mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-11-04 05:54:32 +00:00 
			
		
		
		
	Compare commits
	
		
			235 Commits
		
	
	
		
			32bd3ab8d9
			...
			feature/S2
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 
						 | 
					d3ca16c76d | ||
| 
						 | 
					d81d00a889 | ||
| 
						 | 
					d0ee38d1da | ||
| 
						 | 
					da8dc3da0d | ||
| 
						 | 
					21514d8487 | ||
| 
						 | 
					77b2e9fb61 | ||
| 
						 | 
					a71ba05bd7 | ||
| 
						 | 
					1e95e64035 | ||
| 
						 | 
					defcac92ab | ||
| 
						 | 
					4869378f1e | ||
| 
						 | 
					c7b74db317 | ||
| 
						 | 
					0ce201efbe | ||
| 
						 | 
					6d8a3d8bb2 | ||
| 
						 | 
					7dfd207ebb | ||
| 
						 | 
					3a65a096f2 | ||
| 
						 | 
					85b2bd4c93 | ||
| 
						 | 
					35e10a1159 | ||
| d418f78352 | |||
| 25163998a0 | |||
| 
						 | 
					dc546aaa4b | ||
| 
						 | 
					5364d580c9 | ||
| 
						 | 
					2a9a6347e3 | ||
| 
						 | 
					cfdb56f314 | ||
| 
						 | 
					b517e88db3 | ||
| bb317aba8d | |||
| 644cc6647e | |||
| 72397ce23b | |||
| 
						 | 
					d60a80c098 | ||
| 
						 | 
					bb8b6d9d73 | ||
| 
						 | 
					677b4cc5b0 | ||
| 
						 | 
					be565ffab6 | ||
| 
						 | 
					df6120e5f6 | ||
| 
						 | 
					21de6f7da8 | ||
| 
						 | 
					dbe39f9ce0 | ||
| 
						 | 
					ab3de50d5e | ||
| 
						 | 
					c545bd2139 | ||
| 
						 | 
					6a1c64fbdd | ||
| 
						 | 
					b75809ed61 | ||
| 
						 | 
					ecaf228e5c | ||
| 
						 | 
					6d015ae8fc | ||
| 
						 | 
					233150d93f | ||
| 
						 | 
					7af8c77a52 | ||
| 
						 | 
					a957e7bfa1 | ||
| 
						 | 
					cee4c8ce8c | ||
| 
						 | 
					96bf814d8c | ||
| 
						 | 
					7ddc422788 | ||
| 
						 | 
					e652fc2825 | ||
| 
						 | 
					a49fa3f8d0 | ||
| 
						 | 
					cd452a2f91 | ||
| 
						 | 
					4f89f603ae | ||
| 
						 | 
					11dc2c5e1d | ||
| 
						 | 
					6fec3c15ca | ||
| 
						 | 
					938c47480f | ||
| 
						 | 
					3811d19298 | ||
| 
						 | 
					83a3ab6b6f | ||
| 
						 | 
					d66a9af6a3 | ||
| 
						 | 
					adc90d3a86 | ||
| 
						 | 
					ebbd015c5c | ||
| 
						 | 
					4ab73b36b2 | ||
| 
						 | 
					130e07a422 | ||
| 
						 | 
					8f47bb367e | ||
| 
						 | 
					0c3cb60135 | ||
| 
						 | 
					9eae8fca5d | ||
| 
						 | 
					882a217074 | ||
| 
						 | 
					e465fce201 | ||
| 
						 | 
					d41542c64b | ||
| 
						 | 
					199818bd6c | ||
| 
						 | 
					fe66c7ca30 | ||
| 
						 | 
					e9177e4af3 | ||
| 
						 | 
					d15a6c5933 | ||
| 25ab9325e7 | |||
| 19f9378b98 | |||
| 
						 | 
					785bc7a14f | ||
| 
						 | 
					1a1fe85428 | ||
| 
						 | 
					0000d2e558 | ||
| 
						 | 
					9ffd1ed4ce | ||
| 
						 | 
					3d014864e2 | ||
| 1d22841811 | |||
| 
						 | 
					a1cdda833f | ||
| 
						 | 
					ad6db92690 | ||
| 
						 | 
					e8ff9d8e50 | ||
| 
						 | 
					795769c636 | ||
| 
						 | 
					267a39d943 | ||
| 
						 | 
					3624bd3d22 | ||
| 
						 | 
					bc12dbbb38 | ||
| 
						 | 
					eb8a008a8f | ||
| c4d9aa1a21 | |||
| 6ae809ed40 | |||
| 
						 | 
					311e2aab3f | ||
| 438dfbdb83 | |||
| b2ce760cf4 | |||
| 
						 | 
					b1ba209696 | ||
| 
						 | 
					cb3e529b1e | ||
| 
						 | 
					717f647418 | ||
| 
						 | 
					98e7418187 | ||
| 
						 | 
					fe05bf48b1 | ||
| 
						 | 
					d2dd8f54e2 | ||
| 
						 | 
					7726ee4b16 | ||
| ba9bbe0221 | |||
| 4c3dd82d84 | |||
| 44e911b5b7 | |||
| a7a16df9d0 | |||
| 382e0abefd | |||
| 6fdefe5b90 | |||
| 4788dd8e2e | |||
| 1cc5f221f3 | |||
| 93251bfba0 | |||
| 18b79508b8 | |||
| 4de5ed1613 | |||
| 0baaddbe98 | |||
| 8729c46169 | |||
| 09f81fe7c3 | |||
| 1876e5b7c0 | |||
| 
						 | 
					355ec76257 | ||
| b50fb34e71 | |||
| de84d730ff | |||
| 
						 | 
					c74d11e3d7 | ||
| 
						 | 
					84cab5e6e7 | ||
| c4fc972fec | |||
| 8cf809e231 | |||
| 94019a922e | |||
| 
						 | 
					4f17c8d081 | ||
| 
						 | 
					aaab753982 | ||
| d6b2727f86 | |||
| 74a4f43946 | |||
| 1caf8b0f86 | |||
| 
						 | 
					570b72a47b | ||
| 
						 | 
					a5798a89ed | ||
| 
						 | 
					3f3661a86f | ||
| 
						 | 
					f7e2f9a401 | ||
| 
						 | 
					2848a9b558 | ||
| 
						 | 
					d4868991af | ||
| 
						 | 
					e99d42404e | ||
| 
						 | 
					3ba019c747 | ||
| 
						 | 
					47429218bb | ||
| 8fe429346f | |||
| 
						 | 
					5a4f9bf2e3 | ||
| 
						 | 
					b91fc1b6b4 | ||
| 
						 | 
					eafc150034 | ||
| 
						 | 
					2877f1a268 | ||
| 
						 | 
					1e893af775 | ||
| 
						 | 
					d9f430a575 | ||
| 
						 | 
					63abe87f36 | ||
| 
						 | 
					368d649c8a | ||
| 
						 | 
					5603464f39 | ||
| 
						 | 
					655c79f39e | ||
| 
						 | 
					565b231c03 | ||
| 
						 | 
					62a9f180fa | ||
| 
						 | 
					5ae77876a8 | ||
| 
						 | 
					4ed2c2c74f | ||
| 
						 | 
					955da582b6 | ||
| 
						 | 
					11b07b950d | ||
| 
						 | 
					8f70cfeda9 | ||
| 
						 | 
					ce64271048 | ||
| 5cc4f3241d | |||
| 
						 | 
					6815e138b4 | ||
| a78a61d76f | |||
| 2eff3f34ed | |||
| 03687c1d62 | |||
| febfe4e77f | |||
| 4d1aa134b5 | |||
| 5ec879860a | |||
| 
						 | 
					f617468e04 | ||
| b728af903c | |||
| 54f1999030 | |||
| fd58f0b669 | |||
| c5c67b706e | |||
| be7a543e2c | |||
| 68f112d576 | |||
| ec1395a304 | |||
| beb0e474ee | |||
| 2b5fdcbbc5 | |||
| 295127d456 | |||
| 7dcfb13694 | |||
| 
						 | 
					ee4046fe92 | ||
| 
						 | 
					2a9cfeb9ea | ||
| 
						 | 
					1147b8ea40 | ||
| 
						 | 
					3f9119b39d | ||
| 
						 | 
					35e8225abd | ||
| 
						 | 
					bdbfbb7a14 | ||
| 
						 | 
					f7d4be8d96 | ||
| 9fa8bd6438 | |||
| 02c8178f16 | |||
| e637fbacae | |||
| 066544281f | |||
| 11be10d2c0 | |||
| 160969a758 | |||
| 622f78ebea | |||
| 
						 | 
					aa67a5b095 | ||
| 
						 | 
					af9ea0864c | ||
| 
						 | 
					4e2a6d87c4 | ||
| 
						 | 
					a465ecece9 | ||
| 
						 | 
					575eb72182 | ||
| 
						 | 
					3a973914d6 | ||
| 
						 | 
					f568c07bbd | ||
| 
						 | 
					2c9878fc3a | ||
| 
						 | 
					27b1b1b005 | ||
| 
						 | 
					130d7ab077 | ||
| 
						 | 
					29f6b8a74a | ||
| 
						 | 
					9779aaea33 | ||
| 
						 | 
					ec25604a67 | ||
| 
						 | 
					3668e81c5e | ||
| 
						 | 
					d66b2423cb | ||
| 
						 | 
					15cc78f0b6 | ||
| 
						 | 
					06db4ddea2 | ||
| 
						 | 
					6cfb90e99f | ||
| 
						 | 
					d8be95a2a3 | ||
| 
						 | 
					f82702872d | ||
| 
						 | 
					3752c49ef0 | ||
| 
						 | 
					fe65fa4988 | ||
| 
						 | 
					1fe4c205a3 | ||
| 
						 | 
					d4dc5e0f43 | ||
| 
						 | 
					77944437ce | ||
| 
						 | 
					c164bff758 | ||
| 
						 | 
					aa2e3d954a | ||
| 
						 | 
					de62b04728 | ||
| 
						 | 
					d0bdb50f24 | ||
| 
						 | 
					a8fecbc609 | ||
| 
						 | 
					557fa483ff | ||
| 
						 | 
					fc15d55df6 | ||
| 
						 | 
					53573d7d94 | ||
| 
						 | 
					bb3c177000 | ||
| 
						 | 
					a3322b470f | ||
| 
						 | 
					f8f408e7a9 | ||
| 
						 | 
					baac1127d0 | ||
| 
						 | 
					6f1328160c | ||
| 
						 | 
					04cf902791 | ||
| 
						 | 
					7a5b1c1a19 | ||
| 
						 | 
					18d2d7da4a | ||
| 
						 | 
					6ae52da571 | ||
| 
						 | 
					4ee9c68053 | ||
| 
						 | 
					a15b4378a3 | ||
| 8d305df0db | |||
| 
						 | 
					e29b97b3ea | ||
| 
						 | 
					ad2b699d2b | 
							
								
								
									
										1125
									
								
								BLAS_benchmark/BatchBlasBench.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1125
									
								
								BLAS_benchmark/BatchBlasBench.cc
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										2
									
								
								BLAS_benchmark/compile-command
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										2
									
								
								BLAS_benchmark/compile-command
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,2 @@
 | 
			
		||||
 | 
			
		||||
mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench -DGRID_SYCL
 | 
			
		||||
							
								
								
									
										5
									
								
								BLAS_benchmark/compile-command-frontier
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										5
									
								
								BLAS_benchmark/compile-command-frontier
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,5 @@
 | 
			
		||||
CXX=hipcc
 | 
			
		||||
MPICXX=mpicxx 
 | 
			
		||||
CXXFLAGS="-fPIC -I{$ROCM_PATH}/include/ -I${MPICH_DIR}/include -L/lib64 -I/opt/cray/pe/mpich/8.1.28/ofi/gnu/12.3/include -DGRID_HIP"
 | 
			
		||||
LDFLAGS="-L/lib64 -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa -lamdhip64 -lhipblas -lrocblas -lmpi_gnu_123"
 | 
			
		||||
hipcc $CXXFLAGS $LDFLAGS BatchBlasBench.cc -o BatchBlasBench
 | 
			
		||||
							
								
								
									
										2
									
								
								BLAS_benchmark/compile-command-sunspot
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										2
									
								
								BLAS_benchmark/compile-command-sunspot
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,2 @@
 | 
			
		||||
 | 
			
		||||
mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench -DGRID_SYCL
 | 
			
		||||
@@ -37,6 +37,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#include <Grid/qcd/QCD.h>
 | 
			
		||||
#include <Grid/qcd/spin/Spin.h>
 | 
			
		||||
#include <Grid/qcd/gparity/Gparity.h>
 | 
			
		||||
#include <Grid/qcd/spin/Pauli.h> // depends on Gparity
 | 
			
		||||
#include <Grid/qcd/utils/Utils.h>
 | 
			
		||||
#include <Grid/qcd/representations/Representations.h>
 | 
			
		||||
NAMESPACE_CHECK(GridQCDCore);
 | 
			
		||||
 
 | 
			
		||||
@@ -50,6 +50,7 @@ NAMESPACE_CHECK(approx);
 | 
			
		||||
#include <Grid/algorithms/deflation/Deflation.h>
 | 
			
		||||
#include <Grid/algorithms/deflation/MultiRHSBlockProject.h>
 | 
			
		||||
#include <Grid/algorithms/deflation/MultiRHSDeflation.h>
 | 
			
		||||
#include <Grid/algorithms/deflation/MultiRHSBlockCGLinalg.h>
 | 
			
		||||
NAMESPACE_CHECK(deflation);
 | 
			
		||||
#include <Grid/algorithms/iterative/ConjugateGradient.h>
 | 
			
		||||
NAMESPACE_CHECK(ConjGrad);
 | 
			
		||||
 
 | 
			
		||||
@@ -168,6 +168,7 @@ public:
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  void FFT_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int dim, int sign){
 | 
			
		||||
#ifndef HAVE_FFTW
 | 
			
		||||
    std::cerr << "FFTW is not compiled but is called"<<std::endl;
 | 
			
		||||
    assert(0);
 | 
			
		||||
#else
 | 
			
		||||
    conformable(result.Grid(),vgrid);
 | 
			
		||||
@@ -190,7 +191,8 @@ public:
 | 
			
		||||
      
 | 
			
		||||
    Lattice<sobj> pgbuf(&pencil_g);
 | 
			
		||||
    autoView(pgbuf_v , pgbuf, CpuWrite);
 | 
			
		||||
 | 
			
		||||
    //std::cout << "CPU view" << std::endl;
 | 
			
		||||
    
 | 
			
		||||
    typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
 | 
			
		||||
    typedef typename FFTW<scalar>::FFTW_plan   FFTW_plan;
 | 
			
		||||
      
 | 
			
		||||
@@ -213,6 +215,7 @@ public:
 | 
			
		||||
    else if ( sign == forward ) div = 1.0;
 | 
			
		||||
    else assert(0);
 | 
			
		||||
      
 | 
			
		||||
    //std::cout << GridLogPerformance<<"Making FFTW plan" << std::endl;
 | 
			
		||||
    FFTW_plan p;
 | 
			
		||||
    {
 | 
			
		||||
      FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0];
 | 
			
		||||
@@ -226,6 +229,7 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
      
 | 
			
		||||
    // Barrel shift and collect global pencil
 | 
			
		||||
    //std::cout << GridLogPerformance<<"Making pencil" << std::endl;
 | 
			
		||||
    Coordinate lcoor(Nd), gcoor(Nd);
 | 
			
		||||
    result = source;
 | 
			
		||||
    int pc = processor_coor[dim];
 | 
			
		||||
@@ -247,6 +251,7 @@ public:
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
      
 | 
			
		||||
    //std::cout <<GridLogPerformance<< "Looping orthog" << std::endl;
 | 
			
		||||
    // Loop over orthog coords
 | 
			
		||||
    int NN=pencil_g.lSites();
 | 
			
		||||
    GridStopWatch timer;
 | 
			
		||||
@@ -269,6 +274,7 @@ public:
 | 
			
		||||
    usec += timer.useconds();
 | 
			
		||||
    flops+= flops_call*NN;
 | 
			
		||||
      
 | 
			
		||||
    //std::cout <<GridLogPerformance<< "Writing back results " << std::endl;
 | 
			
		||||
    // writing out result
 | 
			
		||||
    {
 | 
			
		||||
      autoView(pgbuf_v,pgbuf,CpuRead);
 | 
			
		||||
@@ -285,6 +291,7 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
    result = result*div;
 | 
			
		||||
      
 | 
			
		||||
    //std::cout <<GridLogPerformance<< "Destroying plan " << std::endl;
 | 
			
		||||
    // destroying plan
 | 
			
		||||
    FFTW<scalar>::fftw_destroy_plan(p);
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -103,6 +103,38 @@ public:
 | 
			
		||||
    _Mat.MdagM(in,out);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
template<class Matrix,class Field>
 | 
			
		||||
class MMdagLinearOperator : public LinearOperatorBase<Field> {
 | 
			
		||||
  Matrix &_Mat;
 | 
			
		||||
public:
 | 
			
		||||
  MMdagLinearOperator(Matrix &Mat): _Mat(Mat){};
 | 
			
		||||
 | 
			
		||||
  // Support for coarsening to a multigrid
 | 
			
		||||
  void OpDiag (const Field &in, Field &out) {
 | 
			
		||||
    _Mat.Mdiag(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
			
		||||
    _Mat.Mdir(in,out,dir,disp);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
			
		||||
    _Mat.MdirAll(in,out);
 | 
			
		||||
  };
 | 
			
		||||
  void Op     (const Field &in, Field &out){
 | 
			
		||||
    _Mat.M(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void AdjOp     (const Field &in, Field &out){
 | 
			
		||||
    _Mat.Mdag(in,out);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
    _Mat.MMdag(in,out);
 | 
			
		||||
    ComplexD dot = innerProduct(in,out);
 | 
			
		||||
    n1=real(dot);
 | 
			
		||||
    n2=norm2(out);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOp(const Field &in, Field &out){
 | 
			
		||||
    _Mat.MMdag(in,out);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Construct herm op and shift it for mgrid smoother
 | 
			
		||||
@@ -245,6 +277,38 @@ public:
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
template<class Matrix,class Field>
 | 
			
		||||
class ShiftedNonHermitianLinearOperator : public LinearOperatorBase<Field> {
 | 
			
		||||
  Matrix &_Mat;
 | 
			
		||||
  RealD shift;
 | 
			
		||||
public:
 | 
			
		||||
  ShiftedNonHermitianLinearOperator(Matrix &Mat,RealD shft): _Mat(Mat),shift(shft){};
 | 
			
		||||
  // Support for coarsening to a multigrid
 | 
			
		||||
  void OpDiag (const Field &in, Field &out) {
 | 
			
		||||
    _Mat.Mdiag(in,out);
 | 
			
		||||
    out = out + shift*in;
 | 
			
		||||
  }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
			
		||||
    _Mat.Mdir(in,out,dir,disp);
 | 
			
		||||
  }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
			
		||||
    _Mat.MdirAll(in,out);
 | 
			
		||||
  };
 | 
			
		||||
  void Op     (const Field &in, Field &out){
 | 
			
		||||
    _Mat.M(in,out);
 | 
			
		||||
    out = out + shift * in;
 | 
			
		||||
  }
 | 
			
		||||
  void AdjOp     (const Field &in, Field &out){
 | 
			
		||||
    _Mat.Mdag(in,out);
 | 
			
		||||
    out = out + shift * in;
 | 
			
		||||
  }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  void HermOp(const Field &in, Field &out){
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////
 | 
			
		||||
// Even Odd Schur decomp operators; there are several
 | 
			
		||||
 
 | 
			
		||||
@@ -45,6 +45,11 @@ public:
 | 
			
		||||
    M(in,tmp);
 | 
			
		||||
    Mdag(tmp,out);
 | 
			
		||||
  }
 | 
			
		||||
  virtual void  MMdag(const Field &in, Field &out) {
 | 
			
		||||
    Field tmp (in.Grid());
 | 
			
		||||
    Mdag(in,tmp);
 | 
			
		||||
    M(tmp,out);
 | 
			
		||||
  }
 | 
			
		||||
  virtual  void Mdiag    (const Field &in, Field &out)=0;
 | 
			
		||||
  virtual  void Mdir     (const Field &in, Field &out,int dir, int disp)=0;
 | 
			
		||||
  virtual  void MdirAll  (const Field &in, std::vector<Field> &out)=0;
 | 
			
		||||
 
 | 
			
		||||
@@ -59,7 +59,7 @@ public:
 | 
			
		||||
    RealD diff = hi-lo;
 | 
			
		||||
    RealD delta = diff*1.0e-9;
 | 
			
		||||
    for (RealD x=lo; x<hi; x+=delta) {
 | 
			
		||||
      delta*=1.1;
 | 
			
		||||
      delta*=1.02;
 | 
			
		||||
      RealD f = approx(x);
 | 
			
		||||
      out<< x<<" "<<f<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
@@ -131,6 +131,26 @@ public:
 | 
			
		||||
      Coeffs[j] = s * 2.0/order;
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
  template<class functor>
 | 
			
		||||
  void Init(RealD _lo,RealD _hi,int _order, functor & func)
 | 
			
		||||
  {
 | 
			
		||||
    lo=_lo;
 | 
			
		||||
    hi=_hi;
 | 
			
		||||
    order=_order;
 | 
			
		||||
      
 | 
			
		||||
    if(order < 2) exit(-1);
 | 
			
		||||
    Coeffs.resize(order);
 | 
			
		||||
    for(int j=0;j<order;j++){
 | 
			
		||||
      RealD s=0;
 | 
			
		||||
      for(int k=0;k<order;k++){
 | 
			
		||||
	RealD y=std::cos(M_PI*(k+0.5)/order);
 | 
			
		||||
	RealD x=0.5*(y*(hi-lo)+(hi+lo));
 | 
			
		||||
	RealD f=func(x);
 | 
			
		||||
	s=s+f*std::cos( j*M_PI*(k+0.5)/order );
 | 
			
		||||
      }
 | 
			
		||||
      Coeffs[j] = s * 2.0/order;
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
  void JacksonSmooth(void){
 | 
			
		||||
@@ -249,7 +269,9 @@ public:
 | 
			
		||||
    RealD xscale = 2.0/(hi-lo);
 | 
			
		||||
    RealD mscale = -(hi+lo)/(hi-lo);
 | 
			
		||||
    Linop.HermOp(T0,y);
 | 
			
		||||
    grid->Barrier();
 | 
			
		||||
    axpby(T1,xscale,mscale,y,in);
 | 
			
		||||
    grid->Barrier();
 | 
			
		||||
 | 
			
		||||
    // sum = .5 c[0] T0 + c[1] T1
 | 
			
		||||
    //    out = ()*T0 + Coeffs[1]*T1;
 | 
			
		||||
 
 | 
			
		||||
@@ -55,10 +55,10 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
  typedef cublasHandle_t gridblasHandle_t;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
  typedef cl::sycl::queue *gridblasHandle_t;
 | 
			
		||||
  typedef sycl::queue *gridblasHandle_t;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_ONE_MKL
 | 
			
		||||
  typedef cl::sycl::queue *gridblasHandle_t;
 | 
			
		||||
  typedef sycl::queue *gridblasHandle_t;
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL)
 | 
			
		||||
  typedef int32_t gridblasHandle_t;
 | 
			
		||||
@@ -89,9 +89,9 @@ public:
 | 
			
		||||
      gridblasHandle = theGridAccelerator;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_ONE_MKL
 | 
			
		||||
      cl::sycl::gpu_selector selector;
 | 
			
		||||
      cl::sycl::device selectedDevice { selector };
 | 
			
		||||
      cl::sycl::property_list q_prop{cl::sycl::property::queue::in_order()};
 | 
			
		||||
      sycl::gpu_selector selector;
 | 
			
		||||
      sycl::device selectedDevice { selector };
 | 
			
		||||
      sycl::property_list q_prop{sycl::property::queue::in_order()};
 | 
			
		||||
      gridblasHandle =new sycl::queue (selectedDevice,q_prop);
 | 
			
		||||
#endif
 | 
			
		||||
      gridblasInit=1;
 | 
			
		||||
@@ -208,6 +208,9 @@ public:
 | 
			
		||||
    assert(Bkn.size()==batchCount);
 | 
			
		||||
    assert(Cmn.size()==batchCount);
 | 
			
		||||
 | 
			
		||||
    //assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
 | 
			
		||||
    //assert(OpB!=GridBLAS_OP_T);
 | 
			
		||||
 | 
			
		||||
    int lda = m; // m x k column major
 | 
			
		||||
    int ldb = k; // k x n column major
 | 
			
		||||
    int ldc = m; // m x b column major
 | 
			
		||||
@@ -267,7 +270,6 @@ public:
 | 
			
		||||
    assert(err==CUBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
    std::cerr << " Calling SYCL batched ZGEMM "<<std::endl;
 | 
			
		||||
      int64_t m64=m;
 | 
			
		||||
      int64_t n64=n;
 | 
			
		||||
      int64_t k64=k;
 | 
			
		||||
@@ -275,10 +277,20 @@ public:
 | 
			
		||||
      int64_t ldb64=ldb;
 | 
			
		||||
      int64_t ldc64=ldc;
 | 
			
		||||
      int64_t batchCount64=batchCount;
 | 
			
		||||
      oneapi::mkl::transpose notransp =oneapi::mkl::transpose::N;
 | 
			
		||||
 | 
			
		||||
      oneapi::mkl::transpose iOpA;
 | 
			
		||||
      oneapi::mkl::transpose iOpB;
 | 
			
		||||
      
 | 
			
		||||
      if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
 | 
			
		||||
      if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
 | 
			
		||||
      if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
 | 
			
		||||
 | 
			
		||||
      oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
 | 
			
		||||
						  ¬ransp,
 | 
			
		||||
						  ¬ransp,
 | 
			
		||||
						  &iOpA,
 | 
			
		||||
						  &iOpB,
 | 
			
		||||
						  &m64,&n64,&k64,
 | 
			
		||||
						  (ComplexD *) &alpha_p[0],
 | 
			
		||||
						  (const ComplexD **)&Amk[0], (const int64_t *)&lda64,
 | 
			
		||||
@@ -287,42 +299,139 @@ public:
 | 
			
		||||
						  (ComplexD **)&Cmn[0], (const int64_t *)&ldc64,
 | 
			
		||||
						  (int64_t)1,&batchCount64,std::vector<sycl::event>());
 | 
			
		||||
      synchronise();
 | 
			
		||||
    std::cerr << " Called SYCL batched ZGEMM "<<std::endl;
 | 
			
		||||
#if 0
 | 
			
		||||
      // This code was used to check the mat mul on Sunspot/OneMKL
 | 
			
		||||
      std::cerr << " Called SYCL batched ZGEMM OpA "<< OpA << " OpB "<<OpB <<std::endl;
 | 
			
		||||
      std::vector<ComplexD> A(m*k);  // pointer list to matrices
 | 
			
		||||
      std::vector<ComplexD> B(k*n);
 | 
			
		||||
      std::vector<ComplexD> C(m*n);
 | 
			
		||||
      int sda = lda*k;
 | 
			
		||||
      int sdb = ldb*k;
 | 
			
		||||
      int sdc = ldc*n;
 | 
			
		||||
      //      int sda = lda*k;
 | 
			
		||||
      //      int sdb = ldb*k;
 | 
			
		||||
      //      int sdc = ldc*n;
 | 
			
		||||
      std::cerr << " Checking the GEMM results "<<std::endl;
 | 
			
		||||
      for (int p = 0; p < 1; ++p) {
 | 
			
		||||
	acceleratorCopyFromDevice((void *)&Amk[p][0],(void *)&A[0],m*k*sizeof(ComplexD));
 | 
			
		||||
	acceleratorCopyFromDevice((void *)&Bkn[p][0],(void *)&B[0],k*n*sizeof(ComplexD));
 | 
			
		||||
	acceleratorCopyFromDevice((void *)&Cmn[p][0],(void *)&C[0],m*n*sizeof(ComplexD));
 | 
			
		||||
	ComplexD * Amk_p;  // pointer list to matrices
 | 
			
		||||
	ComplexD * Bkn_p;  // pointer list to matrices
 | 
			
		||||
	ComplexD * Cmn_p;  // pointer list to matrices
 | 
			
		||||
	acceleratorCopyFromDevice((void *)&Amk[p],(void *)&Amk_p,sizeof(ComplexD*));
 | 
			
		||||
	acceleratorCopyFromDevice((void *)&Bkn[p],(void *)&Bkn_p,sizeof(ComplexD*));
 | 
			
		||||
	acceleratorCopyFromDevice((void *)&Cmn[p],(void *)&Cmn_p,sizeof(ComplexD*));
 | 
			
		||||
	std::cerr << " p " << p << " copied pointers "<<std::endl;
 | 
			
		||||
	acceleratorCopyFromDevice((void *)Amk_p,(void *)&A[0],m*k*sizeof(ComplexD));
 | 
			
		||||
	acceleratorCopyFromDevice((void *)Bkn_p,(void *)&B[0],k*n*sizeof(ComplexD));
 | 
			
		||||
	acceleratorCopyFromDevice((void *)Cmn_p,(void *)&C[0],m*n*sizeof(ComplexD));
 | 
			
		||||
	std::cerr << " p " << p << " copied matrices "<<std::endl;
 | 
			
		||||
	std::cerr << " C[0] "<<C[0]<<std::endl;
 | 
			
		||||
	std::cerr << " A[0] "<<A[0]<<std::endl;
 | 
			
		||||
	std::cerr << " B[0] "<<B[0]<<std::endl;
 | 
			
		||||
	std::cerr << " m "<<m<<std::endl;
 | 
			
		||||
	std::cerr << " n "<<n<<std::endl;
 | 
			
		||||
	std::cerr << " k "<<k<<std::endl;
 | 
			
		||||
	for (int mm = 0; mm < m; ++mm) {
 | 
			
		||||
	  for (int nn = 0; nn < n; ++nn) {
 | 
			
		||||
	    ComplexD c_mn(0.0);
 | 
			
		||||
	    for (int kk = 0; kk < k; ++kk)
 | 
			
		||||
	      c_mn += A[mm + kk*lda ] * B[kk + nn*ldb];
 | 
			
		||||
	    std::cout << " beta "<<beta<<" C_"<<mm<<","<<nn<<" "<<c_mn<<" "<<C[mm + nn*ldc]<<std::endl;
 | 
			
		||||
	    for (int kk = 0; kk < k; ++kk) {
 | 
			
		||||
	      int idx_a, idx_b;
 | 
			
		||||
	      //    int lda = m; // m x k column major
 | 
			
		||||
	      //    int ldb = k; // k x n column major
 | 
			
		||||
	      //    int ldc = m; // m x b column major
 | 
			
		||||
	      if(OpA!=GridBLAS_OP_N) {
 | 
			
		||||
		idx_a =kk + mm*lda;
 | 
			
		||||
	      } else {
 | 
			
		||||
		idx_a =mm + kk*lda;
 | 
			
		||||
	      }
 | 
			
		||||
	      if(OpB!=GridBLAS_OP_N) {
 | 
			
		||||
		idx_b =nn + kk*ldb;
 | 
			
		||||
	      } else {
 | 
			
		||||
		idx_b =kk + nn*ldb;
 | 
			
		||||
	      }
 | 
			
		||||
	      //	      std::cerr << " idx_a "<<idx_a<<" idx_b "<<idx_b<<std::endl;
 | 
			
		||||
 | 
			
		||||
	      ComplexD Ac = A[idx_a];
 | 
			
		||||
	      ComplexD Bc = B[idx_b];
 | 
			
		||||
	      if(OpA==GridBLAS_OP_C) Ac = conjugate(Ac);
 | 
			
		||||
	      if(OpB==GridBLAS_OP_C) Bc = conjugate(Bc);
 | 
			
		||||
	      
 | 
			
		||||
	      c_mn += Ac*Bc;
 | 
			
		||||
	    }
 | 
			
		||||
	    std::cerr << " beta "<<beta<<" alpha "<<alpha<<" C_"<<mm<<","<<nn<<" "<<c_mn<<" "<<C[mm + nn*ldc]<<std::endl;
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
#endif
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
 | 
			
		||||
    // Need a default/reference implementation
 | 
			
		||||
    int sda = lda*k;
 | 
			
		||||
    int sdb = ldb*k;
 | 
			
		||||
    int sdc = ldc*n;
 | 
			
		||||
    for (int p = 0; p < batchCount; ++p) {
 | 
			
		||||
      for (int mm = 0; mm < m; ++mm) {
 | 
			
		||||
	for (int nn = 0; nn < n; ++nn) {
 | 
			
		||||
	  ComplexD c_mn(0.0);
 | 
			
		||||
	  for (int kk = 0; kk < k; ++kk)
 | 
			
		||||
	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
 | 
			
		||||
	  Cmn[p][mm + nn*ldc] =  (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
 | 
			
		||||
	}
 | 
			
		||||
    // Need a default/reference implementation; use Eigen
 | 
			
		||||
      if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk * eBkn ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk * eBkn ;
 | 
			
		||||
        });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk.adjoint() * eBkn ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk.transpose() * eBkn ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk * eBkn.adjoint() ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk.adjoint() * eBkn.adjoint() ;
 | 
			
		||||
	  } );
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk.transpose() * eBkn.transpose() ;
 | 
			
		||||
	  } );
 | 
			
		||||
      } else { 
 | 
			
		||||
	assert(0);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
     RealD t1=usecond();
 | 
			
		||||
     RealD flops = 8.0*m*n*k*batchCount;
 | 
			
		||||
@@ -344,6 +453,9 @@ public:
 | 
			
		||||
    RealD t2=usecond();
 | 
			
		||||
    int32_t batchCount = Amk.size();
 | 
			
		||||
 | 
			
		||||
    //assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
 | 
			
		||||
    //assert(OpB!=GridBLAS_OP_T);
 | 
			
		||||
 | 
			
		||||
    int lda = m; // m x k column major
 | 
			
		||||
    int ldb = k; // k x n column major
 | 
			
		||||
    int ldc = m; // m x b column major
 | 
			
		||||
@@ -411,10 +523,20 @@ public:
 | 
			
		||||
      int64_t ldb64=ldb;
 | 
			
		||||
      int64_t ldc64=ldc;
 | 
			
		||||
      int64_t batchCount64=batchCount;
 | 
			
		||||
      oneapi::mkl::transpose notransp =oneapi::mkl::transpose::N;
 | 
			
		||||
 | 
			
		||||
      oneapi::mkl::transpose iOpA;
 | 
			
		||||
      oneapi::mkl::transpose iOpB;
 | 
			
		||||
      
 | 
			
		||||
      if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
 | 
			
		||||
      if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
 | 
			
		||||
      if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
 | 
			
		||||
 | 
			
		||||
      oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
 | 
			
		||||
						  ¬ransp,
 | 
			
		||||
						  ¬ransp,
 | 
			
		||||
						  &iOpA,
 | 
			
		||||
						  &iOpB,
 | 
			
		||||
						  &m64,&n64,&k64,
 | 
			
		||||
						  (ComplexF *) &alpha_p[0],
 | 
			
		||||
						  (const ComplexF **)&Amk[0], (const int64_t *)&lda64,
 | 
			
		||||
@@ -425,22 +547,80 @@ public:
 | 
			
		||||
    synchronise();
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
 | 
			
		||||
    int sda = lda*k;
 | 
			
		||||
    int sdb = ldb*k;
 | 
			
		||||
    int sdc = ldc*n;
 | 
			
		||||
    ComplexF alphaf(real(alpha),imag(alpha));
 | 
			
		||||
    ComplexF betaf(real(beta),imag(beta));
 | 
			
		||||
    // Need a default/reference implementation
 | 
			
		||||
    for (int p = 0; p < batchCount; ++p) {
 | 
			
		||||
      for (int mm = 0; mm < m; ++mm) {
 | 
			
		||||
	for (int nn = 0; nn < n; ++nn) {
 | 
			
		||||
	  ComplexF c_mn(0.0);
 | 
			
		||||
	  for (int kk = 0; kk < k; ++kk)
 | 
			
		||||
	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
 | 
			
		||||
	  Cmn[p][mm + nn*ldc] =  (alphaf)*c_mn + (betaf)*Cmn[p][mm + nn*ldc ];
 | 
			
		||||
	}
 | 
			
		||||
    // Need a default/reference implementation; use Eigen
 | 
			
		||||
      if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk * eBkn ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk * eBkn ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk.adjoint() * eBkn ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk.transpose() * eBkn ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk * eBkn.adjoint() ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk * eBkn.transpose() ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk.adjoint() * eBkn.adjoint() ;
 | 
			
		||||
	  } );
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk.transpose() * eBkn.transpose() ;
 | 
			
		||||
	  } );
 | 
			
		||||
      } else { 
 | 
			
		||||
	assert(0);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
     RealD t1=usecond();
 | 
			
		||||
     RealD flops = 8.0*m*n*k*batchCount;
 | 
			
		||||
@@ -463,6 +643,9 @@ public:
 | 
			
		||||
    RealD t2=usecond();
 | 
			
		||||
    int32_t batchCount = Amk.size();
 | 
			
		||||
 | 
			
		||||
    assert(OpA!=GridBLAS_OP_C); // Real case no conjugate
 | 
			
		||||
    assert(OpB!=GridBLAS_OP_C);
 | 
			
		||||
 | 
			
		||||
    int lda = m; // m x k column major
 | 
			
		||||
    int ldb = k; // k x n column major
 | 
			
		||||
    int ldc = m; // m x b column major
 | 
			
		||||
@@ -529,10 +712,20 @@ public:
 | 
			
		||||
      int64_t ldb64=ldb;
 | 
			
		||||
      int64_t ldc64=ldc;
 | 
			
		||||
      int64_t batchCount64=batchCount;
 | 
			
		||||
      oneapi::mkl::transpose notransp =oneapi::mkl::transpose::N;
 | 
			
		||||
 | 
			
		||||
      oneapi::mkl::transpose iOpA;
 | 
			
		||||
      oneapi::mkl::transpose iOpB;
 | 
			
		||||
      
 | 
			
		||||
      if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
 | 
			
		||||
      if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
 | 
			
		||||
      if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
 | 
			
		||||
 | 
			
		||||
      oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
 | 
			
		||||
						  ¬ransp,
 | 
			
		||||
						  ¬ransp,
 | 
			
		||||
						  &iOpA,
 | 
			
		||||
						  &iOpB,
 | 
			
		||||
						  &m64,&n64,&k64,
 | 
			
		||||
						  (float *) &alpha_p[0],
 | 
			
		||||
						  (const float **)&Amk[0], (const int64_t *)&lda64,
 | 
			
		||||
@@ -540,23 +733,53 @@ public:
 | 
			
		||||
						  (float *) &beta_p[0],
 | 
			
		||||
						  (float **)&Cmn[0], (const int64_t *)&ldc64,
 | 
			
		||||
						  (int64_t)1,&batchCount64,std::vector<sycl::event>());
 | 
			
		||||
    synchronise();
 | 
			
		||||
      synchronise();
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
 | 
			
		||||
    int sda = lda*k;
 | 
			
		||||
    int sdb = ldb*k;
 | 
			
		||||
    int sdc = ldc*n;
 | 
			
		||||
    // Need a default/reference implementation
 | 
			
		||||
    for (int p = 0; p < batchCount; ++p) {
 | 
			
		||||
      for (int mm = 0; mm < m; ++mm) {
 | 
			
		||||
	for (int nn = 0; nn < n; ++nn) {
 | 
			
		||||
	  RealD c_mn(0.0);
 | 
			
		||||
	  for (int kk = 0; kk < k; ++kk)
 | 
			
		||||
	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
 | 
			
		||||
	  Cmn[p][mm + nn*ldc] =  (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
 | 
			
		||||
	}
 | 
			
		||||
    // Need a default/reference implementation; use Eigen
 | 
			
		||||
      if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk * eBkn ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk * eBkn ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk.transpose() * eBkn ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk * eBkn.transpose() ;	  
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk.transpose() * eBkn.transpose() ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else { 
 | 
			
		||||
	assert(0);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
     RealD t1=usecond();
 | 
			
		||||
     RealD flops = 2.0*m*n*k*batchCount;
 | 
			
		||||
@@ -567,7 +790,6 @@ public:
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Double precision real GEMM
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  void gemmBatched(GridBLASOperation_t OpA,
 | 
			
		||||
		   GridBLASOperation_t OpB,
 | 
			
		||||
		   int m,int n, int k,
 | 
			
		||||
@@ -580,6 +802,9 @@ public:
 | 
			
		||||
    RealD t2=usecond();
 | 
			
		||||
    int32_t batchCount = Amk.size();
 | 
			
		||||
 | 
			
		||||
    assert(OpA!=GridBLAS_OP_C); // Real case no conjugate
 | 
			
		||||
    assert(OpB!=GridBLAS_OP_C);
 | 
			
		||||
 | 
			
		||||
    int lda = m; // m x k column major
 | 
			
		||||
    int ldb = k; // k x n column major
 | 
			
		||||
    int ldc = m; // m x b column major
 | 
			
		||||
@@ -647,10 +872,20 @@ public:
 | 
			
		||||
      int64_t ldb64=ldb;
 | 
			
		||||
      int64_t ldc64=ldc;
 | 
			
		||||
      int64_t batchCount64=batchCount;
 | 
			
		||||
      oneapi::mkl::transpose notransp =oneapi::mkl::transpose::N;
 | 
			
		||||
 | 
			
		||||
      oneapi::mkl::transpose iOpA;
 | 
			
		||||
      oneapi::mkl::transpose iOpB;
 | 
			
		||||
      
 | 
			
		||||
      if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
 | 
			
		||||
      if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
 | 
			
		||||
      if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
 | 
			
		||||
      if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
 | 
			
		||||
 | 
			
		||||
      oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
 | 
			
		||||
						  ¬ransp,
 | 
			
		||||
						  ¬ransp,
 | 
			
		||||
						  &iOpA,
 | 
			
		||||
						  &iOpB,
 | 
			
		||||
						  &m64,&n64,&k64,
 | 
			
		||||
						  (double *) &alpha_p[0],
 | 
			
		||||
						  (const double **)&Amk[0], (const int64_t *)&lda64,
 | 
			
		||||
@@ -658,144 +893,108 @@ public:
 | 
			
		||||
						  (double *) &beta_p[0],
 | 
			
		||||
						  (double **)&Cmn[0], (const int64_t *)&ldc64,
 | 
			
		||||
						  (int64_t)1,&batchCount64,std::vector<sycl::event>());
 | 
			
		||||
    synchronise();
 | 
			
		||||
      synchronise();
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
 | 
			
		||||
    int sda = lda*k;
 | 
			
		||||
    int sdb = ldb*k;
 | 
			
		||||
    int sdc = ldc*n;
 | 
			
		||||
    // Need a default/reference implementation
 | 
			
		||||
    for (int p = 0; p < batchCount; ++p) {
 | 
			
		||||
      for (int mm = 0; mm < m; ++mm) {
 | 
			
		||||
	for (int nn = 0; nn < n; ++nn) {
 | 
			
		||||
	  RealD c_mn(0.0);
 | 
			
		||||
	  for (int kk = 0; kk < k; ++kk)
 | 
			
		||||
	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
 | 
			
		||||
	  Cmn[p][mm + nn*ldc] =  (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
 | 
			
		||||
	}
 | 
			
		||||
    // Need a default/reference implementation; use Eigen
 | 
			
		||||
      if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk * eBkn ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk * eBkn ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk.transpose() * eBkn ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk * eBkn.transpose() ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
 | 
			
		||||
	thread_for (p, batchCount, {
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k);
 | 
			
		||||
	  Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
 | 
			
		||||
	  if (std::abs(beta) != 0.0)
 | 
			
		||||
	    eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
 | 
			
		||||
	  else
 | 
			
		||||
	    eCmn = alpha * eAmk.transpose() * eBkn.transpose() ;
 | 
			
		||||
	  });
 | 
			
		||||
      } else { 
 | 
			
		||||
	assert(0);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
     RealD t1=usecond();
 | 
			
		||||
     RealD flops = 2.0*m*n*k*batchCount;
 | 
			
		||||
     RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Strided case used by benchmark, but generally unused in Grid
 | 
			
		||||
  // Keep a code example in double complex, but don't generate the single and real variants for now
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  
 | 
			
		||||
  void gemmStridedBatched(int m,int n, int k,
 | 
			
		||||
			  ComplexD alpha,
 | 
			
		||||
			  ComplexD* Amk,  // pointer list to matrices
 | 
			
		||||
			  ComplexD* Bkn,
 | 
			
		||||
			  ComplexD beta,
 | 
			
		||||
			  ComplexD* Cmn,
 | 
			
		||||
			  int batchCount)
 | 
			
		||||
  {
 | 
			
		||||
    // Use C-row major storage, so transpose calls
 | 
			
		||||
    int lda = m; // m x k column major
 | 
			
		||||
    int ldb = k; // k x n column major
 | 
			
		||||
    int ldc = m; // m x b column major
 | 
			
		||||
    int sda = m*k;
 | 
			
		||||
    int sdb = k*n;
 | 
			
		||||
    int sdc = m*n;
 | 
			
		||||
    deviceVector<ComplexD> alpha_p(1);
 | 
			
		||||
    deviceVector<ComplexD> beta_p(1);
 | 
			
		||||
    acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
 | 
			
		||||
    acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
 | 
			
		||||
    //    std::cout << "blasZgemmStridedBatched mnk  "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
 | 
			
		||||
    //    std::cout << "blasZgemmStridedBatched ld   "<<lda<<","<<ldb<<","<<ldc<<std::endl;
 | 
			
		||||
    //    std::cout << "blasZgemmStridedBatched sd   "<<sda<<","<<sdb<<","<<sdc<<std::endl;
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
    auto err = hipblasZgemmStridedBatched(gridblasHandle,
 | 
			
		||||
					  HIPBLAS_OP_N,
 | 
			
		||||
					  HIPBLAS_OP_N,
 | 
			
		||||
					  m,n,k,
 | 
			
		||||
					  (hipblasDoubleComplex *) &alpha_p[0],
 | 
			
		||||
					  (hipblasDoubleComplex *) Amk, lda, sda,
 | 
			
		||||
					  (hipblasDoubleComplex *) Bkn, ldb, sdb,
 | 
			
		||||
					  (hipblasDoubleComplex *) &beta_p[0],
 | 
			
		||||
					  (hipblasDoubleComplex *) Cmn, ldc, sdc,
 | 
			
		||||
					  batchCount);
 | 
			
		||||
    assert(err==HIPBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
    cublasZgemmStridedBatched(gridblasHandle,
 | 
			
		||||
			      CUBLAS_OP_N,
 | 
			
		||||
			      CUBLAS_OP_N,
 | 
			
		||||
			      m,n,k,
 | 
			
		||||
			      (cuDoubleComplex *) &alpha_p[0],
 | 
			
		||||
			      (cuDoubleComplex *) Amk, lda, sda,
 | 
			
		||||
			      (cuDoubleComplex *) Bkn, ldb, sdb,
 | 
			
		||||
			      (cuDoubleComplex *) &beta_p[0],
 | 
			
		||||
			      (cuDoubleComplex *) Cmn, ldc, sdc,
 | 
			
		||||
			      batchCount);
 | 
			
		||||
#endif
 | 
			
		||||
#if defined(GRID_SYCL) || defined(GRID_ONE_MKL)
 | 
			
		||||
    oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
 | 
			
		||||
						oneapi::mkl::transpose::N,
 | 
			
		||||
						oneapi::mkl::transpose::N,
 | 
			
		||||
						m,n,k,
 | 
			
		||||
						alpha,
 | 
			
		||||
						(const ComplexD *)Amk,lda,sda,
 | 
			
		||||
						(const ComplexD *)Bkn,ldb,sdb,
 | 
			
		||||
						beta,
 | 
			
		||||
						(ComplexD *)Cmn,ldc,sdc,
 | 
			
		||||
						batchCount);
 | 
			
		||||
    synchronise();
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL)
 | 
			
		||||
     // Need a default/reference implementation
 | 
			
		||||
     for (int p = 0; p < batchCount; ++p) {
 | 
			
		||||
       for (int mm = 0; mm < m; ++mm) {
 | 
			
		||||
	 for (int nn = 0; nn < n; ++nn) {
 | 
			
		||||
	   ComplexD c_mn(0.0);
 | 
			
		||||
	   for (int kk = 0; kk < k; ++kk)
 | 
			
		||||
	     c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
 | 
			
		||||
	   Cmn[mm + nn*ldc + p*sdc] =  (alpha)*c_mn + (beta)*Cmn[mm + nn*ldc + p*sdc];
 | 
			
		||||
	 }
 | 
			
		||||
       }
 | 
			
		||||
     }
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class CComplex>
 | 
			
		||||
  double benchmark(int M, int N, int K, int BATCH)
 | 
			
		||||
  {
 | 
			
		||||
    int32_t N_A = M*K*BATCH;
 | 
			
		||||
    int32_t N_B = K*N*BATCH;
 | 
			
		||||
    int32_t N_C = M*N*BATCH;
 | 
			
		||||
    deviceVector<ComplexD> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(ComplexD));
 | 
			
		||||
    deviceVector<ComplexD> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(ComplexD));
 | 
			
		||||
    deviceVector<ComplexD> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(ComplexD));
 | 
			
		||||
    ComplexD alpha(1.0);
 | 
			
		||||
    ComplexD beta (1.0);
 | 
			
		||||
    deviceVector<CComplex> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(CComplex));
 | 
			
		||||
    deviceVector<CComplex> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(CComplex));
 | 
			
		||||
    deviceVector<CComplex> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(CComplex));
 | 
			
		||||
    CComplex alpha(1.0);
 | 
			
		||||
    CComplex beta (1.0);
 | 
			
		||||
    RealD flops = 8.0*M*N*K*BATCH;
 | 
			
		||||
    int ncall=10;
 | 
			
		||||
    int ncall=1000;
 | 
			
		||||
    deviceVector<CComplex *> As(BATCH);
 | 
			
		||||
    deviceVector<CComplex *> Bs(BATCH);
 | 
			
		||||
    deviceVector<CComplex *> Cs(BATCH);
 | 
			
		||||
    for(int b = 0 ; b < BATCH;b++) {
 | 
			
		||||
      CComplex *ptr;
 | 
			
		||||
      ptr = &A[b*M*K];      acceleratorPut(As[b],ptr);
 | 
			
		||||
      ptr = &B[b*K*N];      acceleratorPut(Bs[b],ptr);
 | 
			
		||||
      ptr = &C[b*M*N];      acceleratorPut(Cs[b],ptr);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Warm up call
 | 
			
		||||
    gemmBatched(M,N,K,
 | 
			
		||||
		alpha,
 | 
			
		||||
		As, // m x k 
 | 
			
		||||
		Bs, // k x n
 | 
			
		||||
		beta, 
 | 
			
		||||
		Cs);
 | 
			
		||||
    synchronise();
 | 
			
		||||
 | 
			
		||||
    RealD t0 = usecond();
 | 
			
		||||
    for(int i=0;i<ncall;i++){
 | 
			
		||||
      gemmStridedBatched(M,N,K,
 | 
			
		||||
			 alpha,
 | 
			
		||||
			 &A[0], // m x k 
 | 
			
		||||
			 &B[0], // k x n
 | 
			
		||||
			 beta, 
 | 
			
		||||
			 &C[0], // m x n
 | 
			
		||||
			 BATCH);
 | 
			
		||||
      gemmBatched(M,N,K,
 | 
			
		||||
		  alpha,
 | 
			
		||||
		  As, // m x k 
 | 
			
		||||
		  Bs, // k x n
 | 
			
		||||
		  beta, 
 | 
			
		||||
		  Cs);
 | 
			
		||||
      synchronise();
 | 
			
		||||
    }
 | 
			
		||||
    synchronise();
 | 
			
		||||
    RealD t1 = usecond();
 | 
			
		||||
    RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K)*BATCH;
 | 
			
		||||
    RealD bytes = 1.0*sizeof(CComplex)*(M*N*2+N*K+M*K)*BATCH;
 | 
			
		||||
    flops = 8.0*M*N*K*BATCH*ncall;
 | 
			
		||||
    flops = flops/(t1-t0)/1.e3;
 | 
			
		||||
    return flops; // Returns gigaflops
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										376
									
								
								Grid/algorithms/deflation/MultiRHSBlockCGLinalg.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										376
									
