mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-13 04:37:05 +01:00
Compare commits
84 Commits
9a1ad6a5eb
...
feature/gp
Author | SHA1 | Date | |
---|---|---|---|
4fefae1745 | |||
758e2edcad | |||
1538b15f3b | |||
deac621c2c | |||
ba974960e6 | |||
6755dc57f8 | |||
aa620ca52c | |||
2c46c942cc | |||
adeba8059a | |||
c4ac528126 | |||
551b93ba8e | |||
ddf7540510 | |||
de68d12c3d | |||
6d26a2a1ad | |||
a1211cdcce | |||
e78acf77ff | |||
f7e9621492 | |||
f14be15f8b | |||
6a3aaa52ef | |||
9ba47b4696 | |||
e85af80c39 | |||
0b91e90dd4 | |||
d184b8c921 | |||
c92e390b08 | |||
5b36a8af54 | |||
75a1f85162 | |||
ac4f2d9798 | |||
c3b99de33f | |||
e1a02bb80a | |||
86f08c6b9a | |||
9f0271039f | |||
24df770f74 | |||
45b6c7effc | |||
1c70d8c4d9 | |||
f0e9a5299f | |||
f1b8ba45e7 | |||
fe998ab578 | |||
c2ee2b5fd1 | |||
3b734ee397 | |||
8637a9512a | |||
7f6e2ee03e | |||
7b02acb2bd | |||
86948c6ea0 | |||
53d226924a | |||
80176b1b39 | |||
29ddafd0fc | |||
0f08364e4f | |||
a198d59381 | |||
3a4f5f2324 | |||
824d84473f | |||
38964a4076 | |||
0d9aa87228 | |||
0e959d9b94 | |||
752f70cd48 | |||
e0e42873c1 | |||
0ff3bf6dc5 | |||
351eab02ae | |||
feee5ccde2 | |||
e0f6a146d8 | |||
daa095c519 | |||
c2676853ca | |||
6a824033f8 | |||
cee6a37639 | |||
6cc3ad110c | |||
e6c6f82c52 | |||
d10d0c4e7f | |||
9c106d625a | |||
6795bbca31 | |||
d161c2dc35 | |||
7a06826cf1 | |||
c3712b8e06 | |||
901ee77b84 | |||
1b84f59273 | |||
1fb41a4300 | |||
287bac946f | |||
80c14be65e | |||
d7a2a4852d | |||
d185f2eaa7 | |||
813d4cd900 | |||
75c6c6b173 | |||
220ad5e3ee | |||
ba5dc670a5 | |||
a0ca362690 | |||
249b6e61ec |
@ -34,6 +34,9 @@ directory
|
||||
|
||||
#if defined __GNUC__ && __GNUC__>=6
|
||||
#pragma GCC diagnostic ignored "-Wignored-attributes"
|
||||
#endif
|
||||
#if defined __GNUC__
|
||||
#pragma GCC diagnostic ignored "-Wpsabi"
|
||||
#endif
|
||||
|
||||
//disables and intel compiler specific warning (in json.hpp)
|
||||
|
@ -36,6 +36,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/GridCore.h>
|
||||
#include <Grid/qcd/QCD.h>
|
||||
#include <Grid/qcd/spin/Spin.h>
|
||||
#include <Grid/qcd/gparity/Gparity.h>
|
||||
#include <Grid/qcd/utils/Utils.h>
|
||||
#include <Grid/qcd/representations/Representations.h>
|
||||
NAMESPACE_CHECK(GridQCDCore);
|
||||
|
@ -54,6 +54,7 @@ NAMESPACE_CHECK(BiCGSTAB);
|
||||
#include <Grid/algorithms/iterative/SchurRedBlack.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h>
|
||||
#include <Grid/algorithms/iterative/BiCGSTABMixedPrec.h>
|
||||
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>
|
||||
|
@ -292,6 +292,7 @@ public:
|
||||
template<class Field>
|
||||
class ChebyshevLanczos : public Chebyshev<Field> {
|
||||
private:
|
||||
|
||||
std::vector<RealD> Coeffs;
|
||||
int order;
|
||||
RealD alpha;
|
||||
|
@ -49,6 +49,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
Integer TotalInnerIterations; //Number of inner CG iterations
|
||||
Integer TotalOuterIterations; //Number of restarts
|
||||
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
|
||||
RealD TrueResidual;
|
||||
|
||||
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
|
||||
LinearFunction<FieldF> *guesser;
|
||||
@ -68,6 +69,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
}
|
||||
|
||||
void operator() (const FieldD &src_d_in, FieldD &sol_d){
|
||||
std::cout << GridLogMessage << "MixedPrecisionConjugateGradient: Starting mixed precision CG with outer tolerance " << Tolerance << " and inner tolerance " << InnerTolerance << std::endl;
|
||||
TotalInnerIterations = 0;
|
||||
|
||||
GridStopWatch TotalTimer;
|
||||
@ -80,6 +82,11 @@ NAMESPACE_BEGIN(Grid);
|
||||
RealD stop = src_norm * Tolerance*Tolerance;
|
||||
|
||||
GridBase* DoublePrecGrid = src_d_in.Grid();
|
||||
|
||||
//Generate precision change workspaces
|
||||
precisionChangeWorkspace wk_dp_from_sp(DoublePrecGrid, SinglePrecGrid);
|
||||
precisionChangeWorkspace wk_sp_from_dp(SinglePrecGrid, DoublePrecGrid);
|
||||
|
||||
FieldD tmp_d(DoublePrecGrid);
|
||||
tmp_d.Checkerboard() = cb;
|
||||
|
||||
@ -97,6 +104,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
FieldF sol_f(SinglePrecGrid);
|
||||
sol_f.Checkerboard() = cb;
|
||||
|
||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Starting initial inner CG with tolerance " << inner_tol << std::endl;
|
||||
ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
|
||||
CG_f.ErrorOnNoConverge = false;
|
||||
|
||||
@ -120,7 +128,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
while(norm * inner_tol * inner_tol < stop) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ??
|
||||
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(src_f, src_d);
|
||||
precisionChange(src_f, src_d, wk_sp_from_dp);
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
sol_f = Zero();
|
||||
@ -130,6 +138,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
(*guesser)(src_f, sol_f);
|
||||
|
||||
//Inner CG
|
||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " << outer_iter << " starting inner CG with tolerance " << inner_tol << std::endl;
|
||||
CG_f.Tolerance = inner_tol;
|
||||
InnerCGtimer.Start();
|
||||
CG_f(Linop_f, src_f, sol_f);
|
||||
@ -138,7 +147,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
|
||||
//Convert sol back to double and add to double prec solution
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(tmp_d, sol_f);
|
||||
precisionChange(tmp_d, sol_f, wk_dp_from_sp);
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
axpy(sol_d, 1.0, tmp_d, sol_d);
|
||||
@ -150,6 +159,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations);
|
||||
CG_d(Linop_d, src_d_in, sol_d);
|
||||
TotalFinalStepIterations = CG_d.IterationsToComplete;
|
||||
TrueResidual = CG_d.TrueResidual;
|
||||
|
||||
TotalTimer.Stop();
|
||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;
|
||||
|
@ -52,7 +52,7 @@ public:
|
||||
MultiShiftFunction shifts;
|
||||
std::vector<RealD> TrueResidualShift;
|
||||
|
||||
ConjugateGradientMultiShift(Integer maxit,MultiShiftFunction &_shifts) :
|
||||
ConjugateGradientMultiShift(Integer maxit, const MultiShiftFunction &_shifts) :
|
||||
MaxIterations(maxit),
|
||||
shifts(_shifts)
|
||||
{
|
||||
@ -182,6 +182,9 @@ public:
|
||||
for(int s=0;s<nshift;s++) {
|
||||
axpby(psi[s],0.,-bs[s]*alpha[s],src,src);
|
||||
}
|
||||
|
||||
std::cout << GridLogIterative << "ConjugateGradientMultiShift: initial rn (|src|^2) =" << rn << " qq (|MdagM src|^2) =" << qq << " d ( dot(src, [MdagM + m_0]src) ) =" << d << " c=" << c << std::endl;
|
||||
|
||||
|
||||
///////////////////////////////////////
|
||||
// Timers
|
||||
|
411
Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h
Normal file
411
Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h
Normal file
@ -0,0 +1,411 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
|
||||
#define GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
//CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision.
|
||||
//The residual is stored in single precision, but the search directions and solution are stored in double precision.
|
||||
//Every update_freq iterations the residual is corrected in double precision.
|
||||
|
||||
//For safety the a final regular CG is applied to clean up if necessary
|
||||
|
||||
//Linop to add shift to input linop, used in cleanup CG
|
||||
namespace ConjugateGradientMultiShiftMixedPrecSupport{
|
||||
template<typename Field>
|
||||
class ShiftedLinop: public LinearOperatorBase<Field>{
|
||||
public:
|
||||
LinearOperatorBase<Field> &linop_base;
|
||||
RealD shift;
|
||||
|
||||
ShiftedLinop(LinearOperatorBase<Field> &_linop_base, RealD _shift): linop_base(_linop_base), shift(_shift){}
|
||||
|
||||
void OpDiag (const Field &in, Field &out){ assert(0); }
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
|
||||
|
||||
void Op (const Field &in, Field &out){ assert(0); }
|
||||
void AdjOp (const Field &in, Field &out){ assert(0); }
|
||||
|
||||
void HermOp(const Field &in, Field &out){
|
||||
linop_base.HermOp(in, out);
|
||||
axpy(out, shift, in, out);
|
||||
}
|
||||
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
HermOp(in,out);
|
||||
ComplexD dot = innerProduct(in,out);
|
||||
n1=real(dot);
|
||||
n2=norm2(out);
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
template<class FieldD, class FieldF,
|
||||
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
|
||||
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
|
||||
class ConjugateGradientMultiShiftMixedPrec : public OperatorMultiFunction<FieldD>,
|
||||
public OperatorFunction<FieldD>
|
||||
{
|
||||
public:
|
||||
|
||||
using OperatorFunction<FieldD>::operator();
|
||||
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
||||
std::vector<int> IterationsToCompleteShift; // Iterations for this shift
|
||||
int verbose;
|
||||
MultiShiftFunction shifts;
|
||||
std::vector<RealD> TrueResidualShift;
|
||||
|
||||
int ReliableUpdateFreq; //number of iterations between reliable updates
|
||||
|
||||
GridBase* SinglePrecGrid; //Grid for single-precision fields
|
||||
LinearOperatorBase<FieldF> &Linop_f; //single precision
|
||||
|
||||
ConjugateGradientMultiShiftMixedPrec(Integer maxit, const MultiShiftFunction &_shifts,
|
||||
GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f,
|
||||
int _ReliableUpdateFreq
|
||||
) :
|
||||
MaxIterations(maxit), shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq)
|
||||
{
|
||||
verbose=1;
|
||||
IterationsToCompleteShift.resize(_shifts.order);
|
||||
TrueResidualShift.resize(_shifts.order);
|
||||
}
|
||||
|
||||
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi)
|
||||
{
|
||||
GridBase *grid = src.Grid();
|
||||
int nshift = shifts.order;
|
||||
std::vector<FieldD> results(nshift,grid);
|
||||
(*this)(Linop,src,results,psi);
|
||||
}
|
||||
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi)
|
||||
{
|
||||
int nshift = shifts.order;
|
||||
|
||||
(*this)(Linop,src,results);
|
||||
|
||||
psi = shifts.norm*src;
|
||||
for(int i=0;i<nshift;i++){
|
||||
psi = psi + shifts.residues[i]*results[i];
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d)
|
||||
{
|
||||
GridBase *DoublePrecGrid = src_d.Grid();
|
||||
precisionChangeWorkspace wk_f_from_d(SinglePrecGrid, DoublePrecGrid);
|
||||
precisionChangeWorkspace wk_d_from_f(DoublePrecGrid, SinglePrecGrid);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Convenience references to the info stored in "MultiShiftFunction"
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
int nshift = shifts.order;
|
||||
|
||||
std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
|
||||
std::vector<RealD> &mresidual(shifts.tolerances);
|
||||
std::vector<RealD> alpha(nshift,1.0);
|
||||
|
||||
//Double precision search directions
|
||||
FieldD p_d(DoublePrecGrid);
|
||||
std::vector<FieldD> ps_d(nshift, DoublePrecGrid);// Search directions (double precision)
|
||||
|
||||
FieldD tmp_d(DoublePrecGrid);
|
||||
FieldD r_d(DoublePrecGrid);
|
||||
FieldD mmp_d(DoublePrecGrid);
|
||||
|
||||
assert(psi_d.size()==nshift);
|
||||
assert(mass.size()==nshift);
|
||||
assert(mresidual.size()==nshift);
|
||||
|
||||
// dynamic sized arrays on stack; 2d is a pain with vector
|
||||
RealD bs[nshift];
|
||||
RealD rsq[nshift];
|
||||
RealD z[nshift][2];
|
||||
int converged[nshift];
|
||||
|
||||
const int primary =0;
|
||||
|
||||
//Primary shift fields CG iteration
|
||||
RealD a,b,c,d;
|
||||
RealD cp,bp,qq; //prev
|
||||
|
||||
// Matrix mult fields
|
||||
FieldF r_f(SinglePrecGrid);
|
||||
FieldF p_f(SinglePrecGrid);
|
||||
FieldF tmp_f(SinglePrecGrid);
|
||||
FieldF mmp_f(SinglePrecGrid);
|
||||
FieldF src_f(SinglePrecGrid);
|
||||
precisionChange(src_f, src_d, wk_f_from_d);
|
||||
|
||||
// Check lightest mass
|
||||
for(int s=0;s<nshift;s++){
|
||||
assert( mass[s]>= mass[primary] );
|
||||
converged[s]=0;
|
||||
}
|
||||
|
||||
// Wire guess to zero
|
||||
// Residuals "r" are src
|
||||
// First search direction "p" is also src
|
||||
cp = norm2(src_d);
|
||||
|
||||
// Handle trivial case of zero src.
|
||||
if( cp == 0. ){
|
||||
for(int s=0;s<nshift;s++){
|
||||
psi_d[s] = Zero();
|
||||
IterationsToCompleteShift[s] = 1;
|
||||
TrueResidualShift[s] = 0.;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
for(int s=0;s<nshift;s++){
|
||||
rsq[s] = cp * mresidual[s] * mresidual[s];
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift "<< s <<" target resid "<<rsq[s]<<std::endl;
|
||||
ps_d[s] = src_d;
|
||||
}
|
||||
// r and p for primary
|
||||
r_f=src_f; //residual maintained in single
|
||||
p_f=src_f;
|
||||
p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys
|
||||
|
||||
//MdagM+m[0]
|
||||
Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
|
||||
axpy(mmp_f,mass[0],p_f,mmp_f);
|
||||
RealD rn = norm2(p_f);
|
||||
d += rn*mass[0];
|
||||
|
||||
b = -cp /d;
|
||||
|
||||
// Set up the various shift variables
|
||||
int iz=0;
|
||||
z[0][1-iz] = 1.0;
|
||||
z[0][iz] = 1.0;
|
||||
bs[0] = b;
|
||||
for(int s=1;s<nshift;s++){
|
||||
z[s][1-iz] = 1.0;
|
||||
z[s][iz] = 1.0/( 1.0 - b*(mass[s]-mass[0]));
|
||||
bs[s] = b*z[s][iz];
|
||||
}
|
||||
|
||||
// r += b[0] A.p[0]
|
||||
// c= norm(r)
|
||||
c=axpy_norm(r_f,b,mmp_f,r_f);
|
||||
|
||||
for(int s=0;s<nshift;s++) {
|
||||
axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d);
|
||||
}
|
||||
|
||||
///////////////////////////////////////
|
||||
// Timers
|
||||
///////////////////////////////////////
|
||||
GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer;
|
||||
|
||||
SolverTimer.Start();
|
||||
|
||||
// Iteration loop
|
||||
int k;
|
||||
|
||||
for (k=1;k<=MaxIterations;k++){
|
||||
a = c /cp;
|
||||
|
||||
//Update double precision search direction by residual
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(r_d, r_f, wk_d_from_f);
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
AXPYTimer.Start();
|
||||
axpy(p_d,a,p_d,r_d);
|
||||
|
||||
for(int s=0;s<nshift;s++){
|
||||
if ( ! converged[s] ) {
|
||||
if (s==0){
|
||||
axpy(ps_d[s],a,ps_d[s],r_d);
|
||||
} else{
|
||||
RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
|
||||
axpby(ps_d[s],z[s][iz],as,r_d,ps_d[s]);
|
||||
}
|
||||
}
|
||||
}
|
||||
AXPYTimer.Stop();
|
||||
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(p_f, p_d, wk_f_from_d); //get back single prec search direction for linop
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
cp=c;
|
||||
MatrixTimer.Start();
|
||||
Linop_f.HermOp(p_f,mmp_f);
|
||||
d=real(innerProduct(p_f,mmp_f));
|
||||
MatrixTimer.Stop();
|
||||
|
||||
AXPYTimer.Start();
|
||||
axpy(mmp_f,mass[0],p_f,mmp_f);
|
||||
AXPYTimer.Stop();
|
||||
RealD rn = norm2(p_f);
|
||||
d += rn*mass[0];
|
||||
|
||||
bp=b;
|
||||
b=-cp/d;
|
||||
|
||||
// Toggle the recurrence history
|
||||
bs[0] = b;
|
||||
iz = 1-iz;
|
||||
ShiftTimer.Start();
|
||||
for(int s=1;s<nshift;s++){
|
||||
if((!converged[s])){
|
||||
RealD z0 = z[s][1-iz];
|
||||
RealD z1 = z[s][iz];
|
||||
z[s][iz] = z0*z1*bp
|
||||
/ (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b));
|
||||
bs[s] = b*z[s][iz]/z0; // NB sign rel to Mike
|
||||
}
|
||||
}
|
||||
ShiftTimer.Stop();
|
||||
|
||||
//Update double precision solutions
|
||||
AXPYTimer.Start();
|
||||
for(int s=0;s<nshift;s++){
|
||||
int ss = s;
|
||||
if( (!converged[s]) ) {
|
||||
axpy(psi_d[ss],-bs[s]*alpha[s],ps_d[s],psi_d[ss]);
|
||||
}
|
||||
}
|
||||
|
||||
//Perform reliable update if necessary; otherwise update residual from single-prec mmp
|
||||
RealD c_f = axpy_norm(r_f,b,mmp_f,r_f);
|
||||
AXPYTimer.Stop();
|
||||
|
||||
c = c_f;
|
||||
|
||||
if(k % ReliableUpdateFreq == 0){
|
||||
//Replace r with true residual
|
||||
MatrixTimer.Start();
|
||||
Linop_d.HermOp(psi_d[0],mmp_d);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
AXPYTimer.Start();
|
||||
axpy(mmp_d,mass[0],psi_d[0],mmp_d);
|
||||
|
||||
RealD c_d = axpy_norm(r_d, -1.0, mmp_d, src_d);
|
||||
AXPYTimer.Stop();
|
||||
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<< ", replaced |r|^2 = "<<c_f <<" with |r|^2 = "<<c_d<<std::endl;
|
||||
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(r_f, r_d, wk_f_from_d);
|
||||
PrecChangeTimer.Stop();
|
||||
c = c_d;
|
||||
}
|
||||
|
||||
// Convergence checks
|
||||
int all_converged = 1;
|
||||
for(int s=0;s<nshift;s++){
|
||||
|
||||
if ( (!converged[s]) ){
|
||||
IterationsToCompleteShift[s] = k;
|
||||
|
||||
RealD css = c * z[s][iz]* z[s][iz];
|
||||
|
||||
if(css<rsq[s]){
|
||||
if ( ! converged[s] )
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
|
||||
converged[s]=1;
|
||||
} else {
|
||||
all_converged=0;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
if ( all_converged ){
|
||||
|
||||
SolverTimer.Stop();
|
||||
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: All shifts have converged iteration "<<k<<std::endl;
|
||||
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Checking solutions"<<std::endl;
|
||||
|
||||
// Check answers
|
||||
for(int s=0; s < nshift; s++) {
|
||||
Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq);
|
||||
axpy(tmp_d,mass[s],psi_d[s],mmp_d);
|
||||
axpy(r_d,-alpha[s],src_d,tmp_d);
|
||||
RealD rn = norm2(r_d);
|
||||
RealD cn = norm2(src_d);
|
||||
TrueResidualShift[s] = std::sqrt(rn/cn);
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl;
|
||||
|
||||
//If we have not reached the desired tolerance, do a (mixed precision) CG cleanup
|
||||
if(rn >= rsq[s]){
|
||||
CleanupTimer.Start();
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: performing cleanup step for shift " << s << std::endl;
|
||||
|
||||
//Setup linear operators for final cleanup
|
||||
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]);
|
||||
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]);
|
||||
|
||||
MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d);
|
||||
cg(src_d, psi_d[s]);
|
||||
|
||||
TrueResidualShift[s] = cg.TrueResidual;
|
||||
CleanupTimer.Stop();
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrec: Time Breakdown for body"<<std::endl;
|
||||
std::cout << GridLogMessage << "\tSolver " << SolverTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\t\tAXPY " << AXPYTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\t\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\t\tShift " << ShiftTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl;
|
||||
|
||||
IterationsToComplete = k;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
// ugly hack
|
||||
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
|
||||
// assert(0);
|
||||
}
|
||||
|
||||
};
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
@ -44,6 +44,7 @@ public:
|
||||
int, MinRes); // Must restart
|
||||
};
|
||||
|
||||
//This class is the input parameter class for some testing programs
|
||||
struct LocalCoherenceLanczosParams : Serializable {
|
||||
public:
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams,
|
||||
@ -155,6 +156,7 @@ public:
|
||||
_coarse_relax_tol(coarse_relax_tol)
|
||||
{ };
|
||||
|
||||
//evalMaxApprox: approximation of largest eval of the fine Chebyshev operator (suitably wrapped by block projection)
|
||||
int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
|
||||
{
|
||||
CoarseField v(B);
|
||||
@ -181,8 +183,16 @@ public:
|
||||
if( (vv<eresid*eresid) ) conv = 1;
|
||||
return conv;
|
||||
}
|
||||
int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
|
||||
|
||||
//This function is called at the end of the coarse grid Lanczos. It promotes the coarse eigenvector 'B' to the fine grid,
|
||||
//applies a smoother to the result then computes the computes the *fine grid* eigenvalue (output as 'eval').
|
||||
|
||||
//evalMaxApprox should be the approximation of the largest eval of the fine Hermop. However when this function is called by IRL it actually passes the largest eval of the *Chebyshev* operator (as this is the max approx used for the TestConvergence above)
|
||||
//As the largest eval of the Chebyshev is typically several orders of magnitude larger this makes the convergence test pass even when it should not.
|
||||
//We therefore ignore evalMaxApprox here and use a value of 1.0 (note this value is already used by TestCoarse)
|
||||
int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
|
||||
{
|
||||
evalMaxApprox = 1.0; //cf above
|
||||
GridBase *FineGrid = _subspace[0].Grid();
|
||||
int checkerboard = _subspace[0].Checkerboard();
|
||||
FineField fB(FineGrid);fB.Checkerboard() =checkerboard;
|
||||
@ -201,13 +211,13 @@ public:
|
||||
eval = vnum/vden;
|
||||
fv -= eval*fB;
|
||||
RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0);
|
||||
|
||||
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
|
||||
|
||||
std::cout.precision(13);
|
||||
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
|
||||
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
|
||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
|
||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv << " target " << eresid*eresid
|
||||
<<std::endl;
|
||||
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
|
||||
if( (vv<eresid*eresid) ) return 1;
|
||||
return 0;
|
||||
}
|
||||
@ -285,6 +295,10 @@ public:
|
||||
evals_coarse.resize(0);
|
||||
};
|
||||
|
||||
//The block inner product is the inner product on the fine grid locally summed over the blocks
|
||||
//to give a Lattice<Scalar> on the coarse grid. This function orthnormalizes the fine-grid subspace
|
||||
//vectors under the block inner product. This step must be performed after computing the fine grid
|
||||
//eigenvectors and before computing the coarse grid eigenvectors.
|
||||
void Orthogonalise(void ) {
|
||||
CoarseScalar InnerProd(_CoarseGrid);
|
||||
std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
|
||||
@ -328,6 +342,8 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
//While this method serves to check the coarse eigenvectors, it also recomputes the eigenvalues from the smoothed reconstructed eigenvectors
|
||||
//hence the smoother can be tuned after running the coarse Lanczos by using a different smoother here
|
||||
void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax)
|
||||
{
|
||||
assert(evals_fine.size() == nbasis);
|
||||
@ -376,25 +392,31 @@ public:
|
||||
evals_fine.resize(nbasis);
|
||||
subspace.resize(nbasis,_FineGrid);
|
||||
}
|
||||
|
||||
|
||||
//cheby_op: Parameters of the fine grid Chebyshev polynomial used for the Lanczos acceleration
|
||||
//cheby_smooth: Parameters of a separate Chebyshev polynomial used after the Lanczos has completed to smooth out high frequency noise in the reconstructed fine grid eigenvectors prior to computing the eigenvalue
|
||||
//relax: Reconstructed eigenvectors (post smoothing) are naturally not as precise as true eigenvectors. This factor acts as a multiplier on the stopping condition when determining whether the results satisfy the user provided stopping condition
|
||||
void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax,
|
||||
int Nstop, int Nk, int Nm,RealD resid,
|
||||
RealD MaxIt, RealD betastp, int MinRes)
|
||||
{
|
||||
Chebyshev<FineField> Cheby(cheby_op);
|
||||
ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,subspace);
|
||||
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace);
|
||||
Chebyshev<FineField> Cheby(cheby_op); //Chebyshev of fine operator on fine grid
|
||||
ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,subspace); //Fine operator on coarse grid with intermediate fine grid conversion
|
||||
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace); //Chebyshev of fine operator on coarse grid with intermediate fine grid conversion
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
Chebyshev<FineField> ChebySmooth(cheby_smooth);
|
||||
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax);
|
||||
Chebyshev<FineField> ChebySmooth(cheby_smooth); //lower order Chebyshev of fine operator on fine grid used to smooth regenerated eigenvectors
|
||||
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax);
|
||||
|
||||
evals_coarse.resize(Nm);
|
||||
evec_coarse.resize(Nm,_CoarseGrid);
|
||||
|
||||
CoarseField src(_CoarseGrid); src=1.0;
|
||||
|
||||
//Note the "tester" here is also responsible for generating the fine grid eigenvalues which are output into the "evals_coarse" array
|
||||
ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
|
||||
int Nconv=0;
|
||||
IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
|
||||
@ -405,6 +427,14 @@ public:
|
||||
std::cout << i << " Coarse eval = " << evals_coarse[i] << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
//Get the fine eigenvector 'i' by reconstruction
|
||||
void getFineEvecEval(FineField &evec, RealD &eval, const int i) const{
|
||||
blockPromote(evec_coarse[i],evec,subspace);
|
||||
eval = evals_coarse[i];
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -29,6 +29,8 @@ template<class Field> class PowerMethod
|
||||
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
|
||||
RealD vden = norm2(src_n);
|
||||
RealD na = vnum/vden;
|
||||
|
||||
std::cout << GridLogIterative << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
|
||||
|
||||
if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) {
|
||||
evalMaxApprox = na;
|
||||
|
@ -46,3 +46,4 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/lattice/Lattice_unary.h>
|
||||
#include <Grid/lattice/Lattice_transfer.h>
|
||||
#include <Grid/lattice/Lattice_basis.h>
|
||||
#include <Grid/lattice/Lattice_crc.h>
|
||||
|
42
Grid/lattice/Lattice_crc.h
Normal file
42
Grid/lattice/Lattice_crc.h
Normal file
@ -0,0 +1,42 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/lattice/Lattice_crc.h
|
||||
|
||||
Copyright (C) 2021
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class vobj> uint32_t crc(Lattice<vobj> & buf)
|
||||
{
|
||||
autoView( buf_v , buf, CpuRead);
|
||||
return ::crc32(0L,(unsigned char *)&buf_v[0],(size_t)sizeof(vobj)*buf.oSites());
|
||||
}
|
||||
|
||||
#define CRC(U) std::cout << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -32,8 +32,9 @@
|
||||
#include <random>
|
||||
|
||||
#ifdef RNG_SITMO
|
||||
#include <Grid/sitmo_rng/sitmo_prng_engine.hpp>
|
||||
#include <Grid/random/sitmo_prng_engine.hpp>
|
||||
#endif
|
||||
#include <Grid/random/gaussian.h>
|
||||
|
||||
#if defined(RNG_SITMO)
|
||||
#define RNG_FAST_DISCARD
|
||||
@ -142,8 +143,8 @@ public:
|
||||
|
||||
std::vector<RngEngine> _generators;
|
||||
std::vector<std::uniform_real_distribution<RealD> > _uniform;
|
||||
std::vector<std::normal_distribution<RealD> > _gaussian;
|
||||
std::vector<std::discrete_distribution<int32_t> > _bernoulli;
|
||||
std::vector<Grid::gaussian_distribution<RealD> > _gaussian;
|
||||
// std::vector<std::discrete_distribution<int32_t> > _bernoulli;
|
||||
std::vector<std::uniform_int_distribution<uint32_t> > _uid;
|
||||
|
||||
///////////////////////
|
||||
@ -243,8 +244,8 @@ public:
|
||||
GridSerialRNG() : GridRNGbase() {
|
||||
_generators.resize(1);
|
||||
_uniform.resize(1,std::uniform_real_distribution<RealD>{0,1});
|
||||
_gaussian.resize(1,std::normal_distribution<RealD>(0.0,1.0) );
|
||||
_bernoulli.resize(1,std::discrete_distribution<int32_t>{1,1});
|
||||
_gaussian.resize(1,gaussian_distribution<RealD>(0.0,1.0) );
|
||||
// _bernoulli.resize(1,std::discrete_distribution<int32_t>{1,1});
|
||||
_uid.resize(1,std::uniform_int_distribution<uint32_t>() );
|
||||
}
|
||||
|
||||
@ -357,8 +358,8 @@ public:
|
||||
|
||||
_generators.resize(_vol);
|
||||
_uniform.resize(_vol,std::uniform_real_distribution<RealD>{0,1});
|
||||
_gaussian.resize(_vol,std::normal_distribution<RealD>(0.0,1.0) );
|
||||
_bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
|
||||
_gaussian.resize(_vol,gaussian_distribution<RealD>(0.0,1.0) );
|
||||
// _bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
|
||||
_uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
|
||||
}
|
||||
|
||||
@ -515,11 +516,11 @@ public:
|
||||
|
||||
template <class vobj> inline void random(GridParallelRNG &rng,Lattice<vobj> &l) { rng.fill(l,rng._uniform); }
|
||||
template <class vobj> inline void gaussian(GridParallelRNG &rng,Lattice<vobj> &l) { rng.fill(l,rng._gaussian); }
|
||||
template <class vobj> inline void bernoulli(GridParallelRNG &rng,Lattice<vobj> &l){ rng.fill(l,rng._bernoulli);}
|
||||
//template <class vobj> inline void bernoulli(GridParallelRNG &rng,Lattice<vobj> &l){ rng.fill(l,rng._bernoulli);}
|
||||
|
||||
template <class sobj> inline void random(GridSerialRNG &rng,sobj &l) { rng.fill(l,rng._uniform ); }
|
||||
template <class sobj> inline void gaussian(GridSerialRNG &rng,sobj &l) { rng.fill(l,rng._gaussian ); }
|
||||
template <class sobj> inline void bernoulli(GridSerialRNG &rng,sobj &l){ rng.fill(l,rng._bernoulli); }
|
||||
//template <class sobj> inline void bernoulli(GridSerialRNG &rng,sobj &l){ rng.fill(l,rng._bernoulli); }
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
||||
|
@ -855,7 +855,7 @@ void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int
|
||||
|
||||
|
||||
template<class vobj>
|
||||
void Replicate(Lattice<vobj> &coarse,Lattice<vobj> & fine)
|
||||
void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
|
||||
@ -1080,54 +1080,96 @@ vectorizeFromRevLexOrdArray( std::vector<sobj> &in, Lattice<vobj> &out)
|
||||
});
|
||||
}
|
||||
|
||||
//Convert a Lattice from one precision to another
|
||||
template<class VobjOut, class VobjIn>
|
||||
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
|
||||
{
|
||||
assert(out.Grid()->Nd() == in.Grid()->Nd());
|
||||
for(int d=0;d<out.Grid()->Nd();d++){
|
||||
assert(out.Grid()->FullDimensions()[d] == in.Grid()->FullDimensions()[d]);
|
||||
}
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
GridBase *in_grid=in.Grid();
|
||||
GridBase *out_grid = out.Grid();
|
||||
|
||||
typedef typename VobjOut::scalar_object SobjOut;
|
||||
typedef typename VobjIn::scalar_object SobjIn;
|
||||
|
||||
int ndim = out.Grid()->Nd();
|
||||
int out_nsimd = out_grid->Nsimd();
|
||||
|
||||
std::vector<Coordinate > out_icoor(out_nsimd);
|
||||
|
||||
for(int lane=0; lane < out_nsimd; lane++){
|
||||
out_icoor[lane].resize(ndim);
|
||||
out_grid->iCoorFromIindex(out_icoor[lane], lane);
|
||||
}
|
||||
|
||||
std::vector<SobjOut> in_slex_conv(in_grid->lSites());
|
||||
unvectorizeToLexOrdArray(in_slex_conv, in);
|
||||
|
||||
autoView( out_v , out, CpuWrite);
|
||||
thread_for(out_oidx,out_grid->oSites(),{
|
||||
Coordinate out_ocoor(ndim);
|
||||
out_grid->oCoorFromOindex(out_ocoor, out_oidx);
|
||||
|
||||
ExtractPointerArray<SobjOut> ptrs(out_nsimd);
|
||||
|
||||
Coordinate lcoor(out_grid->Nd());
|
||||
|
||||
for(int lane=0; lane < out_nsimd; lane++){
|
||||
for(int mu=0;mu<ndim;mu++)
|
||||
lcoor[mu] = out_ocoor[mu] + out_grid->_rdimensions[mu]*out_icoor[lane][mu];
|
||||
|
||||
int llex; Lexicographic::IndexFromCoor(lcoor, llex, out_grid->_ldimensions);
|
||||
ptrs[lane] = &in_slex_conv[llex];
|
||||
//The workspace for a precision change operation allowing for the reuse of the mapping to save time on subsequent calls
|
||||
class precisionChangeWorkspace{
|
||||
std::pair<Integer,Integer>* fmap_device; //device pointer
|
||||
public:
|
||||
precisionChangeWorkspace(GridBase *out_grid, GridBase *in_grid){
|
||||
//Build a map between the sites and lanes of the output field and the input field as we cannot use the Grids on the device
|
||||
assert(out_grid->Nd() == in_grid->Nd());
|
||||
for(int d=0;d<out_grid->Nd();d++){
|
||||
assert(out_grid->FullDimensions()[d] == in_grid->FullDimensions()[d]);
|
||||
}
|
||||
merge(out_v[out_oidx], ptrs, 0);
|
||||
});
|
||||
int Nsimd_out = out_grid->Nsimd();
|
||||
|
||||
std::vector<Coordinate> out_icorrs(out_grid->Nsimd()); //reuse these
|
||||
for(int lane=0; lane < out_grid->Nsimd(); lane++)
|
||||
out_grid->iCoorFromIindex(out_icorrs[lane], lane);
|
||||
|
||||
std::vector<std::pair<Integer,Integer> > fmap_host(out_grid->lSites()); //lsites = osites*Nsimd
|
||||
thread_for(out_oidx,out_grid->oSites(),{
|
||||
Coordinate out_ocorr;
|
||||
out_grid->oCoorFromOindex(out_ocorr, out_oidx);
|
||||
|
||||
Coordinate lcorr; //the local coordinate (common to both in and out as full coordinate)
|
||||
for(int out_lane=0; out_lane < Nsimd_out; out_lane++){
|
||||
out_grid->InOutCoorToLocalCoor(out_ocorr, out_icorrs[out_lane], lcorr);
|
||||
|
||||
//int in_oidx = in_grid->oIndex(lcorr), in_lane = in_grid->iIndex(lcorr);
|
||||
//Note oIndex and OcorrFromOindex (and same for iIndex) are not inverse for checkerboarded lattice, the former coordinates being defined on the full lattice and the latter on the reduced lattice
|
||||
//Until this is fixed we need to circumvent the problem locally. Here I will use the coordinates defined on the reduced lattice for simplicity
|
||||
int in_oidx = 0, in_lane = 0;
|
||||
for(int d=0;d<in_grid->_ndimension;d++){
|
||||
in_oidx += in_grid->_ostride[d] * ( lcorr[d] % in_grid->_rdimensions[d] );
|
||||
in_lane += in_grid->_istride[d] * ( lcorr[d] / in_grid->_rdimensions[d] );
|
||||
}
|
||||
fmap_host[out_lane + Nsimd_out*out_oidx] = std::pair<Integer,Integer>( in_oidx, in_lane );
|
||||
}
|
||||
});
|
||||
|
||||
//Copy the map to the device (if we had a way to tell if an accelerator is in use we could avoid this copy for CPU-only machines)
|
||||
size_t fmap_bytes = out_grid->lSites() * sizeof(std::pair<Integer,Integer>);
|
||||
fmap_device = (std::pair<Integer,Integer>*)acceleratorAllocDevice(fmap_bytes);
|
||||
acceleratorCopyToDevice(fmap_host.data(), fmap_device, fmap_bytes);
|
||||
}
|
||||
|
||||
//Prevent moving or copying
|
||||
precisionChangeWorkspace(const precisionChangeWorkspace &r) = delete;
|
||||
precisionChangeWorkspace(precisionChangeWorkspace &&r) = delete;
|
||||
precisionChangeWorkspace &operator=(const precisionChangeWorkspace &r) = delete;
|
||||
precisionChangeWorkspace &operator=(precisionChangeWorkspace &&r) = delete;
|
||||
|
||||
std::pair<Integer,Integer> const* getMap() const{ return fmap_device; }
|
||||
|
||||
~precisionChangeWorkspace(){
|
||||
acceleratorFreeDevice(fmap_device);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
//Convert a lattice of one precision to another. The input workspace contains the mapping data.
