1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-13 20:57:06 +01:00

Compare commits

..

1 Commits

Author SHA1 Message Date
ac1d655de8 Const correctness patch 2018-11-19 10:38:36 +00:00
1017 changed files with 79861 additions and 73969 deletions

1
.gitignore vendored
View File

@ -114,4 +114,3 @@ gh-pages/
#####################
Grid/qcd/spin/gamma-gen/*.h
Grid/qcd/spin/gamma-gen/*.cc
Grid/util/Version.h

View File

@ -9,6 +9,11 @@ matrix:
- os: osx
osx_image: xcode8.3
compiler: clang
env: PREC=single
- os: osx
osx_image: xcode8.3
compiler: clang
env: PREC=double
before_install:
- export GRIDDIR=`pwd`
@ -50,7 +55,7 @@ script:
- make -j4
- make install
- cd $CWD/build
- ../configure --enable-simd=SSE4 --enable-comms=none --with-lime=$CWD/build/lime/install ${EXTRACONF}
- ../configure --enable-precision=$PREC --enable-simd=SSE4 --enable-comms=none --with-lime=$CWD/build/lime/install ${EXTRACONF}
- make -j4
- ./benchmarks/Benchmark_dwf --threads 1 --debug-signals
- make check

View File

@ -1,5 +0,0 @@
Version : 0.8.0
- Clang 3.5 and above, ICPC v16 and above, GCC 6.3 and above recommended
- MPI and MPI3 comms optimisations for KNL and OPA finished
- Half precision comms

View File

@ -30,36 +30,8 @@ directory
#ifndef DISABLE_WARNINGS_H
#define DISABLE_WARNINGS_H
#if defined __GNUC__ && __GNUC__>=6
#pragma GCC diagnostic ignored "-Wignored-attributes"
#endif
//disables and intel compiler specific warning (in json.hpp)
#ifdef __ICC
#pragma warning disable 488
#endif
#ifdef __NVCC__
//disables nvcc specific warning in json.hpp
#pragma clang diagnostic ignored "-Wdeprecated-register"
#pragma diag_suppress unsigned_compare_with_zero
#pragma diag_suppress cast_to_qualified_type
//disables nvcc specific warning in many files
#pragma diag_suppress esa_on_defaulted_function_ignored
#pragma diag_suppress extra_semicolon
//Eigen only
#endif
// Disable vectorisation in Eigen on the Power8/9 and PowerPC
#ifdef __ALTIVEC__
#define EIGEN_DONT_VECTORIZE
#endif
#ifdef __VSX__
#define EIGEN_DONT_VECTORIZE
#endif
#endif

View File

@ -42,7 +42,6 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#include <Grid/GridQCDcore.h>
#include <Grid/qcd/action/Action.h>
#include <Grid/qcd/utils/GaugeFix.h>
#include <Grid/qcd/utils/CovariantSmearing.h>
#include <Grid/qcd/smearing/Smearing.h>
#include <Grid/parallelIO/MetaData.h>
#include <Grid/qcd/hmc/HMC_aggregate.h>

View File

@ -38,19 +38,16 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_BASE_H
#define GRID_BASE_H
#include <Grid/DisableWarnings.h>
#include <Grid/Namespace.h>
#include <Grid/GridStd.h>
#include <Grid/threads/Pragmas.h>
#include <Grid/perfmon/Timer.h>
#include <Grid/perfmon/PerfCount.h>
#include <Grid/util/Util.h>
#include <Grid/log/Log.h>
#include <Grid/allocator/Allocator.h>
#include <Grid/allocator/AlignedAllocator.h>
#include <Grid/simd/Simd.h>
#include <Grid/threads/ThreadReduction.h>
#include <Grid/serialisation/Serialisation.h>
#include <Grid/threads/Threads.h>
#include <Grid/util/Util.h>
#include <Grid/util/Sha.h>
#include <Grid/communicator/Communicator.h>
#include <Grid/cartesian/Cartesian.h>
@ -60,6 +57,5 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#include <Grid/stencil/Stencil.h>
#include <Grid/parallelIO/BinaryIO.h>
#include <Grid/algorithms/Algorithms.h>
NAMESPACE_CHECK(GridCore)
#endif

View File

@ -38,6 +38,5 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#include <Grid/qcd/spin/Spin.h>
#include <Grid/qcd/utils/Utils.h>
#include <Grid/qcd/representations/Representations.h>
NAMESPACE_CHECK(GridQCDCore);
#endif

View File

@ -6,9 +6,7 @@
///////////////////
#include <cassert>
#include <complex>
#include <memory>
#include <vector>
#include <array>
#include <string>
#include <iostream>
#include <iomanip>
@ -28,7 +26,4 @@
///////////////////
#include "Config.h"
#ifdef TOFU
#undef GRID_COMMS_THREADS
#endif
#endif /* GRID_STD_H */

View File

@ -1,71 +1,14 @@
#include <Grid/GridCore.h>
#pragma once
// Force Eigen to use MKL if Grid has been configured with --enable-mkl
#ifdef USE_MKL
#define EIGEN_USE_MKL_ALL
#endif
#if defined __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#endif
/* NVCC save and restore compile environment*/
#ifdef __NVCC__
#pragma push
#pragma diag_suppress code_is_unreachable
#pragma push_macro("__CUDA_ARCH__")
#pragma push_macro("__NVCC__")
#pragma push_macro("__CUDACC__")
#undef __CUDA_ARCH__
#undef __NVCC__
#undef __CUDACC__
#define __NVCC__REDEFINE__
#endif
/* SYCL save and restore compile environment*/
#ifdef GRID_SYCL
#pragma push
#pragma push_macro("__SYCL_DEVICE_ONLY__")
#undef __SYCL_DEVICE_ONLY__
#define EIGEN_DONT_VECTORIZE
//#undef EIGEN_USE_SYCL
#define __SYCL__REDEFINE__
#endif
/* HIP save and restore compile environment*/
#ifdef GRID_HIP
#pragma push
#pragma push_macro("__HIP_DEVICE_COMPILE__")
#endif
#define EIGEN_NO_HIP
#include <Grid/Eigen/Dense>
#include <Grid/Eigen/unsupported/CXX11/Tensor>
/* NVCC restore */
#ifdef __NVCC__REDEFINE__
#pragma pop_macro("__CUDACC__")
#pragma pop_macro("__NVCC__")
#pragma pop_macro("__CUDA_ARCH__")
#pragma pop
#endif
/*SYCL restore*/
#ifdef __SYCL__REDEFINE__
#pragma pop_macro("__SYCL_DEVICE_ONLY__")
#pragma pop
#endif
/*HIP restore*/
#ifdef __HIP__REDEFINE__
#pragma pop_macro("__HIP_DEVICE_COMPILE__")
#pragma pop
#endif
#if defined __GNUC__
#pragma GCC diagnostic pop
#endif

View File

@ -1 +0,0 @@
#include <Grid/Grid_Eigen_Dense.h>

View File

@ -21,8 +21,7 @@ if BUILD_HDF5
extra_headers+=serialisation/Hdf5Type.h
endif
all: version-cache Version.h
all: version-cache
version-cache:
@if [ `git status --porcelain | grep -v '??' | wc -l` -gt 0 ]; then\
@ -43,7 +42,7 @@ version-cache:
fi;\
rm -f vertmp
Version.h: version-cache
Version.h:
cp version-cache Version.h
.PHONY: version-cache
@ -54,19 +53,6 @@ Version.h: version-cache
include Make.inc
include Eigen.inc
extra_sources+=$(WILS_FERMION_FILES)
extra_sources+=$(STAG_FERMION_FILES)
if BUILD_ZMOBIUS
extra_sources+=$(ZWILS_FERMION_FILES)
endif
if BUILD_GPARITY
extra_sources+=$(GP_FERMION_FILES)
endif
if BUILD_FERMION_REPS
extra_sources+=$(ADJ_FERMION_FILES)
extra_sources+=$(TWOIND_FERMION_FILES)
endif
lib_LIBRARIES = libGrid.a
CCFILES += $(extra_sources)

View File

@ -29,46 +29,33 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_ALGORITHMS_H
#define GRID_ALGORITHMS_H
NAMESPACE_CHECK(algorithms);
#include <Grid/algorithms/SparseMatrix.h>
#include <Grid/algorithms/LinearOperator.h>
#include <Grid/algorithms/Preconditioner.h>
NAMESPACE_CHECK(SparseMatrix);
#include <Grid/algorithms/approx/Zolotarev.h>
#include <Grid/algorithms/approx/Chebyshev.h>
#include <Grid/algorithms/approx/JacobiPolynomial.h>
#include <Grid/algorithms/approx/Remez.h>
#include <Grid/algorithms/approx/MultiShiftFunction.h>
#include <Grid/algorithms/approx/Forecast.h>
#include <Grid/algorithms/approx/RemezGeneral.h>
#include <Grid/algorithms/approx/ZMobius.h>
NAMESPACE_CHECK(approx);
#include <Grid/algorithms/iterative/Deflation.h>
#include <Grid/algorithms/iterative/ConjugateGradient.h>
NAMESPACE_CHECK(ConjGrad);
#include <Grid/algorithms/iterative/BiCGSTAB.h>
NAMESPACE_CHECK(BiCGSTAB);
#include <Grid/algorithms/iterative/ConjugateResidual.h>
#include <Grid/algorithms/iterative/NormalEquations.h>
#include <Grid/algorithms/iterative/SchurRedBlack.h>
#include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h>
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
#include <Grid/algorithms/iterative/BiCGSTABMixedPrec.h>
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>
#include <Grid/algorithms/iterative/MinimalResidual.h>
#include <Grid/algorithms/iterative/GeneralisedMinimalResidual.h>
#include <Grid/algorithms/iterative/CommunicationAvoidingGeneralisedMinimalResidual.h>
#include <Grid/algorithms/iterative/FlexibleGeneralisedMinimalResidual.h>
#include <Grid/algorithms/iterative/FlexibleCommunicationAvoidingGeneralisedMinimalResidual.h>
#include <Grid/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
#include <Grid/algorithms/iterative/PowerMethod.h>
NAMESPACE_CHECK(PowerMethod);
#include <Grid/algorithms/CoarsenedMatrix.h>
NAMESPACE_CHECK(CoarsendMatrix);
#include <Grid/algorithms/FFT.h>
// EigCg
// Pcg
// Hdcg
// GCR
// etc..
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,4 +1,5 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -23,8 +24,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef _GRID_FFT_H_
#define _GRID_FFT_H_
@ -36,64 +37,65 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#endif
#endif
NAMESPACE_BEGIN(Grid);
template<class scalar> struct FFTW { };
namespace Grid {
template<class scalar> struct FFTW { };
#ifdef HAVE_FFTW
template<> struct FFTW<ComplexD> {
public:
template<> struct FFTW<ComplexD> {
public:
typedef fftw_complex FFTW_scalar;
typedef fftw_plan FFTW_plan;
typedef fftw_complex FFTW_scalar;
typedef fftw_plan FFTW_plan;
static FFTW_plan fftw_plan_many_dft(int rank, const int *n,int howmany,
FFTW_scalar *in, const int *inembed,
int istride, int idist,
FFTW_scalar *out, const int *onembed,
int ostride, int odist,
int sign, unsigned flags) {
return ::fftw_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags);
}
static FFTW_plan fftw_plan_many_dft(int rank, const int *n,int howmany,
FFTW_scalar *in, const int *inembed,
int istride, int idist,
FFTW_scalar *out, const int *onembed,
int ostride, int odist,
int sign, unsigned flags) {
return ::fftw_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags);
}
static void fftw_flops(const FFTW_plan p,double *add, double *mul, double *fmas){
::fftw_flops(p,add,mul,fmas);
}
static void fftw_flops(const FFTW_plan p,double *add, double *mul, double *fmas){
::fftw_flops(p,add,mul,fmas);
}
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out) {
::fftw_execute_dft(p,in,out);
}
inline static void fftw_destroy_plan(const FFTW_plan p) {
::fftw_destroy_plan(p);
}
};
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out) {
::fftw_execute_dft(p,in,out);
}
inline static void fftw_destroy_plan(const FFTW_plan p) {
::fftw_destroy_plan(p);
}
};
template<> struct FFTW<ComplexF> {
public:
template<> struct FFTW<ComplexF> {
public:
typedef fftwf_complex FFTW_scalar;
typedef fftwf_plan FFTW_plan;
typedef fftwf_complex FFTW_scalar;
typedef fftwf_plan FFTW_plan;
static FFTW_plan fftw_plan_many_dft(int rank, const int *n,int howmany,
FFTW_scalar *in, const int *inembed,
int istride, int idist,
FFTW_scalar *out, const int *onembed,
int ostride, int odist,
int sign, unsigned flags) {
return ::fftwf_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags);
}
static FFTW_plan fftw_plan_many_dft(int rank, const int *n,int howmany,
FFTW_scalar *in, const int *inembed,
int istride, int idist,
FFTW_scalar *out, const int *onembed,
int ostride, int odist,
int sign, unsigned flags) {
return ::fftwf_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags);
}
static void fftw_flops(const FFTW_plan p,double *add, double *mul, double *fmas){
::fftwf_flops(p,add,mul,fmas);
}
static void fftw_flops(const FFTW_plan p,double *add, double *mul, double *fmas){
::fftwf_flops(p,add,mul,fmas);
}
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out) {
::fftwf_execute_dft(p,in,out);
}
inline static void fftw_destroy_plan(const FFTW_plan p) {
::fftwf_destroy_plan(p);
}
};
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out) {
::fftwf_execute_dft(p,in,out);
}
inline static void fftw_destroy_plan(const FFTW_plan p) {
::fftwf_destroy_plan(p);
}
};
#endif
@ -102,195 +104,203 @@ public:
#define FFTW_BACKWARD (+1)
#endif
class FFT {
private:
class FFT {
private:
GridCartesian *vgrid;
GridCartesian *sgrid;
GridCartesian *vgrid;
GridCartesian *sgrid;
int Nd;
double flops;
double flops_call;
uint64_t usec;
int Nd;
double flops;
double flops_call;
uint64_t usec;
Coordinate dimensions;
Coordinate processors;
Coordinate processor_coor;
std::vector<int> dimensions;
std::vector<int> processors;
std::vector<int> processor_coor;
public:
public:
static const int forward=FFTW_FORWARD;
static const int backward=FFTW_BACKWARD;
static const int forward=FFTW_FORWARD;
static const int backward=FFTW_BACKWARD;
double Flops(void) {return flops;}
double MFlops(void) {return flops/usec;}
double USec(void) {return (double)usec;}
double Flops(void) {return flops;}
double MFlops(void) {return flops/usec;}
double USec(void) {return (double)usec;}
FFT ( GridCartesian * grid ) :
FFT ( GridCartesian * grid ) :
vgrid(grid),
Nd(grid->_ndimension),
dimensions(grid->_fdimensions),
processors(grid->_processors),
processor_coor(grid->_processor_coor)
{
flops=0;
usec =0;
Coordinate layout(Nd,1);
sgrid = new GridCartesian(dimensions,layout,processors);
};
~FFT ( void) {
delete sgrid;
}
template<class vobj>
void FFT_dim_mask(Lattice<vobj> &result,const Lattice<vobj> &source,Coordinate mask,int sign){
conformable(result.Grid(),vgrid);
conformable(source.Grid(),vgrid);
Lattice<vobj> tmp(vgrid);
tmp = source;
for(int d=0;d<Nd;d++){
if( mask[d] ) {
FFT_dim(result,tmp,d,sign);
tmp=result;
}
}
}
template<class vobj>
void FFT_all_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int sign){
Coordinate mask(Nd,1);
FFT_dim_mask(result,source,mask,sign);
}
template<class vobj>
void FFT_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int dim, int sign){
#ifndef HAVE_FFTW
assert(0);
#else
conformable(result.Grid(),vgrid);
conformable(source.Grid(),vgrid);
int L = vgrid->_ldimensions[dim];
int G = vgrid->_fdimensions[dim];
Coordinate layout(Nd,1);
Coordinate pencil_gd(vgrid->_fdimensions);
pencil_gd[dim] = G*processors[dim];
// Pencil global vol LxLxGxLxL per node
GridCartesian pencil_g(pencil_gd,layout,processors);
// Construct pencils
typedef typename vobj::scalar_object sobj;
typedef typename sobj::scalar_type scalar;
Lattice<sobj> pgbuf(&pencil_g);
autoView(pgbuf_v , pgbuf, CpuWrite);
typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
typedef typename FFTW<scalar>::FFTW_plan FFTW_plan;
int Ncomp = sizeof(sobj)/sizeof(scalar);
int Nlow = 1;
for(int d=0;d<dim;d++){
Nlow*=vgrid->_ldimensions[d];
}
int rank = 1; /* 1d transforms */
int n[] = {G}; /* 1d transforms of length G */
int howmany = Ncomp;
int odist,idist,istride,ostride;
idist = odist = 1; /* Distance between consecutive FT's */
istride = ostride = Ncomp*Nlow; /* distance between two elements in the same FT */
int *inembed = n, *onembed = n;
scalar div;
if ( sign == backward ) div = 1.0/G;
else if ( sign == forward ) div = 1.0;
else assert(0);
FFTW_plan p;
{
FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0];
FFTW_scalar *out= (FFTW_scalar *)&pgbuf_v[0];
p = FFTW<scalar>::fftw_plan_many_dft(rank,n,howmany,
in,inembed,
istride,idist,
out,onembed,
ostride, odist,
sign,FFTW_ESTIMATE);
flops=0;
usec =0;
std::vector<int> layout(Nd,1);
sgrid = new GridCartesian(dimensions,layout,processors);
};
~FFT ( void) {
delete sgrid;
}
// Barrel shift and collect global pencil
Coordinate lcoor(Nd), gcoor(Nd);
result = source;
int pc = processor_coor[dim];
for(int p=0;p<processors[dim];p++) {
{
autoView(r_v,result,CpuRead);
autoView(p_v,pgbuf,CpuWrite);
thread_for(idx, sgrid->lSites(),{
Coordinate cbuf(Nd);
sobj s;
sgrid->LocalIndexToLocalCoor(idx,cbuf);
peekLocalSite(s,r_v,cbuf);
cbuf[dim]+=((pc+p) % processors[dim])*L;
pokeLocalSite(s,p_v,cbuf);
});
}
if (p != processors[dim] - 1) {
result = Cshift(result,dim,L);
}
}
// Loop over orthog coords
int NN=pencil_g.lSites();
GridStopWatch timer;
timer.Start();
thread_for( idx,NN,{
Coordinate cbuf(Nd);
pencil_g.LocalIndexToLocalCoor(idx, cbuf);
if ( cbuf[dim] == 0 ) { // restricts loop to plane at lcoor[dim]==0
FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[idx];
FFTW_scalar *out= (FFTW_scalar *)&pgbuf_v[idx];
FFTW<scalar>::fftw_execute_dft(p,in,out);
template<class vobj>
void FFT_dim_mask(Lattice<vobj> &result,const Lattice<vobj> &source,std::vector<int> mask,int sign){
conformable(result._grid,vgrid);
conformable(source._grid,vgrid);
Lattice<vobj> tmp(vgrid);
tmp = source;
for(int d=0;d<Nd;d++){
if( mask[d] ) {
FFT_dim(result,tmp,d,sign);
tmp=result;
}
});
timer.Stop();
// performance counting
double add,mul,fma;
FFTW<scalar>::fftw_flops(p,&add,&mul,&fma);
flops_call = add+mul+2.0*fma;
usec += timer.useconds();
flops+= flops_call*NN;
// writing out result
{
autoView(pgbuf_v,pgbuf,CpuRead);
autoView(result_v,result,CpuWrite);
thread_for(idx,sgrid->lSites(),{
Coordinate clbuf(Nd), cgbuf(Nd);
sobj s;
sgrid->LocalIndexToLocalCoor(idx,clbuf);
cgbuf = clbuf;
cgbuf[dim] = clbuf[dim]+L*pc;
peekLocalSite(s,pgbuf_v,cgbuf);
pokeLocalSite(s,result_v,clbuf);
});
}
}
result = result*div;
template<class vobj>
void FFT_all_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int sign){
std::vector<int> mask(Nd,1);
FFT_dim_mask(result,source,mask,sign);
}
template<class vobj>
void FFT_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int dim, int sign){
#ifndef HAVE_FFTW
assert(0);
#else
conformable(result._grid,vgrid);
conformable(source._grid,vgrid);
int L = vgrid->_ldimensions[dim];
int G = vgrid->_fdimensions[dim];
std::vector<int> layout(Nd,1);
std::vector<int> pencil_gd(vgrid->_fdimensions);
pencil_gd[dim] = G*processors[dim];
// Pencil global vol LxLxGxLxL per node
GridCartesian pencil_g(pencil_gd,layout,processors);
// Construct pencils
typedef typename vobj::scalar_object sobj;
typedef typename sobj::scalar_type scalar;
Lattice<sobj> pgbuf(&pencil_g);
// destroying plan
FFTW<scalar>::fftw_destroy_plan(p);
#endif
}
};
NAMESPACE_END(Grid);
typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
typedef typename FFTW<scalar>::FFTW_plan FFTW_plan;
int Ncomp = sizeof(sobj)/sizeof(scalar);
int Nlow = 1;
for(int d=0;d<dim;d++){
Nlow*=vgrid->_ldimensions[d];
}
int rank = 1; /* 1d transforms */
int n[] = {G}; /* 1d transforms of length G */
int howmany = Ncomp;
int odist,idist,istride,ostride;
idist = odist = 1; /* Distance between consecutive FT's */
istride = ostride = Ncomp*Nlow; /* distance between two elements in the same FT */
int *inembed = n, *onembed = n;
scalar div;
if ( sign == backward ) div = 1.0/G;
else if ( sign == forward ) div = 1.0;
else assert(0);
FFTW_plan p;
{
FFTW_scalar *in = (FFTW_scalar *)&pgbuf._odata[0];
FFTW_scalar *out= (FFTW_scalar *)&pgbuf._odata[0];
p = FFTW<scalar>::fftw_plan_many_dft(rank,n,howmany,
in,inembed,
istride,idist,
out,onembed,
ostride, odist,
sign,FFTW_ESTIMATE);
}
// Barrel shift and collect global pencil
std::vector<int> lcoor(Nd), gcoor(Nd);
result = source;
int pc = processor_coor[dim];
for(int p=0;p<processors[dim];p++) {
PARALLEL_REGION
{
std::vector<int> cbuf(Nd);
sobj s;
PARALLEL_FOR_LOOP_INTERN
for(int idx=0;idx<sgrid->lSites();idx++) {
sgrid->LocalIndexToLocalCoor(idx,cbuf);
peekLocalSite(s,result,cbuf);
cbuf[dim]+=((pc+p) % processors[dim])*L;
// cbuf[dim]+=p*L;
pokeLocalSite(s,pgbuf,cbuf);
}
}
if (p != processors[dim] - 1)
{
result = Cshift(result,dim,L);
}
}
// Loop over orthog coords
int NN=pencil_g.lSites();
GridStopWatch timer;
timer.Start();
PARALLEL_REGION
{
std::vector<int> cbuf(Nd);
PARALLEL_FOR_LOOP_INTERN
for(int idx=0;idx<NN;idx++) {
pencil_g.LocalIndexToLocalCoor(idx, cbuf);
if ( cbuf[dim] == 0 ) { // restricts loop to plane at lcoor[dim]==0
FFTW_scalar *in = (FFTW_scalar *)&pgbuf._odata[idx];
FFTW_scalar *out= (FFTW_scalar *)&pgbuf._odata[idx];
FFTW<scalar>::fftw_execute_dft(p,in,out);
}
}
}
timer.Stop();
// performance counting
double add,mul,fma;
FFTW<scalar>::fftw_flops(p,&add,&mul,&fma);
flops_call = add+mul+2.0*fma;
usec += timer.useconds();
flops+= flops_call*NN;
// writing out result
PARALLEL_REGION
{
std::vector<int> clbuf(Nd), cgbuf(Nd);
sobj s;
PARALLEL_FOR_LOOP_INTERN
for(int idx=0;idx<sgrid->lSites();idx++) {
sgrid->LocalIndexToLocalCoor(idx,clbuf);
cgbuf = clbuf;
cgbuf[dim] = clbuf[dim]+L*pc;
peekLocalSite(s,pgbuf,cgbuf);
pokeLocalSite(s,result,clbuf);
}
}
result = result*div;
// destroying plan
FFTW<scalar>::fftw_destroy_plan(p);
#endif
}
};
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -23,24 +23,24 @@ Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_PRECONDITIONER_H
#define GRID_PRECONDITIONER_H
NAMESPACE_BEGIN(Grid);
namespace Grid {
template<class Field> class Preconditioner : public LinearFunction<Field> {
virtual void operator()(const Field &src, Field & psi)=0;
};
template<class Field> class Preconditioner : public LinearFunction<Field> {
virtual void operator()(const Field &src, Field & psi)=0;
};
template<class Field> class TrivialPrecon : public Preconditioner<Field> {
public:
void operator()(const Field &src, Field & psi){
psi = src;
}
TrivialPrecon(void){};
};
template<class Field> class TrivialPrecon : public Preconditioner<Field> {
public:
void operator()(const Field &src, Field & psi){
psi = src;
}
TrivialPrecon(void){};
};
NAMESPACE_END(Grid);
}
#endif

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -23,58 +23,49 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_ALGORITHM_SPARSE_MATRIX_H
#define GRID_ALGORITHM_SPARSE_MATRIX_H
NAMESPACE_BEGIN(Grid);
namespace Grid {
/////////////////////////////////////////////////////////////////////////////////////////////
// Interface defining what I expect of a general sparse matrix, such as a Fermion action
/////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SparseMatrixBase {
public:
virtual GridBase *Grid(void) =0;
// Full checkerboar operations
virtual void M (const Field &in, Field &out)=0;
virtual void Mdag (const Field &in, Field &out)=0;
virtual void MdagM(const Field &in, Field &out) {
Field tmp (in.Grid());
M(in,tmp);
Mdag(tmp,out);
}
virtual void Mdiag (const Field &in, Field &out)=0;
virtual void Mdir (const Field &in, Field &out,int dir, int disp)=0;
virtual void MdirAll (const Field &in, std::vector<Field> &out)=0;
};
/////////////////////////////////////////////////////////////////////////////////////////////
// Interface defining what I expect of a general sparse matrix, such as a Fermion action
/////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SparseMatrixBase {
public:
virtual GridBase *Grid(void) =0;
// Full checkerboar operations
virtual RealD M (const Field &in, Field &out)=0;
virtual RealD Mdag (const Field &in, Field &out)=0;
virtual void MdagM(const Field &in, Field &out,RealD &ni,RealD &no) {
Field tmp (in._grid);
ni=M(in,tmp);
no=Mdag(tmp,out);
}
virtual void Mdiag (const Field &in, Field &out)=0;
virtual void Mdir (const Field &in, Field &out,int dir, int disp)=0;
};
/////////////////////////////////////////////////////////////////////////////////////////////
// Interface augmented by a red black sparse matrix, such as a Fermion action
/////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class CheckerBoardedSparseMatrixBase : public SparseMatrixBase<Field> {
public:
virtual GridBase *RedBlackGrid(void)=0;
/////////////////////////////////////////////////////////////////////////////////////////////
// Interface augmented by a red black sparse matrix, such as a Fermion action
/////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class CheckerBoardedSparseMatrixBase : public SparseMatrixBase<Field> {
public:
virtual GridBase *RedBlackGrid(void)=0;
// half checkerboard operaions
virtual void Meooe (const Field &in, Field &out)=0;
virtual void Mooee (const Field &in, Field &out)=0;
virtual void MooeeInv (const Field &in, Field &out)=0;
//////////////////////////////////////////////////////////////////////
// Query the even even properties to make algorithmic decisions
//////////////////////////////////////////////////////////////////////
virtual RealD Mass(void) { return 0.0; };
virtual int ConstEE(void) { return 1; }; // Disable assumptions unless overridden
virtual int isTrivialEE(void) { return 0; }; // by a derived class that knows better
virtual void MeooeDag (const Field &in, Field &out)=0;
virtual void MooeeDag (const Field &in, Field &out)=0;
virtual void MooeeInvDag (const Field &in, Field &out)=0;
// half checkerboard operaions
virtual void Meooe (const Field &in, Field &out)=0;
virtual void Mooee (const Field &in, Field &out)=0;
virtual void MooeeInv (const Field &in, Field &out)=0;
};
virtual void MeooeDag (const Field &in, Field &out)=0;
virtual void MooeeDag (const Field &in, Field &out)=0;
virtual void MooeeInvDag (const Field &in, Field &out)=0;
};
NAMESPACE_END(Grid);
}
#endif

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -25,14 +25,14 @@ Author: Christoph Lehner <clehner@bnl.gov>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CHEBYSHEV_H
#define GRID_CHEBYSHEV_H
#include <Grid/algorithms/LinearOperator.h>
NAMESPACE_BEGIN(Grid);
namespace Grid {
struct ChebyParams : Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(ChebyParams,
@ -41,369 +41,337 @@ struct ChebyParams : Serializable {
int, Npoly);
};
////////////////////////////////////////////////////////////////////////////////////////////
// Generic Chebyshev approximations
////////////////////////////////////////////////////////////////////////////////////////////
template<class Field>
class Chebyshev : public OperatorFunction<Field> {
private:
using OperatorFunction<Field>::operator();
////////////////////////////////////////////////////////////////////////////////////////////
// Generic Chebyshev approximations
////////////////////////////////////////////////////////////////////////////////////////////
template<class Field>
class Chebyshev : public OperatorFunction<Field> {
private:
std::vector<RealD> Coeffs;
int order;
RealD hi;
RealD lo;
std::vector<RealD> Coeffs;
int order;
RealD hi;
RealD lo;
public:
void csv(std::ostream &out){
RealD diff = hi-lo;
RealD delta = diff*1.0e-9;
for (RealD x=lo; x<hi; x+=delta) {
delta*=1.1;
RealD f = approx(x);
out<< x<<" "<<f<<std::endl;
}
return;
}
// Convenience for plotting the approximation
void PlotApprox(std::ostream &out) {
out<<"Polynomial approx ["<<lo<<","<<hi<<"]"<<std::endl;
for(RealD x=lo;x<hi;x+=(hi-lo)/50.0){
out <<x<<"\t"<<approx(x)<<std::endl;
}
};
Chebyshev(){};
Chebyshev(ChebyParams p){ Init(p.alpha,p.beta,p.Npoly);};
Chebyshev(RealD _lo,RealD _hi,int _order, RealD (* func)(RealD) ) {Init(_lo,_hi,_order,func);};
Chebyshev(RealD _lo,RealD _hi,int _order) {Init(_lo,_hi,_order);};
////////////////////////////////////////////////////////////////////////////////////////////////////
// c.f. numerical recipes "chebft"/"chebev". This is sec 5.8 "Chebyshev approximation".
////////////////////////////////////////////////////////////////////////////////////////////////////
// CJ: the one we need for Lanczos
void Init(RealD _lo,RealD _hi,int _order)
{
lo=_lo;
hi=_hi;
order=_order;
if(order < 2) exit(-1);
Coeffs.resize(order);
Coeffs.assign(0.,order);
Coeffs[order-1] = 1.;
};
// PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's.
// Similar kick effect below the threshold as Lanczos filter approach
void InitLowPass(RealD _lo,RealD _hi,int _order)
{
lo=_lo;
hi=_hi;
order=_order;
if(order < 2) exit(-1);
Coeffs.resize(order);
for(int j=0;j<order;j++){
RealD k=(order-1.0);
RealD s=std::cos( j*M_PI*(k+0.5)/order );
Coeffs[j] = s * 2.0/order;
}
};
void Init(RealD _lo,RealD _hi,int _order, RealD (* func)(RealD))
{
lo=_lo;
hi=_hi;
order=_order;
if(order < 2) exit(-1);
Coeffs.resize(order);
for(int j=0;j<order;j++){
RealD s=0;
for(int k=0;k<order;k++){
RealD y=std::cos(M_PI*(k+0.5)/order);
RealD x=0.5*(y*(hi-lo)+(hi+lo));
RealD f=func(x);
s=s+f*std::cos( j*M_PI*(k+0.5)/order );
public:
void csv(std::ostream &out){
RealD diff = hi-lo;
RealD delta = (hi-lo)*1.0e-9;
for (RealD x=lo; x<hi; x+=delta) {
delta*=1.1;
RealD f = approx(x);
out<< x<<" "<<f<<std::endl;
}
Coeffs[j] = s * 2.0/order;
return;
}
};
// Convenience for plotting the approximation
void PlotApprox(std::ostream &out) {
out<<"Polynomial approx ["<<lo<<","<<hi<<"]"<<std::endl;
for(RealD x=lo;x<hi;x+=(hi-lo)/50.0){
out <<x<<"\t"<<approx(x)<<std::endl;
}
};
Chebyshev(){};
Chebyshev(ChebyParams p){ Init(p.alpha,p.beta,p.Npoly);};
Chebyshev(RealD _lo,RealD _hi,int _order, RealD (* func)(RealD) ) {Init(_lo,_hi,_order,func);};
Chebyshev(RealD _lo,RealD _hi,int _order) {Init(_lo,_hi,_order);};
////////////////////////////////////////////////////////////////////////////////////////////////////
// c.f. numerical recipes "chebft"/"chebev". This is sec 5.8 "Chebyshev approximation".
////////////////////////////////////////////////////////////////////////////////////////////////////
// CJ: the one we need for Lanczos
void Init(RealD _lo,RealD _hi,int _order)
{
lo=_lo;
hi=_hi;
order=_order;
if(order < 2) exit(-1);
Coeffs.resize(order);
Coeffs.assign(0.,order);
Coeffs[order-1] = 1.;
};
void Init(RealD _lo,RealD _hi,int _order, RealD (* func)(RealD))
{
lo=_lo;
hi=_hi;
order=_order;
if(order < 2) exit(-1);
Coeffs.resize(order);
for(int j=0;j<order;j++){
RealD s=0;
for(int k=0;k<order;k++){
RealD y=std::cos(M_PI*(k+0.5)/order);
RealD x=0.5*(y*(hi-lo)+(hi+lo));
RealD f=func(x);
s=s+f*std::cos( j*M_PI*(k+0.5)/order );
}
Coeffs[j] = s * 2.0/order;
}
};
void JacksonSmooth(void){
RealD M=order;
RealD alpha = M_PI/(M+2);
RealD lmax = std::cos(alpha);
RealD sumUsq =0;
std::vector<RealD> U(M);
std::vector<RealD> a(M);
std::vector<RealD> g(M);
for(int n=0;n<=M;n++){
U[n] = std::sin((n+1)*std::acos(lmax))/std::sin(std::acos(lmax));
sumUsq += U[n]*U[n];
}
sumUsq = std::sqrt(sumUsq);
void JacksonSmooth(void){
RealD M=order;
RealD alpha = M_PI/(M+2);
RealD lmax = std::cos(alpha);
RealD sumUsq =0;
std::vector<RealD> U(M);
std::vector<RealD> a(M);
std::vector<RealD> g(M);
for(int n=0;n<=M;n++){
U[n] = std::sin((n+1)*std::acos(lmax))/std::sin(std::acos(lmax));
sumUsq += U[n]*U[n];
}
sumUsq = std::sqrt(sumUsq);
for(int i=1;i<=M;i++){
a[i] = U[i]/sumUsq;
}
g[0] = 1.0;
for(int m=1;m<=M;m++){
g[m] = 0;
for(int i=0;i<=M-m;i++){
g[m]+= a[i]*a[m+i];
for(int i=1;i<=M;i++){
a[i] = U[i]/sumUsq;
}
g[0] = 1.0;
for(int m=1;m<=M;m++){
g[m] = 0;
for(int i=0;i<=M-m;i++){
g[m]+= a[i]*a[m+i];
}
}
for(int m=1;m<=M;m++){
Coeffs[m]*=g[m];
}
}
for(int m=1;m<=M;m++){
Coeffs[m]*=g[m];
}
}
RealD approx(RealD x) // Convenience for plotting the approximation
{
RealD Tn;
RealD Tnm;
RealD Tnp;
RealD approx(RealD x) // Convenience for plotting the approximation
{
RealD Tn;
RealD Tnm;
RealD Tnp;
RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
RealD T0=1;
RealD T1=y;
RealD T0=1;
RealD T1=y;
RealD sum;
sum = 0.5*Coeffs[0]*T0;
sum+= Coeffs[1]*T1;
RealD sum;
sum = 0.5*Coeffs[0]*T0;
sum+= Coeffs[1]*T1;
Tn =T1;
Tnm=T0;
for(int i=2;i<order;i++){
Tnp=2*y*Tn-Tnm;
Tnm=Tn;
Tn =Tnp;
sum+= Tn*Coeffs[i];
}
return sum;
};
Tn =T1;
Tnm=T0;
for(int i=2;i<order;i++){
Tnp=2*y*Tn-Tnm;
Tnm=Tn;
Tn =Tnp;
sum+= Tn*Coeffs[i];
}
return sum;
};
RealD approxD(RealD x)
{
RealD Un;
RealD Unm;
RealD Unp;
RealD approxD(RealD x)
{
RealD Un;
RealD Unm;
RealD Unp;
RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
RealD U0=1;
RealD U1=2*y;
RealD U0=1;
RealD U1=2*y;
RealD sum;
sum = Coeffs[1]*U0;
sum+= Coeffs[2]*U1*2.0;
RealD sum;
sum = Coeffs[1]*U0;
sum+= Coeffs[2]*U1*2.0;
Un =U1;
Unm=U0;
for(int i=2;i<order-1;i++){
Unp=2*y*Un-Unm;
Unm=Un;
Un =Unp;
sum+= Un*Coeffs[i+1]*(i+1.0);
}
return sum/(0.5*(hi-lo));
};
Un =U1;
Unm=U0;
for(int i=2;i<order-1;i++){
Unp=2*y*Un-Unm;
Unm=Un;
Un =Unp;
sum+= Un*Coeffs[i+1]*(i+1.0);
}
return sum/(0.5*(hi-lo));
};
RealD approxInv(RealD z, RealD x0, int maxiter, RealD resid) {
RealD x = x0;
RealD eps;
RealD approxInv(RealD z, RealD x0, int maxiter, RealD resid) {
RealD x = x0;
RealD eps;
int i;
for (i=0;i<maxiter;i++) {
eps = approx(x) - z;
if (fabs(eps / z) < resid)
return x;
x = x - eps / approxD(x);
int i;
for (i=0;i<maxiter;i++) {
eps = approx(x) - z;
if (fabs(eps / z) < resid)
return x;
x = x - eps / approxD(x);
}
return std::numeric_limits<double>::quiet_NaN();
}
return std::numeric_limits<double>::quiet_NaN();
}
// Implement the required interface
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
// Implement the required interface
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
GridBase *grid=in.Grid();
GridBase *grid=in._grid;
int vol=grid->gSites();
typedef typename Field::vector_type vector_type;
// std::cout << "Chevyshef(): in._grid="<<in._grid<<std::endl;
//std::cout <<" Linop.Grid()="<<Linop.Grid()<<"Linop.RedBlackGrid()="<<Linop.RedBlackGrid()<<std::endl;
Field T0(grid); T0 = in;
Field T1(grid);
Field T2(grid);
Field y(grid);
int vol=grid->gSites();
Field T0(grid); T0 = in;
Field T1(grid);
Field T2(grid);
Field y(grid);
Field *Tnm = &T0;
Field *Tn = &T1;
Field *Tnp = &T2;
Field *Tnm = &T0;
Field *Tn = &T1;
Field *Tnp = &T2;
// Tn=T1 = (xscale M + mscale)in
RealD xscale = 2.0/(hi-lo);
RealD mscale = -(hi+lo)/(hi-lo);
Linop.HermOp(T0,y);
axpby(T1,xscale,mscale,y,in);
// Tn=T1 = (xscale M + mscale)in
RealD xscale = 2.0/(hi-lo);
RealD mscale = -(hi+lo)/(hi-lo);
Linop.HermOp(T0,y);
T1=y*xscale+in*mscale;
// sum = .5 c[0] T0 + c[1] T1
// out = ()*T0 + Coeffs[1]*T1;
axpby(out,0.5*Coeffs[0],Coeffs[1],T0,T1);
for(int n=2;n<order;n++){
Linop.HermOp(*Tn,y);
#if 0
auto y_v = y.View();
auto Tn_v = Tn->View();
auto Tnp_v = Tnp->View();
auto Tnm_v = Tnm->View();
constexpr int Nsimd = vector_type::Nsimd();
accelerator_forNB(ss, in.Grid()->oSites(), Nsimd, {
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
});
if ( Coeffs[n] != 0.0) {
axpy(out,Coeffs[n],*Tnp,out);
}
#else
axpby(y,xscale,mscale,y,(*Tn));
axpby(*Tnp,2.0,-1.0,y,(*Tnm));
if ( Coeffs[n] != 0.0) {
axpy(out,Coeffs[n],*Tnp,out);
}
#endif
// Cycle pointers to avoid copies
Field *swizzle = Tnm;
Tnm =Tn;
Tn =Tnp;
Tnp =swizzle;
}
}
};
template<class Field>
class ChebyshevLanczos : public Chebyshev<Field> {
private:
std::vector<RealD> Coeffs;
int order;
RealD alpha;
RealD beta;
RealD mu;
public:
ChebyshevLanczos(RealD _alpha,RealD _beta,RealD _mu,int _order) :
alpha(_alpha),
beta(_beta),
mu(_mu)
{
order=_order;
Coeffs.resize(order);
for(int i=0;i<_order;i++){
Coeffs[i] = 0.0;
}
Coeffs[order-1]=1.0;
};
void csv(std::ostream &out){
for (RealD x=-1.2*alpha; x<1.2*alpha; x+=(2.0*alpha)/10000) {
RealD f = approx(x);
out<< x<<" "<<f<<std::endl;
}
return;
}
RealD approx(RealD xx) // Convenience for plotting the approximation
{
RealD Tn;
RealD Tnm;
RealD Tnp;
Real aa = alpha * alpha;
Real bb = beta * beta;
RealD x = ( 2.0 * (xx-mu)*(xx-mu) - (aa+bb) ) / (aa-bb);
RealD y= x;
RealD T0=1;
RealD T1=y;
RealD sum;
sum = 0.5*Coeffs[0]*T0;
sum+= Coeffs[1]*T1;
Tn =T1;
Tnm=T0;
for(int i=2;i<order;i++){
Tnp=2*y*Tn-Tnm;
Tnm=Tn;
Tn =Tnp;
sum+= Tn*Coeffs[i];
}
return sum;
};
// shift_Multiply in Rudy's code
void AminusMuSq(LinearOperatorBase<Field> &Linop, const Field &in, Field &out)
{
GridBase *grid=in.Grid();
Field tmp(grid);
RealD aa= alpha*alpha;
RealD bb= beta * beta;
Linop.HermOp(in,out);
out = out - mu*in;
Linop.HermOp(out,tmp);
tmp = tmp - mu * out;
out = (2.0/ (aa-bb) ) * tmp - ((aa+bb)/(aa-bb))*in;
};
// Implement the required interface
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
GridBase *grid=in.Grid();
int vol=grid->gSites();
Field T0(grid); T0 = in;
Field T1(grid);
Field T2(grid);
Field y(grid);
Field *Tnm = &T0;
Field *Tn = &T1;
Field *Tnp = &T2;
// Tn=T1 = (xscale M )*in
AminusMuSq(Linop,T0,T1);
// sum = .5 c[0] T0 + c[1] T1
out = (0.5*Coeffs[0])*T0 + Coeffs[1]*T1;
for(int n=2;n<order;n++){
// sum = .5 c[0] T0 + c[1] T1
out = (0.5*Coeffs[0])*T0 + Coeffs[1]*T1;
for(int n=2;n<order;n++){
AminusMuSq(Linop,*Tn,y);
Linop.HermOp(*Tn,y);
*Tnp=2.0*y-(*Tnm);
y=xscale*y+mscale*(*Tn);
out=out+Coeffs[n]* (*Tnp);
*Tnp=2.0*y-(*Tnm);
// Cycle pointers to avoid copies
Field *swizzle = Tnm;
Tnm =Tn;
Tn =Tnp;
Tnp =swizzle;
out=out+Coeffs[n]* (*Tnp);
// Cycle pointers to avoid copies
Field *swizzle = Tnm;
Tnm =Tn;
Tn =Tnp;
Tnp =swizzle;
}
}
}
};
NAMESPACE_END(Grid);
};
template<class Field>
class ChebyshevLanczos : public Chebyshev<Field> {
private:
std::vector<RealD> Coeffs;
int order;
RealD alpha;
RealD beta;
RealD mu;
public:
ChebyshevLanczos(RealD _alpha,RealD _beta,RealD _mu,int _order) :
alpha(_alpha),
beta(_beta),
mu(_mu)
{
order=_order;
Coeffs.resize(order);
for(int i=0;i<_order;i++){
Coeffs[i] = 0.0;
}
Coeffs[order-1]=1.0;
};
void csv(std::ostream &out){
for (RealD x=-1.2*alpha; x<1.2*alpha; x+=(2.0*alpha)/10000) {
RealD f = approx(x);
out<< x<<" "<<f<<std::endl;
}
return;
}
RealD approx(RealD xx) // Convenience for plotting the approximation
{
RealD Tn;
RealD Tnm;
RealD Tnp;
Real aa = alpha * alpha;
Real bb = beta * beta;
RealD x = ( 2.0 * (xx-mu)*(xx-mu) - (aa+bb) ) / (aa-bb);
RealD y= x;
RealD T0=1;
RealD T1=y;
RealD sum;
sum = 0.5*Coeffs[0]*T0;
sum+= Coeffs[1]*T1;
Tn =T1;
Tnm=T0;
for(int i=2;i<order;i++){
Tnp=2*y*Tn-Tnm;
Tnm=Tn;
Tn =Tnp;
sum+= Tn*Coeffs[i];
}
return sum;
};
// shift_Multiply in Rudy's code
void AminusMuSq(LinearOperatorBase<Field> &Linop, const Field &in, Field &out)
{
GridBase *grid=in._grid;
Field tmp(grid);
RealD aa= alpha*alpha;
RealD bb= beta * beta;
Linop.HermOp(in,out);
out = out - mu*in;
Linop.HermOp(out,tmp);
tmp = tmp - mu * out;
out = (2.0/ (aa-bb) ) * tmp - ((aa+bb)/(aa-bb))*in;
};
// Implement the required interface
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
GridBase *grid=in._grid;
int vol=grid->gSites();
Field T0(grid); T0 = in;
Field T1(grid);
Field T2(grid);
Field y(grid);
Field *Tnm = &T0;
Field *Tn = &T1;
Field *Tnp = &T2;
// Tn=T1 = (xscale M )*in
AminusMuSq(Linop,T0,T1);
// sum = .5 c[0] T0 + c[1] T1
out = (0.5*Coeffs[0])*T0 + Coeffs[1]*T1;
for(int n=2;n<order;n++){
AminusMuSq(Linop,*Tn,y);
*Tnp=2.0*y-(*Tnm);
out=out+Coeffs[n]* (*Tnp);
// Cycle pointers to avoid copies
Field *swizzle = Tnm;
Tnm =Tn;
Tn =Tnp;
Tnp =swizzle;
}
}
};
}
#endif

View File

@ -26,127 +26,127 @@ with this program; if not, write to the Free Software Foundation, Inc.,
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
/* END LEGAL */
#ifndef INCLUDED_FORECAST_H
#define INCLUDED_FORECAST_H
NAMESPACE_BEGIN(Grid);
namespace Grid {
// Abstract base class.
// Takes a matrix (Mat), a source (phi), and a vector of Fields (chi)
// and returns a forecasted solution to the system D*psi = phi (psi).
template<class Matrix, class Field>
class Forecast
{
public:
virtual Field operator()(Matrix &Mat, const Field& phi, const std::vector<Field>& chi) = 0;
};
// Implementation of Brower et al.'s chronological inverter (arXiv:hep-lat/9509012),
// used to forecast solutions across poles of the EOFA heatbath.
//
// Modified from CPS (cps_pp/src/util/dirac_op/d_op_base/comsrc/minresext.C)
template<class Matrix, class Field>
class ChronoForecast : public Forecast<Matrix,Field>
{
public:
Field operator()(Matrix &Mat, const Field& phi, const std::vector<Field>& prev_solns)
// Abstract base class.
// Takes a matrix (Mat), a source (phi), and a vector of Fields (chi)
// and returns a forecasted solution to the system D*psi = phi (psi).
template<class Matrix, class Field>
class Forecast
{
int degree = prev_solns.size();
Field chi(phi); // forecasted solution
// Trivial cases
if(degree == 0){ chi = Zero(); return chi; }
else if(degree == 1){ return prev_solns[0]; }
// RealD dot;
ComplexD xp;
Field r(phi); // residual
Field Mv(phi);
std::vector<Field> v(prev_solns); // orthonormalized previous solutions
std::vector<Field> MdagMv(degree,phi);
// Array to hold the matrix elements
std::vector<std::vector<ComplexD>> G(degree, std::vector<ComplexD>(degree));
// Solution and source vectors
std::vector<ComplexD> a(degree);
std::vector<ComplexD> b(degree);
// Orthonormalize the vector basis
for(int i=0; i<degree; i++){
v[i] *= 1.0/std::sqrt(norm2(v[i]));
for(int j=i+1; j<degree; j++){ v[j] -= innerProduct(v[i],v[j]) * v[i]; }
}
// Perform sparse matrix multiplication and construct rhs
for(int i=0; i<degree; i++){
b[i] = innerProduct(v[i],phi);
Mat.M(v[i],Mv);
Mat.Mdag(Mv,MdagMv[i]);
G[i][i] = innerProduct(v[i],MdagMv[i]);
}
// Construct the matrix
for(int j=0; j<degree; j++){
for(int k=j+1; k<degree; k++){
G[j][k] = innerProduct(v[j],MdagMv[k]);
G[k][j] = conjugate(G[j][k]);
}}
// Gauss-Jordan elimination with partial pivoting
for(int i=0; i<degree; i++){
// Perform partial pivoting
int k = i;
for(int j=i+1; j<degree; j++){ if(abs(G[j][j]) > abs(G[k][k])){ k = j; } }
if(k != i){
xp = b[k];
b[k] = b[i];
b[i] = xp;
for(int j=0; j<degree; j++){
xp = G[k][j];
G[k][j] = G[i][j];
G[i][j] = xp;
}
}
// Convert matrix to upper triangular form
for(int j=i+1; j<degree; j++){
xp = G[j][i]/G[i][i];
b[j] -= xp * b[i];
for(int k=0; k<degree; k++){ G[j][k] -= xp*G[i][k]; }
}
}
// Use Gaussian elimination to solve equations and calculate initial guess
chi = Zero();
r = phi;
for(int i=degree-1; i>=0; i--){
a[i] = 0.0;
for(int j=i+1; j<degree; j++){ a[i] += G[i][j] * a[j]; }
a[i] = (b[i]-a[i])/G[i][i];
chi += a[i]*v[i];
r -= a[i]*MdagMv[i];
}
RealD true_r(0.0);
ComplexD tmp;
for(int i=0; i<degree; i++){
tmp = -b[i];
for(int j=0; j<degree; j++){ tmp += G[i][j]*a[j]; }
tmp = conjugate(tmp)*tmp;
true_r += std::sqrt(tmp.real());
}
RealD error = std::sqrt(norm2(r)/norm2(phi));
std::cout << GridLogMessage << "ChronoForecast: |res|/|src| = " << error << std::endl;
return chi;
public:
virtual Field operator()(Matrix &Mat, const Field& phi, const std::vector<Field>& chi) = 0;
};
};
NAMESPACE_END(Grid);
// Implementation of Brower et al.'s chronological inverter (arXiv:hep-lat/9509012),
// used to forecast solutions across poles of the EOFA heatbath.
//
// Modified from CPS (cps_pp/src/util/dirac_op/d_op_base/comsrc/minresext.C)
template<class Matrix, class Field>
class ChronoForecast : public Forecast<Matrix,Field>
{
public:
Field operator()(Matrix &Mat, const Field& phi, const std::vector<Field>& prev_solns)
{
int degree = prev_solns.size();
Field chi(phi); // forecasted solution
// Trivial cases
if(degree == 0){ chi = zero; return chi; }
else if(degree == 1){ return prev_solns[0]; }
RealD dot;
ComplexD xp;
Field r(phi); // residual
Field Mv(phi);
std::vector<Field> v(prev_solns); // orthonormalized previous solutions
std::vector<Field> MdagMv(degree,phi);
// Array to hold the matrix elements
std::vector<std::vector<ComplexD>> G(degree, std::vector<ComplexD>(degree));
// Solution and source vectors
std::vector<ComplexD> a(degree);
std::vector<ComplexD> b(degree);
// Orthonormalize the vector basis
for(int i=0; i<degree; i++){
v[i] *= 1.0/std::sqrt(norm2(v[i]));
for(int j=i+1; j<degree; j++){ v[j] -= innerProduct(v[i],v[j]) * v[i]; }
}
// Perform sparse matrix multiplication and construct rhs
for(int i=0; i<degree; i++){
b[i] = innerProduct(v[i],phi);
Mat.M(v[i],Mv);
Mat.Mdag(Mv,MdagMv[i]);
G[i][i] = innerProduct(v[i],MdagMv[i]);
}
// Construct the matrix
for(int j=0; j<degree; j++){
for(int k=j+1; k<degree; k++){
G[j][k] = innerProduct(v[j],MdagMv[k]);
G[k][j] = std::conj(G[j][k]);
}}
// Gauss-Jordan elimination with partial pivoting
for(int i=0; i<degree; i++){
// Perform partial pivoting
int k = i;
for(int j=i+1; j<degree; j++){ if(std::abs(G[j][j]) > std::abs(G[k][k])){ k = j; } }
if(k != i){
xp = b[k];
b[k] = b[i];
b[i] = xp;
for(int j=0; j<degree; j++){
xp = G[k][j];
G[k][j] = G[i][j];
G[i][j] = xp;
}
}
// Convert matrix to upper triangular form
for(int j=i+1; j<degree; j++){
xp = G[j][i]/G[i][i];
b[j] -= xp * b[i];
for(int k=0; k<degree; k++){ G[j][k] -= xp*G[i][k]; }
}
}
// Use Gaussian elimination to solve equations and calculate initial guess
chi = zero;
r = phi;
for(int i=degree-1; i>=0; i--){
a[i] = 0.0;
for(int j=i+1; j<degree; j++){ a[i] += G[i][j] * a[j]; }
a[i] = (b[i]-a[i])/G[i][i];
chi += a[i]*v[i];
r -= a[i]*MdagMv[i];
}
RealD true_r(0.0);
ComplexD tmp;
for(int i=0; i<degree; i++){
tmp = -b[i];
for(int j=0; j<degree; j++){ tmp += G[i][j]*a[j]; }
tmp = std::conj(tmp)*tmp;
true_r += std::sqrt(tmp.real());
}
RealD error = std::sqrt(norm2(r)/norm2(phi));
std::cout << GridLogMessage << "ChronoForecast: |res|/|src| = " << error << std::endl;
return chi;
};
};
}
#endif

View File

@ -1,129 +0,0 @@
#ifndef GRID_JACOBIPOLYNOMIAL_H
#define GRID_JACOBIPOLYNOMIAL_H
#include <Grid/algorithms/LinearOperator.h>
NAMESPACE_BEGIN(Grid);
template<class Field>
class JacobiPolynomial : public OperatorFunction<Field> {
private:
using OperatorFunction<Field>::operator();
int order;
RealD hi;
RealD lo;
RealD alpha;
RealD beta;
public:
void csv(std::ostream &out){
csv(out,lo,hi);
}
void csv(std::ostream &out,RealD llo,RealD hhi){
RealD diff = hhi-llo;
RealD delta = diff*1.0e-5;
for (RealD x=llo-delta; x<=hhi; x+=delta) {
RealD f = approx(x);
out<< x<<" "<<f <<std::endl;
}
return;
}
JacobiPolynomial(){};
JacobiPolynomial(RealD _lo,RealD _hi,int _order,RealD _alpha, RealD _beta)
{
lo=_lo;
hi=_hi;
alpha=_alpha;
beta=_beta;
order=_order;
};
RealD approx(RealD x) // Convenience for plotting the approximation
{
RealD Tn;
RealD Tnm;
RealD Tnp;
RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
RealD T0=1.0;
RealD T1=(alpha-beta)*0.5+(alpha+beta+2.0)*0.5*y;
Tn =T1;
Tnm=T0;
for(int n=2;n<=order;n++){
RealD cnp = 2.0*n*(n+alpha+beta)*(2.0*n-2.0+alpha+beta);
RealD cny = (2.0*n-2.0+alpha+beta)*(2.0*n-1.0+alpha+beta)*(2.0*n+alpha+beta);
RealD cn1 = (2.0*n+alpha+beta-1.0)*(alpha*alpha-beta*beta);
RealD cnm = - 2.0*(n+alpha-1.0)*(n+beta-1.0)*(2.0*n+alpha+beta);
Tnp= ( cny * y *Tn + cn1 * Tn + cnm * Tnm )/ cnp;
Tnm=Tn;
Tn =Tnp;
}
return Tnp;
};
// Implement the required interface
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
GridBase *grid=in.Grid();
int vol=grid->gSites();
Field T0(grid);
Field T1(grid);
Field T2(grid);
Field y(grid);
Field *Tnm = &T0;
Field *Tn = &T1;
Field *Tnp = &T2;
// RealD T0=1.0;
T0=in;
// RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
// = x * 2/(hi-lo) - (hi+lo)/(hi-lo)
Linop.HermOp(T0,y);
RealD xscale = 2.0/(hi-lo);
RealD mscale = -(hi+lo)/(hi-lo);
Linop.HermOp(T0,y);
y=y*xscale+in*mscale;
// RealD T1=(alpha-beta)*0.5+(alpha+beta+2.0)*0.5*y;
RealD halfAmB = (alpha-beta)*0.5;
RealD halfApBp2= (alpha+beta+2.0)*0.5;
T1 = halfAmB * in + halfApBp2*y;
for(int n=2;n<=order;n++){
Linop.HermOp(*Tn,y);
y=xscale*y+mscale*(*Tn);
RealD cnp = 2.0*n*(n+alpha+beta)*(2.0*n-2.0+alpha+beta);
RealD cny = (2.0*n-2.0+alpha+beta)*(2.0*n-1.0+alpha+beta)*(2.0*n+alpha+beta);
RealD cn1 = (2.0*n+alpha+beta-1.0)*(alpha*alpha-beta*beta);
RealD cnm = - 2.0*(n+alpha-1.0)*(n+beta-1.0)*(2.0*n+alpha+beta);
// Tnp= ( cny * y *Tn + cn1 * Tn + cnm * Tnm )/ cnp;
cny=cny/cnp;
cn1=cn1/cnp;
cn1=cn1/cnp;
cnm=cnm/cnp;
*Tnp=cny*y + cn1 *(*Tn) + cnm * (*Tnm);
// Cycle pointers to avoid copies
Field *swizzle = Tnm;
Tnm =Tn;
Tn =Tnp;
Tnp =swizzle;
}
out=*Tnp;
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -27,8 +27,7 @@ Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
/* END LEGAL */
#include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid);
namespace Grid {
double MultiShiftFunction::approx(double x)
{
double a = norm;
@ -54,4 +53,4 @@ void MultiShiftFunction::csv(std::ostream &out)
}
return;
}
NAMESPACE_END(Grid);
}

View File

@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifndef MULTI_SHIFT_FUNCTION
#define MULTI_SHIFT_FUNCTION
NAMESPACE_BEGIN(Grid);
namespace Grid {
class MultiShiftFunction {
public:
@ -63,5 +63,5 @@ public:
}
};
NAMESPACE_END(Grid);
}
#endif

View File

@ -298,7 +298,7 @@ void AlgRemez::stpini(bigfloat *step) {
// Search for error maxima and minima
void AlgRemez::search(bigfloat *step) {
bigfloat a, q, xm, ym, xn, yn, xx0, xx1;
int i, meq, emsign, ensign, steps;
int i, j, meq, emsign, ensign, steps;
meq = neq + 1;
bigfloat *yy = new bigfloat[meq];
@ -306,6 +306,7 @@ void AlgRemez::search(bigfloat *step) {
bigfloat eclose = 1.0e30;
bigfloat farther = 0l;
j = 1;
xx0 = apstrt;
for (i = 0; i < meq; i++) {

View File

@ -1,473 +0,0 @@
#include<math.h>
#include<stdio.h>
#include<stdlib.h>
#include<string>
#include<iostream>
#include<iomanip>
#include<cassert>
#include<Grid/algorithms/approx/RemezGeneral.h>
// Constructor
AlgRemezGeneral::AlgRemezGeneral(double lower, double upper, long precision,
bigfloat (*f)(bigfloat x, void *data), void *data): f(f),
data(data),
prec(precision),
apstrt(lower), apend(upper), apwidt(upper - lower),
n(0), d(0), pow_n(0), pow_d(0)
{
bigfloat::setDefaultPrecision(prec);
std::cout<<"Approximation bounds are ["<<apstrt<<","<<apend<<"]\n";
std::cout<<"Precision of arithmetic is "<<precision<<std::endl;
}
//Determine the properties of the numerator and denominator polynomials
void AlgRemezGeneral::setupPolyProperties(int num_degree, int den_degree, PolyType num_type_in, PolyType den_type_in){
pow_n = num_degree;
pow_d = den_degree;
if(pow_n % 2 == 0 && num_type_in == PolyType::Odd) assert(0);
if(pow_n % 2 == 1 && num_type_in == PolyType::Even) assert(0);
if(pow_d % 2 == 0 && den_type_in == PolyType::Odd) assert(0);
if(pow_d % 2 == 1 && den_type_in == PolyType::Even) assert(0);
num_type = num_type_in;
den_type = den_type_in;
num_pows.resize(pow_n+1);
den_pows.resize(pow_d+1);
int n_in = 0;
bool odd = num_type == PolyType::Full || num_type == PolyType::Odd;
bool even = num_type == PolyType::Full || num_type == PolyType::Even;
for(int i=0;i<=pow_n;i++){
num_pows[i] = -1;
if(i % 2 == 0 && even) num_pows[i] = n_in++;
if(i % 2 == 1 && odd) num_pows[i] = n_in++;
}
std::cout << n_in << " terms in numerator" << std::endl;
--n_in; //power is 1 less than the number of terms, eg pow=1 a x^1 + b x^0
int d_in = 0;
odd = den_type == PolyType::Full || den_type == PolyType::Odd;
even = den_type == PolyType::Full || den_type == PolyType::Even;
for(int i=0;i<=pow_d;i++){
den_pows[i] = -1;
if(i % 2 == 0 && even) den_pows[i] = d_in++;
if(i % 2 == 1 && odd) den_pows[i] = d_in++;
}
std::cout << d_in << " terms in denominator" << std::endl;
--d_in;
n = n_in;
d = d_in;
}
//Setup algorithm
void AlgRemezGeneral::reinitializeAlgorithm(){
spread = 1.0e37;
iter = 0;
neq = n + d + 1; //not +2 because highest-power term in denominator is fixed to 1
param.resize(neq);
yy.resize(neq+1);
//Initialize linear equation temporaries
A.resize(neq*neq);
B.resize(neq);
IPS.resize(neq);
//Initialize maximum and minimum errors
xx.resize(neq+2);
mm.resize(neq+1);
initialGuess();
//Initialize search steps
step.resize(neq+1);
stpini();
}
double AlgRemezGeneral::generateApprox(const int num_degree, const int den_degree,
const PolyType num_type_in, const PolyType den_type_in,
const double _tolerance, const int report_freq){
//Setup the properties of the polynomial
setupPolyProperties(num_degree, den_degree, num_type_in, den_type_in);
//Setup the algorithm
reinitializeAlgorithm();
bigfloat tolerance = _tolerance;
//Iterate until convergance
while (spread > tolerance) {
if (iter++ % report_freq==0)
std::cout<<"Iteration " <<iter-1<<" spread "<<(double)spread<<" delta "<<(double)delta << std::endl;
equations();
if (delta < tolerance) {
std::cout<<"Iteration " << iter-1 << " delta too small (" << delta << "<" << tolerance << "), try increasing precision\n";
assert(0);
};
assert( delta>= tolerance );
search();
}
int sign;
double error = (double)getErr(mm[0],&sign);
std::cout<<"Converged at "<<iter<<" iterations; error = "<<error<<std::endl;
// Return the maximum error in the approximation
return error;
}
// Initial values of maximal and minimal errors
void AlgRemezGeneral::initialGuess(){
// Supply initial guesses for solution points
long ncheb = neq; // Degree of Chebyshev error estimate
// Find ncheb+1 extrema of Chebyshev polynomial
bigfloat a = ncheb;
bigfloat r;
mm[0] = apstrt;
for (long i = 1; i < ncheb; i++) {
r = 0.5 * (1 - cos((M_PI * i)/(double) a));
//r *= sqrt_bf(r);
r = (exp((double)r)-1.0)/(exp(1.0)-1.0);
mm[i] = apstrt + r * apwidt;
}
mm[ncheb] = apend;
a = 2.0 * ncheb;
for (long i = 0; i <= ncheb; i++) {
r = 0.5 * (1 - cos(M_PI * (2*i+1)/(double) a));
//r *= sqrt_bf(r); // Squeeze to low end of interval
r = (exp((double)r)-1.0)/(exp(1.0)-1.0);
xx[i] = apstrt + r * apwidt;
}
}
// Initialise step sizes
void AlgRemezGeneral::stpini(){
xx[neq+1] = apend;
delta = 0.25;
step[0] = xx[0] - apstrt;
for (int i = 1; i < neq; i++) step[i] = xx[i] - xx[i-1];
step[neq] = step[neq-1];
}
// Search for error maxima and minima
void AlgRemezGeneral::search(){
bigfloat a, q, xm, ym, xn, yn, xx1;
int emsign, ensign, steps;
int meq = neq + 1;
bigfloat eclose = 1.0e30;
bigfloat farther = 0l;
bigfloat xx0 = apstrt;
for (int i = 0; i < meq; i++) {
steps = 0;
xx1 = xx[i]; // Next zero
if (i == meq-1) xx1 = apend;
xm = mm[i];
ym = getErr(xm,&emsign);
q = step[i];
xn = xm + q;
if (xn < xx0 || xn >= xx1) { // Cannot skip over adjacent boundaries
q = -q;
xn = xm;
yn = ym;
ensign = emsign;
} else {
yn = getErr(xn,&ensign);
if (yn < ym) {
q = -q;
xn = xm;
yn = ym;
ensign = emsign;
}
}
while(yn >= ym) { // March until error becomes smaller.
if (++steps > 10)
break;
ym = yn;
xm = xn;
emsign = ensign;
a = xm + q;
if (a == xm || a <= xx0 || a >= xx1)
break;// Must not skip over the zeros either side.
xn = a;
yn = getErr(xn,&ensign);
}
mm[i] = xm; // Position of maximum
yy[i] = ym; // Value of maximum
if (eclose > ym) eclose = ym;
if (farther < ym) farther = ym;
xx0 = xx1; // Walk to next zero.
} // end of search loop
q = (farther - eclose); // Decrease step size if error spread increased
if (eclose != 0.0) q /= eclose; // Relative error spread
if (q >= spread)
delta *= 0.5; // Spread is increasing; decrease step size
spread = q;
for (int i = 0; i < neq; i++) {
q = yy[i+1];
if (q != 0.0) q = yy[i] / q - (bigfloat)1l;
else q = 0.0625;
if (q > (bigfloat)0.25) q = 0.25;
q *= mm[i+1] - mm[i];
step[i] = q * delta;
}
step[neq] = step[neq-1];
for (int i = 0; i < neq; i++) { // Insert new locations for the zeros.
xm = xx[i] - step[i];
if (xm <= apstrt)
continue;
if (xm >= apend)
continue;
if (xm <= mm[i])
xm = (bigfloat)0.5 * (mm[i] + xx[i]);
if (xm >= mm[i+1])
xm = (bigfloat)0.5 * (mm[i+1] + xx[i]);
xx[i] = xm;
}
}
// Solve the equations
void AlgRemezGeneral::equations(){
bigfloat x, y, z;
bigfloat *aa;
for (int i = 0; i < neq; i++) { // set up the equations for solution by simq()
int ip = neq * i; // offset to 1st element of this row of matrix
x = xx[i]; // the guess for this row
y = func(x); // right-hand-side vector
z = (bigfloat)1l;
aa = A.data()+ip;
int t = 0;
for (int j = 0; j <= pow_n; j++) {
if(num_pows[j] != -1){ *aa++ = z; t++; }
z *= x;
}
assert(t == n+1);
z = (bigfloat)1l;
t = 0;
for (int j = 0; j < pow_d; j++) {
if(den_pows[j] != -1){ *aa++ = -y * z; t++; }
z *= x;
}
assert(t == d);
B[i] = y * z; // Right hand side vector
}
// Solve the simultaneous linear equations.
if (simq()){
std::cout<<"simq failed\n";
exit(0);
}
}
// Evaluate the rational form P(x)/Q(x) using coefficients
// from the solution vector param
bigfloat AlgRemezGeneral::approx(const bigfloat x) const{
// Work backwards toward the constant term.
int c = n;
bigfloat yn = param[c--]; // Highest order numerator coefficient
for (int i = pow_n-1; i >= 0; i--) yn = x * yn + (num_pows[i] != -1 ? param[c--] : bigfloat(0l));
c = n+d;
bigfloat yd = 1l; //Highest degree coefficient is 1.0
for (int i = pow_d-1; i >= 0; i--) yd = x * yd + (den_pows[i] != -1 ? param[c--] : bigfloat(0l));
return(yn/yd);
}
// Compute size and sign of the approximation error at x
bigfloat AlgRemezGeneral::getErr(bigfloat x, int *sign) const{
bigfloat f = func(x);
bigfloat e = approx(x) - f;
if (f != 0) e /= f;
if (e < (bigfloat)0.0) {
*sign = -1;
e = -e;
}
else *sign = 1;
return(e);
}
// Solve the system AX=B
int AlgRemezGeneral::simq(){
int ip, ipj, ipk, ipn;
int idxpiv;
int kp, kp1, kpk, kpn;
int nip, nkp;
bigfloat em, q, rownrm, big, size, pivot, sum;
bigfloat *aa;
bigfloat *X = param.data();
int n = neq;
int nm1 = n - 1;
// Initialize IPS and X
int ij = 0;
for (int i = 0; i < n; i++) {
IPS[i] = i;
rownrm = 0.0;
for(int j = 0; j < n; j++) {
q = abs_bf(A[ij]);
if(rownrm < q) rownrm = q;
++ij;
}
if (rownrm == (bigfloat)0l) {
std::cout<<"simq rownrm=0\n";
return(1);
}
X[i] = (bigfloat)1.0 / rownrm;
}
for (int k = 0; k < nm1; k++) {
big = 0.0;
idxpiv = 0;
for (int i = k; i < n; i++) {
ip = IPS[i];
ipk = n*ip + k;
size = abs_bf(A[ipk]) * X[ip];
if (size > big) {
big = size;
idxpiv = i;
}
}
if (big == (bigfloat)0l) {
std::cout<<"simq big=0\n";
return(2);
}
if (idxpiv != k) {
int j = IPS[k];
IPS[k] = IPS[idxpiv];
IPS[idxpiv] = j;
}
kp = IPS[k];
kpk = n*kp + k;
pivot = A[kpk];
kp1 = k+1;
for (int i = kp1; i < n; i++) {
ip = IPS[i];
ipk = n*ip + k;
em = -A[ipk] / pivot;
A[ipk] = -em;
nip = n*ip;
nkp = n*kp;
aa = A.data()+nkp+kp1;
for (int j = kp1; j < n; j++) {
ipj = nip + j;
A[ipj] = A[ipj] + em * *aa++;
}
}
}
kpn = n * IPS[n-1] + n - 1; // last element of IPS[n] th row
if (A[kpn] == (bigfloat)0l) {
std::cout<<"simq A[kpn]=0\n";
return(3);
}
ip = IPS[0];
X[0] = B[ip];
for (int i = 1; i < n; i++) {
ip = IPS[i];
ipj = n * ip;
sum = 0.0;
for (int j = 0; j < i; j++) {
sum += A[ipj] * X[j];
++ipj;
}
X[i] = B[ip] - sum;
}
ipn = n * IPS[n-1] + n - 1;
X[n-1] = X[n-1] / A[ipn];
for (int iback = 1; iback < n; iback++) {
//i goes (n-1),...,1
int i = nm1 - iback;
ip = IPS[i];
nip = n*ip;
sum = 0.0;
aa = A.data()+nip+i+1;
for (int j= i + 1; j < n; j++)
sum += *aa++ * X[j];
X[i] = (X[i] - sum) / A[nip+i];
}
return(0);
}
void AlgRemezGeneral::csv(std::ostream & os) const{
os << "Numerator" << std::endl;
for(int i=0;i<=pow_n;i++){
os << getCoeffNum(i) << "*x^" << i;
if(i!=pow_n) os << " + ";
}
os << std::endl;
os << "Denominator" << std::endl;
for(int i=0;i<=pow_d;i++){
os << getCoeffDen(i) << "*x^" << i;
if(i!=pow_d) os << " + ";
}
os << std::endl;
//For a true minimax solution the errors should all be equal and the signs should oscillate +-+-+- etc
int sign;
os << "Errors at maxima: coordinate, error, (sign)" << std::endl;
for(int i=0;i<neq+1;i++){
os << mm[i] << " " << getErr(mm[i],&sign) << " (" << sign << ")" << std::endl;
}
os << "Scan over range:" << std::endl;
int npt = 60;
bigfloat dlt = (apend - apstrt)/bigfloat(npt-1);
for (bigfloat x=apstrt; x<=apend; x = x + dlt) {
double f = evaluateFunc(x);
double r = evaluateApprox(x);
os<< x<<","<<r<<","<<f<<","<<r-f<<std::endl;
}
return;
}

