mirror of
https://github.com/paboyle/Grid.git
synced 2025-10-24 09:44:47 +01:00
Compare commits
569 Commits
25f71913b7
...
develop
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
6165931afa | ||
| 23581333e6 | |||
| e5fa3d887f | |||
| 583fa7bb0a | |||
|
|
fe0db53842 | ||
|
|
76c0ada1e1 | ||
|
|
92f49e9194 | ||
|
|
44c8057b5f | ||
|
|
0ad837f595 | ||
|
|
bd2103c746 | ||
|
|
9c18d2ddb0 | ||
|
|
1245a8c151 | ||
|
|
07113dc8ba | ||
| a3420e6fa9 | |||
| 732836d9f8 | |||
| 87658f7b53 | |||
| e7f51e5fb1 | |||
|
|
1ce5f70dd1 | ||
|
|
473635f401 | ||
| 5adf2657dd | |||
| 82cfff2990 | |||
| 4397b1c442 | |||
| 9e6a4a4737 | |||
| 41f344bbd3 | |||
| a77cd50b2f | |||
| 73af020f98 | |||
| bffb83c46e | |||
| 7031f37350 | |||
| 829dd74cb2 | |||
| 66e671985d | |||
| 5afcbcf0f3 | |||
| 9730579312 | |||
| bfae14d035 | |||
| b78fc73d19 | |||
|
|
709f8ae76c | ||
|
|
7aa06329d0 | ||
|
|
9d6a38c44c | ||
|
|
6ec5cee368 | ||
|
|
f2e9a68825 | ||
|
|
d88750e6b6 | ||
|
|
821358eda7 | ||
|
|
fce6e1f135 | ||
|
|
8f0bb3e676 | ||
|
|
262c70d967 | ||
|
|
da43ef7c2d | ||
|
|
7b60ab5df1 | ||
|
|
f6b961a64e | ||
|
|
f1ed988aa3 | ||
|
|
eea51bb604 | ||
|
|
9203126aa5 | ||
|
|
f90ba4712a | ||
|
|
3737a24096 | ||
| d418f78352 | |||
| 25163998a0 | |||
|
|
dc546aaa4b | ||
|
|
5364d580c9 | ||
|
|
2a9a6347e3 | ||
|
|
cfdb56f314 | ||
|
|
b517e88db3 | ||
| bb317aba8d | |||
| 644cc6647e | |||
| 72397ce23b | |||
|
|
d60a80c098 | ||
|
|
bb8b6d9d73 | ||
|
|
677b4cc5b0 | ||
|
|
be565ffab6 | ||
|
|
df6120e5f6 | ||
|
|
21de6f7da8 | ||
|
|
dbe39f9ce0 | ||
|
|
ab3de50d5e | ||
|
|
c545bd2139 | ||
|
|
6a1c64fbdd | ||
|
|
b75809ed61 | ||
|
|
ecaf228e5c | ||
|
|
6d015ae8fc | ||
|
|
233150d93f | ||
|
|
7af8c77a52 | ||
|
|
a957e7bfa1 | ||
|
|
cee4c8ce8c | ||
|
|
96bf814d8c | ||
|
|
7ddc422788 | ||
|
|
e652fc2825 | ||
|
|
a49fa3f8d0 | ||
|
|
cd452a2f91 | ||
|
|
4f89f603ae | ||
|
|
11dc2c5e1d | ||
|
|
6fec3c15ca | ||
|
|
938c47480f | ||
|
|
3811d19298 | ||
|
|
83a3ab6b6f | ||
|
|
d66a9af6a3 | ||
|
|
adc90d3a86 | ||
|
|
ebbd015c5c | ||
|
|
4ab73b36b2 | ||
|
|
130e07a422 | ||
|
|
8f47bb367e | ||
|
|
0c3cb60135 | ||
|
|
9eae8fca5d | ||
|
|
882a217074 | ||
|
|
e465fce201 | ||
|
|
d41542c64b | ||
|
|
199818bd6c | ||
|
|
fe66c7ca30 | ||
|
|
e9177e4af3 | ||
|
|
d15a6c5933 | ||
| 25ab9325e7 | |||
| 19f9378b98 | |||
|
|
785bc7a14f | ||
|
|
1a1fe85428 | ||
|
|
0000d2e558 | ||
|
|
9ffd1ed4ce | ||
|
|
3d014864e2 | ||
| 1d22841811 | |||
|
|
a1cdda833f | ||
|
|
ad6db92690 | ||
|
|
e8ff9d8e50 | ||
|
|
795769c636 | ||
|
|
267a39d943 | ||
|
|
3624bd3d22 | ||
|
|
bc12dbbb38 | ||
|
|
eb8a008a8f | ||
| c4d9aa1a21 | |||
| 6ae809ed40 | |||
|
|
311e2aab3f | ||
| 438dfbdb83 | |||
| b2ce760cf4 | |||
|
|
b1ba209696 | ||
|
|
cb3e529b1e | ||
|
|
717f647418 | ||
|
|
98e7418187 | ||
|
|
fe05bf48b1 | ||
|
|
d2dd8f54e2 | ||
|
|
7726ee4b16 | ||
| ba9bbe0221 | |||
| 4c3dd82d84 | |||
| 44e911b5b7 | |||
| a7a16df9d0 | |||
| 382e0abefd | |||
| 6fdefe5b90 | |||
| 4788dd8e2e | |||
| 1cc5f221f3 | |||
| 93251bfba0 | |||
| 18b79508b8 | |||
| 4de5ed1613 | |||
| 0baaddbe98 | |||
| 8729c46169 | |||
| 09f81fe7c3 | |||
| 1876e5b7c0 | |||
|
|
355ec76257 | ||
| b50fb34e71 | |||
| de84d730ff | |||
|
|
c74d11e3d7 | ||
|
|
84cab5e6e7 | ||
| c4fc972fec | |||
| 8cf809e231 | |||
| 94019a922e | |||
|
|
4f17c8d081 | ||
|
|
aaab753982 | ||
| d6b2727f86 | |||
| 74a4f43946 | |||
| 1caf8b0f86 | |||
|
|
570b72a47b | ||
|
|
a5798a89ed | ||
|
|
3f3661a86f | ||
|
|
f7e2f9a401 | ||
|
|
2848a9b558 | ||
|
|
d4868991af | ||
|
|
e99d42404e | ||
|
|
3ba019c747 | ||
|
|
47429218bb | ||
| 8fe429346f | |||
|
|
5a4f9bf2e3 | ||
|
|
b91fc1b6b4 | ||
|
|
eafc150034 | ||
|
|
2877f1a268 | ||
|
|
1e893af775 | ||
|
|
d9f430a575 | ||
|
|
63abe87f36 | ||
|
|
368d649c8a | ||
|
|
5603464f39 | ||
|
|
655c79f39e | ||
|
|
565b231c03 | ||
|
|
62a9f180fa | ||
|
|
5ae77876a8 | ||
|
|
4ed2c2c74f | ||
|
|
955da582b6 | ||
|
|
11b07b950d | ||
|
|
8f70cfeda9 | ||
|
|
ce64271048 | ||
| 5cc4f3241d | |||
|
|
6815e138b4 | ||
| a78a61d76f | |||
| 2eff3f34ed | |||
| 03687c1d62 | |||
| febfe4e77f | |||
| 4d1aa134b5 | |||
| 5ec879860a | |||
|
|
f617468e04 | ||
| b728af903c | |||
| 54f1999030 | |||
| fd58f0b669 | |||
| c5c67b706e | |||
| be7a543e2c | |||
| 68f112d576 | |||
| ec1395a304 | |||
| beb0e474ee | |||
| 2b5fdcbbc5 | |||
| 295127d456 | |||
| 7dcfb13694 | |||
|
|
ee4046fe92 | ||
|
|
2a9cfeb9ea | ||
|
|
1147b8ea40 | ||
|
|
3f9119b39d | ||
|
|
35e8225abd | ||
|
|
bdbfbb7a14 | ||
|
|
f7d4be8d96 | ||
| 9fa8bd6438 | |||
| 02c8178f16 | |||
| e637fbacae | |||
| 066544281f | |||
| 11be10d2c0 | |||
| 160969a758 | |||
| 622f78ebea | |||
|
|
aa67a5b095 | ||
|
|
af9ea0864c | ||
|
|
4e2a6d87c4 | ||
|
|
a465ecece9 | ||
|
|
575eb72182 | ||
|
|
3a973914d6 | ||
|
|
f568c07bbd | ||
|
|
2c9878fc3a | ||
|
|
27b1b1b005 | ||
|
|
130d7ab077 | ||
|
|
29f6b8a74a | ||
|
|
9779aaea33 | ||
|
|
ec25604a67 | ||
|
|
3668e81c5e | ||
|
|
d66b2423cb | ||
|
|
15cc78f0b6 | ||
|
|
06db4ddea2 | ||
|
|
6cfb90e99f | ||
|
|
d8be95a2a3 | ||
|
|
f82702872d | ||
|
|
3752c49ef0 | ||
|
|
fe65fa4988 | ||
|
|
1fe4c205a3 | ||
|
|
d4dc5e0f43 | ||
|
|
77944437ce | ||
|
|
c164bff758 | ||
|
|
aa2e3d954a | ||
|
|
de62b04728 | ||
|
|
d0bdb50f24 | ||
|
|
a8fecbc609 | ||
|
|
557fa483ff | ||
|
|
fc15d55df6 | ||
|
|
53573d7d94 | ||
|
|
bb3c177000 | ||
|
|
a3322b470f | ||
|
|
f8f408e7a9 | ||
|
|
baac1127d0 | ||
|
|
6f1328160c | ||
|
|
04cf902791 | ||
|
|
7a5b1c1a19 | ||
|
|
18d2d7da4a | ||
|
|
b461184797 | ||
|
|
4563b39305 | ||
|
|
c9d5674d5b | ||
|
|
486412635a | ||
|
|
8b23a1546a | ||
|
|
a901e4e369 | ||
|
|
804d9367d4 | ||
|
|
41d8adca95 | ||
|
|
059e8e5bb0 | ||
|
|
b3ee8ded96 | ||
|
|
cf3584ad15 | ||
|
|
a66973163f | ||
|
|
4502a8c8a1 | ||
|
|
9c902e4c2d | ||
|
|
f3eb36adcf | ||
|
|
7c246606c1 | ||
|
|
172c75029e | ||
|
|
6ae52da571 | ||
|
|
4ee9c68053 | ||
|
|
a15b4378a3 | ||
|
|
89fdd7f8dd | ||
|
|
c328be24b7 | ||
|
|
a73dc6dbf4 | ||
|
|
eee2a2657f | ||
|
|
12b8be7cb9 | ||
|
|
63c223ea5d | ||
|
|
2877fb4a2c | ||
|
|
d299c86633 | ||
|
|
6ce52092e8 | ||
|
|
b5926c1d21 | ||
|
|
9563238e9b | ||
|
|
fb9b1d76ca | ||
|
|
1739146599 | ||
|
|
ed20b39ab3 | ||
|
|
284fc05f15 | ||
|
|
07a07b6fa3 | ||
|
|
dc80b08969 | ||
|
|
a49a161f8d | ||
|
|
a6479ca50f | ||
|
|
0e607a55e7 | ||
| 8d305df0db | |||
|
|
c4b9f71357 | ||
|
|
394e506aea | ||
|
|
e19b26341b | ||
|
|
cfe1b13225 | ||
|
|
890c5ea1cd | ||
|
|
a87378d3b6 | ||
|
|
832fc08809 | ||
|
|
9a1ad6a5eb | ||
|
|
a90eafad24 | ||
|
|
ad14a82742 | ||
|
|
14e9d8ed9f | ||
|
|
0ac85fa70b | ||
|
|
c371de42b9 | ||
|
|
ccf147d6c1 | ||
|
|
7aa12b446f | ||
|
|
c293228102 | ||
|
|
5c4c9f721a | ||
|
|
057f86c1de | ||
|
|
cd52e3cbc2 | ||
|
|
24602e1259 | ||
|
|
8a098889fc | ||
|
|
5c3ace7c3e | ||
|
|
aa148455b7 | ||
|
|
98cf247f33 | ||
|
|
0cf16522d1 | ||
|
|
7b7c75f9e5 | ||
|
|
aefd255a3c | ||
|
|
1c5aa939fd | ||
|
|
3a0ff17be0 | ||
|
|
47829ae5cc | ||
|
|
bfa7b69aff | ||
|
|
2aaa959b5f | ||
|
|
ce2970b93a | ||
|
|
7b76970d10 | ||
|
|
9fd41882d2 | ||
|
|
ff2ea5de18 | ||
|
|
5147a42818 | ||
|
|
57552d8ca3 | ||
|
|
13713b2a76 | ||
|
|
36a14e4ee3 | ||
|
|
b4cc788b8c | ||
|
|
0f0e7512f3 | ||
|
|
1196b1a161 | ||
|
|
2c8c3be9ee | ||
|
|
5b79d51c22 | ||
|
|
da890dc293 | ||
|
|
93d0a1e73a | ||
|
|
f0a8c7d045 | ||
|
|
db8793777c | ||
|
|
c745484e65 | ||
|
|
da59379612 | ||
|
|
3ef2a41518 | ||
|
|
aa96f420c6 | ||
|
|
49e9e4ed0e | ||
|
|
f7b8163016 | ||
|
|
93769eacd3 | ||
|
|
59b0cc11df | ||
|
|
f32c275376 | ||
|
|
5404fc66ab | ||
|
|
1f53458af8 | ||
|
|
434c3e7f1d | ||
|
|
500b119f3d | ||
|
|
4b87259c1b | ||
|
|
503dec34ef | ||
|
|
d1e9fe50d2 | ||
|
|
d01e5fa838 | ||
|
|
a477c25e8c | ||
|
|
1bd20cd9e8 | ||
|
|
e49e95b037 | ||
|
|
6f59fed563 | ||
|
|
60b7f6c99d | ||
|
|
b92dfcc8d3 | ||
|
|
f6fd6dd053 | ||
|
|
79ad567dd5 | ||
|
|
fab1efb48c | ||
|
|
660eb76d93 | ||
|
|
461cd045c6 | ||
|
|
fee65d7a75 | ||
|
|
31f9971dbf | ||
|
|
62e7bf024a | ||
|
|
95f3d69cf9 | ||
| 89c0519f83 | |||
| 2704b82084 | |||
| cf8632bbac | |||
| d224297972 | |||
|
|
a4d11a630f | ||
| 2b4399f8b1 | |||
| f17b8de907 | |||
|
|
d87296f3e8 | ||
|
|
be94cf1c6f | ||
|
|
cc04dc42dc | ||
|
|
070b61f08f | ||
|
|
7e5bd46dd3 | ||
|
|
228bbb9d81 | ||
| b812a7b4c6 | |||
| 891a366f73 | |||
| 10116b3be8 | |||
| a46a0f0882 | |||
| a26a8a38f4 | |||
| 7435315d50 | |||
| 9b5f741e85 | |||
| 517822fdd2 | |||
| 1b93a9be88 | |||
| 783a66b348 | |||
| 976c3e9b59 | |||
| f8ca971dae | |||
| 21bc8c24df | |||
| 30228214f7 | |||
|
|
2ae980ae43 | ||
|
|
6153dec2e4 | ||
|
|
c805f86343 | ||
|
|
04ca065281 | ||
|
|
88d8fa43d7 | ||
|
|
3c49762875 | ||
|
|
436bf1d9d3 | ||
|
|
f70df6e195 | ||
|
|
fce3852dff | ||
|
|
ee1b8bbdbd | ||
|
|
3f1636637d | ||
|
|
2e570f5300 | ||
|
|
9f89486df5 | ||
|
|
22b43b86cb | ||
|
|
3c9012676a | ||
|
|
ee3b3c4c56 | ||
|
|
462d706a63 | ||
|
|
ee0d460c8e | ||
|
|
cd15abe9d1 | ||
|
|
9f40467e24 | ||
|
|
d0b6593823 | ||
|
|
79fc821d8d | ||
|
|
d7fdb9a7e6 | ||
|
|
b74de51c18 | ||
|
|
b507fe209c | ||
|
|
6cd2d8fcd5 | ||
|
|
b02d022993 | ||
|
|
94581e3c7a | ||
|
|
88b52cc045 | ||
|
|
0a816b5509 | ||
|
|
1c8b807c2e | ||
|
|
44b466e072 | ||
|
|
5e5b471bb2 | ||
|
|
9c2565f64e | ||
|
|
e1d0a7cec3 | ||
|
|
b19ae8f465 | ||
|
|
cdff2c8e18 | ||
|
|
66391f84f2 | ||
| 97f7a9ecb3 | |||
|
|
15878f7613 | ||
|
|
e0d5e3c6c7 | ||
|
|
6f3455900e | ||
|
|
56827d6ad6 | ||
| 73c0b29535 | |||
| 303b83cdb8 | |||
| 5ef4da3f29 | |||
| 1502860004 | |||
| 585efc6f3f | |||
| 62055e04dd | |||
| e4a641b64e | |||
| 8849f187f1 | |||
|
|
db420525b3 | ||
|
|
b5659d106e | ||
|
|
4b43307402 | ||
|
|
09af8c25a2 | ||
|
|
9514035b87 | ||
|
|
2da09ae99b | ||
|
|
a38fb0e04a | ||
| 7019916294 | |||
|
|
1514b4f137 | ||
| 91cf5ee312 | |||
|
|
0a6e2f42c5 | ||
|
|
ab2de131bd | ||
| 5bfa88be85 | |||
|
|
5af8da76d7 | ||
|
|
b8b9dc952d | ||
|
|
79a6ed32d8 | ||
|
|
caa5f97723 | ||
|
|
4924b3209e | ||
|
|
eb702f581b | ||
|
|
3d13fd56c5 | ||
|
|
6f51b49ef8 | ||
|
|
addc638856 | ||
|
|
00f24f8765 | ||
|
|
f5b3d582b0 | ||
|
|
981c93d67a | ||
|
|
c020b78e02 | ||
|
|
42ae36bc28 | ||
|
|
c69f73ff9f | ||
|
|
ca5ae8a2e6 | ||
|
|
d967eb53de | ||
|
|
839f9f1bbe | ||
|
|
b754a152c6 | ||
|
|
e07cb2b9de | ||
|
|
a1f8bbb078 | ||
|
|
7909683f3b | ||
| 2a0d75bac2 | |||
|
|
f48298ad4e | ||
|
|
645e47c1ba | ||
|
|
d1d9827263 | ||
|
|
14643c0aab | ||
|
|
b77a9b8947 | ||
|
|
7d077fe493 | ||
|
|
9cd4128833 | ||
|
|
c8b17c9526 | ||
|
|
2ae2a81e85 | ||
|
|
69c869d345 | ||
|
|
df9b958c40 | ||
|
|
3d3376d1a3 | ||
|
|
f2648e94b9 | ||
|
|
21ed6ac0f4 | ||
|
|
7bb8ab7000 | ||
|
|
2c824c2641 | ||
|
|
391fd9cc6a | ||
|
|
51051df62c | ||
|
|
33097681b9 | ||
|
|
07e4900218 | ||
|
|
36ab567d67 | ||
|
|
e19171523b | ||
|
|
9626a2c7c0 | ||
|
|
e936f5b80b | ||
|
|
ffc0639cb9 | ||
|
|
c5b43b322c | ||
|
|
c9c4576237 | ||
|
|
bf4369f72d | ||
|
|
36600899e2 | ||
|
|
b9c70d156b | ||
|
|
eb89579fe7 | ||
|
|
0cfd13d18b | ||
|
|
e6ed516052 | ||
|
|
e2a3dae1f2 | ||
|
|
6d0c2de399 | ||
|
|
7786ea9921 | ||
|
|
d93eac7b1c | ||
|
|
63d9b8e8a3 | ||
|
|
d247031c98 | ||
|
|
e29b97b3ea | ||
|
|
ad2b699d2b | ||
|
|
affff3865f | ||
|
|
9c22655b5a | ||
|
|
99d879ea7f | ||
|
|
9d263d9a7d | ||
|
|
9015c229dc | ||
|
|
a7eabaad56 | ||
|
|
eeb4703b84 | ||
|
|
a07421b3d3 | ||
|
|
cda53b4068 | ||
|
|
df99f227c1 | ||
|
|
d536c67b9d | ||
|
|
f44f005dad | ||
|
|
26b2caf570 | ||
|
|
8bb078db25 | ||
|
|
b61ba40023 | ||
|
|
452bf2e907 | ||
|
|
14d352ea4f | ||
|
|
1cf9ec1cce | ||
|
|
4b994a1bc7 | ||
|
|
e506d6d369 | ||
|
|
ab56ad8d7a | ||
|
|
e8c29e2fe5 | ||
|
|
3825329f8e | ||
|
|
c7bdf2c0e4 | ||
|
|
da9cbfc7cc | ||
|
|
6b9f07c1ed | ||
|
|
bf91778550 | ||
|
|
5f75735dab |
4
.gitignore
vendored
4
.gitignore
vendored
@@ -1,3 +1,7 @@
|
||||
# Doxygen stuff
|
||||
html/*
|
||||
latex/*
|
||||
|
||||
# Compiled Object files #
|
||||
#########################
|
||||
*.slo
|
||||
|
||||
1125
BLAS_benchmark/BatchBlasBench.cc
Normal file
1125
BLAS_benchmark/BatchBlasBench.cc
Normal file
File diff suppressed because it is too large
Load Diff
2
BLAS_benchmark/compile-command
Normal file
2
BLAS_benchmark/compile-command
Normal file
@@ -0,0 +1,2 @@
|
||||
|
||||
mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench -DGRID_SYCL
|
||||
5
BLAS_benchmark/compile-command-frontier
Normal file
5
BLAS_benchmark/compile-command-frontier
Normal file
@@ -0,0 +1,5 @@
|
||||
CXX=hipcc
|
||||
MPICXX=mpicxx
|
||||
CXXFLAGS="-fPIC -I{$ROCM_PATH}/include/ -I${MPICH_DIR}/include -L/lib64 -I/opt/cray/pe/mpich/8.1.28/ofi/gnu/12.3/include -DGRID_HIP"
|
||||
LDFLAGS="-L/lib64 -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa -lamdhip64 -lhipblas -lrocblas -lmpi_gnu_123"
|
||||
hipcc $CXXFLAGS $LDFLAGS BatchBlasBench.cc -o BatchBlasBench
|
||||
2
BLAS_benchmark/compile-command-sunspot
Normal file
2
BLAS_benchmark/compile-command-sunspot
Normal file
@@ -0,0 +1,2 @@
|
||||
|
||||
mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench -DGRID_SYCL
|
||||
@@ -51,11 +51,13 @@ directory
|
||||
#pragma nv_diag_suppress cast_to_qualified_type
|
||||
//disables nvcc specific warning in many files
|
||||
#pragma nv_diag_suppress esa_on_defaulted_function_ignored
|
||||
#pragma nv_diag_suppress declared_but_not_referenced
|
||||
#pragma nv_diag_suppress extra_semicolon
|
||||
#else
|
||||
//disables nvcc specific warning in json.hpp
|
||||
#pragma diag_suppress unsigned_compare_with_zero
|
||||
#pragma diag_suppress cast_to_qualified_type
|
||||
#pragma diag_suppress declared_but_not_referenced
|
||||
//disables nvcc specific warning in many files
|
||||
#pragma diag_suppress esa_on_defaulted_function_ignored
|
||||
#pragma diag_suppress extra_semicolon
|
||||
|
||||
@@ -59,6 +59,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/lattice/Lattice.h>
|
||||
#include <Grid/cshift/Cshift.h>
|
||||
#include <Grid/stencil/Stencil.h>
|
||||
#include <Grid/stencil/GeneralLocalStencil.h>
|
||||
#include <Grid/parallelIO/BinaryIO.h>
|
||||
#include <Grid/algorithms/Algorithms.h>
|
||||
NAMESPACE_CHECK(GridCore)
|
||||
|
||||
@@ -1,9 +1,17 @@
|
||||
#ifndef GRID_STD_H
|
||||
#define GRID_STD_H
|
||||
|
||||
///////////////////
|
||||
// Grid config
|
||||
///////////////////
|
||||
#include "Config.h"
|
||||
|
||||
///////////////////
|
||||
// Std C++ dependencies
|
||||
///////////////////
|
||||
#define _NBACKTRACE (256)
|
||||
extern void * Grid_backtrace_buffer[_NBACKTRACE];
|
||||
|
||||
#include <cassert>
|
||||
#include <complex>
|
||||
#include <memory>
|
||||
@@ -15,7 +23,9 @@
|
||||
#include <random>
|
||||
#include <functional>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
#include <unistd.h>
|
||||
#include <strings.h>
|
||||
#include <stdio.h>
|
||||
#include <signal.h>
|
||||
@@ -23,11 +33,36 @@
|
||||
#include <sys/time.h>
|
||||
#include <chrono>
|
||||
#include <zlib.h>
|
||||
#ifdef HAVE_EXECINFO_H
|
||||
#include <execinfo.h>
|
||||
#endif
|
||||
|
||||
void GridAbort(void);
|
||||
|
||||
#define ASSLOG(A) ::write(STDERR_FILENO,A,::strlen(A));
|
||||
#ifdef HAVE_EXECINFO_H
|
||||
#define GRID_ASSERT(b) if(!(b)) { \
|
||||
fflush(stdout); \
|
||||
ASSLOG(" GRID_ASSERT failure: "); \
|
||||
ASSLOG(__FILE__); \
|
||||
ASSLOG(" : "); \
|
||||
ASSLOG(#b); \
|
||||
ASSLOG(" : "); \
|
||||
int symbols = backtrace(Grid_backtrace_buffer,_NBACKTRACE); \
|
||||
backtrace_symbols_fd(Grid_backtrace_buffer,symbols,STDERR_FILENO); \
|
||||
GridAbort(); \
|
||||
};
|
||||
#else
|
||||
#define GRID_ASSERT(b) if(!(b)) { \
|
||||
ASSLOG(" GRID_ASSERT failure: "); \
|
||||
ASSLOG(__FILE__); \
|
||||
ASSLOG(" : "); \
|
||||
ASSLOG(#b); \
|
||||
ASSLOG(" : "); \
|
||||
GridAbort(); \
|
||||
};
|
||||
#endif
|
||||
|
||||
///////////////////
|
||||
// Grid config
|
||||
///////////////////
|
||||
#include "Config.h"
|
||||
|
||||
#ifdef TOFU
|
||||
#undef GRID_COMMS_THREADS
|
||||
|
||||
@@ -34,7 +34,7 @@
|
||||
#pragma push_macro("__SYCL_DEVICE_ONLY__")
|
||||
#undef __SYCL_DEVICE_ONLY__
|
||||
#define EIGEN_DONT_VECTORIZE
|
||||
//#undef EIGEN_USE_SYCL
|
||||
#undef EIGEN_USE_SYCL
|
||||
#define __SYCL__REDEFINE__
|
||||
#endif
|
||||
|
||||
|
||||
@@ -68,8 +68,10 @@ if BUILD_FERMION_REPS
|
||||
endif
|
||||
if BUILD_SP
|
||||
extra_sources+=$(SP_FERMION_FILES)
|
||||
if BUILD_FERMION_REPS
|
||||
extra_sources+=$(SP_TWOIND_FERMION_FILES)
|
||||
endif
|
||||
endif
|
||||
|
||||
lib_LIBRARIES = libGrid.a
|
||||
|
||||
|
||||
@@ -29,6 +29,7 @@ directory
|
||||
#pragma once
|
||||
|
||||
#include <type_traits>
|
||||
#include <exception>
|
||||
#include <cassert>
|
||||
|
||||
#define NAMESPACE_BEGIN(A) namespace A {
|
||||
@@ -36,3 +37,7 @@ directory
|
||||
#define GRID_NAMESPACE_BEGIN NAMESPACE_BEGIN(Grid)
|
||||
#define GRID_NAMESPACE_END NAMESPACE_END(Grid)
|
||||
#define NAMESPACE_CHECK(x) struct namespaceTEST##x {}; static_assert(std::is_same<namespaceTEST##x, ::namespaceTEST##x>::value,"Not in :: at" );
|
||||
|
||||
#define EXCEPTION_CHECK_BEGIN(A) try {
|
||||
#define EXCEPTION_CHECK_END(A) } catch ( std::exception e ) { BACKTRACEFP(stderr); std::cerr << __PRETTY_FUNCTION__ << " : " <<__LINE__<< " Caught exception "<<e.what()<<std::endl; throw; }
|
||||
|
||||
|
||||
@@ -29,6 +29,9 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#ifndef GRID_ALGORITHMS_H
|
||||
#define GRID_ALGORITHMS_H
|
||||
|
||||
NAMESPACE_CHECK(blas);
|
||||
#include <Grid/algorithms/blas/BatchedBlas.h>
|
||||
|
||||
NAMESPACE_CHECK(algorithms);
|
||||
#include <Grid/algorithms/SparseMatrix.h>
|
||||
#include <Grid/algorithms/LinearOperator.h>
|
||||
@@ -44,7 +47,13 @@ NAMESPACE_CHECK(SparseMatrix);
|
||||
#include <Grid/algorithms/approx/RemezGeneral.h>
|
||||
#include <Grid/algorithms/approx/ZMobius.h>
|
||||
NAMESPACE_CHECK(approx);
|
||||
#include <Grid/algorithms/iterative/Deflation.h>
|
||||
#include <Grid/algorithms/deflation/Deflation.h>
|
||||
#include <Grid/algorithms/deflation/MultiRHSBlockProject.h>
|
||||
#include <Grid/algorithms/deflation/MultiRHSDeflation.h>
|
||||
#include <Grid/algorithms/deflation/MultiRHSBlockCGLinalg.h>
|
||||
// Not really deflation, but useful
|
||||
#include <Grid/algorithms/blas/MomentumProject.h>
|
||||
NAMESPACE_CHECK(deflation);
|
||||
#include <Grid/algorithms/iterative/ConjugateGradient.h>
|
||||
NAMESPACE_CHECK(ConjGrad);
|
||||
#include <Grid/algorithms/iterative/BiCGSTAB.h>
|
||||
@@ -67,11 +76,11 @@ NAMESPACE_CHECK(BiCGSTAB);
|
||||
#include <Grid/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h>
|
||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
|
||||
#include <Grid/algorithms/iterative/PowerMethod.h>
|
||||
|
||||
#include <Grid/algorithms/iterative/AdefGeneric.h>
|
||||
#include <Grid/algorithms/iterative/AdefMrhs.h>
|
||||
NAMESPACE_CHECK(PowerMethod);
|
||||
#include <Grid/algorithms/multigrid/MultiGrid.h>
|
||||
|
||||
NAMESPACE_CHECK(CoarsendMatrix);
|
||||
NAMESPACE_CHECK(multigrid);
|
||||
#include <Grid/algorithms/FFT.h>
|
||||
|
||||
#endif
|
||||
|
||||
@@ -28,95 +28,206 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#ifndef _GRID_FFT_H_
|
||||
#define _GRID_FFT_H_
|
||||
|
||||
#ifdef GRID_CUDA
|
||||
#include <cufft.h>
|
||||
#endif
|
||||
|
||||
#ifdef GRID_HIP
|
||||
#include <hipfft/hipfft.h>
|
||||
#endif
|
||||
|
||||
#if !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
#ifdef HAVE_FFTW
|
||||
#ifdef USE_MKL
|
||||
#if defined(USE_MKL) || defined(GRID_SYCL)
|
||||
#include <fftw/fftw3.h>
|
||||
#else
|
||||
#include <fftw3.h>
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class scalar> struct FFTW { };
|
||||
#ifndef FFTW_FORWARD
|
||||
#define FFTW_FORWARD (-1)
|
||||
#define FFTW_BACKWARD (+1)
|
||||
#define FFTW_ESTIMATE (0)
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_FFTW
|
||||
template<class scalar> struct FFTW {
|
||||
};
|
||||
|
||||
#ifdef GRID_HIP
|
||||
template<> struct FFTW<ComplexD> {
|
||||
public:
|
||||
static const int forward=FFTW_FORWARD;
|
||||
static const int backward=FFTW_BACKWARD;
|
||||
typedef hipfftDoubleComplex FFTW_scalar;
|
||||
typedef hipfftHandle FFTW_plan;
|
||||
static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany,
|
||||
FFTW_scalar *in, int *inembed,
|
||||
int istride, int idist,
|
||||
FFTW_scalar *out, int *onembed,
|
||||
int ostride, int odist,
|
||||
int sign, unsigned flags) {
|
||||
FFTW_plan p;
|
||||
auto rv = hipfftPlanMany(&p,rank,n,n,istride,idist,n,ostride,odist,HIPFFT_Z2Z,howmany);
|
||||
GRID_ASSERT(rv==HIPFFT_SUCCESS);
|
||||
return p;
|
||||
}
|
||||
|
||||
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) {
|
||||
hipfftResult rv;
|
||||
if ( sign == forward ) rv =hipfftExecZ2Z(p,in,out,HIPFFT_FORWARD);
|
||||
else rv =hipfftExecZ2Z(p,in,out,HIPFFT_BACKWARD);
|
||||
accelerator_barrier();
|
||||
GRID_ASSERT(rv==HIPFFT_SUCCESS);
|
||||
}
|
||||
inline static void fftw_destroy_plan(const FFTW_plan p) {
|
||||
hipfftDestroy(p);
|
||||
}
|
||||
};
|
||||
template<> struct FFTW<ComplexF> {
|
||||
public:
|
||||
static const int forward=FFTW_FORWARD;
|
||||
static const int backward=FFTW_BACKWARD;
|
||||
typedef hipfftComplex FFTW_scalar;
|
||||
typedef hipfftHandle FFTW_plan;
|
||||
|
||||
static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany,
|
||||
FFTW_scalar *in, int *inembed,
|
||||
int istride, int idist,
|
||||
FFTW_scalar *out, int *onembed,
|
||||
int ostride, int odist,
|
||||
int sign, unsigned flags) {
|
||||
FFTW_plan p;
|
||||
auto rv = hipfftPlanMany(&p,rank,n,n,istride,idist,n,ostride,odist,HIPFFT_C2C,howmany);
|
||||
GRID_ASSERT(rv==HIPFFT_SUCCESS);
|
||||
return p;
|
||||
}
|
||||
|
||||
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) {
|
||||
hipfftResult rv;
|
||||
if ( sign == forward ) rv =hipfftExecC2C(p,in,out,HIPFFT_FORWARD);
|
||||
else rv =hipfftExecC2C(p,in,out,HIPFFT_BACKWARD);
|
||||
accelerator_barrier();
|
||||
GRID_ASSERT(rv==HIPFFT_SUCCESS);
|
||||
}
|
||||
inline static void fftw_destroy_plan(const FFTW_plan p) {
|
||||
hipfftDestroy(p);
|
||||
}
|
||||
};
|
||||
#endif
|
||||
|
||||
#ifdef GRID_CUDA
|
||||
template<> struct FFTW<ComplexD> {
|
||||
public:
|
||||
static const int forward=FFTW_FORWARD;
|
||||
static const int backward=FFTW_BACKWARD;
|
||||
typedef cufftDoubleComplex FFTW_scalar;
|
||||
typedef cufftHandle FFTW_plan;
|
||||
|
||||
static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany,
|
||||
FFTW_scalar *in, int *inembed,
|
||||
int istride, int idist,
|
||||
FFTW_scalar *out, int *onembed,
|
||||
int ostride, int odist,
|
||||
int sign, unsigned flags) {
|
||||
FFTW_plan p;
|
||||
cufftPlanMany(&p,rank,n,n,istride,idist,n,ostride,odist,CUFFT_Z2Z,howmany);
|
||||
return p;
|
||||
}
|
||||
|
||||
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) {
|
||||
if ( sign == forward ) cufftExecZ2Z(p,in,out,CUFFT_FORWARD);
|
||||
else cufftExecZ2Z(p,in,out,CUFFT_INVERSE);
|
||||
accelerator_barrier();
|
||||
}
|
||||
inline static void fftw_destroy_plan(const FFTW_plan p) {
|
||||
cufftDestroy(p);
|
||||
}
|
||||
};
|
||||
template<> struct FFTW<ComplexF> {
|
||||
public:
|
||||
static const int forward=FFTW_FORWARD;
|
||||
static const int backward=FFTW_BACKWARD;
|
||||
typedef cufftComplex FFTW_scalar;
|
||||
typedef cufftHandle FFTW_plan;
|
||||
|
||||
static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany,
|
||||
FFTW_scalar *in, int *inembed,
|
||||
int istride, int idist,
|
||||
FFTW_scalar *out, int *onembed,
|
||||
int ostride, int odist,
|
||||
int sign, unsigned flags) {
|
||||
FFTW_plan p;
|
||||
cufftPlanMany(&p,rank,n,n,istride,idist,n,ostride,odist,CUFFT_C2C,howmany);
|
||||
return p;
|
||||
}
|
||||
|
||||
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) {
|
||||
if ( sign == forward ) cufftExecC2C(p,in,out,CUFFT_FORWARD);
|
||||
else cufftExecC2C(p,in,out,CUFFT_INVERSE);
|
||||
accelerator_barrier();
|
||||
}
|
||||
inline static void fftw_destroy_plan(const FFTW_plan p) {
|
||||
cufftDestroy(p);
|
||||
}
|
||||
};
|
||||
#endif
|
||||
|
||||
#if !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
#ifdef HAVE_FFTW
|
||||
template<> struct FFTW<ComplexD> {
|
||||
public:
|
||||
typedef fftw_complex FFTW_scalar;
|
||||
typedef fftw_plan FFTW_plan;
|
||||
|
||||
static FFTW_plan fftw_plan_many_dft(int rank, const int *n,int howmany,
|
||||
FFTW_scalar *in, const int *inembed,
|
||||
static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany,
|
||||
FFTW_scalar *in, int *inembed,
|
||||
int istride, int idist,
|
||||
FFTW_scalar *out, const int *onembed,
|
||||
FFTW_scalar *out, int *onembed,
|
||||
int ostride, int odist,
|
||||
int sign, unsigned flags) {
|
||||
return ::fftw_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags);
|
||||
}
|
||||
|
||||
static void fftw_flops(const FFTW_plan p,double *add, double *mul, double *fmas){
|
||||
::fftw_flops(p,add,mul,fmas);
|
||||
}
|
||||
|
||||
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out) {
|
||||
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) {
|
||||
::fftw_execute_dft(p,in,out);
|
||||
}
|
||||
inline static void fftw_destroy_plan(const FFTW_plan p) {
|
||||
::fftw_destroy_plan(p);
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct FFTW<ComplexF> {
|
||||
public:
|
||||
|
||||
typedef fftwf_complex FFTW_scalar;
|
||||
typedef fftwf_plan FFTW_plan;
|
||||
|
||||
static FFTW_plan fftw_plan_many_dft(int rank, const int *n,int howmany,
|
||||
FFTW_scalar *in, const int *inembed,
|
||||
static FFTW_plan fftw_plan_many_dft(int rank, int *n,int howmany,
|
||||
FFTW_scalar *in, int *inembed,
|
||||
int istride, int idist,
|
||||
FFTW_scalar *out, const int *onembed,
|
||||
FFTW_scalar *out, int *onembed,
|
||||
int ostride, int odist,
|
||||
int sign, unsigned flags) {
|
||||
return ::fftwf_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags);
|
||||
}
|
||||
|
||||
static void fftw_flops(const FFTW_plan p,double *add, double *mul, double *fmas){
|
||||
::fftwf_flops(p,add,mul,fmas);
|
||||
}
|
||||
|
||||
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out) {
|
||||
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out, int sign) {
|
||||
::fftwf_execute_dft(p,in,out);
|
||||
}
|
||||
inline static void fftw_destroy_plan(const FFTW_plan p) {
|
||||
::fftwf_destroy_plan(p);
|
||||
}
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
#ifndef FFTW_FORWARD
|
||||
#define FFTW_FORWARD (-1)
|
||||
#define FFTW_BACKWARD (+1)
|
||||
#endif
|
||||
|
||||
class FFT {
|
||||
private:
|
||||
|
||||
GridCartesian *vgrid;
|
||||
GridCartesian *sgrid;
|
||||
|
||||
int Nd;
|
||||
double flops;
|
||||
double flops_call;
|
||||
uint64_t usec;
|
||||
|
||||
Coordinate dimensions;
|
||||
Coordinate processors;
|
||||
Coordinate processor_coor;
|
||||
|
||||
public:
|
||||
|
||||
static const int forward=FFTW_FORWARD;
|
||||
@@ -126,31 +237,25 @@ public:
|
||||
double MFlops(void) {return flops/usec;}
|
||||
double USec(void) {return (double)usec;}
|
||||
|
||||
FFT ( GridCartesian * grid ) :
|
||||
vgrid(grid),
|
||||
Nd(grid->_ndimension),
|
||||
dimensions(grid->_fdimensions),
|
||||
processors(grid->_processors),
|
||||
processor_coor(grid->_processor_coor)
|
||||
FFT ( GridCartesian * grid )
|
||||
{
|
||||
flops=0;
|
||||
usec =0;
|
||||
Coordinate layout(Nd,1);
|
||||
sgrid = new GridCartesian(dimensions,layout,processors,*grid);
|
||||
};
|
||||
|
||||
~FFT ( void) {
|
||||
delete sgrid;
|
||||
// delete sgrid;
|
||||
}
|
||||
|
||||
template<class vobj>
|
||||
void FFT_dim_mask(Lattice<vobj> &result,const Lattice<vobj> &source,Coordinate mask,int sign){
|
||||
|
||||
conformable(result.Grid(),vgrid);
|
||||
conformable(source.Grid(),vgrid);
|
||||
Lattice<vobj> tmp(vgrid);
|
||||
tmp = source;
|
||||
for(int d=0;d<Nd;d++){
|
||||
// vgrid=result.Grid();
|
||||
// conformable(result.Grid(),vgrid);
|
||||
// conformable(source.Grid(),vgrid);
|
||||
const int Ndim = source.Grid()->Nd();
|
||||
Lattice<vobj> tmp = source;
|
||||
for(int d=0;d<Ndim;d++){
|
||||
if( mask[d] ) {
|
||||
FFT_dim(result,tmp,d,sign);
|
||||
tmp=result;
|
||||
@@ -160,59 +265,70 @@ public:
|
||||
|
||||
template<class vobj>
|
||||
void FFT_all_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int sign){
|
||||
Coordinate mask(Nd,1);
|
||||
const int Ndim = source.Grid()->Nd();
|
||||
Coordinate mask(Ndim,1);
|
||||
FFT_dim_mask(result,source,mask,sign);
|
||||
}
|
||||
|
||||
|
||||
template<class vobj>
|
||||
void FFT_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int dim, int sign){
|
||||
#ifndef HAVE_FFTW
|
||||
assert(0);
|
||||
#else
|
||||
conformable(result.Grid(),vgrid);
|
||||
conformable(source.Grid(),vgrid);
|
||||
const int Ndim = source.Grid()->Nd();
|
||||
GridBase *grid = source.Grid();
|
||||
conformable(result.Grid(),source.Grid());
|
||||
|
||||
int L = vgrid->_ldimensions[dim];
|
||||
int G = vgrid->_fdimensions[dim];
|
||||
|
||||
Coordinate layout(Nd,1);
|
||||
Coordinate pencil_gd(vgrid->_fdimensions);
|
||||
|
||||
pencil_gd[dim] = G*processors[dim];
|
||||
|
||||
// Pencil global vol LxLxGxLxL per node
|
||||
GridCartesian pencil_g(pencil_gd,layout,processors,*vgrid);
|
||||
int L = grid->_ldimensions[dim];
|
||||
int G = grid->_fdimensions[dim];
|
||||
|
||||
Coordinate layout(Ndim,1);
|
||||
|
||||
// Construct pencils
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename sobj::scalar_type scalar;
|
||||
typedef typename vobj::scalar_type scalar;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
Lattice<sobj> pgbuf(&pencil_g);
|
||||
autoView(pgbuf_v , pgbuf, CpuWrite);
|
||||
|
||||
//std::cout << "CPU view" << std::endl;
|
||||
|
||||
typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
|
||||
typedef typename FFTW<scalar>::FFTW_plan FFTW_plan;
|
||||
|
||||
int Ncomp = sizeof(sobj)/sizeof(scalar);
|
||||
int Nlow = 1;
|
||||
int64_t Nlow = 1;
|
||||
int64_t Nhigh = 1;
|
||||
|
||||
for(int d=0;d<dim;d++){
|
||||
Nlow*=vgrid->_ldimensions[d];
|
||||
Nlow*=grid->_ldimensions[d];
|
||||
}
|
||||
for(int d=dim+1;d<Ndim;d++){
|
||||
Nhigh*=grid->_ldimensions[d];
|
||||
}
|
||||
int64_t Nperp=Nlow*Nhigh;
|
||||
|
||||
deviceVector<scalar> pgbuf; // Layout is [perp][component][dim]
|
||||
pgbuf.resize(Nperp*Ncomp*G);
|
||||
scalar *pgbuf_v = &pgbuf[0];
|
||||
|
||||
int rank = 1; /* 1d transforms */
|
||||
int n[] = {G}; /* 1d transforms of length G */
|
||||
int howmany = Ncomp;
|
||||
int howmany = Ncomp * Nperp;
|
||||
int odist,idist,istride,ostride;
|
||||
idist = odist = 1; /* Distance between consecutive FT's */
|
||||
istride = ostride = Ncomp*Nlow; /* distance between two elements in the same FT */
|
||||
idist = odist = G; /* Distance between consecutive FT's */
|
||||
istride = ostride = 1; /* Distance between two elements in the same FT */
|
||||
int *inembed = n, *onembed = n;
|
||||
|
||||
scalar div;
|
||||
if ( sign == backward ) div = 1.0/G;
|
||||
else if ( sign == forward ) div = 1.0;
|
||||
else assert(0);
|
||||
|
||||
else GRID_ASSERT(0);
|
||||
|
||||
double t_pencil=0;
|
||||
double t_fft =0;
|
||||
double t_total =-usecond();
|
||||
// std::cout << GridLogPerformance<<"Making FFTW plan" << std::endl;
|
||||
/*
|
||||
*
|
||||
*/
|
||||
FFTW_plan p;
|
||||
{
|
||||
FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0];
|
||||
@@ -226,68 +342,154 @@ public:
|
||||
}
|
||||
|
||||
// Barrel shift and collect global pencil
|
||||
Coordinate lcoor(Nd), gcoor(Nd);
|
||||
// std::cout << GridLogPerformance<<"Making pencil" << std::endl;
|
||||
Coordinate lcoor(Ndim), gcoor(Ndim);
|
||||
double t_copy=0;
|
||||
double t_shift=0;
|
||||
t_pencil = -usecond();
|
||||
result = source;
|
||||
int pc = processor_coor[dim];
|
||||
int pc = grid->_processor_coor[dim];
|
||||
|
||||
const Coordinate ldims = grid->_ldimensions;
|
||||
const Coordinate rdims = grid->_rdimensions;
|
||||
const Coordinate sdims = grid->_simd_layout;
|
||||
|
||||
Coordinate processors = grid->_processors;
|
||||
Coordinate pgdims(Ndim);
|
||||
pgdims[0] = G;
|
||||
for(int d=0, dd=1;d<Ndim;d++){
|
||||
if ( d!=dim ) pgdims[dd++] = ldims[d];
|
||||
}
|
||||
int64_t pgvol=1;
|
||||
for(int d=0;d<Ndim;d++) pgvol*=pgdims[d];
|
||||
|
||||
const int Nsimd = vobj::Nsimd();
|
||||
for(int p=0;p<processors[dim];p++) {
|
||||
t_copy-=usecond();
|
||||
autoView(r_v,result,AcceleratorRead);
|
||||
accelerator_for(idx, grid->oSites(), vobj::Nsimd(), {
|
||||
#ifdef GRID_SIMT
|
||||
{
|
||||
autoView(r_v,result,CpuRead);
|
||||
autoView(p_v,pgbuf,CpuWrite);
|
||||
thread_for(idx, sgrid->lSites(),{
|
||||
Coordinate cbuf(Nd);
|
||||
sobj s;
|
||||
sgrid->LocalIndexToLocalCoor(idx,cbuf);
|
||||
peekLocalSite(s,r_v,cbuf);
|
||||
cbuf[dim]+=((pc+p) % processors[dim])*L;
|
||||
pokeLocalSite(s,p_v,cbuf);
|
||||
});
|
||||
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
|
||||
#else
|
||||
for(int lane=0;lane<Nsimd;lane++) {
|
||||
#endif
|
||||
Coordinate icoor;
|
||||
Coordinate ocoor;
|
||||
Coordinate pgcoor;
|
||||
|
||||
Lexicographic::CoorFromIndex(icoor,lane,sdims);
|
||||
Lexicographic::CoorFromIndex(ocoor,idx,rdims);
|
||||
|
||||
pgcoor[0] = ocoor[dim] + icoor[dim]*rdims[dim] + ((pc+p)%processors[dim])*L;
|
||||
for(int d=0,dd=1;d<Ndim;d++){
|
||||
if ( d!=dim ) {
|
||||
pgcoor[dd] = ocoor[d] + icoor[d]*rdims[d];
|
||||
dd++;
|
||||
}
|
||||
}
|
||||
|
||||
// Map coordinates in lattice layout to FFTW index
|
||||
int64_t pgidx;
|
||||
Lexicographic::IndexFromCoor(pgcoor,pgidx,pgdims);
|
||||
|
||||
vector_type *from = (vector_type *)&r_v[idx];
|
||||
scalar_type stmp;
|
||||
for(int w=0;w<Ncomp;w++){
|
||||
int64_t pg_idx = pgidx + w*pgvol;
|
||||
stmp = getlane(from[w], lane);
|
||||
pgbuf_v[pg_idx] = stmp;
|
||||
}
|
||||
#ifdef GRID_SIMT
|
||||
}
|
||||
#else
|
||||
}
|
||||
#endif
|
||||
});
|
||||
|
||||
t_copy+=usecond();
|
||||
if (p != processors[dim] - 1) {
|
||||
result = Cshift(result,dim,L);
|
||||
Lattice<vobj> temp(grid);
|
||||
t_shift-=usecond();
|
||||
temp = Cshift(result,dim,L); result = temp;
|
||||
t_shift+=usecond();
|
||||
}
|
||||
}
|
||||
t_pencil += usecond();
|
||||
|
||||
// Loop over orthog coords
|
||||
int NN=pencil_g.lSites();
|
||||
GridStopWatch timer;
|
||||
timer.Start();
|
||||
thread_for( idx,NN,{
|
||||
Coordinate cbuf(Nd);
|
||||
pencil_g.LocalIndexToLocalCoor(idx, cbuf);
|
||||
if ( cbuf[dim] == 0 ) { // restricts loop to plane at lcoor[dim]==0
|
||||
FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[idx];
|
||||
FFTW_scalar *out= (FFTW_scalar *)&pgbuf_v[idx];
|
||||
FFTW<scalar>::fftw_execute_dft(p,in,out);
|
||||
}
|
||||
});
|
||||
timer.Stop();
|
||||
|
||||
FFTW_scalar *in = (FFTW_scalar *)pgbuf_v;
|
||||
FFTW_scalar *out= (FFTW_scalar *)pgbuf_v;
|
||||
t_fft = -usecond();
|
||||
FFTW<scalar>::fftw_execute_dft(p,in,out,sign);
|
||||
t_fft += usecond();
|
||||
|
||||
// performance counting
|
||||
double add,mul,fma;
|
||||
FFTW<scalar>::fftw_flops(p,&add,&mul,&fma);
|
||||
flops_call = add+mul+2.0*fma;
|
||||
usec += timer.useconds();
|
||||
flops+= flops_call*NN;
|
||||
|
||||
// writing out result
|
||||
flops_call = 5.0*howmany*G*log2(G);
|
||||
usec = t_fft;
|
||||
flops= flops_call;
|
||||
|
||||
result = Zero();
|
||||
|
||||
double t_insert = -usecond();
|
||||
{
|
||||
autoView(pgbuf_v,pgbuf,CpuRead);
|
||||
autoView(result_v,result,CpuWrite);
|
||||
thread_for(idx,sgrid->lSites(),{
|
||||
Coordinate clbuf(Nd), cgbuf(Nd);
|
||||
sobj s;
|
||||
sgrid->LocalIndexToLocalCoor(idx,clbuf);
|
||||
cgbuf = clbuf;
|
||||
cgbuf[dim] = clbuf[dim]+L*pc;
|
||||
peekLocalSite(s,pgbuf_v,cgbuf);
|
||||
pokeLocalSite(s,result_v,clbuf);
|
||||
autoView(r_v,result,AcceleratorWrite);
|
||||
accelerator_for(idx,grid->oSites(),Nsimd,{
|
||||
#ifdef GRID_SIMT
|
||||
{
|
||||
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
|
||||
#else
|
||||
for(int lane=0;lane<Nsimd;lane++) {
|
||||
#endif
|
||||
Coordinate icoor(Ndim);
|
||||
Coordinate ocoor(Ndim);
|
||||
Coordinate pgcoor(Ndim);
|
||||
|
||||
Lexicographic::CoorFromIndex(icoor,lane,sdims);
|
||||
Lexicographic::CoorFromIndex(ocoor,idx,rdims);
|
||||
|
||||
pgcoor[0] = ocoor[dim] + icoor[dim]*rdims[dim] + pc*L;
|
||||
for(int d=0,dd=1;d<Ndim;d++){
|
||||
if ( d!=dim ) {
|
||||
pgcoor[dd] = ocoor[d] + icoor[d]*rdims[d];
|
||||
dd++;
|
||||
}
|
||||
}
|
||||
// Map coordinates in lattice layout to FFTW index
|
||||
int64_t pgidx;
|
||||
Lexicographic::IndexFromCoor(pgcoor,pgidx,pgdims);
|
||||
|
||||
vector_type *to = (vector_type *)&r_v[idx];
|
||||
scalar_type stmp;
|
||||
for(int w=0;w<Ncomp;w++){
|
||||
int64_t pg_idx = pgidx + w*pgvol;
|
||||
stmp = pgbuf_v[pg_idx];
|
||||
putlane(to[w], stmp, lane);
|
||||
}
|
||||
|
||||
#ifdef GRID_SIMT
|
||||
}
|
||||
#else
|
||||
}
|
||||
#endif
|
||||
});
|
||||
}
|
||||
|
||||
result = result*div;
|
||||
|
||||
|
||||
t_insert +=usecond();
|
||||
|
||||
// destroying plan
|
||||
FFTW<scalar>::fftw_destroy_plan(p);
|
||||
#endif
|
||||
|
||||
t_total +=usecond();
|
||||
|
||||
std::cout <<GridLogPerformance<< " FFT took "<<t_total/1.0e6 <<" s" << std::endl;
|
||||
std::cout <<GridLogPerformance<< " FFT pencil "<<t_pencil/1.0e6 <<" s" << std::endl;
|
||||
std::cout <<GridLogPerformance<< " of which copy "<<t_copy/1.0e6 <<" s" << std::endl;
|
||||
std::cout <<GridLogPerformance<< " of which shift"<<t_shift/1.0e6 <<" s" << std::endl;
|
||||
std::cout <<GridLogPerformance<< " FFT kernels "<<t_fft/1.0e6 <<" s" << std::endl;
|
||||
std::cout <<GridLogPerformance<< " FFT insert "<<t_insert/1.0e6 <<" s" << std::endl;
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
@@ -64,7 +64,7 @@ public:
|
||||
//
|
||||
// I'm not entirely happy with implementation; to share the Schur code between herm and non-herm
|
||||
// while still having a "OpAndNorm" in the abstract base I had to implement it in both cases
|
||||
// with an assert trap in the non-herm. This isn't right; there must be a better C++ way to
|
||||
// with an GRID_ASSERT trap in the non-herm. This isn't right; there must be a better C++ way to
|
||||
// do it, but I fear it required multiple inheritance and mixed in abstract base classes
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@@ -103,6 +103,38 @@ public:
|
||||
_Mat.MdagM(in,out);
|
||||
}
|
||||
};
|
||||
template<class Matrix,class Field>
|
||||
class MMdagLinearOperator : public LinearOperatorBase<Field> {
|
||||
Matrix &_Mat;
|
||||
public:
|
||||
MMdagLinearOperator(Matrix &Mat): _Mat(Mat){};
|
||||
|
||||
// Support for coarsening to a multigrid
|
||||
void OpDiag (const Field &in, Field &out) {
|
||||
_Mat.Mdiag(in,out);
|
||||
}
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
||||
_Mat.Mdir(in,out,dir,disp);
|
||||
}
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){
|
||||
_Mat.MdirAll(in,out);
|
||||
};
|
||||
void Op (const Field &in, Field &out){
|
||||
_Mat.M(in,out);
|
||||
}
|
||||
void AdjOp (const Field &in, Field &out){
|
||||
_Mat.Mdag(in,out);
|
||||
}
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
_Mat.MMdag(in,out);
|
||||
ComplexD dot = innerProduct(in,out);
|
||||
n1=real(dot);
|
||||
n2=norm2(out);
|
||||
}
|
||||
void HermOp(const Field &in, Field &out){
|
||||
_Mat.MMdag(in,out);
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// Construct herm op and shift it for mgrid smoother
|
||||
@@ -116,22 +148,22 @@ public:
|
||||
// Support for coarsening to a multigrid
|
||||
void OpDiag (const Field &in, Field &out) {
|
||||
_Mat.Mdiag(in,out);
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
||||
_Mat.Mdir(in,out,dir,disp);
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
};
|
||||
void Op (const Field &in, Field &out){
|
||||
_Mat.M(in,out);
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
void AdjOp (const Field &in, Field &out){
|
||||
_Mat.Mdag(in,out);
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
HermOp(in,out);
|
||||
@@ -156,19 +188,19 @@ public:
|
||||
ShiftedHermOpLinearOperator(LinearOperatorBase<Field> &Mat,RealD shift): _Mat(Mat), _shift(shift){};
|
||||
// Support for coarsening to a multigrid
|
||||
void OpDiag (const Field &in, Field &out) {
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
};
|
||||
void Op (const Field &in, Field &out){
|
||||
assert(0);
|
||||
HermOp(in,out);
|
||||
}
|
||||
void AdjOp (const Field &in, Field &out){
|
||||
assert(0);
|
||||
HermOp(in,out);
|
||||
}
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
HermOp(in,out);
|
||||
@@ -239,10 +271,42 @@ public:
|
||||
_Mat.Mdag(in,out);
|
||||
}
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
void HermOp(const Field &in, Field &out){
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
};
|
||||
template<class Matrix,class Field>
|
||||
class ShiftedNonHermitianLinearOperator : public LinearOperatorBase<Field> {
|
||||
Matrix &_Mat;
|
||||
RealD shift;
|
||||
public:
|
||||
ShiftedNonHermitianLinearOperator(Matrix &Mat,RealD shft): _Mat(Mat),shift(shft){};
|
||||
// Support for coarsening to a multigrid
|
||||
void OpDiag (const Field &in, Field &out) {
|
||||
_Mat.Mdiag(in,out);
|
||||
out = out + shift*in;
|
||||
}
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
||||
_Mat.Mdir(in,out,dir,disp);
|
||||
}
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){
|
||||
_Mat.MdirAll(in,out);
|
||||
};
|
||||
void Op (const Field &in, Field &out){
|
||||
_Mat.M(in,out);
|
||||
out = out + shift * in;
|
||||
}
|
||||
void AdjOp (const Field &in, Field &out){
|
||||
_Mat.Mdag(in,out);
|
||||
out = out + shift * in;
|
||||
}
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
void HermOp(const Field &in, Field &out){
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
};
|
||||
|
||||
@@ -281,13 +345,13 @@ class SchurOperatorBase : public LinearOperatorBase<Field> {
|
||||
}
|
||||
// Support for coarsening to a multigrid
|
||||
void OpDiag (const Field &in, Field &out) {
|
||||
assert(0); // must coarsen the unpreconditioned system
|
||||
GRID_ASSERT(0); // must coarsen the unpreconditioned system
|
||||
}
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
};
|
||||
};
|
||||
template<class Matrix,class Field>
|
||||
@@ -383,10 +447,10 @@ class NonHermitianSchurOperatorBase : public LinearOperatorBase<Field>
|
||||
MpcDag(tmp,out);
|
||||
}
|
||||
virtual void HermOpAndNorm(const Field& in, Field& out, RealD& n1, RealD& n2) {
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
virtual void HermOp(const Field& in, Field& out) {
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
void Op(const Field& in, Field& out) {
|
||||
Mpc(in, out);
|
||||
@@ -396,13 +460,13 @@ class NonHermitianSchurOperatorBase : public LinearOperatorBase<Field>
|
||||
}
|
||||
// Support for coarsening to a multigrid
|
||||
void OpDiag(const Field& in, Field& out) {
|
||||
assert(0); // must coarsen the unpreconditioned system
|
||||
GRID_ASSERT(0); // must coarsen the unpreconditioned system
|
||||
}
|
||||
void OpDir(const Field& in, Field& out, int dir, int disp) {
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
void OpDirAll(const Field& in, std::vector<Field>& out){
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
};
|
||||
};
|
||||
|
||||
@@ -516,7 +580,7 @@ class SchurStaggeredOperator : public SchurOperatorBase<Field> {
|
||||
public:
|
||||
SchurStaggeredOperator (Matrix &Mat): _Mat(Mat), tmp(_Mat.RedBlackGrid())
|
||||
{
|
||||
assert( _Mat.isTrivialEE() );
|
||||
GRID_ASSERT( _Mat.isTrivialEE() );
|
||||
mass = _Mat.Mass();
|
||||
}
|
||||
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
@@ -547,7 +611,7 @@ class SchurStaggeredOperator : public SchurOperatorBase<Field> {
|
||||
Mpc(in,out);
|
||||
}
|
||||
virtual void MpcDagMpc(const Field &in, Field &out) {
|
||||
assert(0);// Never need with staggered
|
||||
GRID_ASSERT(0);// Never need with staggered
|
||||
}
|
||||
};
|
||||
template<class Matrix,class Field> using SchurStagOperator = SchurStaggeredOperator<Matrix,Field>;
|
||||
@@ -559,7 +623,7 @@ template<class Field> class OperatorFunction {
|
||||
public:
|
||||
virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) = 0;
|
||||
virtual void operator() (LinearOperatorBase<Field> &Linop, const std::vector<Field> &in,std::vector<Field> &out) {
|
||||
assert(in.size()==out.size());
|
||||
GRID_ASSERT(in.size()==out.size());
|
||||
for(int k=0;k<in.size();k++){
|
||||
(*this)(Linop,in[k],out[k]);
|
||||
}
|
||||
@@ -573,7 +637,7 @@ public:
|
||||
|
||||
virtual void operator() (const std::vector<Field> &in, std::vector<Field> &out)
|
||||
{
|
||||
assert(in.size() == out.size());
|
||||
GRID_ASSERT(in.size() == out.size());
|
||||
|
||||
for (unsigned int i = 0; i < in.size(); ++i)
|
||||
{
|
||||
|
||||
@@ -45,6 +45,11 @@ public:
|
||||
M(in,tmp);
|
||||
Mdag(tmp,out);
|
||||
}
|
||||
virtual void MMdag(const Field &in, Field &out) {
|
||||
Field tmp (in.Grid());
|
||||
Mdag(in,tmp);
|
||||
M(tmp,out);
|
||||
}
|
||||
virtual void Mdiag (const Field &in, Field &out)=0;
|
||||
virtual void Mdir (const Field &in, Field &out,int dir, int disp)=0;
|
||||
virtual void MdirAll (const Field &in, std::vector<Field> &out)=0;
|
||||
|
||||
@@ -59,7 +59,7 @@ public:
|
||||
RealD diff = hi-lo;
|
||||
RealD delta = diff*1.0e-9;
|
||||
for (RealD x=lo; x<hi; x+=delta) {
|
||||
delta*=1.1;
|
||||
delta*=1.02;
|
||||
RealD f = approx(x);
|
||||
out<< x<<" "<<f<<std::endl;
|
||||
}
|
||||
@@ -131,6 +131,26 @@ public:
|
||||
Coeffs[j] = s * 2.0/order;
|
||||
}
|
||||
};
|
||||
template<class functor>
|
||||
void Init(RealD _lo,RealD _hi,int _order, functor & func)
|
||||
{
|
||||
lo=_lo;
|
||||
hi=_hi;
|
||||
order=_order;
|
||||
|
||||
if(order < 2) exit(-1);
|
||||
Coeffs.resize(order);
|
||||
for(int j=0;j<order;j++){
|
||||
RealD s=0;
|
||||
for(int k=0;k<order;k++){
|
||||
RealD y=std::cos(M_PI*(k+0.5)/order);
|
||||
RealD x=0.5*(y*(hi-lo)+(hi+lo));
|
||||
RealD f=func(x);
|
||||
s=s+f*std::cos( j*M_PI*(k+0.5)/order );
|
||||
}
|
||||
Coeffs[j] = s * 2.0/order;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
void JacksonSmooth(void){
|
||||
@@ -249,7 +269,9 @@ public:
|
||||
RealD xscale = 2.0/(hi-lo);
|
||||
RealD mscale = -(hi+lo)/(hi-lo);
|
||||
Linop.HermOp(T0,y);
|
||||
grid->Barrier();
|
||||
axpby(T1,xscale,mscale,y,in);
|
||||
grid->Barrier();
|
||||
|
||||
// sum = .5 c[0] T0 + c[1] T1
|
||||
// out = ()*T0 + Coeffs[1]*T1;
|
||||
|
||||
@@ -121,7 +121,7 @@ double AlgRemez::generateApprox(int num_degree, int den_degree,
|
||||
// Reallocate arrays, since degree has changed
|
||||
if (num_degree != n || den_degree != d) allocate(num_degree,den_degree);
|
||||
|
||||
assert(a_len<=SUM_MAX);
|
||||
GRID_ASSERT(a_len<=SUM_MAX);
|
||||
|
||||
step = new bigfloat[num_degree+den_degree+2];
|
||||
|
||||
@@ -151,9 +151,9 @@ double AlgRemez::generateApprox(int num_degree, int den_degree,
|
||||
equations();
|
||||
if (delta < tolerance) {
|
||||
std::cout<<"Delta too small, try increasing precision\n";
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
};
|
||||
assert( delta>= tolerance);
|
||||
GRID_ASSERT( delta>= tolerance);
|
||||
|
||||
search(step);
|
||||
}
|
||||
|
||||
@@ -134,7 +134,7 @@ class AlgRemez
|
||||
virtual ~AlgRemez();
|
||||
|
||||
int getDegree(void){
|
||||
assert(n==d);
|
||||
GRID_ASSERT(n==d);
|
||||
return n;
|
||||
}
|
||||
// Reset the bounds of the approximation
|
||||
|
||||
@@ -28,11 +28,11 @@ void AlgRemezGeneral::setupPolyProperties(int num_degree, int den_degree, PolyTy
|
||||
pow_n = num_degree;
|
||||
pow_d = den_degree;
|
||||
|
||||
if(pow_n % 2 == 0 && num_type_in == PolyType::Odd) assert(0);
|
||||
if(pow_n % 2 == 1 && num_type_in == PolyType::Even) assert(0);
|
||||
if(pow_n % 2 == 0 && num_type_in == PolyType::Odd) GRID_ASSERT(0);
|
||||
if(pow_n % 2 == 1 && num_type_in == PolyType::Even) GRID_ASSERT(0);
|
||||
|
||||
if(pow_d % 2 == 0 && den_type_in == PolyType::Odd) assert(0);
|
||||
if(pow_d % 2 == 1 && den_type_in == PolyType::Even) assert(0);
|
||||
if(pow_d % 2 == 0 && den_type_in == PolyType::Odd) GRID_ASSERT(0);
|
||||
if(pow_d % 2 == 1 && den_type_in == PolyType::Even) GRID_ASSERT(0);
|
||||
|
||||
num_type = num_type_in;
|
||||
den_type = den_type_in;
|
||||
@@ -112,9 +112,9 @@ double AlgRemezGeneral::generateApprox(const int num_degree, const int den_degre
|
||||
equations();
|
||||
if (delta < tolerance) {
|
||||
std::cout<<"Iteration " << iter-1 << " delta too small (" << delta << "<" << tolerance << "), try increasing precision\n";
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
};
|
||||
assert( delta>= tolerance );
|
||||
GRID_ASSERT( delta>= tolerance );
|
||||
|
||||
search();
|
||||
}
|
||||
@@ -278,7 +278,7 @@ void AlgRemezGeneral::equations(){
|
||||
if(num_pows[j] != -1){ *aa++ = z; t++; }
|
||||
z *= x;
|
||||
}
|
||||
assert(t == n+1);
|
||||
GRID_ASSERT(t == n+1);
|
||||
|
||||
z = (bigfloat)1l;
|
||||
t = 0;
|
||||
@@ -286,7 +286,7 @@ void AlgRemezGeneral::equations(){
|
||||
if(den_pows[j] != -1){ *aa++ = -y * z; t++; }
|
||||
z *= x;
|
||||
}
|
||||
assert(t == d);
|
||||
GRID_ASSERT(t == d);
|
||||
|
||||
B[i] = y * z; // Right hand side vector
|
||||
}
|
||||
|
||||
@@ -106,7 +106,7 @@ class AlgRemezGeneral{
|
||||
bigfloat (*f)(bigfloat x, void *data), void *data);
|
||||
|
||||
inline int getDegree(void) const{
|
||||
assert(n==d);
|
||||
GRID_ASSERT(n==d);
|
||||
return n;
|
||||
}
|
||||
// Reset the bounds of the approximation
|
||||
|
||||
@@ -74,7 +74,7 @@ bigfloat epsilonMobius(bigfloat x, void* data){
|
||||
void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out,
|
||||
const std::vector<RealD> &omega_in, const int Ls_in,
|
||||
const RealD lambda_bound){
|
||||
assert(omega_in.size() == Ls_in);
