1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-13 04:37:05 +01:00

Compare commits

...

3 Commits

Author SHA1 Message Date
f4e6824f22 Minor changes 2017-10-09 09:44:03 +01:00
ac5cfd33a6 Fixing a compilation error 2017-10-04 14:29:01 +01:00
f605230bbb Added laplacian operator for smearing sources 2017-10-04 13:54:54 +01:00
12 changed files with 760 additions and 203 deletions

View File

@ -1,25 +1,26 @@
#include <Grid/Hadrons/Modules/MAction/DWF.hpp>
#include <Grid/Hadrons/Modules/MAction/Wilson.hpp>
#include <Grid/Hadrons/Modules/MContraction/Baryon.hpp>
#include <Grid/Hadrons/Modules/MContraction/DiscLoop.hpp>
#include <Grid/Hadrons/Modules/MContraction/Gamma3pt.hpp>
#include <Grid/Hadrons/Modules/MContraction/Meson.hpp>
#include <Grid/Hadrons/Modules/MLoop/NoiseLoop.hpp>
#include <Grid/Hadrons/Modules/MFermion/GaugeProp.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonian.hpp>
#include <Grid/Hadrons/Modules/MContraction/Meson.hpp>
#include <Grid/Hadrons/Modules/MContraction/DiscLoop.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonianEye.hpp>
#include <Grid/Hadrons/Modules/MContraction/Baryon.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonianNonEye.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakNeutral4ptDisc.hpp>
#include <Grid/Hadrons/Modules/MFermion/GaugeProp.hpp>
#include <Grid/Hadrons/Modules/MGauge/Load.hpp>
#include <Grid/Hadrons/Modules/MGauge/Random.hpp>
#include <Grid/Hadrons/Modules/MGauge/StochEm.hpp>
#include <Grid/Hadrons/Modules/MGauge/Unit.hpp>
#include <Grid/Hadrons/Modules/MLoop/NoiseLoop.hpp>
#include <Grid/Hadrons/Modules/MContraction/Gamma3pt.hpp>
#include <Grid/Hadrons/Modules/MSource/Z2.hpp>
#include <Grid/Hadrons/Modules/MSource/SeqGamma.hpp>
#include <Grid/Hadrons/Modules/MSource/Point.hpp>
#include <Grid/Hadrons/Modules/MSource/Wall.hpp>
#include <Grid/Hadrons/Modules/MSource/Laplacian.hpp>
#include <Grid/Hadrons/Modules/MSolver/RBPrecCG.hpp>
#include <Grid/Hadrons/Modules/MScalar/ChargedProp.hpp>
#include <Grid/Hadrons/Modules/MScalar/FreeProp.hpp>
#include <Grid/Hadrons/Modules/MScalar/Scalar.hpp>
#include <Grid/Hadrons/Modules/MAction/DWF.hpp>
#include <Grid/Hadrons/Modules/MAction/Wilson.hpp>
#include <Grid/Hadrons/Modules/MGauge/StochEm.hpp>
#include <Grid/Hadrons/Modules/MGauge/Unit.hpp>
#include <Grid/Hadrons/Modules/MGauge/Random.hpp>
#include <Grid/Hadrons/Modules/MGauge/Load.hpp>
#include <Grid/Hadrons/Modules/MSink/Point.hpp>
#include <Grid/Hadrons/Modules/MSolver/RBPrecCG.hpp>
#include <Grid/Hadrons/Modules/MSource/Point.hpp>
#include <Grid/Hadrons/Modules/MSource/SeqGamma.hpp>
#include <Grid/Hadrons/Modules/MSource/Wall.hpp>
#include <Grid/Hadrons/Modules/MSource/Z2.hpp>