View File

@ -1,170 +0,0 @@
/*
C.Kelly Jan 2020 based on implementation by M. Clark May 2005
AlgRemezGeneral is an implementation of the Remez algorithm for approximating an arbitrary function by a rational polynomial
It includes optional restriction to odd/even polynomials for the numerator and/or denominator
*/
#ifndef INCLUDED_ALG_REMEZ_GENERAL_H
#define INCLUDED_ALG_REMEZ_GENERAL_H
#include <stddef.h>
#include <Grid/GridStd.h>
#ifdef HAVE_LIBGMP
#include "bigfloat.h"
#else
#include "bigfloat_double.h"
#endif
class AlgRemezGeneral{
public:
enum PolyType { Even, Odd, Full };
private:
// In GSL-style, pass the function as a function pointer. Any data required to evaluate the function is passed in as a void pointer
bigfloat (*f)(bigfloat x, void *data);
void *data;
// The approximation parameters
std::vector<bigfloat> param;
bigfloat norm;
// The number of non-zero terms in the numerator and denominator
int n, d;
// The numerator and denominator degree (i.e. the largest power)
int pow_n, pow_d;
// Specify if the numerator and/or denominator are odd/even polynomials
PolyType num_type;
PolyType den_type;
std::vector<int> num_pows; //contains the mapping, with -1 if not present
std::vector<int> den_pows;
// The bounds of the approximation
bigfloat apstrt, apwidt, apend;
// Variables used to calculate the approximation
int nd1, iter;
std::vector<bigfloat> xx;
std::vector<bigfloat> mm;
std::vector<bigfloat> step;
bigfloat delta, spread;
// Variables used in search
std::vector<bigfloat> yy;
// Variables used in solving linear equations
std::vector<bigfloat> A;
std::vector<bigfloat> B;
std::vector<int> IPS;
// The number of equations we must solve at each iteration (n+d+1)
int neq;
// The precision of the GNU MP library
long prec;
// Initialize member variables associated with the polynomial's properties
void setupPolyProperties(int num_degree, int den_degree, PolyType num_type_in, PolyType den_type_in);
// Initial values of maximal and minmal errors
void initialGuess();
// Initialise step sizes
void stpini();
// Initialize the algorithm
void reinitializeAlgorithm();
// Solve the equations
void equations();
// Search for error maxima and minima
void search();
// Calculate function required for the approximation
inline bigfloat func(bigfloat x) const{
return f(x, data);
}
// Compute size and sign of the approximation error at x
bigfloat getErr(bigfloat x, int *sign) const;
// Solve the system AX=B where X = param
int simq();
// Evaluate the rational form P(x)/Q(x) using coefficients from the solution vector param
bigfloat approx(bigfloat x) const;
public:
AlgRemezGeneral(double lower, double upper, long prec,
bigfloat (*f)(bigfloat x, void *data), void *data);
inline int getDegree(void) const{
assert(n==d);
return n;
}
// Reset the bounds of the approximation
inline void setBounds(double lower, double upper) {
apstrt = lower;
apend = upper;
apwidt = apend - apstrt;
}
// Get the bounds of the approximation
inline void getBounds(double &lower, double &upper) const{
lower=(double)apstrt;
upper=(double)apend;
}
// Run the algorithm to generate the rational approximation
double generateApprox(int num_degree, int den_degree,
PolyType num_type, PolyType den_type,
const double tolerance = 1e-15, const int report_freq = 1000);
inline double generateApprox(int num_degree, int den_degree,
const double tolerance = 1e-15, const int report_freq = 1000){
return generateApprox(num_degree, den_degree, Full, Full, tolerance, report_freq);
}
// Evaluate the rational form P(x)/Q(x) using coefficients from the
// solution vector param
inline double evaluateApprox(double x) const{
return (double)approx((bigfloat)x);
}
// Evaluate the rational form Q(x)/P(x) using coefficients from the solution vector param
inline double evaluateInverseApprox(double x) const{
return 1.0/(double)approx((bigfloat)x);
}
// Calculate function required for the approximation
inline double evaluateFunc(double x) const{
return (double)func((bigfloat)x);
}
// Calculate inverse function required for the approximation
inline double evaluateInverseFunc(double x) const{
return 1.0/(double)func((bigfloat)x);
}
// Dump csv of function, approx and error
void csv(std::ostream &os = std::cout) const;
// Get the coefficient of the term x^i in the numerator
inline double getCoeffNum(const int i) const{
return num_pows[i] == -1 ? 0. : double(param[num_pows[i]]);
}
// Get the coefficient of the term x^i in the denominator
inline double getCoeffDen(const int i) const{
if(i == pow_d) return 1.0;
else return den_pows[i] == -1 ? 0. : double(param[den_pows[i]+n+1]);
}
};
#endif

View File

@ -1,183 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/approx/ZMobius.cc
Copyright (C) 2015
Author: Christopher Kelly <ckelly@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/algorithms/approx/ZMobius.h>
#include <Grid/algorithms/approx/RemezGeneral.h>
NAMESPACE_BEGIN(Grid);
NAMESPACE_BEGIN(Approx);
//Compute the tanh approximation
inline double epsilonMobius(const double x, const std::vector<ComplexD> &w){
int Ls = w.size();
ComplexD fxp = 1., fmp = 1.;
for(int i=0;i<Ls;i++){
fxp = fxp * ( w[i] + x );
fmp = fmp * ( w[i] - x );
}
return ((fxp - fmp)/(fxp + fmp)).real();
}
inline double epsilonMobius(const double x, const std::vector<RealD> &w){
int Ls = w.size();
double fxp = 1., fmp = 1.;
for(int i=0;i<Ls;i++){
fxp = fxp * ( w[i] + x );
fmp = fmp * ( w[i] - x );
}
return (fxp - fmp)/(fxp + fmp);
}
//Compute the tanh approximation in a form suitable for the Remez
bigfloat epsilonMobius(bigfloat x, void* data){
const std::vector<RealD> &omega = *( (std::vector<RealD> const*)data );
bigfloat fxp(1.0);
bigfloat fmp(1.0);
for(int i=0;i<omega.size();i++){
fxp = fxp * ( bigfloat(omega[i]) + x);
fmp = fmp * ( bigfloat(omega[i]) - x);
}
return (fxp - fmp)/(fxp + fmp);
}
//Compute the Zmobius Omega parameters suitable for eigenvalue range -lambda_bound <= lambda <= lambda_bound
//Note omega_i = 1/(b_i + c_i) where b_i and c_i are the Mobius parameters
void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out,
const std::vector<RealD> &omega_in, const int Ls_in,
const RealD lambda_bound){
assert(omega_in.size() == Ls_in);
omega_out.resize(Ls_out);
//Use the Remez algorithm to generate the appropriate rational polynomial
//For odd polynomial, to satisfy Haar condition must take either positive or negative half of range (cf https://arxiv.org/pdf/0803.0439.pdf page 6)
AlgRemezGeneral remez(0, lambda_bound, 64, &epsilonMobius, (void*)&omega_in);
remez.generateApprox(Ls_out-1, Ls_out,AlgRemezGeneral::Odd, AlgRemezGeneral::Even, 1e-15, 100);
remez.csv(std::cout);
//The rational approximation has the form [ f(x) - f(-x) ] / [ f(x) + f(-x) ] where f(x) = \Prod_{i=0}^{L_s-1} ( \omega_i + x )
//cf https://academiccommons.columbia.edu/doi/10.7916/D8T72HD7 pg 102
//omega_i are therefore the negative of the complex roots of f(x)
//We can find the roots by recognizing that the eigenvalues of a matrix A are the roots of the characteristic polynomial
// \rho(\lambda) = det( A - \lambda I ) where I is the unit matrix
//The matrix whose characteristic polynomial is an arbitrary monic polynomial a0 + a1 x + a2 x^2 + ... x^n is the companion matrix
// A = | 0 1 0 0 0 .... 0 |
// | 0 0 1 0 0 .... 0 |
// | : : : : : : |
// | 0 0 0 0 0 1
// | -a0 -a1 -a2 ... ... -an|
//Note the Remez defines the largest power to have unit coefficient
std::vector<RealD> coeffs(Ls_out+1);
for(int i=0;i<Ls_out+1;i+=2) coeffs[i] = coeffs[i] = remez.getCoeffDen(i); //even powers
for(int i=1;i<Ls_out+1;i+=2) coeffs[i] = coeffs[i] = remez.getCoeffNum(i); //odd powers
std::vector<std::complex<RealD> > roots(Ls_out);
//Form the companion matrix
Eigen::MatrixXd compn(Ls_out,Ls_out);
for(int i=0;i<Ls_out-1;i++) compn(i,0) = 0.;
compn(Ls_out - 1, 0) = -coeffs[0];
for(int j=1;j<Ls_out;j++){
for(int i=0;i<Ls_out-1;i++) compn(i,j) = i == j-1 ? 1. : 0.;
compn(Ls_out - 1, j) = -coeffs[j];
}
//Eigensolve
Eigen::EigenSolver<Eigen::MatrixXd> slv(compn, false);
const auto & ev = slv.eigenvalues();
for(int i=0;i<Ls_out;i++)
omega_out[i] = -ev(i);
//Sort ascending (smallest at start of vector!)
std::sort(omega_out.begin(), omega_out.end(),
[&](const ComplexD &a, const ComplexD &b){ return a.real() < b.real() || (a.real() == b.real() && a.imag() < b.imag()); });
//McGlynn thesis pg 122 suggest improved iteration counts if magnitude of omega diminishes towards the center of the 5th dimension
std::vector<ComplexD> omega_tmp = omega_out;
int s_low=0, s_high=Ls_out-1, ss=0;
for(int s_from = Ls_out-1; s_from >= 0; s_from--){ //loop from largest omega
int s_to;
if(ss % 2 == 0){
s_to = s_low++;
}else{
s_to = s_high--;
}
omega_out[s_to] = omega_tmp[s_from];
++ss;
}
std::cout << "Resulting omega_i:" << std::endl;
for(int i=0;i<Ls_out;i++)
std::cout << omega_out[i] << std::endl;
std::cout << "Test result matches the approximate polynomial found by the Remez" << std::endl;
std::cout << "<x> <remez approx> <poly approx> <diff poly approx remez approx> <exact> <diff poly approx exact>\n";
int npt = 60;
double dlt = lambda_bound/double(npt-1);
for (int i =0; i<npt; i++){
double x = i*dlt;
double r = remez.evaluateApprox(x);
double p = epsilonMobius(x, omega_out);
double e = epsilonMobius(x, omega_in);
std::cout << x<< " " << r << " " << p <<" " <<r-p << " " << e << " " << e-p << std::endl;
}
}
//mobius_param = b+c with b-c=1
void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound){
std::vector<RealD> omega_in(Ls_in, 1./mobius_param);
computeZmobiusOmega(omega_out, Ls_out, omega_in, Ls_in, lambda_bound);
}
//ZMobius class takes gamma_i = (b+c) omega_i as its input, where b, c are factored out
void computeZmobiusGamma(std::vector<ComplexD> &gamma_out,
const RealD mobius_param_out, const int Ls_out,
const RealD mobius_param_in, const int Ls_in,
const RealD lambda_bound){
computeZmobiusOmega(gamma_out, Ls_out, mobius_param_in, Ls_in, lambda_bound);
for(int i=0;i<Ls_out;i++) gamma_out[i] = gamma_out[i] * mobius_param_out;
}
//Assumes mobius_param_out == mobius_param_in
void computeZmobiusGamma(std::vector<ComplexD> &gamma_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound){
computeZmobiusGamma(gamma_out, mobius_param, Ls_out, mobius_param, Ls_in, lambda_bound);
}
NAMESPACE_END(Approx);
NAMESPACE_END(Grid);

View File

@ -1,57 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/approx/ZMobius.h
Copyright (C) 2015
Author: Christopher Kelly <ckelly@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_ZMOBIUS_APPROX_H
#define GRID_ZMOBIUS_APPROX_H
#include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid);
NAMESPACE_BEGIN(Approx);
//Compute the Zmobius Omega parameters suitable for eigenvalue range -lambda_bound <= lambda <= lambda_bound
//Note omega_i = 1/(b_i + c_i) where b_i and c_i are the Mobius parameters
void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out,
const std::vector<RealD> &omega_in, const int Ls_in,
const RealD lambda_bound);
//mobius_param = b+c with b-c=1
void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound);
//ZMobius class takes gamma_i = (b+c) omega_i as its input, where b, c are factored out
void computeZmobiusGamma(std::vector<ComplexD> &gamma_out,
const RealD mobius_param_out, const int Ls_out,
const RealD mobius_param_in, const int Ls_in,
const RealD lambda_bound);
//Assumes mobius_param_out == mobius_param_in
void computeZmobiusGamma(std::vector<ComplexD> &gamma_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound);
NAMESPACE_END(Approx);
NAMESPACE_END(Grid);
#endif

View File

@ -58,8 +58,8 @@
/* Compute the partial fraction expansion coefficients (alpha) from the
* factored form */
NAMESPACE_BEGIN(Grid);
NAMESPACE_BEGIN(Approx);
namespace Grid {
namespace Approx {
static void construct_partfrac(izd *z) {
int dn = z -> dn, dd = z -> dd, type = z -> type;
@ -516,9 +516,7 @@ zolotarev_data* higham(PRECISION epsilon, int n) {
free(d);
return zd;
}
NAMESPACE_END(Approx);
NAMESPACE_END(Grid);
}}
#ifdef TEST
@ -587,7 +585,6 @@ static PRECISION zolotarev_cayley_eval(PRECISION x, zolotarev_data* rdata) {
return (ONE - T) / (ONE + T);
}
/* Test program. Apart from printing out the parameters for R(x) it produces
* the following data files for plotting (unless NPLOT is defined):
*
@ -726,5 +723,5 @@ int main(int argc, char** argv) {
return EXIT_SUCCESS;
}
#endif /* TEST */
#endif /* TEST */

View File

@ -1,13 +1,13 @@
/* -*- Mode: C; comment-column: 22; fill-column: 79; -*- */
#ifdef __cplusplus
#include <Grid/Namespace.h>
NAMESPACE_BEGIN(Grid);
NAMESPACE_BEGIN(Approx);
namespace Grid {
namespace Approx {
#endif
#define HVERSION Header Time-stamp: <14-OCT-2004 09:26:51.00 adk@MISSCONTRARY>
#ifndef ZOLOTAREV_INTERNAL
#ifndef PRECISION
#define PRECISION double
@ -83,6 +83,5 @@ void zolotarev_free(zolotarev_data *zdata);
#endif
#ifdef __cplusplus
NAMESPACE_END(Approx);
NAMESPACE_END(Grid);
}}
#endif

View File

@ -10,12 +10,10 @@
#ifndef INCLUDED_BIGFLOAT_H
#define INCLUDED_BIGFLOAT_H
#define __GMP_WITHIN_CONFIGURE
#include <gmp.h>
#include <mpf2mpfr.h>
#include <mpfr.h>
#undef __GMP_WITHIN_CONFIGURE
class bigfloat {
private:

View File

@ -25,10 +25,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef INCLUDED_BIGFLOAT_DOUBLE_H
#define INCLUDED_BIGFLOAT_DOUBLE_H
#include <math.h>
typedef double mfloat;
@ -190,6 +186,4 @@ public:
// friend bigfloat& random(void);
};
#endif

View File

@ -90,8 +90,8 @@ class TwoLevelFlexiblePcg : public LinearFunction<Field>
void operator() (const Field &src, Field &psi){
void operator() (const Field &src, Field &psi){
psi.Checkerboard() = src.Checkerboard();
grid = src.Grid();
psi.checkerboard = src.checkerboard;
grid = src._grid;
RealD f;
RealD rtzp,rtz,a,d,b;

View File

@ -1,234 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/BiCGSTAB.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: juettner <juettner@soton.ac.uk>
Author: David Murphy <djmurphy@mit.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_BICGSTAB_H
#define GRID_BICGSTAB_H
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////
// Base classes for iterative processes based on operators
// single input vec, single output vec.
/////////////////////////////////////////////////////////////
template <class Field>
class BiCGSTAB : public OperatorFunction<Field>
{
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
// Defaults true.
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
BiCGSTAB(RealD tol, Integer maxit, bool err_on_no_conv = true) :
Tolerance(tol), MaxIterations(maxit), ErrorOnNoConverge(err_on_no_conv){};
void operator()(LinearOperatorBase<Field>& Linop, const Field& src, Field& psi)
{
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
RealD cp(0), rho(1), rho_prev(0), alpha(1), beta(0), omega(1);
RealD a(0), bo(0), b(0), ssq(0);
Field p(src);
Field r(src);
Field rhat(src);
Field v(src);
Field s(src);
Field t(src);
Field h(src);
v = Zero();
p = Zero();
// Initial residual computation & set up
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
Linop.Op(psi, v);
b = norm2(v);
r = src - v;
rhat = r;
a = norm2(r);
ssq = norm2(src);
std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: guess " << guess << std::endl;
std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: src " << ssq << std::endl;
std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: mp " << b << std::endl;
std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: r " << a << std::endl;
RealD rsq = Tolerance * Tolerance * ssq;
// Check if guess is really REALLY good :)
if(a <= rsq){ return; }
std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: k=0 residual " << a << " target " << rsq << std::endl;
GridStopWatch LinalgTimer;
GridStopWatch InnerTimer;
GridStopWatch AxpyNormTimer;
GridStopWatch LinearCombTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
int k;
for (k = 1; k <= MaxIterations; k++)
{
rho_prev = rho;
LinalgTimer.Start();
InnerTimer.Start();
ComplexD Crho = innerProduct(rhat,r);
InnerTimer.Stop();
rho = Crho.real();
beta = (rho / rho_prev) * (alpha / omega);
LinearCombTimer.Start();
bo = beta * omega;
{
autoView( p_v , p, AcceleratorWrite);
autoView( r_v , r, AcceleratorRead);
autoView( v_v , v, AcceleratorRead);
accelerator_for(ss, p_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(p_v[ss], beta*p_v(ss) - bo*v_v(ss) + r_v(ss));
});
}
LinearCombTimer.Stop();
LinalgTimer.Stop();
MatrixTimer.Start();
Linop.Op(p,v);
MatrixTimer.Stop();
LinalgTimer.Start();
InnerTimer.Start();
ComplexD Calpha = innerProduct(rhat,v);
InnerTimer.Stop();
alpha = rho / Calpha.real();
LinearCombTimer.Start();
{
autoView( p_v , p, AcceleratorRead);
autoView( r_v , r, AcceleratorRead);
autoView( v_v , v, AcceleratorRead);
autoView( psi_v,psi, AcceleratorRead);
autoView( h_v , h, AcceleratorWrite);
autoView( s_v , s, AcceleratorWrite);
accelerator_for(ss, h_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(h_v[ss], alpha*p_v(ss) + psi_v(ss));
});
accelerator_for(ss, s_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(s_v[ss], -alpha*v_v(ss) + r_v(ss));
});
}
LinearCombTimer.Stop();
LinalgTimer.Stop();
MatrixTimer.Start();
Linop.Op(s,t);
MatrixTimer.Stop();
LinalgTimer.Start();
InnerTimer.Start();
ComplexD Comega = innerProduct(t,s);
InnerTimer.Stop();
omega = Comega.real() / norm2(t);
LinearCombTimer.Start();
{
autoView( psi_v,psi, AcceleratorWrite);
autoView( r_v , r, AcceleratorWrite);
autoView( h_v , h, AcceleratorRead);
autoView( s_v , s, AcceleratorRead);
autoView( t_v , t, AcceleratorRead);
accelerator_for(ss, psi_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(psi_v[ss], h_v(ss) + omega * s_v(ss));
coalescedWrite(r_v[ss], -omega * t_v(ss) + s_v(ss));
});
}
LinearCombTimer.Stop();
cp = norm2(r);
LinalgTimer.Stop();
std::cout << GridLogIterative << "BiCGSTAB: Iteration " << k << " residual " << sqrt(cp/ssq) << " target " << Tolerance << std::endl;
// Stopping condition
if(cp <= rsq)
{
SolverTimer.Stop();
Linop.Op(psi, v);
p = v - src;
RealD srcnorm = sqrt(norm2(src));
RealD resnorm = sqrt(norm2(p));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "BiCGSTAB Converged on iteration " << k << std::endl;
std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp/ssq) << std::endl;
std::cout << GridLogMessage << "\tTrue residual " << true_residual << std::endl;
std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl;
std::cout << GridLogMessage << "Time breakdown " << std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "\tInner " << InnerTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "\tAxpyNorm " << AxpyNormTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() << std::endl;
if(ErrorOnNoConverge){ assert(true_residual / Tolerance < 10000.0); }
IterationsToComplete = k;
return;
}
}
std::cout << GridLogMessage << "BiCGSTAB did NOT converge" << std::endl;
if(ErrorOnNoConverge){ assert(0); }
IterationsToComplete = k;
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,158 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/BiCGSTABMixedPrec.h
Copyright (C) 2015
Author: Christopher Kelly <ckelly@phys.columbia.edu>
Author: David Murphy <djmurphy@mit.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_BICGSTAB_MIXED_PREC_H
#define GRID_BICGSTAB_MIXED_PREC_H
NAMESPACE_BEGIN(Grid);
// Mixed precision restarted defect correction BiCGSTAB
template<class FieldD, class FieldF, typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0, typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class MixedPrecisionBiCGSTAB : public LinearFunction<FieldD>
{
public:
RealD Tolerance;
RealD InnerTolerance; // Initial tolerance for inner CG. Defaults to Tolerance but can be changed
Integer MaxInnerIterations;
Integer MaxOuterIterations;
GridBase* SinglePrecGrid; // Grid for single-precision fields
RealD OuterLoopNormMult; // Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
LinearOperatorBase<FieldF> &Linop_f;
LinearOperatorBase<FieldD> &Linop_d;
Integer TotalInnerIterations; //Number of inner CG iterations
Integer TotalOuterIterations; //Number of restarts
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
LinearFunction<FieldF> *guesser;
MixedPrecisionBiCGSTAB(RealD tol, Integer maxinnerit, Integer maxouterit, GridBase* _sp_grid,
LinearOperatorBase<FieldF>& _Linop_f, LinearOperatorBase<FieldD>& _Linop_d) :
Linop_f(_Linop_f), Linop_d(_Linop_d), Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit),
MaxOuterIterations(maxouterit), SinglePrecGrid(_sp_grid), OuterLoopNormMult(100.), guesser(NULL) {};
void useGuesser(LinearFunction<FieldF>& g){
guesser = &g;
}
void operator() (const FieldD& src_d_in, FieldD& sol_d)
{
TotalInnerIterations = 0;
GridStopWatch TotalTimer;
TotalTimer.Start();
int cb = src_d_in.Checkerboard();
sol_d.Checkerboard() = cb;
RealD src_norm = norm2(src_d_in);
RealD stop = src_norm * Tolerance*Tolerance;
GridBase* DoublePrecGrid = src_d_in.Grid();
FieldD tmp_d(DoublePrecGrid);
tmp_d.Checkerboard() = cb;
FieldD tmp2_d(DoublePrecGrid);
tmp2_d.Checkerboard() = cb;
FieldD src_d(DoublePrecGrid);
src_d = src_d_in; //source for next inner iteration, computed from residual during operation
RealD inner_tol = InnerTolerance;
FieldF src_f(SinglePrecGrid);
src_f.Checkerboard() = cb;
FieldF sol_f(SinglePrecGrid);
sol_f.Checkerboard() = cb;
BiCGSTAB<FieldF> CG_f(inner_tol, MaxInnerIterations);
CG_f.ErrorOnNoConverge = false;
GridStopWatch InnerCGtimer;
GridStopWatch PrecChangeTimer;
Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++)
{
// Compute double precision rsd and also new RHS vector.
Linop_d.Op(sol_d, tmp_d);
RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector
std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Outer iteration " << outer_iter << " residual " << norm << " target " << stop << std::endl;
if(norm < OuterLoopNormMult * stop){
std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Outer iteration converged on iteration " << outer_iter << std::endl;
break;
}
while(norm * inner_tol * inner_tol < stop){ inner_tol *= 2; } // inner_tol = sqrt(stop/norm) ??
PrecChangeTimer.Start();
precisionChange(src_f, src_d);
PrecChangeTimer.Stop();
sol_f = Zero();
//Optionally improve inner solver guess (eg using known eigenvectors)
if(guesser != NULL){ (*guesser)(src_f, sol_f); }
//Inner CG
CG_f.Tolerance = inner_tol;
InnerCGtimer.Start();
CG_f(Linop_f, src_f, sol_f);
InnerCGtimer.Stop();
TotalInnerIterations += CG_f.IterationsToComplete;
//Convert sol back to double and add to double prec solution
PrecChangeTimer.Start();
precisionChange(tmp_d, sol_f);
PrecChangeTimer.Stop();
axpy(sol_d, 1.0, tmp_d, sol_d);
}
//Final trial CG
std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Starting final patch-up double-precision solve" << std::endl;
BiCGSTAB<FieldD> CG_d(Tolerance, MaxInnerIterations);
CG_d(Linop_d, src_d_in, sol_d);
TotalFinalStepIterations = CG_d.IterationsToComplete;
TotalTimer.Stop();
std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;
std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Total time " << TotalTimer.Elapsed() << " Precision change " << PrecChangeTimer.Elapsed() << " Inner CG total " << InnerCGtimer.Elapsed() << std::endl;
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -27,11 +27,13 @@ See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#ifndef GRID_BLOCK_CONJUGATE_GRADIENT_H
#define GRID_BLOCK_CONJUGATE_GRADIENT_H
NAMESPACE_BEGIN(Grid);
enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS, BlockCGVec, BlockCGrQVec };
namespace Grid {
enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS };
//////////////////////////////////////////////////////////////////////////
// Block conjugate gradient. Dimension zero should be the block direction
@ -40,6 +42,7 @@ template <class Field>
class BlockConjugateGradient : public OperatorFunction<Field> {
public:
typedef typename Field::scalar_type scomplex;
int blockDim ;
@ -51,16 +54,21 @@ class BlockConjugateGradient : public OperatorFunction<Field> {
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
Integer PrintInterval; //GridLogMessages or Iterative
RealD TrueResidual;
BlockConjugateGradient(BlockCGtype cgtype,int _Orthog,RealD tol, Integer maxit, bool err_on_no_conv = true)
: Tolerance(tol), CGtype(cgtype), blockDim(_Orthog), MaxIterations(maxit), ErrorOnNoConverge(err_on_no_conv),PrintInterval(100)
: Tolerance(tol), CGtype(cgtype), blockDim(_Orthog), MaxIterations(maxit), ErrorOnNoConverge(err_on_no_conv)
{};
////////////////////////////////////////////////////////////////////////////////////////////////////
// Thin QR factorisation (google it)
////////////////////////////////////////////////////////////////////////////////////////////////////
void ThinQRfact (Eigen::MatrixXcd &m_rr,
Eigen::MatrixXcd &C,
Eigen::MatrixXcd &Cinv,
Field & Q,
const Field & R)
{
int Orthog = blockDim; // First dimension is block dim; this is an assumption
////////////////////////////////////////////////////////////////////////////////////////////////////
//Dimensions
// R_{ferm x Nblock} = Q_{ferm x Nblock} x C_{Nblock x Nblock} -> ferm x Nblock
@ -77,20 +85,22 @@ class BlockConjugateGradient : public OperatorFunction<Field> {
// Cdag C = Rdag R ; passes.
// QdagQ = 1 ; passes
////////////////////////////////////////////////////////////////////////////////////////////////////
void ThinQRfact (Eigen::MatrixXcd &m_rr,
Eigen::MatrixXcd &C,
Eigen::MatrixXcd &Cinv,
Field & Q,
const Field & R)
{
int Orthog = blockDim; // First dimension is block dim; this is an assumption
sliceInnerProductMatrix(m_rr,R,R,Orthog);
// Force manifest hermitian to avoid rounding related
m_rr = 0.5*(m_rr+m_rr.adjoint());
Eigen::MatrixXcd L = m_rr.llt().matrixL();
#if 0
std::cout << " Calling Cholesky ldlt on m_rr " << m_rr <<std::endl;
Eigen::MatrixXcd L_ldlt = m_rr.ldlt().matrixL();
std::cout << " Called Cholesky ldlt on m_rr " << L_ldlt <<std::endl;
auto D_ldlt = m_rr.ldlt().vectorD();
std::cout << " Called Cholesky ldlt on m_rr " << D_ldlt <<std::endl;
#endif
// std::cout << " Calling Cholesky llt on m_rr " <<std::endl;
Eigen::MatrixXcd L = m_rr.llt().matrixL();
// std::cout << " Called Cholesky llt on m_rr " << L <<std::endl;
C = L.adjoint();
Cinv = C.inverse();
////////////////////////////////////////////////////////////////////////////////////////////////////
@ -102,25 +112,6 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
////////////////////////////////////////////////////////////////////////////////////////////////////
sliceMulMatrix(Q,Cinv,R,Orthog);
}
// see comments above
void ThinQRfact (Eigen::MatrixXcd &m_rr,
Eigen::MatrixXcd &C,
Eigen::MatrixXcd &Cinv,
std::vector<Field> & Q,
const std::vector<Field> & R)
{
InnerProductMatrix(m_rr,R,R);
m_rr = 0.5*(m_rr+m_rr.adjoint());
Eigen::MatrixXcd L = m_rr.llt().matrixL();
C = L.adjoint();
Cinv = C.inverse();
MulMatrix(Q,Cinv,R);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Call one of several implementations
////////////////////////////////////////////////////////////////////////////////////////////////////
@ -128,20 +119,14 @@ void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
{
if ( CGtype == BlockCGrQ ) {
BlockCGrQsolve(Linop,Src,Psi);
} else if (CGtype == BlockCG ) {
BlockCGsolve(Linop,Src,Psi);
} else if (CGtype == CGmultiRHS ) {
CGmultiRHSsolve(Linop,Src,Psi);
} else {
assert(0);
}
}
virtual void operator()(LinearOperatorBase<Field> &Linop, const std::vector<Field> &Src, std::vector<Field> &Psi)
{
if ( CGtype == BlockCGrQVec ) {
BlockCGrQsolveVec(Linop,Src,Psi);
} else {
assert(0);
}
}
////////////////////////////////////////////////////////////////////////////
// BlockCGrQ implementation:
@ -153,12 +138,11 @@ virtual void operator()(LinearOperatorBase<Field> &Linop, const std::vector<Fiel
void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
{
int Orthog = blockDim; // First dimension is block dim; this is an assumption
Nblock = B.Grid()->_fdimensions[Orthog];
/* FAKE */
Nblock=8;
Nblock = B._grid->_fdimensions[Orthog];
std::cout<<GridLogMessage<<" Block Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl;
X.Checkerboard() = B.Checkerboard();
X.checkerboard = B.checkerboard;
conformable(X, B);
Field tmp(B);
@ -218,10 +202,15 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
std::cout << GridLogMessage<<"BlockCGrQ algorithm initialisation " <<std::endl;
//1. QC = R = B-AX, D = Q ; QC => Thin QR factorisation (google it)
Linop.HermOp(X, AD);
tmp = B - AD;
//std::cout << GridLogMessage << " initial tmp " << norm2(tmp)<< std::endl;
ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
//std::cout << GridLogMessage << " initial Q " << norm2(Q)<< std::endl;
//std::cout << GridLogMessage << " m_rr " << m_rr<<std::endl;
//std::cout << GridLogMessage << " m_C " << m_C<<std::endl;
//std::cout << GridLogMessage << " m_Cinv " << m_Cinv<<std::endl;
D=Q;
std::cout << GridLogMessage<<"BlockCGrQ computed initial residual and QR fact " <<std::endl;
@ -243,12 +232,14 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
MatrixTimer.Start();
Linop.HermOp(D, Z);
MatrixTimer.Stop();
//std::cout << GridLogMessage << " norm2 Z " <<norm2(Z)<<std::endl;
//4. M = [D^dag Z]^{-1}
sliceInnerTimer.Start();
sliceInnerProductMatrix(m_DZ,D,Z,Orthog);
sliceInnerTimer.Stop();
m_M = m_DZ.inverse();
//std::cout << GridLogMessage << " m_DZ " <<m_DZ<<std::endl;
//5. X = X + D MC
m_tmp = m_M * m_C;
@ -266,7 +257,6 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
//7. D = Q + D S^dag
m_tmp = m_S.adjoint();
sliceMaddTimer.Start();
sliceMaddMatrix(D,m_tmp,D,Q,Orthog);
sliceMaddTimer.Stop();
@ -307,8 +297,7 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
Linop.HermOp(X, AD);
AD = AD-B;
TrueResidual = std::sqrt(norm2(AD)/norm2(B));
std::cout << GridLogMessage <<"\tTrue residual is " << TrueResidual <<std::endl;
std::cout << GridLogMessage <<"\t True residual is " << std::sqrt(norm2(AD)/norm2(B)) <<std::endl;
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
@ -328,17 +317,163 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
IterationsToComplete = k;
}
//////////////////////////////////////////////////////////////////////////
// Block conjugate gradient; Original O'Leary Dimension zero should be the block direction
//////////////////////////////////////////////////////////////////////////
void BlockCGsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
{
int Orthog = blockDim; // First dimension is block dim; this is an assumption
Nblock = Src._grid->_fdimensions[Orthog];
std::cout<<GridLogMessage<<" Block Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl;
Psi.checkerboard = Src.checkerboard;
conformable(Psi, Src);
Field P(Src);
Field AP(Src);
Field R(Src);
Eigen::MatrixXcd m_pAp = Eigen::MatrixXcd::Identity(Nblock,Nblock);
Eigen::MatrixXcd m_pAp_inv= Eigen::MatrixXcd::Identity(Nblock,Nblock);
Eigen::MatrixXcd m_rr = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_rr_inv = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_alpha = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_beta = Eigen::MatrixXcd::Zero(Nblock,Nblock);
// Initial residual computation & set up
std::vector<RealD> residuals(Nblock);
std::vector<RealD> ssq(Nblock);
sliceNorm(ssq,Src,Orthog);
RealD sssum=0;
for(int b=0;b<Nblock;b++) sssum+=ssq[b];
sliceNorm(residuals,Src,Orthog);
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
sliceNorm(residuals,Psi,Orthog);
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
// Initial search dir is guess
Linop.HermOp(Psi, AP);
/************************************************************************
* Block conjugate gradient (Stephen Pickles, thesis 1995, pp 71, O Leary 1980)
************************************************************************
* O'Leary : R = B - A X
* O'Leary : P = M R ; preconditioner M = 1
* O'Leary : alpha = PAP^{-1} RMR
* O'Leary : beta = RMR^{-1}_old RMR_new
* O'Leary : X=X+Palpha
* O'Leary : R_new=R_old-AP alpha
* O'Leary : P=MR_new+P beta
*/
R = Src - AP;
P = R;
sliceInnerProductMatrix(m_rr,R,R,Orthog);
GridStopWatch sliceInnerTimer;
GridStopWatch sliceMaddTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
int k;
for (k = 1; k <= MaxIterations; k++) {
RealD rrsum=0;
for(int b=0;b<Nblock;b++) rrsum+=real(m_rr(b,b));
std::cout << GridLogIterative << "\titeration "<<k<<" rr_sum "<<rrsum<<" ssq_sum "<< sssum
<<" / "<<std::sqrt(rrsum/sssum) <<std::endl;
MatrixTimer.Start();
Linop.HermOp(P, AP);
MatrixTimer.Stop();
// Alpha
sliceInnerTimer.Start();
sliceInnerProductMatrix(m_pAp,P,AP,Orthog);
sliceInnerTimer.Stop();
m_pAp_inv = m_pAp.inverse();
m_alpha = m_pAp_inv * m_rr ;
// Psi, R update
sliceMaddTimer.Start();
sliceMaddMatrix(Psi,m_alpha, P,Psi,Orthog); // add alpha * P to psi
sliceMaddMatrix(R ,m_alpha,AP, R,Orthog,-1.0);// sub alpha * AP to resid
sliceMaddTimer.Stop();
// Beta
m_rr_inv = m_rr.inverse();
sliceInnerTimer.Start();
sliceInnerProductMatrix(m_rr,R,R,Orthog);
sliceInnerTimer.Stop();
m_beta = m_rr_inv *m_rr;
// Search update
sliceMaddTimer.Start();
sliceMaddMatrix(AP,m_beta,P,R,Orthog);
sliceMaddTimer.Stop();
P= AP;
/*********************
* convergence monitor
*********************
*/
RealD max_resid=0;
RealD rr;
for(int b=0;b<Nblock;b++){
rr = real(m_rr(b,b))/ssq[b];
if ( rr > max_resid ) max_resid = rr;
}
if ( max_resid < Tolerance*Tolerance ) {
SolverTimer.Stop();
std::cout << GridLogMessage<<"BlockCG converged in "<<k<<" iterations"<<std::endl;
for(int b=0;b<Nblock;b++){
std::cout << GridLogMessage<< "\t\tblock "<<b<<" computed resid "
<< std::sqrt(real(m_rr(b,b))/ssq[b])<<std::endl;
}
std::cout << GridLogMessage<<"\tMax residual is "<<std::sqrt(max_resid)<<std::endl;
Linop.HermOp(Psi, AP);
AP = AP-Src;
std::cout << GridLogMessage <<"\t True residual is " << std::sqrt(norm2(AP)/norm2(Src)) <<std::endl;
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tInnerProd " << sliceInnerTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMaddMatrix " << sliceMaddTimer.Elapsed() <<std::endl;
IterationsToComplete = k;
return;
}
}
std::cout << GridLogMessage << "BlockConjugateGradient did NOT converge" << std::endl;
if (ErrorOnNoConverge) assert(0);
IterationsToComplete = k;
}
//////////////////////////////////////////////////////////////////////////
// multiRHS conjugate gradient. Dimension zero should be the block direction
// Use this for spread out across nodes
//////////////////////////////////////////////////////////////////////////
void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
{
int Orthog = blockDim; // First dimension is block dim
Nblock = Src.Grid()->_fdimensions[Orthog];
Nblock = Src._grid->_fdimensions[Orthog];
std::cout<<GridLogMessage<<"MultiRHS Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl;
Psi.Checkerboard() = Src.Checkerboard();
Psi.checkerboard = Src.checkerboard;
conformable(Psi, Src);
Field P(Src);
@ -444,8 +579,7 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &
Linop.HermOp(Psi, AP);
AP = AP-Src;
TrueResidual = std::sqrt(norm2(AP)/norm2(Src));
std::cout <<GridLogMessage << "\tTrue residual is " << TrueResidual <<std::endl;
std::cout <<GridLogMessage << "\tTrue residual is " << std::sqrt(norm2(AP)/norm2(Src)) <<std::endl;
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
@ -466,233 +600,7 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &
IterationsToComplete = k;
}
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y){
for(int b=0;b<Nblock;b++){
for(int bp=0;bp<Nblock;bp++) {
m(b,bp) = innerProduct(X[b],Y[bp]);
}}
}
void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0){
// Should make this cache friendly with site outermost, parallel_for
// Deal with case AP aliases with either Y or X
std::vector<Field> tmp(Nblock,X[0]);
for(int b=0;b<Nblock;b++){
tmp[b] = Y[b];
for(int bp=0;bp<Nblock;bp++) {
tmp[b] = tmp[b] + scomplex(scale*m(bp,b))*X[bp];
}
}
for(int b=0;b<Nblock;b++){
AP[b] = tmp[b];
}
}
void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){
// Should make this cache friendly with site outermost, parallel_for
for(int b=0;b<Nblock;b++){
AP[b] = Zero();
for(int bp=0;bp<Nblock;bp++) {
AP[b] += scomplex(m(bp,b))*X[bp];
}
}
}
double normv(const std::vector<Field> &P){
double nn = 0.0;
for(int b=0;b<Nblock;b++) {
nn+=norm2(P[b]);
}
return nn;
}
////////////////////////////////////////////////////////////////////////////
// BlockCGrQvec implementation:
//--------------------------
// X is guess/Solution
// B is RHS
// Solve A X_i = B_i ; i refers to Nblock index
////////////////////////////////////////////////////////////////////////////
void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field> &B, std::vector<Field> &X)
{
Nblock = B.size();
assert(Nblock == X.size());
std::cout<<GridLogMessage<<" Block Conjugate Gradient Vec rQ : Nblock "<<Nblock<<std::endl;
for(int b=0;b<Nblock;b++){
X[b].Checkerboard() = B[b].Checkerboard();
conformable(X[b], B[b]);
conformable(X[b], X[0]);
}
Field Fake(B[0]);
std::vector<Field> tmp(Nblock,Fake);
std::vector<Field> Q(Nblock,Fake);
std::vector<Field> D(Nblock,Fake);
std::vector<Field> Z(Nblock,Fake);
std::vector<Field> AD(Nblock,Fake);
Eigen::MatrixXcd m_DZ = Eigen::MatrixXcd::Identity(Nblock,Nblock);
Eigen::MatrixXcd m_M = Eigen::MatrixXcd::Identity(Nblock,Nblock);
Eigen::MatrixXcd m_rr = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_C = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_Cinv = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_S = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_Sinv = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_tmp = Eigen::MatrixXcd::Identity(Nblock,Nblock);
Eigen::MatrixXcd m_tmp1 = Eigen::MatrixXcd::Identity(Nblock,Nblock);
// Initial residual computation & set up
std::vector<RealD> residuals(Nblock);
std::vector<RealD> ssq(Nblock);
RealD sssum=0;
for(int b=0;b<Nblock;b++){ ssq[b] = norm2(B[b]);}
for(int b=0;b<Nblock;b++) sssum+=ssq[b];
for(int b=0;b<Nblock;b++){ residuals[b] = norm2(B[b]);}
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
for(int b=0;b<Nblock;b++){ residuals[b] = norm2(X[b]);}
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
/************************************************************************
* Block conjugate gradient rQ (Sebastien Birk Thesis, after Dubrulle 2001)
************************************************************************
* Dimensions:
*
* X,B==(Nferm x Nblock)
* A==(Nferm x Nferm)
*
* Nferm = Nspin x Ncolour x Ncomplex x Nlattice_site
*
* QC = R = B-AX, D = Q ; QC => Thin QR factorisation (google it)
* for k:
* Z = AD
* M = [D^dag Z]^{-1}
* X = X + D MC
* QS = Q - ZM
* D = Q + D S^dag
* C = S C
*/
///////////////////////////////////////
// Initial block: initial search dir is guess
///////////////////////////////////////
std::cout << GridLogMessage<<"BlockCGrQvec algorithm initialisation " <<std::endl;
//1. QC = R = B-AX, D = Q ; QC => Thin QR factorisation (google it)
for(int b=0;b<Nblock;b++) {
Linop.HermOp(X[b], AD[b]);
tmp[b] = B[b] - AD[b];
}
ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
for(int b=0;b<Nblock;b++) D[b]=Q[b];
std::cout << GridLogMessage<<"BlockCGrQ vec computed initial residual and QR fact " <<std::endl;
///////////////////////////////////////
// Timers
///////////////////////////////////////
GridStopWatch sliceInnerTimer;
GridStopWatch sliceMaddTimer;
GridStopWatch QRTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
int k;
for (k = 1; k <= MaxIterations; k++) {
//3. Z = AD
MatrixTimer.Start();
for(int b=0;b<Nblock;b++) Linop.HermOp(D[b], Z[b]);
MatrixTimer.Stop();
//4. M = [D^dag Z]^{-1}
sliceInnerTimer.Start();
InnerProductMatrix(m_DZ,D,Z);
sliceInnerTimer.Stop();
m_M = m_DZ.inverse();
//5. X = X + D MC
m_tmp = m_M * m_C;
sliceMaddTimer.Start();
MaddMatrix(X,m_tmp, D,X);
sliceMaddTimer.Stop();
//6. QS = Q - ZM
sliceMaddTimer.Start();
MaddMatrix(tmp,m_M,Z,Q,-1.0);
sliceMaddTimer.Stop();
QRTimer.Start();
ThinQRfact (m_rr, m_S, m_Sinv, Q, tmp);
QRTimer.Stop();
//7. D = Q + D S^dag
m_tmp = m_S.adjoint();
sliceMaddTimer.Start();
MaddMatrix(D,m_tmp,D,Q);
sliceMaddTimer.Stop();
//8. C = S C
m_C = m_S*m_C;
/*********************
* convergence monitor
*********************
*/
m_rr = m_C.adjoint() * m_C;
RealD max_resid=0;
RealD rrsum=0;
RealD rr;
for(int b=0;b<Nblock;b++) {
rrsum+=real(m_rr(b,b));
rr = real(m_rr(b,b))/ssq[b];
if ( rr > max_resid ) max_resid = rr;
}
std::cout << GridLogIterative << "\t Block Iteration "<<k<<" ave resid "<< std::sqrt(rrsum/sssum) << " max "<< std::sqrt(max_resid) <<std::endl;
if ( max_resid < Tolerance*Tolerance ) {
SolverTimer.Stop();
std::cout << GridLogMessage<<"BlockCGrQ converged in "<<k<<" iterations"<<std::endl;
for(int b=0;b<Nblock;b++){
std::cout << GridLogMessage<< "\t\tblock "<<b<<" computed resid "<< std::sqrt(real(m_rr(b,b))/ssq[b])<<std::endl;
}
std::cout << GridLogMessage<<"\tMax residual is "<<std::sqrt(max_resid)<<std::endl;
for(int b=0;b<Nblock;b++) Linop.HermOp(X[b], AD[b]);
for(int b=0;b<Nblock;b++) AD[b] = AD[b]-B[b];
TrueResidual = std::sqrt(normv(AD)/normv(B));
std::cout << GridLogMessage << "\tTrue residual is " << TrueResidual <<std::endl;
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tInnerProd " << sliceInnerTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMaddMatrix " << sliceMaddTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tThinQRfact " << QRTimer.Elapsed() <<std::endl;
IterationsToComplete = k;
return;
}
}
std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge" << std::endl;
if (ErrorOnNoConverge) assert(0);
IterationsToComplete = k;
}
};
NAMESPACE_END(Grid);
}
#endif

View File

@ -1,248 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/CommunicationAvoidingGeneralisedMinimalResidual.h
Copyright (C) 2015
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
#define GRID_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
namespace Grid {
template<class Field>
class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // Throw an assert when CAGMRES fails to converge,
// defaults to true
RealD Tolerance;
Integer MaxIterations;
Integer RestartLength;
Integer MaxNumberOfRestarts;
Integer IterationCount; // Number of iterations the CAGMRES took to finish,
// filled in upon completion
GridStopWatch MatrixTimer;
GridStopWatch LinalgTimer;
GridStopWatch QrTimer;
GridStopWatch CompSolutionTimer;
Eigen::MatrixXcd H;
std::vector<ComplexD> y;
std::vector<ComplexD> gamma;
std::vector<ComplexD> c;
std::vector<ComplexD> s;
CommunicationAvoidingGeneralisedMinimalResidual(RealD tol,
Integer maxit,
Integer restart_length,
bool err_on_no_conv = true)
: Tolerance(tol)
, MaxIterations(maxit)
, RestartLength(restart_length)
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
, ErrorOnNoConverge(err_on_no_conv)
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
, y(RestartLength + 1, 0.)
, gamma(RestartLength + 1, 0.)
, c(RestartLength + 1, 0.)
, s(RestartLength + 1, 0.) {};
void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
std::cout << GridLogWarning << "This algorithm currently doesn't differ from regular GMRES" << std::endl;
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
RealD cp;
RealD ssq = norm2(src);
RealD rsq = Tolerance * Tolerance * ssq;
Field r(src.Grid());
std::cout << std::setprecision(4) << std::scientific;
std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual: guess " << guess << std::endl;
std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual: src " << ssq << std::endl;
MatrixTimer.Reset();
LinalgTimer.Reset();
QrTimer.Reset();
CompSolutionTimer.Reset();
GridStopWatch SolverTimer;
SolverTimer.Start();
IterationCount = 0;
for (int k=0; k<MaxNumberOfRestarts; k++) {
cp = outerLoopBody(LinOp, src, psi, rsq);
// Stopping condition
if (cp <= rsq) {
SolverTimer.Stop();
LinOp.Op(psi,r);
axpy(r,-1.0,src,r);
RealD srcnorm = sqrt(ssq);
RealD resnorm = sqrt(norm2(r));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "CommunicationAvoidingGeneralisedMinimalResidual: Converged on iteration " << IterationCount
<< " computed residual " << sqrt(cp / ssq)
<< " true residual " << true_residual
<< " target " << Tolerance << std::endl;
std::cout << GridLogMessage << "CAGMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "CAGMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "CAGMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "CAGMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "CAGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
return;
}
}
std::cout << GridLogMessage << "CommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl;
if (ErrorOnNoConverge)
assert(0);
}
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
RealD cp = 0;
Field w(src.Grid());
Field r(src.Grid());
// this should probably be made a class member so that it is only allocated once, not in every restart
std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
MatrixTimer.Start();
LinOp.Op(psi, w);
MatrixTimer.Stop();
LinalgTimer.Start();
r = src - w;
gamma[0] = sqrt(norm2(r));
ComplexD scale = 1.0/gamma[0];
v[0] = scale * r;
LinalgTimer.Stop();
for (int i=0; i<RestartLength; i++) {
IterationCount++;
arnoldiStep(LinOp, v, w, i);
qrUpdate(i);
cp = norm(gamma[i+1]);
std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual: Iteration " << IterationCount
<< " residual " << cp << " target " << rsq << std::endl;
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
computeSolution(v, psi, i);
return cp;
}
}
assert(0); // Never reached
return cp;
}
void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, Field &w, int iter) {
MatrixTimer.Start();
LinOp.Op(v[iter], w);
MatrixTimer.Stop();
LinalgTimer.Start();
for (int i = 0; i <= iter; ++i) {
H(iter, i) = innerProduct(v[i], w);
w = w - ComplexD(H(iter, i)) * v[i];
}
H(iter, iter + 1) = sqrt(norm2(w));
v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
LinalgTimer.Stop();
}
void qrUpdate(int iter) {
QrTimer.Start();
for (int i = 0; i < iter ; ++i) {
auto tmp = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
H(iter, i) = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
H(iter, i + 1) = tmp;
}
// Compute new Givens Rotation
auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
c[iter] = H(iter, iter) / nu;
s[iter] = H(iter, iter + 1) / nu;
// Apply new Givens rotation
H(iter, iter) = nu;
H(iter, iter + 1) = 0.;
gamma[iter + 1] = -s[iter] * gamma[iter];
gamma[iter] = conjugate(c[iter]) * gamma[iter];
QrTimer.Stop();
}
void computeSolution(std::vector<Field> const &v, Field &psi, int iter) {
CompSolutionTimer.Start();
for (int i = iter; i >= 0; i--) {
y[i] = gamma[i];
for (int k = i + 1; k <= iter; k++)
y[i] = y[i] - ComplexD(H(k, i)) * y[k];
y[i] = y[i] / ComplexD(H(i, i));
}
for (int i = 0; i <= iter; i++)
psi = psi + v[i] * y[i];
CompSolutionTimer.Stop();
}
};
}
#endif

View File

@ -27,11 +27,11 @@ with this program; if not, write to the Free Software Foundation, Inc.,
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
/* END LEGAL */
#ifndef GRID_CONJUGATE_GRADIENT_H
#define GRID_CONJUGATE_GRADIENT_H
NAMESPACE_BEGIN(Grid);
namespace Grid {
/////////////////////////////////////////////////////////////
// Base classes for iterative processes based on operators
@ -40,30 +40,25 @@ NAMESPACE_BEGIN(Grid);
template <class Field>
class ConjugateGradient : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
public:
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
// Defaults true.
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
RealD TrueResidual;
ConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
: Tolerance(tol),
MaxIterations(maxit),
ErrorOnNoConverge(err_on_no_conv){};
: Tolerance(tol),
MaxIterations(maxit),
ErrorOnNoConverge(err_on_no_conv){};
void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
psi.Checkerboard() = src.Checkerboard();
psi.checkerboard = src.checkerboard;
conformable(psi, src);
RealD cp, c, a, d, b, ssq, qq;
//RealD b_pred;
RealD cp, c, a, d, b, ssq, qq, b_pred;
Field p(src);
Field mmp(src);
@ -72,9 +67,10 @@ public:
// Initial residual computation & set up
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
Linop.HermOpAndNorm(psi, mmp, d, b);
r = src - mmp;
p = r;
@ -82,14 +78,6 @@ public:
cp = a;
ssq = norm2(src);
// Handle trivial case of zero src
if (ssq == 0.){
psi = Zero();
IterationsToComplete = 1;
TrueResidual = 0.;
return;
}
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: guess " << guess << std::endl;
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: src " << ssq << std::endl;
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: mp " << d << std::endl;
@ -101,9 +89,6 @@ public:
// Check if guess is really REALLY good :)
if (cp <= rsq) {
TrueResidual = std::sqrt(a/ssq);
std::cout << GridLogMessage << "ConjugateGradient guess is converged already " << std::endl;
IterationsToComplete = 0;
return;
}
@ -119,7 +104,7 @@ public:
SolverTimer.Start();
int k;
for (k = 1; k <= MaxIterations; k++) {
for (k = 1; k <= MaxIterations*1000; k++) {
c = cp;
MatrixTimer.Start();
@ -140,20 +125,15 @@ public:
b = cp / c;
LinearCombTimer.Start();
{
autoView( psi_v , psi, AcceleratorWrite);
autoView( p_v , p, AcceleratorWrite);
autoView( r_v , r, AcceleratorWrite);
accelerator_for(ss,p_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(psi_v[ss], a * p_v(ss) + psi_v(ss));
coalescedWrite(p_v[ss] , b * p_v(ss) + r_v (ss));
});
parallel_for(int ss=0;ss<src._grid->oSites();ss++){
vstream(psi[ss], a * p[ss] + psi[ss]);
vstream(p [ss], b * p[ss] + r[ss]);
}
LinearCombTimer.Stop();
LinalgTimer.Stop();
std::cout << GridLogIterative << "ConjugateGradient: Iteration " << k
<< " residual " << sqrt(cp/ssq) << " target " << Tolerance << std::endl;
<< " residual " << cp << " target " << rsq << std::endl;
// Stopping condition
if (cp <= rsq) {
@ -161,43 +141,37 @@ public:
Linop.HermOpAndNorm(psi, mmp, d, qq);
p = mmp - src;
RealD srcnorm = std::sqrt(norm2(src));
RealD resnorm = std::sqrt(norm2(p));
RealD srcnorm = sqrt(norm2(src));
RealD resnorm = sqrt(norm2(p));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k
<< "\tComputed residual " << std::sqrt(cp / ssq)
<< "\tTrue residual " << true_residual
<< "\tTarget " << Tolerance << std::endl;
std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k << std::endl;
std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp / ssq)<<std::endl;
std::cout << GridLogMessage << "\tTrue residual " << true_residual<<std::endl;
std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl;
std::cout << GridLogIterative << "Time breakdown "<<std::endl;
std::cout << GridLogIterative << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogIterative << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogIterative << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
std::cout << GridLogIterative << "\tInner " << InnerTimer.Elapsed() <<std::endl;
std::cout << GridLogIterative << "\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
std::cout << GridLogIterative << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "Time breakdown "<<std::endl;
std::cout << GridLogPerformance << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tInner " << InnerTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
IterationsToComplete = k;
TrueResidual = true_residual;
return;
}
}
// Failed. Calculate true residual before giving up
Linop.HermOpAndNorm(psi, mmp, d, qq);
p = mmp - src;
TrueResidual = sqrt(norm2(p)/ssq);
std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations<< std::endl;
std::cout << GridLogMessage << "ConjugateGradient did NOT converge"
<< std::endl;
if (ErrorOnNoConverge) assert(0);
IterationsToComplete = k;
}
};
NAMESPACE_END(Grid);
}
#endif

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -23,17 +23,15 @@ Author: Christopher Kelly <ckelly@phys.columbia.edu>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CONJUGATE_GRADIENT_MIXED_PREC_H
#define GRID_CONJUGATE_GRADIENT_MIXED_PREC_H
NAMESPACE_BEGIN(Grid);
namespace Grid {
//Mixed precision restarted defect correction CG
template<class FieldD,class FieldF,
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
template<class FieldD,class FieldF, typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class MixedPrecisionConjugateGradient : public LinearFunction<FieldD> {
public:
RealD Tolerance;
@ -52,12 +50,7 @@ NAMESPACE_BEGIN(Grid);
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
LinearFunction<FieldF> *guesser;
MixedPrecisionConjugateGradient(RealD tol,
Integer maxinnerit,
Integer maxouterit,
GridBase* _sp_grid,
LinearOperatorBase<FieldF> &_Linop_f,
LinearOperatorBase<FieldD> &_Linop_d) :
MixedPrecisionConjugateGradient(RealD tol, Integer maxinnerit, Integer maxouterit, GridBase* _sp_grid, LinearOperatorBase<FieldF> &_Linop_f, LinearOperatorBase<FieldD> &_Linop_d) :
Linop_f(_Linop_f), Linop_d(_Linop_d),
Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit), MaxOuterIterations(maxouterit), SinglePrecGrid(_sp_grid),
OuterLoopNormMult(100.), guesser(NULL){ };
@ -66,96 +59,96 @@ NAMESPACE_BEGIN(Grid);
guesser = &g;
}
void operator() (const FieldD &src_d_in, FieldD &sol_d){
TotalInnerIterations = 0;
void operator() (const FieldD &src_d_in, FieldD &sol_d){
TotalInnerIterations = 0;
GridStopWatch TotalTimer;
TotalTimer.Start();
GridStopWatch TotalTimer;
TotalTimer.Start();
int cb = src_d_in.Checkerboard();
sol_d.Checkerboard() = cb;
int cb = src_d_in.checkerboard;
sol_d.checkerboard = cb;
RealD src_norm = norm2(src_d_in);
RealD stop = src_norm * Tolerance*Tolerance;
RealD src_norm = norm2(src_d_in);
RealD stop = src_norm * Tolerance*Tolerance;
GridBase* DoublePrecGrid = src_d_in.Grid();
FieldD tmp_d(DoublePrecGrid);
tmp_d.Checkerboard() = cb;
GridBase* DoublePrecGrid = src_d_in._grid;
FieldD tmp_d(DoublePrecGrid);
tmp_d.checkerboard = cb;
FieldD tmp2_d(DoublePrecGrid);
tmp2_d.Checkerboard() = cb;
FieldD tmp2_d(DoublePrecGrid);
tmp2_d.checkerboard = cb;
FieldD src_d(DoublePrecGrid);
src_d = src_d_in; //source for next inner iteration, computed from residual during operation
FieldD src_d(DoublePrecGrid);
src_d = src_d_in; //source for next inner iteration, computed from residual during operation
RealD inner_tol = InnerTolerance;
RealD inner_tol = InnerTolerance;
FieldF src_f(SinglePrecGrid);
src_f.Checkerboard() = cb;
FieldF src_f(SinglePrecGrid);
src_f.checkerboard = cb;
FieldF sol_f(SinglePrecGrid);
sol_f.Checkerboard() = cb;
FieldF sol_f(SinglePrecGrid);
sol_f.checkerboard = cb;
ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
CG_f.ErrorOnNoConverge = false;
ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
CG_f.ErrorOnNoConverge = false;
GridStopWatch InnerCGtimer;
GridStopWatch InnerCGtimer;
GridStopWatch PrecChangeTimer;
GridStopWatch PrecChangeTimer;
Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){
//Compute double precision rsd and also new RHS vector.
Linop_d.HermOp(sol_d, tmp_d);
RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector
for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){
//Compute double precision rsd and also new RHS vector.
Linop_d.HermOp(sol_d, tmp_d);
RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " <<outer_iter<<" residual "<< norm<< " target "<< stop<<std::endl;
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " <<outer_iter<<" residual "<< norm<< " target "<< stop<<std::endl;
if(norm < OuterLoopNormMult * stop){
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration converged on iteration " <<outer_iter <<std::endl;
break;
if(norm < OuterLoopNormMult * stop){
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration converged on iteration " <<outer_iter <<std::endl;
break;
}
while(norm * inner_tol * inner_tol < stop) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ??
PrecChangeTimer.Start();
precisionChange(src_f, src_d);
PrecChangeTimer.Stop();
zeroit(sol_f);
//Optionally improve inner solver guess (eg using known eigenvectors)
if(guesser != NULL)
(*guesser)(src_f, sol_f);
//Inner CG
CG_f.Tolerance = inner_tol;
InnerCGtimer.Start();
CG_f(Linop_f, src_f, sol_f);
InnerCGtimer.Stop();
TotalInnerIterations += CG_f.IterationsToComplete;
//Convert sol back to double and add to double prec solution
PrecChangeTimer.Start();
precisionChange(tmp_d, sol_f);
PrecChangeTimer.Stop();
axpy(sol_d, 1.0, tmp_d, sol_d);
}
while(norm * inner_tol * inner_tol < stop) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ??
//Final trial CG
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Starting final patch-up double-precision solve"<<std::endl;
ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations);
CG_d(Linop_d, src_d_in, sol_d);
TotalFinalStepIterations = CG_d.IterationsToComplete;
PrecChangeTimer.Start();
precisionChange(src_f, src_d);
PrecChangeTimer.Stop();
sol_f = Zero();
//Optionally improve inner solver guess (eg using known eigenvectors)
if(guesser != NULL)
(*guesser)(src_f, sol_f);
//Inner CG
CG_f.Tolerance = inner_tol;
InnerCGtimer.Start();
CG_f(Linop_f, src_f, sol_f);
InnerCGtimer.Stop();
TotalInnerIterations += CG_f.IterationsToComplete;
//Convert sol back to double and add to double prec solution
PrecChangeTimer.Start();
precisionChange(tmp_d, sol_f);
PrecChangeTimer.Stop();
axpy(sol_d, 1.0, tmp_d, sol_d);
TotalTimer.Stop();
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Total time " << TotalTimer.Elapsed() << " Precision change " << PrecChangeTimer.Elapsed() << " Inner CG total " << InnerCGtimer.Elapsed() << std::endl;
}
//Final trial CG
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Starting final patch-up double-precision solve"<<std::endl;
ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations);
CG_d(Linop_d, src_d_in, sol_d);
TotalFinalStepIterations = CG_d.IterationsToComplete;
};
TotalTimer.Stop();
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Total time " << TotalTimer.Elapsed() << " Precision change " << PrecChangeTimer.Elapsed() << " Inner CG total " << InnerCGtimer.Elapsed() << std::endl;
}
};
NAMESPACE_END(Grid);
}
#endif

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -24,165 +24,147 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CONJUGATE_MULTI_SHIFT_GRADIENT_H
#define GRID_CONJUGATE_MULTI_SHIFT_GRADIENT_H
NAMESPACE_BEGIN(Grid);
namespace Grid {
/////////////////////////////////////////////////////////////
// Base classes for iterative processes based on operators
// single input vec, single output vec.
/////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////
// Base classes for iterative processes based on operators
// single input vec, single output vec.
/////////////////////////////////////////////////////////////
template<class Field>
class ConjugateGradientMultiShift : public OperatorMultiFunction<Field>,
public OperatorFunction<Field>
{
template<class Field>
class ConjugateGradientMultiShift : public OperatorMultiFunction<Field>,
public OperatorFunction<Field>
{
public:
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
int verbose;
MultiShiftFunction shifts;
using OperatorFunction<Field>::operator();
ConjugateGradientMultiShift(Integer maxit,MultiShiftFunction &_shifts) :
MaxIterations(maxit),
shifts(_shifts)
{
verbose=1;
}
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
std::vector<int> IterationsToCompleteShift; // Iterations for this shift
int verbose;
MultiShiftFunction shifts;
std::vector<RealD> TrueResidualShift;
void operator() (LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
{
GridBase *grid = src._grid;
int nshift = shifts.order;
std::vector<Field> results(nshift,grid);
(*this)(Linop,src,results,psi);
}
void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector<Field> &results, Field &psi)
{
int nshift = shifts.order;
ConjugateGradientMultiShift(Integer maxit,MultiShiftFunction &_shifts) :
MaxIterations(maxit),
shifts(_shifts)
{
verbose=1;
IterationsToCompleteShift.resize(_shifts.order);
TrueResidualShift.resize(_shifts.order);
(*this)(Linop,src,results);
psi = shifts.norm*src;
for(int i=0;i<nshift;i++){
psi = psi + shifts.residues[i]*results[i];
}
void operator() (LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
{
GridBase *grid = src.Grid();
int nshift = shifts.order;
std::vector<Field> results(nshift,grid);
(*this)(Linop,src,results,psi);
return;
}
void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector<Field> &psi)
{
GridBase *grid = src._grid;
////////////////////////////////////////////////////////////////////////
// Convenience references to the info stored in "MultiShiftFunction"
////////////////////////////////////////////////////////////////////////
int nshift = shifts.order;
std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
std::vector<RealD> &mresidual(shifts.tolerances);
std::vector<RealD> alpha(nshift,1.0);
std::vector<Field> ps(nshift,grid);// Search directions
assert(psi.size()==nshift);
assert(mass.size()==nshift);
assert(mresidual.size()==nshift);
// dynamic sized arrays on stack; 2d is a pain with vector
RealD bs[nshift];
RealD rsq[nshift];
RealD z[nshift][2];
int converged[nshift];
const int primary =0;
//Primary shift fields CG iteration
RealD a,b,c,d;
RealD cp,bp,qq; //prev
// Matrix mult fields
Field r(grid);
Field p(grid);
Field tmp(grid);
Field mmp(grid);
// Check lightest mass
for(int s=0;s<nshift;s++){
assert( mass[s]>= mass[primary] );
converged[s]=0;
}
void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector<Field> &results, Field &psi)
{
int nshift = shifts.order;
(*this)(Linop,src,results);
psi = shifts.norm*src;
for(int i=0;i<nshift;i++){
psi = psi + shifts.residues[i]*results[i];
}
return;
// Wire guess to zero
// Residuals "r" are src
// First search direction "p" is also src
cp = norm2(src);
for(int s=0;s<nshift;s++){
rsq[s] = cp * mresidual[s] * mresidual[s];
std::cout<<GridLogMessage<<"ConjugateGradientMultiShift: shift "<<s
<<" target resid "<<rsq[s]<<std::endl;
ps[s] = src;
}
void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector<Field> &psi)
{
// r and p for primary
r=src;
p=src;
GridBase *grid = src.Grid();
//MdagM+m[0]
Linop.HermOpAndNorm(p,mmp,d,qq);
axpy(mmp,mass[0],p,mmp);
RealD rn = norm2(p);
d += rn*mass[0];
////////////////////////////////////////////////////////////////////////
// Convenience references to the info stored in "MultiShiftFunction"
////////////////////////////////////////////////////////////////////////
int nshift = shifts.order;
std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
std::vector<RealD> &mresidual(shifts.tolerances);
std::vector<RealD> alpha(nshift,1.0);
std::vector<Field> ps(nshift,grid);// Search directions
assert(psi.size()==nshift);
assert(mass.size()==nshift);
assert(mresidual.size()==nshift);
// have verified that inner product of
// p and mmp is equal to d after this since
// the d computation is tricky
// qq = real(innerProduct(p,mmp));
// std::cout<<GridLogMessage << "debug equal ? qq "<<qq<<" d "<< d<<std::endl;
// dynamic sized arrays on stack; 2d is a pain with vector
RealD bs[nshift];
RealD rsq[nshift];
RealD z[nshift][2];
int converged[nshift];
b = -cp /d;
const int primary =0;
// Set up the various shift variables
int iz=0;
z[0][1-iz] = 1.0;
z[0][iz] = 1.0;
bs[0] = b;
for(int s=1;s<nshift;s++){
z[s][1-iz] = 1.0;
z[s][iz] = 1.0/( 1.0 - b*(mass[s]-mass[0]));
bs[s] = b*z[s][iz];
}
//Primary shift fields CG iteration
RealD a,b,c,d;
RealD cp,bp,qq; //prev
// Matrix mult fields
Field r(grid);
Field p(grid);
Field tmp(grid);
Field mmp(grid);
// Check lightest mass
for(int s=0;s<nshift;s++){
assert( mass[s]>= mass[primary] );
converged[s]=0;
}
// Wire guess to zero
// Residuals "r" are src
// First search direction "p" is also src
cp = norm2(src);
// Handle trivial case of zero src.
if( cp == 0. ){
for(int s=0;s<nshift;s++){
psi[s] = Zero();
IterationsToCompleteShift[s] = 1;
TrueResidualShift[s] = 0.;
}
return;
}
for(int s=0;s<nshift;s++){
rsq[s] = cp * mresidual[s] * mresidual[s];
std::cout<<GridLogMessage<<"ConjugateGradientMultiShift: shift "<<s
<<" target resid "<<rsq[s]<<std::endl;
ps[s] = src;
}
// r and p for primary
r=src;
p=src;
//MdagM+m[0]
Linop.HermOpAndNorm(p,mmp,d,qq);
axpy(mmp,mass[0],p,mmp);
RealD rn = norm2(p);
d += rn*mass[0];
// have verified that inner product of
// p and mmp is equal to d after this since
// the d computation is tricky
// qq = real(innerProduct(p,mmp));
// std::cout<<GridLogMessage << "debug equal ? qq "<<qq<<" d "<< d<<std::endl;
b = -cp /d;
// Set up the various shift variables
int iz=0;
z[0][1-iz] = 1.0;
z[0][iz] = 1.0;
bs[0] = b;
for(int s=1;s<nshift;s++){
z[s][1-iz] = 1.0;
z[s][iz] = 1.0/( 1.0 - b*(mass[s]-mass[0]));
bs[s] = b*z[s][iz];
}
// r += b[0] A.p[0]
// c= norm(r)
c=axpy_norm(r,b,mmp,r);
for(int s=0;s<nshift;s++) {
axpby(psi[s],0.,-bs[s]*alpha[s],src,src);
}
// r += b[0] A.p[0]
// c= norm(r)
c=axpy_norm(r,b,mmp,r);
for(int s=0;s<nshift;s++) {
axpby(psi[s],0.,-bs[s]*alpha[s],src,src);
}
///////////////////////////////////////
// Timers
///////////////////////////////////////
@ -193,37 +175,37 @@ public:
GridStopWatch SolverTimer;
SolverTimer.Start();
// Iteration loop
int k;
// Iteration loop
int k;
for (k=1;k<=MaxIterations;k++){
for (k=1;k<=MaxIterations;k++){
a = c /cp;
a = c /cp;
AXPYTimer.Start();
axpy(p,a,p,r);
axpy(p,a,p,r);
AXPYTimer.Stop();
// Note to self - direction ps is iterated seperately
// for each shift. Does not appear to have any scope
// for avoiding linear algebra in "single" case.
//
// However SAME r is used. Could load "r" and update
// ALL ps[s]. 2/3 Bandwidth saving
// New Kernel: Load r, vector of coeffs, vector of pointers ps
// Note to self - direction ps is iterated seperately
// for each shift. Does not appear to have any scope
// for avoiding linear algebra in "single" case.
//
// However SAME r is used. Could load "r" and update
// ALL ps[s]. 2/3 Bandwidth saving
// New Kernel: Load r, vector of coeffs, vector of pointers ps
AXPYTimer.Start();
for(int s=0;s<nshift;s++){
if ( ! converged[s] ) {
if (s==0){
axpy(ps[s],a,ps[s],r);
} else{
RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
axpby(ps[s],z[s][iz],as,r,ps[s]);
}
for(int s=0;s<nshift;s++){
if ( ! converged[s] ) {
if (s==0){
axpy(ps[s],a,ps[s],r);
} else{
RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
axpby(ps[s],z[s][iz],as,r,ps[s]);
}
}
}
AXPYTimer.Stop();
cp=c;
cp=c;
MatrixTimer.Start();
//Linop.HermOpAndNorm(p,mmp,d,qq); // d is used
// The below is faster on KNL
@ -233,91 +215,89 @@ public:
MatrixTimer.Stop();
AXPYTimer.Start();
axpy(mmp,mass[0],p,mmp);
axpy(mmp,mass[0],p,mmp);
AXPYTimer.Stop();
RealD rn = norm2(p);
d += rn*mass[0];
RealD rn = norm2(p);
d += rn*mass[0];
bp=b;
b=-cp/d;
bp=b;
b=-cp/d;
AXPYTimer.Start();
c=axpy_norm(r,b,mmp,r);
c=axpy_norm(r,b,mmp,r);
AXPYTimer.Stop();
// Toggle the recurrence history
bs[0] = b;
iz = 1-iz;
// Toggle the recurrence history
bs[0] = b;
iz = 1-iz;
ShiftTimer.Start();
for(int s=1;s<nshift;s++){
if((!converged[s])){
RealD z0 = z[s][1-iz];
RealD z1 = z[s][iz];
z[s][iz] = z0*z1*bp
/ (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b));
bs[s] = b*z[s][iz]/z0; // NB sign rel to Mike
}
for(int s=1;s<nshift;s++){
if((!converged[s])){
RealD z0 = z[s][1-iz];
RealD z1 = z[s][iz];
z[s][iz] = z0*z1*bp
/ (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b));
bs[s] = b*z[s][iz]/z0; // NB sign rel to Mike
}
}
ShiftTimer.Stop();
for(int s=0;s<nshift;s++){
int ss = s;
// Scope for optimisation here in case of "single".
// Could load psi[0] and pull all ps[s] in.
// if ( single ) ss=primary;
// Bandwith saving in single case is Ls * 3 -> 2+Ls, so ~ 3x saving
// Pipelined CG gain:
//
// New Kernel: Load r, vector of coeffs, vector of pointers ps
// New Kernel: Load psi[0], vector of coeffs, vector of pointers ps
// If can predict the coefficient bs then we can fuse these and avoid write reread cyce
// on ps[s].
// Before: 3 x npole + 3 x npole
// After : 2 x npole (ps[s]) => 3x speed up of multishift CG.
for(int s=0;s<nshift;s++){
int ss = s;
// Scope for optimisation here in case of "single".
// Could load psi[0] and pull all ps[s] in.
// if ( single ) ss=primary;
// Bandwith saving in single case is Ls * 3 -> 2+Ls, so ~ 3x saving
// Pipelined CG gain:
//
// New Kernel: Load r, vector of coeffs, vector of pointers ps
// New Kernel: Load psi[0], vector of coeffs, vector of pointers ps
// If can predict the coefficient bs then we can fuse these and avoid write reread cyce
// on ps[s].
// Before: 3 x npole + 3 x npole
// After : 2 x npole (ps[s]) => 3x speed up of multishift CG.
if( (!converged[s]) ) {
axpy(psi[ss],-bs[s]*alpha[s],ps[s],psi[ss]);
}
if( (!converged[s]) ) {
axpy(psi[ss],-bs[s]*alpha[s],ps[s],psi[ss]);
}
}
// Convergence checks
int all_converged = 1;
for(int s=0;s<nshift;s++){
// Convergence checks
int all_converged = 1;
for(int s=0;s<nshift;s++){
if ( (!converged[s]) ){
IterationsToCompleteShift[s] = k;
if ( (!converged[s]) ){
RealD css = c * z[s][iz]* z[s][iz];
RealD css = c * z[s][iz]* z[s][iz];
if(css<rsq[s]){
if ( ! converged[s] )
std::cout<<GridLogMessage<<"ConjugateGradientMultiShift k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
converged[s]=1;
} else {
all_converged=0;
}
if(css<rsq[s]){
if ( ! converged[s] )
std::cout<<GridLogMessage<<"ConjugateGradientMultiShift k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
converged[s]=1;
} else {
all_converged=0;
}
}
}
}
if ( all_converged ){
if ( all_converged ){
SolverTimer.Stop();
std::cout<<GridLogMessage<< "CGMultiShift: All shifts have converged iteration "<<k<<std::endl;
std::cout<<GridLogMessage<< "CGMultiShift: Checking solutions"<<std::endl;
std::cout<<GridLogMessage<< "CGMultiShift: All shifts have converged iteration "<<k<<std::endl;
std::cout<<GridLogMessage<< "CGMultiShift: Checking solutions"<<std::endl;
// Check answers
for(int s=0; s < nshift; s++) {
Linop.HermOpAndNorm(psi[s],mmp,d,qq);
axpy(tmp,mass[s],psi[s],mmp);
axpy(r,-alpha[s],src,tmp);
RealD rn = norm2(r);
RealD cn = norm2(src);
TrueResidualShift[s] = std::sqrt(rn/cn);
std::cout<<GridLogMessage<<"CGMultiShift: shift["<<s<<"] true residual "<< TrueResidualShift[s] <<std::endl;
}
// Check answers
for(int s=0; s < nshift; s++) {
Linop.HermOpAndNorm(psi[s],mmp,d,qq);
axpy(tmp,mass[s],psi[s],mmp);
axpy(r,-alpha[s],src,tmp);
RealD rn = norm2(r);
RealD cn = norm2(src);
std::cout<<GridLogMessage<<"CGMultiShift: shift["<<s<<"] true residual "<<std::sqrt(rn/cn)<<std::endl;
}
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
@ -327,16 +307,16 @@ public:
IterationsToComplete = k;
return;
}
return;
}
}
// ugly hack
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
// assert(0);
}
// ugly hack
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
// assert(0);
}
};
NAMESPACE_END(Grid);
};
}
#endif