|
||||
GRID_ASSERT(omega_in.size() == Ls_in);
|
||||
omega_out.resize(Ls_out);
|
||||
|
||||
//Use the Remez algorithm to generate the appropriate rational polynomial
|
||||
|
||||
@@ -293,7 +293,7 @@ static void sncndnFK(INTERNAL_PRECISION u, INTERNAL_PRECISION k,
|
||||
* Set type = 0 for the Zolotarev approximation, which is zero at x = 0, and
|
||||
* type = 1 for the approximation which is infinite at x = 0. */
|
||||
|
||||
zolotarev_data* zolotarev(PRECISION epsilon, int n, int type) {
|
||||
zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) {
|
||||
INTERNAL_PRECISION A, c, cp, kp, ksq, sn, cn, dn, Kp, Kj, z, z0, t, M, F,
|
||||
l, invlambda, xi, xisq, *tv, s, opl;
|
||||
int m, czero, ts;
|
||||
@@ -375,12 +375,12 @@ zolotarev_data* zolotarev(PRECISION epsilon, int n, int type) {
|
||||
construct_partfrac(d);
|
||||
construct_contfrac(d);
|
||||
|
||||
/* Converting everything to PRECISION for external use only */
|
||||
/* Converting everything to ZOLO_PRECISION for external use only */
|
||||
|
||||
zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
|
||||
zd -> A = (PRECISION) d -> A;
|
||||
zd -> Delta = (PRECISION) d -> Delta;
|
||||
zd -> epsilon = (PRECISION) d -> epsilon;
|
||||
zd -> A = (ZOLO_PRECISION) d -> A;
|
||||
zd -> Delta = (ZOLO_PRECISION) d -> Delta;
|
||||
zd -> epsilon = (ZOLO_PRECISION) d -> epsilon;
|
||||
zd -> n = d -> n;
|
||||
zd -> type = d -> type;
|
||||
zd -> dn = d -> dn;
|
||||
@@ -390,24 +390,24 @@ zolotarev_data* zolotarev(PRECISION epsilon, int n, int type) {
|
||||
zd -> deg_num = d -> deg_num;
|
||||
zd -> deg_denom = d -> deg_denom;
|
||||
|
||||
zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m];
|
||||
zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m];
|
||||
free(d -> a);
|
||||
|
||||
zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m];
|
||||
zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m];
|
||||
free(d -> ap);
|
||||
|
||||
zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m];
|
||||
zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m];
|
||||
free(d -> alpha);
|
||||
|
||||
zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m];
|
||||
zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m];
|
||||
free(d -> beta);
|
||||
|
||||
zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m];
|
||||
zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m];
|
||||
free(d -> gamma);
|
||||
|
||||
free(d);
|
||||
@@ -426,7 +426,7 @@ void zolotarev_free(zolotarev_data *zdata)
|
||||
}
|
||||
|
||||
|
||||
zolotarev_data* higham(PRECISION epsilon, int n) {
|
||||
zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) {
|
||||
INTERNAL_PRECISION A, M, c, cp, z, z0, t, epssq;
|
||||
int m, czero;
|
||||
zolotarev_data *zd;
|
||||
@@ -481,9 +481,9 @@ zolotarev_data* higham(PRECISION epsilon, int n) {
|
||||
/* Converting everything to PRECISION for external use only */
|
||||
|
||||
zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
|
||||
zd -> A = (PRECISION) d -> A;
|
||||
zd -> Delta = (PRECISION) d -> Delta;
|
||||
zd -> epsilon = (PRECISION) d -> epsilon;
|
||||
zd -> A = (ZOLO_PRECISION) d -> A;
|
||||
zd -> Delta = (ZOLO_PRECISION) d -> Delta;
|
||||
zd -> epsilon = (ZOLO_PRECISION) d -> epsilon;
|
||||
zd -> n = d -> n;
|
||||
zd -> type = d -> type;
|
||||
zd -> dn = d -> dn;
|
||||
@@ -493,24 +493,24 @@ zolotarev_data* higham(PRECISION epsilon, int n) {
|
||||
zd -> deg_num = d -> deg_num;
|
||||
zd -> deg_denom = d -> deg_denom;
|
||||
|
||||
zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m];
|
||||
zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m];
|
||||
free(d -> a);
|
||||
|
||||
zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m];
|
||||
zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m];
|
||||
free(d -> ap);
|
||||
|
||||
zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m];
|
||||
zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m];
|
||||
free(d -> alpha);
|
||||
|
||||
zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m];
|
||||
zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m];
|
||||
free(d -> beta);
|
||||
|
||||
zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m];
|
||||
zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m];
|
||||
free(d -> gamma);
|
||||
|
||||
free(d);
|
||||
@@ -523,17 +523,17 @@ NAMESPACE_END(Grid);
|
||||
#ifdef TEST
|
||||
|
||||
#undef ZERO
|
||||
#define ZERO ((PRECISION) 0)
|
||||
#define ZERO ((ZOLO_PRECISION) 0)
|
||||
#undef ONE
|
||||
#define ONE ((PRECISION) 1)
|
||||
#define ONE ((ZOLO_PRECISION) 1)
|
||||
#undef TWO
|
||||
#define TWO ((PRECISION) 2)
|
||||
#define TWO ((ZOLO_PRECISION) 2)
|
||||
|
||||
/* Evaluate the rational approximation R(x) using the factored form */
|
||||
|
||||
static PRECISION zolotarev_eval(PRECISION x, zolotarev_data* rdata) {
|
||||
static ZOLO_PRECISION zolotarev_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
|
||||
int m;
|
||||
PRECISION R;
|
||||
ZOLO_PRECISION R;
|
||||
|
||||
if (rdata -> type == 0) {
|
||||
R = rdata -> A * x;
|
||||
@@ -551,9 +551,9 @@ static PRECISION zolotarev_eval(PRECISION x, zolotarev_data* rdata) {
|
||||
|
||||
/* Evaluate the rational approximation R(x) using the partial fraction form */
|
||||
|
||||
static PRECISION zolotarev_partfrac_eval(PRECISION x, zolotarev_data* rdata) {
|
||||
static ZOLO_PRECISION zolotarev_partfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
|
||||
int m;
|
||||
PRECISION R = rdata -> alpha[rdata -> da - 1];
|
||||
ZOLO_PRECISION R = rdata -> alpha[rdata -> da - 1];
|
||||
for (m = 0; m < rdata -> dd; m++)
|
||||
R += rdata -> alpha[m] / (x * x - rdata -> ap[m]);
|
||||
if (rdata -> type == 1) R += rdata -> alpha[rdata -> dd] / (x * x);
|
||||
@@ -568,18 +568,18 @@ static PRECISION zolotarev_partfrac_eval(PRECISION x, zolotarev_data* rdata) {
|
||||
* non-signalling overflow this will work correctly since 1/(1/0) = 1/INF = 0,
|
||||
* but with signalling overflow you will get an error message. */
|
||||
|
||||
static PRECISION zolotarev_contfrac_eval(PRECISION x, zolotarev_data* rdata) {
|
||||
static ZOLO_PRECISION zolotarev_contfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
|
||||
int m;
|
||||
PRECISION R = rdata -> beta[0] * x;
|
||||
ZOLO_PRECISION R = rdata -> beta[0] * x;
|
||||
for (m = 1; m < rdata -> db; m++) R = rdata -> beta[m] * x + ONE / R;
|
||||
return R;
|
||||
}
|
||||
|
||||
/* Evaluate the rational approximation R(x) using Cayley form */
|
||||
|
||||
static PRECISION zolotarev_cayley_eval(PRECISION x, zolotarev_data* rdata) {
|
||||
static ZOLO_PRECISION zolotarev_cayley_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
|
||||
int m;
|
||||
PRECISION T;
|
||||
ZOLO_PRECISION T;
|
||||
|
||||
T = rdata -> type == 0 ? ONE : -ONE;
|
||||
for (m = 0; m < rdata -> n; m++)
|
||||
@@ -607,7 +607,7 @@ int main(int argc, char** argv) {
|
||||
int m, n, plotpts = 5000, type = 0;
|
||||
float eps, x, ypferr, ycferr, ycaylerr, maxypferr, maxycferr, maxycaylerr;
|
||||
zolotarev_data *rdata;
|
||||
PRECISION y;
|
||||
ZOLO_PRECISION y;
|
||||
FILE *plot_function, *plot_error,
|
||||
*plot_partfrac, *plot_contfrac, *plot_cayley;
|
||||
|
||||
@@ -626,13 +626,13 @@ int main(int argc, char** argv) {
|
||||
}
|
||||
|
||||
rdata = type == 2
|
||||
? higham((PRECISION) eps, n)
|
||||
: zolotarev((PRECISION) eps, n, type);
|
||||
? higham((ZOLO_PRECISION) eps, n)
|
||||
: zolotarev((ZOLO_PRECISION) eps, n, type);
|
||||
|
||||
printf("Zolotarev Test: R(epsilon = %g, n = %d, type = %d)\n\t"
|
||||
STRINGIFY(VERSION) "\n\t" STRINGIFY(HVERSION)
|
||||
"\n\tINTERNAL_PRECISION = " STRINGIFY(INTERNAL_PRECISION)
|
||||
"\tPRECISION = " STRINGIFY(PRECISION)
|
||||
"\tZOLO_PRECISION = " STRINGIFY(ZOLO_PRECISION)
|
||||
"\n\n\tRational approximation of degree (%d,%d), %s at x = 0\n"
|
||||
"\tDelta = %g (maximum error)\n\n"
|
||||
"\tA = %g (overall factor)\n",
|
||||
@@ -681,15 +681,15 @@ int main(int argc, char** argv) {
|
||||
x = 2.4 * (float) m / plotpts - 1.2;
|
||||
if (rdata -> type == 0 || fabs(x) * (float) plotpts > 1.0) {
|
||||
/* skip x = 0 for type 1, as R(0) is singular */
|
||||
y = zolotarev_eval((PRECISION) x, rdata);
|
||||
y = zolotarev_eval((ZOLO_PRECISION) x, rdata);
|
||||
fprintf(plot_function, "%g %g\n", x, (float) y);
|
||||
fprintf(plot_error, "%g %g\n",
|
||||
x, (float)((y - ((x > 0.0 ? ONE : -ONE))) / rdata -> Delta));
|
||||
ypferr = (float)((zolotarev_partfrac_eval((PRECISION) x, rdata) - y)
|
||||
ypferr = (float)((zolotarev_partfrac_eval((ZOLO_PRECISION) x, rdata) - y)
|
||||
/ rdata -> Delta);
|
||||
ycferr = (float)((zolotarev_contfrac_eval((PRECISION) x, rdata) - y)
|
||||
ycferr = (float)((zolotarev_contfrac_eval((ZOLO_PRECISION) x, rdata) - y)
|
||||
/ rdata -> Delta);
|
||||
ycaylerr = (float)((zolotarev_cayley_eval((PRECISION) x, rdata) - y)
|
||||
ycaylerr = (float)((zolotarev_cayley_eval((ZOLO_PRECISION) x, rdata) - y)
|
||||
/ rdata -> Delta);
|
||||
if (fabs(x) < 1.0 && fabs(x) > rdata -> epsilon) {
|
||||
maxypferr = MAX(maxypferr, fabs(ypferr));
|
||||
|
||||
@@ -9,10 +9,10 @@ NAMESPACE_BEGIN(Approx);
|
||||
#define HVERSION Header Time-stamp: <14-OCT-2004 09:26:51.00 adk@MISSCONTRARY>
|
||||
|
||||
#ifndef ZOLOTAREV_INTERNAL
|
||||
#ifndef PRECISION
|
||||
#define PRECISION double
|
||||
#ifndef ZOLO_PRECISION
|
||||
#define ZOLO_PRECISION double
|
||||
#endif
|
||||
#define ZPRECISION PRECISION
|
||||
#define ZPRECISION ZOLO_PRECISION
|
||||
#define ZOLOTAREV_DATA zolotarev_data
|
||||
#endif
|
||||
|
||||
@@ -77,8 +77,8 @@ typedef struct {
|
||||
* zolotarev_data structure. The arguments must satisfy the constraints that
|
||||
* epsilon > 0, n > 0, and type = 0 or 1. */
|
||||
|
||||
ZOLOTAREV_DATA* higham(PRECISION epsilon, int n) ;
|
||||
ZOLOTAREV_DATA* zolotarev(PRECISION epsilon, int n, int type);
|
||||
ZOLOTAREV_DATA* higham(ZOLO_PRECISION epsilon, int n) ;
|
||||
ZOLOTAREV_DATA* zolotarev(ZOLO_PRECISION epsilon, int n, int type);
|
||||
void zolotarev_free(zolotarev_data *zdata);
|
||||
#endif
|
||||
|
||||
@@ -86,3 +86,4 @@ void zolotarev_free(zolotarev_data *zdata);
|
||||
NAMESPACE_END(Approx);
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
||||
|
||||
|
||||
34
Grid/algorithms/blas/BatchedBlas.cc
Normal file
34
Grid/algorithms/blas/BatchedBlas.cc
Normal file
@@ -0,0 +1,34 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: BatchedBlas.h
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/GridCore.h>
|
||||
#include <Grid/algorithms/blas/BatchedBlas.h>
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
gridblasHandle_t GridBLAS::gridblasHandle;
|
||||
int GridBLAS::gridblasInit;
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
1369
Grid/algorithms/blas/BatchedBlas.h
Normal file
1369
Grid/algorithms/blas/BatchedBlas.h
Normal file
File diff suppressed because it is too large
Load Diff
300
Grid/algorithms/blas/MomentumProject.h
Normal file
300
Grid/algorithms/blas/MomentumProject.h
Normal file
@@ -0,0 +1,300 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: MomentumProject.h
|
||||
|
||||
Copyright (C) 2025
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
/*
|
||||
MultiMomProject
|
||||
|
||||
Import vectors -> nxyz x (ncomponent x nt)
|
||||
Import complex phases -> nmom x nxy
|
||||
|
||||
apply = via (possibly batched) GEMM
|
||||
*/
|
||||
template<class Field, class ComplexField>
|
||||
class MomentumProject
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename Field::scalar_type scalar;
|
||||
typedef typename Field::scalar_object scalar_object;
|
||||
|
||||
GridBase *grid;
|
||||
uint64_t nmom;
|
||||
uint64_t nxyz;
|
||||
uint64_t nt;
|
||||
uint64_t nbtw;
|
||||
uint64_t words;
|
||||
|
||||
deviceVector<scalar> BLAS_V; //
|
||||
deviceVector<scalar> BLAS_M; //
|
||||
deviceVector<scalar> BLAS_P; //
|
||||
|
||||
MomentumProject(){};
|
||||
~MomentumProject(){ Deallocate(); };
|
||||
|
||||
void Deallocate(void)
|
||||
{
|
||||
grid=nullptr;
|
||||
nmom=0;
|
||||
nxyz=0;
|
||||
nt=0;
|
||||
nbtw=0;
|
||||
words=0;
|
||||
BLAS_V.resize(0);
|
||||
BLAS_M.resize(0);
|
||||
BLAS_P.resize(0);
|
||||
}
|
||||
void Allocate(int _nmom,GridBase *_grid)
|
||||
{
|
||||
grid=_grid;
|
||||
Coordinate ldims = grid->LocalDimensions();
|
||||
|
||||
nmom=_nmom;
|
||||
nt = ldims[grid->Nd()-1];
|
||||
nxyz = grid->lSites()/nt;
|
||||
words = sizeof(scalar_object)/sizeof(scalar);
|
||||
nbtw = nt * words;
|
||||
|
||||
BLAS_V.resize (nxyz * nt * words );
|
||||
BLAS_M.resize (nmom * nxyz );
|
||||
BLAS_P.resize (nmom * nt * words );
|
||||
}
|
||||
void ImportMomenta(const std::vector <ComplexField> &momenta)
|
||||
{
|
||||
GRID_ASSERT(momenta.size()==nmom);
|
||||
// might as well just make the momenta here
|
||||
typedef typename Field::vector_object vobj;
|
||||
|
||||
int nd = grid->_ndimension;
|
||||
|
||||
uint64_t sz = BLAS_M.size();
|
||||
|
||||
GRID_ASSERT(momenta.size()==nmom)
|
||||
GRID_ASSERT(momenta[0].Grid()==grid);
|
||||
GRID_ASSERT(sz = nxyz * nmom);
|
||||
|
||||
Coordinate rdimensions = grid->_rdimensions;
|
||||
Coordinate ldims = grid->LocalDimensions();
|
||||
int64_t osites = grid->oSites();
|
||||
Coordinate simd = grid->_simd_layout;
|
||||
const int Nsimd = vobj::Nsimd();
|
||||
uint64_t lwords = words; // local variable for copy in to GPU
|
||||
int64_t Nxyz = nxyz;
|
||||
auto blasData_p = &BLAS_M[0];
|
||||
for(int m=0;m<momenta.size();m++){
|
||||
|
||||
autoView( Data , momenta[m], AcceleratorRead);
|
||||
auto Data_p = &Data[0];
|
||||
|
||||
accelerator_for(xyz,nxyz,1,{
|
||||
//////////////////////////////////////////
|
||||
// isite -- map lane within buffer to lane within lattice
|
||||
////////////////////////////////////////////
|
||||
Coordinate lcoor(nd,0);
|
||||
Lexicographic::CoorFromIndex(lcoor,xyz,ldims);
|
||||
|
||||
Coordinate icoor(nd);
|
||||
Coordinate ocoor(nd);
|
||||
for (int d = 0; d < nd; d++) {
|
||||
icoor[d] = lcoor[d]/rdimensions[d];
|
||||
ocoor[d] = lcoor[d]%rdimensions[d];
|
||||
}
|
||||
int64_t osite;
|
||||
int64_t isite;
|
||||
Lexicographic::IndexFromCoor(ocoor,osite,rdimensions);
|
||||
Lexicographic::IndexFromCoor(icoor,isite,simd);
|
||||
|
||||
// BLAS_M[nmom][slice_vol]
|
||||
// Fortran Column major BLAS layout is M_xyz,mom
|
||||
scalar data = extractLane(isite,Data[osite]);
|
||||
uint64_t idx = xyz+m*Nxyz;
|
||||
blasData_p[idx] = data;
|
||||
});
|
||||
}
|
||||
}
|
||||
void ImportVector(Field &vec)
|
||||
{
|
||||
typedef typename Field::vector_object vobj;
|
||||
|
||||
int nd = grid->_ndimension;
|
||||
|
||||
uint64_t sz = BLAS_V.size();
|
||||
|
||||
GRID_ASSERT(sz = nxyz * words * nt);
|
||||
|
||||
Coordinate rdimensions = grid->_rdimensions;
|
||||
Coordinate ldims= grid->LocalDimensions();
|
||||
int64_t osites = grid->oSites();
|
||||
Coordinate simd = grid->_simd_layout;
|
||||
const int Nsimd = vobj::Nsimd();
|
||||
uint64_t lwords= words; // local variable for copy in to GPU
|
||||
|
||||
auto blasData_p = &BLAS_V[0];
|
||||
autoView( Data , vec, AcceleratorRead);
|
||||
auto Data_p = &Data[0];
|
||||
|
||||
int64_t nwords = words;// for capture
|
||||
int64_t Nt = nt;// for capture
|
||||
|
||||
accelerator_for(sf,osites,Nsimd,{
|
||||
#ifdef GRID_SIMT
|
||||
{
|
||||
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
|
||||
#else
|
||||
for(int lane=0;lane<Nsimd;lane++) {
|
||||
#endif
|
||||
//////////////////////////////////////////
|
||||
// isite -- map lane within buffer to lane within lattice
|
||||
////////////////////////////////////////////
|
||||
Coordinate lcoor(nd,0);
|
||||
Coordinate icoor(nd);
|
||||
Coordinate ocoor(nd);
|
||||
|
||||
Lexicographic::CoorFromIndex(icoor,lane,simd);
|
||||
Lexicographic::CoorFromIndex(ocoor,sf,rdimensions);
|
||||
|
||||
|
||||
int64_t l_xyz = 0;
|
||||
for (int d = 0; d < nd; d++) {
|
||||
lcoor[d] = rdimensions[d]*icoor[d] + ocoor[d];
|
||||
}
|
||||
uint64_t l_t = lcoor[nd-1];
|
||||
|
||||
Coordinate xyz_coor = lcoor;
|
||||
xyz_coor[nd-1] =0;
|
||||
Lexicographic::IndexFromCoor(xyz_coor,l_xyz,ldims);
|
||||
|
||||
|
||||
scalar_object data = extractLane(lane,Data[sf]);
|
||||
scalar *data_words = (scalar *) &data;
|
||||
for(int w = 0 ; w < nwords; w++) {
|
||||
// BLAS_V[slice_vol][nt][words]
|
||||
// Fortran Column major BLAS layout is V_(t,w)_xyz
|
||||
uint64_t idx = w+l_t*nwords + l_xyz * nwords * Nt;
|
||||
blasData_p[idx] = data_words[w];
|
||||
}
|
||||
#ifdef GRID_SIMT
|
||||
}
|
||||
#else
|
||||
}
|
||||
#endif
|
||||
});
|
||||
}
|
||||
void ExportMomentumProjection(std::vector<typename Field::scalar_object> &projection)
|
||||
{
|
||||
projection.resize(nmom*nt);
|
||||
acceleratorCopyFromDevice(&BLAS_P[0],(scalar *)&projection[0],BLAS_P.size()*sizeof(scalar));
|
||||
// Could decide on a layout late?
|
||||
}
|
||||
|
||||
// Row major layout "C" order:
|
||||
// BLAS_V[slice_vol][nt][words]
|
||||
// BLAS_M[nmom][slice_vol]
|
||||
// BLAS_P[nmom][nt][words]
|
||||
//
|
||||
// Fortran Column major BLAS layout is V_(w,t)_xyz
|
||||
// Fortran Column major BLAS layout is M_xyz,mom
|
||||
// Fortran Column major BLAS layout is P_(w,t),mom
|
||||
//
|
||||
// Projected
|
||||
//
|
||||
// P = (V * M)_(w,t),mom
|
||||
//
|
||||
void Project(Field &data,std::vector< typename Field::scalar_object > & projected_gdata)
|
||||
{
|
||||
double t_import=0;
|
||||
double t_export=0;
|
||||
double t_gemm =0;
|
||||
double t_allreduce=0;
|
||||
t_import-=usecond();
|
||||
this->ImportVector(data);
|
||||
|
||||
std::vector< typename Field::scalar_object > projected_planes;
|
||||
|
||||
deviceVector<scalar *> Vd(1);
|
||||
deviceVector<scalar *> Md(1);
|
||||
deviceVector<scalar *> Pd(1);
|
||||
|
||||
scalar * Vh = & BLAS_V[0];
|
||||
scalar * Mh = & BLAS_M[0];
|
||||
scalar * Ph = & BLAS_P[0];
|
||||
|
||||
acceleratorPut(Vd[0],Vh);
|
||||
acceleratorPut(Md[0],Mh);
|
||||
acceleratorPut(Pd[0],Ph);
|
||||
t_import+=usecond();
|
||||
|
||||
GridBLAS BLAS;
|
||||
|
||||
/////////////////////////////////////////
|
||||
// P_im = VMmx . Vxi
|
||||
/////////////////////////////////////////
|
||||
t_gemm-=usecond();
|
||||
BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
||||
words*nt,nmom,nxyz,
|
||||
scalar(1.0),
|
||||
Vd,
|
||||
Md,
|
||||
scalar(0.0), // wipe out result
|
||||
Pd);
|
||||
BLAS.synchronise();
|
||||
t_gemm+=usecond();
|
||||
|
||||
t_export-=usecond();
|
||||
ExportMomentumProjection(projected_planes); // resizes
|
||||
t_export+=usecond();
|
||||
|
||||
/////////////////////////////////
|
||||
// Reduce across MPI ranks
|
||||
/////////////////////////////////
|
||||
int nd = grid->Nd();
|
||||
int gt = grid->GlobalDimensions()[nd-1];
|
||||
int lt = grid->LocalDimensions()[nd-1];
|
||||
projected_gdata.resize(gt*nmom);
|
||||
for(int t=0;t<gt*nmom;t++){ // global Nt array with zeroes for stuff not on this node
|
||||
projected_gdata[t]=Zero();
|
||||
}
|
||||
for(int t=0;t<lt;t++){
|
||||
for(int m=0;m<nmom;m++){
|
||||
int st = grid->LocalStarts()[nd-1];
|
||||
projected_gdata[t+st + gt*m] = projected_planes[t+lt*m];
|
||||
}}
|
||||
t_allreduce-=usecond();
|
||||
grid->GlobalSumVector((scalar *)&projected_gdata[0],gt*nmom*words);
|
||||
t_allreduce+=usecond();
|
||||
|
||||
std::cout << GridLogPerformance<<" MomentumProject t_import "<<t_import<<"us"<<std::endl;
|
||||
std::cout << GridLogPerformance<<" MomentumProject t_export "<<t_export<<"us"<<std::endl;
|
||||
std::cout << GridLogPerformance<<" MomentumProject t_gemm "<<t_gemm<<"us"<<std::endl;
|
||||
std::cout << GridLogPerformance<<" MomentumProject t_reduce "<<t_allreduce<<"us"<<std::endl;
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
@@ -69,8 +69,8 @@ public:
|
||||
DeflatedGuesser(const std::vector<Field> & _evec, const std::vector<RealD> & _eval, const unsigned int _N)
|
||||
: evec(_evec), eval(_eval), N(_N)
|
||||
{
|
||||
assert(evec.size()==eval.size());
|
||||
assert(N <= evec.size());
|
||||
GRID_ASSERT(evec.size()==eval.size());
|
||||
GRID_ASSERT(N <= evec.size());
|
||||
}
|
||||
|
||||
virtual void operator()(const Field &src,Field &guess) {
|
||||
@@ -141,11 +141,10 @@ public:
|
||||
}
|
||||
//postprocessing
|
||||
std::cout << GridLogMessage << "Start BlockPromote for loop" << std::endl;
|
||||
for (int j=0;j<Nsrc;j++)
|
||||
{
|
||||
std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl;
|
||||
blockPromote(guess_coarse[j],guess[j],subspace);
|
||||
guess[j].Checkerboard() = src[j].Checkerboard();
|
||||
for (int j=0;j<Nsrc;j++) {
|
||||
std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl;
|
||||
blockPromote(guess_coarse[j],guess[j],subspace);
|
||||
guess[j].Checkerboard() = src[j].Checkerboard();
|
||||
}
|
||||
};
|
||||
|
||||
376
Grid/algorithms/deflation/MultiRHSBlockCGLinalg.h
Normal file
376
Grid/algorithms/deflation/MultiRHSBlockCGLinalg.h
Normal file
@@ -0,0 +1,376 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: MultiRHSBlockCGLinalg.h
|
||||
|
||||
Copyright (C) 2024
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
/* Need helper object for BLAS accelerated mrhs blockCG */
|
||||
template<class Field>
|
||||
class MultiRHSBlockCGLinalg
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename Field::scalar_type scalar;
|
||||
typedef typename Field::scalar_object scalar_object;
|
||||
typedef typename Field::vector_object vector_object;
|
||||
|
||||
deviceVector<scalar> BLAS_X; // nrhs x vol -- the sources
|
||||
deviceVector<scalar> BLAS_Y; // nrhs x vol -- the result
|
||||
deviceVector<scalar> BLAS_C; // nrhs x nrhs -- the coefficients
|
||||
deviceVector<scalar> BLAS_Cred; // nrhs x nrhs x oSites -- reduction buffer
|
||||
deviceVector<scalar *> Xdip;
|
||||
deviceVector<scalar *> Ydip;
|
||||
deviceVector<scalar *> Cdip;
|
||||
|
||||
MultiRHSBlockCGLinalg() {};
|
||||
~MultiRHSBlockCGLinalg(){ Deallocate(); };
|
||||
|
||||
void Deallocate(void)
|
||||
{
|
||||
Xdip.resize(0);
|
||||
Ydip.resize(0);
|
||||
Cdip.resize(0);
|
||||
BLAS_Cred.resize(0);
|
||||
BLAS_C.resize(0);
|
||||
BLAS_X.resize(0);
|
||||
BLAS_Y.resize(0);
|
||||
}
|
||||
void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0)
|
||||
{
|
||||
std::vector<Field> Y_copy(AP.size(),AP[0].Grid());
|
||||
for(int r=0;r<AP.size();r++){
|
||||
Y_copy[r] = Y[r];
|
||||
}
|
||||
MulMatrix(AP,m,X);
|
||||
for(int r=0;r<AP.size();r++){
|
||||
AP[r] = scale*AP[r]+Y_copy[r];
|
||||
}
|
||||
}
|
||||
void MulMatrix(std::vector<Field> &Y, Eigen::MatrixXcd &m , const std::vector<Field> &X)
|
||||
{
|
||||
typedef typename Field::scalar_type scomplex;
|
||||
GridBase *grid;
|
||||
uint64_t vol;
|
||||
uint64_t words;
|
||||
|
||||
int nrhs = Y.size();
|
||||
grid = X[0].Grid();
|
||||
vol = grid->lSites();
|
||||
words = sizeof(scalar_object)/sizeof(scalar);
|
||||
int64_t vw = vol * words;
|
||||
|
||||
RealD t0 = usecond();
|
||||
BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
|
||||
BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
|
||||
BLAS_C.resize(nrhs * nrhs);// cost free if size doesn't change
|
||||
RealD t1 = usecond();
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// Copy in the multi-rhs sources
|
||||
/////////////////////////////////////////////
|
||||
for(int r=0;r<nrhs;r++){
|
||||
int64_t offset = r*vw;
|
||||
autoView(x_v,X[r],AcceleratorRead);
|
||||
acceleratorCopyDeviceToDevice(&x_v[0],&BLAS_X[offset],sizeof(scalar_object)*vol);
|
||||
}
|
||||
|
||||
// Assumes Eigen storage contiguous
|
||||
acceleratorCopyToDevice(&m(0,0),&BLAS_C[0],BLAS_C.size()*sizeof(scalar));
|
||||
|
||||
/*
|
||||
* in Fortran column major notation (cuBlas order)
|
||||
*
|
||||
* Xxr = [X1(x)][..][Xn(x)]
|
||||
* Yxr = [Y1(x)][..][Ym(x)]
|
||||
* Y = X . C
|
||||
*/
|
||||
deviceVector<scalar *> Xd(1);
|
||||
deviceVector<scalar *> Yd(1);
|
||||
deviceVector<scalar *> Cd(1);
|
||||
|
||||
scalar * Xh = & BLAS_X[0];
|
||||
scalar * Yh = & BLAS_Y[0];
|
||||
scalar * Ch = & BLAS_C[0];
|
||||
|
||||
acceleratorPut(Xd[0],Xh);
|
||||
acceleratorPut(Yd[0],Yh);
|
||||
acceleratorPut(Cd[0],Ch);
|
||||
|
||||
RealD t2 = usecond();
|
||||
GridBLAS BLAS;
|
||||
/////////////////////////////////////////
|
||||
// Y = X*C (transpose?)
|
||||
/////////////////////////////////////////
|
||||
BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
||||
vw,nrhs,nrhs,
|
||||
scalar(1.0),
|
||||
Xd,
|
||||
Cd,
|
||||
scalar(0.0), // wipe out Y
|
||||
Yd);
|
||||
BLAS.synchronise();
|
||||
RealD t3 = usecond();
|
||||
|
||||
// Copy back Y = m X
|
||||
for(int r=0;r<nrhs;r++){
|
||||
int64_t offset = r*vw;
|
||||
autoView(y_v,Y[r],AcceleratorWrite);
|
||||
acceleratorCopyDeviceToDevice(&BLAS_Y[offset],&y_v[0],sizeof(scalar_object)*vol);
|
||||
}
|
||||
RealD t4 = usecond();
|
||||
std::cout <<GridLogPerformance << "MulMatrix alloc took "<< t1-t0<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "MulMatrix preamble took "<< t2-t1<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "MulMatrix blas took "<< t3-t2<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "MulMatrix copy took "<< t4-t3<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "MulMatrix total "<< t4-t0<<" us"<<std::endl;
|
||||
}
|
||||
|
||||
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y)
|
||||
{
|
||||
#if 0
|
||||
int nrhs;
|
||||
GridBase *grid;
|
||||
uint64_t vol;
|
||||
uint64_t words;
|
||||
|
||||
nrhs = X.size();
|
||||
GRID_ASSERT(X.size()==Y.size());
|
||||
conformable(X[0],Y[0]);
|
||||
|
||||
grid = X[0].Grid();
|
||||
vol = grid->lSites();
|
||||
words = sizeof(scalar_object)/sizeof(scalar);
|
||||
int64_t vw = vol * words;
|
||||
|
||||
RealD t0 = usecond();
|
||||
BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
|
||||
BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
|
||||
BLAS_C.resize(nrhs * nrhs);// cost free if size doesn't change
|
||||
RealD t1 = usecond();
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// Copy in the multi-rhs sources
|
||||
/////////////////////////////////////////////
|
||||
for(int r=0;r<nrhs;r++){
|
||||
int64_t offset = r*vw;
|
||||
autoView(x_v,X[r],AcceleratorRead);
|
||||
acceleratorCopyDeviceToDevice(&x_v[0],&BLAS_X[offset],sizeof(scalar_object)*vol);
|
||||
autoView(y_v,Y[r],AcceleratorRead);
|
||||
acceleratorCopyDeviceToDevice(&y_v[0],&BLAS_Y[offset],sizeof(scalar_object)*vol);
|
||||
}
|
||||
RealD t2 = usecond();
|
||||
|
||||
/*
|
||||
* in Fortran column major notation (cuBlas order)
|
||||
*
|
||||
* Xxr = [X1(x)][..][Xn(x)]
|
||||
*
|
||||
* Yxr = [Y1(x)][..][Ym(x)]
|
||||
*
|
||||
* C_rs = X^dag Y
|
||||
*/
|
||||
deviceVector<scalar *> Xd(1);
|
||||
deviceVector<scalar *> Yd(1);
|
||||
deviceVector<scalar *> Cd(1);
|
||||
|
||||
scalar * Xh = & BLAS_X[0];
|
||||
scalar * Yh = & BLAS_Y[0];
|
||||
scalar * Ch = & BLAS_C[0];
|
||||
|
||||
acceleratorPut(Xd[0],Xh);
|
||||
acceleratorPut(Yd[0],Yh);
|
||||
acceleratorPut(Cd[0],Ch);
|
||||
|
||||
GridBLAS BLAS;
|
||||
|
||||
RealD t3 = usecond();
|
||||
/////////////////////////////////////////
|
||||
// C_rs = X^dag Y
|
||||
/////////////////////////////////////////
|
||||
BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,
|
||||
nrhs,nrhs,vw,
|
||||
ComplexD(1.0),
|
||||
Xd,
|
||||
Yd,
|
||||
ComplexD(0.0), // wipe out C
|
||||
Cd);
|
||||
BLAS.synchronise();
|
||||
RealD t4 = usecond();
|
||||
|
||||
std::vector<scalar> HOST_C(BLAS_C.size()); // nrhs . nrhs -- the coefficients
|
||||
acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar));
|
||||
grid->GlobalSumVector(&HOST_C[0],nrhs*nrhs);
|
||||
|
||||
RealD t5 = usecond();
|
||||
for(int rr=0;rr<nrhs;rr++){
|
||||
for(int r=0;r<nrhs;r++){
|
||||
int off = r+nrhs*rr;
|
||||
m(r,rr)=HOST_C[off];
|
||||
}
|
||||
}
|
||||
RealD t6 = usecond();
|
||||
uint64_t M=nrhs;
|
||||
uint64_t N=nrhs;
|
||||
uint64_t K=vw;
|
||||
RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K);
|
||||
RealD flops = 8.0*M*N*K;
|
||||
flops = flops/(t4-t3)/1.e3;
|
||||
bytes = bytes/(t4-t3)/1.e3;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix cp t2 "<< t2-t1<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix blas "<< flops<<" GF/s"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix blas "<< bytes<<" GB/s"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix gsum t5 "<< t5-t4<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix cp t6 "<< t6-t5<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
|
||||
#else
|
||||
int nrhs;
|
||||
GridBase *grid;
|
||||
uint64_t vol;
|
||||
uint64_t words;
|
||||
|
||||
nrhs = X.size();
|
||||
GRID_ASSERT(X.size()==Y.size());
|
||||
conformable(X[0],Y[0]);
|
||||
|
||||
grid = X[0].Grid();
|
||||
int rd0 = grid->_rdimensions[0] * grid->_rdimensions[1];
|
||||
vol = grid->oSites()/rd0;
|
||||
words = rd0*sizeof(vector_object)/sizeof(scalar);
|
||||
int64_t vw = vol * words;
|
||||
GRID_ASSERT(vw == grid->lSites()*sizeof(scalar_object)/sizeof(scalar));
|
||||
|
||||
RealD t0 = usecond();
|
||||
BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
|
||||
BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
|
||||
BLAS_Cred.resize(nrhs * nrhs * vol);// cost free if size doesn't change
|
||||
RealD t1 = usecond();
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// Copy in the multi-rhs sources -- layout batched BLAS ready
|
||||
/////////////////////////////////////////////
|
||||
for(int r=0;r<nrhs;r++){
|
||||
autoView(x_v,X[r],AcceleratorRead);
|
||||
autoView(y_v,Y[r],AcceleratorRead);
|
||||
scalar *from_x=(scalar *)&x_v[0];
|
||||
scalar *from_y=(scalar *)&y_v[0];
|
||||
scalar *BX = &BLAS_X[0];
|
||||
scalar *BY = &BLAS_Y[0];
|
||||
accelerator_for(ssw,vw,1,{
|
||||
uint64_t ss=ssw/words;
|
||||
uint64_t w=ssw%words;
|
||||
uint64_t offset = w+r*words+ss*nrhs*words; // [ss][rhs][words]
|
||||
BX[offset] = from_x[ssw];
|
||||
BY[offset] = from_y[ssw];
|
||||
});
|
||||
}
|
||||
RealD t2 = usecond();
|
||||
|
||||
/*
|
||||
* in Fortran column major notation (cuBlas order)
|
||||
*
|
||||
* Xxr = [X1(x)][..][Xn(x)]
|
||||
*
|
||||
* Yxr = [Y1(x)][..][Ym(x)]
|
||||
*
|
||||
* C_rs = X^dag Y
|
||||
*/
|
||||
Xdip.resize(vol);
|
||||
Ydip.resize(vol);
|
||||
Cdip.resize(vol);
|
||||
std::vector<scalar *> Xh(vol);
|
||||
std::vector<scalar *> Yh(vol);
|
||||
std::vector<scalar *> Ch(vol);
|
||||
for(uint64_t ss=0;ss<vol;ss++){
|
||||
|
||||
Xh[ss] = & BLAS_X[ss*nrhs*words];
|
||||
Yh[ss] = & BLAS_Y[ss*nrhs*words];
|
||||
Ch[ss] = & BLAS_Cred[ss*nrhs*nrhs];
|
||||
|
||||
}
|
||||
acceleratorCopyToDevice(&Xh[0],&Xdip[0],vol*sizeof(scalar *));
|
||||
acceleratorCopyToDevice(&Yh[0],&Ydip[0],vol*sizeof(scalar *));
|
||||
acceleratorCopyToDevice(&Ch[0],&Cdip[0],vol*sizeof(scalar *));
|
||||
|
||||
GridBLAS BLAS;
|
||||
|
||||
RealD t3 = usecond();
|
||||
/////////////////////////////////////////
|
||||
// C_rs = X^dag Y
|
||||
/////////////////////////////////////////
|
||||
BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,
|
||||
nrhs,nrhs,words,
|
||||
ComplexD(1.0),
|
||||
Xdip,
|
||||
Ydip,
|
||||
ComplexD(0.0), // wipe out C
|
||||
Cdip);
|
||||
BLAS.synchronise();
|
||||
RealD t4 = usecond();
|
||||
|
||||
std::vector<scalar> HOST_C(BLAS_Cred.size()); // nrhs . nrhs -- the coefficients
|
||||
acceleratorCopyFromDevice(&BLAS_Cred[0],&HOST_C[0],BLAS_Cred.size()*sizeof(scalar));
|
||||
|
||||
RealD t5 = usecond();
|
||||
m = Eigen::MatrixXcd::Zero(nrhs,nrhs);
|
||||
for(int ss=0;ss<vol;ss++){
|
||||
Eigen::Map<Eigen::MatrixXcd> eC((std::complex<double> *)&HOST_C[ss*nrhs*nrhs],nrhs,nrhs);
|
||||
m = m + eC;
|
||||
}
|
||||
RealD t6l = usecond();
|
||||
grid->GlobalSumVector((scalar *) &m(0,0),nrhs*nrhs);
|
||||
RealD t6 = usecond();
|
||||
uint64_t M=nrhs;
|
||||
uint64_t N=nrhs;
|
||||
uint64_t K=vw;
|
||||
RealD xybytes = grid->lSites()*sizeof(scalar_object);
|
||||
RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K);
|
||||
RealD flops = 8.0*M*N*K;
|
||||
flops = flops/(t4-t3)/1.e3;
|
||||
bytes = bytes/(t4-t3)/1.e3;
|
||||
xybytes = 4*xybytes/(t2-t1)/1.e3;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix cp t2 "<< t2-t1<<" us "<<xybytes<<" GB/s"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix blas "<< flops<<" GF/s"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix blas "<< bytes<<" GB/s"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix cp t5 "<< t5-t4<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix lsum t6l "<< t6l-t5<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix gsum t6 "<< t6-t6l<<" us"<<std::endl;
|
||||
std::cout <<GridLogPerformance<< "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
513
Grid/algorithms/deflation/MultiRHSBlockProject.h
Normal file
513
Grid/algorithms/deflation/MultiRHSBlockProject.h
Normal file
@@ -0,0 +1,513 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: MultiRHSDeflation.h
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
/*
|
||||
MultiRHS block projection
|
||||
|
||||
Import basis -> nblock x nbasis x (block x internal)
|
||||
Import vector of fine lattice objects -> nblock x nrhs x (block x internal)
|
||||
|
||||
=> coarse_(nrhs x nbasis )^block = via batched GEMM
|
||||
|
||||
//template<class vobj,class CComplex,int nbasis,class VLattice>
|
||||
//inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
|
||||
// const VLattice &fineData,
|
||||
// const VLattice &Basis)
|
||||
*/
|
||||
|
||||
template<class Field>
|
||||
class MultiRHSBlockProject
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename Field::scalar_type scalar;
|
||||
typedef typename Field::scalar_object scalar_object;
|
||||
typedef Field Fermion;
|
||||
|
||||
int nbasis;
|
||||
GridBase *coarse_grid;
|
||||
GridBase *fine_grid;
|
||||
uint64_t block_vol;
|
||||
uint64_t fine_vol;
|
||||
uint64_t coarse_vol;
|
||||
uint64_t words;
|
||||
|
||||
// Row major layout "C" order:
|
||||
// BLAS_V[coarse_vol][nbasis][block_vol][words]
|
||||
// BLAS_F[coarse_vol][nrhs][block_vol][words]
|
||||
// BLAS_C[coarse_vol][nrhs][nbasis]
|
||||
/*
|
||||
* in Fortran column major notation (cuBlas order)
|
||||
*
|
||||
* Vxb = [v1(x)][..][vn(x)] ... x coarse vol
|
||||
*
|
||||
* Fxr = [r1(x)][..][rm(x)] ... x coarse vol
|
||||
*
|
||||
* Block project:
|
||||
* C_br = V^dag F x coarse vol
|
||||
*
|
||||
* Block promote:
|
||||
* F_xr = Vxb Cbr x coarse_vol
|
||||
*/
|
||||
deviceVector<scalar> BLAS_V; // words * block_vol * nbasis x coarse_vol
|
||||
deviceVector<scalar> BLAS_F; // nrhs x fine_vol * words -- the sources
|
||||
deviceVector<scalar> BLAS_C; // nrhs x coarse_vol * nbasis -- the coarse coeffs
|
||||
|
||||
RealD blasNorm2(deviceVector<scalar> &blas)
|
||||
{
|
||||
scalar ss(0.0);
|
||||
std::vector<scalar> tmp(blas.size());
|
||||
acceleratorCopyFromDevice(&blas[0],&tmp[0],blas.size()*sizeof(scalar));
|
||||
for(int64_t s=0;s<blas.size();s++){
|
||||
ss=ss+tmp[s]*adj(tmp[s]);
|
||||
}
|
||||
coarse_grid->GlobalSum(ss);
|
||||
return real(ss);
|
||||
}
|
||||
|
||||
MultiRHSBlockProject(){};
|
||||
~MultiRHSBlockProject(){ Deallocate(); };
|
||||
|
||||
void Deallocate(void)
|
||||
{
|
||||
nbasis=0;
|
||||
coarse_grid=nullptr;
|
||||
fine_grid=nullptr;
|
||||
fine_vol=0;
|
||||
block_vol=0;
|
||||
coarse_vol=0;
|
||||
words=0;
|
||||
BLAS_V.resize(0);
|
||||
BLAS_F.resize(0);
|
||||
BLAS_C.resize(0);
|
||||
}
|
||||
void Allocate(int _nbasis,GridBase *_fgrid,GridBase *_cgrid)
|
||||
{
|
||||
nbasis=_nbasis;
|
||||
|
||||
fine_grid=_fgrid;
|
||||
coarse_grid=_cgrid;
|
||||
|
||||
fine_vol = fine_grid->lSites();
|
||||
coarse_vol = coarse_grid->lSites();
|
||||
block_vol = fine_vol/coarse_vol;
|
||||
|
||||
words = sizeof(scalar_object)/sizeof(scalar);
|
||||
|
||||
BLAS_V.resize (fine_vol * words * nbasis );
|
||||
}
|
||||
void ImportFineGridVectors(std::vector <Field > &vecs, deviceVector<scalar> &blas)
|
||||
{
|
||||
int nvec = vecs.size();
|
||||
typedef typename Field::vector_object vobj;
|
||||
// std::cout << GridLogMessage <<" BlockProjector importing "<<nvec<< " fine grid vectors" <<std::endl;
|
||||
|
||||
GRID_ASSERT(vecs[0].Grid()==fine_grid);
|
||||
|
||||
subdivides(coarse_grid,fine_grid); // require they map
|
||||
|
||||
int _ndimension = coarse_grid->_ndimension;
|
||||
GRID_ASSERT(block_vol == fine_grid->oSites() / coarse_grid->oSites());
|
||||
|
||||
Coordinate block_r (_ndimension);
|
||||
for(int d=0 ; d<_ndimension;d++){
|
||||
block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d];
|
||||
}
|
||||
|
||||
uint64_t sz = blas.size();
|
||||
|
||||
acceleratorMemSet(&blas[0],0,blas.size()*sizeof(scalar));
|
||||
|
||||
Coordinate fine_rdimensions = fine_grid->_rdimensions;
|
||||
Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
|
||||
int64_t bv= block_vol;
|
||||
for(int v=0;v<vecs.size();v++){
|
||||
|
||||
// std::cout << " BlockProjector importing vector"<<v<<" "<<norm2(vecs[v])<<std::endl;
|
||||
autoView( fineData , vecs[v], AcceleratorRead);
|
||||
|
||||
auto blasData_p = &blas[0];
|
||||
auto fineData_p = &fineData[0];
|
||||
|
||||
int64_t osites = fine_grid->oSites();
|
||||
|
||||
// loop over fine sites
|
||||
const int Nsimd = vobj::Nsimd();
|
||||
// std::cout << "sz "<<sz<<std::endl;
|
||||
// std::cout << "prod "<<Nsimd * coarse_grid->oSites() * block_vol * nvec * words<<std::endl;
|
||||
GRID_ASSERT(sz == Nsimd * coarse_grid->oSites() * block_vol * nvec * words);
|
||||
uint64_t lwords= words; // local variable for copy in to GPU
|
||||
accelerator_for(sf,osites,Nsimd,{
|
||||
#ifdef GRID_SIMT
|
||||
{
|
||||
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
|
||||
#else
|
||||
for(int lane=0;lane<Nsimd;lane++) {
|
||||
#endif
|
||||
// One thread per fine site
|
||||
Coordinate coor_f(_ndimension);
|
||||
Coordinate coor_b(_ndimension);
|
||||
Coordinate coor_c(_ndimension);
|
||||
|
||||
// Fine site to fine coor
|
||||
Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions);
|
||||
|
||||
for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d];
|
||||
for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d];
|
||||
|
||||
int sc;// coarse site
|
||||
int sb;// block site
|
||||
Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions);
|
||||
Lexicographic::IndexFromCoor(coor_b,sb,block_r);
|
||||
|
||||
scalar_object data = extractLane(lane,fineData[sf]);
|
||||
|
||||
// BLAS layout address calculation
|
||||
// words * block_vol * nbasis x coarse_vol
|
||||
// coarse oSite x block vole x lanes
|
||||
int64_t site = (lane*osites + sc*bv)*nvec
|
||||
+ v*bv
|
||||
+ sb;
|
||||
|
||||
// GRID_ASSERT(site*lwords<sz);
|
||||
|
||||
scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords];
|
||||
|
||||
*ptr = data;
|
||||
#ifdef GRID_SIMT
|
||||
}
|
||||
#else
|
||||
}
|
||||
#endif
|
||||
});
|
||||
// std::cout << " import fine Blas norm "<<blasNorm2(blas)<<std::endl;
|
||||
// std::cout << " BlockProjector imported vector"<<v<<std::endl;
|
||||
}
|
||||
}
|
||||
void ExportFineGridVectors(std::vector <Field> &vecs, deviceVector<scalar> &blas)
|
||||
{
|
||||
typedef typename Field::vector_object vobj;
|
||||
|
||||
int nvec = vecs.size();
|
||||
|
||||
GRID_ASSERT(vecs[0].Grid()==fine_grid);
|
||||
|
||||
subdivides(coarse_grid,fine_grid); // require they map
|
||||
|
||||
int _ndimension = coarse_grid->_ndimension;
|
||||
GRID_ASSERT(block_vol == fine_grid->oSites() / coarse_grid->oSites());
|
||||
|
||||
Coordinate block_r (_ndimension);
|
||||
for(int d=0 ; d<_ndimension;d++){
|
||||
block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d];
|
||||
}
|
||||
Coordinate fine_rdimensions = fine_grid->_rdimensions;
|
||||
Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
|
||||
|
||||
// std::cout << " export fine Blas norm "<<blasNorm2(blas)<<std::endl;
|
||||
|
||||
int64_t bv= block_vol;
|
||||
for(int v=0;v<vecs.size();v++){
|
||||
|
||||
autoView( fineData , vecs[v], AcceleratorWrite);
|
||||
|
||||
auto blasData_p = &blas[0];
|
||||
auto fineData_p = &fineData[0];
|
||||
|
||||
int64_t osites = fine_grid->oSites();
|
||||
uint64_t lwords = words;
|
||||
// std::cout << " Nsimd is "<<vobj::Nsimd() << std::endl;
|
||||
// std::cout << " lwords is "<<lwords << std::endl;
|
||||
// std::cout << " sizeof(scalar_object) is "<<sizeof(scalar_object) << std::endl;
|
||||
// loop over fine sites
|
||||
accelerator_for(sf,osites,vobj::Nsimd(),{
|
||||
|
||||
#ifdef GRID_SIMT
|
||||
{
|
||||
int lane=acceleratorSIMTlane(vobj::Nsimd()); // buffer lane
|
||||
#else
|
||||
for(int lane=0;lane<vobj::Nsimd();lane++) {
|
||||
#endif
|
||||
// One thread per fine site
|
||||
Coordinate coor_f(_ndimension);
|
||||
Coordinate coor_b(_ndimension);
|
||||
Coordinate coor_c(_ndimension);
|
||||
|
||||
Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions);
|
||||
|
||||
for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d];
|
||||
for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d];
|
||||
|
||||
int sc;
|
||||
int sb;
|
||||
Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions);
|
||||
Lexicographic::IndexFromCoor(coor_b,sb,block_r);
|
||||
|
||||
// BLAS layout address calculation
|
||||
// words * block_vol * nbasis x coarse_vol
|
||||
int64_t site = (lane*osites + sc*bv)*nvec
|
||||
+ v*bv
|
||||
+ sb;
|
||||
|
||||
scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords];
|
||||
|
||||
scalar_object data = *ptr;
|
||||
|
||||
insertLane(lane,fineData[sf],data);
|
||||
#ifdef GRID_SIMT
|
||||
}
|
||||
#else
|
||||
}
|
||||
#endif
|
||||
});
|
||||
}
|
||||
}
|
||||
template<class vobj>
|
||||
void ImportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas)
|
||||
{
|
||||
int nvec = vecs.size();
|
||||
typedef typename vobj::scalar_object coarse_scalar_object;
|
||||
|
||||
// std::cout << " BlockProjector importing "<<nvec<< " coarse grid vectors" <<std::endl;
|
||||
|
||||
GRID_ASSERT(vecs[0].Grid()==coarse_grid);
|
||||
|
||||
int _ndimension = coarse_grid->_ndimension;
|
||||
|
||||
uint64_t sz = blas.size();
|
||||
|
||||
Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
|
||||
|
||||
for(int v=0;v<vecs.size();v++){
|
||||
|
||||
// std::cout << " BlockProjector importing coarse vector"<<v<<" "<<norm2(vecs[v])<<std::endl;
|
||||
autoView( coarseData , vecs[v], AcceleratorRead);
|
||||
|
||||
auto blasData_p = &blas[0];
|
||||
auto coarseData_p = &coarseData[0];
|
||||
|
||||
int64_t osites = coarse_grid->oSites();
|
||||
|
||||
// loop over fine sites
|
||||
const int Nsimd = vobj::Nsimd();
|
||||
uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar);
|
||||
GRID_ASSERT(cwords==nbasis);
|
||||
|
||||
accelerator_for(sc,osites,Nsimd,{
|
||||
#ifdef GRID_SIMT
|
||||
{
|
||||
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
|
||||
#else
|
||||
for(int lane=0;lane<Nsimd;lane++) {
|
||||
#endif
|
||||
// C_br per site
|
||||
int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords;
|
||||
|
||||
coarse_scalar_object data = extractLane(lane,coarseData[sc]);
|
||||
|
||||
coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site];
|
||||
|
||||
*ptr = data;
|
||||
#ifdef GRID_SIMT
|
||||
}
|
||||
#else
|
||||
}
|
||||
#endif
|
||||
});
|
||||
// std::cout << " import coarsee Blas norm "<<blasNorm2(blas)<<std::endl;
|
||||
}
|
||||
}
|
||||
template<class vobj>
|
||||
void ExportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas)
|
||||
{
|
||||
int nvec = vecs.size();
|
||||
typedef typename vobj::scalar_object coarse_scalar_object;
|
||||
// std::cout << GridLogMessage<<" BlockProjector exporting "<<nvec<< " coarse grid vectors" <<std::endl;
|
||||
|
||||
GRID_ASSERT(vecs[0].Grid()==coarse_grid);
|
||||
|
||||
int _ndimension = coarse_grid->_ndimension;
|
||||
|
||||
uint64_t sz = blas.size();
|
||||
|
||||
Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
|
||||
|
||||
// std::cout << " export coarsee Blas norm "<<blasNorm2(blas)<<std::endl;
|
||||
for(int v=0;v<vecs.size();v++){
|
||||
|
||||
// std::cout << " BlockProjector exporting coarse vector"<<v<<std::endl;
|
||||
autoView( coarseData , vecs[v], AcceleratorWrite);
|
||||
|
||||
auto blasData_p = &blas[0];
|
||||
auto coarseData_p = &coarseData[0];
|
||||
|
||||
int64_t osites = coarse_grid->oSites();
|
||||
|
||||
// loop over fine sites
|
||||
const int Nsimd = vobj::Nsimd();
|
||||
uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar);
|
||||
GRID_ASSERT(cwords==nbasis);
|
||||
|
||||
accelerator_for(sc,osites,Nsimd,{
|
||||
// Wrap in a macro "FOR_ALL_LANES(lane,{ ... });
|
||||
#ifdef GRID_SIMT
|
||||
{
|
||||
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
|
||||
#else
|
||||
for(int lane=0;lane<Nsimd;lane++) {
|
||||
#endif
|
||||
int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords;
|
||||
coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site];
|
||||
coarse_scalar_object data = *ptr;
|
||||
insertLane(lane,coarseData[sc],data);
|
||||
#ifdef GRID_SIMT
|
||||
}
|
||||
#else
|
||||
}
|
||||
#endif
|
||||
});
|
||||
}
|
||||
}
|
||||
void ImportBasis(std::vector < Field > &vecs)
|
||||
{
|
||||
// std::cout << " BlockProjector Import basis size "<<vecs.size()<<std::endl;
|
||||
ImportFineGridVectors(vecs,BLAS_V);
|
||||
}
|
||||
|
||||
template<class cobj>
|
||||
void blockProject(std::vector<Field> &fine,std::vector< Lattice<cobj> > & coarse)
|
||||
{
|
||||
int nrhs=fine.size();
|
||||
int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar);
|
||||
// std::cout << "blockProject nbasis " <<nbasis<<" " << _nbasis<<std::endl;
|
||||
GRID_ASSERT(nbasis==_nbasis);
|
||||
|
||||
BLAS_F.resize (fine_vol * words * nrhs );
|
||||
BLAS_C.resize (coarse_vol * nbasis * nrhs );
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// Copy in the multi-rhs sources to same data layout
|
||||
/////////////////////////////////////////////
|
||||
// std::cout << "BlockProject import fine"<<std::endl;
|
||||
ImportFineGridVectors(fine,BLAS_F);
|
||||
|
||||
deviceVector<scalar *> Vd(coarse_vol);
|
||||
deviceVector<scalar *> Fd(coarse_vol);
|
||||
deviceVector<scalar *> Cd(coarse_vol);
|
||||
|
||||
// std::cout << "BlockProject pointers"<<std::endl;
|
||||
for(int c=0;c<coarse_vol;c++){
|
||||
// BLAS_V[coarse_vol][nbasis][block_vol][words]
|
||||
// BLAS_F[coarse_vol][nrhs][block_vol][words]
|
||||
// BLAS_C[coarse_vol][nrhs][nbasis]
|
||||
scalar * Vh = & BLAS_V[c*nbasis*block_vol*words];
|
||||
scalar * Fh = & BLAS_F[c*nrhs*block_vol*words];
|
||||
scalar * Ch = & BLAS_C[c*nrhs*nbasis];
|
||||
|
||||
acceleratorPut(Vd[c],Vh);
|
||||
acceleratorPut(Fd[c],Fh);
|
||||
acceleratorPut(Cd[c],Ch);
|
||||
}
|
||||
|
||||
GridBLAS BLAS;
|
||||
|
||||
// std::cout << "BlockProject BLAS"<<std::endl;
|
||||
int64_t vw = block_vol * words;
|
||||
/////////////////////////////////////////
|
||||
// C_br = V^dag R
|
||||
/////////////////////////////////////////
|
||||
BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,
|
||||
nbasis,nrhs,vw,
|
||||
scalar(1.0),
|
||||
Vd,
|
||||
Fd,
|
||||
scalar(0.0), // wipe out C
|
||||
Cd);
|
||||
BLAS.synchronise();
|
||||
// std::cout << "BlockProject done"<<std::endl;
|
||||
ExportCoarseGridVectors(coarse, BLAS_C);
|
||||
// std::cout << "BlockProject done"<<std::endl;
|
||||
|
||||
}
|
||||
|
||||
template<class cobj>
|
||||
void blockPromote(std::vector<Field> &fine,std::vector<Lattice<cobj> > & coarse)
|
||||
{
|
||||
int nrhs=fine.size();
|
||||
int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar);
|
||||
GRID_ASSERT(nbasis==_nbasis);
|
||||
|
||||
BLAS_F.resize (fine_vol * words * nrhs );
|
||||
BLAS_C.resize (coarse_vol * nbasis * nrhs );
|
||||
|
||||
ImportCoarseGridVectors(coarse, BLAS_C);
|
||||
|
||||
GridBLAS BLAS;
|
||||
|
||||
deviceVector<scalar *> Vd(coarse_vol);
|
||||
deviceVector<scalar *> Fd(coarse_vol);
|
||||
deviceVector<scalar *> Cd(coarse_vol);
|
||||
|
||||
for(int c=0;c<coarse_vol;c++){
|
||||
// BLAS_V[coarse_vol][nbasis][block_vol][words]
|
||||
// BLAS_F[coarse_vol][nrhs][block_vol][words]
|
||||
// BLAS_C[coarse_vol][nrhs][nbasis]
|
||||
scalar * Vh = & BLAS_V[c*nbasis*block_vol*words];
|
||||
scalar * Fh = & BLAS_F[c*nrhs*block_vol*words];
|
||||
scalar * Ch = & BLAS_C[c*nrhs*nbasis];
|
||||
acceleratorPut(Vd[c],Vh);
|
||||
acceleratorPut(Fd[c],Fh);
|
||||
acceleratorPut(Cd[c],Ch);
|
||||
}
|
||||
|
||||
/////////////////////////////////////////
|
||||
// Block promote:
|
||||
// F_xr = Vxb Cbr (x coarse_vol)
|
||||
/////////////////////////////////////////
|
||||
|
||||
int64_t vw = block_vol * words;
|
||||
BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
||||
vw,nrhs,nbasis,
|
||||
scalar(1.0),
|
||||
Vd,
|
||||
Cd,
|
||||
scalar(0.0), // wipe out C
|
||||
Fd);
|
||||
BLAS.synchronise();
|
||||
// std::cout << " blas call done"<<std::endl;
|
||||
|
||||
ExportFineGridVectors(fine, BLAS_F);
|
||||
// std::cout << " exported "<<std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
233
Grid/algorithms/deflation/MultiRHSDeflation.h
Normal file
233
Grid/algorithms/deflation/MultiRHSDeflation.h
Normal file
@@ -0,0 +1,233 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: MultiRHSDeflation.h
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
/* Need helper object for BLAS accelerated mrhs projection
|
||||
|
||||
i) MultiRHS Deflation
|
||||
|
||||
Import Evecs -> nev x vol x internal
|
||||
Import vector of Lattice objects -> nrhs x vol x internal
|
||||
=> Cij (nrhs x Nev) via GEMM.