View File

@ -0,0 +1,153 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MSource/Laplacian.hpp
Copyright (C) 2017
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MSource_Laplacian_hpp_
#define Hadrons_MSource_Laplacian_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/*
Laplacian smearing source
-----------------------------
* options:
- source: name of source object to be smeared (string)
- N: number of steps (integer)
- alpha: smearing parameter (real)
*/
/******************************************************************************
* Laplace smearing operator *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MSource)
class LaplacianPar : Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(LaplacianPar,
std::string, source,
std::string, gauge,
unsigned int, N,
double, alpha);
};
template <typename FImpl>
class TLaplacian : public Module<LaplacianPar>
{
public:
FERM_TYPE_ALIASES(FImpl, );
public:
// constructor
TLaplacian(const std::string name);
// destructor
virtual ~TLaplacian(void) = default;
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_NS(LaplaceSmearing, TLaplacian<FIMPL>, MSource);
/******************************************************************************
* TLaplacian template implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TLaplacian<FImpl>::TLaplacian(const std::string name)
: Module<LaplacianPar>(name)
{
}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TLaplacian<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().source, par().gauge};
return in;
}
template <typename FImpl>
std::vector<std::string> TLaplacian<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TLaplacian<FImpl>::setup(void)
{
env().template registerLattice<PropagatorField>(getName());
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TLaplacian<FImpl>::execute(void)
{
FermionField source(env().getGrid()), tmp(env().getGrid());
PropagatorField &SmrSrc = *env().template createLattice<PropagatorField>(getName());
PropagatorField &fullSrc = *env().template getObject<PropagatorField>(par().source);
auto &U = *env().template getObject<LatticeGaugeField>(par().gauge);
Laplacian<FImpl> LaplaceOperator(env().getGrid());
LaplaceOperator.ImportGauge(U);
double prefactor = par().alpha / (double)(par().N);
for (unsigned int s = 0; s < Ns; ++s)
{
for (unsigned int c = 0; c < Nc; ++c)
{
PropToFerm(source, fullSrc, s, c);
for (int smr = 0; smr < par().N; ++smr)
{
LaplaceOperator.M(source, tmp);
source += prefactor * tmp;
}
FermToProp(SmrSrc, source, s, c);
}
}
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MSource_Z2_hpp_

View File

@ -1,38 +1,39 @@
modules_cc =\
Modules/MContraction/WeakHamiltonianEye.cc \
Modules/MContraction/WeakHamiltonianNonEye.cc \
Modules/MContraction/WeakNeutral4ptDisc.cc \
Modules/MGauge/Load.cc \
Modules/MContraction/WeakHamiltonianEye.cc \
Modules/MScalar/FreeProp.cc \
Modules/MScalar/ChargedProp.cc \
Modules/MGauge/Unit.cc \
Modules/MGauge/Random.cc \
Modules/MGauge/StochEm.cc \
Modules/MGauge/Unit.cc \
Modules/MScalar/ChargedProp.cc \
Modules/MScalar/FreeProp.cc
Modules/MGauge/Load.cc
modules_hpp =\
Modules/MAction/DWF.hpp \
Modules/MAction/Wilson.hpp \
Modules/MContraction/Baryon.hpp \
Modules/MContraction/DiscLoop.hpp \
Modules/MContraction/Gamma3pt.hpp \
Modules/MContraction/Meson.hpp \
Modules/MLoop/NoiseLoop.hpp \
Modules/MFermion/GaugeProp.hpp \
Modules/MContraction/WeakHamiltonian.hpp \
Modules/MContraction/Meson.hpp \
Modules/MContraction/DiscLoop.hpp \
Modules/MContraction/WeakHamiltonianEye.hpp \
Modules/MContraction/Baryon.hpp \
Modules/MContraction/WeakHamiltonianNonEye.hpp \
Modules/MContraction/WeakNeutral4ptDisc.hpp \
Modules/MFermion/GaugeProp.hpp \
Modules/MGauge/Load.hpp \
Modules/MGauge/Random.hpp \
Modules/MGauge/StochEm.hpp \
Modules/MGauge/Unit.hpp \
Modules/MLoop/NoiseLoop.hpp \
Modules/MContraction/Gamma3pt.hpp \
Modules/MSource/Z2.hpp \
Modules/MSource/SeqGamma.hpp \
Modules/MSource/Point.hpp \
Modules/MSource/Wall.hpp \
Modules/MSource/Laplacian.hpp \
Modules/MSolver/RBPrecCG.hpp \
Modules/MScalar/ChargedProp.hpp \
Modules/MScalar/FreeProp.hpp \
Modules/MScalar/Scalar.hpp \
Modules/MSink/Point.hpp \
Modules/MSolver/RBPrecCG.hpp \
Modules/MSource/Point.hpp \
Modules/MSource/SeqGamma.hpp \
Modules/MSource/Wall.hpp \
Modules/MSource/Z2.hpp
Modules/MAction/DWF.hpp \
Modules/MAction/Wilson.hpp \
Modules/MGauge/StochEm.hpp \
Modules/MGauge/Unit.hpp \
Modules/MGauge/Random.hpp \
Modules/MGauge/Load.hpp \
Modules/MSink/Point.hpp