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -23,236 +23,234 @@ Author: Christopher Kelly <ckelly@phys.columbia.edu>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CONJUGATE_GRADIENT_RELIABLE_UPDATE_H
#define GRID_CONJUGATE_GRADIENT_RELIABLE_UPDATE_H
NAMESPACE_BEGIN(Grid);
namespace Grid {
template<class FieldD,class FieldF,
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class ConjugateGradientReliableUpdate : public LinearFunction<FieldD> {
public:
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
// Defaults true.
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
Integer ReliableUpdatesPerformed;
template<class FieldD,class FieldF, typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class ConjugateGradientReliableUpdate : public LinearFunction<FieldD> {
public:
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
// Defaults true.
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
Integer ReliableUpdatesPerformed;
bool DoFinalCleanup; //Final DP cleanup, defaults to true
Integer IterationsToCleanup; //Final DP cleanup step iterations
bool DoFinalCleanup; //Final DP cleanup, defaults to true
Integer IterationsToCleanup; //Final DP cleanup step iterations
LinearOperatorBase<FieldF> &Linop_f;
LinearOperatorBase<FieldD> &Linop_d;
GridBase* SinglePrecGrid;
RealD Delta; //reliable update parameter
LinearOperatorBase<FieldF> &Linop_f;
LinearOperatorBase<FieldD> &Linop_d;
GridBase* SinglePrecGrid;
RealD Delta; //reliable update parameter
//Optional ability to switch to a different linear operator once the tolerance reaches a certain point. Useful for single/half -> single/single
LinearOperatorBase<FieldF> *Linop_fallback;
RealD fallback_transition_tol;
//Optional ability to switch to a different linear operator once the tolerance reaches a certain point. Useful for single/half -> single/single
LinearOperatorBase<FieldF> *Linop_fallback;
RealD fallback_transition_tol;
ConjugateGradientReliableUpdate(RealD tol, Integer maxit, RealD _delta, GridBase* _sp_grid, LinearOperatorBase<FieldF> &_Linop_f, LinearOperatorBase<FieldD> &_Linop_d, bool err_on_no_conv = true)
: Tolerance(tol),
MaxIterations(maxit),
Delta(_delta),
Linop_f(_Linop_f),
Linop_d(_Linop_d),
SinglePrecGrid(_sp_grid),
ErrorOnNoConverge(err_on_no_conv),
DoFinalCleanup(true),
Linop_fallback(NULL)
{};
ConjugateGradientReliableUpdate(RealD tol, Integer maxit, RealD _delta, GridBase* _sp_grid, LinearOperatorBase<FieldF> &_Linop_f, LinearOperatorBase<FieldD> &_Linop_d, bool err_on_no_conv = true)
: Tolerance(tol),
MaxIterations(maxit),
Delta(_delta),
Linop_f(_Linop_f),
Linop_d(_Linop_d),
SinglePrecGrid(_sp_grid),
ErrorOnNoConverge(err_on_no_conv),
DoFinalCleanup(true),
Linop_fallback(NULL)
{};
void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){
Linop_fallback = &_Linop_fallback;
fallback_transition_tol = _fallback_transition_tol;
}
void operator()(const FieldD &src, FieldD &psi) {
LinearOperatorBase<FieldF> *Linop_f_use = &Linop_f;
bool using_fallback = false;
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
RealD cp, c, a, d, b, ssq, qq, b_pred;
FieldD p(src);
FieldD mmp(src);
FieldD r(src);
// Initial residual computation & set up
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
Linop_d.HermOpAndNorm(psi, mmp, d, b);
r = src - mmp;
p = r;
a = norm2(p);
cp = a;
ssq = norm2(src);
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: guess " << guess << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: src " << ssq << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: mp " << d << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: mmp " << b << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: cp,r " << cp << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: p " << a << std::endl;
RealD rsq = Tolerance * Tolerance * ssq;
// Check if guess is really REALLY good :)
if (cp <= rsq) {
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate guess was REALLY good\n";
std::cout << GridLogMessage << "\tComputed residual " << std::sqrt(cp / ssq)<<std::endl;
return;
void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){
Linop_fallback = &_Linop_fallback;
fallback_transition_tol = _fallback_transition_tol;
}
//Single prec initialization
FieldF r_f(SinglePrecGrid);
r_f.Checkerboard() = r.Checkerboard();
precisionChange(r_f, r);
FieldF psi_f(r_f);
psi_f = Zero();
FieldF p_f(r_f);
FieldF mmp_f(r_f);
RealD MaxResidSinceLastRelUp = cp; //initial residual
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
void operator()(const FieldD &src, FieldD &psi) {
LinearOperatorBase<FieldF> *Linop_f_use = &Linop_f;
bool using_fallback = false;
psi.checkerboard = src.checkerboard;
conformable(psi, src);
GridStopWatch LinalgTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
RealD cp, c, a, d, b, ssq, qq, b_pred;
SolverTimer.Start();
int k = 0;
int l = 0;
FieldD p(src);
FieldD mmp(src);
FieldD r(src);
// Initial residual computation & set up
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
for (k = 1; k <= MaxIterations; k++) {
c = cp;
Linop_d.HermOpAndNorm(psi, mmp, d, b);
r = src - mmp;
p = r;
MatrixTimer.Start();
Linop_f_use->HermOpAndNorm(p_f, mmp_f, d, qq);
MatrixTimer.Stop();
a = norm2(p);
cp = a;
ssq = norm2(src);
LinalgTimer.Start();
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: guess " << guess << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: src " << ssq << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: mp " << d << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: mmp " << b << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: cp,r " << cp << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: p " << a << std::endl;
a = c / d;
b_pred = a * (a * qq - d) / c;
RealD rsq = Tolerance * Tolerance * ssq;
cp = axpy_norm(r_f, -a, mmp_f, r_f);
b = cp / c;
// Fuse these loops ; should be really easy
psi_f = a * p_f + psi_f;
//p_f = p_f * b + r_f;
LinalgTimer.Stop();
std::cout << GridLogIterative << "ConjugateGradientReliableUpdate: Iteration " << k
<< " residual " << cp << " target " << rsq << std::endl;
std::cout << GridLogDebug << "a = "<< a << " b_pred = "<< b_pred << " b = "<< b << std::endl;
std::cout << GridLogDebug << "qq = "<< qq << " d = "<< d << " c = "<< c << std::endl;
if(cp > MaxResidSinceLastRelUp){
std::cout << GridLogIterative << "ConjugateGradientReliableUpdate: updating MaxResidSinceLastRelUp : " << MaxResidSinceLastRelUp << " -> " << cp << std::endl;
MaxResidSinceLastRelUp = cp;
}
// Stopping condition
// Check if guess is really REALLY good :)
if (cp <= rsq) {
//Although not written in the paper, I assume that I have to add on the final solution
precisionChange(mmp, psi_f);
psi = psi + mmp;
SolverTimer.Stop();
Linop_d.HermOpAndNorm(psi, mmp, d, qq);
p = mmp - src;
RealD srcnorm = std::sqrt(norm2(src));
RealD resnorm = std::sqrt(norm2(p));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate Converged on iteration " << k << " after " << l << " reliable updates" << std::endl;
std::cout << GridLogMessage << "\tComputed residual " << std::sqrt(cp / ssq)<<std::endl;
std::cout << GridLogMessage << "\tTrue residual " << true_residual<<std::endl;
std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl;
std::cout << GridLogMessage << "Time breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
IterationsToComplete = k;
ReliableUpdatesPerformed = l;
if(DoFinalCleanup){
//Do a final CG to cleanup
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate performing final cleanup.\n";
ConjugateGradient<FieldD> CG(Tolerance,MaxIterations);
CG.ErrorOnNoConverge = ErrorOnNoConverge;
CG(Linop_d,src,psi);
IterationsToCleanup = CG.IterationsToComplete;
}
else if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate complete.\n";
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate guess was REALLY good\n";
std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp / ssq)<<std::endl;
return;
}
else if(cp < Delta * MaxResidSinceLastRelUp) { //reliable update
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate "
<< cp << "(residual) < " << Delta << "(Delta) * " << MaxResidSinceLastRelUp << "(MaxResidSinceLastRelUp) on iteration " << k << " : performing reliable update\n";
precisionChange(mmp, psi_f);
psi = psi + mmp;
Linop_d.HermOpAndNorm(psi, mmp, d, qq);
r = src - mmp;
//Single prec initialization
FieldF r_f(SinglePrecGrid);
r_f.checkerboard = r.checkerboard;
precisionChange(r_f, r);
psi_f = Zero();
precisionChange(r_f, r);
cp = norm2(r);
MaxResidSinceLastRelUp = cp;
FieldF psi_f(r_f);
psi_f = zero;
b = cp/c;
FieldF p_f(r_f);
FieldF mmp_f(r_f);
RealD MaxResidSinceLastRelUp = cp; //initial residual
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
GridStopWatch LinalgTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
int k = 0;
int l = 0;
for (k = 1; k <= MaxIterations; k++) {
c = cp;
MatrixTimer.Start();
Linop_f_use->HermOpAndNorm(p_f, mmp_f, d, qq);
MatrixTimer.Stop();
LinalgTimer.Start();
a = c / d;
b_pred = a * (a * qq - d) / c;
cp = axpy_norm(r_f, -a, mmp_f, r_f);
b = cp / c;
// Fuse these loops ; should be really easy
psi_f = a * p_f + psi_f;
//p_f = p_f * b + r_f;
LinalgTimer.Stop();
std::cout << GridLogIterative << "ConjugateGradientReliableUpdate: Iteration " << k
<< " residual " << cp << " target " << rsq << std::endl;
std::cout << GridLogDebug << "a = "<< a << " b_pred = "<< b_pred << " b = "<< b << std::endl;
std::cout << GridLogDebug << "qq = "<< qq << " d = "<< d << " c = "<< c << std::endl;
if(cp > MaxResidSinceLastRelUp){
std::cout << GridLogIterative << "ConjugateGradientReliableUpdate: updating MaxResidSinceLastRelUp : " << MaxResidSinceLastRelUp << " -> " << cp << std::endl;
MaxResidSinceLastRelUp = cp;
}
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate new residual " << cp << std::endl;
// Stopping condition
if (cp <= rsq) {
//Although not written in the paper, I assume that I have to add on the final solution
precisionChange(mmp, psi_f);
psi = psi + mmp;
SolverTimer.Stop();
Linop_d.HermOpAndNorm(psi, mmp, d, qq);
p = mmp - src;
RealD srcnorm = sqrt(norm2(src));
RealD resnorm = sqrt(norm2(p));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate Converged on iteration " << k << " after " << l << " reliable updates" << std::endl;
std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp / ssq)<<std::endl;
std::cout << GridLogMessage << "\tTrue residual " << true_residual<<std::endl;
std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl;
std::cout << GridLogMessage << "Time breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
IterationsToComplete = k;
ReliableUpdatesPerformed = l;
l = l+1;
}
if(DoFinalCleanup){
//Do a final CG to cleanup
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate performing final cleanup.\n";
ConjugateGradient<FieldD> CG(Tolerance,MaxIterations);
CG.ErrorOnNoConverge = ErrorOnNoConverge;
CG(Linop_d,src,psi);
IterationsToCleanup = CG.IterationsToComplete;
}
else if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
p_f = p_f * b + r_f; //update search vector after reliable update appears to help convergence
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate complete.\n";
return;
}
else if(cp < Delta * MaxResidSinceLastRelUp) { //reliable update
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate "
<< cp << "(residual) < " << Delta << "(Delta) * " << MaxResidSinceLastRelUp << "(MaxResidSinceLastRelUp) on iteration " << k << " : performing reliable update\n";
precisionChange(mmp, psi_f);
psi = psi + mmp;
if(!using_fallback && Linop_fallback != NULL && cp < fallback_transition_tol){
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate switching to fallback linear operator on iteration " << k << " at residual " << cp << std::endl;
Linop_f_use = Linop_fallback;
using_fallback = true;
}
Linop_d.HermOpAndNorm(psi, mmp, d, qq);
r = src - mmp;
psi_f = zero;
precisionChange(r_f, r);
cp = norm2(r);
MaxResidSinceLastRelUp = cp;
b = cp/c;
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate new residual " << cp << std::endl;
l = l+1;
}
p_f = p_f * b + r_f; //update search vector after reliable update appears to help convergence
if(!using_fallback && Linop_fallback != NULL && cp < fallback_transition_tol){
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate switching to fallback linear operator on iteration " << k << " at residual " << cp << std::endl;
Linop_f_use = Linop_fallback;
using_fallback = true;
}
}
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate did NOT converge"
<< std::endl;
}
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate did NOT converge"
<< std::endl;
if (ErrorOnNoConverge) assert(0);
IterationsToComplete = k;
ReliableUpdatesPerformed = l;
}
if (ErrorOnNoConverge) assert(0);
IterationsToComplete = k;
ReliableUpdatesPerformed = l;
}
};
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -24,90 +24,88 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CONJUGATE_RESIDUAL_H
#define GRID_CONJUGATE_RESIDUAL_H
NAMESPACE_BEGIN(Grid);
namespace Grid {
/////////////////////////////////////////////////////////////
// Base classes for iterative processes based on operators
// single input vec, single output vec.
/////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////
// Base classes for iterative processes based on operators
// single input vec, single output vec.
/////////////////////////////////////////////////////////////
template<class Field>
class ConjugateResidual : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
template<class Field>
class ConjugateResidual : public OperatorFunction<Field> {
public:
RealD Tolerance;
Integer MaxIterations;
int verbose;
RealD Tolerance;
Integer MaxIterations;
int verbose;
ConjugateResidual(RealD tol,Integer maxit) : Tolerance(tol), MaxIterations(maxit) {
verbose=0;
};
ConjugateResidual(RealD tol,Integer maxit) : Tolerance(tol), MaxIterations(maxit) {
verbose=0;
};
void operator() (LinearOperatorBase<Field> &Linop,const Field &src, Field &psi){
void operator() (LinearOperatorBase<Field> &Linop,const Field &src, Field &psi){
RealD a, b; // c, d;
RealD cp, ssq,rsq;
RealD a, b, c, d;
RealD cp, ssq,rsq;
RealD rAr, rAAr, rArp;
RealD pAp, pAAp;
RealD rAr, rAAr, rArp;
RealD pAp, pAAp;
GridBase *grid = src.Grid();
psi=Zero();
Field r(grid), p(grid), Ap(grid), Ar(grid);
GridBase *grid = src._grid;
psi=zero;
Field r(grid), p(grid), Ap(grid), Ar(grid);
r=src;
p=src;
Linop.HermOpAndNorm(p,Ap,pAp,pAAp);
Linop.HermOpAndNorm(r,Ar,rAr,rAAr);
cp =norm2(r);
ssq=norm2(src);
rsq=Tolerance*Tolerance*ssq;
if (verbose) std::cout<<GridLogMessage<<"ConjugateResidual: iteration " <<0<<" residual "<<cp<< " target"<< rsq<<std::endl;
for(int k=1;k<MaxIterations;k++){
a = rAr/pAAp;
axpy(psi,a,p,psi);
cp = axpy_norm(r,-a,Ap,r);
rArp=rAr;
r=src;
p=src;
Linop.HermOpAndNorm(p,Ap,pAp,pAAp);
Linop.HermOpAndNorm(r,Ar,rAr,rAAr);
b =rAr/rArp;
axpy(p,b,p,r);
pAAp=axpy_norm(Ap,b,Ap,Ar);
if(verbose) std::cout<<GridLogMessage<<"ConjugateResidual: iteration " <<k<<" residual "<<cp<< " target"<< rsq<<std::endl;
cp =norm2(r);
ssq=norm2(src);
rsq=Tolerance*Tolerance*ssq;
if (verbose) std::cout<<GridLogMessage<<"ConjugateResidual: iteration " <<0<<" residual "<<cp<< " target"<< rsq<<std::endl;
for(int k=1;k<MaxIterations;k++){
a = rAr/pAAp;
axpy(psi,a,p,psi);
cp = axpy_norm(r,-a,Ap,r);
rArp=rAr;
Linop.HermOpAndNorm(r,Ar,rAr,rAAr);
b =rAr/rArp;
axpy(p,b,p,r);
pAAp=axpy_norm(Ap,b,Ap,Ar);
if(verbose) std::cout<<GridLogMessage<<"ConjugateResidual: iteration " <<k<<" residual "<<cp<< " target"<< rsq<<std::endl;
if(cp<rsq) {
Linop.HermOp(psi,Ap);
axpy(r,-1.0,src,Ap);
RealD true_resid = norm2(r)/ssq;
std::cout<<GridLogMessage<<"ConjugateResidual: Converged on iteration " <<k
<< " computed residual "<<sqrt(cp/ssq)
<< " true residual "<<sqrt(true_resid)
<< " target " <<Tolerance <<std::endl;
return;
}
if(cp<rsq) {
Linop.HermOp(psi,Ap);
axpy(r,-1.0,src,Ap);
RealD true_resid = norm2(r)/ssq;
std::cout<<GridLogMessage<<"ConjugateResidual: Converged on iteration " <<k
<< " computed residual "<<std::sqrt(cp/ssq)
<< " true residual "<<std::sqrt(true_resid)
<< " target " <<Tolerance <<std::endl;
return;
}
std::cout<<GridLogMessage<<"ConjugateResidual did NOT converge"<<std::endl;
assert(0);
}
std::cout<<GridLogMessage<<"ConjugateResidual did NOT converge"<<std::endl;
assert(0);
}
};
NAMESPACE_END(Grid);
};
}
#endif

View File

@ -33,13 +33,9 @@ namespace Grid {
template<class Field>
class ZeroGuesser: public LinearFunction<Field> {
public:
virtual void operator()(const Field &src, Field &guess) { guess = Zero(); };
};
template<class Field>
class DoNothingGuesser: public LinearFunction<Field> {
public:
virtual void operator()(const Field &src, Field &guess) { };
virtual void operator()(const Field &src, Field &guess) { guess = zero; };
};
template<class Field>
class SourceGuesser: public LinearFunction<Field> {
public:
@ -60,14 +56,14 @@ public:
DeflatedGuesser(const std::vector<Field> & _evec,const std::vector<RealD> & _eval) : evec(_evec), eval(_eval) {};
virtual void operator()(const Field &src,Field &guess) {
guess = Zero();
guess = zero;
assert(evec.size()==eval.size());
auto N = evec.size();
for (int i=0;i<N;i++) {
const Field& tmp = evec[i];
axpy(guess,TensorRemove(innerProduct(tmp,src)) / eval[i],tmp,guess);
}
guess.Checkerboard() = src.Checkerboard();
guess.checkerboard = src.checkerboard;
}
};
@ -90,15 +86,15 @@ public:
void operator()(const FineField &src,FineField &guess) {
int N = (int)evec_coarse.size();
CoarseField src_coarse(evec_coarse[0].Grid());
CoarseField guess_coarse(evec_coarse[0].Grid()); guess_coarse = Zero();
CoarseField src_coarse(evec_coarse[0]._grid);
CoarseField guess_coarse(evec_coarse[0]._grid); guess_coarse = zero;
blockProject(src_coarse,src,subspace);
for (int i=0;i<N;i++) {
const CoarseField & tmp = evec_coarse[i];
axpy(guess_coarse,TensorRemove(innerProduct(tmp,src_coarse)) / eval_coarse[i],tmp,guess_coarse);
}
blockPromote(guess_coarse,guess,subspace);
guess.Checkerboard() = src.Checkerboard();
guess.checkerboard = src.checkerboard;
};
};

View File

@ -1,258 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/FlexibleCommunicationAvoidingGeneralisedMinimalResidual.h
Copyright (C) 2015
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_FLEXIBLE_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
#define GRID_FLEXIBLE_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
namespace Grid {
template<class Field>
class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // Throw an assert when FCAGMRES fails to converge,
// defaults to true
RealD Tolerance;
Integer MaxIterations;
Integer RestartLength;
Integer MaxNumberOfRestarts;
Integer IterationCount; // Number of iterations the FCAGMRES took to finish,
// filled in upon completion
GridStopWatch MatrixTimer;
GridStopWatch PrecTimer;
GridStopWatch LinalgTimer;
GridStopWatch QrTimer;
GridStopWatch CompSolutionTimer;
Eigen::MatrixXcd H;
std::vector<ComplexD> y;
std::vector<ComplexD> gamma;
std::vector<ComplexD> c;
std::vector<ComplexD> s;
LinearFunction<Field> &Preconditioner;
FlexibleCommunicationAvoidingGeneralisedMinimalResidual(RealD tol,
Integer maxit,
LinearFunction<Field> &Prec,
Integer restart_length,
bool err_on_no_conv = true)
: Tolerance(tol)
, MaxIterations(maxit)
, RestartLength(restart_length)
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
, ErrorOnNoConverge(err_on_no_conv)
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
, y(RestartLength + 1, 0.)
, gamma(RestartLength + 1, 0.)
, c(RestartLength + 1, 0.)
, s(RestartLength + 1, 0.)
, Preconditioner(Prec) {};
void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
std::cout << GridLogWarning << "This algorithm currently doesn't differ from regular FGMRES" << std::endl;
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
RealD cp;
RealD ssq = norm2(src);
RealD rsq = Tolerance * Tolerance * ssq;
Field r(src.Grid());
std::cout << std::setprecision(4) << std::scientific;
std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: guess " << guess << std::endl;
std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: src " << ssq << std::endl;
PrecTimer.Reset();
MatrixTimer.Reset();
LinalgTimer.Reset();
QrTimer.Reset();
CompSolutionTimer.Reset();
GridStopWatch SolverTimer;
SolverTimer.Start();
IterationCount = 0;
for (int k=0; k<MaxNumberOfRestarts; k++) {
cp = outerLoopBody(LinOp, src, psi, rsq);
// Stopping condition
if (cp <= rsq) {
SolverTimer.Stop();
LinOp.Op(psi,r);
axpy(r,-1.0,src,r);
RealD srcnorm = sqrt(ssq);
RealD resnorm = sqrt(norm2(r));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: Converged on iteration " << IterationCount
<< " computed residual " << sqrt(cp / ssq)
<< " true residual " << true_residual
<< " target " << Tolerance << std::endl;
std::cout << GridLogMessage << "FCAGMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FCAGMRES Time elapsed: Precon " << PrecTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FCAGMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FCAGMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FCAGMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FCAGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
return;
}
}
std::cout << GridLogMessage << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl;
if (ErrorOnNoConverge)
assert(0);
}
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
RealD cp = 0;
Field w(src.Grid());
Field r(src.Grid());
// these should probably be made class members so that they are only allocated once, not in every restart
std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
std::vector<Field> z(RestartLength + 1, src.Grid()); for (auto &elem : z) elem = Zero();
MatrixTimer.Start();
LinOp.Op(psi, w);
MatrixTimer.Stop();
LinalgTimer.Start();
r = src - w;
gamma[0] = sqrt(norm2(r));
v[0] = (1. / gamma[0]) * r;
LinalgTimer.Stop();
for (int i=0; i<RestartLength; i++) {
IterationCount++;
arnoldiStep(LinOp, v, z, w, i);
qrUpdate(i);
cp = norm(gamma[i+1]);
std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: Iteration " << IterationCount
<< " residual " << cp << " target " << rsq << std::endl;
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
computeSolution(z, psi, i);
return cp;
}
}
assert(0); // Never reached
return cp;
}
void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, std::vector<Field> &z, Field &w, int iter) {
PrecTimer.Start();
Preconditioner(v[iter], z[iter]);
PrecTimer.Stop();
MatrixTimer.Start();
LinOp.Op(z[iter], w);
MatrixTimer.Stop();
LinalgTimer.Start();
for (int i = 0; i <= iter; ++i) {
H(iter, i) = innerProduct(v[i], w);
w = w - ComplexD(H(iter, i)) * v[i];
}
H(iter, iter + 1) = sqrt(norm2(w));
v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
LinalgTimer.Stop();
}
void qrUpdate(int iter) {
QrTimer.Start();
for (int i = 0; i < iter ; ++i) {
auto tmp = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
H(iter, i) = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
H(iter, i + 1) = tmp;
}
// Compute new Givens Rotation
auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
c[iter] = H(iter, iter) / nu;
s[iter] = H(iter, iter + 1) / nu;
// Apply new Givens rotation
H(iter, iter) = nu;
H(iter, iter + 1) = 0.;
gamma[iter + 1] = -s[iter] * gamma[iter];
gamma[iter] = conjugate(c[iter]) * gamma[iter];
QrTimer.Stop();
}
void computeSolution(std::vector<Field> const &z, Field &psi, int iter) {
CompSolutionTimer.Start();
for (int i = iter; i >= 0; i--) {
y[i] = gamma[i];
for (int k = i + 1; k <= iter; k++)
y[i] = y[i] - ComplexD(H(k, i)) * y[k];
y[i] = y[i] / ComplexD(H(i, i));
}
for (int i = 0; i <= iter; i++)
psi = psi + z[i] * y[i];
CompSolutionTimer.Stop();
}
};
}
#endif

View File

@ -1,256 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/FlexibleGeneralisedMinimalResidual.h
Copyright (C) 2015
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
#define GRID_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
namespace Grid {
template<class Field>
class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // Throw an assert when FGMRES fails to converge,
// defaults to true
RealD Tolerance;
Integer MaxIterations;
Integer RestartLength;
Integer MaxNumberOfRestarts;
Integer IterationCount; // Number of iterations the FGMRES took to finish,
// filled in upon completion
GridStopWatch MatrixTimer;
GridStopWatch PrecTimer;
GridStopWatch LinalgTimer;
GridStopWatch QrTimer;
GridStopWatch CompSolutionTimer;
Eigen::MatrixXcd H;
std::vector<ComplexD> y;
std::vector<ComplexD> gamma;
std::vector<ComplexD> c;
std::vector<ComplexD> s;
LinearFunction<Field> &Preconditioner;
FlexibleGeneralisedMinimalResidual(RealD tol,
Integer maxit,
LinearFunction<Field> &Prec,
Integer restart_length,
bool err_on_no_conv = true)
: Tolerance(tol)
, MaxIterations(maxit)
, RestartLength(restart_length)
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
, ErrorOnNoConverge(err_on_no_conv)
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
, y(RestartLength + 1, 0.)
, gamma(RestartLength + 1, 0.)
, c(RestartLength + 1, 0.)
, s(RestartLength + 1, 0.)
, Preconditioner(Prec) {};
void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
RealD cp;
RealD ssq = norm2(src);
RealD rsq = Tolerance * Tolerance * ssq;
Field r(src.Grid());
std::cout << std::setprecision(4) << std::scientific;
std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual: guess " << guess << std::endl;
std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual: src " << ssq << std::endl;
PrecTimer.Reset();
MatrixTimer.Reset();
LinalgTimer.Reset();
QrTimer.Reset();
CompSolutionTimer.Reset();
GridStopWatch SolverTimer;
SolverTimer.Start();
IterationCount = 0;
for (int k=0; k<MaxNumberOfRestarts; k++) {
cp = outerLoopBody(LinOp, src, psi, rsq);
// Stopping condition
if (cp <= rsq) {
SolverTimer.Stop();
LinOp.Op(psi,r);
axpy(r,-1.0,src,r);
RealD srcnorm = sqrt(ssq);
RealD resnorm = sqrt(norm2(r));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "FlexibleGeneralisedMinimalResidual: Converged on iteration " << IterationCount
<< " computed residual " << sqrt(cp / ssq)
<< " true residual " << true_residual
<< " target " << Tolerance << std::endl;
std::cout << GridLogMessage << "FGMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FGMRES Time elapsed: Precon " << PrecTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FGMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FGMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FGMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
return;
}
}
std::cout << GridLogMessage << "FlexibleGeneralisedMinimalResidual did NOT converge" << std::endl;
if (ErrorOnNoConverge)
assert(0);
}
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
RealD cp = 0;
Field w(src.Grid());
Field r(src.Grid());
// these should probably be made class members so that they are only allocated once, not in every restart
std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
std::vector<Field> z(RestartLength + 1, src.Grid()); for (auto &elem : z) elem = Zero();
MatrixTimer.Start();
LinOp.Op(psi, w);
MatrixTimer.Stop();
LinalgTimer.Start();
r = src - w;
gamma[0] = sqrt(norm2(r));
v[0] = (1. / gamma[0]) * r;
LinalgTimer.Stop();
for (int i=0; i<RestartLength; i++) {
IterationCount++;
arnoldiStep(LinOp, v, z, w, i);
qrUpdate(i);
cp = norm(gamma[i+1]);
std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual: Iteration " << IterationCount
<< " residual " << cp << " target " << rsq << std::endl;
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
computeSolution(z, psi, i);
return cp;
}
}
assert(0); // Never reached
return cp;
}
void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, std::vector<Field> &z, Field &w, int iter) {
PrecTimer.Start();
Preconditioner(v[iter], z[iter]);
PrecTimer.Stop();
MatrixTimer.Start();
LinOp.Op(z[iter], w);
MatrixTimer.Stop();
LinalgTimer.Start();
for (int i = 0; i <= iter; ++i) {
H(iter, i) = innerProduct(v[i], w);
w = w - ComplexD(H(iter, i)) * v[i];
}
H(iter, iter + 1) = sqrt(norm2(w));
v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
LinalgTimer.Stop();
}
void qrUpdate(int iter) {
QrTimer.Start();
for (int i = 0; i < iter ; ++i) {
auto tmp = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
H(iter, i) = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
H(iter, i + 1) = tmp;
}
// Compute new Givens Rotation
auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
c[iter] = H(iter, iter) / nu;
s[iter] = H(iter, iter + 1) / nu;
// Apply new Givens rotation
H(iter, iter) = nu;
H(iter, iter + 1) = 0.;
gamma[iter + 1] = -s[iter] * gamma[iter];
gamma[iter] = conjugate(c[iter]) * gamma[iter];
QrTimer.Stop();
}
void computeSolution(std::vector<Field> const &z, Field &psi, int iter) {
CompSolutionTimer.Start();
for (int i = iter; i >= 0; i--) {
y[i] = gamma[i];
for (int k = i + 1; k <= iter; k++)
y[i] = y[i] - ComplexD(H(k, i)) * y[k];
y[i] = y[i] / ComplexD(H(i, i));
}
for (int i = 0; i <= iter; i++)
psi = psi + z[i] * y[i];
CompSolutionTimer.Stop();
}
};
}
#endif

View File

@ -1,244 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/GeneralisedMinimalResidual.h
Copyright (C) 2015
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_GENERALISED_MINIMAL_RESIDUAL_H
#define GRID_GENERALISED_MINIMAL_RESIDUAL_H
namespace Grid {
template<class Field>
class GeneralisedMinimalResidual : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // Throw an assert when GMRES fails to converge,
// defaults to true
RealD Tolerance;
Integer MaxIterations;
Integer RestartLength;
Integer MaxNumberOfRestarts;
Integer IterationCount; // Number of iterations the GMRES took to finish,
// filled in upon completion
GridStopWatch MatrixTimer;
GridStopWatch LinalgTimer;
GridStopWatch QrTimer;
GridStopWatch CompSolutionTimer;
Eigen::MatrixXcd H;
std::vector<ComplexD> y;
std::vector<ComplexD> gamma;
std::vector<ComplexD> c;
std::vector<ComplexD> s;
GeneralisedMinimalResidual(RealD tol,
Integer maxit,
Integer restart_length,
bool err_on_no_conv = true)
: Tolerance(tol)
, MaxIterations(maxit)
, RestartLength(restart_length)
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
, ErrorOnNoConverge(err_on_no_conv)
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
, y(RestartLength + 1, 0.)
, gamma(RestartLength + 1, 0.)
, c(RestartLength + 1, 0.)
, s(RestartLength + 1, 0.) {};
void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
RealD cp;
RealD ssq = norm2(src);
RealD rsq = Tolerance * Tolerance * ssq;
Field r(src.Grid());
std::cout << std::setprecision(4) << std::scientific;
std::cout << GridLogIterative << "GeneralisedMinimalResidual: guess " << guess << std::endl;
std::cout << GridLogIterative << "GeneralisedMinimalResidual: src " << ssq << std::endl;
MatrixTimer.Reset();
LinalgTimer.Reset();
QrTimer.Reset();
CompSolutionTimer.Reset();
GridStopWatch SolverTimer;
SolverTimer.Start();
IterationCount = 0;
for (int k=0; k<MaxNumberOfRestarts; k++) {
cp = outerLoopBody(LinOp, src, psi, rsq);
// Stopping condition
if (cp <= rsq) {
SolverTimer.Stop();
LinOp.Op(psi,r);
axpy(r,-1.0,src,r);
RealD srcnorm = sqrt(ssq);
RealD resnorm = sqrt(norm2(r));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "GeneralisedMinimalResidual: Converged on iteration " << IterationCount
<< " computed residual " << sqrt(cp / ssq)
<< " true residual " << true_residual
<< " target " << Tolerance << std::endl;
std::cout << GridLogMessage << "GMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "GMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "GMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "GMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "GMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
return;
}
}
std::cout << GridLogMessage << "GeneralisedMinimalResidual did NOT converge" << std::endl;
if (ErrorOnNoConverge)
assert(0);
}
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
RealD cp = 0;
Field w(src.Grid());
Field r(src.Grid());
// this should probably be made a class member so that it is only allocated once, not in every restart
std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
MatrixTimer.Start();
LinOp.Op(psi, w);
MatrixTimer.Stop();
LinalgTimer.Start();
r = src - w;
gamma[0] = sqrt(norm2(r));
v[0] = (1. / gamma[0]) * r;
LinalgTimer.Stop();
for (int i=0; i<RestartLength; i++) {
IterationCount++;
arnoldiStep(LinOp, v, w, i);
qrUpdate(i);
cp = norm(gamma[i+1]);
std::cout << GridLogIterative << "GeneralisedMinimalResidual: Iteration " << IterationCount
<< " residual " << cp << " target " << rsq << std::endl;
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
computeSolution(v, psi, i);
return cp;
}
}
assert(0); // Never reached
return cp;
}
void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, Field &w, int iter) {
MatrixTimer.Start();
LinOp.Op(v[iter], w);
MatrixTimer.Stop();
LinalgTimer.Start();
for (int i = 0; i <= iter; ++i) {
H(iter, i) = innerProduct(v[i], w);
w = w - ComplexD(H(iter, i)) * v[i];
}
H(iter, iter + 1) = sqrt(norm2(w));
v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
LinalgTimer.Stop();
}
void qrUpdate(int iter) {
QrTimer.Start();
for (int i = 0; i < iter ; ++i) {
auto tmp = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
H(iter, i) = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
H(iter, i + 1) = tmp;
}
// Compute new Givens Rotation
auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
c[iter] = H(iter, iter) / nu;
s[iter] = H(iter, iter + 1) / nu;
// Apply new Givens rotation
H(iter, iter) = nu;
H(iter, iter + 1) = 0.;
gamma[iter + 1] = -s[iter] * gamma[iter];
gamma[iter] = conjugate(c[iter]) * gamma[iter];
QrTimer.Stop();
}
void computeSolution(std::vector<Field> const &v, Field &psi, int iter) {
CompSolutionTimer.Start();
for (int i = iter; i >= 0; i--) {
y[i] = gamma[i];
for (int k = i + 1; k <= iter; k++)
y[i] = y[i] - ComplexD(H(k, i)) * y[k];
y[i] = y[i] / ComplexD(H(i, i));
}
for (int i = 0; i <= iter; i++)
psi = psi + v[i] * y[i];
CompSolutionTimer.Stop();
}
};
}
#endif

View File

@ -35,7 +35,120 @@ Author: Christoph Lehner <clehner@bnl.gov>
//#include <zlib.h>
#include <sys/stat.h>
NAMESPACE_BEGIN(Grid);
namespace Grid {
////////////////////////////////////////////////////////
// Move following 100 LOC to lattice/Lattice_basis.h
////////////////////////////////////////////////////////
template<class Field>
void basisOrthogonalize(std::vector<Field> &basis,Field &w,int k)
{
for(int j=0; j<k; ++j){
auto ip = innerProduct(basis[j],w);
w = w - ip*basis[j];
}
}
template<class Field>
void basisRotate(std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j0, int j1, int k0,int k1,int Nm)
{
typedef typename Field::vector_object vobj;
GridBase* grid = basis[0]._grid;
parallel_region
{
std::vector < vobj , commAllocator<vobj> > B(Nm); // Thread private
parallel_for_internal(int ss=0;ss < grid->oSites();ss++){
for(int j=j0; j<j1; ++j) B[j]=0.;
for(int j=j0; j<j1; ++j){
for(int k=k0; k<k1; ++k){
B[j] +=Qt(j,k) * basis[k]._odata[ss];
}
}
for(int j=j0; j<j1; ++j){
basis[j]._odata[ss] = B[j];
}
}
}
}
// Extract a single rotated vector
template<class Field>
void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j, int k0,int k1,int Nm)
{
typedef typename Field::vector_object vobj;
GridBase* grid = basis[0]._grid;
result.checkerboard = basis[0].checkerboard;
parallel_for(int ss=0;ss < grid->oSites();ss++){
vobj B = zero;
for(int k=k0; k<k1; ++k){
B +=Qt(j,k) * basis[k]._odata[ss];
}
result._odata[ss] = B;
}
}
template<class Field>
void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, std::vector<int>& idx)
{
int vlen = idx.size();
assert(vlen>=1);
assert(vlen<=sort_vals.size());
assert(vlen<=_v.size());
for (size_t i=0;i<vlen;i++) {
if (idx[i] != i) {
//////////////////////////////////////
// idx[i] is a table of desired sources giving a permutation.
// Swap v[i] with v[idx[i]].
// Find j>i for which _vnew[j] = _vold[i],
// track the move idx[j] => idx[i]
// track the move idx[i] => i
//////////////////////////////////////
size_t j;
for (j=i;j<idx.size();j++)
if (idx[j]==i)
break;
assert(idx[i] > i); assert(j!=idx.size()); assert(idx[j]==i);
std::swap(_v[i]._odata,_v[idx[i]]._odata); // should use vector move constructor, no data copy
std::swap(sort_vals[i],sort_vals[idx[i]]);
idx[j] = idx[i];
idx[i] = i;
}
}
}
inline std::vector<int> basisSortGetIndex(std::vector<RealD>& sort_vals)
{
std::vector<int> idx(sort_vals.size());
std::iota(idx.begin(), idx.end(), 0);
// sort indexes based on comparing values in v
std::sort(idx.begin(), idx.end(), [&sort_vals](int i1, int i2) {
return ::fabs(sort_vals[i1]) < ::fabs(sort_vals[i2]);
});
return idx;
}
template<class Field>
void basisSortInPlace(std::vector<Field> & _v,std::vector<RealD>& sort_vals, bool reverse)
{
std::vector<int> idx = basisSortGetIndex(sort_vals);
if (reverse)
std::reverse(idx.begin(), idx.end());
basisReorderInPlace(_v,sort_vals,idx);
}
/////////////////////////////////////////////////////////////
// Implicitly restarted lanczos
@ -146,7 +259,7 @@ public:
RealD _eresid, // resid in lmdue deficit
int _MaxIter, // Max iterations
RealD _betastp=0.0, // if beta(k) < betastp: converged
int _MinRestart=0, int _orth_period = 1,
int _MinRestart=1, int _orth_period = 1,
IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen) :
SimpleTester(HermOp), _PolyOp(PolyOp), _HermOp(HermOp), _Tester(Tester),
Nstop(_Nstop) , Nk(_Nk), Nm(_Nm),
@ -162,7 +275,7 @@ public:
RealD _eresid, // resid in lmdue deficit
int _MaxIter, // Max iterations
RealD _betastp=0.0, // if beta(k) < betastp: converged
int _MinRestart=0, int _orth_period = 1,
int _MinRestart=1, int _orth_period = 1,
IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen) :
SimpleTester(HermOp), _PolyOp(PolyOp), _HermOp(HermOp), _Tester(SimpleTester),
Nstop(_Nstop) , Nk(_Nk), Nm(_Nm),
@ -176,7 +289,7 @@ public:
template<typename T> static RealD normalise(T& v)
{
RealD nn = norm2(v);
nn = std::sqrt(nn);
nn = sqrt(nn);
v = v * (1.0/nn);
return nn;
}
@ -208,10 +321,10 @@ until convergence
*/
void calc(std::vector<RealD>& eval, std::vector<Field>& evec, const Field& src, int& Nconv, bool reverse=false)
{
GridBase *grid = src.Grid();
assert(grid == evec[0].Grid());
GridBase *grid = src._grid;
assert(grid == evec[0]._grid);
// GridLogIRL.TimingMode(1);
GridLogIRL.TimingMode(1);
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
std::cout << GridLogIRL <<" ImplicitlyRestartedLanczos::calc() starting iteration 0 / "<< MaxIter<< std::endl;
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
@ -236,17 +349,14 @@ until convergence
{
auto src_n = src;
auto tmp = src;
std::cout << GridLogIRL << " IRL source norm " << norm2(src) << std::endl;
const int _MAX_ITER_IRL_MEVAPP_ = 50;
for (int i=0;i<_MAX_ITER_IRL_MEVAPP_;i++) {
normalise(src_n);
_HermOp(src_n,tmp);
// std::cout << GridLogMessage<< tmp<<std::endl; exit(0);
// std::cout << GridLogIRL << " _HermOp " << norm2(tmp) << std::endl;
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
RealD vden = norm2(src_n);
RealD na = vnum/vden;
if (fabs(evalMaxApprox/na - 1.0) < 0.0001)
if (fabs(evalMaxApprox/na - 1.0) < 0.05)
i=_MAX_ITER_IRL_MEVAPP_;
evalMaxApprox = na;
std::cout << GridLogIRL << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
@ -336,7 +446,7 @@ until convergence
assert(k2<Nm); assert(k2<Nm); assert(k1>0);
basisRotate(evec,Qt,k1-1,k2+1,0,Nm,Nm); /// big constraint on the basis
std::cout<<GridLogIRL <<"basisRotated by Qt *"<<k1-1<<","<<k2+1<<")"<<std::endl;
std::cout<<GridLogIRL <<"basisRotated by Qt"<<std::endl;
////////////////////////////////////////////////////
// Compressed vector f and beta(k2)
@ -344,7 +454,7 @@ until convergence
f *= Qt(k2-1,Nm-1);
f += lme[k2-1] * evec[k2];
beta_k = norm2(f);
beta_k = std::sqrt(beta_k);
beta_k = sqrt(beta_k);
std::cout<<GridLogIRL<<" beta(k) = "<<beta_k<<std::endl;
RealD betar = 1.0/beta_k;
@ -367,7 +477,7 @@ until convergence
std::cout << GridLogIRL << "Test convergence: rotate subset of vectors to test convergence " << std::endl;
Field B(grid); B.Checkerboard() = evec[0].Checkerboard();
Field B(grid); B.checkerboard = evec[0].checkerboard;
// power of two search pattern; not every evalue in eval2 is assessed.
int allconv =1;
@ -405,7 +515,7 @@ until convergence
converged:
{
Field B(grid); B.Checkerboard() = evec[0].Checkerboard();
Field B(grid); B.checkerboard = evec[0].checkerboard;
basisRotate(evec,Qt,0,Nk,0,Nk,Nm);
std::cout << GridLogIRL << " Rotated basis"<<std::endl;
Nconv=0;
@ -444,11 +554,11 @@ until convergence
/* Saad PP. 195
1. Choose an initial vector v1 of 2-norm unity. Set β1 ≡ 0, v0 ≡ 0
2. For k = 1,2,...,m Do:
3. wk:=Avk - b_k v_{k-1}
4. ak:=(wk,vk) //
5. wk:=wk-akvk // wk orthog vk
6. bk+1 := ||wk||_2. If b_k+1 = 0 then Stop
7. vk+1 := wk/b_k+1
3. wk:=Avkβkv_{k1}
4. αk:=(wk,vk) //
5. wk:=wkαkvk // wk orthog vk
6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
7. vk+1 := wk/βk+1
8. EndDo
*/
void step(std::vector<RealD>& lmd,
@ -456,7 +566,6 @@ until convergence
std::vector<Field>& evec,
Field& w,int Nm,int k)
{
std::cout<<GridLogIRL << "Lanczos step " <<k<<std::endl;
const RealD tiny = 1.0e-20;
assert( k< Nm );
@ -468,20 +577,20 @@ until convergence
if(k>0) w -= lme[k-1] * evec[k-1];
ComplexD zalph = innerProduct(evec_k,w);
ComplexD zalph = innerProduct(evec_k,w); // 4. αk:=(wk,vk)
RealD alph = real(zalph);
w = w - alph * evec_k;
w = w - alph * evec_k;// 5. wk:=wkαkvk
RealD beta = normalise(w);
RealD beta = normalise(w); // 6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
// 7. vk+1 := wk/βk+1
lmd[k] = alph;
lme[k] = beta;
if ( (k>0) && ( (k % orth_period) == 0 )) {
std::cout<<GridLogIRL << "Orthogonalising " <<k<<std::endl;
if (k>0 && k % orth_period == 0) {
orthogonalize(w,evec,k); // orthonormalise
std::cout<<GridLogIRL << "Orthogonalised " <<k<<std::endl;
std::cout<<GridLogIRL << "Orthogonalised " <<std::endl;
}
if(k < Nm-1) evec[k+1] = w;
@ -489,8 +598,6 @@ until convergence
std::cout<<GridLogIRL << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
if ( beta < tiny )
std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl;
std::cout<<GridLogIRL << "Lanczos step complete " <<k<<std::endl;
}
void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme,
@ -700,7 +807,7 @@ void diagonalize_QR(std::vector<RealD>& lmd, std::vector<RealD>& lme,
// determination of 2x2 leading submatrix
RealD dsub = lmd[kmax-1]-lmd[kmax-2];
RealD dd = std::sqrt(dsub*dsub + 4.0*lme[kmax-2]*lme[kmax-2]);
RealD dd = sqrt(dsub*dsub + 4.0*lme[kmax-2]*lme[kmax-2]);
RealD Dsh = 0.5*(lmd[kmax-2]+lmd[kmax-1] +dd*(dsub/fabs(dsub)));
// (Dsh: shift)
@ -731,6 +838,5 @@ void diagonalize_QR(std::vector<RealD>& lmd, std::vector<RealD>& lme,
abort();
}
};
NAMESPACE_END(Grid);
}
#endif

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -24,15 +24,16 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LOCAL_COHERENCE_IRL_H
#define GRID_LOCAL_COHERENCE_IRL_H
NAMESPACE_BEGIN(Grid);
namespace Grid {
struct LanczosParams : Serializable {
public:
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParams,
ChebyParams, Cheby,/*Chebyshev*/
int, Nstop, /*Vecs in Lanczos must converge Nstop < Nk < Nm*/
@ -45,7 +46,7 @@ public:
};
struct LocalCoherenceLanczosParams : Serializable {
public:
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams,
bool, saveEvecs,
bool, doFine,
@ -58,7 +59,7 @@ public:
RealD , coarse_relax_tol,
std::vector<int>, blockSize,
std::string, config,
std::vector < ComplexD >, omega,
std::vector < std::complex<double> >, omega,
RealD, mass,
RealD, M5);
};
@ -82,14 +83,14 @@ public:
};
void operator()(const CoarseField& in, CoarseField& out) {
GridBase *FineGrid = subspace[0].Grid();
int checkerboard = subspace[0].Checkerboard();
FineField fin (FineGrid); fin.Checkerboard()= checkerboard;
FineField fout(FineGrid); fout.Checkerboard() = checkerboard;
GridBase *FineGrid = subspace[0]._grid;
int checkerboard = subspace[0].checkerboard;
FineField fin (FineGrid); fin.checkerboard= checkerboard;
FineField fout(FineGrid); fout.checkerboard = checkerboard;
blockPromote(in,fin,subspace); std::cout<<GridLogIRL<<"ProjectedHermop : Promote to fine"<<std::endl;
_Linop.HermOp(fin,fout); std::cout<<GridLogIRL<<"ProjectedHermop : HermOp (fine) "<<std::endl;
_Linop.HermOp(fin,fout); std::cout<<GridLogIRL<<"ProjectedHermop : HermOp (fine) "<<std::endl;
blockProject(out,fout,subspace); std::cout<<GridLogIRL<<"ProjectedHermop : Project to coarse "<<std::endl;
}
};
@ -116,12 +117,12 @@ public:
{ };
void operator()(const CoarseField& in, CoarseField& out) {
GridBase *FineGrid = subspace[0]._grid;
int checkerboard = subspace[0].checkerboard;
GridBase *FineGrid = subspace[0].Grid();
int checkerboard = subspace[0].Checkerboard();
FineField fin (FineGrid); fin.Checkerboard() =checkerboard;
FineField fout(FineGrid);fout.Checkerboard() =checkerboard;
FineField fin (FineGrid); fin.checkerboard =checkerboard;
FineField fout(FineGrid);fout.checkerboard =checkerboard;
blockPromote(in,fin,subspace); std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Promote to fine"<<std::endl;
_poly(_Linop,fin,fout); std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Poly "<<std::endl;
@ -132,7 +133,7 @@ public:
template<class Fobj,class CComplex,int nbasis>
class ImplicitlyRestartedLanczosSmoothedTester : public ImplicitlyRestartedLanczosTester<Lattice<iVector<CComplex,nbasis > > >
{
public:
public:
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
@ -141,7 +142,7 @@ public:
LinearFunction<CoarseField> & _Poly;
OperatorFunction<FineField> & _smoother;
LinearOperatorBase<FineField> &_Linop;
RealD _coarse_relax_tol;
RealD _coarse_relax_tol;
std::vector<FineField> &_subspace;
ImplicitlyRestartedLanczosSmoothedTester(LinearFunction<CoarseField> &Poly,
@ -181,10 +182,10 @@ public:
}
int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
{
GridBase *FineGrid = _subspace[0].Grid();
int checkerboard = _subspace[0].Checkerboard();
FineField fB(FineGrid);fB.Checkerboard() =checkerboard;
FineField fv(FineGrid);fv.Checkerboard() =checkerboard;
GridBase *FineGrid = _subspace[0]._grid;
int checkerboard = _subspace[0].checkerboard;
FineField fB(FineGrid);fB.checkerboard =checkerboard;
FineField fv(FineGrid);fv.checkerboard =checkerboard;
blockPromote(B,fv,_subspace);
@ -304,11 +305,11 @@ public:
int Nk = nbasis;
subspace.resize(Nk,_FineGrid);
subspace[0]=1.0;
subspace[0].Checkerboard()=_checkerboard;
subspace[0].checkerboard=_checkerboard;
normalise(subspace[0]);
PlainHermOp<FineField> Op(_FineOp);
for(int k=1;k<Nk;k++){
subspace[k].Checkerboard()=_checkerboard;
subspace[k].checkerboard=_checkerboard;
Op(subspace[k-1],subspace[k]);
normalise(subspace[k]);
}
@ -359,11 +360,7 @@ public:
ImplicitlyRestartedLanczos<FineField> IRL(ChebyOp,Op,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
FineField src(_FineGrid);
typedef typename FineField::scalar_type Scalar;
// src=1.0;
src=Scalar(1.0);
src.Checkerboard() = _checkerboard;
FineField src(_FineGrid); src=1.0; src.checkerboard = _checkerboard;
int Nconv;
IRL.calc(evals_fine,subspace,src,Nconv,false);
@ -405,5 +402,5 @@ public:
}
};
NAMESPACE_END(Grid);
}
#endif

View File

@ -1,157 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/MinimalResidual.h
Copyright (C) 2015
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_MINIMAL_RESIDUAL_H
#define GRID_MINIMAL_RESIDUAL_H
namespace Grid {
template<class Field> class MinimalResidual : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // throw an assert when the MR fails to converge.
// Defaults true.
RealD Tolerance;
Integer MaxIterations;
RealD overRelaxParam;
Integer IterationsToComplete; // Number of iterations the MR took to finish.
// Filled in upon completion
MinimalResidual(RealD tol, Integer maxit, Real ovrelparam = 1.0, bool err_on_no_conv = true)
: Tolerance(tol), MaxIterations(maxit), overRelaxParam(ovrelparam), ErrorOnNoConverge(err_on_no_conv){};
void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
ComplexD a, c;
RealD d;
Field Mr(src);
Field r(src);
// Initial residual computation & set up
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
RealD ssq = norm2(src);
RealD rsq = Tolerance * Tolerance * ssq;
Linop.Op(psi, Mr);
r = src - Mr;
RealD cp = norm2(r);
std::cout << std::setprecision(4) << std::scientific;
std::cout << GridLogIterative << "MinimalResidual: guess " << guess << std::endl;
std::cout << GridLogIterative << "MinimalResidual: src " << ssq << std::endl;
std::cout << GridLogIterative << "MinimalResidual: cp,r " << cp << std::endl;
if (cp <= rsq) {
return;
}
std::cout << GridLogIterative << "MinimalResidual: k=0 residual " << cp << " target " << rsq << std::endl;
GridStopWatch LinalgTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
int k;
for (k = 1; k <= MaxIterations; k++) {
MatrixTimer.Start();
Linop.Op(r, Mr);
MatrixTimer.Stop();
LinalgTimer.Start();
c = innerProduct(Mr, r);
d = norm2(Mr);
a = c / d;
a = a * overRelaxParam;
psi = psi + r * a;
r = r - Mr * a;
cp = norm2(r);
LinalgTimer.Stop();
std::cout << GridLogIterative << "MinimalResidual: Iteration " << k
<< " residual " << cp << " target " << rsq << std::endl;
std::cout << GridLogDebug << "a = " << a << " c = " << c << " d = " << d << std::endl;
// Stopping condition
if (cp <= rsq) {
SolverTimer.Stop();
Linop.Op(psi, Mr);
r = src - Mr;
RealD srcnorm = sqrt(ssq);
RealD resnorm = sqrt(norm2(r));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "MinimalResidual Converged on iteration " << k
<< " computed residual " << sqrt(cp / ssq)
<< " true residual " << true_residual
<< " target " << Tolerance << std::endl;
std::cout << GridLogMessage << "MR Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "MR Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "MR Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
if (ErrorOnNoConverge)
assert(true_residual / Tolerance < 10000.0);
IterationsToComplete = k;
return;
}
}
std::cout << GridLogMessage << "MinimalResidual did NOT converge"
<< std::endl;
if (ErrorOnNoConverge)
assert(0);
IterationsToComplete = k;
}
};
} // namespace Grid
#endif

View File

@ -1,276 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h
Copyright (C) 2015
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_MIXED_PRECISION_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
#define GRID_MIXED_PRECISION_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
namespace Grid {
template<class FieldD, class FieldF, typename std::enable_if<getPrecision<FieldD>::value == 2, int>::type = 0, typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction<FieldD> {
public:
using OperatorFunction<FieldD>::operator();
bool ErrorOnNoConverge; // Throw an assert when MPFGMRES fails to converge,
// defaults to true
RealD Tolerance;
Integer MaxIterations;
Integer RestartLength;
Integer MaxNumberOfRestarts;
Integer IterationCount; // Number of iterations the MPFGMRES took to finish,
// filled in upon completion
GridStopWatch MatrixTimer;
GridStopWatch PrecTimer;
GridStopWatch LinalgTimer;
GridStopWatch QrTimer;
GridStopWatch CompSolutionTimer;
GridStopWatch ChangePrecTimer;
Eigen::MatrixXcd H;
std::vector<ComplexD> y;
std::vector<ComplexD> gamma;
std::vector<ComplexD> c;
std::vector<ComplexD> s;
GridBase* SinglePrecGrid;
LinearFunction<FieldF> &Preconditioner;
MixedPrecisionFlexibleGeneralisedMinimalResidual(RealD tol,
Integer maxit,
GridBase * sp_grid,
LinearFunction<FieldF> &Prec,
Integer restart_length,
bool err_on_no_conv = true)
: Tolerance(tol)
, MaxIterations(maxit)
, RestartLength(restart_length)
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
, ErrorOnNoConverge(err_on_no_conv)
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
, y(RestartLength + 1, 0.)
, gamma(RestartLength + 1, 0.)
, c(RestartLength + 1, 0.)
, s(RestartLength + 1, 0.)
, SinglePrecGrid(sp_grid)
, Preconditioner(Prec) {};
void operator()(LinearOperatorBase<FieldD> &LinOp, const FieldD &src, FieldD &psi) {
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
RealD cp;
RealD ssq = norm2(src);
RealD rsq = Tolerance * Tolerance * ssq;
FieldD r(src.Grid());
std::cout << std::setprecision(4) << std::scientific;
std::cout << GridLogIterative << "MPFGMRES: guess " << guess << std::endl;
std::cout << GridLogIterative << "MPFGMRES: src " << ssq << std::endl;
PrecTimer.Reset();
MatrixTimer.Reset();
LinalgTimer.Reset();
QrTimer.Reset();
CompSolutionTimer.Reset();
ChangePrecTimer.Reset();
GridStopWatch SolverTimer;
SolverTimer.Start();
IterationCount = 0;
for (int k=0; k<MaxNumberOfRestarts; k++) {
cp = outerLoopBody(LinOp, src, psi, rsq);
// Stopping condition
if (cp <= rsq) {
SolverTimer.Stop();
LinOp.Op(psi,r);
axpy(r,-1.0,src,r);
RealD srcnorm = sqrt(ssq);
RealD resnorm = sqrt(norm2(r));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "MPFGMRES: Converged on iteration " << IterationCount
<< " computed residual " << sqrt(cp / ssq)
<< " true residual " << true_residual
<< " target " << Tolerance << std::endl;
std::cout << GridLogMessage << "MPFGMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "MPFGMRES Time elapsed: Precon " << PrecTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "MPFGMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "MPFGMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "MPFGMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "MPFGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "MPFGMRES Time elapsed: PrecChange " << ChangePrecTimer.Elapsed() << std::endl;
return;
}
}
std::cout << GridLogMessage << "MPFGMRES did NOT converge" << std::endl;
if (ErrorOnNoConverge)
assert(0);
}
RealD outerLoopBody(LinearOperatorBase<FieldD> &LinOp, const FieldD &src, FieldD &psi, RealD rsq) {
RealD cp = 0;
FieldD w(src.Grid());
FieldD r(src.Grid());
// these should probably be made class members so that they are only allocated once, not in every restart
std::vector<FieldD> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
std::vector<FieldD> z(RestartLength + 1, src.Grid()); for (auto &elem : z) elem = Zero();
MatrixTimer.Start();
LinOp.Op(psi, w);
MatrixTimer.Stop();
LinalgTimer.Start();
r = src - w;
gamma[0] = sqrt(norm2(r));
v[0] = (1. / gamma[0]) * r;
LinalgTimer.Stop();
for (int i=0; i<RestartLength; i++) {
IterationCount++;
arnoldiStep(LinOp, v, z, w, i);
qrUpdate(i);
cp = norm(gamma[i+1]);
std::cout << GridLogIterative << "MPFGMRES: Iteration " << IterationCount
<< " residual " << cp << " target " << rsq << std::endl;
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
computeSolution(z, psi, i);
return cp;
}
}
assert(0); // Never reached
return cp;
}
void arnoldiStep(LinearOperatorBase<FieldD> &LinOp, std::vector<FieldD> &v, std::vector<FieldD> &z, FieldD &w, int iter) {
FieldF v_f(SinglePrecGrid);
FieldF z_f(SinglePrecGrid);
ChangePrecTimer.Start();
precisionChange(v_f, v[iter]);
precisionChange(z_f, z[iter]);
ChangePrecTimer.Stop();
PrecTimer.Start();
Preconditioner(v_f, z_f);
PrecTimer.Stop();
ChangePrecTimer.Start();
precisionChange(z[iter], z_f);
ChangePrecTimer.Stop();
MatrixTimer.Start();
LinOp.Op(z[iter], w);
MatrixTimer.Stop();
LinalgTimer.Start();
for (int i = 0; i <= iter; ++i) {
H(iter, i) = innerProduct(v[i], w);
w = w - ComplexD(H(iter, i)) * v[i];
}
H(iter, iter + 1) = sqrt(norm2(w));
v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
LinalgTimer.Stop();
}
void qrUpdate(int iter) {
QrTimer.Start();
for (int i = 0; i < iter ; ++i) {
auto tmp = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
H(iter, i) = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
H(iter, i + 1) = tmp;
}
// Compute new Givens Rotation
auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
c[iter] = H(iter, iter) / nu;
s[iter] = H(iter, iter + 1) / nu;
// Apply new Givens rotation
H(iter, iter) = nu;
H(iter, iter + 1) = 0.;
gamma[iter + 1] = -s[iter] * gamma[iter];
gamma[iter] = conjugate(c[iter]) * gamma[iter];
QrTimer.Stop();
}
void computeSolution(std::vector<FieldD> const &z, FieldD &psi, int iter) {
CompSolutionTimer.Start();
for (int i = iter; i >= 0; i--) {
y[i] = gamma[i];
for (int k = i + 1; k <= iter; k++)
y[i] = y[i] - ComplexD(H(k, i)) * y[k];
y[i] = y[i] / ComplexD(H(i, i));
}
for (int i = 0; i <= iter; i++)
psi = psi + z[i] * y[i];
CompSolutionTimer.Stop();
}
};
}
#endif

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -23,90 +23,38 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_NORMAL_EQUATIONS_H
#define GRID_NORMAL_EQUATIONS_H
NAMESPACE_BEGIN(Grid);
namespace Grid {
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Take a matrix and form an NE solver calling a Herm solver
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class NormalEquations {
private:
SparseMatrixBase<Field> & _Matrix;
OperatorFunction<Field> & _HermitianSolver;
LinearFunction<Field> & _Guess;
public:
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Take a matrix and form an NE solver calling a Herm solver
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class NormalEquations : public OperatorFunction<Field>{
private:
SparseMatrixBase<Field> & _Matrix;
OperatorFunction<Field> & _HermitianSolver;
/////////////////////////////////////////////////////
// Wrap the usual normal equations trick
/////////////////////////////////////////////////////
NormalEquations(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver,
LinearFunction<Field> &Guess)
: _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {};
public:
void operator() (const Field &in, Field &out){
/////////////////////////////////////////////////////
// Wrap the usual normal equations trick
/////////////////////////////////////////////////////
NormalEquations(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver)
: _Matrix(Matrix), _HermitianSolver(HermitianSolver) {};
void operator() (const Field &in, Field &out){
Field src(in.Grid());
Field tmp(in.Grid());
Field src(in._grid);
MdagMLinearOperator<SparseMatrixBase<Field>,Field> MdagMOp(_Matrix);
_Matrix.Mdag(in,src);
_Guess(src,out);
_HermitianSolver(MdagMOp,src,out); // Mdag M out = Mdag in
}
};
template<class Field> class HPDSolver {
private:
LinearOperatorBase<Field> & _Matrix;
OperatorFunction<Field> & _HermitianSolver;
LinearFunction<Field> & _Guess;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations trick
/////////////////////////////////////////////////////
HPDSolver(LinearOperatorBase<Field> &Matrix,
OperatorFunction<Field> &HermitianSolver,
LinearFunction<Field> &Guess)
: _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {};
void operator() (const Field &in, Field &out){
_Matrix.Mdag(in,src);
_HermitianSolver(src,out); // Mdag M out = Mdag in
_Guess(in,out);
_HermitianSolver(_Matrix,in,out); // Mdag M out = Mdag in
}
};
}
};
template<class Field> class MdagMSolver {
private:
SparseMatrixBase<Field> & _Matrix;
OperatorFunction<Field> & _HermitianSolver;
LinearFunction<Field> & _Guess;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations trick
/////////////////////////////////////////////////////
MdagMSolver(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver,
LinearFunction<Field> &Guess)
: _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {};
void operator() (const Field &in, Field &out){
MdagMLinearOperator<SparseMatrixBase<Field>,Field> MdagMOp(_Matrix);
_Guess(in,out);
_HermitianSolver(MdagMOp,in,out); // Mdag M out = Mdag in
}
};
NAMESPACE_END(Grid);
}
#endif

View File

@ -1,45 +0,0 @@
#pragma once
namespace Grid {
template<class Field> class PowerMethod
{
public:
template<typename T> static RealD normalise(T& v)
{
RealD nn = norm2(v);
nn = sqrt(nn);
v = v * (1.0/nn);
return nn;
}
RealD operator()(LinearOperatorBase<Field> &HermOp, const Field &src)
{
GridBase *grid = src.Grid();
// quickly get an idea of the largest eigenvalue to more properly normalize the residuum
RealD evalMaxApprox = 0.0;
auto src_n = src;
auto tmp = src;
const int _MAX_ITER_EST_ = 50;
for (int i=0;i<_MAX_ITER_EST_;i++) {
normalise(src_n);
HermOp.HermOp(src_n,tmp);
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
RealD vden = norm2(src_n);
RealD na = vnum/vden;
if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) {
evalMaxApprox = na;
std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
return evalMaxApprox;
}
evalMaxApprox = na;
src_n = tmp;
}
assert(0);
return 0;
}
};
}

