple ___ ___
|
||||||
// | |
|
// | |
|
||||||
tmp = Gimpl::CshiftLink(adj(U[nu]), nu, -1);
|
tmp = Cshift(adj(U[nu]), nu, -1);
|
||||||
tmp = adj(U2[mu]) * tmp;
|
tmp = adj(U2[mu]) * tmp;
|
||||||
tmp = Gimpl::CshiftLink(tmp, mu, -2);
|
tmp = Cshift(tmp, mu, -2);
|
||||||
|
|
||||||
Staple2x1 = Gimpl::CovShiftForward(U[nu], nu, tmp);
|
Staple2x1 = Gimpl::CovShiftForward(U[nu], nu, tmp);
|
||||||
|
|
||||||
@ -938,14 +742,14 @@ public:
|
|||||||
// |___ ___|
|
// |___ ___|
|
||||||
//
|
//
|
||||||
tmp = adj(U2[mu]) * U[nu];
|
tmp = adj(U2[mu]) * U[nu];
|
||||||
Staple2x1 += Gimpl::CovShiftBackward(U[nu], nu, Gimpl::CshiftLink(tmp, mu, -2));
|
Staple2x1 += Gimpl::CovShiftBackward(U[nu], nu, Cshift(tmp, mu, -2));
|
||||||
|
|
||||||
// ___ ___
|
// ___ ___
|
||||||
// | ___|
|
// | ___|
|
||||||
// |___ ___|
|
// |___ ___|
|
||||||
//
|
//
|
||||||
|
|
||||||
Stap += Gimpl::CshiftLink(Gimpl::CovShiftForward(U[mu], mu, Staple2x1), mu, 1);
|
Stap += Cshift(Gimpl::CovShiftForward(U[mu], mu, Staple2x1), mu, 1);
|
||||||
|
|
||||||
// ___ ___
|
// ___ ___
|
||||||
// |___ |
|
// |___ |
|
||||||
@ -954,7 +758,7 @@ public:
|
|||||||
|
|
||||||
// tmp= Staple2x1* Cshift(U[mu],mu,-2);
|
// tmp= Staple2x1* Cshift(U[mu],mu,-2);
|
||||||
// Stap+= Cshift(tmp,mu,1) ;
|
// Stap+= Cshift(tmp,mu,1) ;
|
||||||
Stap += Gimpl::CshiftLink(Staple2x1, mu, 1) * Gimpl::CshiftLink(U[mu], mu, -1);
|
Stap += Cshift(Staple2x1, mu, 1) * Cshift(U[mu], mu, -1);
|
||||||
;
|
;
|
||||||
|
|
||||||
// --
|
// --
|
||||||
@ -962,10 +766,10 @@ public:
|
|||||||
//
|
//
|
||||||
// | |
|
// | |
|
||||||
|
|
||||||
tmp = Gimpl::CshiftLink(adj(U2[nu]), nu, -2);
|
tmp = Cshift(adj(U2[nu]), nu, -2);
|
||||||
tmp = Gimpl::CovShiftBackward(U[mu], mu, tmp);
|
tmp = Gimpl::CovShiftBackward(U[mu], mu, tmp);
|
||||||
tmp = U2[nu] * Gimpl::CshiftLink(tmp, nu, 2);
|
tmp = U2[nu] * Cshift(tmp, nu, 2);
|
||||||
Stap += Gimpl::CshiftLink(tmp, mu, 1);
|
Stap += Cshift(tmp, mu, 1);
|
||||||
|
|
||||||
// | |
|
// | |
|
||||||
//
|
//
|
||||||
@ -974,12 +778,25 @@ public:
|
|||||||
|
|
||||||
tmp = Gimpl::CovShiftBackward(U[mu], mu, U2[nu]);
|
tmp = Gimpl::CovShiftBackward(U[mu], mu, U2[nu]);
|
||||||
tmp = adj(U2[nu]) * tmp;
|
tmp = adj(U2[nu]) * tmp;
|
||||||
tmp = Gimpl::CshiftLink(tmp, nu, -2);
|
tmp = Cshift(tmp, nu, -2);
|
||||||
Stap += Gimpl::CshiftLink(tmp, mu, 1);
|
Stap += Cshift(tmp, mu, 1);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void RectStaple(GaugeMat &Stap, const GaugeLorentz &Umu, int mu) {
|
||||||
|
RectStapleUnoptimised(Stap, Umu, mu);
|
||||||
|
}
|
||||||
|
static void RectStaple(const GaugeLorentz &Umu, GaugeMat &Stap,
|
||||||
|
std::vector<GaugeMat> &U2, std::vector<GaugeMat> &U,
|
||||||
|
int mu) {
|
||||||
|
if (Gimpl::isPeriodicGaugeField()) {
|
||||||
|
RectStapleOptimised(Stap, U2, U, mu);
|
||||||
|
} else {
|
||||||
|
RectStapleUnoptimised(Stap, Umu, mu);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
static void RectStapleUnoptimised(GaugeMat &Stap, const GaugeLorentz &Umu,
|
static void RectStapleUnoptimised(GaugeMat &Stap, const GaugeLorentz &Umu,
|
||||||
int mu) {
|
int mu) {
|
||||||
GridBase *grid = Umu.Grid();
|
GridBase *grid = Umu.Grid();
|
||||||
@ -1078,288 +895,6 @@ public:
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static void RectStaple(GaugeMat &Stap, const GaugeLorentz &Umu, int mu) {
|
|
||||||
RectStapleUnoptimised(Stap, Umu, mu);
|
|
||||||
}
|
|
||||||
static void RectStaple(const GaugeLorentz &Umu, GaugeMat &Stap,
|
|
||||||
std::vector<GaugeMat> &U2, std::vector<GaugeMat> &U,
|
|
||||||
int mu) {
|
|
||||||
RectStapleOptimised(Stap, U2, U, mu);
|
|
||||||
}
|
|
||||||
//////////////////////////////////////////////////////
|
|
||||||
//Compute the rectangular staples for all orientations
|
|
||||||
//Stap : Array of staples (Nd)
|
|
||||||
//U: Gauge links in each direction (Nd)
|
|
||||||
/////////////////////////////////////////////////////
|
|
||||||
static void RectStapleAll(std::vector<GaugeMat> &Stap, const std::vector<GaugeMat> &U){
|
|
||||||
assert(Stap.size() == Nd); assert(U.size() == Nd);
|
|
||||||
std::vector<GaugeMat> U2(Nd,U[0].Grid());
|
|
||||||
for(int mu=0;mu<Nd;mu++) RectStapleDouble(U2[mu], U[mu], mu);
|
|
||||||
for(int mu=0;mu<Nd;mu++) RectStapleOptimised(Stap[mu], U2, U, mu);
|
|
||||||
}
|
|
||||||
|
|
||||||
//A workspace class allowing reuse of the stencil
|
|
||||||
class RectStaplePaddedAllWorkspace: public WilsonLoopPaddedStencilWorkspace{