View File

@ -47,4 +47,8 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
////////////////////////////////////////
#include <Grid/qcd/action/pseudofermion/PseudoFermion.h>
////////////////////////////////////////////////////////////////////////
// Laplacian on fermion fields
////////////////////////////////////////////////////////////////////////
#include <Grid/qcd/utils/CovariantLaplacian.h>
#endif

View File

@ -53,7 +53,7 @@ directory
// Utility functions
////////////////////////////////////////////
#include <Grid/qcd/utils/Metric.h>
#include <Grid/qcd/utils/CovariantLaplacian.h>
#include <Grid/qcd/utils/CovariantAdjointLaplacian.h>

View File

@ -60,11 +60,11 @@ namespace QCD {
Approx::zolotarev_free(zdata);
}
/***************************************************************
/* Additional EOFA operators only called outside the inverter.
/* Since speed is not essential, simple axpby-style
/* implementations should be fine.
/***************************************************************/
/*
Additional EOFA operators only called outside the inverter.
Since speed is not essential, simple axpby-style
implementations should be fine.
*/
template<class Impl>
void DomainWallEOFAFermion<Impl>::Omega(const FermionField& psi, FermionField& Din, int sign, int dag)
{
@ -115,9 +115,9 @@ namespace QCD {
return(norm2(chi));
}
/********************************************************************
/* Performance critical fermion operators called inside the inverter
/********************************************************************/
// Performance critical fermion operators called inside the inverter
template<class Impl>
void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi, FermionField& chi)

View File

@ -77,11 +77,11 @@ namespace QCD {
}
}
/***************************************************************
/* Additional EOFA operators only called outside the inverter.
/* Since speed is not essential, simple axpby-style
/* implementations should be fine.
/***************************************************************/
/*
Additional EOFA operators only called outside the inverter.
Since speed is not essential, simple axpby-style
implementations should be fine.
*/
template<class Impl>
void MobiusEOFAFermion<Impl>::Omega(const FermionField& psi, FermionField& Din, int sign, int dag)
{
@ -193,9 +193,9 @@ namespace QCD {
return(norm2(chi));
}
/********************************************************************
/* Performance critical fermion operators called inside the inverter
/********************************************************************/
// Performance critical fermion operators called inside the inverter
template<class Impl>
void MobiusEOFAFermion<Impl>::M5D(const FermionField& psi, FermionField& chi)

View File

@ -38,7 +38,7 @@ namespace Grid{
// (Moe Moo) (Moe Mee^-1 1 ) (0 Moo-Moe Mee^-1 Meo) (0 1 )
//
// Determinant is det of middle factor
// This assumes Mee is indept of U.
// NOTICE: This assumes Mee is indept of U in computing the derivative
//
template<class Impl>
class SchurDifferentiableOperator : public SchurDiagMooeeOperator<FermionOperator<Impl>,typename Impl::FermionField>
@ -77,7 +77,7 @@ namespace Grid{
// X^dag Der_oe MeeInv Meo Y
// Use Mooee as nontrivial but gauge field indept
this->_Mat.Meooe (V,tmp1); // odd->even -- implicit -0.5 factor to be applied
this->_Mat.MooeeInv(tmp1,tmp2); // even->even
this->_Mat.MooeeInv(tmp1,tmp2); // even->even
this->_Mat.MoeDeriv(ForceO,U,tmp2,DaggerNo);
// Accumulate X^dag M_oe MeeInv Der_eo Y
this->_Mat.MeooeDag (U,tmp1); // even->odd -- implicit -0.5 factor to be applied