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -23,97 +23,97 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_PREC_CONJUGATE_RESIDUAL_H
#define GRID_PREC_CONJUGATE_RESIDUAL_H
NAMESPACE_BEGIN(Grid);
namespace Grid {
/////////////////////////////////////////////////////////////
// Base classes for iterative processes based on operators
// single input vec, single output vec.
/////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////
// Base classes for iterative processes based on operators
// single input vec, single output vec.
/////////////////////////////////////////////////////////////
template<class Field>
class PrecConjugateResidual : public OperatorFunction<Field> {
public:
RealD Tolerance;
Integer MaxIterations;
int verbose;
LinearFunction<Field> &Preconditioner;
template<class Field>
class PrecConjugateResidual : public OperatorFunction<Field> {
public:
RealD Tolerance;
Integer MaxIterations;
int verbose;
LinearFunction<Field> &Preconditioner;
PrecConjugateResidual(RealD tol,Integer maxit,LinearFunction<Field> &Prec) : Tolerance(tol), MaxIterations(maxit), Preconditioner(Prec)
{
verbose=1;
};
PrecConjugateResidual(RealD tol,Integer maxit,LinearFunction<Field> &Prec) : Tolerance(tol), MaxIterations(maxit), Preconditioner(Prec)
{
verbose=1;
};
void operator() (LinearOperatorBase<Field> &Linop,const Field &src, Field &psi){
void operator() (LinearOperatorBase<Field> &Linop,const Field &src, Field &psi){
RealD a, b, c, d;
RealD cp, ssq,rsq;
RealD a, b, c, d;
RealD cp, ssq,rsq;
RealD rAr, rAAr, rArp;
RealD pAp, pAAp;
RealD rAr, rAAr, rArp;
RealD pAp, pAAp;
GridBase *grid = src.Grid();
Field r(grid), p(grid), Ap(grid), Ar(grid), z(grid);
GridBase *grid = src._grid;
Field r(grid), p(grid), Ap(grid), Ar(grid), z(grid);
psi=zero;
r = src;
Preconditioner(r,p);
psi=zero;
r = src;
Preconditioner(r,p);
Linop.HermOpAndNorm(p,Ap,pAp,pAAp);
Ar=Ap;
rAr=pAp;
rAAr=pAAp;
Linop.HermOpAndNorm(p,Ap,pAp,pAAp);
Ar=Ap;
rAr=pAp;
rAAr=pAAp;
cp =norm2(r);
ssq=norm2(src);
rsq=Tolerance*Tolerance*ssq;
cp =norm2(r);
ssq=norm2(src);
rsq=Tolerance*Tolerance*ssq;
if (verbose) std::cout<<GridLogMessage<<"PrecConjugateResidual: iteration " <<0<<" residual "<<cp<< " target"<< rsq<<std::endl;
if (verbose) std::cout<<GridLogMessage<<"PrecConjugateResidual: iteration " <<0<<" residual "<<cp<< " target"<< rsq<<std::endl;
for(int k=0;k<MaxIterations;k++){
for(int k=0;k<MaxIterations;k++){
Preconditioner(Ap,z);
RealD rq= real(innerProduct(Ap,z));
Preconditioner(Ap,z);
RealD rq= real(innerProduct(Ap,z));
a = rAr/rq;
a = rAr/rq;
axpy(psi,a,p,psi);
cp = axpy_norm(r,-a,z,r);
axpy(psi,a,p,psi);
cp = axpy_norm(r,-a,z,r);
rArp=rAr;
rArp=rAr;
Linop.HermOpAndNorm(r,Ar,rAr,rAAr);
Linop.HermOpAndNorm(r,Ar,rAr,rAAr);
b =rAr/rArp;
b =rAr/rArp;
axpy(p,b,p,r);
pAAp=axpy_norm(Ap,b,Ap,Ar);
axpy(p,b,p,r);
pAAp=axpy_norm(Ap,b,Ap,Ar);
if(verbose) std::cout<<GridLogMessage<<"PrecConjugateResidual: iteration " <<k<<" residual "<<cp<< " target"<< rsq<<std::endl;
if(verbose) std::cout<<GridLogMessage<<"PrecConjugateResidual: iteration " <<k<<" residual "<<cp<< " target"<< rsq<<std::endl;
if(cp<rsq) {
Linop.HermOp(psi,Ap);
axpy(r,-1.0,src,Ap);
RealD true_resid = norm2(r)/ssq;
std::cout<<GridLogMessage<<"PrecConjugateResidual: Converged on iteration " <<k
<< " computed residual "<<sqrt(cp/ssq)
<< " true residual "<<sqrt(true_resid)
<< " target " <<Tolerance <<std::endl;
return;
}
if(cp<rsq) {
Linop.HermOp(psi,Ap);
axpy(r,-1.0,src,Ap);
RealD true_resid = norm2(r)/ssq;
std::cout<<GridLogMessage<<"PrecConjugateResidual: Converged on iteration " <<k
<< " computed residual "<<sqrt(cp/ssq)
<< " true residual "<<sqrt(true_resid)
<< " target " <<Tolerance <<std::endl;
return;
}
std::cout<<GridLogMessage<<"PrecConjugateResidual did NOT converge"<<std::endl;
assert(0);
}
std::cout<<GridLogMessage<<"PrecConjugateResidual did NOT converge"<<std::endl;
assert(0);
}
};
NAMESPACE_END(Grid);
};
}
#endif

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -24,8 +24,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_PREC_GCR_H
#define GRID_PREC_GCR_H
@ -36,204 +36,195 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
//NB. Likely not original reference since they are focussing on a preconditioner variant.
// but VPGCR was nicely written up in their paper
///////////////////////////////////////////////////////////////////////////////////////////////////////
NAMESPACE_BEGIN(Grid);
namespace Grid {
#define GCRLogLevel std::cout << GridLogMessage <<std::string(level,'\t')<< " Level "<<level<<" "
template<class Field>
class PrecGeneralisedConjugateResidual : public OperatorFunction<Field> {
public:
RealD Tolerance;
Integer MaxIterations;
int verbose;
int mmax;
int nstep;
int steps;
GridStopWatch PrecTimer;
GridStopWatch MatTimer;
GridStopWatch LinalgTimer;
template<class Field>
class PrecGeneralisedConjugateResidual : public LinearFunction<Field> {
public:
LinearFunction<Field> &Preconditioner;
RealD Tolerance;
Integer MaxIterations;
int verbose;
int mmax;
int nstep;
int steps;
int level;
GridStopWatch PrecTimer;
GridStopWatch MatTimer;
GridStopWatch LinalgTimer;
PrecGeneralisedConjugateResidual(RealD tol,Integer maxit,LinearFunction<Field> &Prec,int _mmax,int _nstep) :
Tolerance(tol),
MaxIterations(maxit),
Preconditioner(Prec),
mmax(_mmax),
nstep(_nstep)
{
verbose=1;
};
LinearFunction<Field> &Preconditioner;
LinearOperatorBase<Field> &Linop;
void operator() (LinearOperatorBase<Field> &Linop,const Field &src, Field &psi){
void Level(int lv) { level=lv; };
PrecGeneralisedConjugateResidual(RealD tol,Integer maxit,LinearOperatorBase<Field> &_Linop,LinearFunction<Field> &Prec,int _mmax,int _nstep) :
Tolerance(tol),
MaxIterations(maxit),
Linop(_Linop),
Preconditioner(Prec),
mmax(_mmax),
nstep(_nstep)
{
level=1;
verbose=1;
};
void operator() (const Field &src, Field &psi){
psi=Zero();
RealD cp, ssq,rsq;
ssq=norm2(src);
rsq=Tolerance*Tolerance*ssq;
psi=zero;
RealD cp, ssq,rsq;
ssq=norm2(src);
rsq=Tolerance*Tolerance*ssq;
Field r(src.Grid());
Field r(src._grid);
PrecTimer.Reset();
MatTimer.Reset();
LinalgTimer.Reset();
PrecTimer.Reset();
MatTimer.Reset();
LinalgTimer.Reset();
GridStopWatch SolverTimer;
SolverTimer.Start();
GridStopWatch SolverTimer;
SolverTimer.Start();
steps=0;
for(int k=0;k<MaxIterations;k++){
steps=0;
for(int k=0;k<MaxIterations;k++){
cp=GCRnStep(src,psi,rsq);
cp=GCRnStep(Linop,src,psi,rsq);
GCRLogLevel <<"PGCR("<<mmax<<","<<nstep<<") "<< steps <<" steps cp = "<<cp<<" target "<<rsq <<std::endl;
std::cout<<GridLogMessage<<"VPGCR("<<mmax<<","<<nstep<<") "<< steps <<" steps cp = "<<cp<<std::endl;
if(cp<rsq) {
if(cp<rsq) {
SolverTimer.Stop();
SolverTimer.Stop();
Linop.HermOp(psi,r);
axpy(r,-1.0,src,r);
RealD tr = norm2(r);
GCRLogLevel<<"PGCR: Converged on iteration " <<steps
<< " computed residual "<<sqrt(cp/ssq)
<< " true residual " <<sqrt(tr/ssq)
<< " target " <<Tolerance <<std::endl;
Linop.HermOp(psi,r);
axpy(r,-1.0,src,r);
RealD tr = norm2(r);
std::cout<<GridLogMessage<<"PrecGeneralisedConjugateResidual: Converged on iteration " <<steps
<< " computed residual "<<sqrt(cp/ssq)
<< " true residual " <<sqrt(tr/ssq)
<< " target " <<Tolerance <<std::endl;
std::cout<<GridLogMessage<<"VPGCR Time elapsed: Total "<< SolverTimer.Elapsed() <<std::endl;
std::cout<<GridLogMessage<<"VPGCR Time elapsed: Precon "<< PrecTimer.Elapsed() <<std::endl;
std::cout<<GridLogMessage<<"VPGCR Time elapsed: Matrix "<< MatTimer.Elapsed() <<std::endl;
std::cout<<GridLogMessage<<"VPGCR Time elapsed: Linalg "<< LinalgTimer.Elapsed() <<std::endl;
return;
}
GCRLogLevel<<"PGCR Time elapsed: Total "<< SolverTimer.Elapsed() <<std::endl;
/*
GCRLogLevel<<"PGCR Time elapsed: Precon "<< PrecTimer.Elapsed() <<std::endl;
GCRLogLevel<<"PGCR Time elapsed: Matrix "<< MatTimer.Elapsed() <<std::endl;
GCRLogLevel<<"PGCR Time elapsed: Linalg "<< LinalgTimer.Elapsed() <<std::endl;
*/
return;
}
std::cout<<GridLogMessage<<"Variable Preconditioned GCR did not converge"<<std::endl;
assert(0);
}
GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl;
// assert(0);
}
RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
RealD GCRnStep(LinearOperatorBase<Field> &Linop,const Field &src, Field &psi,RealD rsq){
RealD cp;
RealD a, b;
RealD zAz, zAAz;
RealD rq;
RealD cp;
RealD a, b, c, d;
RealD zAz, zAAz;
RealD rAq, rq;
GridBase *grid = src.Grid();
GridBase *grid = src._grid;
Field r(grid);
Field z(grid);
Field tmp(grid);
Field ttmp(grid);
Field Az(grid);
Field r(grid);
Field z(grid);
Field tmp(grid);
Field ttmp(grid);
Field Az(grid);
////////////////////////////////
// history for flexible orthog
////////////////////////////////
std::vector<Field> q(mmax,grid);
std::vector<Field> p(mmax,grid);
std::vector<RealD> qq(mmax);
////////////////////////////////
// history for flexible orthog
////////////////////////////////
std::vector<Field> q(mmax,grid);
std::vector<Field> p(mmax,grid);
std::vector<RealD> qq(mmax);
GCRLogLevel<< "PGCR nStep("<<nstep<<")"<<std::endl;
//////////////////////////////////
// initial guess x0 is taken as nonzero.
// r0=src-A x0 = src
//////////////////////////////////
MatTimer.Start();
Linop.HermOpAndNorm(psi,Az,zAz,zAAz);
MatTimer.Stop();
LinalgTimer.Start();
r=src-Az;
LinalgTimer.Stop();
GCRLogLevel<< "PGCR true residual r = src - A psi "<<norm2(r) <<std::endl;
/////////////////////
// p = Prec(r)
/////////////////////
PrecTimer.Start();
Preconditioner(r,z);
PrecTimer.Stop();
MatTimer.Start();
Linop.HermOpAndNorm(z,Az,zAz,zAAz);
MatTimer.Stop();
LinalgTimer.Start();
//p[0],q[0],qq[0]
p[0]= z;
q[0]= Az;
qq[0]= zAAz;
cp =norm2(r);
LinalgTimer.Stop();
for(int k=0;k<nstep;k++){
steps++;
int kp = k+1;
int peri_k = k %mmax;
int peri_kp= kp%mmax;
LinalgTimer.Start();
rq= real(innerProduct(r,q[peri_k])); // what if rAr not real?
a = rq/qq[peri_k];
axpy(psi,a,p[peri_k],psi);
cp = axpy_norm(r,-a,q[peri_k],r);
LinalgTimer.Stop();
GCRLogLevel<< "PGCR step["<<steps<<"] resid " << cp << " target " <<rsq<<std::endl;
if((k==nstep-1)||(cp<rsq)){
return cp;
}
//////////////////////////////////
// initial guess x0 is taken as nonzero.
// r0=src-A x0 = src
//////////////////////////////////
MatTimer.Start();
Linop.HermOpAndNorm(psi,Az,zAz,zAAz);
MatTimer.Stop();
r=src-Az;
/////////////////////
// p = Prec(r)
/////////////////////
PrecTimer.Start();
Preconditioner(r,z);// solve Az = r
Preconditioner(r,z);
PrecTimer.Stop();
MatTimer.Start();
Linop.HermOpAndNorm(z,Az,zAz,zAAz);
Linop.HermOp(z,tmp);
MatTimer.Stop();
LinalgTimer.Start();
ttmp=tmp;
tmp=tmp-r;
q[peri_kp]=Az;
p[peri_kp]=z;
/*
std::cout<<GridLogMessage<<r<<std::endl;
std::cout<<GridLogMessage<<z<<std::endl;
std::cout<<GridLogMessage<<ttmp<<std::endl;
std::cout<<GridLogMessage<<tmp<<std::endl;
*/
int northog = ((kp)>(mmax-1))?(mmax-1):(kp); // if more than mmax done, we orthog all mmax history.
for(int back=0;back<northog;back++){
MatTimer.Start();
Linop.HermOpAndNorm(z,Az,zAz,zAAz);
MatTimer.Stop();
int peri_back=(k-back)%mmax; assert((k-back)>=0);
//p[0],q[0],qq[0]
p[0]= z;
q[0]= Az;
qq[0]= zAAz;
cp =norm2(r);
for(int k=0;k<nstep;k++){
steps++;
int kp = k+1;
int peri_k = k %mmax;
int peri_kp= kp%mmax;
rq= real(innerProduct(r,q[peri_k])); // what if rAr not real?
a = rq/qq[peri_k];
axpy(psi,a,p[peri_k],psi);
cp = axpy_norm(r,-a,q[peri_k],r);
if((k==nstep-1)||(cp<rsq)){
return cp;
}
std::cout<<GridLogMessage<< " VPGCR_step["<<steps<<"] resid " <<sqrt(cp/rsq)<<std::endl;
PrecTimer.Start();
Preconditioner(r,z);// solve Az = r
PrecTimer.Stop();
MatTimer.Start();
Linop.HermOpAndNorm(z,Az,zAz,zAAz);
Linop.HermOp(z,tmp);
MatTimer.Stop();
tmp=tmp-r;
std::cout<<GridLogMessage<< " Preconditioner resid " <<sqrt(norm2(tmp)/norm2(r))<<std::endl;
q[peri_kp]=Az;
p[peri_kp]=z;
int northog = ((kp)>(mmax-1))?(mmax-1):(kp); // if more than mmax done, we orthog all mmax history.
for(int back=0;back<northog;back++){
int peri_back=(k-back)%mmax; assert((k-back)>=0);
b=-real(innerProduct(q[peri_back],Az))/qq[peri_back];
p[peri_kp]=p[peri_kp]+b*p[peri_back];
q[peri_kp]=q[peri_kp]+b*q[peri_back];
}
qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm
b=-real(innerProduct(q[peri_back],Az))/qq[peri_back];
p[peri_kp]=p[peri_kp]+b*p[peri_back];
q[peri_kp]=q[peri_kp]+b*q[peri_back];
}
qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm
LinalgTimer.Stop();
assert(0); // never reached
return cp;
}
assert(0); // never reached
return cp;
}
};
NAMESPACE_END(Grid);
};
}
#endif

View File

@ -1,241 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/PrecGeneralisedConjugateResidual.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_PREC_GCR_NON_HERM_H
#define GRID_PREC_GCR_NON_HERM_H
///////////////////////////////////////////////////////////////////////////////////////////////////////
//VPGCR Abe and Zhang, 2005.
//INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING
//Computing and Information Volume 2, Number 2, Pages 147-161
//NB. Likely not original reference since they are focussing on a preconditioner variant.
// but VPGCR was nicely written up in their paper
///////////////////////////////////////////////////////////////////////////////////////////////////////
NAMESPACE_BEGIN(Grid);
#define GCRLogLevel std::cout << GridLogMessage <<std::string(level,'\t')<< " Level "<<level<<" "
template<class Field>
class PrecGeneralisedConjugateResidualNonHermitian : public LinearFunction<Field> {
public:
RealD Tolerance;
Integer MaxIterations;
int verbose;
int mmax;
int nstep;
int steps;
int level;
GridStopWatch PrecTimer;
GridStopWatch MatTimer;
GridStopWatch LinalgTimer;
LinearFunction<Field> &Preconditioner;
LinearOperatorBase<Field> &Linop;
void Level(int lv) { level=lv; };
PrecGeneralisedConjugateResidualNonHermitian(RealD tol,Integer maxit,LinearOperatorBase<Field> &_Linop,LinearFunction<Field> &Prec,int _mmax,int _nstep) :
Tolerance(tol),
MaxIterations(maxit),
Linop(_Linop),
Preconditioner(Prec),
mmax(_mmax),
nstep(_nstep)
{
level=1;
verbose=1;
};
void operator() (const Field &src, Field &psi){
psi=Zero();
RealD cp, ssq,rsq;
ssq=norm2(src);
rsq=Tolerance*Tolerance*ssq;
Field r(src.Grid());
PrecTimer.Reset();
MatTimer.Reset();
LinalgTimer.Reset();
GridStopWatch SolverTimer;
SolverTimer.Start();
steps=0;
for(int k=0;k<MaxIterations;k++){
cp=GCRnStep(src,psi,rsq);
GCRLogLevel <<"PGCR("<<mmax<<","<<nstep<<") "<< steps <<" steps cp = "<<cp<<" target "<<rsq <<std::endl;
if(cp<rsq) {
SolverTimer.Stop();
Linop.Op(psi,r);
axpy(r,-1.0,src,r);
RealD tr = norm2(r);
GCRLogLevel<<"PGCR: Converged on iteration " <<steps
<< " computed residual "<<sqrt(cp/ssq)
<< " true residual " <<sqrt(tr/ssq)
<< " target " <<Tolerance <<std::endl;
GCRLogLevel<<"PGCR Time elapsed: Total "<< SolverTimer.Elapsed() <<std::endl;
return;
}
}
GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl;
// assert(0);
}
RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
RealD cp;
ComplexD a, b, zAz;
RealD zAAz;
ComplexD rq;
GridBase *grid = src.Grid();
Field r(grid);
Field z(grid);
Field tmp(grid);
Field ttmp(grid);
Field Az(grid);
////////////////////////////////
// history for flexible orthog
////////////////////////////////
std::vector<Field> q(mmax,grid);
std::vector<Field> p(mmax,grid);
std::vector<RealD> qq(mmax);
GCRLogLevel<< "PGCR nStep("<<nstep<<")"<<std::endl;
//////////////////////////////////
// initial guess x0 is taken as nonzero.
// r0=src-A x0 = src
//////////////////////////////////
MatTimer.Start();
Linop.Op(psi,Az);
zAz = innerProduct(Az,psi);
zAAz= norm2(Az);
MatTimer.Stop();
LinalgTimer.Start();
r=src-Az;
LinalgTimer.Stop();
GCRLogLevel<< "PGCR true residual r = src - A psi "<<norm2(r) <<std::endl;
/////////////////////
// p = Prec(r)
/////////////////////
PrecTimer.Start();
Preconditioner(r,z);
PrecTimer.Stop();
MatTimer.Start();
Linop.Op(z,Az);
MatTimer.Stop();
LinalgTimer.Start();
zAz = innerProduct(Az,psi);
zAAz= norm2(Az);
//p[0],q[0],qq[0]
p[0]= z;
q[0]= Az;
qq[0]= zAAz;
cp =norm2(r);
LinalgTimer.Stop();
for(int k=0;k<nstep;k++){
steps++;
int kp = k+1;
int peri_k = k %mmax;
int peri_kp= kp%mmax;
LinalgTimer.Start();
rq= innerProduct(q[peri_k],r); // what if rAr not real?
a = rq/qq[peri_k];
axpy(psi,a,p[peri_k],psi);
cp = axpy_norm(r,-a,q[peri_k],r);
LinalgTimer.Stop();
GCRLogLevel<< "PGCR step["<<steps<<"] resid " << cp << " target " <<rsq<<std::endl;
if((k==nstep-1)||(cp<rsq)){
return cp;
}
PrecTimer.Start();
Preconditioner(r,z);// solve Az = r
PrecTimer.Stop();
MatTimer.Start();
Linop.Op(z,Az);
MatTimer.Stop();
zAz = innerProduct(Az,psi);
zAAz= norm2(Az);
LinalgTimer.Start();
q[peri_kp]=Az;
p[peri_kp]=z;
int northog = ((kp)>(mmax-1))?(mmax-1):(kp); // if more than mmax done, we orthog all mmax history.
for(int back=0;back<northog;back++){
int peri_back=(k-back)%mmax; assert((k-back)>=0);
b=-real(innerProduct(q[peri_back],Az))/qq[peri_back];
p[peri_kp]=p[peri_kp]+b*p[peri_back];
q[peri_kp]=q[peri_kp]+b*q[peri_back];
}
qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm
LinalgTimer.Stop();
}
assert(0); // never reached
return cp;
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,371 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithmsf/iterative/QuasiMinimalResidual.h
Copyright (C) 2019
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template<class Field>
RealD innerG5ProductReal(Field &l, Field &r)
{
Gamma G5(Gamma::Algebra::Gamma5);
Field tmp(l.Grid());
// tmp = G5*r;
G5R5(tmp,r);
ComplexD ip =innerProduct(l,tmp);
std::cout << "innerProductRealG5R5 "<<ip<<std::endl;
return ip.real();
}
template<class Field>
class QuasiMinimalResidual : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge;
RealD Tolerance;
Integer MaxIterations;
Integer IterationCount;
QuasiMinimalResidual(RealD tol,
Integer maxit,
bool err_on_no_conv = true)
: Tolerance(tol)
, MaxIterations(maxit)
, ErrorOnNoConverge(err_on_no_conv)
{};
#if 1
void operator()(LinearOperatorBase<Field> &LinOp, const Field &b, Field &x)
{
RealD resid;
IterationCount=0;
RealD rho, rho_1, xi, gamma, gamma_1, theta, theta_1;
RealD eta, delta, ep, beta;
GridBase *Grid = b.Grid();
Field r(Grid), d(Grid), s(Grid);
Field v(Grid), w(Grid), y(Grid), z(Grid);
Field v_tld(Grid), w_tld(Grid), y_tld(Grid), z_tld(Grid);
Field p(Grid), q(Grid), p_tld(Grid);
Real normb = norm2(b);
LinOp.Op(x,r); r = b - r;
assert(normb> 0.0);
resid = norm2(r)/normb;
if (resid <= Tolerance) {
return;
}
v_tld = r;
y = v_tld;
rho = norm2(y);
// Take Gamma5 conjugate
// Gamma G5(Gamma::Algebra::Gamma5);
// G5R5(w_tld,r);
// w_tld = G5* v_tld;
w_tld=v_tld;
z = w_tld;
xi = norm2(z);
gamma = 1.0;
eta = -1.0;
theta = 0.0;
for (int i = 1; i <= MaxIterations; i++) {
// Breakdown tests
assert( rho != 0.0);
assert( xi != 0.0);
v = (1. / rho) * v_tld;
y = (1. / rho) * y;
w = (1. / xi) * w_tld;
z = (1. / xi) * z;
ComplexD Zdelta = innerProduct(z, y); // Complex?
std::cout << "Zdelta "<<Zdelta<<std::endl;
delta = Zdelta.real();
y_tld = y;
z_tld = z;
if (i > 1) {
p = y_tld - (xi * delta / ep) * p;
q = z_tld - (rho * delta / ep) * q;
} else {
p = y_tld;
q = z_tld;
}
LinOp.Op(p,p_tld); // p_tld = A * p;
ComplexD Zep = innerProduct(q, p_tld);
ep=Zep.real();
std::cout << "Zep "<<Zep <<std::endl;
// Complex Audit
assert(abs(ep)>0);
beta = ep / delta;
assert(abs(beta)>0);
v_tld = p_tld - beta * v;
y = v_tld;
rho_1 = rho;
rho = norm2(y);
LinOp.AdjOp(q,w_tld);
w_tld = w_tld - beta * w;
z = w_tld;
xi = norm2(z);
gamma_1 = gamma;
theta_1 = theta;
theta = rho / (gamma_1 * beta);
gamma = 1.0 / sqrt(1.0 + theta * theta);
std::cout << "theta "<<theta<<std::endl;
std::cout << "gamma "<<gamma<<std::endl;
assert(abs(gamma)> 0.0);
eta = -eta * rho_1 * gamma* gamma / (beta * gamma_1 * gamma_1);
if (i > 1) {
d = eta * p + (theta_1 * theta_1 * gamma * gamma) * d;
s = eta * p_tld + (theta_1 * theta_1 * gamma * gamma) * s;
} else {
d = eta * p;
s = eta * p_tld;
}
x =x+d; // update approximation vector
r =r-s; // compute residual
if ((resid = norm2(r) / normb) <= Tolerance) {
return;
}
std::cout << "Iteration "<<i<<" resid " << resid<<std::endl;
}
assert(0);
return; // no convergence
}
#else
// QMRg5 SMP thesis
void operator()(LinearOperatorBase<Field> &LinOp, const Field &b, Field &x)
{
// Real scalars
GridBase *grid = b.Grid();
Field r(grid);
Field p_m(grid), p_m_minus_1(grid), p_m_minus_2(grid);
Field v_m(grid), v_m_minus_1(grid), v_m_plus_1(grid);
Field tmp(grid);
RealD w;
RealD z1, z2;
RealD delta_m, delta_m_minus_1;
RealD c_m_plus_1, c_m, c_m_minus_1;
RealD s_m_plus_1, s_m, s_m_minus_1;
RealD alpha, beta, gamma, epsilon;
RealD mu, nu, rho, theta, xi, chi;
RealD mod2r, mod2b;
RealD tau2, target2;
mod2b=norm2(b);
/////////////////////////
// Initial residual
/////////////////////////
LinOp.Op(x,tmp);
r = b - tmp;
/////////////////////////
// \mu = \rho = |r_0|
/////////////////////////
mod2r = norm2(r);
rho = sqrt( mod2r);
mu=rho;
std::cout << "QuasiMinimalResidual rho "<< rho<<std::endl;
/////////////////////////
// Zero negative history
/////////////////////////
v_m_plus_1 = Zero();
v_m_minus_1 = Zero();
p_m_minus_1 = Zero();
p_m_minus_2 = Zero();
// v0
v_m = (1.0/rho)*r;
/////////////////////////
// Initial coeffs
/////////////////////////
delta_m_minus_1 = 1.0;
c_m_minus_1 = 1.0;
c_m = 1.0;
s_m_minus_1 = 0.0;
s_m = 0.0;
/////////////////////////
// Set up convergence check
/////////////////////////
tau2 = mod2r;
target2 = mod2b * Tolerance*Tolerance;
for(int iter = 0 ; iter < MaxIterations; iter++){
/////////////////////////
// \delta_m = (v_m, \gamma_5 v_m)
/////////////////////////
delta_m = innerG5ProductReal(v_m,v_m);
std::cout << "QuasiMinimalResidual delta_m "<< delta_m<<std::endl;
/////////////////////////
// tmp = A v_m
/////////////////////////
LinOp.Op(v_m,tmp);
/////////////////////////
// \alpha = (v_m, \gamma_5 temp) / \delta_m
/////////////////////////
alpha = innerG5ProductReal(v_m,tmp);
alpha = alpha/delta_m ;
std::cout << "QuasiMinimalResidual alpha "<< alpha<<std::endl;
/////////////////////////
// \beta = \rho \delta_m / \delta_{m-1}
/////////////////////////
beta = rho * delta_m / delta_m_minus_1;
std::cout << "QuasiMinimalResidual beta "<< beta<<std::endl;
/////////////////////////
// \tilde{v}_{m+1} = temp - \alpha v_m - \beta v_{m-1}
/////////////////////////
v_m_plus_1 = tmp - alpha*v_m - beta*v_m_minus_1;
///////////////////////////////
// \rho = || \tilde{v}_{m+1} ||
///////////////////////////////
rho = sqrt( norm2(v_m_plus_1) );
std::cout << "QuasiMinimalResidual rho "<< rho<<std::endl;
///////////////////////////////
// v_{m+1} = \tilde{v}_{m+1}
///////////////////////////////
v_m_plus_1 = (1.0 / rho) * v_m_plus_1;
////////////////////////////////
// QMR recurrence coefficients.
////////////////////////////////
theta = s_m_minus_1 * beta;
gamma = c_m_minus_1 * beta;
epsilon = c_m * gamma + s_m * alpha;
xi = -s_m * gamma + c_m * alpha;
nu = sqrt( xi*xi + rho*rho );
c_m_plus_1 = fabs(xi) / nu;
if ( xi == 0.0 ) {
s_m_plus_1 = 1.0;
} else {
s_m_plus_1 = c_m_plus_1 * rho / xi;
}
chi = c_m_plus_1 * xi + s_m_plus_1 * rho;
std::cout << "QuasiMinimalResidual coeffs "<< theta <<" "<<gamma<<" "<< epsilon<<" "<< xi<<" "<< nu<<std::endl;
std::cout << "QuasiMinimalResidual coeffs "<< chi <<std::endl;
////////////////////////////////
//p_m=(v_m - \epsilon p_{m-1} - \theta p_{m-2}) / \chi
////////////////////////////////
p_m = (1.0/chi) * v_m - (epsilon/chi) * p_m_minus_1 - (theta/chi) * p_m_minus_2;
////////////////////////////////////////////////////////////////
// \psi = \psi + c_{m+1} \mu p_m
////////////////////////////////////////////////////////////////
x = x + ( c_m_plus_1 * mu ) * p_m;
////////////////////////////////////////
//
////////////////////////////////////////
mu = -s_m_plus_1 * mu;
delta_m_minus_1 = delta_m;
c_m_minus_1 = c_m;
c_m = c_m_plus_1;
s_m_minus_1 = s_m;
s_m = s_m_plus_1;
////////////////////////////////////
// Could use pointer swizzle games.
////////////////////////////////////
v_m_minus_1 = v_m;
v_m = v_m_plus_1;
p_m_minus_2 = p_m_minus_1;
p_m_minus_1 = p_m;
/////////////////////////////////////
// Convergence checks
/////////////////////////////////////
z1 = RealD(iter+1.0);
z2 = z1 + 1.0;
tau2 = tau2 *( z2 / z1 ) * s_m * s_m;
std::cout << " QuasiMinimumResidual iteration "<< iter<<std::endl;
std::cout << " QuasiMinimumResidual tau bound "<< tau2<<std::endl;
// Compute true residual
mod2r = tau2;
if ( 1 || (tau2 < (100.0 * target2)) ) {
LinOp.Op(x,tmp);
r = b - tmp;
mod2r = norm2(r);
std::cout << " QuasiMinimumResidual true residual is "<< mod2r<<std::endl;
}
if ( mod2r < target2 ) {
std::cout << " QuasiMinimumResidual has converged"<<std::endl;
return;
}
}
}
#endif
};
NAMESPACE_END(Grid);

View File

@ -87,25 +87,228 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
namespace Grid {
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Use base class to share code
// Take a matrix and form a Red Black solver calling a Herm solver
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Now make the norm reflect extra factor of Mee
template<class Field> class SchurRedBlackStaggeredSolve {
private:
OperatorFunction<Field> & _HermitianRBSolver;
int CBfactorise;
bool subGuess;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations Schur trick
/////////////////////////////////////////////////////
SchurRedBlackStaggeredSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false) :
_HermitianRBSolver(HermitianRBSolver)
{
CBfactorise=0;
subtractGuess(initSubGuess);
};
void subtractGuess(const bool initSubGuess)
{
subGuess = initSubGuess;
}
bool isSubtractGuess(void)
{
return subGuess;
}
template<class Matrix>
void operator() (Matrix & _Matrix,const Field &in, Field &out){
ZeroGuesser<Field> guess;
(*this)(_Matrix,in,out,guess);
}
template<class Matrix, class Guesser>
void operator() (Matrix & _Matrix,const Field &in, Field &out, Guesser &guess){
// FIXME CGdiagonalMee not implemented virtual function
// FIXME use CBfactorise to control schur decomp
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
Field src_e(grid);
Field src_o(grid);
Field sol_e(grid);
Field sol_o(grid);
Field tmp(grid);
Field Mtmp(grid);
Field resid(fgrid);
std::cout << GridLogMessage << " SchurRedBlackStaggeredSolve " <<std::endl;
pickCheckerboard(Even,src_e,in);
pickCheckerboard(Odd ,src_o,in);
pickCheckerboard(Even,sol_e,out);
pickCheckerboard(Odd ,sol_o,out);
std::cout << GridLogMessage << " SchurRedBlackStaggeredSolve checkerboards picked" <<std::endl;
/////////////////////////////////////////////////////
// src_o = (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
//src_o = tmp; assert(src_o.checkerboard ==Odd);
_Matrix.Mooee(tmp,src_o); // Extra factor of "m" in source from dumb choice of matrix norm.
//////////////////////////////////////////////////////////////
// Call the red-black solver
//////////////////////////////////////////////////////////////
std::cout<<GridLogMessage << "SchurRedBlackStaggeredSolver calling the Mpc solver" <<std::endl;
guess(src_o, sol_o);
Mtmp = sol_o;
_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
std::cout<<GridLogMessage << "SchurRedBlackStaggeredSolver called the Mpc solver" <<std::endl;
// Fionn A2A boolean behavioural control
if (subGuess) sol_o = sol_o-Mtmp;
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
src_e = src_e-tmp; assert( src_e.checkerboard ==Even);
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even);
std::cout<<GridLogMessage << "SchurRedBlackStaggeredSolver reconstructed other CB" <<std::endl;
setCheckerboard(out,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd );
std::cout<<GridLogMessage << "SchurRedBlackStaggeredSolver inserted solution" <<std::endl;
// Verify the unprec residual
if ( ! subGuess ) {
_Matrix.M(out,resid);
resid = resid-in;
RealD ns = norm2(in);
RealD nr = norm2(resid);
std::cout<<GridLogMessage << "SchurRedBlackStaggered solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
} else {
std::cout << GridLogMessage << "Guess subtracted after solve." << std::endl;
}
}
};
template<class Field> using SchurRedBlackStagSolve = SchurRedBlackStaggeredSolve<Field>;
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Take a matrix and form a Red Black solver calling a Herm solver
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SchurRedBlackBase {
protected:
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
template<class Field> class SchurRedBlackDiagMooeeSolve {
private:
OperatorFunction<Field> & _HermitianRBSolver;
int CBfactorise;
bool subGuess;
bool useSolnAsInitGuess; // if true user-supplied solution vector is used as initial guess for solver
public:
SchurRedBlackBase(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
const bool _solnAsInitGuess = false) :
_HermitianRBSolver(HermitianRBSolver),
useSolnAsInitGuess(_solnAsInitGuess)
/////////////////////////////////////////////////////
// Wrap the usual normal equations Schur trick
/////////////////////////////////////////////////////
SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver,int cb=0, const bool initSubGuess = false) : _HermitianRBSolver(HermitianRBSolver)
{
CBfactorise=cb;
subtractGuess(initSubGuess);
};
void subtractGuess(const bool initSubGuess)
{
subGuess = initSubGuess;
}
bool isSubtractGuess(void)
{
return subGuess;
}
template<class Matrix>
void operator() (Matrix & _Matrix,const Field &in, Field &out){
ZeroGuesser<Field> guess;
(*this)(_Matrix,in,out,guess);
}
template<class Matrix, class Guesser>
void operator() (Matrix & _Matrix,const Field &in, Field &out,Guesser &guess){
// FIXME CGdiagonalMee not implemented virtual function
// FIXME use CBfactorise to control schur decomp
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
Field src_e(grid);
Field src_o(grid);
Field sol_e(grid);
Field sol_o(grid);
Field tmp(grid);
Field Mtmp(grid);
Field resid(fgrid);
pickCheckerboard(Even,src_e,in);
pickCheckerboard(Odd ,src_o,in);
pickCheckerboard(Even,sol_e,out);
pickCheckerboard(Odd ,sol_o,out);
/////////////////////////////////////////////////////
// src_o = Mdag * (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
// get the right MpcDag
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.checkerboard ==Odd);
//////////////////////////////////////////////////////////////
// Call the red-black solver
//////////////////////////////////////////////////////////////
std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl;
guess(src_o,sol_o);
Mtmp = sol_o;
_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
// Fionn A2A boolean behavioural control
if (subGuess) sol_o = sol_o-Mtmp;
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
src_e = src_e-tmp; assert( src_e.checkerboard ==Even);
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(out,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd );
// Verify the unprec residual
if ( ! subGuess ) {
_Matrix.M(out,resid);
resid = resid-in;
RealD ns = norm2(in);
RealD nr = norm2(resid);
std::cout<<GridLogMessage << "SchurRedBlackDiagMooee solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
} else {
std::cout << GridLogMessage << "Guess subtracted after solve." << std::endl;
}
}
};
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Take a matrix and form a Red Black solver calling a Herm solver
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SchurRedBlackDiagTwoSolve {
private:
OperatorFunction<Field> & _HermitianRBSolver;
int CBfactorise;
bool subGuess;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations Schur trick
/////////////////////////////////////////////////////
SchurRedBlackDiagTwoSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false) :
_HermitianRBSolver(HermitianRBSolver)
{
CBfactorise = 0;
subtractGuess(initSubGuess);
@ -119,90 +322,12 @@ namespace Grid {
return subGuess;
}
/////////////////////////////////////////////////////////////
// Shared code
/////////////////////////////////////////////////////////////
template<class Matrix>
void operator() (Matrix & _Matrix,const Field &in, Field &out){
ZeroGuesser<Field> guess;
(*this)(_Matrix,in,out,guess);
}
void operator()(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &out)
{
ZeroGuesser<Field> guess;
(*this)(_Matrix,in,out,guess);
}
template<class Guesser>
void operator()(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &out,Guesser &guess)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
int nblock = in.size();
std::vector<Field> src_o(nblock,grid);
std::vector<Field> sol_o(nblock,grid);
std::vector<Field> guess_save;
Field resid(fgrid);
Field tmp(grid);
////////////////////////////////////////////////
// Prepare RedBlack source
////////////////////////////////////////////////
for(int b=0;b<nblock;b++){
RedBlackSource(_Matrix,in[b],tmp,src_o[b]);
}
////////////////////////////////////////////////
// Make the guesses
////////////////////////////////////////////////
if ( subGuess ) guess_save.resize(nblock,grid);
for(int b=0;b<nblock;b++){
if(useSolnAsInitGuess) {
pickCheckerboard(Odd, sol_o[b], out[b]);
} else {
guess(src_o[b],sol_o[b]);
}
if ( subGuess ) {
guess_save[b] = sol_o[b];
}
}
//////////////////////////////////////////////////////////////
// Call the block solver
//////////////////////////////////////////////////////////////
std::cout<<GridLogMessage << "SchurRedBlackBase calling the solver for "<<nblock<<" RHS" <<std::endl;
RedBlackSolve(_Matrix,src_o,sol_o);
////////////////////////////////////////////////
// A2A boolean behavioural control & reconstruct other checkerboard
////////////////////////////////////////////////
for(int b=0;b<nblock;b++) {
if (subGuess) sol_o[b] = sol_o[b] - guess_save[b];
///////// Needs even source //////////////
pickCheckerboard(Even,tmp,in[b]);
RedBlackSolution(_Matrix,sol_o[b],tmp,out[b]);
/////////////////////////////////////////////////
// Check unprec residual if possible
/////////////////////////////////////////////////
if ( ! subGuess ) {
_Matrix.M(out[b],resid);
resid = resid-in[b];
RealD ns = norm2(in[b]);
RealD nr = norm2(resid);
std::cout<<GridLogMessage<< "SchurRedBlackBase solver true unprec resid["<<b<<"] "<<std::sqrt(nr/ns) << std::endl;
} else {
std::cout<<GridLogMessage<< "SchurRedBlackBase Guess subtracted after solve["<<b<<"] " << std::endl;
}
}
}
template<class Guesser>
template<class Matrix,class Guesser>
void operator() (Matrix & _Matrix,const Field &in, Field &out,Guesser &guess){
// FIXME CGdiagonalMee not implemented virtual function
@ -210,42 +335,52 @@ namespace Grid {
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
Field resid(fgrid);
Field src_o(grid);
SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
Field src_e(grid);
Field src_o(grid);
Field sol_e(grid);
Field sol_o(grid);
Field tmp(grid);
Field Mtmp(grid);
Field resid(fgrid);
////////////////////////////////////////////////
// RedBlack source
////////////////////////////////////////////////
RedBlackSource(_Matrix,in,src_e,src_o);
pickCheckerboard(Even,src_e,in);
pickCheckerboard(Odd ,src_o,in);
pickCheckerboard(Even,sol_e,out);
pickCheckerboard(Odd ,sol_o,out);
/////////////////////////////////////////////////////
// src_o = Mdag * (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
////////////////////////////////
// Construct the guess
////////////////////////////////
if(useSolnAsInitGuess) {
pickCheckerboard(Odd, sol_o, out);
} else {
guess(src_o,sol_o);
}
Field guess_save(grid);
guess_save = sol_o;
// get the right MpcDag
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.checkerboard ==Odd);
//////////////////////////////////////////////////////////////
// Call the red-black solver
//////////////////////////////////////////////////////////////
RedBlackSolve(_Matrix,src_o,sol_o);
////////////////////////////////////////////////
std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl;
// _HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
guess(src_o,tmp);
Mtmp = tmp;
_HermitianRBSolver(_HermOpEO,src_o,tmp); assert(tmp.checkerboard==Odd);
// Fionn A2A boolean behavioural control
////////////////////////////////////////////////
if (subGuess) sol_o= sol_o-guess_save;
if (subGuess) tmp = tmp-Mtmp;
_Matrix.MooeeInv(tmp,sol_o); assert( sol_o.checkerboard ==Odd);
///////////////////////////////////////////////////
// RedBlack solution needs the even source
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
RedBlackSolution(_Matrix,sol_o,src_e,out);
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
src_e = src_e-tmp; assert( src_e.checkerboard ==Even);
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(out,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd );
// Verify the unprec residual
if ( ! subGuess ) {
@ -254,368 +389,115 @@ namespace Grid {
RealD ns = norm2(in);
RealD nr = norm2(resid);
std::cout<<GridLogMessage << "SchurRedBlackBase solver true unprec resid "<< std::sqrt(nr/ns) << std::endl;
std::cout<<GridLogMessage << "SchurRedBlackDiagTwo solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
} else {
std::cout << GridLogMessage << "SchurRedBlackBase Guess subtracted after solve." << std::endl;
std::cout << GridLogMessage << "Guess subtracted after solve." << std::endl;
}
}
/////////////////////////////////////////////////////////////
// Override in derived.
/////////////////////////////////////////////////////////////
virtual void RedBlackSource (Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o) =0;
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol) =0;
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o) =0;
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)=0;
};
template<class Field> class SchurRedBlackStaggeredSolve : public SchurRedBlackBase<Field> {
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Take a matrix and form a Red Black solver calling a Herm solver
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SchurRedBlackDiagTwoMixed {
private:
LinearFunction<Field> & _HermitianRBSolver;
int CBfactorise;
bool subGuess;
public:
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
SchurRedBlackStaggeredSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
const bool _solnAsInitGuess = false)
: SchurRedBlackBase<Field> (HermitianRBSolver,initSubGuess,_solnAsInitGuess)
{
}
//////////////////////////////////////////////////////
// Override RedBlack specialisation
//////////////////////////////////////////////////////
virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
Field tmp(grid);
Field Mtmp(grid);
pickCheckerboard(Even,src_e,src);
pickCheckerboard(Odd ,src_o,src);
/////////////////////////////////////////////////////
// src_o = (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.Checkerboard() ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.Checkerboard() ==Odd);
tmp=src_o-Mtmp; assert( tmp.Checkerboard() ==Odd);
_Matrix.Mooee(tmp,src_o); // Extra factor of "m" in source from dumb choice of matrix norm.
}
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e_c,Field &sol)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
Field tmp(grid);
Field sol_e(grid);
Field src_e(grid);
src_e = src_e_c; // Const correctness
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o,tmp); assert( tmp.Checkerboard() ==Even);
src_e = src_e-tmp; assert( src_e.Checkerboard() ==Even);
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_e); assert( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_o); assert( sol_o.Checkerboard() ==Odd );
}
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
{
SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.Checkerboard()==Odd);
};
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
{
SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
}
};
template<class Field> using SchurRedBlackStagSolve = SchurRedBlackStaggeredSolve<Field>;
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Site diagonal has Mooee on it.
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SchurRedBlackDiagMooeeSolve : public SchurRedBlackBase<Field> {
public:
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
const bool _solnAsInitGuess = false)
: SchurRedBlackBase<Field> (HermitianRBSolver,initSubGuess,_solnAsInitGuess) {};
//////////////////////////////////////////////////////
// Override RedBlack specialisation
//////////////////////////////////////////////////////
virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
Field tmp(grid);
Field Mtmp(grid);
pickCheckerboard(Even,src_e,src);
pickCheckerboard(Odd ,src_o,src);
/////////////////////////////////////////////////////
// src_o = Mdag * (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.Checkerboard() ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.Checkerboard() ==Odd);
tmp=src_o-Mtmp; assert( tmp.Checkerboard() ==Odd);
// get the right MpcDag
SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.Checkerboard() ==Odd);
}
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
Field tmp(grid);
Field sol_e(grid);
Field src_e_i(grid);
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o,tmp); assert( tmp.Checkerboard() ==Even);
src_e_i = src_e-tmp; assert( src_e_i.Checkerboard() ==Even);
_Matrix.MooeeInv(src_e_i,sol_e); assert( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_e); assert( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_o); assert( sol_o.Checkerboard() ==Odd );
}
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
{
SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.Checkerboard()==Odd);
};
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
{
SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
}
};
template<class Field> class NonHermitianSchurRedBlackDiagMooeeSolve : public SchurRedBlackBase<Field>
{
public:
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
NonHermitianSchurRedBlackDiagMooeeSolve(OperatorFunction<Field>& RBSolver, const bool initSubGuess = false,
const bool _solnAsInitGuess = false)
: SchurRedBlackBase<Field>(RBSolver, initSubGuess, _solnAsInitGuess) {};
//////////////////////////////////////////////////////
// Override RedBlack specialisation
//////////////////////////////////////////////////////
virtual void RedBlackSource(Matrix& _Matrix, const Field& src, Field& src_e, Field& src_o)
{
GridBase* grid = _Matrix.RedBlackGrid();
GridBase* fgrid = _Matrix.Grid();
Field tmp(grid);
Field Mtmp(grid);
pickCheckerboard(Even, src_e, src);
pickCheckerboard(Odd , src_o, src);
/////////////////////////////////////////////////////
// src_o = Mdag * (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e, tmp); assert( tmp.Checkerboard() == Even );
_Matrix.Meooe (tmp, Mtmp); assert( Mtmp.Checkerboard() == Odd );
src_o -= Mtmp; assert( src_o.Checkerboard() == Odd );
}
virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol)
{
GridBase* grid = _Matrix.RedBlackGrid();
GridBase* fgrid = _Matrix.Grid();
Field tmp(grid);
Field sol_e(grid);
Field src_e_i(grid);
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o, tmp); assert( tmp.Checkerboard() == Even );
src_e_i = src_e - tmp; assert( src_e_i.Checkerboard() == Even );
_Matrix.MooeeInv(src_e_i, sol_e); assert( sol_e.Checkerboard() == Even );
setCheckerboard(sol, sol_e); assert( sol_e.Checkerboard() == Even );
setCheckerboard(sol, sol_o); assert( sol_o.Checkerboard() == Odd );
}
virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o)
{
NonHermitianSchurDiagMooeeOperator<Matrix,Field> _OpEO(_Matrix);
this->_HermitianRBSolver(_OpEO, src_o, sol_o); assert(sol_o.Checkerboard() == Odd);
}
virtual void RedBlackSolve(Matrix& _Matrix, const std::vector<Field>& src_o, std::vector<Field>& sol_o)
{
NonHermitianSchurDiagMooeeOperator<Matrix,Field> _OpEO(_Matrix);
this->_HermitianRBSolver(_OpEO, src_o, sol_o);
}
};
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Site diagonal is identity, right preconditioned by Mee^inv
// ( 1 - Meo Moo^inv Moe Mee^inv ) phi =( 1 - Meo Moo^inv Moe Mee^inv ) Mee psi = = eta = eta
//=> psi = MeeInv phi
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SchurRedBlackDiagTwoSolve : public SchurRedBlackBase<Field> {
public:
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
/////////////////////////////////////////////////////
// Wrap the usual normal equations Schur trick
/////////////////////////////////////////////////////
SchurRedBlackDiagTwoSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
const bool _solnAsInitGuess = false)
: SchurRedBlackBase<Field>(HermitianRBSolver,initSubGuess,_solnAsInitGuess) {};
virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
SchurRedBlackDiagTwoMixed(LinearFunction<Field> &HermitianRBSolver, const bool initSubGuess = false) :
_HermitianRBSolver(HermitianRBSolver)
{
CBfactorise=0;
subtractGuess(initSubGuess);
};
void subtractGuess(const bool initSubGuess)
{
subGuess = initSubGuess;
}
bool isSubtractGuess(void)
{
return subGuess;
}
template<class Matrix>
void operator() (Matrix & _Matrix,const Field &in, Field &out){
ZeroGuesser<Field> guess;
(*this)(_Matrix,in,out,guess);
}
template<class Matrix, class Guesser>
void operator() (Matrix & _Matrix,const Field &in, Field &out,Guesser &guess){
// FIXME CGdiagonalMee not implemented virtual function
// FIXME use CBfactorise to control schur decomp
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
Field src_e(grid);
Field src_o(grid);
Field sol_e(grid);
Field sol_o(grid);
Field tmp(grid);
Field Mtmp(grid);
Field resid(fgrid);
pickCheckerboard(Even,src_e,src);
pickCheckerboard(Odd ,src_o,src);
pickCheckerboard(Even,src_e,in);
pickCheckerboard(Odd ,src_o,in);
pickCheckerboard(Even,sol_e,out);
pickCheckerboard(Odd ,sol_o,out);
/////////////////////////////////////////////////////
// src_o = Mdag * (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.Checkerboard() ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.Checkerboard() ==Odd);
tmp=src_o-Mtmp; assert( tmp.Checkerboard() ==Odd);
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
// get the right MpcDag
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.Checkerboard() ==Odd);
}
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.checkerboard ==Odd);
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
Field sol_o_i(grid);
Field tmp(grid);
Field sol_e(grid);
////////////////////////////////////////////////
// MooeeInv due to pecond
////////////////////////////////////////////////
_Matrix.MooeeInv(sol_o,tmp);
sol_o_i = tmp;
//////////////////////////////////////////////////////////////
// Call the red-black solver
//////////////////////////////////////////////////////////////
std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl;
// _HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
// _HermitianRBSolver(_HermOpEO,src_o,tmp); assert(tmp.checkerboard==Odd);
guess(src_o,tmp);
Mtmp = tmp;
_HermitianRBSolver(_HermOpEO,src_o,tmp); assert(tmp.checkerboard==Odd);
// Fionn A2A boolean behavioural control
if (subGuess) tmp = tmp-Mtmp;
_Matrix.MooeeInv(tmp,sol_o); assert( sol_o.checkerboard ==Odd);
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o_i,tmp); assert( tmp.Checkerboard() ==Even);
tmp = src_e-tmp; assert( src_e.Checkerboard() ==Even);
_Matrix.MooeeInv(tmp,sol_e); assert( sol_e.Checkerboard() ==Even);
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
src_e = src_e-tmp; assert( src_e.checkerboard ==Even);
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(sol,sol_e); assert( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_o_i); assert( sol_o_i.Checkerboard() ==Odd );
};
setCheckerboard(out,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd );
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
{
SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
};
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
{
SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
}
// Verify the unprec residual
if ( ! subGuess ) {
_Matrix.M(out,resid);
resid = resid-in;
RealD ns = norm2(in);
RealD nr = norm2(resid);
std::cout << GridLogMessage << "SchurRedBlackDiagTwo solver true unprec resid " << std::sqrt(nr / ns) << " nr " << nr << " ns " << ns << std::endl;
} else {
std::cout << GridLogMessage << "Guess subtracted after solve." << std::endl;
}
}
};
template<class Field> class NonHermitianSchurRedBlackDiagTwoSolve : public SchurRedBlackBase<Field>
{
public:
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
/////////////////////////////////////////////////////
// Wrap the usual normal equations Schur trick
/////////////////////////////////////////////////////
NonHermitianSchurRedBlackDiagTwoSolve(OperatorFunction<Field>& RBSolver, const bool initSubGuess = false,
const bool _solnAsInitGuess = false)
: SchurRedBlackBase<Field>(RBSolver, initSubGuess, _solnAsInitGuess) {};
virtual void RedBlackSource(Matrix& _Matrix, const Field& src, Field& src_e, Field& src_o)
{
GridBase* grid = _Matrix.RedBlackGrid();
GridBase* fgrid = _Matrix.Grid();
Field tmp(grid);
Field Mtmp(grid);
pickCheckerboard(Even, src_e, src);
pickCheckerboard(Odd , src_o, src);
/////////////////////////////////////////////////////
// src_o = Mdag * (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e, tmp); assert( tmp.Checkerboard() == Even );
_Matrix.Meooe (tmp, Mtmp); assert( Mtmp.Checkerboard() == Odd );
src_o -= Mtmp; assert( src_o.Checkerboard() == Odd );
}
virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol)
{
GridBase* grid = _Matrix.RedBlackGrid();
GridBase* fgrid = _Matrix.Grid();
Field sol_o_i(grid);
Field tmp(grid);
Field sol_e(grid);
////////////////////////////////////////////////
// MooeeInv due to pecond
////////////////////////////////////////////////
_Matrix.MooeeInv(sol_o, tmp);
sol_o_i = tmp;
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o_i, tmp); assert( tmp.Checkerboard() == Even );
tmp = src_e - tmp; assert( src_e.Checkerboard() == Even );
_Matrix.MooeeInv(tmp, sol_e); assert( sol_e.Checkerboard() == Even );
setCheckerboard(sol, sol_e); assert( sol_e.Checkerboard() == Even );
setCheckerboard(sol, sol_o_i); assert( sol_o_i.Checkerboard() == Odd );
};
virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o)
{
NonHermitianSchurDiagTwoOperator<Matrix,Field> _OpEO(_Matrix);
this->_HermitianRBSolver(_OpEO, src_o, sol_o);
};
virtual void RedBlackSolve(Matrix& _Matrix, const std::vector<Field>& src_o, std::vector<Field>& sol_o)
{
NonHermitianSchurDiagTwoOperator<Matrix,Field> _OpEO(_Matrix);
this->_HermitianRBSolver(_OpEO, src_o, sol_o);
}
};
}
#endif

View File

@ -1,11 +1,70 @@
#include <Grid/GridCore.h>
#include <fcntl.h>
NAMESPACE_BEGIN(Grid);
namespace Grid {
MemoryStats *MemoryProfiler::stats = nullptr;
bool MemoryProfiler::debug = false;
int PointerCache::victim;
PointerCache::PointerCacheEntry PointerCache::Entries[PointerCache::Ncache];
void *PointerCache::Insert(void *ptr,size_t bytes) {
if (bytes < 4096 ) return ptr;
#ifdef GRID_OMP
assert(omp_in_parallel()==0);
#endif
void * ret = NULL;
int v = -1;
for(int e=0;e<Ncache;e++) {
if ( Entries[e].valid==0 ) {
v=e;
break;
}
}
if ( v==-1 ) {
v=victim;
victim = (victim+1)%Ncache;
}
if ( Entries[v].valid ) {
ret = Entries[v].address;
Entries[v].valid = 0;
Entries[v].address = NULL;
Entries[v].bytes = 0;
}
Entries[v].address=ptr;
Entries[v].bytes =bytes;
Entries[v].valid =1;
return ret;
}
void *PointerCache::Lookup(size_t bytes) {
if (bytes < 4096 ) return NULL;
#ifdef _OPENMP
assert(omp_in_parallel()==0);
#endif
for(int e=0;e<Ncache;e++){
if ( Entries[e].valid && ( Entries[e].bytes == bytes ) ) {
Entries[e].valid = 0;
return Entries[e].address;
}
}
return NULL;
}
void check_huge_pages(void *Buf,uint64_t BYTES)
{
#ifdef __linux__
@ -31,7 +90,7 @@ void check_huge_pages(void *Buf,uint64_t BYTES)
++n4ktotal;
if (pageaddr != baseaddr + j * page_size)
++nnothuge;
}
}
}
int rank = CartesianCommunicator::RankWorld();
printf("rank %d Allocated %d 4k pages, %d not in huge pages\n", rank, n4ktotal, nnothuge);
@ -47,21 +106,20 @@ std::string sizeString(const size_t bytes)
double count = bytes;
while (count >= 1024 && s < 7)
{
{
s++;
count /= 1024;
}
}
if (count - floor(count) == 0.0)
{
{
snprintf(buf, bufSize, "%d %sB", (int)count, suffixes[s]);
}
}
else
{
{
snprintf(buf, bufSize, "%.1f %sB", count, suffixes[s]);
}
}
return std::string(buf);
}
NAMESPACE_END(Grid);
}

View File

@ -24,11 +24,109 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_ALIGNED_ALLOCATOR_H
#define GRID_ALIGNED_ALLOCATOR_H
NAMESPACE_BEGIN(Grid);
#ifdef HAVE_MALLOC_MALLOC_H
#include <malloc/malloc.h>
#endif
#ifdef HAVE_MALLOC_H
#include <malloc.h>
#endif
#ifdef HAVE_MM_MALLOC_H
#include <mm_malloc.h>
#endif
namespace Grid {
class PointerCache {
private:
static const int Ncache=8;
static int victim;
typedef struct {
void *address;
size_t bytes;
int valid;
} PointerCacheEntry;
static PointerCacheEntry Entries[Ncache];
public:
static void *Insert(void *ptr,size_t bytes) ;
static void *Lookup(size_t bytes) ;
};
std::string sizeString(size_t bytes);
struct MemoryStats
{
size_t totalAllocated{0}, maxAllocated{0},
currentlyAllocated{0}, totalFreed{0};
};
class MemoryProfiler
{
public:
static MemoryStats *stats;
static bool debug;
};
#define memString(bytes) std::to_string(bytes) + " (" + sizeString(bytes) + ")"
#define profilerDebugPrint \
if (MemoryProfiler::stats)\
{\
auto s = MemoryProfiler::stats;\
std::cout << GridLogDebug << "[Memory debug] Stats " << MemoryProfiler::stats << std::endl;\
std::cout << GridLogDebug << "[Memory debug] total : " << memString(s->totalAllocated) \
<< std::endl;\
std::cout << GridLogDebug << "[Memory debug] max : " << memString(s->maxAllocated) \
<< std::endl;\
std::cout << GridLogDebug << "[Memory debug] current: " << memString(s->currentlyAllocated) \
<< std::endl;\
std::cout << GridLogDebug << "[Memory debug] freed : " << memString(s->totalFreed) \
<< std::endl;\
}
#define profilerAllocate(bytes)\
if (MemoryProfiler::stats)\
{\
auto s = MemoryProfiler::stats;\
s->totalAllocated += (bytes);\
s->currentlyAllocated += (bytes);\
s->maxAllocated = std::max(s->maxAllocated, s->currentlyAllocated);\
}\
if (MemoryProfiler::debug)\
{\
std::cout << GridLogDebug << "[Memory debug] allocating " << memString(bytes) << std::endl;\
profilerDebugPrint;\
}
#define profilerFree(bytes)\
if (MemoryProfiler::stats)\
{\
auto s = MemoryProfiler::stats;\
s->totalFreed += (bytes);\
s->currentlyAllocated -= (bytes);\
}\
if (MemoryProfiler::debug)\
{\
std::cout << GridLogDebug << "[Memory debug] freeing " << memString(bytes) << std::endl;\
profilerDebugPrint;\
}
void check_huge_pages(void *Buf,uint64_t BYTES);
////////////////////////////////////////////////////////////////////
// A lattice of something, but assume the something is SIMDized.
////////////////////////////////////////////////////////////////////
template<typename _Tp>
class alignedAllocator {
@ -53,31 +151,68 @@ public:
{
size_type bytes = __n*sizeof(_Tp);
profilerAllocate(bytes);
_Tp *ptr = (_Tp*) MemoryManager::CpuAllocate(bytes);
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
_Tp *ptr = (_Tp *) PointerCache::Lookup(bytes);
// if ( ptr != NULL )
// std::cout << "alignedAllocator "<<__n << " cache hit "<< std::hex << ptr <<std::dec <<std::endl;
//////////////////
// Hack 2MB align; could make option probably doesn't need configurability
//////////////////
//define GRID_ALLOC_ALIGN (128)
#define GRID_ALLOC_ALIGN (2*1024*1024)
#ifdef HAVE_MM_MALLOC_H
if ( ptr == (_Tp *) NULL ) ptr = (_Tp *) _mm_malloc(bytes,GRID_ALLOC_ALIGN);
#else
if ( ptr == (_Tp *) NULL ) ptr = (_Tp *) memalign(GRID_ALLOC_ALIGN,bytes);
#endif
// std::cout << "alignedAllocator " << std::hex << ptr <<std::dec <<std::endl;
// First touch optimise in threaded loop
uint8_t *cp = (uint8_t *)ptr;
#ifdef GRID_OMP
#pragma omp parallel for
#endif
for(size_type n=0;n<bytes;n+=4096){
cp[n]=0;
}
return ptr;
}
void deallocate(pointer __p, size_type __n)
{
void deallocate(pointer __p, size_type __n) {
size_type bytes = __n * sizeof(_Tp);
profilerFree(bytes);
MemoryManager::CpuFree((void *)__p,bytes);
}
// FIXME: hack for the copy constructor: it must be avoided to avoid single thread loop
void construct(pointer __p, const _Tp& __val) { assert(0);};
profilerFree(bytes);
pointer __freeme = (pointer)PointerCache::Insert((void *)__p,bytes);
#ifdef HAVE_MM_MALLOC_H
if ( __freeme ) _mm_free((void *)__freeme);
#else
if ( __freeme ) free((void *)__freeme);
#endif
}
void construct(pointer __p, const _Tp& __val) { };
void construct(pointer __p) { };
void destroy(pointer __p) { };
};
template<typename _Tp> inline bool operator==(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return true; }
template<typename _Tp> inline bool operator!=(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return false; }
//////////////////////////////////////////////////////////////////////////////////////
// Unified virtual memory
//////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////
// MPI3 : comms must use shm region
// SHMEM: comms must use symmetric heap
//////////////////////////////////////////////////////////////////////////////////////////
#ifdef GRID_COMMS_SHMEM
extern "C" {
#include <mpp/shmem.h>
extern void * shmem_align(size_t, size_t);
extern void shmem_free(void *);
}
#define PARANOID_SYMMETRIC_HEAP
#endif
template<typename _Tp>
class uvmAllocator {
class commAllocator {
public:
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
@ -87,97 +222,94 @@ public:
typedef const _Tp& const_reference;
typedef _Tp value_type;
template<typename _Tp1> struct rebind { typedef uvmAllocator<_Tp1> other; };
uvmAllocator() throw() { }
uvmAllocator(const uvmAllocator&) throw() { }
template<typename _Tp1> uvmAllocator(const uvmAllocator<_Tp1>&) throw() { }
~uvmAllocator() throw() { }
template<typename _Tp1> struct rebind { typedef commAllocator<_Tp1> other; };
commAllocator() throw() { }
commAllocator(const commAllocator&) throw() { }
template<typename _Tp1> commAllocator(const commAllocator<_Tp1>&) throw() { }
~commAllocator() throw() { }
pointer address(reference __x) const { return &__x; }
size_type max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
#ifdef GRID_COMMS_SHMEM
pointer allocate(size_type __n, const void* _p= 0)
{
{
size_type bytes = __n*sizeof(_Tp);
profilerAllocate(bytes);
_Tp *ptr = (_Tp*) MemoryManager::SharedAllocate(bytes);
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
#ifdef CRAY
_Tp *ptr = (_Tp *) shmem_align(bytes,64);
#else
_Tp *ptr = (_Tp *) shmem_align(64,bytes);
#endif
#ifdef PARANOID_SYMMETRIC_HEAP
static void * bcast;
static long psync[_SHMEM_REDUCE_SYNC_SIZE];
bcast = (void *) ptr;
shmem_broadcast32((void *)&bcast,(void *)&bcast,sizeof(void *)/4,0,0,0,shmem_n_pes(),psync);
if ( bcast != ptr ) {
std::printf("inconsistent alloc pe %d %lx %lx \n",shmem_my_pe(),bcast,ptr);std::fflush(stdout);
// BACKTRACEFILE();
exit(0);
}
assert( bcast == (void *) ptr);
#endif
return ptr;
}
void deallocate(pointer __p, size_type __n)
{
size_type bytes = __n * sizeof(_Tp);
profilerFree(bytes);
MemoryManager::SharedFree((void *)__p,bytes);
}
void construct(pointer __p, const _Tp& __val) { new((void *)__p) _Tp(__val); };
void construct(pointer __p) { };
void destroy(pointer __p) { };
};
template<typename _Tp> inline bool operator==(const uvmAllocator<_Tp>&, const uvmAllocator<_Tp>&){ return true; }
template<typename _Tp> inline bool operator!=(const uvmAllocator<_Tp>&, const uvmAllocator<_Tp>&){ return false; }
////////////////////////////////////////////////////////////////////////////////
// Device memory
////////////////////////////////////////////////////////////////////////////////
template<typename _Tp>
class devAllocator {
public:
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef _Tp* pointer;
typedef const _Tp* const_pointer;
typedef _Tp& reference;
typedef const _Tp& const_reference;
typedef _Tp value_type;
template<typename _Tp1> struct rebind { typedef devAllocator<_Tp1> other; };
devAllocator() throw() { }
devAllocator(const devAllocator&) throw() { }
template<typename _Tp1> devAllocator(const devAllocator<_Tp1>&) throw() { }
~devAllocator() throw() { }
pointer address(reference __x) const { return &__x; }
size_type max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
pointer allocate(size_type __n, const void* _p= 0)
{
void deallocate(pointer __p, size_type __n) {
size_type bytes = __n*sizeof(_Tp);
profilerFree(bytes);
shmem_free((void *)__p);
}
#else
pointer allocate(size_type __n, const void* _p= 0)
{
size_type bytes = __n*sizeof(_Tp);
profilerAllocate(bytes);
_Tp *ptr = (_Tp*) MemoryManager::AcceleratorAllocate(bytes);
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
#ifdef HAVE_MM_MALLOC_H
_Tp * ptr = (_Tp *) _mm_malloc(bytes, GRID_ALLOC_ALIGN);
#else
_Tp * ptr = (_Tp *) memalign(GRID_ALLOC_ALIGN, bytes);
#endif
uint8_t *cp = (uint8_t *)ptr;
if ( ptr ) {
// One touch per 4k page, static OMP loop to catch same loop order
#ifdef GRID_OMP
#pragma omp parallel for schedule(static)
#endif
for(size_type n=0;n<bytes;n+=4096){
cp[n]=0;
}
}
return ptr;
}
void deallocate(pointer __p, size_type __n) {
size_type bytes = __n*sizeof(_Tp);
void deallocate(pointer __p, size_type __n)
{
size_type bytes = __n * sizeof(_Tp);
profilerFree(bytes);
MemoryManager::AcceleratorFree((void *)__p,bytes);
#ifdef HAVE_MM_MALLOC_H
_mm_free((void *)__p);
#else
free((void *)__p);
#endif
}
#endif
void construct(pointer __p, const _Tp& __val) { };
void construct(pointer __p) { };
void destroy(pointer __p) { };
};
template<typename _Tp> inline bool operator==(const devAllocator<_Tp>&, const devAllocator<_Tp>&){ return true; }
template<typename _Tp> inline bool operator!=(const devAllocator<_Tp>&, const devAllocator<_Tp>&){ return false; }
template<typename _Tp> inline bool operator==(const commAllocator<_Tp>&, const commAllocator<_Tp>&){ return true; }
template<typename _Tp> inline bool operator!=(const commAllocator<_Tp>&, const commAllocator<_Tp>&){ return false; }
////////////////////////////////////////////////////////////////////////////////
// Template typedefs
////////////////////////////////////////////////////////////////////////////////
#ifdef ACCELERATOR_CSHIFT
// Cshift on device
template<class T> using cshiftAllocator = devAllocator<T>;
#else
// Cshift on host
template<class T> using cshiftAllocator = std::allocator<T>;
template<class T> using Vector = std::vector<T,alignedAllocator<T> >;
template<class T> using commVector = std::vector<T,commAllocator<T> >;
template<class T> using Matrix = std::vector<std::vector<T,alignedAllocator<T> > >;
}; // namespace Grid
#endif
template<class T> using Vector = std::vector<T,uvmAllocator<T> >;
template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;
template<class T> using commVector = std::vector<T,devAllocator<T> >;
template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >;
NAMESPACE_END(Grid);

View File

@ -1,4 +0,0 @@
#pragma once
#include <Grid/allocator/MemoryStats.h>
#include <Grid/allocator/MemoryManager.h>
#include <Grid/allocator/AlignedAllocator.h>

