1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-13 20:57:06 +01:00

Compare commits

...

78 Commits

Author SHA1 Message Date
a957e7bfa1 Adding DWF evec Chirality measurement 2025-04-22 22:17:51 +00:00
cee4c8ce8c Merge branch 'develop' of https://github.com/paboyle/Grid into specflow 2025-04-18 19:55:36 +00:00
e652fc2825 Shared Memory test reenabled on every Grid object creation.
Const improvements in Accelerator.h
2025-04-07 11:51:40 -04:00
a49fa3f8d0 ROCM 6.3.1 appears to work 2025-04-07 11:50:59 -04:00
cd452a2f91 Slurm update 2025-04-04 18:40:20 -04:00
4f89f603ae Changes to add back shared memory test on GPU 2025-04-04 18:40:15 -04:00
11dc2c5e1d PVdagM initialise 2025-04-04 18:35:06 -04:00
6fec3c15ca Cleaner printing 2025-04-04 18:35:06 -04:00
938c47480f Updated compile on frontier.
Unsatisfactory hacsk
2025-04-04 18:35:06 -04:00
3811d19298 Fence 2025-04-04 18:35:06 -04:00
83a3ab6b6f Barrier -- not sure 100% this was needed 2025-04-04 18:35:05 -04:00
d66a9af6a3 No compile fix 2025-04-04 18:35:05 -04:00
adc90d3a86 NVLINK GET/PUT on cuda aware mpi 2025-04-04 18:35:05 -04:00
ebbd015c5c Deprecate shared memory copy as direction matters on nvidia GPU 2025-04-04 18:35:05 -04:00
4ab73b36b2 Deprecate shared memory copy as direction matters on GPU 2025-04-04 18:35:05 -04:00
130e07a422 Non hermitian support 2025-04-04 18:35:05 -04:00
8f47bb367e Shifted non herm 2025-04-04 18:35:05 -04:00
0c3cb60135 Script update 2025-04-04 18:35:05 -04:00
9eae8fca5d Size outut 2025-04-04 18:35:05 -04:00
882a217074 Example of Useful prerequisite installs with spack 2025-03-26 11:28:53 -04:00
199818bd6c Merge pull request #475 from lehner/feature-aurora
Sync with GPT on Aurora
2025-03-13 08:55:55 -04:00
fe66c7ca30 verbosity 2025-03-13 12:49:36 +00:00
e9177e4af3 Blas compatibility 2025-03-13 08:48:23 +00:00
d15a6c5933 Merge branch 'develop' of https://github.com/paboyle/Grid into feature-aurora 2025-03-13 07:29:55 +00:00
25ab9325e7 Use hostVector but remove construct resize 2025-03-11 15:02:32 +00:00
19f9378b98 Should work on Aurora nowb 2025-03-11 13:50:43 +00:00
9ffd1ed4ce Merged 2025-03-08 15:30:08 +00:00
3d014864e2 Makinig LLVM happy 2025-03-06 14:19:25 -05:00
1d22841811 Working on aurora, GPT issue turned up is fixed 2025-03-06 03:20:18 +00:00
a1cdda833f Update WorkArounds.txt 2025-03-05 14:04:23 -05:00
ad6db92690 Update WorkArounds.txt 2025-03-05 14:00:26 -05:00
e8ff9d8e50 Update WorkArounds.txt 2025-03-05 14:00:04 -05:00
795769c636 Update WorkArounds.txt 2025-03-05 13:50:41 -05:00
267a39d943 Update WorkArounds.txt 2025-03-05 13:49:43 -05:00
3624bd3d22 Update WorkArounds.txt 2025-03-05 13:45:09 -05:00
bc12dbbb38 Update WorkArounds.txt 2025-03-05 12:48:56 -05:00
eb8a008a8f Create WorkArounds.txt 2025-03-05 12:41:59 -05:00
c4d9aa1a21 Config command that makes GPT happier 2025-02-27 20:12:49 +00:00
6ae809ed40 Print not liked on GPT compile 2025-02-27 20:12:49 +00:00
311e2aab3f Update Accelerator.h 2025-02-26 11:42:52 -05:00
438dfbdb83 Only throw if there is a pending list entry in CommsComplete 2025-02-25 16:57:27 +00:00
b2ce760cf4 Verbose issue with GPT 2025-02-25 16:55:23 +00:00
ba9bbe0221 Bounce MPI through host 2025-02-12 19:34:59 +00:00
4c3dd82d84 CSHIFT with bounce throuhgh Host memory on MPI packets 2025-02-12 19:09:53 +00:00
44e911b5b7 Comment change 2025-02-12 17:37:55 +00:00
a7a16df9d0 GET not put has kinder barrier sequence for NVLINK type access as when
GET is done, I can use it without barrier. Moves a barrier to a nicer
place, overlapped with DtoH DMA
2025-02-12 14:59:28 +00:00
382e0abefd Was issueing a double fence -- the gather also fences 2025-02-12 14:57:28 +00:00
6fdefe5b90 Barrier sequencing if doing "GET" not "PUT" is different.
This is somewhat better timing for Barriers
2025-02-12 14:55:20 +00:00
4788dd8e2e More states in packet progression for GPU non aware MPI 2025-02-12 14:53:57 +00:00
1cc5f221f3 GET not put ordering is better as I know when I've got all MY data 2025-02-12 14:53:05 +00:00
93251bfba0 GET not put for better ordering in the downstream dependent kernels -- I
know when I'm done, so we can move a barrier / handshake between ranks
intranode to a point off critical path
2025-02-12 14:50:21 +00:00
18b79508b8 New line better for pretty print 2025-02-12 14:49:48 +00:00
4de5ed1613 Remove vector view. The std::vector will not inform Memory manager of
deletion and so a stale entry could be left. It is not and should not be
used.
2025-02-12 14:48:46 +00:00
0baaddbe98 Pipeline mode commit on Aurora. 5+ TF/s on 16^3x32 per tile at 384
nodes.
More concurrency/fine grained scheduling is possible.
2025-02-04 19:27:26 +00:00
b50fb34e71 Perf on Aurora 2025-02-01 18:39:34 +00:00
de84d730ff Fastest run config on Aurora to date 2025-02-01 18:08:40 +00:00
c74d11e3d7 PVdagM MG 2025-02-01 11:04:13 -05:00
84cab5e6e7 no comms and log cleanup 2025-02-01 16:37:21 +01:00
c4fc972fec Merge branch 'feature/deprecate-uvm' into develop 2025-01-31 16:32:36 +00:00
8cf809e231 Best results on Aurora so far 2025-01-31 16:14:45 +00:00
94019a922e Significantly better performance on Aurora without using pipeline mode 2025-01-30 16:36:46 +00:00
d6b2727f86 Pipeline mode getting better -- 2 nodes @ 10TF/s per node on Aurora 2025-01-29 09:22:21 +00:00
74a4f43946 Optional host buffer bounce for no CUDA aware MPI 2025-01-28 15:22:46 +00:00
1caf8b0f86 Rename 2025-01-28 15:22:37 +00:00
570b72a47b Bugfix. Sorry! 2025-01-21 15:37:39 -05:00
a5798a89ed Merge branch 'develop' into specflow 2025-01-21 12:13:24 -05:00
3f3661a86f Heading towards PVdagM multigrid 2025-01-17 14:33:35 +00:00
f7e2f9a401 Checking in spectral flow and DWF/Mobius kernel eigenvalue measurement 2025-01-16 20:47:33 +00:00
2848a9b558 DWF Kernel lanczos working(?) 2025-01-16 01:29:56 +00:00
5a4f9bf2e3 Force the ROCM version 2024-10-29 18:12:31 -04:00
f617468e04 Update Lattice_base.h 2024-10-11 10:39:16 -04:00
ee4046fe92 Added a dimension ordered column sum based reduction for scalar.
Removes dependence on MPI_Allreduce and allows for work around on
systems where this is bollox.
2024-09-27 09:26:03 -04:00
2a9cfeb9ea New files 2024-09-26 14:23:29 -04:00
1147b8ea40 Cheby poly setup 2024-09-26 14:20:32 -04:00
3f9119b39d Remove vectors used for the power spectrum table in paper 2024-09-26 14:19:41 -04:00
35e8225abd Verbose control 2024-09-26 14:18:35 -04:00
bdbfbb7a14 Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2024-09-26 14:05:45 -04:00
f7d4be8d96 Calculate bytes correctly 2024-09-26 14:04:44 -04:00
56 changed files with 3946 additions and 636 deletions

View File

@ -191,7 +191,7 @@ public:
Lattice<sobj> pgbuf(&pencil_g);
autoView(pgbuf_v , pgbuf, CpuWrite);
std::cout << "CPU view" << std::endl;
//std::cout << "CPU view" << std::endl;
typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
typedef typename FFTW<scalar>::FFTW_plan FFTW_plan;
@ -215,7 +215,7 @@ public:
else if ( sign == forward ) div = 1.0;
else assert(0);
std::cout << GridLogPerformance<<"Making FFTW plan" << std::endl;
//std::cout << GridLogPerformance<<"Making FFTW plan" << std::endl;
FFTW_plan p;
{
FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0];
@ -229,7 +229,7 @@ public:
}
// Barrel shift and collect global pencil
std::cout << GridLogPerformance<<"Making pencil" << std::endl;
//std::cout << GridLogPerformance<<"Making pencil" << std::endl;
Coordinate lcoor(Nd), gcoor(Nd);
result = source;
int pc = processor_coor[dim];
@ -251,7 +251,7 @@ public:
}
}
std::cout <<GridLogPerformance<< "Looping orthog" << std::endl;
//std::cout <<GridLogPerformance<< "Looping orthog" << std::endl;
// Loop over orthog coords
int NN=pencil_g.lSites();
GridStopWatch timer;
@ -274,7 +274,7 @@ public:
usec += timer.useconds();
flops+= flops_call*NN;
std::cout <<GridLogPerformance<< "Writing back results " << std::endl;
//std::cout <<GridLogPerformance<< "Writing back results " << std::endl;
// writing out result
{
autoView(pgbuf_v,pgbuf,CpuRead);
@ -291,7 +291,7 @@ public:
}
result = result*div;
std::cout <<GridLogPerformance<< "Destroying plan " << std::endl;
//std::cout <<GridLogPerformance<< "Destroying plan " << std::endl;
// destroying plan
FFTW<scalar>::fftw_destroy_plan(p);
#endif

View File

@ -277,6 +277,38 @@ public:
assert(0);
}
};
template<class Matrix,class Field>
class ShiftedNonHermitianLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
RealD shift;
public:
ShiftedNonHermitianLinearOperator(Matrix &Mat,RealD shft): _Mat(Mat),shift(shft){};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
_Mat.Mdiag(in,out);
out = out + shift*in;
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
_Mat.Mdir(in,out,dir,disp);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
_Mat.MdirAll(in,out);
};
void Op (const Field &in, Field &out){
_Mat.M(in,out);
out = out + shift * in;
}
void AdjOp (const Field &in, Field &out){
_Mat.Mdag(in,out);
out = out + shift * in;
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
assert(0);
}
void HermOp(const Field &in, Field &out){
assert(0);
}
};
//////////////////////////////////////////////////////////
// Even Odd Schur decomp operators; there are several

View File

@ -208,8 +208,8 @@ public:
assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount);
assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
assert(OpB!=GridBLAS_OP_T);
//assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
//assert(OpB!=GridBLAS_OP_T);
int lda = m; // m x k column major
int ldb = k; // k x n column major
@ -367,28 +367,67 @@ public:
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
else
eCmn = alpha * eAmk * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
else
eCmn = alpha * eAmk.adjoint() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
else
eCmn = alpha * eAmk.transpose() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
else
eCmn = alpha * eAmk * eBkn.adjoint() ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
});
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
else
eCmn = alpha * eAmk.adjoint() * eBkn.adjoint() ;
} );
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
else
eCmn = alpha * eAmk.transpose() * eBkn.transpose() ;
} );
} else {
assert(0);
@ -414,8 +453,8 @@ public:
RealD t2=usecond();
int32_t batchCount = Amk.size();
assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
assert(OpB!=GridBLAS_OP_T);
//assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
//assert(OpB!=GridBLAS_OP_T);
int lda = m; // m x k column major
int ldb = k; // k x n column major
@ -514,28 +553,70 @@ public:
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
else
eCmn = alpha * eAmk * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
else
eCmn = alpha * eAmk.adjoint() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
else
eCmn = alpha * eAmk.transpose() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
else
eCmn = alpha * eAmk * eBkn.adjoint() ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
else
eCmn = alpha * eAmk * eBkn.transpose() ;
});
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
else
eCmn = alpha * eAmk.adjoint() * eBkn.adjoint() ;
} );
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
else
eCmn = alpha * eAmk.transpose() * eBkn.transpose() ;
} );
} else {
assert(0);
@ -661,29 +742,41 @@ public:
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
else
eCmn = alpha * eAmk * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
else
eCmn = alpha * eAmk.transpose() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
else
eCmn = alpha * eAmk * eBkn.transpose() ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
} );
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
else
eCmn = alpha * eAmk.transpose() * eBkn.transpose() ;
});
} else {
assert(0);
}
@ -809,28 +902,40 @@ public:
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
else
eCmn = alpha * eAmk * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
else
eCmn = alpha * eAmk.transpose() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
else
eCmn = alpha * eAmk * eBkn.transpose() ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
if (std::abs(beta) != 0.0)
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
else
eCmn = alpha * eAmk.transpose() * eBkn.transpose() ;
});
} else {
assert(0);

View File

@ -144,11 +144,11 @@ public:
acceleratorCopyDeviceToDevice(&BLAS_Y[offset],&y_v[0],sizeof(scalar_object)*vol);
}
RealD t4 = usecond();
std::cout << "MulMatrix alloc took "<< t1-t0<<" us"<<std::endl;
std::cout << "MulMatrix preamble took "<< t2-t1<<" us"<<std::endl;
std::cout << "MulMatrix blas took "<< t3-t2<<" us"<<std::endl;
std::cout << "MulMatrix copy took "<< t4-t3<<" us"<<std::endl;
std::cout << "MulMatrix total "<< t4-t0<<" us"<<std::endl;
std::cout <<GridLogPerformance << "MulMatrix alloc took "<< t1-t0<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "MulMatrix preamble took "<< t2-t1<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "MulMatrix blas took "<< t3-t2<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "MulMatrix copy took "<< t4-t3<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "MulMatrix total "<< t4-t0<<" us"<<std::endl;
}
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y)
@ -242,16 +242,16 @@ public:
RealD flops = 8.0*M*N*K;
flops = flops/(t4-t3)/1.e3;
bytes = bytes/(t4-t3)/1.e3;
std::cout << "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
std::cout << "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
std::cout << "InnerProductMatrix cp t2 "<< t2-t1<<" us"<<std::endl;
std::cout << "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
std::cout << "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
std::cout << "InnerProductMatrix blas "<< flops<<" GF/s"<<std::endl;
std::cout << "InnerProductMatrix blas "<< bytes<<" GB/s"<<std::endl;
std::cout << "InnerProductMatrix gsum t5 "<< t5-t4<<" us"<<std::endl;
std::cout << "InnerProductMatrix cp t6 "<< t6-t5<<" us"<<std::endl;
std::cout << "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix cp t2 "<< t2-t1<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix blas "<< flops<<" GF/s"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix blas "<< bytes<<" GB/s"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix gsum t5 "<< t5-t4<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix cp t6 "<< t6-t5<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
#else
int nrhs;
GridBase *grid;
@ -358,17 +358,17 @@ public:
flops = flops/(t4-t3)/1.e3;
bytes = bytes/(t4-t3)/1.e3;
xybytes = 4*xybytes/(t2-t1)/1.e3;
std::cout << "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
std::cout << "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
std::cout << "InnerProductMatrix cp t2 "<< t2-t1<<" us "<<xybytes<<" GB/s"<<std::endl;
std::cout << "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
std::cout << "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
std::cout << "InnerProductMatrix blas "<< flops<<" GF/s"<<std::endl;
std::cout << "InnerProductMatrix blas "<< bytes<<" GB/s"<<std::endl;
std::cout << "InnerProductMatrix cp t5 "<< t5-t4<<" us"<<std::endl;
std::cout << "InnerProductMatrix lsum t6l "<< t6l-t5<<" us"<<std::endl;
std::cout << "InnerProductMatrix gsum t6 "<< t6-t6l<<" us"<<std::endl;
std::cout << "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix cp t2 "<< t2-t1<<" us "<<xybytes<<" GB/s"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix blas "<< flops<<" GF/s"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix blas "<< bytes<<" GB/s"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix cp t5 "<< t5-t4<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix lsum t6l "<< t6l-t5<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix gsum t6 "<< t6-t6l<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
#endif
}
};

View File

@ -63,7 +63,12 @@ class TwoLevelCGmrhs
GridStopWatch SmoothTimer;
GridStopWatch InsertTimer;
/*
Field rrr;
Field sss;
Field qqq;
Field zzz;
*/
// more most opertor functions
TwoLevelCGmrhs(RealD tol,
Integer maxit,
@ -74,6 +79,12 @@ class TwoLevelCGmrhs
MaxIterations(maxit),
_FineLinop(FineLinop),
_Smoother(Smoother)
/*
rrr(fine),
sss(fine),
qqq(fine),
zzz(fine)
*/
{
grid = fine;
};
@ -81,8 +92,8 @@ class TwoLevelCGmrhs
// Vector case
virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
{
SolveSingleSystem(src,x);
// SolvePrecBlockCG(src,x);
// SolveSingleSystem(src,x);
SolvePrecBlockCG(src,x);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
@ -657,6 +668,8 @@ public:
CoarseField PleftProjMrhs(this->coarsegridmrhs);
CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
// this->rrr=in[0];
#undef SMOOTHER_BLOCK_SOLVE
#if SMOOTHER_BLOCK_SOLVE
this->SmoothTimer.Start();
@ -669,6 +682,7 @@ public:
this->SmoothTimer.Stop();
}
#endif
// this->sss=Min[0];
for(int rhs=0;rhs<nrhs;rhs++) {
@ -705,9 +719,11 @@ public:
this->_Projector.blockPromote(tmp,PleftMss_proj);// tmp= Q[in - A Min]
this->PromoteTimer.Stop();
this->FineTimer.Start();
// this->qqq=tmp[0];
for(int rhs=0;rhs<nrhs;rhs++) {
axpy(out[rhs],1.0,Min[rhs],tmp[rhs]); // Min+tmp
}
// this->zzz=out[0];
this->FineTimer.Stop();
}
};

View File

@ -245,9 +245,10 @@ until convergence
_HermOp(src_n,tmp);
// std::cout << GridLogMessage<< tmp<<std::endl; exit(0);
// std::cout << GridLogIRL << " _HermOp " << norm2(tmp) << std::endl;
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
// RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
RealD vnum = real(innerProduct(tmp,tmp)); // HermOp^2.
RealD vden = norm2(src_n);
RealD na = vnum/vden;
RealD na = std::sqrt(vnum/vden);
if (fabs(evalMaxApprox/na - 1.0) < 0.0001)
i=_MAX_ITER_IRL_MEVAPP_;
evalMaxApprox = na;
@ -255,6 +256,7 @@ until convergence
src_n = tmp;
}
}
std::cout << GridLogIRL << " Final evalMaxApprox " << evalMaxApprox << std::endl;
std::vector<RealD> lme(Nm);
std::vector<RealD> lme2(Nm);

View File

@ -74,7 +74,7 @@ public:
void operator() (const Field &src, Field &psi){
psi=Zero();
// psi=Zero();
RealD cp, ssq,rsq;
ssq=norm2(src);
rsq=Tolerance*Tolerance*ssq;

View File

@ -30,6 +30,8 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
/* END LEGAL */
#pragma once
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidualNonHermitian.h>
NAMESPACE_BEGIN(Grid);
inline RealD AggregatePowerLaw(RealD x)
@ -95,7 +97,7 @@ public:
RealD scale;
ConjugateGradient<FineField> CG(1.0e-2,100,false);
ConjugateGradient<FineField> CG(1.0e-3,400,false);
FineField noise(FineGrid);
FineField Mn(FineGrid);
@ -108,7 +110,7 @@ public:
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
for(int i=0;i<1;i++){
for(int i=0;i<4;i++){
CG(hermop,noise,subspace[b]);
@ -124,6 +126,53 @@ public:
}
}
virtual void CreateSubspaceGCR(GridParallelRNG &RNG,LinearOperatorBase<FineField> &DiracOp,int nn=nbasis)
{
RealD scale;
TrivialPrecon<FineField> simple_fine;
PrecGeneralisedConjugateResidualNonHermitian<FineField> GCR(0.001,30,DiracOp,simple_fine,12,12);
FineField noise(FineGrid);
FineField src(FineGrid);
FineField guess(FineGrid);
FineField Mn(FineGrid);
for(int b=0;b<nn;b++){
subspace[b] = Zero();
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|Op|n> "<<innerProduct(noise,Mn)<<std::endl;
for(int i=0;i<2;i++){
// void operator() (const Field &src, Field &psi){
#if 1
std::cout << GridLogMessage << " inverting on noise "<<std::endl;
src = noise;
guess=Zero();
GCR(src,guess);
subspace[b] = guess;
#else
std::cout << GridLogMessage << " inverting on zero "<<std::endl;
src=Zero();
guess = noise;
GCR(src,guess);
subspace[b] = guess;
#endif
noise = subspace[b];
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
}
DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|Op|f> "<<innerProduct(noise,Mn)<<std::endl;
subspace[b] = noise;
}
}
////////////////////////////////////////////////////////////////////////////////////////////////
// World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
// and this is the best I found
@ -160,14 +209,21 @@ public:
int b =0;
{
ComplexD ip;
// Filter
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
Cheb(hermop,noise,Mn);
// normalise
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
hermop.Op(Mn,tmp);
ip= innerProduct(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
hermop.AdjOp(Mn,tmp);
ip = innerProduct(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
b++;
}
@ -213,8 +269,18 @@ public:
Mn=*Tnp;
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
ComplexD ip;
hermop.Op(Mn,tmp);
ip= innerProduct(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
hermop.AdjOp(Mn,tmp);
ip = innerProduct(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
b++;
}
@ -228,6 +294,70 @@ public:
}
assert(b==nn);
}
virtual void CreateSubspacePolyCheby(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
int nn,
double hi,
double lo1,
int orderfilter,
double lo2,
int orderstep)
{
RealD scale;
FineField noise(FineGrid);
FineField Mn(FineGrid);
FineField tmp(FineGrid);
// New normalised noise
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
std::cout << GridLogMessage<<" CreateSubspacePolyCheby "<<std::endl;
// Initial matrix element
hermop.Op(noise,Mn);
std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
int b =0;
{
// Filter
std::cout << GridLogMessage << "Cheby "<<lo1<<","<<hi<<" "<<orderstep<<std::endl;
Chebyshev<FineField> Cheb(lo1,hi,orderfilter);
Cheb(hermop,noise,Mn);
// normalise
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|n> "<<norm2(Mn)<<std::endl;
}
// Generate a full sequence of Chebyshevs
for(int n=1;n<nn;n++){
std::cout << GridLogMessage << "Cheby "<<lo2<<","<<hi<<" "<<orderstep<<std::endl;
Chebyshev<FineField> Cheb(lo2,hi,orderstep);
Cheb(hermop,subspace[n-1],Mn);
for(int m=0;m<n;m++){
ComplexD c = innerProduct(subspace[m],Mn);
Mn = Mn - c*subspace[m];
}
// normalise
scale = std::pow(norm2(Mn),-0.5);
Mn=Mn*scale;
subspace[n]=Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<n<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
std::cout<<GridLogMessage << "filt ["<<n<<"] <n|n> "<<norm2(Mn)<<std::endl;
}
}
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
int nn,
double hi,

View File

@ -441,8 +441,20 @@ public:
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
}
#else
//////////////////////////////////////////////////////////////////////
// Galerkin projection of matrix
//////////////////////////////////////////////////////////////////////
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
Aggregation<Fobj,CComplex,nbasis> & Subspace)
{
CoarsenOperator(linop,Subspace,Subspace);
}
//////////////////////////////////////////////////////////////////////
// Petrov - Galerkin projection of matrix
//////////////////////////////////////////////////////////////////////
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
Aggregation<Fobj,CComplex,nbasis> & U,
Aggregation<Fobj,CComplex,nbasis> & V)
{
std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
GridBase *grid = FineGrid();
@ -458,11 +470,9 @@ public:
// Orthogonalise the subblocks over the basis
/////////////////////////////////////////////////////////////
CoarseScalar InnerProd(CoarseGrid());
blockOrthogonalise(InnerProd,Subspace.subspace);
blockOrthogonalise(InnerProd,V.subspace);
blockOrthogonalise(InnerProd,U.subspace);
// for(int s=0;s<Subspace.subspace.size();s++){
// std::cout << " subspace norm "<<norm2(Subspace.subspace[s])<<std::endl;
// }
const int npoint = geom.npoint;
Coordinate clatt = CoarseGrid()->GlobalDimensions();
@ -542,7 +552,7 @@ public:
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
tphaseBZ-=usecond();
phaV = phaF[p]*Subspace.subspace[i];
phaV = phaF[p]*V.subspace[i];
tphaseBZ+=usecond();
/////////////////////////////////////////////////////////////////////
@ -555,7 +565,7 @@ public:
// std::cout << i << " " <<p << " MphaV "<<norm2(MphaV)<<" "<<norm2(phaV)<<std::endl;
tproj-=usecond();
blockProject(coarseInner,MphaV,Subspace.subspace);
blockProject(coarseInner,MphaV,U.subspace);
coarseInner = conjugate(pha[p]) * coarseInner;
ComputeProj[p] = coarseInner;