View File

@ -0,0 +1,209 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/scalar/CovariantAdjointLaplacian.h
Copyright (C) 2016
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef COVARIANT_ADJOINT_LAPLACIAN_H
#define COVARIANT_ADJOINT_LAPLACIAN_H
namespace Grid
{
namespace QCD
{
struct LaplacianParams : Serializable
{
GRID_SERIALIZABLE_CLASS_MEMBERS(LaplacianParams,
RealD, lo,
RealD, hi,
int, MaxIter,
RealD, tolerance,
int, degree,
int, precision);
// constructor
LaplacianParams(RealD lo = 0.0,
RealD hi = 1.0,
int maxit = 1000,
RealD tol = 1.0e-8,
int degree = 10,
int precision = 64)
: lo(lo),
hi(hi),
MaxIter(maxit),
tolerance(tol),
degree(degree),
precision(precision){};
};
////////////////////////////////////////////////////////////
// Laplacian operator L on adjoint fields
//
// phi: adjoint field
// L: D_mu^dag D_mu
//
// L phi(x) = Sum_mu [ U_mu(x)phi(x+mu)U_mu(x)^dag +
// U_mu(x-mu)^dag phi(x-mu)U_mu(x-mu)
// -2phi(x)]
//
// Operator designed to be encapsulated by
// an HermitianLinearOperator<.. , ..>
////////////////////////////////////////////////////////////
template <class Impl>
class LaplacianAdjointField : public Metric<typename Impl::Field>
{
OperatorFunction<typename Impl::Field> &Solver;
LaplacianParams param;
MultiShiftFunction PowerHalf;
MultiShiftFunction PowerInvHalf;
public:
INHERIT_GIMPL_TYPES(Impl);
LaplacianAdjointField(GridBase *grid, OperatorFunction<GaugeField> &S, LaplacianParams &p, const RealD k = 1.0)
: U(Nd, grid), Solver(S), param(p), kappa(k)
{
AlgRemez remez(param.lo, param.hi, param.precision);
std::cout << GridLogMessage << "Generating degree " << param.degree << " for x^(1/2)" << std::endl;
remez.generateApprox(param.degree, 1, 2);
PowerHalf.Init(remez, param.tolerance, false);
PowerInvHalf.Init(remez, param.tolerance, true);
};
void Mdir(const GaugeField &, GaugeField &, int, int) { assert(0); }
void Mdiag(const GaugeField &, GaugeField &) { assert(0); }
void ImportGauge(const GaugeField &_U)
{
for (int mu = 0; mu < Nd; mu++)
{
U[mu] = PeekIndex<LorentzIndex>(_U, mu);
}
}
void M(const GaugeField &in, GaugeField &out)
{
// in is an antihermitian matrix
// test
//GaugeField herm = in + adj(in);
//std::cout << "AHermiticity: " << norm2(herm) << std::endl;
GaugeLinkField tmp(in._grid);
GaugeLinkField tmp2(in._grid);
GaugeLinkField sum(in._grid);
for (int nu = 0; nu < Nd; nu++)
{
sum = zero;
GaugeLinkField in_nu = PeekIndex<LorentzIndex>(in, nu);
GaugeLinkField out_nu(out._grid);
for (int mu = 0; mu < Nd; mu++)
{
tmp = U[mu] * Cshift(in_nu, mu, +1) * adj(U[mu]);
tmp2 = adj(U[mu]) * in_nu * U[mu];
sum += tmp + Cshift(tmp2, mu, -1) - 2.0 * in_nu;
}
out_nu = (1.0 - kappa) * in_nu - kappa / (double(4 * Nd)) * sum;
PokeIndex<LorentzIndex>(out, out_nu, nu);
}
}
void MDeriv(const GaugeField &in, GaugeField &der)
{
// in is anti-hermitian
RealD factor = -kappa / (double(4 * Nd));
for (int mu = 0; mu < Nd; mu++)
{
GaugeLinkField der_mu(der._grid);
der_mu = zero;
for (int nu = 0; nu < Nd; nu++)
{
GaugeLinkField in_nu = PeekIndex<LorentzIndex>(in, nu);
der_mu += U[mu] * Cshift(in_nu, mu, 1) * adj(U[mu]) * in_nu;
}
// the minus sign comes by using the in_nu instead of the
// adjoint in the last multiplication
PokeIndex<LorentzIndex>(der, -2.0 * factor * der_mu, mu);
}
}
// separating this temporarily
void MDeriv(const GaugeField &left, const GaugeField &right,
GaugeField &der)
{
// in is anti-hermitian
RealD factor = -kappa / (double(4 * Nd));
for (int mu = 0; mu < Nd; mu++)
{
GaugeLinkField der_mu(der._grid);
der_mu = zero;
for (int nu = 0; nu < Nd; nu++)
{
GaugeLinkField left_nu = PeekIndex<LorentzIndex>(left, nu);
GaugeLinkField right_nu = PeekIndex<LorentzIndex>(right, nu);
der_mu += U[mu] * Cshift(left_nu, mu, 1) * adj(U[mu]) * right_nu;
der_mu += U[mu] * Cshift(right_nu, mu, 1) * adj(U[mu]) * left_nu;
}
PokeIndex<LorentzIndex>(der, -factor * der_mu, mu);
}
}
void Minv(const GaugeField &in, GaugeField &inverted)
{
HermitianLinearOperator<LaplacianAdjointField<Impl>, GaugeField> HermOp(*this);
Solver(HermOp, in, inverted);
}
void MSquareRoot(GaugeField &P)
{
GaugeField Gp(P._grid);
HermitianLinearOperator<LaplacianAdjointField<Impl>, GaugeField> HermOp(*this);
ConjugateGradientMultiShift<GaugeField> msCG(param.MaxIter, PowerHalf);
msCG(HermOp, P, Gp);
P = Gp;
}
void MInvSquareRoot(GaugeField &P)
{
GaugeField Gp(P._grid);
HermitianLinearOperator<LaplacianAdjointField<Impl>, GaugeField> HermOp(*this);
ConjugateGradientMultiShift<GaugeField> msCG(param.MaxIter, PowerInvHalf);
msCG(HermOp, P, Gp);
P = Gp;
}
private:
RealD kappa;
std::vector<GaugeLinkField> U;
};
} // QCD
} // Grid
#endif

