mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-12 20:27:06 +01:00
Compare commits
6 Commits
882a217074
...
feature/BC
Author | SHA1 | Date | |
---|---|---|---|
751fae9f0d | |||
118746b1e9 | |||
8f6039646b | |||
95e9fd1889 | |||
66da4a38f9 | |||
236868d2e9 |
@ -117,7 +117,7 @@ void TDWF<FImpl>::setup(void)
|
||||
auto &grb4 = *env().getRbGrid();
|
||||
auto &g5 = *env().getGrid(par().Ls);
|
||||
auto &grb5 = *env().getRbGrid(par().Ls);
|
||||
std::vector<Complex> boundary = strToVec<Complex>(par().boundary);
|
||||
std::vector<ComplexD> boundary = strToVec<ComplexD>(par().boundary);
|
||||
typename DomainWallFermion<FImpl>::ImplParams implParams(boundary);
|
||||
envCreateDerived(FMat, DomainWallFermion<FImpl>, getName(), par().Ls, U, g5,
|
||||
grb5, g4, grb4, par().mass, par().M5, implParams);
|
||||
|
@ -110,7 +110,7 @@ void TWilson<FImpl>::setup(void)
|
||||
auto &U = envGet(LatticeGaugeField, par().gauge);
|
||||
auto &grid = *env().getGrid();
|
||||
auto &gridRb = *env().getRbGrid();
|
||||
std::vector<Complex> boundary = strToVec<Complex>(par().boundary);
|
||||
std::vector<ComplexD> boundary = strToVec<ComplexD>(par().boundary);
|
||||
typename WilsonFermion<FImpl>::ImplParams implParams(boundary);
|
||||
envCreateDerived(FMat, WilsonFermion<FImpl>, getName(), 1, U, grid, gridRb,
|
||||
par().mass, implParams);
|
||||
|
@ -121,7 +121,7 @@ void TWilsonClover<FImpl>::setup(void)
|
||||
auto &U = envGet(LatticeGaugeField, par().gauge);
|
||||
auto &grid = *env().getGrid();
|
||||
auto &gridRb = *env().getRbGrid();
|
||||
std::vector<Complex> boundary = strToVec<Complex>(par().boundary);
|
||||
std::vector<ComplexD> boundary = strToVec<ComplexD>(par().boundary);
|
||||
typename WilsonCloverFermion<FImpl>::ImplParams implParams(boundary);
|
||||
envCreateDerived(FMat, WilsonCloverFermion<FImpl>, getName(), 1, U, grid, gridRb, par().mass,
|
||||
par().csw_r,
|
||||
|
@ -33,7 +33,7 @@ directory
|
||||
|
||||
namespace Grid {
|
||||
|
||||
enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS };
|
||||
enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS, BlockCGVec };
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// Block conjugate gradient. Dimension zero should be the block direction
|
||||
@ -54,9 +54,10 @@ class BlockConjugateGradient : public OperatorFunction<Field> {
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
||||
Integer PrintInterval; //GridLogMessages or Iterative
|
||||
|
||||
BlockConjugateGradient(BlockCGtype cgtype,int _Orthog,RealD tol, Integer maxit, bool err_on_no_conv = true)
|
||||
: Tolerance(tol), CGtype(cgtype), blockDim(_Orthog), MaxIterations(maxit), ErrorOnNoConverge(err_on_no_conv)
|
||||
: Tolerance(tol), CGtype(cgtype), blockDim(_Orthog), MaxIterations(maxit), ErrorOnNoConverge(err_on_no_conv),PrintInterval(100)
|
||||
{};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@ -127,6 +128,14 @@ void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
|
||||
assert(0);
|
||||
}
|
||||
}
|
||||
void operator()(LinearOperatorBase<Field> &Linop, const std::vector<Field> &Src, std::vector<Field> &Psi)
|
||||
{
|
||||
if ( CGtype == BlockCGVec ) {
|
||||
BlockCGVecsolve(Linop,Src,Psi);
|
||||
} else {
|
||||
assert(0);
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// BlockCGrQ implementation:
|
||||
@ -600,6 +609,272 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &
|
||||
IterationsToComplete = k;
|
||||
}
|
||||
|
||||
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, std::vector<Field> &Y){
|
||||
for(int b=0;b<Nblock;b++)
|
||||
for(int bp=0;bp<Nblock;bp++) {
|
||||
m(b,bp) = innerProduct(X[b],Y[bp]);
|
||||
}
|
||||
}
|
||||
double HermCheck( Eigen::MatrixXcd &m, const std::string &str, int ForceHerm=1 , int Print = 0) {
|
||||
for(int b=0;b<Nblock;b++)
|
||||
for(int bp=0;bp<=b;bp++) {
|
||||