View File

@ -1,254 +0,0 @@
#include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid);
/*Allocation types, saying which pointer cache should be used*/
#define Cpu (0)
#define CpuSmall (1)
#define Acc (2)
#define AccSmall (3)
#define Shared (4)
#define SharedSmall (5)
uint64_t total_shared;
uint64_t total_device;
uint64_t total_host;;
void MemoryManager::PrintBytes(void)
{
std::cout << " MemoryManager : "<<total_shared<<" shared bytes "<<std::endl;
std::cout << " MemoryManager : "<<total_device<<" accelerator bytes "<<std::endl;
std::cout << " MemoryManager : "<<total_host <<" cpu bytes "<<std::endl;
}
//////////////////////////////////////////////////////////////////////
// Data tables for recently freed pooiniter caches
//////////////////////////////////////////////////////////////////////
MemoryManager::AllocationCacheEntry MemoryManager::Entries[MemoryManager::NallocType][MemoryManager::NallocCacheMax];
int MemoryManager::Victim[MemoryManager::NallocType];
int MemoryManager::Ncache[MemoryManager::NallocType] = { 8, 32, 8, 32, 8, 32 };
//////////////////////////////////////////////////////////////////////
// Actual allocation and deallocation utils
//////////////////////////////////////////////////////////////////////
void *MemoryManager::AcceleratorAllocate(size_t bytes)
{
void *ptr = (void *) Lookup(bytes,Acc);
if ( ptr == (void *) NULL ) {
ptr = (void *) acceleratorAllocDevice(bytes);
total_device+=bytes;
}
return ptr;
}
void MemoryManager::AcceleratorFree (void *ptr,size_t bytes)
{
void *__freeme = Insert(ptr,bytes,Acc);
if ( __freeme ) {
acceleratorFreeDevice(__freeme);
total_device-=bytes;
// PrintBytes();
}
}
void *MemoryManager::SharedAllocate(size_t bytes)
{
void *ptr = (void *) Lookup(bytes,Shared);
if ( ptr == (void *) NULL ) {
ptr = (void *) acceleratorAllocShared(bytes);
total_shared+=bytes;
// std::cout <<"AcceleratorAllocate: allocated Shared pointer "<<std::hex<<ptr<<std::dec<<std::endl;
// PrintBytes();
}
return ptr;
}
void MemoryManager::SharedFree (void *ptr,size_t bytes)
{
void *__freeme = Insert(ptr,bytes,Shared);
if ( __freeme ) {
acceleratorFreeShared(__freeme);
total_shared-=bytes;
// PrintBytes();
}
}
#ifdef GRID_UVM
void *MemoryManager::CpuAllocate(size_t bytes)
{
void *ptr = (void *) Lookup(bytes,Cpu);
if ( ptr == (void *) NULL ) {
ptr = (void *) acceleratorAllocShared(bytes);
total_host+=bytes;
}
return ptr;
}
void MemoryManager::CpuFree (void *_ptr,size_t bytes)
{
NotifyDeletion(_ptr);
void *__freeme = Insert(_ptr,bytes,Cpu);
if ( __freeme ) {
acceleratorFreeShared(__freeme);
total_host-=bytes;
}
}
#else
void *MemoryManager::CpuAllocate(size_t bytes)
{
void *ptr = (void *) Lookup(bytes,Cpu);
if ( ptr == (void *) NULL ) {
ptr = (void *) acceleratorAllocCpu(bytes);
total_host+=bytes;
}
return ptr;
}
void MemoryManager::CpuFree (void *_ptr,size_t bytes)
{
NotifyDeletion(_ptr);
void *__freeme = Insert(_ptr,bytes,Cpu);
if ( __freeme ) {
acceleratorFreeCpu(__freeme);
total_host-=bytes;
}
}
#endif
//////////////////////////////////////////
// call only once
//////////////////////////////////////////
void MemoryManager::Init(void)
{
char * str;
int Nc;
int NcS;
str= getenv("GRID_ALLOC_NCACHE_LARGE");
if ( str ) {
Nc = atoi(str);
if ( (Nc>=0) && (Nc < NallocCacheMax)) {
Ncache[Cpu]=Nc;
Ncache[Acc]=Nc;
Ncache[Shared]=Nc;
}
}
str= getenv("GRID_ALLOC_NCACHE_SMALL");
if ( str ) {
Nc = atoi(str);
if ( (Nc>=0) && (Nc < NallocCacheMax)) {
Ncache[CpuSmall]=Nc;
Ncache[AccSmall]=Nc;
Ncache[SharedSmall]=Nc;
}
}
}
void MemoryManager::InitMessage(void) {
#ifndef GRID_UVM
std::cout << GridLogMessage << "MemoryManager Cache "<< MemoryManager::DeviceMaxBytes <<" bytes "<<std::endl;
#endif
std::cout << GridLogMessage<< "MemoryManager::Init() setting up"<<std::endl;
#ifdef ALLOCATION_CACHE
std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent allocations: SMALL "<<Ncache[CpuSmall]<<" LARGE "<<Ncache[Cpu]<<std::endl;
#endif
#ifdef GRID_UVM
std::cout << GridLogMessage<< "MemoryManager::Init() Unified memory space"<<std::endl;
#ifdef GRID_CUDA
std::cout << GridLogMessage<< "MemoryManager::Init() Using cudaMallocManaged"<<std::endl;
#endif
#ifdef GRID_HIP
std::cout << GridLogMessage<< "MemoryManager::Init() Using hipMallocManaged"<<std::endl;
#endif
#ifdef GRID_SYCL
std::cout << GridLogMessage<< "MemoryManager::Init() Using SYCL malloc_shared"<<std::endl;
#endif
#else
std::cout << GridLogMessage<< "MemoryManager::Init() Non unified: Caching accelerator data in dedicated memory"<<std::endl;
#ifdef GRID_CUDA
std::cout << GridLogMessage<< "MemoryManager::Init() Using cudaMalloc"<<std::endl;
#endif
#ifdef GRID_HIP
std::cout << GridLogMessage<< "MemoryManager::Init() Using hipMalloc"<<std::endl;
#endif
#ifdef GRID_SYCL
std::cout << GridLogMessage<< "MemoryManager::Init() Using SYCL malloc_device"<<std::endl;
#endif
#endif
}
void *MemoryManager::Insert(void *ptr,size_t bytes,int type)
{
#ifdef ALLOCATION_CACHE
bool small = (bytes < GRID_ALLOC_SMALL_LIMIT);
int cache = type + small;
return Insert(ptr,bytes,Entries[cache],Ncache[cache],Victim[cache]);
#else
return ptr;
#endif
}
void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim)
{
assert(ncache>0);
#ifdef GRID_OMP
assert(omp_in_parallel()==0);
#endif
void * ret = NULL;
int v = -1;
for(int e=0;e<ncache;e++) {
if ( entries[e].valid==0 ) {
v=e;
break;
}
}
if ( v==-1 ) {
v=victim;
victim = (victim+1)%ncache;
}
if ( entries[v].valid ) {
ret = entries[v].address;
entries[v].valid = 0;
entries[v].address = NULL;
entries[v].bytes = 0;
}
entries[v].address=ptr;
entries[v].bytes =bytes;
entries[v].valid =1;
return ret;
}
void *MemoryManager::Lookup(size_t bytes,int type)
{
#ifdef ALLOCATION_CACHE
bool small = (bytes < GRID_ALLOC_SMALL_LIMIT);
int cache = type+small;
return Lookup(bytes,Entries[cache],Ncache[cache]);
#else
return NULL;
#endif
}
void *MemoryManager::Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache)
{
assert(ncache>0);
#ifdef GRID_OMP
assert(omp_in_parallel()==0);
#endif
for(int e=0;e<ncache;e++){
if ( entries[e].valid && ( entries[e].bytes == bytes ) ) {
entries[e].valid = 0;
return entries[e].address;
}
}
return NULL;
}
NAMESPACE_END(Grid);

View File

@ -1,180 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/MemoryManager.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <list>
#include <unordered_map>
NAMESPACE_BEGIN(Grid);
// Move control to configure.ac and Config.h?
#define GRID_ALLOC_SMALL_LIMIT (4096)
/*Pinning pages is costly*/
////////////////////////////////////////////////////////////////////////////
// Advise the LatticeAccelerator class
////////////////////////////////////////////////////////////////////////////
enum ViewAdvise {
AdviseDefault = 0x0, // Regular data
AdviseInfrequentUse = 0x1 // Advise that the data is used infrequently. This can
// significantly influence performance of bulk storage.
// AdviseTransient = 0x2, // Data will mostly be read. On some architectures
// enables read-only copies of memory to be kept on
// host and device.
// AdviseAcceleratorWriteDiscard = 0x4 // Field will be written in entirety on device
};
////////////////////////////////////////////////////////////////////////////
// View Access Mode
////////////////////////////////////////////////////////////////////////////
enum ViewMode {
AcceleratorRead = 0x01,
AcceleratorWrite = 0x02,
AcceleratorWriteDiscard = 0x04,
CpuRead = 0x08,
CpuWrite = 0x10,
CpuWriteDiscard = 0x10 // same for now
};
class MemoryManager {
private:
////////////////////////////////////////////////////////////
// For caching recently freed allocations
////////////////////////////////////////////////////////////
typedef struct {
void *address;
size_t bytes;
int valid;
} AllocationCacheEntry;
static const int NallocCacheMax=128;
static const int NallocType=6;
static AllocationCacheEntry Entries[NallocType][NallocCacheMax];
static int Victim[NallocType];
static int Ncache[NallocType];
/////////////////////////////////////////////////
// Free pool
/////////////////////////////////////////////////
static void *Insert(void *ptr,size_t bytes,int type) ;
static void *Lookup(size_t bytes,int type) ;
static void *Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim) ;
static void *Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache) ;
static void PrintBytes(void);
public:
static void Init(void);
static void InitMessage(void);
static void *AcceleratorAllocate(size_t bytes);
static void AcceleratorFree (void *ptr,size_t bytes);
static void *SharedAllocate(size_t bytes);
static void SharedFree (void *ptr,size_t bytes);
static void *CpuAllocate(size_t bytes);
static void CpuFree (void *ptr,size_t bytes);
////////////////////////////////////////////////////////
// Footprint tracking
////////////////////////////////////////////////////////
static uint64_t DeviceBytes;
static uint64_t DeviceLRUBytes;
static uint64_t DeviceMaxBytes;
static uint64_t HostToDeviceBytes;
static uint64_t DeviceToHostBytes;
static uint64_t HostToDeviceXfer;
static uint64_t DeviceToHostXfer;
private:
#ifndef GRID_UVM
//////////////////////////////////////////////////////////////////////
// Data tables for ViewCache
//////////////////////////////////////////////////////////////////////
typedef std::list<uint64_t> LRU_t;
typedef typename LRU_t::iterator LRUiterator;
typedef struct {
int LRU_valid;
LRUiterator LRU_entry;
uint64_t CpuPtr;
uint64_t AccPtr;
size_t bytes;
uint32_t transient;
uint32_t state;
uint32_t accLock;
uint32_t cpuLock;
} AcceleratorViewEntry;
typedef std::unordered_map<uint64_t,AcceleratorViewEntry> AccViewTable_t;
typedef typename AccViewTable_t::iterator AccViewTableIterator ;
static AccViewTable_t AccViewTable;
static LRU_t LRU;
/////////////////////////////////////////////////
// Device motion
/////////////////////////////////////////////////
static void Create(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
static void EvictVictims(uint64_t bytes); // Frees up <bytes>
static void Evict(AcceleratorViewEntry &AccCache);
static void Flush(AcceleratorViewEntry &AccCache);
static void Clone(AcceleratorViewEntry &AccCache);
static void AccDiscard(AcceleratorViewEntry &AccCache);
static void CpuDiscard(AcceleratorViewEntry &AccCache);
// static void LRUupdate(AcceleratorViewEntry &AccCache);
static void LRUinsert(AcceleratorViewEntry &AccCache);
static void LRUremove(AcceleratorViewEntry &AccCache);
// manage entries in the table
static int EntryPresent(uint64_t CpuPtr);
static void EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
static void EntryErase (uint64_t CpuPtr);
static AccViewTableIterator EntryLookup(uint64_t CpuPtr);
static void EntrySet (uint64_t CpuPtr,AcceleratorViewEntry &entry);
static void AcceleratorViewClose(uint64_t AccPtr);
static uint64_t AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
static void CpuViewClose(uint64_t Ptr);
static uint64_t CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
#endif
static void NotifyDeletion(void * CpuPtr);
public:
static void Print(void);
static int isOpen (void* CpuPtr);
static void ViewClose(void* CpuPtr,ViewMode mode);
static void *ViewOpen (void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
};
NAMESPACE_END(Grid);

View File

@ -1,478 +0,0 @@
#include <Grid/GridCore.h>
#ifndef GRID_UVM
#warning "Using explicit device memory copies"
NAMESPACE_BEGIN(Grid);
//define dprintf(...) printf ( __VA_ARGS__ ); fflush(stdout);
#define dprintf(...)
////////////////////////////////////////////////////////////
// For caching copies of data on device
////////////////////////////////////////////////////////////
MemoryManager::AccViewTable_t MemoryManager::AccViewTable;
MemoryManager::LRU_t MemoryManager::LRU;
////////////////////////////////////////////////////////
// Footprint tracking
////////////////////////////////////////////////////////
uint64_t MemoryManager::DeviceBytes;
uint64_t MemoryManager::DeviceLRUBytes;
uint64_t MemoryManager::DeviceMaxBytes = 1024*1024*128;
uint64_t MemoryManager::HostToDeviceBytes;
uint64_t MemoryManager::DeviceToHostBytes;
uint64_t MemoryManager::HostToDeviceXfer;
uint64_t MemoryManager::DeviceToHostXfer;
////////////////////////////////////
// Priority ordering for unlocked entries
// Empty
// CpuDirty
// Consistent
// AccDirty
////////////////////////////////////
#define Empty (0x0) /*Entry unoccupied */
#define CpuDirty (0x1) /*CPU copy is golden, Acc buffer MAY not be allocated*/
#define Consistent (0x2) /*ACC copy AND CPU copy are valid */
#define AccDirty (0x4) /*ACC copy is golden */
#define EvictNext (0x8) /*Priority for eviction*/
/////////////////////////////////////////////////
// Mechanics of data table maintenance
/////////////////////////////////////////////////
int MemoryManager::EntryPresent(uint64_t CpuPtr)
{
if(AccViewTable.empty()) return 0;
auto count = AccViewTable.count(CpuPtr); assert((count==0)||(count==1));
return count;
}
void MemoryManager::EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
{
assert(!EntryPresent(CpuPtr));
AcceleratorViewEntry AccCache;
AccCache.CpuPtr = CpuPtr;
AccCache.AccPtr = (uint64_t)NULL;
AccCache.bytes = bytes;
AccCache.state = CpuDirty;
AccCache.LRU_valid=0;
AccCache.transient=0;
AccCache.accLock=0;
AccCache.cpuLock=0;
AccViewTable[CpuPtr] = AccCache;
}
MemoryManager::AccViewTableIterator MemoryManager::EntryLookup(uint64_t CpuPtr)
{
assert(EntryPresent(CpuPtr));
auto AccCacheIterator = AccViewTable.find(CpuPtr);
assert(AccCacheIterator!=AccViewTable.end());
return AccCacheIterator;
}
void MemoryManager::EntryErase(uint64_t CpuPtr)
{
auto AccCache = EntryLookup(CpuPtr);
AccViewTable.erase(CpuPtr);
}
void MemoryManager::LRUinsert(AcceleratorViewEntry &AccCache)
{
assert(AccCache.LRU_valid==0);
if (AccCache.transient) {
LRU.push_back(AccCache.CpuPtr);
AccCache.LRU_entry = --LRU.end();
} else {
LRU.push_front(AccCache.CpuPtr);
AccCache.LRU_entry = LRU.begin();
}
AccCache.LRU_valid = 1;
DeviceLRUBytes+=AccCache.bytes;
}
void MemoryManager::LRUremove(AcceleratorViewEntry &AccCache)
{
assert(AccCache.LRU_valid==1);
LRU.erase(AccCache.LRU_entry);
AccCache.LRU_valid = 0;
DeviceLRUBytes-=AccCache.bytes;
}
/////////////////////////////////////////////////
// Accelerator cache motion & consistency logic
/////////////////////////////////////////////////
void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
{
///////////////////////////////////////////////////////////
// Remove from Accelerator, remove entry, without flush
// Cannot be locked. If allocated Must be in LRU pool.
///////////////////////////////////////////////////////////
assert(AccCache.state!=Empty);
dprintf("MemoryManager: Discard(%llx) %llx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
assert(AccCache.accLock==0);
assert(AccCache.cpuLock==0);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
if(AccCache.AccPtr) {
AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
DeviceBytes -=AccCache.bytes;
LRUremove(AccCache);
dprintf("MemoryManager: Free(%llx) LRU %lld Total %lld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);
}
uint64_t CpuPtr = AccCache.CpuPtr;
EntryErase(CpuPtr);
}
void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
{
///////////////////////////////////////////////////////////////////////////
// Make CPU consistent, remove from Accelerator, remove entry
// Cannot be locked. If allocated must be in LRU pool.
///////////////////////////////////////////////////////////////////////////
assert(AccCache.state!=Empty);
dprintf("MemoryManager: Evict(%llx) %llx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
assert(AccCache.accLock==0);
assert(AccCache.cpuLock==0);
if(AccCache.state==AccDirty) {
Flush(AccCache);
}
assert(AccCache.CpuPtr!=(uint64_t)NULL);
if(AccCache.AccPtr) {
AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
DeviceBytes -=AccCache.bytes;
LRUremove(AccCache);
dprintf("MemoryManager: Free(%llx) footprint now %lld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);
}
uint64_t CpuPtr = AccCache.CpuPtr;
EntryErase(CpuPtr);
}
void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
{
assert(AccCache.state==AccDirty);
assert(AccCache.cpuLock==0);
assert(AccCache.accLock==0);
assert(AccCache.AccPtr!=(uint64_t)NULL);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
dprintf("MemoryManager: Flush %llx -> %llx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
DeviceToHostBytes+=AccCache.bytes;
DeviceToHostXfer++;
AccCache.state=Consistent;
}
void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
{
assert(AccCache.state==CpuDirty);
assert(AccCache.cpuLock==0);
assert(AccCache.accLock==0);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
if(AccCache.AccPtr==(uint64_t)NULL){
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
DeviceBytes+=AccCache.bytes;
}
dprintf("MemoryManager: Clone %llx <- %llx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
HostToDeviceBytes+=AccCache.bytes;
HostToDeviceXfer++;
AccCache.state=Consistent;
}
void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache)
{
assert(AccCache.state!=Empty);
assert(AccCache.cpuLock==0);
assert(AccCache.accLock==0);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
if(AccCache.AccPtr==(uint64_t)NULL){
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
DeviceBytes+=AccCache.bytes;
}
AccCache.state=AccDirty;
}
/////////////////////////////////////////////////////////////////////////////////
// View management
/////////////////////////////////////////////////////////////////////////////////
void MemoryManager::ViewClose(void* Ptr,ViewMode mode)
{
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
AcceleratorViewClose((uint64_t)Ptr);
} else if( (mode==CpuRead)||(mode==CpuWrite)){
CpuViewClose((uint64_t)Ptr);
} else {
assert(0);
}
}
void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
{
uint64_t CpuPtr = (uint64_t)_CpuPtr;
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint);
} else if( (mode==CpuRead)||(mode==CpuWrite)){
return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint);
} else {
assert(0);
return NULL;
}
}
void MemoryManager::EvictVictims(uint64_t bytes)
{
while(bytes+DeviceLRUBytes > DeviceMaxBytes){
if ( DeviceLRUBytes > 0){
assert(LRU.size()>0);
uint64_t victim = LRU.back();
auto AccCacheIterator = EntryLookup(victim);
auto & AccCache = AccCacheIterator->second;
Evict(AccCache);
}
}
}
uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
{
////////////////////////////////////////////////////////////////////////////
// Find if present, otherwise get or force an empty
////////////////////////////////////////////////////////////////////////////
if ( EntryPresent(CpuPtr)==0 ){
EntryCreate(CpuPtr,bytes,mode,hint);
}
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
if (!AccCache.AccPtr) {
EvictVictims(bytes);
}
assert((mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard));
assert(AccCache.cpuLock==0); // Programming error
if(AccCache.state!=Empty) {
dprintf("ViewOpen found entry %llx %llx : %lld %lld\n",
(uint64_t)AccCache.CpuPtr,
(uint64_t)CpuPtr,
(uint64_t)AccCache.bytes,
(uint64_t)bytes);
assert(AccCache.CpuPtr == CpuPtr);
assert(AccCache.bytes ==bytes);
}
/*
* State transitions and actions
*
* Action State StateNext Flush Clone
*
* AccRead Empty Consistent - Y
* AccWrite Empty AccDirty - Y
* AccRead CpuDirty Consistent - Y
* AccWrite CpuDirty AccDirty - Y
* AccRead Consistent Consistent - -
* AccWrite Consistent AccDirty - -
* AccRead AccDirty AccDirty - -
* AccWrite AccDirty AccDirty - -
*/
if(AccCache.state==Empty) {
assert(AccCache.LRU_valid==0);
AccCache.CpuPtr = CpuPtr;
AccCache.AccPtr = (uint64_t)NULL;
AccCache.bytes = bytes;
AccCache.state = CpuDirty; // Cpu starts primary
if(mode==AcceleratorWriteDiscard){
CpuDiscard(AccCache);
AccCache.state = AccDirty; // Empty + AcceleratorWrite=> AccDirty
} else if(mode==AcceleratorWrite){
Clone(AccCache);
AccCache.state = AccDirty; // Empty + AcceleratorWrite=> AccDirty
} else {
Clone(AccCache);
AccCache.state = Consistent; // Empty + AccRead => Consistent
}
AccCache.accLock= 1;
} else if(AccCache.state==CpuDirty ){
if(mode==AcceleratorWriteDiscard) {
CpuDiscard(AccCache);
AccCache.state = AccDirty; // CpuDirty + AcceleratorWrite=> AccDirty
} else if(mode==AcceleratorWrite) {
Clone(AccCache);
AccCache.state = AccDirty; // CpuDirty + AcceleratorWrite=> AccDirty
} else {
Clone(AccCache);
AccCache.state = Consistent; // CpuDirty + AccRead => Consistent
}
AccCache.accLock++;
dprintf("Copied CpuDirty entry into device accLock %d\n",AccCache.accLock);
} else if(AccCache.state==Consistent) {
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
AccCache.state = AccDirty; // Consistent + AcceleratorWrite=> AccDirty
else
AccCache.state = Consistent; // Consistent + AccRead => Consistent
AccCache.accLock++;
dprintf("Consistent entry into device accLock %d\n",AccCache.accLock);
} else if(AccCache.state==AccDirty) {
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
AccCache.state = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty
else
AccCache.state = AccDirty; // AccDirty + AccRead => AccDirty
AccCache.accLock++;
dprintf("AccDirty entry into device accLock %d\n",AccCache.accLock);
} else {
assert(0);
}
// If view is opened on device remove from LRU
if(AccCache.LRU_valid==1){
// must possibly remove from LRU as now locked on GPU
LRUremove(AccCache);
}
int transient =hint;
AccCache.transient= transient? EvictNext : 0;
return AccCache.AccPtr;
}
////////////////////////////////////
// look up & decrement lock count
////////////////////////////////////
void MemoryManager::AcceleratorViewClose(uint64_t CpuPtr)
{
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
assert(AccCache.cpuLock==0);
assert(AccCache.accLock>0);
AccCache.accLock--;
// Move to LRU queue if not locked and close on device
if(AccCache.accLock==0) {
LRUinsert(AccCache);
}
}
void MemoryManager::CpuViewClose(uint64_t CpuPtr)
{
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
assert(AccCache.cpuLock>0);
assert(AccCache.accLock==0);
AccCache.cpuLock--;
}
/*
* Action State StateNext Flush Clone
*
* CpuRead Empty CpuDirty - -
* CpuWrite Empty CpuDirty - -
* CpuRead CpuDirty CpuDirty - -
* CpuWrite CpuDirty CpuDirty - -
* CpuRead Consistent Consistent - -
* CpuWrite Consistent CpuDirty - -
* CpuRead AccDirty Consistent Y -
* CpuWrite AccDirty CpuDirty Y -
*/
uint64_t MemoryManager::CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise transient)
{
////////////////////////////////////////////////////////////////////////////
// Find if present, otherwise get or force an empty
////////////////////////////////////////////////////////////////////////////
if ( EntryPresent(CpuPtr)==0 ){
EntryCreate(CpuPtr,bytes,mode,transient);
}
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
if (!AccCache.AccPtr) {
EvictVictims(bytes);
}
assert((mode==CpuRead)||(mode==CpuWrite));
assert(AccCache.accLock==0); // Programming error
if(AccCache.state!=Empty) {
assert(AccCache.CpuPtr == CpuPtr);
assert(AccCache.bytes==bytes);
}
if(AccCache.state==Empty) {
AccCache.CpuPtr = CpuPtr;
AccCache.AccPtr = (uint64_t)NULL;
AccCache.bytes = bytes;
AccCache.state = CpuDirty; // Empty + CpuRead/CpuWrite => CpuDirty
AccCache.accLock= 0;
AccCache.cpuLock= 1;
} else if(AccCache.state==CpuDirty ){
// AccPtr dont care, deferred allocate
AccCache.state = CpuDirty; // CpuDirty +CpuRead/CpuWrite => CpuDirty
AccCache.cpuLock++;
} else if(AccCache.state==Consistent) {
assert(AccCache.AccPtr != (uint64_t)NULL);
if(mode==CpuWrite)
AccCache.state = CpuDirty; // Consistent +CpuWrite => CpuDirty
else
AccCache.state = Consistent; // Consistent +CpuRead => Consistent
AccCache.cpuLock++;
} else if(AccCache.state==AccDirty) {
assert(AccCache.AccPtr != (uint64_t)NULL);
Flush(AccCache);
if(mode==CpuWrite) AccCache.state = CpuDirty; // AccDirty +CpuWrite => CpuDirty, Flush
else AccCache.state = Consistent; // AccDirty +CpuRead => Consistent, Flush
AccCache.cpuLock++;
} else {
assert(0); // should be unreachable
}
AccCache.transient= transient? EvictNext : 0;
return AccCache.CpuPtr;
}
void MemoryManager::NotifyDeletion(void *_ptr)
{
// Look up in ViewCache
uint64_t ptr = (uint64_t)_ptr;
if(EntryPresent(ptr)) {
auto e = EntryLookup(ptr);
AccDiscard(e->second);
}
}
void MemoryManager::Print(void)
{
std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
std::cout << GridLogDebug << "Memory Manager " << std::endl;
std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
std::cout << GridLogDebug << DeviceBytes << " bytes allocated on device " << std::endl;
std::cout << GridLogDebug << DeviceLRUBytes<< " bytes evictable on device " << std::endl;
std::cout << GridLogDebug << DeviceMaxBytes<< " bytes max on device " << std::endl;
std::cout << GridLogDebug << HostToDeviceXfer << " transfers to device " << std::endl;
std::cout << GridLogDebug << DeviceToHostXfer << " transfers from device " << std::endl;
std::cout << GridLogDebug << HostToDeviceBytes<< " bytes transfered to device " << std::endl;
std::cout << GridLogDebug << DeviceToHostBytes<< " bytes transfered from device " << std::endl;
std::cout << GridLogDebug << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl;
std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
std::cout << GridLogDebug << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl;
std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){
auto &AccCache = it->second;
std::string str;
if ( AccCache.state==Empty ) str = std::string("Empty");
if ( AccCache.state==CpuDirty ) str = std::string("CpuDirty");
if ( AccCache.state==AccDirty ) str = std::string("AccDirty");
if ( AccCache.state==Consistent)str = std::string("Consistent");
std::cout << GridLogDebug << "0x"<<std::hex<<AccCache.CpuPtr<<std::dec
<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
<< "\t" << AccCache.cpuLock
<< "\t" << AccCache.accLock
<< "\t" << AccCache.LRU_valid<<std::endl;
}
std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
};
int MemoryManager::isOpen (void* _CpuPtr)
{
uint64_t CpuPtr = (uint64_t)_CpuPtr;
if ( EntryPresent(CpuPtr) ){
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
return AccCache.cpuLock+AccCache.accLock;
} else {
return 0;
}
}
NAMESPACE_END(Grid);
#endif

View File

@ -1,23 +0,0 @@
#include <Grid/GridCore.h>
#ifdef GRID_UVM
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////////////////////
// View management is 1:1 address space mapping
/////////////////////////////////////////////////////////////////////////////////
uint64_t MemoryManager::DeviceBytes;
uint64_t MemoryManager::DeviceLRUBytes;
uint64_t MemoryManager::DeviceMaxBytes = 1024*1024*128;
uint64_t MemoryManager::HostToDeviceBytes;
uint64_t MemoryManager::DeviceToHostBytes;
uint64_t MemoryManager::HostToDeviceXfer;
uint64_t MemoryManager::DeviceToHostXfer;
void MemoryManager::ViewClose(void* AccPtr,ViewMode mode){};
void *MemoryManager::ViewOpen(void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint){ return CpuPtr; };
int MemoryManager::isOpen (void* CpuPtr) { return 0;}
void MemoryManager::Print(void){};
void MemoryManager::NotifyDeletion(void *ptr){};
NAMESPACE_END(Grid);
#endif

View File

@ -1,95 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/MemoryStats.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
std::string sizeString(size_t bytes);
struct MemoryStats
{
size_t totalAllocated{0}, maxAllocated{0},
currentlyAllocated{0}, totalFreed{0};
};
class MemoryProfiler
{
public:
static MemoryStats *stats;
static bool debug;
};
#define memString(bytes) std::to_string(bytes) + " (" + sizeString(bytes) + ")"
#define profilerDebugPrint \
if (MemoryProfiler::stats) \
{ \
auto s = MemoryProfiler::stats; \
std::cout << GridLogDebug << "[Memory debug] Stats " << MemoryProfiler::stats << std::endl; \
std::cout << GridLogDebug << "[Memory debug] total : " << memString(s->totalAllocated) \
<< std::endl; \
std::cout << GridLogDebug << "[Memory debug] max : " << memString(s->maxAllocated) \
<< std::endl; \
std::cout << GridLogDebug << "[Memory debug] current: " << memString(s->currentlyAllocated) \
<< std::endl; \
std::cout << GridLogDebug << "[Memory debug] freed : " << memString(s->totalFreed) \
<< std::endl; \
}
#define profilerAllocate(bytes) \
if (MemoryProfiler::stats) \
{ \
auto s = MemoryProfiler::stats; \
s->totalAllocated += (bytes); \
s->currentlyAllocated += (bytes); \
s->maxAllocated = std::max(s->maxAllocated, s->currentlyAllocated); \
} \
if (MemoryProfiler::debug) \
{ \
std::cout << GridLogDebug << "[Memory debug] allocating " << memString(bytes) << std::endl; \
profilerDebugPrint; \
}
#define profilerFree(bytes) \
if (MemoryProfiler::stats) \
{ \
auto s = MemoryProfiler::stats; \
s->totalFreed += (bytes); \
s->currentlyAllocated -= (bytes); \
} \
if (MemoryProfiler::debug) \
{ \
std::cout << GridLogDebug << "[Memory debug] freeing " << memString(bytes) << std::endl; \
profilerDebugPrint; \
}
void check_huge_pages(void *Buf,uint64_t BYTES);
NAMESPACE_END(Grid);

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -23,8 +23,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CARTESIAN_H
#define GRID_CARTESIAN_H

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -25,267 +25,268 @@
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CARTESIAN_BASE_H
#define GRID_CARTESIAN_BASE_H
NAMESPACE_BEGIN(Grid);
//////////////////////////////////////////////////////////////////////
// Commicator provides information on the processor grid
//////////////////////////////////////////////////////////////////////
// unsigned long _ndimension;
// Coordinate _processors; // processor grid
// int _processor; // linear processor rank
// Coordinate _processor_coor; // linear processor rank
//////////////////////////////////////////////////////////////////////
class GridBase : public CartesianCommunicator , public GridThread {
namespace Grid{
//////////////////////////////////////////////////////////////////////
// Commicator provides information on the processor grid
//////////////////////////////////////////////////////////////////////
// unsigned long _ndimension;
// std::vector<int> _processors; // processor grid
// int _processor; // linear processor rank
// std::vector<int> _processor_coor; // linear processor rank
//////////////////////////////////////////////////////////////////////
class GridBase : public CartesianCommunicator , public GridThread {
public:
int dummy;
// Give Lattice access
template<class object> friend class Lattice;
int dummy;
// Give Lattice access
template<class object> friend class Lattice;
GridBase(const Coordinate & processor_grid) : CartesianCommunicator(processor_grid) { LocallyPeriodic=0;};
GridBase(const std::vector<int> & processor_grid) : CartesianCommunicator(processor_grid) {};
GridBase(const std::vector<int> & processor_grid,
const CartesianCommunicator &parent,
int &split_rank)
: CartesianCommunicator(processor_grid,parent,split_rank) {};
GridBase(const std::vector<int> & processor_grid,
const CartesianCommunicator &parent)
: CartesianCommunicator(processor_grid,parent,dummy) {};
GridBase(const Coordinate & processor_grid,
const CartesianCommunicator &parent,
int &split_rank)
: CartesianCommunicator(processor_grid,parent,split_rank) {LocallyPeriodic=0;};
virtual ~GridBase() = default;
GridBase(const Coordinate & processor_grid,
const CartesianCommunicator &parent)
: CartesianCommunicator(processor_grid,parent,dummy) {LocallyPeriodic=0;};
virtual ~GridBase() = default;
// Physics Grid information.
std::vector<int> _simd_layout;// Which dimensions get relayed out over simd lanes.
std::vector<int> _fdimensions;// (full) Global dimensions of array prior to cb removal
std::vector<int> _gdimensions;// Global dimensions of array after cb removal
std::vector<int> _ldimensions;// local dimensions of array with processor images removed
std::vector<int> _rdimensions;// Reduced local dimensions with simd lane images and processor images removed
std::vector<int> _ostride; // Outer stride for each dimension
std::vector<int> _istride; // Inner stride i.e. within simd lane
int _osites; // _isites*_osites = product(dimensions).
int _isites;
int _fsites; // _isites*_osites = product(dimensions).
int _gsites;
std::vector<int> _slice_block;// subslice information
std::vector<int> _slice_stride;
std::vector<int> _slice_nblock;
// Physics Grid information.
Coordinate _simd_layout;// Which dimensions get relayed out over simd lanes.
Coordinate _fdimensions;// (full) Global dimensions of array prior to cb removal
Coordinate _gdimensions;// Global dimensions of array after cb removal
Coordinate _ldimensions;// local dimensions of array with processor images removed
Coordinate _rdimensions;// Reduced local dimensions with simd lane images and processor images removed
Coordinate _ostride; // Outer stride for each dimension
Coordinate _istride; // Inner stride i.e. within simd lane
int _osites; // _isites*_osites = product(dimensions).
int _isites;
int _fsites; // _isites*_osites = product(dimensions).
int _gsites;
Coordinate _slice_block;// subslice information
Coordinate _slice_stride;
Coordinate _slice_nblock;
std::vector<int> _lstart; // local start of array in gcoors _processor_coor[d]*_ldimensions[d]
std::vector<int> _lend ; // local end of array in gcoors _processor_coor[d]*_ldimensions[d]+_ldimensions_[d]-1
Coordinate _lstart; // local start of array in gcoors _processor_coor[d]*_ldimensions[d]
Coordinate _lend ; // local end of array in gcoors _processor_coor[d]*_ldimensions[d]+_ldimensions_[d]-1
bool _isCheckerBoarded;
int LocallyPeriodic;
Coordinate _checker_dim_mask;
bool _isCheckerBoarded;
public:
////////////////////////////////////////////////////////////////
// Checkerboarding interface is virtual and overridden by
// GridCartesian / GridRedBlackCartesian
////////////////////////////////////////////////////////////////
virtual int CheckerBoarded(int dim)=0;
virtual int CheckerBoard(const Coordinate &site)=0;
virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0;
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0;
virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift,int cb)=0;
virtual int CheckerBoardFromOindex (int Oindex)=0;
virtual int CheckerBoardFromOindexTable (int Oindex)=0;
////////////////////////////////////////////////////////////////
// Checkerboarding interface is virtual and overridden by
// GridCartesian / GridRedBlackCartesian
////////////////////////////////////////////////////////////////
virtual int CheckerBoarded(int dim)=0;
virtual int CheckerBoard(const std::vector<int> &site)=0;
virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0;
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0;
virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift,int cb)=0;
virtual int CheckerBoardFromOindex (int Oindex)=0;
virtual int CheckerBoardFromOindexTable (int Oindex)=0;
//////////////////////////////////////////////////////////////////////////////////////////////
// Local layout calculations
//////////////////////////////////////////////////////////////////////////////////////////////
// These routines are key. Subdivide the linearised cartesian index into
// "inner" index identifying which simd lane of object<vFcomplex> is associated with coord
// "outer" index identifying which element of _odata in class "Lattice" is associated with coord.
//
// Compared to, say, Blitz++ we simply need to store BOTH an inner stride and an outer
// stride per dimension. The cost of evaluating the indexing information is doubled for an n-dimensional
// coordinate. Note, however, for data parallel operations the "inner" indexing cost is not paid and all
// lanes are operated upon simultaneously.
//////////////////////////////////////////////////////////////////////////////////////////////
// Local layout calculations
//////////////////////////////////////////////////////////////////////////////////////////////
// These routines are key. Subdivide the linearised cartesian index into
// "inner" index identifying which simd lane of object<vFcomplex> is associated with coord
// "outer" index identifying which element of _odata in class "Lattice" is associated with coord.
//
// Compared to, say, Blitz++ we simply need to store BOTH an inner stride and an outer
// stride per dimension. The cost of evaluating the indexing information is doubled for an n-dimensional
// coordinate. Note, however, for data parallel operations the "inner" indexing cost is not paid and all
// lanes are operated upon simultaneously.
virtual int oIndex(Coordinate &coor)
{
int idx=0;
// Works with either global or local coordinates
for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*(coor[d]%_rdimensions[d]);
return idx;
}
virtual int iIndex(Coordinate &lcoor)
{
int idx=0;
for(int d=0;d<_ndimension;d++) idx+=_istride[d]*(lcoor[d]/_rdimensions[d]);
return idx;
}
inline int oIndexReduced(Coordinate &ocoor)
{
int idx=0;
// ocoor is already reduced so can eliminate the modulo operation
// for fast indexing and inline the routine
for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*ocoor[d];
return idx;
}
inline void oCoorFromOindex (Coordinate& coor,int Oindex){
Lexicographic::CoorFromIndex(coor,Oindex,_rdimensions);
}
virtual int oIndex(std::vector<int> &coor)
{
int idx=0;
// Works with either global or local coordinates
for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*(coor[d]%_rdimensions[d]);
return idx;
}
virtual int iIndex(std::vector<int> &lcoor)
{
int idx=0;
for(int d=0;d<_ndimension;d++) idx+=_istride[d]*(lcoor[d]/_rdimensions[d]);
return idx;
}
inline int oIndexReduced(std::vector<int> &ocoor)
{
int idx=0;
// ocoor is already reduced so can eliminate the modulo operation
// for fast indexing and inline the routine
for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*ocoor[d];
return idx;
}
inline void oCoorFromOindex (std::vector<int>& coor,int Oindex){
Lexicographic::CoorFromIndex(coor,Oindex,_rdimensions);
}
inline void InOutCoorToLocalCoor (Coordinate &ocoor, Coordinate &icoor, Coordinate &lcoor) {
lcoor.resize(_ndimension);
for (int d = 0; d < _ndimension; d++)
lcoor[d] = ocoor[d] + _rdimensions[d] * icoor[d];
}
inline void InOutCoorToLocalCoor (std::vector<int> &ocoor, std::vector<int> &icoor, std::vector<int> &lcoor) {
lcoor.resize(_ndimension);
for (int d = 0; d < _ndimension; d++)
lcoor[d] = ocoor[d] + _rdimensions[d] * icoor[d];
}
//////////////////////////////////////////////////////////
// SIMD lane addressing
//////////////////////////////////////////////////////////
inline void iCoorFromIindex(Coordinate &coor,int lane)
{
Lexicographic::CoorFromIndex(coor,lane,_simd_layout);
}
//////////////////////////////////////////////////////////
// SIMD lane addressing
//////////////////////////////////////////////////////////
inline void iCoorFromIindex(std::vector<int> &coor,int lane)
{
Lexicographic::CoorFromIndex(coor,lane,_simd_layout);
}
inline int PermuteDim(int dimension){
return _simd_layout[dimension]>1;
}
inline int PermuteType(int dimension){
int permute_type=0;
//
// Best way to encode this would be to present a mask
// for which simd dimensions are rotated, and the rotation
// size. If there is only one simd dimension rotated, this is just
// a permute.
//
// Cases: PermuteType == 1,2,4,8
// Distance should be either 0,1,2..
//
if ( _simd_layout[dimension] > 2 ) {
for(int d=0;d<_ndimension;d++){
if ( d != dimension ) assert ( (_simd_layout[d]==1) );
inline int PermuteDim(int dimension){
return _simd_layout[dimension]>1;
}
inline int PermuteType(int dimension){
int permute_type=0;
//
// FIXME:
//
// Best way to encode this would be to present a mask
// for which simd dimensions are rotated, and the rotation
// size. If there is only one simd dimension rotated, this is just
// a permute.
//
// Cases: PermuteType == 1,2,4,8
// Distance should be either 0,1,2..
//
if ( _simd_layout[dimension] > 2 ) {
for(int d=0;d<_ndimension;d++){
if ( d != dimension ) assert ( (_simd_layout[d]==1) );
}
permute_type = RotateBit; // How to specify distance; this is not just direction.
return permute_type;
}
for(int d=_ndimension-1;d>dimension;d--){
if (_simd_layout[d]>1 ) permute_type++;
}
permute_type = RotateBit; // How to specify distance; this is not just direction.
return permute_type;
}
////////////////////////////////////////////////////////////////
// Array sizing queries
////////////////////////////////////////////////////////////////
for(int d=_ndimension-1;d>dimension;d--){
if (_simd_layout[d]>1 ) permute_type++;
inline int iSites(void) const { return _isites; };
inline int Nsimd(void) const { return _isites; };// Synonymous with iSites
inline int oSites(void) const { return _osites; };
inline int lSites(void) const { return _isites*_osites; };
inline int gSites(void) const { return _isites*_osites*_Nprocessors; };
inline int Nd (void) const { return _ndimension;};
inline const std::vector<int> LocalStarts(void) { return _lstart; };
inline const std::vector<int> &FullDimensions(void) { return _fdimensions;};
inline const std::vector<int> &GlobalDimensions(void) { return _gdimensions;};
inline const std::vector<int> &LocalDimensions(void) { return _ldimensions;};
inline const std::vector<int> &VirtualLocalDimensions(void) { return _ldimensions;};
////////////////////////////////////////////////////////////////
// Utility to print the full decomposition details
////////////////////////////////////////////////////////////////
void show_decomposition(){
std::cout << GridLogMessage << "\tFull Dimensions : " << _fdimensions << std::endl;
std::cout << GridLogMessage << "\tSIMD layout : " << _simd_layout << std::endl;
std::cout << GridLogMessage << "\tGlobal Dimensions : " << _gdimensions << std::endl;
std::cout << GridLogMessage << "\tLocal Dimensions : " << _ldimensions << std::endl;
std::cout << GridLogMessage << "\tReduced Dimensions : " << _rdimensions << std::endl;
std::cout << GridLogMessage << "\tOuter strides : " << _ostride << std::endl;
std::cout << GridLogMessage << "\tInner strides : " << _istride << std::endl;
std::cout << GridLogMessage << "\tiSites : " << _isites << std::endl;
std::cout << GridLogMessage << "\toSites : " << _osites << std::endl;
std::cout << GridLogMessage << "\tlSites : " << lSites() << std::endl;
std::cout << GridLogMessage << "\tgSites : " << gSites() << std::endl;
std::cout << GridLogMessage << "\tNd : " << _ndimension << std::endl;
}
////////////////////////////////////////////////////////////////
// Global addressing
////////////////////////////////////////////////////////////////
void GlobalIndexToGlobalCoor(int gidx,std::vector<int> &gcoor){
assert(gidx< gSites());
Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
}
return permute_type;
}
////////////////////////////////////////////////////////////////
// Array sizing queries
////////////////////////////////////////////////////////////////
inline int iSites(void) const { return _isites; };
inline int Nsimd(void) const { return _isites; };// Synonymous with iSites
inline int oSites(void) const { return _osites; };
inline int lSites(void) const { return _isites*_osites; };
inline int gSites(void) const { return _isites*_osites*_Nprocessors; };
inline int Nd (void) const { return _ndimension;};
inline const Coordinate LocalStarts(void) { return _lstart; };
inline const Coordinate &FullDimensions(void) { return _fdimensions;};
inline const Coordinate &GlobalDimensions(void) { return _gdimensions;};
inline const Coordinate &LocalDimensions(void) { return _ldimensions;};
inline const Coordinate &VirtualLocalDimensions(void) { return _ldimensions;};
////////////////////////////////////////////////////////////////
// Utility to print the full decomposition details
////////////////////////////////////////////////////////////////
void show_decomposition(){
std::cout << GridLogMessage << "\tFull Dimensions : " << _fdimensions << std::endl;
std::cout << GridLogMessage << "\tSIMD layout : " << _simd_layout << std::endl;
std::cout << GridLogMessage << "\tGlobal Dimensions : " << _gdimensions << std::endl;
std::cout << GridLogMessage << "\tLocal Dimensions : " << _ldimensions << std::endl;
std::cout << GridLogMessage << "\tReduced Dimensions : " << _rdimensions << std::endl;
std::cout << GridLogMessage << "\tOuter strides : " << _ostride << std::endl;
std::cout << GridLogMessage << "\tInner strides : " << _istride << std::endl;
std::cout << GridLogMessage << "\tiSites : " << _isites << std::endl;
std::cout << GridLogMessage << "\toSites : " << _osites << std::endl;
std::cout << GridLogMessage << "\tlSites : " << lSites() << std::endl;
std::cout << GridLogMessage << "\tgSites : " << gSites() << std::endl;
std::cout << GridLogMessage << "\tNd : " << _ndimension << std::endl;
}
////////////////////////////////////////////////////////////////
// Global addressing
////////////////////////////////////////////////////////////////
void GlobalIndexToGlobalCoor(int gidx,Coordinate &gcoor){
assert(gidx< gSites());
Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
}
void LocalIndexToLocalCoor(int lidx,Coordinate &lcoor){
assert(lidx<lSites());
Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
}
void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int & gidx){
gidx=0;
int mult=1;
for(int mu=0;mu<_ndimension;mu++) {
gidx+=mult*gcoor[mu];
mult*=_gdimensions[mu];
void LocalIndexToLocalCoor(int lidx,std::vector<int> &lcoor){
assert(lidx<lSites());
Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
}
}
void GlobalCoorToProcessorCoorLocalCoor(Coordinate &pcoor,Coordinate &lcoor,const Coordinate &gcoor)
{
pcoor.resize(_ndimension);
lcoor.resize(_ndimension);
for(int mu=0;mu<_ndimension;mu++){
int _fld = _fdimensions[mu]/_processors[mu];
pcoor[mu] = gcoor[mu]/_fld;
lcoor[mu] = gcoor[mu]%_fld;
void GlobalCoorToGlobalIndex(const std::vector<int> & gcoor,int & gidx){
gidx=0;
int mult=1;
for(int mu=0;mu<_ndimension;mu++) {
gidx+=mult*gcoor[mu];
mult*=_gdimensions[mu];
}
}
}
void GlobalCoorToRankIndex(int &rank, int &o_idx, int &i_idx ,const Coordinate &gcoor)
{
Coordinate pcoor;
Coordinate lcoor;
GlobalCoorToProcessorCoorLocalCoor(pcoor,lcoor,gcoor);
rank = RankFromProcessorCoor(pcoor);
/*
Coordinate cblcoor(lcoor);
void GlobalCoorToProcessorCoorLocalCoor(std::vector<int> &pcoor,std::vector<int> &lcoor,const std::vector<int> &gcoor)
{
pcoor.resize(_ndimension);
lcoor.resize(_ndimension);
for(int mu=0;mu<_ndimension;mu++){
int _fld = _fdimensions[mu]/_processors[mu];
pcoor[mu] = gcoor[mu]/_fld;
lcoor[mu] = gcoor[mu]%_fld;
}
}
void GlobalCoorToRankIndex(int &rank, int &o_idx, int &i_idx ,const std::vector<int> &gcoor)
{
std::vector<int> pcoor;
std::vector<int> lcoor;
GlobalCoorToProcessorCoorLocalCoor(pcoor,lcoor,gcoor);
rank = RankFromProcessorCoor(pcoor);
/*
std::vector<int> cblcoor(lcoor);
for(int d=0;d<cblcoor.size();d++){
if( this->CheckerBoarded(d) ) {
cblcoor[d] = lcoor[d]/2;
if( this->CheckerBoarded(d) ) {
cblcoor[d] = lcoor[d]/2;
}
}
}
*/
i_idx= iIndex(lcoor);
o_idx= oIndex(lcoor);
}
void RankIndexToGlobalCoor(int rank, int o_idx, int i_idx , Coordinate &gcoor)
{
gcoor.resize(_ndimension);
Coordinate coor(_ndimension);
ProcessorCoorFromRank(rank,coor);
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] = _ldimensions[mu]*coor[mu];
iCoorFromIindex(coor,i_idx);
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] += _rdimensions[mu]*coor[mu];
oCoorFromOindex (coor,o_idx);
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] += coor[mu];
}
void RankIndexCbToFullGlobalCoor(int rank, int o_idx, int i_idx, int cb,Coordinate &fcoor)
{
RankIndexToGlobalCoor(rank,o_idx,i_idx ,fcoor);
if(CheckerBoarded(0)){
fcoor[0] = fcoor[0]*2+cb;
*/
i_idx= iIndex(lcoor);
o_idx= oIndex(lcoor);
}
void RankIndexToGlobalCoor(int rank, int o_idx, int i_idx , std::vector<int> &gcoor)
{
gcoor.resize(_ndimension);
std::vector<int> coor(_ndimension);
ProcessorCoorFromRank(rank,coor);
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] = _ldimensions[mu]*coor[mu];
iCoorFromIindex(coor,i_idx);
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] += _rdimensions[mu]*coor[mu];
oCoorFromOindex (coor,o_idx);
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] += coor[mu];
}
void RankIndexCbToFullGlobalCoor(int rank, int o_idx, int i_idx, int cb,std::vector<int> &fcoor)
{
RankIndexToGlobalCoor(rank,o_idx,i_idx ,fcoor);
if(CheckerBoarded(0)){
fcoor[0] = fcoor[0]*2+cb;
}
}
void ProcessorCoorLocalCoorToGlobalCoor(std::vector<int> &Pcoor,std::vector<int> &Lcoor,std::vector<int> &gcoor)
{
gcoor.resize(_ndimension);
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] = Pcoor[mu]*_ldimensions[mu]+Lcoor[mu];
}
}
void ProcessorCoorLocalCoorToGlobalCoor(Coordinate &Pcoor,Coordinate &Lcoor,Coordinate &gcoor)
{
gcoor.resize(_ndimension);
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] = Pcoor[mu]*_ldimensions[mu]+Lcoor[mu];
}
};
NAMESPACE_END(Grid);
}
#endif

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -23,101 +23,98 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CARTESIAN_FULL_H
#define GRID_CARTESIAN_FULL_H
NAMESPACE_BEGIN(Grid);
namespace Grid{
/////////////////////////////////////////////////////////////////////////////////////////
// Grid Support.
/////////////////////////////////////////////////////////////////////////////////////////
class GridCartesian: public GridBase {
public:
int dummy;
Coordinate _checker_dim_mask;
virtual int CheckerBoardFromOindexTable (int Oindex) {
return 0;
}
virtual int CheckerBoardFromOindex (int Oindex)
{
return 0;
}
virtual int CheckerBoarded(int dim){
return 0;
}
virtual int CheckerBoard(const Coordinate &site){
return 0;
}
virtual int CheckerBoardDestination(int cb,int shift,int dim){
return 0;
}
virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift, int ocb){
return shift;
}
virtual int CheckerBoardShift(int source_cb,int dim,int shift, int osite){
return shift;
}
/////////////////////////////////////////////////////////////////////////
// Constructor takes a parent grid and possibly subdivides communicator.
/////////////////////////////////////////////////////////////////////////
GridCartesian(const Coordinate &dimensions,
const Coordinate &simd_layout,
const Coordinate &processor_grid,
const GridCartesian &parent) : GridBase(processor_grid,parent,dummy)
{
Init(dimensions,simd_layout,processor_grid);
}
GridCartesian(const Coordinate &dimensions,
const Coordinate &simd_layout,
const Coordinate &processor_grid,
const GridCartesian &parent,int &split_rank) : GridBase(processor_grid,parent,split_rank)
{
Init(dimensions,simd_layout,processor_grid);
}
/////////////////////////////////////////////////////////////////////////
// Construct from comm world
/////////////////////////////////////////////////////////////////////////
GridCartesian(const Coordinate &dimensions,
const Coordinate &simd_layout,
const Coordinate &processor_grid) : GridBase(processor_grid)
{
Init(dimensions,simd_layout,processor_grid);
}
int dummy;
virtual int CheckerBoardFromOindexTable (int Oindex) {
return 0;
}
virtual int CheckerBoardFromOindex (int Oindex)
{
return 0;
}
virtual int CheckerBoarded(int dim){
return 0;
}
virtual int CheckerBoard(const std::vector<int> &site){
return 0;
}
virtual int CheckerBoardDestination(int cb,int shift,int dim){
return 0;
}
virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift, int ocb){
return shift;
}
virtual int CheckerBoardShift(int source_cb,int dim,int shift, int osite){
return shift;
}
/////////////////////////////////////////////////////////////////////////
// Constructor takes a parent grid and possibly subdivides communicator.
/////////////////////////////////////////////////////////////////////////
GridCartesian(const std::vector<int> &dimensions,
const std::vector<int> &simd_layout,
const std::vector<int> &processor_grid,
const GridCartesian &parent) : GridBase(processor_grid,parent,dummy)
{
Init(dimensions,simd_layout,processor_grid);
}
GridCartesian(const std::vector<int> &dimensions,
const std::vector<int> &simd_layout,
const std::vector<int> &processor_grid,
const GridCartesian &parent,int &split_rank) : GridBase(processor_grid,parent,split_rank)
{
Init(dimensions,simd_layout,processor_grid);
}
/////////////////////////////////////////////////////////////////////////
// Construct from comm world
/////////////////////////////////////////////////////////////////////////
GridCartesian(const std::vector<int> &dimensions,
const std::vector<int> &simd_layout,
const std::vector<int> &processor_grid) : GridBase(processor_grid)
{
Init(dimensions,simd_layout,processor_grid);
}
virtual ~GridCartesian() = default;
virtual ~GridCartesian() = default;
void Init(const Coordinate &dimensions,
const Coordinate &simd_layout,
const Coordinate &processor_grid)
{
///////////////////////
// Grid information
///////////////////////
void Init(const std::vector<int> &dimensions,
const std::vector<int> &simd_layout,
const std::vector<int> &processor_grid)
{
///////////////////////
// Grid information
///////////////////////
_isCheckerBoarded = false;
_ndimension = dimensions.size();
_ndimension = dimensions.size();
_fdimensions.resize(_ndimension);
_gdimensions.resize(_ndimension);
_ldimensions.resize(_ndimension);
_rdimensions.resize(_ndimension);
_simd_layout.resize(_ndimension);
_checker_dim_mask.resize(_ndimension);;
_lstart.resize(_ndimension);
_lend.resize(_ndimension);
_fdimensions.resize(_ndimension);
_gdimensions.resize(_ndimension);
_ldimensions.resize(_ndimension);
_rdimensions.resize(_ndimension);
_simd_layout.resize(_ndimension);
_lstart.resize(_ndimension);
_lend.resize(_ndimension);
_ostride.resize(_ndimension);
_istride.resize(_ndimension);
_ostride.resize(_ndimension);
_istride.resize(_ndimension);
_fsites = _gsites = _osites = _isites = 1;
_fsites = _gsites = _osites = _isites = 1;
for (int d = 0; d < _ndimension; d++)
for (int d = 0; d < _ndimension; d++)
{
_checker_dim_mask[d]=0;
_fdimensions[d] = dimensions[d]; // Global dimensions
_gdimensions[d] = _fdimensions[d]; // Global dimensions
_simd_layout[d] = simd_layout[d];
@ -139,30 +136,30 @@ public:
// Addressing support
if (d == 0)
{
_ostride[d] = 1;
_istride[d] = 1;
}
{
_ostride[d] = 1;
_istride[d] = 1;
}
else
{
_ostride[d] = _ostride[d - 1] * _rdimensions[d - 1];
_istride[d] = _istride[d - 1] * _simd_layout[d - 1];
}
{
_ostride[d] = _ostride[d - 1] * _rdimensions[d - 1];
_istride[d] = _istride[d - 1] * _simd_layout[d - 1];
}
}
///////////////////////
// subplane information
///////////////////////
_slice_block.resize(_ndimension);
_slice_stride.resize(_ndimension);
_slice_nblock.resize(_ndimension);
///////////////////////
// subplane information
///////////////////////
_slice_block.resize(_ndimension);
_slice_stride.resize(_ndimension);
_slice_nblock.resize(_ndimension);
int block = 1;
int nblock = 1;
for (int d = 0; d < _ndimension; d++)
nblock *= _rdimensions[d];
int block = 1;
int nblock = 1;
for (int d = 0; d < _ndimension; d++)
nblock *= _rdimensions[d];
for (int d = 0; d < _ndimension; d++)
for (int d = 0; d < _ndimension; d++)
{
nblock /= _rdimensions[d];
_slice_block[d] = block;
@ -170,9 +167,8 @@ public:
_slice_nblock[d] = nblock;
block = block * _rdimensions[d];
}
};
};
};
NAMESPACE_END(Grid);
}
#endif

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -24,163 +24,178 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CARTESIAN_RED_BLACK_H
#define GRID_CARTESIAN_RED_BLACK_H
NAMESPACE_BEGIN(Grid);
static const int CbRed =0;
static const int CbBlack=1;
static const int Even =CbRed;
static const int Odd =CbBlack;
accelerator_inline int RedBlackCheckerBoardFromOindex (int oindex,const Coordinate &rdim,const Coordinate &chk_dim_msk)
{
int nd=rdim.size();
Coordinate coor(nd);
Lexicographic::CoorFromIndex(coor,oindex,rdim);
int linear=0;
for(int d=0;d<nd;d++){
if(chk_dim_msk[d])
linear=linear+coor[d];
}
return (linear&0x1);
}
namespace Grid {
static const int CbRed =0;
static const int CbBlack=1;
static const int Even =CbRed;
static const int Odd =CbBlack;
// Specialise this for red black grids storing half the data like a chess board.
class GridRedBlackCartesian : public GridBase
{
public:
// Coordinate _checker_dim_mask;
int _checker_dim;
std::vector<int> _checker_board;
std::vector<int> _checker_dim_mask;
int _checker_dim;
std::vector<int> _checker_board;
virtual int CheckerBoarded(int dim){
if( dim==_checker_dim) return 1;
else return 0;
}
virtual int CheckerBoard(const Coordinate &site){
int linear=0;
assert(site.size()==_ndimension);
for(int d=0;d<_ndimension;d++){
if(_checker_dim_mask[d])
linear=linear+site[d];
virtual int CheckerBoarded(int dim){
if( dim==_checker_dim) return 1;
else return 0;
}
virtual int CheckerBoard(const std::vector<int> &site){
int linear=0;
assert(site.size()==_ndimension);
for(int d=0;d<_ndimension;d++){
if(_checker_dim_mask[d])
linear=linear+site[d];
}
return (linear&0x1);
}
return (linear&0x1);
}
// Depending on the cb of site, we toggle source cb.
// for block #b, element #e = (b, e)
// we need
virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift,int ocb){
if(dim != _checker_dim) return shift;
int fulldim =_fdimensions[dim];
shift = (shift+fulldim)%fulldim;
// Depending on the cb of site, we toggle source cb.
// for block #b, element #e = (b, e)
// we need
virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift,int ocb){
if(dim != _checker_dim) return shift;
// Probably faster with table lookup;
// or by looping over x,y,z and multiply rather than computing checkerboard.
int fulldim =_fdimensions[dim];
shift = (shift+fulldim)%fulldim;
// Probably faster with table lookup;
// or by looping over x,y,z and multiply rather than computing checkerboard.
if ( (source_cb+ocb)&1 ) {
return (shift)/2;
} else {
return (shift+1)/2;
if ( (source_cb+ocb)&1 ) {
return (shift)/2;
} else {
return (shift+1)/2;
}
}
}
virtual int CheckerBoardFromOindexTable (int Oindex) {
return _checker_board[Oindex];
}
virtual int CheckerBoardFromOindex (int Oindex)
{
Coordinate ocoor;
oCoorFromOindex(ocoor,Oindex);
return CheckerBoard(ocoor);
}
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite){
virtual int CheckerBoardFromOindexTable (int Oindex) {
return _checker_board[Oindex];
}
virtual int CheckerBoardFromOindex (int Oindex)
{
std::vector<int> ocoor;
oCoorFromOindex(ocoor,Oindex);
return CheckerBoard(ocoor);
}
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite){
if(dim != _checker_dim) return shift;
if(dim != _checker_dim) return shift;
int ocb=CheckerBoardFromOindex(osite);
int ocb=CheckerBoardFromOindex(osite);
return CheckerBoardShiftForCB(source_cb,dim,shift,ocb);
}
return CheckerBoardShiftForCB(source_cb,dim,shift,ocb);
}
virtual int CheckerBoardDestination(int source_cb,int shift,int dim){
if ( _checker_dim_mask[dim] ) {
// If _fdimensions[checker_dim] is odd, then shifting by 1 in other dims
// does NOT cause a parity hop.
int add=(dim==_checker_dim) ? 0 : _fdimensions[_checker_dim];
if ( (shift+add) &0x1) {
return 1-source_cb;
virtual int CheckerBoardDestination(int source_cb,int shift,int dim){
if ( _checker_dim_mask[dim] ) {
// If _fdimensions[checker_dim] is odd, then shifting by 1 in other dims
// does NOT cause a parity hop.
int add=(dim==_checker_dim) ? 0 : _fdimensions[_checker_dim];
if ( (shift+add) &0x1) {
return 1-source_cb;
} else {
return source_cb;
}
} else {
return source_cb;
}
} else {
return source_cb;
};
////////////////////////////////////////////////////////////
// Create Redblack from original grid; require full grid pointer ?
////////////////////////////////////////////////////////////
GridRedBlackCartesian(const GridBase *base) : GridBase(base->_processors,*base)
{
int dims = base->_ndimension;
std::vector<int> checker_dim_mask(dims,1);
int checker_dim = 0;
Init(base->_fdimensions,base->_simd_layout,base->_processors,checker_dim_mask,checker_dim);
};
////////////////////////////////////////////////////////////
// Create redblack from original grid, with non-trivial checker dim mask
////////////////////////////////////////////////////////////
GridRedBlackCartesian(const GridBase *base,
const std::vector<int> &checker_dim_mask,
int checker_dim
) : GridBase(base->_processors,*base)
{
Init(base->_fdimensions,base->_simd_layout,base->_processors,checker_dim_mask,checker_dim) ;
}
};
////////////////////////////////////////////////////////////
// Create Redblack from original grid; require full grid pointer ?
////////////////////////////////////////////////////////////
GridRedBlackCartesian(const GridBase *base) : GridBase(base->_processors,*base)
{
int dims = base->_ndimension;
Coordinate checker_dim_mask(dims,1);
int checker_dim = 0;
Init(base->_fdimensions,base->_simd_layout,base->_processors,checker_dim_mask,checker_dim);
};
virtual ~GridRedBlackCartesian() = default;
#if 0
////////////////////////////////////////////////////////////
// Create redblack grid ;; deprecate these. Should not
// need direct creation of redblack without a full grid to base on
////////////////////////////////////////////////////////////
GridRedBlackCartesian(const GridBase *base,
const std::vector<int> &dimensions,
const std::vector<int> &simd_layout,
const std::vector<int> &processor_grid,
const std::vector<int> &checker_dim_mask,
int checker_dim
) : GridBase(processor_grid,*base)
{
Init(dimensions,simd_layout,processor_grid,checker_dim_mask,checker_dim);
}
////////////////////////////////////////////////////////////
// Create redblack from original grid, with non-trivial checker dim mask
////////////////////////////////////////////////////////////
GridRedBlackCartesian(const GridBase *base,
const Coordinate &checker_dim_mask,
int checker_dim
) : GridBase(base->_processors,*base)
{
Init(base->_fdimensions,base->_simd_layout,base->_processors,checker_dim_mask,checker_dim) ;
}
////////////////////////////////////////////////////////////
// Create redblack grid
////////////////////////////////////////////////////////////
GridRedBlackCartesian(const GridBase *base,
const std::vector<int> &dimensions,
const std::vector<int> &simd_layout,
const std::vector<int> &processor_grid) : GridBase(processor_grid,*base)
{
std::vector<int> checker_dim_mask(dimensions.size(),1);
int checker_dim = 0;
Init(dimensions,simd_layout,processor_grid,checker_dim_mask,checker_dim);
}
#endif
virtual ~GridRedBlackCartesian() = default;
void Init(const Coordinate &dimensions,
const Coordinate &simd_layout,
const Coordinate &processor_grid,
const Coordinate &checker_dim_mask,
int checker_dim)
{
void Init(const std::vector<int> &dimensions,
const std::vector<int> &simd_layout,
const std::vector<int> &processor_grid,
const std::vector<int> &checker_dim_mask,
int checker_dim)
{
_isCheckerBoarded = true;
_checker_dim = checker_dim;
assert(checker_dim_mask[checker_dim] == 1);
_ndimension = dimensions.size();
assert(checker_dim_mask.size() == _ndimension);
assert(processor_grid.size() == _ndimension);
assert(simd_layout.size() == _ndimension);
_checker_dim = checker_dim;
assert(checker_dim_mask[checker_dim] == 1);
_ndimension = dimensions.size();
assert(checker_dim_mask.size() == _ndimension);
assert(processor_grid.size() == _ndimension);
assert(simd_layout.size() == _ndimension);
_fdimensions.resize(_ndimension);
_gdimensions.resize(_ndimension);
_ldimensions.resize(_ndimension);
_rdimensions.resize(_ndimension);
_simd_layout.resize(_ndimension);
_lstart.resize(_ndimension);
_lend.resize(_ndimension);
_fdimensions.resize(_ndimension);
_gdimensions.resize(_ndimension);
_ldimensions.resize(_ndimension);
_rdimensions.resize(_ndimension);
_simd_layout.resize(_ndimension);
_lstart.resize(_ndimension);
_lend.resize(_ndimension);
_ostride.resize(_ndimension);
_istride.resize(_ndimension);
_ostride.resize(_ndimension);
_istride.resize(_ndimension);
_fsites = _gsites = _osites = _isites = 1;
_fsites = _gsites = _osites = _isites = 1;
_checker_dim_mask = checker_dim_mask;
_checker_dim_mask = checker_dim_mask;
for (int d = 0; d < _ndimension; d++)
for (int d = 0; d < _ndimension; d++)
{
_fdimensions[d] = dimensions[d];
_gdimensions[d] = _fdimensions[d];
@ -188,11 +203,11 @@ public:
_gsites = _gsites * _gdimensions[d];
if (d == _checker_dim)
{
assert((_gdimensions[d] & 0x1) == 0);
_gdimensions[d] = _gdimensions[d] / 2; // Remove a checkerboard
_gsites /= 2;
}
{
assert((_gdimensions[d] & 0x1) == 0);
_gdimensions[d] = _gdimensions[d] / 2; // Remove a checkerboard
_gsites /= 2;
}
_ldimensions[d] = _gdimensions[d] / _processors[d];
assert(_ldimensions[d] * _processors[d] == _gdimensions[d]);
_lstart[d] = _processor_coor[d] * _ldimensions[d];
@ -207,42 +222,42 @@ public:
// all elements of a simd vector must have same checkerboard.
// If Ls vectorised, this must still be the case; e.g. dwf rb5d
if (_simd_layout[d] > 1)
{
if (checker_dim_mask[d])
{
assert((_rdimensions[d] & 0x1) == 0);
}
}
{
if (checker_dim_mask[d])
{
assert((_rdimensions[d] & 0x1) == 0);
}
}
_osites *= _rdimensions[d];
_isites *= _simd_layout[d];
// Addressing support
if (d == 0)
{
_ostride[d] = 1;
_istride[d] = 1;
}
{
_ostride[d] = 1;
_istride[d] = 1;
}
else
{
_ostride[d] = _ostride[d - 1] * _rdimensions[d - 1];
_istride[d] = _istride[d - 1] * _simd_layout[d - 1];
}
{
_ostride[d] = _ostride[d - 1] * _rdimensions[d - 1];
_istride[d] = _istride[d - 1] * _simd_layout[d - 1];
}
}
////////////////////////////////////////////////////////////////////////////////////////////
// subplane information
////////////////////////////////////////////////////////////////////////////////////////////
_slice_block.resize(_ndimension);
_slice_stride.resize(_ndimension);
_slice_nblock.resize(_ndimension);
////////////////////////////////////////////////////////////////////////////////////////////
// subplane information
////////////////////////////////////////////////////////////////////////////////////////////
_slice_block.resize(_ndimension);
_slice_stride.resize(_ndimension);
_slice_nblock.resize(_ndimension);
int block = 1;
int nblock = 1;
for (int d = 0; d < _ndimension; d++)
nblock *= _rdimensions[d];
int block = 1;
int nblock = 1;
for (int d = 0; d < _ndimension; d++)
nblock *= _rdimensions[d];
for (int d = 0; d < _ndimension; d++)
for (int d = 0; d < _ndimension; d++)
{
nblock /= _rdimensions[d];
_slice_block[d] = block;
@ -251,55 +266,55 @@ public:
block = block * _rdimensions[d];
}
////////////////////////////////////////////////
// Create a checkerboard lookup table
////////////////////////////////////////////////
int rvol = 1;
for (int d = 0; d < _ndimension; d++)
////////////////////////////////////////////////
// Create a checkerboard lookup table
////////////////////////////////////////////////
int rvol = 1;
for (int d = 0; d < _ndimension; d++)
{
rvol = rvol * _rdimensions[d];
}
_checker_board.resize(rvol);
for (int osite = 0; osite < _osites; osite++)
_checker_board.resize(rvol);
for (int osite = 0; osite < _osites; osite++)
{
_checker_board[osite] = CheckerBoardFromOindex(osite);
}
};
};
protected:
virtual int oIndex(Coordinate &coor)
{
int idx = 0;
for (int d = 0; d < _ndimension; d++)
protected:
virtual int oIndex(std::vector<int> &coor)
{
int idx = 0;
for (int d = 0; d < _ndimension; d++)
{
if (d == _checker_dim)
{
idx += _ostride[d] * ((coor[d] / 2) % _rdimensions[d]);
}
{
idx += _ostride[d] * ((coor[d] / 2) % _rdimensions[d]);
}
else
{
idx += _ostride[d] * (coor[d] % _rdimensions[d]);
}
{
idx += _ostride[d] * (coor[d] % _rdimensions[d]);
}
}
return idx;
};
return idx;
};
virtual int iIndex(Coordinate &lcoor)
{
int idx = 0;
for (int d = 0; d < _ndimension; d++)
virtual int iIndex(std::vector<int> &lcoor)
{
int idx = 0;
for (int d = 0; d < _ndimension; d++)
{
if (d == _checker_dim)
{
idx += _istride[d] * (lcoor[d] / (2 * _rdimensions[d]));
}
{
idx += _istride[d] * (lcoor[d] / (2 * _rdimensions[d]));
}
else
{
idx += _istride[d] * (lcoor[d] / _rdimensions[d]);
}
{
idx += _istride[d] * (lcoor[d] / _rdimensions[d]);
}
}
return idx;
}
return idx;
}
};
NAMESPACE_END(Grid);
}
#endif

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -23,12 +23,11 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_COMMUNICATOR_H
#define GRID_COMMUNICATOR_H
#include <Grid/util/Coordinate.h>
#include <Grid/communicator/SharedMemory.h>
#include <Grid/communicator/Communicator_base.h>

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -23,15 +23,15 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#include <Grid/GridCore.h>
#include <fcntl.h>
#include <unistd.h>
#include <limits.h>
#include <sys/mman.h>
NAMESPACE_BEGIN(Grid);
namespace Grid {
///////////////////////////////////////////////////////////////
// Info that is setup once and indept of cartesian layout
@ -47,8 +47,8 @@ int CartesianCommunicator::Dimensions(void) { return
int CartesianCommunicator::IsBoss(void) { return _processor==0; };
int CartesianCommunicator::BossRank(void) { return 0; };
int CartesianCommunicator::ThisRank(void) { return _processor; };
const Coordinate & CartesianCommunicator::ThisProcessorCoor(void) { return _processor_coor; };
const Coordinate & CartesianCommunicator::ProcessorGrid(void) { return _processors; };
const std::vector<int> & CartesianCommunicator::ThisProcessorCoor(void) { return _processor_coor; };
const std::vector<int> & CartesianCommunicator::ProcessorGrid(void) { return _processors; };
int CartesianCommunicator::ProcessorCount(void) { return _Nprocessors; };
////////////////////////////////////////////////////////////////////////////////
@ -72,6 +72,5 @@ void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N)
GlobalSumVector((double *)c,2*N);
}
NAMESPACE_END(Grid);
}

