mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-11-04 05:54:32 +00:00 
			
		
		
		
	Compare commits
	
		
			9 Commits
		
	
	
		
			25f71913b7
			...
			feature/ft
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 
						 | 
					09146cfc43 | ||
| 
						 | 
					a450e96827 | ||
| 
						 | 
					0f3678b9be | ||
| 
						 | 
					8dd8338e14 | ||
| 
						 | 
					11e0dc9851 | ||
| 
						 | 
					f4ef6dae43 | ||
| 
						 | 
					b6e147372b | ||
| 
						 | 
					3a4a662dc6 | ||
| 
						 | 
					8d06bda6fb | 
@@ -66,10 +66,6 @@ if BUILD_FERMION_REPS
 | 
			
		||||
  extra_sources+=$(ADJ_FERMION_FILES)
 | 
			
		||||
  extra_sources+=$(TWOIND_FERMION_FILES)
 | 
			
		||||
endif
 | 
			
		||||
if BUILD_SP
 | 
			
		||||
    extra_sources+=$(SP_FERMION_FILES)
 | 
			
		||||
    extra_sources+=$(SP_TWOIND_FERMION_FILES)
 | 
			
		||||
endif
 | 
			
		||||
 | 
			
		||||
lib_LIBRARIES = libGrid.a
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -69,8 +69,7 @@ NAMESPACE_CHECK(BiCGSTAB);
 | 
			
		||||
#include <Grid/algorithms/iterative/PowerMethod.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_CHECK(PowerMethod);
 | 
			
		||||
#include <Grid/algorithms/multigrid/MultiGrid.h>
 | 
			
		||||
 | 
			
		||||
#include <Grid/algorithms/CoarsenedMatrix.h>
 | 
			
		||||
NAMESPACE_CHECK(CoarsendMatrix);
 | 
			
		||||
#include <Grid/algorithms/FFT.h>
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -56,6 +56,243 @@ inline void blockMaskedInnerProduct(Lattice<CComplex> &CoarseInner,
 | 
			
		||||
  blockSum(CoarseInner,fine_inner_msk);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Geometry {
 | 
			
		||||
public:
 | 
			
		||||
  int npoint;
 | 
			
		||||
  int base;
 | 
			
		||||
  std::vector<int> directions   ;
 | 
			
		||||
  std::vector<int> displacements;
 | 
			
		||||
  std::vector<int> points_dagger;
 | 
			
		||||
 | 
			
		||||
  Geometry(int _d)  {
 | 
			
		||||
    
 | 
			
		||||
    base = (_d==5) ? 1:0;
 | 
			
		||||
 | 
			
		||||
    // make coarse grid stencil for 4d , not 5d
 | 
			
		||||
    if ( _d==5 ) _d=4;
 | 
			
		||||
 | 
			
		||||
    npoint = 2*_d+1;
 | 
			
		||||
    directions.resize(npoint);
 | 
			
		||||
    displacements.resize(npoint);
 | 
			
		||||
    points_dagger.resize(npoint);
 | 
			
		||||
    for(int d=0;d<_d;d++){
 | 
			
		||||
      directions[d   ] = d+base;
 | 
			
		||||
      directions[d+_d] = d+base;
 | 
			
		||||
      displacements[d  ] = +1;
 | 
			
		||||
      displacements[d+_d]= -1;
 | 
			
		||||
      points_dagger[d   ] = d+_d;
 | 
			
		||||
      points_dagger[d+_d] = d;
 | 
			
		||||
    }
 | 
			
		||||
    directions   [2*_d]=0;
 | 
			
		||||
    displacements[2*_d]=0;
 | 
			
		||||
    points_dagger[2*_d]=2*_d;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int point(int dir, int disp) {
 | 
			
		||||
    assert(disp == -1 || disp == 0 || disp == 1);
 | 
			
		||||
    assert(base+0 <= dir && dir < base+4);
 | 
			
		||||
 | 
			
		||||
    // directions faster index = new indexing
 | 
			
		||||
    // 4d (base = 0):
 | 
			
		||||
    // point 0  1  2  3  4  5  6  7  8
 | 
			
		||||
    // dir   0  1  2  3  0  1  2  3  0
 | 
			
		||||
    // disp +1 +1 +1 +1 -1 -1 -1 -1  0
 | 
			
		||||
    // 5d (base = 1):
 | 
			
		||||
    // point 0  1  2  3  4  5  6  7  8
 | 
			
		||||
    // dir   1  2  3  4  1  2  3  4  0
 | 
			
		||||
    // disp +1 +1 +1 +1 -1 -1 -1 -1  0
 | 
			
		||||
 | 
			
		||||
    // displacements faster index = old indexing
 | 
			
		||||
    // 4d (base = 0):
 | 
			
		||||
    // point 0  1  2  3  4  5  6  7  8
 | 
			
		||||
    // dir   0  0  1  1  2  2  3  3  0
 | 
			
		||||
    // disp +1 -1 +1 -1 +1 -1 +1 -1  0
 | 
			
		||||
    // 5d (base = 1):
 | 
			
		||||
    // point 0  1  2  3  4  5  6  7  8
 | 
			
		||||
    // dir   1  1  2  2  3  3  4  4  0
 | 
			
		||||
    // disp +1 -1 +1 -1 +1 -1 +1 -1  0
 | 
			
		||||
 | 
			
		||||
    if(dir == 0 and disp == 0)
 | 
			
		||||
      return 8;
 | 
			
		||||
    else // New indexing
 | 
			
		||||
      return (1 - disp) / 2 * 4 + dir - base;
 | 
			
		||||
    // else // Old indexing
 | 
			
		||||
    //   return (4 * (dir - base) + 1 - disp) / 2;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
  
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
class Aggregation   {
 | 
			
		||||
public:
 | 
			
		||||
  typedef iVector<CComplex,nbasis >             siteVector;
 | 
			
		||||
  typedef Lattice<siteVector>                 CoarseVector;
 | 
			
		||||
  typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | 
			
		||||
  typedef Lattice<Fobj >        FineField;
 | 
			
		||||
 | 
			
		||||
  GridBase *CoarseGrid;
 | 
			
		||||
  GridBase *FineGrid;
 | 
			
		||||
  std::vector<Lattice<Fobj> > subspace;
 | 
			
		||||
  int checkerboard;
 | 
			
		||||
  int Checkerboard(void){return checkerboard;}
 | 
			
		||||
  Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) : 
 | 
			
		||||
    CoarseGrid(_CoarseGrid),
 | 
			
		||||
    FineGrid(_FineGrid),
 | 
			
		||||
    subspace(nbasis,_FineGrid),
 | 
			
		||||
    checkerboard(_checkerboard)
 | 
			
		||||
  {
 | 
			
		||||
  };
 | 
			
		||||
  
 | 
			
		||||
  void Orthogonalise(void){
 | 
			
		||||
    CoarseScalar InnerProd(CoarseGrid); 
 | 
			
		||||
    std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
 | 
			
		||||
    blockOrthogonalise(InnerProd,subspace);
 | 
			
		||||
  } 
 | 
			
		||||
  void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
 | 
			
		||||
    blockProject(CoarseVec,FineVec,subspace);
 | 
			
		||||
  }
 | 
			
		||||
  void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
 | 
			
		||||
    FineVec.Checkerboard() = subspace[0].Checkerboard();
 | 
			
		||||
    blockPromote(CoarseVec,FineVec,subspace);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void CreateSubspace(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    ConjugateGradient<FineField> CG(1.0e-2,100,false);
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
 | 
			
		||||
    for(int b=0;b<nn;b++){
 | 
			
		||||
      
 | 
			
		||||
      subspace[b] = Zero();
 | 
			
		||||
      gaussian(RNG,noise);
 | 
			
		||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
      noise=noise*scale;
 | 
			
		||||
      
 | 
			
		||||
      hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise   ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
      for(int i=0;i<1;i++){
 | 
			
		||||
 | 
			
		||||
	CG(hermop,noise,subspace[b]);
 | 
			
		||||
 | 
			
		||||
	noise = subspace[b];
 | 
			
		||||
	scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
	noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
      subspace[b]   = noise;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
 | 
			
		||||
  // and this is the best I found
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
				       int nn,
 | 
			
		||||
				       double hi,
 | 
			
		||||
				       double lo,
 | 
			
		||||
				       int orderfilter,
 | 
			
		||||
				       int ordermin,
 | 
			
		||||
				       int orderstep,
 | 
			
		||||
				       double filterlo
 | 
			
		||||
				       ) {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
    FineField tmp(FineGrid);
 | 
			
		||||
 | 
			
		||||
    // New normalised noise
 | 
			
		||||
    gaussian(RNG,noise);
 | 
			
		||||
    scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
    noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
    // Initial matrix element
 | 
			
		||||
    hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
    int b =0;
 | 
			
		||||
    {
 | 
			
		||||
      // Filter
 | 
			
		||||
      Chebyshev<FineField> Cheb(lo,hi,orderfilter);
 | 
			
		||||
      Cheb(hermop,noise,Mn);
 | 
			
		||||
      // normalise
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
			
		||||
      subspace[b]   = Mn;
 | 
			
		||||
      hermop.Op(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
      b++;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Generate a full sequence of Chebyshevs
 | 
			
		||||
    {
 | 
			
		||||
      lo=filterlo;
 | 
			
		||||
      noise=Mn;
 | 
			
		||||
 | 
			
		||||
      FineField T0(FineGrid); T0 = noise;  
 | 
			
		||||
      FineField T1(FineGrid); 
 | 
			
		||||
      FineField T2(FineGrid);
 | 
			
		||||
      FineField y(FineGrid);
 | 
			
		||||
      
 | 
			
		||||
      FineField *Tnm = &T0;
 | 
			
		||||
      FineField *Tn  = &T1;
 | 
			
		||||
      FineField *Tnp = &T2;
 | 
			
		||||
 | 
			
		||||
      // Tn=T1 = (xscale M + mscale)in
 | 
			
		||||
      RealD xscale = 2.0/(hi-lo);
 | 
			
		||||
      RealD mscale = -(hi+lo)/(hi-lo);
 | 
			
		||||
      hermop.HermOp(T0,y);
 | 
			
		||||
      T1=y*xscale+noise*mscale;
 | 
			
		||||
 | 
			
		||||
      for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
 | 
			
		||||
	
 | 
			
		||||
	hermop.HermOp(*Tn,y);
 | 
			
		||||
 | 
			
		||||
	autoView( y_v , y, AcceleratorWrite);
 | 
			
		||||
	autoView( Tn_v , (*Tn), AcceleratorWrite);
 | 
			
		||||
	autoView( Tnp_v , (*Tnp), AcceleratorWrite);
 | 
			
		||||
	autoView( Tnm_v , (*Tnm), AcceleratorWrite);
 | 
			
		||||
	const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
	accelerator_for(ss, FineGrid->oSites(), Nsimd, {
 | 
			
		||||
	  coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
 | 
			
		||||
	  coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
 | 
			
		||||
        });
 | 
			
		||||
 | 
			
		||||
	// Possible more fine grained control is needed than a linear sweep,
 | 
			
		||||
	// but huge productivity gain if this is simple algorithm and not a tunable
 | 
			
		||||
	int m =1;
 | 
			
		||||
	if ( n>=ordermin ) m=n-ordermin;
 | 
			
		||||
	if ( (m%orderstep)==0 ) { 
 | 
			
		||||
	  Mn=*Tnp;
 | 
			
		||||
	  scale = std::pow(norm2(Mn),-0.5);         Mn=Mn*scale;
 | 
			
		||||
	  subspace[b] = Mn;
 | 
			
		||||
	  hermop.Op(Mn,tmp); 
 | 
			
		||||
	  std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
	  b++;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Cycle pointers to avoid copies
 | 
			
		||||
	FineField *swizzle = Tnm;
 | 
			
		||||
	Tnm    =Tn;
 | 
			
		||||
	Tn     =Tnp;
 | 
			
		||||
	Tnp    =swizzle;
 | 
			
		||||
	  
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    assert(b==nn);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// Fine Object == (per site) type of fine field
 | 
			
		||||
// nbasis      == number of deflation vectors
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
@@ -145,44 +145,6 @@ public:
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Create a shifted HermOp
 | 
			
		||||
////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Field>
 | 
			
		||||
class ShiftedHermOpLinearOperator : public LinearOperatorBase<Field> {
 | 
			
		||||
  LinearOperatorBase<Field> &_Mat;
 | 
			
		||||
  RealD _shift;
 | 
			
		||||
public:
 | 
			
		||||
  ShiftedHermOpLinearOperator(LinearOperatorBase<Field> &Mat,RealD shift): _Mat(Mat), _shift(shift){};
 | 
			
		||||
  // Support for coarsening to a multigrid
 | 
			
		||||
  void OpDiag (const Field &in, Field &out) {
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
			
		||||
    assert(0);
 | 
			
		||||
  };
 | 
			
		||||
  void Op     (const Field &in, Field &out){
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  void AdjOp     (const Field &in, Field &out){
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
    HermOp(in,out);
 | 
			
		||||
    ComplexD dot = innerProduct(in,out);
 | 
			
		||||
    n1=real(dot);
 | 
			
		||||
    n2=norm2(out);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOp(const Field &in, Field &out){
 | 
			
		||||
    _Mat.HermOp(in,out);
 | 
			
		||||
    out = out + _shift*in;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Wrap an already herm matrix
 | 
			
		||||
////////////////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -90,8 +90,9 @@ public:
 | 
			
		||||
    order=_order;
 | 
			
		||||
      
 | 
			
		||||
    if(order < 2) exit(-1);
 | 
			
		||||
    Coeffs.resize(order,0.0);
 | 
			
		||||
    Coeffs[order-1] = 1.0;
 | 
			
		||||
    Coeffs.resize(order);
 | 
			
		||||
    Coeffs.assign(0.,order);
 | 
			
		||||
    Coeffs[order-1] = 1.;
 | 
			
		||||
  };
 | 
			
		||||
  
 | 
			
		||||
  // PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's.
 | 
			
		||||
 
 | 
			
		||||
@@ -40,7 +40,7 @@ public:
 | 
			
		||||
  RealD norm;
 | 
			
		||||
  RealD lo,hi;
 | 
			
		||||
 | 
			
		||||
  MultiShiftFunction(int n,RealD _lo,RealD _hi): poles(n), residues(n), tolerances(n), lo(_lo), hi(_hi) {;};
 | 
			
		||||
  MultiShiftFunction(int n,RealD _lo,RealD _hi): poles(n), residues(n), lo(_lo), hi(_hi) {;};
 | 
			
		||||
  RealD approx(RealD x);
 | 
			
		||||
  void csv(std::ostream &out);
 | 
			
		||||
  void gnuplot(std::ostream &out);
 | 
			
		||||
 
 | 
			
		||||
@@ -33,110 +33,109 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
   * Script A = SolverMatrix 
 | 
			
		||||
   * Script P = Preconditioner
 | 
			
		||||
   *
 | 
			
		||||
   * Deflation methods considered
 | 
			
		||||
   *      -- Solve P A x = P b        [ like Luscher ]
 | 
			
		||||
   * DEF-1        M P A x = M P b     [i.e. left precon]
 | 
			
		||||
   * DEF-2        P^T M A x = P^T M b
 | 
			
		||||
   * ADEF-1       Preconditioner = M P + Q      [ Q + M + M A Q]
 | 
			
		||||
   * ADEF-2       Preconditioner = P^T M + Q
 | 
			
		||||
   * BNN          Preconditioner = P^T M P + Q
 | 
			
		||||
   * BNN2         Preconditioner = M P + P^TM +Q - M P A M 
 | 
			
		||||
   * 
 | 
			
		||||
   * Implement ADEF-2
 | 
			
		||||
   *
 | 
			
		||||
   * Vstart = P^Tx + Qb
 | 
			
		||||
   * M1 = P^TM + Q
 | 
			
		||||
   * M2=M3=1
 | 
			
		||||
   * Vout = x
 | 
			
		||||
   */
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class TwoLevelCG : public LinearFunction<Field>
 | 
			
		||||
// abstract base
 | 
			
		||||
template<class Field, class CoarseField>
 | 
			
		||||
class TwoLevelFlexiblePcg : public LinearFunction<Field>
 | 
			
		||||
{
 | 
			
		||||
 public:
 | 
			
		||||
  int verbose;
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  const int mmax = 5;
 | 
			
		||||
  GridBase *grid;
 | 
			
		||||
  GridBase *coarsegrid;
 | 
			
		||||
 | 
			
		||||
  // Fine operator, Smoother, CoarseSolver
 | 
			
		||||
  LinearOperatorBase<Field>   &_FineLinop;
 | 
			
		||||
  LinearFunction<Field>   &_Smoother;
 | 
			
		||||
  LinearOperatorBase<Field>   *_Linop
 | 
			
		||||
  OperatorFunction<Field>     *_Smoother,
 | 
			
		||||
  LinearFunction<CoarseField> *_CoarseSolver;
 | 
			
		||||
 | 
			
		||||
  // Need somthing that knows how to get from Coarse to fine and back again
 | 
			
		||||
  
 | 
			
		||||
  // more most opertor functions
 | 
			
		||||
  TwoLevelCG(RealD tol,
 | 
			
		||||
  TwoLevelFlexiblePcg(RealD tol,
 | 
			
		||||
		     Integer maxit,
 | 
			
		||||
	     LinearOperatorBase<Field>   &FineLinop,
 | 
			
		||||
	     LinearFunction<Field>       &Smoother,
 | 
			
		||||
	     GridBase *fine) : 
 | 
			
		||||
		     LinearOperatorBase<Field> *Linop,
 | 
			
		||||
		     LinearOperatorBase<Field> *SmootherLinop,
 | 
			
		||||
		     OperatorFunction<Field>   *Smoother,
 | 
			
		||||
		     OperatorFunction<CoarseField>  CoarseLinop
 | 
			
		||||
		     ) : 
 | 
			
		||||
      Tolerance(tol), 
 | 
			
		||||
      MaxIterations(maxit),
 | 
			
		||||
      _FineLinop(FineLinop),
 | 
			
		||||
      _Smoother(Smoother)
 | 
			
		||||
      _Linop(Linop),
 | 
			
		||||
      _PreconditionerLinop(PrecLinop),
 | 
			
		||||
      _Preconditioner(Preconditioner)
 | 
			
		||||
  { 
 | 
			
		||||
    grid       = fine;
 | 
			
		||||
    verbose=0;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  virtual void operator() (const Field &src, Field &x)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg starting"<<std::endl;
 | 
			
		||||
  // The Pcg routine is common to all, but the various matrices differ from derived 
 | 
			
		||||
  // implementation to derived implmentation
 | 
			
		||||
  void operator() (const Field &src, Field &psi){
 | 
			
		||||
  void operator() (const Field &src, Field &psi){
 | 
			
		||||
 | 
			
		||||
    psi.Checkerboard() = src.Checkerboard();
 | 
			
		||||
    grid             = src.Grid();
 | 
			
		||||
 | 
			
		||||
    RealD f;
 | 
			
		||||
    RealD rtzp,rtz,a,d,b;
 | 
			
		||||
    RealD rptzp;
 | 
			
		||||
    RealD tn;
 | 
			
		||||
    RealD guess = norm2(psi);
 | 
			
		||||
    RealD ssq   = norm2(src);
 | 
			
		||||
    RealD rsq   = ssq*Tolerance*Tolerance;
 | 
			
		||||
    
 | 
			
		||||
    /////////////////////////////
 | 
			
		||||
    // Set up history vectors
 | 
			
		||||
    /////////////////////////////
 | 
			
		||||
    int mmax = 5;
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
 | 
			
		||||
    std::vector<Field> p  (mmax,grid);
 | 
			
		||||
    std::vector<Field> mmp(mmax,grid);
 | 
			
		||||
    std::vector<RealD> pAp(mmax);
 | 
			
		||||
 | 
			
		||||
    Field x  (grid); x = psi;
 | 
			
		||||
    Field z  (grid);
 | 
			
		||||
    Field tmp(grid);
 | 
			
		||||
    Field  mp (grid);
 | 
			
		||||
    Field r  (grid);
 | 
			
		||||
    Field mu (grid);
 | 
			
		||||
  
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocated"<<std::endl;
 | 
			
		||||
    //Initial residual computation & set up
 | 
			
		||||
    RealD guess   = norm2(x);
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg guess nrm "<<guess<<std::endl;
 | 
			
		||||
    RealD src_nrm = norm2(src);
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg src nrm "<<src_nrm<<std::endl;
 | 
			
		||||
    
 | 
			
		||||
    if ( src_nrm == 0.0 ) {
 | 
			
		||||
      std::cout << GridLogMessage<<"HDCG: fPcg given trivial source norm "<<src_nrm<<std::endl;
 | 
			
		||||
      x=Zero();
 | 
			
		||||
    }
 | 
			
		||||
    RealD tn;
 | 
			
		||||
    
 | 
			
		||||
    GridStopWatch HDCGTimer;
 | 
			
		||||
    HDCGTimer.Start();
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    // x0 = Vstart -- possibly modify guess
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    x=src;
 | 
			
		||||
    Vstart(x,src);
 | 
			
		||||
 | 
			
		||||
    // r0 = b -A x0
 | 
			
		||||
    _FineLinop.HermOp(x,mmp[0]);
 | 
			
		||||
    HermOp(x,mmp); // Shouldn't this be something else?
 | 
			
		||||
    axpy (r, -1.0,mmp[0], src);    // Recomputes r=src-Ax0
 | 
			
		||||
    {
 | 
			
		||||
      double n1 = norm2(x);
 | 
			
		||||
      double n2 = norm2(mmp[0]);
 | 
			
		||||
      double n3 = norm2(r);
 | 
			
		||||
      std::cout<<GridLogMessage<<"x,vstart,r = "<<n1<<" "<<n2<<" "<<n3<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    // Compute z = M1 x
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    PcgM1(r,z);
 | 
			
		||||
    M1(r,z,tmp,mp,SmootherMirs);
 | 
			
		||||
    rtzp =real(innerProduct(r,z));
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    // Solve for Mss mu = P A z and set p = z-mu
 | 
			
		||||
    // Def2 p = 1 - Q Az = Pright z
 | 
			
		||||
    // Def2: p = 1 - Q Az = Pright z 
 | 
			
		||||
    // Other algos M2 is trivial
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    PcgM2(z,p[0]);
 | 
			
		||||
 | 
			
		||||
    RealD ssq =  norm2(src);
 | 
			
		||||
    RealD rsq =  ssq*Tolerance*Tolerance;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: k=0 residual "<<rtzp<<" rsq "<<rsq<<"\n";
 | 
			
		||||
 | 
			
		||||
    Field pp(grid);
 | 
			
		||||
    M2(z,p[0]);
 | 
			
		||||
 | 
			
		||||
    for (int k=0;k<=MaxIterations;k++){
 | 
			
		||||
    
 | 
			
		||||
@@ -144,7 +143,7 @@ class TwoLevelCG : public LinearFunction<Field>
 | 
			
		||||
      int peri_kp = (k+1) % mmax;
 | 
			
		||||
 | 
			
		||||
      rtz=rtzp;
 | 
			
		||||
      d= PcgM3(p[peri_k],mmp[peri_k]);
 | 
			
		||||
      d= M3(p[peri_k],mp,mmp[peri_k],tmp);
 | 
			
		||||
      a = rtz/d;
 | 
			
		||||
    
 | 
			
		||||
      // Memorise this
 | 
			
		||||
@@ -154,36 +153,21 @@ class TwoLevelCG : public LinearFunction<Field>
 | 
			
		||||
      RealD rn = axpy_norm(r,-a,mmp[peri_k],r);
 | 
			
		||||
 | 
			
		||||
      // Compute z = M x
 | 
			
		||||
      PcgM1(r,z);
 | 
			
		||||
      M1(r,z,tmp,mp);
 | 
			
		||||
 | 
			
		||||
      {
 | 
			
		||||
	RealD n1,n2;
 | 
			
		||||
	n1=norm2(r);
 | 
			
		||||
	n2=norm2(z);
 | 
			
		||||
	std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : vector r,z "<<n1<<" "<<n2<<"\n";
 | 
			
		||||
      }
 | 
			
		||||
      rtzp =real(innerProduct(r,z));
 | 
			
		||||
      std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : inner rtzp "<<rtzp<<"\n";
 | 
			
		||||
 | 
			
		||||
      //    PcgM2(z,p[0]);
 | 
			
		||||
      PcgM2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
 | 
			
		||||
      M2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
 | 
			
		||||
 | 
			
		||||
      p[peri_kp]=mu;
 | 
			
		||||
      p[peri_kp]=p[peri_k];
 | 
			
		||||
 | 
			
		||||
      // Standard search direction  p -> z + b p    
 | 
			
		||||
      // Standard search direction  p -> z + b p    ; b = 
 | 
			
		||||
      b = (rtzp)/rtz;
 | 
			
		||||
 | 
			
		||||
      int northog;
 | 
			
		||||
      // k=zero  <=> peri_kp=1;        northog = 1
 | 
			
		||||
      // k=1     <=> peri_kp=2;        northog = 2
 | 
			
		||||
      // ...               ...                  ...
 | 
			
		||||
      // k=mmax-2<=> peri_kp=mmax-1;   northog = mmax-1
 | 
			
		||||
      // k=mmax-1<=> peri_kp=0;        northog = 1
 | 
			
		||||
 | 
			
		||||
      //    northog     = (peri_kp==0)?1:peri_kp; // This is the fCG(mmax) algorithm
 | 
			
		||||
      northog     = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm
 | 
			
		||||
    
 | 
			
		||||
      std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n";
 | 
			
		||||
      for(int back=0; back < northog; back++){
 | 
			
		||||
	int peri_back = (k-back)%mmax;
 | 
			
		||||
	RealD pbApk= real(innerProduct(mmp[peri_back],p[peri_kp]));
 | 
			
		||||
@@ -192,315 +176,75 @@ class TwoLevelCG : public LinearFunction<Field>
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      RealD rrn=sqrt(rn/ssq);
 | 
			
		||||
      RealD rtn=sqrt(rtz/ssq);
 | 
			
		||||
      RealD rtnp=sqrt(rtzp/ssq);
 | 
			
		||||
 | 
			
		||||
      std::cout<<GridLogMessage<<"HDCG: fPcg k= "<<k<<" residual = "<<rrn<<"\n";
 | 
			
		||||
      std::cout<<GridLogMessage<<"TwoLevelfPcg: k= "<<k<<" residual = "<<rrn<<std::endl;
 | 
			
		||||
 | 
			
		||||
      // Stopping condition
 | 
			
		||||
      if ( rn <= rsq ) { 
 | 
			
		||||
 | 
			
		||||
	HDCGTimer.Stop();
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	
 | 
			
		||||
	_FineLinop.HermOp(x,mmp[0]);			  
 | 
			
		||||
	HermOp(x,mmp); // Shouldn't this be something else?
 | 
			
		||||
	axpy(tmp,-1.0,src,mmp[0]);
 | 
			
		||||
	
 | 
			
		||||
	RealD  mmpnorm = sqrt(norm2(mmp[0]));
 | 
			
		||||
	RealD  xnorm   = sqrt(norm2(x));
 | 
			
		||||
	RealD psinorm = sqrt(norm2(x));
 | 
			
		||||
	RealD srcnorm = sqrt(norm2(src));
 | 
			
		||||
	RealD tmpnorm = sqrt(norm2(tmp));
 | 
			
		||||
	RealD true_residual = tmpnorm/srcnorm;
 | 
			
		||||
	std::cout<<GridLogMessage
 | 
			
		||||
	       <<"HDCG: true residual is "<<true_residual
 | 
			
		||||
	       <<" solution "<<xnorm
 | 
			
		||||
	       <<" source "<<srcnorm
 | 
			
		||||
	       <<" mmp "<<mmpnorm	  
 | 
			
		||||
	       <<std::endl;
 | 
			
		||||
      
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    HDCGTimer.Stop();
 | 
			
		||||
    std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
 | 
			
		||||
    RealD  xnorm   = sqrt(norm2(x));
 | 
			
		||||
    RealD  srcnorm = sqrt(norm2(src));
 | 
			
		||||
    std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl;
 | 
			
		||||
    src[0].Grid()->Barrier();
 | 
			
		||||
    int nrhs = src.size();
 | 
			
		||||
    std::vector<RealD> f(nrhs);
 | 
			
		||||
    std::vector<RealD> rtzp(nrhs);
 | 
			
		||||
    std::vector<RealD> rtz(nrhs);
 | 
			
		||||
    std::vector<RealD> a(nrhs);
 | 
			
		||||
    std::vector<RealD> d(nrhs);
 | 
			
		||||
    std::vector<RealD> b(nrhs);
 | 
			
		||||
    std::vector<RealD> rptzp(nrhs);
 | 
			
		||||
    /////////////////////////////
 | 
			
		||||
    // Set up history vectors
 | 
			
		||||
    /////////////////////////////
 | 
			
		||||
    int mmax = 2;
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
 | 
			
		||||
    src[0].Grid()->Barrier();
 | 
			
		||||
    std::vector<std::vector<Field> > p(nrhs);   for(int r=0;r<nrhs;r++)  p[r].resize(mmax,grid);
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocated p"<<std::endl;
 | 
			
		||||
    src[0].Grid()->Barrier();
 | 
			
		||||
    std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid);
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocated mmp"<<std::endl;
 | 
			
		||||
    src[0].Grid()->Barrier();
 | 
			
		||||
    std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax);
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocated pAp"<<std::endl;
 | 
			
		||||
    src[0].Grid()->Barrier();
 | 
			
		||||
    std::vector<Field> z(nrhs,grid);
 | 
			
		||||
    std::vector<Field>  mp (nrhs,grid);
 | 
			
		||||
    std::vector<Field>  r  (nrhs,grid);
 | 
			
		||||
    std::vector<Field>  mu (nrhs,grid);
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocated z,mp,r,mu"<<std::endl;
 | 
			
		||||
    src[0].Grid()->Barrier();
 | 
			
		||||
 | 
			
		||||
    //Initial residual computation & set up
 | 
			
		||||
    std::vector<RealD> src_nrm(nrhs);
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
			
		||||
      src_nrm[rhs]=norm2(src[rhs]);
 | 
			
		||||
      assert(src_nrm[rhs]!=0.0);
 | 
			
		||||
    }
 | 
			
		||||
    std::vector<RealD> tn(nrhs);
 | 
			
		||||
 | 
			
		||||
    GridStopWatch HDCGTimer;
 | 
			
		||||
    HDCGTimer.Start();
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    // x0 = Vstart -- possibly modify guess
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
      Vstart(x[rhs],src[rhs]);
 | 
			
		||||
 | 
			
		||||
      // r0 = b -A x0
 | 
			
		||||
      _FineLinop.HermOp(x[rhs],mmp[rhs][0]);
 | 
			
		||||
      axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]);    // Recomputes r=src-Ax0
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    // Compute z = M1 x
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    // This needs a multiRHS version for acceleration
 | 
			
		||||
    PcgM1(r,z);
 | 
			
		||||
 | 
			
		||||
    std::vector<RealD> ssq(nrhs);
 | 
			
		||||
    std::vector<RealD> rsq(nrhs);
 | 
			
		||||
    std::vector<Field> pp(nrhs,grid);
 | 
			
		||||
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
      rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
 | 
			
		||||
      p[rhs][0]=z[rhs];
 | 
			
		||||
      ssq[rhs]=norm2(src[rhs]);
 | 
			
		||||
      rsq[rhs]=  ssq[rhs]*Tolerance*Tolerance;
 | 
			
		||||
      std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n";
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::vector<RealD> rn(nrhs);
 | 
			
		||||
    for (int k=0;k<=MaxIterations;k++){
 | 
			
		||||
    
 | 
			
		||||
      int peri_k  = k % mmax;
 | 
			
		||||
      int peri_kp = (k+1) % mmax;
 | 
			
		||||
 | 
			
		||||
      for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
	rtz[rhs]=rtzp[rhs];
 | 
			
		||||
	d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]);
 | 
			
		||||
	a[rhs] = rtz[rhs]/d[rhs];
 | 
			
		||||
    
 | 
			
		||||
	// Memorise this
 | 
			
		||||
	pAp[rhs][peri_k] = d[rhs];
 | 
			
		||||
 | 
			
		||||
	axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]);
 | 
			
		||||
	rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // Compute z = M x (for *all* RHS)
 | 
			
		||||
      PcgM1(r,z);
 | 
			
		||||
 | 
			
		||||
      RealD max_rn=0.0;
 | 
			
		||||
      for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
 | 
			
		||||
	rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
 | 
			
		||||
 | 
			
		||||
	std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n";
 | 
			
		||||
	
 | 
			
		||||
	mu[rhs]=z[rhs];
 | 
			
		||||
 | 
			
		||||
	p[rhs][peri_kp]=mu[rhs];
 | 
			
		||||
 | 
			
		||||
	// Standard search direction p == z + b p 
 | 
			
		||||
	b[rhs] = (rtzp[rhs])/rtz[rhs];
 | 
			
		||||
 | 
			
		||||
	int northog = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n";
 | 
			
		||||
	for(int back=0; back < northog; back++){
 | 
			
		||||
	  int peri_back = (k-back)%mmax;
 | 
			
		||||
	  RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp]));
 | 
			
		||||
	  RealD beta = -pbApk/pAp[rhs][peri_back];
 | 
			
		||||
	  axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	RealD rrn=sqrt(rn[rhs]/ssq[rhs]);
 | 
			
		||||
	RealD rtn=sqrt(rtz[rhs]/ssq[rhs]);
 | 
			
		||||
	RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]);
 | 
			
		||||
	
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: rhs "<<rhs<<"fPcg k= "<<k<<" residual = "<<rrn<<"\n";
 | 
			
		||||
	if ( rrn > max_rn ) max_rn = rrn;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // Stopping condition based on worst case
 | 
			
		||||
      if ( max_rn <= Tolerance ) { 
 | 
			
		||||
 | 
			
		||||
	HDCGTimer.Stop();
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
 | 
			
		||||
 | 
			
		||||
	for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
	  _FineLinop.HermOp(x[rhs],mmp[rhs][0]);			  
 | 
			
		||||
	  Field tmp(grid);
 | 
			
		||||
	  axpy(tmp,-1.0,src[rhs],mmp[rhs][0]);
 | 
			
		||||
      
 | 
			
		||||
	  RealD  mmpnorm = sqrt(norm2(mmp[rhs][0]));
 | 
			
		||||
	  RealD  xnorm   = sqrt(norm2(x[rhs]));
 | 
			
		||||
	  RealD  srcnorm = sqrt(norm2(src[rhs]));
 | 
			
		||||
	  RealD  tmpnorm = sqrt(norm2(tmp));
 | 
			
		||||
	  RealD  true_residual = tmpnorm/srcnorm;
 | 
			
		||||
	  std::cout<<GridLogMessage
 | 
			
		||||
		   <<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
 | 
			
		||||
		   <<" solution "<<xnorm
 | 
			
		||||
		   <<" source "<<srcnorm
 | 
			
		||||
		   <<" mmp "<<mmpnorm	  
 | 
			
		||||
		   <<std::endl;
 | 
			
		||||
	}
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
    }
 | 
			
		||||
    HDCGTimer.Stop();
 | 
			
		||||
    std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
      RealD  xnorm   = sqrt(norm2(x[rhs]));
 | 
			
		||||
      RealD  srcnorm = sqrt(norm2(src[rhs]));
 | 
			
		||||
      std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
 | 
			
		||||
	std::cout<<GridLogMessage<<"TwoLevelfPcg:   true residual is "<<true_residual<<std::endl;
 | 
			
		||||
	std::cout<<GridLogMessage<<"TwoLevelfPcg: target residual was"<<Tolerance<<std::endl;
 | 
			
		||||
	return k;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
    // Non-convergence
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 public:
 | 
			
		||||
 | 
			
		||||
  virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << "PcgM1 default (cheat) mrhs versoin"<<std::endl;
 | 
			
		||||
    for(int rhs=0;rhs<in.size();rhs++){
 | 
			
		||||
      this->PcgM1(in[rhs],out[rhs]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  virtual void PcgM1(Field & in, Field & out)     =0;
 | 
			
		||||
  virtual void Vstart(Field & x,const Field & src)=0;
 | 
			
		||||
  virtual void M(Field & in,Field & out,Field & tmp) {
 | 
			
		||||
 | 
			
		||||
  virtual void PcgM2(const Field & in, Field & out) {
 | 
			
		||||
    out=in;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual RealD PcgM3(const Field & p, Field & mmp){
 | 
			
		||||
    RealD dd;
 | 
			
		||||
    _FineLinop.HermOp(p,mmp);
 | 
			
		||||
    ComplexD dot = innerProduct(p,mmp);
 | 
			
		||||
    dd=real(dot);
 | 
			
		||||
    return dd;
 | 
			
		||||
  }
 | 
			
		||||
  virtual void M1(Field & in, Field & out) {// the smoother
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Only Def1 has non-trivial Vout.
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
  
 | 
			
		||||
template<class Field, class CoarseField, class Aggregation>
 | 
			
		||||
class TwoLevelADEF2 : public TwoLevelCG<Field>
 | 
			
		||||
{
 | 
			
		||||
 public:
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Need something that knows how to get from Coarse to fine and back again
 | 
			
		||||
  //  void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
 | 
			
		||||
  //  void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  GridBase *coarsegrid;
 | 
			
		||||
  Aggregation &_Aggregates;                    
 | 
			
		||||
  LinearFunction<CoarseField> &_CoarseSolver;
 | 
			
		||||
  LinearFunction<CoarseField> &_CoarseSolverPrecise;
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  
 | 
			
		||||
  // more most opertor functions
 | 
			
		||||
  TwoLevelADEF2(RealD tol,
 | 
			
		||||
		Integer maxit,
 | 
			
		||||
		LinearOperatorBase<Field>    &FineLinop,
 | 
			
		||||
		LinearFunction<Field>        &Smoother,
 | 
			
		||||
		LinearFunction<CoarseField>  &CoarseSolver,
 | 
			
		||||
		LinearFunction<CoarseField>  &CoarseSolverPrecise,
 | 
			
		||||
		Aggregation &Aggregates
 | 
			
		||||
		) :
 | 
			
		||||
      TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,Aggregates.FineGrid),
 | 
			
		||||
      _CoarseSolver(CoarseSolver),
 | 
			
		||||
      _CoarseSolverPrecise(CoarseSolverPrecise),
 | 
			
		||||
      _Aggregates(Aggregates)
 | 
			
		||||
  {
 | 
			
		||||
    coarsegrid = Aggregates.CoarseGrid;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  virtual void PcgM1(Field & in, Field & out)
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("MultiGridPreconditioner ");
 | 
			
		||||
    // [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
 | 
			
		||||
    Field tmp(grid);
 | 
			
		||||
    Field Min(grid);
 | 
			
		||||
 | 
			
		||||
    Field tmp(this->grid);
 | 
			
		||||
    Field Min(this->grid);
 | 
			
		||||
    CoarseField PleftProj(this->coarsegrid);
 | 
			
		||||
    CoarseField PleftMss_proj(this->coarsegrid);
 | 
			
		||||
    PcgM(in,Min); // Smoother call
 | 
			
		||||
 | 
			
		||||
    GridStopWatch SmootherTimer;
 | 
			
		||||
    GridStopWatch MatrixTimer;
 | 
			
		||||
    SmootherTimer.Start();
 | 
			
		||||
    this->_Smoother(in,Min);
 | 
			
		||||
    SmootherTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    MatrixTimer.Start();
 | 
			
		||||
    this->_FineLinop.HermOp(Min,out);
 | 
			
		||||
    MatrixTimer.Stop();
 | 
			
		||||
    HermOp(Min,out);
 | 
			
		||||
    axpy(tmp,-1.0,out,in);          // tmp  = in - A Min
 | 
			
		||||
 | 
			
		||||
    GridStopWatch ProjTimer;
 | 
			
		||||
    GridStopWatch CoarseTimer;
 | 
			
		||||
    GridStopWatch PromTimer;
 | 
			
		||||
    ProjTimer.Start();
 | 
			
		||||
    this->_Aggregates.ProjectToSubspace(PleftProj,tmp);     
 | 
			
		||||
    ProjTimer.Stop();
 | 
			
		||||
    CoarseTimer.Start();
 | 
			
		||||
    this->_CoarseSolver(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
 | 
			
		||||
    CoarseTimer.Stop();
 | 
			
		||||
    PromTimer.Start();
 | 
			
		||||
    this->_Aggregates.PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]  
 | 
			
		||||
    PromTimer.Stop();
 | 
			
		||||
    std::cout << GridLogPerformance << "PcgM1 breakdown "<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "\tSmoother   " << SmootherTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "\tProj       " << ProjTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "\tCoarse     " << CoarseTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "\tProm       " << PromTimer.Elapsed() <<std::endl;
 | 
			
		||||
 | 
			
		||||
    ProjectToSubspace(tmp,PleftProj);     
 | 
			
		||||
    ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
 | 
			
		||||
    PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]  
 | 
			
		||||
    axpy(out,1.0,Min,tmp); // Min+tmp
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void Vstart(Field & x,const Field & src)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg Vstart "<<std::endl;
 | 
			
		||||
  virtual void M2(const Field & in, Field & out) {
 | 
			
		||||
    out=in;
 | 
			
		||||
    // Must override for Def2 only
 | 
			
		||||
    //  case PcgDef2:
 | 
			
		||||
    //    Pright(in,out);
 | 
			
		||||
    //    break;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual RealD M3(const Field & p, Field & mmp){
 | 
			
		||||
    double d,dd;
 | 
			
		||||
    HermOpAndNorm(p,mmp,d,dd);
 | 
			
		||||
    return dd;
 | 
			
		||||
    // Must override for Def1 only
 | 
			
		||||
    //  case PcgDef1:
 | 
			
		||||
    //    d=linop_d->Mprec(p,mmp,tmp,0,1);// Dag no
 | 
			
		||||
    //      linop_d->Mprec(mmp,mp,tmp,1);// Dag yes
 | 
			
		||||
    //    Pleft(mp,mmp);
 | 
			
		||||
    //    d=real(linop_d->inner(p,mmp));
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void VstartDef2(Field & xconst Field & src){
 | 
			
		||||
    //case PcgDef2:
 | 
			
		||||
    //case PcgAdef2: 
 | 
			
		||||
    //case PcgAdef2f:
 | 
			
		||||
    //case PcgV11f:
 | 
			
		||||
    ///////////////////////////////////
 | 
			
		||||
    // Choose x_0 such that 
 | 
			
		||||
    // x_0 = guess +  (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
 | 
			
		||||
@@ -512,157 +256,142 @@ class TwoLevelADEF2 : public TwoLevelCG<Field>
 | 
			
		||||
    //                   = src_s - (A guess)_s - src_s  + (A guess)_s 
 | 
			
		||||
    //                   = 0 
 | 
			
		||||
    ///////////////////////////////////
 | 
			
		||||
    Field r(this->grid);
 | 
			
		||||
    Field mmp(this->grid);
 | 
			
		||||
    CoarseField PleftProj(this->coarsegrid);
 | 
			
		||||
    CoarseField PleftMss_proj(this->coarsegrid);
 | 
			
		||||
    Field r(grid);
 | 
			
		||||
    Field mmp(grid);
 | 
			
		||||
    
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg Vstart projecting "<<std::endl;
 | 
			
		||||
    this->_Aggregates.ProjectToSubspace(PleftProj,src);     
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg Vstart coarse solve "<<std::endl;
 | 
			
		||||
    this->_CoarseSolverPrecise(PleftProj,PleftMss_proj); // Ass^{-1} r_s
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: fPcg Vstart promote "<<std::endl;
 | 
			
		||||
    this->_Aggregates.PromoteFromSubspace(PleftMss_proj,x);  
 | 
			
		||||
    HermOp(x,mmp);
 | 
			
		||||
    axpy (r, -1.0, mmp, src);        // r_{-1} = src - A x
 | 
			
		||||
    ProjectToSubspace(r,PleftProj);     
 | 
			
		||||
    ApplyInverseCG(PleftProj,PleftMss_proj); // Ass^{-1} r_s
 | 
			
		||||
    PromoteFromSubspace(PleftMss_proj,mmp);  
 | 
			
		||||
    x=x+mmp;
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field, class CoarseField, class Aggregation>
 | 
			
		||||
class TwoLevelADEF2mrhs : public TwoLevelADEF2<Field,CoarseField,Aggregation>
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  GridBase *coarsegridmrhs;
 | 
			
		||||
  LinearFunction<CoarseField> &_CoarseSolverMrhs;
 | 
			
		||||
  LinearFunction<CoarseField> &_CoarseGuesser;
 | 
			
		||||
  TwoLevelADEF2mrhs(RealD tol,
 | 
			
		||||
		    Integer maxit,
 | 
			
		||||
		    LinearOperatorBase<Field>    &FineLinop,
 | 
			
		||||
		    LinearFunction<Field>        &Smoother,
 | 
			
		||||
		    LinearFunction<CoarseField>  &CoarseSolver,
 | 
			
		||||
		    LinearFunction<CoarseField>  &CoarseSolverPrecise,
 | 
			
		||||
		    LinearFunction<CoarseField>  &CoarseSolverMrhs,
 | 
			
		||||
		    LinearFunction<CoarseField>  &CoarseGuesser,
 | 
			
		||||
		    GridBase *rhsgrid,
 | 
			
		||||
		    Aggregation &Aggregates) :
 | 
			
		||||
    TwoLevelADEF2<Field,CoarseField,Aggregation>(tol, maxit,FineLinop,Smoother,CoarseSolver,CoarseSolverPrecise,Aggregates),
 | 
			
		||||
    _CoarseSolverMrhs(CoarseSolverMrhs),
 | 
			
		||||
    _CoarseGuesser(CoarseGuesser)
 | 
			
		||||
  {
 | 
			
		||||
    coarsegridmrhs = rhsgrid;
 | 
			
		||||
  };
 | 
			
		||||
  
 | 
			
		||||
  virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out){
 | 
			
		||||
 | 
			
		||||
    int nrhs=in.size();
 | 
			
		||||
    std::cout << " mrhs PcgM1 for "<<nrhs<<" right hand sides"<<std::endl;
 | 
			
		||||
    // [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
 | 
			
		||||
    Field tmp(this->grid);
 | 
			
		||||
    std::vector<Field> Min(nrhs,this->grid);
 | 
			
		||||
    CoarseField PleftProj(this->coarsegrid);
 | 
			
		||||
    CoarseField PleftMss_proj(this->coarsegrid);
 | 
			
		||||
 | 
			
		||||
    CoarseField PleftProjMrhs(this->coarsegridmrhs);
 | 
			
		||||
    CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
 | 
			
		||||
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
			
		||||
      this->grid->Barrier();
 | 
			
		||||
      std::cout << " Calling smoother for "<<rhs<<std::endl;
 | 
			
		||||
      this->grid->Barrier();
 | 
			
		||||
      this->_Smoother(in[rhs],Min[rhs]);
 | 
			
		||||
      this->grid->Barrier();
 | 
			
		||||
      std::cout << " smoother done "<<rhs<<std::endl;
 | 
			
		||||
      this->grid->Barrier();
 | 
			
		||||
      this->_FineLinop.HermOp(Min[rhs],out[rhs]);
 | 
			
		||||
      this->grid->Barrier();
 | 
			
		||||
      std::cout << " Hermop for "<<rhs<<std::endl;
 | 
			
		||||
      this->grid->Barrier();
 | 
			
		||||
      axpy(tmp,-1.0,out[rhs],in[rhs]);          // tmp  = in - A Min
 | 
			
		||||
      this->grid->Barrier();
 | 
			
		||||
      std::cout << " axpy "<<rhs<<std::endl;
 | 
			
		||||
      this->grid->Barrier();
 | 
			
		||||
      this->_Aggregates.ProjectToSubspace(PleftProj,tmp);     // can optimise later
 | 
			
		||||
      this->grid->Barrier();
 | 
			
		||||
      std::cout << " project "<<rhs<<std::endl;
 | 
			
		||||
      this->grid->Barrier();
 | 
			
		||||
      InsertSlice(PleftProj,PleftProjMrhs,rhs,0);
 | 
			
		||||
      this->grid->Barrier();
 | 
			
		||||
      std::cout << " insert rhs "<<rhs<<std::endl;
 | 
			
		||||
      this->grid->Barrier();
 | 
			
		||||
      this->_CoarseGuesser(PleftProj,PleftMss_proj);
 | 
			
		||||
      this->grid->Barrier();
 | 
			
		||||
      std::cout << " insert guess "<<rhs<<std::endl;
 | 
			
		||||
      this->grid->Barrier();
 | 
			
		||||
      InsertSlice(PleftMss_proj,PleftMss_projMrhs,rhs,0);
 | 
			
		||||
  virtual void Vstart(Field & x,const Field & src){
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
    std::cout << " Coarse solve "<<std::endl;
 | 
			
		||||
    this->_CoarseSolverMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} [in - A Min]_s
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Only Def1 has non-trivial Vout. Override in Def1
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
  virtual void   Vout  (Field & in, Field & out,Field & src){
 | 
			
		||||
    out = in;
 | 
			
		||||
    //case PcgDef1:
 | 
			
		||||
    //    //Qb + PT x
 | 
			
		||||
    //    ProjectToSubspace(src,PleftProj);     
 | 
			
		||||
    //    ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} r_s
 | 
			
		||||
    //    PromoteFromSubspace(PleftMss_proj,tmp);  
 | 
			
		||||
    //    
 | 
			
		||||
    //    Pright(in,out);
 | 
			
		||||
    //    
 | 
			
		||||
    //    linop_d->axpy(out,tmp,out,1.0);
 | 
			
		||||
    //    break;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
			
		||||
      ExtractSlice(PleftMss_proj,PleftMss_projMrhs,rhs,0);
 | 
			
		||||
      this->_Aggregates.PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]  
 | 
			
		||||
      axpy(out[rhs],1.0,Min[rhs],tmp); // Min+tmp
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Pright and Pleft are common to all implementations
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  virtual void Pright(Field & in,Field & out){
 | 
			
		||||
    // P_R  = [ 1              0 ] 
 | 
			
		||||
    //        [ -Mss^-1 Msb    0 ] 
 | 
			
		||||
    Field in_sbar(grid);
 | 
			
		||||
 | 
			
		||||
    ProjectToSubspace(in,PleftProj);     
 | 
			
		||||
    PromoteFromSubspace(PleftProj,out);  
 | 
			
		||||
    axpy(in_sbar,-1.0,out,in);       // in_sbar = in - in_s 
 | 
			
		||||
 | 
			
		||||
    HermOp(in_sbar,out);
 | 
			
		||||
    ProjectToSubspace(out,PleftProj);           // Mssbar in_sbar  (project)
 | 
			
		||||
 | 
			
		||||
    ApplyInverse     (PleftProj,PleftMss_proj); // Mss^{-1} Mssbar 
 | 
			
		||||
    PromoteFromSubspace(PleftMss_proj,out);     // 
 | 
			
		||||
 | 
			
		||||
    axpy(out,-1.0,out,in_sbar);     // in_sbar - Mss^{-1} Mssbar in_sbar
 | 
			
		||||
  }
 | 
			
		||||
  virtual void Pleft (Field & in,Field & out){
 | 
			
		||||
    // P_L  = [ 1  -Mbs Mss^-1] 
 | 
			
		||||
    //        [ 0   0         ] 
 | 
			
		||||
    Field in_sbar(grid);
 | 
			
		||||
    Field    tmp2(grid);
 | 
			
		||||
    Field    Mtmp(grid);
 | 
			
		||||
 | 
			
		||||
    ProjectToSubspace(in,PleftProj);     
 | 
			
		||||
    PromoteFromSubspace(PleftProj,out);  
 | 
			
		||||
    axpy(in_sbar,-1.0,out,in);      // in_sbar = in - in_s
 | 
			
		||||
 | 
			
		||||
    ApplyInverse(PleftProj,PleftMss_proj); // Mss^{-1} in_s
 | 
			
		||||
    PromoteFromSubspace(PleftMss_proj,out);
 | 
			
		||||
 | 
			
		||||
    HermOp(out,Mtmp);
 | 
			
		||||
 | 
			
		||||
    ProjectToSubspace(Mtmp,PleftProj);      // Msbar s Mss^{-1}
 | 
			
		||||
    PromoteFromSubspace(PleftProj,tmp2);
 | 
			
		||||
 | 
			
		||||
    axpy(out,-1.0,tmp2,Mtmp);
 | 
			
		||||
    axpy(out,-1.0,out,in_sbar);     // in_sbar - Msbars Mss^{-1} in_s
 | 
			
		||||
  }
 | 
			
		||||
    std::cout << " Extracted "<<std::endl;
 | 
			
		||||
}
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class TwoLevelADEF1defl : public TwoLevelCG<Field>
 | 
			
		||||
{
 | 
			
		||||
class TwoLevelFlexiblePcgADef2 : public TwoLevelFlexiblePcg<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  const std::vector<Field> &evec;
 | 
			
		||||
  const std::vector<RealD> &eval;
 | 
			
		||||
  virtual void M(Field & in,Field & out,Field & tmp){
 | 
			
		||||
 | 
			
		||||
  TwoLevelADEF1defl(RealD tol,
 | 
			
		||||
		   Integer maxit,
 | 
			
		||||
		   LinearOperatorBase<Field>   &FineLinop,
 | 
			
		||||
		   LinearFunction<Field>   &Smoother,
 | 
			
		||||
		   std::vector<Field> &_evec,
 | 
			
		||||
		   std::vector<RealD> &_eval) : 
 | 
			
		||||
    TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,_evec[0].Grid()),
 | 
			
		||||
    evec(_evec),
 | 
			
		||||
    eval(_eval)
 | 
			
		||||
  {};
 | 
			
		||||
  } 
 | 
			
		||||
  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp){
 | 
			
		||||
 | 
			
		||||
  // Can just inherit existing M2
 | 
			
		||||
  // Can just inherit existing M3
 | 
			
		||||
  }
 | 
			
		||||
  virtual void M2(Field & in, Field & out){
 | 
			
		||||
 | 
			
		||||
  // Simple vstart - do nothing
 | 
			
		||||
  virtual void Vstart(Field & x,const Field & src){
 | 
			
		||||
    x=src; // Could apply Q
 | 
			
		||||
  };
 | 
			
		||||
  }
 | 
			
		||||
  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp){
 | 
			
		||||
 | 
			
		||||
  // Override PcgM1
 | 
			
		||||
  virtual void PcgM1(Field & in, Field & out)
 | 
			
		||||
  {
 | 
			
		||||
    GRID_TRACE("EvecPreconditioner ");
 | 
			
		||||
    int N=evec.size();
 | 
			
		||||
    Field Pin(this->grid);
 | 
			
		||||
    Field Qin(this->grid);
 | 
			
		||||
  }
 | 
			
		||||
  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp){
 | 
			
		||||
 | 
			
		||||
    //MP  + Q = M(1-AQ) + Q = M
 | 
			
		||||
    // // If we are eigenvector deflating in coarse space
 | 
			
		||||
    // // Q   = Sum_i |phi_i> 1/lambda_i <phi_i|
 | 
			
		||||
    // // A Q = Sum_i |phi_i> <phi_i|
 | 
			
		||||
    // // M(1-AQ) = M(1-proj) + Q
 | 
			
		||||
    Qin.Checkerboard()=in.Checkerboard();
 | 
			
		||||
    Qin = Zero();
 | 
			
		||||
    Pin = in;
 | 
			
		||||
    for (int i=0;i<N;i++) {
 | 
			
		||||
      const Field& tmp = evec[i];
 | 
			
		||||
      auto ip = TensorRemove(innerProduct(tmp,in));
 | 
			
		||||
      axpy(Qin, ip / eval[i],tmp,Qin);
 | 
			
		||||
      axpy(Pin, -ip ,tmp,Pin);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
/*
 | 
			
		||||
template<class Field>
 | 
			
		||||
class TwoLevelFlexiblePcgAD : public TwoLevelFlexiblePcg<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  virtual void M(Field & in,Field & out,Field & tmp); 
 | 
			
		||||
  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
 | 
			
		||||
  virtual void M2(Field & in, Field & out);
 | 
			
		||||
  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
 | 
			
		||||
  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
    this->_Smoother(Pin,out);
 | 
			
		||||
 | 
			
		||||
    out = out + Qin;
 | 
			
		||||
template<class Field>
 | 
			
		||||
class TwoLevelFlexiblePcgDef1 : public TwoLevelFlexiblePcg<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  virtual void M(Field & in,Field & out,Field & tmp); 
 | 
			
		||||
  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
 | 
			
		||||
  virtual void M2(Field & in, Field & out);
 | 
			
		||||
  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
 | 
			
		||||
  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
 | 
			
		||||
  virtual void   Vout  (Field & in, Field & out,Field & src,Field & tmp);
 | 
			
		||||
}
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
template<class Field>
 | 
			
		||||
class TwoLevelFlexiblePcgDef2 : public TwoLevelFlexiblePcg<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  virtual void M(Field & in,Field & out,Field & tmp); 
 | 
			
		||||
  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
 | 
			
		||||
  virtual void M2(Field & in, Field & out);
 | 
			
		||||
  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
 | 
			
		||||
  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class TwoLevelFlexiblePcgV11: public TwoLevelFlexiblePcg<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
  virtual void M(Field & in,Field & out,Field & tmp); 
 | 
			
		||||
  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
 | 
			
		||||
  virtual void M2(Field & in, Field & out);
 | 
			
		||||
  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
 | 
			
		||||
  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
 | 
			
		||||
}
 | 
			
		||||
*/
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -183,13 +183,13 @@ public:
 | 
			
		||||
		  << "\tTrue residual " << true_residual
 | 
			
		||||
		  << "\tTarget " << Tolerance << std::endl;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage << "Time breakdown "<<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed() <<std::endl;
 | 
			
		||||
        std::cout << GridLogPerformance << "Time breakdown "<<std::endl;
 | 
			
		||||
	std::cout << GridLogPerformance << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogPerformance << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogPerformance << "\tInner      " << InnerTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogPerformance << "\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogPerformance << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tInner      " << InnerTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
 | 
			
		||||
 | 
			
		||||
	std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl;
 | 
			
		||||
 | 
			
		||||
@@ -207,8 +207,7 @@ public:
 | 
			
		||||
 | 
			
		||||
    TrueResidual = sqrt(norm2(p)/ssq);
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations
 | 
			
		||||
	      <<" residual "<< TrueResidual<< std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations<< std::endl;
 | 
			
		||||
 | 
			
		||||
    if (ErrorOnNoConverge) assert(0);
 | 
			
		||||
    IterationsToComplete = k;
 | 
			
		||||
 
 | 
			
		||||
@@ -144,7 +144,7 @@ public:
 | 
			
		||||
    for(int s=0;s<nshift;s++){
 | 
			
		||||
      rsq[s] = cp * mresidual[s] * mresidual[s];
 | 
			
		||||
      std::cout<<GridLogMessage<<"ConjugateGradientMultiShift: shift "<<s
 | 
			
		||||
	       <<" target resid^2 "<<rsq[s]<<std::endl;
 | 
			
		||||
	       <<" target resid "<<rsq[s]<<std::endl;
 | 
			
		||||
      ps[s] = src;
 | 
			
		||||
    }
 | 
			
		||||
    // r and p for primary
 | 
			
		||||
 
 | 
			
		||||
@@ -79,16 +79,14 @@ template<class Field> class ImplicitlyRestartedLanczosHermOpTester  : public Imp
 | 
			
		||||
    RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
 | 
			
		||||
 | 
			
		||||
    std::cout.precision(13);
 | 
			
		||||
 | 
			
		||||
    int conv=0;
 | 
			
		||||
    if( (vv<eresid*eresid) ) conv = 1;
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogIRL  << "[" << std::setw(3)<<j<<"] "
 | 
			
		||||
	     <<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
 | 
			
		||||
	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
 | 
			
		||||
	     <<" target " << eresid*eresid << " conv " <<conv
 | 
			
		||||
	     <<std::endl;
 | 
			
		||||
 | 
			
		||||
    int conv=0;
 | 
			
		||||
    if( (vv<eresid*eresid) ) conv = 1;
 | 
			
		||||
 | 
			
		||||
    return conv;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
@@ -421,15 +419,14 @@ until convergence
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      if ( Nconv < Nstop ) {
 | 
			
		||||
      if ( Nconv < Nstop )
 | 
			
		||||
	std::cout << GridLogIRL << "Nconv ("<<Nconv<<") < Nstop ("<<Nstop<<")"<<std::endl;
 | 
			
		||||
	std::cout << GridLogIRL << "returning Nstop vectors, the last "<< Nstop-Nconv << "of which might meet convergence criterion only approximately" <<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      eval=eval2;
 | 
			
		||||
      
 | 
			
		||||
      //Keep only converged
 | 
			
		||||
      eval.resize(Nstop);// was Nconv
 | 
			
		||||
      evec.resize(Nstop,grid);// was Nconv
 | 
			
		||||
      eval.resize(Nconv);// Nstop?
 | 
			
		||||
      evec.resize(Nconv,grid);// Nstop?
 | 
			
		||||
      basisSortInPlace(evec,eval,reverse);
 | 
			
		||||
      
 | 
			
		||||
    }
 | 
			
		||||
@@ -459,7 +456,7 @@ until convergence
 | 
			
		||||
	    std::vector<Field>& evec,
 | 
			
		||||
	    Field& w,int Nm,int k)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout<<GridLogDebug << "Lanczos step " <<k<<std::endl;
 | 
			
		||||
    std::cout<<GridLogIRL << "Lanczos step " <<k<<std::endl;
 | 
			
		||||
    const RealD tiny = 1.0e-20;
 | 
			
		||||
    assert( k< Nm );
 | 
			
		||||
 | 
			
		||||
@@ -467,7 +464,7 @@ until convergence
 | 
			
		||||
 | 
			
		||||
    Field& evec_k = evec[k];
 | 
			
		||||
 | 
			
		||||
    _PolyOp(evec_k,w);    std::cout<<GridLogDebug << "PolyOp" <<std::endl;
 | 
			
		||||
    _PolyOp(evec_k,w);    std::cout<<GridLogIRL << "PolyOp" <<std::endl;
 | 
			
		||||
 | 
			
		||||
    if(k>0) w -= lme[k-1] * evec[k-1];
 | 
			
		||||
 | 
			
		||||
@@ -482,18 +479,18 @@ until convergence
 | 
			
		||||
    lme[k] = beta;
 | 
			
		||||
 | 
			
		||||
    if ( (k>0) && ( (k % orth_period) == 0 )) {
 | 
			
		||||
      std::cout<<GridLogDebug << "Orthogonalising " <<k<<std::endl;
 | 
			
		||||
      std::cout<<GridLogIRL << "Orthogonalising " <<k<<std::endl;
 | 
			
		||||
      orthogonalize(w,evec,k); // orthonormalise
 | 
			
		||||
      std::cout<<GridLogDebug << "Orthogonalised " <<k<<std::endl;
 | 
			
		||||
      std::cout<<GridLogIRL << "Orthogonalised " <<k<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if(k < Nm-1) evec[k+1] = w;
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogIRL << "Lanczos step alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
 | 
			