if(Print)
|
||||
std::cout<<GridLogMessage << "HermCheck "<<str<<" "<<b<<" "<<bp<<" : "<< m(b,bp) <<" "<<conj(m(bp,b))<<" " <<m(b,bp)-conj(m(bp,b)) <<std::endl;
|
||||
if(ForceHerm){
|
||||
if(b==bp) m(b,b) = real(m(b,b));
|
||||
else{
|
||||
auto temp = 0.5*(m(b,bp)+conj(m(bp,b)));
|
||||
m(b,bp) = temp;
|
||||
m(bp,b) = conj(temp);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void BlockCGVecsolve(LinearOperatorBase<Field> &Linop, const std::vector<Field> &Src, std::vector<Field> &Psi)
|
||||
{
|
||||
// int Orthog = blockDim; // First dimension is block dim; this is an assumption
|
||||
// Nblock = Src._grid->_fdimensions[Orthog];
|
||||
Nblock = Src.size();
|
||||
assert(Nblock == Psi.size());
|
||||
|
||||
std::cout<<GridLogMessage<<" Block Conjugate Gradient : Nblock "<<Nblock<<std::endl;
|
||||
|
||||
for(int b=0;b<Nblock;b++){
|
||||
Psi[b].checkerboard = Src[0].checkerboard;
|
||||
conformable(Psi[b], Src[b]);
|
||||
}
|
||||
|
||||
Field Fake(Src[0]);
|
||||
|
||||
std::vector<Field> P(Nblock,Fake);
|
||||
// P.resize(Nblock);
|
||||
std::vector<Field> AP(Nblock,Fake);
|
||||
//AP.resize(Nblock);
|
||||
std::vector<Field> R(Nblock,Fake);
|
||||
std::vector<Field> TMP(Nblock,Fake);
|
||||
//R.resize(Nblock);
|
||||
|
||||
Eigen::MatrixXcd m_pAp = Eigen::MatrixXcd::Identity(Nblock,Nblock);
|
||||
Eigen::MatrixXcd m_pAp_inv= Eigen::MatrixXcd::Identity(Nblock,Nblock);
|
||||
Eigen::MatrixXcd m_rr = Eigen::MatrixXcd::Zero(Nblock,Nblock);
|
||||
Eigen::MatrixXcd m_rr_inv = Eigen::MatrixXcd::Zero(Nblock,Nblock);
|
||||
|
||||
Eigen::MatrixXcd m_alpha = Eigen::MatrixXcd::Zero(Nblock,Nblock);
|
||||
Eigen::MatrixXcd m_beta = Eigen::MatrixXcd::Zero(Nblock,Nblock);
|
||||
|
||||
// Initial residual computation & set up
|
||||
std::vector<RealD> residuals(Nblock);
|
||||
std::vector<RealD> ssq(Nblock);
|
||||
|
||||
// sliceNorm(ssq,Src,Orthog);
|
||||
for(int b=0;b<Nblock;b++){ ssq[b] = norm2(Src[b]);}
|
||||
RealD sssum=0;
|
||||
for(int b=0;b<Nblock;b++) sssum+=ssq[b];
|
||||
|
||||
// sliceNorm(residuals,Src,Orthog);
|
||||
for(int b=0;b<Nblock;b++){ residuals[b] = norm2(Src[b]);}
|
||||
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
|
||||
|
||||
// sliceNorm(residuals,Psi,Orthog);
|
||||
for(int b=0;b<Nblock;b++){ residuals[b] = norm2(Psi[b]);}
|
||||
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
|
||||
|
||||
// Initial search dir is guess
|
||||
for(int b=0;b<Nblock;b++) Linop.HermOp(Psi[b], AP[b]);
|
||||
for(int b=0;b<Nblock;b++)
|
||||
std::cout << b << " Psi " << norm2(Psi[b]) <<" AP "<<norm2(AP[b])<<std::endl;
|
||||
|
||||
|
||||
/************************************************************************
|
||||
* Block conjugate gradient (Stephen Pickles, thesis 1995, pp 71, O Leary 1980)
|
||||
************************************************************************
|
||||
* O'Leary : R = B - A X
|
||||
* O'Leary : P = M R ; preconditioner M = 1
|
||||
* O'Leary : alpha = PAP^{-1} RMR
|
||||
* O'Leary : beta = RMR^{-1}_old RMR_new
|
||||
* O'Leary : X=X+Palpha
|
||||
* O'Leary : R_new=R_old-AP alpha
|
||||
* O'Leary : P=MR_new+P beta
|
||||
*/
|
||||
|
||||
for(int b=0;b<Nblock;b++){
|
||||
R[b] = Src[b] - AP[b]; //R_0
|
||||
P[b] = R[b]; // P_1
|
||||
}
|
||||
// sliceInnerProductMatrix(m_rr,R,R,Orthog);
|
||||
InnerProductMatrix(m_rr,R,R);
|
||||
HermCheck(m_rr, "R_0 R_0",1,1);
|
||||
HermCheck(m_rr, "R_0 R_0",0,1);
|
||||
#if 0
|
||||
for(int b=0;b<Nblock;b++)
|
||||
for(int bp=0;bp<Nblock;bp++) {
|
||||
m_rr(b,bp) = innerProduct(R[b],R[bp]);
|
||||
std::cout << 0 <<" : R_0 R_0 "<< b <<" "<<bp<<" "<<innerProduct(R[b],R[bp]) <<std::endl;
|
||||
}
|
||||
#endif
|
||||
|
||||
GridStopWatch sliceInnerTimer;
|
||||
GridStopWatch sliceMaddTimer;
|
||||
GridStopWatch MatrixTimer;
|
||||
GridStopWatch SolverTimer;
|
||||
SolverTimer.Start();
|
||||
|