|
||||
=> Guess (nrhs x vol x internal) = C x evecs (via GEMM)
|
||||
Export
|
||||
|
||||
|
||||
ii) MultiRHS block projection
|
||||
|
||||
Import basis -> nblock x nbasis x (block x internal)
|
||||
Import vector of fine lattice objects -> nblock x nrhs x (block x internal)
|
||||
|
||||
=> coarse_(nrhs x nbasis )^block = via batched GEMM
|
||||
|
||||
iii) Alternate interface:
|
||||
Import higher dim Lattice object-> vol x nrhs layout
|
||||
|
||||
*/
|
||||
template<class Field>
|
||||
class MultiRHSDeflation
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename Field::scalar_type scalar;
|
||||
typedef typename Field::scalar_object scalar_object;
|
||||
|
||||
int nev;
|
||||
std::vector<RealD> eval;
|
||||
GridBase *grid;
|
||||
uint64_t vol;
|
||||
uint64_t words;
|
||||
|
||||
deviceVector<scalar> BLAS_E; // nev x vol -- the eigenbasis (up to a 1/sqrt(lambda))
|
||||
deviceVector<scalar> BLAS_R; // nrhs x vol -- the sources
|
||||
deviceVector<scalar> BLAS_G; // nrhs x vol -- the guess
|
||||
deviceVector<scalar> BLAS_C; // nrhs x nev -- the coefficients
|
||||
|
||||
MultiRHSDeflation(){};
|
||||
~MultiRHSDeflation(){ Deallocate(); };
|
||||
|
||||
void Deallocate(void)
|
||||
{
|
||||
nev=0;
|
||||
grid=nullptr;
|
||||
vol=0;
|
||||
words=0;
|
||||
BLAS_E.resize(0);
|
||||
BLAS_R.resize(0);
|
||||
BLAS_C.resize(0);
|
||||
BLAS_G.resize(0);
|
||||
}
|
||||
void Allocate(int _nev,GridBase *_grid)
|
||||
{
|
||||
nev=_nev;
|
||||
grid=_grid;
|
||||
vol = grid->lSites();
|
||||
words = sizeof(scalar_object)/sizeof(scalar);
|
||||
eval.resize(nev);
|
||||
BLAS_E.resize (vol * words * nev );
|
||||
std::cout << GridLogMessage << " Allocate for "<<nev<<" eigenvectors and volume "<<vol<<std::endl;
|
||||
}
|
||||
void ImportEigenVector(Field &evec,RealD &_eval, int ev)
|
||||
{
|
||||
// std::cout << " ev " <<ev<<" eval "<<_eval<< std::endl;
|
||||
GRID_ASSERT(ev<eval.size());
|
||||
eval[ev] = _eval;
|
||||
|
||||
int64_t offset = ev*vol*words;
|
||||
autoView(v,evec,AcceleratorRead);
|
||||
acceleratorCopyDeviceToDevice(&v[0],&BLAS_E[offset],sizeof(scalar_object)*vol);
|
||||
|
||||
}
|
||||
void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval)
|
||||
{
|
||||
ImportEigenBasis(evec,_eval,0,evec.size());
|
||||
}
|
||||
// Could use to import a batch of eigenvectors
|
||||
void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval, int _ev0, int _nev)
|
||||
{
|
||||
GRID_ASSERT(_ev0+_nev<=evec.size());
|
||||
|
||||
Allocate(_nev,evec[0].Grid());
|
||||
|
||||
// Imports a sub-batch of eigenvectors, _ev0, ..., _ev0+_nev-1
|
||||
for(int e=0;e<nev;e++){
|
||||
std::cout << "Importing eigenvector "<<e<<" evalue "<<_eval[_ev0+e]<<std::endl;
|
||||
ImportEigenVector(evec[_ev0+e],_eval[_ev0+e],e);
|
||||
}
|
||||
}
|
||||
void DeflateSources(std::vector<Field> &source,std::vector<Field> & guess)
|
||||
{
|
||||
int nrhs = source.size();
|
||||
GRID_ASSERT(source.size()==guess.size());
|
||||
GRID_ASSERT(grid == guess[0].Grid());
|
||||
conformable(guess[0],source[0]);
|
||||
|
||||
int64_t vw = vol * words;
|
||||
|
||||
RealD t0 = usecond();
|
||||
BLAS_R.resize(nrhs * vw); // cost free if size doesn't change
|
||||
BLAS_G.resize(nrhs * vw); // cost free if size doesn't change
|
||||
BLAS_C.resize(nev * nrhs);// cost free if size doesn't change
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// Copy in the multi-rhs sources
|
||||
/////////////////////////////////////////////
|
||||
// for(int r=0;r<nrhs;r++){
|
||||
// std::cout << " source["<<r<<"] = "<<norm2(source[r])<<std::endl;
|
||||
// }
|
||||
for(int r=0;r<nrhs;r++){
|
||||
int64_t offset = r*vw;
|
||||
autoView(v,source[r],AcceleratorRead);
|
||||
acceleratorCopyDeviceToDevice(&v[0],&BLAS_R[offset],sizeof(scalar_object)*vol);
|
||||
}
|
||||
|
||||
/*
|
||||
* in Fortran column major notation (cuBlas order)
|
||||
*
|
||||
* Exe = [e1(x)][..][en(x)]
|
||||
*
|
||||
* Rxr = [r1(x)][..][rm(x)]
|
||||
*
|
||||
* C_er = E^dag R
|
||||
* C_er = C_er / lambda_e
|
||||
* G_xr = Exe Cer
|
||||
*/
|
||||
deviceVector<scalar *> Ed(1);
|
||||
deviceVector<scalar *> Rd(1);
|
||||
deviceVector<scalar *> Cd(1);
|
||||
deviceVector<scalar *> Gd(1);
|
||||
|
||||
scalar * Eh = & BLAS_E[0];
|
||||
scalar * Rh = & BLAS_R[0];
|
||||
scalar * Ch = & BLAS_C[0];
|
||||
scalar * Gh = & BLAS_G[0];
|
||||
|
||||
acceleratorPut(Ed[0],Eh);
|
||||
acceleratorPut(Rd[0],Rh);
|
||||
acceleratorPut(Cd[0],Ch);
|
||||
acceleratorPut(Gd[0],Gh);
|
||||
|
||||
GridBLAS BLAS;
|
||||
|
||||
/////////////////////////////////////////
|
||||
// C_er = E^dag R
|
||||
/////////////////////////////////////////
|
||||
BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,
|
||||
nev,nrhs,vw,
|
||||
scalar(1.0),
|
||||
Ed,
|
||||
Rd,
|
||||
scalar(0.0), // wipe out C
|
||||
Cd);
|
||||
BLAS.synchronise();
|
||||
|
||||
GRID_ASSERT(BLAS_C.size()==nev*nrhs);
|
||||
|
||||
std::vector<scalar> HOST_C(BLAS_C.size()); // nrhs . nev -- the coefficients
|
||||
acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar));
|
||||
grid->GlobalSumVector(&HOST_C[0],nev*nrhs);
|
||||
for(int e=0;e<nev;e++){
|
||||
RealD lam(1.0/eval[e]);
|
||||
for(int r=0;r<nrhs;r++){
|
||||
int off = e+nev*r;
|
||||
HOST_C[off]=HOST_C[off] * lam;
|
||||
// std::cout << "C["<<e<<"]["<<r<<"] ="<<HOST_C[off]<< " eval[e] "<<eval[e] <<std::endl;
|
||||
}
|
||||
}
|
||||
acceleratorCopyToDevice(&HOST_C[0],&BLAS_C[0],BLAS_C.size()*sizeof(scalar));
|
||||
|
||||
|
||||
/////////////////////////////////////////
|
||||
// Guess G_xr = Exe Cer
|
||||
/////////////////////////////////////////
|
||||
BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
||||
vw,nrhs,nev,
|
||||
scalar(1.0),
|
||||
Ed, // x . nev
|
||||
Cd, // nev . nrhs
|
||||
scalar(0.0),
|
||||
Gd);
|
||||
BLAS.synchronise();
|
||||
|
||||
///////////////////////////////////////
|
||||
// Copy out the multirhs
|
||||
///////////////////////////////////////
|
||||
for(int r=0;r<nrhs;r++){
|
||||
int64_t offset = r*vw;
|
||||
autoView(v,guess[r],AcceleratorWrite);
|
||||
acceleratorCopyDeviceToDevice(&BLAS_G[offset],&v[0],sizeof(scalar_object)*vol);
|
||||
}
|
||||
RealD t1 = usecond();
|
||||
std::cout << GridLogMessage << "MultiRHSDeflation for "<<nrhs<<" sources with "<<nev<<" eigenvectors took " << (t1-t0)/1e3 <<" ms"<<std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
@@ -41,6 +41,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
*/
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
template<class Field>
|
||||
class TwoLevelCG : public LinearFunction<Field>
|
||||
{
|
||||
@@ -69,7 +70,7 @@ class TwoLevelCG : public LinearFunction<Field>
|
||||
|
||||
virtual void operator() (const Field &src, Field &x)
|
||||
{
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg starting"<<std::endl;
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg starting single RHS"<<std::endl;
|
||||
RealD f;
|
||||
RealD rtzp,rtz,a,d,b;
|
||||
RealD rptzp;
|
||||
@@ -246,7 +247,7 @@ class TwoLevelCG : public LinearFunction<Field>
|
||||
/////////////////////////////
|
||||
// Set up history vectors
|
||||
/////////////////////////////
|
||||
int mmax = 2;
|
||||
int mmax = 3;
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
|
||||
src[0].Grid()->Barrier();
|
||||
std::vector<std::vector<Field> > p(nrhs); for(int r=0;r<nrhs;r++) p[r].resize(mmax,grid);
|
||||
@@ -269,7 +270,7 @@ class TwoLevelCG : public LinearFunction<Field>
|
||||
std::vector<RealD> src_nrm(nrhs);
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
src_nrm[rhs]=norm2(src[rhs]);
|
||||
assert(src_nrm[rhs]!=0.0);
|
||||
GRID_ASSERT(src_nrm[rhs]!=0.0);
|
||||
}
|
||||
std::vector<RealD> tn(nrhs);
|
||||
|
||||
@@ -278,9 +279,9 @@ class TwoLevelCG : public LinearFunction<Field>
|
||||
//////////////////////////
|
||||
// x0 = Vstart -- possibly modify guess
|
||||
//////////////////////////
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
Vstart(x[rhs],src[rhs]);
|
||||
Vstart(x,src);
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
// r0 = b -A x0
|
||||
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
|
||||
axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]); // Recomputes r=src-Ax0
|
||||
@@ -324,7 +325,9 @@ class TwoLevelCG : public LinearFunction<Field>
|
||||
|
||||
// Compute z = M x (for *all* RHS)
|
||||
PcgM1(r,z);
|
||||
|
||||
std::cout << GridLogMessage<<"HDCG::fPcg M1 complete"<<std::endl;
|
||||
grid->Barrier();
|
||||
|
||||
RealD max_rn=0.0;
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
|
||||
@@ -397,12 +400,19 @@ class TwoLevelCG : public LinearFunction<Field>
|
||||
|
||||
virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out)
|
||||
{
|
||||
std::cout << "PcgM1 default (cheat) mrhs versoin"<<std::endl;
|
||||
std::cout << "PcgM1 default (cheat) mrhs version"<<std::endl;
|
||||
for(int rhs=0;rhs<in.size();rhs++){
|
||||
this->PcgM1(in[rhs],out[rhs]);
|
||||
}
|
||||
}
|
||||
virtual void PcgM1(Field & in, Field & out) =0;
|
||||
virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src)
|
||||
{
|
||||
std::cout << "Vstart default (cheat) mrhs version"<<std::endl;
|
||||
for(int rhs=0;rhs<x.size();rhs++){
|
||||
this->Vstart(x[rhs],src[rhs]);
|
||||
}
|
||||
}
|
||||
virtual void Vstart(Field & x,const Field & src)=0;
|
||||
|
||||
virtual void PcgM2(const Field & in, Field & out) {
|
||||
@@ -528,85 +538,6 @@ class TwoLevelADEF2 : public TwoLevelCG<Field>
|
||||
|
||||
};
|
||||
|
||||
template<class Field, class CoarseField, class Aggregation>
|
||||
class TwoLevelADEF2mrhs : public TwoLevelADEF2<Field,CoarseField,Aggregation>
|
||||
{
|
||||
public:
|
||||
GridBase *coarsegridmrhs;
|
||||
LinearFunction<CoarseField> &_CoarseSolverMrhs;
|
||||
LinearFunction<CoarseField> &_CoarseGuesser;
|
||||
TwoLevelADEF2mrhs(RealD tol,
|
||||
Integer maxit,
|
||||
LinearOperatorBase<Field> &FineLinop,
|
||||
LinearFunction<Field> &Smoother,
|
||||
LinearFunction<CoarseField> &CoarseSolver,
|
||||
LinearFunction<CoarseField> &CoarseSolverPrecise,
|
||||
LinearFunction<CoarseField> &CoarseSolverMrhs,
|
||||
LinearFunction<CoarseField> &CoarseGuesser,
|
||||
GridBase *rhsgrid,
|
||||
Aggregation &Aggregates) :
|
||||
TwoLevelADEF2<Field,CoarseField,Aggregation>(tol, maxit,FineLinop,Smoother,CoarseSolver,CoarseSolverPrecise,Aggregates),
|
||||
_CoarseSolverMrhs(CoarseSolverMrhs),
|
||||
_CoarseGuesser(CoarseGuesser)
|
||||
{
|
||||
coarsegridmrhs = rhsgrid;
|
||||
};
|
||||
|
||||
virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out){
|
||||
|
||||
int nrhs=in.size();
|
||||
std::cout << " mrhs PcgM1 for "<<nrhs<<" right hand sides"<<std::endl;
|
||||
// [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
|
||||
Field tmp(this->grid);
|
||||
std::vector<Field> Min(nrhs,this->grid);
|
||||
CoarseField PleftProj(this->coarsegrid);
|
||||
CoarseField PleftMss_proj(this->coarsegrid);
|
||||
|
||||
CoarseField PleftProjMrhs(this->coarsegridmrhs);
|
||||
CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
this->grid->Barrier();
|
||||
std::cout << " Calling smoother for "<<rhs<<std::endl;
|
||||
this->grid->Barrier();
|
||||
this->_Smoother(in[rhs],Min[rhs]);
|
||||
this->grid->Barrier();
|
||||
std::cout << " smoother done "<<rhs<<std::endl;
|
||||
this->grid->Barrier();
|
||||
this->_FineLinop.HermOp(Min[rhs],out[rhs]);
|
||||
this->grid->Barrier();
|
||||
std::cout << " Hermop for "<<rhs<<std::endl;
|
||||
this->grid->Barrier();
|
||||
axpy(tmp,-1.0,out[rhs],in[rhs]); // tmp = in - A Min
|
||||
this->grid->Barrier();
|
||||
std::cout << " axpy "<<rhs<<std::endl;
|
||||
this->grid->Barrier();
|
||||
this->_Aggregates.ProjectToSubspace(PleftProj,tmp); // can optimise later
|
||||
this->grid->Barrier();
|
||||
std::cout << " project "<<rhs<<std::endl;
|
||||
this->grid->Barrier();
|
||||
InsertSlice(PleftProj,PleftProjMrhs,rhs,0);
|
||||
this->grid->Barrier();
|
||||
std::cout << " insert rhs "<<rhs<<std::endl;
|
||||
this->grid->Barrier();
|
||||
this->_CoarseGuesser(PleftProj,PleftMss_proj);
|
||||
this->grid->Barrier();
|
||||
std::cout << " insert guess "<<rhs<<std::endl;
|
||||
this->grid->Barrier();
|
||||
InsertSlice(PleftMss_proj,PleftMss_projMrhs,rhs,0);
|
||||
}
|
||||
|
||||
std::cout << " Coarse solve "<<std::endl;
|
||||
this->_CoarseSolverMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} [in - A Min]_s
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
ExtractSlice(PleftMss_proj,PleftMss_projMrhs,rhs,0);
|
||||
this->_Aggregates.PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]
|
||||
axpy(out[rhs],1.0,Min[rhs],tmp); // Min+tmp
|
||||
}
|
||||
std::cout << " Extracted "<<std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
template<class Field>
|
||||
class TwoLevelADEF1defl : public TwoLevelCG<Field>
|
||||
|
||||
734
Grid/algorithms/iterative/AdefMrhs.h
Normal file
734
Grid/algorithms/iterative/AdefMrhs.h
Normal file
@@ -0,0 +1,734 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/AdefGeneric.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
|
||||
/*
|
||||
* Compared to Tang-2009: P=Pleft. P^T = PRight Q=MssInv.
|
||||
* Script A = SolverMatrix
|
||||
* Script P = Preconditioner
|
||||
*
|
||||
* Implement ADEF-2
|
||||
*
|
||||
* Vstart = P^Tx + Qb
|
||||
* M1 = P^TM + Q
|
||||
* M2=M3=1
|
||||
*/
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
template<class Field>
|
||||
class TwoLevelCGmrhs
|
||||
{
|
||||
public:
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
GridBase *grid;
|
||||
|
||||
// Fine operator, Smoother, CoarseSolver
|
||||
LinearOperatorBase<Field> &_FineLinop;
|
||||
LinearFunction<Field> &_Smoother;
|
||||
MultiRHSBlockCGLinalg<Field> _BlockCGLinalg;
|
||||
|
||||
GridStopWatch ProjectTimer;
|
||||
GridStopWatch PromoteTimer;
|
||||
GridStopWatch DeflateTimer;
|
||||
GridStopWatch CoarseTimer;
|
||||
GridStopWatch FineTimer;
|
||||
GridStopWatch SmoothTimer;
|
||||
GridStopWatch InsertTimer;
|
||||
|
||||
/*
|
||||
Field rrr;
|
||||
Field sss;
|
||||
Field qqq;
|
||||
Field zzz;
|
||||
*/
|
||||
// more most opertor functions
|
||||
TwoLevelCGmrhs(RealD tol,
|
||||
Integer maxit,
|
||||
LinearOperatorBase<Field> &FineLinop,
|
||||
LinearFunction<Field> &Smoother,
|
||||
GridBase *fine) :
|
||||
Tolerance(tol),
|
||||
MaxIterations(maxit),
|
||||
_FineLinop(FineLinop),
|
||||
_Smoother(Smoother)
|
||||
/*
|
||||
rrr(fine),
|
||||
sss(fine),
|
||||
qqq(fine),
|
||||
zzz(fine)
|
||||
*/
|
||||
{
|
||||
grid = fine;
|
||||
};
|
||||
|
||||
// Vector case
|
||||
virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
|
||||
{
|
||||
// SolveSingleSystem(src,x);
|
||||
SolvePrecBlockCG(src,x);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Thin QR factorisation (google it)
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
//Dimensions
|
||||
// R_{ferm x Nblock} = Q_{ferm x Nblock} x C_{Nblock x Nblock} -> ferm x Nblock
|
||||
//
|
||||
// Rdag R = m_rr = Herm = L L^dag <-- Cholesky decomposition (LLT routine in Eigen)
|
||||
//
|
||||
// Q C = R => Q = R C^{-1}
|
||||
//
|
||||
// Want Ident = Q^dag Q = C^{-dag} R^dag R C^{-1} = C^{-dag} L L^dag C^{-1} = 1_{Nblock x Nblock}
|
||||
//
|
||||
// Set C = L^{dag}, and then Q^dag Q = ident
|
||||
//
|
||||
// Checks:
|
||||
// Cdag C = Rdag R ; passes.
|
||||
// QdagQ = 1 ; passes
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
void ThinQRfact (Eigen::MatrixXcd &m_zz,
|
||||
Eigen::MatrixXcd &C,
|
||||
Eigen::MatrixXcd &Cinv,
|
||||
std::vector<Field> & Q,
|
||||
std::vector<Field> & MQ,
|
||||
const std::vector<Field> & Z,
|
||||
const std::vector<Field> & MZ)
|
||||
{
|
||||
RealD t0=usecond();
|
||||
_BlockCGLinalg.InnerProductMatrix(m_zz,MZ,Z);
|
||||
RealD t1=usecond();
|
||||
|
||||
m_zz = 0.5*(m_zz+m_zz.adjoint());
|
||||
|
||||
Eigen::MatrixXcd L = m_zz.llt().matrixL();
|
||||
|
||||
C = L.adjoint();
|
||||
Cinv = C.inverse();
|
||||
|
||||
RealD t3=usecond();
|
||||
_BlockCGLinalg.MulMatrix( Q,Cinv,Z);
|
||||
_BlockCGLinalg.MulMatrix(MQ,Cinv,MZ);
|
||||
RealD t4=usecond();
|
||||
std::cout << " ThinQRfact IP :"<< t1-t0<<" us"<<std::endl;
|
||||
std::cout << " ThinQRfact Eigen :"<< t3-t1<<" us"<<std::endl;
|
||||
std::cout << " ThinQRfact MulMat:"<< t4-t3<<" us"<<std::endl;
|
||||
}
|
||||
|
||||
virtual void SolvePrecBlockCG (std::vector<Field> &src, std::vector<Field> &X)
|
||||
{
|
||||
std::cout << GridLogMessage<<"HDCG: mrhs fPrecBlockcg starting"<<std::endl;
|
||||
src[0].Grid()->Barrier();
|
||||
int nrhs = src.size();
|
||||
// std::vector<RealD> f(nrhs);
|
||||
// std::vector<RealD> rtzp(nrhs);
|
||||
// std::vector<RealD> rtz(nrhs);
|
||||
// std::vector<RealD> a(nrhs);
|
||||
// std::vector<RealD> d(nrhs);
|
||||
// std::vector<RealD> b(nrhs);
|
||||
// std::vector<RealD> rptzp(nrhs);
|
||||
|
||||
////////////////////////////////////////////
|
||||
//Initial residual computation & set up
|
||||
////////////////////////////////////////////
|
||||
std::vector<RealD> ssq(nrhs);
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
ssq[rhs]=norm2(src[rhs]); GRID_ASSERT(ssq[rhs]!=0.0);
|
||||
}
|
||||
|
||||
///////////////////////////
|
||||
// Fields -- eliminate duplicates between fPcg and block cg
|
||||
///////////////////////////
|
||||
std::vector<Field> Mtmp(nrhs,grid);
|
||||
std::vector<Field> tmp(nrhs,grid);
|
||||
std::vector<Field> Z(nrhs,grid); // Rename Z to R
|
||||
std::vector<Field> MZ(nrhs,grid); // Rename MZ to Z
|
||||
std::vector<Field> Q(nrhs,grid); //
|
||||
std::vector<Field> MQ(nrhs,grid); // Rename to P
|
||||
std::vector<Field> D(nrhs,grid);
|
||||
std::vector<Field> AD(nrhs,grid);
|
||||
|
||||
/************************************************************************
|
||||
* Preconditioned Block conjugate gradient rQ
|
||||
* Generalise Sebastien Birk Thesis, after Dubrulle 2001.
|
||||
* Introduce preconditioning following Saad Ch9
|
||||
************************************************************************
|
||||
* Dimensions:
|
||||
*
|
||||
* X,B etc... ==(Nferm x nrhs)
|
||||
* Matrix A==(Nferm x Nferm)
|
||||
*
|
||||
* Nferm = Nspin x Ncolour x Ncomplex x Nlattice_site
|
||||
* QC => Thin QR factorisation (google it)
|
||||
*
|
||||
* R = B-AX
|
||||
* Z = Mi R
|
||||
* QC = Z
|
||||
* D = Q
|
||||
* for k:
|
||||
* R = AD
|
||||
* Z = Mi R
|
||||
* M = [D^dag R]^{-1}
|
||||
* X = X + D M C
|
||||
* QS = Q - Z.M
|
||||
* D = Q + D S^dag
|
||||
* C = S C
|
||||
*/
|
||||
Eigen::MatrixXcd m_DZ = Eigen::MatrixXcd::Identity(nrhs,nrhs);
|
||||
Eigen::MatrixXcd m_M = Eigen::MatrixXcd::Identity(nrhs,nrhs);
|
||||
Eigen::MatrixXcd m_zz = Eigen::MatrixXcd::Zero(nrhs,nrhs);
|
||||
Eigen::MatrixXcd m_rr = Eigen::MatrixXcd::Zero(nrhs,nrhs);
|
||||
|
||||
Eigen::MatrixXcd m_C = Eigen::MatrixXcd::Zero(nrhs,nrhs);
|
||||
Eigen::MatrixXcd m_Cinv = Eigen::MatrixXcd::Zero(nrhs,nrhs);
|
||||
Eigen::MatrixXcd m_S = Eigen::MatrixXcd::Zero(nrhs,nrhs);
|
||||
Eigen::MatrixXcd m_Sinv = Eigen::MatrixXcd::Zero(nrhs,nrhs);
|
||||
|
||||
Eigen::MatrixXcd m_tmp = Eigen::MatrixXcd::Identity(nrhs,nrhs);
|
||||
Eigen::MatrixXcd m_tmp1 = Eigen::MatrixXcd::Identity(nrhs,nrhs);
|
||||
|
||||
GridStopWatch HDCGTimer;
|
||||
|
||||
//////////////////////////
|
||||
// x0 = Vstart -- possibly modify guess
|
||||
//////////////////////////
|
||||
Vstart(X,src);
|
||||
|
||||
//////////////////////////
|
||||
// R = B-AX
|
||||
//////////////////////////
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
// r0 = b -A x0
|
||||
_FineLinop.HermOp(X[rhs],tmp[rhs]);
|
||||
axpy (Z[rhs], -1.0,tmp[rhs], src[rhs]); // Computes R=Z=src - A X0
|
||||
}
|
||||
|
||||
//////////////////////////////////
|
||||
// Compute MZ = M1 Z = M1 B - M1 A x0
|
||||
//////////////////////////////////
|
||||
PcgM1(Z,MZ);
|
||||
|
||||
//////////////////////////////////
|
||||
// QC = Z
|
||||
//////////////////////////////////
|
||||
ThinQRfact (m_zz, m_C, m_Cinv, Q, MQ, Z, MZ);
|
||||
|
||||
//////////////////////////////////
|
||||
// D=MQ
|
||||
//////////////////////////////////
|
||||
for(int b=0;b<nrhs;b++) D[b]=MQ[b]; // LLT rotation of the MZ basis of search dirs
|
||||
|
||||
std::cout << GridLogMessage<<"PrecBlockCGrQ vec computed initial residual and QR fact " <<std::endl;
|
||||
|
||||
ProjectTimer.Reset();
|
||||
PromoteTimer.Reset();
|
||||
DeflateTimer.Reset();
|
||||
CoarseTimer.Reset();
|
||||
SmoothTimer.Reset();
|
||||
FineTimer.Reset();
|
||||
InsertTimer.Reset();
|
||||
|
||||
GridStopWatch M1Timer;
|
||||
GridStopWatch M2Timer;
|
||||
GridStopWatch M3Timer;
|
||||
GridStopWatch LinalgTimer;
|
||||
GridStopWatch InnerProdTimer;
|
||||
|
||||
HDCGTimer.Start();
|
||||
|
||||
std::vector<RealD> rn(nrhs);
|
||||
for (int k=0;k<=MaxIterations;k++){
|
||||
|
||||
////////////////////
|
||||
// Z = AD
|
||||
////////////////////
|
||||
M3Timer.Start();
|
||||
for(int b=0;b<nrhs;b++) _FineLinop.HermOp(D[b], Z[b]);
|
||||
M3Timer.Stop();
|
||||
|
||||
////////////////////
|
||||
// MZ = M1 Z <==== the Multigrid preconditioner
|
||||
////////////////////
|
||||
M1Timer.Start();
|
||||
PcgM1(Z,MZ);
|
||||
M1Timer.Stop();
|
||||
|
||||
FineTimer.Start();
|
||||
////////////////////
|
||||
// M = [D^dag Z]^{-1} = (<Ddag MZ>_M)^{-1} inner prod, generalising Saad derivation of Precon CG
|
||||
////////////////////
|
||||
InnerProdTimer.Start();
|
||||
_BlockCGLinalg.InnerProductMatrix(m_DZ,D,Z);
|
||||
InnerProdTimer.Stop();
|
||||
m_M = m_DZ.inverse();
|
||||
|
||||
///////////////////////////
|
||||
// X = X + D MC
|
||||
///////////////////////////
|
||||
m_tmp = m_M * m_C;
|
||||
LinalgTimer.Start();
|
||||
_BlockCGLinalg.MaddMatrix(X,m_tmp, D,X); // D are the search directions and X takes the updates
|
||||
LinalgTimer.Stop();
|
||||
|
||||
///////////////////////////
|
||||
// QS = Q - M Z
|
||||
// (MQ) S = MQ - M (M1Z)
|
||||
///////////////////////////
|
||||
LinalgTimer.Start();
|
||||
_BlockCGLinalg.MaddMatrix(tmp ,m_M, Z, Q,-1.0);
|
||||
_BlockCGLinalg.MaddMatrix(Mtmp,m_M,MZ,MQ,-1.0);
|
||||
ThinQRfact (m_zz, m_S, m_Sinv, Q, MQ, tmp, Mtmp);
|
||||
LinalgTimer.Stop();
|
||||
|
||||
////////////////////////////
|
||||
// D = MQ + D S^dag
|
||||
////////////////////////////
|
||||
m_tmp = m_S.adjoint();
|
||||
LinalgTimer.Start();
|
||||
_BlockCGLinalg.MaddMatrix(D,m_tmp,D,MQ);
|
||||
LinalgTimer.Stop();
|
||||
|
||||
////////////////////////////
|
||||
// C = S C
|
||||
////////////////////////////
|
||||
m_C = m_S*m_C;
|
||||
|
||||
////////////////////////////
|
||||
// convergence monitor
|
||||
////////////////////////////
|
||||
m_rr = m_C.adjoint() * m_C;
|
||||
|
||||
FineTimer.Stop();
|
||||
|
||||
RealD max_resid=0;
|
||||
RealD rrsum=0;
|
||||
RealD sssum=0;
|
||||
RealD rr;
|
||||
|
||||
for(int b=0;b<nrhs;b++) {
|
||||
rrsum+=real(m_rr(b,b));
|
||||
sssum+=ssq[b];
|
||||
rr = real(m_rr(b,b))/ssq[b];
|
||||
if ( rr > max_resid ) max_resid = rr;
|
||||
}
|
||||
std::cout << GridLogMessage <<
|
||||
"\t Prec BlockCGrQ Iteration "<<k<<" ave resid "<< std::sqrt(rrsum/sssum) << " max "<< std::sqrt(max_resid) <<std::endl;
|
||||
|
||||
|
||||
if ( max_resid < Tolerance*Tolerance ) {
|
||||
|
||||
HDCGTimer.Stop();
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Linalg "<<LinalgTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : fine H "<<M3Timer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : prec M1 "<<M1Timer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"**** M1 breakdown:"<<std::endl;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Project "<<ProjectTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Promote "<<PromoteTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Deflate "<<DeflateTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Coarse "<<CoarseTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Fine "<<FineTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Smooth "<<SmoothTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Insert "<<InsertTimer.Elapsed()<<std::endl;;
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
|
||||
_FineLinop.HermOp(X[rhs],tmp[rhs]);
|
||||
|
||||
Field mytmp(grid);
|
||||
axpy(mytmp,-1.0,src[rhs],tmp[rhs]);
|
||||
|
||||
RealD xnorm = sqrt(norm2(X[rhs]));
|
||||
RealD srcnorm = sqrt(norm2(src[rhs]));
|
||||
RealD tmpnorm = sqrt(norm2(mytmp));
|
||||
RealD true_residual = tmpnorm/srcnorm;
|
||||
std::cout<<GridLogMessage
|
||||
<<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
|
||||
<<" solution "<<xnorm
|
||||
<<" source "<<srcnorm
|
||||
<<std::endl;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
}
|
||||
HDCGTimer.Stop();
|
||||
std::cout<<GridLogMessage<<"HDCG: PrecBlockCGrQ not converged "<<HDCGTimer.Elapsed()<<std::endl;
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
|
||||
virtual void SolveSingleSystem (std::vector<Field> &src, std::vector<Field> &x)
|
||||
{
|
||||
std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl;
|
||||
src[0].Grid()->Barrier();
|
||||
int nrhs = src.size();
|
||||
std::vector<RealD> f(nrhs);
|
||||
std::vector<RealD> rtzp(nrhs);
|
||||
std::vector<RealD> rtz(nrhs);
|
||||
std::vector<RealD> a(nrhs);
|
||||
std::vector<RealD> d(nrhs);
|
||||
std::vector<RealD> b(nrhs);
|
||||
std::vector<RealD> rptzp(nrhs);
|
||||
/////////////////////////////
|
||||
// Set up history vectors
|
||||
/////////////////////////////
|
||||
int mmax = 3;
|
||||
|
||||
std::vector<std::vector<Field> > p(nrhs); for(int r=0;r<nrhs;r++) p[r].resize(mmax,grid);
|
||||
std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid);
|
||||
std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax);
|
||||
|
||||
std::vector<Field> z(nrhs,grid);
|
||||
std::vector<Field> mp (nrhs,grid);
|
||||
std::vector<Field> r (nrhs,grid);
|
||||
std::vector<Field> mu (nrhs,grid);
|
||||
|
||||
//Initial residual computation & set up
|
||||
std::vector<RealD> src_nrm(nrhs);
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
src_nrm[rhs]=norm2(src[rhs]);
|
||||
GRID_ASSERT(src_nrm[rhs]!=0.0);
|
||||
}
|
||||
std::vector<RealD> tn(nrhs);
|
||||
|
||||
GridStopWatch HDCGTimer;
|
||||
//////////////////////////
|
||||
// x0 = Vstart -- possibly modify guess
|
||||
//////////////////////////
|
||||
Vstart(x,src);
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
// r0 = b -A x0
|
||||
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
|
||||
axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]); // Recomputes r=src-Ax0
|
||||
}
|
||||
|
||||
//////////////////////////////////
|
||||
// Compute z = M1 x
|
||||
//////////////////////////////////
|
||||
// This needs a multiRHS version for acceleration
|
||||
PcgM1(r,z);
|
||||
|
||||
std::vector<RealD> ssq(nrhs);
|
||||
std::vector<RealD> rsq(nrhs);
|
||||
std::vector<Field> pp(nrhs,grid);
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
|
||||
p[rhs][0]=z[rhs];
|
||||
ssq[rhs]=norm2(src[rhs]);
|
||||
rsq[rhs]= ssq[rhs]*Tolerance*Tolerance;
|
||||
// std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n";
|
||||
}
|
||||
|
||||
ProjectTimer.Reset();
|
||||
PromoteTimer.Reset();
|
||||
DeflateTimer.Reset();
|
||||
CoarseTimer.Reset();
|
||||
SmoothTimer.Reset();
|
||||
FineTimer.Reset();
|
||||
InsertTimer.Reset();
|
||||
|
||||
GridStopWatch M1Timer;
|
||||
GridStopWatch M2Timer;
|
||||
GridStopWatch M3Timer;
|
||||
GridStopWatch LinalgTimer;
|
||||
|
||||
HDCGTimer.Start();
|
||||
|
||||
std::vector<RealD> rn(nrhs);
|
||||
for (int k=0;k<=MaxIterations;k++){
|
||||
|
||||
int peri_k = k % mmax;
|
||||
int peri_kp = (k+1) % mmax;
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
rtz[rhs]=rtzp[rhs];
|
||||
M3Timer.Start();
|
||||
d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]);
|
||||
M3Timer.Stop();
|
||||
a[rhs] = rtz[rhs]/d[rhs];
|
||||
|
||||
LinalgTimer.Start();
|
||||
// Memorise this
|
||||
pAp[rhs][peri_k] = d[rhs];
|
||||
|
||||
axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]);
|
||||
rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]);
|
||||
LinalgTimer.Stop();
|
||||
}
|
||||
|
||||
// Compute z = M x (for *all* RHS)
|
||||
M1Timer.Start();
|
||||
PcgM1(r,z);
|
||||
M1Timer.Stop();
|
||||
|
||||
RealD max_rn=0.0;
|
||||
LinalgTimer.Start();
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
|
||||
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
|
||||
|
||||
// std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n";
|
||||
mu[rhs]=z[rhs];
|
||||
|
||||
p[rhs][peri_kp]=mu[rhs];
|
||||
|
||||
// Standard search direction p == z + b p
|
||||
b[rhs] = (rtzp[rhs])/rtz[rhs];
|
||||
|
||||
int northog = (k>mmax-1)?(mmax-1):k; // This is the fCG-Tr(mmax-1) algorithm
|
||||
for(int back=0; back < northog; back++){
|
||||
int peri_back = (k-back)%mmax;
|
||||
RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp]));
|
||||
RealD beta = -pbApk/pAp[rhs][peri_back];
|
||||
axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]);
|
||||
}
|
||||
|
||||
RealD rrn=sqrt(rn[rhs]/ssq[rhs]);
|
||||
RealD rtn=sqrt(rtz[rhs]/ssq[rhs]);
|
||||
RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]);
|
||||
|
||||
std::cout<<GridLogMessage<<"HDCG:fPcg rhs "<<rhs<<" k= "<<k<<" residual = "<<rrn<<"\n";
|
||||
if ( rrn > max_rn ) max_rn = rrn;
|
||||
}
|
||||
LinalgTimer.Stop();
|
||||
|
||||
// Stopping condition based on worst case
|
||||
if ( max_rn <= Tolerance ) {
|
||||
|
||||
HDCGTimer.Stop();
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Linalg "<<LinalgTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : fine M3 "<<M3Timer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : prec M1 "<<M1Timer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"**** M1 breakdown:"<<std::endl;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Project "<<ProjectTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Promote "<<PromoteTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Deflate "<<DeflateTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Coarse "<<CoarseTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Fine "<<FineTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Smooth "<<SmoothTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Insert "<<InsertTimer.Elapsed()<<std::endl;;
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
|
||||
Field tmp(grid);
|
||||
axpy(tmp,-1.0,src[rhs],mmp[rhs][0]);
|
||||
|
||||
RealD mmpnorm = sqrt(norm2(mmp[rhs][0]));
|
||||
RealD xnorm = sqrt(norm2(x[rhs]));
|
||||
RealD srcnorm = sqrt(norm2(src[rhs]));
|
||||
RealD tmpnorm = sqrt(norm2(tmp));
|
||||
RealD true_residual = tmpnorm/srcnorm;
|
||||
std::cout<<GridLogMessage
|
||||
<<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
|
||||
<<" solution "<<xnorm
|
||||
<<" source "<<srcnorm
|
||||
<<" mmp "<<mmpnorm
|
||||
<<std::endl;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
}
|
||||
HDCGTimer.Stop();
|
||||
std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
RealD xnorm = sqrt(norm2(x[rhs]));
|
||||
RealD srcnorm = sqrt(norm2(src[rhs]));
|
||||
std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
public:
|
||||
|
||||
virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out) = 0;
|
||||
virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src) = 0;
|
||||
virtual void PcgM2(const Field & in, Field & out) {
|
||||
out=in;
|
||||
}
|
||||
|
||||
virtual RealD PcgM3(const Field & p, Field & mmp){
|
||||
RealD dd;
|
||||
_FineLinop.HermOp(p,mmp);
|
||||
ComplexD dot = innerProduct(p,mmp);
|
||||
dd=real(dot);
|
||||
return dd;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
template<class Field, class CoarseField>
|
||||
class TwoLevelADEF2mrhs : public TwoLevelCGmrhs<Field>
|
||||
{
|
||||
public:
|
||||
GridBase *coarsegrid;
|
||||
GridBase *coarsegridmrhs;
|
||||
LinearFunction<CoarseField> &_CoarseSolverMrhs;
|
||||
LinearFunction<CoarseField> &_CoarseSolverPreciseMrhs;
|
||||
MultiRHSBlockProject<Field> &_Projector;
|
||||
MultiRHSDeflation<CoarseField> &_Deflator;
|
||||
|
||||
|
||||
TwoLevelADEF2mrhs(RealD tol,
|
||||
Integer maxit,
|
||||
LinearOperatorBase<Field> &FineLinop,
|
||||
LinearFunction<Field> &Smoother,
|
||||
LinearFunction<CoarseField> &CoarseSolverMrhs,
|
||||
LinearFunction<CoarseField> &CoarseSolverPreciseMrhs,
|
||||
MultiRHSBlockProject<Field> &Projector,
|
||||
MultiRHSDeflation<CoarseField> &Deflator,
|
||||
GridBase *_coarsemrhsgrid) :
|
||||
TwoLevelCGmrhs<Field>(tol, maxit,FineLinop,Smoother,Projector.fine_grid),
|
||||
_CoarseSolverMrhs(CoarseSolverMrhs),
|
||||
_CoarseSolverPreciseMrhs(CoarseSolverPreciseMrhs),
|
||||
_Projector(Projector),
|
||||
_Deflator(Deflator)
|
||||
{
|
||||
coarsegrid = Projector.coarse_grid;
|
||||
coarsegridmrhs = _coarsemrhsgrid;// Thi could be in projector
|
||||
};
|
||||
|
||||
// Override Vstart
|
||||
virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src)
|
||||
{
|
||||
int nrhs=x.size();
|
||||
///////////////////////////////////
|
||||
// Choose x_0 such that
|
||||
// x_0 = guess + (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
|
||||
// = [1 - Ass_inv A] Guess + Assinv src
|
||||
// = P^T guess + Assinv src
|
||||
// = Vstart [Tang notation]
|
||||
// This gives:
|
||||
// W^T (src - A x_0) = src_s - A guess_s - r_s
|
||||
// = src_s - (A guess)_s - src_s + (A guess)_s
|
||||
// = 0
|
||||
///////////////////////////////////
|
||||
std::vector<CoarseField> PleftProj(nrhs,this->coarsegrid);
|
||||
std::vector<CoarseField> PleftMss_proj(nrhs,this->coarsegrid);
|
||||
CoarseField PleftProjMrhs(this->coarsegridmrhs);
|
||||
CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
|
||||
|
||||
this->_Projector.blockProject(src,PleftProj);
|
||||
this->_Deflator.DeflateSources(PleftProj,PleftMss_proj);
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
InsertSliceFast(PleftProj[rhs],PleftProjMrhs,rhs,0);
|
||||
InsertSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); // the guess
|
||||
}
|
||||
|
||||
this->_CoarseSolverPreciseMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} r_s
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
ExtractSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0);
|
||||
}
|
||||
this->_Projector.blockPromote(x,PleftMss_proj);
|
||||
}
|
||||
|
||||
virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out){
|
||||
|
||||
int nrhs=in.size();
|
||||
|
||||
// [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
|
||||
std::vector<Field> tmp(nrhs,this->grid);
|
||||
std::vector<Field> Min(nrhs,this->grid);
|
||||
|
||||
std::vector<CoarseField> PleftProj(nrhs,this->coarsegrid);
|
||||
std::vector<CoarseField> PleftMss_proj(nrhs,this->coarsegrid);
|
||||
|
||||
CoarseField PleftProjMrhs(this->coarsegridmrhs);
|
||||
CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
|
||||
|
||||
// this->rrr=in[0];
|
||||
|
||||
#undef SMOOTHER_BLOCK_SOLVE
|
||||
#if SMOOTHER_BLOCK_SOLVE
|
||||
this->SmoothTimer.Start();
|
||||
this->_Smoother(in,Min);
|
||||
this->SmoothTimer.Stop();
|
||||
#else
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
this->SmoothTimer.Start();
|
||||
this->_Smoother(in[rhs],Min[rhs]);
|
||||
this->SmoothTimer.Stop();
|
||||
}
|
||||
#endif
|
||||
// this->sss=Min[0];
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
|
||||
this->FineTimer.Start();
|
||||
this->_FineLinop.HermOp(Min[rhs],out[rhs]);
|
||||
axpy(tmp[rhs],-1.0,out[rhs],in[rhs]); // resid = in - A Min
|
||||
this->FineTimer.Stop();
|
||||
|
||||
}
|
||||
|
||||
this->ProjectTimer.Start();
|
||||
this->_Projector.blockProject(tmp,PleftProj);
|
||||
this->ProjectTimer.Stop();
|
||||
this->DeflateTimer.Start();
|
||||
this->_Deflator.DeflateSources(PleftProj,PleftMss_proj);
|
||||
this->DeflateTimer.Stop();
|
||||
this->InsertTimer.Start();
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
InsertSliceFast(PleftProj[rhs],PleftProjMrhs,rhs,0);
|
||||
InsertSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); // the guess
|
||||
}
|
||||
this->InsertTimer.Stop();
|
||||
|
||||
this->CoarseTimer.Start();
|
||||
this->_CoarseSolverMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} [in - A Min]_s
|
||||
this->CoarseTimer.Stop();
|
||||
|
||||
this->InsertTimer.Start();
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
ExtractSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0);
|
||||
}
|
||||
this->InsertTimer.Stop();
|
||||
this->PromoteTimer.Start();
|
||||
this->_Projector.blockPromote(tmp,PleftMss_proj);// tmp= Q[in - A Min]
|
||||
this->PromoteTimer.Stop();
|
||||
this->FineTimer.Start();
|
||||
// this->qqq=tmp[0];
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
axpy(out[rhs],1.0,Min[rhs],tmp[rhs]); // Min+tmp
|
||||
}
|
||||
// this->zzz=out[0];
|
||||
this->FineTimer.Stop();
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
||||
@@ -47,7 +47,7 @@ class BiCGSTAB : public OperatorFunction<Field>
|
||||
public:
|
||||
using OperatorFunction<Field>::operator();
|
||||
|
||||
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
|
||||
bool ErrorOnNoConverge; // throw an GRID_ASSERT when the CG fails to converge.
|
||||
// Defaults true.
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
@@ -77,7 +77,7 @@ class BiCGSTAB : public OperatorFunction<Field>
|
||||
|
||||
// Initial residual computation & set up
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
GRID_ASSERT(std::isnan(guess) == 0);
|
||||
|
||||
Linop.Op(psi, v);
|
||||
b = norm2(v);
|
||||
@@ -214,7 +214,7 @@ class BiCGSTAB : public OperatorFunction<Field>
|
||||
std::cout << GridLogMessage << "\tAxpyNorm " << AxpyNormTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() << std::endl;
|
||||
|
||||
if(ErrorOnNoConverge){ assert(true_residual / Tolerance < 10000.0); }
|
||||
if(ErrorOnNoConverge){ GRID_ASSERT(true_residual / Tolerance < 10000.0); }
|
||||
|
||||
IterationsToComplete = k;
|
||||
|
||||
@@ -224,7 +224,7 @@ class BiCGSTAB : public OperatorFunction<Field>
|
||||
|
||||
std::cout << GridLogMessage << "BiCGSTAB did NOT converge" << std::endl;
|
||||
|
||||
if(ErrorOnNoConverge){ assert(0); }
|
||||
if(ErrorOnNoConverge){ GRID_ASSERT(0); }
|
||||
IterationsToComplete = k;
|
||||
}
|
||||
};
|
||||
|
||||
@@ -31,6 +31,58 @@ directory
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class Field>
|
||||
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y){
|
||||
typedef typename Field::scalar_type scomplex;
|
||||
int Nblock = X.size();
|
||||
for(int b=0;b<Nblock;b++){
|
||||
for(int bp=0;bp<Nblock;bp++) {
|
||||
m(b,bp) = innerProduct(X[b],Y[bp]);
|
||||
}}
|
||||
}
|
||||
template<class Field>
|
||||
void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0){
|
||||
// Should make this cache friendly with site outermost, parallel_for
|
||||
// Deal with case AP aliases with either Y or X
|
||||
//
|
||||
//Could pack "X" and "AP" into a Nblock x Volume dense array.
|
||||
// AP(Nrhs x vol) = Y(Nrhs x vol) + scale * m(nrhs x nrhs) * X(nrhs*vol)
|
||||
typedef typename Field::scalar_type scomplex;
|
||||
int Nblock = AP.size();
|
||||
std::vector<Field> tmp(Nblock,X[0]);
|
||||
for(int b=0;b<Nblock;b++){
|
||||
tmp[b] = Y[b];
|
||||
for(int bp=0;bp<Nblock;bp++) {
|
||||
tmp[b] = tmp[b] +scomplex(scale*m(bp,b))*X[bp];
|
||||
}
|
||||
}
|
||||
for(int b=0;b<Nblock;b++){
|
||||
AP[b] = tmp[b];
|
||||
}
|
||||
}
|
||||
template<class Field>
|
||||
void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){
|
||||
// Should make this cache friendly with site outermost, parallel_for
|
||||
typedef typename Field::scalar_type scomplex;
|
||||
int Nblock = AP.size();
|
||||
for(int b=0;b<Nblock;b++){
|
||||
AP[b] = Zero();
|
||||
for(int bp=0;bp<Nblock;bp++) {
|
||||
AP[b] += scomplex(m(bp,b))*X[bp];
|
||||
}
|
||||
}
|
||||
}
|
||||
template<class Field>
|
||||
double normv(const std::vector<Field> &P){
|
||||
int Nblock = P.size();
|
||||
double nn = 0.0;
|
||||
for(int b=0;b<Nblock;b++) {
|
||||
nn+=norm2(P[b]);
|
||||
}
|
||||
return nn;
|
||||
}
|
||||
|
||||
|
||||
enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS, BlockCGVec, BlockCGrQVec };
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
@@ -46,7 +98,7 @@ class BlockConjugateGradient : public OperatorFunction<Field> {
|
||||
int Nblock;
|
||||
|
||||
BlockCGtype CGtype;
|
||||
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
|
||||
bool ErrorOnNoConverge; // throw an GRID_ASSERT when the CG fails to converge.
|
||||
// Defaults true.
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
@@ -87,10 +139,19 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
|
||||
sliceInnerProductMatrix(m_rr,R,R,Orthog);
|
||||
|
||||
// Force manifest hermitian to avoid rounding related
|
||||
/*
|
||||
int rank=m_rr.rows();
|
||||
for(int r=0;r<rank;r++){
|
||||
for(int s=0;s<rank;s++){
|
||||
std::cout << "QR m_rr["<<r<<","<<s<<"] "<<m_rr(r,s)<<std::endl;
|
||||
}}
|
||||
*/
|
||||
m_rr = 0.5*(m_rr+m_rr.adjoint());
|
||||
|
||||
Eigen::MatrixXcd L = m_rr.llt().matrixL();
|
||||
|
||||
// ComplexD det = L.determinant();
|
||||
// std::cout << " Det m_rr "<<det<<std::endl;
|
||||
C = L.adjoint();
|
||||
Cinv = C.inverse();
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@@ -110,11 +171,20 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
|
||||
const std::vector<Field> & R)
|
||||
{
|
||||
InnerProductMatrix(m_rr,R,R);
|
||||
|
||||
/*
|
||||
int rank=m_rr.rows();
|
||||
for(int r=0;r<rank;r++){
|
||||
for(int s=0;s<rank;s++){
|
||||
std::cout << "QRvec m_rr["<<r<<","<<s<<"] "<<m_rr(r,s)<<std::endl;
|
||||
}}
|
||||
*/
|
||||
m_rr = 0.5*(m_rr+m_rr.adjoint());
|
||||
|
||||
Eigen::MatrixXcd L = m_rr.llt().matrixL();
|
||||
|
||||
// ComplexD det = L.determinant();
|
||||
// std::cout << " Det m_rr "<<det<<std::endl;
|
||||
|
||||
C = L.adjoint();
|
||||
Cinv = C.inverse();
|
||||
|
||||
@@ -131,7 +201,7 @@ void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
|
||||
} else if (CGtype == CGmultiRHS ) {
|
||||
CGmultiRHSsolve(Linop,Src,Psi);
|
||||
} else {
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
}
|
||||
virtual void operator()(LinearOperatorBase<Field> &Linop, const std::vector<Field> &Src, std::vector<Field> &Psi)
|
||||
@@ -139,7 +209,7 @@ virtual void operator()(LinearOperatorBase<Field> &Linop, const std::vector<Fiel
|
||||
if ( CGtype == BlockCGrQVec ) {
|
||||
BlockCGrQsolveVec(Linop,Src,Psi);
|
||||
} else {
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -186,12 +256,13 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
|
||||
sliceNorm(ssq,B,Orthog);
|
||||
RealD sssum=0;
|
||||
for(int b=0;b<Nblock;b++) sssum+=ssq[b];
|
||||
for(int b=0;b<Nblock;b++) std::cout << "src["<<b<<"]" << ssq[b] <<std::endl;
|
||||
|
||||
sliceNorm(residuals,B,Orthog);
|
||||
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
|
||||
for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); }
|
||||
|
||||
sliceNorm(residuals,X,Orthog);
|
||||
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
|
||||
for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); }
|
||||
|
||||
/************************************************************************
|
||||
* Block conjugate gradient rQ (Sebastien Birk Thesis, after Dubrulle 2001)
|
||||
@@ -221,6 +292,9 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
|
||||
Linop.HermOp(X, AD);
|
||||
tmp = B - AD;
|
||||
|
||||
sliceNorm(residuals,tmp,Orthog);
|
||||
for(int b=0;b<Nblock;b++) std::cout << "res["<<b<<"]" << residuals[b] <<std::endl;
|
||||
|
||||
ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
|
||||
D=Q;
|
||||
|
||||
@@ -236,6 +310,8 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
|
||||
GridStopWatch SolverTimer;
|
||||
SolverTimer.Start();
|
||||
|
||||
RealD max_resid=0;
|
||||
|
||||
int k;
|
||||
for (k = 1; k <= MaxIterations; k++) {
|
||||
|
||||
@@ -280,7 +356,7 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
|
||||
*/
|
||||
m_rr = m_C.adjoint() * m_C;
|
||||
|
||||
RealD max_resid=0;
|
||||
max_resid=0;
|
||||
RealD rrsum=0;
|
||||
RealD rr;
|
||||
|
||||
@@ -322,9 +398,11 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
|
||||
}
|
||||
|
||||
}
|
||||
std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge" << std::endl;
|
||||
|
||||
if (ErrorOnNoConverge) assert(0);
|
||||
std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge "<<k<<" / "<<MaxIterations
|
||||
<<" residual "<< std::sqrt(max_resid)<< std::endl;
|
||||
|
||||
if (ErrorOnNoConverge) GRID_ASSERT(0);
|
||||
IterationsToComplete = k;
|
||||
}
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
@@ -360,10 +438,10 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &
|
||||
for(int b=0;b<Nblock;b++) sssum+=ssq[b];
|
||||
|
||||
sliceNorm(residuals,Src,Orthog);
|
||||
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
|
||||
for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); }
|
||||
|
||||
sliceNorm(residuals,Psi,Orthog);
|
||||
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
|
||||
for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); }
|
||||
|
||||
// Initial search dir is guess
|
||||
Linop.HermOp(Psi, AP);
|
||||
@@ -462,47 +540,10 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &
|
||||
}
|
||||
std::cout << GridLogMessage << "MultiRHSConjugateGradient did NOT converge" << std::endl;
|
||||
|
||||
if (ErrorOnNoConverge) assert(0);
|
||||
if (ErrorOnNoConverge) GRID_ASSERT(0);
|
||||
IterationsToComplete = k;
|
||||
}
|
||||
|
||||
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y){
|
||||
for(int b=0;b<Nblock;b++){
|
||||
for(int bp=0;bp<Nblock;bp++) {
|
||||
m(b,bp) = innerProduct(X[b],Y[bp]);
|
||||
}}
|
||||
}
|
||||
void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0){
|
||||
// Should make this cache friendly with site outermost, parallel_for
|
||||
// Deal with case AP aliases with either Y or X
|
||||
std::vector<Field> tmp(Nblock,X[0]);
|
||||
for(int b=0;b<Nblock;b++){
|
||||
tmp[b] = Y[b];
|
||||
for(int bp=0;bp<Nblock;bp++) {
|
||||
tmp[b] = tmp[b] + scomplex(scale*m(bp,b))*X[bp];
|
||||
}
|
||||
}
|
||||
for(int b=0;b<Nblock;b++){
|
||||
AP[b] = tmp[b];
|
||||
}
|
||||
}
|
||||
void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){
|
||||
// Should make this cache friendly with site outermost, parallel_for
|
||||
for(int b=0;b<Nblock;b++){
|
||||
AP[b] = Zero();
|
||||
for(int bp=0;bp<Nblock;bp++) {
|
||||
AP[b] += scomplex(m(bp,b))*X[bp];
|
||||
}
|
||||
}
|
||||
}
|
||||
double normv(const std::vector<Field> &P){
|
||||
double nn = 0.0;
|
||||
for(int b=0;b<Nblock;b++) {
|
||||
nn+=norm2(P[b]);
|
||||
}
|
||||
return nn;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// BlockCGrQvec implementation:
|
||||
//--------------------------
|
||||
@@ -513,7 +554,7 @@ double normv(const std::vector<Field> &P){
|
||||
void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field> &B, std::vector<Field> &X)
|
||||
{
|
||||
Nblock = B.size();
|
||||
assert(Nblock == X.size());
|
||||
GRID_ASSERT(Nblock == X.size());
|
||||
|
||||
std::cout<<GridLogMessage<<" Block Conjugate Gradient Vec rQ : Nblock "<<Nblock<<std::endl;
|
||||
|
||||
@@ -549,13 +590,14 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
|
||||
|
||||
RealD sssum=0;
|
||||
for(int b=0;b<Nblock;b++){ ssq[b] = norm2(B[b]);}
|
||||
for(int b=0;b<Nblock;b++){ std::cout << "ssq["<<b<<"] "<<ssq[b]<<std::endl;}
|
||||
for(int b=0;b<Nblock;b++) sssum+=ssq[b];
|
||||
|
||||
for(int b=0;b<Nblock;b++){ residuals[b] = norm2(B[b]);}
|
||||
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
|
||||
for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); }
|
||||
|
||||
for(int b=0;b<Nblock;b++){ residuals[b] = norm2(X[b]);}
|
||||
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
|
||||
for(int b=0;b<Nblock;b++){ GRID_ASSERT(std::isnan(residuals[b])==0); }
|
||||
|
||||
/************************************************************************
|
||||
* Block conjugate gradient rQ (Sebastien Birk Thesis, after Dubrulle 2001)
|
||||
@@ -585,6 +627,7 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
|
||||
for(int b=0;b<Nblock;b++) {
|
||||
Linop.HermOp(X[b], AD[b]);
|
||||
tmp[b] = B[b] - AD[b];
|
||||
std::cout << "r0["<<b<<"] "<<norm2(tmp[b])<<std::endl;
|
||||
}
|
||||
|
||||
ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
|
||||
@@ -688,7 +731,7 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
|
||||
}
|
||||
std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge" << std::endl;
|
||||
|
||||
if (ErrorOnNoConverge) assert(0);
|
||||
if (ErrorOnNoConverge) GRID_ASSERT(0);
|
||||
IterationsToComplete = k;
|
||||
}
|
||||
|
||||
|
||||
@@ -36,7 +36,7 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<
|
||||
public:
|
||||
using OperatorFunction<Field>::operator();
|
||||
|
||||
bool ErrorOnNoConverge; // Throw an assert when CAGMRES fails to converge,
|
||||
bool ErrorOnNoConverge; // Throw an GRID_ASSERT when CAGMRES fails to converge,
|
||||
// defaults to true
|
||||
|
||||
RealD Tolerance;
|
||||
@@ -82,7 +82,7 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<
|
||||
conformable(psi, src);
|
||||
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
GRID_ASSERT(std::isnan(guess) == 0);
|
||||
|
||||
RealD cp;
|
||||
RealD ssq = norm2(src);
|
||||
@@ -137,7 +137,7 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<
|
||||
std::cout << GridLogMessage << "CommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl;
|
||||
|
||||
if (ErrorOnNoConverge)
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
|
||||
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
|
||||
@@ -185,7 +185,7 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<
|
||||
}
|
||||
}
|
||||
|
||||
assert(0); // Never reached
|
||||
GRID_ASSERT(0); // Never reached
|
||||
return cp;
|
||||
}
|
||||
|
||||
|
||||
@@ -38,13 +38,14 @@ NAMESPACE_BEGIN(Grid);
|
||||
// single input vec, single output vec.
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
template <class Field>
|
||||
class ConjugateGradient : public OperatorFunction<Field> {
|
||||
public:
|
||||
|
||||
using OperatorFunction<Field>::operator();
|
||||
|
||||
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
|
||||
|
||||
bool ErrorOnNoConverge; // throw an GRID_ASSERT when the CG fails to converge.
|
||||
// Defaults true.
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
@@ -54,11 +55,26 @@ public:
|
||||
ConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
|
||||
: Tolerance(tol),
|
||||
MaxIterations(maxit),
|
||||
ErrorOnNoConverge(err_on_no_conv){};
|
||||
ErrorOnNoConverge(err_on_no_conv)
|
||||
{};
|
||||
|
||||
void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
|
||||
virtual void LogIteration(int k,RealD a,RealD b){
|
||||
// std::cout << "ConjugageGradient::LogIteration() "<<std::endl;
|
||||
};
|
||||
virtual void LogBegin(void){
|
||||
std::cout << "ConjugageGradient::LogBegin() "<<std::endl;
|
||||
};
|
||||
|
||||
GRID_TRACE("ConjugateGradient");
|
||||
void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
|
||||
|
||||
this->LogBegin();
|
||||
|
||||
GRID_TRACE("ConjugateGradient");
|
||||
GridStopWatch PreambleTimer;
|
||||
GridStopWatch ConstructTimer;
|
||||
GridStopWatch NormTimer;
|
||||
GridStopWatch AssignTimer;
|
||||
PreambleTimer.Start();
|
||||
psi.Checkerboard() = src.Checkerboard();
|
||||
|
||||
conformable(psi, src);
|
||||
@@ -66,22 +82,32 @@ public:
|
||||
RealD cp, c, a, d, b, ssq, qq;
|
||||
//RealD b_pred;
|
||||
|
||||
Field p(src);
|
||||
Field mmp(src);
|
||||
Field r(src);
|
||||
// Was doing copies
|
||||
ConstructTimer.Start();
|
||||
Field p (src.Grid());
|
||||
Field mmp(src.Grid());
|
||||
Field r (src.Grid());
|
||||
ConstructTimer.Stop();
|
||||
|
||||
// Initial residual computation & set up
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
|
||||
Linop.HermOpAndNorm(psi, mmp, d, b);
|
||||
|
||||
r = src - mmp;
|
||||
p = r;
|
||||
|
||||
a = norm2(p);
|
||||
cp = a;
|
||||
NormTimer.Start();
|
||||
ssq = norm2(src);
|
||||
RealD guess = norm2(psi);
|
||||
NormTimer.Stop();
|
||||
GRID_ASSERT(std::isnan(guess) == 0);
|
||||
AssignTimer.Start();
|
||||
if ( guess == 0.0 ) {
|
||||
r = src;
|
||||
p = r;
|
||||
a = ssq;
|
||||
} else {
|
||||
Linop.HermOpAndNorm(psi, mmp, d, b);
|
||||
r = src - mmp;
|
||||
p = r;
|
||||
a = norm2(p);
|
||||
}
|
||||
cp = a;
|
||||
AssignTimer.Stop();
|
||||
|
||||
// Handle trivial case of zero src
|
||||
if (ssq == 0.){
|
||||
@@ -111,6 +137,7 @@ public:
|
||||
std::cout << GridLogIterative << std::setprecision(8)
|
||||
<< "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
|
||||
|
||||
PreambleTimer.Stop();
|
||||
GridStopWatch LinalgTimer;
|
||||
GridStopWatch InnerTimer;
|
||||
GridStopWatch AxpyNormTimer;
|
||||
@@ -156,6 +183,7 @@ public:
|
||||
}
|
||||
LinearCombTimer.Stop();
|
||||
LinalgTimer.Stop();
|
||||
LogIteration(k,a,b);
|
||||
|
||||
IterationTimer.Stop();
|
||||
if ( (k % 500) == 0 ) {
|
||||
@@ -183,17 +211,18 @@ public:
|
||||
<< "\tTrue residual " << true_residual
|
||||
<< "\tTarget " << Tolerance << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||
// std::cout << GridLogMessage << "\tPreamble " << PreambleTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tSolver Elapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "Time breakdown "<<std::endl;
|
||||
std::cout << GridLogPerformance << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\tInner " << InnerTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\t\tInner " << InnerTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\t\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
|
||||
|
||||
std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl;
|
||||
|
||||
if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
|
||||
if (ErrorOnNoConverge) GRID_ASSERT(true_residual / Tolerance < 10000.0);
|
||||
|
||||
IterationsToComplete = k;
|
||||
TrueResidual = true_residual;
|
||||
@@ -202,18 +231,143 @@ public:
|
||||
}
|
||||
}
|
||||
// Failed. Calculate true residual before giving up
|
||||
Linop.HermOpAndNorm(psi, mmp, d, qq);
|
||||
p = mmp - src;
|
||||
|
||||
TrueResidual = sqrt(norm2(p)/ssq);
|
||||
// Linop.HermOpAndNorm(psi, mmp, d, qq);
|
||||
// p = mmp - src;
|
||||
//TrueResidual = sqrt(norm2(p)/ssq);
|
||||
// TrueResidual = 1;
|
||||
|
||||
std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations
|
||||
<<" residual "<< TrueResidual<< std::endl;
|
||||
<<" residual "<< std::sqrt(cp / ssq)<< std::endl;
|
||||
SolverTimer.Stop();
|
||||
std::cout << GridLogMessage << "\tPreamble " << PreambleTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tConstruct " << ConstructTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tNorm " << NormTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tAssign " << AssignTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tSolver " << SolverTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "Solver breakdown "<<std::endl;
|
||||
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage<< "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\t\tInner " << InnerTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\t\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
|
||||
|
||||
if (ErrorOnNoConverge) assert(0);
|
||||
if (ErrorOnNoConverge) GRID_ASSERT(0);
|
||||
IterationsToComplete = k;
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template <class Field>
|
||||
class ConjugateGradientPolynomial : public ConjugateGradient<Field> {
|
||||
public:
|
||||
// Optionally record the CG polynomial
|
||||
std::vector<double> ak;
|
||||
std::vector<double> bk;
|
||||
std::vector<double> poly_p;
|
||||
std::vector<double> poly_r;
|
||||
std::vector<double> poly_Ap;
|
||||
std::vector<double> polynomial;
|
||||
|
||||
public:
|
||||
ConjugateGradientPolynomial(RealD tol, Integer maxit, bool err_on_no_conv = true)
|
||||
: ConjugateGradient<Field>(tol,maxit,err_on_no_conv)
|
||||
{ };
|
||||
void PolyHermOp(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
|
||||
{
|
||||
Field tmp(src.Grid());
|
||||
Field AtoN(src.Grid());
|
||||
AtoN = src;
|
||||
psi=AtoN*polynomial[0];
|
||||
for(int n=1;n<polynomial.size();n++){
|
||||
tmp = AtoN;
|
||||
Linop.HermOp(tmp,AtoN);
|
||||
psi = psi + polynomial[n]*AtoN;
|
||||
}
|
||||
}
|
||||
void CGsequenceHermOp(LinearOperatorBase<Field> &Linop, const Field &src, Field &x)
|
||||
{
|
||||
Field Ap(src.Grid());
|
||||
Field r(src.Grid());
|
||||
Field p(src.Grid());
|
||||
p=src;
|
||||
r=src;
|
||||
x=Zero();
|
||||
x.Checkerboard()=src.Checkerboard();
|
||||
for(int k=0;k<ak.size();k++){
|
||||
x = x + ak[k]*p;
|
||||
Linop.HermOp(p,Ap);
|
||||
r = r - ak[k] * Ap;
|
||||
p = r + bk[k] * p;
|
||||
}
|
||||
}
|
||||
void Solve(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
|
||||
{
|
||||
psi=Zero();
|
||||
this->operator ()(Linop,src,psi);
|
||||
}
|
||||
virtual void LogBegin(void)
|
||||
{
|
||||
std::cout << "ConjugageGradientPolynomial::LogBegin() "<<std::endl;
|
||||
ak.resize(0);
|
||||
bk.resize(0);
|
||||
polynomial.resize(0);
|
||||
poly_Ap.resize(0);
|
||||
poly_Ap.resize(0);
|
||||
poly_p.resize(1);
|
||||
poly_r.resize(1);
|
||||
poly_p[0]=1.0;
|
||||
poly_r[0]=1.0;
|
||||
};
|
||||
virtual void LogIteration(int k,RealD a,RealD b)
|
||||
{
|
||||
// With zero guess,
|
||||
// p = r = src
|
||||
//
|
||||
// iterate:
|
||||
// x = x + a p
|
||||
// r = r - a A p
|
||||
// p = r + b p
|
||||
//
|
||||
// [0]
|
||||
// r = x
|
||||
// p = x
|
||||
// Ap=0
|
||||
//
|
||||
// [1]
|
||||
// Ap = A x + 0 ==> shift poly P right by 1 and add 0.
|
||||
// x = x + a p ==> add polynomials term by term
|
||||
// r = r - a A p ==> add polynomials term by term
|
||||
// p = r + b p ==> add polynomials term by term
|
||||
//
|
||||
std::cout << "ConjugageGradientPolynomial::LogIteration() "<<k<<std::endl;
|
||||
ak.push_back(a);
|
||||
bk.push_back(b);
|
||||
// Ap= right_shift(p)
|
||||
poly_Ap.resize(k+1);
|
||||
poly_Ap[0]=0.0;
|
||||
for(int i=0;i<k;i++){
|
||||
poly_Ap[i+1]=poly_p[i];
|
||||
}
|
||||
|
||||
// x = x + a p
|
||||
polynomial.resize(k);
|
||||
polynomial[k-1]=0.0;
|
||||
for(int i=0;i<k;i++){
|
||||
polynomial[i] = polynomial[i] + a * poly_p[i];
|
||||
}
|
||||
|
||||
// r = r - a Ap
|
||||
// p = r + b p
|
||||
poly_r.resize(k+1);
|
||||
poly_p.resize(k+1);
|
||||
poly_r[k] = poly_p[k] = 0.0;
|
||||
for(int i=0;i<k+1;i++){
|
||||
poly_r[i] = poly_r[i] - a * poly_Ap[i];
|
||||
poly_p[i] = poly_r[i] + b * poly_p[i];
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
||||
|
||||
@@ -116,14 +116,14 @@ NAMESPACE_BEGIN(Grid);
|
||||
//Compute double precision rsd and also new RHS vector.
|
||||
Linop_d.HermOp(sol_d, tmp_d);
|
||||
RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector
|
||||
|
||||
std::cout<<GridLogMessage<<" rsd norm "<<norm<<std::endl;
|
||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " <<outer_iter<<" residual "<< norm<< " target "<< stop<<std::endl;
|
||||
|
||||
if(norm < OuterLoopNormMult * stop){
|
||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration converged on iteration " <<outer_iter <<std::endl;
|
||||
break;
|
||||
}
|
||||
while(norm * inner_tol * inner_tol < stop) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ??
|
||||
while(norm * inner_tol * inner_tol < stop*1.01) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ??
|
||||
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(src_f, src_d, pc_wk_dp_to_sp);
|
||||
|
||||
@@ -77,7 +77,7 @@ public:
|
||||
}
|
||||
|
||||
void operator() (const std::vector<FieldD> &src_d_in, std::vector<FieldD> &sol_d){
|
||||
assert(src_d_in.size() == sol_d.size());
|
||||
GRID_ASSERT(src_d_in.size() == sol_d.size());
|
||||
int NBatch = src_d_in.size();
|
||||
|
||||
std::cout << GridLogMessage << "NBatch = " << NBatch << std::endl;
|
||||
|
||||
@@ -98,15 +98,15 @@ public:
|
||||
std::vector<RealD> alpha(nshift,1.0);
|
||||
std::vector<Field> ps(nshift,grid);// Search directions
|
||||
|
||||
assert(psi.size()==nshift);
|
||||
assert(mass.size()==nshift);
|
||||
assert(mresidual.size()==nshift);
|
||||
GRID_ASSERT(psi.size()==nshift);
|
||||
GRID_ASSERT(mass.size()==nshift);
|
||||
GRID_ASSERT(mresidual.size()==nshift);
|
||||
|
||||
// dynamic sized arrays on stack; 2d is a pain with vector
|
||||
RealD bs[nshift];
|
||||
RealD rsq[nshift];
|
||||
RealD z[nshift][2];
|
||||
int converged[nshift];
|
||||
// remove dynamic sized arrays on stack; 2d is a pain with vector
|
||||
std::vector<RealD> bs(nshift);
|
||||
std::vector<RealD> rsq(nshift);
|
||||
std::vector<std::array<RealD,2> > z(nshift);
|
||||
std::vector<int> converged(nshift);
|
||||
|
||||
const int primary =0;
|
||||
|
||||
@@ -122,7 +122,7 @@ public:
|
||||
|
||||
// Check lightest mass
|
||||
for(int s=0;s<nshift;s++){
|
||||
assert( mass[s]>= mass[primary] );
|
||||
GRID_ASSERT( mass[s]>= mass[primary] );
|
||||
converged[s]=0;
|
||||
}
|
||||
|
||||
@@ -338,7 +338,7 @@ public:
|
||||
}
|
||||
// ugly hack
|
||||
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
|
||||
// assert(0);
|
||||
// GRID_ASSERT(0);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
@@ -118,16 +118,16 @@ public:
|
||||
FieldF r_f(SinglePrecGrid);
|
||||
FieldD mmp_d(DoublePrecGrid);
|
||||
|
||||
assert(psi_d.size()==nshift);
|
||||
assert(mass.size()==nshift);
|
||||
assert(mresidual.size()==nshift);
|
||||
GRID_ASSERT(psi_d.size()==nshift);
|
||||
GRID_ASSERT(mass.size()==nshift);
|
||||
GRID_ASSERT(mresidual.size()==nshift);
|
||||
|
||||
// dynamic sized arrays on stack; 2d is a pain with vector
|
||||
RealD bs[nshift];
|
||||
RealD rsq[nshift];
|
||||
RealD rsqf[nshift];
|
||||
RealD z[nshift][2];
|
||||
int converged[nshift];
|
||||
std::vector<RealD> bs(nshift);
|
||||
std::vector<RealD> rsq(nshift);
|
||||
std::vector<RealD> rsqf(nshift);
|
||||
std::vector<std::array<RealD,2> > z(nshift);
|
||||
std::vector<int> converged(nshift);
|
||||
|
||||
const int primary =0;
|
||||
|
||||
@@ -141,7 +141,7 @@ public:
|
||||
|
||||
// Check lightest mass
|
||||
for(int s=0;s<nshift;s++){
|
||||
assert( mass[s]>= mass[primary] );
|
||||
GRID_ASSERT( mass[s]>= mass[primary] );
|
||||
converged[s]=0;
|
||||
}
|
||||
|
||||
@@ -179,7 +179,7 @@ public:
|
||||
Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
|
||||
tmp_d = tmp_d - mmp_d;
|
||||
std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
|
||||
// assert(norm2(tmp_d)< 1.0e-4);
|
||||
// GRID_ASSERT(norm2(tmp_d)< 1.0e-4);
|
||||
|
||||
axpy(mmp_d,mass[0],p_d,mmp_d);
|
||||
RealD rn = norm2(p_d);
|
||||
@@ -365,7 +365,7 @@ public:
|
||||
|
||||
}
|
||||
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
@@ -48,12 +48,12 @@ public:
|
||||
|
||||
ShiftedLinop(LinearOperatorBase<Field> &_linop_base, RealD _shift): linop_base(_linop_base), shift(_shift){}
|
||||
|
||||
void OpDiag (const Field &in, Field &out){ assert(0); }
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
|
||||
void OpDiag (const Field &in, Field &out){ GRID_ASSERT(0); }
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp){ GRID_ASSERT(0); }
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){ GRID_ASSERT(0); }
|
||||
|
||||
void Op (const Field &in, Field &out){ assert(0); }
|
||||
void AdjOp (const Field &in, Field &out){ assert(0); }
|
||||
void Op (const Field &in, Field &out){ GRID_ASSERT(0); }
|
||||
void AdjOp (const Field &in, Field &out){ GRID_ASSERT(0); }
|
||||
|
||||
void HermOp(const Field &in, Field &out){
|
||||
linop_base.HermOp(in, out);
|
||||
@@ -151,16 +151,16 @@ public:
|
||||
FieldD r_d(DoublePrecGrid);
|
||||
FieldD mmp_d(DoublePrecGrid);
|
||||
|
||||
assert(psi_d.size()==nshift);
|
||||
assert(mass.size()==nshift);
|
||||
assert(mresidual.size()==nshift);
|
||||
GRID_ASSERT(psi_d.size()==nshift);
|
||||
GRID_ASSERT(mass.size()==nshift);
|
||||
GRID_ASSERT(mresidual.size()==nshift);
|
||||
|
||||
// dynamic sized arrays on stack; 2d is a pain with vector
|
||||
RealD bs[nshift];
|
||||
RealD rsq[nshift];
|
||||
RealD rsqf[nshift];
|
||||
RealD z[nshift][2];
|
||||
int converged[nshift];
|
||||
std::vector<RealD> bs(nshift);
|
||||
std::vector<RealD> rsq(nshift);
|
||||
std::vector<RealD> rsqf(nshift);
|
||||
std::vector<std::array<RealD,2> > z(nshift);
|
||||
std::vector<int> converged(nshift);
|
||||
|
||||
const int primary =0;
|
||||
|
||||
@@ -174,7 +174,7 @@ public:
|
||||
|
||||
// Check lightest mass
|
||||
for(int s=0;s<nshift;s++){
|
||||
assert( mass[s]>= mass[primary] );
|
||||
GRID_ASSERT( mass[s]>= mass[primary] );
|
||||
converged[s]=0;
|
||||
}
|
||||
|
||||
@@ -211,7 +211,7 @@ public:
|
||||
Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
|
||||
tmp_d = tmp_d - mmp_d;
|
||||
std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
|
||||
assert(norm2(tmp_d)< 1.0);
|
||||
GRID_ASSERT(norm2(tmp_d)< 1.0);
|
||||
|
||||
axpy(mmp_d,mass[0],p_d,mmp_d);
|
||||
RealD rn = norm2(p_d);
|
||||
@@ -408,7 +408,7 @@ public:
|
||||
|
||||
}
|
||||
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
@@ -35,7 +35,7 @@ template<class FieldD,class FieldF,
|
||||
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
|
||||
class ConjugateGradientReliableUpdate : public LinearFunction<FieldD> {
|
||||
public:
|
||||
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
|
||||
bool ErrorOnNoConverge; // throw an GRID_ASSERT when the CG fails to converge.
|
||||
// Defaults true.