|
|
||||||
public:
|
|
||||||
std::vector<Coordinate> getShifts() const override{
|
|
||||||
std::vector<Coordinate> shifts;
|
|
||||||
for (int mu = 0; mu < Nd; mu++){
|
|
||||||
for (int nu = 0; nu < Nd; nu++) {
|
|
||||||
if (nu != mu) {
|
|
||||||
auto genShift = [&](int mushift,int nushift){
|
|
||||||
Coordinate out(Nd,0); out[mu]=mushift; out[nu]=nushift; return out;
|
|
||||||
};
|
|
||||||
|
|
||||||
//tmp6 = tmp5(x+mu) = U_mu(x+mu)U_nu(x+2mu)U_mu^dag(x+nu+mu) U_mu^dag(x+nu) U_nu^dag(x)
|
|
||||||
shifts.push_back(genShift(0,0));
|
|
||||||
shifts.push_back(genShift(0,+1));
|
|
||||||
shifts.push_back(genShift(+1,+1));
|
|
||||||
shifts.push_back(genShift(+2,0));
|
|
||||||
shifts.push_back(genShift(+1,0));
|
|
||||||
|
|
||||||
//tmp5 = tmp4(x+mu) = U_mu(x+mu)U^dag_nu(x-nu+2mu)U^dag_mu(x-nu+mu)U^dag_mu(x-nu)U_nu(x-nu)
|
|
||||||
shifts.push_back(genShift(0,-1));
|
|
||||||
shifts.push_back(genShift(0,-1));
|
|
||||||
shifts.push_back(genShift(+1,-1));
|
|
||||||
shifts.push_back(genShift(+2,-1));
|
|
||||||
shifts.push_back(genShift(+1,0));
|
|
||||||
|
|
||||||
//tmp5 = tmp4(x+mu) = U^dag_nu(x-nu+mu)U^dag_mu(x-nu)U^dag_mu(x-mu-nu)U_nu(x-mu-nu)U_mu(x-mu)
|
|
||||||
shifts.push_back(genShift(-1,0));
|
|
||||||
shifts.push_back(genShift(-1,-1));
|
|
||||||
shifts.push_back(genShift(-1,-1));
|
|
||||||
shifts.push_back(genShift(0,-1));
|
|
||||||
shifts.push_back(genShift(+1,-1));
|
|
||||||
|
|
||||||
//tmp5 = tmp4(x+mu) = U_nu(x+mu)U_mu^dag(x+nu)U_mu^dag(x-mu+nu)U_nu^dag(x-mu)U_mu(x-mu)
|
|
||||||
shifts.push_back(genShift(-1,0));
|
|
||||||
shifts.push_back(genShift(-1,0));
|
|
||||||
shifts.push_back(genShift(-1,+1));
|
|
||||||
shifts.push_back(genShift(0,+1));
|
|
||||||
shifts.push_back(genShift(+1,0));
|
|
||||||
|
|
||||||
//tmp6 = tmp5(x+mu) = U_nu(x+mu)U_nu(x+mu+nu)U_mu^dag(x+2nu)U_nu^dag(x+nu)U_nu^dag(x)
|
|
||||||
shifts.push_back(genShift(0,0));
|
|
||||||
shifts.push_back(genShift(0,+1));
|
|
||||||
shifts.push_back(genShift(0,+2));
|
|
||||||
shifts.push_back(genShift(+1,+1));
|
|
||||||
shifts.push_back(genShift(+1,0));
|
|
||||||
|
|
||||||
//tmp5 = tmp4(x+mu) = U_nu^dag(x+mu-nu)U_nu^dag(x+mu-2nu)U_mu^dag(x-2nu)U_nu(x-2nu)U_nu(x-nu)
|
|
||||||
shifts.push_back(genShift(0,-1));
|
|
||||||
shifts.push_back(genShift(0,-2));
|
|
||||||
shifts.push_back(genShift(0,-2));
|
|
||||||
shifts.push_back(genShift(+1,-2));
|
|
||||||
shifts.push_back(genShift(+1,-1));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return shifts;
|
|
||||||
}
|
|
||||||
|
|
||||||
int paddingDepth() const override{ return 2; }
|
|
||||||
};
|
|
||||||
|
|
||||||
//Padded cell implementation of the rectangular staple method for all mu, summed over nu != mu
|
|
||||||
//staple: output staple for each mu, summed over nu != mu (Nd)
|
|
||||||
//U_padded: the gauge link fields padded out using the PaddedCell class
|
|
||||||
//Cell: the padded cell class
|
|
||||||
static void RectStaplePaddedAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U_padded, const PaddedCell &Cell) {
|
|
||||||
RectStaplePaddedAllWorkspace wk;
|
|
||||||
RectStaplePaddedAll(staple,U_padded,Cell,wk.getStencil(Cell));
|
|
||||||
}
|
|
||||||
|
|
||||||
//Padded cell implementation of the rectangular staple method for all mu, summed over nu != mu
|
|
||||||
//staple: output staple for each mu, summed over nu != mu (Nd)
|
|
||||||
//U_padded: the gauge link fields padded out using the PaddedCell class
|
|
||||||
//Cell: the padded cell class
|
|
||||||
//gStencil: the stencil
|
|
||||||
static void RectStaplePaddedAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U_padded, const PaddedCell &Cell, const GeneralLocalStencil &gStencil) {
|
|
||||||
double t0 = usecond();
|
|
||||||
assert(U_padded.size() == Nd); assert(staple.size() == Nd);
|
|
||||||
assert(U_padded[0].Grid() == (GridBase*)Cell.grids.back());
|
|
||||||
assert(Cell.depth >= 2);
|
|
||||||
GridBase *ggrid = U_padded[0].Grid(); //padded cell grid
|
|
||||||
|
|
||||||
size_t nshift = gStencil._npoints;
|
|
||||||
int mu_off_delta = nshift / Nd;
|
|
||||||
|
|
||||||
//Open views to padded gauge links and keep open over mu loop
|
|
||||||
typedef LatticeView<typename GaugeMat::vector_object> GaugeViewType;
|
|
||||||
size_t vsize = Nd*sizeof(GaugeViewType);
|
|
||||||
GaugeViewType* Ug_dirs_v_host = (GaugeViewType*)malloc(vsize);
|
|
||||||
for(int i=0;i<Nd;i++) Ug_dirs_v_host[i] = U_padded[i].View(AcceleratorRead);
|
|
||||||