View File

@ -1,4 +1,5 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -23,8 +24,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_COMMUNICATOR_BASE_H
#define GRID_COMMUNICATOR_BASE_H
@ -33,7 +34,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
///////////////////////////////////
#include <Grid/communicator/SharedMemory.h>
NAMESPACE_BEGIN(Grid);
namespace Grid {
class CartesianCommunicator : public SharedMemory {
@ -51,9 +52,9 @@ public:
// Communicator should know nothing of the physics grid, only processor grid.
////////////////////////////////////////////
int _Nprocessors; // How many in all
Coordinate _processors; // Which dimensions get relayed out over processors lanes.
std::vector<int> _processors; // Which dimensions get relayed out over processors lanes.
int _processor; // linear processor rank
Coordinate _processor_coor; // linear processor coordinate
std::vector<int> _processor_coor; // linear processor coordinate
unsigned long _ndimension;
static Grid_MPI_Comm communicator_world;
Grid_MPI_Comm communicator;
@ -68,34 +69,34 @@ public:
// Constructors to sub-divide a parent communicator
// and default to comm world
////////////////////////////////////////////////
CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank);
CartesianCommunicator(const Coordinate &pdimensions_in);
CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent,int &srank);
CartesianCommunicator(const std::vector<int> &pdimensions_in);
virtual ~CartesianCommunicator();
private:
private:
////////////////////////////////////////////////
// Private initialise from an MPI communicator
// Can use after an MPI_Comm_split, but hidden from user so private
////////////////////////////////////////////////
void InitFromMPICommunicator(const Coordinate &processors, Grid_MPI_Comm communicator_base);
void InitFromMPICommunicator(const std::vector<int> &processors, Grid_MPI_Comm communicator_base);
public:
public:
////////////////////////////////////////////////////////////////////////////////////////
// Wraps MPI_Cart routines, or implements equivalent on other impls
////////////////////////////////////////////////////////////////////////////////////////
void ShiftedRanks(int dim,int shift,int & source, int & dest);
int RankFromProcessorCoor(Coordinate &coor);
void ProcessorCoorFromRank(int rank,Coordinate &coor);
int RankFromProcessorCoor(std::vector<int> &coor);
void ProcessorCoorFromRank(int rank,std::vector<int> &coor);
int Dimensions(void) ;
int IsBoss(void) ;
int BossRank(void) ;
int ThisRank(void) ;
const Coordinate & ThisProcessorCoor(void) ;
const Coordinate & ProcessorGrid(void) ;
const std::vector<int> & ThisProcessorCoor(void) ;
const std::vector<int> & ProcessorGrid(void) ;
int ProcessorCount(void) ;
////////////////////////////////////////////////////////////////////////////////
@ -107,15 +108,12 @@ public:
////////////////////////////////////////////////////////////
// Reduction
////////////////////////////////////////////////////////////
void GlobalMax(RealD &);
void GlobalMax(RealF &);
void GlobalSum(RealF &);
void GlobalSumVector(RealF *,int N);
void GlobalSum(RealD &);
void GlobalSumVector(RealD *,int N);
void GlobalSum(uint32_t &);
void GlobalSum(uint64_t &);
void GlobalSumVector(uint64_t*,int N);
void GlobalSum(ComplexF &c);
void GlobalSumVector(ComplexF *c,int N);
void GlobalSum(ComplexD &c);
@ -139,6 +137,21 @@ public:
int recv_from_rank,
int bytes);
void SendRecvPacket(void *xmit,
void *recv,
int xmit_to_rank,
int recv_from_rank,
int bytes);
void SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,
void *recv,
int recv_from_rank,
int bytes);
void SendToRecvFromComplete(std::vector<CommsRequest_t> &waitall);
double StencilSendToRecvFrom(void *xmit,
int xmit_to_rank,
void *recv,
@ -184,12 +197,11 @@ public:
void AllToAll(void *in,void *out,uint64_t words ,uint64_t bytes);
template<class obj> void Broadcast(int root,obj &data)
{
Broadcast(root,(void *)&data,sizeof(data));
}
{
Broadcast(root,(void *)&data,sizeof(data));
};
};
NAMESPACE_END(Grid);
}
#endif

View File

@ -1,6 +1,6 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/communicator/Communicator_mpi.cc
@ -23,19 +23,19 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#include <Grid/GridCore.h>
#include <Grid/communicator/SharedMemory.h>
NAMESPACE_BEGIN(Grid);
namespace Grid {
Grid_MPI_Comm CartesianCommunicator::communicator_world;
////////////////////////////////////////////
// First initialise of comms system
////////////////////////////////////////////
void CartesianCommunicator::Init(int *argc, char ***argv)
void CartesianCommunicator::Init(int *argc, char ***argv)
{
int flag;
@ -43,35 +43,22 @@ void CartesianCommunicator::Init(int *argc, char ***argv)
MPI_Initialized(&flag); // needed to coexist with other libs apparently
if ( !flag ) {
#ifndef GRID_COMMS_THREADS
nCommThreads=1;
// wrong results here too
// For now: comms-overlap leads to wrong results in Benchmark_wilson even on single node MPI runs
// other comms schemes are ok
MPI_Init_thread(argc,argv,MPI_THREAD_SERIALIZED,&provided);
#else
MPI_Init_thread(argc,argv,MPI_THREAD_MULTIPLE,&provided);
#endif
//If only 1 comms thread we require any threading mode other than SINGLE, but for multiple comms threads we need MULTIPLE
if( (nCommThreads == 1) && (provided == MPI_THREAD_SINGLE) ) {
if( (nCommThreads == 1 && provided == MPI_THREAD_SINGLE) ||
(nCommThreads > 1 && provided != MPI_THREAD_MULTIPLE) )
assert(0);
}
if( (nCommThreads > 1) && (provided != MPI_THREAD_MULTIPLE) ) {
assert(0);
}
}
Grid_quiesce_nodes();
// Never clean up as done once.
MPI_Comm_dup (MPI_COMM_WORLD,&communicator_world);
Grid_quiesce_nodes();
GlobalSharedMemory::Init(communicator_world);
GlobalSharedMemory::SharedMemoryAllocate(
GlobalSharedMemory::MAX_MPI_SHM_BYTES,
GlobalSharedMemory::Hugepages);
Grid_unquiesce_nodes();
}
///////////////////////////////////////////////////////////////////////////
@ -82,14 +69,14 @@ void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest
int ierr=MPI_Cart_shift(communicator,dim,shift,&source,&dest);
assert(ierr==0);
}
int CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor)
int CartesianCommunicator::RankFromProcessorCoor(std::vector<int> &coor)
{
int rank;
int ierr=MPI_Cart_rank (communicator, &coor[0], &rank);
assert(ierr==0);
return rank;
}
void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor)
void CartesianCommunicator::ProcessorCoorFromRank(int rank, std::vector<int> &coor)
{
coor.resize(_ndimension);
int ierr=MPI_Cart_coords (communicator, rank, _ndimension,&coor[0]);
@ -99,7 +86,7 @@ void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor)
////////////////////////////////////////////////////////////////////////////////////////////////////////
// Initialises from communicator_world
////////////////////////////////////////////////////////////////////////////////////////////////////////
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
{
MPI_Comm optimal_comm;
////////////////////////////////////////////////////
@ -118,12 +105,13 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
//////////////////////////////////
// Try to subdivide communicator
//////////////////////////////////
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent,int &srank)
{
_ndimension = processors.size(); assert(_ndimension>=1);
_ndimension = processors.size();
int parent_ndimension = parent._ndimension; assert(_ndimension >= parent._ndimension);
Coordinate parent_processor_coor(_ndimension,0);
Coordinate parent_processors (_ndimension,1);
std::vector<int> parent_processor_coor(_ndimension,0);
std::vector<int> parent_processors (_ndimension,1);
// Can make 5d grid from 4d etc...
int pad = _ndimension-parent_ndimension;
@ -135,9 +123,11 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
//////////////////////////////////////////////////////////////////////////////////////////////////////
// split the communicator
//////////////////////////////////////////////////////////////////////////////////////////////////////
// int Nparent = parent._processors ;
// int Nparent = parent._processors ;
// std::cout << " splitting from communicator "<<parent.communicator <<std::endl;
int Nparent;
MPI_Comm_size(parent.communicator,&Nparent);
// std::cout << " Parent size "<<Nparent <<std::endl;
int childsize=1;
for(int d=0;d<processors.size();d++) {
@ -146,9 +136,11 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
int Nchild = Nparent/childsize;
assert (childsize * Nchild == Nparent);
Coordinate ccoor(_ndimension); // coor within subcommunicator
Coordinate scoor(_ndimension); // coor of split within parent
Coordinate ssize(_ndimension); // coor of split within parent
// std::cout << " child size "<<childsize <<std::endl;
std::vector<int> ccoor(_ndimension); // coor within subcommunicator
std::vector<int> scoor(_ndimension); // coor of split within parent
std::vector<int> ssize(_ndimension); // coor of split within parent
for(int d=0;d<_ndimension;d++){
ccoor[d] = parent_processor_coor[d] % processors[d];
@ -157,13 +149,43 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
}
// rank within subcomm ; srank is rank of subcomm within blocks of subcomms
int crank;
int crank;
// Mpi uses the reverse Lexico convention to us; so reversed routines called
Lexicographic::IndexFromCoorReversed(ccoor,crank,processors); // processors is the split grid dimensions
Lexicographic::IndexFromCoorReversed(scoor,srank,ssize); // ssize is the number of split grids
MPI_Comm comm_split;
if ( Nchild > 1 ) {
if ( Nchild > 1 ) {
if(0){
std::cout << GridLogMessage<<"Child communicator of "<< std::hex << parent.communicator << std::dec<<std::endl;
std::cout << GridLogMessage<<" parent grid["<< parent._ndimension<<"] ";
for(int d=0;d<parent._ndimension;d++) std::cout << parent._processors[d] << " ";
std::cout<<std::endl;
std::cout << GridLogMessage<<" child grid["<< _ndimension <<"] ";
for(int d=0;d<processors.size();d++) std::cout << processors[d] << " ";
std::cout<<std::endl;
std::cout << GridLogMessage<<" old rank "<< parent._processor<<" coor ["<< parent._ndimension <<"] ";
for(int d=0;d<parent._ndimension;d++) std::cout << parent._processor_coor[d] << " ";
std::cout<<std::endl;
std::cout << GridLogMessage<<" new split "<< srank<<" scoor ["<< _ndimension <<"] ";
for(int d=0;d<processors.size();d++) std::cout << scoor[d] << " ";
std::cout<<std::endl;
std::cout << GridLogMessage<<" new rank "<< crank<<" coor ["<< _ndimension <<"] ";
for(int d=0;d<processors.size();d++) std::cout << ccoor[d] << " ";
std::cout<<std::endl;
//////////////////////////////////////////////////////////////////////////////////////////////////////
// Declare victory
//////////////////////////////////////////////////////////////////////////////////////////////////////
std::cout << GridLogMessage<<"Divided communicator "<< parent._Nprocessors<<" into "
<< Nchild <<" communicators with " << childsize << " ranks"<<std::endl;
std::cout << " Split communicator " <<comm_split <<std::endl;
}
////////////////////////////////////////////////////////////////
// Split the communicator
@ -186,13 +208,13 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
// Take the right SHM buffers
//////////////////////////////////////////////////////////////////////////////////////////////////////
SetCommunicator(comm_split);
///////////////////////////////////////////////
// Free the temp communicator
// Free the temp communicator
///////////////////////////////////////////////
MPI_Comm_free(&comm_split);
if(0){
if(0){
std::cout << " ndim " <<_ndimension<<" " << parent._ndimension << std::endl;
for(int d=0;d<processors.size();d++){
std::cout << d<< " " << _processor_coor[d] <<" " << ccoor[d]<<std::endl;
@ -203,7 +225,7 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
}
}
void CartesianCommunicator::InitFromMPICommunicator(const Coordinate &processors, MPI_Comm communicator_base)
void CartesianCommunicator::InitFromMPICommunicator(const std::vector<int> &processors, MPI_Comm communicator_base)
{
////////////////////////////////////////////////////
// Creates communicator, and the communicator_halo
@ -220,7 +242,7 @@ void CartesianCommunicator::InitFromMPICommunicator(const Coordinate &processors
_Nprocessors*=_processors[i];
}
Coordinate periodic(_ndimension,1);
std::vector<int> periodic(_ndimension,1);
MPI_Cart_create(communicator_base, _ndimension,&_processors[0],&periodic[0],0,&communicator);
MPI_Comm_rank(communicator,&_processor);
MPI_Cart_coords(communicator,_processor,_ndimension,&_processor_coor[0]);
@ -253,7 +275,7 @@ CartesianCommunicator::~CartesianCommunicator()
for(int i=0;i<communicator_halo.size();i++){
MPI_Comm_free(&communicator_halo[i]);
}
}
}
}
void CartesianCommunicator::GlobalSum(uint32_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
@ -263,10 +285,6 @@ void CartesianCommunicator::GlobalSum(uint64_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSumVector(uint64_t* u,int N){
int ierr=MPI_Allreduce(MPI_IN_PLACE,u,N,MPI_UINT64_T,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalXOR(uint32_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_BXOR,communicator);
assert(ierr==0);
@ -275,16 +293,6 @@ void CartesianCommunicator::GlobalXOR(uint64_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_BXOR,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalMax(float &f)
{
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_MAX,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalMax(double &d)
{
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_MAX,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSum(float &f){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
assert(ierr==0);
@ -312,28 +320,60 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
int bytes)
{
std::vector<CommsRequest_t> reqs(0);
unsigned long xcrc = crc32(0L, Z_NULL, 0);
unsigned long rcrc = crc32(0L, Z_NULL, 0);
// unsigned long xcrc = crc32(0L, Z_NULL, 0);
// unsigned long rcrc = crc32(0L, Z_NULL, 0);
// xcrc = crc32(xcrc,(unsigned char *)xmit,bytes);
SendToRecvFromBegin(reqs,xmit,dest,recv,from,bytes);
SendToRecvFromComplete(reqs);
// rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
// printf("proc %d SendToRecvFrom %d bytes %lx %lx\n",_processor,bytes,xcrc,rcrc);
}
void CartesianCommunicator::SendRecvPacket(void *xmit,
void *recv,
int sender,
int receiver,
int bytes)
{
MPI_Status stat;
assert(sender != receiver);
int tag = sender;
if ( _processor == sender ) {
MPI_Send(xmit, bytes, MPI_CHAR,receiver,tag,communicator);
}
if ( _processor == receiver ) {
MPI_Recv(recv, bytes, MPI_CHAR,sender,tag,communicator,&stat);
}
}
// Basic Halo comms primitive
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
int from,
int bytes)
{
int myrank = _processor;
int ierr;
// Enforce no UVM in comms, device or host OK
assert(acceleratorIsCommunicable(xmit));
assert(acceleratorIsCommunicable(recv));
if ( CommunicatorPolicy == CommunicatorPolicyConcurrent ) {
MPI_Request xrq;
MPI_Request rrq;
// Give the CPU to MPI immediately; can use threads to overlap optionally
// printf("proc %d SendToRecvFrom %d bytes Sendrecv \n",_processor,bytes);
ierr=MPI_Sendrecv(xmit,bytes,MPI_CHAR,dest,myrank,
recv,bytes,MPI_CHAR,from, from,
communicator,MPI_STATUS_IGNORE);
assert(ierr==0);
// xcrc = crc32(xcrc,(unsigned char *)xmit,bytes);
// rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
// printf("proc %d SendToRecvFrom %d bytes xcrc %lx rcrc %lx\n",_processor,bytes,xcrc,rcrc); fflush
ierr =MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator,&rrq);
ierr|=MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator,&xrq);
assert(ierr==0);
list.push_back(xrq);
list.push_back(rrq);
} else {
// Give the CPU to MPI immediately; can use threads to overlap optionally
ierr=MPI_Sendrecv(xmit,bytes,MPI_CHAR,dest,myrank,
recv,bytes,MPI_CHAR,from, from,
communicator,MPI_STATUS_IGNORE);
assert(ierr==0);
}
}
// Basic Halo comms primitive
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
int dest,
void *recv,
@ -353,7 +393,7 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
int from,
int bytes,int dir)
{
int ncomm =communicator_halo.size();
int ncomm =communicator_halo.size();
int commdir=dir%ncomm;
MPI_Request xrq;
@ -368,31 +408,36 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
assert(from != _processor);
assert(gme == ShmRank);
double off_node_bytes=0.0;
int tag;
if ( gfrom ==MPI_UNDEFINED) {
tag= dir+from*32;
ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator_halo[commdir],&rrq);
assert(ierr==0);
list.push_back(rrq);
off_node_bytes+=bytes;
}
if ( gdest == MPI_UNDEFINED ) {
tag= dir+_processor*32;
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator_halo[commdir],&xrq);
assert(ierr==0);
list.push_back(xrq);
off_node_bytes+=bytes;
}
if ( CommunicatorPolicy == CommunicatorPolicySequential ) {
if ( CommunicatorPolicy == CommunicatorPolicySequential ) {
this->StencilSendToRecvFromComplete(list,dir);
}
return off_node_bytes;
}
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir)
{
SendToRecvFromComplete(waitall);
}
void CartesianCommunicator::StencilBarrier(void)
{
MPI_Barrier (ShmComm);
}
void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
{
int nreq=list.size();
@ -403,13 +448,6 @@ void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsReque
assert(ierr==0);
list.resize(0);
}
void CartesianCommunicator::StencilBarrier(void)
{
MPI_Barrier (ShmComm);
}
//void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
//{
//}
void CartesianCommunicator::Barrier(void)
{
int ierr = MPI_Barrier(communicator);
@ -424,8 +462,8 @@ void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
communicator);
assert(ierr==0);
}
int CartesianCommunicator::RankWorld(void){
int r;
int CartesianCommunicator::RankWorld(void){
int r;
MPI_Comm_rank(communicator_world,&r);
return r;
}
@ -441,7 +479,7 @@ void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes)
{
Coordinate row(_ndimension,1);
std::vector<int> row(_ndimension,1);
assert(dim>=0 && dim<_ndimension);
// Split the communicator
@ -458,7 +496,7 @@ void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t
// When 24*4 bytes multiples get 50x 10^9 >>> 2x10^9 Y2K bug.
// (Turns up on 32^3 x 64 Gparity too)
MPI_Datatype object;
int iwords;
int iwords;
int ibytes;
iwords = words;
ibytes = bytes;
@ -470,4 +508,7 @@ void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t
MPI_Type_free(&object);
}
NAMESPACE_END(Grid);
}

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -23,11 +23,11 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid);
namespace Grid {
///////////////////////////////////////////////////////////////////////////////////////////////////
// Info that is setup once and indept of cartesian layout
@ -38,21 +38,21 @@ void CartesianCommunicator::Init(int *argc, char *** arv)
{
GlobalSharedMemory::Init(communicator_world);
GlobalSharedMemory::SharedMemoryAllocate(
GlobalSharedMemory::MAX_MPI_SHM_BYTES,
GlobalSharedMemory::Hugepages);
GlobalSharedMemory::MAX_MPI_SHM_BYTES,
GlobalSharedMemory::Hugepages);
}
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent,int &srank)
: CartesianCommunicator(processors)
{
srank=0;
SetCommunicator(communicator_world);
}
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
{
_processors = processors;
_ndimension = processors.size(); assert(_ndimension>=1);
_ndimension = processors.size();
_processor_coor.resize(_ndimension);
// Require 1^N processor grid for fake
@ -67,18 +67,24 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
CartesianCommunicator::~CartesianCommunicator(){}
void CartesianCommunicator::GlobalMax(float &){}
void CartesianCommunicator::GlobalMax(double &){}
void CartesianCommunicator::GlobalSum(float &){}
void CartesianCommunicator::GlobalSumVector(float *,int N){}
void CartesianCommunicator::GlobalSum(double &){}
void CartesianCommunicator::GlobalSumVector(double *,int N){}
void CartesianCommunicator::GlobalSum(uint32_t &){}
void CartesianCommunicator::GlobalSum(uint64_t &){}
void CartesianCommunicator::GlobalSumVector(uint64_t *,int N){}
void CartesianCommunicator::GlobalSumVector(double *,int N){}
void CartesianCommunicator::GlobalXOR(uint32_t &){}
void CartesianCommunicator::GlobalXOR(uint64_t &){}
void CartesianCommunicator::SendRecvPacket(void *xmit,
void *recv,
int xmit_to_rank,
int recv_from_rank,
int bytes)
{
assert(0);
}
// Basic Halo comms primitive -- should never call in single node
void CartesianCommunicator::SendToRecvFrom(void *xmit,
@ -89,6 +95,20 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
{
assert(0);
}
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
int from,
int bytes)
{
assert(0);
}
void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
{
assert(0);
}
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes)
{
bcopy(in,out,bytes*words);
@ -102,8 +122,8 @@ int CartesianCommunicator::RankWorld(void){return 0;}
void CartesianCommunicator::Barrier(void){}
void CartesianCommunicator::Broadcast(int root,void* data, int bytes) {}
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) { }
int CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor) { return 0;}
void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor){ coor = _processor_coor; }
int CartesianCommunicator::RankFromProcessorCoor(std::vector<int> &coor) { return 0;}
void CartesianCommunicator::ProcessorCoorFromRank(int rank, std::vector<int> &coor){ coor = _processor_coor; }
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
{
source =0;
@ -116,6 +136,10 @@ double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
int recv_from_rank,
int bytes, int dir)
{
std::vector<CommsRequest_t> list;
// Discard the "dir"
SendToRecvFromBegin (list,xmit,xmit_to_rank,recv,recv_from_rank,bytes);
SendToRecvFromComplete(list);
return 2.0*bytes;
}
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
@ -125,14 +149,17 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
int recv_from_rank,
int bytes, int dir)
{
// Discard the "dir"
SendToRecvFromBegin(list,xmit,xmit_to_rank,recv,recv_from_rank,bytes);
return 2.0*bytes;
}
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir)
{
SendToRecvFromComplete(waitall);
}
void CartesianCommunicator::StencilBarrier(void){};
NAMESPACE_END(Grid);
}

View File

@ -28,11 +28,10 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid);
namespace Grid {
// static data
int GlobalSharedMemory::HPEhypercube = 1;
uint64_t GlobalSharedMemory::MAX_MPI_SHM_BYTES = 1024LL*1024LL*1024LL;
int GlobalSharedMemory::Hugepages = 0;
int GlobalSharedMemory::_ShmSetup;
@ -74,12 +73,9 @@ void *SharedMemory::ShmBufferMalloc(size_t bytes){
if (heap_bytes >= heap_size) {
std::cout<< " ShmBufferMalloc exceeded shared heap size -- try increasing with --shm <MB> flag" <<std::endl;
std::cout<< " Parameter specified in units of MB (megabytes) " <<std::endl;
std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl;
std::cout<< " Current bytes is " << (heap_bytes/(1024*1024)) <<"MB"<<std::endl;
std::cout<< " Current heap is " << (heap_size/(1024*1024)) <<"MB"<<std::endl;
std::cout<< " Current value is " << (heap_size/(1024*1024)) <<std::endl;
assert(heap_bytes<heap_size);
}
//std::cerr << "ShmBufferMalloc "<<std::hex<< ptr<<" - "<<((uint64_t)ptr+bytes)<<std::dec<<std::endl;
return ptr;
}
void SharedMemory::ShmBufferFreeAll(void) {
@ -88,9 +84,9 @@ void SharedMemory::ShmBufferFreeAll(void) {
}
void *SharedMemory::ShmBufferSelf(void)
{
//std::cerr << "ShmBufferSelf "<<ShmRank<<" "<<std::hex<< ShmCommBufs[ShmRank] <<std::dec<<std::endl;
return ShmCommBufs[ShmRank];
}
NAMESPACE_END(Grid);
}

View File

@ -25,6 +25,18 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
// TODO
// 1) move includes into SharedMemory.cc
//
// 2) split shared memory into a) optimal communicator creation from comm world
//
// b) shared memory buffers container
// -- static globally shared; init once
// -- per instance set of buffers.
//
#pragma once
#include <Grid/GridCore.h>
@ -41,33 +53,30 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <sys/shm.h>
#include <sys/mman.h>
#include <zlib.h>
#ifdef HAVE_NUMAIF_H
#include <numaif.h>
#endif
NAMESPACE_BEGIN(Grid);
namespace Grid {
#if defined (GRID_COMMS_MPI3)
typedef MPI_Comm Grid_MPI_Comm;
typedef MPI_Request CommsRequest_t;
typedef MPI_Comm Grid_MPI_Comm;
typedef MPI_Request CommsRequest_t;
#else
typedef int CommsRequest_t;
typedef int Grid_MPI_Comm;
typedef int CommsRequest_t;
typedef int Grid_MPI_Comm;
#endif
class GlobalSharedMemory {
private:
private:
static const int MAXLOG2RANKSPERNODE = 16;
// Init once lock on the buffer allocation
static int _ShmSetup;
static int _ShmAlloc;
static uint64_t _ShmAllocBytes;
public:
///////////////////////////////////////
// HPE 8600 hypercube optimisation
///////////////////////////////////////
static int HPEhypercube;
public:
static int ShmSetup(void) { return _ShmSetup; }
static int ShmAlloc(void) { return _ShmAlloc; }
static uint64_t ShmAllocBytes(void) { return _ShmAllocBytes; }
@ -93,17 +102,12 @@ public:
// Create an optimal reordered communicator that makes MPI_Cart_create get it right
//////////////////////////////////////////////////////////////////////////////////////
static void Init(Grid_MPI_Comm comm); // Typically MPI_COMM_WORLD
static void OptimalCommunicator (const Coordinate &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
static void OptimalCommunicatorHypercube (const Coordinate &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
static void OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
static void GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims);
static void OptimalCommunicator(const std::vector<int> &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
///////////////////////////////////////////////////
// Provide shared memory facilities off comm world
///////////////////////////////////////////////////
static void SharedMemoryAllocate(uint64_t bytes, int flags);
static void SharedMemoryFree(void);
static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
static void SharedMemoryZero(void *dest,size_t bytes);
};
@ -112,14 +116,14 @@ public:
//////////////////////////////
class SharedMemory
{
private:
private:
static const int MAXLOG2RANKSPERNODE = 16;
size_t heap_top;
size_t heap_bytes;
size_t heap_size;
protected:
protected:
Grid_MPI_Comm ShmComm; // for barriers
int ShmRank;
@ -127,7 +131,7 @@ protected:
std::vector<void *> ShmCommBufs;
std::vector<int> ShmRanks;// Mapping comm ranks to Shm ranks
public:
public:
SharedMemory() {};
~SharedMemory();
///////////////////////////////////////////////////////////////////////////////////////
@ -144,7 +148,6 @@ public:
// Call on any instance
///////////////////////////////////////////////////
void SharedMemoryTest(void);
void *ShmBufferSelf(void);
void *ShmBuffer (int rank);
void *ShmBufferTranslate(int rank,void * local_p);
@ -159,5 +162,4 @@ public:
};
NAMESPACE_END(Grid);
}

View File

@ -7,7 +7,6 @@
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -30,15 +29,8 @@ Author: Christoph Lehner <christoph@lhnr.de>
#include <Grid/GridCore.h>
#include <pwd.h>
#ifdef GRID_CUDA
#include <cuda_runtime_api.h>
#endif
#ifdef GRID_HIP
#include <hip/hip_runtime_api.h>
#endif
namespace Grid {
NAMESPACE_BEGIN(Grid);
#define header "SharedMemoryMpi: "
/*Construct from an MPI communicator*/
void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
{
@ -51,19 +43,9 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
/////////////////////////////////////////////////////////////////////
// Split into groups that can share memory
/////////////////////////////////////////////////////////////////////
#ifndef GRID_MPI3_SHM_NONE
MPI_Comm_split_type(comm, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL,&WorldShmComm);
#else
MPI_Comm_split(comm, WorldRank, 0, &WorldShmComm);
#endif
MPI_Comm_rank(WorldShmComm ,&WorldShmRank);
MPI_Comm_size(WorldShmComm ,&WorldShmSize);
if ( WorldRank == 0) {
std::cout << header " World communicator of size " <<WorldSize << std::endl;
std::cout << header " Node communicator of size " <<WorldShmSize << std::endl;
}
// WorldShmComm, WorldShmSize, WorldShmRank
// WorldNodes
@ -148,77 +130,9 @@ int Log2Size(int TwoToPower,int MAXLOG2)
}
return log2size;
}
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
{
//////////////////////////////////////////////////////////////////////////////
// Look and see if it looks like an HPE 8600 based on hostname conventions
//////////////////////////////////////////////////////////////////////////////
const int namelen = _POSIX_HOST_NAME_MAX;
char name[namelen];
int R;
int I;
int N;
gethostname(name,namelen);
int nscan = sscanf(name,"r%di%dn%d",&R,&I,&N) ;
if(nscan==3 && HPEhypercube ) OptimalCommunicatorHypercube(processors,optimal_comm);
else OptimalCommunicatorSharedMemory(processors,optimal_comm);
}
static inline int divides(int a,int b)
{
return ( b == ( (b/a)*a ) );
}
void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims)
{
////////////////////////////////////////////////////////////////
// Allow user to configure through environment variable
////////////////////////////////////////////////////////////////
char* str = getenv(("GRID_SHM_DIMS_" + std::to_string(ShmDims.size())).c_str());
if ( str ) {
std::vector<int> IntShmDims;
GridCmdOptionIntVector(std::string(str),IntShmDims);
assert(IntShmDims.size() == WorldDims.size());
long ShmSize = 1;
for (int dim=0;dim<WorldDims.size();dim++) {
ShmSize *= (ShmDims[dim] = IntShmDims[dim]);
assert(divides(ShmDims[dim],WorldDims[dim]));
}
assert(ShmSize == WorldShmSize);
return;
}
////////////////////////////////////////////////////////////////
// Powers of 2,3,5 only in prime decomposition for now
////////////////////////////////////////////////////////////////
int ndimension = WorldDims.size();
ShmDims=Coordinate(ndimension,1);
std::vector<int> primes({2,3,5});
int dim = 0;
int last_dim = ndimension - 1;
int AutoShmSize = 1;
while(AutoShmSize != WorldShmSize) {
int p;
for(p=0;p<primes.size();p++) {
int prime=primes[p];
if ( divides(prime,WorldDims[dim]/ShmDims[dim])
&& divides(prime,WorldShmSize/AutoShmSize) ) {
AutoShmSize*=prime;
ShmDims[dim]*=prime;
last_dim = dim;
break;
}
}
if (p == primes.size() && last_dim == dim) {
std::cerr << "GlobalSharedMemory::GetShmDims failed" << std::endl;
exit(EXIT_FAILURE);
}
dim=(dim+1) %ndimension;
}
}
void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
void GlobalSharedMemory::OptimalCommunicator(const std::vector<int> &processors,Grid_MPI_Comm & optimal_comm)
{
#ifdef HYPERCUBE
////////////////////////////////////////////////////////////////
// Assert power of two shm_size.
////////////////////////////////////////////////////////////////
@ -259,9 +173,9 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
}
std::string hname(name);
// std::cout << "hostname "<<hname<<std::endl;
// std::cout << "R " << R << " I " << I << " N "<< N
// << " hypercoor 0x"<<std::hex<<hypercoor<<std::dec<<std::endl;
std::cout << "hostname "<<hname<<std::endl;
std::cout << "R " << R << " I " << I << " N "<< N
<< " hypercoor 0x"<<std::hex<<hypercoor<<std::dec<<std::endl;
//////////////////////////////////////////////////////////////////
// broadcast node 0's base coordinate for this partition.
@ -283,13 +197,16 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
// in a maximally symmetrical way
////////////////////////////////////////////////////////////////
int ndimension = processors.size();
Coordinate processor_coor(ndimension);
Coordinate WorldDims = processors;
Coordinate ShmDims (ndimension); Coordinate NodeDims (ndimension);
Coordinate ShmCoor (ndimension); Coordinate NodeCoor (ndimension); Coordinate WorldCoor(ndimension);
Coordinate HyperCoor(ndimension);
GetShmDims(WorldDims,ShmDims);
std::vector<int> processor_coor(ndimension);
std::vector<int> WorldDims = processors; std::vector<int> ShmDims (ndimension,1); std::vector<int> NodeDims (ndimension);
std::vector<int> ShmCoor (ndimension); std::vector<int> NodeCoor (ndimension); std::vector<int> WorldCoor(ndimension);
std::vector<int> HyperCoor(ndimension);
int dim = 0;
for(int l2=0;l2<log2size;l2++){
while ( (WorldDims[dim] / ShmDims[dim]) <= 1 ) dim=(dim+1)%ndimension;
ShmDims[dim]*=2;
dim=(dim+1)%ndimension;
}
////////////////////////////////////////////////////////////////
// Establish torus of processes and nodes with sub-blockings
@ -308,7 +225,7 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
HyperCoor[d]=hcoor & msk;
HyperCoor[d]=BinaryToGray(HyperCoor[d]); // Space filling curve magic
hcoor = hcoor >> bits;
}
}
////////////////////////////////////////////////////////////////
// Check processor counts match
////////////////////////////////////////////////////////////////
@ -336,19 +253,28 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
/////////////////////////////////////////////////////////////////
int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
assert(ierr==0);
}
void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
{
#else
////////////////////////////////////////////////////////////////
// Assert power of two shm_size.
////////////////////////////////////////////////////////////////
int log2size = Log2Size(WorldShmSize,MAXLOG2RANKSPERNODE);
assert(log2size != -1);
////////////////////////////////////////////////////////////////
// Identify subblock of ranks on node spreading across dims
// in a maximally symmetrical way
////////////////////////////////////////////////////////////////
int ndimension = processors.size();
Coordinate processor_coor(ndimension);
Coordinate WorldDims = processors; Coordinate ShmDims(ndimension); Coordinate NodeDims (ndimension);
Coordinate ShmCoor(ndimension); Coordinate NodeCoor(ndimension); Coordinate WorldCoor(ndimension);
std::vector<int> processor_coor(ndimension);
std::vector<int> WorldDims = processors; std::vector<int> ShmDims (ndimension,1); std::vector<int> NodeDims (ndimension);
std::vector<int> ShmCoor (ndimension); std::vector<int> NodeCoor (ndimension); std::vector<int> WorldCoor(ndimension);
int dim = 0;
for(int l2=0;l2<log2size;l2++){
while ( (WorldDims[dim] / ShmDims[dim]) <= 1 ) dim=(dim+1)%ndimension;
ShmDims[dim]*=2;
dim=(dim+1)%ndimension;
}
GetShmDims(WorldDims,ShmDims);
////////////////////////////////////////////////////////////////
// Establish torus of processes and nodes with sub-blockings
////////////////////////////////////////////////////////////////
@ -380,6 +306,7 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
/////////////////////////////////////////////////////////////////
int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
assert(ierr==0);
#endif
}
////////////////////////////////////////////////////////////////////////////////////////////
// SHMGET
@ -387,7 +314,7 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
#ifdef GRID_MPI3_SHMGET
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
std::cout << header "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl;
std::cout << "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
@ -410,7 +337,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
int errsv = errno;
printf("Errno %d\n",errsv);
printf("key %d\n",key);
printf("size %ld\n",size);
printf("size %lld\n",size);
printf("flags %d\n",flags);
perror("shmget");
exit(1);
@ -442,126 +369,14 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
_ShmAllocBytes = bytes;
}
#endif
////////////////////////////////////////////////////////////////////////////////////////////
// Hugetlbfs mapping intended
////////////////////////////////////////////////////////////////////////////////////////////
#if defined(GRID_CUDA) ||defined(GRID_HIP)
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
void * ShmCommBuf ;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// allocate the pointer array for shared windows for our group
//////////////////////////////////////////////////////////////////////////////////////////////////////////
MPI_Barrier(WorldShmComm);
WorldShmCommBufs.resize(WorldShmSize);
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// TODO/FIXME : NOT ALL NVLINK BOARDS have full Peer to peer connectivity.
// The annoyance is that they have partial peer 2 peer. This occurs on the 8 GPU blades.
// e.g. DGX1, supermicro board,
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// cudaDeviceGetP2PAttribute(&perfRank, cudaDevP2PAttrPerformanceRank, device1, device2);
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// Each MPI rank should allocate our own buffer
///////////////////////////////////////////////////////////////////////////////////////////////////////////
ShmCommBuf = acceleratorAllocDevice(bytes);
if (ShmCommBuf == (void *)NULL ) {
std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
exit(EXIT_FAILURE);
}
// if ( WorldRank == 0 ){
if ( 1 ){
std::cout << WorldRank << header " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes
<< "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
}
SharedMemoryZero(ShmCommBuf,bytes);
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// Loop over ranks/gpu's on our node
///////////////////////////////////////////////////////////////////////////////////////////////////////////
for(int r=0;r<WorldShmSize;r++){
#ifndef GRID_MPI3_SHM_NONE
//////////////////////////////////////////////////
// If it is me, pass around the IPC access key
//////////////////////////////////////////////////
#ifdef GRID_CUDA
cudaIpcMemHandle_t handle;
if ( r==WorldShmRank ) {
auto err = cudaIpcGetMemHandle(&handle,ShmCommBuf);
if ( err != cudaSuccess) {
std::cerr << " SharedMemoryMPI.cc cudaIpcGetMemHandle failed for rank" << r <<" "<<cudaGetErrorString(err)<< std::endl;
exit(EXIT_FAILURE);
}
}
#endif
#ifdef GRID_HIP
hipIpcMemHandle_t handle;
if ( r==WorldShmRank ) {
auto err = hipIpcGetMemHandle(&handle,ShmCommBuf);
if ( err != hipSuccess) {
std::cerr << " SharedMemoryMPI.cc hipIpcGetMemHandle failed for rank" << r <<" "<<hipGetErrorString(err)<< std::endl;
exit(EXIT_FAILURE);
}
}
#endif
//////////////////////////////////////////////////
// Share this IPC handle across the Shm Comm
//////////////////////////////////////////////////
{
int ierr=MPI_Bcast(&handle,
sizeof(handle),
MPI_BYTE,
r,
WorldShmComm);
assert(ierr==0);
}
///////////////////////////////////////////////////////////////
// If I am not the source, overwrite thisBuf with remote buffer
///////////////////////////////////////////////////////////////
void * thisBuf = ShmCommBuf;
#ifdef GRID_CUDA
if ( r!=WorldShmRank ) {
auto err = cudaIpcOpenMemHandle(&thisBuf,handle,cudaIpcMemLazyEnablePeerAccess);
if ( err != cudaSuccess) {
std::cerr << " SharedMemoryMPI.cc cudaIpcOpenMemHandle failed for rank" << r <<" "<<cudaGetErrorString(err)<< std::endl;
exit(EXIT_FAILURE);
}
}
#endif
#ifdef GRID_HIP
if ( r!=WorldShmRank ) {
auto err = hipIpcOpenMemHandle(&thisBuf,handle,hipIpcMemLazyEnablePeerAccess);
if ( err != hipSuccess) {
std::cerr << " SharedMemoryMPI.cc hipIpcOpenMemHandle failed for rank" << r <<" "<<hipGetErrorString(err)<< std::endl;
exit(EXIT_FAILURE);
}
}
#endif
///////////////////////////////////////////////////////////////
// Save a copy of the device buffers
///////////////////////////////////////////////////////////////
WorldShmCommBufs[r] = thisBuf;
#else
WorldShmCommBufs[r] = ShmCommBuf;
#endif
}
_ShmAllocBytes=bytes;
_ShmAlloc=1;
}
#else
#ifdef GRID_MPI3_SHMMMAP
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
std::cout << header "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl;
std::cout << "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
//////////////////////////////////////////////////////////////////////////////////////////////////////////
@ -598,7 +413,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
assert(((uint64_t)ptr&0x3F)==0);
close(fd);
WorldShmCommBufs[r] =ptr;
// std::cout << header "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
}
_ShmAlloc=1;
_ShmAllocBytes = bytes;
@ -608,7 +423,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
#ifdef GRID_MPI3_SHM_NONE
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
std::cout << header "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl;
std::cout << "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
//////////////////////////////////////////////////////////////////////////////////////////////////////////
@ -640,7 +455,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
assert(((uint64_t)ptr&0x3F)==0);
close(fd);
WorldShmCommBufs[r] =ptr;
// std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
}
_ShmAlloc=1;
_ShmAllocBytes = bytes;
@ -655,7 +470,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
////////////////////////////////////////////////////////////////////////////////////////////
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
std::cout << header "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl;
std::cout << "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
MPI_Barrier(WorldShmComm);
@ -684,6 +499,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
#endif
void * ptr = mmap(NULL,size, PROT_READ | PROT_WRITE, mmap_flag, fd, 0);
std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< size<< "bytes)"<<std::endl;
if ( ptr == (void * )MAP_FAILED ) {
perror("failed mmap");
assert(0);
@ -720,31 +536,14 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
_ShmAllocBytes = bytes;
}
#endif
#endif // End NVCC case for GPU device buffers
/////////////////////////////////////////////////////////////////////////
// Routines accessing shared memory should route through for GPU safety
/////////////////////////////////////////////////////////////////////////
void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
{
#ifdef GRID_CUDA
cudaMemset(dest,0,bytes);
#else
bzero(dest,bytes);
#endif
}
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
{
#ifdef GRID_CUDA
cudaMemcpy(dest,src,bytes,cudaMemcpyDefault);
#else
bcopy(src,dest,bytes);
#endif
}
////////////////////////////////////////////////////////
// Global shared functionality finished
// Now move to per communicator functionality
////////////////////////////////////////////////////////
////////////////////////////////////////////////////////
// Global shared functionality finished
// Now move to per communicator functionality
////////////////////////////////////////////////////////
void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
{
int rank, size;
@ -755,11 +554,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
/////////////////////////////////////////////////////////////////////
// Split into groups that can share memory
/////////////////////////////////////////////////////////////////////
#ifndef GRID_MPI3_SHM_NONE
MPI_Comm_split_type(comm, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL,&ShmComm);
#else
MPI_Comm_split(comm, rank, 0, &ShmComm);
#endif
MPI_Comm_rank(ShmComm ,&ShmRank);
MPI_Comm_size(ShmComm ,&ShmSize);
ShmCommBufs.resize(ShmSize);
@ -776,6 +571,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
MPI_Allreduce(MPI_IN_PLACE,&wsr,1,MPI_UINT32_T,MPI_SUM,ShmComm);
ShmCommBufs[r] = GlobalSharedMemory::WorldShmCommBufs[wsr];
// std::cout << "SetCommunicator ShmCommBufs ["<< r<< "] = "<< ShmCommBufs[r]<< " wsr = "<<wsr<<std::endl;
}
ShmBufferFreeAll();
@ -788,19 +584,6 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
std::vector<int> ranks(size); for(int r=0;r<size;r++) ranks[r]=r;
MPI_Group_translate_ranks (FullGroup,size,&ranks[0],ShmGroup, &ShmRanks[0]);
#ifdef GRID_SHM_FORCE_MPI
// Hide the shared memory path between ranks
{
for(int r=0;r<size;r++){
if ( r!=rank ) {
ShmRanks[r] = MPI_UNDEFINED;
}
}
}
#endif
SharedMemoryTest();
}
//////////////////////////////////////////////////////////////////
// On node barrier
@ -815,26 +598,24 @@ void SharedMemory::ShmBarrier(void)
void SharedMemory::SharedMemoryTest(void)
{
ShmBarrier();
uint64_t check[3];
uint64_t magic = 0x5A5A5A;
if ( ShmRank == 0 ) {
for(uint64_t r=0;r<ShmSize;r++){
check[0]=GlobalSharedMemory::WorldNode;
check[1]=r;
check[2]=magic;
GlobalSharedMemory::SharedMemoryCopy( ShmCommBufs[r], check, 3*sizeof(uint64_t));
for(int r=0;r<ShmSize;r++){
uint64_t * check = (uint64_t *) ShmCommBufs[r];
check[0] = GlobalSharedMemory::WorldNode;
check[1] = r;
check[2] = 0x5A5A5A;
}
}
ShmBarrier();
for(uint64_t r=0;r<ShmSize;r++){
ShmBarrier();
GlobalSharedMemory::SharedMemoryCopy(check,ShmCommBufs[r], 3*sizeof(uint64_t));
ShmBarrier();
for(int r=0;r<ShmSize;r++){
uint64_t * check = (uint64_t *) ShmCommBufs[r];
assert(check[0]==GlobalSharedMemory::WorldNode);
assert(check[1]==r);
assert(check[2]==magic);
ShmBarrier();
assert(check[2]==0x5A5A5A);
}
ShmBarrier();
}
void *SharedMemory::ShmBuffer(int rank)
@ -848,6 +629,7 @@ void *SharedMemory::ShmBuffer(int rank)
}
void *SharedMemory::ShmBufferTranslate(int rank,void * local_p)
{
static int count =0;
int gpeer = ShmRanks[rank];
assert(gpeer!=ShmRank); // never send to self
if (gpeer == MPI_UNDEFINED){
@ -866,5 +648,4 @@ SharedMemory::~SharedMemory()
}
};
NAMESPACE_END(Grid);
}

View File

@ -28,8 +28,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid);
#define header "SharedMemoryNone: "
namespace Grid {
/*Construct from an MPI communicator*/
void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
@ -48,7 +47,7 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
_ShmSetup=1;
}
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
void GlobalSharedMemory::OptimalCommunicator(const std::vector<int> &processors,Grid_MPI_Comm & optimal_comm)
{
optimal_comm = WorldComm;
}
@ -56,38 +55,6 @@ void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_M
////////////////////////////////////////////////////////////////////////////////////////////
// Hugetlbfs mapping intended, use anonymous mmap
////////////////////////////////////////////////////////////////////////////////////////////
#if 1
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
std::cout << header "SharedMemoryAllocate "<< bytes<< " GPU implementation "<<std::endl;
void * ShmCommBuf ;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// Each MPI rank should allocate our own buffer
///////////////////////////////////////////////////////////////////////////////////////////////////////////
ShmCommBuf = acceleratorAllocDevice(bytes);
if (ShmCommBuf == (void *)NULL ) {
std::cerr << " SharedMemoryNone.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
exit(EXIT_FAILURE);
}
if ( WorldRank == 0 ){
std::cout << WorldRank << header " SharedMemoryNone.cc acceleratorAllocDevice "<< bytes
<< "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
}
SharedMemoryZero(ShmCommBuf,bytes);
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// Loop over ranks/gpu's on our node
///////////////////////////////////////////////////////////////////////////////////////////////////////////
WorldShmCommBufs[0] = ShmCommBuf;
_ShmAllocBytes=bytes;
_ShmAlloc=1;
}
#else
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
void * ShmCommBuf ;
@ -116,19 +83,11 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
_ShmAllocBytes=bytes;
_ShmAlloc=1;
};
#endif
void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
{
acceleratorMemSet(dest,0,bytes);
}
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
{
acceleratorCopyToDevice(src,dest,bytes);
}
////////////////////////////////////////////////////////
// Global shared functionality finished
// Now move to per communicator functionality
////////////////////////////////////////////////////////
////////////////////////////////////////////////////////
// Global shared functionality finished
// Now move to per communicator functionality
////////////////////////////////////////////////////////
void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
{
assert(GlobalSharedMemory::ShmAlloc()==1);
@ -166,5 +125,4 @@ void *SharedMemory::ShmBufferTranslate(int rank,void * local_p)
SharedMemory::~SharedMemory()
{};
NAMESPACE_END(Grid);
}

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -23,8 +23,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef _GRID_CSHIFT_H_
#define _GRID_CSHIFT_H_
@ -49,14 +49,4 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifdef GRID_COMMS_SHMEM
#include <Grid/cshift/Cshift_mpi.h> // uses same implementation of communicator
#endif
NAMESPACE_BEGIN(Grid);
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto Cshift(const Expression &expr,int dim,int shift) -> decltype(closure(expr))
{
return Cshift(closure(expr),dim,shift);
}
NAMESPACE_END(Grid);
#endif

View File

@ -25,39 +25,37 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#ifndef _GRID_CSHIFT_COMMON_H_
#define _GRID_CSHIFT_COMMON_H_
NAMESPACE_BEGIN(Grid);
extern Vector<std::pair<int,int> > Cshift_table;
namespace Grid {
///////////////////////////////////////////////////////////////////
// Gather for when there is no need to SIMD split
///////////////////////////////////////////////////////////////////
template<class vobj> void
Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
Gather_plane_simple (const Lattice<vobj> &rhs,commVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
{
int rd = rhs.Grid()->_rdimensions[dimension];
int rd = rhs._grid->_rdimensions[dimension];
if ( !rhs.Grid()->CheckerBoarded(dimension) ) {
if ( !rhs._grid->CheckerBoarded(dimension) ) {
cbmask = 0x3;
}
int so=plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
int e1=rhs.Grid()->_slice_nblock[dimension];
int e2=rhs.Grid()->_slice_block[dimension];
int so=plane*rhs._grid->_ostride[dimension]; // base offset for start of plane
int e1=rhs._grid->_slice_nblock[dimension];
int e2=rhs._grid->_slice_block[dimension];
int ent = 0;
if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest
int stride=rhs.Grid()->_slice_stride[dimension];
static std::vector<std::pair<int,int> > table; table.resize(e1*e2);
int stride=rhs._grid->_slice_stride[dimension];
if ( cbmask == 0x3 ) {
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o = n*stride;
int bo = n*e2;
Cshift_table[ent++] = std::pair<int,int>(off+bo+b,so+o+b);
table[ent++] = std::pair<int,int>(off+bo+b,so+o+b);
}
}
} else {
@ -65,27 +63,15 @@ Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dim
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o = n*stride;
int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b);
int ocb=1<<rhs._grid->CheckerBoardFromOindex(o+b);
if ( ocb &cbmask ) {
Cshift_table[ent++]=std::pair<int,int> (off+bo++,so+o+b);
table[ent++]=std::pair<int,int> (off+bo++,so+o+b);
}
}
}
}
{
auto buffer_p = & buffer[0];
auto table = &Cshift_table[0];
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead);
accelerator_for(i,ent,vobj::Nsimd(),{
coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second]));
});
#else
autoView(rhs_v , rhs, CpuRead);
thread_for(i,ent,{
buffer_p[table[i].first]=rhs_v[table[i].second];
});
#endif
parallel_for(int i=0;i<ent;i++){
buffer[table[i].first]=rhs._odata[table[i].second];
}
}
@ -93,120 +79,80 @@ Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dim
// Gather for when there *is* need to SIMD split
///////////////////////////////////////////////////////////////////
template<class vobj> void
Gather_plane_extract(const Lattice<vobj> &rhs,
ExtractPointerArray<typename vobj::scalar_object> pointers,
int dimension,int plane,int cbmask)
Gather_plane_extract(const Lattice<vobj> &rhs,std::vector<typename vobj::scalar_object *> pointers,int dimension,int plane,int cbmask)
{
int rd = rhs.Grid()->_rdimensions[dimension];
int rd = rhs._grid->_rdimensions[dimension];
if ( !rhs.Grid()->CheckerBoarded(dimension) ) {
if ( !rhs._grid->CheckerBoarded(dimension) ) {
cbmask = 0x3;
}
int so = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
int so = plane*rhs._grid->_ostride[dimension]; // base offset for start of plane
int e1=rhs.Grid()->_slice_nblock[dimension];
int e2=rhs.Grid()->_slice_block[dimension];
int n1=rhs.Grid()->_slice_stride[dimension];
int e1=rhs._grid->_slice_nblock[dimension];
int e2=rhs._grid->_slice_block[dimension];
int n1=rhs._grid->_slice_stride[dimension];
if ( cbmask ==0x3){
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead);
accelerator_for(nn,e1*e2,1,{
int n = nn%e1;
int b = nn/e1;
parallel_for_nest2(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o = n*n1;
int offset = b+n*e2;
vobj temp =rhs_v[so+o+b];
vobj temp =rhs._odata[so+o+b];
extract<vobj>(temp,pointers,offset);
});
#else
autoView(rhs_v , rhs, CpuRead);
thread_for2d(n,e1,b,e2,{
int o = n*n1;
int offset = b+n*e2;
vobj temp =rhs_v[so+o+b];
extract<vobj>(temp,pointers,offset);
});
#endif
}
}
} else {
Coordinate rdim=rhs.Grid()->_rdimensions;
Coordinate cdm =rhs.Grid()->_checker_dim_mask;
std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb?
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead);
accelerator_for(nn,e1*e2,1,{
int n = nn%e1;
int b = nn/e1;
Coordinate coor;
// Case of SIMD split AND checker dim cannot currently be hit, except in
// Test_cshift_red_black code.
std::cout << " Dense packed buffer WARNING " <<std::endl;
parallel_for_nest2(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o=n*n1;
int oindex = o+b;
int cb = RedBlackCheckerBoardFromOindex(oindex, rdim, cdm);
int ocb=1<<cb;
int ocb=1<<rhs._grid->CheckerBoardFromOindex(o+b);
int offset = b+n*e2;
if ( ocb & cbmask ) {
vobj temp =rhs_v[so+o+b];
vobj temp =rhs._odata[so+o+b];
extract<vobj>(temp,pointers,offset);
}
});
#else
autoView(rhs_v , rhs, CpuRead);
thread_for2d(n,e1,b,e2,{
Coordinate coor;
int o=n*n1;
int oindex = o+b;
int cb = RedBlackCheckerBoardFromOindex(oindex, rdim, cdm);
int ocb=1<<cb;
int offset = b+n*e2;
if ( ocb & cbmask ) {
vobj temp =rhs_v[so+o+b];
extract<vobj>(temp,pointers,offset);
}
});
#endif
}
}
}
}
//////////////////////////////////////////////////////
// Scatter for when there is no need to SIMD split
//////////////////////////////////////////////////////
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<vobj> &buffer, int dimension,int plane,int cbmask)
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,commVector<vobj> &buffer, int dimension,int plane,int cbmask)
{
int rd = rhs.Grid()->_rdimensions[dimension];
int rd = rhs._grid->_rdimensions[dimension];
if ( !rhs.Grid()->CheckerBoarded(dimension) ) {
if ( !rhs._grid->CheckerBoarded(dimension) ) {
cbmask=0x3;
}
int so = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
int so = plane*rhs._grid->_ostride[dimension]; // base offset for start of plane
int e1=rhs.Grid()->_slice_nblock[dimension];
int e2=rhs.Grid()->_slice_block[dimension];
int stride=rhs.Grid()->_slice_stride[dimension];
if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest
int e1=rhs._grid->_slice_nblock[dimension];
int e2=rhs._grid->_slice_block[dimension];
int stride=rhs._grid->_slice_stride[dimension];
static std::vector<std::pair<int,int> > table; table.resize(e1*e2);
int ent =0;
if ( cbmask ==0x3 ) {
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o =n*rhs.Grid()->_slice_stride[dimension];
int bo =n*rhs.Grid()->_slice_block[dimension];
Cshift_table[ent++] = std::pair<int,int>(so+o+b,bo+b);
int o =n*rhs._grid->_slice_stride[dimension];
int bo =n*rhs._grid->_slice_block[dimension];
table[ent++] = std::pair<int,int>(so+o+b,bo+b);
}
}
@ -214,83 +160,57 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<
int bo=0;
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o =n*rhs.Grid()->_slice_stride[dimension];
int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b);// Could easily be a table lookup
int o =n*rhs._grid->_slice_stride[dimension];
int ocb=1<<rhs._grid->CheckerBoardFromOindex(o+b);// Could easily be a table lookup
if ( ocb & cbmask ) {
Cshift_table[ent++]=std::pair<int,int> (so+o+b,bo++);
table[ent++]=std::pair<int,int> (so+o+b,bo++);
}
}
}
}
{
auto buffer_p = & buffer[0];
auto table = &Cshift_table[0];
#ifdef ACCELERATOR_CSHIFT
autoView( rhs_v, rhs, AcceleratorWrite);
accelerator_for(i,ent,vobj::Nsimd(),{
coalescedWrite(rhs_v[table[i].first],coalescedRead(buffer_p[table[i].second]));
});
#else
autoView( rhs_v, rhs, CpuWrite);
thread_for(i,ent,{
rhs_v[table[i].first]=buffer_p[table[i].second];
});
#endif
parallel_for(int i=0;i<ent;i++){
rhs._odata[table[i].first]=buffer[table[i].second];
}
}
//////////////////////////////////////////////////////
// Scatter for when there *is* need to SIMD split
//////////////////////////////////////////////////////
template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerArray<typename vobj::scalar_object> pointers,int dimension,int plane,int cbmask)
template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,std::vector<typename vobj::scalar_object *> pointers,int dimension,int plane,int cbmask)
{
int rd = rhs.Grid()->_rdimensions[dimension];
int rd = rhs._grid->_rdimensions[dimension];
if ( !rhs.Grid()->CheckerBoarded(dimension) ) {
if ( !rhs._grid->CheckerBoarded(dimension) ) {
cbmask=0x3;
}
int so = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
int so = plane*rhs._grid->_ostride[dimension]; // base offset for start of plane
int e1=rhs.Grid()->_slice_nblock[dimension];
int e2=rhs.Grid()->_slice_block[dimension];
int e1=rhs._grid->_slice_nblock[dimension];
int e2=rhs._grid->_slice_block[dimension];
if(cbmask ==0x3 ) {
int _slice_stride = rhs.Grid()->_slice_stride[dimension];
int _slice_block = rhs.Grid()->_slice_block[dimension];
#ifdef ACCELERATOR_CSHIFT
autoView( rhs_v , rhs, AcceleratorWrite);
accelerator_for(nn,e1*e2,1,{
int n = nn%e1;
int b = nn/e1;
int o = n*_slice_stride;
int offset = b+n*_slice_block;
merge(rhs_v[so+o+b],pointers,offset);
});
#else
autoView( rhs_v , rhs, CpuWrite);
thread_for2d(n,e1,b,e2,{
int o = n*_slice_stride;
int offset = b+n*_slice_block;
merge(rhs_v[so+o+b],pointers,offset);
});
#endif
parallel_for_nest2(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o = n*rhs._grid->_slice_stride[dimension];
int offset = b+n*rhs._grid->_slice_block[dimension];
merge(rhs._odata[so+o+b],pointers,offset);
}
}
} else {
// Case of SIMD split AND checker dim cannot currently be hit, except in
// Test_cshift_red_black code.
std::cout << "Scatter_plane merge assert(0); think this is buggy FIXME "<< std::endl;// think this is buggy FIXME
// std::cout << "Scatter_plane merge assert(0); think this is buggy FIXME "<< std::endl;// think this is buggy FIXME
std::cout<<" Unthreaded warning -- buffer is not densely packed ??"<<std::endl;
assert(0); // This will fail if hit on GPU
autoView( rhs_v, rhs, CpuWrite);
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o = n*rhs.Grid()->_slice_stride[dimension];
int offset = b+n*rhs.Grid()->_slice_block[dimension];
int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b);
int o = n*rhs._grid->_slice_stride[dimension];
int offset = b+n*rhs._grid->_slice_block[dimension];
int ocb=1<<rhs._grid->CheckerBoardFromOindex(o+b);
if ( ocb&cbmask ) {
merge(rhs_v[so+o+b],pointers,offset);
merge(rhs._odata[so+o+b],pointers,offset);
}
}
}
@ -300,112 +220,85 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
//////////////////////////////////////////////////////
// local to node block strided copies
//////////////////////////////////////////////////////
template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs, int dimension,int lplane,int rplane,int cbmask)
{
int rd = rhs.Grid()->_rdimensions[dimension];
int rd = rhs._grid->_rdimensions[dimension];
if ( !rhs.Grid()->CheckerBoarded(dimension) ) {
if ( !rhs._grid->CheckerBoarded(dimension) ) {
cbmask=0x3;
}
int ro = rplane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
int lo = lplane*lhs.Grid()->_ostride[dimension]; // base offset for start of plane
int e1=rhs.Grid()->_slice_nblock[dimension]; // clearly loop invariant for icpc
int e2=rhs.Grid()->_slice_block[dimension];
int stride = rhs.Grid()->_slice_stride[dimension];
if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest
int ro = rplane*rhs._grid->_ostride[dimension]; // base offset for start of plane
int lo = lplane*lhs._grid->_ostride[dimension]; // base offset for start of plane
int e1=rhs._grid->_slice_nblock[dimension]; // clearly loop invariant for icpc
int e2=rhs._grid->_slice_block[dimension];
int stride = rhs._grid->_slice_stride[dimension];
static std::vector<std::pair<int,int> > table; table.resize(e1*e2);
int ent=0;
if(cbmask == 0x3 ){
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o =n*stride+b;
Cshift_table[ent++] = std::pair<int,int>(lo+o,ro+o);
table[ent++] = std::pair<int,int>(lo+o,ro+o);
}
}
} else {
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o =n*stride+b;
int ocb=1<<lhs.Grid()->CheckerBoardFromOindex(o);
int ocb=1<<lhs._grid->CheckerBoardFromOindex(o);
if ( ocb&cbmask ) {
Cshift_table[ent++] = std::pair<int,int>(lo+o,ro+o);
table[ent++] = std::pair<int,int>(lo+o,ro+o);
}
}
}
}
{
auto table = &Cshift_table[0];
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead);
autoView(lhs_v , lhs, AcceleratorWrite);
accelerator_for(i,ent,vobj::Nsimd(),{
coalescedWrite(lhs_v[table[i].first],coalescedRead(rhs_v[table[i].second]));
});
#else
autoView(rhs_v , rhs, CpuRead);
autoView(lhs_v , lhs, CpuWrite);
thread_for(i,ent,{
lhs_v[table[i].first]=rhs_v[table[i].second];
});
#endif
parallel_for(int i=0;i<ent;i++){
lhs._odata[table[i].first]=rhs._odata[table[i].second];
}
}
template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vobj> &rhs, int dimension,int lplane,int rplane,int cbmask,int permute_type)
{
int rd = rhs.Grid()->_rdimensions[dimension];
int rd = rhs._grid->_rdimensions[dimension];
if ( !rhs.Grid()->CheckerBoarded(dimension) ) {
if ( !rhs._grid->CheckerBoarded(dimension) ) {
cbmask=0x3;
}
int ro = rplane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
int lo = lplane*lhs.Grid()->_ostride[dimension]; // base offset for start of plane
int ro = rplane*rhs._grid->_ostride[dimension]; // base offset for start of plane
int lo = lplane*lhs._grid->_ostride[dimension]; // base offset for start of plane
int e1=rhs.Grid()->_slice_nblock[dimension];
int e2=rhs.Grid()->_slice_block [dimension];
int stride = rhs.Grid()->_slice_stride[dimension];
if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest
int e1=rhs._grid->_slice_nblock[dimension];
int e2=rhs._grid->_slice_block [dimension];
int stride = rhs._grid->_slice_stride[dimension];
static std::vector<std::pair<int,int> > table; table.resize(e1*e2);
int ent=0;
double t_tab,t_perm;
if ( cbmask == 0x3 ) {
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o =n*stride;
Cshift_table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b);
table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b);
}}
} else {
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o =n*stride;
int ocb=1<<lhs.Grid()->CheckerBoardFromOindex(o+b);
if ( ocb&cbmask ) Cshift_table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b);
int ocb=1<<lhs._grid->CheckerBoardFromOindex(o+b);
if ( ocb&cbmask ) table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b);
}}
}
{
auto table = &Cshift_table[0];
#ifdef ACCELERATOR_CSHIFT
autoView( rhs_v, rhs, AcceleratorRead);
autoView( lhs_v, lhs, AcceleratorWrite);
accelerator_for(i,ent,1,{
permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
});
#else
autoView( rhs_v, rhs, CpuRead);
autoView( lhs_v, lhs, CpuWrite);
thread_for(i,ent,{
permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
});
#endif
parallel_for(int i=0;i<ent;i++){
permute(lhs._odata[table[i].first],rhs._odata[table[i].second],permute_type);
}
}
@ -416,9 +309,11 @@ template<class vobj> void Cshift_local(Lattice<vobj>& ret,const Lattice<vobj> &r
{
int sshift[2];
sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even);
sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd);
sshift[0] = rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,Even);
sshift[1] = rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,Odd);
double t_local;
if ( sshift[0] == sshift[1] ) {
Cshift_local(ret,rhs,dimension,shift,0x3);
} else {
@ -429,7 +324,7 @@ template<class vobj> void Cshift_local(Lattice<vobj>& ret,const Lattice<vobj> &r
template<class vobj> void Cshift_local(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
GridBase *grid = rhs.Grid();
GridBase *grid = rhs._grid;
int fd = grid->_fdimensions[dimension];
int rd = grid->_rdimensions[dimension];
int ld = grid->_ldimensions[dimension];
@ -440,18 +335,18 @@ template<class vobj> void Cshift_local(Lattice<vobj> &ret,const Lattice<vobj> &r
shift = (shift+fd)%fd;
// the permute type
ret.Checkerboard() = grid->CheckerBoardDestination(rhs.Checkerboard(),shift,dimension);
ret.checkerboard = grid->CheckerBoardDestination(rhs.checkerboard,shift,dimension);
int permute_dim =grid->PermuteDim(dimension);
int permute_type=grid->PermuteType(dimension);
int permute_type_dist;
for(int x=0;x<rd;x++){
// int o = 0;
int o = 0;
int bo = x * grid->_ostride[dimension];
int cb= (cbmask==0x2)? Odd : Even;
int sshift = grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
int sshift = grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,cb);
int sx = (x+sshift)%rd;
// wrap is whether sshift > rd.
@ -492,5 +387,5 @@ template<class vobj> void Cshift_local(Lattice<vobj> &ret,const Lattice<vobj> &r
}
}
NAMESPACE_END(Grid);
}
#endif

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -24,33 +24,33 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef _GRID_CSHIFT_MPI_H_
#define _GRID_CSHIFT_MPI_H_
NAMESPACE_BEGIN(Grid);
namespace Grid {
template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift)
{
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
Lattice<vobj> ret(rhs.Grid());
Lattice<vobj> ret(rhs._grid);
int fd = rhs.Grid()->_fdimensions[dimension];
int rd = rhs.Grid()->_rdimensions[dimension];
int fd = rhs._grid->_fdimensions[dimension];
int rd = rhs._grid->_rdimensions[dimension];
// Map to always positive shift modulo global full dimension.
shift = (shift+fd)%fd;
ret.Checkerboard() = rhs.Grid()->CheckerBoardDestination(rhs.Checkerboard(),shift,dimension);
ret.checkerboard = rhs._grid->CheckerBoardDestination(rhs.checkerboard,shift,dimension);
// the permute type
int simd_layout = rhs.Grid()->_simd_layout[dimension];
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
int splice_dim = rhs.Grid()->_simd_layout[dimension]>1 && (comm_dim);
int simd_layout = rhs._grid->_simd_layout[dimension];
int comm_dim = rhs._grid->_processors[dimension] >1 ;
int splice_dim = rhs._grid->_simd_layout[dimension]>1 && (comm_dim);
if ( !comm_dim ) {
@ -70,10 +70,10 @@ template<class vobj> void Cshift_comms(Lattice<vobj>& ret,const Lattice<vobj> &r
{
int sshift[2];
sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even);
sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd);
sshift[0] = rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,Even);
sshift[1] = rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,Odd);
// std::cout << "Cshift_comms dim "<<dimension<<"cb "<<rhs.Checkerboard()<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
// std::cout << "Cshift_comms dim "<<dimension<<"cb "<<rhs.checkerboard<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
if ( sshift[0] == sshift[1] ) {
// std::cout << "Single pass Cshift_comms" <<std::endl;
Cshift_comms(ret,rhs,dimension,shift,0x3);
@ -88,8 +88,8 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vob
{
int sshift[2];
sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even);
sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd);
sshift[0] = rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,Even);
sshift[1] = rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,Odd);
//std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.checkerboard<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
if ( sshift[0] == sshift[1] ) {
@ -101,32 +101,31 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vob
Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
}
}
#define ACCELERATOR_CSHIFT_NO_COPY
#ifdef ACCELERATOR_CSHIFT_NO_COPY
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
GridBase *grid=rhs.Grid();
Lattice<vobj> temp(rhs.Grid());
GridBase *grid=rhs._grid;
Lattice<vobj> temp(rhs._grid);
int fd = rhs.Grid()->_fdimensions[dimension];
int rd = rhs.Grid()->_rdimensions[dimension];
int pd = rhs.Grid()->_processors[dimension];
int simd_layout = rhs.Grid()->_simd_layout[dimension];
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
int fd = rhs._grid->_fdimensions[dimension];
int rd = rhs._grid->_rdimensions[dimension];
int pd = rhs._grid->_processors[dimension];
int simd_layout = rhs._grid->_simd_layout[dimension];
int comm_dim = rhs._grid->_processors[dimension] >1 ;
assert(simd_layout==1);
assert(comm_dim==1);
assert(shift>=0);
assert(shift<fd);
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
cshiftVector<vobj> send_buf(buffer_size);
cshiftVector<vobj> recv_buf(buffer_size);
int buffer_size = rhs._grid->_slice_nblock[dimension]*rhs._grid->_slice_block[dimension];
commVector<vobj> send_buf(buffer_size);
commVector<vobj> recv_buf(buffer_size);
int cb= (cbmask==0x2)? Odd : Even;
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
int sshift= rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,cb);
for(int x=0;x<rd;x++){
@ -139,26 +138,24 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
} else {
int words = buffer_size;
int words = send_buf.size();
if (cbmask != 0x3) words=words>>1;
int bytes = words * sizeof(vobj);
Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask);
// int rank = grid->_processor;
int rank = grid->_processor;
int recv_from_rank;
int xmit_to_rank;
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
grid->Barrier();
grid->SendToRecvFrom((void *)&send_buf[0],
xmit_to_rank,
(void *)&recv_buf[0],
recv_from_rank,
bytes);
grid->Barrier();
Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask);
@ -168,7 +165,7 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
GridBase *grid=rhs.Grid();
GridBase *grid=rhs._grid;
const int Nsimd = grid->Nsimd();
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_object scalar_object;
@ -196,28 +193,21 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
// Simd direction uses an extract/merge pair
///////////////////////////////////////////////
int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
// int words = sizeof(vobj)/sizeof(vector_type);
int words = sizeof(vobj)/sizeof(vector_type);
std::vector<cshiftVector<scalar_object> > send_buf_extract(Nsimd);
std::vector<cshiftVector<scalar_object> > recv_buf_extract(Nsimd);
scalar_object * recv_buf_extract_mpi;
scalar_object * send_buf_extract_mpi;
for(int s=0;s<Nsimd;s++){
send_buf_extract[s].resize(buffer_size);
recv_buf_extract[s].resize(buffer_size);
}
std::vector<commVector<scalar_object> > send_buf_extract(Nsimd,commVector<scalar_object>(buffer_size) );
std::vector<commVector<scalar_object> > recv_buf_extract(Nsimd,commVector<scalar_object>(buffer_size) );
int bytes = buffer_size*sizeof(scalar_object);
ExtractPointerArray<scalar_object> pointers(Nsimd); //
ExtractPointerArray<scalar_object> rpointers(Nsimd); // received pointers
std::vector<scalar_object *> pointers(Nsimd); //
std::vector<scalar_object *> rpointers(Nsimd); // received pointers
///////////////////////////////////////////
// Work out what to send where
///////////////////////////////////////////
int cb = (cbmask==0x2)? Odd : Even;
int sshift= grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
int sshift= grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,cb);
// loop over outer coord planes orthog to dim
for(int x=0;x<rd;x++){
@ -252,204 +242,11 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
if(nbr_proc){
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
grid->Barrier();
send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
recv_buf_extract_mpi = &recv_buf_extract[i][0];
grid->SendToRecvFrom((void *)send_buf_extract_mpi,
grid->SendToRecvFrom((void *)&send_buf_extract[nbr_lane][0],
xmit_to_rank,
(void *)recv_buf_extract_mpi,
(void *)&recv_buf_extract[i][0],
recv_from_rank,
bytes);
grid->Barrier();
rpointers[i] = &recv_buf_extract[i][0];
} else {
rpointers[i] = &send_buf_extract[nbr_lane][0];
}
}
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
}
}
#else
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
GridBase *grid=rhs.Grid();
Lattice<vobj> temp(rhs.Grid());
int fd = rhs.Grid()->_fdimensions[dimension];
int rd = rhs.Grid()->_rdimensions[dimension];
int pd = rhs.Grid()->_processors[dimension];
int simd_layout = rhs.Grid()->_simd_layout[dimension];
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
assert(simd_layout==1);
assert(comm_dim==1);
assert(shift>=0);
assert(shift<fd);
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
cshiftVector<vobj> send_buf_v(buffer_size);
cshiftVector<vobj> recv_buf_v(buffer_size);
vobj *send_buf;
vobj *recv_buf;
{
grid->ShmBufferFreeAll();
size_t bytes = buffer_size*sizeof(vobj);
send_buf=(vobj *)grid->ShmBufferMalloc(bytes);
recv_buf=(vobj *)grid->ShmBufferMalloc(bytes);
}
int cb= (cbmask==0x2)? Odd : Even;
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
for(int x=0;x<rd;x++){
int sx = (x+sshift)%rd;
int comm_proc = ((x+sshift)/rd)%pd;
if (comm_proc==0) {
Copy_plane(ret,rhs,dimension,x,sx,cbmask);
} else {
int words = buffer_size;
if (cbmask != 0x3) words=words>>1;
int bytes = words * sizeof(vobj);
Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask);
// int rank = grid->_processor;
int recv_from_rank;
int xmit_to_rank;
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
grid->Barrier();
acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes);
grid->SendToRecvFrom((void *)&send_buf[0],
xmit_to_rank,
(void *)&recv_buf[0],
recv_from_rank,
bytes);
acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes);
grid->Barrier();
Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask);
}
}
}
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
GridBase *grid=rhs.Grid();
const int Nsimd = grid->Nsimd();
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
int fd = grid->_fdimensions[dimension];
int rd = grid->_rdimensions[dimension];
int ld = grid->_ldimensions[dimension];
int pd = grid->_processors[dimension];
int simd_layout = grid->_simd_layout[dimension];
int comm_dim = grid->_processors[dimension] >1 ;
//std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
// << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout
// << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
assert(comm_dim==1);
assert(simd_layout==2);
assert(shift>=0);
assert(shift<fd);
int permute_type=grid->PermuteType(dimension);
///////////////////////////////////////////////
// Simd direction uses an extract/merge pair
///////////////////////////////////////////////
int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
// int words = sizeof(vobj)/sizeof(vector_type);
std::vector<cshiftVector<scalar_object> > send_buf_extract(Nsimd);
std::vector<cshiftVector<scalar_object> > recv_buf_extract(Nsimd);
scalar_object * recv_buf_extract_mpi;
scalar_object * send_buf_extract_mpi;
{
size_t bytes = sizeof(scalar_object)*buffer_size;
grid->ShmBufferFreeAll();
send_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
recv_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
}
for(int s=0;s<Nsimd;s++){
send_buf_extract[s].resize(buffer_size);
recv_buf_extract[s].resize(buffer_size);
}
int bytes = buffer_size*sizeof(scalar_object);
ExtractPointerArray<scalar_object> pointers(Nsimd); //
ExtractPointerArray<scalar_object> rpointers(Nsimd); // received pointers
///////////////////////////////////////////
// Work out what to send where
///////////////////////////////////////////
int cb = (cbmask==0x2)? Odd : Even;
int sshift= grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
// loop over outer coord planes orthog to dim
for(int x=0;x<rd;x++){
// FIXME call local permute copy if none are offnode.
for(int i=0;i<Nsimd;i++){
pointers[i] = &send_buf_extract[i][0];
}
int sx = (x+sshift)%rd;
Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
for(int i=0;i<Nsimd;i++){
int inner_bit = (Nsimd>>(permute_type+1));
int ic= (i&inner_bit)? 1:0;
int my_coor = rd*ic + x;
int nbr_coor = my_coor+sshift;
int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors
int nbr_ic = (nbr_coor%ld)/rd; // inner coord of peer
int nbr_ox = (nbr_coor%rd); // outer coord of peer
int nbr_lane = (i&(~inner_bit));
int recv_from_rank;
int xmit_to_rank;
if (nbr_ic) nbr_lane|=inner_bit;
assert (sx == nbr_ox);
if(nbr_proc){
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
grid->Barrier();
acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes);
grid->SendToRecvFrom((void *)send_buf_extract_mpi,
xmit_to_rank,
(void *)recv_buf_extract_mpi,
recv_from_rank,
bytes);
acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes);
grid->Barrier();
rpointers[i] = &recv_buf_extract[i][0];
} else {
@ -460,8 +257,6 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
}
}
}
#endif
NAMESPACE_END(Grid);
#endif