||||
int k;
|
||||
int if_print =0;
|
||||
for (k = 1; k <= MaxIterations; k++) {
|
||||
|
||||
RealD rrsum=0;
|
||||
for(int b=0;b<Nblock;b++) rrsum+=real(m_rr(b,b));
|
||||
|
||||
if(PrintInterval && (k%PrintInterval)==0){
|
||||
if_print=1;
|
||||
std::cout << GridLogMessage << "\titeration "<<k<<" rr_sum "<<rrsum<<" ssq_sum "<< sssum
|
||||
<<" / "<<std::sqrt(rrsum/sssum) <<std::endl;
|
||||
} else {
|
||||
if_print=0;
|
||||
std::cout << GridLogIterative << "\titeration "<<k<<" rr_sum "<<rrsum<<" ssq_sum "<< sssum
|
||||
<<" / "<<std::sqrt(rrsum/sssum) <<std::endl;
|
||||
}
|
||||
|
||||
MatrixTimer.Start();
|
||||
for(int b=0;b<Nblock;b++) Linop.HermOp(P[b], AP[b]);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
// Alpha
|
||||
sliceInnerTimer.Start();
|
||||
// sliceInnerProductMatrix(m_pAp,P,AP,Orthog);
|
||||
InnerProductMatrix(m_pAp,P,AP);
|
||||
HermCheck(m_pAp, "P AP",1,if_print);
|
||||
if(if_print) HermCheck(m_pAp, "P AP",0,if_print);
|
||||
#if 0
|
||||
for(int b=0;b<Nblock;b++)
|
||||
for(int bp=0;bp<Nblock;bp++) {
|
||||
m_pAp(b,bp) = innerProduct(P[b],AP[bp]);
|
||||
std::cout << k <<" : m_pAp "<< b <<" "<<bp<<" "<<innerProduct(P[b],AP[bp]) <<std::endl;
|
||||
}
|
||||
#endif
|
||||
sliceInnerTimer.Stop();
|
||||
m_pAp_inv = m_pAp.inverse();
|
||||
HermCheck(m_pAp_inv, "inv (P AP)",1,if_print);
|
||||
if(if_print) HermCheck(m_pAp_inv, "inv (P AP)",0,if_print);
|
||||
if(if_print)
|
||||
{
|
||||
m_alpha = m_pAp*m_pAp_inv;
|
||||
for(int b=0;b<Nblock;b++){
|
||||
for(int bp=0;bp<Nblock;bp++) {
|
||||
std::cout << k <<" : pAp*pAp_inv "<< b <<" "<<bp<<" "<<m_alpha(b,bp)<<std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
m_alpha = m_pAp_inv * m_rr ; //alpha_k+1 = (P_k+1^t A P_k+1)^-1 (R_k^t R_k)
|
||||
|
||||
// Psi, R update
|
||||
sliceMaddTimer.Start();
|
||||
// sliceMaddMatrix(Psi,m_alpha, P,Psi,Orthog); // X_k+1=X_k+P_k+1 alpha_k+1
|
||||
for(int b=0;b<Nblock;b++)
|
||||
for(int bp=0;bp<Nblock;bp++) {
|
||||
Psi[b] += m_alpha(bp,b)*P[bp]; // X_k+1 = X_k + P_k+1 alpha_k+1
|
||||
}
|
||||
|
||||
for(int b=0;b<Nblock;b++) TMP[b] = R[b];
|
||||
// sliceMaddMatrix(R ,m_alpha,AP, R,Orthog,-1.0);// sub alpha * AP to resid
|
||||
for(int b=0;b<Nblock;b++)
|
||||
for(int bp=0;bp<Nblock;bp++) {
|
||||
R[b] -= m_alpha(bp,b)*AP[bp]; // R_k+1 = R_k - AP_k+1 alpha_k+1
|
||||
}
|
||||
sliceMaddTimer.Stop();
|
||||
if(if_print)
|
||||
{
|
||||
//check
|
||||
for(int b=0;b<Nblock;b++){
|
||||
for(int bp=0;bp<Nblock;bp++) {
|
||||
std::cout << k <<" : R_k+1 R_k "<< b <<" "<<bp<<" "<<innerProduct(R[b],TMP[bp]) <<std::endl;
|
||||
std::cout << k <<" : R_k R_k "<< b <<" "<<bp<<" "<<innerProduct(TMP[b],TMP[bp]) <<std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Beta
|
||||
m_rr_inv = m_rr.inverse(); //m_rr_inv = (R_k^t R_k)^-1
|
||||
HermCheck(m_rr_inv,"m_rr_inv",1,if_print);
|
||||
if(if_print) HermCheck(m_rr_inv,"m_rr_inv",0,if_print);
|
||||
sliceInnerTimer.Start();
|
||||
// sliceInnerProductMatrix(m_rr,R,R,Orthog);
|
||||
InnerProductMatrix(m_rr,R,R);
|
||||
HermCheck(m_rr,"m_rr",1,if_print);
|
||||
if(if_print) HermCheck(m_rr,"m_rr",0,if_print);
|
||||
sliceInnerTimer.Stop();
|
||||
m_beta = m_rr_inv *m_rr; // beta_k+2 = (R_k^t R_k)^-1 (R_k+1^5 R_k+1)
|
||||
// HermCheck(m_beta,"m_beta");
|
||||
|
||||
// Search update
|
||||
sliceMaddTimer.Start();
|
||||
// sliceMaddMatrix(AP,m_beta,P,R,Orthog);
|
||||
for(int b=0;b<Nblock;b++){
|
||||
AP[b] = R[b];
|
||||
for(int bp=0;bp<Nblock;bp++) {
|
||||
AP[b] += m_beta(bp,b)*P[bp]; //AP = R_k+1 + P_k+1 beta_k+1
|
||||
}
|
||||
}
|
||||
if(if_print)
|
||||
{
|
||||
//check
|
||||
for(int b=0;b<Nblock;b++) Linop.HermOp(P[b], TMP[b]);
|
||||
for(int b=0;b<Nblock;b++){
|
||||
for(int bp=0;bp<Nblock;bp++) {
|
||||
std::cout << k <<" : P_k+2 A P "<< b <<" "<<bp<<" "<<innerProduct(AP[b],TMP[bp]) <<std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