View File

@ -69,7 +69,7 @@ public:
}
// FIXME: hack for the copy constructor: it must be avoided to avoid single thread loop
void construct(pointer __p, const _Tp& __val) { assert(0);};
void construct(pointer __p, const _Tp& __val) { };
void construct(pointer __p) { };
void destroy(pointer __p) { };
};
@ -175,10 +175,11 @@ template<typename _Tp> inline bool operator!=(const devAllocator<_Tp>&, const d
// Template typedefs
////////////////////////////////////////////////////////////////////////////////
template<class T> using hostVector = std::vector<T,alignedAllocator<T> >; // Needs autoview
template<class T> using Vector = std::vector<T,uvmAllocator<T> >; //
template<class T> using Vector = std::vector<T,uvmAllocator<T> >; // Really want to deprecate
template<class T> using uvmVector = std::vector<T,uvmAllocator<T> >; // auto migrating page
template<class T> using deviceVector = std::vector<T,devAllocator<T> >; // device vector
/*
template<class T> class vecView
{
protected:
@ -214,6 +215,7 @@ template<class T> vecView<T> VectorView(Vector<T> &vec,ViewMode _mode)
#define autoVecView(v_v,v,mode) \
auto v_v = VectorView(v,mode); \
ViewCloser<decltype(v_v)> _autoView##v_v(v_v);
*/
NAMESPACE_END(Grid);

View File

@ -9,6 +9,7 @@ static char print_buffer [ MAXLINE ];
#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer << std::endl;
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug << print_buffer << std::endl;
//#define dprintf(...)
//#define mprintf(...)
////////////////////////////////////////////////////////////
// For caching copies of data on device
@ -109,7 +110,7 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
///////////////////////////////////////////////////////////
assert(AccCache.state!=Empty);
dprintf("MemoryManager: Discard(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
dprintf("MemoryManager: Discard(%lx) %lx",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
assert(AccCache.accLock==0);
assert(AccCache.cpuLock==0);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
@ -119,7 +120,7 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
DeviceBytes -=AccCache.bytes;
LRUremove(AccCache);
AccCache.AccPtr=(uint64_t) NULL;
dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);
dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);
}
uint64_t CpuPtr = AccCache.CpuPtr;
EntryErase(CpuPtr);
@ -139,7 +140,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
///////////////////////////////////////////////////////////////////////////
assert(AccCache.state!=Empty);
mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld\n",
mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld",
(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr,
(uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock);
if (AccCache.accLock!=0) return;
@ -153,7 +154,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
AccCache.AccPtr=(uint64_t)NULL;
AccCache.state=CpuDirty; // CPU primary now
DeviceBytes -=AccCache.bytes;
dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);
dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld ",(uint64_t)AccCache.AccPtr,DeviceBytes);
}
// uint64_t CpuPtr = AccCache.CpuPtr;
DeviceEvictions++;
@ -167,7 +168,7 @@ void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
assert(AccCache.AccPtr!=(uint64_t)NULL);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
mprintf("MemoryManager: acceleratorCopyFromDevice Flush size %ld AccPtr %lx -> CpuPtr %lx\n",(uint64_t)AccCache.bytes,(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
mprintf("MemoryManager: acceleratorCopyFromDevice Flush size %ld AccPtr %lx -> CpuPtr %lx",(uint64_t)AccCache.bytes,(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
DeviceToHostBytes+=AccCache.bytes;
DeviceToHostXfer++;
AccCache.state=Consistent;
@ -182,7 +183,7 @@ void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
DeviceBytes+=AccCache.bytes;
}
mprintf("MemoryManager: acceleratorCopyToDevice Clone size %ld AccPtr %lx <- CpuPtr %lx\n",
mprintf("MemoryManager: acceleratorCopyToDevice Clone size %ld AccPtr %lx <- CpuPtr %lx",
(uint64_t)AccCache.bytes,
(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
@ -210,7 +211,7 @@ void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache)
void MemoryManager::ViewClose(void* Ptr,ViewMode mode)
{
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
dprintf("AcceleratorViewClose %lx\n",(uint64_t)Ptr);
dprintf("AcceleratorViewClose %lx",(uint64_t)Ptr);
AcceleratorViewClose((uint64_t)Ptr);
} else if( (mode==CpuRead)||(mode==CpuWrite)){
CpuViewClose((uint64_t)Ptr);
@ -222,7 +223,7 @@ void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvis
{
uint64_t CpuPtr = (uint64_t)_CpuPtr;
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
dprintf("AcceleratorViewOpen %lx\n",(uint64_t)CpuPtr);
dprintf("AcceleratorViewOpen %lx",(uint64_t)CpuPtr);
return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint);
} else if( (mode==CpuRead)||(mode==CpuWrite)){
return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint);
@ -233,6 +234,9 @@ void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvis
}
void MemoryManager::EvictVictims(uint64_t bytes)
{
if(bytes>=DeviceMaxBytes) {
printf("EvictVictims bytes %ld DeviceMaxBytes %ld\n",bytes,DeviceMaxBytes);
}
assert(bytes<DeviceMaxBytes);
while(bytes+DeviceLRUBytes > DeviceMaxBytes){
if ( DeviceLRUBytes > 0){
@ -265,7 +269,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
assert(AccCache.cpuLock==0); // Programming error
if(AccCache.state!=Empty) {
dprintf("ViewOpen found entry %lx %lx : sizes %ld %ld accLock %ld\n",
dprintf("ViewOpen found entry %lx %lx : sizes %ld %ld accLock %ld",
(uint64_t)AccCache.CpuPtr,
(uint64_t)CpuPtr,
(uint64_t)AccCache.bytes,
@ -305,7 +309,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
AccCache.state = Consistent; // Empty + AccRead => Consistent
}
AccCache.accLock= 1;
dprintf("Copied Empty entry into device accLock= %d\n",AccCache.accLock);
dprintf("Copied Empty entry into device accLock= %d",AccCache.accLock);
} else if(AccCache.state==CpuDirty ){
if(mode==AcceleratorWriteDiscard) {
CpuDiscard(AccCache);
@ -318,21 +322,21 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
AccCache.state = Consistent; // CpuDirty + AccRead => Consistent
}
AccCache.accLock++;
dprintf("CpuDirty entry into device ++accLock= %d\n",AccCache.accLock);
dprintf("CpuDirty entry into device ++accLock= %d",AccCache.accLock);
} else if(AccCache.state==Consistent) {
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
AccCache.state = AccDirty; // Consistent + AcceleratorWrite=> AccDirty
else
AccCache.state = Consistent; // Consistent + AccRead => Consistent
AccCache.accLock++;
dprintf("Consistent entry into device ++accLock= %d\n",AccCache.accLock);
dprintf("Consistent entry into device ++accLock= %d",AccCache.accLock);
} else if(AccCache.state==AccDirty) {
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
AccCache.state = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty
else
AccCache.state = AccDirty; // AccDirty + AccRead => AccDirty
AccCache.accLock++;
dprintf("AccDirty entry ++accLock= %d\n",AccCache.accLock);
dprintf("AccDirty entry ++accLock= %d",AccCache.accLock);
} else {
assert(0);
}
@ -341,7 +345,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
// If view is opened on device must remove from LRU
if(AccCache.LRU_valid==1){
// must possibly remove from LRU as now locked on GPU
dprintf("AccCache entry removed from LRU \n");
dprintf("AccCache entry removed from LRU ");
LRUremove(AccCache);
}
@ -364,10 +368,10 @@ void MemoryManager::AcceleratorViewClose(uint64_t CpuPtr)
AccCache.accLock--;
// Move to LRU queue if not locked and close on device
if(AccCache.accLock==0) {
dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
LRUinsert(AccCache);
} else {
dprintf("AccleratorViewClose %lx AccLock decremented to %ld\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
dprintf("AccleratorViewClose %lx AccLock decremented to %ld",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
}
}
void MemoryManager::CpuViewClose(uint64_t CpuPtr)

View File

@ -33,6 +33,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
///////////////////////////////////
#include <Grid/communicator/SharedMemory.h>
#define NVLINK_GET
NAMESPACE_BEGIN(Grid);
extern bool Stencil_force_mpi ;
@ -127,7 +129,7 @@ public:
void GlobalSumVector(ComplexD *c,int N);
void GlobalXOR(uint32_t &);
void GlobalXOR(uint64_t &);
template<class obj> void GlobalSumP2P(obj &o)
{
std::vector<obj> column;
@ -136,7 +138,7 @@ public:
for(int d=0;d<_ndimension;d++){
column.resize(_processors[d]);
column[0] = accum;
std::vector<CommsRequest_t> list;
std::vector<MpiCommsRequest_t> list;
for(int p=1;p<_processors[d];p++){
ShiftedRanks(d,p,source,dest);
SendToRecvFromBegin(list,
@ -147,7 +149,8 @@ public:
sizeof(obj),d*100+p);
}
CommsComplete(list);
if (!list.empty()) // avoid triggering assert in comms == none
CommsComplete(list);
for(int p=1;p<_processors[d];p++){
accum = accum + column[p];
}
@ -166,8 +169,8 @@ public:
////////////////////////////////////////////////////////////
// Face exchange, buffer swap in translational invariant way
////////////////////////////////////////////////////////////
void CommsComplete(std::vector<CommsRequest_t> &list);
void SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void CommsComplete(std::vector<MpiCommsRequest_t> &list);
void SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
@ -186,6 +189,17 @@ public:
int recv_from_rank,int do_recv,
int bytes,int dir);
double StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,int do_xmit,
void *recv,
int recv_from_rank,int do_recv,
int xbytes,int rbytes,int dir);
// Could do a PollHtoD and have a CommsMerge dependence
void StencilSendToRecvFromPollDtoH (std::vector<CommsRequest_t> &list);
void StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list);
double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,int do_xmit,

View File

@ -30,6 +30,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
Grid_MPI_Comm CartesianCommunicator::communicator_world;
////////////////////////////////////////////
@ -317,7 +318,7 @@ void CartesianCommunicator::GlobalSumVector(double *d,int N)
assert(ierr==0);
}
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void CartesianCommunicator::SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
@ -342,7 +343,7 @@ void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &lis
assert(ierr==0);
list.push_back(xrq);
}
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list)
void CartesianCommunicator::CommsComplete(std::vector<MpiCommsRequest_t> &list)
{
int nreq=list.size();
@ -361,9 +362,7 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
int from,
int bytes)
{
std::vector<CommsRequest_t> reqs(0);
unsigned long xcrc = crc32(0L, Z_NULL, 0);
unsigned long rcrc = crc32(0L, Z_NULL, 0);
std::vector<MpiCommsRequest_t> reqs(0);
int myrank = _processor;
int ierr;
@ -379,9 +378,6 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
communicator,MPI_STATUS_IGNORE);
assert(ierr==0);
// xcrc = crc32(xcrc,(unsigned char *)xmit,bytes);
// rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
// printf("proc %d SendToRecvFrom %d bytes xcrc %lx rcrc %lx\n",_processor,bytes,xcrc,rcrc); fflush
}
// Basic Halo comms primitive
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
@ -391,12 +387,287 @@ double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
int bytes,int dir)
{
std::vector<CommsRequest_t> list;
double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
double offbytes = StencilSendToRecvFromPrepare(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
offbytes += StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
StencilSendToRecvFromComplete(list,dir);
return offbytes;
}
#undef NVLINK_GET // Define to use get instead of put DMA
#ifdef ACCELERATOR_AWARE_MPI
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {};
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {};
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,int dox,
void *recv,
int from,int dor,
int xbytes,int rbytes,int dir)
{
return 0.0; // Do nothing -- no preparation required
}
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,int dox,
void *recv,
int from,int dor,
int xbytes,int rbytes,int dir)
{
int ncomm =communicator_halo.size();
int commdir=dir%ncomm;
MPI_Request xrq;
MPI_Request rrq;
int ierr;
int gdest = ShmRanks[dest];
int gfrom = ShmRanks[from];
int gme = ShmRanks[_processor];
assert(dest != _processor);
assert(from != _processor);
assert(gme == ShmRank);
double off_node_bytes=0.0;
int tag;
if ( dor ) {
if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+from*32;
ierr=MPI_Irecv(recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
assert(ierr==0);
list.push_back(rrq);
off_node_bytes+=rbytes;
}
#ifdef NVLINK_GET
else {
void *shm = (void *) this->ShmBufferTranslate(from,xmit);
assert(shm!=NULL);
acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
}
#endif
}
// This is a NVLINK PUT
if (dox) {
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+_processor*32;
ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
assert(ierr==0);
list.push_back(xrq);
off_node_bytes+=xbytes;
} else {
#ifndef NVLINK_GET
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
assert(shm!=NULL);
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
#endif
}
}
return off_node_bytes;
}
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
{
int nreq=list.size();
/*finishes Get/Put*/
acceleratorCopySynchronise();
if (nreq==0) return;
std::vector<MPI_Status> status(nreq);
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
assert(ierr==0);
list.resize(0);
this->StencilBarrier();
}
#else /* NOT ... ACCELERATOR_AWARE_MPI */
///////////////////////////////////////////
// Pipeline mode through host memory
///////////////////////////////////////////
/*
* In prepare (phase 1):
* PHASE 1: (prepare)
* - post MPI receive buffers asynch
* - post device - host send buffer transfer asynch
* PHASE 2: (Begin)
* - complete all copies
* - post MPI send asynch
* - post device - device transfers
* PHASE 3: (Complete)
* - MPI_waitall
* - host-device transfers
*
*********************************
* NB could split this further:
*--------------------------------
* PHASE 1: (Prepare)
* - post MPI receive buffers asynch
* - post device - host send buffer transfer asynch
* PHASE 2: (BeginInterNode)
* - complete all copies
* - post MPI send asynch
* PHASE 3: (BeginIntraNode)
* - post device - device transfers
* PHASE 4: (Complete)
* - MPI_waitall
* - host-device transfers asynch
* - (complete all copies)
*/
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,int dox,
void *recv,
int from,int dor,
int xbytes,int rbytes,int dir)
{
/*
* Bring sequence from Stencil.h down to lower level.
* Assume using XeLink is ok
*/
int ncomm =communicator_halo.size();
int commdir=dir%ncomm;
MPI_Request xrq;
MPI_Request rrq;
int ierr;
int gdest = ShmRanks[dest];
int gfrom = ShmRanks[from];
int gme = ShmRanks[_processor];
assert(dest != _processor);
assert(from != _processor);
assert(gme == ShmRank);
double off_node_bytes=0.0;
int tag;
void * host_recv = NULL;
void * host_xmit = NULL;
/*
* PHASE 1: (Prepare)
* - post MPI receive buffers asynch
* - post device - host send buffer transfer asynch
*/
if ( dor ) {
if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+from*32;
host_recv = this->HostBufferMalloc(rbytes);
ierr=MPI_Irecv(host_recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
assert(ierr==0);
CommsRequest_t srq;
srq.PacketType = InterNodeRecv;
srq.bytes = rbytes;
srq.req = rrq;
srq.host_buf = host_recv;
srq.device_buf = recv;
list.push_back(srq);
off_node_bytes+=rbytes;
}
}
if (dox) {
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+_processor*32;
host_xmit = this->HostBufferMalloc(xbytes);
CommsRequest_t srq;
srq.ev = acceleratorCopyFromDeviceAsynch(xmit, host_xmit,xbytes); // Make this Asynch
// ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
// assert(ierr==0);
// off_node_bytes+=xbytes;
srq.PacketType = InterNodeXmit;
srq.bytes = xbytes;
// srq.req = xrq;
srq.host_buf = host_xmit;
srq.device_buf = xmit;
srq.tag = tag;
srq.dest = dest;
srq.commdir = commdir;
list.push_back(srq);
}
}
return off_node_bytes;
}
/*
* In the interest of better pipelining, poll for completion on each DtoH and
* start MPI_ISend in the meantime
*/
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list)
{
int pending = 0;
do {
pending = 0;
for(int idx = 0; idx<list.size();idx++){
if ( list[idx].PacketType==InterNodeRecv ) {
int flag = 0;
MPI_Status status;
int ierr = MPI_Test(&list[idx].req,&flag,&status);
assert(ierr==0);
if ( flag ) {
// std::cout << " PollIrecv "<<idx<<" flag "<<flag<<std::endl;
acceleratorCopyToDeviceAsynch(list[idx].host_buf,list[idx].device_buf,list[idx].bytes);
list[idx].PacketType=InterNodeReceiveHtoD;
} else {
pending ++;
}
}
}
// std::cout << " PollIrecv "<<pending<<" pending requests"<<std::endl;
} while ( pending );
}
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list)
{
int pending = 0;
do {
pending = 0;
for(int idx = 0; idx<list.size();idx++){
if ( list[idx].PacketType==InterNodeXmit ) {
if ( acceleratorEventIsComplete(list[idx].ev) ) {
void *host_xmit = list[idx].host_buf;
uint32_t xbytes = list[idx].bytes;
int dest = list[idx].dest;
int tag = list[idx].tag;
int commdir = list[idx].commdir;
///////////////////
// Send packet
///////////////////
// std::cout << " DtoH is complete for index "<<idx<<" calling MPI_Isend "<<std::endl;
MPI_Request xrq;
int ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
assert(ierr==0);
list[idx].req = xrq; // Update the MPI request in the list
list[idx].PacketType=InterNodeXmitISend;
} else {
// not done, so return to polling loop
pending++;
}
}
}
} while (pending);
}
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,int dox,
@ -421,54 +692,106 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
double off_node_bytes=0.0;
int tag;
if ( dor ) {
if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+from*32;
ierr=MPI_Irecv(recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
assert(ierr==0);
list.push_back(rrq);
off_node_bytes+=rbytes;
}
void * host_xmit = NULL;
////////////////////////////////
// Receives already posted
// Copies already started
////////////////////////////////
/*
* PHASE 2: (Begin)
* - complete all copies
* - post MPI send asynch
*/
#ifdef NVLINK_GET
if ( dor ) {
if ( ! ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) ) {
// Intranode
void *shm = (void *) this->ShmBufferTranslate(from,xmit);
assert(shm!=NULL);
acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
#endif
}
CommsRequest_t srq;
srq.ev = acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
srq.PacketType = IntraNodeRecv;
srq.bytes = xbytes;
// srq.req = xrq;
srq.host_buf = NULL;
srq.device_buf = xmit;
srq.tag = -1;
srq.dest = dest;
srq.commdir = dir;
list.push_back(srq);
}
}
#else
if (dox) {
// rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+_processor*32;
ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
assert(ierr==0);
list.push_back(xrq);
off_node_bytes+=xbytes;
} else {
#ifndef NVLINK_GET
if ( !( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) ) {
// Intranode
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
assert(shm!=NULL);
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
#endif
CommsRequest_t srq;
srq.ev = acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
srq.PacketType = IntraNodeXmit;
srq.bytes = xbytes;
// srq.req = xrq;
srq.host_buf = NULL;
srq.device_buf = xmit;
srq.tag = -1;
srq.dest = dest;
srq.commdir = dir;
list.push_back(srq);
}
}
#endif
return off_node_bytes;
}
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
{
int nreq=list.size();
acceleratorCopySynchronise(); // Complete all pending copy transfers D2D
acceleratorCopySynchronise();
std::vector<MPI_Status> status;
std::vector<MPI_Request> MpiRequests;
for(int r=0;r<list.size();r++){
// Must check each Send buf is clear to reuse
if ( list[r].PacketType == InterNodeXmitISend ) MpiRequests.push_back(list[r].req);
// if ( list[r].PacketType == InterNodeRecv ) MpiRequests.push_back(list[r].req); // Already "Test" passed
}
if (nreq==0) return;
int nreq=MpiRequests.size();
std::vector<MPI_Status> status(nreq);
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
assert(ierr==0);
list.resize(0);
if (nreq>0) {
status.resize(MpiRequests.size());
int ierr = MPI_Waitall(MpiRequests.size(),&MpiRequests[0],&status[0]); // Sends are guaranteed in order. No harm in not completing.
assert(ierr==0);
}
// for(int r=0;r<nreq;r++){
// if ( list[r].PacketType==InterNodeRecv ) {
// acceleratorCopyToDeviceAsynch(list[r].host_buf,list[r].device_buf,list[r].bytes);
// }
// }
list.resize(0); // Delete the list
this->HostBufferFreeAll(); // Clean up the buffer allocs
#ifndef NVLINK_GET
this->StencilBarrier(); // if PUT must check our nbrs have filled our receive buffers.
#endif
}
#endif
////////////////////////////////////////////
// END PIPELINE MODE / NO CUDA AWARE MPI
////////////////////////////////////////////
void CartesianCommunicator::StencilBarrier(void)
{
MPI_Barrier (ShmComm);

View File

@ -91,7 +91,7 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
{
assert(0);
}
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ assert(0);}
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ assert(list.size()==0);}
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,
@ -132,6 +132,17 @@ double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
{
return 2.0*bytes;
}
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {};
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {};
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,int dox,
void *recv,
int recv_from_rank,int dor,
int xbytes,int rbytes, int dir)
{
return 0.0;
}
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,int dox,

View File

@ -46,8 +46,40 @@ NAMESPACE_BEGIN(Grid);
#if defined (GRID_COMMS_MPI3)
typedef MPI_Comm Grid_MPI_Comm;
typedef MPI_Request MpiCommsRequest_t;
#ifdef ACCELERATOR_AWARE_MPI
typedef MPI_Request CommsRequest_t;
#else
/*
* Enable state transitions as each packet flows.
*/
enum PacketType_t {
FaceGather,
InterNodeXmit,
InterNodeRecv,
IntraNodeXmit,
IntraNodeRecv,
InterNodeXmitISend,
InterNodeReceiveHtoD
};
/*
*Package arguments needed for various actions along packet flow
*/
typedef struct {
PacketType_t PacketType;
void *host_buf;
void *device_buf;
int dest;
int tag;
int commdir;
unsigned long bytes;
acceleratorEvent_t ev;
MpiCommsRequest_t req;
} CommsRequest_t;
#endif
#else
typedef int MpiCommsRequest_t;
typedef int CommsRequest_t;
typedef int Grid_MPI_Comm;
#endif
@ -105,7 +137,7 @@ public:
///////////////////////////////////////////////////
static void SharedMemoryAllocate(uint64_t bytes, int flags);
static void SharedMemoryFree(void);
static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
// static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
static void SharedMemoryZero(void *dest,size_t bytes);
};

View File

@ -42,6 +42,11 @@ Author: Christoph Lehner <christoph@lhnr.de>
#ifdef ACCELERATOR_AWARE_MPI
#define GRID_SYCL_LEVEL_ZERO_IPC
#define SHM_SOCKETS
#else
#ifdef HAVE_NUMAIF_H
#warning " Using NUMAIF "
#include <numaif.h>
#endif
#endif
#include <syscall.h>
#endif
@ -537,7 +542,38 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
// Each MPI rank should allocate our own buffer
///////////////////////////////////////////////////////////////////////////////////////////////////////////
#ifndef ACCELERATOR_AWARE_MPI
HostCommBuf= malloc(bytes);
// printf("Host buffer allocate for GPU non-aware MPI\n");
#if 0
HostCommBuf= acceleratorAllocHost(bytes);
#else
HostCommBuf= malloc(bytes); /// CHANGE THIS TO malloc_host
#if 0
#warning "Moving host buffers to specific NUMA domain"
int numa;
char *numa_name=(char *)getenv("MPI_BUF_NUMA");
if(numa_name) {
unsigned long page_size = sysconf(_SC_PAGESIZE);
numa = atoi(numa_name);
unsigned long page_count = bytes/page_size;
std::vector<void *> pages(page_count);
std::vector<int> nodes(page_count,numa);
std::vector<int> status(page_count,-1);
for(unsigned long p=0;p<page_count;p++){
pages[p] =(void *) ((uint64_t) HostCommBuf + p*page_size);
}
int ret = move_pages(0,
page_count,
&pages[0],
&nodes[0],
&status[0],
MPOL_MF_MOVE);
printf("Host buffer move to numa domain %d : move_pages returned %d\n",numa,ret);
if (ret) perror(" move_pages failed for reason:");
}
#endif
acceleratorPin(HostCommBuf,bytes);
#endif
#endif
ShmCommBuf = acceleratorAllocDevice(bytes);
if (ShmCommBuf == (void *)NULL ) {
@ -880,14 +916,14 @@ void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
bzero(dest,bytes);
#endif
}
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
{
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
acceleratorCopyToDevice(src,dest,bytes);
#else
bcopy(src,dest,bytes);
#endif
}
//void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
//{
//#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
// acceleratorCopyToDevice(src,dest,bytes);
//#else
// bcopy(src,dest,bytes);
//#endif
//}
////////////////////////////////////////////////////////
// Global shared functionality finished
// Now move to per communicator functionality
@ -923,6 +959,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
MPI_Allreduce(MPI_IN_PLACE,&wsr,1,MPI_UINT32_T,MPI_SUM,ShmComm);
ShmCommBufs[r] = GlobalSharedMemory::WorldShmCommBufs[wsr];
// std::cerr << " SetCommunicator rank "<<r<<" comm "<<ShmCommBufs[r] <<std::endl;
}
ShmBufferFreeAll();
@ -953,7 +990,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
}
#endif
//SharedMemoryTest();
SharedMemoryTest();
}
//////////////////////////////////////////////////////////////////
// On node barrier
@ -975,19 +1012,18 @@ void SharedMemory::SharedMemoryTest(void)
check[0]=GlobalSharedMemory::WorldNode;
check[1]=r;
check[2]=magic;
GlobalSharedMemory::SharedMemoryCopy( ShmCommBufs[r], check, 3*sizeof(uint64_t));
acceleratorCopyToDevice(check,ShmCommBufs[r],3*sizeof(uint64_t));
}
}
ShmBarrier();
for(uint64_t r=0;r<ShmSize;r++){
ShmBarrier();
GlobalSharedMemory::SharedMemoryCopy(check,ShmCommBufs[r], 3*sizeof(uint64_t));
ShmBarrier();
acceleratorCopyFromDevice(ShmCommBufs[r],check,3*sizeof(uint64_t));
assert(check[0]==GlobalSharedMemory::WorldNode);
assert(check[1]==r);
assert(check[2]==magic);
ShmBarrier();
}
ShmBarrier();
std::cout << GridLogDebug << " SharedMemoryTest has passed "<<std::endl;
}
void *SharedMemory::ShmBuffer(int rank)

