1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-11-04 22:09:31 +00:00

Compare commits

...

111 Commits

Author SHA1 Message Date
Peter Boyle
d3ca16c76d Updated 2025-10-27 21:09:02 -04:00
Peter Boyle
d81d00a889 Covariance test of covariant laplacian appears to pass 2025-10-27 19:19:30 -04:00
Peter Boyle
d0ee38d1da Clean up 2025-10-22 21:44:51 -04:00
Peter Boyle
da8dc3da0d More compact 2025-10-22 21:37:40 -04:00
Peter Boyle
21514d8487 Added a free laplacian 2025-10-22 21:31:53 -04:00
Peter Boyle
77b2e9fb61 Name changes 2025-10-22 16:46:15 -04:00
Peter Boyle
a71ba05bd7 Implemented gauge transform via stencil.
Now have ability to do Vertex AND Edge grids
Should now have no barriers to
a) Double Storing links for fermion operators / laplacian
b) Laplace or Wilson operators
2025-10-22 16:27:06 -04:00
Peter Boyle
1e95e64035 Staples work in icoso-plane 2025-10-21 23:27:27 -04:00
Peter Boyle
defcac92ab Somewhat better wrapped support for Icosahedral 2025-10-20 18:09:21 -04:00
Peter Boyle
4869378f1e Now computed some plaquettes.
First cut at stencil
2025-10-20 11:15:17 -04:00
Peter Boyle
c7b74db317 Default dimensions fixed 2025-10-09 14:57:22 -04:00
Peter Boyle
0ce201efbe IcosahedralVerted() checks 2025-10-09 13:35:16 -04:00
Peter Boyle
6d8a3d8bb2 Config 2025-10-09 13:30:16 -04:00
Peter Boyle
7dfd207ebb Need to protect pole operatoins to only take place on IcosahedralVertices mesh 2025-10-08 15:18:31 -04:00
Peter Boyle
3a65a096f2 Nd verbose 2025-10-07 18:49:00 -04:00
Peter Boyle
85b2bd4c93 Beginnings of S2xR 2025-10-07 16:11:06 -04:00
Peter Boyle
35e10a1159 Changes for Nd=3 2025-10-03 12:17:13 -04:00
d418f78352 Making running on Aurora more debuggable 2025-05-23 20:58:16 +00:00
25163998a0 Makes SYCL compiler happy 2025-05-23 20:57:11 +00:00
Peter Boyle
dc546aaa4b Updated config options for BNL cluster 2025-05-13 18:44:47 -04:00
Peter Boyle
5364d580c9 Output chirality, eigenvector density files and python source lego plot 2025-05-13 18:44:47 -04:00
Peter Boyle
2a9a6347e3 Do not require Grid format RNGs and also to the 5Li reporting 2025-05-13 18:44:47 -04:00
Peter Boyle
cfdb56f314 Run measurements at t=0 too 2025-05-13 18:44:46 -04:00
Peter Boyle
b517e88db3 Update README 2025-05-13 16:49:21 -04:00
bb317aba8d Lattice = for sycl 2025-05-13 12:50:58 +00:00
644cc6647e JSON update 2025-05-13 12:50:58 +00:00
72397ce23b SYCL interface change 2025-05-13 12:50:58 +00:00
Peter Boyle
d60a80c098 Fixes and visualisation 2025-04-29 18:04:23 -04:00
Peter Boyle
bb8b6d9d73 Fix 2025-04-29 18:04:04 -04:00
Peter Boyle
677b4cc5b0 Make all tests compile 2025-04-24 20:33:26 -04:00
Peter Boyle
be565ffab6 update mac config command 2025-04-24 14:50:06 -04:00
Peter Boyle
df6120e5f6 CPU compile oops fix 2025-04-24 14:50:06 -04:00
Peter Boyle
21de6f7da8 Merge pull request #477 from lehner/feature/wilson-clover-5d
Feature/wilson clover 5d
2025-04-24 14:44:48 -04:00
Peter Boyle
dbe39f9ce0 Merge pull request #471 from edbennett/fix-wflow
Shave off rough edges in Wilson flow test
2025-04-24 14:40:31 -04:00
Peter Boyle
ab3de50d5e Merge pull request #473 from UCL-ARC/gauge_action_deriv
WilsonGagueAction deriv
2025-04-24 14:39:10 -04:00
Peter Boyle
c545bd2139 Merge pull request #465 from edbennett/allow-nonsu3-compilation
guard against trying to compile SU3-specific code when Nc ≠ 3
2025-04-24 14:35:51 -04:00
Peter Boyle
6a1c64fbdd Merge pull request #470 from paboyle/specflow
Spectral flow, DWF/Mobius kernel measurement
2025-04-24 14:34:33 -04:00
Peter Boyle
b75809ed61 Update README 2025-04-24 14:27:22 -04:00
Peter Boyle
ecaf228e5c Update README 2025-04-24 14:25:32 -04:00
Peter Boyle
6d015ae8fc Visualisation tools 2025-04-24 13:47:34 -04:00
Peter Boyle
233150d93f Bug fix for no accelerator aware MPI, thanks Shuhei for finding it. 2025-04-24 11:40:46 -04:00
Peter Boyle
7af8c77a52 Normalise 2025-04-24 11:37:39 -04:00
Chulwoo Jung
a957e7bfa1 Adding DWF evec Chirality measurement 2025-04-22 22:17:51 +00:00
Chulwoo Jung
cee4c8ce8c Merge branch 'develop' of https://github.com/paboyle/Grid into specflow 2025-04-18 19:55:36 +00:00
Christoph Lehner
96bf814d8c Add checkerboarding to 5D compact clover 2025-04-10 23:05:39 +02:00
Christoph Lehner
7ddc422788 CompactWilsonClover5D 2025-04-10 23:05:29 +02:00
Peter Boyle
e652fc2825 Shared Memory test reenabled on every Grid object creation.
Const improvements in Accelerator.h
2025-04-07 11:51:40 -04:00
Peter Boyle
a49fa3f8d0 ROCM 6.3.1 appears to work 2025-04-07 11:50:59 -04:00
Peter Boyle
cd452a2f91 Slurm update 2025-04-04 18:40:20 -04:00
Peter Boyle
4f89f603ae Changes to add back shared memory test on GPU 2025-04-04 18:40:15 -04:00
Peter Boyle
11dc2c5e1d PVdagM initialise 2025-04-04 18:35:06 -04:00
Peter Boyle
6fec3c15ca Cleaner printing 2025-04-04 18:35:06 -04:00
Peter Boyle
938c47480f Updated compile on frontier.
Unsatisfactory hacsk
2025-04-04 18:35:06 -04:00
Peter Boyle
3811d19298 Fence 2025-04-04 18:35:06 -04:00
Peter Boyle
83a3ab6b6f Barrier -- not sure 100% this was needed 2025-04-04 18:35:05 -04:00
Peter Boyle
d66a9af6a3 No compile fix 2025-04-04 18:35:05 -04:00
Peter Boyle
adc90d3a86 NVLINK GET/PUT on cuda aware mpi 2025-04-04 18:35:05 -04:00
Peter Boyle
ebbd015c5c Deprecate shared memory copy as direction matters on nvidia GPU 2025-04-04 18:35:05 -04:00
Peter Boyle
4ab73b36b2 Deprecate shared memory copy as direction matters on GPU 2025-04-04 18:35:05 -04:00
Peter Boyle
130e07a422 Non hermitian support 2025-04-04 18:35:05 -04:00
Peter Boyle
8f47bb367e Shifted non herm 2025-04-04 18:35:05 -04:00
Peter Boyle
0c3cb60135 Script update 2025-04-04 18:35:05 -04:00
Peter Boyle
9eae8fca5d Size outut 2025-04-04 18:35:05 -04:00
Peter Boyle
882a217074 Example of Useful prerequisite installs with spack 2025-03-26 11:28:53 -04:00
Mashy Green
e465fce201 Merge remote-tracking branch 'upstream/develop' into gauge_action_deriv 2025-03-24 10:12:42 +00:00
Mashy Green
d41542c64b reverted sp2n test wilsonfundfermiongauge to original 2025-03-24 08:29:15 +00:00
Peter Boyle
199818bd6c Merge pull request #475 from lehner/feature-aurora
Sync with GPT on Aurora
2025-03-13 08:55:55 -04:00
Christoph Lehner
fe66c7ca30 verbosity 2025-03-13 12:49:36 +00:00
Christoph Lehner
e9177e4af3 Blas compatibility 2025-03-13 08:48:23 +00:00
Christoph Lehner
d15a6c5933 Merge branch 'develop' of https://github.com/paboyle/Grid into feature-aurora 2025-03-13 07:29:55 +00:00
25ab9325e7 Use hostVector but remove construct resize 2025-03-11 15:02:32 +00:00
19f9378b98 Should work on Aurora nowb 2025-03-11 13:50:43 +00:00
Mashy Green
785bc7a14f Adding staple zeroing fix 2025-03-10 12:29:04 +00:00
Mashy Green
1a1fe85428 Merge remote-tracking branch 'upstream' into gauge_action_deriv 2025-03-10 08:37:36 +00:00
Mashy Green
0000d2e558 Merge branch 'develop' into gauge_action_deriv 2025-03-10 08:35:57 +00:00
Christoph Lehner
9ffd1ed4ce Merged 2025-03-08 15:30:08 +00:00
Peter Boyle
3d014864e2 Makinig LLVM happy 2025-03-06 14:19:25 -05:00
1d22841811 Working on aurora, GPT issue turned up is fixed 2025-03-06 03:20:18 +00:00
Peter Boyle
a1cdda833f Update WorkArounds.txt 2025-03-05 14:04:23 -05:00
Peter Boyle
ad6db92690 Update WorkArounds.txt 2025-03-05 14:00:26 -05:00
Peter Boyle
e8ff9d8e50 Update WorkArounds.txt 2025-03-05 14:00:04 -05:00
Peter Boyle
795769c636 Update WorkArounds.txt 2025-03-05 13:50:41 -05:00
Peter Boyle
267a39d943 Update WorkArounds.txt 2025-03-05 13:49:43 -05:00
Peter Boyle
3624bd3d22 Update WorkArounds.txt 2025-03-05 13:45:09 -05:00
Peter Boyle
bc12dbbb38 Update WorkArounds.txt 2025-03-05 12:48:56 -05:00
Peter Boyle
eb8a008a8f Create WorkArounds.txt 2025-03-05 12:41:59 -05:00
c4d9aa1a21 Config command that makes GPT happier 2025-02-27 20:12:49 +00:00
6ae809ed40 Print not liked on GPT compile 2025-02-27 20:12:49 +00:00
Muhammad Asif
b1ba209696 Latest upstream with np-su3 patch and modified Sp_WilsonFunfFermionGauge test to be small (#22)
Co-authored-by: Mashy Green <mashy@me.com>

merging no-su3 patch
2025-02-24 11:38:42 +00:00
Muhammad Asif
cb3e529b1e Merge branch 'paboyle:develop' into develop 2025-02-24 11:29:09 +00:00
Mashy Green
717f647418 added the WilsonFlow patch from upstream PR #471 2025-02-24 08:41:31 +00:00
Mashy Green
98e7418187 Merge remote-tracking branch 'upstream/develop' into gauge_action_deriv 2025-02-24 08:33:05 +00:00
Mashy Green
fe05bf48b1 Improvements to WilsonGaugeAction deriv function (#16)
* patched version + modifications to deriv -> staple in qcd/gauge

* Cleaning up and aligning variable naming between action deriv versions

* Removing the regresion test files that were also in this branch for a clean PR

* Reverting whitespace changes

* Fixing after revering too much!

---------

Co-authored-by: Mashy Green <mashy@me.com>
2025-02-17 18:52:04 +00:00
Mashy Green
d2dd8f54e2 Fixing after revering too much! 2025-02-17 17:32:27 +00:00
Mashy Green
7726ee4b16 Reverting whitespace changes 2025-02-17 17:16:28 +00:00
8729c46169 add clover energy density measurement to default WilsonFlow measurements 2025-02-03 14:27:55 +00:00
09f81fe7c3 don't force energy density measurement to be every wilson flow iteration 2025-02-03 14:27:45 +00:00
1876e5b7c0 correct tests/smearing/WilsonFlow to use non-adaptive flow and use correct interface 2025-02-03 14:27:29 +00:00
Mashy Green
355ec76257 Merge pull request #18 from UCL-ARC/bugfix/nvtx
Bugfix/nvtx
2025-02-03 11:05:42 +00:00
Christoph Lehner
84cab5e6e7 no comms and log cleanup 2025-02-01 16:37:21 +01:00
Mashy Green
4f17c8d081 Merge branch 'paboyle:develop' into bugfix/nvtx 2025-01-29 13:10:12 +00:00
Mashy Green
aaab753982 Reverting to older version of nvtx for Tursa support 2025-01-29 12:57:38 +00:00
Chulwoo Jung
570b72a47b Bugfix. Sorry! 2025-01-21 15:37:39 -05:00
Chulwoo Jung
a5798a89ed Merge branch 'develop' into specflow 2025-01-21 12:13:24 -05:00
Chulwoo Jung
f7e2f9a401 Checking in spectral flow and DWF/Mobius kernel eigenvalue measurement 2025-01-16 20:47:33 +00:00
Chulwoo Jung
2848a9b558 DWF Kernel lanczos working(?) 2025-01-16 01:29:56 +00:00
Mashy Green
d4868991af Fixed wrong lib for NVTX in configure.ac and updated to nvtx3 2025-01-10 14:53:19 +00:00
Mashy Green
e99d42404e Removing the regresion test files that were also in this branch for a clean PR 2024-12-16 16:31:22 +00:00
Mashy Green
3ba019c747 Cleaning up and aligning variable naming between action deriv versions 2024-12-03 15:23:00 +00:00
Mashy Green
47429218bb patched version + modifications to deriv -> staple in qcd/gauge 2024-11-27 16:29:22 +00:00
8d305df0db guard against trying to compile SU3-specific code when Nc ≠ 3 2024-05-24 14:00:56 +01:00
143 changed files with 8059 additions and 396 deletions

View File

@@ -37,6 +37,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#include <Grid/qcd/QCD.h>
#include <Grid/qcd/spin/Spin.h>
#include <Grid/qcd/gparity/Gparity.h>
#include <Grid/qcd/spin/Pauli.h> // depends on Gparity
#include <Grid/qcd/utils/Utils.h>
#include <Grid/qcd/representations/Representations.h>
NAMESPACE_CHECK(GridQCDCore);

View File

@@ -191,7 +191,7 @@ public:
Lattice<sobj> pgbuf(&pencil_g);
autoView(pgbuf_v , pgbuf, CpuWrite);
std::cout << "CPU view" << std::endl;
//std::cout << "CPU view" << std::endl;
typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
typedef typename FFTW<scalar>::FFTW_plan FFTW_plan;
@@ -215,7 +215,7 @@ public:
else if ( sign == forward ) div = 1.0;
else assert(0);
std::cout << GridLogPerformance<<"Making FFTW plan" << std::endl;
//std::cout << GridLogPerformance<<"Making FFTW plan" << std::endl;
FFTW_plan p;
{
FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0];
@@ -229,7 +229,7 @@ public:
}
// Barrel shift and collect global pencil
std::cout << GridLogPerformance<<"Making pencil" << std::endl;
//std::cout << GridLogPerformance<<"Making pencil" << std::endl;
Coordinate lcoor(Nd), gcoor(Nd);
result = source;
int pc = processor_coor[dim];
@@ -251,7 +251,7 @@ public:
}
}
std::cout <<GridLogPerformance<< "Looping orthog" << std::endl;
//std::cout <<GridLogPerformance<< "Looping orthog" << std::endl;
// Loop over orthog coords
int NN=pencil_g.lSites();
GridStopWatch timer;
@@ -274,7 +274,7 @@ public:
usec += timer.useconds();
flops+= flops_call*NN;
std::cout <<GridLogPerformance<< "Writing back results " << std::endl;
//std::cout <<GridLogPerformance<< "Writing back results " << std::endl;
// writing out result
{
autoView(pgbuf_v,pgbuf,CpuRead);
@@ -291,7 +291,7 @@ public:
}
result = result*div;
std::cout <<GridLogPerformance<< "Destroying plan " << std::endl;
//std::cout <<GridLogPerformance<< "Destroying plan " << std::endl;
// destroying plan
FFTW<scalar>::fftw_destroy_plan(p);
#endif

View File

@@ -277,6 +277,38 @@ public:
assert(0);
}
};
template<class Matrix,class Field>
class ShiftedNonHermitianLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
RealD shift;
public:
ShiftedNonHermitianLinearOperator(Matrix &Mat,RealD shft): _Mat(Mat),shift(shft){};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
_Mat.Mdiag(in,out);
out = out + shift*in;
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
_Mat.Mdir(in,out,dir,disp);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
_Mat.MdirAll(in,out);
};
void Op (const Field &in, Field &out){
_Mat.M(in,out);
out = out + shift * in;
}
void AdjOp (const Field &in, Field &out){
_Mat.Mdag(in,out);
out = out + shift * in;
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
assert(0);
}
void HermOp(const Field &in, Field &out){
assert(0);
}
};
//////////////////////////////////////////////////////////
// Even Odd Schur decomp operators; there are several

View File

@@ -269,7 +269,9 @@ public:
RealD xscale = 2.0/(hi-lo);
RealD mscale = -(hi+lo)/(hi-lo);
Linop.HermOp(T0,y);
grid->Barrier();
axpby(T1,xscale,mscale,y,in);
grid->Barrier();
// sum = .5 c[0] T0 + c[1] T1
// out = ()*T0 + Coeffs[1]*T1;

View File

@@ -208,8 +208,8 @@ public:
assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount);
assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
assert(OpB!=GridBLAS_OP_T);
//assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
//assert(OpB!=GridBLAS_OP_T);
int lda = m; // m x k column major
int ldb = k; // k x n column major
@@ -367,28 +367,67 @@ public:
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
else
eCmn = alpha * eAmk * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
else
eCmn = alpha * eAmk.adjoint() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
else
eCmn = alpha * eAmk.transpose() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
else
eCmn = alpha * eAmk * eBkn.adjoint() ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
});
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
else
eCmn = alpha * eAmk.adjoint() * eBkn.adjoint() ;
} );
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
else
eCmn = alpha * eAmk.transpose() * eBkn.transpose() ;
} );
} else {
assert(0);
@@ -414,8 +453,8 @@ public:
RealD t2=usecond();
int32_t batchCount = Amk.size();
assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
assert(OpB!=GridBLAS_OP_T);
//assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
//assert(OpB!=GridBLAS_OP_T);
int lda = m; // m x k column major
int ldb = k; // k x n column major
@@ -514,28 +553,70 @@ public:
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
else
eCmn = alpha * eAmk * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
else
eCmn = alpha * eAmk.adjoint() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
else
eCmn = alpha * eAmk.transpose() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
else
eCmn = alpha * eAmk * eBkn.adjoint() ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
else
eCmn = alpha * eAmk * eBkn.transpose() ;
});
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
else
eCmn = alpha * eAmk.adjoint() * eBkn.adjoint() ;
} );
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
else
eCmn = alpha * eAmk.transpose() * eBkn.transpose() ;
} );
} else {
assert(0);
@@ -661,29 +742,41 @@ public:
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
else
eCmn = alpha * eAmk * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
else
eCmn = alpha * eAmk.transpose() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
else
eCmn = alpha * eAmk * eBkn.transpose() ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
} );
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
else
eCmn = alpha * eAmk.transpose() * eBkn.transpose() ;
});
} else {
assert(0);
}
@@ -809,28 +902,40 @@ public:
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
else
eCmn = alpha * eAmk * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
else
eCmn = alpha * eAmk.transpose() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
else
eCmn = alpha * eAmk * eBkn.transpose() ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
else
eCmn = alpha * eAmk.transpose() * eBkn.transpose() ;
});
} else {
assert(0);

View File

@@ -245,9 +245,10 @@ until convergence
_HermOp(src_n,tmp);
// std::cout << GridLogMessage<< tmp<<std::endl; exit(0);
// std::cout << GridLogIRL << " _HermOp " << norm2(tmp) << std::endl;
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
// RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
RealD vnum = real(innerProduct(tmp,tmp)); // HermOp^2.
RealD vden = norm2(src_n);
RealD na = vnum/vden;
RealD na = std::sqrt(vnum/vden);
if (fabs(evalMaxApprox/na - 1.0) < 0.0001)
i=_MAX_ITER_IRL_MEVAPP_;
evalMaxApprox = na;
@@ -255,6 +256,7 @@ until convergence
src_n = tmp;
}
}
std::cout << GridLogIRL << " Final evalMaxApprox " << evalMaxApprox << std::endl;
std::vector<RealD> lme(Nm);
std::vector<RealD> lme2(Nm);

View File

@@ -97,7 +97,7 @@ public:
RealD scale;
ConjugateGradient<FineField> CG(1.0e-2,100,false);
ConjugateGradient<FineField> CG(1.0e-3,400,false);
FineField noise(FineGrid);
FineField Mn(FineGrid);
@@ -110,7 +110,7 @@ public:
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
for(int i=0;i<1;i++){
for(int i=0;i<4;i++){
CG(hermop,noise,subspace[b]);
@@ -146,7 +146,7 @@ public:
DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|Op|n> "<<innerProduct(noise,Mn)<<std::endl;
for(int i=0;i<3;i++){
for(int i=0;i<2;i++){
// void operator() (const Field &src, Field &psi){
#if 1
std::cout << GridLogMessage << " inverting on noise "<<std::endl;

View File

@@ -441,8 +441,20 @@ public:
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
}
#else
//////////////////////////////////////////////////////////////////////
// Galerkin projection of matrix
//////////////////////////////////////////////////////////////////////
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
Aggregation<Fobj,CComplex,nbasis> & Subspace)
{
CoarsenOperator(linop,Subspace,Subspace);
}
//////////////////////////////////////////////////////////////////////
// Petrov - Galerkin projection of matrix
//////////////////////////////////////////////////////////////////////
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
Aggregation<Fobj,CComplex,nbasis> & U,
Aggregation<Fobj,CComplex,nbasis> & V)
{
std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
GridBase *grid = FineGrid();
@@ -458,11 +470,9 @@ public:
// Orthogonalise the subblocks over the basis
/////////////////////////////////////////////////////////////
CoarseScalar InnerProd(CoarseGrid());
blockOrthogonalise(InnerProd,Subspace.subspace);
blockOrthogonalise(InnerProd,V.subspace);
blockOrthogonalise(InnerProd,U.subspace);
// for(int s=0;s<Subspace.subspace.size();s++){
// std::cout << " subspace norm "<<norm2(Subspace.subspace[s])<<std::endl;
// }
const int npoint = geom.npoint;
Coordinate clatt = CoarseGrid()->GlobalDimensions();
@@ -542,7 +552,7 @@ public:
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
tphaseBZ-=usecond();
phaV = phaF[p]*Subspace.subspace[i];
phaV = phaF[p]*V.subspace[i];
tphaseBZ+=usecond();
/////////////////////////////////////////////////////////////////////
@@ -555,7 +565,7 @@ public:
// std::cout << i << " " <<p << " MphaV "<<norm2(MphaV)<<" "<<norm2(phaV)<<std::endl;
tproj-=usecond();
blockProject(coarseInner,MphaV,Subspace.subspace);
blockProject(coarseInner,MphaV,U.subspace);
coarseInner = conjugate(pha[p]) * coarseInner;
ComputeProj[p] = coarseInner;

View File

@@ -69,7 +69,7 @@ public:
}
// FIXME: hack for the copy constructor: it must be avoided to avoid single thread loop
void construct(pointer __p, const _Tp& __val) { assert(0);};
void construct(pointer __p, const _Tp& __val) { };
void construct(pointer __p) { };
void destroy(pointer __p) { };
};

View File

@@ -234,6 +234,9 @@ void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvis
}
void MemoryManager::EvictVictims(uint64_t bytes)
{
if(bytes>=DeviceMaxBytes) {
printf("EvictVictims bytes %ld DeviceMaxBytes %ld\n",bytes,DeviceMaxBytes);
}
assert(bytes<DeviceMaxBytes);
while(bytes+DeviceLRUBytes > DeviceMaxBytes){
if ( DeviceLRUBytes > 0){

View File

@@ -31,5 +31,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/cartesian/Cartesian_base.h>
#include <Grid/cartesian/Cartesian_full.h>
#include <Grid/cartesian/Cartesian_red_black.h>
#include <Grid/cartesian/CartesianCrossIcosahedron.h>
#endif

View File

@@ -0,0 +1,235 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/cartesian/CartesianCrossIcosahedron.h
Copyright (C) 2025
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////////////////////////////
// Grid Support.
/////////////////////////////////////////////////////////////////////////////////////////
enum IcosahedralMeshType {
IcosahedralVertices,
IcosahedralEdges
} ;
enum NorthSouth {
North = 1,
South = 0
};
const int IcosahedralPatches = 10;
const int HemiPatches=IcosahedralPatches/2;
const int NorthernHemisphere = HemiPatches;
const int SouthernHemisphere = 0;
class GridCartesianCrossIcosahedron: public GridCartesian {
public:
IcosahedralMeshType meshType;
IcosahedralMeshType MeshType(void) { return meshType; };
/////////////////////////////////////////////////////////////////////////
// Constructor takes a parent grid and possibly subdivides communicator.
/////////////////////////////////////////////////////////////////////////
/*
GridCartesian(const Coordinate &dimensions,
const Coordinate &simd_layout,
const Coordinate &processor_grid,
const GridCartesian &parent) : GridBase(processor_grid,parent,dummy)
{
assert(0); // No subdivision
}
GridCartesian(const Coordinate &dimensions,
const Coordinate &simd_layout,
const Coordinate &processor_grid,
const GridCartesian &parent,int &split_rank) : GridBase(processor_grid,parent,split_rank)
{
assert(0); // No subdivision
}
*/
/////////////////////////////////////////////////////////////////////////
// Construct from comm world
/////////////////////////////////////////////////////////////////////////
GridCartesianCrossIcosahedron(const Coordinate &dimensions,
const Coordinate &simd_layout,
const Coordinate &processor_grid,
IcosahedralMeshType _meshType) : GridCartesian(dimensions,simd_layout,processor_grid)
{
meshType = _meshType;
Coordinate S2dimensions=dimensions;
Coordinate S2simd =simd_layout;
Coordinate S2procs =processor_grid;
assert(simd_layout[0]==1); // Force simd into perpendicular dimensions
assert(simd_layout[1]==1); // to avoid pole storage complexity interacting with SIMD.
assert(dimensions[_ndimension-1]==IcosahedralPatches);
assert(processor_grid[_ndimension-1]<=2); // Keeps the patches that need a pole on the same node
// Save a copy of the basic cartesian initialisation volume
cartesianOsites = this->_osites;
// allocate the pole storage if we are seeking vertex domain data
if ( meshType == IcosahedralVertices ) {
InitPoles();
}
}
virtual ~GridCartesianCrossIcosahedron() = default;
////////////////////////////////////////////////
// Use to decide if a given grid is icosahedral
////////////////////////////////////////////////
int hasNorthPole;
int hasSouthPole;
int northPoleOsite;
int southPoleOsite;
int northPoleOsites;
int southPoleOsites;
int cartesianOsites;
virtual int isIcosahedral(void) override { return 1;}
virtual int isIcosahedralVertex(void) override { return meshType==IcosahedralVertices;}
virtual int isIcosahedralEdge (void) override { return meshType==IcosahedralEdges;}
virtual int NorthPoleOsite(void) const override { return northPoleOsite; };
virtual int NorthPoleOsites(void) const override { return northPoleOsites; };
virtual int SouthPoleOsite(void) const override { return southPoleOsite; };
virtual int SouthPoleOsites(void) const override { return southPoleOsites; };
virtual int ownsNorthPole(void) const override { return hasNorthPole; };
virtual int ownsSouthPole(void) const override { return hasSouthPole; };
virtual int CartesianOsites(void) const override { return cartesianOsites; };
virtual int64_t PoleIdxForOcoor(Coordinate &Coor) override
{
// Work out the pole_osite. Pick the higher dims
Coordinate rdims;
Coordinate ocoor;
int64_t pole_idx;
int Ndm1 = this->Nd()-1;
for(int d=2;d<Ndm1;d++){
int dd=d-2;
rdims.push_back(this->_rdimensions[d]);
ocoor.push_back(Coor[d]%this->_rdimensions[d]);
}
Lexicographic::IndexFromCoor(ocoor,pole_idx,rdims);
return pole_idx;
}
virtual int64_t PoleSiteForOcoor(Coordinate &Coor) override
{
int Ndm1 = this->Nd()-1;
int64_t pole_idx = this->PoleIdxForOcoor(Coor);
int64_t pole_osite;
if ( Coor[Ndm1] >= HemiPatches ) {
pole_osite = pole_idx + this->NorthPoleOsite();
} else {
pole_osite = pole_idx + this->SouthPoleOsite();
}
return pole_osite;
}
void InitPoles(void)
{
int Ndm1 = _ndimension-1;
///////////////////////
// Add the extra pole storage
///////////////////////
// Vertices = 1x LxLx D1...Dn + 2.D1...Dn
// Start after the LxL and don't include the 10 patch dim
int OrthogSize = 1;
for (int d = 2; d < Ndm1; d++) {
OrthogSize *= _gdimensions[d];
}
_fsites += OrthogSize*2;
_gsites += OrthogSize*2;
// Simd reduced sizes are multiplied up.
// If the leading LxL are simd-ized, the vector objects will contain "redundant" lanes
// which should contain identical north (south) pole data
OrthogSize = 1;
for (int d = 2; d < Ndm1; d++) {
OrthogSize *= _rdimensions[d];
}
// Grow the local volume to hold pole data
// on rank (0,0) in the LxL planes
// since SIMD must be placed in the orthogonal directions
Coordinate pcoor = this->ThisProcessorCoor();
Coordinate pgrid = this->ProcessorGrid();
const int xdim=0;
const int ydim=1;
/*
*
* /\/\/\/\/\
* /\/\/\/\/\/
* \/\/\/\/\/
*
* y
* /
* \x
*
* Labelling patches as 5 6 7 8 9
* 0 1 2 3 4
*
* Will ban distribution of the patch dimension by more than 2.
*
* Hence all 5 patches associated with the pole must have the
* appropriate "corner" of the patch L^2 located on the SAME rank.
*/
if( (pcoor[xdim]==pgrid[xdim]-1) && (pcoor[ydim]==0) && (pcoor[Ndm1]==0) ){
hasSouthPole =1;
southPoleOsite=this->_osites;
southPoleOsites=OrthogSize;
this->_osites += OrthogSize;
} else {
hasSouthPole =0;
southPoleOsites=0;
southPoleOsite=0;
}
if( (pcoor[xdim]==0) && (pcoor[ydim]==pgrid[ydim]-1) && (pcoor[Ndm1]==pgrid[Ndm1]-1) ){
hasNorthPole =1;
northPoleOsite=this->_osites;
northPoleOsites=OrthogSize;
this->_osites += OrthogSize;
} else {
hasNorthPole =0;
northPoleOsites=0;
northPoleOsite=0;
}
std::cout << GridLogDebug<<"Icosahedral vertex field volume " << this->_osites<<std::endl;
std::cout << GridLogDebug<<"Icosahedral south pole offset " << this->southPoleOsite<<std::endl;
std::cout << GridLogDebug<<"Icosahedral north pole offset " << this->northPoleOsite<<std::endl;
std::cout << GridLogDebug<<"Icosahedral south pole size " << this->southPoleOsites<<std::endl;
std::cout << GridLogDebug<<"Icosahedral north pole size " << this->northPoleOsites<<std::endl;
};
};
NAMESPACE_END(Grid);