sliceMaddTimer.Stop();
|
||||
for(int b=0;b<Nblock;b++) P[b]= AP[b]; //P_k+2 = AP
|
||||
|
||||
/*********************
|
||||
* convergence monitor
|
||||
*********************
|
||||
*/
|
||||
RealD max_resid=0;
|
||||
RealD rr;
|
||||
for(int b=0;b<Nblock;b++){
|
||||
rr = real(m_rr(b,b))/ssq[b];
|
||||
if ( rr > max_resid ) max_resid = rr;
|
||||
}
|
||||
|
||||
if ( max_resid < Tolerance*Tolerance ) {
|
||||
|
||||
SolverTimer.Stop();
|
||||
|
||||
std::cout << GridLogMessage<<"BlockCG converged in "<<k<<" iterations"<<std::endl;
|
||||
for(int b=0;b<Nblock;b++){
|
||||
std::cout << GridLogMessage<< "\t\tblock "<<b<<" computed resid "
|
||||
<< std::sqrt(real(m_rr(b,b))/ssq[b])<<std::endl;
|
||||
}
|
||||
std::cout << GridLogMessage<<"\tMax residual is "<<std::sqrt(max_resid)<<std::endl;
|
||||
|
||||
for(int b=0;b<Nblock;b++) {
|
||||
Linop.HermOp(Psi[b], AP[b]);
|
||||
AP[b] = AP[b]-Src[b];
|
||||
std::cout << GridLogMessage <<"\t True residual is " << b<<" "<<std::sqrt(norm2(AP[b])/norm2(Src[b])) <<std::endl;
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
|
||||
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tInnerProd " << sliceInnerTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tMaddMatrix " << sliceMaddTimer.Elapsed() <<std::endl;
|
||||
|
||||
IterationsToComplete = k;
|
||||
return;
|
||||
}
|
||||
|
||||
}
|
||||
std::cout << GridLogMessage << "BlockConjugateGradient did NOT converge" << std::endl;
|
||||
|
||||
if (ErrorOnNoConverge) assert(0);
|
||||
IterationsToComplete = k;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
|
@ -179,6 +179,10 @@ public:
|
||||
assert(checker_dim_mask.size() == _ndimension);
|
||||
assert(processor_grid.size() == _ndimension);
|
||||
assert(simd_layout.size() == _ndimension);
|
||||
std::cout <<"dimensions processor_grid simd_layout checker_dim_mask"<<std::endl;
|
||||
for(int i=0;i<_ndimension;i++){
|
||||
std::cout <<i << " "<<dimensions[i]<<" "<<processor_grid[i]<<" "<< simd_layout[i]<<" "<< checker_dim_mask[i]<<std::endl;
|
||||
}
|
||||
|
||||
_fdimensions.resize(_ndimension);
|
||||
_gdimensions.resize(_ndimension);
|
||||
|
@ -44,11 +44,11 @@ namespace QCD {
|
||||
|
||||
struct WilsonImplParams {
|
||||
bool overlapCommsCompute;
|
||||
std::vector<Complex> boundary_phases;
|
||||
std::vector<ComplexD> boundary_phases;
|
||||
WilsonImplParams() : overlapCommsCompute(false) {
|
||||
boundary_phases.resize(Nd, 1.0);
|
||||
};
|
||||
WilsonImplParams(const std::vector<Complex> phi)
|
||||
WilsonImplParams(const std::vector<ComplexD> phi)
|
||||
: boundary_phases(phi), overlapCommsCompute(false) {}
|
||||
};
|
||||
|
||||
|
@ -68,6 +68,7 @@ int main (int argc, char ** argv)
|
||||
|
||||
int nrhs = 1;
|
||||
int me;
|
||||
for(int i=0;i<mpi_layout.size();i++) cout <<" node split = "<<mpi_layout[i]<<" "<<mpi_split[i]<<endl;
|
||||
for(int i=0;i<mpi_layout.size();i++) nrhs *= (mpi_layout[i]/mpi_split[i]);
|
||||
|
||||
GridCartesian * SGrid = new GridCartesian(GridDefaultLatt(),
|
||||
@ -99,12 +100,6 @@ int main (int argc, char ** argv)
|
||||
// Bounce these fields to disk
|
||||
///////////////////////////////////////////////////////////////
|
||||
|
||||
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
|
||||
std::cout << GridLogMessage << " Writing out in parallel view "<<std::endl;
|
||||
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
|
||||
emptyUserRecord record;
|
||||
std::string file("./scratch.scidac");
|
||||
std::string filef("./scratch.scidac.ferm");
|
||||
|
||||
LatticeGaugeField s_Umu(SGrid);
|
||||
FermionField s_src(SFGrid);
|
||||
@ -114,57 +109,10 @@ int main (int argc, char ** argv)
|
||||
|
||||
{
|
||||
FGrid->Barrier();
|
||||
ScidacWriter _ScidacWriter(FGrid->IsBoss());
|
||||
_ScidacWriter.open(file);
|
||||