|
||||
template<class VobjOut, class VobjIn>
|
||||
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in, const precisionChangeWorkspace &workspace){
|
||||
static_assert( std::is_same<typename VobjOut::DoublePrecision, typename VobjIn::DoublePrecision>::value == 1, "copyLane: tensor types must be the same" ); //if tensor types are same the DoublePrecision type must be the same
|
||||
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
constexpr int Nsimd_out = VobjOut::Nsimd();
|
||||
|
||||
std::pair<Integer,Integer> const* fmap_device = workspace.getMap();
|
||||
|
||||
//Do the copy/precision change
|
||||
autoView( out_v , out, AcceleratorWrite);
|
||||
autoView( in_v , in, AcceleratorRead);
|
||||
|
||||
accelerator_for(out_oidx, out.Grid()->oSites(), 1,{
|
||||
std::pair<Integer,Integer> const* fmap_osite = fmap_device + out_oidx*Nsimd_out;
|
||||
for(int out_lane=0; out_lane < Nsimd_out; out_lane++){
|
||||
int in_oidx = fmap_osite[out_lane].first;
|
||||
int in_lane = fmap_osite[out_lane].second;
|
||||
copyLane(out_v[out_oidx], out_lane, in_v[in_oidx], in_lane);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
//Convert a Lattice from one precision to another
|
||||
//Generate the workspace in place; if multiple calls with the same mapping are performed, consider pregenerating the workspace and reusing
|
||||
template<class VobjOut, class VobjIn>
|
||||
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in){
|
||||
precisionChangeWorkspace workspace(out.Grid(), in.Grid());
|
||||
precisionChange(out, in, workspace);
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Communicate between grids
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
@ -69,6 +69,7 @@ GridLogger GridLogDebug (1, "Debug", GridLogColours, "PURPLE");
|
||||
GridLogger GridLogPerformance(1, "Performance", GridLogColours, "GREEN");
|
||||
GridLogger GridLogIterative (1, "Iterative", GridLogColours, "BLUE");
|
||||
GridLogger GridLogIntegrator (1, "Integrator", GridLogColours, "BLUE");
|
||||
GridLogger GridLogHMC (1, "HMC", GridLogColours, "BLUE");
|
||||
|
||||
void GridLogConfigure(std::vector<std::string> &logstreams) {
|
||||
GridLogError.Active(0);
|
||||
@ -79,6 +80,7 @@ void GridLogConfigure(std::vector<std::string> &logstreams) {
|
||||
GridLogPerformance.Active(0);
|
||||
GridLogIntegrator.Active(1);
|
||||
GridLogColours.Active(0);
|
||||
GridLogHMC.Active(1);
|
||||
|
||||
for (int i = 0; i < logstreams.size(); i++) {
|
||||
if (logstreams[i] == std::string("Error")) GridLogError.Active(1);
|
||||
@ -87,7 +89,8 @@ void GridLogConfigure(std::vector<std::string> &logstreams) {
|
||||
if (logstreams[i] == std::string("Iterative")) GridLogIterative.Active(1);
|
||||
if (logstreams[i] == std::string("Debug")) GridLogDebug.Active(1);
|
||||
if (logstreams[i] == std::string("Performance")) GridLogPerformance.Active(1);
|
||||
if (logstreams[i] == std::string("Integrator")) GridLogIntegrator.Active(1);
|
||||
if (logstreams[i] == std::string("NoIntegrator")) GridLogIntegrator.Active(0);
|
||||
if (logstreams[i] == std::string("NoHMC")) GridLogHMC.Active(0);
|
||||
if (logstreams[i] == std::string("Colours")) GridLogColours.Active(1);
|
||||
}
|
||||
}
|
||||
|
@ -182,6 +182,7 @@ extern GridLogger GridLogDebug ;
|
||||
extern GridLogger GridLogPerformance;
|
||||
extern GridLogger GridLogIterative ;
|
||||
extern GridLogger GridLogIntegrator ;
|
||||
extern GridLogger GridLogHMC;
|
||||
extern Colours GridLogColours;
|
||||
|
||||
std::string demangle(const char* name) ;
|
||||
|
@ -39,9 +39,11 @@ using namespace Grid;
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
class NerscIO : public BinaryIO {
|
||||
public:
|
||||
|
||||
typedef Lattice<vLorentzColourMatrixD> GaugeField;
|
||||
|
||||
// Enable/disable exiting if the plaquette in the header does not match the value computed (default true)
|
||||
static bool & exitOnReadPlaquetteMismatch(){ static bool v=true; return v; }
|
||||
|
||||
static inline void truncate(std::string file){
|
||||
std::ofstream fout(file,std::ios::out);
|
||||
}
|
||||
@ -198,7 +200,7 @@ public:
|
||||
std::cerr << " nersc_csum " <<std::hex<< nersc_csum << " " << header.checksum<< std::dec<< std::endl;
|
||||
exit(0);
|
||||
}
|
||||
assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
|
||||
if(exitOnReadPlaquetteMismatch()) assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
|
||||
assert(fabs(clone.link_trace-header.link_trace) < 1.0e-6 );
|
||||
assert(nersc_csum == header.checksum );
|
||||
|
||||
|
@ -63,6 +63,7 @@ static constexpr int Ngp=2; // gparity index range
|
||||
#define ColourIndex (2)
|
||||
#define SpinIndex (1)
|
||||
#define LorentzIndex (0)
|
||||
#define GparityFlavourIndex (0)
|
||||
|
||||
// Also should make these a named enum type
|
||||
static constexpr int DaggerNo=0;
|
||||
@ -87,6 +88,8 @@ template<typename T> struct isCoarsened {
|
||||
template <typename T> using IfCoarsened = Invoke<std::enable_if< isCoarsened<T>::value,int> > ;
|
||||
template <typename T> using IfNotCoarsened = Invoke<std::enable_if<!isCoarsened<T>::value,int> > ;
|
||||
|
||||
const int GparityFlavourTensorIndex = 3; //TensorLevel counts from the bottom!
|
||||
|
||||
// ChrisK very keen to add extra space for Gparity doubling.
|
||||
//
|
||||
// Also add domain wall index, in a way where Wilson operator
|
||||
@ -110,8 +113,10 @@ template<typename vtype> using iHalfSpinColourVector = iScalar<iVector<iVec
|
||||
template<typename vtype> using iSpinColourSpinColourMatrix = iScalar<iMatrix<iMatrix<iMatrix<iMatrix<vtype, Nc>, Ns>, Nc>, Ns> >;
|
||||
|
||||
|
||||
template<typename vtype> using iGparityFlavourVector = iVector<iScalar<iScalar<vtype> >, Ngp>;
|
||||
template<typename vtype> using iGparitySpinColourVector = iVector<iVector<iVector<vtype, Nc>, Ns>, Ngp >;
|
||||
template<typename vtype> using iGparityHalfSpinColourVector = iVector<iVector<iVector<vtype, Nc>, Nhs>, Ngp >;
|
||||
template<typename vtype> using iGparityFlavourMatrix = iMatrix<iScalar<iScalar<vtype> >, Ngp>;
|
||||
|
||||
// Spin matrix
|
||||
typedef iSpinMatrix<Complex > SpinMatrix;
|
||||
@ -176,6 +181,16 @@ typedef iDoubleStoredColourMatrix<vComplex > vDoubleStoredColourMatrix;
|
||||
typedef iDoubleStoredColourMatrix<vComplexF> vDoubleStoredColourMatrixF;
|
||||
typedef iDoubleStoredColourMatrix<vComplexD> vDoubleStoredColourMatrixD;
|
||||
|
||||
//G-parity flavour matrix
|
||||
typedef iGparityFlavourMatrix<Complex> GparityFlavourMatrix;
|
||||
typedef iGparityFlavourMatrix<ComplexF> GparityFlavourMatrixF;
|
||||
typedef iGparityFlavourMatrix<ComplexD> GparityFlavourMatrixD;
|
||||
|
||||
typedef iGparityFlavourMatrix<vComplex> vGparityFlavourMatrix;
|
||||
typedef iGparityFlavourMatrix<vComplexF> vGparityFlavourMatrixF;
|
||||
typedef iGparityFlavourMatrix<vComplexD> vGparityFlavourMatrixD;
|
||||
|
||||
|
||||
// Spin vector
|
||||
typedef iSpinVector<Complex > SpinVector;
|
||||
typedef iSpinVector<ComplexF> SpinVectorF;
|
||||
@ -220,6 +235,16 @@ typedef iHalfSpinColourVector<ComplexD> HalfSpinColourVectorD;
|
||||
typedef iHalfSpinColourVector<vComplex > vHalfSpinColourVector;
|
||||
typedef iHalfSpinColourVector<vComplexF> vHalfSpinColourVectorF;
|
||||
typedef iHalfSpinColourVector<vComplexD> vHalfSpinColourVectorD;
|
||||
|
||||
//G-parity flavour vector
|
||||
typedef iGparityFlavourVector<Complex > GparityFlavourVector;
|
||||
typedef iGparityFlavourVector<ComplexF> GparityFlavourVectorF;
|
||||
typedef iGparityFlavourVector<ComplexD> GparityFlavourVectorD;
|
||||
|
||||
typedef iGparityFlavourVector<vComplex > vGparityFlavourVector;
|
||||
typedef iGparityFlavourVector<vComplexF> vGparityFlavourVectorF;
|
||||
typedef iGparityFlavourVector<vComplexD> vGparityFlavourVectorD;
|
||||
|
||||
|
||||
// singlets
|
||||
typedef iSinglet<Complex > TComplex; // FIXME This is painful. Tensor singlet complex type.
|
||||
|
@ -36,7 +36,8 @@ NAMESPACE_BEGIN(Grid);
|
||||
|
||||
// These can move into a params header and be given MacroMagic serialisation
|
||||
struct GparityWilsonImplParams {
|
||||
Coordinate twists;
|
||||
Coordinate twists; //Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction.
|
||||
//mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
|
||||
GparityWilsonImplParams() : twists(Nd, 0) {};
|
||||
};
|
||||
|
||||
@ -65,7 +66,8 @@ struct StaggeredImplParams {
|
||||
RealD, tolerance,
|
||||
int, degree,
|
||||
int, precision,
|
||||
int, BoundsCheckFreq);
|
||||
int, BoundsCheckFreq,
|
||||
RealD, BoundsCheckTol);
|
||||
|
||||
// MaxIter and tolerance, vectors??
|
||||
|
||||
@ -76,15 +78,61 @@ struct StaggeredImplParams {
|
||||
RealD tol = 1.0e-8,
|
||||
int _degree = 10,
|
||||
int _precision = 64,
|
||||
int _BoundsCheckFreq=20)
|
||||
int _BoundsCheckFreq=20,
|
||||
double _BoundsCheckTol=1e-6)
|
||||
: lo(_lo),
|
||||
hi(_hi),
|
||||
MaxIter(_maxit),
|
||||
tolerance(tol),
|
||||
degree(_degree),
|
||||
precision(_precision),
|
||||
BoundsCheckFreq(_BoundsCheckFreq){};
|
||||
BoundsCheckFreq(_BoundsCheckFreq),
|
||||
BoundsCheckTol(_BoundsCheckTol){};
|
||||
};
|
||||
|
||||
|
||||
/*Action parameters for the generalized rational action
|
||||
The approximation is for (M^dag M)^{1/inv_pow}
|
||||
where inv_pow is the denominator of the fractional power.
|
||||
Default inv_pow=2 for square root, making this equivalent to
|
||||
the OneFlavourRational action
|
||||
*/
|
||||
struct RationalActionParams : Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(RationalActionParams,
|
||||
int, inv_pow,
|
||||
RealD, lo, //low eigenvalue bound of rational approx
|
||||
RealD, hi, //high eigenvalue bound of rational approx
|
||||
int, MaxIter, //maximum iterations in msCG
|
||||
RealD, action_tolerance, //msCG tolerance in action evaluation
|
||||
int, action_degree, //rational approx tolerance in action evaluation
|
||||
RealD, md_tolerance, //msCG tolerance in MD integration
|
||||
int, md_degree, //rational approx tolerance in MD integration
|
||||
int, precision, //precision of floating point arithmetic
|
||||
int, BoundsCheckFreq); //frequency the approximation is tested (with Metropolis degree/tolerance); 0 disables the check
|
||||
// constructor
|
||||
RationalActionParams(int _inv_pow = 2,
|
||||
RealD _lo = 0.0,
|
||||
RealD _hi = 1.0,
|
||||
int _maxit = 1000,
|
||||
RealD _action_tolerance = 1.0e-8,
|
||||
int _action_degree = 10,
|
||||
RealD _md_tolerance = 1.0e-8,
|
||||
int _md_degree = 10,
|
||||
int _precision = 64,
|
||||
int _BoundsCheckFreq=20)
|
||||
: inv_pow(_inv_pow),
|
||||
lo(_lo),
|
||||
hi(_hi),
|
||||
MaxIter(_maxit),
|
||||
action_tolerance(_action_tolerance),
|
||||
action_degree(_action_degree),
|
||||
md_tolerance(_md_tolerance),
|
||||
md_degree(_md_degree),
|
||||
precision(_precision),
|
||||
BoundsCheckFreq(_BoundsCheckFreq){};
|
||||
};
|
||||
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -30,6 +30,18 @@ directory
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
/*
|
||||
Policy implementation for G-parity boundary conditions
|
||||
|
||||
Rather than treating the gauge field as a flavored field, the Grid implementation of G-parity treats the gauge field as a regular
|
||||
field with complex conjugate boundary conditions. In order to ensure the second flavor interacts with the conjugate links and the first
|
||||
with the regular links we overload the functionality of doubleStore, whose purpose is to store the gauge field and the barrel-shifted gauge field
|
||||
to avoid communicating links when applying the Dirac operator, such that the double-stored field contains also a flavor index which maps to
|
||||
either the link or the conjugate link. This flavored field is then used by multLink to apply the correct link to a spinor.
|
||||
|
||||
Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction.
|
||||
mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
|
||||
*/
|
||||
template <class S, class Representation = FundamentalRepresentation, class Options=CoeffReal>
|
||||
class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Representation::Dimension> > {
|
||||
public:
|
||||
@ -113,7 +125,7 @@ public:
|
||||
|| ((distance== 1)&&(icoor[direction]==1))
|
||||
|| ((distance==-1)&&(icoor[direction]==0));
|
||||
|
||||
permute_lane = permute_lane && SE->_around_the_world && St.parameters.twists[mmu]; //only if we are going around the world
|
||||
permute_lane = permute_lane && SE->_around_the_world && St.parameters.twists[mmu] && mmu < Nd-1; //only if we are going around the world in a spatial direction
|
||||
|
||||
//Apply the links
|
||||
int f_upper = permute_lane ? 1 : 0;
|
||||
@ -139,10 +151,10 @@ public:
|
||||
assert((distance == 1) || (distance == -1)); // nearest neighbour stencil hard code
|
||||
assert((sl == 1) || (sl == 2));
|
||||
|
||||
if ( SE->_around_the_world && St.parameters.twists[mmu] ) {
|
||||
|
||||
//If this site is an global boundary site, perform the G-parity flavor twist
|
||||
if ( mmu < Nd-1 && SE->_around_the_world && St.parameters.twists[mmu] ) {
|
||||
if ( sl == 2 ) {
|
||||
|
||||
//Only do the twist for lanes on the edge of the physical node
|
||||
ExtractBuffer<sobj> vals(Nsimd);
|
||||
|
||||
extract(chi,vals);
|
||||
@ -197,6 +209,19 @@ public:
|
||||
reg = memory;
|
||||
}
|
||||
|
||||
|
||||
//Poke 'poke_f0' onto flavor 0 and 'poke_f1' onto flavor 1 in direction mu of the doubled gauge field Uds
|
||||
inline void pokeGparityDoubledGaugeField(DoubledGaugeField &Uds, const GaugeLinkField &poke_f0, const GaugeLinkField &poke_f1, const int mu){
|
||||
autoView(poke_f0_v, poke_f0, CpuRead);
|
||||
autoView(poke_f1_v, poke_f1, CpuRead);
|
||||
autoView(Uds_v, Uds, CpuWrite);
|
||||
thread_foreach(ss,poke_f0_v,{
|
||||
Uds_v[ss](0)(mu) = poke_f0_v[ss]();
|
||||
Uds_v[ss](1)(mu) = poke_f1_v[ss]();
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
inline void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
|
||||
{
|
||||
conformable(Uds.Grid(),GaugeGrid);
|
||||
@ -207,14 +232,19 @@ public:
|
||||
GaugeLinkField Uconj(GaugeGrid);
|
||||
|
||||
Lattice<iScalar<vInteger> > coor(GaugeGrid);
|
||||
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
|
||||
LatticeCoordinate(coor,mu);
|
||||
|
||||
//Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction.
|
||||
//mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
|
||||
for(int mu=0;mu<Nd-1;mu++){
|
||||
|
||||
if( Params.twists[mu] ){
|
||||
LatticeCoordinate(coor,mu);
|
||||
}
|
||||
|
||||
U = PeekIndex<LorentzIndex>(Umu,mu);
|
||||
Uconj = conjugate(U);
|
||||
|
||||
// Implement the isospin rotation sign on the boundary between f=1 and f=0
|
||||
// This phase could come from a simple bc 1,1,-1,1 ..
|
||||
int neglink = GaugeGrid->GlobalDimensions()[mu]-1;
|
||||
if ( Params.twists[mu] ) {
|
||||
@ -229,7 +259,7 @@ public:
|
||||
thread_foreach(ss,U_v,{
|
||||
Uds_v[ss](0)(mu) = U_v[ss]();
|
||||
Uds_v[ss](1)(mu) = Uconj_v[ss]();
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
U = adj(Cshift(U ,mu,-1)); // correct except for spanning the boundary
|
||||
@ -260,6 +290,38 @@ public:
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
{ //periodic / antiperiodic temporal BCs
|
||||
int mu = Nd-1;
|
||||
int L = GaugeGrid->GlobalDimensions()[mu];
|
||||
int Lmu = L - 1;
|
||||
|
||||
LatticeCoordinate(coor, mu);
|
||||
|
||||
U = PeekIndex<LorentzIndex>(Umu, mu); //Get t-directed links
|
||||
|
||||
GaugeLinkField *Upoke = &U;
|
||||
|
||||
if(Params.twists[mu]){ //antiperiodic
|
||||
Utmp = where(coor == Lmu, -U, U);
|
||||
Upoke = &Utmp;
|
||||
}
|
||||
|
||||
Uconj = conjugate(*Upoke); //second flavor interacts with conjugate links
|
||||
pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu);
|
||||
|
||||
//Get the barrel-shifted field
|
||||
Utmp = adj(Cshift(U, mu, -1)); //is a forward shift!
|
||||
Upoke = &Utmp;
|
||||
|
||||
if(Params.twists[mu]){
|
||||
U = where(coor == 0, -Utmp, Utmp); //boundary phase
|
||||
Upoke = &U;
|
||||
}
|
||||
|
||||
Uconj = conjugate(*Upoke);
|
||||
pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu + 4);
|
||||
}
|
||||
}
|
||||
|
||||
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A, int mu) {
|
||||
@ -298,28 +360,48 @@ public:
|
||||
inline void extractLinkField(std::vector<GaugeLinkField> &mat, DoubledGaugeField &Uds){
|
||||
assert(0);
|
||||
}
|
||||
|
||||
|
||||
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField Ã, int mu) {
|
||||
|
||||
int Ls = Btilde.Grid()->_fdimensions[0];
|
||||
|
||||
GaugeLinkField tmp(mat.Grid());
|
||||
tmp = Zero();
|
||||
int Ls=Btilde.Grid()->_fdimensions[0];
|
||||
|
||||
{
|
||||
autoView( tmp_v , tmp, CpuWrite);
|
||||
autoView( Atilde_v , Atilde, CpuRead);
|
||||
autoView( Btilde_v , Btilde, CpuRead);
|
||||
thread_for(ss,tmp.Grid()->oSites(),{
|
||||
for (int s = 0; s < Ls; s++) {
|
||||
int sF = s + Ls * ss;
|
||||
auto ttmp = traceIndex<SpinIndex>(outerProduct(Btilde_v[sF], Atilde_v[sF]));
|
||||
tmp_v[ss]() = tmp_v[ss]() + ttmp(0, 0) + conjugate(ttmp(1, 1));
|
||||
}
|
||||
});
|
||||
GridBase *GaugeGrid = mat.Grid();
|
||||
Lattice<iScalar<vInteger> > coor(GaugeGrid);
|
||||
|
||||
if( Params.twists[mu] ){
|
||||
LatticeCoordinate(coor,mu);
|
||||
}
|
||||
|
||||
autoView( mat_v , mat, AcceleratorWrite);
|
||||
autoView( Btilde_v , Btilde, AcceleratorRead);
|
||||
autoView( Atilde_v , Atilde, AcceleratorRead);
|
||||
accelerator_for(sss,mat.Grid()->oSites(), FermionField::vector_type::Nsimd(),{
|
||||
int sU=sss;
|
||||
typedef decltype(coalescedRead(mat_v[sU](mu)() )) ColorMatrixType;
|
||||
ColorMatrixType sum;
|
||||
zeroit(sum);
|
||||
for(int s=0;s<Ls;s++){
|
||||
int sF = s+Ls*sU;
|
||||
for(int spn=0;spn<Ns;spn++){ //sum over spin
|
||||
//Flavor 0
|
||||
auto bb = coalescedRead(Btilde_v[sF](0)(spn) ); //color vector
|
||||
auto aa = coalescedRead(Atilde_v[sF](0)(spn) );
|
||||
sum = sum + outerProduct(bb,aa);
|
||||
|
||||
//Flavor 1
|
||||
bb = coalescedRead(Btilde_v[sF](1)(spn) );
|
||||
aa = coalescedRead(Atilde_v[sF](1)(spn) );
|
||||
sum = sum + conjugate(outerProduct(bb,aa));
|
||||
}
|
||||
}
|
||||
coalescedWrite(mat_v[sU](mu)(), sum);
|
||||
});
|
||||
}
|
||||
PokeIndex<LorentzIndex>(mat, tmp, mu);
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
};
|
||||
|
||||
|
@ -69,6 +69,11 @@ public:
|
||||
return PeriodicBC::ShiftStaple(Link,mu);
|
||||
}
|
||||
|
||||
//Same as Cshift for periodic BCs
|
||||
static inline GaugeLinkField CshiftLink(const GaugeLinkField &Link, int mu, int shift){
|
||||
return PeriodicBC::CshiftLink(Link,mu,shift);
|
||||
}
|
||||
|
||||
static inline bool isPeriodicGaugeField(void) { return true; }
|
||||
};
|
||||
|
||||
@ -110,6 +115,11 @@ public:
|
||||
return PeriodicBC::CovShiftBackward(Link, mu, field);
|
||||
}
|
||||
|
||||
//If mu is a conjugate BC direction
|
||||
//Out(x) = U^dag_\mu(x-mu) | x_\mu != 0
|
||||
// = U^T_\mu(L-1) | x_\mu == 0
|
||||
//else
|
||||
//Out(x) = U^dag_\mu(x-mu mod L)
|
||||
static inline GaugeLinkField
|
||||
CovShiftIdentityBackward(const GaugeLinkField &Link, int mu)
|
||||
{
|
||||
@ -129,6 +139,13 @@ public:
|
||||
return PeriodicBC::CovShiftIdentityForward(Link,mu);
|
||||
}
|
||||
|
||||
|
||||
//If mu is a conjugate BC direction
|
||||
//Out(x) = S_\mu(x+mu) | x_\mu != L-1
|
||||
// = S*_\mu(x+mu) | x_\mu == L-1
|
||||
//else
|
||||
//Out(x) = S_\mu(x+mu mod L)
|
||||
//Note: While this is used for Staples it is also applicable for shifting gauge links or gauge transformation matrices
|
||||
static inline GaugeLinkField ShiftStaple(const GaugeLinkField &Link, int mu)
|
||||
{
|
||||
assert(_conjDirs.size() == Nd);
|
||||
@ -138,6 +155,27 @@ public:
|
||||
return PeriodicBC::ShiftStaple(Link,mu);
|
||||
}
|
||||
|
||||
//Boundary-aware C-shift of gauge links / gauge transformation matrices
|
||||
//For conjugate BC direction
|
||||
//shift = 1
|
||||
//Out(x) = U_\mu(x+\hat\mu) | x_\mu != L-1
|
||||
// = U*_\mu(0) | x_\mu == L-1
|
||||
//shift = -1
|
||||
//Out(x) = U_\mu(x-mu) | x_\mu != 0
|
||||
// = U*_\mu(L-1) | x_\mu == 0
|
||||
//else
|
||||
//shift = 1
|
||||
//Out(x) = U_\mu(x+\hat\mu mod L)
|
||||
//shift = -1
|
||||
//Out(x) = U_\mu(x-\hat\mu mod L)
|
||||
static inline GaugeLinkField CshiftLink(const GaugeLinkField &Link, int mu, int shift){
|
||||
assert(_conjDirs.size() == Nd);
|
||||
if(_conjDirs[mu])
|
||||
return ConjugateBC::CshiftLink(Link,mu,shift);
|
||||
else
|
||||
return PeriodicBC::CshiftLink(Link,mu,shift);
|
||||
}
|
||||
|
||||
static inline void setDirections(std::vector<int> &conjDirs) { _conjDirs=conjDirs; }
|
||||
static inline std::vector<int> getDirections(void) { return _conjDirs; }
|
||||
static inline bool isPeriodicGaugeField(void) { return false; }
|
||||
|
@ -40,13 +40,66 @@ NAMESPACE_BEGIN(Grid);
|
||||
X=X-Y;
|
||||
RealD Nd = norm2(X);
|
||||
std::cout << "************************* "<<std::endl;
|
||||
std::cout << " noise = "<<Nx<<std::endl;
|
||||
std::cout << " (MdagM^-1/2)^2 noise = "<<Nz<<std::endl;
|
||||
std::cout << " MdagM (MdagM^-1/2)^2 noise = "<<Ny<<std::endl;
|
||||
std::cout << " noise - MdagM (MdagM^-1/2)^2 noise = "<<Nd<<std::endl;
|
||||
std::cout << " | noise |^2 = "<<Nx<<std::endl;
|
||||
std::cout << " | (MdagM^-1/2)^2 noise |^2 = "<<Nz<<std::endl;
|
||||
std::cout << " | MdagM (MdagM^-1/2)^2 noise |^2 = "<<Ny<<std::endl;
|
||||
std::cout << " | noise - MdagM (MdagM^-1/2)^2 noise |^2 = "<<Nd<<std::endl;
|
||||
std::cout << " | noise - MdagM (MdagM^-1/2)^2 noise|/|noise| = " << std::sqrt(Nd/Nx) << std::endl;
|
||||
std::cout << "************************* "<<std::endl;
|
||||
assert( (std::sqrt(Nd/Nx)<tol) && " InverseSqrtBoundsCheck ");
|
||||
}
|
||||
|
||||
/* For a HermOp = M^dag M, check the approximation of HermOp^{-1/inv_pow}
|
||||
by computing |X - HermOp * [ Hermop^{-1/inv_pow} ]^{inv_pow} X| < tol
|
||||
for noise X (aka GaussNoise).
|
||||
ApproxNegPow should be the rational approximation for X^{-1/inv_pow}
|
||||
*/
|
||||
template<class Field> void InversePowerBoundsCheck(int inv_pow,
|
||||
int MaxIter,double tol,
|
||||
LinearOperatorBase<Field> &HermOp,
|
||||
Field &GaussNoise,
|
||||
MultiShiftFunction &ApproxNegPow)
|
||||
{
|
||||
GridBase *FermionGrid = GaussNoise.Grid();
|
||||
|
||||
Field X(FermionGrid);
|
||||
Field Y(FermionGrid);
|
||||
Field Z(FermionGrid);
|
||||
|
||||
Field tmp1(FermionGrid), tmp2(FermionGrid);
|
||||
|
||||
X=GaussNoise;
|
||||
RealD Nx = norm2(X);
|
||||
|
||||
ConjugateGradientMultiShift<Field> msCG(MaxIter,ApproxNegPow);
|
||||
|
||||
tmp1 = X;
|
||||
|
||||
Field* in = &tmp1;
|
||||
Field* out = &tmp2;
|
||||
for(int i=0;i<inv_pow;i++){ //apply [ Hermop^{-1/inv_pow} ]^{inv_pow} X = HermOp^{-1} X
|
||||
msCG(HermOp, *in, *out); //backwards conventions!
|
||||
if(i!=inv_pow-1) std::swap(in, out);
|
||||
}
|
||||
Z = *out;
|
||||
|
||||
RealD Nz = norm2(Z);
|
||||
|
||||
HermOp.HermOp(Z,Y);
|
||||
RealD Ny = norm2(Y);
|
||||
|
||||
X=X-Y;
|
||||
RealD Nd = norm2(X);
|
||||
std::cout << "************************* "<<std::endl;
|
||||
std::cout << " | noise |^2 = "<<Nx<<std::endl;
|
||||
std::cout << " | (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |^2 = "<<Nz<<std::endl;
|
||||
std::cout << " | MdagM (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |^2 = "<<Ny<<std::endl;
|
||||
std::cout << " | noise - MdagM (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |^2 = "<<Nd<<std::endl;
|
||||
std::cout << " | noise - MdagM (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |/| noise | = "<<std::sqrt(Nd/Nx)<<std::endl;
|
||||
std::cout << "************************* "<<std::endl;
|
||||
assert( (std::sqrt(Nd/Nx)<tol) && " InversePowerBoundsCheck ");
|
||||
}
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -44,6 +44,10 @@ NAMESPACE_BEGIN(Grid);
|
||||
// Exact one flavour implementation of DWF determinant ratio //
|
||||
///////////////////////////////////////////////////////////////
|
||||
|
||||
//Note: using mixed prec CG for the heatbath solver in this action class will not work
|
||||
// because the L, R operators must have their shift coefficients updated throughout the heatbath step
|
||||
// You will find that the heatbath solver simply won't converge.
|
||||
// To use mixed precision here use the ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction variant below
|
||||
template<class Impl>
|
||||
class ExactOneFlavourRatioPseudoFermionAction : public Action<typename Impl::GaugeField>
|
||||
{
|
||||
@ -57,37 +61,60 @@ NAMESPACE_BEGIN(Grid);
|
||||
bool use_heatbath_forecasting;
|
||||
AbstractEOFAFermion<Impl>& Lop; // the basic LH operator
|
||||
AbstractEOFAFermion<Impl>& Rop; // the basic RH operator
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> SolverHB;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> SolverHBL;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> SolverHBR;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> SolverL;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> SolverR;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverL;
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverR;
|
||||
FermionField Phi; // the pseudofermion field for this trajectory
|
||||
|
||||
RealD norm2_eta; //|eta|^2 where eta is the random gaussian field used to generate the pseudofermion field
|
||||
bool initial_action; //true for the first call to S after refresh, for which the identity S = |eta|^2 holds provided the rational approx is good
|
||||
public:
|
||||
|
||||
//Used in the heatbath, refresh the shift coefficients of the L (LorR=0) or R (LorR=1) operator
|
||||
virtual void heatbathRefreshShiftCoefficients(int LorR, RealD to){
|
||||
AbstractEOFAFermion<Impl>&op = LorR == 0 ? Lop : Rop;
|
||||
op.RefreshShiftCoefficients(to);
|
||||
}
|
||||
|
||||
|
||||
//Use the same solver for L,R in all cases
|
||||
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
|
||||
AbstractEOFAFermion<Impl>& _Rop,
|
||||
OperatorFunction<FermionField>& CG,
|
||||
Params& p,
|
||||
bool use_fc=false)
|
||||
: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,CG,CG,CG,CG,CG,p,use_fc) {};
|
||||
|
||||
: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,CG,CG,CG,CG,CG,CG,p,use_fc) {};
|
||||
|
||||
//Use the same solver for L,R in the heatbath but different solvers elsewhere
|
||||
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
|
||||
AbstractEOFAFermion<Impl>& _Rop,
|
||||
OperatorFunction<FermionField>& HeatbathCG,
|
||||
OperatorFunction<FermionField>& HeatbathCG,
|
||||
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
|
||||
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
|
||||
Params& p,
|
||||
bool use_fc=false)
|
||||
: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,HeatbathCG,HeatbathCG, ActionCGL, ActionCGR, DerivCGL,DerivCGR,p,use_fc) {};
|
||||
|
||||
//Use different solvers for L,R in all cases
|
||||
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
|
||||
AbstractEOFAFermion<Impl>& _Rop,
|
||||
OperatorFunction<FermionField>& HeatbathCGL, OperatorFunction<FermionField>& HeatbathCGR,
|
||||
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
|
||||
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
|
||||
Params& p,
|
||||
bool use_fc=false) :
|
||||
Lop(_Lop),
|
||||
Rop(_Rop),
|
||||
SolverHB(HeatbathCG,false,true),
|
||||
SolverHBL(HeatbathCGL,false,true), SolverHBR(HeatbathCGR,false,true),
|
||||
SolverL(ActionCGL, false, true), SolverR(ActionCGR, false, true),
|
||||
DerivativeSolverL(DerivCGL, false, true), DerivativeSolverR(DerivCGR, false, true),
|
||||
Phi(_Lop.FermionGrid()),
|
||||
param(p),
|
||||
use_heatbath_forecasting(use_fc)
|
||||
use_heatbath_forecasting(use_fc),
|
||||
initial_action(false)
|
||||
{
|
||||
AlgRemez remez(param.lo, param.hi, param.precision);
|
||||
|
||||
@ -97,6 +124,8 @@ NAMESPACE_BEGIN(Grid);
|
||||
PowerNegHalf.Init(remez, param.tolerance, true);
|
||||
};
|
||||
|
||||
const FermionField &getPhi() const{ return Phi; }
|
||||
|
||||
virtual std::string action_name() { return "ExactOneFlavourRatioPseudoFermionAction"; }
|
||||
|
||||
virtual std::string LogParameters() {
|
||||
@ -117,6 +146,19 @@ NAMESPACE_BEGIN(Grid);
|
||||
else{ for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(out, 0.0, in, 1.0, in, s, s); } }
|
||||
}
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
|
||||
// P(eta_o) = e^{- eta_o^dag eta_o}
|
||||
//
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
//
|
||||
RealD scale = std::sqrt(0.5);
|
||||
|
||||
FermionField eta (Lop.FermionGrid());
|
||||
gaussian(pRNG,eta); eta = eta * scale;
|
||||
|
||||
refresh(U,eta);
|
||||
}
|
||||
|
||||
// EOFA heatbath: see Eqn. (29) of arXiv:1706.05843
|
||||
// We generate a Gaussian noise vector \eta, and then compute
|
||||
// \Phi = M_{\rm EOFA}^{-1/2} * \eta
|
||||
@ -124,12 +166,10 @@ NAMESPACE_BEGIN(Grid);
|
||||
//
|
||||
// As a check of rational require \Phi^dag M_{EOFA} \Phi == eta^dag M^-1/2^dag M M^-1/2 eta = eta^dag eta
|
||||
//
|
||||
virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG)
|
||||
{
|
||||
void refresh(const GaugeField &U, const FermionField &eta) {
|
||||
Lop.ImportGauge(U);
|
||||
Rop.ImportGauge(U);
|
||||
|
||||
FermionField eta (Lop.FermionGrid());
|
||||
FermionField CG_src (Lop.FermionGrid());
|
||||
FermionField CG_soln (Lop.FermionGrid());
|
||||
FermionField Forecast_src(Lop.FermionGrid());
|
||||
@ -140,11 +180,6 @@ NAMESPACE_BEGIN(Grid);
|
||||
if(use_heatbath_forecasting){ prev_solns.reserve(param.degree); }
|
||||
ChronoForecast<AbstractEOFAFermion<Impl>, FermionField> Forecast;
|
||||
|
||||
// Seed with Gaussian noise vector (var = 0.5)
|
||||
RealD scale = std::sqrt(0.5);
|
||||
gaussian(pRNG,eta);
|
||||
eta = eta * scale;
|
||||
|
||||
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
|
||||
RealD N(PowerNegHalf.norm);
|
||||
for(int k=0; k<param.degree; ++k){ N += PowerNegHalf.residues[k] / ( 1.0 + PowerNegHalf.poles[k] ); }
|
||||
@ -160,15 +195,16 @@ NAMESPACE_BEGIN(Grid);
|
||||
tmp[1] = Zero();
|
||||
for(int k=0; k<param.degree; ++k){
|
||||
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
|
||||
Lop.RefreshShiftCoefficients(-gamma_l);
|
||||
heatbathRefreshShiftCoefficients(0, -gamma_l);
|
||||
//Lop.RefreshShiftCoefficients(-gamma_l);
|
||||
if(use_heatbath_forecasting){ // Forecast CG guess using solutions from previous poles
|
||||
Lop.Mdag(CG_src, Forecast_src);
|
||||
CG_soln = Forecast(Lop, Forecast_src, prev_solns);
|
||||
SolverHB(Lop, CG_src, CG_soln);
|
||||
SolverHBL(Lop, CG_src, CG_soln);
|
||||
prev_solns.push_back(CG_soln);
|
||||
} else {
|
||||
CG_soln = Zero(); // Just use zero as the initial guess
|
||||
SolverHB(Lop, CG_src, CG_soln);
|
||||
SolverHBL(Lop, CG_src, CG_soln);
|
||||
}
|
||||
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
||||
tmp[1] = tmp[1] + ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Lop.k ) * tmp[0];
|
||||
@ -187,15 +223,16 @@ NAMESPACE_BEGIN(Grid);
|
||||
if(use_heatbath_forecasting){ prev_solns.clear(); } // empirically, LH solns don't help for RH solves
|
||||
for(int k=0; k<param.degree; ++k){
|
||||
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
|
||||
Rop.RefreshShiftCoefficients(-gamma_l*PowerNegHalf.poles[k]);
|
||||
heatbathRefreshShiftCoefficients(1, -gamma_l*PowerNegHalf.poles[k]);
|
||||
//Rop.RefreshShiftCoefficients(-gamma_l*PowerNegHalf.poles[k]);
|
||||
if(use_heatbath_forecasting){
|
||||
Rop.Mdag(CG_src, Forecast_src);
|
||||
CG_soln = Forecast(Rop, Forecast_src, prev_solns);
|
||||
SolverHB(Rop, CG_src, CG_soln);
|
||||
SolverHBR(Rop, CG_src, CG_soln);
|
||||
prev_solns.push_back(CG_soln);
|
||||
} else {
|
||||
CG_soln = Zero();
|
||||
SolverHB(Rop, CG_src, CG_soln);
|
||||
SolverHBR(Rop, CG_src, CG_soln);
|
||||
}
|
||||
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
||||
tmp[1] = tmp[1] - ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Rop.k ) * tmp[0];
|
||||
@ -205,49 +242,119 @@ NAMESPACE_BEGIN(Grid);
|
||||
Phi = Phi + tmp[1];
|
||||
|
||||
// Reset shift coefficients for energy and force evals
|
||||
Lop.RefreshShiftCoefficients(0.0);
|
||||
Rop.RefreshShiftCoefficients(-1.0);
|
||||
//Lop.RefreshShiftCoefficients(0.0);
|
||||
//Rop.RefreshShiftCoefficients(-1.0);
|
||||
heatbathRefreshShiftCoefficients(0, 0.0);
|
||||
heatbathRefreshShiftCoefficients(1, -1.0);
|
||||
|
||||
//Mark that the next call to S is the first after refresh
|
||||
initial_action = true;
|
||||
|
||||
|
||||
// Bounds check
|
||||
RealD EtaDagEta = norm2(eta);
|
||||
norm2_eta = EtaDagEta;
|
||||
|
||||
// RealD PhiDagMPhi= norm2(eta);
|
||||
|
||||
};
|
||||
|
||||
void Meofa(const GaugeField& U,const FermionField &phi, FermionField & Mphi)
|
||||
void Meofa(const GaugeField& U,const FermionField &in, FermionField & out)
|
||||
{
|
||||
#if 0
|
||||
Lop.ImportGauge(U);
|
||||
Rop.ImportGauge(U);
|
||||
|
||||
FermionField spProj_Phi(Lop.FermionGrid());
|
||||
FermionField mPhi(Lop.FermionGrid());
|
||||
FermionField spProj_in(Lop.FermionGrid());
|
||||
std::vector<FermionField> tmp(2, Lop.FermionGrid());
|
||||
mPhi = phi;
|
||||
out = in;
|
||||
|
||||
// LH term: S = S - k <\Phi| P_{-} \Omega_{-}^{\dagger} H(mf)^{-1} \Omega_{-} P_{-} |\Phi>
|
||||
spProj(Phi, spProj_Phi, -1, Lop.Ls);
|
||||
Lop.Omega(spProj_Phi, tmp[0], -1, 0);
|
||||
spProj(in, spProj_in, -1, Lop.Ls);
|
||||
Lop.Omega(spProj_in, tmp[0], -1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
tmp[0] = Zero();
|
||||
SolverL(Lop, tmp[1], tmp[0]);
|
||||
Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
|
||||
Lop.Omega(tmp[1], tmp[0], -1, 1);
|
||||
mPhi = mPhi - Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||
spProj(tmp[0], tmp[1], -1, Lop.Ls);
|
||||
|
||||
out = out - Lop.k * tmp[1];
|
||||
|
||||
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
|
||||
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
|
||||
spProj(Phi, spProj_Phi, 1, Rop.Ls);
|
||||
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
|
||||
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} |\Phi>
|
||||
spProj(in, spProj_in, 1, Rop.Ls);
|
||||
Rop.Omega(spProj_in, tmp[0], 1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
tmp[0] = Zero();
|
||||
SolverR(Rop, tmp[1], tmp[0]);
|
||||
Rop.Dtilde(tmp[0], tmp[1]);
|
||||
Rop.Omega(tmp[1], tmp[0], 1, 1);
|
||||
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||
#endif
|
||||
spProj(tmp[0], tmp[1], 1, Rop.Ls);
|
||||
|
||||
out = out + Rop.k * tmp[1];
|
||||
}
|
||||
|
||||
//Due to the structure of EOFA, it is no more expensive to compute the inverse of Meofa
|
||||
//To ensure correctness we can simply reuse the heatbath code but use the rational approx
|
||||
//f(x) = 1/x which corresponds to alpha_0=0, alpha_1=1, beta_1=0 => gamma_1=1
|
||||
void MeofaInv(const GaugeField &U, const FermionField &in, FermionField &out) {
|
||||
Lop.ImportGauge(U);
|
||||
Rop.ImportGauge(U);
|
||||
|
||||
FermionField CG_src (Lop.FermionGrid());
|
||||
FermionField CG_soln (Lop.FermionGrid());
|
||||
std::vector<FermionField> tmp(2, Lop.FermionGrid());
|
||||
|
||||
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
|
||||
// = 1 * \eta
|
||||
out = in;
|
||||
|
||||
// LH terms:
|
||||
// \Phi = \Phi + k \sum_{k=1}^{N_{p}} P_{-} \Omega_{-}^{\dagger} ( H(mf)
|
||||
// - \gamma_{l} \Delta_{-}(mf,mb) P_{-} )^{-1} \Omega_{-} P_{-} \eta
|
||||
spProj(in, tmp[0], -1, Lop.Ls);
|
||||
Lop.Omega(tmp[0], tmp[1], -1, 0);
|
||||
G5R5(CG_src, tmp[1]);
|
||||
{
|
||||
heatbathRefreshShiftCoefficients(0, -1.); //-gamma_1 = -1.