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
@@ -66,7 +66,7 @@ public:
|
||||
DoFinalCleanup(true),
|
||||
Linop_fallback(NULL)
|
||||
{
|
||||
assert(Delta > 0. && Delta < 1. && "Expect 0 < Delta < 1");
|
||||
GRID_ASSERT(Delta > 0. && Delta < 1. && "Expect 0 < Delta < 1");
|
||||
};
|
||||
|
||||
void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){
|
||||
@@ -90,7 +90,7 @@ public:
|
||||
|
||||
// Initial residual computation & set up
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
GRID_ASSERT(std::isnan(guess) == 0);
|
||||
|
||||
Linop_d.HermOpAndNorm(psi, mmp, d, b);
|
||||
|
||||
@@ -217,7 +217,7 @@ public:
|
||||
CG(Linop_d,src,psi);
|
||||
IterationsToCleanup = CG.IterationsToComplete;
|
||||
}
|
||||
else if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
|
||||
else if (ErrorOnNoConverge) GRID_ASSERT(true_residual / Tolerance < 10000.0);
|
||||
|
||||
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate complete.\n";
|
||||
return;
|
||||
@@ -263,7 +263,7 @@ public:
|
||||
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate did NOT converge"
|
||||
<< std::endl;
|
||||
|
||||
if (ErrorOnNoConverge) assert(0);
|
||||
if (ErrorOnNoConverge) GRID_ASSERT(0);
|
||||
IterationsToComplete = k;
|
||||
ReliableUpdatesPerformed = l;
|
||||
}
|
||||
|
||||
@@ -106,7 +106,7 @@ public:
|
||||
}
|
||||
|
||||
std::cout<<GridLogMessage<<"ConjugateResidual did NOT converge"<<std::endl;
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
};
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
@@ -36,7 +36,7 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF
|
||||
public:
|
||||
using OperatorFunction<Field>::operator();
|
||||
|
||||
bool ErrorOnNoConverge; // Throw an assert when FCAGMRES fails to converge,
|
||||
bool ErrorOnNoConverge; // Throw an GRID_ASSERT when FCAGMRES fails to converge,
|
||||
// defaults to true
|
||||
|
||||
RealD Tolerance;
|
||||
@@ -87,7 +87,7 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF
|
||||
conformable(psi, src);
|
||||
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
GRID_ASSERT(std::isnan(guess) == 0);
|
||||
|
||||
RealD cp;
|
||||
RealD ssq = norm2(src);
|
||||
@@ -144,7 +144,7 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF
|
||||
std::cout << GridLogMessage << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl;
|
||||
|
||||
if (ErrorOnNoConverge)
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
|
||||
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
|
||||
@@ -191,7 +191,7 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF
|
||||
}
|
||||
}
|
||||
|
||||
assert(0); // Never reached
|
||||
GRID_ASSERT(0); // Never reached
|
||||
return cp;
|
||||
}
|
||||
|
||||
|
||||
@@ -36,7 +36,7 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
|
||||
public:
|
||||
using OperatorFunction<Field>::operator();
|
||||
|
||||
bool ErrorOnNoConverge; // Throw an assert when FGMRES fails to converge,
|
||||
bool ErrorOnNoConverge; // Throw an GRID_ASSERT when FGMRES fails to converge,
|
||||
// defaults to true
|
||||
|
||||
RealD Tolerance;
|
||||
@@ -85,7 +85,7 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
|
||||
conformable(psi, src);
|
||||
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
GRID_ASSERT(std::isnan(guess) == 0);
|
||||
|
||||
RealD cp;
|
||||
RealD ssq = norm2(src);
|
||||
@@ -142,7 +142,7 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
|
||||
std::cout << GridLogMessage << "FlexibleGeneralisedMinimalResidual did NOT converge" << std::endl;
|
||||
|
||||
if (ErrorOnNoConverge)
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
|
||||
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
|
||||
@@ -189,7 +189,7 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
|
||||
}
|
||||
}
|
||||
|
||||
assert(0); // Never reached
|
||||
GRID_ASSERT(0); // Never reached
|
||||
return cp;
|
||||
}
|
||||
|
||||
|
||||
@@ -36,7 +36,7 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> {
|
||||
public:
|
||||
using OperatorFunction<Field>::operator();
|
||||
|
||||
bool ErrorOnNoConverge; // Throw an assert when GMRES fails to converge,
|
||||
bool ErrorOnNoConverge; // Throw an GRID_ASSERT when GMRES fails to converge,
|
||||
// defaults to true
|
||||
|
||||
RealD Tolerance;
|
||||
@@ -80,7 +80,7 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> {
|
||||
conformable(psi, src);
|
||||
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
GRID_ASSERT(std::isnan(guess) == 0);
|
||||
|
||||
RealD cp;
|
||||
RealD ssq = norm2(src);
|
||||
@@ -135,7 +135,7 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> {
|
||||
std::cout << GridLogMessage << "GeneralisedMinimalResidual did NOT converge" << std::endl;
|
||||
|
||||
if (ErrorOnNoConverge)
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
|
||||
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
|
||||
@@ -181,7 +181,7 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> {
|
||||
}
|
||||
}
|
||||
|
||||
assert(0); // Never reached
|
||||
GRID_ASSERT(0); // Never reached
|
||||
return cp;
|
||||
}
|
||||
|
||||
|
||||
@@ -175,7 +175,7 @@ public:
|
||||
eresid(_eresid), MaxIter(_MaxIter),
|
||||
diagonalisation(_diagonalisation),split_test(0),
|
||||
Nevec_acc(_Nu)
|
||||
{ assert( (Nk%Nu==0) && (Nm%Nu==0) ); };
|
||||
{ GRID_ASSERT( (Nk%Nu==0) && (Nm%Nu==0) ); };
|
||||
|
||||
////////////////////////////////
|
||||
// Helpers
|
||||
@@ -206,7 +206,7 @@ public:
|
||||
Glog<<"orthogonalize after: "<<j<<" of "<<k<<" "<< ip <<std::endl;
|
||||
}
|
||||
}
|
||||
assert(normalize(w,if_print) != 0);
|
||||
GRID_ASSERT(normalize(w,if_print) != 0);
|
||||
}
|
||||
void reorthogonalize(Field& w, std::vector<Field>& evec, int k)
|
||||
{
|
||||
@@ -225,7 +225,7 @@ public:
|
||||
w[i] = w[i] - ip * evec[j];
|
||||
}}
|
||||
for(int i=0; i<_Nu; ++i)
|
||||
assert(normalize(w[i],if_print) !=0);
|
||||
GRID_ASSERT(normalize(w[i],if_print) !=0);
|
||||
}
|
||||
|
||||
|
||||
@@ -244,7 +244,7 @@ public:
|
||||
const uint64_t sites = grid->lSites();
|
||||
|
||||
int Nbatch = R/Nevec_acc;
|
||||
assert( R%Nevec_acc == 0 );
|
||||
GRID_ASSERT( R%Nevec_acc == 0 );
|
||||
// Glog << "nBatch, Nevec_acc, R, Nu = "
|
||||
// << Nbatch << "," << Nevec_acc << "," << R << "," << Nu << std::endl;
|
||||
|
||||
@@ -302,7 +302,7 @@ public:
|
||||
}
|
||||
}
|
||||
for (int i=0; i<Nu; ++i) {
|
||||
assert(normalize(w[i],do_print)!=0);
|
||||
GRID_ASSERT(normalize(w[i],do_print)!=0);
|
||||
}
|
||||
|
||||
Glog << "cuBLAS Zgemm done"<< std::endl;
|
||||
@@ -374,8 +374,8 @@ cudaStat = cudaMallocManaged((void **)&evec_acc, Nevec_acc*sites*12*sizeof(CUDA_
|
||||
{
|
||||
std::string fname = std::string(cname+"::calc_irbl()");
|
||||
GridBase *grid = evec[0].Grid();
|
||||
assert(grid == src[0].Grid());
|
||||
assert( Nu = src.size() );
|
||||
GRID_ASSERT(grid == src[0].Grid());
|
||||
GRID_ASSERT( Nu = src.size() );
|
||||
|
||||
Glog << std::string(74,'*') << std::endl;
|
||||
Glog << fname + " starting iteration 0 / "<< MaxIter<< std::endl;
|
||||
@@ -396,7 +396,7 @@ cudaStat = cudaMallocManaged((void **)&evec_acc, Nevec_acc*sites*12*sizeof(CUDA_
|
||||
}
|
||||
Glog << std::string(74,'*') << std::endl;
|
||||
|
||||
assert(Nm == evec.size() && Nm == eval.size());
|
||||
GRID_ASSERT(Nm == evec.size() && Nm == eval.size());
|
||||
|
||||
std::vector<std::vector<ComplexD>> lmd(Nu,std::vector<ComplexD>(Nm,0.0));
|
||||
std::vector<std::vector<ComplexD>> lme(Nu,std::vector<ComplexD>(Nm,0.0));
|
||||
@@ -579,8 +579,8 @@ cudaStat = cudaMallocManaged((void **)&evec_acc, Nevec_acc*sites*12*sizeof(CUDA_
|
||||
{
|
||||
std::string fname = std::string(cname+"::calc_rbl()");
|
||||
GridBase *grid = evec[0].Grid();
|
||||
assert(grid == src[0].Grid());
|
||||
assert( Nu = src.size() );
|
||||
GRID_ASSERT(grid == src[0].Grid());
|
||||
GRID_ASSERT( Nu = src.size() );
|
||||
|
||||
int Np = (Nm-Nk);
|
||||
if (Np > 0 && MaxIter > 1) Np /= MaxIter;
|
||||
@@ -607,7 +607,7 @@ cudaStat = cudaMallocManaged((void **)&evec_acc, Nevec_acc*sites*12*sizeof(CUDA_
|
||||
}
|
||||
Glog << std::string(74,'*') << std::endl;
|
||||
|
||||
assert(Nm == evec.size() && Nm == eval.size());
|
||||
GRID_ASSERT(Nm == evec.size() && Nm == eval.size());
|
||||
|
||||
std::vector<std::vector<ComplexD>> lmd(Nu,std::vector<ComplexD>(Nm,0.0));
|
||||
std::vector<std::vector<ComplexD>> lme(Nu,std::vector<ComplexD>(Nm,0.0));
|
||||
@@ -785,7 +785,7 @@ private:
|
||||
|
||||
int Nu = w.size();
|
||||
int Nm = evec.size();
|
||||
assert( b < Nm/Nu );
|
||||
GRID_ASSERT( b < Nm/Nu );
|
||||
// GridCartesian *grid = evec[0]._grid;
|
||||
|
||||
// converts block index to full indicies for an interval [L,R)
|
||||
@@ -796,7 +796,7 @@ private:
|
||||
|
||||
Glog << "Using split grid"<< std::endl;
|
||||
// LatticeGaugeField s_Umu(SGrid);
|
||||
assert((Nu%mrhs)==0);
|
||||
GRID_ASSERT((Nu%mrhs)==0);
|
||||
std::vector<Field> in(mrhs,f_grid);
|
||||
|
||||
Field s_in(sf_grid);
|
||||
@@ -906,7 +906,7 @@ if(split_test){
|
||||
|
||||
for (int u=0; u<Nu; ++u) {
|
||||
// Glog << "norm2(w[" << u << "])= "<< norm2(w[u]) << std::endl;
|
||||
assert (!isnan(norm2(w[u])));
|
||||
GRID_ASSERT (!isnan(norm2(w[u])));
|
||||
for (int k=L+u; k<R; ++k) {
|
||||
Glog <<" In block "<< b << "," <<" beta[" << u << "," << k-L << "] = " << lme[u][k] << std::endl;
|
||||
}
|
||||
@@ -929,8 +929,8 @@ if(split_test){
|
||||
Eigen::MatrixXcd & Qt, // Nm x Nm
|
||||
GridBase *grid)
|
||||
{
|
||||
assert( Nk%Nu == 0 && Nm%Nu == 0 );
|
||||
assert( Nk <= Nm );
|
||||
GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 );
|
||||
GRID_ASSERT( Nk <= Nm );
|
||||
Eigen::MatrixXcd BlockTriDiag = Eigen::MatrixXcd::Zero(Nk,Nk);
|
||||
|
||||
for ( int u=0; u<Nu; ++u ) {
|
||||
@@ -970,8 +970,8 @@ if(split_test){
|
||||
GridBase *grid)
|
||||
{
|
||||
Glog << "diagonalize_lapack: Nu= "<<Nu<<" Nk= "<<Nk<<" Nm= "<<std::endl;
|
||||
assert( Nk%Nu == 0 && Nm%Nu == 0 );
|
||||
assert( Nk <= Nm );
|
||||
GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 );
|
||||
GRID_ASSERT( Nk <= Nm );
|
||||
Eigen::MatrixXcd BlockTriDiag = Eigen::MatrixXcd::Zero(Nk,Nk);
|
||||
|
||||
for ( int u=0; u<Nu; ++u ) {
|
||||
@@ -1119,7 +1119,7 @@ if (1){
|
||||
diagonalize_lapack(eval,lmd,lme,Nu,Nk,Nm,Qt,grid);
|
||||
#endif
|
||||
} else {
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1131,8 +1131,8 @@ if (1){
|
||||
Eigen::MatrixXcd& M)
|
||||
{
|
||||
//Glog << "unpackHermitBlockTriDiagMatToEigen() begin" << '\n';
|
||||
assert( Nk%Nu == 0 && Nm%Nu == 0 );
|
||||
assert( Nk <= Nm );
|
||||
GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 );
|
||||
GRID_ASSERT( Nk <= Nm );
|
||||
M = Eigen::MatrixXcd::Zero(Nk,Nk);
|
||||
|
||||
// rearrange
|
||||
@@ -1159,8 +1159,8 @@ if (1){
|
||||
Eigen::MatrixXcd& M)
|
||||
{
|
||||
//Glog << "packHermitBlockTriDiagMatfromEigen() begin" << '\n';
|
||||
assert( Nk%Nu == 0 && Nm%Nu == 0 );
|
||||
assert( Nk <= Nm );
|
||||
GRID_ASSERT( Nk%Nu == 0 && Nm%Nu == 0 );
|
||||
GRID_ASSERT( Nk <= Nm );
|
||||
|
||||
// rearrange
|
||||
for ( int u=0; u<Nu; ++u ) {
|
||||
|
||||
1220
Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczosCoarse.h
Normal file
1220
Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczosCoarse.h
Normal file
File diff suppressed because it is too large
Load Diff
@@ -211,7 +211,7 @@ until convergence
|
||||
void calc(std::vector<RealD>& eval, std::vector<Field>& evec, const Field& src, int& Nconv, bool reverse=false)
|
||||
{
|
||||
GridBase *grid = src.Grid();
|
||||
assert(grid == evec[0].Grid());
|
||||
GRID_ASSERT(grid == evec[0].Grid());
|
||||
|
||||
// GridLogIRL.TimingMode(1);
|
||||
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
|
||||
@@ -231,7 +231,7 @@ until convergence
|
||||
}
|
||||
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
|
||||
|
||||
assert(Nm <= evec.size() && Nm <= eval.size());
|
||||
GRID_ASSERT(Nm <= evec.size() && Nm <= eval.size());
|
||||
|
||||
// quickly get an idea of the largest eigenvalue to more properly normalize the residuum
|
||||
RealD evalMaxApprox = 0.0;
|
||||
@@ -245,9 +245,10 @@ until convergence
|
||||
_HermOp(src_n,tmp);
|
||||
// std::cout << GridLogMessage<< tmp<<std::endl; exit(0);
|
||||
// std::cout << GridLogIRL << " _HermOp " << norm2(tmp) << std::endl;
|
||||
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
|
||||
// RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
|
||||
RealD vnum = real(innerProduct(tmp,tmp)); // HermOp^2.
|
||||
RealD vden = norm2(src_n);
|
||||
RealD na = vnum/vden;
|
||||
RealD na = std::sqrt(vnum/vden);
|
||||
if (fabs(evalMaxApprox/na - 1.0) < 0.0001)
|
||||
i=_MAX_ITER_IRL_MEVAPP_;
|
||||
evalMaxApprox = na;
|
||||
@@ -255,6 +256,7 @@ until convergence
|
||||
src_n = tmp;
|
||||
}
|
||||
}
|
||||
std::cout << GridLogIRL << " Final evalMaxApprox " << evalMaxApprox << std::endl;
|
||||
|
||||
std::vector<RealD> lme(Nm);
|
||||
std::vector<RealD> lme2(Nm);
|
||||
@@ -335,7 +337,7 @@ until convergence
|
||||
}
|
||||
std::cout<<GridLogIRL <<"QR decomposed "<<std::endl;
|
||||
|
||||
assert(k2<Nm); assert(k2<Nm); assert(k1>0);
|
||||
GRID_ASSERT(k2<Nm); GRID_ASSERT(k2<Nm); GRID_ASSERT(k1>0);
|
||||
|
||||
basisRotate(evec,Qt,k1-1,k2+1,0,Nm,Nm); /// big constraint on the basis
|
||||
std::cout<<GridLogIRL <<"basisRotated by Qt *"<<k1-1<<","<<k2+1<<")"<<std::endl;
|
||||
@@ -461,7 +463,7 @@ until convergence
|
||||
{
|
||||
std::cout<<GridLogDebug << "Lanczos step " <<k<<std::endl;
|
||||
const RealD tiny = 1.0e-20;
|
||||
assert( k< Nm );
|
||||
GRID_ASSERT( k< Nm );
|
||||
|
||||
GridStopWatch gsw_op,gsw_o;
|
||||
|
||||
@@ -595,7 +597,7 @@ until convergence
|
||||
} else if ( diagonalisation == IRLdiagonaliseWithEigen ) {
|
||||
diagonalize_Eigen(lmd,lme,Nk,Nm,Qt,grid);
|
||||
} else {
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -685,7 +687,7 @@ void diagonalize_lapack(std::vector<RealD>& lmd,
|
||||
}
|
||||
}
|
||||
#else
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
@@ -80,7 +80,7 @@ public:
|
||||
ProjectedHermOp(LinearOperatorBase<FineField>& linop, std::vector<FineField> & _subspace) :
|
||||
_Linop(linop), subspace(_subspace)
|
||||
{
|
||||
assert(subspace.size() >0);
|
||||
GRID_ASSERT(subspace.size() >0);
|
||||
};
|
||||
|
||||
void operator()(const CoarseField& in, CoarseField& out) {
|
||||
@@ -346,12 +346,12 @@ public:
|
||||
|
||||
void testFine(RealD resid)
|
||||
{
|
||||
assert(evals_fine.size() == nbasis);
|
||||
assert(subspace.size() == nbasis);
|
||||
GRID_ASSERT(evals_fine.size() == nbasis);
|
||||
GRID_ASSERT(subspace.size() == nbasis);
|
||||
PlainHermOp<FineField> Op(_FineOp);
|
||||
ImplicitlyRestartedLanczosHermOpTester<FineField> SimpleTester(Op);
|
||||
for(int k=0;k<nbasis;k++){
|
||||
assert(SimpleTester.ReconstructEval(k,resid,subspace[k],evals_fine[k],1.0)==1);
|
||||
GRID_ASSERT(SimpleTester.ReconstructEval(k,resid,subspace[k],evals_fine[k],1.0)==1);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -359,8 +359,8 @@ public:
|
||||
//hence the smoother can be tuned after running the coarse Lanczos by using a different smoother here
|
||||
void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax)
|
||||
{
|
||||
assert(evals_fine.size() == nbasis);
|
||||
assert(subspace.size() == nbasis);
|
||||
GRID_ASSERT(evals_fine.size() == nbasis);
|
||||
GRID_ASSERT(subspace.size() == nbasis);
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@@ -380,7 +380,7 @@ public:
|
||||
void calcFine(ChebyParams cheby_parms,int Nstop,int Nk,int Nm,RealD resid,
|
||||
RealD MaxIt, RealD betastp, int MinRes)
|
||||
{
|
||||
assert(nbasis<=Nm);
|
||||
GRID_ASSERT(nbasis<=Nm);
|
||||
Chebyshev<FineField> Cheby(cheby_parms);
|
||||
FunctionHermOp<FineField> ChebyOp(Cheby,_FineOp);
|
||||
PlainHermOp<FineField> Op(_FineOp);
|
||||
@@ -400,8 +400,8 @@ public:
|
||||
IRL.calc(evals_fine,subspace,src,Nconv,false);
|
||||
|
||||
// Shrink down to number saved
|
||||
assert(Nstop>=nbasis);
|
||||
assert(Nconv>=nbasis);
|
||||
GRID_ASSERT(Nstop>=nbasis);
|
||||
GRID_ASSERT(Nconv>=nbasis);
|
||||
evals_fine.resize(nbasis);
|
||||
subspace.resize(nbasis,_FineGrid);
|
||||
}
|
||||
@@ -433,7 +433,7 @@ public:
|
||||
ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
|
||||
int Nconv=0;
|
||||
IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
|
||||
assert(Nconv>=Nstop);
|
||||
GRID_ASSERT(Nconv>=Nstop);
|
||||
evals_coarse.resize(Nstop);
|
||||
evec_coarse.resize (Nstop,_CoarseGrid);
|
||||
for (int i=0;i<Nstop;i++){
|
||||
|
||||
@@ -35,7 +35,7 @@ template<class Field> class MinimalResidual : public OperatorFunction<Field> {
|
||||
public:
|
||||
using OperatorFunction<Field>::operator();
|
||||
|
||||
bool ErrorOnNoConverge; // throw an assert when the MR fails to converge.
|
||||
bool ErrorOnNoConverge; // throw an GRID_ASSERT when the MR fails to converge.
|
||||
// Defaults true.
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
@@ -59,7 +59,7 @@ template<class Field> class MinimalResidual : public OperatorFunction<Field> {
|
||||
|
||||
// Initial residual computation & set up
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
GRID_ASSERT(std::isnan(guess) == 0);
|
||||
|
||||
RealD ssq = norm2(src);
|
||||
RealD rsq = Tolerance * Tolerance * ssq;
|
||||
@@ -136,7 +136,7 @@ template<class Field> class MinimalResidual : public OperatorFunction<Field> {
|
||||
std::cout << GridLogMessage << "MR Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
|
||||
|
||||
if (ErrorOnNoConverge)
|
||||
assert(true_residual / Tolerance < 10000.0);
|
||||
GRID_ASSERT(true_residual / Tolerance < 10000.0);
|
||||
|
||||
IterationsToComplete = k;
|
||||
|
||||
@@ -148,7 +148,7 @@ template<class Field> class MinimalResidual : public OperatorFunction<Field> {
|
||||
<< std::endl;
|
||||
|
||||
if (ErrorOnNoConverge)
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
|
||||
IterationsToComplete = k;
|
||||
}
|
||||
|
||||
@@ -37,7 +37,7 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction
|
||||
|
||||
using OperatorFunction<FieldD>::operator();
|
||||
|
||||
bool ErrorOnNoConverge; // Throw an assert when MPFGMRES fails to converge,
|
||||
bool ErrorOnNoConverge; // Throw an GRID_ASSERT when MPFGMRES fails to converge,
|
||||
// defaults to true
|
||||
|
||||
RealD Tolerance;
|
||||
@@ -91,7 +91,7 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction
|
||||
conformable(psi, src);
|
||||
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
GRID_ASSERT(std::isnan(guess) == 0);
|
||||
|
||||
RealD cp;
|
||||
RealD ssq = norm2(src);
|
||||
@@ -150,7 +150,7 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction
|
||||
std::cout << GridLogMessage << "MPFGMRES did NOT converge" << std::endl;
|
||||
|
||||
if (ErrorOnNoConverge)
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
|
||||
RealD outerLoopBody(LinearOperatorBase<FieldD> &LinOp, const FieldD &src, FieldD &psi, RealD rsq) {
|
||||
@@ -197,7 +197,7 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction
|
||||
}
|
||||
}
|
||||
|
||||
assert(0); // Never reached
|
||||
GRID_ASSERT(0); // Never reached
|
||||
return cp;
|
||||
}
|
||||
|
||||
|
||||
@@ -60,6 +60,32 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
template<class Field> class NormalResidual : public LinearFunction<Field>{
|
||||
private:
|
||||
SparseMatrixBase<Field> & _Matrix;
|
||||
OperatorFunction<Field> & _HermitianSolver;
|
||||
LinearFunction<Field> & _Guess;
|
||||
public:
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Wrap the usual normal equations trick
|
||||
/////////////////////////////////////////////////////
|
||||
NormalResidual(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver,
|
||||
LinearFunction<Field> &Guess)
|
||||
: _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {};
|
||||
|
||||
void operator() (const Field &in, Field &out){
|
||||
|
||||
Field res(in.Grid());
|
||||
Field tmp(in.Grid());
|
||||
|
||||
MMdagLinearOperator<SparseMatrixBase<Field>,Field> MMdagOp(_Matrix);
|
||||
_Guess(in,res);
|
||||
_HermitianSolver(MMdagOp,in,res); // M Mdag res = in ;
|
||||
_Matrix.Mdag(res,out); // out = Mdag res
|
||||
}
|
||||
};
|
||||
|
||||
template<class Field> class HPDSolver : public LinearFunction<Field> {
|
||||
private:
|
||||
LinearOperatorBase<Field> & _Matrix;
|
||||
|
||||
@@ -20,7 +20,7 @@ template<class Field> class PowerMethod
|
||||
RealD evalMaxApprox = 0.0;
|
||||
auto src_n = src;
|
||||
auto tmp = src;
|
||||
const int _MAX_ITER_EST_ = 100;
|
||||
const int _MAX_ITER_EST_ = 200;
|
||||
|
||||
for (int i=0;i<_MAX_ITER_EST_;i++) {
|
||||
|
||||
@@ -30,18 +30,17 @@ template<class Field> class PowerMethod
|
||||
RealD vden = norm2(src_n);
|
||||
RealD na = vnum/vden;
|
||||
|
||||
std::cout << GridLogIterative << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
|
||||
std::cout << GridLogMessage << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
|
||||
|
||||
if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) {
|
||||
evalMaxApprox = na;
|
||||
std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
|
||||
return evalMaxApprox;
|
||||
}
|
||||
// if ( (fabs(evalMaxApprox/na - 1.0) < 0.0001) || (i==_MAX_ITER_EST_-1) ) {
|
||||
// evalMaxApprox = na;
|
||||
// return evalMaxApprox;
|
||||
// }
|
||||
evalMaxApprox = na;
|
||||
src_n = tmp;
|
||||
}
|
||||
assert(0);
|
||||
return 0;
|
||||
std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
|
||||
return evalMaxApprox;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
76
Grid/algorithms/iterative/PowerSpectrum.h
Normal file
76
Grid/algorithms/iterative/PowerSpectrum.h
Normal file
@@ -0,0 +1,76 @@
|
||||
#pragma once
|
||||
namespace Grid {
|
||||
|
||||
class Band
|
||||
{
|
||||
RealD lo, hi;
|
||||
public:
|
||||
Band(RealD _lo,RealD _hi)
|
||||
{
|
||||
lo=_lo;
|
||||
hi=_hi;
|
||||
}
|
||||
RealD operator() (RealD x){
|
||||
if ( x>lo && x<hi ){
|
||||
return 1.0;
|
||||
} else {
|
||||
return 0.0;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
class PowerSpectrum
|
||||
{
|
||||
public:
|
||||
|
||||
template<typename T> static RealD normalise(T& v)
|
||||
{
|
||||
RealD nn = norm2(v);
|
||||
nn = sqrt(nn);
|
||||
v = v * (1.0/nn);
|
||||
return nn;
|
||||
}
|
||||
|
||||
std::vector<RealD> ranges;
|
||||
std::vector<int> order;
|
||||
|
||||
PowerSpectrum( std::vector<RealD> &bins, std::vector<int> &_order ) : ranges(bins), order(_order) { };
|
||||
|
||||
template<class Field>
|
||||
RealD operator()(LinearOperatorBase<Field> &HermOp, const Field &src)
|
||||
{
|
||||
GridBase *grid = src.Grid();
|
||||
int N=ranges.size();
|
||||
RealD hi = ranges[N-1];
|
||||
|
||||
RealD lo_band = 0.0;
|
||||
RealD hi_band;
|
||||
RealD nn=norm2(src);
|
||||
RealD ss=0.0;
|
||||
|
||||
Field tmp = src;
|
||||
|
||||
for(int b=0;b<N;b++){
|
||||
hi_band = ranges[b];
|
||||
Band Notch(lo_band,hi_band);
|
||||
|
||||
Chebyshev<Field> polynomial;
|
||||
polynomial.Init(0.0,hi,order[b],Notch);
|
||||
polynomial.JacksonSmooth();
|
||||
|
||||
polynomial(HermOp,src,tmp) ;
|
||||
|
||||
RealD p=norm2(tmp);
|
||||
ss=ss+p;
|
||||
std::cout << GridLogMessage << " PowerSpectrum Band["<<lo_band<<","<<hi_band<<"] power "<<norm2(tmp)/nn<<std::endl;
|
||||
|
||||
lo_band=hi_band;
|
||||
}
|
||||
std::cout << GridLogMessage << " PowerSpectrum total power "<<ss/nn<<std::endl;
|
||||
std::cout << GridLogMessage << " PowerSpectrum total power (unnormalised) "<<nn<<std::endl;
|
||||
|
||||
return 0;
|
||||
};
|
||||
};
|
||||
|
||||
}
|
||||
@@ -112,7 +112,7 @@ public:
|
||||
}
|
||||
|
||||
std::cout<<GridLogMessage<<"PrecConjugateResidual did NOT converge"<<std::endl;
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
};
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
@@ -118,7 +118,7 @@ public:
|
||||
|
||||
}
|
||||
GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl;
|
||||
// assert(0);
|
||||
// GRID_ASSERT(0);
|
||||
}
|
||||
|
||||
RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
|
||||
@@ -221,7 +221,7 @@ public:
|
||||
int northog = ((kp)>(mmax-1))?(mmax-1):(kp); // if more than mmax done, we orthog all mmax history.
|
||||
for(int back=0;back<northog;back++){
|
||||
|
||||
int peri_back=(k-back)%mmax; assert((k-back)>=0);
|
||||
int peri_back=(k-back)%mmax; GRID_ASSERT((k-back)>=0);
|
||||
|
||||
b=-real(innerProduct(q[peri_back],Az))/qq[peri_back];
|
||||
p[peri_kp]=p[peri_kp]+b*p[peri_back];
|
||||
@@ -231,7 +231,7 @@ public:
|
||||
qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm
|
||||
LinalgTimer.Stop();
|
||||
}
|
||||
assert(0); // never reached
|
||||
GRID_ASSERT(0); // never reached
|
||||
return cp;
|
||||
}
|
||||
};
|
||||
|
||||
@@ -74,7 +74,7 @@ public:
|
||||
|
||||
void operator() (const Field &src, Field &psi){
|
||||
|
||||
psi=Zero();
|
||||
// psi=Zero();
|
||||
RealD cp, ssq,rsq;
|
||||
ssq=norm2(src);
|
||||
rsq=Tolerance*Tolerance*ssq;
|
||||
@@ -113,7 +113,7 @@ public:
|
||||
|
||||
}
|
||||
GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl;
|
||||
// assert(0);
|
||||
// GRID_ASSERT(0);
|
||||
}
|
||||
|
||||
RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
|
||||
@@ -224,7 +224,7 @@ public:
|
||||
int northog = ((kp)>(mmax-1))?(mmax-1):(kp); // if more than mmax done, we orthog all mmax history.
|
||||
for(int back=0;back<northog;back++){
|
||||
|
||||
int peri_back=(k-back)%mmax; assert((k-back)>=0);
|
||||
int peri_back=(k-back)%mmax; GRID_ASSERT((k-back)>=0);
|
||||
|
||||
b=-real(innerProduct(q[peri_back],Az))/qq[peri_back];
|
||||
p[peri_kp]=p[peri_kp]+b*p[peri_back];
|
||||
@@ -234,7 +234,7 @@ public:
|
||||
qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm
|
||||
LinalgTimer.Stop();
|
||||
}
|
||||
assert(0); // never reached
|
||||
GRID_ASSERT(0); // never reached
|
||||
return cp;
|
||||
}
|
||||
};
|
||||
|
||||
@@ -79,7 +79,7 @@ class QuasiMinimalResidual : public OperatorFunction<Field> {
|
||||
|
||||
LinOp.Op(x,r); r = b - r;
|
||||
|
||||
assert(normb> 0.0);
|
||||
GRID_ASSERT(normb> 0.0);
|
||||
|
||||
resid = norm2(r)/normb;
|
||||
if (resid <= Tolerance) {
|
||||
@@ -105,8 +105,8 @@ class QuasiMinimalResidual : public OperatorFunction<Field> {
|
||||
for (int i = 1; i <= MaxIterations; i++) {
|
||||
|
||||
// Breakdown tests
|
||||
assert( rho != 0.0);
|
||||
assert( xi != 0.0);
|
||||
GRID_ASSERT( rho != 0.0);
|
||||
GRID_ASSERT( xi != 0.0);
|
||||
|
||||
v = (1. / rho) * v_tld;
|
||||
y = (1. / rho) * y;
|
||||
@@ -134,10 +134,10 @@ class QuasiMinimalResidual : public OperatorFunction<Field> {
|
||||
ep=Zep.real();
|
||||
std::cout << "Zep "<<Zep <<std::endl;
|
||||
// Complex Audit
|
||||
assert(abs(ep)>0);
|
||||
GRID_ASSERT(abs(ep)>0);
|
||||
|
||||
beta = ep / delta;
|
||||
assert(abs(beta)>0);
|
||||
GRID_ASSERT(abs(beta)>0);
|
||||
|
||||
v_tld = p_tld - beta * v;
|
||||
y = v_tld;
|
||||
@@ -158,7 +158,7 @@ class QuasiMinimalResidual : public OperatorFunction<Field> {
|
||||
std::cout << "theta "<<theta<<std::endl;
|
||||
std::cout << "gamma "<<gamma<<std::endl;
|
||||
|
||||
assert(abs(gamma)> 0.0);
|
||||
GRID_ASSERT(abs(gamma)> 0.0);
|
||||
|
||||
eta = -eta * rho_1 * gamma* gamma / (beta * gamma_1 * gamma_1);
|
||||
|
||||
@@ -178,7 +178,7 @@ class QuasiMinimalResidual : public OperatorFunction<Field> {
|
||||
}
|
||||
std::cout << "Iteration "<<i<<" resid " << resid<<std::endl;
|
||||
}
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
return; // no convergence
|
||||
}
|
||||
#else
|
||||
|
||||
@@ -327,9 +327,9 @@ namespace Grid {
|
||||
/////////////////////////////////////////////////////
|
||||
// src_o = (source_o - Moe MeeInv source_e)
|
||||
/////////////////////////////////////////////////////
|
||||
_Matrix.MooeeInv(src_e,tmp); assert( tmp.Checkerboard() ==Even);
|
||||
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.Checkerboard() ==Odd);
|
||||
tmp=src_o-Mtmp; assert( tmp.Checkerboard() ==Odd);
|
||||
_Matrix.MooeeInv(src_e,tmp); GRID_ASSERT( tmp.Checkerboard() ==Even);
|
||||
_Matrix.Meooe (tmp,Mtmp); GRID_ASSERT( Mtmp.Checkerboard() ==Odd);
|
||||
tmp=src_o-Mtmp; GRID_ASSERT( tmp.Checkerboard() ==Odd);
|
||||
|
||||
_Matrix.Mooee(tmp,src_o); // Extra factor of "m" in source from dumb choice of matrix norm.
|
||||
}
|
||||
@@ -347,17 +347,17 @@ namespace Grid {
|
||||
///////////////////////////////////////////////////
|
||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
///////////////////////////////////////////////////
|
||||
_Matrix.Meooe(sol_o,tmp); assert( tmp.Checkerboard() ==Even);
|
||||
src_e = src_e-tmp; assert( src_e.Checkerboard() ==Even);
|
||||
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.Checkerboard() ==Even);
|
||||
_Matrix.Meooe(sol_o,tmp); GRID_ASSERT( tmp.Checkerboard() ==Even);
|
||||
src_e = src_e-tmp; GRID_ASSERT( src_e.Checkerboard() ==Even);
|
||||
_Matrix.MooeeInv(src_e,sol_e); GRID_ASSERT( sol_e.Checkerboard() ==Even);
|
||||
|
||||
setCheckerboard(sol,sol_e); assert( sol_e.Checkerboard() ==Even);
|
||||
setCheckerboard(sol,sol_o); assert( sol_o.Checkerboard() ==Odd );
|
||||
setCheckerboard(sol,sol_e); GRID_ASSERT( sol_e.Checkerboard() ==Even);
|
||||
setCheckerboard(sol,sol_o); GRID_ASSERT( sol_o.Checkerboard() ==Odd );
|
||||
}
|
||||
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
|
||||
{
|
||||
SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.Checkerboard()==Odd);
|
||||
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); GRID_ASSERT(sol_o.Checkerboard()==Odd);
|
||||
};
|
||||
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
|
||||
{
|
||||
@@ -396,13 +396,13 @@ namespace Grid {
|
||||
/////////////////////////////////////////////////////
|
||||
// src_o = Mdag * (source_o - Moe MeeInv source_e)
|
||||
/////////////////////////////////////////////////////
|
||||
_Matrix.MooeeInv(src_e,tmp); assert( tmp.Checkerboard() ==Even);
|
||||
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.Checkerboard() ==Odd);
|
||||
tmp=src_o-Mtmp; assert( tmp.Checkerboard() ==Odd);
|
||||
_Matrix.MooeeInv(src_e,tmp); GRID_ASSERT( tmp.Checkerboard() ==Even);
|
||||
_Matrix.Meooe (tmp,Mtmp); GRID_ASSERT( Mtmp.Checkerboard() ==Odd);
|
||||
tmp=src_o-Mtmp; GRID_ASSERT( tmp.Checkerboard() ==Odd);
|
||||
|
||||
// get the right MpcDag
|
||||
SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.Checkerboard() ==Odd);
|
||||
_HermOpEO.MpcDag(tmp,src_o); GRID_ASSERT(src_o.Checkerboard() ==Odd);
|
||||
|
||||
}
|
||||
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
|
||||
@@ -416,17 +416,17 @@ namespace Grid {
|
||||
///////////////////////////////////////////////////
|
||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
///////////////////////////////////////////////////
|
||||
_Matrix.Meooe(sol_o,tmp); assert( tmp.Checkerboard() ==Even);
|
||||
src_e_i = src_e-tmp; assert( src_e_i.Checkerboard() ==Even);
|
||||
_Matrix.MooeeInv(src_e_i,sol_e); assert( sol_e.Checkerboard() ==Even);
|
||||
_Matrix.Meooe(sol_o,tmp); GRID_ASSERT( tmp.Checkerboard() ==Even);
|
||||
src_e_i = src_e-tmp; GRID_ASSERT( src_e_i.Checkerboard() ==Even);
|
||||
_Matrix.MooeeInv(src_e_i,sol_e); GRID_ASSERT( sol_e.Checkerboard() ==Even);
|
||||
|
||||
setCheckerboard(sol,sol_e); assert( sol_e.Checkerboard() ==Even);
|
||||
setCheckerboard(sol,sol_o); assert( sol_o.Checkerboard() ==Odd );
|
||||
setCheckerboard(sol,sol_e); GRID_ASSERT( sol_e.Checkerboard() ==Even);
|
||||
setCheckerboard(sol,sol_o); GRID_ASSERT( sol_o.Checkerboard() ==Odd );
|
||||
}
|
||||
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
|
||||
{
|
||||
SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.Checkerboard()==Odd);
|
||||
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); GRID_ASSERT(sol_o.Checkerboard()==Odd);
|
||||
};
|
||||
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
|
||||
{
|
||||
@@ -461,9 +461,9 @@ namespace Grid {
|
||||
/////////////////////////////////////////////////////
|
||||
// src_o = Mdag * (source_o - Moe MeeInv source_e)
|
||||
/////////////////////////////////////////////////////
|
||||
_Matrix.MooeeInv(src_e, tmp); assert( tmp.Checkerboard() == Even );
|
||||
_Matrix.Meooe (tmp, Mtmp); assert( Mtmp.Checkerboard() == Odd );
|
||||
src_o -= Mtmp; assert( src_o.Checkerboard() == Odd );
|
||||
_Matrix.MooeeInv(src_e, tmp); GRID_ASSERT( tmp.Checkerboard() == Even );
|
||||
_Matrix.Meooe (tmp, Mtmp); GRID_ASSERT( Mtmp.Checkerboard() == Odd );
|
||||
src_o -= Mtmp; GRID_ASSERT( src_o.Checkerboard() == Odd );
|
||||
}
|
||||
|
||||
virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol)
|
||||
@@ -478,18 +478,18 @@ namespace Grid {
|
||||
///////////////////////////////////////////////////
|
||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
///////////////////////////////////////////////////
|
||||
_Matrix.Meooe(sol_o, tmp); assert( tmp.Checkerboard() == Even );
|
||||
src_e_i = src_e - tmp; assert( src_e_i.Checkerboard() == Even );
|
||||
_Matrix.MooeeInv(src_e_i, sol_e); assert( sol_e.Checkerboard() == Even );
|
||||
_Matrix.Meooe(sol_o, tmp); GRID_ASSERT( tmp.Checkerboard() == Even );
|
||||
src_e_i = src_e - tmp; GRID_ASSERT( src_e_i.Checkerboard() == Even );
|
||||
_Matrix.MooeeInv(src_e_i, sol_e); GRID_ASSERT( sol_e.Checkerboard() == Even );
|
||||
|
||||
setCheckerboard(sol, sol_e); assert( sol_e.Checkerboard() == Even );
|
||||
setCheckerboard(sol, sol_o); assert( sol_o.Checkerboard() == Odd );
|
||||
setCheckerboard(sol, sol_e); GRID_ASSERT( sol_e.Checkerboard() == Even );
|
||||
setCheckerboard(sol, sol_o); GRID_ASSERT( sol_o.Checkerboard() == Odd );
|
||||
}
|
||||
|
||||
virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o)
|
||||
{
|
||||
NonHermitianSchurDiagMooeeOperator<Matrix,Field> _OpEO(_Matrix);
|
||||
this->_HermitianRBSolver(_OpEO, src_o, sol_o); assert(sol_o.Checkerboard() == Odd);
|
||||
this->_HermitianRBSolver(_OpEO, src_o, sol_o); GRID_ASSERT(sol_o.Checkerboard() == Odd);
|
||||
}
|
||||
|
||||
virtual void RedBlackSolve(Matrix& _Matrix, const std::vector<Field>& src_o, std::vector<Field>& sol_o)
|
||||
@@ -499,6 +499,87 @@ namespace Grid {
|
||||
}
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Site diagonal is identity, left preconditioned by Mee^inv
|
||||
// ( 1 - Mee^inv Meo Moo^inv Moe ) phi = Mee_inv ( Mee - Meo Moo^inv Moe Mee^inv ) phi = Mee_inv eta
|
||||
//
|
||||
// Solve:
|
||||
// ( 1 - Mee^inv Meo Moo^inv Moe )^dag ( 1 - Mee^inv Meo Moo^inv Moe ) phi = ( 1 - Mee^inv Meo Moo^inv Moe )^dag Mee_inv eta
|
||||
//
|
||||
// Old notation e<->o
|
||||
//
|
||||
// Left precon by Moo^-1
|
||||
// b) (Doo^{dag} M_oo^-dag) (Moo^-1 Doo) psi_o = [ (D_oo)^dag M_oo^-dag ] Moo^-1 L^{-1} eta_o
|
||||
// eta_o' = (D_oo)^dag M_oo^-dag Moo^-1 (eta_o - Moe Mee^{-1} eta_e)
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field> class SchurRedBlackDiagOneSolve : public SchurRedBlackBase<Field> {
|
||||
public:
|
||||
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Wrap the usual normal equations Schur trick
|
||||
/////////////////////////////////////////////////////
|
||||
SchurRedBlackDiagOneSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
|
||||
const bool _solnAsInitGuess = false)
|
||||
: SchurRedBlackBase<Field>(HermitianRBSolver,initSubGuess,_solnAsInitGuess) {};
|
||||
|
||||
virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
|
||||
{
|
||||
GridBase *grid = _Matrix.RedBlackGrid();
|
||||
GridBase *fgrid= _Matrix.Grid();
|
||||
|
||||
SchurDiagOneOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
|
||||
Field tmp(grid);
|
||||
Field Mtmp(grid);
|
||||
|
||||
pickCheckerboard(Even,src_e,src);
|
||||
pickCheckerboard(Odd ,src_o,src);
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// src_o = Mpcdag *MooeeInv * (source_o - Moe MeeInv source_e)
|
||||
/////////////////////////////////////////////////////
|
||||
_Matrix.MooeeInv(src_e,tmp); GRID_ASSERT( tmp.Checkerboard() ==Even);
|
||||
_Matrix.Meooe (tmp,Mtmp); GRID_ASSERT( Mtmp.Checkerboard() ==Odd);
|
||||
Mtmp=src_o-Mtmp;
|
||||
_Matrix.MooeeInv(Mtmp,tmp); GRID_ASSERT( tmp.Checkerboard() ==Odd);
|
||||
|
||||
// get the right MpcDag
|
||||
_HermOpEO.MpcDag(tmp,src_o); GRID_ASSERT(src_o.Checkerboard() ==Odd);
|
||||
}
|
||||
|
||||
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
|
||||
{
|
||||
GridBase *grid = _Matrix.RedBlackGrid();
|
||||
GridBase *fgrid= _Matrix.Grid();
|
||||
|
||||
Field tmp(grid);
|
||||
Field sol_e(grid);
|
||||
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
///////////////////////////////////////////////////
|
||||
_Matrix.Meooe(sol_o,tmp); GRID_ASSERT( tmp.Checkerboard() ==Even);
|
||||
tmp = src_e-tmp; GRID_ASSERT( src_e.Checkerboard() ==Even);
|
||||
_Matrix.MooeeInv(tmp,sol_e); GRID_ASSERT( sol_e.Checkerboard() ==Even);
|
||||
|
||||
setCheckerboard(sol,sol_e); GRID_ASSERT( sol_e.Checkerboard() ==Even);
|
||||
setCheckerboard(sol,sol_o); GRID_ASSERT( sol_o.Checkerboard() ==Odd );
|
||||
};
|
||||
|
||||
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
|
||||
{
|
||||
SchurDiagOneOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
|
||||
};
|
||||
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
|
||||
{
|
||||
SchurDiagOneOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
|
||||
}
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Site diagonal is identity, right preconditioned by Mee^inv
|
||||
// ( 1 - Meo Moo^inv Moe Mee^inv ) phi =( 1 - Meo Moo^inv Moe Mee^inv ) Mee psi = = eta = eta
|
||||
@@ -531,12 +612,12 @@ namespace Grid {
|
||||
/////////////////////////////////////////////////////
|
||||
// src_o = Mdag * (source_o - Moe MeeInv source_e)
|
||||
/////////////////////////////////////////////////////
|
||||
_Matrix.MooeeInv(src_e,tmp); assert( tmp.Checkerboard() ==Even);
|
||||
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.Checkerboard() ==Odd);
|
||||
tmp=src_o-Mtmp; assert( tmp.Checkerboard() ==Odd);
|
||||
_Matrix.MooeeInv(src_e,tmp); GRID_ASSERT( tmp.Checkerboard() ==Even);
|
||||
_Matrix.Meooe (tmp,Mtmp); GRID_ASSERT( Mtmp.Checkerboard() ==Odd);
|
||||
tmp=src_o-Mtmp; GRID_ASSERT( tmp.Checkerboard() ==Odd);
|
||||
|
||||
// get the right MpcDag
|
||||
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.Checkerboard() ==Odd);
|
||||
_HermOpEO.MpcDag(tmp,src_o); GRID_ASSERT(src_o.Checkerboard() ==Odd);
|
||||
}
|
||||
|
||||
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
|
||||
@@ -557,12 +638,12 @@ namespace Grid {
|
||||
///////////////////////////////////////////////////
|
||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
///////////////////////////////////////////////////
|
||||
_Matrix.Meooe(sol_o_i,tmp); assert( tmp.Checkerboard() ==Even);
|
||||
tmp = src_e-tmp; assert( src_e.Checkerboard() ==Even);
|
||||
_Matrix.MooeeInv(tmp,sol_e); assert( sol_e.Checkerboard() ==Even);
|
||||
_Matrix.Meooe(sol_o_i,tmp); GRID_ASSERT( tmp.Checkerboard() ==Even);
|
||||
tmp = src_e-tmp; GRID_ASSERT( src_e.Checkerboard() ==Even);
|
||||
_Matrix.MooeeInv(tmp,sol_e); GRID_ASSERT( sol_e.Checkerboard() ==Even);
|
||||
|
||||
setCheckerboard(sol,sol_e); assert( sol_e.Checkerboard() ==Even);
|
||||
setCheckerboard(sol,sol_o_i); assert( sol_o_i.Checkerboard() ==Odd );
|
||||
setCheckerboard(sol,sol_e); GRID_ASSERT( sol_e.Checkerboard() ==Even);
|
||||
setCheckerboard(sol,sol_o_i); GRID_ASSERT( sol_o_i.Checkerboard() ==Odd );
|
||||
};
|
||||
|
||||
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
|
||||
@@ -603,9 +684,9 @@ namespace Grid {
|
||||
/////////////////////////////////////////////////////
|
||||
// src_o = Mdag * (source_o - Moe MeeInv source_e)
|
||||
/////////////////////////////////////////////////////
|
||||
_Matrix.MooeeInv(src_e, tmp); assert( tmp.Checkerboard() == Even );
|
||||
_Matrix.Meooe (tmp, Mtmp); assert( Mtmp.Checkerboard() == Odd );
|
||||
src_o -= Mtmp; assert( src_o.Checkerboard() == Odd );
|
||||
_Matrix.MooeeInv(src_e, tmp); GRID_ASSERT( tmp.Checkerboard() == Even );
|
||||
_Matrix.Meooe (tmp, Mtmp); GRID_ASSERT( Mtmp.Checkerboard() == Odd );
|
||||
src_o -= Mtmp; GRID_ASSERT( src_o.Checkerboard() == Odd );
|
||||
}
|
||||
|
||||
virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol)
|
||||
@@ -626,12 +707,12 @@ namespace Grid {
|
||||
///////////////////////////////////////////////////
|
||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
///////////////////////////////////////////////////
|
||||
_Matrix.Meooe(sol_o_i, tmp); assert( tmp.Checkerboard() == Even );
|
||||
tmp = src_e - tmp; assert( src_e.Checkerboard() == Even );
|
||||
_Matrix.MooeeInv(tmp, sol_e); assert( sol_e.Checkerboard() == Even );
|
||||
_Matrix.Meooe(sol_o_i, tmp); GRID_ASSERT( tmp.Checkerboard() == Even );
|
||||
tmp = src_e - tmp; GRID_ASSERT( src_e.Checkerboard() == Even );
|
||||
_Matrix.MooeeInv(tmp, sol_e); GRID_ASSERT( sol_e.Checkerboard() == Even );
|
||||
|
||||
setCheckerboard(sol, sol_e); assert( sol_e.Checkerboard() == Even );
|
||||
setCheckerboard(sol, sol_o_i); assert( sol_o_i.Checkerboard() == Odd );
|
||||
setCheckerboard(sol, sol_e); GRID_ASSERT( sol_e.Checkerboard() == Even );
|
||||
setCheckerboard(sol, sol_o_i); GRID_ASSERT( sol_o_i.Checkerboard() == Odd );
|
||||
};
|
||||
|
||||
virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o)
|
||||
|
||||
@@ -30,6 +30,8 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidualNonHermitian.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
inline RealD AggregatePowerLaw(RealD x)
|
||||
@@ -42,6 +44,8 @@ inline RealD AggregatePowerLaw(RealD x)
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class Aggregation {
|
||||
public:
|
||||
constexpr int Nbasis(void) { return nbasis; };
|
||||
|
||||
typedef iVector<CComplex,nbasis > siteVector;
|
||||
typedef Lattice<siteVector> CoarseVector;
|
||||
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
|
||||
@@ -93,7 +97,7 @@ public:
|
||||
|
||||
RealD scale;
|
||||
|
||||
ConjugateGradient<FineField> CG(1.0e-2,100,false);
|
||||
ConjugateGradient<FineField> CG(1.0e-3,400,false);
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
|
||||
@@ -106,7 +110,7 @@ public:
|
||||
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
for(int i=0;i<1;i++){
|
||||
for(int i=0;i<4;i++){
|
||||
|
||||
CG(hermop,noise,subspace[b]);
|
||||
|
||||
@@ -122,6 +126,53 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
virtual void CreateSubspaceGCR(GridParallelRNG &RNG,LinearOperatorBase<FineField> &DiracOp,int nn=nbasis)
|
||||
{
|
||||
RealD scale;
|
||||
|
||||
TrivialPrecon<FineField> simple_fine;
|
||||
PrecGeneralisedConjugateResidualNonHermitian<FineField> GCR(0.001,30,DiracOp,simple_fine,12,12);
|
||||
FineField noise(FineGrid);
|
||||
FineField src(FineGrid);
|
||||
FineField guess(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
|
||||
for(int b=0;b<nn;b++){
|
||||
|
||||
subspace[b] = Zero();
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|Op|n> "<<innerProduct(noise,Mn)<<std::endl;
|
||||
|
||||
for(int i=0;i<2;i++){
|
||||
// void operator() (const Field &src, Field &psi){
|
||||
#if 1
|
||||
std::cout << GridLogMessage << " inverting on noise "<<std::endl;
|
||||
src = noise;
|
||||
guess=Zero();
|
||||
GCR(src,guess);
|
||||
subspace[b] = guess;
|
||||
#else
|
||||
std::cout << GridLogMessage << " inverting on zero "<<std::endl;
|
||||
src=Zero();
|
||||
guess = noise;
|
||||
GCR(src,guess);
|
||||
subspace[b] = guess;
|
||||
#endif
|
||||
noise = subspace[b];
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
}
|
||||
|
||||
DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|Op|f> "<<innerProduct(noise,Mn)<<std::endl;
|
||||
subspace[b] = noise;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
|
||||
// and this is the best I found
|
||||
@@ -158,14 +209,21 @@ public:
|
||||
|
||||
int b =0;
|
||||
{
|
||||
ComplexD ip;
|
||||
// Filter
|
||||
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
|
||||
Cheb(hermop,noise,Mn);
|
||||
// normalise
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
|
||||
hermop.Op(Mn,tmp);
|
||||
ip= innerProduct(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
|
||||
|
||||
hermop.AdjOp(Mn,tmp);
|
||||
ip = innerProduct(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
|
||||
b++;
|
||||
}
|
||||
|
||||
@@ -211,8 +269,18 @@ public:
|
||||
Mn=*Tnp;
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
|
||||
|
||||
ComplexD ip;
|
||||
|
||||
hermop.Op(Mn,tmp);
|
||||
ip= innerProduct(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
|
||||
|
||||
hermop.AdjOp(Mn,tmp);
|
||||
ip = innerProduct(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
|
||||
|
||||
b++;
|
||||
}
|
||||
|
||||
@@ -224,8 +292,72 @@ public:
|
||||
|
||||
}
|
||||
}
|
||||
assert(b==nn);
|
||||
GRID_ASSERT(b==nn);
|
||||
}
|
||||
|
||||
|
||||
virtual void CreateSubspacePolyCheby(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
int nn,
|
||||
double hi,
|
||||
double lo1,
|
||||
int orderfilter,
|
||||
double lo2,
|
||||
int orderstep)
|
||||
{
|
||||
RealD scale;
|
||||
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
|
||||
// New normalised noise
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
std::cout << GridLogMessage<<" CreateSubspacePolyCheby "<<std::endl;
|
||||
// Initial matrix element
|
||||
hermop.Op(noise,Mn);
|
||||
std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
int b =0;
|
||||
{
|
||||
// Filter
|
||||
std::cout << GridLogMessage << "Cheby "<<lo1<<","<<hi<<" "<<orderstep<<std::endl;
|
||||
Chebyshev<FineField> Cheb(lo1,hi,orderfilter);
|
||||
Cheb(hermop,noise,Mn);
|
||||
// normalise
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|n> "<<norm2(Mn)<<std::endl;
|
||||
}
|
||||
|
||||
// Generate a full sequence of Chebyshevs
|
||||
for(int n=1;n<nn;n++){
|
||||
std::cout << GridLogMessage << "Cheby "<<lo2<<","<<hi<<" "<<orderstep<<std::endl;
|
||||
Chebyshev<FineField> Cheb(lo2,hi,orderstep);
|
||||
Cheb(hermop,subspace[n-1],Mn);
|
||||
|
||||
for(int m=0;m<n;m++){
|
||||
ComplexD c = innerProduct(subspace[m],Mn);
|
||||
Mn = Mn - c*subspace[m];
|
||||
}
|
||||
|
||||
// normalise
|
||||
scale = std::pow(norm2(Mn),-0.5);
|
||||
Mn=Mn*scale;
|
||||
|
||||
subspace[n]=Mn;
|
||||
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<n<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
std::cout<<GridLogMessage << "filt ["<<n<<"] <n|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
int nn,
|
||||
double hi,
|
||||
@@ -308,6 +440,65 @@ public:
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
}
|
||||
|
||||
}
|
||||
virtual void CreateSubspaceChebyshevNew(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
double hi
|
||||
) {
|
||||
|
||||
RealD scale;
|
||||
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
|
||||
// New normalised noise
|
||||
for(int b =0;b<nbasis;b++)
|
||||
{
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
// Initial matrix element
|
||||
hermop.Op(noise,Mn);
|
||||
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
// Filter
|
||||
//#opt2(x) = acheb(x,3,90,300)* acheb(x,1,90,50) * acheb(x,0.5,90,200) * acheb(x,0.05,90,400) * acheb(x,0.01,90,1500)
|
||||
/*266
|
||||
Chebyshev<FineField> Cheb1(3.0,hi,300);
|
||||
Chebyshev<FineField> Cheb2(1.0,hi,50);
|
||||
Chebyshev<FineField> Cheb3(0.5,hi,300);
|
||||
Chebyshev<FineField> Cheb4(0.05,hi,500);
|
||||
Chebyshev<FineField> Cheb5(0.01,hi,2000);
|
||||
*/
|
||||
/* 242 */
|
||||
/*
|
||||
Chebyshev<FineField> Cheb3(0.1,hi,300);
|
||||
Chebyshev<FineField> Cheb2(0.02,hi,1000);
|
||||
Chebyshev<FineField> Cheb1(0.003,hi,2000);
|
||||
8?
|
||||
*/
|
||||
/* How many??