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
|
||||
std::cout << GridLogMessage << " Writing out gauge field "<<std::endl;
|
||||
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
|
||||
_ScidacWriter.writeScidacFieldRecord(Umu,record);
|
||||
_ScidacWriter.close();
|
||||
FGrid->Barrier();
|
||||
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
|
||||
std::cout << GridLogMessage << " Reading in gauge field "<<std::endl;
|
||||
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
|
||||
ScidacReader _ScidacReader;
|
||||
_ScidacReader.open(file);
|
||||
_ScidacReader.readScidacFieldRecord(s_Umu,record);
|
||||
_ScidacReader.close();
|
||||
FGrid->Barrier();
|
||||
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
|
||||
std::cout << GridLogMessage << " Read in gauge field "<<std::endl;
|
||||
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
|
||||
}
|
||||
|
||||
|
||||
{
|
||||
for(int n=0;n<nrhs;n++){
|
||||
|
||||
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
|
||||
std::cout << GridLogMessage << " Writing out record "<<n<<std::endl;
|
||||
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
|
||||
|
||||
std::stringstream filefn; filefn << filef << "."<< n;
|
||||
ScidacWriter _ScidacWriter(FGrid->IsBoss());
|
||||
_ScidacWriter.open(filefn.str());
|
||||
_ScidacWriter.writeScidacFieldRecord(src[n],record);
|
||||
_ScidacWriter.close();
|
||||
}
|
||||
|
||||
FGrid->Barrier();
|
||||
|
||||
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
|
||||
std::cout << GridLogMessage << " Reading back in the single process view "<<std::endl;
|
||||
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
|
||||
|
||||
for(int n=0;n<nrhs;n++){
|
||||
if ( n==me ) {
|
||||
std::stringstream filefn; filefn << filef << "."<< n;
|
||||
ScidacReader _ScidacReader;
|
||||
_ScidacReader.open(filefn.str());
|
||||
_ScidacReader.readScidacFieldRecord(s_src,record);
|
||||
_ScidacReader.close();
|
||||
}
|
||||
}
|
||||
FGrid->Barrier();
|
||||
}
|
||||
|
||||
|
@ -38,7 +38,7 @@ int main (int argc, char ** argv)
|
||||
typedef typename DomainWallFermionR::ComplexField ComplexField;
|
||||
typename DomainWallFermionR::ImplParams params;
|
||||
|
||||
const int Ls=4;
|
||||
const int Ls=8;
|
||||
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
@ -69,6 +69,8 @@ int main (int argc, char ** argv)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
double stp = 1.e-5;
|
||||
int nrhs = 1;
|
||||
int me;
|
||||
for(int i=0;i<mpi_layout.size();i++) nrhs *= (mpi_layout[i]/mpi_split[i]);
|
||||
@ -90,7 +92,7 @@ int main (int argc, char ** argv)
|
||||
///////////////////////////////////////////////
|
||||
std::vector<int> seeds({1,2,3,4});
|
||||
|
||||
std::vector<FermionField> src(nrhs,FGrid);
|
||||
std::vector<FermionField> src(nrhs,FGrid);
|
||||
std::vector<FermionField> src_chk(nrhs,FGrid);
|
||||
std::vector<FermionField> result(nrhs,FGrid);
|
||||
FermionField tmp(FGrid);
|
||||
@ -123,25 +125,34 @@ int main (int argc, char ** argv)
|
||||
for(int s=0;s<nrhs;s++) {
|
||||
random(pRNG5,src[s]);
|
||||
tmp = 10.0*s;
|
||||
src[s] = (src[s] * 0.1) + tmp;
|
||||
// src[s] = (src[s] * 0.1) + tmp;
|
||||
std::cout << GridLogMessage << " src ["<<s<<"] "<<norm2(src[s])<<std::endl;
|
||||
}
|
||||
#endif
|
||||
std::cout << GridLogMessage << "Intialised the Fermion Fields"<<std::endl;
|
||||
|
||||
LatticeGaugeField Umu(UGrid);
|
||||
if(1) {
|
||||
FieldMetaData header;
|
||||
std::string file("./lat.in");
|
||||
SU3::ColdConfiguration(Umu);
|
||||
std::cout << GridLogMessage << "Intialised the COLD Gauge Field"<<std::endl;
|
||||
if(0) {
|
||||
NerscIO::readConfiguration(Umu,header,file);
|
||||
std::cout << GridLogMessage << " "<<file<<" successfully read" <<std::endl;
|
||||
} else {
|
||||
GridParallelRNG pRNG(UGrid );
|
||||
std::cout << GridLogMessage << "Intialising 4D RNG "<<std::endl;