View File

@ -4,7 +4,7 @@ Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/scalar/CovariantLaplacian.h
Copyright (C) 2016
Copyright (C) 2017
Author: Guido Cossu <guido.cossu@ed.ac.uk>
@ -30,168 +30,57 @@ directory
#ifndef COVARIANT_LAPLACIAN_H
#define COVARIANT_LAPLACIAN_H
namespace Grid {
namespace QCD {
struct LaplacianParams : Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(LaplacianParams,
RealD, lo,
RealD, hi,
int, MaxIter,
RealD, tolerance,
int, degree,
int, precision);
// constructor
LaplacianParams(RealD lo = 0.0,
RealD hi = 1.0,
int maxit = 1000,
RealD tol = 1.0e-8,
int degree = 10,
int precision = 64)
: lo(lo),
hi(hi),
MaxIter(maxit),
tolerance(tol),
degree(degree),
precision(precision){};
};
namespace Grid
{
namespace QCD
{
////////////////////////////////////////////////////////////
// Laplacian operator L on adjoint fields
// Laplacian operator L on fermion fields
//
// phi: adjoint field
// L: D_mu^dag D_mu
// phi: fermion field
//
// L phi(x) = Sum_mu [ U_mu(x)phi(x+mu)U_mu(x)^dag +
// U_mu(x-mu)^dag phi(x-mu)U_mu(x-mu)
// -2phi(x)]
// L phi(x) = Sum_mu [ U_mu(x) phi(x+mu) + U_mu(x-mu) phi(x-mu) - 2phi(x)]
//
// Operator designed to be encapsulated by
// an HermitianLinearOperator<.. , ..>
////////////////////////////////////////////////////////////
// has to inherit from a fermion implementation
template <class Impl>
class LaplacianAdjointField: public Metric<typename Impl::Field> {
OperatorFunction<typename Impl::Field> &Solver;
LaplacianParams param;
MultiShiftFunction PowerHalf;
MultiShiftFunction PowerInvHalf;
class Laplacian
{
public:
INHERIT_IMPL_TYPES(Impl);
public:
INHERIT_GIMPL_TYPES(Impl);
// add a bool to smear only in the spatial directions
Laplacian(GridBase *grid, bool spatial = false)
: U(Nd, grid), spatial_laplacian(spatial){};
LaplacianAdjointField(GridBase* grid, OperatorFunction<GaugeField>& S, LaplacianParams& p, const RealD k = 1.0)
: U(Nd, grid), Solver(S), param(p), kappa(k){
AlgRemez remez(param.lo,param.hi,param.precision);
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
remez.generateApprox(param.degree,1,2);
PowerHalf.Init(remez,param.tolerance,false);
PowerInvHalf.Init(remez,param.tolerance,true);
void Mdir(const FermionField &, FermionField &, int, int) { assert(0); }
void Mdiag(const FermionField &, FermionField &) { assert(0); }
};
void Mdir(const GaugeField&, GaugeField&, int, int){ assert(0);}
void Mdiag(const GaugeField&, GaugeField&){ assert(0);}
void ImportGauge(const GaugeField& _U) {
for (int mu = 0; mu < Nd; mu++) {
void ImportGauge(const GaugeField &_U)
{
for (int mu = 0; mu < Nd; mu++)
U[mu] = PeekIndex<LorentzIndex>(_U, mu);
}
}
void M(const GaugeField& in, GaugeField& out) {
// in is an antihermitian matrix
// test
//GaugeField herm = in + adj(in);