		||||
    std::cout<<GridLogIRL << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
 | 
			
		||||
    if ( beta < tiny ) 
 | 
			
		||||
      std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout<<GridLogDebug << "Lanczos step complete " <<k<<std::endl;
 | 
			
		||||
    std::cout<<GridLogIRL << "Lanczos step complete " <<k<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme, 
 | 
			
		||||
 
 | 
			
		||||
@@ -33,7 +33,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Take a matrix and form an NE solver calling a Herm solver
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Field> class NormalEquations : public LinearFunction<Field>{
 | 
			
		||||
template<class Field> class NormalEquations {
 | 
			
		||||
private:
 | 
			
		||||
  SparseMatrixBase<Field> & _Matrix;
 | 
			
		||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
			
		||||
@@ -60,7 +60,7 @@ public:
 | 
			
		||||
  }     
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field> class HPDSolver : public LinearFunction<Field> {
 | 
			
		||||
template<class Field> class HPDSolver {
 | 
			
		||||
private:
 | 
			
		||||
  LinearOperatorBase<Field> & _Matrix;
 | 
			
		||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
			
		||||
@@ -78,13 +78,13 @@ public:
 | 
			
		||||
  void operator() (const Field &in, Field &out){
 | 
			
		||||
 
 | 
			
		||||
    _Guess(in,out);
 | 
			
		||||
    _HermitianSolver(_Matrix,in,out);  //M out = in
 | 
			
		||||
    _HermitianSolver(_Matrix,in,out);  // Mdag M out = Mdag in
 | 
			
		||||
 | 
			
		||||
  }     
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class Field> class MdagMSolver : public LinearFunction<Field> {
 | 
			
		||||
template<class Field> class MdagMSolver {
 | 
			
		||||
private:
 | 
			
		||||
  SparseMatrixBase<Field> & _Matrix;
 | 
			
		||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
			
		||||
 
 | 
			
		||||
@@ -20,7 +20,7 @@ template<class Field> class PowerMethod
 | 
			
		||||
    RealD evalMaxApprox = 0.0; 
 | 
			
		||||
    auto src_n = src; 
 | 
			
		||||
    auto tmp = src; 
 | 
			
		||||
    const int _MAX_ITER_EST_ = 100; 
 | 
			
		||||
    const int _MAX_ITER_EST_ = 50; 
 | 
			
		||||
 | 
			
		||||
    for (int i=0;i<_MAX_ITER_EST_;i++) { 
 | 
			
		||||
      
 | 
			
		||||
 
 | 
			
		||||
@@ -1,381 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/Aggregates.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
inline RealD AggregatePowerLaw(RealD x)
 | 
			
		||||
{
 | 
			
		||||
  //  return std::pow(x,-4);
 | 
			
		||||
  //  return std::pow(x,-3);
 | 
			
		||||
  return std::pow(x,-5);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
class Aggregation {
 | 
			
		||||
public:
 | 
			
		||||
  typedef iVector<CComplex,nbasis >             siteVector;
 | 
			
		||||
  typedef Lattice<siteVector>                 CoarseVector;
 | 
			
		||||
  typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | 
			
		||||
  typedef Lattice<Fobj >        FineField;
 | 
			
		||||
 | 
			
		||||
  GridBase *CoarseGrid;
 | 
			
		||||
  GridBase *FineGrid;
 | 
			
		||||
  std::vector<Lattice<Fobj> > subspace;
 | 
			
		||||
  int checkerboard;
 | 
			
		||||
  int Checkerboard(void){return checkerboard;}
 | 
			
		||||
  Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) : 
 | 
			
		||||
    CoarseGrid(_CoarseGrid),
 | 
			
		||||
    FineGrid(_FineGrid),
 | 
			
		||||
    subspace(nbasis,_FineGrid),
 | 
			
		||||
    checkerboard(_checkerboard)
 | 
			
		||||
  {
 | 
			
		||||
  };
 | 
			
		||||
  
 | 
			
		||||
  
 | 
			
		||||
  void Orthogonalise(void){
 | 
			
		||||
    CoarseScalar InnerProd(CoarseGrid); 
 | 
			
		||||
    //    std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
 | 
			
		||||
    blockOrthogonalise(InnerProd,subspace);
 | 
			
		||||
  } 
 | 
			
		||||
  void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
 | 
			
		||||
    blockProject(CoarseVec,FineVec,subspace);
 | 
			
		||||
  }
 | 
			
		||||
  void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
 | 
			
		||||
    FineVec.Checkerboard() = subspace[0].Checkerboard();
 | 
			
		||||
    blockPromote(CoarseVec,FineVec,subspace);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void CreateSubspaceRandom(GridParallelRNG  &RNG) {
 | 
			
		||||
    int nn=nbasis;
 | 
			
		||||
    RealD scale;
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    for(int b=0;b<nn;b++){
 | 
			
		||||
      subspace[b] = Zero();
 | 
			
		||||
      gaussian(RNG,noise);
 | 
			
		||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
      noise=noise*scale;
 | 
			
		||||
      subspace[b] = noise;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  virtual void CreateSubspace(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis)
 | 
			
		||||
  {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    ConjugateGradient<FineField> CG(1.0e-2,100,false);
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
 | 
			
		||||
    for(int b=0;b<nn;b++){
 | 
			
		||||
      
 | 
			
		||||
      subspace[b] = Zero();
 | 
			
		||||
      gaussian(RNG,noise);
 | 
			
		||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
      noise=noise*scale;
 | 
			
		||||
      
 | 
			
		||||
      hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise   ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
      for(int i=0;i<1;i++){
 | 
			
		||||
 | 
			
		||||
	CG(hermop,noise,subspace[b]);
 | 
			
		||||
 | 
			
		||||
	noise = subspace[b];
 | 
			
		||||
	scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
	noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
      subspace[b]   = noise;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
 | 
			
		||||
  // and this is the best I found
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
				       int nn,
 | 
			
		||||
				       double hi,
 | 
			
		||||
				       double lo,
 | 
			
		||||
				       int orderfilter,
 | 
			
		||||
				       int ordermin,
 | 
			
		||||
				       int orderstep,
 | 
			
		||||
				       double filterlo
 | 
			
		||||
				       ) {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
    FineField tmp(FineGrid);
 | 
			
		||||
 | 
			
		||||
    // New normalised noise
 | 
			
		||||
    gaussian(RNG,noise);
 | 
			
		||||
    scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
    noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage<<" Chebyshev subspace pass-1 : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<" Chebyshev subspace pass-2 : nbasis"<<nn<<" min "
 | 
			
		||||
	      <<ordermin<<" step "<<orderstep
 | 
			
		||||
	      <<" lo"<<filterlo<<std::endl;
 | 
			
		||||
 | 
			
		||||
    // Initial matrix element
 | 
			
		||||
    hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
    int b =0;
 | 
			
		||||
    {
 | 
			
		||||
      // Filter
 | 
			
		||||
      Chebyshev<FineField> Cheb(lo,hi,orderfilter);
 | 
			
		||||
      Cheb(hermop,noise,Mn);
 | 
			
		||||
      // normalise
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
			
		||||
      subspace[b]   = Mn;
 | 
			
		||||
      hermop.Op(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
      b++;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Generate a full sequence of Chebyshevs
 | 
			
		||||
    {
 | 
			
		||||
      lo=filterlo;
 | 
			
		||||
      noise=Mn;
 | 
			
		||||
 | 
			
		||||
      FineField T0(FineGrid); T0 = noise;  
 | 
			
		||||
      FineField T1(FineGrid); 
 | 
			
		||||
      FineField T2(FineGrid);
 | 
			
		||||
      FineField y(FineGrid);
 | 
			
		||||
      
 | 
			
		||||
      FineField *Tnm = &T0;
 | 
			
		||||
      FineField *Tn  = &T1;
 | 
			
		||||
      FineField *Tnp = &T2;
 | 
			
		||||
 | 
			
		||||
      // Tn=T1 = (xscale M + mscale)in
 | 
			
		||||
      RealD xscale = 2.0/(hi-lo);
 | 
			
		||||
      RealD mscale = -(hi+lo)/(hi-lo);
 | 
			
		||||
      hermop.HermOp(T0,y);
 | 
			
		||||
      T1=y*xscale+noise*mscale;
 | 
			
		||||
 | 
			
		||||
      for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
 | 
			
		||||
	
 | 
			
		||||
	hermop.HermOp(*Tn,y);
 | 
			
		||||
 | 
			
		||||
	autoView( y_v , y, AcceleratorWrite);
 | 
			
		||||
	autoView( Tn_v , (*Tn), AcceleratorWrite);
 | 
			
		||||
	autoView( Tnp_v , (*Tnp), AcceleratorWrite);
 | 
			
		||||
	autoView( Tnm_v , (*Tnm), AcceleratorWrite);
 | 
			
		||||
	const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
	accelerator_for(ss, FineGrid->oSites(), Nsimd, {
 | 
			
		||||
	  coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
 | 
			
		||||
	  coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
 | 
			
		||||
        });
 | 
			
		||||
 | 
			
		||||
	// Possible more fine grained control is needed than a linear sweep,
 | 
			
		||||
	// but huge productivity gain if this is simple algorithm and not a tunable
 | 
			
		||||
	int m =1;
 | 
			
		||||
	if ( n>=ordermin ) m=n-ordermin;
 | 
			
		||||
	if ( (m%orderstep)==0 ) { 
 | 
			
		||||
	  Mn=*Tnp;
 | 
			
		||||
	  scale = std::pow(norm2(Mn),-0.5);         Mn=Mn*scale;
 | 
			
		||||
	  subspace[b] = Mn;
 | 
			
		||||
	  hermop.Op(Mn,tmp); 
 | 
			
		||||
	  std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
	  b++;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Cycle pointers to avoid copies
 | 
			
		||||
	FineField *swizzle = Tnm;
 | 
			
		||||
	Tnm    =Tn;
 | 
			
		||||
	Tn     =Tnp;
 | 
			
		||||
	Tnp    =swizzle;
 | 
			
		||||
	  
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    assert(b==nn);
 | 
			
		||||
  }
 | 
			
		||||
  virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
				       int nn,
 | 
			
		||||
				       double hi,
 | 
			
		||||
				       double lo,
 | 
			
		||||
				       int orderfilter
 | 
			
		||||
				       ) {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
    FineField tmp(FineGrid);
 | 
			
		||||
 | 
			
		||||
    // New normalised noise
 | 
			
		||||
    std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<" Chebyshev subspace pure noise  : nbasis "<<nn<<std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    for(int b =0;b<nbasis;b++)
 | 
			
		||||
    {
 | 
			
		||||
      gaussian(RNG,noise);
 | 
			
		||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
      noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
      // Initial matrix element
 | 
			
		||||
      hermop.Op(noise,Mn);
 | 
			
		||||
      if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
      // Filter
 | 
			
		||||
      Chebyshev<FineField> Cheb(lo,hi,orderfilter);
 | 
			
		||||
      Cheb(hermop,noise,Mn);
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
			
		||||
 | 
			
		||||
      // Refine
 | 
			
		||||
      Chebyshev<FineField> PowerLaw(lo,hi,1000,AggregatePowerLaw);
 | 
			
		||||
      noise = Mn;
 | 
			
		||||
      PowerLaw(hermop,noise,Mn);
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
			
		||||
 | 
			
		||||
      // normalise
 | 
			
		||||
      subspace[b]   = Mn;
 | 
			
		||||
      hermop.Op(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void CreateSubspaceChebyshevPowerLaw(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
					       int nn,
 | 
			
		||||
					       double hi,
 | 
			
		||||
					       int orderfilter
 | 
			
		||||
					       ) {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
    FineField tmp(FineGrid);
 | 
			
		||||
 | 
			
		||||
    // New normalised noise
 | 
			
		||||
    std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" [0,"<<hi<<"]"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<" Chebyshev subspace pure noise  : nbasis "<<nn<<std::endl;
 | 
			
		||||
 | 
			
		||||
    for(int b =0;b<nbasis;b++)
 | 
			
		||||
    {
 | 
			
		||||
      gaussian(RNG,noise);
 | 
			
		||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
      noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
      // Initial matrix element
 | 
			
		||||
      hermop.Op(noise,Mn);
 | 
			
		||||
      if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
      // Filter
 | 
			
		||||
      Chebyshev<FineField> Cheb(0.0,hi,orderfilter,AggregatePowerLaw);
 | 
			
		||||
      Cheb(hermop,noise,Mn);
 | 
			
		||||
      // normalise
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
			
		||||
      subspace[b]   = Mn;
 | 
			
		||||
      hermop.Op(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void CreateSubspaceMultishift(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
					double Lo,double tol,int maxit)
 | 
			
		||||
  {
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
    FineField tmp(FineGrid);
 | 
			
		||||
 | 
			
		||||
    // New normalised noise
 | 
			
		||||
    std::cout << GridLogMessage<<" Multishift subspace : Lo "<<Lo<<std::endl;
 | 
			
		||||
 | 
			
		||||
    // Filter
 | 
			
		||||
    // [ 1/6(x+Lo)  - 1/2(x+2Lo) + 1/2(x+3Lo)  -1/6(x+4Lo) = Lo^3 /[ (x+1Lo)(x+2Lo)(x+3Lo)(x+4Lo) ]
 | 
			
		||||
    //
 | 
			
		||||
    // 1/(x+Lo)  - 1/(x+2 Lo)
 | 
			
		||||
    double epsilon      = Lo/3;
 | 
			
		||||
    std::vector<RealD> alpha({1.0/6.0,-1.0/2.0,1.0/2.0,-1.0/6.0});
 | 
			
		||||
    std::vector<RealD> shifts({Lo,Lo+epsilon,Lo+2*epsilon,Lo+3*epsilon});
 | 
			
		||||
    std::vector<RealD> tols({tol,tol,tol,tol});
 | 
			
		||||
    std::cout << "sizes "<<alpha.size()<<" "<<shifts.size()<<" "<<tols.size()<<std::endl;
 | 
			
		||||
 | 
			
		||||
    MultiShiftFunction msf(4,0.0,95.0);
 | 
			
		||||
    std::cout << "msf constructed "<<std::endl;
 | 
			
		||||
    msf.poles=shifts;
 | 
			
		||||
    msf.residues=alpha;
 | 
			
		||||
    msf.tolerances=tols;
 | 
			
		||||
    msf.norm=0.0;
 | 
			
		||||
    msf.order=alpha.size();
 | 
			
		||||
    ConjugateGradientMultiShift<FineField> MSCG(maxit,msf);
 | 
			
		||||
    
 | 
			
		||||
    for(int b =0;b<nbasis;b++)
 | 
			
		||||
    {
 | 
			
		||||
      gaussian(RNG,noise);
 | 
			
		||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
      noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
      // Initial matrix element
 | 
			
		||||
      hermop.Op(noise,Mn);
 | 
			
		||||
      if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
      MSCG(hermop,noise,Mn);
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
			
		||||
      subspace[b]   = Mn;
 | 
			
		||||
      hermop.Op(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
  virtual void RefineSubspace(LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
			      double Lo,double tol,int maxit)
 | 
			
		||||
  {
 | 
			
		||||
    FineField tmp(FineGrid);
 | 
			
		||||
    for(int b =0;b<nbasis;b++)
 | 
			
		||||
    {
 | 
			
		||||
      RealD MirsShift = Lo;
 | 
			
		||||
      ConjugateGradient<FineField>  CGsloppy(tol,maxit,false);
 | 
			
		||||
      ShiftedHermOpLinearOperator<FineField> ShiftedFineHermOp(hermop,MirsShift);
 | 
			
		||||
      CGsloppy(hermop,subspace[b],tmp);
 | 
			
		||||
      subspace[b]=tmp;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  
 | 
			
		||||
};
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -1,537 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: BatchedBlas.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2023
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
#include <hipblas/hipblas.h>
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
#include <hipblas/hipblas.h>
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
#error // need oneMKL version
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////////////////////////	  
 | 
			
		||||
// Need to rearrange lattice data to be in the right format for a
 | 
			
		||||
// batched multiply. Might as well make these static, dense packed
 | 
			
		||||
///////////////////////////////////////////////////////////////////////
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
  typedef hipblasHandle_t gridblasHandle_t;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
  typedef cudablasHandle_t gridblasHandle_t;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
  typedef int32_t gridblasHandle_t;
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
 | 
			
		||||
  typedef int32_t gridblasHandle_t;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
class GridBLAS {
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  static gridblasHandle_t gridblasHandle;
 | 
			
		||||
  static int            gridblasInit;
 | 
			
		||||
  
 | 
			
		||||
  static void Init(void)
 | 
			
		||||
  {
 | 
			
		||||
    if ( ! gridblasInit ) {
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
      std::cout << "cublasCreate"<<std::endl;
 | 
			
		||||
      cublasCreate(&gridblasHandle);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
      std::cout << "hipblasCreate"<<std::endl;
 | 
			
		||||
      hipblasCreate(&gridblasHandle);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
#endif
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  // Force construct once
 | 
			
		||||
  GridBLAS() { Init(); };
 | 
			
		||||
  ~GridBLAS() { };
 | 
			
		||||
  
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // BLAS GEMM conventions:
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // - C = alpha A * B + beta C
 | 
			
		||||
  // Dimensions:
 | 
			
		||||
  // - C_m.n
 | 
			
		||||
  // - A_m.k
 | 
			
		||||
  // - B_k.n
 | 
			
		||||
  // - Flops = 8 M N K
 | 
			
		||||
  // - Bytes = 2*sizeof(word) * (MN+MK+KN)
 | 
			
		||||
  // M=60, N=12
 | 
			
		||||
  // Flop/Byte = 8 . 60.60.12 / (60.12+60.60+60.12)/16 = 4 so expect about 4 TF/s on a GCD
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  void synchronise(void)
 | 
			
		||||
  {
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
    auto err = hipDeviceSynchronize();
 | 
			
		||||
    assert(err==hipSuccess);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
    auto err = cudaDeviceSynchronize();
 | 
			
		||||
    assert(err==cudaSuccess);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
    accelerator_barrier();
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
  void benchmark(int nbasis, int nrhs, int coarseVol, int nstencil)
 | 
			
		||||
  {
 | 
			
		||||
    int32_t N_A = nbasis*nbasis*coarseVol*nstencil;
 | 
			
		||||
    int32_t N_B = nbasis*nrhs*coarseVol*nstencil; // One leg of stencil at a time
 | 
			
		||||
    int32_t N_C = nbasis*nrhs*coarseVol*nstencil; 
 | 
			
		||||
    deviceVector<ComplexD> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(ComplexD));
 | 
			
		||||
    deviceVector<ComplexD> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(ComplexD));
 | 
			
		||||
    deviceVector<ComplexD> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(ComplexD));
 | 
			
		||||
    ComplexD alpha(1.0);
 | 
			
		||||
    ComplexD beta (1.0);
 | 
			
		||||
    for(int i=0;i<10;i++){
 | 
			
		||||
      RealD t0 = usecond();
 | 
			
		||||
      for(int s=0;s<nstencil;s++){
 | 
			
		||||
	gemmStridedBatched(nbasis,nrhs,nbasis,
 | 
			
		||||
			   alpha,
 | 
			
		||||
			   &A[0], // m x k 
 | 
			
		||||
			   &B[0], // k x n
 | 
			
		||||
			   beta, 
 | 
			
		||||
			   &C[0], // m x n
 | 
			
		||||
			   coarseVol);
 | 
			
		||||
      }
 | 
			
		||||
      synchronise();
 | 
			
		||||
      RealD t1 = usecond();
 | 
			
		||||
      RealD flops = 8.0*nbasis*nbasis*nrhs*coarseVol*nstencil;
 | 
			
		||||
      RealD bytes = 1.0*sizeof(ComplexD)*(nbasis*nbasis+nbasis*nrhs*3)*coarseVol*nstencil;
 | 
			
		||||
      std::cout << " batched Blas call "<<i<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
 | 
			
		||||
      std::cout << " batched Blas call "<<i<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void gemmBatched(int m,int n, int k,
 | 
			
		||||
		   ComplexD alpha,
 | 
			
		||||
		   deviceVector<ComplexD*> &Amk,  // pointer list to matrices
 | 
			
		||||
		   deviceVector<ComplexD*> &Bkn,
 | 
			
		||||
		   ComplexD beta,
 | 
			
		||||
		   deviceVector<ComplexD*> &Cmn)
 | 
			
		||||
  {
 | 
			
		||||
    RealD t2=usecond();
 | 
			
		||||
    int32_t batchCount = Amk.size();
 | 
			
		||||
    // Use C-row major storage, so transpose calls
 | 
			
		||||
    int lda = m; // m x k column major
 | 
			
		||||
    int ldb = k; // k x n column major
 | 
			
		||||
    int ldc = m; // m x b column major
 | 
			
		||||
    static deviceVector<ComplexD> alpha_p(1);
 | 
			
		||||
    static deviceVector<ComplexD> beta_p(1);
 | 
			
		||||
    // can prestore the 1 and the zero on device
 | 
			
		||||
    acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
 | 
			
		||||
    acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
 | 
			
		||||
    RealD t0=usecond();
 | 
			
		||||
    //       std::cout << "hipblasZgemmBatched mnk  "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
 | 
			
		||||
    assert(Bkn.size()==batchCount);
 | 
			
		||||
    assert(Cmn.size()==batchCount);
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
    auto err = hipblasZgemmBatched(gridblasHandle,
 | 
			
		||||
				   HIPBLAS_OP_N,
 | 
			
		||||
				   HIPBLAS_OP_N,
 | 
			
		||||
				   m,n,k,
 | 
			
		||||
				   (hipblasDoubleComplex *) &alpha_p[0],
 | 
			
		||||
				   (hipblasDoubleComplex **)&Amk[0], lda,
 | 
			
		||||
				   (hipblasDoubleComplex **)&Bkn[0], ldb,
 | 
			
		||||
				   (hipblasDoubleComplex *) &beta_p[0],
 | 
			
		||||
				   (hipblasDoubleComplex **)&Cmn[0], ldc,
 | 
			
		||||
				   batchCount);
 | 
			
		||||
    //	 std::cout << " hipblas return code " <<(int)err<<std::endl;
 | 
			
		||||
    assert(err==HIPBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
    auto err = cublasZgemmBatched(gridblasHandle,
 | 
			
		||||
				  CUBLAS_OP_N,
 | 
			
		||||
				  CUBLAS_OP_N,
 | 
			
		||||
				  m,n,k,
 | 
			
		||||
				  (cuDoubleComplex *) &alpha_p[0],
 | 
			
		||||
				  (cuDoubleComplex **)&Amk[0], lda,
 | 
			
		||||
				  (cuDoubleComplex **)&Bkn[0], ldb,
 | 
			
		||||
				  (cuDoubleComplex *) &beta_p[0],
 | 
			
		||||
				  (cuDoubleComplex **)&Cmn[0], ldc,
 | 
			
		||||
				  batchCount);
 | 
			
		||||
    assert(err==CUBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
    //MKL’s cblas_<T>gemm_batch & OneAPI
 | 
			
		||||
#warning "oneMKL implementation not built "
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
 | 
			
		||||
    // Need a default/reference implementation
 | 
			
		||||
    for (int p = 0; p < batchCount; ++p) {
 | 
			
		||||
      for (int mm = 0; mm < m; ++mm) {
 | 
			
		||||
	for (int nn = 0; nn < n; ++nn) {
 | 
			
		||||
	  ComplexD c_mn(0.0);
 | 
			
		||||
	  for (int kk = 0; kk < k, ++kk)
 | 
			
		||||
	    c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
 | 
			
		||||
	  Cmn[mm + nn*ldc + p*sdc] =  (*alpha_p)*c_mn + (*beta_p)*Cmn[mm + nn*ldc + p*sdc];
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
     RealD t1=usecond();
 | 
			
		||||
     RealD flops = 8.0*m*n*k*batchCount;
 | 
			
		||||
     RealD bytes = 1.0*sizeof(ComplexD)*(m*k+k*n+m*n)*batchCount;
 | 
			
		||||
     //     std::cout <<GridLogPerformance<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl;
 | 
			
		||||
     //     std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
 | 
			
		||||
     //     std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void gemmBatched(int m,int n, int k,
 | 
			
		||||
		   ComplexF alpha,
 | 
			
		||||
		   deviceVector<ComplexF*> &Amk,  // pointer list to matrices
 | 
			
		||||
		   deviceVector<ComplexF*> &Bkn,
 | 
			
		||||
		   ComplexF beta,
 | 
			
		||||
		   deviceVector<ComplexF*> &Cmn)
 | 
			
		||||
  {
 | 
			
		||||
    RealD t2=usecond();
 | 
			
		||||
    int32_t batchCount = Amk.size();
 | 
			
		||||
    // Use C-row major storage, so transpose calls
 | 
			
		||||
    int lda = m; // m x k column major
 | 
			
		||||
    int ldb = k; // k x n column major
 | 
			
		||||
    int ldc = m; // m x b column major
 | 
			
		||||
    static deviceVector<ComplexF> alpha_p(1);
 | 
			
		||||
    static deviceVector<ComplexF> beta_p(1);
 | 
			
		||||
    // can prestore the 1 and the zero on device
 | 
			
		||||
    acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexF));
 | 
			
		||||
    acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexF));
 | 
			
		||||
    RealD t0=usecond();
 | 
			
		||||
    //       std::cout << "hipblasZgemmBatched mnk  "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
 | 
			
		||||
    assert(Bkn.size()==batchCount);
 | 
			
		||||
    assert(Cmn.size()==batchCount);
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
    auto err = hipblasCgemmBatched(gridblasHandle,
 | 
			
		||||
				   HIPBLAS_OP_N,
 | 
			
		||||
				   HIPBLAS_OP_N,
 | 
			
		||||
				   m,n,k,
 | 
			
		||||
				   (hipblasComplex *) &alpha_p[0],
 | 
			
		||||
				   (hipblasComplex **)&Amk[0], lda,
 | 
			
		||||
				   (hipblasComplex **)&Bkn[0], ldb,
 | 
			
		||||
				   (hipblasComplex *) &beta_p[0],
 | 
			
		||||
				   (hipblasComplex **)&Cmn[0], ldc,
 | 
			
		||||
				   batchCount);
 | 
			
		||||
    //	 std::cout << " hipblas return code " <<(int)err<<std::endl;
 | 
			
		||||
    assert(err==HIPBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
    auto err = cublasCgemmBatched(gridblasHandle,
 | 
			
		||||
				  CUBLAS_OP_N,
 | 
			
		||||
				  CUBLAS_OP_N,
 | 
			
		||||
				  m,n,k,
 | 
			
		||||
				  (cuComplex *) &alpha_p[0],
 | 
			
		||||
				  (cuComplex **)&Amk[0], lda,
 | 
			
		||||
				  (cuComplex **)&Bkn[0], ldb,
 | 
			
		||||
				  (cuComplex *) &beta_p[0],
 | 
			
		||||
				  (cuComplex **)&Cmn[0], ldc,
 | 
			
		||||
				  batchCount);
 | 
			
		||||
    assert(err==CUBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
    //MKL’s cblas_<T>gemm_batch & OneAPI
 | 
			
		||||
#warning "oneMKL implementation not built "
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
 | 
			
		||||
    // Need a default/reference implementation
 | 
			
		||||
    for (int p = 0; p < batchCount; ++p) {
 | 
			
		||||
      for (int mm = 0; mm < m; ++mm) {
 | 
			
		||||
	for (int nn = 0; nn < n; ++nn) {
 | 
			
		||||
	  ComplexD c_mn(0.0);
 | 
			
		||||
	  for (int kk = 0; kk < k, ++kk)
 | 
			
		||||
	    c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
 | 
			
		||||
	  Cmn[mm + nn*ldc + p*sdc] =  (*alpha_p)*c_mn + (*beta_p)*Cmn[mm + nn*ldc + p*sdc];
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
     RealD t1=usecond();
 | 
			
		||||
     RealD flops = 8.0*m*n*k*batchCount;
 | 
			
		||||
     RealD bytes = 1.0*sizeof(ComplexF)*(m*k+k*n+m*n)*batchCount;
 | 
			
		||||
     //     std::cout <<GridLogPerformance<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl;
 | 
			
		||||
     //     std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
 | 
			
		||||
     //     std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Single precision real GEMM
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  void gemmBatched(int m,int n, int k,
 | 
			
		||||
		   RealF alpha,
 | 
			
		||||
		   deviceVector<RealF*> &Amk,  // pointer list to matrices
 | 
			
		||||
		   deviceVector<RealF*> &Bkn,
 | 
			
		||||
		   RealF beta,
 | 
			
		||||
		   deviceVector<RealF*> &Cmn)
 | 
			
		||||
  {
 | 
			
		||||
    RealD t2=usecond();
 | 
			
		||||
    int32_t batchCount = Amk.size();
 | 
			
		||||
    // Use C-row major storage, so transpose calls
 | 
			
		||||
    int lda = m; // m x k column major
 | 
			
		||||
    int ldb = k; // k x n column major
 | 
			
		||||
    int ldc = m; // m x b column major
 | 
			
		||||
    static deviceVector<RealF> alpha_p(1);
 | 
			
		||||
    static deviceVector<RealF> beta_p(1);
 | 
			
		||||
    // can prestore the 1 and the zero on device
 | 
			
		||||
    acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealF));
 | 
			
		||||
    acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealF));
 | 
			
		||||
    RealD t0=usecond();
 | 
			
		||||
    //       std::cout << "hipblasZgemmBatched mnk  "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
 | 
			
		||||
    assert(Bkn.size()==batchCount);
 | 
			
		||||
    assert(Cmn.size()==batchCount);
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
    auto err = hipblasSgemmBatched(gridblasHandle,
 | 
			
		||||
				   HIPBLAS_OP_N,
 | 
			
		||||
				   HIPBLAS_OP_N,
 | 
			
		||||
				   m,n,k,
 | 
			
		||||
				   (float *) &alpha_p[0],
 | 
			
		||||
				   (float **)&Amk[0], lda,
 | 
			
		||||
				   (float **)&Bkn[0], ldb,
 | 
			
		||||
				   (float *) &beta_p[0],
 | 
			
		||||
				   (float **)&Cmn[0], ldc,
 | 
			
		||||
				   batchCount);
 | 
			
		||||
    assert(err==HIPBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
    auto err = cublasSgemmBatched(gridblasHandle,
 | 
			
		||||
				  CUBLAS_OP_N,
 | 
			
		||||
				  CUBLAS_OP_N,
 | 
			
		||||
				  m,n,k,
 | 
			
		||||
				  (float *) &alpha_p[0],
 | 
			
		||||
				  (float **)&Amk[0], lda,
 | 
			
		||||
				  (float **)&Bkn[0], ldb,
 | 
			
		||||
				  (float *) &beta_p[0],
 | 
			
		||||
				  (float **)&Cmn[0], ldc,
 | 
			
		||||
				  batchCount);
 | 
			
		||||
    assert(err==CUBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
    //MKL’s cblas_<T>gemm_batch & OneAPI
 | 
			
		||||
#warning "oneMKL implementation not built "
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
 | 
			
		||||
    // Need a default/reference implementation
 | 
			
		||||
    for (int p = 0; p < batchCount; ++p) {
 | 
			
		||||
      for (int mm = 0; mm < m; ++mm) {
 | 
			
		||||
	for (int nn = 0; nn < n; ++nn) {
 | 
			
		||||
	  RealD c_mn(0.0);
 | 
			
		||||
	  for (int kk = 0; kk < k, ++kk)
 | 
			
		||||
	    c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
 | 
			
		||||
	  Cmn[mm + nn*ldc + p*sdc] =  (*alpha_p)*c_mn + (*beta_p)*Cmn[mm + nn*ldc + p*sdc];
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
     RealD t1=usecond();
 | 
			
		||||
     RealD flops = 2.0*m*n*k*batchCount;
 | 
			
		||||
     RealD bytes = 1.0*sizeof(RealF)*(m*k+k*n+m*n)*batchCount;
 | 
			
		||||
     //     std::cout <<GridLogPerformance<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl;
 | 
			
		||||
     //     std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
 | 
			
		||||
     //     std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Double precision real GEMM
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  void gemmBatched(int m,int n, int k,
 | 
			
		||||
		   RealD alpha,
 | 
			
		||||
		   deviceVector<RealD*> &Amk,  // pointer list to matrices
 | 
			
		||||
		   deviceVector<RealD*> &Bkn,
 | 
			
		||||
		   RealD beta,
 | 
			
		||||
		   deviceVector<RealD*> &Cmn)
 | 
			
		||||
  {
 | 
			
		||||
    RealD t2=usecond();
 | 
			
		||||
    int32_t batchCount = Amk.size();
 | 
			
		||||
    // Use C-row major storage, so transpose calls
 | 
			
		||||
    int lda = m; // m x k column major
 | 
			
		||||
    int ldb = k; // k x n column major
 | 
			
		||||
    int ldc = m; // m x b column major
 | 
			
		||||
    static deviceVector<RealD> alpha_p(1);
 | 
			
		||||
    static deviceVector<RealD> beta_p(1);
 | 
			
		||||
    // can prestore the 1 and the zero on device
 | 
			
		||||
    acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealD));
 | 
			
		||||
    acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealD));
 | 
			
		||||
    RealD t0=usecond();
 | 
			
		||||
    //       std::cout << "hipblasZgemmBatched mnk  "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
 | 
			
		||||
    assert(Bkn.size()==batchCount);
 | 
			
		||||
    assert(Cmn.size()==batchCount);
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
    auto err = hipblasDgemmBatched(gridblasHandle,
 | 
			
		||||
				   HIPBLAS_OP_N,
 | 
			
		||||
				   HIPBLAS_OP_N,
 | 
			
		||||
				   m,n,k,
 | 
			
		||||
				   (double *) &alpha_p[0],
 | 
			
		||||
				   (double **)&Amk[0], lda,
 | 
			
		||||
				   (double **)&Bkn[0], ldb,
 | 
			
		||||
				   (double *) &beta_p[0],
 | 
			
		||||
				   (double **)&Cmn[0], ldc,
 | 
			
		||||
				   batchCount);
 | 
			
		||||
    assert(err==HIPBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
    auto err = cublasDgemmBatched(gridblasHandle,
 | 
			
		||||
				  CUBLAS_OP_N,
 | 
			
		||||
				  CUBLAS_OP_N,
 | 
			
		||||
				  m,n,k,
 | 
			
		||||
				  (double *) &alpha_p[0],
 | 
			
		||||
				  (double **)&Amk[0], lda,
 | 
			
		||||
				  (double **)&Bkn[0], ldb,
 | 
			
		||||
				  (double *) &beta_p[0],
 | 
			
		||||
				  (double **)&Cmn[0], ldc,
 | 
			
		||||
				  batchCount);
 | 
			
		||||
    assert(err==CUBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
    /*
 | 
			
		||||
      int64_t m64=m;
 | 
			
		||||
      int64_t n64=n;
 | 
			
		||||
      int64_t k64=k;
 | 
			
		||||
      int64_t batchCount64=batchCount;
 | 
			
		||||
      oneapi::mkl::blas::column_major::gemm_batch(*theGridAccelerator,
 | 
			
		||||
      onemkl::transpose::N,
 | 
			
		||||
      onemkl::transpose::N,
 | 
			
		||||
      &m64,&n64,&k64,
 | 
			
		||||
      (double *) &alpha_p[0],
 | 
			
		||||
      (double **)&Amk[0], lda,
 | 
			
		||||
      (double **)&Bkn[0], ldb,
 | 
			
		||||
      (double *) &beta_p[0],
 | 
			
		||||
      (double **)&Cmn[0], ldc,
 | 
			
		||||
      1,&batchCount64);
 | 
			
		||||
     */
 | 
			
		||||
    //MKL’s cblas_<T>gemm_batch & OneAPI
 | 
			
		||||
#warning "oneMKL implementation not built "
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
 | 
			
		||||
    // Need a default/reference implementation
 | 
			
		||||
    for (int p = 0; p < batchCount; ++p) {
 | 
			
		||||
      for (int mm = 0; mm < m; ++mm) {
 | 
			
		||||
	for (int nn = 0; nn < n; ++nn) {
 | 
			
		||||
	  RealD c_mn(0.0);
 | 
			
		||||
	  for (int kk = 0; kk < k, ++kk)
 | 
			
		||||
	    c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
 | 
			
		||||
	  Cmn[mm + nn*ldc + p*sdc] =  (*alpha_p)*c_mn + (*beta_p)*Cmn[mm + nn*ldc + p*sdc];
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
     RealD t1=usecond();
 | 
			
		||||
     RealD flops = 2.0*m*n*k*batchCount;
 | 
			
		||||
     RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount;
 | 
			
		||||
     //     std::cout <<GridLogPerformance<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl;
 | 
			
		||||
     //     std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
 | 
			
		||||
     //     std::cout <<GridLogPerformance<< " batched Blas call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Strided case used by benchmark, but generally unused in Grid
 | 
			
		||||
  // Keep a code example in double complex, but don't generate the single and real variants for now
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  
 | 
			
		||||
  void gemmStridedBatched(int m,int n, int k,
 | 
			
		||||
			  ComplexD alpha,
 | 
			
		||||
			  ComplexD* Amk,  // pointer list to matrices
 | 
			
		||||
			  ComplexD* Bkn,
 | 
			
		||||
			  ComplexD beta,
 | 
			
		||||
			  ComplexD* Cmn,
 | 
			
		||||
			  int batchCount)
 | 
			
		||||
  {
 | 
			
		||||
    // Use C-row major storage, so transpose calls
 | 
			
		||||
    int lda = m; // m x k column major
 | 
			
		||||
    int ldb = k; // k x n column major
 | 
			
		||||
    int ldc = m; // m x b column major
 | 
			
		||||
    int sda = m*k;
 | 
			
		||||
    int sdb = k*n;
 | 
			
		||||
    int sdc = m*n;
 | 
			
		||||
    deviceVector<ComplexD> alpha_p(1);
 | 
			
		||||
    deviceVector<ComplexD> beta_p(1);
 | 
			
		||||
    acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
 | 
			
		||||
    acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
 | 
			
		||||
    std::cout << "blasZgemmStridedBatched mnk  "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
 | 
			
		||||
    std::cout << "blasZgemmStridedBatched ld   "<<lda<<","<<ldb<<","<<ldc<<std::endl;
 | 
			
		||||
    std::cout << "blasZgemmStridedBatched sd   "<<sda<<","<<sdb<<","<<sdc<<std::endl;
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
    auto err = hipblasZgemmStridedBatched(gridblasHandle,
 | 
			
		||||
					  HIPBLAS_OP_N,
 | 
			
		||||
					  HIPBLAS_OP_N,
 | 
			
		||||
					  m,n,k,
 | 
			
		||||
					  (hipblasDoubleComplex *) &alpha_p[0],
 | 
			
		||||
					  (hipblasDoubleComplex *) Amk, lda, sda,
 | 
			
		||||
					  (hipblasDoubleComplex *) Bkn, ldb, sdb,
 | 
			
		||||
					  (hipblasDoubleComplex *) &beta_p[0],
 | 
			
		||||
					  (hipblasDoubleComplex *) Cmn, ldc, sdc,
 | 
			
		||||
					  batchCount);
 | 
			
		||||
    assert(err==HIPBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
    cublasZgemmStridedBatched(gridblasHandle,
 | 
			
		||||
			      CUBLAS_OP_N,
 | 
			
		||||
			      CUBLAS_OP_N,
 | 
			
		||||
			      m,n,k,
 | 
			
		||||
			      (cuDoubleComplex *) &alpha_p[0],
 | 
			
		||||
			      (cuDoubleComplex *) Amk, lda, sda,
 | 
			
		||||
			      (cuDoubleComplex *) Bkn, ldb, sdb,
 | 
			
		||||
			      (cuDoubleComplex *) &beta_p[0],
 | 
			
		||||
			      (cuDoubleComplex *) Cmn, ldc, sdc,
 | 
			
		||||
			      batchCount);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
     #warning "oneMKL implementation not made "
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
 | 
			
		||||
     // Need a default/reference implementation
 | 
			
		||||
     for (int p = 0; p < batchCount; ++p) {
 | 
			
		||||
       for (int mm = 0; mm < m; ++mm) {
 | 
			
		||||
	 for (int nn = 0; nn < n; ++nn) {
 | 
			
		||||
	   ComplexD c_mn(0.0);
 | 
			
		||||
	   for (int kk = 0; kk < k, ++kk)
 | 
			
		||||
	     c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
 | 
			
		||||
	   Cmn[mm + nn*ldc + p*sdc] =  (*alpha_p)*c_mn + (*beta_p)*Cmn[mm + nn*ldc + p*sdc];
 | 
			
		||||
	 }
 | 
			
		||||
       }
 | 
			
		||||
     }
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -1,467 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No)
 | 
			
		||||
 | 
			
		||||
#include <Grid/lattice/PaddedCell.h>
 | 
			
		||||
#include <Grid/stencil/GeneralLocalStencil.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
// Fine Object == (per site) type of fine field
 | 
			
		||||
// nbasis      == number of deflation vectors
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
class GeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > >  {
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
 | 
			
		||||
  typedef iVector<CComplex,nbasis >           siteVector;
 | 
			
		||||
  typedef iMatrix<CComplex,nbasis >           siteMatrix;
 | 
			
		||||
  typedef Lattice<iScalar<CComplex> >         CoarseComplexField;
 | 
			
		||||
  typedef Lattice<siteVector>                 CoarseVector;
 | 
			
		||||
  typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
 | 
			
		||||
  typedef iMatrix<CComplex,nbasis >  Cobj;
 | 
			
		||||
  typedef iVector<CComplex,nbasis >  Cvec;
 | 
			
		||||
  typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | 
			
		||||
  typedef Lattice<Fobj >        FineField;
 | 
			
		||||
  typedef Lattice<CComplex >    FineComplexField;
 | 
			
		||||
  typedef CoarseVector Field;
 | 
			
		||||
  ////////////////////
 | 
			
		||||
  // Data members
 | 
			
		||||
  ////////////////////
 | 
			
		||||
  int hermitian;
 | 
			
		||||
  GridBase      *       _FineGrid; 
 | 
			
		||||
  GridCartesian *       _CoarseGrid; 
 | 
			
		||||
  NonLocalStencilGeometry &geom;
 | 
			
		||||
  PaddedCell Cell;
 | 
			
		||||
  GeneralLocalStencil Stencil;
 | 
			
		||||
  
 | 
			
		||||
  std::vector<CoarseMatrix> _A;
 | 
			
		||||
  std::vector<CoarseMatrix> _Adag;
 | 
			
		||||
  std::vector<CoarseVector> MultTemporaries;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////
 | 
			
		||||
  // Interface
 | 
			
		||||
  ///////////////////////
 | 
			
		||||
  GridBase      * Grid(void)           { return _CoarseGrid; };   // this is all the linalg routines need to know
 | 
			
		||||
  GridBase      * FineGrid(void)       { return _FineGrid; };   // this is all the linalg routines need to know
 | 
			
		||||
  GridCartesian * CoarseGrid(void)     { return _CoarseGrid; };   // this is all the linalg routines need to know
 | 
			
		||||
 | 
			
		||||
  void ShiftMatrix(RealD shift)
 | 
			
		||||
  {
 | 
			
		||||
    int Nd=_FineGrid->Nd(); 
 | 
			
		||||
    Coordinate zero_shift(Nd,0);
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      if ( zero_shift==geom.shifts[p] ) {
 | 
			
		||||
	_A[p] = _A[p]+shift;
 | 
			
		||||
	_Adag[p] = _Adag[p]+shift;
 | 
			
		||||
      }
 | 
			
		||||
    }    
 | 
			
		||||
  }
 | 
			
		||||
  void ProjectNearestNeighbour(RealD shift, GeneralCoarseOp &CopyMe)
 | 
			
		||||
  {
 | 
			
		||||
    int nfound=0;
 | 
			
		||||
    std::cout << GridLogMessage <<"GeneralCoarsenedMatrix::ProjectNearestNeighbour "<< CopyMe._A[0].Grid()<<std::endl;
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      for(int pp=0;pp<CopyMe.geom.npoint;pp++){
 | 
			
		||||
 	// Search for the same relative shift
 | 
			
		||||
	// Avoids brutal handling of Grid pointers
 | 
			
		||||
	if ( CopyMe.geom.shifts[pp]==geom.shifts[p] ) {
 | 
			
		||||
	  _A[p] = CopyMe.Cell.Extract(CopyMe._A[pp]);
 | 
			
		||||
	  _Adag[p] = CopyMe.Cell.Extract(CopyMe._Adag[pp]);
 | 
			
		||||
	  nfound++;
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    assert(nfound==geom.npoint);
 | 
			
		||||
    ExchangeCoarseLinks();
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  GeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridBase *FineGrid, GridCartesian * CoarseGrid)
 | 
			
		||||
    : geom(_geom),
 | 
			
		||||
      _FineGrid(FineGrid),
 | 
			
		||||
      _CoarseGrid(CoarseGrid),
 | 
			
		||||
      hermitian(1),
 | 
			
		||||
      Cell(_geom.Depth(),_CoarseGrid),
 | 
			
		||||
      Stencil(Cell.grids.back(),geom.shifts)
 | 
			
		||||
  {
 | 
			
		||||
    {
 | 
			
		||||
      int npoint = _geom.npoint;
 | 
			
		||||
    }
 | 
			
		||||
    _A.resize(geom.npoint,CoarseGrid);
 | 
			
		||||
    _Adag.resize(geom.npoint,CoarseGrid);
 | 
			
		||||
  }
 | 
			
		||||
  void M (const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    Mult(_A,in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void Mdag (const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    if ( hermitian ) M(in,out);
 | 
			
		||||
    else Mult(_Adag,in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void Mult (std::vector<CoarseMatrix> &A,const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    RealD tviews=0;    RealD ttot=0;    RealD tmult=0;   RealD texch=0;    RealD text=0; RealD ttemps=0; RealD tcopy=0;
 | 
			
		||||
    RealD tmult2=0;
 | 
			
		||||
 | 
			
		||||
    ttot=-usecond();
 | 
			
		||||
    conformable(CoarseGrid(),in.Grid());
 | 
			
		||||
    conformable(in.Grid(),out.Grid());
 | 
			
		||||
    out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
    CoarseVector tin=in;
 | 
			
		||||
 | 
			
		||||
    texch-=usecond();
 | 
			
		||||
    CoarseVector pin = Cell.ExchangePeriodic(tin);
 | 
			
		||||
    texch+=usecond();
 | 
			
		||||
 | 
			
		||||
    CoarseVector pout(pin.Grid());
 | 
			
		||||
 | 
			
		||||
    int npoint = geom.npoint;
 | 
			
		||||
    typedef LatticeView<Cobj> Aview;
 | 
			
		||||
    typedef LatticeView<Cvec> Vview;
 | 
			
		||||
      
 | 
			
		||||
    const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
    
 | 
			
		||||
    int64_t osites=pin.Grid()->oSites();
 | 
			
		||||
 | 
			
		||||
    RealD flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
 | 
			
		||||
    RealD bytes = 1.0*osites*sizeof(siteMatrix)*npoint
 | 
			
		||||
                + 2.0*osites*sizeof(siteVector)*npoint;
 | 
			
		||||
      
 | 
			
		||||
    {
 | 
			
		||||
      tviews-=usecond();
 | 
			
		||||
      autoView( in_v , pin, AcceleratorRead);
 | 
			
		||||
      autoView( out_v , pout, AcceleratorWriteDiscard);
 | 
			
		||||
      autoView( Stencil_v  , Stencil, AcceleratorRead);
 | 
			
		||||
      tviews+=usecond();
 | 
			
		||||
 | 
			
		||||
      // Static and prereserve to keep UVM region live and not resized across multiple calls
 | 
			
		||||
      ttemps-=usecond();
 | 
			
		||||
      MultTemporaries.resize(npoint,pin.Grid());       
 | 
			
		||||
      ttemps+=usecond();
 | 
			
		||||
      std::vector<Aview> AcceleratorViewContainer_h;
 | 
			
		||||
      std::vector<Vview> AcceleratorVecViewContainer_h; 
 | 
			
		||||
 | 
			
		||||
      tviews-=usecond();
 | 
			
		||||
      for(int p=0;p<npoint;p++) {
 | 
			
		||||
	AcceleratorViewContainer_h.push_back(      A[p].View(AcceleratorRead));
 | 
			
		||||
	AcceleratorVecViewContainer_h.push_back(MultTemporaries[p].View(AcceleratorWrite));
 | 
			
		||||
      }
 | 
			
		||||
      tviews+=usecond();
 | 
			
		||||
 | 
			
		||||
      static deviceVector<Aview> AcceleratorViewContainer; AcceleratorViewContainer.resize(npoint);
 | 
			
		||||
      static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(npoint); 
 | 
			
		||||
      
 | 
			
		||||
      auto Aview_p = &AcceleratorViewContainer[0];
 | 
			
		||||
      auto Vview_p = &AcceleratorVecViewContainer[0];
 | 
			
		||||
      tcopy-=usecond();
 | 
			
		||||
      acceleratorCopyToDevice(&AcceleratorViewContainer_h[0],&AcceleratorViewContainer[0],npoint *sizeof(Aview));
 | 
			
		||||
      acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],npoint *sizeof(Vview));
 | 
			
		||||
      tcopy+=usecond();
 | 
			
		||||
 | 
			
		||||
      tmult-=usecond();
 | 
			
		||||
      accelerator_for(spb, osites*nbasis*npoint, Nsimd, {
 | 
			
		||||
	  typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
 | 
			
		||||
	  int32_t ss   = spb/(nbasis*npoint);
 | 
			
		||||
	  int32_t bp   = spb%(nbasis*npoint);
 | 
			
		||||
	  int32_t point= bp/nbasis;
 | 
			
		||||
	  int32_t b    = bp%nbasis;
 | 
			
		||||
	  auto SE  = Stencil_v.GetEntry(point,ss);
 | 
			
		||||
	  auto nbr = coalescedReadGeneralPermute(in_v[SE->_offset],SE->_permute,Nd);
 | 
			
		||||
	  auto res = coalescedRead(Aview_p[point][ss](0,b))*nbr(0);
 | 
			
		||||
	  for(int bb=1;bb<nbasis;bb++) {
 | 
			
		||||
	    res = res + coalescedRead(Aview_p[point][ss](bb,b))*nbr(bb);
 | 
			
		||||
	  }
 | 
			
		||||
	  coalescedWrite(Vview_p[point][ss](b),res);
 | 
			
		||||
      });
 | 
			
		||||
      tmult2-=usecond();
 | 
			
		||||
      accelerator_for(sb, osites*nbasis, Nsimd, {
 | 
			
		||||
	  int ss = sb/nbasis;
 | 
			
		||||
	  int b  = sb%nbasis;
 | 
			
		||||
	  auto res = coalescedRead(Vview_p[0][ss](b));
 | 
			
		||||
	  for(int point=1;point<npoint;point++){
 | 
			
		||||
	    res = res + coalescedRead(Vview_p[point][ss](b));
 | 
			
		||||
	  }
 | 
			
		||||
	  coalescedWrite(out_v[ss](b),res);
 | 
			
		||||
      });
 | 
			
		||||
      tmult2+=usecond();
 | 
			
		||||
      tmult+=usecond();
 | 
			
		||||
      for(int p=0;p<npoint;p++) {
 | 
			
		||||
	AcceleratorViewContainer_h[p].ViewClose();
 | 
			
		||||
	AcceleratorVecViewContainer_h[p].ViewClose();
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    text-=usecond();
 | 
			
		||||
    out = Cell.Extract(pout);
 | 
			
		||||
    text+=usecond();
 | 
			
		||||
    ttot+=usecond();
 | 
			
		||||
    
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse 1rhs Mult Aviews "<<tviews<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Mult exch "<<texch<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Mult mult "<<tmult<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<" of which mult2  "<<tmult2<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Mult ext  "<<text<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Mult temps "<<ttemps<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Mult copy  "<<tcopy<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Mult tot  "<<ttot<<" us"<<std::endl;
 | 
			
		||||
    //    std::cout << GridLogPerformance<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Kernel flops "<< flops<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Kernel flop/s "<< flops/tmult<<" mflop/s"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse Kernel bytes/s "<< bytes/tmult<<" MB/s"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse overall flops/s "<< flops/ttot<<" mflop/s"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance<<"Coarse total bytes   "<< bytes/1e6<<" MB"<<std::endl;
 | 
			
		||||
 | 
			
		||||
  };
 | 
			
		||||
  
 | 
			
		||||
  void PopulateAdag(void)
 | 
			
		||||
  {
 | 
			
		||||
    for(int64_t bidx=0;bidx<CoarseGrid()->gSites() ;bidx++){
 | 
			
		||||
      Coordinate bcoor;
 | 
			
		||||
      CoarseGrid()->GlobalIndexToGlobalCoor(bidx,bcoor);
 | 
			
		||||
      
 | 
			
		||||
      for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
	Coordinate scoor = bcoor;
 | 
			
		||||
	for(int mu=0;mu<bcoor.size();mu++){
 | 
			
		||||
	  int L = CoarseGrid()->GlobalDimensions()[mu];
 | 
			
		||||
	  scoor[mu] = (bcoor[mu] - geom.shifts[p][mu] + L) % L; // Modulo arithmetic
 | 
			
		||||
	}
 | 
			
		||||
	// Flip to poke/peekLocalSite and not too bad
 | 
			
		||||
	auto link = peekSite(_A[p],scoor);
 | 
			
		||||
	int pp = geom.Reverse(p);
 | 
			
		||||
	pokeSite(adj(link),_Adag[pp],bcoor);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  // 
 | 
			
		||||
  // A) Only reduced flops option is to use a padded cell of depth 4
 | 
			
		||||
  // and apply MpcDagMpc in the padded cell.
 | 
			
		||||
  //
 | 
			
		||||
  // Makes for ONE application of MpcDagMpc per vector instead of 30 or 80.
 | 
			
		||||
  // With the effective cell size around (B+8)^4 perhaps 12^4/4^4 ratio
 | 
			
		||||
  // Cost is 81x more, same as stencil size.
 | 
			
		||||
  //
 | 
			
		||||
  // But: can eliminate comms and do as local dirichlet.
 | 
			
		||||
  //
 | 
			
		||||
  // Local exchange gauge field once.
 | 
			
		||||
  // Apply to all vectors, local only computation.
 | 
			
		||||
  // Must exchange ghost subcells in reverse process of PaddedCell to take inner products
 | 
			
		||||
  //
 | 
			
		||||
  // B) Can reduce cost: pad by 1, apply Deo      (4^4+6^4+8^4+8^4 )/ (4x 4^4)
 | 
			
		||||
  //                     pad by 2, apply Doe
 | 
			
		||||
  //                     pad by 3, apply Deo
 | 
			
		||||
  //                     then break out 8x directions; cost is ~10x MpcDagMpc per vector
 | 
			
		||||
  //
 | 
			
		||||
  // => almost factor of 10 in setup cost, excluding data rearrangement
 | 
			
		||||
  //
 | 
			
		||||
  // Intermediates -- ignore the corner terms, leave approximate and force Hermitian
 | 
			
		||||
  // Intermediates -- pad by 2 and apply 1+8+24 = 33 times.
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////////
 | 
			
		||||
    // BFM HDCG style approach: Solve a system of equations to get Aij
 | 
			
		||||
    //////////////////////////////////////////////////////////
 | 
			
		||||
    /*
 | 
			
		||||
     *     Here, k,l index which possible shift within the 3^Nd "ball" connected by MdagM.
 | 
			
		||||
     *
 | 
			
		||||
     *     conj(phases[block]) proj[k][ block*Nvec+j ] =  \sum_ball  e^{i q_k . delta} < phi_{block,j} | MdagM | phi_{(block+delta),i} > 
 | 
			
		||||
     *                                                 =  \sum_ball e^{iqk.delta} A_ji
 | 
			
		||||
     *
 | 
			
		||||
     *     Must invert matrix M_k,l = e^[i q_k . delta_l]
 | 
			
		||||
     *
 | 
			
		||||
     *     Where q_k = delta_k . (2*M_PI/global_nb[mu])
 | 
			
		||||
     */
 | 
			
		||||
  void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
			
		||||
		       Aggregation<Fobj,CComplex,nbasis> & Subspace)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
 | 
			
		||||
    GridBase *grid = FineGrid();
 | 
			
		||||
 | 
			
		||||
    RealD tproj=0.0;
 | 
			
		||||
    RealD teigen=0.0;
 | 
			
		||||
    RealD tmat=0.0;
 | 
			
		||||
    RealD tphase=0.0;
 | 
			
		||||
    RealD tphaseBZ=0.0;
 | 
			
		||||
    RealD tinv=0.0;
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    // Orthogonalise the subblocks over the basis
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    CoarseScalar InnerProd(CoarseGrid()); 
 | 
			
		||||
    blockOrthogonalise(InnerProd,Subspace.subspace);
 | 
			
		||||
 | 
			
		||||
    const int npoint = geom.npoint;
 | 
			
		||||
      
 | 
			
		||||
    Coordinate clatt = CoarseGrid()->GlobalDimensions();
 | 
			
		||||
    int Nd = CoarseGrid()->Nd();
 | 
			
		||||
 | 
			
		||||
      /*
 | 
			
		||||
       *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
 | 
			
		||||
       *     Matrix index i is mapped to this shift via 
 | 
			
		||||
       *               geom.shifts[i]
 | 
			
		||||
       *
 | 
			
		||||
       *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block] 
 | 
			
		||||
       *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} > 
 | 
			
		||||
       *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
 | 
			
		||||
       *       = M_{kl} A_ji^{b.b+l}
 | 
			
		||||
       *
 | 
			
		||||
       *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
 | 
			
		||||
       *  
 | 
			
		||||
       *     Where q_k = delta_k . (2*M_PI/global_nb[mu])
 | 
			
		||||
       *
 | 
			
		||||
       *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
 | 
			
		||||
       */
 | 
			
		||||
    teigen-=usecond();
 | 
			
		||||
    Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
			
		||||
    Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
			
		||||
    ComplexD ci(0.0,1.0);
 | 
			
		||||
    for(int k=0;k<npoint;k++){ // Loop over momenta
 | 
			
		||||
 | 
			
		||||
      for(int l=0;l<npoint;l++){ // Loop over nbr relative
 | 
			
		||||
	ComplexD phase(0.0,0.0);
 | 
			
		||||
	for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
			
		||||
	  phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
 | 
			
		||||
	}
 | 
			
		||||
	phase=exp(phase*ci);
 | 
			
		||||
	Mkl(k,l) = phase;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    invMkl = Mkl.inverse();
 | 
			
		||||
    teigen+=usecond();
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Now compute the matrix elements of linop between the orthonormal
 | 
			
		||||
    // set of vectors.
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////
 | 
			
		||||
    FineField phaV(grid); // Phased block basis vector
 | 
			
		||||
    FineField MphaV(grid);// Matrix applied
 | 
			
		||||
    std::vector<FineComplexField> phaF(npoint,grid);
 | 
			
		||||
    std::vector<CoarseComplexField> pha(npoint,CoarseGrid());
 | 
			
		||||
    
 | 
			
		||||
    CoarseVector coarseInner(CoarseGrid());
 | 
			
		||||
    
 | 
			
		||||
    typedef typename CComplex::scalar_type SComplex;
 | 
			
		||||
    FineComplexField one(grid); one=SComplex(1.0);
 | 
			
		||||
    FineComplexField zz(grid); zz = Zero();
 | 
			
		||||
    tphase=-usecond();
 | 
			
		||||
    for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      // Stick a phase on every block
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      CoarseComplexField coor(CoarseGrid());
 | 
			
		||||
      pha[p]=Zero();
 | 
			
		||||
      for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
	LatticeCoordinate(coor,mu);
 | 
			
		||||
	RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
			
		||||
	pha[p] = pha[p] + (TwoPiL * geom.shifts[p][mu]) * coor;
 | 
			
		||||
      }
 | 
			
		||||
      pha[p]  =exp(pha[p]*ci);
 | 
			
		||||
 | 
			
		||||
      blockZAXPY(phaF[p],pha[p],one,zz);
 | 
			
		||||
      
 | 
			
		||||
    }
 | 
			
		||||
    tphase+=usecond();
 | 
			
		||||
    
 | 
			
		||||
    std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
 | 
			
		||||
    std::vector<CoarseVector>          FT(npoint,CoarseGrid());
 | 
			
		||||
    for(int i=0;i<nbasis;i++){// Loop over basis vectors
 | 
			
		||||
      std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
 | 
			
		||||
      for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
			
		||||
	tphaseBZ-=usecond();
 | 
			
		||||
	phaV = phaF[p]*Subspace.subspace[i];
 | 
			
		||||
	tphaseBZ+=usecond();
 | 
			
		||||
 | 
			
		||||
	/////////////////////////////////////////////////////////////////////
 | 
			
		||||
	// Multiple phased subspace vector by matrix and project to subspace
 | 
			
		||||
	// Remove local bulk phase to leave relative phases
 | 
			
		||||
	/////////////////////////////////////////////////////////////////////
 | 
			
		||||
	tmat-=usecond();
 | 
			
		||||
	linop.Op(phaV,MphaV);
 | 
			
		||||
	tmat+=usecond();
 | 
			
		||||
 | 
			
		||||
	tproj-=usecond();
 | 
			
		||||
	blockProjectFast(coarseInner,MphaV,Subspace.subspace);
 | 
			
		||||
	coarseInner = conjugate(pha[p]) * coarseInner;
 | 
			
		||||
 | 
			
		||||
	ComputeProj[p] = coarseInner;
 | 
			
		||||
	tproj+=usecond();
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      tinv-=usecond();
 | 
			
		||||
      for(int k=0;k<npoint;k++){
 | 
			
		||||
	FT[k] = Zero();
 | 
			
		||||
	for(int l=0;l<npoint;l++){
 | 
			
		||||
	  FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
 | 
			
		||||
	}
 | 
			
		||||
      
 | 
			
		||||
	int osites=CoarseGrid()->oSites();
 | 
			
		||||
	autoView( A_v  , _A[k], AcceleratorWrite);
 | 
			
		||||
	autoView( FT_v  , FT[k], AcceleratorRead);
 | 
			
		||||
	accelerator_for(sss, osites, 1, {
 | 
			
		||||
	    for(int j=0;j<nbasis;j++){
 | 
			
		||||
	      A_v[sss](i,j) = FT_v[sss](j);
 | 
			
		||||
	    }
 | 
			
		||||
        });
 | 
			
		||||
      }
 | 
			
		||||
      tinv+=usecond();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Only needed if nonhermitian
 | 
			
		||||
    if ( ! hermitian ) {
 | 
			
		||||
      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl;
 | 
			
		||||
      PopulateAdag();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Need to write something to populate Adag from A
 | 
			
		||||
    ExchangeCoarseLinks();
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator eigen  "<<teigen<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator phase  "<<tphase<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator mat    "<<tmat <<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator proj   "<<tproj<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  void ExchangeCoarseLinks(void){
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      _A[p] = Cell.ExchangePeriodic(_A[p]);
 | 
			
		||||
      _Adag[p]= Cell.ExchangePeriodic(_Adag[p]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  virtual  void Mdiag    (const Field &in, Field &out){ assert(0);};
 | 
			