|
||||
pRNG.SeedFixedIntegers(seeds);
|
||||
std::cout << GridLogMessage << "Intialised 4D RNG "<<std::endl;
|
||||
SU3::HotConfiguration(pRNG,Umu);
|
||||
std::cout << GridLogMessage << "Intialised the HOT Gauge Field"<<std::endl;
|
||||
// std::cout << " Site zero "<< Umu._odata[0] <<std::endl;
|
||||
} else {
|
||||
SU3::ColdConfiguration(Umu);
|
||||
std::cout << GridLogMessage << "Intialised the COLD Gauge Field"<<std::endl;
|
||||
}
|
||||
std::cout << " Site zero "<< Umu._odata[0] <<std::endl;
|
||||
}
|
||||
int precision32 = 0;
|
||||
int tworow = 0;
|
||||
std::string file2("./lat.out");
|
||||
NerscIO::writeConfiguration(Umu,file2,tworow,precision32);
|
||||
std::cout << GridLogMessage << " Successfully saved to " <<file2 <<std::endl;
|
||||
/////////////////
|
||||
// MPI only sends
|
||||
/////////////////
|
||||
@ -197,9 +208,9 @@ int main (int argc, char ** argv)
|
||||
|
||||
MdagMLinearOperator<DomainWallFermionR,FermionField> HermOp(Ddwf);
|
||||
MdagMLinearOperator<DomainWallFermionR,FermionField> HermOpCk(Dchk);
|
||||
ConjugateGradient<FermionField> CG((1.0e-2),10000);
|
||||
ConjugateGradient<FermionField> CG((stp),10000);
|
||||
s_res = zero;
|
||||
CG(HermOp,s_src,s_res);
|
||||
// CG(HermOp,s_src,s_res);
|
||||
|
||||
std::cout << GridLogMessage << " split residual norm "<<norm2(s_res)<<std::endl;
|
||||
/////////////////////////////////////////////////////////////
|
||||
@ -227,5 +238,15 @@ int main (int argc, char ** argv)
|
||||
std::cout << GridLogMessage<<" resid["<<n<<"] "<< norm2(tmp)/norm2(src[n])<<std::endl;
|
||||
}
|
||||
|
||||
for(int s=0;s<nrhs;s++) result[s]=zero;
|
||||
|
||||
int blockDim = 0;//not used for BlockCGVec
|
||||
BlockConjugateGradient<FermionField> BCGV (BlockCGVec,blockDim,stp,10000);
|
||||
BCGV.PrintInterval=10;
|
||||
{
|
||||
BCGV(HermOpCk,src,result);
|
||||
}
|
||||
|
||||
|
||||
Grid_finalize();
|
||||
}
|
||||
|
277
tests/solver/Test_mobius_bcg.cc
Normal file
277
tests/solver/Test_mobius_bcg.cc
Normal file
@ -0,0 +1,277 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/Test_dwf_mrhs_cg.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
using namespace Grid::QCD;
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
typedef typename MobiusFermionR::FermionField FermionField;
|
||||
typedef typename MobiusFermionR::ComplexField ComplexField;
|
||||
typename MobiusFermionR::ImplParams params;
|
||||
|
||||
const int Ls=12;
|
||||
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
std::vector<int> latt_size = GridDefaultLatt();
|
||||
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
|
||||
std::vector<int> mpi_layout = GridDefaultMpi();
|
||||
std::vector<int> mpi_split (mpi_layout.size(),1);
|
||||
std::vector<int> split_coor (mpi_layout.size(),1);
|
||||
std::vector<int> split_dim (mpi_layout.size(),1);
|
||||
|
||||
std::vector<ComplexD> boundary_phases(Nd,1.);
|
||||
boundary_phases[Nd-1]=-1.;
|
||||
params.boundary_phases = boundary_phases;
|
||||
|
||||
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
|
||||
GridDefaultSimd(Nd,vComplex::Nsimd()),
|
||||
GridDefaultMpi());
|
||||
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
|
||||
GridRedBlackCartesian * rbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// Split into 1^4 mpi communicators
|
||||
/////////////////////////////////////////////
|
||||
|
||||
for(int i=0;i<argc;i++){
|
||||
if(std::string(argv[i]) == "--split"){
|
||||
for(int k=0;k<mpi_layout.size();k++){
|
||||
std::stringstream ss;
|
||||
ss << argv[i+1+k];
|
||||
ss >> mpi_split[k];
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
double stp = 1.e-5;
|
||||
int nrhs = 1;
|
||||
int me;
|
||||
for(int i=0;i<mpi_layout.size();i++){
|
||||
// split_dim[i] = (mpi_layout[i]/mpi_split[i]);
|
||||
nrhs *= (mpi_layout[i]/mpi_split[i]);