|
||||
|
||||
CG_soln = Zero(); // Just use zero as the initial guess
|
||||
SolverHBL(Lop, CG_src, CG_soln);
|
||||
|
||||
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
||||
tmp[1] = Lop.k * tmp[0];
|
||||
}
|
||||
Lop.Omega(tmp[1], tmp[0], -1, 1);
|
||||
spProj(tmp[0], tmp[1], -1, Lop.Ls);
|
||||
out = out + tmp[1];
|
||||
|
||||
// RH terms:
|
||||
// \Phi = \Phi - k \sum_{k=1}^{N_{p}} P_{+} \Omega_{+}^{\dagger} ( H(mb)
|
||||
// - \beta_l\gamma_{l} \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \eta
|
||||
spProj(in, tmp[0], 1, Rop.Ls);
|
||||
Rop.Omega(tmp[0], tmp[1], 1, 0);
|
||||
G5R5(CG_src, tmp[1]);
|
||||
{
|
||||
heatbathRefreshShiftCoefficients(1, 0.); //-gamma_1 * beta_1 = 0
|
||||
|
||||
CG_soln = Zero();
|
||||
SolverHBR(Rop, CG_src, CG_soln);
|
||||
|
||||
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
||||
tmp[1] = - Rop.k * tmp[0];
|
||||
}
|
||||
Rop.Omega(tmp[1], tmp[0], 1, 1);
|
||||
spProj(tmp[0], tmp[1], 1, Rop.Ls);
|
||||
out = out + tmp[1];
|
||||
|
||||
// Reset shift coefficients for energy and force evals
|
||||
heatbathRefreshShiftCoefficients(0, 0.0);
|
||||
heatbathRefreshShiftCoefficients(1, -1.0);
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
// EOFA action: see Eqn. (10) of arXiv:1706.05843
|
||||
virtual RealD S(const GaugeField& U)
|
||||
{
|
||||
@ -271,7 +378,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
action -= Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||
|
||||
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
|
||||
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
|
||||
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} |\Phi>
|
||||
spProj(Phi, spProj_Phi, 1, Rop.Ls);
|
||||
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
|
||||
G5R5(tmp[1], tmp[0]);
|
||||
@ -281,6 +388,26 @@ NAMESPACE_BEGIN(Grid);
|
||||
Rop.Omega(tmp[1], tmp[0], 1, 1);
|
||||
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||
|
||||
if(initial_action){
|
||||
//For the first call to S after refresh, S = |eta|^2. We can use this to ensure the rational approx is good
|
||||
RealD diff = action - norm2_eta;
|
||||
|
||||
//S_init = eta^dag M^{-1/2} M M^{-1/2} eta
|
||||
//S_init - eta^dag eta = eta^dag ( M^{-1/2} M M^{-1/2} - 1 ) eta
|
||||
|
||||
//If approximate solution
|
||||
//S_init - eta^dag eta = eta^dag ( [M^{-1/2}+\delta M^{-1/2}] M [M^{-1/2}+\delta M^{-1/2}] - 1 ) eta
|
||||
// \approx eta^dag ( \delta M^{-1/2} M^{1/2} + M^{1/2}\delta M^{-1/2} ) eta
|
||||
// We divide out |eta|^2 to remove source scaling but the tolerance on this check should still be somewhat higher than the actual approx tolerance
|
||||
RealD test = fabs(diff)/norm2_eta; //test the quality of the rational approx
|
||||
|
||||
std::cout << GridLogMessage << action_name() << " initial action " << action << " expect " << norm2_eta << "; diff " << diff << std::endl;
|
||||
std::cout << GridLogMessage << action_name() << "[ eta^dag ( M^{-1/2} M M^{-1/2} - 1 ) eta ]/|eta^2| = " << test << " expect 0 (tol " << param.BoundsCheckTol << ")" << std::endl;
|
||||
|
||||
assert( ( test < param.BoundsCheckTol ) && " Initial action check failed" );
|
||||
initial_action = false;
|
||||
}
|
||||
|
||||
return action;
|
||||
};
|
||||
|
||||
@ -329,6 +456,40 @@ NAMESPACE_BEGIN(Grid);
|
||||
};
|
||||
};
|
||||
|
||||
template<class ImplD, class ImplF>
|
||||
class ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction : public ExactOneFlavourRatioPseudoFermionAction<ImplD>{
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(ImplD);
|
||||
typedef OneFlavourRationalParams Params;
|
||||
|
||||
private:
|
||||
AbstractEOFAFermion<ImplF>& LopF; // the basic LH operator
|
||||
AbstractEOFAFermion<ImplF>& RopF; // the basic RH operator
|
||||
|
||||
public:
|
||||
|
||||
virtual std::string action_name() { return "ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction"; }
|
||||
|
||||
//Used in the heatbath, refresh the shift coefficients of the L (LorR=0) or R (LorR=1) operator
|
||||
virtual void heatbathRefreshShiftCoefficients(int LorR, RealD to){
|
||||
AbstractEOFAFermion<ImplF> &op = LorR == 0 ? LopF : RopF;
|
||||
op.RefreshShiftCoefficients(to);
|
||||
this->ExactOneFlavourRatioPseudoFermionAction<ImplD>::heatbathRefreshShiftCoefficients(LorR,to);
|
||||
}
|
||||
|
||||
ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction(AbstractEOFAFermion<ImplF>& _LopF,
|
||||
AbstractEOFAFermion<ImplF>& _RopF,
|
||||
AbstractEOFAFermion<ImplD>& _LopD,
|
||||
AbstractEOFAFermion<ImplD>& _RopD,
|
||||
OperatorFunction<FermionField>& HeatbathCGL, OperatorFunction<FermionField>& HeatbathCGR,
|
||||
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
|
||||
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
|
||||
Params& p,
|
||||
bool use_fc=false) :
|
||||
LopF(_LopF), RopF(_RopF), ExactOneFlavourRatioPseudoFermionAction<ImplD>(_LopD, _RopD, HeatbathCGL, HeatbathCGR, ActionCGL, ActionCGR, DerivCGL, DerivCGR, p, use_fc){}
|
||||
};
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
||||
|
372
Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h
Normal file
372
Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h
Normal file
@ -0,0 +1,372 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_H
|
||||
#define QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
/////////////////////////////////////////////////////////
|
||||
// Generic rational approximation for ratios of operators
|
||||
/////////////////////////////////////////////////////////
|
||||
|
||||
/* S_f = -log( det( [M^dag M]/[V^dag V] )^{1/inv_pow} )
|
||||
= chi^dag ( [M^dag M]/[V^dag V] )^{-1/inv_pow} chi\
|
||||
= chi^dag ( [V^dag V]^{-1/2} [M^dag M] [V^dag V]^{-1/2} )^{-1/inv_pow} chi\
|
||||
= chi^dag [V^dag V]^{1/(2*inv_pow)} [M^dag M]^{-1/inv_pow} [V^dag V]^{1/(2*inv_pow)} chi\
|
||||
|
||||
S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
|
||||
BIG WARNING:
|
||||
Here V^dag V is referred to in this code as the "numerator" operator and M^dag M is the *denominator* operator.
|
||||
this refers to their position in the pseudofermion action, which is the *inverse* of what appears in the determinant
|
||||
Thus for DWF the numerator operator is the Pauli-Villars operator
|
||||
|
||||
Here P/Q \sim R_{1/(2*inv_pow)} ~ (V^dagV)^{1/(2*inv_pow)}
|
||||
Here N/D \sim R_{-1/inv_pow} ~ (M^dagM)^{-1/inv_pow}
|
||||
*/
|
||||
|
||||
template<class Impl>
|
||||
class GeneralEvenOddRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
||||
public:
|
||||
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
typedef RationalActionParams Params;
|
||||
Params param;
|
||||
|
||||
//For action evaluation
|
||||
MultiShiftFunction ApproxPowerAction ; //rational approx for X^{1/inv_pow}
|
||||
MultiShiftFunction ApproxNegPowerAction; //rational approx for X^{-1/inv_pow}
|
||||
MultiShiftFunction ApproxHalfPowerAction; //rational approx for X^{1/(2*inv_pow)}
|
||||
MultiShiftFunction ApproxNegHalfPowerAction; //rational approx for X^{-1/(2*inv_pow)}
|
||||
|
||||
//For the MD integration
|
||||
MultiShiftFunction ApproxPowerMD ; //rational approx for X^{1/inv_pow}
|
||||
MultiShiftFunction ApproxNegPowerMD; //rational approx for X^{-1/inv_pow}
|
||||
MultiShiftFunction ApproxHalfPowerMD; //rational approx for X^{1/(2*inv_pow)}
|
||||
MultiShiftFunction ApproxNegHalfPowerMD; //rational approx for X^{-1/(2*inv_pow)}
|
||||
|
||||
private:
|
||||
|
||||
FermionOperator<Impl> & NumOp;// the basic operator
|
||||
FermionOperator<Impl> & DenOp;// the basic operator
|
||||
FermionField PhiEven; // the pseudo fermion field for this trajectory
|
||||
FermionField PhiOdd; // the pseudo fermion field for this trajectory
|
||||
|
||||
//Generate the approximation to x^{1/inv_pow} (->approx) and x^{-1/inv_pow} (-> approx_inv) by an approx_degree degree rational approximation
|
||||
//CG_tolerance is used to issue a warning if the approximation error is larger than the tolerance of the CG and is otherwise just stored in the MultiShiftFunction for use by the multi-shift
|
||||
static void generateApprox(MultiShiftFunction &approx, MultiShiftFunction &approx_inv, int inv_pow, int approx_degree, double CG_tolerance, AlgRemez &remez){
|
||||
std::cout<<GridLogMessage << "Generating degree "<< approx_degree<<" approximation for x^(1/" << inv_pow << ")"<<std::endl;
|
||||
double error = remez.generateApprox(approx_degree,1,inv_pow);
|
||||
if(error > CG_tolerance)
|
||||
std::cout<<GridLogMessage << "WARNING: Remez approximation has a larger error " << error << " than the CG tolerance " << CG_tolerance << "! Try increasing the number of poles" << std::endl;
|
||||
|
||||
approx.Init(remez, CG_tolerance,false);
|
||||
approx_inv.Init(remez, CG_tolerance,true);
|
||||
}
|
||||
|
||||
|
||||
protected:
|
||||
static constexpr bool Numerator = true;
|
||||
static constexpr bool Denominator = false;
|
||||
|
||||
//Allow derived classes to override the multishift CG
|
||||
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionField &in, FermionField &out){
|
||||
SchurDifferentiableOperator<Impl> schurOp(numerator ? NumOp : DenOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG(MaxIter, approx);
|
||||
msCG(schurOp,in, out);
|
||||
}
|
||||
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionField &in, std::vector<FermionField> &out_elems, FermionField &out){
|
||||
SchurDifferentiableOperator<Impl> schurOp(numerator ? NumOp : DenOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG(MaxIter, approx);
|
||||
msCG(schurOp,in, out_elems, out);
|
||||
}
|
||||
//Allow derived classes to override the gauge import
|
||||
virtual void ImportGauge(const GaugeField &U){
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
GeneralEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||
FermionOperator<Impl> &_DenOp,
|
||||
const Params & p
|
||||
) :
|
||||
NumOp(_NumOp),
|
||||
DenOp(_DenOp),
|
||||
PhiOdd (_NumOp.FermionRedBlackGrid()),
|
||||
PhiEven(_NumOp.FermionRedBlackGrid()),
|
||||
param(p)
|
||||
{
|
||||
std::cout<<GridLogMessage << action_name() << " initialize: starting" << std::endl;
|
||||
AlgRemez remez(param.lo,param.hi,param.precision);
|
||||
|
||||
//Generate approximations for action eval
|
||||
generateApprox(ApproxPowerAction, ApproxNegPowerAction, param.inv_pow, param.action_degree, param.action_tolerance, remez);
|
||||
generateApprox(ApproxHalfPowerAction, ApproxNegHalfPowerAction, 2*param.inv_pow, param.action_degree, param.action_tolerance, remez);
|
||||
|
||||
//Generate approximations for MD
|
||||
if(param.md_degree != param.action_degree){ //note the CG tolerance is unrelated to the stopping condition of the Remez algorithm
|
||||
generateApprox(ApproxPowerMD, ApproxNegPowerMD, param.inv_pow, param.md_degree, param.md_tolerance, remez);
|
||||
generateApprox(ApproxHalfPowerMD, ApproxNegHalfPowerMD, 2*param.inv_pow, param.md_degree, param.md_tolerance, remez);
|
||||
}else{
|
||||
std::cout<<GridLogMessage << "Using same rational approximations for MD as for action evaluation" << std::endl;
|
||||
ApproxPowerMD = ApproxPowerAction;
|
||||
ApproxNegPowerMD = ApproxNegPowerAction;
|
||||
for(int i=0;i<ApproxPowerMD.tolerances.size();i++)
|
||||
ApproxNegPowerMD.tolerances[i] = ApproxPowerMD.tolerances[i] = param.md_tolerance; //used for multishift
|
||||
|
||||
ApproxHalfPowerMD = ApproxHalfPowerAction;
|
||||
ApproxNegHalfPowerMD = ApproxNegHalfPowerAction;
|
||||
for(int i=0;i<ApproxPowerMD.tolerances.size();i++)
|
||||
ApproxNegHalfPowerMD.tolerances[i] = ApproxHalfPowerMD.tolerances[i] = param.md_tolerance;
|
||||
}
|
||||
|
||||
std::cout<<GridLogMessage << action_name() << " initialize: complete" << std::endl;
|
||||
};
|
||||
|
||||
virtual std::string action_name(){return "GeneralEvenOddRatioRationalPseudoFermionAction";}
|
||||
|
||||
virtual std::string LogParameters(){
|
||||
std::stringstream sstream;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Power : 1/" << param.inv_pow << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance (Action) :" << param.action_tolerance << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Degree (Action) :" << param.action_degree << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance (MD) :" << param.md_tolerance << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Degree (MD) :" << param.md_degree << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
|
||||
return sstream.str();
|
||||
}
|
||||
|
||||
//Access the fermion field
|
||||
const FermionField &getPhiOdd() const{ return PhiOdd; }
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
|
||||
std::cout<<GridLogMessage << action_name() << " refresh: starting" << std::endl;
|
||||
FermionField eta(NumOp.FermionGrid());
|
||||
|
||||
// P(eta) \propto e^{- eta^dag eta}
|
||||
//
|
||||
// The gaussian function draws from P(x) \propto e^{- x^2 / 2 } [i.e. sigma=1]
|
||||
// Thus eta = x/sqrt{2} = x * sqrt(1/2)
|
||||
RealD scale = std::sqrt(0.5);
|
||||
gaussian(pRNG,eta); eta=eta*scale;
|
||||
|
||||
refresh(U,eta);
|
||||
}
|
||||
|
||||
//Allow for manual specification of random field for testing
|
||||
void refresh(const GaugeField &U, const FermionField &eta) {
|
||||
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//
|
||||
// P(phi) = e^{- phi^dag (VdagV)^1/(2*inv_pow) (MdagM)^-1/inv_pow (VdagV)^1/(2*inv_pow) phi}
|
||||
// = e^{- phi^dag (VdagV)^1/(2*inv_pow) (MdagM)^-1/(2*inv_pow) (MdagM)^-1/(2*inv_pow) (VdagV)^1/(2*inv_pow) phi}
|
||||
//
|
||||
// Phi = (VdagV)^-1/(2*inv_pow) Mdag^{1/(2*inv_pow)} eta
|
||||
|
||||
std::cout<<GridLogMessage << action_name() << " refresh: starting" << std::endl;
|
||||
|
||||
FermionField etaOdd (NumOp.FermionRedBlackGrid());
|
||||
FermionField etaEven(NumOp.FermionRedBlackGrid());
|
||||
FermionField tmp(NumOp.FermionRedBlackGrid());
|
||||
|
||||
pickCheckerboard(Even,etaEven,eta);
|
||||
pickCheckerboard(Odd,etaOdd,eta);
|
||||
|
||||
ImportGauge(U);
|
||||
|
||||
// MdagM^1/(2*inv_pow) eta
|
||||
std::cout<<GridLogMessage << action_name() << " refresh: doing (M^dag M)^{1/" << 2*param.inv_pow << "} eta" << std::endl;
|
||||
multiShiftInverse(Denominator, ApproxHalfPowerAction, param.MaxIter, etaOdd, tmp);
|
||||
|
||||
// VdagV^-1/(2*inv_pow) MdagM^1/(2*inv_pow) eta
|
||||
std::cout<<GridLogMessage << action_name() << " refresh: doing (V^dag V)^{-1/" << 2*param.inv_pow << "} ( (M^dag M)^{1/" << 2*param.inv_pow << "} eta)" << std::endl;
|
||||
multiShiftInverse(Numerator, ApproxNegHalfPowerAction, param.MaxIter, tmp, PhiOdd);
|
||||
|
||||
assert(NumOp.ConstEE() == 1);
|
||||
assert(DenOp.ConstEE() == 1);
|
||||
PhiEven = Zero();
|
||||
std::cout<<GridLogMessage << action_name() << " refresh: starting" << std::endl;
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
std::cout<<GridLogMessage << action_name() << " compute action: starting" << std::endl;
|
||||
ImportGauge(U);
|
||||
|
||||
FermionField X(NumOp.FermionRedBlackGrid());
|
||||
FermionField Y(NumOp.FermionRedBlackGrid());
|
||||
|
||||
// VdagV^1/(2*inv_pow) Phi
|
||||
std::cout<<GridLogMessage << action_name() << " compute action: doing (V^dag V)^{1/" << 2*param.inv_pow << "} Phi" << std::endl;
|
||||
multiShiftInverse(Numerator, ApproxHalfPowerAction, param.MaxIter, PhiOdd,X);
|
||||
|
||||
// MdagM^-1/(2*inv_pow) VdagV^1/(2*inv_pow) Phi
|
||||
std::cout<<GridLogMessage << action_name() << " compute action: doing (M^dag M)^{-1/" << 2*param.inv_pow << "} ( (V^dag V)^{1/" << 2*param.inv_pow << "} Phi)" << std::endl;
|
||||
multiShiftInverse(Denominator, ApproxNegHalfPowerAction, param.MaxIter, X,Y);
|
||||
|
||||
// Randomly apply rational bounds checks.
|
||||
int rcheck = rand();
|
||||
auto grid = NumOp.FermionGrid();
|
||||
auto r=rand();
|
||||
grid->Broadcast(0,r);
|
||||
|
||||
if ( param.BoundsCheckFreq != 0 && (r % param.BoundsCheckFreq)==0 ) {
|
||||
std::cout<<GridLogMessage << action_name() << " compute action: doing bounds check" << std::endl;
|
||||
FermionField gauss(NumOp.FermionRedBlackGrid());
|
||||
gauss = PhiOdd;
|
||||
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
||||
std::cout<<GridLogMessage << action_name() << " compute action: checking high bounds" << std::endl;
|
||||
HighBoundCheck(MdagM,gauss,param.hi);
|
||||
std::cout<<GridLogMessage << action_name() << " compute action: full approximation" << std::endl;
|
||||
InversePowerBoundsCheck(param.inv_pow,param.MaxIter,param.action_tolerance*100,MdagM,gauss,ApproxNegPowerAction);
|
||||
std::cout<<GridLogMessage << action_name() << " compute action: bounds check complete" << std::endl;
|
||||
}
|
||||
|
||||
// Phidag VdagV^1/(2*inv_pow) MdagM^-1/(2*inv_pow) MdagM^-1/(2*inv_pow) VdagV^1/(2*inv_pow) Phi
|
||||
RealD action = norm2(Y);
|
||||
std::cout<<GridLogMessage << action_name() << " compute action: complete" << std::endl;
|
||||
|
||||
return action;
|
||||
};
|
||||
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//
|
||||
// Here, M is some 5D operator and V is the Pauli-Villars field
|
||||
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
|
||||
//
|
||||
// Need
|
||||
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
|
||||
// + chi^dag P/Q d[N/D] P/Q chi
|
||||
// + chi^dag P/Q N/D d[P/Q] chi
|
||||
//
|
||||
// P/Q is expressed as partial fraction expansion:
|
||||
//
|
||||
// a0 + \sum_k ak/(V^dagV + bk)
|
||||
//
|
||||
// d[P/Q] is then
|
||||
//
|
||||
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
|
||||
//
|
||||
// and similar for N/D.
|
||||
//
|
||||
// Need
|
||||
// MpvPhi_k = [Vdag V + bk]^{-1} chi
|
||||
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
|
||||
//
|
||||
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
|
||||
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
|
||||
//
|
||||
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
|
||||
//
|
||||
|
||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
||||
std::cout<<GridLogMessage << action_name() << " deriv: starting" << std::endl;
|
||||
const int n_f = ApproxNegPowerMD.poles.size();
|
||||
const int n_pv = ApproxHalfPowerMD.poles.size();
|
||||
|
||||
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionRedBlackGrid());
|
||||
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionRedBlackGrid());
|
||||
std::vector<FermionField> MfMpvPhi_k (n_f ,NumOp.FermionRedBlackGrid());
|
||||
|
||||
FermionField MpvPhi(NumOp.FermionRedBlackGrid());
|
||||
FermionField MfMpvPhi(NumOp.FermionRedBlackGrid());
|
||||
FermionField MpvMfMpvPhi(NumOp.FermionRedBlackGrid());
|
||||
FermionField Y(NumOp.FermionRedBlackGrid());
|
||||
|
||||
GaugeField tmp(NumOp.GaugeGrid());
|
||||
|
||||
ImportGauge(U);
|
||||
|
||||
std::cout<<GridLogMessage << action_name() << " deriv: doing (V^dag V)^{1/" << 2*param.inv_pow << "} Phi" << std::endl;
|
||||
multiShiftInverse(Numerator, ApproxHalfPowerMD, param.MaxIter, PhiOdd,MpvPhi_k,MpvPhi);
|
||||
|
||||
std::cout<<GridLogMessage << action_name() << " deriv: doing (M^dag M)^{-1/" << param.inv_pow << "} ( (V^dag V)^{1/" << 2*param.inv_pow << "} Phi)" << std::endl;
|
||||
multiShiftInverse(Denominator, ApproxNegPowerMD, param.MaxIter, MpvPhi,MfMpvPhi_k,MfMpvPhi);
|
||||
|
||||
std::cout<<GridLogMessage << action_name() << " deriv: doing (V^dag V)^{1/" << 2*param.inv_pow << "} ( (M^dag M)^{-1/" << param.inv_pow << "} (V^dag V)^{1/" << 2*param.inv_pow << "} Phi)" << std::endl;
|
||||
multiShiftInverse(Numerator, ApproxHalfPowerMD, param.MaxIter, MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
|
||||
|
||||
|
||||
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
||||
SchurDifferentiableOperator<Impl> VdagV(NumOp);
|
||||
|
||||
|
||||
RealD ak;
|
||||
|
||||
dSdU = Zero();
|
||||
|
||||
// With these building blocks
|
||||
//
|
||||
// dS/dU =
|
||||
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
|
||||
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
|
||||
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
|
||||
|
||||
//(1)
|
||||
std::cout<<GridLogMessage << action_name() << " deriv: doing dS/dU part (1)" << std::endl;
|
||||
for(int k=0;k<n_f;k++){
|
||||
ak = ApproxNegPowerMD.residues[k];
|
||||
MdagM.Mpc(MfMpvPhi_k[k],Y);
|
||||
MdagM.MpcDagDeriv(tmp , MfMpvPhi_k[k], Y ); dSdU=dSdU+ak*tmp;
|
||||
MdagM.MpcDeriv(tmp , Y, MfMpvPhi_k[k] ); dSdU=dSdU+ak*tmp;
|
||||
}
|
||||
|
||||
//(2)
|
||||
//(3)
|
||||
std::cout<<GridLogMessage << action_name() << " deriv: doing dS/dU part (2)+(3)" << std::endl;
|
||||
for(int k=0;k<n_pv;k++){
|
||||
|
||||
ak = ApproxHalfPowerMD.residues[k];
|
||||
|
||||
VdagV.Mpc(MpvPhi_k[k],Y);
|
||||
VdagV.MpcDagDeriv(tmp,MpvMfMpvPhi_k[k],Y); dSdU=dSdU+ak*tmp;
|
||||
VdagV.MpcDeriv (tmp,Y,MpvMfMpvPhi_k[k]); dSdU=dSdU+ak*tmp;
|
||||
|
||||
VdagV.Mpc(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
|
||||
VdagV.MpcDeriv (tmp,Y, MpvPhi_k[k]); dSdU=dSdU+ak*tmp;
|
||||
VdagV.MpcDagDeriv(tmp,MpvPhi_k[k], Y); dSdU=dSdU+ak*tmp;
|
||||
|
||||
}
|
||||
|
||||
//dSdU = Ta(dSdU);
|
||||
std::cout<<GridLogMessage << action_name() << " deriv: complete" << std::endl;
|
||||
};
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
@ -0,0 +1,93 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/pseudofermion/GeneralEvenOddRationalRatioMixedPrec.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_MIXED_PREC_H
|
||||
#define QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_MIXED_PREC_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Generic rational approximation for ratios of operators utilizing the mixed precision multishift algorithm
|
||||
// cf. GeneralEvenOddRational.h for details
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<class ImplD, class ImplF>
|
||||
class GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction : public GeneralEvenOddRatioRationalPseudoFermionAction<ImplD> {
|
||||
private:
|
||||
typedef typename ImplD::FermionField FermionFieldD;
|
||||
typedef typename ImplF::FermionField FermionFieldF;
|
||||
|
||||
FermionOperator<ImplD> & NumOpD;
|
||||
FermionOperator<ImplD> & DenOpD;
|
||||
|
||||
FermionOperator<ImplF> & NumOpF;
|
||||
FermionOperator<ImplF> & DenOpF;
|
||||
|
||||
Integer ReliableUpdateFreq;
|
||||
protected:
|
||||
|
||||
//Allow derived classes to override the multishift CG
|
||||
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionFieldD &in, FermionFieldD &out){
|
||||
SchurDifferentiableOperator<ImplD> schurOpD(numerator ? NumOpD : DenOpD);
|
||||
SchurDifferentiableOperator<ImplF> schurOpF(numerator ? NumOpF : DenOpF);
|
||||
|
||||
ConjugateGradientMultiShiftMixedPrec<FermionFieldD, FermionFieldF> msCG(MaxIter, approx, NumOpF.FermionRedBlackGrid(), schurOpF, ReliableUpdateFreq);
|
||||
msCG(schurOpD, in, out);
|
||||
}
|
||||
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionFieldD &in, std::vector<FermionFieldD> &out_elems, FermionFieldD &out){
|
||||
SchurDifferentiableOperator<ImplD> schurOpD(numerator ? NumOpD : DenOpD);
|
||||
SchurDifferentiableOperator<ImplF> schurOpF(numerator ? NumOpF : DenOpF);
|
||||
|
||||
ConjugateGradientMultiShiftMixedPrec<FermionFieldD, FermionFieldF> msCG(MaxIter, approx, NumOpF.FermionRedBlackGrid(), schurOpF, ReliableUpdateFreq);
|
||||
msCG(schurOpD, in, out_elems, out);
|
||||
}
|
||||
//Allow derived classes to override the gauge import
|
||||
virtual void ImportGauge(const typename ImplD::GaugeField &Ud){
|
||||
typename ImplF::GaugeField Uf(NumOpF.GaugeGrid());
|
||||
precisionChange(Uf, Ud);
|
||||
|
||||
NumOpD.ImportGauge(Ud);
|
||||
DenOpD.ImportGauge(Ud);
|
||||
|
||||
NumOpF.ImportGauge(Uf);
|
||||
DenOpF.ImportGauge(Uf);
|
||||
}
|
||||
|
||||
public:
|
||||
GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction(FermionOperator<ImplD> &_NumOpD, FermionOperator<ImplD> &_DenOpD,
|
||||
FermionOperator<ImplF> &_NumOpF, FermionOperator<ImplF> &_DenOpF,
|
||||
const RationalActionParams & p, Integer _ReliableUpdateFreq
|
||||
) : GeneralEvenOddRatioRationalPseudoFermionAction<ImplD>(_NumOpD, _DenOpD, p),
|
||||
ReliableUpdateFreq(_ReliableUpdateFreq), NumOpD(_NumOpD), DenOpD(_DenOpD), NumOpF(_NumOpF), DenOpF(_DenOpF){}
|
||||
|
||||
virtual std::string action_name(){return "GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction";}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
@ -40,249 +40,31 @@ NAMESPACE_BEGIN(Grid);
|
||||
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
|
||||
|
||||
template<class Impl>
|
||||
class OneFlavourEvenOddRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
||||
class OneFlavourEvenOddRatioRationalPseudoFermionAction : public GeneralEvenOddRatioRationalPseudoFermionAction<Impl> {
|
||||
public:
|
||||
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
typedef OneFlavourRationalParams Params;
|
||||
Params param;
|
||||
|
||||
MultiShiftFunction PowerHalf ;
|
||||
MultiShiftFunction PowerNegHalf;
|
||||
MultiShiftFunction PowerQuarter;
|
||||
MultiShiftFunction PowerNegQuarter;
|
||||
|
||||
private:
|
||||
|
||||
FermionOperator<Impl> & NumOp;// the basic operator
|
||||
FermionOperator<Impl> & DenOp;// the basic operator
|
||||
FermionField PhiEven; // the pseudo fermion field for this trajectory
|
||||
FermionField PhiOdd; // the pseudo fermion field for this trajectory
|
||||
static RationalActionParams transcribe(const Params &in){
|
||||
RationalActionParams out;
|
||||
out.inv_pow = 2;
|
||||
out.lo = in.lo;
|
||||
out.hi = in.hi;
|
||||
out.MaxIter = in.MaxIter;
|
||||
out.action_tolerance = out.md_tolerance = in.tolerance;
|
||||
out.action_degree = out.md_degree = in.degree;
|
||||
out.precision = in.precision;
|
||||
out.BoundsCheckFreq = in.BoundsCheckFreq;
|
||||
return out;
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
OneFlavourEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||
FermionOperator<Impl> &_DenOp,
|
||||
Params & p
|
||||
) :
|
||||
NumOp(_NumOp),
|
||||
DenOp(_DenOp),
|
||||
PhiOdd (_NumOp.FermionRedBlackGrid()),
|
||||
PhiEven(_NumOp.FermionRedBlackGrid()),
|
||||
param(p)
|
||||
{
|
||||
AlgRemez remez(param.lo,param.hi,param.precision);
|
||||
FermionOperator<Impl> &_DenOp,
|
||||
const Params & p
|
||||
) :
|
||||
GeneralEvenOddRatioRationalPseudoFermionAction<Impl>(_NumOp, _DenOp, transcribe(p)){}
|
||||
|
||||
// MdagM^(+- 1/2)
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,2);
|
||||
PowerHalf.Init(remez,param.tolerance,false);
|
||||
PowerNegHalf.Init(remez,param.tolerance,true);
|
||||
|
||||
// MdagM^(+- 1/4)
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,4);
|
||||
PowerQuarter.Init(remez,param.tolerance,false);
|
||||
PowerNegQuarter.Init(remez,param.tolerance,true);
|
||||
};
|
||||
|
||||
virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}
|
||||
|
||||
virtual std::string LogParameters(){
|
||||
std::stringstream sstream;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
|
||||
return sstream.str();
|
||||
}
|
||||
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
|
||||
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//
|
||||
// P(phi) = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/2 (VdagV)^1/4 phi}
|
||||
// = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/4 (MdagM)^-1/4 (VdagV)^1/4 phi}
|
||||
//
|
||||
// Phi = (VdagV)^-1/4 Mdag^{1/4} eta
|
||||
//
|
||||
// P(eta) = e^{- eta^dag eta}
|
||||
//
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
//
|
||||
// So eta should be of width sig = 1/sqrt(2).
|
||||
|
||||
RealD scale = std::sqrt(0.5);
|
||||
|
||||
FermionField eta(NumOp.FermionGrid());
|
||||
FermionField etaOdd (NumOp.FermionRedBlackGrid());
|
||||
FermionField etaEven(NumOp.FermionRedBlackGrid());
|
||||
FermionField tmp(NumOp.FermionRedBlackGrid());
|
||||
|
||||
gaussian(pRNG,eta); eta=eta*scale;
|
||||
|
||||
pickCheckerboard(Even,etaEven,eta);
|
||||
pickCheckerboard(Odd,etaOdd,eta);
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
|
||||
// MdagM^1/4 eta
|
||||
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerQuarter);
|
||||
msCG_M(MdagM,etaOdd,tmp);
|
||||
|
||||
// VdagV^-1/4 MdagM^1/4 eta
|
||||
SchurDifferentiableOperator<Impl> VdagV(NumOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerNegQuarter);
|
||||
msCG_V(VdagV,tmp,PhiOdd);
|
||||
|
||||
assert(NumOp.ConstEE() == 1);
|
||||
assert(DenOp.ConstEE() == 1);
|
||||
PhiEven = Zero();
|
||||
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
FermionField X(NumOp.FermionRedBlackGrid());
|
||||
FermionField Y(NumOp.FermionRedBlackGrid());
|
||||
|
||||
// VdagV^1/4 Phi
|
||||
SchurDifferentiableOperator<Impl> VdagV(NumOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
|
||||
msCG_V(VdagV,PhiOdd,X);
|
||||
|
||||
// MdagM^-1/4 VdagV^1/4 Phi
|
||||
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegQuarter);
|
||||
msCG_M(MdagM,X,Y);
|
||||
|
||||
// Randomly apply rational bounds checks.
|
||||
auto grid = NumOp.FermionGrid();
|
||||
auto r=rand();
|
||||
grid->Broadcast(0,r);
|
||||
if ( (r%param.BoundsCheckFreq)==0 ) {
|
||||
FermionField gauss(NumOp.FermionRedBlackGrid());
|
||||
gauss = PhiOdd;
|
||||
HighBoundCheck(MdagM,gauss,param.hi);
|
||||
InverseSqrtBoundsCheck(param.MaxIter,param.tolerance*100,MdagM,gauss,PowerNegHalf);
|
||||
}
|
||||
|
||||
// Phidag VdagV^1/4 MdagM^-1/4 MdagM^-1/4 VdagV^1/4 Phi
|
||||
RealD action = norm2(Y);
|
||||
|
||||
return action;
|
||||
};
|
||||
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//
|
||||
// Here, M is some 5D operator and V is the Pauli-Villars field
|
||||
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
|
||||
//
|
||||
// Need
|
||||
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
|
||||
// + chi^dag P/Q d[N/D] P/Q chi
|
||||
// + chi^dag P/Q N/D d[P/Q] chi
|
||||
//
|
||||
// P/Q is expressed as partial fraction expansion:
|
||||
//
|
||||
// a0 + \sum_k ak/(V^dagV + bk)
|
||||
//
|
||||
// d[P/Q] is then
|
||||
//
|
||||
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
|
||||
//
|
||||
// and similar for N/D.
