1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-16 23:07:05 +01:00

Compare commits

..

168 Commits

Author SHA1 Message Date
9203126aa5 Scripts 2025-06-11 15:30:16 +02:00
f90ba4712a Update for Jupiter 2025-06-11 15:24:34 +02:00
3737a24096 Updated python output 2025-06-03 14:09:29 -04:00
d418f78352 Making running on Aurora more debuggable 2025-05-23 20:58:16 +00:00
25163998a0 Makes SYCL compiler happy 2025-05-23 20:57:11 +00:00
dc546aaa4b Updated config options for BNL cluster 2025-05-13 18:44:47 -04:00
5364d580c9 Output chirality, eigenvector density files and python source lego plot 2025-05-13 18:44:47 -04:00
2a9a6347e3 Do not require Grid format RNGs and also to the 5Li reporting 2025-05-13 18:44:47 -04:00
cfdb56f314 Run measurements at t=0 too 2025-05-13 18:44:46 -04:00
b517e88db3 Update README 2025-05-13 16:49:21 -04:00
bb317aba8d Lattice = for sycl 2025-05-13 12:50:58 +00:00
644cc6647e JSON update 2025-05-13 12:50:58 +00:00
72397ce23b SYCL interface change 2025-05-13 12:50:58 +00:00
d60a80c098 Fixes and visualisation 2025-04-29 18:04:23 -04:00
bb8b6d9d73 Fix 2025-04-29 18:04:04 -04:00
677b4cc5b0 Make all tests compile 2025-04-24 20:33:26 -04:00
be565ffab6 update mac config command 2025-04-24 14:50:06 -04:00
df6120e5f6 CPU compile oops fix 2025-04-24 14:50:06 -04:00
21de6f7da8 Merge pull request #477 from lehner/feature/wilson-clover-5d
Feature/wilson clover 5d
2025-04-24 14:44:48 -04:00
dbe39f9ce0 Merge pull request #471 from edbennett/fix-wflow
Shave off rough edges in Wilson flow test
2025-04-24 14:40:31 -04:00
ab3de50d5e Merge pull request #473 from UCL-ARC/gauge_action_deriv
WilsonGagueAction deriv
2025-04-24 14:39:10 -04:00
c545bd2139 Merge pull request #465 from edbennett/allow-nonsu3-compilation
guard against trying to compile SU3-specific code when Nc ≠ 3
2025-04-24 14:35:51 -04:00
6a1c64fbdd Merge pull request #470 from paboyle/specflow
Spectral flow, DWF/Mobius kernel measurement
2025-04-24 14:34:33 -04:00
b75809ed61 Update README 2025-04-24 14:27:22 -04:00
ecaf228e5c Update README 2025-04-24 14:25:32 -04:00
6d015ae8fc Visualisation tools 2025-04-24 13:47:34 -04:00
233150d93f Bug fix for no accelerator aware MPI, thanks Shuhei for finding it. 2025-04-24 11:40:46 -04:00
7af8c77a52 Normalise 2025-04-24 11:37:39 -04:00
a957e7bfa1 Adding DWF evec Chirality measurement 2025-04-22 22:17:51 +00:00
cee4c8ce8c Merge branch 'develop' of https://github.com/paboyle/Grid into specflow 2025-04-18 19:55:36 +00:00
96bf814d8c Add checkerboarding to 5D compact clover 2025-04-10 23:05:39 +02:00
7ddc422788 CompactWilsonClover5D 2025-04-10 23:05:29 +02:00
e652fc2825 Shared Memory test reenabled on every Grid object creation.
Const improvements in Accelerator.h
2025-04-07 11:51:40 -04:00
a49fa3f8d0 ROCM 6.3.1 appears to work 2025-04-07 11:50:59 -04:00
cd452a2f91 Slurm update 2025-04-04 18:40:20 -04:00
4f89f603ae Changes to add back shared memory test on GPU 2025-04-04 18:40:15 -04:00
11dc2c5e1d PVdagM initialise 2025-04-04 18:35:06 -04:00
6fec3c15ca Cleaner printing 2025-04-04 18:35:06 -04:00
938c47480f Updated compile on frontier.
Unsatisfactory hacsk
2025-04-04 18:35:06 -04:00
3811d19298 Fence 2025-04-04 18:35:06 -04:00
83a3ab6b6f Barrier -- not sure 100% this was needed 2025-04-04 18:35:05 -04:00
d66a9af6a3 No compile fix 2025-04-04 18:35:05 -04:00
adc90d3a86 NVLINK GET/PUT on cuda aware mpi 2025-04-04 18:35:05 -04:00
ebbd015c5c Deprecate shared memory copy as direction matters on nvidia GPU 2025-04-04 18:35:05 -04:00
4ab73b36b2 Deprecate shared memory copy as direction matters on GPU 2025-04-04 18:35:05 -04:00
130e07a422 Non hermitian support 2025-04-04 18:35:05 -04:00
8f47bb367e Shifted non herm 2025-04-04 18:35:05 -04:00
0c3cb60135 Script update 2025-04-04 18:35:05 -04:00
9eae8fca5d Size outut 2025-04-04 18:35:05 -04:00
882a217074 Example of Useful prerequisite installs with spack 2025-03-26 11:28:53 -04:00
e465fce201 Merge remote-tracking branch 'upstream/develop' into gauge_action_deriv 2025-03-24 10:12:42 +00:00
d41542c64b reverted sp2n test wilsonfundfermiongauge to original 2025-03-24 08:29:15 +00:00
199818bd6c Merge pull request #475 from lehner/feature-aurora
Sync with GPT on Aurora
2025-03-13 08:55:55 -04:00
fe66c7ca30 verbosity 2025-03-13 12:49:36 +00:00
e9177e4af3 Blas compatibility 2025-03-13 08:48:23 +00:00
d15a6c5933 Merge branch 'develop' of https://github.com/paboyle/Grid into feature-aurora 2025-03-13 07:29:55 +00:00
25ab9325e7 Use hostVector but remove construct resize 2025-03-11 15:02:32 +00:00
19f9378b98 Should work on Aurora nowb 2025-03-11 13:50:43 +00:00
785bc7a14f Adding staple zeroing fix 2025-03-10 12:29:04 +00:00
1a1fe85428 Merge remote-tracking branch 'upstream' into gauge_action_deriv 2025-03-10 08:37:36 +00:00
0000d2e558 Merge branch 'develop' into gauge_action_deriv 2025-03-10 08:35:57 +00:00
9ffd1ed4ce Merged 2025-03-08 15:30:08 +00:00
3d014864e2 Makinig LLVM happy 2025-03-06 14:19:25 -05:00
1d22841811 Working on aurora, GPT issue turned up is fixed 2025-03-06 03:20:18 +00:00
a1cdda833f Update WorkArounds.txt 2025-03-05 14:04:23 -05:00
ad6db92690 Update WorkArounds.txt 2025-03-05 14:00:26 -05:00
e8ff9d8e50 Update WorkArounds.txt 2025-03-05 14:00:04 -05:00
795769c636 Update WorkArounds.txt 2025-03-05 13:50:41 -05:00
267a39d943 Update WorkArounds.txt 2025-03-05 13:49:43 -05:00
3624bd3d22 Update WorkArounds.txt 2025-03-05 13:45:09 -05:00
bc12dbbb38 Update WorkArounds.txt 2025-03-05 12:48:56 -05:00
eb8a008a8f Create WorkArounds.txt 2025-03-05 12:41:59 -05:00
c4d9aa1a21 Config command that makes GPT happier 2025-02-27 20:12:49 +00:00
6ae809ed40 Print not liked on GPT compile 2025-02-27 20:12:49 +00:00
311e2aab3f Update Accelerator.h 2025-02-26 11:42:52 -05:00
438dfbdb83 Only throw if there is a pending list entry in CommsComplete 2025-02-25 16:57:27 +00:00
b2ce760cf4 Verbose issue with GPT 2025-02-25 16:55:23 +00:00
b1ba209696 Latest upstream with np-su3 patch and modified Sp_WilsonFunfFermionGauge test to be small (#22)
Co-authored-by: Mashy Green <mashy@me.com>

merging no-su3 patch
2025-02-24 11:38:42 +00:00
cb3e529b1e Merge branch 'paboyle:develop' into develop 2025-02-24 11:29:09 +00:00
717f647418 added the WilsonFlow patch from upstream PR #471 2025-02-24 08:41:31 +00:00
98e7418187 Merge remote-tracking branch 'upstream/develop' into gauge_action_deriv 2025-02-24 08:33:05 +00:00
fe05bf48b1 Improvements to WilsonGaugeAction deriv function (#16)
* patched version + modifications to deriv -> staple in qcd/gauge

* Cleaning up and aligning variable naming between action deriv versions

* Removing the regresion test files that were also in this branch for a clean PR

* Reverting whitespace changes

* Fixing after revering too much!

---------

Co-authored-by: Mashy Green <mashy@me.com>
2025-02-17 18:52:04 +00:00
d2dd8f54e2 Fixing after revering too much! 2025-02-17 17:32:27 +00:00
7726ee4b16 Reverting whitespace changes 2025-02-17 17:16:28 +00:00
ba9bbe0221 Bounce MPI through host 2025-02-12 19:34:59 +00:00
4c3dd82d84 CSHIFT with bounce throuhgh Host memory on MPI packets 2025-02-12 19:09:53 +00:00
44e911b5b7 Comment change 2025-02-12 17:37:55 +00:00
a7a16df9d0 GET not put has kinder barrier sequence for NVLINK type access as when
GET is done, I can use it without barrier. Moves a barrier to a nicer
place, overlapped with DtoH DMA
2025-02-12 14:59:28 +00:00
382e0abefd Was issueing a double fence -- the gather also fences 2025-02-12 14:57:28 +00:00
6fdefe5b90 Barrier sequencing if doing "GET" not "PUT" is different.
This is somewhat better timing for Barriers
2025-02-12 14:55:20 +00:00
4788dd8e2e More states in packet progression for GPU non aware MPI 2025-02-12 14:53:57 +00:00
1cc5f221f3 GET not put ordering is better as I know when I've got all MY data 2025-02-12 14:53:05 +00:00
93251bfba0 GET not put for better ordering in the downstream dependent kernels -- I
know when I'm done, so we can move a barrier / handshake between ranks
intranode to a point off critical path
2025-02-12 14:50:21 +00:00
18b79508b8 New line better for pretty print 2025-02-12 14:49:48 +00:00
4de5ed1613 Remove vector view. The std::vector will not inform Memory manager of
deletion and so a stale entry could be left. It is not and should not be
used.
2025-02-12 14:48:46 +00:00
0baaddbe98 Pipeline mode commit on Aurora. 5+ TF/s on 16^3x32 per tile at 384
nodes.
More concurrency/fine grained scheduling is possible.
2025-02-04 19:27:26 +00:00
8729c46169 add clover energy density measurement to default WilsonFlow measurements 2025-02-03 14:27:55 +00:00
09f81fe7c3 don't force energy density measurement to be every wilson flow iteration 2025-02-03 14:27:45 +00:00
1876e5b7c0 correct tests/smearing/WilsonFlow to use non-adaptive flow and use correct interface 2025-02-03 14:27:29 +00:00
355ec76257 Merge pull request #18 from UCL-ARC/bugfix/nvtx
Bugfix/nvtx
2025-02-03 11:05:42 +00:00
b50fb34e71 Perf on Aurora 2025-02-01 18:39:34 +00:00
de84d730ff Fastest run config on Aurora to date 2025-02-01 18:08:40 +00:00
c74d11e3d7 PVdagM MG 2025-02-01 11:04:13 -05:00
84cab5e6e7 no comms and log cleanup 2025-02-01 16:37:21 +01:00
c4fc972fec Merge branch 'feature/deprecate-uvm' into develop 2025-01-31 16:32:36 +00:00
8cf809e231 Best results on Aurora so far 2025-01-31 16:14:45 +00:00
94019a922e Significantly better performance on Aurora without using pipeline mode 2025-01-30 16:36:46 +00:00
4f17c8d081 Merge branch 'paboyle:develop' into bugfix/nvtx 2025-01-29 13:10:12 +00:00
aaab753982 Reverting to older version of nvtx for Tursa support 2025-01-29 12:57:38 +00:00
d6b2727f86 Pipeline mode getting better -- 2 nodes @ 10TF/s per node on Aurora 2025-01-29 09:22:21 +00:00
74a4f43946 Optional host buffer bounce for no CUDA aware MPI 2025-01-28 15:22:46 +00:00
1caf8b0f86 Rename 2025-01-28 15:22:37 +00:00
570b72a47b Bugfix. Sorry! 2025-01-21 15:37:39 -05:00
a5798a89ed Merge branch 'develop' into specflow 2025-01-21 12:13:24 -05:00
3f3661a86f Heading towards PVdagM multigrid 2025-01-17 14:33:35 +00:00
f7e2f9a401 Checking in spectral flow and DWF/Mobius kernel eigenvalue measurement 2025-01-16 20:47:33 +00:00
2848a9b558 DWF Kernel lanczos working(?) 2025-01-16 01:29:56 +00:00
d4868991af Fixed wrong lib for NVTX in configure.ac and updated to nvtx3 2025-01-10 14:53:19 +00:00
e99d42404e Removing the regresion test files that were also in this branch for a clean PR 2024-12-16 16:31:22 +00:00
3ba019c747 Cleaning up and aligning variable naming between action deriv versions 2024-12-03 15:23:00 +00:00
47429218bb patched version + modifications to deriv -> staple in qcd/gauge 2024-11-27 16:29:22 +00:00
8fe429346f Dslash testing for reproduce 2024-11-11 23:11:11 +00:00
5a4f9bf2e3 Force the ROCM version 2024-10-29 18:12:31 -04:00
b91fc1b6b4 Merge branch 'feature/boosted' into feature/deprecate-uvm
Fixed boosted free field test
2024-10-28 16:53:09 -04:00
eafc150034 Test fft asserts 2024-10-23 16:46:26 -04:00
2877f1a268 Verbose reduce 2024-10-23 15:14:16 -04:00
1e893af775 GPU happy 2024-10-23 14:52:15 -04:00
d9f430a575 Happy GPU 2024-10-23 14:51:16 -04:00
63abe87f36 Memory manager verbose improvements that were useful to track an error 2024-10-23 14:49:13 -04:00
368d649c8a feature/deprecate-uvm happier -- preallocate device resident neigbour table 2024-10-23 14:47:55 -04:00
5603464f39 Fix in partial fraction import/export physical and
make the GPU happier on the deprecate-uvm -- don't use static vectors, make member of class
2024-10-23 14:45:58 -04:00
655c79f39e Suppress warning on partial override 2024-10-23 14:44:41 -04:00
565b231c03 Nvcc happy 2024-10-23 14:44:17 -04:00
62a9f180fa NVCC happy 2024-10-23 14:44:04 -04:00
5ae77876a8 Meson field and Aslash field on GPU; some compiler warning removed 2024-10-18 19:08:06 -04:00
4ed2c2c74f Config command 2024-10-18 13:58:33 -04:00
955da582b6 Working on NVCC 2024-10-18 13:58:03 -04:00
11b07b950d Vanilla linux compile, assuming spack prerequisites 2024-10-18 13:57:40 -04:00
8f70cfeda9 Clean up 2024-10-18 13:56:53 -04:00
ce64271048 Remove the copying version 2024-10-18 13:56:24 -04:00
5cc4f3241d Meson field test 2024-10-18 15:42:30 +00:00
6815e138b4 Boosted fermion attempt 2024-10-17 18:37:33 +01:00
a78a61d76f Update configure 2024-10-15 14:38:45 +00:00
2eff3f34ed Alternate reduction; default to grids own but make a configure flag
--enable-reduction=grid|mpi
2024-10-15 14:36:06 +00:00
03687c1d62 Final version of test, closer to original again 2024-10-15 14:35:17 +00:00
febfe4e77f Make my own reduction a configure flag 2024-10-15 14:32:35 +00:00
4d1aa134b5 Use normal reduction, configure flag to force deterministic 2024-10-15 14:32:11 +00:00
5ec879860a Odd rounding issue - bears looking into 2024-10-15 14:30:54 +00:00
b728af903c Fast axpy norm under CFLAG 2024-10-11 03:23:09 +00:00
54f1999030 axpy_norm_fast -- wasn't using the determinstic MPI sum causing issues 2024-10-11 03:22:18 +00:00
fd58f0b669 Return ok 2024-10-11 03:21:21 +00:00
c5c67b706e cl::sycl -> SYCL 2024-10-10 22:04:12 +00:00
be7a543e2c Revert barriers -- these were not the problem 2024-10-10 22:03:29 +00:00
68f112d576 New software moves cl::sycl 2024-10-10 22:03:04 +00:00
ec1395a304 Better flight logging 2024-10-10 22:01:57 +00:00
beb0e474ee Use deterministic own brand reduction 2024-10-10 22:01:24 +00:00
2b5fdcbbc5 New software version 2024-10-10 21:59:02 +00:00
295127d456 Deterministic homebrew reduction 2024-10-10 21:58:26 +00:00
7dcfb13694 New software stack 2024-10-10 21:57:35 +00:00
9fa8bd6438 Configure for AOT on Aurora latest software 2024-09-23 11:25:44 +00:00
02c8178f16 Almost working on Aurora 2024-09-23 09:43:50 +00:00
e637fbacae Verbose remove 2024-09-23 09:42:43 +00:00
066544281f Deprecate UVM 2024-09-17 13:34:27 +00:00
11be10d2c0 Aurora testing 2024-09-10 18:11:52 +00:00
160969a758 UVM tester, doesn't turn up anything 2024-09-10 18:09:42 +00:00
622f78ebea SYCL updates -- operator = giving trouble on Aurora.
SYCL reduction is failing intermittently with SVM interface - returns
zero, expect non-zero.
Think I need to remove ALL dependence on SVM.
2024-09-04 13:53:48 +00:00
e29b97b3ea Qslash term added 2023-09-14 16:14:03 -04:00
ad2b699d2b Better macos 2023-09-14 16:12:21 -04:00
207 changed files with 8418 additions and 3569 deletions

View File

@ -168,6 +168,7 @@ public:
template<class vobj> template<class vobj>
void FFT_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int dim, int sign){ void FFT_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int dim, int sign){
#ifndef HAVE_FFTW #ifndef HAVE_FFTW
std::cerr << "FFTW is not compiled but is called"<<std::endl;
assert(0); assert(0);
#else #else
conformable(result.Grid(),vgrid); conformable(result.Grid(),vgrid);
@ -190,6 +191,7 @@ public:
Lattice<sobj> pgbuf(&pencil_g); Lattice<sobj> pgbuf(&pencil_g);
autoView(pgbuf_v , pgbuf, CpuWrite); autoView(pgbuf_v , pgbuf, CpuWrite);
//std::cout << "CPU view" << std::endl;
typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar; typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
typedef typename FFTW<scalar>::FFTW_plan FFTW_plan; typedef typename FFTW<scalar>::FFTW_plan FFTW_plan;
@ -213,6 +215,7 @@ public:
else if ( sign == forward ) div = 1.0; else if ( sign == forward ) div = 1.0;
else assert(0); else assert(0);
//std::cout << GridLogPerformance<<"Making FFTW plan" << std::endl;
FFTW_plan p; FFTW_plan p;
{ {
FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0]; FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0];
@ -226,6 +229,7 @@ public:
} }
// Barrel shift and collect global pencil // Barrel shift and collect global pencil
//std::cout << GridLogPerformance<<"Making pencil" << std::endl;
Coordinate lcoor(Nd), gcoor(Nd); Coordinate lcoor(Nd), gcoor(Nd);
result = source; result = source;
int pc = processor_coor[dim]; int pc = processor_coor[dim];
@ -247,6 +251,7 @@ public:
} }
} }
//std::cout <<GridLogPerformance<< "Looping orthog" << std::endl;
// Loop over orthog coords // Loop over orthog coords
int NN=pencil_g.lSites(); int NN=pencil_g.lSites();
GridStopWatch timer; GridStopWatch timer;
@ -269,6 +274,7 @@ public:
usec += timer.useconds(); usec += timer.useconds();
flops+= flops_call*NN; flops+= flops_call*NN;
//std::cout <<GridLogPerformance<< "Writing back results " << std::endl;
// writing out result // writing out result
{ {
autoView(pgbuf_v,pgbuf,CpuRead); autoView(pgbuf_v,pgbuf,CpuRead);
@ -285,6 +291,7 @@ public:
} }
result = result*div; result = result*div;
//std::cout <<GridLogPerformance<< "Destroying plan " << std::endl;
// destroying plan // destroying plan
FFTW<scalar>::fftw_destroy_plan(p); FFTW<scalar>::fftw_destroy_plan(p);
#endif #endif

View File

@ -277,6 +277,38 @@ public:
assert(0); assert(0);
} }
}; };
template<class Matrix,class Field>
class ShiftedNonHermitianLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
RealD shift;
public:
ShiftedNonHermitianLinearOperator(Matrix &Mat,RealD shft): _Mat(Mat),shift(shft){};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
_Mat.Mdiag(in,out);
out = out + shift*in;
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
_Mat.Mdir(in,out,dir,disp);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
_Mat.MdirAll(in,out);
};
void Op (const Field &in, Field &out){
_Mat.M(in,out);
out = out + shift * in;
}
void AdjOp (const Field &in, Field &out){
_Mat.Mdag(in,out);
out = out + shift * in;
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
assert(0);
}
void HermOp(const Field &in, Field &out){
assert(0);
}
};
////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////
// Even Odd Schur decomp operators; there are several // Even Odd Schur decomp operators; there are several

View File

@ -269,7 +269,9 @@ public:
RealD xscale = 2.0/(hi-lo); RealD xscale = 2.0/(hi-lo);
RealD mscale = -(hi+lo)/(hi-lo); RealD mscale = -(hi+lo)/(hi-lo);
Linop.HermOp(T0,y); Linop.HermOp(T0,y);
grid->Barrier();
axpby(T1,xscale,mscale,y,in); axpby(T1,xscale,mscale,y,in);
grid->Barrier();
// sum = .5 c[0] T0 + c[1] T1 // sum = .5 c[0] T0 + c[1] T1
// out = ()*T0 + Coeffs[1]*T1; // out = ()*T0 + Coeffs[1]*T1;

View File

@ -55,10 +55,10 @@ NAMESPACE_BEGIN(Grid);
typedef cublasHandle_t gridblasHandle_t; typedef cublasHandle_t gridblasHandle_t;
#endif #endif
#ifdef GRID_SYCL #ifdef GRID_SYCL
typedef cl::sycl::queue *gridblasHandle_t; typedef sycl::queue *gridblasHandle_t;
#endif #endif
#ifdef GRID_ONE_MKL #ifdef GRID_ONE_MKL
typedef cl::sycl::queue *gridblasHandle_t; typedef sycl::queue *gridblasHandle_t;
#endif #endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL) #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL)
typedef int32_t gridblasHandle_t; typedef int32_t gridblasHandle_t;
@ -89,9 +89,9 @@ public:
gridblasHandle = theGridAccelerator; gridblasHandle = theGridAccelerator;
#endif #endif
#ifdef GRID_ONE_MKL #ifdef GRID_ONE_MKL
cl::sycl::gpu_selector selector; sycl::gpu_selector selector;
cl::sycl::device selectedDevice { selector }; sycl::device selectedDevice { selector };
cl::sycl::property_list q_prop{cl::sycl::property::queue::in_order()}; sycl::property_list q_prop{sycl::property::queue::in_order()};
gridblasHandle =new sycl::queue (selectedDevice,q_prop); gridblasHandle =new sycl::queue (selectedDevice,q_prop);
#endif #endif
gridblasInit=1; gridblasInit=1;
@ -208,8 +208,8 @@ public:
assert(Bkn.size()==batchCount); assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount); assert(Cmn.size()==batchCount);
assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose //assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
assert(OpB!=GridBLAS_OP_T); //assert(OpB!=GridBLAS_OP_T);
int lda = m; // m x k column major int lda = m; // m x k column major
int ldb = k; // k x n column major int ldb = k; // k x n column major
@ -367,28 +367,67 @@ public:
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k); Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n); Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n); Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn ; eCmn = beta * eCmn + alpha * eAmk * eBkn ;
else
eCmn = alpha * eAmk * eBkn ;
}); });
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) { } else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, { thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m); Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n); Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n); Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ; eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
else
eCmn = alpha * eAmk.adjoint() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
else
eCmn = alpha * eAmk.transpose() * eBkn ;
}); });
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) { } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) {
thread_for (p, batchCount, { thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k); Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k); Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n); Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ; eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
else
eCmn = alpha * eAmk * eBkn.adjoint() ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
}); });
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) { } else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) {
thread_for (p, batchCount, { thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m); Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k); Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n); Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ; eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
else
eCmn = alpha * eAmk.adjoint() * eBkn.adjoint() ;
} );
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
else
eCmn = alpha * eAmk.transpose() * eBkn.transpose() ;
} ); } );
} else { } else {
assert(0); assert(0);
@ -414,8 +453,8 @@ public:
RealD t2=usecond(); RealD t2=usecond();
int32_t batchCount = Amk.size(); int32_t batchCount = Amk.size();
assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose //assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
assert(OpB!=GridBLAS_OP_T); //assert(OpB!=GridBLAS_OP_T);
int lda = m; // m x k column major int lda = m; // m x k column major
int ldb = k; // k x n column major int ldb = k; // k x n column major
@ -514,28 +553,70 @@ public:
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k); Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n); Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n); Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn ; eCmn = beta * eCmn + alpha * eAmk * eBkn ;
else
eCmn = alpha * eAmk * eBkn ;
}); });
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) { } else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, { thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m); Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n); Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n); Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ; eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
else
eCmn = alpha * eAmk.adjoint() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
else
eCmn = alpha * eAmk.transpose() * eBkn ;
}); });
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) { } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) {
thread_for (p, batchCount, { thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k); Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k); Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n); Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ; eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
else
eCmn = alpha * eAmk * eBkn.adjoint() ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
else
eCmn = alpha * eAmk * eBkn.transpose() ;
}); });
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) { } else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) {
thread_for (p, batchCount, { thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m); Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k); Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n); Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ; eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
else
eCmn = alpha * eAmk.adjoint() * eBkn.adjoint() ;
} );
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
else
eCmn = alpha * eAmk.transpose() * eBkn.transpose() ;
} ); } );
} else { } else {
assert(0); assert(0);
@ -661,28 +742,40 @@ public:
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k); Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n); Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n); Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn ; eCmn = beta * eCmn + alpha * eAmk * eBkn ;
else
eCmn = alpha * eAmk * eBkn ;
}); });
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) { } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, { thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m); Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n); Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n); Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ; eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
else
eCmn = alpha * eAmk.transpose() * eBkn ;
}); });
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) { } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, { thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k); Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k); Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n); Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ; eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
else
eCmn = alpha * eAmk * eBkn.transpose() ;
}); });
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) { } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, { thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m); Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k); Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n); Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ; eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
else
eCmn = alpha * eAmk.transpose() * eBkn.transpose() ;
}); });
} else { } else {
assert(0); assert(0);
@ -809,28 +902,40 @@ public:
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k); Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n); Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n); Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn ; eCmn = beta * eCmn + alpha * eAmk * eBkn ;
else
eCmn = alpha * eAmk * eBkn ;
}); });
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) { } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, { thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m); Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n); Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n); Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ; eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
else
eCmn = alpha * eAmk.transpose() * eBkn ;
}); });
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) { } else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, { thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k); Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k); Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n); Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ; eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
else
eCmn = alpha * eAmk * eBkn.transpose() ;
}); });
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) { } else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, { thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m); Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k); Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n); Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ; eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
else
eCmn = alpha * eAmk.transpose() * eBkn.transpose() ;
}); });
} else { } else {
assert(0); assert(0);

View File

@ -116,14 +116,14 @@ NAMESPACE_BEGIN(Grid);
//Compute double precision rsd and also new RHS vector. //Compute double precision rsd and also new RHS vector.
Linop_d.HermOp(sol_d, tmp_d); Linop_d.HermOp(sol_d, tmp_d);
RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector
std::cout<<GridLogMessage<<" rsd norm "<<norm<<std::endl;
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " <<outer_iter<<" residual "<< norm<< " target "<< stop<<std::endl; std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " <<outer_iter<<" residual "<< norm<< " target "<< stop<<std::endl;
if(norm < OuterLoopNormMult * stop){ if(norm < OuterLoopNormMult * stop){
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration converged on iteration " <<outer_iter <<std::endl; std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration converged on iteration " <<outer_iter <<std::endl;
break; break;
} }
while(norm * inner_tol * inner_tol < stop) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ?? while(norm * inner_tol * inner_tol < stop*1.01) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ??
PrecChangeTimer.Start(); PrecChangeTimer.Start();
precisionChange(src_f, src_d, pc_wk_dp_to_sp); precisionChange(src_f, src_d, pc_wk_dp_to_sp);

View File

@ -102,11 +102,11 @@ public:
assert(mass.size()==nshift); assert(mass.size()==nshift);
assert(mresidual.size()==nshift); assert(mresidual.size()==nshift);
// dynamic sized arrays on stack; 2d is a pain with vector // remove dynamic sized arrays on stack; 2d is a pain with vector
RealD bs[nshift]; std::vector<RealD> bs(nshift);
RealD rsq[nshift]; std::vector<RealD> rsq(nshift);
RealD z[nshift][2]; std::vector<std::array<RealD,2> > z(nshift);
int converged[nshift]; std::vector<int> converged(nshift);
const int primary =0; const int primary =0;

View File

@ -123,11 +123,11 @@ public:
assert(mresidual.size()==nshift); assert(mresidual.size()==nshift);
// dynamic sized arrays on stack; 2d is a pain with vector // dynamic sized arrays on stack; 2d is a pain with vector
RealD bs[nshift]; std::vector<RealD> bs(nshift);
RealD rsq[nshift]; std::vector<RealD> rsq(nshift);
RealD rsqf[nshift]; std::vector<RealD> rsqf(nshift);
RealD z[nshift][2]; std::vector<std::array<RealD,2> > z(nshift);
int converged[nshift]; std::vector<int> converged(nshift);
const int primary =0; const int primary =0;

View File

@ -156,11 +156,11 @@ public:
assert(mresidual.size()==nshift); assert(mresidual.size()==nshift);
// dynamic sized arrays on stack; 2d is a pain with vector // dynamic sized arrays on stack; 2d is a pain with vector
RealD bs[nshift]; std::vector<RealD> bs(nshift);
RealD rsq[nshift]; std::vector<RealD> rsq(nshift);
RealD rsqf[nshift]; std::vector<RealD> rsqf(nshift);
RealD z[nshift][2]; std::vector<std::array<RealD,2> > z(nshift);
int converged[nshift]; std::vector<int> converged(nshift);
const int primary =0; const int primary =0;

View File

@ -245,9 +245,10 @@ until convergence
_HermOp(src_n,tmp); _HermOp(src_n,tmp);
// std::cout << GridLogMessage<< tmp<<std::endl; exit(0); // std::cout << GridLogMessage<< tmp<<std::endl; exit(0);
// std::cout << GridLogIRL << " _HermOp " << norm2(tmp) << std::endl; // std::cout << GridLogIRL << " _HermOp " << norm2(tmp) << std::endl;
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp. // RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
RealD vnum = real(innerProduct(tmp,tmp)); // HermOp^2.
RealD vden = norm2(src_n); RealD vden = norm2(src_n);
RealD na = vnum/vden; RealD na = std::sqrt(vnum/vden);
if (fabs(evalMaxApprox/na - 1.0) < 0.0001) if (fabs(evalMaxApprox/na - 1.0) < 0.0001)
i=_MAX_ITER_IRL_MEVAPP_; i=_MAX_ITER_IRL_MEVAPP_;
evalMaxApprox = na; evalMaxApprox = na;
@ -255,6 +256,7 @@ until convergence
src_n = tmp; src_n = tmp;
} }
} }
std::cout << GridLogIRL << " Final evalMaxApprox " << evalMaxApprox << std::endl;
std::vector<RealD> lme(Nm); std::vector<RealD> lme(Nm);
std::vector<RealD> lme2(Nm); std::vector<RealD> lme2(Nm);

View File

@ -74,7 +74,7 @@ public:
void operator() (const Field &src, Field &psi){ void operator() (const Field &src, Field &psi){
psi=Zero(); // psi=Zero();
RealD cp, ssq,rsq; RealD cp, ssq,rsq;
ssq=norm2(src); ssq=norm2(src);
rsq=Tolerance*Tolerance*ssq; rsq=Tolerance*Tolerance*ssq;

View File

@ -30,6 +30,8 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
/* END LEGAL */ /* END LEGAL */
#pragma once #pragma once
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidualNonHermitian.h>
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
inline RealD AggregatePowerLaw(RealD x) inline RealD AggregatePowerLaw(RealD x)
@ -95,7 +97,7 @@ public:
RealD scale; RealD scale;
ConjugateGradient<FineField> CG(1.0e-2,100,false); ConjugateGradient<FineField> CG(1.0e-3,400,false);
FineField noise(FineGrid); FineField noise(FineGrid);
FineField Mn(FineGrid); FineField Mn(FineGrid);
@ -108,7 +110,7 @@ public:
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl; hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
for(int i=0;i<1;i++){ for(int i=0;i<4;i++){
CG(hermop,noise,subspace[b]); CG(hermop,noise,subspace[b]);
@ -124,6 +126,53 @@ public:
} }
} }
virtual void CreateSubspaceGCR(GridParallelRNG &RNG,LinearOperatorBase<FineField> &DiracOp,int nn=nbasis)
{
RealD scale;
TrivialPrecon<FineField> simple_fine;
PrecGeneralisedConjugateResidualNonHermitian<FineField> GCR(0.001,30,DiracOp,simple_fine,12,12);
FineField noise(FineGrid);
FineField src(FineGrid);
FineField guess(FineGrid);
FineField Mn(FineGrid);
for(int b=0;b<nn;b++){
subspace[b] = Zero();
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|Op|n> "<<innerProduct(noise,Mn)<<std::endl;
for(int i=0;i<2;i++){
// void operator() (const Field &src, Field &psi){
#if 1
std::cout << GridLogMessage << " inverting on noise "<<std::endl;
src = noise;
guess=Zero();
GCR(src,guess);
subspace[b] = guess;
#else
std::cout << GridLogMessage << " inverting on zero "<<std::endl;
src=Zero();
guess = noise;
GCR(src,guess);
subspace[b] = guess;
#endif
noise = subspace[b];
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
}
DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|Op|f> "<<innerProduct(noise,Mn)<<std::endl;
subspace[b] = noise;
}
}
//////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////
// World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit) // World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
// and this is the best I found // and this is the best I found
@ -160,14 +209,21 @@ public:
int b =0; int b =0;
{ {
ComplexD ip;
// Filter // Filter
Chebyshev<FineField> Cheb(lo,hi,orderfilter); Chebyshev<FineField> Cheb(lo,hi,orderfilter);
Cheb(hermop,noise,Mn); Cheb(hermop,noise,Mn);
// normalise // normalise
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale; scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn; subspace[b] = Mn;
hermop.Op(Mn,tmp); hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; ip= innerProduct(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
hermop.AdjOp(Mn,tmp);
ip = innerProduct(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
b++; b++;
} }
@ -213,8 +269,18 @@ public:
Mn=*Tnp; Mn=*Tnp;
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale; scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn; subspace[b] = Mn;
ComplexD ip;
hermop.Op(Mn,tmp); hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; ip= innerProduct(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
hermop.AdjOp(Mn,tmp);
ip = innerProduct(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
b++; b++;
} }

View File

@ -99,7 +99,7 @@ public:
CoarseMatrix AselfInvEven; CoarseMatrix AselfInvEven;
CoarseMatrix AselfInvOdd; CoarseMatrix AselfInvOdd;
Vector<RealD> dag_factor; deviceVector<RealD> dag_factor;
/////////////////////// ///////////////////////
// Interface // Interface
@ -124,9 +124,13 @@ public:
int npoint = geom.npoint; int npoint = geom.npoint;
typedef LatticeView<Cobj> Aview; typedef LatticeView<Cobj> Aview;
Vector<Aview> AcceleratorViewContainer; deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
hostVector<Aview> hAcceleratorViewContainer(geom.npoint);
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead)); for(int p=0;p<geom.npoint;p++) {
hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
}
Aview *Aview_p = & AcceleratorViewContainer[0]; Aview *Aview_p = & AcceleratorViewContainer[0];
const int Nsimd = CComplex::Nsimd(); const int Nsimd = CComplex::Nsimd();
@ -161,7 +165,7 @@ public:
coalescedWrite(out_v[ss](b),res); coalescedWrite(out_v[ss](b),res);
}); });
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose(); for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
}; };
void Mdag (const CoarseVector &in, CoarseVector &out) void Mdag (const CoarseVector &in, CoarseVector &out)
@ -190,9 +194,14 @@ public:
int npoint = geom.npoint; int npoint = geom.npoint;
typedef LatticeView<Cobj> Aview; typedef LatticeView<Cobj> Aview;
Vector<Aview> AcceleratorViewContainer;
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead)); deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
hostVector<Aview> hAcceleratorViewContainer(geom.npoint);
for(int p=0;p<geom.npoint;p++) {
hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
}
Aview *Aview_p = & AcceleratorViewContainer[0]; Aview *Aview_p = & AcceleratorViewContainer[0];
const int Nsimd = CComplex::Nsimd(); const int Nsimd = CComplex::Nsimd();
@ -201,10 +210,10 @@ public:
int osites=Grid()->oSites(); int osites=Grid()->oSites();
Vector<int> points(geom.npoint, 0); deviceVector<int> points(geom.npoint);
for(int p=0; p<geom.npoint; p++) for(int p=0; p<geom.npoint; p++) {
points[p] = geom.points_dagger[p]; acceleratorPut(points[p],geom.points_dagger[p]);
}
auto points_p = &points[0]; auto points_p = &points[0];
RealD* dag_factor_p = &dag_factor[0]; RealD* dag_factor_p = &dag_factor[0];
@ -236,7 +245,7 @@ public:
coalescedWrite(out_v[ss](b),res); coalescedWrite(out_v[ss](b),res);
}); });
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose(); for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
} }
void MdirComms(const CoarseVector &in) void MdirComms(const CoarseVector &in)
@ -251,8 +260,14 @@ public:
out.Checkerboard() = in.Checkerboard(); out.Checkerboard() = in.Checkerboard();
typedef LatticeView<Cobj> Aview; typedef LatticeView<Cobj> Aview;
Vector<Aview> AcceleratorViewContainer;
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead)); deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
hostVector<Aview> hAcceleratorViewContainer(geom.npoint);
for(int p=0;p<geom.npoint;p++) {
hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
}
Aview *Aview_p = & AcceleratorViewContainer[0]; Aview *Aview_p = & AcceleratorViewContainer[0];
autoView( out_v , out, AcceleratorWrite); autoView( out_v , out, AcceleratorWrite);
@ -285,7 +300,7 @@ public:
} }
coalescedWrite(out_v[ss](b),res); coalescedWrite(out_v[ss](b),res);
}); });
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose(); for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
} }
void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out) void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out)
{ {
@ -469,14 +484,20 @@ public:
// determine in what order we need the points // determine in what order we need the points
int npoint = geom.npoint-1; int npoint = geom.npoint-1;
Vector<int> points(npoint, 0); deviceVector<int> points(npoint);
for(int p=0; p<npoint; p++) for(int p=0; p<npoint; p++) {
points[p] = (dag && !hermitian) ? geom.points_dagger[p] : p; int val = (dag && !hermitian) ? geom.points_dagger[p] : p;
acceleratorPut(points[p], val);
}
auto points_p = &points[0]; auto points_p = &points[0];
Vector<Aview> AcceleratorViewContainer; deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
for(int p=0;p<npoint;p++) AcceleratorViewContainer.push_back(a[p].View(AcceleratorRead)); hostVector<Aview> hAcceleratorViewContainer(geom.npoint);
for(int p=0;p<geom.npoint;p++) {
hAcceleratorViewContainer[p] = a[p].View(AcceleratorRead);
acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
}
Aview *Aview_p = & AcceleratorViewContainer[0]; Aview *Aview_p = & AcceleratorViewContainer[0];
const int Nsimd = CComplex::Nsimd(); const int Nsimd = CComplex::Nsimd();
@ -539,7 +560,7 @@ public:
}); });
} }
for(int p=0;p<npoint;p++) AcceleratorViewContainer[p].ViewClose(); for(int p=0;p<npoint;p++) hAcceleratorViewContainer[p].ViewClose();
} }
CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) : CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) :
@ -590,11 +611,13 @@ public:
} }
// GPU readable prefactor // GPU readable prefactor
std::vector<RealD> h_dag_factor(nbasis*nbasis);
thread_for(i, nbasis*nbasis, { thread_for(i, nbasis*nbasis, {
int j = i/nbasis; int j = i/nbasis;
int k = i%nbasis; int k = i%nbasis;
dag_factor[i] = dag_factor_eigen(j, k); h_dag_factor[i] = dag_factor_eigen(j, k);
}); });
acceleratorCopyToDevice(&h_dag_factor[0],&dag_factor[0],dag_factor.size()*sizeof(RealD));
} }
void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop, void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop,