|
||||
// split_coor[i] = FGrid._processor_coor[i]/mpi_split[i];
|
||||
}
|
||||
std::cout << GridLogMessage << "Creating split grids " <<std::endl;
|
||||
GridCartesian * SGrid = new GridCartesian(GridDefaultLatt(),
|
||||
GridDefaultSimd(Nd,vComplex::Nsimd()),
|
||||
mpi_split,
|
||||
*UGrid,me);
|
||||
std::cout << GridLogMessage <<"Creating split ferm grids " <<std::endl;
|
||||
|
||||
GridCartesian * SFGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,SGrid);
|
||||
std::cout << GridLogMessage <<"Creating split rb grids " <<std::endl;
|
||||
GridRedBlackCartesian * SrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(SGrid);
|
||||
std::cout << GridLogMessage <<"Creating split ferm rb grids " <<std::endl;
|
||||
GridRedBlackCartesian * SFrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,SGrid);
|
||||
std::cout << GridLogMessage << "Made the grids"<<std::endl;
|
||||
///////////////////////////////////////////////
|
||||
// Set up the problem as a 4d spreadout job
|
||||
///////////////////////////////////////////////
|
||||
std::vector<int> seeds({1,2,3,4});
|
||||
|
||||
std::vector<FermionField> src(nrhs,FGrid);
|
||||
std::vector<FermionField> src_chk(nrhs,FGrid);
|
||||
std::vector<FermionField> result(nrhs,FGrid);
|
||||
FermionField tmp(FGrid);
|
||||
std::cout << GridLogMessage << "Made the Fermion Fields"<<std::endl;
|
||||
|
||||
for(int s=0;s<nrhs;s++) result[s]=zero;
|
||||
#undef LEXICO_TEST
|
||||
#ifdef LEXICO_TEST
|
||||
{
|
||||
LatticeFermion lex(FGrid); lex = zero;
|
||||
LatticeFermion ftmp(FGrid);
|
||||
Integer stride =10000;
|
||||
double nrm;
|
||||
LatticeComplex coor(FGrid);
|
||||
for(int d=0;d<5;d++){
|
||||
LatticeCoordinate(coor,d);
|
||||
ftmp = stride;
|
||||
ftmp = ftmp * coor;
|
||||
lex = lex + ftmp;
|
||||
stride=stride/10;
|
||||
}
|
||||
for(int s=0;s<nrhs;s++) {
|
||||
src[s]=lex;
|
||||
ftmp = 1000*1000*s;
|
||||
src[s] = src[s] + ftmp;
|
||||
}
|
||||
}
|
||||
#else
|
||||
GridParallelRNG pRNG5(FGrid); pRNG5.SeedFixedIntegers(seeds);
|
||||
for(int s=0;s<nrhs;s++) {
|
||||
random(pRNG5,src[s]);
|
||||
tmp = 10.0*s;
|
||||
// src[s] = (src[s] * 0.1) + tmp;
|
||||
std::cout << GridLogMessage << " src ["<<s<<"] "<<norm2(src[s])<<std::endl;
|
||||
}
|
||||
#endif
|
||||
std::cout << GridLogMessage << "Intialised the Fermion Fields"<<std::endl;
|
||||
|
||||
LatticeGaugeField Umu(UGrid);
|
||||
FieldMetaData header;
|
||||
std::string file("./lat.in.32IDfine");
|
||||
SU3::ColdConfiguration(Umu);
|
||||
std::cout << GridLogMessage << "Intialised the COLD Gauge Field"<<std::endl;
|
||||
if(1) {
|
||||
NerscIO::readConfiguration(Umu,header,file);
|
||||
std::cout << GridLogMessage << " "<<file<<" successfully read" <<std::endl;
|
||||
} else {
|
||||
GridParallelRNG pRNG(UGrid );
|
||||
std::cout << GridLogMessage << "Intialising 4D RNG "<<std::endl;
|
||||
pRNG.SeedFixedIntegers(seeds);
|
||||
std::cout << GridLogMessage << "Intialised 4D RNG "<<std::endl;
|
||||
SU3::HotConfiguration(pRNG,Umu);
|
||||
std::cout << GridLogMessage << "Intialised the HOT Gauge Field"<<std::endl;
|
||||
std::cout << " Site zero "<< Umu._odata[0] <<std::endl;
|
||||
}
|
||||
int precision32 = 0;
|
||||
int tworow = 0;
|
||||
std::string file2("./lat.out");
|
||||
NerscIO::writeConfiguration(Umu,file2,tworow,precision32);
|
||||
std::cout << GridLogMessage << " Successfully saved to " <<file2 <<std::endl;
|
||||
/////////////////
|
||||
// MPI only sends
|
||||
/////////////////
|
||||
LatticeGaugeField s_Umu(SGrid);
|
||||
FermionField s_src(SFGrid);
|
||||
FermionField s_tmp(SFGrid);
|
||||
FermionField s_res(SFGrid);
|
||||
|
||||
std::cout << GridLogMessage << "Made the split grid fields"<<std::endl;
|
||||
///////////////////////////////////////////////////////////////
|
||||
// split the source out using MPI instead of I/O
|
||||