View File

@@ -86,10 +86,25 @@ public:
public:
// Icosahedral decisions
virtual int isIcosahedral(void) { return 0;}
virtual int isIcosahedralVertex(void) { return 0;}
virtual int isIcosahedralEdge (void) { return 0;}
virtual int ownsNorthPole(void) const { return 0; };
virtual int ownsSouthPole(void) const { return 0; };
virtual int NorthPoleOsite(void) const { return 0; };
virtual int SouthPoleOsite(void) const { return 0; };
virtual int NorthPoleOsites(void) const { std::cout << "base osites" <<std::endl;return 0; };
virtual int SouthPoleOsites(void) const { std::cout << "base osites" <<std::endl;return 0; };
virtual int CartesianOsites(void) const { return this->oSites(); };
virtual int64_t PoleIdxForOcoor(Coordinate &Coor) { return 0;};
virtual int64_t PoleSiteForOcoor(Coordinate &Coor){ return 0;}
////////////////////////////////////////////////////////////////
// Checkerboarding interface is virtual and overridden by
// GridCartesian / GridRedBlackCartesian
////////////////////////////////////////////////////////////////
virtual int CheckerBoarded(int dim) =0;
virtual int CheckerBoard(const Coordinate &site)=0;
virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0;
@@ -176,6 +191,8 @@ public:
}
return permute_type;
}
////////////////////////////////////////////////////////////////
// Array sizing queries
////////////////////////////////////////////////////////////////

View File

@@ -149,7 +149,8 @@ public:
sizeof(obj),d*100+p);
}
CommsComplete(list);
if (!list.empty()) // avoid triggering assert in comms == none
CommsComplete(list);
for(int p=1;p<_processors[d];p++){
accum = accum + column[p];
}

View File

@@ -260,32 +260,39 @@ CartesianCommunicator::~CartesianCommunicator()
}
#ifdef USE_GRID_REDUCTION
void CartesianCommunicator::GlobalSum(float &f){
FlightRecorder::StepLog("GlobalSumP2P");
CartesianCommunicator::GlobalSumP2P(f);
}
void CartesianCommunicator::GlobalSum(double &d)
{
FlightRecorder::StepLog("GlobalSumP2P");
CartesianCommunicator::GlobalSumP2P(d);
}
#else
void CartesianCommunicator::GlobalSum(float &f){
FlightRecorder::StepLog("AllReduce");
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSum(double &d)
{
FlightRecorder::StepLog("AllReduce");
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
assert(ierr==0);
}
#endif
void CartesianCommunicator::GlobalSum(uint32_t &u){
FlightRecorder::StepLog("AllReduce");
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSum(uint64_t &u){
FlightRecorder::StepLog("AllReduce");
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSumVector(uint64_t* u,int N){
FlightRecorder::StepLog("AllReduceVector");
int ierr=MPI_Allreduce(MPI_IN_PLACE,u,N,MPI_UINT64_T,MPI_SUM,communicator);
assert(ierr==0);
}
@@ -438,8 +445,15 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
list.push_back(rrq);
off_node_bytes+=rbytes;
}
#ifdef NVLINK_GET
else {
void *shm = (void *) this->ShmBufferTranslate(from,xmit);
assert(shm!=NULL);
acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
}
#endif
}
// This is a NVLINK PUT
if (dox) {
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+_processor*32;
@@ -448,9 +462,11 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
list.push_back(xrq);
off_node_bytes+=xbytes;
} else {
#ifndef NVLINK_GET
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
assert(shm!=NULL);
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
#endif
}
}
return off_node_bytes;
@@ -459,7 +475,7 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
{
int nreq=list.size();
/*finishes Get/Put*/
acceleratorCopySynchronise();
if (nreq==0) return;
@@ -746,26 +762,31 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
}
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
{
// int nreq=list.size();
acceleratorCopySynchronise(); // Complete all pending copy transfers D2D
// if (nreq==0) return;
// std::vector<MPI_Status> status(nreq);
// std::vector<MPI_Request> MpiRequests(nreq);
std::vector<MPI_Status> status;
std::vector<MPI_Request> MpiRequests;
for(int r=0;r<list.size();r++){
// Must check each Send buf is clear to reuse
if ( list[r].PacketType == InterNodeXmitISend ) MpiRequests.push_back(list[r].req);
// if ( list[r].PacketType == InterNodeRecv ) MpiRequests.push_back(list[r].req); // Already "Test" passed
}
// for(int r=0;r<nreq;r++){
// MpiRequests[r] = list[r].req;
// }
int nreq=MpiRequests.size();
if (nreq>0) {
status.resize(MpiRequests.size());
int ierr = MPI_Waitall(MpiRequests.size(),&MpiRequests[0],&status[0]); // Sends are guaranteed in order. No harm in not completing.
assert(ierr==0);
}
// int ierr = MPI_Waitall(nreq,&MpiRequests[0],&status[0]); // Sends are guaranteed in order. No harm in not completing.
// assert(ierr==0);
// for(int r=0;r<nreq;r++){
// if ( list[r].PacketType==InterNodeRecv ) {
// acceleratorCopyToDeviceAsynch(list[r].host_buf,list[r].device_buf,list[r].bytes);
// }
// }
acceleratorCopySynchronise(); // Complete all pending copy transfers D2D
list.resize(0); // Delete the list
this->HostBufferFreeAll(); // Clean up the buffer allocs
@@ -780,6 +801,7 @@ void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsReque
void CartesianCommunicator::StencilBarrier(void)
{
FlightRecorder::StepLog("NodeBarrier");
MPI_Barrier (ShmComm);
}
//void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
@@ -787,11 +809,13 @@ void CartesianCommunicator::StencilBarrier(void)
//}
void CartesianCommunicator::Barrier(void)
{
FlightRecorder::StepLog("GridBarrier");
int ierr = MPI_Barrier(communicator);
assert(ierr==0);
}
void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
{
FlightRecorder::StepLog("Broadcast");
int ierr=MPI_Bcast(data,
bytes,
MPI_BYTE,
@@ -810,6 +834,7 @@ void CartesianCommunicator::BarrierWorld(void){
}
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
{
FlightRecorder::StepLog("BroadcastWorld");
int ierr= MPI_Bcast(data,
bytes,
MPI_BYTE,
@@ -832,6 +857,7 @@ void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,
}
void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t bytes)
{
FlightRecorder::StepLog("AllToAll");
// MPI is a pain and uses "int" arguments
// 64*64*64*128*16 == 500Million elements of data.
// When 24*4 bytes multiples get 50x 10^9 >>> 2x10^9 Y2K bug.

View File

@@ -137,7 +137,7 @@ public:
///////////////////////////////////////////////////
static void SharedMemoryAllocate(uint64_t bytes, int flags);
static void SharedMemoryFree(void);
static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
// static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
static void SharedMemoryZero(void *dest,size_t bytes);
};

View File

@@ -542,12 +542,12 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
// Each MPI rank should allocate our own buffer
///////////////////////////////////////////////////////////////////////////////////////////////////////////
#ifndef ACCELERATOR_AWARE_MPI
printf("Host buffer allocate for GPU non-aware MPI\n");
// printf("Host buffer allocate for GPU non-aware MPI\n");
#if 0
HostCommBuf= acceleratorAllocHost(bytes);
#else
HostCommBuf= malloc(bytes); /// CHANGE THIS TO malloc_host
#ifdef HAVE_NUMAIF_H
#if 0
#warning "Moving host buffers to specific NUMA domain"
int numa;
char *numa_name=(char *)getenv("MPI_BUF_NUMA");
@@ -916,14 +916,14 @@ void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
bzero(dest,bytes);
#endif
}
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
{
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
acceleratorCopyToDevice(src,dest,bytes);
#else
bcopy(src,dest,bytes);
#endif
}
//void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
//{
//#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
// acceleratorCopyToDevice(src,dest,bytes);
//#else
// bcopy(src,dest,bytes);
//#endif
//}
////////////////////////////////////////////////////////
// Global shared functionality finished
// Now move to per communicator functionality
@@ -959,6 +959,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
MPI_Allreduce(MPI_IN_PLACE,&wsr,1,MPI_UINT32_T,MPI_SUM,ShmComm);
ShmCommBufs[r] = GlobalSharedMemory::WorldShmCommBufs[wsr];
// std::cerr << " SetCommunicator rank "<<r<<" comm "<<ShmCommBufs[r] <<std::endl;
}
ShmBufferFreeAll();
@@ -989,7 +990,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
}
#endif
//SharedMemoryTest();
// SharedMemoryTest();
}
//////////////////////////////////////////////////////////////////
// On node barrier
@@ -1011,19 +1012,18 @@ void SharedMemory::SharedMemoryTest(void)
check[0]=GlobalSharedMemory::WorldNode;
check[1]=r;
check[2]=magic;
GlobalSharedMemory::SharedMemoryCopy( ShmCommBufs[r], check, 3*sizeof(uint64_t));
acceleratorCopyToDevice(check,ShmCommBufs[r],3*sizeof(uint64_t));
}
}
ShmBarrier();
for(uint64_t r=0;r<ShmSize;r++){
ShmBarrier();
GlobalSharedMemory::SharedMemoryCopy(check,ShmCommBufs[r], 3*sizeof(uint64_t));
ShmBarrier();
acceleratorCopyFromDevice(ShmCommBufs[r],check,3*sizeof(uint64_t));
assert(check[0]==GlobalSharedMemory::WorldNode);
assert(check[1]==r);
assert(check[2]==magic);
ShmBarrier();
}
ShmBarrier();
std::cout << GridLogDebug << " SharedMemoryTest has passed "<<std::endl;
}
void *SharedMemory::ShmBuffer(int rank)

View File

@@ -122,10 +122,10 @@ void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
{
acceleratorMemSet(dest,0,bytes);
}
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
{
acceleratorCopyToDevice(src,dest,bytes);
}
//void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
//{
// acceleratorCopyToDevice(src,dest,bytes);
//}
////////////////////////////////////////////////////////
// Global shared functionality finished
// Now move to per communicator functionality

View File

@@ -34,6 +34,8 @@ NAMESPACE_BEGIN(Grid);
const int Cshift_verbose=0;
template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift)
{
assert(!rhs.Grid()->isIcosahedral());
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
@@ -126,8 +128,8 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
static deviceVector<vobj> send_buf; send_buf.resize(buffer_size);
static deviceVector<vobj> recv_buf; recv_buf.resize(buffer_size);
#ifndef ACCELERATOR_AWARE_MPI
static hostVector<vobj> hsend_buf; hsend_buf.resize(buffer_size);
static hostVector<vobj> hrecv_buf; hrecv_buf.resize(buffer_size);
static hostVector<vobj> hsend_buf; hsend_buf.resize(buffer_size);
static hostVector<vobj> hrecv_buf; hrecv_buf.resize(buffer_size);
#endif
int cb= (cbmask==0x2)? Odd : Even;
@@ -244,7 +246,6 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
scalar_object * recv_buf_extract_mpi;
scalar_object * send_buf_extract_mpi;
for(int s=0;s<Nsimd;s++){
send_buf_extract[s].resize(buffer_size);
recv_buf_extract[s].resize(buffer_size);

View File

@@ -30,6 +30,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift)
{
assert(!rhs.Grid()->isIcosahedral());
Lattice<vobj> ret(rhs.Grid());
ret.Checkerboard() = rhs.Grid()->CheckerBoardDestination(rhs.Checkerboard(),shift,dimension);
Cshift_local(ret,rhs,dimension,shift);

View File

@@ -236,7 +236,7 @@ public:
template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){
vobj vtmp;
vtmp = r;
#if 0
#if 1
deviceVector<vobj> vvtmp(1);
acceleratorPut(vvtmp[0],vtmp);
vobj *vvtmp_p = & vvtmp[0];
@@ -373,14 +373,17 @@ public:
template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
typedef typename vobj::scalar_object sobj;
for(int64_t g=0;g<o.Grid()->_gsites;g++){
uint64_t gsites=1;
uint64_t polesites=0;
for(int d=0;d<o.Grid()->_ndimension;d++) gsites *= o.Grid()->_gdimensions[d];
for(int64_t g=0;g<gsites;g++){
Coordinate gcoor;
o.Grid()->GlobalIndexToGlobalCoor(g,gcoor);
sobj ss;
peekSite(ss,o,gcoor);
stream<<"[";
stream<<"["<< g<<" : ";
for(int d=0;d<gcoor.size();d++){
stream<<gcoor[d];
if(d!=gcoor.size()-1) stream<<",";
@@ -388,6 +391,41 @@ template<class vobj> std::ostream& operator<< (std::ostream& stream, const Latti
stream<<"]\t";
stream<<ss<<std::endl;
}
if ( o.Grid()->isIcosahedralVertex() ) {
uint64_t psites=1;
Coordinate perpdims;
for(int d=2;d<o.Grid()->_ndimension-1;d++){
int pd=o.Grid()->_gdimensions[d];
psites*=pd;
perpdims.push_back(pd);
}
for(uint64_t p=0;p<psites;p++){
sobj ss;
Coordinate orthog;
Lexicographic::CoorFromIndex(orthog,p,perpdims);
peekPole(ss,o,orthog,South);
stream<<"[ SouthPole : ";
for(int d=0;d<orthog.size();d++){
stream<<orthog[d];
if(d!=orthog.size()-1) stream<<",";
}
stream<<"]\t";
stream<<ss<<std::endl;
}
for(uint64_t p=0;p<psites;p++){
sobj ss;
Coordinate orthog;
Lexicographic::CoorFromIndex(orthog,p,perpdims);
peekPole(ss,o,orthog,North);
stream<<"[ NorthPole : ";
for(int d=0;d<orthog.size();d++){
stream<<orthog[d];
if(d!=orthog.size()-1) stream<<",";
}
stream<<"]\t";
stream<<ss<<std::endl;
}
}
return stream;
}

View File

@@ -34,22 +34,86 @@ template<class iobj> inline void LatticeCoordinate(Lattice<iobj> &l,int mu)
typedef typename iobj::scalar_type scalar_type;
typedef typename iobj::vector_type vector_type;
l=Zero();
GridBase *grid = l.Grid();
int Nsimd = grid->iSites();
autoView(l_v, l, CpuWrite);
thread_for( o, grid->oSites(), {
vector_type vI;
Coordinate gcoor;
ExtractBuffer<scalar_type> mergebuf(Nsimd);
for(int i=0;i<grid->iSites();i++){
grid->RankIndexToGlobalCoor(grid->ThisRank(),o,i,gcoor);
mergebuf[i]=(Integer)gcoor[mu];
int cartesian_vol = grid->oSites();
if ( grid->isIcosahedral() ) {
cartesian_vol = cartesian_vol - grid->NorthPoleOsites()-grid->SouthPoleOsites();
}
{
autoView(l_v, l, CpuWrite);
thread_for( o, cartesian_vol, {
vector_type vI;
Coordinate gcoor;
ExtractBuffer<scalar_type> mergebuf(Nsimd);
for(int i=0;i<grid->iSites();i++){
grid->RankIndexToGlobalCoor(grid->ThisRank(),o,i,gcoor);
mergebuf[i]=(Integer)gcoor[mu];
}
merge<vector_type,scalar_type>(vI,mergebuf);
l_v[o]=vI;
});
}
if (grid->isIcosahedralVertex()) {
uint64_t psites=1;
Coordinate perpdims;
typename iobj::scalar_object ss;
for(int d=2;d<grid->_ndimension-1;d++){
int pd=grid->_gdimensions[d];
psites*=pd;
perpdims.push_back(pd);
}
merge<vector_type,scalar_type>(vI,mergebuf);
l_v[o]=vI;
});
for(uint64_t p=0;p<psites;p++){
Coordinate orthog;
Lexicographic::CoorFromIndex(orthog,p,perpdims);
int icoor;
if ( mu>=2 && mu < grid->_ndimension-1) {
icoor = orthog[mu-2];
} else {
icoor = -1;
}
ss=scalar_type(icoor);
pokePole(ss,l,orthog,South);
pokePole(ss,l,orthog,North);
}
}
};
template<class iobj> inline void LatticePole(Lattice<iobj> &l,NorthSouth pole)
{
typedef typename iobj::scalar_object sobj;
typedef typename iobj::scalar_type scalar_type;
typedef typename iobj::vector_type vector_type;
GridBase *grid = l.Grid();
l=Zero();
assert(grid->isIcosahedralVertex());
if (grid->isIcosahedralVertex()) {
uint64_t psites=1;
Coordinate perpdims;
sobj ss;
scalar_type one(1.0);
ss=one;
for(int d=2;d<l.Grid()->_ndimension-1;d++){
int pd=l.Grid()->_gdimensions[d];
psites*=pd;
perpdims.push_back(pd);
}
for(uint64_t p=0;p<psites;p++){
Coordinate orthog;
Lexicographic::CoorFromIndex(orthog,p,perpdims);
pokePole(ss,l,orthog,pole);
}
}
};
NAMESPACE_END(Grid);

View File

@@ -141,7 +141,7 @@ void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
grid->GlobalCoorToRankIndex(rank,odx,idx,site);
ExtractBuffer<sobj> buf(Nsimd);
autoView( l_v , l, CpuWrite);
autoView( l_v , l, CpuRead);
extract(l_v[odx],buf);
s = buf[idx];
@@ -151,6 +151,261 @@ void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
return;
};
// zero for south pole, one for north pole
template<class vobj,class sobj>
void peekPole(sobj &s,const Lattice<vobj> &l,const Coordinate &orthog,NorthSouth isNorth)
{
s=Zero();
GridBase *grid=l.Grid();
assert(grid->isIcosahedral());
assert(grid->isIcosahedralVertex());
int Nsimd = grid->Nsimd();
int rank;
int Ndm1 = grid->_ndimension-1;
Coordinate pgrid = grid->ProcessorGrid();
const int xdim=0;
const int ydim=1;
const int pdim=Ndm1;
int64_t pole_osite;
int64_t pole_isite;
Coordinate rdims;
Coordinate idims;
Coordinate ocoor;
Coordinate icoor;
Coordinate pcoor(grid->_ndimension);
for(int d=2;d<Ndm1;d++){
int dd=d-2;
rdims.push_back(grid->_rdimensions[d]);
idims.push_back(grid->_simd_layout[d]);
icoor.push_back((orthog[dd]%grid->_ldimensions[d])/grid->_rdimensions[d]);
ocoor.push_back(orthog[dd]%grid->_rdimensions[d]);
pcoor[d] = orthog[dd]/grid->_ldimensions[d];
}
Lexicographic::IndexFromCoor(ocoor,pole_osite,rdims);
Lexicographic::IndexFromCoor(icoor,pole_isite,idims);
int64_t osite;
if(isNorth == North){
pcoor[xdim] = 0;
pcoor[ydim] = pgrid[ydim]-1;
pcoor[Ndm1] = pgrid[Ndm1]-1;
osite = pole_osite + grid->NorthPoleOsite();
} else {
pcoor[xdim] = pgrid[xdim]-1;
pcoor[ydim] = 0;
pcoor[Ndm1] = 0;
osite = pole_osite + grid->SouthPoleOsite();
}
rank = grid->RankFromProcessorCoor(pcoor);
if ( rank == grid->ThisRank() ) {
ExtractBuffer<sobj> buf(Nsimd);
autoView( l_v , l, CpuWrite);
extract(l_v[osite],buf);
s = buf[pole_isite];
}
grid->Broadcast(rank,s);
return;
};
template<class vobj,class sobj>
void pokePole(const sobj &s,Lattice<vobj> &l,const Coordinate &orthog,NorthSouth isNorth)
{
GridBase *grid=l.Grid();
assert(grid->isIcosahedral());
assert(grid->isIcosahedralVertex());
grid->Broadcast(grid->BossRank(),s);
int Nsimd = grid->Nsimd();
int rank;
int Ndm1 = grid->_ndimension-1;
Coordinate pgrid = grid->ProcessorGrid();
const int xdim=0;
const int ydim=1;
const int pdim=Ndm1;
int64_t pole_osite;
int64_t pole_isite;
Coordinate rdims;
Coordinate idims;
Coordinate ocoor;
Coordinate icoor;
Coordinate pcoor(grid->_ndimension,0);
for(int d=2;d<Ndm1;d++){
int dd = d-2;
rdims.push_back(grid->_rdimensions[d]);
idims.push_back(grid->_simd_layout[d]);
icoor.push_back((orthog[dd]%grid->_ldimensions[d])/grid->_rdimensions[d]);
ocoor.push_back(orthog[dd]%grid->_rdimensions[d]);
pcoor[d] = orthog[dd]/grid->_ldimensions[d];
int o = orthog[dd];
int r = grid->_rdimensions[d];
int omr = o % r;
}
Lexicographic::IndexFromCoor(ocoor,pole_osite,rdims);
Lexicographic::IndexFromCoor(icoor,pole_isite,idims);
int64_t osite;
if(isNorth ==North){
pcoor[xdim] = 0;
pcoor[ydim] = pgrid[ydim]-1;
pcoor[Ndm1] = pgrid[Ndm1]-1;
osite = pole_osite + grid->NorthPoleOsite();
} else {
pcoor[xdim] = pgrid[xdim]-1;
pcoor[ydim] = 0;
pcoor[Ndm1] = 0;
osite = pole_osite + grid->SouthPoleOsite();
}
rank = grid->RankFromProcessorCoor(pcoor);
// extract-modify-merge cycle is easiest way and this is not perf critical
if ( rank == grid->ThisRank() ) {
ExtractBuffer<sobj> buf(Nsimd);
autoView( l_v , l, CpuWrite);
extract(l_v[osite],buf);
buf[pole_isite] = s;
merge(l_v[osite],buf);
}
return;
};
template<class vobj,class sobj>
void peekLocalPole(sobj &s,const Lattice<vobj> &l,const Coordinate &orthog,NorthSouth isNorth)
{
s=Zero();
GridBase *grid=l.Grid();
assert(grid->isIcosahedral());
assert(grid->isIcosahedralVertex());
int Nsimd = grid->Nsimd();
int rank;
int Ndm1 = grid->_ndimension-1;
Coordinate pgrid = grid->ProcessorGrid();
const int xdim=0;
const int ydim=1;
const int pdim=Ndm1;
int64_t pole_osite;
int64_t pole_isite;
Coordinate rdims;
Coordinate idims;
Coordinate ocoor;
Coordinate icoor;
// Coordinate pcoor(grid->_ndimension);
for(int d=2;d<Ndm1;d++){
int dd=d-2;
rdims.push_back(grid->_rdimensions[d]);
idims.push_back(grid->_simd_layout[d]);
icoor.push_back((orthog[dd]%grid->_ldimensions[d])/grid->_rdimensions[d]);
ocoor.push_back(orthog[dd]%grid->_rdimensions[d]);
// pcoor[d] = orthog[dd]/grid->_ldimensions[d];
}
Lexicographic::IndexFromCoor(ocoor,pole_osite,rdims);
Lexicographic::IndexFromCoor(icoor,pole_isite,idims);
int64_t osite;
if(isNorth == North){
// pcoor[xdim] = 0;
// pcoor[ydim] = pgrid[ydim]-1;
// pcoor[Ndm1] = pgrid[Ndm1]-1;
osite = pole_osite + grid->NorthPoleOsite();
assert(grid->ownsNorthPole());
} else {
// pcoor[xdim] = pgrid[xdim]-1;
// pcoor[ydim] = 0;
// pcoor[Ndm1] = 0;
osite = pole_osite + grid->SouthPoleOsite();
assert(grid->ownsSouthPole());
}
ExtractBuffer<sobj> buf(Nsimd);
autoView( l_v , l, CpuWrite);
extract(l_v[osite],buf);
s = buf[pole_isite];
return;
};
template<class vobj,class sobj>
void pokeLocalPole(const sobj &s,Lattice<vobj> &l,const Coordinate &orthog,NorthSouth isNorth)
{
GridBase *grid=l.Grid();
assert(grid->isIcosahedral());
assert(grid->isIcosahedralVertex());
int Nsimd = grid->Nsimd();
int rank;
int Ndm1 = grid->_ndimension-1;
const int xdim=0;
const int ydim=1;
const int pdim=Ndm1;
int64_t pole_osite;
int64_t pole_isite;
Coordinate rdims;
Coordinate idims;
Coordinate ocoor;
Coordinate icoor;
// Coordinate pcoor(grid->_ndimension,0);
for(int d=2;d<Ndm1;d++){
int dd = d-2;
rdims.push_back(grid->_rdimensions[d]);
idims.push_back(grid->_simd_layout[d]);
icoor.push_back((orthog[dd]%grid->_ldimensions[d])/grid->_rdimensions[d]);
ocoor.push_back(orthog[dd]%grid->_rdimensions[d]);
// pcoor[d] = orthog[dd]/grid->_ldimensions[d];
int o = orthog[dd];
int r = grid->_rdimensions[d];
int omr = o % r;
}
Lexicographic::IndexFromCoor(ocoor,pole_osite,rdims);
Lexicographic::IndexFromCoor(icoor,pole_isite,idims);
int64_t osite;
int insert=0;
if(isNorth ==North){
// pcoor[xdim] = 0;
// pcoor[ydim] = pgrid[ydim]-1;
// pcoor[Ndm1] = pgrid[Ndm1]-1;
osite = pole_osite + grid->NorthPoleOsite();
assert(grid->ownsNorthPole());
} else {
// pcoor[xdim] = pgrid[xdim]-1;
// pcoor[ydim] = 0;
// pcoor[Ndm1] = 0;
osite = pole_osite + grid->SouthPoleOsite();
assert(grid->ownsSouthPole());
}
// extract-modify-merge cycle is easiest way and this is not perf critical
ExtractBuffer<sobj> buf(Nsimd);
autoView( l_v , l, CpuWrite);
extract(l_v[osite],buf);
buf[pole_isite] = s;
merge(l_v[osite],buf);
return;
};
//////////////////////////////////////////////////////////
// Peek a scalar object from the SIMD array
//////////////////////////////////////////////////////////
@@ -179,7 +434,7 @@ inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
for(int w=0;w<words;w++){
pt[w] = getlane(vp[w],idx);
}
// std::cout << "peekLocalSite "<<site<<" "<<odx<<","<<idx<<" "<<s<<std::endl;
return;
};
template<class vobj,class sobj>