View File

@ -441,8 +441,20 @@ public:
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl; std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
} }
#else #else
//////////////////////////////////////////////////////////////////////
// Galerkin projection of matrix
//////////////////////////////////////////////////////////////////////
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop, void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
Aggregation<Fobj,CComplex,nbasis> & Subspace) Aggregation<Fobj,CComplex,nbasis> & Subspace)
{
CoarsenOperator(linop,Subspace,Subspace);
}
//////////////////////////////////////////////////////////////////////
// Petrov - Galerkin projection of matrix
//////////////////////////////////////////////////////////////////////
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
Aggregation<Fobj,CComplex,nbasis> & U,
Aggregation<Fobj,CComplex,nbasis> & V)
{ {
std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl; std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
GridBase *grid = FineGrid(); GridBase *grid = FineGrid();
@ -458,11 +470,9 @@ public:
// Orthogonalise the subblocks over the basis // Orthogonalise the subblocks over the basis
///////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////
CoarseScalar InnerProd(CoarseGrid()); CoarseScalar InnerProd(CoarseGrid());
blockOrthogonalise(InnerProd,Subspace.subspace); blockOrthogonalise(InnerProd,V.subspace);
blockOrthogonalise(InnerProd,U.subspace);
// for(int s=0;s<Subspace.subspace.size();s++){
// std::cout << " subspace norm "<<norm2(Subspace.subspace[s])<<std::endl;
// }
const int npoint = geom.npoint; const int npoint = geom.npoint;
Coordinate clatt = CoarseGrid()->GlobalDimensions(); Coordinate clatt = CoarseGrid()->GlobalDimensions();
@ -542,7 +552,7 @@ public:
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl; std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
tphaseBZ-=usecond(); tphaseBZ-=usecond();
phaV = phaF[p]*Subspace.subspace[i]; phaV = phaF[p]*V.subspace[i];
tphaseBZ+=usecond(); tphaseBZ+=usecond();
///////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////
@ -555,7 +565,7 @@ public:
// std::cout << i << " " <<p << " MphaV "<<norm2(MphaV)<<" "<<norm2(phaV)<<std::endl; // std::cout << i << " " <<p << " MphaV "<<norm2(MphaV)<<" "<<norm2(phaV)<<std::endl;
tproj-=usecond(); tproj-=usecond();
blockProject(coarseInner,MphaV,Subspace.subspace); blockProject(coarseInner,MphaV,U.subspace);
coarseInner = conjugate(pha[p]) * coarseInner; coarseInner = conjugate(pha[p]) * coarseInner;
ComputeProj[p] = coarseInner; ComputeProj[p] = coarseInner;

View File

@ -69,7 +69,7 @@ public:
} }
// FIXME: hack for the copy constructor: it must be avoided to avoid single thread loop // FIXME: hack for the copy constructor: it must be avoided to avoid single thread loop
void construct(pointer __p, const _Tp& __val) { assert(0);}; void construct(pointer __p, const _Tp& __val) { };
void construct(pointer __p) { }; void construct(pointer __p) { };
void destroy(pointer __p) { }; void destroy(pointer __p) { };
}; };
@ -174,19 +174,10 @@ template<typename _Tp> inline bool operator!=(const devAllocator<_Tp>&, const d
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
// Template typedefs // Template typedefs
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
#ifdef ACCELERATOR_CSHIFT template<class T> using hostVector = std::vector<T,alignedAllocator<T> >; // Needs autoview
// Cshift on device template<class T> using Vector = std::vector<T,uvmAllocator<T> >; // Really want to deprecate
template<class T> using cshiftAllocator = devAllocator<T>; template<class T> using uvmVector = std::vector<T,uvmAllocator<T> >; // auto migrating page
#else template<class T> using deviceVector = std::vector<T,devAllocator<T> >; // device vector
// Cshift on host
template<class T> using cshiftAllocator = std::allocator<T>;
#endif
template<class T> using Vector = std::vector<T,uvmAllocator<T> >;
template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;
template<class T> using commVector = std::vector<T,devAllocator<T> >;
template<class T> using deviceVector = std::vector<T,devAllocator<T> >;
template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >;
/* /*
template<class T> class vecView template<class T> class vecView
@ -197,8 +188,9 @@ template<class T> class vecView
ViewMode mode; ViewMode mode;
void * cpu_ptr; void * cpu_ptr;
public: public:
// Rvalue accessor
accelerator_inline T & operator[](size_t i) const { return this->data[i]; }; accelerator_inline T & operator[](size_t i) const { return this->data[i]; };
vecView(std::vector<T> &refer_to_me,ViewMode _mode) vecView(Vector<T> &refer_to_me,ViewMode _mode)
{ {
cpu_ptr = &refer_to_me[0]; cpu_ptr = &refer_to_me[0];
size = refer_to_me.size(); size = refer_to_me.size();
@ -214,22 +206,12 @@ template<class T> class vecView
} }
}; };
template<class T> vecView<T> VectorView(std::vector<T> &vec,ViewMode _mode) template<class T> vecView<T> VectorView(Vector<T> &vec,ViewMode _mode)
{ {
vecView<T> ret(vec,_mode); // does the open vecView<T> ret(vec,_mode); // does the open
return ret; // must be closed return ret; // must be closed
} }
// Little autoscope assister
template<class View>
class VectorViewCloser
{
View v; // Take a copy of view and call view close when I go out of scope automatically
public:
VectorViewCloser(View &_v) : v(_v) {};
~VectorViewCloser() { auto ptr = v.cpu_ptr; v.ViewClose(); MemoryManager::NotifyDeletion(ptr);}
};
#define autoVecView(v_v,v,mode) \ #define autoVecView(v_v,v,mode) \
auto v_v = VectorView(v,mode); \ auto v_v = VectorView(v,mode); \
ViewCloser<decltype(v_v)> _autoView##v_v(v_v); ViewCloser<decltype(v_v)> _autoView##v_v(v_v);

View File

@ -1,16 +1,15 @@
#include <Grid/GridCore.h> #include <Grid/GridCore.h>
#ifndef GRID_UVM #ifndef GRID_UVM
#warning "Using explicit device memory copies"
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
#define MAXLINE 512 #define MAXLINE 512
static char print_buffer [ MAXLINE ]; static char print_buffer [ MAXLINE ];
#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer; #define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer << std::endl;
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug << print_buffer; #define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug << print_buffer << std::endl;
//#define dprintf(...) //#define dprintf(...)
//#define mprintf(...)
//////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////
// For caching copies of data on device // For caching copies of data on device
@ -111,7 +110,7 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
/////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////
assert(AccCache.state!=Empty); assert(AccCache.state!=Empty);
dprintf("MemoryManager: Discard(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr); dprintf("MemoryManager: Discard(%lx) %lx",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
assert(AccCache.accLock==0); assert(AccCache.accLock==0);
assert(AccCache.cpuLock==0); assert(AccCache.cpuLock==0);
assert(AccCache.CpuPtr!=(uint64_t)NULL); assert(AccCache.CpuPtr!=(uint64_t)NULL);
@ -121,7 +120,7 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
DeviceBytes -=AccCache.bytes; DeviceBytes -=AccCache.bytes;
LRUremove(AccCache); LRUremove(AccCache);
AccCache.AccPtr=(uint64_t) NULL; AccCache.AccPtr=(uint64_t) NULL;
dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes); dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);
} }
uint64_t CpuPtr = AccCache.CpuPtr; uint64_t CpuPtr = AccCache.CpuPtr;
EntryErase(CpuPtr); EntryErase(CpuPtr);
@ -141,7 +140,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
/////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////
assert(AccCache.state!=Empty); assert(AccCache.state!=Empty);
mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld\n", mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld",
(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr, (uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr,
(uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock); (uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock);
if (AccCache.accLock!=0) return; if (AccCache.accLock!=0) return;
@ -155,7 +154,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
AccCache.AccPtr=(uint64_t)NULL; AccCache.AccPtr=(uint64_t)NULL;
AccCache.state=CpuDirty; // CPU primary now AccCache.state=CpuDirty; // CPU primary now
DeviceBytes -=AccCache.bytes; DeviceBytes -=AccCache.bytes;
dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes); dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld ",(uint64_t)AccCache.AccPtr,DeviceBytes);
} }
// uint64_t CpuPtr = AccCache.CpuPtr; // uint64_t CpuPtr = AccCache.CpuPtr;
DeviceEvictions++; DeviceEvictions++;
@ -169,7 +168,7 @@ void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
assert(AccCache.AccPtr!=(uint64_t)NULL); assert(AccCache.AccPtr!=(uint64_t)NULL);
assert(AccCache.CpuPtr!=(uint64_t)NULL); assert(AccCache.CpuPtr!=(uint64_t)NULL);
acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes); acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
mprintf("MemoryManager: acceleratorCopyFromDevice Flush AccPtr %lx -> CpuPtr %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout); mprintf("MemoryManager: acceleratorCopyFromDevice Flush size %ld AccPtr %lx -> CpuPtr %lx",(uint64_t)AccCache.bytes,(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
DeviceToHostBytes+=AccCache.bytes; DeviceToHostBytes+=AccCache.bytes;
DeviceToHostXfer++; DeviceToHostXfer++;
AccCache.state=Consistent; AccCache.state=Consistent;
@ -184,7 +183,9 @@ void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes); AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
DeviceBytes+=AccCache.bytes; DeviceBytes+=AccCache.bytes;
} }
mprintf("MemoryManager: acceleratorCopyToDevice Clone AccPtr %lx <- CpuPtr %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout); mprintf("MemoryManager: acceleratorCopyToDevice Clone size %ld AccPtr %lx <- CpuPtr %lx",
(uint64_t)AccCache.bytes,
(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes); acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
HostToDeviceBytes+=AccCache.bytes; HostToDeviceBytes+=AccCache.bytes;
HostToDeviceXfer++; HostToDeviceXfer++;
@ -210,7 +211,7 @@ void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache)
void MemoryManager::ViewClose(void* Ptr,ViewMode mode) void MemoryManager::ViewClose(void* Ptr,ViewMode mode)
{ {
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){ if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
dprintf("AcceleratorViewClose %lx\n",(uint64_t)Ptr); dprintf("AcceleratorViewClose %lx",(uint64_t)Ptr);
AcceleratorViewClose((uint64_t)Ptr); AcceleratorViewClose((uint64_t)Ptr);
} else if( (mode==CpuRead)||(mode==CpuWrite)){ } else if( (mode==CpuRead)||(mode==CpuWrite)){
CpuViewClose((uint64_t)Ptr); CpuViewClose((uint64_t)Ptr);
@ -222,7 +223,7 @@ void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvis
{ {
uint64_t CpuPtr = (uint64_t)_CpuPtr; uint64_t CpuPtr = (uint64_t)_CpuPtr;
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){ if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
dprintf("AcceleratorViewOpen %lx\n",(uint64_t)CpuPtr); dprintf("AcceleratorViewOpen %lx",(uint64_t)CpuPtr);
return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint); return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint);
} else if( (mode==CpuRead)||(mode==CpuWrite)){ } else if( (mode==CpuRead)||(mode==CpuWrite)){
return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint); return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint);
@ -233,6 +234,9 @@ void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvis
} }
void MemoryManager::EvictVictims(uint64_t bytes) void MemoryManager::EvictVictims(uint64_t bytes)
{ {
if(bytes>=DeviceMaxBytes) {
printf("EvictVictims bytes %ld DeviceMaxBytes %ld\n",bytes,DeviceMaxBytes);
}
assert(bytes<DeviceMaxBytes); assert(bytes<DeviceMaxBytes);
while(bytes+DeviceLRUBytes > DeviceMaxBytes){ while(bytes+DeviceLRUBytes > DeviceMaxBytes){
if ( DeviceLRUBytes > 0){ if ( DeviceLRUBytes > 0){
@ -265,7 +269,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
assert(AccCache.cpuLock==0); // Programming error assert(AccCache.cpuLock==0); // Programming error
if(AccCache.state!=Empty) { if(AccCache.state!=Empty) {
dprintf("ViewOpen found entry %lx %lx : %ld %ld accLock %ld\n", dprintf("ViewOpen found entry %lx %lx : sizes %ld %ld accLock %ld",
(uint64_t)AccCache.CpuPtr, (uint64_t)AccCache.CpuPtr,
(uint64_t)CpuPtr, (uint64_t)CpuPtr,
(uint64_t)AccCache.bytes, (uint64_t)AccCache.bytes,
@ -305,7 +309,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
AccCache.state = Consistent; // Empty + AccRead => Consistent AccCache.state = Consistent; // Empty + AccRead => Consistent
} }
AccCache.accLock= 1; AccCache.accLock= 1;
dprintf("Copied Empty entry into device accLock= %d\n",AccCache.accLock); dprintf("Copied Empty entry into device accLock= %d",AccCache.accLock);
} else if(AccCache.state==CpuDirty ){ } else if(AccCache.state==CpuDirty ){
if(mode==AcceleratorWriteDiscard) { if(mode==AcceleratorWriteDiscard) {
CpuDiscard(AccCache); CpuDiscard(AccCache);
@ -318,21 +322,21 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
AccCache.state = Consistent; // CpuDirty + AccRead => Consistent AccCache.state = Consistent; // CpuDirty + AccRead => Consistent
} }
AccCache.accLock++; AccCache.accLock++;
dprintf("CpuDirty entry into device ++accLock= %d\n",AccCache.accLock); dprintf("CpuDirty entry into device ++accLock= %d",AccCache.accLock);
} else if(AccCache.state==Consistent) { } else if(AccCache.state==Consistent) {
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard)) if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
AccCache.state = AccDirty; // Consistent + AcceleratorWrite=> AccDirty AccCache.state = AccDirty; // Consistent + AcceleratorWrite=> AccDirty
else else
AccCache.state = Consistent; // Consistent + AccRead => Consistent AccCache.state = Consistent; // Consistent + AccRead => Consistent
AccCache.accLock++; AccCache.accLock++;
dprintf("Consistent entry into device ++accLock= %d\n",AccCache.accLock); dprintf("Consistent entry into device ++accLock= %d",AccCache.accLock);
} else if(AccCache.state==AccDirty) { } else if(AccCache.state==AccDirty) {
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard)) if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
AccCache.state = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty AccCache.state = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty
else else
AccCache.state = AccDirty; // AccDirty + AccRead => AccDirty AccCache.state = AccDirty; // AccDirty + AccRead => AccDirty
AccCache.accLock++; AccCache.accLock++;
dprintf("AccDirty entry ++accLock= %d\n",AccCache.accLock); dprintf("AccDirty entry ++accLock= %d",AccCache.accLock);
} else { } else {
assert(0); assert(0);
} }
@ -341,7 +345,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
// If view is opened on device must remove from LRU // If view is opened on device must remove from LRU
if(AccCache.LRU_valid==1){ if(AccCache.LRU_valid==1){
// must possibly remove from LRU as now locked on GPU // must possibly remove from LRU as now locked on GPU
dprintf("AccCache entry removed from LRU \n"); dprintf("AccCache entry removed from LRU ");
LRUremove(AccCache); LRUremove(AccCache);
} }
@ -364,10 +368,10 @@ void MemoryManager::AcceleratorViewClose(uint64_t CpuPtr)
AccCache.accLock--; AccCache.accLock--;
// Move to LRU queue if not locked and close on device // Move to LRU queue if not locked and close on device
if(AccCache.accLock==0) { if(AccCache.accLock==0) {
dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock); dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
LRUinsert(AccCache); LRUinsert(AccCache);
} else { } else {
dprintf("AccleratorViewClose %lx AccLock decremented to %ld\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock); dprintf("AccleratorViewClose %lx AccLock decremented to %ld",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
} }
} }
void MemoryManager::CpuViewClose(uint64_t CpuPtr) void MemoryManager::CpuViewClose(uint64_t CpuPtr)

View File

@ -15,10 +15,10 @@ void check_huge_pages(void *Buf,uint64_t BYTES)
uint64_t virt_pfn = (uint64_t)Buf / page_size; uint64_t virt_pfn = (uint64_t)Buf / page_size;
off_t offset = sizeof(uint64_t) * virt_pfn; off_t offset = sizeof(uint64_t) * virt_pfn;
uint64_t npages = (BYTES + page_size-1) / page_size; uint64_t npages = (BYTES + page_size-1) / page_size;
uint64_t pagedata[npages]; std::vector<uint64_t> pagedata(npages);
uint64_t ret = lseek(fd, offset, SEEK_SET); uint64_t ret = lseek(fd, offset, SEEK_SET);
assert(ret == offset); assert(ret == offset);
ret = ::read(fd, pagedata, sizeof(uint64_t)*npages); ret = ::read(fd, &pagedata[0], sizeof(uint64_t)*npages);
assert(ret == sizeof(uint64_t) * npages); assert(ret == sizeof(uint64_t) * npages);
int nhugepages = npages / 512; int nhugepages = npages / 512;
int n4ktotal, nnothuge; int n4ktotal, nnothuge;

View File

@ -57,18 +57,29 @@ int CartesianCommunicator::ProcessorCount(void) { return
// very VERY rarely (Log, serial RNG) we need world without a grid // very VERY rarely (Log, serial RNG) we need world without a grid
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
#ifdef USE_GRID_REDUCTION
void CartesianCommunicator::GlobalSum(ComplexF &c)
{
GlobalSumP2P(c);
}
void CartesianCommunicator::GlobalSum(ComplexD &c)
{
GlobalSumP2P(c);
}
#else
void CartesianCommunicator::GlobalSum(ComplexF &c) void CartesianCommunicator::GlobalSum(ComplexF &c)
{ {
GlobalSumVector((float *)&c,2); GlobalSumVector((float *)&c,2);
} }
void CartesianCommunicator::GlobalSumVector(ComplexF *c,int N)
{
GlobalSumVector((float *)c,2*N);
}
void CartesianCommunicator::GlobalSum(ComplexD &c) void CartesianCommunicator::GlobalSum(ComplexD &c)
{ {
GlobalSumVector((double *)&c,2); GlobalSumVector((double *)&c,2);
} }
#endif
void CartesianCommunicator::GlobalSumVector(ComplexF *c,int N)
{
GlobalSumVector((float *)c,2*N);
}
void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N) void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N)
{ {
GlobalSumVector((double *)c,2*N); GlobalSumVector((double *)c,2*N);

View File

@ -33,6 +33,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
/////////////////////////////////// ///////////////////////////////////
#include <Grid/communicator/SharedMemory.h> #include <Grid/communicator/SharedMemory.h>
#define NVLINK_GET
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
extern bool Stencil_force_mpi ; extern bool Stencil_force_mpi ;
@ -136,7 +138,7 @@ public:
for(int d=0;d<_ndimension;d++){ for(int d=0;d<_ndimension;d++){
column.resize(_processors[d]); column.resize(_processors[d]);
column[0] = accum; column[0] = accum;
std::vector<CommsRequest_t> list; std::vector<MpiCommsRequest_t> list;
for(int p=1;p<_processors[d];p++){ for(int p=1;p<_processors[d];p++){
ShiftedRanks(d,p,source,dest); ShiftedRanks(d,p,source,dest);
SendToRecvFromBegin(list, SendToRecvFromBegin(list,
@ -147,6 +149,7 @@ public:
sizeof(obj),d*100+p); sizeof(obj),d*100+p);
} }
if (!list.empty()) // avoid triggering assert in comms == none
CommsComplete(list); CommsComplete(list);
for(int p=1;p<_processors[d];p++){ for(int p=1;p<_processors[d];p++){
accum = accum + column[p]; accum = accum + column[p];
@ -166,8 +169,8 @@ public:
//////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////
// Face exchange, buffer swap in translational invariant way // Face exchange, buffer swap in translational invariant way
//////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////
void CommsComplete(std::vector<CommsRequest_t> &list); void CommsComplete(std::vector<MpiCommsRequest_t> &list);
void SendToRecvFromBegin(std::vector<CommsRequest_t> &list, void SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list,
void *xmit, void *xmit,
int dest, int dest,
void *recv, void *recv,
@ -186,6 +189,17 @@ public:
int recv_from_rank,int do_recv, int recv_from_rank,int do_recv,
int bytes,int dir); int bytes,int dir);
double StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,int do_xmit,
void *recv,
int recv_from_rank,int do_recv,
int xbytes,int rbytes,int dir);
// Could do a PollHtoD and have a CommsMerge dependence
void StencilSendToRecvFromPollDtoH (std::vector<CommsRequest_t> &list);
void StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list);
double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list, double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit, void *xmit,
int xmit_to_rank,int do_xmit, int xmit_to_rank,int do_xmit,

View File

@ -30,6 +30,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
Grid_MPI_Comm CartesianCommunicator::communicator_world; Grid_MPI_Comm CartesianCommunicator::communicator_world;
//////////////////////////////////////////// ////////////////////////////////////////////
@ -257,15 +258,41 @@ CartesianCommunicator::~CartesianCommunicator()
} }
} }
} }
#ifdef USE_GRID_REDUCTION
void CartesianCommunicator::GlobalSum(float &f){
FlightRecorder::StepLog("GlobalSumP2P");
CartesianCommunicator::GlobalSumP2P(f);
}
void CartesianCommunicator::GlobalSum(double &d)
{
FlightRecorder::StepLog("GlobalSumP2P");
CartesianCommunicator::GlobalSumP2P(d);
}
#else
void CartesianCommunicator::GlobalSum(float &f){
FlightRecorder::StepLog("AllReduce");
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSum(double &d)
{
FlightRecorder::StepLog("AllReduce");
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
assert(ierr==0);
}
#endif
void CartesianCommunicator::GlobalSum(uint32_t &u){ void CartesianCommunicator::GlobalSum(uint32_t &u){
FlightRecorder::StepLog("AllReduce");
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator); int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
assert(ierr==0); assert(ierr==0);
} }
void CartesianCommunicator::GlobalSum(uint64_t &u){ void CartesianCommunicator::GlobalSum(uint64_t &u){
FlightRecorder::StepLog("AllReduce");
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator); int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator);
assert(ierr==0); assert(ierr==0);
} }
void CartesianCommunicator::GlobalSumVector(uint64_t* u,int N){ void CartesianCommunicator::GlobalSumVector(uint64_t* u,int N){
FlightRecorder::StepLog("AllReduceVector");
int ierr=MPI_Allreduce(MPI_IN_PLACE,u,N,MPI_UINT64_T,MPI_SUM,communicator); int ierr=MPI_Allreduce(MPI_IN_PLACE,u,N,MPI_UINT64_T,MPI_SUM,communicator);
assert(ierr==0); assert(ierr==0);
} }
@ -287,27 +314,18 @@ void CartesianCommunicator::GlobalMax(double &d)
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_MAX,communicator); int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_MAX,communicator);
assert(ierr==0); assert(ierr==0);
} }
void CartesianCommunicator::GlobalSum(float &f){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSumVector(float *f,int N) void CartesianCommunicator::GlobalSumVector(float *f,int N)
{ {
int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator); int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator);
assert(ierr==0); assert(ierr==0);
} }
void CartesianCommunicator::GlobalSum(double &d)
{
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSumVector(double *d,int N) void CartesianCommunicator::GlobalSumVector(double *d,int N)
{ {
int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator); int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
assert(ierr==0); assert(ierr==0);
} }
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list, void CartesianCommunicator::SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list,
void *xmit, void *xmit,
int dest, int dest,
void *recv, void *recv,
@ -332,7 +350,7 @@ void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &lis
assert(ierr==0); assert(ierr==0);
list.push_back(xrq); list.push_back(xrq);
} }
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list) void CartesianCommunicator::CommsComplete(std::vector<MpiCommsRequest_t> &list)
{ {
int nreq=list.size(); int nreq=list.size();
@ -351,9 +369,7 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
int from, int from,
int bytes) int bytes)
{ {
std::vector<CommsRequest_t> reqs(0); std::vector<MpiCommsRequest_t> reqs(0);
unsigned long xcrc = crc32(0L, Z_NULL, 0);
unsigned long rcrc = crc32(0L, Z_NULL, 0);
int myrank = _processor; int myrank = _processor;
int ierr; int ierr;
@ -369,9 +385,6 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
communicator,MPI_STATUS_IGNORE); communicator,MPI_STATUS_IGNORE);
assert(ierr==0); assert(ierr==0);
// xcrc = crc32(xcrc,(unsigned char *)xmit,bytes);
// rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
// printf("proc %d SendToRecvFrom %d bytes xcrc %lx rcrc %lx\n",_processor,bytes,xcrc,rcrc); fflush
} }
// Basic Halo comms primitive // Basic Halo comms primitive
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit, double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
@ -381,12 +394,25 @@ double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
int bytes,int dir) int bytes,int dir)
{ {
std::vector<CommsRequest_t> list; std::vector<CommsRequest_t> list;
double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir); double offbytes = StencilSendToRecvFromPrepare(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
offbytes += StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
StencilSendToRecvFromComplete(list,dir); StencilSendToRecvFromComplete(list,dir);
return offbytes; return offbytes;
} }
#undef NVLINK_GET // Define to use get instead of put DMA
#ifdef ACCELERATOR_AWARE_MPI
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {};
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {};
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,int dox,
void *recv,
int from,int dor,
int xbytes,int rbytes,int dir)
{
return 0.0; // Do nothing -- no preparation required
}
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list, double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit, void *xmit,
int dest,int dox, int dest,int dox,
@ -420,14 +446,15 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
off_node_bytes+=rbytes; off_node_bytes+=rbytes;
} }
#ifdef NVLINK_GET #ifdef NVLINK_GET
else {
void *shm = (void *) this->ShmBufferTranslate(from,xmit); void *shm = (void *) this->ShmBufferTranslate(from,xmit);
assert(shm!=NULL); assert(shm!=NULL);
acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes); acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
}
#endif #endif
} }
// This is a NVLINK PUT
if (dox) { if (dox) {
// rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) { if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+_processor*32; tag= dir+_processor*32;
ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq); ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
@ -440,27 +467,341 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
assert(shm!=NULL); assert(shm!=NULL);
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes); acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
#endif #endif
}
}
return off_node_bytes;
}
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
{
int nreq=list.size();
/*finishes Get/Put*/
acceleratorCopySynchronise();
if (nreq==0) return;
std::vector<MPI_Status> status(nreq);
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
assert(ierr==0);
list.resize(0);
this->StencilBarrier();
}
#else /* NOT ... ACCELERATOR_AWARE_MPI */
///////////////////////////////////////////
// Pipeline mode through host memory
///////////////////////////////////////////
/*
* In prepare (phase 1):
* PHASE 1: (prepare)
* - post MPI receive buffers asynch
* - post device - host send buffer transfer asynch
* PHASE 2: (Begin)
* - complete all copies
* - post MPI send asynch
* - post device - device transfers
* PHASE 3: (Complete)
* - MPI_waitall
* - host-device transfers
*
*********************************
* NB could split this further:
*--------------------------------
* PHASE 1: (Prepare)
* - post MPI receive buffers asynch
* - post device - host send buffer transfer asynch
* PHASE 2: (BeginInterNode)
* - complete all copies
* - post MPI send asynch
* PHASE 3: (BeginIntraNode)
* - post device - device transfers
* PHASE 4: (Complete)
* - MPI_waitall
* - host-device transfers asynch
* - (complete all copies)
*/
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,int dox,
void *recv,
int from,int dor,
int xbytes,int rbytes,int dir)
{
/*
* Bring sequence from Stencil.h down to lower level.
* Assume using XeLink is ok
*/
int ncomm =communicator_halo.size();
int commdir=dir%ncomm;
MPI_Request xrq;
MPI_Request rrq;
int ierr;
int gdest = ShmRanks[dest];
int gfrom = ShmRanks[from];
int gme = ShmRanks[_processor];
assert(dest != _processor);
assert(from != _processor);
assert(gme == ShmRank);
double off_node_bytes=0.0;
int tag;
void * host_recv = NULL;
void * host_xmit = NULL;
/*
* PHASE 1: (Prepare)
* - post MPI receive buffers asynch
* - post device - host send buffer transfer asynch
*/
if ( dor ) {
if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+from*32;
host_recv = this->HostBufferMalloc(rbytes);
ierr=MPI_Irecv(host_recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
assert(ierr==0);
CommsRequest_t srq;
srq.PacketType = InterNodeRecv;
srq.bytes = rbytes;
srq.req = rrq;
srq.host_buf = host_recv;
srq.device_buf = recv;
list.push_back(srq);
off_node_bytes+=rbytes;
}
}
if (dox) {
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+_processor*32;
host_xmit = this->HostBufferMalloc(xbytes);
CommsRequest_t srq;
srq.ev = acceleratorCopyFromDeviceAsynch(xmit, host_xmit,xbytes); // Make this Asynch
// ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
// assert(ierr==0);
// off_node_bytes+=xbytes;
srq.PacketType = InterNodeXmit;
srq.bytes = xbytes;
// srq.req = xrq;
srq.host_buf = host_xmit;
srq.device_buf = xmit;
srq.tag = tag;
srq.dest = dest;
srq.commdir = commdir;
list.push_back(srq);
} }
} }
return off_node_bytes; return off_node_bytes;
} }
/*
* In the interest of better pipelining, poll for completion on each DtoH and
* start MPI_ISend in the meantime
*/
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list)
{
int pending = 0;
do {
pending = 0;
for(int idx = 0; idx<list.size();idx++){
if ( list[idx].PacketType==InterNodeRecv ) {
int flag = 0;
MPI_Status status;
int ierr = MPI_Test(&list[idx].req,&flag,&status);
assert(ierr==0);
if ( flag ) {
// std::cout << " PollIrecv "<<idx<<" flag "<<flag<<std::endl;
acceleratorCopyToDeviceAsynch(list[idx].host_buf,list[idx].device_buf,list[idx].bytes);
list[idx].PacketType=InterNodeReceiveHtoD;
} else {
pending ++;
}
}
}
// std::cout << " PollIrecv "<<pending<<" pending requests"<<std::endl;
} while ( pending );
}
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list)
{
int pending = 0;
do {
pending = 0;
for(int idx = 0; idx<list.size();idx++){
if ( list[idx].PacketType==InterNodeXmit ) {
if ( acceleratorEventIsComplete(list[idx].ev) ) {
void *host_xmit = list[idx].host_buf;
uint32_t xbytes = list[idx].bytes;
int dest = list[idx].dest;
int tag = list[idx].tag;
int commdir = list[idx].commdir;
///////////////////
// Send packet
///////////////////
// std::cout << " DtoH is complete for index "<<idx<<" calling MPI_Isend "<<std::endl;
MPI_Request xrq;
int ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
assert(ierr==0);
list[idx].req = xrq; // Update the MPI request in the list
list[idx].PacketType=InterNodeXmitISend;
} else {
// not done, so return to polling loop
pending++;
}
}
}
} while (pending);
}
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,int dox,
void *recv,
int from,int dor,
int xbytes,int rbytes,int dir)
{
int ncomm =communicator_halo.size();
int commdir=dir%ncomm;
MPI_Request xrq;
MPI_Request rrq;
int ierr;
int gdest = ShmRanks[dest];
int gfrom = ShmRanks[from];
int gme = ShmRanks[_processor];
assert(dest != _processor);
assert(from != _processor);
assert(gme == ShmRank);
double off_node_bytes=0.0;
int tag;
void * host_xmit = NULL;
////////////////////////////////
// Receives already posted
// Copies already started
////////////////////////////////
/*
* PHASE 2: (Begin)
* - complete all copies
* - post MPI send asynch
*/
#ifdef NVLINK_GET
if ( dor ) {
if ( ! ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) ) {
// Intranode
void *shm = (void *) this->ShmBufferTranslate(from,xmit);
assert(shm!=NULL);
CommsRequest_t srq;
srq.ev = acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
srq.PacketType = IntraNodeRecv;
srq.bytes = xbytes;
// srq.req = xrq;
srq.host_buf = NULL;
srq.device_buf = xmit;
srq.tag = -1;
srq.dest = dest;
srq.commdir = dir;
list.push_back(srq);
}
}
#else
if (dox) {
if ( !( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) ) {
// Intranode
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
assert(shm!=NULL);
CommsRequest_t srq;
srq.ev = acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
srq.PacketType = IntraNodeXmit;
srq.bytes = xbytes;
// srq.req = xrq;
srq.host_buf = NULL;
srq.device_buf = xmit;
srq.tag = -1;
srq.dest = dest;
srq.commdir = dir;
list.push_back(srq);
}
}
#endif
return off_node_bytes;
}
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir) void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
{ {
int nreq=list.size(); acceleratorCopySynchronise(); // Complete all pending copy transfers D2D
acceleratorCopySynchronise(); std::vector<MPI_Status> status;
std::vector<MPI_Request> MpiRequests;
if (nreq==0) return; for(int r=0;r<list.size();r++){
// Must check each Send buf is clear to reuse
std::vector<MPI_Status> status(nreq); if ( list[r].PacketType == InterNodeXmitISend ) MpiRequests.push_back(list[r].req);
int ierr = MPI_Waitall(nreq,&list[0],&status[0]); // if ( list[r].PacketType == InterNodeRecv ) MpiRequests.push_back(list[r].req); // Already "Test" passed
assert(ierr==0);
list.resize(0);
} }
int nreq=MpiRequests.size();
if (nreq>0) {
status.resize(MpiRequests.size());
int ierr = MPI_Waitall(MpiRequests.size(),&MpiRequests[0],&status[0]); // Sends are guaranteed in order. No harm in not completing.
assert(ierr==0);
}
// for(int r=0;r<nreq;r++){
// if ( list[r].PacketType==InterNodeRecv ) {
// acceleratorCopyToDeviceAsynch(list[r].host_buf,list[r].device_buf,list[r].bytes);
// }
// }
list.resize(0); // Delete the list
this->HostBufferFreeAll(); // Clean up the buffer allocs
#ifndef NVLINK_GET
this->StencilBarrier(); // if PUT must check our nbrs have filled our receive buffers.
#endif
}
#endif
////////////////////////////////////////////
// END PIPELINE MODE / NO CUDA AWARE MPI
////////////////////////////////////////////
void CartesianCommunicator::StencilBarrier(void) void CartesianCommunicator::StencilBarrier(void)
{ {
FlightRecorder::StepLog("NodeBarrier");
MPI_Barrier (ShmComm); MPI_Barrier (ShmComm);
} }
//void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list) //void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
@ -468,11 +809,13 @@ void CartesianCommunicator::StencilBarrier(void)
//} //}
void CartesianCommunicator::Barrier(void) void CartesianCommunicator::Barrier(void)
{ {
FlightRecorder::StepLog("GridBarrier");
int ierr = MPI_Barrier(communicator); int ierr = MPI_Barrier(communicator);
assert(ierr==0); assert(ierr==0);
} }
void CartesianCommunicator::Broadcast(int root,void* data, int bytes) void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
{ {
FlightRecorder::StepLog("Broadcast");
int ierr=MPI_Bcast(data, int ierr=MPI_Bcast(data,
bytes, bytes,
MPI_BYTE, MPI_BYTE,
@ -491,6 +834,7 @@ void CartesianCommunicator::BarrierWorld(void){
} }
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
{ {
FlightRecorder::StepLog("BroadcastWorld");
int ierr= MPI_Bcast(data, int ierr= MPI_Bcast(data,
bytes, bytes,
MPI_BYTE, MPI_BYTE,
@ -513,6 +857,7 @@ void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,
} }
void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t bytes) void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t bytes)
{ {
FlightRecorder::StepLog("AllToAll");
// MPI is a pain and uses "int" arguments // MPI is a pain and uses "int" arguments
// 64*64*64*128*16 == 500Million elements of data. // 64*64*64*128*16 == 500Million elements of data.
// When 24*4 bytes multiples get 50x 10^9 >>> 2x10^9 Y2K bug. // When 24*4 bytes multiples get 50x 10^9 >>> 2x10^9 Y2K bug.