|
||||
//
|
||||
// Need
|
||||
// MpvPhi_k = [Vdag V + bk]^{-1} chi
|
||||
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
|
||||
//
|
||||
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
|
||||
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
|
||||
//
|
||||
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
|
||||
//
|
||||
|
||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
||||
|
||||
const int n_f = PowerNegHalf.poles.size();
|
||||
const int n_pv = PowerQuarter.poles.size();
|
||||
|
||||
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionRedBlackGrid());
|
||||
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionRedBlackGrid());
|
||||
std::vector<FermionField> MfMpvPhi_k (n_f ,NumOp.FermionRedBlackGrid());
|
||||
|
||||
FermionField MpvPhi(NumOp.FermionRedBlackGrid());
|
||||
FermionField MfMpvPhi(NumOp.FermionRedBlackGrid());
|
||||
FermionField MpvMfMpvPhi(NumOp.FermionRedBlackGrid());
|
||||
FermionField Y(NumOp.FermionRedBlackGrid());
|
||||
|
||||
GaugeField tmp(NumOp.GaugeGrid());
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
SchurDifferentiableOperator<Impl> VdagV(NumOp);
|
||||
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
||||
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegHalf);
|
||||
|
||||
msCG_V(VdagV,PhiOdd,MpvPhi_k,MpvPhi);
|
||||
msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi);
|
||||
msCG_V(VdagV,MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
|
||||
|
||||
RealD ak;
|
||||
|
||||
dSdU = Zero();
|
||||
|
||||
// With these building blocks
|
||||
//
|
||||
// dS/dU =
|
||||
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
|
||||
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
|
||||
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
|
||||
|
||||
//(1)
|
||||
for(int k=0;k<n_f;k++){
|
||||
ak = PowerNegHalf.residues[k];
|
||||
MdagM.Mpc(MfMpvPhi_k[k],Y);
|
||||
MdagM.MpcDagDeriv(tmp , MfMpvPhi_k[k], Y ); dSdU=dSdU+ak*tmp;
|
||||
MdagM.MpcDeriv(tmp , Y, MfMpvPhi_k[k] ); dSdU=dSdU+ak*tmp;
|
||||
}
|
||||
|
||||
//(2)
|
||||
//(3)
|
||||
for(int k=0;k<n_pv;k++){
|
||||
|
||||
ak = PowerQuarter.residues[k];
|
||||
|
||||
VdagV.Mpc(MpvPhi_k[k],Y);
|
||||
VdagV.MpcDagDeriv(tmp,MpvMfMpvPhi_k[k],Y); dSdU=dSdU+ak*tmp;
|
||||
VdagV.MpcDeriv (tmp,Y,MpvMfMpvPhi_k[k]); dSdU=dSdU+ak*tmp;
|
||||
|
||||
VdagV.Mpc(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
|
||||
VdagV.MpcDeriv (tmp,Y, MpvPhi_k[k]); dSdU=dSdU+ak*tmp;
|
||||
VdagV.MpcDagDeriv(tmp,MpvPhi_k[k], Y); dSdU=dSdU+ak*tmp;
|
||||
|
||||
}
|
||||
|
||||
//dSdU = Ta(dSdU);
|
||||
|
||||
};
|
||||
virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -40,6 +40,8 @@ directory
|
||||
#include <Grid/qcd/action/pseudofermion/OneFlavourRational.h>
|
||||
#include <Grid/qcd/action/pseudofermion/OneFlavourRationalRatio.h>
|
||||
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRational.h>
|
||||
#include <Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h>
|
||||
#include <Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatioMixedPrec.h>
|
||||
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRationalRatio.h>
|
||||
#include <Grid/qcd/action/pseudofermion/ExactOneFlavourRatio.h>
|
||||
|
||||
|
@ -83,16 +83,10 @@ NAMESPACE_BEGIN(Grid);
|
||||
return sstream.str();
|
||||
}
|
||||
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
|
||||
//Access the fermion field
|
||||
const FermionField &getPhiOdd() const{ return PhiOdd; }
|
||||
|
||||
// P(phi) = e^{- phi^dag Vpc (MpcdagMpc)^-1 Vpcdag phi}
|
||||
//
|
||||
// NumOp == V
|
||||
// DenOp == M
|
||||
//
|
||||
// Take phi_o = Vpcdag^{-1} Mpcdag eta_o ; eta_o = Mpcdag^{-1} Vpcdag Phi
|
||||
//
|
||||
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
|
||||
// P(eta_o) = e^{- eta_o^dag eta_o}
|
||||
//
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
@ -100,12 +94,22 @@ NAMESPACE_BEGIN(Grid);
|
||||
RealD scale = std::sqrt(0.5);
|
||||
|
||||
FermionField eta (NumOp.FermionGrid());
|
||||
gaussian(pRNG,eta); eta = eta * scale;
|
||||
|
||||
refresh(U,eta);
|
||||
}
|
||||
|
||||
void refresh(const GaugeField &U, const FermionField &eta) {
|
||||
// P(phi) = e^{- phi^dag Vpc (MpcdagMpc)^-1 Vpcdag phi}
|
||||
//
|
||||
// NumOp == V
|
||||
// DenOp == M
|
||||
//
|
||||
// Take phi_o = Vpcdag^{-1} Mpcdag eta_o ; eta_o = Mpcdag^{-1} Vpcdag Phi
|
||||
FermionField etaOdd (NumOp.FermionRedBlackGrid());
|
||||
FermionField etaEven(NumOp.FermionRedBlackGrid());
|
||||
FermionField tmp (NumOp.FermionRedBlackGrid());
|
||||
|
||||
gaussian(pRNG,eta);
|
||||
|
||||
pickCheckerboard(Even,etaEven,eta);
|
||||
pickCheckerboard(Odd,etaOdd,eta);
|
||||
|
||||
@ -125,8 +129,8 @@ NAMESPACE_BEGIN(Grid);
|
||||
DenOp.MooeeDag(etaEven,tmp);
|
||||
NumOp.MooeeInvDag(tmp,PhiEven);
|
||||
|
||||
PhiOdd =PhiOdd*scale;
|
||||
PhiEven=PhiEven*scale;
|
||||
//PhiOdd =PhiOdd*scale;
|
||||
//PhiEven=PhiEven*scale;
|
||||
|
||||
};
|
||||
|
||||
|
6
Grid/qcd/gparity/Gparity.h
Normal file
6
Grid/qcd/gparity/Gparity.h
Normal file
@ -0,0 +1,6 @@
|
||||
#ifndef GRID_GPARITY_H_
|
||||
#define GRID_GPARITY_H_
|
||||
|
||||
#include<Grid/qcd/gparity/GparityFlavour.h>
|
||||
|
||||
#endif
|
34
Grid/qcd/gparity/GparityFlavour.cc
Normal file
34
Grid/qcd/gparity/GparityFlavour.cc
Normal file
@ -0,0 +1,34 @@
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
const std::array<const GparityFlavour, 3> GparityFlavour::sigma_mu = {{
|
||||
GparityFlavour(GparityFlavour::Algebra::SigmaX),
|
||||
GparityFlavour(GparityFlavour::Algebra::SigmaY),
|
||||
GparityFlavour(GparityFlavour::Algebra::SigmaZ)
|
||||
}};
|
||||
|
||||
const std::array<const GparityFlavour, 6> GparityFlavour::sigma_all = {{
|
||||
GparityFlavour(GparityFlavour::Algebra::Identity),
|
||||
GparityFlavour(GparityFlavour::Algebra::SigmaX),
|
||||
GparityFlavour(GparityFlavour::Algebra::SigmaY),
|
||||
GparityFlavour(GparityFlavour::Algebra::SigmaZ),
|
||||
GparityFlavour(GparityFlavour::Algebra::ProjPlus),
|
||||
GparityFlavour(GparityFlavour::Algebra::ProjMinus)
|
||||
}};
|
||||
|
||||
const std::array<const char *, GparityFlavour::nSigma> GparityFlavour::name = {{
|
||||
"SigmaX",
|
||||
"MinusSigmaX",
|
||||
"SigmaY",
|
||||
"MinusSigmaY",
|
||||
"SigmaZ",
|
||||
"MinusSigmaZ",
|
||||
"Identity",
|
||||
"MinusIdentity",
|
||||
"ProjPlus",
|
||||
"MinusProjPlus",
|
||||
"ProjMinus",
|
||||
"MinusProjMinus"}};
|
||||
|
||||
NAMESPACE_END(Grid);
|
475
Grid/qcd/gparity/GparityFlavour.h
Normal file
475
Grid/qcd/gparity/GparityFlavour.h
Normal file
@ -0,0 +1,475 @@
|
||||
#ifndef GRID_QCD_GPARITY_FLAVOUR_H
|
||||
#define GRID_QCD_GPARITY_FLAVOUR_H
|
||||
|
||||
//Support for flavour-matrix operations acting on the G-parity flavour index
|
||||
|
||||
#include <array>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
class GparityFlavour {
|
||||
public:
|
||||
GRID_SERIALIZABLE_ENUM(Algebra, undef,
|
||||
SigmaX, 0,
|
||||
MinusSigmaX, 1,
|
||||
SigmaY, 2,
|
||||
MinusSigmaY, 3,
|
||||
SigmaZ, 4,
|
||||
MinusSigmaZ, 5,
|
||||
Identity, 6,
|
||||
MinusIdentity, 7,
|
||||
ProjPlus, 8,
|
||||
MinusProjPlus, 9,
|
||||
ProjMinus, 10,
|
||||
MinusProjMinus, 11
|
||||
);
|
||||
static constexpr unsigned int nSigma = 12;
|
||||
static const std::array<const char *, nSigma> name;
|
||||
static const std::array<const GparityFlavour, 3> sigma_mu;
|
||||
static const std::array<const GparityFlavour, 6> sigma_all;
|
||||
Algebra g;
|
||||
public:
|
||||
accelerator GparityFlavour(Algebra initg): g(initg) {}
|
||||
};
|
||||
|
||||
|
||||
|
||||
// 0 1 x vector
|
||||
// 1 0
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourSigmaX(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = rhs(1);
|
||||
ret(1) = rhs(0);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = rhs(1,0);
|
||||
ret(0,1) = rhs(1,1);
|
||||
ret(1,0) = rhs(0,0);
|
||||
ret(1,1) = rhs(0,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = rhs(0,1);
|
||||
ret(0,1) = rhs(0,0);
|
||||
ret(1,0) = rhs(1,1);
|
||||
ret(1,1) = rhs(1,0);
|
||||
};
|
||||
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourMinusSigmaX(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = -rhs(1);
|
||||
ret(1) = -rhs(0);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourMinusSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -rhs(1,0);
|
||||
ret(0,1) = -rhs(1,1);
|
||||
ret(1,0) = -rhs(0,0);
|
||||
ret(1,1) = -rhs(0,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourMinusSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -rhs(0,1);
|
||||
ret(0,1) = -rhs(0,0);
|
||||
ret(1,0) = -rhs(1,1);
|
||||
ret(1,1) = -rhs(1,0);
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// 0 -i x vector
|
||||
// i 0
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourSigmaY(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = timesMinusI(rhs(1));
|
||||
ret(1) = timesI(rhs(0));
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = timesMinusI(rhs(1,0));
|
||||
ret(0,1) = timesMinusI(rhs(1,1));
|
||||
ret(1,0) = timesI(rhs(0,0));
|
||||
ret(1,1) = timesI(rhs(0,1));
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = timesI(rhs(0,1));
|
||||
ret(0,1) = timesMinusI(rhs(0,0));
|
||||
ret(1,0) = timesI(rhs(1,1));
|
||||
ret(1,1) = timesMinusI(rhs(1,0));
|
||||
};
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourMinusSigmaY(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = timesI(rhs(1));
|
||||
ret(1) = timesMinusI(rhs(0));
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourMinusSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = timesI(rhs(1,0));
|
||||
ret(0,1) = timesI(rhs(1,1));
|
||||
ret(1,0) = timesMinusI(rhs(0,0));
|
||||
ret(1,1) = timesMinusI(rhs(0,1));
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourMinusSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = timesMinusI(rhs(0,1));
|
||||
ret(0,1) = timesI(rhs(0,0));
|
||||
ret(1,0) = timesMinusI(rhs(1,1));
|
||||
ret(1,1) = timesI(rhs(1,0));
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// 1 0 x vector
|
||||
// 0 -1
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourSigmaZ(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = rhs(0);
|
||||
ret(1) = -rhs(1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = rhs(0,0);
|
||||
ret(0,1) = rhs(0,1);
|
||||
ret(1,0) = -rhs(1,0);
|
||||
ret(1,1) = -rhs(1,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = rhs(0,0);
|
||||
ret(0,1) = -rhs(0,1);
|
||||
ret(1,0) = rhs(1,0);
|
||||
ret(1,1) = -rhs(1,1);
|
||||
};
|
||||
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourMinusSigmaZ(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = -rhs(0);
|
||||
ret(1) = rhs(1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourMinusSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -rhs(0,0);
|
||||
ret(0,1) = -rhs(0,1);
|
||||
ret(1,0) = rhs(1,0);
|
||||
ret(1,1) = rhs(1,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourMinusSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -rhs(0,0);
|
||||
ret(0,1) = rhs(0,1);
|
||||
ret(1,0) = -rhs(1,0);
|
||||
ret(1,1) = rhs(1,1);
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourIdentity(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = rhs(0);
|
||||
ret(1) = rhs(1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = rhs(0,0);
|
||||
ret(0,1) = rhs(0,1);
|
||||
ret(1,0) = rhs(1,0);
|
||||
ret(1,1) = rhs(1,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = rhs(0,0);
|
||||
ret(0,1) = rhs(0,1);
|
||||
ret(1,0) = rhs(1,0);
|
||||
ret(1,1) = rhs(1,1);
|
||||
};
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourMinusIdentity(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = -rhs(0);
|
||||
ret(1) = -rhs(1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourMinusIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -rhs(0,0);
|
||||
ret(0,1) = -rhs(0,1);
|
||||
ret(1,0) = -rhs(1,0);
|
||||
ret(1,1) = -rhs(1,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourMinusIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -rhs(0,0);
|
||||
ret(0,1) = -rhs(0,1);
|
||||
ret(1,0) = -rhs(1,0);
|
||||
ret(1,1) = -rhs(1,1);
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
//G-parity flavour projection 1/2(1+\sigma_2)
|
||||
//1 -i
|
||||
//i 1
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourProjPlus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = 0.5*rhs(0) + 0.5*timesMinusI(rhs(1));
|
||||
ret(1) = 0.5*timesI(rhs(0)) + 0.5*rhs(1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesMinusI(rhs(1,0));
|
||||
ret(0,1) = 0.5*rhs(0,1) + 0.5*timesMinusI(rhs(1,1));
|
||||
ret(1,0) = 0.5*timesI(rhs(0,0)) + 0.5*rhs(1,0);
|
||||
ret(1,1) = 0.5*timesI(rhs(0,1)) + 0.5*rhs(1,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesI(rhs(0,1));
|
||||
ret(0,1) = 0.5*timesMinusI(rhs(0,0)) + 0.5*rhs(0,1);
|
||||
ret(1,0) = 0.5*rhs(1,0) + 0.5*timesI(rhs(1,1));
|
||||
ret(1,1) = 0.5*timesMinusI(rhs(1,0)) + 0.5*rhs(1,1);
|
||||
};
|
||||
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourMinusProjPlus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = -0.5*rhs(0) + 0.5*timesI(rhs(1));
|
||||
ret(1) = 0.5*timesMinusI(rhs(0)) - 0.5*rhs(1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourMinusProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesI(rhs(1,0));
|
||||
ret(0,1) = -0.5*rhs(0,1) + 0.5*timesI(rhs(1,1));
|
||||
ret(1,0) = 0.5*timesMinusI(rhs(0,0)) - 0.5*rhs(1,0);
|
||||
ret(1,1) = 0.5*timesMinusI(rhs(0,1)) - 0.5*rhs(1,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourMinusProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesMinusI(rhs(0,1));
|
||||
ret(0,1) = 0.5*timesI(rhs(0,0)) - 0.5*rhs(0,1);
|
||||
ret(1,0) = -0.5*rhs(1,0) + 0.5*timesMinusI(rhs(1,1));
|
||||
ret(1,1) = 0.5*timesI(rhs(1,0)) - 0.5*rhs(1,1);
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
//G-parity flavour projection 1/2(1-\sigma_2)
|
||||
//1 i
|
||||
//-i 1
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourProjMinus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = 0.5*rhs(0) + 0.5*timesI(rhs(1));
|
||||
ret(1) = 0.5*timesMinusI(rhs(0)) + 0.5*rhs(1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesI(rhs(1,0));
|
||||
ret(0,1) = 0.5*rhs(0,1) + 0.5*timesI(rhs(1,1));
|
||||
ret(1,0) = 0.5*timesMinusI(rhs(0,0)) + 0.5*rhs(1,0);
|
||||
ret(1,1) = 0.5*timesMinusI(rhs(0,1)) + 0.5*rhs(1,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesMinusI(rhs(0,1));
|
||||
ret(0,1) = 0.5*timesI(rhs(0,0)) + 0.5*rhs(0,1);
|
||||
ret(1,0) = 0.5*rhs(1,0) + 0.5*timesMinusI(rhs(1,1));
|
||||
ret(1,1) = 0.5*timesI(rhs(1,0)) + 0.5*rhs(1,1);
|
||||
};
|
||||
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourMinusProjMinus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = -0.5*rhs(0) + 0.5*timesMinusI(rhs(1));
|
||||
ret(1) = 0.5*timesI(rhs(0)) - 0.5*rhs(1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourMinusProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesMinusI(rhs(1,0));
|
||||
ret(0,1) = -0.5*rhs(0,1) + 0.5*timesMinusI(rhs(1,1));
|
||||
ret(1,0) = 0.5*timesI(rhs(0,0)) - 0.5*rhs(1,0);
|
||||
ret(1,1) = 0.5*timesI(rhs(0,1)) - 0.5*rhs(1,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourMinusProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesI(rhs(0,1));
|
||||
ret(0,1) = 0.5*timesMinusI(rhs(0,0)) - 0.5*rhs(0,1);
|
||||
ret(1,0) = -0.5*rhs(1,0) + 0.5*timesI(rhs(1,1));
|
||||
ret(1,1) = 0.5*timesMinusI(rhs(1,0)) - 0.5*rhs(1,1);
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline auto operator*(const GparityFlavour &G, const iVector<vtype, Ngp> &arg)
|
||||
->typename std::enable_if<matchGridTensorIndex<iVector<vtype, Ngp>, GparityFlavourTensorIndex>::value, iVector<vtype, Ngp>>::type
|
||||
{
|
||||
iVector<vtype, Ngp> ret;
|
||||
|
||||
switch (G.g)
|
||||
{
|
||||
case GparityFlavour::Algebra::SigmaX:
|
||||
multFlavourSigmaX(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaX:
|
||||
multFlavourMinusSigmaX(ret, arg); break;
|
||||
case GparityFlavour::Algebra::SigmaY:
|
||||
multFlavourSigmaY(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaY:
|
||||
multFlavourMinusSigmaY(ret, arg); break;
|
||||
case GparityFlavour::Algebra::SigmaZ:
|
||||
multFlavourSigmaZ(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaZ:
|
||||
multFlavourMinusSigmaZ(ret, arg); break;
|
||||
case GparityFlavour::Algebra::Identity:
|
||||
multFlavourIdentity(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusIdentity:
|
||||
multFlavourMinusIdentity(ret, arg); break;
|
||||
case GparityFlavour::Algebra::ProjPlus:
|
||||
multFlavourProjPlus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusProjPlus:
|
||||
multFlavourMinusProjPlus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::ProjMinus:
|
||||
multFlavourProjMinus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusProjMinus:
|
||||
multFlavourMinusProjMinus(ret, arg); break;
|
||||
default: assert(0);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline auto operator*(const GparityFlavour &G, const iMatrix<vtype, Ngp> &arg)
|
||||
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype, Ngp>, GparityFlavourTensorIndex>::value, iMatrix<vtype, Ngp>>::type
|
||||
{
|
||||
iMatrix<vtype, Ngp> ret;
|
||||
|
||||
switch (G.g)
|
||||
{
|
||||
case GparityFlavour::Algebra::SigmaX:
|
||||
lmultFlavourSigmaX(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaX:
|
||||
lmultFlavourMinusSigmaX(ret, arg); break;
|
||||
case GparityFlavour::Algebra::SigmaY:
|
||||
lmultFlavourSigmaY(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaY:
|
||||
lmultFlavourMinusSigmaY(ret, arg); break;
|
||||
case GparityFlavour::Algebra::SigmaZ:
|
||||
lmultFlavourSigmaZ(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaZ:
|
||||
lmultFlavourMinusSigmaZ(ret, arg); break;
|
||||
case GparityFlavour::Algebra::Identity:
|
||||
lmultFlavourIdentity(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusIdentity:
|
||||
lmultFlavourMinusIdentity(ret, arg); break;
|
||||
case GparityFlavour::Algebra::ProjPlus:
|
||||
lmultFlavourProjPlus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusProjPlus:
|
||||
lmultFlavourMinusProjPlus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::ProjMinus:
|
||||
lmultFlavourProjMinus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusProjMinus:
|
||||
lmultFlavourMinusProjMinus(ret, arg); break;
|
||||
default: assert(0);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline auto operator*(const iMatrix<vtype, Ngp> &arg, const GparityFlavour &G)
|
||||
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype, Ngp>, GparityFlavourTensorIndex>::value, iMatrix<vtype, Ngp>>::type
|
||||
{
|
||||
iMatrix<vtype, Ngp> ret;
|
||||
|
||||
switch (G.g)
|
||||
{
|
||||
case GparityFlavour::Algebra::SigmaX:
|
||||
rmultFlavourSigmaX(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaX:
|
||||
rmultFlavourMinusSigmaX(ret, arg); break;
|
||||
case GparityFlavour::Algebra::SigmaY:
|
||||
rmultFlavourSigmaY(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaY:
|
||||
rmultFlavourMinusSigmaY(ret, arg); break;
|
||||
case GparityFlavour::Algebra::SigmaZ:
|
||||
rmultFlavourSigmaZ(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaZ:
|
||||
rmultFlavourMinusSigmaZ(ret, arg); break;
|
||||
case GparityFlavour::Algebra::Identity:
|
||||
rmultFlavourIdentity(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusIdentity:
|
||||
rmultFlavourMinusIdentity(ret, arg); break;
|
||||
case GparityFlavour::Algebra::ProjPlus:
|
||||
rmultFlavourProjPlus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusProjPlus:
|
||||
rmultFlavourMinusProjPlus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::ProjMinus:
|
||||
rmultFlavourProjMinus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusProjMinus:
|
||||
rmultFlavourMinusProjMinus(ret, arg); break;
|
||||
default: assert(0);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif // include guard
|
@ -129,18 +129,10 @@ public:
|
||||
Runner(S);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////
|
||||
|
||||
private:
|
||||
template <class SmearingPolicy>
|
||||
void Runner(SmearingPolicy &Smearing) {
|
||||
auto UGrid = Resources.GetCartesian();
|
||||
Resources.AddRNGs();
|
||||
Field U(UGrid);
|
||||
|
||||
// Can move this outside?
|
||||
typedef IntegratorType<SmearingPolicy> TheIntegrator;
|
||||
TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing);
|
||||
//Use the checkpointer to initialize the RNGs and the gauge field, writing the resulting gauge field into U.
|
||||
//This is called automatically by Run but may be useful elsewhere, e.g. for integrator tuning experiments
|
||||
void initializeGaugeFieldAndRNGs(Field &U){
|
||||
if(!Resources.haveRNGs()) Resources.AddRNGs();
|
||||
|
||||
if (Parameters.StartingType == "HotStart") {
|
||||
// Hot start
|
||||
@ -159,14 +151,40 @@ private:
|
||||
Resources.GetCheckPointer()->CheckpointRestore(Parameters.StartTrajectory, U,
|
||||
Resources.GetSerialRNG(),
|
||||
Resources.GetParallelRNG());
|
||||
} else if (Parameters.StartingType == "CheckpointStartReseed") {
|
||||
// Same as CheckpointRestart but reseed the RNGs using the fixed integer seeding used for ColdStart and HotStart
|
||||
// Useful for creating new evolution streams from an existing stream
|
||||
|
||||
// WARNING: Unfortunately because the checkpointer doesn't presently allow us to separately restore the RNG and gauge fields we have to load
|
||||
// an existing RNG checkpoint first; make sure one is available and named correctly
|
||||
Resources.GetCheckPointer()->CheckpointRestore(Parameters.StartTrajectory, U,
|
||||
Resources.GetSerialRNG(),
|
||||
Resources.GetParallelRNG());
|
||||
Resources.SeedFixedIntegers();
|
||||
} else {
|
||||
// others
|
||||
std::cout << GridLogError << "Unrecognized StartingType\n";
|
||||
std::cout
|
||||
<< GridLogError
|
||||
<< "Valid [HotStart, ColdStart, TepidStart, CheckpointStart]\n";
|
||||
<< "Valid [HotStart, ColdStart, TepidStart, CheckpointStart, CheckpointStartReseed]\n";
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////
|
||||
|
||||
private:
|
||||
template <class SmearingPolicy>
|
||||
void Runner(SmearingPolicy &Smearing) {
|
||||
auto UGrid = Resources.GetCartesian();
|
||||
Field U(UGrid);
|
||||
|
||||
initializeGaugeFieldAndRNGs(U);
|
||||
|
||||
typedef IntegratorType<SmearingPolicy> TheIntegrator;
|
||||
TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing);
|
||||
|
||||
Smearing.set_Field(U);
|
||||
|
||||
|
@ -115,21 +115,21 @@ private:
|
||||
|
||||
random(sRNG, rn_test);
|
||||
|
||||
std::cout << GridLogMessage
|
||||
std::cout << GridLogHMC
|
||||
<< "--------------------------------------------------\n";
|
||||
std::cout << GridLogMessage << "exp(-dH) = " << prob
|
||||
std::cout << GridLogHMC << "exp(-dH) = " << prob
|
||||
<< " Random = " << rn_test << "\n";
|
||||
std::cout << GridLogMessage
|
||||
std::cout << GridLogHMC
|
||||
<< "Acc. Probability = " << ((prob < 1.0) ? prob : 1.0) << "\n";
|
||||
|
||||
if ((prob > 1.0) || (rn_test <= prob)) { // accepted
|
||||
std::cout << GridLogMessage << "Metropolis_test -- ACCEPTED\n";
|
||||
std::cout << GridLogMessage
|
||||
std::cout << GridLogHMC << "Metropolis_test -- ACCEPTED\n";
|
||||
std::cout << GridLogHMC
|
||||
<< "--------------------------------------------------\n";
|
||||
return true;
|
||||
} else { // rejected
|
||||
std::cout << GridLogMessage << "Metropolis_test -- REJECTED\n";
|
||||
std::cout << GridLogMessage
|
||||
std::cout << GridLogHMC << "Metropolis_test -- REJECTED\n";
|
||||
std::cout << GridLogHMC
|
||||
<< "--------------------------------------------------\n";
|
||||
return false;
|
||||
}
|
||||
@ -145,7 +145,7 @@ private:
|
||||
|
||||
std::streamsize current_precision = std::cout.precision();
|
||||
std::cout.precision(15);
|
||||
std::cout << GridLogMessage << "Total H before trajectory = " << H0 << "\n";
|
||||
std::cout << GridLogHMC << "Total H before trajectory = " << H0 << "\n";
|
||||
std::cout.precision(current_precision);
|
||||
|
||||
TheIntegrator.integrate(U);
|
||||
@ -165,7 +165,7 @@ private:
|
||||
|
||||
|
||||
std::cout.precision(15);
|
||||
std::cout << GridLogMessage << "Total H after trajectory = " << H1
|
||||
std::cout << GridLogHMC << "Total H after trajectory = " << H1
|
||||
<< " dH = " << H1 - H0 << "\n";
|
||||
std::cout.precision(current_precision);
|
||||
|
||||
@ -196,9 +196,9 @@ public:
|
||||
// Actual updates (evolve a copy Ucopy then copy back eventually)
|
||||
unsigned int FinalTrajectory = Params.Trajectories + Params.NoMetropolisUntil + Params.StartTrajectory;
|
||||
for (int traj = Params.StartTrajectory; traj < FinalTrajectory; ++traj) {
|
||||
std::cout << GridLogMessage << "-- # Trajectory = " << traj << "\n";
|
||||
std::cout << GridLogHMC << "-- # Trajectory = " << traj << "\n";
|
||||
if (traj < Params.StartTrajectory + Params.NoMetropolisUntil) {
|
||||
std::cout << GridLogMessage << "-- Thermalization" << std::endl;
|
||||
std::cout << GridLogHMC << "-- Thermalization" << std::endl;
|
||||
}
|
||||
|
||||
double t0=usecond();
|
||||
@ -207,10 +207,10 @@ public:
|
||||
DeltaH = evolve_hmc_step(Ucopy);
|
||||
// Metropolis-Hastings test
|
||||
bool accept = true;
|
||||
if (traj >= Params.StartTrajectory + Params.NoMetropolisUntil) {
|
||||
if (Params.MetropolisTest && traj >= Params.StartTrajectory + Params.NoMetropolisUntil) {
|
||||
accept = metropolis_test(DeltaH);
|
||||
} else {
|
||||
std::cout << GridLogMessage << "Skipping Metropolis test" << std::endl;
|
||||
std::cout << GridLogHMC << "Skipping Metropolis test" << std::endl;
|
||||
}
|
||||
|
||||
if (accept)
|
||||
@ -219,7 +219,7 @@ public:
|
||||
|
||||
|
||||
double t1=usecond();
|
||||
std::cout << GridLogMessage << "Total time for trajectory (s): " << (t1-t0)/1e6 << std::endl;
|
||||
std::cout << GridLogHMC << "Total time for trajectory (s): " << (t1-t0)/1e6 << std::endl;
|
||||
|
||||
|
||||
for (int obs = 0; obs < Observables.size(); obs++) {
|
||||
@ -228,7 +228,7 @@ public:
|
||||
std::cout << GridLogDebug << "Observables pointer " << Observables[obs] << std::endl;
|
||||
Observables[obs]->TrajectoryComplete(traj + 1, Ucur, sRNG, pRNG);
|
||||
}
|
||||
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::::" << std::endl;
|
||||
std::cout << GridLogHMC << ":::::::::::::::::::::::::::::::::::::::::::" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -80,7 +80,9 @@ public:
|
||||
std::cout << GridLogError << "Seeds not initialized" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
std::cout << GridLogMessage << "Reseeding serial RNG with seed vector " << SerialSeeds << std::endl;
|
||||
sRNG_.SeedFixedIntegers(SerialSeeds);
|
||||
std::cout << GridLogMessage << "Reseeding parallel RNG with seed vector " << ParallelSeeds << std::endl;
|
||||
pRNG_->SeedFixedIntegers(ParallelSeeds);
|
||||
}
|
||||
};
|
||||
|
@ -226,6 +226,9 @@ public:
|
||||
//////////////////////////////////////////////////////
|
||||
// Random number generators
|
||||
//////////////////////////////////////////////////////
|
||||
|
||||
//Return true if the RNG objects have been instantiated
|
||||
bool haveRNGs() const{ return have_RNG; }
|
||||
|
||||
void AddRNGs(std::string s = "") {
|
||||
// Couple the RNGs to the GridModule tagged by s
|
||||
|
@ -136,8 +136,14 @@ protected:
|
||||
if (as[level].actions.at(a)->is_smeared) Smearer.smeared_force(force);
|
||||
force = FieldImplementation::projectForce(force); // Ta for gauge fields
|
||||
double end_force = usecond();
|
||||
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites());
|
||||
std::cout << GridLogIntegrator << "["<<level<<"]["<<a<<"] Force average: " << force_abs << std::endl;
|
||||
|
||||
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites()); //average per-site norm. nb. norm2(latt) = \sum_x norm2(latt[x])
|
||||
Real impulse_abs = force_abs * ep * HMC_MOMENTUM_DENOMINATOR;
|
||||
|
||||
Real max_force_abs = std::sqrt(maxLocalNorm2(force));
|
||||
Real max_impulse_abs = max_force_abs * ep * HMC_MOMENTUM_DENOMINATOR;
|
||||
|
||||
std::cout << GridLogIntegrator << "["<<level<<"]["<<a<<"] Force average: " << force_abs << " Max force: " << max_force_abs << " Time step: " << ep << " Impulse average: " << impulse_abs << " Max impulse: " << max_impulse_abs << std::endl;
|
||||
Mom -= force * ep* HMC_MOMENTUM_DENOMINATOR;;
|
||||
double end_full = usecond();
|
||||
double time_full = (end_full - start_full) / 1e3;
|
||||
@ -249,15 +255,19 @@ public:
|
||||
void refresh(Field& U, GridSerialRNG & sRNG, GridParallelRNG& pRNG)
|
||||
{
|
||||
assert(P.Grid() == U.Grid());
|
||||
std::cout << GridLogIntegrator << "Integrator refresh\n";
|
||||
std::cout << GridLogIntegrator << "Integrator refresh" << std::endl;
|
||||
|
||||
std::cout << GridLogIntegrator << "Generating momentum" << std::endl;
|
||||
FieldImplementation::generate_momenta(P, sRNG, pRNG);
|
||||
|
||||
// Update the smeared fields, can be implemented as observer
|
||||
// necessary to keep the fields updated even after a reject
|
||||
// of the Metropolis
|
||||
std::cout << GridLogIntegrator << "Updating smeared fields" << std::endl;
|
||||
Smearer.set_Field(U);
|
||||
// Set the (eventual) representations gauge fields
|
||||
|
||||
std::cout << GridLogIntegrator << "Updating representations" << std::endl;
|
||||
Representations.update(U);
|
||||
|
||||
// The Smearer is attached to a pointer of the gauge field
|
||||
@ -267,6 +277,7 @@ public:
|
||||
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
|
||||
// get gauge field from the SmearingPolicy and
|
||||
// based on the boolean is_smeared in actionID
|
||||
std::cout << GridLogIntegrator << "Refreshing integrator level " << level << " index " << actionID << std::endl;
|
||||
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
|
||||
as[level].actions.at(actionID)->refresh(Us, sRNG, pRNG);
|
||||
}
|
||||
|
@ -99,7 +99,7 @@ public:
|
||||
// using wilson flow by default here
|
||||
WilsonFlow<PeriodicGimplR> WF(Pars.Smearing.steps, Pars.Smearing.step_size, Pars.Smearing.meas_interval);
|
||||
WF.smear_adaptive(Usmear, U, Pars.Smearing.maxTau);
|
||||
Real T0 = WF.energyDensityPlaquette(Usmear);
|
||||
Real T0 = WF.energyDensityPlaquette(Pars.Smearing.maxTau, Usmear);
|
||||
std::cout << GridLogMessage << std::setprecision(std::numeric_limits<Real>::digits10 + 1)
|
||||
<< "T0 : [ " << traj << " ] "<< T0 << std::endl;
|
||||
}
|
||||
|
@ -7,6 +7,7 @@ Source file: ./lib/qcd/modules/plaquette.h
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -33,28 +34,44 @@ NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template <class Gimpl>
|
||||
class WilsonFlow: public Smear<Gimpl>{
|
||||
public:
|
||||
//Store generic measurements to take during smearing process using std::function
|
||||
typedef std::function<void(int, RealD, const typename Gimpl::GaugeField &)> FunctionType; //int: step, RealD: flow time, GaugeField : the gauge field
|
||||
|
||||
private:
|
||||
unsigned int Nstep;
|
||||
unsigned int measure_interval;
|
||||
mutable RealD epsilon, taus;
|
||||
|
||||
RealD epsilon; //for regular smearing this is the time step, for adaptive it is the initial time step
|
||||
|
||||
std::vector< std::pair<int, FunctionType> > functions; //The int maps to the measurement frequency
|
||||
|
||||
mutable WilsonGaugeAction<Gimpl> SG;
|
||||
|
||||
void evolve_step(typename Gimpl::GaugeField&) const;
|
||||
void evolve_step_adaptive(typename Gimpl::GaugeField&, RealD);
|
||||
RealD tau(unsigned int t)const {return epsilon*(t+1.0); }