View File

@@ -48,31 +48,45 @@ NAMESPACE_BEGIN(Grid);
//////////////////////////////////////////////////////////////
inline int RNGfillable(GridBase *coarse,GridBase *fine)
{
if ( coarse == fine ) return 1;
int rngdims = coarse->_ndimension;
// trivially extended in higher dims, with locality guaranteeing RNG state is local to node
int lowerdims = fine->_ndimension - coarse->_ndimension;
assert(lowerdims >= 0);
for(int d=0;d<lowerdims;d++){
assert(fine->_simd_layout[d]==1);
assert(fine->_processors[d]==1);
if ( coarse->isIcosahedral()) assert(coarse->isIcosahedralEdge());
if ( fine->isIcosahedralVertex() && coarse->isIcosahedralEdge() ) {
assert(fine->Nd()==coarse->Nd());
for(int d=0;d<fine->Nd();d++){
assert(fine->LocalDimensions()[d] == coarse->LocalDimensions()[d]);
}
return 1;
}
{
int rngdims = coarse->_ndimension;
int multiplicity=1;
for(int d=0;d<lowerdims;d++){
multiplicity=multiplicity*fine->_rdimensions[d];
}
// local and global volumes subdivide cleanly after SIMDization
for(int d=0;d<rngdims;d++){
int fd= d+lowerdims;
assert(coarse->_processors[d] == fine->_processors[fd]);
assert(coarse->_simd_layout[d] == fine->_simd_layout[fd]);
assert(((fine->_rdimensions[fd] / coarse->_rdimensions[d])* coarse->_rdimensions[d])==fine->_rdimensions[fd]);
// trivially extended in higher dims, with locality guaranteeing RNG state is local to node
int lowerdims = fine->_ndimension - coarse->_ndimension;
assert(lowerdims >= 0);
for(int d=0;d<lowerdims;d++){
assert(fine->_simd_layout[d]==1);
assert(fine->_processors[d]==1);
}
multiplicity = multiplicity *fine->_rdimensions[fd] / coarse->_rdimensions[d];
int multiplicity=1;
for(int d=0;d<lowerdims;d++){
multiplicity=multiplicity*fine->_rdimensions[d];
}
// local and global volumes subdivide cleanly after SIMDization
for(int d=0;d<rngdims;d++){
int fd= d+lowerdims;
assert(coarse->_processors[d] == fine->_processors[fd]);
assert(coarse->_simd_layout[d] == fine->_simd_layout[fd]);
assert(((fine->_rdimensions[fd] / coarse->_rdimensions[d])* coarse->_rdimensions[d])==fine->_rdimensions[fd]);
multiplicity = multiplicity *fine->_rdimensions[fd] / coarse->_rdimensions[d];
}
return multiplicity;
}
return multiplicity;
}
@@ -80,6 +94,19 @@ inline int RNGfillable(GridBase *coarse,GridBase *fine)
// this function is necessary for the LS vectorised field
inline int RNGfillable_general(GridBase *coarse,GridBase *fine)
{
if ( coarse == fine ) return 1;
if ( coarse->isIcosahedral()) assert(coarse->isIcosahedralEdge());
if ( fine->isIcosahedralVertex() && coarse->isIcosahedralEdge() ) {
assert(fine->Nd()==coarse->Nd());
for(int d=0;d<fine->Nd();d++){
assert(fine->LocalDimensions()[d] == coarse->LocalDimensions()[d]);
}
return 1;
}
int rngdims = coarse->_ndimension;
// trivially extended in higher dims, with locality guaranteeing RNG state is local to node
@@ -352,12 +379,12 @@ private:
public:
GridBase *Grid(void) const { return _grid; }
int generator_idx(int os,int is) {
return is*_grid->oSites()+os;
return (is*_grid->CartesianOsites()+os)%_grid->lSites(); // On the pole sites wrap back to normal generators; Icosahedral hack
}
GridParallelRNG(GridBase *grid) : GridRNGbase() {
_grid = grid;
_vol =_grid->iSites()*_grid->oSites();
_vol =_grid->lSites();
_generators.resize(_vol);
_uniform.resize(_vol,std::uniform_real_distribution<RealD>{0,1});
@@ -381,7 +408,7 @@ public:
int multiplicity = RNGfillable_general(_grid, l.Grid()); // l has finer or same grid
int Nsimd = _grid->Nsimd(); // guaranteed to be the same for l.Grid() too
int osites = _grid->oSites(); // guaranteed to be <= l.Grid()->oSites() by a factor multiplicity
int osites = _grid->CartesianOsites(); // guaranteed to be <= l.Grid()->oSites() by a factor multiplicity, except on Icosahedral
int words = sizeof(scalar_object) / sizeof(scalar_type);
autoView(l_v, l, CpuWrite);
@@ -402,8 +429,27 @@ public:
// merge into SIMD lanes, FIXME suboptimal implementation
merge(l_v[sm], buf);
}
});
// });
});
/*
* Fill in the poles for an Icosahedral vertex mesh
*/
if (l.Grid()->isIcosahedralVertex()) {
int64_t pole_sites=l.Grid()->NorthPoleOsites()+l.Grid()->SouthPoleOsites();
int64_t pole_base =l.Grid()->CartesianOsites();
ExtractBuffer<scalar_object> buf(Nsimd);
for (int m = 0; m < pole_sites; m++) { // Draw from same generator multiplicity times
for (int si = 0; si < Nsimd; si++) {
int gdx = 0;
scalar_type *pointer = (scalar_type *)&buf[si];
dist[gdx].reset();
for (int idx = 0; idx < words; idx++)
fillScalar(pointer[idx], dist[gdx], _generators[gdx]);
}
merge(l_v[pole_base+m], buf);
}
}
_time_counter += usecond()- inner_time_counter;
}

View File

@@ -55,7 +55,7 @@ inline void sliceSumReduction_cub_small(const vobj *Data,
d_offsets = static_cast<int*>(acceleratorAllocDevice((rd+1)*sizeof(int)));
//copy offsets to device
acceleratorCopyToDeviceAsync(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream);
acceleratorCopyToDeviceAsynch(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream);
gpuError_t gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p,d_out, rd, d_offsets, d_offsets+1, ::gpucub::Sum(), zero_init, computeStream);
@@ -88,7 +88,7 @@ inline void sliceSumReduction_cub_small(const vobj *Data,
exit(EXIT_FAILURE);
}
acceleratorCopyFromDeviceAsync(d_out,&lvSum[0],rd*sizeof(vobj),computeStream);
acceleratorCopyFromDeviceAsynch(d_out,&lvSum[0],rd*sizeof(vobj),computeStream);
//sync after copy
accelerator_barrier();

View File

@@ -510,7 +510,6 @@ public:
grid->SendToRecvFromBegin(fwd_req,
(void *)&hsend_buf[d*buffer_size], xmit_to_rank,
(void *)&hrecv_buf[d*buffer_size], recv_from_rank, bytes, tag);
acceleratorCopyToDevice(&hrecv_buf[d*buffer_size],&recv_buf[d*buffer_size],bytes);
#endif
t_comms+=usecond()-t;
}
@@ -531,7 +530,6 @@ public:
grid->SendToRecvFromBegin(bwd_req,
(void *)&hsend_buf[(d+depth)*buffer_size], recv_from_rank,
(void *)&hrecv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag);
acceleratorCopyToDevice(&hrecv_buf[(d+depth)*buffer_size],&recv_buf[(d+depth)*buffer_size],bytes);
#endif
t_comms+=usecond()-t;
}
@@ -555,8 +553,13 @@ public:
t=usecond();
grid->CommsComplete(fwd_req);
#ifndef ACCELERATOR_AWARE_MPI
for ( int d=0;d < depth ; d ++ ) {
acceleratorCopyToDevice(&hrecv_buf[d*buffer_size],&recv_buf[d*buffer_size],bytes);
}
#endif
t_comms+= usecond() - t;
t=usecond();
for ( int d=0;d < depth ; d ++ ) {
ScatterSlice(recv_buf,to,nld-depth+d,dimension,plane*buffer_size); plane++;
@@ -565,6 +568,11 @@ public:
t=usecond();
grid->CommsComplete(bwd_req);
#ifndef ACCELERATOR_AWARE_MPI
for ( int d=0;d < depth ; d ++ ) {
acceleratorCopyToDevice(&hrecv_buf[(d+depth)*buffer_size],&recv_buf[(d+depth)*buffer_size],bytes);
}
#endif
t_comms+= usecond() - t;
t=usecond();

View File

@@ -49,7 +49,7 @@ static constexpr int Tm = 7;
static constexpr int Nc=Config_Nc;
static constexpr int Ns=4;
static constexpr int Nd=4;
static constexpr int Nd=Config_Nd;
static constexpr int Nhs=2; // half spinor
static constexpr int Nds=8; // double stored gauge field
static constexpr int Ngp=2; // gparity index range
@@ -75,6 +75,7 @@ static constexpr int InverseYes=1;
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
const int SpinorIndex = 2;
const int PauliIndex = 2; //TensorLevel counts from the bottom!
template<typename T> struct isSpinor {
static constexpr bool value = (SpinorIndex==T::TensorLevel);
};

View File

@@ -0,0 +1,196 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/CompactWilsonCloverFermion5D.h
Copyright (C) 2020 - 2025
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
Author: Nils Meyer <nils.meyer@ur.de>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/qcd/action/fermion/WilsonFermion5D.h>
#include <Grid/qcd/action/fermion/WilsonCloverTypes.h>
#include <Grid/qcd/action/fermion/WilsonCloverHelpers.h>
#include <Grid/qcd/action/fermion/CloverHelpers.h>
NAMESPACE_BEGIN(Grid);
// see Grid/qcd/action/fermion/CompactWilsonCloverFermion.h for description
template<class Impl, class CloverHelpers>
class CompactWilsonCloverFermion5D : public WilsonFermion5D<Impl>,
public WilsonCloverHelpers<Impl>,
public CompactWilsonCloverHelpers<Impl> {
/////////////////////////////////////////////
// Sizes
/////////////////////////////////////////////
public:
INHERIT_COMPACT_CLOVER_SIZES(Impl);
/////////////////////////////////////////////
// Type definitions
/////////////////////////////////////////////
public:
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
INHERIT_COMPACT_CLOVER_TYPES(Impl);
typedef WilsonFermion5D<Impl> WilsonBase;
typedef WilsonCloverHelpers<Impl> Helpers;
typedef CompactWilsonCloverHelpers<Impl> CompactHelpers;
/////////////////////////////////////////////
// Constructors
/////////////////////////////////////////////
public:
CompactWilsonCloverFermion5D(GaugeField& _Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
const RealD _mass,
const RealD _csw_r = 0.0,
const RealD _csw_t = 0.0,
const RealD _cF = 1.0,
const ImplParams& impl_p = ImplParams());
/////////////////////////////////////////////
// Member functions (implementing interface)
/////////////////////////////////////////////
public:
virtual void Instantiatable() {};
int ConstEE() override { return 0; };
int isTrivialEE() override { return 0; };
void Dhop(const FermionField& in, FermionField& out, int dag) override;
void DhopOE(const FermionField& in, FermionField& out, int dag) override;
void DhopEO(const FermionField& in, FermionField& out, int dag) override;
void DhopDir(const FermionField& in, FermionField& out, int dir, int disp) override;
void DhopDirAll(const FermionField& in, std::vector<FermionField>& out) /* override */;
void M(const FermionField& in, FermionField& out) override;
void Mdag(const FermionField& in, FermionField& out) override;
void Meooe(const FermionField& in, FermionField& out) override;
void MeooeDag(const FermionField& in, FermionField& out) override;
void Mooee(const FermionField& in, FermionField& out) override;
void MooeeDag(const FermionField& in, FermionField& out) override;
void MooeeInv(const FermionField& in, FermionField& out) override;
void MooeeInvDag(const FermionField& in, FermionField& out) override;
void Mdir(const FermionField& in, FermionField& out, int dir, int disp) override;
void MdirAll(const FermionField& in, std::vector<FermionField>& out) override;
void MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) override;
void MooDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) override;
void MeeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) override;
/////////////////////////////////////////////
// Member functions (internals)
/////////////////////////////////////////////
void MooeeInternal(const FermionField& in,
FermionField& out,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle);
/////////////////////////////////////////////
// Helpers
/////////////////////////////////////////////
void ImportGauge(const GaugeField& _Umu) override;
/////////////////////////////////////////////
// Helpers
/////////////////////////////////////////////
private:
template<class Field>
const MaskField* getCorrectMaskField(const Field &in) const {
if(in.Grid()->_isCheckerBoarded) {
if(in.Checkerboard() == Odd) {
return &this->BoundaryMaskOdd;
} else {
return &this->BoundaryMaskEven;
}
} else {
return &this->BoundaryMask;
}
}
template<class Field>
void ApplyBoundaryMask(Field& f) {
const MaskField* m = getCorrectMaskField(f); assert(m != nullptr);
assert(m != nullptr);
CompactHelpers::ApplyBoundaryMask(f, *m);
}
/////////////////////////////////////////////
// Member Data
/////////////////////////////////////////////
public:
RealD csw_r;
RealD csw_t;
RealD cF;
int n_rhs;
bool fixedBoundaries;
CloverDiagonalField Diagonal, DiagonalEven, DiagonalOdd;
CloverDiagonalField DiagonalInv, DiagonalInvEven, DiagonalInvOdd;
CloverTriangleField Triangle, TriangleEven, TriangleOdd;
CloverTriangleField TriangleInv, TriangleInvEven, TriangleInvOdd;
FermionField Tmp;
MaskField BoundaryMask, BoundaryMaskEven, BoundaryMaskOdd;
};
NAMESPACE_END(Grid);

View File

@@ -123,10 +123,10 @@ public:
GaugeGrid->LocalIndexToLocalCoor(lidx, lcoor);
peekLocalSite(ScalarUmu, Umu_v, lcoor);
for (int mu = 0; mu < 4; mu++) ScalarUds(mu) = ScalarUmu(mu);
for (int mu = 0; mu < Nd; mu++) ScalarUds(mu) = ScalarUmu(mu);
peekLocalSite(ScalarUmu, Uadj_v, lcoor);
for (int mu = 0; mu < 4; mu++) ScalarUds(mu + 4) = ScalarUmu(mu);
for (int mu = 0; mu < Nd; mu++) ScalarUds(mu + Nd) = ScalarUmu(mu);
pokeLocalSite(ScalarUds, Uds_v, lcoor);
});

View File

@@ -55,6 +55,7 @@ NAMESPACE_CHECK(Wilson);
NAMESPACE_CHECK(WilsonTM);
#include <Grid/qcd/action/fermion/WilsonCloverFermion.h> // 4d wilson clover fermions
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h> // 4d compact wilson clover fermions
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion5D.h> // 5d compact wilson clover fermions
NAMESPACE_CHECK(WilsonClover);
#include <Grid/qcd/action/fermion/WilsonFermion5D.h> // 5d base used by all 5d overlap types
NAMESPACE_CHECK(Wilson5D);
@@ -84,6 +85,15 @@ NAMESPACE_CHECK(DomainWall);
#include <Grid/qcd/action/fermion/OverlapWilsonPartialFractionTanhFermion.h>
#include <Grid/qcd/action/fermion/OverlapWilsonPartialFractionZolotarevFermion.h>
NAMESPACE_CHECK(Overlap);
///////////////////////////////////////////////////////////////////////////////
// Two spin wilson fermion based
///////////////////////////////////////////////////////////////////////////////
#include <Grid/qcd/action/fermion/TwoSpinWilsonFermion3plus1D.h>
NAMESPACE_CHECK(TwoSpinWilson);
///////////////////////////////////////////////////////////////////////////////
// G5 herm -- this has to live in QCD since dirac matrix is not in the broader sector of code
///////////////////////////////////////////////////////////////////////////////
@@ -164,12 +174,17 @@ typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiS
// Compact Clover fermions
template <typename WImpl> using CompactWilsonClover = CompactWilsonCloverFermion<WImpl, CompactCloverHelpers<WImpl>>;
template <typename WImpl> using CompactWilsonClover5D = CompactWilsonCloverFermion5D<WImpl, CompactCloverHelpers<WImpl>>;
template <typename WImpl> using CompactWilsonExpClover = CompactWilsonCloverFermion<WImpl, CompactExpCloverHelpers<WImpl>>;
typedef CompactWilsonClover<WilsonImplD2> CompactWilsonCloverFermionD2;
typedef CompactWilsonClover<WilsonImplF> CompactWilsonCloverFermionF;
typedef CompactWilsonClover<WilsonImplD> CompactWilsonCloverFermionD;
typedef CompactWilsonClover5D<WilsonImplD2> CompactWilsonCloverFermion5DD2;
typedef CompactWilsonClover5D<WilsonImplF> CompactWilsonCloverFermion5DF;
typedef CompactWilsonClover5D<WilsonImplD> CompactWilsonCloverFermion5DD;
typedef CompactWilsonExpClover<WilsonImplD2> CompactWilsonExpCloverFermionD2;
typedef CompactWilsonExpClover<WilsonImplF> CompactWilsonExpCloverFermionF;
typedef CompactWilsonExpClover<WilsonImplD> CompactWilsonExpCloverFermionD;

View File

@@ -41,8 +41,9 @@ NAMESPACE_CHECK(Compressor);
NAMESPACE_CHECK(FermionOperatorImpl);
#include <Grid/qcd/action/fermion/FermionOperator.h>
NAMESPACE_CHECK(FermionOperator);
#include <Grid/qcd/action/fermion/WilsonKernels.h> //used by all wilson type fermions
#include <Grid/qcd/action/fermion/WilsonKernels.h> //used by all wilson type fermions
#include <Grid/qcd/action/fermion/StaggeredKernels.h> //used by all wilson type fermions
#include <Grid/qcd/action/fermion/TwoSpinWilsonKernels.h> //used for 3D fermions, pauli in place of Dirac
NAMESPACE_CHECK(Kernels);
#endif

View File

@@ -180,6 +180,12 @@ NAMESPACE_CHECK(ImplGparityWilson);
#include <Grid/qcd/action/fermion/StaggeredImpl.h>
NAMESPACE_CHECK(ImplStaggered);
/////////////////////////////////////////////////////////////////////////////
// Two component spinor Wilson action for 3d / Boston
/////////////////////////////////////////////////////////////////////////////
#include <Grid/qcd/action/fermion/TwoSpinWilsonImpl.h>
NAMESPACE_CHECK(ImplTwoSpinWilson);
/////////////////////////////////////////////////////////////////////////////
// Single flavour one component spinors with colour index. 5d vec
/////////////////////////////////////////////////////////////////////////////

View File

@@ -274,7 +274,7 @@ public:
autoView( Uds_v , Uds, CpuWrite);
autoView( Utmp_v, Utmp, CpuWrite);
thread_foreach(ss,Utmp_v,{
Uds_v[ss](0)(mu+4) = Utmp_v[ss]();
Uds_v[ss](0)(mu+Nd) = Utmp_v[ss]();
});
}
Utmp = Uconj;
@@ -286,7 +286,7 @@ public:
autoView( Uds_v , Uds, CpuWrite);
autoView( Utmp_v, Utmp, CpuWrite);
thread_foreach(ss,Utmp_v,{
Uds_v[ss](1)(mu+4) = Utmp_v[ss]();
Uds_v[ss](1)(mu+Nd) = Utmp_v[ss]();
});
}
}
@@ -320,7 +320,7 @@ public:
}
Uconj = conjugate(*Upoke);
pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu + 4);
pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu + Nd);
}
}

View File

@@ -36,6 +36,8 @@ public:
static const std::vector<int> directions;
static const std::vector<int> displacements;
static const int npoint = 16;
static std::vector<int> MakeDirections(void);
static std::vector<int> MakeDisplacements(void);
};
template <class Impl>

View File

@@ -40,6 +40,8 @@ public:
static const std::vector<int> directions;
static const std::vector<int> displacements;
const int npoint = 16;
static std::vector<int> MakeDirections(void);
static std::vector<int> MakeDisplacements(void);
};
template<class Impl>

View File

@@ -36,6 +36,8 @@ public:
static const std::vector<int> directions;
static const std::vector<int> displacements;
static const int npoint = 8;
static std::vector<int> MakeDirections(void);
static std::vector<int> MakeDisplacements(void);
};
template <class Impl>

View File

@@ -141,9 +141,9 @@ public:
Udag = Udag *phases;
InsertGaugeField(Uds,U,mu);
InsertGaugeField(Uds,Udag,mu+4);
InsertGaugeField(Uds,Udag,mu+Nd);
// PokeIndex<LorentzIndex>(Uds, U, mu);
// PokeIndex<LorentzIndex>(Uds, Udag, mu + 4);
// PokeIndex<LorentzIndex>(Uds, Udag, mu + Nd);
// 3 hop based on thin links. Crazy huh ?
U = PeekIndex<LorentzIndex>(Uthin, mu);
@@ -156,7 +156,7 @@ public:
UUUdag = UUUdag *phases;
InsertGaugeField(UUUds,UUU,mu);
InsertGaugeField(UUUds,UUUdag,mu+4);
InsertGaugeField(UUUds,UUUdag,mu+Nd);
}
}

View File

@@ -0,0 +1,175 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/TwoSpinWilsonFermion3plus1D.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma one
NAMESPACE_BEGIN(Grid);
class TwoSpinWilsonFermion3plus1DStatic {
public:
// S-direction is INNERMOST and takes no part in the parity.
static const std::vector<int> directions;
static const std::vector<int> displacements;
static constexpr int npoint = 6;
static std::vector<int> MakeDirections(void);
static std::vector<int> MakeDisplacements(void);
};
template<class Impl>
class TwoSpinWilsonFermion3plus1D : public TwoSpinWilsonKernels<Impl>, public TwoSpinWilsonFermion3plus1DStatic
{
public:
INHERIT_IMPL_TYPES(Impl);
typedef TwoSpinWilsonKernels<Impl> Kernels;
FermionField _tmp;
FermionField &tmp(void) { return _tmp; }
int Dirichlet;
Coordinate Block;
///////////////////////////////////////////////////////////////
// Implement the abstract base
///////////////////////////////////////////////////////////////
GridBase *GaugeGrid(void) { return _ThreeDimGrid ;}
GridBase *GaugeRedBlackGrid(void) { return _ThreeDimRedBlackGrid ;}
GridBase *FermionGrid(void) { return _FourDimGrid;}
GridBase *FermionRedBlackGrid(void) { return _FourDimRedBlackGrid;}
// full checkerboard operations; leave unimplemented as abstract for now
virtual void M (const FermionField &in, FermionField &out){assert(0);};
virtual void Mdag (const FermionField &in, FermionField &out){assert(0);};
// half checkerboard operations; leave unimplemented as abstract for now
virtual void Meooe (const FermionField &in, FermionField &out);
virtual void Mooee (const FermionField &in, FermionField &out);
virtual void MooeeInv (const FermionField &in, FermionField &out);
virtual void MeooeDag (const FermionField &in, FermionField &out);
virtual void MooeeDag (const FermionField &in, FermionField &out);
virtual void MooeeInvDag (const FermionField &in, FermionField &out);
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp){assert(0);}; // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
virtual void MdirAll(const FermionField &in, std::vector<FermionField> &out){assert(0);}; // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
// These can be overridden by fancy 5d chiral action
virtual void DhopDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
virtual void DhopDerivEO(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
virtual void DhopDerivOE(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
// void MomentumSpacePropagatorHt_5d(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
void MomentumSpacePropagatorHt(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
void MomentumSpacePropagatorHw(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
// Implement hopping term non-hermitian hopping term; half cb or both
// Implement s-diagonal DW
void DW (const FermionField &in, FermionField &out,int dag);
void Dhop (const FermionField &in, FermionField &out,int dag);
void DhopOE(const FermionField &in, FermionField &out,int dag);
void DhopEO(const FermionField &in, FermionField &out,int dag);
void DhopComms (const FermionField &in, FermionField &out);
void DhopCalc (const FermionField &in, FermionField &out,uint64_t *ids);
// add a DhopComm
// -- suboptimal interface will presently trigger multiple comms.
void DhopDir(const FermionField &in, FermionField &out,int dir,int disp);
void DhopDirAll(const FermionField &in,std::vector<FermionField> &out);
void DhopDirComms(const FermionField &in);
void DhopDirCalc(const FermionField &in, FermionField &out,int point);
///////////////////////////////////////////////////////////////
// New methods added
///////////////////////////////////////////////////////////////
void DerivInternal(StencilImpl & st,
DoubledGaugeField & U,
GaugeField &mat,
const FermionField &A,
const FermionField &B,
int dag);
void DhopInternal(StencilImpl & st,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out,
int dag);
void DhopInternalOverlappedComms(StencilImpl & st,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out,
int dag);
void DhopInternalSerialComms(StencilImpl & st,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out,
int dag);
// Constructors
TwoSpinWilsonFermion3plus1D(GaugeField &_Umu,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
GridCartesian &ThreeDimGrid,
GridRedBlackCartesian &ThreeDimRedBlackGrid,
double _M5,const ImplParams &p= ImplParams());
virtual void DirichletBlock(const Coordinate & block)
{
}
// DoubleStore
void ImportGauge(const GaugeField &_Umu);
///////////////////////////////////////////////////////////////
// Data members require to support the functionality
///////////////////////////////////////////////////////////////
public:
// Add these to the support from Wilson
GridBase *_ThreeDimGrid;
GridBase *_ThreeDimRedBlackGrid;
GridBase *_FourDimGrid;
GridBase *_FourDimRedBlackGrid;
double M5;
int Ls;
//Defines the stencils for even and odd
StencilImpl Stencil;
StencilImpl StencilEven;
StencilImpl StencilOdd;
// Copy of the gauge field , with even and odd subsets
DoubledGaugeField Umu;
DoubledGaugeField UmuEven;
DoubledGaugeField UmuOdd;
};
NAMESPACE_END(Grid);

View File

@@ -0,0 +1,222 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/FermionOperatorImpl.h
Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////////////////
// Single flavour four spinors with colour index
/////////////////////////////////////////////////////////////////////////////
template <class S, class Representation = FundamentalRepresentation,class Options = CoeffReal >
class TwoSpinWilsonImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation::Dimension > > {
public:
static const int Dimension = Representation::Dimension;
static const bool isFundamental = Representation::isFundamental;
typedef PeriodicGaugeImpl<GaugeImplTypes<S, Dimension > > Gimpl;
INHERIT_GIMPL_TYPES(Gimpl);
//Necessary?
constexpr bool is_fundamental() const{return Dimension == Nc ? 1 : 0;}
typedef typename Options::_Coeff_t Coeff_t;
template <typename vtype> using iImplSpinor = iScalar<iVector<iVector<vtype, Dimension>, Nhs> >;
template <typename vtype> using iImplPropagator = iScalar<iMatrix<iMatrix<vtype, Dimension>, Nhs> >;
template <typename vtype> using iImplHalfSpinor = iScalar<iVector<iVector<vtype, Dimension>, Nhs> >;
template <typename vtype> using iImplHalfCommSpinor = iScalar<iVector<iVector<vtype, Dimension>, Nhs> >;
template <typename vtype> using iImplDoubledGaugeField = iVector<iScalar<iMatrix<vtype, Dimension> >, Nds>;
typedef iImplSpinor<Simd> SiteSpinor;
typedef iImplPropagator<Simd> SitePropagator;
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
typedef iImplHalfCommSpinor<Simd> SiteHalfCommSpinor;
typedef iImplDoubledGaugeField<Simd> SiteDoubledGaugeField;
typedef Lattice<SiteSpinor> FermionField;
typedef Lattice<SitePropagator> PropagatorField;
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
typedef SimpleCompressor<SiteSpinor> Compressor;
typedef WilsonImplParams ImplParams;
typedef CartesianStencil<SiteSpinor, SiteSpinor, ImplParams> StencilImpl;
typedef const typename StencilImpl::View_type StencilView;
ImplParams Params;
TwoSpinWilsonImpl(const ImplParams &p = ImplParams()) : Params(p){
};
template<class _Spinor>
static accelerator_inline void multLink(_Spinor &phi,
const SiteDoubledGaugeField &U,
const _Spinor &chi,
int mu)
{
auto UU = coalescedRead(U(mu));
mult(&phi(), &UU, &chi());
}
template<class _Spinor>
static accelerator_inline void multLink(_Spinor &phi,
const SiteDoubledGaugeField &U,
const _Spinor &chi,
int mu,
StencilEntry *SE,
StencilView &St)
{
multLink(phi,U,chi,mu);
}
template<class _SpinorField>
inline void multLinkField(_SpinorField & out,
const DoubledGaugeField &Umu,
const _SpinorField & phi,
int mu)
{
const int Nsimd = SiteHalfSpinor::Nsimd();
autoView( out_v, out, AcceleratorWrite);
autoView( phi_v, phi, AcceleratorRead);
autoView( Umu_v, Umu, AcceleratorRead);
typedef decltype(coalescedRead(out_v[0])) calcSpinor;
accelerator_for(sss,out.Grid()->oSites(),Nsimd,{
calcSpinor tmp;
multLink(tmp,Umu_v[sss],phi_v(sss),mu);
coalescedWrite(out_v[sss],tmp);
});
}
template <class ref>
static accelerator_inline void loadLinkElement(Simd &reg, ref &memory)
{
reg = memory;
}
inline void DoubleStore(GridBase *GaugeGrid,
DoubledGaugeField &Uds,
const GaugeField &Umu)
{
typedef typename Simd::scalar_type scalar_type;
conformable(Uds.Grid(), GaugeGrid);
conformable(Umu.Grid(), GaugeGrid);
GaugeLinkField U(GaugeGrid);
GaugeLinkField tmp(GaugeGrid);
Lattice<iScalar<vInteger> > coor(GaugeGrid);
////////////////////////////////////////////////////
// apply any boundary phase or twists
////////////////////////////////////////////////////
for (int mu = 0; mu < Nd; mu++) {
////////// boundary phase /////////////
auto pha = Params.boundary_phases[mu];
scalar_type phase( real(pha),imag(pha) );
int L = GaugeGrid->GlobalDimensions()[mu];
int Lmu = L - 1;
LatticeCoordinate(coor, mu);
U = PeekIndex<LorentzIndex>(Umu, mu);
// apply any twists
RealD theta = Params.twist_n_2pi_L[mu] * 2*M_PI / L;
if ( theta != 0.0) {
scalar_type twphase(::cos(theta),::sin(theta));
U = twphase*U;
std::cout << GridLogMessage << " Twist ["<<mu<<"] "<< Params.twist_n_2pi_L[mu]<< " phase"<<phase <<std::endl;
}
tmp = where(coor == Lmu, phase * U, U);
PokeIndex<LorentzIndex>(Uds, tmp, mu);
U = adj(Cshift(U, mu, -1));
U = where(coor == 0, conjugate(phase) * U, U);
PokeIndex<LorentzIndex>(Uds, U, mu + Nd);
}
}
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A,int mu){
GaugeLinkField link(mat.Grid());
link = TraceIndex<SpinIndex>(outerProduct(Btilde,A));
PokeIndex<LorentzIndex>(mat,link,mu);
}
inline void outerProductImpl(PropagatorField &mat, const FermionField &B, const FermionField &A){
mat = outerProduct(B,A);
}
inline void TraceSpinImpl(GaugeLinkField &mat, PropagatorField&P) {
mat = TraceIndex<SpinIndex>(P);
}
inline void extractLinkField(std::vector<GaugeLinkField> &mat, DoubledGaugeField &Uds)
{
for (int mu = 0; mu < Nd; mu++)
mat[mu] = PeekIndex<LorentzIndex>(Uds, mu);
}
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField &Atilde,int mu)
{
int Ls=Btilde.Grid()->_fdimensions[0];
autoView( mat_v , mat, AcceleratorWrite);
{
const int Nsimd = SiteSpinor::Nsimd();
autoView( Btilde_v , Btilde, AcceleratorRead);
autoView( Atilde_v , Atilde, AcceleratorRead);
accelerator_for(sss,mat.Grid()->oSites(),Nsimd,{
int sU=sss;
typedef decltype(coalescedRead(mat_v[sU](mu)() )) ColorMatrixType;
ColorMatrixType sum;
zeroit(sum);
for(int s=0;s<Ls;s++){
int sF = s+Ls*sU;
for(int spn=0;spn<Ns;spn++){ //sum over spin
auto bb = coalescedRead(Btilde_v[sF]()(spn) ); //color vector
auto aa = coalescedRead(Atilde_v[sF]()(spn) );
auto op = outerProduct(bb,aa);
sum = sum + op;
}
}
coalescedWrite(mat_v[sU](mu)(), sum);
});
}
}
};
typedef TwoSpinWilsonImpl<vComplex, FundamentalRepresentation, CoeffReal > TwoSpinWilsonImplR; // Real.. whichever prec
typedef TwoSpinWilsonImpl<vComplexF, FundamentalRepresentation, CoeffReal > TwoSpinWilsonImplF; // Float
typedef TwoSpinWilsonImpl<vComplexD, FundamentalRepresentation, CoeffReal > TwoSpinWilsonImplD; // Double
typedef TwoSpinWilsonImpl<vComplexD2, FundamentalRepresentation, CoeffReal > TwoSpinWilsonImplD2; // Double
NAMESPACE_END(Grid);