		||||
  virtual  void Mdir     (const Field &in, Field &out,int dir, int disp){assert(0);};
 | 
			
		||||
  virtual  void MdirAll  (const Field &in, std::vector<Field> &out){assert(0);};
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -1,402 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/GeneralCoarsenedMatrixMultiRHS.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <Grid/algorithms/multigrid/BatchedBlas.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// Move this to accelerator.h
 | 
			
		||||
// Also give a copy device.
 | 
			
		||||
// Rename acceleratorPut
 | 
			
		||||
// Rename acceleratorGet
 | 
			
		||||
template<class T> void deviceSet(T& dev,T&host)
 | 
			
		||||
{
 | 
			
		||||
  acceleratorCopyToDevice(&host,&dev,sizeof(T));
 | 
			
		||||
}
 | 
			
		||||
template<class T> T deviceGet(T& dev)
 | 
			
		||||
{
 | 
			
		||||
  T host;
 | 
			
		||||
  acceleratorCopyFromDevice(&dev,&host,sizeof(T));
 | 
			
		||||
  return host;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Fine Object == (per site) type of fine field
 | 
			
		||||
// nbasis      == number of deflation vectors
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
class MultiGeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > >  {
 | 
			
		||||
public:
 | 
			
		||||
  typedef typename CComplex::scalar_object SComplex;
 | 
			
		||||
  typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
 | 
			
		||||
  typedef MultiGeneralCoarsenedMatrix<Fobj,CComplex,nbasis> MultiGeneralCoarseOp;
 | 
			
		||||
 | 
			
		||||
  typedef iVector<CComplex,nbasis >           siteVector;
 | 
			
		||||
  typedef iMatrix<CComplex,nbasis >           siteMatrix;
 | 
			
		||||
  typedef iVector<SComplex,nbasis >           calcVector;
 | 
			
		||||
  typedef iMatrix<SComplex,nbasis >           calcMatrix;
 | 
			
		||||
  typedef Lattice<iScalar<CComplex> >         CoarseComplexField;
 | 
			
		||||
  typedef Lattice<siteVector>                 CoarseVector;
 | 
			
		||||
  typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
 | 
			
		||||
  typedef iMatrix<CComplex,nbasis >  Cobj;
 | 
			
		||||
  typedef iVector<CComplex,nbasis >  Cvec;
 | 
			
		||||
  typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | 
			
		||||
  typedef Lattice<Fobj >        FineField;
 | 
			
		||||
  typedef CoarseVector Field;
 | 
			
		||||
 | 
			
		||||
  ////////////////////
 | 
			
		||||
  // Data members
 | 
			
		||||
  ////////////////////
 | 
			
		||||
  GridCartesian *       _CoarseGridMulti; 
 | 
			
		||||
  GridCartesian *       _CoarseGrid;
 | 
			
		||||
  GeneralCoarseOp &     _Op;
 | 
			
		||||
  NonLocalStencilGeometry geom;
 | 
			
		||||
  PaddedCell Cell;
 | 
			
		||||
  GeneralLocalStencil Stencil;
 | 
			
		||||
 | 
			
		||||
  deviceVector<calcVector> BLAS_B;
 | 
			
		||||
  deviceVector<calcVector> BLAS_C;
 | 
			
		||||
  std::vector<deviceVector<calcMatrix> > BLAS_A;
 | 
			
		||||
 | 
			
		||||
  std::vector<deviceVector<ComplexD *> > BLAS_AP;
 | 
			
		||||
  std::vector<deviceVector<ComplexD *> > BLAS_BP;
 | 
			
		||||
  deviceVector<ComplexD *>               BLAS_CP;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////
 | 
			
		||||
  // Interface
 | 
			
		||||
  ///////////////////////
 | 
			
		||||
  GridBase      * Grid(void)           { return _CoarseGridMulti; };   // this is all the linalg routines need to know
 | 
			
		||||
  GridCartesian * CoarseGrid(void)     { return _CoarseGridMulti; };   // this is all the linalg routines need to know
 | 
			
		||||
 | 
			
		||||
  MultiGeneralCoarsenedMatrix(GeneralCoarseOp & Op,GridCartesian *CoarseGridMulti) :
 | 
			
		||||
    _Op(Op),
 | 
			
		||||
    _CoarseGrid(Op.CoarseGrid()),
 | 
			
		||||
    _CoarseGridMulti(CoarseGridMulti),
 | 
			
		||||
    geom(_CoarseGridMulti,Op.geom.hops,Op.geom.skip+1),
 | 
			
		||||
    Cell(Op.geom.Depth(),_CoarseGridMulti),
 | 
			
		||||
    Stencil(Cell.grids.back(),geom.shifts) // padded cell stencil
 | 
			
		||||
  {
 | 
			
		||||
    int32_t padded_sites   = _Op._A[0].Grid()->lSites();
 | 
			
		||||
    int32_t unpadded_sites = _CoarseGrid->lSites();
 | 
			
		||||
    
 | 
			
		||||
    int32_t nrhs  = CoarseGridMulti->FullDimensions()[0];  // # RHS
 | 
			
		||||
    int32_t orhs  = nrhs/CComplex::Nsimd();
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////
 | 
			
		||||
    // Device data vector storage
 | 
			
		||||
    /////////////////////////////////////////////////
 | 
			
		||||
    BLAS_A.resize(geom.npoint);
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      BLAS_A[p].resize (unpadded_sites); // no ghost zone, npoint elements
 | 
			
		||||
    }
 | 
			
		||||
    BLAS_B.resize(nrhs *padded_sites);   // includes ghost zone
 | 
			
		||||
    BLAS_C.resize(nrhs *unpadded_sites); // no ghost zone
 | 
			
		||||
 | 
			
		||||
    BLAS_AP.resize(geom.npoint);
 | 
			
		||||
    BLAS_BP.resize(geom.npoint);
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      BLAS_AP[p].resize(unpadded_sites);
 | 
			
		||||
      BLAS_BP[p].resize(unpadded_sites);
 | 
			
		||||
    }
 | 
			
		||||
    BLAS_CP.resize(unpadded_sites);
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////
 | 
			
		||||
    // Pointers to data
 | 
			
		||||
    /////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    // Site identity mapping for A, C
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      for(int ss=0;ss<unpadded_sites;ss++){
 | 
			
		||||
	ComplexD *ptr = (ComplexD *)&BLAS_A[p][ss];
 | 
			
		||||
	//ComplexD *ptr = (ComplexD *)&BLAS_A[p][0]; std::cout << " A ptr "<<std::hex<<ptr<<std::dec<<" "<<ss<<"/"<<BLAS_A[p].size()<<std::endl;
 | 
			
		||||
	deviceSet(BLAS_AP[p][ss],ptr);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    for(int ss=0;ss<unpadded_sites;ss++){
 | 
			
		||||
      ComplexD *ptr = (ComplexD *)&BLAS_C[ss*nrhs];
 | 
			
		||||
      //ComplexD *ptr = (ComplexD *)&BLAS_C[0];  std::cout << " C ptr "<<std::hex<<ptr<<std::dec<<" "<<ss<<"/"<<BLAS_C.size()<<std::endl;
 | 
			
		||||
      deviceSet(BLAS_CP[ss],ptr);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////
 | 
			
		||||
    // Neighbour table is more complicated
 | 
			
		||||
    /////////////////////////////////////////////////
 | 
			
		||||
    int32_t j=0; // Interior point counter (unpadded)
 | 
			
		||||
    for(int32_t s=0;s<padded_sites;s++){ // 4 volume, padded
 | 
			
		||||
      int ghost_zone=0;
 | 
			
		||||
      for(int32_t point = 0 ; point < geom.npoint; point++){
 | 
			
		||||
	int i=s*orhs*geom.npoint+point;
 | 
			
		||||
	if( Stencil._entries[i]._wrap ) { // stencil is indexed by the oSite of the CoarseGridMulti, hence orhs factor
 | 
			
		||||
	  ghost_zone=1; // If general stencil wrapped in any direction, wrap=1
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      //      GeneralStencilEntryReordered tmp;
 | 
			
		||||
      if( ghost_zone==0) {
 | 
			
		||||
	for(int32_t point = 0 ; point < geom.npoint; point++){
 | 
			
		||||
	  int i=s*orhs*geom.npoint+point;
 | 
			
		||||
 	  int32_t nbr = Stencil._entries[i]._offset*CComplex::Nsimd(); // oSite -> lSite
 | 
			
		||||
	  //	  std::cout << " B ptr "<< nbr<<"/"<<BLAS_B.size()<<std::endl;
 | 
			
		||||
	  assert(nbr<BLAS_B.size());
 | 
			
		||||
	  ComplexD * ptr = (ComplexD *)&BLAS_B[nbr];
 | 
			
		||||
	  //	  ComplexD * ptr = (ComplexD *)&BLAS_B[0];
 | 
			
		||||
	  //	  std::cout << " B ptr unpadded "<<std::hex<<ptr<<std::dec<<" "<<s<<"/"<<padded_sites<<std::endl;
 | 
			
		||||
	  //	  std::cout << " B ptr   padded "<<std::hex<<ptr<<std::dec<<" "<<j<<"/"<<unpadded_sites<<std::endl;
 | 
			
		||||
	  deviceSet(BLAS_BP[point][j],ptr); // neighbour indexing in ghost zone volume
 | 
			
		||||
	  //	  auto tmp = deviceGet(*BLAS_BP[point][j]);  // debug trigger SEGV if bad ptr
 | 
			
		||||
	}
 | 
			
		||||
	j++;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    assert(j==unpadded_sites);
 | 
			
		||||
    CopyMatrix();
 | 
			
		||||
  }
 | 
			
		||||
  template<class vobj> void GridtoBLAS(const Lattice<vobj> &from,deviceVector<typename vobj::scalar_object> &to)
 | 
			
		||||
  {
 | 
			
		||||
#if 0
 | 
			
		||||
    std::vector<typename vobj::scalar_object> tmp;
 | 
			
		||||
    unvectorizeToLexOrdArray(tmp,from);
 | 
			
		||||
    assert(tmp.size()==from.Grid()->lSites());
 | 
			
		||||
    assert(tmp.size()==to.size());
 | 
			
		||||
    to.resize(tmp.size());
 | 
			
		||||
    acceleratorCopyToDevice(&tmp[0],&to[0],sizeof(typename vobj::scalar_object)*tmp.size());
 | 
			
		||||
#else
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  GridBase *Fg = from.Grid();
 | 
			
		||||
  assert(!Fg->_isCheckerBoarded);
 | 
			
		||||
  int nd = Fg->_ndimension;
 | 
			
		||||
 | 
			
		||||
  to.resize(Fg->lSites());
 | 
			
		||||
 | 
			
		||||
  Coordinate LocalLatt = Fg->LocalDimensions();
 | 
			
		||||
  size_t nsite = 1;
 | 
			
		||||
  for(int i=0;i<nd;i++) nsite *= LocalLatt[i];
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // do the index calc on the GPU
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  Coordinate f_ostride = Fg->_ostride;
 | 
			
		||||
  Coordinate f_istride = Fg->_istride;
 | 
			
		||||
  Coordinate f_rdimensions = Fg->_rdimensions;
 | 
			
		||||
 | 
			
		||||
  autoView(from_v,from,AcceleratorRead);
 | 
			
		||||
  auto to_v = &to[0];
 | 
			
		||||
 | 
			
		||||
  const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
  accelerator_for(idx,nsite,1,{
 | 
			
		||||
      
 | 
			
		||||
      Coordinate from_coor, base;
 | 
			
		||||
      Lexicographic::CoorFromIndex(base,idx,LocalLatt);
 | 
			
		||||
      for(int i=0;i<nd;i++){
 | 
			
		||||
	from_coor[i] = base[i];
 | 
			
		||||
      }
 | 
			
		||||
      int from_oidx = 0; for(int d=0;d<nd;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
 | 
			
		||||
      int from_lane = 0; for(int d=0;d<nd;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
 | 
			
		||||
 | 
			
		||||
      const vector_type* from = (const vector_type *)&from_v[from_oidx];
 | 
			
		||||
      scalar_type* to = (scalar_type *)&to_v[idx];
 | 
			
		||||
      
 | 
			
		||||
      scalar_type stmp;
 | 
			
		||||
      for(int w=0;w<words;w++){
 | 
			
		||||
	stmp = getlane(from[w], from_lane);
 | 
			
		||||
	to[w] = stmp;
 | 
			
		||||
      }
 | 
			
		||||
    });
 | 
			
		||||
#endif
 | 
			
		||||
  }    
 | 
			
		||||
  template<class vobj> void BLAStoGrid(Lattice<vobj> &grid,deviceVector<typename vobj::scalar_object> &in)
 | 
			
		||||
  {
 | 
			
		||||
#if 0
 | 
			
		||||
    std::vector<typename vobj::scalar_object> tmp;
 | 
			
		||||
    tmp.resize(in.size());
 | 
			
		||||
    //    std::cout << "BLAStoGrid volume " <<tmp.size()<<" "<< grid.Grid()->lSites()<<std::endl;
 | 
			
		||||
    assert(in.size()==grid.Grid()->lSites());
 | 
			
		||||
    acceleratorCopyFromDevice(&in[0],&tmp[0],sizeof(typename vobj::scalar_object)*in.size());
 | 
			
		||||
    vectorizeFromLexOrdArray(tmp,grid);
 | 
			
		||||
#else
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  GridBase *Tg = grid.Grid();
 | 
			
		||||
  assert(!Tg->_isCheckerBoarded);
 | 
			
		||||
  int nd = Tg->_ndimension;
 | 
			
		||||
  
 | 
			
		||||
  assert(in.size()==Tg->lSites());
 | 
			
		||||
 | 
			
		||||
  Coordinate LocalLatt = Tg->LocalDimensions();
 | 
			
		||||
  size_t nsite = 1;
 | 
			
		||||
  for(int i=0;i<nd;i++) nsite *= LocalLatt[i];
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // do the index calc on the GPU
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  Coordinate t_ostride = Tg->_ostride;
 | 
			
		||||
  Coordinate t_istride = Tg->_istride;
 | 
			
		||||
  Coordinate t_rdimensions = Tg->_rdimensions;
 | 
			
		||||
 | 
			
		||||
  autoView(to_v,grid,AcceleratorWrite);
 | 
			
		||||
  auto from_v = &in[0];
 | 
			
		||||
 | 
			
		||||
  const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
  accelerator_for(idx,nsite,1,{
 | 
			
		||||
      
 | 
			
		||||
      Coordinate to_coor, base;
 | 
			
		||||
      Lexicographic::CoorFromIndex(base,idx,LocalLatt);
 | 
			
		||||
      for(int i=0;i<nd;i++){
 | 
			
		||||
	to_coor[i] = base[i];
 | 
			
		||||
      }
 | 
			
		||||
      int to_oidx = 0; for(int d=0;d<nd;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
 | 
			
		||||
      int to_lane = 0; for(int d=0;d<nd;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
 | 
			
		||||
 | 
			
		||||
      vector_type* to = (vector_type *)&to_v[to_oidx];
 | 
			
		||||
      scalar_type* from = (scalar_type *)&from_v[idx];
 | 
			
		||||
      
 | 
			
		||||
      scalar_type stmp;
 | 
			
		||||
      for(int w=0;w<words;w++){
 | 
			
		||||
	stmp=from[w];
 | 
			
		||||
	putlane(to[w], stmp, to_lane);
 | 
			
		||||
      }
 | 
			
		||||
    });
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
  void CopyMatrix (void)
 | 
			
		||||
  {
 | 
			
		||||
    // Clone "A" to be lexicographic in the physics coords
 | 
			
		||||
    // Use unvectorisetolexordarray
 | 
			
		||||
    // Copy to device
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      //Unpadded
 | 
			
		||||
      auto Aup = _Op.Cell.Extract(_Op._A[p]);
 | 
			
		||||
      //      Coordinate coor({0,0,0,0,0});
 | 
			
		||||
      //      auto sval = peekSite(Aup,coor);
 | 
			
		||||
      //      std::cout << "CopyMatrix: p "<<p<<" Aup[0] :"<<sval<<std::endl;
 | 
			
		||||
      //      sval = peekSite(_Op._A[p],coor);
 | 
			
		||||
      //      std::cout << "CopyMatrix: p "<<p<<" _Op._Ap[0] :"<<sval<<std::endl;
 | 
			
		||||
      GridtoBLAS(Aup,BLAS_A[p]);
 | 
			
		||||
      //      std::cout << "Copy Matrix p "<<p<<" "<< deviceGet(BLAS_A[p][0])<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void Mdag(const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    this->M(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void M (const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage << "New Mrhs coarse"<<std::endl;
 | 
			
		||||
    conformable(CoarseGrid(),in.Grid());
 | 
			
		||||
    conformable(in.Grid(),out.Grid());
 | 
			
		||||
    out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
 | 
			
		||||
    RealD t_tot;
 | 
			
		||||
    RealD t_exch;
 | 
			
		||||
    RealD t_GtoB;
 | 
			
		||||
    RealD t_BtoG;
 | 
			
		||||
    RealD t_mult;
 | 
			
		||||
 | 
			
		||||
    t_tot=-usecond();
 | 
			
		||||
    CoarseVector tin=in;
 | 
			
		||||
    t_exch=-usecond();
 | 
			
		||||
    CoarseVector pin = Cell.ExchangePeriodic(tin); //padded input
 | 
			
		||||
    t_exch+=usecond();
 | 
			
		||||
 | 
			
		||||
    CoarseVector pout(pin.Grid());
 | 
			
		||||
 | 
			
		||||
    int npoint = geom.npoint;
 | 
			
		||||
    typedef calcMatrix* Aview;
 | 
			
		||||
    typedef LatticeView<Cvec> Vview;
 | 
			
		||||
      
 | 
			
		||||
    const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
 | 
			
		||||
    RealD flops,bytes;
 | 
			
		||||
    int64_t osites=in.Grid()->oSites(); // unpadded
 | 
			
		||||
    int64_t unpadded_vol = _CoarseGrid->lSites();
 | 
			
		||||
    
 | 
			
		||||
    flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
 | 
			
		||||
    bytes = 1.0*osites*sizeof(siteMatrix)*npoint/pin.Grid()->GlobalDimensions()[0]
 | 
			
		||||
          + 2.0*osites*sizeof(siteVector)*npoint;
 | 
			
		||||
    
 | 
			
		||||
    int64_t nrhs  =pin.Grid()->GlobalDimensions()[0];
 | 
			
		||||
    assert(nrhs>=1);
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "New Mrhs GridtoBLAS in sizes "<<in.Grid()->lSites()<<" "<<pin.Grid()->lSites()<<std::endl;
 | 
			
		||||
    t_GtoB=-usecond();
 | 
			
		||||
    GridtoBLAS(pin,BLAS_B);
 | 
			
		||||
    //    out = Zero();
 | 
			
		||||
    //    GridtoBLAS(out,BLAS_C);
 | 
			
		||||
    t_GtoB+=usecond();
 | 
			
		||||
 | 
			
		||||
    GridBLAS BLAS;
 | 
			
		||||
 | 
			
		||||
    t_mult=-usecond();
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++){
 | 
			
		||||
      RealD c = 1.0;
 | 
			
		||||
      if (p==0) c = 0.0;
 | 
			
		||||
      ComplexD beta(c);
 | 
			
		||||
      //      std::cout << GridLogMessage << "New Mrhs coarse gemmBatched "<<p<<std::endl;
 | 
			
		||||
      BLAS.gemmBatched(nbasis,nrhs,nbasis,
 | 
			
		||||
		       ComplexD(1.0),
 | 
			
		||||
		       BLAS_AP[p], 
 | 
			
		||||
		       BLAS_BP[p], 
 | 
			
		||||
		       ComplexD(c), 
 | 
			
		||||
		       BLAS_CP);
 | 
			
		||||
    }
 | 
			
		||||
    BLAS.synchronise();
 | 
			
		||||
    t_mult+=usecond();
 | 
			
		||||
    //    std::cout << GridLogMessage << "New Mrhs coarse BLAStoGrid "<<std::endl;
 | 
			
		||||
    t_BtoG=-usecond();
 | 
			
		||||
    BLAStoGrid(out,BLAS_C);
 | 
			
		||||
    t_BtoG+=usecond();
 | 
			
		||||
    t_tot+=usecond();
 | 
			
		||||
    //    auto check =deviceGet(BLAS_C[0]);
 | 
			
		||||
    //      std::cout << "C[0] "<<check<<std::endl;
 | 
			
		||||
    //    Coordinate coor({0,0,0,0,0,0});
 | 
			
		||||
    //    peekLocalSite(check,out,coor);
 | 
			
		||||
    //    std::cout << "C[0] "<< check<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "New Mrhs coarse DONE "<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"Coarse Mult exch "<<t_exch<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"Coarse Mult mult "<<t_mult<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"Coarse Mult GtoB  "<<t_GtoB<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"Coarse Mult BtoG  "<<t_BtoG<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"Coarse Mult tot  "<<t_tot<<" us"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"Coarse Kernel flops "<< flops<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"Coarse Kernel flop/s "<< flops/t_mult<<" mflop/s"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"Coarse Kernel bytes/s "<< bytes/t_mult/1000<<" GB/s"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"Coarse overall flops/s "<< flops/t_tot<<" mflop/s"<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<"Coarse total bytes   "<< bytes/1e6<<" MB"<<std::endl;
 | 
			
		||||
  };
 | 
			
		||||
  virtual  void Mdiag    (const Field &in, Field &out){ assert(0);};
 | 
			
		||||
  virtual  void Mdir     (const Field &in, Field &out,int dir, int disp){assert(0);};
 | 
			
		||||
  virtual  void MdirAll  (const Field &in, std::vector<Field> &out){assert(0);};
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
  
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -1,238 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////
 | 
			
		||||
// Geometry class in cartesian case
 | 
			
		||||
/////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
class Geometry {
 | 
			
		||||
public:
 | 
			
		||||
  int npoint;
 | 
			
		||||
  int base;
 | 
			
		||||
  std::vector<int> directions   ;
 | 
			
		||||
  std::vector<int> displacements;
 | 
			
		||||
  std::vector<int> points_dagger;
 | 
			
		||||
 | 
			
		||||
  Geometry(int _d)  {
 | 
			
		||||
    
 | 
			
		||||
    base = (_d==5) ? 1:0;
 | 
			
		||||
 | 
			
		||||
    // make coarse grid stencil for 4d , not 5d
 | 
			
		||||
    if ( _d==5 ) _d=4;
 | 
			
		||||
 | 
			
		||||
    npoint = 2*_d+1;
 | 
			
		||||
    directions.resize(npoint);
 | 
			
		||||
    displacements.resize(npoint);
 | 
			
		||||
    points_dagger.resize(npoint);
 | 
			
		||||
    for(int d=0;d<_d;d++){
 | 
			
		||||
      directions[d   ] = d+base;
 | 
			
		||||
      directions[d+_d] = d+base;
 | 
			
		||||
      displacements[d  ] = +1;
 | 
			
		||||
      displacements[d+_d]= -1;
 | 
			
		||||
      points_dagger[d   ] = d+_d;
 | 
			
		||||
      points_dagger[d+_d] = d;
 | 
			
		||||
    }
 | 
			
		||||
    directions   [2*_d]=0;
 | 
			
		||||
    displacements[2*_d]=0;
 | 
			
		||||
    points_dagger[2*_d]=2*_d;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int point(int dir, int disp) {
 | 
			
		||||
    assert(disp == -1 || disp == 0 || disp == 1);
 | 
			
		||||
    assert(base+0 <= dir && dir < base+4);
 | 
			
		||||
 | 
			
		||||
    // directions faster index = new indexing
 | 
			
		||||
    // 4d (base = 0):
 | 
			
		||||
    // point 0  1  2  3  4  5  6  7  8
 | 
			
		||||
    // dir   0  1  2  3  0  1  2  3  0
 | 
			
		||||
    // disp +1 +1 +1 +1 -1 -1 -1 -1  0
 | 
			
		||||
    // 5d (base = 1):
 | 
			
		||||
    // point 0  1  2  3  4  5  6  7  8
 | 
			
		||||
    // dir   1  2  3  4  1  2  3  4  0
 | 
			
		||||
    // disp +1 +1 +1 +1 -1 -1 -1 -1  0
 | 
			
		||||
 | 
			
		||||
    // displacements faster index = old indexing
 | 
			
		||||
    // 4d (base = 0):
 | 
			
		||||
    // point 0  1  2  3  4  5  6  7  8
 | 
			
		||||
    // dir   0  0  1  1  2  2  3  3  0
 | 
			
		||||
    // disp +1 -1 +1 -1 +1 -1 +1 -1  0
 | 
			
		||||
    // 5d (base = 1):
 | 
			
		||||
    // point 0  1  2  3  4  5  6  7  8
 | 
			
		||||
    // dir   1  1  2  2  3  3  4  4  0
 | 
			
		||||
    // disp +1 -1 +1 -1 +1 -1 +1 -1  0
 | 
			
		||||
 | 
			
		||||
    if(dir == 0 and disp == 0)
 | 
			
		||||
      return 8;
 | 
			
		||||
    else // New indexing
 | 
			
		||||
      return (1 - disp) / 2 * 4 + dir - base;
 | 
			
		||||
    // else // Old indexing
 | 
			
		||||
    //   return (4 * (dir - base) + 1 - disp) / 2;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////
 | 
			
		||||
// Less local equivalent of Geometry class in cartesian case
 | 
			
		||||
/////////////////////////////////////////////////////////////////
 | 
			
		||||
class NonLocalStencilGeometry {
 | 
			
		||||
public:
 | 
			
		||||
  //  int depth;
 | 
			
		||||
  int skip;
 | 
			
		||||
  int hops;
 | 
			
		||||
  int npoint;
 | 
			
		||||
  std::vector<Coordinate> shifts;
 | 
			
		||||
  Coordinate stencil_size;
 | 
			
		||||
  Coordinate stencil_lo;
 | 
			
		||||
  Coordinate stencil_hi;
 | 
			
		||||
  GridCartesian *grid;
 | 
			
		||||
  GridCartesian *Grid() {return grid;};
 | 
			
		||||
  int Depth(void){return 1;};   // Ghost zone depth
 | 
			
		||||
  int Hops(void){return hops;}; // # of hops=> level of corner fill in in stencil
 | 
			
		||||
  int DimSkip(void){return skip;};
 | 
			
		||||
 | 
			
		||||
  virtual ~NonLocalStencilGeometry() {};
 | 
			
		||||
 | 
			
		||||
  int  Reverse(int point)
 | 
			
		||||
  {
 | 
			
		||||
    int Nd = Grid()->Nd();
 | 
			
		||||
    Coordinate shft = shifts[point];
 | 
			
		||||
    Coordinate rev(Nd);
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++) rev[mu]= -shft[mu];
 | 
			
		||||
    for(int p=0;p<npoint;p++){
 | 
			
		||||
      if(rev==shifts[p]){
 | 
			
		||||
	return p;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    assert(0);
 | 
			
		||||
    return -1;
 | 
			
		||||
  }
 | 
			
		||||
  void BuildShifts(void)
 | 
			
		||||
  {
 | 
			
		||||
    this->shifts.resize(0);
 | 
			
		||||
    int Nd = this->grid->Nd();
 | 
			
		||||
 | 
			
		||||
    int dd = this->DimSkip();
 | 
			
		||||
    for(int s0=this->stencil_lo[dd+0];s0<=this->stencil_hi[dd+0];s0++){
 | 
			
		||||
    for(int s1=this->stencil_lo[dd+1];s1<=this->stencil_hi[dd+1];s1++){
 | 
			
		||||
    for(int s2=this->stencil_lo[dd+2];s2<=this->stencil_hi[dd+2];s2++){
 | 
			
		||||
    for(int s3=this->stencil_lo[dd+3];s3<=this->stencil_hi[dd+3];s3++){
 | 
			
		||||
      Coordinate sft(Nd,0);
 | 
			
		||||
      sft[dd+0] = s0;
 | 
			
		||||
      sft[dd+1] = s1;
 | 
			
		||||
      sft[dd+2] = s2;
 | 
			
		||||
      sft[dd+3] = s3;
 | 
			
		||||
      int nhops = abs(s0)+abs(s1)+abs(s2)+abs(s3);
 | 
			
		||||
      if(nhops<=this->hops) this->shifts.push_back(sft);
 | 
			
		||||
    }}}}
 | 
			
		||||
    this->npoint = this->shifts.size();
 | 
			
		||||
    std::cout << GridLogMessage << "NonLocalStencilGeometry has "<< this->npoint << " terms in stencil "<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  NonLocalStencilGeometry(GridCartesian *_coarse_grid,int _hops,int _skip) : grid(_coarse_grid), hops(_hops), skip(_skip)
 | 
			
		||||
  {
 | 
			
		||||
    Coordinate latt = grid->GlobalDimensions();
 | 
			
		||||
    stencil_size.resize(grid->Nd());
 | 
			
		||||
    stencil_lo.resize(grid->Nd());
 | 
			
		||||
    stencil_hi.resize(grid->Nd());
 | 
			
		||||
    for(int d=0;d<grid->Nd();d++){
 | 
			
		||||
     if ( latt[d] == 1 ) {
 | 
			
		||||
      stencil_lo[d] = 0;
 | 
			
		||||
      stencil_hi[d] = 0;
 | 
			
		||||
      stencil_size[d]= 1;
 | 
			
		||||
     } else if ( latt[d] == 2 ) {
 | 
			
		||||
      stencil_lo[d] = -1;
 | 
			
		||||
      stencil_hi[d] = 0;
 | 
			
		||||
      stencil_size[d]= 2;
 | 
			
		||||
     } else if ( latt[d] > 2 ) {
 | 
			
		||||
       stencil_lo[d] = -1;
 | 
			
		||||
       stencil_hi[d] =  1;
 | 
			
		||||
       stencil_size[d]= 3;
 | 
			
		||||
     }
 | 
			
		||||
    }
 | 
			
		||||
    this->BuildShifts();
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// Need to worry about red-black now
 | 
			
		||||
class NonLocalStencilGeometry4D : public NonLocalStencilGeometry {
 | 
			
		||||
public:
 | 
			
		||||
  virtual int DerivedDimSkip(void) { return 0;};
 | 
			
		||||
  NonLocalStencilGeometry4D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,0) { };
 | 
			
		||||
  virtual ~NonLocalStencilGeometry4D() {};
 | 
			
		||||
};
 | 
			
		||||
class NonLocalStencilGeometry5D : public NonLocalStencilGeometry {
 | 
			
		||||
public:
 | 
			
		||||
  virtual int DerivedDimSkip(void) { return 1; }; 
 | 
			
		||||
  NonLocalStencilGeometry5D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,1)  { };
 | 
			
		||||
  virtual ~NonLocalStencilGeometry5D() {};
 | 
			
		||||
};
 | 
			
		||||
/*
 | 
			
		||||
 * Bunch of different options classes
 | 
			
		||||
 */
 | 
			
		||||
class NextToNextToNextToNearestStencilGeometry4D : public NonLocalStencilGeometry4D {
 | 
			
		||||
public:
 | 
			
		||||
  NextToNextToNextToNearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,4)
 | 
			
		||||
  {
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
class NextToNextToNextToNearestStencilGeometry5D : public  NonLocalStencilGeometry5D {
 | 
			
		||||
public:
 | 
			
		||||
  NextToNextToNextToNearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,4)
 | 
			
		||||
  {
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
class NextToNearestStencilGeometry4D : public  NonLocalStencilGeometry4D {
 | 
			
		||||
public:
 | 
			
		||||
  NextToNearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,2)
 | 
			
		||||
  {
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
class NextToNearestStencilGeometry5D : public  NonLocalStencilGeometry5D {
 | 
			
		||||
public:
 | 
			
		||||
  NextToNearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,2)
 | 
			
		||||
  {
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
class NearestStencilGeometry4D : public  NonLocalStencilGeometry4D {
 | 
			
		||||
public:
 | 
			
		||||
  NearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,1)
 | 
			
		||||
  {
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
class NearestStencilGeometry5D : public  NonLocalStencilGeometry5D {
 | 
			
		||||
public:
 | 
			
		||||
  NearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,1)
 | 
			
		||||
  {
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -1,35 +0,0 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
    Source file: Grid/algorithms/multigrid/MultiGrid.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2023
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <Grid/algorithms/multigrid/Aggregates.h>
 | 
			
		||||
#include <Grid/algorithms/multigrid/Geometry.h>
 | 
			
		||||
#include <Grid/algorithms/multigrid/BatchedBlas.h>
 | 
			
		||||
#include <Grid/algorithms/multigrid/CoarsenedMatrix.h>
 | 
			
		||||
#include <Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h>
 | 
			
		||||
#include <Grid/algorithms/multigrid/GeneralCoarsenedMatrixMultiRHS.h>
 | 
			
		||||
@@ -176,56 +176,8 @@ template<class T> using cshiftAllocator = std::allocator<T>;
 | 
			
		||||
template<class T> using Vector        = std::vector<T,uvmAllocator<T> >;           
 | 
			
		||||
template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;           
 | 
			
		||||
template<class T> using commVector = std::vector<T,devAllocator<T> >;
 | 
			
		||||
template<class T> using deviceVector  = std::vector<T,devAllocator<T> >;
 | 
			
		||||
template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >;
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
template<class T> class vecView
 | 
			
		||||
{
 | 
			
		||||
 protected:
 | 
			
		||||
  T * data;
 | 
			
		||||
  uint64_t size;
 | 
			
		||||
  ViewMode mode;
 | 
			
		||||
  void * cpu_ptr;
 | 
			
		||||
 public:
 | 
			
		||||
  accelerator_inline T & operator[](size_t i) const { return this->data[i]; };
 | 
			
		||||
  vecView(std::vector<T> &refer_to_me,ViewMode _mode)
 | 
			
		||||
  {
 | 
			
		||||
    cpu_ptr = &refer_to_me[0];
 | 
			
		||||
    size = refer_to_me.size();
 | 
			
		||||
    mode = _mode;
 | 
			
		||||
    data =(T *) MemoryManager::ViewOpen(cpu_ptr,
 | 
			
		||||
					size*sizeof(T),
 | 
			
		||||
					mode,
 | 
			
		||||
					AdviseDefault);
 | 
			
		||||
  }
 | 
			
		||||
  void ViewClose(void)
 | 
			
		||||
  { // Inform the manager
 | 
			
		||||
    MemoryManager::ViewClose(this->cpu_ptr,this->mode);    
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class T> vecView<T> VectorView(std::vector<T> &vec,ViewMode _mode)
 | 
			
		||||
{
 | 
			
		||||
  vecView<T> ret(vec,_mode); // does the open
 | 
			
		||||
  return ret;                // must be closed
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Little autoscope assister
 | 
			
		||||
template<class View> 
 | 
			
		||||
class VectorViewCloser
 | 
			
		||||
{
 | 
			
		||||
  View v;  // Take a copy of view and call view close when I go out of scope automatically
 | 
			
		||||
 public:
 | 
			
		||||
  VectorViewCloser(View &_v) : v(_v) {};
 | 
			
		||||
  ~VectorViewCloser() { auto ptr = v.cpu_ptr; v.ViewClose();  MemoryManager::NotifyDeletion(ptr);}
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#define autoVecView(v_v,v,mode)					\
 | 
			
		||||
  auto v_v = VectorView(v,mode);				\
 | 
			
		||||
  ViewCloser<decltype(v_v)> _autoView##v_v(v_v);
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -209,9 +209,9 @@ private:
 | 
			
		||||
  static void     CpuViewClose(uint64_t Ptr);
 | 
			
		||||
  static uint64_t CpuViewOpen(uint64_t  CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
 | 
			
		||||
#endif
 | 
			
		||||
  static void NotifyDeletion(void * CpuPtr);
 | 
			
		||||
 | 
			
		||||
 public:
 | 
			
		||||
  static void NotifyDeletion(void * CpuPtr);
 | 
			
		||||
  static void Print(void);
 | 
			
		||||
  static void PrintAll(void);
 | 
			
		||||
  static void PrintState( void* CpuPtr);
 | 
			
		||||
 
 | 
			
		||||
@@ -8,7 +8,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
static char print_buffer [ MAXLINE ];
 | 
			
		||||
 | 
			
		||||
#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer;
 | 
			
		||||
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug << print_buffer;
 | 
			
		||||
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer;
 | 
			
		||||
//#define dprintf(...) 
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -111,7 +111,7 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
 | 
			
		||||
  ///////////////////////////////////////////////////////////
 | 
			
		||||
  assert(AccCache.state!=Empty);
 | 
			
		||||
  
 | 
			
		||||
  dprintf("MemoryManager: Discard(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr); 
 | 
			
		||||
  mprintf("MemoryManager: Discard(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr); 
 | 
			
		||||
  assert(AccCache.accLock==0);
 | 
			
		||||
  assert(AccCache.cpuLock==0);
 | 
			
		||||
  assert(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
			
		||||
@@ -141,7 +141,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  assert(AccCache.state!=Empty);
 | 
			
		||||
  
 | 
			
		||||
  mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld\n",
 | 
			
		||||
  mprintf("MemoryManager: Evict cpu %lx acc %lx cpuLock %ld accLock %ld\n",
 | 
			
		||||
	  (uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr,
 | 
			
		||||
	  (uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock); 
 | 
			
		||||
  if (AccCache.accLock!=0) return;
 | 
			
		||||
@@ -155,7 +155,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
 | 
			
		||||
    AccCache.AccPtr=(uint64_t)NULL;
 | 
			
		||||
    AccCache.state=CpuDirty; // CPU primary now
 | 
			
		||||
    DeviceBytes   -=AccCache.bytes;
 | 
			
		||||
    dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);  
 | 
			
		||||
    dprintf("MemoryManager: Free(%lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);  
 | 
			
		||||
  }
 | 
			
		||||
  //  uint64_t CpuPtr = AccCache.CpuPtr;
 | 
			
		||||
  DeviceEvictions++;
 | 
			
		||||
@@ -169,7 +169,7 @@ void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
 | 
			
		||||
  assert(AccCache.AccPtr!=(uint64_t)NULL);
 | 
			
		||||
  assert(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
			
		||||
  acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
 | 
			
		||||
  mprintf("MemoryManager: acceleratorCopyFromDevice Flush AccPtr %lx -> CpuPtr %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
 | 
			
		||||
  mprintf("MemoryManager: Flush  %lx -> %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
 | 
			
		||||
  DeviceToHostBytes+=AccCache.bytes;
 | 
			
		||||
  DeviceToHostXfer++;
 | 
			
		||||
  AccCache.state=Consistent;
 | 
			
		||||
@@ -184,7 +184,7 @@ void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
 | 
			
		||||
    AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
 | 
			
		||||
    DeviceBytes+=AccCache.bytes;
 | 
			
		||||
  }
 | 
			
		||||
  mprintf("MemoryManager: acceleratorCopyToDevice   Clone AccPtr %lx <- CpuPtr %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
 | 
			
		||||
  mprintf("MemoryManager: Clone %lx <- %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
 | 
			
		||||
  acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
 | 
			
		||||
  HostToDeviceBytes+=AccCache.bytes;
 | 
			
		||||
  HostToDeviceXfer++;
 | 
			
		||||
 
 | 
			
		||||
@@ -70,8 +70,8 @@ public:
 | 
			
		||||
  Coordinate _istride;    // Inner stride i.e. within simd lane
 | 
			
		||||
  int _osites;                  // _isites*_osites = product(dimensions).
 | 
			
		||||
  int _isites;
 | 
			
		||||
  int64_t _fsites;                  // _isites*_osites = product(dimensions).
 | 
			
		||||
  int64_t _gsites;
 | 
			
		||||
  int _fsites;                  // _isites*_osites = product(dimensions).
 | 
			
		||||
  int _gsites;
 | 
			
		||||
  Coordinate _slice_block;// subslice information
 | 
			
		||||
  Coordinate _slice_stride;
 | 
			
		||||
  Coordinate _slice_nblock;
 | 
			
		||||
@@ -183,7 +183,7 @@ public:
 | 
			
		||||
  inline int Nsimd(void)  const { return _isites; };// Synonymous with iSites
 | 
			
		||||
  inline int oSites(void) const { return _osites; };
 | 
			
		||||
  inline int lSites(void) const { return _isites*_osites; }; 
 | 
			
		||||
  inline int64_t gSites(void) const { return (int64_t)_isites*(int64_t)_osites*(int64_t)_Nprocessors; }; 
 | 
			
		||||
  inline int gSites(void) const { return _isites*_osites*_Nprocessors; }; 
 | 
			
		||||
  inline int Nd    (void) const { return _ndimension;};
 | 
			
		||||
 | 
			
		||||
  inline const Coordinate LocalStarts(void)             { return _lstart;    };
 | 
			
		||||
@@ -214,7 +214,7 @@ public:
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Global addressing
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  void GlobalIndexToGlobalCoor(int64_t gidx,Coordinate &gcoor){
 | 
			
		||||
  void GlobalIndexToGlobalCoor(int gidx,Coordinate &gcoor){
 | 
			
		||||
    assert(gidx< gSites());
 | 
			
		||||
    Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
 | 
			
		||||
  }
 | 
			
		||||
@@ -222,7 +222,7 @@ public:
 | 
			
		||||
    assert(lidx<lSites());
 | 
			
		||||
    Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
 | 
			
		||||
  }
 | 
			
		||||
  void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int64_t & gidx){
 | 
			
		||||
  void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int & gidx){
 | 
			
		||||
    gidx=0;
 | 
			
		||||
    int mult=1;
 | 
			
		||||
    for(int mu=0;mu<_ndimension;mu++) {
 | 
			
		||||
 
 | 
			
		||||
@@ -138,14 +138,6 @@ public:
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  // Face exchange, buffer swap in translational invariant way
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  void CommsComplete(std::vector<CommsRequest_t> &list);
 | 
			
		||||
  void SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
			   void *xmit,
 | 
			
		||||
			   int dest,
 | 
			
		||||
			   void *recv,
 | 
			
		||||
			   int from,
 | 
			
		||||
			   int bytes,int dir);
 | 
			
		||||
  
 | 
			
		||||
  void SendToRecvFrom(void *xmit,
 | 
			
		||||
		      int xmit_to_rank,
 | 
			
		||||
		      void *recv,
 | 
			
		||||
 
 | 
			
		||||
@@ -306,44 +306,6 @@ void CartesianCommunicator::GlobalSumVector(double *d,int N)
 | 
			
		||||
  int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
						void *xmit,
 | 
			
		||||
						int dest,
 | 
			
		||||
						void *recv,
 | 
			
		||||
						int from,
 | 
			
		||||
						int bytes,int dir)
 | 
			
		||||
{
 | 
			
		||||
  MPI_Request xrq;
 | 
			
		||||
  MPI_Request rrq;
 | 
			
		||||
 | 
			
		||||
  assert(dest != _processor);
 | 
			
		||||
  assert(from != _processor);
 | 
			
		||||
 | 
			
		||||
  int tag;
 | 
			
		||||
 | 
			
		||||
  tag= dir+from*32;
 | 
			
		||||
  int ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator,&rrq);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  list.push_back(rrq);
 | 
			
		||||
  
 | 
			
		||||
  tag= dir+_processor*32;
 | 
			
		||||
  ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator,&xrq);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  list.push_back(xrq);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list)
 | 
			
		||||
{
 | 
			
		||||
  int nreq=list.size();
 | 
			
		||||
 | 
			
		||||
  if (nreq==0) return;
 | 
			
		||||
 | 
			
		||||
  std::vector<MPI_Status> status(nreq);
 | 
			
		||||
  int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  list.resize(0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Basic Halo comms primitive
 | 
			
		||||
void CartesianCommunicator::SendToRecvFrom(void *xmit,
 | 
			
		||||
					   int dest,
 | 
			
		||||
 
 | 
			
		||||
@@ -91,17 +91,6 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
 | 
			
		||||
{
 | 
			
		||||
  assert(0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ assert(0);}
 | 
			
		||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
						void *xmit,
 | 
			
		||||
						int dest,
 | 
			
		||||
						void *recv,
 | 
			
		||||
						int from,
 | 
			
		||||
						int bytes,int dir)
 | 
			
		||||
{
 | 
			
		||||
  assert(0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CartesianCommunicator::AllToAll(int dim,void  *in,void *out,uint64_t words,uint64_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  bcopy(in,out,bytes*words);
 | 
			
		||||
 
 | 
			
		||||
@@ -604,8 +604,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
 | 
			
		||||
    typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t;
 | 
			
		||||
 | 
			
		||||
    auto zeDevice    = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device());
 | 
			
		||||
    auto zeContext   = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context());
 | 
			
		||||
    auto zeDevice    = cl::sycl::get_native<cl::sycl::backend::level_zero>(theGridAccelerator->get_device());
 | 
			
		||||
    auto zeContext   = cl::sycl::get_native<cl::sycl::backend::level_zero>(theGridAccelerator->get_context());
 | 
			
		||||
      
 | 
			
		||||
    ze_ipc_mem_handle_t ihandle;
 | 
			
		||||
    clone_mem_t handle;
 | 
			
		||||
 
 | 
			
		||||
@@ -47,4 +47,3 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#include <Grid/lattice/Lattice_transfer.h>
 | 
			
		||||
#include <Grid/lattice/Lattice_basis.h>
 | 
			
		||||
#include <Grid/lattice/Lattice_crc.h>
 | 
			
		||||
#include <Grid/lattice/PaddedCell.h>
 | 
			
		||||
 
 | 
			
		||||
@@ -345,9 +345,7 @@ GridUnopClass(UnaryNot, Not(a));
 | 
			
		||||
GridUnopClass(UnaryTrace, trace(a));
 | 
			
		||||
GridUnopClass(UnaryTranspose, transpose(a));
 | 
			
		||||
GridUnopClass(UnaryTa, Ta(a));
 | 
			
		||||
GridUnopClass(UnarySpTa, SpTa(a));
 | 
			
		||||
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
 | 
			
		||||
GridUnopClass(UnaryProjectOnSpGroup, ProjectOnSpGroup(a));
 | 
			
		||||
GridUnopClass(UnaryTimesI, timesI(a));
 | 
			
		||||
GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
 | 
			
		||||
GridUnopClass(UnaryAbs, abs(a));
 | 
			
		||||
@@ -458,9 +456,7 @@ GRID_DEF_UNOP(operator!, UnaryNot);
 | 
			
		||||
GRID_DEF_UNOP(trace, UnaryTrace);
 | 
			
		||||
GRID_DEF_UNOP(transpose, UnaryTranspose);
 | 
			
		||||
GRID_DEF_UNOP(Ta, UnaryTa);
 | 
			
		||||
GRID_DEF_UNOP(SpTa, UnarySpTa);
 | 
			
		||||
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
 | 
			
		||||
GRID_DEF_UNOP(ProjectOnSpGroup, UnaryProjectOnSpGroup);
 | 
			
		||||
GRID_DEF_UNOP(timesI, UnaryTimesI);
 | 
			
		||||
GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
 | 
			
		||||
GRID_DEF_UNOP(abs, UnaryAbs);  // abs overloaded in cmath C++98; DON'T do the
 | 
			
		||||
 
 | 
			
		||||
@@ -360,7 +360,7 @@ public:
 | 
			
		||||
 | 
			
		||||
template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  for(int64_t g=0;g<o.Grid()->_gsites;g++){
 | 
			
		||||
  for(int g=0;g<o.Grid()->_gsites;g++){
 | 
			
		||||
 | 
			
		||||
    Coordinate gcoor;
 | 
			
		||||
    o.Grid()->GlobalIndexToGlobalCoor(g,gcoor);
 | 
			
		||||
 
 | 
			
		||||
@@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class vobj> void DumpSliceNorm(std::string s,const Lattice<vobj> &f,int mu=-1)
 | 
			
		||||
template<class vobj> void DumpSliceNorm(std::string s,Lattice<vobj> &f,int mu=-1)
 | 
			
		||||
{
 | 
			
		||||
  auto ff = localNorm2(f);
 | 
			
		||||
  if ( mu==-1 ) mu = f.Grid()->Nd()-1;
 | 
			
		||||
 
 | 
			
		||||
@@ -203,27 +203,6 @@ template<class vobj> inline RealD norm2(const Lattice<vobj> &arg){
 | 
			
		||||
  return real(nrm); 
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class Op,class T1>
 | 
			
		||||
inline auto norm2(const LatticeUnaryExpression<Op,T1> & expr)  ->RealD
 | 
			
		||||
{
 | 
			
		||||
  return norm2(closure(expr));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Op,class T1,class T2>
 | 
			
		||||
inline auto norm2(const LatticeBinaryExpression<Op,T1,T2> & expr)      ->RealD
 | 
			
		||||
{
 | 
			
		||||
  return norm2(closure(expr));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class Op,class T1,class T2,class T3>
 | 
			
		||||
inline auto norm2(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)      ->RealD
 | 
			
		||||
{
 | 
			
		||||
  return norm2(closure(expr));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//The global maximum of the site norm2
 | 
			
		||||
template<class vobj> inline RealD maxLocalNorm2(const Lattice<vobj> &arg)
 | 
			
		||||
{
 | 
			
		||||
 
 | 
			
		||||
@@ -30,7 +30,7 @@ int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &
 | 
			
		||||
  cudaGetDevice(&device);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
  auto discard=hipGetDevice(&device);
 | 
			
		||||
  hipGetDevice(&device);
 | 
			
		||||
#endif
 | 
			
		||||
  
 | 
			
		||||
  Iterator warpSize            = gpu_props[device].warpSize;
 | 
			
		||||
 
 | 
			
		||||
@@ -361,14 +361,9 @@ public:
 | 
			
		||||
    _bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
 | 
			
		||||
    _uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
 | 
			
		||||
  }
 | 
			
		||||
  template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist)
 | 
			
		||||
  {
 | 
			
		||||
    if ( l.Grid()->_isCheckerBoarded ) {
 | 
			
		||||
      Lattice<vobj> tmp(_grid);
 | 
			
		||||
      fill(tmp,dist);
 | 
			
		||||
      pickCheckerboard(l.Checkerboard(),l,tmp);
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist){
 | 
			
		||||
 | 
			
		||||
    typedef typename vobj::scalar_object scalar_object;
 | 
			
		||||
    typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
    typedef typename vobj::vector_type vector_type;
 | 
			
		||||
@@ -432,7 +427,7 @@ public:
 | 
			
		||||
#if 1
 | 
			
		||||
    thread_for( lidx, _grid->lSites(), {
 | 
			
		||||
 | 
			
		||||
	int64_t gidx;
 | 
			
		||||
	int gidx;
 | 
			
		||||
	int o_idx;
 | 
			
		||||
	int i_idx;
 | 
			
		||||
	int rank;
 | 
			
		||||
 
 | 
			
		||||
@@ -66,65 +66,6 @@ inline auto TraceIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<
 | 
			
		||||
  return ret;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<int N, class Vec>
 | 
			
		||||
Lattice<iScalar<iScalar<iScalar<Vec> > > > Determinant(const Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=Umu.Grid();
 | 
			
		||||
  auto lvol = grid->lSites();
 | 
			
		||||
  Lattice<iScalar<iScalar<iScalar<Vec> > > > ret(grid);
 | 
			
		||||
  typedef typename Vec::scalar_type scalar;
 | 
			
		||||
  autoView(Umu_v,Umu,CpuRead);
 | 
			
		||||
  autoView(ret_v,ret,CpuWrite);
 | 
			
		||||
  thread_for(site,lvol,{
 | 
			
		||||
    Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
 | 
			
		||||
    Coordinate lcoor;
 | 
			
		||||
    grid->LocalIndexToLocalCoor(site, lcoor);
 | 
			
		||||
    iScalar<iScalar<iMatrix<scalar, N> > > Us;
 | 
			
		||||
    peekLocalSite(Us, Umu_v, lcoor);
 | 
			
		||||
    for(int i=0;i<N;i++){
 | 
			
		||||
      for(int j=0;j<N;j++){
 | 
			
		||||
	scalar tmp= Us()()(i,j);
 | 
			
		||||
	ComplexD ztmp(real(tmp),imag(tmp));
 | 
			
		||||
	EigenU(i,j)=ztmp;
 | 
			
		||||
      }}
 | 
			
		||||
    ComplexD detD  = EigenU.determinant();
 | 
			
		||||
    typename Vec::scalar_type det(detD.real(),detD.imag());
 | 
			
		||||
    pokeLocalSite(det,ret_v,lcoor);
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<int N>
 | 
			
		||||
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > Inverse(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=Umu.Grid();
 | 
			
		||||
  auto lvol = grid->lSites();
 | 
			
		||||
  Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > ret(grid);
 | 
			
		||||
  
 | 
			
		||||
  autoView(Umu_v,Umu,CpuRead);
 | 
			
		||||
  autoView(ret_v,ret,CpuWrite);
 | 
			
		||||
  thread_for(site,lvol,{
 | 
			
		||||
    Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
 | 
			
		||||
    Coordinate lcoor;
 | 
			
		||||
    grid->LocalIndexToLocalCoor(site, lcoor);
 | 
			
		||||
    iScalar<iScalar<iMatrix<ComplexD, N> > > Us;
 | 
			
		||||
    iScalar<iScalar<iMatrix<ComplexD, N> > > Ui;
 | 
			
		||||
    peekLocalSite(Us, Umu_v, lcoor);
 | 
			
		||||
    for(int i=0;i<N;i++){
 | 
			
		||||
      for(int j=0;j<N;j++){
 | 
			
		||||
	EigenU(i,j) = Us()()(i,j);
 | 
			
		||||
      }}
 | 
			
		||||
    Eigen::MatrixXcd EigenUinv = EigenU.inverse();
 | 
			
		||||
    for(int i=0;i<N;i++){
 | 
			
		||||
      for(int j=0;j<N;j++){
 | 
			
		||||
	Ui()()(i,j) = EigenUinv(i,j);
 | 
			
		||||
      }}
 | 
			
		||||
    pokeLocalSite(Ui,ret_v,lcoor);
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -276,65 +276,18 @@ inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
			
		||||
 | 
			
		||||
  autoView( coarseData_ , coarseData, AcceleratorWrite);
 | 
			
		||||
  autoView( ip_         , ip,         AcceleratorWrite);
 | 
			
		||||
  RealD t_IP=0;
 | 
			
		||||
  RealD t_co=0;
 | 
			
		||||
  RealD t_za=0;
 | 
			
		||||
  for(int v=0;v<nbasis;v++) {
 | 
			
		||||
    t_IP-=usecond();
 | 
			
		||||
    blockInnerProductD(ip,Basis[v],fineDataRed); // ip = <basis|fine>
 | 
			
		||||
    t_IP+=usecond();
 | 
			
		||||
    t_co-=usecond();
 | 
			
		||||
    accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
 | 
			
		||||
	convertType(coarseData_[sc](v),ip_[sc]);
 | 
			
		||||
    });
 | 
			
		||||
    t_co+=usecond();
 | 
			
		||||
 | 
			
		||||
    // improve numerical stability of projection
 | 
			
		||||
    // |fine> = |fine> - <basis|fine> |basis>
 | 
			
		||||
    ip=-ip;
 | 
			
		||||
    t_za-=usecond();
 | 
			
		||||
    blockZAXPY(fineDataRed,ip,Basis[v],fineDataRed); 
 | 
			
		||||
    t_za+=usecond();
 | 
			
		||||
  }
 | 
			
		||||
  //  std::cout << GridLogPerformance << " blockProject : blockInnerProduct :  "<<t_IP<<" us"<<std::endl;
 | 
			
		||||
  //  std::cout << GridLogPerformance << " blockProject : conv              :  "<<t_co<<" us"<<std::endl;
 | 
			
		||||
  //  std::cout << GridLogPerformance << " blockProject : blockZaxpy        :  "<<t_za<<" us"<<std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vobj,class CComplex,int nbasis,class VLattice>
 | 
			
		||||
inline void blockProjectFast(Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
			
		||||
			     const             Lattice<vobj>   &fineData,
 | 
			
		||||
			     const VLattice &Basis)
 | 
			
		||||
{
 | 
			
		||||
  GridBase * fine  = fineData.Grid();
 | 
			
		||||
  GridBase * coarse= coarseData.Grid();
 | 
			
		||||
 | 
			
		||||
  Lattice<iScalar<CComplex>> ip(coarse);
 | 
			
		||||
  Lattice<vobj>     fineDataRed = fineData;
 | 
			
		||||
 | 
			
		||||
  autoView( coarseData_ , coarseData, AcceleratorWrite);
 | 
			
		||||
  autoView( ip_         , ip,         AcceleratorWrite);
 | 
			
		||||
  RealD t_IP=0;
 | 
			
		||||
  RealD t_co=0;
 | 
			
		||||
  for(int v=0;v<nbasis;v++) {
 | 
			
		||||
    t_IP-=usecond();
 | 
			
		||||
    blockInnerProductD(ip,Basis[v],fineData); // ip = <basis|fine>
 | 
			
		||||
    t_IP+=usecond();
 | 
			
		||||
    t_co-=usecond();
 | 
			
		||||
    accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
 | 
			
		||||
	convertType(coarseData_[sc](v),ip_[sc]);
 | 
			
		||||
    });
 | 
			
		||||
    t_co+=usecond();
 | 
			
		||||
  }
 | 
			
		||||
  //  std::cout << GridLogPerformance << " blockProjectFast : blockInnerProduct :  "<<t_IP<<" us"<<std::endl;
 | 
			
		||||
  //  std::cout << GridLogPerformance << " blockProjectFast : conv              :  "<<t_co<<" us"<<std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// This only minimises data motion from CPU to GPU
 | 
			
		||||
// there is chance of better implementation that does a vxk loop of inner products to data share
 | 
			
		||||
// at the GPU thread level
 | 
			
		||||
template<class vobj,class CComplex,int nbasis,class VLattice>
 | 
			
		||||
inline void batchBlockProject(std::vector<Lattice<iVector<CComplex,nbasis>>> &coarseData,
 | 
			
		||||
                               const std::vector<Lattice<vobj>> &fineData,
 | 
			
		||||
@@ -440,15 +393,8 @@ template<class vobj,class CComplex>
 | 
			
		||||
  Lattice<dotp> coarse_inner(coarse);
 | 
			
		||||
 | 
			
		||||
  // Precision promotion
 | 
			
		||||
  RealD t;
 | 
			
		||||
  t=-usecond();
 | 
			
		||||
  fine_inner = localInnerProductD<vobj>(fineX,fineY);
 | 
			
		||||
  //  t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : localInnerProductD "<<t<<" us"<<std::endl;
 | 
			
		||||
  
 | 
			
		||||
  t=-usecond();
 | 
			
		||||
  blockSum(coarse_inner,fine_inner);
 | 
			
		||||
  //  t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : blockSum "<<t<<" us"<<std::endl;
 | 
			
		||||
  t=-usecond();
 | 
			
		||||
  {
 | 
			
		||||
    autoView( CoarseInner_  , CoarseInner,AcceleratorWrite);
 | 
			
		||||
    autoView( coarse_inner_ , coarse_inner,AcceleratorRead);
 | 
			
		||||
@@ -456,7 +402,6 @@ template<class vobj,class CComplex>
 | 
			
		||||
      convertType(CoarseInner_[ss], TensorRemove(coarse_inner_[ss]));
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
  //  t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : convertType "<<t<<" us"<<std::endl;
 | 
			
		||||
 
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -499,9 +444,6 @@ inline void blockNormalise(Lattice<CComplex> &ip,Lattice<vobj> &fineX)
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData) 
 | 
			
		||||
{
 | 
			
		||||
  const int maxsubsec=256;
 | 
			
		||||
  typedef iVector<vobj,maxsubsec> vSubsec;
 | 
			
		||||
 | 
			
		||||
  GridBase * fine  = fineData.Grid();
 | 
			
		||||
  GridBase * coarse= coarseData.Grid();
 | 
			
		||||
 | 
			
		||||
@@ -529,32 +471,16 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
 | 
			
		||||
 | 
			
		||||
  vobj zz = Zero();
 | 
			
		||||
  
 | 
			
		||||
  // Somewhat lazy calculation
 | 
			
		||||
  // Find the biggest power of two subsection divisor less than or equal to maxsubsec
 | 
			
		||||
  int subsec=maxsubsec;
 | 
			
		||||
  int subvol;
 | 
			
		||||
  subvol=blockVol/subsec;
 | 
			
		||||
  while(subvol*subsec!=blockVol){
 | 
			
		||||
    subsec = subsec/2;
 | 
			
		||||
    subvol=blockVol/subsec;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  Lattice<vSubsec> coarseTmp(coarse);
 | 
			
		||||
  autoView( coarseTmp_, coarseTmp, AcceleratorWriteDiscard);
 | 
			
		||||
  auto coarseTmp_p= &coarseTmp_[0];
 | 
			
		||||
  
 | 
			
		||||
  // Sum within subsecs in a first kernel
 | 
			
		||||
  accelerator_for(sce,subsec*coarse->oSites(),vobj::Nsimd(),{
 | 
			
		||||
 | 
			
		||||
      int sc=sce/subsec;
 | 
			
		||||
      int e=sce%subsec;
 | 
			
		||||
  accelerator_for(sc,coarse->oSites(),1,{
 | 
			
		||||
 | 
			
		||||
      // One thread per sub block
 | 
			
		||||
      Coordinate coor_c(_ndimension);
 | 
			
		||||
      Lexicographic::CoorFromIndex(coor_c,sc,coarse_rdimensions);  // Block coordinate
 | 
			
		||||
 | 
			
		||||
      auto cd = coalescedRead(zz);
 | 
			
		||||
      for(int sb=e*subvol;sb<MIN((e+1)*subvol,blockVol);sb++){
 | 
			
		||||
      vobj cd = zz;
 | 
			
		||||
      
 | 
			
		||||
      for(int sb=0;sb<blockVol;sb++){
 | 
			
		||||
 | 
			
		||||
	int sf;
 | 
			
		||||
	Coordinate coor_b(_ndimension);
 | 
			
		||||
	Coordinate coor_f(_ndimension);
 | 
			
		||||
@@ -562,21 +488,12 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
 | 
			
		||||
	for(int d=0;d<_ndimension;d++) coor_f[d]=coor_c[d]*block_r[d] + coor_b[d];
 | 
			
		||||
	Lexicographic::IndexFromCoor(coor_f,sf,fine_rdimensions);
 | 
			
		||||
 | 
			
		||||
	cd=cd+coalescedRead(fineData_p[sf]);
 | 
			
		||||
	cd=cd+fineData_p[sf];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      coalescedWrite(coarseTmp_[sc](e),cd);
 | 
			
		||||
      coarseData_p[sc] = cd;
 | 
			
		||||
 | 
			
		||||
    });
 | 
			
		||||
   // Sum across subsecs in a second kernel
 | 
			
		||||
   accelerator_for(sc,coarse->oSites(),vobj::Nsimd(),{
 | 
			
		||||
      auto cd = coalescedRead(coarseTmp_p[sc](0));
 | 
			
		||||
      for(int e=1;e<subsec;e++){
 | 
			
		||||
	cd=cd+coalescedRead(coarseTmp_p[sc](e));
 | 
			
		||||
      }
 | 
			
		||||
      coalescedWrite(coarseData_p[sc],cd);
 | 
			
		||||
   });
 | 
			
		||||
 | 
			
		||||
  return;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -633,7 +550,7 @@ inline void blockOrthogonalise(Lattice<CComplex> &ip,std::vector<Lattice<vobj> >
 | 
			