|
||||
*/
|
||||
Chebyshev<FineField> Cheb2(0.001,hi,2500); // 169 iters on HDCG after refine
|
||||
Chebyshev<FineField> Cheb1(0.02,hi,600);
|
||||
|
||||
// Chebyshev<FineField> Cheb2(0.001,hi,1500);
|
||||
// Chebyshev<FineField> Cheb1(0.02,hi,600);
|
||||
Cheb1(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
|
||||
hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb1 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
Cheb2(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
|
||||
hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb2 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
// Cheb3(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
|
||||
// hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb3 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
// Cheb4(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
|
||||
// hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb4 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
// Cheb5(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
|
||||
// hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb5 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
subspace[b] = noise;
|
||||
hermop.Op(subspace[b],tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<< " norm " << norm2(noise)<<std::endl;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
virtual void CreateSubspaceMultishift(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
@@ -367,11 +558,46 @@ public:
|
||||
FineField tmp(FineGrid);
|
||||
for(int b =0;b<nbasis;b++)
|
||||
{
|
||||
RealD MirsShift = Lo;
|
||||
ConjugateGradient<FineField> CGsloppy(tol,maxit,false);
|
||||
ShiftedHermOpLinearOperator<FineField> ShiftedFineHermOp(hermop,MirsShift);
|
||||
ShiftedHermOpLinearOperator<FineField> ShiftedFineHermOp(hermop,Lo);
|
||||
tmp=Zero();
|
||||
CGsloppy(hermop,subspace[b],tmp);
|
||||
RealD scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
|
||||
subspace[b]=tmp;
|
||||
hermop.Op(subspace[b],tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
}
|
||||
}
|
||||
virtual void RefineSubspaceHDCG(LinearOperatorBase<FineField> &hermop,
|
||||
TwoLevelADEF2mrhs<FineField,CoarseVector> & theHDCG,
|
||||
int nrhs)
|
||||
{
|
||||
std::vector<FineField> src_mrhs(nrhs,FineGrid);
|
||||
std::vector<FineField> res_mrhs(nrhs,FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
for(int b =0;b<nbasis;b+=nrhs)
|
||||
{
|
||||
tmp = subspace[b];
|
||||
RealD scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
|
||||
subspace[b] =tmp;
|
||||
hermop.Op(subspace[b],tmp);
|
||||
std::cout<<GridLogMessage << "before filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
|
||||
for(int r=0;r<MIN(nbasis-b,nrhs);r++){
|
||||
src_mrhs[r] = subspace[b+r];
|
||||
}
|
||||
for(int r=0;r<nrhs;r++){
|
||||
res_mrhs[r] = Zero();
|
||||
}
|
||||
theHDCG(src_mrhs,res_mrhs);
|
||||
|
||||
for(int r=0;r<MIN(nbasis-b,nrhs);r++){
|
||||
tmp = res_mrhs[r];
|
||||
RealD scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
|
||||
subspace[b+r]=tmp;
|
||||
}
|
||||
hermop.Op(subspace[b],tmp);
|
||||
std::cout<<GridLogMessage << "after filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -379,3 +605,4 @@ public:
|
||||
|
||||
};
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
||||
@@ -1,537 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: BatchedBlas.h
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
#ifdef GRID_HIP
|
||||
#include <hipblas/hipblas.h>
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
#include <hipblas/hipblas.h>
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
#error // need oneMKL version
|
||||
#endif
|
||||
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
// Need to rearrange lattice data to be in the right format for a
|
||||
// batched multiply. Might as well make these static, dense packed
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
#ifdef GRID_HIP
|
||||
typedef hipblasHandle_t gridblasHandle_t;
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
typedef cudablasHandle_t gridblasHandle_t;
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
typedef int32_t gridblasHandle_t;
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
typedef int32_t gridblasHandle_t;
|
||||
#endif
|
||||
|
||||
class GridBLAS {
|
||||
public:
|
||||
|
||||
static gridblasHandle_t gridblasHandle;
|
||||
static int gridblasInit;
|
||||
|
||||
static void Init(void)
|
||||
{
|
||||
if ( ! gridblasInit ) {
|
||||
#ifdef GRID_CUDA
|
||||
std::cout << "cublasCreate"<<std::endl;
|
||||
cublasCreate(&gridblasHandle);
|
||||
#endif
|
||||
#ifdef GRID_HIP
|
||||
std::cout << "hipblasCreate"<<std::endl;
|
||||
hipblasCreate(&gridblasHandle);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
// Force construct once
|
||||
GridBLAS() { Init(); };
|
||||
~GridBLAS() { };
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
// BLAS GEMM conventions:
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
// - C = alpha A * B + beta C
|
||||
// Dimensions:
|
||||
// - C_m.n
|
||||
// - A_m.k
|
||||
// - B_k.n
|
||||
// - Flops = 8 M N K
|
||||
// - Bytes = 2*sizeof(word) * (MN+MK+KN)
|
||||
// M=60, N=12
|
||||
// Flop/Byte = 8 . 60.60.12 / (60.12+60.60+60.12)/16 = 4 so expect about 4 TF/s on a GCD
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
void synchronise(void)
|
||||
{
|
||||
#ifdef GRID_HIP
|
||||
auto err = hipDeviceSynchronize();
|
||||
assert(err==hipSuccess);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
auto err = cudaDeviceSynchronize();
|
||||
assert(err==cudaSuccess);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
accelerator_barrier();
|
||||
#endif
|
||||
}
|
||||
void benchmark(int nbasis, int nrhs, int coarseVol, int nstencil)
|
||||
{
|
||||
int32_t N_A = nbasis*nbasis*coarseVol*nstencil;
|
||||
int32_t N_B = nbasis*nrhs*coarseVol*nstencil; // One leg of stencil at a time
|
||||
int32_t N_C = nbasis*nrhs*coarseVol*nstencil;
|
||||
deviceVector<ComplexD> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(ComplexD));
|
||||
deviceVector<ComplexD> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(ComplexD));
|
||||
deviceVector<ComplexD> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(ComplexD));
|
||||
ComplexD alpha(1.0);
|
||||
ComplexD beta (1.0);
|
||||
for(int i=0;i<10;i++){
|
||||
RealD t0 = usecond();
|
||||
for(int s=0;s<nstencil;s++){
|
||||
gemmStridedBatched(nbasis,nrhs,nbasis,
|
||||
alpha,
|
||||
&A[0], // m x k
|
||||
&B[0], // k x n
|
||||
beta,
|
||||
&C[0], // m x n
|
||||
coarseVol);
|
||||
}
|
||||
synchronise();
|
||||
RealD t1 = usecond();
|
||||
RealD flops = 8.0*nbasis*nbasis*nrhs*coarseVol*nstencil;
|
||||
RealD bytes = 1.0*sizeof(ComplexD)*(nbasis*nbasis+nbasis*nrhs*3)*coarseVol*nstencil;
|
||||
std::cout << " batched Blas call "<<i<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
|
||||
std::cout << " batched Blas call "<<i<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
void gemmBatched(int m,int n, int k,
|
||||
ComplexD alpha,
|
||||
deviceVector<ComplexD*> &Amk, // pointer list to matrices
|
||||
deviceVector<ComplexD*> &Bkn,
|
||||
ComplexD beta,
|
||||
deviceVector<ComplexD*> &Cmn)
|
||||
{
|
||||
RealD t2=usecond();
|
||||
int32_t batchCount = Amk.size();
|
||||
// Use C-row major storage, so transpose calls
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
static deviceVector<ComplexD> alpha_p(1);
|
||||
static deviceVector<ComplexD> beta_p(1);
|
||||
// can prestore the 1 and the zero on device
|
||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
|
||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
|
||||
RealD t0=usecond();
|
||||
// std::cout << "hipblasZgemmBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
|
||||
assert(Bkn.size()==batchCount);
|
||||
assert(Cmn.size()==batchCount);
|
||||
#ifdef GRID_HIP
|
||||
auto err = hipblasZgemmBatched(gridblasHandle,
|
||||
HIPBLAS_OP_N,
|
||||
HIPBLAS_OP_N,
|
||||
m,n,k,
|
||||
(hipblasDoubleComplex *) &alpha_p[0],
|
||||
(hipblasDoubleComplex **)&Amk[0], lda,
|
||||
(hipblasDoubleComplex **)&Bkn[0], ldb,
|
||||
(hipblasDoubleComplex *) &beta_p[0],
|
||||
(hipblasDoubleComplex **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
// std::cout << " hipblas return code " <<(int)err<<std::endl;
|
||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
auto err = cublasZgemmBatched(gridblasHandle,
|
||||
CUBLAS_OP_N,
|
||||
CUBLAS_OP_N,
|
||||
m,n,k,
|
||||
(cuDoubleComplex *) &alpha_p[0],
|
||||
(cuDoubleComplex **)&Amk[0], lda,
|
||||
(cuDoubleComplex **)&Bkn[0], ldb,
|
||||
(cuDoubleComplex *) &beta_p[0],
|
||||
(cuDoubleComplex **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==CUBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
//MKL’s cblas_<T>gemm_batch & OneAPI
|
||||
#warning "oneMKL implementation not built "
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
// Need a default/reference implementation
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
ComplexD c_mn(0.0);
|
||||
for (int kk = 0; kk < k, ++kk)
|
||||
c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
|
||||
Cmn[mm + nn*ldc + p*sdc] = (*alpha_p)*c_mn + (*beta_p)*Cmn[mm + nn*ldc + p*sdc];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
RealD t1=usecond();
|
||||
RealD flops = 8.0*m*n*k*batchCount;
|
||||
RealD bytes = 1.0*sizeof(ComplexD)*(m*k+k*n+m*n)*batchCount;
|
||||
// std::cout <<GridLogPerformance<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl;
|
||||
// std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
|
||||
// std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
|
||||
}
|
||||
|
||||
void gemmBatched(int m,int n, int k,
|
||||
ComplexF alpha,
|
||||
deviceVector<ComplexF*> &Amk, // pointer list to matrices
|
||||
deviceVector<ComplexF*> &Bkn,
|
||||
ComplexF beta,
|
||||
deviceVector<ComplexF*> &Cmn)
|
||||
{
|
||||
RealD t2=usecond();
|
||||
int32_t batchCount = Amk.size();
|
||||
// Use C-row major storage, so transpose calls
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
static deviceVector<ComplexF> alpha_p(1);
|
||||
static deviceVector<ComplexF> beta_p(1);
|
||||
// can prestore the 1 and the zero on device
|
||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexF));
|
||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexF));
|
||||
RealD t0=usecond();
|
||||
// std::cout << "hipblasZgemmBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
|
||||
assert(Bkn.size()==batchCount);
|
||||
assert(Cmn.size()==batchCount);
|
||||
#ifdef GRID_HIP
|
||||
auto err = hipblasCgemmBatched(gridblasHandle,
|
||||
HIPBLAS_OP_N,
|
||||
HIPBLAS_OP_N,
|
||||
m,n,k,
|
||||
(hipblasComplex *) &alpha_p[0],
|
||||
(hipblasComplex **)&Amk[0], lda,
|
||||
(hipblasComplex **)&Bkn[0], ldb,
|
||||
(hipblasComplex *) &beta_p[0],
|
||||
(hipblasComplex **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
// std::cout << " hipblas return code " <<(int)err<<std::endl;
|
||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
auto err = cublasCgemmBatched(gridblasHandle,
|
||||
CUBLAS_OP_N,
|
||||
CUBLAS_OP_N,
|
||||
m,n,k,
|
||||
(cuComplex *) &alpha_p[0],
|
||||
(cuComplex **)&Amk[0], lda,
|
||||
(cuComplex **)&Bkn[0], ldb,
|
||||
(cuComplex *) &beta_p[0],
|
||||
(cuComplex **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==CUBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
//MKL’s cblas_<T>gemm_batch & OneAPI
|
||||
#warning "oneMKL implementation not built "
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
// Need a default/reference implementation
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
ComplexD c_mn(0.0);
|
||||
for (int kk = 0; kk < k, ++kk)
|
||||
c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
|
||||
Cmn[mm + nn*ldc + p*sdc] = (*alpha_p)*c_mn + (*beta_p)*Cmn[mm + nn*ldc + p*sdc];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
RealD t1=usecond();
|
||||
RealD flops = 8.0*m*n*k*batchCount;
|
||||
RealD bytes = 1.0*sizeof(ComplexF)*(m*k+k*n+m*n)*batchCount;
|
||||
// std::cout <<GridLogPerformance<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl;
|
||||
// std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
|
||||
// std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// Single precision real GEMM
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void gemmBatched(int m,int n, int k,
|
||||
RealF alpha,
|
||||
deviceVector<RealF*> &Amk, // pointer list to matrices
|
||||
deviceVector<RealF*> &Bkn,
|
||||
RealF beta,
|
||||
deviceVector<RealF*> &Cmn)
|
||||
{
|
||||
RealD t2=usecond();
|
||||
int32_t batchCount = Amk.size();
|
||||
// Use C-row major storage, so transpose calls
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
static deviceVector<RealF> alpha_p(1);
|
||||
static deviceVector<RealF> beta_p(1);
|
||||
// can prestore the 1 and the zero on device
|
||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealF));
|
||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealF));
|
||||
RealD t0=usecond();
|
||||
// std::cout << "hipblasZgemmBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
|
||||
assert(Bkn.size()==batchCount);
|
||||
assert(Cmn.size()==batchCount);
|
||||
#ifdef GRID_HIP
|
||||
auto err = hipblasSgemmBatched(gridblasHandle,
|
||||
HIPBLAS_OP_N,
|
||||
HIPBLAS_OP_N,
|
||||
m,n,k,
|
||||
(float *) &alpha_p[0],
|
||||
(float **)&Amk[0], lda,
|
||||
(float **)&Bkn[0], ldb,
|
||||
(float *) &beta_p[0],
|
||||
(float **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
auto err = cublasSgemmBatched(gridblasHandle,
|
||||
CUBLAS_OP_N,
|
||||
CUBLAS_OP_N,
|
||||
m,n,k,
|
||||
(float *) &alpha_p[0],
|
||||
(float **)&Amk[0], lda,
|
||||
(float **)&Bkn[0], ldb,
|
||||
(float *) &beta_p[0],
|
||||
(float **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==CUBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
//MKL’s cblas_<T>gemm_batch & OneAPI
|
||||
#warning "oneMKL implementation not built "
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
// Need a default/reference implementation
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
RealD c_mn(0.0);
|
||||
for (int kk = 0; kk < k, ++kk)
|
||||
c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
|
||||
Cmn[mm + nn*ldc + p*sdc] = (*alpha_p)*c_mn + (*beta_p)*Cmn[mm + nn*ldc + p*sdc];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
RealD t1=usecond();
|
||||
RealD flops = 2.0*m*n*k*batchCount;
|
||||
RealD bytes = 1.0*sizeof(RealF)*(m*k+k*n+m*n)*batchCount;
|
||||
// std::cout <<GridLogPerformance<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl;
|
||||
// std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
|
||||
// std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
|
||||
}
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// Double precision real GEMM
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void gemmBatched(int m,int n, int k,
|
||||
RealD alpha,
|
||||
deviceVector<RealD*> &Amk, // pointer list to matrices
|
||||
deviceVector<RealD*> &Bkn,
|
||||
RealD beta,
|
||||
deviceVector<RealD*> &Cmn)
|
||||
{
|
||||
RealD t2=usecond();
|
||||
int32_t batchCount = Amk.size();
|
||||
// Use C-row major storage, so transpose calls
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
static deviceVector<RealD> alpha_p(1);
|
||||
static deviceVector<RealD> beta_p(1);
|
||||
// can prestore the 1 and the zero on device
|
||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealD));
|
||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealD));
|
||||
RealD t0=usecond();
|
||||
// std::cout << "hipblasZgemmBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
|
||||
assert(Bkn.size()==batchCount);
|
||||
assert(Cmn.size()==batchCount);
|
||||
#ifdef GRID_HIP
|
||||
auto err = hipblasDgemmBatched(gridblasHandle,
|
||||
HIPBLAS_OP_N,
|
||||
HIPBLAS_OP_N,
|
||||
m,n,k,
|
||||
(double *) &alpha_p[0],
|
||||
(double **)&Amk[0], lda,
|
||||
(double **)&Bkn[0], ldb,
|
||||
(double *) &beta_p[0],
|
||||
(double **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
auto err = cublasDgemmBatched(gridblasHandle,
|
||||
CUBLAS_OP_N,
|
||||
CUBLAS_OP_N,
|
||||
m,n,k,
|
||||
(double *) &alpha_p[0],
|
||||
(double **)&Amk[0], lda,
|
||||
(double **)&Bkn[0], ldb,
|
||||
(double *) &beta_p[0],
|
||||
(double **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==CUBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
/*
|
||||
int64_t m64=m;
|
||||
int64_t n64=n;
|
||||
int64_t k64=k;
|
||||
int64_t batchCount64=batchCount;
|
||||
oneapi::mkl::blas::column_major::gemm_batch(*theGridAccelerator,
|
||||
onemkl::transpose::N,
|
||||
onemkl::transpose::N,
|
||||
&m64,&n64,&k64,
|
||||
(double *) &alpha_p[0],
|
||||
(double **)&Amk[0], lda,
|
||||
(double **)&Bkn[0], ldb,
|
||||
(double *) &beta_p[0],
|
||||
(double **)&Cmn[0], ldc,
|
||||
1,&batchCount64);
|
||||
*/
|
||||
//MKL’s cblas_<T>gemm_batch & OneAPI
|
||||
#warning "oneMKL implementation not built "
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
// Need a default/reference implementation
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
RealD c_mn(0.0);
|
||||
for (int kk = 0; kk < k, ++kk)
|
||||
c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
|
||||
Cmn[mm + nn*ldc + p*sdc] = (*alpha_p)*c_mn + (*beta_p)*Cmn[mm + nn*ldc + p*sdc];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
RealD t1=usecond();
|
||||
RealD flops = 2.0*m*n*k*batchCount;
|
||||
RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount;
|
||||
// std::cout <<GridLogPerformance<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl;
|
||||
// std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
|
||||
// std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
|
||||
}
|
||||
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Strided case used by benchmark, but generally unused in Grid
|
||||
// Keep a code example in double complex, but don't generate the single and real variants for now
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void gemmStridedBatched(int m,int n, int k,
|
||||
ComplexD alpha,
|
||||
ComplexD* Amk, // pointer list to matrices
|
||||
ComplexD* Bkn,
|
||||
ComplexD beta,
|
||||
ComplexD* Cmn,
|
||||
int batchCount)
|
||||
{
|
||||
// Use C-row major storage, so transpose calls
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
int sda = m*k;
|
||||
int sdb = k*n;
|
||||
int sdc = m*n;
|
||||
deviceVector<ComplexD> alpha_p(1);
|
||||
deviceVector<ComplexD> beta_p(1);
|
||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
|
||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
|
||||
std::cout << "blasZgemmStridedBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
|
||||
std::cout << "blasZgemmStridedBatched ld "<<lda<<","<<ldb<<","<<ldc<<std::endl;
|
||||
std::cout << "blasZgemmStridedBatched sd "<<sda<<","<<sdb<<","<<sdc<<std::endl;
|
||||
#ifdef GRID_HIP
|
||||
auto err = hipblasZgemmStridedBatched(gridblasHandle,
|
||||
HIPBLAS_OP_N,
|
||||
HIPBLAS_OP_N,
|
||||
m,n,k,
|
||||
(hipblasDoubleComplex *) &alpha_p[0],
|
||||
(hipblasDoubleComplex *) Amk, lda, sda,
|
||||
(hipblasDoubleComplex *) Bkn, ldb, sdb,
|
||||
(hipblasDoubleComplex *) &beta_p[0],
|
||||
(hipblasDoubleComplex *) Cmn, ldc, sdc,
|
||||
batchCount);
|
||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
cublasZgemmStridedBatched(gridblasHandle,
|
||||
CUBLAS_OP_N,
|
||||
CUBLAS_OP_N,
|
||||
m,n,k,
|
||||
(cuDoubleComplex *) &alpha_p[0],
|
||||
(cuDoubleComplex *) Amk, lda, sda,
|
||||
(cuDoubleComplex *) Bkn, ldb, sdb,
|
||||
(cuDoubleComplex *) &beta_p[0],
|
||||
(cuDoubleComplex *) Cmn, ldc, sdc,
|
||||
batchCount);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
#warning "oneMKL implementation not made "
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
// Need a default/reference implementation
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
ComplexD c_mn(0.0);
|
||||
for (int kk = 0; kk < k, ++kk)
|
||||
c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
|
||||
Cmn[mm + nn*ldc + p*sdc] = (*alpha_p)*c_mn + (*beta_p)*Cmn[mm + nn*ldc + p*sdc];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
@@ -99,7 +99,7 @@ public:
|
||||
CoarseMatrix AselfInvEven;
|
||||
CoarseMatrix AselfInvOdd;
|
||||
|
||||
Vector<RealD> dag_factor;
|
||||
deviceVector<RealD> dag_factor;
|
||||
|
||||
///////////////////////
|
||||
// Interface
|
||||
@@ -124,9 +124,13 @@ public:
|
||||
int npoint = geom.npoint;
|
||||
typedef LatticeView<Cobj> Aview;
|
||||
|
||||
Vector<Aview> AcceleratorViewContainer;
|
||||
deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
|
||||
hostVector<Aview> hAcceleratorViewContainer(geom.npoint);
|
||||
|
||||
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
|
||||
for(int p=0;p<geom.npoint;p++) {
|
||||
hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
|
||||
acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
|
||||
}
|
||||
Aview *Aview_p = & AcceleratorViewContainer[0];
|
||||
|
||||
const int Nsimd = CComplex::Nsimd();
|
||||
@@ -161,7 +165,7 @@ public:
|
||||
coalescedWrite(out_v[ss](b),res);
|
||||
});
|
||||
|
||||
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
|
||||
for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
|
||||
};
|
||||
|
||||
void Mdag (const CoarseVector &in, CoarseVector &out)
|
||||
@@ -190,9 +194,14 @@ public:
|
||||
int npoint = geom.npoint;
|
||||
typedef LatticeView<Cobj> Aview;
|
||||
|
||||
Vector<Aview> AcceleratorViewContainer;
|
||||
|
||||
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
|
||||
deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
|
||||
hostVector<Aview> hAcceleratorViewContainer(geom.npoint);
|
||||
|
||||
for(int p=0;p<geom.npoint;p++) {
|
||||
hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
|
||||
acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
|
||||
}
|
||||
Aview *Aview_p = & AcceleratorViewContainer[0];
|
||||
|
||||
const int Nsimd = CComplex::Nsimd();
|
||||
@@ -201,10 +210,10 @@ public:
|
||||
|
||||
int osites=Grid()->oSites();
|
||||
|
||||
Vector<int> points(geom.npoint, 0);
|
||||
for(int p=0; p<geom.npoint; p++)
|
||||
points[p] = geom.points_dagger[p];
|
||||
|
||||
deviceVector<int> points(geom.npoint);
|
||||
for(int p=0; p<geom.npoint; p++) {
|
||||
acceleratorPut(points[p],geom.points_dagger[p]);
|
||||
}
|
||||
auto points_p = &points[0];
|
||||
|
||||
RealD* dag_factor_p = &dag_factor[0];
|
||||
@@ -236,7 +245,7 @@ public:
|
||||
coalescedWrite(out_v[ss](b),res);
|
||||
});
|
||||
|
||||
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
|
||||
for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
|
||||
}
|
||||
|
||||
void MdirComms(const CoarseVector &in)
|
||||
@@ -251,8 +260,14 @@ public:
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
|
||||
typedef LatticeView<Cobj> Aview;
|
||||
Vector<Aview> AcceleratorViewContainer;
|
||||
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
|
||||
|
||||
deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
|
||||
hostVector<Aview> hAcceleratorViewContainer(geom.npoint);
|
||||
|
||||
for(int p=0;p<geom.npoint;p++) {
|
||||
hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
|
||||
acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
|
||||
}
|
||||
Aview *Aview_p = & AcceleratorViewContainer[0];
|
||||
|
||||
autoView( out_v , out, AcceleratorWrite);
|
||||
@@ -285,7 +300,7 @@ public:
|
||||
}
|
||||
coalescedWrite(out_v[ss](b),res);
|
||||
});
|
||||
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
|
||||
for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
|
||||
}
|
||||
void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out)
|
||||
{
|
||||
@@ -294,7 +309,7 @@ public:
|
||||
if ((out.size()!=ndir)&&(out.size()!=ndir+1)) {
|
||||
std::cout <<"MdirAll out size "<< out.size()<<std::endl;
|
||||
std::cout <<"MdirAll ndir "<< ndir<<std::endl;
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
for(int p=0;p<ndir;p++){
|
||||
MdirCalc(in,out[p],p);
|
||||
@@ -358,7 +373,7 @@ public:
|
||||
conformable(in.Grid(), _cbgrid); // verifies half grid
|
||||
conformable(in.Grid(), out.Grid()); // drops the cb check
|
||||
|
||||
assert(in.Checkerboard() == Even);
|
||||
GRID_ASSERT(in.Checkerboard() == Even);
|
||||
out.Checkerboard() = Odd;
|
||||
|
||||
DhopInternal(StencilEven, Aodd, in, out, dag);
|
||||
@@ -368,7 +383,7 @@ public:
|
||||
conformable(in.Grid(), _cbgrid); // verifies half grid
|
||||
conformable(in.Grid(), out.Grid()); // drops the cb check
|
||||
|
||||
assert(in.Checkerboard() == Odd);
|
||||
GRID_ASSERT(in.Checkerboard() == Odd);
|
||||
out.Checkerboard() = Even;
|
||||
|
||||
DhopInternal(StencilOdd, Aeven, in, out, dag);
|
||||
@@ -376,7 +391,7 @@ public:
|
||||
|
||||
void MooeeInternal(const CoarseVector &in, CoarseVector &out, int dag, int inv) {
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
assert(in.Checkerboard() == Odd || in.Checkerboard() == Even);
|
||||
GRID_ASSERT(in.Checkerboard() == Odd || in.Checkerboard() == Even);
|
||||
|
||||
CoarseMatrix *Aself = nullptr;
|
||||
if(in.Grid()->_isCheckerBoarded) {
|
||||
@@ -391,7 +406,7 @@ public:
|
||||
Aself = (inv) ? &AselfInv : &A[geom.npoint-1];
|
||||
DselfInternal(Stencil, *Aself, in, out, dag);
|
||||
}
|
||||
assert(Aself != nullptr);
|
||||
GRID_ASSERT(Aself != nullptr);
|
||||
}
|
||||
|
||||
void DselfInternal(CartesianStencil<siteVector,siteVector,DefaultImplParams> &st, CoarseMatrix &a,
|
||||
@@ -469,14 +484,20 @@ public:
|
||||
|
||||
// determine in what order we need the points
|
||||
int npoint = geom.npoint-1;
|
||||
Vector<int> points(npoint, 0);
|
||||
for(int p=0; p<npoint; p++)
|
||||
points[p] = (dag && !hermitian) ? geom.points_dagger[p] : p;
|
||||
|
||||
deviceVector<int> points(npoint);
|
||||
for(int p=0; p<npoint; p++) {
|
||||
int val = (dag && !hermitian) ? geom.points_dagger[p] : p;
|
||||
acceleratorPut(points[p], val);
|
||||
}
|
||||
auto points_p = &points[0];
|
||||
|
||||
Vector<Aview> AcceleratorViewContainer;
|
||||
for(int p=0;p<npoint;p++) AcceleratorViewContainer.push_back(a[p].View(AcceleratorRead));
|
||||
deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
|
||||
hostVector<Aview> hAcceleratorViewContainer(geom.npoint);
|
||||
|
||||
for(int p=0;p<geom.npoint;p++) {
|
||||
hAcceleratorViewContainer[p] = a[p].View(AcceleratorRead);
|
||||
acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
|
||||
}
|
||||
Aview *Aview_p = & AcceleratorViewContainer[0];
|
||||
|
||||
const int Nsimd = CComplex::Nsimd();
|
||||
@@ -539,7 +560,7 @@ public:
|
||||
});
|
||||
}
|
||||
|
||||
for(int p=0;p<npoint;p++) AcceleratorViewContainer[p].ViewClose();
|
||||
for(int p=0;p<npoint;p++) hAcceleratorViewContainer[p].ViewClose();
|
||||
}
|
||||
|
||||
CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) :
|
||||
@@ -590,11 +611,13 @@ public:
|
||||
}
|
||||
|
||||
// GPU readable prefactor
|
||||
std::vector<RealD> h_dag_factor(nbasis*nbasis);
|
||||
thread_for(i, nbasis*nbasis, {
|
||||
int j = i/nbasis;
|
||||
int k = i%nbasis;
|
||||
dag_factor[i] = dag_factor_eigen(j, k);
|
||||
h_dag_factor[i] = dag_factor_eigen(j, k);
|
||||
});
|
||||
acceleratorCopyToDevice(&h_dag_factor[0],&dag_factor[0],dag_factor.size()*sizeof(RealD));
|
||||
}
|
||||
|
||||
void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop,
|
||||
@@ -674,7 +697,7 @@ public:
|
||||
evenmask = where(mod(bcb,2)==(Integer)0,one,zero);
|
||||
oddmask = one-evenmask;
|
||||
|
||||
assert(self_stencil!=-1);
|
||||
GRID_ASSERT(self_stencil!=-1);
|
||||
|
||||
for(int i=0;i<nbasis;i++){
|
||||
|
||||
|
||||
@@ -73,14 +73,14 @@ public:
|
||||
GridBase * FineGrid(void) { return _FineGrid; }; // this is all the linalg routines need to know
|
||||
GridCartesian * CoarseGrid(void) { return _CoarseGrid; }; // this is all the linalg routines need to know
|
||||
|
||||
void ShiftMatrix(RealD shift)
|
||||
/* void ShiftMatrix(RealD shift)
|
||||
{
|
||||
int Nd=_FineGrid->Nd();
|
||||
Coordinate zero_shift(Nd,0);
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
if ( zero_shift==geom.shifts[p] ) {
|
||||
_A[p] = _A[p]+shift;
|
||||
_Adag[p] = _Adag[p]+shift;
|
||||
// _Adag[p] = _Adag[p]+shift;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -94,14 +94,15 @@ public:
|
||||
// Avoids brutal handling of Grid pointers
|
||||
if ( CopyMe.geom.shifts[pp]==geom.shifts[p] ) {
|
||||
_A[p] = CopyMe.Cell.Extract(CopyMe._A[pp]);
|
||||
_Adag[p] = CopyMe.Cell.Extract(CopyMe._Adag[pp]);
|
||||
// _Adag[p] = CopyMe.Cell.Extract(CopyMe._Adag[pp]);
|
||||
nfound++;
|
||||
}
|
||||
}
|
||||
}
|
||||
assert(nfound==geom.npoint);
|
||||
GRID_ASSERT(nfound==geom.npoint);
|
||||
ExchangeCoarseLinks();
|
||||
}
|
||||
*/
|
||||
|
||||
GeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridBase *FineGrid, GridCartesian * CoarseGrid)
|
||||
: geom(_geom),
|
||||
@@ -115,7 +116,7 @@ public:
|
||||
int npoint = _geom.npoint;
|
||||
}
|
||||
_A.resize(geom.npoint,CoarseGrid);
|
||||
_Adag.resize(geom.npoint,CoarseGrid);
|
||||
// _Adag.resize(geom.npoint,CoarseGrid);
|
||||
}
|
||||
void M (const CoarseVector &in, CoarseVector &out)
|
||||
{
|
||||
@@ -123,8 +124,10 @@ public:
|
||||
}
|
||||
void Mdag (const CoarseVector &in, CoarseVector &out)
|
||||
{
|
||||
if ( hermitian ) M(in,out);
|
||||
else Mult(_Adag,in,out);
|
||||
GRID_ASSERT(hermitian);
|
||||
Mult(_A,in,out);
|
||||
// if ( hermitian ) M(in,out);
|
||||
// else Mult(_Adag,in,out);
|
||||
}
|
||||
void Mult (std::vector<CoarseMatrix> &A,const CoarseVector &in, CoarseVector &out)
|
||||
{
|
||||
@@ -299,12 +302,163 @@ public:
|
||||
*
|
||||
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
|
||||
*/
|
||||
#if 0
|
||||
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
|
||||
Aggregation<Fobj,CComplex,nbasis> & Subspace)
|
||||
{
|
||||
std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
|
||||
GridBase *grid = FineGrid();
|
||||
|
||||
RealD tproj=0.0;
|
||||
RealD teigen=0.0;
|
||||
RealD tmat=0.0;
|
||||
RealD tphase=0.0;
|
||||
RealD tinv=0.0;
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Orthogonalise the subblocks over the basis
|
||||
/////////////////////////////////////////////////////////////
|
||||
CoarseScalar InnerProd(CoarseGrid());
|
||||
blockOrthogonalise(InnerProd,Subspace.subspace);
|
||||
|
||||
const int npoint = geom.npoint;
|
||||
|
||||
Coordinate clatt = CoarseGrid()->GlobalDimensions();
|
||||
int Nd = CoarseGrid()->Nd();
|
||||
|
||||
/*
|
||||
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
|
||||
* Matrix index i is mapped to this shift via
|
||||
* geom.shifts[i]
|
||||
*
|
||||
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
|
||||
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
|
||||
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
|
||||
* = M_{kl} A_ji^{b.b+l}
|
||||
*
|
||||
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
|
||||
*
|
||||
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
|
||||
*
|
||||
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
|
||||
*/
|
||||
teigen-=usecond();
|
||||
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
ComplexD ci(0.0,1.0);
|
||||
for(int k=0;k<npoint;k++){ // Loop over momenta
|
||||
|
||||
for(int l=0;l<npoint;l++){ // Loop over nbr relative
|
||||
ComplexD phase(0.0,0.0);
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
|
||||
}
|
||||
phase=exp(phase*ci);
|
||||
Mkl(k,l) = phase;
|
||||
}
|
||||
}
|
||||
invMkl = Mkl.inverse();
|
||||
teigen+=usecond();
|
||||
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
// Now compute the matrix elements of linop between the orthonormal
|
||||
// set of vectors.
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
FineField phaV(grid); // Phased block basis vector
|
||||
FineField MphaV(grid);// Matrix applied
|
||||
CoarseVector coarseInner(CoarseGrid());
|
||||
|
||||
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
|
||||
std::vector<CoarseVector> FT(npoint,CoarseGrid());
|
||||
for(int i=0;i<nbasis;i++){// Loop over basis vectors
|
||||
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
|
||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
||||
/////////////////////////////////////////////////////
|
||||
// Stick a phase on every block
|
||||
/////////////////////////////////////////////////////
|
||||
tphase-=usecond();
|
||||
CoarseComplexField coor(CoarseGrid());
|
||||
CoarseComplexField pha(CoarseGrid()); pha=Zero();
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
LatticeCoordinate(coor,mu);
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
pha = pha + (TwoPiL * geom.shifts[p][mu]) * coor;
|
||||
}
|
||||
pha =exp(pha*ci);
|
||||
phaV=Zero();
|
||||
blockZAXPY(phaV,pha,Subspace.subspace[i],phaV);
|
||||
tphase+=usecond();
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Multiple phased subspace vector by matrix and project to subspace
|
||||
// Remove local bulk phase to leave relative phases
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
tmat-=usecond();
|
||||
linop.Op(phaV,MphaV);
|
||||
tmat+=usecond();
|
||||
|
||||
tproj-=usecond();
|
||||
blockProject(coarseInner,MphaV,Subspace.subspace);
|
||||
coarseInner = conjugate(pha) * coarseInner;
|
||||
|
||||
ComputeProj[p] = coarseInner;
|
||||
tproj+=usecond();
|
||||
|
||||
}
|
||||
|
||||
tinv-=usecond();
|
||||
for(int k=0;k<npoint;k++){
|
||||
FT[k] = Zero();
|
||||
for(int l=0;l<npoint;l++){
|
||||
FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
|
||||
}
|
||||
|
||||
int osites=CoarseGrid()->oSites();
|
||||
autoView( A_v , _A[k], AcceleratorWrite);
|
||||
autoView( FT_v , FT[k], AcceleratorRead);
|
||||
accelerator_for(sss, osites, 1, {
|
||||
for(int j=0;j<nbasis;j++){
|
||||
A_v[sss](i,j) = FT_v[sss](j);
|
||||
}
|
||||
});
|
||||
}
|
||||
tinv+=usecond();
|
||||
}
|
||||
|
||||
// Only needed if nonhermitian
|
||||
if ( ! hermitian ) {
|
||||
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
|
||||
// PopulateAdag();
|
||||
}
|
||||
|
||||
// Need to write something to populate Adag from A
|
||||
ExchangeCoarseLinks();
|
||||
std::cout << GridLogMessage<<"CoarsenOperator eigen "<<teigen<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator phase "<<tphase<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator mat "<<tmat <<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator proj "<<tproj<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
|
||||
}
|
||||
#else
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Galerkin projection of matrix
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
|
||||
Aggregation<Fobj,CComplex,nbasis> & Subspace)
|
||||
{
|
||||
CoarsenOperator(linop,Subspace,Subspace);
|
||||
}
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Petrov - Galerkin projection of matrix
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
|
||||
Aggregation<Fobj,CComplex,nbasis> & U,
|
||||
Aggregation<Fobj,CComplex,nbasis> & V)
|
||||
{
|
||||
std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
|
||||
GridBase *grid = FineGrid();
|
||||
|
||||
RealD tproj=0.0;
|
||||
RealD teigen=0.0;
|
||||
RealD tmat=0.0;
|
||||
@@ -316,7 +470,8 @@ public:
|
||||
// Orthogonalise the subblocks over the basis
|
||||
/////////////////////////////////////////////////////////////
|
||||
CoarseScalar InnerProd(CoarseGrid());
|
||||
blockOrthogonalise(InnerProd,Subspace.subspace);
|
||||
blockOrthogonalise(InnerProd,V.subspace);
|
||||
blockOrthogonalise(InnerProd,U.subspace);
|
||||
|
||||
const int npoint = geom.npoint;
|
||||
|
||||
@@ -397,7 +552,7 @@ public:
|
||||
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
|
||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
||||
tphaseBZ-=usecond();
|
||||
phaV = phaF[p]*Subspace.subspace[i];
|
||||
phaV = phaF[p]*V.subspace[i];
|
||||
tphaseBZ+=usecond();
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
@@ -407,13 +562,15 @@ public:
|
||||
tmat-=usecond();
|
||||
linop.Op(phaV,MphaV);
|
||||
tmat+=usecond();
|
||||
// std::cout << i << " " <<p << " MphaV "<<norm2(MphaV)<<" "<<norm2(phaV)<<std::endl;
|
||||
|
||||
tproj-=usecond();
|
||||
blockProjectFast(coarseInner,MphaV,Subspace.subspace);
|
||||
blockProject(coarseInner,MphaV,U.subspace);
|
||||
coarseInner = conjugate(pha[p]) * coarseInner;
|
||||
|
||||
ComputeProj[p] = coarseInner;
|
||||
tproj+=usecond();
|
||||
// std::cout << i << " " <<p << " ComputeProj "<<norm2(ComputeProj[p])<<std::endl;
|
||||
|
||||
}
|
||||
|
||||
@@ -438,8 +595,12 @@ public:
|
||||
|
||||
// Only needed if nonhermitian
|
||||
if ( ! hermitian ) {
|
||||
std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
|
||||
PopulateAdag();
|
||||
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
|
||||
// PopulateAdag();
|
||||
}
|
||||
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
std::cout << " _A["<<p<<"] "<<norm2(_A[p])<<std::endl;
|
||||
}
|
||||
|
||||
// Need to write something to populate Adag from A
|
||||
@@ -451,13 +612,14 @@ public:
|
||||
std::cout << GridLogMessage<<"CoarsenOperator proj "<<tproj<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
|
||||
}
|
||||
#endif
|
||||
void ExchangeCoarseLinks(void){
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
_A[p] = Cell.ExchangePeriodic(_A[p]);
|
||||
_Adag[p]= Cell.ExchangePeriodic(_Adag[p]);
|
||||
// _Adag[p]= Cell.ExchangePeriodic(_Adag[p]);
|
||||
}
|
||||
}
|
||||
virtual void Mdiag (const Field &in, Field &out){ assert(0);};
|
||||
virtual void Mdiag (const Field &in, Field &out){ GRID_ASSERT(0);};
|
||||
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);};
|
||||
virtual void MdirAll (const Field &in, std::vector<Field> &out){assert(0);};
|
||||
};
|
||||
|
||||
@@ -27,26 +27,10 @@ Author: Peter Boyle <pboyle@bnl.gov>
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
#include <Grid/algorithms/multigrid/BatchedBlas.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
// Move this to accelerator.h
|
||||
// Also give a copy device.
|
||||
// Rename acceleratorPut
|
||||
// Rename acceleratorGet
|
||||
template<class T> void deviceSet(T& dev,T&host)
|
||||
{
|
||||
acceleratorCopyToDevice(&host,&dev,sizeof(T));
|
||||
}
|
||||
template<class T> T deviceGet(T& dev)
|
||||
{
|
||||
T host;
|
||||
acceleratorCopyFromDevice(&dev,&host,sizeof(T));
|
||||
return host;
|
||||
}
|
||||
|
||||
// Fine Object == (per site) type of fine field
|
||||
// nbasis == number of deflation vectors
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
@@ -67,15 +51,15 @@ public:
|
||||
typedef iVector<CComplex,nbasis > Cvec;
|
||||
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<Fobj > FineField;
|
||||
typedef Lattice<CComplex > FineComplexField;
|
||||
typedef CoarseVector Field;
|
||||
|
||||
////////////////////
|
||||
// Data members
|
||||
////////////////////
|
||||
GridCartesian * _CoarseGridMulti;
|
||||
GridCartesian * _CoarseGrid;
|
||||
GeneralCoarseOp & _Op;
|
||||
NonLocalStencilGeometry geom;
|
||||
NonLocalStencilGeometry geom_srhs;
|
||||
PaddedCell Cell;
|
||||
GeneralLocalStencil Stencil;
|
||||
|
||||
@@ -93,20 +77,57 @@ public:
|
||||
GridBase * Grid(void) { return _CoarseGridMulti; }; // this is all the linalg routines need to know
|
||||
GridCartesian * CoarseGrid(void) { return _CoarseGridMulti; }; // this is all the linalg routines need to know
|
||||
|
||||
MultiGeneralCoarsenedMatrix(GeneralCoarseOp & Op,GridCartesian *CoarseGridMulti) :
|
||||
_Op(Op),
|
||||
_CoarseGrid(Op.CoarseGrid()),
|
||||
// Can be used to do I/O on the operator matrices externally
|
||||
void SetMatrix (int p,CoarseMatrix & A)
|
||||
{
|
||||
GRID_ASSERT(A.size()==geom_srhs.npoint);
|
||||
GridtoBLAS(A[p],BLAS_A[p]);
|
||||
}
|
||||
void GetMatrix (int p,CoarseMatrix & A)
|
||||
{
|
||||
GRID_ASSERT(A.size()==geom_srhs.npoint);
|
||||
BLAStoGrid(A[p],BLAS_A[p]);
|
||||
}
|
||||
void CopyMatrix (GeneralCoarseOp &_Op)
|
||||
{
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
auto Aup = _Op.Cell.Extract(_Op._A[p]);
|
||||
//Unpadded
|
||||
GridtoBLAS(Aup,BLAS_A[p]);
|
||||
}
|
||||
}
|
||||
/*
|
||||
void CheckMatrix (GeneralCoarseOp &_Op)
|
||||
{
|
||||
std::cout <<"************* Checking the little direc operator mRHS"<<std::endl;
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
//Unpadded
|
||||
auto Aup = _Op.Cell.Extract(_Op._A[p]);
|
||||
auto Ack = Aup;
|
||||
BLAStoGrid(Ack,BLAS_A[p]);
|
||||
std::cout << p<<" Ack "<<norm2(Ack)<<std::endl;
|
||||
std::cout << p<<" Aup "<<norm2(Aup)<<std::endl;
|
||||
}
|
||||
std::cout <<"************* "<<std::endl;
|
||||
}
|
||||
*/
|
||||
|
||||
MultiGeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridCartesian *CoarseGridMulti) :
|
||||
_CoarseGridMulti(CoarseGridMulti),
|
||||
geom(_CoarseGridMulti,Op.geom.hops,Op.geom.skip+1),
|
||||
Cell(Op.geom.Depth(),_CoarseGridMulti),
|
||||
geom_srhs(_geom),
|
||||
geom(_CoarseGridMulti,_geom.hops,_geom.skip+1),
|
||||
Cell(geom.Depth(),_CoarseGridMulti),
|
||||
Stencil(Cell.grids.back(),geom.shifts) // padded cell stencil
|
||||
{
|
||||
int32_t padded_sites = _Op._A[0].Grid()->lSites();
|
||||
int32_t unpadded_sites = _CoarseGrid->lSites();
|
||||
int32_t padded_sites = Cell.grids.back()->lSites();
|
||||
int32_t unpadded_sites = CoarseGridMulti->lSites();
|
||||
|
||||
int32_t nrhs = CoarseGridMulti->FullDimensions()[0]; // # RHS
|
||||
int32_t orhs = nrhs/CComplex::Nsimd();
|
||||
|
||||
padded_sites = padded_sites/nrhs;
|
||||
unpadded_sites = unpadded_sites/nrhs;
|
||||
|
||||
/////////////////////////////////////////////////
|
||||
// Device data vector storage
|
||||
/////////////////////////////////////////////////
|
||||
@@ -114,9 +135,9 @@ public:
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
BLAS_A[p].resize (unpadded_sites); // no ghost zone, npoint elements
|
||||
}
|
||||
|
||||
BLAS_B.resize(nrhs *padded_sites); // includes ghost zone
|
||||
BLAS_C.resize(nrhs *unpadded_sites); // no ghost zone
|
||||
|
||||
BLAS_AP.resize(geom.npoint);
|
||||
BLAS_BP.resize(geom.npoint);
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
@@ -129,23 +150,20 @@ public:
|
||||
// Pointers to data
|
||||
/////////////////////////////////////////////////
|
||||
|
||||
// Site identity mapping for A, C
|
||||
// Site identity mapping for A
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
for(int ss=0;ss<unpadded_sites;ss++){
|
||||
ComplexD *ptr = (ComplexD *)&BLAS_A[p][ss];
|
||||
//ComplexD *ptr = (ComplexD *)&BLAS_A[p][0]; std::cout << " A ptr "<<std::hex<<ptr<<std::dec<<" "<<ss<<"/"<<BLAS_A[p].size()<<std::endl;
|
||||
deviceSet(BLAS_AP[p][ss],ptr);
|
||||
acceleratorPut(BLAS_AP[p][ss],ptr);
|
||||
}
|
||||
}
|
||||
// Site identity mapping for C
|
||||
for(int ss=0;ss<unpadded_sites;ss++){
|
||||
ComplexD *ptr = (ComplexD *)&BLAS_C[ss*nrhs];
|
||||
//ComplexD *ptr = (ComplexD *)&BLAS_C[0]; std::cout << " C ptr "<<std::hex<<ptr<<std::dec<<" "<<ss<<"/"<<BLAS_C.size()<<std::endl;
|
||||
deviceSet(BLAS_CP[ss],ptr);
|
||||
acceleratorPut(BLAS_CP[ss],ptr);
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////
|
||||
// Neighbour table is more complicated
|
||||
/////////////////////////////////////////////////
|
||||
int32_t j=0; // Interior point counter (unpadded)
|
||||
for(int32_t s=0;s<padded_sites;s++){ // 4 volume, padded
|
||||
int ghost_zone=0;
|
||||
@@ -155,42 +173,28 @@ public:
|
||||
ghost_zone=1; // If general stencil wrapped in any direction, wrap=1
|
||||
}
|
||||
}
|
||||
// GeneralStencilEntryReordered tmp;
|
||||
|
||||
if( ghost_zone==0) {
|
||||
for(int32_t point = 0 ; point < geom.npoint; point++){
|
||||
int i=s*orhs*geom.npoint+point;
|
||||
int32_t nbr = Stencil._entries[i]._offset*CComplex::Nsimd(); // oSite -> lSite
|
||||
// std::cout << " B ptr "<< nbr<<"/"<<BLAS_B.size()<<std::endl;
|
||||
assert(nbr<BLAS_B.size());
|
||||
GRID_ASSERT(nbr<BLAS_B.size());
|
||||
ComplexD * ptr = (ComplexD *)&BLAS_B[nbr];
|
||||
// ComplexD * ptr = (ComplexD *)&BLAS_B[0];
|
||||
// std::cout << " B ptr unpadded "<<std::hex<<ptr<<std::dec<<" "<<s<<"/"<<padded_sites<<std::endl;
|
||||
// std::cout << " B ptr padded "<<std::hex<<ptr<<std::dec<<" "<<j<<"/"<<unpadded_sites<<std::endl;
|
||||
deviceSet(BLAS_BP[point][j],ptr); // neighbour indexing in ghost zone volume
|
||||
// auto tmp = deviceGet(*BLAS_BP[point][j]); // debug trigger SEGV if bad ptr
|
||||
acceleratorPut(BLAS_BP[point][j],ptr); // neighbour indexing in ghost zone volume
|
||||
}
|
||||
j++;
|
||||
}
|
||||
}
|
||||
assert(j==unpadded_sites);
|
||||
CopyMatrix();
|
||||
GRID_ASSERT(j==unpadded_sites);
|
||||
}
|
||||
template<class vobj> void GridtoBLAS(const Lattice<vobj> &from,deviceVector<typename vobj::scalar_object> &to)
|
||||
{
|
||||
#if 0
|
||||
std::vector<typename vobj::scalar_object> tmp;
|
||||
unvectorizeToLexOrdArray(tmp,from);
|
||||
assert(tmp.size()==from.Grid()->lSites());
|
||||
assert(tmp.size()==to.size());
|
||||
to.resize(tmp.size());
|
||||
acceleratorCopyToDevice(&tmp[0],&to[0],sizeof(typename vobj::scalar_object)*tmp.size());
|
||||
#else
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
GridBase *Fg = from.Grid();
|
||||
assert(!Fg->_isCheckerBoarded);
|
||||
GRID_ASSERT(!Fg->_isCheckerBoarded);
|
||||
int nd = Fg->_ndimension;
|
||||
|
||||
to.resize(Fg->lSites());
|
||||
@@ -229,27 +233,18 @@ public:
|
||||
to[w] = stmp;
|
||||
}
|
||||
});
|
||||
#endif
|
||||
}
|
||||
template<class vobj> void BLAStoGrid(Lattice<vobj> &grid,deviceVector<typename vobj::scalar_object> &in)
|
||||
{
|
||||
#if 0
|
||||
std::vector<typename vobj::scalar_object> tmp;
|
||||
tmp.resize(in.size());
|
||||
// std::cout << "BLAStoGrid volume " <<tmp.size()<<" "<< grid.Grid()->lSites()<<std::endl;
|
||||
assert(in.size()==grid.Grid()->lSites());
|
||||
acceleratorCopyFromDevice(&in[0],&tmp[0],sizeof(typename vobj::scalar_object)*in.size());
|
||||
vectorizeFromLexOrdArray(tmp,grid);
|
||||
#else
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
GridBase *Tg = grid.Grid();
|
||||
assert(!Tg->_isCheckerBoarded);
|
||||
GRID_ASSERT(!Tg->_isCheckerBoarded);
|
||||
int nd = Tg->_ndimension;
|
||||
|
||||
assert(in.size()==Tg->lSites());
|
||||
GRID_ASSERT(in.size()==Tg->lSites());
|
||||
|
||||
Coordinate LocalLatt = Tg->LocalDimensions();
|
||||
size_t nsite = 1;
|
||||
@@ -285,24 +280,362 @@ public:
|
||||
putlane(to[w], stmp, to_lane);
|
||||
}
|
||||
});
|
||||
#endif
|
||||
}
|
||||
void CopyMatrix (void)
|
||||
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
|
||||
Aggregation<Fobj,CComplex,nbasis> & Subspace,
|
||||
GridBase *CoarseGrid)
|
||||
{
|
||||
// Clone "A" to be lexicographic in the physics coords
|
||||
// Use unvectorisetolexordarray
|
||||
// Copy to device
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
//Unpadded
|
||||
auto Aup = _Op.Cell.Extract(_Op._A[p]);
|
||||
// Coordinate coor({0,0,0,0,0});
|
||||
// auto sval = peekSite(Aup,coor);
|
||||
// std::cout << "CopyMatrix: p "<<p<<" Aup[0] :"<<sval<<std::endl;
|
||||
// sval = peekSite(_Op._A[p],coor);
|
||||
// std::cout << "CopyMatrix: p "<<p<<" _Op._Ap[0] :"<<sval<<std::endl;
|
||||
GridtoBLAS(Aup,BLAS_A[p]);
|
||||
// std::cout << "Copy Matrix p "<<p<<" "<< deviceGet(BLAS_A[p][0])<<std::endl;
|
||||
#if 0
|
||||
std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl;
|
||||
|
||||
GridBase *grid = Subspace.FineGrid;
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Orthogonalise the subblocks over the basis
|
||||
/////////////////////////////////////////////////////////////
|
||||
CoarseScalar InnerProd(CoarseGrid);
|
||||
blockOrthogonalise(InnerProd,Subspace.subspace);
|
||||
|
||||
const int npoint = geom_srhs.npoint;
|
||||
|
||||
Coordinate clatt = CoarseGrid->GlobalDimensions();
|
||||
int Nd = CoarseGrid->Nd();
|
||||
/*
|
||||
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
|
||||
* Matrix index i is mapped to this shift via
|
||||
* geom.shifts[i]
|
||||
*
|
||||
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
|
||||
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
|
||||
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
|
||||
* = M_{kl} A_ji^{b.b+l}
|
||||
*
|
||||
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
|
||||
*
|
||||
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
|
||||
*
|
||||
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
|
||||
*/
|
||||
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
ComplexD ci(0.0,1.0);
|
||||
for(int k=0;k<npoint;k++){ // Loop over momenta
|
||||
|
||||
for(int l=0;l<npoint;l++){ // Loop over nbr relative
|
||||
ComplexD phase(0.0,0.0);
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu];
|
||||
}
|
||||
phase=exp(phase*ci);
|
||||
Mkl(k,l) = phase;
|
||||
}
|
||||
}
|
||||
invMkl = Mkl.inverse();
|
||||
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
// Now compute the matrix elements of linop between the orthonormal
|
||||
// set of vectors.
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
FineField phaV(grid); // Phased block basis vector
|
||||
FineField MphaV(grid);// Matrix applied
|
||||
std::vector<FineComplexField> phaF(npoint,grid);
|
||||
std::vector<CoarseComplexField> pha(npoint,CoarseGrid);
|
||||
|
||||
CoarseVector coarseInner(CoarseGrid);
|
||||
|
||||
typedef typename CComplex::scalar_type SComplex;
|
||||
FineComplexField one(grid); one=SComplex(1.0);
|
||||
FineComplexField zz(grid); zz = Zero();
|
||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
||||
/////////////////////////////////////////////////////
|
||||
// Stick a phase on every block
|
||||
/////////////////////////////////////////////////////
|
||||
CoarseComplexField coor(CoarseGrid);
|
||||
pha[p]=Zero();
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
LatticeCoordinate(coor,mu);
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor;
|
||||
}
|
||||
pha[p] =exp(pha[p]*ci);
|
||||
|
||||
blockZAXPY(phaF[p],pha[p],one,zz);
|
||||
}
|
||||
|
||||
// Could save on temporary storage here
|
||||
std::vector<CoarseMatrix> _A;
|
||||
_A.resize(geom_srhs.npoint,CoarseGrid);
|
||||
|
||||
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid);
|
||||
CoarseVector FT(CoarseGrid);
|
||||
for(int i=0;i<nbasis;i++){// Loop over basis vectors
|
||||
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
|
||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
||||
|
||||
phaV = phaF[p]*Subspace.subspace[i];
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Multiple phased subspace vector by matrix and project to subspace
|
||||
// Remove local bulk phase to leave relative phases
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
linop.Op(phaV,MphaV);
|
||||
|
||||
// Fixme, could use batched block projector here
|
||||
blockProject(coarseInner,MphaV,Subspace.subspace);
|
||||
|
||||
coarseInner = conjugate(pha[p]) * coarseInner;
|
||||
|
||||
ComputeProj[p] = coarseInner;
|
||||
}
|
||||
|
||||
// Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix.
|
||||
for(int k=0;k<npoint;k++){
|
||||
|
||||
FT = Zero();
|
||||
for(int l=0;l<npoint;l++){
|
||||
FT= FT+ invMkl(l,k)*ComputeProj[l];
|
||||
}
|
||||
|
||||
int osites=CoarseGrid->oSites();
|
||||
autoView( A_v , _A[k], AcceleratorWrite);
|
||||
autoView( FT_v , FT, AcceleratorRead);
|
||||
accelerator_for(sss, osites, 1, {
|
||||
for(int j=0;j<nbasis;j++){
|
||||
A_v[sss](i,j) = FT_v[sss](j);
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
// Only needed if nonhermitian
|
||||
// if ( ! hermitian ) {
|
||||
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
|
||||
// PopulateAdag();
|
||||
// }
|
||||
// Need to write something to populate Adag from A
|
||||
|
||||
for(int p=0;p<geom_srhs.npoint;p++){
|
||||
GridtoBLAS(_A[p],BLAS_A[p]);
|
||||
}
|
||||
/*
|
||||
Grid : Message : 11698.730546 s : CoarsenOperator eigen 1334 us
|
||||
Grid : Message : 11698.730563 s : CoarsenOperator phase 34729 us
|
||||
Grid : Message : 11698.730565 s : CoarsenOperator phaseBZ 2423814 us
|
||||
Grid : Message : 11698.730566 s : CoarsenOperator mat 127890998 us
|
||||
Grid : Message : 11698.730567 s : CoarsenOperator proj 515840840 us
|
||||
Grid : Message : 11698.730568 s : CoarsenOperator inv 103948313 us
|
||||
Takes 600s to compute matrix elements, DOMINATED by the block project.
|
||||
Easy to speed up with the batched block project.
|
||||
Store npoint vectors, get npoint x Nbasis block projection, and 81 fold faster.
|
||||
|
||||
// Block project below taks to 240s
|
||||
Grid : Message : 328.193418 s : CoarsenOperator phase 38338 us
|
||||
Grid : Message : 328.193434 s : CoarsenOperator phaseBZ 1711226 us
|
||||
Grid : Message : 328.193436 s : CoarsenOperator mat 122213270 us
|
||||
//Grid : Message : 328.193438 s : CoarsenOperator proj 1181154 us <-- this is mistimed
|
||||
//Grid : Message : 11698.730568 s : CoarsenOperator inv 103948313 us <-- Cut this ~10x if lucky by loop fusion
|
||||
*/
|
||||
#else
|
||||
RealD tproj=0.0;
|
||||
RealD tmat=0.0;
|
||||
RealD tphase=0.0;
|
||||
RealD tphaseBZ=0.0;
|
||||
RealD tinv=0.0;
|
||||
|
||||
std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl;
|
||||
|
||||
GridBase *grid = Subspace.FineGrid;
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Orthogonalise the subblocks over the basis
|
||||
/////////////////////////////////////////////////////////////
|
||||
CoarseScalar InnerProd(CoarseGrid);
|
||||
blockOrthogonalise(InnerProd,Subspace.subspace);
|
||||
|
||||
|
||||
MultiRHSBlockProject<Lattice<Fobj> > Projector;
|
||||
Projector.Allocate(nbasis,grid,CoarseGrid);
|
||||
Projector.ImportBasis(Subspace.subspace);
|
||||
|
||||
const int npoint = geom_srhs.npoint;
|
||||
|
||||
Coordinate clatt = CoarseGrid->GlobalDimensions();
|
||||
int Nd = CoarseGrid->Nd();
|
||||
/*
|
||||
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
|
||||
* Matrix index i is mapped to this shift via
|
||||
* geom.shifts[i]
|
||||
*
|
||||
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
|
||||
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
|
||||
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
|
||||
* = M_{kl} A_ji^{b.b+l}
|
||||
*
|
||||
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
|
||||
*
|
||||
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
|
||||
*
|
||||
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
|
||||
*/
|
||||
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
ComplexD ci(0.0,1.0);
|
||||
for(int k=0;k<npoint;k++){ // Loop over momenta
|
||||
|
||||
for(int l=0;l<npoint;l++){ // Loop over nbr relative
|
||||
ComplexD phase(0.0,0.0);
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu];
|
||||
}
|
||||
phase=exp(phase*ci);
|
||||
Mkl(k,l) = phase;
|
||||
}
|
||||
}
|
||||
invMkl = Mkl.inverse();
|
||||
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
// Now compute the matrix elements of linop between the orthonormal
|
||||
// set of vectors.
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
FineField phaV(grid); // Phased block basis vector
|
||||
FineField MphaV(grid);// Matrix applied
|
||||
std::vector<FineComplexField> phaF(npoint,grid);
|
||||
std::vector<CoarseComplexField> pha(npoint,CoarseGrid);
|
||||
|
||||
CoarseVector coarseInner(CoarseGrid);
|
||||
|
||||
tphase=-usecond();
|
||||
typedef typename CComplex::scalar_type SComplex;
|
||||
FineComplexField one(grid); one=SComplex(1.0);
|
||||
FineComplexField zz(grid); zz = Zero();
|
||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
||||
/////////////////////////////////////////////////////
|
||||
// Stick a phase on every block
|
||||
/////////////////////////////////////////////////////
|
||||
CoarseComplexField coor(CoarseGrid);
|
||||
pha[p]=Zero();
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
LatticeCoordinate(coor,mu);
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor;
|
||||
}
|
||||
pha[p] =exp(pha[p]*ci);
|
||||
|
||||
blockZAXPY(phaF[p],pha[p],one,zz);
|
||||
}
|
||||
tphase+=usecond();
|
||||
|
||||
// Could save on temporary storage here
|
||||
std::vector<CoarseMatrix> _A;
|
||||
_A.resize(geom_srhs.npoint,CoarseGrid);
|
||||
|
||||
// Count use small chunks than npoint == 81 and save memory
|
||||
int batch = 9;
|
||||
std::vector<FineField> _MphaV(batch,grid);
|
||||
std::vector<CoarseVector> TmpProj(batch,CoarseGrid);
|
||||
|
||||
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid);
|
||||
CoarseVector FT(CoarseGrid);
|
||||
for(int i=0;i<nbasis;i++){// Loop over basis vectors
|
||||
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
|
||||
|
||||
// std::cout << GridLogMessage << " phasing the fine vector "<<std::endl;
|
||||
// Fixme : do this in batches
|
||||
for(int p=0;p<npoint;p+=batch){ // Loop over momenta in npoint
|
||||
|
||||
for(int b=0;b<MIN(batch,npoint-p);b++){
|
||||
tphaseBZ-=usecond();
|
||||
phaV = phaF[p+b]*Subspace.subspace[i];
|
||||
tphaseBZ+=usecond();
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Multiple phased subspace vector by matrix and project to subspace
|
||||
// Remove local bulk phase to leave relative phases
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Memory footprint was an issue
|
||||
tmat-=usecond();
|
||||
linop.Op(phaV,MphaV);
|
||||
_MphaV[b] = MphaV;
|
||||
tmat+=usecond();
|
||||
}
|
||||
|
||||
// std::cout << GridLogMessage << " Calling block project "<<std::endl;
|
||||
tproj-=usecond();
|
||||
Projector.blockProject(_MphaV,TmpProj);
|
||||
tproj+=usecond();
|
||||
|
||||
// std::cout << GridLogMessage << " conj phasing the coarse vectors "<<std::endl;
|
||||
for(int b=0;b<MIN(batch,npoint-p);b++){
|
||||
ComputeProj[p+b] = conjugate(pha[p+b])*TmpProj[b];
|
||||
}
|
||||
}
|
||||
|
||||
// Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix.
|
||||
|
||||
// std::cout << GridLogMessage << " Starting FT inv "<<std::endl;
|
||||
tinv-=usecond();
|
||||
for(int k=0;k<npoint;k++){
|
||||
FT = Zero();
|
||||
// 81 kernel calls as many ComputeProj vectors
|
||||
// Could fuse with a vector of views, but ugly
|
||||
// Could unroll the expression and run fewer kernels -- much more attractive
|
||||
// Could also do non blocking.
|
||||
#if 0
|
||||
for(int l=0;l<npoint;l++){
|
||||
FT= FT+ invMkl(l,k)*ComputeProj[l];
|
||||
}
|
||||
#else
|
||||
const int radix = 9;
|
||||
int ll;
|
||||
for(ll=0;ll+radix-1<npoint;ll+=radix){
|
||||
// When ll = npoint-radix, ll+radix-1 = npoint-1, and we do it all.
|
||||
FT = FT
|
||||
+ invMkl(ll+0,k)*ComputeProj[ll+0]
|
||||
+ invMkl(ll+1,k)*ComputeProj[ll+1]
|
||||
+ invMkl(ll+2,k)*ComputeProj[ll+2]
|
||||
+ invMkl(ll+3,k)*ComputeProj[ll+3]
|
||||
+ invMkl(ll+4,k)*ComputeProj[ll+4]
|
||||
+ invMkl(ll+5,k)*ComputeProj[ll+5]
|
||||
+ invMkl(ll+6,k)*ComputeProj[ll+6]
|
||||
+ invMkl(ll+7,k)*ComputeProj[ll+7]
|
||||
+ invMkl(ll+8,k)*ComputeProj[ll+8];
|
||||
}
|
||||
for(int l=ll;l<npoint;l++){
|
||||
FT= FT+ invMkl(l,k)*ComputeProj[l];
|
||||
}
|
||||
#endif
|
||||
|
||||
// 1 kernel call -- must be cheaper
|
||||
int osites=CoarseGrid->oSites();
|
||||
autoView( A_v , _A[k], AcceleratorWrite);
|
||||
autoView( FT_v , FT, AcceleratorRead);
|
||||
accelerator_for(sss, osites, 1, {
|
||||
for(int j=0;j<nbasis;j++){
|
||||
A_v[sss](i,j) = FT_v[sss](j);
|
||||
}
|
||||
});
|
||||
}
|
||||
tinv+=usecond();
|
||||
}
|
||||
|
||||
// Only needed if nonhermitian
|
||||
// if ( ! hermitian ) {
|
||||
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
|
||||
// PopulateAdag();
|
||||
// }
|
||||
// Need to write something to populate Adag from A
|
||||
// std::cout << GridLogMessage << " Calling GridtoBLAS "<<std::endl;
|
||||
for(int p=0;p<geom_srhs.npoint;p++){
|
||||
GridtoBLAS(_A[p],BLAS_A[p]);
|
||||
}
|
||||
std::cout << GridLogMessage<<"CoarsenOperator phase "<<tphase<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator mat "<<tmat <<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator proj "<<tproj<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
|
||||
#endif
|
||||
}
|
||||
void Mdag(const CoarseVector &in, CoarseVector &out)
|
||||
{
|
||||
@@ -310,7 +643,7 @@ public:
|
||||
}
|
||||
void M (const CoarseVector &in, CoarseVector &out)
|
||||
{
|
||||
std::cout << GridLogMessage << "New Mrhs coarse"<<std::endl;
|
||||
// std::cout << GridLogMessage << "New Mrhs coarse"<<std::endl;
|
||||
conformable(CoarseGrid(),in.Grid());
|
||||
conformable(in.Grid(),out.Grid());
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
@@ -335,22 +668,20 @@ public:
|
||||
|
||||
const int Nsimd = CComplex::Nsimd();
|
||||
|
||||
int64_t nrhs =pin.Grid()->GlobalDimensions()[0];
|
||||
GRID_ASSERT(nrhs>=1);
|
||||
|
||||
RealD flops,bytes;
|
||||
int64_t osites=in.Grid()->oSites(); // unpadded
|
||||
int64_t unpadded_vol = _CoarseGrid->lSites();
|
||||
int64_t unpadded_vol = CoarseGrid()->lSites()/nrhs;
|
||||
|
||||
flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
|
||||
bytes = 1.0*osites*sizeof(siteMatrix)*npoint/pin.Grid()->GlobalDimensions()[0]
|
||||
+ 2.0*osites*sizeof(siteVector)*npoint;
|
||||
|
||||
int64_t nrhs =pin.Grid()->GlobalDimensions()[0];
|
||||
assert(nrhs>=1);
|
||||
|
||||
std::cout << GridLogMessage << "New Mrhs GridtoBLAS in sizes "<<in.Grid()->lSites()<<" "<<pin.Grid()->lSites()<<std::endl;
|
||||
t_GtoB=-usecond();
|
||||
GridtoBLAS(pin,BLAS_B);
|
||||
// out = Zero();
|
||||
// GridtoBLAS(out,BLAS_C);
|
||||
t_GtoB+=usecond();
|
||||
|
||||
GridBLAS BLAS;
|
||||
@@ -360,7 +691,7 @@ public:
|
||||
RealD c = 1.0;
|
||||
if (p==0) c = 0.0;
|
||||
ComplexD beta(c);
|
||||
// std::cout << GridLogMessage << "New Mrhs coarse gemmBatched "<<p<<std::endl;
|
||||
|
||||
BLAS.gemmBatched(nbasis,nrhs,nbasis,
|
||||
ComplexD(1.0),
|
||||
BLAS_AP[p],
|
||||
@@ -370,33 +701,29 @@ public:
|
||||
}
|
||||
BLAS.synchronise();
|
||||
t_mult+=usecond();
|
||||
// std::cout << GridLogMessage << "New Mrhs coarse BLAStoGrid "<<std::endl;
|
||||
|
||||
t_BtoG=-usecond();
|
||||
BLAStoGrid(out,BLAS_C);
|
||||
t_BtoG+=usecond();
|
||||
t_tot+=usecond();
|
||||
// auto check =deviceGet(BLAS_C[0]);
|
||||
// std::cout << "C[0] "<<check<<std::endl;
|
||||
// Coordinate coor({0,0,0,0,0,0});
|
||||
// peekLocalSite(check,out,coor);
|
||||
// std::cout << "C[0] "<< check<<std::endl;
|
||||
/*
|
||||
std::cout << GridLogMessage << "New Mrhs coarse DONE "<<std::endl;
|
||||
std::cout << GridLogMessage<<"Coarse Mult exch "<<t_exch<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"Coarse Mult mult "<<t_mult<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"Coarse Mult GtoB "<<t_GtoB<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"Coarse Mult BtoG "<<t_BtoG<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"Coarse Mult tot "<<t_tot<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<std::endl;
|
||||
std::cout << GridLogMessage<<"Coarse Kernel flops "<< flops<<std::endl;
|
||||
std::cout << GridLogMessage<<"Coarse Kernel flop/s "<< flops/t_mult<<" mflop/s"<<std::endl;
|
||||
std::cout << GridLogMessage<<"Coarse Kernel bytes/s "<< bytes/t_mult/1000<<" GB/s"<<std::endl;
|
||||
std::cout << GridLogMessage<<"Coarse overall flops/s "<< flops/t_tot<<" mflop/s"<<std::endl;
|
||||
std::cout << GridLogMessage<<"Coarse total bytes "<< bytes/1e6<<" MB"<<std::endl;
|
||||
*/
|
||||
// std::cout << GridLogMessage<<std::endl;
|
||||
// std::cout << GridLogMessage<<"Coarse Kernel flops "<< flops<<std::endl;
|
||||
// std::cout << GridLogMessage<<"Coarse Kernel flop/s "<< flops/t_mult<<" mflop/s"<<std::endl;
|
||||
// std::cout << GridLogMessage<<"Coarse Kernel bytes/s "<< bytes/t_mult/1000<<" GB/s"<<std::endl;
|
||||
// std::cout << GridLogMessage<<"Coarse overall flops/s "<< flops/t_tot<<" mflop/s"<<std::endl;
|
||||
// std::cout << GridLogMessage<<"Coarse total bytes "<< bytes/1e6<<" MB"<<std::endl;
|
||||
};
|
||||
virtual void Mdiag (const Field &in, Field &out){ assert(0);};
|
||||
virtual void Mdiag (const Field &in, Field &out){ GRID_ASSERT(0);};
|
||||
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);};
|
||||
virtual void MdirAll (const Field &in, std::vector<Field> &out){assert(0);};
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
@@ -67,8 +67,8 @@ public:
|
||||
}
|
||||
|
||||
int point(int dir, int disp) {
|
||||
assert(disp == -1 || disp == 0 || disp == 1);
|
||||
assert(base+0 <= dir && dir < base+4);
|
||||
GRID_ASSERT(disp == -1 || disp == 0 || disp == 1);
|
||||
GRID_ASSERT(base+0 <= dir && dir < base+4);
|
||||
|
||||
// directions faster index = new indexing
|
||||
// 4d (base = 0):
|
||||
@@ -131,7 +131,7 @@ public:
|
||||
return p;
|
||||
}
|
||||
}
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
return -1;
|
||||
}
|
||||
void BuildShifts(void)
|
||||
|
||||
@@ -29,7 +29,6 @@ Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
#include <Grid/algorithms/multigrid/Aggregates.h>
|
||||
#include <Grid/algorithms/multigrid/Geometry.h>
|
||||
#include <Grid/algorithms/multigrid/BatchedBlas.h>
|
||||
#include <Grid/algorithms/multigrid/CoarsenedMatrix.h>
|
||||
#include <Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h>
|
||||
#include <Grid/algorithms/multigrid/GeneralCoarsenedMatrixMultiRHS.h>
|
||||
|
||||
@@ -54,7 +54,10 @@ public:
|
||||
size_type bytes = __n*sizeof(_Tp);
|
||||
profilerAllocate(bytes);
|
||||
_Tp *ptr = (_Tp*) MemoryManager::CpuAllocate(bytes);
|
||||
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
|
||||
if ( (_Tp*)ptr == (_Tp *) NULL ) {
|
||||
printf("Grid CPU Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
|
||||
}
|
||||
GRID_ASSERT( ( (_Tp*)ptr != (_Tp *)NULL ) );
|
||||
return ptr;
|
||||
}
|
||||
|
||||
@@ -66,7 +69,7 @@ public:
|
||||
}
|
||||
|
||||
// FIXME: hack for the copy constructor: it must be avoided to avoid single thread loop
|
||||
void construct(pointer __p, const _Tp& __val) { assert(0);};
|
||||
void construct(pointer __p, const _Tp& __val) { };
|
||||
void construct(pointer __p) { };
|
||||
void destroy(pointer __p) { };
|
||||
};
|
||||
@@ -100,7 +103,10 @@ public:
|
||||
size_type bytes = __n*sizeof(_Tp);
|
||||
profilerAllocate(bytes);
|
||||
_Tp *ptr = (_Tp*) MemoryManager::SharedAllocate(bytes);
|
||||
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
|
||||
if ( (_Tp*)ptr == (_Tp *) NULL ) {
|
||||
printf("Grid Shared Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
|
||||
}
|
||||
GRID_ASSERT( ( (_Tp*)ptr != (_Tp *)NULL ) );
|
||||
return ptr;
|
||||
}
|
||||
|
||||
@@ -145,7 +151,10 @@ public:
|
||||
size_type bytes = __n*sizeof(_Tp);
|
||||
profilerAllocate(bytes);
|
||||
_Tp *ptr = (_Tp*) MemoryManager::AcceleratorAllocate(bytes);
|
||||
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
|
||||
if ( (_Tp*)ptr == (_Tp *) NULL ) {
|
||||
printf("Grid Device Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
|
||||
}
|
||||
GRID_ASSERT( ( (_Tp*)ptr != (_Tp *)NULL ) );
|
||||
return ptr;
|
||||
}
|
||||
|
||||
@@ -165,19 +174,10 @@ template<typename _Tp> inline bool operator!=(const devAllocator<_Tp>&, const d
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Template typedefs
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
// Cshift on device
|
||||
template<class T> using cshiftAllocator = devAllocator<T>;
|
||||
#else
|
||||
// Cshift on host
|
||||
template<class T> using cshiftAllocator = std::allocator<T>;
|
||||
#endif
|
||||
|
||||
template<class T> using Vector = std::vector<T,uvmAllocator<T> >;
|
||||
template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;
|
||||
template<class T> using commVector = std::vector<T,devAllocator<T> >;
|
||||
template<class T> using deviceVector = std::vector<T,devAllocator<T> >;
|
||||
template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >;
|
||||
template<class T> using hostVector = std::vector<T,alignedAllocator<T> >; // Needs autoview
|
||||
template<class T> using Vector = std::vector<T,uvmAllocator<T> >; // Really want to deprecate
|
||||
template<class T> using uvmVector = std::vector<T,uvmAllocator<T> >; // auto migrating page
|
||||
template<class T> using deviceVector = std::vector<T,devAllocator<T> >; // device vector
|
||||
|
||||
/*
|
||||
template<class T> class vecView
|
||||
@@ -188,8 +188,9 @@ template<class T> class vecView
|
||||
ViewMode mode;
|
||||
void * cpu_ptr;
|
||||
public:
|
||||
// Rvalue accessor
|
||||
accelerator_inline T & operator[](size_t i) const { return this->data[i]; };
|
||||
vecView(std::vector<T> &refer_to_me,ViewMode _mode)
|
||||
vecView(Vector<T> &refer_to_me,ViewMode _mode)
|
||||
{
|
||||
cpu_ptr = &refer_to_me[0];
|
||||
size = refer_to_me.size();
|
||||
@@ -205,22 +206,12 @@ template<class T> class vecView
|
||||
}
|
||||
};
|
||||
|
||||
template<class T> vecView<T> VectorView(std::vector<T> &vec,ViewMode _mode)
|
||||
template<class T> vecView<T> VectorView(Vector<T> &vec,ViewMode _mode)
|
||||
{
|
||||
vecView<T> ret(vec,_mode); // does the open
|
||||
return ret; // must be closed
|
||||
}
|
||||
|
||||
// Little autoscope assister
|
||||
template<class View>
|
||||
class VectorViewCloser
|
||||
{
|
||||
View v; // Take a copy of view and call view close when I go out of scope automatically
|
||||
public:
|
||||
VectorViewCloser(View &_v) : v(_v) {};
|
||||
~VectorViewCloser() { auto ptr = v.cpu_ptr; v.ViewClose(); MemoryManager::NotifyDeletion(ptr);}
|
||||
};
|
||||
|
||||
#define autoVecView(v_v,v,mode) \
|
||||
auto v_v = VectorView(v,mode); \
|
||||
ViewCloser<decltype(v_v)> _autoView##v_v(v_v);
|
||||
|
||||
@@ -16,6 +16,44 @@ NAMESPACE_BEGIN(Grid);
|
||||
uint64_t total_shared;
|
||||
uint64_t total_device;
|
||||
uint64_t total_host;;
|
||||
|
||||
#if defined(__has_feature)
|
||||
#if __has_feature(leak_sanitizer)
|
||||
#define ASAN_LEAK_CHECK
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef ASAN_LEAK_CHECK
|
||||
#include <sanitizer/asan_interface.h>
|
||||
#include <sanitizer/common_interface_defs.h>
|
||||
#include <sanitizer/lsan_interface.h>
|
||||
#define LEAK_CHECK(A) { __lsan_do_recoverable_leak_check(); }
|
||||
#else
|
||||
#define LEAK_CHECK(A) { }
|
||||
#endif
|
||||
|
||||
void MemoryManager::DisplayMallinfo(void)
|
||||
{
|
||||
#ifdef __linux__
|
||||
struct mallinfo mi; // really want mallinfo2, but glibc version isn't uniform
|
||||
|
||||
mi = mallinfo();
|
||||
|
||||
std::cout << "MemoryManager: Total non-mmapped bytes (arena): "<< (size_t)mi.arena<<std::endl;
|
||||
std::cout << "MemoryManager: # of free chunks (ordblks): "<< (size_t)mi.ordblks<<std::endl;
|
||||
std::cout << "MemoryManager: # of free fastbin blocks (smblks): "<< (size_t)mi.smblks<<std::endl;
|
||||
std::cout << "MemoryManager: # of mapped regions (hblks): "<< (size_t)mi.hblks<<std::endl;
|
||||
std::cout << "MemoryManager: Bytes in mapped regions (hblkhd): "<< (size_t)mi.hblkhd<<std::endl;
|
||||
std::cout << "MemoryManager: Max. total allocated space (usmblks): "<< (size_t)mi.usmblks<<std::endl;
|
||||
std::cout << "MemoryManager: Free bytes held in fastbins (fsmblks): "<< (size_t)mi.fsmblks<<std::endl;
|
||||
std::cout << "MemoryManager: Total allocated space (uordblks): "<< (size_t)mi.uordblks<<std::endl;
|
||||
std::cout << "MemoryManager: Total free space (fordblks): "<< (size_t)mi.fordblks<<std::endl;
|
||||
std::cout << "MemoryManager: Topmost releasable block (keepcost): "<< (size_t)mi.keepcost<<std::endl;
|
||||
#endif
|
||||
LEAK_CHECK();
|
||||
|
||||
}
|
||||
|
||||
void MemoryManager::PrintBytes(void)
|
||||
{
|
||||
std::cout << " MemoryManager : ------------------------------------ "<<std::endl;
|
||||
@@ -35,7 +73,7 @@ void MemoryManager::PrintBytes(void)
|
||||
#ifdef GRID_CUDA
|
||||
cuda_mem();
|
||||
#endif
|
||||
|
||||
DisplayMallinfo();
|
||||
}
|
||||
|
||||
uint64_t MemoryManager::DeviceCacheBytes() { return CacheBytes[Acc] + CacheBytes[AccHuge] + CacheBytes[AccSmall]; }
|
||||
@@ -254,7 +292,7 @@ void *MemoryManager::Insert(void *ptr,size_t bytes,int type)
|
||||
void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim, uint64_t &cacheBytes)
|
||||
{
|
||||
#ifdef GRID_OMP
|
||||
assert(omp_in_parallel()==0);
|
||||
GRID_ASSERT(omp_in_parallel()==0);
|
||||
#endif
|
||||
|
||||
if (ncache == 0) return ptr;
|
||||
@@ -307,7 +345,7 @@ void *MemoryManager::Lookup(size_t bytes,int type)
|
||||
void *MemoryManager::Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache,uint64_t & cacheBytes)
|
||||
{
|
||||
#ifdef GRID_OMP
|
||||
assert(omp_in_parallel()==0);
|
||||
GRID_ASSERT(omp_in_parallel()==0);
|
||||
#endif
|
||||
for(int e=0;e<ncache;e++){
|
||||
if ( entries[e].valid && ( entries[e].bytes == bytes ) ) {
|
||||
|
||||
@@ -211,6 +211,7 @@ private:
|
||||
#endif
|
||||
|
||||
public:
|
||||
static void DisplayMallinfo(void);
|
||||
static void NotifyDeletion(void * CpuPtr);
|
||||
static void Print(void);
|
||||
static void PrintAll(void);
|
||||
|
||||
@@ -1,16 +1,15 @@
|
||||
#include <Grid/GridCore.h>
|
||||
#ifndef GRID_UVM
|
||||
|
||||
#warning "Using explicit device memory copies"
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
#define MAXLINE 512
|
||||
static char print_buffer [ MAXLINE ];
|
||||
|
||||
#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer;
|
||||
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug << print_buffer;
|
||||
#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer << std::endl;
|
||||
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug << print_buffer << std::endl;
|
||||
//#define dprintf(...)
|
||||
|
||||
//#define mprintf(...)