|
||||
//Evolve the gauge field by 1 step and update tau
|
||||
void evolve_step(typename Gimpl::GaugeField &U, RealD &tau) const;
|
||||
//Evolve the gauge field by 1 step and update tau and the current time step eps
|
||||
void evolve_step_adaptive(typename Gimpl::GaugeField&U, RealD &tau, RealD &eps, RealD maxTau) const;
|
||||
|
||||
public:
|
||||
INHERIT_GIMPL_TYPES(Gimpl)
|
||||
|
||||
void resetActions(){ functions.clear(); }
|
||||
|
||||
void addMeasurement(int meas_interval, FunctionType meas){ functions.push_back({meas_interval, meas}); }
|
||||
|
||||
//Set the class to perform the default measurements:
|
||||
//the plaquette energy density every step
|
||||
//the plaquette topological charge every 'topq_meas_interval' steps
|
||||
//and output to stdout
|
||||
void setDefaultMeasurements(int topq_meas_interval = 1);
|
||||
|
||||
explicit WilsonFlow(unsigned int Nstep, RealD epsilon, unsigned int interval = 1):
|
||||
Nstep(Nstep),
|
||||
epsilon(epsilon),
|
||||
measure_interval(interval),
|
||||
SG(WilsonGaugeAction<Gimpl>(3.0)) {
|
||||
// WilsonGaugeAction with beta 3.0
|
||||
assert(epsilon > 0.0);
|
||||
LogMessage();
|
||||
setDefaultMeasurements(interval);
|
||||
}
|
||||
|
||||
void LogMessage() {
|
||||
@ -73,9 +90,29 @@ public:
|
||||
// undefined for WilsonFlow
|
||||
}
|
||||
|
||||
void smear_adaptive(GaugeField&, const GaugeField&, RealD maxTau);
|
||||
RealD energyDensityPlaquette(unsigned int step, const GaugeField& U) const;
|
||||
RealD energyDensityPlaquette(const GaugeField& U) const;
|
||||
void smear_adaptive(GaugeField&, const GaugeField&, RealD maxTau) const;
|
||||
|
||||
//Compute t^2 <E(t)> for time t from the plaquette
|
||||
static RealD energyDensityPlaquette(const RealD t, const GaugeField& U);
|
||||
|
||||
//Compute t^2 <E(t)> for time t from the 1x1 cloverleaf form
|
||||
//t is the Wilson flow time
|
||||
static RealD energyDensityCloverleaf(const RealD t, const GaugeField& U);
|
||||
|
||||
//Evolve the gauge field by Nstep steps of epsilon and return the energy density computed every interval steps
|
||||
//The smeared field is output as V
|
||||
std::vector<RealD> flowMeasureEnergyDensityPlaquette(GaugeField &V, const GaugeField& U, int measure_interval = 1);
|
||||
|
||||
//Version that does not return the smeared field
|
||||
std::vector<RealD> flowMeasureEnergyDensityPlaquette(const GaugeField& U, int measure_interval = 1);
|
||||
|
||||
|
||||
//Evolve the gauge field by Nstep steps of epsilon and return the Cloverleaf energy density computed every interval steps
|
||||
//The smeared field is output as V
|
||||
std::vector<RealD> flowMeasureEnergyDensityCloverleaf(GaugeField &V, const GaugeField& U, int measure_interval = 1);
|
||||
|
||||
//Version that does not return the smeared field
|
||||
std::vector<RealD> flowMeasureEnergyDensityCloverleaf(const GaugeField& U, int measure_interval = 1);
|
||||
};
|
||||
|
||||
|
||||
@ -83,7 +120,7 @@ public:
|
||||
// Implementations
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
template <class Gimpl>
|
||||
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
|
||||
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U, RealD &tau) const{
|
||||
GaugeField Z(U.Grid());
|
||||
GaugeField tmp(U.Grid());
|
||||
SG.deriv(U, Z);
|
||||
@ -99,12 +136,13 @@ void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
|
||||
SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2
|
||||
Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
|
||||
Gimpl::update_field(Z, U, -2.0*epsilon); // V(t+e) = exp(ep*Z)*W2
|
||||
tau += epsilon;
|
||||
}
|
||||
|
||||
template <class Gimpl>
|
||||
void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, RealD maxTau) {
|
||||
if (maxTau - taus < epsilon){
|
||||
epsilon = maxTau-taus;
|
||||
void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, RealD &tau, RealD &eps, RealD maxTau) const{
|
||||
if (maxTau - tau < eps){
|
||||
eps = maxTau-tau;
|
||||
}
|
||||
//std::cout << GridLogMessage << "Integration epsilon : " << epsilon << std::endl;
|
||||
GaugeField Z(U.Grid());
|
||||
@ -114,95 +152,151 @@ void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, Real
|
||||
SG.deriv(U, Z);
|
||||
Zprime = -Z;
|
||||
Z *= 0.25; // Z0 = 1/4 * F(U)
|
||||
Gimpl::update_field(Z, U, -2.0*epsilon); // U = W1 = exp(ep*Z0)*W0
|
||||
Gimpl::update_field(Z, U, -2.0*eps); // U = W1 = exp(ep*Z0)*W0
|
||||
|
||||
Z *= -17.0/8.0;
|
||||
SG.deriv(U, tmp); Z += tmp; // -17/32*Z0 +Z1
|
||||
Zprime += 2.0*tmp;
|
||||
Z *= 8.0/9.0; // Z = -17/36*Z0 +8/9*Z1
|
||||
Gimpl::update_field(Z, U, -2.0*epsilon); // U_= W2 = exp(ep*Z)*W1
|
||||
Gimpl::update_field(Z, U, -2.0*eps); // U_= W2 = exp(ep*Z)*W1
|
||||
|
||||
|
||||
Z *= -4.0/3.0;
|
||||
SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2
|
||||
Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
|
||||
Gimpl::update_field(Z, U, -2.0*epsilon); // V(t+e) = exp(ep*Z)*W2
|
||||
Gimpl::update_field(Z, U, -2.0*eps); // V(t+e) = exp(ep*Z)*W2
|
||||
|
||||
// Ramos
|
||||
Gimpl::update_field(Zprime, Uprime, -2.0*epsilon); // V'(t+e) = exp(ep*Z')*W0
|
||||
Gimpl::update_field(Zprime, Uprime, -2.0*eps); // V'(t+e) = exp(ep*Z')*W0
|
||||
// Compute distance as norm^2 of the difference
|
||||
GaugeField diffU = U - Uprime;
|
||||
RealD diff = norm2(diffU);
|
||||
// adjust integration step
|
||||
|
||||
taus += epsilon;
|
||||
tau += eps;
|
||||
//std::cout << GridLogMessage << "Adjusting integration step with distance: " << diff << std::endl;
|
||||
|
||||
epsilon = epsilon*0.95*std::pow(1e-4/diff,1./3.);
|
||||
eps = eps*0.95*std::pow(1e-4/diff,1./3.);
|
||||
//std::cout << GridLogMessage << "New epsilon : " << epsilon << std::endl;
|
||||
|
||||
}
|
||||
|
||||
|
||||
template <class Gimpl>
|
||||
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(unsigned int step, const GaugeField& U) const {
|
||||
RealD td = tau(step);
|
||||
return 2.0 * td * td * SG.S(U)/U.Grid()->gSites();
|
||||
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(const RealD t, const GaugeField& U){
|
||||
static WilsonGaugeAction<Gimpl> SG(3.0);
|
||||
return 2.0 * t * t * SG.S(U)/U.Grid()->gSites();
|
||||
}
|
||||
|
||||
//Compute t^2 <E(t)> for time from the 1x1 cloverleaf form
|
||||
template <class Gimpl>
|
||||
RealD WilsonFlow<Gimpl>::energyDensityCloverleaf(const RealD t, const GaugeField& U){
|
||||
typedef typename Gimpl::GaugeLinkField GaugeMat;
|
||||
typedef typename Gimpl::GaugeField GaugeLorentz;
|
||||
|
||||
assert(Nd == 4);
|
||||
//E = 1/2 tr( F_munu F_munu )
|
||||
//However as F_numu = -F_munu, only need to sum the trace of the squares of the following 6 field strengths:
|
||||
//F_01 F_02 F_03 F_12 F_13 F_23
|
||||
GaugeMat F(U.Grid());
|
||||
LatticeComplexD R(U.Grid());
|
||||
R = Zero();
|
||||
|
||||
for(int mu=0;mu<3;mu++){
|
||||
for(int nu=mu+1;nu<4;nu++){
|
||||
WilsonLoops<Gimpl>::FieldStrength(F, U, mu, nu);
|
||||
R = R + trace(F*F);
|
||||
}
|
||||
}
|
||||
ComplexD out = sum(R);
|
||||
out = t*t*out / RealD(U.Grid()->gSites());
|
||||
return -real(out); //minus sign necessary for +ve energy
|
||||
}
|
||||
|
||||
|
||||
template <class Gimpl>
|
||||
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityPlaquette(GaugeField &V, const GaugeField& U, int measure_interval){
|
||||
std::vector<RealD> out;
|
||||
resetActions();
|
||||
addMeasurement(measure_interval, [&out](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Computing plaquette energy density for step " << step << std::endl;
|
||||
out.push_back( energyDensityPlaquette(t,U) );
|
||||
});
|
||||
smear(V,U);
|
||||
return out;
|
||||
}
|
||||
|
||||
template <class Gimpl>
|
||||
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(const GaugeField& U) const {
|
||||
return 2.0 * taus * taus * SG.S(U)/U.Grid()->gSites();
|
||||
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityPlaquette(const GaugeField& U, int measure_interval){
|
||||
GaugeField V(U);
|
||||
return flowMeasureEnergyDensityPlaquette(V,U, measure_interval);
|
||||
}
|
||||
|
||||
template <class Gimpl>
|
||||
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityCloverleaf(GaugeField &V, const GaugeField& U, int measure_interval){
|
||||
std::vector<RealD> out;
|
||||
resetActions();
|
||||
addMeasurement(measure_interval, [&out](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Computing Cloverleaf energy density for step " << step << std::endl;
|
||||
out.push_back( energyDensityCloverleaf(t,U) );
|
||||
});
|
||||
smear(V,U);
|
||||
return out;
|
||||
}
|
||||
|
||||
template <class Gimpl>
|
||||
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityCloverleaf(const GaugeField& U, int measure_interval){
|
||||
GaugeField V(U);
|
||||
return flowMeasureEnergyDensityCloverleaf(V,U, measure_interval);
|
||||
}
|
||||
|
||||
|
||||
|
||||
//#define WF_TIMING
|
||||
|
||||
|
||||
|
||||
template <class Gimpl>
|
||||
void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const {
|
||||
void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const{
|
||||
out = in;
|
||||
for (unsigned int step = 1; step <= Nstep; step++) {
|
||||
RealD taus = 0.;
|
||||
for (unsigned int step = 1; step <= Nstep; step++) { //step indicates the number of smearing steps applied at the time of measurement
|
||||
auto start = std::chrono::high_resolution_clock::now();
|
||||
evolve_step(out);
|
||||
evolve_step(out, taus);
|
||||
auto end = std::chrono::high_resolution_clock::now();
|
||||
std::chrono::duration<double> diff = end - start;
|
||||
#ifdef WF_TIMING
|
||||
std::cout << "Time to evolve " << diff.count() << " s\n";
|
||||
#endif
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : "
|
||||
<< step << " " << tau(step) << " "
|
||||
<< energyDensityPlaquette(step,out) << std::endl;
|
||||
if( step % measure_interval == 0){
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : "
|
||||
<< step << " "
|
||||
<< WilsonLoops<PeriodicGimplR>::TopologicalCharge(out) << std::endl;
|
||||
}
|
||||
//Perform measurements
|
||||
for(auto const &meas : functions)
|
||||
if( step % meas.first == 0 ) meas.second(step,taus,out);
|
||||
}
|
||||
}
|
||||
|
||||
template <class Gimpl>
|
||||
void WilsonFlow<Gimpl>::smear_adaptive(GaugeField& out, const GaugeField& in, RealD maxTau){
|
||||
void WilsonFlow<Gimpl>::smear_adaptive(GaugeField& out, const GaugeField& in, RealD maxTau) const{
|
||||
out = in;
|
||||
taus = epsilon;
|
||||
RealD taus = 0.;
|
||||
RealD eps = epsilon;
|
||||
unsigned int step = 0;
|
||||
do{
|
||||
step++;
|
||||
//std::cout << GridLogMessage << "Evolution time :"<< taus << std::endl;
|
||||
evolve_step_adaptive(out, maxTau);
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : "
|
||||
<< step << " " << taus << " "
|
||||
<< energyDensityPlaquette(out) << std::endl;
|
||||
if( step % measure_interval == 0){
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : "
|
||||
<< step << " "
|
||||
<< WilsonLoops<PeriodicGimplR>::TopologicalCharge(out) << std::endl;
|
||||
}
|
||||
evolve_step_adaptive(out, taus, eps, maxTau);
|
||||
//Perform measurements
|
||||
for(auto const &meas : functions)
|
||||
if( step % meas.first == 0 ) meas.second(step,taus,out);
|
||||
} while (taus < maxTau);
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
template <class Gimpl>
|
||||
void WilsonFlow<Gimpl>::setDefaultMeasurements(int topq_meas_interval){
|
||||
addMeasurement(1, [](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : " << step << " " << t << " " << energyDensityPlaquette(t,U) << std::endl;
|
||||
});
|
||||
addMeasurement(topq_meas_interval, [](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : " << step << " " << WilsonLoops<Gimpl>::TopologicalCharge(U) << std::endl;
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -88,6 +88,12 @@ namespace PeriodicBC {
|
||||
return CovShiftBackward(Link,mu,arg);
|
||||
}
|
||||
|
||||
//Boundary-aware C-shift of gauge links / gauge transformation matrices
|
||||
template<class gauge> Lattice<gauge>
|
||||
CshiftLink(const Lattice<gauge> &Link, int mu, int shift)
|
||||
{
|
||||
return Cshift(Link, mu, shift);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@ -158,6 +164,9 @@ namespace ConjugateBC {
|
||||
// std::cout<<"Gparity::CovCshiftBackward mu="<<mu<<std::endl;
|
||||
return Cshift(tmp,mu,-1);// moves towards positive mu
|
||||
}
|
||||
|
||||
//Out(x) = U^dag_\mu(x-mu) | x_\mu != 0
|
||||
// = U^T_\mu(L-1) | x_\mu == 0
|
||||
template<class gauge> Lattice<gauge>
|
||||
CovShiftIdentityBackward(const Lattice<gauge> &Link, int mu) {
|
||||
GridBase *grid = Link.Grid();
|
||||
@ -176,6 +185,9 @@ namespace ConjugateBC {
|
||||
return Link;
|
||||
}
|
||||
|
||||
//Out(x) = S_\mu(x+\hat\mu) | x_\mu != L-1
|
||||
// = S*_\mu(0) | x_\mu == L-1
|
||||
//Note: While this is used for Staples it is also applicable for shifting gauge links or gauge transformation matrices
|
||||
template<class gauge> Lattice<gauge>
|
||||
ShiftStaple(const Lattice<gauge> &Link, int mu)
|
||||
{
|
||||
@ -208,6 +220,35 @@ namespace ConjugateBC {
|
||||
return CovShiftBackward(Link,mu,arg);
|
||||
}
|
||||
|
||||
//Boundary-aware C-shift of gauge links / gauge transformation matrices
|
||||
//shift = 1
|
||||
//Out(x) = U_\mu(x+\hat\mu) | x_\mu != L-1
|
||||
// = U*_\mu(0) | x_\mu == L-1
|
||||
//shift = -1
|
||||
//Out(x) = U_\mu(x-mu) | x_\mu != 0
|
||||
// = U*_\mu(L-1) | x_\mu == 0
|
||||
template<class gauge> Lattice<gauge>
|
||||
CshiftLink(const Lattice<gauge> &Link, int mu, int shift)
|
||||
{
|
||||
GridBase *grid = Link.Grid();
|
||||
int Lmu = grid->GlobalDimensions()[mu] - 1;
|
||||
|
||||
Lattice<iScalar<vInteger>> coor(grid);
|
||||
LatticeCoordinate(coor, mu);
|
||||
|
||||
Lattice<gauge> tmp(grid);
|
||||
if(shift == 1){
|
||||
tmp = Cshift(Link, mu, 1);
|
||||
tmp = where(coor == Lmu, conjugate(tmp), tmp);
|
||||
return tmp;
|
||||
}else if(shift == -1){
|
||||
tmp = Link;
|
||||
tmp = where(coor == Lmu, conjugate(tmp), tmp);
|
||||
return Cshift(tmp, mu, -1);
|
||||
}else assert(0 && "Invalid shift value");
|
||||
return tmp; //shuts up the compiler fussing about the return type
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
@ -40,27 +40,46 @@ public:
|
||||
typedef typename Gimpl::GaugeLinkField GaugeMat;
|
||||
typedef typename Gimpl::GaugeField GaugeLorentz;
|
||||
|
||||
static void GaugeLinkToLieAlgebraField(const std::vector<GaugeMat> &U,std::vector<GaugeMat> &A) {
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
Complex cmi(0.0,-1.0);
|
||||
A[mu] = Ta(U[mu]) * cmi;
|
||||
}
|
||||
//A_\mu(x) = -i Ta(U_\mu(x) ) where Ta(U) = 1/2( U - U^dag ) - 1/2N tr(U - U^dag) is the traceless antihermitian part. This is an O(A^3) approximation to the logarithm of U
|
||||
static void GaugeLinkToLieAlgebraField(const GaugeMat &U, GaugeMat &A) {
|
||||
Complex cmi(0.0,-1.0);
|
||||
A = Ta(U) * cmi;
|
||||
}
|
||||
static void DmuAmu(const std::vector<GaugeMat> &A,GaugeMat &dmuAmu,int orthog) {
|
||||
|
||||
//The derivative of the Lie algebra field
|
||||
static void DmuAmu(const std::vector<GaugeMat> &U, GaugeMat &dmuAmu,int orthog) {
|
||||
GridBase* grid = U[0].Grid();
|
||||
GaugeMat Ax(grid);
|
||||
GaugeMat Axm1(grid);
|
||||
GaugeMat Utmp(grid);
|
||||
|
||||
dmuAmu=Zero();
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
if ( mu != orthog ) {
|
||||
dmuAmu = dmuAmu + A[mu] - Cshift(A[mu],mu,-1);
|
||||
//Rather than define functionality to work out how the BCs apply to A_\mu we simply use the BC-aware Cshift to the gauge links and compute A_\mu(x) and A_\mu(x-1) separately
|
||||
//Ax = A_\mu(x)
|
||||
GaugeLinkToLieAlgebraField(U[mu], Ax);
|
||||
|
||||
//Axm1 = A_\mu(x_\mu-1)
|
||||
Utmp = Gimpl::CshiftLink(U[mu], mu, -1);
|
||||
GaugeLinkToLieAlgebraField(Utmp, Axm1);
|
||||
|
||||
//Derivative
|
||||
dmuAmu = dmuAmu + Ax - Axm1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1) {
|
||||
//Fix the gauge field Umu
|
||||
//0 < alpha < 1 is related to the step size, cf https://arxiv.org/pdf/1405.5812.pdf
|
||||
static void SteepestDescentGaugeFix(GaugeLorentz &Umu, Real alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1) {
|
||||
GridBase *grid = Umu.Grid();
|
||||
GaugeMat xform(grid);
|
||||
SteepestDescentGaugeFix(Umu,xform,alpha,maxiter,Omega_tol,Phi_tol,Fourier,orthog);
|
||||
}
|
||||
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,GaugeMat &xform,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1) {
|
||||
|
||||
//Fix the gauge field Umu and also return the gauge transformation from the original gauge field, xform
|
||||
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,GaugeMat &xform, Real alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1) {
|
||||
|
||||
GridBase *grid = Umu.Grid();
|
||||
|
||||
@ -122,27 +141,24 @@ public:
|
||||
|
||||
}
|
||||
}
|
||||
assert(0 && "Gauge fixing did not converge within the specified number of iterations");
|
||||
};
|
||||
static Real SteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform,Real & alpha, GaugeMat & dmuAmu,int orthog) {
|
||||
static Real SteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform, Real alpha, GaugeMat & dmuAmu,int orthog) {
|
||||
GridBase *grid = U[0].Grid();
|
||||
|
||||
std::vector<GaugeMat> A(Nd,grid);
|
||||
GaugeMat g(grid);
|
||||
|
||||
GaugeLinkToLieAlgebraField(U,A);
|
||||
ExpiAlphaDmuAmu(A,g,alpha,dmuAmu,orthog);
|
||||
|
||||
ExpiAlphaDmuAmu(U,g,alpha,dmuAmu,orthog);
|
||||
|
||||
Real vol = grid->gSites();
|
||||
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
|
||||
|
||||
xform = g*xform ;
|
||||
SU<Nc>::GaugeTransform(U,g);
|
||||
SU<Nc>::GaugeTransform<Gimpl>(U,g);
|
||||
|
||||
return trG;
|
||||
}
|
||||
|
||||
static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform,Real & alpha, GaugeMat & dmuAmu,int orthog) {
|
||||
static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform, Real alpha, GaugeMat & dmuAmu,int orthog) {
|
||||
|
||||
GridBase *grid = U[0].Grid();
|
||||
|
||||
@ -157,11 +173,7 @@ public:
|
||||
|
||||
GaugeMat g(grid);
|
||||
GaugeMat dmuAmu_p(grid);
|
||||
std::vector<GaugeMat> A(Nd,grid);
|
||||
|
||||
GaugeLinkToLieAlgebraField(U,A);
|
||||
|
||||
DmuAmu(A,dmuAmu,orthog);
|
||||
DmuAmu(U,dmuAmu,orthog);
|
||||
|
||||
std::vector<int> mask(Nd,1);
|
||||
for(int mu=0;mu<Nd;mu++) if (mu==orthog) mask[mu]=0;
|
||||
@ -205,16 +217,16 @@ public:
|
||||
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
|
||||
|
||||
xform = g*xform ;
|
||||
SU<Nc>::GaugeTransform(U,g);
|
||||
SU<Nc>::GaugeTransform<Gimpl>(U,g);
|
||||
|
||||
return trG;
|
||||
}
|
||||
|
||||
static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &A,GaugeMat &g,Real & alpha, GaugeMat &dmuAmu,int orthog) {
|
||||
static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &U,GaugeMat &g, Real alpha, GaugeMat &dmuAmu,int orthog) {
|
||||
GridBase *grid = g.Grid();
|
||||
Complex cialpha(0.0,-alpha);
|
||||
GaugeMat ciadmam(grid);
|
||||
DmuAmu(A,dmuAmu,orthog);
|
||||
DmuAmu(U,dmuAmu,orthog);
|
||||
ciadmam = dmuAmu*cialpha;
|
||||
SU<Nc>::taExp(ciadmam,g);
|
||||
}
|
||||
|
@ -694,32 +694,32 @@ public:
|
||||
* Adjoint rep gauge xform
|
||||
*/
|
||||
|
||||
template<typename GaugeField,typename GaugeMat>
|
||||
static void GaugeTransform( GaugeField &Umu, GaugeMat &g){
|
||||
template<typename Gimpl>
|
||||
static void GaugeTransform(typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
|
||||
GridBase *grid = Umu.Grid();
|
||||
conformable(grid,g.Grid());
|
||||
|
||||
GaugeMat U(grid);
|
||||
GaugeMat ag(grid); ag = adj(g);
|
||||
typename Gimpl::GaugeLinkField U(grid);
|
||||
typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
|
||||
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
U= PeekIndex<LorentzIndex>(Umu,mu);
|
||||
U = g*U*Cshift(ag, mu, 1);
|
||||
U = g*U*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
|
||||
PokeIndex<LorentzIndex>(Umu,U,mu);
|
||||
}
|
||||
}
|
||||
template<typename GaugeMat>
|
||||
static void GaugeTransform( std::vector<GaugeMat> &U, GaugeMat &g){
|
||||
template<typename Gimpl>
|
||||
static void GaugeTransform( std::vector<typename Gimpl::GaugeLinkField> &U, typename Gimpl::GaugeLinkField &g){
|
||||
GridBase *grid = g.Grid();
|
||||
GaugeMat ag(grid); ag = adj(g);
|
||||
typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
U[mu] = g*U[mu]*Cshift(ag, mu, 1);
|
||||
U[mu] = g*U[mu]*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
|
||||
}
|
||||
}
|
||||
template<typename GaugeField,typename GaugeMat>
|
||||
static void RandomGaugeTransform(GridParallelRNG &pRNG, GaugeField &Umu, GaugeMat &g){
|
||||
template<typename Gimpl>
|
||||
static void RandomGaugeTransform(GridParallelRNG &pRNG, typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
|
||||
LieRandomize(pRNG,g,1.0);
|
||||
GaugeTransform(Umu,g);
|
||||
GaugeTransform<Gimpl>(Umu,g);
|
||||
}
|
||||
|
||||
// Projects the algebra components a lattice matrix (of dimension ncol*ncol -1 )
|
||||
|
@ -125,6 +125,56 @@ public:
|
||||
return sumplaq / vol / faces / Nc; // Nd , Nc dependent... FIXME
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// sum over all spatial planes of plaquette
|
||||
//////////////////////////////////////////////////
|
||||
static void siteSpatialPlaquette(ComplexField &Plaq,
|
||||
const std::vector<GaugeMat> &U) {
|
||||
ComplexField sitePlaq(U[0].Grid());
|
||||
Plaq = Zero();
|
||||
for (int mu = 1; mu < Nd-1; mu++) {
|
||||
for (int nu = 0; nu < mu; nu++) {
|
||||
traceDirPlaquette(sitePlaq, U, mu, nu);
|
||||
Plaq = Plaq + sitePlaq;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////
|
||||
// sum over all x,y,z and over all spatial planes of plaquette
|
||||
//////////////////////////////////////////////////
|
||||
static std::vector<RealD> timesliceSumSpatialPlaquette(const GaugeLorentz &Umu) {
|
||||
std::vector<GaugeMat> U(Nd, Umu.Grid());
|
||||
// inefficient here
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
|
||||
}
|
||||
|
||||
ComplexField Plaq(Umu.Grid());
|
||||
|
||||
siteSpatialPlaquette(Plaq, U);
|
||||
typedef typename ComplexField::scalar_object sobj;
|
||||
std::vector<sobj> Tq;
|
||||
sliceSum(Plaq, Tq, Nd-1);
|
||||
|
||||
std::vector<Real> out(Tq.size());
|
||||
for(int t=0;t<Tq.size();t++) out[t] = TensorRemove(Tq[t]).real();
|
||||
return out;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// average over all x,y,z and over all spatial planes of plaquette
|
||||
//////////////////////////////////////////////////
|
||||
static std::vector<RealD> timesliceAvgSpatialPlaquette(const GaugeLorentz &Umu) {
|
||||
std::vector<RealD> sumplaq = timesliceSumSpatialPlaquette(Umu);
|
||||
int Lt = Umu.Grid()->FullDimensions()[Nd-1];
|
||||
assert(sumplaq.size() == Lt);
|
||||
double vol = Umu.Grid()->gSites() / Lt;
|
||||
double faces = (1.0 * (Nd - 1)* (Nd - 2)) / 2.0;
|
||||
for(int t=0;t<Lt;t++)
|
||||
sumplaq[t] = sumplaq[t] / vol / faces / Nc; // Nd , Nc dependent... FIXME
|
||||
return sumplaq;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// average over all x,y,z the temporal loop
|
||||
@ -363,11 +413,11 @@ public:
|
||||
GaugeMat u = PeekIndex<LorentzIndex>(Umu, mu); // some redundant copies
|
||||
GaugeMat vu = v*u;
|
||||
//FS = 0.25*Ta(u*v + Cshift(vu, mu, -1));
|
||||
FS = (u*v + Cshift(vu, mu, -1));
|
||||
FS = (u*v + Gimpl::CshiftLink(vu, mu, -1));
|
||||
FS = 0.125*(FS - adj(FS));
|
||||
}
|
||||
|
||||
static Real TopologicalCharge(GaugeLorentz &U){
|
||||
static Real TopologicalCharge(const GaugeLorentz &U){
|
||||
// 4d topological charge
|
||||
assert(Nd==4);
|
||||
// Bx = -iF(y,z), By = -iF(z,y), Bz = -iF(x,y)
|
||||
@ -390,6 +440,203 @@ public:
|
||||
}
|
||||
|
||||
|
||||
//Clover-leaf Wilson loop combination for arbitrary mu-extent M and nu extent N, mu >= nu
|
||||
//cf https://arxiv.org/pdf/hep-lat/9701012.pdf Eq 7 for 1x2 Wilson loop
|
||||
//Clockwise ordering
|
||||
static void CloverleafMxN(GaugeMat &FS, const GaugeMat &Umu, const GaugeMat &Unu, int mu, int nu, int M, int N){
|
||||
#define Fmu(A) Gimpl::CovShiftForward(Umu, mu, A)
|
||||
#define Bmu(A) Gimpl::CovShiftBackward(Umu, mu, A)
|
||||
#define Fnu(A) Gimpl::CovShiftForward(Unu, nu, A)
|
||||
#define Bnu(A) Gimpl::CovShiftBackward(Unu, nu, A)
|
||||
#define FmuI Gimpl::CovShiftIdentityForward(Umu, mu)
|
||||
#define BmuI Gimpl::CovShiftIdentityBackward(Umu, mu)
|
||||
#define FnuI Gimpl::CovShiftIdentityForward(Unu, nu)
|
||||
#define BnuI Gimpl::CovShiftIdentityBackward(Unu, nu)
|
||||
|
||||
//Upper right loop
|
||||
GaugeMat tmp = BmuI;
|
||||
for(int i=1;i<M;i++)
|
||||
tmp = Bmu(tmp);
|
||||
for(int j=0;j<N;j++)
|
||||
tmp = Bnu(tmp);
|
||||
for(int i=0;i<M;i++)
|
||||
tmp = Fmu(tmp);
|
||||
for(int j=0;j<N;j++)
|
||||
tmp = Fnu(tmp);
|
||||
|
||||
FS = tmp;
|
||||
|
||||
//Upper left loop
|
||||
tmp = BnuI;
|
||||
for(int j=1;j<N;j++)
|
||||
tmp = Bnu(tmp);
|
||||
for(int i=0;i<M;i++)
|
||||
tmp = Fmu(tmp);
|
||||
for(int j=0;j<N;j++)
|
||||
tmp = Fnu(tmp);
|
||||
for(int i=0;i<M;i++)
|
||||
tmp = Bmu(tmp);
|
||||
|
||||
FS = FS + tmp;
|
||||
|
||||
//Lower right loop
|
||||
tmp = FnuI;
|
||||
for(int j=1;j<N;j++)
|
||||
tmp = Fnu(tmp);
|
||||
for(int i=0;i<M;i++)
|
||||
tmp = Bmu(tmp);
|
||||
for(int j=0;j<N;j++)
|
||||
tmp = Bnu(tmp);
|
||||
for(int i=0;i<M;i++)
|
||||
tmp = Fmu(tmp);
|
||||
|
||||
FS = FS + tmp;
|
||||
|
||||
//Lower left loop
|
||||
tmp = FmuI;
|
||||
for(int i=1;i<M;i++)
|
||||
tmp = Fmu(tmp);
|
||||
for(int j=0;j<N;j++)
|
||||
tmp = Fnu(tmp);
|
||||
for(int i=0;i<M;i++)
|
||||
tmp = Bmu(tmp);
|
||||
for(int j=0;j<N;j++)
|
||||
tmp = Bnu(tmp);
|
||||
|
||||
FS = FS + tmp;
|
||||
|
||||
#undef Fmu
|
||||
#undef Bmu
|
||||
#undef Fnu
|
||||
#undef Bnu
|
||||
#undef FmuI
|
||||
#undef BmuI
|
||||
#undef FnuI
|
||||
#undef BnuI
|
||||
}
|
||||
|
||||
//Field strength from MxN Wilson loop
|
||||
//Note F_numu = - F_munu
|
||||
static void FieldStrengthMxN(GaugeMat &FS, const GaugeLorentz &U, int mu, int nu, int M, int N){
|
||||
GaugeMat Umu = PeekIndex<LorentzIndex>(U, mu);
|
||||
GaugeMat Unu = PeekIndex<LorentzIndex>(U, nu);
|
||||
if(M == N){
|
||||
GaugeMat F(Umu.Grid());
|
||||
CloverleafMxN(F, Umu, Unu, mu, nu, M, N);
|
||||
FS = 0.125 * ( F - adj(F) );
|
||||
}else{
|
||||
//Average over both orientations
|
||||
GaugeMat horizontal(Umu.Grid()), vertical(Umu.Grid());
|
||||
CloverleafMxN(horizontal, Umu, Unu, mu, nu, M, N);
|
||||
CloverleafMxN(vertical, Umu, Unu, mu, nu, N, M);
|
||||
FS = 0.0625 * ( horizontal - adj(horizontal) + vertical - adj(vertical) );
|
||||
}
|
||||
}
|
||||
|
||||
//Topological charge contribution from MxN Wilson loops
|
||||
//cf https://arxiv.org/pdf/hep-lat/9701012.pdf Eq 6
|
||||
//output is the charge by timeslice: sum over timeslices to obtain the total
|
||||
static std::vector<Real> TimesliceTopologicalChargeMxN(const GaugeLorentz &U, int M, int N){
|
||||
assert(Nd == 4);
|
||||
std::vector<std::vector<GaugeMat*> > F(Nd,std::vector<GaugeMat*>(Nd,nullptr));
|
||||
//Note F_numu = - F_munu
|
||||
//hence we only need to loop over mu,nu,rho,sigma that aren't related by permuting mu,nu or rho,sigma
|
||||
//Use nu > mu
|
||||
for(int mu=0;mu<Nd-1;mu++){
|
||||
for(int nu=mu+1; nu<Nd; nu++){
|
||||
F[mu][nu] = new GaugeMat(U.Grid());
|
||||
FieldStrengthMxN(*F[mu][nu], U, mu, nu, M, N);
|
||||
}
|
||||
}
|
||||
Real coeff = -1./(32 * M_PI*M_PI * M*M * N*N); //overall sign to match CPS and Grid conventions, possibly related to time direction = 3 vs 0
|
||||
|
||||
static const int combs[3][4] = { {0,1,2,3}, {0,2,1,3}, {0,3,1,2} };
|
||||
static const int signs[3] = { 1, -1, 1 }; //epsilon_{mu nu rho sigma}
|
||||
|
||||
ComplexField fsum(U.Grid());
|
||||
fsum = Zero();
|
||||
for(int c=0;c<3;c++){
|
||||
int mu = combs[c][0], nu = combs[c][1], rho = combs[c][2], sigma = combs[c][3];
|
||||
int eps = signs[c];
|
||||
fsum = fsum + (8. * coeff * eps) * trace( (*F[mu][nu]) * (*F[rho][sigma]) );
|
||||
}
|
||||
|
||||
for(int mu=0;mu<Nd-1;mu++)
|
||||
for(int nu=mu+1; nu<Nd; nu++)
|
||||
delete F[mu][nu];
|
||||
|
||||
typedef typename ComplexField::scalar_object sobj;
|
||||
std::vector<sobj> Tq;
|
||||
sliceSum(fsum, Tq, Nd-1);
|
||||
|
||||
std::vector<Real> out(Tq.size());
|
||||
for(int t=0;t<Tq.size();t++) out[t] = TensorRemove(Tq[t]).real();
|
||||
return out;
|
||||
}
|
||||
static Real TopologicalChargeMxN(const GaugeLorentz &U, int M, int N){
|
||||
std::vector<Real> Tq = TimesliceTopologicalChargeMxN(U,M,N);
|
||||
Real out(0);
|
||||
for(int t=0;t<Tq.size();t++) out += Tq[t];
|
||||
return out;
|
||||
}
|
||||
|
||||
//Generate the contributions to the 5Li topological charge from Wilson loops of the following sizes
|
||||
//Use coefficients from hep-lat/9701012
|
||||
//1x1 : c1=(19.-55.*c5)/9.
|
||||
//2x2 : c2=(1-64.*c5)/9.
|
||||
//1x2 : c3=(-64.+640.*c5)/45.
|
||||
//1x3 : c4=1./5.-2.*c5
|
||||
//3x3 : c5=1./20.
|
||||
//Output array outer index contains the loops in the above order
|
||||
//Inner index is the time coordinate
|
||||
static std::vector<std::vector<Real> > TimesliceTopologicalCharge5LiContributions(const GaugeLorentz &U){
|
||||
static const int exts[5][2] = { {1,1}, {2,2}, {1,2}, {1,3}, {3,3} };
|
||||
std::vector<std::vector<Real> > out(5);
|
||||
for(int i=0;i<5;i++){
|
||||
out[i] = TimesliceTopologicalChargeMxN(U,exts[i][0],exts[i][1]);
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
static std::vector<Real> TopologicalCharge5LiContributions(const GaugeLorentz &U){
|
||||
static const int exts[5][2] = { {1,1}, {2,2}, {1,2}, {1,3}, {3,3} };
|
||||
std::vector<Real> out(5);
|
||||
std::cout << GridLogMessage << "Computing topological charge" << std::endl;
|
||||
for(int i=0;i<5;i++){
|
||||
out[i] = TopologicalChargeMxN(U,exts[i][0],exts[i][1]);
|
||||
std::cout << GridLogMessage << exts[i][0] << "x" << exts[i][1] << " Wilson loop contribution " << out[i] << std::endl;
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
//Compute the 5Li topological charge
|
||||
static std::vector<Real> TimesliceTopologicalCharge5Li(const GaugeLorentz &U){
|
||||
std::vector<std::vector<Real> > loops = TimesliceTopologicalCharge5LiContributions(U);
|
||||
|
||||
double c5=1./20.;
|
||||
double c4=1./5.-2.*c5;
|
||||
double c3=(-64.+640.*c5)/45.;
|
||||
double c2=(1-64.*c5)/9.;
|
||||
double c1=(19.-55.*c5)/9.;
|
||||
|
||||
int Lt = loops[0].size();
|
||||
std::vector<Real> out(Lt,0.);
|
||||
for(int t=0;t<Lt;t++)
|
||||
out[t] += c1*loops[0][t] + c2*loops[1][t] + c3*loops[2][t] + c4*loops[3][t] + c5*loops[4][t];
|
||||
return out;
|
||||
}
|
||||
|
||||
static Real TopologicalCharge5Li(const GaugeLorentz &U){
|
||||
std::vector<Real> Qt = TimesliceTopologicalCharge5Li(U);
|
||||
Real Q = 0.;
|
||||
for(int t=0;t<Qt.size();t++) Q += Qt[t];
|
||||
std::cout << GridLogMessage << "5Li Topological charge: " << Q << std::endl;
|
||||
return Q;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// Similar to above for rectangle is required
|
||||
//////////////////////////////////////////////////////
|
||||
|
200
Grid/random/gaussian.h
Normal file
200
Grid/random/gaussian.h
Normal file
@ -0,0 +1,200 @@
|
||||
// -*- C++ -*-
|
||||
//===--------------------------- random -----------------------------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// Peter Boyle: Taken from libc++ in Clang/LLVM.
|
||||
// Reason is that libstdc++ and clang differ in their return order in the normal_distribution / box mueller type step.
|
||||
// standardise on one and call it "gaussian_distribution".