View File

@ -91,7 +91,7 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
{ {
assert(0); assert(0);
} }
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ assert(0);} void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ assert(list.size()==0);}
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list, void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit, void *xmit,
int dest, int dest,
@ -132,6 +132,17 @@ double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
{ {
return 2.0*bytes; return 2.0*bytes;
} }
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {};
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {};
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,int dox,
void *recv,
int recv_from_rank,int dor,
int xbytes,int rbytes, int dir)
{
return 0.0;
}
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list, double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit, void *xmit,
int xmit_to_rank,int dox, int xmit_to_rank,int dox,

View File

@ -46,8 +46,40 @@ NAMESPACE_BEGIN(Grid);
#if defined (GRID_COMMS_MPI3) #if defined (GRID_COMMS_MPI3)
typedef MPI_Comm Grid_MPI_Comm; typedef MPI_Comm Grid_MPI_Comm;
typedef MPI_Request MpiCommsRequest_t;
#ifdef ACCELERATOR_AWARE_MPI
typedef MPI_Request CommsRequest_t; typedef MPI_Request CommsRequest_t;
#else #else
/*
* Enable state transitions as each packet flows.
*/
enum PacketType_t {
FaceGather,
InterNodeXmit,
InterNodeRecv,
IntraNodeXmit,
IntraNodeRecv,
InterNodeXmitISend,
InterNodeReceiveHtoD
};
/*
*Package arguments needed for various actions along packet flow
*/
typedef struct {
PacketType_t PacketType;
void *host_buf;
void *device_buf;
int dest;
int tag;
int commdir;
unsigned long bytes;
acceleratorEvent_t ev;
MpiCommsRequest_t req;
} CommsRequest_t;
#endif
#else
typedef int MpiCommsRequest_t;
typedef int CommsRequest_t; typedef int CommsRequest_t;
typedef int Grid_MPI_Comm; typedef int Grid_MPI_Comm;
#endif #endif
@ -105,7 +137,7 @@ public:
/////////////////////////////////////////////////// ///////////////////////////////////////////////////
static void SharedMemoryAllocate(uint64_t bytes, int flags); static void SharedMemoryAllocate(uint64_t bytes, int flags);
static void SharedMemoryFree(void); static void SharedMemoryFree(void);
static void SharedMemoryCopy(void *dest,void *src,size_t bytes); // static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
static void SharedMemoryZero(void *dest,size_t bytes); static void SharedMemoryZero(void *dest,size_t bytes);
}; };

View File

@ -42,6 +42,11 @@ Author: Christoph Lehner <christoph@lhnr.de>
#ifdef ACCELERATOR_AWARE_MPI #ifdef ACCELERATOR_AWARE_MPI
#define GRID_SYCL_LEVEL_ZERO_IPC #define GRID_SYCL_LEVEL_ZERO_IPC
#define SHM_SOCKETS #define SHM_SOCKETS
#else
#ifdef HAVE_NUMAIF_H
#warning " Using NUMAIF "
#include <numaif.h>
#endif
#endif #endif
#include <syscall.h> #include <syscall.h>
#endif #endif
@ -537,7 +542,38 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
// Each MPI rank should allocate our own buffer // Each MPI rank should allocate our own buffer
/////////////////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////////////
#ifndef ACCELERATOR_AWARE_MPI #ifndef ACCELERATOR_AWARE_MPI
HostCommBuf= malloc(bytes); // printf("Host buffer allocate for GPU non-aware MPI\n");
#if 0
HostCommBuf= acceleratorAllocHost(bytes);
#else
HostCommBuf= malloc(bytes); /// CHANGE THIS TO malloc_host
#if 0
#warning "Moving host buffers to specific NUMA domain"
int numa;
char *numa_name=(char *)getenv("MPI_BUF_NUMA");
if(numa_name) {
unsigned long page_size = sysconf(_SC_PAGESIZE);
numa = atoi(numa_name);
unsigned long page_count = bytes/page_size;
std::vector<void *> pages(page_count);
std::vector<int> nodes(page_count,numa);
std::vector<int> status(page_count,-1);
for(unsigned long p=0;p<page_count;p++){
pages[p] =(void *) ((uint64_t) HostCommBuf + p*page_size);
}
int ret = move_pages(0,
page_count,
&pages[0],
&nodes[0],
&status[0],
MPOL_MF_MOVE);
printf("Host buffer move to numa domain %d : move_pages returned %d\n",numa,ret);
if (ret) perror(" move_pages failed for reason:");
}
#endif
acceleratorPin(HostCommBuf,bytes);
#endif
#endif #endif
ShmCommBuf = acceleratorAllocDevice(bytes); ShmCommBuf = acceleratorAllocDevice(bytes);
if (ShmCommBuf == (void *)NULL ) { if (ShmCommBuf == (void *)NULL ) {
@ -569,8 +605,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
#ifdef GRID_SYCL_LEVEL_ZERO_IPC #ifdef GRID_SYCL_LEVEL_ZERO_IPC
typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t; typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t;
auto zeDevice = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device()); auto zeDevice = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device());
auto zeContext = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context()); auto zeContext = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context());
ze_ipc_mem_handle_t ihandle; ze_ipc_mem_handle_t ihandle;
clone_mem_t handle; clone_mem_t handle;
@ -880,14 +916,14 @@ void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
bzero(dest,bytes); bzero(dest,bytes);
#endif #endif
} }
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes) //void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
{ //{
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL) //#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
acceleratorCopyToDevice(src,dest,bytes); // acceleratorCopyToDevice(src,dest,bytes);
#else //#else
bcopy(src,dest,bytes); // bcopy(src,dest,bytes);
#endif //#endif
} //}
//////////////////////////////////////////////////////// ////////////////////////////////////////////////////////
// Global shared functionality finished // Global shared functionality finished
// Now move to per communicator functionality // Now move to per communicator functionality
@ -923,6 +959,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
MPI_Allreduce(MPI_IN_PLACE,&wsr,1,MPI_UINT32_T,MPI_SUM,ShmComm); MPI_Allreduce(MPI_IN_PLACE,&wsr,1,MPI_UINT32_T,MPI_SUM,ShmComm);
ShmCommBufs[r] = GlobalSharedMemory::WorldShmCommBufs[wsr]; ShmCommBufs[r] = GlobalSharedMemory::WorldShmCommBufs[wsr];
// std::cerr << " SetCommunicator rank "<<r<<" comm "<<ShmCommBufs[r] <<std::endl;
} }
ShmBufferFreeAll(); ShmBufferFreeAll();
@ -975,19 +1012,18 @@ void SharedMemory::SharedMemoryTest(void)
check[0]=GlobalSharedMemory::WorldNode; check[0]=GlobalSharedMemory::WorldNode;
check[1]=r; check[1]=r;
check[2]=magic; check[2]=magic;
GlobalSharedMemory::SharedMemoryCopy( ShmCommBufs[r], check, 3*sizeof(uint64_t)); acceleratorCopyToDevice(check,ShmCommBufs[r],3*sizeof(uint64_t));
} }
} }
ShmBarrier(); ShmBarrier();
for(uint64_t r=0;r<ShmSize;r++){ for(uint64_t r=0;r<ShmSize;r++){
ShmBarrier(); acceleratorCopyFromDevice(ShmCommBufs[r],check,3*sizeof(uint64_t));
GlobalSharedMemory::SharedMemoryCopy(check,ShmCommBufs[r], 3*sizeof(uint64_t));
ShmBarrier();
assert(check[0]==GlobalSharedMemory::WorldNode); assert(check[0]==GlobalSharedMemory::WorldNode);
assert(check[1]==r); assert(check[1]==r);
assert(check[2]==magic); assert(check[2]==magic);
ShmBarrier();
} }
ShmBarrier();
std::cout << GridLogDebug << " SharedMemoryTest has passed "<<std::endl;
} }
void *SharedMemory::ShmBuffer(int rank) void *SharedMemory::ShmBuffer(int rank)

View File

@ -122,10 +122,10 @@ void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
{ {
acceleratorMemSet(dest,0,bytes); acceleratorMemSet(dest,0,bytes);
} }
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes) //void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
{ //{
acceleratorCopyToDevice(src,dest,bytes); // acceleratorCopyToDevice(src,dest,bytes);
} //}
//////////////////////////////////////////////////////// ////////////////////////////////////////////////////////
// Global shared functionality finished // Global shared functionality finished
// Now move to per communicator functionality // Now move to per communicator functionality

View File

@ -51,7 +51,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#endif #endif
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr> template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto Cshift(const Expression &expr,int dim,int shift) -> decltype(closure(expr)) auto Cshift(const Expression &expr,int dim,int shift) -> decltype(closure(expr))
{ {

View File

@ -30,12 +30,11 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
extern std::vector<std::pair<int,int> > Cshift_table; extern std::vector<std::pair<int,int> > Cshift_table;
extern commVector<std::pair<int,int> > Cshift_table_device; extern deviceVector<std::pair<int,int> > Cshift_table_device;
inline std::pair<int,int> *MapCshiftTable(void) inline std::pair<int,int> *MapCshiftTable(void)
{ {
// GPU version // GPU version
#ifdef ACCELERATOR_CSHIFT
uint64_t sz=Cshift_table.size(); uint64_t sz=Cshift_table.size();
if (Cshift_table_device.size()!=sz ) { if (Cshift_table_device.size()!=sz ) {
Cshift_table_device.resize(sz); Cshift_table_device.resize(sz);
@ -45,16 +44,13 @@ inline std::pair<int,int> *MapCshiftTable(void)
sizeof(Cshift_table[0])*sz); sizeof(Cshift_table[0])*sz);
return &Cshift_table_device[0]; return &Cshift_table_device[0];
#else
return &Cshift_table[0];
#endif
// CPU version use identify map // CPU version use identify map
} }
/////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////
// Gather for when there is no need to SIMD split // Gather for when there is no need to SIMD split
/////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////
template<class vobj> void template<class vobj> void
Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0) Gather_plane_simple (const Lattice<vobj> &rhs,deviceVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
{ {
int rd = rhs.Grid()->_rdimensions[dimension]; int rd = rhs.Grid()->_rdimensions[dimension];
@ -94,17 +90,10 @@ Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dim
{ {
auto buffer_p = & buffer[0]; auto buffer_p = & buffer[0];
auto table = MapCshiftTable(); auto table = MapCshiftTable();
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead); autoView(rhs_v , rhs, AcceleratorRead);
accelerator_for(i,ent,vobj::Nsimd(),{ accelerator_for(i,ent,vobj::Nsimd(),{
coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second])); coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second]));
}); });
#else
autoView(rhs_v , rhs, CpuRead);
thread_for(i,ent,{
buffer_p[table[i].first]=rhs_v[table[i].second];
});
#endif
} }
} }
@ -129,7 +118,6 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
int n1=rhs.Grid()->_slice_stride[dimension]; int n1=rhs.Grid()->_slice_stride[dimension];
if ( cbmask ==0x3){ if ( cbmask ==0x3){
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead); autoView(rhs_v , rhs, AcceleratorRead);
accelerator_for(nn,e1*e2,1,{ accelerator_for(nn,e1*e2,1,{
int n = nn%e1; int n = nn%e1;
@ -140,21 +128,10 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
vobj temp =rhs_v[so+o+b]; vobj temp =rhs_v[so+o+b];
extract<vobj>(temp,pointers,offset); extract<vobj>(temp,pointers,offset);
}); });
#else
autoView(rhs_v , rhs, CpuRead);
thread_for2d(n,e1,b,e2,{
int o = n*n1;
int offset = b+n*e2;
vobj temp =rhs_v[so+o+b];
extract<vobj>(temp,pointers,offset);
});
#endif
} else { } else {
Coordinate rdim=rhs.Grid()->_rdimensions; Coordinate rdim=rhs.Grid()->_rdimensions;
Coordinate cdm =rhs.Grid()->_checker_dim_mask; Coordinate cdm =rhs.Grid()->_checker_dim_mask;
std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb? std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb?
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead); autoView(rhs_v , rhs, AcceleratorRead);
accelerator_for(nn,e1*e2,1,{ accelerator_for(nn,e1*e2,1,{
int n = nn%e1; int n = nn%e1;
@ -175,33 +152,13 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
extract<vobj>(temp,pointers,offset); extract<vobj>(temp,pointers,offset);
} }
}); });
#else
autoView(rhs_v , rhs, CpuRead);
thread_for2d(n,e1,b,e2,{
Coordinate coor;
int o=n*n1;
int oindex = o+b;
int cb = RedBlackCheckerBoardFromOindex(oindex, rdim, cdm);
int ocb=1<<cb;
int offset = b+n*e2;
if ( ocb & cbmask ) {
vobj temp =rhs_v[so+o+b];
extract<vobj>(temp,pointers,offset);
}
});
#endif
} }
} }
////////////////////////////////////////////////////// //////////////////////////////////////////////////////
// Scatter for when there is no need to SIMD split // Scatter for when there is no need to SIMD split
////////////////////////////////////////////////////// //////////////////////////////////////////////////////
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<vobj> &buffer, int dimension,int plane,int cbmask) template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,deviceVector<vobj> &buffer, int dimension,int plane,int cbmask)
{ {
int rd = rhs.Grid()->_rdimensions[dimension]; int rd = rhs.Grid()->_rdimensions[dimension];
@ -245,17 +202,10 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<
{ {
auto buffer_p = & buffer[0]; auto buffer_p = & buffer[0];
auto table = MapCshiftTable(); auto table = MapCshiftTable();
#ifdef ACCELERATOR_CSHIFT
autoView( rhs_v, rhs, AcceleratorWrite); autoView( rhs_v, rhs, AcceleratorWrite);
accelerator_for(i,ent,vobj::Nsimd(),{ accelerator_for(i,ent,vobj::Nsimd(),{
coalescedWrite(rhs_v[table[i].first],coalescedRead(buffer_p[table[i].second])); coalescedWrite(rhs_v[table[i].first],coalescedRead(buffer_p[table[i].second]));
}); });
#else
autoView( rhs_v, rhs, CpuWrite);
thread_for(i,ent,{
rhs_v[table[i].first]=buffer_p[table[i].second];
});
#endif
} }
} }
@ -278,7 +228,6 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
if(cbmask ==0x3 ) { if(cbmask ==0x3 ) {
int _slice_stride = rhs.Grid()->_slice_stride[dimension]; int _slice_stride = rhs.Grid()->_slice_stride[dimension];
int _slice_block = rhs.Grid()->_slice_block[dimension]; int _slice_block = rhs.Grid()->_slice_block[dimension];
#ifdef ACCELERATOR_CSHIFT
autoView( rhs_v , rhs, AcceleratorWrite); autoView( rhs_v , rhs, AcceleratorWrite);
accelerator_for(nn,e1*e2,1,{ accelerator_for(nn,e1*e2,1,{
int n = nn%e1; int n = nn%e1;
@ -287,14 +236,6 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
int offset = b+n*_slice_block; int offset = b+n*_slice_block;
merge(rhs_v[so+o+b],pointers,offset); merge(rhs_v[so+o+b],pointers,offset);
}); });
#else
autoView( rhs_v , rhs, CpuWrite);
thread_for2d(n,e1,b,e2,{
int o = n*_slice_stride;
int offset = b+n*_slice_block;
merge(rhs_v[so+o+b],pointers,offset);
});
#endif
} else { } else {
// Case of SIMD split AND checker dim cannot currently be hit, except in // Case of SIMD split AND checker dim cannot currently be hit, except in
@ -360,19 +301,11 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
{ {
auto table = MapCshiftTable(); auto table = MapCshiftTable();
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead); autoView(rhs_v , rhs, AcceleratorRead);
autoView(lhs_v , lhs, AcceleratorWrite); autoView(lhs_v , lhs, AcceleratorWrite);
accelerator_for(i,ent,vobj::Nsimd(),{ accelerator_for(i,ent,vobj::Nsimd(),{
coalescedWrite(lhs_v[table[i].first],coalescedRead(rhs_v[table[i].second])); coalescedWrite(lhs_v[table[i].first],coalescedRead(rhs_v[table[i].second]));
}); });
#else
autoView(rhs_v , rhs, CpuRead);
autoView(lhs_v , lhs, CpuWrite);
thread_for(i,ent,{
lhs_v[table[i].first]=rhs_v[table[i].second];
});
#endif
} }
} }
@ -412,19 +345,11 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo
{ {
auto table = MapCshiftTable(); auto table = MapCshiftTable();
#ifdef ACCELERATOR_CSHIFT
autoView( rhs_v, rhs, AcceleratorRead); autoView( rhs_v, rhs, AcceleratorRead);
autoView( lhs_v, lhs, AcceleratorWrite); autoView( lhs_v, lhs, AcceleratorWrite);
accelerator_for(i,ent,1,{ accelerator_for(i,ent,1,{
permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type); permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
}); });
#else
autoView( rhs_v, rhs, CpuRead);
autoView( lhs_v, lhs, CpuWrite);
thread_for(i,ent,{
permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
});
#endif
} }
} }

View File

@ -31,7 +31,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
const int Cshift_verbose=0;
template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift) template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift)
{ {
typedef typename vobj::vector_type vector_type; typedef typename vobj::vector_type vector_type;
@ -65,7 +65,7 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
Cshift_comms(ret,rhs,dimension,shift); Cshift_comms(ret,rhs,dimension,shift);
} }
t1=usecond(); t1=usecond();
// std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl; if(Cshift_verbose) std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl;
return ret; return ret;
} }
@ -94,7 +94,7 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vob
sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even); sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even);
sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd); sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd);
//std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.checkerboard<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl; // std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.Checkerboard()<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
if ( sshift[0] == sshift[1] ) { if ( sshift[0] == sshift[1] ) {
// std::cout << "Single pass Cshift_comms" <<std::endl; // std::cout << "Single pass Cshift_comms" <<std::endl;
Cshift_comms_simd(ret,rhs,dimension,shift,0x3); Cshift_comms_simd(ret,rhs,dimension,shift,0x3);
@ -104,8 +104,6 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vob
Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
} }
} }
#define ACCELERATOR_CSHIFT_NO_COPY
#ifdef ACCELERATOR_CSHIFT_NO_COPY
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{ {
typedef typename vobj::vector_type vector_type; typedef typename vobj::vector_type vector_type;
@ -125,8 +123,12 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
assert(shift<fd); assert(shift<fd);
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension]; int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
static cshiftVector<vobj> send_buf; send_buf.resize(buffer_size); static deviceVector<vobj> send_buf; send_buf.resize(buffer_size);
static cshiftVector<vobj> recv_buf; recv_buf.resize(buffer_size); static deviceVector<vobj> recv_buf; recv_buf.resize(buffer_size);
#ifndef ACCELERATOR_AWARE_MPI
static hostVector<vobj> hsend_buf; hsend_buf.resize(buffer_size);
static hostVector<vobj> hrecv_buf; hrecv_buf.resize(buffer_size);
#endif
int cb= (cbmask==0x2)? Odd : Even; int cb= (cbmask==0x2)? Odd : Even;
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb); int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
@ -158,18 +160,31 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
// int rank = grid->_processor; // int rank = grid->_processor;
int recv_from_rank; int recv_from_rank;
int xmit_to_rank; int xmit_to_rank;
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank); grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
tcomms-=usecond(); tcomms-=usecond();
// grid->Barrier(); grid->Barrier();
#ifdef ACCELERATOR_AWARE_MPI
grid->SendToRecvFrom((void *)&send_buf[0], grid->SendToRecvFrom((void *)&send_buf[0],
xmit_to_rank, xmit_to_rank,
(void *)&recv_buf[0], (void *)&recv_buf[0],
recv_from_rank, recv_from_rank,
bytes); bytes);
#else
// bouncy bouncy
acceleratorCopyFromDevice(&send_buf[0],&hsend_buf[0],bytes);
grid->SendToRecvFrom((void *)&hsend_buf[0],
xmit_to_rank,
(void *)&hrecv_buf[0],
recv_from_rank,
bytes);
acceleratorCopyToDevice(&hrecv_buf[0],&recv_buf[0],bytes);
#endif
xbytes+=bytes; xbytes+=bytes;
// grid->Barrier(); grid->Barrier();
tcomms+=usecond(); tcomms+=usecond();
tscatter-=usecond(); tscatter-=usecond();
@ -177,13 +192,13 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
tscatter+=usecond(); tscatter+=usecond();
} }
} }
/* if (Cshift_verbose){
std::cout << GridLogPerformance << " Cshift copy "<<tcopy/1e3<<" ms"<<std::endl; std::cout << GridLogPerformance << " Cshift copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift gather "<<tgather/1e3<<" ms"<<std::endl; std::cout << GridLogPerformance << " Cshift gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl; std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift comm "<<tcomms/1e3<<" ms"<<std::endl; std::cout << GridLogPerformance << " Cshift comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl; std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
*/ }
} }
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
@ -224,8 +239,8 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension]; int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
// int words = sizeof(vobj)/sizeof(vector_type); // int words = sizeof(vobj)/sizeof(vector_type);
static std::vector<cshiftVector<scalar_object> > send_buf_extract; send_buf_extract.resize(Nsimd); static std::vector<deviceVector<scalar_object> > send_buf_extract; send_buf_extract.resize(Nsimd);
static std::vector<cshiftVector<scalar_object> > recv_buf_extract; recv_buf_extract.resize(Nsimd); static std::vector<deviceVector<scalar_object> > recv_buf_extract; recv_buf_extract.resize(Nsimd);
scalar_object * recv_buf_extract_mpi; scalar_object * recv_buf_extract_mpi;
scalar_object * send_buf_extract_mpi; scalar_object * send_buf_extract_mpi;
@ -233,6 +248,10 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
send_buf_extract[s].resize(buffer_size); send_buf_extract[s].resize(buffer_size);
recv_buf_extract[s].resize(buffer_size); recv_buf_extract[s].resize(buffer_size);
} }
#ifndef ACCELERATOR_AWARE_MPI
hostVector<scalar_object> hsend_buf; hsend_buf.resize(buffer_size);
hostVector<scalar_object> hrecv_buf; hrecv_buf.resize(buffer_size);
#endif
int bytes = buffer_size*sizeof(scalar_object); int bytes = buffer_size*sizeof(scalar_object);
@ -281,246 +300,31 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank); grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
tcomms-=usecond(); tcomms-=usecond();
// grid->Barrier(); grid->Barrier();
send_buf_extract_mpi = &send_buf_extract[nbr_lane][0]; send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
recv_buf_extract_mpi = &recv_buf_extract[i][0]; recv_buf_extract_mpi = &recv_buf_extract[i][0];
#ifdef ACCELERATOR_AWARE_MPI
grid->SendToRecvFrom((void *)send_buf_extract_mpi, grid->SendToRecvFrom((void *)send_buf_extract_mpi,
xmit_to_rank, xmit_to_rank,
(void *)recv_buf_extract_mpi, (void *)recv_buf_extract_mpi,
recv_from_rank, recv_from_rank,
bytes); bytes);
xbytes+=bytes;
// grid->Barrier();
tcomms+=usecond();
rpointers[i] = &recv_buf_extract[i][0];
} else {
rpointers[i] = &send_buf_extract[nbr_lane][0];
}
}
tscatter-=usecond();
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
tscatter+=usecond();
}
/*
std::cout << GridLogPerformance << " Cshift (s) copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
*/
}
#else #else
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) // bouncy bouncy
{ acceleratorCopyFromDevice((void *)send_buf_extract_mpi,(void *)&hsend_buf[0],bytes);
typedef typename vobj::vector_type vector_type; grid->SendToRecvFrom((void *)&hsend_buf[0],
typedef typename vobj::scalar_type scalar_type;
GridBase *grid=rhs.Grid();
Lattice<vobj> temp(rhs.Grid());
int fd = rhs.Grid()->_fdimensions[dimension];
int rd = rhs.Grid()->_rdimensions[dimension];
int pd = rhs.Grid()->_processors[dimension];
int simd_layout = rhs.Grid()->_simd_layout[dimension];
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
assert(simd_layout==1);
assert(comm_dim==1);
assert(shift>=0);
assert(shift<fd);
RealD tcopy=0.0;
RealD tgather=0.0;
RealD tscatter=0.0;
RealD tcomms=0.0;
uint64_t xbytes=0;
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
static cshiftVector<vobj> send_buf_v; send_buf_v.resize(buffer_size);
static cshiftVector<vobj> recv_buf_v; recv_buf_v.resize(buffer_size);
vobj *send_buf;
vobj *recv_buf;
{
grid->ShmBufferFreeAll();
size_t bytes = buffer_size*sizeof(vobj);
send_buf=(vobj *)grid->ShmBufferMalloc(bytes);
recv_buf=(vobj *)grid->ShmBufferMalloc(bytes);
}
int cb= (cbmask==0x2)? Odd : Even;
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
for(int x=0;x<rd;x++){
int sx = (x+sshift)%rd;
int comm_proc = ((x+sshift)/rd)%pd;
if (comm_proc==0) {
tcopy-=usecond();
Copy_plane(ret,rhs,dimension,x,sx,cbmask);
tcopy+=usecond();
} else {
int words = buffer_size;
if (cbmask != 0x3) words=words>>1;
int bytes = words * sizeof(vobj);
tgather-=usecond();
Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask);
tgather+=usecond();
// int rank = grid->_processor;
int recv_from_rank;
int xmit_to_rank;
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
tcomms-=usecond();
// grid->Barrier();
acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes);
grid->SendToRecvFrom((void *)&send_buf[0],
xmit_to_rank, xmit_to_rank,
(void *)&recv_buf[0], (void *)&hrecv_buf[0],
recv_from_rank, recv_from_rank,
bytes); bytes);
xbytes+=bytes; acceleratorCopyToDevice((void *)&hrecv_buf[0],(void *)recv_buf_extract_mpi,bytes);
acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes); #endif
// grid->Barrier(); xbytes+=bytes;
grid->Barrier();
tcomms+=usecond(); tcomms+=usecond();
tscatter-=usecond();
Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask);
tscatter+=usecond();
}
}
/*
std::cout << GridLogPerformance << " Cshift copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
*/
}
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
GridBase *grid=rhs.Grid();
const int Nsimd = grid->Nsimd();
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
int fd = grid->_fdimensions[dimension];
int rd = grid->_rdimensions[dimension];
int ld = grid->_ldimensions[dimension];
int pd = grid->_processors[dimension];
int simd_layout = grid->_simd_layout[dimension];
int comm_dim = grid->_processors[dimension] >1 ;
//std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
// << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout
// << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
assert(comm_dim==1);
assert(simd_layout==2);
assert(shift>=0);
assert(shift<fd);
RealD tcopy=0.0;
RealD tgather=0.0;
RealD tscatter=0.0;
RealD tcomms=0.0;
uint64_t xbytes=0;
int permute_type=grid->PermuteType(dimension);
///////////////////////////////////////////////
// Simd direction uses an extract/merge pair
///////////////////////////////////////////////
int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
// int words = sizeof(vobj)/sizeof(vector_type);
static std::vector<cshiftVector<scalar_object> > send_buf_extract; send_buf_extract.resize(Nsimd);
static std::vector<cshiftVector<scalar_object> > recv_buf_extract; recv_buf_extract.resize(Nsimd);
scalar_object * recv_buf_extract_mpi;
scalar_object * send_buf_extract_mpi;
{
size_t bytes = sizeof(scalar_object)*buffer_size;
grid->ShmBufferFreeAll();
send_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
recv_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
}
for(int s=0;s<Nsimd;s++){
send_buf_extract[s].resize(buffer_size);
recv_buf_extract[s].resize(buffer_size);
}
int bytes = buffer_size*sizeof(scalar_object);
ExtractPointerArray<scalar_object> pointers(Nsimd); //
ExtractPointerArray<scalar_object> rpointers(Nsimd); // received pointers
///////////////////////////////////////////
// Work out what to send where
///////////////////////////////////////////
int cb = (cbmask==0x2)? Odd : Even;
int sshift= grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
// loop over outer coord planes orthog to dim
for(int x=0;x<rd;x++){
// FIXME call local permute copy if none are offnode.
for(int i=0;i<Nsimd;i++){
pointers[i] = &send_buf_extract[i][0];
}
tgather-=usecond();
int sx = (x+sshift)%rd;
Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
tgather+=usecond();
for(int i=0;i<Nsimd;i++){
int inner_bit = (Nsimd>>(permute_type+1));
int ic= (i&inner_bit)? 1:0;
int my_coor = rd*ic + x;
int nbr_coor = my_coor+sshift;
int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors
int nbr_ic = (nbr_coor%ld)/rd; // inner coord of peer
int nbr_ox = (nbr_coor%rd); // outer coord of peer
int nbr_lane = (i&(~inner_bit));
int recv_from_rank;
int xmit_to_rank;
if (nbr_ic) nbr_lane|=inner_bit;
assert (sx == nbr_ox);
if(nbr_proc){
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
tcomms-=usecond();
// grid->Barrier();
acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes);
grid->SendToRecvFrom((void *)send_buf_extract_mpi,
xmit_to_rank,
(void *)recv_buf_extract_mpi,
recv_from_rank,
bytes);
acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes);
xbytes+=bytes;
// grid->Barrier();
tcomms+=usecond();
rpointers[i] = &recv_buf_extract[i][0]; rpointers[i] = &recv_buf_extract[i][0];
} else { } else {
rpointers[i] = &send_buf_extract[nbr_lane][0]; rpointers[i] = &send_buf_extract[nbr_lane][0];
@ -530,17 +334,16 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
tscatter-=usecond(); tscatter-=usecond();
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask); Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
tscatter+=usecond(); tscatter+=usecond();
} }
/* if(Cshift_verbose){
std::cout << GridLogPerformance << " Cshift (s) copy "<<tcopy/1e3<<" ms"<<std::endl; std::cout << GridLogPerformance << " Cshift (s) copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) gather "<<tgather/1e3<<" ms"<<std::endl; std::cout << GridLogPerformance << " Cshift (s) gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl; std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) comm "<<tcomms/1e3<<" ms"<<std::endl; std::cout << GridLogPerformance << " Cshift (s) comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s"<<std::endl; std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
*/
} }
#endif }
NAMESPACE_END(Grid); NAMESPACE_END(Grid);
#endif #endif

View File

@ -1,5 +1,5 @@
#include <Grid/GridCore.h> #include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
std::vector<std::pair<int,int> > Cshift_table; std::vector<std::pair<int,int> > Cshift_table;
commVector<std::pair<int,int> > Cshift_table_device; deviceVector<std::pair<int,int> > Cshift_table_device;
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -257,17 +257,30 @@ void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice
}); });
} }
#define FAST_AXPY_NORM
template<class sobj,class vobj> inline template<class sobj,class vobj> inline
RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y) RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)
{ {
GRID_TRACE("axpy_norm"); GRID_TRACE("axpy_norm");
#ifdef FAST_AXPY_NORM
return axpy_norm_fast(ret,a,x,y); return axpy_norm_fast(ret,a,x,y);
#else
ret = a*x+y;
RealD nn=norm2(ret);
return nn;
#endif
} }
template<class sobj,class vobj> inline template<class sobj,class vobj> inline
RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y) RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
{ {
GRID_TRACE("axpby_norm"); GRID_TRACE("axpby_norm");
#ifdef FAST_AXPY_NORM
return axpby_norm_fast(ret,a,b,x,y); return axpby_norm_fast(ret,a,b,x,y);
#else
ret = a*x+b*y;
RealD nn=norm2(ret);
return nn;
#endif
} }
/// Trace product /// Trace product

View File

@ -236,10 +236,13 @@ public:
template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){ template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){
vobj vtmp; vobj vtmp;
vtmp = r; vtmp = r;
#if 0 #if 1
deviceVector<vobj> vvtmp(1);
acceleratorPut(vvtmp[0],vtmp);
vobj *vvtmp_p = & vvtmp[0];
auto me = View(AcceleratorWrite); auto me = View(AcceleratorWrite);
accelerator_for(ss,me.size(),vobj::Nsimd(),{ accelerator_for(ss,me.size(),vobj::Nsimd(),{
auto stmp=coalescedRead(vtmp); auto stmp=coalescedRead(*vvtmp_p);
coalescedWrite(me[ss],stmp); coalescedWrite(me[ss],stmp);
}); });
#else #else

View File

@ -53,36 +53,19 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
typedef decltype(basis[0]) Field; typedef decltype(basis[0]) Field;
typedef decltype(basis[0].View(AcceleratorRead)) View; typedef decltype(basis[0].View(AcceleratorRead)) View;
Vector<View> basis_v; basis_v.reserve(basis.size()); hostVector<View> h_basis_v(basis.size());
typedef typename std::remove_reference<decltype(basis_v[0][0])>::type vobj; deviceVector<View> d_basis_v(basis.size());
typedef typename std::remove_reference<decltype(h_basis_v[0][0])>::type vobj;
typedef typename std::remove_reference<decltype(Qt(0,0))>::type Coeff_t; typedef typename std::remove_reference<decltype(Qt(0,0))>::type Coeff_t;
GridBase* grid = basis[0].Grid(); GridBase* grid = basis[0].Grid();
for(int k=0;k<basis.size();k++){ for(int k=0;k<basis.size();k++){
basis_v.push_back(basis[k].View(AcceleratorWrite)); h_basis_v[k] = basis[k].View(AcceleratorWrite);
acceleratorPut(d_basis_v[k],h_basis_v[k]);
} }
#if ( !(defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)) ) View *basis_vp = &d_basis_v[0];
int max_threads = thread_max();
Vector < vobj > Bt(Nm * max_threads);
thread_region
{
vobj* B = &Bt[Nm * thread_num()];
thread_for_in_region(ss, grid->oSites(),{
for(int j=j0; j<j1; ++j) B[j]=0.;
for(int j=j0; j<j1; ++j){
for(int k=k0; k<k1; ++k){
B[j] +=Qt(j,k) * basis_v[k][ss];
}
}
for(int j=j0; j<j1; ++j){
basis_v[j][ss] = B[j];
}
});
}
#else
View *basis_vp = &basis_v[0];
int nrot = j1-j0; int nrot = j1-j0;
if (!nrot) // edge case not handled gracefully by Cuda if (!nrot) // edge case not handled gracefully by Cuda
@ -91,17 +74,19 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
uint64_t oSites =grid->oSites(); uint64_t oSites =grid->oSites();
uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead
Vector <vobj> Bt(siteBlock * nrot); deviceVector <vobj> Bt(siteBlock * nrot);
auto Bp=&Bt[0]; auto Bp=&Bt[0];
// GPU readable copy of matrix // GPU readable copy of matrix
Vector<Coeff_t> Qt_jv(Nm*Nm); hostVector<Coeff_t> h_Qt_jv(Nm*Nm);
deviceVector<Coeff_t> Qt_jv(Nm*Nm);
Coeff_t *Qt_p = & Qt_jv[0]; Coeff_t *Qt_p = & Qt_jv[0];
thread_for(i,Nm*Nm,{ thread_for(i,Nm*Nm,{
int j = i/Nm; int j = i/Nm;
int k = i%Nm; int k = i%Nm;
Qt_p[i]=Qt(j,k); h_Qt_jv[i]=Qt(j,k);
}); });
acceleratorCopyToDevice(&h_Qt_jv[0],Qt_p,Nm*Nm*sizeof(Coeff_t));
// Block the loop to keep storage footprint down // Block the loop to keep storage footprint down
for(uint64_t s=0;s<oSites;s+=siteBlock){ for(uint64_t s=0;s<oSites;s+=siteBlock){
@ -137,9 +122,8 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
coalescedWrite(basis_vp[jj][sss],coalescedRead(Bp[ss*nrot+j])); coalescedWrite(basis_vp[jj][sss],coalescedRead(Bp[ss*nrot+j]));
}); });
} }
#endif
for(int k=0;k<basis.size();k++) basis_v[k].ViewClose(); for(int k=0;k<basis.size();k++) h_basis_v[k].ViewClose();
} }
// Extract a single rotated vector // Extract a single rotated vector
@ -152,16 +136,19 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in
result.Checkerboard() = basis[0].Checkerboard(); result.Checkerboard() = basis[0].Checkerboard();
Vector<View> basis_v; basis_v.reserve(basis.size()); hostVector<View> h_basis_v(basis.size());
deviceVector<View> d_basis_v(basis.size());
for(int k=0;k<basis.size();k++){ for(int k=0;k<basis.size();k++){
basis_v.push_back(basis[k].View(AcceleratorRead)); h_basis_v[k]=basis[k].View(AcceleratorRead);
acceleratorPut(d_basis_v[k],h_basis_v[k]);
} }
vobj zz=Zero();
Vector<double> Qt_jv(Nm);
double * Qt_j = & Qt_jv[0];
for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k);
auto basis_vp=& basis_v[0]; vobj zz=Zero();
deviceVector<double> Qt_jv(Nm);
double * Qt_j = & Qt_jv[0];
for(int k=0;k<Nm;++k) acceleratorPut(Qt_j[k],Qt(j,k));
auto basis_vp=& d_basis_v[0];
autoView(result_v,result,AcceleratorWrite); autoView(result_v,result,AcceleratorWrite);
accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{ accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
vobj zzz=Zero(); vobj zzz=Zero();
@ -171,7 +158,7 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in
} }
coalescedWrite(result_v[ss], B); coalescedWrite(result_v[ss], B);
}); });
for(int k=0;k<basis.size();k++) basis_v[k].ViewClose(); for(int k=0;k<basis.size();k++) h_basis_v[k].ViewClose();
} }
template<class Field> template<class Field>