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// For caching copies of data on device
|
||||
@@ -51,12 +50,12 @@ int MemoryManager::EntryPresent(uint64_t CpuPtr)
|
||||
{
|
||||
if(AccViewTable.empty()) return 0;
|
||||
|
||||
auto count = AccViewTable.count(CpuPtr); assert((count==0)||(count==1));
|
||||
auto count = AccViewTable.count(CpuPtr); GRID_ASSERT((count==0)||(count==1));
|
||||
return count;
|
||||
}
|
||||
void MemoryManager::EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
|
||||
{
|
||||
assert(!EntryPresent(CpuPtr));
|
||||
GRID_ASSERT(!EntryPresent(CpuPtr));
|
||||
AcceleratorViewEntry AccCache;
|
||||
AccCache.CpuPtr = CpuPtr;
|
||||
AccCache.AccPtr = (uint64_t)NULL;
|
||||
@@ -70,9 +69,9 @@ void MemoryManager::EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,View
|
||||
}
|
||||
MemoryManager::AccViewTableIterator MemoryManager::EntryLookup(uint64_t CpuPtr)
|
||||
{
|
||||
assert(EntryPresent(CpuPtr));
|
||||
GRID_ASSERT(EntryPresent(CpuPtr));
|
||||
auto AccCacheIterator = AccViewTable.find(CpuPtr);
|
||||
assert(AccCacheIterator!=AccViewTable.end());
|
||||
GRID_ASSERT(AccCacheIterator!=AccViewTable.end());
|
||||
return AccCacheIterator;
|
||||
}
|
||||
void MemoryManager::EntryErase(uint64_t CpuPtr)
|
||||
@@ -82,7 +81,7 @@ void MemoryManager::EntryErase(uint64_t CpuPtr)
|
||||
}
|
||||
void MemoryManager::LRUinsert(AcceleratorViewEntry &AccCache)
|
||||
{
|
||||
assert(AccCache.LRU_valid==0);
|
||||
GRID_ASSERT(AccCache.LRU_valid==0);
|
||||
if (AccCache.transient) {
|
||||
LRU.push_back(AccCache.CpuPtr);
|
||||
AccCache.LRU_entry = --LRU.end();
|
||||
@@ -95,7 +94,7 @@ void MemoryManager::LRUinsert(AcceleratorViewEntry &AccCache)
|
||||
}
|
||||
void MemoryManager::LRUremove(AcceleratorViewEntry &AccCache)
|
||||
{
|
||||
assert(AccCache.LRU_valid==1);
|
||||
GRID_ASSERT(AccCache.LRU_valid==1);
|
||||
LRU.erase(AccCache.LRU_entry);
|
||||
AccCache.LRU_valid = 0;
|
||||
DeviceLRUBytes-=AccCache.bytes;
|
||||
@@ -109,19 +108,19 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
|
||||
// Remove from Accelerator, remove entry, without flush
|
||||
// Cannot be locked. If allocated Must be in LRU pool.
|
||||
///////////////////////////////////////////////////////////
|
||||
assert(AccCache.state!=Empty);
|
||||
GRID_ASSERT(AccCache.state!=Empty);
|
||||
|
||||
dprintf("MemoryManager: Discard(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
|
||||
assert(AccCache.accLock==0);
|
||||
assert(AccCache.cpuLock==0);
|
||||
assert(AccCache.CpuPtr!=(uint64_t)NULL);
|
||||
dprintf("MemoryManager: Discard(%lx) %lx",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
|
||||
GRID_ASSERT(AccCache.accLock==0);
|
||||
GRID_ASSERT(AccCache.cpuLock==0);
|
||||
GRID_ASSERT(AccCache.CpuPtr!=(uint64_t)NULL);
|
||||
if(AccCache.AccPtr) {
|
||||
AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
|
||||
DeviceDestroy++;
|
||||
DeviceBytes -=AccCache.bytes;
|
||||
LRUremove(AccCache);
|
||||
AccCache.AccPtr=(uint64_t) NULL;
|
||||
dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);
|
||||
dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);
|
||||
}
|
||||
uint64_t CpuPtr = AccCache.CpuPtr;
|
||||
EntryErase(CpuPtr);
|
||||
@@ -139,9 +138,9 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
|
||||
// Take these OUT LRU queue when CPU locked?
|
||||
// Cannot take out the table as cpuLock data is important.
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
assert(AccCache.state!=Empty);
|
||||
GRID_ASSERT(AccCache.state!=Empty);
|
||||
|
||||
mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld\n",
|
||||
mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld",
|
||||
(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr,
|
||||
(uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock);
|
||||
if (AccCache.accLock!=0) return;
|
||||
@@ -155,7 +154,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
|
||||
AccCache.AccPtr=(uint64_t)NULL;
|
||||
AccCache.state=CpuDirty; // CPU primary now
|
||||
DeviceBytes -=AccCache.bytes;
|
||||
dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);
|
||||
dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld ",(uint64_t)AccCache.AccPtr,DeviceBytes);
|
||||
}
|
||||
// uint64_t CpuPtr = AccCache.CpuPtr;
|
||||
DeviceEvictions++;
|
||||
@@ -163,28 +162,30 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
|
||||
}
|
||||
void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
|
||||
{
|
||||
assert(AccCache.state==AccDirty);
|
||||
assert(AccCache.cpuLock==0);
|
||||
assert(AccCache.accLock==0);
|
||||
assert(AccCache.AccPtr!=(uint64_t)NULL);
|
||||
assert(AccCache.CpuPtr!=(uint64_t)NULL);
|
||||
GRID_ASSERT(AccCache.state==AccDirty);
|
||||
GRID_ASSERT(AccCache.cpuLock==0);
|
||||
GRID_ASSERT(AccCache.accLock==0);
|
||||
GRID_ASSERT(AccCache.AccPtr!=(uint64_t)NULL);
|
||||
GRID_ASSERT(AccCache.CpuPtr!=(uint64_t)NULL);
|
||||
acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
|
||||
mprintf("MemoryManager: acceleratorCopyFromDevice Flush AccPtr %lx -> CpuPtr %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
|
||||
mprintf("MemoryManager: acceleratorCopyFromDevice Flush size %ld AccPtr %lx -> CpuPtr %lx",(uint64_t)AccCache.bytes,(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
|
||||
DeviceToHostBytes+=AccCache.bytes;
|
||||
DeviceToHostXfer++;
|
||||
AccCache.state=Consistent;
|
||||
}
|
||||
void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
|
||||
{
|
||||
assert(AccCache.state==CpuDirty);
|
||||
assert(AccCache.cpuLock==0);
|
||||
assert(AccCache.accLock==0);
|
||||
assert(AccCache.CpuPtr!=(uint64_t)NULL);
|
||||
GRID_ASSERT(AccCache.state==CpuDirty);
|
||||
GRID_ASSERT(AccCache.cpuLock==0);
|
||||
GRID_ASSERT(AccCache.accLock==0);
|
||||
GRID_ASSERT(AccCache.CpuPtr!=(uint64_t)NULL);
|
||||
if(AccCache.AccPtr==(uint64_t)NULL){
|
||||
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
|
||||
DeviceBytes+=AccCache.bytes;
|
||||
}
|
||||
mprintf("MemoryManager: acceleratorCopyToDevice Clone AccPtr %lx <- CpuPtr %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
|
||||
mprintf("MemoryManager: acceleratorCopyToDevice Clone size %ld AccPtr %lx <- CpuPtr %lx",
|
||||
(uint64_t)AccCache.bytes,
|
||||
(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
|
||||
acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
|
||||
HostToDeviceBytes+=AccCache.bytes;
|
||||
HostToDeviceXfer++;
|
||||
@@ -193,10 +194,10 @@ void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
|
||||
|
||||
void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache)
|
||||
{
|
||||
assert(AccCache.state!=Empty);
|
||||
assert(AccCache.cpuLock==0);
|
||||
assert(AccCache.accLock==0);
|
||||
assert(AccCache.CpuPtr!=(uint64_t)NULL);
|
||||
GRID_ASSERT(AccCache.state!=Empty);
|
||||
GRID_ASSERT(AccCache.cpuLock==0);
|
||||
GRID_ASSERT(AccCache.accLock==0);
|
||||
GRID_ASSERT(AccCache.CpuPtr!=(uint64_t)NULL);
|
||||
if(AccCache.AccPtr==(uint64_t)NULL){
|
||||
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
|
||||
DeviceBytes+=AccCache.bytes;
|
||||
@@ -210,33 +211,36 @@ void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache)
|
||||
void MemoryManager::ViewClose(void* Ptr,ViewMode mode)
|
||||
{
|
||||
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
|
||||
dprintf("AcceleratorViewClose %lx\n",(uint64_t)Ptr);
|
||||
dprintf("AcceleratorViewClose %lx",(uint64_t)Ptr);
|
||||
AcceleratorViewClose((uint64_t)Ptr);
|
||||
} else if( (mode==CpuRead)||(mode==CpuWrite)){
|
||||
CpuViewClose((uint64_t)Ptr);
|
||||
} else {
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
}
|
||||
void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
|
||||
{
|
||||
uint64_t CpuPtr = (uint64_t)_CpuPtr;
|
||||
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
|
||||
dprintf("AcceleratorViewOpen %lx\n",(uint64_t)CpuPtr);
|
||||
dprintf("AcceleratorViewOpen %lx",(uint64_t)CpuPtr);
|
||||
return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint);
|
||||
} else if( (mode==CpuRead)||(mode==CpuWrite)){
|
||||
return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint);
|
||||
} else {
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
void MemoryManager::EvictVictims(uint64_t bytes)
|
||||
{
|
||||
assert(bytes<DeviceMaxBytes);
|
||||
if(bytes>=DeviceMaxBytes) {
|
||||
printf("EvictVictims bytes %ld DeviceMaxBytes %ld\n",bytes,DeviceMaxBytes);
|
||||
}
|
||||
GRID_ASSERT(bytes<DeviceMaxBytes);
|
||||
while(bytes+DeviceLRUBytes > DeviceMaxBytes){
|
||||
if ( DeviceLRUBytes > 0){
|
||||
assert(LRU.size()>0);
|
||||
GRID_ASSERT(LRU.size()>0);
|
||||
uint64_t victim = LRU.back(); // From the LRU
|
||||
auto AccCacheIterator = EntryLookup(victim);
|
||||
auto & AccCache = AccCacheIterator->second;
|
||||
@@ -260,19 +264,19 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
|
||||
if (!AccCache.AccPtr) {
|
||||
EvictVictims(bytes);
|
||||
}
|
||||
assert((mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard));
|
||||
GRID_ASSERT((mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard));
|
||||
|
||||
assert(AccCache.cpuLock==0); // Programming error
|
||||
GRID_ASSERT(AccCache.cpuLock==0); // Programming error
|
||||
|
||||
if(AccCache.state!=Empty) {
|
||||
dprintf("ViewOpen found entry %lx %lx : %ld %ld accLock %ld\n",
|
||||
dprintf("ViewOpen found entry %lx %lx : sizes %ld %ld accLock %ld",
|
||||
(uint64_t)AccCache.CpuPtr,
|
||||
(uint64_t)CpuPtr,
|
||||
(uint64_t)AccCache.bytes,
|
||||
(uint64_t)bytes,
|
||||
(uint64_t)AccCache.accLock);
|
||||
assert(AccCache.CpuPtr == CpuPtr);
|
||||
assert(AccCache.bytes ==bytes);
|
||||
GRID_ASSERT(AccCache.CpuPtr == CpuPtr);
|
||||
GRID_ASSERT(AccCache.bytes ==bytes);
|
||||
}
|
||||
/*
|
||||
* State transitions and actions
|
||||
@@ -289,7 +293,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
|
||||
* AccWrite AccDirty AccDirty - -
|
||||
*/
|
||||
if(AccCache.state==Empty) {
|
||||
assert(AccCache.LRU_valid==0);
|
||||
GRID_ASSERT(AccCache.LRU_valid==0);
|
||||
AccCache.CpuPtr = CpuPtr;
|
||||
AccCache.AccPtr = (uint64_t)NULL;
|
||||
AccCache.bytes = bytes;
|
||||
@@ -305,7 +309,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
|
||||
AccCache.state = Consistent; // Empty + AccRead => Consistent
|
||||
}
|
||||
AccCache.accLock= 1;
|
||||
dprintf("Copied Empty entry into device accLock= %d\n",AccCache.accLock);
|
||||
dprintf("Copied Empty entry into device accLock= %d",AccCache.accLock);
|
||||
} else if(AccCache.state==CpuDirty ){
|
||||
if(mode==AcceleratorWriteDiscard) {
|
||||
CpuDiscard(AccCache);
|
||||
@@ -318,30 +322,30 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
|
||||
AccCache.state = Consistent; // CpuDirty + AccRead => Consistent
|
||||
}
|
||||
AccCache.accLock++;
|
||||
dprintf("CpuDirty entry into device ++accLock= %d\n",AccCache.accLock);
|
||||
dprintf("CpuDirty entry into device ++accLock= %d",AccCache.accLock);
|
||||
} else if(AccCache.state==Consistent) {
|
||||
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
|
||||
AccCache.state = AccDirty; // Consistent + AcceleratorWrite=> AccDirty
|
||||
else
|
||||
AccCache.state = Consistent; // Consistent + AccRead => Consistent
|
||||
AccCache.accLock++;
|
||||
dprintf("Consistent entry into device ++accLock= %d\n",AccCache.accLock);
|
||||
dprintf("Consistent entry into device ++accLock= %d",AccCache.accLock);
|
||||
} else if(AccCache.state==AccDirty) {
|
||||
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
|
||||
AccCache.state = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty
|
||||
else
|
||||
AccCache.state = AccDirty; // AccDirty + AccRead => AccDirty
|
||||
AccCache.accLock++;
|
||||
dprintf("AccDirty entry ++accLock= %d\n",AccCache.accLock);
|
||||
dprintf("AccDirty entry ++accLock= %d",AccCache.accLock);
|
||||
} else {
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
|
||||
assert(AccCache.accLock>0);
|
||||
GRID_ASSERT(AccCache.accLock>0);
|
||||
// If view is opened on device must remove from LRU
|
||||
if(AccCache.LRU_valid==1){
|
||||
// must possibly remove from LRU as now locked on GPU
|
||||
dprintf("AccCache entry removed from LRU \n");
|
||||
dprintf("AccCache entry removed from LRU ");
|
||||
LRUremove(AccCache);
|
||||
}
|
||||
|
||||
@@ -358,16 +362,16 @@ void MemoryManager::AcceleratorViewClose(uint64_t CpuPtr)
|
||||
auto AccCacheIterator = EntryLookup(CpuPtr);
|
||||
auto & AccCache = AccCacheIterator->second;
|
||||
|
||||
assert(AccCache.cpuLock==0);
|
||||
assert(AccCache.accLock>0);
|
||||
GRID_ASSERT(AccCache.cpuLock==0);
|
||||
GRID_ASSERT(AccCache.accLock>0);
|
||||
|
||||
AccCache.accLock--;
|
||||
// Move to LRU queue if not locked and close on device
|
||||
if(AccCache.accLock==0) {
|
||||
dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
|
||||
dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
|
||||
LRUinsert(AccCache);
|
||||
} else {
|
||||
dprintf("AccleratorViewClose %lx AccLock decremented to %ld\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
|
||||
dprintf("AccleratorViewClose %lx AccLock decremented to %ld",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
|
||||
}
|
||||
}
|
||||
void MemoryManager::CpuViewClose(uint64_t CpuPtr)
|
||||
@@ -375,8 +379,8 @@ void MemoryManager::CpuViewClose(uint64_t CpuPtr)
|
||||
auto AccCacheIterator = EntryLookup(CpuPtr);
|
||||
auto & AccCache = AccCacheIterator->second;
|
||||
|
||||
assert(AccCache.cpuLock>0);
|
||||
assert(AccCache.accLock==0);
|
||||
GRID_ASSERT(AccCache.cpuLock>0);
|
||||
GRID_ASSERT(AccCache.accLock==0);
|
||||
|
||||
AccCache.cpuLock--;
|
||||
}
|
||||
@@ -409,12 +413,12 @@ uint64_t MemoryManager::CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,V
|
||||
// EvictVictims(bytes);
|
||||
// }
|
||||
|
||||
assert((mode==CpuRead)||(mode==CpuWrite));
|
||||
assert(AccCache.accLock==0); // Programming error
|
||||
GRID_ASSERT((mode==CpuRead)||(mode==CpuWrite));
|
||||
GRID_ASSERT(AccCache.accLock==0); // Programming error
|
||||
|
||||
if(AccCache.state!=Empty) {
|
||||
assert(AccCache.CpuPtr == CpuPtr);
|
||||
assert(AccCache.bytes==bytes);
|
||||
GRID_ASSERT(AccCache.CpuPtr == CpuPtr);
|
||||
GRID_ASSERT(AccCache.bytes==bytes);
|
||||
}
|
||||
|
||||
if(AccCache.state==Empty) {
|
||||
@@ -429,20 +433,20 @@ uint64_t MemoryManager::CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,V
|
||||
AccCache.state = CpuDirty; // CpuDirty +CpuRead/CpuWrite => CpuDirty
|
||||
AccCache.cpuLock++;
|
||||
} else if(AccCache.state==Consistent) {
|
||||
assert(AccCache.AccPtr != (uint64_t)NULL);
|
||||
GRID_ASSERT(AccCache.AccPtr != (uint64_t)NULL);
|
||||
if(mode==CpuWrite)
|
||||
AccCache.state = CpuDirty; // Consistent +CpuWrite => CpuDirty
|
||||
else
|
||||
AccCache.state = Consistent; // Consistent +CpuRead => Consistent
|
||||
AccCache.cpuLock++;
|
||||
} else if(AccCache.state==AccDirty) {
|
||||
assert(AccCache.AccPtr != (uint64_t)NULL);
|
||||
GRID_ASSERT(AccCache.AccPtr != (uint64_t)NULL);
|
||||
Flush(AccCache);
|
||||
if(mode==CpuWrite) AccCache.state = CpuDirty; // AccDirty +CpuWrite => CpuDirty, Flush
|
||||
else AccCache.state = Consistent; // AccDirty +CpuRead => Consistent, Flush
|
||||
AccCache.cpuLock++;
|
||||
} else {
|
||||
assert(0); // should be unreachable
|
||||
GRID_ASSERT(0); // should be unreachable
|
||||
}
|
||||
|
||||
AccCache.transient= transient? EvictNext : 0;
|
||||
@@ -474,6 +478,7 @@ void MemoryManager::Print(void)
|
||||
std::cout << GridLogMessage << DeviceEvictions << " Evictions from device " << std::endl;
|
||||
std::cout << GridLogMessage << DeviceDestroy << " Destroyed vectors on device " << std::endl;
|
||||
std::cout << GridLogMessage << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl;
|
||||
acceleratorMem();
|
||||
std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
|
||||
}
|
||||
void MemoryManager::PrintAll(void)
|
||||
@@ -523,12 +528,12 @@ void MemoryManager::Audit(std::string s)
|
||||
std::cout << " Memory Manager::Audit() from "<<s<<std::endl;
|
||||
for(auto it=LRU.begin();it!=LRU.end();it++){
|
||||
uint64_t cpuPtr = *it;
|
||||
assert(EntryPresent(cpuPtr));
|
||||
GRID_ASSERT(EntryPresent(cpuPtr));
|
||||
auto AccCacheIterator = EntryLookup(cpuPtr);
|
||||
auto & AccCache = AccCacheIterator->second;
|
||||
LruBytes2+=AccCache.bytes;
|
||||
assert(AccCache.LRU_valid==1);
|
||||
assert(AccCache.LRU_entry==it);
|
||||
GRID_ASSERT(AccCache.LRU_valid==1);
|
||||
GRID_ASSERT(AccCache.LRU_entry==it);
|
||||
}
|
||||
std::cout << " Memory Manager::Audit() LRU queue matches table entries "<<std::endl;
|
||||
|
||||
@@ -547,7 +552,7 @@ void MemoryManager::Audit(std::string s)
|
||||
if( AccCache.LRU_valid ) LruCnt++;
|
||||
|
||||
if ( AccCache.cpuLock || AccCache.accLock ) {
|
||||
assert(AccCache.LRU_valid==0);
|
||||
GRID_ASSERT(AccCache.LRU_valid==0);
|
||||
|
||||
std::cout << GridLogError << s<< "\n\t 0x"<<std::hex<<AccCache.CpuPtr<<std::dec
|
||||
<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
|
||||
@@ -556,16 +561,16 @@ void MemoryManager::Audit(std::string s)
|
||||
<< "\t LRUvalid " << AccCache.LRU_valid<<std::endl;
|
||||
}
|
||||
|
||||
assert( AccCache.cpuLock== 0 ) ;
|
||||
assert( AccCache.accLock== 0 ) ;
|
||||
GRID_ASSERT( AccCache.cpuLock== 0 ) ;
|
||||
GRID_ASSERT( AccCache.accLock== 0 ) ;
|
||||
}
|
||||
std::cout << " Memory Manager::Audit() no locked table entries "<<std::endl;
|
||||
assert(LruBytes1==LruBytes2);
|
||||
assert(LruBytes1==DeviceLRUBytes);
|
||||
GRID_ASSERT(LruBytes1==LruBytes2);
|
||||
GRID_ASSERT(LruBytes1==DeviceLRUBytes);
|
||||
std::cout << " Memory Manager::Audit() evictable bytes matches sum over table "<<std::endl;
|
||||
assert(AccBytes==DeviceBytes);
|
||||
GRID_ASSERT(AccBytes==DeviceBytes);
|
||||
std::cout << " Memory Manager::Audit() device bytes matches sum over table "<<std::endl;
|
||||
assert(LruCnt == LRU.size());
|
||||
GRID_ASSERT(LruCnt == LRU.size());
|
||||
std::cout << " Memory Manager::Audit() LRU entry count matches "<<std::endl;
|
||||
|
||||
}
|
||||
|
||||
@@ -10,16 +10,16 @@ void check_huge_pages(void *Buf,uint64_t BYTES)
|
||||
{
|
||||
#ifdef __linux__
|
||||
int fd = open("/proc/self/pagemap", O_RDONLY);
|
||||
assert(fd >= 0);
|
||||
GRID_ASSERT(fd >= 0);
|
||||
const int page_size = 4096;
|
||||
uint64_t virt_pfn = (uint64_t)Buf / page_size;
|
||||
off_t offset = sizeof(uint64_t) * virt_pfn;
|
||||
uint64_t npages = (BYTES + page_size-1) / page_size;
|
||||
uint64_t pagedata[npages];
|
||||
std::vector<uint64_t> pagedata(npages);
|
||||
uint64_t ret = lseek(fd, offset, SEEK_SET);
|
||||
assert(ret == offset);
|
||||
ret = ::read(fd, pagedata, sizeof(uint64_t)*npages);
|
||||
assert(ret == sizeof(uint64_t) * npages);
|
||||
GRID_ASSERT(ret == offset);
|
||||
ret = ::read(fd, &pagedata[0], sizeof(uint64_t)*npages);
|
||||
GRID_ASSERT(ret == sizeof(uint64_t) * npages);
|
||||
int nhugepages = npages / 512;
|
||||
int n4ktotal, nnothuge;
|
||||
n4ktotal = 0;
|
||||
|
||||
@@ -82,6 +82,7 @@ public:
|
||||
bool _isCheckerBoarded;
|
||||
int LocallyPeriodic;
|
||||
Coordinate _checker_dim_mask;
|
||||
int _checker_dim;
|
||||
|
||||
public:
|
||||
|
||||
@@ -89,7 +90,7 @@ public:
|
||||
// Checkerboarding interface is virtual and overridden by
|
||||
// GridCartesian / GridRedBlackCartesian
|
||||
////////////////////////////////////////////////////////////////
|
||||
virtual int CheckerBoarded(int dim)=0;
|
||||
virtual int CheckerBoarded(int dim) =0;
|
||||
virtual int CheckerBoard(const Coordinate &site)=0;
|
||||
virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0;
|
||||
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0;
|
||||
@@ -164,7 +165,7 @@ public:
|
||||
//
|
||||
if ( _simd_layout[dimension] > 2 ) {
|
||||
for(int d=0;d<_ndimension;d++){
|
||||
if ( d != dimension ) assert ( (_simd_layout[d]==1) );
|
||||
if ( d != dimension ) GRID_ASSERT ( (_simd_layout[d]==1) );
|
||||
}
|
||||
permute_type = RotateBit; // How to specify distance; this is not just direction.
|
||||
return permute_type;
|
||||
@@ -186,7 +187,7 @@ public:
|
||||
inline int64_t gSites(void) const { return (int64_t)_isites*(int64_t)_osites*(int64_t)_Nprocessors; };
|
||||
inline int Nd (void) const { return _ndimension;};
|
||||
|
||||
inline const Coordinate LocalStarts(void) { return _lstart; };
|
||||
inline const Coordinate &LocalStarts(void) { return _lstart; };
|
||||
inline const Coordinate &FullDimensions(void) { return _fdimensions;};
|
||||
inline const Coordinate &GlobalDimensions(void) { return _gdimensions;};
|
||||
inline const Coordinate &LocalDimensions(void) { return _ldimensions;};
|
||||
@@ -215,11 +216,11 @@ public:
|
||||
// Global addressing
|
||||
////////////////////////////////////////////////////////////////
|
||||
void GlobalIndexToGlobalCoor(int64_t gidx,Coordinate &gcoor){
|
||||
assert(gidx< gSites());
|
||||
GRID_ASSERT(gidx< gSites());
|
||||
Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
|
||||
}
|
||||
void LocalIndexToLocalCoor(int lidx,Coordinate &lcoor){
|
||||
assert(lidx<lSites());
|
||||
GRID_ASSERT(lidx<lSites());
|
||||
Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
|
||||
}
|
||||
void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int64_t & gidx){
|
||||
|
||||
@@ -38,7 +38,7 @@ class GridCartesian: public GridBase {
|
||||
|
||||
public:
|
||||
int dummy;
|
||||
Coordinate _checker_dim_mask;
|
||||
// Coordinate _checker_dim_mask;
|
||||
virtual int CheckerBoardFromOindexTable (int Oindex) {
|
||||
return 0;
|
||||
}
|
||||
@@ -46,7 +46,7 @@ public:
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
virtual int CheckerBoarded(int dim){
|
||||
virtual int CheckerBoarded(int dim) {
|
||||
return 0;
|
||||
}
|
||||
virtual int CheckerBoard(const Coordinate &site){
|
||||
@@ -106,6 +106,7 @@ public:
|
||||
_rdimensions.resize(_ndimension);
|
||||
_simd_layout.resize(_ndimension);
|
||||
_checker_dim_mask.resize(_ndimension);;
|
||||
_checker_dim = -1;
|
||||
_lstart.resize(_ndimension);
|
||||
_lend.resize(_ndimension);
|
||||
|
||||
@@ -127,10 +128,10 @@ public:
|
||||
// Use a reduced simd grid
|
||||
_ldimensions[d] = _gdimensions[d] / _processors[d]; //local dimensions
|
||||
//std::cout << _ldimensions[d] << " " << _gdimensions[d] << " " << _processors[d] << std::endl;
|
||||
assert(_ldimensions[d] * _processors[d] == _gdimensions[d]);
|
||||
GRID_ASSERT(_ldimensions[d] * _processors[d] == _gdimensions[d]);
|
||||
|
||||
_rdimensions[d] = _ldimensions[d] / _simd_layout[d]; //overdecomposition
|
||||
assert(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]);
|
||||
GRID_ASSERT(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]);
|
||||
|
||||
_lstart[d] = _processor_coor[d] * _ldimensions[d];
|
||||
_lend[d] = _processor_coor[d] * _ldimensions[d] + _ldimensions[d] - 1;
|
||||
|
||||
@@ -57,16 +57,17 @@ class GridRedBlackCartesian : public GridBase
|
||||
{
|
||||
public:
|
||||
// Coordinate _checker_dim_mask;
|
||||
int _checker_dim;
|
||||
// int _checker_dim;
|
||||
std::vector<int> _checker_board;
|
||||
|
||||
virtual int isCheckerBoarded(void) const { return 1; };
|
||||
virtual int CheckerBoarded(int dim){
|
||||
if( dim==_checker_dim) return 1;
|
||||
else return 0;
|
||||
}
|
||||
virtual int CheckerBoard(const Coordinate &site){
|
||||
int linear=0;
|
||||
assert(site.size()==_ndimension);
|
||||
GRID_ASSERT(site.size()==_ndimension);
|
||||
for(int d=0;d<_ndimension;d++){
|
||||
if(_checker_dim_mask[d])
|
||||
linear=linear+site[d];
|
||||
@@ -147,7 +148,7 @@ public:
|
||||
{
|
||||
Init(base->_fdimensions,base->_simd_layout,base->_processors,checker_dim_mask,checker_dim) ;
|
||||
}
|
||||
|
||||
|
||||
virtual ~GridRedBlackCartesian() = default;
|
||||
|
||||
void Init(const Coordinate &dimensions,
|
||||
@@ -159,11 +160,11 @@ public:
|
||||
|
||||
_isCheckerBoarded = true;
|
||||
_checker_dim = checker_dim;
|
||||
assert(checker_dim_mask[checker_dim] == 1);
|
||||
GRID_ASSERT(checker_dim_mask[checker_dim] == 1);
|
||||
_ndimension = dimensions.size();
|
||||
assert(checker_dim_mask.size() == _ndimension);
|
||||
assert(processor_grid.size() == _ndimension);
|
||||
assert(simd_layout.size() == _ndimension);
|
||||
GRID_ASSERT(checker_dim_mask.size() == _ndimension);
|
||||
GRID_ASSERT(processor_grid.size() == _ndimension);
|
||||
GRID_ASSERT(simd_layout.size() == _ndimension);
|
||||
|
||||
_fdimensions.resize(_ndimension);
|
||||
_gdimensions.resize(_ndimension);
|
||||
@@ -189,20 +190,20 @@ public:
|
||||
|
||||
if (d == _checker_dim)
|
||||
{
|
||||
assert((_gdimensions[d] & 0x1) == 0);
|
||||
GRID_ASSERT((_gdimensions[d] & 0x1) == 0);
|
||||
_gdimensions[d] = _gdimensions[d] / 2; // Remove a checkerboard
|
||||
_gsites /= 2;
|
||||
}
|
||||
_ldimensions[d] = _gdimensions[d] / _processors[d];
|
||||
assert(_ldimensions[d] * _processors[d] == _gdimensions[d]);
|
||||
GRID_ASSERT(_ldimensions[d] * _processors[d] == _gdimensions[d]);
|
||||
_lstart[d] = _processor_coor[d] * _ldimensions[d];
|
||||
_lend[d] = _processor_coor[d] * _ldimensions[d] + _ldimensions[d] - 1;
|
||||
|
||||
// Use a reduced simd grid
|
||||
_simd_layout[d] = simd_layout[d];
|
||||
_rdimensions[d] = _ldimensions[d] / _simd_layout[d]; // this is not checking if this is integer
|
||||
assert(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]);
|
||||
assert(_rdimensions[d] > 0);
|
||||
GRID_ASSERT(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]);
|
||||
GRID_ASSERT(_rdimensions[d] > 0);
|
||||
|
||||
// all elements of a simd vector must have same checkerboard.
|
||||
// If Ls vectorised, this must still be the case; e.g. dwf rb5d
|
||||
|
||||
@@ -57,18 +57,29 @@ int CartesianCommunicator::ProcessorCount(void) { return
|
||||
// very VERY rarely (Log, serial RNG) we need world without a grid
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#ifdef USE_GRID_REDUCTION
|
||||
void CartesianCommunicator::GlobalSum(ComplexF &c)
|
||||
{
|
||||
GlobalSumP2P(c);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(ComplexD &c)
|
||||
{
|
||||
GlobalSumP2P(c);
|
||||
}
|
||||
#else
|
||||
void CartesianCommunicator::GlobalSum(ComplexF &c)
|
||||
{
|
||||
GlobalSumVector((float *)&c,2);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSumVector(ComplexF *c,int N)
|
||||
{
|
||||
GlobalSumVector((float *)c,2*N);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(ComplexD &c)
|
||||
{
|
||||
GlobalSumVector((double *)&c,2);
|
||||
}
|
||||
#endif
|
||||
void CartesianCommunicator::GlobalSumVector(ComplexF *c,int N)
|
||||
{
|
||||
GlobalSumVector((float *)c,2*N);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N)
|
||||
{
|
||||
GlobalSumVector((double *)c,2*N);
|
||||
|
||||
@@ -33,6 +33,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
///////////////////////////////////
|
||||
#include <Grid/communicator/SharedMemory.h>
|
||||
|
||||
#define NVLINK_GET
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
extern bool Stencil_force_mpi ;
|
||||
@@ -106,7 +108,7 @@ public:
|
||||
// very VERY rarely (Log, serial RNG) we need world without a grid
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
static int RankWorld(void) ;
|
||||
static void BroadcastWorld(int root,void* data, int bytes);
|
||||
static void BroadcastWorld(int root,void* data, uint64_t bytes);
|
||||
static void BarrierWorld(void);
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
@@ -127,7 +129,36 @@ public:
|
||||
void GlobalSumVector(ComplexD *c,int N);
|
||||
void GlobalXOR(uint32_t &);
|
||||
void GlobalXOR(uint64_t &);
|
||||
|
||||
|
||||
template<class obj> void GlobalSumP2P(obj &o)
|
||||
{
|
||||
std::vector<obj> column;
|
||||
obj accum = o;
|
||||
int source,dest;
|
||||
for(int d=0;d<_ndimension;d++){
|
||||
column.resize(_processors[d]);
|
||||
column[0] = accum;
|
||||
std::vector<MpiCommsRequest_t> list;
|
||||
for(int p=1;p<_processors[d];p++){
|
||||
ShiftedRanks(d,p,source,dest);
|
||||
SendToRecvFromBegin(list,
|
||||
&column[0],
|
||||
dest,
|
||||
&column[p],
|
||||
source,
|
||||
sizeof(obj),d*100+p);
|
||||
|
||||
}
|
||||
if (!list.empty()) // avoid triggering GRID_ASSERT in comms == none
|
||||
CommsComplete(list);
|
||||
for(int p=1;p<_processors[d];p++){
|
||||
accum = accum + column[p];
|
||||
}
|
||||
}
|
||||
Broadcast(0,accum);
|
||||
o=accum;
|
||||
}
|
||||
|
||||
template<class obj> void GlobalSum(obj &o){
|
||||
typedef typename obj::scalar_type scalar_type;
|
||||
int words = sizeof(obj)/sizeof(scalar_type);
|
||||
@@ -138,32 +169,44 @@ public:
|
||||
////////////////////////////////////////////////////////////
|
||||
// Face exchange, buffer swap in translational invariant way
|
||||
////////////////////////////////////////////////////////////
|
||||
void CommsComplete(std::vector<CommsRequest_t> &list);
|
||||
void SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void CommsComplete(std::vector<MpiCommsRequest_t> &list);
|
||||
void SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int dest,
|
||||
void *recv,
|
||||
int from,
|
||||
int bytes,int dir);
|
||||
uint64_t bytes,int dir);
|
||||
|
||||
void SendToRecvFrom(void *xmit,
|
||||
int xmit_to_rank,
|
||||
void *recv,
|
||||
int recv_from_rank,
|
||||
int bytes);
|
||||
uint64_t bytes);
|
||||
|
||||
int IsOffNode(int rank);
|
||||
double StencilSendToRecvFrom(void *xmit,
|
||||
int xmit_to_rank,int do_xmit,
|
||||
void *recv,
|
||||
int recv_from_rank,int do_recv,
|
||||
int bytes,int dir);
|
||||
uint64_t bytes,int dir);
|
||||
|
||||
double StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int xmit_to_rank,int do_xmit,
|
||||
void *recv,
|
||||
int recv_from_rank,int do_recv,
|
||||
uint64_t xbytes,uint64_t rbytes,int dir);
|
||||
|
||||
// Could do a PollHtoD and have a CommsMerge dependence
|
||||
void StencilSendToRecvFromPollDtoH (std::vector<CommsRequest_t> &list);
|
||||
void StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list);
|
||||
|
||||
double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
void *xmit,void *xmit_comp,
|
||||
int xmit_to_rank,int do_xmit,
|
||||
void *recv,
|
||||
void *recv,void *recv_comp,
|
||||
int recv_from_rank,int do_recv,
|
||||
int xbytes,int rbytes,int dir);
|
||||
uint64_t xbytes,uint64_t rbytes,int dir);
|
||||
|
||||
|
||||
void StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int i);
|
||||
@@ -177,20 +220,20 @@ public:
|
||||
////////////////////////////////////////////////////////////
|
||||
// Broadcast a buffer and composite larger
|
||||
////////////////////////////////////////////////////////////
|
||||
void Broadcast(int root,void* data, int bytes);
|
||||
void Broadcast(int root,void* data, uint64_t bytes);
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// All2All down one dimension
|
||||
////////////////////////////////////////////////////////////
|
||||
template<class T> void AllToAll(int dim,std::vector<T> &in, std::vector<T> &out){
|
||||
assert(dim>=0);
|
||||
assert(dim<_ndimension);
|
||||
assert(in.size()==out.size());
|
||||
GRID_ASSERT(dim>=0);
|
||||
GRID_ASSERT(dim<_ndimension);
|
||||
GRID_ASSERT(in.size()==out.size());
|
||||
int numnode = _processors[dim];
|
||||
uint64_t bytes=sizeof(T);
|
||||
uint64_t words=in.size()/numnode;
|
||||
assert(numnode * words == in.size());
|
||||
assert(words < (1ULL<<31));
|
||||
GRID_ASSERT(numnode * words == in.size());
|
||||
GRID_ASSERT(words < (1ULL<<31));
|
||||
AllToAll(dim,(void *)&in[0],(void *)&out[0],words,bytes);
|
||||
}
|
||||
void AllToAll(int dim ,void *in,void *out,uint64_t words,uint64_t bytes);
|
||||
|
||||
@@ -28,9 +28,17 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/GridCore.h>
|
||||
#include <Grid/communicator/SharedMemory.h>
|
||||
|
||||
void GridAbort(void) { MPI_Abort(MPI_COMM_WORLD,SIGABRT); }
|
||||
extern void * Grid_backtrace_buffer[_NBACKTRACE];
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
Grid_MPI_Comm CartesianCommunicator::communicator_world;
|
||||
#ifdef GRID_CHECKSUM_COMMS
|
||||
uint64_t checksum_index = 1;
|
||||
#endif
|
||||
|
||||
|
||||
////////////////////////////////////////////
|
||||
// First initialise of comms system
|
||||
@@ -55,11 +63,11 @@ void CartesianCommunicator::Init(int *argc, char ***argv)
|
||||
#endif
|
||||
//If only 1 comms thread we require any threading mode other than SINGLE, but for multiple comms threads we need MULTIPLE
|
||||
if( (nCommThreads == 1) && (provided == MPI_THREAD_SINGLE) ) {
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
|
||||
if( (nCommThreads > 1) && (provided != MPI_THREAD_MULTIPLE) ) {
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -80,20 +88,20 @@ void CartesianCommunicator::Init(int *argc, char ***argv)
|
||||
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
|
||||
{
|
||||
int ierr=MPI_Cart_shift(communicator,dim,shift,&source,&dest);
|
||||
assert(ierr==0);
|
||||
GRID_ASSERT(ierr==0);
|
||||
}
|
||||
int CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor)
|
||||
{
|
||||
int rank;
|
||||
int ierr=MPI_Cart_rank (communicator, &coor[0], &rank);
|
||||
assert(ierr==0);
|
||||
GRID_ASSERT(ierr==0);
|
||||
return rank;
|
||||
}
|
||||
void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor)
|
||||
{
|
||||
coor.resize(_ndimension);
|
||||
int ierr=MPI_Cart_coords (communicator, rank, _ndimension,&coor[0]);
|
||||
assert(ierr==0);
|
||||
GRID_ASSERT(ierr==0);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@@ -120,8 +128,8 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
|
||||
//////////////////////////////////
|
||||
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)
|
||||
{
|
||||
_ndimension = processors.size(); assert(_ndimension>=1);
|
||||
int parent_ndimension = parent._ndimension; assert(_ndimension >= parent._ndimension);
|
||||
_ndimension = processors.size(); GRID_ASSERT(_ndimension>=1);
|
||||
int parent_ndimension = parent._ndimension; GRID_ASSERT(_ndimension >= parent._ndimension);
|
||||
Coordinate parent_processor_coor(_ndimension,0);
|
||||
Coordinate parent_processors (_ndimension,1);
|
||||
Coordinate shm_processors (_ndimension,1);
|
||||
@@ -145,7 +153,7 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
|
||||
childsize *= processors[d];
|
||||
}
|
||||
int Nchild = Nparent/childsize;
|
||||
assert (childsize * Nchild == Nparent);
|
||||
GRID_ASSERT (childsize * Nchild == Nparent);
|
||||
|
||||
Coordinate ccoor(_ndimension); // coor within subcommunicator
|
||||
Coordinate scoor(_ndimension); // coor of split within parent
|
||||
@@ -171,12 +179,12 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
|
||||
// Split the communicator
|
||||
////////////////////////////////////////////////////////////////
|
||||
int ierr= MPI_Comm_split(parent.communicator,srank,crank,&comm_split);
|
||||
assert(ierr==0);
|
||||
GRID_ASSERT(ierr==0);
|
||||
|
||||
} else {
|
||||
srank = 0;
|
||||
int ierr = MPI_Comm_dup (parent.communicator,&comm_split);
|
||||
assert(ierr==0);
|
||||
GRID_ASSERT(ierr==0);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@@ -201,7 +209,7 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
|
||||
}
|
||||
}
|
||||
for(int d=0;d<processors.size();d++){
|
||||
assert(_processor_coor[d] == ccoor[d] );
|
||||
GRID_ASSERT(_processor_coor[d] == ccoor[d] );
|
||||
}
|
||||
}
|
||||
|
||||
@@ -243,7 +251,7 @@ void CartesianCommunicator::InitFromMPICommunicator(const Coordinate &processors
|
||||
for(int i=0;i<_ndimension*2;i++){
|
||||
MPI_Comm_dup(communicator,&communicator_halo[i]);
|
||||
}
|
||||
assert(Size==_Nprocessors);
|
||||
GRID_ASSERT(Size==_Nprocessors);
|
||||
}
|
||||
|
||||
CartesianCommunicator::~CartesianCommunicator()
|
||||
@@ -257,82 +265,103 @@ CartesianCommunicator::~CartesianCommunicator()
|
||||
}
|
||||
}
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(uint32_t &u){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(uint64_t &u){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSumVector(uint64_t* u,int N){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,u,N,MPI_UINT64_T,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalXOR(uint32_t &u){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_BXOR,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalXOR(uint64_t &u){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_BXOR,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalMax(float &f)
|
||||
{
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_MAX,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalMax(double &d)
|
||||
{
|
||||
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_MAX,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
#ifdef USE_GRID_REDUCTION
|
||||
void CartesianCommunicator::GlobalSum(float &f){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSumVector(float *f,int N)
|
||||
{
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
FlightRecorder::StepLog("GlobalSumP2P");
|
||||
CartesianCommunicator::GlobalSumP2P(f);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(double &d)
|
||||
{
|
||||
FlightRecorder::StepLog("GlobalSumP2P");
|
||||
CartesianCommunicator::GlobalSumP2P(d);
|
||||
}
|
||||
#else
|
||||
void CartesianCommunicator::GlobalSum(float &f){
|
||||
FlightRecorder::StepLog("AllReduce float");
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
|
||||
GRID_ASSERT(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(double &d)
|
||||
{
|
||||
FlightRecorder::StepLog("AllReduce double");
|
||||
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
GRID_ASSERT(ierr==0);
|
||||
}
|
||||
#endif
|
||||
void CartesianCommunicator::GlobalSum(uint32_t &u){
|
||||
FlightRecorder::StepLog("AllReduce uint32_t");
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
|
||||
GRID_ASSERT(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(uint64_t &u){
|
||||
FlightRecorder::StepLog("AllReduce uint64_t");
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator);
|
||||
GRID_ASSERT(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSumVector(uint64_t* u,int N){
|
||||
FlightRecorder::StepLog("AllReduceVector");
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,u,N,MPI_UINT64_T,MPI_SUM,communicator);
|
||||
GRID_ASSERT(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalXOR(uint32_t &u){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_BXOR,communicator);
|
||||
GRID_ASSERT(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalXOR(uint64_t &u){
|
||||
FlightRecorder::StepLog("GlobalXOR");
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_BXOR,communicator);
|
||||
GRID_ASSERT(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalMax(float &f)
|
||||
{
|
||||
FlightRecorder::StepLog("GlobalMax");
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_MAX,communicator);
|
||||
GRID_ASSERT(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalMax(double &d)
|
||||
{
|
||||
FlightRecorder::StepLog("GlobalMax");
|
||||
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_MAX,communicator);
|
||||
GRID_ASSERT(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSumVector(float *f,int N)
|
||||
{
|
||||
FlightRecorder::StepLog("GlobalSumVector(float *)");
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator);
|
||||
GRID_ASSERT(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSumVector(double *d,int N)
|
||||
{
|
||||
FlightRecorder::StepLog("GlobalSumVector(double *)");
|
||||
int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
GRID_ASSERT(ierr==0);
|
||||
}
|
||||
|
||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int dest,
|
||||
void *recv,
|
||||
int from,
|
||||
int bytes,int dir)
|
||||
uint64_t bytes,int dir)
|
||||
{
|
||||
MPI_Request xrq;
|
||||
MPI_Request rrq;
|
||||
|
||||
assert(dest != _processor);
|
||||
assert(from != _processor);
|
||||
|
||||
GRID_ASSERT(dest != _processor);
|
||||
GRID_ASSERT(from != _processor);
|
||||
int tag;
|
||||
|
||||
tag= dir+from*32;
|
||||
int ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator,&rrq);
|
||||
assert(ierr==0);
|
||||
int ierr=MPI_Irecv(recv,(int)( bytes/sizeof(int32_t)), MPI_INT32_T,from,tag,communicator,&rrq);
|
||||
GRID_ASSERT(ierr==0);
|
||||
list.push_back(rrq);
|
||||
|
||||
tag= dir+_processor*32;
|
||||
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator,&xrq);
|
||||
assert(ierr==0);
|
||||
ierr =MPI_Isend(xmit,(int)(bytes/sizeof(int32_t)), MPI_INT32_T,dest,tag,communicator,&xrq);
|
||||
GRID_ASSERT(ierr==0);
|
||||
list.push_back(xrq);
|
||||
}
|
||||
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list)
|
||||
void CartesianCommunicator::CommsComplete(std::vector<MpiCommsRequest_t> &list)
|
||||
{
|
||||
int nreq=list.size();
|
||||
|
||||
@@ -340,7 +369,7 @@ void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list)
|
||||
|
||||
std::vector<MPI_Status> status(nreq);
|
||||
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
|
||||
assert(ierr==0);
|
||||
GRID_ASSERT(ierr==0);
|
||||
list.resize(0);
|
||||
}
|
||||
|
||||
@@ -349,49 +378,63 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
|
||||
int dest,
|
||||
void *recv,
|
||||
int from,
|
||||
int bytes)
|
||||
uint64_t bytes)
|
||||
{
|
||||
std::vector<CommsRequest_t> reqs(0);
|
||||
unsigned long xcrc = crc32(0L, Z_NULL, 0);
|
||||
unsigned long rcrc = crc32(0L, Z_NULL, 0);
|
||||
std::vector<MpiCommsRequest_t> reqs(0);
|
||||
|
||||
int myrank = _processor;
|
||||
int ierr;
|
||||
|
||||
// Enforce no UVM in comms, device or host OK
|
||||
assert(acceleratorIsCommunicable(xmit));
|
||||
assert(acceleratorIsCommunicable(recv));
|
||||
GRID_ASSERT(acceleratorIsCommunicable(xmit));
|
||||
GRID_ASSERT(acceleratorIsCommunicable(recv));
|
||||
|
||||
// Give the CPU to MPI immediately; can use threads to overlap optionally
|
||||
// printf("proc %d SendToRecvFrom %d bytes Sendrecv \n",_processor,bytes);
|
||||
ierr=MPI_Sendrecv(xmit,bytes,MPI_CHAR,dest,myrank,
|
||||
recv,bytes,MPI_CHAR,from, from,
|
||||
ierr=MPI_Sendrecv(xmit,(int)(bytes/sizeof(int32_t)),MPI_INT32_T,dest,myrank,
|
||||
recv,(int)(bytes/sizeof(int32_t)),MPI_INT32_T,from, from,
|
||||
communicator,MPI_STATUS_IGNORE);
|
||||
assert(ierr==0);
|
||||
GRID_ASSERT(ierr==0);
|
||||
|
||||
// xcrc = crc32(xcrc,(unsigned char *)xmit,bytes);
|
||||
// rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
|
||||
// printf("proc %d SendToRecvFrom %d bytes xcrc %lx rcrc %lx\n",_processor,bytes,xcrc,rcrc); fflush
|
||||
}
|
||||
// Basic Halo comms primitive
|
||||
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
|
||||
int dest, int dox,
|
||||
void *recv,
|
||||
int from, int dor,
|
||||
int bytes,int dir)
|
||||
uint64_t bytes,int dir)
|
||||
{
|
||||
std::vector<CommsRequest_t> list;
|
||||
double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
|
||||
double offbytes = StencilSendToRecvFromPrepare(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
|
||||
offbytes += StencilSendToRecvFromBegin(list,xmit,xmit,dest,dox,recv,recv,from,dor,bytes,bytes,dir);
|
||||
StencilSendToRecvFromComplete(list,dir);
|
||||
return offbytes;
|
||||
}
|
||||
int CartesianCommunicator::IsOffNode(int rank)
|
||||
{
|
||||
int grank = ShmRanks[rank];
|
||||
if ( grank == MPI_UNDEFINED ) return true;
|
||||
else return false;
|
||||
}
|
||||
|
||||
#ifdef ACCELERATOR_AWARE_MPI
|
||||
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {};
|
||||
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {};
|
||||
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int dest,int dox,
|
||||
void *recv,
|
||||
int from,int dor,
|
||||
uint64_t xbytes,uint64_t rbytes,int dir)
|
||||
{
|
||||
return 0.0; // Do nothing -- no preparation required
|
||||
}
|
||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
void *xmit,void *xmit_comp,
|
||||
int dest,int dox,
|
||||
void *recv,
|
||||
void *recv,void *recv_comp,
|
||||
int from,int dor,
|
||||
int xbytes,int rbytes,int dir)
|
||||
uint64_t xbytes,uint64_t rbytes,int dir)
|
||||
{
|
||||
int ncomm =communicator_halo.size();
|
||||
int commdir=dir%ncomm;
|
||||
@@ -404,51 +447,431 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
|
||||
int gfrom = ShmRanks[from];
|
||||
int gme = ShmRanks[_processor];
|
||||
|
||||
assert(dest != _processor);
|
||||
assert(from != _processor);
|
||||
assert(gme == ShmRank);
|
||||
GRID_ASSERT(dest != _processor);
|
||||
GRID_ASSERT(from != _processor);
|
||||
GRID_ASSERT(gme == ShmRank);
|
||||
double off_node_bytes=0.0;
|
||||
int tag;
|
||||
|
||||
if ( dor ) {
|
||||
if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
|
||||
tag= dir+from*32;
|
||||
// std::cout << " StencilSendToRecvFrom "<<dir<<" MPI_Irecv "<<std::hex<<recv<<std::dec<<std::endl;
|
||||
ierr=MPI_Irecv(recv_comp,(int)(rbytes/sizeof(int32_t)), MPI_INT32_T,from,tag,communicator_halo[commdir],&rrq);
|
||||
GRID_ASSERT(ierr==0);
|
||||
list.push_back(rrq);
|
||||
off_node_bytes+=rbytes;
|
||||
}
|
||||
#ifdef NVLINK_GET
|
||||
else {
|
||||
void *shm = (void *) this->ShmBufferTranslate(from,xmit);
|
||||
GRID_ASSERT(shm!=NULL);
|
||||
// std::cout << " StencilSendToRecvFrom "<<dir<<" CopyDeviceToDevice recv "<<std::hex<<recv<<" remote "<<shm <<std::dec<<std::endl;
|
||||
acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
// This is a NVLINK PUT
|
||||
if (dox) {
|
||||
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
|
||||
tag= dir+_processor*32;
|
||||
ierr =MPI_Isend(xmit_comp,(int)(xbytes/sizeof(int32_t)), MPI_INT32_T,dest,tag,communicator_halo[commdir],&xrq);
|
||||
GRID_ASSERT(ierr==0);
|
||||
list.push_back(xrq);
|
||||
off_node_bytes+=xbytes;
|
||||
} else {
|
||||
#ifndef NVLINK_GET
|
||||
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
|
||||
GRID_ASSERT(shm!=NULL);
|
||||
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
return off_node_bytes;
|
||||
}
|
||||
|
||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
|
||||
{
|
||||
int nreq=list.size();
|
||||
/*finishes Get/Put*/
|
||||
acceleratorCopySynchronise();
|
||||
|
||||
if (nreq==0) return;
|
||||
std::vector<MPI_Status> status(nreq);
|
||||
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
|
||||
GRID_ASSERT(ierr==0);
|
||||
list.resize(0);
|
||||
this->StencilBarrier();
|
||||
}
|
||||
|
||||
#else /* NOT ... ACCELERATOR_AWARE_MPI */
|
||||
///////////////////////////////////////////
|
||||
// Pipeline mode through host memory
|
||||
///////////////////////////////////////////
|
||||
/*
|
||||
* In prepare (phase 1):
|
||||
* PHASE 1: (prepare)
|
||||
* - post MPI receive buffers asynch
|
||||
* - post device - host send buffer transfer asynch
|
||||
* PHASE 2: (Begin)
|
||||
* - complete all copies
|
||||
* - post MPI send asynch
|
||||
* - post device - device transfers
|
||||
* PHASE 3: (Complete)
|
||||
* - MPI_waitall
|
||||
* - host-device transfers
|
||||
*
|
||||
*********************************
|
||||
* NB could split this further:
|
||||
*--------------------------------
|
||||
* PHASE 1: (Prepare)
|
||||
* - post MPI receive buffers asynch
|
||||
* - post device - host send buffer transfer asynch
|
||||
* PHASE 2: (BeginInterNode)
|
||||
* - complete all copies
|
||||
* - post MPI send asynch
|
||||
* PHASE 3: (BeginIntraNode)
|
||||
* - post device - device transfers
|
||||
* PHASE 4: (Complete)
|
||||
* - MPI_waitall
|
||||
* - host-device transfers asynch
|
||||
* - (complete all copies)
|
||||
*/
|
||||
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int dest,int dox,
|
||||
void *recv,
|
||||
int from,int dor,
|
||||
uint64_t xbytes,uint64_t rbytes,int dir)
|
||||
{
|
||||
/*
|
||||
* Bring sequence from Stencil.h down to lower level.
|
||||
* Assume using XeLink is ok
|
||||
*/
|
||||
int ncomm =communicator_halo.size();
|
||||
int commdir=dir%ncomm;
|
||||
|
||||
MPI_Request xrq;
|
||||
MPI_Request rrq;
|
||||
|
||||
int ierr;
|
||||
int gdest = ShmRanks[dest];
|
||||
int gfrom = ShmRanks[from];
|
||||
int gme = ShmRanks[_processor];
|
||||
|
||||
GRID_ASSERT(dest != _processor);
|
||||
GRID_ASSERT(from != _processor);
|
||||
GRID_ASSERT(gme == ShmRank);
|
||||
double off_node_bytes=0.0;
|
||||
int tag;
|
||||
|
||||
void * host_recv = NULL;
|
||||
void * host_xmit = NULL;
|
||||
|
||||
/*
|
||||
* PHASE 1: (Prepare)
|
||||
* - post MPI receive buffers asynch
|
||||
* - post device - host send buffer transfer asynch
|
||||
*/
|
||||
|
||||
#ifdef GRID_CHECKSUM_COMMS
|
||||
rbytes += 8;
|
||||
xbytes += 8;
|
||||
#endif
|
||||
|
||||
if ( dor ) {
|
||||
if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
|
||||
tag= dir+from*32;
|
||||
ierr=MPI_Irecv(recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
|
||||
assert(ierr==0);
|
||||
list.push_back(rrq);
|
||||
host_recv = this->HostBufferMalloc(rbytes);
|
||||
ierr=MPI_Irecv(host_recv,(int)(rbytes/sizeof(int32_t)), MPI_INT32_T,from,tag,communicator_halo[commdir],&rrq);
|
||||
GRID_ASSERT(ierr==0);
|
||||
CommsRequest_t srq;
|
||||
srq.PacketType = InterNodeRecv;
|
||||
srq.bytes = rbytes;
|
||||
srq.req = rrq;
|
||||
srq.host_buf = host_recv;
|
||||
srq.device_buf = recv;
|
||||
srq.tag = tag;
|
||||
list.push_back(srq);
|
||||
off_node_bytes+=rbytes;
|
||||
}
|
||||
}
|
||||
|
||||
if (dox) {
|
||||
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
|
||||
|
||||
tag= dir+_processor*32;
|
||||
ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
|
||||
assert(ierr==0);
|
||||
list.push_back(xrq);
|
||||
off_node_bytes+=xbytes;
|
||||
} else {
|
||||
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
|
||||
assert(shm!=NULL);
|
||||
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
|
||||
|
||||
host_xmit = this->HostBufferMalloc(xbytes);
|
||||
CommsRequest_t srq;
|
||||
|
||||
#ifdef GRID_CHECKSUM_COMMS
|
||||
uint64_t xbytes_data = xbytes - 8;
|
||||
srq.ev = acceleratorCopyFromDeviceAsynch(xmit, host_xmit,xbytes_data); // Make this Asynch
|
||||
GRID_ASSERT(xbytes % 8 == 0);
|
||||
// flip one bit so that a zero buffer is not consistent
|
||||
uint64_t xsum = checksum_gpu((uint64_t*)xmit, xbytes_data / 8) ^ (checksum_index + 1 + 1000 * tag);
|
||||
*(uint64_t*)(((char*)host_xmit) + xbytes_data) = xsum;
|
||||
#else
|
||||
srq.ev = acceleratorCopyFromDeviceAsynch(xmit, host_xmit,xbytes); // Make this Asynch
|
||||
#endif
|
||||
|
||||
// ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
|
||||
// GRID_ASSERT(ierr==0);
|
||||
// off_node_bytes+=xbytes;
|
||||
|
||||
srq.PacketType = InterNodeXmit;
|
||||
srq.bytes = xbytes;
|
||||
// srq.req = xrq;
|
||||
srq.host_buf = host_xmit;
|
||||
srq.device_buf = xmit;
|
||||
srq.tag = tag;
|
||||
srq.dest = dest;
|
||||
srq.commdir = commdir;
|
||||
list.push_back(srq);
|
||||
}
|
||||
}
|
||||
|
||||
return off_node_bytes;
|
||||
}
|
||||
/*
|
||||
* In the interest of better pipelining, poll for completion on each DtoH and
|
||||
* start MPI_ISend in the meantime
|
||||
*/
|
||||
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list)
|
||||
{
|
||||
int pending = 0;
|
||||
do {
|
||||
|
||||
pending = 0;
|
||||
|
||||
for(int idx = 0; idx<list.size();idx++){
|
||||
|
||||
if ( list[idx].PacketType==InterNodeRecv ) {
|
||||
|
||||
int flag = 0;
|
||||
MPI_Status status;
|
||||
int ierr = MPI_Test(&list[idx].req,&flag,&status);
|
||||
assert(ierr==0);
|
||||
|
||||
if ( flag ) {
|
||||
// std::cout << " PollIrecv "<<idx<<" flag "<<flag<<std::endl;
|
||||
#ifdef GRID_CHECKSUM_COMMS
|
||||
acceleratorCopyToDeviceAsynch(list[idx].host_buf,list[idx].device_buf,list[idx].bytes - 8);
|
||||
#else
|
||||
acceleratorCopyToDeviceAsynch(list[idx].host_buf,list[idx].device_buf,list[idx].bytes);
|
||||
#endif
|
||||
list[idx].PacketType=InterNodeReceiveHtoD;
|
||||
} else {
|
||||
pending ++;
|
||||
}
|
||||
}
|
||||
}
|
||||
// std::cout << " PollIrecv "<<pending<<" pending requests"<<std::endl;
|
||||
} while ( pending );
|
||||
|
||||
}
|
||||
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list)
|
||||
{
|
||||
int pending = 0;
|
||||
do {
|
||||
|
||||
pending = 0;
|
||||
|
||||
for(int idx = 0; idx<list.size();idx++){
|
||||
|
||||
if ( list[idx].PacketType==InterNodeXmit ) {
|
||||
|
||||
if ( acceleratorEventIsComplete(list[idx].ev) ) {
|
||||
|
||||
void *host_xmit = list[idx].host_buf;
|
||||
uint64_t xbytes = list[idx].bytes;
|
||||
int dest = list[idx].dest;
|
||||
int tag = list[idx].tag;
|
||||
int commdir = list[idx].commdir;
|
||||
///////////////////
|
||||
// Send packet
|
||||
///////////////////
|
||||
|
||||
// std::cout << " DtoH is complete for index "<<idx<<" calling MPI_Isend "<<std::endl;
|
||||
|
||||
MPI_Request xrq;
|
||||
int ierr =MPI_Isend(host_xmit, (int)(xbytes/sizeof(int32_t)), MPI_INT32_T,dest,tag,communicator_halo[commdir],&xrq);
|
||||
GRID_ASSERT(ierr==0);
|
||||
|
||||
list[idx].req = xrq; // Update the MPI request in the list
|
||||
|
||||
list[idx].PacketType=InterNodeXmitISend;
|
||||
|
||||
} else {
|
||||
// not done, so return to polling loop
|
||||
pending++;
|
||||
}
|
||||
}
|
||||
}
|
||||
} while (pending);
|
||||
}
|
||||
|
||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,void *xmit_comp,
|
||||
int dest,int dox,
|
||||
void *recv,void *recv_comp,
|
||||
int from,int dor,
|
||||
uint64_t xbytes,uint64_t rbytes,int dir)
|
||||
{
|
||||
int ncomm =communicator_halo.size();
|
||||
int commdir=dir%ncomm;
|
||||
|
||||
MPI_Request xrq;
|
||||
MPI_Request rrq;
|
||||
|
||||
int ierr;
|
||||
int gdest = ShmRanks[dest];
|
||||
int gfrom = ShmRanks[from];
|
||||
int gme = ShmRanks[_processor];
|
||||
|
||||
GRID_ASSERT(dest != _processor);
|
||||
GRID_ASSERT(from != _processor);
|
||||
GRID_ASSERT(gme == ShmRank);
|
||||
double off_node_bytes=0.0;
|
||||
int tag;
|
||||
|
||||
void * host_xmit = NULL;
|
||||
|
||||
////////////////////////////////
|
||||
// Receives already posted
|
||||
// Copies already started
|
||||
////////////////////////////////
|
||||
/*
|
||||
* PHASE 2: (Begin)
|
||||
* - complete all copies
|
||||
* - post MPI send asynch
|
||||
*/
|
||||
#ifdef NVLINK_GET
|
||||
if ( dor ) {
|
||||
|
||||
if ( ! ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) ) {
|
||||
// Intranode
|
||||
void *shm = (void *) this->ShmBufferTranslate(from,xmit);
|
||||
GRID_ASSERT(shm!=NULL);
|
||||
|
||||
CommsRequest_t srq;
|
||||
|
||||
srq.ev = acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
|
||||
|
||||
srq.PacketType = IntraNodeRecv;
|
||||
srq.bytes = xbytes;
|
||||
// srq.req = xrq;
|
||||
srq.host_buf = NULL;
|
||||
srq.device_buf = xmit;
|
||||
srq.tag = -1;
|
||||
srq.dest = dest;
|
||||
srq.commdir = dir;
|
||||
list.push_back(srq);
|
||||
}
|
||||
}
|
||||
#else
|
||||
if (dox) {
|
||||
|
||||
if ( !( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) ) {
|
||||
// Intranode
|
||||
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
|
||||
GRID_ASSERT(shm!=NULL);
|
||||
|
||||
CommsRequest_t srq;
|
||||
|
||||
srq.ev = acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
|
||||
|
||||
srq.PacketType = IntraNodeXmit;
|
||||
srq.bytes = xbytes;
|
||||
// srq.req = xrq;
|
||||
srq.host_buf = NULL;
|
||||
srq.device_buf = xmit;
|
||||
srq.tag = -1;
|
||||
srq.dest = dest;
|
||||
srq.commdir = dir;
|
||||
list.push_back(srq);
|
||||
|
||||
}
|
||||
}
|
||||
#endif
|
||||
return off_node_bytes;
|
||||
}
|
||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
|
||||
{
|
||||
int nreq=list.size();
|
||||
acceleratorCopySynchronise(); // Complete all pending copy transfers D2D
|
||||
|
||||
if (nreq==0) return;
|
||||
std::vector<MPI_Status> status;
|
||||
std::vector<MPI_Request> MpiRequests;
|
||||
|
||||
for(int r=0;r<list.size();r++){
|
||||
// Must check each Send buf is clear to reuse
|
||||
if ( list[r].PacketType == InterNodeXmitISend ) MpiRequests.push_back(list[r].req);
|
||||
// if ( list[r].PacketType == InterNodeRecv ) MpiRequests.push_back(list[r].req); // Already "Test" passed
|
||||
}
|
||||
|
||||
std::vector<MPI_Status> status(nreq);
|
||||
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
|
||||
assert(ierr==0);
|
||||
list.resize(0);
|
||||
int nreq=MpiRequests.size();
|
||||
|
||||
if (nreq>0) {
|
||||
status.resize(MpiRequests.size());
|
||||
int ierr = MPI_Waitall(MpiRequests.size(),&MpiRequests[0],&status[0]); // Sends are guaranteed in order. No harm in not completing.
|
||||
GRID_ASSERT(ierr==0);
|
||||
}
|
||||
|
||||
// for(int r=0;r<nreq;r++){
|
||||
// if ( list[r].PacketType==InterNodeRecv ) {
|
||||
// acceleratorCopyToDeviceAsynch(list[r].host_buf,list[r].device_buf,list[r].bytes);
|
||||
// }
|
||||
// }
|
||||
#ifdef GRID_CHECKSUM_COMMS
|
||||
for(int r=0;r<list.size();r++){
|
||||
if ( list[r].PacketType == InterNodeReceiveHtoD ) {
|
||||
uint64_t rbytes_data = list[r].bytes - 8;
|
||||
uint64_t expected_cs = *(uint64_t*)(((char*)list[r].host_buf) + rbytes_data);
|
||||
uint64_t computed_cs = checksum_gpu((uint64_t*)list[r].device_buf, rbytes_data / 8) ^ (checksum_index + 1 + 1000 * list[r].tag); //
|
||||
if (expected_cs != computed_cs) {
|
||||
// TODO: error message, backtrace, quit
|
||||
|
||||
fprintf(stderr, "GRID_CHECKSUM_COMMS error:\n");
|
||||
fprintf(stderr, " processor = %d\n", (int)_processor);
|
||||
for(int d=0;d<_processors.size();d++)
|
||||
fprintf(stderr, " processor_coord[%d] = %d\n", d, _processor_coor[d]);
|
||||
fprintf(stderr, " hostname: %s\n", GridHostname());
|
||||
fprintf(stderr, " expected_cs: %ld\n", expected_cs);
|
||||
fprintf(stderr, " computed_cs: %ld\n", computed_cs);
|
||||
fprintf(stderr, " dest: %d\n", list[r].dest);
|
||||
fprintf(stderr, " tag: %d\n", list[r].tag);
|
||||
fprintf(stderr, " commdir: %d\n", list[r].commdir);
|
||||
fprintf(stderr, " bytes: %ld\n", (uint64_t)list[r].bytes);
|
||||
|
||||
fflush(stderr);
|
||||
|
||||
// backtrace
|
||||
int symbols = backtrace(Grid_backtrace_buffer,_NBACKTRACE);
|
||||
backtrace_symbols_fd(Grid_backtrace_buffer,symbols, 2);
|
||||
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
checksum_index += 1;
|
||||
#endif
|
||||
|
||||
list.resize(0); // Delete the list
|
||||
this->HostBufferFreeAll(); // Clean up the buffer allocs
|
||||
#ifndef NVLINK_GET
|
||||
this->StencilBarrier(); // if PUT must check our nbrs have filled our receive buffers.