								
								Grid/algorithms/deflation/MultiRHSBlockCGLinalg.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,376 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: MultiRHSBlockCGLinalg.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2024
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/* Need helper object for BLAS accelerated mrhs blockCG */
 | 
			
		||||
template<class Field>
 | 
			
		||||
class MultiRHSBlockCGLinalg
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  typedef typename Field::scalar_type   scalar;
 | 
			
		||||
  typedef typename Field::scalar_object scalar_object;
 | 
			
		||||
  typedef typename Field::vector_object vector_object;
 | 
			
		||||
 | 
			
		||||
  deviceVector<scalar> BLAS_X;      // nrhs x vol -- the sources
 | 
			
		||||
  deviceVector<scalar> BLAS_Y;      // nrhs x vol -- the result
 | 
			
		||||
  deviceVector<scalar> BLAS_C;      // nrhs x nrhs -- the coefficients 
 | 
			
		||||
  deviceVector<scalar> BLAS_Cred;   // nrhs x nrhs x oSites -- reduction buffer
 | 
			
		||||
  deviceVector<scalar *> Xdip;
 | 
			
		||||
  deviceVector<scalar *> Ydip;
 | 
			
		||||
  deviceVector<scalar *> Cdip;
 | 
			
		||||
  
 | 
			
		||||
  MultiRHSBlockCGLinalg() {};
 | 
			
		||||
  ~MultiRHSBlockCGLinalg(){ Deallocate(); };
 | 
			
		||||
  
 | 
			
		||||
  void Deallocate(void)
 | 
			
		||||
  {
 | 
			
		||||
    Xdip.resize(0);
 | 
			
		||||
    Ydip.resize(0);
 | 
			
		||||
    Cdip.resize(0);
 | 
			
		||||
    BLAS_Cred.resize(0);
 | 
			
		||||
    BLAS_C.resize(0);
 | 
			
		||||
    BLAS_X.resize(0);
 | 
			
		||||
    BLAS_Y.resize(0);
 | 
			
		||||
  }
 | 
			
		||||
  void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0)
 | 
			
		||||
  {
 | 
			
		||||
    std::vector<Field> Y_copy(AP.size(),AP[0].Grid());
 | 
			
		||||
    for(int r=0;r<AP.size();r++){
 | 
			
		||||
      Y_copy[r] = Y[r];
 | 
			
		||||
    }
 | 
			
		||||
    MulMatrix(AP,m,X);
 | 
			
		||||
    for(int r=0;r<AP.size();r++){
 | 
			
		||||
      AP[r] = scale*AP[r]+Y_copy[r];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void MulMatrix(std::vector<Field> &Y, Eigen::MatrixXcd &m , const std::vector<Field> &X)
 | 
			
		||||
  {
 | 
			
		||||
    typedef typename Field::scalar_type scomplex;
 | 
			
		||||
    GridBase *grid;
 | 
			
		||||
    uint64_t vol;
 | 
			
		||||
    uint64_t words;
 | 
			
		||||
 | 
			
		||||
    int nrhs = Y.size();
 | 
			
		||||
    grid  = X[0].Grid();
 | 
			
		||||
    vol   = grid->lSites();
 | 
			
		||||
    words = sizeof(scalar_object)/sizeof(scalar);
 | 
			
		||||
    int64_t vw = vol * words;
 | 
			
		||||
 | 
			
		||||
    RealD t0 = usecond();
 | 
			
		||||
    BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
 | 
			
		||||
    BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
 | 
			
		||||
    BLAS_C.resize(nrhs * nrhs);// cost free if size doesn't change
 | 
			
		||||
    RealD t1 = usecond();
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////
 | 
			
		||||
    // Copy in the multi-rhs sources
 | 
			
		||||
    /////////////////////////////////////////////
 | 
			
		||||
    for(int r=0;r<nrhs;r++){
 | 
			
		||||
      int64_t offset = r*vw;
 | 
			
		||||
      autoView(x_v,X[r],AcceleratorRead);
 | 
			
		||||
      acceleratorCopyDeviceToDevice(&x_v[0],&BLAS_X[offset],sizeof(scalar_object)*vol);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Assumes Eigen storage contiguous
 | 
			
		||||
    acceleratorCopyToDevice(&m(0,0),&BLAS_C[0],BLAS_C.size()*sizeof(scalar));
 | 
			
		||||
    
 | 
			
		||||
  /*
 | 
			
		||||
   * in Fortran column major notation (cuBlas order)
 | 
			
		||||
   *
 | 
			
		||||
   * Xxr = [X1(x)][..][Xn(x)]
 | 
			
		||||
   * Yxr = [Y1(x)][..][Ym(x)]
 | 
			
		||||
   * Y = X . C
 | 
			
		||||
   */
 | 
			
		||||
    deviceVector<scalar *> Xd(1);
 | 
			
		||||
    deviceVector<scalar *> Yd(1);
 | 
			
		||||
    deviceVector<scalar *> Cd(1);
 | 
			
		||||
 | 
			
		||||
    scalar * Xh = & BLAS_X[0];
 | 
			
		||||
    scalar * Yh = & BLAS_Y[0];
 | 
			
		||||
    scalar * Ch = & BLAS_C[0];
 | 
			
		||||
 | 
			
		||||
    acceleratorPut(Xd[0],Xh);
 | 
			
		||||
    acceleratorPut(Yd[0],Yh);
 | 
			
		||||
    acceleratorPut(Cd[0],Ch);
 | 
			
		||||
 | 
			
		||||
    RealD t2 = usecond();
 | 
			
		||||
    GridBLAS BLAS;
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    // Y = X*C (transpose?)
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, 
 | 
			
		||||
    		     vw,nrhs,nrhs,
 | 
			
		||||
		     scalar(1.0),
 | 
			
		||||
		     Xd,
 | 
			
		||||
		     Cd,
 | 
			
		||||
		     scalar(0.0),  // wipe out Y
 | 
			
		||||
		     Yd);
 | 
			
		||||
    BLAS.synchronise();
 | 
			
		||||
    RealD t3 = usecond();
 | 
			
		||||
 | 
			
		||||
    // Copy back Y = m X 
 | 
			
		||||
    for(int r=0;r<nrhs;r++){
 | 
			
		||||
      int64_t offset = r*vw;
 | 
			
		||||
      autoView(y_v,Y[r],AcceleratorWrite);
 | 
			
		||||
      acceleratorCopyDeviceToDevice(&BLAS_Y[offset],&y_v[0],sizeof(scalar_object)*vol);
 | 
			
		||||
    }    
 | 
			
		||||
    RealD t4 = usecond();
 | 
			
		||||
    std::cout <<GridLogPerformance << "MulMatrix alloc    took "<< t1-t0<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "MulMatrix preamble took "<< t2-t1<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "MulMatrix blas     took "<< t3-t2<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "MulMatrix copy     took "<< t4-t3<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "MulMatrix total "<< t4-t0<<" us"<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y)
 | 
			
		||||
  {
 | 
			
		||||
#if 0    
 | 
			
		||||
    int nrhs;
 | 
			
		||||
    GridBase *grid;
 | 
			
		||||
    uint64_t vol;
 | 
			
		||||
    uint64_t words;
 | 
			
		||||
 | 
			
		||||
    nrhs = X.size();
 | 
			
		||||
    assert(X.size()==Y.size());
 | 
			
		||||
    conformable(X[0],Y[0]);
 | 
			
		||||
 | 
			
		||||
    grid  = X[0].Grid();
 | 
			
		||||
    vol   = grid->lSites();
 | 
			
		||||
    words = sizeof(scalar_object)/sizeof(scalar);
 | 
			
		||||
    int64_t vw = vol * words;
 | 
			
		||||
 | 
			
		||||
    RealD t0 = usecond();
 | 
			
		||||
    BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
 | 
			
		||||
    BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
 | 
			
		||||
    BLAS_C.resize(nrhs * nrhs);// cost free if size doesn't change
 | 
			
		||||
    RealD t1 = usecond();
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////
 | 
			
		||||
    // Copy in the multi-rhs sources
 | 
			
		||||
    /////////////////////////////////////////////
 | 
			
		||||
    for(int r=0;r<nrhs;r++){
 | 
			
		||||
      int64_t offset = r*vw;
 | 
			
		||||
      autoView(x_v,X[r],AcceleratorRead);
 | 
			
		||||
      acceleratorCopyDeviceToDevice(&x_v[0],&BLAS_X[offset],sizeof(scalar_object)*vol);
 | 
			
		||||
      autoView(y_v,Y[r],AcceleratorRead);
 | 
			
		||||
      acceleratorCopyDeviceToDevice(&y_v[0],&BLAS_Y[offset],sizeof(scalar_object)*vol);
 | 
			
		||||
    }
 | 
			
		||||
    RealD t2 = usecond();
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
   * in Fortran column major notation (cuBlas order)
 | 
			
		||||
   *
 | 
			
		||||
   * Xxr = [X1(x)][..][Xn(x)]
 | 
			
		||||
   *
 | 
			
		||||
   * Yxr = [Y1(x)][..][Ym(x)]
 | 
			
		||||
   *
 | 
			
		||||
   * C_rs = X^dag Y
 | 
			
		||||
   */
 | 
			
		||||
    deviceVector<scalar *> Xd(1);
 | 
			
		||||
    deviceVector<scalar *> Yd(1);
 | 
			
		||||
    deviceVector<scalar *> Cd(1);
 | 
			
		||||
 | 
			
		||||
    scalar * Xh = & BLAS_X[0];
 | 
			
		||||
    scalar * Yh = & BLAS_Y[0];
 | 
			
		||||
    scalar * Ch = & BLAS_C[0];
 | 
			
		||||
 | 
			
		||||
    acceleratorPut(Xd[0],Xh);
 | 
			
		||||
    acceleratorPut(Yd[0],Yh);
 | 
			
		||||
    acceleratorPut(Cd[0],Ch);
 | 
			
		||||
 | 
			
		||||
    GridBLAS BLAS;
 | 
			
		||||
 | 
			
		||||
    RealD t3 = usecond();
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    // C_rs = X^dag Y
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N, 
 | 
			
		||||
    		     nrhs,nrhs,vw,
 | 
			
		||||
		     ComplexD(1.0),
 | 
			
		||||
		     Xd,
 | 
			
		||||
		     Yd,
 | 
			
		||||
		     ComplexD(0.0),  // wipe out C
 | 
			
		||||
		     Cd);
 | 
			
		||||
    BLAS.synchronise();
 | 
			
		||||
    RealD t4 = usecond();
 | 
			
		||||
 | 
			
		||||
    std::vector<scalar> HOST_C(BLAS_C.size());      // nrhs . nrhs -- the coefficients 
 | 
			
		||||
    acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar));
 | 
			
		||||
    grid->GlobalSumVector(&HOST_C[0],nrhs*nrhs);
 | 
			
		||||
 | 
			
		||||
    RealD t5 = usecond();
 | 
			
		||||
    for(int rr=0;rr<nrhs;rr++){
 | 
			
		||||
      for(int r=0;r<nrhs;r++){
 | 
			
		||||
	int off = r+nrhs*rr;
 | 
			
		||||
	m(r,rr)=HOST_C[off];
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    RealD t6 = usecond();
 | 
			
		||||
    uint64_t M=nrhs;
 | 
			
		||||
    uint64_t N=nrhs;
 | 
			
		||||
    uint64_t K=vw;
 | 
			
		||||
    RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K);
 | 
			
		||||
    RealD flops = 8.0*M*N*K;
 | 
			
		||||
    flops = flops/(t4-t3)/1.e3;
 | 
			
		||||
    bytes = bytes/(t4-t3)/1.e3;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix cp    t2 "<< t2-t1<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas    "<< flops<<" GF/s"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas    "<< bytes<<" GB/s"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix gsum t5 "<< t5-t4<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix cp   t6 "<< t6-t5<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
 | 
			
		||||
#else
 | 
			
		||||
    int nrhs;
 | 
			
		||||
    GridBase *grid;
 | 
			
		||||
    uint64_t vol;
 | 
			
		||||
    uint64_t words;
 | 
			
		||||
 | 
			
		||||
    nrhs = X.size();
 | 
			
		||||
    assert(X.size()==Y.size());
 | 
			
		||||
    conformable(X[0],Y[0]);
 | 
			
		||||
 | 
			
		||||
    grid  = X[0].Grid();
 | 
			
		||||
    int rd0 =  grid->_rdimensions[0] * grid->_rdimensions[1];
 | 
			
		||||
    vol   = grid->oSites()/rd0;
 | 
			
		||||
    words = rd0*sizeof(vector_object)/sizeof(scalar);
 | 
			
		||||
    int64_t vw = vol * words;
 | 
			
		||||
    assert(vw == grid->lSites()*sizeof(scalar_object)/sizeof(scalar));
 | 
			
		||||
 | 
			
		||||
    RealD t0 = usecond();
 | 
			
		||||
    BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
 | 
			
		||||
    BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
 | 
			
		||||
    BLAS_Cred.resize(nrhs * nrhs * vol);// cost free if size doesn't change
 | 
			
		||||
    RealD t1 = usecond();
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////
 | 
			
		||||
    // Copy in the multi-rhs sources -- layout batched BLAS ready
 | 
			
		||||
    /////////////////////////////////////////////
 | 
			
		||||
    for(int r=0;r<nrhs;r++){
 | 
			
		||||
      autoView(x_v,X[r],AcceleratorRead);
 | 
			
		||||
      autoView(y_v,Y[r],AcceleratorRead);
 | 
			
		||||
      scalar *from_x=(scalar *)&x_v[0];
 | 
			
		||||
      scalar *from_y=(scalar *)&y_v[0];
 | 
			
		||||
      scalar *BX = &BLAS_X[0];
 | 
			
		||||
      scalar *BY = &BLAS_Y[0];
 | 
			
		||||
      accelerator_for(ssw,vw,1,{
 | 
			
		||||
	  uint64_t ss=ssw/words;
 | 
			
		||||
	  uint64_t  w=ssw%words;
 | 
			
		||||
	  uint64_t offset = w+r*words+ss*nrhs*words; // [ss][rhs][words]
 | 
			
		||||
	  BX[offset] = from_x[ssw];
 | 
			
		||||
	  BY[offset] = from_y[ssw];
 | 
			
		||||
	});
 | 
			
		||||
    }
 | 
			
		||||
    RealD t2 = usecond();
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
   * in Fortran column major notation (cuBlas order)
 | 
			
		||||
   *
 | 
			
		||||
   * Xxr = [X1(x)][..][Xn(x)]
 | 
			
		||||
   *
 | 
			
		||||
   * Yxr = [Y1(x)][..][Ym(x)]
 | 
			
		||||
   *
 | 
			
		||||
   * C_rs = X^dag Y
 | 
			
		||||
   */
 | 
			
		||||
    Xdip.resize(vol);
 | 
			
		||||
    Ydip.resize(vol);
 | 
			
		||||
    Cdip.resize(vol);
 | 
			
		||||
    std::vector<scalar *> Xh(vol);
 | 
			
		||||
    std::vector<scalar *> Yh(vol);
 | 
			
		||||
    std::vector<scalar *> Ch(vol);
 | 
			
		||||
    for(uint64_t ss=0;ss<vol;ss++){
 | 
			
		||||
 | 
			
		||||
      Xh[ss] = & BLAS_X[ss*nrhs*words];
 | 
			
		||||
      Yh[ss] = & BLAS_Y[ss*nrhs*words];
 | 
			
		||||
      Ch[ss] = & BLAS_Cred[ss*nrhs*nrhs];
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    acceleratorCopyToDevice(&Xh[0],&Xdip[0],vol*sizeof(scalar *));
 | 
			
		||||
    acceleratorCopyToDevice(&Yh[0],&Ydip[0],vol*sizeof(scalar *));
 | 
			
		||||
    acceleratorCopyToDevice(&Ch[0],&Cdip[0],vol*sizeof(scalar *));
 | 
			
		||||
    
 | 
			
		||||
    GridBLAS BLAS;
 | 
			
		||||
 | 
			
		||||
    RealD t3 = usecond();
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    // C_rs = X^dag Y
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N, 
 | 
			
		||||
    		     nrhs,nrhs,words,
 | 
			
		||||
		     ComplexD(1.0),
 | 
			
		||||
		     Xdip,
 | 
			
		||||
		     Ydip,
 | 
			
		||||
		     ComplexD(0.0),  // wipe out C
 | 
			
		||||
		     Cdip);
 | 
			
		||||
    BLAS.synchronise();
 | 
			
		||||
    RealD t4 = usecond();
 | 
			
		||||
 | 
			
		||||
    std::vector<scalar> HOST_C(BLAS_Cred.size());      // nrhs . nrhs -- the coefficients 
 | 
			
		||||
    acceleratorCopyFromDevice(&BLAS_Cred[0],&HOST_C[0],BLAS_Cred.size()*sizeof(scalar));
 | 
			
		||||
 | 
			
		||||
    RealD t5 = usecond();
 | 
			
		||||
    m = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
			
		||||
    for(int ss=0;ss<vol;ss++){
 | 
			
		||||
      Eigen::Map<Eigen::MatrixXcd> eC((std::complex<double> *)&HOST_C[ss*nrhs*nrhs],nrhs,nrhs);
 | 
			
		||||
      m = m + eC;
 | 
			
		||||
    }
 | 
			
		||||
    RealD t6l = usecond();
 | 
			
		||||
    grid->GlobalSumVector((scalar *) &m(0,0),nrhs*nrhs);
 | 
			
		||||
    RealD t6 = usecond();
 | 
			
		||||
    uint64_t M=nrhs;
 | 
			
		||||
    uint64_t N=nrhs;
 | 
			
		||||
    uint64_t K=vw;
 | 
			
		||||
    RealD xybytes = grid->lSites()*sizeof(scalar_object);
 | 
			
		||||
    RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K);
 | 
			
		||||
    RealD flops = 8.0*M*N*K;
 | 
			
		||||
    flops = flops/(t4-t3)/1.e3;
 | 
			
		||||
    bytes = bytes/(t4-t3)/1.e3;
 | 
			
		||||
    xybytes = 4*xybytes/(t2-t1)/1.e3;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix cp    t2 "<< t2-t1<<" us "<<xybytes<<" GB/s"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas    "<< flops<<" GF/s"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas    "<< bytes<<" GB/s"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix cp     t5 "<< t5-t4<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix lsum   t6l "<< t6l-t5<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix gsum   t6 "<< t6-t6l<<" us"<<std::endl;
 | 
			
		||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -447,10 +447,10 @@ public:
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N, 
 | 
			
		||||
    		     nbasis,nrhs,vw,
 | 
			
		||||
		     ComplexD(1.0),
 | 
			
		||||
		     scalar(1.0),
 | 
			
		||||
		     Vd,
 | 
			
		||||
		     Fd,
 | 
			
		||||
		     ComplexD(0.0),  // wipe out C
 | 
			
		||||
		     scalar(0.0),  // wipe out C
 | 
			
		||||
		     Cd);
 | 
			
		||||
    BLAS.synchronise();
 | 
			
		||||
    //    std::cout << "BlockProject done"<<std::endl;
 | 
			
		||||
@@ -497,10 +497,10 @@ public:
 | 
			
		||||
    int64_t vw = block_vol * words;
 | 
			
		||||
    BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, 
 | 
			
		||||
    		     vw,nrhs,nbasis,
 | 
			
		||||
		     ComplexD(1.0),
 | 
			
		||||
		     scalar(1.0),
 | 
			
		||||
		     Vd,
 | 
			
		||||
		     Cd,
 | 
			
		||||
		     ComplexD(0.0),  // wipe out C
 | 
			
		||||
		     scalar(0.0),  // wipe out C
 | 
			
		||||
		     Fd);
 | 
			
		||||
    BLAS.synchronise();
 | 
			
		||||
    //    std::cout << " blas call done"<<std::endl;
 | 
			
		||||
 
 | 
			
		||||
@@ -182,10 +182,10 @@ public:
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N, 
 | 
			
		||||
    		     nev,nrhs,vw,
 | 
			
		||||
		     ComplexD(1.0),
 | 
			
		||||
		     scalar(1.0),
 | 
			
		||||
		     Ed,
 | 
			
		||||
		     Rd,
 | 
			
		||||
		     ComplexD(0.0),  // wipe out C
 | 
			
		||||
		     scalar(0.0),  // wipe out C
 | 
			
		||||
		     Cd);
 | 
			
		||||
    BLAS.synchronise();
 | 
			
		||||
 | 
			
		||||
@@ -210,10 +210,10 @@ public:
 | 
			
		||||
    /////////////////////////////////////////
 | 
			
		||||
    BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, 
 | 
			
		||||
		     vw,nrhs,nev,
 | 
			
		||||
		     ComplexD(1.0),
 | 
			
		||||
		     scalar(1.0),
 | 
			
		||||
		     Ed, // x . nev
 | 
			
		||||
		     Cd, // nev . nrhs
 | 
			
		||||
		     ComplexD(0.0),
 | 
			
		||||
		     scalar(0.0),
 | 
			
		||||
		     Gd);
 | 
			
		||||
    BLAS.synchronise();
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -53,6 +53,7 @@ class TwoLevelCGmrhs
 | 
			
		||||
  // Fine operator, Smoother, CoarseSolver
 | 
			
		||||
  LinearOperatorBase<Field>   &_FineLinop;
 | 
			
		||||
  LinearFunction<Field>   &_Smoother;
 | 
			
		||||
  MultiRHSBlockCGLinalg<Field> _BlockCGLinalg;
 | 
			
		||||
 | 
			
		||||
  GridStopWatch ProjectTimer;
 | 
			
		||||
  GridStopWatch PromoteTimer;
 | 
			
		||||
@@ -62,7 +63,12 @@ class TwoLevelCGmrhs
 | 
			
		||||
  GridStopWatch SmoothTimer;
 | 
			
		||||
  GridStopWatch InsertTimer;
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  /*
 | 
			
		||||
    Field rrr;
 | 
			
		||||
  Field sss;
 | 
			
		||||
  Field qqq;
 | 
			
		||||
  Field zzz;
 | 
			
		||||
  */  
 | 
			
		||||
  // more most opertor functions
 | 
			
		||||
  TwoLevelCGmrhs(RealD tol,
 | 
			
		||||
		 Integer maxit,
 | 
			
		||||
@@ -73,12 +79,313 @@ class TwoLevelCGmrhs
 | 
			
		||||
    MaxIterations(maxit),
 | 
			
		||||
    _FineLinop(FineLinop),
 | 
			
		||||
    _Smoother(Smoother)
 | 
			
		||||
    /*
 | 
			
		||||
    rrr(fine),
 | 
			
		||||
    sss(fine),
 | 
			
		||||
    qqq(fine),
 | 
			
		||||
    zzz(fine)
 | 
			
		||||
*/
 | 
			
		||||
  {
 | 
			
		||||
    grid       = fine;
 | 
			
		||||
  };
 | 
			
		||||
  
 | 
			
		||||
  // Vector case
 | 
			
		||||
  virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
 | 
			
		||||
  {
 | 
			
		||||
    //    SolveSingleSystem(src,x);
 | 
			
		||||
    SolvePrecBlockCG(src,x);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Thin QR factorisation (google it)
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  //Dimensions
 | 
			
		||||
  // R_{ferm x Nblock} =  Q_{ferm x Nblock} x  C_{Nblock x Nblock} -> ferm x Nblock
 | 
			
		||||
  //
 | 
			
		||||
  // Rdag R = m_rr = Herm = L L^dag        <-- Cholesky decomposition (LLT routine in Eigen)
 | 
			
		||||
  //
 | 
			
		||||
  //   Q  C = R => Q = R C^{-1}
 | 
			
		||||
  //
 | 
			
		||||
  // Want  Ident = Q^dag Q = C^{-dag} R^dag R C^{-1} = C^{-dag} L L^dag C^{-1} = 1_{Nblock x Nblock} 
 | 
			
		||||
  //
 | 
			
		||||
  // Set C = L^{dag}, and then Q^dag Q = ident 
 | 
			
		||||
  //
 | 
			
		||||
  // Checks:
 | 
			
		||||
  // Cdag C = Rdag R ; passes.
 | 
			
		||||
  // QdagQ  = 1      ; passes
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  void ThinQRfact (Eigen::MatrixXcd &m_zz,
 | 
			
		||||
		   Eigen::MatrixXcd &C,
 | 
			
		||||
		   Eigen::MatrixXcd &Cinv,
 | 
			
		||||
		   std::vector<Field> &  Q,
 | 
			
		||||
		   std::vector<Field> & MQ,
 | 
			
		||||
		   const std::vector<Field> & Z,
 | 
			
		||||
		   const std::vector<Field> & MZ)
 | 
			
		||||
  {
 | 
			
		||||
    RealD t0=usecond();
 | 
			
		||||
    _BlockCGLinalg.InnerProductMatrix(m_zz,MZ,Z);
 | 
			
		||||
    RealD t1=usecond();
 | 
			
		||||
 | 
			
		||||
    m_zz = 0.5*(m_zz+m_zz.adjoint());
 | 
			
		||||
    
 | 
			
		||||
    Eigen::MatrixXcd L    = m_zz.llt().matrixL(); 
 | 
			
		||||
    
 | 
			
		||||
    C    = L.adjoint();
 | 
			
		||||
    Cinv = C.inverse();
 | 
			
		||||
    
 | 
			
		||||
    RealD t3=usecond();
 | 
			
		||||
    _BlockCGLinalg.MulMatrix( Q,Cinv,Z);
 | 
			
		||||
    _BlockCGLinalg.MulMatrix(MQ,Cinv,MZ);
 | 
			
		||||
    RealD t4=usecond();
 | 
			
		||||
    std::cout << " ThinQRfact IP    :"<< t1-t0<<" us"<<std::endl;
 | 
			
		||||
    std::cout << " ThinQRfact Eigen :"<< t3-t1<<" us"<<std::endl;
 | 
			
		||||
    std::cout << " ThinQRfact MulMat:"<< t4-t3<<" us"<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void SolvePrecBlockCG (std::vector<Field> &src, std::vector<Field> &X)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: mrhs fPrecBlockcg starting"<<std::endl;
 | 
			
		||||
    src[0].Grid()->Barrier();
 | 
			
		||||
    int nrhs = src.size();
 | 
			
		||||
    //    std::vector<RealD> f(nrhs);
 | 
			
		||||
    //    std::vector<RealD> rtzp(nrhs);
 | 
			
		||||
    //    std::vector<RealD> rtz(nrhs);
 | 
			
		||||
    //    std::vector<RealD> a(nrhs);
 | 
			
		||||
    //    std::vector<RealD> d(nrhs);
 | 
			
		||||
    //    std::vector<RealD> b(nrhs);
 | 
			
		||||
    //    std::vector<RealD> rptzp(nrhs);
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////////
 | 
			
		||||
    //Initial residual computation & set up
 | 
			
		||||
    ////////////////////////////////////////////
 | 
			
		||||
    std::vector<RealD> ssq(nrhs);
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
      ssq[rhs]=norm2(src[rhs]); assert(ssq[rhs]!=0.0);
 | 
			
		||||
    }      
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////
 | 
			
		||||
    // Fields -- eliminate duplicates between fPcg and block cg
 | 
			
		||||
    ///////////////////////////
 | 
			
		||||
    std::vector<Field> Mtmp(nrhs,grid);
 | 
			
		||||
    std::vector<Field> tmp(nrhs,grid);
 | 
			
		||||
    std::vector<Field>   Z(nrhs,grid); // Rename Z to R
 | 
			
		||||
    std::vector<Field>  MZ(nrhs,grid); // Rename MZ to Z
 | 
			
		||||
    std::vector<Field>   Q(nrhs,grid); // 
 | 
			
		||||
    std::vector<Field>  MQ(nrhs,grid); // Rename to P
 | 
			
		||||
    std::vector<Field>   D(nrhs,grid);
 | 
			
		||||
    std::vector<Field>  AD(nrhs,grid);
 | 
			
		||||
    
 | 
			
		||||
    /************************************************************************
 | 
			
		||||
     * Preconditioned Block conjugate gradient rQ
 | 
			
		||||
     * Generalise Sebastien Birk Thesis, after Dubrulle 2001.
 | 
			
		||||
     * Introduce preconditioning following Saad Ch9
 | 
			
		||||
     ************************************************************************
 | 
			
		||||
     * Dimensions:
 | 
			
		||||
     *
 | 
			
		||||
     *   X,B etc... ==(Nferm x nrhs)
 | 
			
		||||
     *  Matrix A==(Nferm x Nferm)
 | 
			
		||||
     *  
 | 
			
		||||
     * Nferm = Nspin x Ncolour x Ncomplex x Nlattice_site
 | 
			
		||||
     * QC => Thin QR factorisation (google it)
 | 
			
		||||
     *
 | 
			
		||||
     * R = B-AX
 | 
			
		||||
     * Z = Mi R
 | 
			
		||||
     * QC = Z
 | 
			
		||||
     * D = Q 
 | 
			
		||||
     * for k: 
 | 
			
		||||
     *   R  = AD
 | 
			
		||||
     *   Z  = Mi R
 | 
			
		||||
     *   M  = [D^dag R]^{-1}
 | 
			
		||||
     *   X  = X + D M C
 | 
			
		||||
     *   QS = Q - Z.M
 | 
			
		||||
     *   D  = Q + D S^dag
 | 
			
		||||
     *   C  = S C
 | 
			
		||||
     */
 | 
			
		||||
    Eigen::MatrixXcd m_DZ     = Eigen::MatrixXcd::Identity(nrhs,nrhs);
 | 
			
		||||
    Eigen::MatrixXcd m_M      = Eigen::MatrixXcd::Identity(nrhs,nrhs);
 | 
			
		||||
    Eigen::MatrixXcd m_zz     = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
			
		||||
    Eigen::MatrixXcd m_rr     = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
			
		||||
    
 | 
			
		||||
    Eigen::MatrixXcd m_C      = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
			
		||||
    Eigen::MatrixXcd m_Cinv   = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
			
		||||
    Eigen::MatrixXcd m_S      = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
			
		||||
    Eigen::MatrixXcd m_Sinv   = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
			
		||||
    
 | 
			
		||||
    Eigen::MatrixXcd m_tmp    = Eigen::MatrixXcd::Identity(nrhs,nrhs);
 | 
			
		||||
    Eigen::MatrixXcd m_tmp1   = Eigen::MatrixXcd::Identity(nrhs,nrhs);
 | 
			
		||||
 | 
			
		||||
    GridStopWatch HDCGTimer;
 | 
			
		||||
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    // x0 = Vstart -- possibly modify guess
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    Vstart(X,src);
 | 
			
		||||
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    // R = B-AX
 | 
			
		||||
    //////////////////////////
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
      // r0 = b -A x0
 | 
			
		||||
      _FineLinop.HermOp(X[rhs],tmp[rhs]);
 | 
			
		||||
      axpy (Z[rhs], -1.0,tmp[rhs], src[rhs]);    // Computes R=Z=src - A X0
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    // Compute MZ = M1 Z = M1 B - M1 A x0
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    PcgM1(Z,MZ);  
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    // QC = Z
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    ThinQRfact (m_zz, m_C, m_Cinv, Q, MQ, Z, MZ);
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    // D=MQ
 | 
			
		||||
    //////////////////////////////////
 | 
			
		||||
    for(int b=0;b<nrhs;b++) D[b]=MQ[b]; // LLT rotation of the MZ basis of search dirs
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage<<"PrecBlockCGrQ vec computed initial residual and QR fact " <<std::endl;
 | 
			
		||||
 | 
			
		||||
    ProjectTimer.Reset();
 | 
			
		||||
    PromoteTimer.Reset();
 | 
			
		||||
    DeflateTimer.Reset();
 | 
			
		||||
    CoarseTimer.Reset();
 | 
			
		||||
    SmoothTimer.Reset();
 | 
			
		||||
    FineTimer.Reset();
 | 
			
		||||
    InsertTimer.Reset();
 | 
			
		||||
 | 
			
		||||
    GridStopWatch M1Timer;
 | 
			
		||||
    GridStopWatch M2Timer;
 | 
			
		||||
    GridStopWatch M3Timer;
 | 
			
		||||
    GridStopWatch LinalgTimer;
 | 
			
		||||
    GridStopWatch InnerProdTimer;
 | 
			
		||||
 | 
			
		||||
    HDCGTimer.Start();
 | 
			
		||||
 | 
			
		||||
    std::vector<RealD> rn(nrhs);
 | 
			
		||||
    for (int k=0;k<=MaxIterations;k++){
 | 
			
		||||
 | 
			
		||||
      ////////////////////
 | 
			
		||||
      // Z  = AD
 | 
			
		||||
      ////////////////////
 | 
			
		||||
      M3Timer.Start();
 | 
			
		||||
      for(int b=0;b<nrhs;b++) _FineLinop.HermOp(D[b], Z[b]);      
 | 
			
		||||
      M3Timer.Stop();
 | 
			
		||||
 | 
			
		||||
      ////////////////////
 | 
			
		||||
      // MZ  = M1 Z <==== the Multigrid preconditioner
 | 
			
		||||
      ////////////////////
 | 
			
		||||
      M1Timer.Start();
 | 
			
		||||
      PcgM1(Z,MZ);
 | 
			
		||||
      M1Timer.Stop();
 | 
			
		||||
 | 
			
		||||
      FineTimer.Start();
 | 
			
		||||
      ////////////////////
 | 
			
		||||
      // M  = [D^dag Z]^{-1} = (<Ddag MZ>_M)^{-1} inner prod, generalising Saad derivation of Precon CG
 | 
			
		||||
      ////////////////////
 | 
			
		||||
      InnerProdTimer.Start();
 | 
			
		||||
      _BlockCGLinalg.InnerProductMatrix(m_DZ,D,Z);
 | 
			
		||||
      InnerProdTimer.Stop();
 | 
			
		||||
      m_M       = m_DZ.inverse();
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////
 | 
			
		||||
      // X  = X + D MC
 | 
			
		||||
      ///////////////////////////
 | 
			
		||||
      m_tmp     = m_M * m_C;
 | 
			
		||||
      LinalgTimer.Start();
 | 
			
		||||
      _BlockCGLinalg.MaddMatrix(X,m_tmp, D,X);     // D are the search directions and X takes the updates 
 | 
			
		||||
      LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////
 | 
			
		||||
      // QS = Q - M Z
 | 
			
		||||
      // (MQ) S = MQ - M (M1Z)
 | 
			
		||||
      ///////////////////////////
 | 
			
		||||
      LinalgTimer.Start();
 | 
			
		||||
      _BlockCGLinalg.MaddMatrix(tmp ,m_M, Z, Q,-1.0);
 | 
			
		||||
      _BlockCGLinalg.MaddMatrix(Mtmp,m_M,MZ,MQ,-1.0);
 | 
			
		||||
      ThinQRfact (m_zz, m_S, m_Sinv, Q, MQ, tmp, Mtmp);
 | 
			
		||||
      LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////
 | 
			
		||||
      // D  = MQ + D S^dag
 | 
			
		||||
      ////////////////////////////
 | 
			
		||||
      m_tmp = m_S.adjoint();
 | 
			
		||||
      LinalgTimer.Start();
 | 
			
		||||
      _BlockCGLinalg.MaddMatrix(D,m_tmp,D,MQ);
 | 
			
		||||
      LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////
 | 
			
		||||
      // C  = S C
 | 
			
		||||
      ////////////////////////////
 | 
			
		||||
      m_C = m_S*m_C;
 | 
			
		||||
      
 | 
			
		||||
      ////////////////////////////
 | 
			
		||||
      // convergence monitor
 | 
			
		||||
      ////////////////////////////
 | 
			
		||||
      m_rr = m_C.adjoint() * m_C;
 | 
			
		||||
      
 | 
			
		||||
      FineTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      RealD max_resid=0;
 | 
			
		||||
      RealD rrsum=0;
 | 
			
		||||
      RealD sssum=0;
 | 
			
		||||
      RealD rr;
 | 
			
		||||
 | 
			
		||||
      for(int b=0;b<nrhs;b++) {
 | 
			
		||||
	rrsum+=real(m_rr(b,b));
 | 
			
		||||
	sssum+=ssq[b];
 | 
			
		||||
	rr = real(m_rr(b,b))/ssq[b];
 | 
			
		||||
	if ( rr > max_resid ) max_resid = rr;
 | 
			
		||||
      }
 | 
			
		||||
      std::cout << GridLogMessage <<
 | 
			
		||||
	  "\t Prec BlockCGrQ Iteration "<<k<<" ave resid "<< std::sqrt(rrsum/sssum) << " max "<< std::sqrt(max_resid) <<std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      if ( max_resid < Tolerance*Tolerance ) { 
 | 
			
		||||
 | 
			
		||||
	HDCGTimer.Stop();
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Linalg  "<<LinalgTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : fine H  "<<M3Timer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : prec M1 "<<M1Timer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"**** M1 breakdown:"<<std::endl;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Project "<<ProjectTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Promote "<<PromoteTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Deflate "<<DeflateTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Coarse  "<<CoarseTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Fine    "<<FineTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Smooth  "<<SmoothTimer.Elapsed()<<std::endl;;
 | 
			
		||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Insert  "<<InsertTimer.Elapsed()<<std::endl;;
 | 
			
		||||
 | 
			
		||||
	for(int rhs=0;rhs<nrhs;rhs++){
 | 
			
		||||
 | 
			
		||||
	  _FineLinop.HermOp(X[rhs],tmp[rhs]);			  
 | 
			
		||||
 | 
			
		||||
	  Field mytmp(grid);
 | 
			
		||||
	  axpy(mytmp,-1.0,src[rhs],tmp[rhs]);
 | 
			
		||||
      
 | 
			
		||||
	  RealD  xnorm   = sqrt(norm2(X[rhs]));
 | 
			
		||||
	  RealD  srcnorm = sqrt(norm2(src[rhs]));
 | 
			
		||||
	  RealD  tmpnorm = sqrt(norm2(mytmp));
 | 
			
		||||
	  RealD  true_residual = tmpnorm/srcnorm;
 | 
			
		||||
	  std::cout<<GridLogMessage
 | 
			
		||||
		   <<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
 | 
			
		||||
		   <<" solution "<<xnorm
 | 
			
		||||
		   <<" source "<<srcnorm
 | 
			
		||||
		   <<std::endl;
 | 
			
		||||
	}
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
    }
 | 
			
		||||
    HDCGTimer.Stop();
 | 
			
		||||
    std::cout<<GridLogMessage<<"HDCG: PrecBlockCGrQ not converged "<<HDCGTimer.Elapsed()<<std::endl;
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void SolveSingleSystem (std::vector<Field> &src, std::vector<Field> &x)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl;
 | 
			
		||||
    src[0].Grid()->Barrier();
 | 
			
		||||
@@ -361,15 +668,26 @@ public:
 | 
			
		||||
    CoarseField PleftProjMrhs(this->coarsegridmrhs);
 | 
			
		||||
    CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
 | 
			
		||||
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
			
		||||
    //    this->rrr=in[0];
 | 
			
		||||
 | 
			
		||||
#undef SMOOTHER_BLOCK_SOLVE
 | 
			
		||||
#if SMOOTHER_BLOCK_SOLVE
 | 
			
		||||
    this->SmoothTimer.Start();
 | 
			
		||||
    this->_Smoother(in,Min);
 | 
			
		||||
    this->SmoothTimer.Stop();
 | 
			
		||||
#else
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
			
		||||
      this->SmoothTimer.Start();
 | 
			
		||||
      this->_Smoother(in[rhs],Min[rhs]);
 | 
			
		||||
      this->SmoothTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
    //    this->sss=Min[0];
 | 
			
		||||
    
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
			
		||||
      
 | 
			
		||||
      this->FineTimer.Start();
 | 
			
		||||
      this->_FineLinop.HermOp(Min[rhs],out[rhs]);
 | 
			
		||||
 | 
			
		||||
      axpy(tmp[rhs],-1.0,out[rhs],in[rhs]);          // resid  = in - A Min
 | 
			
		||||
      this->FineTimer.Stop();
 | 
			
		||||
 | 
			
		||||
@@ -401,13 +719,15 @@ public:
 | 
			
		||||
    this->_Projector.blockPromote(tmp,PleftMss_proj);// tmp= Q[in - A Min]  
 | 
			
		||||
    this->PromoteTimer.Stop();
 | 
			
		||||
    this->FineTimer.Start();
 | 
			
		||||
    //    this->qqq=tmp[0];
 | 
			
		||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
			
		||||
      axpy(out[rhs],1.0,Min[rhs],tmp[rhs]); // Min+tmp
 | 
			
		||||
    }
 | 
			
		||||
    //    this->zzz=out[0];
 | 
			
		||||
    this->FineTimer.Stop();
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -31,6 +31,58 @@ directory
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y){
 | 
			
		||||
  typedef typename Field::scalar_type scomplex;
 | 
			
		||||
  int Nblock = X.size();
 | 
			
		||||
  for(int b=0;b<Nblock;b++){
 | 
			
		||||
  for(int bp=0;bp<Nblock;bp++) {
 | 
			
		||||
    m(b,bp) = innerProduct(X[b],Y[bp]);  
 | 
			
		||||
  }}
 | 
			
		||||
}
 | 
			
		||||
template<class Field>
 | 
			
		||||
void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0){
 | 
			
		||||
  // Should make this cache friendly with site outermost, parallel_for
 | 
			
		||||
  // Deal with case AP aliases with either Y or X
 | 
			
		||||
  //
 | 
			
		||||
  //Could pack "X" and "AP" into a Nblock x Volume dense array.
 | 
			
		||||
  // AP(Nrhs x vol) = Y(Nrhs x vol) + scale * m(nrhs x nrhs) * X(nrhs*vol)
 | 
			
		||||
  typedef typename Field::scalar_type scomplex;
 | 
			
		||||
  int Nblock = AP.size();
 | 
			
		||||
  std::vector<Field> tmp(Nblock,X[0]);
 | 
			
		||||
  for(int b=0;b<Nblock;b++){
 | 
			
		||||
    tmp[b]   = Y[b];
 | 
			
		||||
    for(int bp=0;bp<Nblock;bp++) {
 | 
			
		||||
      tmp[b] = tmp[b] +scomplex(scale*m(bp,b))*X[bp]; 
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  for(int b=0;b<Nblock;b++){
 | 
			
		||||
    AP[b] = tmp[b];
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
template<class Field>
 | 
			
		||||
void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){
 | 
			
		||||
  // Should make this cache friendly with site outermost, parallel_for
 | 
			
		||||
  typedef typename Field::scalar_type scomplex;
 | 
			
		||||
  int Nblock = AP.size();
 | 
			
		||||
  for(int b=0;b<Nblock;b++){
 | 
			
		||||
    AP[b] = Zero();
 | 
			
		||||
    for(int bp=0;bp<Nblock;bp++) {
 | 
			
		||||
      AP[b] += scomplex(m(bp,b))*X[bp]; 
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
template<class Field>
 | 
			
		||||
double normv(const std::vector<Field> &P){
 | 
			
		||||
  int Nblock = P.size();
 | 
			
		||||
  double nn = 0.0;
 | 
			
		||||
  for(int b=0;b<Nblock;b++) {
 | 
			
		||||
    nn+=norm2(P[b]);
 | 
			
		||||
  }
 | 
			
		||||
  return nn;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS, BlockCGVec, BlockCGrQVec };
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -87,10 +139,19 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
 | 
			
		||||
  sliceInnerProductMatrix(m_rr,R,R,Orthog);
 | 
			
		||||
 | 
			
		||||
  // Force manifest hermitian to avoid rounding related
 | 
			
		||||
  /*
 | 
			
		||||
  int rank=m_rr.rows();
 | 
			
		||||
  for(int r=0;r<rank;r++){
 | 
			
		||||
  for(int s=0;s<rank;s++){
 | 
			
		||||
    std::cout << "QR m_rr["<<r<<","<<s<<"] "<<m_rr(r,s)<<std::endl;
 | 
			
		||||
  }}
 | 
			
		||||
  */
 | 
			
		||||
  m_rr = 0.5*(m_rr+m_rr.adjoint());
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd L    = m_rr.llt().matrixL(); 
 | 
			
		||||
 | 
			
		||||
//  ComplexD det = L.determinant();
 | 
			
		||||
//  std::cout << " Det m_rr "<<det<<std::endl;
 | 
			
		||||
  C    = L.adjoint();
 | 
			
		||||
  Cinv = C.inverse();
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -110,11 +171,20 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
 | 
			
		||||
		 const std::vector<Field> & R)
 | 
			
		||||
{
 | 
			
		||||
  InnerProductMatrix(m_rr,R,R);
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
  int rank=m_rr.rows();
 | 
			
		||||
  for(int r=0;r<rank;r++){
 | 
			
		||||
  for(int s=0;s<rank;s++){
 | 
			
		||||
    std::cout << "QRvec m_rr["<<r<<","<<s<<"] "<<m_rr(r,s)<<std::endl;
 | 
			
		||||
  }}
 | 
			
		||||
  */
 | 
			
		||||
  m_rr = 0.5*(m_rr+m_rr.adjoint());
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd L    = m_rr.llt().matrixL(); 
 | 
			
		||||
 | 
			
		||||
  //  ComplexD det = L.determinant();
 | 
			
		||||
  //  std::cout << " Det m_rr "<<det<<std::endl;
 | 
			
		||||
 | 
			
		||||
  C    = L.adjoint();
 | 
			
		||||
  Cinv = C.inverse();
 | 
			
		||||
 | 
			
		||||
@@ -186,6 +256,7 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
 | 
			
		||||
  sliceNorm(ssq,B,Orthog);
 | 
			
		||||
  RealD sssum=0;
 | 
			
		||||
  for(int b=0;b<Nblock;b++) sssum+=ssq[b];
 | 
			
		||||
  for(int b=0;b<Nblock;b++) std::cout << "src["<<b<<"]" << ssq[b] <<std::endl;
 | 
			
		||||
 | 
			
		||||
  sliceNorm(residuals,B,Orthog);
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
			
		||||
@@ -221,6 +292,9 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
 | 
			
		||||
  Linop.HermOp(X, AD);
 | 
			
		||||
  tmp = B - AD;  
 | 
			
		||||
 | 
			
		||||
  sliceNorm(residuals,tmp,Orthog);
 | 
			
		||||
  for(int b=0;b<Nblock;b++) std::cout << "res["<<b<<"]" << residuals[b] <<std::endl;
 | 
			
		||||
  
 | 
			
		||||
  ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
 | 
			
		||||
  D=Q;
 | 
			
		||||
 | 
			
		||||
@@ -236,6 +310,8 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
 | 
			
		||||
  GridStopWatch SolverTimer;
 | 
			
		||||
  SolverTimer.Start();
 | 
			
		||||
 | 
			
		||||
  RealD max_resid=0;
 | 
			
		||||
 | 
			
		||||
  int k;
 | 
			
		||||
  for (k = 1; k <= MaxIterations; k++) {
 | 
			
		||||
 | 
			
		||||
@@ -280,7 +356,7 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
 | 
			
		||||
     */
 | 
			
		||||
    m_rr = m_C.adjoint() * m_C;
 | 
			
		||||
 | 
			
		||||
    RealD max_resid=0;
 | 
			
		||||
    max_resid=0;
 | 
			
		||||
    RealD rrsum=0;
 | 
			
		||||
    RealD rr;
 | 
			
		||||
 | 
			
		||||
@@ -322,7 +398,9 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge" << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge "<<k<<" / "<<MaxIterations
 | 
			
		||||
	    <<" residual "<< std::sqrt(max_resid)<< std::endl;
 | 
			
		||||
 | 
			
		||||
  if (ErrorOnNoConverge) assert(0);
 | 
			
		||||
  IterationsToComplete = k;
 | 
			
		||||
@@ -466,43 +544,6 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &
 | 
			
		||||
  IterationsToComplete = k;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y){
 | 
			
		||||
  for(int b=0;b<Nblock;b++){
 | 
			
		||||
  for(int bp=0;bp<Nblock;bp++) {
 | 
			
		||||
    m(b,bp) = innerProduct(X[b],Y[bp]);  
 | 
			
		||||
  }}
 | 
			
		||||
}
 | 
			
		||||
void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0){
 | 
			
		||||
  // Should make this cache friendly with site outermost, parallel_for
 | 
			
		||||
  // Deal with case AP aliases with either Y or X
 | 
			
		||||
  std::vector<Field> tmp(Nblock,X[0]);
 | 
			
		||||
  for(int b=0;b<Nblock;b++){
 | 
			
		||||
    tmp[b]   = Y[b];
 | 
			
		||||
    for(int bp=0;bp<Nblock;bp++) {
 | 
			
		||||
      tmp[b] = tmp[b] + scomplex(scale*m(bp,b))*X[bp]; 
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  for(int b=0;b<Nblock;b++){
 | 
			
		||||
    AP[b] = tmp[b];
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){
 | 
			
		||||
  // Should make this cache friendly with site outermost, parallel_for
 | 
			
		||||
  for(int b=0;b<Nblock;b++){
 | 
			
		||||
    AP[b] = Zero();
 | 
			
		||||
    for(int bp=0;bp<Nblock;bp++) {
 | 
			
		||||
      AP[b] += scomplex(m(bp,b))*X[bp]; 
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
double normv(const std::vector<Field> &P){
 | 
			
		||||
  double nn = 0.0;
 | 
			
		||||
  for(int b=0;b<Nblock;b++) {
 | 
			
		||||
    nn+=norm2(P[b]);
 | 
			
		||||
  }
 | 
			
		||||
  return nn;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// BlockCGrQvec implementation:
 | 
			
		||||
//--------------------------
 | 
			
		||||
@@ -549,6 +590,7 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
 | 
			
		||||
 | 
			
		||||
  RealD sssum=0;
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ ssq[b] = norm2(B[b]);}
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ std::cout << "ssq["<<b<<"] "<<ssq[b]<<std::endl;}
 | 
			
		||||
  for(int b=0;b<Nblock;b++) sssum+=ssq[b];
 | 
			
		||||
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ residuals[b] = norm2(B[b]);}
 | 
			
		||||
@@ -585,6 +627,7 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
 | 
			
		||||
  for(int b=0;b<Nblock;b++) {
 | 
			
		||||
    Linop.HermOp(X[b], AD[b]);
 | 
			
		||||
    tmp[b] = B[b] - AD[b];  
 | 
			
		||||
    std::cout << "r0["<<b<<"] "<<norm2(tmp[b])<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
 | 
			
		||||
 
 | 
			
		||||
@@ -38,12 +38,13 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
// single input vec, single output vec.
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template <class Field>
 | 
			
		||||
class ConjugateGradient : public OperatorFunction<Field> {
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  using OperatorFunction<Field>::operator();
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  bool ErrorOnNoConverge;  // throw an assert when the CG fails to converge.
 | 
			
		||||
                           // Defaults true.
 | 
			
		||||
  RealD Tolerance;
 | 
			
		||||
@@ -57,10 +58,22 @@ public:
 | 
			
		||||
      ErrorOnNoConverge(err_on_no_conv)
 | 
			
		||||
  {};
 | 
			
		||||
 | 
			
		||||
  void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
 | 
			
		||||
  virtual void LogIteration(int k,RealD a,RealD b){
 | 
			
		||||
    //    std::cout << "ConjugageGradient::LogIteration() "<<std::endl;
 | 
			
		||||
  };
 | 
			
		||||
  virtual void LogBegin(void){
 | 
			
		||||
    std::cout << "ConjugageGradient::LogBegin() "<<std::endl;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
    GRID_TRACE("ConjugateGradient");
 | 
			
		||||
    void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
 | 
			
		||||
 | 
			
		||||
      this->LogBegin();
 | 
			
		||||
 | 
			
		||||
      GRID_TRACE("ConjugateGradient");
 | 
			
		||||
    GridStopWatch PreambleTimer;
 | 
			
		||||
    GridStopWatch ConstructTimer;
 | 
			
		||||
    GridStopWatch NormTimer;
 | 
			
		||||
    GridStopWatch AssignTimer;
 | 
			
		||||
    PreambleTimer.Start();
 | 
			
		||||
    psi.Checkerboard() = src.Checkerboard();
 | 
			
		||||
 | 
			
		||||
@@ -70,14 +83,19 @@ public:
 | 
			
		||||
    //RealD b_pred;
 | 
			
		||||
 | 
			
		||||
    // Was doing copies
 | 
			
		||||
    Field p(src.Grid());
 | 
			
		||||
    ConstructTimer.Start();
 | 
			
		||||
    Field p  (src.Grid());
 | 
			
		||||
    Field mmp(src.Grid());
 | 
			
		||||
    Field r(src.Grid());
 | 
			
		||||
    Field r  (src.Grid());
 | 
			
		||||
    ConstructTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    // Initial residual computation & set up
 | 
			
		||||
    NormTimer.Start();
 | 
			
		||||
    ssq = norm2(src);
 | 
			
		||||
    RealD guess = norm2(psi);
 | 
			
		||||
    NormTimer.Stop();
 | 
			
		||||
    assert(std::isnan(guess) == 0);
 | 
			
		||||
    AssignTimer.Start();
 | 
			
		||||
    if ( guess == 0.0 ) {
 | 
			
		||||
      r = src;
 | 
			
		||||
      p = r;
 | 
			
		||||
@@ -89,6 +107,7 @@ public:
 | 
			
		||||
      a = norm2(p);
 | 
			
		||||
    }
 | 
			
		||||
    cp = a;
 | 
			
		||||
    AssignTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    // Handle trivial case of zero src
 | 
			
		||||
    if (ssq == 0.){
 | 
			
		||||
@@ -164,6 +183,7 @@ public:
 | 
			
		||||
      }
 | 
			
		||||
      LinearCombTimer.Stop();
 | 
			
		||||
      LinalgTimer.Stop();
 | 
			
		||||
      LogIteration(k,a,b);
 | 
			
		||||
 | 
			
		||||
      IterationTimer.Stop();
 | 
			
		||||
      if ( (k % 500) == 0 ) {
 | 
			
		||||
@@ -220,6 +240,9 @@ public:
 | 
			
		||||
    	      <<" residual "<< std::sqrt(cp / ssq)<< std::endl;
 | 
			
		||||
    SolverTimer.Stop();
 | 
			
		||||
    std::cout << GridLogMessage << "\tPreamble   " << PreambleTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tConstruct  " << ConstructTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tNorm       " << NormTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tAssign     " << AssignTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tSolver     " << SolverTimer.Elapsed() <<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Solver breakdown "<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
			
		||||
@@ -233,5 +256,118 @@ public:
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template <class Field>
 | 
			
		||||
class ConjugateGradientPolynomial : public ConjugateGradient<Field> {
 | 
			
		||||
public:
 | 
			
		||||
  // Optionally record the CG polynomial
 | 
			
		||||
  std::vector<double> ak;
 | 
			
		||||
  std::vector<double> bk;
 | 
			
		||||
  std::vector<double> poly_p;
 | 
			
		||||
  std::vector<double> poly_r;
 | 
			
		||||
  std::vector<double> poly_Ap;
 | 
			
		||||
  std::vector<double> polynomial;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  ConjugateGradientPolynomial(RealD tol, Integer maxit, bool err_on_no_conv = true)
 | 
			
		||||
    : ConjugateGradient<Field>(tol,maxit,err_on_no_conv)
 | 
			
		||||
  { };
 | 
			
		||||
  void PolyHermOp(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
 | 
			
		||||
  {
 | 
			
		||||
    Field tmp(src.Grid());
 | 
			
		||||
    Field AtoN(src.Grid());
 | 
			
		||||
    AtoN = src;
 | 
			
		||||
    psi=AtoN*polynomial[0];
 | 
			
		||||
    for(int n=1;n<polynomial.size();n++){
 | 
			
		||||
      tmp = AtoN;
 | 
			
		||||
      Linop.HermOp(tmp,AtoN);
 | 
			
		||||
      psi = psi + polynomial[n]*AtoN;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void CGsequenceHermOp(LinearOperatorBase<Field> &Linop, const Field &src, Field &x)
 | 
			
		||||
  {
 | 
			
		||||
    Field Ap(src.Grid());
 | 
			
		||||
    Field r(src.Grid());
 | 
			
		||||
    Field p(src.Grid());
 | 
			
		||||
    p=src;
 | 
			
		||||
    r=src;
 | 
			
		||||
    x=Zero();
 | 
			
		||||
    x.Checkerboard()=src.Checkerboard();
 | 
			
		||||
    for(int k=0;k<ak.size();k++){
 | 
			
		||||
      x = x + ak[k]*p;
 | 
			
		||||
      Linop.HermOp(p,Ap);
 | 
			
		||||
      r = r - ak[k] * Ap;
 | 
			
		||||
      p = r + bk[k] * p;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void Solve(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
 | 
			
		||||
  {
 | 
			
		||||
    psi=Zero();
 | 
			
		||||
    this->operator ()(Linop,src,psi);
 | 
			
		||||
  }
 | 
			
		||||
  virtual void LogBegin(void)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << "ConjugageGradientPolynomial::LogBegin() "<<std::endl;
 | 
			
		||||
    ak.resize(0);
 | 
			
		||||
    bk.resize(0);
 | 
			
		||||
    polynomial.resize(0);
 | 
			
		||||
    poly_Ap.resize(0);
 | 
			
		||||
    poly_Ap.resize(0);
 | 
			
		||||
    poly_p.resize(1);
 | 
			
		||||
    poly_r.resize(1);
 | 
			
		||||
    poly_p[0]=1.0;
 | 
			
		||||
    poly_r[0]=1.0;
 | 
			
		||||
  };
 | 
			
		||||
  virtual void LogIteration(int k,RealD a,RealD b)
 | 
			
		||||
  {
 | 
			
		||||
    // With zero guess,
 | 
			
		||||
    // p = r = src
 | 
			
		||||
    //
 | 
			
		||||
    // iterate:
 | 
			
		||||
    //   x =  x + a p
 | 
			
		||||
    //   r =  r - a A p
 | 
			
		||||
    //   p =  r + b p
 | 
			
		||||
    //
 | 
			
		||||
    // [0]
 | 
			
		||||
    // r = x
 | 
			
		||||
    // p = x
 | 
			
		||||
    // Ap=0
 | 
			
		||||
    //
 | 
			
		||||
    // [1]
 | 
			
		||||
    // Ap = A x + 0  ==> shift poly P right by 1 and add 0.
 | 
			
		||||
    // x  = x + a p  ==> add polynomials term by term 
 | 
			
		||||
    // r  = r - a A p  ==> add polynomials term by term
 | 
			
		||||
    // p  = r + b p  ==> add polynomials term by term
 | 
			
		||||
    //
 | 
			
		||||
    std::cout << "ConjugageGradientPolynomial::LogIteration() "<<k<<std::endl;
 | 
			