		||||
  blockOrthonormalize(ip,Basis);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_ACCELERATED
 | 
			
		||||
#if 0
 | 
			
		||||
// TODO: CPU optimized version here
 | 
			
		||||
template<class vobj,class CComplex,int nbasis>
 | 
			
		||||
inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
			
		||||
@@ -659,37 +576,26 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
			
		||||
  autoView( fineData_   , fineData, AcceleratorWrite);
 | 
			
		||||
  autoView( coarseData_ , coarseData, AcceleratorRead);
 | 
			
		||||
 | 
			
		||||
  typedef LatticeView<vobj> Vview;
 | 
			
		||||
  std::vector<Vview> AcceleratorVecViewContainer_h; 
 | 
			
		||||
  for(int v=0;v<nbasis;v++) {
 | 
			
		||||
    AcceleratorVecViewContainer_h.push_back(Basis[v].View(AcceleratorRead));
 | 
			
		||||
  }
 | 
			
		||||
  static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(nbasis); 
 | 
			
		||||
  acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],nbasis *sizeof(Vview));
 | 
			
		||||
  auto Basis_p = &AcceleratorVecViewContainer[0];
 | 
			
		||||
  // Loop with a cache friendly loop ordering
 | 
			
		||||
  Coordinate frdimensions=fine->_rdimensions;
 | 
			
		||||
  Coordinate crdimensions=coarse->_rdimensions;
 | 
			
		||||
  accelerator_for(sf,fine->oSites(),vobj::Nsimd(),{
 | 
			
		||||
  accelerator_for(sf,fine->oSites(),1,{
 | 
			
		||||
    int sc;
 | 
			
		||||
    Coordinate coor_c(_ndimension);
 | 
			
		||||
    Coordinate coor_f(_ndimension);
 | 
			
		||||
 | 
			
		||||
    Lexicographic::CoorFromIndex(coor_f,sf,frdimensions);
 | 
			
		||||
    Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
 | 
			
		||||
    for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
 | 
			
		||||
    Lexicographic::IndexFromCoor(coor_c,sc,crdimensions);
 | 
			
		||||
    Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
 | 
			
		||||
 | 
			
		||||
    auto sum= coarseData_(sc)(0) *Basis_p[0](sf);
 | 
			
		||||
    for(int i=1;i<nbasis;i++) sum = sum + coarseData_(sc)(i)*Basis_p[i](sf);
 | 
			
		||||
    coalescedWrite(fineData_[sf],sum);
 | 
			
		||||
  });
 | 
			
		||||
  for(int v=0;v<nbasis;v++) {
 | 
			
		||||
    AcceleratorVecViewContainer_h[v].ViewClose();
 | 
			
		||||
    for(int i=0;i<nbasis;i++) {
 | 
			
		||||
      /*      auto basis_ = Basis[i],  );*/
 | 
			
		||||
      if(i==0) fineData_[sf]=coarseData_[sc](i) *basis_[sf]);
 | 
			
		||||
      else     fineData_[sf]=fineData_[sf]+coarseData_[sc](i)*basis_[sf]);
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
  return;
 | 
			
		||||
  
 | 
			
		||||
}
 | 
			
		||||
#else
 | 
			
		||||
// CPU version
 | 
			
		||||
template<class vobj,class CComplex,int nbasis,class VLattice>
 | 
			
		||||
inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
			
		||||
			 Lattice<vobj>   &fineData,
 | 
			
		||||
@@ -776,9 +682,8 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // the checks should guarantee that the operations are local
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
 | 
			
		||||
  GridBase *Fg = From.Grid();
 | 
			
		||||
  GridBase *Tg = To.Grid();
 | 
			
		||||
  assert(!Fg->_isCheckerBoarded);
 | 
			
		||||
@@ -792,46 +697,45 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
 | 
			
		||||
  for(int d=0;d<nd;d++){
 | 
			
		||||
    assert(Fg->_processors[d]  == Tg->_processors[d]);
 | 
			
		||||
  }
 | 
			
		||||
  size_t nsite = 1;
 | 
			
		||||
  for(int i=0;i<nd;i++) nsite *= RegionSize[i];
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // do the index calc on the GPU
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  Coordinate f_ostride = Fg->_ostride;
 | 
			
		||||
  Coordinate f_istride = Fg->_istride;
 | 
			
		||||
  Coordinate f_rdimensions = Fg->_rdimensions;
 | 
			
		||||
  Coordinate t_ostride = Tg->_ostride;
 | 
			
		||||
  Coordinate t_istride = Tg->_istride;
 | 
			
		||||
  Coordinate t_rdimensions = Tg->_rdimensions;
 | 
			
		||||
  // the above should guarantee that the operations are local
 | 
			
		||||
  Coordinate ldf = Fg->_ldimensions;
 | 
			
		||||
  Coordinate rdf = Fg->_rdimensions;
 | 
			
		||||
  Coordinate isf = Fg->_istride;
 | 
			
		||||
  Coordinate osf = Fg->_ostride;
 | 
			
		||||
  Coordinate rdt = Tg->_rdimensions;
 | 
			
		||||
  Coordinate ist = Tg->_istride;
 | 
			
		||||
  Coordinate ost = Tg->_ostride;
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
 | 
			
		||||
  autoView(from_v,From,AcceleratorRead);
 | 
			
		||||
  autoView(to_v,To,AcceleratorWrite);
 | 
			
		||||
 | 
			
		||||
  const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
  accelerator_for(idx,nsite,1,{
 | 
			
		||||
      
 | 
			
		||||
      Coordinate from_coor, to_coor, base;
 | 
			
		||||
      Lexicographic::CoorFromIndex(base,idx,RegionSize);
 | 
			
		||||
      for(int i=0;i<nd;i++){
 | 
			
		||||
	from_coor[i] = base[i] + FromLowerLeft[i];
 | 
			
		||||
	to_coor[i] = base[i] + ToLowerLeft[i];
 | 
			
		||||
  autoView( t_v , To, CpuWrite);
 | 
			
		||||
  autoView( f_v , From, CpuRead);
 | 
			
		||||
  thread_for(idx,Fg->lSites(),{
 | 
			
		||||
    sobj s;
 | 
			
		||||
    Coordinate Fcoor(nd);
 | 
			
		||||
    Coordinate Tcoor(nd);
 | 
			
		||||
    Lexicographic::CoorFromIndex(Fcoor,idx,ldf);
 | 
			
		||||
    int in_region=1;
 | 
			
		||||
    for(int d=0;d<nd;d++){
 | 
			
		||||
      if ( (Fcoor[d] < FromLowerLeft[d]) || (Fcoor[d]>=FromLowerLeft[d]+RegionSize[d]) ){ 
 | 
			
		||||
	in_region=0;
 | 
			
		||||
      }
 | 
			
		||||
      int from_oidx = 0; for(int d=0;d<nd;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
 | 
			
		||||
      int from_lane = 0; for(int d=0;d<nd;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
 | 
			
		||||
      int to_oidx   = 0; for(int d=0;d<nd;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
 | 
			
		||||
      int to_lane   = 0; for(int d=0;d<nd;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
 | 
			
		||||
 | 
			
		||||
      const vector_type* from = (const vector_type *)&from_v[from_oidx];
 | 
			
		||||
      vector_type* to = (vector_type *)&to_v[to_oidx];
 | 
			
		||||
      
 | 
			
		||||
      scalar_type stmp;
 | 
			
		||||
      Tcoor[d] = ToLowerLeft[d]+ Fcoor[d]-FromLowerLeft[d];
 | 
			
		||||
    }
 | 
			
		||||
    if (in_region) {
 | 
			
		||||
#if 0      
 | 
			
		||||
      Integer idx_f = 0; for(int d=0;d<nd;d++) idx_f+=isf[d]*(Fcoor[d]/rdf[d]); // inner index from
 | 
			
		||||
      Integer idx_t = 0; for(int d=0;d<nd;d++) idx_t+=ist[d]*(Tcoor[d]/rdt[d]); // inner index to
 | 
			
		||||
      Integer odx_f = 0; for(int d=0;d<nd;d++) odx_f+=osf[d]*(Fcoor[d]%rdf[d]); // outer index from
 | 
			
		||||
      Integer odx_t = 0; for(int d=0;d<nd;d++) odx_t+=ost[d]*(Tcoor[d]%rdt[d]); // outer index to
 | 
			
		||||
      scalar_type * fp = (scalar_type *)&f_v[odx_f];
 | 
			
		||||
      scalar_type * tp = (scalar_type *)&t_v[odx_t];
 | 
			
		||||
      for(int w=0;w<words;w++){
 | 
			
		||||
	stmp = getlane(from[w], from_lane);
 | 
			
		||||
	putlane(to[w], stmp, to_lane);
 | 
			
		||||
	tp[w].putlane(fp[w].getlane(idx_f),idx_t);
 | 
			
		||||
      }
 | 
			
		||||
#else
 | 
			
		||||
    peekLocalSite(s,f_v,Fcoor);
 | 
			
		||||
    pokeLocalSite(s,t_v,Tcoor);
 | 
			
		||||
#endif
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
@@ -925,9 +829,7 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//FIXME: make this run entirely on GPU
 | 
			
		||||
//Insert subvolume orthogonal to direction 'orthog' with slice index 'slice_lo' from 'lowDim' onto slice index 'slice_hi' of higherDim
 | 
			
		||||
//The local dimensions of both 'lowDim' and 'higherDim' orthogonal to 'orthog' should be the same
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
 | 
			
		||||
{
 | 
			
		||||
@@ -949,65 +851,6 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
#if 1
 | 
			
		||||
  size_t nsite = lg->lSites()/lg->LocalDimensions()[orthog];
 | 
			
		||||
  size_t tbytes = 4*nsite*sizeof(int);
 | 
			
		||||
  int *table = (int*)malloc(tbytes);
 | 
			
		||||
  
 | 
			
		||||
  thread_for(idx,nsite,{
 | 
			
		||||
    Coordinate lcoor(nl);
 | 
			
		||||
    Coordinate hcoor(nh);
 | 
			
		||||
    lcoor[orthog] = slice_lo;
 | 
			
		||||
    hcoor[orthog] = slice_hi;
 | 
			
		||||
    size_t rem = idx;
 | 
			
		||||
    for(int mu=0;mu<nl;mu++){
 | 
			
		||||
      if(mu != orthog){
 | 
			
		||||
	int xmu = rem % lg->LocalDimensions()[mu];  rem /= lg->LocalDimensions()[mu];
 | 
			
		||||
	lcoor[mu] = hcoor[mu] = xmu;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    int loidx = lg->oIndex(lcoor);
 | 
			
		||||
    int liidx = lg->iIndex(lcoor);
 | 
			
		||||
    int hoidx = hg->oIndex(hcoor);
 | 
			
		||||
    int hiidx = hg->iIndex(hcoor);
 | 
			
		||||
    int* tt = table + 4*idx;
 | 
			
		||||
    tt[0] = loidx;
 | 
			
		||||
    tt[1] = liidx;
 | 
			
		||||
    tt[2] = hoidx;
 | 
			
		||||
    tt[3] = hiidx;
 | 
			
		||||
    });
 | 
			
		||||
   
 | 
			
		||||
  int* table_d = (int*)acceleratorAllocDevice(tbytes);
 | 
			
		||||
  acceleratorCopyToDevice(table,table_d,tbytes);
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
 | 
			
		||||
  autoView(lowDim_v,lowDim,AcceleratorRead);
 | 
			
		||||
  autoView(higherDim_v,higherDim,AcceleratorWrite);
 | 
			
		||||
  
 | 
			
		||||
  accelerator_for(idx,nsite,1,{
 | 
			
		||||
      static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
      int* tt = table_d + 4*idx;
 | 
			
		||||
      int from_oidx = *tt++;
 | 
			
		||||
      int from_lane = *tt++;
 | 
			
		||||
      int to_oidx = *tt++;
 | 
			
		||||
      int to_lane = *tt;
 | 
			
		||||
 | 
			
		||||
      const vector_type* from = (const vector_type *)&lowDim_v[from_oidx];
 | 
			
		||||
      vector_type* to = (vector_type *)&higherDim_v[to_oidx];
 | 
			
		||||
      
 | 
			
		||||
      scalar_type stmp;
 | 
			
		||||
      for(int w=0;w<words;w++){
 | 
			
		||||
	stmp = getlane(from[w], from_lane);
 | 
			
		||||
	putlane(to[w], stmp, to_lane);
 | 
			
		||||
      }
 | 
			
		||||
    });
 | 
			
		||||
  
 | 
			
		||||
  acceleratorFreeDevice(table_d);    
 | 
			
		||||
  free(table);
 | 
			
		||||
  
 | 
			
		||||
#else
 | 
			
		||||
  // the above should guarantee that the operations are local
 | 
			
		||||
  autoView(lowDimv,lowDim,CpuRead);
 | 
			
		||||
  autoView(higherDimv,higherDim,CpuWrite);
 | 
			
		||||
@@ -1023,7 +866,6 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
 | 
			
		||||
      pokeLocalSite(s,higherDimv,hcoor);
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -1088,7 +930,7 @@ void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine)
 | 
			
		||||
 | 
			
		||||
  Coordinate fcoor(nd);
 | 
			
		||||
  Coordinate ccoor(nd);
 | 
			
		||||
  for(int64_t g=0;g<fg->gSites();g++){
 | 
			
		||||
  for(int g=0;g<fg->gSites();g++){
 | 
			
		||||
 | 
			
		||||
    fg->GlobalIndexToGlobalCoor(g,fcoor);
 | 
			
		||||
    for(int d=0;d<nd;d++){
 | 
			
		||||
@@ -1774,32 +1616,5 @@ void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj>   & split)
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
// MultiRHS interface support for coarse space
 | 
			
		||||
// -- Simplest possible implementation to begin with
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj,class CComplex,int nbasis,class VLattice>
 | 
			
		||||
inline void blockProjectMany(Lattice<iVector<CComplex,nbasis > > &coarseIP,
 | 
			
		||||
			     Lattice<iVector<CComplex,nbasis > > &coarseTMP,
 | 
			
		||||
			     const VLattice &fineData, // Basis and fineData necessarily same type
 | 
			
		||||
			     const VLattice &Basis)
 | 
			
		||||
{
 | 
			
		||||
  for(int r=0;r<fineData.size();r++){
 | 
			
		||||
    blockProject(coarseTMP,fineData[r],Basis);
 | 
			
		||||
    InsertSliceLocal(coarseTMP, coarseIP,r,r,0);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
template<class vobj,class CComplex,int nbasis,class VLattice>
 | 
			
		||||
inline void blockPromoteMany(Lattice<iVector<CComplex,nbasis > > &coarseIP,
 | 
			
		||||
			     Lattice<iVector<CComplex,nbasis > > &coarseTMP,
 | 
			
		||||
			     const VLattice &fineData, // Basis and fineData necessarily same type
 | 
			
		||||
			     const VLattice &Basis)
 | 
			
		||||
{
 | 
			
		||||
  for(int r=0;r<fineData.size();r++){
 | 
			
		||||
    ExtractSliceLocal(coarseTMP, coarseIP,r,r,0);
 | 
			
		||||
    blockPromote(coarseTMP,fineData[r],Basis);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -26,214 +26,14 @@ Author: Peter Boyle pboyle@bnl.gov
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include<Grid/cshift/Cshift.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
//Allow the user to specify how the C-shift is performed, e.g. to respect the appropriate boundary conditions
 | 
			
		||||
template<typename vobj>
 | 
			
		||||
struct CshiftImplBase{
 | 
			
		||||
  virtual Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const = 0;
 | 
			
		||||
  virtual ~CshiftImplBase(){}
 | 
			
		||||
};
 | 
			
		||||
template<typename vobj>
 | 
			
		||||
struct CshiftImplDefault: public CshiftImplBase<vobj>{
 | 
			
		||||
  Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const override{ return Grid::Cshift(in,dir,shift); }
 | 
			
		||||
};
 | 
			
		||||
template<typename Gimpl>
 | 
			
		||||
struct CshiftImplGauge: public CshiftImplBase<typename Gimpl::GaugeLinkField::vector_object>{
 | 
			
		||||
  typename Gimpl::GaugeLinkField Cshift(const typename Gimpl::GaugeLinkField &in, int dir, int shift) const override{ return Gimpl::CshiftLink(in,dir,shift); }
 | 
			
		||||
};  
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 *
 | 
			
		||||
 * TODO: 
 | 
			
		||||
 *  -- address elementsof vobj via thread block in Scatter/Gather
 | 
			
		||||
 *  -- overlap comms with motion in Face_exchange
 | 
			
		||||
 *
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
template<class vobj> inline void ScatterSlice(const cshiftVector<vobj> &buf,
 | 
			
		||||
					      Lattice<vobj> &lat,
 | 
			
		||||
					      int x,
 | 
			
		||||
					      int dim,
 | 
			
		||||
					      int offset=0)
 | 
			
		||||
{
 | 
			
		||||
  const int Nsimd=vobj::Nsimd();
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  GridBase *grid = lat.Grid();
 | 
			
		||||
  Coordinate simd = grid->_simd_layout;
 | 
			
		||||
  int Nd          = grid->Nd();
 | 
			
		||||
  int block       = grid->_slice_block[dim];
 | 
			
		||||
  int stride      = grid->_slice_stride[dim];
 | 
			
		||||
  int nblock      = grid->_slice_nblock[dim];
 | 
			
		||||
  int rd          = grid->_rdimensions[dim];
 | 
			
		||||
 | 
			
		||||
  int ox = x%rd;
 | 
			
		||||
  int ix = x/rd;
 | 
			
		||||
 | 
			
		||||
  int isites = 1; for(int d=0;d<Nd;d++) if( d!=dim) isites*=simd[d];
 | 
			
		||||
 | 
			
		||||
  Coordinate rsimd= simd;  rsimd[dim]=1; // maybe reduce Nsimd
 | 
			
		||||
 | 
			
		||||
  int rNsimd = 1; for(int d=0;d<Nd;d++) rNsimd*=rsimd[d];
 | 
			
		||||
  int rNsimda= Nsimd/simd[dim]; // should be equal
 | 
			
		||||
  assert(rNsimda==rNsimd);
 | 
			
		||||
  int face_ovol=block*nblock;
 | 
			
		||||
 | 
			
		||||
  //  assert(buf.size()==face_ovol*rNsimd);
 | 
			
		||||
 | 
			
		||||
  /*This will work GPU ONLY unless rNsimd is put in the lexico index*/
 | 
			
		||||
  //Let's make it work on GPU and then make a special accelerator_for that
 | 
			
		||||
  //doesn't hide the SIMD direction and keeps explicit in the threadIdx
 | 
			
		||||
  //for cross platform
 | 
			
		||||
  // FIXME -- can put internal indices into thread loop
 | 
			
		||||
  auto buf_p = & buf[0];
 | 
			
		||||
  autoView(lat_v, lat, AcceleratorWrite);
 | 
			
		||||
  accelerator_for(ss, face_ovol/simd[dim],Nsimd,{
 | 
			
		||||
 | 
			
		||||
    // scalar layout won't coalesce
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
      {
 | 
			
		||||
	int blane=acceleratorSIMTlane(Nsimd); // buffer lane
 | 
			
		||||
#else
 | 
			
		||||
      for(int blane=0;blane<Nsimd;blane++) {
 | 
			
		||||
#endif
 | 
			
		||||
	int olane=blane%rNsimd;               // reduced lattice lane
 | 
			
		||||
	int obit =blane/rNsimd;
 | 
			
		||||
 | 
			
		||||
	///////////////////////////////////////////////////////////////
 | 
			
		||||
	// osite -- potentially one bit from simd in the buffer: (ss<<1)|obit
 | 
			
		||||
	///////////////////////////////////////////////////////////////
 | 
			
		||||
	int ssp = ss*simd[dim]+obit;
 | 
			
		||||
	int b    = ssp%block;
 | 
			
		||||
	int n    = ssp/block;
 | 
			
		||||
	int osite= b+n*stride + ox*block;
 | 
			
		||||
	
 | 
			
		||||
	////////////////////////////////////////////
 | 
			
		||||
	// isite -- map lane within buffer to lane within lattice
 | 
			
		||||
	////////////////////////////////////////////
 | 
			
		||||
	Coordinate icoor;
 | 
			
		||||
	int lane;
 | 
			
		||||
	Lexicographic::CoorFromIndex(icoor,olane,rsimd);
 | 
			
		||||
	icoor[dim]=ix;
 | 
			
		||||
	Lexicographic::IndexFromCoor(icoor,lane,simd);
 | 
			
		||||
	
 | 
			
		||||
	///////////////////////////////////////////
 | 
			
		||||
	// Transfer into lattice - will coalesce
 | 
			
		||||
	///////////////////////////////////////////
 | 
			
		||||
	//	sobj obj = extractLane(blane,buf_p[ss+offset]);
 | 
			
		||||
	//	insertLane(lane,lat_v[osite],obj);
 | 
			
		||||
	const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
	vector_type * from = (vector_type *)&buf_p[ss+offset];
 | 
			
		||||
	vector_type * to   = (vector_type *)&lat_v[osite];
 | 
			
		||||
	scalar_type stmp;
 | 
			
		||||
	for(int w=0;w<words;w++){
 | 
			
		||||
	  stmp = getlane(from[w], blane);
 | 
			
		||||
	  putlane(to[w], stmp, lane);
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> inline void GatherSlice(cshiftVector<vobj> &buf,
 | 
			
		||||
					     const Lattice<vobj> &lat,
 | 
			
		||||
					     int x,
 | 
			
		||||
					     int dim,
 | 
			
		||||
					     int offset=0)
 | 
			
		||||
{
 | 
			
		||||
  const int Nsimd=vobj::Nsimd();
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  autoView(lat_v, lat, AcceleratorRead);
 | 
			
		||||
 | 
			
		||||
  GridBase *grid = lat.Grid();
 | 
			
		||||
  Coordinate simd = grid->_simd_layout;
 | 
			
		||||
  int Nd          = grid->Nd();
 | 
			
		||||
  int block       = grid->_slice_block[dim];
 | 
			
		||||
  int stride      = grid->_slice_stride[dim];
 | 
			
		||||
  int nblock      = grid->_slice_nblock[dim];
 | 
			
		||||
  int rd          = grid->_rdimensions[dim];
 | 
			
		||||
 | 
			
		||||
  int ox = x%rd;
 | 
			
		||||
  int ix = x/rd;
 | 
			
		||||
 | 
			
		||||
  int isites = 1; for(int d=0;d<Nd;d++) if( d!=dim) isites*=simd[d];
 | 
			
		||||
 | 
			
		||||
  Coordinate rsimd= simd;  rsimd[dim]=1; // maybe reduce Nsimd
 | 
			
		||||
 | 
			
		||||
  int rNsimd = 1; for(int d=0;d<Nd;d++) rNsimd*=rsimd[d];
 | 
			
		||||
  
 | 
			
		||||
  int face_ovol=block*nblock;
 | 
			
		||||
 | 
			
		||||
  //  assert(buf.size()==face_ovol*rNsimd);
 | 
			
		||||
 | 
			
		||||
  /*This will work GPU ONLY unless rNsimd is put in the lexico index*/
 | 
			
		||||
  //Let's make it work on GPU and then make a special accelerator_for that
 | 
			
		||||
  //doesn't hide the SIMD direction and keeps explicit in the threadIdx
 | 
			
		||||
  //for cross platform
 | 
			
		||||
  //For CPU perhaps just run a loop over Nsimd
 | 
			
		||||
  auto buf_p = & buf[0];
 | 
			
		||||
  accelerator_for(ss, face_ovol/simd[dim],Nsimd,{
 | 
			
		||||
 | 
			
		||||
    // scalar layout won't coalesce
 | 
			
		||||
#ifdef GRID_SIMT
 | 
			
		||||
      {
 | 
			
		||||
	int blane=acceleratorSIMTlane(Nsimd); // buffer lane
 | 
			
		||||
#else
 | 
			
		||||
      for(int blane=0;blane<Nsimd;blane++) {
 | 
			
		||||
#endif
 | 
			
		||||
	int olane=blane%rNsimd;               // reduced lattice lane
 | 
			
		||||
	int obit =blane/rNsimd;
 | 
			
		||||
	
 | 
			
		||||
	////////////////////////////////////////////
 | 
			
		||||
	// osite
 | 
			
		||||
	////////////////////////////////////////////
 | 
			
		||||
	int ssp = ss*simd[dim]+obit;
 | 
			
		||||
	int b    = ssp%block;
 | 
			
		||||
	int n    = ssp/block;
 | 
			
		||||
	int osite= b+n*stride + ox*block;
 | 
			
		||||
 | 
			
		||||
	////////////////////////////////////////////
 | 
			
		||||
	// isite -- map lane within buffer to lane within lattice
 | 
			
		||||
	////////////////////////////////////////////
 | 
			
		||||
	Coordinate icoor;
 | 
			
		||||
	int lane;
 | 
			
		||||
	Lexicographic::CoorFromIndex(icoor,olane,rsimd);
 | 
			
		||||
	icoor[dim]=ix;
 | 
			
		||||
	Lexicographic::IndexFromCoor(icoor,lane,simd);
 | 
			
		||||
	
 | 
			
		||||
	///////////////////////////////////////////
 | 
			
		||||
	// Take out of lattice
 | 
			
		||||
	///////////////////////////////////////////
 | 
			
		||||
	//	sobj obj = extractLane(lane,lat_v[osite]);
 | 
			
		||||
	//	insertLane(blane,buf_p[ss+offset],obj);
 | 
			
		||||
	const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
	vector_type * to    = (vector_type *)&buf_p[ss+offset];
 | 
			
		||||
	vector_type * from  = (vector_type *)&lat_v[osite];
 | 
			
		||||
	scalar_type stmp;
 | 
			
		||||
	for(int w=0;w<words;w++){
 | 
			
		||||
	  stmp = getlane(from[w], lane);
 | 
			
		||||
	  putlane(to[w], stmp, blane);
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class PaddedCell {
 | 
			
		||||
public:
 | 
			
		||||
  GridCartesian * unpadded_grid;
 | 
			
		||||
  int dims;
 | 
			
		||||
  int depth;
 | 
			
		||||
  std::vector<GridCartesian *> grids;
 | 
			
		||||
 | 
			
		||||
  ~PaddedCell()
 | 
			
		||||
  {
 | 
			
		||||
    DeleteGrids();
 | 
			
		||||
@@ -245,19 +45,15 @@ public:
 | 
			
		||||
    dims=_grid->Nd();
 | 
			
		||||
    AllocateGrids();
 | 
			
		||||
    Coordinate local     =unpadded_grid->LocalDimensions();
 | 
			
		||||
    Coordinate procs     =unpadded_grid->ProcessorGrid();
 | 
			
		||||
    for(int d=0;d<dims;d++){
 | 
			
		||||
      if ( procs[d] > 1 ) assert(local[d]>=depth);
 | 
			
		||||
      assert(local[d]>=depth);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void DeleteGrids(void)
 | 
			
		||||
  {
 | 
			
		||||
    Coordinate processors=unpadded_grid->_processors;
 | 
			
		||||
    for(int d=0;d<grids.size();d++){
 | 
			
		||||
      if ( processors[d] > 1 ) { 
 | 
			
		||||
      delete grids[d];
 | 
			
		||||
    }
 | 
			
		||||
    }
 | 
			
		||||
    grids.resize(0);
 | 
			
		||||
  };
 | 
			
		||||
  void AllocateGrids(void)
 | 
			
		||||
@@ -267,66 +63,45 @@ public:
 | 
			
		||||
    Coordinate processors=unpadded_grid->_processors;
 | 
			
		||||
    Coordinate plocal    =unpadded_grid->LocalDimensions();
 | 
			
		||||
    Coordinate global(dims);
 | 
			
		||||
    GridCartesian *old_grid = unpadded_grid;
 | 
			
		||||
 | 
			
		||||
    // expand up one dim at a time
 | 
			
		||||
    for(int d=0;d<dims;d++){
 | 
			
		||||
 | 
			
		||||
      if ( processors[d] > 1 ) { 
 | 
			
		||||
      plocal[d] += 2*depth; 
 | 
			
		||||
 | 
			
		||||
      for(int d=0;d<dims;d++){
 | 
			
		||||
	global[d] = plocal[d]*processors[d];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
	old_grid = new GridCartesian(global,simd,processors);
 | 
			
		||||
      }
 | 
			
		||||
      grids.push_back(old_grid);
 | 
			
		||||
      grids.push_back(new GridCartesian(global,simd,processors));
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  inline Lattice<vobj> Extract(const Lattice<vobj> &in) const
 | 
			
		||||
  inline Lattice<vobj> Extract(Lattice<vobj> &in)
 | 
			
		||||
  {
 | 
			
		||||
    Coordinate processors=unpadded_grid->_processors;
 | 
			
		||||
 | 
			
		||||
    Lattice<vobj> out(unpadded_grid);
 | 
			
		||||
 | 
			
		||||
    Coordinate local     =unpadded_grid->LocalDimensions();
 | 
			
		||||
    // depends on the MPI spread      
 | 
			
		||||
    Coordinate fll(dims,depth);
 | 
			
		||||
    Coordinate fll(dims,depth); // depends on the MPI spread
 | 
			
		||||
    Coordinate tll(dims,0); // depends on the MPI spread
 | 
			
		||||
    for(int d=0;d<dims;d++){
 | 
			
		||||
      if( processors[d]==1 ) fll[d]=0;
 | 
			
		||||
    }
 | 
			
		||||
    localCopyRegion(in,out,fll,tll,local);
 | 
			
		||||
    return out;
 | 
			
		||||
  }
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  inline Lattice<vobj> Exchange(const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const
 | 
			
		||||
  inline Lattice<vobj> Exchange(Lattice<vobj> &in)
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *old_grid = in.Grid();
 | 
			
		||||
    int dims = old_grid->Nd();
 | 
			
		||||
    Lattice<vobj> tmp = in;
 | 
			
		||||
    for(int d=0;d<dims;d++){
 | 
			
		||||
      tmp = Expand(d,tmp,cshift); // rvalue && assignment
 | 
			
		||||
    }
 | 
			
		||||
    return tmp;
 | 
			
		||||
  }
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  inline Lattice<vobj> ExchangePeriodic(const Lattice<vobj> &in) const
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *old_grid = in.Grid();
 | 
			
		||||
    int dims = old_grid->Nd();
 | 
			
		||||
    Lattice<vobj> tmp = in;
 | 
			
		||||
    for(int d=0;d<dims;d++){
 | 
			
		||||
      tmp = ExpandPeriodic(d,tmp); // rvalue && assignment
 | 
			
		||||
      tmp = Expand(d,tmp); // rvalue && assignment
 | 
			
		||||
    }
 | 
			
		||||
    return tmp;
 | 
			
		||||
  }
 | 
			
		||||
  // expand up one dim at a time
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  inline Lattice<vobj> Expand(int dim, const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const
 | 
			
		||||
  inline Lattice<vobj> Expand(int dim,Lattice<vobj> &in)
 | 
			
		||||
  {
 | 
			
		||||
    Coordinate processors=unpadded_grid->_processors;
 | 
			
		||||
    GridBase *old_grid = in.Grid();
 | 
			
		||||
    GridCartesian *new_grid = grids[dim];//These are new grids
 | 
			
		||||
    Lattice<vobj>  padded(new_grid);
 | 
			
		||||
@@ -336,236 +111,26 @@ public:
 | 
			
		||||
    if(dim==0) conformable(old_grid,unpadded_grid);
 | 
			
		||||
    else       conformable(old_grid,grids[dim-1]);
 | 
			
		||||
 | 
			
		||||
    double tins=0, tshift=0;
 | 
			
		||||
 | 
			
		||||
    int islocal = 0 ;
 | 
			
		||||
    if ( processors[dim] == 1 ) islocal = 1;
 | 
			
		||||
 | 
			
		||||
    if ( islocal ) {
 | 
			
		||||
 | 
			
		||||
      // replace with a copy and maybe grid swizzle
 | 
			
		||||
      // return in;??
 | 
			
		||||
      double t = usecond();
 | 
			
		||||
      padded = in;
 | 
			
		||||
      tins += usecond() - t;
 | 
			
		||||
      
 | 
			
		||||
    } else {
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////////////////
 | 
			
		||||
      // Replace sequence with
 | 
			
		||||
      // ---------------------
 | 
			
		||||
      // (i) Gather high face(s); start comms
 | 
			
		||||
      // (ii) Gather low  face(s); start comms
 | 
			
		||||
      // (iii) Copy middle bit with localCopyRegion
 | 
			
		||||
      // (iv) Complete high face(s), insert slice(s)
 | 
			
		||||
      // (iv) Complete low  face(s), insert slice(s)
 | 
			
		||||
      //////////////////////////////////////////////
 | 
			
		||||
    std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl;
 | 
			
		||||
    // Middle bit
 | 
			
		||||
      double t = usecond();
 | 
			
		||||
    for(int x=0;x<local[dim];x++){
 | 
			
		||||
      InsertSliceLocal(in,padded,x,depth+x,dim);
 | 
			
		||||
    }
 | 
			
		||||
      tins += usecond() - t;
 | 
			
		||||
    
 | 
			
		||||
    // High bit
 | 
			
		||||
      t = usecond();
 | 
			
		||||
      shifted = cshift.Cshift(in,dim,depth);
 | 
			
		||||
      tshift += usecond() - t;
 | 
			
		||||
 | 
			
		||||
      t=usecond();
 | 
			
		||||
    shifted = Cshift(in,dim,depth);
 | 
			
		||||
    for(int x=0;x<depth;x++){
 | 
			
		||||
      InsertSliceLocal(shifted,padded,local[dim]-depth+x,depth+local[dim]+x,dim);
 | 
			
		||||
    }
 | 
			
		||||
      tins += usecond() - t;
 | 
			
		||||
    
 | 
			
		||||
    // Low bit
 | 
			
		||||
      t = usecond();
 | 
			
		||||
      shifted = cshift.Cshift(in,dim,-depth);
 | 
			
		||||
      tshift += usecond() - t;
 | 
			
		||||
    
 | 
			
		||||
      t = usecond();
 | 
			
		||||
    shifted = Cshift(in,dim,-depth);
 | 
			
		||||
    for(int x=0;x<depth;x++){
 | 
			
		||||
      InsertSliceLocal(shifted,padded,x,x,dim);
 | 
			
		||||
    }
 | 
			
		||||
      tins += usecond() - t;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogPerformance << "PaddedCell::Expand timings: cshift:" << tshift/1000 << "ms, insert-slice:" << tins/1000 << "ms" << std::endl;
 | 
			
		||||
    
 | 
			
		||||
    return padded;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  inline Lattice<vobj> ExpandPeriodic(int dim, const Lattice<vobj> &in) const
 | 
			
		||||
  {
 | 
			
		||||
    Coordinate processors=unpadded_grid->_processors;
 | 
			
		||||
    GridBase *old_grid = in.Grid();
 | 
			
		||||
    GridCartesian *new_grid = grids[dim];//These are new grids
 | 
			
		||||
    Lattice<vobj>  padded(new_grid);
 | 
			
		||||
    //    Lattice<vobj> shifted(old_grid);    
 | 
			
		||||
    Coordinate local     =old_grid->LocalDimensions();
 | 
			
		||||
    Coordinate plocal    =new_grid->LocalDimensions();
 | 
			
		||||
    if(dim==0) conformable(old_grid,unpadded_grid);
 | 
			
		||||
    else       conformable(old_grid,grids[dim-1]);
 | 
			
		||||
 | 
			
		||||
    //    std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl;
 | 
			
		||||
    double tins=0, tshift=0;
 | 
			
		||||
 | 
			
		||||
    int islocal = 0 ;
 | 
			
		||||
    if ( processors[dim] == 1 ) islocal = 1;
 | 
			
		||||
 | 
			
		||||
    if ( islocal ) {
 | 
			
		||||
      padded=in; // slightly different interface could avoid a copy operation
 | 
			
		||||
    } else {
 | 
			
		||||
      Face_exchange(in,padded,dim,depth);
 | 
			
		||||
      return padded;
 | 
			
		||||
    }
 | 
			
		||||
    return padded;
 | 
			
		||||
  }
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  void Face_exchange(const Lattice<vobj> &from,
 | 
			
		||||
		     Lattice<vobj> &to,
 | 
			
		||||
		     int dimension,int depth) const
 | 
			
		||||
  {
 | 
			
		||||
    typedef typename vobj::vector_type vector_type;
 | 
			
		||||
    typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
    typedef typename vobj::scalar_object sobj;
 | 
			
		||||
 | 
			
		||||
    RealD t_gather=0.0;
 | 
			
		||||
    RealD t_scatter=0.0;
 | 
			
		||||
    RealD t_comms=0.0;
 | 
			
		||||
    RealD t_copy=0.0;
 | 
			
		||||
    
 | 
			
		||||
    //    std::cout << GridLogMessage << "dimension " <<dimension<<std::endl;
 | 
			
		||||
    //    DumpSliceNorm(std::string("Face_exchange from"),from,dimension);
 | 
			
		||||
    GridBase *grid=from.Grid();
 | 
			
		||||
    GridBase *new_grid=to.Grid();
 | 
			
		||||
 | 
			
		||||
    Coordinate lds = from.Grid()->_ldimensions;
 | 
			
		||||
    Coordinate nlds=   to.Grid()->_ldimensions;
 | 
			
		||||
    Coordinate simd= from.Grid()->_simd_layout;
 | 
			
		||||
    int ld    = lds[dimension];
 | 
			
		||||
    int nld   = to.Grid()->_ldimensions[dimension];
 | 
			
		||||
    const int Nsimd = vobj::Nsimd();
 | 
			
		||||
 | 
			
		||||
    assert(depth<=lds[dimension]); // A must be on neighbouring node
 | 
			
		||||
    assert(depth>0);   // A caller bug if zero
 | 
			
		||||
    assert(ld+2*depth==nld);
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Face size and byte calculations
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    int buffer_size = 1;
 | 
			
		||||
    for(int d=0;d<lds.size();d++){
 | 
			
		||||
      if ( d!= dimension) buffer_size=buffer_size*lds[d];
 | 
			
		||||
    }
 | 
			
		||||
    buffer_size = buffer_size  / Nsimd;
 | 
			
		||||
    int rNsimd = Nsimd / simd[dimension];
 | 
			
		||||
    assert( buffer_size == from.Grid()->_slice_nblock[dimension]*from.Grid()->_slice_block[dimension] / simd[dimension]);
 | 
			
		||||
 | 
			
		||||
    static cshiftVector<vobj> send_buf; 
 | 
			
		||||
    static cshiftVector<vobj> recv_buf;
 | 
			
		||||
    send_buf.resize(buffer_size*2*depth);    
 | 
			
		||||
    recv_buf.resize(buffer_size*2*depth);
 | 
			
		||||
 | 
			
		||||
    std::vector<CommsRequest_t> fwd_req;   
 | 
			
		||||
    std::vector<CommsRequest_t> bwd_req;   
 | 
			
		||||
 | 
			
		||||
    int words = buffer_size;
 | 
			
		||||
    int bytes = words * sizeof(vobj);
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Communication coords
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    int comm_proc = 1;
 | 
			
		||||
    int xmit_to_rank;
 | 
			
		||||
    int recv_from_rank;
 | 
			
		||||
    grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Gather all surface terms up to depth "d"
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    RealD t;
 | 
			
		||||
    RealD t_tot=-usecond();
 | 
			
		||||
    int plane=0;
 | 
			
		||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
			
		||||
      int tag = d*1024 + dimension*2+0;
 | 
			
		||||
 | 
			
		||||
      t=usecond();
 | 
			
		||||
      GatherSlice(send_buf,from,d,dimension,plane*buffer_size); plane++;
 | 
			
		||||
      t_gather+=usecond()-t;
 | 
			
		||||
 | 
			
		||||
      t=usecond();
 | 
			
		||||
      grid->SendToRecvFromBegin(fwd_req,
 | 
			
		||||
				(void *)&send_buf[d*buffer_size], xmit_to_rank,
 | 
			
		||||
				(void *)&recv_buf[d*buffer_size], recv_from_rank, bytes, tag);
 | 
			
		||||
      t_comms+=usecond()-t;
 | 
			
		||||
     }
 | 
			
		||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
			
		||||
      int tag = d*1024 + dimension*2+1;
 | 
			
		||||
 | 
			
		||||
      t=usecond();
 | 
			
		||||
      GatherSlice(send_buf,from,ld-depth+d,dimension,plane*buffer_size); plane++;
 | 
			
		||||
      t_gather+= usecond() - t;
 | 
			
		||||
 | 
			
		||||
      t=usecond();
 | 
			
		||||
      grid->SendToRecvFromBegin(bwd_req,
 | 
			
		||||
				(void *)&send_buf[(d+depth)*buffer_size], recv_from_rank,
 | 
			
		||||
				(void *)&recv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag);
 | 
			
		||||
      t_comms+=usecond()-t;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Copy interior -- overlap this with comms
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    int Nd = new_grid->Nd();
 | 
			
		||||
    Coordinate LL(Nd,0);
 | 
			
		||||
    Coordinate sz = grid->_ldimensions;
 | 
			
		||||
    Coordinate toLL(Nd,0);
 | 
			
		||||
    toLL[dimension]=depth;
 | 
			
		||||
    t=usecond();
 | 
			
		||||
    localCopyRegion(from,to,LL,toLL,sz);
 | 
			
		||||
    t_copy= usecond() - t;
 | 
			
		||||
    
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Scatter all faces
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    plane=0;
 | 
			
		||||
 | 
			
		||||
    t=usecond();
 | 
			
		||||
    grid->CommsComplete(fwd_req);
 | 
			
		||||
    t_comms+= usecond() - t;
 | 
			
		||||
 | 
			
		||||
    t=usecond();
 | 
			
		||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
			
		||||
      ScatterSlice(recv_buf,to,nld-depth+d,dimension,plane*buffer_size); plane++;
 | 
			
		||||
    }
 | 
			
		||||
    t_scatter= usecond() - t;
 | 
			
		||||
 | 
			
		||||
    t=usecond();
 | 
			
		||||
    grid->CommsComplete(bwd_req);
 | 
			
		||||
    t_comms+= usecond() - t;
 | 
			
		||||
    
 | 
			
		||||
    t=usecond();
 | 
			
		||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
			
		||||
      ScatterSlice(recv_buf,to,d,dimension,plane*buffer_size); plane++;
 | 
			
		||||
    }
 | 
			
		||||
    t_scatter+= usecond() - t;
 | 
			
		||||
    t_tot+=usecond();
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: gather :" << t_gather/1000  << "ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: scatter:" << t_scatter/1000   << "ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: copy   :" << t_copy/1000      << "ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: comms  :" << t_comms/1000     << "ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: total  :" << t_tot/1000     << "ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: gather :" << depth*4.0*bytes/t_gather << "MB/s"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: scatter:" << depth*4.0*bytes/t_scatter<< "MB/s"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: comms  :" << (RealD)4.0*bytes/t_comms   << "MB/s"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: face bytes  :" << depth*bytes/1e6 << "MB"<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
};
 | 
			
		||||
 
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -165,7 +165,7 @@ class BinaryIO {
 | 
			
		||||
	 * FIXME -- 128^3 x 256 x 16 will overflow.
 | 
			
		||||
	 */
 | 
			
		||||
	
 | 
			
		||||
	int64_t global_site;
 | 
			
		||||
	int global_site;
 | 
			
		||||
 | 
			
		||||
	Lexicographic::CoorFromIndex(coor,local_site,local_vol);
 | 
			
		||||
 | 
			
		||||
@@ -175,8 +175,8 @@ class BinaryIO {
 | 
			
		||||
 | 
			
		||||
	Lexicographic::IndexFromCoor(coor,global_site,global_vol);
 | 
			
		||||
 | 
			
		||||
	uint64_t gsite29   = global_site%29;
 | 
			
		||||
	uint64_t gsite31   = global_site%31;
 | 
			
		||||
	uint32_t gsite29   = global_site%29;
 | 
			
		||||
	uint32_t gsite31   = global_site%31;
 | 
			
		||||
	
 | 
			
		||||
	site_crc = crc32(0,(unsigned char *)site_buf,sizeof(fobj));
 | 
			
		||||
	//	std::cout << "Site "<<local_site << " crc "<<std::hex<<site_crc<<std::dec<<std::endl;
 | 
			
		||||
@@ -545,9 +545,7 @@ class BinaryIO {
 | 
			
		||||
				       const std::string &format,
 | 
			
		||||
				       uint32_t &nersc_csum,
 | 
			
		||||
				       uint32_t &scidac_csuma,
 | 
			
		||||
				       uint32_t &scidac_csumb,
 | 
			
		||||
				       int control=BINARYIO_LEXICOGRAPHIC
 | 
			
		||||
				       )
 | 
			
		||||
				       uint32_t &scidac_csumb)
 | 
			
		||||
  {
 | 
			
		||||
    typedef typename vobj::scalar_object sobj;
 | 
			
		||||
    typedef typename vobj::Realified::scalar_type word;    word w=0;
 | 
			
		||||
@@ -558,7 +556,7 @@ class BinaryIO {
 | 
			
		||||
    std::vector<sobj> scalardata(lsites); 
 | 
			
		||||
    std::vector<fobj>     iodata(lsites); // Munge, checksum, byte order in here
 | 
			
		||||
    
 | 
			
		||||
    IOobject(w,grid,iodata,file,offset,format,BINARYIO_READ|control,
 | 
			
		||||
    IOobject(w,grid,iodata,file,offset,format,BINARYIO_READ|BINARYIO_LEXICOGRAPHIC,
 | 
			
		||||
	     nersc_csum,scidac_csuma,scidac_csumb);
 | 
			
		||||
 | 
			
		||||
    GridStopWatch timer; 
 | 
			
		||||
@@ -584,8 +582,7 @@ class BinaryIO {
 | 
			
		||||
					  const std::string &format,
 | 
			
		||||
					  uint32_t &nersc_csum,
 | 
			
		||||
					  uint32_t &scidac_csuma,
 | 
			
		||||
					  uint32_t &scidac_csumb,
 | 
			
		||||
					  int control=BINARYIO_LEXICOGRAPHIC)
 | 
			
		||||
					  uint32_t &scidac_csumb)
 | 
			
		||||
  {
 | 
			
		||||
    typedef typename vobj::scalar_object sobj;
 | 
			
		||||
    typedef typename vobj::Realified::scalar_type word;    word w=0;
 | 
			
		||||
@@ -610,7 +607,7 @@ class BinaryIO {
 | 
			
		||||
    while (attemptsLeft >= 0)
 | 
			
		||||
    {
 | 
			
		||||
      grid->Barrier();
 | 
			
		||||
      IOobject(w,grid,iodata,file,offset,format,BINARYIO_WRITE|control,
 | 
			
		||||
      IOobject(w,grid,iodata,file,offset,format,BINARYIO_WRITE|BINARYIO_LEXICOGRAPHIC,
 | 
			
		||||
	             nersc_csum,scidac_csuma,scidac_csumb);
 | 
			
		||||
      if (checkWrite)
 | 
			
		||||
      {
 | 
			
		||||
@@ -620,7 +617,7 @@ class BinaryIO {
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage << "writeLatticeObject: read back object" << std::endl;
 | 
			
		||||
        grid->Barrier();
 | 
			
		||||
        IOobject(w,grid,ckiodata,file,ckoffset,format,BINARYIO_READ|control,
 | 
			
		||||
        IOobject(w,grid,ckiodata,file,ckoffset,format,BINARYIO_READ|BINARYIO_LEXICOGRAPHIC,
 | 
			
		||||
	               cknersc_csum,ckscidac_csuma,ckscidac_csumb);
 | 
			
		||||
        if ((cknersc_csum != nersc_csum) or (ckscidac_csuma != scidac_csuma) or (ckscidac_csumb != scidac_csumb))
 | 
			
		||||
        {
 | 
			
		||||
 
 | 
			
		||||
@@ -206,7 +206,7 @@ class GridLimeReader : public BinaryIO {
 | 
			
		||||
  // Read a generic lattice field and verify checksum
 | 
			
		||||
  ////////////////////////////////////////////
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  void readLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name,int control=BINARYIO_LEXICOGRAPHIC)
 | 
			
		||||
  void readLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name)
 | 
			
		||||
  {
 | 
			
		||||
    typedef typename vobj::scalar_object sobj;
 | 
			
		||||
    scidacChecksum scidacChecksum_;
 | 
			
		||||
@@ -238,7 +238,7 @@ class GridLimeReader : public BinaryIO {
 | 
			
		||||
	uint64_t offset= ftello(File);
 | 
			
		||||
	//	std::cout << " ReadLatticeObject from offset "<<offset << std::endl;
 | 
			
		||||
	BinarySimpleMunger<sobj,sobj> munge;
 | 
			
		||||
	BinaryIO::readLatticeObject< vobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb,control);
 | 
			
		||||
	BinaryIO::readLatticeObject< vobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
 | 
			
		||||
	std::cout << GridLogMessage << "SciDAC checksum A " << std::hex << scidac_csuma << std::dec << std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "SciDAC checksum B " << std::hex << scidac_csumb << std::dec << std::endl;
 | 
			
		||||
	/////////////////////////////////////////////
 | 
			
		||||
@@ -408,7 +408,7 @@ class GridLimeWriter : public BinaryIO
 | 
			
		||||
  // in communicator used by the field.Grid()
 | 
			
		||||
  ////////////////////////////////////////////////////
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  void writeLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name,int control=BINARYIO_LEXICOGRAPHIC)
 | 
			
		||||
  void writeLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name)
 | 
			
		||||
  {
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // NB: FILE and iostream are jointly writing disjoint sequences in the
 | 
			
		||||
@@ -459,7 +459,7 @@ class GridLimeWriter : public BinaryIO
 | 
			
		||||
    ///////////////////////////////////////////
 | 
			
		||||
    std::string format = getFormatString<vobj>();
 | 
			
		||||
    BinarySimpleMunger<sobj,sobj> munge;
 | 
			
		||||
    BinaryIO::writeLatticeObject<vobj,sobj>(field, filename, munge, offset1, format,nersc_csum,scidac_csuma,scidac_csumb,control);
 | 
			
		||||
    BinaryIO::writeLatticeObject<vobj,sobj>(field, filename, munge, offset1, format,nersc_csum,scidac_csuma,scidac_csumb);
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////////
 | 
			
		||||
    // Wind forward and close the record
 | 
			
		||||
@@ -512,8 +512,7 @@ class ScidacWriter : public GridLimeWriter {
 | 
			
		||||
  ////////////////////////////////////////////////
 | 
			
		||||
  template <class vobj, class userRecord>
 | 
			
		||||
  void writeScidacFieldRecord(Lattice<vobj> &field,userRecord _userRecord,
 | 
			
		||||
                              const unsigned int recordScientificPrec = 0,
 | 
			
		||||
			      int control=BINARYIO_LEXICOGRAPHIC)
 | 
			
		||||
                              const unsigned int recordScientificPrec = 0) 
 | 
			
		||||
  {
 | 
			
		||||
    GridBase * grid = field.Grid();
 | 
			
		||||
 | 
			
		||||
@@ -535,7 +534,7 @@ class ScidacWriter : public GridLimeWriter {
 | 
			
		||||
      writeLimeObject(0,0,_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
 | 
			
		||||
    }
 | 
			
		||||
    // Collective call
 | 
			
		||||
    writeLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA),control);      // Closes message with checksum
 | 
			
		||||
    writeLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA));      // Closes message with checksum
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
@@ -554,8 +553,7 @@ class ScidacReader : public GridLimeReader {
 | 
			
		||||
  // Write generic lattice field in scidac format
 | 
			
		||||
  ////////////////////////////////////////////////
 | 
			
		||||
  template <class vobj, class userRecord>
 | 
			
		||||
  void readScidacFieldRecord(Lattice<vobj> &field,userRecord &_userRecord,
 | 
			
		||||
			     int control=BINARYIO_LEXICOGRAPHIC) 
 | 
			
		||||
  void readScidacFieldRecord(Lattice<vobj> &field,userRecord &_userRecord) 
 | 
			
		||||
  {
 | 
			
		||||
    typedef typename vobj::scalar_object sobj;
 | 
			
		||||
    GridBase * grid = field.Grid();
 | 
			
		||||
@@ -573,7 +571,7 @@ class ScidacReader : public GridLimeReader {
 | 
			
		||||
    readLimeObject(header ,std::string("FieldMetaData"),std::string(GRID_FORMAT)); // Open message 
 | 
			
		||||
    readLimeObject(_userRecord,_userRecord.SerialisableClassName(),std::string(SCIDAC_RECORD_XML));
 | 
			
		||||
    readLimeObject(_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
 | 
			
		||||
    readLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA),control);
 | 
			
		||||
    readLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA));
 | 
			
		||||
  }
 | 
			
		||||
  void skipPastBinaryRecord(void) {
 | 
			
		||||
    std::string rec_name(ILDG_BINARY_DATA);
 | 
			
		||||
 
 | 
			
		||||
@@ -126,16 +126,6 @@ typedef WilsonFermion<WilsonTwoIndexSymmetricImplD> WilsonTwoIndexSymmetricFermi
 | 
			
		||||
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonTwoIndexAntiSymmetricFermionF;
 | 
			
		||||
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonTwoIndexAntiSymmetricFermionD;
 | 
			
		||||
 | 
			
		||||
// Sp(2n)
 | 
			
		||||
typedef WilsonFermion<SpWilsonImplF> SpWilsonFermionF;
 | 
			
		||||
typedef WilsonFermion<SpWilsonImplD> SpWilsonFermionD;
 | 
			
		||||
 | 
			
		||||
typedef WilsonFermion<SpWilsonTwoIndexAntiSymmetricImplF> SpWilsonTwoIndexAntiSymmetricFermionF;
 | 
			
		||||
typedef WilsonFermion<SpWilsonTwoIndexAntiSymmetricImplD> SpWilsonTwoIndexAntiSymmetricFermionD;
 | 
			
		||||
 | 
			
		||||
typedef WilsonFermion<SpWilsonTwoIndexSymmetricImplF> SpWilsonTwoIndexSymmetricFermionF;
 | 
			
		||||
typedef WilsonFermion<SpWilsonTwoIndexSymmetricImplD> SpWilsonTwoIndexSymmetricFermionD;
 | 
			
		||||
 | 
			
		||||
// Twisted mass fermion
 | 
			
		||||
typedef WilsonTMFermion<WilsonImplD2> WilsonTMFermionD2;
 | 
			
		||||
typedef WilsonTMFermion<WilsonImplF> WilsonTMFermionF;
 | 
			
		||||
 
 | 
			
		||||
@@ -261,22 +261,6 @@ typedef WilsonImpl<vComplex,  TwoIndexAntiSymmetricRepresentation, CoeffReal > W
 | 
			
		||||
typedef WilsonImpl<vComplexF, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplF;  // Float
 | 
			
		||||
typedef WilsonImpl<vComplexD, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplD;  // Double
 | 
			
		||||
 | 
			
		||||
//sp 2n
 | 
			
		||||
 | 
			
		||||
typedef WilsonImpl<vComplex,  SpFundamentalRepresentation, CoeffReal > SpWilsonImplR;  // Real.. whichever prec
 | 
			
		||||
typedef WilsonImpl<vComplexF, SpFundamentalRepresentation, CoeffReal > SpWilsonImplF;  // Float
 | 
			
		||||
typedef WilsonImpl<vComplexD, SpFundamentalRepresentation, CoeffReal > SpWilsonImplD;  // Double
 | 
			
		||||
 | 
			
		||||
typedef WilsonImpl<vComplex,  SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplR;  // Real.. whichever prec
 | 
			
		||||
typedef WilsonImpl<vComplexF, SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplF;  // Float
 | 
			
		||||
typedef WilsonImpl<vComplexD, SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplD;  // Double
 | 
			
		||||
 | 
			
		||||
typedef WilsonImpl<vComplex,  SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplR;  // Real.. whichever prec
 | 
			
		||||
typedef WilsonImpl<vComplexF, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplF;  // Float
 | 
			
		||||
typedef WilsonImpl<vComplexD, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplD;  // Double
 | 
			
		||||
 | 
			
		||||
typedef WilsonImpl<vComplex,  SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplR;  // Real.. whichever prec    // adj = 2indx symmetric for Sp(2N)
 | 
			
		||||
typedef WilsonImpl<vComplexF, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplF;  // Float     // adj = 2indx symmetric for Sp(2N)
 | 
			
		||||
typedef WilsonImpl<vComplexD, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplD;  // Double    // adj = 2indx symmetric for Sp(2N)
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -423,6 +423,7 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
 | 
			
		||||
#define KERNEL_CALL(A) KERNEL_CALLNB(A); accelerator_barrier();
 | 
			
		||||
 | 
			
		||||
#define KERNEL_CALL_EXT(A)						\
 | 
			
		||||
  const uint64_t    NN = Nsite*Ls;					\
 | 
			
		||||
  const uint64_t    sz = st.surface_list.size();			\
 | 
			
		||||
  auto ptr = &st.surface_list[0];					\
 | 
			
		||||
  accelerator_forNB( ss, sz, Simd::Nsimd(), {				\
 | 
			
		||||
 
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonCloverFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonKernelsInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonTMFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
#define IMPLEMENTATION SpWilsonImplD
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonCloverFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonKernelsInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonTMFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
#define IMPLEMENTATION SpWilsonImplF
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonCloverFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonKernelsInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonTMFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
#define IMPLEMENTATION SpWilsonTwoIndexAntiSymmetricImplD
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonCloverFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonKernelsInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonTMFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
#define IMPLEMENTATION SpWilsonTwoIndexAntiSymmetricImplF
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonCloverFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonKernelsInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonTMFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
#define IMPLEMENTATION SpWilsonTwoIndexSymmetricImplD
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonCloverFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonKernelsInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonTMFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
#define IMPLEMENTATION SpWilsonTwoIndexSymmetricImplF
 | 
			
		||||
@@ -10,18 +10,12 @@ WILSON_IMPL_LIST=" \
 | 
			
		||||
	   WilsonImplF \
 | 
			
		||||
	   WilsonImplD \
 | 
			
		||||
	   WilsonImplD2 \
 | 
			
		||||
	   SpWilsonImplF \
 | 
			
		||||
	   SpWilsonImplD \
 | 
			
		||||
	   WilsonAdjImplF \
 | 
			
		||||
	   WilsonAdjImplD \
 | 
			
		||||
	   WilsonTwoIndexSymmetricImplF \
 | 
			
		||||
	   WilsonTwoIndexSymmetricImplD \
 | 
			
		||||
	   WilsonTwoIndexAntiSymmetricImplF \
 | 
			
		||||
	   WilsonTwoIndexAntiSymmetricImplD \
 | 
			
		||||
	   SpWilsonTwoIndexAntiSymmetricImplF \
 | 
			
		||||
	   SpWilsonTwoIndexAntiSymmetricImplD \
 | 
			
		||||
	   SpWilsonTwoIndexSymmetricImplF \
 | 
			
		||||
	   SpWilsonTwoIndexSymmetricImplD \
 | 
			
		||||
	   GparityWilsonImplF \
 | 
			
		||||
	   GparityWilsonImplD "
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -39,9 +39,6 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
typedef WilsonGaugeAction<PeriodicGimplR>          WilsonGaugeActionR;
 | 
			
		||||
typedef WilsonGaugeAction<PeriodicGimplF>          WilsonGaugeActionF;
 | 
			
		||||
typedef WilsonGaugeAction<PeriodicGimplD>          WilsonGaugeActionD;
 | 
			
		||||
typedef WilsonGaugeAction<SpPeriodicGimplR>        SpWilsonGaugeActionR;
 | 
			
		||||
typedef WilsonGaugeAction<SpPeriodicGimplF>        SpWilsonGaugeActionF;
 | 
			
		||||
typedef WilsonGaugeAction<SpPeriodicGimplD>        SpWilsonGaugeActionD;
 | 
			
		||||
typedef PlaqPlusRectangleAction<PeriodicGimplR>    PlaqPlusRectangleActionR;
 | 
			
		||||
typedef PlaqPlusRectangleAction<PeriodicGimplF>    PlaqPlusRectangleActionF;
 | 
			
		||||
typedef PlaqPlusRectangleAction<PeriodicGimplD>    PlaqPlusRectangleActionD;
 | 
			
		||||
 
 | 
			
		||||
@@ -61,7 +61,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
  typedef typename Impl::Field Field;
 | 
			
		||||
 | 
			
		||||
// hardcodes the exponential approximation in the template
 | 
			
		||||
template <class S, int Nrepresentation = Nc, int Nexp = 12, class Group = SU<Nc> > class GaugeImplTypes {
 | 
			
		||||
template <class S, int Nrepresentation = Nc, int Nexp = 12 > class GaugeImplTypes {
 | 
			
		||||
public:
 | 
			
		||||
  typedef S Simd;
 | 
			
		||||
  typedef typename Simd::scalar_type scalar_type;
 | 
			
		||||
@@ -78,6 +78,8 @@ public:
 | 
			
		||||
  typedef Lattice<SiteLink>    LinkField; 
 | 
			
		||||
  typedef Lattice<SiteField>   Field;
 | 
			
		||||
 | 
			
		||||
  typedef SU<Nrepresentation> Group;
 | 
			
		||||
 | 
			
		||||
  // Guido: we can probably separate the types from the HMC functions
 | 
			
		||||
  // this will create 2 kind of implementations
 | 
			
		||||
  // probably confusing the users
 | 
			
		||||
@@ -117,7 +119,6 @@ public:
 | 
			
		||||
    //
 | 
			
		||||
    LinkField Pmu(P.Grid());
 | 
			
		||||
    Pmu = Zero();
 | 
			
		||||
 | 
			
		||||
    for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
      Group::GaussianFundamentalLieAlgebraMatrix(pRNG, Pmu);
 | 
			
		||||
      RealD scale = ::sqrt(HMC_MOMENTUM_DENOMINATOR) ;
 | 
			
		||||
@@ -126,11 +127,7 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static inline Field projectForce(Field &P) {
 | 
			
		||||
      Field ret(P.Grid());
 | 
			
		||||
      Group::taProj(P, ret);
 | 
			
		||||
      return ret;
 | 
			
		||||
    }
 | 
			
		||||
  static inline Field projectForce(Field &P) { return Ta(P); }
 | 
			
		||||
 | 
			
		||||
  static inline void update_field(Field& P, Field& U, double ep){
 | 
			
		||||
    //static std::chrono::duration<double> diff;
 | 
			
		||||
@@ -140,8 +137,7 @@ public:
 | 
			
		||||
    autoView(P_v,P,AcceleratorRead);
 | 
			
		||||
    accelerator_for(ss, P.Grid()->oSites(),1,{
 | 
			
		||||
      for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
          U_v[ss](mu) = Exponentiate(P_v[ss](mu), ep, Nexp) * U_v[ss](mu);
 | 
			