View File

@ -46,7 +46,7 @@ inline typename vobj::scalar_object sum_cpu(const vobj *arg, Integer osites)
// const int Nsimd = vobj::Nsimd(); // const int Nsimd = vobj::Nsimd();
const int nthread = GridThread::GetThreads(); const int nthread = GridThread::GetThreads();
Vector<sobj> sumarray(nthread); std::vector<sobj> sumarray(nthread);
for(int i=0;i<nthread;i++){ for(int i=0;i<nthread;i++){
sumarray[i]=Zero(); sumarray[i]=Zero();
} }
@ -75,7 +75,7 @@ inline typename vobj::scalar_objectD sumD_cpu(const vobj *arg, Integer osites)
const int nthread = GridThread::GetThreads(); const int nthread = GridThread::GetThreads();
Vector<sobj> sumarray(nthread); std::vector<sobj> sumarray(nthread);
for(int i=0;i<nthread;i++){ for(int i=0;i<nthread;i++){
sumarray[i]=Zero(); sumarray[i]=Zero();
} }
@ -290,8 +290,10 @@ template<class vobj>
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) { inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) {
GridBase *grid = left.Grid(); GridBase *grid = left.Grid();
bool ok;
#ifdef GRID_SYCL #ifdef GRID_SYCL
uint64_t csum=0; uint64_t csum=0;
uint64_t csum2=0;
if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone) if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone)
{ {
// Hack // Hack
@ -300,13 +302,33 @@ inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &righ
Integer words = left.Grid()->oSites()*sizeof(vobj)/sizeof(uint64_t); Integer words = left.Grid()->oSites()*sizeof(vobj)/sizeof(uint64_t);
uint64_t *base= (uint64_t *)&l_v[0]; uint64_t *base= (uint64_t *)&l_v[0];
csum=svm_xor(base,words); csum=svm_xor(base,words);
ok = FlightRecorder::CsumLog(csum);
if ( !ok ) {
csum2=svm_xor(base,words);
std::cerr<< " Bad CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
} else {
// csum2=svm_xor(base,words);
// std::cerr<< " ok CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
}
assert(ok);
} }
FlightRecorder::CsumLog(csum);
#endif #endif
FlightRecorder::StepLog("rank inner product");
ComplexD nrm = rankInnerProduct(left,right); ComplexD nrm = rankInnerProduct(left,right);
// ComplexD nrmck=nrm;
RealD local = real(nrm); RealD local = real(nrm);
FlightRecorder::NormLog(real(nrm)); ok = FlightRecorder::NormLog(real(nrm));
if ( !ok ) {
ComplexD nrm2 = rankInnerProduct(left,right);
RealD local2 = real(nrm2);
std::cerr<< " Bad NORM " << local << " recomputed as "<<local2<<std::endl;
assert(ok);
}
FlightRecorder::StepLog("Start global sum");
// grid->GlobalSumP2P(nrm);
grid->GlobalSum(nrm); grid->GlobalSum(nrm);
FlightRecorder::StepLog("Finished global sum");
// std::cout << " norm "<< nrm << " p2p norm "<<nrmck<<std::endl;
FlightRecorder::ReductionLog(local,real(nrm)); FlightRecorder::ReductionLog(local,real(nrm));
return nrm; return nrm;
} }
@ -343,18 +365,6 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
autoView( x_v, x, AcceleratorRead); autoView( x_v, x, AcceleratorRead);
autoView( y_v, y, AcceleratorRead); autoView( y_v, y, AcceleratorRead);
autoView( z_v, z, AcceleratorWrite); autoView( z_v, z, AcceleratorWrite);
#if 0
typedef decltype(innerProductD(x_v[0],y_v[0])) inner_t;
Vector<inner_t> inner_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
accelerator_for( ss, sites, nsimd,{
auto tmp = a*x_v(ss)+b*y_v(ss);
coalescedWrite(inner_tmp_v[ss],innerProductD(tmp,tmp));
coalescedWrite(z_v[ss],tmp);
});
nrm = real(TensorRemove(sum(inner_tmp_v,sites)));
#else
typedef decltype(innerProduct(x_v[0],y_v[0])) inner_t; typedef decltype(innerProduct(x_v[0],y_v[0])) inner_t;
deviceVector<inner_t> inner_tmp; deviceVector<inner_t> inner_tmp;
inner_tmp.resize(sites); inner_tmp.resize(sites);
@ -365,9 +375,44 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
coalescedWrite(inner_tmp_v[ss],innerProduct(tmp,tmp)); coalescedWrite(inner_tmp_v[ss],innerProduct(tmp,tmp));
coalescedWrite(z_v[ss],tmp); coalescedWrite(z_v[ss],tmp);
}); });
nrm = real(TensorRemove(sumD(inner_tmp_v,sites))); bool ok;
#ifdef GRID_SYCL
uint64_t csum=0;
uint64_t csum2=0;
if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone)
{
// z_v
{
Integer words = sites*sizeof(vobj)/sizeof(uint64_t);
uint64_t *base= (uint64_t *)&z_v[0];
csum=svm_xor(base,words);
ok = FlightRecorder::CsumLog(csum);
if ( !ok ) {
csum2=svm_xor(base,words);
std::cerr<< " Bad z_v CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
}
assert(ok);
}
// inner_v
{
Integer words = sites*sizeof(inner_t)/sizeof(uint64_t);
uint64_t *base= (uint64_t *)&inner_tmp_v[0];
csum=svm_xor(base,words);
ok = FlightRecorder::CsumLog(csum);
if ( !ok ) {
csum2=svm_xor(base,words);
std::cerr<< " Bad inner_tmp_v CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
}
assert(ok);
}
}
#endif #endif
nrm = real(TensorRemove(sumD(inner_tmp_v,sites)));
ok = FlightRecorder::NormLog(real(nrm));
assert(ok);
RealD local = real(nrm);
grid->GlobalSum(nrm); grid->GlobalSum(nrm);
FlightRecorder::ReductionLog(local,real(nrm));
return nrm; return nrm;
} }
@ -377,7 +422,7 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti
conformable(left,right); conformable(left,right);
typedef typename vobj::vector_typeD vector_type; typedef typename vobj::vector_typeD vector_type;
Vector<ComplexD> tmp(2); std::vector<ComplexD> tmp(2);
GridBase *grid = left.Grid(); GridBase *grid = left.Grid();
@ -387,8 +432,8 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti
// GPU // GPU
typedef decltype(innerProductD(vobj(),vobj())) inner_t; typedef decltype(innerProductD(vobj(),vobj())) inner_t;
typedef decltype(innerProductD(vobj(),vobj())) norm_t; typedef decltype(innerProductD(vobj(),vobj())) norm_t;
Vector<inner_t> inner_tmp(sites); deviceVector<inner_t> inner_tmp(sites);
Vector<norm_t> norm_tmp(sites); deviceVector<norm_t> norm_tmp(sites);
auto inner_tmp_v = &inner_tmp[0]; auto inner_tmp_v = &inner_tmp[0];
auto norm_tmp_v = &norm_tmp[0]; auto norm_tmp_v = &norm_tmp[0];
{ {
@ -438,7 +483,9 @@ inline auto sum(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)
// sliceSum, sliceInnerProduct, sliceAxpy, sliceNorm etc... // sliceSum, sliceInnerProduct, sliceAxpy, sliceNorm etc...
////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<typename vobj::scalar_object> &result,int orthogdim) template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,
std::vector<typename vobj::scalar_object> &result,
int orthogdim)
{ {
/////////////////////////////////////////////////////// ///////////////////////////////////////////////////////
// FIXME precision promoted summation // FIXME precision promoted summation
@ -460,8 +507,8 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
int ld=grid->_ldimensions[orthogdim]; int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim]; int rd=grid->_rdimensions[orthogdim];
Vector<vobj> lvSum(rd); // will locally sum vectors first std::vector<vobj> lvSum(rd); // will locally sum vectors first
Vector<sobj> lsSum(ld,Zero()); // sum across these down to scalars std::vector<sobj> lsSum(ld,Zero()); // sum across these down to scalars
ExtractBuffer<sobj> extracted(Nsimd); // splitting the SIMD ExtractBuffer<sobj> extracted(Nsimd); // splitting the SIMD
result.resize(fd); // And then global sum to return the same vector to every node result.resize(fd); // And then global sum to return the same vector to every node
@ -509,6 +556,8 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
scalar_type * ptr = (scalar_type *) &result[0]; scalar_type * ptr = (scalar_type *) &result[0];
int words = fd*sizeof(sobj)/sizeof(scalar_type); int words = fd*sizeof(sobj)/sizeof(scalar_type);
grid->GlobalSumVector(ptr, words); grid->GlobalSumVector(ptr, words);
// std::cout << GridLogMessage << " sliceSum local"<<t_sum<<" us, host+mpi "<<t_rest<<std::endl;
} }
template<class vobj> inline template<class vobj> inline
std::vector<typename vobj::scalar_object> std::vector<typename vobj::scalar_object>
@ -552,8 +601,8 @@ static void sliceInnerProductVector( std::vector<ComplexD> & result, const Latti
int ld=grid->_ldimensions[orthogdim]; int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim]; int rd=grid->_rdimensions[orthogdim];
Vector<vector_type> lvSum(rd); // will locally sum vectors first std::vector<vector_type> lvSum(rd); // will locally sum vectors first
Vector<scalar_type > lsSum(ld,scalar_type(0.0)); // sum across these down to scalars std::vector<scalar_type > lsSum(ld,scalar_type(0.0)); // sum across these down to scalars
ExtractBuffer<iScalar<scalar_type> > extracted(Nsimd); // splitting the SIMD ExtractBuffer<iScalar<scalar_type> > extracted(Nsimd); // splitting the SIMD
result.resize(fd); // And then global sum to return the same vector to every node for IO to file result.resize(fd); // And then global sum to return the same vector to every node for IO to file

View File

@ -214,22 +214,12 @@ inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osi
// Move out of UVM // Move out of UVM
// Turns out I had messed up the synchronise after move to compute stream // Turns out I had messed up the synchronise after move to compute stream
// as running this on the default stream fools the synchronise // as running this on the default stream fools the synchronise
#undef UVM_BLOCK_BUFFER deviceVector<sobj> buffer(numBlocks);
#ifndef UVM_BLOCK_BUFFER
commVector<sobj> buffer(numBlocks);
sobj *buffer_v = &buffer[0]; sobj *buffer_v = &buffer[0];
sobj result; sobj result;
reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size); reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
accelerator_barrier(); accelerator_barrier();
acceleratorCopyFromDevice(buffer_v,&result,sizeof(result)); acceleratorCopyFromDevice(buffer_v,&result,sizeof(result));
#else
Vector<sobj> buffer(numBlocks);
sobj *buffer_v = &buffer[0];
sobj result;
reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
accelerator_barrier();
result = *buffer_v;
#endif
return result; return result;
} }
@ -244,7 +234,7 @@ inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osi
const int words = sizeof(vobj)/sizeof(vector); const int words = sizeof(vobj)/sizeof(vector);
Vector<vector> buffer(osites); deviceVector<vector> buffer(osites);
vector *dat = (vector *)lat; vector *dat = (vector *)lat;
vector *buf = &buffer[0]; vector *buf = &buffer[0];
iScalar<vector> *tbuf =(iScalar<vector> *) &buffer[0]; iScalar<vector> *tbuf =(iScalar<vector> *) &buffer[0];

View File

@ -4,33 +4,28 @@ NAMESPACE_BEGIN(Grid);
// Possibly promote to double and sum // Possibly promote to double and sum
///////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////////////
template <class vobj> template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu_tensor(const vobj *lat, Integer osites) inline typename vobj::scalar_objectD sumD_gpu_tensor(const vobj *lat, Integer osites)
{ {
typedef typename vobj::scalar_object sobj; typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_objectD sobjD; typedef typename vobj::scalar_objectD sobjD;
static Vector<sobj> mysum;
mysum.resize(1);
sobj *mysum_p = & mysum[0];
sobj identity; zeroit(identity); sobj identity; zeroit(identity);
mysum[0] = identity; sobj ret; zeroit(ret);
sobj ret ;
Integer nsimd= vobj::Nsimd(); Integer nsimd= vobj::Nsimd();
{
const cl::sycl::property_list PropList ({ cl::sycl::property::reduction::initialize_to_identity() }); sycl::buffer<sobj, 1> abuff(&ret, {1});
theGridAccelerator->submit([&](cl::sycl::handler &cgh) { theGridAccelerator->submit([&](sycl::handler &cgh) {
auto Reduction = cl::sycl::reduction(mysum_p,identity,std::plus<>(),PropList); auto Reduction = sycl::reduction(abuff,cgh,identity,std::plus<>());
cgh.parallel_for(cl::sycl::range<1>{osites}, cgh.parallel_for(sycl::range<1>{osites},
Reduction, Reduction,
[=] (cl::sycl::id<1> item, auto &sum) { [=] (sycl::id<1> item, auto &sum) {
auto osite = item[0]; auto osite = item[0];
sum +=Reduce(lat[osite]); sum +=Reduce(lat[osite]);
}); });
}); });
theGridAccelerator->wait(); }
ret = mysum[0];
// free(mysum,*theGridAccelerator);
sobjD dret; convertType(dret,ret); sobjD dret; convertType(dret,ret);
return dret; return dret;
} }
@ -76,59 +71,22 @@ inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osite
template<class Word> Word svm_xor(Word *vec,uint64_t L) template<class Word> Word svm_xor(Word *vec,uint64_t L)
{ {
Word xorResult; xorResult = 0;
static Vector<Word> d_sum;
d_sum.resize(1);
Word *d_sum_p=&d_sum[0];
Word identity; identity=0; Word identity; identity=0;
d_sum[0] = identity; Word ret = 0;
const cl::sycl::property_list PropList ({ cl::sycl::property::reduction::initialize_to_identity() }); {
theGridAccelerator->submit([&](cl::sycl::handler &cgh) { sycl::buffer<Word, 1> abuff(&ret, {1});
auto Reduction = cl::sycl::reduction(d_sum_p,identity,std::bit_xor<>(),PropList); theGridAccelerator->submit([&](sycl::handler &cgh) {
cgh.parallel_for(cl::sycl::range<1>{L}, auto Reduction = sycl::reduction(abuff,cgh,identity,std::bit_xor<>());
cgh.parallel_for(sycl::range<1>{L},
Reduction, Reduction,
[=] (cl::sycl::id<1> index, auto &sum) { [=] (sycl::id<1> index, auto &sum) {
sum ^=vec[index]; sum ^=vec[index];
}); });
}); });
}
theGridAccelerator->wait(); theGridAccelerator->wait();
Word ret = d_sum[0];
// free(d_sum,*theGridAccelerator);
return ret; return ret;
} }
NAMESPACE_END(Grid); NAMESPACE_END(Grid);
/*
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu_repack(const vobj *lat, Integer osites)
{
typedef typename vobj::vector_type vector;
typedef typename vobj::scalar_type scalar;
typedef typename vobj::scalar_typeD scalarD;
typedef typename vobj::scalar_objectD sobjD;
sobjD ret;
scalarD *ret_p = (scalarD *)&ret;
const int nsimd = vobj::Nsimd();
const int words = sizeof(vobj)/sizeof(vector);
Vector<scalar> buffer(osites*nsimd);
scalar *buf = &buffer[0];
vector *dat = (vector *)lat;
for(int w=0;w<words;w++) {
accelerator_for(ss,osites,nsimd,{
int lane = acceleratorSIMTlane(nsimd);
buf[ss*nsimd+lane] = dat[ss*words+w].getlane(lane);
});
//Precision change at this point is to late to gain precision
ret_p[w] = svm_reduce(buf,nsimd*osites);
}
return ret;
}
*/

View File

@ -21,9 +21,18 @@ NAMESPACE_BEGIN(Grid);
#if defined(GRID_CUDA) || defined(GRID_HIP) #if defined(GRID_CUDA) || defined(GRID_HIP)
template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) { template<class vobj>
inline void sliceSumReduction_cub_small(const vobj *Data,
std::vector<vobj> &lvSum,
const int rd,
const int e1,
const int e2,
const int stride,
const int ostride,
const int Nsimd)
{
size_t subvol_size = e1*e2; size_t subvol_size = e1*e2;
commVector<vobj> reduction_buffer(rd*subvol_size); deviceVector<vobj> reduction_buffer(rd*subvol_size);
auto rb_p = &reduction_buffer[0]; auto rb_p = &reduction_buffer[0];
vobj zero_init; vobj zero_init;
zeroit(zero_init); zeroit(zero_init);
@ -46,7 +55,7 @@ template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, V
d_offsets = static_cast<int*>(acceleratorAllocDevice((rd+1)*sizeof(int))); d_offsets = static_cast<int*>(acceleratorAllocDevice((rd+1)*sizeof(int)));
//copy offsets to device //copy offsets to device
acceleratorCopyToDeviceAsync(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream); acceleratorCopyToDeviceAsynch(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream);
gpuError_t gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p,d_out, rd, d_offsets, d_offsets+1, ::gpucub::Sum(), zero_init, computeStream); gpuError_t gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p,d_out, rd, d_offsets, d_offsets+1, ::gpucub::Sum(), zero_init, computeStream);
@ -79,7 +88,7 @@ template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, V
exit(EXIT_FAILURE); exit(EXIT_FAILURE);
} }
acceleratorCopyFromDeviceAsync(d_out,&lvSum[0],rd*sizeof(vobj),computeStream); acceleratorCopyFromDeviceAsynch(d_out,&lvSum[0],rd*sizeof(vobj),computeStream);
//sync after copy //sync after copy
accelerator_barrier(); accelerator_barrier();
@ -94,7 +103,15 @@ template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, V
#if defined(GRID_SYCL) #if defined(GRID_SYCL)
template<class vobj> inline void sliceSumReduction_sycl_small(const vobj *Data, Vector <vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd) template<class vobj>
inline void sliceSumReduction_sycl_small(const vobj *Data,
std::vector <vobj> &lvSum,
const int &rd,
const int &e1,
const int &e2,
const int &stride,
const int &ostride,
const int &Nsimd)
{ {
size_t subvol_size = e1*e2; size_t subvol_size = e1*e2;
@ -105,7 +122,7 @@ template<class vobj> inline void sliceSumReduction_sycl_small(const vobj *Data,
mysum[r] = vobj_zero; mysum[r] = vobj_zero;
} }
commVector<vobj> reduction_buffer(rd*subvol_size); deviceVector<vobj> reduction_buffer(rd*subvol_size);
auto rb_p = &reduction_buffer[0]; auto rb_p = &reduction_buffer[0];
@ -124,11 +141,11 @@ template<class vobj> inline void sliceSumReduction_sycl_small(const vobj *Data,
}); });
for (int r = 0; r < rd; r++) { for (int r = 0; r < rd; r++) {
theGridAccelerator->submit([&](cl::sycl::handler &cgh) { theGridAccelerator->submit([&](sycl::handler &cgh) {
auto Reduction = cl::sycl::reduction(&mysum[r],std::plus<>()); auto Reduction = sycl::reduction(&mysum[r],std::plus<>());
cgh.parallel_for(cl::sycl::range<1>{subvol_size}, cgh.parallel_for(sycl::range<1>{subvol_size},
Reduction, Reduction,
[=](cl::sycl::id<1> item, auto &sum) { [=](sycl::id<1> item, auto &sum) {
auto s = item[0]; auto s = item[0];
sum += rb_p[r*subvol_size+s]; sum += rb_p[r*subvol_size+s];
}); });
@ -144,14 +161,23 @@ template<class vobj> inline void sliceSumReduction_sycl_small(const vobj *Data,
} }
#endif #endif
template<class vobj> inline void sliceSumReduction_large(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) { template<class vobj>
inline void sliceSumReduction_large(const vobj *Data,
std::vector<vobj> &lvSum,
const int rd,
const int e1,
const int e2,
const int stride,
const int ostride,
const int Nsimd)
{
typedef typename vobj::vector_type vector; typedef typename vobj::vector_type vector;
const int words = sizeof(vobj)/sizeof(vector); const int words = sizeof(vobj)/sizeof(vector);
const int osites = rd*e1*e2; const int osites = rd*e1*e2;
commVector<vector>buffer(osites); deviceVector<vector>buffer(osites);
vector *dat = (vector *)Data; vector *dat = (vector *)Data;
vector *buf = &buffer[0]; vector *buf = &buffer[0];
Vector<vector> lvSum_small(rd); std::vector<vector> lvSum_small(rd);
vector *lvSum_ptr = (vector *)&lvSum[0]; vector *lvSum_ptr = (vector *)&lvSum[0];
for (int w = 0; w < words; w++) { for (int w = 0; w < words; w++) {
@ -168,13 +194,18 @@ template<class vobj> inline void sliceSumReduction_large(const vobj *Data, Vecto
for (int r = 0; r < rd; r++) { for (int r = 0; r < rd; r++) {
lvSum_ptr[w+words*r]=lvSum_small[r]; lvSum_ptr[w+words*r]=lvSum_small[r];
} }
}
} }
template<class vobj>
} inline void sliceSumReduction_gpu(const Lattice<vobj> &Data,
std::vector<vobj> &lvSum,
template<class vobj> inline void sliceSumReduction_gpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) const int rd,
const int e1,
const int e2,
const int stride,
const int ostride,
const int Nsimd)
{ {
autoView(Data_v, Data, AcceleratorRead); //reduction libraries cannot deal with large vobjs so we split into small/large case. autoView(Data_v, Data, AcceleratorRead); //reduction libraries cannot deal with large vobjs so we split into small/large case.
if constexpr (sizeof(vobj) <= 256) { if constexpr (sizeof(vobj) <= 256) {
@ -192,7 +223,15 @@ template<class vobj> inline void sliceSumReduction_gpu(const Lattice<vobj> &Data
} }
template<class vobj> inline void sliceSumReduction_cpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd) template<class vobj>
inline void sliceSumReduction_cpu(const Lattice<vobj> &Data,
std::vector<vobj> &lvSum,
const int &rd,
const int &e1,
const int &e2,
const int &stride,
const int &ostride,
const int &Nsimd)
{ {
// sum over reduced dimension planes, breaking out orthog dir // sum over reduced dimension planes, breaking out orthog dir
// Parallel over orthog direction // Parallel over orthog direction
@ -208,15 +247,19 @@ template<class vobj> inline void sliceSumReduction_cpu(const Lattice<vobj> &Data
}); });
} }
template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd) template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data,
std::vector<vobj> &lvSum,
const int &rd,
const int &e1,
const int &e2,
const int &stride,
const int &ostride,
const int &Nsimd)
{ {
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL) #if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
sliceSumReduction_gpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd); sliceSumReduction_gpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
#else #else
sliceSumReduction_cpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd); sliceSumReduction_cpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
#endif #endif
} }

View File

@ -54,7 +54,7 @@ struct CshiftImplGauge: public CshiftImplBase<typename Gimpl::GaugeLinkField::ve
* *
*/ */
template<class vobj> inline void ScatterSlice(const cshiftVector<vobj> &buf, template<class vobj> inline void ScatterSlice(const deviceVector<vobj> &buf,
Lattice<vobj> &lat, Lattice<vobj> &lat,
int x, int x,
int dim, int dim,
@ -140,7 +140,7 @@ template<class vobj> inline void ScatterSlice(const cshiftVector<vobj> &buf,
}); });
} }
template<class vobj> inline void GatherSlice(cshiftVector<vobj> &buf, template<class vobj> inline void GatherSlice(deviceVector<vobj> &buf,
const Lattice<vobj> &lat, const Lattice<vobj> &lat,
int x, int x,
int dim, int dim,
@ -462,13 +462,19 @@ public:
int rNsimd = Nsimd / simd[dimension]; int rNsimd = Nsimd / simd[dimension];
assert( buffer_size == from.Grid()->_slice_nblock[dimension]*from.Grid()->_slice_block[dimension] / simd[dimension]); assert( buffer_size == from.Grid()->_slice_nblock[dimension]*from.Grid()->_slice_block[dimension] / simd[dimension]);
static cshiftVector<vobj> send_buf; static deviceVector<vobj> send_buf;
static cshiftVector<vobj> recv_buf; static deviceVector<vobj> recv_buf;
send_buf.resize(buffer_size*2*depth); send_buf.resize(buffer_size*2*depth);
recv_buf.resize(buffer_size*2*depth); recv_buf.resize(buffer_size*2*depth);
#ifndef ACCELERATOR_AWARE_MPI
static hostVector<vobj> hsend_buf;
static hostVector<vobj> hrecv_buf;
hsend_buf.resize(buffer_size*2*depth);
hrecv_buf.resize(buffer_size*2*depth);
#endif
std::vector<CommsRequest_t> fwd_req; std::vector<MpiCommsRequest_t> fwd_req;
std::vector<CommsRequest_t> bwd_req; std::vector<MpiCommsRequest_t> bwd_req;
int words = buffer_size; int words = buffer_size;
int bytes = words * sizeof(vobj); int bytes = words * sizeof(vobj);
@ -495,9 +501,16 @@ public:
t_gather+=usecond()-t; t_gather+=usecond()-t;
t=usecond(); t=usecond();
#ifdef ACCELERATOR_AWARE_MPI
grid->SendToRecvFromBegin(fwd_req, grid->SendToRecvFromBegin(fwd_req,
(void *)&send_buf[d*buffer_size], xmit_to_rank, (void *)&send_buf[d*buffer_size], xmit_to_rank,
(void *)&recv_buf[d*buffer_size], recv_from_rank, bytes, tag); (void *)&recv_buf[d*buffer_size], recv_from_rank, bytes, tag);
#else
acceleratorCopyFromDevice(&send_buf[d*buffer_size],&hsend_buf[d*buffer_size],bytes);
grid->SendToRecvFromBegin(fwd_req,
(void *)&hsend_buf[d*buffer_size], xmit_to_rank,
(void *)&hrecv_buf[d*buffer_size], recv_from_rank, bytes, tag);
#endif
t_comms+=usecond()-t; t_comms+=usecond()-t;
} }
for ( int d=0;d < depth ; d ++ ) { for ( int d=0;d < depth ; d ++ ) {
@ -508,9 +521,16 @@ public:
t_gather+= usecond() - t; t_gather+= usecond() - t;
t=usecond(); t=usecond();
#ifdef ACCELERATOR_AWARE_MPI
grid->SendToRecvFromBegin(bwd_req, grid->SendToRecvFromBegin(bwd_req,
(void *)&send_buf[(d+depth)*buffer_size], recv_from_rank, (void *)&send_buf[(d+depth)*buffer_size], recv_from_rank,
(void *)&recv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag); (void *)&recv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag);
#else
acceleratorCopyFromDevice(&send_buf[(d+depth)*buffer_size],&hsend_buf[(d+depth)*buffer_size],bytes);
grid->SendToRecvFromBegin(bwd_req,
(void *)&hsend_buf[(d+depth)*buffer_size], recv_from_rank,
(void *)&hrecv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag);
#endif
t_comms+=usecond()-t; t_comms+=usecond()-t;
} }
@ -533,6 +553,11 @@ public:
t=usecond(); t=usecond();
grid->CommsComplete(fwd_req); grid->CommsComplete(fwd_req);
#ifndef ACCELERATOR_AWARE_MPI
for ( int d=0;d < depth ; d ++ ) {
acceleratorCopyToDevice(&hrecv_buf[d*buffer_size],&recv_buf[d*buffer_size],bytes);
}
#endif
t_comms+= usecond() - t; t_comms+= usecond() - t;
t=usecond(); t=usecond();
@ -543,6 +568,11 @@ public:
t=usecond(); t=usecond();
grid->CommsComplete(bwd_req); grid->CommsComplete(bwd_req);
#ifndef ACCELERATOR_AWARE_MPI
for ( int d=0;d < depth ; d ++ ) {
acceleratorCopyToDevice(&hrecv_buf[(d+depth)*buffer_size],&recv_buf[(d+depth)*buffer_size],bytes);
}
#endif
t_comms+= usecond() - t; t_comms+= usecond() - t;
t=usecond(); t=usecond();

View File

@ -132,6 +132,10 @@ public:
template <class GaugeField > template <class GaugeField >
class EmptyAction : public Action <GaugeField> class EmptyAction : public Action <GaugeField>
{ {
using Action<GaugeField>::refresh;
using Action<GaugeField>::Sinitial;
using Action<GaugeField>::deriv;
virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) { assert(0);}; // refresh pseudofermions virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) { assert(0);}; // refresh pseudofermions
virtual RealD S(const GaugeField& U) { return 0.0;}; // evaluate the action virtual RealD S(const GaugeField& U) { return 0.0;}; // evaluate the action
virtual void deriv(const GaugeField& U, GaugeField& dSdU) { assert(0); }; // evaluate the action derivative virtual void deriv(const GaugeField& U, GaugeField& dSdU) { assert(0); }; // evaluate the action derivative

View File

@ -55,6 +55,11 @@ public:
RealD alpha; // Mobius scale RealD alpha; // Mobius scale
RealD k; // EOFA normalization constant RealD k; // EOFA normalization constant
// Device resident
deviceVector<Coeff_t> d_shift_coefficients;
deviceVector<Coeff_t> d_MooeeInv_shift_lc;
deviceVector<Coeff_t> d_MooeeInv_shift_norm;
virtual void Instantiatable(void) = 0; virtual void Instantiatable(void) = 0;
// EOFA-specific operations // EOFA-specific operations
@ -92,6 +97,11 @@ public:
this->k = this->alpha * (_mq3-_mq2) * std::pow(this->alpha+1.0,2*Ls) / this->k = this->alpha * (_mq3-_mq2) * std::pow(this->alpha+1.0,2*Ls) /
( std::pow(this->alpha+1.0,Ls) + _mq2*std::pow(this->alpha-1.0,Ls) ) / ( std::pow(this->alpha+1.0,Ls) + _mq2*std::pow(this->alpha-1.0,Ls) ) /
( std::pow(this->alpha+1.0,Ls) + _mq3*std::pow(this->alpha-1.0,Ls) ); ( std::pow(this->alpha+1.0,Ls) + _mq3*std::pow(this->alpha-1.0,Ls) );
d_shift_coefficients.resize(Ls);
d_MooeeInv_shift_lc.resize(Ls);
d_MooeeInv_shift_norm.resize(Ls);
}; };
}; };

View File

@ -90,16 +90,16 @@ public:
void M5D(const FermionField &psi, void M5D(const FermionField &psi,
const FermionField &phi, const FermionField &phi,
FermionField &chi, FermionField &chi,
Vector<Coeff_t> &lower, std::vector<Coeff_t> &lower,
Vector<Coeff_t> &diag, std::vector<Coeff_t> &diag,
Vector<Coeff_t> &upper); std::vector<Coeff_t> &upper);
void M5Ddag(const FermionField &psi, void M5Ddag(const FermionField &psi,
const FermionField &phi, const FermionField &phi,
FermionField &chi, FermionField &chi,
Vector<Coeff_t> &lower, std::vector<Coeff_t> &lower,
Vector<Coeff_t> &diag, std::vector<Coeff_t> &diag,
Vector<Coeff_t> &upper); std::vector<Coeff_t> &upper);
virtual void Instantiatable(void)=0; virtual void Instantiatable(void)=0;
@ -119,35 +119,51 @@ public:
RealD mass_plus, mass_minus; RealD mass_plus, mass_minus;
// Save arguments to SetCoefficientsInternal // Save arguments to SetCoefficientsInternal
Vector<Coeff_t> _gamma; std::vector<Coeff_t> _gamma;
RealD _zolo_hi; RealD _zolo_hi;
RealD _b; RealD _b;
RealD _c; RealD _c;
// possible boost
std::vector<ComplexD> qmu;
void set_qmu(std::vector<ComplexD> _qmu) { qmu=_qmu; assert(qmu.size()==Nd);};
void addQmu(const FermionField &in, FermionField &out, int dag);
// Cayley form Moebius (tanh and zolotarev) // Cayley form Moebius (tanh and zolotarev)
Vector<Coeff_t> omega; std::vector<Coeff_t> omega;
Vector<Coeff_t> bs; // S dependent coeffs std::vector<Coeff_t> bs; // S dependent coeffs
Vector<Coeff_t> cs; std::vector<Coeff_t> cs;
Vector<Coeff_t> as; std::vector<Coeff_t> as;
// For preconditioning Cayley form // For preconditioning Cayley form
Vector<Coeff_t> bee; std::vector<Coeff_t> bee;
Vector<Coeff_t> cee; std::vector<Coeff_t> cee;
Vector<Coeff_t> aee; std::vector<Coeff_t> aee;
Vector<Coeff_t> beo; std::vector<Coeff_t> beo;
Vector<Coeff_t> ceo; std::vector<Coeff_t> ceo;
Vector<Coeff_t> aeo; std::vector<Coeff_t> aeo;
// LDU factorisation of the eeoo matrix // LDU factorisation of the eeoo matrix
Vector<Coeff_t> lee; std::vector<Coeff_t> lee;
Vector<Coeff_t> leem; std::vector<Coeff_t> leem;
Vector<Coeff_t> uee; std::vector<Coeff_t> uee;
Vector<Coeff_t> ueem; std::vector<Coeff_t> ueem;
Vector<Coeff_t> dee; std::vector<Coeff_t> dee;
// Device memory
deviceVector<Coeff_t> d_diag;
deviceVector<Coeff_t> d_upper;
deviceVector<Coeff_t> d_lower;
deviceVector<Coeff_t> d_lee;
deviceVector<Coeff_t> d_dee;
deviceVector<Coeff_t> d_uee;
deviceVector<Coeff_t> d_leem;
deviceVector<Coeff_t> d_ueem;
// Matrices of 5d ee inverse params // Matrices of 5d ee inverse params
Vector<iSinglet<Simd> > MatpInv; // std::vector<iSinglet<Simd> > MatpInv;
Vector<iSinglet<Simd> > MatmInv; // std::vector<iSinglet<Simd> > MatmInv;
Vector<iSinglet<Simd> > MatpInvDag; // std::vector<iSinglet<Simd> > MatpInvDag;
Vector<iSinglet<Simd> > MatmInvDag; // std::vector<iSinglet<Simd> > MatmInvDag;
/////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////
// Conserved current utilities // Conserved current utilities
@ -187,7 +203,7 @@ public:
protected: protected:
virtual void SetCoefficientsZolotarev(RealD zolohi,Approx::zolotarev_data *zdata,RealD b,RealD c); virtual void SetCoefficientsZolotarev(RealD zolohi,Approx::zolotarev_data *zdata,RealD b,RealD c);
virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c); virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c);
virtual void SetCoefficientsInternal(RealD zolo_hi,Vector<Coeff_t> & gamma,RealD b,RealD c); virtual void SetCoefficientsInternal(RealD zolo_hi,std::vector<Coeff_t> & gamma,RealD b,RealD c);
}; };
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -0,0 +1,196 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/CompactWilsonCloverFermion5D.h
Copyright (C) 2020 - 2025
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
Author: Nils Meyer <nils.meyer@ur.de>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/qcd/action/fermion/WilsonFermion5D.h>
#include <Grid/qcd/action/fermion/WilsonCloverTypes.h>
#include <Grid/qcd/action/fermion/WilsonCloverHelpers.h>
#include <Grid/qcd/action/fermion/CloverHelpers.h>
NAMESPACE_BEGIN(Grid);
// see Grid/qcd/action/fermion/CompactWilsonCloverFermion.h for description
template<class Impl, class CloverHelpers>
class CompactWilsonCloverFermion5D : public WilsonFermion5D<Impl>,
public WilsonCloverHelpers<Impl>,
public CompactWilsonCloverHelpers<Impl> {
/////////////////////////////////////////////
// Sizes
/////////////////////////////////////////////
public:
INHERIT_COMPACT_CLOVER_SIZES(Impl);
/////////////////////////////////////////////
// Type definitions
/////////////////////////////////////////////
public:
INHERIT_IMPL_TYPES(Impl);
INHERIT_CLOVER_TYPES(Impl);
INHERIT_COMPACT_CLOVER_TYPES(Impl);
typedef WilsonFermion5D<Impl> WilsonBase;
typedef WilsonCloverHelpers<Impl> Helpers;
typedef CompactWilsonCloverHelpers<Impl> CompactHelpers;
/////////////////////////////////////////////
// Constructors
/////////////////////////////////////////////
public:
CompactWilsonCloverFermion5D(GaugeField& _Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
const RealD _mass,
const RealD _csw_r = 0.0,
const RealD _csw_t = 0.0,
const RealD _cF = 1.0,
const ImplParams& impl_p = ImplParams());
/////////////////////////////////////////////
// Member functions (implementing interface)
/////////////////////////////////////////////
public:
virtual void Instantiatable() {};
int ConstEE() override { return 0; };
int isTrivialEE() override { return 0; };
void Dhop(const FermionField& in, FermionField& out, int dag) override;
void DhopOE(const FermionField& in, FermionField& out, int dag) override;
void DhopEO(const FermionField& in, FermionField& out, int dag) override;
void DhopDir(const FermionField& in, FermionField& out, int dir, int disp) override;
void DhopDirAll(const FermionField& in, std::vector<FermionField>& out) /* override */;
void M(const FermionField& in, FermionField& out) override;
void Mdag(const FermionField& in, FermionField& out) override;
void Meooe(const FermionField& in, FermionField& out) override;
void MeooeDag(const FermionField& in, FermionField& out) override;
void Mooee(const FermionField& in, FermionField& out) override;
void MooeeDag(const FermionField& in, FermionField& out) override;
void MooeeInv(const FermionField& in, FermionField& out) override;
void MooeeInvDag(const FermionField& in, FermionField& out) override;
void Mdir(const FermionField& in, FermionField& out, int dir, int disp) override;
void MdirAll(const FermionField& in, std::vector<FermionField>& out) override;
void MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) override;
void MooDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) override;
void MeeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) override;
/////////////////////////////////////////////
// Member functions (internals)
/////////////////////////////////////////////
void MooeeInternal(const FermionField& in,
FermionField& out,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle);
/////////////////////////////////////////////
// Helpers
/////////////////////////////////////////////
void ImportGauge(const GaugeField& _Umu) override;
/////////////////////////////////////////////
// Helpers
/////////////////////////////////////////////
private:
template<class Field>
const MaskField* getCorrectMaskField(const Field &in) const {
if(in.Grid()->_isCheckerBoarded) {
if(in.Checkerboard() == Odd) {
return &this->BoundaryMaskOdd;
} else {
return &this->BoundaryMaskEven;
}
} else {
return &this->BoundaryMask;
}
}
template<class Field>
void ApplyBoundaryMask(Field& f) {
const MaskField* m = getCorrectMaskField(f); assert(m != nullptr);
assert(m != nullptr);
CompactHelpers::ApplyBoundaryMask(f, *m);
}
/////////////////////////////////////////////
// Member Data
/////////////////////////////////////////////
public:
RealD csw_r;
RealD csw_t;
RealD cF;
int n_rhs;
bool fixedBoundaries;
CloverDiagonalField Diagonal, DiagonalEven, DiagonalOdd;
CloverDiagonalField DiagonalInv, DiagonalInvEven, DiagonalInvOdd;
CloverTriangleField Triangle, TriangleEven, TriangleOdd;
CloverTriangleField TriangleInv, TriangleInvEven, TriangleInvOdd;
FermionField Tmp;
MaskField BoundaryMask, BoundaryMaskEven, BoundaryMaskOdd;
};
NAMESPACE_END(Grid);

View File

@ -60,6 +60,50 @@ public:
// virtual void Instantiatable(void)=0; // virtual void Instantiatable(void)=0;
virtual void Instantiatable(void) =0; virtual void Instantiatable(void) =0;
void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary, std::vector<double> twist)
{
std::cout << "Free Propagator for PartialFraction"<<std::endl;
FermionField in_k(in.Grid());
FermionField prop_k(in.Grid());
FFT theFFT((GridCartesian *) in.Grid());
//phase for boundary condition
ComplexField coor(in.Grid());
ComplexField ph(in.Grid()); ph = Zero();
FermionField in_buf(in.Grid()); in_buf = Zero();
typedef typename Simd::scalar_type Scalar;
Scalar ci(0.0,1.0);
assert(twist.size() == Nd);//check that twist is Nd
assert(boundary.size() == Nd);//check that boundary conditions is Nd
int shift = 0;
for(unsigned int nu = 0; nu < Nd; nu++)
{
// Shift coordinate lattice index by 1 to account for 5th dimension.
LatticeCoordinate(coor, nu + shift);
double boundary_phase = ::acos(real(boundary[nu]));
ph = ph + boundary_phase*coor*((1./(in.Grid()->_fdimensions[nu+shift])));
//momenta for propagator shifted by twist+boundary
twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI));
}
in_buf = exp(ci*ph*(-1.0))*in;
theFFT.FFT_all_dim(in_k,in,FFT::forward);
this->MomentumSpacePropagatorHw(prop_k,in_k,mass,twist);
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
//phase for boundary condition
out = out * exp(ci*ph);
};
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {
std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
std::vector<Complex> boundary;
for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions
FreePropagator(in,out,mass,boundary,twist);
};
// Efficient support for multigrid coarsening // Efficient support for multigrid coarsening
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp); virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp);
virtual void MdirAll(const FermionField &in, std::vector<FermionField> &out); virtual void MdirAll(const FermionField &in, std::vector<FermionField> &out);
@ -90,12 +134,12 @@ protected:
RealD mass; RealD mass;
RealD R; RealD R;
RealD ZoloHiInv; RealD ZoloHiInv;
Vector<double> Beta; std::vector<double> Beta;
Vector<double> cc;; std::vector<double> cc;;
Vector<double> cc_d;; std::vector<double> cc_d;;
Vector<double> sqrt_cc; std::vector<double> sqrt_cc;
Vector<double> See; std::vector<double> See;
Vector<double> Aee; std::vector<double> Aee;
}; };