GaugeViewType* Ug_dirs_v = (GaugeViewType*)acceleratorAllocDevice(vsize);
|
|
||||||
acceleratorCopyToDevice(Ug_dirs_v_host,Ug_dirs_v,vsize);
|
|
||||||
|
|
||||||
GaugeMat gStaple(ggrid); //temp staple object on padded grid
|
|
||||||
|
|
||||||
int offset = 0;
|
|
||||||
for(int mu=0; mu<Nd; mu++){
|
|
||||||
|
|
||||||
{ //view scope
|
|
||||||
autoView( gStaple_v , gStaple, AcceleratorWrite);
|
|
||||||
auto gStencil_v = gStencil.View(AcceleratorRead);
|
|
||||||
|
|
||||||
accelerator_for(ss, ggrid->oSites(), ggrid->Nsimd(), {
|
|
||||||
decltype(coalescedRead(Ug_dirs_v[0][0])) stencil_ss;
|
|
||||||
stencil_ss = Zero();
|
|
||||||
int s=offset;
|
|
||||||
for(int nu=0;nu<Nd;nu++){
|
|
||||||
if(nu != mu){
|
|
||||||
//tmp6 = tmp5(x+mu) = U_mu(x+mu)U_nu(x+2mu)U_mu^dag(x+nu+mu) U_mu^dag(x+nu) U_nu^dag(x)
|
|
||||||
GeneralStencilEntry const* e = gStencil_v.GetEntry(s++,ss);
|
|
||||||
auto U0 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
|
|
||||||
e = gStencil_v.GetEntry(s++,ss);
|
|
||||||
auto U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
|
|
||||||
e = gStencil_v.GetEntry(s++,ss);
|
|
||||||
auto U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
|
|
||||||
e = gStencil_v.GetEntry(s++,ss);
|
|
||||||
auto U3 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
|
|
||||||
e = gStencil_v.GetEntry(s++,ss);
|
|
||||||
auto U4 = coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd);
|
|
||||||
|
|
||||||
stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
|
|
||||||
|
|
||||||
//tmp5 = tmp4(x+mu) = U_mu(x+mu)U^dag_nu(x-nu+2mu)U^dag_mu(x-nu+mu)U^dag_mu(x-nu)U_nu(x-nu)
|
|
||||||
e = gStencil_v.GetEntry(s++,ss);
|
|
||||||
U0 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
|
|
||||||
e = gStencil_v.GetEntry(s++,ss);
|
|
||||||
U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
|
|
||||||
e = gStencil_v.GetEntry(s++,ss);
|
|
||||||
U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
|
|
||||||
e = gStencil_v.GetEntry(s++,ss);
|
|
||||||
U3 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
|
|
||||||
e = gStencil_v.GetEntry(s++,ss);
|
|
||||||
U4 = coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd);
|
|
||||||
|
|
||||||
stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
|
|
||||||
|
|
||||||
//tmp5 = tmp4(x+mu) = U^dag_nu(x-nu+mu)U^dag_mu(x-nu)U^dag_mu(x-mu-nu)U_nu(x-mu-nu)U_mu(x-mu)
|
|
||||||
e = gStencil_v.GetEntry(s++,ss);
|
|
||||||
U0 = coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd);
|
|
||||||
e = gStencil_v.GetEntry(s++,ss);
|
|
||||||
U1 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
|
|
||||||
e = gStencil_v.GetEntry(s++,ss);
|
|
||||||
U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
|
|
||||||
e = gStencil_v.GetEntry(s++,ss);
|
|
||||||
U3 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
|
|
||||||
e = gStencil_v.GetEntry(s++,ss);
|
|
||||||
U4 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
|
|
||||||
|
|
||||||
stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
|
|
||||||
|
|
||||||
//tmp5 = tmp4(x+mu) = U_nu(x+mu)U_mu^dag(x+nu)U_mu^dag(x-mu+nu)U_nu^dag(x-mu)U_mu(x-mu)
|
|
||||||
e = gStencil_v.GetEntry(s++,ss);
|
|
||||||
U0 = coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd);
|
|
||||||
e = gStencil_v.GetEntry(s++,ss);
|
|
||||||
U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
|
|
||||||
e = gStencil_v.GetEntry(s++,ss);
|
|
||||||
U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
|
|
||||||
e = gStencil_v.GetEntry(s++,ss);
|
|
||||||
U3 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
|
|
||||||
e = gStencil_v.GetEntry(s++,ss);
|
|
||||||
U4 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
|
|
||||||
|
|
||||||
stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
|
|
||||||
|
|
||||||
//tmp6 = tmp5(x+mu) = U_nu(x+mu)U_nu(x+mu+nu)U_mu^dag(x+2nu)U_nu^dag(x+nu)U_nu^dag(x)
|
|
||||||
e = gStencil_v.GetEntry(s++,ss);
|
|
||||||
U0 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
|
|
||||||
e = gStencil_v.GetEntry(s++,ss);
|
|
||||||
U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
|
|
||||||
e = gStencil_v.GetEntry(s++,ss);
|
|
||||||
U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
|
|
||||||
e = gStencil_v.GetEntry(s++,ss);
|
|
||||||
U3 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
|
|
||||||
e = gStencil_v.GetEntry(s++,ss);
|
|
||||||
U4 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
|
|
||||||
|
|
||||||
stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