		||||
          U_v[ss](mu) = Group::ProjectOnGeneralGroup(U_v[ss](mu));
 | 
			
		||||
        U_v[ss](mu) = ProjectOnGroup(Exponentiate(P_v[ss](mu), ep, Nexp) * U_v[ss](mu));
 | 
			
		||||
      }
 | 
			
		||||
    });
 | 
			
		||||
   //auto end = std::chrono::high_resolution_clock::now();
 | 
			
		||||
@@ -161,7 +157,7 @@ public:
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static inline void Project(Field &U) {
 | 
			
		||||
    Group::ProjectOnSpecialGroup(U);
 | 
			
		||||
    ProjectSUn(U);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static inline void HotConfiguration(GridParallelRNG &pRNG, Field &U) {
 | 
			
		||||
@@ -175,7 +171,6 @@ public:
 | 
			
		||||
  static inline void ColdConfiguration(GridParallelRNG &pRNG, Field &U) {
 | 
			
		||||
    Group::ColdConfiguration(pRNG, U);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -183,17 +178,10 @@ typedef GaugeImplTypes<vComplex, Nc> GimplTypesR;
 | 
			
		||||
typedef GaugeImplTypes<vComplexF, Nc> GimplTypesF;
 | 
			
		||||
typedef GaugeImplTypes<vComplexD, Nc> GimplTypesD;
 | 
			
		||||
 | 
			
		||||
typedef GaugeImplTypes<vComplex, Nc, 12, Sp<Nc> > SpGimplTypesR;
 | 
			
		||||
typedef GaugeImplTypes<vComplexF, Nc, 12, Sp<Nc> > SpGimplTypesF;
 | 
			
		||||
typedef GaugeImplTypes<vComplexD, Nc, 12, Sp<Nc> > SpGimplTypesD;
 | 
			
		||||
 | 
			
		||||
typedef GaugeImplTypes<vComplex, SU<Nc>::AdjointDimension> GimplAdjointTypesR;
 | 
			
		||||
typedef GaugeImplTypes<vComplexF, SU<Nc>::AdjointDimension> GimplAdjointTypesF;
 | 
			
		||||
typedef GaugeImplTypes<vComplexD, SU<Nc>::AdjointDimension> GimplAdjointTypesD;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif // GRID_GAUGE_IMPL_TYPES_H
 | 
			
		||||
 
 | 
			
		||||
@@ -176,7 +176,7 @@ public:
 | 
			
		||||
      return PeriodicBC::CshiftLink(Link,mu,shift);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static inline void       setDirections(const std::vector<int> &conjDirs) { _conjDirs=conjDirs; }
 | 
			
		||||
  static inline void       setDirections(std::vector<int> &conjDirs) { _conjDirs=conjDirs; }
 | 
			
		||||
  static inline std::vector<int> getDirections(void) { return _conjDirs; }
 | 
			
		||||
  static inline bool isPeriodicGaugeField(void) { return false; }
 | 
			
		||||
};
 | 
			
		||||
@@ -193,11 +193,6 @@ typedef ConjugateGaugeImpl<GimplTypesR> ConjugateGimplR; // Real.. whichever pre
 | 
			
		||||
typedef ConjugateGaugeImpl<GimplTypesF> ConjugateGimplF; // Float
 | 
			
		||||
typedef ConjugateGaugeImpl<GimplTypesD> ConjugateGimplD; // Double
 | 
			
		||||
 | 
			
		||||
typedef PeriodicGaugeImpl<SpGimplTypesR> SpPeriodicGimplR; // Real.. whichever prec
 | 
			
		||||
typedef PeriodicGaugeImpl<SpGimplTypesF> SpPeriodicGimplF; // Float
 | 
			
		||||
typedef PeriodicGaugeImpl<SpGimplTypesD> SpPeriodicGimplD; // Double
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -43,7 +43,7 @@ public:
 | 
			
		||||
private:
 | 
			
		||||
  RealD c_plaq;
 | 
			
		||||
  RealD c_rect;
 | 
			
		||||
  typename WilsonLoops<Gimpl>::StapleAndRectStapleAllWorkspace workspace;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  PlaqPlusRectangleAction(RealD b,RealD c): c_plaq(b),c_rect(c){};
 | 
			
		||||
 | 
			
		||||
@@ -79,18 +79,27 @@ public:
 | 
			
		||||
    GridBase *grid = Umu.Grid();
 | 
			
		||||
 | 
			
		||||
    std::vector<GaugeLinkField> U (Nd,grid);
 | 
			
		||||
    std::vector<GaugeLinkField> U2(Nd,grid);
 | 
			
		||||
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      U[mu] = PeekIndex<LorentzIndex>(Umu,mu);
 | 
			
		||||
      WilsonLoops<Gimpl>::RectStapleDouble(U2[mu],U[mu],mu);
 | 
			
		||||
    }
 | 
			
		||||
    std::vector<GaugeLinkField> RectStaple(Nd,grid), Staple(Nd,grid);
 | 
			
		||||
    WilsonLoops<Gimpl>::StapleAndRectStapleAll(Staple, RectStaple, U, workspace);
 | 
			
		||||
 | 
			
		||||
    GaugeLinkField dSdU_mu(grid);
 | 
			
		||||
    GaugeLinkField staple(grid);
 | 
			
		||||
 | 
			
		||||
    for (int mu=0; mu < Nd; mu++){
 | 
			
		||||
      dSdU_mu = Ta(U[mu]*Staple[mu])*factor_p;
 | 
			
		||||
      dSdU_mu = dSdU_mu + Ta(U[mu]*RectStaple[mu])*factor_r;
 | 
			
		||||
 | 
			
		||||
      // Staple in direction mu
 | 
			
		||||
 | 
			
		||||
      WilsonLoops<Gimpl>::Staple(staple,Umu,mu);
 | 
			
		||||
 | 
			
		||||
      dSdU_mu = Ta(U[mu]*staple)*factor_p;
 | 
			
		||||
 | 
			
		||||
      WilsonLoops<Gimpl>::RectStaple(Umu,staple,U2,U,mu);
 | 
			
		||||
 | 
			
		||||
      dSdU_mu = dSdU_mu + Ta(U[mu]*staple)*factor_r;
 | 
			
		||||
	  
 | 
			
		||||
      PokeIndex<LorentzIndex>(dSdU, dSdU_mu, mu);
 | 
			
		||||
    }
 | 
			
		||||
 
 | 
			
		||||
@@ -225,18 +225,6 @@ template <class RepresentationsPolicy,
 | 
			
		||||
using GenericHMCRunnerHirep =
 | 
			
		||||
				     HMCWrapperTemplate<PeriodicGimplR, Integrator, RepresentationsPolicy>;
 | 
			
		||||
 | 
			
		||||
// sp2n
 | 
			
		||||
 | 
			
		||||
template <template <typename, typename, typename> class Integrator>
 | 
			
		||||
using GenericSpHMCRunner = HMCWrapperTemplate<SpPeriodicGimplR, Integrator>;
 | 
			
		||||
 | 
			
		||||
template <class RepresentationsPolicy,
 | 
			
		||||
          template <typename, typename, typename> class Integrator>
 | 
			
		||||
using GenericSpHMCRunnerHirep =
 | 
			
		||||
                     HMCWrapperTemplate<SpPeriodicGimplR, Integrator, RepresentationsPolicy>;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template <class Implementation, class RepresentationsPolicy, 
 | 
			
		||||
          template <typename, typename, typename> class Integrator>
 | 
			
		||||
using GenericHMCRunnerTemplate = HMCWrapperTemplate<Implementation, Integrator, RepresentationsPolicy>;
 | 
			
		||||
 
 | 
			
		||||
@@ -13,7 +13,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 * Empty since HMC updates already the fundamental representation 
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
template <int ncolour, class group_name>
 | 
			
		||||
template <int ncolour>
 | 
			
		||||
class FundamentalRep {
 | 
			
		||||
public:
 | 
			
		||||
  static const int Dimension = ncolour;
 | 
			
		||||
@@ -21,7 +21,7 @@ public:
 | 
			
		||||
 | 
			
		||||
  // typdef to be used by the Representations class in HMC to get the
 | 
			
		||||
  // types for the higher representation fields
 | 
			
		||||
  typedef typename GaugeGroup<ncolour,group_name>::LatticeMatrix LatticeMatrix;
 | 
			
		||||
  typedef typename SU<ncolour>::LatticeMatrix LatticeMatrix;
 | 
			
		||||
  typedef LatticeGaugeField LatticeField;
 | 
			
		||||
  
 | 
			
		||||
  explicit FundamentalRep(GridBase* grid) {} //do nothing
 | 
			
		||||
@@ -45,8 +45,7 @@ public:
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
typedef	 FundamentalRep<Nc,GroupName::SU> FundamentalRepresentation;
 | 
			
		||||
typedef	 FundamentalRep<Nc,GroupName::Sp> SpFundamentalRepresentation;
 | 
			
		||||
typedef	 FundamentalRep<Nc> FundamentalRepresentation;
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);  
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -20,14 +20,14 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 * in the SUnTwoIndex.h file
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
template <int ncolour, TwoIndexSymmetry S, class group_name = GroupName::SU>
 | 
			
		||||
template <int ncolour, TwoIndexSymmetry S>
 | 
			
		||||
class TwoIndexRep {
 | 
			
		||||
public:
 | 
			
		||||
  // typdef to be used by the Representations class in HMC to get the
 | 
			
		||||
  // types for the higher representation fields
 | 
			
		||||
  typedef typename GaugeGroupTwoIndex<ncolour, S, group_name>::LatticeTwoIndexMatrix LatticeMatrix;
 | 
			
		||||
  typedef typename GaugeGroupTwoIndex<ncolour, S, group_name>::LatticeTwoIndexField LatticeField;
 | 
			
		||||
  static const int Dimension = GaugeGroupTwoIndex<ncolour,S,group_name>::Dimension;
 | 
			
		||||
  typedef typename SU_TwoIndex<ncolour, S>::LatticeTwoIndexMatrix LatticeMatrix;
 | 
			
		||||
  typedef typename SU_TwoIndex<ncolour, S>::LatticeTwoIndexField LatticeField;
 | 
			
		||||
  static const int Dimension = ncolour * (ncolour + S) / 2;
 | 
			
		||||
  static const bool isFundamental = false;
 | 
			
		||||
 | 
			
		||||
  LatticeField U;
 | 
			
		||||
@@ -43,10 +43,10 @@ public:
 | 
			
		||||
    U = Zero();
 | 
			
		||||
    LatticeColourMatrix tmp(Uin.Grid());
 | 
			
		||||
 | 
			
		||||
    Vector<typename GaugeGroup<ncolour,group_name>::Matrix> eij(Dimension);
 | 
			
		||||
    Vector<typename SU<ncolour>::Matrix> eij(Dimension);
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < Dimension; a++)
 | 
			
		||||
      GaugeGroupTwoIndex<ncolour, S, group_name>::base(a, eij[a]);
 | 
			
		||||
      SU_TwoIndex<ncolour, S>::base(a, eij[a]);
 | 
			
		||||
 | 
			
		||||
    for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
      auto Uin_mu = peekLorentz(Uin, mu);
 | 
			
		||||
@@ -71,7 +71,7 @@ public:
 | 
			
		||||
 | 
			
		||||
      out_mu = Zero();
 | 
			
		||||
 | 
			
		||||
      typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector h(in.Grid());
 | 
			
		||||
      typename SU<ncolour>::LatticeAlgebraVector h(in.Grid());
 | 
			
		||||
      projectOnAlgebra(h, in_mu, double(Nc + 2 * S));  // factor T(r)/T(fund)
 | 
			
		||||
      FundamentalLieAlgebraMatrix(h, out_mu);          // apply scale only once
 | 
			
		||||
      pokeLorentz(out, out_mu, mu);
 | 
			
		||||
@@ -80,23 +80,20 @@ public:
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
  void projectOnAlgebra(typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h_out,
 | 
			
		||||
  void projectOnAlgebra(typename SU<ncolour>::LatticeAlgebraVector &h_out,
 | 
			
		||||
                        const LatticeMatrix &in, Real scale = 1.0) const {
 | 
			
		||||
    GaugeGroupTwoIndex<ncolour, S,group_name>::projectOnAlgebra(h_out, in, scale);
 | 
			
		||||
    SU_TwoIndex<ncolour, S>::projectOnAlgebra(h_out, in, scale);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void FundamentalLieAlgebraMatrix(
 | 
			
		||||
				   typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h,
 | 
			
		||||
				   typename GaugeGroup<ncolour, group_name>::LatticeMatrix &out, Real scale = 1.0) const {
 | 
			
		||||
    GaugeGroup<ncolour,group_name>::FundamentalLieAlgebraMatrix(h, out, scale);
 | 
			
		||||
				   typename SU<ncolour>::LatticeAlgebraVector &h,
 | 
			
		||||
				   typename SU<ncolour>::LatticeMatrix &out, Real scale = 1.0) const {
 | 
			
		||||
    SU<ncolour>::FundamentalLieAlgebraMatrix(h, out, scale);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
typedef TwoIndexRep<Nc, Symmetric, GroupName::SU> TwoIndexSymmetricRepresentation;
 | 
			
		||||
typedef TwoIndexRep<Nc, AntiSymmetric, GroupName::SU> TwoIndexAntiSymmetricRepresentation;
 | 
			
		||||
 | 
			
		||||
typedef TwoIndexRep<Nc, Symmetric, GroupName::Sp> SpTwoIndexSymmetricRepresentation;
 | 
			
		||||
typedef TwoIndexRep<Nc, AntiSymmetric, GroupName::Sp> SpTwoIndexAntiSymmetricRepresentation;
 | 
			
		||||
typedef TwoIndexRep<Nc, Symmetric> TwoIndexSymmetricRepresentation;
 | 
			
		||||
typedef TwoIndexRep<Nc, AntiSymmetric> TwoIndexAntiSymmetricRepresentation;
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -37,14 +37,13 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
// Make these members of an Impl class for BC's.
 | 
			
		||||
 | 
			
		||||
namespace PeriodicBC { 
 | 
			
		||||
  //Out(x) = Link(x)*field(x+mu)
 | 
			
		||||
 | 
			
		||||
  template<class covariant,class gauge> Lattice<covariant> CovShiftForward(const Lattice<gauge> &Link, 
 | 
			
		||||
									   int mu,
 | 
			
		||||
									   const Lattice<covariant> &field)
 | 
			
		||||
  {
 | 
			
		||||
    return Link*Cshift(field,mu,1);// moves towards negative mu
 | 
			
		||||
  }
 | 
			
		||||
  //Out(x) = Link^dag(x-mu)*field(x-mu)
 | 
			
		||||
  template<class covariant,class gauge> Lattice<covariant> CovShiftBackward(const Lattice<gauge> &Link, 
 | 
			
		||||
									    int mu,
 | 
			
		||||
									    const Lattice<covariant> &field)
 | 
			
		||||
@@ -53,19 +52,19 @@ namespace PeriodicBC {
 | 
			
		||||
    tmp = adj(Link)*field;
 | 
			
		||||
    return Cshift(tmp,mu,-1);// moves towards positive mu
 | 
			
		||||
  }
 | 
			
		||||
  //Out(x) = Link^dag(x-mu)
 | 
			
		||||
 | 
			
		||||
  template<class gauge> Lattice<gauge>
 | 
			
		||||
  CovShiftIdentityBackward(const Lattice<gauge> &Link, int mu) 
 | 
			
		||||
  {
 | 
			
		||||
    return Cshift(adj(Link), mu, -1);
 | 
			
		||||
  }
 | 
			
		||||
  //Out(x) = Link(x)
 | 
			
		||||
 | 
			
		||||
  template<class gauge> Lattice<gauge>
 | 
			
		||||
  CovShiftIdentityForward(const Lattice<gauge> &Link, int mu)
 | 
			
		||||
  {
 | 
			
		||||
    return Link;
 | 
			
		||||
  }
 | 
			
		||||
  //Link(x) = Link(x+mu)
 | 
			
		||||
 | 
			
		||||
  template<class gauge> Lattice<gauge>
 | 
			
		||||
  ShiftStaple(const Lattice<gauge> &Link, int mu)
 | 
			
		||||
  {
 | 
			
		||||
 
 | 
			
		||||
@@ -1,470 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/utils/GaugeGroup.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: neo <cossu@post.kek.jp>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef QCD_UTIL_GAUGEGROUP_H
 | 
			
		||||
#define QCD_UTIL_GAUGEGROUP_H
 | 
			
		||||
 | 
			
		||||
// Important detail: nvcc requires all template parameters to have names.
 | 
			
		||||
// This is the only reason why the second template parameter has a name.
 | 
			
		||||
#define ONLY_IF_SU                                                       \
 | 
			
		||||
  typename dummy_name = group_name,                                      \
 | 
			
		||||
           typename named_dummy = std::enable_if_t <                                 \
 | 
			
		||||
                          std::is_same<dummy_name, group_name>::value && \
 | 
			
		||||
                      is_su<dummy_name>::value >
 | 
			
		||||
 | 
			
		||||
#define ONLY_IF_Sp                                                       \
 | 
			
		||||
  typename dummy_name = group_name,                                      \
 | 
			
		||||
           typename named_dummy = std::enable_if_t <                                 \
 | 
			
		||||
                          std::is_same<dummy_name, group_name>::value && \
 | 
			
		||||
                      is_sp<dummy_name>::value >
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
namespace GroupName {
 | 
			
		||||
class SU {};
 | 
			
		||||
class Sp {};
 | 
			
		||||
}  // namespace GroupName
 | 
			
		||||
 | 
			
		||||
template <typename group_name>
 | 
			
		||||
struct is_su {
 | 
			
		||||
  static const bool value = false;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <>
 | 
			
		||||
struct is_su<GroupName::SU> {
 | 
			
		||||
  static const bool value = true;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <typename group_name>
 | 
			
		||||
struct is_sp {
 | 
			
		||||
  static const bool value = false;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <>
 | 
			
		||||
struct is_sp<GroupName::Sp> {
 | 
			
		||||
  static const bool value = true;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <typename group_name>
 | 
			
		||||
constexpr int compute_adjoint_dimension(int ncolour);
 | 
			
		||||
 | 
			
		||||
template <>
 | 
			
		||||
constexpr int compute_adjoint_dimension<GroupName::SU>(int ncolour) {
 | 
			
		||||
  return ncolour * ncolour - 1;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <>
 | 
			
		||||
constexpr int compute_adjoint_dimension<GroupName::Sp>(int ncolour) {
 | 
			
		||||
  return ncolour / 2 * (ncolour + 1);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <int ncolour, class group_name>
 | 
			
		||||
class GaugeGroup {
 | 
			
		||||
 public:
 | 
			
		||||
  static const int Dimension = ncolour;
 | 
			
		||||
  static const int AdjointDimension =
 | 
			
		||||
      compute_adjoint_dimension<group_name>(ncolour);
 | 
			
		||||
  static const int AlgebraDimension =
 | 
			
		||||
      compute_adjoint_dimension<group_name>(ncolour);
 | 
			
		||||
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iSU2Matrix = iScalar<iScalar<iMatrix<vtype, 2> > >;
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iGroupMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iAlgebraVector = iScalar<iScalar<iVector<vtype, AdjointDimension> > >;
 | 
			
		||||
  static int su2subgroups(void) { return su2subgroups(group_name()); }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Types can be accessed as SU<2>::Matrix , SU<2>::vSUnMatrix,
 | 
			
		||||
  // SU<2>::LatticeMatrix etc...
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  typedef iGroupMatrix<Complex> Matrix;
 | 
			
		||||
  typedef iGroupMatrix<ComplexF> MatrixF;
 | 
			
		||||
  typedef iGroupMatrix<ComplexD> MatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef iGroupMatrix<vComplex> vMatrix;
 | 
			
		||||
  typedef iGroupMatrix<vComplexF> vMatrixF;
 | 
			
		||||
  typedef iGroupMatrix<vComplexD> vMatrixD;
 | 
			
		||||
 | 
			
		||||
  // For the projectors to the algebra
 | 
			
		||||
  // these should be real...
 | 
			
		||||
  // keeping complex for consistency with the SIMD vector types
 | 
			
		||||
  typedef iAlgebraVector<Complex> AlgebraVector;
 | 
			
		||||
  typedef iAlgebraVector<ComplexF> AlgebraVectorF;
 | 
			
		||||
  typedef iAlgebraVector<ComplexD> AlgebraVectorD;
 | 
			
		||||
 | 
			
		||||
  typedef iAlgebraVector<vComplex> vAlgebraVector;
 | 
			
		||||
  typedef iAlgebraVector<vComplexF> vAlgebraVectorF;
 | 
			
		||||
  typedef iAlgebraVector<vComplexD> vAlgebraVectorD;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<vMatrix> LatticeMatrix;
 | 
			
		||||
  typedef Lattice<vMatrixF> LatticeMatrixF;
 | 
			
		||||
  typedef Lattice<vMatrixD> LatticeMatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<vAlgebraVector> LatticeAlgebraVector;
 | 
			
		||||
  typedef Lattice<vAlgebraVectorF> LatticeAlgebraVectorF;
 | 
			
		||||
  typedef Lattice<vAlgebraVectorD> LatticeAlgebraVectorD;
 | 
			
		||||
 | 
			
		||||
  typedef iSU2Matrix<Complex> SU2Matrix;
 | 
			
		||||
  typedef iSU2Matrix<ComplexF> SU2MatrixF;
 | 
			
		||||
  typedef iSU2Matrix<ComplexD> SU2MatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef iSU2Matrix<vComplex> vSU2Matrix;
 | 
			
		||||
  typedef iSU2Matrix<vComplexF> vSU2MatrixF;
 | 
			
		||||
  typedef iSU2Matrix<vComplexD> vSU2MatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<vSU2Matrix> LatticeSU2Matrix;
 | 
			
		||||
  typedef Lattice<vSU2MatrixF> LatticeSU2MatrixF;
 | 
			
		||||
  typedef Lattice<vSU2MatrixD> LatticeSU2MatrixD;
 | 
			
		||||
 | 
			
		||||
  // Private implementation details are specified in the following files:
 | 
			
		||||
  // Grid/qcd/utils/SUn.impl
 | 
			
		||||
  // Grid/qcd/utils/SUn.impl
 | 
			
		||||
  // The public part of the interface follows below and refers to these
 | 
			
		||||
  // private member functions.
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/utils/SUn.impl.h>
 | 
			
		||||
#include <Grid/qcd/utils/Sp2n.impl.h>
 | 
			
		||||
 | 
			
		||||
 public:
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void generator(int lieIndex, iGroupMatrix<cplx> &ta) {
 | 
			
		||||
    return generator(lieIndex, ta, group_name());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void su2SubGroupIndex(int &i1, int &i2, int su2_index) {
 | 
			
		||||
    return su2SubGroupIndex(i1, i2, su2_index, group_name());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void testGenerators(void) { testGenerators(group_name()); }
 | 
			
		||||
 | 
			
		||||
  static void printGenerators(void) {
 | 
			
		||||
    for (int gen = 0; gen < AlgebraDimension; gen++) {
 | 
			
		||||
      Matrix ta;
 | 
			
		||||
      generator(gen, ta);
 | 
			
		||||
      std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
 | 
			
		||||
                << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << ta << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <typename LatticeMatrixType>
 | 
			
		||||
  static void LieRandomize(GridParallelRNG &pRNG, LatticeMatrixType &out,
 | 
			
		||||
                           double scale = 1.0) {
 | 
			
		||||
    GridBase *grid = out.Grid();
 | 
			
		||||
 | 
			
		||||
    typedef typename LatticeMatrixType::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
    typedef iSinglet<vector_type> vTComplexType;
 | 
			
		||||
 | 
			
		||||
    typedef Lattice<vTComplexType> LatticeComplexType;
 | 
			
		||||
    typedef typename GridTypeMapper<
 | 
			
		||||
        typename LatticeMatrixType::vector_object>::scalar_object MatrixType;
 | 
			
		||||
 | 
			
		||||
    LatticeComplexType ca(grid);
 | 
			
		||||
    LatticeMatrixType lie(grid);
 | 
			
		||||
    LatticeMatrixType la(grid);
 | 
			
		||||
    ComplexD ci(0.0, scale);
 | 
			
		||||
    MatrixType ta;
 | 
			
		||||
 | 
			
		||||
    lie = Zero();
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < AlgebraDimension; a++) {
 | 
			
		||||
      random(pRNG, ca);
 | 
			
		||||
 | 
			
		||||
      ca = (ca + conjugate(ca)) * 0.5;
 | 
			
		||||
      ca = ca - 0.5;
 | 
			
		||||
 | 
			
		||||
      generator(a, ta);
 | 
			
		||||
 | 
			
		||||
      la = ci * ca * ta;
 | 
			
		||||
 | 
			
		||||
      lie = lie + la;  // e^{i la ta}
 | 
			
		||||
    }
 | 
			
		||||
    taExp(lie, out);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void GaussianFundamentalLieAlgebraMatrix(GridParallelRNG &pRNG,
 | 
			
		||||
                                                  LatticeMatrix &out,
 | 
			
		||||
                                                  Real scale = 1.0) {
 | 
			
		||||
    GridBase *grid = out.Grid();
 | 
			
		||||
    LatticeReal ca(grid);
 | 
			
		||||
    LatticeMatrix la(grid);
 | 
			
		||||
    Complex ci(0.0, scale);
 | 
			
		||||
    Matrix ta;
 | 
			
		||||
 | 
			
		||||
    out = Zero();
 | 
			
		||||
    for (int a = 0; a < AlgebraDimension; a++) {
 | 
			
		||||
      gaussian(pRNG, ca);
 | 
			
		||||
      generator(a, ta);
 | 
			
		||||
      la = toComplex(ca) * ta;
 | 
			
		||||
      out += la;
 | 
			
		||||
    }
 | 
			
		||||
    out *= ci;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void FundamentalLieAlgebraMatrix(const LatticeAlgebraVector &h,
 | 
			
		||||
                                          LatticeMatrix &out,
 | 
			
		||||
                                          Real scale = 1.0) {
 | 
			
		||||
    conformable(h, out);
 | 
			
		||||
    GridBase *grid = out.Grid();
 | 
			
		||||
    LatticeMatrix la(grid);
 | 
			
		||||
    Matrix ta;
 | 
			
		||||
 | 
			
		||||
    out = Zero();
 | 
			
		||||
    for (int a = 0; a < AlgebraDimension; a++) {
 | 
			
		||||
      generator(a, ta);
 | 
			
		||||
      la = peekColour(h, a) * timesI(ta) * scale;
 | 
			
		||||
      out += la;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Projects the algebra components a lattice matrix (of dimension ncol*ncol -1
 | 
			
		||||
  // ) inverse operation: FundamentalLieAlgebraMatrix
 | 
			
		||||
  static void projectOnAlgebra(LatticeAlgebraVector &h_out,
 | 
			
		||||
                               const LatticeMatrix &in, Real scale = 1.0) {
 | 
			
		||||
    conformable(h_out, in);
 | 
			
		||||
    h_out = Zero();
 | 
			
		||||
    Matrix Ta;
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < AlgebraDimension; a++) {
 | 
			
		||||
      generator(a, Ta);
 | 
			
		||||
      pokeColour(h_out, -2.0 * (trace(timesI(Ta) * in)) * scale, a);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
   
 | 
			
		||||
  template <class vtype>
 | 
			
		||||
  accelerator_inline static iScalar<vtype> ProjectOnGeneralGroup(const iScalar<vtype> &r) {
 | 
			
		||||
    return ProjectOnGeneralGroup(r, group_name());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <class vtype, int N>
 | 
			
		||||
  accelerator_inline static iVector<vtype,N> ProjectOnGeneralGroup(const iVector<vtype,N> &r) {
 | 
			
		||||
    return ProjectOnGeneralGroup(r, group_name());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
 | 
			
		||||
  accelerator_inline static iMatrix<vtype,N> ProjectOnGeneralGroup(const iMatrix<vtype,N> &arg) {
 | 
			
		||||
    return ProjectOnGeneralGroup(arg, group_name());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <int N,class vComplex_t>                  // Projects on the general groups U(N), Sp(2N)xZ2 i.e. determinant is allowed a complex phase.
 | 
			
		||||
  static void ProjectOnGeneralGroup(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >, Nd> > &U) {
 | 
			
		||||
    for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
      auto Umu = PeekIndex<LorentzIndex>(U, mu);
 | 
			
		||||
      Umu = ProjectOnGeneralGroup(Umu);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
       
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  template <int N,class vComplex_t>
 | 
			
		||||
  static Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > ProjectOnGeneralGroup(const Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu) {
 | 
			
		||||
    return ProjectOnGeneralGroup(Umu, group_name());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <int N,class vComplex_t>       // Projects on SU(N), Sp(2N), with unit determinant, by first projecting on general group and then enforcing unit determinant
 | 
			
		||||
  static void ProjectOnSpecialGroup(Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu) {
 | 
			
		||||
       Umu = ProjectOnGeneralGroup(Umu);
 | 
			
		||||
       auto det = Determinant(Umu);
 | 
			
		||||
 | 
			
		||||
       det = conjugate(det);
 | 
			
		||||
 | 
			
		||||
       for (int i = 0; i < N; i++) {
 | 
			
		||||
           auto element = PeekIndex<ColourIndex>(Umu, N - 1, i);
 | 
			
		||||
           element = element * det;
 | 
			
		||||
           PokeIndex<ColourIndex>(Umu, element, Nc - 1, i);
 | 
			
		||||
       }
 | 
			
		||||
   }
 | 
			
		||||
 | 
			
		||||
  template <int N,class vComplex_t>    // reunitarise, resimplectify... previously ProjectSUn
 | 
			
		||||
    static void ProjectOnSpecialGroup(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >, Nd> > &U) {
 | 
			
		||||
      // Reunitarise
 | 
			
		||||
      for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
        auto Umu = PeekIndex<LorentzIndex>(U, mu);
 | 
			
		||||
        ProjectOnSpecialGroup(Umu);
 | 
			
		||||
        PokeIndex<LorentzIndex>(U, Umu, mu);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
  template <typename GaugeField>
 | 
			
		||||
  static void HotConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
 | 
			
		||||
    typedef typename GaugeField::vector_type vector_type;
 | 
			
		||||
    typedef iGroupMatrix<vector_type> vMatrixType;
 | 
			
		||||
    typedef Lattice<vMatrixType> LatticeMatrixType;
 | 
			
		||||
 | 
			
		||||
    LatticeMatrixType Umu(out.Grid());
 | 
			
		||||
    LatticeMatrixType tmp(out.Grid());
 | 
			
		||||
    for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
      //      LieRandomize(pRNG, Umu, 1.0);
 | 
			
		||||
      //      PokeIndex<LorentzIndex>(out, Umu, mu);
 | 
			
		||||
      gaussian(pRNG,Umu);
 | 
			
		||||
      tmp = Ta(Umu);
 | 
			
		||||
      taExp(tmp,Umu);
 | 
			
		||||
      ProjectOnSpecialGroup(Umu);
 | 
			
		||||
      //      ProjectSUn(Umu);
 | 
			
		||||
      PokeIndex<LorentzIndex>(out, Umu, mu);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  template <typename GaugeField>
 | 
			
		||||
  static void TepidConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
 | 
			
		||||
    typedef typename GaugeField::vector_type vector_type;
 | 
			
		||||
    typedef iGroupMatrix<vector_type> vMatrixType;
 | 
			
		||||
    typedef Lattice<vMatrixType> LatticeMatrixType;
 | 
			
		||||
 | 
			
		||||
    LatticeMatrixType Umu(out.Grid());
 | 
			
		||||
    for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
      LieRandomize(pRNG, Umu, 0.01);
 | 
			
		||||
      PokeIndex<LorentzIndex>(out, Umu, mu);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  template <typename GaugeField>
 | 
			
		||||
  static void ColdConfiguration(GaugeField &out) {
 | 
			
		||||
    typedef typename GaugeField::vector_type vector_type;
 | 
			
		||||
    typedef iGroupMatrix<vector_type> vMatrixType;
 | 
			
		||||
    typedef Lattice<vMatrixType> LatticeMatrixType;
 | 
			
		||||
 | 
			
		||||
    LatticeMatrixType Umu(out.Grid());
 | 
			
		||||
    Umu = 1.0;
 | 
			
		||||
    for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
      PokeIndex<LorentzIndex>(out, Umu, mu);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  template <typename GaugeField>
 | 
			
		||||
  static void ColdConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
 | 
			
		||||
    ColdConfiguration(out);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <typename LatticeMatrixType>
 | 
			
		||||
  static void taProj(const LatticeMatrixType &in, LatticeMatrixType &out) {
 | 
			
		||||
    taProj(in, out, group_name());
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  template <typename LatticeMatrixType>
 | 
			
		||||
  static void taExp(const LatticeMatrixType &x, LatticeMatrixType &ex) {
 | 
			
		||||
    typedef typename LatticeMatrixType::scalar_type ComplexType;
 | 
			
		||||
 | 
			
		||||
    LatticeMatrixType xn(x.Grid());
 | 
			
		||||
    RealD nfac = 1.0;
 | 
			
		||||
 | 
			
		||||
    xn = x;
 | 
			
		||||
    ex = xn + ComplexType(1.0);  // 1+x
 | 
			
		||||
 | 
			
		||||
    // Do a 12th order exponentiation
 | 
			
		||||
    for (int i = 2; i <= 12; ++i) {
 | 
			
		||||
      nfac = nfac / RealD(i);  // 1/2, 1/2.3 ...
 | 
			
		||||
      xn = xn * x;             // x2, x3,x4....
 | 
			
		||||
      ex = ex + xn * nfac;     // x2/2!, x3/3!....
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
    
 | 
			
		||||
template <int ncolour>
 | 
			
		||||
using SU = GaugeGroup<ncolour, GroupName::SU>;
 | 
			
		||||
 | 
			
		||||
template <int ncolour>
 | 
			
		||||
using Sp = GaugeGroup<ncolour, GroupName::Sp>;
 | 
			
		||||
 | 
			
		||||
typedef SU<2> SU2;
 | 
			
		||||
typedef SU<3> SU3;
 | 
			
		||||
typedef SU<4> SU4;
 | 
			
		||||
typedef SU<5> SU5;
 | 
			
		||||
 | 
			
		||||
typedef SU<Nc> FundamentalMatrices;
 | 
			
		||||
    
 | 
			
		||||
typedef Sp<2> Sp2;
 | 
			
		||||
typedef Sp<4> Sp4;
 | 
			
		||||
typedef Sp<6> Sp6;
 | 
			
		||||
typedef Sp<8> Sp8;
 | 
			
		||||
 | 
			
		||||
template <int N,class vComplex_t>
 | 
			
		||||
static void ProjectSUn(Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu)
 | 
			
		||||
{
 | 
			
		||||
    GaugeGroup<N,GroupName::SU>::ProjectOnSpecialGroup(Umu);
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
template <int N,class vComplex_t>
 | 
			
		||||
static void ProjectSUn(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >,Nd> > &U)
 | 
			
		||||
{
 | 
			
		||||
    GaugeGroup<N,GroupName::SU>::ProjectOnSpecialGroup(U);
 | 
			
		||||
}
 | 
			
		||||
    
 | 
			
		||||
template <int N,class vComplex_t>
 | 
			
		||||
static void ProjectSpn(Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu)
 | 
			
		||||
{
 | 
			
		||||
    GaugeGroup<N,GroupName::Sp>::ProjectOnSpecialGroup(Umu);
 | 
			
		||||
}
 | 
			
		||||
    
 | 
			
		||||
template <int N,class vComplex_t>
 | 
			
		||||
static void ProjectSpn(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >,Nd> > &U)
 | 
			
		||||
{
 | 
			
		||||
    GaugeGroup<N,GroupName::Sp>::ProjectOnSpecialGroup(U);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Explicit specialisation for SU(3).
 | 
			
		||||
static void ProjectSU3(Lattice<iScalar<iScalar<iMatrix<vComplexD, 3> > > > &Umu)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid = Umu.Grid();
 | 
			
		||||
  const int x = 0;
 | 
			
		||||
  const int y = 1;
 | 
			
		||||
  const int z = 2;
 | 
			
		||||
  // Reunitarise
 | 
			
		||||
  Umu = ProjectOnGroup(Umu);
 | 
			
		||||
  autoView(Umu_v, Umu, CpuWrite);
 | 
			
		||||
  thread_for(ss, grid->oSites(), {
 | 
			
		||||
    auto cm = Umu_v[ss];
 | 
			
		||||
    cm()()(2, x) = adj(cm()()(0, y) * cm()()(1, z) -
 | 
			
		||||
                       cm()()(0, z) * cm()()(1, y));  // x= yz-zy
 | 
			
		||||
    cm()()(2, y) = adj(cm()()(0, z) * cm()()(1, x) -
 | 
			
		||||
                       cm()()(0, x) * cm()()(1, z));  // y= zx-xz
 | 
			
		||||
    cm()()(2, z) = adj(cm()()(0, x) * cm()()(1, y) -
 | 
			
		||||
                       cm()()(0, y) * cm()()(1, x));  // z= xy-yx
 | 
			
		||||
    Umu_v[ss] = cm;
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
static void ProjectSU3(Lattice<iVector<iScalar<iMatrix<vComplexD, 3> >, Nd> > &U)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid = U.Grid();
 | 
			
		||||
  // Reunitarise
 | 
			
		||||
  for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
    auto Umu = PeekIndex<LorentzIndex>(U, mu);
 | 
			
		||||
    Umu = ProjectOnGroup(Umu);
 | 
			
		||||
    ProjectSU3(Umu);
 | 
			
		||||
    PokeIndex<LorentzIndex>(U, Umu, mu);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,371 +0,0 @@
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
//
 | 
			
		||||
// * Two index representation generators
 | 
			
		||||
//
 | 
			
		||||
// * Normalisation for the fundamental generators:
 | 
			
		||||
//   trace ta tb = 1/2 delta_ab = T_F delta_ab
 | 
			
		||||
//   T_F = 1/2  for SU(N) groups
 | 
			
		||||
//
 | 
			
		||||
//
 | 
			
		||||
//   base for NxN two index (anti-symmetric) matrices
 | 
			
		||||
//   normalized to 1 (d_ij is the kroenecker delta)
 | 
			
		||||
//
 | 
			
		||||
//   (e^(ij)_{kl} = 1 / sqrt(2) (d_ik d_jl +/- d_jk d_il)
 | 
			
		||||
//
 | 
			
		||||
//   Then the generators are written as
 | 
			
		||||
//
 | 
			
		||||
//   (iT_a)^(ij)(lk) = i * ( tr[e^(ij)^dag e^(lk) T^trasp_a] +
 | 
			
		||||
//   tr[e^(lk)e^(ij)^dag T_a] )  //
 | 
			
		||||
//
 | 
			
		||||
//
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
// Authors: David Preti, Guido Cossu
 | 
			
		||||
 | 
			
		||||
#ifndef QCD_UTIL_GAUGEGROUPTWOINDEX_H
 | 
			
		||||
#define QCD_UTIL_GAUGEGROUPTWOINDEX_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
enum TwoIndexSymmetry { Symmetric = 1, AntiSymmetric = -1 };
 | 
			
		||||
 | 
			
		||||
constexpr inline Real delta(int a, int b) { return (a == b) ? 1.0 : 0.0; }
 | 
			
		||||
 | 
			
		||||
namespace detail {
 | 
			
		||||
 | 
			
		||||
template <class cplx, int nc, TwoIndexSymmetry S>
 | 
			
		||||
struct baseOffDiagonalSpHelper;
 | 
			
		||||
 | 
			
		||||
template <class cplx, int nc>
 | 
			
		||||
struct baseOffDiagonalSpHelper<cplx, nc, AntiSymmetric> {
 | 
			
		||||
  static const int ngroup = nc / 2;
 | 
			
		||||
  static void baseOffDiagonalSp(int i, int j, iScalar<iScalar<iMatrix<cplx, nc> > > &eij) {
 | 
			
		||||
    eij = Zero();
 | 
			
		||||
    RealD tmp;
 | 
			
		||||
 | 
			
		||||
    if ((i == ngroup + j) && (1 <= j) && (j < ngroup)) {
 | 
			
		||||
      for (int k = 0; k < j+1; k++) {
 | 
			
		||||
        if (k < j) {
 | 
			
		||||
          tmp = 1 / sqrt(j * (j + 1));
 | 
			
		||||
          eij()()(k, k + ngroup) = tmp;
 | 
			
		||||
          eij()()(k + ngroup, k) = -tmp;
 | 
			
		||||
        }
 | 
			
		||||
        if (k == j) {
 | 
			
		||||
          tmp = -j / sqrt(j * (j + 1));
 | 
			
		||||
          eij()()(k, k + ngroup) = tmp;
 | 
			
		||||
          eij()()(k + ngroup, k) = -tmp;
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    else if (i != ngroup + j) {
 | 
			
		||||
      for (int k = 0; k < nc; k++)
 | 
			
		||||
        for (int l = 0; l < nc; l++) {
 | 
			
		||||
          eij()()(l, k) =
 | 
			
		||||
              delta(i, k) * delta(j, l) - delta(j, k) * delta(i, l);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    RealD nrm = 1. / std::sqrt(2.0);
 | 
			
		||||
    eij = eij * nrm;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <class cplx, int nc>
 | 
			
		||||
struct baseOffDiagonalSpHelper<cplx, nc, Symmetric> {
 | 
			
		||||
  static void baseOffDiagonalSp(int i, int j, iScalar<iScalar<iMatrix<cplx, nc> > > &eij) {
 | 
			
		||||
    eij = Zero();
 | 
			
		||||
    for (int k = 0; k < nc; k++)
 | 
			
		||||
      for (int l = 0; l < nc; l++)
 | 
			
		||||
        eij()()(l, k) =
 | 
			
		||||
            delta(i, k) * delta(j, l) + delta(j, k) * delta(i, l);
 | 
			
		||||
 | 
			
		||||
    RealD nrm = 1. / std::sqrt(2.0);
 | 
			
		||||
    eij = eij * nrm;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
}   // closing detail namespace
 | 
			
		||||
 | 
			
		||||
template <int ncolour, TwoIndexSymmetry S, class group_name>
 | 
			
		||||
class GaugeGroupTwoIndex : public GaugeGroup<ncolour, group_name> {
 | 
			
		||||
 public:
 | 
			
		||||
  // The chosen convention is that we are taking ncolour to be N in SU<N> but 2N
 | 
			
		||||
  // in Sp(2N). ngroup is equal to N for SU but 2N/2 = N for Sp(2N).
 | 
			
		||||
  static_assert(std::is_same<group_name, GroupName::SU>::value or
 | 
			
		||||
                    std::is_same<group_name, GroupName::Sp>::value,
 | 
			
		||||
                "ngroup is only implemented for SU and Sp currently.");
 | 
			
		||||
  static const int ngroup =
 | 
			
		||||
      std::is_same<group_name, GroupName::SU>::value ? ncolour : ncolour / 2;
 | 
			
		||||
  static const int Dimension =
 | 
			
		||||
      (ncolour * (ncolour + S) / 2) + (std::is_same<group_name, GroupName::Sp>::value ? (S - 1) / 2 : 0);
 | 
			
		||||
  static const int DimensionAS =
 | 
			
		||||
      (ncolour * (ncolour - 1) / 2) + (std::is_same<group_name, GroupName::Sp>::value ? (- 1) : 0);
 | 
			
		||||
  static const int DimensionS =
 | 
			
		||||
      ncolour * (ncolour + 1) / 2;
 | 
			
		||||
  static const int NumGenerators =
 | 
			
		||||
      GaugeGroup<ncolour, group_name>::AlgebraDimension;
 | 
			
		||||
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iGroupTwoIndexMatrix = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
 | 
			
		||||
 | 
			
		||||
  typedef iGroupTwoIndexMatrix<Complex> TIMatrix;
 | 
			
		||||
  typedef iGroupTwoIndexMatrix<ComplexF> TIMatrixF;
 | 
			
		||||
  typedef iGroupTwoIndexMatrix<ComplexD> TIMatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef iGroupTwoIndexMatrix<vComplex> vTIMatrix;
 | 
			
		||||
  typedef iGroupTwoIndexMatrix<vComplexF> vTIMatrixF;
 | 
			
		||||
  typedef iGroupTwoIndexMatrix<vComplexD> vTIMatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<vTIMatrix> LatticeTwoIndexMatrix;
 | 
			
		||||
  typedef Lattice<vTIMatrixF> LatticeTwoIndexMatrixF;
 | 
			
		||||
  typedef Lattice<vTIMatrixD> LatticeTwoIndexMatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<iVector<iScalar<iMatrix<vComplex, Dimension> >, Nd> >
 | 
			
		||||
      LatticeTwoIndexField;
 | 
			
		||||
  typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> >
 | 
			
		||||
      LatticeTwoIndexFieldF;
 | 
			
		||||
  typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> >
 | 
			
		||||
      LatticeTwoIndexFieldD;
 | 
			
		||||
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iGroupMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
 | 
			
		||||
 | 
			
		||||
  typedef iGroupMatrix<Complex> Matrix;
 | 
			
		||||
  typedef iGroupMatrix<ComplexF> MatrixF;
 | 
			
		||||
  typedef iGroupMatrix<ComplexD> MatrixD;
 | 
			
		||||
    
 | 
			
		||||
private:
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void baseDiagonal(int Index, iGroupMatrix<cplx> &eij) {
 | 
			
		||||
    eij = Zero();
 | 
			
		||||
    eij()()(Index - ncolour * (ncolour - 1) / 2,
 | 
			
		||||
            Index - ncolour * (ncolour - 1) / 2) = 1.0;
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void baseOffDiagonal(int i, int j, iGroupMatrix<cplx> &eij, GroupName::SU) {
 | 
			
		||||
    eij = Zero();
 | 
			
		||||
    for (int k = 0; k < ncolour; k++)
 | 
			
		||||
      for (int l = 0; l < ncolour; l++)
 | 
			
		||||
        eij()()(l, k) =
 | 
			
		||||
            delta(i, k) * delta(j, l) + S * delta(j, k) * delta(i, l);
 | 
			
		||||
 | 
			
		||||
    RealD nrm = 1. / std::sqrt(2.0);
 | 
			
		||||
    eij = eij * nrm;
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void baseOffDiagonal(int i, int j, iGroupMatrix<cplx> &eij, GroupName::Sp) {
 | 
			
		||||
    detail::baseOffDiagonalSpHelper<cplx, ncolour, S>::baseOffDiagonalSp(i, j, eij);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
    
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void base(int Index, iGroupMatrix<cplx> &eij) {
 | 
			
		||||
  // returns (e)^(ij)_{kl} necessary for change of base U_F -> U_R
 | 
			
		||||
    assert(Index < Dimension);
 | 
			
		||||
    eij = Zero();
 | 
			
		||||
  // for the linearisation of the 2 indexes
 | 
			
		||||
    static int a[ncolour * (ncolour - 1) / 2][2];  // store the a <-> i,j
 | 
			
		||||
    static bool filled = false;
 | 
			
		||||
    if (!filled) {
 | 
			
		||||
      int counter = 0;
 | 
			
		||||
      for (int i = 1; i < ncolour; i++) {
 | 
			
		||||
      for (int j = 0; j < i; j++) {
 | 
			
		||||
        if (std::is_same<group_name, GroupName::Sp>::value)
 | 
			
		||||
          {
 | 
			
		||||
            if (j==0 && i==ngroup+j && S==-1) {
 | 
			
		||||
            //std::cout << "skipping" << std::endl; // for Sp2n this vanishes identically.
 | 
			
		||||
              j = j+1;
 | 
			
		||||
            }
 | 
			
		||||
          }
 | 
			
		||||
          a[counter][0] = i;
 | 
			
		||||
          a[counter][1] = j;
 | 
			
		||||
          counter++;
 | 
			
		||||
          }
 | 
			
		||||
      }
 | 
			
		||||
      filled = true;
 | 
			
		||||
    }
 | 
			
		||||
    if (Index < ncolour*ncolour - DimensionS)
 | 
			
		||||
    {
 | 
			
		||||
      baseOffDiagonal(a[Index][0], a[Index][1], eij, group_name());
 | 
			
		||||
    } else {
 | 
			
		||||
      baseDiagonal(Index, eij);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  static void printBase(void) {
 | 
			
		||||
    for (int gen = 0; gen < Dimension; gen++) {
 | 
			
		||||
      Matrix tmp;
 | 
			
		||||
      base(gen, tmp);
 | 
			
		||||
      std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
 | 
			
		||||
                << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << tmp << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void generator(int Index, iGroupTwoIndexMatrix<cplx> &i2indTa) {
 | 
			
		||||
    Vector<iGroupMatrix<cplx> > ta(NumGenerators);
 | 
			
		||||
    Vector<iGroupMatrix<cplx> > eij(Dimension);
 | 
			
		||||
    iGroupMatrix<cplx> tmp;
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < NumGenerators; a++)
 | 
			
		||||
      GaugeGroup<ncolour, group_name>::generator(a, ta[a]);
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < Dimension; a++) base(a, eij[a]);
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < Dimension; a++) {
 | 
			
		||||
      tmp = transpose(eij[a]*ta[Index]) + transpose(eij[a]) * ta[Index];
 | 
			
		||||
      for (int b = 0; b < Dimension; b++) {
 | 
			
		||||
        Complex iTr = TensorRemove(timesI(trace(tmp * eij[b])));
 | 
			
		||||
        i2indTa()()(a, b) = iTr;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void printGenerators(void) {
 | 
			
		||||
    for (int gen = 0; gen < NumGenerators; gen++) {
 | 
			
		||||
      TIMatrix i2indTa;
 | 
			
		||||
      generator(gen, i2indTa);
 | 
			
		||||
      std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
 | 
			
		||||
                << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << i2indTa << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void testGenerators(void) {
 | 
			
		||||
    TIMatrix i2indTa, i2indTb;
 | 
			
		||||
    std::cout << GridLogMessage << "2IndexRep - Checking if traceless"
 | 
			
		||||
              << std::endl;
 | 
			
		||||
    for (int a = 0; a < NumGenerators; a++) {
 | 
			
		||||
      generator(a, i2indTa);
 | 
			
		||||
      std::cout << GridLogMessage << a << std::endl;
 | 
			
		||||
      assert(norm2(trace(i2indTa)) < 1.0e-6);
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "2IndexRep - Checking if antihermitean"
 | 
			
		||||
              << std::endl;
 | 
			
		||||
    for (int a = 0; a < NumGenerators; a++) {
 | 
			
		||||
      generator(a, i2indTa);
 | 
			
		||||
      std::cout << GridLogMessage << a << std::endl;
 | 
			
		||||
      assert(norm2(adj(i2indTa) + i2indTa) < 1.0e-6);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage
 | 
			
		||||
              << "2IndexRep - Checking Tr[Ta*Tb]=delta(a,b)*(N +- 2)/2"
 | 
			
		||||
              << std::endl;
 | 
			
		||||
    for (int a = 0; a < NumGenerators; a++) {
 | 
			
		||||
      for (int b = 0; b < NumGenerators; b++) {
 | 
			
		||||
        generator(a, i2indTa);
 | 
			
		||||
        generator(b, i2indTb);
 | 
			
		||||
 | 
			
		||||
        // generator returns iTa, so we need a minus sign here
 | 
			
		||||
        Complex Tr = -TensorRemove(trace(i2indTa * i2indTb));
 | 
			
		||||
        std::cout << GridLogMessage << "a=" << a << "b=" << b << "Tr=" << Tr
 | 
			
		||||
                  << std::endl;
 | 
			
		||||
        if (a == b) {
 | 
			
		||||
          assert(real(Tr) - ((ncolour + S * 2) * 0.5) < 1e-8);
 | 
			
		||||
        } else {
 | 
			
		||||
          assert(real(Tr) < 1e-8);
 | 
			
		||||
        }
 | 
			
		||||
        assert(imag(Tr) < 1e-8);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void TwoIndexLieAlgebraMatrix(
 | 
			
		||||
      const typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h,
 | 
			
		||||
      LatticeTwoIndexMatrix &out, Real scale = 1.0) {
 | 
			
		||||
    conformable(h, out);
 | 
			
		||||
    GridBase *grid = out.Grid();
 | 
			
		||||
    LatticeTwoIndexMatrix la(grid);
 | 
			
		||||
    TIMatrix i2indTa;
 | 
			
		||||
 | 
			
		||||
    out = Zero();
 | 
			
		||||
    for (int a = 0; a < NumGenerators; a++) {
 | 
			
		||||
      generator(a, i2indTa);
 | 
			
		||||
      la = peekColour(h, a) * i2indTa;
 | 
			
		||||
      out += la;
 | 
			
		||||
    }
 | 
			
		||||
    out *= scale;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Projects the algebra components
 | 
			
		||||
  // of a lattice matrix ( of dimension ncol*ncol -1 )
 | 
			
		||||
  static void projectOnAlgebra(
 | 
			
		||||
      typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h_out,
 | 
			
		||||
      const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
 | 
			
		||||
    conformable(h_out, in);
 | 
			
		||||
    h_out = Zero();
 | 
			
		||||
    TIMatrix i2indTa;
 | 
			
		||||
    Real coefficient = -2.0 / (ncolour + 2 * S) * scale;
 | 
			
		||||
    // 2/(Nc +/- 2) for the normalization of the trace in the two index rep
 | 
			
		||||
    for (int a = 0; a < NumGenerators; a++) {
 | 
			
		||||
      generator(a, i2indTa);
 | 
			
		||||
      pokeColour(h_out, real(trace(i2indTa * in)) * coefficient, a);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // a projector that keeps the generators stored to avoid the overhead of
 | 
			
		||||
  // recomputing them
 | 
			
		||||
  static void projector(
 | 
			
		||||
      typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h_out,
 | 
			
		||||
      const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
 | 
			
		||||
    conformable(h_out, in);
 | 
			
		||||
    // to store the generators
 | 
			
		||||
    static std::vector<TIMatrix> i2indTa(NumGenerators);
 | 
			
		||||
    h_out = Zero();
 | 
			
		||||
    static bool precalculated = false;
 | 
			
		||||
    if (!precalculated) {
 | 
			
		||||
      precalculated = true;
 | 
			
		||||
      for (int a = 0; a < NumGenerators; a++) generator(a, i2indTa[a]);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    Real coefficient =
 | 
			
		||||
        -2.0 / (ncolour + 2 * S) * scale;  // 2/(Nc +/- 2) for the normalization
 | 
			
		||||
    // of the trace in the two index rep
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < NumGenerators; a++) {
 | 
			
		||||
      auto tmp = real(trace(i2indTa[a] * in)) * coefficient;
 | 
			
		||||
      pokeColour(h_out, tmp, a);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <int ncolour, TwoIndexSymmetry S>
 | 
			
		||||
using SU_TwoIndex = GaugeGroupTwoIndex<ncolour, S, GroupName::SU>;
 | 
			
		||||
 | 
			
		||||
// Some useful type names
 | 
			
		||||
typedef SU_TwoIndex<Nc, Symmetric> TwoIndexSymmMatrices;
 | 
			
		||||
typedef SU_TwoIndex<Nc, AntiSymmetric> TwoIndexAntiSymmMatrices;
 | 
			
		||||
 | 
			
		||||
typedef SU_TwoIndex<2, Symmetric> SU2TwoIndexSymm;
 | 
			
		||||
typedef SU_TwoIndex<3, Symmetric> SU3TwoIndexSymm;
 | 
			
		||||
typedef SU_TwoIndex<4, Symmetric> SU4TwoIndexSymm;
 | 
			
		||||
typedef SU_TwoIndex<5, Symmetric> SU5TwoIndexSymm;
 | 
			
		||||
 | 
			
		||||
typedef SU_TwoIndex<2, AntiSymmetric> SU2TwoIndexAntiSymm;
 | 
			
		||||
typedef SU_TwoIndex<3, AntiSymmetric> SU3TwoIndexAntiSymm;
 | 
			
		||||
typedef SU_TwoIndex<4, AntiSymmetric> SU4TwoIndexAntiSymm;
 | 
			
		||||
typedef SU_TwoIndex<5, AntiSymmetric> SU5TwoIndexAntiSymm;
 | 
			
		||||
 | 
			
		||||
template <int ncolour, TwoIndexSymmetry S>
 | 
			
		||||
using Sp_TwoIndex = GaugeGroupTwoIndex<ncolour, S, GroupName::Sp>;
 | 
			
		||||
 | 
			
		||||
typedef Sp_TwoIndex<Nc, Symmetric> SpTwoIndexSymmMatrices;
 | 
			
		||||
typedef Sp_TwoIndex<Nc, AntiSymmetric> SpTwoIndexAntiSymmMatrices;
 | 
			
		||||
 | 
			
		||||
typedef Sp_TwoIndex<2, Symmetric> Sp2TwoIndexSymm;
 | 
			
		||||
typedef Sp_TwoIndex<4, Symmetric> Sp4TwoIndexSymm;
 | 
			
		||||
 | 
			
		||||
typedef Sp_TwoIndex<4, AntiSymmetric> Sp4TwoIndexAntiSymm;
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
							
								
								
									
										930
									
								
								Grid/qcd/utils/SUn.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										930
									