View File

@ -68,7 +68,7 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
if(Cshift_verbose) std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl;
return ret;
}
#if 1
template<class vobj> void Cshift_comms(Lattice<vobj>& ret,const Lattice<vobj> &rhs,int dimension,int shift)
{
int sshift[2];
@ -125,7 +125,11 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
static deviceVector<vobj> send_buf; send_buf.resize(buffer_size);
static deviceVector<vobj> recv_buf; recv_buf.resize(buffer_size);
#ifndef ACCELERATOR_AWARE_MPI
static hostVector<vobj> hsend_buf; hsend_buf.resize(buffer_size);
static hostVector<vobj> hrecv_buf; hrecv_buf.resize(buffer_size);
#endif
int cb= (cbmask==0x2)? Odd : Even;
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
RealD tcopy=0.0;
@ -156,16 +160,29 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
// int rank = grid->_processor;
int recv_from_rank;
int xmit_to_rank;
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
tcomms-=usecond();
grid->Barrier();
#ifdef ACCELERATOR_AWARE_MPI
grid->SendToRecvFrom((void *)&send_buf[0],
xmit_to_rank,
(void *)&recv_buf[0],
recv_from_rank,
bytes);
#else
// bouncy bouncy
acceleratorCopyFromDevice(&send_buf[0],&hsend_buf[0],bytes);
grid->SendToRecvFrom((void *)&hsend_buf[0],
xmit_to_rank,
(void *)&hrecv_buf[0],
recv_from_rank,
bytes);
acceleratorCopyToDevice(&hrecv_buf[0],&recv_buf[0],bytes);
#endif
xbytes+=bytes;
grid->Barrier();
tcomms+=usecond();
@ -226,12 +243,16 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
static std::vector<deviceVector<scalar_object> > recv_buf_extract; recv_buf_extract.resize(Nsimd);
scalar_object * recv_buf_extract_mpi;
scalar_object * send_buf_extract_mpi;
for(int s=0;s<Nsimd;s++){
send_buf_extract[s].resize(buffer_size);
recv_buf_extract[s].resize(buffer_size);
}
#ifndef ACCELERATOR_AWARE_MPI
hostVector<scalar_object> hsend_buf; hsend_buf.resize(buffer_size);
hostVector<scalar_object> hrecv_buf; hrecv_buf.resize(buffer_size);
#endif
int bytes = buffer_size*sizeof(scalar_object);
ExtractPointerArray<scalar_object> pointers(Nsimd); //
@ -283,11 +304,22 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
recv_buf_extract_mpi = &recv_buf_extract[i][0];
#ifdef ACCELERATOR_AWARE_MPI
grid->SendToRecvFrom((void *)send_buf_extract_mpi,
xmit_to_rank,
(void *)recv_buf_extract_mpi,
recv_from_rank,
bytes);
#else
// bouncy bouncy
acceleratorCopyFromDevice((void *)send_buf_extract_mpi,(void *)&hsend_buf[0],bytes);
grid->SendToRecvFrom((void *)&hsend_buf[0],
xmit_to_rank,
(void *)&hrecv_buf[0],
recv_from_rank,
bytes);
acceleratorCopyToDevice((void *)&hrecv_buf[0],(void *)recv_buf_extract_mpi,bytes);
#endif
xbytes+=bytes;
grid->Barrier();
@ -311,234 +343,6 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
}
}
#else
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
GridBase *grid=rhs.Grid();
Lattice<vobj> temp(rhs.Grid());
int fd = rhs.Grid()->_fdimensions[dimension];
int rd = rhs.Grid()->_rdimensions[dimension];
int pd = rhs.Grid()->_processors[dimension];
int simd_layout = rhs.Grid()->_simd_layout[dimension];
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
assert(simd_layout==1);
assert(comm_dim==1);
assert(shift>=0);
assert(shift<fd);
RealD tcopy=0.0;
RealD tgather=0.0;
RealD tscatter=0.0;
RealD tcomms=0.0;
uint64_t xbytes=0;
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
static cshiftVector<vobj> send_buf_v; send_buf_v.resize(buffer_size);
static cshiftVector<vobj> recv_buf_v; recv_buf_v.resize(buffer_size);
vobj *send_buf;
vobj *recv_buf;
{
grid->ShmBufferFreeAll();
size_t bytes = buffer_size*sizeof(vobj);
send_buf=(vobj *)grid->ShmBufferMalloc(bytes);
recv_buf=(vobj *)grid->ShmBufferMalloc(bytes);
}
int cb= (cbmask==0x2)? Odd : Even;
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
for(int x=0;x<rd;x++){
int sx = (x+sshift)%rd;
int comm_proc = ((x+sshift)/rd)%pd;
if (comm_proc==0) {
tcopy-=usecond();
Copy_plane(ret,rhs,dimension,x,sx,cbmask);
tcopy+=usecond();
} else {
int words = buffer_size;
if (cbmask != 0x3) words=words>>1;
int bytes = words * sizeof(vobj);
tgather-=usecond();
Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask);
tgather+=usecond();
// int rank = grid->_processor;
int recv_from_rank;
int xmit_to_rank;
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
tcomms-=usecond();
// grid->Barrier();
acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes);
grid->SendToRecvFrom((void *)&send_buf[0],
xmit_to_rank,
(void *)&recv_buf[0],
recv_from_rank,
bytes);
xbytes+=bytes;
acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes);
// grid->Barrier();
tcomms+=usecond();
tscatter-=usecond();
Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask);
tscatter+=usecond();
}
}
if(Cshift_verbose){
std::cout << GridLogPerformance << " Cshift copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
}
}
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
GridBase *grid=rhs.Grid();
const int Nsimd = grid->Nsimd();
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
int fd = grid->_fdimensions[dimension];
int rd = grid->_rdimensions[dimension];
int ld = grid->_ldimensions[dimension];
int pd = grid->_processors[dimension];
int simd_layout = grid->_simd_layout[dimension];
int comm_dim = grid->_processors[dimension] >1 ;
//std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
// << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout
// << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
assert(comm_dim==1);
assert(simd_layout==2);
assert(shift>=0);
assert(shift<fd);
RealD tcopy=0.0;
RealD tgather=0.0;
RealD tscatter=0.0;
RealD tcomms=0.0;
uint64_t xbytes=0;
int permute_type=grid->PermuteType(dimension);
///////////////////////////////////////////////
// Simd direction uses an extract/merge pair
///////////////////////////////////////////////
int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
// int words = sizeof(vobj)/sizeof(vector_type);
static std::vector<cshiftVector<scalar_object> > send_buf_extract; send_buf_extract.resize(Nsimd);
static std::vector<cshiftVector<scalar_object> > recv_buf_extract; recv_buf_extract.resize(Nsimd);
scalar_object * recv_buf_extract_mpi;
scalar_object * send_buf_extract_mpi;
{
size_t bytes = sizeof(scalar_object)*buffer_size;
grid->ShmBufferFreeAll();
send_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
recv_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
}
for(int s=0;s<Nsimd;s++){
send_buf_extract[s].resize(buffer_size);
recv_buf_extract[s].resize(buffer_size);
}
int bytes = buffer_size*sizeof(scalar_object);
ExtractPointerArray<scalar_object> pointers(Nsimd); //
ExtractPointerArray<scalar_object> rpointers(Nsimd); // received pointers
///////////////////////////////////////////
// Work out what to send where
///////////////////////////////////////////
int cb = (cbmask==0x2)? Odd : Even;
int sshift= grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
// loop over outer coord planes orthog to dim
for(int x=0;x<rd;x++){
// FIXME call local permute copy if none are offnode.
for(int i=0;i<Nsimd;i++){
pointers[i] = &send_buf_extract[i][0];
}
tgather-=usecond();
int sx = (x+sshift)%rd;
Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
tgather+=usecond();
for(int i=0;i<Nsimd;i++){
int inner_bit = (Nsimd>>(permute_type+1));
int ic= (i&inner_bit)? 1:0;
int my_coor = rd*ic + x;
int nbr_coor = my_coor+sshift;
int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors
int nbr_ic = (nbr_coor%ld)/rd; // inner coord of peer
int nbr_ox = (nbr_coor%rd); // outer coord of peer
int nbr_lane = (i&(~inner_bit));
int recv_from_rank;
int xmit_to_rank;
if (nbr_ic) nbr_lane|=inner_bit;
assert (sx == nbr_ox);
if(nbr_proc){
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
tcomms-=usecond();
// grid->Barrier();
acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes);
grid->SendToRecvFrom((void *)send_buf_extract_mpi,
xmit_to_rank,
(void *)recv_buf_extract_mpi,
recv_from_rank,
bytes);
acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes);
xbytes+=bytes;
// grid->Barrier();
tcomms+=usecond();
rpointers[i] = &recv_buf_extract[i][0];
} else {
rpointers[i] = &send_buf_extract[nbr_lane][0];
}
}
tscatter-=usecond();
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
tscatter+=usecond();
}
if(Cshift_verbose){
std::cout << GridLogPerformance << " Cshift (s) copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s"<<std::endl;
}
}
#endif
NAMESPACE_END(Grid);

View File

@ -55,7 +55,7 @@ inline void sliceSumReduction_cub_small(const vobj *Data,
d_offsets = static_cast<int*>(acceleratorAllocDevice((rd+1)*sizeof(int)));
//copy offsets to device
acceleratorCopyToDeviceAsync(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream);
acceleratorCopyToDeviceAsynch(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream);
gpuError_t gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p,d_out, rd, d_offsets, d_offsets+1, ::gpucub::Sum(), zero_init, computeStream);
@ -88,7 +88,7 @@ inline void sliceSumReduction_cub_small(const vobj *Data,
exit(EXIT_FAILURE);
}
acceleratorCopyFromDeviceAsync(d_out,&lvSum[0],rd*sizeof(vobj),computeStream);
acceleratorCopyFromDeviceAsynch(d_out,&lvSum[0],rd*sizeof(vobj),computeStream);
//sync after copy
accelerator_barrier();

View File

@ -466,9 +466,15 @@ public:
static deviceVector<vobj> recv_buf;
send_buf.resize(buffer_size*2*depth);
recv_buf.resize(buffer_size*2*depth);
#ifndef ACCELERATOR_AWARE_MPI
static hostVector<vobj> hsend_buf;
static hostVector<vobj> hrecv_buf;
hsend_buf.resize(buffer_size*2*depth);
hrecv_buf.resize(buffer_size*2*depth);
#endif
std::vector<CommsRequest_t> fwd_req;
std::vector<CommsRequest_t> bwd_req;
std::vector<MpiCommsRequest_t> fwd_req;
std::vector<MpiCommsRequest_t> bwd_req;
int words = buffer_size;
int bytes = words * sizeof(vobj);
@ -495,9 +501,17 @@ public:
t_gather+=usecond()-t;
t=usecond();
#ifdef ACCELERATOR_AWARE_MPI
grid->SendToRecvFromBegin(fwd_req,
(void *)&send_buf[d*buffer_size], xmit_to_rank,
(void *)&recv_buf[d*buffer_size], recv_from_rank, bytes, tag);
#else
acceleratorCopyFromDevice(&send_buf[d*buffer_size],&hsend_buf[d*buffer_size],bytes);
grid->SendToRecvFromBegin(fwd_req,
(void *)&hsend_buf[d*buffer_size], xmit_to_rank,
(void *)&hrecv_buf[d*buffer_size], recv_from_rank, bytes, tag);
acceleratorCopyToDevice(&hrecv_buf[d*buffer_size],&recv_buf[d*buffer_size],bytes);
#endif
t_comms+=usecond()-t;
}
for ( int d=0;d < depth ; d ++ ) {
@ -508,9 +522,17 @@ public:
t_gather+= usecond() - t;
t=usecond();
#ifdef ACCELERATOR_AWARE_MPI
grid->SendToRecvFromBegin(bwd_req,
(void *)&send_buf[(d+depth)*buffer_size], recv_from_rank,
(void *)&recv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag);
#else
acceleratorCopyFromDevice(&send_buf[(d+depth)*buffer_size],&hsend_buf[(d+depth)*buffer_size],bytes);
grid->SendToRecvFromBegin(bwd_req,
(void *)&hsend_buf[(d+depth)*buffer_size], recv_from_rank,
(void *)&hrecv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag);
acceleratorCopyToDevice(&hrecv_buf[(d+depth)*buffer_size],&recv_buf[(d+depth)*buffer_size],bytes);
#endif
t_comms+=usecond()-t;
}

View File

@ -484,6 +484,11 @@ public:
this->face_table_computed=1;
assert(this->u_comm_offset==this->_unified_buffer_size);
accelerator_barrier();
#ifdef NVLINK_GET
this->_grid->StencilBarrier(); // He can now get mu local gather, I can get his
// Synch shared memory on a single nodes; could use an asynchronous barrier here and defer check
// Or issue barrier AFTER the DMA is running
#endif
}
};

View File

@ -332,22 +332,18 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st,
// std::cout << " WilsonFermion5D Communicate Begin " <<std::endl;
std::vector<std::vector<CommsRequest_t> > requests;
auto id=traceStart("Communicate overlapped");
st.CommunicateBegin(requests);
#if 1
/////////////////////////////
// Overlap with comms
/////////////////////////////
{
// std::cout << " WilsonFermion5D Comms merge " <<std::endl;
GRID_TRACE("MergeSHM");
st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
}
st.CommunicateBegin(requests);
st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
#endif
/////////////////////////////
// do the compute interior
/////////////////////////////
// std::cout << " WilsonFermion5D Interior " <<std::endl;
int Opt = WilsonKernelsStatic::Opt; // Why pass this. Kernels should know
if (dag == DaggerYes) {
GRID_TRACE("DhopDagInterior");
@ -356,13 +352,23 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st,
GRID_TRACE("DhopInterior");
Kernels::DhopKernel (Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,1,0);
}
//ifdef GRID_ACCELERATED
#if 0
/////////////////////////////
// Overlap with comms -- on GPU the interior kernel call is nonblocking
/////////////////////////////
st.CommunicateBegin(requests);
st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
#endif
/////////////////////////////
// Complete comms
/////////////////////////////
// std::cout << " WilsonFermion5D Comms Complete " <<std::endl;
st.CommunicateComplete(requests);
traceStop(id);
// traceStop(id);
/////////////////////////////
// do the compute exterior

View File

@ -63,7 +63,7 @@ accelerator_inline void get_stencil(StencilEntry * mem, StencilEntry &chip)
} else { \
chi = coalescedRead(buf[SE->_offset],lane); \
} \
acceleratorSynchronise(); \
acceleratorSynchronise(); \
Impl::multLink(Uchi, U[sU], chi, Dir, SE, st); \
Recon(result, Uchi);
@ -517,7 +517,7 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteInt); return;}
#endif
} else if( exterior ) {
// dependent on result of merge
// // dependent on result of merge
acceleratorFenceComputeStream();
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL_EXT(GenericDhopSiteExt); return;}
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL_EXT(HandDhopSiteExt); return;}

View File

@ -363,12 +363,32 @@ public:
////////////////////////////////////////////////////////////////////////
void CommunicateBegin(std::vector<std::vector<CommsRequest_t> > &reqs)
{
// std::cout << "Communicate Begin "<<std::endl;
// _grid->Barrier();
FlightRecorder::StepLog("Communicate begin");
// All GPU kernel tasks must complete
// accelerator_barrier(); // All kernels should ALREADY be complete
// _grid->StencilBarrier(); // Everyone is here, so noone running slow and still using receive buffer
// But the HaloGather had a barrier too.
for(int i=0;i<Packets.size();i++){
// std::cout << "Communicate prepare "<<i<<std::endl;
// _grid->Barrier();
_grid->StencilSendToRecvFromPrepare(MpiReqs,
Packets[i].send_buf,
Packets[i].to_rank,Packets[i].do_send,
Packets[i].recv_buf,
Packets[i].from_rank,Packets[i].do_recv,
Packets[i].xbytes,Packets[i].rbytes,i);
}
// std::cout << "Communicate PollDtoH "<<std::endl;
// _grid->Barrier();
_grid->StencilSendToRecvFromPollDtoH (MpiReqs); /* Starts MPI*/
// std::cout << "Communicate CopySynch "<<std::endl;
// _grid->Barrier();
acceleratorCopySynchronise();
// Starts intranode
for(int i=0;i<Packets.size();i++){
// std::cout << "Communicate Begin "<<i<<std::endl;
_grid->StencilSendToRecvFromBegin(MpiReqs,
Packets[i].send_buf,
Packets[i].to_rank,Packets[i].do_send,
@ -386,15 +406,20 @@ public:
void CommunicateComplete(std::vector<std::vector<CommsRequest_t> > &reqs)
{
// std::cout << "Communicate Complete "<<std::endl;
// _grid->Barrier();
FlightRecorder::StepLog("Start communicate complete");
// std::cout << "Communicate Complete PollIRecv "<<std::endl;
// _grid->Barrier();
_grid->StencilSendToRecvFromPollIRecv(MpiReqs);
// std::cout << "Communicate Complete Complete "<<std::endl;
// _grid->Barrier();
_grid->StencilSendToRecvFromComplete(MpiReqs,0); // MPI is done
if ( this->partialDirichlet ) DslashLogPartial();
else if ( this->fullDirichlet ) DslashLogDirichlet();
else DslashLogFull();
// acceleratorCopySynchronise();// is in the StencilSendToRecvFromComplete
// accelerator_barrier();
_grid->StencilBarrier();
// run any checksums
for(int i=0;i<Packets.size();i++){
if ( Packets[i].do_recv )
FlightRecorder::recvLog(Packets[i].recv_buf,Packets[i].rbytes,Packets[i].from_rank);
@ -421,6 +446,7 @@ public:
Communicate();
CommsMergeSHM(compress);
CommsMerge(compress);
accelerator_barrier();
}
template<class compressor> int HaloGatherDir(const Lattice<vobj> &source,compressor &compress,int point,int & face_idx)
@ -476,6 +502,9 @@ public:
void HaloGather(const Lattice<vobj> &source,compressor &compress)
{
// accelerator_barrier();
//////////////////////////////////
// I will overwrite my send buffers
//////////////////////////////////
_grid->StencilBarrier();// Synch shared memory on a single nodes
assert(source.Grid()==_grid);
@ -489,7 +518,11 @@ public:
HaloGatherDir(source,compress,point,face_idx);
}
accelerator_barrier(); // All my local gathers are complete
// _grid->StencilBarrier();// Synch shared memory on a single nodes
#ifdef NVLINK_GET
_grid->StencilBarrier(); // He can now get mu local gather, I can get his
// Synch shared memory on a single nodes; could use an asynchronous barrier here and defer check
// Or issue barrier AFTER the DMA is running
#endif
face_table_computed=1;
assert(u_comm_offset==_unified_buffer_size);
}
@ -528,6 +561,7 @@ public:
coalescedWrite(to[j] ,coalescedRead(from [j]));
});
acceleratorFenceComputeStream();
// Also fenced in WilsonKernels
}
}
@ -656,7 +690,7 @@ public:
}
}
}
std::cout << "BuildSurfaceList size is "<<surface_list.size()<<std::endl;
// std::cout << "BuildSurfaceList size is "<<surface_list_size<<std::endl;
surface_list.resize(surface_list_size);
std::vector<int> surface_list_host(surface_list_size);
int32_t ss=0;
@ -676,6 +710,7 @@ public:
}
}
acceleratorCopyToDevice(&surface_list_host[0],&surface_list[0],surface_list_size*sizeof(int));
// std::cout << GridLogMessage<<"BuildSurfaceList size is "<<surface_list_size<<std::endl;
}
/// Introduce a block structure and switch off comms on boundaries
void DirichletBlock(const Coordinate &dirichlet_block)
@ -767,8 +802,8 @@ public:
this->_entries_host_p = &_entries[0];
this->_entries_p = &_entries_device[0];
std::cout << GridLogMessage << " Stencil object allocated for "<<std::dec<<this->_osites
<<" sites table "<<std::hex<<this->_entries_p<< " GridPtr "<<_grid<<std::dec<<std::endl;
// std::cout << GridLogMessage << " Stencil object allocated for "<<std::dec<<this->_osites
// <<" sites table "<<std::hex<<this->_entries_p<< " GridPtr "<<_grid<<std::dec<<std::endl;
for(int ii=0;ii<npoints;ii++){