|
|
||||||
|
|
||||||
//tmp5 = tmp4(x+mu) = U_nu^dag(x+mu-nu)U_nu^dag(x+mu-2nu)U_mu^dag(x-2nu)U_nu(x-2nu)U_nu(x-nu)
|
|
||||||
e = gStencil_v.GetEntry(s++,ss);
|
|
||||||
U0 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
|
|
||||||
e = gStencil_v.GetEntry(s++,ss);
|
|
||||||
U1 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
|
|
||||||
e = gStencil_v.GetEntry(s++,ss);
|
|
||||||
U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
|
|
||||||
e = gStencil_v.GetEntry(s++,ss);
|
|
||||||
U3 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
|
|
||||||
e = gStencil_v.GetEntry(s++,ss);
|
|
||||||
U4 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
|
|
||||||
|
|
||||||
stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
|
|
||||||
|
|
||||||
}
|
|
||||||
}
|
|
||||||
coalescedWrite(gStaple_v[ss],stencil_ss);
|
|
||||||
}
|
|
||||||
);
|
|
||||||
offset += mu_off_delta;
|
|
||||||
}//kernel/view scope
|
|
||||||
|
|
||||||
staple[mu] = Cell.Extract(gStaple);
|
|
||||||
}//mu loop
|
|
||||||
|
|
||||||
for(int i=0;i<Nd;i++) Ug_dirs_v_host[i].ViewClose();
|
|
||||||
free(Ug_dirs_v_host);
|
|
||||||
acceleratorFreeDevice(Ug_dirs_v);
|
|
||||||
|
|
||||||
double t1 = usecond();
|
|
||||||
|
|
||||||
std::cout << GridLogPerformance << "RectStaplePaddedAll timings:" << (t1-t0)/1000 << "ms" << std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
//A workspace for reusing the PaddedCell and GeneralLocalStencil objects
|
|
||||||
class StapleAndRectStapleAllWorkspace: public WilsonLoopPaddedWorkspace{
|
|
||||||
public:
|
|
||||||
StapleAndRectStapleAllWorkspace(){
|
|
||||||
this->addStencil(new StaplePaddedAllWorkspace);
|
|
||||||
this->addStencil(new RectStaplePaddedAllWorkspace);
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
//////////////////////////////////////////////////////
|
|
||||||
//Compute the 1x1 and 1x2 staples for all orientations
|
|
||||||
//Stap : Array of staples (Nd)
|
|
||||||
//RectStap: Array of rectangular staples (Nd)
|
|
||||||
//U: Gauge links in each direction (Nd)
|
|
||||||
/////////////////////////////////////////////////////
|
|
||||||
static void StapleAndRectStapleAll(std::vector<GaugeMat> &Stap, std::vector<GaugeMat> &RectStap, const std::vector<GaugeMat> &U){
|
|
||||||
StapleAndRectStapleAllWorkspace wk;
|
|
||||||
StapleAndRectStapleAll(Stap,RectStap,U,wk);
|
|
||||||
}
|
|
||||||
|
|
||||||
//////////////////////////////////////////////////////
|
|
||||||
//Compute the 1x1 and 1x2 staples for all orientations
|
|
||||||
//Stap : Array of staples (Nd)
|
|
||||||
//RectStap: Array of rectangular staples (Nd)
|
|
||||||
//U: Gauge links in each direction (Nd)
|
|
||||||
//wk: a workspace containing stored PaddedCell and GeneralLocalStencil objects to maximize reuse
|
|
||||||
/////////////////////////////////////////////////////
|
|
||||||
static void StapleAndRectStapleAll(std::vector<GaugeMat> &Stap, std::vector<GaugeMat> &RectStap, const std::vector<GaugeMat> &U, StapleAndRectStapleAllWorkspace &wk){
|
|
||||||
#if 0
|
|
||||||
StapleAll(Stap, U);
|
|
||||||
RectStapleAll(RectStap, U);
|
|
||||||
#else
|
|
||||||
double t0 = usecond();
|
|
||||||
|
|
||||||
GridCartesian* unpadded_grid = dynamic_cast<GridCartesian*>(U[0].Grid());
|
|
||||||
const PaddedCell &Ghost = wk.getPaddedCell(unpadded_grid);
|
|
||||||
|
|
||||||
CshiftImplGauge<Gimpl> cshift_impl;
|
|
||||||
std::vector<GaugeMat> U_pad(Nd, Ghost.grids.back());
|
|
||||||
for(int mu=0;mu<Nd;mu++) U_pad[mu] = Ghost.Exchange(U[mu], cshift_impl);
|
|
||||||
double t1 = usecond();
|
|
||||||
StaplePaddedAll(Stap, U_pad, Ghost, wk.getStencil(0,unpadded_grid) );
|
|
||||||
double t2 = usecond();
|
|
||||||
RectStaplePaddedAll(RectStap, U_pad, Ghost, wk.getStencil(1,unpadded_grid));
|
|
||||||
double t3 = usecond();
|
|
||||||
std::cout << GridLogPerformance << "StapleAndRectStapleAll timings: pad:" << (t1-t0)/1000 << "ms, staple:" << (t2-t1)/1000 << "ms, rect-staple:" << (t3-t2)/1000 << "ms" << std::endl;
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
//////////////////////////////////////////////////
|
//////////////////////////////////////////////////
|
||||||
// Wilson loop of size (R1, R2), oriented in mu,nu plane
|
// Wilson loop of size (R1, R2), oriented in mu,nu plane
|
||||||
//////////////////////////////////////////////////
|
//////////////////////////////////////////////////
|
||||||
|
@ -1130,14 +1130,6 @@ static_assert(sizeof(SIMD_Ftype) == sizeof(SIMD_Itype), "SIMD vector lengths inc