View File

@@ -0,0 +1,84 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.h
Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Helper routines that implement Wilson stencil for a single site.
// Common to both the WilsonFermion and WilsonFermion5D
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Impl> class TwoSpinWilsonKernels : public FermionOperator<Impl> {
public:
INHERIT_IMPL_TYPES(Impl);
typedef FermionOperator<Impl> Base;
typedef AcceleratorVector<int,STENCIL_MAX> StencilVector;
public:
static void DhopKernel(StencilImpl &st, DoubledGaugeField &U, SiteSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out,
int interior=1,int exterior=1) ;
static void DhopKernel(StencilImpl &st, DoubledGaugeField &U, SiteSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out,
uint64_t *ids);
static void DhopDagKernel(StencilImpl &st, DoubledGaugeField &U, SiteSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out,
int interior=1,int exterior=1) ;
static void DhopDirAll( StencilImpl &st, DoubledGaugeField &U,SiteSpinor *buf, int Ls,
int Nsite, const FermionField &in, std::vector<FermionField> &out) ;
static void DhopDirKernel(StencilImpl &st, DoubledGaugeField &U,SiteSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out, int dirdisp, int gamma);
private:
static accelerator_inline void DhopDirK(StencilView &st, DoubledGaugeFieldView &U,SiteSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out, int dirdisp, int gamma);
static accelerator_inline void DhopDirXp(StencilView &st,DoubledGaugeFieldView &U,SiteSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirYp(StencilView &st,DoubledGaugeFieldView &U,SiteSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirZp(StencilView &st,DoubledGaugeFieldView &U,SiteSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirXm(StencilView &st,DoubledGaugeFieldView &U,SiteSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirYm(StencilView &st,DoubledGaugeFieldView &U,SiteSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirZm(StencilView &st,DoubledGaugeFieldView &U,SiteSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
public:
TwoSpinWilsonKernels(const ImplParams &p = ImplParams()) : Base(p){};
};
NAMESPACE_END(Grid);

View File

@@ -485,7 +485,6 @@ public:
assert(this->u_comm_offset==this->_unified_buffer_size);
accelerator_barrier();
#ifdef NVLINK_GET
#warning "NVLINK_GET"
this->_grid->StencilBarrier(); // He can now get mu local gather, I can get his
// Synch shared memory on a single nodes; could use an asynchronous barrier here and defer check
// Or issue barrier AFTER the DMA is running

View File

@@ -38,6 +38,8 @@ public:
static int MortonOrder;
static const std::vector<int> directions;
static const std::vector<int> displacements;
static std::vector<int> MakeDirections(void);
static std::vector<int> MakeDisplacements(void);
static const int npoint = 8;
};

View File

@@ -62,6 +62,8 @@ public:
static const std::vector<int> directions;
static const std::vector<int> displacements;
static constexpr int npoint = 8;
static std::vector<int> MakeDirections(void);
static std::vector<int> MakeDisplacements(void);
};
template<class Impl>
@@ -91,13 +93,13 @@ public:
virtual void Mdag (const FermionField &in, FermionField &out){assert(0);};
// half checkerboard operations; leave unimplemented as abstract for now
virtual void Meooe (const FermionField &in, FermionField &out){assert(0);};
virtual void Mooee (const FermionField &in, FermionField &out){assert(0);};
virtual void MooeeInv (const FermionField &in, FermionField &out){assert(0);};
virtual void Meooe (const FermionField &in, FermionField &out);
virtual void Mooee (const FermionField &in, FermionField &out);
virtual void MooeeInv (const FermionField &in, FermionField &out);
virtual void MeooeDag (const FermionField &in, FermionField &out){assert(0);};
virtual void MooeeDag (const FermionField &in, FermionField &out){assert(0);};
virtual void MooeeInvDag (const FermionField &in, FermionField &out){assert(0);};
virtual void MeooeDag (const FermionField &in, FermionField &out);
virtual void MooeeDag (const FermionField &in, FermionField &out);
virtual void MooeeInvDag (const FermionField &in, FermionField &out);
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp){assert(0);}; // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
virtual void MdirAll(const FermionField &in, std::vector<FermionField> &out){assert(0);}; // case by case Wilson, Clover, Cayley, ContFrac, PartFrac

View File

@@ -166,7 +166,7 @@ public:
U = adj(Cshift(U, mu, -1));
U = where(coor == 0, conjugate(phase) * U, U);
PokeIndex<LorentzIndex>(Uds, U, mu + 4);
PokeIndex<LorentzIndex>(Uds, U, mu + Nd);
}
}

View File

@@ -56,7 +56,7 @@ class WilsonTMFermion5D : public WilsonFermion5D<Impl>
Frbgrid,
Ugrid,
Urbgrid,
4.0,p)
Nd*1.0,p)
{
update(_mass,_mu);
@@ -83,7 +83,7 @@ class WilsonTMFermion5D : public WilsonFermion5D<Impl>
out.Checkerboard() = in.Checkerboard();
//axpibg5x(out,in,a,b); // out = a*in + b*i*G5*in
for (int s=0;s<(int)this->mass.size();s++) {
ComplexD a = 4.0+this->mass[s];
ComplexD a = Nd*1.0+this->mass[s];
ComplexD b(0.0,this->mu[s]);
axpbg5y_ssp(out,a,in,b,in,s,s);
}
@@ -92,7 +92,7 @@ class WilsonTMFermion5D : public WilsonFermion5D<Impl>
virtual void MooeeDag(const FermionField &in, FermionField &out) {
out.Checkerboard() = in.Checkerboard();
for (int s=0;s<(int)this->mass.size();s++) {
ComplexD a = 4.0+this->mass[s];
ComplexD a = Nd*1.0+this->mass[s];
ComplexD b(0.0,-this->mu[s]);
axpbg5y_ssp(out,a,in,b,in,s,s);
}
@@ -101,7 +101,7 @@ class WilsonTMFermion5D : public WilsonFermion5D<Impl>
for (int s=0;s<(int)this->mass.size();s++) {
RealD m = this->mass[s];
RealD tm = this->mu[s];
RealD mtil = 4.0+this->mass[s];
RealD mtil = Nd*1.0+this->mass[s];
RealD sq = mtil*mtil+tm*tm;
ComplexD a = mtil/sq;
ComplexD b(0.0, -tm /sq);
@@ -112,7 +112,7 @@ class WilsonTMFermion5D : public WilsonFermion5D<Impl>
for (int s=0;s<(int)this->mass.size();s++) {
RealD m = this->mass[s];
RealD tm = this->mu[s];
RealD mtil = 4.0+this->mass[s];
RealD mtil = Nd*1.0+this->mass[s];
RealD sq = mtil*mtil+tm*tm;
ComplexD a = mtil/sq;
ComplexD b(0.0,tm /sq);
@@ -126,7 +126,7 @@ class WilsonTMFermion5D : public WilsonFermion5D<Impl>
this->Dhop(in, out, DaggerNo);
FermionField tmp(out.Grid());
for (int s=0;s<(int)this->mass.size();s++) {
ComplexD a = 4.0+this->mass[s];
ComplexD a = Nd*1.0+this->mass[s];
ComplexD b(0.0,this->mu[s]);
axpbg5y_ssp(tmp,a,in,b,in,s,s);
}

View File

@@ -0,0 +1,376 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/CompactWilsonCloverFermion5DImplementation.h
Copyright (C) 2017 - 2025
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/qcd/spin/Dirac.h>
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion5D.h>
NAMESPACE_BEGIN(Grid);
template<class Impl, class CloverHelpers>
CompactWilsonCloverFermion5D<Impl, CloverHelpers>::CompactWilsonCloverFermion5D(GaugeField& _Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
const RealD _mass,
const RealD _csw_r,
const RealD _csw_t,
const RealD _cF,
const ImplParams& impl_p)
: WilsonBase(_Umu, FiveDimGrid, FiveDimRedBlackGrid, FourDimGrid, FourDimRedBlackGrid, _mass, impl_p)
, csw_r(_csw_r)
, csw_t(_csw_t)
, cF(_cF)
, fixedBoundaries(impl_p.boundary_phases[Nd-1] == 0.0)
, Diagonal(&FourDimGrid), Triangle(&FourDimGrid)
, DiagonalEven(&FourDimRedBlackGrid), TriangleEven(&FourDimRedBlackGrid)
, DiagonalOdd(&FourDimRedBlackGrid), TriangleOdd(&FourDimRedBlackGrid)
, DiagonalInv(&FourDimGrid), TriangleInv(&FourDimGrid)
, DiagonalInvEven(&FourDimRedBlackGrid), TriangleInvEven(&FourDimRedBlackGrid)
, DiagonalInvOdd(&FourDimRedBlackGrid), TriangleInvOdd(&FourDimRedBlackGrid)
, Tmp(&FiveDimGrid)
, BoundaryMask(&FiveDimGrid)
, BoundaryMaskEven(&FiveDimRedBlackGrid), BoundaryMaskOdd(&FiveDimRedBlackGrid)
{
assert(Nd == 4 && Nc == 3 && Ns == 4 && Impl::Dimension == 3);
csw_r *= 0.5;
csw_t *= 0.5;
//if (clover_anisotropy.isAnisotropic)
// csw_r /= clover_anisotropy.xi_0;
ImportGauge(_Umu);
if (fixedBoundaries) {
this->BoundaryMaskEven.Checkerboard() = Even;
this->BoundaryMaskOdd.Checkerboard() = Odd;
CompactHelpers::SetupMasks(this->BoundaryMask, this->BoundaryMaskEven, this->BoundaryMaskOdd);
}
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::Dhop(const FermionField& in, FermionField& out, int dag) {
WilsonBase::Dhop(in, out, dag);
if(fixedBoundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::DhopOE(const FermionField& in, FermionField& out, int dag) {
WilsonBase::DhopOE(in, out, dag);
if(fixedBoundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::DhopEO(const FermionField& in, FermionField& out, int dag) {
WilsonBase::DhopEO(in, out, dag);
if(fixedBoundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::DhopDir(const FermionField& in, FermionField& out, int dir, int disp) {
WilsonBase::DhopDir(in, out, dir, disp);
if(this->fixedBoundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::DhopDirAll(const FermionField& in, std::vector<FermionField>& out) {
WilsonBase::DhopDirAll(in, out);
if(this->fixedBoundaries) {
for(auto& o : out) ApplyBoundaryMask(o);
}
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::M(const FermionField& in, FermionField& out) {
out.Checkerboard() = in.Checkerboard();
WilsonBase::Dhop(in, out, DaggerNo); // call base to save applying bc
Mooee(in, Tmp);
axpy(out, 1.0, out, Tmp);
if(fixedBoundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::Mdag(const FermionField& in, FermionField& out) {
out.Checkerboard() = in.Checkerboard();
WilsonBase::Dhop(in, out, DaggerYes); // call base to save applying bc
MooeeDag(in, Tmp);
axpy(out, 1.0, out, Tmp);
if(fixedBoundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::Meooe(const FermionField& in, FermionField& out) {
WilsonBase::Meooe(in, out);
if(fixedBoundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MeooeDag(const FermionField& in, FermionField& out) {
WilsonBase::MeooeDag(in, out);
if(fixedBoundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::Mooee(const FermionField& in, FermionField& out) {
if(in.Grid()->_isCheckerBoarded) {
if(in.Checkerboard() == Odd) {
MooeeInternal(in, out, DiagonalOdd, TriangleOdd);
} else {
MooeeInternal(in, out, DiagonalEven, TriangleEven);
}
} else {
MooeeInternal(in, out, Diagonal, Triangle);
}
if(fixedBoundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MooeeDag(const FermionField& in, FermionField& out) {
Mooee(in, out); // blocks are hermitian
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MooeeInv(const FermionField& in, FermionField& out) {
if(in.Grid()->_isCheckerBoarded) {
if(in.Checkerboard() == Odd) {
MooeeInternal(in, out, DiagonalInvOdd, TriangleInvOdd);
} else {
MooeeInternal(in, out, DiagonalInvEven, TriangleInvEven);
}
} else {
MooeeInternal(in, out, DiagonalInv, TriangleInv);
}
if(fixedBoundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MooeeInvDag(const FermionField& in, FermionField& out) {
MooeeInv(in, out); // blocks are hermitian
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::Mdir(const FermionField& in, FermionField& out, int dir, int disp) {
DhopDir(in, out, dir, disp);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MdirAll(const FermionField& in, std::vector<FermionField>& out) {
DhopDirAll(in, out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) {
assert(!fixedBoundaries); // TODO check for changes required for open bc
// NOTE: code copied from original clover term
conformable(X.Grid(), Y.Grid());
conformable(X.Grid(), force.Grid());
GaugeLinkField force_mu(force.Grid()), lambda(force.Grid());
GaugeField clover_force(force.Grid());
PropagatorField Lambda(force.Grid());
// Guido: Here we are hitting some performance issues:
// need to extract the components of the DoubledGaugeField
// for each call
// Possible solution
// Create a vector object to store them? (cons: wasting space)
std::vector<GaugeLinkField> U(Nd, this->Umu.Grid());
Impl::extractLinkField(U, this->Umu);
force = Zero();
// Derivative of the Wilson hopping term
this->DhopDeriv(force, X, Y, dag);
///////////////////////////////////////////////////////////
// Clover term derivative
///////////////////////////////////////////////////////////
Impl::outerProductImpl(Lambda, X, Y);
//std::cout << "Lambda:" << Lambda << std::endl;
Gamma::Algebra sigma[] = {
Gamma::Algebra::SigmaXY,
Gamma::Algebra::SigmaXZ,
Gamma::Algebra::SigmaXT,
Gamma::Algebra::MinusSigmaXY,
Gamma::Algebra::SigmaYZ,
Gamma::Algebra::SigmaYT,
Gamma::Algebra::MinusSigmaXZ,
Gamma::Algebra::MinusSigmaYZ,
Gamma::Algebra::SigmaZT,
Gamma::Algebra::MinusSigmaXT,
Gamma::Algebra::MinusSigmaYT,
Gamma::Algebra::MinusSigmaZT};
/*
sigma_{\mu \nu}=
| 0 sigma[0] sigma[1] sigma[2] |
| sigma[3] 0 sigma[4] sigma[5] |
| sigma[6] sigma[7] 0 sigma[8] |
| sigma[9] sigma[10] sigma[11] 0 |
*/
int count = 0;
clover_force = Zero();
for (int mu = 0; mu < 4; mu++)
{
force_mu = Zero();
for (int nu = 0; nu < 4; nu++)
{
if (mu == nu)
continue;
RealD factor;
if (nu == 4 || mu == 4)
{
factor = 2.0 * csw_t;
}
else
{
factor = 2.0 * csw_r;
}
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
force_mu -= factor*CloverHelpers::Cmunu(U, lambda, mu, nu); // checked
count++;
}
pokeLorentz(clover_force, U[mu] * force_mu, mu);
}
//clover_force *= csw;
force += clover_force;
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MooDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) {
assert(0);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MeeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) {
assert(0);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MooeeInternal(const FermionField& in,
FermionField& out,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle) {
assert(in.Checkerboard() == Odd || in.Checkerboard() == Even);
out.Checkerboard() = in.Checkerboard();
conformable(in, out);
CompactHelpers::MooeeKernel(diagonal.oSites(), this->Ls, in, out, diagonal, triangle);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::ImportGauge(const GaugeField& _Umu) {
// NOTE: parts copied from original implementation
// Import gauge into base class
double t0 = usecond();
WilsonBase::ImportGauge(_Umu); // NOTE: called here and in wilson constructor -> performed twice, but can't avoid that
// Initialize temporary variables
double t1 = usecond();
conformable(_Umu.Grid(), this->GaugeGrid());
GridBase* grid = _Umu.Grid();
typename Impl::GaugeLinkField Bx(grid), By(grid), Bz(grid), Ex(grid), Ey(grid), Ez(grid);
CloverField TmpOriginal(grid);
CloverField TmpInverse(grid);
// Compute the field strength terms mu>nu
double t2 = usecond();
WilsonLoops<Impl>::FieldStrength(Bx, _Umu, Zdir, Ydir);
WilsonLoops<Impl>::FieldStrength(By, _Umu, Zdir, Xdir);
WilsonLoops<Impl>::FieldStrength(Bz, _Umu, Ydir, Xdir);
WilsonLoops<Impl>::FieldStrength(Ex, _Umu, Tdir, Xdir);
WilsonLoops<Impl>::FieldStrength(Ey, _Umu, Tdir, Ydir);
WilsonLoops<Impl>::FieldStrength(Ez, _Umu, Tdir, Zdir);
// Compute the Clover Operator acting on Colour and Spin
// multiply here by the clover coefficients for the anisotropy
double t3 = usecond();
TmpOriginal = Helpers::fillCloverYZ(Bx) * csw_r;
TmpOriginal += Helpers::fillCloverXZ(By) * csw_r;
TmpOriginal += Helpers::fillCloverXY(Bz) * csw_r;
TmpOriginal += Helpers::fillCloverXT(Ex) * csw_t;
TmpOriginal += Helpers::fillCloverYT(Ey) * csw_t;
TmpOriginal += Helpers::fillCloverZT(Ez) * csw_t;
// Instantiate the clover term
// - In case of the standard clover the mass term is added
// - In case of the exponential clover the clover term is exponentiated
double t4 = usecond();
CloverHelpers::InstantiateClover(TmpOriginal, TmpInverse, csw_t, 4.0 + this->M5 /*this->diag_mass*/);
// Convert the data layout of the clover term
double t5 = usecond();
CompactHelpers::ConvertLayout(TmpOriginal, Diagonal, Triangle);
// Modify the clover term at the temporal boundaries in case of open boundary conditions
double t6 = usecond();
if(fixedBoundaries) CompactHelpers::ModifyBoundaries(Diagonal, Triangle, csw_t, cF, 4.0 + this->M5 /*this->diag_mass*/);
// Invert the Clover term
// In case of the exponential clover with (anti-)periodic boundary conditions exp(-Clover) saved
// in TmpInverse can be used. In all other cases the clover term has to be explictly inverted.
// TODO: For now this inversion is explictly done on the CPU
double t7 = usecond();
CloverHelpers::InvertClover(TmpInverse, Diagonal, Triangle, DiagonalInv, TriangleInv, fixedBoundaries);
// Fill the remaining clover fields
double t8 = usecond();
pickCheckerboard(Even, DiagonalEven, Diagonal);
pickCheckerboard(Even, TriangleEven, Triangle);
pickCheckerboard(Odd, DiagonalOdd, Diagonal);
pickCheckerboard(Odd, TriangleOdd, Triangle);
pickCheckerboard(Even, DiagonalInvEven, DiagonalInv);
pickCheckerboard(Even, TriangleInvEven, TriangleInv);
pickCheckerboard(Odd, DiagonalInvOdd, DiagonalInv);
pickCheckerboard(Odd, TriangleInvOdd, TriangleInv);
// Report timings
double t9 = usecond();
std::cout << GridLogDebug << "CompactWilsonCloverFermion5D::ImportGauge timings:" << std::endl;
std::cout << GridLogDebug << "WilsonFermion::Importgauge = " << (t1 - t0) / 1e6 << std::endl;
std::cout << GridLogDebug << "allocations = " << (t2 - t1) / 1e6 << std::endl;
std::cout << GridLogDebug << "field strength = " << (t3 - t2) / 1e6 << std::endl;
std::cout << GridLogDebug << "fill clover = " << (t4 - t3) / 1e6 << std::endl;
std::cout << GridLogDebug << "instantiate clover = " << (t5 - t4) / 1e6 << std::endl;
std::cout << GridLogDebug << "convert layout = " << (t6 - t5) / 1e6 << std::endl;
std::cout << GridLogDebug << "modify boundaries = " << (t7 - t6) / 1e6 << std::endl;
std::cout << GridLogDebug << "invert clover = " << (t8 - t7) / 1e6 << std::endl;
std::cout << GridLogDebug << "pick cbs = " << (t9 - t8) / 1e6 << std::endl;
std::cout << GridLogDebug << "total = " << (t9 - t0) / 1e6 << std::endl;
}
NAMESPACE_END(Grid);

View File

@@ -240,7 +240,7 @@ void DomainWallEOFAFermion<Impl>::SetCoefficientsInternal(RealD zolo_hi, std::ve
this->ceo.resize(Ls);
for(int i=0; i<Ls; ++i){
this->bee[i] = 4.0 - this->M5 + 1.0;
this->bee[i] = Nd*1.0 - this->M5 + 1.0;
this->cee[i] = 1.0;
}

View File

@@ -0,0 +1,486 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/TwoSpinWilsonFermion2plus1D.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/WilsonFermion5D.h>
#include <Grid/perfmon/PerfCount.h>
NAMESPACE_BEGIN(Grid);
// 5d lattice for DWF.
template<class Impl>
TwoSpinWilsonFermion3plus15D<Impl>::TwoSpinWilsonFermion3plus1D(GaugeField &_Umu,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
GridCartesian &ThreeDimGrid,
GridRedBlackCartesian &ThreeDimRedBlackGrid,
RealD _M5,const ImplParams &p) :
Kernels(p),
_FourDimGrid (&FourDimGrid),
_FourDimRedBlackGrid(&FourDimRedBlackGrid),
_ThreeDimGrid (&ThreeDimGrid),
_ThreeDimRedBlackGrid(&ThreeDimRedBlackGrid),
Stencil (_FourDimGrid,npoint,Even,directions,displacements,p),
StencilEven(_FourDimRedBlackGrid,npoint,Even,directions,displacements,p), // source is Even
StencilOdd (_FourDimRedBlackGrid,npoint,Odd ,directions,displacements,p), // source is Odd
M5(_M5),
Umu(_ThreeDimGrid),
UmuEven(_ThreeDimRedBlackGrid),
UmuOdd (_ThreeDimRedBlackGrid),
_tmp(&FourDimRedBlackGrid),
Dirichlet(0)
{
// some assertions
assert(FourDimGrid._ndimension==Nd+1);
assert(ThreeDimGrid._ndimension==Nd);
assert(ThreeDimRedBlackGrid._ndimension==Nd);
assert(FourDimRedBlackGrid._ndimension==Nd+1);
assert(FourDimRedBlackGrid._checker_dim==1); // Don't checker the s direction
// extent of fifth dim and not spread out
Ls=FourDimGrid._fdimensions[0];
assert(FourDimRedBlackGrid._fdimensions[0]==Ls);
assert(FourDimGrid._processors[0] ==1);
assert(FourDimRedBlackGrid._processors[0] ==1);
// Other dimensions must match the decomposition of the four-D fields
for(int d=0;d<Nd;d++){
assert(FourDimGrid._processors[d+1] ==ThreeDimGrid._processors[d]);
assert(FourDimRedBlackGrid._processors[d+1] ==ThreeDimGrid._processors[d]);
assert(ThreeDimRedBlackGrid._processors[d] ==ThreeDimGrid._processors[d]);
assert(FourDimGrid._fdimensions[d+1] ==ThreeDimGrid._fdimensions[d]);
assert(FourDimRedBlackGrid._fdimensions[d+1]==ThreeDimGrid._fdimensions[d]);
assert(ThreeDimRedBlackGrid._fdimensions[d] ==ThreeDimGrid._fdimensions[d]);
assert(FourDimGrid._simd_layout[d+1] ==ThreeDimGrid._simd_layout[d]);
assert(FourDimRedBlackGrid._simd_layout[d+1]==ThreeDimGrid._simd_layout[d]);
assert(ThreeDimRedBlackGrid._simd_layout[d] ==ThreeDimGrid._simd_layout[d]);
}
if ( p.dirichlet.size() == Nd+1) {
Coordinate block = p.dirichlet;
for(int d=0;d<Nd+1;d++) {
if ( block[d] ){
Dirichlet = 1;
std::cout << GridLogMessage << " WilsonFermion: non-trivial Dirichlet condition "<< block << std::endl;
std::cout << GridLogMessage << " WilsonFermion: partial Dirichlet "<< p.partialDirichlet << std::endl;
Block = block;
}
}
} else {
Coordinate block(Nd+1,0);
Block = block;
}
// Dimension zero of the five-d is the Ls direction
assert(FourDimRedBlackGrid._simd_layout[0]==1);
assert(FourDimGrid._simd_layout[0] ==1);
// Allocate the required comms buffer
ImportGauge(_Umu);
// Build lists of exterior only nodes
int LLs = FourDimGrid._rdimensions[0];
int vol3;
vol3=ThreeDimGrid.oSites();
Stencil.BuildSurfaceList(LLs,vol3);
vol3=ThreeDimRedBlackGrid.oSites();
StencilEven.BuildSurfaceList(LLs,vol3);
StencilOdd.BuildSurfaceList(LLs,vol3);
}
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::ImportGauge(const GaugeField &_Umu)
{
GaugeField HUmu(_Umu.Grid());
HUmu = _Umu*(-0.5);
Impl::DoubleStore(GaugeGrid(),Umu,HUmu);
pickCheckerboard(Even,UmuEven,Umu);
pickCheckerboard(Odd ,UmuOdd,Umu);
}
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::DhopDir(const FermionField &in, FermionField &out,int dir5,int disp)
{
int dir = dir5-1; // Maps to the ordering above in "directions" that is passed to stencil
// we drop off the innermost fifth dimension
// assert( (disp==1)||(disp==-1) );
// assert( (dir>=0)&&(dir<4) ); //must do x,y,z or t;
int skip = (disp==1) ? 0 : 1;
int dirdisp = dir+skip*Nd;
int gamma = dir+(1-skip)*Nd;
Compressor compressor(DaggerNo);
Stencil.HaloExchange(in,compressor);
uint64_t Nsite = Umu.Grid()->oSites();
Kernels::DhopDirKernel(Stencil,Umu,Stencil.CommBuf(),Ls,Nsite,in,out,dirdisp,gamma);
};
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::DhopDirAll(const FermionField &in, std::vector<FermionField> &out)
{
Compressor compressor(DaggerNo);
Stencil.HaloExchange(in,compressor);
uint64_t Nsite = Umu.Grid()->oSites();
Kernels::DhopDirAll(Stencil,Umu,Stencil.CommBuf(),Ls,Nsite,in,out);
};
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::DerivInternal(StencilImpl & st,
DoubledGaugeField & U,
GaugeField &mat,
const FermionField &A,
const FermionField &B,
int dag)
{
assert((dag==DaggerNo) ||(dag==DaggerYes));
conformable(st.Grid(),A.Grid());
conformable(st.Grid(),B.Grid());
Compressor compressor(dag);
FermionField Btilde(B.Grid());
FermionField Atilde(B.Grid());
st.HaloExchange(B,compressor);
Atilde=A;
int LLs = B.Grid()->_rdimensions[0];
for (int mu = 0; mu < Nd; mu++) {
////////////////////////////////////////////////////////////////////////
// Flip gamma if dag
////////////////////////////////////////////////////////////////////////
int gamma = mu;
if (!dag) gamma += Nd;
////////////////////////
// Call the single hop
////////////////////////
int Usites = U.Grid()->oSites();
Kernels::DhopDirKernel(st, U, st.CommBuf(), Ls, Usites, B, Btilde, mu,gamma);
////////////////////////////
// spin trace outer product
////////////////////////////
Impl::InsertForce5D(mat, Btilde, Atilde, mu);
}
}
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::DhopDeriv(GaugeField &mat,
const FermionField &A,
const FermionField &B,
int dag)
{
conformable(A.Grid(),FermionGrid());
conformable(A.Grid(),B.Grid());
//conformable(GaugeGrid(),mat.Grid());// this is not general! leaving as a comment
mat.Checkerboard() = A.Checkerboard();
// mat.checkerboard = A.checkerboard;
DerivInternal(Stencil,Umu,mat,A,B,dag);
}
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::DhopDerivEO(GaugeField &mat,
const FermionField &A,
const FermionField &B,
int dag)
{
conformable(A.Grid(),FermionRedBlackGrid());
conformable(A.Grid(),B.Grid());
assert(B.Checkerboard()==Odd);
assert(A.Checkerboard()==Even);
mat.Checkerboard() = Even;
DerivInternal(StencilOdd,UmuEven,mat,A,B,dag);
}
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::DhopDerivOE(GaugeField &mat,
const FermionField &A,
const FermionField &B,
int dag)
{
conformable(A.Grid(),FermionRedBlackGrid());
conformable(A.Grid(),B.Grid());
assert(B.Checkerboard()==Even);
assert(A.Checkerboard()==Odd);
mat.Checkerboard() = Odd;
DerivInternal(StencilEven,UmuOdd,mat,A,B,dag);
}
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::DhopInternal(StencilImpl & st,
DoubledGaugeField & U,
const FermionField &in, FermionField &out,int dag)
{
DhopInternalSerialComms(st,U,in,out,dag);
}
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::DhopInternalOverlappedComms(StencilImpl & st,
DoubledGaugeField & U,
const FermionField &in, FermionField &out,int dag)
{
GRID_TRACE("DhopInternalOverlappedComms");
Compressor compressor(dag);
int LLs = in.Grid()->_rdimensions[0];
int len = U.Grid()->oSites();
/////////////////////////////
// Start comms // Gather intranode and extra node differentiated??
/////////////////////////////
{
// std::cout << " TwoSpinWilsonFermion3plus1D gather " <<std::endl;
GRID_TRACE("Gather");
st.HaloExchangeOptGather(in,compressor); // Put the barrier in the routine
}
// std::cout << " TwoSpinWilsonFermion3plus1D Communicate Begin " <<std::endl;
std::vector<std::vector<CommsRequest_t> > requests;
#if 1
/////////////////////////////
// Overlap with comms
/////////////////////////////
st.CommunicateBegin(requests);
st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
#endif
/////////////////////////////
// do the compute interior
/////////////////////////////
if (dag == DaggerYes) {
GRID_TRACE("DhopDagInterior");
Kernels::DhopDagKernel(st,U,st.CommBuf(),LLs,U.oSites(),in,out,1,0);
} else {
GRID_TRACE("DhopInterior");
Kernels::DhopKernel (st,U,st.CommBuf(),LLs,U.oSites(),in,out,1,0);
}
//ifdef GRID_ACCELERATED
#if 0
/////////////////////////////
// Overlap with comms -- on GPU the interior kernel call is nonblocking
/////////////////////////////
st.CommunicateBegin(requests);
st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
#endif
/////////////////////////////
// Complete comms
/////////////////////////////
// std::cout << " TwoSpinWilsonFermion3plus1D Comms Complete " <<std::endl;
st.CommunicateComplete(requests);
// traceStop(id);
/////////////////////////////
// do the compute exterior
/////////////////////////////
{
// std::cout << " TwoSpinWilsonFermion3plus1D Comms Merge " <<std::endl;
GRID_TRACE("Merge");
st.CommsMerge(compressor);
}
// std::cout << " TwoSpinWilsonFermion3plus1D Exterior " <<std::endl;
if (dag == DaggerYes) {
GRID_TRACE("DhopDagExterior");
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,0,1);
} else {
GRID_TRACE("DhopExterior");
Kernels::DhopKernel (Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,0,1);
}
// std::cout << " TwoSpinWilsonFermion3plus1D Done " <<std::endl;
}
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::DhopInternalSerialComms(StencilImpl & st,
DoubledGaugeField & U,
const FermionField &in,
FermionField &out,int dag)
{
GRID_TRACE("DhopInternalSerialComms");
Compressor compressor(dag);
int LLs = in.Grid()->_rdimensions[0];
// std::cout << " TwoSpinWilsonFermion3plus1D Halo exch " <<std::endl;
{
GRID_TRACE("HaloExchange");
st.HaloExchangeOpt(in,compressor);
}
// std::cout << " TwoSpinWilsonFermion3plus1D Dhop " <<std::endl;
if (dag == DaggerYes) {
GRID_TRACE("DhopDag");
Kernels::DhopDagKernel(st,U,st.CommBuf(),LLs,U.oSites(),in,out);
} else {
GRID_TRACE("Dhop");
Kernels::DhopKernel(st,U,st.CommBuf(),LLs,U.oSites(),in,out);
}
// std::cout << " TwoSpinWilsonFermion3plus1D Done " <<std::endl;
}
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::DhopOE(const FermionField &in, FermionField &out,int dag)
{
conformable(in.Grid(),FermionRedBlackGrid()); // verifies half grid
conformable(in.Grid(),out.Grid()); // drops the cb check
assert(in.Checkerboard()==Even);
out.Checkerboard() = Odd;
DhopInternal(StencilEven,UmuOdd,in,out,dag);
}
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
{
conformable(in.Grid(),FermionRedBlackGrid()); // verifies half grid
conformable(in.Grid(),out.Grid()); // drops the cb check
assert(in.Checkerboard()==Odd);
out.Checkerboard() = Even;
DhopInternal(StencilOdd,UmuEven,in,out,dag);
}
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::DhopComms(const FermionField &in, FermionField &out)
{
int dag =0 ;
conformable(in.Grid(),FermionGrid()); // verifies full grid
conformable(in.Grid(),out.Grid());
out.Checkerboard() = in.Checkerboard();
Compressor compressor(dag);
Stencil.HaloExchangeOpt(in,compressor);
}
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::DhopCalc(const FermionField &in, FermionField &out,uint64_t *ids)
{
conformable(in.Grid(),FermionGrid()); // verifies full grid
conformable(in.Grid(),out.Grid());
out.Checkerboard() = in.Checkerboard();
int LLs = in.Grid()->_rdimensions[0];
Kernels::DhopKernel(Stencil,Umu,Stencil.CommBuf(),LLs,Umu.oSites(),in,out,ids);
}
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::Dhop(const FermionField &in, FermionField &out,int dag)
{
conformable(in.Grid(),FermionGrid()); // verifies full grid
conformable(in.Grid(),out.Grid());
out.Checkerboard() = in.Checkerboard();
DhopInternal(Stencil,Umu,in,out,dag);
}
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::DW(const FermionField &in, FermionField &out,int dag)
{
out.Checkerboard()=in.Checkerboard();
Dhop(in,out,dag); // -0.5 is included
axpy(out,Nd*1.0-M5,in,out);
}
template <class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::Meooe(const FermionField &in, FermionField &out)
{
if (in.Checkerboard() == Odd) {
DhopEO(in, out, DaggerNo);
} else {
DhopOE(in, out, DaggerNo);
}
}
template <class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::MeooeDag(const FermionField &in, FermionField &out)
{
if (in.Checkerboard() == Odd) {
DhopEO(in, out, DaggerYes);
} else {
DhopOE(in, out, DaggerYes);
}
}
template <class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::Mooee(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
typename FermionField::scalar_type scal(Nd*1.0 + M5);
out = scal * in;
}
template <class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::MooeeDag(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
Mooee(in, out);
}
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::MooeeInv(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
out = (1.0/(Nd*1.0 + M5))*in;
}
template<class Impl>
void TwoSpinWilsonFermion3plus1D<Impl>::MooeeInvDag(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
MooeeInv(in,out);
}
NAMESPACE_END(Grid);