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <cmath>
|
||||
#include <type_traits>
|
||||
#include <initializer_list>
|
||||
#include <limits>
|
||||
#include <algorithm>
|
||||
#include <numeric>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <istream>
|
||||
#include <ostream>
|
||||
#include <random>
|
||||
|
||||
// normal_distribution -> gaussian distribution
|
||||
namespace Grid {
|
||||
|
||||
template<class _RealType = double>
|
||||
class gaussian_distribution
|
||||
{
|
||||
public:
|
||||
// types
|
||||
typedef _RealType result_type;
|
||||
|
||||
class param_type
|
||||
{
|
||||
result_type __mean_;
|
||||
result_type __stddev_;
|
||||
public:
|
||||
typedef gaussian_distribution distribution_type;
|
||||
|
||||
strong_inline
|
||||
explicit param_type(result_type __mean = 0, result_type __stddev = 1)
|
||||
: __mean_(__mean), __stddev_(__stddev) {}
|
||||
|
||||
strong_inline
|
||||
result_type mean() const {return __mean_;}
|
||||
strong_inline
|
||||
result_type stddev() const {return __stddev_;}
|
||||
|
||||
friend strong_inline
|
||||
bool operator==(const param_type& __x, const param_type& __y)
|
||||
{return __x.__mean_ == __y.__mean_ && __x.__stddev_ == __y.__stddev_;}
|
||||
friend strong_inline
|
||||
bool operator!=(const param_type& __x, const param_type& __y)
|
||||
{return !(__x == __y);}
|
||||
};
|
||||
|
||||
private:
|
||||
param_type __p_;
|
||||
result_type _V_;
|
||||
bool _V_hot_;
|
||||
|
||||
public:
|
||||
// constructors and reset functions
|
||||
strong_inline
|
||||
explicit gaussian_distribution(result_type __mean = 0, result_type __stddev = 1)
|
||||
: __p_(param_type(__mean, __stddev)), _V_hot_(false) {}
|
||||
strong_inline
|
||||
explicit gaussian_distribution(const param_type& __p)
|
||||
: __p_(__p), _V_hot_(false) {}
|
||||
strong_inline
|
||||
void reset() {_V_hot_ = false;}
|
||||
|
||||
// generating functions
|
||||
template<class _URNG>
|
||||
strong_inline
|
||||
result_type operator()(_URNG& __g)
|
||||
{return (*this)(__g, __p_);}
|
||||
template<class _URNG> result_type operator()(_URNG& __g, const param_type& __p);
|
||||
|
||||
// property functions
|
||||
strong_inline
|
||||
result_type mean() const {return __p_.mean();}
|
||||
strong_inline
|
||||
result_type stddev() const {return __p_.stddev();}
|
||||
|
||||
strong_inline
|
||||
param_type param() const {return __p_;}
|
||||
strong_inline
|
||||
void param(const param_type& __p) {__p_ = __p;}
|
||||
|
||||
strong_inline
|
||||
result_type min() const {return -std::numeric_limits<result_type>::infinity();}
|
||||
strong_inline
|
||||
result_type max() const {return std::numeric_limits<result_type>::infinity();}
|
||||
|
||||
friend strong_inline
|
||||
bool operator==(const gaussian_distribution& __x,
|
||||
const gaussian_distribution& __y)
|
||||
{return __x.__p_ == __y.__p_ && __x._V_hot_ == __y._V_hot_ &&
|
||||
(!__x._V_hot_ || __x._V_ == __y._V_);}
|
||||
friend strong_inline
|
||||
bool operator!=(const gaussian_distribution& __x,
|
||||
const gaussian_distribution& __y)
|
||||
{return !(__x == __y);}
|
||||
|
||||
template <class _CharT, class _Traits, class _RT>
|
||||
friend
|
||||
std::basic_ostream<_CharT, _Traits>&
|
||||
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
||||
const gaussian_distribution<_RT>& __x);
|
||||
|
||||
template <class _CharT, class _Traits, class _RT>
|
||||
friend
|
||||
std::basic_istream<_CharT, _Traits>&
|
||||
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
||||
gaussian_distribution<_RT>& __x);
|
||||
};
|
||||
|
||||
template <class _RealType>
|
||||
template<class _URNG>
|
||||
_RealType
|
||||
gaussian_distribution<_RealType>::operator()(_URNG& __g, const param_type& __p)
|
||||
{
|
||||
result_type _Up;
|
||||
if (_V_hot_)
|
||||
{
|
||||
_V_hot_ = false;
|
||||
_Up = _V_;
|
||||
}
|
||||
else
|
||||
{
|
||||
std::uniform_real_distribution<result_type> _Uni(-1, 1);
|
||||
result_type __u;
|
||||
result_type __v;
|
||||
result_type __s;
|
||||
do
|
||||
{
|
||||
__u = _Uni(__g);
|
||||
__v = _Uni(__g);
|
||||
__s = __u * __u + __v * __v;
|
||||
} while (__s > 1 || __s == 0);
|
||||
result_type _Fp = std::sqrt(-2 * std::log(__s) / __s);
|
||||
_V_ = __v * _Fp;
|
||||
_V_hot_ = true;
|
||||
_Up = __u * _Fp;
|
||||
}
|
||||
return _Up * __p.stddev() + __p.mean();
|
||||
}
|
||||
|
||||
template <class _CharT, class _Traits, class _RT>
|
||||
std::basic_ostream<_CharT, _Traits>&
|
||||
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
||||
const gaussian_distribution<_RT>& __x)
|
||||
{
|
||||
auto __save_flags = __os.flags();
|
||||
__os.flags(std::ios_base::dec | std::ios_base::left | std::ios_base::fixed |
|
||||
std::ios_base::scientific);
|
||||
_CharT __sp = __os.widen(' ');
|
||||
__os.fill(__sp);
|
||||
__os << __x.mean() << __sp << __x.stddev() << __sp << __x._V_hot_;
|
||||
if (__x._V_hot_)
|
||||
__os << __sp << __x._V_;
|
||||
__os.flags(__save_flags);
|
||||
return __os;
|
||||
}
|
||||
|
||||
template <class _CharT, class _Traits, class _RT>
|
||||
std::basic_istream<_CharT, _Traits>&
|
||||
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
||||
gaussian_distribution<_RT>& __x)
|
||||
{
|
||||
typedef gaussian_distribution<_RT> _Eng;
|
||||
typedef typename _Eng::result_type result_type;
|
||||
typedef typename _Eng::param_type param_type;
|
||||
auto __save_flags = __is.flags();
|
||||
__is.flags(std::ios_base::dec | std::ios_base::skipws);
|
||||
result_type __mean;
|
||||
result_type __stddev;
|
||||
result_type _Vp = 0;
|
||||
bool _V_hot = false;
|
||||
__is >> __mean >> __stddev >> _V_hot;
|
||||
if (_V_hot)
|
||||
__is >> _Vp;
|
||||
if (!__is.fail())
|
||||
{
|
||||
__x.param(param_type(__mean, __stddev));
|
||||
__x._V_hot_ = _V_hot;
|
||||
__x._V_ = _Vp;
|
||||
}
|
||||
__is.flags(__save_flags);
|
||||
return __is;
|
||||
}
|
||||
}
|
@ -208,5 +208,46 @@ void merge(vobj &vec,const ExtractPointerArray<sobj> &extracted, int offset)
|
||||
}
|
||||
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////
|
||||
//Copy a single lane of a SIMD tensor type from one object to another
|
||||
//Output object must be of the same tensor type but may be of a different precision (i.e. it can have a different root data type)
|
||||
///////////////////////////////////////////////////////////////////////////////////
|
||||
template<class vobjOut, class vobjIn>
|
||||
accelerator_inline
|
||||
void copyLane(vobjOut & __restrict__ vecOut, int lane_out, const vobjIn & __restrict__ vecIn, int lane_in)
|
||||
{
|
||||
static_assert( std::is_same<typename vobjOut::DoublePrecision, typename vobjIn::DoublePrecision>::value == 1, "copyLane: tensor types must be the same" ); //if tensor types are same the DoublePrecision type must be the same
|
||||
|
||||
typedef typename vobjOut::vector_type ovector_type;
|
||||
typedef typename vobjIn::vector_type ivector_type;
|
||||
constexpr int owords=sizeof(vobjOut)/sizeof(ovector_type);
|
||||
constexpr int iwords=sizeof(vobjIn)/sizeof(ivector_type);
|
||||
static_assert( owords == iwords, "copyLane: Expected number of vector words in input and output objects to be equal" );
|
||||
|
||||
typedef typename vobjOut::scalar_type oscalar_type;
|
||||
typedef typename vobjIn::scalar_type iscalar_type;
|
||||
typedef typename ExtractTypeMap<oscalar_type>::extract_type oextract_type;
|
||||
typedef typename ExtractTypeMap<iscalar_type>::extract_type iextract_type;
|
||||
|
||||
typedef oextract_type * opointer;
|
||||
typedef iextract_type * ipointer;
|
||||
|
||||
constexpr int oNsimd=ovector_type::Nsimd();
|
||||
constexpr int iNsimd=ivector_type::Nsimd();
|
||||
|
||||
iscalar_type itmp;
|
||||
oscalar_type otmp;
|
||||
|
||||
opointer __restrict__ op = (opointer)&vecOut;
|
||||
ipointer __restrict__ ip = (ipointer)&vecIn;
|
||||
for(int w=0;w<owords;w++){
|
||||
memcpy( (char*)&itmp, (char*)(ip + lane_in + iNsimd*w), sizeof(iscalar_type) );
|
||||
otmp = itmp; //potential precision change
|
||||
memcpy( (char*)(op + lane_out + oNsimd*w), (char*)&otmp, sizeof(oscalar_type) );
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -206,7 +206,8 @@ inline void *acceleratorAllocShared(size_t bytes)
|
||||
auto err = cudaMallocManaged((void **)&ptr,bytes);
|
||||
if( err != cudaSuccess ) {
|
||||
ptr = (void *) NULL;
|
||||
printf(" cudaMallocManaged failed for %d %s \n",bytes,cudaGetErrorString(err));
|
||||
printf(" cudaMallocManaged failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
|
||||
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
|
||||
}
|
||||
return ptr;
|
||||
};
|
||||
@ -216,15 +217,47 @@ inline void *acceleratorAllocDevice(size_t bytes)
|
||||
auto err = cudaMalloc((void **)&ptr,bytes);
|
||||
if( err != cudaSuccess ) {
|
||||
ptr = (void *) NULL;
|
||||
printf(" cudaMalloc failed for %d %s \n",bytes,cudaGetErrorString(err));
|
||||
printf(" cudaMalloc failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
|
||||
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
|
||||
}
|
||||
return ptr;
|
||||
};
|
||||
inline void acceleratorFreeShared(void *ptr){ cudaFree(ptr);};
|
||||
inline void acceleratorFreeDevice(void *ptr){ cudaFree(ptr);};
|
||||
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { cudaMemcpy(to,from,bytes, cudaMemcpyHostToDevice);}
|
||||
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ cudaMemcpy(to,from,bytes, cudaMemcpyDeviceToHost);}
|
||||
inline void acceleratorMemSet(void *base,int value,size_t bytes) { cudaMemset(base,value,bytes);}
|
||||
inline void acceleratorFreeShared(void *ptr){
|
||||
auto err = cudaFree(ptr);
|
||||
if( err != cudaSuccess ) {
|
||||
printf(" cudaFree(Shared) failed %s \n",cudaGetErrorString(err)); fflush(stdout);
|
||||
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
|
||||
}
|
||||
};
|
||||
inline void acceleratorFreeDevice(void *ptr){
|
||||
auto err = cudaFree(ptr);
|
||||
if( err != cudaSuccess ) {
|
||||
printf(" cudaFree(Device) failed %s \n",cudaGetErrorString(err)); fflush(stdout);
|
||||
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
|
||||
}
|
||||
};
|
||||
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) {
|
||||
auto err = cudaMemcpy(to,from,bytes, cudaMemcpyHostToDevice);
|
||||
if( err != cudaSuccess ) {
|
||||
printf(" cudaMemcpy(host->device) failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
|
||||
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
|
||||
}
|
||||
}
|
||||
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){
|
||||
auto err = cudaMemcpy(to,from,bytes, cudaMemcpyDeviceToHost);
|
||||
if( err != cudaSuccess ) {
|
||||
printf(" cudaMemcpy(device->host) failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
|
||||
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
|
||||
}
|
||||
}
|
||||
inline void acceleratorMemSet(void *base,int value,size_t bytes) {
|
||||
auto err = cudaMemset(base,value,bytes);
|
||||
if( err != cudaSuccess ) {
|
||||
printf(" cudaMemSet failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
|
||||
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
|
||||
}
|
||||
}
|
||||
|
||||
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) // Asynch
|
||||
{
|
||||
cudaMemcpyAsync(to,from,bytes, cudaMemcpyDeviceToDevice,copyStream);
|
||||
|
473
HMC/DWF2p1fIwasakiGparity.cc
Normal file
473
HMC/DWF2p1fIwasakiGparity.cc
Normal file
@ -0,0 +1,473 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./HMC/DWF2p1fIwasakiGparity.cc
|
||||
|
||||
Copyright (C) 2015-2016
|
||||
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace Grid;
|
||||
|
||||
//2+1f DWF+I ensemble with G-parity BCs
|
||||
//designed to reproduce ensembles in https://arxiv.org/pdf/1908.08640.pdf
|
||||
struct RatQuoParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(RatQuoParameters,
|
||||
double, bnd_lo,
|
||||
double, bnd_hi,
|
||||
Integer, action_degree,
|
||||
double, action_tolerance,
|
||||
Integer, md_degree,
|
||||
double, md_tolerance,
|
||||
Integer, reliable_update_freq,
|
||||
Integer, bnd_check_freq);
|
||||
RatQuoParameters() {
|
||||
bnd_lo = 1e-2;
|
||||
bnd_hi = 30;
|
||||
action_degree = 10;
|
||||
action_tolerance = 1e-10;
|
||||
md_degree = 10;
|
||||
md_tolerance = 1e-8;
|
||||
bnd_check_freq = 20;
|
||||
reliable_update_freq = 50;
|
||||
}
|
||||
|
||||
void Export(RationalActionParams &into) const{
|
||||
into.lo = bnd_lo;
|
||||
into.hi = bnd_hi;
|
||||
into.action_degree = action_degree;
|
||||
into.action_tolerance = action_tolerance;
|
||||
into.md_degree = md_degree;
|
||||
into.md_tolerance = md_tolerance;
|
||||
into.BoundsCheckFreq = bnd_check_freq;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
struct EvolParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(EvolParameters,
|
||||
Integer, StartTrajectory,
|
||||
Integer, Trajectories,
|
||||
Integer, SaveInterval,
|
||||
Integer, Steps,
|
||||
bool, MetropolisTest,
|
||||
std::string, StartingType,
|
||||
std::vector<Integer>, GparityDirs,
|
||||
RatQuoParameters, rat_quo_l,
|
||||
RatQuoParameters, rat_quo_s);
|
||||
|
||||
EvolParameters() {
|
||||
//For initial thermalization; afterwards user should switch Metropolis on and use StartingType=CheckpointStart
|
||||
MetropolisTest = false;
|
||||
StartTrajectory = 0;
|
||||
Trajectories = 50;
|
||||
SaveInterval = 5;
|
||||
StartingType = "ColdStart";
|
||||
GparityDirs.resize(3, 1); //1 for G-parity, 0 for periodic
|
||||
Steps = 5;
|
||||
}
|
||||
};
|
||||
|
||||
bool fileExists(const std::string &fn){
|
||||
std::ifstream f(fn);
|
||||
return f.good();
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
struct LanczosParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParameters,
|
||||
double, alpha,
|
||||
double, beta,
|
||||
double, mu,
|
||||
int, ord,
|
||||
int, n_stop,
|
||||
int, n_want,
|
||||
int, n_use,
|
||||
double, tolerance);
|
||||
|
||||
LanczosParameters() {
|
||||
alpha = 35;
|
||||
beta = 5;
|
||||
mu = 0;
|
||||
ord = 100;
|
||||
n_stop = 10;
|
||||
n_want = 10;
|
||||
n_use = 15;
|
||||
tolerance = 1e-6;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
template<typename FermionActionD, typename FermionFieldD>
|
||||
void computeEigenvalues(std::string param_file,
|
||||
GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
|
||||
FermionActionD &action, GridParallelRNG &rng){
|
||||
|
||||
LanczosParameters params;
|
||||
if(fileExists(param_file)){
|
||||
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
|
||||
Grid::XmlReader rd(param_file);
|
||||
read(rd, "LanczosParameters", params);
|
||||
}else if(!GlobalSharedMemory::WorldRank){
|
||||
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
|
||||
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
|
||||
Grid::XmlWriter wr(param_file + ".templ");
|
||||
write(wr, "LanczosParameters", params);
|
||||
}
|
||||
|
||||
FermionFieldD gauss_o(rbGrid);
|
||||
FermionFieldD gauss(Grid);
|
||||
gaussian(rng, gauss);
|
||||
pickCheckerboard(Odd, gauss_o, gauss);
|
||||
|
||||
action.ImportGauge(latt);
|
||||
|
||||
SchurDiagMooeeOperator<FermionActionD, FermionFieldD> hermop(action);
|
||||
PlainHermOp<FermionFieldD> hermop_wrap(hermop);
|
||||
//ChebyshevLanczos<FermionFieldD> Cheb(params.alpha, params.beta, params.mu, params.ord);
|
||||
assert(params.mu == 0.0);
|
||||
|
||||
Chebyshev<FermionFieldD> Cheb(params.beta*params.beta, params.alpha*params.alpha, params.ord+1);
|
||||
FunctionHermOp<FermionFieldD> Cheb_wrap(Cheb, hermop);
|
||||
|
||||
std::cout << "IRL: alpha=" << params.alpha << " beta=" << params.beta << " mu=" << params.mu << " ord=" << params.ord << std::endl;
|
||||
ImplicitlyRestartedLanczos<FermionFieldD> IRL(Cheb_wrap, hermop_wrap, params.n_stop, params.n_want, params.n_use, params.tolerance, 10000);
|
||||
|
||||
std::vector<RealD> eval(params.n_use);
|
||||
std::vector<FermionFieldD> evec(params.n_use, rbGrid);
|
||||
int Nconv;
|
||||
IRL.calc(eval, evec, gauss_o, Nconv);
|
||||
|
||||
std::cout << "Eigenvalues:" << std::endl;
|
||||
for(int i=0;i<params.n_want;i++){
|
||||
std::cout << i << " " << eval[i] << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//Check the quality of the RHMC approx
|
||||
template<typename FermionActionD, typename FermionFieldD, typename RHMCtype>
|
||||
void checkRHMC(GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
|
||||
FermionActionD &numOp, FermionActionD &denOp, RHMCtype &rhmc, GridParallelRNG &rng,
|
||||
int inv_pow, const std::string &quark_descr){
|
||||
|
||||
FermionFieldD gauss_o(rbGrid);
|
||||
FermionFieldD gauss(Grid);
|
||||
gaussian(rng, gauss);
|
||||
pickCheckerboard(Odd, gauss_o, gauss);
|
||||
|
||||
numOp.ImportGauge(latt);
|
||||
denOp.ImportGauge(latt);
|
||||
|
||||
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
|
||||
SchurDifferentiableOperator<FermionImplPolicyD> MdagM(numOp);
|
||||
SchurDifferentiableOperator<FermionImplPolicyD> VdagV(denOp);
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerAction); //use large tolerance to prevent exit on fail; we are trying to tune here!
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerAction);
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerAction);
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerAction);
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
|
||||
std::cout << "-------------------------------------------------------------------------------" << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
Grid_init(&argc, &argv);
|
||||
int threads = GridThread::GetThreads();
|
||||
// here make a routine to print all the relevant information on the run
|
||||
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
|
||||
|
||||
std::string param_file = "params.xml";
|
||||
bool file_load_check = false;
|
||||
for(int i=1;i<argc;i++){
|
||||
std::string sarg(argv[i]);
|
||||
if(sarg == "--param_file"){
|
||||
assert(i!=argc-1);
|
||||
param_file = argv[i+1];
|
||||
}else if(sarg == "--read_check"){ //check the fields load correctly and pass checksum/plaquette repro
|
||||
file_load_check = true;
|
||||
}
|
||||
}
|
||||
|
||||
//Read the user parameters
|
||||
EvolParameters user_params;
|
||||
|
||||
if(fileExists(param_file)){
|
||||
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
|
||||
Grid::XmlReader rd(param_file);
|
||||
read(rd, "Params", user_params);
|
||||
}else if(!GlobalSharedMemory::WorldRank){
|
||||
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
|
||||
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
|
||||
Grid::XmlWriter wr(param_file + ".templ");
|
||||
write(wr, "Params", user_params);
|
||||
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
||||
|
||||
//Check the parameters
|
||||
if(user_params.GparityDirs.size() != Nd-1){
|
||||
std::cerr << "Error in input parameters: expect GparityDirs to have size = " << Nd-1 << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
for(int i=0;i<Nd-1;i++)
|
||||
if(user_params.GparityDirs[i] != 0 && user_params.GparityDirs[i] != 1){
|
||||
std::cerr << "Error in input parameters: expect GparityDirs values to be 0 (periodic) or 1 (G-parity)" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
|
||||
// Typedefs to simplify notation
|
||||
typedef GparityDomainWallFermionD FermionActionD;
|
||||
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
|
||||
typedef typename FermionActionD::FermionField FermionFieldD;
|
||||
|
||||
typedef GparityDomainWallFermionF FermionActionF;
|
||||
typedef typename FermionActionF::Impl_t FermionImplPolicyF;
|
||||
typedef typename FermionActionF::FermionField FermionFieldF;
|
||||
|
||||
typedef GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<FermionImplPolicyD,FermionImplPolicyF> MixedPrecRHMC;
|
||||
typedef GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicyD> DoublePrecRHMC;
|
||||
|
||||
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
|
||||
IntegratorParameters MD;
|
||||
typedef ConjugateHMCRunnerD<MinimumNorm2> HMCWrapper; //NB: This is the "Omelyan integrator"
|
||||
typedef HMCWrapper::ImplPolicy GaugeImplPolicy;
|
||||
MD.name = std::string("MinimumNorm2");
|
||||
MD.MDsteps = user_params.Steps;
|
||||
MD.trajL = 1.0;
|
||||
|
||||
HMCparameters HMCparams;
|
||||
HMCparams.StartTrajectory = user_params.StartTrajectory;
|
||||
HMCparams.Trajectories = user_params.Trajectories;
|
||||
HMCparams.NoMetropolisUntil= 0;
|
||||
HMCparams.StartingType = user_params.StartingType;
|
||||
HMCparams.MetropolisTest = user_params.MetropolisTest;
|
||||
HMCparams.MD = MD;
|
||||
HMCWrapper TheHMC(HMCparams);
|
||||
|
||||
// Grid from the command line arguments --grid and --mpi
|
||||
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
|
||||
|
||||
CheckpointerParameters CPparams;
|
||||
CPparams.config_prefix = "ckpoint_lat";
|
||||
CPparams.rng_prefix = "ckpoint_rng";
|
||||
CPparams.saveInterval = user_params.SaveInterval;
|
||||
CPparams.format = "IEEE64BIG";
|
||||
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
|
||||
|
||||
//Note that checkpointing saves the RNG state so that this initialization is required only for the very first configuration
|
||||
RNGModuleParameters RNGpar;
|
||||
RNGpar.serial_seeds = "1 2 3 4 5";
|
||||
RNGpar.parallel_seeds = "6 7 8 9 10";
|
||||
TheHMC.Resources.SetRNGSeeds(RNGpar);
|
||||
|
||||
typedef PlaquetteMod<GaugeImplPolicy> PlaqObs;
|
||||
TheHMC.Resources.AddObservable<PlaqObs>();
|
||||
//////////////////////////////////////////////
|
||||
|
||||
const int Ls = 16;
|
||||
Real beta = 2.13;
|
||||
Real light_mass = 0.01;
|
||||
Real strange_mass = 0.032;
|
||||
Real pv_mass = 1.0;
|
||||
RealD M5 = 1.8;
|
||||
|
||||
//Setup the Grids
|
||||
auto GridPtrD = TheHMC.Resources.GetCartesian();
|
||||
auto GridRBPtrD = TheHMC.Resources.GetRBCartesian();
|
||||
auto FGridD = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtrD);
|
||||
auto FrbGridD = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtrD);
|
||||
|
||||
GridCartesian* GridPtrF = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
|
||||
GridRedBlackCartesian* GridRBPtrF = SpaceTimeGrid::makeFourDimRedBlackGrid(GridPtrF);
|
||||
auto FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtrF);
|
||||
auto FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtrF);
|
||||
|
||||
ConjugateIwasakiGaugeActionD GaugeAction(beta);
|
||||
|
||||
// temporarily need a gauge field
|
||||
LatticeGaugeFieldD Ud(GridPtrD);
|
||||
LatticeGaugeFieldF Uf(GridPtrF);
|
||||
|
||||
//Setup the BCs
|
||||
FermionActionD::ImplParams Params;
|
||||
for(int i=0;i<Nd-1;i++) Params.twists[i] = user_params.GparityDirs[i]; //G-parity directions
|
||||
Params.twists[Nd-1] = 1; //APBC in time direction
|
||||
|
||||
std::vector<int> dirs4(Nd);
|
||||
for(int i=0;i<Nd-1;i++) dirs4[i] = user_params.GparityDirs[i];
|
||||
dirs4[Nd-1] = 0; //periodic gauge BC in time
|
||||
|
||||
GaugeImplPolicy::setDirections(dirs4); //gauge BC
|
||||
|
||||
//Run optional gauge field checksum checker and exit
|
||||
if(file_load_check){
|
||||
TheHMC.initializeGaugeFieldAndRNGs(Ud);
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////
|
||||
// Collect actions
|
||||
////////////////////////////////////
|
||||
ActionLevel<HMCWrapper::Field> Level1(1); //light quark + strange quark
|
||||
ActionLevel<HMCWrapper::Field> Level2(8); //gauge (8 increments per step)
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Light action
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
FermionActionD Numerator_lD(Ud,*FGridD,*FrbGridD,*GridPtrD,*GridRBPtrD, light_mass,M5,Params);
|
||||
FermionActionD Denominator_lD(Ud,*FGridD,*FrbGridD,*GridPtrD,*GridRBPtrD, pv_mass,M5,Params);
|
||||
|
||||
FermionActionF Numerator_lF(Uf,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF, light_mass,M5,Params);
|
||||
FermionActionF Denominator_lF(Uf,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF, pv_mass,M5,Params);
|
||||
|
||||
RationalActionParams rat_act_params_l;
|
||||
rat_act_params_l.inv_pow = 2; // (M^dag M)^{1/2}
|
||||
rat_act_params_l.precision= 60;
|
||||
rat_act_params_l.MaxIter = 10000;
|
||||
user_params.rat_quo_l.Export(rat_act_params_l);
|
||||
std::cout << GridLogMessage << " Light quark bounds check every " << rat_act_params_l.BoundsCheckFreq << " trajectories (avg)" << std::endl;
|
||||
|
||||
MixedPrecRHMC Quotient_l(Denominator_lD, Numerator_lD, Denominator_lF, Numerator_lF, rat_act_params_l, user_params.rat_quo_l.reliable_update_freq);
|
||||
//DoublePrecRHMC Quotient_l(Denominator_lD, Numerator_lD, rat_act_params_l);
|
||||
Level1.push_back(&Quotient_l);
|
||||
|
||||
|
||||
////////////////////////////////////
|
||||
// Strange action
|
||||
////////////////////////////////////
|
||||
FermionActionD Numerator_sD(Ud,*FGridD,*FrbGridD,*GridPtrD,*GridRBPtrD,strange_mass,M5,Params);
|
||||
FermionActionD Denominator_sD(Ud,*FGridD,*FrbGridD,*GridPtrD,*GridRBPtrD, pv_mass,M5,Params);
|
||||
|
||||
FermionActionF Numerator_sF(Uf,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,strange_mass,M5,Params);
|
||||
FermionActionF Denominator_sF(Uf,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF, pv_mass,M5,Params);
|
||||
|
||||
RationalActionParams rat_act_params_s;
|
||||
rat_act_params_s.inv_pow = 4; // (M^dag M)^{1/4}
|
||||
rat_act_params_s.precision= 60;
|
||||
rat_act_params_s.MaxIter = 10000;
|
||||
user_params.rat_quo_s.Export(rat_act_params_s);
|
||||
std::cout << GridLogMessage << " Heavy quark bounds check every " << rat_act_params_l.BoundsCheckFreq << " trajectories (avg)" << std::endl;
|
||||
|
||||
MixedPrecRHMC Quotient_s(Denominator_sD, Numerator_sD, Denominator_sF, Numerator_sF, rat_act_params_s, user_params.rat_quo_s.reliable_update_freq);
|
||||
//DoublePrecRHMC Quotient_s(Denominator_sD, Numerator_sD, rat_act_params_s);
|
||||
Level1.push_back(&Quotient_s);
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Gauge action
|
||||
/////////////////////////////////////////////////////////////
|
||||
Level2.push_back(&GaugeAction);
|
||||
TheHMC.TheAction.push_back(Level1);
|
||||
TheHMC.TheAction.push_back(Level2);
|
||||
std::cout << GridLogMessage << " Action complete "<< std::endl;
|
||||
|
||||
|
||||
//Action tuning
|
||||
bool tune_rhmc_l=false, tune_rhmc_s=false, eigenrange_l=false, eigenrange_s=false;
|
||||
std::string lanc_params_l, lanc_params_s;
|
||||
for(int i=1;i<argc;i++){
|
||||
std::string sarg(argv[i]);
|
||||
if(sarg == "--tune_rhmc_l") tune_rhmc_l=true;
|
||||
else if(sarg == "--tune_rhmc_s") tune_rhmc_s=true;
|
||||
else if(sarg == "--eigenrange_l"){
|
||||
assert(i < argc-1);
|
||||
eigenrange_l=true;
|
||||
lanc_params_l = argv[i+1];
|
||||
}
|
||||
else if(sarg == "--eigenrange_s"){
|
||||
assert(i < argc-1);
|
||||
eigenrange_s=true;
|
||||
lanc_params_s = argv[i+1];
|
||||
}
|
||||
}
|
||||
if(tune_rhmc_l || tune_rhmc_s || eigenrange_l || eigenrange_s){
|
||||
TheHMC.initializeGaugeFieldAndRNGs(Ud);
|
||||
if(eigenrange_l) computeEigenvalues<FermionActionD, FermionFieldD>(lanc_params_l, FGridD, FrbGridD, Ud, Numerator_lD, TheHMC.Resources.GetParallelRNG());
|
||||
if(eigenrange_s) computeEigenvalues<FermionActionD, FermionFieldD>(lanc_params_s, FGridD, FrbGridD, Ud, Numerator_sD, TheHMC.Resources.GetParallelRNG());
|
||||
if(tune_rhmc_l) checkRHMC<FermionActionD, FermionFieldD, decltype(Quotient_l)>(FGridD, FrbGridD, Ud, Numerator_lD, Denominator_lD, Quotient_l, TheHMC.Resources.GetParallelRNG(), 2, "light");
|
||||
if(tune_rhmc_s) checkRHMC<FermionActionD, FermionFieldD, decltype(Quotient_s)>(FGridD, FrbGridD, Ud, Numerator_sD, Denominator_sD, Quotient_s, TheHMC.Resources.GetParallelRNG(), 4, "strange");
|
||||
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
//Run the HMC
|
||||
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
|
||||
TheHMC.Run();
|
||||
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
} // main
|
||||
|
473
HMC/DWF2p1fIwasakiGparityRHMCdouble.cc
Normal file
473
HMC/DWF2p1fIwasakiGparityRHMCdouble.cc
Normal file
@ -0,0 +1,473 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./HMC/DWF2p1fIwasakiGparity.cc
|
||||
|
||||
Copyright (C) 2015-2016
|
||||
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace Grid;
|
||||
|
||||
//2+1f DWF+I ensemble with G-parity BCs
|
||||
//designed to reproduce ensembles in https://arxiv.org/pdf/1908.08640.pdf
|
||||
struct RatQuoParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(RatQuoParameters,
|
||||
double, bnd_lo,
|
||||
double, bnd_hi,
|
||||
Integer, action_degree,
|
||||
double, action_tolerance,
|
||||
Integer, md_degree,
|
||||
double, md_tolerance,
|
||||
Integer, reliable_update_freq,
|
||||
Integer, bnd_check_freq);
|
||||
RatQuoParameters() {
|
||||
bnd_lo = 1e-2;
|
||||
bnd_hi = 30;
|
||||
action_degree = 10;
|
||||
action_tolerance = 1e-10;
|
||||
md_degree = 10;
|
||||
md_tolerance = 1e-8;
|
||||
bnd_check_freq = 20;
|
||||
reliable_update_freq = 50;
|
||||
}
|
||||
|
||||
void Export(RationalActionParams &into) const{
|
||||
into.lo = bnd_lo;
|
||||
into.hi = bnd_hi;
|
||||
into.action_degree = action_degree;
|
||||
into.action_tolerance = action_tolerance;
|
||||
into.md_degree = md_degree;
|
||||
into.md_tolerance = md_tolerance;
|
||||
into.BoundsCheckFreq = bnd_check_freq;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
struct EvolParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(EvolParameters,
|
||||
Integer, StartTrajectory,
|
||||
Integer, Trajectories,
|
||||
Integer, SaveInterval,
|
||||
Integer, Steps,
|
||||
bool, MetropolisTest,
|
||||
std::string, StartingType,
|
||||
std::vector<Integer>, GparityDirs,
|
||||
RatQuoParameters, rat_quo_l,
|
||||
RatQuoParameters, rat_quo_s);
|
||||
|
||||
EvolParameters() {
|
||||
//For initial thermalization; afterwards user should switch Metropolis on and use StartingType=CheckpointStart
|
||||
MetropolisTest = false;
|
||||
StartTrajectory = 0;
|
||||
Trajectories = 50;
|
||||
SaveInterval = 5;
|
||||
StartingType = "ColdStart";
|
||||
GparityDirs.resize(3, 1); //1 for G-parity, 0 for periodic
|
||||
Steps = 5;
|
||||
}
|
||||
};
|
||||
|
||||
bool fileExists(const std::string &fn){
|
||||
std::ifstream f(fn);
|
||||
return f.good();
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
struct LanczosParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParameters,
|
||||
double, alpha,
|
||||
double, beta,
|
||||
double, mu,
|
||||
int, ord,
|
||||
int, n_stop,
|
||||
int, n_want,
|
||||
int, n_use,
|
||||
double, tolerance);
|
||||
|
||||
LanczosParameters() {
|
||||
alpha = 35;
|
||||
beta = 5;
|
||||
mu = 0;
|
||||
ord = 100;
|
||||
n_stop = 10;
|
||||
n_want = 10;
|
||||
n_use = 15;
|
||||
tolerance = 1e-6;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
template<typename FermionActionD, typename FermionFieldD>
|
||||
void computeEigenvalues(std::string param_file,
|
||||
GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
|
||||
FermionActionD &action, GridParallelRNG &rng){
|
||||
|
||||
LanczosParameters params;
|
||||
if(fileExists(param_file)){
|
||||
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
|
||||
Grid::XmlReader rd(param_file);
|
||||
read(rd, "LanczosParameters", params);
|
||||
}else if(!GlobalSharedMemory::WorldRank){
|
||||
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
|
||||
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
|
||||
Grid::XmlWriter wr(param_file + ".templ");
|
||||
write(wr, "LanczosParameters", params);
|
||||
}
|
||||
|
||||
FermionFieldD gauss_o(rbGrid);
|
||||
FermionFieldD gauss(Grid);
|
||||
gaussian(rng, gauss);
|
||||
pickCheckerboard(Odd, gauss_o, gauss);
|
||||
|
||||
action.ImportGauge(latt);
|
||||
|
||||
SchurDiagMooeeOperator<FermionActionD, FermionFieldD> hermop(action);
|
||||
PlainHermOp<FermionFieldD> hermop_wrap(hermop);
|
||||
//ChebyshevLanczos<FermionFieldD> Cheb(params.alpha, params.beta, params.mu, params.ord);
|
||||
assert(params.mu == 0.0);
|
||||
|
||||
Chebyshev<FermionFieldD> Cheb(params.beta*params.beta, params.alpha*params.alpha, params.ord+1);
|
||||
FunctionHermOp<FermionFieldD> Cheb_wrap(Cheb, hermop);
|
||||
|
||||
std::cout << "IRL: alpha=" << params.alpha << " beta=" << params.beta << " mu=" << params.mu << " ord=" << params.ord << std::endl;
|
||||
ImplicitlyRestartedLanczos<FermionFieldD> IRL(Cheb_wrap, hermop_wrap, params.n_stop, params.n_want, params.n_use, params.tolerance, 10000);
|
||||
|
||||
std::vector<RealD> eval(params.n_use);
|
||||
std::vector<FermionFieldD> evec(params.n_use, rbGrid);
|
||||
int Nconv;
|
||||
IRL.calc(eval, evec, gauss_o, Nconv);
|
||||
|
||||
std::cout << "Eigenvalues:" << std::endl;
|
||||
for(int i=0;i<params.n_want;i++){
|
||||
std::cout << i << " " << eval[i] << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//Check the quality of the RHMC approx
|
||||
template<typename FermionActionD, typename FermionFieldD, typename RHMCtype>
|
||||
void checkRHMC(GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
|
||||
FermionActionD &numOp, FermionActionD &denOp, RHMCtype &rhmc, GridParallelRNG &rng,
|
||||
int inv_pow, const std::string &quark_descr){
|
||||
|
||||
FermionFieldD gauss_o(rbGrid);
|
||||
FermionFieldD gauss(Grid);
|
||||
gaussian(rng, gauss);
|
||||
pickCheckerboard(Odd, gauss_o, gauss);
|
||||
|
||||
numOp.ImportGauge(latt);
|
||||
denOp.ImportGauge(latt);
|
||||
|
||||
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
|
||||
SchurDifferentiableOperator<FermionImplPolicyD> MdagM(numOp);
|
||||
SchurDifferentiableOperator<FermionImplPolicyD> VdagV(denOp);
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerAction); //use large tolerance to prevent exit on fail; we are trying to tune here!