|
|||||||
#endif
|
#endif
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// Fixme need coalesced read gpermute
|
|
||||||
template<class vobj> void gpermute(vobj & inout,int perm){
|
|
||||||
vobj tmp=inout;
|
|
||||||
if (perm & 0x1 ) { permute(inout,tmp,0); tmp=inout;}
|
|
||||||
if (perm & 0x2 ) { permute(inout,tmp,1); tmp=inout;}
|
|
||||||
if (perm & 0x4 ) { permute(inout,tmp,2); tmp=inout;}
|
|
||||||
if (perm & 0x8 ) { permute(inout,tmp,3); tmp=inout;}
|
|
||||||
}
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
|
||||||
|
@ -32,12 +32,7 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
struct GeneralStencilEntry {
|
struct GeneralStencilEntry {
|
||||||
uint64_t _offset; // 4 bytes
|
uint64_t _offset; // 4 bytes
|
||||||
uint8_t _permute; // 1 bytes // Horrible alignment properties
|
uint8_t _permute; // 1 bytes // Horrible alignment properties
|
||||||
uint8_t _wrap; // 1 bytes // Horrible alignment properties
|
|
||||||
};
|
};
|
||||||
struct GeneralStencilEntryReordered : public GeneralStencilEntry {
|
|
||||||
uint64_t _input;
|
|
||||||
};
|
|
||||||
|
|
||||||
// Could pack to 8 + 4 + 4 = 128 bit and use
|
// Could pack to 8 + 4 + 4 = 128 bit and use
|
||||||
|
|
||||||
class GeneralLocalStencilView {
|
class GeneralLocalStencilView {
|
||||||
@ -51,7 +46,7 @@ class GeneralLocalStencilView {
|
|||||||
accelerator_inline GeneralStencilEntry * GetEntry(int point,int osite) {
|
accelerator_inline GeneralStencilEntry * GetEntry(int point,int osite) {
|
||||||
return & this->_entries_p[point+this->_npoints*osite];
|
return & this->_entries_p[point+this->_npoints*osite];
|
||||||
}
|
}
|
||||||
void ViewClose(void){};
|
|
||||||
};
|
};
|
||||||
////////////////////////////////////////
|
////////////////////////////////////////
|
||||||
// The Stencil Class itself
|
// The Stencil Class itself
|
||||||
@ -66,7 +61,7 @@ protected:
|
|||||||
public:
|
public:
|
||||||
GridBase *Grid(void) const { return _grid; }
|
GridBase *Grid(void) const { return _grid; }
|
||||||
|
|
||||||
View_type View(int mode) const {
|
View_type View(void) const {
|
||||||
View_type accessor(*( (View_type *) this));
|
View_type accessor(*( (View_type *) this));
|
||||||
return accessor;
|
return accessor;
|
||||||
}
|
}
|
||||||
@ -84,66 +79,60 @@ public:
|
|||||||
this->_entries.resize(npoints* osites);
|
this->_entries.resize(npoints* osites);
|
||||||
this->_entries_p = &_entries[0];
|
this->_entries_p = &_entries[0];
|
||||||
|
|
||||||
thread_for(site, osites, {
|
|
||||||
Coordinate Coor;
|
|
||||||
Coordinate NbrCoor;
|
|
||||||
|
|
||||||
for(Integer ii=0;ii<npoints;ii++){
|
Coordinate Coor;
|
||||||
Integer lex = site*npoints+ii;
|
Coordinate NbrCoor;
|
||||||
GeneralStencilEntry SE;
|
for(Integer site=0;site<osites;site++){
|
||||||
////////////////////////////////////////////////
|
for(Integer ii=0;ii<npoints;ii++){
|
||||||
// Outer index of neighbour Offset calculation
|
Integer lex = site*npoints+ii;
|
||||||
////////////////////////////////////////////////
|
GeneralStencilEntry SE;
|
||||||
grid->oCoorFromOindex(Coor,site);
|
////////////////////////////////////////////////
|
||||||
for(int d=0;d<Coor.size();d++){
|
// Outer index of neighbour Offset calculation
|
||||||
int rd = grid->_rdimensions[d];
|
////////////////////////////////////////////////
|
||||||
NbrCoor[d] = (Coor[d] + shifts[ii][d] + rd )%rd;
|
grid->oCoorFromOindex(Coor,site);
|
||||||
}
|
for(int d=0;d<Coor.size();d++){
|
||||||
SE._offset = grid->oIndexReduced(NbrCoor);
|
int rd = grid->_rdimensions[d];
|
||||||
|
NbrCoor[d] = (Coor[d] + shifts[ii][d] + rd )%rd;
|
||||||
////////////////////////////////////////////////
|
|
||||||
// Inner index permute calculation
|
|
||||||
// Simpler version using icoor calculation
|
|
||||||
////////////////////////////////////////////////
|
|
||||||
SE._permute =0;
|
|
||||||
SE._wrap=0;
|
|
||||||
for(int d=0;d<Coor.size();d++){
|
|
||||||
|
|
||||||
int fd = grid->_fdimensions[d];
|
|
||||||
int rd = grid->_rdimensions[d];
|
|
||||||
int ld = grid->_ldimensions[d];
|
|
||||||
int ly = grid->_simd_layout[d];
|
|
||||||
|
|
||||||
assert((ly==1)||(ly==2)||(ly==grid->Nsimd()));
|
|
||||||
|
|
||||||
int shift = (shifts[ii][d]+fd)%fd; // make it strictly positive 0.. L-1
|
|
||||||
int x = Coor[d]; // x in [0... rd-1] as an oSite
|
|
||||||
|
|
||||||
if ( (x + shift)%fd != (x+shift)%ld ){
|
|
||||||
SE._wrap = 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