View File

@ -209,6 +209,17 @@ void Lambda6Apply(uint64_t num1, uint64_t num2, uint64_t num3,
} \
}
inline void *acceleratorAllocHost(size_t bytes)
{
void *ptr=NULL;
auto err = cudaMallocHost((void **)&ptr,bytes);
if( err != cudaSuccess ) {
ptr = (void *) NULL;
printf(" cudaMallocHost failed for %d %s \n",bytes,cudaGetErrorString(err));
assert(0);
}
return ptr;
}
inline void *acceleratorAllocShared(size_t bytes)
{
void *ptr=NULL;
@ -230,18 +241,34 @@ inline void *acceleratorAllocDevice(size_t bytes)
}
return ptr;
};
typedef int acceleratorEvent_t;
inline void acceleratorFreeShared(void *ptr){ cudaFree(ptr);};
inline void acceleratorFreeDevice(void *ptr){ cudaFree(ptr);};
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { cudaMemcpy(to,from,bytes, cudaMemcpyHostToDevice);}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ cudaMemcpy(to,from,bytes, cudaMemcpyDeviceToHost);}
inline void acceleratorCopyToDeviceAsync(void *from, void *to, size_t bytes, cudaStream_t stream = copyStream) { cudaMemcpyAsync(to,from,bytes, cudaMemcpyHostToDevice, stream);}
inline void acceleratorCopyFromDeviceAsync(void *from, void *to, size_t bytes, cudaStream_t stream = copyStream) { cudaMemcpyAsync(to,from,bytes, cudaMemcpyDeviceToHost, stream);}
inline void acceleratorFreeHost(void *ptr){ cudaFree(ptr);};
inline void acceleratorCopyToDevice(const void *from,void *to,size_t bytes) { cudaMemcpy(to,from,bytes, cudaMemcpyHostToDevice);}
inline void acceleratorCopyFromDevice(const void *from,void *to,size_t bytes){ cudaMemcpy(to,from,bytes, cudaMemcpyDeviceToHost);}
inline void acceleratorMemSet(void *base,int value,size_t bytes) { cudaMemset(base,value,bytes);}
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) // Asynch
inline acceleratorEvent_t acceleratorCopyToDeviceAsynch(void *from, void *to, size_t bytes, cudaStream_t stream = copyStream) {
acceleratorCopyToDevice(to,from,bytes, cudaMemcpyHostToDevice);
return 0;
}
inline acceleratorEvent_t acceleratorCopyFromDeviceAsynch(void *from, void *to, size_t bytes, cudaStream_t stream = copyStream) {
acceleratorCopyFromDevice(from,to,bytes);
return 0;
}
inline acceleratorEvent_t acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) // Asynch
{
cudaMemcpyAsync(to,from,bytes, cudaMemcpyDeviceToDevice,copyStream);
return 0;
}
inline void acceleratorCopySynchronise(void) { cudaStreamSynchronize(copyStream); };
inline void acceleratorEventWait(acceleratorEvent_t ev)
{
//auto discard=cudaStreamSynchronize(ev);
}
inline int acceleratorEventIsComplete(acceleratorEvent_t ev){ acceleratorEventWait(ev) ; return 1;}
inline int acceleratorIsCommunicable(void *ptr)
@ -322,14 +349,36 @@ accelerator_inline int acceleratorSIMTlane(int Nsimd) {
#define accelerator_barrier(dummy) { theGridAccelerator->wait(); }
inline void *acceleratorAllocShared(size_t bytes){ return malloc_shared(bytes,*theGridAccelerator);};
inline void *acceleratorAllocHost(size_t bytes) { return malloc_host(bytes,*theGridAccelerator);};
inline void *acceleratorAllocDevice(size_t bytes){ return malloc_device(bytes,*theGridAccelerator);};
inline void acceleratorFreeHost(void *ptr){free(ptr,*theGridAccelerator);};
inline void acceleratorFreeShared(void *ptr){free(ptr,*theGridAccelerator);};
inline void acceleratorFreeDevice(void *ptr){free(ptr,*theGridAccelerator);};
inline void acceleratorCopySynchronise(void) { theCopyAccelerator->wait(); }
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) { theCopyAccelerator->memcpy(to,from,bytes);}
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { theCopyAccelerator->memcpy(to,from,bytes); theCopyAccelerator->wait();}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ theCopyAccelerator->memcpy(to,from,bytes); theCopyAccelerator->wait();}
///////
// Asynch event interface
///////
typedef sycl::event acceleratorEvent_t;
inline void acceleratorEventWait(acceleratorEvent_t ev)
{
ev.wait();
}
inline int acceleratorEventIsComplete(acceleratorEvent_t ev)
{
return (ev.get_info<sycl::info::event::command_execution_status>() == sycl::info::event_command_status::complete);
}
inline acceleratorEvent_t acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) { return theCopyAccelerator->memcpy(to,from,bytes);}
inline acceleratorEvent_t acceleratorCopyToDeviceAsynch(void *from,void *to,size_t bytes) { return theCopyAccelerator->memcpy(to,from,bytes); }
inline acceleratorEvent_t acceleratorCopyFromDeviceAsynch(void *from,void *to,size_t bytes) { return theCopyAccelerator->memcpy(to,from,bytes); }
inline void acceleratorCopyToDevice(const void *from,void *to,size_t bytes) { theCopyAccelerator->memcpy(to,from,bytes); theCopyAccelerator->wait();}
inline void acceleratorCopyFromDevice(const void *from,void *to,size_t bytes){ theCopyAccelerator->memcpy(to,from,bytes); theCopyAccelerator->wait();}
inline void acceleratorMemSet(void *base,int value,size_t bytes) { theCopyAccelerator->memset(base,value,bytes); theCopyAccelerator->wait();}
inline int acceleratorIsCommunicable(void *ptr)
@ -340,8 +389,10 @@ inline int acceleratorIsCommunicable(void *ptr)
else return 0;
#endif
return 1;
}
#endif
//////////////////////////////////////////////
@ -438,6 +489,16 @@ void LambdaApply(uint64_t numx, uint64_t numy, uint64_t numz, lambda Lambda)
} \
}
inline void *acceleratorAllocHost(size_t bytes)
{
void *ptr=NULL;
auto err = hipHostMalloc((void **)&ptr,bytes);
if( err != hipSuccess ) {
ptr = (void *) NULL;
fprintf(stderr," hipMallocManaged failed for %ld %s \n",bytes,hipGetErrorString(err)); fflush(stderr);
}
return ptr;
};
inline void *acceleratorAllocShared(size_t bytes)
{
void *ptr=NULL;
@ -461,28 +522,47 @@ inline void *acceleratorAllocDevice(size_t bytes)
return ptr;
};
inline void acceleratorFreeHost(void *ptr){ auto discard=hipFree(ptr);};
inline void acceleratorFreeShared(void *ptr){ auto discard=hipFree(ptr);};
inline void acceleratorFreeDevice(void *ptr){ auto discard=hipFree(ptr);};
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { auto discard=hipMemcpy(to,from,bytes, hipMemcpyHostToDevice);}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ auto discard=hipMemcpy(to,from,bytes, hipMemcpyDeviceToHost);}
//inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) { hipMemcpy(to,from,bytes, hipMemcpyDeviceToDevice);}
//inline void acceleratorCopySynchronise(void) { }
inline void acceleratorCopyToDevice(const void *from,void *to,size_t bytes) { auto discard=hipMemcpy(to,from,bytes, hipMemcpyHostToDevice);}
inline void acceleratorCopyFromDevice(const void *from,void *to,size_t bytes){ auto discard=hipMemcpy(to,from,bytes, hipMemcpyDeviceToHost);}
inline void acceleratorMemSet(void *base,int value,size_t bytes) { auto discard=hipMemset(base,value,bytes);}
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) // Asynch
typedef int acceleratorEvent_t;
inline acceleratorEvent_t acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) // Asynch
{
auto discard=hipMemcpyDtoDAsync(to,from,bytes, copyStream);
return 0;
}
inline void acceleratorCopyToDeviceAsync(void *from, void *to, size_t bytes, hipStream_t stream = copyStream) {
auto r = hipMemcpyAsync(to,from,bytes, hipMemcpyHostToDevice, stream);
inline acceleratorEvent_t acceleratorCopyToDeviceAsynch(void *from, void *to, size_t bytes, hipStream_t stream = copyStream) {
acceleratorCopyToDevice(from,to,bytes);
return 0;
}
inline void acceleratorCopyFromDeviceAsync(void *from, void *to, size_t bytes, hipStream_t stream = copyStream) {
auto r = hipMemcpyAsync(to,from,bytes, hipMemcpyDeviceToHost, stream);
inline acceleratorEvent_t acceleratorCopyFromDeviceAsynch(void *from, void *to, size_t bytes, hipStream_t stream = copyStream) {
acceleratorCopyFromDevice(from,to,bytes);
return 0;
}
inline void acceleratorCopySynchronise(void) { auto discard=hipStreamSynchronize(copyStream); };
inline void acceleratorEventWait(acceleratorEvent_t ev)
{
// auto discard=hipStreamSynchronize(ev);
}
inline int acceleratorEventIsComplete(acceleratorEvent_t ev){ acceleratorEventWait(ev) ; return 1;}
#endif
inline void acceleratorPin(void *ptr,unsigned long bytes)
{
#ifdef GRID_SYCL
sycl::ext::oneapi::experimental::prepare_for_device_copy(ptr,bytes,theCopyAccelerator->get_context());
#endif
}
//////////////////////////////////////////////
// Common on all GPU targets
//////////////////////////////////////////////
@ -510,6 +590,8 @@ inline void acceleratorCopySynchronise(void) { auto discard=hipStreamSynchronize
#undef GRID_SIMT
typedef int acceleratorEvent_t;
inline void acceleratorMem(void)
{
/*
@ -529,16 +611,21 @@ inline void acceleratorMem(void)
accelerator_inline int acceleratorSIMTlane(int Nsimd) { return 0; } // CUDA specific
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { thread_bcopy(from,to,bytes); }
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ thread_bcopy(from,to,bytes);}
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) { thread_bcopy(from,to,bytes);}
inline acceleratorEvent_t acceleratorCopyToDeviceAsynch(void *from,void *to,size_t bytes) { acceleratorCopyToDevice(from,to,bytes); return 0; }
inline acceleratorEvent_t acceleratorCopyFromDeviceAsynch(void *from,void *to,size_t bytes) { acceleratorCopyFromDevice(from,to,bytes); return 0; }
inline void acceleratorEventWait(acceleratorEvent_t ev){}
inline int acceleratorEventIsComplete(acceleratorEvent_t ev){ acceleratorEventWait(ev); return 1;}
inline acceleratorEvent_t acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) { thread_bcopy(from,to,bytes); return 0;}
inline void acceleratorCopySynchronise(void) {};
inline int acceleratorIsCommunicable(void *ptr){ return 1; }
inline void acceleratorMemSet(void *base,int value,size_t bytes) { memset(base,value,bytes);}
#ifdef HAVE_MM_MALLOC_H
inline void *acceleratorAllocHost(size_t bytes){return _mm_malloc(bytes,GRID_ALLOC_ALIGN);};
inline void *acceleratorAllocShared(size_t bytes){return _mm_malloc(bytes,GRID_ALLOC_ALIGN);};
inline void *acceleratorAllocDevice(size_t bytes){return _mm_malloc(bytes,GRID_ALLOC_ALIGN);};
inline void acceleratorFreeHost(void *ptr){_mm_free(ptr);};
inline void acceleratorFreeShared(void *ptr){_mm_free(ptr);};
inline void acceleratorFreeDevice(void *ptr){_mm_free(ptr);};
#else
@ -618,9 +705,9 @@ inline void acceleratorCopyDeviceToDevice(void *from,void *to,size_t bytes)
acceleratorCopySynchronise();
}
template<class T> void acceleratorPut(T& dev,T&host)
template<class T> void acceleratorPut(T& dev,const T&host)
{
acceleratorCopyToDevice(&host,&dev,sizeof(T));
acceleratorCopyToDevice((void *)&host,&dev,sizeof(T));
}
template<class T> T acceleratorGet(T& dev)
{

View File

@ -73,9 +73,9 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#define thread_critical DO_PRAGMA(omp critical)
#ifdef GRID_OMP
inline void thread_bcopy(void *from, void *to,size_t bytes)
inline void thread_bcopy(const void *from, void *to,size_t bytes)
{
uint64_t *ufrom = (uint64_t *)from;
const uint64_t *ufrom = (const uint64_t *)from;
uint64_t *uto = (uint64_t *)to;
assert(bytes%8==0);
uint64_t words=bytes/8;
@ -84,7 +84,7 @@ inline void thread_bcopy(void *from, void *to,size_t bytes)
});
}
#else
inline void thread_bcopy(void *from, void *to,size_t bytes)
inline void thread_bcopy(const void *from, void *to,size_t bytes)
{
bcopy(from,to,bytes);
}

View File

@ -509,7 +509,14 @@ void Grid_init(int *argc,char ***argv)
Grid_default_latt,
Grid_default_mpi);
if( GridCmdOptionExists(*argv,*argv+*argc,"--flightrecorder") ){
std::cout << GridLogMessage <<" Enabling flight recorder " <<std::endl;
FlightRecorder::SetLoggingMode(FlightRecorder::LoggingModeRecord);
FlightRecorder::PrintEntireLog = 1;
FlightRecorder::ChecksumComms = 1;
FlightRecorder::ChecksumCommsSend=1;
}
if( GridCmdOptionExists(*argv,*argv+*argc,"--decomposition") ){
std::cout<<GridLogMessage<<"Grid Default Decomposition patterns\n";
std::cout<<GridLogMessage<<"\tOpenMP threads : "<<GridThread::GetThreads()<<std::endl;
@ -651,3 +658,4 @@ void Grid_debug_handler_init(void)
}
NAMESPACE_END(Grid);

View File

@ -50,7 +50,7 @@ namespace Grid{
int64_t index64;
IndexFromCoorReversed(coor,index64,dims);
if ( index64>=2*1024*1024*1024LL ){
std::cout << " IndexFromCoorReversed " << coor<<" index " << index64<< " dims "<<dims<<std::endl;
// std::cout << " IndexFromCoorReversed " << coor<<" index " << index64<< " dims "<<dims<<std::endl;
}
assert(index64<2*1024*1024*1024LL);
index = (int) index64;

View File

@ -1,5 +1,5 @@
# additional include paths necessary to compile the C++ library
SUBDIRS = Grid HMC benchmarks tests examples
SUBDIRS = Grid benchmarks tests examples HMC
include $(top_srcdir)/doxygen.inc

View File

@ -175,8 +175,8 @@ public:
timestat.statistics(t_time);
dbytes=dbytes*ppn;
double xbytes = dbytes*0.5;
double bidibytes = dbytes;
double xbytes = dbytes;
double bidibytes = dbytes*2.0;
std::cout<<GridLogMessage << lat<<"\t"<<Ls<<"\t "
<< bytes << " \t "
@ -492,17 +492,18 @@ public:
}
FGrid->Barrier();
double t1=usecond();
uint64_t ncall = 500;
FGrid->Broadcast(0,&ncall,sizeof(ncall));
uint64_t no = 50;
uint64_t ni = 100;
// std::cout << GridLogMessage << " Estimate " << ncall << " calls per second"<<std::endl;
time_statistics timestat;
std::vector<double> t_time(ncall);
for(uint64_t i=0;i<ncall;i++){
std::vector<double> t_time(no);
for(uint64_t i=0;i<no;i++){
t0=usecond();
Dw.DhopEO(src_o,r_e,DaggerNo);
for(uint64_t j=0;j<ni;j++){
Dw.DhopEO(src_o,r_e,DaggerNo);
}
t1=usecond();
t_time[i] = t1-t0;
}
@ -520,11 +521,11 @@ public:
double mf_hi, mf_lo, mf_err;
timestat.statistics(t_time);
mf_hi = flops/timestat.min;
mf_lo = flops/timestat.max;
mf_hi = flops/timestat.min*ni;
mf_lo = flops/timestat.max*ni;
mf_err= flops/timestat.min * timestat.err/timestat.mean;
mflops = flops/timestat.mean;
mflops = flops/timestat.mean*ni;
mflops_all.push_back(mflops);
if ( mflops_best == 0 ) mflops_best = mflops;
if ( mflops_worst== 0 ) mflops_worst= mflops;
@ -535,6 +536,7 @@ public:
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s = "<< mflops << " ("<<mf_err<<") " << mf_lo<<"-"<<mf_hi <<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s per rank "<< mflops/NP<<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s per node "<< mflops/NN<<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo us per call "<< timestat.mean/ni<<std::endl;
}
@ -654,17 +656,19 @@ public:
}
FGrid->Barrier();
double t1=usecond();
uint64_t ncall = 500;
FGrid->Broadcast(0,&ncall,sizeof(ncall));
uint64_t no = 50;
uint64_t ni = 100;
// std::cout << GridLogMessage << " Estimate " << ncall << " calls per second"<<std::endl;
time_statistics timestat;
std::vector<double> t_time(ncall);
for(uint64_t i=0;i<ncall;i++){
std::vector<double> t_time(no);
for(uint64_t i=0;i<no;i++){
t0=usecond();
Ds.DhopEO(src_o,r_e,DaggerNo);
for(uint64_t j=0;j<ni;j++){
Ds.DhopEO(src_o,r_e,DaggerNo);
}
t1=usecond();
t_time[i] = t1-t0;
}
@ -675,11 +679,11 @@ public:
double mf_hi, mf_lo, mf_err;
timestat.statistics(t_time);
mf_hi = flops/timestat.min;
mf_lo = flops/timestat.max;
mf_hi = flops/timestat.min*ni;
mf_lo = flops/timestat.max*ni;
mf_err= flops/timestat.min * timestat.err/timestat.mean;
mflops = flops/timestat.mean;
mflops = flops/timestat.mean*ni;
mflops_all.push_back(mflops);
if ( mflops_best == 0 ) mflops_best = mflops;
if ( mflops_worst== 0 ) mflops_worst= mflops;
@ -689,6 +693,7 @@ public:
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s = "<< mflops << " ("<<mf_err<<") " << mf_lo<<"-"<<mf_hi <<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s per rank "<< mflops/NP<<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s per node "<< mflops/NN<<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo us per call "<< timestat.mean/ni<<std::endl;
}
@ -792,19 +797,18 @@ public:
Dc.M(src,r);
}
FGrid->Barrier();
double t1=usecond();
uint64_t ncall = 500;
FGrid->Broadcast(0,&ncall,sizeof(ncall));
uint64_t ni = 100;
uint64_t no = 50;
// std::cout << GridLogMessage << " Estimate " << ncall << " calls per second"<<std::endl;
time_statistics timestat;
std::vector<double> t_time(ncall);
for(uint64_t i=0;i<ncall;i++){
t0=usecond();
Dc.M(src,r);
t1=usecond();
std::vector<double> t_time(no);
for(uint64_t i=0;i<no;i++){
double t0=usecond();
for(uint64_t j=0;j<ni;j++){
Dc.M(src,r);
}
double t1=usecond();
t_time[i] = t1-t0;
}
FGrid->Barrier();
@ -814,20 +818,21 @@ public:
double mf_hi, mf_lo, mf_err;
timestat.statistics(t_time);
mf_hi = flops/timestat.min;
mf_lo = flops/timestat.max;
mf_hi = flops/timestat.min*ni;
mf_lo = flops/timestat.max*ni;
mf_err= flops/timestat.min * timestat.err/timestat.mean;
mflops = flops/timestat.mean;
mflops = flops/timestat.mean*ni;
mflops_all.push_back(mflops);
if ( mflops_best == 0 ) mflops_best = mflops;
if ( mflops_worst== 0 ) mflops_worst= mflops;
if ( mflops>mflops_best ) mflops_best = mflops;
if ( mflops<mflops_worst) mflops_worst= mflops;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Dclov mflop/s = "<< mflops << " ("<<mf_err<<") " << mf_lo<<"-"<<mf_hi <<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Dclov mflop/s = "<< mflops << " ("<<mf_err<<") " << mf_lo<<"-"<<mf_hi <<" "<<timestat.mean<<" us"<<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Dclov mflop/s per rank "<< mflops/NP<<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Dclov mflop/s per node "<< mflops/NN<<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Dclov us per call "<< timestat.mean/ni<<std::endl;
}
@ -872,7 +877,7 @@ int main (int argc, char ** argv)
int do_dslash=1;
int sel=4;
std::vector<int> L_list({8,12,16,24});
std::vector<int> L_list({8,12,16,24,32});
int selm1=sel-1;
std::vector<double> clover;

View File

@ -72,6 +72,7 @@ AC_CHECK_HEADERS(malloc/malloc.h)
AC_CHECK_HEADERS(malloc.h)
AC_CHECK_HEADERS(endian.h)
AC_CHECK_HEADERS(execinfo.h)
AC_CHECK_HEADERS(numaif.h)
AC_CHECK_DECLS([ntohll],[], [], [[#include <arpa/inet.h>]])
AC_CHECK_DECLS([be64toh],[], [], [[#include <arpa/inet.h>]])
@ -240,6 +241,20 @@ case ${ac_SFW_FP16} in
esac
############### MPI BOUNCE TO HOST
AC_ARG_ENABLE([accelerator-aware-mpi],
[AS_HELP_STRING([--enable-accelerator-aware-mpi=yes|no],[run mpi transfers from device])],
[ac_ACCELERATOR_AWARE_MPI=${enable_accelerator_aware_mpi}], [ac_ACCELERATOR_AWARE_MPI=yes])
# Force accelerator CSHIFT now
AC_DEFINE([ACCELERATOR_CSHIFT],[1],[ Cshift runs on device])
case ${ac_ACCELERATOR_AWARE_MPI} in
yes)
AC_DEFINE([ACCELERATOR_AWARE_MPI],[1],[ Stencil can use device pointers]);;
*);;
esac
############### SYCL/CUDA/HIP/none
AC_ARG_ENABLE([accelerator],
[AS_HELP_STRING([--enable-accelerator=cuda|sycl|hip|none],[enable none,cuda,sycl,hip acceleration])],

View File

@ -1,6 +1,7 @@
#!/bin/bash
#PBS -q EarlyAppAccess
##PBS -q EarlyAppAccess
#PBS -q debug
#PBS -l select=1
#PBS -l walltime=00:20:00
#PBS -A LatticeQCD_aesp_CNDA
@ -12,27 +13,24 @@ source ../sourceme.sh
cp $PBS_NODEFILE nodefile
export OMP_NUM_THREADS=4
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE
unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE
unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST
export MPICH_OFI_NIC_POLICY=GPU
#export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE
#unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
#export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
export MPICH_OFI_NIC_POLICY=GPU
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
CMD="mpiexec -np 12 -ppn 12 -envall \
./Benchmark_dwf_fp32 --mpi 2.1.2.3 --grid 32.32.64.48 \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32 --debug-signals"
./gpu_tile.sh ./Benchmark_dwf_fp32 --mpi 2.1.2.3 --grid 32.32.64.96 \
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 8 "
#for f in 1 2 3 4 5 6 7 8
for f in 1
do
echo $CMD
$CMD | tee 1node.32.32.64.48.dwf.hbm.$f
done
$CMD

View File

@ -0,0 +1,74 @@
#!/bin/bash
##PBS -q LatticeQCD_aesp_CNDA
#PBS -q debug-scaling
##PBS -q prod
#PBS -l select=16
#PBS -l walltime=00:20:00
#PBS -A LatticeQCD_aesp_CNDA
cd $PBS_O_WORKDIR
source ../sourceme.sh
cp $PBS_NODEFILE nodefile
export OMP_NUM_THREADS=4
export MPICH_OFI_NIC_POLICY=GPU
#export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE
#unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
#export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
#
# Local vol 16.16.16.32
#
LX=16
LY=16
LZ=16
LT=32
NX=2
NY=2
NZ=4
NT=1
GX=2
GY=2
GZ=1
GT=3
PX=$((NX * GX ))
PY=$((NY * GY ))
PZ=$((NZ * GZ ))
PT=$((NT * GT ))
VX=$((PX * LX ))
VY=$((PY * LY ))
VZ=$((PZ * LZ ))
VT=$((PT * LT ))
NP=$((PX*PY*PZ*PT))
VOL=${VX}.${VY}.${VZ}.${VT}
AT=8
MPI=${PX}.${PY}.${PZ}.${PT}
CMD="mpiexec -np $NP -ppn 12 -envall \
./gpu_tile.sh ./Benchmark_dwf_fp32 --mpi $MPI --grid $VOL \
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads $AT --comms-overlap "
echo VOL $VOL
echo MPI $MPI
echo NPROC $NP
echo $CMD
$CMD

View File

@ -1,58 +1,48 @@
#!/bin/bash
#PBS -q EarlyAppAccess
##PBS -q EarlyAppAccess
#PBS -q debug
#PBS -l select=2
#PBS -l walltime=00:20:00
#PBS -A LatticeQCD_aesp_CNDA
#export OMP_PROC_BIND=spread
#unset OMP_PLACES
cd $PBS_O_WORKDIR
source ../sourceme.sh
#module load pti-gpu
cp $PBS_NODEFILE nodefile
export OMP_NUM_THREADS=4
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
export MPICH_OFI_NIC_POLICY=GPU
#export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE
#unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
export MPICH_OFI_NIC_POLICY=GPU
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
#export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
# 12 ppn, 2 nodes, 24 ranks
#
CMD="mpiexec -np 24 -ppn 12 -envall \
./gpu_tile.sh \
./Benchmark_comms_host_device --mpi 2.2.2.3 --grid 24.32.32.24 \
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32"
#$CMD | tee 2node.comms.hbm
# Local vol 16.16.16.32
#
#VOL=32.64.64.96
CMD="mpiexec -np 24 -ppn 12 -envall \
./Benchmark_dwf_fp32 --mpi 2.2.2.3 --grid 32.32.64.48 \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap --debug-signals"
#for f in 1 2 3 4 5 6 7 8
for f in 1
for VOL in 32.32.32.96 32.64.64.96
do
for AT in 32
do
CMD="mpiexec -np 24 -ppn 12 -envall \
./gpu_tile.sh ./Benchmark_dwf_fp32 --mpi 2.2.2.3 --grid $VOL \
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads $AT --comms-overlap "
echo $CMD
$CMD | tee 2node.32.32.64.48.dwf.hbm.$f
$CMD
done
done
CMD="mpiexec -np 24 -ppn 12 -envall \
./gpu_tile.sh \
./Benchmark_dwf_fp32 --mpi 2.2.2.3 --grid 64.64.64.96 \
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
#$CMD | tee 2node.64.64.64.96.dwf.hbm

View File

@ -4,10 +4,12 @@
#export NUMA_MAP=(0 0 1 1 0 0 1 1 0 0 1 1);
#export GPU_MAP=(0.0 0.1 3.0 3.1 1.0 1.1 4.0 4.1 2.0 2.1 5.0 5.1)
export NUMA_MAP=(0 0 0 0 0 0 1 1 1 1 1 1 );
export NUMA_PMAP=(0 0 0 1 1 1 0 0 0 1 1 1 );
export NUMA_HMAP=(2 2 2 3 3 3 3 2 2 2 2 3 3 3 );
export GPU_MAP=(0.0 1.0 2.0 3.0 4.0 5.0 0.1 1.1 2.1 3.1 4.1 5.1 )
export NUMA=${NUMA_MAP[$PALS_LOCAL_RANKID]}
export NUMAP=${NUMA_PMAP[$PALS_LOCAL_RANKID]}
export NUMAH=${NUMA_HMAP[$PALS_LOCAL_RANKID]}
export gpu_id=${GPU_MAP[$PALS_LOCAL_RANKID]}
unset EnableWalkerPartition
@ -17,18 +19,19 @@ export ONEAPI_DEVICE_FILTER=gpu,level_zero
export SYCL_PI_LEVEL_ZERO_DEVICE_SCOPE_EVENTS=0
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE=0:5
#export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE=0:2
export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE=0:4
export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE_FOR_D2D_COPY=1
#export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE=0:2
#export SYCL_PI_LEVEL_ZERO_USM_RESIDENT=1
#export MPI_BUF_NUMA=$NUMAH
echo "rank $PALS_RANKID ; local rank $PALS_LOCAL_RANKID ; ZE_AFFINITY_MASK=$ZE_AFFINITY_MASK ; NUMA $NUMA "
if [ $PALS_RANKID = "0" ]
then
# numactl -m $NUMA -N $NUMA onetrace --chrome-device-timeline "$@"
# numactl -m $NUMA -N $NUMA unitrace --chrome-kernel-logging --chrome-mpi-logging --chrome-sycl-logging --demangle "$@"
numactl -m $NUMA -N $NUMA "$@"
# numactl -p $NUMAP -N $NUMAP unitrace --chrome-kernel-logging --chrome-mpi-logging --chrome-sycl-logging --demangle "$@"
numactl -p $NUMAP -N $NUMAP "$@"
else
numactl -m $NUMA -N $NUMA "$@"
numactl -p $NUMAP -N $NUMAP "$@"
fi

View File

@ -1,23 +1,25 @@
#Ahead of time compile for PVC
export LDFLAGS="-fiopenmp -fsycl -fsycl-device-code-split=per_kernel -fsycl-targets=spir64_gen -Xs -device -Xs pvc -fsycl-device-lib=all -lze_loader -L${MKLROOT}/lib -qmkl=parallel -fsycl -lsycl "
export CXXFLAGS="-O3 -fiopenmp -fsycl-unnamed-lambda -fsycl -Wno-tautological-compare -qmkl=parallel -fsycl -fno-exceptions "
export LDFLAGS="-fiopenmp -fsycl -fsycl-device-code-split=per_kernel -fsycl-targets=spir64_gen -Xs -device -Xs pvc -fsycl-device-lib=all -lze_loader -L${MKLROOT}/lib -qmkl=parallel -fsycl -lsycl -lnuma -L/opt/aurora/24.180.3/spack/unified/0.8.0/install/linux-sles15-x86_64/oneapi-2024.07.30.002/numactl-2.0.14-7v6edad/lib -fPIC -fsycl-max-parallel-link-jobs=16 -fno-sycl-rdc"
export CXXFLAGS="-O3 -fiopenmp -fsycl-unnamed-lambda -fsycl -Wno-tautological-compare -qmkl=parallel -fsycl -fno-exceptions -I/opt/aurora/24.180.3/spack/unified/0.8.0/install/linux-sles15-x86_64/oneapi-2024.07.30.002/numactl-2.0.14-7v6edad/include/ -fPIC"
#JIT compile
#export LDFLAGS="-fiopenmp -fsycl -fsycl-device-code-split=per_kernel -fsycl-device-lib=all -lze_loader -L${MKLROOT}/lib -qmkl=parallel -fsycl -lsycl "
#export CXXFLAGS="-O3 -fiopenmp -fsycl-unnamed-lambda -fsycl -Wno-tautological-compare -qmkl=parallel -fsycl -fno-exceptions "
../../configure \
../configure \
--enable-simd=GPU \
--enable-reduction=grid \
--enable-gen-simd-width=64 \
--enable-comms=mpi-auto \
--enable-debug \
--prefix $HOME/gpt-install \
--disable-gparity \
--disable-fermion-reps \
--with-lime=$CLIME \
--enable-shm=nvlink \
--enable-accelerator=sycl \
--enable-accelerator-aware-mpi=yes\
--enable-accelerator-aware-mpi=no\
--enable-unified=no \
MPICXX=mpicxx \
CXX=icpx

View File

@ -2,6 +2,7 @@
#module load mpich/icc-all-debug-pmix-gpu/52.2
#module load mpich-config/mode/deterministic
#module load intel_compute_runtime/release/821.35
module load pti-gpu
source ~/spack/share/spack/setup-env.sh
spack load c-lime

View File

@ -0,0 +1,22 @@
CLIME=`spack find --paths c-lime@2-3-9 | grep c-lime| cut -c 15-`
../../configure --enable-comms=mpi-auto \
--with-lime=$CLIME \
--enable-unified=no \
--enable-shm=nvlink \
--enable-tracing=none \
--enable-accelerator=hip \
--enable-gen-simd-width=64 \
--disable-gparity \
--disable-fermion-reps \
--enable-simd=GPU \
--with-gmp=$OLCF_GMP_ROOT \
--with-fftw=$FFTW_DIR/.. \
--with-mpfr=/opt/cray/pe/gcc/mpfr/3.1.4/ \
--disable-fermion-reps \
CXX=hipcc MPICXX=mpicxx \
CXXFLAGS="-fPIC -I${ROCM_PATH}/include/ -I${MPICH_DIR}/include -L/lib64 " \
LDFLAGS="-L/lib64 -L${ROCM_PATH}/lib -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa -lhipblas -lrocblas"

View File

@ -0,0 +1,16 @@
echo spack
. /autofs/nccs-svm1_home1/paboyle/Crusher/Grid/spack/share/spack/setup-env.sh
#module load cce/15.0.1
module load rocm/6.3.1
module load cray-fftw
module load craype-accel-amd-gfx90a
export LD_LIBRARY_PATH=/opt/gcc/mpfr/3.1.4/lib:$LD_LIBRARY_PATH
#Ugly hacks to get down level software working on current system
#export LD_LIBRARY_PATH=/opt/cray/libfabric/1.20.1/lib64/:$LD_LIBRARY_PATH
#export LD_LIBRARY_PATH=`pwd`/:$LD_LIBRARY_PATH
#ln -s /opt/rocm-6.0.0/lib/libamdhip64.so.6 .