//std::cout << "AHermiticity: " << norm2(herm) << std::endl;
void M(const FermionField &in, FermionField &out)
{
int dims = spatial_laplacian ? (Nd - 1) : Nd;
GaugeLinkField tmp(in._grid);
GaugeLinkField tmp2(in._grid);
GaugeLinkField sum(in._grid);
for (int nu = 0; nu < Nd; nu++) {
sum = zero;
GaugeLinkField in_nu = PeekIndex<LorentzIndex>(in, nu);
GaugeLinkField out_nu(out._grid);
for (int mu = 0; mu < Nd; mu++) {
tmp = U[mu] * Cshift(in_nu, mu, +1) * adj(U[mu]);
tmp2 = adj(U[mu]) * in_nu * U[mu];
sum += tmp + Cshift(tmp2, mu, -1) - 2.0 * in_nu;
}
out_nu = (1.0 - kappa) * in_nu - kappa / (double(4 * Nd)) * sum;
PokeIndex<LorentzIndex>(out, out_nu, nu);
}
out = -2.0 * dims * in;
// eventually speed up with the stencil operator, if necessary
for (int mu = 0; mu < dims; mu++)
out += Impl::CovShiftForward(U[mu], mu, in) + Impl::CovShiftBackward(U[mu], mu, in);
}
void MDeriv(const GaugeField& in, GaugeField& der) {
// in is anti-hermitian
RealD factor = -kappa / (double(4 * Nd));
for (int mu = 0; mu < Nd; mu++){
GaugeLinkField der_mu(der._grid);
der_mu = zero;
for (int nu = 0; nu < Nd; nu++){
GaugeLinkField in_nu = PeekIndex<LorentzIndex>(in, nu);
der_mu += U[mu] * Cshift(in_nu, mu, 1) * adj(U[mu]) * in_nu;
}
// the minus sign comes by using the in_nu instead of the
// adjoint in the last multiplication
PokeIndex<LorentzIndex>(der, -2.0 * factor * der_mu, mu);
}
}
// separating this temporarily
void MDeriv(const GaugeField& left, const GaugeField& right,
GaugeField& der) {
// in is anti-hermitian
RealD factor = -kappa / (double(4 * Nd));
for (int mu = 0; mu < Nd; mu++) {
GaugeLinkField der_mu(der._grid);
der_mu = zero;
for (int nu = 0; nu < Nd; nu++) {
GaugeLinkField left_nu = PeekIndex<LorentzIndex>(left, nu);
GaugeLinkField right_nu = PeekIndex<LorentzIndex>(right, nu);
der_mu += U[mu] * Cshift(left_nu, mu, 1) * adj(U[mu]) * right_nu;
der_mu += U[mu] * Cshift(right_nu, mu, 1) * adj(U[mu]) * left_nu;
}
PokeIndex<LorentzIndex>(der, -factor * der_mu, mu);
}
}
void Minv(const GaugeField& in, GaugeField& inverted){
HermitianLinearOperator<LaplacianAdjointField<Impl>,GaugeField> HermOp(*this);
Solver(HermOp, in, inverted);
}
void MSquareRoot(GaugeField& P){
GaugeField Gp(P._grid);
HermitianLinearOperator<LaplacianAdjointField<Impl>,GaugeField> HermOp(*this);
ConjugateGradientMultiShift<GaugeField> msCG(param.MaxIter,PowerHalf);
msCG(HermOp,P,Gp);
P = Gp;
}
void MInvSquareRoot(GaugeField& P){
GaugeField Gp(P._grid);
HermitianLinearOperator<LaplacianAdjointField<Impl>,GaugeField> HermOp(*this);
ConjugateGradientMultiShift<GaugeField> msCG(param.MaxIter,PowerInvHalf);
msCG(HermOp,P,Gp);
P = Gp;
}
private:
RealD kappa;
private:
bool spatial_laplacian;
std::vector<GaugeLinkField> U;
};
}
}
}; // Laplacian
} // QCD
} // Grid
#endif