int permute_dim = grid->PermuteDim(d);
|
|
||||||
int permute_slice=0;
|
|
||||||
if(permute_dim){
|
|
||||||
int num = shift%rd; // Slice within dest osite cell of slice zero
|
|
||||||
int wrap = shift/rd; // Number of osite local volume cells crossed through
|
|
||||||
// x+num < rd dictates whether we are in same permute state as slice 0
|
|
||||||
if ( x< rd-num ) permute_slice=wrap;
|
|
||||||
else permute_slice=(wrap+1)%ly;
|
|
||||||
}
|
|
||||||
if ( permute_slice ) {
|
|
||||||
int ptype =grid->PermuteType(d);
|
|
||||||
uint8_t mask =0x1<<ptype;
|
|
||||||
SE._permute |= mask;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
////////////////////////////////////////////////
|
|
||||||
// Store in look up table
|
|
||||||
////////////////////////////////////////////////
|
|
||||||
this->_entries[lex] = SE;
|
|
||||||
}
|
}
|
||||||
});
|
SE._offset = grid->oIndexReduced(NbrCoor);
|
||||||
|
|
||||||
|
////////////////////////////////////////////////
|
||||||
|
// Inner index permute calculation
|
||||||
|
// Simpler version using icoor calculation
|
||||||
|
////////////////////////////////////////////////
|
||||||
|
SE._permute =0;
|
||||||
|
for(int d=0;d<Coor.size();d++){
|
||||||
|
|
||||||
|
int fd = grid->_fdimensions[d];
|
||||||
|
int rd = grid->_rdimensions[d];
|
||||||
|
int ly = grid->_simd_layout[d];
|
||||||
|
|
||||||
|
assert((ly==1)||(ly==2));
|
||||||
|
|
||||||
|
int shift = (shifts[ii][d]+fd)%fd; // make it strictly positive 0.. L-1
|
||||||
|
int x = Coor[d]; // x in [0... rd-1] as an oSite
|
||||||
|
|
||||||
|
int permute_dim = grid->PermuteDim(d);
|
||||||
|
int permute_slice=0;
|
||||||
|
if(permute_dim){
|
||||||
|
int num = shift%rd; // Slice within dest osite cell of slice zero
|
||||||
|
int wrap = shift/rd; // Number of osite local volume cells crossed through
|
||||||
|
// x+num < rd dictates whether we are in same permute state as slice 0
|
||||||
|
if ( x< rd-num ) permute_slice=wrap;
|
||||||
|
else permute_slice=(wrap+1)%ly;
|
||||||
|
}
|
||||||
|
if ( permute_slice ) {
|
||||||
|
int ptype =grid->PermuteType(d);
|
||||||
|
uint8_t mask =0x1<<ptype;
|
||||||
|
SE._permute |= mask;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
////////////////////////////////////////////////
|
||||||
|
// Store in look up table
|
||||||
|
////////////////////////////////////////////////
|
||||||
|
this->_entries[lex] = SE;
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
};
|
};
|
||||||
|
@ -32,7 +32,6 @@
|
|||||||
|
|
||||||
#include <Grid/stencil/SimpleCompressor.h> // subdir aggregate
|
#include <Grid/stencil/SimpleCompressor.h> // subdir aggregate
|
||||||
#include <Grid/stencil/Lebesgue.h> // subdir aggregate
|
#include <Grid/stencil/Lebesgue.h> // subdir aggregate
|
||||||
#include <Grid/stencil/GeneralLocalStencil.h>
|
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////////
|
||||||
// Must not lose sight that goal is to be able to construct really efficient
|
// Must not lose sight that goal is to be able to construct really efficient
|
||||||
|
@ -73,16 +73,6 @@ vobj coalescedReadPermute(const vobj & __restrict__ vec,int ptype,int doperm,int
|
|||||||
return vec;
|
return vec;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
//'perm_mask' acts as a bitmask
|
|
||||||
template<class vobj> accelerator_inline
|
|
||||||
vobj coalescedReadGeneralPermute(const vobj & __restrict__ vec,int perm_mask,int nd,int lane=0)
|
|
||||||
{
|
|
||||||
auto obj = vec, tmp = vec;
|
|
||||||
for (int d=0;d<nd;d++)
|
|
||||||
if (perm_mask & (0x1 << d)) { permute(obj,tmp,d); tmp=obj;}
|
|
||||||
return obj;
|
|
||||||
}
|
|
||||||
|
|
||||||
template<class vobj> accelerator_inline
|
template<class vobj> accelerator_inline
|
||||||
void coalescedWrite(vobj & __restrict__ vec,const vobj & __restrict__ extracted,int lane=0)
|
void coalescedWrite(vobj & __restrict__ vec,const vobj & __restrict__ extracted,int lane=0)
|
||||||
{
|
{
|
||||||
@ -93,7 +83,7 @@ void coalescedWriteNonTemporal(vobj & __restrict__ vec,const vobj & __restrict__
|
|||||||
{
|
{
|
||||||
vstream(vec, extracted);
|
vstream(vec, extracted);
|
||||||
}
|
}
|
||||||
#else //==GRID_SIMT
|
#else
|
||||||
|
|
||||||
|
|
||||||
//#ifndef GRID_SYCL
|
//#ifndef GRID_SYCL
|
||||||
@ -176,14 +166,6 @@ typename vobj::scalar_object coalescedReadPermute(const vobj & __restrict__ vec,
|
|||||||
return extractLane(plane,vec);
|
return extractLane(plane,vec);
|
||||||
}
|
}
|
||||||