		||||
    ak.push_back(a);
 | 
			
		||||
    bk.push_back(b);
 | 
			
		||||
    //  Ap= right_shift(p)
 | 
			
		||||
    poly_Ap.resize(k+1);
 | 
			
		||||
    poly_Ap[0]=0.0;
 | 
			
		||||
    for(int i=0;i<k;i++){
 | 
			
		||||
      poly_Ap[i+1]=poly_p[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    //  x = x + a p
 | 
			
		||||
    polynomial.resize(k);
 | 
			
		||||
    polynomial[k-1]=0.0;
 | 
			
		||||
    for(int i=0;i<k;i++){
 | 
			
		||||
      polynomial[i] = polynomial[i] + a * poly_p[i];
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    //  r = r - a Ap
 | 
			
		||||
    //  p = r + b p
 | 
			
		||||
    poly_r.resize(k+1);
 | 
			
		||||
    poly_p.resize(k+1);
 | 
			
		||||
    poly_r[k] = poly_p[k] = 0.0;
 | 
			
		||||
    for(int i=0;i<k+1;i++){
 | 
			
		||||
      poly_r[i] = poly_r[i] - a * poly_Ap[i];
 | 
			
		||||
      poly_p[i] = poly_r[i] + b * poly_p[i];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -116,14 +116,14 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
      //Compute double precision rsd and also new RHS vector.
 | 
			
		||||
      Linop_d.HermOp(sol_d, tmp_d);
 | 
			
		||||
      RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector
 | 
			
		||||
      
 | 
			
		||||
      std::cout<<GridLogMessage<<" rsd norm "<<norm<<std::endl;
 | 
			
		||||
      std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " <<outer_iter<<" residual "<< norm<< " target "<< stop<<std::endl;
 | 
			
		||||
 | 
			
		||||
      if(norm < OuterLoopNormMult * stop){
 | 
			
		||||
	std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration converged on iteration " <<outer_iter <<std::endl;
 | 
			
		||||
	break;
 | 
			
		||||
      }
 | 
			
		||||
      while(norm * inner_tol * inner_tol < stop) inner_tol *= 2;  // inner_tol = sqrt(stop/norm) ??
 | 
			
		||||
      while(norm * inner_tol * inner_tol < stop*1.01) inner_tol *= 2;  // inner_tol = sqrt(stop/norm) ??
 | 
			
		||||
 | 
			
		||||
      PrecChangeTimer.Start();
 | 
			
		||||
      precisionChange(src_f, src_d, pc_wk_dp_to_sp);
 | 
			
		||||
 
 | 
			
		||||
@@ -102,11 +102,11 @@ public:
 | 
			
		||||
    assert(mass.size()==nshift);
 | 
			
		||||
    assert(mresidual.size()==nshift);
 | 
			
		||||
  
 | 
			
		||||
    // dynamic sized arrays on stack; 2d is a pain with vector
 | 
			
		||||
    RealD  bs[nshift];
 | 
			
		||||
    RealD  rsq[nshift];
 | 
			
		||||
    RealD  z[nshift][2];
 | 
			
		||||
    int     converged[nshift];
 | 
			
		||||
    // remove dynamic sized arrays on stack; 2d is a pain with vector
 | 
			
		||||
    std::vector<RealD>  bs(nshift);
 | 
			
		||||
    std::vector<RealD>  rsq(nshift);
 | 
			
		||||
    std::vector<std::array<RealD,2> >  z(nshift);
 | 
			
		||||
    std::vector<int>     converged(nshift);
 | 
			
		||||
  
 | 
			
		||||
    const int       primary =0;
 | 
			
		||||
  
 | 
			
		||||
 
 | 
			
		||||
@@ -123,11 +123,11 @@ public:
 | 
			
		||||
    assert(mresidual.size()==nshift);
 | 
			
		||||
  
 | 
			
		||||
    // dynamic sized arrays on stack; 2d is a pain with vector
 | 
			
		||||
    RealD  bs[nshift];
 | 
			
		||||
    RealD  rsq[nshift];
 | 
			
		||||
    RealD  rsqf[nshift];
 | 
			
		||||
    RealD  z[nshift][2];
 | 
			
		||||
    int     converged[nshift];
 | 
			
		||||
    std::vector<RealD>  bs(nshift);
 | 
			
		||||
    std::vector<RealD>  rsq(nshift);
 | 
			
		||||
    std::vector<RealD>  rsqf(nshift);
 | 
			
		||||
    std::vector<std::array<RealD,2> >  z(nshift);
 | 
			
		||||
    std::vector<int>     converged(nshift);
 | 
			
		||||
  
 | 
			
		||||
    const int       primary =0;
 | 
			
		||||
  
 | 
			
		||||
 
 | 
			
		||||
@@ -156,11 +156,11 @@ public:
 | 
			
		||||
    assert(mresidual.size()==nshift);
 | 
			
		||||
  
 | 
			
		||||
    // dynamic sized arrays on stack; 2d is a pain with vector
 | 
			
		||||
    RealD  bs[nshift];
 | 
			
		||||
    RealD  rsq[nshift];
 | 
			
		||||
    RealD  rsqf[nshift];
 | 
			
		||||
    RealD  z[nshift][2];
 | 
			
		||||
    int     converged[nshift];
 | 
			
		||||
    std::vector<RealD>  bs(nshift);
 | 
			
		||||
    std::vector<RealD>  rsq(nshift);
 | 
			
		||||
    std::vector<RealD>  rsqf(nshift);
 | 
			
		||||
    std::vector<std::array<RealD,2> >  z(nshift);
 | 
			
		||||
    std::vector<int>     converged(nshift);
 | 
			
		||||
  
 | 
			
		||||
    const int       primary =0;
 | 
			
		||||
  
 | 
			
		||||
 
 | 
			
		||||
@@ -143,7 +143,7 @@ public:
 | 
			
		||||
      ip = innerProduct(evec[j],w); 
 | 
			
		||||
      if(if_print) 
 | 
			
		||||
      if( norm(ip)/norm2(w) > 1e-14)
 | 
			
		||||
      Glog<<"orthogonalize before: "<<j<<" of "<<k<<" "<< ip <<std::endl;
 | 
			
		||||
	Glog<<"orthogonalize before: "<<j<<" of "<<k<<" "<< ip <<std::endl;
 | 
			
		||||
      w = w - ip * evec[j];
 | 
			
		||||
      if(if_print) {
 | 
			
		||||
        ip = innerProduct(evec[j],w); 
 | 
			
		||||
@@ -279,16 +279,16 @@ public:
 | 
			
		||||
      Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
 | 
			
		||||
      diagonalize(eval2,lmd2,lme2,Nu,Nm,Nm,Qt,grid);
 | 
			
		||||
      _sort.push(eval2,Nm);
 | 
			
		||||
      Glog << "#Ritz value before shift: "<< std::endl;
 | 
			
		||||
      //      Glog << "#Ritz value before shift: "<< std::endl;
 | 
			
		||||
      for(int i=0; i<Nm; ++i){
 | 
			
		||||
	std::cout.precision(13);
 | 
			
		||||
	std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
 | 
			
		||||
	std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl;
 | 
			
		||||
	//	std::cout.precision(13);
 | 
			
		||||
	//	std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
 | 
			
		||||
	//	std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl;
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      //----------------------------------------------------------------------
 | 
			
		||||
      if ( Nm>Nk ) {
 | 
			
		||||
        Glog <<" #Apply shifted QR transformations "<<std::endl;
 | 
			
		||||
	//        Glog <<" #Apply shifted QR transformations "<<std::endl;
 | 
			
		||||
        //int k2 = Nk+Nu;
 | 
			
		||||
        int k2 = Nk;
 | 
			
		||||
      
 | 
			
		||||
@@ -326,11 +326,11 @@ public:
 | 
			
		||||
        Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
 | 
			
		||||
        diagonalize(eval2,lmd2,lme2,Nu,Nk,Nm,Qt,grid);
 | 
			
		||||
        _sort.push(eval2,Nk);
 | 
			
		||||
	Glog << "#Ritz value after shift: "<< std::endl;
 | 
			
		||||
	//	Glog << "#Ritz value after shift: "<< std::endl;
 | 
			
		||||
        for(int i=0; i<Nk; ++i){
 | 
			
		||||
	  //          std::cout.precision(13);
 | 
			
		||||
	  //          std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
 | 
			
		||||
	  //          std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl;
 | 
			
		||||
	  //	  std::cout.precision(13);
 | 
			
		||||
	  //	  std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
 | 
			
		||||
	  //	  std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl;
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
      //----------------------------------------------------------------------
 | 
			
		||||
@@ -644,7 +644,7 @@ private:
 | 
			
		||||
      //      for (int u=0; u<mrhs; ++u) Glog << " out["<<u<<"] = "<<norm2(out[u])<<std::endl;
 | 
			
		||||
      k_start +=mrhs;
 | 
			
		||||
    }
 | 
			
		||||
    Glog << "LinAlg "<< std::endl;
 | 
			
		||||
    //    Glog << "LinAlg "<< std::endl;
 | 
			
		||||
    
 | 
			
		||||
    if (b>0) {
 | 
			
		||||
      for (int u=0; u<Nu; ++u) {
 | 
			
		||||
@@ -678,7 +678,7 @@ private:
 | 
			
		||||
      }
 | 
			
		||||
      w_copy[u] = w[u];
 | 
			
		||||
    }
 | 
			
		||||
    Glog << "LinAlg done"<< std::endl;
 | 
			
		||||
    //    Glog << "LinAlg done"<< std::endl;
 | 
			
		||||
    
 | 
			
		||||
    // In block version, the steps 6 and 7 in Lanczos construction is
 | 
			
		||||
    // replaced by the QR decomposition of new basis block.
 | 
			
		||||
@@ -691,15 +691,15 @@ private:
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // re-orthogonalization for numerical stability
 | 
			
		||||
    Glog << "Gram Schmidt"<< std::endl;
 | 
			
		||||
    //    Glog << "Gram Schmidt"<< std::endl;
 | 
			
		||||
    orthogonalize(w,Nu,evec,R);
 | 
			
		||||
    // QR part
 | 
			
		||||
    for (int u=1; u<Nu; ++u) {
 | 
			
		||||
      orthogonalize(w[u],w,u);
 | 
			
		||||
    }
 | 
			
		||||
    Glog << "Gram Schmidt done "<< std::endl;
 | 
			
		||||
    //    Glog << "Gram Schmidt done "<< std::endl;
 | 
			
		||||
    
 | 
			
		||||
    Glog << "LinAlg "<< std::endl;
 | 
			
		||||
    //    Glog << "LinAlg "<< std::endl;
 | 
			
		||||
    for (int u=0; u<Nu; ++u) {
 | 
			
		||||
      //for (int v=0; v<Nu; ++v) {
 | 
			
		||||
      for (int v=u; v<Nu; ++v) {
 | 
			
		||||
@@ -716,7 +716,7 @@ private:
 | 
			
		||||
	//        Glog <<" In block "<< b << "," <<" beta[" << u << "," << k-L << "] = " << lme[u][k] << std::endl;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    Glog << "LinAlg done "<< std::endl;
 | 
			
		||||
    //    Glog << "LinAlg done "<< std::endl;
 | 
			
		||||
 | 
			
		||||
    if (b < Nm/Nu-1) {
 | 
			
		||||
      for (int u=0; u<Nu; ++u) {
 | 
			
		||||
@@ -935,7 +935,7 @@ if (1){
 | 
			
		||||
         int Nu, int Nb, int Nk, int Nm,
 | 
			
		||||
         Eigen::MatrixXcd& M)
 | 
			
		||||
  {
 | 
			
		||||
    Glog << "unpackHermitBlockTriDiagMatToEigen() begin" << '\n'; 
 | 
			
		||||
    //    Glog << "unpackHermitBlockTriDiagMatToEigen() begin" << '\n'; 
 | 
			
		||||
    assert( Nk%Nu == 0 && Nm%Nu == 0 );
 | 
			
		||||
    assert( Nk <= Nm );
 | 
			
		||||
    M = Eigen::MatrixXcd::Zero(Nk,Nk);
 | 
			
		||||
@@ -953,7 +953,7 @@ if (1){
 | 
			
		||||
        M(u+(k/Nu)*Nu,k-Nu) = lme[u][k-Nu];
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    Glog << "unpackHermitBlockTriDiagMatToEigen() end" << std::endl; 
 | 
			
		||||
    //    Glog << "unpackHermitBlockTriDiagMatToEigen() end" << std::endl; 
 | 
			
		||||
  }
 | 
			
		||||
 
 | 
			
		||||
 | 
			
		||||
@@ -963,7 +963,7 @@ if (1){
 | 
			
		||||
         int Nu, int Nb, int Nk, int Nm,
 | 
			
		||||
         Eigen::MatrixXcd& M)
 | 
			
		||||
  {
 | 
			
		||||
    Glog << "packHermitBlockTriDiagMatfromEigen() begin" << '\n'; 
 | 
			
		||||
    //    Glog << "packHermitBlockTriDiagMatfromEigen() begin" << '\n'; 
 | 
			
		||||
    assert( Nk%Nu == 0 && Nm%Nu == 0 );
 | 
			
		||||
    assert( Nk <= Nm );
 | 
			
		||||
    
 | 
			
		||||
@@ -979,7 +979,7 @@ if (1){
 | 
			
		||||
        lme[u][k-Nu] = M(u+(k/Nu)*Nu,k-Nu);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    Glog << "packHermitBlockTriDiagMatfromEigen() end" <<std::endl; 
 | 
			
		||||
    //    Glog << "packHermitBlockTriDiagMatfromEigen() end" <<std::endl; 
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -988,7 +988,7 @@ if (1){
 | 
			
		||||
		            RealD Dsh,
 | 
			
		||||
		            Eigen::MatrixXcd& Qprod)
 | 
			
		||||
  {
 | 
			
		||||
    Glog << "shiftedQRDecompEigen() begin" << '\n'; 
 | 
			
		||||
    //    Glog << "shiftedQRDecompEigen() begin" << '\n'; 
 | 
			
		||||
    Eigen::MatrixXcd Q = Eigen::MatrixXcd::Zero(Nm,Nm);
 | 
			
		||||
    Eigen::MatrixXcd R = Eigen::MatrixXcd::Zero(Nm,Nm);
 | 
			
		||||
    Eigen::MatrixXcd Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
 | 
			
		||||
@@ -1004,7 +1004,7 @@ if (1){
 | 
			
		||||
                        // lower triangular part used to represent series
 | 
			
		||||
                        // of Q sequence.
 | 
			
		||||
 | 
			
		||||
    Glog << "shiftedQRDecompEigen() Housholder & QR" << '\n'; 
 | 
			
		||||
    //    Glog << "shiftedQRDecompEigen() Housholder & QR" << '\n'; 
 | 
			
		||||
    // equivalent operation of Qprod *= Q
 | 
			
		||||
    //M = Eigen::MatrixXcd::Zero(Nm,Nm);
 | 
			
		||||
    
 | 
			
		||||
@@ -1025,7 +1025,7 @@ if (1){
 | 
			
		||||
    
 | 
			
		||||
    Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
 | 
			
		||||
 | 
			
		||||
    Glog << "shiftedQRDecompEigen() Mtmp create" << '\n'; 
 | 
			
		||||
    //    Glog << "shiftedQRDecompEigen() Mtmp create" << '\n'; 
 | 
			
		||||
    for (int i=0; i<Nm; ++i) {
 | 
			
		||||
      for (int j=0; j<Nm-(Nu+1); ++j) {
 | 
			
		||||
        for (int k=0; k<Nu+1+j; ++k) {
 | 
			
		||||
@@ -1033,7 +1033,7 @@ if (1){
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    Glog << "shiftedQRDecompEigen() Mtmp loop1" << '\n'; 
 | 
			
		||||
    //    Glog << "shiftedQRDecompEigen() Mtmp loop1" << '\n'; 
 | 
			
		||||
    for (int i=0; i<Nm; ++i) {
 | 
			
		||||
      for (int j=Nm-(Nu+1); j<Nm; ++j) {
 | 
			
		||||
        for (int k=0; k<Nm; ++k) {
 | 
			
		||||
@@ -1041,7 +1041,7 @@ if (1){
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    Glog << "shiftedQRDecompEigen() Mtmp loop2" << '\n'; 
 | 
			
		||||
    //    Glog << "shiftedQRDecompEigen() Mtmp loop2" << '\n'; 
 | 
			
		||||
    
 | 
			
		||||
    //static int ntimes = 2;
 | 
			
		||||
    //for (int j=0; j<Nm-(ntimes*Nu); ++j) {
 | 
			
		||||
@@ -1067,13 +1067,13 @@ if (1){
 | 
			
		||||
        Mtmp(j,i) = conj(Mtmp(i,j));
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    Glog << "shiftedQRDecompEigen() Mtmp loop3" << '\n'; 
 | 
			
		||||
    //    Glog << "shiftedQRDecompEigen() Mtmp loop3" << '\n'; 
 | 
			
		||||
 | 
			
		||||
    for (int i=0; i<Nm; ++i) {
 | 
			
		||||
      Mtmp(i,i) = real(Mtmp(i,i)) + Dsh;
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    Glog << "shiftedQRDecompEigen() Mtmp loop4" << '\n'; 
 | 
			
		||||
    //    Glog << "shiftedQRDecompEigen() Mtmp loop4" << '\n'; 
 | 
			
		||||
    M = Mtmp;
 | 
			
		||||
 | 
			
		||||
    //M = Q.adjoint()*(M*Q);
 | 
			
		||||
@@ -1085,7 +1085,7 @@ if (1){
 | 
			
		||||
    //  }
 | 
			
		||||
    //}
 | 
			
		||||
    
 | 
			
		||||
    Glog << "shiftedQRDecompEigen() end" <<std::endl; 
 | 
			
		||||
    //    Glog << "shiftedQRDecompEigen() end" <<std::endl; 
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void exampleQRDecompEigen(void)
 | 
			
		||||
 
 | 
			
		||||
@@ -245,9 +245,10 @@ until convergence
 | 
			
		||||
	_HermOp(src_n,tmp);
 | 
			
		||||
	//	std::cout << GridLogMessage<< tmp<<std::endl; exit(0);
 | 
			
		||||
	//	std::cout << GridLogIRL << " _HermOp " << norm2(tmp) << std::endl;
 | 
			
		||||
	RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
 | 
			
		||||
//	RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
 | 
			
		||||
	RealD vnum = real(innerProduct(tmp,tmp)); // HermOp^2.
 | 
			
		||||
	RealD vden = norm2(src_n);
 | 
			
		||||
	RealD na = vnum/vden;
 | 
			
		||||
	RealD na = std::sqrt(vnum/vden);
 | 
			
		||||
	if (fabs(evalMaxApprox/na - 1.0) < 0.0001)
 | 
			
		||||
	  i=_MAX_ITER_IRL_MEVAPP_;
 | 
			
		||||
	evalMaxApprox = na;
 | 
			
		||||
@@ -255,6 +256,7 @@ until convergence
 | 
			
		||||
	src_n = tmp;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogIRL << " Final evalMaxApprox  " << evalMaxApprox << std::endl;
 | 
			
		||||
	
 | 
			
		||||
    std::vector<RealD> lme(Nm);  
 | 
			
		||||
    std::vector<RealD> lme2(Nm);
 | 
			
		||||
 
 | 
			
		||||
@@ -60,6 +60,32 @@ public:
 | 
			
		||||
  }     
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field> class NormalResidual : public LinearFunction<Field>{
 | 
			
		||||
private:
 | 
			
		||||
  SparseMatrixBase<Field> & _Matrix;
 | 
			
		||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
			
		||||
  LinearFunction<Field>   & _Guess;
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
  // Wrap the usual normal equations trick
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
 NormalResidual(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver,
 | 
			
		||||
		 LinearFunction<Field> &Guess) 
 | 
			
		||||
   :  _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {}; 
 | 
			
		||||
 | 
			
		||||
  void operator() (const Field &in, Field &out){
 | 
			
		||||
 
 | 
			
		||||
    Field res(in.Grid());
 | 
			
		||||
    Field tmp(in.Grid());
 | 
			
		||||
 | 
			
		||||
    MMdagLinearOperator<SparseMatrixBase<Field>,Field> MMdagOp(_Matrix);
 | 
			
		||||
    _Guess(in,res);
 | 
			
		||||
    _HermitianSolver(MMdagOp,in,res);  // M Mdag res = in ;
 | 
			
		||||
    _Matrix.Mdag(res,out);             // out = Mdag res
 | 
			
		||||
  }     
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Field> class HPDSolver : public LinearFunction<Field> {
 | 
			
		||||
private:
 | 
			
		||||
  LinearOperatorBase<Field> & _Matrix;
 | 
			
		||||
 
 | 
			
		||||
@@ -20,7 +20,7 @@ template<class Field> class PowerMethod
 | 
			
		||||
    RealD evalMaxApprox = 0.0; 
 | 
			
		||||
    auto src_n = src; 
 | 
			
		||||
    auto tmp = src; 
 | 
			
		||||
    const int _MAX_ITER_EST_ = 100; 
 | 
			
		||||
    const int _MAX_ITER_EST_ = 200; 
 | 
			
		||||
 | 
			
		||||
    for (int i=0;i<_MAX_ITER_EST_;i++) { 
 | 
			
		||||
      
 | 
			
		||||
@@ -30,18 +30,17 @@ template<class Field> class PowerMethod
 | 
			
		||||
      RealD vden = norm2(src_n); 
 | 
			
		||||
      RealD na = vnum/vden; 
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogIterative << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
 | 
			
		||||
      
 | 
			
		||||
      if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) { 
 | 
			
		||||
 	evalMaxApprox = na; 
 | 
			
		||||
	std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
 | 
			
		||||
 	return evalMaxApprox; 
 | 
			
		||||
      } 
 | 
			
		||||
      //      if ( (fabs(evalMaxApprox/na - 1.0) < 0.0001) || (i==_MAX_ITER_EST_-1) ) { 
 | 
			
		||||
	// 	evalMaxApprox = na; 
 | 
			
		||||
	// 	return evalMaxApprox; 
 | 
			
		||||
      //      } 
 | 
			
		||||
      evalMaxApprox = na; 
 | 
			
		||||
      src_n = tmp;
 | 
			
		||||
    }
 | 
			
		||||
    assert(0);
 | 
			
		||||
    return 0;
 | 
			
		||||
    std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
 | 
			
		||||
    return evalMaxApprox;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										76
									
								
								Grid/algorithms/iterative/PowerSpectrum.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										76
									
								
								Grid/algorithms/iterative/PowerSpectrum.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,76 @@
 | 
			
		||||
#pragma once
 | 
			
		||||
namespace Grid {
 | 
			
		||||
 | 
			
		||||
class Band
 | 
			
		||||
{
 | 
			
		||||
  RealD lo, hi;
 | 
			
		||||
public:
 | 
			
		||||
  Band(RealD _lo,RealD _hi)
 | 
			
		||||
  {
 | 
			
		||||
    lo=_lo;
 | 
			
		||||
    hi=_hi;
 | 
			
		||||
  }
 | 
			
		||||
  RealD operator() (RealD x){
 | 
			
		||||
    if ( x>lo && x<hi ){
 | 
			
		||||
      return 1.0;
 | 
			
		||||
    } else {
 | 
			
		||||
      return 0.0;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
class PowerSpectrum
 | 
			
		||||
{ 
 | 
			
		||||
 public: 
 | 
			
		||||
 | 
			
		||||
  template<typename T>  static RealD normalise(T& v) 
 | 
			
		||||
  {
 | 
			
		||||
    RealD nn = norm2(v);
 | 
			
		||||
    nn = sqrt(nn);
 | 
			
		||||
    v = v * (1.0/nn);
 | 
			
		||||
    return nn;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  std::vector<RealD> ranges;
 | 
			
		||||
  std::vector<int> order;
 | 
			
		||||
  
 | 
			
		||||
  PowerSpectrum(  std::vector<RealD> &bins, std::vector<int> &_order ) : ranges(bins), order(_order)  { };
 | 
			
		||||
 | 
			
		||||
  template<class Field>
 | 
			
		||||
  RealD operator()(LinearOperatorBase<Field> &HermOp, const Field &src) 
 | 
			
		||||
  { 
 | 
			
		||||
    GridBase *grid = src.Grid(); 
 | 
			
		||||
    int N=ranges.size();
 | 
			
		||||
    RealD hi = ranges[N-1];
 | 
			
		||||
 | 
			
		||||
    RealD lo_band = 0.0;
 | 
			
		||||
    RealD hi_band;
 | 
			
		||||
    RealD nn=norm2(src);
 | 
			
		||||
    RealD ss=0.0;
 | 
			
		||||
 | 
			
		||||
    Field tmp = src;
 | 
			
		||||
 | 
			
		||||
    for(int b=0;b<N;b++){
 | 
			
		||||
      hi_band = ranges[b];
 | 
			
		||||
      Band Notch(lo_band,hi_band);
 | 
			
		||||
      
 | 
			
		||||
      Chebyshev<Field> polynomial;
 | 
			
		||||
      polynomial.Init(0.0,hi,order[b],Notch);
 | 
			
		||||
      polynomial.JacksonSmooth();
 | 
			
		||||
 | 
			
		||||
      polynomial(HermOp,src,tmp) ;
 | 
			
		||||
 | 
			
		||||
      RealD p=norm2(tmp);
 | 
			
		||||
      ss=ss+p;
 | 
			
		||||
      std::cout << GridLogMessage << " PowerSpectrum Band["<<lo_band<<","<<hi_band<<"] power "<<norm2(tmp)/nn<<std::endl;
 | 
			
		||||
      
 | 
			
		||||
      lo_band=hi_band;
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << " PowerSpectrum total power "<<ss/nn<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " PowerSpectrum total power (unnormalised) "<<nn<<std::endl;
 | 
			
		||||
 | 
			
		||||
    return 0;
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
  
 | 
			
		||||
}
 | 
			
		||||
@@ -74,7 +74,7 @@ public:
 | 
			
		||||
 | 
			
		||||
  void operator() (const Field &src, Field &psi){
 | 
			
		||||
 | 
			
		||||
    psi=Zero();
 | 
			
		||||
    //    psi=Zero();
 | 
			
		||||
    RealD cp, ssq,rsq;
 | 
			
		||||
    ssq=norm2(src);
 | 
			
		||||
    rsq=Tolerance*Tolerance*ssq;
 | 
			
		||||
 
 | 
			
		||||
@@ -30,6 +30,8 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidualNonHermitian.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
inline RealD AggregatePowerLaw(RealD x)
 | 
			
		||||
@@ -95,7 +97,7 @@ public:
 | 
			
		||||
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    ConjugateGradient<FineField> CG(1.0e-2,100,false);
 | 
			
		||||
    ConjugateGradient<FineField> CG(1.0e-3,400,false);
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
 | 
			
		||||
@@ -108,7 +110,7 @@ public:
 | 
			
		||||
      
 | 
			
		||||
      hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise   ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
      for(int i=0;i<1;i++){
 | 
			
		||||
      for(int i=0;i<4;i++){
 | 
			
		||||
 | 
			
		||||
	CG(hermop,noise,subspace[b]);
 | 
			
		||||
 | 
			
		||||
@@ -124,6 +126,53 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void CreateSubspaceGCR(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &DiracOp,int nn=nbasis)
 | 
			
		||||
  {
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    TrivialPrecon<FineField> simple_fine;
 | 
			
		||||
    PrecGeneralisedConjugateResidualNonHermitian<FineField> GCR(0.001,30,DiracOp,simple_fine,12,12);
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField src(FineGrid);
 | 
			
		||||
    FineField guess(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
 | 
			
		||||
    for(int b=0;b<nn;b++){
 | 
			
		||||
      
 | 
			
		||||
      subspace[b] = Zero();
 | 
			
		||||
      gaussian(RNG,noise);
 | 
			
		||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
      noise=noise*scale;
 | 
			
		||||
      
 | 
			
		||||
      DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "noise   ["<<b<<"] <n|Op|n> "<<innerProduct(noise,Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
      for(int i=0;i<2;i++){
 | 
			
		||||
	//  void operator() (const Field &src, Field &psi){
 | 
			
		||||
#if 1
 | 
			
		||||
	std::cout << GridLogMessage << " inverting on noise "<<std::endl;
 | 
			
		||||
	src = noise;
 | 
			
		||||
	guess=Zero();
 | 
			
		||||
	GCR(src,guess);
 | 
			
		||||
	subspace[b] = guess;
 | 
			
		||||
#else
 | 
			
		||||
	std::cout << GridLogMessage << " inverting on zero "<<std::endl;
 | 
			
		||||
	src=Zero();
 | 
			
		||||
	guess = noise;
 | 
			
		||||
	GCR(src,guess);
 | 
			
		||||
	subspace[b] = guess;
 | 
			
		||||
#endif
 | 
			
		||||
	noise = subspace[b];
 | 
			
		||||
	scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
	noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|Op|f> "<<innerProduct(noise,Mn)<<std::endl;
 | 
			
		||||
      subspace[b]   = noise;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
 | 
			
		||||
  // and this is the best I found
 | 
			
		||||
@@ -160,14 +209,21 @@ public:
 | 
			
		||||
 | 
			
		||||
    int b =0;
 | 
			
		||||
    {
 | 
			
		||||
      ComplexD ip;
 | 
			
		||||
      // Filter
 | 
			
		||||
      Chebyshev<FineField> Cheb(lo,hi,orderfilter);
 | 
			
		||||
      Cheb(hermop,noise,Mn);
 | 
			
		||||
      // normalise
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
			
		||||
      subspace[b]   = Mn;
 | 
			
		||||
      hermop.Op(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
 | 
			
		||||
      hermop.Op(Mn,tmp);
 | 
			
		||||
      ip= innerProduct(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
 | 
			
		||||
 | 
			
		||||
      hermop.AdjOp(Mn,tmp); 
 | 
			
		||||
      ip = innerProduct(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
 | 
			
		||||
      b++;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
@@ -213,8 +269,18 @@ public:
 | 
			
		||||
	  Mn=*Tnp;
 | 
			
		||||
	  scale = std::pow(norm2(Mn),-0.5);         Mn=Mn*scale;
 | 
			
		||||
	  subspace[b] = Mn;
 | 
			
		||||
	  hermop.Op(Mn,tmp); 
 | 
			
		||||
	  std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
	  ComplexD ip;
 | 
			
		||||
 | 
			
		||||
	  hermop.Op(Mn,tmp);
 | 
			
		||||
	  ip= innerProduct(Mn,tmp); 
 | 
			
		||||
	  std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
 | 
			
		||||
 | 
			
		||||
	  hermop.AdjOp(Mn,tmp); 
 | 
			
		||||
	  ip = innerProduct(Mn,tmp); 
 | 
			
		||||
	  std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
 | 
			
		||||
	  
 | 
			
		||||
	  b++;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
@@ -228,6 +294,70 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
    assert(b==nn);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  virtual void CreateSubspacePolyCheby(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
				       int nn,
 | 
			
		||||
				       double hi,
 | 
			
		||||
				       double lo1,
 | 
			
		||||
				       int orderfilter,
 | 
			
		||||
				       double lo2,
 | 
			
		||||
				       int orderstep)
 | 
			
		||||
  {
 | 
			
		||||
    RealD scale;
 | 
			
		||||
 | 
			
		||||
    FineField noise(FineGrid);
 | 
			
		||||
    FineField Mn(FineGrid);
 | 
			
		||||
    FineField tmp(FineGrid);
 | 
			
		||||
 | 
			
		||||
    // New normalised noise
 | 
			
		||||
    gaussian(RNG,noise);
 | 
			
		||||
    scale = std::pow(norm2(noise),-0.5); 
 | 
			
		||||
    noise=noise*scale;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage<<" CreateSubspacePolyCheby "<<std::endl;
 | 
			
		||||
    // Initial matrix element
 | 
			
		||||
    hermop.Op(noise,Mn);
 | 
			
		||||
    std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
    int b =0;
 | 
			
		||||
    {
 | 
			
		||||
      // Filter
 | 
			
		||||
      std::cout << GridLogMessage << "Cheby "<<lo1<<","<<hi<<" "<<orderstep<<std::endl;
 | 
			
		||||
      Chebyshev<FineField> Cheb(lo1,hi,orderfilter);
 | 
			
		||||
      Cheb(hermop,noise,Mn);
 | 
			
		||||
      // normalise
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
			
		||||
      subspace[b]   = Mn;
 | 
			
		||||
      hermop.Op(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Generate a full sequence of Chebyshevs
 | 
			
		||||
    for(int n=1;n<nn;n++){
 | 
			
		||||
      std::cout << GridLogMessage << "Cheby "<<lo2<<","<<hi<<" "<<orderstep<<std::endl;
 | 
			
		||||
      Chebyshev<FineField> Cheb(lo2,hi,orderstep);
 | 
			
		||||
      Cheb(hermop,subspace[n-1],Mn);
 | 
			
		||||
 | 
			
		||||
      for(int m=0;m<n;m++){
 | 
			
		||||
	ComplexD c = innerProduct(subspace[m],Mn);
 | 
			
		||||
	Mn = Mn - c*subspace[m];
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      // normalise
 | 
			
		||||
      scale = std::pow(norm2(Mn),-0.5);
 | 
			
		||||
      Mn=Mn*scale;
 | 
			
		||||
      
 | 
			
		||||
      subspace[n]=Mn;
 | 
			
		||||
      
 | 
			
		||||
      hermop.Op(Mn,tmp); 
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<n<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
			
		||||
      std::cout<<GridLogMessage << "filt ["<<n<<"] <n|n> "<<norm2(Mn)<<std::endl;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
			
		||||
				       int nn,
 | 
			
		||||
				       double hi,
 | 
			
		||||
 
 | 
			
		||||
@@ -99,7 +99,7 @@ public:
 | 
			
		||||
  CoarseMatrix AselfInvEven;
 | 
			
		||||
  CoarseMatrix AselfInvOdd;
 | 
			
		||||
 | 
			
		||||
  Vector<RealD> dag_factor;
 | 
			
		||||
  deviceVector<RealD> dag_factor;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////
 | 
			
		||||
  // Interface
 | 
			
		||||
@@ -124,9 +124,13 @@ public:
 | 
			
		||||
    int npoint = geom.npoint;
 | 
			
		||||
    typedef LatticeView<Cobj> Aview;
 | 
			
		||||
      
 | 
			
		||||
    Vector<Aview> AcceleratorViewContainer;
 | 
			
		||||
    deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
 | 
			
		||||
    hostVector<Aview>   hAcceleratorViewContainer(geom.npoint);
 | 
			
		||||
  
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) {
 | 
			
		||||
      hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
 | 
			
		||||
      acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
 | 
			
		||||
    }
 | 
			
		||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
			
		||||
 | 
			
		||||
    const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
@@ -161,7 +165,7 @@ public:
 | 
			
		||||
      coalescedWrite(out_v[ss](b),res);
 | 
			
		||||
      });
 | 
			
		||||
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void Mdag (const CoarseVector &in, CoarseVector &out)
 | 
			
		||||
@@ -190,9 +194,14 @@ public:
 | 
			
		||||
    int npoint = geom.npoint;
 | 
			
		||||
    typedef LatticeView<Cobj> Aview;
 | 
			
		||||
 | 
			
		||||
    Vector<Aview> AcceleratorViewContainer;
 | 
			
		||||
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
 | 
			
		||||
    deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
 | 
			
		||||
    hostVector<Aview>   hAcceleratorViewContainer(geom.npoint);
 | 
			
		||||
  
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) {
 | 
			
		||||
      hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
 | 
			
		||||
      acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
 | 
			
		||||
    }
 | 
			
		||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
			
		||||
 | 
			
		||||
    const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
@@ -201,10 +210,10 @@ public:
 | 
			
		||||
 | 
			
		||||
    int osites=Grid()->oSites();
 | 
			
		||||
 | 
			
		||||
    Vector<int> points(geom.npoint, 0);
 | 
			
		||||
    for(int p=0; p<geom.npoint; p++)
 | 
			
		||||
      points[p] = geom.points_dagger[p];
 | 
			
		||||
 | 
			
		||||
    deviceVector<int> points(geom.npoint);
 | 
			
		||||
    for(int p=0; p<geom.npoint; p++) { 
 | 
			
		||||
      acceleratorPut(points[p],geom.points_dagger[p]);
 | 
			
		||||
    }
 | 
			
		||||
    auto points_p = &points[0];
 | 
			
		||||
 | 
			
		||||
    RealD* dag_factor_p = &dag_factor[0];
 | 
			
		||||
@@ -236,7 +245,7 @@ public:
 | 
			
		||||
      coalescedWrite(out_v[ss](b),res);
 | 
			
		||||
      });
 | 
			
		||||
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MdirComms(const CoarseVector &in)
 | 
			
		||||
@@ -251,8 +260,14 @@ public:
 | 
			
		||||
    out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
 | 
			
		||||
    typedef LatticeView<Cobj> Aview;
 | 
			
		||||
    Vector<Aview> AcceleratorViewContainer;
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
 | 
			
		||||
 | 
			
		||||
    deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
 | 
			
		||||
    hostVector<Aview>   hAcceleratorViewContainer(geom.npoint);
 | 
			
		||||
  
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) {
 | 
			
		||||
      hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
 | 
			
		||||
      acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
 | 
			
		||||
    }
 | 
			
		||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
			
		||||
 | 
			
		||||
    autoView( out_v , out, AcceleratorWrite);
 | 
			
		||||
@@ -285,7 +300,7 @@ public:
 | 
			
		||||
      }
 | 
			
		||||
      coalescedWrite(out_v[ss](b),res);
 | 
			
		||||
    });
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
 | 
			
		||||
  }
 | 
			
		||||
  void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out)
 | 
			
		||||
  {
 | 
			
		||||
@@ -469,14 +484,20 @@ public:
 | 
			
		||||
 | 
			
		||||
    // determine in what order we need the points
 | 
			
		||||
    int npoint = geom.npoint-1;
 | 
			
		||||
    Vector<int> points(npoint, 0);
 | 
			
		||||
    for(int p=0; p<npoint; p++)
 | 
			
		||||
      points[p] = (dag && !hermitian) ? geom.points_dagger[p] : p;
 | 
			
		||||
 | 
			
		||||
    deviceVector<int> points(npoint);
 | 
			
		||||
    for(int p=0; p<npoint; p++) {
 | 
			
		||||
      int val = (dag && !hermitian) ? geom.points_dagger[p] : p;
 | 
			
		||||
      acceleratorPut(points[p], val);
 | 
			
		||||
    }
 | 
			
		||||
    auto points_p = &points[0];
 | 
			
		||||
 | 
			
		||||
    Vector<Aview> AcceleratorViewContainer;
 | 
			
		||||
    for(int p=0;p<npoint;p++) AcceleratorViewContainer.push_back(a[p].View(AcceleratorRead));
 | 
			
		||||
    deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
 | 
			
		||||
    hostVector<Aview>   hAcceleratorViewContainer(geom.npoint);
 | 
			
		||||
  
 | 
			
		||||
    for(int p=0;p<geom.npoint;p++) {
 | 
			
		||||
      hAcceleratorViewContainer[p] = a[p].View(AcceleratorRead);
 | 
			
		||||
      acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
 | 
			
		||||
    }
 | 
			
		||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
			
		||||
 | 
			
		||||
    const int Nsimd = CComplex::Nsimd();
 | 
			
		||||
@@ -539,7 +560,7 @@ public:
 | 
			
		||||
      });
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for(int p=0;p<npoint;p++) AcceleratorViewContainer[p].ViewClose();
 | 
			
		||||
    for(int p=0;p<npoint;p++) hAcceleratorViewContainer[p].ViewClose();
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) 	:
 | 
			
		||||
@@ -590,11 +611,13 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // GPU readable prefactor
 | 
			
		||||
    std::vector<RealD> h_dag_factor(nbasis*nbasis);
 | 
			
		||||
    thread_for(i, nbasis*nbasis, {
 | 
			
		||||
      int j = i/nbasis;
 | 
			
		||||
      int k = i%nbasis;
 | 
			
		||||
      dag_factor[i] = dag_factor_eigen(j, k);
 | 
			
		||||
      h_dag_factor[i] = dag_factor_eigen(j, k);
 | 
			
		||||
    });
 | 
			
		||||
    acceleratorCopyToDevice(&h_dag_factor[0],&dag_factor[0],dag_factor.size()*sizeof(RealD));
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
			
		||||
 
 | 
			
		||||
@@ -441,8 +441,20 @@ public:
 | 
			
		||||
    std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
#else
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Galerkin projection of matrix
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////
 | 
			
		||||
  void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
			
		||||
		       Aggregation<Fobj,CComplex,nbasis> & Subspace)
 | 
			
		||||
  {
 | 
			
		||||
    CoarsenOperator(linop,Subspace,Subspace);
 | 
			
		||||
  }
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Petrov - Galerkin projection of matrix
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////
 | 
			
		||||
  void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
			
		||||
		       Aggregation<Fobj,CComplex,nbasis> & U,
 | 
			
		||||
		       Aggregation<Fobj,CComplex,nbasis> & V)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
 | 
			
		||||
    GridBase *grid = FineGrid();
 | 
			
		||||
@@ -458,11 +470,9 @@ public:
 | 
			
		||||
    // Orthogonalise the subblocks over the basis
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
    CoarseScalar InnerProd(CoarseGrid()); 
 | 
			
		||||
    blockOrthogonalise(InnerProd,Subspace.subspace);
 | 
			
		||||
    blockOrthogonalise(InnerProd,V.subspace);
 | 
			
		||||
    blockOrthogonalise(InnerProd,U.subspace);
 | 
			
		||||
 | 
			
		||||
    //    for(int s=0;s<Subspace.subspace.size();s++){
 | 
			
		||||
      //      std::cout << " subspace norm "<<norm2(Subspace.subspace[s])<<std::endl;
 | 
			
		||||
    //    }
 | 
			
		||||
    const int npoint = geom.npoint;
 | 
			
		||||
      
 | 
			
		||||
    Coordinate clatt = CoarseGrid()->GlobalDimensions();
 | 
			
		||||
@@ -542,7 +552,7 @@ public:
 | 
			
		||||
      std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
 | 
			
		||||
      for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
			
		||||
	tphaseBZ-=usecond();
 | 
			
		||||
	phaV = phaF[p]*Subspace.subspace[i];
 | 
			
		||||
	phaV = phaF[p]*V.subspace[i];
 | 
			
		||||
	tphaseBZ+=usecond();
 | 
			
		||||
 | 
			
		||||
	/////////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -555,7 +565,7 @@ public:
 | 
			
		||||
	//	std::cout << i << " " <<p << " MphaV "<<norm2(MphaV)<<" "<<norm2(phaV)<<std::endl;
 | 
			
		||||
 | 
			
		||||
	tproj-=usecond();
 | 
			
		||||
	blockProject(coarseInner,MphaV,Subspace.subspace);
 | 
			
		||||
	blockProject(coarseInner,MphaV,U.subspace);
 | 
			
		||||
	coarseInner = conjugate(pha[p]) * coarseInner;
 | 
			
		||||
 | 
			
		||||
	ComputeProj[p] = coarseInner;
 | 
			
		||||
 
 | 
			
		||||
@@ -69,7 +69,7 @@ public:
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // FIXME: hack for the copy constructor: it must be avoided to avoid single thread loop
 | 
			
		||||
  void construct(pointer __p, const _Tp& __val) { assert(0);};
 | 
			
		||||
  void construct(pointer __p, const _Tp& __val) { };
 | 
			
		||||
  void construct(pointer __p) { };
 | 
			
		||||
  void destroy(pointer __p) { };
 | 
			
		||||
};
 | 
			
		||||
@@ -174,19 +174,10 @@ template<typename _Tp>  inline bool operator!=(const devAllocator<_Tp>&, const d
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Template typedefs
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT
 | 
			
		||||
// Cshift on device
 | 
			
		||||
template<class T> using cshiftAllocator = devAllocator<T>;
 | 
			
		||||
#else
 | 
			
		||||
// Cshift on host
 | 
			
		||||
template<class T> using cshiftAllocator = std::allocator<T>;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
template<class T> using Vector        = std::vector<T,uvmAllocator<T> >;           
 | 
			
		||||
template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;           
 | 
			
		||||
template<class T> using commVector    = std::vector<T,devAllocator<T> >;
 | 
			
		||||
template<class T> using deviceVector  = std::vector<T,devAllocator<T> >;
 | 
			
		||||
template<class T> using cshiftVector  = std::vector<T,cshiftAllocator<T> >;
 | 
			
		||||
template<class T> using hostVector          = std::vector<T,alignedAllocator<T> >;           // Needs autoview
 | 
			
		||||
template<class T> using Vector              = std::vector<T,uvmAllocator<T> >;               // Really want to deprecate
 | 
			
		||||
template<class T> using uvmVector           = std::vector<T,uvmAllocator<T> >;               // auto migrating page
 | 
			
		||||
template<class T> using deviceVector        = std::vector<T,devAllocator<T> >;               // device vector
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
template<class T> class vecView
 | 
			
		||||
@@ -197,8 +188,9 @@ template<class T> class vecView
 | 
			
		||||
  ViewMode mode;
 | 
			
		||||
  void * cpu_ptr;
 | 
			
		||||
 public:
 | 
			
		||||
  // Rvalue accessor
 | 
			
		||||
  accelerator_inline T & operator[](size_t i) const { return this->data[i]; };
 | 
			
		||||
  vecView(std::vector<T> &refer_to_me,ViewMode _mode)
 | 
			
		||||
  vecView(Vector<T> &refer_to_me,ViewMode _mode)
 | 
			
		||||
  {
 | 
			
		||||
    cpu_ptr = &refer_to_me[0];
 | 
			
		||||
    size = refer_to_me.size();
 | 
			
		||||
@@ -214,22 +206,12 @@ template<class T> class vecView
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class T> vecView<T> VectorView(std::vector<T> &vec,ViewMode _mode)
 | 
			
		||||
template<class T> vecView<T> VectorView(Vector<T> &vec,ViewMode _mode)
 | 
			
		||||
{
 | 
			
		||||
  vecView<T> ret(vec,_mode); // does the open
 | 
			
		||||
  return ret;                // must be closed
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Little autoscope assister
 | 
			
		||||
template<class View> 
 | 
			
		||||
class VectorViewCloser
 | 
			
		||||
{
 | 
			
		||||
  View v;  // Take a copy of view and call view close when I go out of scope automatically
 | 
			
		||||
 public:
 | 
			
		||||
  VectorViewCloser(View &_v) : v(_v) {};
 | 
			
		||||
  ~VectorViewCloser() { auto ptr = v.cpu_ptr; v.ViewClose();  MemoryManager::NotifyDeletion(ptr);}
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#define autoVecView(v_v,v,mode)					\
 | 
			
		||||
  auto v_v = VectorView(v,mode);				\
 | 
			
		||||
  ViewCloser<decltype(v_v)> _autoView##v_v(v_v);
 | 
			
		||||
 
 | 
			
		||||
@@ -35,7 +35,7 @@ uint64_t total_host;;
 | 
			
		||||
void MemoryManager::DisplayMallinfo(void)
 | 
			
		||||
{
 | 
			
		||||
#ifdef __linux__
 | 
			
		||||
  struct mallinfo mi;
 | 
			
		||||
  struct mallinfo mi; // really want mallinfo2, but glibc version isn't uniform
 | 
			
		||||
  
 | 
			
		||||
  mi = mallinfo();
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -1,16 +1,15 @@
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
#ifndef GRID_UVM
 | 
			
		||||
 | 
			
		||||
#warning "Using explicit device memory copies"
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
#define MAXLINE 512
 | 
			
		||||
static char print_buffer [ MAXLINE ];
 | 
			
		||||
 | 
			
		||||
#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer;
 | 
			
		||||
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug << print_buffer;
 | 
			
		||||
#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer << std::endl;
 | 
			
		||||
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug  << print_buffer << std::endl;
 | 
			
		||||
//#define dprintf(...) 
 | 
			
		||||
 | 
			
		||||
//#define mprintf(...) 
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////
 | 
			
		||||
// For caching copies of data on device
 | 
			
		||||
@@ -111,7 +110,7 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
 | 
			
		||||
  ///////////////////////////////////////////////////////////
 | 
			
		||||
  assert(AccCache.state!=Empty);
 | 
			
		||||
  
 | 
			
		||||
  dprintf("MemoryManager: Discard(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr); 
 | 
			
		||||
  dprintf("MemoryManager: Discard(%lx) %lx",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr); 
 | 
			
		||||
  assert(AccCache.accLock==0);
 | 
			
		||||
  assert(AccCache.cpuLock==0);
 | 
			
		||||
  assert(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
			
		||||
@@ -121,7 +120,7 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
 | 
			
		||||
    DeviceBytes   -=AccCache.bytes;
 | 
			
		||||
    LRUremove(AccCache);
 | 
			
		||||
    AccCache.AccPtr=(uint64_t) NULL;
 | 
			
		||||
    dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);  
 | 
			
		||||
    dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);  
 | 
			
		||||
  }
 | 
			
		||||
  uint64_t CpuPtr = AccCache.CpuPtr;
 | 
			
		||||
  EntryErase(CpuPtr);
 | 
			
		||||
@@ -141,7 +140,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  assert(AccCache.state!=Empty);
 | 
			
		||||
  
 | 
			
		||||
  mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld\n",
 | 
			
		||||
  mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld",
 | 
			
		||||
	  (uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr,
 | 
			
		||||
	  (uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock); 
 | 
			
		||||
  if (AccCache.accLock!=0) return;
 | 
			
		||||
@@ -155,7 +154,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
 | 
			
		||||
    AccCache.AccPtr=(uint64_t)NULL;
 | 
			
		||||
    AccCache.state=CpuDirty; // CPU primary now
 | 
			
		||||
    DeviceBytes   -=AccCache.bytes;
 | 
			
		||||
    dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);  
 | 
			
		||||
    dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld ",(uint64_t)AccCache.AccPtr,DeviceBytes);  
 | 
			
		||||
  }
 | 
			
		||||
  //  uint64_t CpuPtr = AccCache.CpuPtr;
 | 
			
		||||
  DeviceEvictions++;
 | 
			
		||||
@@ -169,7 +168,7 @@ void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
 | 
			
		||||
  assert(AccCache.AccPtr!=(uint64_t)NULL);
 | 
			
		||||
  assert(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
			
		||||
  acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
 | 
			
		||||
  mprintf("MemoryManager: acceleratorCopyFromDevice Flush AccPtr %lx -> CpuPtr %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
 | 
			
		||||
  mprintf("MemoryManager: acceleratorCopyFromDevice Flush size %ld AccPtr %lx -> CpuPtr %lx",(uint64_t)AccCache.bytes,(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
 | 
			
		||||
  DeviceToHostBytes+=AccCache.bytes;
 | 
			
		||||
  DeviceToHostXfer++;
 | 
			
		||||
  AccCache.state=Consistent;
 | 
			
		||||
@@ -184,7 +183,9 @@ void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
 | 
			
		||||
    AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
 | 
			
		||||
    DeviceBytes+=AccCache.bytes;
 | 
			
		||||
  }
 | 
			
		||||
  mprintf("MemoryManager: acceleratorCopyToDevice   Clone AccPtr %lx <- CpuPtr %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
 | 
			
		||||
  mprintf("MemoryManager: acceleratorCopyToDevice   Clone size %ld AccPtr %lx <- CpuPtr %lx",
 | 
			
		||||
	  (uint64_t)AccCache.bytes,
 | 
			
		||||
	  (uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
 | 
			
		||||
  acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
 | 
			
		||||
  HostToDeviceBytes+=AccCache.bytes;
 | 
			
		||||
  HostToDeviceXfer++;
 | 
			
		||||
@@ -210,7 +211,7 @@ void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache)
 | 
			
		||||
void MemoryManager::ViewClose(void* Ptr,ViewMode mode)
 | 
			
		||||
{
 | 
			
		||||
  if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
 | 
			
		||||
    dprintf("AcceleratorViewClose %lx\n",(uint64_t)Ptr);
 | 
			
		||||
    dprintf("AcceleratorViewClose %lx",(uint64_t)Ptr);
 | 
			
		||||
    AcceleratorViewClose((uint64_t)Ptr);
 | 
			
		||||
  } else if( (mode==CpuRead)||(mode==CpuWrite)){
 | 
			
		||||
    CpuViewClose((uint64_t)Ptr);
 | 
			
		||||
@@ -222,7 +223,7 @@ void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvis
 | 
			
		||||
{
 | 
			
		||||
  uint64_t CpuPtr = (uint64_t)_CpuPtr;
 | 
			
		||||
  if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
 | 
			
		||||
    dprintf("AcceleratorViewOpen %lx\n",(uint64_t)CpuPtr);
 | 
			
		||||
    dprintf("AcceleratorViewOpen %lx",(uint64_t)CpuPtr);
 | 
			
		||||
    return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint);
 | 
			
		||||
  } else if( (mode==CpuRead)||(mode==CpuWrite)){
 | 
			
		||||
    return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint);
 | 
			
		||||
@@ -233,6 +234,9 @@ void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvis
 | 
			
		||||
}
 | 
			
		||||
void  MemoryManager::EvictVictims(uint64_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  if(bytes>=DeviceMaxBytes) {
 | 
			
		||||
    printf("EvictVictims bytes %ld DeviceMaxBytes %ld\n",bytes,DeviceMaxBytes);
 | 
			
		||||
  }
 | 
			
		||||
  assert(bytes<DeviceMaxBytes);
 | 
			
		||||
  while(bytes+DeviceLRUBytes > DeviceMaxBytes){
 | 
			
		||||
    if ( DeviceLRUBytes > 0){
 | 
			
		||||
@@ -265,7 +269,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
 | 
			
		||||
  assert(AccCache.cpuLock==0);  // Programming error
 | 
			
		||||
 | 
			
		||||
  if(AccCache.state!=Empty) {
 | 
			
		||||
    dprintf("ViewOpen found entry %lx %lx : %ld %ld accLock %ld\n",
 | 
			
		||||
    dprintf("ViewOpen found entry %lx %lx : sizes %ld %ld accLock %ld",
 | 
			
		||||
		    (uint64_t)AccCache.CpuPtr,
 | 
			
		||||
		    (uint64_t)CpuPtr,
 | 
			
		||||
		    (uint64_t)AccCache.bytes,
 | 
			
		||||
@@ -305,7 +309,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
 | 
			
		||||
      AccCache.state  = Consistent; // Empty + AccRead => Consistent
 | 
			
		||||
    }
 | 
			
		||||
    AccCache.accLock= 1;
 | 
			
		||||
    dprintf("Copied Empty entry into device accLock= %d\n",AccCache.accLock);
 | 
			
		||||
    dprintf("Copied Empty entry into device accLock= %d",AccCache.accLock);
 | 
			
		||||
  } else if(AccCache.state==CpuDirty ){
 | 
			
		||||
    if(mode==AcceleratorWriteDiscard) {
 | 
			
		||||
      CpuDiscard(AccCache);
 | 
			
		||||
@@ -318,21 +322,21 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
 | 
			
		||||
      AccCache.state  = Consistent; // CpuDirty + AccRead => Consistent
 | 
			
		||||
    }
 | 
			
		||||
    AccCache.accLock++;
 | 
			
		||||
    dprintf("CpuDirty entry into device ++accLock= %d\n",AccCache.accLock);
 | 
			
		||||
    dprintf("CpuDirty entry into device ++accLock= %d",AccCache.accLock);
 | 
			
		||||
  } else if(AccCache.state==Consistent) {
 | 
			
		||||
    if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
 | 
			
		||||
      AccCache.state  = AccDirty;   // Consistent + AcceleratorWrite=> AccDirty
 | 
			
		||||
    else
 | 
			
		||||
      AccCache.state  = Consistent; // Consistent + AccRead => Consistent
 | 
			
		||||
    AccCache.accLock++;
 | 
			
		||||
    dprintf("Consistent entry into device ++accLock= %d\n",AccCache.accLock);
 | 
			
		||||
    dprintf("Consistent entry into device ++accLock= %d",AccCache.accLock);
 | 
			
		||||
  } else if(AccCache.state==AccDirty) {
 | 
			
		||||
    if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
 | 
			
		||||
      AccCache.state  = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty
 | 
			
		||||
    else
 | 
			
		||||
      AccCache.state  = AccDirty; // AccDirty + AccRead => AccDirty
 | 
			
		||||
    AccCache.accLock++;
 | 
			
		||||
    dprintf("AccDirty entry ++accLock= %d\n",AccCache.accLock);
 | 
			
		||||
    dprintf("AccDirty entry ++accLock= %d",AccCache.accLock);
 | 
			
		||||
  } else {
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
@@ -341,7 +345,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
 | 
			
		||||
  // If view is opened on device must remove from LRU
 | 
			
		||||
  if(AccCache.LRU_valid==1){
 | 
			
		||||
    // must possibly remove from LRU as now locked on GPU
 | 
			
		||||
    dprintf("AccCache entry removed from LRU \n");
 | 
			
		||||
    dprintf("AccCache entry removed from LRU ");
 | 
			
		||||
    LRUremove(AccCache);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
@@ -364,10 +368,10 @@ void MemoryManager::AcceleratorViewClose(uint64_t CpuPtr)
 | 
			
		||||
  AccCache.accLock--;
 | 
			
		||||
  // Move to LRU queue if not locked and close on device
 | 
			
		||||
  if(AccCache.accLock==0) {
 | 
			
		||||
    dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
 | 
			
		||||
    dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
 | 
			
		||||
    LRUinsert(AccCache);
 | 
			
		||||
  } else {
 | 
			
		||||
    dprintf("AccleratorViewClose %lx AccLock decremented to %ld\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
 | 
			
		||||
    dprintf("AccleratorViewClose %lx AccLock decremented to %ld",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
void MemoryManager::CpuViewClose(uint64_t CpuPtr)
 | 
			
		||||
 
 | 
			
		||||
@@ -15,10 +15,10 @@ void check_huge_pages(void *Buf,uint64_t BYTES)
 | 
			
		||||
  uint64_t virt_pfn = (uint64_t)Buf / page_size;
 | 
			
		||||
  off_t offset = sizeof(uint64_t) * virt_pfn;
 | 
			
		||||
  uint64_t npages = (BYTES + page_size-1) / page_size;
 | 
			
		||||
  uint64_t pagedata[npages];
 | 
			
		||||
  std::vector<uint64_t> pagedata(npages);
 | 
			
		||||
  uint64_t ret = lseek(fd, offset, SEEK_SET);
 | 
			
		||||
  assert(ret == offset);
 | 
			
		||||
  ret = ::read(fd, pagedata, sizeof(uint64_t)*npages);
 | 
			
		||||
  ret = ::read(fd, &pagedata[0], sizeof(uint64_t)*npages);
 | 
			
		||||
  assert(ret == sizeof(uint64_t) * npages);
 | 
			
		||||
  int nhugepages = npages / 512;
 | 
			
		||||
  int n4ktotal, nnothuge;
 | 
			
		||||
 
 | 
			
		||||
@@ -31,5 +31,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#include <Grid/cartesian/Cartesian_base.h>
 | 
			
		||||
#include <Grid/cartesian/Cartesian_full.h>
 | 
			
		||||
#include <Grid/cartesian/Cartesian_red_black.h> 
 | 
			
		||||
#include <Grid/cartesian/CartesianCrossIcosahedron.h>
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										235
									