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -23,18 +23,17 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef _GRID_CSHIFT_NONE_H_
#define _GRID_CSHIFT_NONE_H_
NAMESPACE_BEGIN(Grid);
namespace Grid {
template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift)
{
Lattice<vobj> ret(rhs.Grid());
ret.Checkerboard() = rhs.Grid()->CheckerBoardDestination(rhs.Checkerboard(),shift,dimension);
Lattice<vobj> ret(rhs._grid);
ret.checkerboard = rhs._grid->CheckerBoardDestination(rhs.checkerboard,shift,dimension);
Cshift_local(ret,rhs,dimension,shift);
return ret;
}
NAMESPACE_END(Grid);
}
#endif

View File

@ -1,4 +0,0 @@
#include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid);
Vector<std::pair<int,int> > Cshift_table;
NAMESPACE_END(Grid);

View File

@ -1,4 +1,3 @@
#ifndef __NVCC__
/*
__ _____ _____ _____
__| | __| | | | JSON for Modern C++
@ -18919,4 +18918,3 @@ inline nlohmann::json::json_pointer operator "" _json_pointer(const char* s, std
#endif
#endif

View File

@ -25,24 +25,9 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/lattice/Lattice_view.h>
#ifndef GRID_LATTICE_H
#define GRID_LATTICE_H
#include <Grid/lattice/Lattice_base.h>
#include <Grid/lattice/Lattice_conformable.h>
#include <Grid/lattice/Lattice_ET.h>
#include <Grid/lattice/Lattice_arith.h>
#include <Grid/lattice/Lattice_trace.h>
#include <Grid/lattice/Lattice_transpose.h>
#include <Grid/lattice/Lattice_local.h>
#include <Grid/lattice/Lattice_reduction.h>
#include <Grid/lattice/Lattice_peekpoke.h>
#include <Grid/lattice/Lattice_reality.h>
#include <Grid/lattice/Lattice_real_imag.h>
#include <Grid/lattice/Lattice_comparison_utils.h>
#include <Grid/lattice/Lattice_comparison.h>
#include <Grid/lattice/Lattice_coordinate.h>
//#include <Grid/lattice/Lattice_where.h>
#include <Grid/lattice/Lattice_rng.h>
#include <Grid/lattice/Lattice_unary.h>
#include <Grid/lattice/Lattice_transfer.h>
#include <Grid/lattice/Lattice_basis.h>
#endif

View File

@ -9,7 +9,6 @@ Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
Author: Christoph Lehner <christoph@lhnr.de
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -28,7 +27,7 @@ with this program; if not, write to the Free Software Foundation, Inc.,
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
/* END LEGAL */
#ifndef GRID_LATTICE_ET_H
#define GRID_LATTICE_ET_H
@ -37,29 +36,14 @@ directory
#include <typeinfo>
#include <vector>
NAMESPACE_BEGIN(Grid);
namespace Grid {
////////////////////////////////////////////////////
// Predicated where support
////////////////////////////////////////////////////
#ifdef GRID_SIMT
// drop to scalar in SIMT; cleaner in fact
template <class iobj, class vobj, class robj>
accelerator_inline vobj predicatedWhere(const iobj &predicate,
const vobj &iftrue,
const robj &iffalse)
{
Integer mask = TensorRemove(predicate);
typename std::remove_const<vobj>::type ret= iffalse;
if (mask) ret=iftrue;
return ret;
}
#else
template <class iobj, class vobj, class robj>
accelerator_inline vobj predicatedWhere(const iobj &predicate,
const vobj &iftrue,
const robj &iffalse)
{
inline vobj predicatedWhere(const iobj &predicate, const vobj &iftrue,
const robj &iffalse) {
typename std::remove_const<vobj>::type ret;
typedef typename vobj::scalar_object scalar_object;
@ -67,10 +51,11 @@ accelerator_inline vobj predicatedWhere(const iobj &predicate,
typedef typename vobj::vector_type vector_type;
const int Nsimd = vobj::vector_type::Nsimd();
const int words = sizeof(vobj) / sizeof(vector_type);
ExtractBuffer<Integer> mask(Nsimd);
ExtractBuffer<scalar_object> truevals(Nsimd);
ExtractBuffer<scalar_object> falsevals(Nsimd);
std::vector<Integer> mask(Nsimd);
std::vector<scalar_object> truevals(Nsimd);
std::vector<scalar_object> falsevals(Nsimd);
extract(iftrue, truevals);
extract(iffalse, falsevals);
@ -83,273 +68,178 @@ accelerator_inline vobj predicatedWhere(const iobj &predicate,
merge(ret, falsevals);
return ret;
}
#endif
/////////////////////////////////////////////////////
////////////////////////////////////////////
// recursive evaluation of expressions; Could
// switch to generic approach with variadics, a la
// Antonin's Lat Sim but the repack to variadic with popped
// from tuple is hideous; C++14 introduces std::make_index_sequence for this
////////////////////////////////////////////
// leaf eval of lattice ; should enable if protect using traits
template <typename T>
using is_lattice = std::is_base_of<LatticeBase, T>;
template <typename T>
using is_lattice_expr = std::is_base_of<LatticeExpressionBase, T>;
template <typename T> using is_lattice_expr = std::is_base_of<LatticeExpressionBase,T >;
//Specialization of getVectorType for lattices
/////////////////////////////////////////////////////
template<typename T>
struct getVectorType<Lattice<T> >{
typedef typename Lattice<T>::vector_object type;
};
////////////////////////////////////////////
//-- recursive evaluation of expressions; --
// handle leaves of syntax tree
///////////////////////////////////////////////////
template<class sobj,
typename std::enable_if<!is_lattice<sobj>::value&&!is_lattice_expr<sobj>::value,sobj>::type * = nullptr>
accelerator_inline
sobj eval(const uint64_t ss, const sobj &arg)
template<class sobj>
inline sobj eval(const unsigned int ss, const sobj &arg)
{
return arg;
}
template <class lobj> accelerator_inline
auto eval(const uint64_t ss, const LatticeView<lobj> &arg) -> decltype(arg(ss))
{
return arg(ss);
template <class lobj>
inline const lobj &eval(const unsigned int ss, const Lattice<lobj> &arg) {
return arg._odata[ss];
}
////////////////////////////////////////////
//-- recursive evaluation of expressions; --
// whole vector return, used only for expression return type inference
///////////////////////////////////////////////////
template<class sobj> accelerator_inline
sobj vecEval(const uint64_t ss, const sobj &arg)
{
return arg;
}
template <class lobj> accelerator_inline
const lobj & vecEval(const uint64_t ss, const LatticeView<lobj> &arg)
{
return arg[ss];
// handle nodes in syntax tree
template <typename Op, typename T1>
auto inline eval(
const unsigned int ss,
const LatticeUnaryExpression<Op, T1> &expr) // eval one operand
-> decltype(expr.first.func(eval(ss, std::get<0>(expr.second)))) {
return expr.first.func(eval(ss, std::get<0>(expr.second)));
}
///////////////////////////////////////////////////
// handle nodes in syntax tree- eval one operand
// vecEval needed (but never called as all expressions offloaded) to infer the return type
// in SIMT contexts of closure.
///////////////////////////////////////////////////
template <typename Op, typename T1> accelerator_inline
auto vecEval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr)
-> decltype(expr.op.func( vecEval(ss, expr.arg1)))
{
return expr.op.func( vecEval(ss, expr.arg1) );
}
// vecEval two operands
template <typename Op, typename T1, typename T2> accelerator_inline
auto vecEval(const uint64_t ss, const LatticeBinaryExpression<Op, T1, T2> &expr)
-> decltype(expr.op.func( vecEval(ss,expr.arg1),vecEval(ss,expr.arg2)))
{
return expr.op.func( vecEval(ss,expr.arg1), vecEval(ss,expr.arg2) );
}
// vecEval three operands
template <typename Op, typename T1, typename T2, typename T3> accelerator_inline
auto vecEval(const uint64_t ss, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
-> decltype(expr.op.func(vecEval(ss, expr.arg1), vecEval(ss, expr.arg2), vecEval(ss, expr.arg3)))
{
return expr.op.func(vecEval(ss, expr.arg1), vecEval(ss, expr.arg2), vecEval(ss, expr.arg3));
template <typename Op, typename T1, typename T2>
auto inline eval(
const unsigned int ss,
const LatticeBinaryExpression<Op, T1, T2> &expr) // eval two operands
-> decltype(expr.first.func(eval(ss, std::get<0>(expr.second)),
eval(ss, std::get<1>(expr.second)))) {
return expr.first.func(eval(ss, std::get<0>(expr.second)),
eval(ss, std::get<1>(expr.second)));
}
///////////////////////////////////////////////////
// handle nodes in syntax tree- eval one operand coalesced
///////////////////////////////////////////////////
template <typename Op, typename T1> accelerator_inline
auto eval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr)
-> decltype(expr.op.func( eval(ss, expr.arg1)))
{
return expr.op.func( eval(ss, expr.arg1) );
}
// eval two operands
template <typename Op, typename T1, typename T2> accelerator_inline
auto eval(const uint64_t ss, const LatticeBinaryExpression<Op, T1, T2> &expr)
-> decltype(expr.op.func( eval(ss,expr.arg1),eval(ss,expr.arg2)))
{
return expr.op.func( eval(ss,expr.arg1), eval(ss,expr.arg2) );
}
// eval three operands
template <typename Op, typename T1, typename T2, typename T3> accelerator_inline
auto eval(const uint64_t ss, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
-> decltype(expr.op.func(eval(ss, expr.arg1),
eval(ss, expr.arg2),
eval(ss, expr.arg3)))
{
#ifdef GRID_SIMT
// Handles Nsimd (vInteger) != Nsimd(ComplexD)
typedef decltype(vecEval(ss, expr.arg2)) rvobj;
typedef typename std::remove_reference<rvobj>::type vobj;
const int Nsimd = vobj::vector_type::Nsimd();
auto vpred = vecEval(ss,expr.arg1);
ExtractBuffer<Integer> mask(Nsimd);
extract<vInteger, Integer>(TensorRemove(vpred), mask);
int s = acceleratorSIMTlane(Nsimd);
return expr.op.func(mask[s],
eval(ss, expr.arg2),
eval(ss, expr.arg3));
#else
return expr.op.func(eval(ss, expr.arg1),
eval(ss, expr.arg2),
eval(ss, expr.arg3));
#endif
template <typename Op, typename T1, typename T2, typename T3>
auto inline eval(const unsigned int ss,
const LatticeTrinaryExpression<Op, T1, T2, T3>
&expr) // eval three operands
-> decltype(expr.first.func(eval(ss, std::get<0>(expr.second)),
eval(ss, std::get<1>(expr.second)),
eval(ss, std::get<2>(expr.second)))) {
return expr.first.func(eval(ss, std::get<0>(expr.second)),
eval(ss, std::get<1>(expr.second)),
eval(ss, std::get<2>(expr.second)));
}
//////////////////////////////////////////////////////////////////////////
// Obtain the grid from an expression, ensuring conformable. This must follow a
// tree recursion; must retain grid pointer in the LatticeView class which sucks
// Use a different method, and make it void *.
// Perhaps a conformable method.
// tree recursion
//////////////////////////////////////////////////////////////////////////
template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
accelerator_inline void GridFromExpression(GridBase *&grid, const T1 &lat) // Lattice leaf
template <class T1,
typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
inline void GridFromExpression(GridBase *&grid, const T1 &lat) // Lattice leaf
{
lat.Conformable(grid);
if (grid) {
conformable(grid, lat._grid);
}
grid = lat._grid;
}
template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
accelerator_inline
void GridFromExpression(GridBase *&grid,const T1 &notlat) // non-lattice leaf
template <class T1,
typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
inline void GridFromExpression(GridBase *&grid,
const T1 &notlat) // non-lattice leaf
{}
template <typename Op, typename T1>
accelerator_inline
void GridFromExpression(GridBase *&grid,const LatticeUnaryExpression<Op, T1> &expr)
{
GridFromExpression(grid, expr.arg1); // recurse
inline void GridFromExpression(GridBase *&grid,
const LatticeUnaryExpression<Op, T1> &expr) {
GridFromExpression(grid, std::get<0>(expr.second)); // recurse
}
template <typename Op, typename T1, typename T2>
accelerator_inline
void GridFromExpression(GridBase *&grid, const LatticeBinaryExpression<Op, T1, T2> &expr)
{
GridFromExpression(grid, expr.arg1); // recurse
GridFromExpression(grid, expr.arg2);
inline void GridFromExpression(
GridBase *&grid, const LatticeBinaryExpression<Op, T1, T2> &expr) {
GridFromExpression(grid, std::get<0>(expr.second)); // recurse
GridFromExpression(grid, std::get<1>(expr.second));
}
template <typename Op, typename T1, typename T2, typename T3>
accelerator_inline
void GridFromExpression(GridBase *&grid, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
{
GridFromExpression(grid, expr.arg1); // recurse
GridFromExpression(grid, expr.arg2); // recurse
GridFromExpression(grid, expr.arg3); // recurse
inline void GridFromExpression(
GridBase *&grid, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr) {
GridFromExpression(grid, std::get<0>(expr.second)); // recurse
GridFromExpression(grid, std::get<1>(expr.second));
GridFromExpression(grid, std::get<2>(expr.second));
}
//////////////////////////////////////////////////////////////////////////
// Obtain the CB from an expression, ensuring conformable. This must follow a
// tree recursion
//////////////////////////////////////////////////////////////////////////
template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
template <class T1,
typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
inline void CBFromExpression(int &cb, const T1 &lat) // Lattice leaf
{
if ((cb == Odd) || (cb == Even)) {
assert(cb == lat.Checkerboard());
assert(cb == lat.checkerboard);
}
cb = lat.Checkerboard();
cb = lat.checkerboard;
// std::cout<<GridLogMessage<<"Lattice leaf cb "<<cb<<std::endl;
}
template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
inline void CBFromExpression(int &cb, const T1 &notlat) {} // non-lattice leaf
template <typename Op, typename T1> inline
void CBFromExpression(int &cb,const LatticeUnaryExpression<Op, T1> &expr)
template <class T1,
typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
inline void CBFromExpression(int &cb, const T1 &notlat) // non-lattice leaf
{
CBFromExpression(cb, expr.arg1); // recurse AST
// std::cout<<GridLogMessage<<"Non lattice leaf cb"<<cb<<std::endl;
}
template <typename Op, typename T1, typename T2> inline
void CBFromExpression(int &cb,const LatticeBinaryExpression<Op, T1, T2> &expr)
{
CBFromExpression(cb, expr.arg1); // recurse AST
CBFromExpression(cb, expr.arg2); // recurse AST
template <typename Op, typename T1>
inline void CBFromExpression(int &cb,
const LatticeUnaryExpression<Op, T1> &expr) {
CBFromExpression(cb, std::get<0>(expr.second)); // recurse
// std::cout<<GridLogMessage<<"Unary node cb "<<cb<<std::endl;
}
template <typename Op, typename T1, typename T2>
inline void CBFromExpression(int &cb,
const LatticeBinaryExpression<Op, T1, T2> &expr) {
CBFromExpression(cb, std::get<0>(expr.second)); // recurse
CBFromExpression(cb, std::get<1>(expr.second));
// std::cout<<GridLogMessage<<"Binary node cb "<<cb<<std::endl;
}
template <typename Op, typename T1, typename T2, typename T3>
inline void CBFromExpression(int &cb, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
{
CBFromExpression(cb, expr.arg1); // recurse AST
CBFromExpression(cb, expr.arg2); // recurse AST
CBFromExpression(cb, expr.arg3); // recurse AST
}
//////////////////////////////////////////////////////////////////////////
// ViewOpen
//////////////////////////////////////////////////////////////////////////
template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
inline void ExpressionViewOpen(T1 &lat) // Lattice leaf
{
lat.ViewOpen(AcceleratorRead);
}
template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
inline void ExpressionViewOpen(T1 &notlat) {}
template <typename Op, typename T1> inline
void ExpressionViewOpen(LatticeUnaryExpression<Op, T1> &expr)
{
ExpressionViewOpen(expr.arg1); // recurse AST
}
template <typename Op, typename T1, typename T2> inline
void ExpressionViewOpen(LatticeBinaryExpression<Op, T1, T2> &expr)
{
ExpressionViewOpen(expr.arg1); // recurse AST
ExpressionViewOpen(expr.arg2); // rrecurse AST
}
template <typename Op, typename T1, typename T2, typename T3>
inline void ExpressionViewOpen(LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
{
ExpressionViewOpen(expr.arg1); // recurse AST
ExpressionViewOpen(expr.arg2); // recurse AST
ExpressionViewOpen(expr.arg3); // recurse AST
}
//////////////////////////////////////////////////////////////////////////
// ViewClose
//////////////////////////////////////////////////////////////////////////
template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
inline void ExpressionViewClose( T1 &lat) // Lattice leaf
{
lat.ViewClose();
}
template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
inline void ExpressionViewClose(T1 &notlat) {}
template <typename Op, typename T1> inline
void ExpressionViewClose(LatticeUnaryExpression<Op, T1> &expr)
{
ExpressionViewClose(expr.arg1); // recurse AST
}
template <typename Op, typename T1, typename T2> inline
void ExpressionViewClose(LatticeBinaryExpression<Op, T1, T2> &expr)
{
ExpressionViewClose(expr.arg1); // recurse AST
ExpressionViewClose(expr.arg2); // recurse AST
}
template <typename Op, typename T1, typename T2, typename T3>
inline void ExpressionViewClose(LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
{
ExpressionViewClose(expr.arg1); // recurse AST
ExpressionViewClose(expr.arg2); // recurse AST
ExpressionViewClose(expr.arg3); // recurse AST
inline void CBFromExpression(
int &cb, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr) {
CBFromExpression(cb, std::get<0>(expr.second)); // recurse
CBFromExpression(cb, std::get<1>(expr.second));
CBFromExpression(cb, std::get<2>(expr.second));
// std::cout<<GridLogMessage<<"Trinary node cb "<<cb<<std::endl;
}
////////////////////////////////////////////
// Unary operators and funcs
////////////////////////////////////////////
#define GridUnopClass(name, ret) \
struct name { \
template<class _arg> static auto accelerator_inline func(const _arg a) -> decltype(ret) { return ret; } \
#define GridUnopClass(name, ret) \
template <class arg> \
struct name { \
static auto inline func(const arg a) -> decltype(ret) { return ret; } \
};
GridUnopClass(UnarySub, -a);
GridUnopClass(UnaryNot, Not(a));
GridUnopClass(UnaryAdj, adj(a));
GridUnopClass(UnaryConj, conjugate(a));
GridUnopClass(UnaryTrace, trace(a));
GridUnopClass(UnaryTranspose, transpose(a));
GridUnopClass(UnaryTa, Ta(a));
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
GridUnopClass(UnaryReal, real(a));
GridUnopClass(UnaryImag, imag(a));
GridUnopClass(UnaryToReal, toReal(a));
GridUnopClass(UnaryToComplex, toComplex(a));
GridUnopClass(UnaryTimesI, timesI(a));
GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
GridUnopClass(UnaryAbs, abs(a));
GridUnopClass(UnarySqrt, sqrt(a));
GridUnopClass(UnaryRsqrt, rsqrt(a));
GridUnopClass(UnarySin, sin(a));
GridUnopClass(UnaryCos, cos(a));
GridUnopClass(UnaryAsin, asin(a));
@ -360,21 +250,19 @@ GridUnopClass(UnaryExp, exp(a));
////////////////////////////////////////////
// Binary operators
////////////////////////////////////////////
#define GridBinOpClass(name, combination) \
struct name { \
template <class _left, class _right> \
static auto accelerator_inline \
func(const _left &lhs, const _right &rhs) \
-> decltype(combination) const \
{ \
return combination; \
} \
};
#define GridBinOpClass(name, combination) \
template <class left, class right> \
struct name { \
static auto inline func(const left &lhs, const right &rhs) \
-> decltype(combination) const { \
return combination; \
} \
}
GridBinOpClass(BinaryAdd, lhs + rhs);
GridBinOpClass(BinarySub, lhs - rhs);
GridBinOpClass(BinaryMul, lhs *rhs);
GridBinOpClass(BinaryDiv, lhs /rhs);
GridBinOpClass(BinaryAnd, lhs &rhs);
GridBinOpClass(BinaryOr, lhs | rhs);
GridBinOpClass(BinaryAndAnd, lhs &&rhs);
@ -383,85 +271,111 @@ GridBinOpClass(BinaryOrOr, lhs || rhs);
////////////////////////////////////////////////////
// Trinary conditional op
////////////////////////////////////////////////////
#define GridTrinOpClass(name, combination) \
struct name { \
template <class _predicate,class _left, class _right> \
static auto accelerator_inline \
func(const _predicate &pred, const _left &lhs, const _right &rhs) \
-> decltype(combination) const \
{ \
return combination; \
} \
};
#define GridTrinOpClass(name, combination) \
template <class predicate, class left, class right> \
struct name { \
static auto inline func(const predicate &pred, const left &lhs, \
const right &rhs) -> decltype(combination) const { \
return combination; \
} \
}
GridTrinOpClass(TrinaryWhere,
(predicatedWhere<
typename std::remove_reference<_predicate>::type,
typename std::remove_reference<_left>::type,
typename std::remove_reference<_right>::type>(pred, lhs,rhs)));
GridTrinOpClass(
TrinaryWhere,
(predicatedWhere<predicate, typename std::remove_reference<left>::type,
typename std::remove_reference<right>::type>(pred, lhs,
rhs)));
////////////////////////////////////////////
// Operator syntactical glue
////////////////////////////////////////////
#define GRID_UNOP(name) name
#define GRID_BINOP(name) name
#define GRID_TRINOP(name) name
#define GRID_DEF_UNOP(op, name) \
template <typename T1, typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value,T1>::type * = nullptr> \
inline auto op(const T1 &arg) ->decltype(LatticeUnaryExpression<GRID_UNOP(name),T1>(GRID_UNOP(name)(), arg)) \
{ \
return LatticeUnaryExpression<GRID_UNOP(name),T1>(GRID_UNOP(name)(), arg); \
#define GRID_UNOP(name) name<decltype(eval(0, arg))>
#define GRID_BINOP(name) name<decltype(eval(0, lhs)), decltype(eval(0, rhs))>
#define GRID_TRINOP(name) \
name<decltype(eval(0, pred)), decltype(eval(0, lhs)), decltype(eval(0, rhs))>
#define GRID_DEF_UNOP(op, name) \
template <typename T1, \
typename std::enable_if<is_lattice<T1>::value || \
is_lattice_expr<T1>::value, \
T1>::type * = nullptr> \
inline auto op(const T1 &arg) \
->decltype(LatticeUnaryExpression<GRID_UNOP(name), const T1 &>( \
std::make_pair(GRID_UNOP(name)(), std::forward_as_tuple(arg)))) { \
return LatticeUnaryExpression<GRID_UNOP(name), const T1 &>( \
std::make_pair(GRID_UNOP(name)(), std::forward_as_tuple(arg))); \
}
#define GRID_BINOP_LEFT(op, name) \
template <typename T1, typename T2, \
typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value,T1>::type * = nullptr> \
inline auto op(const T1 &lhs, const T2 &rhs) \
->decltype(LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs,rhs)) \
{ \
return LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs,rhs);\
#define GRID_BINOP_LEFT(op, name) \
template <typename T1, typename T2, \
typename std::enable_if<is_lattice<T1>::value || \
is_lattice_expr<T1>::value, \
T1>::type * = nullptr> \
inline auto op(const T1 &lhs, const T2 &rhs) \
->decltype( \
LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>( \
std::make_pair(GRID_BINOP(name)(), \
std::forward_as_tuple(lhs, rhs)))) { \
return LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>( \
std::make_pair(GRID_BINOP(name)(), std::forward_as_tuple(lhs, rhs))); \
}
#define GRID_BINOP_RIGHT(op, name) \
template <typename T1, typename T2, \
typename std::enable_if<!is_lattice<T1>::value&&!is_lattice_expr<T1>::value,T1>::type * = nullptr, \
typename std::enable_if< is_lattice<T2>::value|| is_lattice_expr<T2>::value,T2>::type * = nullptr> \
inline auto op(const T1 &lhs, const T2 &rhs) \
->decltype(LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs, rhs)) \
{ \
return LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs, rhs); \
#define GRID_BINOP_RIGHT(op, name) \
template <typename T1, typename T2, \
typename std::enable_if<!is_lattice<T1>::value && \
!is_lattice_expr<T1>::value, \
T1>::type * = nullptr, \
typename std::enable_if<is_lattice<T2>::value || \
is_lattice_expr<T2>::value, \
T2>::type * = nullptr> \
inline auto op(const T1 &lhs, const T2 &rhs) \
->decltype( \
LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>( \
std::make_pair(GRID_BINOP(name)(), \
std::forward_as_tuple(lhs, rhs)))) { \
return LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>( \
std::make_pair(GRID_BINOP(name)(), std::forward_as_tuple(lhs, rhs))); \
}
#define GRID_DEF_BINOP(op, name) \
GRID_BINOP_LEFT(op, name); \
#define GRID_DEF_BINOP(op, name) \
GRID_BINOP_LEFT(op, name); \
GRID_BINOP_RIGHT(op, name);
#define GRID_DEF_TRINOP(op, name) \
template <typename T1, typename T2, typename T3> \
inline auto op(const T1 &pred, const T2 &lhs, const T3 &rhs) \
->decltype(LatticeTrinaryExpression<GRID_TRINOP(name),T1,T2,T3>(GRID_TRINOP(name)(),pred, lhs, rhs)) \
{ \
return LatticeTrinaryExpression<GRID_TRINOP(name),T1,T2,T3>(GRID_TRINOP(name)(),pred, lhs, rhs); \
#define GRID_DEF_TRINOP(op, name) \
template <typename T1, typename T2, typename T3> \
inline auto op(const T1 &pred, const T2 &lhs, const T3 &rhs) \
->decltype( \
LatticeTrinaryExpression<GRID_TRINOP(name), const T1 &, const T2 &, \
const T3 &>(std::make_pair( \
GRID_TRINOP(name)(), std::forward_as_tuple(pred, lhs, rhs)))) { \
return LatticeTrinaryExpression<GRID_TRINOP(name), const T1 &, const T2 &, \
const T3 &>(std::make_pair( \
GRID_TRINOP(name)(), std::forward_as_tuple(pred, lhs, rhs))); \
}
////////////////////////
// Operator definitions
////////////////////////
GRID_DEF_UNOP(operator-, UnarySub);
GRID_DEF_UNOP(Not, UnaryNot);
GRID_DEF_UNOP(operator!, UnaryNot);
//GRID_DEF_UNOP(adj, UnaryAdj);
//GRID_DEF_UNOP(conjugate, UnaryConj);
GRID_DEF_UNOP(adj, UnaryAdj);
GRID_DEF_UNOP(conjugate, UnaryConj);
GRID_DEF_UNOP(trace, UnaryTrace);
GRID_DEF_UNOP(transpose, UnaryTranspose);
GRID_DEF_UNOP(Ta, UnaryTa);
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
GRID_DEF_UNOP(real, UnaryReal);
GRID_DEF_UNOP(imag, UnaryImag);
GRID_DEF_UNOP(toReal, UnaryToReal);
GRID_DEF_UNOP(toComplex, UnaryToComplex);
GRID_DEF_UNOP(timesI, UnaryTimesI);
GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
GRID_DEF_UNOP(abs, UnaryAbs); // abs overloaded in cmath C++98; DON'T do the
// abs-fabs-dabs-labs thing
GRID_DEF_UNOP(sqrt, UnarySqrt);
GRID_DEF_UNOP(rsqrt, UnaryRsqrt);
GRID_DEF_UNOP(sin, UnarySin);
GRID_DEF_UNOP(cos, UnaryCos);
GRID_DEF_UNOP(asin, UnaryAsin);
@ -486,36 +400,31 @@ GRID_DEF_TRINOP(where, TrinaryWhere);
/////////////////////////////////////////////////////////////
template <class Op, class T1>
auto closure(const LatticeUnaryExpression<Op, T1> &expr)
-> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1)))>::type >
{
Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1)))>::type > ret(expr);
-> Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second))))> {
Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second))))> ret(
expr);
return ret;
}
template <class Op, class T1, class T2>
auto closure(const LatticeBinaryExpression<Op, T1, T2> &expr)
-> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),vecEval(0, expr.arg2)))>::type >
{
Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),vecEval(0, expr.arg2)))>::type > ret(expr);
-> Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second)),
eval(0, std::get<1>(expr.second))))> {
Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second)),
eval(0, std::get<1>(expr.second))))>
ret(expr);
return ret;
}
template <class Op, class T1, class T2, class T3>
auto closure(const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
-> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),
vecEval(0, expr.arg2),
vecEval(0, expr.arg3)))>::type >
{
Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),
vecEval(0, expr.arg2),
vecEval(0, expr.arg3)))>::type > ret(expr);
-> Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second)),
eval(0, std::get<1>(expr.second)),
eval(0, std::get<2>(expr.second))))> {
Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second)),
eval(0, std::get<1>(expr.second)),
eval(0, std::get<2>(expr.second))))>
ret(expr);
return ret;
}
#define EXPRESSION_CLOSURE(function) \
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr> \
auto function(Expression &expr) -> decltype(function(closure(expr))) \
{ \
return function(closure(expr)); \
}
#undef GRID_UNOP
#undef GRID_BINOP
@ -524,7 +433,34 @@ auto closure(const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
#undef GRID_DEF_UNOP
#undef GRID_DEF_BINOP
#undef GRID_DEF_TRINOP
}
NAMESPACE_END(Grid);
#if 0
using namespace Grid;
int main(int argc,char **argv){
Lattice<double> v1(16);
Lattice<double> v2(16);
Lattice<double> v3(16);
BinaryAdd<double,double> tmp;
LatticeBinaryExpression<BinaryAdd<double,double>,Lattice<double> &,Lattice<double> &>
expr(std::make_pair(tmp,
std::forward_as_tuple(v1,v2)));
tmp.func(eval(0,v1),eval(0,v2));
auto var = v1+v2;
std::cout<<GridLogMessage<<typeid(var).name()<<std::endl;
v3=v1+v2;
v3=v1+v2+v1*v2;
};
void testit(Lattice<double> &v1,Lattice<double> &v2,Lattice<double> &v3)
{
v3=v1+v2+v1*v2;
}
#endif
#endif

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -7,7 +7,6 @@
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -24,235 +23,233 @@ Author: Christoph Lehner <christoph@lhnr.de>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_ARITH_H
#define GRID_LATTICE_ARITH_H
NAMESPACE_BEGIN(Grid);
namespace Grid {
//////////////////////////////////////////////////////////////////////////////////////////////////////
// avoid copy back routines for mult, mac, sub, add
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class obj1,class obj2,class obj3> inline
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
ret.Checkerboard() = lhs.Checkerboard();
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
conformable(ret,rhs);
conformable(lhs,rhs);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t = lhs_v(ss);
auto rhs_t = rhs_v(ss);
mult(&tmp,&lhs_t,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class obj1,class obj2,class obj3> inline
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,rhs);
conformable(lhs,rhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
auto lhs_t=lhs_v(ss);
auto rhs_t=rhs_v(ss);
auto tmp =ret_v(ss);
mac(&tmp,&lhs_t,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class obj1,class obj2,class obj3> inline
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,rhs);
conformable(lhs,rhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss);
auto rhs_t=rhs_v(ss);
sub(&tmp,&lhs_t,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class obj1,class obj2,class obj3> inline
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,rhs);
conformable(lhs,rhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss);
auto rhs_t=rhs_v(ss);
add(&tmp,&lhs_t,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
}
//////////////////////////////////////////////////////////////////////////////////////////////////////
// avoid copy back routines for mult, mac, sub, add
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class obj1,class obj2,class obj3> inline
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
ret.Checkerboard() = lhs.Checkerboard();
conformable(lhs,ret);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
mult(&tmp,&lhs_v(ss),&rhs);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class obj1,class obj2,class obj3> inline
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,lhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
auto tmp =ret_v(ss);
auto lhs_t=lhs_v(ss);
mac(&tmp,&lhs_t,&rhs);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class obj1,class obj2,class obj3> inline
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,lhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss);
sub(&tmp,&lhs_t,&rhs);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class obj1,class obj2,class obj3> inline
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
ret.Checkerboard() = lhs.Checkerboard();
conformable(lhs,ret);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss);
add(&tmp,&lhs_t,&rhs);
coalescedWrite(ret_v[ss],tmp);
});
}
//////////////////////////////////////////////////////////////////////////////////////////////////////
// avoid copy back routines for mult, mac, sub, add
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class obj1,class obj2,class obj3> inline
void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
ret.Checkerboard() = rhs.Checkerboard();
conformable(ret,rhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( rhs_v , lhs, AcceleratorRead);
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto rhs_t=rhs_v(ss);
mult(&tmp,&lhs,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class obj1,class obj2,class obj3> inline
void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
ret.Checkerboard() = rhs.Checkerboard();
conformable(ret,rhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( rhs_v , lhs, AcceleratorRead);
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
auto tmp =ret_v(ss);
auto rhs_t=rhs_v(ss);
mac(&tmp,&lhs,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class obj1,class obj2,class obj3> inline
void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
ret.Checkerboard() = rhs.Checkerboard();
conformable(ret,rhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( rhs_v , lhs, AcceleratorRead);
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto rhs_t=rhs_v(ss);
sub(&tmp,&lhs,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class obj1,class obj2,class obj3> inline
void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
ret.Checkerboard() = rhs.Checkerboard();
conformable(ret,rhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( rhs_v , lhs, AcceleratorRead);
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto rhs_t=rhs_v(ss);
add(&tmp,&lhs,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class sobj,class vobj> inline
void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y){
ret.Checkerboard() = x.Checkerboard();
conformable(ret,x);
conformable(x,y);
autoView( ret_v , ret, AcceleratorWrite);
autoView( x_v , x, AcceleratorRead);
autoView( y_v , y, AcceleratorRead);
accelerator_for(ss,x_v.size(),vobj::Nsimd(),{
auto tmp = a*x_v(ss)+y_v(ss);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class sobj,class vobj> inline
void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y){
ret.Checkerboard() = x.Checkerboard();
conformable(ret,x);
conformable(x,y);
autoView( ret_v , ret, AcceleratorWrite);
autoView( x_v , x, AcceleratorRead);
autoView( y_v , y, AcceleratorRead);
accelerator_for(ss,x_v.size(),vobj::Nsimd(),{
auto tmp = a*x_v(ss)+b*y_v(ss);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class sobj,class vobj> inline
RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)
{
return axpy_norm_fast(ret,a,x,y);
}
template<class sobj,class vobj> inline
RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
{
return axpby_norm_fast(ret,a,b,x,y);
}
NAMESPACE_END(Grid);
//////////////////////////////////////////////////////////////////////////////////////////////////////
// avoid copy back routines for mult, mac, sub, add
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class obj1,class obj2,class obj3> strong_inline
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
ret.checkerboard = lhs.checkerboard;
conformable(ret,rhs);
conformable(lhs,rhs);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
mult(&tmp,&lhs._odata[ss],&rhs._odata[ss]);
vstream(ret._odata[ss],tmp);
#else
mult(&ret._odata[ss],&lhs._odata[ss],&rhs._odata[ss]);
#endif
}
}
template<class obj1,class obj2,class obj3> strong_inline
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
ret.checkerboard = lhs.checkerboard;
conformable(ret,rhs);
conformable(lhs,rhs);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
mac(&tmp,&lhs._odata[ss],&rhs._odata[ss]);
vstream(ret._odata[ss],tmp);
#else
mac(&ret._odata[ss],&lhs._odata[ss],&rhs._odata[ss]);
#endif
}
}
template<class obj1,class obj2,class obj3> strong_inline
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
ret.checkerboard = lhs.checkerboard;
conformable(ret,rhs);
conformable(lhs,rhs);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
sub(&tmp,&lhs._odata[ss],&rhs._odata[ss]);
vstream(ret._odata[ss],tmp);
#else
sub(&ret._odata[ss],&lhs._odata[ss],&rhs._odata[ss]);
#endif
}
}
template<class obj1,class obj2,class obj3> strong_inline
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
ret.checkerboard = lhs.checkerboard;
conformable(ret,rhs);
conformable(lhs,rhs);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
add(&tmp,&lhs._odata[ss],&rhs._odata[ss]);
vstream(ret._odata[ss],tmp);
#else
add(&ret._odata[ss],&lhs._odata[ss],&rhs._odata[ss]);
#endif
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////////
// avoid copy back routines for mult, mac, sub, add
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class obj1,class obj2,class obj3> strong_inline
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
ret.checkerboard = lhs.checkerboard;
conformable(lhs,ret);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
obj1 tmp;
mult(&tmp,&lhs._odata[ss],&rhs);
vstream(ret._odata[ss],tmp);
}
}
template<class obj1,class obj2,class obj3> strong_inline
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
ret.checkerboard = lhs.checkerboard;
conformable(ret,lhs);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
obj1 tmp;
mac(&tmp,&lhs._odata[ss],&rhs);
vstream(ret._odata[ss],tmp);
}
}
template<class obj1,class obj2,class obj3> strong_inline
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
ret.checkerboard = lhs.checkerboard;
conformable(ret,lhs);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
sub(&tmp,&lhs._odata[ss],&rhs);
vstream(ret._odata[ss],tmp);
#else
sub(&ret._odata[ss],&lhs._odata[ss],&rhs);
#endif
}
}
template<class obj1,class obj2,class obj3> strong_inline
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
ret.checkerboard = lhs.checkerboard;
conformable(lhs,ret);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
add(&tmp,&lhs._odata[ss],&rhs);
vstream(ret._odata[ss],tmp);
#else
add(&ret._odata[ss],&lhs._odata[ss],&rhs);
#endif
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////////
// avoid copy back routines for mult, mac, sub, add
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class obj1,class obj2,class obj3> strong_inline
void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
mult(&tmp,&lhs,&rhs._odata[ss]);
vstream(ret._odata[ss],tmp);
#else
mult(&ret._odata[ss],&lhs,&rhs._odata[ss]);
#endif
}
}
template<class obj1,class obj2,class obj3> strong_inline
void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
mac(&tmp,&lhs,&rhs._odata[ss]);
vstream(ret._odata[ss],tmp);
#else
mac(&ret._odata[ss],&lhs,&rhs._odata[ss]);
#endif
}
}
template<class obj1,class obj2,class obj3> strong_inline
void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
sub(&tmp,&lhs,&rhs._odata[ss]);
vstream(ret._odata[ss],tmp);
#else
sub(&ret._odata[ss],&lhs,&rhs._odata[ss]);
#endif
}
}
template<class obj1,class obj2,class obj3> strong_inline
void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
add(&tmp,&lhs,&rhs._odata[ss]);
vstream(ret._odata[ss],tmp);
#else
add(&ret._odata[ss],&lhs,&rhs._odata[ss]);
#endif
}
}
template<class sobj,class vobj> strong_inline
void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y){
ret.checkerboard = x.checkerboard;
conformable(ret,x);
conformable(x,y);
parallel_for(int ss=0;ss<x._grid->oSites();ss++){
#ifdef STREAMING_STORES
vobj tmp = a*x._odata[ss]+y._odata[ss];
vstream(ret._odata[ss],tmp);
#else
ret._odata[ss]=a*x._odata[ss]+y._odata[ss];
#endif
}
}
template<class sobj,class vobj> strong_inline
void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y){
ret.checkerboard = x.checkerboard;
conformable(ret,x);
conformable(x,y);
parallel_for(int ss=0;ss<x._grid->oSites();ss++){
#ifdef STREAMING_STORES
vobj tmp = a*x._odata[ss]+b*y._odata[ss];
vstream(ret._odata[ss],tmp);
#else
ret._odata[ss]=a*x._odata[ss]+b*y._odata[ss];
#endif
}
}
template<class sobj,class vobj> strong_inline
RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y){
return axpy_norm_fast(ret,a,x,y);
}
template<class sobj,class vobj> strong_inline
RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y){
return axpby_norm_fast(ret,a,b,x,y);
}
}
#endif

View File

@ -9,7 +9,6 @@ Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -28,345 +27,349 @@ with this program; if not, write to the Free Software Foundation, Inc.,
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
/* END LEGAL */
#ifndef GRID_LATTICE_BASE_H
#define GRID_LATTICE_BASE_H
#define STREAMING_STORES
NAMESPACE_BEGIN(Grid);
namespace Grid {
// TODO:
// mac,real,imag
// Functionality:
// -=,+=,*=,()
// add,+,sub,-,mult,mac,*
// adj,conjugate
// real,imag
// transpose,transposeIndex
// trace,traceIndex
// peekIndex
// innerProduct,outerProduct,
// localNorm2
// localInnerProduct
extern int GridCshiftPermuteMap[4][16];
/////////////////////////////////////////////////////////////////////////////////////////
// The real lattice class, with normal copy and assignment semantics.
// This contains extra (host resident) grid pointer data that may be accessed by host code
/////////////////////////////////////////////////////////////////////////////////////////
template<class vobj>
class Lattice : public LatticeAccelerator<vobj>
////////////////////////////////////////////////
// Basic expressions used in Expression Template
////////////////////////////////////////////////
class LatticeBase
{
public:
GridBase *Grid(void) const { return this->_grid; }
///////////////////////////////////////////////////
// Member types
///////////////////////////////////////////////////
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_object scalar_object;
typedef vobj vector_object;
virtual ~LatticeBase(void) = default;
GridBase *_grid;
};
class LatticeExpressionBase {};
private:
void dealloc(void)
{
if( this->_odata_size ) {
alignedAllocator<vobj> alloc;
alloc.deallocate(this->_odata,this->_odata_size);
this->_odata=nullptr;
this->_odata_size=0;
}
}
void resize(uint64_t size)
{
if ( this->_odata_size != size ) {
alignedAllocator<vobj> alloc;
template <typename Op, typename T1>
class LatticeUnaryExpression : public std::pair<Op,std::tuple<T1> > , public LatticeExpressionBase {
public:
LatticeUnaryExpression(const std::pair<Op,std::tuple<T1> > &arg): std::pair<Op,std::tuple<T1> >(arg) {};
};
dealloc();
this->_odata_size = size;
if ( size )
this->_odata = alloc.allocate(this->_odata_size);
else
this->_odata = nullptr;
}
}
template <typename Op, typename T1, typename T2>
class LatticeBinaryExpression : public std::pair<Op,std::tuple<T1,T2> > , public LatticeExpressionBase {
public:
LatticeBinaryExpression(const std::pair<Op,std::tuple<T1,T2> > &arg): std::pair<Op,std::tuple<T1,T2> >(arg) {};
};
template <typename Op, typename T1, typename T2, typename T3>
class LatticeTrinaryExpression :public std::pair<Op,std::tuple<T1,T2,T3> >, public LatticeExpressionBase {
public:
LatticeTrinaryExpression(const std::pair<Op,std::tuple<T1,T2,T3> > &arg): std::pair<Op,std::tuple<T1,T2,T3> >(arg) {};
};
void inline conformable(GridBase *lhs,GridBase *rhs)
{
assert(lhs == rhs);
}
template<class vobj>
class Lattice : public LatticeBase
{
public:
int checkerboard;
Vector<vobj> _odata;
// to pthread need a computable loop where loop induction is not required
int begin(void) { return 0;};
int end(void) { return _odata.size(); }
vobj & operator[](int i) { return _odata[i]; };
const vobj & operator[](int i) const { return _odata[i]; };
/////////////////////////////////////////////////////////////////////////////////
// Can use to make accelerator dirty without copy from host ; useful for temporaries "dont care" prev contents
/////////////////////////////////////////////////////////////////////////////////
void SetViewMode(ViewMode mode) {
LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this),mode);
accessor.ViewClose();
}
/////////////////////////////////////////////////////////////////////////////////
// Return a view object that may be dereferenced in site loops.
// The view is trivially copy constructible and may be copied to an accelerator device
// in device lambdas
/////////////////////////////////////////////////////////////////////////////////
LatticeView<vobj> View (ViewMode mode) const
{
LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this),mode);
return accessor;
}
~Lattice() {
if ( this->_odata_size ) {
dealloc();
}
}
public:
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef vobj vector_object;
////////////////////////////////////////////////////////////////////////////////
// Expression Template closure support
////////////////////////////////////////////////////////////////////////////////
template <typename Op, typename T1> inline Lattice<vobj> & operator=(const LatticeUnaryExpression<Op,T1> &expr)
template <typename Op, typename T1> strong_inline Lattice<vobj> & operator=(const LatticeUnaryExpression<Op,T1> &expr)
{
GridBase *egrid(nullptr);
GridFromExpression(egrid,expr);
assert(egrid!=nullptr);
conformable(this->_grid,egrid);
conformable(_grid,egrid);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
auto exprCopy = expr;
ExpressionViewOpen(exprCopy);
auto me = View(AcceleratorWriteDiscard);
accelerator_for(ss,me.size(),vobj::Nsimd(),{
auto tmp = eval(ss,exprCopy);
coalescedWrite(me[ss],tmp);
});
me.ViewClose();
ExpressionViewClose(exprCopy);
checkerboard=cb;
parallel_for(int ss=0;ss<_grid->oSites();ss++){
#ifdef STREAMING_STORES
vobj tmp = eval(ss,expr);
vstream(_odata[ss] ,tmp);
#else
_odata[ss]=eval(ss,expr);
#endif
}
return *this;
}
template <typename Op, typename T1,typename T2> inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr)
template <typename Op, typename T1,typename T2> strong_inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr)
{
GridBase *egrid(nullptr);
GridFromExpression(egrid,expr);
assert(egrid!=nullptr);
conformable(this->_grid,egrid);
conformable(_grid,egrid);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
checkerboard=cb;
auto exprCopy = expr;
ExpressionViewOpen(exprCopy);
auto me = View(AcceleratorWriteDiscard);
accelerator_for(ss,me.size(),vobj::Nsimd(),{
auto tmp = eval(ss,exprCopy);
coalescedWrite(me[ss],tmp);
});
me.ViewClose();
ExpressionViewClose(exprCopy);
parallel_for(int ss=0;ss<_grid->oSites();ss++){
#ifdef STREAMING_STORES
vobj tmp = eval(ss,expr);
vstream(_odata[ss] ,tmp);
#else
_odata[ss]=eval(ss,expr);
#endif
}
return *this;
}
template <typename Op, typename T1,typename T2,typename T3> inline Lattice<vobj> & operator=(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr)
template <typename Op, typename T1,typename T2,typename T3> strong_inline Lattice<vobj> & operator=(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr)
{
GridBase *egrid(nullptr);
GridFromExpression(egrid,expr);
assert(egrid!=nullptr);
conformable(this->_grid,egrid);
conformable(_grid,egrid);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
auto exprCopy = expr;
ExpressionViewOpen(exprCopy);
auto me = View(AcceleratorWriteDiscard);
accelerator_for(ss,me.size(),vobj::Nsimd(),{
auto tmp = eval(ss,exprCopy);
coalescedWrite(me[ss],tmp);
});
me.ViewClose();
ExpressionViewClose(exprCopy);
checkerboard=cb;
parallel_for(int ss=0;ss<_grid->oSites();ss++){
#ifdef STREAMING_STORES
//vobj tmp = eval(ss,expr);
vstream(_odata[ss] ,eval(ss,expr));
#else
_odata[ss] = eval(ss,expr);
#endif
}
return *this;
}
//GridFromExpression is tricky to do
template<class Op,class T1>
Lattice(const LatticeUnaryExpression<Op,T1> & expr) {
this->_grid = nullptr;
GridFromExpression(this->_grid,expr);
assert(this->_grid!=nullptr);
Lattice(const LatticeUnaryExpression<Op,T1> & expr) {
_grid = nullptr;
GridFromExpression(_grid,expr);
assert(_grid!=nullptr);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
checkerboard=cb;
resize(this->_grid->oSites());
*this = expr;
}
_odata.resize(_grid->oSites());
parallel_for(int ss=0;ss<_grid->oSites();ss++){
#ifdef STREAMING_STORES
vobj tmp = eval(ss,expr);
vstream(_odata[ss] ,tmp);
#else
_odata[ss]=eval(ss,expr);
#endif
}
};
template<class Op,class T1, class T2>
Lattice(const LatticeBinaryExpression<Op,T1,T2> & expr) {
this->_grid = nullptr;
GridFromExpression(this->_grid,expr);
assert(this->_grid!=nullptr);
_grid = nullptr;
GridFromExpression(_grid,expr);
assert(_grid!=nullptr);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
checkerboard=cb;
resize(this->_grid->oSites());
*this = expr;
}
_odata.resize(_grid->oSites());
parallel_for(int ss=0;ss<_grid->oSites();ss++){
#ifdef STREAMING_STORES
vobj tmp = eval(ss,expr);
vstream(_odata[ss] ,tmp);
#else
_odata[ss]=eval(ss,expr);
#endif
}
};
template<class Op,class T1, class T2, class T3>
Lattice(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr) {
this->_grid = nullptr;
GridFromExpression(this->_grid,expr);
assert(this->_grid!=nullptr);
_grid = nullptr;
GridFromExpression(_grid,expr);
assert(_grid!=nullptr);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
checkerboard=cb;
resize(this->_grid->oSites());
*this = expr;
}
template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){
auto me = View(CpuWrite);
thread_for(ss,me.size(),{
me[ss]= r;
});
me.ViewClose();
return *this;
}
_odata.resize(_grid->oSites());
parallel_for(int ss=0;ss<_grid->oSites();ss++){
vstream(_odata[ss] ,eval(ss,expr));
}
};
//////////////////////////////////////////////////////////////////
// Follow rule of five, with Constructor requires "grid" passed
// to user defined constructor
///////////////////////////////////////////
// user defined constructor
///////////////////////////////////////////
Lattice(GridBase *grid,ViewMode mode=AcceleratorWriteDiscard) {
this->_grid = grid;
resize(this->_grid->oSites());
assert((((uint64_t)&this->_odata[0])&0xF) ==0);
this->checkerboard=0;
SetViewMode(mode);
// Constructor requires "grid" passed.
// what about a default grid?
//////////////////////////////////////////////////////////////////
Lattice(GridBase *grid) : _odata(grid->oSites()) {
_grid = grid;
// _odata.reserve(_grid->oSites());
// _odata.resize(_grid->oSites());
// std::cout << "Constructing lattice object with Grid pointer "<<_grid<<std::endl;
assert((((uint64_t)&_odata[0])&0xF) ==0);
checkerboard=0;
}
// virtual ~Lattice(void) = default;
Lattice(const Lattice& r){ // copy constructor
_grid = r._grid;
checkerboard = r.checkerboard;
_odata.resize(_grid->oSites());// essential
parallel_for(int ss=0;ss<_grid->oSites();ss++){
_odata[ss]=r._odata[ss];
}
}
Lattice(Lattice&& r){ // move constructor
_grid = r._grid;
checkerboard = r.checkerboard;
_odata=std::move(r._odata);
}
inline Lattice<vobj> & operator = (Lattice<vobj> && r)
{
_grid = r._grid;
checkerboard = r.checkerboard;
_odata =std::move(r._odata);
return *this;
}
inline Lattice<vobj> & operator = (const Lattice<vobj> & r){
_grid = r._grid;
checkerboard = r.checkerboard;
_odata.resize(_grid->oSites());// essential
parallel_for(int ss=0;ss<_grid->oSites();ss++){
_odata[ss]=r._odata[ss];
}
return *this;
}
template<class robj> strong_inline Lattice<vobj> & operator = (const Lattice<robj> & r){
this->checkerboard = r.checkerboard;
conformable(*this,r);
parallel_for(int ss=0;ss<_grid->oSites();ss++){
this->_odata[ss]=r._odata[ss];
}
return *this;
}
virtual ~Lattice(void) = default;
void reset(GridBase* grid) {
if (this->_grid != grid) {
this->_grid = grid;
this->resize(grid->oSites());
this->checkerboard = 0;
if (_grid != grid) {
_grid = grid;
_odata.resize(grid->oSites());
checkerboard = 0;
}
}
///////////////////////////////////////////
// copy constructor
///////////////////////////////////////////
Lattice(const Lattice& r){
this->_grid = r.Grid();
resize(this->_grid->oSites());
*this = r;
}
///////////////////////////////////////////
// move constructor
///////////////////////////////////////////
Lattice(Lattice && r){
this->_grid = r.Grid();
this->_odata = r._odata;
this->_odata_size = r._odata_size;
this->checkerboard= r.Checkerboard();
r._odata = nullptr;
r._odata_size = 0;
}
///////////////////////////////////////////
// assignment template
///////////////////////////////////////////
template<class robj> inline Lattice<vobj> & operator = (const Lattice<robj> & r){
typename std::enable_if<!std::is_same<robj,vobj>::value,int>::type i=0;
conformable(*this,r);
this->checkerboard = r.Checkerboard();
auto me = View(AcceleratorWriteDiscard);
auto him= r.View(AcceleratorRead);
accelerator_for(ss,me.size(),vobj::Nsimd(),{
coalescedWrite(me[ss],him(ss));
});
me.ViewClose(); him.ViewClose();
template<class sobj> strong_inline Lattice<vobj> & operator = (const sobj & r){
parallel_for(int ss=0;ss<_grid->oSites();ss++){
this->_odata[ss]=r;
}
return *this;
}
///////////////////////////////////////////
// Copy assignment
///////////////////////////////////////////
inline Lattice<vobj> & operator = (const Lattice<vobj> & r){
this->checkerboard = r.Checkerboard();
conformable(*this,r);
auto me = View(AcceleratorWriteDiscard);
auto him= r.View(AcceleratorRead);
accelerator_for(ss,me.size(),vobj::Nsimd(),{
coalescedWrite(me[ss],him(ss));
});
me.ViewClose(); him.ViewClose();
return *this;
}
///////////////////////////////////////////
// Move assignment possible if same type
///////////////////////////////////////////
inline Lattice<vobj> & operator = (Lattice<vobj> && r){
resize(0); // deletes if appropriate
this->_grid = r.Grid();
this->_odata = r._odata;
this->_odata_size = r._odata_size;
this->checkerboard= r.Checkerboard();
r._odata = nullptr;
r._odata_size = 0;
return *this;
}
/////////////////////////////////////////////////////////////////////////////
// *=,+=,-= operators inherit behvour from correspond */+/- operation
/////////////////////////////////////////////////////////////////////////////
template<class T> inline Lattice<vobj> &operator *=(const T &r) {
template<class T> strong_inline Lattice<vobj> &operator *=(const T &r) {
*this = (*this)*r;
return *this;
}
template<class T> inline Lattice<vobj> &operator -=(const T &r) {
template<class T> strong_inline Lattice<vobj> &operator -=(const T &r) {
*this = (*this)-r;
return *this;
}
template<class T> inline Lattice<vobj> &operator +=(const T &r) {
template<class T> strong_inline Lattice<vobj> &operator +=(const T &r) {
*this = (*this)+r;
return *this;
}
friend inline void swap(Lattice &l, Lattice &r) {
conformable(l,r);
LatticeAccelerator<vobj> tmp;
LatticeAccelerator<vobj> *lp = (LatticeAccelerator<vobj> *)&l;
LatticeAccelerator<vobj> *rp = (LatticeAccelerator<vobj> *)&r;
tmp = *lp; *lp=*rp; *rp=tmp;
}
}; // class Lattice
template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
typedef typename vobj::scalar_object sobj;
for(int g=0;g<o.Grid()->_gsites;g++){
Coordinate gcoor;
o.Grid()->GlobalIndexToGlobalCoor(g,gcoor);
sobj ss;
peekSite(ss,o,gcoor);
stream<<"[";
for(int d=0;d<gcoor.size();d++){
stream<<gcoor[d];
if(d!=gcoor.size()-1) stream<<",";
}
stream<<"]\t";
stream<<ss<<std::endl;
}
return stream;
}
NAMESPACE_END(Grid);
template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
std::vector<int> gcoor;
typedef typename vobj::scalar_object sobj;
sobj ss;
for(int g=0;g<o._grid->_gsites;g++){
o._grid->GlobalIndexToGlobalCoor(g,gcoor);
peekSite(ss,o,gcoor);
stream<<"[";
for(int d=0;d<gcoor.size();d++){
stream<<gcoor[d];
if(d!=gcoor.size()-1) stream<<",";
}
stream<<"]\t";
stream<<ss<<std::endl;
}
return stream;
}
}
#include "Lattice_conformable.h"
#define GRID_LATTICE_EXPRESSION_TEMPLATES
#ifdef GRID_LATTICE_EXPRESSION_TEMPLATES
#include "Lattice_ET.h"
#else
#include "Lattice_overload.h"
#endif
#include "Lattice_arith.h"
#include "Lattice_trace.h"
#include "Lattice_transpose.h"
#include "Lattice_local.h"
#include "Lattice_reduction.h"
#include "Lattice_peekpoke.h"
#include "Lattice_reality.h"
#include "Lattice_comparison_utils.h"
#include "Lattice_comparison.h"
#include "Lattice_coordinate.h"
#include "Lattice_where.h"
#include "Lattice_rng.h"
#include "Lattice_unary.h"
#include "Lattice_transfer.h"
#endif

View File

@ -1,248 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_basis.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template<class Field>
void basisOrthogonalize(std::vector<Field> &basis,Field &w,int k)
{
// If assume basis[j] are already orthonormal,
// can take all inner products in parallel saving 2x bandwidth
// Save 3x bandwidth on the second line of loop.
// perhaps 2.5x speed up.
// 2x overall in Multigrid Lanczos
for(int j=0; j<k; ++j){
auto ip = innerProduct(basis[j],w);
w = w - ip*basis[j];
}
}
template<class VField, class Matrix>
void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
{
typedef decltype(basis[0]) Field;
typedef decltype(basis[0].View(AcceleratorRead)) View;
Vector<View> basis_v; basis_v.reserve(basis.size());
typedef typename std::remove_reference<decltype(basis_v[0][0])>::type vobj;
typedef typename std::remove_reference<decltype(Qt(0,0))>::type Coeff_t;
GridBase* grid = basis[0].Grid();
for(int k=0;k<basis.size();k++){
basis_v.push_back(basis[k].View(AcceleratorWrite));
}
#if ( (!defined(GRID_CUDA)) )
int max_threads = thread_max();
Vector < vobj > Bt(Nm * max_threads);
thread_region
{
vobj* B = &Bt[Nm * thread_num()];
thread_for_in_region(ss, grid->oSites(),{
for(int j=j0; j<j1; ++j) B[j]=0.;
for(int j=j0; j<j1; ++j){
for(int k=k0; k<k1; ++k){
B[j] +=Qt(j,k) * basis_v[k][ss];
}
}
for(int j=j0; j<j1; ++j){
basis_v[j][ss] = B[j];
}
});
}
#else
View *basis_vp = &basis_v[0];
int nrot = j1-j0;
if (!nrot) // edge case not handled gracefully by Cuda
return;
uint64_t oSites =grid->oSites();
uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead
Vector <vobj> Bt(siteBlock * nrot);
auto Bp=&Bt[0];
// GPU readable copy of matrix
Vector<Coeff_t> Qt_jv(Nm*Nm);
Coeff_t *Qt_p = & Qt_jv[0];
thread_for(i,Nm*Nm,{
int j = i/Nm;
int k = i%Nm;
Qt_p[i]=Qt(j,k);
});
// Block the loop to keep storage footprint down
for(uint64_t s=0;s<oSites;s+=siteBlock){
// remaining work in this block
int ssites=MIN(siteBlock,oSites-s);
// zero out the accumulators
accelerator_for(ss,siteBlock*nrot,vobj::Nsimd(),{
decltype(coalescedRead(Bp[ss])) z;
z=Zero();
coalescedWrite(Bp[ss],z);
});
accelerator_for(sj,ssites*nrot,vobj::Nsimd(),{
int j =sj%nrot;
int jj =j0+j;
int ss =sj/nrot;
int sss=ss+s;
for(int k=k0; k<k1; ++k){
auto tmp = coalescedRead(Bp[ss*nrot+j]);
coalescedWrite(Bp[ss*nrot+j],tmp+ Qt_p[jj*Nm+k] * coalescedRead(basis_v[k][sss]));
}
});
accelerator_for(sj,ssites*nrot,vobj::Nsimd(),{
int j =sj%nrot;
int jj =j0+j;
int ss =sj/nrot;
int sss=ss+s;
coalescedWrite(basis_v[jj][sss],coalescedRead(Bp[ss*nrot+j]));
});
}
#endif
for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
}
// Extract a single rotated vector
template<class Field>
void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j, int k0,int k1,int Nm)
{
typedef decltype(basis[0].View(AcceleratorRead)) View;
typedef typename Field::vector_object vobj;
GridBase* grid = basis[0].Grid();
result.Checkerboard() = basis[0].Checkerboard();
Vector<View> basis_v; basis_v.reserve(basis.size());
for(int k=0;k<basis.size();k++){
basis_v.push_back(basis[k].View(AcceleratorRead));
}
vobj zz=Zero();
Vector<double> Qt_jv(Nm);
double * Qt_j = & Qt_jv[0];
for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k);
auto basis_vp=& basis_v[0];
autoView(result_v,result,AcceleratorWrite);
accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
vobj zzz=Zero();
auto B=coalescedRead(zzz);
for(int k=k0; k<k1; ++k){
B +=Qt_j[k] * coalescedRead(basis_vp[k][ss]);
}
coalescedWrite(result_v[ss], B);
});
for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
}
template<class Field>
void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, std::vector<int>& idx)
{
int vlen = idx.size();
assert(vlen>=1);
assert(vlen<=sort_vals.size());
assert(vlen<=_v.size());
for (size_t i=0;i<vlen;i++) {
if (idx[i] != i) {
//////////////////////////////////////
// idx[i] is a table of desired sources giving a permutation.
// Swap v[i] with v[idx[i]].
// Find j>i for which _vnew[j] = _vold[i],
// track the move idx[j] => idx[i]
// track the move idx[i] => i
//////////////////////////////////////
size_t j;
for (j=i;j<idx.size();j++)
if (idx[j]==i)
break;
assert(idx[i] > i); assert(j!=idx.size()); assert(idx[j]==i);
swap(_v[i],_v[idx[i]]); // should use vector move constructor, no data copy
std::swap(sort_vals[i],sort_vals[idx[i]]);
idx[j] = idx[i];
idx[i] = i;
}
}
}
inline std::vector<int> basisSortGetIndex(std::vector<RealD>& sort_vals)
{
std::vector<int> idx(sort_vals.size());
std::iota(idx.begin(), idx.end(), 0);
// sort indexes based on comparing values in v
std::sort(idx.begin(), idx.end(), [&sort_vals](int i1, int i2) {
return ::fabs(sort_vals[i1]) < ::fabs(sort_vals[i2]);
});
return idx;
}
template<class Field>
void basisSortInPlace(std::vector<Field> & _v,std::vector<RealD>& sort_vals, bool reverse)
{
std::vector<int> idx = basisSortGetIndex(sort_vals);
if (reverse)
std::reverse(idx.begin(), idx.end());
basisReorderInPlace(_v,sort_vals,idx);
}
// PAB: faster to compute the inner products first then fuse loops.
// If performance critical can improve.
template<class Field>
void basisDeflate(const std::vector<Field> &_v,const std::vector<RealD>& eval,const Field& src_orig,Field& result) {
result = Zero();
assert(_v.size()==eval.size());
int N = (int)_v.size();
for (int i=0;i<N;i++) {
Field& tmp = _v[i];
axpy(result,TensorRemove(innerProduct(tmp,src_orig)) / eval[i],tmp,result);
}
}
NAMESPACE_END(Grid);

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -24,156 +24,146 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_COMPARISON_H
#define GRID_LATTICE_COMPARISON_H
NAMESPACE_BEGIN(Grid);
namespace Grid {
//////////////////////////////////////////////////////////////////////////
// relational operators
//
// Support <,>,<=,>=,==,!=
//
//Query supporting bitwise &, |, ^, !
//Query supporting logical &&, ||,
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
// relational operators
//
// Support <,>,<=,>=,==,!=
//
//Query supporting bitwise &, |, ^, !
//Query supporting logical &&, ||,
//////////////////////////////////////////////////////////////////////////
typedef iScalar<vInteger> vPredicate ;
//////////////////////////////////////////////////////////////////////////
// compare lattice to lattice
//////////////////////////////////////////////////////////////////////////
template<class vfunctor,class lobj,class robj>
inline Lattice<vPredicate> LLComparison(vfunctor op,const Lattice<lobj> &lhs,const Lattice<robj> &rhs)
{
Lattice<vPredicate> ret(rhs.Grid());
autoView( lhs_v, lhs, CpuRead);
autoView( rhs_v, rhs, CpuRead);
autoView( ret_v, ret, CpuWrite);
thread_for( ss, rhs_v.size(), {
ret_v[ss]=op(lhs_v[ss],rhs_v[ss]);
});
return ret;
}
//////////////////////////////////////////////////////////////////////////
// compare lattice to scalar
//////////////////////////////////////////////////////////////////////////
template<class vfunctor,class lobj,class robj>
inline Lattice<vPredicate> LSComparison(vfunctor op,const Lattice<lobj> &lhs,const robj &rhs)
{
Lattice<vPredicate> ret(lhs.Grid());
autoView( lhs_v, lhs, CpuRead);
autoView( ret_v, ret, CpuWrite);
thread_for( ss, lhs_v.size(), {
ret_v[ss]=op(lhs_v[ss],rhs);
});
return ret;
}
//////////////////////////////////////////////////////////////////////////
// compare scalar to lattice
//////////////////////////////////////////////////////////////////////////
template<class vfunctor,class lobj,class robj>
inline Lattice<vPredicate> SLComparison(vfunctor op,const lobj &lhs,const Lattice<robj> &rhs)
{
Lattice<vPredicate> ret(rhs.Grid());
autoView( rhs_v, rhs, CpuRead);
autoView( ret_v, ret, CpuWrite);
thread_for( ss, rhs_v.size(), {
ret_v[ss]=op(lhs,rhs_v[ss]);
});
return ret;
}
//////////////////////////////////////////////////////////////////////////
// compare lattice to lattice
//////////////////////////////////////////////////////////////////////////
template<class vfunctor,class lobj,class robj>
inline Lattice<vInteger> LLComparison(vfunctor op,const Lattice<lobj> &lhs,const Lattice<robj> &rhs)
{
Lattice<vInteger> ret(rhs._grid);
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
ret._odata[ss]=op(lhs._odata[ss],rhs._odata[ss]);
}
return ret;
}
//////////////////////////////////////////////////////////////////////////
// compare lattice to scalar
//////////////////////////////////////////////////////////////////////////
template<class vfunctor,class lobj,class robj>
inline Lattice<vInteger> LSComparison(vfunctor op,const Lattice<lobj> &lhs,const robj &rhs)
{
Lattice<vInteger> ret(lhs._grid);
parallel_for(int ss=0;ss<lhs._grid->oSites(); ss++){
ret._odata[ss]=op(lhs._odata[ss],rhs);
}
return ret;
}
//////////////////////////////////////////////////////////////////////////
// compare scalar to lattice
//////////////////////////////////////////////////////////////////////////
template<class vfunctor,class lobj,class robj>
inline Lattice<vInteger> SLComparison(vfunctor op,const lobj &lhs,const Lattice<robj> &rhs)
{
Lattice<vInteger> ret(rhs._grid);
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
ret._odata[ss]=op(lhs._odata[ss],rhs);
}
return ret;
}
//////////////////////////////////////////////////////////////////////////
// Map to functors
//////////////////////////////////////////////////////////////////////////
// Less than
template<class lobj,class robj>
inline Lattice<vPredicate> operator < (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vlt<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator < (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vlt<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator < (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vlt<lobj,robj>(),lhs,rhs);
}
//////////////////////////////////////////////////////////////////////////
// Map to functors
//////////////////////////////////////////////////////////////////////////
// Less than
template<class lobj,class robj>
inline Lattice<vInteger> operator < (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vlt<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator < (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vlt<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator < (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vlt<lobj,robj>(),lhs,rhs);
}
// Less than equal
template<class lobj,class robj>
inline Lattice<vPredicate> operator <= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vle<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator <= (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vle<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator <= (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vle<lobj,robj>(),lhs,rhs);
}
// Less than equal
template<class lobj,class robj>
inline Lattice<vInteger> operator <= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vle<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator <= (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vle<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator <= (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vle<lobj,robj>(),lhs,rhs);
}
// Greater than
template<class lobj,class robj>
inline Lattice<vPredicate> operator > (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vgt<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator > (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vgt<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator > (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vgt<lobj,robj>(),lhs,rhs);
}
// Greater than
template<class lobj,class robj>
inline Lattice<vInteger> operator > (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vgt<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator > (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vgt<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator > (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vgt<lobj,robj>(),lhs,rhs);
}
// Greater than equal
template<class lobj,class robj>
inline Lattice<vPredicate> operator >= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vge<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator >= (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vge<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator >= (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vge<lobj,robj>(),lhs,rhs);
}
// Greater than equal
template<class lobj,class robj>
inline Lattice<vInteger> operator >= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vge<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator >= (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vge<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator >= (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vge<lobj,robj>(),lhs,rhs);
}
// equal
template<class lobj,class robj>
inline Lattice<vPredicate> operator == (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(veq<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator == (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(veq<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator == (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(veq<lobj,robj>(),lhs,rhs);
}
// equal
template<class lobj,class robj>
inline Lattice<vInteger> operator == (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(veq<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator == (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(veq<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator == (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(veq<lobj,robj>(),lhs,rhs);
}
// not equal
template<class lobj,class robj>
inline Lattice<vPredicate> operator != (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vne<lobj,robj>(),lhs,rhs);
// not equal
template<class lobj,class robj>
inline Lattice<vInteger> operator != (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vne<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator != (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vne<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator != (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vne<lobj,robj>(),lhs,rhs);
}
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator != (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vne<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator != (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vne<lobj,robj>(),lhs,rhs);
}
NAMESPACE_END(Grid);
#endif