///////////////////////////////////////////////////////////////
|
||||
Grid_split (Umu,s_Umu);
|
||||
Grid_split (src,s_src);
|
||||
std::cout << GridLogMessage << " split rank " <<me << " s_src "<<norm2(s_src)<<std::endl;
|
||||
|
||||
#ifdef LEXICO_TEST
|
||||
FermionField s_src_tmp(SFGrid);
|
||||
FermionField s_src_diff(SFGrid);
|
||||
{
|
||||
LatticeFermion lex(SFGrid); lex = zero;
|
||||
LatticeFermion ftmp(SFGrid);
|
||||
Integer stride =10000;
|
||||
double nrm;
|
||||
LatticeComplex coor(SFGrid);
|
||||
for(int d=0;d<5;d++){
|
||||
LatticeCoordinate(coor,d);
|
||||
ftmp = stride;
|
||||
ftmp = ftmp * coor;
|
||||
lex = lex + ftmp;
|
||||
stride=stride/10;
|
||||
}
|
||||
s_src_tmp=lex;
|
||||
ftmp = 1000*1000*me;
|
||||
s_src_tmp = s_src_tmp + ftmp;
|
||||
}
|
||||
s_src_diff = s_src_tmp - s_src;
|
||||
std::cout << GridLogMessage <<" LEXICO test: s_src_diff " << norm2(s_src_diff)<<std::endl;
|
||||
#endif
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// Set up N-solvers as trivially parallel
|
||||
///////////////////////////////////////////////////////////////
|
||||
std::cout << GridLogMessage << " Building the solvers"<<std::endl;
|
||||
RealD mass=0.00107;
|
||||
// RealD mass=0.01;
|
||||
RealD M5=1.8;
|
||||
RealD mobius_factor=32./12.;
|
||||
RealD mobius_b=0.5*(mobius_factor+1.);
|
||||
RealD mobius_c=0.5*(mobius_factor-1.);
|
||||
MobiusFermionR Dchk(Umu,*FGrid,*FrbGrid,*UGrid,*rbGrid,mass,M5,mobius_b,mobius_c,params);
|
||||
MobiusFermionR Ddwf(s_Umu,*SFGrid,*SFrbGrid,*SGrid,*SrbGrid,mass,M5,mobius_b,mobius_c,params);
|
||||
|
||||
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
|
||||
std::cout << GridLogMessage << " Calling DWF CG "<<std::endl;
|
||||
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
|
||||
|
||||
MdagMLinearOperator<MobiusFermionR,FermionField> HermOp(Ddwf);
|
||||
MdagMLinearOperator<MobiusFermionR,FermionField> HermOpCk(Dchk);
|
||||
ConjugateGradient<FermionField> CG((stp),100000);
|
||||
s_res = zero;
|
||||
if(0){
|
||||
// CG(HermOp,s_src,s_res);
|
||||
|
||||
std::cout << GridLogMessage << " split residual norm "<<norm2(s_res)<<std::endl;
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Report how long they all took
|
||||
/////////////////////////////////////////////////////////////
|
||||
std::vector<uint32_t> iterations(nrhs,0);
|
||||
iterations[me] = CG.IterationsToComplete;
|
||||
|
||||
for(int n=0;n<nrhs;n++){
|
||||
UGrid->GlobalSum(iterations[n]);
|
||||
std::cout << GridLogMessage<<" Rank "<<n<<" "<< iterations[n]<<" CG iterations"<<std::endl;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Gather and residual check on the results
|
||||
/////////////////////////////////////////////////////////////
|
||||
std::cout << GridLogMessage<< "Unsplitting the result"<<std::endl;
|
||||
Grid_unsplit(result,s_res);
|
||||
|
||||
|
||||
std::cout << GridLogMessage<< "Checking the residuals"<<std::endl;
|
||||
for(int n=0;n<nrhs;n++){
|
||||
std::cout << GridLogMessage<< " res["<<n<<"] norm "<<norm2(result[n])<<std::endl;
|
||||
HermOpCk.HermOp(result[n],tmp); tmp = tmp - src[n];
|
||||
std::cout << GridLogMessage<<" resid["<<n<<"] "<< norm2(tmp)/norm2(src[n])<<std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
// faking enlarged/cooperative CG
|
||||
if(0){
|
||||
std::cout << GridLogMessage<<" Trying blocking enlarged CG" <<std::endl;
|
||||
assert(me < nrhs);
|
||||
if (me>0) src[me] = src[0];
|
||||
for(int s=0;s<nrhs;s++){
|
||||
result[s]=zero;
|
||||
if(s!=me) src[s] = zero;
|
||||
}
|
||||
}
|
||||
|
||||
int blockDim = 0;//not used for BlockCGVec
|
||||
BlockConjugateGradient<FermionField> BCGV (BlockCGVec,blockDim,stp,100000);
|
||||
BCGV.PrintInterval=10;
|
||||
{
|
||||
BCGV(HermOpCk,src,result);
|
||||
}
|
||||
|
||||
|
||||
Grid_finalize();
|
||||
}
|
Reference in New Issue
Block a user