View File

@ -69,10 +69,10 @@ public:
// Instantiate different versions depending on Impl // Instantiate different versions depending on Impl
///////////////////////////////////////////////////// /////////////////////////////////////////////////////
void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi, void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi,
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper); std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi, void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi,
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper); std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
virtual void RefreshShiftCoefficients(RealD new_shift); virtual void RefreshShiftCoefficients(RealD new_shift);
@ -83,7 +83,7 @@ public:
RealD _M5, const ImplParams& p=ImplParams()); RealD _M5, const ImplParams& p=ImplParams());
protected: protected:
void SetCoefficientsInternal(RealD zolo_hi, Vector<Coeff_t>& gamma, RealD b, RealD c); void SetCoefficientsInternal(RealD zolo_hi, std::vector<Coeff_t>& gamma, RealD b, RealD c);
}; };
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -55,6 +55,7 @@ NAMESPACE_CHECK(Wilson);
NAMESPACE_CHECK(WilsonTM); NAMESPACE_CHECK(WilsonTM);
#include <Grid/qcd/action/fermion/WilsonCloverFermion.h> // 4d wilson clover fermions #include <Grid/qcd/action/fermion/WilsonCloverFermion.h> // 4d wilson clover fermions
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h> // 4d compact wilson clover fermions #include <Grid/qcd/action/fermion/CompactWilsonCloverFermion.h> // 4d compact wilson clover fermions
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion5D.h> // 5d compact wilson clover fermions
NAMESPACE_CHECK(WilsonClover); NAMESPACE_CHECK(WilsonClover);
#include <Grid/qcd/action/fermion/WilsonFermion5D.h> // 5d base used by all 5d overlap types #include <Grid/qcd/action/fermion/WilsonFermion5D.h> // 5d base used by all 5d overlap types
NAMESPACE_CHECK(Wilson5D); NAMESPACE_CHECK(Wilson5D);
@ -164,12 +165,17 @@ typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiS
// Compact Clover fermions // Compact Clover fermions
template <typename WImpl> using CompactWilsonClover = CompactWilsonCloverFermion<WImpl, CompactCloverHelpers<WImpl>>; template <typename WImpl> using CompactWilsonClover = CompactWilsonCloverFermion<WImpl, CompactCloverHelpers<WImpl>>;
template <typename WImpl> using CompactWilsonClover5D = CompactWilsonCloverFermion5D<WImpl, CompactCloverHelpers<WImpl>>;
template <typename WImpl> using CompactWilsonExpClover = CompactWilsonCloverFermion<WImpl, CompactExpCloverHelpers<WImpl>>; template <typename WImpl> using CompactWilsonExpClover = CompactWilsonCloverFermion<WImpl, CompactExpCloverHelpers<WImpl>>;
typedef CompactWilsonClover<WilsonImplD2> CompactWilsonCloverFermionD2; typedef CompactWilsonClover<WilsonImplD2> CompactWilsonCloverFermionD2;
typedef CompactWilsonClover<WilsonImplF> CompactWilsonCloverFermionF; typedef CompactWilsonClover<WilsonImplF> CompactWilsonCloverFermionF;
typedef CompactWilsonClover<WilsonImplD> CompactWilsonCloverFermionD; typedef CompactWilsonClover<WilsonImplD> CompactWilsonCloverFermionD;
typedef CompactWilsonClover5D<WilsonImplD2> CompactWilsonCloverFermion5DD2;
typedef CompactWilsonClover5D<WilsonImplF> CompactWilsonCloverFermion5DF;
typedef CompactWilsonClover5D<WilsonImplD> CompactWilsonCloverFermion5DD;
typedef CompactWilsonExpClover<WilsonImplD2> CompactWilsonExpCloverFermionD2; typedef CompactWilsonExpClover<WilsonImplD2> CompactWilsonExpCloverFermionD2;
typedef CompactWilsonExpClover<WilsonImplF> CompactWilsonExpCloverFermionF; typedef CompactWilsonExpClover<WilsonImplF> CompactWilsonExpCloverFermionF;
typedef CompactWilsonExpClover<WilsonImplD> CompactWilsonExpCloverFermionD; typedef CompactWilsonExpClover<WilsonImplD> CompactWilsonExpCloverFermionD;

View File

@ -102,11 +102,11 @@ public:
GaugeField &mat, GaugeField &mat,
const FermionField &A, const FermionField &B, int dag); const FermionField &A, const FermionField &B, int dag);
void DhopInternal(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,DoubledGaugeField &UUU, void DhopInternal(StencilImpl &st, DoubledGaugeField &U,DoubledGaugeField &UUU,
const FermionField &in, FermionField &out, int dag); const FermionField &in, FermionField &out, int dag);
void DhopInternalSerialComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,DoubledGaugeField &UUU, void DhopInternalSerialComms(StencilImpl &st, DoubledGaugeField &U,DoubledGaugeField &UUU,
const FermionField &in, FermionField &out, int dag); const FermionField &in, FermionField &out, int dag);
void DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,DoubledGaugeField &UUU, void DhopInternalOverlappedComms(StencilImpl &st, DoubledGaugeField &U,DoubledGaugeField &UUU,
const FermionField &in, FermionField &out, int dag); const FermionField &in, FermionField &out, int dag);
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
@ -164,8 +164,6 @@ public:
DoubledGaugeField UUUmuEven; DoubledGaugeField UUUmuEven;
DoubledGaugeField UUUmuOdd; DoubledGaugeField UUUmuOdd;
LebesgueOrder Lebesgue;
LebesgueOrder LebesgueEvenOdd;
/////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////
// Conserved current utilities // Conserved current utilities

View File

@ -100,7 +100,6 @@ public:
int dag); int dag);
void DhopInternal(StencilImpl & st, void DhopInternal(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &U,
DoubledGaugeField &UUU, DoubledGaugeField &UUU,
const FermionField &in, const FermionField &in,
@ -108,7 +107,6 @@ public:
int dag); int dag);
void DhopInternalOverlappedComms(StencilImpl & st, void DhopInternalOverlappedComms(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &U,
DoubledGaugeField &UUU, DoubledGaugeField &UUU,
const FermionField &in, const FermionField &in,
@ -116,7 +114,6 @@ public:
int dag); int dag);
void DhopInternalSerialComms(StencilImpl & st, void DhopInternalSerialComms(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &U,
DoubledGaugeField &UUU, DoubledGaugeField &UUU,
const FermionField &in, const FermionField &in,
@ -192,8 +189,6 @@ public:
DoubledGaugeField UUUmuEven; DoubledGaugeField UUUmuEven;
DoubledGaugeField UUUmuOdd; DoubledGaugeField UUUmuOdd;
LebesgueOrder Lebesgue;
LebesgueOrder LebesgueEvenOdd;
// Comms buffer // Comms buffer
// std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf; // std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf;

View File

@ -42,11 +42,11 @@ public:
public: public:
// Shift operator coefficients for red-black preconditioned Mobius EOFA // Shift operator coefficients for red-black preconditioned Mobius EOFA
Vector<Coeff_t> Mooee_shift; std::vector<Coeff_t> Mooee_shift;
Vector<Coeff_t> MooeeInv_shift_lc; std::vector<Coeff_t> MooeeInv_shift_lc;
Vector<Coeff_t> MooeeInv_shift_norm; std::vector<Coeff_t> MooeeInv_shift_norm;
Vector<Coeff_t> MooeeInvDag_shift_lc; std::vector<Coeff_t> MooeeInvDag_shift_lc;
Vector<Coeff_t> MooeeInvDag_shift_norm; std::vector<Coeff_t> MooeeInvDag_shift_norm;
virtual void Instantiatable(void) {}; virtual void Instantiatable(void) {};
@ -74,18 +74,18 @@ public:
// Instantiate different versions depending on Impl // Instantiate different versions depending on Impl
///////////////////////////////////////////////////// /////////////////////////////////////////////////////
void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi, void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi,
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper); std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
void M5D_shift(const FermionField& psi, const FermionField& phi, FermionField& chi, void M5D_shift(const FermionField& psi, const FermionField& phi, FermionField& chi,
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
Vector<Coeff_t>& shift_coeffs); std::vector<Coeff_t>& shift_coeffs);
void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi, void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi,
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper); std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
void M5Ddag_shift(const FermionField& psi, const FermionField& phi, FermionField& chi, void M5Ddag_shift(const FermionField& psi, const FermionField& phi, FermionField& chi,
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
Vector<Coeff_t>& shift_coeffs); std::vector<Coeff_t>& shift_coeffs);
virtual void RefreshShiftCoefficients(RealD new_shift); virtual void RefreshShiftCoefficients(RealD new_shift);

View File

@ -102,11 +102,11 @@ public:
GaugeField &mat, GaugeField &mat,
const FermionField &A, const FermionField &B, int dag); const FermionField &A, const FermionField &B, int dag);
void DhopInternal(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, void DhopInternal(StencilImpl &st, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag); const FermionField &in, FermionField &out, int dag);
void DhopInternalSerialComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, void DhopInternalSerialComms(StencilImpl &st, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag); const FermionField &in, FermionField &out, int dag);
void DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, void DhopInternalOverlappedComms(StencilImpl &st, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag); const FermionField &in, FermionField &out, int dag);
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
@ -152,9 +152,6 @@ public:
DoubledGaugeField UmuEven; DoubledGaugeField UmuEven;
DoubledGaugeField UmuOdd; DoubledGaugeField UmuOdd;
LebesgueOrder Lebesgue;
LebesgueOrder LebesgueEvenOdd;
/////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////
// Conserved current utilities // Conserved current utilities
/////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////

View File

@ -41,6 +41,10 @@ public:
public: public:
// Constructors // Constructors
virtual void Instantiatable(void){};
void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
this->MomentumSpacePropagatorHw(out,in,_m,twist);
};
OverlapWilsonCayleyZolotarevFermion(GaugeField &_Umu, OverlapWilsonCayleyZolotarevFermion(GaugeField &_Umu,
GridCartesian &FiveDimGrid, GridCartesian &FiveDimGrid,

View File

@ -41,6 +41,9 @@ public:
public: public:
virtual void Instantiatable(void){}; virtual void Instantiatable(void){};
void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
this->MomentumSpacePropagatorHw(out,in,_m,twist);
};
// Constructors // Constructors
OverlapWilsonContFracTanhFermion(GaugeField &_Umu, OverlapWilsonContFracTanhFermion(GaugeField &_Umu,
GridCartesian &FiveDimGrid, GridCartesian &FiveDimGrid,

View File

@ -40,6 +40,9 @@ public:
INHERIT_IMPL_TYPES(Impl); INHERIT_IMPL_TYPES(Impl);
virtual void Instantiatable(void){}; virtual void Instantiatable(void){};
void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
this->MomentumSpacePropagatorHw(out,in,_m,twist);
};
// Constructors // Constructors
OverlapWilsonContFracZolotarevFermion(GaugeField &_Umu, OverlapWilsonContFracZolotarevFermion(GaugeField &_Umu,
GridCartesian &FiveDimGrid, GridCartesian &FiveDimGrid,

View File

@ -41,6 +41,9 @@ public:
public: public:
virtual void Instantiatable(void){}; virtual void Instantiatable(void){};
void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
this->MomentumSpacePropagatorHw(out,in,_m,twist);
};
// Constructors // Constructors
OverlapWilsonPartialFractionTanhFermion(GaugeField &_Umu, OverlapWilsonPartialFractionTanhFermion(GaugeField &_Umu,
GridCartesian &FiveDimGrid, GridCartesian &FiveDimGrid,

View File

@ -40,6 +40,11 @@ public:
INHERIT_IMPL_TYPES(Impl); INHERIT_IMPL_TYPES(Impl);
virtual void Instantiatable(void){}; virtual void Instantiatable(void){};
void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
this->MomentumSpacePropagatorHw(out,in,_m,twist);
};
// Constructors // Constructors
OverlapWilsonPartialFractionZolotarevFermion(GaugeField &_Umu, OverlapWilsonPartialFractionZolotarevFermion(GaugeField &_Umu,
GridCartesian &FiveDimGrid, GridCartesian &FiveDimGrid,

View File

@ -39,7 +39,7 @@ class PartialFractionFermion5D : public WilsonFermion5D<Impl>
public: public:
INHERIT_IMPL_TYPES(Impl); INHERIT_IMPL_TYPES(Impl);
const int part_frac_chroma_convention=1; const int part_frac_chroma_convention=0;
void Meooe_internal(const FermionField &in, FermionField &out,int dag); void Meooe_internal(const FermionField &in, FermionField &out,int dag);
void Mooee_internal(const FermionField &in, FermionField &out,int dag); void Mooee_internal(const FermionField &in, FermionField &out,int dag);
@ -83,19 +83,78 @@ public:
GridRedBlackCartesian &FourDimRedBlackGrid, GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD M5,const ImplParams &p= ImplParams()); RealD _mass,RealD M5,const ImplParams &p= ImplParams());
PartialFractionFermion5D(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD M5,std::vector<RealD> &_qmu,const ImplParams &p= ImplParams());
void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary, std::vector<double> twist)
{
std::cout << "Free Propagator for PartialFraction"<<std::endl;
FermionField in_k(in.Grid());
FermionField prop_k(in.Grid());
FFT theFFT((GridCartesian *) in.Grid());
//phase for boundary condition
ComplexField coor(in.Grid());
ComplexField ph(in.Grid()); ph = Zero();
FermionField in_buf(in.Grid()); in_buf = Zero();
typedef typename Simd::scalar_type Scalar;
Scalar ci(0.0,1.0);
assert(twist.size() == Nd);//check that twist is Nd
assert(boundary.size() == Nd);//check that boundary conditions is Nd
int shift = 0;
for(unsigned int nu = 0; nu < Nd; nu++)
{
// Shift coordinate lattice index by 1 to account for 5th dimension.
LatticeCoordinate(coor, nu + shift);
double boundary_phase = ::acos(real(boundary[nu]));
ph = ph + boundary_phase*coor*((1./(in.Grid()->_fdimensions[nu+shift])));
//momenta for propagator shifted by twist+boundary
twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI));
}
in_buf = exp(ci*ph*(-1.0))*in;
theFFT.FFT_all_dim(in_k,in,FFT::forward);
if ( this->qmu.size() ){
this->MomentumSpacePropagatorHwQ(prop_k,in_k,mass,twist,this->qmu);
} else {
this->MomentumSpacePropagatorHw(prop_k,in_k,mass,twist);
}
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
//phase for boundary condition
out = out * exp(ci*ph);
};
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {
std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
std::vector<Complex> boundary;
for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions
FreePropagator(in,out,mass,boundary,twist);
};
void set_qmu(std::vector<RealD> _qmu) { qmu=_qmu; assert(qmu.size()==Nd);};
void addQmu(const FermionField &in, FermionField &out, int dag);
protected: protected:
virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale); virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale);
virtual void SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata); virtual void SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata);
std::vector<RealD> qmu;
// Part frac // Part frac
RealD mass; RealD mass;
RealD dw_diag; RealD dw_diag;
RealD R; RealD R;
RealD amax; RealD amax;
RealD scale; RealD scale;
Vector<double> p; std::vector<double> p;
Vector<double> q; std::vector<double> q;
}; };

View File

@ -35,7 +35,7 @@ template<class Matrix, class Field>
class KappaSimilarityTransform { class KappaSimilarityTransform {
public: public:
INHERIT_IMPL_TYPES(Matrix); INHERIT_IMPL_TYPES(Matrix);
Vector<Coeff_t> kappa, kappaDag, kappaInv, kappaInvDag; std::vector<Coeff_t> kappa, kappaDag, kappaInv, kappaInvDag;
KappaSimilarityTransform (Matrix &zmob) { KappaSimilarityTransform (Matrix &zmob) {
for (int i=0;i<(int)zmob.bs.size();i++) { for (int i=0;i<(int)zmob.bs.size();i++) {

View File

@ -49,10 +49,10 @@ template<class Impl> class StaggeredKernels : public FermionOperator<Impl> , pub
public: public:
void DhopImproved(StencilImpl &st, LebesgueOrder &lo, void DhopImproved(StencilImpl &st,
DoubledGaugeField &U, DoubledGaugeField &UUU, DoubledGaugeField &U, DoubledGaugeField &UUU,
const FermionField &in, FermionField &out, int dag, int interior,int exterior); const FermionField &in, FermionField &out, int dag, int interior,int exterior);
void DhopNaive(StencilImpl &st, LebesgueOrder &lo, void DhopNaive(StencilImpl &st,
DoubledGaugeField &U, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag, int interior,int exterior); const FermionField &in, FermionField &out, int dag, int interior,int exterior);

View File

@ -47,7 +47,7 @@ public:
static int PartialCompressionFactor(GridBase *grid) { return 1;} static int PartialCompressionFactor(GridBase *grid) { return 1;}
#endif #endif
template<class vobj,class cobj,class compressor> template<class vobj,class cobj,class compressor>
static void Gather_plane_simple (commVector<std::pair<int,int> >& table, static void Gather_plane_simple (deviceVector<std::pair<int,int> >& table,
const Lattice<vobj> &rhs, const Lattice<vobj> &rhs,
cobj *buffer, cobj *buffer,
compressor &compress, compressor &compress,
@ -109,7 +109,7 @@ public:
// Reorder the fifth dim to be s=Ls-1 , s=0, s=1,...,Ls-2. // Reorder the fifth dim to be s=Ls-1 , s=0, s=1,...,Ls-2.
//////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj,class cobj,class compressor> template<class vobj,class cobj,class compressor>
static void Gather_plane_exchange(commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs, static void Gather_plane_exchange(deviceVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
std::vector<cobj *> pointers,int dimension,int plane,int cbmask, std::vector<cobj *> pointers,int dimension,int plane,int cbmask,
compressor &compress,int type,int partial) compressor &compress,int type,int partial)
{ {
@ -197,7 +197,7 @@ public:
#endif #endif
template<class vobj,class cobj,class compressor> template<class vobj,class cobj,class compressor>
static void Gather_plane_simple (commVector<std::pair<int,int> >& table, static void Gather_plane_simple (deviceVector<std::pair<int,int> >& table,
const Lattice<vobj> &rhs, const Lattice<vobj> &rhs,
cobj *buffer, cobj *buffer,
compressor &compress, compressor &compress,
@ -208,7 +208,7 @@ public:
else FaceGatherSimple::Gather_plane_simple(table,rhs,buffer,compress,off,so,partial); else FaceGatherSimple::Gather_plane_simple(table,rhs,buffer,compress,off,so,partial);
} }
template<class vobj,class cobj,class compressor> template<class vobj,class cobj,class compressor>
static void Gather_plane_exchange(commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs, static void Gather_plane_exchange(deviceVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
std::vector<cobj *> pointers,int dimension,int plane,int cbmask, std::vector<cobj *> pointers,int dimension,int plane,int cbmask,
compressor &compress,int type,int partial) compressor &compress,int type,int partial)
{ {
@ -402,7 +402,6 @@ public:
typedef CartesianStencil<vobj,cobj,Parameters> Base; typedef CartesianStencil<vobj,cobj,Parameters> Base;
typedef typename Base::View_type View_type; typedef typename Base::View_type View_type;
typedef typename Base::StencilVector StencilVector;
// Vector<int> surface_list; // Vector<int> surface_list;
WilsonStencil(GridBase *grid, WilsonStencil(GridBase *grid,
@ -416,29 +415,6 @@ public:
this->same_node.resize(npoints); this->same_node.resize(npoints);
}; };
/*
void BuildSurfaceList(int Ls,int vol4){
// find same node for SHM
// Here we know the distance is 1 for WilsonStencil
for(int point=0;point<this->_npoints;point++){
this->same_node[point] = this->SameNode(point);
}
for(int site = 0 ;site< vol4;site++){
int local = 1;
for(int point=0;point<this->_npoints;point++){
if( (!this->GetNodeLocal(site*Ls,point)) && (!this->same_node[point]) ){
local = 0;
}
}
if(local == 0) {
surface_list.push_back(site);
}
}
}
*/
template < class compressor> template < class compressor>
void HaloExchangeOpt(const Lattice<vobj> &source,compressor &compress) void HaloExchangeOpt(const Lattice<vobj> &source,compressor &compress)
{ {
@ -508,6 +484,11 @@ public:
this->face_table_computed=1; this->face_table_computed=1;
assert(this->u_comm_offset==this->_unified_buffer_size); assert(this->u_comm_offset==this->_unified_buffer_size);
accelerator_barrier(); accelerator_barrier();
#ifdef NVLINK_GET
this->_grid->StencilBarrier(); // He can now get mu local gather, I can get his
// Synch shared memory on a single nodes; could use an asynchronous barrier here and defer check
// Or issue barrier AFTER the DMA is running
#endif
} }
}; };

View File

@ -126,13 +126,16 @@ public:
void DerivInternal(StencilImpl &st, DoubledGaugeField &U, GaugeField &mat, void DerivInternal(StencilImpl &st, DoubledGaugeField &U, GaugeField &mat,
const FermionField &A, const FermionField &B, int dag); const FermionField &A, const FermionField &B, int dag);
void DhopInternal(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, void DhopInternal(StencilImpl &st,
DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag); const FermionField &in, FermionField &out, int dag);
void DhopInternalSerial(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, void DhopInternalSerial(StencilImpl &st,
DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag); const FermionField &in, FermionField &out, int dag);
void DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, void DhopInternalOverlappedComms(StencilImpl &st,
DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag); const FermionField &in, FermionField &out, int dag);
// Constructor // Constructor
@ -168,9 +171,6 @@ public:
DoubledGaugeField UmuEven; DoubledGaugeField UmuEven;
DoubledGaugeField UmuOdd; DoubledGaugeField UmuOdd;
LebesgueOrder Lebesgue;
LebesgueOrder LebesgueEvenOdd;
WilsonAnisotropyCoefficients anisotropyCoeff; WilsonAnisotropyCoefficients anisotropyCoeff;
/////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////

View File

@ -91,13 +91,13 @@ public:
virtual void Mdag (const FermionField &in, FermionField &out){assert(0);}; virtual void Mdag (const FermionField &in, FermionField &out){assert(0);};
// half checkerboard operations; leave unimplemented as abstract for now // half checkerboard operations; leave unimplemented as abstract for now
virtual void Meooe (const FermionField &in, FermionField &out){assert(0);}; virtual void Meooe (const FermionField &in, FermionField &out);
virtual void Mooee (const FermionField &in, FermionField &out){assert(0);}; virtual void Mooee (const FermionField &in, FermionField &out);
virtual void MooeeInv (const FermionField &in, FermionField &out){assert(0);}; virtual void MooeeInv (const FermionField &in, FermionField &out);
virtual void MeooeDag (const FermionField &in, FermionField &out){assert(0);}; virtual void MeooeDag (const FermionField &in, FermionField &out);
virtual void MooeeDag (const FermionField &in, FermionField &out){assert(0);}; virtual void MooeeDag (const FermionField &in, FermionField &out);
virtual void MooeeInvDag (const FermionField &in, FermionField &out){assert(0);}; virtual void MooeeInvDag (const FermionField &in, FermionField &out);
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp){assert(0);}; // case by case Wilson, Clover, Cayley, ContFrac, PartFrac virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp){assert(0);}; // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
virtual void MdirAll(const FermionField &in, std::vector<FermionField> &out){assert(0);}; // case by case Wilson, Clover, Cayley, ContFrac, PartFrac virtual void MdirAll(const FermionField &in, std::vector<FermionField> &out){assert(0);}; // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
@ -109,6 +109,8 @@ public:
void MomentumSpacePropagatorHt_5d(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ; void MomentumSpacePropagatorHt_5d(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
void MomentumSpacePropagatorHt(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ; void MomentumSpacePropagatorHt(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
void MomentumSpacePropagatorHw(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ; void MomentumSpacePropagatorHw(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
void MomentumSpacePropagatorHwQ(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist,
std::vector<double> qmu) ;
// Implement hopping term non-hermitian hopping term; half cb or both // Implement hopping term non-hermitian hopping term; half cb or both
// Implement s-diagonal DW // Implement s-diagonal DW
@ -117,6 +119,9 @@ public:
void DhopOE(const FermionField &in, FermionField &out,int dag); void DhopOE(const FermionField &in, FermionField &out,int dag);
void DhopEO(const FermionField &in, FermionField &out,int dag); void DhopEO(const FermionField &in, FermionField &out,int dag);
void DhopComms (const FermionField &in, FermionField &out);
void DhopCalc (const FermionField &in, FermionField &out,uint64_t *ids);
// add a DhopComm // add a DhopComm
// -- suboptimal interface will presently trigger multiple comms. // -- suboptimal interface will presently trigger multiple comms.
void DhopDir(const FermionField &in, FermionField &out,int dir,int disp); void DhopDir(const FermionField &in, FermionField &out,int dir,int disp);
@ -135,21 +140,18 @@ public:
int dag); int dag);
void DhopInternal(StencilImpl & st, void DhopInternal(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &U,
const FermionField &in, const FermionField &in,
FermionField &out, FermionField &out,
int dag); int dag);
void DhopInternalOverlappedComms(StencilImpl & st, void DhopInternalOverlappedComms(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &U,
const FermionField &in, const FermionField &in,
FermionField &out, FermionField &out,
int dag); int dag);
void DhopInternalSerialComms(StencilImpl & st, void DhopInternalSerialComms(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &U,
const FermionField &in, const FermionField &in,
FermionField &out, FermionField &out,
@ -203,9 +205,6 @@ public:
DoubledGaugeField UmuEven; DoubledGaugeField UmuEven;
DoubledGaugeField UmuOdd; DoubledGaugeField UmuOdd;
LebesgueOrder Lebesgue;
LebesgueOrder LebesgueEvenOdd;
// Comms buffer // Comms buffer
// std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf; // std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf;

View File

@ -57,6 +57,10 @@ public:
int Ls, int Nsite, const FermionField &in, FermionField &out, int Ls, int Nsite, const FermionField &in, FermionField &out,
int interior=1,int exterior=1) ; int interior=1,int exterior=1) ;
static void DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out,
uint64_t *ids);
static void DhopDagKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf, static void DhopDagKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out, int Ls, int Nsite, const FermionField &in, FermionField &out,
int interior=1,int exterior=1) ; int interior=1,int exterior=1) ;

View File

@ -58,7 +58,7 @@ public:
{ {
// RealD eps = 1.0; // RealD eps = 1.0;
std::cout<<GridLogMessage << "ZMobiusFermion (b="<<b<<",c="<<c<<") with Ls= "<<this->Ls<<" gamma passed in"<<std::endl; std::cout<<GridLogMessage << "ZMobiusFermion (b="<<b<<",c="<<c<<") with Ls= "<<this->Ls<<" gamma passed in"<<std::endl;
Vector<Coeff_t> zgamma(this->Ls); std::vector<Coeff_t> zgamma(this->Ls);
for(int s=0;s<this->Ls;s++){ for(int s=0;s<this->Ls;s++){
zgamma[s] = gamma[s]; zgamma[s] = gamma[s];
} }

View File

@ -1,3 +1,5 @@
#if 0
/************************************************************************************* /*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid Grid physics library, www.github.com/paboyle/Grid
@ -818,3 +820,5 @@ CayleyFermion5D<Impl>::MooeeInternal(const FermionField &psi, FermionField &chi,
} }
NAMESPACE_END(Grid); NAMESPACE_END(Grid);
#endif

View File

@ -1,3 +1,4 @@
#if 0
/************************************************************************************* /*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid Grid physics library, www.github.com/paboyle/Grid
@ -241,3 +242,4 @@ void LebesgueOrder::ZGraph(void)
} }
NAMESPACE_END(Grid); NAMESPACE_END(Grid);
#endif

View File

@ -72,7 +72,7 @@ public:
void ThreadInterleave(void); void ThreadInterleave(void);
private: private:
Vector<IndexInteger> _LebesgueReorder; deviceVector<IndexInteger> _LebesgueReorder;
}; };

View File

@ -49,6 +49,7 @@ CayleyFermion5D<Impl>::CayleyFermion5D(GaugeField &_Umu,
FourDimRedBlackGrid,_M5,p), FourDimRedBlackGrid,_M5,p),
mass_plus(_mass), mass_minus(_mass) mass_plus(_mass), mass_minus(_mass)
{ {
// qmu defaults to zero size;
} }
/////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////
@ -156,18 +157,18 @@ template<class Impl>
void CayleyFermion5D<Impl>::M5D (const FermionField &psi, FermionField &chi) void CayleyFermion5D<Impl>::M5D (const FermionField &psi, FermionField &chi)
{ {
int Ls=this->Ls; int Ls=this->Ls;
Vector<Coeff_t> diag (Ls,1.0); std::vector<Coeff_t> diag (Ls,1.0);
Vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1]=mass_minus; std::vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1]=mass_minus;
Vector<Coeff_t> lower(Ls,-1.0); lower[0] =mass_plus; std::vector<Coeff_t> lower(Ls,-1.0); lower[0] =mass_plus;
M5D(psi,chi,chi,lower,diag,upper); M5D(psi,chi,chi,lower,diag,upper);
} }
template<class Impl> template<class Impl>
void CayleyFermion5D<Impl>::Meooe5D (const FermionField &psi, FermionField &Din) void CayleyFermion5D<Impl>::Meooe5D (const FermionField &psi, FermionField &Din)
{ {
int Ls=this->Ls; int Ls=this->Ls;
Vector<Coeff_t> diag = bs; std::vector<Coeff_t> diag = bs;
Vector<Coeff_t> upper= cs; std::vector<Coeff_t> upper= cs;
Vector<Coeff_t> lower= cs; std::vector<Coeff_t> lower= cs;
upper[Ls-1]=-mass_minus*upper[Ls-1]; upper[Ls-1]=-mass_minus*upper[Ls-1];
lower[0] =-mass_plus*lower[0]; lower[0] =-mass_plus*lower[0];
M5D(psi,psi,Din,lower,diag,upper); M5D(psi,psi,Din,lower,diag,upper);
@ -176,9 +177,9 @@ void CayleyFermion5D<Impl>::Meooe5D (const FermionField &psi, FermionField &D
template<class Impl> void CayleyFermion5D<Impl>::Meo5D (const FermionField &psi, FermionField &chi) template<class Impl> void CayleyFermion5D<Impl>::Meo5D (const FermionField &psi, FermionField &chi)
{ {
int Ls=this->Ls; int Ls=this->Ls;
Vector<Coeff_t> diag = beo; std::vector<Coeff_t> diag = beo;
Vector<Coeff_t> upper(Ls); std::vector<Coeff_t> upper(Ls);
Vector<Coeff_t> lower(Ls); std::vector<Coeff_t> lower(Ls);
for(int i=0;i<Ls;i++) { for(int i=0;i<Ls;i++) {
upper[i]=-ceo[i]; upper[i]=-ceo[i];
lower[i]=-ceo[i]; lower[i]=-ceo[i];
@ -191,9 +192,9 @@ template<class Impl>
void CayleyFermion5D<Impl>::Mooee (const FermionField &psi, FermionField &chi) void CayleyFermion5D<Impl>::Mooee (const FermionField &psi, FermionField &chi)
{ {
int Ls=this->Ls; int Ls=this->Ls;
Vector<Coeff_t> diag = bee; std::vector<Coeff_t> diag = bee;
Vector<Coeff_t> upper(Ls); std::vector<Coeff_t> upper(Ls);
Vector<Coeff_t> lower(Ls); std::vector<Coeff_t> lower(Ls);
for(int i=0;i<Ls;i++) { for(int i=0;i<Ls;i++) {
upper[i]=-cee[i]; upper[i]=-cee[i];
lower[i]=-cee[i]; lower[i]=-cee[i];
@ -206,9 +207,9 @@ template<class Impl>
void CayleyFermion5D<Impl>::MooeeDag (const FermionField &psi, FermionField &chi) void CayleyFermion5D<Impl>::MooeeDag (const FermionField &psi, FermionField &chi)
{ {
int Ls=this->Ls; int Ls=this->Ls;
Vector<Coeff_t> diag = bee; std::vector<Coeff_t> diag = bee;
Vector<Coeff_t> upper(Ls); std::vector<Coeff_t> upper(Ls);
Vector<Coeff_t> lower(Ls); std::vector<Coeff_t> lower(Ls);
for (int s=0;s<Ls;s++){ for (int s=0;s<Ls;s++){
// Assemble the 5d matrix // Assemble the 5d matrix
@ -236,9 +237,9 @@ template<class Impl>
void CayleyFermion5D<Impl>::M5Ddag (const FermionField &psi, FermionField &chi) void CayleyFermion5D<Impl>::M5Ddag (const FermionField &psi, FermionField &chi)
{ {
int Ls=this->Ls; int Ls=this->Ls;
Vector<Coeff_t> diag(Ls,1.0); std::vector<Coeff_t> diag(Ls,1.0);
Vector<Coeff_t> upper(Ls,-1.0); std::vector<Coeff_t> upper(Ls,-1.0);
Vector<Coeff_t> lower(Ls,-1.0); std::vector<Coeff_t> lower(Ls,-1.0);
upper[Ls-1]=-mass_plus*upper[Ls-1]; upper[Ls-1]=-mass_plus*upper[Ls-1];
lower[0] =-mass_minus*lower[0]; lower[0] =-mass_minus*lower[0];
M5Ddag(psi,chi,chi,lower,diag,upper); M5Ddag(psi,chi,chi,lower,diag,upper);
@ -248,9 +249,9 @@ template<class Impl>
void CayleyFermion5D<Impl>::MeooeDag5D (const FermionField &psi, FermionField &Din) void CayleyFermion5D<Impl>::MeooeDag5D (const FermionField &psi, FermionField &Din)
{ {
int Ls=this->Ls; int Ls=this->Ls;
Vector<Coeff_t> diag =bs; std::vector<Coeff_t> diag =bs;
Vector<Coeff_t> upper=cs; std::vector<Coeff_t> upper=cs;
Vector<Coeff_t> lower=cs; std::vector<Coeff_t> lower=cs;
for (int s=0;s<Ls;s++){ for (int s=0;s<Ls;s++){
if ( s== 0 ) { if ( s== 0 ) {
@ -270,6 +271,34 @@ void CayleyFermion5D<Impl>::MeooeDag5D (const FermionField &psi, FermionField
M5Ddag(psi,psi,Din,lower,diag,upper); M5Ddag(psi,psi,Din,lower,diag,upper);
} }
template<class Impl>
void CayleyFermion5D<Impl>::addQmu(const FermionField &psi,FermionField &chi, int dag)
{
if ( qmu.size() ) {
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
std::vector<ComplexD> coeff(Nd);
ComplexD ci(0,1);
assert(qmu.size()==Nd);
for(int mu=0;mu<Nd;mu++){
coeff[mu] = ci*qmu[mu];
if ( dag ) coeff[mu] = conjugate(coeff[mu]);
}
chi = chi + Gamma(Gmu[0])*psi*coeff[0];
for(int mu=1;mu<Nd;mu++){
chi = chi + Gamma(Gmu[mu])*psi*coeff[mu];
}
}
}
template<class Impl> template<class Impl>
void CayleyFermion5D<Impl>::M (const FermionField &psi, FermionField &chi) void CayleyFermion5D<Impl>::M (const FermionField &psi, FermionField &chi)
{ {
@ -279,6 +308,10 @@ void CayleyFermion5D<Impl>::M (const FermionField &psi, FermionField &chi)
Meooe5D(psi,Din); Meooe5D(psi,Din);
this->DW(Din,chi,DaggerNo); this->DW(Din,chi,DaggerNo);
// add i q_mu gamma_mu here
addQmu(Din,chi,DaggerNo);
// ((b D_W + D_w hop terms +1) on s-diag // ((b D_W + D_w hop terms +1) on s-diag
axpby(chi,1.0,1.0,chi,psi); axpby(chi,1.0,1.0,chi,psi);
@ -296,6 +329,9 @@ void CayleyFermion5D<Impl>::Mdag (const FermionField &psi, FermionField &chi)
// Apply Dw // Apply Dw
this->DW(psi,Din,DaggerYes); this->DW(psi,Din,DaggerYes);
// add -i conj(q_mu) gamma_mu here ... if qmu is real, gammm_5 hermitian, otherwise not.
addQmu(psi,Din,DaggerYes);
MeooeDag5D(Din,chi); MeooeDag5D(Din,chi);
M5Ddag(psi,chi); M5Ddag(psi,chi);
@ -394,7 +430,7 @@ void CayleyFermion5D<Impl>::MeoDeriv(GaugeField &mat,const FermionField &U,const
template<class Impl> template<class Impl>
void CayleyFermion5D<Impl>::SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c) void CayleyFermion5D<Impl>::SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c)
{ {
Vector<Coeff_t> gamma(this->Ls); std::vector<Coeff_t> gamma(this->Ls);
for(int s=0;s<this->Ls;s++) gamma[s] = zdata->gamma[s]; for(int s=0;s<this->Ls;s++) gamma[s] = zdata->gamma[s];
SetCoefficientsInternal(1.0,gamma,b,c); SetCoefficientsInternal(1.0,gamma,b,c);
} }
@ -402,13 +438,13 @@ void CayleyFermion5D<Impl>::SetCoefficientsTanh(Approx::zolotarev_data *zdata,Re
template<class Impl> template<class Impl>
void CayleyFermion5D<Impl>::SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata,RealD b,RealD c) void CayleyFermion5D<Impl>::SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata,RealD b,RealD c)
{ {
Vector<Coeff_t> gamma(this->Ls); std::vector<Coeff_t> gamma(this->Ls);
for(int s=0;s<this->Ls;s++) gamma[s] = zdata->gamma[s]; for(int s=0;s<this->Ls;s++) gamma[s] = zdata->gamma[s];
SetCoefficientsInternal(zolo_hi,gamma,b,c); SetCoefficientsInternal(zolo_hi,gamma,b,c);
} }
//Zolo //Zolo
template<class Impl> template<class Impl>
void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,Vector<Coeff_t> & gamma,RealD b,RealD c) void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,std::vector<Coeff_t> & gamma,RealD b,RealD c)
{ {
int Ls=this->Ls; int Ls=this->Ls;
@ -529,6 +565,18 @@ void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,Vector<Coeff_t
dee[Ls-1] += delta_d; dee[Ls-1] += delta_d;
} }
//////////////////////////////////////////
// Device buffers
//////////////////////////////////////////
d_diag.resize(Ls);
d_upper.resize(Ls);
d_lower.resize(Ls);
d_dee.resize(Ls);
d_lee.resize(Ls);
d_uee.resize(Ls);
d_leem.resize(Ls);
d_ueem.resize(Ls);
// int inv=1; // int inv=1;
// this->MooeeInternalCompute(0,inv,MatpInv,MatmInv); // this->MooeeInternalCompute(0,inv,MatpInv,MatmInv);
// this->MooeeInternalCompute(1,inv,MatpInvDag,MatmInvDag); // this->MooeeInternalCompute(1,inv,MatpInvDag,MatmInvDag);