template<class vobj> accelerator_inline
|
template<class vobj> accelerator_inline
|
||||||
typename vobj::scalar_object coalescedReadGeneralPermute(const vobj & __restrict__ vec,int perm_mask,int nd,int lane=acceleratorSIMTlane(vobj::Nsimd()))
|
|
||||||
{
|
|
||||||
int plane = lane;
|
|
||||||
for (int d=0;d<nd;d++)
|
|
||||||
plane = (perm_mask & (0x1 << d)) ? plane ^ (vobj::Nsimd() >> (d + 1)) : plane;
|
|
||||||
return extractLane(plane,vec);
|
|
||||||
}
|
|
||||||
template<class vobj> accelerator_inline
|
|
||||||
void coalescedWrite(vobj & __restrict__ vec,const typename vobj::scalar_object & __restrict__ extracted,int lane=acceleratorSIMTlane(vobj::Nsimd()))
|
void coalescedWrite(vobj & __restrict__ vec,const typename vobj::scalar_object & __restrict__ extracted,int lane=acceleratorSIMTlane(vobj::Nsimd()))
|
||||||
{
|
{
|
||||||
insertLane(lane,vec,extracted);
|
insertLane(lane,vec,extracted);
|
||||||
|
@ -66,61 +66,13 @@ template<class vtype,int N> accelerator_inline iMatrix<vtype,N> Ta(const iMatrix
|
|||||||
return ret;
|
return ret;
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class vtype> accelerator_inline iScalar<vtype> SpTa(const iScalar<vtype>&r)
|
|
||||||
{
|
|
||||||
iScalar<vtype> ret;
|
|
||||||
ret._internal = SpTa(r._internal);
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
template<class vtype,int N> accelerator_inline iVector<vtype,N> SpTa(const iVector<vtype,N>&r)
|
|
||||||
{
|
|
||||||
iVector<vtype,N> ret;
|
|
||||||
for(int i=0;i<N;i++){
|
|
||||||
ret._internal[i] = SpTa(r._internal[i]);
|
|
||||||
}
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
|
|
||||||
accelerator_inline iMatrix<vtype,N> SpTa(const iMatrix<vtype,N> &arg)
|
|
||||||
{
|
|
||||||
// Generalises Ta to Sp2n
|
|
||||||
// Applies the following projections
|
|
||||||
// P_{antihermitian} P_{antihermitian-Sp-algebra} P_{traceless}
|
|
||||||
// where the ordering matters
|
|
||||||
// P_{traceless} subtracts the trace
|
|
||||||
// P_{antihermitian-Sp-algebra} provides the block structure of the algebra based on U = exp(T) i.e. anti-hermitian generators
|
|
||||||
// P_{antihermitian} does in-adj(in) / 2
|
|
||||||
iMatrix<vtype,N> ret(arg);
|
|
||||||
double factor = (1.0/(double)N);
|
|
||||||
vtype nrm;
|
|
||||||
nrm = 0.5;
|
|
||||||
|
|
||||||
ret = arg - (trace(arg)*factor);
|
|
||||||
|
|
||||||
for(int c1=0;c1<N/2;c1++)
|
|
||||||
{
|
|
||||||
for(int c2=0;c2<N/2;c2++)
|
|
||||||
{
|
|
||||||
ret._internal[c1][c2] = nrm*(conjugate(ret._internal[c1+N/2][c2+N/2]) + ret._internal[c1][c2]); // new[up-left] = old[up-left]+old*[down-right]
|
|
||||||
ret._internal[c1][c2+N/2] = nrm*(ret._internal[c1][c2+N/2] - conjugate(ret._internal[c1+N/2][c2])); // new[up-right] = old[up-right]-old*[down-left]
|
|
||||||
}
|
|
||||||
for(int c2=N/2;c2<N;c2++)
|
|
||||||
{
|
|
||||||
ret._internal[c1+N/2][c2-N/2] = -conjugate(ret._internal[c1][c2]); // reconstructs lower blocks
|
|
||||||
ret._internal[c1+N/2][c2] = conjugate(ret._internal[c1][c2-N/2]); // from upper blocks
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
ret = (ret - adj(ret))*0.5;
|
|
||||||
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
|
|
||||||
///////////////////////////////////////////////
|
///////////////////////////////////////////////
|
||||||
// ProjectOnGroup function for scalar, vector, matrix
|
// ProjectOnGroup function for scalar, vector, matrix
|
||||||
// Projects on orthogonal, unitary group
|
// Projects on orthogonal, unitary group
|
||||||
///////////////////////////////////////////////
|
///////////////////////////////////////////////
|
||||||
|
|
||||||
|
|
||||||
template<class vtype> accelerator_inline iScalar<vtype> ProjectOnGroup(const iScalar<vtype>&r)
|
template<class vtype> accelerator_inline iScalar<vtype> ProjectOnGroup(const iScalar<vtype>&r)
|
||||||
{
|
{
|
||||||
iScalar<vtype> ret;
|
iScalar<vtype> ret;
|
||||||
@ -138,12 +90,10 @@ template<class vtype,int N> accelerator_inline iVector<vtype,N> ProjectOnGroup(c
|
|||||||
template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
|
template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
|
||||||
accelerator_inline iMatrix<vtype,N> ProjectOnGroup(const iMatrix<vtype,N> &arg)
|
accelerator_inline iMatrix<vtype,N> ProjectOnGroup(const iMatrix<vtype,N> &arg)
|
||||||
{
|
{
|
||||||
typedef typename iMatrix<vtype,N>::scalar_type scalar;
|
|
||||||
// need a check for the group type?
|
// need a check for the group type?