View File

@ -0,0 +1,105 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_laplacian.cc
Copyright (C) 2017
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(&Grid);
int threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
GridParallelRNG pRNG(&Grid);
pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
std::vector<int> point({0,0,0,0});
LatticeFermion src (&Grid); //random(pRNG,src);
SpinColourVectorD Sp;
for (unsigned int s = 0; s < Ns; ++s)
for (unsigned int c = 0; c < Nc; ++c)
Sp()(s)(c) = 1;
src = zero;
pokeSite(Sp,src,point);
LatticeFermion result(&Grid); result=zero;
LatticeFermion tmp(&Grid); tmp=zero;
// Gauge configuration
LatticeGaugeField Umu(&Grid); SU3::HotConfiguration(pRNG,Umu);
std::cout<<GridLogMessage<<"=============================================================="<<std::endl;
std::cout<<GridLogMessage<<"= Testing the laplacian operator on a point source "<<std::endl;
std::cout<<GridLogMessage<<"=============================================================="<<std::endl;
Laplacian<WilsonImplR> LaplaceOperator(src._grid);
LaplaceOperator.ImportGauge(Umu);
LaplaceOperator.M(src, result);
std::cout << "Source vector" << std::endl;
std::cout << src << std::endl;
std::cout << "Result vector" << std::endl;
std::cout << result << std::endl;
std::cout<<GridLogMessage<<"=============================================================="<<std::endl;
std::cout<<GridLogMessage<<"= Testing the laplacian smearing operator on a point source "<<std::endl;
std::cout<<GridLogMessage<<"=============================================================="<<std::endl;
LatticeFermion smeared (&Grid); smeared = src;
for (int smr = 0; smr < 10; ++smr)
{
LaplaceOperator.M(smeared, tmp);
smeared += 0.1*tmp;
}
std::cout << "Smeared vector" << std::endl;
std::cout << smeared << std::endl;
// Norm of vector
LatticeComplex smr_norm(&Grid);
smr_norm = localNorm2(smeared);
std::cout << "Smeared vector norm" << std::endl;
std::cout << smr_norm << std::endl;
Grid_finalize();
}