								
								Grid/qcd/utils/SUn.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,930 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/utils/SUn.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: neo <cossu@post.kek.jp>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
			   /*  END LEGAL */
 | 
			
		||||
#ifndef QCD_UTIL_SUN_H
 | 
			
		||||
#define QCD_UTIL_SUN_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<int N, class Vec>
 | 
			
		||||
Lattice<iScalar<iScalar<iScalar<Vec> > > > Determinant(const Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=Umu.Grid();
 | 
			
		||||
  auto lvol = grid->lSites();
 | 
			
		||||
  Lattice<iScalar<iScalar<iScalar<Vec> > > > ret(grid);
 | 
			
		||||
 | 
			
		||||
  autoView(Umu_v,Umu,CpuRead);
 | 
			
		||||
  autoView(ret_v,ret,CpuWrite);
 | 
			
		||||
  thread_for(site,lvol,{
 | 
			
		||||
    Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
 | 
			
		||||
    Coordinate lcoor;
 | 
			
		||||
    grid->LocalIndexToLocalCoor(site, lcoor);
 | 
			
		||||
    iScalar<iScalar<iMatrix<ComplexD, N> > > Us;
 | 
			
		||||
    peekLocalSite(Us, Umu_v, lcoor);
 | 
			
		||||
    for(int i=0;i<N;i++){
 | 
			
		||||
      for(int j=0;j<N;j++){
 | 
			
		||||
	EigenU(i,j) = Us()()(i,j);
 | 
			
		||||
      }}
 | 
			
		||||
    ComplexD detD  = EigenU.determinant();
 | 
			
		||||
    typename Vec::scalar_type det(detD.real(),detD.imag());
 | 
			
		||||
    pokeLocalSite(det,ret_v,lcoor);
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<int N, class Vec>
 | 
			
		||||
static void ProjectSUn(Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu)
 | 
			
		||||
{
 | 
			
		||||
  Umu      = ProjectOnGroup(Umu);
 | 
			
		||||
  auto det = Determinant(Umu);
 | 
			
		||||
 | 
			
		||||
  det = conjugate(det);
 | 
			
		||||
 | 
			
		||||
  for(int i=0;i<N;i++){
 | 
			
		||||
    auto element = PeekIndex<ColourIndex>(Umu,N-1,i);
 | 
			
		||||
    element = element * det;
 | 
			
		||||
    PokeIndex<ColourIndex>(Umu,element,Nc-1,i);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
template<int N,class Vec>
 | 
			
		||||
static void ProjectSUn(Lattice<iVector<iScalar<iMatrix<Vec, N> >,Nd> > &U)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=U.Grid();
 | 
			
		||||
  // Reunitarise
 | 
			
		||||
  for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
    auto Umu = PeekIndex<LorentzIndex>(U,mu);
 | 
			
		||||
    Umu      = ProjectOnGroup(Umu);
 | 
			
		||||
    ProjectSUn(Umu);
 | 
			
		||||
    PokeIndex<LorentzIndex>(U,Umu,mu);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <int ncolour>
 | 
			
		||||
class SU {
 | 
			
		||||
public:
 | 
			
		||||
  static const int Dimension = ncolour;
 | 
			
		||||
  static const int AdjointDimension = ncolour * ncolour - 1;
 | 
			
		||||
  static int su2subgroups(void) { return (ncolour * (ncolour - 1)) / 2; }
 | 
			
		||||
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iSU2Matrix = iScalar<iScalar<iMatrix<vtype, 2> > >;
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iSUnAlgebraVector =
 | 
			
		||||
    iScalar<iScalar<iVector<vtype, AdjointDimension> > >;
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Types can be accessed as SU<2>::Matrix , SU<2>::vSUnMatrix,
 | 
			
		||||
  // SU<2>::LatticeMatrix etc...
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  typedef iSUnMatrix<Complex> Matrix;
 | 
			
		||||
  typedef iSUnMatrix<ComplexF> MatrixF;
 | 
			
		||||
  typedef iSUnMatrix<ComplexD> MatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef iSUnMatrix<vComplex> vMatrix;
 | 
			
		||||
  typedef iSUnMatrix<vComplexF> vMatrixF;
 | 
			
		||||
  typedef iSUnMatrix<vComplexD> vMatrixD;
 | 
			
		||||
 | 
			
		||||
  // For the projectors to the algebra
 | 
			
		||||
  // these should be real...
 | 
			
		||||
  // keeping complex for consistency with the SIMD vector types
 | 
			
		||||
  typedef iSUnAlgebraVector<Complex> AlgebraVector;
 | 
			
		||||
  typedef iSUnAlgebraVector<ComplexF> AlgebraVectorF;
 | 
			
		||||
  typedef iSUnAlgebraVector<ComplexD> AlgebraVectorD;
 | 
			
		||||
 | 
			
		||||
  typedef iSUnAlgebraVector<vComplex> vAlgebraVector;
 | 
			
		||||
  typedef iSUnAlgebraVector<vComplexF> vAlgebraVectorF;
 | 
			
		||||
  typedef iSUnAlgebraVector<vComplexD> vAlgebraVectorD;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<vMatrix> LatticeMatrix;
 | 
			
		||||
  typedef Lattice<vMatrixF> LatticeMatrixF;
 | 
			
		||||
  typedef Lattice<vMatrixD> LatticeMatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<vAlgebraVector> LatticeAlgebraVector;
 | 
			
		||||
  typedef Lattice<vAlgebraVectorF> LatticeAlgebraVectorF;
 | 
			
		||||
  typedef Lattice<vAlgebraVectorD> LatticeAlgebraVectorD;
 | 
			
		||||
 | 
			
		||||
  typedef iSU2Matrix<Complex> SU2Matrix;
 | 
			
		||||
  typedef iSU2Matrix<ComplexF> SU2MatrixF;
 | 
			
		||||
  typedef iSU2Matrix<ComplexD> SU2MatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef iSU2Matrix<vComplex> vSU2Matrix;
 | 
			
		||||
  typedef iSU2Matrix<vComplexF> vSU2MatrixF;
 | 
			
		||||
  typedef iSU2Matrix<vComplexD> vSU2MatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<vSU2Matrix> LatticeSU2Matrix;
 | 
			
		||||
  typedef Lattice<vSU2MatrixF> LatticeSU2MatrixF;
 | 
			
		||||
  typedef Lattice<vSU2MatrixD> LatticeSU2MatrixD;
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // There are N^2-1 generators for SU(N).
 | 
			
		||||
  //
 | 
			
		||||
  // We take a traceless hermitian generator basis as follows
 | 
			
		||||
  //
 | 
			
		||||
  // * Normalisation: trace ta tb = 1/2 delta_ab = T_F delta_ab
 | 
			
		||||
  //   T_F = 1/2  for SU(N) groups
 | 
			
		||||
  //
 | 
			
		||||
  // * Off diagonal
 | 
			
		||||
  //    - pairs of rows i1,i2 behaving like pauli matrices signma_x, sigma_y
 | 
			
		||||
  //
 | 
			
		||||
  //    - there are (Nc-1-i1) slots for i2 on each row [ x  0  x ]
 | 
			
		||||
  //      direct count off each row
 | 
			
		||||
  //
 | 
			
		||||
  //    - Sum of all pairs is Nc(Nc-1)/2: proof arithmetic series
 | 
			
		||||
  //
 | 
			
		||||
  //      (Nc-1) + (Nc-2)+...  1      ==> Nc*(Nc-1)/2
 | 
			
		||||
  //      1+ 2+          +   + Nc-1
 | 
			
		||||
  //
 | 
			
		||||
  //    - There are 2 x Nc (Nc-1)/ 2 of these = Nc^2 - Nc
 | 
			
		||||
  //
 | 
			
		||||
  //    - We enumerate the row-col pairs.
 | 
			
		||||
  //    - for each row col pair there is a (sigma_x) and a (sigma_y) like
 | 
			
		||||
  //    generator
 | 
			
		||||
  //
 | 
			
		||||
  //
 | 
			
		||||
  //   t^a_ij = { in 0.. Nc(Nc-1)/2 -1} =>  1/2(delta_{i,i1} delta_{j,i2} +
 | 
			
		||||
  //   delta_{i,i1} delta_{j,i2})
 | 
			
		||||
  //   t^a_ij = { in Nc(Nc-1)/2 ... Nc(Nc-1) - 1} =>  i/2( delta_{i,i1}
 | 
			
		||||
  //   delta_{j,i2} - i delta_{i,i1} delta_{j,i2})
 | 
			
		||||
  //
 | 
			
		||||
  // * Diagonal; must be traceless and normalised
 | 
			
		||||
  //   - Sequence is
 | 
			
		||||
  //   N  (1,-1,0,0...)
 | 
			
		||||
  //   N  (1, 1,-2,0...)
 | 
			
		||||
  //   N  (1, 1, 1,-3,0...)
 | 
			
		||||
  //   N  (1, 1, 1, 1,-4,0...)
 | 
			
		||||
  //
 | 
			
		||||
  //   where 1/2 = N^2 (1+.. m^2)etc.... for the m-th diagonal generator
 | 
			
		||||
  //   NB this gives the famous SU3 result for su2 index 8
 | 
			
		||||
  //
 | 
			
		||||
  //   N= sqrt(1/2 . 1/6 ) = 1/2 . 1/sqrt(3)
 | 
			
		||||
  //
 | 
			
		||||
  //   ( 1      )
 | 
			
		||||
  //   (    1   ) / sqrt(3) /2  = 1/2 lambda_8
 | 
			
		||||
  //   (      -2)
 | 
			
		||||
  //
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void generator(int lieIndex, iSUnMatrix<cplx> &ta) {
 | 
			
		||||
    // map lie index to which type of generator
 | 
			
		||||
    int diagIndex;
 | 
			
		||||
    int su2Index;
 | 
			
		||||
    int sigxy;
 | 
			
		||||
    int NNm1 = ncolour * (ncolour - 1);
 | 
			
		||||
    if (lieIndex >= NNm1) {
 | 
			
		||||
      diagIndex = lieIndex - NNm1;
 | 
			
		||||
      generatorDiagonal(diagIndex, ta);
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
    sigxy = lieIndex & 0x1;  // even or odd
 | 
			
		||||
    su2Index = lieIndex >> 1;
 | 
			
		||||
    if (sigxy)
 | 
			
		||||
      generatorSigmaY(su2Index, ta);
 | 
			
		||||
    else
 | 
			
		||||
      generatorSigmaX(su2Index, ta);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void generatorSigmaY(int su2Index, iSUnMatrix<cplx> &ta) {
 | 
			
		||||
    ta = Zero();
 | 
			
		||||
    int i1, i2;
 | 
			
		||||
    su2SubGroupIndex(i1, i2, su2Index);
 | 
			
		||||
    ta()()(i1, i2) = 1.0;
 | 
			
		||||
    ta()()(i2, i1) = 1.0;
 | 
			
		||||
    ta = ta * 0.5;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void generatorSigmaX(int su2Index, iSUnMatrix<cplx> &ta) {
 | 
			
		||||
    ta = Zero();
 | 
			
		||||
    cplx i(0.0, 1.0);
 | 
			
		||||
    int i1, i2;
 | 
			
		||||
    su2SubGroupIndex(i1, i2, su2Index);
 | 
			
		||||
    ta()()(i1, i2) = i;
 | 
			
		||||
    ta()()(i2, i1) = -i;
 | 
			
		||||
    ta = ta * 0.5;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void generatorDiagonal(int diagIndex, iSUnMatrix<cplx> &ta) {
 | 
			
		||||
    // diag ({1, 1, ..., 1}(k-times), -k, 0, 0, ...)
 | 
			
		||||
    ta = Zero();
 | 
			
		||||
    int k = diagIndex + 1;                  // diagIndex starts from 0
 | 
			
		||||
    for (int i = 0; i <= diagIndex; i++) {  // k iterations
 | 
			
		||||
      ta()()(i, i) = 1.0;
 | 
			
		||||
    }
 | 
			
		||||
    ta()()(k, k) = -k;  // indexing starts from 0
 | 
			
		||||
    RealD nrm = 1.0 / std::sqrt(2.0 * k * (k + 1));
 | 
			
		||||
    ta = ta * nrm;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Map a su2 subgroup number to the pair of rows that are non zero
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  static void su2SubGroupIndex(int &i1, int &i2, int su2_index) {
 | 
			
		||||
    assert((su2_index >= 0) && (su2_index < (ncolour * (ncolour - 1)) / 2));
 | 
			
		||||
 | 
			
		||||
    int spare = su2_index;
 | 
			
		||||
    for (i1 = 0; spare >= (ncolour - 1 - i1); i1++) {
 | 
			
		||||
      spare = spare - (ncolour - 1 - i1);  // remove the Nc-1-i1 terms
 | 
			
		||||
    }
 | 
			
		||||
    i2 = i1 + 1 + spare;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Pull out a subgroup and project on to real coeffs x pauli basis
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  template <class vcplx>
 | 
			
		||||
  static void su2Extract(Lattice<iSinglet<vcplx> > &Determinant,
 | 
			
		||||
                         Lattice<iSU2Matrix<vcplx> > &subgroup,
 | 
			
		||||
                         const Lattice<iSUnMatrix<vcplx> > &source,
 | 
			
		||||
                         int su2_index) {
 | 
			
		||||
    GridBase *grid(source.Grid());
 | 
			
		||||
    conformable(subgroup, source);
 | 
			
		||||
    conformable(subgroup, Determinant);
 | 
			
		||||
    int i0, i1;
 | 
			
		||||
    su2SubGroupIndex(i0, i1, su2_index);
 | 
			
		||||
 | 
			
		||||
    autoView( subgroup_v , subgroup,AcceleratorWrite);
 | 
			
		||||
    autoView( source_v   , source,AcceleratorRead);
 | 
			
		||||
    autoView( Determinant_v , Determinant,AcceleratorWrite);
 | 
			
		||||
    accelerator_for(ss, grid->oSites(), 1, {
 | 
			
		||||
 | 
			
		||||
      subgroup_v[ss]()()(0, 0) = source_v[ss]()()(i0, i0);
 | 
			
		||||
      subgroup_v[ss]()()(0, 1) = source_v[ss]()()(i0, i1);
 | 
			
		||||
      subgroup_v[ss]()()(1, 0) = source_v[ss]()()(i1, i0);
 | 
			
		||||
      subgroup_v[ss]()()(1, 1) = source_v[ss]()()(i1, i1);
 | 
			
		||||
 | 
			
		||||
      iSU2Matrix<vcplx> Sigma = subgroup_v[ss];
 | 
			
		||||
 | 
			
		||||
      Sigma = Sigma - adj(Sigma) + trace(adj(Sigma));
 | 
			
		||||
 | 
			
		||||
      subgroup_v[ss] = Sigma;
 | 
			
		||||
 | 
			
		||||
      // this should be purely real
 | 
			
		||||
      Determinant_v[ss] =
 | 
			
		||||
	Sigma()()(0, 0) * Sigma()()(1, 1) - Sigma()()(0, 1) * Sigma()()(1, 0);
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Set matrix to one and insert a pauli subgroup
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  template <class vcplx>
 | 
			
		||||
  static void su2Insert(const Lattice<iSU2Matrix<vcplx> > &subgroup,
 | 
			
		||||
                        Lattice<iSUnMatrix<vcplx> > &dest, int su2_index) {
 | 
			
		||||
    GridBase *grid(dest.Grid());
 | 
			
		||||
    conformable(subgroup, dest);
 | 
			
		||||
    int i0, i1;
 | 
			
		||||
    su2SubGroupIndex(i0, i1, su2_index);
 | 
			
		||||
 | 
			
		||||
    dest = 1.0;  // start out with identity
 | 
			
		||||
    autoView( dest_v , dest, AcceleratorWrite);
 | 
			
		||||
    autoView( subgroup_v, subgroup, AcceleratorRead);
 | 
			
		||||
    accelerator_for(ss, grid->oSites(),1,
 | 
			
		||||
    {
 | 
			
		||||
      dest_v[ss]()()(i0, i0) = subgroup_v[ss]()()(0, 0);
 | 
			
		||||
      dest_v[ss]()()(i0, i1) = subgroup_v[ss]()()(0, 1);
 | 
			
		||||
      dest_v[ss]()()(i1, i0) = subgroup_v[ss]()()(1, 0);
 | 
			
		||||
      dest_v[ss]()()(i1, i1) = subgroup_v[ss]()()(1, 1);
 | 
			
		||||
    });
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////
 | 
			
		||||
  // Generate e^{ Re Tr Staple Link} dlink
 | 
			
		||||
  //
 | 
			
		||||
  // *** Note Staple should be appropriate linear compbination between all
 | 
			
		||||
  // staples.
 | 
			
		||||
  // *** If already by beta pass coefficient 1.0.
 | 
			
		||||
  // *** This routine applies the additional 1/Nc factor that comes after trace
 | 
			
		||||
  // in action.
 | 
			
		||||
  //
 | 
			
		||||
  ///////////////////////////////////////////////
 | 
			
		||||
  static void SubGroupHeatBath(GridSerialRNG &sRNG, GridParallelRNG &pRNG,
 | 
			
		||||
			       RealD beta,  // coeff multiplying staple in action (with no 1/Nc)
 | 
			
		||||
			       LatticeMatrix &link,
 | 
			
		||||
			       const LatticeMatrix &barestaple,  // multiplied by action coeffs so th
 | 
			
		||||
			       int su2_subgroup, int nheatbath, LatticeInteger &wheremask) 
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *grid = link.Grid();
 | 
			
		||||
 | 
			
		||||
    const RealD twopi = 2.0 * M_PI;
 | 
			
		||||
 | 
			
		||||
    LatticeMatrix staple(grid);
 | 
			
		||||
 | 
			
		||||
    staple = barestaple * (beta / ncolour);
 | 
			
		||||
 | 
			
		||||
    LatticeMatrix V(grid);
 | 
			
		||||
    V = link * staple;
 | 
			
		||||
 | 
			
		||||
    // Subgroup manipulation in the lie algebra space
 | 
			
		||||
    LatticeSU2Matrix u(grid);  // Kennedy pendleton "u" real projected normalised Sigma
 | 
			
		||||
    LatticeSU2Matrix uinv(grid);
 | 
			
		||||
    LatticeSU2Matrix ua(grid);  // a in pauli form
 | 
			
		||||
    LatticeSU2Matrix b(grid);   // rotated matrix after hb
 | 
			
		||||
 | 
			
		||||
    // Some handy constant fields
 | 
			
		||||
    LatticeComplex ones(grid);
 | 
			
		||||
    ones = 1.0;
 | 
			
		||||
    LatticeComplex zeros(grid);
 | 
			
		||||
    zeros = Zero();
 | 
			
		||||
    LatticeReal rones(grid);
 | 
			
		||||
    rones = 1.0;
 | 
			
		||||
    LatticeReal rzeros(grid);
 | 
			
		||||
    rzeros = Zero();
 | 
			
		||||
    LatticeComplex udet(grid);  // determinant of real(staple)
 | 
			
		||||
    LatticeInteger mask_true(grid);
 | 
			
		||||
    mask_true = 1;
 | 
			
		||||
    LatticeInteger mask_false(grid);
 | 
			
		||||
    mask_false = 0;
 | 
			
		||||
 | 
			
		||||
    /*
 | 
			
		||||
      PLB 156 P393 (1985) (Kennedy and Pendleton)
 | 
			
		||||
 | 
			
		||||
      Note: absorb "beta" into the def of sigma compared to KP paper; staple
 | 
			
		||||
      passed to this routine has "beta" already multiplied in
 | 
			
		||||
 | 
			
		||||
      Action linear in links h and of form:
 | 
			
		||||
 | 
			
		||||
      beta S = beta  Sum_p (1 - 1/Nc Re Tr Plaq )
 | 
			
		||||
 | 
			
		||||
      Writing Sigma = 1/Nc (beta Sigma') where sum over staples is "Sigma' "
 | 
			
		||||
 | 
			
		||||
      beta S = const - beta/Nc Re Tr h Sigma'
 | 
			
		||||
      = const - Re Tr h Sigma
 | 
			
		||||
 | 
			
		||||
      Decompose h and Sigma into (1, sigma_j) ; h_i real, h^2=1, Sigma_i complex
 | 
			
		||||
      arbitrary.
 | 
			
		||||
 | 
			
		||||
      Tr h Sigma = h_i Sigma_j Tr (sigma_i sigma_j)  = h_i Sigma_j 2 delta_ij
 | 
			
		||||
      Re Tr h Sigma = 2 h_j Re Sigma_j
 | 
			
		||||
 | 
			
		||||
      Normalised re Sigma_j = xi u_j
 | 
			
		||||
 | 
			
		||||
      With u_j a unit vector and U can be in SU(2);
 | 
			
		||||
 | 
			
		||||
      Re Tr h Sigma = 2 h_j Re Sigma_j = 2 xi (h.u)
 | 
			
		||||
 | 
			
		||||
      4xi^2 = Det [ Sig - Sig^dag  + 1 Tr Sigdag]
 | 
			
		||||
      u   = 1/2xi [ Sig - Sig^dag  + 1 Tr Sigdag]
 | 
			
		||||
 | 
			
		||||
      xi = sqrt(Det)/2;
 | 
			
		||||
 | 
			
		||||
      Write a= u h in SU(2); a has pauli decomp a_j;
 | 
			
		||||
 | 
			
		||||
      Note: Product b' xi is unvariant because scaling Sigma leaves
 | 
			
		||||
      normalised vector "u" fixed; Can rescale Sigma so b' = 1.
 | 
			
		||||
    */
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////////////////////
 | 
			
		||||
    // Real part of Pauli decomposition
 | 
			
		||||
    // Note a subgroup can project to zero in cold start
 | 
			
		||||
    ////////////////////////////////////////////////////////
 | 
			
		||||
    su2Extract(udet, u, V, su2_subgroup);
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////
 | 
			
		||||
    // Normalising this vector if possible; else identity
 | 
			
		||||
    //////////////////////////////////////////////////////
 | 
			
		||||
    LatticeComplex xi(grid);
 | 
			
		||||
 | 
			
		||||
    LatticeSU2Matrix lident(grid);
 | 
			
		||||
 | 
			
		||||
    SU2Matrix ident = Complex(1.0);
 | 
			
		||||
    SU2Matrix pauli1;
 | 
			
		||||
    SU<2>::generator(0, pauli1);
 | 
			
		||||
    SU2Matrix pauli2;
 | 
			
		||||
    SU<2>::generator(1, pauli2);
 | 
			
		||||
    SU2Matrix pauli3;
 | 
			
		||||
    SU<2>::generator(2, pauli3);
 | 
			
		||||
    pauli1 = timesI(pauli1) * 2.0;
 | 
			
		||||
    pauli2 = timesI(pauli2) * 2.0;
 | 
			
		||||
    pauli3 = timesI(pauli3) * 2.0;
 | 
			
		||||
 | 
			
		||||
    LatticeComplex cone(grid);
 | 
			
		||||
    LatticeReal adet(grid);
 | 
			
		||||
    adet = abs(toReal(udet));
 | 
			
		||||
    lident = Complex(1.0);
 | 
			
		||||
    cone = Complex(1.0);
 | 
			
		||||
    Real machine_epsilon = 1.0e-7;
 | 
			
		||||
    u = where(adet > machine_epsilon, u, lident);
 | 
			
		||||
    udet = where(adet > machine_epsilon, udet, cone);
 | 
			
		||||
 | 
			
		||||
    xi = 0.5 * sqrt(udet);  // 4xi^2 = Det [ Sig - Sig^dag  + 1 Tr Sigdag]
 | 
			
		||||
    u = 0.5 * u *
 | 
			
		||||
      pow(xi, -1.0);  //  u   = 1/2xi [ Sig - Sig^dag  + 1 Tr Sigdag]
 | 
			
		||||
 | 
			
		||||
    // Debug test for sanity
 | 
			
		||||
    uinv = adj(u);
 | 
			
		||||
    b = u * uinv - 1.0;
 | 
			
		||||
    assert(norm2(b) < 1.0e-4);
 | 
			
		||||
 | 
			
		||||
    /*
 | 
			
		||||
      Measure: Haar measure dh has d^4a delta(1-|a^2|)
 | 
			
		||||
      In polars:
 | 
			
		||||
      da = da0 r^2 sin theta dr dtheta dphi delta( 1 - r^2 -a0^2)
 | 
			
		||||
      = da0 r^2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r)(sqrt(1-a0^) +
 | 
			
		||||
      r) )
 | 
			
		||||
      = da0 r/2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r) )
 | 
			
		||||
 | 
			
		||||
      Action factor Q(h) dh  = e^-S[h]  dh =  e^{  xi Tr uh} dh    // beta enters
 | 
			
		||||
      through xi
 | 
			
		||||
      =  e^{2 xi (h.u)} dh
 | 
			
		||||
      =  e^{2 xi h0u0}.e^{2 xi h1u1}.e^{2 xi
 | 
			
		||||
      h2u2}.e^{2 xi h3u3} dh
 | 
			
		||||
 | 
			
		||||
      Therefore for each site, take xi for that site
 | 
			
		||||
      i) generate  |a0|<1 with dist
 | 
			
		||||
      (1-a0^2)^0.5 e^{2 xi a0 } da0
 | 
			
		||||
 | 
			
		||||
      Take alpha = 2 xi  = 2 xi [ recall 2 beta/Nc unmod staple norm]; hence 2.0/Nc
 | 
			
		||||
      factor in Chroma ]
 | 
			
		||||
      A. Generate two uniformly distributed pseudo-random numbers R and R', R'',
 | 
			
		||||
      R''' in the unit interval;
 | 
			
		||||
      B. Set X = -(ln R)/alpha, X' =-(ln R')/alpha;
 | 
			
		||||
      C. Set C = cos^2(2pi R"), with R" another uniform random number in [0,1] ;
 | 
			
		||||
      D. Set A = XC;
 | 
			
		||||
      E. Let d  = X'+A;
 | 
			
		||||
      F. If R'''^2 :> 1 - 0.5 d,  go back to A;
 | 
			
		||||
      G. Set a0 = 1 - d;
 | 
			
		||||
 | 
			
		||||
      Note that in step D setting B ~ X - A and using B in place of A in step E will
 | 
			
		||||
      generate a second independent a 0 value.
 | 
			
		||||
    */
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////////
 | 
			
		||||
    // count the number of sites by picking "1"'s out of hat
 | 
			
		||||
    /////////////////////////////////////////////////////////
 | 
			
		||||
    Integer hit = 0;
 | 
			
		||||
    LatticeReal rtmp(grid);
 | 
			
		||||
    rtmp = where(wheremask, rones, rzeros);
 | 
			
		||||
    RealD numSites = sum(rtmp);
 | 
			
		||||
    RealD numAccepted;
 | 
			
		||||
    LatticeInteger Accepted(grid);
 | 
			
		||||
    Accepted = Zero();
 | 
			
		||||
    LatticeInteger newlyAccepted(grid);
 | 
			
		||||
 | 
			
		||||
    std::vector<LatticeReal> xr(4, grid);
 | 
			
		||||
    std::vector<LatticeReal> a(4, grid);
 | 
			
		||||
    LatticeReal d(grid);
 | 
			
		||||
    d = Zero();
 | 
			
		||||
    LatticeReal alpha(grid);
 | 
			
		||||
 | 
			
		||||
    //    std::cout<<GridLogMessage<<"xi "<<xi <<std::endl;
 | 
			
		||||
    xi = 2.0 *xi;
 | 
			
		||||
    alpha = toReal(xi);
 | 
			
		||||
 | 
			
		||||
    do {
 | 
			
		||||
      // A. Generate two uniformly distributed pseudo-random numbers R and R',
 | 
			
		||||
      // R'', R''' in the unit interval;
 | 
			
		||||
      random(pRNG, xr[0]);
 | 
			
		||||
      random(pRNG, xr[1]);
 | 
			
		||||
      random(pRNG, xr[2]);
 | 
			
		||||
      random(pRNG, xr[3]);
 | 
			
		||||
 | 
			
		||||
      // B. Set X = - ln R/alpha, X' = -ln R'/alpha
 | 
			
		||||
      xr[1] = -log(xr[1]) / alpha;
 | 
			
		||||
      xr[2] = -log(xr[2]) / alpha;
 | 
			
		||||
 | 
			
		||||
      // C. Set C = cos^2(2piR'')
 | 
			
		||||
      xr[3] = cos(xr[3] * twopi);
 | 
			
		||||
      xr[3] = xr[3] * xr[3];
 | 
			
		||||
 | 
			
		||||
      LatticeReal xrsq(grid);
 | 
			
		||||
 | 
			
		||||
      // D. Set A = XC;
 | 
			
		||||
      // E. Let d  = X'+A;
 | 
			
		||||
      xrsq = xr[2] + xr[1] * xr[3];
 | 
			
		||||
 | 
			
		||||
      d = where(Accepted, d, xr[2] + xr[1] * xr[3]);
 | 
			
		||||
 | 
			
		||||
      // F. If R'''^2 :> 1 - 0.5 d,  go back to A;
 | 
			
		||||
      LatticeReal thresh(grid);
 | 
			
		||||
      thresh = 1.0 - d * 0.5;
 | 
			
		||||
      xrsq = xr[0] * xr[0];
 | 
			
		||||
      LatticeInteger ione(grid);
 | 
			
		||||
      ione = 1;
 | 
			
		||||
      LatticeInteger izero(grid);
 | 
			
		||||
      izero = Zero();
 | 
			
		||||
 | 
			
		||||
      newlyAccepted = where(xrsq < thresh, ione, izero);
 | 
			
		||||
      Accepted = where(newlyAccepted, newlyAccepted, Accepted);
 | 
			
		||||
      Accepted = where(wheremask, Accepted, izero);
 | 
			
		||||
 | 
			
		||||
      // FIXME need an iSum for integer to avoid overload on return type??
 | 
			
		||||
      rtmp = where(Accepted, rones, rzeros);
 | 
			
		||||
      numAccepted = sum(rtmp);
 | 
			
		||||
 | 
			
		||||
      hit++;
 | 
			
		||||
 | 
			
		||||
    } while ((numAccepted < numSites) && (hit < nheatbath));
 | 
			
		||||
 | 
			
		||||
    // G. Set a0 = 1 - d;
 | 
			
		||||
    a[0] = Zero();
 | 
			
		||||
    a[0] = where(wheremask, 1.0 - d, a[0]);
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////
 | 
			
		||||
    //    ii) generate a_i uniform on two sphere radius (1-a0^2)^0.5
 | 
			
		||||
    //////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    LatticeReal a123mag(grid);
 | 
			
		||||
    a123mag = sqrt(abs(1.0 - a[0] * a[0]));
 | 
			
		||||
 | 
			
		||||
    LatticeReal cos_theta(grid);
 | 
			
		||||
    LatticeReal sin_theta(grid);
 | 
			
		||||
    LatticeReal phi(grid);
 | 
			
		||||
 | 
			
		||||
    random(pRNG, phi);
 | 
			
		||||
    phi = phi * twopi;  // uniform in [0,2pi]
 | 
			
		||||
    random(pRNG, cos_theta);
 | 
			
		||||
    cos_theta = (cos_theta * 2.0) - 1.0;  // uniform in [-1,1]
 | 
			
		||||
    sin_theta = sqrt(abs(1.0 - cos_theta * cos_theta));
 | 
			
		||||
 | 
			
		||||
    a[1] = a123mag * sin_theta * cos(phi);
 | 
			
		||||
    a[2] = a123mag * sin_theta * sin(phi);
 | 
			
		||||
    a[3] = a123mag * cos_theta;
 | 
			
		||||
 | 
			
		||||
    ua = toComplex(a[0]) * ident  + toComplex(a[1]) * pauli1 +
 | 
			
		||||
         toComplex(a[2]) * pauli2 + toComplex(a[3]) * pauli3;
 | 
			
		||||
 | 
			
		||||
    b = 1.0;
 | 
			
		||||
    b = where(wheremask, uinv * ua, b);
 | 
			
		||||
    su2Insert(b, V, su2_subgroup);
 | 
			
		||||
 | 
			
		||||
    // mask the assignment back based on Accptance
 | 
			
		||||
    link = where(Accepted, V * link, link);
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////
 | 
			
		||||
    // Debug Checks
 | 
			
		||||
    // SU2 check
 | 
			
		||||
    LatticeSU2Matrix check(grid);  // rotated matrix after hb
 | 
			
		||||
    u = Zero();
 | 
			
		||||
    check = ua * adj(ua) - 1.0;
 | 
			
		||||
    check = where(Accepted, check, u);
 | 
			
		||||
    assert(norm2(check) < 1.0e-4);
 | 
			
		||||
 | 
			
		||||
    check = b * adj(b) - 1.0;
 | 
			
		||||
    check = where(Accepted, check, u);
 | 
			
		||||
    assert(norm2(check) < 1.0e-4);
 | 
			
		||||
 | 
			
		||||
    LatticeMatrix Vcheck(grid);
 | 
			
		||||
    Vcheck = Zero();
 | 
			
		||||
    Vcheck = where(Accepted, V * adj(V) - 1.0, Vcheck);
 | 
			
		||||
    //    std::cout<<GridLogMessage << "SU3 check " <<norm2(Vcheck)<<std::endl;
 | 
			
		||||
    assert(norm2(Vcheck) < 1.0e-4);
 | 
			
		||||
 | 
			
		||||
    // Verify the link stays in SU(3)
 | 
			
		||||
    //    std::cout<<GridLogMessage <<"Checking the modified link"<<std::endl;
 | 
			
		||||
    Vcheck = link * adj(link) - 1.0;
 | 
			
		||||
    assert(norm2(Vcheck) < 1.0e-4);
 | 
			
		||||
    /////////////////////////////////
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void printGenerators(void) {
 | 
			
		||||
    for (int gen = 0; gen < AdjointDimension; gen++) {
 | 
			
		||||
      Matrix ta;
 | 
			
		||||
      generator(gen, ta);
 | 
			
		||||
      std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
 | 
			
		||||
                << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << ta << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  static void testGenerators(void) {
 | 
			
		||||
    Matrix ta;
 | 
			
		||||
    Matrix tb;
 | 
			
		||||
    std::cout << GridLogMessage
 | 
			
		||||
              << "Fundamental - Checking trace ta tb is 0.5 delta_ab"
 | 
			
		||||
              << std::endl;
 | 
			
		||||
    for (int a = 0; a < AdjointDimension; a++) {
 | 
			
		||||
      for (int b = 0; b < AdjointDimension; b++) {
 | 
			
		||||
        generator(a, ta);
 | 
			
		||||
        generator(b, tb);
 | 
			
		||||
        Complex tr = TensorRemove(trace(ta * tb));
 | 
			
		||||
        std::cout << GridLogMessage << "(" << a << "," << b << ") =  " << tr
 | 
			
		||||
                  << std::endl;
 | 
			
		||||
        if (a == b) assert(abs(tr - Complex(0.5)) < 1.0e-6);
 | 
			
		||||
        if (a != b) assert(abs(tr) < 1.0e-6);
 | 
			
		||||
      }
 | 
			
		||||
      std::cout << GridLogMessage << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << "Fundamental - Checking if hermitian"
 | 
			
		||||
              << std::endl;
 | 
			
		||||
    for (int a = 0; a < AdjointDimension; a++) {
 | 
			
		||||
      generator(a, ta);
 | 
			
		||||
      std::cout << GridLogMessage << a << std::endl;
 | 
			
		||||
      assert(norm2(ta - adj(ta)) < 1.0e-6);
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "Fundamental - Checking if traceless"
 | 
			
		||||
              << std::endl;
 | 
			
		||||
    for (int a = 0; a < AdjointDimension; a++) {
 | 
			
		||||
      generator(a, ta);
 | 
			
		||||
      Complex tr = TensorRemove(trace(ta));
 | 
			
		||||
      std::cout << GridLogMessage << a << " " << std::endl;
 | 
			
		||||
      assert(abs(tr) < 1.0e-6);
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // reunitarise??
 | 
			
		||||
  template <typename LatticeMatrixType>
 | 
			
		||||
  static void LieRandomize(GridParallelRNG &pRNG, LatticeMatrixType &out, double scale = 1.0) 
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *grid = out.Grid();
 | 
			
		||||
 | 
			
		||||
    typedef typename LatticeMatrixType::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
    typedef iSinglet<vector_type> vTComplexType;
 | 
			
		||||
 | 
			
		||||
    typedef Lattice<vTComplexType> LatticeComplexType;
 | 
			
		||||
    typedef typename GridTypeMapper<typename LatticeMatrixType::vector_object>::scalar_object MatrixType;
 | 
			
		||||
 | 
			
		||||
    LatticeComplexType ca(grid);
 | 
			
		||||
    LatticeMatrixType lie(grid);
 | 
			
		||||
    LatticeMatrixType la(grid);
 | 
			
		||||
    ComplexD ci(0.0, scale);
 | 
			
		||||
    //    ComplexD cone(1.0, 0.0);
 | 
			
		||||
    MatrixType ta;
 | 
			
		||||
 | 
			
		||||
    lie = Zero();
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < AdjointDimension; a++) {
 | 
			
		||||
      random(pRNG, ca);
 | 
			
		||||
 | 
			
		||||
      ca = (ca + conjugate(ca)) * 0.5;
 | 
			
		||||
      ca = ca - 0.5;
 | 
			
		||||
 | 
			
		||||
      generator(a, ta);
 | 
			
		||||
 | 
			
		||||
      la = ci * ca * ta;
 | 
			
		||||
 | 
			
		||||
      lie = lie + la;  // e^{i la ta}
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    taExp(lie, out);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void GaussianFundamentalLieAlgebraMatrix(GridParallelRNG &pRNG,
 | 
			
		||||
                                                  LatticeMatrix &out,
 | 
			
		||||
                                                  Real scale = 1.0) {
 | 
			
		||||
    GridBase *grid = out.Grid();
 | 
			
		||||
    LatticeReal ca(grid);
 | 
			
		||||
    LatticeMatrix la(grid);
 | 
			
		||||
    Complex ci(0.0, scale);
 | 
			
		||||
    Matrix ta;
 | 
			
		||||
 | 
			
		||||
    out = Zero();
 | 
			
		||||
    for (int a = 0; a < AdjointDimension; a++) {
 | 
			
		||||
      gaussian(pRNG, ca);
 | 
			
		||||
      generator(a, ta);
 | 
			
		||||
      la = toComplex(ca) * ta;
 | 
			
		||||
      out += la;
 | 
			
		||||
    }
 | 
			
		||||
    out *= ci;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void FundamentalLieAlgebraMatrix(const LatticeAlgebraVector &h,
 | 
			
		||||
                                          LatticeMatrix &out,
 | 
			
		||||
                                          Real scale = 1.0) {
 | 
			
		||||
    conformable(h, out);
 | 
			
		||||
    GridBase *grid = out.Grid();
 | 
			
		||||
    LatticeMatrix la(grid);
 | 
			
		||||
    Matrix ta;
 | 
			
		||||
 | 
			
		||||
    out = Zero();
 | 
			
		||||
    for (int a = 0; a < AdjointDimension; a++) {
 | 
			
		||||
      generator(a, ta);
 | 
			
		||||
      la = peekColour(h, a) * timesI(ta) * scale;
 | 
			
		||||
      out += la;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
/*
 | 
			
		||||
 * Fundamental rep gauge xform
 | 
			
		||||
 */
 | 
			
		||||
  template<typename Fundamental,typename GaugeMat>
 | 
			
		||||
  static void GaugeTransformFundamental( Fundamental &ferm, GaugeMat &g){
 | 
			
		||||
    GridBase *grid = ferm._grid;
 | 
			
		||||
    conformable(grid,g._grid);
 | 
			
		||||
    ferm = g*ferm;
 | 
			
		||||
  }
 | 
			
		||||
/*
 | 
			
		||||
 * Adjoint rep gauge xform
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
  template<typename Gimpl>
 | 
			
		||||
  static void GaugeTransform(typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
 | 
			
		||||
    GridBase *grid = Umu.Grid();
 | 
			
		||||
    conformable(grid,g.Grid());
 | 
			
		||||
 | 
			
		||||
    typename Gimpl::GaugeLinkField U(grid);
 | 
			
		||||
    typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
 | 
			
		||||
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      U= PeekIndex<LorentzIndex>(Umu,mu);
 | 
			
		||||
      U = g*U*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
 | 
			
		||||
      PokeIndex<LorentzIndex>(Umu,U,mu);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  template<typename Gimpl>
 | 
			
		||||
  static void GaugeTransform( std::vector<typename Gimpl::GaugeLinkField> &U, typename Gimpl::GaugeLinkField &g){
 | 
			
		||||
    GridBase *grid = g.Grid();
 | 
			
		||||
    typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      U[mu] = g*U[mu]*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  template<typename Gimpl>
 | 
			
		||||
  static void RandomGaugeTransform(GridParallelRNG &pRNG, typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
 | 
			
		||||
    LieRandomize(pRNG,g,1.0);
 | 
			
		||||
    GaugeTransform<Gimpl>(Umu,g);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Projects the algebra components a lattice matrix (of dimension ncol*ncol -1 )
 | 
			
		||||
  // inverse operation: FundamentalLieAlgebraMatrix
 | 
			
		||||
  static void projectOnAlgebra(LatticeAlgebraVector &h_out, const LatticeMatrix &in, Real scale = 1.0) {
 | 
			
		||||
    conformable(h_out, in);
 | 
			
		||||
    h_out = Zero();
 | 
			
		||||
    Matrix Ta;
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < AdjointDimension; a++) {
 | 
			
		||||
      generator(a, Ta);
 | 
			
		||||
      pokeColour(h_out, - 2.0 * (trace(timesI(Ta) * in)) * scale, a);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <typename GaugeField>
 | 
			
		||||
  static void HotConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
 | 
			
		||||
    typedef typename GaugeField::vector_type vector_type;
 | 
			
		||||
    typedef iSUnMatrix<vector_type> vMatrixType;
 | 
			
		||||
    typedef Lattice<vMatrixType> LatticeMatrixType;
 | 
			
		||||
 | 
			
		||||
    LatticeMatrixType Umu(out.Grid());
 | 
			
		||||
    LatticeMatrixType tmp(out.Grid());
 | 
			
		||||
    for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
      //      LieRandomize(pRNG, Umu, 1.0);
 | 
			
		||||
      //      PokeIndex<LorentzIndex>(out, Umu, mu);
 | 
			
		||||
      gaussian(pRNG,Umu);
 | 
			
		||||
      tmp = Ta(Umu);
 | 
			
		||||
      taExp(tmp,Umu);
 | 
			
		||||
      ProjectSUn(Umu);
 | 
			
		||||
      PokeIndex<LorentzIndex>(out, Umu, mu);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  template<typename GaugeField>
 | 
			
		||||
  static void TepidConfiguration(GridParallelRNG &pRNG,GaugeField &out){
 | 
			
		||||
    typedef typename GaugeField::vector_type vector_type;
 | 
			
		||||
    typedef iSUnMatrix<vector_type> vMatrixType;
 | 
			
		||||
    typedef Lattice<vMatrixType> LatticeMatrixType;
 | 
			
		||||
 | 
			
		||||
    LatticeMatrixType Umu(out.Grid());
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      LieRandomize(pRNG,Umu,0.01);
 | 
			
		||||
      PokeIndex<LorentzIndex>(out,Umu,mu);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  template<typename GaugeField>
 | 
			
		||||
  static void ColdConfiguration(GaugeField &out){
 | 
			
		||||
    typedef typename GaugeField::vector_type vector_type;
 | 
			
		||||
    typedef iSUnMatrix<vector_type> vMatrixType;
 | 
			
		||||
    typedef Lattice<vMatrixType> LatticeMatrixType;
 | 
			
		||||
 | 
			
		||||
    LatticeMatrixType Umu(out.Grid());
 | 
			
		||||
    Umu=1.0;
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      PokeIndex<LorentzIndex>(out,Umu,mu);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  template<typename GaugeField>
 | 
			
		||||
  static void ColdConfiguration(GridParallelRNG &pRNG,GaugeField &out){
 | 
			
		||||
    ColdConfiguration(out);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<typename LatticeMatrixType>
 | 
			
		||||
  static void taProj( const LatticeMatrixType &in,  LatticeMatrixType &out){
 | 
			
		||||
    out = Ta(in);
 | 
			
		||||
  }
 | 
			
		||||
  template <typename LatticeMatrixType>
 | 
			
		||||
  static void taExp(const LatticeMatrixType &x, LatticeMatrixType &ex) {
 | 
			
		||||
    typedef typename LatticeMatrixType::scalar_type ComplexType;
 | 
			
		||||
 | 
			
		||||
    LatticeMatrixType xn(x.Grid());
 | 
			
		||||
    RealD nfac = 1.0;
 | 
			
		||||
 | 
			
		||||
    xn = x;
 | 
			
		||||
    ex = xn + ComplexType(1.0);  // 1+x
 | 
			
		||||
 | 
			
		||||
    // Do a 12th order exponentiation
 | 
			
		||||
    for (int i = 2; i <= 12; ++i) {
 | 
			
		||||
      nfac = nfac / RealD(i);  // 1/2, 1/2.3 ...
 | 
			
		||||
      xn = xn * x;             // x2, x3,x4....
 | 
			
		||||
      ex = ex + xn * nfac;     // x2/2!, x3/3!....
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<int N>
 | 
			
		||||
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > Inverse(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=Umu.Grid();
 | 
			
		||||
  auto lvol = grid->lSites();
 | 
			
		||||
  Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > ret(grid);
 | 
			
		||||
  
 | 
			
		||||
  autoView(Umu_v,Umu,CpuRead);
 | 
			
		||||
  autoView(ret_v,ret,CpuWrite);
 | 
			
		||||
  thread_for(site,lvol,{
 | 
			
		||||
    Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
 | 
			
		||||
    Coordinate lcoor;
 | 
			
		||||
    grid->LocalIndexToLocalCoor(site, lcoor);
 | 
			
		||||
    iScalar<iScalar<iMatrix<ComplexD, N> > > Us;
 | 
			
		||||
    iScalar<iScalar<iMatrix<ComplexD, N> > > Ui;
 | 
			
		||||
    peekLocalSite(Us, Umu_v, lcoor);
 | 
			
		||||
    for(int i=0;i<N;i++){
 | 
			
		||||
      for(int j=0;j<N;j++){
 | 
			
		||||
	EigenU(i,j) = Us()()(i,j);
 | 
			
		||||
      }}
 | 
			
		||||
    Eigen::MatrixXcd EigenUinv = EigenU.inverse();
 | 
			
		||||
    for(int i=0;i<N;i++){
 | 
			
		||||
      for(int j=0;j<N;j++){
 | 
			
		||||
	Ui()()(i,j) = EigenUinv(i,j);
 | 
			
		||||
      }}
 | 
			
		||||
    pokeLocalSite(Ui,ret_v,lcoor);
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
// Explicit specialisation for SU(3).
 | 
			
		||||
// Explicit specialisation for SU(3).
 | 
			
		||||
static void
 | 
			
		||||
ProjectSU3 (Lattice<iScalar<iScalar<iMatrix<vComplexD, 3> > > > &Umu)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=Umu.Grid();
 | 
			
		||||
  const int x=0;
 | 
			
		||||
  const int y=1;
 | 
			
		||||
  const int z=2;
 | 
			
		||||
  // Reunitarise
 | 
			
		||||
  Umu = ProjectOnGroup(Umu);
 | 
			
		||||
  autoView(Umu_v,Umu,CpuWrite);
 | 
			
		||||
  thread_for(ss,grid->oSites(),{
 | 
			
		||||
      auto cm = Umu_v[ss];
 | 
			
		||||
      cm()()(2,x) = adj(cm()()(0,y)*cm()()(1,z)-cm()()(0,z)*cm()()(1,y)); //x= yz-zy
 | 
			
		||||
      cm()()(2,y) = adj(cm()()(0,z)*cm()()(1,x)-cm()()(0,x)*cm()()(1,z)); //y= zx-xz
 | 
			
		||||
      cm()()(2,z) = adj(cm()()(0,x)*cm()()(1,y)-cm()()(0,y)*cm()()(1,x)); //z= xy-yx
 | 
			
		||||
      Umu_v[ss]=cm;
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
static void ProjectSU3(Lattice<iVector<iScalar<iMatrix<vComplexD, 3> >,Nd> > &U)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=U.Grid();
 | 
			
		||||
  // Reunitarise
 | 
			
		||||
  for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
    auto Umu = PeekIndex<LorentzIndex>(U,mu);
 | 
			
		||||
    Umu      = ProjectOnGroup(Umu);
 | 
			
		||||
    ProjectSU3(Umu);
 | 
			
		||||
    PokeIndex<LorentzIndex>(U,Umu,mu);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
typedef SU<2> SU2;
 | 
			
		||||
typedef SU<3> SU3;
 | 
			
		||||
typedef SU<4> SU4;
 | 
			
		||||
typedef SU<5> SU5;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
typedef SU<Nc> FundamentalMatrices;
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,578 +0,0 @@
 | 
			
		||||
// This file is #included into the body of the class template definition of
 | 
			
		||||
// GaugeGroup. So, image there to be
 | 
			
		||||
//
 | 
			
		||||
// template <int ncolour, class group_name>
 | 
			
		||||
// class GaugeGroup {
 | 
			
		||||
//
 | 
			
		||||
// around it.
 | 
			
		||||
//
 | 
			
		||||
// Please note that the unconventional file extension makes sure that it
 | 
			
		||||
// doesn't get found by the scripts/filelist during bootstrapping.
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
template <ONLY_IF_SU>
 | 
			
		||||
static int su2subgroups(GroupName::SU) { return (ncolour * (ncolour - 1)) / 2; }
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// There are N^2-1 generators for SU(N).
 | 
			
		||||
//
 | 
			
		||||
// We take a traceless hermitian generator basis as follows
 | 
			
		||||
//
 | 
			
		||||
// * Normalisation: trace ta tb = 1/2 delta_ab = T_F delta_ab
 | 
			
		||||
//   T_F = 1/2  for SU(N) groups
 | 
			
		||||
//
 | 
			
		||||
// * Off diagonal
 | 
			
		||||
//    - pairs of rows i1,i2 behaving like pauli matrices signma_x, sigma_y
 | 
			
		||||
//
 | 
			
		||||
//    - there are (Nc-1-i1) slots for i2 on each row [ x  0  x ]
 | 
			
		||||
//      direct count off each row
 | 
			
		||||
//
 | 
			
		||||
//    - Sum of all pairs is Nc(Nc-1)/2: proof arithmetic series
 | 
			
		||||
//
 | 
			
		||||
//      (Nc-1) + (Nc-2)+...  1      ==> Nc*(Nc-1)/2
 | 
			
		||||
//      1+ 2+          +   + Nc-1
 | 
			
		||||
//
 | 
			
		||||
//    - There are 2 x Nc (Nc-1)/ 2 of these = Nc^2 - Nc
 | 
			
		||||
//
 | 
			
		||||
//    - We enumerate the row-col pairs.
 | 
			
		||||
//    - for each row col pair there is a (sigma_x) and a (sigma_y) like
 | 
			
		||||
//    generator
 | 
			
		||||
//
 | 
			
		||||
//
 | 
			
		||||
//   t^a_ij = { in 0.. Nc(Nc-1)/2 -1} =>  1/2(delta_{i,i1} delta_{j,i2} +
 | 
			
		||||
//   delta_{i,i1} delta_{j,i2})
 | 
			
		||||
//   t^a_ij = { in Nc(Nc-1)/2 ... Nc(Nc-1) - 1} =>  i/2( delta_{i,i1}
 | 
			
		||||
//   delta_{j,i2} - i delta_{i,i1} delta_{j,i2})
 | 
			
		||||
//
 | 
			
		||||
// * Diagonal; must be traceless and normalised
 | 
			
		||||
//   - Sequence is
 | 
			
		||||
//   N  (1,-1,0,0...)
 | 
			
		||||
//   N  (1, 1,-2,0...)
 | 
			
		||||
//   N  (1, 1, 1,-3,0...)
 | 
			
		||||
//   N  (1, 1, 1, 1,-4,0...)
 | 
			
		||||
//
 | 
			
		||||
//   where 1/2 = N^2 (1+.. m^2)etc.... for the m-th diagonal generator
 | 
			
		||||
//   NB this gives the famous SU3 result for su2 index 8
 | 
			
		||||
//
 | 
			
		||||
//   N= sqrt(1/2 . 1/6 ) = 1/2 . 1/sqrt(3)
 | 
			
		||||
//
 | 
			
		||||
//   ( 1      )
 | 
			
		||||
//   (    1   ) / sqrt(3) /2  = 1/2 lambda_8
 | 
			
		||||
//   (      -2)
 | 
			
		||||
//
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template <class cplx, ONLY_IF_SU>
 | 
			
		||||
static void generator(int lieIndex, iGroupMatrix<cplx> &ta, GroupName::SU) {
 | 
			
		||||
  // map lie index to which type of generator
 | 
			
		||||
  int diagIndex;
 | 
			
		||||
  int su2Index;
 | 
			
		||||
  int sigxy;
 | 
			
		||||
  int NNm1 = ncolour * (ncolour - 1);
 | 
			
		||||
  if (lieIndex >= NNm1) {
 | 
			
		||||
    diagIndex = lieIndex - NNm1;
 | 
			
		||||
    generatorDiagonal(diagIndex, ta);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
  sigxy = lieIndex & 0x1;  // even or odd
 | 
			
		||||
  su2Index = lieIndex >> 1;
 | 
			
		||||
  if (sigxy)
 | 
			
		||||
    generatorSigmaY(su2Index, ta);
 | 
			
		||||
  else
 | 
			
		||||
    generatorSigmaX(su2Index, ta);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class cplx, ONLY_IF_SU>
 | 
			
		||||
static void generatorSigmaY(int su2Index, iGroupMatrix<cplx> &ta) {
 | 
			
		||||
  ta = Zero();
 | 
			
		||||
  int i1, i2;
 | 
			
		||||
  su2SubGroupIndex(i1, i2, su2Index);
 | 
			
		||||
  ta()()(i1, i2) = 1.0;
 | 
			
		||||
  ta()()(i2, i1) = 1.0;
 | 
			
		||||
  ta = ta * 0.5;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class cplx, ONLY_IF_SU>
 | 
			
		||||
static void generatorSigmaX(int su2Index, iGroupMatrix<cplx> &ta) {
 | 
			
		||||
  ta = Zero();
 | 
			
		||||
  cplx i(0.0, 1.0);
 | 
			
		||||
  int i1, i2;
 | 
			
		||||
  su2SubGroupIndex(i1, i2, su2Index);
 | 
			
		||||
  ta()()(i1, i2) = i;
 | 
			
		||||
  ta()()(i2, i1) = -i;
 | 
			
		||||
  ta = ta * 0.5;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class cplx, ONLY_IF_SU>
 | 
			
		||||
static void generatorDiagonal(int diagIndex, iGroupMatrix<cplx> &ta) {
 | 
			
		||||
  // diag ({1, 1, ..., 1}(k-times), -k, 0, 0, ...)
 | 
			
		||||
  ta = Zero();
 | 
			
		||||
  int k = diagIndex + 1;                  // diagIndex starts from 0
 | 
			
		||||
  for (int i = 0; i <= diagIndex; i++) {  // k iterations
 | 
			
		||||
    ta()()(i, i) = 1.0;
 | 
			
		||||
  }
 | 
			
		||||
  ta()()(k, k) = -k;  // indexing starts from 0
 | 
			
		||||
  RealD nrm = 1.0 / std::sqrt(2.0 * k * (k + 1));
 | 
			
		||||
  ta = ta * nrm;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Map a su2 subgroup number to the pair of rows that are non zero
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
static void su2SubGroupIndex(int &i1, int &i2, int su2_index, GroupName::SU) {
 | 
			
		||||
  assert((su2_index >= 0) && (su2_index < (ncolour * (ncolour - 1)) / 2));
 | 
			
		||||
 | 
			
		||||
  int spare = su2_index;
 | 
			
		||||
  for (i1 = 0; spare >= (ncolour - 1 - i1); i1++) {
 | 
			
		||||
    spare = spare - (ncolour - 1 - i1);  // remove the Nc-1-i1 terms
 | 
			
		||||
  }
 | 
			
		||||
  i2 = i1 + 1 + spare;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Pull out a subgroup and project on to real coeffs x pauli basis
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template <class vcplx, ONLY_IF_SU>
 | 
			
		||||
static void su2Extract(Lattice<iSinglet<vcplx> > &Determinant,
 | 
			
		||||
                       Lattice<iSU2Matrix<vcplx> > &subgroup,
 | 
			
		||||
                       const Lattice<iGroupMatrix<vcplx> > &source,
 | 
			
		||||
                       int su2_index) {
 | 
			
		||||
  GridBase *grid(source.Grid());
 | 
			
		||||
  conformable(subgroup, source);
 | 
			
		||||
  conformable(subgroup, Determinant);
 | 
			
		||||
  int i0, i1;
 | 
			
		||||
  su2SubGroupIndex(i0, i1, su2_index);
 | 
			
		||||
 | 
			
		||||
  autoView(subgroup_v, subgroup, AcceleratorWrite);
 | 
			
		||||
  autoView(source_v, source, AcceleratorRead);
 | 
			
		||||
  autoView(Determinant_v, Determinant, AcceleratorWrite);
 | 
			
		||||
  accelerator_for(ss, grid->oSites(), 1, {
 | 
			
		||||
    subgroup_v[ss]()()(0, 0) = source_v[ss]()()(i0, i0);
 | 
			
		||||
    subgroup_v[ss]()()(0, 1) = source_v[ss]()()(i0, i1);
 | 
			
		||||
    subgroup_v[ss]()()(1, 0) = source_v[ss]()()(i1, i0);
 | 
			
		||||
    subgroup_v[ss]()()(1, 1) = source_v[ss]()()(i1, i1);
 | 
			
		||||
 | 
			
		||||
    iSU2Matrix<vcplx> Sigma = subgroup_v[ss];
 | 
			
		||||
 | 
			
		||||
    Sigma = Sigma - adj(Sigma) + trace(adj(Sigma));
 | 
			
		||||
 | 
			
		||||
    subgroup_v[ss] = Sigma;
 | 
			
		||||
 | 
			
		||||
    // this should be purely real
 | 
			
		||||
    Determinant_v[ss] =
 | 
			
		||||
        Sigma()()(0, 0) * Sigma()()(1, 1) - Sigma()()(0, 1) * Sigma()()(1, 0);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Set matrix to one and insert a pauli subgroup
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template <class vcplx, ONLY_IF_SU>
 | 
			
		||||
static void su2Insert(const Lattice<iSU2Matrix<vcplx> > &subgroup,
 | 
			
		||||
                      Lattice<iGroupMatrix<vcplx> > &dest, int su2_index) {
 | 
			
		||||
  GridBase *grid(dest.Grid());
 | 
			
		||||
  conformable(subgroup, dest);
 | 
			
		||||
  int i0, i1;
 | 
			
		||||
  su2SubGroupIndex(i0, i1, su2_index);
 | 
			
		||||
 | 
			
		||||
  dest = 1.0;  // start out with identity
 | 
			
		||||
  autoView(dest_v, dest, AcceleratorWrite);
 | 
			
		||||
  autoView(subgroup_v, subgroup, AcceleratorRead);
 | 
			
		||||
  accelerator_for(ss, grid->oSites(), 1, {
 | 
			
		||||
    dest_v[ss]()()(i0, i0) = subgroup_v[ss]()()(0, 0);
 | 
			
		||||
    dest_v[ss]()()(i0, i1) = subgroup_v[ss]()()(0, 1);
 | 
			
		||||
    dest_v[ss]()()(i1, i0) = subgroup_v[ss]()()(1, 0);
 | 
			
		||||
    dest_v[ss]()()(i1, i1) = subgroup_v[ss]()()(1, 1);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////
 | 
			
		||||
// Generate e^{ Re Tr Staple Link} dlink
 | 
			
		||||
//
 | 
			
		||||
// *** Note Staple should be appropriate linear compbination between all
 | 
			
		||||
// staples.
 | 
			
		||||
// *** If already by beta pass coefficient 1.0.
 | 
			
		||||
// *** This routine applies the additional 1/Nc factor that comes after trace
 | 
			
		||||
// in action.
 | 
			
		||||
//
 | 
			
		||||
///////////////////////////////////////////////
 | 
			
		||||
template <ONLY_IF_SU>
 | 
			
		||||
static void SubGroupHeatBath(
 | 
			
		||||
    GridSerialRNG &sRNG, GridParallelRNG &pRNG,
 | 
			
		||||
    RealD beta,  // coeff multiplying staple in action (with no 1/Nc)
 | 
			
		||||
    LatticeMatrix &link,
 | 
			
		||||
    const LatticeMatrix &barestaple,  // multiplied by action coeffs so th
 | 
			
		||||
    int su2_subgroup, int nheatbath, LatticeInteger &wheremask) {
 | 
			
		||||
  GridBase *grid = link.Grid();
 | 
			
		||||
 | 
			
		||||
  const RealD twopi = 2.0 * M_PI;
 | 
			
		||||
 | 
			
		||||
  LatticeMatrix staple(grid);
 | 
			
		||||
 | 
			
		||||
  staple = barestaple * (beta / ncolour);
 | 
			
		||||
 | 
			
		||||
  LatticeMatrix V(grid);
 | 
			
		||||
  V = link * staple;
 | 
			
		||||
 | 
			
		||||
  // Subgroup manipulation in the lie algebra space
 | 
			
		||||
  LatticeSU2Matrix u(
 | 
			
		||||
      grid);  // Kennedy pendleton "u" real projected normalised Sigma
 | 
			
		||||
  LatticeSU2Matrix uinv(grid);
 | 
			
		||||
  LatticeSU2Matrix ua(grid);  // a in pauli form
 | 
			
		||||
  LatticeSU2Matrix b(grid);   // rotated matrix after hb
 | 
			
		||||
 | 
			
		||||
  // Some handy constant fields
 | 
			
		||||
  LatticeComplex ones(grid);
 | 
			
		||||
  ones = 1.0;
 | 
			
		||||
  LatticeComplex zeros(grid);
 | 
			
		||||
  zeros = Zero();
 | 
			
		||||
  LatticeReal rones(grid);
 | 
			
		||||
  rones = 1.0;
 | 
			
		||||
  LatticeReal rzeros(grid);
 | 
			
		||||
  rzeros = Zero();
 | 
			
		||||
  LatticeComplex udet(grid);  // determinant of real(staple)
 | 
			
		||||
  LatticeInteger mask_true(grid);
 | 
			
		||||
  mask_true = 1;
 | 
			
		||||
  LatticeInteger mask_false(grid);
 | 
			
		||||
  mask_false = 0;
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
    PLB 156 P393 (1985) (Kennedy and Pendleton)
 | 
			
		||||
 | 
			
		||||
    Note: absorb "beta" into the def of sigma compared to KP paper; staple
 | 
			
		||||
    passed to this routine has "beta" already multiplied in
 | 
			
		||||
 | 
			
		||||
    Action linear in links h and of form:
 | 
			
		||||
 | 
			
		||||
    beta S = beta  Sum_p (1 - 1/Nc Re Tr Plaq )
 | 
			
		||||
 | 
			
		||||
    Writing Sigma = 1/Nc (beta Sigma') where sum over staples is "Sigma' "
 | 
			
		||||
 | 
			
		||||
    beta S = const - beta/Nc Re Tr h Sigma'
 | 
			
		||||
    = const - Re Tr h Sigma
 | 
			
		||||
 | 
			
		||||
    Decompose h and Sigma into (1, sigma_j) ; h_i real, h^2=1, Sigma_i complex
 | 
			
		||||
    arbitrary.
 | 
			
		||||
 | 
			
		||||
    Tr h Sigma = h_i Sigma_j Tr (sigma_i sigma_j)  = h_i Sigma_j 2 delta_ij
 | 
			
		||||
    Re Tr h Sigma = 2 h_j Re Sigma_j
 | 
			
		||||
 | 
			
		||||
    Normalised re Sigma_j = xi u_j
 | 
			
		||||
 | 
			
		||||
    With u_j a unit vector and U can be in SU(2);
 | 
			
		||||
 | 
			
		||||
    Re Tr h Sigma = 2 h_j Re Sigma_j = 2 xi (h.u)
 | 
			
		||||
 | 
			
		||||
    4xi^2 = Det [ Sig - Sig^dag  + 1 Tr Sigdag]
 | 
			
		||||
    u   = 1/2xi [ Sig - Sig^dag  + 1 Tr Sigdag]
 | 
			
		||||
 | 
			
		||||
    xi = sqrt(Det)/2;
 | 
			
		||||
 | 
			
		||||
    Write a= u h in SU(2); a has pauli decomp a_j;
 | 
			
		||||
 | 
			
		||||
    Note: Product b' xi is unvariant because scaling Sigma leaves
 | 
			
		||||
    normalised vector "u" fixed; Can rescale Sigma so b' = 1.
 | 
			
		||||
  */
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////
 | 
			
		||||
  // Real part of Pauli decomposition
 | 
			
		||||
  // Note a subgroup can project to zero in cold start
 | 
			
		||||
  ////////////////////////////////////////////////////////
 | 
			
		||||
  su2Extract(udet, u, V, su2_subgroup);
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
  // Normalising this vector if possible; else identity
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
  LatticeComplex xi(grid);
 | 
			
		||||
 | 
			
		||||
  LatticeSU2Matrix lident(grid);
 | 
			
		||||
 | 
			
		||||
  SU2Matrix ident = Complex(1.0);
 | 
			
		||||
  SU2Matrix pauli1;
 | 
			
		||||
  GaugeGroup<2, GroupName::SU>::generator(0, pauli1);
 | 
			
		||||
  SU2Matrix pauli2;
 | 
			
		||||
  GaugeGroup<2, GroupName::SU>::generator(1, pauli2);
 | 
			
		||||
  SU2Matrix pauli3;
 | 
			
		||||
  GaugeGroup<2, GroupName::SU>::generator(2, pauli3);
 | 
			
		||||
  pauli1 = timesI(pauli1) * 2.0;
 | 
			
		||||
  pauli2 = timesI(pauli2) * 2.0;
 | 
			
		||||
  pauli3 = timesI(pauli3) * 2.0;
 | 
			
		||||
 | 
			
		||||
  LatticeComplex cone(grid);
 | 
			
		||||
  LatticeReal adet(grid);
 | 
			
		||||
  adet = abs(toReal(udet));
 | 
			
		||||
  lident = Complex(1.0);
 | 
			
		||||
  cone = Complex(1.0);
 | 
			
		||||
  Real machine_epsilon = 1.0e-7;
 | 
			
		||||
  u = where(adet > machine_epsilon, u, lident);
 | 
			
		||||
  udet = where(adet > machine_epsilon, udet, cone);
 | 
			
		||||
 | 
			
		||||
  xi = 0.5 * sqrt(udet);        // 4xi^2 = Det [ Sig - Sig^dag  + 1 Tr Sigdag]
 | 
			
		||||
  u = 0.5 * u * pow(xi, -1.0);  //  u   = 1/2xi [ Sig - Sig^dag  + 1 Tr Sigdag]
 | 
			
		||||
 | 
			
		||||
  // Debug test for sanity
 | 
			
		||||
  uinv = adj(u);
 | 
			
		||||
  b = u * uinv - 1.0;
 | 
			
		||||
  assert(norm2(b) < 1.0e-4);
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
    Measure: Haar measure dh has d^4a delta(1-|a^2|)
 | 
			
		||||
    In polars:
 | 
			
		||||
    da = da0 r^2 sin theta dr dtheta dphi delta( 1 - r^2 -a0^2)
 | 
			
		||||
    = da0 r^2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r)(sqrt(1-a0^) +
 | 
			
		||||
    r) )
 | 
			
		||||
    = da0 r/2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r) )
 | 
			
		||||
 | 
			
		||||
    Action factor Q(h) dh  = e^-S[h]  dh =  e^{  xi Tr uh} dh    // beta
 | 
			
		||||
    enters through xi =  e^{2 xi (h.u)} dh =  e^{2 xi h0u0}.e^{2 xi h1u1}.e^{2
 | 
			
		||||
    xi h2u2}.e^{2 xi h3u3} dh
 | 
			
		||||
 | 
			
		||||
    Therefore for each site, take xi for that site
 | 
			
		||||
    i) generate  |a0|<1 with dist
 | 
			
		||||
    (1-a0^2)^0.5 e^{2 xi a0 } da0
 | 
			
		||||
 | 
			
		||||
    Take alpha = 2 xi  = 2 xi [ recall 2 beta/Nc unmod staple norm];
 | 
			
		||||
    hence 2.0/Nc factor in Chroma ] A. Generate two uniformly distributed
 | 
			
		||||
    pseudo-random numbers R and R', R'', R''' in the unit interval; B. Set X =
 | 
			
		||||
    -(ln R)/alpha, X' =-(ln R')/alpha; C. Set C = cos^2(2pi R"), with R"
 | 
			
		||||
    another uniform random number in [0,1] ; D. Set A = XC; E. Let d  = X'+A;
 | 
			
		||||
    F. If R'''^2 :> 1 - 0.5 d,  go back to A;
 | 
			
		||||
    G. Set a0 = 1 - d;
 | 
			
		||||
 | 
			
		||||
    Note that in step D setting B ~ X - A and using B in place of A in step E
 | 
			