|
||||||
iMatrix<vtype,N> ret(arg);
|
iMatrix<vtype,N> ret(arg);
|
||||||
vtype nrm;
|
vtype nrm;
|
||||||
vtype inner;
|
vtype inner;
|
||||||
scalar one(1.0);
|
|
||||||
for(int c1=0;c1<N;c1++){
|
for(int c1=0;c1<N;c1++){
|
||||||
|
|
||||||
// Normalises row c1
|
// Normalises row c1
|
||||||
@ -152,7 +102,7 @@ accelerator_inline iMatrix<vtype,N> ProjectOnGroup(const iMatrix<vtype,N> &arg)
|
|||||||
inner += innerProduct(ret._internal[c1][c2],ret._internal[c1][c2]);
|
inner += innerProduct(ret._internal[c1][c2],ret._internal[c1][c2]);
|
||||||
|
|
||||||
nrm = sqrt(inner);
|
nrm = sqrt(inner);
|
||||||
nrm = one/nrm;
|
nrm = 1.0/nrm;
|
||||||
for(int c2=0;c2<N;c2++)
|
for(int c2=0;c2<N;c2++)
|
||||||
ret._internal[c1][c2]*= nrm;
|
ret._internal[c1][c2]*= nrm;
|
||||||
|
|
||||||
@ -177,7 +127,7 @@ accelerator_inline iMatrix<vtype,N> ProjectOnGroup(const iMatrix<vtype,N> &arg)
|
|||||||
inner += innerProduct(ret._internal[c1][c2],ret._internal[c1][c2]);
|
inner += innerProduct(ret._internal[c1][c2],ret._internal[c1][c2]);
|
||||||
|
|
||||||
nrm = sqrt(inner);
|
nrm = sqrt(inner);
|
||||||
nrm = one/nrm;
|
nrm = 1.0/nrm;
|
||||||
for(int c2=0;c2<N;c2++)
|
for(int c2=0;c2<N;c2++)
|
||||||
ret._internal[c1][c2]*= nrm;
|
ret._internal[c1][c2]*= nrm;
|
||||||
}
|
}
|
||||||
@ -185,85 +135,6 @@ accelerator_inline iMatrix<vtype,N> ProjectOnGroup(const iMatrix<vtype,N> &arg)
|
|||||||
return ret;
|
return ret;
|
||||||
}
|
}
|
||||||
|
|
||||||
// re-do for sp2n
|
|
||||||
|
|
||||||
// Ta cannot be defined here for Sp2n because I need the generators from the Sp class
|
|
||||||
// It is defined in gauge impl types
|
|
||||||
|
|
||||||
template<class vtype> accelerator_inline iScalar<vtype> ProjectOnSpGroup(const iScalar<vtype>&r)
|
|
||||||
{
|
|
||||||
iScalar<vtype> ret;
|
|
||||||
ret._internal = ProjectOnSpGroup(r._internal);
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
template<class vtype,int N> accelerator_inline iVector<vtype,N> ProjectOnSpGroup(const iVector<vtype,N>&r)
|
|
||||||
{
|
|
||||||
iVector<vtype,N> ret;
|
|
||||||
for(int i=0;i<N;i++){
|
|
||||||
ret._internal[i] = ProjectOnSpGroup(r._internal[i]);
|
|
||||||
}
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
// int N is 2n in Sp(2n)
|
|
||||||
template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
|
|
||||||
accelerator_inline iMatrix<vtype,N> ProjectOnSpGroup(const iMatrix<vtype,N> &arg)
|
|
||||||
{
|
|
||||||
// need a check for the group type?
|
|
||||||
iMatrix<vtype,N> ret(arg);
|
|
||||||
vtype nrm;
|
|
||||||
vtype inner;
|
|
||||||
|
|
||||||
for(int c1=0;c1<N/2;c1++)
|
|
||||||
{
|
|
||||||
|
|
||||||
for (int b=0; b<c1; b++) // remove the b-rows from U_c1
|
|
||||||
{
|
|
||||||
decltype(ret._internal[b][b]*ret._internal[b][b]) pr;
|
|
||||||
decltype(ret._internal[b][b]*ret._internal[b][b]) prn;
|
|
||||||
zeroit(pr);
|
|
||||||
zeroit(prn);
|
|
||||||
|
|
||||||
for(int c=0; c<N; c++)
|
|
||||||
{
|
|
||||||
pr += conjugate(ret._internal[c1][c])*ret._internal[b][c]; // <U_c1 | U_b >
|
|
||||||
prn += conjugate(ret._internal[c1][c])*ret._internal[b+N/2][c]; // <U_c1 | U_{b+N} >
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
for(int c=0; c<N; c++)
|
|
||||||
{
|
|
||||||
ret._internal[c1][c] -= (conjugate(pr) * ret._internal[b][c] + conjugate(prn) * ret._internal[b+N/2][c] ); // U_c1 -= ( <U_c1 | U_b > U_b + <U_c1 | U_{b+N} > U_{b+N} )
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
zeroit(inner);
|
|
||||||
for(int c2=0;c2<N;c2++)
|
|
||||||
{
|
|
||||||
inner += innerProduct(ret._internal[c1][c2],ret._internal[c1][c2]);
|
|
||||||
}
|
|
||||||
|
|
||||||
nrm = sqrt(inner);
|
|
||||||
nrm = 1.0/nrm;
|
|
||||||
for(int c2=0;c2<N;c2++)
|
|
||||||
{
|
|
||||||
ret._internal[c1][c2]*= nrm;
|
|
||||||
}
|
|
||||||
|
|
||||||
for(int c2=0;c2<N/2;c2++)
|
|
||||||
{
|
|
||||||
ret._internal[c1+N/2][c2+N/2] = conjugate(ret._internal[c1][c2]); // down right in the new matrix = (up-left)* of the old matrix
|
|
||||||
}
|
|
||||||
|
|
||||||
for(int c2=N/2;c2<N;c2++)
|
|
||||||
{
|
|
||||||
ret._internal[c1+N/2][c2-N/2] = -conjugate(ret._internal[c1][c2]);; // down left in the new matrix = -(up-right)* of the old
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
@ -53,6 +53,7 @@ template<class vtype, int N> accelerator_inline iVector<vtype, N> Exponentiate(c
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Specialisation: Cayley-Hamilton exponential for SU(3)
|
// Specialisation: Cayley-Hamilton exponential for SU(3)
|
||||||
#if 0
|
#if 0
|
||||||
template<class vtype, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0>::type * =nullptr>
|
template<class vtype, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0>::type * =nullptr>
|
||||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user