View File

@@ -0,0 +1,441 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/TwoSpinWilsonKernels.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/qcd/action/fermion/FermionCore.h>
NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////
// Generic implementation; move to different file?
////////////////////////////////////////////
#define GENERIC_STENCIL_LEG(Dir,spProj,Recon) \
SE = st.GetEntry(ptype, Dir, sF); \
if (SE->_is_local) { \
int perm= SE->_permute; \
auto tmp = coalescedReadPermute(in[SE->_offset],ptype,perm,lane); \
spProj(chi,tmp); \
} else { \
chi = coalescedRead(buf[SE->_offset],lane); \
} \
acceleratorSynchronise(); \
Impl::multLink(Uchi, U[sU], chi, Dir, SE, st); \
Recon(result, Uchi);
#define GENERIC_STENCIL_LEG_INT(Dir,spProj,Recon) \
SE = st.GetEntry(ptype, Dir, sF); \
if (SE->_is_local) { \
int perm= SE->_permute; \
auto tmp = coalescedReadPermute(in[SE->_offset],ptype,perm,lane); \
spProj(chi,tmp); \
Impl::multLink(Uchi, U[sU], chi, Dir, SE, st); \
Recon(result, Uchi); \
} \
acceleratorSynchronise();
#define GENERIC_STENCIL_LEG_EXT(Dir,spProj,Recon) \
SE = st.GetEntry(ptype, Dir, sF); \
if (!SE->_is_local ) { \
auto chi = coalescedRead(buf[SE->_offset],lane); \
Impl::multLink(Uchi, U[sU], chi, Dir, SE, st); \
Recon(result, Uchi); \
nmu++; \
} \
acceleratorSynchronise();
#define GENERIC_DHOPDIR_LEG_BODY(Dir,spProj,Recon) \
if (SE->_is_local ) { \
int perm= SE->_permute; \
auto tmp = coalescedReadPermute(in[SE->_offset],ptype,perm,lane); \
spProj(chi,tmp); \
} else { \
chi = coalescedRead(buf[SE->_offset],lane); \
} \
acceleratorSynchronise(); \
Impl::multLink(Uchi, U[sU], chi, dir, SE, st); \
Recon(result, Uchi);
#define GENERIC_DHOPDIR_LEG(Dir,spProj,Recon) \
if (gamma == Dir) { \
GENERIC_DHOPDIR_LEG_BODY(Dir,spProj,Recon); \
}
////////////////////////////////////////////////////////////////////
// All legs kernels ; comms then compute
////////////////////////////////////////////////////////////////////
template <class Impl> accelerator_inline
void TwoSpinWilsonKernels<Impl>::DhopSiteDag(StencilView &st, DoubledGaugeFieldView &U,
SiteSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out)
{
typedef decltype(coalescedRead(in[0])) calcSpinor;
calcSpinor chi;
calcSpinor Uchi;
calcSpinor result;
StencilEntry *SE;
int ptype;
const int Nsimd = SiteSpinor::Nsimd();
const int lane=acceleratorSIMTlane(Nsimd);
GENERIC_STENCIL_LEG(Xp,pauliProjXp,pauliAssign);
GENERIC_STENCIL_LEG(Yp,pauliProjYp,pauliAdd);
GENERIC_STENCIL_LEG(Zp,pauliProjZp,pauliAdd);
GENERIC_STENCIL_LEG(Xm,pauliProjXm,pauliAdd);
GENERIC_STENCIL_LEG(Ym,pauliProjYm,pauliAdd);
GENERIC_STENCIL_LEG(Zm,pauliProjZm,pauliAdd);
coalescedWrite(out[sF],result,lane);
};
template <class Impl> accelerator_inline
void TwoSpinWilsonKernels<Impl>::GenericDhopSite(StencilView &st, DoubledGaugeFieldView &U,
SiteSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out)
{
typedef decltype(coalescedRead(in[0])) calcSpinor;
calcSpinor chi;
// calcSpinor *chi_p;
calcSpinor Uchi;
calcSpinor result;
StencilEntry *SE;
int ptype;
const int Nsimd = SiteSpinor::Nsimd();
const int lane=acceleratorSIMTlane(Nsimd);
GENERIC_STENCIL_LEG(Xm,pauliProjXp,pauliAssign);
GENERIC_STENCIL_LEG(Ym,pauliProjYp,pauliAdd);
GENERIC_STENCIL_LEG(Zm,pauliProjZp,pauliAdd);
GENERIC_STENCIL_LEG(Xp,pauliProjXm,pauliAdd);
GENERIC_STENCIL_LEG(Yp,pauliProjYm,pauliAdd);
GENERIC_STENCIL_LEG(Zp,pauliProjZm,pauliAdd);
coalescedWrite(out[sF], result,lane);
};
////////////////////////////////////////////////////////////////////
// Interior kernels
////////////////////////////////////////////////////////////////////
template <class Impl> accelerator_inline
void TwoSpinWilsonKernels<Impl>::GenericDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U,
SiteSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out)
{
typedef decltype(coalescedRead(in[0])) calcSpinor;
calcSpinor chi;
// calcSpinor *chi_p;
calcSpinor Uchi;
calcSpinor result;
StencilEntry *SE;
int ptype;
const int Nsimd = SiteSpinor::Nsimd();
const int lane=acceleratorSIMTlane(Nsimd);
result=Zero();
GENERIC_STENCIL_LEG_INT(Xp,pauliProjXp,pauliAdd);
GENERIC_STENCIL_LEG_INT(Yp,pauliProjYp,pauliAdd);
GENERIC_STENCIL_LEG_INT(Zp,pauliProjZp,pauliAdd);
GENERIC_STENCIL_LEG_INT(Xm,pauliProjXm,pauliAdd);
GENERIC_STENCIL_LEG_INT(Ym,pauliProjYm,pauliAdd);
GENERIC_STENCIL_LEG_INT(Zm,pauliProjZm,pauliAdd);
coalescedWrite(out[sF], result,lane);
};
template <class Impl> accelerator_inline
void TwoSpinWilsonKernels<Impl>::GenericDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U,
SiteSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out)
{
typedef decltype(coalescedRead(in[0])) calcSpinor;
const int Nsimd = SiteSpinor::Nsimd();
const int lane=acceleratorSIMTlane(Nsimd);
calcSpinor chi;
// calcSpinor *chi_p;
calcSpinor Uchi;
calcSpinor result;
StencilEntry *SE;
int ptype;
result=Zero();
GENERIC_STENCIL_LEG_INT(Xm,pauliProjXp,pauliAdd);
GENERIC_STENCIL_LEG_INT(Ym,pauliProjYp,pauliAdd);
GENERIC_STENCIL_LEG_INT(Zm,pauliProjZp,pauliAdd);
GENERIC_STENCIL_LEG_INT(Xp,pauliProjXm,pauliAdd);
GENERIC_STENCIL_LEG_INT(Yp,pauliProjYm,pauliAdd);
GENERIC_STENCIL_LEG_INT(Zp,pauliProjZm,pauliAdd);
coalescedWrite(out[sF], result,lane);
};
////////////////////////////////////////////////////////////////////
// Exterior kernels
////////////////////////////////////////////////////////////////////
template <class Impl> accelerator_inline
void TwoSpinWilsonKernels<Impl>::GenericDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U,
SiteSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out)
{
typedef decltype(coalescedRead(in[0])) calcSpinor;
// calcSpinor *chi_p;
calcSpinor Uchi;
calcSpinor result;
StencilEntry *SE;
int ptype;
int nmu=0;
const int Nsimd = SiteSpinor::Nsimd();
const int lane=acceleratorSIMTlane(Nsimd);
result=Zero();
GENERIC_STENCIL_LEG_EXT(Xp,pauliProjXp,pauliAdd);
GENERIC_STENCIL_LEG_EXT(Yp,pauliProjYp,pauliAdd);
GENERIC_STENCIL_LEG_EXT(Zp,pauliProjZp,pauliAdd);
GENERIC_STENCIL_LEG_EXT(Xm,pauliProjXm,pauliAdd);
GENERIC_STENCIL_LEG_EXT(Ym,pauliProjYm,pauliAdd);
GENERIC_STENCIL_LEG_EXT(Zm,pauliProjZm,pauliAdd);
if ( nmu ) {
auto out_t = coalescedRead(out[sF],lane);
out_t = out_t + result;
coalescedWrite(out[sF],out_t,lane);
}
};
template <class Impl> accelerator_inline
void TwoSpinWilsonKernels<Impl>::GenericDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U,
SiteSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out)
{
typedef decltype(coalescedRead(in[0])) calcSpinor;
// calcSpinor *chi_p;
calcSpinor Uchi;
calcSpinor result;
StencilEntry *SE;
int ptype;
int nmu=0;
const int Nsimd = SiteSpinor::Nsimd();
const int lane=acceleratorSIMTlane(Nsimd);
result=Zero();
GENERIC_STENCIL_LEG_EXT(Xm,pauliProjXp,pauliAdd);
GENERIC_STENCIL_LEG_EXT(Ym,pauliProjYp,pauliAdd);
GENERIC_STENCIL_LEG_EXT(Zm,pauliProjZp,pauliAdd);
GENERIC_STENCIL_LEG_EXT(Xp,pauliProjXm,pauliAdd);
GENERIC_STENCIL_LEG_EXT(Yp,pauliProjYm,pauliAdd);
GENERIC_STENCIL_LEG_EXT(Zp,pauliProjZm,pauliAdd);
if ( nmu ) {
auto out_t = coalescedRead(out[sF],lane);
out_t = out_t + result;
coalescedWrite(out[sF],out_t,lane);
}
};
#define DhopDirMacro(Dir,spProj,spRecon) \
template <class Impl> accelerator_inline \
void TwoSpinWilsonKernels<Impl>::DhopDir##Dir(StencilView &st, DoubledGaugeFieldView &U,SiteSpinor *buf, int sF, \
int sU, const FermionFieldView &in, FermionFieldView &out, int dir) \
{ \
typedef decltype(coalescedRead(in[0])) calcSpinor; \
calcSpinor chi; \
calcSpinor result; \
calcSpinor Uchi; \
StencilEntry *SE; \
int ptype; \
const int Nsimd = SiteSpinor::Nsimd(); \
const int lane=acceleratorSIMTlane(Nsimd); \
\
SE = st.GetEntry(ptype, dir, sF); \
GENERIC_DHOPDIR_LEG_BODY(Dir,spProj,spRecon); \
coalescedWrite(out[sF], result,lane); \
}
DhopDirMacro(Xp,pauliProjXp,pauliAssign);
DhopDirMacro(Yp,pauliProjYp,pauliAssign);
DhopDirMacro(Zp,pauliProjZp,pauliAssign);
DhopDirMacro(Xm,pauliProjXm,pauliAssign);
DhopDirMacro(Ym,pauliProjYm,pauliAssign);
DhopDirMacro(Zm,pauliProjZm,pauliAssign);
template <class Impl> accelerator_inline
void TwoSpinWilsonKernels<Impl>::DhopDirK( StencilView &st, DoubledGaugeFieldView &U,SiteSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out, int dir, int gamma)
{
typedef decltype(coalescedRead(in[0])) calcSpinor;
calcSpinor chi;
calcSpinor result;
calcSpinor Uchi;
StencilEntry *SE;
int ptype;
const int Nsimd = SiteSpinor::Nsimd();
const int lane=acceleratorSIMTlane(Nsimd);
SE = st.GetEntry(ptype, dir, sF);
GENERIC_DHOPDIR_LEG(Xp,pauliProjXp,pauliAssign);
GENERIC_DHOPDIR_LEG(Yp,pauliProjYp,pauliAssign);
GENERIC_DHOPDIR_LEG(Zp,pauliProjZp,pauliAssign);
GENERIC_DHOPDIR_LEG(Xm,pauliProjXm,pauliAssign);
GENERIC_DHOPDIR_LEG(Ym,pauliProjYm,pauliAssign);
GENERIC_DHOPDIR_LEG(Zm,pauliProjZm,pauliAssign);
coalescedWrite(out[sF], result,lane);
}
template <class Impl>
void TwoSpinWilsonKernels<Impl>::DhopDirAll( StencilImpl &st, DoubledGaugeField &U,SiteSpinor *buf, int Ls,
int Nsite, const FermionField &in, std::vector<FermionField> &out)
{
autoView(U_v ,U,AcceleratorRead);
autoView(in_v ,in,AcceleratorRead);
autoView(st_v ,st,AcceleratorRead);
autoView(out_Xm,out[0],AcceleratorWrite);
autoView(out_Ym,out[1],AcceleratorWrite);
autoView(out_Zm,out[2],AcceleratorWrite);
autoView(out_Xp,out[4],AcceleratorWrite);
autoView(out_Yp,out[5],AcceleratorWrite);
autoView(out_Zp,out[6],AcceleratorWrite);
auto CBp=st.CommBuf();
accelerator_for(sss,Nsite*Ls,Simd::Nsimd(),{
int sU=sss/Ls;
int sF =sss;
DhopDirXm(st_v,U_v,CBp,sF,sU,in_v,out_Xm,0);
DhopDirYm(st_v,U_v,CBp,sF,sU,in_v,out_Ym,1);
DhopDirZm(st_v,U_v,CBp,sF,sU,in_v,out_Zm,2);
DhopDirXp(st_v,U_v,CBp,sF,sU,in_v,out_Xp,3);
DhopDirYp(st_v,U_v,CBp,sF,sU,in_v,out_Yp,4);
DhopDirZp(st_v,U_v,CBp,sF,sU,in_v,out_Zp,5);
});
}
template <class Impl>
void TwoSpinWilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,SiteSpinor *buf, int Ls,
int Nsite, const FermionField &in, FermionField &out, int dirdisp, int gamma)
{
assert(dirdisp<=5);
assert(dirdisp>=0);
autoView(U_v ,U ,AcceleratorRead);
autoView(in_v ,in ,AcceleratorRead);
autoView(out_v,out,AcceleratorWrite);
autoView(st_v ,st ,AcceleratorRead);
auto CBp=st.CommBuf();
#define LoopBody(Dir) \
case Dir : \
accelerator_for(ss,Nsite,Simd::Nsimd(),{ \
for(int s=0;s<Ls;s++){ \
int sU=ss; \
int sF = s+Ls*sU; \
DhopDir##Dir(st_v,U_v,CBp,sF,sU,in_v,out_v,dirdisp);\
} \
}); \
break;
switch(gamma){
LoopBody(Xp);
LoopBody(Yp);
LoopBody(Zp);
LoopBody(Xm);
LoopBody(Ym);
LoopBody(Zm);
default:
assert(0);
break;
}
#undef LoopBody
}
#define KERNEL_CALLNB(A) \
const uint64_t NN = Nsite*Ls; \
accelerator_forNB( ss, NN, Simd::Nsimd(), { \
int sF = ss; \
int sU = ss/Ls; \
TwoSpinWilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,in_v,out_v); \
});
#define KERNEL_CALL(A) KERNEL_CALLNB(A); accelerator_barrier();
#define KERNEL_CALL_EXT(A) \
const uint64_t sz = st.surface_list.size(); \
auto ptr = &st.surface_list[0]; \
accelerator_forNB( ss, sz, Simd::Nsimd(), { \
int sF = ptr[ss]; \
int sU = sF/Ls; \
TwoSpinWilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,in_v,out_v); \
}); \
accelerator_barrier();
template <class Impl>
void TwoSpinWilsonKernels<Impl>::DhopKernel(StencilImpl &st, DoubledGaugeField &U, SiteSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out,
int interior,int exterior)
{
autoView(U_v , U,AcceleratorRead);
autoView(in_v , in,AcceleratorRead);
autoView(out_v,out,AcceleratorWrite);
autoView(st_v , st,AcceleratorRead);
if( interior && exterior ) {
acceleratorFenceComputeStream();
KERNEL_CALL(GenericDhopSite);
return;
} else if( interior ) {
KERNEL_CALLNB(GenericDhopSiteInt);
return;
} else if( exterior ) {
// // dependent on result of merge
acceleratorFenceComputeStream();
KERNEL_CALL_EXT(GenericDhopSiteExt);
return;
}
assert(0 && " Kernel optimisation case not covered ");
}
template <class Impl>
void TwoSpinWilsonKernels<Impl>::DhopDagKernel(StencilImpl &st, DoubledGaugeField &U, SiteSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out,
int interior,int exterior)
{
autoView(U_v ,U,AcceleratorRead);
autoView(in_v ,in,AcceleratorRead);
autoView(out_v,out,AcceleratorWrite);
autoView(st_v ,st,AcceleratorRead);
if( interior && exterior ) {
acceleratorFenceComputeStream();
KERNEL_CALL(GenericDhopSiteDag);
return;
} else if( interior ) {
KERNEL_CALLNB(GenericDhopSiteDagInt); return;
} else if( exterior ) {
// Dependent on result of merge
acceleratorFenceComputeStream();
KERNEL_CALL_EXT(GenericDhopSiteDagExt); return;
}
assert(0 && " Kernel optimisation case not covered ");
}
#undef KERNEL_CALLNB
#undef KERNEL_CALL
NAMESPACE_END(Grid);

View File

@@ -61,7 +61,7 @@ WilsonCloverFermion<Impl, CloverHelpers>::WilsonCloverFermion(GaugeField&
diag_mass = _mass + 1.0 + (Nd - 1) * (clover_anisotropy.nu / clover_anisotropy.xi_0);
} else {
csw_r = _csw_r * 0.5;
diag_mass = 4.0 + _mass;
diag_mass = Nd*1.0 + _mass;
}
csw_t = _csw_t * 0.5;
@@ -297,9 +297,9 @@ void WilsonCloverFermion<Impl, CloverHelpers>::MDeriv(GaugeField &force, const F
{
if (mu == nu)
continue;
RealD factor;
if (nu == 4 || mu == 4)
if (nu == (Nd-1) || mu == (Nd-1)) // This was a bug - surely mu/nu is NEVER 4 but rather (Nd-1)=3 ??
{
factor = 2.0 * csw_t;
}
@@ -307,9 +307,11 @@ void WilsonCloverFermion<Impl, CloverHelpers>::MDeriv(GaugeField &force, const F
{
factor = 2.0 * csw_r;
}
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
force_mu -= factor*CloverHelpers::Cmunu(U, lambda, mu, nu); // checked
if ( mu < Nd && nu < Nd ) { // Allow to restrict range to Nd=3, but preserve orders of SigmaMuNu in table by counting ALL
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
force_mu -= factor*CloverHelpers::Cmunu(U, lambda, mu, nu); // checked
}
count++;
}

View File

@@ -14,6 +14,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
Author: Vera Guelpers <V.M.Guelpers@soton.ac.uk>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@@ -62,10 +63,10 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
Dirichlet(0)
{
// some assertions
assert(FiveDimGrid._ndimension==5);
assert(FourDimGrid._ndimension==4);
assert(FourDimRedBlackGrid._ndimension==4);
assert(FiveDimRedBlackGrid._ndimension==5);
assert(FiveDimGrid._ndimension==Nd+1);
assert(FourDimGrid._ndimension==Nd);
assert(FourDimRedBlackGrid._ndimension==Nd);
assert(FiveDimRedBlackGrid._ndimension==Nd+1);
assert(FiveDimRedBlackGrid._checker_dim==1); // Don't checker the s direction
// extent of fifth dim and not spread out
@@ -75,7 +76,7 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
assert(FiveDimRedBlackGrid._processors[0] ==1);
// Other dimensions must match the decomposition of the four-D fields
for(int d=0;d<4;d++){
for(int d=0;d<Nd;d++){
assert(FiveDimGrid._processors[d+1] ==FourDimGrid._processors[d]);
assert(FiveDimRedBlackGrid._processors[d+1] ==FourDimGrid._processors[d]);
@@ -92,11 +93,13 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
if ( p.dirichlet.size() == Nd+1) {
Coordinate block = p.dirichlet;
if ( block[0] || block[1] || block[2] || block[3] || block[4] ){
Dirichlet = 1;
std::cout << GridLogMessage << " WilsonFermion: non-trivial Dirichlet condition "<< block << std::endl;
std::cout << GridLogMessage << " WilsonFermion: partial Dirichlet "<< p.partialDirichlet << std::endl;
Block = block;
for(int d=0;d<Nd+1;d++) {
if ( block[d] ){
Dirichlet = 1;
std::cout << GridLogMessage << " WilsonFermion: non-trivial Dirichlet condition "<< block << std::endl;
std::cout << GridLogMessage << " WilsonFermion: partial Dirichlet "<< p.partialDirichlet << std::endl;
Block = block;
}
}
} else {
Coordinate block(Nd+1,0);
@@ -111,7 +114,7 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
assert(FiveDimGrid._simd_layout[0] ==nsimd);
assert(FiveDimRedBlackGrid._simd_layout[0]==nsimd);
for(int d=0;d<4;d++){
for(int d=0;d<Nd;d++){
assert(FourDimGrid._simd_layout[d]==1);
assert(FourDimRedBlackGrid._simd_layout[d]==1);
assert(FiveDimRedBlackGrid._simd_layout[d+1]==1);
@@ -182,8 +185,8 @@ void WilsonFermion5D<Impl>::DhopDir(const FermionField &in, FermionField &out,in
// assert( (dir>=0)&&(dir<4) ); //must do x,y,z or t;
int skip = (disp==1) ? 0 : 1;
int dirdisp = dir+skip*4;
int gamma = dir+(1-skip)*4;
int dirdisp = dir+skip*Nd;
int gamma = dir+(1-skip)*Nd;
Compressor compressor(DaggerNo);
Stencil.HaloExchange(in,compressor);
@@ -482,7 +485,55 @@ void WilsonFermion5D<Impl>::DW(const FermionField &in, FermionField &out,int dag
{
out.Checkerboard()=in.Checkerboard();
Dhop(in,out,dag); // -0.5 is included
axpy(out,4.0-M5,in,out);
axpy(out,Nd*1.0-M5,in,out);
}
template <class Impl>
void WilsonFermion5D<Impl>::Meooe(const FermionField &in, FermionField &out)
{
if (in.Checkerboard() == Odd) {
DhopEO(in, out, DaggerNo);
} else {
DhopOE(in, out, DaggerNo);
}
}
template <class Impl>
void WilsonFermion5D<Impl>::MeooeDag(const FermionField &in, FermionField &out)
{
if (in.Checkerboard() == Odd) {
DhopEO(in, out, DaggerYes);
} else {
DhopOE(in, out, DaggerYes);
}
}
template <class Impl>
void WilsonFermion5D<Impl>::Mooee(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
typename FermionField::scalar_type scal(Nd*1.0 + M5);
out = scal * in;
}
template <class Impl>
void WilsonFermion5D<Impl>::MooeeDag(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
Mooee(in, out);
}
template<class Impl>
void WilsonFermion5D<Impl>::MooeeInv(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
out = (1.0/(Nd*1.0 + M5))*in;
}
template<class Impl>
void WilsonFermion5D<Impl>::MooeeInvDag(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
MooeeInv(in,out);
}
template<class Impl>
@@ -586,7 +637,7 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt_5d(FermionField &out,const
A = one / (abs(W) * sinha * 2.0) * one / (sinhaLs * 2.0);
F = eaLs * (one - Wea + (Wema - one) * mass*mass);
F = F + emaLs * (Wema - one + (one - Wea) * mass*mass);
F = F - abs(W) * sinha * 4.0 * mass;
F = F - abs(W) * sinha * (Nd* 1.0) * mass;
Bpp = (A/F) * (ema2Ls - one) * (one - Wema) * (one - mass*mass * one);
Bmm = (A/F) * (one - ea2Ls) * (one - Wea) * (one - mass*mass * one);