View File

@ -43,9 +43,9 @@ void
CayleyFermion5D<Impl>::M5D(const FermionField &psi_i, CayleyFermion5D<Impl>::M5D(const FermionField &psi_i,
const FermionField &phi_i, const FermionField &phi_i,
FermionField &chi_i, FermionField &chi_i,
Vector<Coeff_t> &lower, std::vector<Coeff_t> &lower,
Vector<Coeff_t> &diag, std::vector<Coeff_t> &diag,
Vector<Coeff_t> &upper) std::vector<Coeff_t> &upper)
{ {
chi_i.Checkerboard()=psi_i.Checkerboard(); chi_i.Checkerboard()=psi_i.Checkerboard();
@ -55,12 +55,16 @@ CayleyFermion5D<Impl>::M5D(const FermionField &psi_i,
autoView(chi , chi_i,AcceleratorWrite); autoView(chi , chi_i,AcceleratorWrite);
assert(phi.Checkerboard() == psi.Checkerboard()); assert(phi.Checkerboard() == psi.Checkerboard());
auto pdiag = &diag[0];
auto pupper = &upper[0];
auto plower = &lower[0];
int Ls =this->Ls; int Ls =this->Ls;
acceleratorCopyToDevice(&diag[0] ,&this->d_diag[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&upper[0],&this->d_upper[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&lower[0],&this->d_lower[0],Ls*sizeof(Coeff_t));
auto pdiag = &d_diag[0];
auto pupper = &d_upper[0];
auto plower = &d_lower[0];
// 10 = 3 complex mult + 2 complex add // 10 = 3 complex mult + 2 complex add
// Flops = 10.0*(Nc*Ns) *Ls*vol (/2 for red black counting) // Flops = 10.0*(Nc*Ns) *Ls*vol (/2 for red black counting)
uint64_t nloop = grid->oSites(); uint64_t nloop = grid->oSites();
@ -82,9 +86,9 @@ void
CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi_i, CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi_i,
const FermionField &phi_i, const FermionField &phi_i,
FermionField &chi_i, FermionField &chi_i,
Vector<Coeff_t> &lower, std::vector<Coeff_t> &lower,
Vector<Coeff_t> &diag, std::vector<Coeff_t> &diag,
Vector<Coeff_t> &upper) std::vector<Coeff_t> &upper)
{ {
chi_i.Checkerboard()=psi_i.Checkerboard(); chi_i.Checkerboard()=psi_i.Checkerboard();
GridBase *grid=psi_i.Grid(); GridBase *grid=psi_i.Grid();
@ -93,12 +97,16 @@ CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi_i,
autoView(chi , chi_i,AcceleratorWrite); autoView(chi , chi_i,AcceleratorWrite);
assert(phi.Checkerboard() == psi.Checkerboard()); assert(phi.Checkerboard() == psi.Checkerboard());
auto pdiag = &diag[0];
auto pupper = &upper[0];
auto plower = &lower[0];
int Ls=this->Ls; int Ls=this->Ls;
acceleratorCopyToDevice(&diag[0] ,&this->d_diag[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&upper[0],&this->d_upper[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&lower[0],&this->d_lower[0],Ls*sizeof(Coeff_t));
auto pdiag = &d_diag[0];
auto pupper = &d_upper[0];
auto plower = &d_lower[0];
// Flops = 6.0*(Nc*Ns) *Ls*vol // Flops = 6.0*(Nc*Ns) *Ls*vol
uint64_t nloop = grid->oSites(); uint64_t nloop = grid->oSites();
accelerator_for(sss,nloop,Simd::Nsimd(),{ accelerator_for(sss,nloop,Simd::Nsimd(),{
@ -126,11 +134,17 @@ CayleyFermion5D<Impl>::MooeeInv (const FermionField &psi_i, FermionField &chi
int Ls=this->Ls; int Ls=this->Ls;
auto plee = & lee [0]; acceleratorCopyToDevice(&lee[0],&d_lee[0],Ls*sizeof(Coeff_t));
auto pdee = & dee [0]; acceleratorCopyToDevice(&dee[0],&d_dee[0],Ls*sizeof(Coeff_t));
auto puee = & uee [0]; acceleratorCopyToDevice(&uee[0],&d_uee[0],Ls*sizeof(Coeff_t));
auto pleem = & leem[0]; acceleratorCopyToDevice(&leem[0],&d_leem[0],Ls*sizeof(Coeff_t));
auto pueem = & ueem[0]; acceleratorCopyToDevice(&ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t));
auto plee = & d_lee [0];
auto pdee = & d_dee [0];
auto puee = & d_uee [0];
auto pleem = & d_leem[0];
auto pueem = & d_ueem[0];
uint64_t nloop = grid->oSites()/Ls; uint64_t nloop = grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(),{ accelerator_for(sss,nloop,Simd::Nsimd(),{
@ -182,11 +196,17 @@ CayleyFermion5D<Impl>::MooeeInvDag (const FermionField &psi_i, FermionField &chi
autoView(psi , psi_i,AcceleratorRead); autoView(psi , psi_i,AcceleratorRead);
autoView(chi , chi_i,AcceleratorWrite); autoView(chi , chi_i,AcceleratorWrite);
auto plee = & lee [0]; acceleratorCopyToDevice(&lee[0],&d_lee[0],Ls*sizeof(Coeff_t));
auto pdee = & dee [0]; acceleratorCopyToDevice(&dee[0],&d_dee[0],Ls*sizeof(Coeff_t));
auto puee = & uee [0]; acceleratorCopyToDevice(&uee[0],&d_uee[0],Ls*sizeof(Coeff_t));
auto pleem = & leem[0]; acceleratorCopyToDevice(&leem[0],&d_leem[0],Ls*sizeof(Coeff_t));
auto pueem = & ueem[0]; acceleratorCopyToDevice(&ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t));
auto plee = & d_lee [0];
auto pdee = & d_dee [0];
auto puee = & d_uee [0];
auto pleem = & d_leem[0];
auto pueem = & d_ueem[0];
assert(psi.Checkerboard() == psi.Checkerboard()); assert(psi.Checkerboard() == psi.Checkerboard());

View File

@ -0,0 +1,376 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/CompactWilsonCloverFermion5DImplementation.h
Copyright (C) 2017 - 2025
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/qcd/spin/Dirac.h>
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion5D.h>
NAMESPACE_BEGIN(Grid);
template<class Impl, class CloverHelpers>
CompactWilsonCloverFermion5D<Impl, CloverHelpers>::CompactWilsonCloverFermion5D(GaugeField& _Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
const RealD _mass,
const RealD _csw_r,
const RealD _csw_t,
const RealD _cF,
const ImplParams& impl_p)
: WilsonBase(_Umu, FiveDimGrid, FiveDimRedBlackGrid, FourDimGrid, FourDimRedBlackGrid, _mass, impl_p)
, csw_r(_csw_r)
, csw_t(_csw_t)
, cF(_cF)
, fixedBoundaries(impl_p.boundary_phases[Nd-1] == 0.0)
, Diagonal(&FourDimGrid), Triangle(&FourDimGrid)
, DiagonalEven(&FourDimRedBlackGrid), TriangleEven(&FourDimRedBlackGrid)
, DiagonalOdd(&FourDimRedBlackGrid), TriangleOdd(&FourDimRedBlackGrid)
, DiagonalInv(&FourDimGrid), TriangleInv(&FourDimGrid)
, DiagonalInvEven(&FourDimRedBlackGrid), TriangleInvEven(&FourDimRedBlackGrid)
, DiagonalInvOdd(&FourDimRedBlackGrid), TriangleInvOdd(&FourDimRedBlackGrid)
, Tmp(&FiveDimGrid)
, BoundaryMask(&FiveDimGrid)
, BoundaryMaskEven(&FiveDimRedBlackGrid), BoundaryMaskOdd(&FiveDimRedBlackGrid)
{
assert(Nd == 4 && Nc == 3 && Ns == 4 && Impl::Dimension == 3);
csw_r *= 0.5;
csw_t *= 0.5;
//if (clover_anisotropy.isAnisotropic)
// csw_r /= clover_anisotropy.xi_0;
ImportGauge(_Umu);
if (fixedBoundaries) {
this->BoundaryMaskEven.Checkerboard() = Even;
this->BoundaryMaskOdd.Checkerboard() = Odd;
CompactHelpers::SetupMasks(this->BoundaryMask, this->BoundaryMaskEven, this->BoundaryMaskOdd);
}
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::Dhop(const FermionField& in, FermionField& out, int dag) {
WilsonBase::Dhop(in, out, dag);
if(fixedBoundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::DhopOE(const FermionField& in, FermionField& out, int dag) {
WilsonBase::DhopOE(in, out, dag);
if(fixedBoundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::DhopEO(const FermionField& in, FermionField& out, int dag) {
WilsonBase::DhopEO(in, out, dag);
if(fixedBoundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::DhopDir(const FermionField& in, FermionField& out, int dir, int disp) {
WilsonBase::DhopDir(in, out, dir, disp);
if(this->fixedBoundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::DhopDirAll(const FermionField& in, std::vector<FermionField>& out) {
WilsonBase::DhopDirAll(in, out);
if(this->fixedBoundaries) {
for(auto& o : out) ApplyBoundaryMask(o);
}
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::M(const FermionField& in, FermionField& out) {
out.Checkerboard() = in.Checkerboard();
WilsonBase::Dhop(in, out, DaggerNo); // call base to save applying bc
Mooee(in, Tmp);
axpy(out, 1.0, out, Tmp);
if(fixedBoundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::Mdag(const FermionField& in, FermionField& out) {
out.Checkerboard() = in.Checkerboard();
WilsonBase::Dhop(in, out, DaggerYes); // call base to save applying bc
MooeeDag(in, Tmp);
axpy(out, 1.0, out, Tmp);
if(fixedBoundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::Meooe(const FermionField& in, FermionField& out) {
WilsonBase::Meooe(in, out);
if(fixedBoundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MeooeDag(const FermionField& in, FermionField& out) {
WilsonBase::MeooeDag(in, out);
if(fixedBoundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::Mooee(const FermionField& in, FermionField& out) {
if(in.Grid()->_isCheckerBoarded) {
if(in.Checkerboard() == Odd) {
MooeeInternal(in, out, DiagonalOdd, TriangleOdd);
} else {
MooeeInternal(in, out, DiagonalEven, TriangleEven);
}
} else {
MooeeInternal(in, out, Diagonal, Triangle);
}
if(fixedBoundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MooeeDag(const FermionField& in, FermionField& out) {
Mooee(in, out); // blocks are hermitian
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MooeeInv(const FermionField& in, FermionField& out) {
if(in.Grid()->_isCheckerBoarded) {
if(in.Checkerboard() == Odd) {
MooeeInternal(in, out, DiagonalInvOdd, TriangleInvOdd);
} else {
MooeeInternal(in, out, DiagonalInvEven, TriangleInvEven);
}
} else {
MooeeInternal(in, out, DiagonalInv, TriangleInv);
}
if(fixedBoundaries) ApplyBoundaryMask(out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MooeeInvDag(const FermionField& in, FermionField& out) {
MooeeInv(in, out); // blocks are hermitian
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::Mdir(const FermionField& in, FermionField& out, int dir, int disp) {
DhopDir(in, out, dir, disp);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MdirAll(const FermionField& in, std::vector<FermionField>& out) {
DhopDirAll(in, out);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) {
assert(!fixedBoundaries); // TODO check for changes required for open bc
// NOTE: code copied from original clover term
conformable(X.Grid(), Y.Grid());
conformable(X.Grid(), force.Grid());
GaugeLinkField force_mu(force.Grid()), lambda(force.Grid());
GaugeField clover_force(force.Grid());
PropagatorField Lambda(force.Grid());
// Guido: Here we are hitting some performance issues:
// need to extract the components of the DoubledGaugeField
// for each call
// Possible solution
// Create a vector object to store them? (cons: wasting space)
std::vector<GaugeLinkField> U(Nd, this->Umu.Grid());
Impl::extractLinkField(U, this->Umu);
force = Zero();
// Derivative of the Wilson hopping term
this->DhopDeriv(force, X, Y, dag);
///////////////////////////////////////////////////////////
// Clover term derivative
///////////////////////////////////////////////////////////
Impl::outerProductImpl(Lambda, X, Y);
//std::cout << "Lambda:" << Lambda << std::endl;
Gamma::Algebra sigma[] = {
Gamma::Algebra::SigmaXY,
Gamma::Algebra::SigmaXZ,
Gamma::Algebra::SigmaXT,
Gamma::Algebra::MinusSigmaXY,
Gamma::Algebra::SigmaYZ,
Gamma::Algebra::SigmaYT,
Gamma::Algebra::MinusSigmaXZ,
Gamma::Algebra::MinusSigmaYZ,
Gamma::Algebra::SigmaZT,
Gamma::Algebra::MinusSigmaXT,
Gamma::Algebra::MinusSigmaYT,
Gamma::Algebra::MinusSigmaZT};
/*
sigma_{\mu \nu}=
| 0 sigma[0] sigma[1] sigma[2] |
| sigma[3] 0 sigma[4] sigma[5] |
| sigma[6] sigma[7] 0 sigma[8] |
| sigma[9] sigma[10] sigma[11] 0 |
*/
int count = 0;
clover_force = Zero();
for (int mu = 0; mu < 4; mu++)
{
force_mu = Zero();
for (int nu = 0; nu < 4; nu++)
{
if (mu == nu)
continue;
RealD factor;
if (nu == 4 || mu == 4)
{
factor = 2.0 * csw_t;
}
else
{
factor = 2.0 * csw_r;
}
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
force_mu -= factor*CloverHelpers::Cmunu(U, lambda, mu, nu); // checked
count++;
}
pokeLorentz(clover_force, U[mu] * force_mu, mu);
}
//clover_force *= csw;
force += clover_force;
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MooDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) {
assert(0);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MeeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag) {
assert(0);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::MooeeInternal(const FermionField& in,
FermionField& out,
const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle) {
assert(in.Checkerboard() == Odd || in.Checkerboard() == Even);
out.Checkerboard() = in.Checkerboard();
conformable(in, out);
CompactHelpers::MooeeKernel(diagonal.oSites(), this->Ls, in, out, diagonal, triangle);
}
template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion5D<Impl, CloverHelpers>::ImportGauge(const GaugeField& _Umu) {
// NOTE: parts copied from original implementation
// Import gauge into base class
double t0 = usecond();
WilsonBase::ImportGauge(_Umu); // NOTE: called here and in wilson constructor -> performed twice, but can't avoid that
// Initialize temporary variables
double t1 = usecond();
conformable(_Umu.Grid(), this->GaugeGrid());
GridBase* grid = _Umu.Grid();
typename Impl::GaugeLinkField Bx(grid), By(grid), Bz(grid), Ex(grid), Ey(grid), Ez(grid);
CloverField TmpOriginal(grid);
CloverField TmpInverse(grid);
// Compute the field strength terms mu>nu
double t2 = usecond();
WilsonLoops<Impl>::FieldStrength(Bx, _Umu, Zdir, Ydir);
WilsonLoops<Impl>::FieldStrength(By, _Umu, Zdir, Xdir);
WilsonLoops<Impl>::FieldStrength(Bz, _Umu, Ydir, Xdir);
WilsonLoops<Impl>::FieldStrength(Ex, _Umu, Tdir, Xdir);
WilsonLoops<Impl>::FieldStrength(Ey, _Umu, Tdir, Ydir);
WilsonLoops<Impl>::FieldStrength(Ez, _Umu, Tdir, Zdir);
// Compute the Clover Operator acting on Colour and Spin
// multiply here by the clover coefficients for the anisotropy
double t3 = usecond();
TmpOriginal = Helpers::fillCloverYZ(Bx) * csw_r;
TmpOriginal += Helpers::fillCloverXZ(By) * csw_r;
TmpOriginal += Helpers::fillCloverXY(Bz) * csw_r;
TmpOriginal += Helpers::fillCloverXT(Ex) * csw_t;
TmpOriginal += Helpers::fillCloverYT(Ey) * csw_t;
TmpOriginal += Helpers::fillCloverZT(Ez) * csw_t;
// Instantiate the clover term
// - In case of the standard clover the mass term is added
// - In case of the exponential clover the clover term is exponentiated
double t4 = usecond();
CloverHelpers::InstantiateClover(TmpOriginal, TmpInverse, csw_t, 4.0 + this->M5 /*this->diag_mass*/);
// Convert the data layout of the clover term
double t5 = usecond();
CompactHelpers::ConvertLayout(TmpOriginal, Diagonal, Triangle);
// Modify the clover term at the temporal boundaries in case of open boundary conditions
double t6 = usecond();
if(fixedBoundaries) CompactHelpers::ModifyBoundaries(Diagonal, Triangle, csw_t, cF, 4.0 + this->M5 /*this->diag_mass*/);
// Invert the Clover term
// In case of the exponential clover with (anti-)periodic boundary conditions exp(-Clover) saved
// in TmpInverse can be used. In all other cases the clover term has to be explictly inverted.
// TODO: For now this inversion is explictly done on the CPU
double t7 = usecond();
CloverHelpers::InvertClover(TmpInverse, Diagonal, Triangle, DiagonalInv, TriangleInv, fixedBoundaries);
// Fill the remaining clover fields
double t8 = usecond();
pickCheckerboard(Even, DiagonalEven, Diagonal);
pickCheckerboard(Even, TriangleEven, Triangle);
pickCheckerboard(Odd, DiagonalOdd, Diagonal);
pickCheckerboard(Odd, TriangleOdd, Triangle);
pickCheckerboard(Even, DiagonalInvEven, DiagonalInv);
pickCheckerboard(Even, TriangleInvEven, TriangleInv);
pickCheckerboard(Odd, DiagonalInvOdd, DiagonalInv);
pickCheckerboard(Odd, TriangleInvOdd, TriangleInv);
// Report timings
double t9 = usecond();
std::cout << GridLogDebug << "CompactWilsonCloverFermion5D::ImportGauge timings:" << std::endl;
std::cout << GridLogDebug << "WilsonFermion::Importgauge = " << (t1 - t0) / 1e6 << std::endl;
std::cout << GridLogDebug << "allocations = " << (t2 - t1) / 1e6 << std::endl;
std::cout << GridLogDebug << "field strength = " << (t3 - t2) / 1e6 << std::endl;
std::cout << GridLogDebug << "fill clover = " << (t4 - t3) / 1e6 << std::endl;
std::cout << GridLogDebug << "instantiate clover = " << (t5 - t4) / 1e6 << std::endl;
std::cout << GridLogDebug << "convert layout = " << (t6 - t5) / 1e6 << std::endl;
std::cout << GridLogDebug << "modify boundaries = " << (t7 - t6) / 1e6 << std::endl;
std::cout << GridLogDebug << "invert clover = " << (t8 - t7) / 1e6 << std::endl;
std::cout << GridLogDebug << "pick cbs = " << (t9 - t8) / 1e6 << std::endl;
std::cout << GridLogDebug << "total = " << (t9 - t0) / 1e6 << std::endl;
}
NAMESPACE_END(Grid);

View File

@ -42,13 +42,13 @@ template<class Impl>
void ContinuedFractionFermion5D<Impl>::SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata) void ContinuedFractionFermion5D<Impl>::SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata)
{ {
// How to check Ls matches?? // How to check Ls matches??
// std::cout<<GridLogMessage << Ls << " Ls"<<std::endl; std::cout<<GridLogMessage << zdata->n << " - n"<<std::endl;
// std::cout<<GridLogMessage << zdata->n << " - n"<<std::endl; std::cout<<GridLogMessage << zdata->da << " -da "<<std::endl;
// std::cout<<GridLogMessage << zdata->da << " -da "<<std::endl; std::cout<<GridLogMessage << zdata->db << " -db"<<std::endl;
// std::cout<<GridLogMessage << zdata->db << " -db"<<std::endl; std::cout<<GridLogMessage << zdata->dn << " -dn"<<std::endl;
// std::cout<<GridLogMessage << zdata->dn << " -dn"<<std::endl; std::cout<<GridLogMessage << zdata->dd << " -dd"<<std::endl;
// std::cout<<GridLogMessage << zdata->dd << " -dd"<<std::endl;
int Ls = this->Ls; int Ls = this->Ls;
std::cout<<GridLogMessage << Ls << " Ls"<<std::endl;
assert(zdata->db==Ls);// Beta has Ls coeffs assert(zdata->db==Ls);// Beta has Ls coeffs
R=(1+this->mass)/(1-this->mass); R=(1+this->mass)/(1-this->mass);
@ -320,7 +320,7 @@ ContinuedFractionFermion5D<Impl>::ContinuedFractionFermion5D(
int Ls = this->Ls; int Ls = this->Ls;
conformable(solution5d.Grid(),this->FermionGrid()); conformable(solution5d.Grid(),this->FermionGrid());
conformable(exported4d.Grid(),this->GaugeGrid()); conformable(exported4d.Grid(),this->GaugeGrid());
ExtractSlice(exported4d, solution5d, Ls-1, Ls-1); ExtractSlice(exported4d, solution5d, Ls-1, 0);
} }
template<class Impl> template<class Impl>
void ContinuedFractionFermion5D<Impl>::ImportPhysicalFermionSource(const FermionField &input4d,FermionField &imported5d) void ContinuedFractionFermion5D<Impl>::ImportPhysicalFermionSource(const FermionField &input4d,FermionField &imported5d)
@ -330,7 +330,7 @@ ContinuedFractionFermion5D<Impl>::ContinuedFractionFermion5D(
conformable(input4d.Grid() ,this->GaugeGrid()); conformable(input4d.Grid() ,this->GaugeGrid());
FermionField tmp(this->FermionGrid()); FermionField tmp(this->FermionGrid());
tmp=Zero(); tmp=Zero();
InsertSlice(input4d, tmp, Ls-1, Ls-1); InsertSlice(input4d, tmp, Ls-1, 0);
tmp=Gamma(Gamma::Algebra::Gamma5)*tmp; tmp=Gamma(Gamma::Algebra::Gamma5)*tmp;
this->Dminus(tmp,imported5d); this->Dminus(tmp,imported5d);
} }

View File

@ -41,7 +41,7 @@ NAMESPACE_BEGIN(Grid);
// Pplus backwards.. // Pplus backwards..
template<class Impl> template<class Impl>
void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi_i, const FermionField& phi_i,FermionField& chi_i, void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi_i, const FermionField& phi_i,FermionField& chi_i,
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper) std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
{ {
chi_i.Checkerboard() = psi_i.Checkerboard(); chi_i.Checkerboard() = psi_i.Checkerboard();
int Ls = this->Ls; int Ls = this->Ls;
@ -50,9 +50,15 @@ void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi_i, const FermionFi
autoView( psi , psi_i, AcceleratorRead); autoView( psi , psi_i, AcceleratorRead);
autoView( chi , chi_i, AcceleratorWrite); autoView( chi , chi_i, AcceleratorWrite);
assert(phi.Checkerboard() == psi.Checkerboard()); assert(phi.Checkerboard() == psi.Checkerboard());
auto pdiag = &diag[0];
auto pupper = &upper[0]; auto pdiag = &this->d_diag[0];
auto plower = &lower[0]; auto pupper = &this->d_upper[0];
auto plower = &this->d_lower[0];
acceleratorCopyToDevice(&diag[0],&pdiag[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&upper[0],&pupper[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&lower[0],&plower[0],Ls*sizeof(Coeff_t));
// Flops = 6.0*(Nc*Ns) *Ls*vol // Flops = 6.0*(Nc*Ns) *Ls*vol
auto nloop=grid->oSites()/Ls; auto nloop=grid->oSites()/Ls;
@ -73,7 +79,7 @@ void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi_i, const FermionFi
template<class Impl> template<class Impl>
void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi_i, const FermionField& phi_i, FermionField& chi_i, void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi_i, const FermionField& phi_i, FermionField& chi_i,
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper) std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
{ {
chi_i.Checkerboard() = psi_i.Checkerboard(); chi_i.Checkerboard() = psi_i.Checkerboard();
GridBase* grid = psi_i.Grid(); GridBase* grid = psi_i.Grid();
@ -83,9 +89,14 @@ void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi_i, const Fermio
autoView( phi , phi_i, AcceleratorRead); autoView( phi , phi_i, AcceleratorRead);
autoView( chi , chi_i, AcceleratorWrite); autoView( chi , chi_i, AcceleratorWrite);
assert(phi.Checkerboard() == psi.Checkerboard()); assert(phi.Checkerboard() == psi.Checkerboard());
auto pdiag = &diag[0];
auto pupper = &upper[0]; auto pdiag = &this->d_diag[0];
auto plower = &lower[0]; auto pupper = &this->d_upper[0];
auto plower = &this->d_lower[0];
acceleratorCopyToDevice(&diag[0] ,&pdiag[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&upper[0],&pupper[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&lower[0],&plower[0],Ls*sizeof(Coeff_t));
// Flops = 6.0*(Nc*Ns) *Ls*vol // Flops = 6.0*(Nc*Ns) *Ls*vol
@ -114,12 +125,17 @@ void DomainWallEOFAFermion<Impl>::MooeeInv(const FermionField& psi_i, FermionFie
autoView( chi, chi_i, AcceleratorWrite); autoView( chi, chi_i, AcceleratorWrite);
int Ls = this->Ls; int Ls = this->Ls;
auto plee = & this->lee[0]; auto plee = & this->d_lee [0];
auto pdee = & this->dee[0]; auto pdee = & this->d_dee [0];
auto puee = & this->uee[0]; auto puee = & this->d_uee [0];
auto pleem = & this->d_leem[0];
auto pueem = & this->d_ueem[0];
auto pleem = & this->leem[0]; acceleratorCopyToDevice(&this->lee[0],&plee[0],Ls*sizeof(Coeff_t));
auto pueem = & this->ueem[0]; acceleratorCopyToDevice(&this->dee[0],&pdee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->uee[0],&puee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->leem[0],&pleem[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->ueem[0],&pueem[0],Ls*sizeof(Coeff_t));
uint64_t nloop=grid->oSites()/Ls; uint64_t nloop=grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(),{ accelerator_for(sss,nloop,Simd::Nsimd(),{

View File

@ -131,9 +131,9 @@ void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi, FermionField& chi
else{ shiftm = -shift*(mq3-mq2); } else{ shiftm = -shift*(mq3-mq2); }
} }
Vector<Coeff_t> diag(Ls,1.0); std::vector<Coeff_t> diag(Ls,1.0);
Vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = mq1 + shiftm; std::vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = mq1 + shiftm;
Vector<Coeff_t> lower(Ls,-1.0); lower[0] = mq1 + shiftp; std::vector<Coeff_t> lower(Ls,-1.0); lower[0] = mq1 + shiftp;
#if(0) #if(0)
std::cout << GridLogMessage << "DomainWallEOFAFermion::M5D(FF&,FF&):" << std::endl; std::cout << GridLogMessage << "DomainWallEOFAFermion::M5D(FF&,FF&):" << std::endl;
@ -168,9 +168,9 @@ void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi, FermionField&
else{ shiftm = -shift*(mq3-mq2); } else{ shiftm = -shift*(mq3-mq2); }
} }
Vector<Coeff_t> diag(Ls,1.0); std::vector<Coeff_t> diag(Ls,1.0);
Vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = mq1 + shiftp; std::vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = mq1 + shiftp;
Vector<Coeff_t> lower(Ls,-1.0); lower[0] = mq1 + shiftm; std::vector<Coeff_t> lower(Ls,-1.0); lower[0] = mq1 + shiftm;
this->M5Ddag(psi, chi, chi, lower, diag, upper); this->M5Ddag(psi, chi, chi, lower, diag, upper);
} }
@ -181,9 +181,9 @@ void DomainWallEOFAFermion<Impl>::Mooee(const FermionField& psi, FermionField& c
{ {
int Ls = this->Ls; int Ls = this->Ls;
Vector<Coeff_t> diag = this->bee; std::vector<Coeff_t> diag = this->bee;
Vector<Coeff_t> upper(Ls); std::vector<Coeff_t> upper(Ls);
Vector<Coeff_t> lower(Ls); std::vector<Coeff_t> lower(Ls);
for(int s=0; s<Ls; s++){ for(int s=0; s<Ls; s++){
upper[s] = -this->cee[s]; upper[s] = -this->cee[s];
@ -200,9 +200,9 @@ void DomainWallEOFAFermion<Impl>::MooeeDag(const FermionField& psi, FermionField
{ {
int Ls = this->Ls; int Ls = this->Ls;
Vector<Coeff_t> diag = this->bee; std::vector<Coeff_t> diag = this->bee;
Vector<Coeff_t> upper(Ls); std::vector<Coeff_t> upper(Ls);
Vector<Coeff_t> lower(Ls); std::vector<Coeff_t> lower(Ls);
for(int s=0; s<Ls; s++){ for(int s=0; s<Ls; s++){
upper[s] = -this->cee[s]; upper[s] = -this->cee[s];
@ -218,7 +218,7 @@ void DomainWallEOFAFermion<Impl>::MooeeDag(const FermionField& psi, FermionField
//Zolo //Zolo
template<class Impl> template<class Impl>
void DomainWallEOFAFermion<Impl>::SetCoefficientsInternal(RealD zolo_hi, Vector<Coeff_t>& gamma, RealD b, RealD c) void DomainWallEOFAFermion<Impl>::SetCoefficientsInternal(RealD zolo_hi, std::vector<Coeff_t>& gamma, RealD b, RealD c)
{ {
int Ls = this->Ls; int Ls = this->Ls;
int pm = this->pm; int pm = this->pm;

View File

@ -61,8 +61,6 @@ ImprovedStaggeredFermion5D<Impl>::ImprovedStaggeredFermion5D(GridCartesian
UUUmu(&FourDimGrid), UUUmu(&FourDimGrid),
UUUmuEven(&FourDimRedBlackGrid), UUUmuEven(&FourDimRedBlackGrid),
UUUmuOdd(&FourDimRedBlackGrid), UUUmuOdd(&FourDimRedBlackGrid),
Lebesgue(&FourDimGrid),
LebesgueEvenOdd(&FourDimRedBlackGrid),
_tmp(&FiveDimRedBlackGrid) _tmp(&FiveDimRedBlackGrid)
{ {
@ -277,18 +275,18 @@ void ImprovedStaggeredFermion5D<Impl>::DhopDerivOE(GaugeField &mat,
/*CHANGE */ /*CHANGE */
template<class Impl> template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::DhopInternal(StencilImpl & st, LebesgueOrder &lo, void ImprovedStaggeredFermion5D<Impl>::DhopInternal(StencilImpl & st,
DoubledGaugeField & U,DoubledGaugeField & UUU, DoubledGaugeField & U,DoubledGaugeField & UUU,
const FermionField &in, FermionField &out,int dag) const FermionField &in, FermionField &out,int dag)
{ {
if ( StaggeredKernelsStatic::Comms == StaggeredKernelsStatic::CommsAndCompute ) if ( StaggeredKernelsStatic::Comms == StaggeredKernelsStatic::CommsAndCompute )
DhopInternalOverlappedComms(st,lo,U,UUU,in,out,dag); DhopInternalOverlappedComms(st,U,UUU,in,out,dag);
else else
DhopInternalSerialComms(st,lo,U,UUU,in,out,dag); DhopInternalSerialComms(st,U,UUU,in,out,dag);
} }
template<class Impl> template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, LebesgueOrder &lo, void ImprovedStaggeredFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st,
DoubledGaugeField & U,DoubledGaugeField & UUU, DoubledGaugeField & U,DoubledGaugeField & UUU,
const FermionField &in, FermionField &out,int dag) const FermionField &in, FermionField &out,int dag)
{ {
@ -313,7 +311,7 @@ void ImprovedStaggeredFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl &
{ {
int interior=1; int interior=1;
int exterior=0; int exterior=0;
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior); Kernels::DhopImproved(st,U,UUU,in,out,dag,interior,exterior);
} }
st.CommsMerge(compressor); st.CommsMerge(compressor);
@ -323,12 +321,12 @@ void ImprovedStaggeredFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl &
{ {
int interior=0; int interior=0;
int exterior=1; int exterior=1;
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior); Kernels::DhopImproved(st,U,UUU,in,out,dag,interior,exterior);
} }
} }
template<class Impl> template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st, LebesgueOrder &lo, void ImprovedStaggeredFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st,
DoubledGaugeField & U,DoubledGaugeField & UUU, DoubledGaugeField & U,DoubledGaugeField & UUU,
const FermionField &in, FermionField &out,int dag) const FermionField &in, FermionField &out,int dag)
{ {
@ -341,7 +339,7 @@ void ImprovedStaggeredFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st,
{ {
int interior=1; int interior=1;
int exterior=1; int exterior=1;
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior); Kernels::DhopImproved(st,U,UUU,in,out,dag,interior,exterior);
} }
} }
/*CHANGE END*/ /*CHANGE END*/
@ -357,7 +355,7 @@ void ImprovedStaggeredFermion5D<Impl>::DhopOE(const FermionField &in, FermionFie
assert(in.Checkerboard()==Even); assert(in.Checkerboard()==Even);
out.Checkerboard() = Odd; out.Checkerboard() = Odd;
DhopInternal(StencilEven,LebesgueEvenOdd,UmuOdd,UUUmuOdd,in,out,dag); DhopInternal(StencilEven,UmuOdd,UUUmuOdd,in,out,dag);
} }
template<class Impl> template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag) void ImprovedStaggeredFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
@ -368,7 +366,7 @@ void ImprovedStaggeredFermion5D<Impl>::DhopEO(const FermionField &in, FermionFie
assert(in.Checkerboard()==Odd); assert(in.Checkerboard()==Odd);
out.Checkerboard() = Even; out.Checkerboard() = Even;
DhopInternal(StencilOdd,LebesgueEvenOdd,UmuEven,UUUmuEven,in,out,dag); DhopInternal(StencilOdd,UmuEven,UUUmuEven,in,out,dag);
} }
template<class Impl> template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::Dhop(const FermionField &in, FermionField &out,int dag) void ImprovedStaggeredFermion5D<Impl>::Dhop(const FermionField &in, FermionField &out,int dag)
@ -378,7 +376,7 @@ void ImprovedStaggeredFermion5D<Impl>::Dhop(const FermionField &in, FermionField
out.Checkerboard() = in.Checkerboard(); out.Checkerboard() = in.Checkerboard();
DhopInternal(Stencil,Lebesgue,Umu,UUUmu,in,out,dag); DhopInternal(Stencil,Umu,UUUmu,in,out,dag);
} }
///////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////

View File

@ -48,8 +48,6 @@ ImprovedStaggeredFermion<Impl>::ImprovedStaggeredFermion(GridCartesian &Fgrid, G
StencilEven(&Hgrid, npoint, Even, directions, displacements,p), // source is Even StencilEven(&Hgrid, npoint, Even, directions, displacements,p), // source is Even
StencilOdd(&Hgrid, npoint, Odd, directions, displacements,p), // source is Odd StencilOdd(&Hgrid, npoint, Odd, directions, displacements,p), // source is Odd
mass(_mass), mass(_mass),
Lebesgue(_grid),
LebesgueEvenOdd(_cbgrid),
Umu(&Fgrid), Umu(&Fgrid),
UmuEven(&Hgrid), UmuEven(&Hgrid),
UmuOdd(&Hgrid), UmuOdd(&Hgrid),
@ -339,7 +337,7 @@ void ImprovedStaggeredFermion<Impl>::Dhop(const FermionField &in, FermionField &
out.Checkerboard() = in.Checkerboard(); out.Checkerboard() = in.Checkerboard();
DhopInternal(Stencil, Lebesgue, Umu, UUUmu, in, out, dag); DhopInternal(Stencil, Umu, UUUmu, in, out, dag);
} }
template <class Impl> template <class Impl>
@ -351,7 +349,7 @@ void ImprovedStaggeredFermion<Impl>::DhopOE(const FermionField &in, FermionField
assert(in.Checkerboard() == Even); assert(in.Checkerboard() == Even);
out.Checkerboard() = Odd; out.Checkerboard() = Odd;
DhopInternal(StencilEven, LebesgueEvenOdd, UmuOdd, UUUmuOdd, in, out, dag); DhopInternal(StencilEven, UmuOdd, UUUmuOdd, in, out, dag);
} }
template <class Impl> template <class Impl>
@ -363,7 +361,7 @@ void ImprovedStaggeredFermion<Impl>::DhopEO(const FermionField &in, FermionField
assert(in.Checkerboard() == Odd); assert(in.Checkerboard() == Odd);
out.Checkerboard() = Even; out.Checkerboard() = Even;
DhopInternal(StencilOdd, LebesgueEvenOdd, UmuEven, UUUmuEven, in, out, dag); DhopInternal(StencilOdd, UmuEven, UUUmuEven, in, out, dag);
} }
template <class Impl> template <class Impl>
@ -394,19 +392,19 @@ void ImprovedStaggeredFermion<Impl>::DhopDir(const FermionField &in, FermionFiel
template <class Impl> template <class Impl>
void ImprovedStaggeredFermion<Impl>::DhopInternal(StencilImpl &st, LebesgueOrder &lo, void ImprovedStaggeredFermion<Impl>::DhopInternal(StencilImpl &st,
DoubledGaugeField &U, DoubledGaugeField &U,
DoubledGaugeField &UUU, DoubledGaugeField &UUU,
const FermionField &in, const FermionField &in,
FermionField &out, int dag) FermionField &out, int dag)
{ {
if ( StaggeredKernelsStatic::Comms == StaggeredKernelsStatic::CommsAndCompute ) if ( StaggeredKernelsStatic::Comms == StaggeredKernelsStatic::CommsAndCompute )
DhopInternalOverlappedComms(st,lo,U,UUU,in,out,dag); DhopInternalOverlappedComms(st,U,UUU,in,out,dag);
else else
DhopInternalSerialComms(st,lo,U,UUU,in,out,dag); DhopInternalSerialComms(st,U,UUU,in,out,dag);
} }
template <class Impl> template <class Impl>
void ImprovedStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, void ImprovedStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st,
DoubledGaugeField &U, DoubledGaugeField &U,
DoubledGaugeField &UUU, DoubledGaugeField &UUU,
const FermionField &in, const FermionField &in,
@ -429,7 +427,7 @@ void ImprovedStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st
{ {
int interior=1; int interior=1;
int exterior=0; int exterior=0;
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior); Kernels::DhopImproved(st,U,UUU,in,out,dag,interior,exterior);
} }
st.CommunicateComplete(requests); st.CommunicateComplete(requests);
@ -440,13 +438,13 @@ void ImprovedStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st
{ {
int interior=0; int interior=0;
int exterior=1; int exterior=1;
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior); Kernels::DhopImproved(st,U,UUU,in,out,dag,interior,exterior);
} }
} }
template <class Impl> template <class Impl>
void ImprovedStaggeredFermion<Impl>::DhopInternalSerialComms(StencilImpl &st, LebesgueOrder &lo, void ImprovedStaggeredFermion<Impl>::DhopInternalSerialComms(StencilImpl &st,
DoubledGaugeField &U, DoubledGaugeField &U,
DoubledGaugeField &UUU, DoubledGaugeField &UUU,
const FermionField &in, const FermionField &in,
@ -460,7 +458,7 @@ void ImprovedStaggeredFermion<Impl>::DhopInternalSerialComms(StencilImpl &st, Le
{ {
int interior=1; int interior=1;
int exterior=1; int exterior=1;
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior); Kernels::DhopImproved(st,U,UUU,in,out,dag,interior,exterior);
} }
}; };