		||||
    will generate a second independent a 0 value.
 | 
			
		||||
  */
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////
 | 
			
		||||
  // count the number of sites by picking "1"'s out of hat
 | 
			
		||||
  /////////////////////////////////////////////////////////
 | 
			
		||||
  Integer hit = 0;
 | 
			
		||||
  LatticeReal rtmp(grid);
 | 
			
		||||
  rtmp = where(wheremask, rones, rzeros);
 | 
			
		||||
  RealD numSites = sum(rtmp);
 | 
			
		||||
  RealD numAccepted;
 | 
			
		||||
  LatticeInteger Accepted(grid);
 | 
			
		||||
  Accepted = Zero();
 | 
			
		||||
  LatticeInteger newlyAccepted(grid);
 | 
			
		||||
 | 
			
		||||
  std::vector<LatticeReal> xr(4, grid);
 | 
			
		||||
  std::vector<LatticeReal> a(4, grid);
 | 
			
		||||
  LatticeReal d(grid);
 | 
			
		||||
  d = Zero();
 | 
			
		||||
  LatticeReal alpha(grid);
 | 
			
		||||
 | 
			
		||||
  //    std::cout<<GridLogMessage<<"xi "<<xi <<std::endl;
 | 
			
		||||
  xi = 2.0 * xi;
 | 
			
		||||
  alpha = toReal(xi);
 | 
			
		||||
 | 
			
		||||
  do {
 | 
			
		||||
    // A. Generate two uniformly distributed pseudo-random numbers R and R',
 | 
			
		||||
    // R'', R''' in the unit interval;
 | 
			
		||||
    random(pRNG, xr[0]);
 | 
			
		||||
    random(pRNG, xr[1]);
 | 
			
		||||
    random(pRNG, xr[2]);
 | 
			
		||||
    random(pRNG, xr[3]);
 | 
			
		||||
 | 
			
		||||
    // B. Set X = - ln R/alpha, X' = -ln R'/alpha
 | 
			
		||||
    xr[1] = -log(xr[1]) / alpha;
 | 
			
		||||
    xr[2] = -log(xr[2]) / alpha;
 | 
			
		||||
 | 
			
		||||
    // C. Set C = cos^2(2piR'')
 | 
			
		||||
    xr[3] = cos(xr[3] * twopi);
 | 
			
		||||
    xr[3] = xr[3] * xr[3];
 | 
			
		||||
 | 
			
		||||
    LatticeReal xrsq(grid);
 | 
			
		||||
 | 
			
		||||
    // D. Set A = XC;
 | 
			
		||||
    // E. Let d  = X'+A;
 | 
			
		||||
    xrsq = xr[2] + xr[1] * xr[3];
 | 
			
		||||
 | 
			
		||||
    d = where(Accepted, d, xr[2] + xr[1] * xr[3]);
 | 
			
		||||
 | 
			
		||||
    // F. If R'''^2 :> 1 - 0.5 d,  go back to A;
 | 
			
		||||
    LatticeReal thresh(grid);
 | 
			
		||||
    thresh = 1.0 - d * 0.5;
 | 
			
		||||
    xrsq = xr[0] * xr[0];
 | 
			
		||||
    LatticeInteger ione(grid);
 | 
			
		||||
    ione = 1;
 | 
			
		||||
    LatticeInteger izero(grid);
 | 
			
		||||
    izero = Zero();
 | 
			
		||||
 | 
			
		||||
    newlyAccepted = where(xrsq < thresh, ione, izero);
 | 
			
		||||
    Accepted = where(newlyAccepted, newlyAccepted, Accepted);
 | 
			
		||||
    Accepted = where(wheremask, Accepted, izero);
 | 
			
		||||
 | 
			
		||||
    // FIXME need an iSum for integer to avoid overload on return type??
 | 
			
		||||
    rtmp = where(Accepted, rones, rzeros);
 | 
			
		||||
    numAccepted = sum(rtmp);
 | 
			
		||||
 | 
			
		||||
    hit++;
 | 
			
		||||
 | 
			
		||||
  } while ((numAccepted < numSites) && (hit < nheatbath));
 | 
			
		||||
 | 
			
		||||
  // G. Set a0 = 1 - d;
 | 
			
		||||
  a[0] = Zero();
 | 
			
		||||
  a[0] = where(wheremask, 1.0 - d, a[0]);
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////
 | 
			
		||||
  //    ii) generate a_i uniform on two sphere radius (1-a0^2)^0.5
 | 
			
		||||
  //////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  LatticeReal a123mag(grid);
 | 
			
		||||
  a123mag = sqrt(abs(1.0 - a[0] * a[0]));
 | 
			
		||||
 | 
			
		||||
  LatticeReal cos_theta(grid);
 | 
			
		||||
  LatticeReal sin_theta(grid);
 | 
			
		||||
  LatticeReal phi(grid);
 | 
			
		||||
 | 
			
		||||
  random(pRNG, phi);
 | 
			
		||||
  phi = phi * twopi;  // uniform in [0,2pi]
 | 
			
		||||
  random(pRNG, cos_theta);
 | 
			
		||||
  cos_theta = (cos_theta * 2.0) - 1.0;  // uniform in [-1,1]
 | 
			
		||||
  sin_theta = sqrt(abs(1.0 - cos_theta * cos_theta));
 | 
			
		||||
 | 
			
		||||
  a[1] = a123mag * sin_theta * cos(phi);
 | 
			
		||||
  a[2] = a123mag * sin_theta * sin(phi);
 | 
			
		||||
  a[3] = a123mag * cos_theta;
 | 
			
		||||
 | 
			
		||||
  ua = toComplex(a[0]) * ident + toComplex(a[1]) * pauli1 +
 | 
			
		||||
       toComplex(a[2]) * pauli2 + toComplex(a[3]) * pauli3;
 | 
			
		||||
 | 
			
		||||
  b = 1.0;
 | 
			
		||||
  b = where(wheremask, uinv * ua, b);
 | 
			
		||||
  su2Insert(b, V, su2_subgroup);
 | 
			
		||||
 | 
			
		||||
  // mask the assignment back based on Accptance
 | 
			
		||||
  link = where(Accepted, V * link, link);
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////
 | 
			
		||||
  // Debug Checks
 | 
			
		||||
  // SU2 check
 | 
			
		||||
  LatticeSU2Matrix check(grid);  // rotated matrix after hb
 | 
			
		||||
  u = Zero();
 | 
			
		||||
  check = ua * adj(ua) - 1.0;
 | 
			
		||||
  check = where(Accepted, check, u);
 | 
			
		||||
  assert(norm2(check) < 1.0e-4);
 | 
			
		||||
 | 
			
		||||
  check = b * adj(b) - 1.0;
 | 
			
		||||
  check = where(Accepted, check, u);
 | 
			
		||||
  assert(norm2(check) < 1.0e-4);
 | 
			
		||||
 | 
			
		||||
  LatticeMatrix Vcheck(grid);
 | 
			
		||||
  Vcheck = Zero();
 | 
			
		||||
  Vcheck = where(Accepted, V * adj(V) - 1.0, Vcheck);
 | 
			
		||||
  //    std::cout<<GridLogMessage << "SU3 check " <<norm2(Vcheck)<<std::endl;
 | 
			
		||||
  assert(norm2(Vcheck) < 1.0e-4);
 | 
			
		||||
 | 
			
		||||
  // Verify the link stays in SU(3)
 | 
			
		||||
  //    std::cout<<GridLogMessage <<"Checking the modified link"<<std::endl;
 | 
			
		||||
  Vcheck = link * adj(link) - 1.0;
 | 
			
		||||
  assert(norm2(Vcheck) < 1.0e-4);
 | 
			
		||||
  /////////////////////////////////
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <ONLY_IF_SU>
 | 
			
		||||
static void testGenerators(GroupName::SU) {
 | 
			
		||||
  Matrix ta;
 | 
			
		||||
  Matrix tb;
 | 
			
		||||
  std::cout << GridLogMessage
 | 
			
		||||
            << "Fundamental - Checking trace ta tb is 0.5 delta_ab"
 | 
			
		||||
            << std::endl;
 | 
			
		||||
  for (int a = 0; a < AdjointDimension; a++) {
 | 
			
		||||
    for (int b = 0; b < AdjointDimension; b++) {
 | 
			
		||||
      generator(a, ta);
 | 
			
		||||
      generator(b, tb);
 | 
			
		||||
      Complex tr = TensorRemove(trace(ta * tb));
 | 
			
		||||
      std::cout << GridLogMessage << "(" << a << "," << b << ") =  " << tr
 | 
			
		||||
                << std::endl;
 | 
			
		||||
      if (a == b) assert(abs(tr - Complex(0.5)) < 1.0e-6);
 | 
			
		||||
      if (a != b) assert(abs(tr) < 1.0e-6);
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogMessage << "Fundamental - Checking if hermitian"
 | 
			
		||||
            << std::endl;
 | 
			
		||||
  for (int a = 0; a < AdjointDimension; a++) {
 | 
			
		||||
    generator(a, ta);
 | 
			
		||||
    std::cout << GridLogMessage << a << std::endl;
 | 
			
		||||
    assert(norm2(ta - adj(ta)) < 1.0e-6);
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogMessage << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "Fundamental - Checking if traceless"
 | 
			
		||||
            << std::endl;
 | 
			
		||||
  for (int a = 0; a < AdjointDimension; a++) {
 | 
			
		||||
    generator(a, ta);
 | 
			
		||||
    Complex tr = TensorRemove(trace(ta));
 | 
			
		||||
    std::cout << GridLogMessage << a << " " << std::endl;
 | 
			
		||||
    assert(abs(tr) < 1.0e-6);
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogMessage << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template <int N, class vtype>
 | 
			
		||||
static Lattice<iScalar<iScalar<iMatrix<vtype, N> > > >
 | 
			
		||||
ProjectOnGeneralGroup(const Lattice<iScalar<iScalar<iMatrix<vtype, N> > > > &Umu, GroupName::SU) {
 | 
			
		||||
  return ProjectOnGroup(Umu);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class vtype>
 | 
			
		||||
accelerator_inline static iScalar<vtype> ProjectOnGeneralGroup(const iScalar<vtype> &r, GroupName::SU) {
 | 
			
		||||
  return ProjectOnGroup(r);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class vtype, int N>
 | 
			
		||||
accelerator_inline static iVector<vtype,N> ProjectOnGeneralGroup(const iVector<vtype,N> &r, GroupName::SU) {
 | 
			
		||||
  return ProjectOnGroup(r);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
 | 
			
		||||
accelerator_inline static iMatrix<vtype,N> ProjectOnGeneralGroup(const iMatrix<vtype,N> &arg, GroupName::SU) {
 | 
			
		||||
  return ProjectOnGroup(arg);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename LatticeMatrixType>
 | 
			
		||||
static void taProj(const LatticeMatrixType &in, LatticeMatrixType &out, GroupName::SU) {
 | 
			
		||||
  out = Ta(in);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Fundamental rep gauge xform
 | 
			
		||||
 */
 | 
			
		||||
template<typename Fundamental,typename GaugeMat>
 | 
			
		||||
static void GaugeTransformFundamental( Fundamental &ferm, GaugeMat &g){
 | 
			
		||||
  GridBase *grid = ferm._grid;
 | 
			
		||||
  conformable(grid,g._grid);
 | 
			
		||||
  ferm = g*ferm;
 | 
			
		||||
}
 | 
			
		||||
/*
 | 
			
		||||
 * Adjoint rep gauge xform
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
template<typename Gimpl>
 | 
			
		||||
static void GaugeTransform(typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
 | 
			
		||||
  GridBase *grid = Umu.Grid();
 | 
			
		||||
  conformable(grid,g.Grid());
 | 
			
		||||
 | 
			
		||||
  typename Gimpl::GaugeLinkField U(grid);
 | 
			
		||||
  typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
 | 
			
		||||
 | 
			
		||||
  for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
    U= PeekIndex<LorentzIndex>(Umu,mu);
 | 
			
		||||
    U = g*U*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
 | 
			
		||||
    PokeIndex<LorentzIndex>(Umu,U,mu);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
template<typename Gimpl>
 | 
			
		||||
static void GaugeTransform( std::vector<typename Gimpl::GaugeLinkField> &U, typename Gimpl::GaugeLinkField &g){
 | 
			
		||||
  GridBase *grid = g.Grid();
 | 
			
		||||
  typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
 | 
			
		||||
  for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
    U[mu] = g*U[mu]*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
template<typename Gimpl>
 | 
			
		||||
static void RandomGaugeTransform(GridParallelRNG &pRNG, typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
 | 
			
		||||
  LieRandomize(pRNG,g,1.0);
 | 
			
		||||
  GaugeTransform<Gimpl>(Umu,g);
 | 
			
		||||
}
 | 
			
		||||
@@ -51,10 +51,6 @@ public:
 | 
			
		||||
  typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> > LatticeAdjFieldF;
 | 
			
		||||
  typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> > LatticeAdjFieldD;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<iScalar<iScalar<iVector<vComplex, Dimension> > > >  LatticeAdjVector;
 | 
			
		||||
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
@@ -62,8 +58,8 @@ public:
 | 
			
		||||
    // returns i(T_Adj)^index necessary for the projectors
 | 
			
		||||
    // see definitions above
 | 
			
		||||
    iAdjTa = Zero();
 | 
			
		||||
    Vector<iSUnMatrix<cplx> > ta(ncolour * ncolour - 1);
 | 
			
		||||
    iSUnMatrix<cplx> tmp;
 | 
			
		||||
    Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > ta(ncolour * ncolour - 1);
 | 
			
		||||
    typename SU<ncolour>::template iSUnMatrix<cplx> tmp;
 | 
			
		||||
 | 
			
		||||
    // FIXME not very efficient to get all the generators everytime
 | 
			
		||||
    for (int a = 0; a < Dimension; a++) SU<ncolour>::generator(a, ta[a]);
 | 
			
		||||
@@ -71,7 +67,8 @@ public:
 | 
			
		||||
    for (int a = 0; a < Dimension; a++) {
 | 
			
		||||
      tmp = ta[a] * ta[Index] - ta[Index] * ta[a];
 | 
			
		||||
      for (int b = 0; b < (ncolour * ncolour - 1); b++) {
 | 
			
		||||
        iSUnMatrix<cplx> tmp1 = 2.0 * tmp * ta[b];  // 2.0 from the normalization
 | 
			
		||||
        typename SU<ncolour>::template iSUnMatrix<cplx> tmp1 =
 | 
			
		||||
	  2.0 * tmp * ta[b];  // 2.0 from the normalization
 | 
			
		||||
        Complex iTr = TensorRemove(timesI(trace(tmp1)));
 | 
			
		||||
        //iAdjTa()()(b, a) = iTr;
 | 
			
		||||
        iAdjTa()()(a, b) = iTr;
 | 
			
		||||
@@ -137,7 +134,8 @@ public:
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < Dimension; a++) {
 | 
			
		||||
      generator(a, iTa);
 | 
			
		||||
      pokeColour(h_out, real(trace(iTa * in)) * coefficient, a);
 | 
			
		||||
      LatticeComplex tmp = real(trace(iTa * in)) * coefficient;
 | 
			
		||||
      pokeColour(h_out, tmp, a);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										273
									
								
								Grid/qcd/utils/SUnTwoIndex.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										273
									
								
								Grid/qcd/utils/SUnTwoIndex.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,273 @@
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
//
 | 
			
		||||
// * Two index representation generators
 | 
			
		||||
//
 | 
			
		||||
// * Normalisation for the fundamental generators:
 | 
			
		||||
//   trace ta tb = 1/2 delta_ab = T_F delta_ab
 | 
			
		||||
//   T_F = 1/2  for SU(N) groups
 | 
			
		||||
//
 | 
			
		||||
//
 | 
			
		||||
//   base for NxN two index (anti-symmetric) matrices
 | 
			
		||||
//   normalized to 1 (d_ij is the kroenecker delta)
 | 
			
		||||
//
 | 
			
		||||
//   (e^(ij)_{kl} = 1 / sqrt(2) (d_ik d_jl +/- d_jk d_il)
 | 
			
		||||
//
 | 
			
		||||
//   Then the generators are written as
 | 
			
		||||
//
 | 
			
		||||
//   (iT_a)^(ij)(lk) = i * ( tr[e^(ij)^dag e^(lk) T^trasp_a] +
 | 
			
		||||
//   tr[e^(lk)e^(ij)^dag T_a] )  //
 | 
			
		||||
//   
 | 
			
		||||
//
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
// Authors: David Preti, Guido Cossu
 | 
			
		||||
 | 
			
		||||
#ifndef QCD_UTIL_SUN2INDEX_H
 | 
			
		||||
#define QCD_UTIL_SUN2INDEX_H
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
enum TwoIndexSymmetry { Symmetric = 1, AntiSymmetric = -1 };
 | 
			
		||||
 | 
			
		||||
inline Real delta(int a, int b) { return (a == b) ? 1.0 : 0.0; }
 | 
			
		||||
 | 
			
		||||
template <int ncolour, TwoIndexSymmetry S>
 | 
			
		||||
class SU_TwoIndex : public SU<ncolour> {
 | 
			
		||||
public:
 | 
			
		||||
  static const int Dimension = ncolour * (ncolour + S) / 2;
 | 
			
		||||
  static const int NumGenerators = SU<ncolour>::AdjointDimension;
 | 
			
		||||
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iSUnTwoIndexMatrix = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
 | 
			
		||||
 | 
			
		||||
  typedef iSUnTwoIndexMatrix<Complex> TIMatrix;
 | 
			
		||||
  typedef iSUnTwoIndexMatrix<ComplexF> TIMatrixF;
 | 
			
		||||
  typedef iSUnTwoIndexMatrix<ComplexD> TIMatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef iSUnTwoIndexMatrix<vComplex> vTIMatrix;
 | 
			
		||||
  typedef iSUnTwoIndexMatrix<vComplexF> vTIMatrixF;
 | 
			
		||||
  typedef iSUnTwoIndexMatrix<vComplexD> vTIMatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<vTIMatrix> LatticeTwoIndexMatrix;
 | 
			
		||||
  typedef Lattice<vTIMatrixF> LatticeTwoIndexMatrixF;
 | 
			
		||||
  typedef Lattice<vTIMatrixD> LatticeTwoIndexMatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<iVector<iScalar<iMatrix<vComplex, Dimension> >, Nd> >
 | 
			
		||||
  LatticeTwoIndexField;
 | 
			
		||||
  typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> >
 | 
			
		||||
  LatticeTwoIndexFieldF;
 | 
			
		||||
  typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> >
 | 
			
		||||
  LatticeTwoIndexFieldD;
 | 
			
		||||
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
 | 
			
		||||
 | 
			
		||||
  typedef iSUnMatrix<Complex> Matrix;
 | 
			
		||||
  typedef iSUnMatrix<ComplexF> MatrixF;
 | 
			
		||||
  typedef iSUnMatrix<ComplexD> MatrixD;
 | 
			
		||||
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void base(int Index, iSUnMatrix<cplx> &eij) {
 | 
			
		||||
    // returns (e)^(ij)_{kl} necessary for change of base U_F -> U_R
 | 
			
		||||
    assert(Index < NumGenerators);
 | 
			
		||||
    eij = Zero();
 | 
			
		||||
 | 
			
		||||
    // for the linearisation of the 2 indexes 
 | 
			
		||||
    static int a[ncolour * (ncolour - 1) / 2][2]; // store the a <-> i,j
 | 
			
		||||
    static bool filled = false;
 | 
			
		||||
    if (!filled) {
 | 
			
		||||
      int counter = 0;
 | 
			
		||||
      for (int i = 1; i < ncolour; i++) {
 | 
			
		||||
        for (int j = 0; j < i; j++) {
 | 
			
		||||
          a[counter][0] = i;
 | 
			
		||||
          a[counter][1] = j;
 | 
			
		||||
          counter++;
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
      filled = true;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (Index < ncolour * (ncolour - 1) / 2) {
 | 
			
		||||
      baseOffDiagonal(a[Index][0], a[Index][1], eij);
 | 
			
		||||
    } else {
 | 
			
		||||
      baseDiagonal(Index, eij);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void baseDiagonal(int Index, iSUnMatrix<cplx> &eij) {
 | 
			
		||||
    eij = Zero();
 | 
			
		||||
    eij()()(Index - ncolour * (ncolour - 1) / 2,
 | 
			
		||||
            Index - ncolour * (ncolour - 1) / 2) = 1.0;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void baseOffDiagonal(int i, int j, iSUnMatrix<cplx> &eij) {
 | 
			
		||||
    eij = Zero();
 | 
			
		||||
    for (int k = 0; k < ncolour; k++)
 | 
			
		||||
      for (int l = 0; l < ncolour; l++)
 | 
			
		||||
        eij()()(l, k) = delta(i, k) * delta(j, l) +
 | 
			
		||||
	  S * delta(j, k) * delta(i, l);
 | 
			
		||||
 | 
			
		||||
    RealD nrm = 1. / std::sqrt(2.0);
 | 
			
		||||
    eij = eij * nrm;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void printBase(void) {
 | 
			
		||||
    for (int gen = 0; gen < Dimension; gen++) {
 | 
			
		||||
      Matrix tmp;
 | 
			
		||||
      base(gen, tmp);
 | 
			
		||||
      std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
 | 
			
		||||
                << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << tmp << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void generator(int Index, iSUnTwoIndexMatrix<cplx> &i2indTa) {
 | 
			
		||||
    Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > ta(
 | 
			
		||||
								ncolour * ncolour - 1);
 | 
			
		||||
    Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > eij(Dimension);
 | 
			
		||||
    typename SU<ncolour>::template iSUnMatrix<cplx> tmp;
 | 
			
		||||
    i2indTa = Zero();
 | 
			
		||||
    
 | 
			
		||||
    for (int a = 0; a < ncolour * ncolour - 1; a++)
 | 
			
		||||
      SU<ncolour>::generator(a, ta[a]);
 | 
			
		||||
    
 | 
			
		||||
    for (int a = 0; a < Dimension; a++) base(a, eij[a]);
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < Dimension; a++) {
 | 
			
		||||
      tmp = transpose(ta[Index]) * adj(eij[a]) + adj(eij[a]) * ta[Index];
 | 
			
		||||
      for (int b = 0; b < Dimension; b++) {
 | 
			
		||||
        typename SU<ncolour>::template iSUnMatrix<cplx> tmp1 =
 | 
			
		||||
	  tmp * eij[b]; 
 | 
			
		||||
        Complex iTr = TensorRemove(timesI(trace(tmp1)));
 | 
			
		||||
        i2indTa()()(a, b) = iTr;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void printGenerators(void) {
 | 
			
		||||
    for (int gen = 0; gen < ncolour * ncolour - 1; gen++) {
 | 
			
		||||
      TIMatrix i2indTa;
 | 
			
		||||
      generator(gen, i2indTa);
 | 
			
		||||
      std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
 | 
			
		||||
                << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << i2indTa << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void testGenerators(void) {
 | 
			
		||||
    TIMatrix i2indTa, i2indTb;
 | 
			
		||||
    std::cout << GridLogMessage << "2IndexRep - Checking if traceless"
 | 
			
		||||
              << std::endl;
 | 
			
		||||
    for (int a = 0; a < ncolour * ncolour - 1; a++) {
 | 
			
		||||
      generator(a, i2indTa);
 | 
			
		||||
      std::cout << GridLogMessage << a << std::endl;
 | 
			
		||||
      assert(norm2(trace(i2indTa)) < 1.0e-6);
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "2IndexRep - Checking if antihermitean"
 | 
			
		||||
              << std::endl;
 | 
			
		||||
    for (int a = 0; a < ncolour * ncolour - 1; a++) {
 | 
			
		||||
      generator(a, i2indTa);
 | 
			
		||||
      std::cout << GridLogMessage << a << std::endl;
 | 
			
		||||
      assert(norm2(adj(i2indTa) + i2indTa) < 1.0e-6);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage
 | 
			
		||||
              << "2IndexRep - Checking Tr[Ta*Tb]=delta(a,b)*(N +- 2)/2"
 | 
			
		||||
              << std::endl;
 | 
			
		||||
    for (int a = 0; a < ncolour * ncolour - 1; a++) {
 | 
			
		||||
      for (int b = 0; b < ncolour * ncolour - 1; b++) {
 | 
			
		||||
        generator(a, i2indTa);
 | 
			
		||||
        generator(b, i2indTb);
 | 
			
		||||
 | 
			
		||||
        // generator returns iTa, so we need a minus sign here
 | 
			
		||||
        Complex Tr = -TensorRemove(trace(i2indTa * i2indTb));
 | 
			
		||||
        std::cout << GridLogMessage << "a=" << a << "b=" << b << "Tr=" << Tr
 | 
			
		||||
                  << std::endl;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void TwoIndexLieAlgebraMatrix(
 | 
			
		||||
				       const typename SU<ncolour>::LatticeAlgebraVector &h,
 | 
			
		||||
				       LatticeTwoIndexMatrix &out, Real scale = 1.0) {
 | 
			
		||||
    conformable(h, out);
 | 
			
		||||
    GridBase *grid = out.Grid();
 | 
			
		||||
    LatticeTwoIndexMatrix la(grid);
 | 
			
		||||
    TIMatrix i2indTa;
 | 
			
		||||
 | 
			
		||||
    out = Zero();
 | 
			
		||||
    for (int a = 0; a < ncolour * ncolour - 1; a++) {
 | 
			
		||||
      generator(a, i2indTa);
 | 
			
		||||
      la = peekColour(h, a) * i2indTa;
 | 
			
		||||
      out += la;
 | 
			
		||||
    }
 | 
			
		||||
    out *= scale;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Projects the algebra components 
 | 
			
		||||
  // of a lattice matrix ( of dimension ncol*ncol -1 )
 | 
			
		||||
  static void projectOnAlgebra(
 | 
			
		||||
			       typename SU<ncolour>::LatticeAlgebraVector &h_out,
 | 
			
		||||
			       const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
 | 
			
		||||
    conformable(h_out, in);
 | 
			
		||||
    h_out = Zero();
 | 
			
		||||
    TIMatrix i2indTa;
 | 
			
		||||
    Real coefficient = -2.0 / (ncolour + 2 * S) * scale;
 | 
			
		||||
    // 2/(Nc +/- 2) for the normalization of the trace in the two index rep
 | 
			
		||||
    for (int a = 0; a < ncolour * ncolour - 1; a++) {
 | 
			
		||||
      generator(a, i2indTa);
 | 
			
		||||
      auto tmp = real(trace(i2indTa * in)) * coefficient;
 | 
			
		||||
      pokeColour(h_out, tmp, a);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // a projector that keeps the generators stored to avoid the overhead of
 | 
			
		||||
  // recomputing them
 | 
			
		||||
  static void projector(typename SU<ncolour>::LatticeAlgebraVector &h_out,
 | 
			
		||||
                        const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
 | 
			
		||||
    conformable(h_out, in);
 | 
			
		||||
    // to store the generators
 | 
			
		||||
    static std::vector<TIMatrix> i2indTa(ncolour * ncolour -1); 
 | 
			
		||||
    h_out = Zero();
 | 
			
		||||
    static bool precalculated = false;
 | 
			
		||||
    if (!precalculated) {
 | 
			
		||||
      precalculated = true;
 | 
			
		||||
      for (int a = 0; a < ncolour * ncolour - 1; a++) generator(a, i2indTa[a]);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    Real coefficient =
 | 
			
		||||
      -2.0 / (ncolour + 2 * S) * scale;  // 2/(Nc +/- 2) for the normalization
 | 
			
		||||
    // of the trace in the two index rep
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < ncolour * ncolour - 1; a++) {
 | 
			
		||||
      auto tmp = real(trace(i2indTa[a] * in)) * coefficient;
 | 
			
		||||
      pokeColour(h_out, tmp, a);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// Some useful type names
 | 
			
		||||
typedef SU_TwoIndex<Nc, Symmetric> TwoIndexSymmMatrices;
 | 
			
		||||
typedef SU_TwoIndex<Nc, AntiSymmetric> TwoIndexAntiSymmMatrices;
 | 
			
		||||
 | 
			
		||||
typedef SU_TwoIndex<2, Symmetric> SU2TwoIndexSymm;
 | 
			
		||||
typedef SU_TwoIndex<3, Symmetric> SU3TwoIndexSymm;
 | 
			
		||||
typedef SU_TwoIndex<4, Symmetric> SU4TwoIndexSymm;
 | 
			
		||||
typedef SU_TwoIndex<5, Symmetric> SU5TwoIndexSymm;
 | 
			
		||||
 | 
			
		||||
typedef SU_TwoIndex<2, AntiSymmetric> SU2TwoIndexAntiSymm;
 | 
			
		||||
typedef SU_TwoIndex<3, AntiSymmetric> SU3TwoIndexAntiSymm;
 | 
			
		||||
typedef SU_TwoIndex<4, AntiSymmetric> SU4TwoIndexAntiSymm;
 | 
			
		||||
typedef SU_TwoIndex<5, AntiSymmetric> SU5TwoIndexAntiSymm;
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,317 +0,0 @@
 | 
			
		||||
// This file is #included into the body of the class template definition of
 | 
			
		||||
// GaugeGroup. So, image there to be
 | 
			
		||||
//
 | 
			
		||||
// template <int ncolour, class group_name>
 | 
			
		||||
// class GaugeGroup {
 | 
			
		||||
//
 | 
			
		||||
// around it.
 | 
			
		||||
//
 | 
			
		||||
// Please note that the unconventional file extension makes sure that it
 | 
			
		||||
// doesn't get found by the scripts/filelist during bootstrapping.
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
template <ONLY_IF_Sp>
 | 
			
		||||
static int su2subgroups(GroupName::Sp) { return (ncolour/2 * (ncolour/2 - 1)) / 2; }
 | 
			
		||||
 | 
			
		||||
// Sp(2N) has N(2N+1) = 2N^2+N generators
 | 
			
		||||
//
 | 
			
		||||
// normalise the generators such that
 | 
			
		||||
// Trace ( Ta Tb) = 1/2 delta_ab
 | 
			
		||||
//
 | 
			
		||||
// N generators in the cartan, 2N^2 off
 | 
			
		||||
// off diagonal:
 | 
			
		||||
//     there are 6 types named a,b,c,d and w,z
 | 
			
		||||
//     abcd are N(N-1)/2 each while wz are N each
 | 
			
		||||
 | 
			
		||||
template <class cplx, ONLY_IF_Sp>
 | 
			
		||||
static void generator(int lieIndex, iGroupMatrix<cplx> &ta, GroupName::Sp) {
 | 
			
		||||
  // map lie index into type of generators: diagonal, abcd type, wz type
 | 
			
		||||
 | 
			
		||||
  const int nsp = ncolour/2;
 | 
			
		||||
  int diagIndex;
 | 
			
		||||
  int aIndex, bIndex, cIndex, dIndex;
 | 
			
		||||
  int wIndex, zIndex;  // a,b,c,d are N(N-1)/2 and w,z are N
 | 
			
		||||
  const int mod = nsp * (nsp - 1) * 0.5;
 | 
			
		||||
  const int offdiag =
 | 
			
		||||
      2 * nsp * nsp;  // number of generators not in the cartan subalgebra
 | 
			
		||||
  const int wmod = 4 * mod;
 | 
			
		||||
  const int zmod = wmod + nsp;
 | 
			
		||||
  if (lieIndex >= offdiag) {
 | 
			
		||||
    diagIndex = lieIndex - offdiag;  // 0, ... ,N-1
 | 
			
		||||
    // std::cout << GridLogMessage << "diag type " << std::endl;
 | 
			
		||||
    generatorDiagtype(diagIndex, ta);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
  if ((lieIndex >= wmod) && (lieIndex < zmod)) {
 | 
			
		||||
    // std::cout << GridLogMessage << "w type " << std::endl;
 | 
			
		||||
    wIndex = lieIndex - wmod;  // 0, ... ,N-1
 | 
			
		||||
    generatorWtype(wIndex, ta);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
  if ((lieIndex >= zmod) && (lieIndex < offdiag)) {
 | 
			
		||||
    // std::cout << GridLogMessage << "z type " << std::endl;
 | 
			
		||||
    // std::cout << GridLogMessage << "lie index " << lieIndex << std::endl;
 | 
			
		||||
    // std::cout << GridLogMessage << "z mod " << zmod << std::endl;
 | 
			
		||||
    zIndex = lieIndex - zmod;  // 0, ... ,N-1
 | 
			
		||||
    generatorZtype(zIndex, ta);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
  if (lieIndex < mod) {  // atype 0, ... , N(N-1)/2=mod
 | 
			
		||||
    // std::cout << GridLogMessage << "a type " << std::endl;
 | 
			
		||||
    aIndex = lieIndex;
 | 
			
		||||
    // std::cout << GridLogMessage << "a indx " << aIndex << std::endl;
 | 
			
		||||
    generatorAtype(aIndex, ta);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
  if ((lieIndex >= mod) && lieIndex < 2 * mod) {  // btype mod, ... , 2mod-1
 | 
			
		||||
    // std::cout << GridLogMessage << "b type " << std::endl;
 | 
			
		||||
    bIndex = lieIndex - mod;
 | 
			
		||||
    generatorBtype(bIndex, ta);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
  if ((lieIndex >= 2 * mod) &&
 | 
			
		||||
      lieIndex < 3 * mod) {  // ctype 2mod, ... , 3mod-1
 | 
			
		||||
    // std::cout << GridLogMessage << "c type " << std::endl;
 | 
			
		||||
    cIndex = lieIndex - 2 * mod;
 | 
			
		||||
    generatorCtype(cIndex, ta);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
  if ((lieIndex >= 3 * mod) &&
 | 
			
		||||
      lieIndex < wmod) {  // ctype 3mod, ... , 4mod-1 = wmod-1
 | 
			
		||||
    // std::cout << GridLogMessage << "d type " << std::endl;
 | 
			
		||||
    dIndex = lieIndex - 3 * mod;
 | 
			
		||||
    generatorDtype(dIndex, ta);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
}  // end of generator
 | 
			
		||||
 | 
			
		||||
template <class cplx, ONLY_IF_Sp>
 | 
			
		||||
static void generatorDiagtype(int diagIndex, iGroupMatrix<cplx> &ta) {
 | 
			
		||||
  // ta(i,i) = - ta(i+N,i+N) = 1/2 for each i index of the cartan subalgebra
 | 
			
		||||
 | 
			
		||||
  const int nsp=ncolour/2;
 | 
			
		||||
  ta = Zero();
 | 
			
		||||
  RealD nrm = 1.0 / 2;
 | 
			
		||||
 | 
			
		||||
  ta()()(diagIndex, diagIndex) = nrm;
 | 
			
		||||
  ta()()(diagIndex + nsp, diagIndex + nsp) = -nrm;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class cplx, ONLY_IF_Sp>
 | 
			
		||||
static void generatorAtype(int aIndex, iGroupMatrix<cplx> &ta) {
 | 
			
		||||
  // ta(i,j) = ta(j,i) = -ta(i+N,j+N) = -ta(j+N,i+N) = 1 / 2 sqrt(2)
 | 
			
		||||
  // with i<j and i=0,...,N-2
 | 
			
		||||
  // follows that j=i+1, ... , N
 | 
			
		||||
  int i1, i2;
 | 
			
		||||
  const int nsp=ncolour/2;
 | 
			
		||||
  ta = Zero();
 | 
			
		||||
  RealD nrm = 1 / (2 * std::sqrt(2));
 | 
			
		||||
 | 
			
		||||
  su2SubGroupIndex(i1, i2, aIndex);
 | 
			
		||||
  ta()()(i1, i2) = 1;
 | 
			
		||||
  ta()()(i2, i1) = 1;
 | 
			
		||||
  ta()()(i1 + nsp, i2 + nsp) = -1;
 | 
			
		||||
  ta()()(i2 + nsp, i1 + nsp) = -1;
 | 
			
		||||
 | 
			
		||||
  ta = ta * nrm;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class cplx, ONLY_IF_Sp>
 | 
			
		||||
static void generatorBtype(int bIndex, iGroupMatrix<cplx> &ta) {
 | 
			
		||||
  // ta(i,j) = -ta(j,i) = ta(i+N,j+N) = -ta(j+N,i+N) = i / 1/ 2 sqrt(2)
 | 
			
		||||
  // with i<j and i=0,...,N-2
 | 
			
		||||
  // follows that j=i+1, ... , N-1
 | 
			
		||||
 | 
			
		||||
  const int nsp=ncolour/2;
 | 
			
		||||
  int i1, i2;
 | 
			
		||||
  ta = Zero();
 | 
			
		||||
  cplx i(0.0, 1.0);
 | 
			
		||||
  RealD nrm = 1 / (2 * std::sqrt(2));
 | 
			
		||||
  su2SubGroupIndex(i1, i2, bIndex);
 | 
			
		||||
 | 
			
		||||
  ta()()(i1, i2) = i;
 | 
			
		||||
  ta()()(i2, i1) = -i;
 | 
			
		||||
  ta()()(i1 + nsp, i2 + nsp) = i;
 | 
			
		||||
  ta()()(i2 + nsp, i1 + nsp) = -i;
 | 
			
		||||
 | 
			
		||||
  ta = ta * nrm;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class cplx, ONLY_IF_Sp>
 | 
			
		||||
static void generatorCtype(int cIndex, iGroupMatrix<cplx> &ta) {
 | 
			
		||||
  // ta(i,j+N) = ta(j,i+N) = ta(i+N,j) = ta(j+N,i) = 1 / 2 sqrt(2)
 | 
			
		||||
 | 
			
		||||
  const int nsp=ncolour/2;
 | 
			
		||||
  int i1, i2;
 | 
			
		||||
  ta = Zero();
 | 
			
		||||
  RealD nrm = 1 / (2 * std::sqrt(2));
 | 
			
		||||
  su2SubGroupIndex(i1, i2, cIndex);
 | 
			
		||||
 | 
			
		||||
  ta()()(i1, i2 + nsp) = 1;
 | 
			
		||||
  ta()()(i2, i1 + nsp) = 1;
 | 
			
		||||
  ta()()(i1 + nsp, i2) = 1;
 | 
			
		||||
  ta()()(i2 + nsp, i1) = 1;
 | 
			
		||||
 | 
			
		||||
  ta = ta * nrm;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class cplx, ONLY_IF_Sp>
 | 
			
		||||
static void generatorDtype(int dIndex, iGroupMatrix<cplx> &ta) {
 | 
			
		||||
  // ta(i,j+N) = ta(j,i+N) = -ta(i+N,j) = -ta(j+N,i) = i /  2 sqrt(2)
 | 
			
		||||
 | 
			
		||||
  const int nsp=ncolour/2;
 | 
			
		||||
  int i1, i2;
 | 
			
		||||
  ta = Zero();
 | 
			
		||||
  cplx i(0.0, 1.0);
 | 
			
		||||
  RealD nrm = 1 / (2 * std::sqrt(2));
 | 
			
		||||
  su2SubGroupIndex(i1, i2, dIndex);
 | 
			
		||||
 | 
			
		||||
  ta()()(i1, i2 + nsp) = i;
 | 
			
		||||
  ta()()(i2, i1 + nsp) = i;
 | 
			
		||||
  ta()()(i1 + nsp, i2) = -i;
 | 
			
		||||
  ta()()(i2 + nsp, i1) = -i;
 | 
			
		||||
 | 
			
		||||
  ta = ta * nrm;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class cplx, ONLY_IF_Sp>
 | 
			
		||||
static void generatorWtype(int wIndex, iGroupMatrix<cplx> &ta) {
 | 
			
		||||
  // ta(i,i+N) =  ta(i+N,i) = 1/2
 | 
			
		||||
 | 
			
		||||
  const int nsp=ncolour/2;
 | 
			
		||||
  ta = Zero();
 | 
			
		||||
  RealD nrm = 1.0 / 2;  // check
 | 
			
		||||
 | 
			
		||||
  ta()()(wIndex, wIndex + nsp) = 1;
 | 
			
		||||
  ta()()(wIndex + nsp, wIndex) = 1;
 | 
			
		||||
 | 
			
		||||
  ta = ta * nrm;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class cplx, ONLY_IF_Sp>
 | 
			
		||||
static void generatorZtype(int zIndex, iGroupMatrix<cplx> &ta) {
 | 
			
		||||
  // ta(i,i+N) = - ta(i+N,i) = i/2
 | 
			
		||||
 | 
			
		||||
  const int nsp=ncolour/2;
 | 
			
		||||
  ta = Zero();
 | 
			
		||||
  RealD nrm = 1.0 / 2;  // check
 | 
			
		||||
  cplx i(0.0, 1.0);
 | 
			
		||||
  ta()()(zIndex, zIndex + nsp) = i;
 | 
			
		||||
  ta()()(zIndex + nsp, zIndex) = -i;
 | 
			
		||||
 | 
			
		||||
  ta = ta * nrm;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Map a su2 subgroup number to the pair of rows that are non zero
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template <ONLY_IF_Sp>
 | 
			
		||||
static void su2SubGroupIndex(int &i1, int &i2, int su2_index, GroupName::Sp) {
 | 
			
		||||
  const int nsp=ncolour/2;
 | 
			
		||||
  assert((su2_index >= 0) && (su2_index < (nsp * (nsp - 1)) / 2));
 | 
			
		||||
 | 
			
		||||
  int spare = su2_index;
 | 
			
		||||
  for (i1 = 0; spare >= (nsp - 1 - i1); i1++) {
 | 
			
		||||
    spare = spare - (nsp - 1 - i1);  // remove the Nc-1-i1 terms
 | 
			
		||||
  }
 | 
			
		||||
  i2 = i1 + 1 + spare;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void testGenerators(GroupName::Sp) {
 | 
			
		||||
  Matrix ta;
 | 
			
		||||
  Matrix tb;
 | 
			
		||||
  std::cout << GridLogMessage
 | 
			
		||||
            << "Fundamental - Checking trace ta tb is 0.5 delta_ab "
 | 
			
		||||
            << std::endl;
 | 
			
		||||
  for (int a = 0; a < AlgebraDimension; a++) {
 | 
			
		||||
    for (int b = 0; b < AlgebraDimension; b++) {
 | 
			
		||||
      generator(a, ta);
 | 
			
		||||
      generator(b, tb);
 | 
			
		||||
      Complex tr = TensorRemove(trace(ta * tb));
 | 
			
		||||
      std::cout << GridLogMessage << "(" << a << "," << b << ") =  " << tr
 | 
			
		||||
                << std::endl;
 | 
			
		||||
      if (a == b) assert(abs(tr - Complex(0.5)) < 1.0e-6);
 | 
			
		||||
      if (a != b) assert(abs(tr) < 1.0e-6);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogMessage << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Fundamental - Checking if hermitian"
 | 
			
		||||
            << std::endl;
 | 
			
		||||
  for (int a = 0; a < AlgebraDimension; a++) {
 | 
			
		||||
    generator(a, ta);
 | 
			
		||||
    std::cout << GridLogMessage << a << std::endl;
 | 
			
		||||
    assert(norm2(ta - adj(ta)) < 1.0e-6);
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogMessage << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Fundamental - Checking if traceless"
 | 
			
		||||
            << std::endl;
 | 
			
		||||
  for (int a = 0; a < AlgebraDimension; a++) {
 | 
			
		||||
    generator(a, ta);
 | 
			
		||||
    Complex tr = TensorRemove(trace(ta));
 | 
			
		||||
    std::cout << GridLogMessage << a << std::endl;
 | 
			
		||||
    assert(abs(tr) < 1.0e-6);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <int N>
 | 
			
		||||
static Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > >
 | 
			
		||||
ProjectOnGeneralGroup(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu, GroupName::Sp) {
 | 
			
		||||
  return ProjectOnSpGroup(Umu);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class vtype>
 | 
			
		||||
accelerator_inline static iScalar<vtype> ProjectOnGeneralGroup(const iScalar<vtype> &r, GroupName::Sp) {
 | 
			
		||||
  return ProjectOnSpGroup(r);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class vtype, int N>
 | 
			
		||||
accelerator_inline static iVector<vtype,N> ProjectOnGeneralGroup(const iVector<vtype,N> &r, GroupName::Sp) {
 | 
			
		||||
  return ProjectOnSpGroup(r);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
 | 
			
		||||
accelerator_inline static iMatrix<vtype,N> ProjectOnGeneralGroup(const iMatrix<vtype,N> &arg, GroupName::Sp) {
 | 
			
		||||
  return ProjectOnSpGroup(arg);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename LatticeMatrixType>   
 | 
			
		||||
static void taProj(const LatticeMatrixType &in, LatticeMatrixType &out, GroupName::Sp) {
 | 
			
		||||
  out = SpTa(in);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
template <ONLY_IF_Sp>
 | 
			
		||||
static void Omega(LatticeColourMatrixD &in) {
 | 
			
		||||
  const int nsp=ncolour/2;
 | 
			
		||||
  LatticeColourMatrixD OmegaLatt(in.Grid());
 | 
			
		||||
  LatticeColourMatrixD identity(in.Grid());
 | 
			
		||||
  ColourMatrix Omega;
 | 
			
		||||
 | 
			
		||||
  OmegaLatt = Zero();
 | 
			
		||||
  Omega = Zero();
 | 
			
		||||
  identity = 1.;
 | 
			
		||||
 | 
			
		||||
  for (int i = 0; i < nsp; i++) {
 | 
			
		||||
    Omega()()(i, nsp + i) = 1.;
 | 
			
		||||
    Omega()()(nsp + i, i) = -1;
 | 
			
		||||
  }
 | 
			
		||||
  OmegaLatt = OmegaLatt + (identity * Omega);
 | 
			
		||||
  in = OmegaLatt;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <ONLY_IF_Sp, class vtype, int N>
 | 
			
		||||
static void Omega(iScalar<iScalar<iMatrix<vtype, N> > > &in) {
 | 
			
		||||
  const int nsp=ncolour/2;
 | 
			
		||||
    
 | 
			
		||||
  iScalar<iScalar<iMatrix<vtype, N> > > Omega;
 | 
			
		||||
  Omega = Zero();
 | 
			
		||||
 | 
			
		||||
  for (int i = 0; i < nsp; i++) {
 | 
			
		||||
    Omega()()(i, nsp + i) = 1.;
 | 
			
		||||
    Omega()()(nsp + i, i) = -1;
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  in = Omega;
 | 
			
		||||
}
 | 
			
		||||
@@ -8,9 +8,9 @@
 | 
			
		||||
#include <Grid/qcd/utils/ScalarObjs.h>
 | 
			
		||||
 | 
			
		||||
// Include representations
 | 
			
		||||
#include <Grid/qcd/utils/GaugeGroup.h>
 | 
			
		||||
#include <Grid/qcd/utils/SUn.h>
 | 
			
		||||
#include <Grid/qcd/utils/SUnAdjoint.h>
 | 
			
		||||
#include <Grid/qcd/utils/GaugeGroupTwoIndex.h>
 | 
			
		||||
#include <Grid/qcd/utils/SUnTwoIndex.h>
 | 
			
		||||
 | 
			
		||||
// All-to-all contraction kernels that touch the 
 | 
			
		||||
// internal lattice structure
 | 
			
		||||
 
 | 
			
		||||
@@ -290,7 +290,7 @@ public:
 | 
			
		||||
  }
 | 
			
		||||
*/
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
  // the sum over all nu-oriented staples for nu != mu on each site
 | 
			
		||||
  // the sum over all staples on each site
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
  static void Staple(GaugeMat &staple, const GaugeLorentz &Umu, int mu) {
 | 
			
		||||
 | 
			
		||||
@@ -300,10 +300,6 @@ public:
 | 
			
		||||
    for (int d = 0; d < Nd; d++) {
 | 
			
		||||
      U[d] = PeekIndex<LorentzIndex>(Umu, d);
 | 
			
		||||
    }
 | 
			
		||||
    Staple(staple, U, mu);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void Staple(GaugeMat &staple, const std::vector<GaugeMat> &U, int mu) {
 | 
			
		||||
    staple = Zero();
 | 
			
		||||
 | 
			
		||||
    for (int nu = 0; nu < Nd; nu++) {
 | 
			
		||||
@@ -339,202 +335,6 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /////////////
 | 
			
		||||
  //Staples for each direction mu, summed over nu != mu
 | 
			
		||||
  //staple: output staples for each mu (Nd)
 | 
			
		||||
  //U: link array (Nd)
 | 
			
		||||
  /////////////
 | 
			
		||||
  static void StapleAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U) {
 | 
			
		||||
    assert(staple.size() == Nd); assert(U.size() == Nd);
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++) Staple(staple[mu], U, mu);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //A workspace class allowing reuse of the stencil
 | 
			
		||||
  class WilsonLoopPaddedStencilWorkspace{
 | 
			
		||||
    std::unique_ptr<GeneralLocalStencil> stencil;
 | 
			
		||||
    size_t nshift;
 | 
			
		||||
 | 
			
		||||
    void generateStencil(GridBase* padded_grid){
 | 
			
		||||
      double t0 = usecond();
 | 
			
		||||
      
 | 
			
		||||
      //Generate shift arrays
 | 
			
		||||
      std::vector<Coordinate> shifts = this->getShifts();
 | 
			
		||||
      nshift = shifts.size();
 | 
			
		||||
      
 | 
			
		||||
      double t1 = usecond();
 | 
			
		||||
      //Generate local stencil
 | 
			
		||||
      stencil.reset(new GeneralLocalStencil(padded_grid,shifts));
 | 
			
		||||
      double t2 = usecond();
 | 
			
		||||
      std::cout << GridLogPerformance << " WilsonLoopPaddedWorkspace timings: coord:" << (t1-t0)/1000 << "ms, stencil:" << (t2-t1)/1000 << "ms" << std::endl;   
 | 
			
		||||
    }
 | 
			
		||||
  public:
 | 
			
		||||
    //Get the stencil. If not already generated, or if generated using a different Grid than in PaddedCell, it will be created on-the-fly
 | 
			
		||||
    const GeneralLocalStencil & getStencil(const PaddedCell &pcell){
 | 
			
		||||
      assert(pcell.depth >= this->paddingDepth());
 | 
			
		||||
      if(!stencil || stencil->Grid() != (GridBase*)pcell.grids.back() ) generateStencil((GridBase*)pcell.grids.back());
 | 
			
		||||
      return *stencil;
 | 
			
		||||
    }
 | 
			
		||||
    size_t Nshift() const{ return nshift; }
 | 
			
		||||
    
 | 
			
		||||
    virtual std::vector<Coordinate> getShifts() const = 0;
 | 
			
		||||
    virtual int paddingDepth() const = 0; //padding depth required
 | 
			
		||||
    
 | 
			
		||||
    virtual ~WilsonLoopPaddedStencilWorkspace(){}
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  //This workspace allows the sharing of a common PaddedCell object between multiple stencil workspaces
 | 
			
		||||
  class WilsonLoopPaddedWorkspace{
 | 
			
		||||
    std::vector<WilsonLoopPaddedStencilWorkspace*> stencil_wk;
 | 
			
		||||
    std::unique_ptr<PaddedCell> pcell;
 | 
			
		||||
 | 
			
		||||
    void generatePcell(GridBase* unpadded_grid){
 | 
			
		||||
      assert(stencil_wk.size());
 | 
			
		||||
      int max_depth = 0;
 | 
			
		||||
      for(auto const &s : stencil_wk) max_depth=std::max(max_depth, s->paddingDepth());
 | 
			
		||||
      
 | 
			
		||||
      pcell.reset(new PaddedCell(max_depth, dynamic_cast<GridCartesian*>(unpadded_grid)));
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
  public:
 | 
			
		||||
    //Add a stencil definition. This should be done before the first call to retrieve a stencil object.
 | 
			
		||||
    //Takes ownership of the pointer
 | 
			
		||||
    void addStencil(WilsonLoopPaddedStencilWorkspace *stencil){
 | 
			
		||||
      assert(!pcell);
 | 
			
		||||
      stencil_wk.push_back(stencil);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    const GeneralLocalStencil & getStencil(const size_t stencil_idx, GridBase* unpadded_grid){
 | 
			
		||||
      if(!pcell || pcell->unpadded_grid != unpadded_grid) generatePcell(unpadded_grid);
 | 
			
		||||
      return stencil_wk[stencil_idx]->getStencil(*pcell);
 | 
			
		||||
    }      
 | 
			
		||||
    const PaddedCell & getPaddedCell(GridBase* unpadded_grid){
 | 
			
		||||
      if(!pcell || pcell->unpadded_grid != unpadded_grid) generatePcell(unpadded_grid);
 | 
			
		||||
      return *pcell;
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    ~WilsonLoopPaddedWorkspace(){
 | 
			
		||||
      for(auto &s : stencil_wk) delete s;
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  //A workspace class allowing reuse of the stencil
 | 
			
		||||
  class StaplePaddedAllWorkspace: public WilsonLoopPaddedStencilWorkspace{
 | 
			
		||||
  public:
 | 
			
		||||
    std::vector<Coordinate> getShifts() const override{
 | 
			
		||||
      std::vector<Coordinate> shifts;
 | 
			
		||||
      for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
	for(int nu=0;nu<Nd;nu++){
 | 
			
		||||
	  if(nu != mu){
 | 
			
		||||
	    Coordinate shift_0(Nd,0);
 | 
			
		||||
	    Coordinate shift_mu(Nd,0); shift_mu[mu]=1;
 | 
			
		||||
	    Coordinate shift_nu(Nd,0); shift_nu[nu]=1;
 | 
			
		||||
	    Coordinate shift_mnu(Nd,0); shift_mnu[nu]=-1;
 | 
			
		||||
	    Coordinate shift_mnu_pmu(Nd,0); shift_mnu_pmu[nu]=-1; shift_mnu_pmu[mu]=1;
 | 
			
		||||
      
 | 
			
		||||
	    //U_nu(x+mu)U^dag_mu(x+nu) U^dag_nu(x)
 | 
			
		||||
	    shifts.push_back(shift_0);
 | 
			
		||||
	    shifts.push_back(shift_nu);
 | 
			
		||||
	    shifts.push_back(shift_mu);
 | 
			
		||||
      
 | 
			
		||||
	    //U_nu^dag(x-nu+mu) U_mu^dag(x-nu) U_nu(x-nu)
 | 
			
		||||
	    shifts.push_back(shift_mnu);
 | 
			
		||||
	    shifts.push_back(shift_mnu);
 | 
			
		||||
	    shifts.push_back(shift_mnu_pmu);
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      return shifts;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    int paddingDepth() const override{ return 1; }
 | 
			
		||||
  }; 
 | 
			
		||||
 | 
			
		||||
  //Padded cell implementation of the staple method for all mu, summed over nu != mu
 | 
			
		||||
  //staple: output staple for each mu, summed over nu != mu (Nd)
 | 
			
		||||
  //U_padded: the gauge link fields padded out using the PaddedCell class
 | 
			
		||||
  //Cell: the padded cell class
 | 
			
		||||
  static void StaplePaddedAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U_padded, const PaddedCell &Cell) {
 | 
			
		||||
    StaplePaddedAllWorkspace wk;
 | 
			
		||||
    StaplePaddedAll(staple,U_padded,Cell,wk.getStencil(Cell));
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  //Padded cell implementation of the staple method for all mu, summed over nu != mu
 | 
			
		||||
  //staple: output staple for each mu, summed over nu != mu (Nd)
 | 
			
		||||
  //U_padded: the gauge link fields padded out using the PaddedCell class
 | 
			
		||||
  //Cell: the padded cell class
 | 
			
		||||
  //gStencil: the precomputed generalized local stencil for the staple
 | 
			
		||||
  static void StaplePaddedAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U_padded, const PaddedCell &Cell, const GeneralLocalStencil &gStencil) {
 | 
			
		||||
    double t0 = usecond();
 | 
			
		||||
    assert(U_padded.size() == Nd); assert(staple.size() == Nd);
 | 
			
		||||
    assert(U_padded[0].Grid() == (GridBase*)Cell.grids.back());
 | 
			
		||||
    assert(Cell.depth >= 1);
 | 
			
		||||
    GridBase *ggrid = U_padded[0].Grid(); //padded cell grid
 | 
			
		||||
 | 
			
		||||
    int shift_mu_off = gStencil._npoints/Nd;
 | 
			
		||||
    
 | 
			
		||||
    //Open views to padded gauge links and keep open over mu loop
 | 
			
		||||
    typedef LatticeView<typename GaugeMat::vector_object> GaugeViewType;
 | 
			
		||||
    size_t vsize = Nd*sizeof(GaugeViewType);
 | 
			
		||||
    GaugeViewType* Ug_dirs_v_host = (GaugeViewType*)malloc(vsize);
 | 
			
		||||
    for(int i=0;i<Nd;i++) Ug_dirs_v_host[i] = U_padded[i].View(AcceleratorRead);
 | 
			
		||||
    GaugeViewType* Ug_dirs_v = (GaugeViewType*)acceleratorAllocDevice(vsize);
 | 
			
		||||
    acceleratorCopyToDevice(Ug_dirs_v_host,Ug_dirs_v,vsize);
 | 
			
		||||
    
 | 
			
		||||
    GaugeMat gStaple(ggrid);
 | 
			
		||||
 | 
			
		||||
    int outer_off = 0;
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      { //view scope
 | 
			
		||||
	autoView( gStaple_v , gStaple, AcceleratorWrite);
 | 
			
		||||
	auto gStencil_v = gStencil.View(AcceleratorRead);
 | 
			
		||||
	
 | 
			
		||||
	accelerator_for(ss, ggrid->oSites(), ggrid->Nsimd(), {
 | 
			
		||||
	    decltype(coalescedRead(Ug_dirs_v[0][0])) stencil_ss;
 | 
			
		||||
	    stencil_ss = Zero();
 | 
			
		||||
	    int off = outer_off;
 | 
			
		||||
	    
 | 
			
		||||
	    for(int nu=0;nu<Nd;nu++){
 | 
			
		||||
	      if(nu != mu){	  
 | 
			
		||||
		GeneralStencilEntry const* e = gStencil_v.GetEntry(off++,ss);
 | 
			
		||||
		auto U0 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(off++,ss);
 | 
			
		||||
		auto U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(off++,ss);
 | 
			
		||||
		auto U2 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
 | 
			
		||||
      
 | 
			
		||||
		stencil_ss = stencil_ss + U2 * U1 * U0;
 | 
			
		||||
 | 
			
		||||
		e = gStencil_v.GetEntry(off++,ss);
 | 
			
		||||
		U0 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
 | 
			
		||||
		e = gStencil_v.GetEntry(off++,ss);
 | 
			
		||||
		U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(off++,ss);
 | 
			
		||||
		U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
 | 
			
		||||
 | 
			
		||||
		stencil_ss = stencil_ss + U2 * U1 * U0;
 | 
			
		||||
	      }
 | 
			
		||||
	    }
 | 
			
		||||
		
 | 
			
		||||
	    coalescedWrite(gStaple_v[ss],stencil_ss);
 | 
			
		||||
	  }
 | 
			
		||||
	  );
 | 
			
		||||
      } //ensure views are all closed!
 | 
			
		||||
      
 | 
			
		||||
      staple[mu] = Cell.Extract(gStaple);
 | 
			
		||||
      outer_off += shift_mu_off;
 | 
			
		||||
    }//mu loop
 | 
			
		||||
 | 
			
		||||
    for(int i=0;i<Nd;i++) Ug_dirs_v_host[i].ViewClose();
 | 
			
		||||
    free(Ug_dirs_v_host);
 | 
			
		||||
    acceleratorFreeDevice(Ug_dirs_v);
 | 
			
		||||
    
 | 
			
		||||
    double t1=usecond();
 | 
			
		||||
    
 | 
			
		||||
    std::cout << GridLogPerformance << "StaplePaddedAll timing:" << (t1-t0)/1000 << "ms" << std::endl;   
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
   