View File

@@ -63,7 +63,7 @@ WilsonFermion<Impl>::WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
if (anisotropyCoeff.isAnisotropic){
diag_mass = mass + 1.0 + (Nd-1)*(anisotropyCoeff.nu / anisotropyCoeff.xi_0);
} else {
diag_mass = 4.0 + mass;
diag_mass = Nd*1.0 + mass;
}
int vol4;
@@ -354,8 +354,8 @@ void WilsonFermion<Impl>::DhopDir(const FermionField &in, FermionField &out, int
Stencil.HaloExchange(in, compressor);
int skip = (disp == 1) ? 0 : 1;
int dirdisp = dir + skip * 4;
int gamma = dir + (1 - skip) * 4;
int dirdisp = dir + skip * Nd;
int gamma = dir + (1 - skip) * Nd;
DhopDirCalc(in, out, dirdisp, gamma, DaggerNo);
};
@@ -370,8 +370,8 @@ void WilsonFermion<Impl>::DhopDirAll(const FermionField &in, std::vector<Fermion
for(int disp=-1;disp<=1;disp+=2){
int skip = (disp == 1) ? 0 : 1;
int dirdisp = dir + skip * 4;
int gamma = dir + (1 - skip) * 4;
int dirdisp = dir + skip * Nd;
int gamma = dir + (1 - skip) * Nd;
DhopDirCalc(in, out[dirdisp], dirdisp, gamma, DaggerNo);
}

View File

@@ -97,7 +97,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
distance = st._distances[DIR]; \
sl = st._simd_layout[direction]; \
inplace_twist = 0; \
if(SE->_around_the_world && st.parameters.twists[DIR % 4]){ \
if(SE->_around_the_world && st.parameters.twists[DIR % Nd]){ \
if(sl == 1){ \
g = (F+1) % 2; \
}else{ \

View File

@@ -63,7 +63,7 @@ accelerator_inline void get_stencil(StencilEntry * mem, StencilEntry &chip)
} else { \
chi = coalescedRead(buf[SE->_offset],lane); \
} \
acceleratorSynchronise(); \
acceleratorSynchronise(); \
Impl::multLink(Uchi, U[sU], chi, Dir, SE, st); \
Recon(result, Uchi);
@@ -504,7 +504,7 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
autoView(st_v , st,AcceleratorRead);
if( interior && exterior ) {
// acceleratorFenceComputeStream();
acceleratorFenceComputeStream();
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSite); return;}
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSite); return;}
#ifndef GRID_CUDA

View File

@@ -0,0 +1,45 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/ qcd/action/fermion/instantiation/CompactWilsonCloverFermionInstantiation5D.cc.master
Copyright (C) 2017 - 2025
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
Author: Mattia Bruno <mattia.bruno@cern.ch>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/qcd/spin/Dirac.h>
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion5D.h>
#include <Grid/qcd/action/fermion/implementation/CompactWilsonCloverFermion5DImplementation.h>
#include <Grid/qcd/action/fermion/CloverHelpers.h>
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class CompactWilsonCloverFermion5D<IMPLEMENTATION, CompactCloverHelpers<IMPLEMENTATION>>;
template class CompactWilsonCloverFermion5D<IMPLEMENTATION, CompactExpCloverHelpers<IMPLEMENTATION>>;
NAMESPACE_END(Grid);

View File

@@ -32,8 +32,30 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
// S-direction is INNERMOST and takes no part in the parity.
const std::vector<int> ImprovedStaggeredFermion5DStatic::directions({1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4});
const std::vector<int> ImprovedStaggeredFermion5DStatic::displacements({1, 1, 1, 1, -1, -1, -1, -1, 3, 3, 3, 3, -3, -3, -3, -3});
const std::vector<int> ImprovedStaggeredFermion5DStatic::directions(ImprovedStaggeredFermion5DStatic::MakeDirections());
const std::vector<int> ImprovedStaggeredFermion5DStatic::displacements(ImprovedStaggeredFermion5DStatic::MakeDisplacements());
std::vector<int> ImprovedStaggeredFermion5DStatic::MakeDirections(void)
{
std::vector<int> directions(4*Nd);
for(int d=0;d<Nd;d++){
directions[d+Nd*0] = d+1;
directions[d+Nd*1] = d+1;
directions[d+Nd*2] = d+1;
directions[d+Nd*3] = d+1;
}
return directions;
}
std::vector<int> ImprovedStaggeredFermion5DStatic::MakeDisplacements(void)
{
std::vector<int> displacements(4*Nd);
for(int d=0;d<Nd;d++){
displacements[d+Nd*0] =+1;
displacements[d+Nd*1] =-1;
displacements[d+Nd*2] =+3;
displacements[d+Nd*3] =-3;
}
return displacements;
}
NAMESPACE_END(Grid);

View File

@@ -32,5 +32,26 @@ NAMESPACE_BEGIN(Grid);
const std::vector<int> ImprovedStaggeredFermionStatic::directions({0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3});
const std::vector<int> ImprovedStaggeredFermionStatic::displacements({1, 1, 1, 1, -1, -1, -1, -1, 3, 3, 3, 3, -3, -3, -3, -3});
std::vector<int> ImprovedStaggeredFermionStatic::MakeDirections(void)
{
std::vector<int> directions(4*Nd);
for(int d=0;d<Nd;d++){
directions[d+Nd*0] = d;
directions[d+Nd*1] = d;
directions[d+Nd*2] = d;
directions[d+Nd*3] = d;
}
return directions;
}
std::vector<int> ImprovedStaggeredFermionStatic::MakeDisplacements(void)
{
std::vector<int> displacements(4*Nd);
for(int d=0;d<Nd;d++){
displacements[d+Nd*0] =+1;
displacements[d+Nd*1] =-1;
displacements[d+Nd*2] =+3;
displacements[d+Nd*3] =-3;
}
return displacements;
}
NAMESPACE_END(Grid);

View File

@@ -30,7 +30,27 @@ directory
NAMESPACE_BEGIN(Grid);
const std::vector<int> NaiveStaggeredFermionStatic::directions({0, 1, 2, 3, 0, 1, 2, 3});
const std::vector<int> NaiveStaggeredFermionStatic::displacements({1, 1, 1, 1, -1, -1, -1, -1});
//const std::vector<int> NaiveStaggeredFermionStatic::directions({0, 1, 2, 3, 0, 1, 2, 3});
//const std::vector<int> NaiveStaggeredFermionStatic::displacements({1, 1, 1, 1, -1, -1, -1, -1});
const std::vector<int> NaiveStaggeredFermionStatic::directions(NaiveStaggeredFermionStatic::MakeDirections());
const std::vector<int> NaiveStaggeredFermionStatic::displacements(NaiveStaggeredFermionStatic::MakeDisplacements());
std::vector<int> NaiveStaggeredFermionStatic::MakeDirections(void)
{
std::vector<int> directions(4*Nd);
for(int d=0;d<Nd;d++){
directions[d+Nd*0] = d;
directions[d+Nd*1] = d;
}
return directions;
}
std::vector<int> NaiveStaggeredFermionStatic::MakeDisplacements(void)
{
std::vector<int> displacements(4*Nd);
for(int d=0;d<Nd;d++){
displacements[d+Nd*0] =+1;
displacements[d+Nd*1] =-1;
}
return displacements;
}
NAMESPACE_END(Grid);

View File

@@ -0,0 +1,61 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/TwoSpinWilsonFermion3plus1D.h>
NAMESPACE_BEGIN(Grid);
// S-direction is INNERMOST and takes no part in the parity.
const std::vector<int> TwoSpinWilsonFermion3plus1DStatic::directions (TwoSpinWilsonFermion3plus1DStatic::MakeDirections());
const std::vector<int> TwoSpinWilsonFermion3plus1DStatic::displacements(TwoSpinWilsonFermion3plus1DStatic::MakeDisplacements());
std::vector<int> TwoSpinWilsonFermion3plus1DStatic::MakeDirections (void)
{
std::vector<int> directions(2*Nd);
for(int d=0;d<Nd;d++){
directions[d] = d+1;
directions[d+Nd] = d+1;
}
return directions;
}
std::vector<int> TwoSpinWilsonFermion3plus1DStatic::MakeDisplacements(void)
{
std::vector<int> displacements(2*Nd);
for(int d=0;d<Nd;d++){
displacements[d] = +1;
displacements[d+Nd] = -1;
}
return displacements;
}
NAMESPACE_END(Grid);

View File

@@ -0,0 +1,40 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/TwoSpinWilsonFermion3plus1DImplementation.h>
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class TwoSpinWilsonFermion3plus1D<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@@ -0,0 +1,40 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015, 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/implementation/TwoSpinWilsonKernelsImplementation.h>
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class TwoSpinWilsonKernels<IMPLEMENTATION>;
NAMESPACE_END(Grid);

View File

@@ -34,8 +34,28 @@ directory
NAMESPACE_BEGIN(Grid);
// S-direction is INNERMOST and takes no part in the parity.
const std::vector<int> WilsonFermion5DStatic::directions ({1,2,3,4, 1, 2, 3, 4});
const std::vector<int> WilsonFermion5DStatic::displacements({1,1,1,1,-1,-1,-1,-1});
const std::vector<int> WilsonFermion5DStatic::directions (WilsonFermion5DStatic::MakeDirections());
const std::vector<int> WilsonFermion5DStatic::displacements(WilsonFermion5DStatic::MakeDisplacements());
std::vector<int> WilsonFermion5DStatic::MakeDirections (void)
{
std::vector<int> directions(2*Nd);
for(int d=0;d<Nd;d++){
directions[d] = d+1;
directions[d+Nd] = d+1;
}
return directions;
}
std::vector<int> WilsonFermion5DStatic::MakeDisplacements(void)
{
std::vector<int> displacements(2*Nd);
for(int d=0;d<Nd;d++){
displacements[d] = +1;
displacements[d+Nd] = -1;
}
return displacements;
}
NAMESPACE_END(Grid);

View File

@@ -33,9 +33,27 @@ directory
NAMESPACE_BEGIN(Grid);
const std::vector<int> WilsonFermionStatic::directions({0, 1, 2, 3, 0, 1, 2, 3});
const std::vector<int> WilsonFermionStatic::displacements({1, 1, 1, 1, -1, -1, -1, -1});
const std::vector<int> WilsonFermionStatic::directions(WilsonFermionStatic::MakeDirections());
const std::vector<int> WilsonFermionStatic::displacements(WilsonFermionStatic::MakeDisplacements());
int WilsonFermionStatic::HandOptDslash;
std::vector<int> WilsonFermionStatic::MakeDirections (void)
{
std::vector<int> directions(2*Nd);
for(int d=0;d<Nd;d++){
directions[d] = d;
directions[d+Nd] = d;
}
return directions;
}
std::vector<int> WilsonFermionStatic::MakeDisplacements(void)
{
std::vector<int> displacements(2*Nd);
for(int d=0;d<Nd;d++){
displacements[d] = +1;
displacements[d+Nd] = -1;
}
return displacements;
}
NAMESPACE_END(Grid);

View File

@@ -0,0 +1 @@
../CompactWilsonCloverFermion5DInstantiation.cc.master

View File

@@ -0,0 +1 @@
../CompactWilsonCloverFermion5DInstantiation.cc.master

View File

@@ -36,11 +36,16 @@ DWF_IMPL_LIST=" \
ZWilsonImplF \
ZWilsonImplD2 "
TWOSPIN_WILSON_IMPL_LIST=" \
TwoSpinWilsonImplF \
TwoSpinWilsonImplD "
GDWF_IMPL_LIST=" \
GparityWilsonImplF \
GparityWilsonImplD "
IMPL_LIST="$STAG_IMPL_LIST $WILSON_IMPL_LIST $DWF_IMPL_LIST $GDWF_IMPL_LIST"
IMPL_LIST="$STAG_IMPL_LIST $WILSON_IMPL_LIST $DWF_IMPL_LIST $GDWF_IMPL_LIST $TWOSPIN_WILSON_IMPL_LIST"
for impl in $IMPL_LIST
do
@@ -62,7 +67,7 @@ do
done
done
CC_LIST="CompactWilsonCloverFermionInstantiation"
CC_LIST="CompactWilsonCloverFermionInstantiation CompactWilsonCloverFermion5DInstantiation"
for impl in $COMPACT_WILSON_IMPL_LIST
do
@@ -110,7 +115,12 @@ do
done
done
CC_LIST=" \
ImprovedStaggeredFermion5DInstantiation \
StaggeredKernelsInstantiation "
CC_LIST="TwoSpinWilsonFermion3plus1DInstantiation.cc.master TwoSpinWilsonKernelsInstantiation.cc.master"
for impl in $TWOSPIN_WILSON_IMPL_LIST
do
for f in $CC_LIST
do
ln -f -s ../$f.cc.master $impl/$f$impl.cc
done
done

View File

@@ -76,27 +76,27 @@ public:
return action;
};
virtual void deriv(const GaugeField &Umu,GaugeField & dSdU) {
virtual void deriv(const GaugeField &U, GaugeField &dSdU) {
//extend Ta to include Lorentz indexes
RealD factor_p = c_plaq/RealD(Nc)*0.5;
RealD factor_r = c_rect/RealD(Nc)*0.5;
GridBase *grid = Umu.Grid();
GridBase *grid = U.Grid();
std::vector<GaugeLinkField> U (Nd,grid);
std::vector<GaugeLinkField> Umu (Nd,grid);
for(int mu=0;mu<Nd;mu++){
U[mu] = PeekIndex<LorentzIndex>(Umu,mu);
Umu[mu] = PeekIndex<LorentzIndex>(U,mu);
}
std::vector<GaugeLinkField> RectStaple(Nd,grid), Staple(Nd,grid);
WilsonLoops<Gimpl>::StapleAndRectStapleAll(Staple, RectStaple, U, workspace);
WilsonLoops<Gimpl>::StapleAndRectStapleAll(Staple, RectStaple, Umu, workspace);
GaugeLinkField dSdU_mu(grid);
GaugeLinkField staple(grid);
for (int mu=0; mu < Nd; mu++){
dSdU_mu = Ta(U[mu]*Staple[mu])*factor_p;
dSdU_mu = dSdU_mu + Ta(U[mu]*RectStaple[mu])*factor_r;
dSdU_mu = Ta(Umu[mu]*Staple[mu])*factor_p;
dSdU_mu = dSdU_mu + Ta(Umu[mu]*RectStaple[mu])*factor_r;
PokeIndex<LorentzIndex>(dSdU, dSdU_mu, mu);
}

View File

@@ -73,20 +73,23 @@ public:
// extend Ta to include Lorentz indexes
RealD factor = 0.5 * beta / RealD(Nc);
GridBase *grid = U.Grid();
GaugeLinkField Umu(U.Grid());
GaugeLinkField dSdU_mu(U.Grid());
GaugeLinkField dSdU_mu(grid);
std::vector<GaugeLinkField> Umu(Nd, grid);
for (int mu = 0; mu < Nd; mu++) {
Umu[mu] = PeekIndex<LorentzIndex>(U, mu);
}
Umu = PeekIndex<LorentzIndex>(U, mu);
for (int mu = 0; mu < Nd; mu++) {
// Staple in direction mu
WilsonLoops<Gimpl>::Staple(dSdU_mu, U, mu);
dSdU_mu = Ta(Umu * dSdU_mu) * factor;
WilsonLoops<Gimpl>::Staple(dSdU_mu, Umu, mu);
dSdU_mu = Ta(Umu[mu] * dSdU_mu) * factor;
PokeIndex<LorentzIndex>(dSdU, dSdU_mu, mu);
}
}
private:
RealD beta;
};

View File

@@ -111,8 +111,8 @@ public:
};
void CheckpointRestore(int traj, Field &U, GridSerialRNG &sRNG, GridParallelRNG &pRNG) {
std::string config, rng;
this->build_filenames(traj, Params, config, rng);
std::string config, rng, smr;
this->build_filenames(traj, Params, config, smr, rng);
this->check_filename(rng);
this->check_filename(config);

View File

@@ -75,7 +75,7 @@ public:
GridParallelRNG &pRNG) {
if ((traj % Params.saveInterval) == 0) {
std::string config, rng, smr;
this->build_filenames(traj, Params, config, rng);
this->build_filenames(traj, Params, config, smr, rng);
GridBase *grid = SmartConfig.get_U(false).Grid();
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
BinaryIO::writeRNG(sRNG, pRNG, rng, 0,nersc_csum,scidac_csuma,scidac_csumb);
@@ -102,7 +102,7 @@ public:
if ( Params.saveSmeared ) {
IldgWriter _IldgWriter(grid->IsBoss());
_IldgWriter.open(smr);
_IldgWriter.writeConfiguration<GaugeStats>(SmartConfig.get_U(true), traj, config, config);
_IldgWriter.writeConfiguration<GaugeStats>(SmartConfig.get_U(true), traj, smr, smr);
_IldgWriter.close();
std::cout << GridLogMessage << "Written ILDG Configuration on " << smr
@@ -118,8 +118,8 @@ public:
void CheckpointRestore(int traj, GaugeField &U, GridSerialRNG &sRNG,
GridParallelRNG &pRNG) {
std::string config, rng;
this->build_filenames(traj, Params, config, rng);
std::string config, rng, smr;
this->build_filenames(traj, Params, config, smr, rng);
this->check_filename(rng);
this->check_filename(config);

View File

@@ -107,8 +107,8 @@ class ScidacHmcCheckpointer : public BaseHmcCheckpointer<Implementation> {
void CheckpointRestore(int traj, Field &U, GridSerialRNG &sRNG,
GridParallelRNG &pRNG) {
std::string config, rng;
this->build_filenames(traj, Params, config, rng);
std::string config, rng, smr;
this->build_filenames(traj, Params, config, smr, rng);
this->check_filename(rng);
this->check_filename(config);

View File

@@ -62,15 +62,15 @@ accelerator_inline int stencilIndex(int mu, int nu) {
/*! @brief structure holding the link treatment */
struct SmearingParameters{
SmearingParameters(){}
struct HISQSmearingParameters{
HISQSmearingParameters(){}
Real c_1; // 1 link
Real c_naik; // Naik term
Real c_3; // 3 link
Real c_5; // 5 link
Real c_7; // 7 link
Real c_lp; // 5 link Lepage
SmearingParameters(Real c1, Real cnaik, Real c3, Real c5, Real c7, Real clp)
HISQSmearingParameters(Real c1, Real cnaik, Real c3, Real c5, Real c7, Real clp)
: c_1(c1),
c_naik(cnaik),
c_3(c3),
@@ -86,7 +86,7 @@ class Smear_HISQ : public Gimpl {
private:
GridCartesian* const _grid;
SmearingParameters _linkTreatment;
HISQSmearingParameters _linkTreatment;
public:
@@ -117,7 +117,7 @@ public:
// IN--u_thin
void smear(GF& u_smr, GF& u_naik, GF& u_thin) const {
SmearingParameters lt = this->_linkTreatment;
HISQSmearingParameters lt = this->_linkTreatment;
auto grid = this->_grid;
// Create a padded cell of extra padding depth=1 and fill the padding.

View File

@@ -158,8 +158,8 @@ RealD WilsonFlowBase<Gimpl>::energyDensityCloverleaf(const RealD t, const GaugeF
LatticeComplexD R(U.Grid());
R = Zero();
for(int mu=0;mu<3;mu++){
for(int nu=mu+1;nu<4;nu++){
for(int mu=0;mu<Nd-1;mu++){
for(int nu=mu+1;nu<Nd;nu++){
WilsonLoops<Gimpl>::FieldStrength(F, U, mu, nu);
R = R + trace(F*F);
}
@@ -207,11 +207,14 @@ std::vector<RealD> WilsonFlowBase<Gimpl>::flowMeasureEnergyDensityCloverleaf(con
}
template <class Gimpl>
void WilsonFlowBase<Gimpl>::setDefaultMeasurements(int topq_meas_interval){
addMeasurement(1, [](int step, RealD t, const typename Gimpl::GaugeField &U){
void WilsonFlowBase<Gimpl>::setDefaultMeasurements(int meas_interval){
addMeasurement(meas_interval, [](int step, RealD t, const typename Gimpl::GaugeField &U){
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : " << step << " " << t << " " << energyDensityPlaquette(t,U) << std::endl;
});
addMeasurement(topq_meas_interval, [](int step, RealD t, const typename Gimpl::GaugeField &U){
addMeasurement(meas_interval, [](int step, RealD t, const typename Gimpl::GaugeField &U){
std::cout << GridLogMessage << "[WilsonFlow] Energy density (cloverleaf) : " << step << " " << t << " " << energyDensityCloverleaf(t,U) << std::endl;
});
addMeasurement(meas_interval, [](int step, RealD t, const typename Gimpl::GaugeField &U){
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : " << step << " " << WilsonLoops<Gimpl>::TopologicalCharge(U) << std::endl;
});
}
@@ -249,6 +252,11 @@ void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const{
out = in;
RealD taus = 0.;
// Perform initial t=0 measurements
for(auto const &meas : this->functions)
meas.second(0,taus,out);
for (unsigned int step = 1; step <= Nstep; step++) { //step indicates the number of smearing steps applied at the time of measurement
auto start = std::chrono::high_resolution_clock::now();
evolve_step(out, taus);
@@ -333,6 +341,11 @@ void WilsonFlowAdaptive<Gimpl>::smear(GaugeField& out, const GaugeField& in) con
RealD taus = 0.;
RealD eps = init_epsilon;
unsigned int step = 0;
// Perform initial t=0 measurements
for(auto const &meas : this->functions)
meas.second(step,taus,out);
do{
int step_success = evolve_step_adaptive(out, taus, eps);
step += step_success; //step will not be incremented if the integration step fails

220
Grid/qcd/spin/Pauli.h Normal file
View File

@@ -0,0 +1,220 @@
#ifndef GRID_QCD_PAULI_H
#define GRID_QCD_PAULI_H
#include <array>
NAMESPACE_BEGIN(Grid);
//
/*
* Pauli basis
* sx sy sz ident
* (0 1) , (0 -i) , ( 1 0 )
* (1 0) (i 0) ( 0 -1)
*
* These are hermitian.
*
* Also supply wilson "projectors" (1+/-sx), (1+/-sy), (1+/-sz)
*
* spPauliProjXm
* spPauliProjYm etc...
*/
class Pauli {
public:
GRID_SERIALIZABLE_ENUM(Algebra, undef,
SigmaX , 0,
MinusSigmaX , 1,
SigmaY , 2,
MinusSigmaY , 3,
SigmaZ , 4,
MinusSigmaZ , 5,
Identity , 6,
MinusIdentity , 7);
static constexpr unsigned int nPauli = 8;
static const std::array<const char *, nPauli> name;
static const std::array<std::array<Algebra, nPauli>, nPauli> mul;
static const std::array<Algebra, nPauli> adj;
static const std::array<const Pauli, 4> gmu;
static const std::array<const Pauli, 16> gall;
Algebra g;
public:
accelerator Pauli(Algebra initg): g(initg) {}
};
#define CopyImplementation(iTemplate,multPauli,multFlavour) \
template<class vtype> \
accelerator_inline void multPauli(iTemplate<vtype, Nhs> &ret, const iTemplate<vtype, Nhs> &rhs) { \
multFlavour(ret,rhs); \
}
CopyImplementation(iVector,multPauliSigmaX,multFlavourSigmaX);
CopyImplementation(iMatrix,lmultPauliSigmaX,lmultFlavourSigmaX);
CopyImplementation(iMatrix,rmultPauliSigmaX,rmultFlavourSigmaX);
CopyImplementation(iVector,multPauliMinusSigmaX ,multFlavourMinusSigmaX);
CopyImplementation(iMatrix,lmultPauliMinusSigmaX,lmultFlavourMinusSigmaX);
CopyImplementation(iMatrix,rmultPauliMinusSigmaX,rmultFlavourMinusSigmaX);
CopyImplementation(iVector,multPauliSigmaY,multFlavourSigmaY);
CopyImplementation(iMatrix,lmultPauliSigmaY,lmultFlavourSigmaY);
CopyImplementation(iMatrix,rmultPauliSigmaY,rmultFlavourSigmaY);
CopyImplementation(iVector,multPauliMinusSigmaY ,multFlavourMinusSigmaY);
CopyImplementation(iMatrix,lmultPauliMinusSigmaY,lmultFlavourMinusSigmaY);
CopyImplementation(iMatrix,rmultPauliMinusSigmaY,rmultFlavourMinusSigmaY);
CopyImplementation(iVector,multPauliSigmaZ,multFlavourSigmaZ);
CopyImplementation(iMatrix,lmultPauliSigmaZ,lmultFlavourSigmaZ);
CopyImplementation(iMatrix,rmultPauliSigmaZ,rmultFlavourSigmaZ);
CopyImplementation(iVector,multPauliMinusSigmaZ ,multFlavourMinusSigmaZ);
CopyImplementation(iMatrix,lmultPauliMinusSigmaZ,lmultFlavourMinusSigmaZ);
CopyImplementation(iMatrix,rmultPauliMinusSigmaZ,rmultFlavourMinusSigmaZ);
CopyImplementation(iVector,multPauliIdentity,multFlavourIdentity);
CopyImplementation(iMatrix,lmultPauliIdentity,lmultFlavourIdentity);
CopyImplementation(iMatrix,rmultPauliIdentity,rmultFlavourIdentity);
CopyImplementation(iVector,multPauliMinusIdentity ,multFlavourMinusIdentity);
CopyImplementation(iMatrix,lmultPauliMinusIdentity,lmultFlavourMinusIdentity);
CopyImplementation(iMatrix,rmultPauliMinusIdentity,rmultFlavourMinusIdentity);
/*
* sx sy sz ident
* (0 1) , (0 -i) , ( 1 0 )
* (1 0) (i 0) ( 0 -1)
*/
template<class vtype,IfSpinor<iVector<vtype,Nhs> > = 0> accelerator_inline void pauliProjXp (iVector<vtype,Nhs> &hspin,const iVector<vtype,Nhs> &fspin)
{
hspin(0)=fspin(0)+fspin(1);
hspin(1)=fspin(1)+fspin(0);
}
template<class vtype,IfSpinor<iVector<vtype,Nhs> > = 0> accelerator_inline void pauliProjXm (iVector<vtype,Nhs> &hspin,const iVector<vtype,Nhs> &fspin)
{
hspin(0)=fspin(0)-fspin(1);
hspin(1)=fspin(1)-fspin(0);
}
template<class vtype,IfSpinor<iVector<vtype,Nhs> > = 0> accelerator_inline void pauliProjYp (iVector<vtype,Nhs> &hspin,const iVector<vtype,Nhs> &fspin)
{
hspin(0)=fspin(0)-timesI(fspin(1));
hspin(1)=fspin(1)+timesI(fspin(0));
}
template<class vtype,IfSpinor<iVector<vtype,Nhs> > = 0> accelerator_inline void pauliProjYm (iVector<vtype,Nhs> &hspin,const iVector<vtype,Nhs> &fspin)
{
hspin(0)=fspin(0)+timesI(fspin(1));
hspin(1)=fspin(1)-timesI(fspin(0));
}
template<class vtype,IfSpinor<iVector<vtype,Nhs> > = 0> accelerator_inline void pauliProjZp (iVector<vtype,Nhs> &hspin,const iVector<vtype,Nhs> &fspin)
{
hspin(0)=fspin(0)+fspin(0);
hspin(1)=Zero();
}
template<class vtype,IfSpinor<iVector<vtype,Nhs> > = 0> accelerator_inline void pauliProjZm (iVector<vtype,Nhs> &hspin,const iVector<vtype,Nhs> &fspin)
{
hspin(0)=Zero();
hspin(1)=fspin(1)+fspin(1);
}
template<class vtype,IfSpinor<iVector<vtype,Nhs> > = 0> accelerator_inline void pauliAssign(iVector<vtype,Nhs> &fspin,const iVector<vtype,Nhs> &hspin)
{
fspin = hspin;
}
template<class vtype,IfSpinor<iVector<vtype,Nhs> > = 0> accelerator_inline void pauliAdd (iVector<vtype,Nhs> &fspin,const iVector<vtype,Nhs> &hspin)
{
fspin = fspin + hspin;
}
template<class vtype>
accelerator_inline auto operator*(const Pauli &G, const iVector<vtype, Nhs> &arg)
->typename std::enable_if<matchGridTensorIndex<iVector<vtype, Nhs>, PauliIndex>::value, iVector<vtype, Nhs>>::type
{
iVector<vtype, Nhs> ret;
switch (G.g)
{
case Pauli::Algebra::SigmaX:
multPauliSigmaX(ret, arg); break;
case Pauli::Algebra::MinusSigmaX:
multPauliMinusSigmaX(ret, arg); break;
case Pauli::Algebra::SigmaY:
multPauliSigmaY(ret, arg); break;
case Pauli::Algebra::MinusSigmaY:
multPauliMinusSigmaY(ret, arg); break;
case Pauli::Algebra::SigmaZ:
multPauliSigmaZ(ret, arg); break;
case Pauli::Algebra::MinusSigmaZ:
multPauliMinusSigmaZ(ret, arg); break;
case Pauli::Algebra::Identity:
multPauliIdentity(ret, arg); break;
case Pauli::Algebra::MinusIdentity:
multPauliMinusIdentity(ret, arg); break;
default: assert(0);
}
return ret;
}
template<class vtype>
accelerator_inline auto operator*(const Pauli &G, const iMatrix<vtype, Nhs> &arg)
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype, Nhs>, PauliIndex>::value, iMatrix<vtype, Nhs>>::type
{
iMatrix<vtype, Nhs> ret;
switch (G.g)
{
case Pauli::Algebra::SigmaX:
lmultPauliSigmaX(ret, arg); break;
case Pauli::Algebra::MinusSigmaX:
lmultPauliMinusSigmaX(ret, arg); break;
case Pauli::Algebra::SigmaY:
lmultPauliSigmaY(ret, arg); break;
case Pauli::Algebra::MinusSigmaY:
lmultPauliMinusSigmaY(ret, arg); break;
case Pauli::Algebra::SigmaZ:
lmultPauliSigmaZ(ret, arg); break;
case Pauli::Algebra::MinusSigmaZ:
lmultPauliMinusSigmaZ(ret, arg); break;
case Pauli::Algebra::Identity:
lmultPauliIdentity(ret, arg); break;
case Pauli::Algebra::MinusIdentity:
lmultPauliMinusIdentity(ret, arg); break;
default: assert(0);
}
return ret;
}
template<class vtype>
accelerator_inline auto operator*(const iMatrix<vtype, Nhs> &arg, const Pauli &G)
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype, Nhs>, PauliIndex>::value, iMatrix<vtype, Nhs>>::type
{
iMatrix<vtype, Nhs> ret;
switch (G.g)
{
case Pauli::Algebra::SigmaX:
rmultPauliSigmaX(ret, arg); break;
case Pauli::Algebra::MinusSigmaX:
rmultPauliMinusSigmaX(ret, arg); break;
case Pauli::Algebra::SigmaY:
rmultPauliSigmaY(ret, arg); break;
case Pauli::Algebra::MinusSigmaY:
rmultPauliMinusSigmaY(ret, arg); break;
case Pauli::Algebra::SigmaZ:
rmultPauliSigmaZ(ret, arg); break;
case Pauli::Algebra::MinusSigmaZ:
rmultPauliMinusSigmaZ(ret, arg); break;
case Pauli::Algebra::Identity:
rmultPauliIdentity(ret, arg); break;
case Pauli::Algebra::MinusIdentity:
rmultPauliMinusIdentity(ret, arg); break;
default: assert(0);
}
return ret;
}
NAMESPACE_END(Grid);
#endif // GRID_QCD_GAMMA_H