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
////////////////////////////////////////////
|
||||
// END PIPELINE MODE / NO CUDA AWARE MPI
|
||||
////////////////////////////////////////////
|
||||
|
||||
void CartesianCommunicator::StencilBarrier(void)
|
||||
{
|
||||
FlightRecorder::StepLog("NodeBarrier");
|
||||
MPI_Barrier (ShmComm);
|
||||
}
|
||||
//void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
|
||||
@@ -456,17 +879,19 @@ void CartesianCommunicator::StencilBarrier(void)
|
||||
//}
|
||||
void CartesianCommunicator::Barrier(void)
|
||||
{
|
||||
FlightRecorder::StepLog("GridBarrier");
|
||||
int ierr = MPI_Barrier(communicator);
|
||||
assert(ierr==0);
|
||||
GRID_ASSERT(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
|
||||
void CartesianCommunicator::Broadcast(int root,void* data,uint64_t bytes)
|
||||
{
|
||||
FlightRecorder::StepLog("Broadcast");
|
||||
int ierr=MPI_Bcast(data,
|
||||
bytes,
|
||||
(int)bytes,
|
||||
MPI_BYTE,
|
||||
root,
|
||||
communicator);
|
||||
assert(ierr==0);
|
||||
GRID_ASSERT(ierr==0);
|
||||
}
|
||||
int CartesianCommunicator::RankWorld(void){
|
||||
int r;
|
||||
@@ -474,23 +899,25 @@ int CartesianCommunicator::RankWorld(void){
|
||||
return r;
|
||||
}
|
||||
void CartesianCommunicator::BarrierWorld(void){
|
||||
FlightRecorder::StepLog("BarrierWorld");
|
||||
int ierr = MPI_Barrier(communicator_world);
|
||||
assert(ierr==0);
|
||||
GRID_ASSERT(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
|
||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, uint64_t bytes)
|
||||
{
|
||||
FlightRecorder::StepLog("BroadcastWorld");
|
||||
int ierr= MPI_Bcast(data,
|
||||
bytes,
|
||||
(int)bytes,
|
||||
MPI_BYTE,
|
||||
root,
|
||||
communicator_world);
|
||||
assert(ierr==0);
|
||||
GRID_ASSERT(ierr==0);
|
||||
}
|
||||
|
||||
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes)
|
||||
{
|
||||
Coordinate row(_ndimension,1);
|
||||
assert(dim>=0 && dim<_ndimension);
|
||||
GRID_ASSERT(dim>=0 && dim<_ndimension);
|
||||
|
||||
// Split the communicator
|
||||
row[dim] = _processors[dim];
|
||||
@@ -501,6 +928,7 @@ void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,
|
||||
}
|
||||
void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t bytes)
|
||||
{
|
||||
FlightRecorder::StepLog("AllToAll");
|
||||
// MPI is a pain and uses "int" arguments
|
||||
// 64*64*64*128*16 == 500Million elements of data.
|
||||
// When 24*4 bytes multiples get 50x 10^9 >>> 2x10^9 Y2K bug.
|
||||
@@ -510,8 +938,8 @@ void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t
|
||||
int ibytes;
|
||||
iwords = words;
|
||||
ibytes = bytes;
|
||||
assert(words == iwords); // safe to cast to int ?
|
||||
assert(bytes == ibytes); // safe to cast to int ?
|
||||
GRID_ASSERT(words == iwords); // safe to cast to int ?
|
||||
GRID_ASSERT(bytes == ibytes); // safe to cast to int ?
|
||||
MPI_Type_contiguous(ibytes,MPI_BYTE,&object);
|
||||
MPI_Type_commit(&object);
|
||||
MPI_Alltoall(in,iwords,object,out,iwords,object,communicator);
|
||||
|
||||
@@ -34,6 +34,8 @@ NAMESPACE_BEGIN(Grid);
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
Grid_MPI_Comm CartesianCommunicator::communicator_world;
|
||||
|
||||
void GridAbort(void) { abort(); }
|
||||
|
||||
void CartesianCommunicator::Init(int *argc, char *** arv)
|
||||
{
|
||||
GlobalSharedMemory::Init(communicator_world);
|
||||
@@ -54,14 +56,14 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
|
||||
{
|
||||
_shm_processors = Coordinate(processors.size(),1);
|
||||
_processors = processors;
|
||||
_ndimension = processors.size(); assert(_ndimension>=1);
|
||||
_ndimension = processors.size(); GRID_ASSERT(_ndimension>=1);
|
||||
_processor_coor.resize(_ndimension);
|
||||
|
||||
// Require 1^N processor grid for fake
|
||||
_Nprocessors=1;
|
||||
_processor = 0;
|
||||
for(int d=0;d<_ndimension;d++) {
|
||||
assert(_processors[d]==1);
|
||||
GRID_ASSERT(_processors[d]==1);
|
||||
_processor_coor[d] = 0;
|
||||
}
|
||||
SetCommunicator(communicator_world);
|
||||
@@ -87,19 +89,19 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
|
||||
int dest,
|
||||
void *recv,
|
||||
int from,
|
||||
int bytes)
|
||||
uint64_t bytes)
|
||||
{
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ assert(0);}
|
||||
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ GRID_ASSERT(list.size()==0);}
|
||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int dest,
|
||||
void *recv,
|
||||
int from,
|
||||
int bytes,int dir)
|
||||
uint64_t bytes,int dir)
|
||||
{
|
||||
assert(0);
|
||||
GRID_ASSERT(0);
|
||||
}
|
||||
|
||||
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes)
|
||||
@@ -113,8 +115,8 @@ void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t
|
||||
|
||||
int CartesianCommunicator::RankWorld(void){return 0;}
|
||||
void CartesianCommunicator::Barrier(void){}
|
||||
void CartesianCommunicator::Broadcast(int root,void* data, int bytes) {}
|
||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) { }
|
||||
void CartesianCommunicator::Broadcast(int root,void* data, uint64_t bytes) {}
|
||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, uint64_t bytes) { }
|
||||
void CartesianCommunicator::BarrierWorld(void) { }
|
||||
int CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor) { return 0;}
|
||||
void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor){ coor = _processor_coor; }
|
||||
@@ -124,20 +126,33 @@ void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest
|
||||
dest=0;
|
||||
}
|
||||
|
||||
int CartesianCommunicator::IsOffNode(int rank) { return false; }
|
||||
|
||||
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
|
||||
int xmit_to_rank,int dox,
|
||||
void *recv,
|
||||
int recv_from_rank,int dor,
|
||||
int bytes, int dir)
|
||||
uint64_t bytes, int dir)
|
||||
{
|
||||
return 2.0*bytes;
|
||||
}
|
||||
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {};
|
||||
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {};
|
||||
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int xmit_to_rank,int dox,
|
||||
void *recv,
|
||||
int recv_from_rank,int dor,
|
||||
uint64_t xbytes,uint64_t rbytes, int dir)
|
||||
{
|
||||
return 0.0;
|
||||
}
|
||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
void *xmit, void *xmit_comp,
|
||||
int xmit_to_rank,int dox,
|
||||
void *recv,
|
||||
void *recv, void *recv_comp,
|
||||
int recv_from_rank,int dor,
|
||||
int xbytes,int rbytes, int dir)
|
||||
uint64_t xbytes,uint64_t rbytes, int dir)
|
||||
{
|
||||
return xbytes+rbytes;
|
||||
}
|
||||
|
||||
@@ -40,6 +40,9 @@ int GlobalSharedMemory::_ShmAlloc;
|
||||
uint64_t GlobalSharedMemory::_ShmAllocBytes;
|
||||
|
||||
std::vector<void *> GlobalSharedMemory::WorldShmCommBufs;
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
void * GlobalSharedMemory::HostCommBuf;
|
||||
#endif
|
||||
|
||||
Grid_MPI_Comm GlobalSharedMemory::WorldShmComm;
|
||||
int GlobalSharedMemory::WorldShmRank;
|
||||
@@ -55,8 +58,8 @@ int GlobalSharedMemory::WorldNode;
|
||||
|
||||
void GlobalSharedMemory::SharedMemoryFree(void)
|
||||
{
|
||||
assert(_ShmAlloc);
|
||||
assert(_ShmAllocBytes>0);
|
||||
GRID_ASSERT(_ShmAlloc);
|
||||
GRID_ASSERT(_ShmAllocBytes>0);
|
||||
for(int r=0;r<WorldShmSize;r++){
|
||||
munmap(WorldShmCommBufs[r],_ShmAllocBytes);
|
||||
}
|
||||
@@ -66,6 +69,26 @@ void GlobalSharedMemory::SharedMemoryFree(void)
|
||||
/////////////////////////////////
|
||||
// Alloc, free shmem region
|
||||
/////////////////////////////////
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
void *SharedMemory::HostBufferMalloc(size_t bytes){
|
||||
void *ptr = (void *)host_heap_top;
|
||||
host_heap_top += bytes;
|
||||
host_heap_bytes+= bytes;
|
||||
if (host_heap_bytes >= host_heap_size) {
|
||||
std::cout<< " HostBufferMalloc exceeded heap size -- try increasing with --shm <MB> flag" <<std::endl;
|
||||
std::cout<< " Parameter specified in units of MB (megabytes) " <<std::endl;
|
||||
std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl;
|
||||
std::cout<< " Current bytes is " << (host_heap_bytes/(1024*1024)) <<"MB"<<std::endl;
|
||||
std::cout<< " Current heap is " << (host_heap_size/(1024*1024)) <<"MB"<<std::endl;
|
||||
GRID_ASSERT(host_heap_bytes<host_heap_size);
|
||||
}
|
||||
return ptr;
|
||||
}
|
||||
void SharedMemory::HostBufferFreeAll(void) {
|
||||
host_heap_top =(size_t)HostCommBuf;
|
||||
host_heap_bytes=0;
|
||||
}
|
||||
#endif
|
||||
void *SharedMemory::ShmBufferMalloc(size_t bytes){
|
||||
// bytes = (bytes+sizeof(vRealD))&(~(sizeof(vRealD)-1));// align up bytes
|
||||
void *ptr = (void *)heap_top;
|
||||
@@ -77,7 +100,7 @@ void *SharedMemory::ShmBufferMalloc(size_t bytes){
|
||||
std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl;
|
||||
std::cout<< " Current bytes is " << (heap_bytes/(1024*1024)) <<"MB"<<std::endl;
|
||||
std::cout<< " Current heap is " << (heap_size/(1024*1024)) <<"MB"<<std::endl;
|
||||
assert(heap_bytes<heap_size);
|
||||
GRID_ASSERT(heap_bytes<heap_size);
|
||||
}
|
||||
//std::cerr << "ShmBufferMalloc "<<std::hex<< ptr<<" - "<<((uint64_t)ptr+bytes)<<std::dec<<std::endl;
|
||||
return ptr;
|
||||
@@ -104,13 +127,13 @@ void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmD
|
||||
if ( str ) {
|
||||
std::vector<int> IntShmDims;
|
||||
GridCmdOptionIntVector(std::string(str),IntShmDims);
|
||||
assert(IntShmDims.size() == WorldDims.size());
|
||||
GRID_ASSERT(IntShmDims.size() == WorldDims.size());
|
||||
long ShmSize = 1;
|
||||
for (int dim=0;dim<WorldDims.size();dim++) {
|
||||
ShmSize *= (ShmDims[dim] = IntShmDims[dim]);
|
||||
assert(divides(ShmDims[dim],WorldDims[dim]));
|
||||
GRID_ASSERT(divides(ShmDims[dim],WorldDims[dim]));
|
||||
}
|
||||
assert(ShmSize == WorldShmSize);
|
||||
GRID_ASSERT(ShmSize == WorldShmSize);
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
@@ -46,8 +46,40 @@ NAMESPACE_BEGIN(Grid);
|
||||
|
||||
#if defined (GRID_COMMS_MPI3)
|
||||
typedef MPI_Comm Grid_MPI_Comm;
|
||||
typedef MPI_Request MpiCommsRequest_t;
|
||||
#ifdef ACCELERATOR_AWARE_MPI
|
||||
typedef MPI_Request CommsRequest_t;
|
||||
#else
|
||||
/*
|
||||
* Enable state transitions as each packet flows.
|
||||
*/
|
||||
enum PacketType_t {
|
||||
FaceGather,
|
||||
InterNodeXmit,
|
||||
InterNodeRecv,
|
||||
IntraNodeXmit,
|
||||
IntraNodeRecv,
|
||||
InterNodeXmitISend,
|
||||
InterNodeReceiveHtoD
|
||||
};
|
||||
/*
|
||||
*Package arguments needed for various actions along packet flow
|
||||
*/
|
||||
typedef struct {
|
||||
PacketType_t PacketType;
|
||||
void *host_buf;
|
||||
void *device_buf;
|
||||
int dest;
|
||||
int tag;
|
||||
int commdir;
|
||||
unsigned long bytes;
|
||||
acceleratorEvent_t ev;
|
||||
MpiCommsRequest_t req;
|
||||
} CommsRequest_t;
|
||||
#endif
|
||||
|
||||
#else
|
||||
typedef int MpiCommsRequest_t;
|
||||
typedef int CommsRequest_t;
|
||||
typedef int Grid_MPI_Comm;
|
||||
#endif
|
||||
@@ -75,7 +107,9 @@ public:
|
||||
static int Hugepages;
|
||||
|
||||
static std::vector<void *> WorldShmCommBufs;
|
||||
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
static void *HostCommBuf;
|
||||
#endif
|
||||
static Grid_MPI_Comm WorldComm;
|
||||
static int WorldRank;
|
||||
static int WorldSize;
|
||||
@@ -103,7 +137,7 @@ public:
|
||||
///////////////////////////////////////////////////
|
||||
static void SharedMemoryAllocate(uint64_t bytes, int flags);
|
||||
static void SharedMemoryFree(void);
|
||||
static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
|
||||
// static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
|
||||
static void SharedMemoryZero(void *dest,size_t bytes);
|
||||
|
||||
};
|
||||
@@ -120,6 +154,13 @@ private:
|
||||
size_t heap_bytes;
|
||||
size_t heap_size;
|
||||
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
size_t host_heap_top; // set in free all
|
||||
size_t host_heap_bytes;// set in free all
|
||||
void *HostCommBuf; // set in SetCommunicator
|
||||
size_t host_heap_size; // set in SetCommunicator
|
||||
#endif
|
||||
|
||||
protected:
|
||||
|
||||
Grid_MPI_Comm ShmComm; // for barriers
|
||||
@@ -151,7 +192,10 @@ public:
|
||||
void *ShmBufferTranslate(int rank,void * local_p);
|
||||
void *ShmBufferMalloc(size_t bytes);
|
||||
void ShmBufferFreeAll(void) ;
|
||||
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
void *HostBufferMalloc(size_t bytes);
|
||||
void HostBufferFreeAll(void);
|
||||
#endif
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// Make info on Nodes & ranks and Shared memory available
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@@ -39,9 +39,12 @@ Author: Christoph Lehner <christoph@lhnr.de>
|
||||
#include <hip/hip_runtime_api.h>
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
#ifdef ACCELERATOR_AWARE_MPI
|
||||
#define GRID_SYCL_LEVEL_ZERO_IPC
|
||||
#define SHM_SOCKETS
|
||||
#else
|
||||
#endif
|
||||
#include <syscall.h>
|
||||
#define SHM_SOCKETS
|
||||
#endif
|
||||
|
||||
#include <sys/socket.h>
|
||||
@@ -64,7 +67,7 @@ public:
|
||||
{
|
||||
int errnum;
|
||||
|
||||
sock = socket(AF_UNIX, SOCK_DGRAM, 0); assert(sock>0);
|
||||
sock = socket(AF_UNIX, SOCK_DGRAM, 0); GRID_ASSERT(sock>0);
|
||||
|
||||
struct sockaddr_un sa_un = { 0 };
|
||||
sa_un.sun_family = AF_UNIX;
|
||||
@@ -155,7 +158,7 @@ public:
|
||||
/*Construct from an MPI communicator*/
|
||||
void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
|
||||
{
|
||||
assert(_ShmSetup==0);
|
||||
GRID_ASSERT(_ShmSetup==0);
|
||||
WorldComm = comm;
|
||||
MPI_Comm_rank(WorldComm,&WorldRank);
|
||||
MPI_Comm_size(WorldComm,&WorldSize);
|
||||
@@ -181,7 +184,7 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
|
||||
|
||||
// WorldNodes
|
||||
WorldNodes = WorldSize/WorldShmSize;
|
||||
assert( (WorldNodes * WorldShmSize) == WorldSize );
|
||||
GRID_ASSERT( (WorldNodes * WorldShmSize) == WorldSize );
|
||||
|
||||
|
||||
// FIXME: Check all WorldShmSize are the same ?
|
||||
@@ -206,7 +209,7 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
|
||||
MyGroup.resize(WorldShmSize);
|
||||
for(int rank=0;rank<WorldSize;rank++){
|
||||
if(WorldShmRanks[rank]!=MPI_UNDEFINED){
|
||||
assert(g<WorldShmSize);
|
||||
GRID_ASSERT(g<WorldShmSize);
|
||||
MyGroup[g++] = rank;
|
||||
}
|
||||
}
|
||||
@@ -222,7 +225,7 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
|
||||
// global sum leaders over comm world
|
||||
///////////////////////////////////////////////////////////////////
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&leaders_1hot[0],WorldSize,MPI_INT,MPI_SUM,WorldComm);
|
||||
assert(ierr==0);
|
||||
GRID_ASSERT(ierr==0);
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
// find the group leaders world rank
|
||||
@@ -243,7 +246,7 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
|
||||
WorldNode=g;
|
||||
}
|
||||
}
|
||||
assert(WorldNode!=-1);
|
||||
GRID_ASSERT(WorldNode!=-1);
|
||||
_ShmSetup=1;
|
||||
}
|
||||
// Gray encode support
|
||||
@@ -285,7 +288,7 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
|
||||
// Assert power of two shm_size.
|
||||
////////////////////////////////////////////////////////////////
|
||||
int log2size = Log2Size(WorldShmSize,MAXLOG2RANKSPERNODE);
|
||||
assert(log2size != -1);
|
||||
GRID_ASSERT(log2size != -1);
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Identify the hypercube coordinate of this node using hostname
|
||||
@@ -306,7 +309,7 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
|
||||
// Parse ICE-XA hostname to get hypercube location
|
||||
gethostname(name,namelen);
|
||||
int nscan = sscanf(name,"r%di%dn%d",&R,&I,&N) ;
|
||||
assert(nscan==3);
|
||||
GRID_ASSERT(nscan==3);
|
||||
|
||||
int nlo = N%9;
|
||||
int nhi = N/9;
|
||||
@@ -330,8 +333,8 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
|
||||
//////////////////////////////////////////////////////////////////
|
||||
MPI_Bcast(&rootcoor, sizeof(rootcoor), MPI_BYTE, 0, WorldComm);
|
||||
hypercoor=hypercoor-rootcoor;
|
||||
assert(hypercoor<WorldSize);
|
||||
assert(hypercoor>=0);
|
||||
GRID_ASSERT(hypercoor<WorldSize);
|
||||
GRID_ASSERT(hypercoor>=0);
|
||||
|
||||
//////////////////////////////////////
|
||||
// Printing
|
||||
@@ -379,7 +382,7 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
|
||||
for(int i=0;i<ndimension;i++){
|
||||
Nprocessors*=processors[i];
|
||||
}
|
||||
assert(WorldSize==Nprocessors);
|
||||
GRID_ASSERT(WorldSize==Nprocessors);
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Establish mapping between lexico physics coord and WorldRank
|
||||
@@ -398,7 +401,7 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
|
||||
// Build the new communicator
|
||||
/////////////////////////////////////////////////////////////////
|
||||
int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
|
||||
assert(ierr==0);
|
||||
GRID_ASSERT(ierr==0);
|
||||
}
|
||||
void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
|
||||
{
|
||||
@@ -428,7 +431,8 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
|
||||
for(int i=0;i<ndimension;i++){
|
||||
Nprocessors*=processors[i];
|
||||
}
|
||||
assert(WorldSize==Nprocessors);
|
||||
// std::cerr << " WorldSize "<<WorldSize << " Nprocessors "<<Nprocessors<<" "<<processors<<std::endl;
|
||||
GRID_ASSERT(WorldSize==Nprocessors);
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Establish mapping between lexico physics coord and WorldRank
|
||||
@@ -444,7 +448,7 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
|
||||
// Build the new communicator
|
||||
/////////////////////////////////////////////////////////////////
|
||||
int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
|
||||
assert(ierr==0);
|
||||
GRID_ASSERT(ierr==0);
|
||||
}
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// SHMGET
|
||||
@@ -453,8 +457,8 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl;
|
||||
assert(_ShmSetup==1);
|
||||
assert(_ShmAlloc==0);
|
||||
GRID_ASSERT(_ShmSetup==1);
|
||||
GRID_ASSERT(_ShmAlloc==0);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// allocate the shared windows for our group
|
||||
@@ -512,51 +516,11 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
// Hugetlbfs mapping intended
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
#if defined(GRID_CUDA) ||defined(GRID_HIP) || defined(GRID_SYCL)
|
||||
|
||||
//if defined(GRID_SYCL)
|
||||
#if 0
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
void * ShmCommBuf ;
|
||||
assert(_ShmSetup==1);
|
||||
assert(_ShmAlloc==0);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// allocate the pointer array for shared windows for our group
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
MPI_Barrier(WorldShmComm);
|
||||
WorldShmCommBufs.resize(WorldShmSize);
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Each MPI rank should allocate our own buffer
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
ShmCommBuf = acceleratorAllocDevice(bytes);
|
||||
|
||||
if (ShmCommBuf == (void *)NULL ) {
|
||||
std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
std::cout << WorldRank << Mheader " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes
|
||||
<< "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
|
||||
|
||||
SharedMemoryZero(ShmCommBuf,bytes);
|
||||
|
||||
assert(WorldShmSize == 1);
|
||||
for(int r=0;r<WorldShmSize;r++){
|
||||
WorldShmCommBufs[r] = ShmCommBuf;
|
||||
}
|
||||
_ShmAllocBytes=bytes;
|
||||
_ShmAlloc=1;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(GRID_CUDA) ||defined(GRID_HIP) ||defined(GRID_SYCL)
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
void * ShmCommBuf ;
|
||||
assert(_ShmSetup==1);
|
||||
assert(_ShmAlloc==0);
|
||||
GRID_ASSERT(_ShmSetup==1);
|
||||
GRID_ASSERT(_ShmAlloc==0);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// allocate the pointer array for shared windows for our group
|
||||
@@ -574,17 +538,23 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Each MPI rank should allocate our own buffer
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
// printf("Host buffer allocate for GPU non-aware MPI\n");
|
||||
HostCommBuf= malloc(bytes); /// CHANGE THIS TO malloc_host
|
||||
#endif
|
||||
ShmCommBuf = acceleratorAllocDevice(bytes);
|
||||
if (ShmCommBuf == (void *)NULL ) {
|
||||
std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
|
||||
std::cerr << "SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
if ( WorldRank == 0 ){
|
||||
std::cout << WorldRank << Mheader " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes
|
||||
std::cout << Mheader " acceleratorAllocDevice "<< bytes
|
||||
<< "bytes at "<< std::hex<< ShmCommBuf << " - "<<(bytes-1+(uint64_t)ShmCommBuf) <<std::dec<<" for comms buffers " <<std::endl;
|
||||
}
|
||||
SharedMemoryZero(ShmCommBuf,bytes);
|
||||
std::cout<< "Setting up IPC"<<std::endl;
|
||||
if ( WorldRank == 0 ){
|
||||
std::cout<< Mheader "Setting up IPC"<<std::endl;
|
||||
}
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Loop over ranks/gpu's on our node
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@@ -604,8 +574,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
|
||||
typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t;
|
||||
|
||||
auto zeDevice = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device());
|
||||
auto zeContext = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context());
|
||||
auto zeDevice = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device());
|
||||
auto zeContext = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context());
|
||||
|
||||
ze_ipc_mem_handle_t ihandle;
|
||||
clone_mem_t handle;
|
||||
@@ -615,8 +585,6 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
if ( err != ZE_RESULT_SUCCESS ) {
|
||||
std::cerr << "SharedMemoryMPI.cc zeMemGetIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
} else {
|
||||
std::cout << "SharedMemoryMPI.cc zeMemGetIpcHandle succeeded for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
|
||||
}
|
||||
memcpy((void *)&handle.fd,(void *)&ihandle,sizeof(int));
|
||||
handle.pid = getpid();
|
||||
@@ -661,7 +629,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
MPI_BYTE,
|
||||
r,
|
||||
WorldShmComm);
|
||||
assert(ierr==0);
|
||||
GRID_ASSERT(ierr==0);
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
@@ -675,12 +643,12 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
#ifdef SHM_SOCKETS
|
||||
myfd=UnixSockets::RecvFileDescriptor();
|
||||
#else
|
||||
std::cout<<"mapping seeking remote pid/fd "
|
||||
<<handle.pid<<"/"
|
||||
<<handle.fd<<std::endl;
|
||||
// std::cout<<"mapping seeking remote pid/fd "
|
||||
// <<handle.pid<<"/"
|
||||
// <<handle.fd<<std::endl;
|
||||
|
||||
int pidfd = syscall(SYS_pidfd_open,handle.pid,0);
|
||||
std::cout<<"Using IpcHandle pidfd "<<pidfd<<"\n";
|
||||
// std::cout<<"Using IpcHandle pidfd "<<pidfd<<"\n";
|
||||
// int myfd = syscall(SYS_pidfd_getfd,pidfd,handle.fd,0);
|
||||
myfd = syscall(438,pidfd,handle.fd,0);
|
||||
int err_t = errno;
|
||||
@@ -690,7 +658,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
assert(0);
|
||||
}
|
||||
#endif
|
||||
std::cout<<"Using IpcHandle mapped remote pid "<<handle.pid <<" FD "<<handle.fd <<" to myfd "<<myfd<<"\n";
|
||||
// std::cout<<"Using IpcHandle mapped remote pid "<<handle.pid <<" FD "<<handle.fd <<" to myfd "<<myfd<<"\n";
|
||||
memcpy((void *)&ihandle,(void *)&handle.ze,sizeof(ihandle));
|
||||
memcpy((void *)&ihandle,(void *)&myfd,sizeof(int));
|
||||
|
||||
@@ -699,11 +667,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
std::cerr << "SharedMemoryMPI.cc "<<zeContext<<" "<<zeDevice<<std::endl;
|
||||
std::cerr << "SharedMemoryMPI.cc zeMemOpenIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
} else {
|
||||
std::cout << "SharedMemoryMPI.cc zeMemOpenIpcHandle succeeded for rank "<<r<<std::endl;
|
||||
std::cout << "SharedMemoryMPI.cc zeMemOpenIpcHandle pointer is "<<std::hex<<thisBuf<<std::dec<<std::endl;
|
||||
}
|
||||
assert(thisBuf!=nullptr);
|
||||
GRID_ASSERT(thisBuf!=nullptr);
|
||||
}
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
@@ -738,15 +703,14 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
_ShmAllocBytes=bytes;
|
||||
_ShmAlloc=1;
|
||||
}
|
||||
#endif
|
||||
|
||||
#else
|
||||
#ifdef GRID_MPI3_SHMMMAP
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl;
|
||||
assert(_ShmSetup==1);
|
||||
assert(_ShmAlloc==0);
|
||||
GRID_ASSERT(_ShmSetup==1);
|
||||
GRID_ASSERT(_ShmAlloc==0);
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// allocate the shared windows for our group
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@@ -776,13 +740,14 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
void *ptr = (void *) mmap(NULL, bytes, PROT_READ | PROT_WRITE, mmap_flag,fd, 0);
|
||||
if ( ptr == (void *)MAP_FAILED ) {
|
||||
printf("mmap %s failed\n",shm_name);
|
||||
perror("failed mmap"); assert(0);
|
||||
perror("failed mmap"); GRID_ASSERT(0);
|
||||
}
|
||||
assert(((uint64_t)ptr&0x3F)==0);
|
||||
GRID_ASSERT(((uint64_t)ptr&0x3F)==0);
|
||||
close(fd);
|
||||
WorldShmCommBufs[r] =ptr;
|
||||
// std::cout << Mheader "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
|
||||
}
|
||||
std::cout<< Mheader " Intra-node IPC setup is complete "<<std::endl;
|
||||
_ShmAlloc=1;
|
||||
_ShmAllocBytes = bytes;
|
||||
};
|
||||
@@ -792,8 +757,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl;
|
||||
assert(_ShmSetup==1);
|
||||
assert(_ShmAlloc==0);
|
||||
GRID_ASSERT(_ShmSetup==1);
|
||||
GRID_ASSERT(_ShmAlloc==0);
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// allocate the shared windows for our group
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@@ -804,7 +769,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
// Hugetlbf and others map filesystems as mappable huge pages
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
char shm_name [NAME_MAX];
|
||||
assert(WorldShmSize == 1);
|
||||
GRID_ASSERT(WorldShmSize == 1);
|
||||
for(int r=0;r<WorldShmSize;r++){
|
||||
|
||||
int fd=-1;
|
||||
@@ -818,9 +783,9 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
void *ptr = (void *) mmap(NULL, bytes, PROT_READ | PROT_WRITE, mmap_flag,fd, 0);
|
||||
if ( ptr == (void *)MAP_FAILED ) {
|
||||
printf("mmap %s failed\n",shm_name);
|
||||
perror("failed mmap"); assert(0);
|
||||
perror("failed mmap"); GRID_ASSERT(0);
|
||||
}
|
||||
assert(((uint64_t)ptr&0x3F)==0);
|
||||
GRID_ASSERT(((uint64_t)ptr&0x3F)==0);
|
||||
close(fd);
|
||||
WorldShmCommBufs[r] =ptr;
|
||||
// std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
|
||||
@@ -839,8 +804,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl;
|
||||
assert(_ShmSetup==1);
|
||||
assert(_ShmAlloc==0);
|
||||
GRID_ASSERT(_ShmSetup==1);
|
||||
GRID_ASSERT(_ShmAlloc==0);
|
||||
MPI_Barrier(WorldShmComm);
|
||||
WorldShmCommBufs.resize(WorldShmSize);
|
||||
|
||||
@@ -871,7 +836,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
perror("failed mmap");
|
||||
assert(0);
|
||||
}
|
||||
assert(((uint64_t)ptr&0x3F)==0);
|
||||
GRID_ASSERT(((uint64_t)ptr&0x3F)==0);
|
||||
|
||||
WorldShmCommBufs[r] =ptr;
|
||||
close(fd);
|
||||
@@ -892,8 +857,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
if ( fd<0 ) { perror("failed shm_open"); assert(0); }
|
||||
|
||||
void * ptr = mmap(NULL,size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
|
||||
if ( ptr == MAP_FAILED ) { perror("failed mmap"); assert(0); }
|
||||
assert(((uint64_t)ptr&0x3F)==0);
|
||||
if ( ptr == MAP_FAILED ) { perror("failed mmap"); GRID_ASSERT(0); }
|
||||
GRID_ASSERT(((uint64_t)ptr&0x3F)==0);
|
||||
WorldShmCommBufs[r] =ptr;
|
||||
|
||||
close(fd);
|
||||
@@ -916,14 +881,14 @@ void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
|
||||
bzero(dest,bytes);
|
||||
#endif
|
||||
}
|
||||
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
|
||||
{
|
||||
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
|
||||
acceleratorCopyToDevice(src,dest,bytes);
|
||||
#else
|
||||
bcopy(src,dest,bytes);
|
||||
#endif
|
||||
}
|
||||
//void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
|
||||
//{
|
||||
//#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
|
||||
// acceleratorCopyToDevice(src,dest,bytes);
|
||||
//#else
|
||||
// bcopy(src,dest,bytes);
|
||||
//#endif
|
||||
//}
|
||||
////////////////////////////////////////////////////////
|
||||
// Global shared functionality finished
|
||||
// Now move to per communicator functionality
|
||||
@@ -950,7 +915,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Map ShmRank to WorldShmRank and use the right buffer
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
assert (GlobalSharedMemory::ShmAlloc()==1);
|
||||
GRID_ASSERT (GlobalSharedMemory::ShmAlloc()==1);
|
||||
heap_size = GlobalSharedMemory::ShmAllocBytes();
|
||||
for(int r=0;r<ShmSize;r++){
|
||||
|
||||
@@ -959,9 +924,16 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
|
||||
MPI_Allreduce(MPI_IN_PLACE,&wsr,1,MPI_UINT32_T,MPI_SUM,ShmComm);
|
||||
|
||||
ShmCommBufs[r] = GlobalSharedMemory::WorldShmCommBufs[wsr];
|
||||
// std::cerr << " SetCommunicator rank "<<r<<" comm "<<ShmCommBufs[r] <<std::endl;
|
||||
}
|
||||
ShmBufferFreeAll();
|
||||
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
host_heap_size = heap_size;
|
||||
HostCommBuf= GlobalSharedMemory::HostCommBuf;
|
||||
HostBufferFreeAll();
|
||||
#endif
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// find comm ranks in our SHM group (i.e. which ranks are on our node)
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
@@ -983,7 +955,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
|
||||
}
|
||||
#endif
|
||||
|
||||
//SharedMemoryTest();
|
||||
// SharedMemoryTest();
|
||||
}
|
||||
//////////////////////////////////////////////////////////////////
|
||||
// On node barrier
|
||||
@@ -1005,19 +977,18 @@ void SharedMemory::SharedMemoryTest(void)
|
||||
check[0]=GlobalSharedMemory::WorldNode;
|
||||
check[1]=r;
|
||||
check[2]=magic;
|
||||
GlobalSharedMemory::SharedMemoryCopy( ShmCommBufs[r], check, 3*sizeof(uint64_t));
|
||||
acceleratorCopyToDevice(check,ShmCommBufs[r],3*sizeof(uint64_t));
|
||||
}
|
||||
}
|
||||
ShmBarrier();
|
||||
for(uint64_t r=0;r<ShmSize;r++){
|
||||
ShmBarrier();
|
||||
GlobalSharedMemory::SharedMemoryCopy(check,ShmCommBufs[r], 3*sizeof(uint64_t));
|
||||
ShmBarrier();
|
||||
assert(check[0]==GlobalSharedMemory::WorldNode);
|
||||
assert(check[1]==r);
|
||||
assert(check[2]==magic);
|
||||
ShmBarrier();
|
||||
acceleratorCopyFromDevice(ShmCommBufs[r],check,3*sizeof(uint64_t));
|
||||
GRID_ASSERT(check[0]==GlobalSharedMemory::WorldNode);
|
||||
GRID_ASSERT(check[1]==r);
|
||||
GRID_ASSERT(check[2]==magic);
|
||||
}
|
||||
ShmBarrier();
|
||||
std::cout << GridLogDebug << " SharedMemoryTest has passed "<<std::endl;
|
||||
}
|
||||
|
||||
void *SharedMemory::ShmBuffer(int rank)
|
||||
@@ -1032,12 +1003,14 @@ void *SharedMemory::ShmBuffer(int rank)
|
||||
void *SharedMemory::ShmBufferTranslate(int rank,void * local_p)
|
||||
{
|
||||
int gpeer = ShmRanks[rank];
|
||||
assert(gpeer!=ShmRank); // never send to self
|
||||
GRID_ASSERT(gpeer!=ShmRank); // never send to self
|
||||
// std::cout << "ShmBufferTranslate for rank " << rank<<" peer "<<gpeer<<std::endl;
|
||||
if (gpeer == MPI_UNDEFINED){
|
||||
return NULL;
|
||||
} else {
|
||||
uint64_t offset = (uint64_t)local_p - (uint64_t)ShmCommBufs[ShmRank];
|
||||
uint64_t remote = (uint64_t)ShmCommBufs[gpeer]+offset;
|
||||
// std::cout << "ShmBufferTranslate : local,offset,remote "<<std::hex<<local_p<<" "<<offset<<" "<<remote<<std::dec<<std::endl;
|
||||
return (void *) remote;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -34,7 +34,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
/*Construct from an MPI communicator*/
|
||||
void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
|
||||
{
|
||||
assert(_ShmSetup==0);
|
||||
GRID_ASSERT(_ShmSetup==0);
|
||||
WorldComm = 0;
|
||||
WorldRank = 0;
|
||||
WorldSize = 1;
|
||||
@@ -62,8 +62,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
std::cout << header "SharedMemoryAllocate "<< bytes<< " GPU implementation "<<std::endl;
|
||||
void * ShmCommBuf ;
|
||||
assert(_ShmSetup==1);
|
||||
assert(_ShmAlloc==0);
|
||||
GRID_ASSERT(_ShmSetup==1);
|
||||
GRID_ASSERT(_ShmAlloc==0);
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Each MPI rank should allocate our own buffer
|
||||
@@ -92,8 +92,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
void * ShmCommBuf ;
|
||||
assert(_ShmSetup==1);
|
||||
assert(_ShmAlloc==0);
|
||||
GRID_ASSERT(_ShmSetup==1);
|
||||
GRID_ASSERT(_ShmAlloc==0);
|
||||
int mmap_flag =0;
|
||||
#ifdef MAP_ANONYMOUS
|
||||
mmap_flag = mmap_flag| MAP_SHARED | MAP_ANONYMOUS;
|
||||
@@ -122,17 +122,17 @@ void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
|
||||
{
|
||||
acceleratorMemSet(dest,0,bytes);
|
||||
}
|
||||
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
|
||||
{
|
||||
acceleratorCopyToDevice(src,dest,bytes);
|
||||
}
|
||||
//void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
|
||||
//{
|
||||
// acceleratorCopyToDevice(src,dest,bytes);
|
||||
//}
|
||||
////////////////////////////////////////////////////////
|
||||
// Global shared functionality finished
|
||||
// Now move to per communicator functionality
|
||||
////////////////////////////////////////////////////////
|
||||
void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
|
||||
{
|
||||
assert(GlobalSharedMemory::ShmAlloc()==1);
|
||||
GRID_ASSERT(GlobalSharedMemory::ShmAlloc()==1);
|
||||
ShmRanks.resize(1);
|
||||
ShmCommBufs.resize(1);
|
||||
ShmRanks[0] = 0;
|
||||
|
||||
@@ -51,7 +51,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#endif
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
|
||||
auto Cshift(const Expression &expr,int dim,int shift) -> decltype(closure(expr))
|
||||
{
|
||||
|
||||
@@ -29,13 +29,28 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
extern Vector<std::pair<int,int> > Cshift_table;
|
||||
extern std::vector<std::pair<int,int> > Cshift_table;
|
||||
extern deviceVector<std::pair<int,int> > Cshift_table_device;
|
||||
|
||||
inline std::pair<int,int> *MapCshiftTable(void)
|
||||
{
|
||||
// GPU version
|
||||
uint64_t sz=Cshift_table.size();
|
||||
if (Cshift_table_device.size()!=sz ) {
|
||||
Cshift_table_device.resize(sz);
|
||||
}
|
||||
acceleratorCopyToDevice((void *)&Cshift_table[0],
|
||||
(void *)&Cshift_table_device[0],
|
||||
sizeof(Cshift_table[0])*sz);
|
||||
|
||||
return &Cshift_table_device[0];
|
||||
// CPU version use identify map
|
||||
}
|
||||
///////////////////////////////////////////////////////////////////
|
||||
// Gather for when there is no need to SIMD split
|
||||
///////////////////////////////////////////////////////////////////
|
||||
template<class vobj> void
|
||||
Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
|
||||
Gather_plane_simple (const Lattice<vobj> &rhs,deviceVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
|
||||
{
|
||||
int rd = rhs.Grid()->_rdimensions[dimension];
|
||||
|
||||
@@ -74,18 +89,11 @@ Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dim
|
||||
}
|
||||
{
|
||||
auto buffer_p = & buffer[0];
|
||||
auto table = &Cshift_table[0];
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
auto table = MapCshiftTable();
|
||||
autoView(rhs_v , rhs, AcceleratorRead);
|
||||
accelerator_for(i,ent,vobj::Nsimd(),{
|
||||
coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second]));
|
||||
});
|
||||
#else
|
||||
autoView(rhs_v , rhs, CpuRead);
|
||||
thread_for(i,ent,{
|
||||
buffer_p[table[i].first]=rhs_v[table[i].second];
|
||||
});
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
@@ -110,7 +118,6 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
|
||||
int n1=rhs.Grid()->_slice_stride[dimension];
|
||||
|
||||
if ( cbmask ==0x3){
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
autoView(rhs_v , rhs, AcceleratorRead);
|
||||
accelerator_for(nn,e1*e2,1,{
|
||||
int n = nn%e1;
|
||||
@@ -121,21 +128,10 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
|
||||
vobj temp =rhs_v[so+o+b];
|
||||
extract<vobj>(temp,pointers,offset);
|
||||
});
|
||||
#else
|
||||
autoView(rhs_v , rhs, CpuRead);
|
||||
thread_for2d(n,e1,b,e2,{
|
||||
int o = n*n1;
|
||||
int offset = b+n*e2;
|
||||
|
||||
vobj temp =rhs_v[so+o+b];
|
||||
extract<vobj>(temp,pointers,offset);
|
||||
});
|
||||
#endif
|
||||
} else {
|
||||
Coordinate rdim=rhs.Grid()->_rdimensions;
|
||||
Coordinate cdm =rhs.Grid()->_checker_dim_mask;
|
||||
std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb?
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
autoView(rhs_v , rhs, AcceleratorRead);
|
||||
accelerator_for(nn,e1*e2,1,{
|
||||
int n = nn%e1;
|
||||
@@ -156,33 +152,13 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
|
||||
extract<vobj>(temp,pointers,offset);
|
||||
}
|
||||
});
|
||||
#else
|
||||
autoView(rhs_v , rhs, CpuRead);
|
||||
thread_for2d(n,e1,b,e2,{
|
||||
|
||||
Coordinate coor;
|
||||
|
||||
int o=n*n1;
|
||||
int oindex = o+b;
|
||||
|
||||
int cb = RedBlackCheckerBoardFromOindex(oindex, rdim, cdm);
|
||||
|
||||
int ocb=1<<cb;
|
||||
int offset = b+n*e2;
|
||||
|
||||
if ( ocb & cbmask ) {
|
||||
vobj temp =rhs_v[so+o+b];
|
||||
extract<vobj>(temp,pointers,offset);
|
||||
}
|
||||
});
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// Scatter for when there is no need to SIMD split
|
||||
//////////////////////////////////////////////////////
|
||||
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<vobj> &buffer, int dimension,int plane,int cbmask)
|
||||
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,deviceVector<vobj> &buffer, int dimension,int plane,int cbmask)
|
||||
{
|
||||
int rd = rhs.Grid()->_rdimensions[dimension];
|
||||
|
||||
@@ -225,18 +201,11 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<
|
||||
|
||||
{
|
||||
auto buffer_p = & buffer[0];
|
||||
auto table = &Cshift_table[0];
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
autoView( rhs_v, rhs, AcceleratorWrite);
|
||||
auto table = MapCshiftTable();
|
||||
autoView( rhs_v, rhs, AcceleratorWriteDiscard);
|
||||
accelerator_for(i,ent,vobj::Nsimd(),{
|
||||
coalescedWrite(rhs_v[table[i].first],coalescedRead(buffer_p[table[i].second]));
|
||||
});
|
||||
#else
|
||||
autoView( rhs_v, rhs, CpuWrite);
|
||||
thread_for(i,ent,{
|
||||
rhs_v[table[i].first]=buffer_p[table[i].second];
|
||||
});
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
@@ -259,8 +228,7 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
|
||||
if(cbmask ==0x3 ) {
|
||||
int _slice_stride = rhs.Grid()->_slice_stride[dimension];
|
||||
int _slice_block = rhs.Grid()->_slice_block[dimension];
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
autoView( rhs_v , rhs, AcceleratorWrite);
|
||||
autoView( rhs_v , rhs, AcceleratorWriteDiscard);
|
||||
accelerator_for(nn,e1*e2,1,{
|
||||
int n = nn%e1;
|
||||
int b = nn/e1;
|
||||
@@ -268,21 +236,13 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
|
||||
int offset = b+n*_slice_block;
|
||||
merge(rhs_v[so+o+b],pointers,offset);
|
||||
});
|
||||
#else
|
||||
autoView( rhs_v , rhs, CpuWrite);
|
||||
thread_for2d(n,e1,b,e2,{
|
||||
int o = n*_slice_stride;
|
||||
int offset = b+n*_slice_block;
|
||||
merge(rhs_v[so+o+b],pointers,offset);
|
||||
});
|
||||
#endif
|
||||
} else {
|
||||
|
||||
// Case of SIMD split AND checker dim cannot currently be hit, except in
|
||||
// Test_cshift_red_black code.
|
||||
std::cout << "Scatter_plane merge assert(0); think this is buggy FIXME "<< std::endl;// think this is buggy FIXME
|
||||
std::cout << "Scatter_plane merge GRID_ASSERT(0); think this is buggy FIXME "<< std::endl;// think this is buggy FIXME
|
||||
std::cout<<" Unthreaded warning -- buffer is not densely packed ??"<<std::endl;
|
||||
assert(0); // This will fail if hit on GPU
|
||||
GRID_ASSERT(0); // This will fail if hit on GPU
|
||||
autoView( rhs_v, rhs, CpuWrite);
|
||||
for(int n=0;n<e1;n++){
|
||||
for(int b=0;b<e2;b++){
|
||||
@@ -297,30 +257,6 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
|
||||
}
|
||||
}
|
||||
|
||||
#if (defined(GRID_CUDA) || defined(GRID_HIP)) && defined(ACCELERATOR_CSHIFT)
|
||||
|
||||
template <typename T>
|
||||
T iDivUp(T a, T b) // Round a / b to nearest higher integer value
|
||||
{ return (a % b != 0) ? (a / b + 1) : (a / b); }
|
||||
|
||||
template <typename T>
|
||||
__global__ void populate_Cshift_table(T* vector, T lo, T ro, T e1, T e2, T stride)
|
||||
{
|
||||
int idx = blockIdx.x*blockDim.x + threadIdx.x;
|
||||
if (idx >= e1*e2) return;
|
||||
|
||||
int n, b, o;
|
||||
|
||||
n = idx / e2;
|
||||
b = idx % e2;
|
||||
o = n*stride + b;
|
||||
|
||||
vector[2*idx + 0] = lo + o;
|
||||
vector[2*idx + 1] = ro + o;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// local to node block strided copies
|
||||
//////////////////////////////////////////////////////
|
||||
@@ -345,20 +281,12 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
|
||||
int ent=0;
|
||||
|
||||
if(cbmask == 0x3 ){
|
||||
#if (defined(GRID_CUDA) || defined(GRID_HIP)) && defined(ACCELERATOR_CSHIFT)
|
||||
ent = e1*e2;
|
||||
dim3 blockSize(acceleratorThreads());
|
||||
dim3 gridSize(iDivUp((unsigned int)ent, blockSize.x));
|
||||
populate_Cshift_table<<<gridSize, blockSize>>>(&Cshift_table[0].first, lo, ro, e1, e2, stride);
|
||||
accelerator_barrier();
|
||||
#else
|
||||
for(int n=0;n<e1;n++){
|
||||
for(int b=0;b<e2;b++){
|
||||
int o =n*stride+b;
|
||||
Cshift_table[ent++] = std::pair<int,int>(lo+o,ro+o);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
} else {
|
||||
for(int n=0;n<e1;n++){
|
||||
for(int b=0;b<e2;b++){
|
||||
@@ -372,20 +300,12 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
|
||||
}
|
||||
|
||||
{
|
||||
auto table = &Cshift_table[0];
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
auto table = MapCshiftTable();
|
||||
autoView(rhs_v , rhs, AcceleratorRead);
|
||||
autoView(lhs_v , lhs, AcceleratorWrite);
|
||||
autoView(lhs_v , lhs, AcceleratorWriteDiscard);
|
||||
accelerator_for(i,ent,vobj::Nsimd(),{
|
||||
coalescedWrite(lhs_v[table[i].first],coalescedRead(rhs_v[table[i].second]));
|
||||
});
|
||||
#else
|
||||
autoView(rhs_v , rhs, CpuRead);
|
||||
autoView(lhs_v , lhs, CpuWrite);
|
||||
thread_for(i,ent,{
|
||||
lhs_v[table[i].first]=rhs_v[table[i].second];
|
||||
});
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
@@ -409,19 +329,11 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo
|
||||
int ent=0;
|
||||
|
||||
if ( cbmask == 0x3 ) {
|
||||
#if (defined(GRID_CUDA) || defined(GRID_HIP)) && defined(ACCELERATOR_CSHIFT)
|
||||
ent = e1*e2;
|
||||
dim3 blockSize(acceleratorThreads());
|
||||
dim3 gridSize(iDivUp((unsigned int)ent, blockSize.x));
|
||||
populate_Cshift_table<<<gridSize, blockSize>>>(&Cshift_table[0].first, lo, ro, e1, e2, stride);
|
||||
accelerator_barrier();
|
||||
#else
|
||||
for(int n=0;n<e1;n++){
|
||||
for(int b=0;b<e2;b++){
|
||||
int o =n*stride;
|
||||
Cshift_table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b);
|
||||
}}
|
||||
#endif
|
||||
} else {
|
||||
for(int n=0;n<e1;n++){
|
||||
for(int b=0;b<e2;b++){
|
||||
@@ -432,20 +344,12 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo
|
||||
}
|
||||
|
||||
{
|
||||
auto table = &Cshift_table[0];
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
auto table = MapCshiftTable();
|
||||
autoView( rhs_v, rhs, AcceleratorRead);
|
||||
autoView( lhs_v, lhs, AcceleratorWrite);
|
||||
accelerator_for(i,ent,1,{
|
||||
permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
|
||||
});
|
||||
#else
|
||||
autoView( rhs_v, rhs, CpuRead);
|
||||
autoView( lhs_v, lhs, CpuWrite);
|
||||
thread_for(i,ent,{
|
||||
permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
|
||||
});
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -29,9 +29,13 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
#ifndef _GRID_CSHIFT_MPI_H_
|
||||
#define _GRID_CSHIFT_MPI_H_
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
#ifdef GRID_CHECKSUM_COMMS
|
||||
extern uint64_t checksum_index;
|
||||
#endif
|
||||
|
||||
const int Cshift_verbose=0;
|
||||
template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift)
|
||||
{
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
@@ -45,6 +49,20 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
|
||||
// Map to always positive shift modulo global full dimension.
|
||||
shift = (shift+fd)%fd;
|
||||
|
||||
if( shift ==0 ) {
|
||||
ret = rhs;
|
||||
return ret;
|
||||
}
|
||||
//
|
||||
// Potential easy fast cases:
|
||||
// Shift is a multiple of the local lattice extent.
|
||||
// Then need only to shift whole subvolumes
|
||||
int L = rhs.Grid()->_ldimensions[dimension];
|
||||
if ( (shift%L )==0 && !rhs.Grid()->CheckerBoarded(dimension) ) {
|
||||
Cshift_simple(ret,rhs,dimension,shift);
|
||||
return ret;
|
||||
}
|
||||
|
||||
ret.Checkerboard() = rhs.Grid()->CheckerBoardDestination(rhs.Checkerboard(),shift,dimension);
|
||||
|
||||
// the permute type
|
||||
@@ -52,20 +70,72 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
|
||||
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
|
||||
int splice_dim = rhs.Grid()->_simd_layout[dimension]>1 && (comm_dim);
|
||||
|
||||
|
||||
RealD t1,t0;
|
||||
t0=usecond();
|
||||
if ( !comm_dim ) {
|
||||
//std::cout << "CSHIFT: Cshift_local" <<std::endl;
|
||||
// std::cout << "CSHIFT: Cshift_local" <<std::endl;
|
||||
Cshift_local(ret,rhs,dimension,shift); // Handles checkerboarding
|
||||
} else if ( splice_dim ) {
|
||||
//std::cout << "CSHIFT: Cshift_comms_simd call - splice_dim = " << splice_dim << " shift " << shift << " dimension = " << dimension << std::endl;
|
||||
// std::cout << "CSHIFT: Cshift_comms_simd call - splice_dim = " << splice_dim << " shift " << shift << " dimension = " << dimension << std::endl;
|
||||
Cshift_comms_simd(ret,rhs,dimension,shift);
|
||||
} else {
|
||||
//std::cout << "CSHIFT: Cshift_comms" <<std::endl;
|
||||
// std::cout << "CSHIFT: Cshift_comms" <<std::endl;
|
||||
Cshift_comms(ret,rhs,dimension,shift);
|
||||
}
|
||||
t1=usecond();
|
||||
if(Cshift_verbose) std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl;
|
||||
return ret;
|
||||
}
|
||||
|
||||
template<class vobj> void Cshift_simple(Lattice<vobj>& ret,const Lattice<vobj> &rhs,int dimension,int shift)
|
||||
{
|
||||
GridBase *grid=rhs.Grid();
|
||||
int comm_proc, xmit_to_rank, recv_from_rank;
|
||||
|
||||
int fd = rhs.Grid()->_fdimensions[dimension];
|
||||
int rd = rhs.Grid()->_rdimensions[dimension];
|
||||
int ld = rhs.Grid()->_ldimensions[dimension];
|
||||
int pd = rhs.Grid()->_processors[dimension];
|
||||
int simd_layout = rhs.Grid()->_simd_layout[dimension];
|
||||
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
|
||||
|
||||
comm_proc = ((shift)/ld)%pd;
|
||||
|
||||
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
|
||||
if(comm_dim) {
|
||||
|
||||
int64_t bytes = sizeof(vobj) * grid->oSites();
|
||||
|
||||
autoView(rhs_v , rhs, AcceleratorRead);
|
||||
autoView(ret_v , ret, AcceleratorWrite);
|
||||
void *send_buf = (void *)&rhs_v[0];
|
||||
void *recv_buf = (void *)&ret_v[0];
|
||||
|
||||
#ifdef ACCELERATOR_AWARE_MPI
|
||||
grid->SendToRecvFrom(send_buf,
|
||||
xmit_to_rank,
|
||||
recv_buf,
|
||||
recv_from_rank,
|
||||
bytes);
|
||||
#else
|
||||
static hostVector<vobj> hrhs; hrhs.resize(grid->oSites());
|
||||
static hostVector<vobj> hret; hret.resize(grid->oSites());
|
||||
|
||||
void *hsend_buf = (void *)&hrhs[0];
|
||||
void *hrecv_buf = (void *)&hret[0];
|
||||
|
||||
acceleratorCopyFromDevice(&send_buf[0],&hsend_buf[0],bytes);
|
||||
|
||||
grid->SendToRecvFrom(hsend_buf,
|
||||
xmit_to_rank,
|
||||
hrecv_buf,
|
||||
recv_from_rank,
|
||||
bytes);
|
||||
|
||||
acceleratorCopyToDevice(&hrecv_buf[0],&recv_buf[0],bytes);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
template<class vobj> void Cshift_comms(Lattice<vobj>& ret,const Lattice<vobj> &rhs,int dimension,int shift)
|
||||
{
|
||||
int sshift[2];
|
||||
@@ -91,18 +161,16 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vob
|
||||
sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even);
|
||||
sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd);
|
||||
|
||||
//std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.checkerboard<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
|
||||
// std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.Checkerboard()<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
|
||||
if ( sshift[0] == sshift[1] ) {
|
||||
//std::cout << "Single pass Cshift_comms" <<std::endl;
|
||||
// std::cout << "Single pass Cshift_comms" <<std::endl;
|
||||
Cshift_comms_simd(ret,rhs,dimension,shift,0x3);
|
||||
} else {
|
||||
//std::cout << "Two pass Cshift_comms" <<std::endl;
|
||||
// std::cout << "Two pass Cshift_comms" <<std::endl;
|
||||
Cshift_comms_simd(ret,rhs,dimension,shift,0x1);// if checkerboard is unfavourable take two passes
|
||||
Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
|
||||
}
|
||||
}
|
||||
#define ACCELERATOR_CSHIFT_NO_COPY
|
||||
#ifdef ACCELERATOR_CSHIFT_NO_COPY
|
||||
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
|
||||
{
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
@@ -116,27 +184,38 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
|
||||
int pd = rhs.Grid()->_processors[dimension];
|
||||
int simd_layout = rhs.Grid()->_simd_layout[dimension];
|
||||
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
|
||||
assert(simd_layout==1);
|
||||
assert(comm_dim==1);
|
||||
assert(shift>=0);
|
||||
assert(shift<fd);
|
||||
GRID_ASSERT(simd_layout==1);
|
||||
GRID_ASSERT(comm_dim==1);
|
||||
GRID_ASSERT(shift>=0);
|
||||
GRID_ASSERT(shift<fd);
|
||||
|
||||
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
|
||||
static cshiftVector<vobj> send_buf; send_buf.resize(buffer_size);
|
||||
static cshiftVector<vobj> recv_buf; recv_buf.resize(buffer_size);
|
||||
|
||||
static deviceVector<vobj> send_buf; send_buf.resize(buffer_size);
|
||||
static deviceVector<vobj> recv_buf; recv_buf.resize(buffer_size);
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
int pad = (8 + sizeof(vobj) - 1) / sizeof(vobj);
|
||||
static hostVector<vobj> hsend_buf; hsend_buf.resize(buffer_size+pad);
|
||||
static hostVector<vobj> hrecv_buf; hrecv_buf.resize(buffer_size+pad);
|
||||
#endif
|
||||
|
||||
int cb= (cbmask==0x2)? Odd : Even;
|
||||
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
|
||||
|
||||
RealD tcopy=0.0;
|
||||
RealD tgather=0.0;
|
||||
RealD tscatter=0.0;
|
||||
RealD tcomms=0.0;
|
||||
uint64_t xbytes=0;
|
||||
for(int x=0;x<rd;x++){
|
||||
|
||||
int sx = (x+sshift)%rd;
|
||||
int comm_proc = ((x+sshift)/rd)%pd;
|
||||
|
||||
if (comm_proc==0) {
|
||||
|
||||
FlightRecorder::StepLog("Cshift_Copy_plane");
|
||||
tcopy-=usecond();
|
||||
Copy_plane(ret,rhs,dimension,x,sx,cbmask);
|
||||
|
||||
tcopy+=usecond();
|
||||
FlightRecorder::StepLog("Cshift_Copy_plane_complete");
|
||||
} else {
|
||||
|
||||
int words = buffer_size;
|
||||
@@ -144,26 +223,84 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
|
||||
|
||||
int bytes = words * sizeof(vobj);
|
||||
|
||||
FlightRecorder::StepLog("Cshift_Gather_plane");
|
||||
tgather-=usecond();
|
||||
Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask);
|
||||
tgather+=usecond();
|
||||
FlightRecorder::StepLog("Cshift_Gather_plane_complete");
|
||||
|
||||
// int rank = grid->_processor;
|
||||
int recv_from_rank;
|
||||
int xmit_to_rank;
|
||||
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
|
||||
|
||||
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
|
||||
|
||||
tcomms-=usecond();
|
||||
grid->Barrier();
|
||||
|
||||
FlightRecorder::StepLog("Cshift_SendRecv");
|
||||
#ifdef ACCELERATOR_AWARE_MPI
|
||||
grid->SendToRecvFrom((void *)&send_buf[0],
|
||||
xmit_to_rank,
|
||||
(void *)&recv_buf[0],
|
||||
recv_from_rank,
|
||||
bytes);
|
||||
#else
|
||||
// bouncy bouncy
|
||||
acceleratorCopyFromDevice(&send_buf[0],&hsend_buf[0],bytes);
|
||||
|
||||
#ifdef GRID_CHECKSUM_COMMS
|
||||
GRID_ASSERT(bytes % 8 == 0);
|
||||
checksum_index++;
|
||||
uint64_t xsum = checksum_gpu((uint64_t*)&send_buf[0], bytes / 8) ^ (1 + checksum_index);
|
||||
*(uint64_t*)(((char*)&hsend_buf[0]) + bytes) = xsum;
|
||||
bytes += 8;
|
||||
#endif
|
||||
|
||||
grid->SendToRecvFrom((void *)&hsend_buf[0],
|
||||
xmit_to_rank,
|
||||
(void *)&hrecv_buf[0],
|
||||
recv_from_rank,
|
||||
bytes);
|
||||
|
||||
#ifdef GRID_CHECKSUM_COMMS
|
||||
bytes -= 8;
|
||||
acceleratorCopyToDevice(&hrecv_buf[0],&recv_buf[0],bytes);
|
||||
uint64_t expected_cs = *(uint64_t*)(((char*)&hrecv_buf[0]) + bytes);
|
||||
uint64_t computed_cs = checksum_gpu((uint64_t*)&recv_buf[0], bytes / 8) ^ (1 + checksum_index);
|
||||
std::cout << GridLogComms<< " Cshift: "
|
||||
<<" dim"<<dimension
|
||||
<<" shift "<<shift
|
||||
<< " rank "<< grid->ThisRank()
|
||||
<<" Coor "<<grid->ThisProcessorCoor()
|
||||
<<" send "<<xsum<<" to "<<xmit_to_rank
|
||||
<<" recv "<<computed_cs<<" from "<<recv_from_rank
|
||||
<<std::endl;
|
||||
GRID_ASSERT(expected_cs == computed_cs);
|
||||
#else
|
||||
acceleratorCopyToDevice(&hrecv_buf[0],&recv_buf[0],bytes);
|
||||
#endif
|
||||
|
||||
#endif
|
||||
FlightRecorder::StepLog("Cshift_SendRecv_complete");
|
||||
|
||||
xbytes+=bytes;
|
||||
grid->Barrier();
|
||||
tcomms+=usecond();
|
||||
FlightRecorder::StepLog("Cshift_barrier_complete");
|
||||
|
||||
tscatter-=usecond();
|
||||
Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask);
|
||||
tscatter+=usecond();
|
||||
}
|
||||
}
|
||||
if (Cshift_verbose){
|
||||
std::cout << GridLogPerformance << " Cshift copy "<<tcopy/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift gather "<<tgather/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift comm "<<tcomms/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
|
||||
@@ -181,15 +318,21 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
int simd_layout = grid->_simd_layout[dimension];
|
||||
int comm_dim = grid->_processors[dimension] >1 ;
|
||||
|
||||
//std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
|
||||
// << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout
|
||||
// << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
|
||||
// std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
|
||||
// << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout
|
||||
// << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
|
||||
|
||||
assert(comm_dim==1);
|
||||
assert(simd_layout==2);
|
||||
assert(shift>=0);
|
||||
assert(shift<fd);
|
||||
GRID_ASSERT(comm_dim==1);
|
||||
GRID_ASSERT(simd_layout==2);
|
||||
GRID_ASSERT(shift>=0);
|
||||
GRID_ASSERT(shift<fd);
|
||||
|
||||
RealD tcopy=0.0;
|
||||
RealD tgather=0.0;
|
||||
RealD tscatter=0.0;
|
||||
RealD tcomms=0.0;
|
||||
uint64_t xbytes=0;
|
||||
|
||||
int permute_type=grid->PermuteType(dimension);
|
||||
|
||||
///////////////////////////////////////////////
|
||||
@@ -198,16 +341,28 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
|
||||
// int words = sizeof(vobj)/sizeof(vector_type);
|
||||
|
||||
static std::vector<cshiftVector<scalar_object> > send_buf_extract; send_buf_extract.resize(Nsimd);
|
||||
static std::vector<cshiftVector<scalar_object> > recv_buf_extract; recv_buf_extract.resize(Nsimd);
|
||||
static std::vector<deviceVector<scalar_object> > send_buf_extract; send_buf_extract.resize(Nsimd);
|
||||
static std::vector<deviceVector<scalar_object> > recv_buf_extract; recv_buf_extract.resize(Nsimd);
|
||||
scalar_object * recv_buf_extract_mpi;
|
||||
scalar_object * send_buf_extract_mpi;
|
||||
|
||||
|
||||
for(int s=0;s<Nsimd;s++){
|
||||
send_buf_extract[s].resize(buffer_size);
|
||||
recv_buf_extract[s].resize(buffer_size);
|
||||
}
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
#ifdef GRID_CHECKSUM_COMMS
|
||||
buffer_size += (8 + sizeof(vobj) - 1) / sizeof(vobj);
|
||||
#endif
|
||||
|
||||
static hostVector<vobj> hsend_buf; hsend_buf.resize(buffer_size);
|
||||
static hostVector<vobj> hrecv_buf; hrecv_buf.resize(buffer_size);
|
||||
|
||||
#ifdef GRID_CHECKSUM_COMMS
|
||||
buffer_size -= (8 + sizeof(vobj) - 1) / sizeof(vobj);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
int bytes = buffer_size*sizeof(scalar_object);
|
||||
|
||||
ExtractPointerArray<scalar_object> pointers(Nsimd); //
|
||||
@@ -227,7 +382,9 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
pointers[i] = &send_buf_extract[i][0];
|
||||
}
|
||||
int sx = (x+sshift)%rd;
|
||||
tgather-=usecond();
|
||||
Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
|
||||
tgather+=usecond();
|
||||
|
||||
for(int i=0;i<Nsimd;i++){
|
||||
|
||||
@@ -247,221 +404,81 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
|
||||
if (nbr_ic) nbr_lane|=inner_bit;
|
||||
|
||||
assert (sx == nbr_ox);
|
||||
GRID_ASSERT (sx == nbr_ox);
|
||||
|
||||
if(nbr_proc){
|
||||
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
|
||||
|
||||
tcomms-=usecond();
|
||||
grid->Barrier();
|
||||
|
||||
send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
|
||||
recv_buf_extract_mpi = &recv_buf_extract[i][0];
|
||||
#ifdef ACCELERATOR_AWARE_MPI
|
||||
grid->SendToRecvFrom((void *)send_buf_extract_mpi,
|
||||
xmit_to_rank,
|
||||
(void *)recv_buf_extract_mpi,
|
||||
recv_from_rank,
|
||||
bytes);
|
||||
|
||||
grid->Barrier();
|
||||
|
||||
rpointers[i] = &recv_buf_extract[i][0];
|
||||
} else {
|
||||
rpointers[i] = &send_buf_extract[nbr_lane][0];
|
||||
}
|
||||
|
||||
}
|
||||
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
|
||||
}
|
||||
|
||||
}
|
||||
#else
|
||||
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
|
||||
{
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
|
||||
GridBase *grid=rhs.Grid();
|
||||
Lattice<vobj> temp(rhs.Grid());
|
||||
|
||||
int fd = rhs.Grid()->_fdimensions[dimension];
|
||||
int rd = rhs.Grid()->_rdimensions[dimension];
|
||||
int pd = rhs.Grid()->_processors[dimension];
|
||||
int simd_layout = rhs.Grid()->_simd_layout[dimension];
|
||||
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
|
||||
assert(simd_layout==1);
|
||||
assert(comm_dim==1);
|
||||
assert(shift>=0);
|
||||
assert(shift<fd);
|
||||
|
||||
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
|
||||
static cshiftVector<vobj> send_buf_v; send_buf_v.resize(buffer_size);
|
||||
static cshiftVector<vobj> recv_buf_v; recv_buf_v.resize(buffer_size);
|
||||
vobj *send_buf;
|
||||
vobj *recv_buf;
|
||||
{
|
||||
grid->ShmBufferFreeAll();
|
||||
size_t bytes = buffer_size*sizeof(vobj);
|
||||
send_buf=(vobj *)grid->ShmBufferMalloc(bytes);
|
||||
recv_buf=(vobj *)grid->ShmBufferMalloc(bytes);
|
||||
}
|
||||
|
||||
int cb= (cbmask==0x2)? Odd : Even;
|
||||
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
|
||||
|
||||
for(int x=0;x<rd;x++){
|
||||
|
||||
int sx = (x+sshift)%rd;
|
||||
int comm_proc = ((x+sshift)/rd)%pd;
|
||||
|
||||
if (comm_proc==0) {
|
||||
|
||||
Copy_plane(ret,rhs,dimension,x,sx,cbmask);
|
||||
|
||||
} else {
|
||||
|
||||
int words = buffer_size;
|
||||
if (cbmask != 0x3) words=words>>1;
|
||||
|
||||
int bytes = words * sizeof(vobj);
|
||||
|
||||
Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask);
|
||||
|
||||
// int rank = grid->_processor;
|
||||
int recv_from_rank;
|
||||
int xmit_to_rank;
|
||||
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
|
||||
|
||||
|
||||
grid->Barrier();
|
||||
|
||||
acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes);
|
||||
grid->SendToRecvFrom((void *)&send_buf[0],
|
||||
xmit_to_rank,
|
||||
(void *)&recv_buf[0],
|
||||
recv_from_rank,
|
||||
bytes);
|
||||
acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes);
|
||||
|
||||
grid->Barrier();
|
||||
|
||||
Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
|
||||
{
|
||||
GridBase *grid=rhs.Grid();
|
||||
const int Nsimd = grid->Nsimd();
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
typedef typename vobj::scalar_object scalar_object;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
|
||||
int fd = grid->_fdimensions[dimension];
|
||||
int rd = grid->_rdimensions[dimension];
|
||||
int ld = grid->_ldimensions[dimension];
|
||||
int pd = grid->_processors[dimension];
|
||||
int simd_layout = grid->_simd_layout[dimension];
|
||||
int comm_dim = grid->_processors[dimension] >1 ;
|
||||
|
||||
//std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
|
||||
// << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout
|
||||
// << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
|
||||
|
||||
assert(comm_dim==1);
|
||||
assert(simd_layout==2);
|
||||
assert(shift>=0);
|
||||
assert(shift<fd);
|
||||
|
||||
int permute_type=grid->PermuteType(dimension);
|
||||
|
||||
///////////////////////////////////////////////
|
||||
// Simd direction uses an extract/merge pair
|
||||
///////////////////////////////////////////////
|
||||
int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
|
||||
// int words = sizeof(vobj)/sizeof(vector_type);
|
||||
|
||||
static std::vector<cshiftVector<scalar_object> > send_buf_extract; send_buf_extract.resize(Nsimd);
|
||||
static std::vector<cshiftVector<scalar_object> > recv_buf_extract; recv_buf_extract.resize(Nsimd);
|
||||
scalar_object * recv_buf_extract_mpi;
|
||||
scalar_object * send_buf_extract_mpi;
|
||||
{
|
||||
size_t bytes = sizeof(scalar_object)*buffer_size;
|
||||
grid->ShmBufferFreeAll();
|
||||
send_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
|
||||
recv_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
|
||||
}
|
||||
for(int s=0;s<Nsimd;s++){
|
||||
send_buf_extract[s].resize(buffer_size);
|
||||
recv_buf_extract[s].resize(buffer_size);
|
||||
}
|
||||
|
||||
int bytes = buffer_size*sizeof(scalar_object);
|
||||
|
||||
ExtractPointerArray<scalar_object> pointers(Nsimd); //
|
||||
ExtractPointerArray<scalar_object> rpointers(Nsimd); // received pointers
|
||||
|
||||
///////////////////////////////////////////
|
||||
// Work out what to send where
|
||||
///////////////////////////////////////////
|
||||
int cb = (cbmask==0x2)? Odd : Even;
|
||||
int sshift= grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
|
||||
|
||||
// loop over outer coord planes orthog to dim
|
||||
for(int x=0;x<rd;x++){
|
||||
|
||||
// FIXME call local permute copy if none are offnode.