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerAction);
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerAction);
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerAction);
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
|
||||
std::cout << "-------------------------------------------------------------------------------" << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
Grid_init(&argc, &argv);
|
||||
int threads = GridThread::GetThreads();
|
||||
// here make a routine to print all the relevant information on the run
|
||||
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
|
||||
|
||||
std::string param_file = "params.xml";
|
||||
bool file_load_check = false;
|
||||
for(int i=1;i<argc;i++){
|
||||
std::string sarg(argv[i]);
|
||||
if(sarg == "--param_file"){
|
||||
assert(i!=argc-1);
|
||||
param_file = argv[i+1];
|
||||
}else if(sarg == "--read_check"){ //check the fields load correctly and pass checksum/plaquette repro
|
||||
file_load_check = true;
|
||||
}
|
||||
}
|
||||
|
||||
//Read the user parameters
|
||||
EvolParameters user_params;
|
||||
|
||||
if(fileExists(param_file)){
|
||||
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
|
||||
Grid::XmlReader rd(param_file);
|
||||
read(rd, "Params", user_params);
|
||||
}else if(!GlobalSharedMemory::WorldRank){
|
||||
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
|
||||
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
|
||||
Grid::XmlWriter wr(param_file + ".templ");
|
||||
write(wr, "Params", user_params);
|
||||
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
||||
|
||||
//Check the parameters
|
||||
if(user_params.GparityDirs.size() != Nd-1){
|
||||
std::cerr << "Error in input parameters: expect GparityDirs to have size = " << Nd-1 << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
for(int i=0;i<Nd-1;i++)
|
||||
if(user_params.GparityDirs[i] != 0 && user_params.GparityDirs[i] != 1){
|
||||
std::cerr << "Error in input parameters: expect GparityDirs values to be 0 (periodic) or 1 (G-parity)" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
|
||||
// Typedefs to simplify notation
|
||||
typedef GparityDomainWallFermionD FermionActionD;
|
||||
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
|
||||
typedef typename FermionActionD::FermionField FermionFieldD;
|
||||
|
||||
typedef GparityDomainWallFermionF FermionActionF;
|
||||
typedef typename FermionActionF::Impl_t FermionImplPolicyF;
|
||||
typedef typename FermionActionF::FermionField FermionFieldF;
|
||||
|
||||
typedef GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<FermionImplPolicyD,FermionImplPolicyF> MixedPrecRHMC;
|
||||
typedef GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicyD> DoublePrecRHMC;
|
||||
|
||||
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
|
||||
IntegratorParameters MD;
|
||||
typedef ConjugateHMCRunnerD<MinimumNorm2> HMCWrapper; //NB: This is the "Omelyan integrator"
|
||||
typedef HMCWrapper::ImplPolicy GaugeImplPolicy;
|
||||
MD.name = std::string("MinimumNorm2");
|
||||
MD.MDsteps = user_params.Steps;
|
||||
MD.trajL = 1.0;
|
||||
|
||||
HMCparameters HMCparams;
|
||||
HMCparams.StartTrajectory = user_params.StartTrajectory;
|
||||
HMCparams.Trajectories = user_params.Trajectories;
|
||||
HMCparams.NoMetropolisUntil= 0;
|
||||
HMCparams.StartingType = user_params.StartingType;
|
||||
HMCparams.MetropolisTest = user_params.MetropolisTest;
|
||||
HMCparams.MD = MD;
|
||||
HMCWrapper TheHMC(HMCparams);
|
||||
|
||||
// Grid from the command line arguments --grid and --mpi
|
||||
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
|
||||
|
||||
CheckpointerParameters CPparams;
|
||||
CPparams.config_prefix = "ckpoint_lat";
|
||||
CPparams.rng_prefix = "ckpoint_rng";
|
||||
CPparams.saveInterval = user_params.SaveInterval;
|
||||
CPparams.format = "IEEE64BIG";
|
||||
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
|
||||
|
||||
//Note that checkpointing saves the RNG state so that this initialization is required only for the very first configuration
|
||||
RNGModuleParameters RNGpar;
|
||||
RNGpar.serial_seeds = "1 2 3 4 5";
|
||||
RNGpar.parallel_seeds = "6 7 8 9 10";
|
||||
TheHMC.Resources.SetRNGSeeds(RNGpar);
|
||||
|
||||
typedef PlaquetteMod<GaugeImplPolicy> PlaqObs;
|
||||
TheHMC.Resources.AddObservable<PlaqObs>();
|
||||
//////////////////////////////////////////////
|
||||
|
||||
const int Ls = 16;
|
||||
Real beta = 2.13;
|
||||
Real light_mass = 0.01;
|
||||
Real strange_mass = 0.032;
|
||||
Real pv_mass = 1.0;
|
||||
RealD M5 = 1.8;
|
||||
|
||||
//Setup the Grids
|
||||
auto GridPtrD = TheHMC.Resources.GetCartesian();
|
||||
auto GridRBPtrD = TheHMC.Resources.GetRBCartesian();
|
||||
auto FGridD = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtrD);
|
||||
auto FrbGridD = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtrD);
|
||||
|
||||
GridCartesian* GridPtrF = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
|
||||
GridRedBlackCartesian* GridRBPtrF = SpaceTimeGrid::makeFourDimRedBlackGrid(GridPtrF);
|
||||
auto FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtrF);
|
||||
auto FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtrF);
|
||||
|
||||
ConjugateIwasakiGaugeActionD GaugeAction(beta);
|
||||
|
||||
// temporarily need a gauge field
|
||||
LatticeGaugeFieldD Ud(GridPtrD);
|
||||
LatticeGaugeFieldF Uf(GridPtrF);
|
||||
|
||||
//Setup the BCs
|
||||
FermionActionD::ImplParams Params;
|
||||
for(int i=0;i<Nd-1;i++) Params.twists[i] = user_params.GparityDirs[i]; //G-parity directions
|
||||
Params.twists[Nd-1] = 1; //APBC in time direction
|
||||
|
||||
std::vector<int> dirs4(Nd);
|
||||
for(int i=0;i<Nd-1;i++) dirs4[i] = user_params.GparityDirs[i];
|
||||
dirs4[Nd-1] = 0; //periodic gauge BC in time
|
||||
|
||||
GaugeImplPolicy::setDirections(dirs4); //gauge BC
|
||||
|
||||
//Run optional gauge field checksum checker and exit
|
||||
if(file_load_check){
|
||||
TheHMC.initializeGaugeFieldAndRNGs(Ud);
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////
|
||||
// Collect actions
|
||||
////////////////////////////////////
|
||||
ActionLevel<HMCWrapper::Field> Level1(1); //light quark + strange quark
|
||||
ActionLevel<HMCWrapper::Field> Level2(8); //gauge (8 increments per step)
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Light action
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
FermionActionD Numerator_lD(Ud,*FGridD,*FrbGridD,*GridPtrD,*GridRBPtrD, light_mass,M5,Params);
|
||||
FermionActionD Denominator_lD(Ud,*FGridD,*FrbGridD,*GridPtrD,*GridRBPtrD, pv_mass,M5,Params);
|
||||
|
||||
FermionActionF Numerator_lF(Uf,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF, light_mass,M5,Params);
|
||||
FermionActionF Denominator_lF(Uf,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF, pv_mass,M5,Params);
|
||||
|
||||
RationalActionParams rat_act_params_l;
|
||||
rat_act_params_l.inv_pow = 2; // (M^dag M)^{1/2}
|
||||
rat_act_params_l.precision= 60;
|
||||
rat_act_params_l.MaxIter = 10000;
|
||||
user_params.rat_quo_l.Export(rat_act_params_l);
|
||||
std::cout << GridLogMessage << " Light quark bounds check every " << rat_act_params_l.BoundsCheckFreq << " trajectories (avg)" << std::endl;
|
||||
|
||||
//MixedPrecRHMC Quotient_l(Denominator_lD, Numerator_lD, Denominator_lF, Numerator_lF, rat_act_params_l, user_params.rat_quo_l.reliable_update_freq);
|
||||
DoublePrecRHMC Quotient_l(Denominator_lD, Numerator_lD, rat_act_params_l);
|
||||
Level1.push_back(&Quotient_l);
|
||||
|
||||
|
||||
////////////////////////////////////
|
||||
// Strange action
|
||||
////////////////////////////////////
|
||||
FermionActionD Numerator_sD(Ud,*FGridD,*FrbGridD,*GridPtrD,*GridRBPtrD,strange_mass,M5,Params);
|
||||
FermionActionD Denominator_sD(Ud,*FGridD,*FrbGridD,*GridPtrD,*GridRBPtrD, pv_mass,M5,Params);
|
||||
|
||||
FermionActionF Numerator_sF(Uf,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,strange_mass,M5,Params);
|
||||
FermionActionF Denominator_sF(Uf,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF, pv_mass,M5,Params);
|
||||
|
||||
RationalActionParams rat_act_params_s;
|
||||
rat_act_params_s.inv_pow = 4; // (M^dag M)^{1/4}
|
||||
rat_act_params_s.precision= 60;
|
||||
rat_act_params_s.MaxIter = 10000;
|
||||
user_params.rat_quo_s.Export(rat_act_params_s);
|
||||
std::cout << GridLogMessage << " Heavy quark bounds check every " << rat_act_params_l.BoundsCheckFreq << " trajectories (avg)" << std::endl;
|
||||
|
||||
//MixedPrecRHMC Quotient_s(Denominator_sD, Numerator_sD, Denominator_sF, Numerator_sF, rat_act_params_s, user_params.rat_quo_s.reliable_update_freq);
|
||||
DoublePrecRHMC Quotient_s(Denominator_sD, Numerator_sD, rat_act_params_s);
|
||||
Level1.push_back(&Quotient_s);
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Gauge action
|
||||
/////////////////////////////////////////////////////////////
|
||||
Level2.push_back(&GaugeAction);
|
||||
TheHMC.TheAction.push_back(Level1);
|
||||
TheHMC.TheAction.push_back(Level2);
|
||||
std::cout << GridLogMessage << " Action complete "<< std::endl;
|
||||
|
||||
|
||||
//Action tuning
|
||||
bool tune_rhmc_l=false, tune_rhmc_s=false, eigenrange_l=false, eigenrange_s=false;
|
||||
std::string lanc_params_l, lanc_params_s;
|
||||
for(int i=1;i<argc;i++){
|
||||
std::string sarg(argv[i]);
|
||||
if(sarg == "--tune_rhmc_l") tune_rhmc_l=true;
|
||||
else if(sarg == "--tune_rhmc_s") tune_rhmc_s=true;
|
||||
else if(sarg == "--eigenrange_l"){
|
||||
assert(i < argc-1);
|
||||
eigenrange_l=true;
|
||||
lanc_params_l = argv[i+1];
|
||||
}
|
||||
else if(sarg == "--eigenrange_s"){
|
||||
assert(i < argc-1);
|
||||
eigenrange_s=true;
|
||||
lanc_params_s = argv[i+1];
|
||||
}
|
||||
}
|
||||
if(tune_rhmc_l || tune_rhmc_s || eigenrange_l || eigenrange_s){
|
||||
TheHMC.initializeGaugeFieldAndRNGs(Ud);
|
||||
if(eigenrange_l) computeEigenvalues<FermionActionD, FermionFieldD>(lanc_params_l, FGridD, FrbGridD, Ud, Numerator_lD, TheHMC.Resources.GetParallelRNG());
|
||||
if(eigenrange_s) computeEigenvalues<FermionActionD, FermionFieldD>(lanc_params_s, FGridD, FrbGridD, Ud, Numerator_sD, TheHMC.Resources.GetParallelRNG());
|
||||
if(tune_rhmc_l) checkRHMC<FermionActionD, FermionFieldD, decltype(Quotient_l)>(FGridD, FrbGridD, Ud, Numerator_lD, Denominator_lD, Quotient_l, TheHMC.Resources.GetParallelRNG(), 2, "light");
|
||||
if(tune_rhmc_s) checkRHMC<FermionActionD, FermionFieldD, decltype(Quotient_s)>(FGridD, FrbGridD, Ud, Numerator_sD, Denominator_sD, Quotient_s, TheHMC.Resources.GetParallelRNG(), 4, "strange");
|
||||
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
//Run the HMC
|
||||
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
|
||||
TheHMC.Run();
|
||||
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
} // main
|
||||
|
765
HMC/Mobius2p1fIDSDRGparityEOFA.cc
Normal file
765
HMC/Mobius2p1fIDSDRGparityEOFA.cc
Normal file
@ -0,0 +1,765 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./HMC/Mobius2p1fIDSDRGparityEOFA.cc
|
||||
|
||||
Copyright (C) 2015-2016
|
||||
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace Grid;
|
||||
|
||||
//We try to reproduce with G-parity BCs the 246 MeV 1.37 GeV ensemble
|
||||
//To speed things up we will use Mobius DWF with b+c=32/12 and Ls=12 to match the Ls=32 of the original
|
||||
//These parameters match those used in the 2020 K->pipi paper
|
||||
|
||||
struct RatQuoParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(RatQuoParameters,
|
||||
double, bnd_lo,
|
||||
double, bnd_hi,
|
||||
Integer, action_degree,
|
||||
double, action_tolerance,
|
||||
Integer, md_degree,
|
||||
double, md_tolerance,
|
||||
Integer, reliable_update_freq,
|
||||
Integer, bnd_check_freq);
|
||||
RatQuoParameters() {
|
||||
bnd_lo = 1e-2;
|
||||
bnd_hi = 30;
|
||||
action_degree = 10;
|
||||
action_tolerance = 1e-10;
|
||||
md_degree = 10;
|
||||
md_tolerance = 1e-8;
|
||||
bnd_check_freq = 20;
|
||||
reliable_update_freq = 50;
|
||||
}
|
||||
|
||||
void Export(RationalActionParams &into) const{
|
||||
into.lo = bnd_lo;
|
||||
into.hi = bnd_hi;
|
||||
into.action_degree = action_degree;
|
||||
into.action_tolerance = action_tolerance;
|
||||
into.md_degree = md_degree;
|
||||
into.md_tolerance = md_tolerance;
|
||||
into.BoundsCheckFreq = bnd_check_freq;
|
||||
}
|
||||
};
|
||||
|
||||
struct EOFAparameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(EOFAparameters,
|
||||
OneFlavourRationalParams, rat_params,
|
||||
double, action_tolerance,
|
||||
double, action_mixcg_inner_tolerance,
|
||||
double, md_tolerance,
|
||||
double, md_mixcg_inner_tolerance);
|
||||
|
||||
EOFAparameters() {
|
||||
action_mixcg_inner_tolerance = 1e-8;
|
||||
action_tolerance = 1e-10;
|
||||
md_tolerance = 1e-8;
|
||||
md_mixcg_inner_tolerance = 1e-8;
|
||||
|
||||
rat_params.lo = 0.1;
|
||||
rat_params.hi = 25.0;
|
||||
rat_params.MaxIter = 10000;
|
||||
rat_params.tolerance= 1.0e-9;
|
||||
rat_params.degree = 14;
|
||||
rat_params.precision= 50;
|
||||
}
|
||||
};
|
||||
|
||||
struct EvolParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(EvolParameters,
|
||||
Integer, StartTrajectory,
|
||||
Integer, Trajectories,
|
||||
Integer, SaveInterval,
|
||||
Integer, Steps,
|
||||
bool, MetropolisTest,
|
||||
std::string, StartingType,
|
||||
std::vector<Integer>, GparityDirs,
|
||||
EOFAparameters, eofa_l,
|
||||
RatQuoParameters, rat_quo_s,
|
||||
RatQuoParameters, rat_quo_DSDR);
|
||||
|
||||
EvolParameters() {
|
||||
//For initial thermalization; afterwards user should switch Metropolis on and use StartingType=CheckpointStart
|
||||
MetropolisTest = false;
|
||||
StartTrajectory = 0;
|
||||
Trajectories = 50;
|
||||
SaveInterval = 5;
|
||||
StartingType = "ColdStart";
|
||||
GparityDirs.resize(3, 1); //1 for G-parity, 0 for periodic
|
||||
Steps = 5;
|
||||
}
|
||||
};
|
||||
|
||||
bool fileExists(const std::string &fn){
|
||||
std::ifstream f(fn);
|
||||
return f.good();
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
struct LanczosParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParameters,
|
||||
double, alpha,
|
||||
double, beta,
|
||||
double, mu,
|
||||
int, ord,
|
||||
int, n_stop,
|
||||
int, n_want,
|
||||
int, n_use,
|
||||
double, tolerance);
|
||||
|
||||
LanczosParameters() {
|
||||
alpha = 35;
|
||||
beta = 5;
|
||||
mu = 0;
|
||||
ord = 100;
|
||||
n_stop = 10;
|
||||
n_want = 10;
|
||||
n_use = 15;
|
||||
tolerance = 1e-6;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
template<typename FermionActionD, typename FermionFieldD>
|
||||
void computeEigenvalues(std::string param_file,
|
||||
GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
|
||||
FermionActionD &action, GridParallelRNG &rng){
|
||||
|
||||
LanczosParameters params;
|
||||
if(fileExists(param_file)){
|
||||
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
|
||||
Grid::XmlReader rd(param_file);
|
||||
read(rd, "LanczosParameters", params);
|
||||
}else if(!GlobalSharedMemory::WorldRank){
|
||||
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
|
||||
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
|
||||
Grid::XmlWriter wr(param_file + ".templ");
|
||||
write(wr, "LanczosParameters", params);
|
||||
}
|
||||
|
||||
FermionFieldD gauss_o(rbGrid);
|
||||
FermionFieldD gauss(Grid);
|
||||
gaussian(rng, gauss);
|
||||
pickCheckerboard(Odd, gauss_o, gauss);
|
||||
|
||||
action.ImportGauge(latt);
|
||||
|
||||
SchurDiagMooeeOperator<FermionActionD, FermionFieldD> hermop(action);
|
||||
PlainHermOp<FermionFieldD> hermop_wrap(hermop);
|
||||
//ChebyshevLanczos<FermionFieldD> Cheb(params.alpha, params.beta, params.mu, params.ord);
|
||||
assert(params.mu == 0.0);
|
||||
|
||||
Chebyshev<FermionFieldD> Cheb(params.beta*params.beta, params.alpha*params.alpha, params.ord+1);
|
||||
FunctionHermOp<FermionFieldD> Cheb_wrap(Cheb, hermop);
|
||||
|
||||
std::cout << "IRL: alpha=" << params.alpha << " beta=" << params.beta << " mu=" << params.mu << " ord=" << params.ord << std::endl;
|
||||
ImplicitlyRestartedLanczos<FermionFieldD> IRL(Cheb_wrap, hermop_wrap, params.n_stop, params.n_want, params.n_use, params.tolerance, 10000);
|
||||
|
||||
std::vector<RealD> eval(params.n_use);
|
||||
std::vector<FermionFieldD> evec(params.n_use, rbGrid);
|
||||
int Nconv;
|
||||
IRL.calc(eval, evec, gauss_o, Nconv);
|
||||
|
||||
std::cout << "Eigenvalues:" << std::endl;
|
||||
for(int i=0;i<params.n_want;i++){
|
||||
std::cout << i << " " << eval[i] << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//Check the quality of the RHMC approx
|
||||
//action_or_md toggles checking the action (0), MD (1) or both (2) setups
|
||||
template<typename FermionActionD, typename FermionFieldD, typename RHMCtype>
|
||||
void checkRHMC(GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
|
||||
FermionActionD &numOp, FermionActionD &denOp, RHMCtype &rhmc, GridParallelRNG &rng,
|
||||
int inv_pow, const std::string &quark_descr, int action_or_md){
|
||||
assert(action_or_md == 0 || action_or_md == 1 || action_or_md == 2);
|
||||
|
||||
FermionFieldD gauss_o(rbGrid);
|
||||
FermionFieldD gauss(Grid);
|
||||
gaussian(rng, gauss);
|
||||
pickCheckerboard(Odd, gauss_o, gauss);
|
||||
|
||||
numOp.ImportGauge(latt);
|
||||
denOp.ImportGauge(latt);
|
||||
|
||||
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
|
||||
SchurDifferentiableOperator<FermionImplPolicyD> MdagM(numOp);
|
||||
SchurDifferentiableOperator<FermionImplPolicyD> VdagV(denOp);
|
||||
|
||||
PowerMethod<FermionFieldD> power_method;
|
||||
RealD lambda_max;
|
||||
|
||||
std::cout << "Starting: Get RHMC high bound approx for " << quark_descr << " numerator" << std::endl;
|
||||
|
||||
lambda_max = power_method(MdagM,gauss_o);
|
||||
std::cout << GridLogMessage << "Got lambda_max "<<lambda_max<<std::endl;
|
||||
|
||||
std::cout << "Starting: Get RHMC high bound approx for " << quark_descr << " denominator" << std::endl;
|
||||
lambda_max = power_method(VdagV,gauss_o);
|
||||
std::cout << GridLogMessage << "Got lambda_max "<<lambda_max<<std::endl;
|
||||
|
||||
if(action_or_md == 0 || action_or_md == 2){
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerAction); //use large tolerance to prevent exit on fail; we are trying to tune here!
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerAction);
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerAction);
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerAction);
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
}
|
||||
|
||||
std::cout << "-------------------------------------------------------------------------------" << std::endl;
|
||||
|
||||
if(action_or_md == 1 || action_or_md == 2){
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template<typename FermionImplPolicy>
|
||||
void checkEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
|
||||
GridCartesian* FGrid, GridParallelRNG &rng, const LatticeGaugeFieldD &latt){
|
||||
std::cout << GridLogMessage << "Starting EOFA action/bounds check" << std::endl;
|
||||
typename FermionImplPolicy::FermionField eta(FGrid);
|
||||
RealD scale = std::sqrt(0.5);
|
||||
gaussian(rng,eta); eta = eta * scale;
|
||||
|
||||
//Use the inbuilt check
|
||||
EOFA.refresh(latt, eta);
|
||||
EOFA.S(latt);
|
||||
std::cout << GridLogMessage << "Finished EOFA upper action/bounds check" << std::endl;
|
||||
}
|
||||
|
||||
|
||||
template<typename FermionImplPolicy>
|
||||
class EOFAlinop: public LinearOperatorBase<typename FermionImplPolicy::FermionField>{
|
||||
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA;
|
||||
LatticeGaugeFieldD &U;
|
||||
public:
|
||||
EOFAlinop(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA, LatticeGaugeFieldD &U): EOFA(EOFA), U(U){}
|
||||
|
||||
typedef typename FermionImplPolicy::FermionField Field;
|
||||
void OpDiag (const Field &in, Field &out){ assert(0); }
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
|
||||
|
||||
void Op (const Field &in, Field &out){ assert(0); }
|
||||
void AdjOp (const Field &in, Field &out){ assert(0); }
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
|
||||
void HermOp(const Field &in, Field &out){ EOFA.Meofa(U, in, out); }
|
||||
};
|
||||
|
||||
template<typename FermionImplPolicy>
|
||||
void upperBoundEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
|
||||
GridCartesian* FGrid, GridParallelRNG &rng, LatticeGaugeFieldD &latt){
|
||||
std::cout << GridLogMessage << "Starting EOFA upper bound compute" << std::endl;
|
||||
EOFAlinop<FermionImplPolicy> linop(EOFA, latt);
|
||||
typename FermionImplPolicy::FermionField eta(FGrid);
|
||||
gaussian(rng,eta);
|
||||
PowerMethod<typename FermionImplPolicy::FermionField> power_method;
|
||||
auto lambda_max = power_method(linop,eta);
|
||||
std::cout << GridLogMessage << "Upper bound of EOFA operator " << lambda_max << std::endl;
|
||||
}
|
||||
|
||||
//Applications of M^{-1} cost the same as M for EOFA!
|
||||
template<typename FermionImplPolicy>
|
||||
class EOFAinvLinop: public LinearOperatorBase<typename FermionImplPolicy::FermionField>{
|
||||
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA;
|
||||
LatticeGaugeFieldD &U;
|
||||
public:
|
||||
EOFAinvLinop(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA, LatticeGaugeFieldD &U): EOFA(EOFA), U(U){}
|
||||
|
||||
typedef typename FermionImplPolicy::FermionField Field;
|
||||
void OpDiag (const Field &in, Field &out){ assert(0); }
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
|
||||
|
||||
void Op (const Field &in, Field &out){ assert(0); }
|
||||
void AdjOp (const Field &in, Field &out){ assert(0); }
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
|
||||
void HermOp(const Field &in, Field &out){ EOFA.MeofaInv(U, in, out); }
|
||||
};
|
||||
|
||||
template<typename FermionImplPolicy>
|
||||
void lowerBoundEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
|
||||
GridCartesian* FGrid, GridParallelRNG &rng, LatticeGaugeFieldD &latt){
|
||||
std::cout << GridLogMessage << "Starting EOFA lower bound compute using power method on M^{-1}. Inverse of highest eigenvalue is the lowest eigenvalue of M" << std::endl;
|
||||
EOFAinvLinop<FermionImplPolicy> linop(EOFA, latt);
|
||||
typename FermionImplPolicy::FermionField eta(FGrid);
|
||||
gaussian(rng,eta);
|
||||
PowerMethod<typename FermionImplPolicy::FermionField> power_method;
|
||||
auto lambda_max = power_method(linop,eta);
|
||||
std::cout << GridLogMessage << "Lower bound of EOFA operator " << 1./lambda_max << std::endl;
|
||||
}
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class SchurOperatorF>
|
||||
class MixedPrecisionConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
|
||||
public:
|
||||
typedef typename FermionOperatorD::FermionField FieldD;
|
||||
typedef typename FermionOperatorF::FermionField FieldF;
|
||||
|
||||
using OperatorFunction<FieldD>::operator();
|
||||
|
||||
RealD Tolerance;
|
||||
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
|
||||
Integer MaxInnerIterations;
|
||||
Integer MaxOuterIterations;
|
||||
GridBase* SinglePrecGrid4; //Grid for single-precision fields
|
||||
GridBase* SinglePrecGrid5; //Grid for single-precision fields
|
||||
RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
|
||||
|
||||
FermionOperatorF &FermOpF;
|
||||
FermionOperatorD &FermOpD;;
|
||||
SchurOperatorF &LinOpF;
|
||||
SchurOperatorD &LinOpD;
|
||||
|
||||
Integer TotalInnerIterations; //Number of inner CG iterations
|
||||
Integer TotalOuterIterations; //Number of restarts
|
||||
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
|
||||
|
||||
MixedPrecisionConjugateGradientOperatorFunction(RealD tol,
|
||||
Integer maxinnerit,
|
||||
Integer maxouterit,
|
||||
GridBase* _sp_grid4,
|
||||
GridBase* _sp_grid5,
|
||||
FermionOperatorF &_FermOpF,
|
||||
FermionOperatorD &_FermOpD,
|
||||
SchurOperatorF &_LinOpF,
|
||||
SchurOperatorD &_LinOpD):
|
||||
LinOpF(_LinOpF),
|
||||
LinOpD(_LinOpD),
|
||||
FermOpF(_FermOpF),
|
||||
FermOpD(_FermOpD),
|
||||
Tolerance(tol),
|
||||
InnerTolerance(tol),
|
||||
MaxInnerIterations(maxinnerit),
|
||||
MaxOuterIterations(maxouterit),
|
||||
SinglePrecGrid4(_sp_grid4),
|
||||
SinglePrecGrid5(_sp_grid5),
|
||||
OuterLoopNormMult(100.)
|
||||
{
|
||||
};
|
||||
|
||||
void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
|
||||
|
||||
std::cout << GridLogMessage << " Mixed precision CG wrapper operator() "<<std::endl;
|
||||
|
||||
SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
|
||||
assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
|
||||
|
||||
precisionChange(FermOpF.Umu, FermOpD.Umu);
|
||||
|
||||
pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
|
||||
pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// Make a mixed precision conjugate gradient
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
MixedPrecisionConjugateGradient<FieldD,FieldF> MPCG(Tolerance,MaxInnerIterations,MaxOuterIterations,SinglePrecGrid5,LinOpF,LinOpD);
|
||||
MPCG.InnerTolerance = InnerTolerance;
|
||||
std::cout << GridLogMessage << "Calling mixed precision Conjugate Gradient" <<std::endl;
|
||||
MPCG(src,psi);
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
Grid_init(&argc, &argv);
|
||||
int threads = GridThread::GetThreads();
|
||||
// here make a routine to print all the relevant information on the run
|
||||
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
|
||||
|
||||
std::string param_file = "params.xml";
|
||||
bool file_load_check = false;
|
||||
for(int i=1;i<argc;i++){
|
||||
std::string sarg(argv[i]);
|
||||
if(sarg == "--param_file"){
|
||||
assert(i!=argc-1);
|
||||
param_file = argv[i+1];
|
||||
}else if(sarg == "--read_check"){ //check the fields load correctly and pass checksum/plaquette repro
|
||||
file_load_check = true;
|
||||
}
|
||||
}
|
||||
|
||||
//Read the user parameters
|
||||
EvolParameters user_params;
|
||||
|
||||
if(fileExists(param_file)){
|
||||
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
|
||||
Grid::XmlReader rd(param_file);
|
||||
read(rd, "Params", user_params);
|
||||
}else if(!GlobalSharedMemory::WorldRank){
|
||||
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
|
||||
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
|
||||
{
|
||||
Grid::XmlWriter wr(param_file + ".templ");
|
||||
write(wr, "Params", user_params);
|
||||
}
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
||||
|
||||
//Check the parameters
|
||||
if(user_params.GparityDirs.size() != Nd-1){
|
||||
std::cerr << "Error in input parameters: expect GparityDirs to have size = " << Nd-1 << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
for(int i=0;i<Nd-1;i++)
|
||||
if(user_params.GparityDirs[i] != 0 && user_params.GparityDirs[i] != 1){
|
||||
std::cerr << "Error in input parameters: expect GparityDirs values to be 0 (periodic) or 1 (G-parity)" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
|
||||
|
||||
typedef GparityMobiusEOFAFermionD EOFAactionD;
|
||||
typedef GparityMobiusFermionD FermionActionD;
|
||||
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
|
||||
typedef typename FermionActionD::FermionField FermionFieldD;
|
||||
|
||||
typedef GparityMobiusEOFAFermionF EOFAactionF;
|
||||
typedef GparityMobiusFermionF FermionActionF;
|
||||
typedef typename FermionActionF::Impl_t FermionImplPolicyF;
|
||||
typedef typename FermionActionF::FermionField FermionFieldF;
|
||||
|
||||
typedef GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<FermionImplPolicyD,FermionImplPolicyF> MixedPrecRHMC;
|
||||
typedef GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicyD> DoublePrecRHMC;
|
||||
|
||||
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
|
||||
IntegratorParameters MD;
|
||||
typedef ConjugateHMCRunnerD<MinimumNorm2> HMCWrapper; //NB: This is the "Omelyan integrator"
|
||||
typedef HMCWrapper::ImplPolicy GaugeImplPolicy;
|
||||
MD.name = std::string("MinimumNorm2");
|
||||
MD.MDsteps = user_params.Steps;
|
||||
MD.trajL = 1.0;
|
||||
|
||||
HMCparameters HMCparams;
|
||||
HMCparams.StartTrajectory = user_params.StartTrajectory;
|
||||
HMCparams.Trajectories = user_params.Trajectories;
|
||||
HMCparams.NoMetropolisUntil= 0;
|
||||
HMCparams.StartingType = user_params.StartingType;
|
||||
HMCparams.MetropolisTest = user_params.MetropolisTest;
|
||||
HMCparams.MD = MD;
|
||||
HMCWrapper TheHMC(HMCparams);
|
||||
|
||||
// Grid from the command line arguments --grid and --mpi
|
||||
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
|
||||
|
||||
CheckpointerParameters CPparams;
|
||||
CPparams.config_prefix = "ckpoint_lat";
|
||||
CPparams.rng_prefix = "ckpoint_rng";
|
||||
CPparams.saveInterval = user_params.SaveInterval;
|
||||
CPparams.format = "IEEE64BIG";
|
||||
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
|
||||
|
||||
//Note that checkpointing saves the RNG state so that this initialization is required only for the very first configuration
|
||||
RNGModuleParameters RNGpar;
|
||||
RNGpar.serial_seeds = "1 2 3 4 5";
|
||||
RNGpar.parallel_seeds = "6 7 8 9 10";
|
||||
TheHMC.Resources.SetRNGSeeds(RNGpar);
|
||||
|
||||
typedef PlaquetteMod<GaugeImplPolicy> PlaqObs;
|
||||
TheHMC.Resources.AddObservable<PlaqObs>();
|
||||
//////////////////////////////////////////////
|
||||
|
||||
const int Ls = 12;
|
||||
Real beta = 1.75;
|
||||
Real light_mass = 0.0042; //240 MeV
|
||||
Real strange_mass = 0.045;
|
||||
Real pv_mass = 1.0;
|
||||
RealD M5 = 1.8;
|
||||
RealD mobius_scale = 32./12.; //b+c
|
||||
|
||||
RealD mob_bmc = 1.0;
|
||||
RealD mob_b = (mobius_scale + mob_bmc)/2.;
|
||||
RealD mob_c = (mobius_scale - mob_bmc)/2.;
|
||||
|
||||
//Setup the Grids
|
||||
auto UGridD = TheHMC.Resources.GetCartesian();
|
||||
auto UrbGridD = TheHMC.Resources.GetRBCartesian();
|
||||
auto FGridD = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridD);
|
||||
auto FrbGridD = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridD);
|
||||
|
||||
GridCartesian* UGridF = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
|
||||
GridRedBlackCartesian* UrbGridF = SpaceTimeGrid::makeFourDimRedBlackGrid(UGridF);
|
||||
auto FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridF);
|
||||
auto FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridF);
|
||||
|
||||
ConjugateIwasakiGaugeActionD GaugeAction(beta);
|
||||
|
||||
// temporarily need a gauge field
|
||||
LatticeGaugeFieldD Ud(UGridD);
|
||||
LatticeGaugeFieldF Uf(UGridF);
|
||||
|
||||
//Setup the BCs
|
||||
FermionActionD::ImplParams Params;
|
||||
for(int i=0;i<Nd-1;i++) Params.twists[i] = user_params.GparityDirs[i]; //G-parity directions
|
||||
Params.twists[Nd-1] = 1; //APBC in time direction
|
||||
|
||||
std::vector<int> dirs4(Nd);
|
||||
for(int i=0;i<Nd-1;i++) dirs4[i] = user_params.GparityDirs[i];
|
||||
dirs4[Nd-1] = 0; //periodic gauge BC in time
|
||||
|
||||
GaugeImplPolicy::setDirections(dirs4); //gauge BC
|
||||
|
||||
//Run optional gauge field checksum checker and exit
|
||||
if(file_load_check){
|
||||
TheHMC.initializeGaugeFieldAndRNGs(Ud);
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////
|
||||
// Collect actions
|
||||
////////////////////////////////////
|
||||
ActionLevel<HMCWrapper::Field> Level1(1); //light quark + strange quark
|
||||
ActionLevel<HMCWrapper::Field> Level2(1); //DSDR
|
||||
ActionLevel<HMCWrapper::Field> Level3(8); //gauge (8 increments per step)
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Light EOFA action
|
||||
// have to be careful with the parameters, cf. Test_dwf_gpforce_eofa.cc
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
EOFAactionD LopD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, light_mass, light_mass, pv_mass, 0.0, -1, M5, mob_b, mob_c, Params);
|
||||
EOFAactionF LopF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, light_mass, light_mass, pv_mass, 0.0, -1, M5, mob_b, mob_c, Params);
|
||||
EOFAactionD RopD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, pv_mass, light_mass, pv_mass, -1.0, 1, M5, mob_b, mob_c, Params);
|
||||
EOFAactionF RopF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, pv_mass, light_mass, pv_mass, -1.0, 1, M5, mob_b, mob_c, Params);
|
||||
|
||||
typedef SchurDiagMooeeOperator<EOFAactionD,FermionFieldD> EOFAschuropD;
|
||||
typedef SchurDiagMooeeOperator<EOFAactionF,FermionFieldF> EOFAschuropF;
|
||||
|
||||
EOFAschuropD linopL_D(LopD);
|
||||
EOFAschuropD linopR_D(RopD);
|
||||
|
||||
EOFAschuropF linopL_F(LopF);
|
||||
EOFAschuropF linopR_F(RopF);
|
||||
|
||||
typedef MixedPrecisionConjugateGradientOperatorFunction<EOFAactionD, EOFAactionF, EOFAschuropD, EOFAschuropF> EOFA_mxCG;
|
||||
|
||||
EOFA_mxCG ActionMCG_L(user_params.eofa_l.action_tolerance, 10000, 1000, UGridF, FrbGridF, LopF, LopD, linopL_F, linopL_D);
|
||||
ActionMCG_L.InnerTolerance = user_params.eofa_l.action_mixcg_inner_tolerance;
|
||||
|
||||
EOFA_mxCG ActionMCG_R(user_params.eofa_l.action_tolerance, 10000, 1000, UGridF, FrbGridF, RopF, RopD, linopR_F, linopR_D);
|
||||
ActionMCG_R.InnerTolerance = user_params.eofa_l.action_mixcg_inner_tolerance;
|
||||
|
||||
EOFA_mxCG DerivMCG_L(user_params.eofa_l.md_tolerance, 10000, 1000, UGridF, FrbGridF, LopF, LopD, linopL_F, linopL_D);
|
||||
DerivMCG_L.InnerTolerance = user_params.eofa_l.md_mixcg_inner_tolerance;
|
||||
|
||||
EOFA_mxCG DerivMCG_R(user_params.eofa_l.md_tolerance, 10000, 1000, UGridF, FrbGridF, RopF, RopD, linopR_F, linopR_D);
|
||||
DerivMCG_R.InnerTolerance = user_params.eofa_l.md_mixcg_inner_tolerance;
|
||||
|
||||
std::cout << GridLogMessage << "Set EOFA action solver action tolerance outer=" << ActionMCG_L.Tolerance << " inner=" << ActionMCG_L.InnerTolerance << std::endl;
|
||||
std::cout << GridLogMessage << "Set EOFA MD solver tolerance outer=" << DerivMCG_L.Tolerance << " inner=" << DerivMCG_L.InnerTolerance << std::endl;
|
||||
|
||||
ConjugateGradient<FermionFieldD> ActionCG(user_params.eofa_l.action_tolerance, 10000);
|
||||
ConjugateGradient<FermionFieldD> DerivativeCG(user_params.eofa_l.md_tolerance, 10000);
|
||||
|
||||
// ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicyD> EOFA(LopD, RopD,
|
||||
// ActionCG, ActionCG, ActionCG,
|
||||
// DerivativeCG, DerivativeCG,
|
||||
// user_params.eofa_l.rat_params, true);
|
||||
|
||||
// ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicyD> EOFA(LopD, RopD,
|
||||
// ActionMCG_L, ActionMCG_R,
|
||||
// ActionMCG_L, ActionMCG_R,
|
||||
// DerivMCG_L, DerivMCG_R,
|
||||
// user_params.eofa_l.rat_params, true);
|
||||
|
||||
ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction<FermionImplPolicyD, FermionImplPolicyF> EOFA(LopF, RopF,
|
||||
LopD, RopD,
|
||||
ActionMCG_L, ActionMCG_R,
|
||||
ActionMCG_L, ActionMCG_R,
|
||||
DerivMCG_L, DerivMCG_R,
|
||||
user_params.eofa_l.rat_params, true);
|
||||
|
||||
|
||||
Level1.push_back(&EOFA);
|
||||
|
||||
|
||||
////////////////////////////////////
|
||||
// Strange action
|
||||
////////////////////////////////////
|
||||
FermionActionD Numerator_sD(Ud,*FGridD,*FrbGridD,*UGridD,*UrbGridD,strange_mass,M5,mob_b,mob_c,Params);
|
||||
FermionActionD Denominator_sD(Ud,*FGridD,*FrbGridD,*UGridD,*UrbGridD, pv_mass,M5,mob_b,mob_c,Params);
|
||||
|
||||
FermionActionF Numerator_sF(Uf,*FGridF,*FrbGridF,*UGridF,*UrbGridF,strange_mass,M5,mob_b,mob_c,Params);
|
||||
FermionActionF Denominator_sF(Uf,*FGridF,*FrbGridF,*UGridF,*UrbGridF, pv_mass,M5,mob_b,mob_c,Params);
|
||||
|
||||
RationalActionParams rat_act_params_s;
|
||||
rat_act_params_s.inv_pow = 4; // (M^dag M)^{1/4}
|
||||
rat_act_params_s.precision= 60;
|
||||
rat_act_params_s.MaxIter = 10000;
|
||||
user_params.rat_quo_s.Export(rat_act_params_s);
|
||||
std::cout << GridLogMessage << " Heavy quark bounds check every " << rat_act_params_s.BoundsCheckFreq << " trajectories (avg)" << std::endl;
|
||||
|
||||
//MixedPrecRHMC Quotient_s(Denominator_sD, Numerator_sD, Denominator_sF, Numerator_sF, rat_act_params_s, user_params.rat_quo_s.reliable_update_freq);
|
||||
DoublePrecRHMC Quotient_s(Denominator_sD, Numerator_sD, rat_act_params_s);
|
||||
Level1.push_back(&Quotient_s);
|
||||
|
||||
///////////////////////////////////
|
||||
// DSDR action
|
||||
///////////////////////////////////
|
||||
RealD dsdr_mass=-1.8;
|
||||
//Use same DSDR twists as https://arxiv.org/pdf/1208.4412.pdf
|
||||
RealD dsdr_epsilon_f = 0.02; //numerator (in determinant)
|
||||
RealD dsdr_epsilon_b = 0.5;
|
||||
GparityWilsonTMFermionD Numerator_DSDR_D(Ud, *UGridD, *UrbGridD, dsdr_mass, dsdr_epsilon_f, Params);
|
||||
GparityWilsonTMFermionF Numerator_DSDR_F(Uf, *UGridF, *UrbGridF, dsdr_mass, dsdr_epsilon_f, Params);
|
||||
|
||||
GparityWilsonTMFermionD Denominator_DSDR_D(Ud, *UGridD, *UrbGridD, dsdr_mass, dsdr_epsilon_b, Params);
|
||||
GparityWilsonTMFermionF Denominator_DSDR_F(Uf, *UGridF, *UrbGridF, dsdr_mass, dsdr_epsilon_b, Params);
|
||||
|
||||
RationalActionParams rat_act_params_DSDR;
|
||||
rat_act_params_DSDR.inv_pow = 2; // (M^dag M)^{1/2}
|
||||
rat_act_params_DSDR.precision= 60;
|
||||
rat_act_params_DSDR.MaxIter = 10000;
|
||||
user_params.rat_quo_DSDR.Export(rat_act_params_DSDR);
|
||||
std::cout << GridLogMessage << "DSDR quark bounds check every " << rat_act_params_DSDR.BoundsCheckFreq << " trajectories (avg)" << std::endl;
|
||||
|
||||
DoublePrecRHMC Quotient_DSDR(Denominator_DSDR_D, Numerator_DSDR_D, rat_act_params_DSDR);
|
||||
Level2.push_back(&Quotient_DSDR);
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Gauge action
|
||||
/////////////////////////////////////////////////////////////
|
||||
Level3.push_back(&GaugeAction);
|
||||
|
||||
TheHMC.TheAction.push_back(Level1);
|
||||
TheHMC.TheAction.push_back(Level2);
|
||||
TheHMC.TheAction.push_back(Level3);
|
||||
std::cout << GridLogMessage << " Action complete "<< std::endl;
|
||||
|
||||
|
||||
//Action tuning
|
||||
bool
|
||||
tune_rhmc_s=false, eigenrange_s=false,
|
||||
tune_rhmc_DSDR=false, eigenrange_DSDR=false,
|
||||
check_eofa=false,
|
||||
upper_bound_eofa=false, lower_bound_eofa(false);
|
||||
|
||||
std::string lanc_params_s;
|
||||
std::string lanc_params_DSDR;
|
||||
int tune_rhmc_s_action_or_md;
|
||||
int tune_rhmc_DSDR_action_or_md;
|
||||
|
||||
for(int i=1;i<argc;i++){
|
||||
std::string sarg(argv[i]);
|
||||
if(sarg == "--tune_rhmc_s"){
|
||||
assert(i < argc-1);
|
||||
tune_rhmc_s=true;
|
||||
tune_rhmc_s_action_or_md = std::stoi(argv[i+1]);
|
||||
}
|
||||
else if(sarg == "--eigenrange_s"){
|
||||
assert(i < argc-1);
|
||||
eigenrange_s=true;
|
||||
lanc_params_s = argv[i+1];
|
||||
}
|
||||
else if(sarg == "--tune_rhmc_DSDR"){
|
||||
assert(i < argc-1);
|
||||
tune_rhmc_DSDR=true;
|
||||
tune_rhmc_DSDR_action_or_md = std::stoi(argv[i+1]);
|
||||
}
|
||||
else if(sarg == "--eigenrange_DSDR"){
|
||||
assert(i < argc-1);
|
||||
eigenrange_DSDR=true;
|
||||
lanc_params_DSDR = argv[i+1];
|
||||
}
|
||||
else if(sarg == "--check_eofa") check_eofa = true;
|
||||
else if(sarg == "--upper_bound_eofa") upper_bound_eofa = true;
|
||||
else if(sarg == "--lower_bound_eofa") lower_bound_eofa = true;
|
||||
}
|
||||
if(tune_rhmc_s || eigenrange_s || tune_rhmc_DSDR || eigenrange_DSDR ||check_eofa || upper_bound_eofa || lower_bound_eofa) {
|
||||
std::cout << GridLogMessage << "Running checks" << std::endl;
|
||||
TheHMC.initializeGaugeFieldAndRNGs(Ud);
|
||||
|
||||
std::cout << GridLogMessage << "EOFA action solver action tolerance outer=" << ActionMCG_L.Tolerance << " inner=" << ActionMCG_L.InnerTolerance << std::endl;
|
||||
std::cout << GridLogMessage << "EOFA MD solver tolerance outer=" << DerivMCG_L.Tolerance << " inner=" << DerivMCG_L.InnerTolerance << std::endl;
|
||||
|
||||
|
||||
if(check_eofa) checkEOFA(EOFA, FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
|
||||
if(upper_bound_eofa) upperBoundEOFA(EOFA, FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
|
||||
if(lower_bound_eofa) lowerBoundEOFA(EOFA, FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
|
||||
if(eigenrange_s) computeEigenvalues<FermionActionD, FermionFieldD>(lanc_params_s, FGridD, FrbGridD, Ud, Numerator_sD, TheHMC.Resources.GetParallelRNG());
|
||||
if(tune_rhmc_s) checkRHMC<FermionActionD, FermionFieldD, decltype(Quotient_s)>(FGridD, FrbGridD, Ud, Numerator_sD, Denominator_sD, Quotient_s, TheHMC.Resources.GetParallelRNG(), 4, "strange", tune_rhmc_s_action_or_md);
|
||||
if(eigenrange_DSDR) computeEigenvalues<GparityWilsonTMFermionD, GparityWilsonTMFermionD::FermionField>(lanc_params_DSDR, UGridD, UrbGridD, Ud, Numerator_DSDR_D, TheHMC.Resources.GetParallelRNG());
|
||||
if(tune_rhmc_DSDR) checkRHMC<GparityWilsonTMFermionD, GparityWilsonTMFermionD::FermionField, decltype(Quotient_DSDR)>(UGridD, UrbGridD, Ud, Numerator_DSDR_D, Denominator_DSDR_D, Quotient_DSDR, TheHMC.Resources.GetParallelRNG(), 2, "DSDR", tune_rhmc_DSDR_action_or_md);
|
||||
|
||||
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
//Run the HMC
|
||||
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
|
||||
TheHMC.Run();
|
||||
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
} // main
|
918
HMC/Mobius2p1fIDSDRGparityEOFA_40ID.cc
Normal file
918
HMC/Mobius2p1fIDSDRGparityEOFA_40ID.cc
Normal file
@ -0,0 +1,918 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./HMC/Mobius2p1fIDSDRGparityEOFA.cc
|
||||
|
||||
Copyright (C) 2015-2016
|
||||
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace Grid;
|
||||
|
||||
//Production binary for the 40ID G-parity ensemble
|
||||
|
||||
struct RatQuoParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(RatQuoParameters,
|
||||
double, bnd_lo,
|
||||
double, bnd_hi,
|
||||
Integer, action_degree,
|
||||
double, action_tolerance,
|
||||
Integer, md_degree,
|
||||
double, md_tolerance,
|
||||
Integer, reliable_update_freq,
|
||||
Integer, bnd_check_freq);
|
||||
RatQuoParameters() {
|
||||
bnd_lo = 1e-2;
|
||||
bnd_hi = 30;
|
||||
action_degree = 10;
|
||||
action_tolerance = 1e-10;
|
||||
md_degree = 10;
|
||||
md_tolerance = 1e-8;
|
||||
bnd_check_freq = 20;
|
||||
reliable_update_freq = 50;
|
||||
}
|
||||
|
||||
void Export(RationalActionParams &into) const{
|
||||
into.lo = bnd_lo;
|
||||
into.hi = bnd_hi;
|
||||
into.action_degree = action_degree;
|
||||
into.action_tolerance = action_tolerance;
|
||||
into.md_degree = md_degree;
|
||||
into.md_tolerance = md_tolerance;
|
||||
into.BoundsCheckFreq = bnd_check_freq;
|
||||
}
|
||||
};
|
||||
|
||||
struct EOFAparameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(EOFAparameters,
|
||||
OneFlavourRationalParams, rat_params,
|
||||
double, action_tolerance,
|
||||
double, action_mixcg_inner_tolerance,
|
||||
double, md_tolerance,
|
||||
double, md_mixcg_inner_tolerance);
|
||||
|
||||
EOFAparameters() {
|
||||
action_mixcg_inner_tolerance = 1e-8;
|
||||
action_tolerance = 1e-10;
|
||||
md_tolerance = 1e-8;
|
||||
md_mixcg_inner_tolerance = 1e-8;
|
||||
|
||||
rat_params.lo = 1.0;
|
||||
rat_params.hi = 25.0;
|
||||
rat_params.MaxIter = 50000;
|
||||
rat_params.tolerance= 1.0e-9;
|
||||
rat_params.degree = 14;
|
||||
rat_params.precision= 50;
|
||||
}
|
||||
};
|
||||
|
||||
struct EvolParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(EvolParameters,
|
||||
Integer, StartTrajectory,
|
||||
Integer, Trajectories,
|
||||
Integer, SaveInterval,
|
||||
Integer, Steps,
|
||||
RealD, TrajectoryLength,
|
||||
bool, MetropolisTest,
|
||||
std::string, StartingType,
|
||||
std::vector<Integer>, GparityDirs,
|
||||
std::vector<EOFAparameters>, eofa_l,
|
||||
RatQuoParameters, rat_quo_s,
|
||||
RatQuoParameters, rat_quo_DSDR);
|
||||
|
||||
EvolParameters() {
|
||||
//For initial thermalization; afterwards user should switch Metropolis on and use StartingType=CheckpointStart
|
||||
MetropolisTest = false;
|
||||
StartTrajectory = 0;
|
||||
Trajectories = 50;
|
||||
SaveInterval = 5;
|
||||
StartingType = "ColdStart";
|
||||
GparityDirs.resize(3, 1); //1 for G-parity, 0 for periodic
|
||||
Steps = 5;
|
||||
TrajectoryLength = 1.0;
|
||||
}
|
||||
};
|
||||
|
||||
bool fileExists(const std::string &fn){
|
||||
std::ifstream f(fn);
|
||||
return f.good();
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
struct LanczosParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParameters,
|
||||
double, alpha,
|
||||
double, beta,
|
||||
double, mu,
|
||||
int, ord,
|
||||
int, n_stop,
|
||||
int, n_want,
|
||||
int, n_use,
|
||||
double, tolerance);
|
||||
|
||||
LanczosParameters() {
|
||||
alpha = 35;
|
||||
beta = 5;
|
||||
mu = 0;
|
||||
ord = 100;
|
||||
n_stop = 10;
|
||||
n_want = 10;
|
||||
n_use = 15;
|
||||
tolerance = 1e-6;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
template<typename FermionActionD, typename FermionFieldD>
|
||||
void computeEigenvalues(std::string param_file,
|
||||
GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
|
||||
FermionActionD &action, GridParallelRNG &rng){
|
||||
|
||||
LanczosParameters params;
|
||||
if(fileExists(param_file)){
|
||||
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
|
||||
Grid::XmlReader rd(param_file);
|
||||
read(rd, "LanczosParameters", params);
|
||||
}else if(!GlobalSharedMemory::WorldRank){
|
||||
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
|
||||
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
|
||||
Grid::XmlWriter wr(param_file + ".templ");
|
||||
write(wr, "LanczosParameters", params);
|
||||
}
|
||||
|
||||
FermionFieldD gauss_o(rbGrid);
|
||||
FermionFieldD gauss(Grid);
|
||||
gaussian(rng, gauss);
|
||||
pickCheckerboard(Odd, gauss_o, gauss);
|
||||
|
||||
action.ImportGauge(latt);
|
||||
|
||||
SchurDiagMooeeOperator<FermionActionD, FermionFieldD> hermop(action);
|
||||
PlainHermOp<FermionFieldD> hermop_wrap(hermop);
|
||||
//ChebyshevLanczos<FermionFieldD> Cheb(params.alpha, params.beta, params.mu, params.ord);
|
||||
assert(params.mu == 0.0);
|
||||
|
||||
Chebyshev<FermionFieldD> Cheb(params.beta*params.beta, params.alpha*params.alpha, params.ord+1);
|
||||
FunctionHermOp<FermionFieldD> Cheb_wrap(Cheb, hermop);
|
||||
|
||||
std::cout << "IRL: alpha=" << params.alpha << " beta=" << params.beta << " mu=" << params.mu << " ord=" << params.ord << std::endl;
|
||||
ImplicitlyRestartedLanczos<FermionFieldD> IRL(Cheb_wrap, hermop_wrap, params.n_stop, params.n_want, params.n_use, params.tolerance, 50000);
|
||||
|
||||
std::vector<RealD> eval(params.n_use);
|
||||
std::vector<FermionFieldD> evec(params.n_use, rbGrid);
|
||||
int Nconv;
|
||||
IRL.calc(eval, evec, gauss_o, Nconv);
|
||||
|
||||
std::cout << "Eigenvalues:" << std::endl;
|
||||
for(int i=0;i<params.n_want;i++){
|
||||
std::cout << i << " " << eval[i] << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//Check the quality of the RHMC approx
|
||||
//action_or_md toggles checking the action (0), MD (1) or both (2) setups
|
||||
template<typename FermionActionD, typename FermionFieldD, typename RHMCtype>
|
||||
void checkRHMC(GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
|
||||
FermionActionD &numOp, FermionActionD &denOp, RHMCtype &rhmc, GridParallelRNG &rng,
|
||||
int inv_pow, const std::string &quark_descr, int action_or_md){
|
||||
assert(action_or_md == 0 || action_or_md == 1 || action_or_md == 2);
|
||||
|
||||
FermionFieldD gauss_o(rbGrid);
|
||||
FermionFieldD gauss(Grid);
|
||||
gaussian(rng, gauss);
|
||||
pickCheckerboard(Odd, gauss_o, gauss);
|
||||
|
||||
numOp.ImportGauge(latt);
|
||||
denOp.ImportGauge(latt);
|
||||
|
||||
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
|
||||
SchurDifferentiableOperator<FermionImplPolicyD> MdagM(numOp);
|
||||
SchurDifferentiableOperator<FermionImplPolicyD> VdagV(denOp);
|
||||
|
||||
PowerMethod<FermionFieldD> power_method;
|
||||
RealD lambda_max;
|
||||
|
||||
std::cout << "Starting: Get RHMC high bound approx for " << quark_descr << " numerator" << std::endl;
|
||||
|
||||
lambda_max = power_method(MdagM,gauss_o);
|
||||
std::cout << GridLogMessage << "Got lambda_max "<<lambda_max<<std::endl;
|
||||
|
||||
std::cout << "Starting: Get RHMC high bound approx for " << quark_descr << " denominator" << std::endl;
|
||||
lambda_max = power_method(VdagV,gauss_o);
|
||||
std::cout << GridLogMessage << "Got lambda_max "<<lambda_max<<std::endl;
|
||||
|
||||
if(action_or_md == 0 || action_or_md == 2){
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 50000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerAction); //use large tolerance to prevent exit on fail; we are trying to tune here!