View File

@ -30,14 +30,10 @@ source ${root}/sourceme.sh
export OMP_NUM_THREADS=7
export MPICH_GPU_SUPPORT_ENABLED=1
export MPICH_SMP_SINGLE_COPY_MODE=XPMEM
for vol in 32.32.32.64
#export MPICH_SMP_SINGLE_COPY_MODE=XPMEM
#64.64.32.96
for vol in 64.64.32.64
do
srun ./select_gpu ./Benchmark_dwf_fp32 --mpi 2.2.2.2 --accelerator-threads 8 --comms-overlap --shm 2048 --shm-mpi 0 --grid $vol > log.shm0.ov.$vol
srun ./select_gpu ./Benchmark_dwf_fp32 --mpi 2.2.2.2 --accelerator-threads 8 --comms-overlap --shm 2048 --shm-mpi 1 --grid $vol > log.shm1.ov.$vol
srun ./select_gpu ./Benchmark_dwf_fp32 --mpi 2.2.2.2 --accelerator-threads 8 --comms-sequential --shm 2048 --shm-mpi 0 --grid $vol > log.shm0.seq.$vol
srun ./select_gpu ./Benchmark_dwf_fp32 --mpi 2.2.2.2 --accelerator-threads 8 --comms-sequential --shm 2048 --shm-mpi 1 --grid $vol > log.shm1.seq.$vol
srun ./select_gpu ./Benchmark_dwf_fp32 --mpi 2.2.2.2 --accelerator-threads 8 --comms-overlap --shm 2048 --shm-mpi 0 --grid $vol -Ls 16
done

View File

@ -3,20 +3,19 @@ CLIME=`spack find --paths c-lime@2-3-9 | grep c-lime| cut -c 15-`
--with-lime=$CLIME \
--enable-unified=no \
--enable-shm=nvlink \
--enable-tracing=timer \
--enable-tracing=none \
--enable-accelerator=hip \
--enable-gen-simd-width=64 \
--disable-gparity \
--disable-fermion-reps \
--enable-simd=GPU \
--enable-accelerator-cshift \
--with-gmp=$OLCF_GMP_ROOT \
--with-fftw=$FFTW_DIR/.. \
--with-mpfr=/opt/cray/pe/gcc/mpfr/3.1.4/ \
--disable-fermion-reps \
CXX=hipcc MPICXX=mpicxx \
CXXFLAGS="-fPIC -I{$ROCM_PATH}/include/ -I${MPICH_DIR}/include -L/lib64 " \
LDFLAGS="-L/lib64 -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa -lamdhip64 -lhipblas -lrocblas"
CXXFLAGS="-fPIC -I${ROCM_PATH}/include/ -I${MPICH_DIR}/include -L/lib64 " \
LDFLAGS="-L/lib64 -L${ROCM_PATH}/lib -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa -lhipblas -lrocblas"

View File

@ -1,12 +1,25 @@
echo spack
. /autofs/nccs-svm1_home1/paboyle/Crusher/Grid/spack/share/spack/setup-env.sh
spack load c-lime
module load emacs
module load PrgEnv-gnu
module load rocm
module load cray-mpich
module load gmp
module load cce/15.0.1
module load rocm/5.3.0
module load cray-fftw
module load craype-accel-amd-gfx90a
#Ugly hacks to get down level software working on current system
export LD_LIBRARY_PATH=/opt/cray/libfabric/1.20.1/lib64/:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/opt/gcc/mpfr/3.1.4/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=`pwd`/:$LD_LIBRARY_PATH
ln -s /opt/rocm-6.0.0/lib/libamdhip64.so.6 .
#echo spack load c-lime
#spack load c-lime
#module load emacs
##module load PrgEnv-gnu
##module load cray-mpich
##module load cray-fftw
##module load craype-accel-amd-gfx90a
##export LD_LIBRARY_PATH=/opt/gcc/mpfr/3.1.4/lib:$LD_LIBRARY_PATH
#Hack for lib
#export LD_LIBRARY_PATH=`pwd`:$LD_LIBRARY_PATH
##export LD_LIBRARY_PATH=`pwd`/:$LD_LIBRARY_PATH

206
systems/WorkArounds.txt Normal file
View File

@ -0,0 +1,206 @@
The purpose of this file is to collate all non-obvious known magic shell variables
and compiler flags required for either correctness or performance on various systems.
A repository of work-arounds.
Contents:
1. Interconnect + MPI
2. Compilation
3. Profiling
************************
* 1. INTERCONNECT + MPI
************************
--------------------------------------------------------------------
MPI2-IO correctness: force OpenMPI to use the MPICH romio implementation for parallel I/O
--------------------------------------------------------------------
export OMPI_MCA_io=romio321
--------------------------------------
ROMIO fail with > 2GB per node read (32 bit issue)
--------------------------------------
Use later MPICH
https://github.com/paboyle/Grid/issues/381
https://github.com/pmodels/mpich/commit/3a479ab0
--------------------------------------------------------------------
Slingshot: Frontier and Perlmutter libfabric slow down
and physical memory fragmentation
--------------------------------------------------------------------
export FI_MR_CACHE_MONITOR=disabled
or
export FI_MR_CACHE_MONITOR=kdreg2
--------------------------------------------------------------------
Perlmutter
--------------------------------------------------------------------
export MPICH_RDMA_ENABLED_CUDA=1
export MPICH_GPU_IPC_ENABLED=1
export MPICH_GPU_EAGER_REGISTER_HOST_MEM=0
export MPICH_GPU_NO_ASYNC_MEMCPY=0
--------------------------------------------------------------------
Frontier/LumiG
--------------------------------------------------------------------
Hiding ROCR_VISIBLE_DEVICES triggers SDMA engines to be used for GPU-GPU
cat << EOF > select_gpu
#!/bin/bash
export MPICH_GPU_SUPPORT_ENABLED=1
export MPICH_SMP_SINGLE_COPY_MODE=XPMEM
export GPU_MAP=(0 1 2 3 7 6 5 4)
export NUMA_MAP=(3 3 1 1 2 2 0 0)
export GPU=\${GPU_MAP[\$SLURM_LOCALID]}
export NUMA=\${NUMA_MAP[\$SLURM_LOCALID]}
export HIP_VISIBLE_DEVICES=\$GPU
unset ROCR_VISIBLE_DEVICES
echo RANK \$SLURM_LOCALID using GPU \$GPU
exec numactl -m \$NUMA -N \$NUMA \$*
EOF
chmod +x ./select_gpu
srun ./select_gpu BINARY
--------------------------------------------------------------------
Mellanox performance with A100 GPU (Tursa, Booster, Leonardo)
--------------------------------------------------------------------
export OMPI_MCA_btl=^uct,openib
export UCX_TLS=gdr_copy,rc,rc_x,sm,cuda_copy,cuda_ipc
export UCX_RNDV_SCHEME=put_zcopy
export UCX_RNDV_THRESH=16384
export UCX_IB_GPU_DIRECT_RDMA=yes
--------------------------------------------------------------------
Mellanox + A100 correctness (Tursa, Booster, Leonardo)
--------------------------------------------------------------------
export UCX_MEMTYPE_CACHE=n
--------------------------------------------------------------------
MPICH/Aurora/PVC correctness and performance
--------------------------------------------------------------------
https://github.com/pmodels/mpich/issues/7302
--enable-cuda-aware-mpi=no
--enable-unified=no
Grid's internal D-H-H-D pipeline mode, avoid device memory in MPI
Do not use SVM
Ideally use MPICH with fix to issue 7302:
https://github.com/pmodels/mpich/pull/7312
Ideally:
MPIR_CVAR_CH4_IPC_GPU_HANDLE_CACHE=generic
Alternatives:
export MPIR_CVAR_NOLOCAL=1
export MPIR_CVAR_CH4_IPC_GPU_P2P_THRESHOLD=1000000000
--------------------------------------------------------------------
MPICH/Aurora/PVC correctness and performance
--------------------------------------------------------------------
Broken:
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
This gives good peformance without requiring
--enable-cuda-aware-mpi=no
But is an open issue reported by James Osborn
https://github.com/pmodels/mpich/issues/7139
Possibly resolved but unclear if in the installed software yet.
************************
* 2. COMPILATION
************************
--------------------------------------------------------------------
G++ compiler breakage / graveyard
--------------------------------------------------------------------
9.3.0, 10.3.1,
https://github.com/paboyle/Grid/issues/290
https://github.com/paboyle/Grid/issues/264
Working (-) Broken (X):
4.9.0 -
4.9.1 -
5.1.0 X
5.2.0 X
5.3.0 X
5.4.0 X
6.1.0 X
6.2.0 X
6.3.0 -
7.1.0 -
8.0.0 (HEAD) -
https://github.com/paboyle/Grid/issues/100
--------------------------------------------------------------------
AMD GPU nodes :
--------------------------------------------------------------------
multiple ROCM versions broken; use 5.3.0
manifests itself as wrong results in fp32
https://github.com/paboyle/Grid/issues/464
--------------------------------------------------------------------
Aurora/PVC
--------------------------------------------------------------------
SYCL ahead of time compilation (fixes rare runtime JIT errors and faster runtime, PB)
SYCL slow link and relocatable code issues (Christoph Lehner)
Opt large register file required for good performance in fp64
export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file"
export LDFLAGS="-fiopenmp -fsycl -fsycl-device-code-split=per_kernel -fsycl-targets=spir64_gen -Xs -device -Xs pvc -fsycl-device-lib=all -lze_loader -L${MKLROOT}/lib -qmkl=parallel -fsycl -lsycl -fPIC -fsycl-max-parallel-link-jobs=16 -fno-sycl-rdc"
export CXXFLAGS="-O3 -fiopenmp -fsycl-unnamed-lambda -fsycl -Wno-tautological-compare -qmkl=parallel -fsycl -fno-exceptions -fPIC"
--------------------------------------------------------------------
Aurora/PVC useful extra options
--------------------------------------------------------------------
Host only sanitizer:
-Xarch_host -fsanitize=leak
-Xarch_host -fsanitize=address
Deterministic MPI reduction:
export MPIR_CVAR_ALLREDUCE_DEVICE_COLLECTIVE=0
export MPIR_CVAR_REDUCE_DEVICE_COLLECTIVE=0
export MPIR_CVAR_ALLREDUCE_INTRA_ALGORITHM=recursive_doubling
unset MPIR_CVAR_CH4_COLL_SELECTION_TUNING_JSON_FILE
unset MPIR_CVAR_COLL_SELECTION_TUNING_JSON_FILE
unset MPIR_CVAR_CH4_POSIX_COLL_SELECTION_TUNING_JSON_FILE
************************
* 3. Visual profile tools
************************
--------------------------------------------------------------------
Frontier/rocprof
--------------------------------------------------------------------
--------------------------------------------------------------------
Aurora/unitrace
--------------------------------------------------------------------
--------------------------------------------------------------------
Tursa/nsight-sys
--------------------------------------------------------------------

View File

@ -0,0 +1,32 @@
#!/bin/bash
#SBATCH --partition lqcd
#SBATCH --time=00:50:00
#SBATCH -A lqcdtest
#SBATCH -q lqcd
#SBATCH --exclusive
#SBATCH --nodes=1
#SBATCH -w genoahost001,genoahost003,genoahost050,genoahost054
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=64
#SBATCH --qos lqcd
source sourceme.sh
export PLACES=(1:16:4 1:32:2 0:64:1);
export THR=(16 32 64)
for t in 2
do
export OMP_NUM_THREADS=${THR[$t]}
export OMP_PLACES=${PLACES[$t]}
export thr=${THR[$t]}
#for vol in 24.24.24.24 32.32.32.32 48.48.48.96
for vol in 48.48.48.96
do
srun -N1 -n1 ./benchmarks/Benchmark_dwf_fp32 --mpi 1.1.1.1 --grid $vol --dslash-asm --shm 8192 > $vol.1node.thr$thr
done
#srun -N1 -n1 ./benchmarks/Benchmark_usqcd --mpi 1.1.1.1 --grid $vol > usqcd.1node.thr$thr
done

View File

@ -0,0 +1,36 @@
#!/bin/bash
#SBATCH --partition lqcd
#SBATCH --time=00:50:00
#SBATCH -A lqcdtest
#SBATCH -q lqcd
#SBATCH --exclusive
#SBATCH --nodes=2
#SBATCH -w genoahost001,genoahost003,genoahost050,genoahost054
#SBATCH --ntasks=2
#SBATCH --cpus-per-task=64
#SBATCH --qos lqcd
source sourceme.sh
export PLACES=(1:16:4 1:32:2 0:64:1);
export THR=(16 32 64)
nodes=2
mpi=1.1.1.2
for t in 2
do
export OMP_NUM_THREADS=${THR[$t]}
export OMP_PLACES=${PLACES[$t]}
export thr=${THR[$t]}
#srun -N$nodes -n$nodes ./benchmarks/Benchmark_usqcd --mpi $mpi --grid 32.32.32.32 > usqcd.n$nodes.thr$thr
for vol in 64.64.64.128
do
srun -N$nodes -n$nodes ./benchmarks/Benchmark_dwf_fp32 --mpi $mpi --grid $vol --dslash-asm --comms-overlap --shm 8192 > $vol.n$nodes.overlap.thr$thr
done
done

View File

@ -0,0 +1,16 @@
../../configure \
--enable-comms=mpi-auto \
--enable-unified=yes \
--enable-shm=shmopen \
--enable-shm-fast-path=shmopen \
--enable-accelerator=none \
--enable-simd=AVX512 \
--disable-accelerator-cshift \
--disable-fermion-reps \
--disable-gparity \
CXX=clang++ \
MPICXX=mpicxx \
CXXFLAGS="-std=c++17"

View File

@ -0,0 +1,4 @@
source $HOME/spack/share/spack/setup-env.sh
spack load llvm@17.0.4
export LD_LIBRARY_PATH=/direct/sdcc+u/paboyle/spack/opt/spack/linux-almalinux8-icelake/gcc-8.5.0/llvm-17.0.4-laufdrcip63ivkadmtgoepwmj3dtztdu/lib:$LD_LIBRARY_PATH
module load openmpi

View File

@ -0,0 +1,17 @@
../../src/Grid/configure \
--prefix /home/pab/NPR/install \
--enable-comms=mpi-auto \
--enable-simd=AVX2 \
--enable-shm=none \
--enable-debug \
--with-lime=$CLIME \
--with-hdf5=$HDF5 \
--with-fftw=$FFTW \
--with-gmp=$GMP \
--with-mpfr=$MPFR \
--disable-gparity \
--disable-fermion-reps \
CXX=clang++ \
MPICXX=mpicxx \
CXXFLAGS="-std=c++17 "

View File

@ -0,0 +1,28 @@
source $HOME/spack/share/spack/setup-env.sh
spack load llvm@12
spack load autoconf%clang@12.0.1
spack load automake%clang@12.0.1
spack load c-lime%clang@12.0.1
spack load fftw%clang@12.0.1
spack load gmp%clang@12.0.1
spack load mpfr%clang@12.0.1
spack load openmpi%clang@12.0.1
spack load openssl%clang@12.0.1
spack load hdf5+cxx%clang@12.0.1
spack load cmake%clang@12.0.1
export FFTW=`spack find --paths fftw%clang@12.0.1 | grep ^fftw | awk '{print $2}' `
export HDF5=`spack find --paths hdf5+cxx%clang@12.0.1 | grep ^hdf5 | awk '{print $2}' `
export CLIME=`spack find --paths c-lime%clang@12.0.1 | grep ^c-lime | awk '{print $2}' `
export MPFR=`spack find --paths mpfr%clang@12.0.1 | grep ^mpfr | awk '{print $2}' `
export LLVM=`spack find --paths llvm@12 | grep ^llvm | awk '{print $2}' `
export OPENSSL=`spack find --paths openssl%clang@12.0.1 | grep openssl | awk '{print $2}' `
export GMP=`spack find --paths gmp%clang@12.0.1 | grep ^gmp | awk '{print $2}' `
export TCLAP=`spack find --paths tclap%clang@12.0.1 | grep ^tclap | awk '{print $2}' `
export LD_LIBRARY_PATH=${TCLAP}/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=$MPFR/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=$GMP/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=$FFTW/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=$LLVM/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=$LLVM/lib/x86_64-unknown-linux-gnu/:$LD_LIBRARY_PATH
ulimit -s 81920

View File

@ -0,0 +1,19 @@
cd
git clone https://github.com/spack/spack.git
source $HOME/spack/share/spack/setup-env.sh
spack install llvm@12
spack install autoconf%clang@12.0.1
spack install automake%clang@12.0.1
spack install c-lime%clang@12.0.1
spack install fftw%clang@12.0.1
spack install gmp%clang@12.0.1
spack install mpfr%clang@12.0.1
spack install openmpi%clang@12.0.1
spack install openssl%clang@12.0.1
spack install hdf5+cxx%clang@12.0.1
spack install cmake%clang@12.0.1
spack install tclap%clang@12.0.1
spack install emacs%clang@12.0.1