								
								Grid/cartesian/CartesianCrossIcosahedron.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										235
									
								
								Grid/cartesian/CartesianCrossIcosahedron.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,235 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/cartesian/CartesianCrossIcosahedron.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2025
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
    
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Grid Support.
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
enum IcosahedralMeshType {
 | 
			
		||||
  IcosahedralVertices,
 | 
			
		||||
  IcosahedralEdges
 | 
			
		||||
} ;
 | 
			
		||||
enum NorthSouth {
 | 
			
		||||
  North = 1,
 | 
			
		||||
  South = 0
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
const int IcosahedralPatches = 10;
 | 
			
		||||
const int HemiPatches=IcosahedralPatches/2;
 | 
			
		||||
const int NorthernHemisphere = HemiPatches;
 | 
			
		||||
const int SouthernHemisphere = 0;
 | 
			
		||||
 | 
			
		||||
class GridCartesianCrossIcosahedron: public GridCartesian {
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  IcosahedralMeshType meshType;
 | 
			
		||||
 | 
			
		||||
  IcosahedralMeshType MeshType(void) { return meshType; };
 | 
			
		||||
  
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Constructor takes a parent grid and possibly subdivides communicator.
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  /*
 | 
			
		||||
  GridCartesian(const Coordinate &dimensions,
 | 
			
		||||
		const Coordinate &simd_layout,
 | 
			
		||||
		const Coordinate &processor_grid,
 | 
			
		||||
		const GridCartesian &parent) : GridBase(processor_grid,parent,dummy)
 | 
			
		||||
  {
 | 
			
		||||
    assert(0); // No subdivision
 | 
			
		||||
  }
 | 
			
		||||
  GridCartesian(const Coordinate &dimensions,
 | 
			
		||||
		const Coordinate &simd_layout,
 | 
			
		||||
		const Coordinate &processor_grid,
 | 
			
		||||
		const GridCartesian &parent,int &split_rank) : GridBase(processor_grid,parent,split_rank)
 | 
			
		||||
  {
 | 
			
		||||
    assert(0); // No subdivision
 | 
			
		||||
  }
 | 
			
		||||
  */
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Construct from comm world
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  GridCartesianCrossIcosahedron(const Coordinate &dimensions,
 | 
			
		||||
				const Coordinate &simd_layout,
 | 
			
		||||
				const Coordinate &processor_grid,
 | 
			
		||||
				IcosahedralMeshType _meshType) : GridCartesian(dimensions,simd_layout,processor_grid)
 | 
			
		||||
  {
 | 
			
		||||
    meshType = _meshType;
 | 
			
		||||
    Coordinate S2dimensions=dimensions;
 | 
			
		||||
    Coordinate S2simd      =simd_layout;
 | 
			
		||||
    Coordinate S2procs     =processor_grid;
 | 
			
		||||
 | 
			
		||||
    assert(simd_layout[0]==1); // Force simd into perpendicular dimensions
 | 
			
		||||
    assert(simd_layout[1]==1); // to avoid pole storage complexity interacting with SIMD.
 | 
			
		||||
    assert(dimensions[_ndimension-1]==IcosahedralPatches);
 | 
			
		||||
    assert(processor_grid[_ndimension-1]<=2); // Keeps the patches that need a pole on the same node
 | 
			
		||||
 | 
			
		||||
    // Save a copy of the basic cartesian initialisation volume
 | 
			
		||||
    cartesianOsites = this->_osites;
 | 
			
		||||
 | 
			
		||||
    // allocate the pole storage if we are seeking vertex domain data
 | 
			
		||||
    if ( meshType == IcosahedralVertices ) {
 | 
			
		||||
      InitPoles();
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual ~GridCartesianCrossIcosahedron() = default;
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////
 | 
			
		||||
  // Use to decide if a given grid is icosahedral
 | 
			
		||||
  ////////////////////////////////////////////////
 | 
			
		||||
  int hasNorthPole;
 | 
			
		||||
  int hasSouthPole;
 | 
			
		||||
  int northPoleOsite;
 | 
			
		||||
  int southPoleOsite;
 | 
			
		||||
  int northPoleOsites;
 | 
			
		||||
  int southPoleOsites;
 | 
			
		||||
  int cartesianOsites;
 | 
			
		||||
 | 
			
		||||
  virtual int isIcosahedral(void)           override { return 1;}
 | 
			
		||||
  virtual int isIcosahedralVertex(void)     override { return meshType==IcosahedralVertices;}
 | 
			
		||||
  virtual int isIcosahedralEdge  (void)     override { return meshType==IcosahedralEdges;}
 | 
			
		||||
  virtual int NorthPoleOsite(void)  const override { return northPoleOsite; };
 | 
			
		||||
  virtual int NorthPoleOsites(void) const override { return northPoleOsites; };
 | 
			
		||||
  virtual int SouthPoleOsite(void)  const override { return southPoleOsite; };
 | 
			
		||||
  virtual int SouthPoleOsites(void) const override { return southPoleOsites; };
 | 
			
		||||
  virtual int ownsNorthPole(void)   const override { return hasNorthPole; };
 | 
			
		||||
  virtual int ownsSouthPole(void)   const override { return hasSouthPole; };
 | 
			
		||||
  virtual int CartesianOsites(void) const override { return cartesianOsites; };
 | 
			
		||||
  virtual int64_t PoleIdxForOcoor(Coordinate &Coor) override
 | 
			
		||||
  {
 | 
			
		||||
    // Work out the pole_osite. Pick the higher dims
 | 
			
		||||
    Coordinate rdims;
 | 
			
		||||
    Coordinate ocoor;
 | 
			
		||||
    int64_t pole_idx;
 | 
			
		||||
    int Ndm1 = this->Nd()-1;
 | 
			
		||||
    for(int d=2;d<Ndm1;d++){
 | 
			
		||||
      int dd=d-2;
 | 
			
		||||
      rdims.push_back(this->_rdimensions[d]);
 | 
			
		||||
      ocoor.push_back(Coor[d]%this->_rdimensions[d]);
 | 
			
		||||
    }
 | 
			
		||||
    Lexicographic::IndexFromCoor(ocoor,pole_idx,rdims);
 | 
			
		||||
    return pole_idx;
 | 
			
		||||
  }
 | 
			
		||||
  virtual int64_t PoleSiteForOcoor(Coordinate &Coor) override
 | 
			
		||||
  {
 | 
			
		||||
    int Ndm1 = this->Nd()-1;
 | 
			
		||||
    int64_t pole_idx = this->PoleIdxForOcoor(Coor);
 | 
			
		||||
    int64_t pole_osite;
 | 
			
		||||
    if ( Coor[Ndm1] >= HemiPatches ) {
 | 
			
		||||
      pole_osite = pole_idx + this->NorthPoleOsite();
 | 
			
		||||
    } else {
 | 
			
		||||
      pole_osite = pole_idx + this->SouthPoleOsite();
 | 
			
		||||
    }
 | 
			
		||||
    return pole_osite;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  void InitPoles(void)
 | 
			
		||||
  {
 | 
			
		||||
    int Ndm1 = _ndimension-1;
 | 
			
		||||
    ///////////////////////
 | 
			
		||||
    // Add the extra pole storage
 | 
			
		||||
    ///////////////////////
 | 
			
		||||
    // Vertices = 1x LxLx D1...Dn + 2.D1...Dn
 | 
			
		||||
    // Start after the LxL and don't include the 10 patch dim
 | 
			
		||||
    int OrthogSize = 1;
 | 
			
		||||
    for (int d = 2; d < Ndm1; d++) {
 | 
			
		||||
      OrthogSize *= _gdimensions[d];
 | 
			
		||||
    }
 | 
			
		||||
    _fsites += OrthogSize*2;
 | 
			
		||||
    _gsites += OrthogSize*2;
 | 
			
		||||
 | 
			
		||||
    // Simd reduced sizes are multiplied up.
 | 
			
		||||
    // If the leading LxL are simd-ized, the vector objects will contain "redundant" lanes
 | 
			
		||||
    // which should contain identical north (south) pole data
 | 
			
		||||
    OrthogSize = 1;
 | 
			
		||||
    for (int d = 2; d < Ndm1; d++) {
 | 
			
		||||
      OrthogSize *= _rdimensions[d];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Grow the local volume to hold pole data
 | 
			
		||||
    // on rank (0,0) in the LxL planes
 | 
			
		||||
    // since SIMD must be placed in the orthogonal directions
 | 
			
		||||
    Coordinate pcoor = this->ThisProcessorCoor();
 | 
			
		||||
    Coordinate pgrid = this->ProcessorGrid();
 | 
			
		||||
 | 
			
		||||
    const int xdim=0;
 | 
			
		||||
    const int ydim=1;
 | 
			
		||||
    /*
 | 
			
		||||
     *
 | 
			
		||||
     *  /\/\/\/\/\
 | 
			
		||||
     * /\/\/\/\/\/
 | 
			
		||||
     * \/\/\/\/\/
 | 
			
		||||
     *
 | 
			
		||||
     *  y
 | 
			
		||||
     * /
 | 
			
		||||
     * \x
 | 
			
		||||
     *
 | 
			
		||||
     * Labelling patches as 5 6 7 8 9
 | 
			
		||||
     *                      0 1 2 3 4
 | 
			
		||||
     *
 | 
			
		||||
     * Will ban distribution of the patch dimension by more than 2.
 | 
			
		||||
     *
 | 
			
		||||
     * Hence all 5 patches associated with the pole must have the
 | 
			
		||||
     * appropriate "corner" of the patch L^2 located on the SAME rank.
 | 
			
		||||
     */ 
 | 
			
		||||
    
 | 
			
		||||
    if( (pcoor[xdim]==pgrid[xdim]-1) && (pcoor[ydim]==0) && (pcoor[Ndm1]==0) ){
 | 
			
		||||
      hasSouthPole   =1;
 | 
			
		||||
      southPoleOsite=this->_osites; 
 | 
			
		||||
      southPoleOsites=OrthogSize;
 | 
			
		||||
      this->_osites += OrthogSize;
 | 
			
		||||
    } else {
 | 
			
		||||
      hasSouthPole   =0;
 | 
			
		||||
      southPoleOsites=0;
 | 
			
		||||
      southPoleOsite=0;
 | 
			
		||||
    }
 | 
			
		||||
    if( (pcoor[xdim]==0) && (pcoor[ydim]==pgrid[ydim]-1) && (pcoor[Ndm1]==pgrid[Ndm1]-1) ){
 | 
			
		||||
      hasNorthPole   =1;
 | 
			
		||||
      northPoleOsite=this->_osites;
 | 
			
		||||
      northPoleOsites=OrthogSize;
 | 
			
		||||
      this->_osites += OrthogSize;
 | 
			
		||||
    } else {
 | 
			
		||||
      hasNorthPole   =0;
 | 
			
		||||
      northPoleOsites=0;
 | 
			
		||||
      northPoleOsite=0;
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogDebug<<"Icosahedral vertex field volume " << this->_osites<<std::endl;
 | 
			
		||||
    std::cout << GridLogDebug<<"Icosahedral south pole offset   " << this->southPoleOsite<<std::endl;
 | 
			
		||||
    std::cout << GridLogDebug<<"Icosahedral north pole offset   " << this->northPoleOsite<<std::endl;
 | 
			
		||||
    std::cout << GridLogDebug<<"Icosahedral south pole size     " << this->southPoleOsites<<std::endl;
 | 
			
		||||
    std::cout << GridLogDebug<<"Icosahedral north pole size     " << this->northPoleOsites<<std::endl;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -82,14 +82,30 @@ public:
 | 
			
		||||
  bool _isCheckerBoarded; 
 | 
			
		||||
  int        LocallyPeriodic;
 | 
			
		||||
  Coordinate _checker_dim_mask;
 | 
			
		||||
  int              _checker_dim;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  // Icosahedral decisions
 | 
			
		||||
  virtual int isIcosahedral(void) { return 0;}
 | 
			
		||||
  virtual int isIcosahedralVertex(void) { return 0;}
 | 
			
		||||
  virtual int isIcosahedralEdge  (void) { return 0;}
 | 
			
		||||
  virtual int ownsNorthPole(void) const { return 0; };
 | 
			
		||||
  virtual int ownsSouthPole(void) const { return 0; };
 | 
			
		||||
  virtual int NorthPoleOsite(void) const { return 0; };
 | 
			
		||||
  virtual int SouthPoleOsite(void) const { return 0; };
 | 
			
		||||
  virtual int NorthPoleOsites(void) const { std::cout << "base osites" <<std::endl;return 0; };
 | 
			
		||||
  virtual int SouthPoleOsites(void) const { std::cout << "base osites" <<std::endl;return 0; };
 | 
			
		||||
  virtual int CartesianOsites(void) const { return this->oSites(); };
 | 
			
		||||
  virtual int64_t PoleIdxForOcoor(Coordinate &Coor) { return 0;};
 | 
			
		||||
  virtual int64_t PoleSiteForOcoor(Coordinate &Coor){ return 0;}
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Checkerboarding interface is virtual and overridden by 
 | 
			
		||||
  // GridCartesian / GridRedBlackCartesian
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  virtual int CheckerBoarded(int dim)=0;
 | 
			
		||||
 | 
			
		||||
  virtual int CheckerBoarded(int dim) =0;
 | 
			
		||||
  virtual int CheckerBoard(const Coordinate &site)=0;
 | 
			
		||||
  virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0;
 | 
			
		||||
  virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0;
 | 
			
		||||
@@ -175,6 +191,8 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
    return permute_type;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Array sizing queries
 | 
			
		||||
  ////////////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -38,7 +38,7 @@ class GridCartesian: public GridBase {
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  int dummy;
 | 
			
		||||
  Coordinate _checker_dim_mask;
 | 
			
		||||
  //  Coordinate _checker_dim_mask;
 | 
			
		||||
  virtual int  CheckerBoardFromOindexTable (int Oindex) {
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
@@ -46,7 +46,7 @@ public:
 | 
			
		||||
  {
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
  virtual int CheckerBoarded(int dim){
 | 
			
		||||
  virtual int CheckerBoarded(int dim) {
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
  virtual int CheckerBoard(const Coordinate &site){
 | 
			
		||||
@@ -106,6 +106,7 @@ public:
 | 
			
		||||
    _rdimensions.resize(_ndimension);
 | 
			
		||||
    _simd_layout.resize(_ndimension);
 | 
			
		||||
    _checker_dim_mask.resize(_ndimension);;
 | 
			
		||||
    _checker_dim = -1;
 | 
			
		||||
    _lstart.resize(_ndimension);
 | 
			
		||||
    _lend.resize(_ndimension);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -57,9 +57,10 @@ class GridRedBlackCartesian : public GridBase
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  //  Coordinate _checker_dim_mask;
 | 
			
		||||
  int              _checker_dim;
 | 
			
		||||
  //  int              _checker_dim;
 | 
			
		||||
  std::vector<int> _checker_board;
 | 
			
		||||
 | 
			
		||||
  virtual int isCheckerBoarded(void) const { return 1; };
 | 
			
		||||
  virtual int CheckerBoarded(int dim){
 | 
			
		||||
    if( dim==_checker_dim) return 1;
 | 
			
		||||
    else return 0;
 | 
			
		||||
@@ -147,7 +148,7 @@ public:
 | 
			
		||||
  {
 | 
			
		||||
    Init(base->_fdimensions,base->_simd_layout,base->_processors,checker_dim_mask,checker_dim)  ;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  virtual ~GridRedBlackCartesian() = default;
 | 
			
		||||
 | 
			
		||||
  void Init(const Coordinate &dimensions,
 | 
			
		||||
 
 | 
			
		||||
@@ -57,18 +57,29 @@ int                      CartesianCommunicator::ProcessorCount(void)    { return
 | 
			
		||||
// very VERY rarely (Log, serial RNG) we need world without a grid
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
#ifdef USE_GRID_REDUCTION
 | 
			
		||||
void CartesianCommunicator::GlobalSum(ComplexF &c)
 | 
			
		||||
{
 | 
			
		||||
  GlobalSumP2P(c);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(ComplexD &c)
 | 
			
		||||
{
 | 
			
		||||
  GlobalSumP2P(c);
 | 
			
		||||
}
 | 
			
		||||
#else
 | 
			
		||||
void CartesianCommunicator::GlobalSum(ComplexF &c)
 | 
			
		||||
{
 | 
			
		||||
  GlobalSumVector((float *)&c,2);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSumVector(ComplexF *c,int N)
 | 
			
		||||
{
 | 
			
		||||
  GlobalSumVector((float *)c,2*N);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(ComplexD &c)
 | 
			
		||||
{
 | 
			
		||||
  GlobalSumVector((double *)&c,2);
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
void CartesianCommunicator::GlobalSumVector(ComplexF *c,int N)
 | 
			
		||||
{
 | 
			
		||||
  GlobalSumVector((float *)c,2*N);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N)
 | 
			
		||||
{
 | 
			
		||||
  GlobalSumVector((double *)c,2*N);
 | 
			
		||||
 
 | 
			
		||||
@@ -33,6 +33,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
///////////////////////////////////
 | 
			
		||||
#include <Grid/communicator/SharedMemory.h>
 | 
			
		||||
 | 
			
		||||
#define NVLINK_GET
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
extern bool Stencil_force_mpi ;
 | 
			
		||||
@@ -127,7 +129,36 @@ public:
 | 
			
		||||
  void GlobalSumVector(ComplexD *c,int N);
 | 
			
		||||
  void GlobalXOR(uint32_t &);
 | 
			
		||||
  void GlobalXOR(uint64_t &);
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
  template<class obj> void GlobalSumP2P(obj &o)
 | 
			
		||||
  {
 | 
			
		||||
    std::vector<obj> column;
 | 
			
		||||
    obj accum = o;
 | 
			
		||||
    int source,dest;
 | 
			
		||||
    for(int d=0;d<_ndimension;d++){
 | 
			
		||||
      column.resize(_processors[d]);
 | 
			
		||||
      column[0] = accum;
 | 
			
		||||
      std::vector<MpiCommsRequest_t> list;
 | 
			
		||||
      for(int p=1;p<_processors[d];p++){
 | 
			
		||||
	ShiftedRanks(d,p,source,dest);
 | 
			
		||||
	SendToRecvFromBegin(list,
 | 
			
		||||
			    &column[0],
 | 
			
		||||
			    dest,
 | 
			
		||||
			    &column[p],
 | 
			
		||||
			    source,
 | 
			
		||||
			    sizeof(obj),d*100+p);
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
      if (!list.empty()) // avoid triggering assert in comms == none
 | 
			
		||||
	CommsComplete(list);
 | 
			
		||||
      for(int p=1;p<_processors[d];p++){
 | 
			
		||||
	accum = accum + column[p];
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    Broadcast(0,accum);
 | 
			
		||||
    o=accum;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class obj> void GlobalSum(obj &o){
 | 
			
		||||
    typedef typename obj::scalar_type scalar_type;
 | 
			
		||||
    int words = sizeof(obj)/sizeof(scalar_type);
 | 
			
		||||
@@ -138,8 +169,8 @@ public:
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  // Face exchange, buffer swap in translational invariant way
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  void CommsComplete(std::vector<CommsRequest_t> &list);
 | 
			
		||||
  void SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
  void CommsComplete(std::vector<MpiCommsRequest_t> &list);
 | 
			
		||||
  void SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list,
 | 
			
		||||
			   void *xmit,
 | 
			
		||||
			   int dest,
 | 
			
		||||
			   void *recv,
 | 
			
		||||
@@ -158,6 +189,17 @@ public:
 | 
			
		||||
			       int recv_from_rank,int do_recv,
 | 
			
		||||
			       int bytes,int dir);
 | 
			
		||||
 | 
			
		||||
  double StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
 | 
			
		||||
				      void *xmit,
 | 
			
		||||
				      int xmit_to_rank,int do_xmit,
 | 
			
		||||
				      void *recv,
 | 
			
		||||
				      int recv_from_rank,int do_recv,
 | 
			
		||||
				      int xbytes,int rbytes,int dir);
 | 
			
		||||
 | 
			
		||||
  // Could do a PollHtoD and have a CommsMerge dependence
 | 
			
		||||
  void StencilSendToRecvFromPollDtoH (std::vector<CommsRequest_t> &list);
 | 
			
		||||
  void StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list);
 | 
			
		||||
 | 
			
		||||
  double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
				    void *xmit,
 | 
			
		||||
				    int xmit_to_rank,int do_xmit,
 | 
			
		||||
 
 | 
			
		||||
@@ -30,6 +30,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
Grid_MPI_Comm       CartesianCommunicator::communicator_world;
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
@@ -257,15 +258,41 @@ CartesianCommunicator::~CartesianCommunicator()
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
#ifdef USE_GRID_REDUCTION
 | 
			
		||||
void CartesianCommunicator::GlobalSum(float &f){
 | 
			
		||||
  FlightRecorder::StepLog("GlobalSumP2P");
 | 
			
		||||
  CartesianCommunicator::GlobalSumP2P(f);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(double &d)
 | 
			
		||||
{
 | 
			
		||||
  FlightRecorder::StepLog("GlobalSumP2P");
 | 
			
		||||
  CartesianCommunicator::GlobalSumP2P(d);
 | 
			
		||||
}
 | 
			
		||||
#else
 | 
			
		||||
void CartesianCommunicator::GlobalSum(float &f){
 | 
			
		||||
  FlightRecorder::StepLog("AllReduce");
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(double &d)
 | 
			
		||||
{
 | 
			
		||||
  FlightRecorder::StepLog("AllReduce");
 | 
			
		||||
  int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
void CartesianCommunicator::GlobalSum(uint32_t &u){
 | 
			
		||||
  FlightRecorder::StepLog("AllReduce");
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(uint64_t &u){
 | 
			
		||||
  FlightRecorder::StepLog("AllReduce");
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSumVector(uint64_t* u,int N){
 | 
			
		||||
  FlightRecorder::StepLog("AllReduceVector");
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,u,N,MPI_UINT64_T,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
@@ -287,27 +314,18 @@ void CartesianCommunicator::GlobalMax(double &d)
 | 
			
		||||
  int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_MAX,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(float &f){
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSumVector(float *f,int N)
 | 
			
		||||
{
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(double &d)
 | 
			
		||||
{
 | 
			
		||||
  int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSumVector(double *d,int N)
 | 
			
		||||
{
 | 
			
		||||
  int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list,
 | 
			
		||||
						void *xmit,
 | 
			
		||||
						int dest,
 | 
			
		||||
						void *recv,
 | 
			
		||||
@@ -332,7 +350,7 @@ void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &lis
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  list.push_back(xrq);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list)
 | 
			
		||||
void CartesianCommunicator::CommsComplete(std::vector<MpiCommsRequest_t> &list)
 | 
			
		||||
{
 | 
			
		||||
  int nreq=list.size();
 | 
			
		||||
 | 
			
		||||
@@ -351,9 +369,7 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
 | 
			
		||||
					   int from,
 | 
			
		||||
					   int bytes)
 | 
			
		||||
{
 | 
			
		||||
  std::vector<CommsRequest_t> reqs(0);
 | 
			
		||||
  unsigned long  xcrc = crc32(0L, Z_NULL, 0);
 | 
			
		||||
  unsigned long  rcrc = crc32(0L, Z_NULL, 0);
 | 
			
		||||
  std::vector<MpiCommsRequest_t> reqs(0);
 | 
			
		||||
 | 
			
		||||
  int myrank = _processor;
 | 
			
		||||
  int ierr;
 | 
			
		||||
@@ -369,9 +385,6 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
 | 
			
		||||
		    communicator,MPI_STATUS_IGNORE);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
 | 
			
		||||
  //  xcrc = crc32(xcrc,(unsigned char *)xmit,bytes);
 | 
			
		||||
  //  rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
 | 
			
		||||
  //  printf("proc %d SendToRecvFrom %d bytes xcrc %lx rcrc %lx\n",_processor,bytes,xcrc,rcrc); fflush
 | 
			
		||||
}
 | 
			
		||||
// Basic Halo comms primitive
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
 | 
			
		||||
@@ -381,12 +394,287 @@ double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
 | 
			
		||||
						     int bytes,int dir)
 | 
			
		||||
{
 | 
			
		||||
  std::vector<CommsRequest_t> list;
 | 
			
		||||
  double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
 | 
			
		||||
  double offbytes = StencilSendToRecvFromPrepare(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
 | 
			
		||||
  offbytes       += StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
 | 
			
		||||
  StencilSendToRecvFromComplete(list,dir);
 | 
			
		||||
  return offbytes;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#undef NVLINK_GET // Define to use get instead of put DMA
 | 
			
		||||
 | 
			
		||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
			
		||||
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {};
 | 
			
		||||
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {};
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
 | 
			
		||||
							   void *xmit,
 | 
			
		||||
							   int dest,int dox,
 | 
			
		||||
							   void *recv,
 | 
			
		||||
							   int from,int dor,
 | 
			
		||||
							   int xbytes,int rbytes,int dir)
 | 
			
		||||
{
 | 
			
		||||
  return 0.0; // Do nothing -- no preparation required
 | 
			
		||||
}
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
							 void *xmit,
 | 
			
		||||
							 int dest,int dox,
 | 
			
		||||
							 void *recv,
 | 
			
		||||
							 int from,int dor,
 | 
			
		||||
							 int xbytes,int rbytes,int dir)
 | 
			
		||||
{
 | 
			
		||||
  int ncomm  =communicator_halo.size();
 | 
			
		||||
  int commdir=dir%ncomm;
 | 
			
		||||
 | 
			
		||||
  MPI_Request xrq;
 | 
			
		||||
  MPI_Request rrq;
 | 
			
		||||
 | 
			
		||||
  int ierr;
 | 
			
		||||
  int gdest = ShmRanks[dest];
 | 
			
		||||
  int gfrom = ShmRanks[from];
 | 
			
		||||
  int gme   = ShmRanks[_processor];
 | 
			
		||||
 | 
			
		||||
  assert(dest != _processor);
 | 
			
		||||
  assert(from != _processor);
 | 
			
		||||
  assert(gme  == ShmRank);
 | 
			
		||||
  double off_node_bytes=0.0;
 | 
			
		||||
  int tag;
 | 
			
		||||
  
 | 
			
		||||
  if ( dor ) {
 | 
			
		||||
    if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
			
		||||
      tag= dir+from*32;
 | 
			
		||||
      ierr=MPI_Irecv(recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
 | 
			
		||||
      assert(ierr==0);
 | 
			
		||||
      list.push_back(rrq);
 | 
			
		||||
      off_node_bytes+=rbytes;
 | 
			
		||||
    }
 | 
			
		||||
#ifdef NVLINK_GET
 | 
			
		||||
    else { 
 | 
			
		||||
      void *shm = (void *) this->ShmBufferTranslate(from,xmit);
 | 
			
		||||
      assert(shm!=NULL);
 | 
			
		||||
      acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
  // This is a NVLINK PUT  
 | 
			
		||||
  if (dox) {
 | 
			
		||||
    if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
			
		||||
      tag= dir+_processor*32;
 | 
			
		||||
      ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
 | 
			
		||||
      assert(ierr==0);
 | 
			
		||||
      list.push_back(xrq);
 | 
			
		||||
      off_node_bytes+=xbytes;
 | 
			
		||||
    } else {
 | 
			
		||||
#ifndef NVLINK_GET
 | 
			
		||||
      void *shm = (void *) this->ShmBufferTranslate(dest,recv);
 | 
			
		||||
      assert(shm!=NULL);
 | 
			
		||||
      acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
 | 
			
		||||
#endif
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  return off_node_bytes;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
 | 
			
		||||
{
 | 
			
		||||
  int nreq=list.size();
 | 
			
		||||
  /*finishes Get/Put*/
 | 
			
		||||
  acceleratorCopySynchronise();
 | 
			
		||||
 | 
			
		||||
  if (nreq==0) return;
 | 
			
		||||
  std::vector<MPI_Status> status(nreq);
 | 
			
		||||
  int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  list.resize(0);
 | 
			
		||||
  this->StencilBarrier(); 
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#else /* NOT     ... ACCELERATOR_AWARE_MPI */
 | 
			
		||||
///////////////////////////////////////////
 | 
			
		||||
// Pipeline mode through host memory
 | 
			
		||||
///////////////////////////////////////////
 | 
			
		||||
  /*
 | 
			
		||||
   * In prepare (phase 1):
 | 
			
		||||
   * PHASE 1: (prepare)
 | 
			
		||||
   * - post MPI receive buffers asynch
 | 
			
		||||
   * - post device - host send buffer transfer asynch
 | 
			
		||||
   * PHASE 2: (Begin)
 | 
			
		||||
   * - complete all copies
 | 
			
		||||
   * - post MPI send asynch
 | 
			
		||||
   * - post device - device transfers
 | 
			
		||||
   * PHASE 3: (Complete)
 | 
			
		||||
   * - MPI_waitall
 | 
			
		||||
   * - host-device transfers
 | 
			
		||||
   *
 | 
			
		||||
   *********************************
 | 
			
		||||
   * NB could split this further:
 | 
			
		||||
   *--------------------------------
 | 
			
		||||
   * PHASE 1: (Prepare)
 | 
			
		||||
   * - post MPI receive buffers asynch
 | 
			
		||||
   * - post device - host send buffer transfer asynch
 | 
			
		||||
   * PHASE 2: (BeginInterNode)
 | 
			
		||||
   * - complete all copies 
 | 
			
		||||
   * - post MPI send asynch
 | 
			
		||||
   * PHASE 3: (BeginIntraNode)
 | 
			
		||||
   * - post device - device transfers
 | 
			
		||||
   * PHASE 4: (Complete)
 | 
			
		||||
   * - MPI_waitall
 | 
			
		||||
   * - host-device transfers asynch
 | 
			
		||||
   * - (complete all copies) 
 | 
			
		||||
   */
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
 | 
			
		||||
							   void *xmit,
 | 
			
		||||
							   int dest,int dox,
 | 
			
		||||
							   void *recv,
 | 
			
		||||
							   int from,int dor,
 | 
			
		||||
							   int xbytes,int rbytes,int dir)
 | 
			
		||||
{
 | 
			
		||||
/*
 | 
			
		||||
 * Bring sequence from Stencil.h down to lower level.
 | 
			
		||||
 * Assume using XeLink is ok
 | 
			
		||||
 */  
 | 
			
		||||
  int ncomm  =communicator_halo.size();
 | 
			
		||||
  int commdir=dir%ncomm;
 | 
			
		||||
 | 
			
		||||
  MPI_Request xrq;
 | 
			
		||||
  MPI_Request rrq;
 | 
			
		||||
 | 
			
		||||
  int ierr;
 | 
			
		||||
  int gdest = ShmRanks[dest];
 | 
			
		||||
  int gfrom = ShmRanks[from];
 | 
			
		||||
  int gme   = ShmRanks[_processor];
 | 
			
		||||
 | 
			
		||||
  assert(dest != _processor);
 | 
			
		||||
  assert(from != _processor);
 | 
			
		||||
  assert(gme  == ShmRank);
 | 
			
		||||
  double off_node_bytes=0.0;
 | 
			
		||||
  int tag;
 | 
			
		||||
 | 
			
		||||
  void * host_recv = NULL;
 | 
			
		||||
  void * host_xmit = NULL;
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
   * PHASE 1: (Prepare)
 | 
			
		||||
   * - post MPI receive buffers asynch
 | 
			
		||||
   * - post device - host send buffer transfer asynch
 | 
			
		||||
   */
 | 
			
		||||
  
 | 
			
		||||
  if ( dor ) {
 | 
			
		||||
    if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
			
		||||
      tag= dir+from*32;
 | 
			
		||||
      host_recv = this->HostBufferMalloc(rbytes);
 | 
			
		||||
      ierr=MPI_Irecv(host_recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
 | 
			
		||||
      assert(ierr==0);
 | 
			
		||||
      CommsRequest_t srq;
 | 
			
		||||
      srq.PacketType = InterNodeRecv;
 | 
			
		||||
      srq.bytes      = rbytes;
 | 
			
		||||
      srq.req        = rrq;
 | 
			
		||||
      srq.host_buf   = host_recv;
 | 
			
		||||
      srq.device_buf = recv;
 | 
			
		||||
      list.push_back(srq);
 | 
			
		||||
      off_node_bytes+=rbytes;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  if (dox) {
 | 
			
		||||
    if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
			
		||||
 | 
			
		||||
      tag= dir+_processor*32;
 | 
			
		||||
 | 
			
		||||
      host_xmit = this->HostBufferMalloc(xbytes);
 | 
			
		||||
      CommsRequest_t srq;
 | 
			
		||||
 | 
			
		||||
      srq.ev = acceleratorCopyFromDeviceAsynch(xmit, host_xmit,xbytes); // Make this Asynch
 | 
			
		||||
      
 | 
			
		||||
      //      ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
 | 
			
		||||
      //      assert(ierr==0);
 | 
			
		||||
      //      off_node_bytes+=xbytes;
 | 
			
		||||
 | 
			
		||||
      srq.PacketType = InterNodeXmit;
 | 
			
		||||
      srq.bytes      = xbytes;
 | 
			
		||||
      //      srq.req        = xrq;
 | 
			
		||||
      srq.host_buf   = host_xmit;
 | 
			
		||||
      srq.device_buf = xmit;
 | 
			
		||||
      srq.tag        = tag;
 | 
			
		||||
      srq.dest       = dest;
 | 
			
		||||
      srq.commdir    = commdir;
 | 
			
		||||
      list.push_back(srq);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  return off_node_bytes;
 | 
			
		||||
}
 | 
			
		||||
/*
 | 
			
		||||
 * In the interest of better pipelining, poll for completion on each DtoH and 
 | 
			
		||||
 * start MPI_ISend in the meantime
 | 
			
		||||
 */
 | 
			
		||||
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list)
 | 
			
		||||
{
 | 
			
		||||
  int pending = 0;
 | 
			
		||||
  do {
 | 
			
		||||
 | 
			
		||||
    pending = 0;
 | 
			
		||||
 | 
			
		||||
    for(int idx = 0; idx<list.size();idx++){
 | 
			
		||||
 | 
			
		||||
      if ( list[idx].PacketType==InterNodeRecv ) {
 | 
			
		||||
 | 
			
		||||
	int flag = 0;
 | 
			
		||||
	MPI_Status status;
 | 
			
		||||
	int ierr = MPI_Test(&list[idx].req,&flag,&status);
 | 
			
		||||
	assert(ierr==0);
 | 
			
		||||
 | 
			
		||||
	if ( flag ) {
 | 
			
		||||
	  //	  std::cout << " PollIrecv "<<idx<<" flag "<<flag<<std::endl;
 | 
			
		||||
	  acceleratorCopyToDeviceAsynch(list[idx].host_buf,list[idx].device_buf,list[idx].bytes);
 | 
			
		||||
	  list[idx].PacketType=InterNodeReceiveHtoD;
 | 
			
		||||
	} else {
 | 
			
		||||
	  pending ++;
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    //    std::cout << " PollIrecv "<<pending<<" pending requests"<<std::endl;
 | 
			
		||||
  } while ( pending );
 | 
			
		||||
  
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list)
 | 
			
		||||
{
 | 
			
		||||
  int pending = 0;
 | 
			
		||||
  do {
 | 
			
		||||
 | 
			
		||||
    pending = 0;
 | 
			
		||||
 | 
			
		||||
    for(int idx = 0; idx<list.size();idx++){
 | 
			
		||||
 | 
			
		||||
      if ( list[idx].PacketType==InterNodeXmit ) {
 | 
			
		||||
 | 
			
		||||
	if ( acceleratorEventIsComplete(list[idx].ev) ) {
 | 
			
		||||
 | 
			
		||||
	  void *host_xmit = list[idx].host_buf;
 | 
			
		||||
	  uint32_t xbytes = list[idx].bytes;
 | 
			
		||||
	  int dest        = list[idx].dest;
 | 
			
		||||
	  int tag         = list[idx].tag;
 | 
			
		||||
	  int commdir     = list[idx].commdir;
 | 
			
		||||
	  ///////////////////
 | 
			
		||||
	  // Send packet
 | 
			
		||||
	  ///////////////////
 | 
			
		||||
 | 
			
		||||
	  //	  std::cout << " DtoH is complete for index "<<idx<<" calling MPI_Isend "<<std::endl;
 | 
			
		||||
	  
 | 
			
		||||
	  MPI_Request xrq;
 | 
			
		||||
	  int ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
 | 
			
		||||
	  assert(ierr==0);
 | 
			
		||||
 | 
			
		||||
	  list[idx].req        = xrq; // Update the MPI request in the list
 | 
			
		||||
 | 
			
		||||
	  list[idx].PacketType=InterNodeXmitISend;
 | 
			
		||||
 | 
			
		||||
	} else {
 | 
			
		||||
	  // not done, so return to polling loop
 | 
			
		||||
	  pending++;
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  } while (pending);
 | 
			
		||||
}  
 | 
			
		||||
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
							 void *xmit,
 | 
			
		||||
							 int dest,int dox,
 | 
			
		||||
@@ -411,56 +699,109 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
 | 
			
		||||
  double off_node_bytes=0.0;
 | 
			
		||||
  int tag;
 | 
			
		||||
 | 
			
		||||
  if ( dor ) {
 | 
			
		||||
    if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
			
		||||
      tag= dir+from*32;
 | 
			
		||||
      ierr=MPI_Irecv(recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
 | 
			
		||||
      assert(ierr==0);
 | 
			
		||||
      list.push_back(rrq);
 | 
			
		||||
      off_node_bytes+=rbytes;
 | 
			
		||||
    }
 | 
			
		||||
  void * host_xmit = NULL;
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////
 | 
			
		||||
  // Receives already posted
 | 
			
		||||
  // Copies already started
 | 
			
		||||
  ////////////////////////////////
 | 
			
		||||
  /*  
 | 
			
		||||
   * PHASE 2: (Begin)
 | 
			
		||||
   * - complete all copies
 | 
			
		||||
   * - post MPI send asynch
 | 
			
		||||
   */
 | 
			
		||||
#ifdef NVLINK_GET
 | 
			
		||||
  if ( dor ) {
 | 
			
		||||
 | 
			
		||||
    if ( ! ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) ) {
 | 
			
		||||
      // Intranode
 | 
			
		||||
      void *shm = (void *) this->ShmBufferTranslate(from,xmit);
 | 
			
		||||
      assert(shm!=NULL);
 | 
			
		||||
      acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
      CommsRequest_t srq;
 | 
			
		||||
 | 
			
		||||
      srq.ev = acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
 | 
			
		||||
 | 
			
		||||
      srq.PacketType = IntraNodeRecv;
 | 
			
		||||
      srq.bytes      = xbytes;
 | 
			
		||||
      //      srq.req        = xrq;
 | 
			
		||||
      srq.host_buf   = NULL;
 | 
			
		||||
      srq.device_buf = xmit;
 | 
			
		||||
      srq.tag        = -1;
 | 
			
		||||
      srq.dest       = dest;
 | 
			
		||||
      srq.commdir    = dir;
 | 
			
		||||
      list.push_back(srq);
 | 
			
		||||
    }
 | 
			
		||||
  }  
 | 
			
		||||
#else
 | 
			
		||||
  if (dox) {
 | 
			
		||||
    //  rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
 | 
			
		||||
    if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
			
		||||
      tag= dir+_processor*32;
 | 
			
		||||
      ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
 | 
			
		||||
      assert(ierr==0);
 | 
			
		||||
      list.push_back(xrq);
 | 
			
		||||
      off_node_bytes+=xbytes;
 | 
			
		||||
    } else {
 | 
			
		||||
#ifndef NVLINK_GET
 | 
			
		||||
 | 
			
		||||
    if ( !( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) ) {
 | 
			
		||||
      // Intranode
 | 
			
		||||
      void *shm = (void *) this->ShmBufferTranslate(dest,recv);
 | 
			
		||||
      assert(shm!=NULL);
 | 
			
		||||
      acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
      CommsRequest_t srq;
 | 
			
		||||
      
 | 
			
		||||
      srq.ev = acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
 | 
			
		||||
 | 
			
		||||
      srq.PacketType = IntraNodeXmit;
 | 
			
		||||
      srq.bytes      = xbytes;
 | 
			
		||||
      //      srq.req        = xrq;
 | 
			
		||||
      srq.host_buf   = NULL;
 | 
			
		||||
      srq.device_buf = xmit;
 | 
			
		||||
      srq.tag        = -1;
 | 
			
		||||
      srq.dest       = dest;
 | 
			
		||||
      srq.commdir    = dir;
 | 
			
		||||
      list.push_back(srq);
 | 
			
		||||
      
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
  return off_node_bytes;
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
 | 
			
		||||
{
 | 
			
		||||
  int nreq=list.size();
 | 
			
		||||
  acceleratorCopySynchronise(); // Complete all pending copy transfers D2D
 | 
			
		||||
 | 
			
		||||
  acceleratorCopySynchronise();
 | 
			
		||||
  std::vector<MPI_Status> status;
 | 
			
		||||
  std::vector<MPI_Request> MpiRequests;
 | 
			
		||||
    
 | 
			
		||||
  for(int r=0;r<list.size();r++){
 | 
			
		||||
    // Must check each Send buf is clear to reuse
 | 
			
		||||
    if ( list[r].PacketType == InterNodeXmitISend ) MpiRequests.push_back(list[r].req);
 | 
			
		||||
    //    if ( list[r].PacketType == InterNodeRecv ) MpiRequests.push_back(list[r].req); // Already "Test" passed
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  if (nreq==0) return;
 | 
			
		||||
  int nreq=MpiRequests.size();
 | 
			
		||||
 | 
			
		||||
  std::vector<MPI_Status> status(nreq);
 | 
			
		||||
  int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
  list.resize(0);
 | 
			
		||||
  if (nreq>0) {
 | 
			
		||||
    status.resize(MpiRequests.size());
 | 
			
		||||
    int ierr = MPI_Waitall(MpiRequests.size(),&MpiRequests[0],&status[0]); // Sends are guaranteed in order. No harm in not completing.
 | 
			
		||||
    assert(ierr==0);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  //  for(int r=0;r<nreq;r++){
 | 
			
		||||
  //    if ( list[r].PacketType==InterNodeRecv ) {
 | 
			
		||||
  //      acceleratorCopyToDeviceAsynch(list[r].host_buf,list[r].device_buf,list[r].bytes);
 | 
			
		||||
  //    }
 | 
			
		||||
  //  }
 | 
			
		||||
  
 | 
			
		||||
  
 | 
			
		||||
  list.resize(0);               // Delete the list
 | 
			
		||||
  this->HostBufferFreeAll();    // Clean up the buffer allocs
 | 
			
		||||
#ifndef NVLINK_GET
 | 
			
		||||
  this->StencilBarrier(); // if PUT must check our nbrs have filled our receive buffers.
 | 
			
		||||
#endif   
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
// END PIPELINE MODE / NO CUDA AWARE MPI
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
void CartesianCommunicator::StencilBarrier(void)
 | 
			
		||||
{
 | 
			
		||||
  FlightRecorder::StepLog("NodeBarrier");
 | 
			
		||||
  MPI_Barrier  (ShmComm);
 | 
			
		||||
}
 | 
			
		||||
//void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
 | 
			
		||||
@@ -468,11 +809,13 @@ void CartesianCommunicator::StencilBarrier(void)
 | 
			
		||||
//}
 | 
			
		||||
void CartesianCommunicator::Barrier(void)
 | 
			
		||||
{
 | 
			
		||||
  FlightRecorder::StepLog("GridBarrier");
 | 
			
		||||
  int ierr = MPI_Barrier(communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
 | 
			
		||||
{
 | 
			
		||||
  FlightRecorder::StepLog("Broadcast");
 | 
			
		||||
  int ierr=MPI_Bcast(data,
 | 
			
		||||
		     bytes,
 | 
			
		||||
		     MPI_BYTE,
 | 
			
		||||
@@ -491,6 +834,7 @@ void CartesianCommunicator::BarrierWorld(void){
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
 | 
			
		||||
{
 | 
			
		||||
  FlightRecorder::StepLog("BroadcastWorld");
 | 
			
		||||
  int ierr= MPI_Bcast(data,
 | 
			
		||||
		      bytes,
 | 
			
		||||
		      MPI_BYTE,
 | 
			
		||||
@@ -513,6 +857,7 @@ void CartesianCommunicator::AllToAll(int dim,void  *in,void *out,uint64_t words,
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::AllToAll(void  *in,void *out,uint64_t words,uint64_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  FlightRecorder::StepLog("AllToAll");
 | 
			
		||||
  // MPI is a pain and uses "int" arguments
 | 
			
		||||
  // 64*64*64*128*16 == 500Million elements of data.
 | 
			
		||||
  // When 24*4 bytes multiples get 50x 10^9 >>> 2x10^9 Y2K bug.
 | 
			
		||||
 
 | 
			
		||||
@@ -91,7 +91,7 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
 | 
			
		||||
{
 | 
			
		||||
  assert(0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ assert(0);}
 | 
			
		||||
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ assert(list.size()==0);}
 | 
			
		||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
						void *xmit,
 | 
			
		||||
						int dest,
 | 
			
		||||
@@ -132,6 +132,17 @@ double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
 | 
			
		||||
{
 | 
			
		||||
  return 2.0*bytes;
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {};
 | 
			
		||||
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {};
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
 | 
			
		||||
							   void *xmit,
 | 
			
		||||
							   int xmit_to_rank,int dox,
 | 
			
		||||
							   void *recv,
 | 
			
		||||
							   int recv_from_rank,int dor,
 | 
			
		||||
							   int xbytes,int rbytes, int dir)
 | 
			
		||||
{
 | 
			
		||||
  return 0.0;
 | 
			
		||||
}
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
							 void *xmit,
 | 
			
		||||
							 int xmit_to_rank,int dox,
 | 
			
		||||
 
 | 
			
		||||
@@ -46,8 +46,40 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
#if defined (GRID_COMMS_MPI3) 
 | 
			
		||||
typedef MPI_Comm    Grid_MPI_Comm;
 | 
			
		||||
typedef MPI_Request MpiCommsRequest_t;
 | 
			
		||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
			
		||||
typedef MPI_Request CommsRequest_t;
 | 
			
		||||
#else
 | 
			
		||||
/*
 | 
			
		||||
 * Enable state transitions as each packet flows.
 | 
			
		||||
 */
 | 
			
		||||
enum PacketType_t {
 | 
			
		||||
  FaceGather,
 | 
			
		||||
  InterNodeXmit,
 | 
			
		||||
  InterNodeRecv,
 | 
			
		||||
  IntraNodeXmit,
 | 
			
		||||
  IntraNodeRecv,
 | 
			
		||||
  InterNodeXmitISend,
 | 
			
		||||
  InterNodeReceiveHtoD
 | 
			
		||||
};
 | 
			
		||||
/*
 | 
			
		||||
 *Package arguments needed for various actions along packet flow
 | 
			
		||||
 */
 | 
			
		||||
typedef struct {
 | 
			
		||||
  PacketType_t PacketType;
 | 
			
		||||
  void *host_buf;
 | 
			
		||||
  void *device_buf;
 | 
			
		||||
  int dest;
 | 
			
		||||
  int tag;
 | 
			
		||||
  int commdir;
 | 
			
		||||
  unsigned long bytes;
 | 
			
		||||
  acceleratorEvent_t ev;
 | 
			
		||||
  MpiCommsRequest_t req;
 | 
			
		||||
} CommsRequest_t;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#else 
 | 
			
		||||
typedef int MpiCommsRequest_t;
 | 
			
		||||
typedef int CommsRequest_t;
 | 
			
		||||
typedef int Grid_MPI_Comm;
 | 
			
		||||
#endif
 | 
			
		||||
@@ -105,7 +137,7 @@ public:
 | 
			
		||||
  ///////////////////////////////////////////////////
 | 
			
		||||
  static void SharedMemoryAllocate(uint64_t bytes, int flags);
 | 
			
		||||
  static void SharedMemoryFree(void);
 | 
			
		||||
  static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
 | 
			
		||||
  //  static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
 | 
			
		||||
  static void SharedMemoryZero(void *dest,size_t bytes);
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 
 | 
			
		||||
@@ -42,6 +42,11 @@ Author: Christoph Lehner <christoph@lhnr.de>
 | 
			
		||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
			
		||||
#define GRID_SYCL_LEVEL_ZERO_IPC
 | 
			
		||||
#define SHM_SOCKETS
 | 
			
		||||
#else
 | 
			
		||||
#ifdef HAVE_NUMAIF_H
 | 
			
		||||
  #warning " Using NUMAIF "
 | 
			
		||||
#include <numaif.h>
 | 
			
		||||
#endif 
 | 
			
		||||
#endif 
 | 
			
		||||
#include <syscall.h>
 | 
			
		||||
#endif
 | 
			
		||||
@@ -537,7 +542,38 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
  // Each MPI rank should allocate our own buffer
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
  HostCommBuf= malloc(bytes);
 | 
			
		||||
  // printf("Host buffer allocate for GPU non-aware MPI\n");
 | 
			
		||||
#if 0
 | 
			
		||||
  HostCommBuf= acceleratorAllocHost(bytes);
 | 
			
		||||
#else 
 | 
			
		||||
  HostCommBuf= malloc(bytes); /// CHANGE THIS TO malloc_host
 | 
			
		||||
#if 0
 | 
			
		||||
  #warning "Moving host buffers to specific NUMA domain"
 | 
			
		||||
  int numa;
 | 
			
		||||
  char *numa_name=(char *)getenv("MPI_BUF_NUMA");
 | 
			
		||||
  if(numa_name) {
 | 
			
		||||
    unsigned long page_size = sysconf(_SC_PAGESIZE);
 | 
			
		||||
    numa = atoi(numa_name);
 | 
			
		||||
    unsigned long page_count = bytes/page_size;
 | 
			
		||||
    std::vector<void *> pages(page_count);
 | 
			
		||||
    std::vector<int>    nodes(page_count,numa);
 | 
			
		||||
    std::vector<int>    status(page_count,-1);
 | 
			
		||||
    for(unsigned long p=0;p<page_count;p++){
 | 
			
		||||
      pages[p] =(void *) ((uint64_t) HostCommBuf + p*page_size);
 | 
			
		||||
    }
 | 
			
		||||
    int ret = move_pages(0,
 | 
			
		||||
			 page_count,
 | 
			
		||||
			 &pages[0],
 | 
			
		||||
			 &nodes[0],
 | 
			
		||||
			 &status[0],
 | 
			
		||||
			 MPOL_MF_MOVE);
 | 
			
		||||
    printf("Host buffer move to numa domain %d : move_pages returned %d\n",numa,ret);
 | 
			
		||||
    if (ret) perror(" move_pages failed for reason:");
 | 
			
		||||
  }
 | 
			
		||||
#endif  
 | 
			
		||||
  acceleratorPin(HostCommBuf,bytes);
 | 
			
		||||
#endif  
 | 
			
		||||
 | 
			
		||||
#endif  
 | 
			
		||||
  ShmCommBuf = acceleratorAllocDevice(bytes);
 | 
			
		||||
  if (ShmCommBuf == (void *)NULL ) {
 | 
			
		||||
@@ -569,8 +605,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
 | 
			
		||||
    typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t;
 | 
			
		||||
 | 
			
		||||
    auto zeDevice    = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device());
 | 
			
		||||
    auto zeContext   = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context());
 | 
			
		||||
    auto zeDevice    = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device());
 | 
			
		||||
    auto zeContext   = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context());
 | 
			
		||||
      
 | 
			
		||||
    ze_ipc_mem_handle_t ihandle;
 | 
			
		||||
    clone_mem_t handle;
 | 
			
		||||
@@ -880,14 +916,14 @@ void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
 | 
			