View File

@ -39,7 +39,7 @@ NAMESPACE_BEGIN(Grid);
template<class Impl> template<class Impl>
void MobiusEOFAFermion<Impl>::M5D(const FermionField &psi_i, const FermionField &phi_i, FermionField &chi_i, void MobiusEOFAFermion<Impl>::M5D(const FermionField &psi_i, const FermionField &phi_i, FermionField &chi_i,
Vector<Coeff_t> &lower, Vector<Coeff_t> &diag, Vector<Coeff_t> &upper) std::vector<Coeff_t> &lower, std::vector<Coeff_t> &diag, std::vector<Coeff_t> &upper)
{ {
chi_i.Checkerboard() = psi_i.Checkerboard(); chi_i.Checkerboard() = psi_i.Checkerboard();
GridBase *grid = psi_i.Grid(); GridBase *grid = psi_i.Grid();
@ -50,9 +50,13 @@ void MobiusEOFAFermion<Impl>::M5D(const FermionField &psi_i, const FermionField
assert(phi.Checkerboard() == psi.Checkerboard()); assert(phi.Checkerboard() == psi.Checkerboard());
auto pdiag = &diag[0]; auto pdiag = &this->d_diag[0];
auto pupper = &upper[0]; auto pupper = &this->d_upper[0];
auto plower = &lower[0]; auto plower = &this->d_lower[0];
acceleratorCopyToDevice(&diag[0],&pdiag[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&upper[0],&pupper[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&lower[0],&plower[0],Ls*sizeof(Coeff_t));
// Flops = 6.0*(Nc*Ns) *Ls*vol // Flops = 6.0*(Nc*Ns) *Ls*vol
int nloop = grid->oSites()/Ls; int nloop = grid->oSites()/Ls;
@ -74,8 +78,8 @@ void MobiusEOFAFermion<Impl>::M5D(const FermionField &psi_i, const FermionField
template<class Impl> template<class Impl>
void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField &psi_i, const FermionField &phi_i, FermionField &chi_i, void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField &psi_i, const FermionField &phi_i, FermionField &chi_i,
Vector<Coeff_t> &lower, Vector<Coeff_t> &diag, Vector<Coeff_t> &upper, std::vector<Coeff_t> &lower, std::vector<Coeff_t> &diag, std::vector<Coeff_t> &upper,
Vector<Coeff_t> &shift_coeffs) std::vector<Coeff_t> &shift_coeffs)
{ {
chi_i.Checkerboard() = psi_i.Checkerboard(); chi_i.Checkerboard() = psi_i.Checkerboard();
GridBase *grid = psi_i.Grid(); GridBase *grid = psi_i.Grid();
@ -89,10 +93,15 @@ void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField &psi_i, const Fermion
assert(phi.Checkerboard() == psi.Checkerboard()); assert(phi.Checkerboard() == psi.Checkerboard());
auto pdiag = &diag[0]; auto pdiag = &this->d_diag[0];
auto pupper = &upper[0]; auto pupper = &this->d_upper[0];
auto plower = &lower[0]; auto plower = &this->d_lower[0];
auto pshift_coeffs = &shift_coeffs[0]; auto pshift_coeffs = &this->d_shift_coefficients[0];
acceleratorCopyToDevice(&diag[0],&pdiag[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&upper[0],&pupper[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&lower[0],&plower[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&shift_coeffs[0],&pshift_coeffs[0],Ls*sizeof(Coeff_t));
// Flops = 6.0*(Nc*Ns) *Ls*vol // Flops = 6.0*(Nc*Ns) *Ls*vol
int nloop = grid->oSites()/Ls; int nloop = grid->oSites()/Ls;
@ -119,7 +128,7 @@ void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField &psi_i, const Fermion
template<class Impl> template<class Impl>
void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField &psi_i, const FermionField &phi_i, FermionField &chi_i, void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField &psi_i, const FermionField &phi_i, FermionField &chi_i,
Vector<Coeff_t> &lower, Vector<Coeff_t> &diag, Vector<Coeff_t> &upper) std::vector<Coeff_t> &lower, std::vector<Coeff_t> &diag, std::vector<Coeff_t> &upper)
{ {
chi_i.Checkerboard() = psi_i.Checkerboard(); chi_i.Checkerboard() = psi_i.Checkerboard();
GridBase *grid = psi_i.Grid(); GridBase *grid = psi_i.Grid();
@ -130,9 +139,13 @@ void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField &psi_i, const FermionFie
assert(phi.Checkerboard() == psi.Checkerboard()); assert(phi.Checkerboard() == psi.Checkerboard());
auto pdiag = &diag[0]; auto pdiag = &this->d_diag[0];
auto pupper = &upper[0]; auto pupper = &this->d_upper[0];
auto plower = &lower[0]; auto plower = &this->d_lower[0];
acceleratorCopyToDevice(&diag[0],&pdiag[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&upper[0],&pupper[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&lower[0],&plower[0],Ls*sizeof(Coeff_t));
// Flops = 6.0*(Nc*Ns) *Ls*vol // Flops = 6.0*(Nc*Ns) *Ls*vol
int nloop = grid->oSites()/Ls; int nloop = grid->oSites()/Ls;
@ -154,8 +167,8 @@ void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField &psi_i, const FermionFie
template<class Impl> template<class Impl>
void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField &psi_i, const FermionField &phi_i, FermionField &chi_i, void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField &psi_i, const FermionField &phi_i, FermionField &chi_i,
Vector<Coeff_t> &lower, Vector<Coeff_t> &diag, Vector<Coeff_t> &upper, std::vector<Coeff_t> &lower, std::vector<Coeff_t> &diag, std::vector<Coeff_t> &upper,
Vector<Coeff_t> &shift_coeffs) std::vector<Coeff_t> &shift_coeffs)
{ {
chi_i.Checkerboard() = psi_i.Checkerboard(); chi_i.Checkerboard() = psi_i.Checkerboard();
GridBase *grid = psi_i.Grid(); GridBase *grid = psi_i.Grid();
@ -167,10 +180,15 @@ void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField &psi_i, const Ferm
assert(phi.Checkerboard() == psi.Checkerboard()); assert(phi.Checkerboard() == psi.Checkerboard());
auto pdiag = &diag[0]; auto pdiag = &this->d_diag[0];
auto pupper = &upper[0]; auto pupper = &this->d_upper[0];
auto plower = &lower[0]; auto plower = &this->d_lower[0];
auto pshift_coeffs = &shift_coeffs[0]; auto pshift_coeffs = &this->d_shift_coefficients[0];
acceleratorCopyToDevice(&diag[0],&pdiag[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&upper[0],&pupper[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&lower[0],&plower[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&shift_coeffs[0],&pshift_coeffs[0],Ls*sizeof(Coeff_t));
// Flops = 6.0*(Nc*Ns) *Ls*vol // Flops = 6.0*(Nc*Ns) *Ls*vol
auto pm = this->pm; auto pm = this->pm;
@ -212,11 +230,17 @@ void MobiusEOFAFermion<Impl>::MooeeInv(const FermionField &psi_i, FermionField &
autoView(psi , psi_i, AcceleratorRead); autoView(psi , psi_i, AcceleratorRead);
autoView(chi , chi_i, AcceleratorWrite); autoView(chi , chi_i, AcceleratorWrite);
auto plee = & this->lee [0]; auto plee = & this->d_lee [0];
auto pdee = & this->dee [0]; auto pdee = & this->d_dee [0];
auto puee = & this->uee [0]; auto puee = & this->d_uee [0];
auto pleem= & this->leem[0]; auto pleem = & this->d_leem[0];
auto pueem= & this->ueem[0]; auto pueem = & this->d_ueem[0];
acceleratorCopyToDevice(&this->lee[0],&plee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->dee[0],&pdee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->uee[0],&puee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->leem[0],&pleem[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->ueem[0],&pueem[0],Ls*sizeof(Coeff_t));
if(this->shift != 0.0){ MooeeInv_shift(psi_i,chi_i); return; } if(this->shift != 0.0){ MooeeInv_shift(psi_i,chi_i); return; }
@ -268,14 +292,23 @@ void MobiusEOFAFermion<Impl>::MooeeInv_shift(const FermionField &psi_i, FermionF
autoView(psi , psi_i, AcceleratorRead); autoView(psi , psi_i, AcceleratorRead);
autoView(chi , chi_i, AcceleratorWrite); autoView(chi , chi_i, AcceleratorWrite);
// Move into object and constructor
auto pm = this->pm; auto pm = this->pm;
auto plee = & this->lee [0]; auto plee = & this->d_lee [0];
auto pdee = & this->dee [0]; auto pdee = & this->d_dee [0];
auto puee = & this->uee [0]; auto puee = & this->d_uee [0];
auto pleem= & this->leem[0]; auto pleem = & this->d_leem[0];
auto pueem= & this->ueem[0]; auto pueem = & this->d_ueem[0];
auto pMooeeInv_shift_lc = &MooeeInv_shift_lc[0]; auto pMooeeInv_shift_lc = &this->d_MooeeInv_shift_lc[0];
auto pMooeeInv_shift_norm = &MooeeInv_shift_norm[0]; auto pMooeeInv_shift_norm = &this->d_MooeeInv_shift_norm[0];
acceleratorCopyToDevice(&this->lee[0],&plee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->dee[0],&pdee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->uee[0],&puee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->leem[0],&pleem[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->ueem[0],&pueem[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&MooeeInv_shift_lc[0],&pMooeeInv_shift_lc[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&MooeeInv_shift_norm[0],&pMooeeInv_shift_norm[0],Ls*sizeof(Coeff_t));
int nloop = grid->oSites()/Ls; int nloop = grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(),{ accelerator_for(sss,nloop,Simd::Nsimd(),{
@ -333,11 +366,17 @@ void MobiusEOFAFermion<Impl>::MooeeInvDag(const FermionField &psi_i, FermionFiel
autoView(psi , psi_i, AcceleratorRead); autoView(psi , psi_i, AcceleratorRead);
autoView(chi , chi_i, AcceleratorWrite); autoView(chi , chi_i, AcceleratorWrite);
auto plee = & this->lee [0]; auto plee = &this->d_lee [0];
auto pdee = & this->dee [0]; auto pdee = &this->d_dee [0];
auto puee = & this->uee [0]; auto puee = &this->d_uee [0];
auto pleem= & this->leem[0]; auto pleem = &this->d_leem[0];
auto pueem= & this->ueem[0]; auto pueem = &this->d_ueem[0];
acceleratorCopyToDevice(&this->lee[0],&plee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->dee[0],&pdee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->uee[0],&puee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->leem[0],&pleem[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->ueem[0],&pueem[0],Ls*sizeof(Coeff_t));
int nloop = grid->oSites()/Ls; int nloop = grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(),{ accelerator_for(sss,nloop,Simd::Nsimd(),{
@ -387,13 +426,25 @@ void MobiusEOFAFermion<Impl>::MooeeInvDag_shift(const FermionField &psi_i, Fermi
int Ls = this->Ls; int Ls = this->Ls;
auto pm = this->pm; auto pm = this->pm;
auto plee = & this->lee [0]; auto plee = & this->d_lee [0];
auto pdee = & this->dee [0]; auto pdee = & this->d_dee [0];
auto puee = & this->uee [0]; auto puee = & this->d_uee [0];
auto pleem= & this->leem[0]; auto pleem = & this->d_leem[0];
auto pueem= & this->ueem[0]; auto pueem = & this->d_ueem[0];
auto pMooeeInvDag_shift_lc = &MooeeInvDag_shift_lc[0];
auto pMooeeInvDag_shift_norm = &MooeeInvDag_shift_norm[0]; auto pMooeeInvDag_shift_lc = &this->d_MooeeInv_shift_lc[0];
auto pMooeeInvDag_shift_norm = &this->d_MooeeInv_shift_norm[0];
acceleratorCopyToDevice(&this->lee[0],&plee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->dee[0],&pdee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->uee[0],&puee[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->leem[0],&pleem[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&this->ueem[0],&pueem[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&MooeeInvDag_shift_lc[0],&pMooeeInvDag_shift_lc[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&MooeeInvDag_shift_norm[0],&pMooeeInvDag_shift_norm[0],Ls*sizeof(Coeff_t));
// auto pMooeeInvDag_shift_lc = &MooeeInvDag_shift_lc[0];
// auto pMooeeInvDag_shift_norm = &MooeeInvDag_shift_norm[0];
int nloop = grid->oSites()/Ls; int nloop = grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(),{ accelerator_for(sss,nloop,Simd::Nsimd(),{

View File

@ -196,9 +196,9 @@ void MobiusEOFAFermion<Impl>::M5D(const FermionField& psi, FermionField& chi)
{ {
int Ls = this->Ls; int Ls = this->Ls;
Vector<Coeff_t> diag(Ls,1.0); std::vector<Coeff_t> diag(Ls,1.0);
Vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = this->mq1; std::vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = this->mq1;
Vector<Coeff_t> lower(Ls,-1.0); lower[0] = this->mq1; std::vector<Coeff_t> lower(Ls,-1.0); lower[0] = this->mq1;
// no shift term // no shift term
if(this->shift == 0.0){ this->M5D(psi, chi, chi, lower, diag, upper); } if(this->shift == 0.0){ this->M5D(psi, chi, chi, lower, diag, upper); }
@ -212,9 +212,9 @@ void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField& psi, FermionField& chi)
{ {
int Ls = this->Ls; int Ls = this->Ls;
Vector<Coeff_t> diag(Ls,1.0); std::vector<Coeff_t> diag(Ls,1.0);
Vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = this->mq1; std::vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = this->mq1;
Vector<Coeff_t> lower(Ls,-1.0); lower[0] = this->mq1; std::vector<Coeff_t> lower(Ls,-1.0); lower[0] = this->mq1;
// no shift term // no shift term
if(this->shift == 0.0){ this->M5Ddag(psi, chi, chi, lower, diag, upper); } if(this->shift == 0.0){ this->M5Ddag(psi, chi, chi, lower, diag, upper); }
@ -230,9 +230,9 @@ void MobiusEOFAFermion<Impl>::Mooee(const FermionField& psi, FermionField& chi)
int Ls = this->Ls; int Ls = this->Ls;
// coefficients of Mooee // coefficients of Mooee
Vector<Coeff_t> diag = this->bee; std::vector<Coeff_t> diag = this->bee;
Vector<Coeff_t> upper(Ls); std::vector<Coeff_t> upper(Ls);
Vector<Coeff_t> lower(Ls); std::vector<Coeff_t> lower(Ls);
for(int s=0; s<Ls; s++){ for(int s=0; s<Ls; s++){
upper[s] = -this->cee[s]; upper[s] = -this->cee[s];
lower[s] = -this->cee[s]; lower[s] = -this->cee[s];
@ -253,9 +253,9 @@ void MobiusEOFAFermion<Impl>::MooeeDag(const FermionField& psi, FermionField& ch
int Ls = this->Ls; int Ls = this->Ls;
// coefficients of MooeeDag // coefficients of MooeeDag
Vector<Coeff_t> diag = this->bee; std::vector<Coeff_t> diag = this->bee;
Vector<Coeff_t> upper(Ls); std::vector<Coeff_t> upper(Ls);
Vector<Coeff_t> lower(Ls); std::vector<Coeff_t> lower(Ls);
for(int s=0; s<Ls; s++){ for(int s=0; s<Ls; s++){
if(s==0) { if(s==0) {
upper[s] = -this->cee[s+1]; upper[s] = -this->cee[s+1];
@ -314,10 +314,10 @@ void MobiusEOFAFermion<Impl>::SetCoefficientsPrecondShiftOps()
// Tridiagonal solve for MooeeInvDag_shift_lc // Tridiagonal solve for MooeeInvDag_shift_lc
{ {
Coeff_t m(0.0); Coeff_t m(0.0);
Vector<Coeff_t> d = Mooee_shift; std::vector<Coeff_t> d = Mooee_shift;
Vector<Coeff_t> u(Ls,0.0); std::vector<Coeff_t> u(Ls,0.0);
Vector<Coeff_t> y(Ls,0.0); std::vector<Coeff_t> y(Ls,0.0);
Vector<Coeff_t> q(Ls,0.0); std::vector<Coeff_t> q(Ls,0.0);
if(pm == 1){ u[0] = 1.0; } if(pm == 1){ u[0] = 1.0; }
else{ u[Ls-1] = 1.0; } else{ u[Ls-1] = 1.0; }

View File

@ -48,8 +48,6 @@ NaiveStaggeredFermion<Impl>::NaiveStaggeredFermion(GridCartesian &Fgrid, GridRed
StencilEven(&Hgrid, npoint, Even, directions, displacements,p), // source is Even StencilEven(&Hgrid, npoint, Even, directions, displacements,p), // source is Even
StencilOdd(&Hgrid, npoint, Odd, directions, displacements,p), // source is Odd StencilOdd(&Hgrid, npoint, Odd, directions, displacements,p), // source is Odd
mass(_mass), mass(_mass),
Lebesgue(_grid),
LebesgueEvenOdd(_cbgrid),
Umu(&Fgrid), Umu(&Fgrid),
UmuEven(&Hgrid), UmuEven(&Hgrid),
UmuOdd(&Hgrid), UmuOdd(&Hgrid),
@ -268,7 +266,7 @@ void NaiveStaggeredFermion<Impl>::Dhop(const FermionField &in, FermionField &out
out.Checkerboard() = in.Checkerboard(); out.Checkerboard() = in.Checkerboard();
DhopInternal(Stencil, Lebesgue, Umu, in, out, dag); DhopInternal(Stencil, Umu, in, out, dag);
} }
template <class Impl> template <class Impl>
@ -280,7 +278,7 @@ void NaiveStaggeredFermion<Impl>::DhopOE(const FermionField &in, FermionField &o
assert(in.Checkerboard() == Even); assert(in.Checkerboard() == Even);
out.Checkerboard() = Odd; out.Checkerboard() = Odd;
DhopInternal(StencilEven, LebesgueEvenOdd, UmuOdd, in, out, dag); DhopInternal(StencilEven, UmuOdd, in, out, dag);
} }
template <class Impl> template <class Impl>
@ -292,7 +290,7 @@ void NaiveStaggeredFermion<Impl>::DhopEO(const FermionField &in, FermionField &o
assert(in.Checkerboard() == Odd); assert(in.Checkerboard() == Odd);
out.Checkerboard() = Even; out.Checkerboard() = Even;
DhopInternal(StencilOdd, LebesgueEvenOdd, UmuEven, in, out, dag); DhopInternal(StencilOdd, UmuEven, in, out, dag);
} }
template <class Impl> template <class Impl>
@ -323,18 +321,18 @@ void NaiveStaggeredFermion<Impl>::DhopDir(const FermionField &in, FermionField &
template <class Impl> template <class Impl>
void NaiveStaggeredFermion<Impl>::DhopInternal(StencilImpl &st, LebesgueOrder &lo, void NaiveStaggeredFermion<Impl>::DhopInternal(StencilImpl &st,
DoubledGaugeField &U, DoubledGaugeField &U,
const FermionField &in, const FermionField &in,
FermionField &out, int dag) FermionField &out, int dag)
{ {
if ( StaggeredKernelsStatic::Comms == StaggeredKernelsStatic::CommsAndCompute ) if ( StaggeredKernelsStatic::Comms == StaggeredKernelsStatic::CommsAndCompute )
DhopInternalOverlappedComms(st,lo,U,in,out,dag); DhopInternalOverlappedComms(st,U,in,out,dag);
else else
DhopInternalSerialComms(st,lo,U,in,out,dag); DhopInternalSerialComms(st,U,in,out,dag);
} }
template <class Impl> template <class Impl>
void NaiveStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, void NaiveStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st,
DoubledGaugeField &U, DoubledGaugeField &U,
const FermionField &in, const FermionField &in,
FermionField &out, int dag) FermionField &out, int dag)
@ -356,7 +354,7 @@ void NaiveStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, L
{ {
int interior=1; int interior=1;
int exterior=0; int exterior=0;
Kernels::DhopNaive(st,lo,U,in,out,dag,interior,exterior); Kernels::DhopNaive(st,U,in,out,dag,interior,exterior);
} }
st.CommunicateComplete(requests); st.CommunicateComplete(requests);
@ -367,12 +365,12 @@ void NaiveStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, L
{ {
int interior=0; int interior=0;
int exterior=1; int exterior=1;
Kernels::DhopNaive(st,lo,U,in,out,dag,interior,exterior); Kernels::DhopNaive(st,U,in,out,dag,interior,exterior);
} }
} }
template <class Impl> template <class Impl>
void NaiveStaggeredFermion<Impl>::DhopInternalSerialComms(StencilImpl &st, LebesgueOrder &lo, void NaiveStaggeredFermion<Impl>::DhopInternalSerialComms(StencilImpl &st,
DoubledGaugeField &U, DoubledGaugeField &U,
const FermionField &in, const FermionField &in,
FermionField &out, int dag) FermionField &out, int dag)
@ -385,7 +383,7 @@ void NaiveStaggeredFermion<Impl>::DhopInternalSerialComms(StencilImpl &st, Lebes
{ {
int interior=1; int interior=1;
int exterior=1; int exterior=1;
Kernels::DhopNaive(st,lo,U,in,out,dag,interior,exterior); Kernels::DhopNaive(st,U,in,out,dag,interior,exterior);
} }
}; };

View File

@ -239,6 +239,31 @@ void PartialFractionFermion5D<Impl>::M_internal(const FermionField &psi, Fermi
this->DW(psi,D,DaggerNo); this->DW(psi,D,DaggerNo);
// DW - DW+iqslash
// (g5 Dw)^dag = g5 Dw
// (iqmu g5 gmu)^dag = (-i qmu gmu^dag g5^dag) = i qmu g5 gmu
if ( qmu.size() ) {
std::cout<< "Mat" << "qmu ("<<qmu[0]<<","<<qmu[1]<<","<<qmu[2]<<","<<qmu[3]<<")"<<std::endl;
assert(qmu.size()==Nd);
FermionField qslash_psi(psi.Grid());
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
qslash_psi = qmu[0]*(Gamma(Gmu[0])*psi);
for(int mu=1;mu<Nd;mu++){
qslash_psi = qslash_psi + qmu[mu]*(Gamma(Gmu[mu])*psi);
}
ComplexD ci(0.0,1.0);
qslash_psi = ci*qslash_psi ; // i qslash
D = D + qslash_psi;
}
int nblock=(Ls-1)/2; int nblock=(Ls-1)/2;
for(int b=0;b<nblock;b++){ for(int b=0;b<nblock;b++){
@ -255,8 +280,47 @@ void PartialFractionFermion5D<Impl>::M_internal(const FermionField &psi, Fermi
} }
{ {
// The 'conventional' Cayley overlap operator is
//
// Dov = (1+m)/2 + (1-m)/2 g5 sgn Hw
//
//
// With massless limit 1/2(1+g5 sgnHw)
//
// Luscher shows quite neatly that 1+g5 sgn Hw has tree level propagator i qslash +O(a^2)
//
// However, the conventional normalisation has both a leading order factor of 2 in Zq
// at tree level AND a mass dependent (1-m) that are convenient to absorb.
//
// In WilsonFermion5DImplementation.h, the tree level propagator for Hw is
//
// num = -i sin kmu gmu
//
// denom ( sqrt(sk^2 + (2shk^2 - 1)^2
// b_k = sk2 - M5;
//
// w_k = sqrt(sk + b_k*b_k);
//
// denom= ( w_k + b_k + mass*mass) ;
//
// denom= one/denom;
// out = num*denom;
//
// Chroma, and Grid define partial fraction via 4d operator
//
// Dpf = 2/(1-m) x Dov = (1+m)/(1-m) + g5 sgn Hw
//
// Now since:
//
// (1+m)/(1-m) = (1-m)/(1-m) + 2m/(1-m) = 1 + 2m/(1-m)
//
// This corresponds to a modified mass parameter
//
// It has an annoying
//
//
double R=(1+this->mass)/(1-this->mass); double R=(1+this->mass)/(1-this->mass);
//R g5 psi[Ls] + p[0] H //R g5 psi[Ls] + p[0] Hw
ag5xpbg5y_ssp(chi,R*scale,psi,p[nblock]*scale/amax,D,Ls-1,Ls-1); ag5xpbg5y_ssp(chi,R*scale,psi,p[nblock]*scale/amax,D,Ls-1,Ls-1);
for(int b=0;b<nblock;b++){ for(int b=0;b<nblock;b++){
@ -264,6 +328,7 @@ void PartialFractionFermion5D<Impl>::M_internal(const FermionField &psi, Fermi
double pp = p[nblock-1-b]; double pp = p[nblock-1-b];
axpby_ssp(chi,1.0,chi,-sqrt(amax*pp)*scale*sign,psi,Ls-1,s); axpby_ssp(chi,1.0,chi,-sqrt(amax*pp)*scale*sign,psi,Ls-1,s);
} }
} }
} }
@ -411,17 +476,18 @@ void PartialFractionFermion5D<Impl>::SetCoefficientsZolotarev(RealD zolo_hi,App
int Ls = this->Ls; int Ls = this->Ls;
conformable(solution5d.Grid(),this->FermionGrid()); conformable(solution5d.Grid(),this->FermionGrid());
conformable(exported4d.Grid(),this->GaugeGrid()); conformable(exported4d.Grid(),this->GaugeGrid());
ExtractSlice(exported4d, solution5d, Ls-1, Ls-1); ExtractSlice(exported4d, solution5d, Ls-1, 0);
} }
template<class Impl> template<class Impl>
void PartialFractionFermion5D<Impl>::ImportPhysicalFermionSource(const FermionField &input4d,FermionField &imported5d) void PartialFractionFermion5D<Impl>::ImportPhysicalFermionSource(const FermionField &input4d,FermionField &imported5d)
{ {
//void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice, int orthog)
int Ls = this->Ls; int Ls = this->Ls;
conformable(imported5d.Grid(),this->FermionGrid()); conformable(imported5d.Grid(),this->FermionGrid());
conformable(input4d.Grid() ,this->GaugeGrid()); conformable(input4d.Grid() ,this->GaugeGrid());
FermionField tmp(this->FermionGrid()); FermionField tmp(this->FermionGrid());
tmp=Zero(); tmp=Zero();
InsertSlice(input4d, tmp, Ls-1, Ls-1); InsertSlice(input4d, tmp, Ls-1, 0);
tmp=Gamma(Gamma::Algebra::Gamma5)*tmp; tmp=Gamma(Gamma::Algebra::Gamma5)*tmp;
this->Dminus(tmp,imported5d); this->Dminus(tmp,imported5d);
} }
@ -442,7 +508,7 @@ PartialFractionFermion5D<Impl>::PartialFractionFermion5D(GaugeField &_Umu,
{ {
int Ls = this->Ls; int Ls = this->Ls;
qmu.resize(0);
assert((Ls&0x1)==1); // Odd Ls required assert((Ls&0x1)==1); // Odd Ls required
int nrational=Ls-1; int nrational=Ls-1;
@ -460,6 +526,22 @@ PartialFractionFermion5D<Impl>::PartialFractionFermion5D(GaugeField &_Umu,
Approx::zolotarev_free(zdata); Approx::zolotarev_free(zdata);
} }
template<class Impl>
PartialFractionFermion5D<Impl>::PartialFractionFermion5D(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD M5,
std::vector<RealD> &_qmu,
const ImplParams &p)
: PartialFractionFermion5D<Impl>(_Umu,
FiveDimGrid,FiveDimRedBlackGrid,
FourDimGrid,FourDimRedBlackGrid,
_mass,M5,p)
{
qmu=_qmu;
}
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -375,23 +375,6 @@ void StaggeredKernels<Impl>::DhopSiteHandExt(StencilView &st,
} }
} }
/*
#define DHOP_SITE_HAND_INSTANTIATE(IMPL) \
template void StaggeredKernels<IMPL>::DhopSiteHand(StencilImpl &st, LebesgueOrder &lo, \
DoubledGaugeFieldView &U,DoubledGaugeFieldView &UUU, \
SiteSpinor *buf, int LLs, int sU, \
const FermionFieldView &in, FermionFieldView &out, int dag); \
\
template void StaggeredKernels<IMPL>::DhopSiteHandInt(StencilImpl &st, LebesgueOrder &lo, \
DoubledGaugeFieldView &U,DoubledGaugeFieldView &UUU, \
SiteSpinor *buf, int LLs, int sU, \
const FermionFieldView &in, FermionFieldView &out, int dag); \
\
template void StaggeredKernels<IMPL>::DhopSiteHandExt(StencilImpl &st, LebesgueOrder &lo, \
DoubledGaugeFieldView &U,DoubledGaugeFieldView &UUU, \
SiteSpinor *buf, int LLs, int sU, \
const FermionFieldView &in, FermionFieldView &out, int dag); \
*/
#undef LOAD_CHI #undef LOAD_CHI
#undef HAND_DECLARATIONS #undef HAND_DECLARATIONS

View File

@ -256,7 +256,7 @@ void StaggeredKernels<Impl>::DhopDirKernel(StencilImpl &st, DoubledGaugeFieldVie
}); });
template <class Impl> template <class Impl>
void StaggeredKernels<Impl>::DhopImproved(StencilImpl &st, LebesgueOrder &lo, void StaggeredKernels<Impl>::DhopImproved(StencilImpl &st,
DoubledGaugeField &U, DoubledGaugeField &UUU, DoubledGaugeField &U, DoubledGaugeField &UUU,
const FermionField &in, FermionField &out, int dag, int interior,int exterior) const FermionField &in, FermionField &out, int dag, int interior,int exterior)
{ {
@ -294,7 +294,7 @@ void StaggeredKernels<Impl>::DhopImproved(StencilImpl &st, LebesgueOrder &lo,
assert(0 && " Kernel optimisation case not covered "); assert(0 && " Kernel optimisation case not covered ");
} }
template <class Impl> template <class Impl>
void StaggeredKernels<Impl>::DhopNaive(StencilImpl &st, LebesgueOrder &lo, void StaggeredKernels<Impl>::DhopNaive(StencilImpl &st,
DoubledGaugeField &U, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag, int interior,int exterior) const FermionField &in, FermionField &out, int dag, int interior,int exterior)
{ {

View File

@ -14,6 +14,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk> Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Andrew Lawson <andrew.lawson1991@gmail.com> Author: Andrew Lawson <andrew.lawson1991@gmail.com>
Author: Vera Guelpers <V.M.Guelpers@soton.ac.uk> Author: Vera Guelpers <V.M.Guelpers@soton.ac.uk>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
@ -58,15 +59,9 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
Umu(_FourDimGrid), Umu(_FourDimGrid),
UmuEven(_FourDimRedBlackGrid), UmuEven(_FourDimRedBlackGrid),
UmuOdd (_FourDimRedBlackGrid), UmuOdd (_FourDimRedBlackGrid),
Lebesgue(_FourDimGrid),
LebesgueEvenOdd(_FourDimRedBlackGrid),
_tmp(&FiveDimRedBlackGrid), _tmp(&FiveDimRedBlackGrid),
Dirichlet(0) Dirichlet(0)
{ {
Stencil.lo = &Lebesgue;
StencilEven.lo = &LebesgueEvenOdd;
StencilOdd.lo = &LebesgueEvenOdd;
// some assertions // some assertions
assert(FiveDimGrid._ndimension==5); assert(FiveDimGrid._ndimension==5);
assert(FourDimGrid._ndimension==4); assert(FourDimGrid._ndimension==4);
@ -305,19 +300,19 @@ void WilsonFermion5D<Impl>::DhopDerivOE(GaugeField &mat,
} }
template<class Impl> template<class Impl>
void WilsonFermion5D<Impl>::DhopInternal(StencilImpl & st, LebesgueOrder &lo, void WilsonFermion5D<Impl>::DhopInternal(StencilImpl & st,
DoubledGaugeField & U, DoubledGaugeField & U,
const FermionField &in, FermionField &out,int dag) const FermionField &in, FermionField &out,int dag)
{ {
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute ) if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute )
DhopInternalOverlappedComms(st,lo,U,in,out,dag); DhopInternalOverlappedComms(st,U,in,out,dag);
else else
DhopInternalSerialComms(st,lo,U,in,out,dag); DhopInternalSerialComms(st,U,in,out,dag);
} }
template<class Impl> template<class Impl>
void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, LebesgueOrder &lo, void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st,
DoubledGaugeField & U, DoubledGaugeField & U,
const FermionField &in, FermionField &out,int dag) const FermionField &in, FermionField &out,int dag)
{ {
@ -331,21 +326,21 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, Lebesg
// Start comms // Gather intranode and extra node differentiated?? // Start comms // Gather intranode and extra node differentiated??
///////////////////////////// /////////////////////////////
{ {
// std::cout << " WilsonFermion5D gather " <<std::endl;
GRID_TRACE("Gather"); GRID_TRACE("Gather");
st.HaloExchangeOptGather(in,compressor); // Put the barrier in the routine st.HaloExchangeOptGather(in,compressor); // Put the barrier in the routine
} }
// std::cout << " WilsonFermion5D Communicate Begin " <<std::endl;
std::vector<std::vector<CommsRequest_t> > requests; std::vector<std::vector<CommsRequest_t> > requests;
auto id=traceStart("Communicate overlapped");
st.CommunicateBegin(requests);
#if 1
///////////////////////////// /////////////////////////////
// Overlap with comms // Overlap with comms
///////////////////////////// /////////////////////////////
{ st.CommunicateBegin(requests);
GRID_TRACE("MergeSHM");
st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
} #endif
///////////////////////////// /////////////////////////////
// do the compute interior // do the compute interior
@ -359,21 +354,34 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, Lebesg
Kernels::DhopKernel (Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,1,0); Kernels::DhopKernel (Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,1,0);
} }
//ifdef GRID_ACCELERATED
#if 0
/////////////////////////////
// Overlap with comms -- on GPU the interior kernel call is nonblocking
/////////////////////////////
st.CommunicateBegin(requests);
st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
#endif
///////////////////////////// /////////////////////////////
// Complete comms // Complete comms
///////////////////////////// /////////////////////////////
// std::cout << " WilsonFermion5D Comms Complete " <<std::endl;
st.CommunicateComplete(requests); st.CommunicateComplete(requests);
traceStop(id); // traceStop(id);
///////////////////////////// /////////////////////////////
// do the compute exterior // do the compute exterior
///////////////////////////// /////////////////////////////
{ {
// std::cout << " WilsonFermion5D Comms Merge " <<std::endl;
GRID_TRACE("Merge"); GRID_TRACE("Merge");
st.CommsMerge(compressor); st.CommsMerge(compressor);
} }
// std::cout << " WilsonFermion5D Exterior " <<std::endl;
if (dag == DaggerYes) { if (dag == DaggerYes) {
GRID_TRACE("DhopDagExterior"); GRID_TRACE("DhopDagExterior");
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,0,1); Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,0,1);
@ -381,11 +389,12 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, Lebesg
GRID_TRACE("DhopExterior"); GRID_TRACE("DhopExterior");
Kernels::DhopKernel (Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,0,1); Kernels::DhopKernel (Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,0,1);
} }
// std::cout << " WilsonFermion5D Done " <<std::endl;
} }
template<class Impl> template<class Impl>
void WilsonFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st, LebesgueOrder &lo, void WilsonFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st,
DoubledGaugeField & U, DoubledGaugeField & U,
const FermionField &in, const FermionField &in,
FermionField &out,int dag) FermionField &out,int dag)
@ -395,11 +404,13 @@ void WilsonFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st, LebesgueOr
int LLs = in.Grid()->_rdimensions[0]; int LLs = in.Grid()->_rdimensions[0];
// std::cout << " WilsonFermion5D Halo exch " <<std::endl;
{ {
GRID_TRACE("HaloExchange"); GRID_TRACE("HaloExchange");
st.HaloExchangeOpt(in,compressor); st.HaloExchangeOpt(in,compressor);
} }
// std::cout << " WilsonFermion5D Dhop " <<std::endl;
int Opt = WilsonKernelsStatic::Opt; int Opt = WilsonKernelsStatic::Opt;
if (dag == DaggerYes) { if (dag == DaggerYes) {
GRID_TRACE("DhopDag"); GRID_TRACE("DhopDag");
@ -408,6 +419,7 @@ void WilsonFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st, LebesgueOr
GRID_TRACE("Dhop"); GRID_TRACE("Dhop");
Kernels::DhopKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out); Kernels::DhopKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out);
} }
// std::cout << " WilsonFermion5D Done " <<std::endl;
} }
@ -420,7 +432,7 @@ void WilsonFermion5D<Impl>::DhopOE(const FermionField &in, FermionField &out,int
assert(in.Checkerboard()==Even); assert(in.Checkerboard()==Even);
out.Checkerboard() = Odd; out.Checkerboard() = Odd;
DhopInternal(StencilEven,LebesgueEvenOdd,UmuOdd,in,out,dag); DhopInternal(StencilEven,UmuOdd,in,out,dag);
} }
template<class Impl> template<class Impl>
void WilsonFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag) void WilsonFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
@ -431,8 +443,31 @@ void WilsonFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int
assert(in.Checkerboard()==Odd); assert(in.Checkerboard()==Odd);
out.Checkerboard() = Even; out.Checkerboard() = Even;
DhopInternal(StencilOdd,LebesgueEvenOdd,UmuEven,in,out,dag); DhopInternal(StencilOdd,UmuEven,in,out,dag);
} }
template<class Impl>
void WilsonFermion5D<Impl>::DhopComms(const FermionField &in, FermionField &out)
{
int dag =0 ;
conformable(in.Grid(),FermionGrid()); // verifies full grid
conformable(in.Grid(),out.Grid());
out.Checkerboard() = in.Checkerboard();
Compressor compressor(dag);
Stencil.HaloExchangeOpt(in,compressor);
}
template<class Impl>
void WilsonFermion5D<Impl>::DhopCalc(const FermionField &in, FermionField &out,uint64_t *ids)
{
conformable(in.Grid(),FermionGrid()); // verifies full grid
conformable(in.Grid(),out.Grid());
out.Checkerboard() = in.Checkerboard();
int LLs = in.Grid()->_rdimensions[0];
int Opt = WilsonKernelsStatic::Opt;
Kernels::DhopKernel(Opt,Stencil,Umu,Stencil.CommBuf(),LLs,Umu.oSites(),in,out,ids);
}
template<class Impl> template<class Impl>
void WilsonFermion5D<Impl>::Dhop(const FermionField &in, FermionField &out,int dag) void WilsonFermion5D<Impl>::Dhop(const FermionField &in, FermionField &out,int dag)
{ {
@ -441,7 +476,7 @@ void WilsonFermion5D<Impl>::Dhop(const FermionField &in, FermionField &out,int d
out.Checkerboard() = in.Checkerboard(); out.Checkerboard() = in.Checkerboard();
DhopInternal(Stencil,Lebesgue,Umu,in,out,dag); DhopInternal(Stencil,Umu,in,out,dag);
} }
template<class Impl> template<class Impl>
void WilsonFermion5D<Impl>::DW(const FermionField &in, FermionField &out,int dag) void WilsonFermion5D<Impl>::DW(const FermionField &in, FermionField &out,int dag)
@ -450,6 +485,54 @@ void WilsonFermion5D<Impl>::DW(const FermionField &in, FermionField &out,int dag
Dhop(in,out,dag); // -0.5 is included Dhop(in,out,dag); // -0.5 is included
axpy(out,4.0-M5,in,out); axpy(out,4.0-M5,in,out);
} }
template <class Impl>
void WilsonFermion5D<Impl>::Meooe(const FermionField &in, FermionField &out)
{
if (in.Checkerboard() == Odd) {
DhopEO(in, out, DaggerNo);
} else {
DhopOE(in, out, DaggerNo);
}
}
template <class Impl>
void WilsonFermion5D<Impl>::MeooeDag(const FermionField &in, FermionField &out)
{
if (in.Checkerboard() == Odd) {
DhopEO(in, out, DaggerYes);
} else {
DhopOE(in, out, DaggerYes);
}
}
template <class Impl>
void WilsonFermion5D<Impl>::Mooee(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
typename FermionField::scalar_type scal(4.0 + M5);
out = scal * in;
}
template <class Impl>
void WilsonFermion5D<Impl>::MooeeDag(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
Mooee(in, out);
}
template<class Impl>
void WilsonFermion5D<Impl>::MooeeInv(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
out = (1.0/(4.0 + M5))*in;
}
template<class Impl>
void WilsonFermion5D<Impl>::MooeeInvDag(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
MooeeInv(in,out);
}
template<class Impl> template<class Impl>
void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt_5d(FermionField &out,const FermionField &in, RealD mass,std::vector<double> twist) void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt_5d(FermionField &out,const FermionField &in, RealD mass,std::vector<double> twist)
@ -735,6 +818,15 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt(FermionField &out,const Fe
template<class Impl> template<class Impl>
void WilsonFermion5D<Impl>::MomentumSpacePropagatorHw(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) void WilsonFermion5D<Impl>::MomentumSpacePropagatorHw(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist)
{
std::vector<double> empty_q(Nd,0.0);
MomentumSpacePropagatorHwQ(out,in,mass,twist,empty_q);
}
template<class Impl>
void WilsonFermion5D<Impl>::MomentumSpacePropagatorHwQ(FermionField &out,const FermionField &in,
RealD mass,
std::vector<double> twist,
std::vector<double> qmu)
{ {
Gamma::Algebra Gmu [] = { Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX, Gamma::Algebra::GammaX,
@ -750,6 +842,7 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHw(FermionField &out,const Fe
typedef typename FermionField::scalar_type ScalComplex; typedef typename FermionField::scalar_type ScalComplex;
typedef Lattice<iSinglet<vector_type> > LatComplex; typedef Lattice<iSinglet<vector_type> > LatComplex;
typedef iSpinMatrix<ScalComplex> SpinMat;
Coordinate latt_size = _grid->_fdimensions; Coordinate latt_size = _grid->_fdimensions;
@ -767,6 +860,8 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHw(FermionField &out,const Fe
LatComplex kmu(_grid); LatComplex kmu(_grid);
ScalComplex ci(0.0,1.0); ScalComplex ci(0.0,1.0);
std::cout<< "Feynman Rule" << "qmu ("<<qmu[0]<<","<<qmu[1]<<","<<qmu[2]<<","<<qmu[3]<<")"<<std::endl;
for(int mu=0;mu<Nd;mu++) { for(int mu=0;mu<Nd;mu++) {
LatticeCoordinate(kmu,mu); LatticeCoordinate(kmu,mu);
@ -777,9 +872,18 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHw(FermionField &out,const Fe
kmu = kmu + TwoPiL * one * twist[mu];//momentum for twisted boundary conditions kmu = kmu + TwoPiL * one * twist[mu];//momentum for twisted boundary conditions
sk2 = sk2 + 2.0*sin(kmu*0.5)*sin(kmu*0.5); sk2 = sk2 + 2.0*sin(kmu*0.5)*sin(kmu*0.5);
sk = sk + sin(kmu)*sin(kmu);
num = num - sin(kmu)*ci*(Gamma(Gmu[mu])*in); sk = sk + (sin(kmu)+qmu[mu])*(sin(kmu)+qmu[mu]);
// Terms for boosted Fermion
// 1/2 [ -i gamma.(sin p + q ) ]
// [ --------------------- + 1 ]
// [ wq + b ]
//
// wq = sqrt( (sinp+q)^2 + b^2 )
//
num = num - (sin(kmu)+qmu[mu])*ci*(Gamma(Gmu[mu])*in);
} }
num = num + mass * in ; num = num + mass * in ;