View File

@ -0,0 +1,781 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_general_coarse_hdcg.cc
Copyright (C) 2023
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczosCoarse.h>
#include <Grid/algorithms/iterative/AdefMrhs.h>
#include <Grid/algorithms/iterative/PowerSpectrum.h>
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
using namespace std;
using namespace Grid;
template<class aggregation>
void SaveFineEvecs(aggregation &Agg,std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacWriter WR(Agg[0].Grid()->IsBoss());
WR.open(file);
for(int b=0;b<Agg.size();b++){
WR.writeScidacFieldRecord(Agg[b],record,0,Grid::BinaryIO::BINARYIO_LEXICOGRAPHIC);
}
WR.close();
#endif
}
template<class aggregation>
void SaveBasis(aggregation &Agg,std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacWriter WR(Agg.FineGrid->IsBoss());
WR.open(file);
for(int b=0;b<Agg.subspace.size();b++){
WR.writeScidacFieldRecord(Agg.subspace[b],record,0,Grid::BinaryIO::BINARYIO_LEXICOGRAPHIC);
// WR.writeScidacFieldRecord(Agg.subspace[b],record);
}
WR.close();
#endif
}
template<class aggregation>
void LoadBasis(aggregation &Agg, std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacReader RD ;
RD.open(file);
for(int b=0;b<Agg.subspace.size();b++){
RD.readScidacFieldRecord(Agg.subspace[b],record,Grid::BinaryIO::BINARYIO_LEXICOGRAPHIC);
// RD.readScidacFieldRecord(Agg.subspace[b],record,0);
}
RD.close();
#endif
}
template<class aggregation>
void LoadBasisSkip(aggregation &Agg, std::string file,int N,LatticeFermionF & tmp)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacReader RD ;
RD.open(file);
for(int b=0;b<Agg.subspace.size();b++){
for(int n=0;n<N;n++){
RD.readScidacFieldRecord(tmp,record,Grid::BinaryIO::BINARYIO_LEXICOGRAPHIC);
if(n==0) precisionChange(Agg.subspace[b],tmp);
}
// RD.readScidacFieldRecord(Agg.subspace[b],record,0);
}
RD.close();
#endif
}
template<class aggregation>
void LoadBasisSum(aggregation &Agg, std::string file,int N,LatticeFermionF & tmp)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacReader RD ;
LatticeFermionF sum(tmp.Grid());
RD.open(file);
for(int b=0;b<Agg.subspace.size();b++){
sum=Zero();
for(int n=0;n<N;n++){
RD.readScidacFieldRecord(tmp,record,Grid::BinaryIO::BINARYIO_LEXICOGRAPHIC);
sum=sum+tmp;
}
precisionChange(Agg.subspace[b],sum);
// RD.readScidacFieldRecord(Agg.subspace[b],record,0);
}
RD.close();
#endif
}
template<class CoarseVector>
void SaveEigenvectors(std::vector<RealD> &eval,
std::vector<CoarseVector> &evec,
std::string evec_file,
std::string eval_file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacWriter WR(evec[0].Grid()->IsBoss());
WR.open(evec_file);
for(int b=0;b<evec.size();b++){
WR.writeScidacFieldRecord(evec[b],record,0,0);
}
WR.close();
XmlWriter WRx(eval_file);
write(WRx,"evals",eval);
#endif
}
template<class CoarseVector>
void LoadEigenvectors(std::vector<RealD> &eval,
std::vector<CoarseVector> &evec,
std::string evec_file,
std::string eval_file)
{
#ifdef HAVE_LIME
XmlReader RDx(eval_file);
read(RDx,"evals",eval);
emptyUserRecord record;
Grid::ScidacReader RD ;
RD.open(evec_file);
assert(evec.size()==eval.size());
for(int k=0;k<eval.size();k++) {
RD.readScidacFieldRecord(evec[k],record);
}
RD.close();
#endif
}
// Want Op in CoarsenOp to call MatPcDagMatPc
template<class Field>
class HermOpAdaptor : public LinearOperatorBase<Field>
{
LinearOperatorBase<Field> & wrapped;
public:
HermOpAdaptor(LinearOperatorBase<Field> &wrapme) : wrapped(wrapme) {};
void Op (const Field &in, Field &out) { wrapped.HermOp(in,out); }
void HermOp(const Field &in, Field &out) { wrapped.HermOp(in,out); }
void AdjOp (const Field &in, Field &out){ wrapped.HermOp(in,out); }
void OpDiag (const Field &in, Field &out) { assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out) { assert(0); };
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
};
template<class Field> class FixedCGPolynomial : public LinearFunction<Field>
{
public:
using LinearFunction<Field>::operator();
typedef LinearOperatorBase<Field> FineOperator;
FineOperator & _SmootherOperator;
ConjugateGradientPolynomial<Field> CG;
int iters;
bool record;
int replay_count;
FixedCGPolynomial(int _iters, FineOperator &SmootherOperator) :
_SmootherOperator(SmootherOperator),
iters(_iters),
record(true),
CG(0.0,_iters,false)
{
std::cout << GridLogMessage<<" FixedCGPolynomial order "<<iters<<std::endl;
replay_count = 0;
};
void operator() (const Field &in, Field &out)
{
#if 1
GridBase *grid = in.Grid();
Field Mx0(grid);
Field r0(grid);
Field Minvr0(grid);
_SmootherOperator.HermOp(out,Mx0);
r0 = in - Mx0;
Minvr0 = Zero();
Minvr0.Checkerboard()=in.Checkerboard();
if ( record ) {
std::cout << " FixedCGPolynomial recording polynomial "<<std::endl;
CG.Solve(_SmootherOperator,r0,Minvr0);
record = false;
/*
std::cout << "P(x) = 0 "<<std::endl;
for(int i=0;i<CG.polynomial.size();i++){
std::cout<<" + "<< CG.polynomial[i]<<" * (x**"<<i<<")"<<std::endl;
}
*/
Field tmp(Minvr0.Grid());
CG.CGsequenceHermOp(_SmootherOperator,r0,tmp);
tmp = tmp - Minvr0;
std::cout << " CGsequence error "<<norm2(tmp)<<" / "<<norm2(out)<<std::endl;
} else {
std::cout << " FixedCGPolynomial replaying polynomial "<<std::endl;
CG.CGsequenceHermOp(_SmootherOperator,r0,Minvr0);
if ( replay_count %5== 0 ) record=true;
replay_count++;
}
out = out + Minvr0;
_SmootherOperator.HermOp(out,r0);
r0 = r0 - in;
RealD rr=norm2(r0);
RealD ss=norm2(in);
std::cout << " FixedCGPolynomial replayed polynomial resid "<<::sqrt(rr/ss)<<std::endl;
#else
out = Zero();
out.Checkerboard()=in.Checkerboard();
if ( record ) {
std::cout << " FixedCGPolynomial recording polynomial "<<std::endl;
CG.Solve(_SmootherOperator,in,out);
record = false;
std::cout << "P(x) = 0 "<<std::endl;
for(int i=0;i<CG.polynomial.size();i++){
std::cout<<" + "<< CG.polynomial[i]<<" * (x**"<<i<<")"<<std::endl;
}
Field tmp(in.Grid());
CG.CGsequenceHermOp(_SmootherOperator,in,tmp);
tmp = tmp - out;
std::cout << " CGsequence error "<<norm2(tmp)<<" / "<<norm2(out)<<std::endl;
} else {
std::cout << " FixedCGPolynomial replaying polynomial "<<std::endl;
CG.CGsequenceHermOp(_SmootherOperator,in,out);
if ( replay_count %5== 5 ) record=true;
replay_count++;
}
#endif
}
void operator() (const std::vector<Field> &in, std::vector<Field> &out)
{
for(int i=0;i<out.size();i++){
out[i]=Zero();
}
int blockDim = 0;//not used for BlockCGVec
BlockConjugateGradient<Field> BCGV (BlockCGrQVec,blockDim,0.0,iters,false);
BCGV(_SmootherOperator,in,out);
}
};
template<class Field> class CGSmoother : public LinearFunction<Field>
{
public:
using LinearFunction<Field>::operator();
typedef LinearOperatorBase<Field> FineOperator;
FineOperator & _SmootherOperator;
int iters;
CGSmoother(int _iters, FineOperator &SmootherOperator) :
_SmootherOperator(SmootherOperator),
iters(_iters)
{
std::cout << GridLogMessage<<" Mirs smoother order "<<iters<<std::endl;
};
void operator() (const Field &in, Field &out)
{
ConjugateGradient<Field> CG(0.0,iters,false); // non-converge is just fine in a smoother
out=Zero();
CG(_SmootherOperator,in,out);
}
};
RealD InverseApproximation(RealD x){
return 1.0/x;
}
template<class Field> class ChebyshevSmoother : public LinearFunction<Field>
{
public:
using LinearFunction<Field>::operator();
typedef LinearOperatorBase<Field> FineOperator;
FineOperator & _SmootherOperator;
Chebyshev<Field> Cheby;
ChebyshevSmoother(RealD _lo,RealD _hi,int _ord, FineOperator &SmootherOperator) :
_SmootherOperator(SmootherOperator),
Cheby(_lo,_hi,_ord,InverseApproximation)
{
std::cout << GridLogMessage<<" Chebyshev smoother order "<<_ord<<" ["<<_lo<<","<<_hi<<"]"<<std::endl;
};
void operator() (const Field &in, Field &out)
{
// Field r(out.Grid());
Cheby(_SmootherOperator,in,out);
// _SmootherOperator.HermOp(out,r);
// r=r-in;
// RealD rr=norm2(r);
// RealD ss=norm2(in);
// std::cout << GridLogMessage<<" Chebyshev smoother resid "<<::sqrt(rr/ss)<<std::endl;
}
};
template<class Field> class ChebyshevInverter : public LinearFunction<Field>
{
public:
using LinearFunction<Field>::operator();
typedef LinearOperatorBase<Field> FineOperator;
FineOperator & _Operator;
Chebyshev<Field> Cheby;
ChebyshevInverter(RealD _lo,RealD _hi,int _ord, FineOperator &Operator) :
_Operator(Operator),
Cheby(_lo,_hi,_ord,InverseApproximation)
{
std::cout << GridLogMessage<<" Chebyshev Inverter order "<<_ord<<" ["<<_lo<<","<<_hi<<"]"<<std::endl;
};
void operator() (const Field &in, Field &out)
{
Field r(in.Grid());
Field AinvR(in.Grid());
_Operator.HermOp(out,r);
r = in - r; // b - A x
Cheby(_Operator,r,AinvR); // A^{-1} ( b - A x ) ~ A^{-1} b - x
out = out + AinvR;
_Operator.HermOp(out,r);
r = in - r; // b - A x
RealD rr = norm2(r);
RealD ss = norm2(in);
std::cout << "ChebshevInverse resid " <<::sqrt(rr/ss)<<std::endl;
}
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
int sample=1;
if( GridCmdOptionExists(argv,argv+argc,"--sample") ){
std::string arg;
arg = GridCmdOptionPayload(argv,argv+argc,"--sample");
GridCmdOptionInt(arg,sample);
}
const int Ls=24;
const int nbasis = 62;
const int cb = 0 ;
RealD mass=0.00078;
if( GridCmdOptionExists(argv,argv+argc,"--mass") ){
std::string arg;
arg = GridCmdOptionPayload(argv,argv+argc,"--mass");
GridCmdOptionFloat(arg,mass);
}
RealD M5=1.8;
RealD b=1.5;
RealD c=0.5;
std::cout << GridLogMessage << " *************************** " <<std::endl;
std::cout << GridLogMessage << " Mass " <<mass<<std::endl;
std::cout << GridLogMessage << " M5 " <<M5<<std::endl;
std::cout << GridLogMessage << " Ls " <<Ls<<std::endl;
std::cout << GridLogMessage << " b " <<b<<std::endl;
std::cout << GridLogMessage << " c " <<c<<std::endl;
std::cout << GridLogMessage << " *************************** " <<std::endl;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
//////////////////////////////////////////
// Single precision grids -- lanczos + smoother
//////////////////////////////////////////
GridCartesian * UGridF = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
GridDefaultSimd(Nd,vComplexF::Nsimd()),
GridDefaultMpi());
GridRedBlackCartesian * UrbGridF = SpaceTimeGrid::makeFourDimRedBlackGrid(UGridF);
GridCartesian * FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridF);
GridRedBlackCartesian * FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridF);
///////////////////////// Configuration /////////////////////////////////
LatticeGaugeField Umu(UGrid);
FieldMetaData header;
std::string file("ckpoint_lat.1000");
NerscIO::readConfiguration(Umu,header,file);
//////////////////////// Fermion action //////////////////////////////////
MobiusFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,b,c);
SchurDiagMooeeOperator<MobiusFermionD, LatticeFermion> HermOpEO(Ddwf);
std::cout << "**************************************"<<std::endl;
std::cout << " Fine Power method "<<std::endl;
std::cout << "**************************************"<<std::endl;
{
LatticeFermionD pm_src(FrbGrid);
pm_src = ComplexD(1.0);
PowerMethod<LatticeFermionD> fPM;
fPM(HermOpEO,pm_src);
}
if(0)
{
std::cout << "**************************************"<<std::endl;
std::cout << " Fine Lanczos "<<std::endl;
std::cout << "**************************************"<<std::endl;
typedef LatticeFermionF FermionField;
LatticeGaugeFieldF UmuF(UGridF);
precisionChange(UmuF,Umu);
MobiusFermionF DdwfF(UmuF,*FGridF,*FrbGridF,*UGridF,*UrbGridF,mass,M5,b,c);
SchurDiagMooeeOperator<MobiusFermionF, LatticeFermionF> HermOpEOF(DdwfF);
const int Fine_Nstop = 200;
const int Fine_Nk = 200;
const int Fine_Np = 200;
const int Fine_Nm = Fine_Nk+Fine_Np;
const int Fine_MaxIt= 10;
RealD Fine_resid = 1.0e-4;
std::cout << GridLogMessage << "Fine Lanczos "<<std::endl;
std::cout << GridLogMessage << "Nstop "<<Fine_Nstop<<std::endl;
std::cout << GridLogMessage << "Nk "<<Fine_Nk<<std::endl;
std::cout << GridLogMessage << "Np "<<Fine_Np<<std::endl;
std::cout << GridLogMessage << "resid "<<Fine_resid<<std::endl;
Chebyshev<FermionField> Cheby(0.002,92.0,401);
// Chebyshev<FermionField> Cheby(0.1,92.0,401);
FunctionHermOp<FermionField> OpCheby(Cheby,HermOpEOF);
PlainHermOp<FermionField> Op (HermOpEOF);
ImplicitlyRestartedLanczos<FermionField> IRL(OpCheby,Op,Fine_Nstop,Fine_Nk,Fine_Nm,Fine_resid,Fine_MaxIt);
std::vector<RealD> Fine_eval(Fine_Nm);
FermionField Fine_src(FrbGridF);
Fine_src = ComplexF(1.0);
std::vector<FermionField> Fine_evec(Fine_Nm,FrbGridF);
int Fine_Nconv;
std::cout << GridLogMessage <<" Calling IRL.calc single prec"<<std::endl;
IRL.calc(Fine_eval,Fine_evec,Fine_src,Fine_Nconv);
std::string evec_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Subspace.phys48.evecF");
SaveFineEvecs(Fine_evec,evec_file);
}
//////////////////////////////////////////
// Construct a coarsened grid with 4^4 cell
//////////////////////////////////////////
Coordinate Block({4,4,6,4});
Coordinate clatt = GridDefaultLatt();
for(int d=0;d<clatt.size();d++){
clatt[d] = clatt[d]/Block[d];
}
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt,
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());;
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
///////////////////////// RNGs /////////////////////////////////
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
std::vector<int> cseeds({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds);
typedef HermOpAdaptor<LatticeFermionD> HermFineMatrix;
HermFineMatrix FineHermOp(HermOpEO);
////////////////////////////////////////////////////////////
///////////// Coarse basis and Little Dirac Operator ///////
////////////////////////////////////////////////////////////
typedef GeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LittleDiracOperator;
typedef LittleDiracOperator::CoarseVector CoarseVector;
NextToNextToNextToNearestStencilGeometry5D geom(Coarse5d);
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
Subspace Aggregates(Coarse5d,FrbGrid,cb);
////////////////////////////////////////////////////////////
// Need to check about red-black grid coarsening
////////////////////////////////////////////////////////////
std::string subspace_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Subspace.phys48.mixed.2500.60");
// // std::string subspace_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Subspace.phys48.new.62");
// std::string refine_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Subspace.phys48.evecF");
std::string refine_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Refine.phys48.mixed.2500.60");
std::string ldop_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/LittleDiracOp.phys48.mixed.60");
std::string evec_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/evecs.scidac");
std::string eval_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/eval.xml");
bool load_agg=true;
bool load_refine=true;
bool load_mat=false;
bool load_evec=false;
int refine=1;
if ( load_agg ) {
if ( !(refine) || (!load_refine) ) {
LoadBasis(Aggregates,subspace_file);
}
} else {
// Aggregates.CreateSubspaceMultishift(RNG5,HermOpEO,
// 0.0003,1.0e-5,2000); // Lo, tol, maxit
// Aggregates.CreateSubspaceChebyshev(RNG5,HermOpEO,nbasis,95.,0.01,1500);// <== last run
Aggregates.CreateSubspaceChebyshevNew(RNG5,HermOpEO,95.);
SaveBasis(Aggregates,subspace_file);
}
std::cout << "**************************************"<<std::endl;
std::cout << "Building MultiRHS Coarse operator"<<std::endl;
std::cout << "**************************************"<<std::endl;
ConjugateGradient<CoarseVector> coarseCG(4.0e-2,20000,true);
const int nrhs=24;
Coordinate mpi=GridDefaultMpi();
Coordinate rhMpi ({1,1,mpi[0],mpi[1],mpi[2],mpi[3]});
Coordinate rhLatt({nrhs,1,clatt[0],clatt[1],clatt[2],clatt[3]});
Coordinate rhSimd({vComplex::Nsimd(),1, 1,1,1,1});
GridCartesian *CoarseMrhs = new GridCartesian(rhLatt,rhSimd,rhMpi);
typedef MultiGeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> MultiGeneralCoarsenedMatrix_t;
MultiGeneralCoarsenedMatrix_t mrhs(geom,CoarseMrhs);
std::cout << "**************************************"<<std::endl;
std::cout << " Coarse Lanczos "<<std::endl;
std::cout << "**************************************"<<std::endl;
typedef HermitianLinearOperator<MultiGeneralCoarsenedMatrix_t,CoarseVector> MrhsHermMatrix;
Chebyshev<CoarseVector> IRLCheby(0.005,42.0,301); // 1 iter
MrhsHermMatrix MrhsCoarseOp (mrhs);
// CoarseVector pm_src(CoarseMrhs);
// pm_src = ComplexD(1.0);
// PowerMethod<CoarseVector> cPM; cPM(MrhsCoarseOp,pm_src);
int Nk=192;
int Nm=384;
int Nstop=Nk;
int Nconv_test_interval=1;
ImplicitlyRestartedBlockLanczosCoarse<CoarseVector> IRL(MrhsCoarseOp,
Coarse5d,
CoarseMrhs,
nrhs,
IRLCheby,
Nstop,
Nconv_test_interval,
nrhs,
Nk,
Nm,
1e-5,10);
int Nconv;
std::vector<RealD> eval(Nm);
std::vector<CoarseVector> evec(Nm,Coarse5d);
std::vector<CoarseVector> c_src(nrhs,Coarse5d);
///////////////////////
// Deflation guesser object
///////////////////////
MultiRHSDeflation<CoarseVector> MrhsGuesser;
//////////////////////////////////////////
// Block projector for coarse/fine
//////////////////////////////////////////
MultiRHSBlockProject<LatticeFermionD> MrhsProjector;
//////////////////////////
// Extra HDCG parameters
//////////////////////////
int maxit=300;
ConjugateGradient<CoarseVector> CG(5.0e-2,maxit,false);
ConjugateGradient<CoarseVector> CGstart(5.0e-2,maxit,false);
RealD lo=2.0;
int ord = 7;
// int ord = 11;
int blockDim = 0;//not used for BlockCG
BlockConjugateGradient<CoarseVector> BCG (BlockCGrQ,blockDim,5.0e-5,maxit,true);
DoNothingGuesser<CoarseVector> DoNothing;
// HPDSolver<CoarseVector> HPDSolveMrhs(MrhsCoarseOp,CG,DoNothing);
// HPDSolver<CoarseVector> HPDSolveMrhsStart(MrhsCoarseOp,CGstart,DoNothing);
// HPDSolver<CoarseVector> HPDSolveMrhs(MrhsCoarseOp,BCG,DoNothing);
// HPDSolver<CoarseVector> HPDSolveMrhsRefine(MrhsCoarseOp,BCG,DoNothing);
// FixedCGPolynomial<CoarseVector> HPDSolveMrhs(maxit,MrhsCoarseOp);
ChebyshevInverter<CoarseVector> HPDSolveMrhs(1.0e-2,40.0,120,MrhsCoarseOp); //
// ChebyshevInverter<CoarseVector> HPDSolveMrhs(1.0e-2,40.0,110,MrhsCoarseOp); // 114 iter with Chebysmooth and BlockCG
// ChebyshevInverter<CoarseVector> HPDSolveMrhs(1.0e-2,40.0,120,MrhsCoarseOp); // 138 iter with Chebysmooth
// ChebyshevInverter<CoarseVector> HPDSolveMrhs(1.0e-2,40.0,200,MrhsCoarseOp); // 139 iter
// ChebyshevInverter<CoarseVector> HPDSolveMrhs(3.0e-3,40.0,200,MrhsCoarseOp); // 137 iter, CG smooth, flex
// ChebyshevInverter<CoarseVector> HPDSolveMrhs(1.0e-3,40.0,200,MrhsCoarseOp); // 146 iter, CG smooth, flex
// ChebyshevInverter<CoarseVector> HPDSolveMrhs(3.0e-4,40.0,200,MrhsCoarseOp); // 156 iter, CG smooth, flex
/////////////////////////////////////////////////
// Mirs smoother
/////////////////////////////////////////////////
ShiftedHermOpLinearOperator<LatticeFermionD> ShiftedFineHermOp(HermOpEO,lo);
// FixedCGPolynomial<LatticeFermionD> CGsmooth(ord,ShiftedFineHermOp) ;
// CGSmoother<LatticeFermionD> CGsmooth(ord,ShiftedFineHermOp) ;
ChebyshevSmoother<LatticeFermionD> CGsmooth(2.0,92.0,8,HermOpEO) ;
if ( load_refine ) {
LoadBasis(Aggregates,refine_file);
// LatticeFermionF conv_tmp(FrbGridF);
// LoadBasisSum(Aggregates,refine_file,sample,conv_tmp);
} else {
Aggregates.RefineSubspace(HermOpEO,0.001,1.0e-3,3000); // 172 iters
SaveBasis(Aggregates,refine_file);
}
Aggregates.Orthogonalise();
std::cout << "**************************************"<<std::endl;
std::cout << "Coarsen after refine"<<std::endl;
std::cout << "**************************************"<<std::endl;
mrhs.CoarsenOperator(FineHermOp,Aggregates,Coarse5d);
std::cout << "**************************************"<<std::endl;
std::cout << " Recompute coarse evecs "<<std::endl;
std::cout << "**************************************"<<std::endl;
evec.resize(Nm,Coarse5d);
eval.resize(Nm);
for(int r=0;r<nrhs;r++){
random(CRNG,c_src[r]);
}
IRL.calc(eval,evec,c_src,Nconv,LanczosType::irbl);
std::cout << "**************************************"<<std::endl;
std::cout << " Reimport coarse evecs "<<std::endl;
std::cout << "**************************************"<<std::endl;
MrhsGuesser.ImportEigenBasis(evec,eval);
std::cout << "**************************************"<<std::endl;
std::cout << " Setting up mRHS HDCG"<<std::endl;
std::cout << "**************************************"<<std::endl;
MrhsProjector.Allocate(nbasis,FrbGrid,Coarse5d);
MrhsProjector.ImportBasis(Aggregates.subspace);
std::cout << "**************************************"<<std::endl;
std::cout << "Calling mRHS HDCG"<<std::endl;
std::cout << "**************************************"<<std::endl;
TwoLevelADEF2mrhs<LatticeFermion,CoarseVector>
HDCGmrhs(1.0e-8, 300,
FineHermOp,
CGsmooth,
HPDSolveMrhs, // Used in M1
HPDSolveMrhs, // Used in Vstart
MrhsProjector,
MrhsGuesser,
CoarseMrhs);
std::vector<LatticeFermionD> src_mrhs(nrhs,FrbGrid);
std::vector<LatticeFermionD> res_mrhs(nrhs,FrbGrid);
LatticeFermionD result_accurate(FrbGrid);
LatticeFermionD result_sloppy(FrbGrid);
LatticeFermionD error(FrbGrid);
LatticeFermionD residual(FrbGrid);
for(int r=0;r<nrhs;r++){
random(RNG5,src_mrhs[r]);
res_mrhs[r]=Zero();
}
HDCGmrhs(src_mrhs,res_mrhs);
result_accurate = res_mrhs[0];
#if 0
std::vector<RealD> bins({1.0e-3,1.0e-2,1.0e-1,1.0,10.0,100.0});
std::vector<int> orders({6000 ,4000 ,1000 ,500,500 ,500});
PowerSpectrum GraphicEqualizer(bins,orders);
std::cout << "**************************************"<<std::endl;
std::cout << GridLogMessage << " PowerSpectrum of rrr "<<std::endl;
std::cout << "**************************************"<<std::endl;
GraphicEqualizer(FineHermOp,HDCGmrhs.rrr);
std::cout << "**************************************"<<std::endl;
std::cout << GridLogMessage << " PowerSpectrum of sss "<<std::endl;
std::cout << "**************************************"<<std::endl;
GraphicEqualizer(FineHermOp,HDCGmrhs.sss);
std::cout << "**************************************"<<std::endl;
std::cout << GridLogMessage << " PowerSpectrum of qqq "<<std::endl;
std::cout << "**************************************"<<std::endl;
GraphicEqualizer(FineHermOp,HDCGmrhs.qqq);
std::cout << "**************************************"<<std::endl;
std::cout << GridLogMessage << " PowerSpectrum of zzz "<<std::endl;
std::cout << "**************************************"<<std::endl;
GraphicEqualizer(FineHermOp,HDCGmrhs.zzz);
std::vector<RealD> tols({1.0e-3,1.0e-4,1.0e-5});
for(auto tol : tols) {
TwoLevelADEF2mrhs<LatticeFermion,CoarseVector>
HDCGmrhsSloppy(tol, 500,
FineHermOp,
CGsmooth,
HPDSolveMrhs, // Used in M1
HPDSolveMrhs, // Used in Vstart
MrhsProjector,
MrhsGuesser,
CoarseMrhs);
// Solve again to 10^-5
for(int r=0;r<nrhs;r++){
res_mrhs[r]=Zero();
}
HDCGmrhsSloppy(src_mrhs,res_mrhs);
result_sloppy = res_mrhs[0];
error = result_sloppy - result_accurate;
FineHermOp.HermOp(result_sloppy,residual);
residual = residual - src_mrhs[0];
std::cout << "**************************************"<<std::endl;
std::cout << GridLogMessage << " Converged to tolerance "<< tol<<std::endl;
std::cout << GridLogMessage << " Absolute error "<<norm2(error)<<std::endl;
std::cout << GridLogMessage << " Residual "<<norm2(residual)<<std::endl;
std::cout << "**************************************"<<std::endl;
std::cout << "**************************************"<<std::endl;
std::cout << GridLogMessage << " PowerSpectrum of error "<<std::endl;
std::cout << "**************************************"<<std::endl;
GraphicEqualizer(FineHermOp,error);
std::cout << "**************************************"<<std::endl;
std::cout << GridLogMessage << " PowerSpectrum of residual "<<std::endl;
std::cout << "**************************************"<<std::endl;
GraphicEqualizer(FineHermOp,residual);
};
#endif
// Standard CG
#if 0
{
std::cout << "**************************************"<<std::endl;
std::cout << "Calling red black CG"<<std::endl;
std::cout << "**************************************"<<std::endl;
LatticeFermion result(FrbGrid); result=Zero();
LatticeFermion src(FrbGrid); random(RNG5,src);
result=Zero();
ConjugateGradient<LatticeFermionD> CGfine(1.0e-8,30000,false);
CGfine(HermOpEO, src, result);
}
#endif
Grid_finalize();
return 0;
}