		||||
  bzero(dest,bytes);
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
 | 
			
		||||
{
 | 
			
		||||
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
 | 
			
		||||
  acceleratorCopyToDevice(src,dest,bytes);
 | 
			
		||||
#else   
 | 
			
		||||
  bcopy(src,dest,bytes);
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
//void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
 | 
			
		||||
//{
 | 
			
		||||
//#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
 | 
			
		||||
//  acceleratorCopyToDevice(src,dest,bytes);
 | 
			
		||||
//#else   
 | 
			
		||||
//  bcopy(src,dest,bytes);
 | 
			
		||||
//#endif
 | 
			
		||||
//}
 | 
			
		||||
////////////////////////////////////////////////////////
 | 
			
		||||
// Global shared functionality finished
 | 
			
		||||
// Now move to per communicator functionality
 | 
			
		||||
@@ -923,6 +959,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
 | 
			
		||||
    MPI_Allreduce(MPI_IN_PLACE,&wsr,1,MPI_UINT32_T,MPI_SUM,ShmComm);
 | 
			
		||||
 | 
			
		||||
    ShmCommBufs[r] = GlobalSharedMemory::WorldShmCommBufs[wsr];
 | 
			
		||||
    //    std::cerr << " SetCommunicator rank "<<r<<" comm "<<ShmCommBufs[r] <<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  ShmBufferFreeAll();
 | 
			
		||||
 | 
			
		||||
@@ -953,7 +990,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
  //SharedMemoryTest();
 | 
			
		||||
  //  SharedMemoryTest();
 | 
			
		||||
}
 | 
			
		||||
//////////////////////////////////////////////////////////////////
 | 
			
		||||
// On node barrier
 | 
			
		||||
@@ -975,19 +1012,18 @@ void SharedMemory::SharedMemoryTest(void)
 | 
			
		||||
       check[0]=GlobalSharedMemory::WorldNode;
 | 
			
		||||
       check[1]=r;
 | 
			
		||||
       check[2]=magic;
 | 
			
		||||
       GlobalSharedMemory::SharedMemoryCopy( ShmCommBufs[r], check, 3*sizeof(uint64_t));
 | 
			
		||||
       acceleratorCopyToDevice(check,ShmCommBufs[r],3*sizeof(uint64_t));
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  ShmBarrier();
 | 
			
		||||
  for(uint64_t r=0;r<ShmSize;r++){
 | 
			
		||||
    ShmBarrier();
 | 
			
		||||
    GlobalSharedMemory::SharedMemoryCopy(check,ShmCommBufs[r], 3*sizeof(uint64_t));
 | 
			
		||||
    ShmBarrier();
 | 
			
		||||
    acceleratorCopyFromDevice(ShmCommBufs[r],check,3*sizeof(uint64_t));
 | 
			
		||||
    assert(check[0]==GlobalSharedMemory::WorldNode);
 | 
			
		||||
    assert(check[1]==r);
 | 
			
		||||
    assert(check[2]==magic);
 | 
			
		||||
    ShmBarrier();
 | 
			
		||||
  }
 | 
			
		||||
  ShmBarrier();
 | 
			
		||||
  std::cout << GridLogDebug << " SharedMemoryTest has passed "<<std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void *SharedMemory::ShmBuffer(int rank)
 | 
			
		||||
 
 | 
			
		||||
@@ -122,10 +122,10 @@ void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  acceleratorMemSet(dest,0,bytes);
 | 
			
		||||
}
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
 | 
			
		||||
{
 | 
			
		||||
  acceleratorCopyToDevice(src,dest,bytes);
 | 
			
		||||
}
 | 
			
		||||
//void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
 | 
			
		||||
//{
 | 
			
		||||
//  acceleratorCopyToDevice(src,dest,bytes);
 | 
			
		||||
//}
 | 
			
		||||
////////////////////////////////////////////////////////
 | 
			
		||||
// Global shared functionality finished
 | 
			
		||||
// Now move to per communicator functionality
 | 
			
		||||
 
 | 
			
		||||
@@ -51,7 +51,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#endif 
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr> 
 | 
			
		||||
auto Cshift(const Expression &expr,int dim,int shift)  -> decltype(closure(expr)) 
 | 
			
		||||
{
 | 
			
		||||
 
 | 
			
		||||
@@ -30,12 +30,11 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
extern std::vector<std::pair<int,int> > Cshift_table; 
 | 
			
		||||
extern commVector<std::pair<int,int> > Cshift_table_device; 
 | 
			
		||||
extern deviceVector<std::pair<int,int> > Cshift_table_device; 
 | 
			
		||||
 | 
			
		||||
inline std::pair<int,int> *MapCshiftTable(void)
 | 
			
		||||
{
 | 
			
		||||
  // GPU version
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT    
 | 
			
		||||
  uint64_t sz=Cshift_table.size();
 | 
			
		||||
  if (Cshift_table_device.size()!=sz )    {
 | 
			
		||||
    Cshift_table_device.resize(sz);
 | 
			
		||||
@@ -45,16 +44,13 @@ inline std::pair<int,int> *MapCshiftTable(void)
 | 
			
		||||
			  sizeof(Cshift_table[0])*sz);
 | 
			
		||||
 | 
			
		||||
  return &Cshift_table_device[0];
 | 
			
		||||
#else 
 | 
			
		||||
  return &Cshift_table[0];
 | 
			
		||||
#endif
 | 
			
		||||
  // CPU version use identify map
 | 
			
		||||
}
 | 
			
		||||
///////////////////////////////////////////////////////////////////
 | 
			
		||||
// Gather for when there is no need to SIMD split 
 | 
			
		||||
///////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj> void 
 | 
			
		||||
Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
 | 
			
		||||
Gather_plane_simple (const Lattice<vobj> &rhs,deviceVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
 | 
			
		||||
{
 | 
			
		||||
  int rd = rhs.Grid()->_rdimensions[dimension];
 | 
			
		||||
 | 
			
		||||
@@ -94,17 +90,10 @@ Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dim
 | 
			
		||||
  {
 | 
			
		||||
    auto buffer_p = & buffer[0];
 | 
			
		||||
    auto table = MapCshiftTable();
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT
 | 
			
		||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
			
		||||
    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
			
		||||
	coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second]));
 | 
			
		||||
    });
 | 
			
		||||
#else
 | 
			
		||||
    autoView(rhs_v , rhs, CpuRead);
 | 
			
		||||
    thread_for(i,ent,{
 | 
			
		||||
      buffer_p[table[i].first]=rhs_v[table[i].second];
 | 
			
		||||
    });
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -129,7 +118,6 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
 | 
			
		||||
  int n1=rhs.Grid()->_slice_stride[dimension];
 | 
			
		||||
 | 
			
		||||
  if ( cbmask ==0x3){
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT
 | 
			
		||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
			
		||||
    accelerator_for(nn,e1*e2,1,{
 | 
			
		||||
	int n = nn%e1;
 | 
			
		||||
@@ -140,21 +128,10 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
 | 
			
		||||
	vobj temp =rhs_v[so+o+b];
 | 
			
		||||
	extract<vobj>(temp,pointers,offset);
 | 
			
		||||
      });
 | 
			
		||||
#else
 | 
			
		||||
    autoView(rhs_v , rhs, CpuRead);
 | 
			
		||||
    thread_for2d(n,e1,b,e2,{
 | 
			
		||||
	int o      =   n*n1;
 | 
			
		||||
	int offset = b+n*e2;
 | 
			
		||||
	
 | 
			
		||||
	vobj temp =rhs_v[so+o+b];
 | 
			
		||||
	extract<vobj>(temp,pointers,offset);
 | 
			
		||||
      });
 | 
			
		||||
#endif
 | 
			
		||||
  } else { 
 | 
			
		||||
    Coordinate rdim=rhs.Grid()->_rdimensions;
 | 
			
		||||
    Coordinate cdm =rhs.Grid()->_checker_dim_mask;
 | 
			
		||||
    std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb?
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT    
 | 
			
		||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
			
		||||
    accelerator_for(nn,e1*e2,1,{
 | 
			
		||||
	int n = nn%e1;
 | 
			
		||||
@@ -175,33 +152,13 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
 | 
			
		||||
	  extract<vobj>(temp,pointers,offset);
 | 
			
		||||
	}
 | 
			
		||||
      });
 | 
			
		||||
#else
 | 
			
		||||
    autoView(rhs_v , rhs, CpuRead);
 | 
			
		||||
    thread_for2d(n,e1,b,e2,{
 | 
			
		||||
 | 
			
		||||
	Coordinate coor;
 | 
			
		||||
 | 
			
		||||
	int o=n*n1;
 | 
			
		||||
	int oindex = o+b;
 | 
			
		||||
 | 
			
		||||
       	int cb = RedBlackCheckerBoardFromOindex(oindex, rdim, cdm);
 | 
			
		||||
 | 
			
		||||
	int ocb=1<<cb;
 | 
			
		||||
	int offset = b+n*e2;
 | 
			
		||||
 | 
			
		||||
	if ( ocb & cbmask ) {
 | 
			
		||||
	  vobj temp =rhs_v[so+o+b];
 | 
			
		||||
	  extract<vobj>(temp,pointers,offset);
 | 
			
		||||
	}
 | 
			
		||||
      });
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
// Scatter for when there is no need to SIMD split
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<vobj> &buffer, int dimension,int plane,int cbmask)
 | 
			
		||||
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,deviceVector<vobj> &buffer, int dimension,int plane,int cbmask)
 | 
			
		||||
{
 | 
			
		||||
  int rd = rhs.Grid()->_rdimensions[dimension];
 | 
			
		||||
 | 
			
		||||
@@ -245,17 +202,10 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<
 | 
			
		||||
  {
 | 
			
		||||
    auto buffer_p = & buffer[0];
 | 
			
		||||
    auto table = MapCshiftTable();
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT    
 | 
			
		||||
    autoView( rhs_v, rhs, AcceleratorWrite);
 | 
			
		||||
    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
			
		||||
	coalescedWrite(rhs_v[table[i].first],coalescedRead(buffer_p[table[i].second]));
 | 
			
		||||
    });
 | 
			
		||||
#else
 | 
			
		||||
    autoView( rhs_v, rhs, CpuWrite);
 | 
			
		||||
    thread_for(i,ent,{
 | 
			
		||||
      rhs_v[table[i].first]=buffer_p[table[i].second];
 | 
			
		||||
    });
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -278,7 +228,6 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
 | 
			
		||||
  if(cbmask ==0x3 ) {
 | 
			
		||||
    int _slice_stride = rhs.Grid()->_slice_stride[dimension];
 | 
			
		||||
    int _slice_block = rhs.Grid()->_slice_block[dimension];
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT    
 | 
			
		||||
    autoView( rhs_v , rhs, AcceleratorWrite);
 | 
			
		||||
    accelerator_for(nn,e1*e2,1,{
 | 
			
		||||
	int n = nn%e1;
 | 
			
		||||
@@ -287,14 +236,6 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
 | 
			
		||||
	int offset = b+n*_slice_block;
 | 
			
		||||
	merge(rhs_v[so+o+b],pointers,offset);
 | 
			
		||||
      });
 | 
			
		||||
#else
 | 
			
		||||
    autoView( rhs_v , rhs, CpuWrite);
 | 
			
		||||
    thread_for2d(n,e1,b,e2,{
 | 
			
		||||
	int o      = n*_slice_stride;
 | 
			
		||||
	int offset = b+n*_slice_block;
 | 
			
		||||
	merge(rhs_v[so+o+b],pointers,offset);
 | 
			
		||||
    });
 | 
			
		||||
#endif
 | 
			
		||||
  } else { 
 | 
			
		||||
 | 
			
		||||
    // Case of SIMD split AND checker dim cannot currently be hit, except in 
 | 
			
		||||
@@ -360,19 +301,11 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
 | 
			
		||||
 | 
			
		||||
  {
 | 
			
		||||
    auto table = MapCshiftTable();
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT    
 | 
			
		||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
			
		||||
    autoView(lhs_v , lhs, AcceleratorWrite);
 | 
			
		||||
    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
			
		||||
      coalescedWrite(lhs_v[table[i].first],coalescedRead(rhs_v[table[i].second]));
 | 
			
		||||
    });
 | 
			
		||||
#else
 | 
			
		||||
    autoView(rhs_v , rhs, CpuRead);
 | 
			
		||||
    autoView(lhs_v , lhs, CpuWrite);
 | 
			
		||||
    thread_for(i,ent,{
 | 
			
		||||
      lhs_v[table[i].first]=rhs_v[table[i].second];
 | 
			
		||||
    });
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -412,19 +345,11 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo
 | 
			
		||||
 | 
			
		||||
  {
 | 
			
		||||
    auto table = MapCshiftTable();
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT    
 | 
			
		||||
    autoView( rhs_v, rhs, AcceleratorRead);
 | 
			
		||||
    autoView( lhs_v, lhs, AcceleratorWrite);
 | 
			
		||||
    accelerator_for(i,ent,1,{
 | 
			
		||||
      permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
 | 
			
		||||
    });
 | 
			
		||||
#else
 | 
			
		||||
    autoView( rhs_v, rhs, CpuRead);
 | 
			
		||||
    autoView( lhs_v, lhs, CpuWrite);
 | 
			
		||||
    thread_for(i,ent,{
 | 
			
		||||
      permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
 | 
			
		||||
    });
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -31,9 +31,11 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid); 
 | 
			
		||||
 | 
			
		||||
const int Cshift_verbose=0;
 | 
			
		||||
template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift)
 | 
			
		||||
{
 | 
			
		||||
  assert(!rhs.Grid()->isIcosahedral());
 | 
			
		||||
  
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
 | 
			
		||||
@@ -55,17 +57,17 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
 | 
			
		||||
  RealD t1,t0;
 | 
			
		||||
  t0=usecond();
 | 
			
		||||
  if ( !comm_dim ) {
 | 
			
		||||
    //std::cout << "CSHIFT: Cshift_local" <<std::endl;
 | 
			
		||||
    //    std::cout << "CSHIFT: Cshift_local" <<std::endl;
 | 
			
		||||
    Cshift_local(ret,rhs,dimension,shift); // Handles checkerboarding
 | 
			
		||||
  } else if ( splice_dim ) {
 | 
			
		||||
    //std::cout << "CSHIFT: Cshift_comms_simd call - splice_dim = " << splice_dim << " shift " << shift << " dimension = " << dimension << std::endl;
 | 
			
		||||
    //    std::cout << "CSHIFT: Cshift_comms_simd call - splice_dim = " << splice_dim << " shift " << shift << " dimension = " << dimension << std::endl;
 | 
			
		||||
    Cshift_comms_simd(ret,rhs,dimension,shift);
 | 
			
		||||
  } else {
 | 
			
		||||
    //std::cout << "CSHIFT: Cshift_comms" <<std::endl;
 | 
			
		||||
    //    std::cout << "CSHIFT: Cshift_comms" <<std::endl;
 | 
			
		||||
    Cshift_comms(ret,rhs,dimension,shift);
 | 
			
		||||
  }
 | 
			
		||||
  t1=usecond();
 | 
			
		||||
  //  std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl;
 | 
			
		||||
  if(Cshift_verbose) std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl;
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -94,18 +96,16 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vob
 | 
			
		||||
  sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even);
 | 
			
		||||
  sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd);
 | 
			
		||||
 | 
			
		||||
  //std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.checkerboard<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
 | 
			
		||||
  //  std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.Checkerboard()<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
 | 
			
		||||
  if ( sshift[0] == sshift[1] ) {
 | 
			
		||||
    //std::cout << "Single pass Cshift_comms" <<std::endl;
 | 
			
		||||
    //    std::cout << "Single pass Cshift_comms" <<std::endl;
 | 
			
		||||
    Cshift_comms_simd(ret,rhs,dimension,shift,0x3);
 | 
			
		||||
  } else {
 | 
			
		||||
    //std::cout << "Two pass Cshift_comms" <<std::endl;
 | 
			
		||||
    //    std::cout << "Two pass Cshift_comms" <<std::endl;
 | 
			
		||||
    Cshift_comms_simd(ret,rhs,dimension,shift,0x1);// if checkerboard is unfavourable take two passes
 | 
			
		||||
    Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
#define ACCELERATOR_CSHIFT_NO_COPY
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT_NO_COPY
 | 
			
		||||
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
@@ -125,9 +125,13 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
 | 
			
		||||
  assert(shift<fd);
 | 
			
		||||
  
 | 
			
		||||
  int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
 | 
			
		||||
  static cshiftVector<vobj> send_buf; send_buf.resize(buffer_size);
 | 
			
		||||
  static cshiftVector<vobj> recv_buf; recv_buf.resize(buffer_size);
 | 
			
		||||
    
 | 
			
		||||
  static deviceVector<vobj> send_buf; send_buf.resize(buffer_size);
 | 
			
		||||
  static deviceVector<vobj> recv_buf; recv_buf.resize(buffer_size);
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
  static hostVector<vobj> hsend_buf; hsend_buf.resize(buffer_size);
 | 
			
		||||
  static hostVector<vobj> hrecv_buf; hrecv_buf.resize(buffer_size);
 | 
			
		||||
#endif
 | 
			
		||||
  
 | 
			
		||||
  int cb= (cbmask==0x2)? Odd : Even;
 | 
			
		||||
  int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
 | 
			
		||||
  RealD tcopy=0.0;
 | 
			
		||||
@@ -158,18 +162,31 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
 | 
			
		||||
      //      int rank           = grid->_processor;
 | 
			
		||||
      int recv_from_rank;
 | 
			
		||||
      int xmit_to_rank;
 | 
			
		||||
 | 
			
		||||
      grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
 | 
			
		||||
      
 | 
			
		||||
      tcomms-=usecond();
 | 
			
		||||
      //      grid->Barrier();
 | 
			
		||||
      grid->Barrier();
 | 
			
		||||
 | 
			
		||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
			
		||||
      grid->SendToRecvFrom((void *)&send_buf[0],
 | 
			
		||||
			   xmit_to_rank,
 | 
			
		||||
			   (void *)&recv_buf[0],
 | 
			
		||||
			   recv_from_rank,
 | 
			
		||||
			   bytes);
 | 
			
		||||
#else
 | 
			
		||||
      // bouncy bouncy
 | 
			
		||||
      acceleratorCopyFromDevice(&send_buf[0],&hsend_buf[0],bytes);
 | 
			
		||||
      grid->SendToRecvFrom((void *)&hsend_buf[0],
 | 
			
		||||
			   xmit_to_rank,
 | 
			
		||||
			   (void *)&hrecv_buf[0],
 | 
			
		||||
			   recv_from_rank,
 | 
			
		||||
			   bytes);
 | 
			
		||||
      acceleratorCopyToDevice(&hrecv_buf[0],&recv_buf[0],bytes);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
      xbytes+=bytes;
 | 
			
		||||
      //      grid->Barrier();
 | 
			
		||||
      grid->Barrier();
 | 
			
		||||
      tcomms+=usecond();
 | 
			
		||||
 | 
			
		||||
      tscatter-=usecond();
 | 
			
		||||
@@ -177,13 +194,13 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
 | 
			
		||||
      tscatter+=usecond();
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  /*
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
 | 
			
		||||
  */
 | 
			
		||||
  if (Cshift_verbose){
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
			
		||||
@@ -201,9 +218,9 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
			
		||||
  int simd_layout     = grid->_simd_layout[dimension];
 | 
			
		||||
  int comm_dim        = grid->_processors[dimension] >1 ;
 | 
			
		||||
 | 
			
		||||
  //std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
 | 
			
		||||
  //    << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout 
 | 
			
		||||
  //    << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
 | 
			
		||||
  //  std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
 | 
			
		||||
  //	    << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout 
 | 
			
		||||
  //	    << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
 | 
			
		||||
 | 
			
		||||
  assert(comm_dim==1);
 | 
			
		||||
  assert(simd_layout==2);
 | 
			
		||||
@@ -224,16 +241,20 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
			
		||||
  int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
 | 
			
		||||
  //  int words = sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
 | 
			
		||||
  static std::vector<cshiftVector<scalar_object> >  send_buf_extract; send_buf_extract.resize(Nsimd);
 | 
			
		||||
  static std::vector<cshiftVector<scalar_object> >  recv_buf_extract; recv_buf_extract.resize(Nsimd);
 | 
			
		||||
  static std::vector<deviceVector<scalar_object> >  send_buf_extract; send_buf_extract.resize(Nsimd);
 | 
			
		||||
  static std::vector<deviceVector<scalar_object> >  recv_buf_extract; recv_buf_extract.resize(Nsimd);
 | 
			
		||||
  scalar_object *  recv_buf_extract_mpi;
 | 
			
		||||
  scalar_object *  send_buf_extract_mpi;
 | 
			
		||||
 
 | 
			
		||||
 | 
			
		||||
  for(int s=0;s<Nsimd;s++){
 | 
			
		||||
    send_buf_extract[s].resize(buffer_size);
 | 
			
		||||
    recv_buf_extract[s].resize(buffer_size);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
  hostVector<scalar_object> hsend_buf; hsend_buf.resize(buffer_size);
 | 
			
		||||
  hostVector<scalar_object> hrecv_buf; hrecv_buf.resize(buffer_size);
 | 
			
		||||
#endif
 | 
			
		||||
  
 | 
			
		||||
  int bytes = buffer_size*sizeof(scalar_object);
 | 
			
		||||
 | 
			
		||||
  ExtractPointerArray<scalar_object>  pointers(Nsimd); // 
 | 
			
		||||
@@ -281,266 +302,50 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
			
		||||
	grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank); 
 | 
			
		||||
 | 
			
		||||
	tcomms-=usecond();
 | 
			
		||||
	//	grid->Barrier();
 | 
			
		||||
	grid->Barrier();
 | 
			
		||||
 | 
			
		||||
	send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
 | 
			
		||||
	recv_buf_extract_mpi = &recv_buf_extract[i][0];
 | 
			
		||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
			
		||||
	grid->SendToRecvFrom((void *)send_buf_extract_mpi,
 | 
			
		||||
			     xmit_to_rank,
 | 
			
		||||
			     (void *)recv_buf_extract_mpi,
 | 
			
		||||
			     recv_from_rank,
 | 
			
		||||
			     bytes);
 | 
			
		||||
 | 
			
		||||
	xbytes+=bytes;
 | 
			
		||||
	//	grid->Barrier();
 | 
			
		||||
	tcomms+=usecond();
 | 
			
		||||
 | 
			
		||||
	rpointers[i] = &recv_buf_extract[i][0];
 | 
			
		||||
      } else { 
 | 
			
		||||
	rpointers[i] = &send_buf_extract[nbr_lane][0];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    tscatter-=usecond();
 | 
			
		||||
    Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
 | 
			
		||||
    tscatter+=usecond();
 | 
			
		||||
  }
 | 
			
		||||
  /*
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
 | 
			
		||||
  */
 | 
			
		||||
}
 | 
			
		||||
#else 
 | 
			
		||||
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
 | 
			
		||||
  GridBase *grid=rhs.Grid();
 | 
			
		||||
  Lattice<vobj> temp(rhs.Grid());
 | 
			
		||||
 | 
			
		||||
  int fd              = rhs.Grid()->_fdimensions[dimension];
 | 
			
		||||
  int rd              = rhs.Grid()->_rdimensions[dimension];
 | 
			
		||||
  int pd              = rhs.Grid()->_processors[dimension];
 | 
			
		||||
  int simd_layout     = rhs.Grid()->_simd_layout[dimension];
 | 
			
		||||
  int comm_dim        = rhs.Grid()->_processors[dimension] >1 ;
 | 
			
		||||
  assert(simd_layout==1);
 | 
			
		||||
  assert(comm_dim==1);
 | 
			
		||||
  assert(shift>=0);
 | 
			
		||||
  assert(shift<fd);
 | 
			
		||||
  RealD tcopy=0.0;
 | 
			
		||||
  RealD tgather=0.0;
 | 
			
		||||
  RealD tscatter=0.0;
 | 
			
		||||
  RealD tcomms=0.0;
 | 
			
		||||
  uint64_t xbytes=0;
 | 
			
		||||
  
 | 
			
		||||
  int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
 | 
			
		||||
  static cshiftVector<vobj> send_buf_v; send_buf_v.resize(buffer_size);
 | 
			
		||||
  static cshiftVector<vobj> recv_buf_v; recv_buf_v.resize(buffer_size);
 | 
			
		||||
  vobj *send_buf;
 | 
			
		||||
  vobj *recv_buf;
 | 
			
		||||
  {
 | 
			
		||||
    grid->ShmBufferFreeAll();
 | 
			
		||||
    size_t bytes = buffer_size*sizeof(vobj);
 | 
			
		||||
    send_buf=(vobj *)grid->ShmBufferMalloc(bytes);
 | 
			
		||||
    recv_buf=(vobj *)grid->ShmBufferMalloc(bytes);
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  int cb= (cbmask==0x2)? Odd : Even;
 | 
			
		||||
  int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
 | 
			
		||||
 | 
			
		||||
  for(int x=0;x<rd;x++){       
 | 
			
		||||
 | 
			
		||||
    int sx        =  (x+sshift)%rd;
 | 
			
		||||
    int comm_proc = ((x+sshift)/rd)%pd;
 | 
			
		||||
    
 | 
			
		||||
    if (comm_proc==0) {
 | 
			
		||||
 | 
			
		||||
      tcopy-=usecond();
 | 
			
		||||
      Copy_plane(ret,rhs,dimension,x,sx,cbmask); 
 | 
			
		||||
      tcopy+=usecond();
 | 
			
		||||
 | 
			
		||||
    } else {
 | 
			
		||||
 | 
			
		||||
      int words = buffer_size;
 | 
			
		||||
      if (cbmask != 0x3) words=words>>1;
 | 
			
		||||
 | 
			
		||||
      int bytes = words * sizeof(vobj);
 | 
			
		||||
 | 
			
		||||
      tgather-=usecond();
 | 
			
		||||
      Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask);
 | 
			
		||||
      tgather+=usecond();
 | 
			
		||||
 | 
			
		||||
      //      int rank           = grid->_processor;
 | 
			
		||||
      int recv_from_rank;
 | 
			
		||||
      int xmit_to_rank;
 | 
			
		||||
      grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      tcomms-=usecond();
 | 
			
		||||
      //      grid->Barrier();
 | 
			
		||||
 | 
			
		||||
      acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes);
 | 
			
		||||
      grid->SendToRecvFrom((void *)&send_buf[0],
 | 
			
		||||
			   xmit_to_rank,
 | 
			
		||||
			   (void *)&recv_buf[0],
 | 
			
		||||
			   recv_from_rank,
 | 
			
		||||
			   bytes);
 | 
			
		||||
      xbytes+=bytes;
 | 
			
		||||
      acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes);
 | 
			
		||||
 | 
			
		||||
      //      grid->Barrier();
 | 
			
		||||
      tcomms+=usecond();
 | 
			
		||||
 | 
			
		||||
      tscatter-=usecond();
 | 
			
		||||
      Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask);
 | 
			
		||||
      tscatter+=usecond();
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  /*
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
 | 
			
		||||
  */
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=rhs.Grid();
 | 
			
		||||
  const int Nsimd = grid->Nsimd();
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  typedef typename vobj::scalar_object scalar_object;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
   
 | 
			
		||||
  int fd = grid->_fdimensions[dimension];
 | 
			
		||||
  int rd = grid->_rdimensions[dimension];
 | 
			
		||||
  int ld = grid->_ldimensions[dimension];
 | 
			
		||||
  int pd = grid->_processors[dimension];
 | 
			
		||||
  int simd_layout     = grid->_simd_layout[dimension];
 | 
			
		||||
  int comm_dim        = grid->_processors[dimension] >1 ;
 | 
			
		||||
 | 
			
		||||
  //std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
 | 
			
		||||
  //    << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout 
 | 
			
		||||
  //    << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
 | 
			
		||||
 | 
			
		||||
  assert(comm_dim==1);
 | 
			
		||||
  assert(simd_layout==2);
 | 
			
		||||
  assert(shift>=0);
 | 
			
		||||
  assert(shift<fd);
 | 
			
		||||
  RealD tcopy=0.0;
 | 
			
		||||
  RealD tgather=0.0;
 | 
			
		||||
  RealD tscatter=0.0;
 | 
			
		||||
  RealD tcomms=0.0;
 | 
			
		||||
  uint64_t xbytes=0;
 | 
			
		||||
 | 
			
		||||
  int permute_type=grid->PermuteType(dimension);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////
 | 
			
		||||
  // Simd direction uses an extract/merge pair
 | 
			
		||||
  ///////////////////////////////////////////////
 | 
			
		||||
  int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
 | 
			
		||||
  //  int words = sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
 | 
			
		||||
  static std::vector<cshiftVector<scalar_object> >  send_buf_extract; send_buf_extract.resize(Nsimd);
 | 
			
		||||
  static std::vector<cshiftVector<scalar_object> >  recv_buf_extract; recv_buf_extract.resize(Nsimd);
 | 
			
		||||
  scalar_object *  recv_buf_extract_mpi;
 | 
			
		||||
  scalar_object *  send_buf_extract_mpi;
 | 
			
		||||
  {
 | 
			
		||||
    size_t bytes = sizeof(scalar_object)*buffer_size;
 | 
			
		||||
    grid->ShmBufferFreeAll();
 | 
			
		||||
    send_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
 | 
			
		||||
    recv_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
 | 
			
		||||
  }
 | 
			
		||||
  for(int s=0;s<Nsimd;s++){
 | 
			
		||||
    send_buf_extract[s].resize(buffer_size);
 | 
			
		||||
    recv_buf_extract[s].resize(buffer_size);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int bytes = buffer_size*sizeof(scalar_object);
 | 
			
		||||
 | 
			
		||||
  ExtractPointerArray<scalar_object>  pointers(Nsimd); // 
 | 
			
		||||
  ExtractPointerArray<scalar_object> rpointers(Nsimd); // received pointers
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  // Work out what to send where
 | 
			
		||||
  ///////////////////////////////////////////
 | 
			
		||||
  int cb    = (cbmask==0x2)? Odd : Even;
 | 
			
		||||
  int sshift= grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
 | 
			
		||||
 | 
			
		||||
  // loop over outer coord planes orthog to dim
 | 
			
		||||
  for(int x=0;x<rd;x++){       
 | 
			
		||||
 | 
			
		||||
    // FIXME call local permute copy if none are offnode.
 | 
			
		||||
    for(int i=0;i<Nsimd;i++){       
 | 
			
		||||
      pointers[i] = &send_buf_extract[i][0];
 | 
			
		||||
    }
 | 
			
		||||
    tgather-=usecond();
 | 
			
		||||
    int sx   = (x+sshift)%rd;
 | 
			
		||||
    Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
 | 
			
		||||
    tgather+=usecond();
 | 
			
		||||
 | 
			
		||||
    for(int i=0;i<Nsimd;i++){
 | 
			
		||||
      
 | 
			
		||||
      int inner_bit = (Nsimd>>(permute_type+1));
 | 
			
		||||
      int ic= (i&inner_bit)? 1:0;
 | 
			
		||||
 | 
			
		||||
      int my_coor          = rd*ic + x;
 | 
			
		||||
      int nbr_coor         = my_coor+sshift;
 | 
			
		||||
      int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors
 | 
			
		||||
 | 
			
		||||
      int nbr_ic   = (nbr_coor%ld)/rd;    // inner coord of peer
 | 
			
		||||
      int nbr_ox   = (nbr_coor%rd);       // outer coord of peer
 | 
			
		||||
      int nbr_lane = (i&(~inner_bit));
 | 
			
		||||
 | 
			
		||||
      int recv_from_rank;
 | 
			
		||||
      int xmit_to_rank;
 | 
			
		||||
 | 
			
		||||
      if (nbr_ic) nbr_lane|=inner_bit;
 | 
			
		||||
 | 
			
		||||
      assert (sx == nbr_ox);
 | 
			
		||||
 | 
			
		||||
      if(nbr_proc){
 | 
			
		||||
	grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank); 
 | 
			
		||||
 | 
			
		||||
	tcomms-=usecond();
 | 
			
		||||
	//	grid->Barrier();
 | 
			
		||||
 | 
			
		||||
	acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes);
 | 
			
		||||
	grid->SendToRecvFrom((void *)send_buf_extract_mpi,
 | 
			
		||||
#else
 | 
			
		||||
      // bouncy bouncy
 | 
			
		||||
	acceleratorCopyFromDevice((void *)send_buf_extract_mpi,(void *)&hsend_buf[0],bytes);
 | 
			
		||||
	grid->SendToRecvFrom((void *)&hsend_buf[0],
 | 
			
		||||
			     xmit_to_rank,
 | 
			
		||||
			     (void *)recv_buf_extract_mpi,
 | 
			
		||||
			     (void *)&hrecv_buf[0],
 | 
			
		||||
			     recv_from_rank,
 | 
			
		||||
			     bytes);
 | 
			
		||||
	acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes);
 | 
			
		||||
	xbytes+=bytes;
 | 
			
		||||
 | 
			
		||||
	//	grid->Barrier();
 | 
			
		||||
	tcomms+=usecond();
 | 
			
		||||
	rpointers[i] = &recv_buf_extract[i][0];
 | 
			
		||||
      } else { 
 | 
			
		||||
	rpointers[i] = &send_buf_extract[nbr_lane][0];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    tscatter-=usecond();
 | 
			
		||||
    Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
 | 
			
		||||
    tscatter+=usecond();
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
  /*
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s"<<std::endl;
 | 
			
		||||
  */
 | 
			
		||||
}
 | 
			
		||||
	acceleratorCopyToDevice((void *)&hrecv_buf[0],(void *)recv_buf_extract_mpi,bytes);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
	xbytes+=bytes;
 | 
			
		||||
	grid->Barrier();
 | 
			
		||||
	tcomms+=usecond();
 | 
			
		||||
 | 
			
		||||
	rpointers[i] = &recv_buf_extract[i][0];
 | 
			
		||||
      } else { 
 | 
			
		||||
	rpointers[i] = &send_buf_extract[nbr_lane][0];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    tscatter-=usecond();
 | 
			
		||||
    Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
 | 
			
		||||
    tscatter+=usecond();
 | 
			
		||||
  }
 | 
			
		||||
  if(Cshift_verbose){
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
			
		||||
    std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid); 
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -30,6 +30,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift)
 | 
			
		||||
{
 | 
			
		||||
  assert(!rhs.Grid()->isIcosahedral());
 | 
			
		||||
  Lattice<vobj> ret(rhs.Grid());
 | 
			
		||||
  ret.Checkerboard() = rhs.Grid()->CheckerBoardDestination(rhs.Checkerboard(),shift,dimension);
 | 
			
		||||
  Cshift_local(ret,rhs,dimension,shift);
 | 
			
		||||
 
 | 
			
		||||
@@ -1,5 +1,5 @@
 | 
			
		||||
#include <Grid/GridCore.h>       
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
std::vector<std::pair<int,int> > Cshift_table; 
 | 
			
		||||
commVector<std::pair<int,int> > Cshift_table_device; 
 | 
			
		||||
deviceVector<std::pair<int,int> > Cshift_table_device; 
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
@@ -257,17 +257,30 @@ void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#define FAST_AXPY_NORM
 | 
			
		||||
template<class sobj,class vobj> inline
 | 
			
		||||
RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)
 | 
			
		||||
{
 | 
			
		||||
  GRID_TRACE("axpy_norm");
 | 
			
		||||
    return axpy_norm_fast(ret,a,x,y);
 | 
			
		||||
#ifdef FAST_AXPY_NORM
 | 
			
		||||
  return axpy_norm_fast(ret,a,x,y);
 | 
			
		||||
#else
 | 
			
		||||
  ret = a*x+y;
 | 
			
		||||
  RealD nn=norm2(ret);
 | 
			
		||||
  return nn;
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
template<class sobj,class vobj> inline
 | 
			
		||||
RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
 | 
			
		||||
{
 | 
			
		||||
  GRID_TRACE("axpby_norm");
 | 
			
		||||
    return axpby_norm_fast(ret,a,b,x,y);
 | 
			
		||||
#ifdef FAST_AXPY_NORM
 | 
			
		||||
  return axpby_norm_fast(ret,a,b,x,y);
 | 
			
		||||
#else
 | 
			
		||||
  ret = a*x+b*y;
 | 
			
		||||
  RealD nn=norm2(ret);
 | 
			
		||||
  return nn;
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/// Trace product
 | 
			
		||||
 
 | 
			
		||||
@@ -237,16 +237,19 @@ public:
 | 
			
		||||
    vobj vtmp;
 | 
			
		||||
    vtmp = r;
 | 
			
		||||
#if 1
 | 
			
		||||
    deviceVector<vobj> vvtmp(1);
 | 
			
		||||
    acceleratorPut(vvtmp[0],vtmp);
 | 
			
		||||
    vobj *vvtmp_p = & vvtmp[0];
 | 
			
		||||
    auto me  = View(AcceleratorWrite);
 | 
			
		||||
    accelerator_for(ss,me.size(),vobj::Nsimd(),{
 | 
			
		||||
	auto stmp=coalescedRead(*vvtmp_p);
 | 
			
		||||
	coalescedWrite(me[ss],stmp);
 | 
			
		||||
    });
 | 
			
		||||
#else    
 | 
			
		||||
    auto me  = View(CpuWrite);
 | 
			
		||||
    thread_for(ss,me.size(),{
 | 
			
		||||
       me[ss]= r;
 | 
			
		||||
      });
 | 
			
		||||
#else    
 | 
			
		||||
    auto me  = View(AcceleratorWrite);
 | 
			
		||||
    accelerator_for(ss,me.size(),vobj::Nsimd(),{
 | 
			
		||||
	auto stmp=coalescedRead(vtmp);
 | 
			
		||||
	coalescedWrite(me[ss],stmp);
 | 
			
		||||
    });
 | 
			
		||||
#endif    
 | 
			
		||||
    me.ViewClose();
 | 
			
		||||
    return *this;
 | 
			
		||||
@@ -370,14 +373,17 @@ public:
 | 
			
		||||
 | 
			
		||||
template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  for(int64_t g=0;g<o.Grid()->_gsites;g++){
 | 
			
		||||
  uint64_t gsites=1;
 | 
			
		||||
  uint64_t polesites=0;
 | 
			
		||||
  for(int d=0;d<o.Grid()->_ndimension;d++) gsites *= o.Grid()->_gdimensions[d];
 | 
			
		||||
  for(int64_t g=0;g<gsites;g++){
 | 
			
		||||
 | 
			
		||||
    Coordinate gcoor;
 | 
			
		||||
    o.Grid()->GlobalIndexToGlobalCoor(g,gcoor);
 | 
			
		||||
 | 
			
		||||
    sobj ss;
 | 
			
		||||
    peekSite(ss,o,gcoor);
 | 
			
		||||
    stream<<"[";
 | 
			
		||||
    stream<<"["<<  g<<" : ";
 | 
			
		||||
    for(int d=0;d<gcoor.size();d++){
 | 
			
		||||
      stream<<gcoor[d];
 | 
			
		||||
      if(d!=gcoor.size()-1) stream<<",";
 | 
			
		||||
@@ -385,6 +391,41 @@ template<class vobj> std::ostream& operator<< (std::ostream& stream, const Latti
 | 
			
		||||
    stream<<"]\t";
 | 
			
		||||
    stream<<ss<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  if ( o.Grid()->isIcosahedralVertex() ) {
 | 
			
		||||
    uint64_t psites=1;
 | 
			
		||||
    Coordinate perpdims;
 | 
			
		||||
    for(int d=2;d<o.Grid()->_ndimension-1;d++){
 | 
			
		||||
      int pd=o.Grid()->_gdimensions[d];
 | 
			
		||||
      psites*=pd;
 | 
			
		||||
      perpdims.push_back(pd);
 | 
			
		||||
    }
 | 
			
		||||
    for(uint64_t p=0;p<psites;p++){
 | 
			
		||||
      sobj ss;
 | 
			
		||||
      Coordinate orthog;
 | 
			
		||||
      Lexicographic::CoorFromIndex(orthog,p,perpdims);
 | 
			
		||||
      peekPole(ss,o,orthog,South);
 | 
			
		||||
      stream<<"[ SouthPole : ";
 | 
			
		||||
      for(int d=0;d<orthog.size();d++){
 | 
			
		||||
	stream<<orthog[d];
 | 
			
		||||
	if(d!=orthog.size()-1) stream<<",";
 | 
			
		||||
      }
 | 
			
		||||
      stream<<"]\t";
 | 
			
		||||
      stream<<ss<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    for(uint64_t p=0;p<psites;p++){
 | 
			
		||||
      sobj ss;
 | 
			
		||||
      Coordinate orthog;
 | 
			
		||||
      Lexicographic::CoorFromIndex(orthog,p,perpdims);
 | 
			
		||||
      peekPole(ss,o,orthog,North);
 | 
			
		||||
      stream<<"[ NorthPole : ";
 | 
			
		||||
      for(int d=0;d<orthog.size();d++){
 | 
			
		||||
	stream<<orthog[d];
 | 
			
		||||
	if(d!=orthog.size()-1) stream<<",";
 | 
			
		||||
      }
 | 
			
		||||
      stream<<"]\t";
 | 
			
		||||
      stream<<ss<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  return stream;
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
 
 | 
			
		||||
@@ -53,36 +53,19 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
 | 
			
		||||
  typedef decltype(basis[0]) Field;
 | 
			
		||||
  typedef decltype(basis[0].View(AcceleratorRead)) View;
 | 
			
		||||
 | 
			
		||||
  Vector<View> basis_v; basis_v.reserve(basis.size());
 | 
			
		||||
  typedef typename std::remove_reference<decltype(basis_v[0][0])>::type vobj;
 | 
			
		||||
  hostVector<View>  h_basis_v(basis.size());
 | 
			
		||||
  deviceVector<View> d_basis_v(basis.size());
 | 
			
		||||
  typedef typename std::remove_reference<decltype(h_basis_v[0][0])>::type vobj;
 | 
			
		||||
  typedef typename std::remove_reference<decltype(Qt(0,0))>::type Coeff_t;
 | 
			
		||||
 | 
			
		||||
  GridBase* grid = basis[0].Grid();
 | 
			
		||||
      
 | 
			
		||||
  for(int k=0;k<basis.size();k++){
 | 
			
		||||
    basis_v.push_back(basis[k].View(AcceleratorWrite));
 | 
			
		||||
    h_basis_v[k] = basis[k].View(AcceleratorWrite);
 | 
			
		||||
    acceleratorPut(d_basis_v[k],h_basis_v[k]);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
#if ( !(defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)) )
 | 
			
		||||
  int max_threads = thread_max();
 | 
			
		||||
  Vector < vobj > Bt(Nm * max_threads);
 | 
			
		||||
  thread_region
 | 
			
		||||
    {
 | 
			
		||||
      vobj* B = &Bt[Nm * thread_num()];
 | 
			
		||||
      thread_for_in_region(ss, grid->oSites(),{
 | 
			
		||||
	  for(int j=j0; j<j1; ++j) B[j]=0.;
 | 
			
		||||
      
 | 
			
		||||
	  for(int j=j0; j<j1; ++j){
 | 
			
		||||
	    for(int k=k0; k<k1; ++k){
 | 
			
		||||
	      B[j] +=Qt(j,k) * basis_v[k][ss];
 | 
			
		||||
	    }
 | 
			
		||||
	  }
 | 
			
		||||
	  for(int j=j0; j<j1; ++j){
 | 
			
		||||
	    basis_v[j][ss] = B[j];
 | 
			
		||||
	  }
 | 
			
		||||
	});
 | 
			
		||||
    }
 | 
			
		||||
#else
 | 
			
		||||
  View *basis_vp = &basis_v[0];
 | 
			
		||||
  View *basis_vp = &d_basis_v[0];
 | 
			
		||||
 | 
			
		||||
  int nrot = j1-j0;
 | 
			
		||||
  if (!nrot) // edge case not handled gracefully by Cuda
 | 
			
		||||
@@ -91,17 +74,19 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
 | 
			
		||||
  uint64_t oSites   =grid->oSites();
 | 
			
		||||
  uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead
 | 
			
		||||
 | 
			
		||||
  Vector <vobj> Bt(siteBlock * nrot); 
 | 
			
		||||
  deviceVector <vobj> Bt(siteBlock * nrot); 
 | 
			
		||||
  auto Bp=&Bt[0];
 | 
			
		||||
 | 
			
		||||
  // GPU readable copy of matrix
 | 
			
		||||
  Vector<Coeff_t> Qt_jv(Nm*Nm);
 | 
			
		||||
  hostVector<Coeff_t> h_Qt_jv(Nm*Nm);
 | 
			
		||||
  deviceVector<Coeff_t> Qt_jv(Nm*Nm);
 | 
			
		||||
  Coeff_t *Qt_p = & Qt_jv[0];
 | 
			
		||||
  thread_for(i,Nm*Nm,{
 | 
			
		||||
      int j = i/Nm;
 | 
			
		||||
      int k = i%Nm;
 | 
			
		||||
      Qt_p[i]=Qt(j,k);
 | 
			
		||||
      h_Qt_jv[i]=Qt(j,k);
 | 
			
		||||
  });
 | 
			
		||||
  acceleratorCopyToDevice(&h_Qt_jv[0],Qt_p,Nm*Nm*sizeof(Coeff_t));
 | 
			
		||||
 | 
			
		||||
  // Block the loop to keep storage footprint down
 | 
			
		||||
  for(uint64_t s=0;s<oSites;s+=siteBlock){
 | 
			
		||||
@@ -137,9 +122,8 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
 | 
			
		||||
	coalescedWrite(basis_vp[jj][sss],coalescedRead(Bp[ss*nrot+j]));
 | 
			
		||||
      });
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
  for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
 | 
			
		||||
  for(int k=0;k<basis.size();k++) h_basis_v[k].ViewClose();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Extract a single rotated vector
 | 
			
		||||
@@ -152,16 +136,19 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in
 | 
			
		||||
 | 
			
		||||
  result.Checkerboard() = basis[0].Checkerboard();
 | 
			
		||||
 | 
			
		||||
  Vector<View> basis_v; basis_v.reserve(basis.size());
 | 
			
		||||
  hostVector<View>  h_basis_v(basis.size());
 | 
			
		||||
  deviceVector<View> d_basis_v(basis.size());
 | 
			
		||||
  for(int k=0;k<basis.size();k++){
 | 
			
		||||
    basis_v.push_back(basis[k].View(AcceleratorRead));
 | 
			
		||||
    h_basis_v[k]=basis[k].View(AcceleratorRead);
 | 
			
		||||
    acceleratorPut(d_basis_v[k],h_basis_v[k]);
 | 
			
		||||
  }
 | 
			
		||||
  vobj zz=Zero();
 | 
			
		||||
  Vector<double> Qt_jv(Nm);
 | 
			
		||||
  double * Qt_j = & Qt_jv[0];
 | 
			
		||||
  for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k);
 | 
			
		||||
 | 
			
		||||
  auto basis_vp=& basis_v[0];
 | 
			
		||||
  vobj zz=Zero();
 | 
			
		||||
  deviceVector<double> Qt_jv(Nm);
 | 
			
		||||
  double * Qt_j = & Qt_jv[0];
 | 
			
		||||
  for(int k=0;k<Nm;++k) acceleratorPut(Qt_j[k],Qt(j,k));
 | 
			
		||||
 | 
			
		||||
  auto basis_vp=& d_basis_v[0];
 | 
			
		||||
  autoView(result_v,result,AcceleratorWrite);
 | 
			
		||||
  accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
 | 
			
		||||
    vobj zzz=Zero();
 | 
			
		||||
@@ -171,7 +158,7 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in
 | 
			
		||||
    }
 | 
			
		||||
    coalescedWrite(result_v[ss], B);
 | 
			
		||||
  });
 | 
			
		||||
  for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
 | 
			
		||||
  for(int k=0;k<basis.size();k++) h_basis_v[k].ViewClose();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
 
 | 
			
		||||
@@ -34,22 +34,86 @@ template<class iobj> inline void LatticeCoordinate(Lattice<iobj> &l,int mu)
 | 
			
		||||
  typedef typename iobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename iobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  l=Zero();
 | 
			
		||||
  
 | 
			
		||||
  GridBase *grid = l.Grid();
 | 
			
		||||
  int Nsimd = grid->iSites();
 | 
			
		||||
 | 
			
		||||
  autoView(l_v, l, CpuWrite);
 | 
			
		||||
  thread_for( o, grid->oSites(), {
 | 
			
		||||
    vector_type vI;
 | 
			
		||||
    Coordinate gcoor;
 | 
			
		||||
    ExtractBuffer<scalar_type> mergebuf(Nsimd);
 | 
			
		||||
    for(int i=0;i<grid->iSites();i++){
 | 
			
		||||
      grid->RankIndexToGlobalCoor(grid->ThisRank(),o,i,gcoor);
 | 
			
		||||
      mergebuf[i]=(Integer)gcoor[mu];
 | 
			
		||||
  int cartesian_vol = grid->oSites();
 | 
			
		||||
  if ( grid->isIcosahedral() ) {
 | 
			
		||||
    cartesian_vol = cartesian_vol - grid->NorthPoleOsites()-grid->SouthPoleOsites();
 | 
			
		||||
  }
 | 
			
		||||
  {
 | 
			
		||||
    autoView(l_v, l, CpuWrite);
 | 
			
		||||
    thread_for( o, cartesian_vol, {
 | 
			
		||||
	vector_type vI;
 | 
			
		||||
	Coordinate gcoor;
 | 
			
		||||
	ExtractBuffer<scalar_type> mergebuf(Nsimd);
 | 
			
		||||
	for(int i=0;i<grid->iSites();i++){
 | 
			
		||||
	  grid->RankIndexToGlobalCoor(grid->ThisRank(),o,i,gcoor);
 | 
			
		||||
	  mergebuf[i]=(Integer)gcoor[mu];
 | 
			
		||||
	}
 | 
			
		||||
	merge<vector_type,scalar_type>(vI,mergebuf);
 | 
			
		||||
	l_v[o]=vI;
 | 
			
		||||
      });
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  if (grid->isIcosahedralVertex()) {
 | 
			
		||||
    uint64_t psites=1;
 | 
			
		||||
    Coordinate perpdims;
 | 
			
		||||
    typename iobj::scalar_object ss;
 | 
			
		||||
    for(int d=2;d<grid->_ndimension-1;d++){
 | 
			
		||||
      int pd=grid->_gdimensions[d];
 | 
			
		||||
      psites*=pd;
 | 
			
		||||
      perpdims.push_back(pd);
 | 
			
		||||
    }
 | 
			
		||||
    merge<vector_type,scalar_type>(vI,mergebuf);
 | 
			
		||||
    l_v[o]=vI;
 | 
			
		||||
  });
 | 
			
		||||
    for(uint64_t p=0;p<psites;p++){
 | 
			
		||||
      Coordinate orthog;
 | 
			
		||||
      Lexicographic::CoorFromIndex(orthog,p,perpdims);
 | 
			
		||||
 | 
			
		||||
      int icoor;
 | 
			
		||||
      if ( mu>=2 && mu < grid->_ndimension-1) {
 | 
			
		||||
	icoor = orthog[mu-2];
 | 
			
		||||
      } else {
 | 
			
		||||
	icoor = -1;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      ss=scalar_type(icoor);
 | 
			
		||||
 | 
			
		||||
      pokePole(ss,l,orthog,South);
 | 
			
		||||
      pokePole(ss,l,orthog,North);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
template<class iobj> inline void LatticePole(Lattice<iobj> &l,NorthSouth pole)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename iobj::scalar_object sobj;
 | 
			
		||||
  typedef typename iobj::scalar_type scalar_type;
 | 
			
		||||
  typedef typename iobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  GridBase *grid = l.Grid();
 | 
			
		||||
 | 
			
		||||
  l=Zero();
 | 
			
		||||
 | 
			
		||||
  assert(grid->isIcosahedralVertex());
 | 
			
		||||
  
 | 
			
		||||
  if (grid->isIcosahedralVertex()) {
 | 
			
		||||
    uint64_t psites=1;
 | 
			
		||||
    Coordinate perpdims;
 | 
			
		||||
    sobj ss;
 | 
			
		||||
    scalar_type one(1.0);
 | 
			
		||||
    ss=one;
 | 
			
		||||
    for(int d=2;d<l.Grid()->_ndimension-1;d++){
 | 
			
		||||
      int pd=l.Grid()->_gdimensions[d];
 | 
			
		||||
      psites*=pd;
 | 
			
		||||
      perpdims.push_back(pd);
 | 
			
		||||
    }
 | 
			
		||||
    for(uint64_t p=0;p<psites;p++){
 | 
			
		||||
      Coordinate orthog;
 | 
			
		||||
      Lexicographic::CoorFromIndex(orthog,p,perpdims);
 | 
			
		||||
      pokePole(ss,l,orthog,pole);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -141,7 +141,7 @@ void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
 | 
			
		||||
  grid->GlobalCoorToRankIndex(rank,odx,idx,site);
 | 
			
		||||
 | 
			
		||||
  ExtractBuffer<sobj> buf(Nsimd);
 | 
			
		||||
  autoView( l_v , l, CpuWrite);
 | 
			
		||||
  autoView( l_v , l, CpuRead);
 | 
			
		||||
  extract(l_v[odx],buf);
 | 
			
		||||
 | 
			
		||||
  s = buf[idx];
 | 
			
		||||
@@ -151,6 +151,261 @@ void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
 | 
			
		||||
  return;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// zero for south pole, one for north pole
 | 
			
		||||
template<class vobj,class sobj>
 | 
			
		||||
void peekPole(sobj &s,const Lattice<vobj> &l,const Coordinate &orthog,NorthSouth isNorth)
 | 
			
		||||
{
 | 
			
		||||
  s=Zero();
 | 
			
		||||
  
 | 
			
		||||
  GridBase *grid=l.Grid();
 | 
			
		||||
 | 
			
		||||
  assert(grid->isIcosahedral());
 | 
			
		||||
  assert(grid->isIcosahedralVertex());
 | 
			
		||||
 | 
			
		||||
  int Nsimd = grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
  int rank;
 | 
			
		||||
 | 
			
		||||
  int Ndm1         = grid->_ndimension-1;
 | 
			
		||||
  Coordinate pgrid = grid->ProcessorGrid();
 | 
			
		||||
  const int xdim=0;
 | 
			
		||||
  const int ydim=1;
 | 
			
		||||
  const int pdim=Ndm1;
 | 
			
		||||
 | 
			
		||||
  int64_t pole_osite;
 | 
			
		||||
  int64_t pole_isite;
 | 
			
		||||
  Coordinate rdims;
 | 
			
		||||
  Coordinate idims;
 | 
			
		||||
  Coordinate ocoor;
 | 
			
		||||
  Coordinate icoor;
 | 
			
		||||
  Coordinate pcoor(grid->_ndimension);
 | 
			
		||||
  for(int d=2;d<Ndm1;d++){
 | 
			
		||||
    int dd=d-2;
 | 
			
		||||
    rdims.push_back(grid->_rdimensions[d]);
 | 
			
		||||
    idims.push_back(grid->_simd_layout[d]);
 | 
			
		||||
    icoor.push_back((orthog[dd]%grid->_ldimensions[d])/grid->_rdimensions[d]);
 | 
			