View File

@@ -179,20 +179,17 @@ public:
//////////////////////////////////////////////////
// average over all x,y,z the temporal loop
//////////////////////////////////////////////////
static ComplexD avgPolyakovLoop(const GaugeField &Umu) { //assume Nd=4
static ComplexD avgPolyakovLoop(const GaugeField &Umu) {
GaugeMat Ut(Umu.Grid()), P(Umu.Grid());
ComplexD out;
int T = Umu.Grid()->GlobalDimensions()[3];
int X = Umu.Grid()->GlobalDimensions()[0];
int Y = Umu.Grid()->GlobalDimensions()[1];
int Z = Umu.Grid()->GlobalDimensions()[2];
Ut = peekLorentz(Umu,3); //Select temporal direction
uint64_t vol = Umu.Grid()->gSites();
int T = Umu.Grid()->GlobalDimensions()[Nd-1];
Ut = peekLorentz(Umu,Nd-1); //Select temporal direction
P = Ut;
for (int t=1;t<T;t++){
P = Gimpl::CovShiftForward(Ut,3,P);
P = Gimpl::CovShiftForward(Ut,Nd-1,P);
}
RealD norm = 1.0/(Nc*X*Y*Z*T);
RealD norm = 1.0/(Nc*vol);
out = sum(trace(P))*norm;
return out;
}
@@ -215,7 +212,7 @@ public:
double vol = Umu.Grid()->gSites();
return p.real() / vol / (4.0 * Nc ) ;
return p.real() / vol / (Nd * Nc ) ;
};
//////////////////////////////////////////////////
@@ -292,19 +289,21 @@ public:
//////////////////////////////////////////////////
// the sum over all nu-oriented staples for nu != mu on each site
//////////////////////////////////////////////////
static void Staple(GaugeMat &staple, const GaugeLorentz &Umu, int mu) {
static void Staple(GaugeMat &staple, const GaugeLorentz &U, int mu) {
GridBase *grid = Umu.Grid();
std::vector<GaugeMat> U(Nd, grid);
std::vector<GaugeMat> Umu(Nd, U.Grid());
for (int d = 0; d < Nd; d++) {
U[d] = PeekIndex<LorentzIndex>(Umu, d);
Umu[d] = PeekIndex<LorentzIndex>(U, d);
}
Staple(staple, U, mu);
Staple(staple, Umu, mu);
}
static void Staple(GaugeMat &staple, const std::vector<GaugeMat> &U, int mu) {
staple = Zero();
static void Staple(GaugeMat &staple, const std::vector<GaugeMat> &Umu, int mu) {
autoView(staple_v, staple, AcceleratorWrite);
accelerator_for(i, staple.Grid()->oSites(), Simd::Nsimd(), {
staple_v[i] = Zero();
});
for (int nu = 0; nu < Nd; nu++) {
@@ -318,12 +317,12 @@ public:
// |
// __|
//
staple += Gimpl::ShiftStaple(
Gimpl::CovShiftForward(
U[nu], nu,
Umu[nu], nu,
Gimpl::CovShiftBackward(
U[mu], mu, Gimpl::CovShiftIdentityBackward(U[nu], nu))),
Umu[mu], mu, Gimpl::CovShiftIdentityBackward(Umu[nu], nu))),
mu);
// __
@@ -333,8 +332,8 @@ public:
//
staple += Gimpl::ShiftStaple(
Gimpl::CovShiftBackward(U[nu], nu,
Gimpl::CovShiftBackward(U[mu], mu, U[nu])), mu);
Gimpl::CovShiftBackward(Umu[nu], nu,
Gimpl::CovShiftBackward(Umu[mu], mu, Umu[nu])), mu);
}
}
}
@@ -738,6 +737,7 @@ public:
//cf https://arxiv.org/pdf/hep-lat/9701012.pdf Eq 6
//output is the charge by timeslice: sum over timeslices to obtain the total
static std::vector<Real> TimesliceTopologicalChargeMxN(const GaugeLorentz &U, int M, int N){
// Audit: 4D epsilon is hard coded
assert(Nd == 4);
std::vector<std::vector<GaugeMat*> > F(Nd,std::vector<GaugeMat*>(Nd,nullptr));
//Note F_numu = - F_munu
@@ -827,6 +827,25 @@ public:
return out;
}
//Compute the 5Li topological charge density
static std::vector<Real> TopologicalChargeDensity5Li(const GaugeLorentz &U){
static const int exts[5][2] = { {1,1}, {2,2}, {1,2}, {1,3}, {3,3} };
std::vector<std::vector<Real> > loops = TimesliceTopologicalCharge5LiContributions(U);
double c5=1./20.;
double c4=1./5.-2.*c5;
double c3=(-64.+640.*c5)/45.;
double c2=(1-64.*c5)/9.;
double c1=(19.-55.*c5)/9.;
int Lt = loops[0].size();
std::vector<Real> out(Lt,0.);
for(int t=0;t<Lt;t++)
out[t] += c1*loops[0][t] + c2*loops[1][t] + c3*loops[2][t] + c4*loops[3][t] + c5*loops[4][t];
return out;
}
static Real TopologicalCharge5Li(const GaugeLorentz &U){
std::vector<Real> Qt = TimesliceTopologicalCharge5Li(U);
Real Q = 0.;
@@ -1453,7 +1472,7 @@ public:
//////////////////////////////////////////////////
static Real sumWilsonLoop(const GaugeLorentz &Umu,
const int R1, const int R2) {
std::vector<GaugeMat> U(4, Umu.Grid());
std::vector<GaugeMat> U(Nd, Umu.Grid());
for (int mu = 0; mu < Umu.Grid()->_ndimension; mu++) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
@@ -1472,7 +1491,7 @@ public:
//////////////////////////////////////////////////
static Real sumTimelikeWilsonLoop(const GaugeLorentz &Umu,
const int R1, const int R2) {
std::vector<GaugeMat> U(4, Umu.Grid());
std::vector<GaugeMat> U(Nd, Umu.Grid());
for (int mu = 0; mu < Umu.Grid()->_ndimension; mu++) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
@@ -1490,8 +1509,8 @@ public:
// sum over all x,y,z,t and over all planes of spatial Wilson loop
//////////////////////////////////////////////////
static Real sumSpatialWilsonLoop(const GaugeLorentz &Umu,
const int R1, const int R2) {
std::vector<GaugeMat> U(4, Umu.Grid());
const int R1, const int R2) {
std::vector<GaugeMat> U(Nd, Umu.Grid());
for (int mu = 0; mu < Umu.Grid()->_ndimension; mu++) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);

View File

@@ -252,7 +252,7 @@ inline std::ostream& operator<< (std::ostream& stream, const vComplexF &o){
inline std::ostream& operator<< (std::ostream& stream, const vComplexD &o){
int nn=vComplexD::Nsimd();
std::vector<ComplexD,alignedAllocator<ComplexD> > buf(nn);
std::vector<ComplexD> buf(nn);
vstore(o,&buf[0]);
stream<<"<";
for(int i=0;i<nn;i++){
@@ -272,7 +272,7 @@ inline std::ostream& operator<< (std::ostream& stream, const vComplexD2 &o){
inline std::ostream& operator<< (std::ostream& stream, const vRealF &o){
int nn=vRealF::Nsimd();
std::vector<RealF,alignedAllocator<RealF> > buf(nn);
std::vector<RealF> buf(nn);
vstore(o,&buf[0]);
stream<<"<";
for(int i=0;i<nn;i++){

File diff suppressed because it is too large Load Diff

View File

@@ -396,6 +396,7 @@ public:
Packets[i].from_rank,Packets[i].do_recv,
Packets[i].xbytes,Packets[i].rbytes,i);
}
FlightRecorder::StepLog("Communicate begin has finished");
// Get comms started then run checksums
// Having this PRIOR to the dslash seems to make Sunspot work... (!)
for(int i=0;i<Packets.size();i++){
@@ -446,6 +447,7 @@ public:
Communicate();
CommsMergeSHM(compress);
CommsMerge(compress);
accelerator_barrier();
}
template<class compressor> int HaloGatherDir(const Lattice<vobj> &source,compressor &compress,int point,int & face_idx)
@@ -518,7 +520,6 @@ public:
}
accelerator_barrier(); // All my local gathers are complete
#ifdef NVLINK_GET
#warning "NVLINK_GET"
_grid->StencilBarrier(); // He can now get mu local gather, I can get his
// Synch shared memory on a single nodes; could use an asynchronous barrier here and defer check
// Or issue barrier AFTER the DMA is running
@@ -690,6 +691,7 @@ public:
}
}
}
// std::cout << "BuildSurfaceList size is "<<surface_list_size<<std::endl;
surface_list.resize(surface_list_size);
std::vector<int> surface_list_host(surface_list_size);
int32_t ss=0;
@@ -709,7 +711,7 @@ public:
}
}
acceleratorCopyToDevice(&surface_list_host[0],&surface_list[0],surface_list_size*sizeof(int));
std::cout << GridLogMessage<<"BuildSurfaceList size is "<<surface_list_size<<std::endl;
// std::cout << GridLogMessage<<"BuildSurfaceList size is "<<surface_list_size<<std::endl;
}
/// Introduce a block structure and switch off comms on boundaries
void DirichletBlock(const Coordinate &dirichlet_block)
@@ -801,8 +803,8 @@ public:
this->_entries_host_p = &_entries[0];
this->_entries_p = &_entries_device[0];
std::cout << GridLogMessage << " Stencil object allocated for "<<std::dec<<this->_osites
<<" sites table "<<std::hex<<this->_entries_p<< " GridPtr "<<_grid<<std::dec<<std::endl;
// std::cout << GridLogMessage << " Stencil object allocated for "<<std::dec<<this->_osites
// <<" sites table "<<std::hex<<this->_entries_p<< " GridPtr "<<_grid<<std::dec<<std::endl;
for(int ii=0;ii<npoints;ii++){

View File

@@ -242,19 +242,33 @@ inline void *acceleratorAllocDevice(size_t bytes)
return ptr;
};
typedef int acceleratorEvent_t;
inline void acceleratorFreeShared(void *ptr){ cudaFree(ptr);};
inline void acceleratorFreeDevice(void *ptr){ cudaFree(ptr);};
inline void acceleratorFreeHost(void *ptr){ cudaFree(ptr);};
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { cudaMemcpy(to,from,bytes, cudaMemcpyHostToDevice);}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ cudaMemcpy(to,from,bytes, cudaMemcpyDeviceToHost);}
inline void acceleratorCopyToDeviceAsync(void *from, void *to, size_t bytes, cudaStream_t stream = copyStream) { cudaMemcpyAsync(to,from,bytes, cudaMemcpyHostToDevice, stream);}
inline void acceleratorCopyFromDeviceAsync(void *from, void *to, size_t bytes, cudaStream_t stream = copyStream) { cudaMemcpyAsync(to,from,bytes, cudaMemcpyDeviceToHost, stream);}
inline void acceleratorCopyToDevice(const void *from,void *to,size_t bytes) { cudaMemcpy(to,from,bytes, cudaMemcpyHostToDevice);}
inline void acceleratorCopyFromDevice(const void *from,void *to,size_t bytes){ cudaMemcpy(to,from,bytes, cudaMemcpyDeviceToHost);}
inline void acceleratorMemSet(void *base,int value,size_t bytes) { cudaMemset(base,value,bytes);}
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) // Asynch
inline acceleratorEvent_t acceleratorCopyToDeviceAsynch(void *from, void *to, size_t bytes, cudaStream_t stream = copyStream) {
acceleratorCopyToDevice(from,to,bytes);
return 0;
}
inline acceleratorEvent_t acceleratorCopyFromDeviceAsynch(void *from, void *to, size_t bytes, cudaStream_t stream = copyStream) {
acceleratorCopyFromDevice(from,to,bytes);
return 0;
}
inline acceleratorEvent_t acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) // Asynch
{
cudaMemcpyAsync(to,from,bytes, cudaMemcpyDeviceToDevice,copyStream);
return 0;
}
inline void acceleratorCopySynchronise(void) { cudaStreamSynchronize(copyStream); };
inline void acceleratorEventWait(acceleratorEvent_t ev)
{
//auto discard=cudaStreamSynchronize(ev);
}
inline int acceleratorEventIsComplete(acceleratorEvent_t ev){ acceleratorEventWait(ev) ; return 1;}
inline int acceleratorIsCommunicable(void *ptr)
@@ -323,7 +337,7 @@ accelerator_inline int acceleratorSIMTlane(int Nsimd) {
cgh.parallel_for( \
sycl::nd_range<3>(global,local), \
[=] (sycl::nd_item<3> item) /*mutable*/ \
[[intel::reqd_sub_group_size(16)]] \
[[sycl::reqd_sub_group_size(16)]] \
{ \
auto iter1 = item.get_global_id(0); \
auto iter2 = item.get_global_id(1); \
@@ -363,8 +377,8 @@ inline acceleratorEvent_t acceleratorCopyDeviceToDeviceAsynch(void *from,void *t
inline acceleratorEvent_t acceleratorCopyToDeviceAsynch(void *from,void *to,size_t bytes) { return theCopyAccelerator->memcpy(to,from,bytes); }
inline acceleratorEvent_t acceleratorCopyFromDeviceAsynch(void *from,void *to,size_t bytes) { return theCopyAccelerator->memcpy(to,from,bytes); }
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { theCopyAccelerator->memcpy(to,from,bytes); theCopyAccelerator->wait();}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ theCopyAccelerator->memcpy(to,from,bytes); theCopyAccelerator->wait();}
inline void acceleratorCopyToDevice(const void *from,void *to,size_t bytes) { theCopyAccelerator->memcpy(to,from,bytes); theCopyAccelerator->wait();}
inline void acceleratorCopyFromDevice(const void *from,void *to,size_t bytes){ theCopyAccelerator->memcpy(to,from,bytes); theCopyAccelerator->wait();}
inline void acceleratorMemSet(void *base,int value,size_t bytes) { theCopyAccelerator->memset(base,value,bytes); theCopyAccelerator->wait();}
inline int acceleratorIsCommunicable(void *ptr)
@@ -478,7 +492,7 @@ void LambdaApply(uint64_t numx, uint64_t numy, uint64_t numz, lambda Lambda)
inline void *acceleratorAllocHost(size_t bytes)
{
void *ptr=NULL;
auto err = hipMallocHost((void **)&ptr,bytes);
auto err = hipHostMalloc((void **)&ptr,bytes);
if( err != hipSuccess ) {
ptr = (void *) NULL;
fprintf(stderr," hipMallocManaged failed for %ld %s \n",bytes,hipGetErrorString(err)); fflush(stderr);
@@ -511,23 +525,35 @@ inline void *acceleratorAllocDevice(size_t bytes)
inline void acceleratorFreeHost(void *ptr){ auto discard=hipFree(ptr);};
inline void acceleratorFreeShared(void *ptr){ auto discard=hipFree(ptr);};
inline void acceleratorFreeDevice(void *ptr){ auto discard=hipFree(ptr);};
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { auto discard=hipMemcpy(to,from,bytes, hipMemcpyHostToDevice);}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ auto discard=hipMemcpy(to,from,bytes, hipMemcpyDeviceToHost);}
inline void acceleratorCopyToDevice(const void *from,void *to,size_t bytes) { auto discard=hipMemcpy(to,from,bytes, hipMemcpyHostToDevice);}
inline void acceleratorCopyFromDevice(const void *from,void *to,size_t bytes){ auto discard=hipMemcpy(to,from,bytes, hipMemcpyDeviceToHost);}
inline void acceleratorMemSet(void *base,int value,size_t bytes) { auto discard=hipMemset(base,value,bytes);}
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) // Asynch
typedef int acceleratorEvent_t;
inline acceleratorEvent_t acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) // Asynch
{
auto discard=hipMemcpyDtoDAsync(to,from,bytes, copyStream);
return 0;
}
inline void acceleratorCopyToDeviceAsync(void *from, void *to, size_t bytes, hipStream_t stream = copyStream) {
auto r = hipMemcpyAsync(to,from,bytes, hipMemcpyHostToDevice, stream);
inline acceleratorEvent_t acceleratorCopyToDeviceAsynch(void *from, void *to, size_t bytes, hipStream_t stream = copyStream) {
acceleratorCopyToDevice(from,to,bytes);
return 0;
}
inline void acceleratorCopyFromDeviceAsync(void *from, void *to, size_t bytes, hipStream_t stream = copyStream) {
auto r = hipMemcpyAsync(to,from,bytes, hipMemcpyDeviceToHost, stream);
inline acceleratorEvent_t acceleratorCopyFromDeviceAsynch(void *from, void *to, size_t bytes, hipStream_t stream = copyStream) {
acceleratorCopyFromDevice(from,to,bytes);
return 0;
}
inline void acceleratorCopySynchronise(void) { auto discard=hipStreamSynchronize(copyStream); };
inline void acceleratorEventWait(acceleratorEvent_t ev)
{
// auto discard=hipStreamSynchronize(ev);
}
inline int acceleratorEventIsComplete(acceleratorEvent_t ev){ acceleratorEventWait(ev) ; return 1;}
#endif
inline void acceleratorPin(void *ptr,unsigned long bytes)
@@ -564,6 +590,8 @@ inline void acceleratorPin(void *ptr,unsigned long bytes)
#undef GRID_SIMT
typedef int acceleratorEvent_t;
inline void acceleratorMem(void)
{
/*
@@ -584,8 +612,13 @@ inline void acceleratorMem(void)
accelerator_inline int acceleratorSIMTlane(int Nsimd) { return 0; } // CUDA specific
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { thread_bcopy(from,to,bytes); }
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ thread_bcopy(from,to,bytes);}
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) { thread_bcopy(from,to,bytes);}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes) { thread_bcopy(from,to,bytes); }
inline acceleratorEvent_t acceleratorCopyToDeviceAsynch(void *from,void *to,size_t bytes) { acceleratorCopyToDevice(from,to,bytes); return 0; }
inline acceleratorEvent_t acceleratorCopyFromDeviceAsynch(void *from,void *to,size_t bytes) { acceleratorCopyFromDevice(from,to,bytes); return 0; }
inline void acceleratorEventWait(acceleratorEvent_t ev){}
inline int acceleratorEventIsComplete(acceleratorEvent_t ev){ acceleratorEventWait(ev); return 1;}
inline acceleratorEvent_t acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) { thread_bcopy(from,to,bytes); return 0;}
inline void acceleratorCopySynchronise(void) {};
inline int acceleratorIsCommunicable(void *ptr){ return 1; }
@@ -676,7 +709,7 @@ inline void acceleratorCopyDeviceToDevice(void *from,void *to,size_t bytes)
template<class T> void acceleratorPut(T& dev,const T&host)
{
acceleratorCopyToDevice(&host,&dev,sizeof(T));
acceleratorCopyToDevice((void *)&host,&dev,sizeof(T));
}
template<class T> T acceleratorGet(T& dev)
{

View File

@@ -73,9 +73,9 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#define thread_critical DO_PRAGMA(omp critical)
#ifdef GRID_OMP
inline void thread_bcopy(void *from, void *to,size_t bytes)
inline void thread_bcopy(const void *from, void *to,size_t bytes)
{
uint64_t *ufrom = (uint64_t *)from;
const uint64_t *ufrom = (const uint64_t *)from;
uint64_t *uto = (uint64_t *)to;
assert(bytes%8==0);
uint64_t words=bytes/8;
@@ -84,7 +84,7 @@ inline void thread_bcopy(void *from, void *to,size_t bytes)
});
}
#else
inline void thread_bcopy(void *from, void *to,size_t bytes)
inline void thread_bcopy(const void *from, void *to,size_t bytes)
{
bcopy(from,to,bytes);
}

View File

@@ -187,8 +187,9 @@ void GridParseLayout(char **argv,int argc,
Coordinate &latt_c,
Coordinate &mpi_c)
{
auto mpi =std::vector<int>({1,1,1,1});
auto latt=std::vector<int>({8,8,8,8});
auto mpi =std::vector<int>(Nd,1);
auto latt=std::vector<int>(Nd,8);
GridThread::SetMaxThreads();
@@ -228,6 +229,9 @@ void GridParseLayout(char **argv,int argc,
}
// Copy back into coordinate format
int nd = mpi.size();
// std::cout << "mpi.size() "<<nd<<std::endl;
// std::cout << "latt.size() "<<latt.size()<<std::endl;
// std::cout << "Nd "<<Nd<<std::endl;
assert(latt.size()==nd);
latt_c.resize(nd);
mpi_c.resize(nd);
@@ -509,7 +513,14 @@ void Grid_init(int *argc,char ***argv)
Grid_default_latt,
Grid_default_mpi);
if( GridCmdOptionExists(*argv,*argv+*argc,"--flightrecorder") ){
std::cout << GridLogMessage <<" Enabling flight recorder " <<std::endl;
FlightRecorder::SetLoggingMode(FlightRecorder::LoggingModeRecord);
FlightRecorder::PrintEntireLog = 1;
FlightRecorder::ChecksumComms = 1;
FlightRecorder::ChecksumCommsSend=1;
}
if( GridCmdOptionExists(*argv,*argv+*argc,"--decomposition") ){
std::cout<<GridLogMessage<<"Grid Default Decomposition patterns\n";
std::cout<<GridLogMessage<<"\tOpenMP threads : "<<GridThread::GetThreads()<<std::endl;
@@ -631,12 +642,11 @@ void Grid_debug_handler_init(void)
sa.sa_flags = SA_SIGINFO;
// sigaction(SIGSEGV,&sa,NULL);
sigaction(SIGTRAP,&sa,NULL);
sigaction(SIGBUS,&sa,NULL);
// sigaction(SIGBUS,&sa,NULL);
// sigaction(SIGUSR2,&sa,NULL);
feenableexcept( FE_INVALID|FE_OVERFLOW|FE_DIVBYZERO);
sigaction(SIGFPE,&sa,NULL);
// feenableexcept( FE_INVALID|FE_OVERFLOW|FE_DIVBYZERO);
// sigaction(SIGFPE,&sa,NULL);
sigaction(SIGKILL,&sa,NULL);
sigaction(SIGILL,&sa,NULL);
@@ -651,3 +661,4 @@ void Grid_debug_handler_init(void)
}
NAMESPACE_END(Grid);

View File

@@ -50,7 +50,7 @@ namespace Grid{
int64_t index64;
IndexFromCoorReversed(coor,index64,dims);
if ( index64>=2*1024*1024*1024LL ){
std::cout << " IndexFromCoorReversed overflow"<<std::endl;
// std::cout << " IndexFromCoorReversed " << coor<<" index " << index64<< " dims "<<dims<<std::endl;
}
assert(index64<2*1024*1024*1024LL);
index = (int) index64;

View File

@@ -66,6 +66,7 @@ namespace Grid{
};
}
template <class T> void writeFile(T& in, std::string const fname){
#ifdef HAVE_LIME
// Ref: https://github.com/paboyle/Grid/blob/feature/scidac-wp1/tests/debug/Test_general_coarse_hdcg_phys48.cc#L111
@@ -73,7 +74,7 @@ template <class T> void writeFile(T& in, std::string const fname){
Grid::emptyUserRecord record;
Grid::ScidacWriter WR(in.Grid()->IsBoss());
WR.open(fname);
WR.writeScidacFieldRecord(in,record,0);
WR.writeScidacFieldRecord(in,record,0); // Lexico
WR.close();
#endif
// What is the appropriate way to throw error?
@@ -107,8 +108,18 @@ int main(int argc, char **argv) {
for (int conf = CPar.StartConfiguration; conf <= CPar.EndConfiguration; conf+= CPar.Skip){
#if 0
CPNersc.CheckpointRestore(conf, Umu, sRNG, pRNG);
#else
// Don't require Grid format RNGs
FieldMetaData header;
std::string file, filesmr;
file = CPar.conf_path + "/" + CPar.conf_prefix + "." + std::to_string(conf);
filesmr = CPar.conf_path + "/" + CPar.conf_smr_prefix + "." + std::to_string(conf);
NerscIO::readConfiguration(Umu,header,file);
#endif
std::cout << std::setprecision(15);
std::cout << GridLogMessage << "Initial plaquette: "<< WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu) << std::endl;
@@ -116,6 +127,7 @@ int main(int argc, char **argv) {
std::string file_post = CPar.conf_prefix + "." + std::to_string(conf);
WilsonFlow<PeriodicGimplR> WF(WFPar.step_size,WFPar.steps,WFPar.meas_interval);
WF.addMeasurement(WFPar.meas_interval_density, [&file_pre,&file_post,&conf](int step, RealD t, const typename PeriodicGimplR::GaugeField &U){
typedef typename PeriodicGimplR::GaugeLinkField GaugeMat;
@@ -165,33 +177,48 @@ int main(int argc, char **argv) {
//double coeff = 2.0 / (1.0 * Nd * (Nd - 1)) / 3.0;
//Plq = coeff * Plq;
int tau = std::round(t);
std::string efile = file_pre + "E_dnsty_" + std::to_string(tau) + "_" + file_post;
writeFile(R,efile);
std::string tfile = file_pre + "Top_dnsty_" + std::to_string(tau) + "_" + file_post;
writeFile(qfield,tfile);
RealD WFlow_TC5Li = WilsonLoops<PeriodicGimplR>::TopologicalCharge5Li(U);
int tau = std::round(t);
std::string efile = file_pre + "E_dnsty_" + std::to_string(tau) + "_" + file_post;
// writeFile(R,efile);
std::string tfile = file_pre + "Top_dnsty_" + std::to_string(tau) + "_" + file_post;
// writeFile(qfield,tfile);
std::string ufile = file_pre + "U_" + std::to_string(tau) + "_" + file_post;
{
// PeriodicGimplR::GaugeField Ucopy = U;
// NerscIO::writeConfiguration(Ucopy,ufile);
}
RealD E = real(sum(R))/ RealD(U.Grid()->gSites());
RealD T = real( sum(qfield) );
Coordinate scoor; for (int mu=0; mu < Nd; mu++) scoor[mu] = 0;
RealD E0 = real(peekSite(R,scoor));
RealD T0 = real(peekSite(qfield,scoor));
std::cout << GridLogMessage << "[WilsonFlow] Saved energy density (clover) & topo. charge density: " << conf << " " << step << " " << tau << " "
<< "(E_avg,T_sum) " << E << " " << T << " (E, T at origin) " << E0 << " " << T0 << std::endl;
<< "(E_avg,T_sum) " << E << " " << T << " (E, T at origin) " << E0 << " " << T0 << " Q5Li "<< WFlow_TC5Li << std::endl;
});
int t=WFPar.maxTau;
WF.smear(Uflow, Umu);
// NerscIO::writeConfiguration(Uflow,filesmr);
RealD WFlow_plaq = WilsonLoops<PeriodicGimplR>::avgPlaquette(Uflow);
RealD WFlow_TC = WilsonLoops<PeriodicGimplR>::TopologicalCharge(Uflow);
RealD WFlow_TC5Li = WilsonLoops<PeriodicGimplR>::TopologicalCharge5Li(Uflow);
RealD WFlow_T0 = WF.energyDensityPlaquette(t,Uflow); // t
RealD WFlow_EC = WF.energyDensityCloverleaf(t,Uflow);
std::cout << GridLogMessage << "Plaquette "<< conf << " " << WFlow_plaq << std::endl;
std::cout << GridLogMessage << "T0 "<< conf << " " << WFlow_T0 << std::endl;
std::cout << GridLogMessage << "TC0 "<< conf << " " << WFlow_EC << std::endl;
std::cout << GridLogMessage << "TopologicalCharge "<< conf << " " << WFlow_TC << std::endl;
std::cout << GridLogMessage << "Plaquette "<< conf << " " << WFlow_plaq << std::endl;
std::cout << GridLogMessage << "T0 "<< conf << " " << WFlow_T0 << std::endl;
std::cout << GridLogMessage << "TC0 "<< conf << " " << WFlow_EC << std::endl;
std::cout << GridLogMessage << "TopologicalCharge "<< conf << " " << WFlow_TC << std::endl;
std::cout << GridLogMessage << "TopologicalCharge5Li "<< conf << " " << WFlow_TC5Li<< std::endl;
std::cout<< GridLogMessage << " Admissibility check:\n";
const double sp_adm = 0.067; // admissible threshold