View File

@ -0,0 +1,355 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_general_coarse_hdcg.cc
Copyright (C) 2023
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczosCoarse.h>
#include <Grid/algorithms/iterative/AdefMrhs.h>
using namespace std;
using namespace Grid;
template<class aggregation>
void SaveFineEvecs(aggregation &Agg,std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacWriter WR(Agg[0].Grid()->IsBoss());
WR.open(file);
for(int b=0;b<Agg.size();b++){
WR.writeScidacFieldRecord(Agg[b],record,0,Grid::BinaryIO::BINARYIO_LEXICOGRAPHIC);
}
WR.close();
#endif
}
template<class aggregation>
void SaveBasis(aggregation &Agg,std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacWriter WR(Agg.FineGrid->IsBoss());
WR.open(file);
for(int b=0;b<Agg.subspace.size();b++){
WR.writeScidacFieldRecord(Agg.subspace[b],record,0,Grid::BinaryIO::BINARYIO_LEXICOGRAPHIC);
// WR.writeScidacFieldRecord(Agg.subspace[b],record);
}
WR.close();
#endif
}
template<class aggregation>
void LoadBasis(aggregation &Agg, std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacReader RD ;
RD.open(file);
for(int b=0;b<Agg.subspace.size();b++){
RD.readScidacFieldRecord(Agg.subspace[b],record,Grid::BinaryIO::BINARYIO_LEXICOGRAPHIC);
// RD.readScidacFieldRecord(Agg.subspace[b],record,0);
}
RD.close();
#endif
}
template<class aggregation>
void LoadFineEvecs(aggregation &Agg, std::string file,LatticeFermionF & conv_tmp)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacReader RD ;
RD.open(file);
for(int b=0;b<Agg.size();b++){
RD.readScidacFieldRecord(conv_tmp,record,Grid::BinaryIO::BINARYIO_LEXICOGRAPHIC);
precisionChange(Agg[b],conv_tmp);
}
RD.close();
#endif
}
template<class CoarseVector>
void SaveEigenvectors(std::vector<RealD> &eval,
std::vector<CoarseVector> &evec,
std::string evec_file,
std::string eval_file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacWriter WR(evec[0].Grid()->IsBoss());
WR.open(evec_file);
for(int b=0;b<evec.size();b++){
WR.writeScidacFieldRecord(evec[b],record,0,0);
}
WR.close();
XmlWriter WRx(eval_file);
write(WRx,"evals",eval);
#endif
}
template<class CoarseVector>
void LoadEigenvectors(std::vector<RealD> &eval,
std::vector<CoarseVector> &evec,
std::string evec_file,
std::string eval_file)
{
#ifdef HAVE_LIME
XmlReader RDx(eval_file);
read(RDx,"evals",eval);
emptyUserRecord record;
Grid::ScidacReader RD ;
RD.open(evec_file);
assert(evec.size()==eval.size());
for(int k=0;k<eval.size();k++) {
RD.readScidacFieldRecord(evec[k],record);
}
RD.close();
#endif
}
// Want Op in CoarsenOp to call MatPcDagMatPc
template<class Field>
class HermOpAdaptor : public LinearOperatorBase<Field>
{
LinearOperatorBase<Field> & wrapped;
public:
HermOpAdaptor(LinearOperatorBase<Field> &wrapme) : wrapped(wrapme) {};
void Op (const Field &in, Field &out) { wrapped.HermOp(in,out); }
void HermOp(const Field &in, Field &out) { wrapped.HermOp(in,out); }
void AdjOp (const Field &in, Field &out){ wrapped.HermOp(in,out); }
void OpDiag (const Field &in, Field &out) { assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out) { assert(0); };
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
};
template<class Field> class CGSmoother : public LinearFunction<Field>
{
public:
using LinearFunction<Field>::operator();
typedef LinearOperatorBase<Field> FineOperator;
FineOperator & _SmootherOperator;
int iters;
CGSmoother(int _iters, FineOperator &SmootherOperator) :
_SmootherOperator(SmootherOperator),
iters(_iters)
{
std::cout << GridLogMessage<<" Mirs smoother order "<<iters<<std::endl;
};
void operator() (const Field &in, Field &out)
{
ConjugateGradient<Field> CG(0.0,iters,false); // non-converge is just fine in a smoother
out=Zero();
CG(_SmootherOperator,in,out);
}
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
const int Ls=24;
const int nbasis = 62;
const int cb = 0 ;
RealD mass=0.00078;
RealD M5=1.8;
RealD b=1.5;
RealD c=0.5;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
// Construct a coarsened grid with 4^4 cell
Coordinate Block({4,4,6,4});
Coordinate clatt = GridDefaultLatt();
for(int d=0;d<clatt.size();d++){
clatt[d] = clatt[d]/Block[d];
}
//////////////////////////////////////////
// Double precision grids
//////////////////////////////////////////
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt,
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());;
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
//////////////////////////////////////////
// Single precision grids -- lanczos + smoother
//////////////////////////////////////////
GridCartesian * UGridF = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
GridDefaultSimd(Nd,vComplexF::Nsimd()),
GridDefaultMpi());
GridRedBlackCartesian * UrbGridF = SpaceTimeGrid::makeFourDimRedBlackGrid(UGridF);
GridCartesian * FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridF);
GridRedBlackCartesian * FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridF);
///////////////////////// RNGs /////////////////////////////////
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
std::vector<int> cseeds({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds);
///////////////////////// Configuration /////////////////////////////////
LatticeGaugeField Umu(UGrid);
FieldMetaData header;
std::string file("ckpoint_lat.1000");
NerscIO::readConfiguration(Umu,header,file);
//////////////////////// Fermion action //////////////////////////////////
MobiusFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,b,c);
SchurDiagMooeeOperator<MobiusFermionD, LatticeFermion> HermOpEO(Ddwf);
const int Fine_Nstop = 200;
const int Fine_Nk = 100;
const int Fine_Np = 100;
const int Fine_Nm = Fine_Nk+Fine_Np;
typedef LatticeFermion FermionField;
std::vector<RealD> Fine_eval;
std::vector<FermionField> Fine_evec;
LatticeFermionF conv_tmp(FrbGridF);
Fine_eval.resize(Fine_Nstop);
Fine_evec.resize(Fine_Nstop,FrbGrid);
std::string evec_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Subspace.phys48.evecF");
LoadFineEvecs(Fine_evec,evec_file,conv_tmp);
typedef HermOpAdaptor<LatticeFermionD> HermFineMatrix;
HermFineMatrix FineHermOp(HermOpEO);
////////////////////////////////////////////////////////////
///////////// Coarse basis and Little Dirac Operator ///////
////////////////////////////////////////////////////////////
typedef GeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LittleDiracOperator;
typedef LittleDiracOperator::CoarseVector CoarseVector;
NextToNextToNextToNearestStencilGeometry5D geom(Coarse5d);
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
Subspace Aggregates(Coarse5d,FrbGrid,cb);
////////////////////////////////////////////////////////////
// Need to check about red-black grid coarsening
////////////////////////////////////////////////////////////
// std::string subspace_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Subspace.phys48.mixed.2500.60");
// // std::string subspace_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Subspace.phys48.new.62");
// std::string refine_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Subspace.phys48.evec");
std::string refine_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Refine.phys48.mixed.2500.60");
// std::string ldop_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/LittleDiracOp.phys48.mixed.60");
// std::string evec_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/evecs.scidac");
// std::string eval_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/eval.xml");
bool load_agg=true;
bool load_refine=true;
//////////////////////////////////////////
// Block projector for coarse/fine
//////////////////////////////////////////
MultiRHSBlockProject<LatticeFermionD> MrhsProjector;
/////////////////////////////////////////////////
// Mirs smoother
/////////////////////////////////////////////////
int ord=8;
RealD lo=2.0;
RealD MirsShift = lo;
ShiftedHermOpLinearOperator<LatticeFermionD> ShiftedFineHermOp(HermOpEO,MirsShift);
CGSmoother<LatticeFermionD> CGsmooth(ord,ShiftedFineHermOp) ;
LoadBasis(Aggregates,refine_file);
Aggregates.Orthogonalise();
std::cout << "**************************************"<<std::endl;
std::cout << " Using filtered subspace"<<std::endl;
std::cout << "**************************************"<<std::endl;
MrhsProjector.Allocate(nbasis,FrbGrid,Coarse5d);
MrhsProjector.ImportBasis(Aggregates.subspace);
FermionField Ftmp(FrbGrid);
std::vector<FermionField> Fine_ev(1,FrbGrid);
std::vector<FermionField> Fine_ev_compressed(1,FrbGrid);
std::vector<CoarseVector> c_evec(1,Coarse5d);
for(int ev=0;ev<Fine_evec.size();ev++){
Fine_ev[0] = Fine_evec[ev];
MrhsProjector.blockProject(Fine_ev,c_evec);
MrhsProjector.blockPromote(Fine_ev_compressed,c_evec);
Ftmp = Fine_ev_compressed[0];
RealD div = 1.0/ sqrt(norm2(Ftmp));
Ftmp = Ftmp * div;
std::cout << GridLogMessage<<" "<<ev<<" uncomp "<< norm2(Fine_ev[0]) <<std::endl;
std::cout << GridLogMessage<<" "<<ev<<" comp "<< norm2(Ftmp) <<std::endl;
Ftmp = Fine_ev[0] - Ftmp;
std::cout << GridLogMessage<<" "<<ev<<" diff "<< norm2(Ftmp) <<std::endl;
CGsmooth(Fine_ev_compressed[0],Ftmp);
Ftmp = Ftmp *lo;
std::cout << GridLogMessage<<" "<<ev<<" smoothed "<< norm2(Ftmp) <<std::endl;
div = 1.0/ sqrt(norm2(Ftmp));
Ftmp=Ftmp*div;
Ftmp = Fine_ev[0]-Ftmp;
std::cout << GridLogMessage<<" "<<ev<<" diff "<< norm2(Ftmp) <<std::endl;
}
std::cout << "**************************************"<<std::endl;
std::cout << " Using eigenvector subspace "<<std::endl;
std::cout << "**************************************"<<std::endl;
for(int i=0;i<Aggregates.subspace.size();i++){
Aggregates.subspace[i] = Fine_evec[i];
}
Aggregates.Orthogonalise();
MrhsProjector.ImportBasis(Aggregates.subspace);
for(int ev=0;ev<Fine_evec.size();ev++){
Fine_ev[0] = Fine_evec[ev];
MrhsProjector.blockProject(Fine_ev,c_evec);
MrhsProjector.blockPromote(Fine_ev_compressed,c_evec);
Ftmp = Fine_ev_compressed[0];
RealD div = 1.0/ sqrt(norm2(Ftmp));
Ftmp = Ftmp * div;
std::cout << GridLogMessage<<" "<<ev<<" uncomp "<< norm2(Fine_ev[0]) <<std::endl;
std::cout << GridLogMessage<<" "<<ev<<" comp "<< norm2(Ftmp) <<std::endl;
Ftmp = Fine_ev[0] - Ftmp;
std::cout << GridLogMessage<<" "<<ev<<" diff "<< norm2(Ftmp) <<std::endl;
CGsmooth(Fine_ev_compressed[0],Ftmp);
Ftmp = Ftmp *lo;
std::cout << GridLogMessage<<" "<<ev<<" smoothed "<< norm2(Ftmp) <<std::endl;
div = 1.0/ sqrt(norm2(Ftmp));
Ftmp=Ftmp*div;
Ftmp = Fine_ev[0]-Ftmp;
std::cout << GridLogMessage<<" "<<ev<<" diff "<< norm2(Ftmp) <<std::endl;
}
// Standard CG
Grid_finalize();
return 0;
}

View File

@ -36,28 +36,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
using namespace std;
using namespace Grid;
template<class Field>
class HermOpAdaptor : public LinearOperatorBase<Field>
{
LinearOperatorBase<Field> & wrapped;
public:
HermOpAdaptor(LinearOperatorBase<Field> &wrapme) : wrapped(wrapme) {};
void OpDiag (const Field &in, Field &out) { assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); };
void Op (const Field &in, Field &out){
wrapped.HermOp(in,out);
}
void AdjOp (const Field &in, Field &out){
wrapped.HermOp(in,out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
void HermOp(const Field &in, Field &out){
wrapped.HermOp(in,out);
}
};
template<class Matrix,class Field>
class PVdagMLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
@ -69,78 +47,169 @@ public:
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); };
void Op (const Field &in, Field &out){
// std::cout << "Op: PVdag M "<<std::endl;
Field tmp(in.Grid());
_Mat.M(in,tmp);
_PV.Mdag(tmp,out);
}
void AdjOp (const Field &in, Field &out){
// std::cout << "AdjOp: Mdag PV "<<std::endl;
Field tmp(in.Grid());
_PV.M(tmp,out);
_Mat.Mdag(in,tmp);
_PV.M(in,tmp);
_Mat.Mdag(tmp,out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
void HermOp(const Field &in, Field &out){
std::cout << "HermOp"<<std::endl;
// std::cout << "HermOp: Mdag PV PVdag M"<<std::endl;
Field tmp(in.Grid());
// _Mat.M(in,tmp);
// _PV.Mdag(tmp,out);
// _PV.M(out,tmp);
// _Mat.Mdag(tmp,out);
Op(in,tmp);
AdjOp(tmp,out);
// std::cout << "HermOp done "<<norm2(out)<<std::endl;
}
};
template<class Matrix,class Field>
class ShiftedPVdagMLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
Matrix &_PV;
RealD shift;
public:
ShiftedPVdagMLinearOperator(RealD _shift,Matrix &Mat,Matrix &PV): shift(_shift),_Mat(Mat),_PV(PV){};
void OpDiag (const Field &in, Field &out) { assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); };
void Op (const Field &in, Field &out){
// std::cout << "Op: PVdag M "<<std::endl;
Field tmp(in.Grid());
_Mat.M(in,tmp);
_PV.Mdag(tmp,out);
_PV.M(out,tmp);
_Mat.Mdag(tmp,out);
std::cout << "HermOp done "<<norm2(out)<<std::endl;
out = out + shift * in;
}
};
template<class Field> class DumbOperator : public LinearOperatorBase<Field> {
public:
LatticeComplex scale;
DumbOperator(GridBase *grid) : scale(grid)
{
scale = 0.0;
LatticeComplex scalesft(grid);
LatticeComplex scaletmp(grid);
for(int d=0;d<4;d++){
Lattice<iScalar<vInteger> > x(grid); LatticeCoordinate(x,d+1);
LatticeCoordinate(scaletmp,d+1);
scalesft = Cshift(scaletmp,d+1,1);
scale = 100.0*scale + where( mod(x ,2)==(Integer)0, scalesft,scaletmp);
}
std::cout << " scale\n" << scale << std::endl;
}
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {};
void OpDir (const Field &in, Field &out,int dir,int disp){};
void OpDirAll (const Field &in, std::vector<Field> &out) {};
void Op (const Field &in, Field &out){
out = scale * in;
}
void AdjOp (const Field &in, Field &out){
out = scale * in;
void AdjOp (const Field &in, Field &out){
// std::cout << "AdjOp: Mdag PV "<<std::endl;
Field tmp(in.Grid());
_PV.M(tmp,out);
_Mat.Mdag(in,tmp);
out = out + shift * in;
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
void HermOp(const Field &in, Field &out){
double n1, n2;
HermOpAndNorm(in,out,n1,n2);
}
void HermOpAndNorm(const Field &in, Field &out,double &n1,double &n2){
ComplexD dot;
out = scale * in;
dot= innerProduct(in,out);
n1=real(dot);
dot = innerProduct(out,out);
n2=real(dot);
// std::cout << "HermOp: Mdag PV PVdag M"<<std::endl;
Field tmp(in.Grid());
Op(in,tmp);
AdjOp(tmp,out);
}
};
template<class Fobj,class CComplex,int nbasis>
class MGPreconditioner : public LinearFunction< Lattice<Fobj> > {
public:
using LinearFunction<Lattice<Fobj> >::operator();
typedef Aggregation<Fobj,CComplex,nbasis> Aggregates;
typedef typename Aggregation<Fobj,CComplex,nbasis>::FineField FineField;
typedef typename Aggregation<Fobj,CComplex,nbasis>::CoarseVector CoarseVector;
typedef typename Aggregation<Fobj,CComplex,nbasis>::CoarseMatrix CoarseMatrix;
typedef LinearOperatorBase<FineField> FineOperator;
typedef LinearFunction <FineField> FineSmoother;
typedef LinearOperatorBase<CoarseVector> CoarseOperator;
typedef LinearFunction <CoarseVector> CoarseSolver;
Aggregates & _Aggregates;
FineOperator & _FineOperator;
FineSmoother & _PreSmoother;
FineSmoother & _PostSmoother;
CoarseOperator & _CoarseOperator;
CoarseSolver & _CoarseSolve;
int level; void Level(int lv) {level = lv; };
MGPreconditioner(Aggregates &Agg,
FineOperator &Fine,
FineSmoother &PreSmoother,
FineSmoother &PostSmoother,
CoarseOperator &CoarseOperator_,
CoarseSolver &CoarseSolve_)
: _Aggregates(Agg),
_FineOperator(Fine),
_PreSmoother(PreSmoother),
_PostSmoother(PostSmoother),
_CoarseOperator(CoarseOperator_),
_CoarseSolve(CoarseSolve_),
level(1) { }
virtual void operator()(const FineField &in, FineField & out)
{
GridBase *CoarseGrid = _Aggregates.CoarseGrid;
// auto CoarseGrid = _CoarseOperator.Grid();
CoarseVector Csrc(CoarseGrid);
CoarseVector Csol(CoarseGrid);
FineField vec1(in.Grid());
FineField vec2(in.Grid());
std::cout<<GridLogMessage << "Calling PreSmoother " <<std::endl;
// std::cout<<GridLogMessage << "Calling PreSmoother input residual "<<norm2(in) <<std::endl;
double t;
// Fine Smoother
// out = in;
out = Zero();
t=-usecond();
_PreSmoother(in,out);
t+=usecond();
std::cout<<GridLogMessage << "PreSmoother took "<< t/1000.0<< "ms" <<std::endl;
// Update the residual
_FineOperator.Op(out,vec1); sub(vec1, in ,vec1);
// std::cout<<GridLogMessage <<"Residual-1 now " <<norm2(vec1)<<std::endl;
// Fine to Coarse
t=-usecond();
_Aggregates.ProjectToSubspace (Csrc,vec1);
t+=usecond();
std::cout<<GridLogMessage << "Project to coarse took "<< t/1000.0<< "ms" <<std::endl;
// Coarse correction
t=-usecond();
Csol = Zero();
_CoarseSolve(Csrc,Csol);
//Csol=Zero();
t+=usecond();
std::cout<<GridLogMessage << "Coarse solve took "<< t/1000.0<< "ms" <<std::endl;
// Coarse to Fine
t=-usecond();
// _CoarseOperator.PromoteFromSubspace(_Aggregates,Csol,vec1);
_Aggregates.PromoteFromSubspace(Csol,vec1);
add(out,out,vec1);
t+=usecond();
std::cout<<GridLogMessage << "Promote to this level took "<< t/1000.0<< "ms" <<std::endl;
// Residual
_FineOperator.Op(out,vec1); sub(vec1 ,in , vec1);
// std::cout<<GridLogMessage <<"Residual-2 now " <<norm2(vec1)<<std::endl;
// Fine Smoother
t=-usecond();
// vec2=vec1;
vec2=Zero();
_PostSmoother(vec1,vec2);
t+=usecond();
std::cout<<GridLogMessage << "PostSmoother took "<< t/1000.0<< "ms" <<std::endl;
add( out,out,vec2);
std::cout<<GridLogMessage << "Done " <<std::endl;
}
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
const int Ls=2;
const int Ls=16;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
@ -151,7 +220,8 @@ int main (int argc, char ** argv)
// Construct a coarsened grid
Coordinate clatt = GridDefaultLatt();
for(int d=0;d<clatt.size();d++){
clatt[d] = clatt[d]/4;
clatt[d] = clatt[d]/2;
// clatt[d] = clatt[d]/4;
}
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());;
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
@ -173,15 +243,14 @@ int main (int argc, char ** argv)
FieldMetaData header;
std::string file("ckpoint_lat.4000");
NerscIO::readConfiguration(Umu,header,file);
//Umu = 1.0;
RealD mass=0.5;
RealD mass=0.01;
RealD M5=1.8;
DomainWallFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
DomainWallFermionD Dpv(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,1.0,M5);
const int nbasis = 1;
const int nbasis = 20;
const int cb = 0 ;
LatticeFermion prom(FGrid);
@ -193,25 +262,51 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage<<std::endl;
std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
std::cout<<GridLogMessage<<std::endl;
PVdagMLinearOperator<DomainWallFermionD,LatticeFermionD> PVdagM(Ddwf,Dpv);
HermOpAdaptor<LatticeFermionD> HOA(PVdagM);
typedef PVdagMLinearOperator<DomainWallFermionD,LatticeFermionD> PVdagM_t;
typedef ShiftedPVdagMLinearOperator<DomainWallFermionD,LatticeFermionD> ShiftedPVdagM_t;
PVdagM_t PVdagM(Ddwf,Dpv);
// ShiftedPVdagM_t ShiftedPVdagM(2.0,Ddwf,Dpv); // 355
// ShiftedPVdagM_t ShiftedPVdagM(1.0,Ddwf,Dpv); // 246
// ShiftedPVdagM_t ShiftedPVdagM(0.5,Ddwf,Dpv); // 183
// ShiftedPVdagM_t ShiftedPVdagM(0.25,Ddwf,Dpv); // 145
// ShiftedPVdagM_t ShiftedPVdagM(0.1,Ddwf,Dpv); // 134
// ShiftedPVdagM_t ShiftedPVdagM(0.1,Ddwf,Dpv); // 127 -- NULL space via inverse iteration
// ShiftedPVdagM_t ShiftedPVdagM(0.1,Ddwf,Dpv); // 57 -- NULL space via inverse iteration; 3 iterations
// ShiftedPVdagM_t ShiftedPVdagM(0.25,Ddwf,Dpv); // 57 , tighter inversion
// ShiftedPVdagM_t ShiftedPVdagM(0.25,Ddwf,Dpv); // nbasis 20 -- 49 iters
// ShiftedPVdagM_t ShiftedPVdagM(0.25,Ddwf,Dpv); // nbasis 20 -- 70 iters; asymmetric
// ShiftedPVdagM_t ShiftedPVdagM(0.25,Ddwf,Dpv); // 58; Loosen coarse, tighten fine
// ShiftedPVdagM_t ShiftedPVdagM(0.1,Ddwf,Dpv); // 56 ...
// ShiftedPVdagM_t ShiftedPVdagM(0.1,Ddwf,Dpv); // 51 ... with 24 vecs
// ShiftedPVdagM_t ShiftedPVdagM(0.1,Ddwf,Dpv); // 31 ... with 24 vecs and 2^4 blocking
// ShiftedPVdagM_t ShiftedPVdagM(0.1,Ddwf,Dpv); // 43 ... with 16 vecs and 2^4 blocking, sloppier
// ShiftedPVdagM_t ShiftedPVdagM(0.1,Ddwf,Dpv); // 35 ... with 20 vecs and 2^4 blocking
// ShiftedPVdagM_t ShiftedPVdagM(0.1,Ddwf,Dpv); // 35 ... with 20 vecs and 2^4 blocking, looser coarse
// ShiftedPVdagM_t ShiftedPVdagM(0.1,Ddwf,Dpv); // 64 ... with 20 vecs, Christoph setup, and 2^4 blocking, looser coarse
ShiftedPVdagM_t ShiftedPVdagM(0.01,Ddwf,Dpv); //
// Run power method on HOA??
PowerMethod<LatticeFermion> PM; PM(HOA,src);
// PowerMethod<LatticeFermion> PM; PM(PVdagM,src);
// Warning: This routine calls PVdagM.Op, not PVdagM.HermOp
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
Subspace AggregatesPD(Coarse5d,FGrid,cb);
/*
AggregatesPD.CreateSubspaceChebyshev(RNG5,
HOA,
PVdagM,
nbasis,
5000.0,
0.02,
100,
50,
50,
4000.0,
2.0,
200,
200,
200,
0.0);
*/
AggregatesPD.CreateSubspaceGCR(RNG5,
PVdagM,
nbasis);
LittleDiracOperator LittleDiracOpPV(geom,FGrid,Coarse5d);
LittleDiracOpPV.CoarsenOperator(PVdagM,AggregatesPD);
@ -257,6 +352,60 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage<<" ldop error: "<<norm2(c_proj)<<std::endl;
// std::cout<<GridLogMessage<<" error "<< c_proj<<std::endl;
/**********
* Some solvers
**********
*/
///////////////////////////////////////
// Coarse grid solver test
///////////////////////////////////////
std::cout<<GridLogMessage<<"******************* "<<std::endl;
std::cout<<GridLogMessage<<" Coarse Grid Solve -- Level 3 "<<std::endl;
std::cout<<GridLogMessage<<"******************* "<<std::endl;
TrivialPrecon<CoarseVector> simple;
NonHermitianLinearOperator<LittleDiracOperator,CoarseVector> LinOpCoarse(LittleDiracOpPV);
// PrecGeneralisedConjugateResidualNonHermitian<CoarseVector> L2PGCR(1.0e-4, 100, LinOpCoarse,simple,10,10);
PrecGeneralisedConjugateResidualNonHermitian<CoarseVector> L2PGCR(3.0e-2, 100, LinOpCoarse,simple,10,10);
L2PGCR.Level(3);
c_res=Zero();
L2PGCR(c_src,c_res);
////////////////////////////////////////
// Fine grid smoother
////////////////////////////////////////
std::cout<<GridLogMessage<<"******************* "<<std::endl;
std::cout<<GridLogMessage<<" Fine Grid Smoother -- Level 2 "<<std::endl;
std::cout<<GridLogMessage<<"******************* "<<std::endl;
TrivialPrecon<LatticeFermionD> simple_fine;
// NonHermitianLinearOperator<PVdagM_t,LatticeFermionD> LinOpSmooth(PVdagM);
PrecGeneralisedConjugateResidualNonHermitian<LatticeFermionD> SmootherGCR(0.01,1,ShiftedPVdagM,simple_fine,16,16);
SmootherGCR.Level(2);
LatticeFermionD f_src(FGrid);
LatticeFermionD f_res(FGrid);
f_src = one; // 1 in every element for vector 1.
f_res=Zero();
SmootherGCR(f_src,f_res);
typedef MGPreconditioner<vSpinColourVector, vTComplex,nbasis> TwoLevelMG;
TwoLevelMG TwoLevelPrecon(AggregatesPD,
PVdagM,
simple_fine,
SmootherGCR,
LinOpCoarse,
L2PGCR);
PrecGeneralisedConjugateResidualNonHermitian<LatticeFermion> L1PGCR(1.0e-8,1000,PVdagM,TwoLevelPrecon,16,16);
L1PGCR.Level(1);
f_res=Zero();
L1PGCR(f_src,f_res);
std::cout<<GridLogMessage<<std::endl;
std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
std::cout<<GridLogMessage<<std::endl;

View File

@ -0,0 +1,14 @@
<?xml version="1.0"?>
<grid>
<LanczosParameters>
<mass>0.00107</mass>
<M5>1.8</M5>
<Ls>48</Ls>
<Nstop>10</Nstop>
<Nk>15</Nk>
<Np>85</Np>
<ChebyLow>0.003</ChebyLow>
<ChebyHigh>60</ChebyHigh>
<ChebyOrder>201</ChebyOrder>
</LanczosParameters>
</grid>