View File

@ -26,10 +26,10 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_COMPARISON_H
#define GRID_COMPARISON_H
#pragma once
NAMESPACE_BEGIN(Grid);
namespace Grid {
/////////////////////////////////////////
// This implementation is a bit poor.
@ -44,42 +44,42 @@ NAMESPACE_BEGIN(Grid);
//
template<class lobj,class robj> class veq {
public:
accelerator vInteger operator()(const lobj &lhs, const robj &rhs)
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) == (rhs);
}
};
template<class lobj,class robj> class vne {
public:
accelerator vInteger operator()(const lobj &lhs, const robj &rhs)
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) != (rhs);
}
};
template<class lobj,class robj> class vlt {
public:
accelerator vInteger operator()(const lobj &lhs, const robj &rhs)
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) < (rhs);
}
};
template<class lobj,class robj> class vle {
public:
accelerator vInteger operator()(const lobj &lhs, const robj &rhs)
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) <= (rhs);
}
};
template<class lobj,class robj> class vgt {
public:
accelerator vInteger operator()(const lobj &lhs, const robj &rhs)
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) > (rhs);
}
};
template<class lobj,class robj> class vge {
public:
accelerator vInteger operator()(const lobj &lhs, const robj &rhs)
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) >= (rhs);
}
@ -88,42 +88,42 @@ NAMESPACE_BEGIN(Grid);
// Generic list of functors
template<class lobj,class robj> class seq {
public:
accelerator Integer operator()(const lobj &lhs, const robj &rhs)
Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) == (rhs);
}
};
template<class lobj,class robj> class sne {
public:
accelerator Integer operator()(const lobj &lhs, const robj &rhs)
Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) != (rhs);
}
};
template<class lobj,class robj> class slt {
public:
accelerator Integer operator()(const lobj &lhs, const robj &rhs)
Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) < (rhs);
}
};
template<class lobj,class robj> class sle {
public:
accelerator Integer operator()(const lobj &lhs, const robj &rhs)
Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) <= (rhs);
}
};
template<class lobj,class robj> class sgt {
public:
accelerator Integer operator()(const lobj &lhs, const robj &rhs)
Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) > (rhs);
}
};
template<class lobj,class robj> class sge {
public:
accelerator Integer operator()(const lobj &lhs, const robj &rhs)
Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) >= (rhs);
}
@ -133,12 +133,12 @@ NAMESPACE_BEGIN(Grid);
// Integer and real get extra relational functions.
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class sfunctor, class vsimd,IfNotComplex<vsimd> = 0>
accelerator_inline vInteger Comparison(sfunctor sop,const vsimd & lhs, const vsimd & rhs)
inline vInteger Comparison(sfunctor sop,const vsimd & lhs, const vsimd & rhs)
{
typedef typename vsimd::scalar_type scalar;
ExtractBuffer<scalar> vlhs(vsimd::Nsimd()); // Use functors to reduce this to single implementation
ExtractBuffer<scalar> vrhs(vsimd::Nsimd());
ExtractBuffer<Integer> vpred(vsimd::Nsimd());
std::vector<scalar> vlhs(vsimd::Nsimd()); // Use functors to reduce this to single implementation
std::vector<scalar> vrhs(vsimd::Nsimd());
std::vector<Integer> vpred(vsimd::Nsimd());
vInteger ret;
extract<vsimd,scalar>(lhs,vlhs);
extract<vsimd,scalar>(rhs,vrhs);
@ -150,11 +150,11 @@ NAMESPACE_BEGIN(Grid);
}
template<class sfunctor, class vsimd,IfNotComplex<vsimd> = 0>
accelerator_inline vInteger Comparison(sfunctor sop,const vsimd & lhs, const typename vsimd::scalar_type & rhs)
inline vInteger Comparison(sfunctor sop,const vsimd & lhs, const typename vsimd::scalar_type & rhs)
{
typedef typename vsimd::scalar_type scalar;
ExtractBuffer<scalar> vlhs(vsimd::Nsimd()); // Use functors to reduce this to single implementation
ExtractBuffer<Integer> vpred(vsimd::Nsimd());
std::vector<scalar> vlhs(vsimd::Nsimd()); // Use functors to reduce this to single implementation
std::vector<Integer> vpred(vsimd::Nsimd());
vInteger ret;
extract<vsimd,scalar>(lhs,vlhs);
for(int s=0;s<vsimd::Nsimd();s++){
@ -165,11 +165,11 @@ NAMESPACE_BEGIN(Grid);
}
template<class sfunctor, class vsimd,IfNotComplex<vsimd> = 0>
accelerator_inline vInteger Comparison(sfunctor sop,const typename vsimd::scalar_type & lhs, const vsimd & rhs)
inline vInteger Comparison(sfunctor sop,const typename vsimd::scalar_type & lhs, const vsimd & rhs)
{
typedef typename vsimd::scalar_type scalar;
ExtractBuffer<scalar> vrhs(vsimd::Nsimd()); // Use functors to reduce this to single implementation
ExtractBuffer<Integer> vpred(vsimd::Nsimd());
std::vector<scalar> vrhs(vsimd::Nsimd()); // Use functors to reduce this to single implementation
std::vector<Integer> vpred(vsimd::Nsimd());
vInteger ret;
extract<vsimd,scalar>(rhs,vrhs);
for(int s=0;s<vsimd::Nsimd();s++){
@ -181,30 +181,30 @@ NAMESPACE_BEGIN(Grid);
#define DECLARE_RELATIONAL_EQ(op,functor) \
template<class vsimd,IfSimd<vsimd> = 0>\
accelerator_inline vInteger operator op (const vsimd & lhs, const vsimd & rhs)\
inline vInteger operator op (const vsimd & lhs, const vsimd & rhs)\
{\
typedef typename vsimd::scalar_type scalar;\
return Comparison(functor<scalar,scalar>(),lhs,rhs);\
}\
template<class vsimd,IfSimd<vsimd> = 0>\
accelerator_inline vInteger operator op (const vsimd & lhs, const typename vsimd::scalar_type & rhs) \
inline vInteger operator op (const vsimd & lhs, const typename vsimd::scalar_type & rhs) \
{\
typedef typename vsimd::scalar_type scalar;\
return Comparison(functor<scalar,scalar>(),lhs,rhs);\
}\
template<class vsimd,IfSimd<vsimd> = 0>\
accelerator_inline vInteger operator op (const typename vsimd::scalar_type & lhs, const vsimd & rhs) \
inline vInteger operator op (const typename vsimd::scalar_type & lhs, const vsimd & rhs) \
{\
typedef typename vsimd::scalar_type scalar;\
return Comparison(functor<scalar,scalar>(),lhs,rhs);\
}\
template<class vsimd>\
accelerator_inline vInteger operator op(const iScalar<vsimd> &lhs,const typename vsimd::scalar_type &rhs) \
inline vInteger operator op(const iScalar<vsimd> &lhs,const typename vsimd::scalar_type &rhs) \
{ \
return lhs._internal op rhs; \
} \
template<class vsimd>\
accelerator_inline vInteger operator op(const typename vsimd::scalar_type &lhs,const iScalar<vsimd> &rhs) \
inline vInteger operator op(const typename vsimd::scalar_type &lhs,const iScalar<vsimd> &rhs) \
{ \
return lhs op rhs._internal; \
} \
@ -212,7 +212,7 @@ NAMESPACE_BEGIN(Grid);
#define DECLARE_RELATIONAL(op,functor) \
DECLARE_RELATIONAL_EQ(op,functor) \
template<class vsimd>\
accelerator_inline vInteger operator op(const iScalar<vsimd> &lhs,const iScalar<vsimd> &rhs)\
inline vInteger operator op(const iScalar<vsimd> &lhs,const iScalar<vsimd> &rhs)\
{ \
return lhs._internal op rhs._internal; \
}
@ -226,7 +226,7 @@ DECLARE_RELATIONAL(!=,sne);
#undef DECLARE_RELATIONAL
NAMESPACE_END(Grid);
}
#endif

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -23,18 +23,18 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_CONFORMABLE_H
#define GRID_LATTICE_CONFORMABLE_H
NAMESPACE_BEGIN(Grid);
namespace Grid {
template<class obj1,class obj2> void conformable(const Lattice<obj1> &lhs,const Lattice<obj2> &rhs)
{
assert(lhs._grid == rhs._grid);
assert(lhs.checkerboard == rhs.checkerboard);
}
template<class obj1,class obj2> void conformable(const Lattice<obj1> &lhs,const Lattice<obj2> &rhs)
{
assert(lhs.Grid() == rhs.Grid());
assert(lhs.Checkerboard() == rhs.Checkerboard());
}
NAMESPACE_END(Grid);
#endif

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -23,33 +23,34 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_COORDINATE_H
#define GRID_LATTICE_COORDINATE_H
NAMESPACE_BEGIN(Grid);
namespace Grid {
template<class iobj> inline void LatticeCoordinate(Lattice<iobj> &l,int mu)
{
typedef typename iobj::scalar_type scalar_type;
typedef typename iobj::vector_type vector_type;
template<class iobj> inline void LatticeCoordinate(Lattice<iobj> &l,int mu)
{
typedef typename iobj::scalar_type scalar_type;
typedef typename iobj::vector_type vector_type;
GridBase *grid = l.Grid();
int Nsimd = grid->iSites();
GridBase *grid = l._grid;
int Nsimd = grid->iSites();
autoView(l_v, l, CpuWrite);
thread_for( o, grid->oSites(), {
vector_type vI;
Coordinate gcoor;
ExtractBuffer<scalar_type> mergebuf(Nsimd);
for(int i=0;i<grid->iSites();i++){
grid->RankIndexToGlobalCoor(grid->ThisRank(),o,i,gcoor);
mergebuf[i]=(Integer)gcoor[mu];
}
merge<vector_type,scalar_type>(vI,mergebuf);
l_v[o]=vI;
});
};
std::vector<int> gcoor;
std::vector<scalar_type> mergebuf(Nsimd);
NAMESPACE_END(Grid);
vector_type vI;
for(int o=0;o<grid->oSites();o++){
for(int i=0;i<grid->iSites();i++){
grid->RankIndexToGlobalCoor(grid->ThisRank(),o,i,gcoor);
mergebuf[i]=(Integer)gcoor[mu];
}
merge<vector_type,scalar_type>(vI,mergebuf);
l._odata[o]=vI;
}
};
}
#endif

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -23,8 +23,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_LOCALREDUCTION_H
#define GRID_LATTICE_LOCALREDUCTION_H
@ -32,56 +32,44 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
// localInner, localNorm, outerProduct
///////////////////////////////////////////////
NAMESPACE_BEGIN(Grid);
namespace Grid {
/////////////////////////////////////////////////////
// Non site, reduced locally reduced routines
/////////////////////////////////////////////////////
/////////////////////////////////////////////////////
// Non site, reduced locally reduced routines
/////////////////////////////////////////////////////
// localNorm2,
template<class vobj>
inline auto localNorm2 (const Lattice<vobj> &rhs)-> Lattice<typename vobj::tensor_reduced>
{
Lattice<typename vobj::tensor_reduced> ret(rhs.Grid());
autoView( rhs_v , rhs, AcceleratorRead);
autoView( ret_v , ret, AcceleratorWrite);
accelerator_for(ss,rhs_v.size(),vobj::Nsimd(),{
coalescedWrite(ret_v[ss],innerProduct(rhs_v(ss),rhs_v(ss)));
});
return ret;
}
// localNorm2,
template<class vobj>
inline auto localNorm2 (const Lattice<vobj> &rhs)-> Lattice<typename vobj::tensor_reduced>
{
Lattice<typename vobj::tensor_reduced> ret(rhs._grid);
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
ret._odata[ss]=innerProduct(rhs._odata[ss],rhs._odata[ss]);
}
return ret;
}
// localInnerProduct
template<class vobj>
inline auto localInnerProduct (const Lattice<vobj> &lhs,const Lattice<vobj> &rhs) -> Lattice<typename vobj::tensor_reduced>
{
Lattice<typename vobj::tensor_reduced> ret(rhs.Grid());
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
autoView( ret_v , ret, AcceleratorWrite);
accelerator_for(ss,rhs_v.size(),vobj::Nsimd(),{
coalescedWrite(ret_v[ss],innerProduct(lhs_v(ss),rhs_v(ss)));
});
return ret;
}
// localInnerProduct
template<class vobj>
inline auto localInnerProduct (const Lattice<vobj> &lhs,const Lattice<vobj> &rhs) -> Lattice<typename vobj::tensor_reduced>
{
Lattice<typename vobj::tensor_reduced> ret(rhs._grid);
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
ret._odata[ss]=innerProduct(lhs._odata[ss],rhs._odata[ss]);
}
return ret;
}
// outerProduct Scalar x Scalar -> Scalar
// Vector x Vector -> Matrix
template<class ll,class rr>
inline auto outerProduct (const Lattice<ll> &lhs,const Lattice<rr> &rhs) -> Lattice<decltype(outerProduct(ll(),rr()))>
{
typedef decltype(coalescedRead(ll())) sll;
typedef decltype(coalescedRead(rr())) srr;
Lattice<decltype(outerProduct(ll(),rr()))> ret(rhs.Grid());
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
autoView( ret_v , ret, AcceleratorWrite);
accelerator_for(ss,rhs_v.size(),1,{
// FIXME had issues with scalar version of outer
// Use vector [] operator and don't read coalesce this loop
ret_v[ss]=outerProduct(lhs_v[ss],rhs_v[ss]);
});
return ret;
// outerProduct Scalar x Scalar -> Scalar
// Vector x Vector -> Matrix
template<class ll,class rr>
inline auto outerProduct (const Lattice<ll> &lhs,const Lattice<rr> &rhs) -> Lattice<decltype(outerProduct(lhs._odata[0],rhs._odata[0]))>
{
Lattice<decltype(outerProduct(lhs._odata[0],rhs._odata[0]))> ret(rhs._grid);
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
ret._odata[ss]=outerProduct(lhs._odata[ss],rhs._odata[ss]);
}
return ret;
}
}
NAMESPACE_END(Grid);
#endif

View File

@ -1,202 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_reduction.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/Grid_Eigen_Dense.h>
#ifdef GRID_WARN_SUBOPTIMAL
#warning "Optimisation alert all these reduction loops are NOT threaded "
#endif
NAMESPACE_BEGIN(Grid);
template<class vobj>
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
GridBase *FullGrid = X.Grid();
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
// Lattice<vobj> Xslice(SliceGrid);
// Lattice<vobj> Rslice(SliceGrid);
assert( FullGrid->_simd_layout[Orthog]==1);
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
int stride=FullGrid->_slice_stride[Orthog];
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
autoView( X_v , X, CpuRead);
autoView( Y_v , Y, CpuRead);
autoView( R_v , R, CpuWrite);
thread_region
{
std::vector<vobj> s_x(Nblock);
thread_loop_collapse2( (int n=0;n<nblock;n++),{
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
s_x[i] = X_v[o+i*ostride];
}
vobj dot;
for(int i=0;i<Nblock;i++){
dot = Y_v[o+i*ostride];
for(int j=0;j<Nblock;j++){
dot = dot + s_x[j]*(scale*aa(j,i));
}
R_v[o+i*ostride]=dot;
}
}});
}
};
template<class vobj>
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
GridBase *FullGrid = X.Grid();
assert( FullGrid->_simd_layout[Orthog]==1);
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
int stride=FullGrid->_slice_stride[Orthog];
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
autoView( X_v , X, CpuRead);
autoView( R_v , R, CpuWrite);
thread_region
{
std::vector<vobj> s_x(Nblock);
thread_loop_collapse2( (int n=0;n<nblock;n++),{
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
s_x[i] = X_v[o+i*ostride];
}
vobj dot;
for(int i=0;i<Nblock;i++){
dot = s_x[0]*(scale*aa(0,i));
for(int j=1;j<Nblock;j++){
dot = dot + s_x[j]*(scale*aa(j,i));
}
R_v[o+i*ostride]=dot;
}
}});
}
};
template<class vobj>
static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
GridBase *FullGrid = lhs.Grid();
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
int Nblock = FullGrid->GlobalDimensions()[Orthog];
// Lattice<vobj> Lslice(SliceGrid);
// Lattice<vobj> Rslice(SliceGrid);
mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
assert( FullGrid->_simd_layout[Orthog]==1);
// int nh = FullGrid->_ndimension;
// int nl = SliceGrid->_ndimension;
// int nl = nh-1;
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
int stride=FullGrid->_slice_stride[Orthog];
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
typedef typename vobj::vector_typeD vector_typeD;
autoView( lhs_v , lhs, CpuRead);
autoView( rhs_v , rhs, CpuRead);
thread_region {
std::vector<vobj> Left(Nblock);
std::vector<vobj> Right(Nblock);
Eigen::MatrixXcd mat_thread = Eigen::MatrixXcd::Zero(Nblock,Nblock);
thread_loop_collapse2((int n=0;n<nblock;n++),{
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
Left [i] = lhs_v[o+i*ostride];
Right[i] = rhs_v[o+i*ostride];
}
for(int i=0;i<Nblock;i++){
for(int j=0;j<Nblock;j++){
auto tmp = innerProduct(Left[i],Right[j]);
auto rtmp = TensorRemove(tmp);
ComplexD z = Reduce(rtmp);
mat_thread(i,j) += std::complex<double>(real(z),imag(z));
}}
}});
thread_critical {
mat += mat_thread;
}
}
for(int i=0;i<Nblock;i++){
for(int j=0;j<Nblock;j++){
ComplexD sum = mat(i,j);
FullGrid->GlobalSum(sum);
mat(i,j)=sum;
}}
return;
}
NAMESPACE_END(Grid);

View File

@ -0,0 +1,138 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_overload.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_OVERLOAD_H
#define GRID_LATTICE_OVERLOAD_H
namespace Grid {
//////////////////////////////////////////////////////////////////////////////////////////////////////
// unary negation
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj>
inline Lattice<vobj> operator -(const Lattice<vobj> &r)
{
Lattice<vobj> ret(r._grid);
parallel_for(int ss=0;ss<r._grid->oSites();ss++){
vstream(ret._odata[ss], -r._odata[ss]);
}
return ret;
}
/////////////////////////////////////////////////////////////////////////////////////
// Lattice BinOp Lattice,
//NB mult performs conformable check. Do not reapply here for performance.
/////////////////////////////////////////////////////////////////////////////////////
template<class left,class right>
inline auto operator * (const Lattice<left> &lhs,const Lattice<right> &rhs)-> Lattice<decltype(lhs._odata[0]*rhs._odata[0])>
{
Lattice<decltype(lhs._odata[0]*rhs._odata[0])> ret(rhs._grid);
mult(ret,lhs,rhs);
return ret;
}
template<class left,class right>
inline auto operator + (const Lattice<left> &lhs,const Lattice<right> &rhs)-> Lattice<decltype(lhs._odata[0]+rhs._odata[0])>
{
Lattice<decltype(lhs._odata[0]+rhs._odata[0])> ret(rhs._grid);
add(ret,lhs,rhs);
return ret;
}
template<class left,class right>
inline auto operator - (const Lattice<left> &lhs,const Lattice<right> &rhs)-> Lattice<decltype(lhs._odata[0]-rhs._odata[0])>
{
Lattice<decltype(lhs._odata[0]-rhs._odata[0])> ret(rhs._grid);
sub(ret,lhs,rhs);
return ret;
}
// Scalar BinOp Lattice ;generate return type
template<class left,class right>
inline auto operator * (const left &lhs,const Lattice<right> &rhs) -> Lattice<decltype(lhs*rhs._odata[0])>
{
Lattice<decltype(lhs*rhs._odata[0])> ret(rhs._grid);
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
decltype(lhs*rhs._odata[0]) tmp=lhs*rhs._odata[ss];
vstream(ret._odata[ss],tmp);
// ret._odata[ss]=lhs*rhs._odata[ss];
}
return ret;
}
template<class left,class right>
inline auto operator + (const left &lhs,const Lattice<right> &rhs) -> Lattice<decltype(lhs+rhs._odata[0])>
{
Lattice<decltype(lhs+rhs._odata[0])> ret(rhs._grid);
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
decltype(lhs+rhs._odata[0]) tmp =lhs-rhs._odata[ss];
vstream(ret._odata[ss],tmp);
// ret._odata[ss]=lhs+rhs._odata[ss];
}
return ret;
}
template<class left,class right>
inline auto operator - (const left &lhs,const Lattice<right> &rhs) -> Lattice<decltype(lhs-rhs._odata[0])>
{
Lattice<decltype(lhs-rhs._odata[0])> ret(rhs._grid);
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
decltype(lhs-rhs._odata[0]) tmp=lhs-rhs._odata[ss];
vstream(ret._odata[ss],tmp);
}
return ret;
}
template<class left,class right>
inline auto operator * (const Lattice<left> &lhs,const right &rhs) -> Lattice<decltype(lhs._odata[0]*rhs)>
{
Lattice<decltype(lhs._odata[0]*rhs)> ret(lhs._grid);
parallel_for(int ss=0;ss<lhs._grid->oSites(); ss++){
decltype(lhs._odata[0]*rhs) tmp =lhs._odata[ss]*rhs;
vstream(ret._odata[ss],tmp);
// ret._odata[ss]=lhs._odata[ss]*rhs;
}
return ret;
}
template<class left,class right>
inline auto operator + (const Lattice<left> &lhs,const right &rhs) -> Lattice<decltype(lhs._odata[0]+rhs)>
{
Lattice<decltype(lhs._odata[0]+rhs)> ret(lhs._grid);
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
decltype(lhs._odata[0]+rhs) tmp=lhs._odata[ss]+rhs;
vstream(ret._odata[ss],tmp);
// ret._odata[ss]=lhs._odata[ss]+rhs;
}
return ret;
}
template<class left,class right>
inline auto operator - (const Lattice<left> &lhs,const right &rhs) -> Lattice<decltype(lhs._odata[0]-rhs)>
{
Lattice<decltype(lhs._odata[0]-rhs)> ret(lhs._grid);
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
decltype(lhs._odata[0]-rhs) tmp=lhs._odata[ss]-rhs;
vstream(ret._odata[ss],tmp);
// ret._odata[ss]=lhs._odata[ss]-rhs;
}
return ret;
}
}
#endif

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -25,8 +25,8 @@ Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_PEEK_H
#define GRID_LATTICE_PEEK_H
@ -34,198 +34,172 @@ Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
// Peeking and poking around
///////////////////////////////////////////////
NAMESPACE_BEGIN(Grid);
namespace Grid {
////////////////////////////////////////////////////////////////////////////////////////////////////
// Peek internal indices of a Lattice object
////////////////////////////////////////////////////////////////////////////////////////////////////
template<int Index,class vobj>
auto PeekIndex(const Lattice<vobj> &lhs,int i) -> Lattice<decltype(peekIndex<Index>(lhs._odata[0],i))>
{
Lattice<decltype(peekIndex<Index>(lhs._odata[0],i))> ret(lhs._grid);
ret.checkerboard=lhs.checkerboard;
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = peekIndex<Index>(lhs._odata[ss],i);
}
return ret;
};
template<int Index,class vobj>
auto PeekIndex(const Lattice<vobj> &lhs,int i,int j) -> Lattice<decltype(peekIndex<Index>(lhs._odata[0],i,j))>
{
Lattice<decltype(peekIndex<Index>(lhs._odata[0],i,j))> ret(lhs._grid);
ret.checkerboard=lhs.checkerboard;
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = peekIndex<Index>(lhs._odata[ss],i,j);
}
return ret;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
// Poke internal indices of a Lattice object
////////////////////////////////////////////////////////////////////////////////////////////////////
template<int Index,class vobj>
void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(lhs._odata[0],0))> & rhs,int i)
{
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
pokeIndex<Index>(lhs._odata[ss],rhs._odata[ss],i);
}
}
template<int Index,class vobj>
void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(lhs._odata[0],0,0))> & rhs,int i,int j)
{
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
pokeIndex<Index>(lhs._odata[ss],rhs._odata[ss],i,j);
}
}
//////////////////////////////////////////////////////
// Poke a scalar object into the SIMD array
//////////////////////////////////////////////////////
template<class vobj,class sobj>
void pokeSite(const sobj &s,Lattice<vobj> &l,const std::vector<int> &site){
GridBase *grid=l._grid;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nsimd = grid->Nsimd();
assert( l.checkerboard== l._grid->CheckerBoard(site));
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
int rank,odx,idx;
// Optional to broadcast from node 0.
grid->GlobalCoorToRankIndex(rank,odx,idx,site);
grid->Broadcast(grid->BossRank(),s);
std::vector<sobj> buf(Nsimd);
// extract-modify-merge cycle is easiest way and this is not perf critical
if ( rank == grid->ThisRank() ) {
extract(l._odata[odx],buf);
buf[idx] = s;
merge(l._odata[odx],buf);
}
return;
};
// FIXME accelerator_loop and accelerator_inline these
////////////////////////////////////////////////////////////////////////////////////////////////////
// Peek internal indices of a Lattice object
////////////////////////////////////////////////////////////////////////////////////////////////////
template<int Index,class vobj>
auto PeekIndex(const Lattice<vobj> &lhs,int i) -> Lattice<decltype(peekIndex<Index>(vobj(),i))>
{
Lattice<decltype(peekIndex<Index>(vobj(),i))> ret(lhs.Grid());
ret.Checkerboard()=lhs.Checkerboard();
autoView( ret_v, ret, AcceleratorWrite);
autoView( lhs_v, lhs, AcceleratorRead);
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] = peekIndex<Index>(lhs_v[ss],i);
});
return ret;
};
template<int Index,class vobj>
auto PeekIndex(const Lattice<vobj> &lhs,int i,int j) -> Lattice<decltype(peekIndex<Index>(vobj(),i,j))>
{
Lattice<decltype(peekIndex<Index>(vobj(),i,j))> ret(lhs.Grid());
ret.Checkerboard()=lhs.Checkerboard();
autoView( ret_v, ret, AcceleratorWrite);
autoView( lhs_v, lhs, AcceleratorRead);
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] = peekIndex<Index>(lhs_v[ss],i,j);
});
return ret;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
// Poke internal indices of a Lattice object
////////////////////////////////////////////////////////////////////////////////////////////////////
template<int Index,class vobj>
void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(vobj(),0))> & rhs,int i)
{
autoView( rhs_v, rhs, AcceleratorRead);
autoView( lhs_v, lhs, AcceleratorWrite);
accelerator_for( ss, lhs_v.size(), 1, {
pokeIndex<Index>(lhs_v[ss],rhs_v[ss],i);
});
}
template<int Index,class vobj>
void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(vobj(),0,0))> & rhs,int i,int j)
{
autoView( rhs_v, rhs, AcceleratorRead);
autoView( lhs_v, lhs, AcceleratorWrite);
accelerator_for( ss, lhs_v.size(), 1, {
pokeIndex<Index>(lhs_v[ss],rhs_v[ss],i,j);
});
}
//////////////////////////////////////////////////////
// Poke a scalar object into the SIMD array
//////////////////////////////////////////////////////
template<class vobj,class sobj>
void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){
GridBase *grid=l.Grid();
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nsimd = grid->Nsimd();
assert( l.Checkerboard()== l.Grid()->CheckerBoard(site));
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
int rank,odx,idx;
// Optional to broadcast from node 0.
grid->GlobalCoorToRankIndex(rank,odx,idx,site);
grid->Broadcast(grid->BossRank(),s);
// extract-modify-merge cycle is easiest way and this is not perf critical
ExtractBuffer<sobj> buf(Nsimd);
autoView( l_v , l, CpuWrite);
if ( rank == grid->ThisRank() ) {
extract(l_v[odx],buf);
buf[idx] = s;
merge(l_v[odx],buf);
}
return;
};
//////////////////////////////////////////////////////////
// Peek a scalar object from the SIMD array
//////////////////////////////////////////////////////////
template<class vobj,class sobj>
void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
//////////////////////////////////////////////////////////
// Peek a scalar object from the SIMD array
//////////////////////////////////////////////////////////
template<class vobj,class sobj>
void peekSite(sobj &s,const Lattice<vobj> &l,const std::vector<int> &site){
GridBase *grid=l.Grid();
GridBase *grid=l._grid;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nsimd = grid->Nsimd();
int Nsimd = grid->Nsimd();
assert( l.Checkerboard() == l.Grid()->CheckerBoard(site));
assert( l.checkerboard == l._grid->CheckerBoard(site));
int rank,odx,idx;
grid->GlobalCoorToRankIndex(rank,odx,idx,site);
int rank,odx,idx;
grid->GlobalCoorToRankIndex(rank,odx,idx,site);
ExtractBuffer<sobj> buf(Nsimd);
autoView( l_v , l, CpuWrite);
extract(l_v[odx],buf);
std::vector<sobj> buf(Nsimd);
extract(l._odata[odx],buf);
s = buf[idx];
s = buf[idx];
grid->Broadcast(rank,s);
grid->Broadcast(rank,s);
return;
};
return;
};
//////////////////////////////////////////////////////////
// Peek a scalar object from the SIMD array
//////////////////////////////////////////////////////////
// Must be CPU read view
template<class vobj,class sobj>
inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
{
GridBase *grid = l.getGrid();
assert(l.mode==CpuRead);
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nsimd = grid->Nsimd();
//////////////////////////////////////////////////////////
// Peek a scalar object from the SIMD array
//////////////////////////////////////////////////////////
template<class vobj,class sobj>
void peekLocalSite(sobj &s,const Lattice<vobj> &l,std::vector<int> &site){
GridBase *grid = l._grid;
assert( l.Checkerboard()== grid->CheckerBoard(site));
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
static const int words=sizeof(vobj)/sizeof(vector_type);
int odx,idx;
idx= grid->iIndex(site);
odx= grid->oIndex(site);
scalar_type * vp = (scalar_type *)&l[odx];
scalar_type * pt = (scalar_type *)&s;
int Nsimd = grid->Nsimd();
assert( l.checkerboard== l._grid->CheckerBoard(site));
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
static const int words=sizeof(vobj)/sizeof(vector_type);
int odx,idx;
idx= grid->iIndex(site);
odx= grid->oIndex(site);
scalar_type * vp = (scalar_type *)&l._odata[odx];
scalar_type * pt = (scalar_type *)&s;
for(int w=0;w<words;w++){
pt[w] = vp[idx+w*Nsimd];
}
for(int w=0;w<words;w++){
pt[w] = vp[idx+w*Nsimd];
}
return;
};
template<class vobj,class sobj>
inline void peekLocalSite(sobj &s,const Lattice<vobj> &l,Coordinate &site)
{
autoView(lv,l,CpuRead);
peekLocalSite(s,lv,site);
return;
};
return;
};
// Must be CPU write view
template<class vobj,class sobj>
inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site)
{
GridBase *grid=l.getGrid();
assert(l.mode==CpuWrite);
template<class vobj,class sobj>
void pokeLocalSite(const sobj &s,Lattice<vobj> &l,std::vector<int> &site){
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
GridBase *grid=l._grid;
int Nsimd = grid->Nsimd();
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
assert( l.Checkerboard()== grid->CheckerBoard(site));
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
int Nsimd = grid->Nsimd();
static const int words=sizeof(vobj)/sizeof(vector_type);
int odx,idx;
idx= grid->iIndex(site);
odx= grid->oIndex(site);
assert( l.checkerboard== l._grid->CheckerBoard(site));
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
scalar_type * vp = (scalar_type *)&l[odx];
scalar_type * pt = (scalar_type *)&s;
for(int w=0;w<words;w++){
vp[idx+w*Nsimd] = pt[w];
}
return;
};
static const int words=sizeof(vobj)/sizeof(vector_type);
int odx,idx;
idx= grid->iIndex(site);
odx= grid->oIndex(site);
template<class vobj,class sobj>
inline void pokeLocalSite(const sobj &s, Lattice<vobj> &l,Coordinate &site)
{
autoView(lv,l,CpuWrite);
pokeLocalSite(s,lv,site);
return;
};
scalar_type * vp = (scalar_type *)&l._odata[odx];
scalar_type * pt = (scalar_type *)&s;
for(int w=0;w<words;w++){
vp[idx+w*Nsimd] = pt[w];
}
NAMESPACE_END(Grid);
return;
};
}
#endif

View File

@ -1,79 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_reality.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_REAL_IMAG_H
#define GRID_LATTICE_REAL_IMAG_H
// FIXME .. this is the sector of the code
// I am most worried about the directions
// The choice of burying complex in the SIMD
// is making the use of "real" and "imag" very cumbersome
NAMESPACE_BEGIN(Grid);
template<class vobj> inline Lattice<vobj> real(const Lattice<vobj> &lhs){
Lattice<vobj> ret(lhs.Grid());
autoView( lhs_v, lhs, AcceleratorRead);
autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard()=lhs.Checkerboard();
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] =real(lhs_v[ss]);
});
return ret;
};
template<class vobj> inline Lattice<vobj> imag(const Lattice<vobj> &lhs){
Lattice<vobj> ret(lhs.Grid());
autoView( lhs_v, lhs, AcceleratorRead);
autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard()=lhs.Checkerboard();
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] =imag(lhs_v[ss]);
});
return ret;
};
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto real(const Expression &expr) -> decltype(real(closure(expr)))
{
return real(closure(expr));
}
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto imag(const Expression &expr) -> decltype(imag(closure(expr)))
{
return imag(closure(expr));
}
NAMESPACE_END(Grid);
#endif

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -25,8 +25,8 @@ Author: neo <cossu@post.kek.jp>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_REALITY_H
#define GRID_LATTICE_REALITY_H
@ -36,81 +36,22 @@ Author: neo <cossu@post.kek.jp>
// The choice of burying complex in the SIMD
// is making the use of "real" and "imag" very cumbersome
NAMESPACE_BEGIN(Grid);
namespace Grid {
template<class vobj> inline Lattice<vobj> adj(const Lattice<vobj> &lhs){
Lattice<vobj> ret(lhs.Grid());
template<class vobj> inline Lattice<vobj> adj(const Lattice<vobj> &lhs){
Lattice<vobj> ret(lhs._grid);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = adj(lhs._odata[ss]);
}
return ret;
};
autoView( lhs_v, lhs, AcceleratorRead);
autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard()=lhs.Checkerboard();
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] = adj(lhs_v[ss]);
});
return ret;
};
template<class vobj> inline Lattice<vobj> conjugate(const Lattice<vobj> &lhs){
Lattice<vobj> ret(lhs.Grid());
autoView( lhs_v, lhs, AcceleratorRead);
autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard() = lhs.Checkerboard();
accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), {
coalescedWrite( ret_v[ss] , conjugate(lhs_v(ss)));
});
return ret;
};
template<class vobj> inline Lattice<typename vobj::Complexified> toComplex(const Lattice<vobj> &lhs){
Lattice<typename vobj::Complexified> ret(lhs.Grid());
autoView( lhs_v, lhs, AcceleratorRead);
autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard() = lhs.Checkerboard();
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] = toComplex(lhs_v[ss]);
});
return ret;
};
template<class vobj> inline Lattice<typename vobj::Realified> toReal(const Lattice<vobj> &lhs){
Lattice<typename vobj::Realified> ret(lhs.Grid());
autoView( lhs_v, lhs, AcceleratorRead);
autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard() = lhs.Checkerboard();
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] = toReal(lhs_v[ss]);
});
return ret;
};
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto toComplex(const Expression &expr) -> decltype(closure(expr))
{
return toComplex(closure(expr));
template<class vobj> inline Lattice<vobj> conjugate(const Lattice<vobj> &lhs){
Lattice<vobj> ret(lhs._grid);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = conjugate(lhs._odata[ss]);
}
return ret;
};
}
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto toReal(const Expression &expr) -> decltype(closure(expr))
{
return toReal(closure(expr));
}
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto adj(const Expression &expr) -> decltype(closure(expr))
{
return adj(closure(expr));
}
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto conjugate(const Expression &expr) -> decltype(closure(expr))
{
return conjugate(closure(expr));
}
NAMESPACE_END(Grid);
#endif

View File

@ -5,7 +5,6 @@
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
@ -20,224 +19,58 @@ Author: Christoph Lehner <christoph@lhnr.de>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#ifndef GRID_LATTICE_REDUCTION_H
#define GRID_LATTICE_REDUCTION_H
#include <Grid/Grid_Eigen_Dense.h>
namespace Grid {
#ifdef GRID_WARN_SUBOPTIMAL
#warning "Optimisation alert all these reduction loops are NOT threaded "
#endif
#if defined(GRID_CUDA)||defined(GRID_HIP)
#include <Grid/lattice/Lattice_reduction_gpu.h>
#endif
NAMESPACE_BEGIN(Grid);
//////////////////////////////////////////////////////
// FIXME this should promote to double and accumulate
//////////////////////////////////////////////////////
template<class vobj>
inline typename vobj::scalar_object sum_cpu(const vobj *arg, Integer osites)
{
typedef typename vobj::scalar_object sobj;
// const int Nsimd = vobj::Nsimd();
const int nthread = GridThread::GetThreads();
Vector<sobj> sumarray(nthread);
for(int i=0;i<nthread;i++){
sumarray[i]=Zero();
}
thread_for(thr,nthread, {
int nwork, mywork, myoff;
nwork = osites;
GridThread::GetWork(nwork,thr,mywork,myoff);
vobj vvsum=Zero();
for(int ss=myoff;ss<mywork+myoff; ss++){
vvsum = vvsum + arg[ss];
}
sumarray[thr]=Reduce(vvsum);
});
sobj ssum=Zero(); // sum across threads
for(int i=0;i<nthread;i++){
ssum = ssum+sumarray[i];
}
return ssum;
}
template<class vobj>
inline typename vobj::scalar_objectD sumD_cpu(const vobj *arg, Integer osites)
{
typedef typename vobj::scalar_objectD sobj;
const int nthread = GridThread::GetThreads();
Vector<sobj> sumarray(nthread);
for(int i=0;i<nthread;i++){
sumarray[i]=Zero();
}
thread_for(thr,nthread, {
int nwork, mywork, myoff;
nwork = osites;
GridThread::GetWork(nwork,thr,mywork,myoff);
vobj vvsum=Zero();
for(int ss=myoff;ss<mywork+myoff; ss++){
vvsum = vvsum + arg[ss];
}
sumarray[thr]=Reduce(vvsum);
});
sobj ssum=Zero(); // sum across threads
for(int i=0;i<nthread;i++){
ssum = ssum+sumarray[i];
}
typedef typename vobj::scalar_object ssobj;
ssobj ret = ssum;
return ret;
}
/*
Threaded max, don't use for now
template<class Double>
inline Double max(const Double *arg, Integer osites)
{
// const int Nsimd = vobj::Nsimd();
const int nthread = GridThread::GetThreads();
std::vector<Double> maxarray(nthread);
thread_for(thr,nthread, {
int nwork, mywork, myoff;
nwork = osites;
GridThread::GetWork(nwork,thr,mywork,myoff);
Double max=arg[0];
for(int ss=myoff;ss<mywork+myoff; ss++){
if( arg[ss] > max ) max = arg[ss];
}
maxarray[thr]=max;
});
Double tmax=maxarray[0];
for(int i=0;i<nthread;i++){
if (maxarray[i]>tmax) tmax = maxarray[i];
}
return tmax;
}
*/
template<class vobj>
inline typename vobj::scalar_object sum(const vobj *arg, Integer osites)
{
#if defined(GRID_CUDA)||defined(GRID_HIP)
return sum_gpu(arg,osites);
#else
return sum_cpu(arg,osites);
#endif
}
template<class vobj>
inline typename vobj::scalar_objectD sumD(const vobj *arg, Integer osites)
{
#if defined(GRID_CUDA)||defined(GRID_HIP)
return sumD_gpu(arg,osites);
#else
return sumD_cpu(arg,osites);
#endif
}
template<class vobj>
inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
{
#if defined(GRID_CUDA)||defined(GRID_HIP)
autoView( arg_v, arg, AcceleratorRead);
Integer osites = arg.Grid()->oSites();
auto ssum= sum_gpu(&arg_v[0],osites);
#else
autoView(arg_v, arg, CpuRead);
Integer osites = arg.Grid()->oSites();
auto ssum= sum_cpu(&arg_v[0],osites);
#endif
arg.Grid()->GlobalSum(ssum);
return ssum;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Deterministic Reduction operations
////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////
// Deterministic Reduction operations
////////////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj> inline RealD norm2(const Lattice<vobj> &arg){
ComplexD nrm = innerProduct(arg,arg);
return real(nrm);
}
//The global maximum of the site norm2
template<class vobj> inline RealD maxLocalNorm2(const Lattice<vobj> &arg)
{
typedef typename vobj::tensor_reduced vscalar; //iScalar<iScalar<.... <vPODtype> > >
typedef typename vscalar::scalar_object scalar; //iScalar<iScalar<.... <PODtype> > >
Lattice<vscalar> inner = localNorm2(arg);
auto grid = arg.Grid();
RealD max;
for(int l=0;l<grid->lSites();l++){
Coordinate coor;
scalar val;
RealD r;
grid->LocalIndexToLocalCoor(l,coor);
peekLocalSite(val,inner,coor);
r=real(TensorRemove(val));
if( (l==0) || (r>max)){
max=r;
}
}
grid->GlobalMax(max);
return max;
auto nrm = innerProduct(arg,arg);
return std::real(nrm);
}
// Double inner product
template<class vobj>
inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right)
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right)
{
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_typeD vector_type;
ComplexD nrm;
GridBase *grid = left.Grid();
GridBase *grid = left._grid;
const int pad = 8;
const uint64_t nsimd = grid->Nsimd();
const uint64_t sites = grid->oSites();
// Might make all code paths go this way.
typedef decltype(innerProductD(vobj(),vobj())) inner_t;
Vector<inner_t> inner_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
ComplexD inner;
Vector<ComplexD> sumarray(grid->SumArraySize()*pad);
parallel_for(int thr=0;thr<grid->SumArraySize();thr++){
int nwork, mywork, myoff;
GridThread::GetWork(left._grid->oSites(),thr,mywork,myoff);
{
autoView( left_v , left, AcceleratorRead);
autoView( right_v,right, AcceleratorRead);
// GPU - SIMT lane compliance...
accelerator_for( ss, sites, 1,{
auto x_l = left_v[ss];
auto y_l = right_v[ss];
inner_tmp_v[ss]=innerProductD(x_l,y_l);
});
decltype(innerProductD(left._odata[0],right._odata[0])) vinner=zero; // private to thread; sub summation
for(int ss=myoff;ss<mywork+myoff; ss++){
vinner = vinner + innerProductD(left._odata[ss],right._odata[ss]);
}
// All threads sum across SIMD; reduce serial work at end
// one write per cacheline with streaming store
ComplexD tmp = Reduce(TensorRemove(vinner)) ;
vstream(sumarray[thr*pad],tmp);
}
// This is in single precision and fails some tests
auto anrm = sum(inner_tmp_v,sites);
nrm = anrm;
return nrm;
inner=0.0;
for(int i=0;i<grid->SumArraySize();i++){
inner = inner+sumarray[i*pad];
}
right._grid->GlobalSum(inner);
return inner;
}
template<class vobj>
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) {
GridBase *grid = left.Grid();
ComplexD nrm = rankInnerProduct(left,right);
grid->GlobalSum(nrm);
return nrm;
}
/////////////////////////
// Fast axpby_norm
// z = a x + b y
@ -253,7 +86,8 @@ axpy_norm_fast(Lattice<vobj> &z,sobj a,const Lattice<vobj> &x,const Lattice<vobj
template<class sobj,class vobj> strong_inline RealD
axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
{
z.Checkerboard() = x.Checkerboard();
const int pad = 8;
z.checkerboard = x.checkerboard;
conformable(z,x);
conformable(x,y);
@ -261,79 +95,43 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
typedef typename vobj::vector_typeD vector_type;
RealD nrm;
GridBase *grid = x.Grid();
const uint64_t nsimd = grid->Nsimd();
const uint64_t sites = grid->oSites();
GridBase *grid = x._grid;
// GPU
autoView( x_v, x, AcceleratorRead);
autoView( y_v, y, AcceleratorRead);
autoView( z_v, z, AcceleratorWrite);
typedef decltype(innerProductD(x_v[0],y_v[0])) inner_t;
Vector<inner_t> inner_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
accelerator_for( ss, sites, 1,{
auto tmp = a*x_v[ss]+b*y_v[ss];
inner_tmp_v[ss]=innerProductD(tmp,tmp);
z_v[ss]=tmp;
});
nrm = real(TensorRemove(sum(inner_tmp_v,sites)));
grid->GlobalSum(nrm);
Vector<RealD> sumarray(grid->SumArraySize()*pad);
parallel_for(int thr=0;thr<grid->SumArraySize();thr++){
int nwork, mywork, myoff;
GridThread::GetWork(x._grid->oSites(),thr,mywork,myoff);
// private to thread; sub summation
decltype(innerProductD(z._odata[0],z._odata[0])) vnrm=zero;
for(int ss=myoff;ss<mywork+myoff; ss++){
vobj tmp = a*x._odata[ss]+b*y._odata[ss];
vnrm = vnrm + innerProductD(tmp,tmp);
vstream(z._odata[ss],tmp);
}
vstream(sumarray[thr*pad],real(Reduce(TensorRemove(vnrm)))) ;
}
nrm = 0.0; // sum across threads; linear in thread count but fast
for(int i=0;i<grid->SumArraySize();i++){
nrm = nrm+sumarray[i*pad];
}
z._grid->GlobalSum(nrm);
return nrm;
}
template<class vobj> strong_inline void
innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Lattice<vobj> &right)
{
conformable(left,right);
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_typeD vector_type;
Vector<ComplexD> tmp(2);
GridBase *grid = left.Grid();
const uint64_t nsimd = grid->Nsimd();
const uint64_t sites = grid->oSites();
// GPU
typedef decltype(innerProductD(vobj(),vobj())) inner_t;
typedef decltype(innerProductD(vobj(),vobj())) norm_t;
Vector<inner_t> inner_tmp(sites);
Vector<norm_t> norm_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
auto norm_tmp_v = &norm_tmp[0];
{
autoView(left_v,left, AcceleratorRead);
autoView(right_v,right,AcceleratorRead);
accelerator_for( ss, sites, 1,{
auto left_tmp = left_v[ss];
inner_tmp_v[ss]=innerProductD(left_tmp,right_v[ss]);
norm_tmp_v [ss]=innerProductD(left_tmp,left_tmp);
});
}
tmp[0] = TensorRemove(sum(inner_tmp_v,sites));
tmp[1] = TensorRemove(sum(norm_tmp_v,sites));
grid->GlobalSumVector(&tmp[0],2); // keep norm Complex -> can use GlobalSumVector
ip = tmp[0];
nrm = real(tmp[1]);
}
template<class Op,class T1>
inline auto sum(const LatticeUnaryExpression<Op,T1> & expr)
->typename decltype(expr.op.func(eval(0,expr.arg1)))::scalar_object
->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second))))::scalar_object
{
return sum(closure(expr));
}
template<class Op,class T1,class T2>
inline auto sum(const LatticeBinaryExpression<Op,T1,T2> & expr)
->typename decltype(expr.op.func(eval(0,expr.arg1),eval(0,expr.arg2)))::scalar_object
->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second)),eval(0,std::get<1>(expr.second))))::scalar_object
{
return sum(closure(expr));
}
@ -341,14 +139,54 @@ inline auto sum(const LatticeBinaryExpression<Op,T1,T2> & expr)
template<class Op,class T1,class T2,class T3>
inline auto sum(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)
->typename decltype(expr.op.func(eval(0,expr.arg1),
eval(0,expr.arg2),
eval(0,expr.arg3)
->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
eval(0,std::get<1>(expr.second)),
eval(0,std::get<2>(expr.second))
))::scalar_object
{
return sum(closure(expr));
}
template<class vobj>
inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
{
GridBase *grid=arg._grid;
int Nsimd = grid->Nsimd();
std::vector<vobj,alignedAllocator<vobj> > sumarray(grid->SumArraySize());
for(int i=0;i<grid->SumArraySize();i++){
sumarray[i]=zero;
}
parallel_for(int thr=0;thr<grid->SumArraySize();thr++){
int nwork, mywork, myoff;
GridThread::GetWork(grid->oSites(),thr,mywork,myoff);
vobj vvsum=zero;
for(int ss=myoff;ss<mywork+myoff; ss++){
vvsum = vvsum + arg._odata[ss];
}
sumarray[thr]=vvsum;
}
vobj vsum=zero; // sum across threads
for(int i=0;i<grid->SumArraySize();i++){
vsum = vsum+sumarray[i];
}
typedef typename vobj::scalar_object sobj;
sobj ssum=zero;
std::vector<sobj> buf(Nsimd);
extract(vsum,buf);
for(int i=0;i<Nsimd;i++) ssum = ssum + buf[i];
arg._grid->GlobalSum(ssum);
return ssum;
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
// sliceSum, sliceInnerProduct, sliceAxpy, sliceNorm etc...
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
@ -361,7 +199,7 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
// But easily avoided by using double precision fields
///////////////////////////////////////////////////////
typedef typename vobj::scalar_object sobj;
GridBase *grid = Data.Grid();
GridBase *grid = Data._grid;
assert(grid!=NULL);
const int Nd = grid->_ndimension;
@ -374,13 +212,13 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
Vector<vobj> lvSum(rd); // will locally sum vectors first
Vector<sobj> lsSum(ld,Zero()); // sum across these down to scalars
ExtractBuffer<sobj> extracted(Nsimd); // splitting the SIMD
std::vector<vobj,alignedAllocator<vobj> > lvSum(rd); // will locally sum vectors first
std::vector<sobj> lsSum(ld,zero); // sum across these down to scalars
std::vector<sobj> extracted(Nsimd); // splitting the SIMD
result.resize(fd); // And then global sum to return the same vector to every node
for(int r=0;r<rd;r++){
lvSum[r]=Zero();
lvSum[r]=zero;
}
int e1= grid->_slice_nblock[orthogdim];
@ -389,19 +227,20 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
// sum over reduced dimension planes, breaking out orthog dir
// Parallel over orthog direction
autoView( Data_v, Data, CpuRead);
thread_for( r,rd, {
parallel_for(int r=0;r<rd;r++){
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
lvSum[r]=lvSum[r]+Data_v[ss];
lvSum[r]=lvSum[r]+Data._odata[ss];
}
}
});
}
// Sum across simd lanes in the plane, breaking out orthog dir.
Coordinate icoor(Nd);
std::vector<int> icoor(Nd);
for(int rt=0;rt<rd;rt++){
@ -426,7 +265,7 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
if ( pt == grid->_processor_coor[orthogdim] ) {
gsum=lsSum[lt];
} else {
gsum=Zero();
gsum=zero;
}
grid->GlobalSum(gsum);
@ -435,14 +274,123 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
}
}
template<class vobj>
static void mySliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)
{
// std::cout << GridLogMessage << "Start mySliceInnerProductVector" << std::endl;
typedef typename vobj::scalar_type scalar_type;
std::vector<scalar_type> lsSum;
localSliceInnerProductVector(result, lhs, rhs, lsSum, orthogdim);
globalSliceInnerProductVector(result, lhs, lsSum, orthogdim);
// std::cout << GridLogMessage << "End mySliceInnerProductVector" << std::endl;
}
template <class vobj>
static void localSliceInnerProductVector(std::vector<ComplexD> &result, const Lattice<vobj> &lhs, const Lattice<vobj> &rhs, std::vector<typename vobj::scalar_type> &lsSum, int orthogdim)
{
// std::cout << GridLogMessage << "Start prep" << std::endl;
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
GridBase *grid = lhs._grid;
assert(grid!=NULL);
conformable(grid,rhs._grid);
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
assert(orthogdim >= 0);
assert(orthogdim < Nd);
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
// std::cout << GridLogMessage << "Start alloc" << std::endl;
std::vector<vector_type,alignedAllocator<vector_type> > lvSum(rd); // will locally sum vectors first
lsSum.resize(ld,scalar_type(0.0)); // sum across these down to scalars
std::vector<iScalar<scalar_type>> extracted(Nsimd); // splitting the SIMD
// std::cout << GridLogMessage << "End alloc" << std::endl;
result.resize(fd); // And then global sum to return the same vector to every node for IO to file
for(int r=0;r<rd;r++){
lvSum[r]=zero;
}
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
// std::cout << GridLogMessage << "End prep" << std::endl;
// std::cout << GridLogMessage << "Start parallel inner product, _rd = " << rd << std::endl;
vector_type vv;
parallel_for(int r=0;r<rd;r++)
{
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss = so + n * stride + b;
vv = TensorRemove(innerProduct(lhs._odata[ss], rhs._odata[ss]));
lvSum[r] = lvSum[r] + vv;
}
}
}
// std::cout << GridLogMessage << "End parallel inner product" << std::endl;
// Sum across simd lanes in the plane, breaking out orthog dir.
std::vector<int> icoor(Nd);
for(int rt=0;rt<rd;rt++){
iScalar<vector_type> temp;
temp._internal = lvSum[rt];
extract(temp,extracted);
for(int idx=0;idx<Nsimd;idx++){
grid->iCoorFromIindex(icoor,idx);
int ldx =rt+icoor[orthogdim]*rd;
lsSum[ldx]=lsSum[ldx]+extracted[idx]._internal;
}
}
// std::cout << GridLogMessage << "End sum over simd lanes" << std::endl;
}
template <class vobj>
static void globalSliceInnerProductVector(std::vector<ComplexD> &result, const Lattice<vobj> &lhs, std::vector<typename vobj::scalar_type> &lsSum, int orthogdim)
{
typedef typename vobj::scalar_type scalar_type;
GridBase *grid = lhs._grid;
int fd = result.size();
int ld = lsSum.size();
// sum over nodes.
std::vector<scalar_type> gsum;
gsum.resize(fd, scalar_type(0.0));
// std::cout << GridLogMessage << "Start of gsum[t] creation:" << std::endl;
for(int t=0;t<fd;t++){
int pt = t/ld; // processor plane
int lt = t%ld;
if ( pt == grid->_processor_coor[orthogdim] ) {
gsum[t]=lsSum[lt];
}
}
// std::cout << GridLogMessage << "End of gsum[t] creation:" << std::endl;
// std::cout << GridLogMessage << "Start of GlobalSumVector:" << std::endl;
grid->GlobalSumVector(&gsum[0], fd);
// std::cout << GridLogMessage << "End of GlobalSumVector:" << std::endl;
result = gsum;
}
template<class vobj>
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)
{
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
GridBase *grid = lhs.Grid();
GridBase *grid = lhs._grid;
assert(grid!=NULL);
conformable(grid,rhs.Grid());
conformable(grid,rhs._grid);
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
@ -454,36 +402,34 @@ static void sliceInnerProductVector( std::vector<ComplexD> & result, const Latti
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
Vector<vector_type> lvSum(rd); // will locally sum vectors first
Vector<scalar_type > lsSum(ld,scalar_type(0.0)); // sum across these down to scalars
ExtractBuffer<iScalar<scalar_type> > extracted(Nsimd); // splitting the SIMD
std::vector<vector_type,alignedAllocator<vector_type> > lvSum(rd); // will locally sum vectors first
std::vector<scalar_type > lsSum(ld,scalar_type(0.0)); // sum across these down to scalars
std::vector<iScalar<scalar_type> > extracted(Nsimd); // splitting the SIMD
result.resize(fd); // And then global sum to return the same vector to every node for IO to file
for(int r=0;r<rd;r++){
lvSum[r]=Zero();
lvSum[r]=zero;
}
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
autoView( lhv, lhs, CpuRead);
autoView( rhv, rhs, CpuRead);
thread_for( r,rd,{
parallel_for(int r=0;r<rd;r++){
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
vector_type vv = TensorRemove(innerProduct(lhv[ss],rhv[ss]));
vector_type vv = TensorRemove(innerProduct(lhs._odata[ss],rhs._odata[ss]));
lvSum[r]=lvSum[r]+vv;
}
}
});
}
// Sum across simd lanes in the plane, breaking out orthog dir.
Coordinate icoor(Nd);
std::vector<int> icoor(Nd);
for(int rt=0;rt<rd;rt++){
iScalar<vector_type> temp;
@ -524,7 +470,7 @@ static void sliceNorm (std::vector<RealD> &sn,const Lattice<vobj> &rhs,int Ortho
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nblock = rhs.Grid()->GlobalDimensions()[Orthog];
int Nblock = rhs._grid->GlobalDimensions()[Orthog];
std::vector<ComplexD> ip(Nblock);
sn.resize(Nblock);
@ -546,7 +492,7 @@ static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice
scalar_type zscale(scale);
GridBase *grid = X.Grid();
GridBase *grid = X._grid;
int Nsimd =grid->Nsimd();
int Nblock =grid->GlobalDimensions()[orthogdim];
@ -559,7 +505,8 @@ static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice
int e2 =grid->_slice_block [orthogdim];
int stride =grid->_slice_stride[orthogdim];
Coordinate icoor;
std::vector<int> icoor;
for(int r=0;r<rd;r++){
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
@ -575,13 +522,12 @@ static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice
tensor_reduced at; at=av;
autoView( Rv, R, CpuWrite);
autoView( Xv, X, CpuRead);
autoView( Yv, Y, CpuRead);
thread_for2d( n, e1, b,e2, {
parallel_for_nest2(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
Rv[ss] = at*Xv[ss]+Yv[ss];
});
R._odata[ss] = at*X._odata[ss]+Y._odata[ss];
}
}
}
};
@ -613,18 +559,18 @@ static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
int Nblock = X._grid->GlobalDimensions()[Orthog];
GridBase *FullGrid = X.Grid();
GridBase *FullGrid = X._grid;
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
// Lattice<vobj> Xslice(SliceGrid);
// Lattice<vobj> Rslice(SliceGrid);
assert( FullGrid->_simd_layout[Orthog]==1);
// int nh = FullGrid->_ndimension;
int nh = FullGrid->_ndimension;
// int nl = SliceGrid->_ndimension;
// int nl = nh-1;
int nl = nh-1;
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
@ -632,31 +578,28 @@ static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
autoView( X_v, X, CpuRead);
autoView( Y_v, Y, CpuRead);
autoView( R_v, R, CpuWrite);
thread_region
#pragma omp parallel
{
Vector<vobj> s_x(Nblock);
std::vector<vobj> s_x(Nblock);
thread_for_collapse_in_region(2, n,nblock, {
for(int b=0;b<block;b++){
#pragma omp for collapse(2)
for(int n=0;n<nblock;n++){
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
s_x[i] = X_v[o+i*ostride];
s_x[i] = X[o+i*ostride];
}
vobj dot;
for(int i=0;i<Nblock;i++){
dot = Y_v[o+i*ostride];
dot = Y[o+i*ostride];
for(int j=0;j<Nblock;j++){
dot = dot + s_x[j]*(scale*aa(j,i));
}
R_v[o+i*ostride]=dot;
R[o+i*ostride]=dot;
}
}});
}}
}
};
@ -667,38 +610,35 @@ static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
int Nblock = X._grid->GlobalDimensions()[Orthog];
GridBase *FullGrid = X.Grid();
GridBase *FullGrid = X._grid;
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
// Lattice<vobj> Xslice(SliceGrid);
// Lattice<vobj> Rslice(SliceGrid);
assert( FullGrid->_simd_layout[Orthog]==1);
// int nh = FullGrid->_ndimension;
int nh = FullGrid->_ndimension;
// int nl = SliceGrid->_ndimension;
// int nl=1;
int nl=1;
//FIXME package in a convenient iterator
// thread_for2d_in_region
//Should loop over a plane orthogonal to direction "Orthog"
int stride=FullGrid->_slice_stride[Orthog];
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
autoView( R_v, R, CpuWrite);
autoView( X_v, X, CpuRead);
thread_region
#pragma omp parallel
{
std::vector<vobj> s_x(Nblock);
thread_for_collapse_in_region( 2 ,n,nblock,{
#pragma omp for collapse(2)
for(int n=0;n<nblock;n++){
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
s_x[i] = X_v[o+i*ostride];
s_x[i] = X[o+i*ostride];
}
vobj dot;
@ -707,10 +647,11 @@ static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<
for(int j=1;j<Nblock;j++){
dot = dot + s_x[j]*(scale*aa(j,i));
}
R_v[o+i*ostride]=dot;
R[o+i*ostride]=dot;
}
}});
}}
}
};
@ -721,7 +662,7 @@ static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj>
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
GridBase *FullGrid = lhs.Grid();
GridBase *FullGrid = lhs._grid;
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
int Nblock = FullGrid->GlobalDimensions()[Orthog];
@ -732,9 +673,9 @@ static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj>
mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
assert( FullGrid->_simd_layout[Orthog]==1);
// int nh = FullGrid->_ndimension;
int nh = FullGrid->_ndimension;
// int nl = SliceGrid->_ndimension;
// int nl = nh-1;
int nl = nh-1;
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
@ -745,33 +686,31 @@ static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj>
typedef typename vobj::vector_typeD vector_typeD;
autoView( lhs_v, lhs, CpuRead);
autoView( rhs_v, rhs, CpuRead);
thread_region
#pragma omp parallel
{
std::vector<vobj> Left(Nblock);
std::vector<vobj> Right(Nblock);
Eigen::MatrixXcd mat_thread = Eigen::MatrixXcd::Zero(Nblock,Nblock);
thread_for_collapse_in_region( 2, n,nblock,{
#pragma omp for collapse(2)
for(int n=0;n<nblock;n++){
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
Left [i] = lhs_v[o+i*ostride];
Right[i] = rhs_v[o+i*ostride];
Left [i] = lhs[o+i*ostride];
Right[i] = rhs[o+i*ostride];
}
for(int i=0;i<Nblock;i++){
for(int j=0;j<Nblock;j++){
auto tmp = innerProduct(Left[i],Right[j]);
auto rtmp = TensorRemove(tmp);
auto red = Reduce(rtmp);
mat_thread(i,j) += std::complex<double>(real(red),imag(red));
mat_thread(i,j) += Reduce(rtmp);
}}
}});
thread_critical
}}
#pragma omp critical
{
mat += mat_thread;
}
@ -787,8 +726,8 @@ static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj>
return;
}
NAMESPACE_END(Grid);
} /*END NAMESPACE GRID*/
#endif

View File

@ -1,232 +0,0 @@
NAMESPACE_BEGIN(Grid);
#ifdef GRID_HIP
extern hipDeviceProp_t *gpu_props;
#define WARP_SIZE 64
#endif
#ifdef GRID_CUDA
extern cudaDeviceProp *gpu_props;
#define WARP_SIZE 32
#endif
__device__ unsigned int retirementCount = 0;
template <class Iterator>
unsigned int nextPow2(Iterator x) {
--x;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
return ++x;
}
template <class Iterator>
void getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &threads, Iterator &blocks) {
int device;
#ifdef GRID_CUDA
cudaGetDevice(&device);
#endif
#ifdef GRID_HIP
hipGetDevice(&device);
#endif
Iterator warpSize = gpu_props[device].warpSize;
Iterator sharedMemPerBlock = gpu_props[device].sharedMemPerBlock;
Iterator maxThreadsPerBlock = gpu_props[device].maxThreadsPerBlock;
Iterator multiProcessorCount = gpu_props[device].multiProcessorCount;
std::cout << GridLogDebug << "GPU has:" << std::endl;
std::cout << GridLogDebug << "\twarpSize = " << warpSize << std::endl;
std::cout << GridLogDebug << "\tsharedMemPerBlock = " << sharedMemPerBlock << std::endl;
std::cout << GridLogDebug << "\tmaxThreadsPerBlock = " << maxThreadsPerBlock << std::endl;
std::cout << GridLogDebug << "\tmaxThreadsPerBlock = " << warpSize << std::endl;
std::cout << GridLogDebug << "\tmultiProcessorCount = " << multiProcessorCount << std::endl;
if (warpSize != WARP_SIZE) {
std::cout << GridLogError << "The warp size of the GPU in use does not match the warp size set when compiling Grid." << std::endl;
exit(EXIT_FAILURE);
}
// let the number of threads in a block be a multiple of 2, starting from warpSize
threads = warpSize;
while( 2*threads*sizeofsobj < sharedMemPerBlock && 2*threads <= maxThreadsPerBlock ) threads *= 2;
// keep all the streaming multiprocessors busy
blocks = nextPow2(multiProcessorCount);
}
template <class sobj, class Iterator>
__device__ void reduceBlock(volatile sobj *sdata, sobj mySum, const Iterator tid) {
Iterator blockSize = blockDim.x;
// cannot use overloaded operators for sobj as they are not volatile-qualified
memcpy((void *)&sdata[tid], (void *)&mySum, sizeof(sobj));
acceleratorSynchronise();
const Iterator VEC = WARP_SIZE;
const Iterator vid = tid & (VEC-1);
sobj beta, temp;
memcpy((void *)&beta, (void *)&mySum, sizeof(sobj));
for (int i = VEC/2; i > 0; i>>=1) {
if (vid < i) {
memcpy((void *)&temp, (void *)&sdata[tid+i], sizeof(sobj));
beta += temp;
memcpy((void *)&sdata[tid], (void *)&beta, sizeof(sobj));
}
acceleratorSynchronise();
}
acceleratorSynchroniseAll();
if (threadIdx.x == 0) {
beta = Zero();
for (Iterator i = 0; i < blockSize; i += VEC) {
memcpy((void *)&temp, (void *)&sdata[i], sizeof(sobj));
beta += temp;
}
memcpy((void *)&sdata[0], (void *)&beta, sizeof(sobj));
}
acceleratorSynchroniseAll();
}
template <class vobj, class sobj, class Iterator>
__device__ void reduceBlocks(const vobj *g_idata, sobj *g_odata, Iterator n)
{
constexpr Iterator nsimd = vobj::Nsimd();
Iterator blockSize = blockDim.x;
// force shared memory alignment
extern __shared__ __align__(COALESCE_GRANULARITY) unsigned char shmem_pointer[];
// it's not possible to have two extern __shared__ arrays with same name
// but different types in different scopes -- need to cast each time
sobj *sdata = (sobj *)shmem_pointer;
// first level of reduction,
// each thread writes result in mySum
Iterator tid = threadIdx.x;
Iterator i = blockIdx.x*(blockSize*2) + threadIdx.x;
Iterator gridSize = blockSize*2*gridDim.x;
sobj mySum = Zero();
while (i < n) {
Iterator lane = i % nsimd;
Iterator ss = i / nsimd;
auto tmp = extractLane(lane,g_idata[ss]);
sobj tmpD;
tmpD=tmp;
mySum +=tmpD;
if (i + blockSize < n) {
lane = (i+blockSize) % nsimd;
ss = (i+blockSize) / nsimd;
tmp = extractLane(lane,g_idata[ss]);
tmpD = tmp;
mySum += tmpD;
}
i += gridSize;
}
// copy mySum to shared memory and perform
// reduction for all threads in this block
reduceBlock(sdata, mySum, tid);
if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}
template <class vobj, class sobj,class Iterator>
__global__ void reduceKernel(const vobj *lat, sobj *buffer, Iterator n) {
Iterator blockSize = blockDim.x;
// perform reduction for this block and
// write result to global memory buffer
reduceBlocks(lat, buffer, n);
if (gridDim.x > 1) {
const Iterator tid = threadIdx.x;
__shared__ bool amLast;
// force shared memory alignment
extern __shared__ __align__(COALESCE_GRANULARITY) unsigned char shmem_pointer[];
// it's not possible to have two extern __shared__ arrays with same name
// but different types in different scopes -- need to cast each time
sobj *smem = (sobj *)shmem_pointer;
// wait until all outstanding memory instructions in this thread are finished
acceleratorFence();
if (tid==0) {
unsigned int ticket = atomicInc(&retirementCount, gridDim.x);
// true if this block is the last block to be done
amLast = (ticket == gridDim.x-1);
}
// each thread must read the correct value of amLast
acceleratorSynchroniseAll();
if (amLast) {
// reduce buffer[0], ..., buffer[gridDim.x-1]
Iterator i = tid;
sobj mySum = Zero();
while (i < gridDim.x) {
mySum += buffer[i];
i += blockSize;
}
reduceBlock(smem, mySum, tid);
if (tid==0) {
buffer[0] = smem[0];
// reset count variable
retirementCount = 0;
}
}
}
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////
// Possibly promote to double and sum
/////////////////////////////////////////////////////////////////////////////////////////////////////////
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
{
typedef typename vobj::scalar_objectD sobj;
typedef decltype(lat) Iterator;
Integer nsimd= vobj::Nsimd();
Integer size = osites*nsimd;
Integer numThreads, numBlocks;
getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
Integer smemSize = numThreads * sizeof(sobj);
Vector<sobj> buffer(numBlocks);
sobj *buffer_v = &buffer[0];
reduceKernel<<< numBlocks, numThreads, smemSize >>>(lat, buffer_v, size);
accelerator_barrier();
auto result = buffer_v[0];
return result;
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////
// Return as same precision as input performing reduction in double precision though
/////////////////////////////////////////////////////////////////////////////////////////////////////////
template <class vobj>
inline typename vobj::scalar_object sum_gpu(const vobj *lat, Integer osites)
{
typedef typename vobj::scalar_object sobj;
sobj result;
result = sumD_gpu(lat,osites);
return result;
}
NAMESPACE_END(Grid);

Some files were not shown because too many files have changed in this diff Show More