		||||
    ocoor.push_back(orthog[dd]%grid->_rdimensions[d]);
 | 
			
		||||
    pcoor[d] = orthog[dd]/grid->_ldimensions[d];
 | 
			
		||||
  }
 | 
			
		||||
  Lexicographic::IndexFromCoor(ocoor,pole_osite,rdims);
 | 
			
		||||
  Lexicographic::IndexFromCoor(icoor,pole_isite,idims);
 | 
			
		||||
  
 | 
			
		||||
  int64_t osite;
 | 
			
		||||
  if(isNorth == North){
 | 
			
		||||
    pcoor[xdim] = 0;
 | 
			
		||||
    pcoor[ydim] = pgrid[ydim]-1;
 | 
			
		||||
    pcoor[Ndm1] = pgrid[Ndm1]-1;
 | 
			
		||||
    osite = pole_osite + grid->NorthPoleOsite();
 | 
			
		||||
  } else {
 | 
			
		||||
    pcoor[xdim] = pgrid[xdim]-1;
 | 
			
		||||
    pcoor[ydim] = 0;
 | 
			
		||||
    pcoor[Ndm1] = 0;
 | 
			
		||||
    osite = pole_osite + grid->SouthPoleOsite();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  rank = grid->RankFromProcessorCoor(pcoor);
 | 
			
		||||
 | 
			
		||||
  if ( rank == grid->ThisRank() ) {
 | 
			
		||||
    ExtractBuffer<sobj> buf(Nsimd);
 | 
			
		||||
    autoView( l_v , l, CpuWrite);
 | 
			
		||||
    extract(l_v[osite],buf);
 | 
			
		||||
    s = buf[pole_isite];
 | 
			
		||||
  }
 | 
			
		||||
  grid->Broadcast(rank,s);
 | 
			
		||||
 | 
			
		||||
  return;
 | 
			
		||||
};
 | 
			
		||||
template<class vobj,class sobj>
 | 
			
		||||
void pokePole(const sobj &s,Lattice<vobj> &l,const Coordinate &orthog,NorthSouth isNorth)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=l.Grid();
 | 
			
		||||
 | 
			
		||||
  assert(grid->isIcosahedral());
 | 
			
		||||
  assert(grid->isIcosahedralVertex());
 | 
			
		||||
 | 
			
		||||
  grid->Broadcast(grid->BossRank(),s);
 | 
			
		||||
 | 
			
		||||
  int Nsimd = grid->Nsimd();
 | 
			
		||||
  int rank;
 | 
			
		||||
  int Ndm1         = grid->_ndimension-1;
 | 
			
		||||
  Coordinate pgrid = grid->ProcessorGrid();
 | 
			
		||||
  const int xdim=0;
 | 
			
		||||
  const int ydim=1;
 | 
			
		||||
  const int pdim=Ndm1;
 | 
			
		||||
 | 
			
		||||
  int64_t pole_osite;
 | 
			
		||||
  int64_t pole_isite;
 | 
			
		||||
  Coordinate rdims;
 | 
			
		||||
  Coordinate idims;
 | 
			
		||||
  Coordinate ocoor;
 | 
			
		||||
  Coordinate icoor;
 | 
			
		||||
  Coordinate pcoor(grid->_ndimension,0);
 | 
			
		||||
  for(int d=2;d<Ndm1;d++){
 | 
			
		||||
    int dd = d-2;
 | 
			
		||||
    rdims.push_back(grid->_rdimensions[d]);
 | 
			
		||||
    idims.push_back(grid->_simd_layout[d]);
 | 
			
		||||
    icoor.push_back((orthog[dd]%grid->_ldimensions[d])/grid->_rdimensions[d]);
 | 
			
		||||
    ocoor.push_back(orthog[dd]%grid->_rdimensions[d]);
 | 
			
		||||
    pcoor[d] = orthog[dd]/grid->_ldimensions[d];
 | 
			
		||||
 | 
			
		||||
    int o = orthog[dd];
 | 
			
		||||
    int r = grid->_rdimensions[d];
 | 
			
		||||
    int omr = o % r;
 | 
			
		||||
  }
 | 
			
		||||
  Lexicographic::IndexFromCoor(ocoor,pole_osite,rdims);
 | 
			
		||||
  Lexicographic::IndexFromCoor(icoor,pole_isite,idims);
 | 
			
		||||
  
 | 
			
		||||
  int64_t osite;
 | 
			
		||||
  if(isNorth ==North){
 | 
			
		||||
    pcoor[xdim] = 0;
 | 
			
		||||
    pcoor[ydim] = pgrid[ydim]-1;
 | 
			
		||||
    pcoor[Ndm1] = pgrid[Ndm1]-1;
 | 
			
		||||
    osite = pole_osite + grid->NorthPoleOsite();
 | 
			
		||||
  } else {
 | 
			
		||||
    pcoor[xdim] = pgrid[xdim]-1;
 | 
			
		||||
    pcoor[ydim] = 0;
 | 
			
		||||
    pcoor[Ndm1] = 0;
 | 
			
		||||
    osite = pole_osite + grid->SouthPoleOsite();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  rank = grid->RankFromProcessorCoor(pcoor);
 | 
			
		||||
 | 
			
		||||
  // extract-modify-merge cycle is easiest way and this is not perf critical
 | 
			
		||||
  if ( rank == grid->ThisRank() ) {
 | 
			
		||||
    ExtractBuffer<sobj> buf(Nsimd);
 | 
			
		||||
    autoView( l_v , l, CpuWrite);
 | 
			
		||||
    extract(l_v[osite],buf);
 | 
			
		||||
    buf[pole_isite] = s;
 | 
			
		||||
    merge(l_v[osite],buf);
 | 
			
		||||
  }
 | 
			
		||||
  return;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vobj,class sobj>
 | 
			
		||||
void peekLocalPole(sobj &s,const Lattice<vobj> &l,const Coordinate &orthog,NorthSouth isNorth)
 | 
			
		||||
{
 | 
			
		||||
  s=Zero();
 | 
			
		||||
  
 | 
			
		||||
  GridBase *grid=l.Grid();
 | 
			
		||||
 | 
			
		||||
  assert(grid->isIcosahedral());
 | 
			
		||||
  assert(grid->isIcosahedralVertex());
 | 
			
		||||
 | 
			
		||||
  int Nsimd = grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
  int rank;
 | 
			
		||||
 | 
			
		||||
  int Ndm1         = grid->_ndimension-1;
 | 
			
		||||
  Coordinate pgrid = grid->ProcessorGrid();
 | 
			
		||||
  const int xdim=0;
 | 
			
		||||
  const int ydim=1;
 | 
			
		||||
  const int pdim=Ndm1;
 | 
			
		||||
 | 
			
		||||
  int64_t pole_osite;
 | 
			
		||||
  int64_t pole_isite;
 | 
			
		||||
  Coordinate rdims;
 | 
			
		||||
  Coordinate idims;
 | 
			
		||||
  Coordinate ocoor;
 | 
			
		||||
  Coordinate icoor;
 | 
			
		||||
  //  Coordinate pcoor(grid->_ndimension);
 | 
			
		||||
  for(int d=2;d<Ndm1;d++){
 | 
			
		||||
    int dd=d-2;
 | 
			
		||||
    rdims.push_back(grid->_rdimensions[d]);
 | 
			
		||||
    idims.push_back(grid->_simd_layout[d]);
 | 
			
		||||
    icoor.push_back((orthog[dd]%grid->_ldimensions[d])/grid->_rdimensions[d]);
 | 
			
		||||
    ocoor.push_back(orthog[dd]%grid->_rdimensions[d]);
 | 
			
		||||
    //    pcoor[d] = orthog[dd]/grid->_ldimensions[d];
 | 
			
		||||
  }
 | 
			
		||||
  Lexicographic::IndexFromCoor(ocoor,pole_osite,rdims);
 | 
			
		||||
  Lexicographic::IndexFromCoor(icoor,pole_isite,idims);
 | 
			
		||||
  
 | 
			
		||||
  int64_t osite;
 | 
			
		||||
  if(isNorth == North){
 | 
			
		||||
    //    pcoor[xdim] = 0;
 | 
			
		||||
    //    pcoor[ydim] = pgrid[ydim]-1;
 | 
			
		||||
    //    pcoor[Ndm1] = pgrid[Ndm1]-1;
 | 
			
		||||
    osite = pole_osite + grid->NorthPoleOsite();
 | 
			
		||||
    assert(grid->ownsNorthPole());
 | 
			
		||||
  } else {
 | 
			
		||||
    //    pcoor[xdim] = pgrid[xdim]-1;
 | 
			
		||||
    //    pcoor[ydim] = 0;
 | 
			
		||||
    //    pcoor[Ndm1] = 0;
 | 
			
		||||
    osite = pole_osite + grid->SouthPoleOsite();
 | 
			
		||||
    assert(grid->ownsSouthPole());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ExtractBuffer<sobj> buf(Nsimd);
 | 
			
		||||
  autoView( l_v , l, CpuWrite);
 | 
			
		||||
  extract(l_v[osite],buf);
 | 
			
		||||
  s = buf[pole_isite];
 | 
			
		||||
 | 
			
		||||
  return;
 | 
			
		||||
};
 | 
			
		||||
template<class vobj,class sobj>
 | 
			
		||||
void pokeLocalPole(const sobj &s,Lattice<vobj> &l,const Coordinate &orthog,NorthSouth isNorth)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=l.Grid();
 | 
			
		||||
 | 
			
		||||
  assert(grid->isIcosahedral());
 | 
			
		||||
  assert(grid->isIcosahedralVertex());
 | 
			
		||||
 | 
			
		||||
  int Nsimd = grid->Nsimd();
 | 
			
		||||
  int rank;
 | 
			
		||||
  int Ndm1         = grid->_ndimension-1;
 | 
			
		||||
 | 
			
		||||
  const int xdim=0;
 | 
			
		||||
  const int ydim=1;
 | 
			
		||||
  const int pdim=Ndm1;
 | 
			
		||||
 | 
			
		||||
  int64_t pole_osite;
 | 
			
		||||
  int64_t pole_isite;
 | 
			
		||||
  Coordinate rdims;
 | 
			
		||||
  Coordinate idims;
 | 
			
		||||
  Coordinate ocoor;
 | 
			
		||||
  Coordinate icoor;
 | 
			
		||||
  //  Coordinate pcoor(grid->_ndimension,0);
 | 
			
		||||
  for(int d=2;d<Ndm1;d++){
 | 
			
		||||
    int dd = d-2;
 | 
			
		||||
    rdims.push_back(grid->_rdimensions[d]);
 | 
			
		||||
    idims.push_back(grid->_simd_layout[d]);
 | 
			
		||||
    icoor.push_back((orthog[dd]%grid->_ldimensions[d])/grid->_rdimensions[d]);
 | 
			
		||||
    ocoor.push_back(orthog[dd]%grid->_rdimensions[d]);
 | 
			
		||||
    //    pcoor[d] = orthog[dd]/grid->_ldimensions[d];
 | 
			
		||||
 | 
			
		||||
    int o = orthog[dd];
 | 
			
		||||
    int r = grid->_rdimensions[d];
 | 
			
		||||
    int omr = o % r;
 | 
			
		||||
  }
 | 
			
		||||
  Lexicographic::IndexFromCoor(ocoor,pole_osite,rdims);
 | 
			
		||||
  Lexicographic::IndexFromCoor(icoor,pole_isite,idims);
 | 
			
		||||
  
 | 
			
		||||
  int64_t osite;
 | 
			
		||||
  int insert=0;
 | 
			
		||||
  if(isNorth ==North){
 | 
			
		||||
    //    pcoor[xdim] = 0;
 | 
			
		||||
    //    pcoor[ydim] = pgrid[ydim]-1;
 | 
			
		||||
    //    pcoor[Ndm1] = pgrid[Ndm1]-1;
 | 
			
		||||
    osite = pole_osite + grid->NorthPoleOsite();
 | 
			
		||||
    assert(grid->ownsNorthPole());
 | 
			
		||||
  } else {
 | 
			
		||||
    //    pcoor[xdim] = pgrid[xdim]-1;
 | 
			
		||||
    //    pcoor[ydim] = 0;
 | 
			
		||||
    //    pcoor[Ndm1] = 0;
 | 
			
		||||
    osite = pole_osite + grid->SouthPoleOsite();
 | 
			
		||||
    assert(grid->ownsSouthPole());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // extract-modify-merge cycle is easiest way and this is not perf critical
 | 
			
		||||
  ExtractBuffer<sobj> buf(Nsimd);
 | 
			
		||||
  autoView( l_v , l, CpuWrite);
 | 
			
		||||
  extract(l_v[osite],buf);
 | 
			
		||||
  buf[pole_isite] = s;
 | 
			
		||||
  merge(l_v[osite],buf);
 | 
			
		||||
  
 | 
			
		||||
  return;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////
 | 
			
		||||
// Peek a scalar object from the SIMD array
 | 
			
		||||
//////////////////////////////////////////////////////////
 | 
			
		||||
@@ -165,7 +420,7 @@ inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
 | 
			
		||||
 | 
			
		||||
  int Nsimd = grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
  assert( l.Checkerboard()== grid->CheckerBoard(site));
 | 
			
		||||
  //  assert( l.Checkerboard()== grid->CheckerBoard(site));
 | 
			
		||||
  assert( sizeof(sobj)*Nsimd == sizeof(vobj));
 | 
			
		||||
 | 
			
		||||
  static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
@@ -179,7 +434,7 @@ inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
 | 
			
		||||
  for(int w=0;w<words;w++){
 | 
			
		||||
    pt[w] = getlane(vp[w],idx);
 | 
			
		||||
  }
 | 
			
		||||
      
 | 
			
		||||
 | 
			
		||||
  return;
 | 
			
		||||
};
 | 
			
		||||
template<class vobj,class sobj>
 | 
			
		||||
@@ -202,7 +457,7 @@ inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site)
 | 
			
		||||
 | 
			
		||||
  int Nsimd = grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
  assert( l.Checkerboard()== grid->CheckerBoard(site));
 | 
			
		||||
  //  assert( l.Checkerboard()== grid->CheckerBoard(site));
 | 
			
		||||
  assert( sizeof(sobj)*Nsimd == sizeof(vobj));
 | 
			
		||||
 | 
			
		||||
  static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
 
 | 
			
		||||
@@ -46,7 +46,7 @@ inline typename vobj::scalar_object sum_cpu(const vobj *arg, Integer osites)
 | 
			
		||||
  //  const int Nsimd = vobj::Nsimd();
 | 
			
		||||
  const int nthread = GridThread::GetThreads();
 | 
			
		||||
 | 
			
		||||
  Vector<sobj> sumarray(nthread);
 | 
			
		||||
  std::vector<sobj> sumarray(nthread);
 | 
			
		||||
  for(int i=0;i<nthread;i++){
 | 
			
		||||
    sumarray[i]=Zero();
 | 
			
		||||
  }
 | 
			
		||||
@@ -75,7 +75,7 @@ inline typename vobj::scalar_objectD sumD_cpu(const vobj *arg, Integer osites)
 | 
			
		||||
 | 
			
		||||
  const int nthread = GridThread::GetThreads();
 | 
			
		||||
 | 
			
		||||
  Vector<sobj> sumarray(nthread);
 | 
			
		||||
  std::vector<sobj> sumarray(nthread);
 | 
			
		||||
  for(int i=0;i<nthread;i++){
 | 
			
		||||
    sumarray[i]=Zero();
 | 
			
		||||
  }
 | 
			
		||||
@@ -264,24 +264,8 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
 | 
			
		||||
  const uint64_t sites = grid->oSites();
 | 
			
		||||
  
 | 
			
		||||
  // Might make all code paths go this way.
 | 
			
		||||
#if 0
 | 
			
		||||
  typedef decltype(innerProductD(vobj(),vobj())) inner_t;
 | 
			
		||||
  Vector<inner_t> inner_tmp(sites);
 | 
			
		||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
			
		||||
  {
 | 
			
		||||
    autoView( left_v , left, AcceleratorRead);
 | 
			
		||||
    autoView( right_v,right, AcceleratorRead);
 | 
			
		||||
    // This code could read coalesce
 | 
			
		||||
    // GPU - SIMT lane compliance...
 | 
			
		||||
    accelerator_for( ss, sites, nsimd,{
 | 
			
		||||
	auto x_l = left_v(ss);
 | 
			
		||||
	auto y_l = right_v(ss);
 | 
			
		||||
	coalescedWrite(inner_tmp_v[ss],innerProductD(x_l,y_l));
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
#else
 | 
			
		||||
  typedef decltype(innerProduct(vobj(),vobj())) inner_t;
 | 
			
		||||
  Vector<inner_t> inner_tmp(sites);
 | 
			
		||||
  deviceVector<inner_t> inner_tmp(sites);
 | 
			
		||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
			
		||||
    
 | 
			
		||||
  {
 | 
			
		||||
@@ -295,7 +279,6 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
 | 
			
		||||
	coalescedWrite(inner_tmp_v[ss],innerProduct(x_l,y_l));
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
  // This is in single precision and fails some tests
 | 
			
		||||
  auto anrm = sumD(inner_tmp_v,sites);  
 | 
			
		||||
  nrm = anrm;
 | 
			
		||||
@@ -307,8 +290,10 @@ template<class vobj>
 | 
			
		||||
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) {
 | 
			
		||||
  GridBase *grid = left.Grid();
 | 
			
		||||
 | 
			
		||||
  bool ok;
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
  uint64_t csum=0;
 | 
			
		||||
  uint64_t csum2=0;
 | 
			
		||||
  if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone)
 | 
			
		||||
  {
 | 
			
		||||
    // Hack
 | 
			
		||||
@@ -317,13 +302,33 @@ inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &righ
 | 
			
		||||
    Integer words = left.Grid()->oSites()*sizeof(vobj)/sizeof(uint64_t);
 | 
			
		||||
    uint64_t *base= (uint64_t *)&l_v[0];
 | 
			
		||||
    csum=svm_xor(base,words);
 | 
			
		||||
    ok = FlightRecorder::CsumLog(csum);
 | 
			
		||||
    if ( !ok ) {
 | 
			
		||||
      csum2=svm_xor(base,words);
 | 
			
		||||
      std::cerr<< " Bad CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
 | 
			
		||||
    } else {
 | 
			
		||||
      //      csum2=svm_xor(base,words);
 | 
			
		||||
      //      std::cerr<< " ok CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    assert(ok);
 | 
			
		||||
  }
 | 
			
		||||
  FlightRecorder::CsumLog(csum);
 | 
			
		||||
#endif
 | 
			
		||||
  FlightRecorder::StepLog("rank inner product");
 | 
			
		||||
  ComplexD nrm = rankInnerProduct(left,right);
 | 
			
		||||
  //  ComplexD nrmck=nrm;
 | 
			
		||||
  RealD local = real(nrm);
 | 
			
		||||
  FlightRecorder::NormLog(real(nrm)); 
 | 
			
		||||
  ok = FlightRecorder::NormLog(real(nrm));
 | 
			
		||||
  if ( !ok ) {
 | 
			
		||||
    ComplexD nrm2 = rankInnerProduct(left,right);
 | 
			
		||||
    RealD local2 = real(nrm2);
 | 
			
		||||
    std::cerr<< " Bad NORM " << local << " recomputed as "<<local2<<std::endl;
 | 
			
		||||
    assert(ok);
 | 
			
		||||
  }
 | 
			
		||||
  FlightRecorder::StepLog("Start global sum");
 | 
			
		||||
  //  grid->GlobalSumP2P(nrm);
 | 
			
		||||
  grid->GlobalSum(nrm);
 | 
			
		||||
  FlightRecorder::StepLog("Finished global sum");
 | 
			
		||||
  //  std::cout << " norm "<< nrm << " p2p norm "<<nrmck<<std::endl;
 | 
			
		||||
  FlightRecorder::ReductionLog(local,real(nrm)); 
 | 
			
		||||
  return nrm;
 | 
			
		||||
}
 | 
			
		||||
@@ -360,18 +365,6 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
 | 
			
		||||
  autoView( x_v, x, AcceleratorRead);
 | 
			
		||||
  autoView( y_v, y, AcceleratorRead);
 | 
			
		||||
  autoView( z_v, z, AcceleratorWrite);
 | 
			
		||||
#if 0
 | 
			
		||||
  typedef decltype(innerProductD(x_v[0],y_v[0])) inner_t;
 | 
			
		||||
  Vector<inner_t> inner_tmp(sites);
 | 
			
		||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
			
		||||
 | 
			
		||||
  accelerator_for( ss, sites, nsimd,{
 | 
			
		||||
      auto tmp = a*x_v(ss)+b*y_v(ss);
 | 
			
		||||
      coalescedWrite(inner_tmp_v[ss],innerProductD(tmp,tmp));
 | 
			
		||||
      coalescedWrite(z_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
  nrm = real(TensorRemove(sum(inner_tmp_v,sites)));
 | 
			
		||||
#else
 | 
			
		||||
  typedef decltype(innerProduct(x_v[0],y_v[0])) inner_t;
 | 
			
		||||
  deviceVector<inner_t> inner_tmp;
 | 
			
		||||
  inner_tmp.resize(sites);
 | 
			
		||||
@@ -382,9 +375,44 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
 | 
			
		||||
      coalescedWrite(inner_tmp_v[ss],innerProduct(tmp,tmp));
 | 
			
		||||
      coalescedWrite(z_v[ss],tmp);
 | 
			
		||||
  });
 | 
			
		||||
  nrm = real(TensorRemove(sumD(inner_tmp_v,sites)));
 | 
			
		||||
  bool ok;
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
  uint64_t csum=0;
 | 
			
		||||
  uint64_t csum2=0;
 | 
			
		||||
  if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone)
 | 
			
		||||
  {
 | 
			
		||||
    // z_v
 | 
			
		||||
    {
 | 
			
		||||
      Integer words = sites*sizeof(vobj)/sizeof(uint64_t);
 | 
			
		||||
      uint64_t *base= (uint64_t *)&z_v[0];
 | 
			
		||||
      csum=svm_xor(base,words);
 | 
			
		||||
      ok = FlightRecorder::CsumLog(csum);
 | 
			
		||||
      if ( !ok ) {
 | 
			
		||||
	csum2=svm_xor(base,words);
 | 
			
		||||
	std::cerr<< " Bad z_v CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
      assert(ok);
 | 
			
		||||
    }
 | 
			
		||||
    // inner_v
 | 
			
		||||
    {
 | 
			
		||||
      Integer words = sites*sizeof(inner_t)/sizeof(uint64_t);
 | 
			
		||||
      uint64_t *base= (uint64_t *)&inner_tmp_v[0];
 | 
			
		||||
      csum=svm_xor(base,words);
 | 
			
		||||
      ok = FlightRecorder::CsumLog(csum);
 | 
			
		||||
      if ( !ok ) {
 | 
			
		||||
	csum2=svm_xor(base,words);
 | 
			
		||||
	std::cerr<< " Bad inner_tmp_v CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
      assert(ok);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
  nrm = real(TensorRemove(sumD(inner_tmp_v,sites)));
 | 
			
		||||
  ok = FlightRecorder::NormLog(real(nrm));
 | 
			
		||||
  assert(ok);
 | 
			
		||||
  RealD local = real(nrm);
 | 
			
		||||
  grid->GlobalSum(nrm);
 | 
			
		||||
  FlightRecorder::ReductionLog(local,real(nrm));
 | 
			
		||||
  return nrm; 
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
@@ -394,7 +422,7 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti
 | 
			
		||||
  conformable(left,right);
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::vector_typeD vector_type;
 | 
			
		||||
  Vector<ComplexD> tmp(2);
 | 
			
		||||
  std::vector<ComplexD> tmp(2);
 | 
			
		||||
 | 
			
		||||
  GridBase *grid = left.Grid();
 | 
			
		||||
 | 
			
		||||
@@ -404,8 +432,8 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti
 | 
			
		||||
  // GPU
 | 
			
		||||
  typedef decltype(innerProductD(vobj(),vobj())) inner_t;
 | 
			
		||||
  typedef decltype(innerProductD(vobj(),vobj())) norm_t;
 | 
			
		||||
  Vector<inner_t> inner_tmp(sites);
 | 
			
		||||
  Vector<norm_t>  norm_tmp(sites);
 | 
			
		||||
  deviceVector<inner_t> inner_tmp(sites);
 | 
			
		||||
  deviceVector<norm_t>  norm_tmp(sites);
 | 
			
		||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
			
		||||
  auto norm_tmp_v = &norm_tmp[0];
 | 
			
		||||
  {
 | 
			
		||||
@@ -455,7 +483,9 @@ inline auto sum(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)
 | 
			
		||||
// sliceSum, sliceInnerProduct, sliceAxpy, sliceNorm etc...
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<typename vobj::scalar_object> &result,int orthogdim)
 | 
			
		||||
template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,
 | 
			
		||||
					  std::vector<typename vobj::scalar_object> &result,
 | 
			
		||||
					  int orthogdim)
 | 
			
		||||
{
 | 
			
		||||
  ///////////////////////////////////////////////////////
 | 
			
		||||
  // FIXME precision promoted summation
 | 
			
		||||
@@ -477,8 +507,8 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
 | 
			
		||||
  int ld=grid->_ldimensions[orthogdim];
 | 
			
		||||
  int rd=grid->_rdimensions[orthogdim];
 | 
			
		||||
 | 
			
		||||
  Vector<vobj> lvSum(rd); // will locally sum vectors first
 | 
			
		||||
  Vector<sobj> lsSum(ld,Zero());                    // sum across these down to scalars
 | 
			
		||||
  std::vector<vobj> lvSum(rd); // will locally sum vectors first
 | 
			
		||||
  std::vector<sobj> lsSum(ld,Zero());                    // sum across these down to scalars
 | 
			
		||||
  ExtractBuffer<sobj> extracted(Nsimd);                  // splitting the SIMD
 | 
			
		||||
 | 
			
		||||
  result.resize(fd); // And then global sum to return the same vector to every node 
 | 
			
		||||
@@ -526,6 +556,8 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
 | 
			
		||||
  scalar_type * ptr = (scalar_type *) &result[0];
 | 
			
		||||
  int words = fd*sizeof(sobj)/sizeof(scalar_type);
 | 
			
		||||
  grid->GlobalSumVector(ptr, words);
 | 
			
		||||
  //  std::cout << GridLogMessage << " sliceSum local"<<t_sum<<" us, host+mpi "<<t_rest<<std::endl;
 | 
			
		||||
  
 | 
			
		||||
}
 | 
			
		||||
template<class vobj> inline
 | 
			
		||||
std::vector<typename vobj::scalar_object> 
 | 
			
		||||
@@ -536,7 +568,20 @@ sliceSum(const Lattice<vobj> &Data,int orthogdim)
 | 
			
		||||
  return result;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
Reimplement
 | 
			
		||||
 | 
			
		||||
1)
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0) 
 | 
			
		||||
 | 
			
		||||
2)
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog) 
 | 
			
		||||
 | 
			
		||||
3)
 | 
			
		||||
-- Make Slice Mul Matrix call sliceMaddMatrix
 | 
			
		||||
 */
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim) 
 | 
			
		||||
{
 | 
			
		||||
@@ -556,8 +601,8 @@ static void sliceInnerProductVector( std::vector<ComplexD> & result, const Latti
 | 
			
		||||
  int ld=grid->_ldimensions[orthogdim];
 | 
			
		||||
  int rd=grid->_rdimensions[orthogdim];
 | 
			
		||||
 | 
			
		||||
  Vector<vector_type> lvSum(rd); // will locally sum vectors first
 | 
			
		||||
  Vector<scalar_type > lsSum(ld,scalar_type(0.0));                    // sum across these down to scalars
 | 
			
		||||
  std::vector<vector_type> lvSum(rd); // will locally sum vectors first
 | 
			
		||||
  std::vector<scalar_type > lsSum(ld,scalar_type(0.0));                    // sum across these down to scalars
 | 
			
		||||
  ExtractBuffer<iScalar<scalar_type> > extracted(Nsimd);   // splitting the SIMD  
 | 
			
		||||
 | 
			
		||||
  result.resize(fd); // And then global sum to return the same vector to every node for IO to file
 | 
			
		||||
@@ -687,203 +732,96 @@ static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
inline GridBase         *makeSubSliceGrid(const GridBase *BlockSolverGrid,int Orthog)
 | 
			
		||||
{
 | 
			
		||||
  int NN    = BlockSolverGrid->_ndimension;
 | 
			
		||||
  int nsimd = BlockSolverGrid->Nsimd();
 | 
			
		||||
  
 | 
			
		||||
  std::vector<int> latt_phys(0);
 | 
			
		||||
  std::vector<int> simd_phys(0);
 | 
			
		||||
  std::vector<int>  mpi_phys(0);
 | 
			
		||||
  
 | 
			
		||||
  std::vector<int> latt_phys(NN-1);
 | 
			
		||||
  Coordinate simd_phys;
 | 
			
		||||
  std::vector<int>  mpi_phys(NN-1);
 | 
			
		||||
  Coordinate checker_dim_mask(NN-1);
 | 
			
		||||
  int checker_dim=-1;
 | 
			
		||||
 | 
			
		||||
  int dd;
 | 
			
		||||
  for(int d=0;d<NN;d++){
 | 
			
		||||
    if( d!=Orthog ) { 
 | 
			
		||||
      latt_phys.push_back(BlockSolverGrid->_fdimensions[d]);
 | 
			
		||||
      simd_phys.push_back(BlockSolverGrid->_simd_layout[d]);
 | 
			
		||||
      mpi_phys.push_back(BlockSolverGrid->_processors[d]);
 | 
			
		||||
      latt_phys[dd]=BlockSolverGrid->_fdimensions[d];
 | 
			
		||||
      mpi_phys[dd] =BlockSolverGrid->_processors[d];
 | 
			
		||||
      checker_dim_mask[dd] = BlockSolverGrid->_checker_dim_mask[d];
 | 
			
		||||
      if ( d == BlockSolverGrid->_checker_dim ) checker_dim = dd;
 | 
			
		||||
      dd++;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  return (GridBase *)new GridCartesian(latt_phys,simd_phys,mpi_phys); 
 | 
			
		||||
  simd_phys=GridDefaultSimd(latt_phys.size(),nsimd);
 | 
			
		||||
  GridCartesian *tmp         = new GridCartesian(latt_phys,simd_phys,mpi_phys);
 | 
			
		||||
  if(BlockSolverGrid->_isCheckerBoarded) {
 | 
			
		||||
    GridRedBlackCartesian *ret = new GridRedBlackCartesian(tmp,checker_dim_mask,checker_dim);
 | 
			
		||||
    delete tmp;
 | 
			
		||||
    return (GridBase *) ret;
 | 
			
		||||
  } else { 
 | 
			
		||||
    return (GridBase *) tmp;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0) 
 | 
			
		||||
{    
 | 
			
		||||
  GridBase *FullGrid = X.Grid();
 | 
			
		||||
  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
 | 
			
		||||
 | 
			
		||||
  Lattice<vobj> Ys(SliceGrid);
 | 
			
		||||
  Lattice<vobj> Rs(SliceGrid);
 | 
			
		||||
  Lattice<vobj> Xs(SliceGrid);
 | 
			
		||||
  Lattice<vobj> RR(FullGrid);
 | 
			
		||||
 | 
			
		||||
  RR = R; // Copies checkerboard for insert
 | 
			
		||||
  
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  int Nblock = X.Grid()->GlobalDimensions()[Orthog];
 | 
			
		||||
 | 
			
		||||
  GridBase *FullGrid  = X.Grid();
 | 
			
		||||
  //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
 | 
			
		||||
 | 
			
		||||
  //  Lattice<vobj> Xslice(SliceGrid);
 | 
			
		||||
  //  Lattice<vobj> Rslice(SliceGrid);
 | 
			
		||||
 | 
			
		||||
  assert( FullGrid->_simd_layout[Orthog]==1);
 | 
			
		||||
  //  int nh =  FullGrid->_ndimension;
 | 
			
		||||
  //  int nl = SliceGrid->_ndimension;
 | 
			
		||||
  //  int nl = nh-1;
 | 
			
		||||
 | 
			
		||||
  //FIXME package in a convenient iterator
 | 
			
		||||
  //Should loop over a plane orthogonal to direction "Orthog"
 | 
			
		||||
  int stride=FullGrid->_slice_stride[Orthog];
 | 
			
		||||
  int block =FullGrid->_slice_block [Orthog];
 | 
			
		||||
  int nblock=FullGrid->_slice_nblock[Orthog];
 | 
			
		||||
  int ostride=FullGrid->_ostride[Orthog];
 | 
			
		||||
 | 
			
		||||
  autoView( X_v, X, CpuRead);
 | 
			
		||||
  autoView( Y_v, Y, CpuRead);
 | 
			
		||||
  autoView( R_v, R, CpuWrite);
 | 
			
		||||
  thread_region
 | 
			
		||||
  {
 | 
			
		||||
    Vector<vobj> s_x(Nblock);
 | 
			
		||||
 | 
			
		||||
    thread_for_collapse_in_region(2, n,nblock, {
 | 
			
		||||
     for(int b=0;b<block;b++){
 | 
			
		||||
      int o  = n*stride + b;
 | 
			
		||||
 | 
			
		||||
      for(int i=0;i<Nblock;i++){
 | 
			
		||||
	s_x[i] = X_v[o+i*ostride];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      vobj dot;
 | 
			
		||||
      for(int i=0;i<Nblock;i++){
 | 
			
		||||
	dot = Y_v[o+i*ostride];
 | 
			
		||||
	for(int j=0;j<Nblock;j++){
 | 
			
		||||
	  dot = dot + s_x[j]*(scale*aa(j,i));
 | 
			
		||||
	}
 | 
			
		||||
	R_v[o+i*ostride]=dot;
 | 
			
		||||
      }
 | 
			
		||||
    }});
 | 
			
		||||
  int Nslice = X.Grid()->GlobalDimensions()[Orthog];
 | 
			
		||||
  for(int i=0;i<Nslice;i++){
 | 
			
		||||
    ExtractSlice(Ys,Y,i,Orthog);
 | 
			
		||||
    ExtractSlice(Rs,R,i,Orthog);
 | 
			
		||||
    Rs=Ys;
 | 
			
		||||
    for(int j=0;j<Nslice;j++){
 | 
			
		||||
      ExtractSlice(Xs,X,j,Orthog);
 | 
			
		||||
      Rs = Rs + Xs*(scale*aa(j,i));
 | 
			
		||||
    }
 | 
			
		||||
    InsertSlice(Rs,RR,i,Orthog);
 | 
			
		||||
  }
 | 
			
		||||
  R=RR; // Copy back handles arguments aliasing case
 | 
			
		||||
  delete SliceGrid;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0) 
 | 
			
		||||
{    
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
  int Nblock = X.Grid()->GlobalDimensions()[Orthog];
 | 
			
		||||
 | 
			
		||||
  GridBase *FullGrid  = X.Grid();
 | 
			
		||||
  //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
 | 
			
		||||
  //  Lattice<vobj> Xslice(SliceGrid);
 | 
			
		||||
  //  Lattice<vobj> Rslice(SliceGrid);
 | 
			
		||||
 | 
			
		||||
  assert( FullGrid->_simd_layout[Orthog]==1);
 | 
			
		||||
  //  int nh =  FullGrid->_ndimension;
 | 
			
		||||
  //  int nl = SliceGrid->_ndimension;
 | 
			
		||||
  //  int nl=1;
 | 
			
		||||
 | 
			
		||||
  //FIXME package in a convenient iterator
 | 
			
		||||
  // thread_for2d_in_region
 | 
			
		||||
  //Should loop over a plane orthogonal to direction "Orthog"
 | 
			
		||||
  int stride=FullGrid->_slice_stride[Orthog];
 | 
			
		||||
  int block =FullGrid->_slice_block [Orthog];
 | 
			
		||||
  int nblock=FullGrid->_slice_nblock[Orthog];
 | 
			
		||||
  int ostride=FullGrid->_ostride[Orthog];
 | 
			
		||||
  autoView( R_v, R, CpuWrite);
 | 
			
		||||
  autoView( X_v, X, CpuRead);
 | 
			
		||||
  thread_region
 | 
			
		||||
  {
 | 
			
		||||
    std::vector<vobj> s_x(Nblock);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    thread_for_collapse_in_region( 2 ,n,nblock,{
 | 
			
		||||
    for(int b=0;b<block;b++){
 | 
			
		||||
      int o  = n*stride + b;
 | 
			
		||||
 | 
			
		||||
      for(int i=0;i<Nblock;i++){
 | 
			
		||||
	s_x[i] = X_v[o+i*ostride];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      vobj dot;
 | 
			
		||||
      for(int i=0;i<Nblock;i++){
 | 
			
		||||
	dot = s_x[0]*(scale*aa(0,i));
 | 
			
		||||
	for(int j=1;j<Nblock;j++){
 | 
			
		||||
	  dot = dot + s_x[j]*(scale*aa(j,i));
 | 
			
		||||
	}
 | 
			
		||||
	R_v[o+i*ostride]=dot;
 | 
			
		||||
      }
 | 
			
		||||
    }});
 | 
			
		||||
  }
 | 
			
		||||
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0)
 | 
			
		||||
{
 | 
			
		||||
  R=Zero();
 | 
			
		||||
  sliceMaddMatrix(R,aa,X,R,Orthog,scale);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog) 
 | 
			
		||||
{
 | 
			
		||||
  GridBase *SliceGrid = makeSubSliceGrid(lhs.Grid(),Orthog);
 | 
			
		||||
 | 
			
		||||
  Lattice<vobj> ls(SliceGrid);
 | 
			
		||||
  Lattice<vobj> rs(SliceGrid);
 | 
			
		||||
  
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  
 | 
			
		||||
  GridBase *FullGrid  = lhs.Grid();
 | 
			
		||||
  //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
 | 
			
		||||
  
 | 
			
		||||
  int Nblock = FullGrid->GlobalDimensions()[Orthog];
 | 
			
		||||
  
 | 
			
		||||
  //  Lattice<vobj> Lslice(SliceGrid);
 | 
			
		||||
  //  Lattice<vobj> Rslice(SliceGrid);
 | 
			
		||||
  
 | 
			
		||||
  mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
 | 
			
		||||
  assert( FullGrid->_simd_layout[Orthog]==1);
 | 
			
		||||
  //  int nh =  FullGrid->_ndimension;
 | 
			
		||||
  //  int nl = SliceGrid->_ndimension;
 | 
			
		||||
  //  int nl = nh-1;
 | 
			
		||||
 | 
			
		||||
  //FIXME package in a convenient iterator
 | 
			
		||||
  //Should loop over a plane orthogonal to direction "Orthog"
 | 
			
		||||
  int stride=FullGrid->_slice_stride[Orthog];
 | 
			
		||||
  int block =FullGrid->_slice_block [Orthog];
 | 
			
		||||
  int nblock=FullGrid->_slice_nblock[Orthog];
 | 
			
		||||
  int ostride=FullGrid->_ostride[Orthog];
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::vector_typeD vector_typeD;
 | 
			
		||||
 | 
			
		||||
  autoView( lhs_v, lhs, CpuRead);
 | 
			
		||||
  autoView( rhs_v, rhs, CpuRead);
 | 
			
		||||
  thread_region
 | 
			
		||||
  {
 | 
			
		||||
    std::vector<vobj> Left(Nblock);
 | 
			
		||||
    std::vector<vobj> Right(Nblock);
 | 
			
		||||
    Eigen::MatrixXcd  mat_thread = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
 | 
			
		||||
    thread_for_collapse_in_region( 2, n,nblock,{
 | 
			
		||||
    for(int b=0;b<block;b++){
 | 
			
		||||
 | 
			
		||||
      int o  = n*stride + b;
 | 
			
		||||
 | 
			
		||||
      for(int i=0;i<Nblock;i++){
 | 
			
		||||
	Left [i] = lhs_v[o+i*ostride];
 | 
			
		||||
	Right[i] = rhs_v[o+i*ostride];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      for(int i=0;i<Nblock;i++){
 | 
			
		||||
      for(int j=0;j<Nblock;j++){
 | 
			
		||||
	auto tmp = innerProduct(Left[i],Right[j]);
 | 
			
		||||
	auto rtmp = TensorRemove(tmp);
 | 
			
		||||
	auto red  =  Reduce(rtmp);
 | 
			
		||||
	mat_thread(i,j) += std::complex<double>(real(red),imag(red));
 | 
			
		||||
      }}
 | 
			
		||||
    }});
 | 
			
		||||
    thread_critical
 | 
			
		||||
    {
 | 
			
		||||
      mat += mat_thread;
 | 
			
		||||
    }  
 | 
			
		||||
  int Nslice = lhs.Grid()->GlobalDimensions()[Orthog];
 | 
			
		||||
  mat = Eigen::MatrixXcd::Zero(Nslice,Nslice);
 | 
			
		||||
  for(int s=0;s<Nslice;s++){
 | 
			
		||||
    ExtractSlice(ls,lhs,s,Orthog);
 | 
			
		||||
    for(int ss=0;ss<Nslice;ss++){
 | 
			
		||||
      ExtractSlice(rs,rhs,ss,Orthog);
 | 
			
		||||
      mat(s,ss) = innerProduct(ls,rs);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  for(int i=0;i<Nblock;i++){
 | 
			
		||||
  for(int j=0;j<Nblock;j++){
 | 
			
		||||
    ComplexD sum = mat(i,j);
 | 
			
		||||
    FullGrid->GlobalSum(sum);
 | 
			
		||||
    mat(i,j)=sum;
 | 
			
		||||
  }}
 | 
			
		||||
 | 
			
		||||
  return;
 | 
			
		||||
  delete SliceGrid;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
@@ -214,22 +214,12 @@ inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osi
 | 
			
		||||
  // Move out of UVM
 | 
			
		||||
  // Turns out I had messed up the synchronise after move to compute stream
 | 
			
		||||
  // as running this on the default stream fools the synchronise
 | 
			
		||||
#undef UVM_BLOCK_BUFFER  
 | 
			
		||||
#ifndef UVM_BLOCK_BUFFER  
 | 
			
		||||
  commVector<sobj> buffer(numBlocks);
 | 
			
		||||
  deviceVector<sobj> buffer(numBlocks);
 | 
			
		||||
  sobj *buffer_v = &buffer[0];
 | 
			
		||||
  sobj result;
 | 
			
		||||
  reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
 | 
			
		||||
  accelerator_barrier();
 | 
			
		||||
  acceleratorCopyFromDevice(buffer_v,&result,sizeof(result));
 | 
			
		||||
#else
 | 
			
		||||
  Vector<sobj> buffer(numBlocks);
 | 
			
		||||
  sobj *buffer_v = &buffer[0];
 | 
			
		||||
  sobj result;
 | 
			
		||||
  reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
 | 
			
		||||
  accelerator_barrier();
 | 
			
		||||
  result = *buffer_v;
 | 
			
		||||
#endif
 | 
			
		||||
  return result;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -244,7 +234,7 @@ inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osi
 | 
			
		||||
  
 | 
			
		||||
  const int words = sizeof(vobj)/sizeof(vector);
 | 
			
		||||
 | 
			
		||||
  Vector<vector> buffer(osites);
 | 
			
		||||
  deviceVector<vector> buffer(osites);
 | 
			
		||||
  vector *dat = (vector *)lat;
 | 
			
		||||
  vector *buf = &buffer[0];
 | 
			
		||||
  iScalar<vector> *tbuf =(iScalar<vector> *)  &buffer[0];
 | 
			
		||||
 
 | 
			
		||||
@@ -4,33 +4,28 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
// Possibly promote to double and sum
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template <class vobj>
 | 
			
		||||
inline typename vobj::scalar_objectD sumD_gpu_tensor(const vobj *lat, Integer osites) 
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
  typedef typename vobj::scalar_objectD sobjD;
 | 
			
		||||
  static Vector<sobj> mysum;
 | 
			
		||||
  mysum.resize(1);
 | 
			
		||||
  sobj *mysum_p = & mysum[0];
 | 
			
		||||
 | 
			
		||||
  sobj identity; zeroit(identity);
 | 
			
		||||
  mysum[0] = identity;
 | 
			
		||||
  sobj ret ; 
 | 
			
		||||
 | 
			
		||||
  sobj ret; zeroit(ret);
 | 
			
		||||
  Integer nsimd= vobj::Nsimd();
 | 
			
		||||
 | 
			
		||||
  const cl::sycl::property_list PropList ({ cl::sycl::property::reduction::initialize_to_identity() });
 | 
			
		||||
  theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
 | 
			
		||||
    auto Reduction = cl::sycl::reduction(mysum_p,identity,std::plus<>(),PropList);
 | 
			
		||||
     cgh.parallel_for(cl::sycl::range<1>{osites},
 | 
			
		||||
		      Reduction,
 | 
			
		||||
		      [=] (cl::sycl::id<1> item, auto &sum) {
 | 
			
		||||
      auto osite   = item[0];
 | 
			
		||||
      sum +=Reduce(lat[osite]);
 | 
			
		||||
     });
 | 
			
		||||
   });
 | 
			
		||||
  theGridAccelerator->wait();
 | 
			
		||||
  ret = mysum[0];
 | 
			
		||||
  //  free(mysum,*theGridAccelerator);
 | 
			
		||||
  { 
 | 
			
		||||
    sycl::buffer<sobj, 1> abuff(&ret, {1});
 | 
			
		||||
    theGridAccelerator->submit([&](sycl::handler &cgh) {
 | 
			
		||||
      auto Reduction = sycl::reduction(abuff,cgh,identity,std::plus<>());
 | 
			
		||||
      cgh.parallel_for(sycl::range<1>{osites},
 | 
			
		||||
                      Reduction,
 | 
			
		||||
                      [=] (sycl::id<1> item, auto &sum) {
 | 
			
		||||
                        auto osite   = item[0];
 | 
			
		||||
                        sum +=Reduce(lat[osite]);
 | 
			
		||||
                      });
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
  sobjD dret; convertType(dret,ret);
 | 
			
		||||
  return dret;
 | 
			
		||||
}
 | 
			
		||||
@@ -76,59 +71,22 @@ inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osite
 | 
			
		||||
 | 
			
		||||
template<class Word> Word svm_xor(Word *vec,uint64_t L)
 | 
			
		||||
{
 | 
			
		||||
  Word xorResult; xorResult = 0;
 | 
			
		||||
  static Vector<Word> d_sum;
 | 
			
		||||
  d_sum.resize(1);
 | 
			
		||||
  Word *d_sum_p=&d_sum[0];
 | 
			
		||||
  Word identity;  identity=0;
 | 
			
		||||
  d_sum[0] = identity;
 | 
			
		||||
  const cl::sycl::property_list PropList ({ cl::sycl::property::reduction::initialize_to_identity() });
 | 
			
		||||
  theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
 | 
			
		||||
    auto Reduction = cl::sycl::reduction(d_sum_p,identity,std::bit_xor<>(),PropList);
 | 
			
		||||
     cgh.parallel_for(cl::sycl::range<1>{L},
 | 
			
		||||
		      Reduction,
 | 
			
		||||
		      [=] (cl::sycl::id<1> index, auto &sum) {
 | 
			
		||||
	 sum^=vec[index];
 | 
			
		||||
     });
 | 
			
		||||
   });
 | 
			
		||||
  Word ret = 0;
 | 
			
		||||
  { 
 | 
			
		||||
    sycl::buffer<Word, 1> abuff(&ret, {1});
 | 
			
		||||
    theGridAccelerator->submit([&](sycl::handler &cgh) {
 | 
			
		||||
      auto Reduction = sycl::reduction(abuff,cgh,identity,std::bit_xor<>());
 | 
			
		||||
      cgh.parallel_for(sycl::range<1>{L},
 | 
			
		||||
                      Reduction,
 | 
			
		||||
                      [=] (sycl::id<1> index, auto &sum) {
 | 
			
		||||
                        sum ^=vec[index];
 | 
			
		||||
                      });
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
  theGridAccelerator->wait();
 | 
			
		||||
  Word ret = d_sum[0];
 | 
			
		||||
  //  free(d_sum,*theGridAccelerator);
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 | 
			
		||||
template <class vobj>
 | 
			
		||||
inline typename vobj::scalar_objectD sumD_gpu_repack(const vobj *lat, Integer osites)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::vector_type  vector;
 | 
			
		||||
  typedef typename vobj::scalar_type  scalar;
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::scalar_typeD scalarD;
 | 
			
		||||
  typedef typename vobj::scalar_objectD sobjD;
 | 
			
		||||
 | 
			
		||||
  sobjD ret;
 | 
			
		||||
  scalarD *ret_p = (scalarD *)&ret;
 | 
			
		||||
  
 | 
			
		||||
  const int nsimd = vobj::Nsimd();
 | 
			
		||||
  const int words = sizeof(vobj)/sizeof(vector);
 | 
			
		||||
 | 
			
		||||
  Vector<scalar> buffer(osites*nsimd);
 | 
			
		||||
  scalar *buf = &buffer[0];
 | 
			
		||||
  vector *dat = (vector *)lat;
 | 
			
		||||
 | 
			
		||||
  for(int w=0;w<words;w++) {
 | 
			
		||||
 | 
			
		||||
    accelerator_for(ss,osites,nsimd,{
 | 
			
		||||
	int lane = acceleratorSIMTlane(nsimd);
 | 
			
		||||
	buf[ss*nsimd+lane] = dat[ss*words+w].getlane(lane);
 | 
			
		||||
    });
 | 
			
		||||
    //Precision change at this point is to late to gain precision
 | 
			
		||||
    ret_p[w] = svm_reduce(buf,nsimd*osites);
 | 
			
		||||
  }
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
*/
 | 
			
		||||
 
 | 
			
		||||
@@ -48,31 +48,45 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
//////////////////////////////////////////////////////////////
 | 
			
		||||
inline int RNGfillable(GridBase *coarse,GridBase *fine)
 | 
			
		||||
{
 | 
			
		||||
  if ( coarse == fine ) return 1;
 | 
			
		||||
 | 
			
		||||
  int rngdims = coarse->_ndimension;
 | 
			
		||||
 | 
			
		||||
  // trivially extended in higher dims, with locality guaranteeing RNG state is local to node
 | 
			
		||||
  int lowerdims   = fine->_ndimension - coarse->_ndimension;
 | 
			
		||||
  assert(lowerdims >= 0);
 | 
			
		||||
  for(int d=0;d<lowerdims;d++){
 | 
			
		||||
    assert(fine->_simd_layout[d]==1);
 | 
			
		||||
    assert(fine->_processors[d]==1);
 | 
			
		||||
  if ( coarse->isIcosahedral()) assert(coarse->isIcosahedralEdge());
 | 
			
		||||
  
 | 
			
		||||
  if ( fine->isIcosahedralVertex() && coarse->isIcosahedralEdge() ) {
 | 
			
		||||
    assert(fine->Nd()==coarse->Nd());
 | 
			
		||||
    for(int d=0;d<fine->Nd();d++){
 | 
			
		||||
      assert(fine->LocalDimensions()[d] == coarse->LocalDimensions()[d]);
 | 
			
		||||
    }
 | 
			
		||||
    return 1;
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  {
 | 
			
		||||
    
 | 
			
		||||
    int rngdims = coarse->_ndimension;
 | 
			
		||||
 | 
			
		||||
  int multiplicity=1;
 | 
			
		||||
  for(int d=0;d<lowerdims;d++){
 | 
			
		||||
    multiplicity=multiplicity*fine->_rdimensions[d];
 | 
			
		||||
  }
 | 
			
		||||
  // local and global volumes subdivide cleanly after SIMDization
 | 
			
		||||
  for(int d=0;d<rngdims;d++){
 | 
			
		||||
    int fd= d+lowerdims;
 | 
			
		||||
    assert(coarse->_processors[d]  == fine->_processors[fd]);
 | 
			
		||||
    assert(coarse->_simd_layout[d] == fine->_simd_layout[fd]);
 | 
			
		||||
    assert(((fine->_rdimensions[fd] / coarse->_rdimensions[d])* coarse->_rdimensions[d])==fine->_rdimensions[fd]); 
 | 
			
		||||
    // trivially extended in higher dims, with locality guaranteeing RNG state is local to node
 | 
			
		||||
    int lowerdims   = fine->_ndimension - coarse->_ndimension;
 | 
			
		||||
    assert(lowerdims >= 0);
 | 
			
		||||
    for(int d=0;d<lowerdims;d++){
 | 
			
		||||
      assert(fine->_simd_layout[d]==1);
 | 
			
		||||
      assert(fine->_processors[d]==1);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    multiplicity = multiplicity *fine->_rdimensions[fd] / coarse->_rdimensions[d]; 
 | 
			
		||||
    int multiplicity=1;
 | 
			
		||||
    for(int d=0;d<lowerdims;d++){
 | 
			
		||||
      multiplicity=multiplicity*fine->_rdimensions[d];
 | 
			
		||||
    }
 | 
			
		||||
    // local and global volumes subdivide cleanly after SIMDization
 | 
			
		||||
    for(int d=0;d<rngdims;d++){
 | 
			
		||||
      int fd= d+lowerdims;
 | 
			
		||||
      assert(coarse->_processors[d]  == fine->_processors[fd]);
 | 
			
		||||
      assert(coarse->_simd_layout[d] == fine->_simd_layout[fd]);
 | 
			
		||||
      assert(((fine->_rdimensions[fd] / coarse->_rdimensions[d])* coarse->_rdimensions[d])==fine->_rdimensions[fd]); 
 | 
			
		||||
 | 
			
		||||
      multiplicity = multiplicity *fine->_rdimensions[fd] / coarse->_rdimensions[d]; 
 | 
			
		||||
    }
 | 
			
		||||
    return multiplicity;
 | 
			
		||||
  }
 | 
			
		||||
  return multiplicity;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
@@ -80,6 +94,19 @@ inline int RNGfillable(GridBase *coarse,GridBase *fine)
 | 
			
		||||
// this function is necessary for the LS vectorised field
 | 
			
		||||
inline int RNGfillable_general(GridBase *coarse,GridBase *fine)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
  if ( coarse == fine ) return 1;
 | 
			
		||||
 | 
			
		||||
  if ( coarse->isIcosahedral()) assert(coarse->isIcosahedralEdge());
 | 
			
		||||
  
 | 
			
		||||
  if ( fine->isIcosahedralVertex() && coarse->isIcosahedralEdge() ) {
 | 
			
		||||
    assert(fine->Nd()==coarse->Nd());
 | 
			
		||||
    for(int d=0;d<fine->Nd();d++){
 | 
			
		||||
      assert(fine->LocalDimensions()[d] == coarse->LocalDimensions()[d]);
 | 
			
		||||
    }
 | 
			
		||||
    return 1;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int rngdims = coarse->_ndimension;
 | 
			
		||||
    
 | 
			
		||||
  // trivially extended in higher dims, with locality guaranteeing RNG state is local to node
 | 
			
		||||
@@ -352,12 +379,12 @@ private:
 | 
			
		||||
public:
 | 
			
		||||
  GridBase *Grid(void) const { return _grid; }
 | 
			
		||||
  int generator_idx(int os,int is) {
 | 
			
		||||
    return is*_grid->oSites()+os;
 | 
			
		||||
    return (is*_grid->CartesianOsites()+os)%_grid->lSites(); // On the pole sites wrap back to normal generators; Icosahedral hack
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  GridParallelRNG(GridBase *grid) : GridRNGbase() {
 | 
			