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
  // the sum over all staples on each site in direction mu,nu, upper part
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
@@ -907,14 +707,18 @@ public:
 | 
			
		||||
  // the sum over all staples on each site
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
  static void RectStapleDouble(GaugeMat &U2, const GaugeMat &U, int mu) {
 | 
			
		||||
    U2 = U * Gimpl::CshiftLink(U, mu, 1);
 | 
			
		||||
    U2 = U * Cshift(U, mu, 1);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Hop by two optimisation strategy. Use RectStapleDouble to obtain 'U2'
 | 
			
		||||
  // Hop by two optimisation strategy does not work nicely with Gparity. (could
 | 
			
		||||
  // do,
 | 
			
		||||
  // but need to track two deep where cross boundary and apply a conjugation).
 | 
			
		||||
  // Must differentiate this in Gimpl, and use Gimpl::isPeriodicGaugeField to do
 | 
			
		||||
  // so .
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  static void RectStapleOptimised(GaugeMat &Stap, const std::vector<GaugeMat> &U2,
 | 
			
		||||
                                  const std::vector<GaugeMat> &U, int mu) {
 | 
			
		||||
  static void RectStapleOptimised(GaugeMat &Stap, std::vector<GaugeMat> &U2,
 | 
			
		||||
                                  std::vector<GaugeMat> &U, int mu) {
 | 
			
		||||
 | 
			
		||||
    Stap = Zero();
 | 
			
		||||
 | 
			
		||||
@@ -928,9 +732,9 @@ public:
 | 
			
		||||
 | 
			
		||||
        // Up staple    ___ ___
 | 
			
		||||
        //             |       |
 | 
			
		||||
        tmp = Gimpl::CshiftLink(adj(U[nu]), nu, -1);
 | 
			
		||||
        tmp = Cshift(adj(U[nu]), nu, -1);
 | 
			
		||||
        tmp = adj(U2[mu]) * tmp;
 | 
			
		||||
        tmp = Gimpl::CshiftLink(tmp, mu, -2);
 | 
			
		||||
        tmp = Cshift(tmp, mu, -2);
 | 
			
		||||
 | 
			
		||||
        Staple2x1 = Gimpl::CovShiftForward(U[nu], nu, tmp);
 | 
			
		||||
 | 
			
		||||
@@ -938,14 +742,14 @@ public:
 | 
			
		||||
        //             |___ ___|
 | 
			
		||||
        //
 | 
			
		||||
        tmp = adj(U2[mu]) * U[nu];
 | 
			
		||||
        Staple2x1 += Gimpl::CovShiftBackward(U[nu], nu, Gimpl::CshiftLink(tmp, mu, -2));
 | 
			
		||||
        Staple2x1 += Gimpl::CovShiftBackward(U[nu], nu, Cshift(tmp, mu, -2));
 | 
			
		||||
 | 
			
		||||
        //              ___ ___
 | 
			
		||||
        //             |    ___|
 | 
			
		||||
        //             |___ ___|
 | 
			
		||||
        //
 | 
			
		||||
 | 
			
		||||
        Stap += Gimpl::CshiftLink(Gimpl::CovShiftForward(U[mu], mu, Staple2x1), mu, 1);
 | 
			
		||||
        Stap += Cshift(Gimpl::CovShiftForward(U[mu], mu, Staple2x1), mu, 1);
 | 
			
		||||
 | 
			
		||||
        //              ___ ___
 | 
			
		||||
        //             |___    |
 | 
			
		||||
@@ -954,7 +758,7 @@ public:
 | 
			
		||||
 | 
			
		||||
        //  tmp= Staple2x1* Cshift(U[mu],mu,-2);
 | 
			
		||||
        //  Stap+= Cshift(tmp,mu,1) ;
 | 
			
		||||
        Stap += Gimpl::CshiftLink(Staple2x1, mu, 1) * Gimpl::CshiftLink(U[mu], mu, -1);
 | 
			
		||||
        Stap += Cshift(Staple2x1, mu, 1) * Cshift(U[mu], mu, -1);
 | 
			
		||||
        ;
 | 
			
		||||
 | 
			
		||||
        //       --
 | 
			
		||||
@@ -962,10 +766,10 @@ public:
 | 
			
		||||
        //
 | 
			
		||||
        //      |  |
 | 
			
		||||
 | 
			
		||||
        tmp = Gimpl::CshiftLink(adj(U2[nu]), nu, -2);
 | 
			
		||||
        tmp = Cshift(adj(U2[nu]), nu, -2);
 | 
			
		||||
        tmp = Gimpl::CovShiftBackward(U[mu], mu, tmp);
 | 
			
		||||
        tmp = U2[nu] * Gimpl::CshiftLink(tmp, nu, 2);
 | 
			
		||||
        Stap += Gimpl::CshiftLink(tmp, mu, 1);
 | 
			
		||||
        tmp = U2[nu] * Cshift(tmp, nu, 2);
 | 
			
		||||
        Stap += Cshift(tmp, mu, 1);
 | 
			
		||||
 | 
			
		||||
        //      |  |
 | 
			
		||||
        //
 | 
			
		||||
@@ -974,12 +778,25 @@ public:
 | 
			
		||||
 | 
			
		||||
        tmp = Gimpl::CovShiftBackward(U[mu], mu, U2[nu]);
 | 
			
		||||
        tmp = adj(U2[nu]) * tmp;
 | 
			
		||||
        tmp = Gimpl::CshiftLink(tmp, nu, -2);
 | 
			
		||||
        Stap += Gimpl::CshiftLink(tmp, mu, 1);
 | 
			
		||||
        tmp = Cshift(tmp, nu, -2);
 | 
			
		||||
        Stap += Cshift(tmp, mu, 1);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void RectStaple(GaugeMat &Stap, const GaugeLorentz &Umu, int mu) {
 | 
			
		||||
    RectStapleUnoptimised(Stap, Umu, mu);
 | 
			
		||||
  }
 | 
			
		||||
  static void RectStaple(const GaugeLorentz &Umu, GaugeMat &Stap,
 | 
			
		||||
                         std::vector<GaugeMat> &U2, std::vector<GaugeMat> &U,
 | 
			
		||||
                         int mu) {
 | 
			
		||||
    if (Gimpl::isPeriodicGaugeField()) {
 | 
			
		||||
      RectStapleOptimised(Stap, U2, U, mu);
 | 
			
		||||
    } else {
 | 
			
		||||
      RectStapleUnoptimised(Stap, Umu, mu);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void RectStapleUnoptimised(GaugeMat &Stap, const GaugeLorentz &Umu,
 | 
			
		||||
                                    int mu) {
 | 
			
		||||
    GridBase *grid = Umu.Grid();
 | 
			
		||||
@@ -1078,288 +895,6 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void RectStaple(GaugeMat &Stap, const GaugeLorentz &Umu, int mu) {
 | 
			
		||||
    RectStapleUnoptimised(Stap, Umu, mu);
 | 
			
		||||
  }
 | 
			
		||||
  static void RectStaple(const GaugeLorentz &Umu, GaugeMat &Stap,
 | 
			
		||||
                         std::vector<GaugeMat> &U2, std::vector<GaugeMat> &U,
 | 
			
		||||
                         int mu) {
 | 
			
		||||
    RectStapleOptimised(Stap, U2, U, mu);
 | 
			
		||||
  }
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
  //Compute the rectangular staples for all orientations
 | 
			
		||||
  //Stap : Array of staples (Nd)
 | 
			
		||||
  //U: Gauge links in each direction (Nd)
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
  static void RectStapleAll(std::vector<GaugeMat> &Stap, const std::vector<GaugeMat> &U){
 | 
			
		||||
    assert(Stap.size() == Nd); assert(U.size() == Nd);
 | 
			
		||||
    std::vector<GaugeMat> U2(Nd,U[0].Grid());
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++) RectStapleDouble(U2[mu], U[mu], mu);
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++) RectStapleOptimised(Stap[mu], U2, U, mu);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //A workspace class allowing reuse of the stencil
 | 
			
		||||
  class RectStaplePaddedAllWorkspace: public WilsonLoopPaddedStencilWorkspace{
 | 
			
		||||
  public:
 | 
			
		||||
    std::vector<Coordinate> getShifts() const override{
 | 
			
		||||
      std::vector<Coordinate> shifts;
 | 
			
		||||
      for (int mu = 0; mu < Nd; mu++){
 | 
			
		||||
	for (int nu = 0; nu < Nd; nu++) {
 | 
			
		||||
	  if (nu != mu) {
 | 
			
		||||
	    auto genShift = [&](int mushift,int nushift){
 | 
			
		||||
	      Coordinate out(Nd,0); out[mu]=mushift; out[nu]=nushift; return out;
 | 
			
		||||
	    };
 | 
			
		||||
 | 
			
		||||
	    //tmp6 = tmp5(x+mu) = U_mu(x+mu)U_nu(x+2mu)U_mu^dag(x+nu+mu) U_mu^dag(x+nu) U_nu^dag(x)
 | 
			
		||||
	    shifts.push_back(genShift(0,0));
 | 
			
		||||
	    shifts.push_back(genShift(0,+1));
 | 
			
		||||
	    shifts.push_back(genShift(+1,+1));
 | 
			
		||||
	    shifts.push_back(genShift(+2,0));
 | 
			
		||||
	    shifts.push_back(genShift(+1,0));
 | 
			
		||||
 | 
			
		||||
	    //tmp5 = tmp4(x+mu) = U_mu(x+mu)U^dag_nu(x-nu+2mu)U^dag_mu(x-nu+mu)U^dag_mu(x-nu)U_nu(x-nu)
 | 
			
		||||
	    shifts.push_back(genShift(0,-1));
 | 
			
		||||
	    shifts.push_back(genShift(0,-1));
 | 
			
		||||
	    shifts.push_back(genShift(+1,-1));
 | 
			
		||||
	    shifts.push_back(genShift(+2,-1));
 | 
			
		||||
	    shifts.push_back(genShift(+1,0));
 | 
			
		||||
 | 
			
		||||
	    //tmp5 = tmp4(x+mu) = U^dag_nu(x-nu+mu)U^dag_mu(x-nu)U^dag_mu(x-mu-nu)U_nu(x-mu-nu)U_mu(x-mu)
 | 
			
		||||
	    shifts.push_back(genShift(-1,0));
 | 
			
		||||
	    shifts.push_back(genShift(-1,-1));
 | 
			
		||||
	    shifts.push_back(genShift(-1,-1));
 | 
			
		||||
	    shifts.push_back(genShift(0,-1));
 | 
			
		||||
	    shifts.push_back(genShift(+1,-1));
 | 
			
		||||
 | 
			
		||||
	    //tmp5 = tmp4(x+mu) = U_nu(x+mu)U_mu^dag(x+nu)U_mu^dag(x-mu+nu)U_nu^dag(x-mu)U_mu(x-mu)
 | 
			
		||||
	    shifts.push_back(genShift(-1,0));
 | 
			
		||||
	    shifts.push_back(genShift(-1,0));
 | 
			
		||||
	    shifts.push_back(genShift(-1,+1));
 | 
			
		||||
	    shifts.push_back(genShift(0,+1));
 | 
			
		||||
	    shifts.push_back(genShift(+1,0));
 | 
			
		||||
 | 
			
		||||
	    //tmp6 = tmp5(x+mu) = U_nu(x+mu)U_nu(x+mu+nu)U_mu^dag(x+2nu)U_nu^dag(x+nu)U_nu^dag(x)
 | 
			
		||||
	    shifts.push_back(genShift(0,0));
 | 
			
		||||
	    shifts.push_back(genShift(0,+1));
 | 
			
		||||
	    shifts.push_back(genShift(0,+2));
 | 
			
		||||
	    shifts.push_back(genShift(+1,+1));
 | 
			
		||||
	    shifts.push_back(genShift(+1,0));
 | 
			
		||||
 | 
			
		||||
	    //tmp5 = tmp4(x+mu) = U_nu^dag(x+mu-nu)U_nu^dag(x+mu-2nu)U_mu^dag(x-2nu)U_nu(x-2nu)U_nu(x-nu)
 | 
			
		||||
	    shifts.push_back(genShift(0,-1));
 | 
			
		||||
	    shifts.push_back(genShift(0,-2));
 | 
			
		||||
	    shifts.push_back(genShift(0,-2));
 | 
			
		||||
	    shifts.push_back(genShift(+1,-2));
 | 
			
		||||
	    shifts.push_back(genShift(+1,-1));
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      return shifts;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    int paddingDepth() const override{ return 2; }
 | 
			
		||||
  }; 
 | 
			
		||||
 | 
			
		||||
  //Padded cell implementation of the rectangular staple method for all mu, summed over nu != mu
 | 
			
		||||
  //staple: output staple for each mu, summed over nu != mu (Nd)
 | 
			
		||||
  //U_padded: the gauge link fields padded out using the PaddedCell class
 | 
			
		||||
  //Cell: the padded cell class
 | 
			
		||||
  static void RectStaplePaddedAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U_padded, const PaddedCell &Cell) {
 | 
			
		||||
    RectStaplePaddedAllWorkspace wk;
 | 
			
		||||
    RectStaplePaddedAll(staple,U_padded,Cell,wk.getStencil(Cell));
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  //Padded cell implementation of the rectangular staple method for all mu, summed over nu != mu
 | 
			
		||||
  //staple: output staple for each mu, summed over nu != mu (Nd)
 | 
			
		||||
  //U_padded: the gauge link fields padded out using the PaddedCell class
 | 
			
		||||
  //Cell: the padded cell class
 | 
			
		||||
  //gStencil: the stencil
 | 
			
		||||
  static void RectStaplePaddedAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U_padded, const PaddedCell &Cell, const GeneralLocalStencil &gStencil) {
 | 
			
		||||
    double t0 = usecond();
 | 
			
		||||
    assert(U_padded.size() == Nd); assert(staple.size() == Nd);
 | 
			
		||||
    assert(U_padded[0].Grid() == (GridBase*)Cell.grids.back());
 | 
			
		||||
    assert(Cell.depth >= 2);
 | 
			
		||||
    GridBase *ggrid = U_padded[0].Grid(); //padded cell grid
 | 
			
		||||
 | 
			
		||||
    size_t nshift = gStencil._npoints;
 | 
			
		||||
    int mu_off_delta = nshift / Nd;
 | 
			
		||||
    
 | 
			
		||||
    //Open views to padded gauge links and keep open over mu loop
 | 
			
		||||
    typedef LatticeView<typename GaugeMat::vector_object> GaugeViewType;
 | 
			
		||||
    size_t vsize = Nd*sizeof(GaugeViewType);
 | 
			
		||||
    GaugeViewType* Ug_dirs_v_host = (GaugeViewType*)malloc(vsize);
 | 
			
		||||
    for(int i=0;i<Nd;i++) Ug_dirs_v_host[i] = U_padded[i].View(AcceleratorRead);
 | 
			
		||||
    GaugeViewType* Ug_dirs_v = (GaugeViewType*)acceleratorAllocDevice(vsize);
 | 
			
		||||
    acceleratorCopyToDevice(Ug_dirs_v_host,Ug_dirs_v,vsize);
 | 
			
		||||
 | 
			
		||||
    GaugeMat gStaple(ggrid); //temp staple object on padded grid
 | 
			
		||||
 | 
			
		||||
    int offset = 0;
 | 
			
		||||
    for(int mu=0; mu<Nd; mu++){
 | 
			
		||||
 | 
			
		||||
      { //view scope
 | 
			
		||||
	autoView( gStaple_v , gStaple, AcceleratorWrite);
 | 
			
		||||
	auto gStencil_v = gStencil.View(AcceleratorRead);
 | 
			
		||||
 | 
			
		||||
	accelerator_for(ss, ggrid->oSites(), ggrid->Nsimd(), {
 | 
			
		||||
	    decltype(coalescedRead(Ug_dirs_v[0][0])) stencil_ss;
 | 
			
		||||
	    stencil_ss = Zero();
 | 
			
		||||
	    int s=offset;
 | 
			
		||||
	    for(int nu=0;nu<Nd;nu++){
 | 
			
		||||
	      if(nu != mu){
 | 
			
		||||
		//tmp6 = tmp5(x+mu) = U_mu(x+mu)U_nu(x+2mu)U_mu^dag(x+nu+mu) U_mu^dag(x+nu) U_nu^dag(x)
 | 
			
		||||
		GeneralStencilEntry const* e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		auto U0 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		auto U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		auto U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		auto U3 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		auto U4 = coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd);
 | 
			
		||||
	    
 | 
			
		||||
		stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
 | 
			
		||||
 | 
			
		||||
		//tmp5 = tmp4(x+mu) = U_mu(x+mu)U^dag_nu(x-nu+2mu)U^dag_mu(x-nu+mu)U^dag_mu(x-nu)U_nu(x-nu)
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U0 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U3 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U4 = coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd);
 | 
			
		||||
 | 
			
		||||
		stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
 | 
			
		||||
 | 
			
		||||
		//tmp5 = tmp4(x+mu) = U^dag_nu(x-nu+mu)U^dag_mu(x-nu)U^dag_mu(x-mu-nu)U_nu(x-mu-nu)U_mu(x-mu)
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U0 = coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd);
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U1 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U3 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U4 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
 | 
			
		||||
 | 
			
		||||
		stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
 | 
			
		||||
 | 
			
		||||
		//tmp5 = tmp4(x+mu) = U_nu(x+mu)U_mu^dag(x+nu)U_mu^dag(x-mu+nu)U_nu^dag(x-mu)U_mu(x-mu)
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U0 = coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd);
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U3 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U4 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
 | 
			
		||||
 | 
			
		||||
		stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
 | 
			
		||||
 | 
			
		||||
		//tmp6 = tmp5(x+mu) = U_nu(x+mu)U_nu(x+mu+nu)U_mu^dag(x+2nu)U_nu^dag(x+nu)U_nu^dag(x)
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U0 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U3 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U4 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
 | 
			
		||||
 | 
			
		||||
		stencil_ss = stencil_ss + U4*U3*U2*U1*U0;   
 | 
			
		||||
 | 
			
		||||
		//tmp5 = tmp4(x+mu) = U_nu^dag(x+mu-nu)U_nu^dag(x+mu-2nu)U_mu^dag(x-2nu)U_nu(x-2nu)U_nu(x-nu)
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U0 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U1 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U3 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U4 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
 | 
			
		||||
 | 
			
		||||
		stencil_ss = stencil_ss + U4*U3*U2*U1*U0;   
 | 
			
		||||
 | 
			
		||||
	      }
 | 
			
		||||
	    }
 | 
			
		||||
	    coalescedWrite(gStaple_v[ss],stencil_ss);
 | 
			
		||||
	  }
 | 
			
		||||
	  );
 | 
			
		||||
	offset += mu_off_delta;
 | 
			
		||||
      }//kernel/view scope
 | 
			
		||||
 | 
			
		||||
      staple[mu] = Cell.Extract(gStaple);    
 | 
			
		||||
    }//mu loop
 | 
			
		||||
  
 | 
			
		||||
    for(int i=0;i<Nd;i++) Ug_dirs_v_host[i].ViewClose();
 | 
			
		||||
    free(Ug_dirs_v_host);
 | 
			
		||||
    acceleratorFreeDevice(Ug_dirs_v);
 | 
			
		||||
    
 | 
			
		||||
    double t1 = usecond();
 | 
			
		||||
    
 | 
			
		||||
    std::cout << GridLogPerformance << "RectStaplePaddedAll timings:" << (t1-t0)/1000 << "ms" << std::endl;   
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //A workspace for reusing the PaddedCell and GeneralLocalStencil objects
 | 
			
		||||
  class StapleAndRectStapleAllWorkspace: public WilsonLoopPaddedWorkspace{
 | 
			
		||||
  public:
 | 
			
		||||
    StapleAndRectStapleAllWorkspace(){
 | 
			
		||||
      this->addStencil(new StaplePaddedAllWorkspace);
 | 
			
		||||
      this->addStencil(new RectStaplePaddedAllWorkspace);
 | 
			
		||||
    }
 | 
			
		||||
  };     
 | 
			
		||||
    
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
  //Compute the 1x1 and 1x2 staples for all orientations
 | 
			
		||||
  //Stap : Array of staples (Nd)
 | 
			
		||||
  //RectStap: Array of rectangular staples (Nd)
 | 
			
		||||
  //U: Gauge links in each direction (Nd)
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
  static void StapleAndRectStapleAll(std::vector<GaugeMat> &Stap, std::vector<GaugeMat> &RectStap, const std::vector<GaugeMat> &U){
 | 
			
		||||
    StapleAndRectStapleAllWorkspace wk;
 | 
			
		||||
    StapleAndRectStapleAll(Stap,RectStap,U,wk);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
  //Compute the 1x1 and 1x2 staples for all orientations
 | 
			
		||||
  //Stap : Array of staples (Nd)
 | 
			
		||||
  //RectStap: Array of rectangular staples (Nd)
 | 
			
		||||
  //U: Gauge links in each direction (Nd)
 | 
			
		||||
  //wk: a workspace containing stored PaddedCell and GeneralLocalStencil objects to maximize reuse
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
  static void StapleAndRectStapleAll(std::vector<GaugeMat> &Stap, std::vector<GaugeMat> &RectStap, const std::vector<GaugeMat> &U, StapleAndRectStapleAllWorkspace &wk){
 | 
			
		||||
#if 0
 | 
			
		||||
    StapleAll(Stap, U);
 | 
			
		||||
    RectStapleAll(RectStap, U);
 | 
			
		||||
#else
 | 
			
		||||
    double t0 = usecond();
 | 
			
		||||
 | 
			
		||||
    GridCartesian* unpadded_grid = dynamic_cast<GridCartesian*>(U[0].Grid());
 | 
			
		||||
    const PaddedCell &Ghost = wk.getPaddedCell(unpadded_grid);
 | 
			
		||||
        
 | 
			
		||||
    CshiftImplGauge<Gimpl> cshift_impl;
 | 
			
		||||
    std::vector<GaugeMat> U_pad(Nd, Ghost.grids.back());
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++) U_pad[mu] = Ghost.Exchange(U[mu], cshift_impl);
 | 
			
		||||
    double t1 = usecond();
 | 
			
		||||
    StaplePaddedAll(Stap, U_pad, Ghost, wk.getStencil(0,unpadded_grid) );
 | 
			
		||||
    double t2 = usecond();
 | 
			
		||||
    RectStaplePaddedAll(RectStap, U_pad, Ghost, wk.getStencil(1,unpadded_grid));
 | 
			
		||||
    double t3 = usecond();
 | 
			
		||||
    std::cout << GridLogPerformance << "StapleAndRectStapleAll timings: pad:" << (t1-t0)/1000 << "ms, staple:" << (t2-t1)/1000 << "ms, rect-staple:" << (t3-t2)/1000 << "ms" << std::endl;
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
  // Wilson loop of size (R1, R2), oriented in mu,nu plane
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -1130,14 +1130,6 @@ static_assert(sizeof(SIMD_Ftype) == sizeof(SIMD_Itype), "SIMD vector lengths inc
 | 
			
		||||
#endif
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
// Fixme need coalesced read gpermute
 | 
			
		||||
template<class vobj> void gpermute(vobj & inout,int perm){
 | 
			
		||||
  vobj tmp=inout;
 | 
			
		||||
  if (perm & 0x1 ) { permute(inout,tmp,0); tmp=inout;}
 | 
			
		||||
  if (perm & 0x2 ) { permute(inout,tmp,1); tmp=inout;}
 | 
			
		||||
  if (perm & 0x4 ) { permute(inout,tmp,2); tmp=inout;}
 | 
			
		||||
  if (perm & 0x8 ) { permute(inout,tmp,3); tmp=inout;}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -32,12 +32,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
struct GeneralStencilEntry { 
 | 
			
		||||
  uint64_t _offset;            // 4 bytes 
 | 
			
		||||
  uint8_t _permute;            // 1 bytes // Horrible alignment properties
 | 
			
		||||
  uint8_t _wrap;               // 1 bytes // Horrible alignment properties
 | 
			
		||||
};
 | 
			
		||||
struct GeneralStencilEntryReordered : public GeneralStencilEntry {
 | 
			
		||||
  uint64_t _input;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// Could pack to 8 + 4 + 4 = 128 bit and use 
 | 
			
		||||
 | 
			
		||||
class GeneralLocalStencilView {
 | 
			
		||||
@@ -51,7 +46,7 @@ class GeneralLocalStencilView {
 | 
			
		||||
  accelerator_inline GeneralStencilEntry * GetEntry(int point,int osite) { 
 | 
			
		||||
    return & this->_entries_p[point+this->_npoints*osite]; 
 | 
			
		||||
  }
 | 
			
		||||
  void ViewClose(void){};
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
////////////////////////////////////////
 | 
			
		||||
// The Stencil Class itself
 | 
			
		||||
@@ -66,7 +61,7 @@ protected:
 | 
			
		||||
public: 
 | 
			
		||||
  GridBase *Grid(void) const { return _grid; }
 | 
			
		||||
 | 
			
		||||
  View_type View(int mode) const {
 | 
			
		||||
  View_type View(void) const {
 | 
			
		||||
    View_type accessor(*( (View_type *) this));
 | 
			
		||||
    return accessor;
 | 
			
		||||
  }
 | 
			
		||||
@@ -84,10 +79,10 @@ public:
 | 
			
		||||
    this->_entries.resize(npoints* osites);
 | 
			
		||||
    this->_entries_p = &_entries[0];
 | 
			
		||||
 | 
			
		||||
    thread_for(site, osites, {
 | 
			
		||||
 | 
			
		||||
    Coordinate Coor;
 | 
			
		||||
    Coordinate NbrCoor;
 | 
			
		||||
 | 
			
		||||
    for(Integer site=0;site<osites;site++){
 | 
			
		||||
      for(Integer ii=0;ii<npoints;ii++){
 | 
			
		||||
	Integer lex = site*npoints+ii;
 | 
			
		||||
	GeneralStencilEntry SE;
 | 
			
		||||
@@ -106,23 +101,17 @@ public:
 | 
			
		||||
	// Simpler version using icoor calculation
 | 
			
		||||
	////////////////////////////////////////////////
 | 
			
		||||
	SE._permute =0;
 | 
			
		||||
	  SE._wrap=0;
 | 
			
		||||
	for(int d=0;d<Coor.size();d++){
 | 
			
		||||
 | 
			
		||||
	  int fd = grid->_fdimensions[d];
 | 
			
		||||
	  int rd = grid->_rdimensions[d];
 | 
			
		||||
	    int ld = grid->_ldimensions[d];
 | 
			
		||||
	  int ly = grid->_simd_layout[d];
 | 
			
		||||
 | 
			
		||||
	    assert((ly==1)||(ly==2)||(ly==grid->Nsimd()));
 | 
			
		||||
	  assert((ly==1)||(ly==2));
 | 
			
		||||
 | 
			
		||||
	  int shift = (shifts[ii][d]+fd)%fd;  // make it strictly positive 0.. L-1
 | 
			
		||||
	  int x = Coor[d];                // x in [0... rd-1] as an oSite 
 | 
			
		||||
 | 
			
		||||
	    if ( (x + shift)%fd != (x+shift)%ld ){
 | 
			
		||||
	      SE._wrap = 1;
 | 
			
		||||
	    }
 | 
			
		||||
	    
 | 
			
		||||
	  int permute_dim  = grid->PermuteDim(d);
 | 
			
		||||
	  int permute_slice=0;
 | 
			
		||||
	  if(permute_dim){    
 | 
			
		||||
@@ -143,7 +132,7 @@ public:
 | 
			
		||||
	////////////////////////////////////////////////
 | 
			
		||||
	this->_entries[lex] = SE;
 | 
			
		||||
      }
 | 
			
		||||
      });
 | 
			
		||||
    }      
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
};
 | 
			
		||||
 
 | 
			
		||||
@@ -32,7 +32,6 @@
 | 
			
		||||
 | 
			
		||||
#include <Grid/stencil/SimpleCompressor.h>   // subdir aggregate
 | 
			
		||||
#include <Grid/stencil/Lebesgue.h>   // subdir aggregate
 | 
			
		||||
#include <Grid/stencil/GeneralLocalStencil.h>
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Must not lose sight that goal is to be able to construct really efficient
 | 
			
		||||
@@ -706,7 +705,7 @@ public:
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogDebug << "BuildSurfaceList size is "<<surface_list.size()<<std::endl;
 | 
			
		||||
    std::cout << "BuildSurfaceList size is "<<surface_list.size()<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  /// Introduce a block structure and switch off comms on boundaries
 | 
			
		||||
  void DirichletBlock(const Coordinate &dirichlet_block)
 | 
			
		||||
 
 | 
			
		||||
@@ -73,16 +73,6 @@ vobj coalescedReadPermute(const vobj & __restrict__ vec,int ptype,int doperm,int
 | 
			
		||||
    return vec;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
//'perm_mask' acts as a bitmask
 | 
			
		||||
template<class vobj> accelerator_inline
 | 
			
		||||
vobj coalescedReadGeneralPermute(const vobj & __restrict__ vec,int perm_mask,int nd,int lane=0)
 | 
			
		||||
{
 | 
			
		||||
  auto obj = vec, tmp = vec;
 | 
			
		||||
  for (int d=0;d<nd;d++)
 | 
			
		||||
    if (perm_mask & (0x1 << d)) { permute(obj,tmp,d); tmp=obj;}
 | 
			
		||||
  return obj;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> accelerator_inline
 | 
			
		||||
void coalescedWrite(vobj & __restrict__ vec,const vobj & __restrict__ extracted,int lane=0)
 | 
			
		||||
{
 | 
			
		||||
@@ -93,7 +83,7 @@ void coalescedWriteNonTemporal(vobj & __restrict__ vec,const vobj & __restrict__
 | 
			
		||||
{
 | 
			
		||||
  vstream(vec, extracted);
 | 
			
		||||
}
 | 
			
		||||
#else //==GRID_SIMT
 | 
			
		||||
#else
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//#ifndef GRID_SYCL
 | 
			
		||||
@@ -176,14 +166,6 @@ typename vobj::scalar_object coalescedReadPermute(const vobj & __restrict__ vec,
 | 
			
		||||
  return extractLane(plane,vec);
 | 
			
		||||
}
 | 
			
		||||
template<class vobj> accelerator_inline
 | 
			
		||||
typename vobj::scalar_object coalescedReadGeneralPermute(const vobj & __restrict__ vec,int perm_mask,int nd,int lane=acceleratorSIMTlane(vobj::Nsimd()))
 | 
			
		||||
{
 | 
			
		||||
  int plane = lane;
 | 
			
		||||
  for (int d=0;d<nd;d++)
 | 
			
		||||
    plane = (perm_mask & (0x1 << d)) ? plane ^ (vobj::Nsimd() >> (d + 1)) : plane;
 | 
			
		||||
  return extractLane(plane,vec);
 | 
			
		||||
}
 | 
			
		||||
template<class vobj> accelerator_inline
 | 
			
		||||
void coalescedWrite(vobj & __restrict__ vec,const typename vobj::scalar_object & __restrict__ extracted,int lane=acceleratorSIMTlane(vobj::Nsimd()))
 | 
			
		||||
{
 | 
			
		||||
  insertLane(lane,vec,extracted);
 | 
			
		||||
 
 | 
			
		||||
@@ -66,61 +66,13 @@ template<class vtype,int N> accelerator_inline iMatrix<vtype,N> Ta(const iMatrix
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vtype> accelerator_inline iScalar<vtype> SpTa(const iScalar<vtype>&r)
 | 
			
		||||
{
 | 
			
		||||
  iScalar<vtype> ret;
 | 
			
		||||
  ret._internal = SpTa(r._internal);
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
template<class vtype,int N> accelerator_inline iVector<vtype,N> SpTa(const iVector<vtype,N>&r)
 | 
			
		||||
{
 | 
			
		||||
  iVector<vtype,N> ret;
 | 
			
		||||
  for(int i=0;i<N;i++){
 | 
			
		||||
    ret._internal[i] = SpTa(r._internal[i]);
 | 
			
		||||
  }
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
 | 
			
		||||
accelerator_inline iMatrix<vtype,N> SpTa(const iMatrix<vtype,N> &arg)
 | 
			
		||||
{
 | 
			
		||||
  // Generalises Ta to Sp2n
 | 
			
		||||
  // Applies the following projections
 | 
			
		||||
  // P_{antihermitian} P_{antihermitian-Sp-algebra} P_{traceless}
 | 
			
		||||
  // where the ordering matters
 | 
			
		||||
  // P_{traceless} subtracts the trace
 | 
			
		||||
  // P_{antihermitian-Sp-algebra} provides the block structure of the algebra based on U = exp(T) i.e. anti-hermitian generators
 | 
			
		||||
  // P_{antihermitian} does in-adj(in) / 2
 | 
			
		||||
  iMatrix<vtype,N> ret(arg);
 | 
			
		||||
  double factor = (1.0/(double)N);
 | 
			
		||||
  vtype nrm;
 | 
			
		||||
  nrm = 0.5;
 | 
			
		||||
    
 | 
			
		||||
  ret = arg - (trace(arg)*factor);
 | 
			
		||||
    
 | 
			
		||||
  for(int c1=0;c1<N/2;c1++)
 | 
			
		||||
  {
 | 
			
		||||
      for(int c2=0;c2<N/2;c2++)
 | 
			
		||||
      {
 | 
			
		||||
          ret._internal[c1][c2] = nrm*(conjugate(ret._internal[c1+N/2][c2+N/2]) + ret._internal[c1][c2]); // new[up-left] = old[up-left]+old*[down-right]
 | 
			
		||||
          ret._internal[c1][c2+N/2] = nrm*(ret._internal[c1][c2+N/2] - conjugate(ret._internal[c1+N/2][c2])); // new[up-right] = old[up-right]-old*[down-left]
 | 
			
		||||
      }
 | 
			
		||||
      for(int c2=N/2;c2<N;c2++)
 | 
			
		||||
      {
 | 
			
		||||
          ret._internal[c1+N/2][c2-N/2] = -conjugate(ret._internal[c1][c2]);  //  reconstructs lower blocks
 | 
			
		||||
          ret._internal[c1+N/2][c2] = conjugate(ret._internal[c1][c2-N/2]);   //  from upper blocks
 | 
			
		||||
      }
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  ret = (ret - adj(ret))*0.5;
 | 
			
		||||
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////// 
 | 
			
		||||
// ProjectOnGroup function for scalar, vector, matrix 
 | 
			
		||||
// Projects on orthogonal, unitary group
 | 
			
		||||
/////////////////////////////////////////////// 
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vtype> accelerator_inline iScalar<vtype> ProjectOnGroup(const iScalar<vtype>&r)
 | 
			
		||||
{
 | 
			
		||||
  iScalar<vtype> ret;
 | 
			
		||||
@@ -138,12 +90,10 @@ template<class vtype,int N> accelerator_inline iVector<vtype,N> ProjectOnGroup(c
 | 
			
		||||
template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr> 
 | 
			
		||||
accelerator_inline iMatrix<vtype,N> ProjectOnGroup(const iMatrix<vtype,N> &arg)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename iMatrix<vtype,N>::scalar_type scalar;
 | 
			
		||||
  // need a check for the group type?
 | 
			
		||||
  iMatrix<vtype,N> ret(arg);
 | 
			
		||||
  vtype nrm;
 | 
			
		||||
  vtype inner;
 | 
			
		||||
  scalar one(1.0);
 | 
			
		||||
  for(int c1=0;c1<N;c1++){
 | 
			
		||||
 | 
			
		||||
    // Normalises row c1
 | 
			
		||||
@@ -152,7 +102,7 @@ accelerator_inline iMatrix<vtype,N> ProjectOnGroup(const iMatrix<vtype,N> &arg)
 | 
			
		||||
      inner += innerProduct(ret._internal[c1][c2],ret._internal[c1][c2]);
 | 
			
		||||
 | 
			
		||||
    nrm = sqrt(inner);
 | 
			
		||||
    nrm = one/nrm;
 | 
			
		||||
    nrm = 1.0/nrm;
 | 
			
		||||
    for(int c2=0;c2<N;c2++)
 | 
			
		||||
      ret._internal[c1][c2]*= nrm;
 | 
			
		||||
      
 | 
			
		||||
@@ -177,7 +127,7 @@ accelerator_inline iMatrix<vtype,N> ProjectOnGroup(const iMatrix<vtype,N> &arg)
 | 
			
		||||
      inner += innerProduct(ret._internal[c1][c2],ret._internal[c1][c2]);
 | 
			
		||||
 | 
			
		||||
    nrm = sqrt(inner);
 | 
			
		||||
    nrm = one/nrm;
 | 
			
		||||
    nrm = 1.0/nrm;
 | 
			
		||||
    for(int c2=0;c2<N;c2++)
 | 
			
		||||
      ret._internal[c1][c2]*= nrm;
 | 
			
		||||
  }
 | 
			
		||||
@@ -185,85 +135,6 @@ accelerator_inline iMatrix<vtype,N> ProjectOnGroup(const iMatrix<vtype,N> &arg)
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// re-do for sp2n
 | 
			
		||||
 | 
			
		||||
// Ta cannot be defined here for Sp2n because I need the generators from the Sp class
 | 
			
		||||
// It is defined in gauge impl types
 | 
			
		||||
 | 
			
		||||
template<class vtype> accelerator_inline iScalar<vtype> ProjectOnSpGroup(const iScalar<vtype>&r)
 | 
			
		||||
{
 | 
			
		||||
  iScalar<vtype> ret;
 | 
			
		||||
  ret._internal = ProjectOnSpGroup(r._internal);
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
template<class vtype,int N> accelerator_inline iVector<vtype,N> ProjectOnSpGroup(const iVector<vtype,N>&r)
 | 
			
		||||
{
 | 
			
		||||
  iVector<vtype,N> ret;
 | 
			
		||||
  for(int i=0;i<N;i++){
 | 
			
		||||
    ret._internal[i] = ProjectOnSpGroup(r._internal[i]);
 | 
			
		||||
  }
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// int N is 2n in Sp(2n)
 | 
			
		||||
template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
 | 
			
		||||
accelerator_inline iMatrix<vtype,N> ProjectOnSpGroup(const iMatrix<vtype,N> &arg)
 | 
			
		||||
{
 | 
			
		||||
  // need a check for the group type?
 | 
			
		||||
  iMatrix<vtype,N> ret(arg);
 | 
			
		||||
  vtype nrm;
 | 
			
		||||
  vtype inner;
 | 
			
		||||
  
 | 
			
		||||
  for(int c1=0;c1<N/2;c1++)
 | 
			
		||||
  {
 | 
			
		||||
      
 | 
			
		||||
    for (int b=0; b<c1; b++)                  // remove the b-rows from U_c1
 | 
			
		||||
    {
 | 
			
		||||
      decltype(ret._internal[b][b]*ret._internal[b][b]) pr;
 | 
			
		||||
      decltype(ret._internal[b][b]*ret._internal[b][b]) prn;
 | 
			
		||||
      zeroit(pr);
 | 
			
		||||
      zeroit(prn);
 | 
			
		||||
          
 | 
			
		||||
      for(int c=0; c<N; c++)
 | 
			
		||||
      {
 | 
			
		||||
        pr += conjugate(ret._internal[c1][c])*ret._internal[b][c];        // <U_c1 | U_b >
 | 
			
		||||
        prn += conjugate(ret._internal[c1][c])*ret._internal[b+N/2][c];   // <U_c1 | U_{b+N} >
 | 
			
		||||
      }
 | 
			
		||||
       
 | 
			
		||||
 | 
			
		||||
      for(int c=0; c<N; c++)
 | 
			
		||||
      {
 | 
			
		||||
        ret._internal[c1][c] -= (conjugate(pr) * ret._internal[b][c] + conjugate(prn) * ret._internal[b+N/2][c] );    //  U_c1 -= (  <U_c1 | U_b > U_b + <U_c1 | U_{b+N} > U_{b+N}  )
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    zeroit(inner);
 | 
			
		||||
    for(int c2=0;c2<N;c2++)
 | 
			
		||||
    {
 | 
			
		||||
      inner += innerProduct(ret._internal[c1][c2],ret._internal[c1][c2]);
 | 
			
		||||
    }
 | 
			
		||||
      
 | 
			
		||||
    nrm = sqrt(inner);
 | 
			
		||||
    nrm = 1.0/nrm;
 | 
			
		||||
    for(int c2=0;c2<N;c2++)
 | 
			
		||||
    {
 | 
			
		||||
      ret._internal[c1][c2]*= nrm;
 | 
			
		||||
    }
 | 
			
		||||
      
 | 
			
		||||
    for(int c2=0;c2<N/2;c2++)
 | 
			
		||||
    {
 | 
			
		||||
      ret._internal[c1+N/2][c2+N/2] = conjugate(ret._internal[c1][c2]);          // down right in the new matrix = (up-left)* of the old matrix
 | 
			
		||||
    }
 | 
			
		||||
      
 | 
			
		||||
    for(int c2=N/2;c2<N;c2++)
 | 
			
		||||
    {
 | 
			
		||||
      ret._internal[c1+N/2][c2-N/2] = -conjugate(ret._internal[c1][c2]);;     // down left in the new matrix = -(up-right)* of the old
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -53,8 +53,9 @@ template<class vtype, int N> accelerator_inline iVector<vtype, N> Exponentiate(c
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// Specialisation: Cayley-Hamilton exponential for SU(3)
 | 
			
		||||
#if 0
 | 
			
		||||
#ifndef GRID_ACCELERATED
 | 
			
		||||
template<class vtype, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0>::type * =nullptr> 
 | 
			
		||||
accelerator_inline iMatrix<vtype,3> Exponentiate(const iMatrix<vtype,3> &arg, RealD alpha  , Integer Nexp = DEFAULT_MAT_EXP )
 | 
			
		||||
{
 | 
			
		||||
 
 | 
			
		||||
@@ -137,18 +137,6 @@ inline void cuda_mem(void)
 | 
			
		||||
    dim3 cu_blocks ((num1+nt-1)/nt,num2,1);				\
 | 
			
		||||
    LambdaApply<<<cu_blocks,cu_threads,0,computeStream>>>(num1,num2,nsimd,lambda);	\
 | 
			
		||||
  }
 | 
			
		||||
#define prof_accelerator_for2dNB( iter1, num1, iter2, num2, nsimd, ... )	\
 | 
			
		||||
  {									\
 | 
			
		||||
    int nt=acceleratorThreads();					\
 | 
			
		||||
    typedef uint64_t Iterator;						\
 | 
			
		||||
    auto lambda = [=] accelerator					\
 | 
			
		||||
      (Iterator iter1,Iterator iter2,Iterator lane) mutable {		\
 | 
			
		||||
      __VA_ARGS__;							\
 | 
			
		||||
    };									\
 | 
			
		||||
    dim3 cu_threads(nsimd,acceleratorThreads(),1);			\
 | 
			
		||||
    dim3 cu_blocks ((num1+nt-1)/nt,num2,1);				\
 | 
			
		||||
    ProfileLambdaApply<<<cu_blocks,cu_threads,0,computeStream>>>(num1,num2,nsimd,lambda); \
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
#define accelerator_for6dNB(iter1, num1,				\
 | 
			
		||||
                            iter2, num2,				\
 | 
			
		||||
@@ -169,20 +157,6 @@ inline void cuda_mem(void)
 | 
			
		||||
    Lambda6Apply<<<cu_blocks,cu_threads,0,computeStream>>>(num1,num2,num3,num4,num5,num6,lambda); \
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#define accelerator_for2dNB( iter1, num1, iter2, num2, nsimd, ... )	\
 | 
			
		||||
  {									\
 | 
			
		||||
    int nt=acceleratorThreads();					\
 | 
			
		||||
    typedef uint64_t Iterator;						\
 | 
			
		||||
    auto lambda = [=] accelerator					\
 | 
			
		||||
      (Iterator iter1,Iterator iter2,Iterator lane) mutable {		\
 | 
			
		||||
      __VA_ARGS__;							\
 | 
			
		||||
    };									\
 | 
			
		||||
    dim3 cu_threads(nsimd,acceleratorThreads(),1);			\
 | 
			
		||||
    dim3 cu_blocks ((num1+nt-1)/nt,num2,1);				\
 | 
			
		||||
    LambdaApply<<<cu_blocks,cu_threads,0,computeStream>>>(num1,num2,nsimd,lambda);	\
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
template<typename lambda>  __global__
 | 
			
		||||
void LambdaApply(uint64_t num1, uint64_t num2, uint64_t num3, lambda Lambda)
 | 
			
		||||
{
 | 
			
		||||
@@ -194,17 +168,6 @@ void LambdaApply(uint64_t num1, uint64_t num2, uint64_t num3, lambda Lambda)
 | 
			
		||||
    Lambda(x,y,z);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
template<typename lambda>  __global__
 | 
			
		||||
void ProfileLambdaApply(uint64_t num1, uint64_t num2, uint64_t num3, lambda Lambda)
 | 
			
		||||
{
 | 
			
		||||
  // Weird permute is to make lane coalesce for large blocks
 | 
			
		||||
  uint64_t x = threadIdx.y + blockDim.y*blockIdx.x;
 | 
			
		||||
  uint64_t y = threadIdx.z + blockDim.z*blockIdx.y;
 | 
			
		||||
  uint64_t z = threadIdx.x;
 | 
			
		||||
  if ( (x < num1) && (y<num2) && (z<num3) ) {
 | 
			
		||||
    Lambda(x,y,z);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<typename lambda>  __global__
 | 
			
		||||
void Lambda6Apply(uint64_t num1, uint64_t num2, uint64_t num3,
 | 
			
		||||
@@ -245,7 +208,6 @@ inline void *acceleratorAllocShared(size_t bytes)
 | 
			
		||||
  if( err != cudaSuccess ) {
 | 
			
		||||
    ptr = (void *) NULL;
 | 
			
		||||
    printf(" cudaMallocManaged failed for %d %s \n",bytes,cudaGetErrorString(err));
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  return ptr;
 | 
			
		||||
};
 | 
			
		||||
@@ -443,7 +405,7 @@ void LambdaApply(uint64_t numx, uint64_t numy, uint64_t numz, lambda Lambda)
 | 
			
		||||
 | 
			
		||||
#define accelerator_barrier(dummy)				\
 | 
			
		||||
  {								\
 | 
			
		||||
    auto tmp=hipStreamSynchronize(computeStream);		\
 | 
			
		||||
    hipStreamSynchronize(computeStream);			\
 | 
			
		||||
    auto err = hipGetLastError();				\
 | 
			
		||||
    if ( err != hipSuccess ) {					\
 | 
			
		||||
      printf("After hipDeviceSynchronize() : HIP error %s \n", hipGetErrorString( err )); \
 | 
			
		||||
@@ -476,19 +438,19 @@ inline void *acceleratorAllocDevice(size_t bytes)
 | 
			
		||||
  return ptr;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
inline void acceleratorFreeShared(void *ptr){ auto discard=hipFree(ptr);};
 | 
			
		||||
inline void acceleratorFreeDevice(void *ptr){ auto discard=hipFree(ptr);};
 | 
			
		||||
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes)  { auto discard=hipMemcpy(to,from,bytes, hipMemcpyHostToDevice);}
 | 
			
		||||
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ auto discard=hipMemcpy(to,from,bytes, hipMemcpyDeviceToHost);}
 | 
			
		||||
inline void acceleratorFreeShared(void *ptr){ hipFree(ptr);};
 | 
			
		||||
inline void acceleratorFreeDevice(void *ptr){ hipFree(ptr);};
 | 
			
		||||
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes)  { hipMemcpy(to,from,bytes, hipMemcpyHostToDevice);}
 | 
			
		||||
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ hipMemcpy(to,from,bytes, hipMemcpyDeviceToHost);}
 | 
			
		||||
//inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes)  { hipMemcpy(to,from,bytes, hipMemcpyDeviceToDevice);}
 | 
			
		||||
//inline void acceleratorCopySynchronise(void) {  }
 | 
			
		||||
inline void acceleratorMemSet(void *base,int value,size_t bytes) { auto discard=hipMemset(base,value,bytes);}
 | 
			
		||||
inline void acceleratorMemSet(void *base,int value,size_t bytes) { hipMemset(base,value,bytes);}
 | 
			
		||||
 | 
			
		||||
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) // Asynch
 | 
			
		||||
{
 | 
			
		||||
  auto discard=hipMemcpyDtoDAsync(to,from,bytes, copyStream);
 | 
			
		||||
  hipMemcpyDtoDAsync(to,from,bytes, copyStream);
 | 
			
		||||
}
 | 
			
		||||
inline void acceleratorCopySynchronise(void) { auto discard=hipStreamSynchronize(copyStream); };
 | 
			
		||||
inline void acceleratorCopySynchronise(void) { hipStreamSynchronize(copyStream); };
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
@@ -498,9 +460,6 @@ inline void acceleratorCopySynchronise(void) { auto discard=hipStreamSynchronize
 | 
			
		||||
#if defined(GRID_SYCL) || defined(GRID_CUDA) || defined(GRID_HIP)
 | 
			
		||||
// FIXME -- the non-blocking nature got broken March 30 2023 by PAB
 | 
			
		||||
#define accelerator_forNB( iter1, num1, nsimd, ... ) accelerator_for2dNB( iter1, num1, iter2, 1, nsimd, {__VA_ARGS__} );  
 | 
			
		||||
#define prof_accelerator_for( iter1, num1, nsimd, ... ) \
 | 
			
		||||
  prof_accelerator_for2dNB( iter1, num1, iter2, 1, nsimd, {__VA_ARGS__} );\
 | 
			
		||||
  accelerator_barrier(dummy);
 | 
			
		||||
 | 
			
		||||
#define accelerator_for( iter, num, nsimd, ... )		\
 | 
			
		||||
  accelerator_forNB(iter, num, nsimd, { __VA_ARGS__ } );	\
 | 
			
		||||
 
 | 
			
		||||
@@ -94,13 +94,6 @@ static constexpr int MaxDims = GRID_MAX_LATTICE_DIMENSION;
 | 
			
		||||
 | 
			
		||||
typedef AcceleratorVector<int,MaxDims> Coordinate;
 | 
			
		||||
 | 
			
		||||
template<class T,int _ndim>
 | 
			
		||||
inline bool operator==(const AcceleratorVector<T,_ndim> &v,const AcceleratorVector<T,_ndim> &w)
 | 
			
		||||
{
 | 
			
		||||
  if (v.size()!=w.size()) return false;
 | 
			
		||||
  for(int i=0;i<v.size();i++) if ( v[i]!=w[i] ) return false;
 | 
			
		||||
  return true;
 | 
			
		||||
}
 | 
			
		||||
template<class T,int _ndim>
 | 
			
		||||
inline std::ostream & operator<<(std::ostream &os, const AcceleratorVector<T,_ndim> &v)
 | 
			
		||||
{
 | 
			
		||||
 
 | 
			
		||||
@@ -283,7 +283,6 @@ void GridBanner(void)
 | 
			
		||||
    std::cout << "Build " << GRID_BUILD_STR(GRID_BUILD_REF) << std::endl;
 | 
			
		||||
#endif
 | 
			
		||||
    std::cout << std::endl;
 | 
			
		||||
    std::cout << std::setprecision(9);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void Grid_init(int *argc,char ***argv)
 | 
			
		||||
@@ -414,7 +413,7 @@ void Grid_init(int *argc,char ***argv)
 | 
			
		||||
  // Logging
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  std::vector<std::string> logstreams;
 | 
			
		||||
  std::string defaultLog("Error,Warning,Message,Memory");
 | 
			
		||||
  std::string defaultLog("Error,Warning,Message,Performance");
 | 
			
		||||
  GridCmdOptionCSL(defaultLog,logstreams);
 | 
			
		||||
  GridLogConfigure(logstreams);
 | 
			
		||||
 | 
			
		||||
@@ -538,10 +537,6 @@ void Grid_init(int *argc,char ***argv)
 | 
			
		||||
 | 
			
		||||
void Grid_finalize(void)
 | 
			
		||||
{
 | 
			
		||||
  std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage<<"******* Grid Finalize                ******"<<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
 | 
			
		||||
 | 
			
		||||
#if defined (GRID_COMMS_MPI) || defined (GRID_COMMS_MPI3) || defined (GRID_COMMS_MPIT)
 | 
			
		||||
  MPI_Barrier(MPI_COMM_WORLD);
 | 
			
		||||
  MPI_Finalize();
 | 
			
		||||
 
 | 
			
		||||
@@ -8,7 +8,7 @@ namespace Grid{
 | 
			
		||||
  public:
 | 
			
		||||
 | 
			
		||||
    template<class coor_t>
 | 
			
		||||
    static accelerator_inline void CoorFromIndex (coor_t& coor,int64_t index,const coor_t &dims){
 | 
			
		||||
    static accelerator_inline void CoorFromIndex (coor_t& coor,int index,const coor_t &dims){
 | 
			
		||||
      int nd= dims.size();
 | 
			
		||||
      coor.resize(nd);
 | 
			
		||||
      for(int d=0;d<nd;d++){
 | 
			
		||||
@@ -18,45 +18,28 @@ namespace Grid{
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class coor_t>
 | 
			
		||||
    static accelerator_inline void IndexFromCoor (const coor_t& coor,int64_t &index,const coor_t &dims){
 | 
			
		||||
    static accelerator_inline void IndexFromCoor (const coor_t& coor,int &index,const coor_t &dims){
 | 
			
		||||
      int nd=dims.size();
 | 
			
		||||
      int stride=1;
 | 
			
		||||
      index=0;
 | 
			
		||||
      for(int d=0;d<nd;d++){
 | 
			
		||||
	index = index+(int64_t)stride*coor[d];
 | 
			
		||||
	index = index+stride*coor[d];
 | 
			
		||||
	stride=stride*dims[d];
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    template<class coor_t>
 | 
			
		||||
    static accelerator_inline void IndexFromCoor (const coor_t& coor,int &index,const coor_t &dims){
 | 
			
		||||
      int64_t index64;
 | 
			
		||||
      IndexFromCoor(coor,index64,dims);
 | 
			
		||||
      assert(index64<2*1024*1024*1024LL);
 | 
			
		||||
      index = (int) index64;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class coor_t>
 | 
			
		||||
    static inline void IndexFromCoorReversed (const coor_t& coor,int64_t &index,const coor_t &dims){
 | 
			
		||||
    static inline void IndexFromCoorReversed (const coor_t& coor,int &index,const coor_t &dims){
 | 
			
		||||
      int nd=dims.size();
 | 
			
		||||
      int stride=1;
 | 
			
		||||
      index=0;
 | 
			
		||||
      for(int d=nd-1;d>=0;d--){
 | 
			
		||||
	index = index+(int64_t)stride*coor[d];
 | 
			
		||||
	index = index+stride*coor[d];
 | 
			
		||||
	stride=stride*dims[d];
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    template<class coor_t>
 | 
			
		||||
    static inline void IndexFromCoorReversed (const coor_t& coor,int &index,const coor_t &dims){
 | 
			
		||||
      int64_t index64;
 | 
			
		||||
      IndexFromCoorReversed(coor,index64,dims);
 | 
			
		||||
      if ( index64>=2*1024*1024*1024LL ){
 | 
			
		||||
	std::cout << " IndexFromCoorReversed " << coor<<" index " << index64<< " dims "<<dims<<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
      assert(index64<2*1024*1024*1024LL);
 | 
			
		||||
      index = (int) index64;
 | 
			
		||||
    }
 | 
			
		||||
    template<class coor_t>
 | 
			
		||||
    static inline void CoorFromIndexReversed (coor_t& coor,int64_t index,const coor_t &dims){
 | 
			
		||||
    static inline void CoorFromIndexReversed (coor_t& coor,int index,const coor_t &dims){
 | 
			
		||||
      int nd= dims.size();
 | 
			
		||||
      coor.resize(nd);
 | 
			
		||||
      for(int d=nd-1;d>=0;d--){
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										224
									
								
								HMC/FTHMC2p1f.cc
									
									
									
									
									
								
							
							
						
						
									
										224
									
								
								HMC/FTHMC2p1f.cc
									
									
									
									
									
								
							@@ -1,224 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2023
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
#include <Grid/qcd/smearing/GaugeConfigurationMasked.h>
 | 
			
		||||
#include <Grid/qcd/smearing/JacobianAction.h>
 | 
			
		||||
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 | 
			
		||||
int main(int argc, char **argv)
 | 
			
		||||
{
 | 
			
		||||
  std::cout << std::setprecision(12);
 | 
			
		||||
  
 | 
			
		||||
  Grid_init(&argc, &argv);
 | 
			
		||||
  int threads = GridThread::GetThreads();
 | 
			
		||||
  // here make a routine to print all the relevant information on the run
 | 
			
		||||
  std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
 | 
			
		||||
 | 
			
		||||
   // Typedefs to simplify notation
 | 
			
		||||
  typedef WilsonImplR FermionImplPolicy;
 | 
			
		||||
  typedef MobiusFermionD FermionAction;
 | 
			
		||||
  typedef typename FermionAction::FermionField FermionField;
 | 
			
		||||
 | 
			
		||||
  typedef Grid::XmlReader       Serialiser;
 | 
			
		||||
 | 
			
		||||
  //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
 | 
			
		||||
  IntegratorParameters MD;
 | 
			
		||||
  //  typedef GenericHMCRunner<LeapFrog> HMCWrapper;
 | 
			
		||||
  //  MD.name    = std::string("Leap Frog");
 | 
			
		||||
  //  typedef GenericHMCRunner<ForceGradient> HMCWrapper;
 | 
			
		||||
  //  MD.name    = std::string("Force Gradient");
 | 
			
		||||
  typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;
 | 
			
		||||
  MD.name    = std::string("MinimumNorm2");
 | 
			
		||||
  MD.MDsteps = 12;
 | 
			
		||||
  MD.trajL   = 1.0;
 | 
			
		||||
 | 
			
		||||
  HMCparameters HMCparams;
 | 
			
		||||
  HMCparams.StartTrajectory  = 0;
 | 
			
		||||
  HMCparams.Trajectories     = 200;
 | 
			
		||||
  HMCparams.NoMetropolisUntil=  20;
 | 
			
		||||
  // "[HotStart, ColdStart, TepidStart, CheckpointStart]\n";
 | 
			
		||||
  HMCparams.StartingType     =std::string("HotStart");
 | 
			
		||||
  HMCparams.MD = MD;
 | 
			
		||||
  HMCWrapper TheHMC(HMCparams);
 | 
			
		||||
 | 
			
		||||
  // Grid from the command line arguments --grid and --mpi
 | 
			
		||||
  TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
 | 
			
		||||
 | 
			
		||||
  CheckpointerParameters CPparams;
 | 
			
		||||
  CPparams.config_prefix = "ckpoint_EODWF_lat";
 | 
			
		||||
  CPparams.smeared_prefix = "ckpoint_EODWF_lat_smr";
 | 
			
		||||
  CPparams.rng_prefix    = "ckpoint_EODWF_rng";
 | 
			
		||||
  CPparams.saveInterval  = 1;
 | 
			
		||||
  CPparams.saveSmeared   = true;
 | 
			
		||||
  CPparams.format        = "IEEE64BIG";
 | 
			
		||||
  TheHMC.Resources.LoadNerscCheckpointer(CPparams);
 | 
			
		||||
 | 
			
		||||
  RNGModuleParameters RNGpar;
 | 
			
		||||
  RNGpar.serial_seeds = "1 2 3 4 5";
 | 
			
		||||
  RNGpar.parallel_seeds = "6 7 8 9 10";
 | 
			
		||||
  TheHMC.Resources.SetRNGSeeds(RNGpar);
 | 
			
		||||
 | 
			
		||||
  // Construct observables
 | 
			
		||||
  // here there is too much indirection
 | 
			
		||||
  typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs;
 | 
			
		||||
  TheHMC.Resources.AddObservable<PlaqObs>();
 | 
			
		||||
  //////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  const int Ls      = 16;
 | 
			
		||||
  Real beta         = 2.13;
 | 
			
		||||
  Real light_mass   = 0.01;
 | 
			
		||||
  Real strange_mass = 0.04;
 | 
			
		||||
  Real pv_mass      = 1.0;
 | 
			
		||||
  RealD M5  = 1.8;
 | 
			
		||||
  RealD b   = 1.0; // Scale factor two
 | 
			
		||||
  RealD c   = 0.0;
 | 
			
		||||
 | 
			
		||||
  OneFlavourRationalParams OFRp;
 | 
			
		||||
  OFRp.lo       = 1.0e-2;
 | 
			
		||||
  OFRp.hi       = 64;
 | 
			
		||||
  OFRp.MaxIter  = 10000;
 | 
			
		||||
  OFRp.tolerance= 1.0e-10;
 | 
			
		||||
  OFRp.degree   = 14;
 | 
			
		||||
  OFRp.precision= 40;
 | 
			
		||||
 | 
			
		||||
  std::vector<Real> hasenbusch({ 0.1 });
 | 
			
		||||
 | 
			
		||||
  auto GridPtr   = TheHMC.Resources.GetCartesian();
 | 
			
		||||
  auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
 | 
			
		||||
  auto FGrid     = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtr);
 | 
			
		||||
  auto FrbGrid   = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtr);
 | 
			
		||||
 | 
			
		||||
  IwasakiGaugeActionR GaugeAction(beta);
 | 
			
		||||
 | 
			
		||||
  // temporarily need a gauge field
 | 
			
		||||
  LatticeGaugeField U(GridPtr);
 | 
			
		||||
  LatticeGaugeField Uhot(GridPtr);
 | 
			
		||||
 | 
			
		||||
  // These lines are unecessary if BC are all periodic
 | 
			
		||||
  std::vector<Complex> boundary = {1,1,1,-1};
 | 
			
		||||
  FermionAction::ImplParams Params(boundary);
 | 
			
		||||
 | 
			
		||||
  double StoppingCondition = 1e-10;
 | 
			
		||||
  double MaxCGIterations = 30000;
 | 
			
		||||
  ConjugateGradient<FermionField>  CG(StoppingCondition,MaxCGIterations);
 | 
			
		||||
 | 
			
		||||
  bool ApplySmearing = true;
 | 
			
		||||
  
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  // Collect actions
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  ActionLevel<HMCWrapper::Field> Level1(1);
 | 
			
		||||
  ActionLevel<HMCWrapper::Field> Level2(2);
 | 
			
		||||
  ActionLevel<HMCWrapper::Field> Level3(4);
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  // Strange action
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  MobiusEOFAFermionD Strange_Op_L (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , strange_mass, strange_mass, pv_mass, 0.0, -1, M5, b, c);
 | 
			
		||||
  MobiusEOFAFermionD Strange_Op_R (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , pv_mass, strange_mass,      pv_mass, -1.0, 1, M5, b, c);
 | 
			
		||||
  ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> 
 | 
			
		||||
    EOFA(Strange_Op_L, Strange_Op_R, 
 | 
			
		||||
	 CG,
 | 
			
		||||
	 CG, CG,
 | 
			
		||||
	 CG, CG, 
 | 
			
		||||
	 OFRp, false);
 | 
			
		||||
 | 
			
		||||
  EOFA.is_smeared = ApplySmearing;
 | 
			
		||||
  Level1.push_back(&EOFA);
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  // up down action
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  std::vector<Real> light_den;
 | 
			
		||||
  std::vector<Real> light_num;
 | 
			
		||||
 | 
			
		||||
  int n_hasenbusch = hasenbusch.size();
 | 
			
		||||
  light_den.push_back(light_mass);
 | 
			
		||||
  for(int h=0;h<n_hasenbusch;h++){
 | 
			
		||||
    light_den.push_back(hasenbusch[h]);
 | 
			
		||||
    light_num.push_back(hasenbusch[h]);
 | 
			
		||||
  }
 | 
			
		||||
  light_num.push_back(pv_mass);
 | 
			
		||||
 | 
			
		||||
  std::vector<FermionAction *> Numerators;
 | 
			
		||||
  std::vector<FermionAction *> Denominators;
 | 
			
		||||
  std::vector<TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy> *> Quotients;
 | 
			
		||||
 | 
			
		||||
  for(int h=0;h<n_hasenbusch+1;h++){
 | 
			
		||||
    std::cout << GridLogMessage << " 2f quotient Action  "<< light_num[h] << " / " << light_den[h]<< std::endl;
 | 
			
		||||
    Numerators.push_back  (new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_num[h],M5,b,c, Params));
 | 
			
		||||
    Denominators.push_back(new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_den[h],M5,b,c, Params));
 | 
			
		||||
    Quotients.push_back   (new TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],CG,CG));
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  for(int h=0;h<n_hasenbusch+1;h++){
 | 
			
		||||
    Quotients[h]->is_smeared = ApplySmearing;
 | 
			
		||||
    Level1.push_back(Quotients[h]);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  // lnDetJacobianAction
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  double rho = 0.1;  // smearing parameter
 | 
			
		||||
  int Nsmear = 1;    // number of smearing levels - must be multiple of 2Nd
 | 
			
		||||
  int Nstep  = 8*Nsmear;    // number of smearing levels - must be multiple of 2Nd
 | 
			
		||||
  Smear_Stout<HMCWrapper::ImplPolicy> Stout(rho);
 | 
			
		||||
  SmearedConfigurationMasked<HMCWrapper::ImplPolicy> SmearingPolicy(GridPtr, Nstep, Stout);
 | 
			
		||||
  JacobianAction<HMCWrapper::ImplPolicy> Jacobian(&SmearingPolicy);
 | 
			
		||||
  if( ApplySmearing ) Level2.push_back(&Jacobian);
 | 
			
		||||
  std::cout << GridLogMessage << " Built the Jacobian "<< std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  // Gauge action
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  //  GaugeAction.is_smeared = ApplySmearing;
 | 
			
		||||
  GaugeAction.is_smeared = true;
 | 
			
		||||
  Level3.push_back(&GaugeAction);
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << " ************************************************"<< std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << " Action complete -- NO FERMIONS FOR NOW -- FIXME"<< std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << " ************************************************"<< std::endl;
 | 
			
		||||
  std::cout << GridLogMessage <<  std::endl;
 | 
			
		||||
  std::cout << GridLogMessage <<  std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << " Running the FT HMC "<< std::endl;
 | 
			
		||||
 | 
			
		||||
  TheHMC.TheAction.push_back(Level1);
 | 
			
		||||
  TheHMC.TheAction.push_back(Level2);
 | 
			
		||||
  TheHMC.TheAction.push_back(Level3);
 | 
			
		||||
 | 
			
		||||
  TheHMC.Run(SmearingPolicy); // for smearing
 | 
			
		||||
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
} // main
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
Some files were not shown because too many files have changed in this diff Show More
		Reference in New Issue
	
	Block a user