View File

@ -0,0 +1,346 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_dwf_G5R5.cc
Copyright (C) 2015
Author: Chulwoo Jung <chulwoo@bnl.gov>
From Duo and Bob's Chirality study
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
;
//typedef WilsonFermionD FermionOp;
typedef DomainWallFermionD FermionOp;
typedef typename DomainWallFermionD::FermionField FermionField;
RealD AllZero(RealD x) { return 0.; }
namespace Grid {
struct LanczosParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParameters,
RealD, mass ,
RealD, M5 ,
Integer, Ls,
Integer, Nstop,
Integer, Nk,
Integer, Np,
RealD, ChebyLow,
RealD, ChebyHigh,
Integer, ChebyOrder)
// Integer, StartTrajectory,
// Integer, Trajectories, /* @brief Number of sweeps in this run */
// bool, MetropolisTest,
// Integer, NoMetropolisUntil,
// std::string, StartingType,
// Integer, SW,
// RealD, Kappa,
// IntegratorParameters, MD)
LanczosParameters() {
////////////////////////////// Default values
mass = 0;
// MetropolisTest = true;
// NoMetropolisUntil = 10;
// StartTrajectory = 0;
// SW = 2;
// Trajectories = 10;
// StartingType = "HotStart";
/////////////////////////////////
}
template <class ReaderClass >
LanczosParameters(Reader<ReaderClass> & TheReader){
initialize(TheReader);
}
template < class ReaderClass >
void initialize(Reader<ReaderClass> &TheReader){
// std::cout << GridLogMessage << "Reading HMC\n";
read(TheReader, "HMC", *this);
}
void print_parameters() const {
// std::cout << GridLogMessage << "[HMC parameters] Trajectories : " << Trajectories << "\n";
// std::cout << GridLogMessage << "[HMC parameters] Start trajectory : " << StartTrajectory << "\n";
// std::cout << GridLogMessage << "[HMC parameters] Metropolis test (on/off): " << std::boolalpha << MetropolisTest << "\n";
// std::cout << GridLogMessage << "[HMC parameters] Thermalization trajs : " << NoMetropolisUntil << "\n";
// std::cout << GridLogMessage << "[HMC parameters] Starting type : " << StartingType << "\n";
// MD.print_parameters();
}
};
}
int main(int argc, char** argv) {
Grid_init(&argc, &argv);
LanczosParameters LanParams;
#if 1
{
XmlReader HMCrd("LanParams.xml");
read(HMCrd,"LanczosParameters",LanParams);
}
#else
{
LanParams.mass = mass;
}
#endif
std::cout << GridLogMessage<< LanParams <<std::endl;
{
XmlWriter HMCwr("LanParams.xml.out");
write(HMCwr,"LanczosParameters",LanParams);
}
int Ls=16;
RealD M5=1.8;
RealD mass = -1.0;
mass=LanParams.mass;
Ls=LanParams.Ls;
M5=LanParams.M5;
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(
GridDefaultLatt(), GridDefaultSimd(Nd, vComplex::Nsimd()),
GridDefaultMpi());
GridRedBlackCartesian* UrbGrid =
SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
// GridCartesian* FGrid = UGrid;
// GridRedBlackCartesian* FrbGrid = UrbGrid;
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
// printf("UGrid=%p UrbGrid=%p FGrid=%p FrbGrid=%p\n", UGrid, UrbGrid, FGrid, FrbGrid);
std::vector<int> seeds4({1, 2, 3, 4});
std::vector<int> seeds5({5, 6, 7, 8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
GridParallelRNG RNG5rb(FrbGrid); RNG5.SeedFixedIntegers(seeds5);
LatticeGaugeField Umu(UGrid);
FieldMetaData header;
std::string file("./config");
int precision32 = 0;
int tworow = 0;
NerscIO::readConfiguration(Umu,header,file);
/*
std::vector<LatticeColourMatrix> U(4, UGrid);
for (int mu = 0; mu < Nd; mu++) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
}
*/
int Nstop = 10;
int Nk = 20;
int Np = 80;
Nstop=LanParams.Nstop;
Nk=LanParams.Nk;
Np=LanParams.Np;
int Nm = Nk + Np;
int MaxIt = 10000;
RealD resid = 1.0e-5;
//while ( mass > - 5.0){
FermionOp Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
MdagMLinearOperator<FermionOp,FermionField> HermOp(Ddwf); /// <-----
// Gamma5HermitianLinearOperator <FermionOp,LatticeFermion> HermOp2(WilsonOperator); /// <-----
Gamma5R5HermitianLinearOperator<FermionOp, LatticeFermion> G5R5Herm(Ddwf);
// Gamma5R5HermitianLinearOperator
std::vector<double> Coeffs{0, 1.};
Polynomial<FermionField> PolyX(Coeffs);
Chebyshev<FermionField> Cheby(LanParams.ChebyLow,LanParams.ChebyHigh,LanParams.ChebyOrder);
FunctionHermOp<FermionField> OpCheby(Cheby,HermOp);
PlainHermOp<FermionField> Op (HermOp);
PlainHermOp<FermionField> Op2 (G5R5Herm);
ImplicitlyRestartedLanczos<FermionField> IRL(OpCheby, Op, Nstop, Nk, Nm, resid, MaxIt);
std::vector<RealD> eval(Nm);
FermionField src(FGrid);
gaussian(RNG5, src);
std::vector<FermionField> evec(Nm, FGrid);
for (int i = 0; i < 1; i++) {
std::cout << i << " / " << Nm << " grid pointer " << evec[i].Grid()
<< std::endl;
};
int Nconv;
IRL.calc(eval, evec, src, Nconv);
std::cout << mass <<" : " << eval << std::endl;
#if 0
Gamma g5(Gamma::Algebra::Gamma5) ;
ComplexD dot;
FermionField tmp(FGrid);
// RealD eMe,eMMe;
for (int i = 0; i < Nstop ; i++) {
// tmp = g5*evec[i];
dot = innerProduct(evec[i],evec[i]);
// G5R5(tmp,evec[i]);
G5R5Herm.HermOpAndNorm(evec[i],tmp,eMe,eMMe);
std::cout <<"Norm "<<M5<<" "<< mass << " : " << i << " " << real(dot) << " " << imag(dot) << " "<< eMe << " " <<eMMe<< std::endl ;
for (int j = 0; j < Nstop ; j++) {
dot = innerProduct(tmp,evec[j]);
std::cout <<"G5R5 "<<M5<<" "<< mass << " : " << i << " " <<j<<" " << real(dot) << " " << imag(dot) << std::endl ;
}
}
// src = evec[0]+evec[1]+evec[2];
// mass += -0.1;
#endif
//**********************************************************************
//orthogonalization
//calculat the matrix
cout << "Start orthogonalization " << endl;
cout << "calculate the matrix element" << endl;
vector<LatticeFermion> G5R5Mevec(Nconv, FGrid);
vector<LatticeFermion> finalevec(Nconv, FGrid);
vector<RealD> eMe(Nconv), eMMe(Nconv);
for(int i = 0; i < Nconv; i++){
G5R5Herm.HermOpAndNorm(evec[i], G5R5Mevec[i], eMe[i], eMMe[i]);
}
cout << "Re<evec, G5R5M(evec)>: " << endl;
cout << eMe << endl;
cout << "<G5R5M(evec), G5R5M(evec)>" << endl;
cout << eMMe << endl;
vector<vector<ComplexD>> VevecG5R5Mevec(Nconv);
Eigen::MatrixXcd evecG5R5Mevec = Eigen::MatrixXcd::Zero(Nconv, Nconv);
for(int i = 0; i < Nconv; i++){
VevecG5R5Mevec[i].resize(Nconv);
for(int j = 0; j < Nconv; j++){
VevecG5R5Mevec[i][j] = innerProduct(evec[i], G5R5Mevec[j]);
evecG5R5Mevec(i, j) = VevecG5R5Mevec[i][j];
}
}
//calculate eigenvector
cout << "Eigen solver" << endl;
Eigen::SelfAdjointEigenSolver<Eigen::MatrixXcd> eigensolver(evecG5R5Mevec);
vector<RealD> eigeneval(Nconv);
vector<vector<ComplexD>> eigenevec(Nconv);
for(int i = 0; i < Nconv; i++){
eigeneval[i] = eigensolver.eigenvalues()[i];
eigenevec[i].resize(Nconv);
for(int j = 0; j < Nconv; j++){
eigenevec[i][j] = eigensolver.eigenvectors()(i, j);
}
}
//rotation
cout << "Do rotation" << endl;
for(int i = 0; i < Nconv; i++){
finalevec[i] = finalevec[i] - finalevec[i];
for(int j = 0; j < Nconv; j++){
finalevec[i] = eigenevec[j][i]*evec[j] + finalevec[i];
}
}
//normalize again;
for(int i = 0; i < Nconv; i++){
RealD tmp_RealD = norm2(finalevec[i]);
tmp_RealD = 1./pow(tmp_RealD, 0.5);
finalevec[i] = finalevec[i]*tmp_RealD;
}
//check
for(int i = 0; i < Nconv; i++){
G5R5Herm.HermOpAndNorm(finalevec[i], G5R5Mevec[i], eMe[i], eMMe[i]);
}
//**********************************************************************
//sort the eigenvectors
vector<LatticeFermion> finalevec_copy(Nconv, FGrid);
for(int i = 0; i < Nconv; i++){
finalevec_copy[i] = finalevec[i];
}
vector<RealD> eMe_copy(eMe);
for(int i = 0; i < Nconv; i++){
eMe[i] = fabs(eMe[i]);
eMe_copy[i] = eMe[i];
}
sort(eMe_copy.begin(), eMe_copy.end());
for(int i = 0; i < Nconv; i++){
for(int j = 0; j < Nconv; j++){
if(eMe[j] == eMe_copy[i]){
finalevec[i] = finalevec_copy[j];
}
}
}
for(int i = 0; i < Nconv; i++){
G5R5Herm.HermOpAndNorm(finalevec[i], G5R5Mevec[i], eMe[i], eMMe[i]);
}
cout << "Re<evec, G5R5M(evec)>: " << endl;
cout << eMe << endl;
cout << "<G5R5M(evec), G5R5M(evec)>" << endl;
cout << eMMe << endl;
// vector<LatticeFermion> finalevec(Nconv, FGrid);
// temporary, until doing rotation
// for(int i = 0; i < Nconv; i++)
// finalevec[i]=evec[i];
//**********************************************************************
//calculate chirality matrix
vector<LatticeFermion> G5evec(Nconv, FGrid);
vector<vector<ComplexD>> chiral_matrix(Nconv);
vector<vector<RealD>> chiral_matrix_real(Nconv);
for(int i = 0; i < Nconv; i++){
// G5evec[i] = G5evec[i] - G5evec[i];
G5evec[i] = Zero();
for(int j = 0; j < Ls/2; j++){
axpby_ssp(G5evec[i], 1., finalevec[i], 0., G5evec[i], j, j);
}
for(int j = Ls/2; j < Ls; j++){
axpby_ssp(G5evec[i], -1., finalevec[i], 0., G5evec[i], j, j);
}
}
for(int i = 0; i < Nconv; i++){
chiral_matrix_real[i].resize(Nconv);
chiral_matrix[i].resize(Nconv);
for(int j = 0; j < Nconv; j++){
chiral_matrix[i][j] = innerProduct(finalevec[i], G5evec[j]);
chiral_matrix_real[i][j] = abs(chiral_matrix[i][j]);
std::cout <<" chiral_matrix_real "<<i<<" "<<j<<" "<< chiral_matrix_real[i][j] << std::endl;
}
}
for(int i = 0; i < Nconv; i++){
if(chiral_matrix[i][i].real() < 0.){
chiral_matrix_real[i][i] = -1. * chiral_matrix_real[i][i];
}
}
Grid_finalize();
}

View File

@ -0,0 +1,278 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_dwf_lanczos.cc
Copyright (C) 2015
Author: Chulwoo Jung <chulwoo@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
;
typedef WilsonFermionD FermionOp;
typedef typename WilsonFermionD::FermionField FermionField;
RealD AllZero(RealD x) { return 0.; }
namespace Grid {
#if 0
template<typename Field>
class RationalHermOp : public LinearFunction<Field> {
public:
using LinearFunction<Field>::operator();
// OperatorFunction<Field> & _poly;
LinearOperatorBase<Field> &_Linop;
RealD _massDen, _massNum;
FunctionHermOp(LinearOperatorBase<Field>& linop, RealD massDen,RealD massNum)
: _Linop(linop) ,_massDen(massDen),_massNum(massNum) {};
void operator()(const Field& in, Field& out) {
// _poly(_Linop,in,out);
}
};
#endif
template<class Matrix,class Field>
class InvG5LinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
RealD _num;
RealD _Tol;
Integer _MaxIt;
Gamma g5;
public:
InvG5LinearOperator(Matrix &Mat,RealD num): _Mat(Mat),_num(num), _Tol(1e-12),_MaxIt(10000), g5(Gamma::Algebra::Gamma5) {};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
assert(0);
_Mat.Mdiag(in,out);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
assert(0);
_Mat.Mdir(in,out,dir,disp);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
assert(0);
_Mat.MdirAll(in,out);
};
void Op (const Field &in, Field &out){
assert(0);
_Mat.M(in,out);
}
void AdjOp (const Field &in, Field &out){
assert(0);
_Mat.Mdag(in,out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
HermOp(in,out);
ComplexD dot = innerProduct(in,out);
n1=real(dot);
n2=norm2(out);
}
void HermOp(const Field &in, Field &out){
Field tmp(in.Grid());
MdagMLinearOperator<Matrix,Field> denom(_Mat);
ConjugateGradient<Field> CG(_Tol,_MaxIt);
_Mat.M(in,tmp);
tmp += _num*in;
_Mat.Mdag(tmp,out);
CG(denom,out,tmp);
out = g5*tmp;
}
};
struct LanczosParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParameters,
RealD, mass ,
RealD, resid,
RealD, ChebyLow,
RealD, ChebyHigh,
Integer, ChebyOrder)
// Integer, StartTrajectory,
// Integer, Trajectories, /* @brief Number of sweeps in this run */
// bool, MetropolisTest,
// Integer, NoMetropolisUntil,
// std::string, StartingType,
// Integer, SW,
// RealD, Kappa,
// IntegratorParameters, MD)
LanczosParameters() {
////////////////////////////// Default values
mass = 0;
// MetropolisTest = true;
// NoMetropolisUntil = 10;
// StartTrajectory = 0;
// SW = 2;
// Trajectories = 10;
// StartingType = "HotStart";
/////////////////////////////////
}
template <class ReaderClass >
LanczosParameters(Reader<ReaderClass> & TheReader){
initialize(TheReader);
}
template < class ReaderClass >
void initialize(Reader<ReaderClass> &TheReader){
// std::cout << GridLogMessage << "Reading HMC\n";
read(TheReader, "HMC", *this);
}
void print_parameters() const {
// std::cout << GridLogMessage << "[HMC parameters] Trajectories : " << Trajectories << "\n";
// std::cout << GridLogMessage << "[HMC parameters] Start trajectory : " << StartTrajectory << "\n";
// std::cout << GridLogMessage << "[HMC parameters] Metropolis test (on/off): " << std::boolalpha << MetropolisTest << "\n";
// std::cout << GridLogMessage << "[HMC parameters] Thermalization trajs : " << NoMetropolisUntil << "\n";
// std::cout << GridLogMessage << "[HMC parameters] Starting type : " << StartingType << "\n";
// MD.print_parameters();
}
};
}
int main(int argc, char** argv) {
Grid_init(&argc, &argv);
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(
GridDefaultLatt(), GridDefaultSimd(Nd, vComplex::Nsimd()),
GridDefaultMpi());
GridRedBlackCartesian* UrbGrid =
SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian* FGrid = UGrid;
GridRedBlackCartesian* FrbGrid = UrbGrid;
// printf("UGrid=%p UrbGrid=%p FGrid=%p FrbGrid=%p\n", UGrid, UrbGrid, FGrid, FrbGrid);
std::vector<int> seeds4({1, 2, 3, 4});
std::vector<int> seeds5({5, 6, 7, 8});
GridParallelRNG RNG5(FGrid);
RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid);
RNG4.SeedFixedIntegers(seeds4);
GridParallelRNG RNG5rb(FrbGrid);
RNG5.SeedFixedIntegers(seeds5);
LatticeGaugeField Umu(UGrid);
// SU<Nc>::HotConfiguration(RNG4, Umu);
FieldMetaData header;
std::string file("./config");
int precision32 = 0;
int tworow = 0;
// NerscIO::writeConfiguration(Umu,file,tworow,precision32);
NerscIO::readConfiguration(Umu,header,file);
/*
std::vector<LatticeColourMatrix> U(4, UGrid);
for (int mu = 0; mu < Nd; mu++) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
}
*/
int Nstop = 5;
int Nk = 10;
int Np = 90;
int Nm = Nk + Np;
int MaxIt = 10000;
RealD resid = 1.0e-5;
RealD mass = -1.0;
LanczosParameters LanParams;
#if 1
{
XmlReader HMCrd("LanParams.xml");
read(HMCrd,"LanczosParameters",LanParams);
}
#else
{
LanParams.mass = mass;
}
#endif
std::cout << GridLogMessage<< LanParams <<std::endl;
{
XmlWriter HMCwr("LanParams.xml.out");
write(HMCwr,"LanczosParameters",LanParams);
}
mass=LanParams.mass;
resid=LanParams.resid;
while ( mass > - 5.0){
FermionOp WilsonOperator(Umu,*FGrid,*FrbGrid,2.+mass);
InvG5LinearOperator<FermionOp,LatticeFermion> HermOp(WilsonOperator,-2.); /// <-----
//SchurDiagTwoOperator<FermionOp,FermionField> HermOp(WilsonOperator);
// Gamma5HermitianLinearOperator <FermionOp,LatticeFermion> HermOp2(WilsonOperator); /// <-----
std::vector<double> Coeffs{0, 0, 1.};
Polynomial<FermionField> PolyX(Coeffs);
Chebyshev<FermionField> Cheby(LanParams.ChebyLow,LanParams.ChebyHigh,LanParams.ChebyOrder);
FunctionHermOp<FermionField> OpCheby(Cheby,HermOp);
// InvHermOp<FermionField> Op(WilsonOperator,HermOp);
PlainHermOp<FermionField> Op (HermOp);
// PlainHermOp<FermionField> Op2 (HermOp2);
ImplicitlyRestartedLanczos<FermionField> IRL(OpCheby, Op, Nstop, Nk, Nm, resid, MaxIt);
std::vector<RealD> eval(Nm);
FermionField src(FGrid);
gaussian(RNG5, src);
std::vector<FermionField> evec(Nm, FGrid);
for (int i = 0; i < 1; i++) {
std::cout << i << " / " << Nm << " grid pointer " << evec[i].Grid()
<< std::endl;
};
int Nconv;
IRL.calc(eval, evec, src, Nconv);
std::cout << mass <<" : " << eval << std::endl;
Gamma g5(Gamma::Algebra::Gamma5) ;
ComplexD dot;
FermionField tmp(FGrid);
for (int i = 0; i < Nstop ; i++) {
tmp = g5*evec[i];
dot = innerProduct(tmp,evec[i]);
std::cout << mass << " : " << eval[i] << " " << real(dot) << " " << imag(dot) << std::endl ;
}
src = evec[0]+evec[1]+evec[2];
mass += -0.1;
}
Grid_finalize();
}

View File

@ -0,0 +1,211 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_dwf_lanczos.cc
Copyright (C) 2015
Author: Chulwoo Jung <chulwoo@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
;
typedef WilsonFermionD FermionOp;
typedef typename WilsonFermionD::FermionField FermionField;
RealD AllZero(RealD x) { return 0.; }
namespace Grid {
struct LanczosParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParameters,
RealD, mass ,
RealD, ChebyLow,
RealD, ChebyHigh,
Integer, ChebyOrder)
// Integer, StartTrajectory,
// Integer, Trajectories, /* @brief Number of sweeps in this run */
// bool, MetropolisTest,
// Integer, NoMetropolisUntil,
// std::string, StartingType,
// Integer, SW,
// RealD, Kappa,
// IntegratorParameters, MD)
LanczosParameters() {
////////////////////////////// Default values
mass = 0;
// MetropolisTest = true;
// NoMetropolisUntil = 10;
// StartTrajectory = 0;
// SW = 2;
// Trajectories = 10;
// StartingType = "HotStart";
/////////////////////////////////
}
template <class ReaderClass >
LanczosParameters(Reader<ReaderClass> & TheReader){
initialize(TheReader);
}
template < class ReaderClass >
void initialize(Reader<ReaderClass> &TheReader){
// std::cout << GridLogMessage << "Reading HMC\n";
read(TheReader, "HMC", *this);
}
void print_parameters() const {
// std::cout << GridLogMessage << "[HMC parameters] Trajectories : " << Trajectories << "\n";
// std::cout << GridLogMessage << "[HMC parameters] Start trajectory : " << StartTrajectory << "\n";
// std::cout << GridLogMessage << "[HMC parameters] Metropolis test (on/off): " << std::boolalpha << MetropolisTest << "\n";
// std::cout << GridLogMessage << "[HMC parameters] Thermalization trajs : " << NoMetropolisUntil << "\n";
// std::cout << GridLogMessage << "[HMC parameters] Starting type : " << StartingType << "\n";
// MD.print_parameters();
}
};
}
int main(int argc, char** argv) {
Grid_init(&argc, &argv);
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(
GridDefaultLatt(), GridDefaultSimd(Nd, vComplex::Nsimd()),
GridDefaultMpi());
GridRedBlackCartesian* UrbGrid =
SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian* FGrid = UGrid;
GridRedBlackCartesian* FrbGrid = UrbGrid;
// printf("UGrid=%p UrbGrid=%p FGrid=%p FrbGrid=%p\n", UGrid, UrbGrid, FGrid, FrbGrid);
std::vector<int> seeds4({1, 2, 3, 4});
std::vector<int> seeds5({5, 6, 7, 8});
GridParallelRNG RNG5(FGrid);
RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid);
RNG4.SeedFixedIntegers(seeds4);
GridParallelRNG RNG5rb(FrbGrid);
RNG5.SeedFixedIntegers(seeds5);
LatticeGaugeField Umu(UGrid);
// SU<Nc>::HotConfiguration(RNG4, Umu);
FieldMetaData header;
std::string file("./config");
int precision32 = 0;
int tworow = 0;
// NerscIO::writeConfiguration(Umu,file,tworow,precision32);
NerscIO::readConfiguration(Umu,header,file);
/*
std::vector<LatticeColourMatrix> U(4, UGrid);
for (int mu = 0; mu < Nd; mu++) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
}
*/
int Nstop = 10;
int Nk = 20;
int Np = 80;
int Nm = Nk + Np;
int MaxIt = 10000;
RealD resid = 1.0e-5;
RealD mass = -1.0;
LanczosParameters LanParams;
#if 1
{
XmlReader HMCrd("LanParams.xml");
read(HMCrd,"LanczosParameters",LanParams);
}
#else
{
LanParams.mass = mass;
}
#endif
std::cout << GridLogMessage<< LanParams <<std::endl;
{
XmlWriter HMCwr("LanParams.xml.out");
write(HMCwr,"LanczosParameters",LanParams);
}
mass=LanParams.mass;
while ( mass > - 5.0){
FermionOp WilsonOperator(Umu,*FGrid,*FrbGrid,mass);
MdagMLinearOperator<FermionOp,FermionField> HermOp(WilsonOperator); /// <-----
//SchurDiagTwoOperator<FermionOp,FermionField> HermOp(WilsonOperator);
Gamma5HermitianLinearOperator <FermionOp,LatticeFermion> HermOp2(WilsonOperator); /// <-----
std::vector<double> Coeffs{0, 1.};
Polynomial<FermionField> PolyX(Coeffs);
// Chebyshev<FermionField> Cheby(0.5, 60., 31);
// RealD, ChebyLow,
// RealD, ChebyHigh,
// Integer, ChebyOrder)
Chebyshev<FermionField> Cheby(LanParams.ChebyLow,LanParams.ChebyHigh,LanParams.ChebyOrder);
FunctionHermOp<FermionField> OpCheby(Cheby,HermOp);
PlainHermOp<FermionField> Op (HermOp);
PlainHermOp<FermionField> Op2 (HermOp2);
ImplicitlyRestartedLanczos<FermionField> IRL(OpCheby, Op2, Nstop, Nk, Nm, resid, MaxIt);
std::vector<RealD> eval(Nm);
FermionField src(FGrid);
gaussian(RNG5, src);
std::vector<FermionField> evec(Nm, FGrid);
for (int i = 0; i < 1; i++) {
std::cout << i << " / " << Nm << " grid pointer " << evec[i].Grid()
<< std::endl;
};
int Nconv;
IRL.calc(eval, evec, src, Nconv);
std::cout << mass <<" : " << eval << std::endl;
Gamma g5(Gamma::Algebra::Gamma5) ;
ComplexD dot;
FermionField tmp(FGrid);
for (int i = 0; i < Nstop ; i++) {
tmp = g5*evec[i];
dot = innerProduct(tmp,evec[i]);
std::cout << mass << " : " << eval[i] << " " << real(dot) << " " << imag(dot) << std::endl ;
}
src = evec[0]+evec[1]+evec[2];
mass += -0.1;
}
Grid_finalize();
}