		||||
    _grid = grid;
 | 
			
		||||
    _vol  =_grid->iSites()*_grid->oSites();
 | 
			
		||||
    _vol  =_grid->lSites();
 | 
			
		||||
 | 
			
		||||
    _generators.resize(_vol);
 | 
			
		||||
    _uniform.resize(_vol,std::uniform_real_distribution<RealD>{0,1});
 | 
			
		||||
@@ -381,7 +408,7 @@ public:
 | 
			
		||||
 | 
			
		||||
    int multiplicity = RNGfillable_general(_grid, l.Grid()); // l has finer or same grid
 | 
			
		||||
    int Nsimd  = _grid->Nsimd();  // guaranteed to be the same for l.Grid() too
 | 
			
		||||
    int osites = _grid->oSites();  // guaranteed to be <= l.Grid()->oSites() by a factor multiplicity
 | 
			
		||||
    int osites = _grid->CartesianOsites();  // guaranteed to be <= l.Grid()->oSites() by a factor multiplicity, except on Icosahedral
 | 
			
		||||
    int words  = sizeof(scalar_object) / sizeof(scalar_type);
 | 
			
		||||
 | 
			
		||||
    autoView(l_v, l, CpuWrite);
 | 
			
		||||
@@ -402,8 +429,27 @@ public:
 | 
			
		||||
	// merge into SIMD lanes, FIXME suboptimal implementation
 | 
			
		||||
	merge(l_v[sm], buf);
 | 
			
		||||
      }
 | 
			
		||||
      });
 | 
			
		||||
    //    });
 | 
			
		||||
    });
 | 
			
		||||
 | 
			
		||||
    /*
 | 
			
		||||
     * Fill in the poles for an Icosahedral vertex mesh
 | 
			
		||||
     */
 | 
			
		||||
    if (l.Grid()->isIcosahedralVertex()) { 
 | 
			
		||||
      int64_t pole_sites=l.Grid()->NorthPoleOsites()+l.Grid()->SouthPoleOsites();
 | 
			
		||||
      int64_t pole_base =l.Grid()->CartesianOsites();
 | 
			
		||||
 | 
			
		||||
      ExtractBuffer<scalar_object> buf(Nsimd);
 | 
			
		||||
      for (int m = 0; m < pole_sites; m++) {  // Draw from same generator multiplicity times                                                                                                           
 | 
			
		||||
        for (int si = 0; si < Nsimd; si++) {
 | 
			
		||||
          int gdx = 0;
 | 
			
		||||
	  scalar_type *pointer = (scalar_type *)&buf[si];
 | 
			
		||||
          dist[gdx].reset();
 | 
			
		||||
          for (int idx = 0; idx < words; idx++)
 | 
			
		||||
            fillScalar(pointer[idx], dist[gdx], _generators[gdx]);
 | 
			
		||||
        }
 | 
			
		||||
        merge(l_v[pole_base+m], buf);
 | 
			
		||||
      }      
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    _time_counter += usecond()- inner_time_counter;
 | 
			
		||||
  }
 | 
			
		||||
 
 | 
			
		||||
@@ -21,9 +21,18 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#if defined(GRID_CUDA) || defined(GRID_HIP)
 | 
			
		||||
template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline void sliceSumReduction_cub_small(const vobj *Data,
 | 
			
		||||
					std::vector<vobj> &lvSum,
 | 
			
		||||
					const int rd,
 | 
			
		||||
					const int e1,
 | 
			
		||||
					const int e2,
 | 
			
		||||
					const int stride,
 | 
			
		||||
					const int ostride,
 | 
			
		||||
					const int Nsimd)
 | 
			
		||||
{
 | 
			
		||||
  size_t subvol_size = e1*e2;
 | 
			
		||||
  commVector<vobj> reduction_buffer(rd*subvol_size);
 | 
			
		||||
  deviceVector<vobj> reduction_buffer(rd*subvol_size);
 | 
			
		||||
  auto rb_p = &reduction_buffer[0];
 | 
			
		||||
  vobj zero_init;
 | 
			
		||||
  zeroit(zero_init);
 | 
			
		||||
@@ -46,7 +55,7 @@ template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, V
 | 
			
		||||
  d_offsets = static_cast<int*>(acceleratorAllocDevice((rd+1)*sizeof(int)));
 | 
			
		||||
  
 | 
			
		||||
  //copy offsets to device
 | 
			
		||||
  acceleratorCopyToDeviceAsync(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream);
 | 
			
		||||
  acceleratorCopyToDeviceAsynch(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream);
 | 
			
		||||
  
 | 
			
		||||
  
 | 
			
		||||
  gpuError_t gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p,d_out, rd, d_offsets, d_offsets+1, ::gpucub::Sum(), zero_init, computeStream);
 | 
			
		||||
@@ -79,7 +88,7 @@ template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, V
 | 
			
		||||
    exit(EXIT_FAILURE);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  acceleratorCopyFromDeviceAsync(d_out,&lvSum[0],rd*sizeof(vobj),computeStream);
 | 
			
		||||
  acceleratorCopyFromDeviceAsynch(d_out,&lvSum[0],rd*sizeof(vobj),computeStream);
 | 
			
		||||
  
 | 
			
		||||
  //sync after copy
 | 
			
		||||
  accelerator_barrier();
 | 
			
		||||
@@ -94,7 +103,15 @@ template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, V
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#if defined(GRID_SYCL)
 | 
			
		||||
template<class vobj> inline void sliceSumReduction_sycl_small(const vobj *Data, Vector <vobj> &lvSum, const int  &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline void sliceSumReduction_sycl_small(const vobj *Data,
 | 
			
		||||
					 std::vector <vobj> &lvSum,
 | 
			
		||||
					 const int  &rd,
 | 
			
		||||
					 const int &e1,
 | 
			
		||||
					 const int &e2,
 | 
			
		||||
					 const int &stride,
 | 
			
		||||
					 const int &ostride,
 | 
			
		||||
					 const int &Nsimd)
 | 
			
		||||
{
 | 
			
		||||
  size_t subvol_size = e1*e2;
 | 
			
		||||
 | 
			
		||||
@@ -105,7 +122,7 @@ template<class vobj> inline void sliceSumReduction_sycl_small(const vobj *Data,
 | 
			
		||||
    mysum[r] = vobj_zero; 
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  commVector<vobj> reduction_buffer(rd*subvol_size);    
 | 
			
		||||
  deviceVector<vobj> reduction_buffer(rd*subvol_size);    
 | 
			
		||||
 | 
			
		||||
  auto rb_p = &reduction_buffer[0];
 | 
			
		||||
 | 
			
		||||
@@ -124,11 +141,11 @@ template<class vobj> inline void sliceSumReduction_sycl_small(const vobj *Data,
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
  for (int r = 0; r < rd; r++) {
 | 
			
		||||
      theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
 | 
			
		||||
          auto Reduction = cl::sycl::reduction(&mysum[r],std::plus<>());
 | 
			
		||||
          cgh.parallel_for(cl::sycl::range<1>{subvol_size},
 | 
			
		||||
      theGridAccelerator->submit([&](sycl::handler &cgh) {
 | 
			
		||||
          auto Reduction = sycl::reduction(&mysum[r],std::plus<>());
 | 
			
		||||
          cgh.parallel_for(sycl::range<1>{subvol_size},
 | 
			
		||||
          Reduction,
 | 
			
		||||
          [=](cl::sycl::id<1> item, auto &sum) {
 | 
			
		||||
          [=](sycl::id<1> item, auto &sum) {
 | 
			
		||||
              auto s = item[0];
 | 
			
		||||
              sum += rb_p[r*subvol_size+s];
 | 
			
		||||
          });
 | 
			
		||||
@@ -144,14 +161,23 @@ template<class vobj> inline void sliceSumReduction_sycl_small(const vobj *Data,
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
template<class vobj> inline void sliceSumReduction_large(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline void sliceSumReduction_large(const vobj *Data,
 | 
			
		||||
				    std::vector<vobj> &lvSum,
 | 
			
		||||
				    const int rd,
 | 
			
		||||
				    const int e1,
 | 
			
		||||
				    const int e2,
 | 
			
		||||
				    const int stride,
 | 
			
		||||
				    const int ostride,
 | 
			
		||||
				    const int Nsimd)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::vector_type vector;
 | 
			
		||||
  const int words = sizeof(vobj)/sizeof(vector);
 | 
			
		||||
  const int osites = rd*e1*e2;
 | 
			
		||||
  commVector<vector>buffer(osites);
 | 
			
		||||
  deviceVector<vector>buffer(osites);
 | 
			
		||||
  vector *dat = (vector *)Data;
 | 
			
		||||
  vector *buf = &buffer[0];
 | 
			
		||||
  Vector<vector> lvSum_small(rd);
 | 
			
		||||
  std::vector<vector> lvSum_small(rd);
 | 
			
		||||
  vector *lvSum_ptr = (vector *)&lvSum[0];
 | 
			
		||||
 | 
			
		||||
  for (int w = 0; w < words; w++) {
 | 
			
		||||
@@ -168,13 +194,18 @@ template<class vobj> inline void sliceSumReduction_large(const vobj *Data, Vecto
 | 
			
		||||
    for (int r = 0; r < rd; r++) {
 | 
			
		||||
      lvSum_ptr[w+words*r]=lvSum_small[r];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> inline void sliceSumReduction_gpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd)
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline void sliceSumReduction_gpu(const Lattice<vobj> &Data,
 | 
			
		||||
				  std::vector<vobj> &lvSum,
 | 
			
		||||
				  const int rd,
 | 
			
		||||
				  const int e1,
 | 
			
		||||
				  const int e2,
 | 
			
		||||
				  const int stride,
 | 
			
		||||
				  const int ostride,
 | 
			
		||||
				  const int Nsimd)
 | 
			
		||||
{
 | 
			
		||||
  autoView(Data_v, Data, AcceleratorRead); //reduction libraries cannot deal with large vobjs so we split into small/large case.
 | 
			
		||||
    if constexpr (sizeof(vobj) <= 256) { 
 | 
			
		||||
@@ -192,7 +223,15 @@ template<class vobj> inline void sliceSumReduction_gpu(const Lattice<vobj> &Data
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vobj> inline void sliceSumReduction_cpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline void sliceSumReduction_cpu(const Lattice<vobj> &Data,
 | 
			
		||||
				  std::vector<vobj> &lvSum,
 | 
			
		||||
				  const int &rd,
 | 
			
		||||
				  const int &e1,
 | 
			
		||||
				  const int &e2,
 | 
			
		||||
				  const int &stride,
 | 
			
		||||
				  const int &ostride,
 | 
			
		||||
				  const int &Nsimd)
 | 
			
		||||
{
 | 
			
		||||
  // sum over reduced dimension planes, breaking out orthog dir
 | 
			
		||||
  // Parallel over orthog direction
 | 
			
		||||
@@ -208,16 +247,20 @@ template<class vobj> inline void sliceSumReduction_cpu(const Lattice<vobj> &Data
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd) 
 | 
			
		||||
template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data,
 | 
			
		||||
						   std::vector<vobj> &lvSum,
 | 
			
		||||
						   const int &rd,
 | 
			
		||||
						   const int &e1,
 | 
			
		||||
						   const int &e2,
 | 
			
		||||
						   const int &stride,
 | 
			
		||||
						   const int &ostride,
 | 
			
		||||
						   const int &Nsimd) 
 | 
			
		||||
{
 | 
			
		||||
  #if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
 | 
			
		||||
  
 | 
			
		||||
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
 | 
			
		||||
  sliceSumReduction_gpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
			
		||||
  
 | 
			
		||||
  #else
 | 
			
		||||
#else
 | 
			
		||||
  sliceSumReduction_cpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
			
		||||
 | 
			
		||||
  #endif
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -981,8 +981,14 @@ void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice
 | 
			
		||||
    hcoor[orthog] = slice;
 | 
			
		||||
    for(int d=0;d<nh;d++){
 | 
			
		||||
      if ( d!=orthog ) { 
 | 
			
		||||
	hcoor[d]=lcoor[ddl++];
 | 
			
		||||
	hcoor[d]=lcoor[ddl];
 | 
			
		||||
	if ( hg->_checker_dim == d ) {
 | 
			
		||||
	  hcoor[d]=hcoor[d]*2; // factor in the full coor for peekLocalSite
 | 
			
		||||
	  lcoor[ddl]=lcoor[ddl]*2; // factor in the full coor for peekLocalSite
 | 
			
		||||
	}
 | 
			
		||||
	ddl++;
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
    }
 | 
			
		||||
    peekLocalSite(s,lowDimv,lcoor);
 | 
			
		||||
    pokeLocalSite(s,higherDimv,hcoor);
 | 
			
		||||
@@ -1003,6 +1009,7 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
 | 
			
		||||
  assert(orthog<nh);
 | 
			
		||||
  assert(orthog>=0);
 | 
			
		||||
  assert(hg->_processors[orthog]==1);
 | 
			
		||||
  lowDim.Checkerboard() = higherDim.Checkerboard();
 | 
			
		||||
 | 
			
		||||
  int dl; dl = 0;
 | 
			
		||||
  for(int d=0;d<nh;d++){
 | 
			
		||||
@@ -1020,11 +1027,16 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
 | 
			
		||||
    Coordinate lcoor(nl);
 | 
			
		||||
    Coordinate hcoor(nh);
 | 
			
		||||
    lg->LocalIndexToLocalCoor(idx,lcoor);
 | 
			
		||||
    int ddl=0;
 | 
			
		||||
    hcoor[orthog] = slice;
 | 
			
		||||
    int ddl=0;
 | 
			
		||||
    for(int d=0;d<nh;d++){
 | 
			
		||||
      if ( d!=orthog ) { 
 | 
			
		||||
	hcoor[d]=lcoor[ddl++];
 | 
			
		||||
	hcoor[d]=lcoor[ddl];
 | 
			
		||||
	if ( hg->_checker_dim == d ) {
 | 
			
		||||
	  hcoor[d]=hcoor[d]*2;     // factor in the full gridd coor for peekLocalSite
 | 
			
		||||
	  lcoor[ddl]=lcoor[ddl]*2; // factor in the full coor for peekLocalSite
 | 
			
		||||
	}
 | 
			
		||||
	ddl++;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    peekLocalSite(s,higherDimv,hcoor);
 | 
			
		||||
 
 | 
			
		||||
@@ -54,7 +54,7 @@ struct CshiftImplGauge: public CshiftImplBase<typename Gimpl::GaugeLinkField::ve
 | 
			
		||||
 *
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
template<class vobj> inline void ScatterSlice(const cshiftVector<vobj> &buf,
 | 
			
		||||
template<class vobj> inline void ScatterSlice(const deviceVector<vobj> &buf,
 | 
			
		||||
					      Lattice<vobj> &lat,
 | 
			
		||||
					      int x,
 | 
			
		||||
					      int dim,
 | 
			
		||||
@@ -140,7 +140,7 @@ template<class vobj> inline void ScatterSlice(const cshiftVector<vobj> &buf,
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> inline void GatherSlice(cshiftVector<vobj> &buf,
 | 
			
		||||
template<class vobj> inline void GatherSlice(deviceVector<vobj> &buf,
 | 
			
		||||
					     const Lattice<vobj> &lat,
 | 
			
		||||
					     int x,
 | 
			
		||||
					     int dim,
 | 
			
		||||
@@ -462,13 +462,19 @@ public:
 | 
			
		||||
    int rNsimd = Nsimd / simd[dimension];
 | 
			
		||||
    assert( buffer_size == from.Grid()->_slice_nblock[dimension]*from.Grid()->_slice_block[dimension] / simd[dimension]);
 | 
			
		||||
 | 
			
		||||
    static cshiftVector<vobj> send_buf; 
 | 
			
		||||
    static cshiftVector<vobj> recv_buf;
 | 
			
		||||
    static deviceVector<vobj> send_buf; 
 | 
			
		||||
    static deviceVector<vobj> recv_buf;
 | 
			
		||||
    send_buf.resize(buffer_size*2*depth);    
 | 
			
		||||
    recv_buf.resize(buffer_size*2*depth);
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
    static hostVector<vobj> hsend_buf; 
 | 
			
		||||
    static hostVector<vobj> hrecv_buf;
 | 
			
		||||
    hsend_buf.resize(buffer_size*2*depth);    
 | 
			
		||||
    hrecv_buf.resize(buffer_size*2*depth);
 | 
			
		||||
#endif    
 | 
			
		||||
 | 
			
		||||
    std::vector<CommsRequest_t> fwd_req;   
 | 
			
		||||
    std::vector<CommsRequest_t> bwd_req;   
 | 
			
		||||
    std::vector<MpiCommsRequest_t> fwd_req;   
 | 
			
		||||
    std::vector<MpiCommsRequest_t> bwd_req;   
 | 
			
		||||
 | 
			
		||||
    int words = buffer_size;
 | 
			
		||||
    int bytes = words * sizeof(vobj);
 | 
			
		||||
@@ -495,9 +501,16 @@ public:
 | 
			
		||||
      t_gather+=usecond()-t;
 | 
			
		||||
 | 
			
		||||
      t=usecond();
 | 
			
		||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
			
		||||
      grid->SendToRecvFromBegin(fwd_req,
 | 
			
		||||
				(void *)&send_buf[d*buffer_size], xmit_to_rank,
 | 
			
		||||
				(void *)&recv_buf[d*buffer_size], recv_from_rank, bytes, tag);
 | 
			
		||||
#else
 | 
			
		||||
      acceleratorCopyFromDevice(&send_buf[d*buffer_size],&hsend_buf[d*buffer_size],bytes);
 | 
			
		||||
      grid->SendToRecvFromBegin(fwd_req,
 | 
			
		||||
				(void *)&hsend_buf[d*buffer_size], xmit_to_rank,
 | 
			
		||||
				(void *)&hrecv_buf[d*buffer_size], recv_from_rank, bytes, tag);
 | 
			
		||||
#endif
 | 
			
		||||
      t_comms+=usecond()-t;
 | 
			
		||||
     }
 | 
			
		||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
			
		||||
@@ -508,9 +521,16 @@ public:
 | 
			
		||||
      t_gather+= usecond() - t;
 | 
			
		||||
 | 
			
		||||
      t=usecond();
 | 
			
		||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
			
		||||
      grid->SendToRecvFromBegin(bwd_req,
 | 
			
		||||
				(void *)&send_buf[(d+depth)*buffer_size], recv_from_rank,
 | 
			
		||||
				(void *)&recv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag);
 | 
			
		||||
#else
 | 
			
		||||
      acceleratorCopyFromDevice(&send_buf[(d+depth)*buffer_size],&hsend_buf[(d+depth)*buffer_size],bytes);
 | 
			
		||||
      grid->SendToRecvFromBegin(bwd_req,
 | 
			
		||||
				(void *)&hsend_buf[(d+depth)*buffer_size], recv_from_rank,
 | 
			
		||||
				(void *)&hrecv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag);
 | 
			
		||||
#endif      
 | 
			
		||||
      t_comms+=usecond()-t;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
@@ -533,8 +553,13 @@ public:
 | 
			
		||||
 | 
			
		||||
    t=usecond();
 | 
			
		||||
    grid->CommsComplete(fwd_req);
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
			
		||||
      acceleratorCopyToDevice(&hrecv_buf[d*buffer_size],&recv_buf[d*buffer_size],bytes);
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
    t_comms+= usecond() - t;
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
    t=usecond();
 | 
			
		||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
			
		||||
      ScatterSlice(recv_buf,to,nld-depth+d,dimension,plane*buffer_size); plane++;
 | 
			
		||||
@@ -543,6 +568,11 @@ public:
 | 
			
		||||
 | 
			
		||||
    t=usecond();
 | 
			
		||||
    grid->CommsComplete(bwd_req);
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
			
		||||
      acceleratorCopyToDevice(&hrecv_buf[(d+depth)*buffer_size],&recv_buf[(d+depth)*buffer_size],bytes);
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
    t_comms+= usecond() - t;
 | 
			
		||||
    
 | 
			
		||||
    t=usecond();
 | 
			
		||||
 
 | 
			
		||||
@@ -49,7 +49,7 @@ static constexpr int Tm = 7;
 | 
			
		||||
 | 
			
		||||
static constexpr int Nc=Config_Nc;
 | 
			
		||||
static constexpr int Ns=4;
 | 
			
		||||
static constexpr int Nd=4;
 | 
			
		||||
static constexpr int Nd=Config_Nd;
 | 
			
		||||
static constexpr int Nhs=2; // half spinor
 | 
			
		||||
static constexpr int Nds=8; // double stored gauge field
 | 
			
		||||
static constexpr int Ngp=2; // gparity index range
 | 
			
		||||
@@ -75,6 +75,7 @@ static constexpr int InverseYes=1;
 | 
			
		||||
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
 | 
			
		||||
 | 
			
		||||
const int SpinorIndex = 2;
 | 
			
		||||
const int PauliIndex  = 2; //TensorLevel counts from the bottom!
 | 
			
		||||
template<typename T> struct isSpinor {
 | 
			
		||||
  static constexpr bool value = (SpinorIndex==T::TensorLevel);
 | 
			
		||||
};
 | 
			
		||||
 
 | 
			
		||||
@@ -98,7 +98,7 @@ public:
 | 
			
		||||
  virtual RealD S(const GaugeField& U) = 0;                             // evaluate the action
 | 
			
		||||
  virtual RealD Sinitial(const GaugeField& U) { return this->S(U); } ;  // if the refresh computes the action, can cache it. Alternately refreshAndAction() ?
 | 
			
		||||
  virtual void deriv(const GaugeField& U, GaugeField& dSdU) = 0;        // evaluate the action derivative
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  // virtual smeared interface through configuration container
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -132,6 +132,10 @@ public:
 | 
			
		||||
template <class GaugeField >
 | 
			
		||||
class EmptyAction : public Action <GaugeField>
 | 
			
		||||
{
 | 
			
		||||
  using Action<GaugeField>::refresh;
 | 
			
		||||
  using Action<GaugeField>::Sinitial;
 | 
			
		||||
  using Action<GaugeField>::deriv;
 | 
			
		||||
 | 
			
		||||
  virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) { assert(0);}; // refresh pseudofermions
 | 
			
		||||
  virtual RealD S(const GaugeField& U) { return 0.0;};                             // evaluate the action
 | 
			
		||||
  virtual void deriv(const GaugeField& U, GaugeField& dSdU) { assert(0); };        // evaluate the action derivative
 | 
			
		||||
 
 | 
			
		||||
@@ -55,6 +55,11 @@ public:
 | 
			
		||||
  RealD alpha; // Mobius scale
 | 
			
		||||
  RealD k;     // EOFA normalization constant
 | 
			
		||||
 | 
			
		||||
  // Device resident
 | 
			
		||||
  deviceVector<Coeff_t> d_shift_coefficients;
 | 
			
		||||
  deviceVector<Coeff_t> d_MooeeInv_shift_lc;
 | 
			
		||||
  deviceVector<Coeff_t> d_MooeeInv_shift_norm;
 | 
			
		||||
  
 | 
			
		||||
  virtual void Instantiatable(void) = 0;
 | 
			
		||||
 | 
			
		||||
  // EOFA-specific operations
 | 
			
		||||
@@ -92,6 +97,11 @@ public:
 | 
			
		||||
    this->k = this->alpha * (_mq3-_mq2) * std::pow(this->alpha+1.0,2*Ls) /
 | 
			
		||||
      ( std::pow(this->alpha+1.0,Ls) + _mq2*std::pow(this->alpha-1.0,Ls) ) /
 | 
			
		||||
      ( std::pow(this->alpha+1.0,Ls) + _mq3*std::pow(this->alpha-1.0,Ls) );
 | 
			
		||||
    
 | 
			
		||||
    d_shift_coefficients.resize(Ls);
 | 
			
		||||
    d_MooeeInv_shift_lc.resize(Ls);
 | 
			
		||||
    d_MooeeInv_shift_norm.resize(Ls);
 | 
			
		||||
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -90,16 +90,16 @@ public:
 | 
			
		||||
  void M5D(const FermionField &psi,
 | 
			
		||||
	   const FermionField &phi,
 | 
			
		||||
	   FermionField &chi,
 | 
			
		||||
	   Vector<Coeff_t> &lower,
 | 
			
		||||
	   Vector<Coeff_t> &diag,
 | 
			
		||||
	   Vector<Coeff_t> &upper);
 | 
			
		||||
	   std::vector<Coeff_t> &lower,
 | 
			
		||||
	   std::vector<Coeff_t> &diag,
 | 
			
		||||
	   std::vector<Coeff_t> &upper);
 | 
			
		||||
 | 
			
		||||
  void M5Ddag(const FermionField &psi,
 | 
			
		||||
	      const FermionField &phi,
 | 
			
		||||
	      FermionField &chi,
 | 
			
		||||
	      Vector<Coeff_t> &lower,
 | 
			
		||||
	      Vector<Coeff_t> &diag,
 | 
			
		||||
	      Vector<Coeff_t> &upper);
 | 
			
		||||
	      std::vector<Coeff_t> &lower,
 | 
			
		||||
	      std::vector<Coeff_t> &diag,
 | 
			
		||||
	      std::vector<Coeff_t> &upper);
 | 
			
		||||
 | 
			
		||||
  virtual void   Instantiatable(void)=0;
 | 
			
		||||
 | 
			
		||||
@@ -119,35 +119,51 @@ public:
 | 
			
		||||
  RealD mass_plus, mass_minus;
 | 
			
		||||
 | 
			
		||||
  // Save arguments to SetCoefficientsInternal
 | 
			
		||||
  Vector<Coeff_t> _gamma;
 | 
			
		||||
  std::vector<Coeff_t> _gamma;
 | 
			
		||||
  RealD                _zolo_hi;
 | 
			
		||||
  RealD                _b;
 | 
			
		||||
  RealD                _c;
 | 
			
		||||
 | 
			
		||||
  // possible boost
 | 
			
		||||
  std::vector<ComplexD> qmu;
 | 
			
		||||
  void set_qmu(std::vector<ComplexD> _qmu) { qmu=_qmu; assert(qmu.size()==Nd);};
 | 
			
		||||
  void addQmu(const FermionField &in, FermionField &out, int dag);
 | 
			
		||||
  
 | 
			
		||||
  // Cayley form Moebius (tanh and zolotarev)
 | 
			
		||||
  Vector<Coeff_t> omega;
 | 
			
		||||
  Vector<Coeff_t> bs;    // S dependent coeffs
 | 
			
		||||
  Vector<Coeff_t> cs;
 | 
			
		||||
  Vector<Coeff_t> as;
 | 
			
		||||
  std::vector<Coeff_t> omega;
 | 
			
		||||
  std::vector<Coeff_t> bs;    // S dependent coeffs
 | 
			
		||||
  std::vector<Coeff_t> cs;
 | 
			
		||||
  std::vector<Coeff_t> as;
 | 
			
		||||
  // For preconditioning Cayley form
 | 
			
		||||
  Vector<Coeff_t> bee;
 | 
			
		||||
  Vector<Coeff_t> cee;
 | 
			
		||||
  Vector<Coeff_t> aee;
 | 
			
		||||
  Vector<Coeff_t> beo;
 | 
			
		||||
  Vector<Coeff_t> ceo;
 | 
			
		||||
  Vector<Coeff_t> aeo;
 | 
			
		||||
  std::vector<Coeff_t> bee;
 | 
			
		||||
  std::vector<Coeff_t> cee;
 | 
			
		||||
  std::vector<Coeff_t> aee;
 | 
			
		||||
  std::vector<Coeff_t> beo;
 | 
			
		||||
  std::vector<Coeff_t> ceo;
 | 
			
		||||
  std::vector<Coeff_t> aeo;
 | 
			
		||||
  // LDU factorisation of the eeoo matrix
 | 
			
		||||
  Vector<Coeff_t> lee;
 | 
			
		||||
  Vector<Coeff_t> leem;
 | 
			
		||||
  Vector<Coeff_t> uee;
 | 
			
		||||
  Vector<Coeff_t> ueem;
 | 
			
		||||
  Vector<Coeff_t> dee;
 | 
			
		||||
  std::vector<Coeff_t> lee;
 | 
			
		||||
  std::vector<Coeff_t> leem;
 | 
			
		||||
  std::vector<Coeff_t> uee;
 | 
			
		||||
  std::vector<Coeff_t> ueem;
 | 
			
		||||
  std::vector<Coeff_t> dee;
 | 
			
		||||
 | 
			
		||||
  // Device memory
 | 
			
		||||
  deviceVector<Coeff_t> d_diag;
 | 
			
		||||
  deviceVector<Coeff_t> d_upper;
 | 
			
		||||
  deviceVector<Coeff_t> d_lower;
 | 
			
		||||
 | 
			
		||||
  deviceVector<Coeff_t> d_lee;
 | 
			
		||||
  deviceVector<Coeff_t> d_dee;
 | 
			
		||||
  deviceVector<Coeff_t> d_uee;
 | 
			
		||||
  deviceVector<Coeff_t> d_leem;
 | 
			
		||||
  deviceVector<Coeff_t> d_ueem;
 | 
			
		||||
 | 
			
		||||
  // Matrices of 5d ee inverse params
 | 
			
		||||
  Vector<iSinglet<Simd> >  MatpInv;
 | 
			
		||||
  Vector<iSinglet<Simd> >  MatmInv;
 | 
			
		||||
  Vector<iSinglet<Simd> >  MatpInvDag;
 | 
			
		||||
  Vector<iSinglet<Simd> >  MatmInvDag;
 | 
			
		||||
  //  std::vector<iSinglet<Simd> >  MatpInv;
 | 
			
		||||
  //  std::vector<iSinglet<Simd> >  MatmInv;
 | 
			
		||||
  //  std::vector<iSinglet<Simd> >  MatpInvDag;
 | 
			
		||||
  //  std::vector<iSinglet<Simd> >  MatmInvDag;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Conserved current utilities
 | 
			
		||||
@@ -187,7 +203,7 @@ public:
 | 
			
		||||
protected:
 | 
			
		||||
  virtual void SetCoefficientsZolotarev(RealD zolohi,Approx::zolotarev_data *zdata,RealD b,RealD c);
 | 
			
		||||
  virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c);
 | 
			
		||||
  virtual void SetCoefficientsInternal(RealD zolo_hi,Vector<Coeff_t> & gamma,RealD b,RealD c);
 | 
			
		||||
  virtual void SetCoefficientsInternal(RealD zolo_hi,std::vector<Coeff_t> & gamma,RealD b,RealD c);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										196
									
								
								Grid/qcd/action/fermion/CompactWilsonCloverFermion5D.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										196
									
								
								Grid/qcd/action/fermion/CompactWilsonCloverFermion5D.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,196 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/qcd/action/fermion/CompactWilsonCloverFermion5D.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2020 - 2025
 | 
			
		||||
 | 
			
		||||
    Author: Daniel Richtmann <daniel.richtmann@gmail.com>
 | 
			
		||||
    Author: Nils Meyer <nils.meyer@ur.de>
 | 
			
		||||
    Author: Christoph Lehner <christoph@lhnr.de>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/fermion/WilsonFermion5D.h>
 | 
			
		||||
#include <Grid/qcd/action/fermion/WilsonCloverTypes.h>
 | 
			
		||||
#include <Grid/qcd/action/fermion/WilsonCloverHelpers.h>
 | 
			
		||||
#include <Grid/qcd/action/fermion/CloverHelpers.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
// see Grid/qcd/action/fermion/CompactWilsonCloverFermion.h for description
 | 
			
		||||
 | 
			
		||||
template<class Impl, class CloverHelpers>
 | 
			
		||||
class CompactWilsonCloverFermion5D : public WilsonFermion5D<Impl>,
 | 
			
		||||
				     public WilsonCloverHelpers<Impl>,
 | 
			
		||||
				     public CompactWilsonCloverHelpers<Impl> {
 | 
			
		||||
  /////////////////////////////////////////////
 | 
			
		||||
  // Sizes
 | 
			
		||||
  /////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  INHERIT_COMPACT_CLOVER_SIZES(Impl);
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////
 | 
			
		||||
  // Type definitions
 | 
			
		||||
  /////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
  INHERIT_CLOVER_TYPES(Impl);
 | 
			
		||||
  INHERIT_COMPACT_CLOVER_TYPES(Impl);
 | 
			
		||||
 | 
			
		||||
  typedef WilsonFermion5D<Impl>            WilsonBase;
 | 
			
		||||
  typedef WilsonCloverHelpers<Impl>        Helpers;
 | 
			
		||||
  typedef CompactWilsonCloverHelpers<Impl> CompactHelpers;
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////
 | 
			
		||||
  // Constructors
 | 
			
		||||
  /////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  CompactWilsonCloverFermion5D(GaugeField& _Umu,
 | 
			
		||||
			       GridCartesian         &FiveDimGrid,
 | 
			
		||||
			       GridRedBlackCartesian &FiveDimRedBlackGrid,
 | 
			
		||||
			       GridCartesian         &FourDimGrid,
 | 
			
		||||
			       GridRedBlackCartesian &FourDimRedBlackGrid,
 | 
			
		||||
			       const RealD _mass,
 | 
			
		||||
			       const RealD _csw_r = 0.0,
 | 
			
		||||
			       const RealD _csw_t = 0.0,
 | 
			
		||||
			       const RealD _cF = 1.0,
 | 
			
		||||
			       const ImplParams& impl_p = ImplParams());
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////
 | 
			
		||||
  // Member functions (implementing interface)
 | 
			
		||||
  /////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  virtual void Instantiatable() {};
 | 
			
		||||
  int          ConstEE()     override { return 0; };
 | 
			
		||||
  int          isTrivialEE() override { return 0; };
 | 
			
		||||
 | 
			
		||||
  void Dhop(const FermionField& in, FermionField& out, int dag) override;
 | 
			
		||||
 | 
			
		||||
  void DhopOE(const FermionField& in, FermionField& out, int dag) override;
 | 
			
		||||
 | 
			
		||||
  void DhopEO(const FermionField& in, FermionField& out, int dag) override;
 | 
			
		||||
 | 
			
		||||
  void DhopDir(const FermionField& in, FermionField& out, int dir, int disp) override;
 | 
			
		||||
 | 
			
		||||
  void DhopDirAll(const FermionField& in, std::vector<FermionField>& out) /* override */;
 | 
			
		||||
 | 
			
		||||
  void M(const FermionField& in, FermionField& out) override;
 | 
			
		||||
 | 
			
		||||
  void Mdag(const FermionField& in, FermionField& out) override;
 | 
			
		||||
 | 
			
		||||
  void Meooe(const FermionField& in, FermionField& out) override;
 | 
			
		||||
 | 
			
		||||
  void MeooeDag(const FermionField& in, FermionField& out) override;
 | 
			
		||||
 | 
			
		||||
  void Mooee(const FermionField& in, FermionField& out) override;
 | 
			
		||||
 | 
			
		||||
  void MooeeDag(const FermionField& in, FermionField& out) override;
 | 
			
		||||
 | 
			
		||||
  void MooeeInv(const FermionField& in, FermionField& out) override;
 | 
			
		||||
 | 
			
		||||
  void MooeeInvDag(const FermionField& in, FermionField& out) override;
 | 
			
		||||
 | 
			
		||||
  void Mdir(const FermionField& in, FermionField& out, int dir, int disp) override;
 | 
			
		||||
 | 
			
		||||
  void MdirAll(const FermionField& in, std::vector<FermionField>& out) override;
 | 
			
		||||
 | 
			
		||||
  void MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) override;
 | 
			
		||||
 | 
			
		||||
  void MooDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) override;
 | 
			
		||||
 | 
			
		||||
  void MeeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) override;
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////
 | 
			
		||||
  // Member functions (internals)
 | 
			
		||||
  /////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  void MooeeInternal(const FermionField&        in,
 | 
			
		||||
                     FermionField&              out,
 | 
			
		||||
                     const CloverDiagonalField& diagonal,
 | 
			
		||||
                     const CloverTriangleField& triangle);
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////
 | 
			
		||||
  // Helpers
 | 
			
		||||
  /////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  void ImportGauge(const GaugeField& _Umu) override;
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////
 | 
			
		||||
  // Helpers
 | 
			
		||||
  /////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
 | 
			
		||||
  template<class Field>
 | 
			
		||||
  const MaskField* getCorrectMaskField(const Field &in) const {
 | 
			
		||||
    if(in.Grid()->_isCheckerBoarded) {
 | 
			
		||||
      if(in.Checkerboard() == Odd) {
 | 
			
		||||
        return &this->BoundaryMaskOdd;
 | 
			
		||||
      } else {
 | 
			
		||||
        return &this->BoundaryMaskEven;
 | 
			
		||||
      }
 | 
			
		||||
    } else {
 | 
			
		||||
      return &this->BoundaryMask;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class Field>
 | 
			
		||||
  void ApplyBoundaryMask(Field& f) {
 | 
			
		||||
    const MaskField* m = getCorrectMaskField(f); assert(m != nullptr);
 | 
			
		||||
    assert(m != nullptr);
 | 
			
		||||
    CompactHelpers::ApplyBoundaryMask(f, *m);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////
 | 
			
		||||
  // Member Data
 | 
			
		||||
  /////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  RealD csw_r;
 | 
			
		||||
  RealD csw_t;
 | 
			
		||||
  RealD cF;
 | 
			
		||||
  int n_rhs;
 | 
			
		||||
  
 | 
			
		||||
  bool fixedBoundaries;
 | 
			
		||||
 | 
			
		||||
  CloverDiagonalField Diagonal,    DiagonalEven,    DiagonalOdd;
 | 
			
		||||
  CloverDiagonalField DiagonalInv, DiagonalInvEven, DiagonalInvOdd;
 | 
			
		||||
 | 
			
		||||
  CloverTriangleField Triangle,    TriangleEven,    TriangleOdd;
 | 
			
		||||
  CloverTriangleField TriangleInv, TriangleInvEven, TriangleInvOdd;
 | 
			
		||||
 | 
			
		||||
  FermionField Tmp;
 | 
			
		||||
 | 
			
		||||
  MaskField BoundaryMask, BoundaryMaskEven, BoundaryMaskOdd;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -60,6 +60,50 @@ public:
 | 
			
		||||
  //      virtual void   Instantiatable(void)=0;
 | 
			
		||||
  virtual void   Instantiatable(void) =0;
 | 
			
		||||
 | 
			
		||||
  void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary, std::vector<double> twist)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << "Free Propagator for PartialFraction"<<std::endl;
 | 
			
		||||
    FermionField in_k(in.Grid());
 | 
			
		||||
    FermionField prop_k(in.Grid());
 | 
			
		||||
    
 | 
			
		||||
    FFT theFFT((GridCartesian *) in.Grid());
 | 
			
		||||
 | 
			
		||||
    //phase for boundary condition
 | 
			
		||||
    ComplexField coor(in.Grid());
 | 
			
		||||
    ComplexField ph(in.Grid());  ph = Zero();
 | 
			
		||||
    FermionField in_buf(in.Grid()); in_buf = Zero();
 | 
			
		||||
    typedef typename Simd::scalar_type Scalar;
 | 
			
		||||
    Scalar ci(0.0,1.0);
 | 
			
		||||
    assert(twist.size() == Nd);//check that twist is Nd
 | 
			
		||||
    assert(boundary.size() == Nd);//check that boundary conditions is Nd
 | 
			
		||||
    int shift = 0;
 | 
			
		||||
    for(unsigned int nu = 0; nu < Nd; nu++)
 | 
			
		||||
      {
 | 
			
		||||
	// Shift coordinate lattice index by 1 to account for 5th dimension.
 | 
			
		||||
	LatticeCoordinate(coor, nu + shift);
 | 
			
		||||
	double boundary_phase = ::acos(real(boundary[nu]));
 | 
			
		||||
	ph = ph + boundary_phase*coor*((1./(in.Grid()->_fdimensions[nu+shift])));
 | 
			
		||||
	//momenta for propagator shifted by twist+boundary
 | 
			
		||||
	twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI));
 | 
			
		||||
      }
 | 
			
		||||
    in_buf = exp(ci*ph*(-1.0))*in;
 | 
			
		||||
 | 
			
		||||
    theFFT.FFT_all_dim(in_k,in,FFT::forward);
 | 
			
		||||
    this->MomentumSpacePropagatorHw(prop_k,in_k,mass,twist);
 | 
			
		||||
    theFFT.FFT_all_dim(out,prop_k,FFT::backward);
 | 
			
		||||
    
 | 
			
		||||
    //phase for boundary condition
 | 
			
		||||
    out = out * exp(ci*ph);
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {
 | 
			
		||||
    std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
 | 
			
		||||
    std::vector<Complex> boundary;
 | 
			
		||||
    for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions
 | 
			
		||||
    FreePropagator(in,out,mass,boundary,twist);
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  // Efficient support for multigrid coarsening
 | 
			
		||||
  virtual void  Mdir (const FermionField &in, FermionField &out,int dir,int disp);
 | 
			
		||||
  virtual void  MdirAll(const FermionField &in, std::vector<FermionField> &out);
 | 
			
		||||
@@ -90,12 +134,12 @@ protected:
 | 
			
		||||
  RealD mass;
 | 
			
		||||
  RealD R;
 | 
			
		||||
  RealD ZoloHiInv;
 | 
			
		||||
  Vector<double> Beta;
 | 
			
		||||
  Vector<double> cc;;
 | 
			
		||||
  Vector<double> cc_d;;
 | 
			
		||||
  Vector<double> sqrt_cc;
 | 
			
		||||
  Vector<double> See;
 | 
			
		||||
  Vector<double> Aee;
 | 
			
		||||
  std::vector<double> Beta;
 | 
			
		||||
  std::vector<double> cc;;
 | 
			
		||||
  std::vector<double> cc_d;;
 | 
			
		||||
  std::vector<double> sqrt_cc;
 | 
			
		||||
  std::vector<double> See;
 | 
			
		||||
  std::vector<double> Aee;
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -69,10 +69,10 @@ public:
 | 
			
		||||
  // Instantiate different versions depending on Impl
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
  void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
			
		||||
	   Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
 | 
			
		||||
	   std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
 | 
			
		||||
 | 
			
		||||
  void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
			
		||||
	      Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
 | 
			
		||||
	      std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
 | 
			
		||||
 | 
			
		||||
  virtual void RefreshShiftCoefficients(RealD new_shift);
 | 
			
		||||
 | 
			
		||||
@@ -83,7 +83,7 @@ public:
 | 
			
		||||
			RealD _M5, const ImplParams& p=ImplParams());
 | 
			
		||||
 | 
			
		||||
protected:
 | 
			
		||||
  void SetCoefficientsInternal(RealD zolo_hi, Vector<Coeff_t>& gamma, RealD b, RealD c);
 | 
			
		||||
  void SetCoefficientsInternal(RealD zolo_hi, std::vector<Coeff_t>& gamma, RealD b, RealD c);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
@@ -123,10 +123,10 @@ public:
 | 
			
		||||
      GaugeGrid->LocalIndexToLocalCoor(lidx, lcoor);
 | 
			
		||||
      
 | 
			
		||||
      peekLocalSite(ScalarUmu, Umu_v, lcoor);
 | 
			
		||||
      for (int mu = 0; mu < 4; mu++) ScalarUds(mu) = ScalarUmu(mu);
 | 
			
		||||
      for (int mu = 0; mu < Nd; mu++) ScalarUds(mu) = ScalarUmu(mu);
 | 
			
		||||
      
 | 
			
		||||
      peekLocalSite(ScalarUmu, Uadj_v, lcoor);
 | 
			
		||||
      for (int mu = 0; mu < 4; mu++) ScalarUds(mu + 4) = ScalarUmu(mu);
 | 
			
		||||
      for (int mu = 0; mu < Nd; mu++) ScalarUds(mu + Nd) = ScalarUmu(mu);
 | 
			
		||||
      
 | 
			
		||||
      pokeLocalSite(ScalarUds, Uds_v, lcoor);
 | 
			
		||||
    });
 | 
			
		||||
 
 | 
			
		||||
@@ -55,6 +55,7 @@ NAMESPACE_CHECK(Wilson);
 | 
			
		||||
NAMESPACE_CHECK(WilsonTM);
 | 
			
		||||
#include <Grid/qcd/action/fermion/WilsonCloverFermion.h> // 4d wilson clover fermions
 | 
			
		||||
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h> // 4d compact wilson clover fermions
 | 
			
		||||
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion5D.h> // 5d compact wilson clover fermions
 | 
			
		||||
NAMESPACE_CHECK(WilsonClover);
 | 
			
		||||
#include <Grid/qcd/action/fermion/WilsonFermion5D.h>     // 5d base used by all 5d overlap types
 | 
			
		||||
NAMESPACE_CHECK(Wilson5D);
 | 
			
		||||
@@ -84,6 +85,15 @@ NAMESPACE_CHECK(DomainWall);
 | 
			
		||||
#include <Grid/qcd/action/fermion/OverlapWilsonPartialFractionTanhFermion.h>
 | 
			
		||||
#include <Grid/qcd/action/fermion/OverlapWilsonPartialFractionZolotarevFermion.h>
 | 
			
		||||
NAMESPACE_CHECK(Overlap);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Two spin wilson fermion based
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/fermion/TwoSpinWilsonFermion3plus1D.h>
 | 
			
		||||
NAMESPACE_CHECK(TwoSpinWilson);
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// G5 herm -- this has to live in QCD since dirac matrix is not in the broader sector of code
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -164,12 +174,17 @@ typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiS
 | 
			
		||||
 | 
			
		||||
// Compact Clover fermions
 | 
			
		||||
template <typename WImpl> using CompactWilsonClover = CompactWilsonCloverFermion<WImpl, CompactCloverHelpers<WImpl>>;
 | 
			
		||||
template <typename WImpl> using CompactWilsonClover5D = CompactWilsonCloverFermion5D<WImpl, CompactCloverHelpers<WImpl>>;
 | 
			
		||||
template <typename WImpl> using CompactWilsonExpClover = CompactWilsonCloverFermion<WImpl, CompactExpCloverHelpers<WImpl>>;
 | 
			
		||||
 | 
			
		||||
typedef CompactWilsonClover<WilsonImplD2> CompactWilsonCloverFermionD2;
 | 
			
		||||
typedef CompactWilsonClover<WilsonImplF> CompactWilsonCloverFermionF;
 | 
			
		||||
typedef CompactWilsonClover<WilsonImplD> CompactWilsonCloverFermionD;
 | 
			
		||||
 | 
			
		||||
typedef CompactWilsonClover5D<WilsonImplD2> CompactWilsonCloverFermion5DD2;
 | 
			
		||||
typedef CompactWilsonClover5D<WilsonImplF> CompactWilsonCloverFermion5DF;
 | 
			
		||||
typedef CompactWilsonClover5D<WilsonImplD> CompactWilsonCloverFermion5DD;
 | 
			
		||||
 | 
			
		||||
typedef CompactWilsonExpClover<WilsonImplD2> CompactWilsonExpCloverFermionD2;
 | 
			
		||||
typedef CompactWilsonExpClover<WilsonImplF> CompactWilsonExpCloverFermionF;
 | 
			
		||||
typedef CompactWilsonExpClover<WilsonImplD> CompactWilsonExpCloverFermionD;
 | 
			
		||||
 
 | 
			
		||||
@@ -41,8 +41,9 @@ NAMESPACE_CHECK(Compressor);
 | 
			
		||||
NAMESPACE_CHECK(FermionOperatorImpl);
 | 
			
		||||
#include <Grid/qcd/action/fermion/FermionOperator.h>
 | 
			
		||||
NAMESPACE_CHECK(FermionOperator);
 | 
			
		||||
#include <Grid/qcd/action/fermion/WilsonKernels.h>        //used by all wilson type fermions
 | 
			
		||||
#include <Grid/qcd/action/fermion/WilsonKernels.h>           //used by all wilson type fermions
 | 
			
		||||
#include <Grid/qcd/action/fermion/StaggeredKernels.h>        //used by all wilson type fermions
 | 
			
		||||
#include <Grid/qcd/action/fermion/TwoSpinWilsonKernels.h>    //used for 3D fermions, pauli in place of Dirac
 | 
			
		||||
NAMESPACE_CHECK(Kernels);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -180,6 +180,12 @@ NAMESPACE_CHECK(ImplGparityWilson);
 | 
			
		||||
#include <Grid/qcd/action/fermion/StaggeredImpl.h> 
 | 
			
		||||
NAMESPACE_CHECK(ImplStaggered);  
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Two component spinor Wilson action for 3d / Boston
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
#include <Grid/qcd/action/fermion/TwoSpinWilsonImpl.h> 
 | 
			
		||||
NAMESPACE_CHECK(ImplTwoSpinWilson);  
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Single flavour one component spinors with colour index. 5d vec
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -274,7 +274,7 @@ public:
 | 
			
		||||
	autoView( Uds_v , Uds, CpuWrite);
 | 
			
		||||
	autoView( Utmp_v, Utmp, CpuWrite);
 | 
			
		||||
	thread_foreach(ss,Utmp_v,{
 | 
			
		||||
	    Uds_v[ss](0)(mu+4) = Utmp_v[ss]();
 | 
			
		||||
	    Uds_v[ss](0)(mu+Nd) = Utmp_v[ss]();
 | 
			
		||||
	  });
 | 
			
		||||
      }
 | 
			
		||||
      Utmp = Uconj;
 | 
			
		||||
@@ -286,7 +286,7 @@ public:
 | 
			
		||||
	autoView( Uds_v , Uds, CpuWrite);
 | 
			
		||||
	autoView( Utmp_v, Utmp, CpuWrite);
 | 
			
		||||
	thread_foreach(ss,Utmp_v,{
 | 
			
		||||
	    Uds_v[ss](1)(mu+4) = Utmp_v[ss]();
 | 
			
		||||
	    Uds_v[ss](1)(mu+Nd) = Utmp_v[ss]();
 | 
			
		||||
        });
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
@@ -320,7 +320,7 @@ public:
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      Uconj = conjugate(*Upoke);
 | 
			
		||||
      pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu + 4);
 | 
			
		||||
      pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu + Nd);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
      
 | 
			
		||||
 
 | 
			
		||||
@@ -36,6 +36,8 @@ public:
 | 
			
		||||
  static const std::vector<int> directions;
 | 
			
		||||
  static const std::vector<int> displacements;
 | 
			
		||||
  static const int npoint = 16;
 | 
			
		||||
  static std::vector<int> MakeDirections(void);
 | 
			
		||||
  static std::vector<int> MakeDisplacements(void);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <class Impl>
 | 
			
		||||
@@ -102,11 +104,11 @@ public:
 | 
			
		||||
		     GaugeField &mat, 
 | 
			
		||||
		     const FermionField &A, const FermionField &B, int dag);
 | 
			
		||||
 | 
			
		||||
  void DhopInternal(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,DoubledGaugeField &UUU,
 | 
			
		||||
  void DhopInternal(StencilImpl &st, DoubledGaugeField &U,DoubledGaugeField &UUU,
 | 
			
		||||
                    const FermionField &in, FermionField &out, int dag);
 | 
			
		||||
  void DhopInternalSerialComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,DoubledGaugeField &UUU,
 | 
			
		||||
  void DhopInternalSerialComms(StencilImpl &st, DoubledGaugeField &U,DoubledGaugeField &UUU,
 | 
			
		||||
                    const FermionField &in, FermionField &out, int dag);
 | 
			
		||||
  void DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,DoubledGaugeField &UUU,
 | 
			
		||||
  void DhopInternalOverlappedComms(StencilImpl &st, DoubledGaugeField &U,DoubledGaugeField &UUU,
 | 
			
		||||
                    const FermionField &in, FermionField &out, int dag);
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -164,8 +166,6 @@ public:
 | 
			
		||||
  DoubledGaugeField UUUmuEven;
 | 
			
		||||
  DoubledGaugeField UUUmuOdd;
 | 
			
		||||
 | 
			
		||||
  LebesgueOrder Lebesgue;
 | 
			
		||||
  LebesgueOrder LebesgueEvenOdd;
 | 
			
		||||
  
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Conserved current utilities
 | 
			
		||||
 
 | 
			
		||||
@@ -40,6 +40,8 @@ public:
 | 
			
		||||
  static const std::vector<int> directions;
 | 
			
		||||
  static const std::vector<int> displacements;
 | 
			
		||||
  const int npoint = 16;
 | 
			
		||||
  static std::vector<int> MakeDirections(void);
 | 
			
		||||
  static std::vector<int> MakeDisplacements(void);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
@@ -100,7 +102,6 @@ public:
 | 
			
		||||
		     int dag);
 | 
			
		||||
    
 | 
			
		||||
  void DhopInternal(StencilImpl & st,
 | 
			
		||||
		    LebesgueOrder &lo,
 | 
			
		||||
		    DoubledGaugeField &U,
 | 
			
		||||
		    DoubledGaugeField &UUU,
 | 
			
		||||
		    const FermionField &in, 
 | 
			
		||||
@@ -108,7 +109,6 @@ public:
 | 
			
		||||
		    int dag);
 | 
			
		||||
    
 | 
			
		||||
    void DhopInternalOverlappedComms(StencilImpl & st,
 | 
			
		||||
		      LebesgueOrder &lo,
 | 
			
		||||
		      DoubledGaugeField &U,
 | 
			
		||||
		      DoubledGaugeField &UUU,
 | 
			
		||||
		      const FermionField &in, 
 | 
			
		||||
@@ -116,7 +116,6 @@ public:
 | 
			
		||||
		      int dag);
 | 
			
		||||
 | 
			
		||||
    void DhopInternalSerialComms(StencilImpl & st,
 | 
			
		||||
		      LebesgueOrder &lo,
 | 
			
		||||
		      DoubledGaugeField &U,
 | 
			
		||||
		      DoubledGaugeField &UUU,
 | 
			
		||||
		      const FermionField &in, 
 | 
			
		||||
@@ -192,8 +191,6 @@ public:
 | 
			
		||||
  DoubledGaugeField UUUmuEven;
 | 
			
		||||
  DoubledGaugeField UUUmuOdd;
 | 
			
		||||
    
 | 
			
		||||
  LebesgueOrder Lebesgue;
 | 
			
		||||
  LebesgueOrder LebesgueEvenOdd;
 | 
			
		||||
    
 | 
			
		||||
  // Comms buffer
 | 
			
		||||
  //  std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> >  comm_buf;
 | 
			
		||||
 
 | 
			
		||||
@@ -42,11 +42,11 @@ public:
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  // Shift operator coefficients for red-black preconditioned Mobius EOFA
 | 
			
		||||
  Vector<Coeff_t> Mooee_shift;
 | 
			
		||||
  Vector<Coeff_t> MooeeInv_shift_lc;
 | 
			
		||||
  Vector<Coeff_t> MooeeInv_shift_norm;
 | 
			
		||||
  Vector<Coeff_t> MooeeInvDag_shift_lc;
 | 
			
		||||
  Vector<Coeff_t> MooeeInvDag_shift_norm;
 | 
			
		||||
  std::vector<Coeff_t> Mooee_shift;
 | 
			
		||||
  std::vector<Coeff_t> MooeeInv_shift_lc;
 | 
			
		||||
  std::vector<Coeff_t> MooeeInv_shift_norm;
 | 
			
		||||
  std::vector<Coeff_t> MooeeInvDag_shift_lc;
 | 
			
		||||
  std::vector<Coeff_t> MooeeInvDag_shift_norm;
 | 
			
		||||
 | 
			
		||||
  virtual void Instantiatable(void) {};
 | 
			
		||||
 | 
			
		||||
@@ -74,18 +74,18 @@ public:
 | 
			
		||||
  // Instantiate different versions depending on Impl
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
  void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
			