View File

@ -52,17 +52,12 @@ WilsonFermion<Impl>::WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
StencilEven(&Hgrid, npoint, Even, directions,displacements,p), // source is Even StencilEven(&Hgrid, npoint, Even, directions,displacements,p), // source is Even
StencilOdd(&Hgrid, npoint, Odd, directions,displacements,p), // source is Odd StencilOdd(&Hgrid, npoint, Odd, directions,displacements,p), // source is Odd
mass(_mass), mass(_mass),
Lebesgue(_grid),
LebesgueEvenOdd(_cbgrid),
Umu(&Fgrid), Umu(&Fgrid),
UmuEven(&Hgrid), UmuEven(&Hgrid),
UmuOdd(&Hgrid), UmuOdd(&Hgrid),
_tmp(&Hgrid), _tmp(&Hgrid),
anisotropyCoeff(anis) anisotropyCoeff(anis)
{ {
Stencil.lo = &Lebesgue;
StencilEven.lo = &LebesgueEvenOdd;
StencilOdd.lo = &LebesgueEvenOdd;
// Allocate the required comms buffer // Allocate the required comms buffer
ImportGauge(_Umu); ImportGauge(_Umu);
if (anisotropyCoeff.isAnisotropic){ if (anisotropyCoeff.isAnisotropic){
@ -314,7 +309,7 @@ void WilsonFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int da
out.Checkerboard() = in.Checkerboard(); out.Checkerboard() = in.Checkerboard();
DhopInternal(Stencil, Lebesgue, Umu, in, out, dag); DhopInternal(Stencil, Umu, in, out, dag);
} }
template <class Impl> template <class Impl>
@ -326,7 +321,7 @@ void WilsonFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int
assert(in.Checkerboard() == Even); assert(in.Checkerboard() == Even);
out.Checkerboard() = Odd; out.Checkerboard() = Odd;
DhopInternal(StencilEven, LebesgueEvenOdd, UmuOdd, in, out, dag); DhopInternal(StencilEven, UmuOdd, in, out, dag);
} }
template <class Impl> template <class Impl>
@ -338,7 +333,7 @@ void WilsonFermion<Impl>::DhopEO(const FermionField &in, FermionField &out,int d
assert(in.Checkerboard() == Odd); assert(in.Checkerboard() == Odd);
out.Checkerboard() = Even; out.Checkerboard() = Even;
DhopInternal(StencilOdd, LebesgueEvenOdd, UmuEven, in, out, dag); DhopInternal(StencilOdd, UmuEven, in, out, dag);
} }
template <class Impl> template <class Impl>
@ -391,21 +386,21 @@ void WilsonFermion<Impl>::DhopDirCalc(const FermionField &in, FermionField &out,
}; };
template <class Impl> template <class Impl>
void WilsonFermion<Impl>::DhopInternal(StencilImpl &st, LebesgueOrder &lo, void WilsonFermion<Impl>::DhopInternal(StencilImpl &st,
DoubledGaugeField &U, DoubledGaugeField &U,
const FermionField &in, const FermionField &in,
FermionField &out, int dag) FermionField &out, int dag)
{ {
#ifdef GRID_OMP #ifdef GRID_OMP
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute ) if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute )
DhopInternalOverlappedComms(st,lo,U,in,out,dag); DhopInternalOverlappedComms(st,U,in,out,dag);
else else
#endif #endif
DhopInternalSerial(st,lo,U,in,out,dag); DhopInternalSerial(st,U,in,out,dag);
} }
template <class Impl> template <class Impl>
void WilsonFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, void WilsonFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st,
DoubledGaugeField &U, DoubledGaugeField &U,
const FermionField &in, const FermionField &in,
FermionField &out, int dag) FermionField &out, int dag)
@ -474,7 +469,7 @@ void WilsonFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, LebesgueO
template <class Impl> template <class Impl>
void WilsonFermion<Impl>::DhopInternalSerial(StencilImpl &st, LebesgueOrder &lo, void WilsonFermion<Impl>::DhopInternalSerial(StencilImpl &st,
DoubledGaugeField &U, DoubledGaugeField &U,
const FermionField &in, const FermionField &in,
FermionField &out, int dag) FermionField &out, int dag)

View File

@ -40,11 +40,11 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
/// Switch off the 5d vectorised code optimisations /// Switch off the 5d vectorised code optimisations
#undef DWFVEC5D #undef DWFVEC5D
static Vector<vComplexF> signsF; static std::vector<vComplexF> signsF;
template<typename vtype> template<typename vtype>
int setupSigns(Vector<vtype>& signs ){ int setupSigns(std::vector<vtype>& signs ){
Vector<vtype> bother(2); std::vector<vtype> bother(2);
signs = bother; signs = bother;
vrsign(signs[0]); vrsign(signs[0]);
visign(signs[1]); visign(signs[1]);
@ -364,7 +364,7 @@ WilsonKernels<ZDomainWallVec5dImplF>::AsmDhopSiteDagExt(StencilView &st, Doubled
#include <simd/Intel512double.h> #include <simd/Intel512double.h>
static Vector<vComplexD> signsD; static std::vector<vComplexD> signsD;
static int signInitD = setupSigns(signsD); static int signInitD = setupSigns(signsD);
#define MAYBEPERM(A,perm) if (perm) { A ; } #define MAYBEPERM(A,perm) if (perm) { A ; }

View File

@ -411,6 +411,46 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
#undef LoopBody #undef LoopBody
} }
#ifdef GRID_SYCL
extern "C" {
ulong SYCL_EXTERNAL __attribute__((overloadable)) intel_get_cycle_counter( void );
uint SYCL_EXTERNAL __attribute__((overloadable)) intel_get_active_channel_mask( void );
uint SYCL_EXTERNAL __attribute__((overloadable)) intel_get_grf_register( uint reg );
uint SYCL_EXTERNAL __attribute__((overloadable)) intel_get_flag_register( uint flag );
uint SYCL_EXTERNAL __attribute__((overloadable)) intel_get_control_register( uint reg );
uint SYCL_EXTERNAL __attribute__((overloadable)) intel_get_hw_thread_id( void );
uint SYCL_EXTERNAL __attribute__((overloadable)) intel_get_slice_id( void );
uint SYCL_EXTERNAL __attribute__((overloadable)) intel_get_subslice_id( void );
uint SYCL_EXTERNAL __attribute__((overloadable)) intel_get_eu_id( void );
uint SYCL_EXTERNAL __attribute__((overloadable)) intel_get_eu_thread_id( void );
void SYCL_EXTERNAL __attribute__((overloadable)) intel_eu_thread_pause( uint value );
}
#ifdef GRID_SIMT
#define MAKE_ID(A) (intel_get_eu_id()<<16)|(intel_get_slice_id()<<8)|(intel_get_subslice_id())
#else
#define MAKE_ID(A) (0)
#endif
#else
#define MAKE_ID(A) (0)
#endif
#define KERNEL_CALL_ID(A) \
const uint64_t NN = Nsite*Ls; \
accelerator_forNB( ss, NN, Simd::Nsimd(), { \
int sF = ss; \
int sU = ss/Ls; \
WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,in_v,out_v); \
const int Nsimd = SiteHalfSpinor::Nsimd(); \
const int lane=acceleratorSIMTlane(Nsimd); \
int idx=sF*Nsimd+lane; \
uint64_t id = MAKE_ID(); \
ids[idx]=id; \
}); \
accelerator_barrier();
#define KERNEL_CALLNB(A) \ #define KERNEL_CALLNB(A) \
const uint64_t NN = Nsite*Ls; \ const uint64_t NN = Nsite*Ls; \
@ -434,7 +474,7 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
#define ASM_CALL(A) \ #define ASM_CALL(A) \
thread_for( sss, Nsite, { \ thread_for( sss, Nsite, { \
int ss = st.lo->Reorder(sss); \ int ss = sss; /*st.lo->Reorder(sss);*/ \
int sU = ss; \ int sU = ss; \
int sF = ss*Ls; \ int sF = ss*Ls; \
WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,Ls,1,in_v,out_v); \ WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,Ls,1,in_v,out_v); \
@ -451,6 +491,8 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,Ls,1,in_v,out_v); \ WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,Ls,1,in_v,out_v); \
});} });}
template <class Impl> template <class Impl>
void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf, void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out, int Ls, int Nsite, const FermionField &in, FermionField &out,
@ -475,7 +517,7 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteInt); return;} if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteInt); return;}
#endif #endif
} else if( exterior ) { } else if( exterior ) {
// dependent on result of merge // // dependent on result of merge
acceleratorFenceComputeStream(); acceleratorFenceComputeStream();
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL_EXT(GenericDhopSiteExt); return;} if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL_EXT(GenericDhopSiteExt); return;}
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL_EXT(HandDhopSiteExt); return;} if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL_EXT(HandDhopSiteExt); return;}
@ -485,6 +527,18 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
} }
assert(0 && " Kernel optimisation case not covered "); assert(0 && " Kernel optimisation case not covered ");
} }
template <class Impl>
void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out,
uint64_t *ids)
{
autoView(U_v , U,AcceleratorRead);
autoView(in_v , in,AcceleratorRead);
autoView(out_v,out,AcceleratorWrite);
autoView(st_v , st,AcceleratorRead);
KERNEL_CALL_ID(GenericDhopSite);
}
template <class Impl> template <class Impl>
void WilsonKernels<Impl>::DhopDagKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf, void WilsonKernels<Impl>::DhopDagKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out, int Ls, int Nsite, const FermionField &in, FermionField &out,

View File

@ -0,0 +1,45 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/ qcd/action/fermion/instantiation/CompactWilsonCloverFermionInstantiation5D.cc.master
Copyright (C) 2017 - 2025
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
Author: Mattia Bruno <mattia.bruno@cern.ch>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/qcd/spin/Dirac.h>
#include <Grid/qcd/action/fermion/CompactWilsonCloverFermion5D.h>
#include <Grid/qcd/action/fermion/implementation/CompactWilsonCloverFermion5DImplementation.h>
#include <Grid/qcd/action/fermion/CloverHelpers.h>
NAMESPACE_BEGIN(Grid);
#include "impl.h"
template class CompactWilsonCloverFermion5D<IMPLEMENTATION, CompactCloverHelpers<IMPLEMENTATION>>;
template class CompactWilsonCloverFermion5D<IMPLEMENTATION, CompactExpCloverHelpers<IMPLEMENTATION>>;
NAMESPACE_END(Grid);

View File

@ -0,0 +1 @@
../CompactWilsonCloverFermion5DInstantiation.cc.master

View File

@ -0,0 +1 @@
../CompactWilsonCloverFermion5DInstantiation.cc.master

View File

@ -62,7 +62,7 @@ do
done done
done done
CC_LIST="CompactWilsonCloverFermionInstantiation" CC_LIST="CompactWilsonCloverFermionInstantiation CompactWilsonCloverFermion5DInstantiation"
for impl in $COMPACT_WILSON_IMPL_LIST for impl in $COMPACT_WILSON_IMPL_LIST
do do

View File

@ -40,6 +40,11 @@ public:
INHERIT_GIMPL_TYPES(Gimpl); INHERIT_GIMPL_TYPES(Gimpl);
using Action<GaugeField>::S;
using Action<GaugeField>::Sinitial;
using Action<GaugeField>::deriv;
using Action<GaugeField>::refresh;
private: private:
RealD c_plaq; RealD c_plaq;
RealD c_rect; RealD c_rect;
@ -71,26 +76,26 @@ public:
return action; return action;
}; };
virtual void deriv(const GaugeField &Umu,GaugeField & dSdU) { virtual void deriv(const GaugeField &U, GaugeField &dSdU) {
//extend Ta to include Lorentz indexes //extend Ta to include Lorentz indexes
RealD factor_p = c_plaq/RealD(Nc)*0.5; RealD factor_p = c_plaq/RealD(Nc)*0.5;
RealD factor_r = c_rect/RealD(Nc)*0.5; RealD factor_r = c_rect/RealD(Nc)*0.5;
GridBase *grid = Umu.Grid(); GridBase *grid = U.Grid();
std::vector<GaugeLinkField> U (Nd,grid); std::vector<GaugeLinkField> Umu (Nd,grid);
for(int mu=0;mu<Nd;mu++){ for(int mu=0;mu<Nd;mu++){
U[mu] = PeekIndex<LorentzIndex>(Umu,mu); Umu[mu] = PeekIndex<LorentzIndex>(U,mu);
} }
std::vector<GaugeLinkField> RectStaple(Nd,grid), Staple(Nd,grid); std::vector<GaugeLinkField> RectStaple(Nd,grid), Staple(Nd,grid);
WilsonLoops<Gimpl>::StapleAndRectStapleAll(Staple, RectStaple, U, workspace); WilsonLoops<Gimpl>::StapleAndRectStapleAll(Staple, RectStaple, Umu, workspace);
GaugeLinkField dSdU_mu(grid); GaugeLinkField dSdU_mu(grid);
GaugeLinkField staple(grid); GaugeLinkField staple(grid);
for (int mu=0; mu < Nd; mu++){ for (int mu=0; mu < Nd; mu++){
dSdU_mu = Ta(U[mu]*Staple[mu])*factor_p; dSdU_mu = Ta(Umu[mu]*Staple[mu])*factor_p;
dSdU_mu = dSdU_mu + Ta(U[mu]*RectStaple[mu])*factor_r; dSdU_mu = dSdU_mu + Ta(Umu[mu]*RectStaple[mu])*factor_r;
PokeIndex<LorentzIndex>(dSdU, dSdU_mu, mu); PokeIndex<LorentzIndex>(dSdU, dSdU_mu, mu);
} }

View File

@ -43,6 +43,11 @@ class WilsonGaugeAction : public Action<typename Gimpl::GaugeField> {
public: public:
INHERIT_GIMPL_TYPES(Gimpl); INHERIT_GIMPL_TYPES(Gimpl);
using Action<GaugeField>::S;
using Action<GaugeField>::Sinitial;
using Action<GaugeField>::deriv;
using Action<GaugeField>::refresh;
/////////////////////////// constructors /////////////////////////// constructors
explicit WilsonGaugeAction(RealD beta_):beta(beta_){}; explicit WilsonGaugeAction(RealD beta_):beta(beta_){};
@ -68,20 +73,23 @@ public:
// extend Ta to include Lorentz indexes // extend Ta to include Lorentz indexes
RealD factor = 0.5 * beta / RealD(Nc); RealD factor = 0.5 * beta / RealD(Nc);
GridBase *grid = U.Grid();
GaugeLinkField Umu(U.Grid()); GaugeLinkField dSdU_mu(grid);
GaugeLinkField dSdU_mu(U.Grid()); std::vector<GaugeLinkField> Umu(Nd, grid);
for (int mu = 0; mu < Nd; mu++) { for (int mu = 0; mu < Nd; mu++) {
Umu[mu] = PeekIndex<LorentzIndex>(U, mu);
}
Umu = PeekIndex<LorentzIndex>(U, mu); for (int mu = 0; mu < Nd; mu++) {
// Staple in direction mu // Staple in direction mu
WilsonLoops<Gimpl>::Staple(dSdU_mu, U, mu); WilsonLoops<Gimpl>::Staple(dSdU_mu, Umu, mu);
dSdU_mu = Ta(Umu * dSdU_mu) * factor; dSdU_mu = Ta(Umu[mu] * dSdU_mu) * factor;
PokeIndex<LorentzIndex>(dSdU, dSdU_mu, mu); PokeIndex<LorentzIndex>(dSdU, dSdU_mu, mu);
} }
} }
private: private:
RealD beta; RealD beta;
}; };

View File

@ -111,8 +111,8 @@ public:
}; };
void CheckpointRestore(int traj, Field &U, GridSerialRNG &sRNG, GridParallelRNG &pRNG) { void CheckpointRestore(int traj, Field &U, GridSerialRNG &sRNG, GridParallelRNG &pRNG) {
std::string config, rng; std::string config, rng, smr;
this->build_filenames(traj, Params, config, rng); this->build_filenames(traj, Params, config, smr, rng);
this->check_filename(rng); this->check_filename(rng);
this->check_filename(config); this->check_filename(config);

View File

@ -75,7 +75,7 @@ public:
GridParallelRNG &pRNG) { GridParallelRNG &pRNG) {
if ((traj % Params.saveInterval) == 0) { if ((traj % Params.saveInterval) == 0) {
std::string config, rng, smr; std::string config, rng, smr;
this->build_filenames(traj, Params, config, rng); this->build_filenames(traj, Params, config, smr, rng);
GridBase *grid = SmartConfig.get_U(false).Grid(); GridBase *grid = SmartConfig.get_U(false).Grid();
uint32_t nersc_csum,scidac_csuma,scidac_csumb; uint32_t nersc_csum,scidac_csuma,scidac_csumb;
BinaryIO::writeRNG(sRNG, pRNG, rng, 0,nersc_csum,scidac_csuma,scidac_csumb); BinaryIO::writeRNG(sRNG, pRNG, rng, 0,nersc_csum,scidac_csuma,scidac_csumb);
@ -102,7 +102,7 @@ public:
if ( Params.saveSmeared ) { if ( Params.saveSmeared ) {
IldgWriter _IldgWriter(grid->IsBoss()); IldgWriter _IldgWriter(grid->IsBoss());
_IldgWriter.open(smr); _IldgWriter.open(smr);
_IldgWriter.writeConfiguration<GaugeStats>(SmartConfig.get_U(true), traj, config, config); _IldgWriter.writeConfiguration<GaugeStats>(SmartConfig.get_U(true), traj, smr, smr);
_IldgWriter.close(); _IldgWriter.close();
std::cout << GridLogMessage << "Written ILDG Configuration on " << smr std::cout << GridLogMessage << "Written ILDG Configuration on " << smr
@ -118,8 +118,8 @@ public:
void CheckpointRestore(int traj, GaugeField &U, GridSerialRNG &sRNG, void CheckpointRestore(int traj, GaugeField &U, GridSerialRNG &sRNG,
GridParallelRNG &pRNG) { GridParallelRNG &pRNG) {
std::string config, rng; std::string config, rng, smr;
this->build_filenames(traj, Params, config, rng); this->build_filenames(traj, Params, config, smr, rng);
this->check_filename(rng); this->check_filename(rng);
this->check_filename(config); this->check_filename(config);

View File

@ -107,8 +107,8 @@ class ScidacHmcCheckpointer : public BaseHmcCheckpointer<Implementation> {
void CheckpointRestore(int traj, Field &U, GridSerialRNG &sRNG, void CheckpointRestore(int traj, Field &U, GridSerialRNG &sRNG,
GridParallelRNG &pRNG) { GridParallelRNG &pRNG) {
std::string config, rng; std::string config, rng, smr;
this->build_filenames(traj, Params, config, rng); this->build_filenames(traj, Params, config, smr, rng);
this->check_filename(rng); this->check_filename(rng);
this->check_filename(config); this->check_filename(config);

View File

@ -40,7 +40,7 @@ public:
U = Zero(); U = Zero();
LatticeColourMatrix tmp(Uin.Grid()); LatticeColourMatrix tmp(Uin.Grid());
Vector<typename SU<ncolour>::Matrix> ta(Dimension); std::vector<typename SU<ncolour>::Matrix> ta(Dimension);
// Debug lines // Debug lines
// LatticeMatrix uno(Uin.Grid()); // LatticeMatrix uno(Uin.Grid());

View File

@ -43,7 +43,7 @@ public:
U = Zero(); U = Zero();
LatticeColourMatrix tmp(Uin.Grid()); LatticeColourMatrix tmp(Uin.Grid());
Vector<typename GaugeGroup<ncolour,group_name>::Matrix> eij(Dimension); std::vector<typename GaugeGroup<ncolour,group_name>::Matrix> eij(Dimension);
for (int a = 0; a < Dimension; a++) for (int a = 0; a < Dimension; a++)
GaugeGroupTwoIndex<ncolour, S, group_name>::base(a, eij[a]); GaugeGroupTwoIndex<ncolour, S, group_name>::base(a, eij[a]);

View File

@ -62,15 +62,15 @@ accelerator_inline int stencilIndex(int mu, int nu) {
/*! @brief structure holding the link treatment */ /*! @brief structure holding the link treatment */
struct SmearingParameters{ struct HISQSmearingParameters{
SmearingParameters(){} HISQSmearingParameters(){}
Real c_1; // 1 link Real c_1; // 1 link
Real c_naik; // Naik term Real c_naik; // Naik term
Real c_3; // 3 link Real c_3; // 3 link
Real c_5; // 5 link Real c_5; // 5 link
Real c_7; // 7 link Real c_7; // 7 link
Real c_lp; // 5 link Lepage Real c_lp; // 5 link Lepage
SmearingParameters(Real c1, Real cnaik, Real c3, Real c5, Real c7, Real clp) HISQSmearingParameters(Real c1, Real cnaik, Real c3, Real c5, Real c7, Real clp)
: c_1(c1), : c_1(c1),
c_naik(cnaik), c_naik(cnaik),
c_3(c3), c_3(c3),
@ -86,7 +86,7 @@ class Smear_HISQ : public Gimpl {
private: private:
GridCartesian* const _grid; GridCartesian* const _grid;
SmearingParameters _linkTreatment; HISQSmearingParameters _linkTreatment;
public: public:
@ -117,7 +117,7 @@ public:
// IN--u_thin // IN--u_thin
void smear(GF& u_smr, GF& u_naik, GF& u_thin) const { void smear(GF& u_smr, GF& u_naik, GF& u_thin) const {
SmearingParameters lt = this->_linkTreatment; HISQSmearingParameters lt = this->_linkTreatment;
auto grid = this->_grid; auto grid = this->_grid;
// Create a padded cell of extra padding depth=1 and fill the padding. // Create a padded cell of extra padding depth=1 and fill the padding.

View File

@ -207,11 +207,14 @@ std::vector<RealD> WilsonFlowBase<Gimpl>::flowMeasureEnergyDensityCloverleaf(con
} }
template <class Gimpl> template <class Gimpl>
void WilsonFlowBase<Gimpl>::setDefaultMeasurements(int topq_meas_interval){ void WilsonFlowBase<Gimpl>::setDefaultMeasurements(int meas_interval){
addMeasurement(1, [](int step, RealD t, const typename Gimpl::GaugeField &U){ addMeasurement(meas_interval, [](int step, RealD t, const typename Gimpl::GaugeField &U){
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : " << step << " " << t << " " << energyDensityPlaquette(t,U) << std::endl; std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : " << step << " " << t << " " << energyDensityPlaquette(t,U) << std::endl;
}); });
addMeasurement(topq_meas_interval, [](int step, RealD t, const typename Gimpl::GaugeField &U){ addMeasurement(meas_interval, [](int step, RealD t, const typename Gimpl::GaugeField &U){
std::cout << GridLogMessage << "[WilsonFlow] Energy density (cloverleaf) : " << step << " " << t << " " << energyDensityCloverleaf(t,U) << std::endl;
});
addMeasurement(meas_interval, [](int step, RealD t, const typename Gimpl::GaugeField &U){
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : " << step << " " << WilsonLoops<Gimpl>::TopologicalCharge(U) << std::endl; std::cout << GridLogMessage << "[WilsonFlow] Top. charge : " << step << " " << WilsonLoops<Gimpl>::TopologicalCharge(U) << std::endl;
}); });
} }
@ -249,6 +252,11 @@ void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const{
out = in; out = in;
RealD taus = 0.; RealD taus = 0.;
// Perform initial t=0 measurements
for(auto const &meas : this->functions)
meas.second(0,taus,out);
for (unsigned int step = 1; step <= Nstep; step++) { //step indicates the number of smearing steps applied at the time of measurement for (unsigned int step = 1; step <= Nstep; step++) { //step indicates the number of smearing steps applied at the time of measurement
auto start = std::chrono::high_resolution_clock::now(); auto start = std::chrono::high_resolution_clock::now();
evolve_step(out, taus); evolve_step(out, taus);
@ -333,6 +341,11 @@ void WilsonFlowAdaptive<Gimpl>::smear(GaugeField& out, const GaugeField& in) con
RealD taus = 0.; RealD taus = 0.;
RealD eps = init_epsilon; RealD eps = init_epsilon;
unsigned int step = 0; unsigned int step = 0;
// Perform initial t=0 measurements
for(auto const &meas : this->functions)
meas.second(step,taus,out);
do{ do{
int step_success = evolve_step_adaptive(out, taus, eps); int step_success = evolve_step_adaptive(out, taus, eps);
step += step_success; //step will not be incremented if the integration step fails step += step_success; //step will not be incremented if the integration step fails

File diff suppressed because it is too large Load Diff

View File

@ -971,7 +971,9 @@ void BaryonUtils<FImpl>::BaryonGamma3pt(
autoView( vq_ti , q_ti , AcceleratorRead); autoView( vq_ti , q_ti , AcceleratorRead);
autoView( vq_tf , q_tf , AcceleratorRead); autoView( vq_tf , q_tf , AcceleratorRead);
Vector<mobj> my_Dq_spec{Dq_spec1,Dq_spec2}; deviceVector<mobj> my_Dq_spec(2);
acceleratorPut(my_Dq_spec[0],Dq_spec1);
acceleratorPut(my_Dq_spec[1],Dq_spec2);
mobj * Dq_spec_p = &my_Dq_spec[0]; mobj * Dq_spec_p = &my_Dq_spec[0];
if (group == 1) { if (group == 1) {
@ -1300,7 +1302,8 @@ void BaryonUtils<FImpl>::SigmaToNucleonEye(const PropagatorField &qq_loop,
autoView( vd_tf , qd_tf , AcceleratorRead); autoView( vd_tf , qd_tf , AcceleratorRead);
autoView( vs_ti , qs_ti , AcceleratorRead); autoView( vs_ti , qs_ti , AcceleratorRead);
Vector<mobj> my_Dq_spec{Du_spec}; deviceVector<mobj> my_Dq_spec(1);
acceleratorPut(my_Dq_spec[0],Du_spec);
mobj * Dq_spec_p = &my_Dq_spec[0]; mobj * Dq_spec_p = &my_Dq_spec[0];
if(op == "Q1"){ if(op == "Q1"){
@ -1353,7 +1356,8 @@ void BaryonUtils<FImpl>::SigmaToNucleonNonEye(const PropagatorField &qq_ti,
autoView( vd_tf , qd_tf , AcceleratorRead ); autoView( vd_tf , qd_tf , AcceleratorRead );
autoView( vs_ti , qs_ti , AcceleratorRead ); autoView( vs_ti , qs_ti , AcceleratorRead );
Vector<mobj> my_Dq_spec{Du_spec}; deviceVector<mobj> my_Dq_spec(1);
acceleratorPut(my_Dq_spec[0],Du_spec);
mobj * Dq_spec_p = &my_Dq_spec[0]; mobj * Dq_spec_p = &my_Dq_spec[0];
if(op == "Q1"){ if(op == "Q1"){
@ -1544,7 +1548,9 @@ void BaryonUtils<FImpl>::XiToSigmaEye(const PropagatorField &qq_loop,
autoView( vd_tf , qd_tf , AcceleratorRead); autoView( vd_tf , qd_tf , AcceleratorRead);
autoView( vs_ti , qs_ti , AcceleratorRead); autoView( vs_ti , qs_ti , AcceleratorRead);
Vector<mobj> my_Dq_spec{Dd_spec,Ds_spec}; deviceVector<mobj> my_Dq_spec(2);
acceleratorPut(my_Dq_spec[0],Dd_spec);
acceleratorPut(my_Dq_spec[0],Ds_spec);
mobj * Dq_spec_p = &my_Dq_spec[0]; mobj * Dq_spec_p = &my_Dq_spec[0];
if(op == "Q1"){ if(op == "Q1"){

View File

@ -118,7 +118,7 @@ static void generatorDiagonal(int diagIndex, iGroupMatrix<cplx> &ta) {
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
// Map a su2 subgroup number to the pair of rows that are non zero // Map a su2 subgroup number to the pair of rows that are non zero
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
static void su2SubGroupIndex(int &i1, int &i2, int su2_index, GroupName::SU) { static accelerator_inline void su2SubGroupIndex(int &i1, int &i2, int su2_index, GroupName::SU) {
assert((su2_index >= 0) && (su2_index < (ncolour * (ncolour - 1)) / 2)); assert((su2_index >= 0) && (su2_index < (ncolour * (ncolour - 1)) / 2));
int spare = su2_index; int spare = su2_index;

View File

@ -62,7 +62,7 @@ public:
// returns i(T_Adj)^index necessary for the projectors // returns i(T_Adj)^index necessary for the projectors
// see definitions above // see definitions above
iAdjTa = Zero(); iAdjTa = Zero();
Vector<iSUnMatrix<cplx> > ta(ncolour * ncolour - 1); iSUnMatrix<cplx> ta[ncolour * ncolour - 1];
iSUnMatrix<cplx> tmp; iSUnMatrix<cplx> tmp;
// FIXME not very efficient to get all the generators everytime // FIXME not very efficient to get all the generators everytime

View File

@ -207,7 +207,7 @@ static void generatorZtype(int zIndex, iGroupMatrix<cplx> &ta) {
// Map a su2 subgroup number to the pair of rows that are non zero // Map a su2 subgroup number to the pair of rows that are non zero
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
template <ONLY_IF_Sp> template <ONLY_IF_Sp>
static void su2SubGroupIndex(int &i1, int &i2, int su2_index, GroupName::Sp) { static accelerator_inline void su2SubGroupIndex(int &i1, int &i2, int su2_index, GroupName::Sp) {
const int nsp=ncolour/2; const int nsp=ncolour/2;
assert((su2_index >= 0) && (su2_index < (nsp * (nsp - 1)) / 2)); assert((su2_index >= 0) && (su2_index < (nsp * (nsp - 1)) / 2));

View File

@ -292,19 +292,21 @@ public:
////////////////////////////////////////////////// //////////////////////////////////////////////////
// the sum over all nu-oriented staples for nu != mu on each site // the sum over all nu-oriented staples for nu != mu on each site
////////////////////////////////////////////////// //////////////////////////////////////////////////
static void Staple(GaugeMat &staple, const GaugeLorentz &Umu, int mu) { static void Staple(GaugeMat &staple, const GaugeLorentz &U, int mu) {
GridBase *grid = Umu.Grid(); std::vector<GaugeMat> Umu(Nd, U.Grid());
std::vector<GaugeMat> U(Nd, grid);
for (int d = 0; d < Nd; d++) { for (int d = 0; d < Nd; d++) {
U[d] = PeekIndex<LorentzIndex>(Umu, d); Umu[d] = PeekIndex<LorentzIndex>(U, d);
} }
Staple(staple, U, mu); Staple(staple, Umu, mu);
} }
static void Staple(GaugeMat &staple, const std::vector<GaugeMat> &U, int mu) { static void Staple(GaugeMat &staple, const std::vector<GaugeMat> &Umu, int mu) {
staple = Zero();
autoView(staple_v, staple, AcceleratorWrite);
accelerator_for(i, staple.Grid()->oSites(), Simd::Nsimd(), {
staple_v[i] = Zero();
});
for (int nu = 0; nu < Nd; nu++) { for (int nu = 0; nu < Nd; nu++) {
@ -321,9 +323,9 @@ public:
staple += Gimpl::ShiftStaple( staple += Gimpl::ShiftStaple(
Gimpl::CovShiftForward( Gimpl::CovShiftForward(
U[nu], nu, Umu[nu], nu,
Gimpl::CovShiftBackward( Gimpl::CovShiftBackward(
U[mu], mu, Gimpl::CovShiftIdentityBackward(U[nu], nu))), Umu[mu], mu, Gimpl::CovShiftIdentityBackward(Umu[nu], nu))),
mu); mu);
// __ // __
@ -333,8 +335,8 @@ public:
// //
staple += Gimpl::ShiftStaple( staple += Gimpl::ShiftStaple(
Gimpl::CovShiftBackward(U[nu], nu, Gimpl::CovShiftBackward(Umu[nu], nu,
Gimpl::CovShiftBackward(U[mu], mu, U[nu])), mu); Gimpl::CovShiftBackward(Umu[mu], mu, Umu[nu])), mu);
} }
} }
} }

View File

@ -72,7 +72,7 @@ public:
} }
// Resident in managed memory // Resident in managed memory
Vector<GeneralStencilEntry> _entries; deviceVector<GeneralStencilEntry> _entries;
GeneralLocalStencil(GridBase *grid, const std::vector<Coordinate> &shifts) GeneralLocalStencil(GridBase *grid, const std::vector<Coordinate> &shifts)
{ {
@ -141,7 +141,7 @@ public:
//////////////////////////////////////////////// ////////////////////////////////////////////////
// Store in look up table // Store in look up table
//////////////////////////////////////////////// ////////////////////////////////////////////////
this->_entries[lex] = SE; acceleratorPut(this->_entries[lex],SE);
} }
}); });
} }

Some files were not shown because too many files have changed in this diff Show More