View File

@@ -25,13 +25,20 @@ directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#if Nc == 3
#include <Grid/qcd/smearing/GaugeConfigurationMasked.h>
#include <Grid/qcd/smearing/JacobianAction.h>
#endif
using namespace Grid;
int main(int argc, char **argv)
{
#if Nc != 3
#warning FTHMC2p1f will not work for Nc != 3
std::cout << "This program will currently only work for Nc == 3." << std::endl;
#else
std::cout << std::setprecision(12);
Grid_init(&argc, &argv);
@@ -220,7 +227,6 @@ int main(int argc, char **argv)
TheHMC.Run(SmearingPolicy); // for smearing
Grid_finalize();
#endif
} // main

View File

@@ -24,14 +24,22 @@ See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#if Nc == 3
#include <Grid/qcd/smearing/GaugeConfigurationMasked.h>
#include <Grid/qcd/smearing/JacobianAction.h>
#endif
using namespace Grid;
int main(int argc, char **argv)
{
#if Nc != 3
#warning FTHMC2p1f_3GeV will not work for Nc != 3
std::cout << "This program will currently only work for Nc == 3." << std::endl;
#else
std::cout << std::setprecision(12);
Grid_init(&argc, &argv);
@@ -220,6 +228,7 @@ int main(int argc, char **argv)
TheHMC.Run(SmearingPolicy); // for smearing
Grid_finalize();
#endif
} // main

View File

@@ -25,13 +25,20 @@ directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#if Nc == 3
#include <Grid/qcd/smearing/GaugeConfigurationMasked.h>
#include <Grid/qcd/smearing/JacobianAction.h>
#endif
using namespace Grid;
int main(int argc, char **argv)
{
#if Nc != 3
#warning HMC2p1f_3GeV will not work for Nc != 3
std::cout << "This program will currently only work for Nc == 3." << std::endl;
#else
std::cout << std::setprecision(12);
Grid_init(&argc, &argv);
@@ -220,6 +227,7 @@ int main(int argc, char **argv)
TheHMC.Run(SmearingPolicy); // for smearing
Grid_finalize();
#endif
} // main

5
TODO
View File

@@ -1,3 +1,8 @@
* Clean up the extract merge and replace with insertLane/extractLane
-----
i) Refine subspace with HDCG & recompute
ii) Block Lanczos in coarse space
iii) Batched block project in the operator computation

View File

@@ -492,17 +492,18 @@ public:
}
FGrid->Barrier();
double t1=usecond();
uint64_t ncall = 500;
FGrid->Broadcast(0,&ncall,sizeof(ncall));
uint64_t no = 50;
uint64_t ni = 100;
// std::cout << GridLogMessage << " Estimate " << ncall << " calls per second"<<std::endl;
time_statistics timestat;
std::vector<double> t_time(ncall);
for(uint64_t i=0;i<ncall;i++){
std::vector<double> t_time(no);
for(uint64_t i=0;i<no;i++){
t0=usecond();
Dw.DhopEO(src_o,r_e,DaggerNo);
for(uint64_t j=0;j<ni;j++){
Dw.DhopEO(src_o,r_e,DaggerNo);
}
t1=usecond();
t_time[i] = t1-t0;
}
@@ -520,11 +521,11 @@ public:
double mf_hi, mf_lo, mf_err;
timestat.statistics(t_time);
mf_hi = flops/timestat.min;
mf_lo = flops/timestat.max;
mf_hi = flops/timestat.min*ni;
mf_lo = flops/timestat.max*ni;
mf_err= flops/timestat.min * timestat.err/timestat.mean;
mflops = flops/timestat.mean;
mflops = flops/timestat.mean*ni;
mflops_all.push_back(mflops);
if ( mflops_best == 0 ) mflops_best = mflops;
if ( mflops_worst== 0 ) mflops_worst= mflops;
@@ -535,6 +536,7 @@ public:
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s = "<< mflops << " ("<<mf_err<<") " << mf_lo<<"-"<<mf_hi <<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s per rank "<< mflops/NP<<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s per node "<< mflops/NN<<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo us per call "<< timestat.mean/ni<<std::endl;
}
@@ -654,17 +656,19 @@ public:
}
FGrid->Barrier();
double t1=usecond();
uint64_t ncall = 500;
FGrid->Broadcast(0,&ncall,sizeof(ncall));
uint64_t no = 50;
uint64_t ni = 100;
// std::cout << GridLogMessage << " Estimate " << ncall << " calls per second"<<std::endl;
time_statistics timestat;
std::vector<double> t_time(ncall);
for(uint64_t i=0;i<ncall;i++){
std::vector<double> t_time(no);
for(uint64_t i=0;i<no;i++){
t0=usecond();
Ds.DhopEO(src_o,r_e,DaggerNo);
for(uint64_t j=0;j<ni;j++){
Ds.DhopEO(src_o,r_e,DaggerNo);
}
t1=usecond();
t_time[i] = t1-t0;
}
@@ -675,11 +679,11 @@ public:
double mf_hi, mf_lo, mf_err;
timestat.statistics(t_time);
mf_hi = flops/timestat.min;
mf_lo = flops/timestat.max;
mf_hi = flops/timestat.min*ni;
mf_lo = flops/timestat.max*ni;
mf_err= flops/timestat.min * timestat.err/timestat.mean;
mflops = flops/timestat.mean;
mflops = flops/timestat.mean*ni;
mflops_all.push_back(mflops);
if ( mflops_best == 0 ) mflops_best = mflops;
if ( mflops_worst== 0 ) mflops_worst= mflops;
@@ -689,6 +693,7 @@ public:
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s = "<< mflops << " ("<<mf_err<<") " << mf_lo<<"-"<<mf_hi <<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s per rank "<< mflops/NP<<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s per node "<< mflops/NN<<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo us per call "<< timestat.mean/ni<<std::endl;
}
@@ -792,19 +797,18 @@ public:
Dc.M(src,r);
}
FGrid->Barrier();
double t1=usecond();
uint64_t ncall = 500;
FGrid->Broadcast(0,&ncall,sizeof(ncall));
uint64_t ni = 100;
uint64_t no = 50;
// std::cout << GridLogMessage << " Estimate " << ncall << " calls per second"<<std::endl;
time_statistics timestat;
std::vector<double> t_time(ncall);
for(uint64_t i=0;i<ncall;i++){
t0=usecond();
Dc.M(src,r);
t1=usecond();
std::vector<double> t_time(no);
for(uint64_t i=0;i<no;i++){
double t0=usecond();
for(uint64_t j=0;j<ni;j++){
Dc.M(src,r);
}
double t1=usecond();
t_time[i] = t1-t0;
}
FGrid->Barrier();
@@ -814,20 +818,21 @@ public:
double mf_hi, mf_lo, mf_err;
timestat.statistics(t_time);
mf_hi = flops/timestat.min;
mf_lo = flops/timestat.max;
mf_hi = flops/timestat.min*ni;
mf_lo = flops/timestat.max*ni;
mf_err= flops/timestat.min * timestat.err/timestat.mean;
mflops = flops/timestat.mean;
mflops = flops/timestat.mean*ni;
mflops_all.push_back(mflops);
if ( mflops_best == 0 ) mflops_best = mflops;
if ( mflops_worst== 0 ) mflops_worst= mflops;
if ( mflops>mflops_best ) mflops_best = mflops;
if ( mflops<mflops_worst) mflops_worst= mflops;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Dclov mflop/s = "<< mflops << " ("<<mf_err<<") " << mf_lo<<"-"<<mf_hi <<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Dclov mflop/s = "<< mflops << " ("<<mf_err<<") " << mf_lo<<"-"<<mf_hi <<" "<<timestat.mean<<" us"<<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Dclov mflop/s per rank "<< mflops/NP<<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Dclov mflop/s per node "<< mflops/NN<<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Dclov us per call "<< timestat.mean/ni<<std::endl;
}
@@ -872,7 +877,7 @@ int main (int argc, char ** argv)
int do_dslash=1;
int sel=4;
std::vector<int> L_list({8,12,16,24});
std::vector<int> L_list({8,12,16,24,32});
int selm1=sel-1;
std::vector<double> clover;

View File

@@ -151,7 +151,7 @@ AC_ARG_ENABLE([tracing],
case ${ac_TRACING} in
nvtx)
AC_DEFINE([GRID_TRACING_NVTX],[1],[use NVTX])
LIBS="${LIBS} -lnvToolsExt64_1"
LIBS="${LIBS} -lnvToolsExt"
;;
roctx)
AC_DEFINE([GRID_TRACING_ROCTX],[1],[use ROCTX])
@@ -198,6 +198,8 @@ AC_ARG_ENABLE([Nc],
[ac_Nc=${enable_Nc}], [ac_Nc=3])
case ${ac_Nc} in
1)
AC_DEFINE([Config_Nc],[1],[Gauge group Nc]);;
2)
AC_DEFINE([Config_Nc],[2],[Gauge group Nc]);;
3)
@@ -211,6 +213,21 @@ case ${ac_Nc} in
*)
AC_MSG_ERROR(["Unsupport gauge group choice Nc = ${ac_Nc}"]);;
esac
############### Nd
AC_ARG_ENABLE([Nd],
[AS_HELP_STRING([--enable-Nd=2|3|4],[enable default LGT dimension])],
[ac_Nd=${enable_Nd}], [ac_Nd=4])
case ${ac_Nd} in
2)
AC_DEFINE([Config_Nd],[2],[Gauge field dimension Nd]);;
3)
AC_DEFINE([Config_Nd],[3],[Gauge field dimension Nd]);;
4)
AC_DEFINE([Config_Nd],[4],[Gauge field dimension Nd]);;
*)
AC_MSG_ERROR(["Unsupport dimension Nd = ${ac_Nd}"]);;
esac
############### Symplectic group
AC_ARG_ENABLE([Sp],
@@ -818,6 +835,7 @@ os (target) : $target_os
compiler vendor : ${ax_cv_cxx_compiler_vendor}
compiler version : ${ax_cv_gxx_version}
----- BUILD OPTIONS -----------------------------------
Nd : ${ac_Nd}
Nc : ${ac_Nc}
SIMD : ${ac_SIMD}${SIMD_GEN_WIDTH_MSG}
Threading : ${ac_openmp}

View File

@@ -93,10 +93,13 @@ int main(int argc, char ** argv)
Real coeff = (width*width) / Real(4*Iterations);
chi=kronecker;
// chi = (1-p^2/2N)^N kronecker
for(int n = 0; n < Iterations; ++n) {
Laplacian.M(chi,psi);
chi = chi - coeff*psi;
RealD n2 = norm2(chi);
chi = chi * (1.0/std::sqrt(n2));
}
std::cout << " Wuppertal smeared operator is chi = \n" << chi <<std::endl;

View File

@@ -1,18 +1,19 @@
#Ahead of time compile for PVC
export LDFLAGS="-fiopenmp -fsycl -fsycl-device-code-split=per_kernel -fsycl-targets=spir64_gen -Xs -device -Xs pvc -fsycl-device-lib=all -lze_loader -L${MKLROOT}/lib -qmkl=parallel -fsycl -lsycl -lnuma -L/opt/aurora/24.180.3/spack/unified/0.8.0/install/linux-sles15-x86_64/oneapi-2024.07.30.002/numactl-2.0.14-7v6edad/lib"
export CXXFLAGS="-O3 -fiopenmp -fsycl-unnamed-lambda -fsycl -Wno-tautological-compare -qmkl=parallel -fsycl -fno-exceptions -I/opt/aurora/24.180.3/spack/unified/0.8.0/install/linux-sles15-x86_64/oneapi-2024.07.30.002/numactl-2.0.14-7v6edad/include/"
export LDFLAGS="-fiopenmp -fsycl -fsycl-device-code-split=per_kernel -fsycl-targets=spir64_gen -Xs -device -Xs pvc -fsycl-device-lib=all -lze_loader -L${MKLROOT}/lib -qmkl=parallel -fsycl -lsycl -lnuma -L/opt/aurora/24.180.3/spack/unified/0.8.0/install/linux-sles15-x86_64/oneapi-2024.07.30.002/numactl-2.0.14-7v6edad/lib -fPIC -fsycl-max-parallel-link-jobs=16 -fno-sycl-rdc"
export CXXFLAGS="-O3 -fiopenmp -fsycl-unnamed-lambda -fsycl -Wno-tautological-compare -qmkl=parallel -fsycl -fno-exceptions -I/opt/aurora/24.180.3/spack/unified/0.8.0/install/linux-sles15-x86_64/oneapi-2024.07.30.002/numactl-2.0.14-7v6edad/include/ -fPIC"
#JIT compile
#export LDFLAGS="-fiopenmp -fsycl -fsycl-device-code-split=per_kernel -fsycl-device-lib=all -lze_loader -L${MKLROOT}/lib -qmkl=parallel -fsycl -lsycl "
#export CXXFLAGS="-O3 -fiopenmp -fsycl-unnamed-lambda -fsycl -Wno-tautological-compare -qmkl=parallel -fsycl -fno-exceptions "
../../configure \
../configure \
--enable-simd=GPU \
--enable-reduction=grid \
--enable-gen-simd-width=64 \
--enable-comms=mpi-auto \
--enable-debug \
--prefix $HOME/gpt-install \
--disable-gparity \
--disable-fermion-reps \
--with-lime=$CLIME \

View File

@@ -0,0 +1,22 @@
CLIME=`spack find --paths c-lime@2-3-9 | grep c-lime| cut -c 15-`
../../configure --enable-comms=mpi-auto \
--with-lime=$CLIME \
--enable-unified=no \
--enable-shm=nvlink \
--enable-tracing=none \
--enable-accelerator=hip \
--enable-gen-simd-width=64 \
--disable-gparity \
--disable-fermion-reps \
--enable-simd=GPU \
--with-gmp=$OLCF_GMP_ROOT \
--with-fftw=$FFTW_DIR/.. \
--with-mpfr=/opt/cray/pe/gcc/mpfr/3.1.4/ \
--disable-fermion-reps \
CXX=hipcc MPICXX=mpicxx \
CXXFLAGS="-fPIC -I${ROCM_PATH}/include/ -I${MPICH_DIR}/include -L/lib64 " \
LDFLAGS="-L/lib64 -L${ROCM_PATH}/lib -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa -lhipblas -lrocblas"

View File

@@ -0,0 +1,16 @@
echo spack
. /autofs/nccs-svm1_home1/paboyle/Crusher/Grid/spack/share/spack/setup-env.sh
#module load cce/15.0.1
module load rocm/6.3.1
module load cray-fftw
module load craype-accel-amd-gfx90a
export LD_LIBRARY_PATH=/opt/gcc/mpfr/3.1.4/lib:$LD_LIBRARY_PATH
#Ugly hacks to get down level software working on current system
#export LD_LIBRARY_PATH=/opt/cray/libfabric/1.20.1/lib64/:$LD_LIBRARY_PATH
#export LD_LIBRARY_PATH=`pwd`/:$LD_LIBRARY_PATH
#ln -s /opt/rocm-6.0.0/lib/libamdhip64.so.6 .

View File

@@ -30,14 +30,10 @@ source ${root}/sourceme.sh
export OMP_NUM_THREADS=7
export MPICH_GPU_SUPPORT_ENABLED=1
export MPICH_SMP_SINGLE_COPY_MODE=XPMEM
for vol in 32.32.32.64
#export MPICH_SMP_SINGLE_COPY_MODE=XPMEM
#64.64.32.96
for vol in 64.64.32.64
do
srun ./select_gpu ./Benchmark_dwf_fp32 --mpi 2.2.2.2 --accelerator-threads 8 --comms-overlap --shm 2048 --shm-mpi 0 --grid $vol > log.shm0.ov.$vol
srun ./select_gpu ./Benchmark_dwf_fp32 --mpi 2.2.2.2 --accelerator-threads 8 --comms-overlap --shm 2048 --shm-mpi 1 --grid $vol > log.shm1.ov.$vol
srun ./select_gpu ./Benchmark_dwf_fp32 --mpi 2.2.2.2 --accelerator-threads 8 --comms-sequential --shm 2048 --shm-mpi 0 --grid $vol > log.shm0.seq.$vol
srun ./select_gpu ./Benchmark_dwf_fp32 --mpi 2.2.2.2 --accelerator-threads 8 --comms-sequential --shm 2048 --shm-mpi 1 --grid $vol > log.shm1.seq.$vol
srun ./select_gpu ./Benchmark_dwf_fp32 --mpi 2.2.2.2 --accelerator-threads 8 --comms-overlap --shm 2048 --shm-mpi 0 --grid $vol -Ls 16
done

View File

@@ -3,20 +3,19 @@ CLIME=`spack find --paths c-lime@2-3-9 | grep c-lime| cut -c 15-`
--with-lime=$CLIME \
--enable-unified=no \
--enable-shm=nvlink \
--enable-tracing=timer \
--enable-tracing=none \
--enable-accelerator=hip \
--enable-gen-simd-width=64 \
--disable-gparity \
--disable-fermion-reps \
--enable-simd=GPU \
--enable-accelerator-cshift \
--with-gmp=$OLCF_GMP_ROOT \
--with-fftw=$FFTW_DIR/.. \
--with-mpfr=/opt/cray/pe/gcc/mpfr/3.1.4/ \
--disable-fermion-reps \
CXX=hipcc MPICXX=mpicxx \
CXXFLAGS="-fPIC -I{$ROCM_PATH}/include/ -I${MPICH_DIR}/include -L/lib64 " \
LDFLAGS="-L/lib64 -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa -lamdhip64 -lhipblas -lrocblas"
CXXFLAGS="-fPIC -I${ROCM_PATH}/include/ -I${MPICH_DIR}/include -L/lib64 " \
LDFLAGS="-L/lib64 -L${ROCM_PATH}/lib -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa -lhipblas -lrocblas"

View File

@@ -1,12 +1,25 @@
echo spack
. /autofs/nccs-svm1_home1/paboyle/Crusher/Grid/spack/share/spack/setup-env.sh
spack load c-lime
module load emacs
module load PrgEnv-gnu
module load rocm/6.0.0
module load cray-mpich
module load gmp
module load cce/15.0.1
module load rocm/5.3.0
module load cray-fftw
module load craype-accel-amd-gfx90a
#Ugly hacks to get down level software working on current system
export LD_LIBRARY_PATH=/opt/cray/libfabric/1.20.1/lib64/:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/opt/gcc/mpfr/3.1.4/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=`pwd`/:$LD_LIBRARY_PATH
ln -s /opt/rocm-6.0.0/lib/libamdhip64.so.6 .
#echo spack load c-lime
#spack load c-lime
#module load emacs
##module load PrgEnv-gnu
##module load cray-mpich
##module load cray-fftw
##module load craype-accel-amd-gfx90a
##export LD_LIBRARY_PATH=/opt/gcc/mpfr/3.1.4/lib:$LD_LIBRARY_PATH
#Hack for lib
#export LD_LIBRARY_PATH=`pwd`:$LD_LIBRARY_PATH
##export LD_LIBRARY_PATH=`pwd`/:$LD_LIBRARY_PATH

206
systems/WorkArounds.txt Normal file
View File

@@ -0,0 +1,206 @@
The purpose of this file is to collate all non-obvious known magic shell variables
and compiler flags required for either correctness or performance on various systems.
A repository of work-arounds.
Contents:
1. Interconnect + MPI
2. Compilation
3. Profiling
************************
* 1. INTERCONNECT + MPI
************************
--------------------------------------------------------------------
MPI2-IO correctness: force OpenMPI to use the MPICH romio implementation for parallel I/O
--------------------------------------------------------------------
export OMPI_MCA_io=romio321
--------------------------------------
ROMIO fail with > 2GB per node read (32 bit issue)
--------------------------------------
Use later MPICH
https://github.com/paboyle/Grid/issues/381
https://github.com/pmodels/mpich/commit/3a479ab0
--------------------------------------------------------------------
Slingshot: Frontier and Perlmutter libfabric slow down
and physical memory fragmentation
--------------------------------------------------------------------
export FI_MR_CACHE_MONITOR=disabled
or
export FI_MR_CACHE_MONITOR=kdreg2
--------------------------------------------------------------------
Perlmutter
--------------------------------------------------------------------
export MPICH_RDMA_ENABLED_CUDA=1
export MPICH_GPU_IPC_ENABLED=1
export MPICH_GPU_EAGER_REGISTER_HOST_MEM=0
export MPICH_GPU_NO_ASYNC_MEMCPY=0
--------------------------------------------------------------------
Frontier/LumiG
--------------------------------------------------------------------
Hiding ROCR_VISIBLE_DEVICES triggers SDMA engines to be used for GPU-GPU
cat << EOF > select_gpu
#!/bin/bash
export MPICH_GPU_SUPPORT_ENABLED=1
export MPICH_SMP_SINGLE_COPY_MODE=XPMEM
export GPU_MAP=(0 1 2 3 7 6 5 4)
export NUMA_MAP=(3 3 1 1 2 2 0 0)
export GPU=\${GPU_MAP[\$SLURM_LOCALID]}
export NUMA=\${NUMA_MAP[\$SLURM_LOCALID]}
export HIP_VISIBLE_DEVICES=\$GPU
unset ROCR_VISIBLE_DEVICES
echo RANK \$SLURM_LOCALID using GPU \$GPU
exec numactl -m \$NUMA -N \$NUMA \$*
EOF
chmod +x ./select_gpu
srun ./select_gpu BINARY
--------------------------------------------------------------------
Mellanox performance with A100 GPU (Tursa, Booster, Leonardo)
--------------------------------------------------------------------
export OMPI_MCA_btl=^uct,openib
export UCX_TLS=gdr_copy,rc,rc_x,sm,cuda_copy,cuda_ipc
export UCX_RNDV_SCHEME=put_zcopy
export UCX_RNDV_THRESH=16384
export UCX_IB_GPU_DIRECT_RDMA=yes
--------------------------------------------------------------------
Mellanox + A100 correctness (Tursa, Booster, Leonardo)
--------------------------------------------------------------------
export UCX_MEMTYPE_CACHE=n
--------------------------------------------------------------------
MPICH/Aurora/PVC correctness and performance
--------------------------------------------------------------------
https://github.com/pmodels/mpich/issues/7302
--enable-cuda-aware-mpi=no
--enable-unified=no
Grid's internal D-H-H-D pipeline mode, avoid device memory in MPI
Do not use SVM
Ideally use MPICH with fix to issue 7302:
https://github.com/pmodels/mpich/pull/7312
Ideally:
MPIR_CVAR_CH4_IPC_GPU_HANDLE_CACHE=generic
Alternatives:
export MPIR_CVAR_NOLOCAL=1
export MPIR_CVAR_CH4_IPC_GPU_P2P_THRESHOLD=1000000000
--------------------------------------------------------------------
MPICH/Aurora/PVC correctness and performance
--------------------------------------------------------------------
Broken:
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
This gives good peformance without requiring
--enable-cuda-aware-mpi=no
But is an open issue reported by James Osborn
https://github.com/pmodels/mpich/issues/7139
Possibly resolved but unclear if in the installed software yet.
************************
* 2. COMPILATION
************************
--------------------------------------------------------------------
G++ compiler breakage / graveyard
--------------------------------------------------------------------
9.3.0, 10.3.1,
https://github.com/paboyle/Grid/issues/290
https://github.com/paboyle/Grid/issues/264
Working (-) Broken (X):
4.9.0 -
4.9.1 -
5.1.0 X
5.2.0 X
5.3.0 X
5.4.0 X
6.1.0 X
6.2.0 X
6.3.0 -
7.1.0 -
8.0.0 (HEAD) -
https://github.com/paboyle/Grid/issues/100
--------------------------------------------------------------------
AMD GPU nodes :
--------------------------------------------------------------------
multiple ROCM versions broken; use 5.3.0
manifests itself as wrong results in fp32
https://github.com/paboyle/Grid/issues/464
--------------------------------------------------------------------
Aurora/PVC
--------------------------------------------------------------------
SYCL ahead of time compilation (fixes rare runtime JIT errors and faster runtime, PB)
SYCL slow link and relocatable code issues (Christoph Lehner)
Opt large register file required for good performance in fp64
export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file"
export LDFLAGS="-fiopenmp -fsycl -fsycl-device-code-split=per_kernel -fsycl-targets=spir64_gen -Xs -device -Xs pvc -fsycl-device-lib=all -lze_loader -L${MKLROOT}/lib -qmkl=parallel -fsycl -lsycl -fPIC -fsycl-max-parallel-link-jobs=16 -fno-sycl-rdc"
export CXXFLAGS="-O3 -fiopenmp -fsycl-unnamed-lambda -fsycl -Wno-tautological-compare -qmkl=parallel -fsycl -fno-exceptions -fPIC"
--------------------------------------------------------------------
Aurora/PVC useful extra options
--------------------------------------------------------------------
Host only sanitizer:
-Xarch_host -fsanitize=leak
-Xarch_host -fsanitize=address
Deterministic MPI reduction:
export MPIR_CVAR_ALLREDUCE_DEVICE_COLLECTIVE=0
export MPIR_CVAR_REDUCE_DEVICE_COLLECTIVE=0
export MPIR_CVAR_ALLREDUCE_INTRA_ALGORITHM=recursive_doubling
unset MPIR_CVAR_CH4_COLL_SELECTION_TUNING_JSON_FILE
unset MPIR_CVAR_COLL_SELECTION_TUNING_JSON_FILE
unset MPIR_CVAR_CH4_POSIX_COLL_SELECTION_TUNING_JSON_FILE
************************
* 3. Visual profile tools
************************
--------------------------------------------------------------------
Frontier/rocprof
--------------------------------------------------------------------
--------------------------------------------------------------------
Aurora/unitrace
--------------------------------------------------------------------
--------------------------------------------------------------------
Tursa/nsight-sys
--------------------------------------------------------------------

View File

@@ -0,0 +1,12 @@
MPICXX=mpicxx CXXFLAGS=-I/opt/local/include LDFLAGS=-L/opt/local/lib/ CXX=clang++ ../../configure \
--enable-simd=GEN \
--enable-Nc=1 \
--enable-comms=mpi-auto \
--enable-unified=yes \
--prefix $HOME/QCD/GridInstall \
--with-lime=/Users/peterboyle/QCD/SciDAC/install/ \
--with-openssl=$BREW \
--disable-fermion-reps \
--disable-gparity \
--enable-debug

View File

@@ -1,2 +1,14 @@
CXXFLAGS=-I/opt/local/include LDFLAGS=-L/opt/local/lib/ CXX=c++-13 MPICXX=mpicxx ../../configure --enable-simd=GEN --enable-comms=mpi-auto --enable-unified=yes --prefix $HOME/QCD/GridInstall --with-lime=/Users/peterboyle/QCD/SciDAC/install/ --with-openssl=$BREW --disable-fermion-reps --disable-gparity --disable-debug
CXX=mpicxx ../../configure \
--enable-simd=GEN \
--enable-comms=mpi-auto \
--enable-Sp=yes \
--enable-unified=yes \
--prefix /Users/peterboyle/QCD/vtk/Grid/install \
--with-lime=$CLIME \
--with-openssl=$OPENSSL \
--with-gmp=$GMP \
--with-mpfr=$MPFR \
--disable-debug

View File

@@ -0,0 +1,32 @@
#!/bin/bash
#SBATCH --partition lqcd
#SBATCH --time=00:50:00
#SBATCH -A lqcdtest
#SBATCH -q lqcd
#SBATCH --exclusive
#SBATCH --nodes=1
#SBATCH -w genoahost001,genoahost003,genoahost050,genoahost054
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=64
#SBATCH --qos lqcd
source sourceme.sh
export PLACES=(1:16:4 1:32:2 0:64:1);
export THR=(16 32 64)
for t in 2
do
export OMP_NUM_THREADS=${THR[$t]}
export OMP_PLACES=${PLACES[$t]}
export thr=${THR[$t]}
#for vol in 24.24.24.24 32.32.32.32 48.48.48.96
for vol in 48.48.48.96
do
srun -N1 -n1 ./benchmarks/Benchmark_dwf_fp32 --mpi 1.1.1.1 --grid $vol --dslash-asm --shm 8192 > $vol.1node.thr$thr
done
#srun -N1 -n1 ./benchmarks/Benchmark_usqcd --mpi 1.1.1.1 --grid $vol > usqcd.1node.thr$thr
done

Some files were not shown because too many files have changed in this diff Show More