		||||
	   Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
 | 
			
		||||
	   std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
 | 
			
		||||
 | 
			
		||||
  void M5D_shift(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
			
		||||
		 Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper,
 | 
			
		||||
		 Vector<Coeff_t>& shift_coeffs);
 | 
			
		||||
		 std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
 | 
			
		||||
		 std::vector<Coeff_t>& shift_coeffs);
 | 
			
		||||
 | 
			
		||||
  void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
			
		||||
	      Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
 | 
			
		||||
	      std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
 | 
			
		||||
 | 
			
		||||
  void M5Ddag_shift(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
			
		||||
		    Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper,
 | 
			
		||||
		    Vector<Coeff_t>& shift_coeffs);
 | 
			
		||||
		    std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
 | 
			
		||||
		    std::vector<Coeff_t>& shift_coeffs);
 | 
			
		||||
 | 
			
		||||
  virtual void RefreshShiftCoefficients(RealD new_shift);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -36,6 +36,8 @@ public:
 | 
			
		||||
  static const std::vector<int> directions;
 | 
			
		||||
  static const std::vector<int> displacements;
 | 
			
		||||
  static const int npoint = 8;
 | 
			
		||||
  static std::vector<int> MakeDirections(void);
 | 
			
		||||
  static std::vector<int> MakeDisplacements(void);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <class Impl>
 | 
			
		||||
@@ -102,11 +104,11 @@ public:
 | 
			
		||||
		     GaugeField &mat, 
 | 
			
		||||
		     const FermionField &A, const FermionField &B, int dag);
 | 
			
		||||
 | 
			
		||||
  void DhopInternal(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
 | 
			
		||||
  void DhopInternal(StencilImpl &st, DoubledGaugeField &U,
 | 
			
		||||
                    const FermionField &in, FermionField &out, int dag);
 | 
			
		||||
  void DhopInternalSerialComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
 | 
			
		||||
  void DhopInternalSerialComms(StencilImpl &st, DoubledGaugeField &U,
 | 
			
		||||
			       const FermionField &in, FermionField &out, int dag);
 | 
			
		||||
  void DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
 | 
			
		||||
  void DhopInternalOverlappedComms(StencilImpl &st, DoubledGaugeField &U,
 | 
			
		||||
				   const FermionField &in, FermionField &out, int dag);
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -152,9 +154,6 @@ public:
 | 
			
		||||
  DoubledGaugeField UmuEven;
 | 
			
		||||
  DoubledGaugeField UmuOdd;
 | 
			
		||||
 | 
			
		||||
  LebesgueOrder Lebesgue;
 | 
			
		||||
  LebesgueOrder LebesgueEvenOdd;
 | 
			
		||||
  
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Conserved current utilities
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -42,7 +42,7 @@ public:
 | 
			
		||||
 | 
			
		||||
     void  MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
 | 
			
		||||
       this->MomentumSpacePropagatorHw(out,in,_m,twist);
 | 
			
		||||
  };
 | 
			
		||||
     };
 | 
			
		||||
 | 
			
		||||
  // Constructors
 | 
			
		||||
  OverlapWilsonCayleyTanhFermion(GaugeField &_Umu,
 | 
			
		||||
 
 | 
			
		||||
@@ -41,6 +41,10 @@ public:
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  // Constructors
 | 
			
		||||
  virtual void   Instantiatable(void){};
 | 
			
		||||
  void  MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
 | 
			
		||||
    this->MomentumSpacePropagatorHw(out,in,_m,twist);
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  OverlapWilsonCayleyZolotarevFermion(GaugeField &_Umu,
 | 
			
		||||
				      GridCartesian         &FiveDimGrid,
 | 
			
		||||
 
 | 
			
		||||
@@ -41,6 +41,9 @@ public:
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  virtual void   Instantiatable(void){};
 | 
			
		||||
  void  MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
 | 
			
		||||
    this->MomentumSpacePropagatorHw(out,in,_m,twist);
 | 
			
		||||
  };
 | 
			
		||||
  // Constructors
 | 
			
		||||
  OverlapWilsonContFracTanhFermion(GaugeField &_Umu,
 | 
			
		||||
				   GridCartesian         &FiveDimGrid,
 | 
			
		||||
 
 | 
			
		||||
@@ -40,6 +40,9 @@ public:
 | 
			
		||||
  INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
 | 
			
		||||
  virtual void   Instantiatable(void){};
 | 
			
		||||
  void  MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
 | 
			
		||||
    this->MomentumSpacePropagatorHw(out,in,_m,twist);
 | 
			
		||||
  };
 | 
			
		||||
  // Constructors
 | 
			
		||||
  OverlapWilsonContFracZolotarevFermion(GaugeField &_Umu,
 | 
			
		||||
					GridCartesian         &FiveDimGrid,
 | 
			
		||||
 
 | 
			
		||||
@@ -41,6 +41,9 @@ public:
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  virtual void   Instantiatable(void){};
 | 
			
		||||
  void  MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
 | 
			
		||||
    this->MomentumSpacePropagatorHw(out,in,_m,twist);
 | 
			
		||||
  };
 | 
			
		||||
  // Constructors
 | 
			
		||||
  OverlapWilsonPartialFractionTanhFermion(GaugeField &_Umu,
 | 
			
		||||
					  GridCartesian         &FiveDimGrid,
 | 
			
		||||
 
 | 
			
		||||
@@ -40,6 +40,11 @@ public:
 | 
			
		||||
  INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
 | 
			
		||||
  virtual void   Instantiatable(void){};
 | 
			
		||||
 | 
			
		||||
  void  MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
 | 
			
		||||
    this->MomentumSpacePropagatorHw(out,in,_m,twist);
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  // Constructors
 | 
			
		||||
  OverlapWilsonPartialFractionZolotarevFermion(GaugeField &_Umu,
 | 
			
		||||
					       GridCartesian         &FiveDimGrid,
 | 
			
		||||
 
 | 
			
		||||
@@ -39,7 +39,7 @@ class PartialFractionFermion5D : public WilsonFermion5D<Impl>
 | 
			
		||||
public:
 | 
			
		||||
  INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
 | 
			
		||||
  const int part_frac_chroma_convention=1;
 | 
			
		||||
  const int part_frac_chroma_convention=0;
 | 
			
		||||
 | 
			
		||||
  void   Meooe_internal(const FermionField &in, FermionField &out,int dag);
 | 
			
		||||
  void   Mooee_internal(const FermionField &in, FermionField &out,int dag);
 | 
			
		||||
@@ -83,19 +83,78 @@ public:
 | 
			
		||||
			   GridRedBlackCartesian &FourDimRedBlackGrid,
 | 
			
		||||
			   RealD _mass,RealD M5,const ImplParams &p= ImplParams());
 | 
			
		||||
 | 
			
		||||
  PartialFractionFermion5D(GaugeField &_Umu,
 | 
			
		||||
			   GridCartesian         &FiveDimGrid,
 | 
			
		||||
			   GridRedBlackCartesian &FiveDimRedBlackGrid,
 | 
			
		||||
			   GridCartesian         &FourDimGrid,
 | 
			
		||||
			   GridRedBlackCartesian &FourDimRedBlackGrid,
 | 
			
		||||
			   RealD _mass,RealD M5,std::vector<RealD> &_qmu,const ImplParams &p= ImplParams());
 | 
			
		||||
 | 
			
		||||
  void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary, std::vector<double> twist)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << "Free Propagator for PartialFraction"<<std::endl;
 | 
			
		||||
    FermionField in_k(in.Grid());
 | 
			
		||||
    FermionField prop_k(in.Grid());
 | 
			
		||||
    
 | 
			
		||||
    FFT theFFT((GridCartesian *) in.Grid());
 | 
			
		||||
 | 
			
		||||
    //phase for boundary condition
 | 
			
		||||
    ComplexField coor(in.Grid());
 | 
			
		||||
    ComplexField ph(in.Grid());  ph = Zero();
 | 
			
		||||
    FermionField in_buf(in.Grid()); in_buf = Zero();
 | 
			
		||||
    typedef typename Simd::scalar_type Scalar;
 | 
			
		||||
    Scalar ci(0.0,1.0);
 | 
			
		||||
    assert(twist.size() == Nd);//check that twist is Nd
 | 
			
		||||
    assert(boundary.size() == Nd);//check that boundary conditions is Nd
 | 
			
		||||
    int shift = 0;
 | 
			
		||||
    for(unsigned int nu = 0; nu < Nd; nu++)
 | 
			
		||||
      {
 | 
			
		||||
	// Shift coordinate lattice index by 1 to account for 5th dimension.
 | 
			
		||||
	LatticeCoordinate(coor, nu + shift);
 | 
			
		||||
	double boundary_phase = ::acos(real(boundary[nu]));
 | 
			
		||||
	ph = ph + boundary_phase*coor*((1./(in.Grid()->_fdimensions[nu+shift])));
 | 
			
		||||
	//momenta for propagator shifted by twist+boundary
 | 
			
		||||
	twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI));
 | 
			
		||||
      }
 | 
			
		||||
    in_buf = exp(ci*ph*(-1.0))*in;
 | 
			
		||||
 | 
			
		||||
    theFFT.FFT_all_dim(in_k,in,FFT::forward);
 | 
			
		||||
    if ( this->qmu.size() ){
 | 
			
		||||
      this->MomentumSpacePropagatorHwQ(prop_k,in_k,mass,twist,this->qmu);
 | 
			
		||||
    } else {
 | 
			
		||||
      this->MomentumSpacePropagatorHw(prop_k,in_k,mass,twist);
 | 
			
		||||
    }
 | 
			
		||||
    theFFT.FFT_all_dim(out,prop_k,FFT::backward);
 | 
			
		||||
    
 | 
			
		||||
    //phase for boundary condition
 | 
			
		||||
    out = out * exp(ci*ph);
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {
 | 
			
		||||
    std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
 | 
			
		||||
    std::vector<Complex> boundary;
 | 
			
		||||
    for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions
 | 
			
		||||
    FreePropagator(in,out,mass,boundary,twist);
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  void set_qmu(std::vector<RealD> _qmu) { qmu=_qmu; assert(qmu.size()==Nd);};
 | 
			
		||||
  void addQmu(const FermionField &in, FermionField &out, int dag);
 | 
			
		||||
 | 
			
		||||
protected:
 | 
			
		||||
 | 
			
		||||
  virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale);
 | 
			
		||||
  virtual void SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata);
 | 
			
		||||
 | 
			
		||||
  std::vector<RealD> qmu;
 | 
			
		||||
 | 
			
		||||
  // Part frac
 | 
			
		||||
  RealD mass;
 | 
			
		||||
  RealD dw_diag;
 | 
			
		||||
  RealD R;
 | 
			
		||||
  RealD amax;
 | 
			
		||||
  RealD scale;
 | 
			
		||||
  Vector<double> p; 
 | 
			
		||||
  Vector<double> q;
 | 
			
		||||
  std::vector<double> p; 
 | 
			
		||||
  std::vector<double> q;
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -35,7 +35,7 @@ template<class Matrix, class Field>
 | 
			
		||||
class KappaSimilarityTransform {
 | 
			
		||||
public:
 | 
			
		||||
  INHERIT_IMPL_TYPES(Matrix);
 | 
			
		||||
  Vector<Coeff_t> kappa, kappaDag, kappaInv, kappaInvDag;
 | 
			
		||||
  std::vector<Coeff_t> kappa, kappaDag, kappaInv, kappaInvDag;
 | 
			
		||||
 | 
			
		||||
  KappaSimilarityTransform (Matrix &zmob) {
 | 
			
		||||
    for (int i=0;i<(int)zmob.bs.size();i++) {
 | 
			
		||||
 
 | 
			
		||||
@@ -141,9 +141,9 @@ public:
 | 
			
		||||
      Udag = Udag *phases;
 | 
			
		||||
 | 
			
		||||
	InsertGaugeField(Uds,U,mu);
 | 
			
		||||
	InsertGaugeField(Uds,Udag,mu+4);
 | 
			
		||||
	InsertGaugeField(Uds,Udag,mu+Nd);
 | 
			
		||||
	//	PokeIndex<LorentzIndex>(Uds, U, mu);
 | 
			
		||||
	//	PokeIndex<LorentzIndex>(Uds, Udag, mu + 4);
 | 
			
		||||
	//	PokeIndex<LorentzIndex>(Uds, Udag, mu + Nd);
 | 
			
		||||
 | 
			
		||||
      // 3 hop based on thin links. Crazy huh ?
 | 
			
		||||
      U  = PeekIndex<LorentzIndex>(Uthin, mu);
 | 
			
		||||
@@ -156,7 +156,7 @@ public:
 | 
			
		||||
      UUUdag = UUUdag *phases;
 | 
			
		||||
 | 
			
		||||
	InsertGaugeField(UUUds,UUU,mu);
 | 
			
		||||
	InsertGaugeField(UUUds,UUUdag,mu+4);
 | 
			
		||||
	InsertGaugeField(UUUds,UUUdag,mu+Nd);
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 
 | 
			
		||||
@@ -49,10 +49,10 @@ template<class Impl> class StaggeredKernels : public FermionOperator<Impl> , pub
 | 
			
		||||
   
 | 
			
		||||
 public:
 | 
			
		||||
 | 
			
		||||
  void DhopImproved(StencilImpl &st, LebesgueOrder &lo, 
 | 
			
		||||
  void DhopImproved(StencilImpl &st,
 | 
			
		||||
		    DoubledGaugeField &U, DoubledGaugeField &UUU, 
 | 
			
		||||
		    const FermionField &in, FermionField &out, int dag, int interior,int exterior);
 | 
			
		||||
  void DhopNaive(StencilImpl &st, LebesgueOrder &lo, 
 | 
			
		||||
  void DhopNaive(StencilImpl &st,
 | 
			
		||||
		 DoubledGaugeField &U,
 | 
			
		||||
		 const FermionField &in, FermionField &out, int dag, int interior,int exterior);
 | 
			
		||||
  
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										175
									
								
								Grid/qcd/action/fermion/TwoSpinWilsonFermion3plus1D.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										175
									
								
								Grid/qcd/action/fermion/TwoSpinWilsonFermion3plus1D.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,175 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/qcd/action/fermion/TwoSpinWilsonFermion3plus1D.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma one 
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
class TwoSpinWilsonFermion3plus1DStatic { 
 | 
			
		||||
public:
 | 
			
		||||
  // S-direction is INNERMOST and takes no part in the parity.
 | 
			
		||||
  static const std::vector<int> directions;
 | 
			
		||||
  static const std::vector<int> displacements;
 | 
			
		||||
  static constexpr int npoint = 6;
 | 
			
		||||
  static std::vector<int> MakeDirections(void);
 | 
			
		||||
  static std::vector<int> MakeDisplacements(void);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
class TwoSpinWilsonFermion3plus1D : public TwoSpinWilsonKernels<Impl>, public TwoSpinWilsonFermion3plus1DStatic
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
  typedef TwoSpinWilsonKernels<Impl> Kernels;
 | 
			
		||||
 | 
			
		||||
  FermionField _tmp;
 | 
			
		||||
  FermionField &tmp(void) { return _tmp; }
 | 
			
		||||
 | 
			
		||||
  int Dirichlet;
 | 
			
		||||
  Coordinate Block; 
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Implement the abstract base
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  GridBase *GaugeGrid(void)              { return _ThreeDimGrid ;}
 | 
			
		||||
  GridBase *GaugeRedBlackGrid(void)      { return _ThreeDimRedBlackGrid ;}
 | 
			
		||||
  GridBase *FermionGrid(void)            { return _FourDimGrid;}
 | 
			
		||||
  GridBase *FermionRedBlackGrid(void)    { return _FourDimRedBlackGrid;}
 | 
			
		||||
 | 
			
		||||
  // full checkerboard operations; leave unimplemented as abstract for now
 | 
			
		||||
  virtual void   M    (const FermionField &in, FermionField &out){assert(0);};
 | 
			
		||||
  virtual void   Mdag (const FermionField &in, FermionField &out){assert(0);};
 | 
			
		||||
 | 
			
		||||
  // half checkerboard operations; leave unimplemented as abstract for now
 | 
			
		||||
  virtual void   Meooe       (const FermionField &in, FermionField &out);
 | 
			
		||||
  virtual void   Mooee       (const FermionField &in, FermionField &out);
 | 
			
		||||
  virtual void   MooeeInv    (const FermionField &in, FermionField &out);
 | 
			
		||||
 | 
			
		||||
  virtual void   MeooeDag    (const FermionField &in, FermionField &out);
 | 
			
		||||
  virtual void   MooeeDag    (const FermionField &in, FermionField &out);
 | 
			
		||||
  virtual void   MooeeInvDag (const FermionField &in, FermionField &out);
 | 
			
		||||
  virtual void   Mdir   (const FermionField &in, FermionField &out,int dir,int disp){assert(0);};   // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
 | 
			
		||||
  virtual void   MdirAll(const FermionField &in, std::vector<FermionField> &out){assert(0);};   // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
 | 
			
		||||
 | 
			
		||||
  // These can be overridden by fancy 5d chiral action
 | 
			
		||||
  virtual void DhopDeriv  (GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
 | 
			
		||||
  virtual void DhopDerivEO(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
 | 
			
		||||
  virtual void DhopDerivOE(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
 | 
			
		||||
 | 
			
		||||
  //  void MomentumSpacePropagatorHt_5d(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
 | 
			
		||||
  void MomentumSpacePropagatorHt(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
 | 
			
		||||
  void MomentumSpacePropagatorHw(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
 | 
			
		||||
  
 | 
			
		||||
  // Implement hopping term non-hermitian hopping term; half cb or both
 | 
			
		||||
  // Implement s-diagonal DW
 | 
			
		||||
  void DW    (const FermionField &in, FermionField &out,int dag);
 | 
			
		||||
  void Dhop  (const FermionField &in, FermionField &out,int dag);
 | 
			
		||||
  void DhopOE(const FermionField &in, FermionField &out,int dag);
 | 
			
		||||
  void DhopEO(const FermionField &in, FermionField &out,int dag);
 | 
			
		||||
 | 
			
		||||
  void DhopComms  (const FermionField &in, FermionField &out);
 | 
			
		||||
  void DhopCalc   (const FermionField &in, FermionField &out,uint64_t *ids);
 | 
			
		||||
  
 | 
			
		||||
  // add a DhopComm
 | 
			
		||||
  // -- suboptimal interface will presently trigger multiple comms.
 | 
			
		||||
  void DhopDir(const FermionField &in, FermionField &out,int dir,int disp);
 | 
			
		||||
  void DhopDirAll(const FermionField &in,std::vector<FermionField> &out);
 | 
			
		||||
  void DhopDirComms(const FermionField &in);
 | 
			
		||||
  void DhopDirCalc(const FermionField &in, FermionField &out,int point);
 | 
			
		||||
    
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // New methods added 
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  void DerivInternal(StencilImpl & st,
 | 
			
		||||
		     DoubledGaugeField & U,
 | 
			
		||||
		     GaugeField &mat,
 | 
			
		||||
		     const FermionField &A,
 | 
			
		||||
		     const FermionField &B,
 | 
			
		||||
		     int dag);
 | 
			
		||||
    
 | 
			
		||||
  void DhopInternal(StencilImpl & st,
 | 
			
		||||
		    DoubledGaugeField &U,
 | 
			
		||||
		    const FermionField &in, 
 | 
			
		||||
		    FermionField &out,
 | 
			
		||||
		    int dag);
 | 
			
		||||
 | 
			
		||||
  void DhopInternalOverlappedComms(StencilImpl & st,
 | 
			
		||||
				   DoubledGaugeField &U,
 | 
			
		||||
				   const FermionField &in, 
 | 
			
		||||
				   FermionField &out,
 | 
			
		||||
				   int dag);
 | 
			
		||||
 | 
			
		||||
  void DhopInternalSerialComms(StencilImpl & st,
 | 
			
		||||
			       DoubledGaugeField &U,
 | 
			
		||||
			       const FermionField &in, 
 | 
			
		||||
			       FermionField &out,
 | 
			
		||||
			       int dag);
 | 
			
		||||
    
 | 
			
		||||
  // Constructors
 | 
			
		||||
  TwoSpinWilsonFermion3plus1D(GaugeField &_Umu,
 | 
			
		||||
		  GridCartesian         &FourDimGrid,
 | 
			
		||||
		  GridRedBlackCartesian &FourDimRedBlackGrid,
 | 
			
		||||
		  GridCartesian         &ThreeDimGrid,
 | 
			
		||||
		  GridRedBlackCartesian &ThreeDimRedBlackGrid,
 | 
			
		||||
		  double _M5,const ImplParams &p= ImplParams());
 | 
			
		||||
 | 
			
		||||
  virtual void DirichletBlock(const Coordinate & block)
 | 
			
		||||
  {
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  // DoubleStore
 | 
			
		||||
  void ImportGauge(const GaugeField &_Umu);
 | 
			
		||||
    
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Data members require to support the functionality
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
public:
 | 
			
		||||
    
 | 
			
		||||
  // Add these to the support from Wilson
 | 
			
		||||
  GridBase *_ThreeDimGrid;
 | 
			
		||||
  GridBase *_ThreeDimRedBlackGrid;
 | 
			
		||||
  GridBase *_FourDimGrid;
 | 
			
		||||
  GridBase *_FourDimRedBlackGrid;
 | 
			
		||||
    
 | 
			
		||||
  double                        M5;
 | 
			
		||||
  int Ls;
 | 
			
		||||
    
 | 
			
		||||
  //Defines the stencils for even and odd
 | 
			
		||||
  StencilImpl Stencil; 
 | 
			
		||||
  StencilImpl StencilEven; 
 | 
			
		||||
  StencilImpl StencilOdd; 
 | 
			
		||||
    
 | 
			
		||||
  // Copy of the gauge field , with even and odd subsets
 | 
			
		||||
  DoubledGaugeField Umu;
 | 
			
		||||
  DoubledGaugeField UmuEven;
 | 
			
		||||
  DoubledGaugeField UmuOdd;
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										222
									
								
								Grid/qcd/action/fermion/TwoSpinWilsonImpl.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										222
									
								
								Grid/qcd/action/fermion/TwoSpinWilsonImpl.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,222 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/action/fermion/FermionOperatorImpl.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
			   /*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Single flavour four spinors with colour index
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template <class S, class Representation = FundamentalRepresentation,class Options = CoeffReal >
 | 
			
		||||
class TwoSpinWilsonImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation::Dimension > > {
 | 
			
		||||
public:
 | 
			
		||||
  
 | 
			
		||||
  static const int Dimension = Representation::Dimension;
 | 
			
		||||
  static const bool isFundamental = Representation::isFundamental;
 | 
			
		||||
 | 
			
		||||
  typedef PeriodicGaugeImpl<GaugeImplTypes<S, Dimension > > Gimpl;
 | 
			
		||||
  INHERIT_GIMPL_TYPES(Gimpl);
 | 
			
		||||
      
 | 
			
		||||
  //Necessary?
 | 
			
		||||
  constexpr bool is_fundamental() const{return Dimension == Nc ? 1 : 0;}
 | 
			
		||||
    
 | 
			
		||||
  typedef typename Options::_Coeff_t Coeff_t;
 | 
			
		||||
      
 | 
			
		||||
  template <typename vtype> using iImplSpinor            = iScalar<iVector<iVector<vtype, Dimension>, Nhs> >;
 | 
			
		||||
  template <typename vtype> using iImplPropagator        = iScalar<iMatrix<iMatrix<vtype, Dimension>, Nhs> >;
 | 
			
		||||
  template <typename vtype> using iImplHalfSpinor        = iScalar<iVector<iVector<vtype, Dimension>, Nhs> >;
 | 
			
		||||
  template <typename vtype> using iImplHalfCommSpinor    = iScalar<iVector<iVector<vtype, Dimension>, Nhs> >;
 | 
			
		||||
  template <typename vtype> using iImplDoubledGaugeField = iVector<iScalar<iMatrix<vtype, Dimension> >, Nds>;
 | 
			
		||||
    
 | 
			
		||||
  typedef iImplSpinor<Simd>            SiteSpinor;
 | 
			
		||||
  typedef iImplPropagator<Simd>        SitePropagator;
 | 
			
		||||
  typedef iImplHalfSpinor<Simd>        SiteHalfSpinor;
 | 
			
		||||
  typedef iImplHalfCommSpinor<Simd>    SiteHalfCommSpinor;
 | 
			
		||||
  typedef iImplDoubledGaugeField<Simd> SiteDoubledGaugeField;
 | 
			
		||||
    
 | 
			
		||||
  typedef Lattice<SiteSpinor>            FermionField;
 | 
			
		||||
  typedef Lattice<SitePropagator>        PropagatorField;
 | 
			
		||||
  typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
 | 
			
		||||
    
 | 
			
		||||
  typedef SimpleCompressor<SiteSpinor> Compressor;
 | 
			
		||||
  typedef WilsonImplParams ImplParams;
 | 
			
		||||
  typedef CartesianStencil<SiteSpinor, SiteSpinor, ImplParams> StencilImpl;
 | 
			
		||||
  typedef const typename StencilImpl::View_type StencilView;
 | 
			
		||||
    
 | 
			
		||||
  ImplParams Params;
 | 
			
		||||
 | 
			
		||||
  TwoSpinWilsonImpl(const ImplParams &p = ImplParams()) : Params(p){
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  template<class _Spinor>
 | 
			
		||||
  static accelerator_inline void multLink(_Spinor &phi,
 | 
			
		||||
					  const SiteDoubledGaugeField &U,
 | 
			
		||||
					  const _Spinor &chi,
 | 
			
		||||
					  int mu) 
 | 
			
		||||
  {
 | 
			
		||||
    auto UU = coalescedRead(U(mu));
 | 
			
		||||
    mult(&phi(), &UU, &chi());
 | 
			
		||||
  }
 | 
			
		||||
  template<class _Spinor>
 | 
			
		||||
  static accelerator_inline void multLink(_Spinor &phi,
 | 
			
		||||
					  const SiteDoubledGaugeField &U,
 | 
			
		||||
					  const _Spinor &chi,
 | 
			
		||||
					  int mu,
 | 
			
		||||
					  StencilEntry *SE,
 | 
			
		||||
					  StencilView &St) 
 | 
			
		||||
  {
 | 
			
		||||
    multLink(phi,U,chi,mu);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class _SpinorField> 
 | 
			
		||||
  inline void multLinkField(_SpinorField & out,
 | 
			
		||||
			    const DoubledGaugeField &Umu,
 | 
			
		||||
			    const _SpinorField & phi,
 | 
			
		||||
			    int mu)
 | 
			
		||||
  {
 | 
			
		||||
    const int Nsimd = SiteHalfSpinor::Nsimd();
 | 
			
		||||
    autoView( out_v, out, AcceleratorWrite);
 | 
			
		||||
    autoView( phi_v, phi, AcceleratorRead);
 | 
			
		||||
    autoView( Umu_v, Umu, AcceleratorRead);
 | 
			
		||||
    typedef decltype(coalescedRead(out_v[0]))   calcSpinor;
 | 
			
		||||
    accelerator_for(sss,out.Grid()->oSites(),Nsimd,{
 | 
			
		||||
	calcSpinor tmp;
 | 
			
		||||
	multLink(tmp,Umu_v[sss],phi_v(sss),mu);
 | 
			
		||||
	coalescedWrite(out_v[sss],tmp);
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
					   
 | 
			
		||||
  template <class ref>
 | 
			
		||||
  static accelerator_inline void loadLinkElement(Simd ®, ref &memory) 
 | 
			
		||||
  {
 | 
			
		||||
    reg = memory;
 | 
			
		||||
  }
 | 
			
		||||
      
 | 
			
		||||
  inline void DoubleStore(GridBase *GaugeGrid,
 | 
			
		||||
			  DoubledGaugeField &Uds,
 | 
			
		||||
			  const GaugeField &Umu) 
 | 
			
		||||
  {
 | 
			
		||||
    typedef typename Simd::scalar_type scalar_type;
 | 
			
		||||
 | 
			
		||||
    conformable(Uds.Grid(), GaugeGrid);
 | 
			
		||||
    conformable(Umu.Grid(), GaugeGrid);
 | 
			
		||||
 | 
			
		||||
    GaugeLinkField U(GaugeGrid);
 | 
			
		||||
    GaugeLinkField tmp(GaugeGrid);
 | 
			
		||||
 | 
			
		||||
    Lattice<iScalar<vInteger> > coor(GaugeGrid);
 | 
			
		||||
      ////////////////////////////////////////////////////
 | 
			
		||||
      // apply any boundary phase or twists
 | 
			
		||||
      ////////////////////////////////////////////////////
 | 
			
		||||
    for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
 | 
			
		||||
	////////// boundary phase /////////////
 | 
			
		||||
      auto pha = Params.boundary_phases[mu];
 | 
			
		||||
      scalar_type phase( real(pha),imag(pha) );
 | 
			
		||||
 | 
			
		||||
	int L   = GaugeGrid->GlobalDimensions()[mu];
 | 
			
		||||
        int Lmu = L - 1;
 | 
			
		||||
 | 
			
		||||
      LatticeCoordinate(coor, mu);
 | 
			
		||||
 | 
			
		||||
      U = PeekIndex<LorentzIndex>(Umu, mu);
 | 
			
		||||
 | 
			
		||||
	// apply any twists
 | 
			
		||||
	RealD theta = Params.twist_n_2pi_L[mu] * 2*M_PI / L;
 | 
			
		||||
	if ( theta != 0.0) { 
 | 
			
		||||
	  scalar_type twphase(::cos(theta),::sin(theta));
 | 
			
		||||
	  U = twphase*U;
 | 
			
		||||
	  std::cout << GridLogMessage << " Twist ["<<mu<<"] "<< Params.twist_n_2pi_L[mu]<< " phase"<<phase <<std::endl;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
      tmp = where(coor == Lmu, phase * U, U);
 | 
			
		||||
      PokeIndex<LorentzIndex>(Uds, tmp, mu);
 | 
			
		||||
 | 
			
		||||
      U = adj(Cshift(U, mu, -1));
 | 
			
		||||
      U = where(coor == 0, conjugate(phase) * U, U); 
 | 
			
		||||
      PokeIndex<LorentzIndex>(Uds, U, mu + Nd);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A,int mu){
 | 
			
		||||
    GaugeLinkField link(mat.Grid());
 | 
			
		||||
    link = TraceIndex<SpinIndex>(outerProduct(Btilde,A)); 
 | 
			
		||||
    PokeIndex<LorentzIndex>(mat,link,mu);
 | 
			
		||||
  }   
 | 
			
		||||
      
 | 
			
		||||
    inline void outerProductImpl(PropagatorField &mat, const FermionField &B, const FermionField &A){
 | 
			
		||||
      mat = outerProduct(B,A); 
 | 
			
		||||
    }  
 | 
			
		||||
 | 
			
		||||
    inline void TraceSpinImpl(GaugeLinkField &mat, PropagatorField&P) {
 | 
			
		||||
      mat = TraceIndex<SpinIndex>(P); 
 | 
			
		||||
    }
 | 
			
		||||
      
 | 
			
		||||
    inline void extractLinkField(std::vector<GaugeLinkField> &mat, DoubledGaugeField &Uds)
 | 
			
		||||
    {
 | 
			
		||||
      for (int mu = 0; mu < Nd; mu++)
 | 
			
		||||
      mat[mu] = PeekIndex<LorentzIndex>(Uds, mu);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField Ã,int mu)
 | 
			
		||||
  {
 | 
			
		||||
    int Ls=Btilde.Grid()->_fdimensions[0];
 | 
			
		||||
    autoView( mat_v , mat, AcceleratorWrite);
 | 
			
		||||
    {
 | 
			
		||||
      const int Nsimd = SiteSpinor::Nsimd();
 | 
			
		||||
      autoView( Btilde_v , Btilde, AcceleratorRead);
 | 
			
		||||
      autoView( Atilde_v , Atilde, AcceleratorRead);
 | 
			
		||||
      accelerator_for(sss,mat.Grid()->oSites(),Nsimd,{
 | 
			
		||||
	  int sU=sss;
 | 
			
		||||
  	  typedef decltype(coalescedRead(mat_v[sU](mu)() )) ColorMatrixType;
 | 
			
		||||
  	  ColorMatrixType sum;
 | 
			
		||||
	  zeroit(sum);  
 | 
			
		||||
	  for(int s=0;s<Ls;s++){
 | 
			
		||||
	    int sF = s+Ls*sU;
 | 
			
		||||
  	    for(int spn=0;spn<Ns;spn++){ //sum over spin
 | 
			
		||||
  	      auto bb = coalescedRead(Btilde_v[sF]()(spn) ); //color vector
 | 
			
		||||
  	      auto aa = coalescedRead(Atilde_v[sF]()(spn) );
 | 
			
		||||
	      auto op = outerProduct(bb,aa);
 | 
			
		||||
  	      sum = sum + op;
 | 
			
		||||
	    }
 | 
			
		||||
	  }
 | 
			
		||||
  	  coalescedWrite(mat_v[sU](mu)(), sum);
 | 
			
		||||
      });
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
typedef TwoSpinWilsonImpl<vComplex,  FundamentalRepresentation, CoeffReal > TwoSpinWilsonImplR;  // Real.. whichever prec
 | 
			
		||||
typedef TwoSpinWilsonImpl<vComplexF, FundamentalRepresentation, CoeffReal > TwoSpinWilsonImplF;  // Float
 | 
			
		||||
typedef TwoSpinWilsonImpl<vComplexD, FundamentalRepresentation, CoeffReal > TwoSpinWilsonImplD;  // Double
 | 
			
		||||
typedef TwoSpinWilsonImpl<vComplexD2, FundamentalRepresentation, CoeffReal > TwoSpinWilsonImplD2;  // Double
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
							
								
								
									
										84
									
								
								Grid/qcd/action/fermion/TwoSpinWilsonKernels.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										84
									
								
								Grid/qcd/action/fermion/TwoSpinWilsonKernels.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,84 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/action/fermion/WilsonKernels.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
			   /*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Helper routines that implement Wilson stencil for a single site.
 | 
			
		||||
// Common to both the WilsonFermion and WilsonFermion5D
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
template<class Impl> class TwoSpinWilsonKernels : public FermionOperator<Impl>  { 
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
  typedef FermionOperator<Impl> Base;
 | 
			
		||||
  typedef AcceleratorVector<int,STENCIL_MAX> StencilVector;   
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  static void DhopKernel(StencilImpl &st,  DoubledGaugeField &U, SiteSpinor * buf,
 | 
			
		||||
			 int Ls, int Nsite, const FermionField &in, FermionField &out,
 | 
			
		||||
			 int interior=1,int exterior=1) ;
 | 
			
		||||
 | 
			
		||||
  static void DhopKernel(StencilImpl &st,  DoubledGaugeField &U, SiteSpinor * buf,
 | 
			
		||||
			 int Ls, int Nsite, const FermionField &in, FermionField &out,
 | 
			
		||||
			 uint64_t *ids);
 | 
			
		||||
  
 | 
			
		||||
  static void DhopDagKernel(StencilImpl &st,  DoubledGaugeField &U, SiteSpinor * buf,
 | 
			
		||||
			    int Ls, int Nsite, const FermionField &in, FermionField &out,
 | 
			
		||||
			    int interior=1,int exterior=1) ;
 | 
			
		||||
 | 
			
		||||
  static void DhopDirAll( StencilImpl &st, DoubledGaugeField &U,SiteSpinor *buf, int Ls,
 | 
			
		||||
			  int Nsite, const FermionField &in, std::vector<FermionField> &out) ;
 | 
			
		||||
 | 
			
		||||
  static void DhopDirKernel(StencilImpl &st, DoubledGaugeField &U,SiteSpinor * buf,
 | 
			
		||||
			    int Ls, int Nsite, const FermionField &in, FermionField &out, int dirdisp, int gamma);
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
 | 
			
		||||
  static accelerator_inline void DhopDirK(StencilView &st, DoubledGaugeFieldView &U,SiteSpinor * buf,
 | 
			
		||||
				   int sF, int sU, const FermionFieldView &in, FermionFieldView &out, int dirdisp, int gamma);
 | 
			
		||||
 | 
			
		||||
  static accelerator_inline void DhopDirXp(StencilView &st,DoubledGaugeFieldView &U,SiteSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
 | 
			
		||||
  static accelerator_inline void DhopDirYp(StencilView &st,DoubledGaugeFieldView &U,SiteSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
 | 
			
		||||
  static accelerator_inline void DhopDirZp(StencilView &st,DoubledGaugeFieldView &U,SiteSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
 | 
			
		||||
  static accelerator_inline void DhopDirXm(StencilView &st,DoubledGaugeFieldView &U,SiteSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
 | 
			
		||||
  static accelerator_inline void DhopDirYm(StencilView &st,DoubledGaugeFieldView &U,SiteSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
 | 
			
		||||
  static accelerator_inline void DhopDirZm(StencilView &st,DoubledGaugeFieldView &U,SiteSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
 | 
			
		||||
 | 
			
		||||
 public:
 | 
			
		||||
  TwoSpinWilsonKernels(const ImplParams &p = ImplParams()) : Base(p){};
 | 
			
		||||
};
 | 
			
		||||
    
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -47,7 +47,7 @@ public:
 | 
			
		||||
  static int PartialCompressionFactor(GridBase *grid) { return 1;}
 | 
			
		||||
#endif
 | 
			
		||||
  template<class vobj,class cobj,class compressor>
 | 
			
		||||
  static void Gather_plane_simple (commVector<std::pair<int,int> >& table,
 | 
			
		||||
  static void Gather_plane_simple (deviceVector<std::pair<int,int> >& table,
 | 
			
		||||
				   const Lattice<vobj> &rhs,
 | 
			
		||||
				   cobj *buffer,
 | 
			
		||||
				   compressor &compress,
 | 
			
		||||
@@ -109,7 +109,7 @@ public:
 | 
			
		||||
  // Reorder the fifth dim to be s=Ls-1 , s=0, s=1,...,Ls-2.
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  template<class vobj,class cobj,class compressor>
 | 
			
		||||
  static void Gather_plane_exchange(commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
 | 
			
		||||
  static void Gather_plane_exchange(deviceVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
 | 
			
		||||
				    std::vector<cobj *> pointers,int dimension,int plane,int cbmask,
 | 
			
		||||
				    compressor &compress,int type,int partial)
 | 
			
		||||
  {
 | 
			
		||||
@@ -197,7 +197,7 @@ public:
 | 
			
		||||
#endif
 | 
			
		||||
  
 | 
			
		||||
  template<class vobj,class cobj,class compressor>
 | 
			
		||||
  static void Gather_plane_simple (commVector<std::pair<int,int> >& table,
 | 
			
		||||
  static void Gather_plane_simple (deviceVector<std::pair<int,int> >& table,
 | 
			
		||||
					 const Lattice<vobj> &rhs,
 | 
			
		||||
					 cobj *buffer,
 | 
			
		||||
					 compressor &compress,
 | 
			
		||||
@@ -208,7 +208,7 @@ public:
 | 
			
		||||
    else        FaceGatherSimple::Gather_plane_simple(table,rhs,buffer,compress,off,so,partial);
 | 
			
		||||
  }
 | 
			
		||||
  template<class vobj,class cobj,class compressor>
 | 
			
		||||
  static void Gather_plane_exchange(commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
 | 
			
		||||
  static void Gather_plane_exchange(deviceVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
 | 
			
		||||
				    std::vector<cobj *> pointers,int dimension,int plane,int cbmask,
 | 
			
		||||
				    compressor &compress,int type,int partial)
 | 
			
		||||
  {
 | 
			
		||||
@@ -402,7 +402,6 @@ public:
 | 
			
		||||
 | 
			
		||||
  typedef CartesianStencil<vobj,cobj,Parameters> Base;
 | 
			
		||||
  typedef typename Base::View_type View_type;
 | 
			
		||||
  typedef typename Base::StencilVector StencilVector;
 | 
			
		||||
 | 
			
		||||
  //  Vector<int> surface_list;
 | 
			
		||||
  WilsonStencil(GridBase *grid,
 | 
			
		||||
@@ -415,29 +414,6 @@ public:
 | 
			
		||||
    //    surface_list.resize(0);
 | 
			
		||||
    this->same_node.resize(npoints);
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
  void BuildSurfaceList(int Ls,int vol4){
 | 
			
		||||
 | 
			
		||||
    // find same node for SHM
 | 
			
		||||
    // Here we know the distance is 1 for WilsonStencil
 | 
			
		||||
    for(int point=0;point<this->_npoints;point++){
 | 
			
		||||
      this->same_node[point] = this->SameNode(point);
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    for(int site = 0 ;site< vol4;site++){
 | 
			
		||||
      int local = 1;
 | 
			
		||||
      for(int point=0;point<this->_npoints;point++){
 | 
			
		||||
	if( (!this->GetNodeLocal(site*Ls,point)) && (!this->same_node[point]) ){ 
 | 
			
		||||
	  local = 0;
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      if(local == 0) { 
 | 
			
		||||
	surface_list.push_back(site);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  */
 | 
			
		||||
  
 | 
			
		||||
  template < class compressor>
 | 
			
		||||
  void HaloExchangeOpt(const Lattice<vobj> &source,compressor &compress) 
 | 
			
		||||
@@ -508,6 +484,11 @@ public:
 | 
			
		||||
    this->face_table_computed=1;
 | 
			
		||||
    assert(this->u_comm_offset==this->_unified_buffer_size);
 | 
			
		||||
    accelerator_barrier();
 | 
			
		||||
#ifdef NVLINK_GET
 | 
			
		||||
    this->_grid->StencilBarrier(); // He can now get mu local gather, I can get his
 | 
			
		||||
    // Synch shared memory on a single nodes; could use an asynchronous barrier here and defer check
 | 
			
		||||
    // Or issue barrier AFTER the DMA is running
 | 
			
		||||
#endif    
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 
 | 
			
		||||
@@ -38,6 +38,8 @@ public:
 | 
			
		||||
  static int MortonOrder;
 | 
			
		||||
  static const std::vector<int> directions;
 | 
			
		||||
  static const std::vector<int> displacements;
 | 
			
		||||
  static std::vector<int> MakeDirections(void);
 | 
			
		||||
  static std::vector<int> MakeDisplacements(void);
 | 
			
		||||
  static const int npoint = 8;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
@@ -126,14 +128,17 @@ public:
 | 
			
		||||
  void DerivInternal(StencilImpl &st, DoubledGaugeField &U, GaugeField &mat,
 | 
			
		||||
                     const FermionField &A, const FermionField &B, int dag);
 | 
			
		||||
 | 
			
		||||
  void DhopInternal(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
 | 
			
		||||
  void DhopInternal(StencilImpl &st,
 | 
			
		||||
		    DoubledGaugeField &U,
 | 
			
		||||
                    const FermionField &in, FermionField &out, int dag);
 | 
			
		||||
 | 
			
		||||
  void DhopInternalSerial(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
 | 
			
		||||
                    const FermionField &in, FermionField &out, int dag);
 | 
			
		||||
  void DhopInternalSerial(StencilImpl &st,
 | 
			
		||||
			  DoubledGaugeField &U,
 | 
			
		||||
			  const FermionField &in, FermionField &out, int dag);
 | 
			
		||||
 | 
			
		||||
  void DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
 | 
			
		||||
                    const FermionField &in, FermionField &out, int dag);
 | 
			
		||||
  void DhopInternalOverlappedComms(StencilImpl &st,
 | 
			
		||||
				   DoubledGaugeField &U,
 | 
			
		||||
				   const FermionField &in, FermionField &out, int dag);
 | 
			
		||||
 | 
			
		||||
  // Constructor
 | 
			
		||||
  WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
 | 
			
		||||
@@ -168,9 +173,6 @@ public:
 | 
			
		||||
  DoubledGaugeField UmuEven;
 | 
			
		||||
  DoubledGaugeField UmuOdd;
 | 
			
		||||
 | 
			
		||||
  LebesgueOrder Lebesgue;
 | 
			
		||||
  LebesgueOrder LebesgueEvenOdd;
 | 
			
		||||
 | 
			
		||||
  WilsonAnisotropyCoefficients anisotropyCoeff;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -62,6 +62,8 @@ public:
 | 
			
		||||
  static const std::vector<int> directions;
 | 
			
		||||
  static const std::vector<int> displacements;
 | 
			
		||||
  static constexpr int npoint = 8;
 | 
			
		||||
  static std::vector<int> MakeDirections(void);
 | 
			
		||||
  static std::vector<int> MakeDisplacements(void);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
@@ -91,13 +93,13 @@ public:
 | 
			
		||||
  virtual void   Mdag (const FermionField &in, FermionField &out){assert(0);};
 | 
			
		||||
 | 
			
		||||
  // half checkerboard operations; leave unimplemented as abstract for now
 | 
			
		||||
  virtual void   Meooe       (const FermionField &in, FermionField &out){assert(0);};
 | 
			
		||||
  virtual void   Mooee       (const FermionField &in, FermionField &out){assert(0);};
 | 
			
		||||
  virtual void   MooeeInv    (const FermionField &in, FermionField &out){assert(0);};
 | 
			
		||||
  virtual void   Meooe       (const FermionField &in, FermionField &out);
 | 
			
		||||
  virtual void   Mooee       (const FermionField &in, FermionField &out);
 | 
			
		||||
  virtual void   MooeeInv    (const FermionField &in, FermionField &out);
 | 
			
		||||
 | 
			
		||||
  virtual void   MeooeDag    (const FermionField &in, FermionField &out){assert(0);};
 | 
			
		||||
  virtual void   MooeeDag    (const FermionField &in, FermionField &out){assert(0);};
 | 
			
		||||
  virtual void   MooeeInvDag (const FermionField &in, FermionField &out){assert(0);};
 | 
			
		||||
  virtual void   MeooeDag    (const FermionField &in, FermionField &out);
 | 
			
		||||
  virtual void   MooeeDag    (const FermionField &in, FermionField &out);
 | 
			
		||||
  virtual void   MooeeInvDag (const FermionField &in, FermionField &out);
 | 
			
		||||
  virtual void   Mdir   (const FermionField &in, FermionField &out,int dir,int disp){assert(0);};   // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
 | 
			
		||||
  virtual void   MdirAll(const FermionField &in, std::vector<FermionField> &out){assert(0);};   // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
 | 
			
		||||
 | 
			
		||||
@@ -109,6 +111,8 @@ public:
 | 
			
		||||
  void MomentumSpacePropagatorHt_5d(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
 | 
			
		||||
  void MomentumSpacePropagatorHt(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
 | 
			
		||||
  void MomentumSpacePropagatorHw(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
 | 
			
		||||
  void MomentumSpacePropagatorHwQ(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist,
 | 
			
		||||
				  std::vector<double> qmu) ;
 | 
			
		||||
 | 
			
		||||
  // Implement hopping term non-hermitian hopping term; half cb or both
 | 
			
		||||
  // Implement s-diagonal DW
 | 
			
		||||
@@ -117,6 +121,9 @@ public:
 | 
			
		||||
  void DhopOE(const FermionField &in, FermionField &out,int dag);
 | 
			
		||||
  void DhopEO(const FermionField &in, FermionField &out,int dag);
 | 
			
		||||
 | 
			
		||||
  void DhopComms  (const FermionField &in, FermionField &out);
 | 
			
		||||
  void DhopCalc   (const FermionField &in, FermionField &out,uint64_t *ids);
 | 
			
		||||
  
 | 
			
		||||
  // add a DhopComm
 | 
			
		||||
  // -- suboptimal interface will presently trigger multiple comms.
 | 
			
		||||
  void DhopDir(const FermionField &in, FermionField &out,int dir,int disp);
 | 
			
		||||
@@ -135,21 +142,18 @@ public:
 | 
			
		||||
		     int dag);
 | 
			
		||||
    
 | 
			
		||||
  void DhopInternal(StencilImpl & st,
 | 
			
		||||
		    LebesgueOrder &lo,
 | 
			
		||||
		    DoubledGaugeField &U,
 | 
			
		||||
		    const FermionField &in, 
 | 
			
		||||
		    FermionField &out,
 | 
			
		||||
		    int dag);
 | 
			
		||||
 | 
			
		||||
  void DhopInternalOverlappedComms(StencilImpl & st,
 | 
			
		||||
				   LebesgueOrder &lo,
 | 
			
		||||
				   DoubledGaugeField &U,
 | 
			
		||||
				   const FermionField &in, 
 | 
			
		||||
				   FermionField &out,
 | 
			
		||||
				   int dag);
 | 
			
		||||
 | 
			
		||||
  void DhopInternalSerialComms(StencilImpl & st,
 | 
			
		||||
			       LebesgueOrder &lo,
 | 
			
		||||
			       DoubledGaugeField &U,
 | 
			
		||||
			       const FermionField &in, 
 | 
			
		||||
			       FermionField &out,
 | 
			
		||||
@@ -203,9 +207,6 @@ public:
 | 
			
		||||
  DoubledGaugeField UmuEven;
 | 
			
		||||
  DoubledGaugeField UmuOdd;
 | 
			
		||||
    
 | 
			
		||||
  LebesgueOrder Lebesgue;
 | 
			
		||||
  LebesgueOrder LebesgueEvenOdd;
 | 
			
		||||
    
 | 
			
		||||
  // Comms buffer
 | 
			
		||||
  //  std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> >  comm_buf;
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -166,7 +166,7 @@ public:
 | 
			
		||||
 | 
			
		||||
      U = adj(Cshift(U, mu, -1));
 | 
			
		||||
      U = where(coor == 0, conjugate(phase) * U, U); 
 | 
			
		||||
      PokeIndex<LorentzIndex>(Uds, U, mu + 4);
 | 
			
		||||
      PokeIndex<LorentzIndex>(Uds, U, mu + Nd);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -57,6 +57,10 @@ public:
 | 
			
		||||
			 int Ls, int Nsite, const FermionField &in, FermionField &out,
 | 
			
		||||
			 int interior=1,int exterior=1) ;
 | 
			
		||||
 | 
			
		||||
  static void DhopKernel(int Opt,StencilImpl &st,  DoubledGaugeField &U, SiteHalfSpinor * buf,
 | 
			
		||||
			 int Ls, int Nsite, const FermionField &in, FermionField &out,
 | 
			
		||||
			 uint64_t *ids);
 | 
			
		||||
  
 | 
			
		||||
  static void DhopDagKernel(int Opt,StencilImpl &st,  DoubledGaugeField &U, SiteHalfSpinor * buf,
 | 
			
		||||
			    int Ls, int Nsite, const FermionField &in, FermionField &out,
 | 
			
		||||
			    int interior=1,int exterior=1) ;
 | 
			
		||||
 
 | 
			
		||||
@@ -56,7 +56,7 @@ class WilsonTMFermion5D : public WilsonFermion5D<Impl>
 | 
			
		||||
			Frbgrid,
 | 
			
		||||
			Ugrid,
 | 
			
		||||
			Urbgrid,
 | 
			
		||||
			4.0,p)
 | 
			
		||||
			Nd*1.0,p)
 | 
			
		||||
   
 | 
			
		||||
    {
 | 
			
		||||
      update(_mass,_mu);
 | 
			
		||||
@@ -83,7 +83,7 @@ class WilsonTMFermion5D : public WilsonFermion5D<Impl>
 | 
			
		||||
    out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
    //axpibg5x(out,in,a,b); // out = a*in + b*i*G5*in
 | 
			
		||||
    for (int s=0;s<(int)this->mass.size();s++) {
 | 
			
		||||
      ComplexD a = 4.0+this->mass[s];
 | 
			
		||||
      ComplexD a = Nd*1.0+this->mass[s];
 | 
			
		||||
      ComplexD b(0.0,this->mu[s]);
 | 
			
		||||
      axpbg5y_ssp(out,a,in,b,in,s,s);
 | 
			
		||||
    }
 | 
			
		||||
@@ -92,7 +92,7 @@ class WilsonTMFermion5D : public WilsonFermion5D<Impl>
 | 
			
		||||
  virtual void MooeeDag(const FermionField &in, FermionField &out) {
 | 
			
		||||
    out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
    for (int s=0;s<(int)this->mass.size();s++) {
 | 
			
		||||
      ComplexD a = 4.0+this->mass[s];
 | 
			
		||||
      ComplexD a = Nd*1.0+this->mass[s];
 | 
			
		||||
      ComplexD b(0.0,-this->mu[s]);
 | 
			
		||||
      axpbg5y_ssp(out,a,in,b,in,s,s);
 | 
			
		||||
    }
 | 
			
		||||
@@ -101,7 +101,7 @@ class WilsonTMFermion5D : public WilsonFermion5D<Impl>
 | 
			
		||||
    for (int s=0;s<(int)this->mass.size();s++) {
 | 
			
		||||
      RealD m    = this->mass[s];
 | 
			
		||||
      RealD tm   = this->mu[s];
 | 
			
		||||
      RealD mtil = 4.0+this->mass[s];
 | 
			
		||||
      RealD mtil = Nd*1.0+this->mass[s];
 | 
			
		||||
      RealD sq   = mtil*mtil+tm*tm;
 | 
			
		||||
      ComplexD a    = mtil/sq;
 | 
			
		||||
      ComplexD b(0.0, -tm /sq);
 | 
			
		||||
@@ -112,7 +112,7 @@ class WilsonTMFermion5D : public WilsonFermion5D<Impl>
 | 
			
		||||
    for (int s=0;s<(int)this->mass.size();s++) {
 | 
			
		||||
      RealD m    = this->mass[s];
 | 
			
		||||
      RealD tm   = this->mu[s];
 | 
			
		||||
      RealD mtil = 4.0+this->mass[s];
 | 
			
		||||
      RealD mtil = Nd*1.0+this->mass[s];
 | 
			
		||||
      RealD sq   = mtil*mtil+tm*tm;
 | 
			
		||||
      ComplexD a    = mtil/sq;
 | 
			
		||||
      ComplexD b(0.0,tm /sq);
 | 
			
		||||
@@ -126,7 +126,7 @@ class WilsonTMFermion5D : public WilsonFermion5D<Impl>
 | 
			
		||||
    this->Dhop(in, out, DaggerNo);
 | 
			
		||||
    FermionField tmp(out.Grid());
 | 
			
		||||
    for (int s=0;s<(int)this->mass.size();s++) {
 | 
			
		||||
      ComplexD a = 4.0+this->mass[s];
 | 
			
		||||
      ComplexD a = Nd*1.0+this->mass[s];
 | 
			
		||||
      ComplexD b(0.0,this->mu[s]);
 | 
			
		||||
      axpbg5y_ssp(tmp,a,in,b,in,s,s);
 | 
			
		||||
    }
 | 
			
		||||
 
 | 
			
		||||
@@ -58,7 +58,7 @@ public:
 | 
			
		||||
  {
 | 
			
		||||
    //    RealD eps = 1.0;
 | 
			
		||||
    std::cout<<GridLogMessage << "ZMobiusFermion (b="<<b<<",c="<<c<<") with Ls= "<<this->Ls<<" gamma passed in"<<std::endl;
 | 
			
		||||
    Vector<Coeff_t> zgamma(this->Ls);
 | 
			
		||||
    std::vector<Coeff_t> zgamma(this->Ls);
 | 
			
		||||
    for(int s=0;s<this->Ls;s++){
 | 
			
		||||
      zgamma[s] = gamma[s];
 | 
			
		||||
    }
 | 
			
		||||
 
 | 
			
		||||
@@ -1,3 +1,5 @@
 | 
			
		||||
#if 0
 | 
			
		||||
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
@@ -818,3 +820,5 @@ CayleyFermion5D<Impl>::MooeeInternal(const FermionField &psi, FermionField &chi,
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
Some files were not shown because too many files have changed in this diff Show More
		Reference in New Issue
	
	Block a user