|
||||
for(int i=0;i<Nsimd;i++){
|
||||
pointers[i] = &send_buf_extract[i][0];
|
||||
}
|
||||
int sx = (x+sshift)%rd;
|
||||
Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
|
||||
|
||||
for(int i=0;i<Nsimd;i++){
|
||||
|
||||
int inner_bit = (Nsimd>>(permute_type+1));
|
||||
int ic= (i&inner_bit)? 1:0;
|
||||
|
||||
int my_coor = rd*ic + x;
|
||||
int nbr_coor = my_coor+sshift;
|
||||
int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors
|
||||
|
||||
int nbr_ic = (nbr_coor%ld)/rd; // inner coord of peer
|
||||
int nbr_ox = (nbr_coor%rd); // outer coord of peer
|
||||
int nbr_lane = (i&(~inner_bit));
|
||||
|
||||
int recv_from_rank;
|
||||
int xmit_to_rank;
|
||||
|
||||
if (nbr_ic) nbr_lane|=inner_bit;
|
||||
|
||||
assert (sx == nbr_ox);
|
||||
|
||||
if(nbr_proc){
|
||||
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
|
||||
|
||||
grid->Barrier();
|
||||
|
||||
acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes);
|
||||
grid->SendToRecvFrom((void *)send_buf_extract_mpi,
|
||||
xmit_to_rank,
|
||||
(void *)recv_buf_extract_mpi,
|
||||
recv_from_rank,
|
||||
bytes);
|
||||
acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes);
|
||||
|
||||
grid->Barrier();
|
||||
rpointers[i] = &recv_buf_extract[i][0];
|
||||
} else {
|
||||
rpointers[i] = &send_buf_extract[nbr_lane][0];
|
||||
}
|
||||
|
||||
}
|
||||
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
|
||||
}
|
||||
|
||||
}
|
||||
#else
|
||||
// bouncy bouncy
|
||||
acceleratorCopyFromDevice((void *)send_buf_extract_mpi,(void *)&hsend_buf[0],bytes);
|
||||
#ifdef GRID_CHECKSUM_COMMS
|
||||
assert(bytes % 8 == 0);
|
||||
checksum_index++;
|
||||
uint64_t xsum = checksum_gpu((uint64_t*)send_buf_extract_mpi, bytes / 8) ^ (1 + checksum_index);
|
||||
*(uint64_t*)(((char*)&hsend_buf[0]) + bytes) = xsum;
|
||||
bytes += 8;
|
||||
#endif
|
||||
grid->SendToRecvFrom((void *)&hsend_buf[0],
|
||||
xmit_to_rank,
|
||||
(void *)&hrecv_buf[0],
|
||||
recv_from_rank,
|
||||
bytes);
|
||||
#ifdef GRID_CHECKSUM_COMMS
|
||||
bytes -= 8;
|
||||
acceleratorCopyToDevice((void *)&hrecv_buf[0],(void *)recv_buf_extract_mpi,bytes);
|
||||
uint64_t expected_cs = *(uint64_t*)(((char*)&hrecv_buf[0]) + bytes);
|
||||
uint64_t computed_cs = checksum_gpu((uint64_t*)recv_buf_extract_mpi, bytes / 8) ^ (1 + checksum_index);
|
||||
|
||||
std::cout << GridLogComms<< " Cshift_comms_simd: "
|
||||
<<" dim"<<dimension
|
||||
<<" shift "<<shift
|
||||
<< " rank "<< grid->ThisRank()
|
||||
<<" Coor "<<grid->ThisProcessorCoor()
|
||||
<<" send "<<xsum<<" to "<<xmit_to_rank
|
||||
<<" recv "<<computed_cs<<" from "<<recv_from_rank
|
||||
<<std::endl;
|
||||
assert(expected_cs == computed_cs);
|
||||
#else
|
||||
acceleratorCopyToDevice((void *)&hrecv_buf[0],(void *)recv_buf_extract_mpi,bytes);
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
xbytes+=bytes;
|
||||
grid->Barrier();
|
||||
tcomms+=usecond();
|
||||
|
||||
rpointers[i] = &recv_buf_extract[i][0];
|
||||
} else {
|
||||
rpointers[i] = &send_buf_extract[nbr_lane][0];
|
||||
}
|
||||
|
||||
}
|
||||
tscatter-=usecond();
|
||||
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
|
||||
tscatter+=usecond();
|
||||
}
|
||||
if(Cshift_verbose){
|
||||
std::cout << GridLogPerformance << " Cshift (s) copy "<<tcopy/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift (s) gather "<<tgather/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift (s) comm "<<tcomms/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
#include <Grid/GridCore.h>
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
Vector<std::pair<int,int> > Cshift_table;
|
||||
std::vector<std::pair<int,int> > Cshift_table;
|
||||
deviceVector<std::pair<int,int> > Cshift_table_device;
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
@@ -35,6 +35,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/lattice/Lattice_transpose.h>
|
||||
#include <Grid/lattice/Lattice_local.h>
|
||||
#include <Grid/lattice/Lattice_reduction.h>
|
||||
#include <Grid/lattice/Lattice_crc.h>
|
||||
#include <Grid/lattice/Lattice_peekpoke.h>
|
||||
#include <Grid/lattice/Lattice_reality.h>
|
||||
#include <Grid/lattice/Lattice_real_imag.h>
|
||||
@@ -46,5 +47,4 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/lattice/Lattice_unary.h>
|
||||
#include <Grid/lattice/Lattice_transfer.h>
|
||||
#include <Grid/lattice/Lattice_basis.h>
|
||||
#include <Grid/lattice/Lattice_crc.h>
|
||||
#include <Grid/lattice/PaddedCell.h>
|
||||
|
||||
@@ -245,7 +245,7 @@ template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * =
|
||||
inline void CBFromExpression(int &cb, const T1 &lat) // Lattice leaf
|
||||
{
|
||||
if ((cb == Odd) || (cb == Even)) {
|
||||
assert(cb == lat.Checkerboard());
|
||||
GRID_ASSERT(cb == lat.Checkerboard());
|
||||
}
|
||||
cb = lat.Checkerboard();
|
||||
}
|
||||
|
||||
@@ -257,18 +257,68 @@ void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice
|
||||
});
|
||||
}
|
||||
|
||||
#define FAST_AXPY_NORM
|
||||
template<class sobj,class vobj> inline
|
||||
RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)
|
||||
{
|
||||
GRID_TRACE("axpy_norm");
|
||||
return axpy_norm_fast(ret,a,x,y);
|
||||
#ifdef FAST_AXPY_NORM
|
||||
return axpy_norm_fast(ret,a,x,y);
|
||||
#else
|
||||
ret = a*x+y;
|
||||
RealD nn=norm2(ret);
|
||||
return nn;
|
||||
#endif
|
||||
}
|
||||
template<class sobj,class vobj> inline
|
||||
RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
|
||||
{
|
||||
GRID_TRACE("axpby_norm");
|
||||
return axpby_norm_fast(ret,a,b,x,y);
|
||||
#ifdef FAST_AXPY_NORM
|
||||
return axpby_norm_fast(ret,a,b,x,y);
|
||||
#else
|
||||
ret = a*x+b*y;
|
||||
RealD nn=norm2(ret);
|
||||
return nn;
|
||||
#endif
|
||||
}
|
||||
|
||||
/// Trace product
|
||||
template<class obj> auto traceProduct(const Lattice<obj> &rhs_1,const Lattice<obj> &rhs_2)
|
||||
-> Lattice<decltype(trace(obj()))>
|
||||
{
|
||||
typedef decltype(trace(obj())) robj;
|
||||
Lattice<robj> ret_i(rhs_1.Grid());
|
||||
autoView( rhs1 , rhs_1, AcceleratorRead);
|
||||
autoView( rhs2 , rhs_2, AcceleratorRead);
|
||||
autoView( ret , ret_i, AcceleratorWrite);
|
||||
ret.Checkerboard() = rhs_1.Checkerboard();
|
||||
accelerator_for(ss,rhs1.size(),obj::Nsimd(),{
|
||||
coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2(ss)));
|
||||
});
|
||||
return ret_i;
|
||||
}
|
||||
|
||||
template<class obj1,class obj2> auto traceProduct(const Lattice<obj1> &rhs_1,const obj2 &rhs2)
|
||||
-> Lattice<decltype(trace(obj1()))>
|
||||
{
|
||||
typedef decltype(trace(obj1())) robj;
|
||||
Lattice<robj> ret_i(rhs_1.Grid());
|
||||
autoView( rhs1 , rhs_1, AcceleratorRead);
|
||||
autoView( ret , ret_i, AcceleratorWrite);
|
||||
ret.Checkerboard() = rhs_1.Checkerboard();
|
||||
accelerator_for(ss,rhs1.size(),obj1::Nsimd(),{
|
||||
coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2));
|
||||
});
|
||||
return ret_i;
|
||||
}
|
||||
template<class obj1,class obj2> auto traceProduct(const obj2 &rhs_2,const Lattice<obj1> &rhs_1)
|
||||
-> Lattice<decltype(trace(obj1()))>
|
||||
{
|
||||
return traceProduct(rhs_1,rhs_2);
|
||||
}
|
||||
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
||||
|
||||
@@ -120,12 +120,12 @@ public:
|
||||
GRID_TRACE("ExpressionTemplateEval");
|
||||
GridBase *egrid(nullptr);
|
||||
GridFromExpression(egrid,expr);
|
||||
assert(egrid!=nullptr);
|
||||
GRID_ASSERT(egrid!=nullptr);
|
||||
conformable(this->_grid,egrid);
|
||||
|
||||
int cb=-1;
|
||||
CBFromExpression(cb,expr);
|
||||
assert( (cb==Odd) || (cb==Even));
|
||||
GRID_ASSERT( (cb==Odd) || (cb==Even));
|
||||
this->checkerboard=cb;
|
||||
|
||||
auto exprCopy = expr;
|
||||
@@ -144,12 +144,12 @@ public:
|
||||
GRID_TRACE("ExpressionTemplateEval");
|
||||
GridBase *egrid(nullptr);
|
||||
GridFromExpression(egrid,expr);
|
||||
assert(egrid!=nullptr);
|
||||
GRID_ASSERT(egrid!=nullptr);
|
||||
conformable(this->_grid,egrid);
|
||||
|
||||
int cb=-1;
|
||||
CBFromExpression(cb,expr);
|
||||
assert( (cb==Odd) || (cb==Even));
|
||||
GRID_ASSERT( (cb==Odd) || (cb==Even));
|
||||
this->checkerboard=cb;
|
||||
|
||||
auto exprCopy = expr;
|
||||
@@ -168,12 +168,12 @@ public:
|
||||
GRID_TRACE("ExpressionTemplateEval");
|
||||
GridBase *egrid(nullptr);
|
||||
GridFromExpression(egrid,expr);
|
||||
assert(egrid!=nullptr);
|
||||
GRID_ASSERT(egrid!=nullptr);
|
||||
conformable(this->_grid,egrid);
|
||||
|
||||
int cb=-1;
|
||||
CBFromExpression(cb,expr);
|
||||
assert( (cb==Odd) || (cb==Even));
|
||||
GRID_ASSERT( (cb==Odd) || (cb==Even));
|
||||
this->checkerboard=cb;
|
||||
auto exprCopy = expr;
|
||||
ExpressionViewOpen(exprCopy);
|
||||
@@ -191,11 +191,11 @@ public:
|
||||
Lattice(const LatticeUnaryExpression<Op,T1> & expr) {
|
||||
this->_grid = nullptr;
|
||||
GridFromExpression(this->_grid,expr);
|
||||
assert(this->_grid!=nullptr);
|
||||
GRID_ASSERT(this->_grid!=nullptr);
|
||||
|
||||
int cb=-1;
|
||||
CBFromExpression(cb,expr);
|
||||
assert( (cb==Odd) || (cb==Even));
|
||||
GRID_ASSERT( (cb==Odd) || (cb==Even));
|
||||
this->checkerboard=cb;
|
||||
|
||||
resize(this->_grid->oSites());
|
||||
@@ -206,11 +206,11 @@ public:
|
||||
Lattice(const LatticeBinaryExpression<Op,T1,T2> & expr) {
|
||||
this->_grid = nullptr;
|
||||
GridFromExpression(this->_grid,expr);
|
||||
assert(this->_grid!=nullptr);
|
||||
GRID_ASSERT(this->_grid!=nullptr);
|
||||
|
||||
int cb=-1;
|
||||
CBFromExpression(cb,expr);
|
||||
assert( (cb==Odd) || (cb==Even));
|
||||
GRID_ASSERT( (cb==Odd) || (cb==Even));
|
||||
this->checkerboard=cb;
|
||||
|
||||
resize(this->_grid->oSites());
|
||||
@@ -221,11 +221,11 @@ public:
|
||||
Lattice(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr) {
|
||||
this->_grid = nullptr;
|
||||
GridFromExpression(this->_grid,expr);
|
||||
assert(this->_grid!=nullptr);
|
||||
GRID_ASSERT(this->_grid!=nullptr);
|
||||
|
||||
int cb=-1;
|
||||
CBFromExpression(cb,expr);
|
||||
assert( (cb==Odd) || (cb==Even));
|
||||
GRID_ASSERT( (cb==Odd) || (cb==Even));
|
||||
this->checkerboard=cb;
|
||||
|
||||
resize(this->_grid->oSites());
|
||||
@@ -234,10 +234,23 @@ public:
|
||||
}
|
||||
|
||||
template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){
|
||||
vobj vtmp;
|
||||
vtmp = r;
|
||||
#if 1
|
||||
deviceVector<vobj> vvtmp(1);
|
||||
acceleratorPut(vvtmp[0],vtmp);
|
||||
vobj *vvtmp_p = & vvtmp[0];
|
||||
auto me = View(AcceleratorWrite);
|
||||
accelerator_for(ss,me.size(),vobj::Nsimd(),{
|
||||
auto stmp=coalescedRead(*vvtmp_p);
|
||||
coalescedWrite(me[ss],stmp);
|
||||
});
|
||||
#else
|
||||
auto me = View(CpuWrite);
|
||||
thread_for(ss,me.size(),{
|
||||
me[ss]= r;
|
||||
});
|
||||
me[ss]= r;
|
||||
});
|
||||
#endif
|
||||
me.ViewClose();
|
||||
return *this;
|
||||
}
|
||||
@@ -251,7 +264,7 @@ public:
|
||||
Lattice(GridBase *grid,ViewMode mode=AcceleratorWriteDiscard) {
|
||||
this->_grid = grid;
|
||||
resize(this->_grid->oSites());
|
||||
assert((((uint64_t)&this->_odata[0])&0xF) ==0);
|
||||
GRID_ASSERT((((uint64_t)&this->_odata[0])&0xF) ==0);
|
||||
this->checkerboard=0;
|
||||
SetViewMode(mode);
|
||||
}
|
||||
|
||||
@@ -53,36 +53,19 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
|
||||
typedef decltype(basis[0]) Field;
|
||||
typedef decltype(basis[0].View(AcceleratorRead)) View;
|
||||
|
||||
Vector<View> basis_v; basis_v.reserve(basis.size());
|
||||
typedef typename std::remove_reference<decltype(basis_v[0][0])>::type vobj;
|
||||
hostVector<View> h_basis_v(basis.size());
|
||||
deviceVector<View> d_basis_v(basis.size());
|
||||
typedef typename std::remove_reference<decltype(h_basis_v[0][0])>::type vobj;
|
||||
typedef typename std::remove_reference<decltype(Qt(0,0))>::type Coeff_t;
|
||||
|
||||
GridBase* grid = basis[0].Grid();
|
||||
|
||||
for(int k=0;k<basis.size();k++){
|
||||
basis_v.push_back(basis[k].View(AcceleratorWrite));
|
||||
h_basis_v[k] = basis[k].View(AcceleratorWrite);
|
||||
acceleratorPut(d_basis_v[k],h_basis_v[k]);
|
||||
}
|
||||
|
||||
#if ( (!defined(GRID_CUDA)) )
|
||||
int max_threads = thread_max();
|
||||
Vector < vobj > Bt(Nm * max_threads);
|
||||
thread_region
|
||||
{
|
||||
vobj* B = &Bt[Nm * thread_num()];
|
||||
thread_for_in_region(ss, grid->oSites(),{
|
||||
for(int j=j0; j<j1; ++j) B[j]=0.;
|
||||
|
||||
for(int j=j0; j<j1; ++j){
|
||||
for(int k=k0; k<k1; ++k){
|
||||
B[j] +=Qt(j,k) * basis_v[k][ss];
|
||||
}
|
||||
}
|
||||
for(int j=j0; j<j1; ++j){
|
||||
basis_v[j][ss] = B[j];
|
||||
}
|
||||
});
|
||||
}
|
||||
#else
|
||||
View *basis_vp = &basis_v[0];
|
||||
View *basis_vp = &d_basis_v[0];
|
||||
|
||||
int nrot = j1-j0;
|
||||
if (!nrot) // edge case not handled gracefully by Cuda
|
||||
@@ -91,17 +74,19 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
|
||||
uint64_t oSites =grid->oSites();
|
||||
uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead
|
||||
|
||||
Vector <vobj> Bt(siteBlock * nrot);
|
||||
deviceVector <vobj> Bt(siteBlock * nrot);
|
||||
auto Bp=&Bt[0];
|
||||
|
||||
// GPU readable copy of matrix
|
||||
Vector<Coeff_t> Qt_jv(Nm*Nm);
|
||||
hostVector<Coeff_t> h_Qt_jv(Nm*Nm);
|
||||
deviceVector<Coeff_t> Qt_jv(Nm*Nm);
|
||||
Coeff_t *Qt_p = & Qt_jv[0];
|
||||
thread_for(i,Nm*Nm,{
|
||||
int j = i/Nm;
|
||||
int k = i%Nm;
|
||||
Qt_p[i]=Qt(j,k);
|
||||
h_Qt_jv[i]=Qt(j,k);
|
||||
});
|
||||
acceleratorCopyToDevice(&h_Qt_jv[0],Qt_p,Nm*Nm*sizeof(Coeff_t));
|
||||
|
||||
// Block the loop to keep storage footprint down
|
||||
for(uint64_t s=0;s<oSites;s+=siteBlock){
|
||||
@@ -137,9 +122,8 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
|
||||
coalescedWrite(basis_vp[jj][sss],coalescedRead(Bp[ss*nrot+j]));
|
||||
});
|
||||
}
|
||||
#endif
|
||||
|
||||
for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
|
||||
for(int k=0;k<basis.size();k++) h_basis_v[k].ViewClose();
|
||||
}
|
||||
|
||||
// Extract a single rotated vector
|
||||
@@ -152,16 +136,19 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in
|
||||
|
||||
result.Checkerboard() = basis[0].Checkerboard();
|
||||
|
||||
Vector<View> basis_v; basis_v.reserve(basis.size());
|
||||
hostVector<View> h_basis_v(basis.size());
|
||||
deviceVector<View> d_basis_v(basis.size());
|
||||
for(int k=0;k<basis.size();k++){
|
||||
basis_v.push_back(basis[k].View(AcceleratorRead));
|
||||
h_basis_v[k]=basis[k].View(AcceleratorRead);
|
||||
acceleratorPut(d_basis_v[k],h_basis_v[k]);
|
||||
}
|
||||
vobj zz=Zero();
|
||||
Vector<double> Qt_jv(Nm);
|
||||
double * Qt_j = & Qt_jv[0];
|
||||
for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k);
|
||||
|
||||
auto basis_vp=& basis_v[0];
|
||||
vobj zz=Zero();
|
||||
deviceVector<double> Qt_jv(Nm);
|
||||
double * Qt_j = & Qt_jv[0];
|
||||
for(int k=0;k<Nm;++k) acceleratorPut(Qt_j[k],Qt(j,k));
|
||||
|
||||
auto basis_vp=& d_basis_v[0];
|
||||
autoView(result_v,result,AcceleratorWrite);
|
||||
accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
|
||||
vobj zzz=Zero();
|
||||
@@ -171,7 +158,7 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in
|
||||
}
|
||||
coalescedWrite(result_v[ss], B);
|
||||
});
|
||||
for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
|
||||
for(int k=0;k<basis.size();k++) h_basis_v[k].ViewClose();
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
@@ -179,9 +166,9 @@ void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, s
|
||||
{
|
||||
int vlen = idx.size();
|
||||
|
||||
assert(vlen>=1);
|
||||
assert(vlen<=sort_vals.size());
|
||||
assert(vlen<=_v.size());
|
||||
GRID_ASSERT(vlen>=1);
|
||||
GRID_ASSERT(vlen<=sort_vals.size());
|
||||
GRID_ASSERT(vlen<=_v.size());
|
||||
|
||||
for (size_t i=0;i<vlen;i++) {
|
||||
|
||||
@@ -199,7 +186,7 @@ void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, s
|
||||
if (idx[j]==i)
|
||||
break;
|
||||
|
||||
assert(idx[i] > i); assert(j!=idx.size()); assert(idx[j]==i);
|
||||
GRID_ASSERT(idx[i] > i); GRID_ASSERT(j!=idx.size()); GRID_ASSERT(idx[j]==i);
|
||||
|
||||
swap(_v[i],_v[idx[i]]); // should use vector move constructor, no data copy
|
||||
std::swap(sort_vals[i],sort_vals[idx[i]]);
|
||||
@@ -237,7 +224,7 @@ void basisSortInPlace(std::vector<Field> & _v,std::vector<RealD>& sort_vals, boo
|
||||
template<class Field>
|
||||
void basisDeflate(const std::vector<Field> &_v,const std::vector<RealD>& eval,const Field& src_orig,Field& result) {
|
||||
result = Zero();
|
||||
assert(_v.size()==eval.size());
|
||||
GRID_ASSERT(_v.size()==eval.size());
|
||||
int N = (int)_v.size();
|
||||
for (int i=0;i<N;i++) {
|
||||
Field& tmp = _v[i];
|
||||
|
||||
@@ -32,8 +32,8 @@ NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class obj1,class obj2> void conformable(const Lattice<obj1> &lhs,const Lattice<obj2> &rhs)
|
||||
{
|
||||
assert(lhs.Grid() == rhs.Grid());
|
||||
assert(lhs.Checkerboard() == rhs.Checkerboard());
|
||||
GRID_ASSERT(lhs.Grid() == rhs.Grid());
|
||||
GRID_ASSERT(lhs.Checkerboard() == rhs.Checkerboard());
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
@@ -42,13 +42,13 @@ template<class vobj> void DumpSliceNorm(std::string s,const Lattice<vobj> &f,int
|
||||
}
|
||||
}
|
||||
|
||||
template<class vobj> uint32_t crc(Lattice<vobj> & buf)
|
||||
template<class vobj> uint32_t crc(const Lattice<vobj> & buf)
|
||||
{
|
||||
autoView( buf_v , buf, CpuRead);
|
||||
return ::crc32(0L,(unsigned char *)&buf_v[0],(size_t)sizeof(vobj)*buf.oSites());
|
||||
}
|
||||
|
||||
#define CRC(U) std::cout << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
|
||||
#define CRC(U) std::cerr << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
||||
@@ -42,7 +42,7 @@ static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice
|
||||
// Lattice<vobj> Xslice(SliceGrid);
|
||||
// Lattice<vobj> Rslice(SliceGrid);
|
||||
|
||||
assert( FullGrid->_simd_layout[Orthog]==1);
|
||||
GRID_ASSERT( FullGrid->_simd_layout[Orthog]==1);
|
||||
|
||||
//FIXME package in a convenient iterator
|
||||
//Should loop over a plane orthogonal to direction "Orthog"
|
||||
@@ -86,7 +86,7 @@ static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<
|
||||
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
|
||||
|
||||
GridBase *FullGrid = X.Grid();
|
||||
assert( FullGrid->_simd_layout[Orthog]==1);
|
||||
GRID_ASSERT( FullGrid->_simd_layout[Orthog]==1);
|
||||
|
||||
//FIXME package in a convenient iterator
|
||||
//Should loop over a plane orthogonal to direction "Orthog"
|
||||
@@ -140,7 +140,7 @@ static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj>
|
||||
|
||||
mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
|
||||
|
||||
assert( FullGrid->_simd_layout[Orthog]==1);
|
||||
GRID_ASSERT( FullGrid->_simd_layout[Orthog]==1);
|
||||
// int nh = FullGrid->_ndimension;
|
||||
// int nl = SliceGrid->_ndimension;
|
||||
// int nl = nh-1;
|
||||
|
||||
@@ -98,8 +98,8 @@ void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){
|
||||
|
||||
int Nsimd = grid->Nsimd();
|
||||
|
||||
assert( l.Checkerboard()== l.Grid()->CheckerBoard(site));
|
||||
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
|
||||
GRID_ASSERT( l.Checkerboard()== l.Grid()->CheckerBoard(site));
|
||||
GRID_ASSERT( sizeof(sobj)*Nsimd == sizeof(vobj));
|
||||
|
||||
int rank,odx,idx;
|
||||
// Optional to broadcast from node 0.
|
||||
@@ -135,7 +135,7 @@ void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
|
||||
|
||||
int Nsimd = grid->Nsimd();
|
||||
|
||||
assert( l.Checkerboard() == l.Grid()->CheckerBoard(site));
|
||||
GRID_ASSERT( l.Checkerboard() == l.Grid()->CheckerBoard(site));
|
||||
|
||||
int rank,odx,idx;
|
||||
grid->GlobalCoorToRankIndex(rank,odx,idx,site);
|
||||
@@ -159,14 +159,14 @@ template<class vobj,class sobj>
|
||||
inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
|
||||
{
|
||||
GridBase *grid = l.getGrid();
|
||||
assert(l.mode==CpuRead);
|
||||
GRID_ASSERT(l.mode==CpuRead);
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
int Nsimd = grid->Nsimd();
|
||||
|
||||
assert( l.Checkerboard()== grid->CheckerBoard(site));
|
||||
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
|
||||
// GRID_ASSERT( l.Checkerboard()== grid->CheckerBoard(site));
|
||||
GRID_ASSERT( sizeof(sobj)*Nsimd == sizeof(vobj));
|
||||
|
||||
static const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
int odx,idx;
|
||||
@@ -179,7 +179,7 @@ inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
|
||||
for(int w=0;w<words;w++){
|
||||
pt[w] = getlane(vp[w],idx);
|
||||
}
|
||||
|
||||
// std::cout << "peekLocalSite "<<site<<" "<<odx<<","<<idx<<" "<<s<<std::endl;
|
||||
return;
|
||||
};
|
||||
template<class vobj,class sobj>
|
||||
@@ -195,15 +195,15 @@ template<class vobj,class sobj>
|
||||
inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site)
|
||||
{
|
||||
GridBase *grid=l.getGrid();
|
||||
assert(l.mode==CpuWrite);
|
||||
GRID_ASSERT(l.mode==CpuWrite);
|
||||
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
int Nsimd = grid->Nsimd();
|
||||
|
||||
assert( l.Checkerboard()== grid->CheckerBoard(site));
|
||||
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
|
||||
// GRID_ASSERT( l.Checkerboard()== grid->CheckerBoard(site));
|
||||
GRID_ASSERT( sizeof(sobj)*Nsimd == sizeof(vobj));
|
||||
|
||||
static const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
int odx,idx;
|
||||
|
||||
@@ -31,6 +31,7 @@ Author: Christoph Lehner <christoph@lhnr.de>
|
||||
#if defined(GRID_SYCL)
|
||||
#include <Grid/lattice/Lattice_reduction_sycl.h>
|
||||
#endif
|
||||
#include <Grid/lattice/Lattice_slicesum_core.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
@@ -45,7 +46,7 @@ inline typename vobj::scalar_object sum_cpu(const vobj *arg, Integer osites)
|
||||
// const int Nsimd = vobj::Nsimd();
|
||||
const int nthread = GridThread::GetThreads();
|
||||
|
||||
Vector<sobj> sumarray(nthread);
|
||||
std::vector<sobj> sumarray(nthread);
|
||||
for(int i=0;i<nthread;i++){
|
||||
sumarray[i]=Zero();
|
||||
}
|
||||
@@ -74,7 +75,7 @@ inline typename vobj::scalar_objectD sumD_cpu(const vobj *arg, Integer osites)
|
||||
|
||||
const int nthread = GridThread::GetThreads();
|
||||
|
||||
Vector<sobj> sumarray(nthread);
|
||||
std::vector<sobj> sumarray(nthread);
|
||||
for(int i=0;i<nthread;i++){
|
||||
sumarray[i]=Zero();
|
||||
}
|
||||
@@ -263,24 +264,8 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
|
||||
const uint64_t sites = grid->oSites();
|
||||
|
||||
// Might make all code paths go this way.
|
||||
#if 0
|
||||
typedef decltype(innerProductD(vobj(),vobj())) inner_t;
|
||||
Vector<inner_t> inner_tmp(sites);
|
||||
auto inner_tmp_v = &inner_tmp[0];
|
||||
{
|
||||
autoView( left_v , left, AcceleratorRead);
|
||||
autoView( right_v,right, AcceleratorRead);
|
||||
// This code could read coalesce
|
||||
// GPU - SIMT lane compliance...
|
||||
accelerator_for( ss, sites, nsimd,{
|
||||
auto x_l = left_v(ss);
|
||||
auto y_l = right_v(ss);
|
||||
coalescedWrite(inner_tmp_v[ss],innerProductD(x_l,y_l));
|
||||
});
|
||||
}
|
||||
#else
|
||||
typedef decltype(innerProduct(vobj(),vobj())) inner_t;
|
||||
Vector<inner_t> inner_tmp(sites);
|
||||
deviceVector<inner_t> inner_tmp(sites);
|
||||
auto inner_tmp_v = &inner_tmp[0];
|
||||
|
||||
{
|
||||
@@ -294,18 +279,57 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
|
||||
coalescedWrite(inner_tmp_v[ss],innerProduct(x_l,y_l));
|
||||
});
|
||||
}
|
||||
#endif
|
||||
// This is in single precision and fails some tests
|
||||
auto anrm = sumD(inner_tmp_v,sites);
|
||||
nrm = anrm;
|
||||
return nrm;
|
||||
}
|
||||
|
||||
|
||||
template<class vobj>
|
||||
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) {
|
||||
GridBase *grid = left.Grid();
|
||||
|
||||
bool ok;
|
||||
#ifdef GRID_SYCL
|
||||
// uint64_t csum=0;
|
||||
// uint64_t csum2=0;
|
||||
// if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone)
|
||||
// {
|
||||
// Hack
|
||||
// Fast integer xor checksum. Can also be used in comms now.
|
||||
// autoView(l_v,left,AcceleratorRead);
|
||||
// Integer words = left.Grid()->oSites()*sizeof(vobj)/sizeof(uint64_t);
|
||||
// uint64_t *base= (uint64_t *)&l_v[0];
|
||||
// csum=svm_xor(base,words);
|
||||
// ok = FlightRecorder::CsumLog(csum);
|
||||
// if ( !ok ) {
|
||||
// csum2=svm_xor(base,words);
|
||||
// std::cerr<< " Bad CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
|
||||
// } else {
|
||||
// csum2=svm_xor(base,words);
|
||||
// std::cerr<< " ok CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
|
||||
// }
|
||||
// GRID_ASSERT(ok);
|
||||
// }
|
||||
#endif
|
||||
FlightRecorder::StepLog("rank inner product");
|
||||
ComplexD nrm = rankInnerProduct(left,right);
|
||||
grid->GlobalSum(nrm);
|
||||
// ComplexD nrmck=nrm;
|
||||
RealD local = real(nrm);
|
||||
ok = FlightRecorder::NormLog(real(nrm));
|
||||
if ( !ok ) {
|
||||
ComplexD nrm2 = rankInnerProduct(left,right);
|
||||
RealD local2 = real(nrm2);
|
||||
std::cerr<< " Bad NORM " << local << " recomputed as "<<local2<<std::endl;
|
||||
GRID_ASSERT(ok);
|
||||
}
|
||||
FlightRecorder::StepLog("Start global sum");
|
||||
grid->GlobalSumP2P(nrm);
|
||||
// grid->GlobalSum(nrm);
|
||||
FlightRecorder::StepLog("Finished global sum");
|
||||
// std::cout << " norm "<< nrm << " p2p norm "<<nrmck<<std::endl;
|
||||
FlightRecorder::ReductionLog(local,real(nrm));
|
||||
return nrm;
|
||||
}
|
||||
|
||||
@@ -341,20 +365,9 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
|
||||
autoView( x_v, x, AcceleratorRead);
|
||||
autoView( y_v, y, AcceleratorRead);
|
||||
autoView( z_v, z, AcceleratorWrite);
|
||||
#if 0
|
||||
typedef decltype(innerProductD(x_v[0],y_v[0])) inner_t;
|
||||
Vector<inner_t> inner_tmp(sites);
|
||||
auto inner_tmp_v = &inner_tmp[0];
|
||||
|
||||
accelerator_for( ss, sites, nsimd,{
|
||||
auto tmp = a*x_v(ss)+b*y_v(ss);
|
||||
coalescedWrite(inner_tmp_v[ss],innerProductD(tmp,tmp));
|
||||
coalescedWrite(z_v[ss],tmp);
|
||||
});
|
||||
nrm = real(TensorRemove(sum(inner_tmp_v,sites)));
|
||||
#else
|
||||
typedef decltype(innerProduct(x_v[0],y_v[0])) inner_t;
|
||||
Vector<inner_t> inner_tmp(sites);
|
||||
deviceVector<inner_t> inner_tmp;
|
||||
inner_tmp.resize(sites);
|
||||
auto inner_tmp_v = &inner_tmp[0];
|
||||
|
||||
accelerator_for( ss, sites, nsimd,{
|
||||
@@ -362,9 +375,13 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
|
||||
coalescedWrite(inner_tmp_v[ss],innerProduct(tmp,tmp));
|
||||
coalescedWrite(z_v[ss],tmp);
|
||||
});
|
||||
bool ok;
|
||||
nrm = real(TensorRemove(sumD(inner_tmp_v,sites)));
|
||||
#endif
|
||||
ok = FlightRecorder::NormLog(real(nrm));
|
||||
GRID_ASSERT(ok);
|
||||
RealD local = real(nrm);
|
||||
grid->GlobalSum(nrm);
|
||||
FlightRecorder::ReductionLog(local,real(nrm));
|
||||
return nrm;
|
||||
}
|
||||
|
||||
@@ -374,7 +391,7 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti
|
||||
conformable(left,right);
|
||||
|
||||
typedef typename vobj::vector_typeD vector_type;
|
||||
Vector<ComplexD> tmp(2);
|
||||
std::vector<ComplexD> tmp(2);
|
||||
|
||||
GridBase *grid = left.Grid();
|
||||
|
||||
@@ -384,8 +401,8 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti
|
||||
// GPU
|
||||
typedef decltype(innerProductD(vobj(),vobj())) inner_t;
|
||||
typedef decltype(innerProductD(vobj(),vobj())) norm_t;
|
||||
Vector<inner_t> inner_tmp(sites);
|
||||
Vector<norm_t> norm_tmp(sites);
|
||||
deviceVector<inner_t> inner_tmp(sites);
|
||||
deviceVector<norm_t> norm_tmp(sites);
|
||||
auto inner_tmp_v = &inner_tmp[0];
|
||||
auto norm_tmp_v = &norm_tmp[0];
|
||||
{
|
||||
@@ -435,7 +452,9 @@ inline auto sum(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)
|
||||
// sliceSum, sliceInnerProduct, sliceAxpy, sliceNorm etc...
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<typename vobj::scalar_object> &result,int orthogdim)
|
||||
template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,
|
||||
std::vector<typename vobj::scalar_object> &result,
|
||||
int orthogdim)
|
||||
{
|
||||
///////////////////////////////////////////////////////
|
||||
// FIXME precision promoted summation
|
||||
@@ -445,20 +464,20 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_object::scalar_type scalar_type;
|
||||
GridBase *grid = Data.Grid();
|
||||
assert(grid!=NULL);
|
||||
GRID_ASSERT(grid!=NULL);
|
||||
|
||||
const int Nd = grid->_ndimension;
|
||||
const int Nsimd = grid->Nsimd();
|
||||
|
||||
assert(orthogdim >= 0);
|
||||
assert(orthogdim < Nd);
|
||||
GRID_ASSERT(orthogdim >= 0);
|
||||
GRID_ASSERT(orthogdim < Nd);
|
||||
|
||||
int fd=grid->_fdimensions[orthogdim];
|
||||
int ld=grid->_ldimensions[orthogdim];
|
||||
int rd=grid->_rdimensions[orthogdim];
|
||||
|
||||
Vector<vobj> lvSum(rd); // will locally sum vectors first
|
||||
Vector<sobj> lsSum(ld,Zero()); // sum across these down to scalars
|
||||
std::vector<vobj> lvSum(rd); // will locally sum vectors first
|
||||
std::vector<sobj> lsSum(ld,Zero()); // sum across these down to scalars
|
||||
ExtractBuffer<sobj> extracted(Nsimd); // splitting the SIMD
|
||||
|
||||
result.resize(fd); // And then global sum to return the same vector to every node
|
||||
@@ -469,19 +488,10 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
|
||||
int e1= grid->_slice_nblock[orthogdim];
|
||||
int e2= grid->_slice_block [orthogdim];
|
||||
int stride=grid->_slice_stride[orthogdim];
|
||||
|
||||
// sum over reduced dimension planes, breaking out orthog dir
|
||||
// Parallel over orthog direction
|
||||
autoView( Data_v, Data, CpuRead);
|
||||
thread_for( r,rd, {
|
||||
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
|
||||
for(int n=0;n<e1;n++){
|
||||
for(int b=0;b<e2;b++){
|
||||
int ss= so+n*stride+b;
|
||||
lvSum[r]=lvSum[r]+Data_v[ss];
|
||||
}
|
||||
}
|
||||
});
|
||||
int ostride=grid->_ostride[orthogdim];
|
||||
|
||||
//Reduce Data down to lvSum
|
||||
sliceSumReduction(Data,lvSum,rd, e1,e2,stride,ostride,Nsimd);
|
||||
|
||||
// Sum across simd lanes in the plane, breaking out orthog dir.
|
||||
Coordinate icoor(Nd);
|
||||
@@ -515,6 +525,8 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
|
||||
scalar_type * ptr = (scalar_type *) &result[0];
|
||||
int words = fd*sizeof(sobj)/sizeof(scalar_type);
|
||||
grid->GlobalSumVector(ptr, words);
|
||||
// std::cout << GridLogMessage << " sliceSum local"<<t_sum<<" us, host+mpi "<<t_rest<<std::endl;
|
||||
|
||||
}
|
||||
template<class vobj> inline
|
||||
std::vector<typename vobj::scalar_object>
|
||||
@@ -525,27 +537,41 @@ sliceSum(const Lattice<vobj> &Data,int orthogdim)
|
||||
return result;
|
||||
}
|
||||
|
||||
/*
|
||||
Reimplement
|
||||
|
||||
1)
|
||||
template<class vobj>
|
||||
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)
|
||||
|
||||
2)
|
||||
template<class vobj>
|
||||
static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
|
||||
|
||||
3)
|
||||
-- Make Slice Mul Matrix call sliceMaddMatrix
|
||||
*/
|
||||
template<class vobj>
|
||||
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)
|
||||
{
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
GridBase *grid = lhs.Grid();
|
||||
assert(grid!=NULL);
|
||||
GRID_ASSERT(grid!=NULL);
|
||||
conformable(grid,rhs.Grid());
|
||||
|
||||
const int Nd = grid->_ndimension;
|
||||
const int Nsimd = grid->Nsimd();
|
||||
|
||||
assert(orthogdim >= 0);
|
||||
assert(orthogdim < Nd);
|
||||
GRID_ASSERT(orthogdim >= 0);
|
||||
GRID_ASSERT(orthogdim < Nd);
|
||||
|
||||
int fd=grid->_fdimensions[orthogdim];
|
||||
int ld=grid->_ldimensions[orthogdim];
|
||||
int rd=grid->_rdimensions[orthogdim];
|
||||
|
||||
Vector<vector_type> lvSum(rd); // will locally sum vectors first
|
||||
Vector<scalar_type > lsSum(ld,scalar_type(0.0)); // sum across these down to scalars
|
||||
std::vector<vector_type> lvSum(rd); // will locally sum vectors first
|
||||
std::vector<scalar_type > lsSum(ld,scalar_type(0.0)); // sum across these down to scalars
|
||||
ExtractBuffer<iScalar<scalar_type> > extracted(Nsimd); // splitting the SIMD
|
||||
|
||||
result.resize(fd); // And then global sum to return the same vector to every node for IO to file
|
||||
@@ -675,203 +701,96 @@ static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice
|
||||
}
|
||||
};
|
||||
|
||||
/*
|
||||
inline GridBase *makeSubSliceGrid(const GridBase *BlockSolverGrid,int Orthog)
|
||||
{
|
||||
int NN = BlockSolverGrid->_ndimension;
|
||||
int nsimd = BlockSolverGrid->Nsimd();
|
||||
|
||||
std::vector<int> latt_phys(0);
|
||||
std::vector<int> simd_phys(0);
|
||||
std::vector<int> mpi_phys(0);
|
||||
|
||||
std::vector<int> latt_phys(NN-1);
|
||||
Coordinate simd_phys;
|
||||
std::vector<int> mpi_phys(NN-1);
|
||||
Coordinate checker_dim_mask(NN-1);
|
||||
int checker_dim=-1;
|
||||
|
||||
int dd;
|
||||
for(int d=0;d<NN;d++){
|
||||
if( d!=Orthog ) {
|
||||
latt_phys.push_back(BlockSolverGrid->_fdimensions[d]);
|
||||
simd_phys.push_back(BlockSolverGrid->_simd_layout[d]);
|
||||
mpi_phys.push_back(BlockSolverGrid->_processors[d]);
|
||||
latt_phys[dd]=BlockSolverGrid->_fdimensions[d];
|
||||
mpi_phys[dd] =BlockSolverGrid->_processors[d];
|
||||
checker_dim_mask[dd] = BlockSolverGrid->_checker_dim_mask[d];
|
||||
if ( d == BlockSolverGrid->_checker_dim ) checker_dim = dd;
|
||||
dd++;
|
||||
}
|
||||
}
|
||||
return (GridBase *)new GridCartesian(latt_phys,simd_phys,mpi_phys);
|
||||
simd_phys=GridDefaultSimd(latt_phys.size(),nsimd);
|
||||
GridCartesian *tmp = new GridCartesian(latt_phys,simd_phys,mpi_phys);
|
||||
if(BlockSolverGrid->_isCheckerBoarded) {
|
||||
GridRedBlackCartesian *ret = new GridRedBlackCartesian(tmp,checker_dim_mask,checker_dim);
|
||||
delete tmp;
|
||||
return (GridBase *) ret;
|
||||
} else {
|
||||
return (GridBase *) tmp;
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
template<class vobj>
|
||||
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)
|
||||
{
|
||||
GridBase *FullGrid = X.Grid();
|
||||
GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
|
||||
|
||||
Lattice<vobj> Ys(SliceGrid);
|
||||
Lattice<vobj> Rs(SliceGrid);
|
||||
Lattice<vobj> Xs(SliceGrid);
|
||||
Lattice<vobj> RR(FullGrid);
|
||||
|
||||
RR = R; // Copies checkerboard for insert
|
||||
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
|
||||
|
||||
GridBase *FullGrid = X.Grid();
|
||||
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
|
||||
|
||||
// Lattice<vobj> Xslice(SliceGrid);
|
||||
// Lattice<vobj> Rslice(SliceGrid);
|
||||
|
||||
assert( FullGrid->_simd_layout[Orthog]==1);
|
||||
// int nh = FullGrid->_ndimension;
|
||||
// int nl = SliceGrid->_ndimension;
|
||||
// int nl = nh-1;
|
||||
|
||||
//FIXME package in a convenient iterator
|
||||
//Should loop over a plane orthogonal to direction "Orthog"
|
||||
int stride=FullGrid->_slice_stride[Orthog];
|
||||
int block =FullGrid->_slice_block [Orthog];
|
||||
int nblock=FullGrid->_slice_nblock[Orthog];
|
||||
int ostride=FullGrid->_ostride[Orthog];
|
||||
|
||||
autoView( X_v, X, CpuRead);
|
||||
autoView( Y_v, Y, CpuRead);
|
||||
autoView( R_v, R, CpuWrite);
|
||||
thread_region
|
||||
{
|
||||
Vector<vobj> s_x(Nblock);
|
||||
|
||||
thread_for_collapse_in_region(2, n,nblock, {
|
||||
for(int b=0;b<block;b++){
|
||||
int o = n*stride + b;
|
||||
|
||||
for(int i=0;i<Nblock;i++){
|
||||
s_x[i] = X_v[o+i*ostride];
|
||||
}
|
||||
|
||||
vobj dot;
|
||||
for(int i=0;i<Nblock;i++){
|
||||
dot = Y_v[o+i*ostride];
|
||||
for(int j=0;j<Nblock;j++){
|
||||
dot = dot + s_x[j]*(scale*aa(j,i));
|
||||
}
|
||||
R_v[o+i*ostride]=dot;
|
||||
}
|
||||
}});
|
||||
int Nslice = X.Grid()->GlobalDimensions()[Orthog];
|
||||
for(int i=0;i<Nslice;i++){
|
||||
ExtractSlice(Ys,Y,i,Orthog);
|
||||
ExtractSlice(Rs,R,i,Orthog);
|
||||
Rs=Ys;
|
||||
for(int j=0;j<Nslice;j++){
|
||||
ExtractSlice(Xs,X,j,Orthog);
|
||||
Rs = Rs + Xs*(scale*aa(j,i));
|
||||
}
|
||||
InsertSlice(Rs,RR,i,Orthog);
|
||||
}
|
||||
R=RR; // Copy back handles arguments aliasing case
|
||||
delete SliceGrid;
|
||||
};
|
||||
|
||||
template<class vobj>
|
||||
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
|
||||
|
||||
GridBase *FullGrid = X.Grid();
|
||||
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
|
||||
// Lattice<vobj> Xslice(SliceGrid);
|
||||
// Lattice<vobj> Rslice(SliceGrid);
|
||||
|
||||
assert( FullGrid->_simd_layout[Orthog]==1);
|
||||
// int nh = FullGrid->_ndimension;
|
||||
// int nl = SliceGrid->_ndimension;
|
||||
// int nl=1;
|
||||
|
||||
//FIXME package in a convenient iterator
|
||||
// thread_for2d_in_region
|
||||
//Should loop over a plane orthogonal to direction "Orthog"
|
||||
int stride=FullGrid->_slice_stride[Orthog];
|
||||
int block =FullGrid->_slice_block [Orthog];
|
||||
int nblock=FullGrid->_slice_nblock[Orthog];
|
||||
int ostride=FullGrid->_ostride[Orthog];
|
||||
autoView( R_v, R, CpuWrite);
|
||||
autoView( X_v, X, CpuRead);
|
||||
thread_region
|
||||
{
|
||||
std::vector<vobj> s_x(Nblock);
|
||||
|
||||
|
||||
thread_for_collapse_in_region( 2 ,n,nblock,{
|
||||
for(int b=0;b<block;b++){
|
||||
int o = n*stride + b;
|
||||
|
||||
for(int i=0;i<Nblock;i++){
|
||||
s_x[i] = X_v[o+i*ostride];
|
||||
}
|
||||
|
||||
vobj dot;
|
||||
for(int i=0;i<Nblock;i++){
|
||||
dot = s_x[0]*(scale*aa(0,i));
|
||||
for(int j=1;j<Nblock;j++){
|
||||
dot = dot + s_x[j]*(scale*aa(j,i));
|
||||
}
|
||||
R_v[o+i*ostride]=dot;
|
||||
}
|
||||
}});
|
||||
}
|
||||
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0)
|
||||
{
|
||||
R=Zero();
|
||||
sliceMaddMatrix(R,aa,X,R,Orthog,scale);
|
||||
};
|
||||
|
||||
|
||||
template<class vobj>
|
||||
static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
|
||||
{
|
||||
GridBase *SliceGrid = makeSubSliceGrid(lhs.Grid(),Orthog);
|
||||
|
||||
Lattice<vobj> ls(SliceGrid);
|
||||
Lattice<vobj> rs(SliceGrid);
|
||||
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
GridBase *FullGrid = lhs.Grid();
|
||||
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
|
||||
|
||||
int Nblock = FullGrid->GlobalDimensions()[Orthog];
|
||||
|
||||
// Lattice<vobj> Lslice(SliceGrid);
|
||||
// Lattice<vobj> Rslice(SliceGrid);
|
||||
|
||||
mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
|
||||
|
||||
assert( FullGrid->_simd_layout[Orthog]==1);
|
||||
// int nh = FullGrid->_ndimension;
|
||||
// int nl = SliceGrid->_ndimension;
|
||||
// int nl = nh-1;
|
||||
|
||||
//FIXME package in a convenient iterator
|
||||
//Should loop over a plane orthogonal to direction "Orthog"
|
||||
int stride=FullGrid->_slice_stride[Orthog];
|
||||
int block =FullGrid->_slice_block [Orthog];
|
||||
int nblock=FullGrid->_slice_nblock[Orthog];
|
||||
int ostride=FullGrid->_ostride[Orthog];
|
||||
|
||||
typedef typename vobj::vector_typeD vector_typeD;
|
||||
|
||||
autoView( lhs_v, lhs, CpuRead);
|
||||
autoView( rhs_v, rhs, CpuRead);
|
||||
thread_region
|
||||
{
|
||||
std::vector<vobj> Left(Nblock);
|
||||
std::vector<vobj> Right(Nblock);
|
||||
Eigen::MatrixXcd mat_thread = Eigen::MatrixXcd::Zero(Nblock,Nblock);
|
||||
|
||||
thread_for_collapse_in_region( 2, n,nblock,{
|
||||
for(int b=0;b<block;b++){
|
||||
|
||||
int o = n*stride + b;
|
||||
|
||||
for(int i=0;i<Nblock;i++){
|
||||
Left [i] = lhs_v[o+i*ostride];
|
||||
Right[i] = rhs_v[o+i*ostride];
|
||||
}
|
||||
|
||||
for(int i=0;i<Nblock;i++){
|
||||
for(int j=0;j<Nblock;j++){
|
||||
auto tmp = innerProduct(Left[i],Right[j]);
|
||||
auto rtmp = TensorRemove(tmp);
|
||||
auto red = Reduce(rtmp);
|
||||
mat_thread(i,j) += std::complex<double>(real(red),imag(red));
|
||||
}}
|
||||
}});
|
||||
thread_critical
|
||||
{
|
||||
mat += mat_thread;
|
||||
}
|
||||
int Nslice = lhs.Grid()->GlobalDimensions()[Orthog];
|
||||
mat = Eigen::MatrixXcd::Zero(Nslice,Nslice);
|
||||
for(int s=0;s<Nslice;s++){
|
||||
ExtractSlice(ls,lhs,s,Orthog);
|
||||
for(int ss=0;ss<Nslice;ss++){
|
||||
ExtractSlice(rs,rhs,ss,Orthog);
|
||||
mat(s,ss) = innerProduct(ls,rs);
|
||||
}
|
||||
}
|
||||
|
||||
for(int i=0;i<Nblock;i++){
|
||||
for(int j=0;j<Nblock;j++){
|
||||
ComplexD sum = mat(i,j);
|
||||
FullGrid->GlobalSum(sum);
|
||||
mat(i,j)=sum;
|
||||
}}
|
||||
|
||||
return;
|
||||
delete SliceGrid;
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
@@ -30,7 +30,7 @@ int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &
|
||||
cudaGetDevice(&device);
|
||||
#endif
|
||||
#ifdef GRID_HIP
|
||||
auto discard=hipGetDevice(&device);
|
||||
auto r=hipGetDevice(&device);
|
||||
#endif
|
||||
|
||||
Iterator warpSize = gpu_props[device].warpSize;
|
||||
@@ -208,28 +208,18 @@ inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osi
|
||||
|
||||
Integer numThreads, numBlocks;
|
||||
int ok = getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
|
||||
assert(ok);
|
||||
GRID_ASSERT(ok);
|
||||
|
||||
Integer smemSize = numThreads * sizeof(sobj);
|
||||
// Move out of UVM
|
||||
// Turns out I had messed up the synchronise after move to compute stream
|
||||
// as running this on the default stream fools the synchronise
|
||||
#undef UVM_BLOCK_BUFFER
|
||||
#ifndef UVM_BLOCK_BUFFER
|
||||
commVector<sobj> buffer(numBlocks);
|
||||
deviceVector<sobj> buffer(numBlocks);
|
||||
sobj *buffer_v = &buffer[0];
|
||||
sobj result;
|
||||
reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
|
||||
accelerator_barrier();
|
||||
acceleratorCopyFromDevice(buffer_v,&result,sizeof(result));
|
||||
#else
|
||||
Vector<sobj> buffer(numBlocks);
|
||||
sobj *buffer_v = &buffer[0];
|
||||
sobj result;
|
||||
reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
|
||||
accelerator_barrier();
|
||||
result = *buffer_v;
|
||||
#endif
|
||||
return result;
|
||||
}
|
||||
|
||||
@@ -244,7 +234,7 @@ inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osi
|
||||
|
||||
const int words = sizeof(vobj)/sizeof(vector);
|
||||
|
||||
Vector<vector> buffer(osites);
|
||||
deviceVector<vector> buffer(osites);
|
||||
vector *dat = (vector *)lat;
|
||||
vector *buf = &buffer[0];
|
||||
iScalar<vector> *tbuf =(iScalar<vector> *) &buffer[0];
|
||||
|
||||
@@ -4,29 +4,28 @@ NAMESPACE_BEGIN(Grid);
|
||||
// Possibly promote to double and sum
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
template <class vobj>
|
||||
inline typename vobj::scalar_objectD sumD_gpu_tensor(const vobj *lat, Integer osites)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_objectD sobjD;
|
||||
sobj *mysum =(sobj *) malloc_shared(sizeof(sobj),*theGridAccelerator);
|
||||
sobj identity; zeroit(identity);
|
||||
sobj ret ;
|
||||
|
||||
sobj identity; zeroit(identity);
|
||||
sobj ret; zeroit(ret);
|
||||
Integer nsimd= vobj::Nsimd();
|
||||
|
||||
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
|
||||
auto Reduction = cl::sycl::reduction(mysum,identity,std::plus<>());
|
||||
cgh.parallel_for(cl::sycl::range<1>{osites},
|
||||
Reduction,
|
||||
[=] (cl::sycl::id<1> item, auto &sum) {
|
||||
auto osite = item[0];
|
||||
sum +=Reduce(lat[osite]);
|
||||
});
|
||||
});
|
||||
theGridAccelerator->wait();
|
||||
ret = mysum[0];
|
||||
free(mysum,*theGridAccelerator);
|
||||
{
|
||||
sycl::buffer<sobj, 1> abuff(&ret, {1});
|
||||
theGridAccelerator->submit([&](sycl::handler &cgh) {
|
||||
auto Reduction = sycl::reduction(abuff,cgh,identity,std::plus<>());
|
||||
cgh.parallel_for(sycl::range<1>{osites},
|
||||
Reduction,
|
||||
[=] (sycl::id<1> item, auto &sum) {
|
||||
auto osite = item[0];
|
||||
sum +=Reduce(lat[osite]);
|
||||
});
|
||||
});
|
||||
}
|
||||
sobjD dret; convertType(dret,ret);
|
||||
return dret;
|
||||
}
|
||||
@@ -69,57 +68,44 @@ inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osite
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
template<class Word> Word svm_xor(Word *vec,uint64_t L)
|
||||
{
|
||||
Word identity; identity=0;
|
||||
Word ret = 0;
|
||||
{
|
||||
sycl::buffer<Word, 1> abuff(&ret, {1});
|
||||
theGridAccelerator->submit([&](sycl::handler &cgh) {
|
||||
auto Reduction = sycl::reduction(abuff,cgh,identity,std::bit_xor<>());
|
||||
cgh.parallel_for(sycl::range<1>{L},
|
||||
Reduction,
|
||||
[=] (sycl::id<1> index, auto &sum) {
|
||||
sum ^=vec[index];
|
||||
});
|
||||
});
|
||||
}
|
||||
theGridAccelerator->wait();
|
||||
return ret;
|
||||
}
|
||||
template<class Word> Word checksum_gpu(Word *vec,uint64_t L)
|
||||
{
|
||||
Word identity; identity=0;
|
||||
Word ret = 0;
|
||||
{
|
||||
sycl::buffer<Word, 1> abuff(&ret, {1});
|
||||
theGridAccelerator->submit([&](sycl::handler &cgh) {
|
||||
auto Reduction = sycl::reduction(abuff,cgh,identity,std::bit_xor<>());
|
||||
cgh.parallel_for(sycl::range<1>{L},
|
||||
Reduction,
|
||||
[=] (sycl::id<1> index, auto &sum) {
|
||||
auto l = index % 61;
|
||||
sum ^= vec[index]<<l | vec[index]>>(64-l);
|
||||
});
|
||||
});
|
||||
}
|
||||
theGridAccelerator->wait();
|
||||
return ret;
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
/*
|
||||
template<class Double> Double svm_reduce(Double *vec,uint64_t L)
|
||||
{
|
||||
Double sumResult; zeroit(sumResult);
|
||||
Double *d_sum =(Double *)cl::sycl::malloc_shared(sizeof(Double),*theGridAccelerator);
|
||||
Double identity; zeroit(identity);
|
||||
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
|
||||
auto Reduction = cl::sycl::reduction(d_sum,identity,std::plus<>());
|
||||
cgh.parallel_for(cl::sycl::range<1>{L},
|
||||
Reduction,
|
||||
[=] (cl::sycl::id<1> index, auto &sum) {
|
||||
sum +=vec[index];
|
||||
});
|
||||
});
|
||||
theGridAccelerator->wait();
|
||||
Double ret = d_sum[0];
|
||||
free(d_sum,*theGridAccelerator);
|
||||
std::cout << " svm_reduce finished "<<L<<" sites sum = " << ret <<std::endl;
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <class vobj>
|
||||
inline typename vobj::scalar_objectD sumD_gpu_repack(const vobj *lat, Integer osites)
|
||||
{
|
||||
typedef typename vobj::vector_type vector;
|
||||
typedef typename vobj::scalar_type scalar;
|
||||
|
||||
typedef typename vobj::scalar_typeD scalarD;
|
||||
typedef typename vobj::scalar_objectD sobjD;
|
||||
|
||||
sobjD ret;
|
||||
scalarD *ret_p = (scalarD *)&ret;
|
||||
|
||||
const int nsimd = vobj::Nsimd();
|
||||
const int words = sizeof(vobj)/sizeof(vector);
|
||||
|
||||
Vector<scalar> buffer(osites*nsimd);
|
||||
scalar *buf = &buffer[0];
|
||||
vector *dat = (vector *)lat;
|
||||
|
||||
for(int w=0;w<words;w++) {
|
||||
|
||||
accelerator_for(ss,osites,nsimd,{
|
||||
int lane = acceleratorSIMTlane(nsimd);
|
||||
buf[ss*nsimd+lane] = dat[ss*words+w].getlane(lane);
|
||||
});
|
||||
//Precision change at this point is to late to gain precision
|
||||
ret_p[w] = svm_reduce(buf,nsimd*osites);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
*/
|
||||
|
||||
@@ -53,10 +53,10 @@ inline int RNGfillable(GridBase *coarse,GridBase *fine)
|
||||
|
||||
// trivially extended in higher dims, with locality guaranteeing RNG state is local to node
|
||||
int lowerdims = fine->_ndimension - coarse->_ndimension;
|
||||
assert(lowerdims >= 0);
|
||||
GRID_ASSERT(lowerdims >= 0);
|
||||
for(int d=0;d<lowerdims;d++){
|
||||
assert(fine->_simd_layout[d]==1);
|
||||
assert(fine->_processors[d]==1);
|
||||
GRID_ASSERT(fine->_simd_layout[d]==1);
|
||||
GRID_ASSERT(fine->_processors[d]==1);
|
||||
}
|
||||
|
||||
int multiplicity=1;
|
||||
@@ -66,9 +66,9 @@ inline int RNGfillable(GridBase *coarse,GridBase *fine)
|
||||
// local and global volumes subdivide cleanly after SIMDization
|
||||
for(int d=0;d<rngdims;d++){
|
||||
int fd= d+lowerdims;
|
||||
assert(coarse->_processors[d] == fine->_processors[fd]);
|
||||
assert(coarse->_simd_layout[d] == fine->_simd_layout[fd]);
|
||||
assert(((fine->_rdimensions[fd] / coarse->_rdimensions[d])* coarse->_rdimensions[d])==fine->_rdimensions[fd]);
|
||||
GRID_ASSERT(coarse->_processors[d] == fine->_processors[fd]);
|
||||
GRID_ASSERT(coarse->_simd_layout[d] == fine->_simd_layout[fd]);
|
||||
GRID_ASSERT(((fine->_rdimensions[fd] / coarse->_rdimensions[d])* coarse->_rdimensions[d])==fine->_rdimensions[fd]);
|
||||
|
||||
multiplicity = multiplicity *fine->_rdimensions[fd] / coarse->_rdimensions[d];
|
||||
}
|
||||
@@ -83,18 +83,18 @@ inline int RNGfillable_general(GridBase *coarse,GridBase *fine)
|
||||
int rngdims = coarse->_ndimension;
|
||||
|
||||
// trivially extended in higher dims, with locality guaranteeing RNG state is local to node
|
||||
int lowerdims = fine->_ndimension - coarse->_ndimension; assert(lowerdims >= 0);
|
||||
int lowerdims = fine->_ndimension - coarse->_ndimension; GRID_ASSERT(lowerdims >= 0);
|
||||
// assumes that the higher dimensions are not using more processors
|
||||
// all further divisions are local
|
||||
for(int d=0;d<lowerdims;d++) assert(fine->_processors[d]==1);
|
||||
for(int d=0;d<rngdims;d++) assert(coarse->_processors[d] == fine->_processors[d+lowerdims]);
|
||||
for(int d=0;d<lowerdims;d++) GRID_ASSERT(fine->_processors[d]==1);
|
||||
for(int d=0;d<rngdims;d++) GRID_ASSERT(coarse->_processors[d] == fine->_processors[d+lowerdims]);
|
||||
|
||||
// then divide the number of local sites
|
||||
// check that the total number of sims agree, meanse the iSites are the same
|
||||
assert(fine->Nsimd() == coarse->Nsimd());
|
||||
GRID_ASSERT(fine->Nsimd() == coarse->Nsimd());
|
||||
|
||||
// check that the two grids divide cleanly
|
||||
assert( (fine->lSites() / coarse->lSites() ) * coarse->lSites() == fine->lSites() );
|
||||
GRID_ASSERT( (fine->lSites() / coarse->lSites() ) * coarse->lSites() == fine->lSites() );
|
||||
|
||||
return fine->lSites() / coarse->lSites();
|
||||
}
|
||||
@@ -152,6 +152,7 @@ public:
|
||||
#ifdef RNG_FAST_DISCARD
|
||||
static void Skip(RngEngine &eng,uint64_t site)
|
||||
{
|
||||
#if 0
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
// Skip by 2^40 elements between successive lattice sites
|
||||
// This goes by 10^12.
|
||||
@@ -162,9 +163,9 @@ public:
|
||||
// tens of seconds per trajectory so this is clean in all reasonable cases,
|
||||
// and margin of safety is orders of magnitude.
|
||||
// We could hack Sitmo to skip in the higher order words of state if necessary
|
||||
//
|
||||
// Replace with 2^30 ; avoid problem on large volumes
|
||||
//
|
||||
//
|
||||
// Replace with 2^30 ; avoid problem on large volumes
|
||||
//
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
// uint64_t skip = site+1; // Old init Skipped then drew. Checked compat with faster init
|
||||
const int shift = 30;
|
||||
@@ -176,9 +177,12 @@ public:
|
||||
|
||||
skip = skip<<shift;
|
||||
|
||||
assert((skip >> shift)==site); // check for overflow
|
||||
GRID_ASSERT((skip >> shift)==site); // check for overflow
|
||||
|
||||
eng.discard(skip);
|
||||
#else
|
||||
eng.discardhi(site);
|
||||
#endif
|
||||
// std::cout << " Engine " <<site << " state " <<eng<<std::endl;
|
||||
}
|
||||
#endif
|
||||
@@ -214,7 +218,7 @@ public:
|
||||
GetState(saved,_generators[gen]);
|
||||
}
|
||||
void SetState(std::vector<RngStateType> & saved,RngEngine &eng){
|
||||
assert(saved.size()==RngStateCount);
|
||||
GRID_ASSERT(saved.size()==RngStateCount);
|
||||
std::stringstream ss;
|
||||
for(int i=0;i<RngStateCount;i++){
|
||||
ss<< saved[i]<<" ";
|
||||
@@ -412,7 +416,7 @@ public:
|
||||
std::cout << GridLogMessage << "Seed SHA256: " << GridChecksum::sha256_string(seeds) << std::endl;
|
||||
SeedFixedIntegers(seeds);
|
||||
}
|
||||
void SeedFixedIntegers(const std::vector<int> &seeds){
|
||||
void SeedFixedIntegers(const std::vector<int> &seeds, int britney=0){
|
||||
|
||||
// Everyone generates the same seed_seq based on input seeds
|
||||
CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size());
|
||||
@@ -429,7 +433,6 @@ public:
|
||||
// MT implementation does not implement fast discard even though
|
||||
// in principle this is possible
|
||||
////////////////////////////////////////////////
|
||||
#if 1
|
||||
thread_for( lidx, _grid->lSites(), {
|
||||
|
||||
int64_t gidx;
|
||||
@@ -450,29 +453,12 @@ public:
|
||||
|
||||
int l_idx=generator_idx(o_idx,i_idx);
|
||||
_generators[l_idx] = master_engine;
|
||||
Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
|
||||
});
|
||||
#else
|
||||
// Everybody loops over global volume.
|
||||
thread_for( gidx, _grid->_gsites, {
|
||||
|
||||
// Where is it?
|
||||
int rank;
|
||||
int o_idx;
|
||||
int i_idx;
|
||||
|
||||
Coordinate gcoor;
|
||||
_grid->GlobalIndexToGlobalCoor(gidx,gcoor);
|
||||
_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
|
||||
|
||||
// If this is one of mine we take it
|
||||
if( rank == _grid->ThisRank() ){
|
||||
int l_idx=generator_idx(o_idx,i_idx);
|
||||
_generators[l_idx] = master_engine;
|
||||
if ( britney ) {
|
||||
Skip(_generators[l_idx],l_idx); // Skip to next RNG sequence
|
||||
} else {
|
||||
Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
|
||||
}
|
||||
});
|
||||
#endif
|
||||
#else
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Machine and thread decomposition dependent seeding is efficient
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user