View File

@ -0,0 +1,195 @@
/*******************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: tests/hadrons/Test_hadrons_meson_3pt.cc
Copyright (C) 2015
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory.
*******************************************************************************/
#include <Grid/Hadrons/Application.hpp>
using namespace Grid;
using namespace Hadrons;
int main(int argc, char *argv[])
{
// initialization //////////////////////////////////////////////////////////
Grid_init(&argc, &argv);
HadronsLogError.Active(GridLogError.isActive());
HadronsLogWarning.Active(GridLogWarning.isActive());
HadronsLogMessage.Active(GridLogMessage.isActive());
HadronsLogIterative.Active(GridLogIterative.isActive());
HadronsLogDebug.Active(GridLogDebug.isActive());
LOG(Message) << "Grid initialized" << std::endl;
// run setup ///////////////////////////////////////////////////////////////
Application application;
std::vector<std::string> flavour = {"l", "s", "c1", "c2", "c3"};
std::vector<double> mass = {.01, .04, .2 , .25 , .3 };
unsigned int nt = GridDefaultLatt()[Tp];
// global parameters
Application::GlobalPar globalPar;
globalPar.trajCounter.start = 1500;
globalPar.trajCounter.end = 1520;
globalPar.trajCounter.step = 20;
globalPar.seed = "1 2 3 4";
globalPar.genetic.maxGen = 1000;
globalPar.genetic.maxCstGen = 200;
globalPar.genetic.popSize = 20;
globalPar.genetic.mutationRate = .1;
application.setPar(globalPar);
// gauge field
application.createModule<MGauge::Unit>("gauge");
// set fermion boundary conditions to be periodic space, antiperiodic time.
std::string boundary = "1 1 1 -1";
// sink
MSink::Point::Par sinkPar;
sinkPar.mom = "0 0 0";
application.createModule<MSink::ScalarPoint>("sink", sinkPar);
for (unsigned int i = 0; i < flavour.size(); ++i)
{
// actions
MAction::DWF::Par actionPar;
actionPar.gauge = "gauge";
actionPar.Ls = 12;
actionPar.M5 = 1.8;
actionPar.mass = mass[i];
actionPar.boundary = boundary;
application.createModule<MAction::DWF>("DWF_" + flavour[i], actionPar);
// solvers
MSolver::RBPrecCG::Par solverPar;
solverPar.action = "DWF_" + flavour[i];
solverPar.residual = 1.0e-8;
application.createModule<MSolver::RBPrecCG>("CG_" + flavour[i],
solverPar);
}
for (unsigned int t = 0; t < nt; t += 1)
{
std::string srcName;
std::string lapName;
std::vector<std::string> qName;
std::vector<std::vector<std::string>> seqName;
// Z2 source
MSource::Z2::Par z2Par;
z2Par.tA = t;
z2Par.tB = t;
srcName = "z2_" + std::to_string(t);
application.createModule<MSource::Z2>(srcName, z2Par);
// Example of smearing of the source
MSource::LaplaceSmearing::Par LapPar;
LapPar.N = 10;
LapPar.alpha = 0.1;
LapPar.source = srcName;
LapPar.gauge = "gauge";
lapName = "z2smr_" + std::to_string(t);
application.createModule<MSource::LaplaceSmearing>(lapName, LapPar);
for (unsigned int i = 0; i < flavour.size(); ++i)
{
// sequential sources
MSource::SeqGamma::Par seqPar;
qName.push_back("QZ2_" + flavour[i] + "_" + std::to_string(t));
seqPar.q = qName[i];
seqPar.tA = (t + nt/4) % nt;
seqPar.tB = (t + nt/4) % nt;
seqPar.mom = "1. 0. 0. 0.";
seqName.push_back(std::vector<std::string>(Nd));
for (unsigned int mu = 0; mu < Nd; ++mu)
{
seqPar.gamma = 0x1 << mu;
seqName[i][mu] = "G" + std::to_string(seqPar.gamma)
+ "_" + std::to_string(seqPar.tA) + "-"
+ qName[i];
application.createModule<MSource::SeqGamma>(seqName[i][mu], seqPar);
}
// propagators
MFermion::GaugeProp::Par quarkPar;
quarkPar.solver = "CG_" + flavour[i];
quarkPar.source = srcName;
application.createModule<MFermion::GaugeProp>(qName[i], quarkPar);
for (unsigned int mu = 0; mu < Nd; ++mu)
{
quarkPar.source = seqName[i][mu];
seqName[i][mu] = "Q_" + flavour[i] + "-" + seqName[i][mu];
application.createModule<MFermion::GaugeProp>(seqName[i][mu], quarkPar);
}
}
// contractions
MContraction::Meson::Par mesPar;
for (unsigned int i = 0; i < flavour.size(); ++i)
for (unsigned int j = i; j < flavour.size(); ++j)
{
mesPar.output = "mesons/Z2_" + flavour[i] + flavour[j];
mesPar.q1 = qName[i];
mesPar.q2 = qName[j];
mesPar.gammas = "all";
mesPar.sink = "sink";
application.createModule<MContraction::Meson>("meson_Z2_"
+ std::to_string(t)
+ "_"
+ flavour[i]
+ flavour[j],
mesPar);
}
for (unsigned int i = 0; i < flavour.size(); ++i)
for (unsigned int j = 0; j < flavour.size(); ++j)
for (unsigned int mu = 0; mu < Nd; ++mu)
{
MContraction::Meson::Par mesPar;
mesPar.output = "3pt/Z2_" + flavour[i] + flavour[j] + "_"
+ std::to_string(mu);
mesPar.q1 = qName[i];
mesPar.q2 = seqName[j][mu];
mesPar.gammas = "all";
mesPar.sink = "sink";
application.createModule<MContraction::Meson>("3pt_Z2_"
+ std::to_string(t)
+ "_"
+ flavour[i]
+ flavour[j]
+ "_"
+ std::to_string(mu),
mesPar);
}
}
// execution
application.saveParameterFile("meson3pt.xml");
application.run();
// epilogue
LOG(Message) << "Grid is finalizing now" << std::endl;
Grid_finalize();
return EXIT_SUCCESS;
}