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 50000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerAction);
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 50000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerAction);
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 50000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerAction);
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
}
|
||||
|
||||
std::cout << "-------------------------------------------------------------------------------" << std::endl;
|
||||
|
||||
if(action_or_md == 1 || action_or_md == 2){
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 50000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 50000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 50000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 50000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template<typename FermionImplPolicy>
|
||||
void checkEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
|
||||
GridCartesian* FGrid, GridParallelRNG &rng, const LatticeGaugeFieldD &latt){
|
||||
std::cout << GridLogMessage << "Starting EOFA action/bounds check" << std::endl;
|
||||
typename FermionImplPolicy::FermionField eta(FGrid);
|
||||
RealD scale = std::sqrt(0.5);
|
||||
gaussian(rng,eta); eta = eta * scale;
|
||||
|
||||
//Use the inbuilt check
|
||||
EOFA.refresh(latt, eta);
|
||||
EOFA.S(latt);
|
||||
std::cout << GridLogMessage << "Finished EOFA upper action/bounds check" << std::endl;
|
||||
}
|
||||
|
||||
|
||||
template<typename FermionImplPolicy>
|
||||
class EOFAlinop: public LinearOperatorBase<typename FermionImplPolicy::FermionField>{
|
||||
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA;
|
||||
LatticeGaugeFieldD &U;
|
||||
public:
|
||||
EOFAlinop(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA, LatticeGaugeFieldD &U): EOFA(EOFA), U(U){}
|
||||
|
||||
typedef typename FermionImplPolicy::FermionField Field;
|
||||
void OpDiag (const Field &in, Field &out){ assert(0); }
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
|
||||
|
||||
void Op (const Field &in, Field &out){ assert(0); }
|
||||
void AdjOp (const Field &in, Field &out){ assert(0); }
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
|
||||
void HermOp(const Field &in, Field &out){ EOFA.Meofa(U, in, out); }
|
||||
};
|
||||
|
||||
template<typename FermionImplPolicy>
|
||||
void upperBoundEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
|
||||
GridCartesian* FGrid, GridParallelRNG &rng, LatticeGaugeFieldD &latt){
|
||||
std::cout << GridLogMessage << "Starting EOFA upper bound compute" << std::endl;
|
||||
EOFAlinop<FermionImplPolicy> linop(EOFA, latt);
|
||||
typename FermionImplPolicy::FermionField eta(FGrid);
|
||||
gaussian(rng,eta);
|
||||
PowerMethod<typename FermionImplPolicy::FermionField> power_method;
|
||||
auto lambda_max = power_method(linop,eta);
|
||||
std::cout << GridLogMessage << "Upper bound of EOFA operator " << lambda_max << std::endl;
|
||||
}
|
||||
|
||||
//Applications of M^{-1} cost the same as M for EOFA!
|
||||
template<typename FermionImplPolicy>
|
||||
class EOFAinvLinop: public LinearOperatorBase<typename FermionImplPolicy::FermionField>{
|
||||
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA;
|
||||
LatticeGaugeFieldD &U;
|
||||
public:
|
||||
EOFAinvLinop(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA, LatticeGaugeFieldD &U): EOFA(EOFA), U(U){}
|
||||
|
||||
typedef typename FermionImplPolicy::FermionField Field;
|
||||
void OpDiag (const Field &in, Field &out){ assert(0); }
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
|
||||
|
||||
void Op (const Field &in, Field &out){ assert(0); }
|
||||
void AdjOp (const Field &in, Field &out){ assert(0); }
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
|
||||
void HermOp(const Field &in, Field &out){ EOFA.MeofaInv(U, in, out); }
|
||||
};
|
||||
|
||||
template<typename FermionImplPolicy>
|
||||
void lowerBoundEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
|
||||
GridCartesian* FGrid, GridParallelRNG &rng, LatticeGaugeFieldD &latt){
|
||||
std::cout << GridLogMessage << "Starting EOFA lower bound compute using power method on M^{-1}. Inverse of highest eigenvalue is the lowest eigenvalue of M" << std::endl;
|
||||
EOFAinvLinop<FermionImplPolicy> linop(EOFA, latt);
|
||||
typename FermionImplPolicy::FermionField eta(FGrid);
|
||||
gaussian(rng,eta);
|
||||
PowerMethod<typename FermionImplPolicy::FermionField> power_method;
|
||||
auto lambda_max = power_method(linop,eta);
|
||||
std::cout << GridLogMessage << "Lower bound of EOFA operator " << 1./lambda_max << std::endl;
|
||||
}
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class SchurOperatorF>
|
||||
class MixedPrecisionConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
|
||||
public:
|
||||
typedef typename FermionOperatorD::FermionField FieldD;
|
||||
typedef typename FermionOperatorF::FermionField FieldF;
|
||||
|
||||
using OperatorFunction<FieldD>::operator();
|
||||
|
||||
RealD Tolerance;
|
||||
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
|
||||
Integer MaxInnerIterations;
|
||||
Integer MaxOuterIterations;
|
||||
GridBase* SinglePrecGrid4; //Grid for single-precision fields
|
||||
GridBase* SinglePrecGrid5; //Grid for single-precision fields
|
||||
RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
|
||||
|
||||
FermionOperatorF &FermOpF;
|
||||
FermionOperatorD &FermOpD;;
|
||||
SchurOperatorF &LinOpF;
|
||||
SchurOperatorD &LinOpD;
|
||||
|
||||
Integer TotalInnerIterations; //Number of inner CG iterations
|
||||
Integer TotalOuterIterations; //Number of restarts
|
||||
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
|
||||
|
||||
MixedPrecisionConjugateGradientOperatorFunction(RealD tol,
|
||||
Integer maxinnerit,
|
||||
Integer maxouterit,
|
||||
GridBase* _sp_grid4,
|
||||
GridBase* _sp_grid5,
|
||||
FermionOperatorF &_FermOpF,
|
||||
FermionOperatorD &_FermOpD,
|
||||
SchurOperatorF &_LinOpF,
|
||||
SchurOperatorD &_LinOpD):
|
||||
LinOpF(_LinOpF),
|
||||
LinOpD(_LinOpD),
|
||||
FermOpF(_FermOpF),
|
||||
FermOpD(_FermOpD),
|
||||
Tolerance(tol),
|
||||
InnerTolerance(tol),
|
||||
MaxInnerIterations(maxinnerit),
|
||||
MaxOuterIterations(maxouterit),
|
||||
SinglePrecGrid4(_sp_grid4),
|
||||
SinglePrecGrid5(_sp_grid5),
|
||||
OuterLoopNormMult(100.)
|
||||
{
|
||||
};
|
||||
|
||||
void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
|
||||
|
||||
std::cout << GridLogMessage << " Mixed precision CG wrapper operator() "<<std::endl;
|
||||
|
||||
SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
|
||||
assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
|
||||
|
||||
precisionChange(FermOpF.Umu, FermOpD.Umu);
|
||||
|
||||
pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
|
||||
pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// Make a mixed precision conjugate gradient
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
MixedPrecisionConjugateGradient<FieldD,FieldF> MPCG(Tolerance,MaxInnerIterations,MaxOuterIterations,SinglePrecGrid5,LinOpF,LinOpD);
|
||||
MPCG.InnerTolerance = InnerTolerance;
|
||||
std::cout << GridLogMessage << "Calling mixed precision Conjugate Gradient" <<std::endl;
|
||||
MPCG(src,psi);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class SchurOperatorF>
|
||||
class MixedPrecisionReliableUpdateConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
|
||||
public:
|
||||
typedef typename FermionOperatorD::FermionField FieldD;
|
||||
typedef typename FermionOperatorF::FermionField FieldF;
|
||||
|
||||
using OperatorFunction<FieldD>::operator();
|
||||
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
|
||||
RealD Delta; //reliable update parameter
|
||||
|
||||
GridBase* SinglePrecGrid4; //Grid for single-precision fields
|
||||
GridBase* SinglePrecGrid5; //Grid for single-precision fields
|
||||
|
||||
FermionOperatorF &FermOpF;
|
||||
FermionOperatorD &FermOpD;;
|
||||
SchurOperatorF &LinOpF;
|
||||
SchurOperatorD &LinOpD;
|
||||
|
||||
MixedPrecisionReliableUpdateConjugateGradientOperatorFunction(RealD tol,
|
||||
RealD delta,
|
||||
Integer maxit,
|
||||
GridBase* _sp_grid4,
|
||||
GridBase* _sp_grid5,
|
||||
FermionOperatorF &_FermOpF,
|
||||
FermionOperatorD &_FermOpD,
|
||||
SchurOperatorF &_LinOpF,
|
||||
SchurOperatorD &_LinOpD):
|
||||
LinOpF(_LinOpF),
|
||||
LinOpD(_LinOpD),
|
||||
FermOpF(_FermOpF),
|
||||
FermOpD(_FermOpD),
|
||||
Tolerance(tol),
|
||||
Delta(delta),
|
||||
MaxIterations(maxit),
|
||||
SinglePrecGrid4(_sp_grid4),
|
||||
SinglePrecGrid5(_sp_grid5)
|
||||
{
|
||||
};
|
||||
|
||||
void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
|
||||
|
||||
std::cout << GridLogMessage << " Mixed precision reliable CG update wrapper operator() "<<std::endl;
|
||||
|
||||
SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
|
||||
assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
|
||||
|
||||
precisionChange(FermOpF.Umu, FermOpD.Umu);
|
||||
|
||||
pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
|
||||
pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// Make a mixed precision conjugate gradient
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
ConjugateGradientReliableUpdate<FieldD,FieldF> MPCG(Tolerance,MaxIterations,Delta,SinglePrecGrid5,LinOpF,LinOpD);
|
||||
std::cout << GridLogMessage << "Calling mixed precision reliable update Conjugate Gradient" <<std::endl;
|
||||
MPCG(src,psi);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
Grid_init(&argc, &argv);
|
||||
int threads = GridThread::GetThreads();
|
||||
// here make a routine to print all the relevant information on the run
|
||||
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
|
||||
|
||||
std::string param_file = "params.xml";
|
||||
bool file_load_check = false;
|
||||
|
||||
std::string serial_seeds = "1 2 3 4 5";
|
||||
std::string parallel_seeds = "6 7 8 9 10";
|
||||
|
||||
int i=1;
|
||||
while(i < argc){
|
||||
std::string sarg(argv[i]);
|
||||
if(sarg == "--param_file"){
|
||||
assert(i!=argc-1);
|
||||
param_file = argv[i+1];
|
||||
i+=2;
|
||||
}else if(sarg == "--read_check"){ //check the fields load correctly and pass checksum/plaquette repro
|
||||
file_load_check = true;
|
||||
i++;
|
||||
}else if(sarg == "--set_seeds"){ //set the rng seeds. Expects two vector args, e.g. --set_seeds 1.2.3.4 5.6.7.8
|
||||
assert(i < argc-2);
|
||||
std::vector<int> tmp;
|
||||
GridCmdOptionIntVector(argv[i+1],tmp);
|
||||
{
|
||||
std::stringstream ss;
|
||||
for(int j=0;j<tmp.size()-1;j++) ss << tmp[j] << " ";
|
||||
ss << tmp.back();
|
||||
serial_seeds = ss.str();
|
||||
}
|
||||
GridCmdOptionIntVector(argv[i+2],tmp);
|
||||
{
|
||||
std::stringstream ss;
|
||||
for(int j=0;j<tmp.size()-1;j++) ss << tmp[j] << " ";
|
||||
ss << tmp.back();
|
||||
parallel_seeds = ss.str();
|
||||
}
|
||||
i+=3;
|
||||
std::cout << GridLogMessage << "Set serial seeds to " << serial_seeds << std::endl;
|
||||
std::cout << GridLogMessage << "Set parallel seeds to " << parallel_seeds << std::endl;
|
||||
|
||||
}else{
|
||||
i++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//Read the user parameters
|
||||
EvolParameters user_params;
|
||||
|
||||
if(fileExists(param_file)){
|
||||
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
|
||||
Grid::XmlReader rd(param_file);
|
||||
read(rd, "Params", user_params);
|
||||
}else if(!GlobalSharedMemory::WorldRank){
|
||||
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
|
||||
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
|
||||
{
|
||||
Grid::XmlWriter wr(param_file + ".templ");
|
||||
write(wr, "Params", user_params);
|
||||
}
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
||||
|
||||
//Check the parameters
|
||||
if(user_params.GparityDirs.size() != Nd-1){
|
||||
std::cerr << "Error in input parameters: expect GparityDirs to have size = " << Nd-1 << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
for(int i=0;i<Nd-1;i++)
|
||||
if(user_params.GparityDirs[i] != 0 && user_params.GparityDirs[i] != 1){
|
||||
std::cerr << "Error in input parameters: expect GparityDirs values to be 0 (periodic) or 1 (G-parity)" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
|
||||
|
||||
typedef GparityMobiusEOFAFermionD EOFAactionD;
|
||||
typedef GparityMobiusFermionD FermionActionD;
|
||||
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
|
||||
typedef typename FermionActionD::FermionField FermionFieldD;
|
||||
|
||||
typedef GparityMobiusEOFAFermionF EOFAactionF;
|
||||
typedef GparityMobiusFermionF FermionActionF;
|
||||
typedef typename FermionActionF::Impl_t FermionImplPolicyF;
|
||||
typedef typename FermionActionF::FermionField FermionFieldF;
|
||||
|
||||
typedef GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<FermionImplPolicyD,FermionImplPolicyF> MixedPrecRHMC;
|
||||
typedef GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicyD> DoublePrecRHMC;
|
||||
|
||||
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
|
||||
IntegratorParameters MD;
|
||||
typedef ConjugateHMCRunnerD<MinimumNorm2> HMCWrapper; //NB: This is the "Omelyan integrator"
|
||||
MD.name = std::string("MinimumNorm2");
|
||||
|
||||
// typedef ConjugateHMCRunnerD<ForceGradient> HMCWrapper;
|
||||
// MD.name = std::string("ForceGradient");
|
||||
|
||||
MD.MDsteps = user_params.Steps;
|
||||
MD.trajL = user_params.TrajectoryLength;
|
||||
|
||||
typedef HMCWrapper::ImplPolicy GaugeImplPolicy;
|
||||
|
||||
HMCparameters HMCparams;
|
||||
HMCparams.StartTrajectory = user_params.StartTrajectory;
|
||||
HMCparams.Trajectories = user_params.Trajectories;
|
||||
HMCparams.NoMetropolisUntil= 0;
|
||||
HMCparams.StartingType = user_params.StartingType;
|
||||
HMCparams.MetropolisTest = user_params.MetropolisTest;
|
||||
HMCparams.MD = MD;
|
||||
HMCWrapper TheHMC(HMCparams);
|
||||
|
||||
// Grid from the command line arguments --grid and --mpi
|
||||
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
|
||||
|
||||
CheckpointerParameters CPparams;
|
||||
CPparams.config_prefix = "ckpoint_lat";
|
||||
CPparams.rng_prefix = "ckpoint_rng";
|
||||
CPparams.saveInterval = user_params.SaveInterval;
|
||||
CPparams.format = "IEEE64BIG";
|
||||
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
|
||||
|
||||
//Note that checkpointing saves the RNG state so that this initialization is required only for the very first configuration
|
||||
RNGModuleParameters RNGpar;
|
||||
RNGpar.serial_seeds = serial_seeds;
|
||||
RNGpar.parallel_seeds = parallel_seeds;
|
||||
TheHMC.Resources.SetRNGSeeds(RNGpar);
|
||||
|
||||
typedef PlaquetteMod<GaugeImplPolicy> PlaqObs;
|
||||
TheHMC.Resources.AddObservable<PlaqObs>();
|
||||
//////////////////////////////////////////////
|
||||
//aiming for ainv=1.723 GeV
|
||||
// me bob
|
||||
//Estimated a(ml+mres) [40ID] = 0.001305 0.00131
|
||||
// a(mh+mres) [40ID] = 0.035910 0.03529
|
||||
//Estimate Ls=12, b+c=2 mres~0.0011
|
||||
|
||||
//1/24/2022 initial mres measurement gives mres=0.001, adjusted light quark mass to 0.0003 from 0.0001
|
||||
|
||||
const int Ls = 12;
|
||||
Real beta = 1.848;
|
||||
Real light_mass = 0.0003;
|
||||
Real strange_mass = 0.0342;
|
||||
Real pv_mass = 1.0;
|
||||
RealD M5 = 1.8;
|
||||
RealD mobius_scale = 2.; //b+c
|
||||
|
||||
RealD mob_bmc = 1.0;
|
||||
RealD mob_b = (mobius_scale + mob_bmc)/2.;
|
||||
RealD mob_c = (mobius_scale - mob_bmc)/2.;
|
||||
|
||||
std::cout << GridLogMessage
|
||||
<< "Ensemble parameters:" << std::endl
|
||||
<< "Ls=" << Ls << std::endl
|
||||
<< "beta=" << beta << std::endl
|
||||
<< "light_mass=" << light_mass << std::endl
|
||||
<< "strange_mass=" << strange_mass << std::endl
|
||||
<< "mobius_scale=" << mobius_scale << std::endl;
|
||||
|
||||
//Setup the Grids
|
||||
auto UGridD = TheHMC.Resources.GetCartesian();
|
||||
auto UrbGridD = TheHMC.Resources.GetRBCartesian();
|
||||
auto FGridD = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridD);
|
||||
auto FrbGridD = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridD);
|
||||
|
||||
GridCartesian* UGridF = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
|
||||
GridRedBlackCartesian* UrbGridF = SpaceTimeGrid::makeFourDimRedBlackGrid(UGridF);
|
||||
auto FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridF);
|
||||
auto FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridF);
|
||||
|
||||
ConjugateIwasakiGaugeActionD GaugeAction(beta);
|
||||
|
||||
// temporarily need a gauge field
|
||||
LatticeGaugeFieldD Ud(UGridD);
|
||||
LatticeGaugeFieldF Uf(UGridF);
|
||||
|
||||
//Setup the BCs
|
||||
FermionActionD::ImplParams Params;
|
||||
for(int i=0;i<Nd-1;i++) Params.twists[i] = user_params.GparityDirs[i]; //G-parity directions
|
||||
Params.twists[Nd-1] = 1; //APBC in time direction
|
||||
|
||||
std::vector<int> dirs4(Nd);
|
||||
for(int i=0;i<Nd-1;i++) dirs4[i] = user_params.GparityDirs[i];
|
||||
dirs4[Nd-1] = 0; //periodic gauge BC in time
|
||||
|
||||
GaugeImplPolicy::setDirections(dirs4); //gauge BC
|
||||
|
||||
//Run optional gauge field checksum checker and exit
|
||||
if(file_load_check){
|
||||
TheHMC.initializeGaugeFieldAndRNGs(Ud);
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////
|
||||
// Collect actions
|
||||
////////////////////////////////////
|
||||
ActionLevel<HMCWrapper::Field> Level1(1); //light quark + strange quark
|
||||
ActionLevel<HMCWrapper::Field> Level2(4); //DSDR
|
||||
ActionLevel<HMCWrapper::Field> Level3(2); //gauge
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Light EOFA action
|
||||
// have to be careful with the parameters, cf. Test_dwf_gpforce_eofa.cc
|
||||
/////////////////////////////////////////////////////////////
|
||||
typedef SchurDiagMooeeOperator<EOFAactionD,FermionFieldD> EOFAschuropD;
|
||||
typedef SchurDiagMooeeOperator<EOFAactionF,FermionFieldF> EOFAschuropF;
|
||||
typedef ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction<FermionImplPolicyD, FermionImplPolicyF> EOFAmixPrecPFaction;
|
||||
typedef MixedPrecisionConjugateGradientOperatorFunction<EOFAactionD, EOFAactionF, EOFAschuropD, EOFAschuropF> EOFA_mxCG;
|
||||
typedef MixedPrecisionReliableUpdateConjugateGradientOperatorFunction<EOFAactionD, EOFAactionF, EOFAschuropD, EOFAschuropF> EOFA_relupCG;
|
||||
|
||||
|
||||
std::vector<RealD> eofa_light_masses = { light_mass , 0.004, 0.016, 0.064, 0.256 };
|
||||
std::vector<RealD> eofa_pv_masses = { 0.004 , 0.016, 0.064, 0.256, 1.0 };
|
||||
int n_light_hsb = 5;
|
||||
assert(user_params.eofa_l.size() == n_light_hsb);
|
||||
|
||||
EOFAmixPrecPFaction* EOFA_pfactions[n_light_hsb];
|
||||
|
||||
for(int i=0;i<n_light_hsb;i++){
|
||||
RealD iml = eofa_light_masses[i];
|
||||
RealD ipv = eofa_pv_masses[i];
|
||||
|
||||
EOFAactionD* LopD = new EOFAactionD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, iml, iml, ipv, 0.0, -1, M5, mob_b, mob_c, Params);
|
||||
EOFAactionF* LopF = new EOFAactionF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, iml, iml, ipv, 0.0, -1, M5, mob_b, mob_c, Params);
|
||||
EOFAactionD* RopD = new EOFAactionD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, ipv, iml, ipv, -1.0, 1, M5, mob_b, mob_c, Params);
|
||||
EOFAactionF* RopF = new EOFAactionF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, ipv, iml, ipv, -1.0, 1, M5, mob_b, mob_c, Params);
|
||||
|
||||
EOFAschuropD* linopL_D = new EOFAschuropD(*LopD);
|
||||
EOFAschuropD* linopR_D = new EOFAschuropD(*RopD);
|
||||
|
||||
EOFAschuropF* linopL_F = new EOFAschuropF(*LopF);
|
||||
EOFAschuropF* linopR_F = new EOFAschuropF(*RopF);
|
||||
|
||||
#if 1
|
||||
//Note reusing user_params.eofa_l.action(|md)_mixcg_inner_tolerance as Delta for now
|
||||
EOFA_relupCG* ActionMCG_L = new EOFA_relupCG(user_params.eofa_l[i].action_tolerance, user_params.eofa_l[i].action_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
|
||||
EOFA_relupCG* ActionMCG_R = new EOFA_relupCG(user_params.eofa_l[i].action_tolerance, user_params.eofa_l[i].action_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
|
||||
|
||||
EOFA_relupCG* DerivMCG_L = new EOFA_relupCG(user_params.eofa_l[i].md_tolerance, user_params.eofa_l[i].md_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
|
||||
EOFA_relupCG* DerivMCG_R = new EOFA_relupCG(user_params.eofa_l[i].md_tolerance, user_params.eofa_l[i].md_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
|
||||
|
||||
#else
|
||||
EOFA_mxCG* ActionMCG_L = new EOFA_mxCG(user_params.eofa_l[i].action_tolerance, 50000, 1000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
|
||||
ActionMCG_L->InnerTolerance = user_params.eofa_l[i].action_mixcg_inner_tolerance;
|
||||
|
||||
EOFA_mxCG* ActionMCG_R = new EOFA_mxCG(user_params.eofa_l[i].action_tolerance, 50000, 1000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
|
||||
ActionMCG_R->InnerTolerance = user_params.eofa_l[i].action_mixcg_inner_tolerance;
|
||||
|
||||
EOFA_mxCG* DerivMCG_L = new EOFA_mxCG(user_params.eofa_l[i].md_tolerance, 50000, 1000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
|
||||
DerivMCG_L->InnerTolerance = user_params.eofa_l[i].md_mixcg_inner_tolerance;
|
||||
|
||||
EOFA_mxCG* DerivMCG_R = new EOFA_mxCG(user_params.eofa_l[i].md_tolerance, 50000, 1000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
|
||||
DerivMCG_R->InnerTolerance = user_params.eofa_l[i].md_mixcg_inner_tolerance;
|
||||
|
||||
std::cout << GridLogMessage << "Set EOFA action solver action tolerance outer=" << ActionMCG_L->Tolerance << " inner=" << ActionMCG_L->InnerTolerance << std::endl;
|
||||
std::cout << GridLogMessage << "Set EOFA MD solver tolerance outer=" << DerivMCG_L->Tolerance << " inner=" << DerivMCG_L->InnerTolerance << std::endl;
|
||||
#endif
|
||||
|
||||
EOFAmixPrecPFaction* EOFA = new EOFAmixPrecPFaction(*LopF, *RopF,
|
||||
*LopD, *RopD,
|
||||
*ActionMCG_L, *ActionMCG_R,
|
||||
*ActionMCG_L, *ActionMCG_R,
|
||||
*DerivMCG_L, *DerivMCG_R,
|
||||
user_params.eofa_l[i].rat_params, true);
|
||||
EOFA_pfactions[i] = EOFA;
|
||||
Level1.push_back(EOFA);
|
||||
}
|
||||
|
||||
////////////////////////////////////
|
||||
// Strange action
|
||||
////////////////////////////////////
|
||||
FermionActionD Numerator_sD(Ud,*FGridD,*FrbGridD,*UGridD,*UrbGridD,strange_mass,M5,mob_b,mob_c,Params);
|
||||
FermionActionD Denominator_sD(Ud,*FGridD,*FrbGridD,*UGridD,*UrbGridD, pv_mass,M5,mob_b,mob_c,Params);
|
||||
|
||||
FermionActionF Numerator_sF(Uf,*FGridF,*FrbGridF,*UGridF,*UrbGridF,strange_mass,M5,mob_b,mob_c,Params);
|
||||
FermionActionF Denominator_sF(Uf,*FGridF,*FrbGridF,*UGridF,*UrbGridF, pv_mass,M5,mob_b,mob_c,Params);
|
||||
|
||||
RationalActionParams rat_act_params_s;
|
||||
rat_act_params_s.inv_pow = 4; // (M^dag M)^{1/4}
|
||||
rat_act_params_s.precision= 60;
|
||||
rat_act_params_s.MaxIter = 50000;
|
||||
user_params.rat_quo_s.Export(rat_act_params_s);
|
||||
std::cout << GridLogMessage << " Heavy quark bounds check every " << rat_act_params_s.BoundsCheckFreq << " trajectories (avg)" << std::endl;
|
||||
|
||||
//MixedPrecRHMC Quotient_s(Denominator_sD, Numerator_sD, Denominator_sF, Numerator_sF, rat_act_params_s, user_params.rat_quo_s.reliable_update_freq);
|
||||
DoublePrecRHMC Quotient_s(Denominator_sD, Numerator_sD, rat_act_params_s);
|
||||
Level1.push_back(&Quotient_s);
|
||||
|
||||
///////////////////////////////////
|
||||
// DSDR action
|
||||
///////////////////////////////////
|
||||
RealD dsdr_mass=-1.8;
|
||||
//Use same DSDR twists as https://arxiv.org/pdf/1208.4412.pdf
|
||||
RealD dsdr_epsilon_f = 0.02; //numerator (in determinant)
|
||||
RealD dsdr_epsilon_b = 0.5;
|
||||
GparityWilsonTMFermionD Numerator_DSDR_D(Ud, *UGridD, *UrbGridD, dsdr_mass, dsdr_epsilon_f, Params);
|
||||
GparityWilsonTMFermionF Numerator_DSDR_F(Uf, *UGridF, *UrbGridF, dsdr_mass, dsdr_epsilon_f, Params);
|
||||
|
||||
GparityWilsonTMFermionD Denominator_DSDR_D(Ud, *UGridD, *UrbGridD, dsdr_mass, dsdr_epsilon_b, Params);
|
||||
GparityWilsonTMFermionF Denominator_DSDR_F(Uf, *UGridF, *UrbGridF, dsdr_mass, dsdr_epsilon_b, Params);
|
||||
|
||||
RationalActionParams rat_act_params_DSDR;
|
||||
rat_act_params_DSDR.inv_pow = 2; // (M^dag M)^{1/2}
|
||||
rat_act_params_DSDR.precision= 60;
|
||||
rat_act_params_DSDR.MaxIter = 50000;
|
||||
user_params.rat_quo_DSDR.Export(rat_act_params_DSDR);
|
||||
std::cout << GridLogMessage << "DSDR quark bounds check every " << rat_act_params_DSDR.BoundsCheckFreq << " trajectories (avg)" << std::endl;
|
||||
|
||||
DoublePrecRHMC Quotient_DSDR(Denominator_DSDR_D, Numerator_DSDR_D, rat_act_params_DSDR);
|
||||
Level2.push_back(&Quotient_DSDR);
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Gauge action
|
||||
/////////////////////////////////////////////////////////////
|
||||
Level3.push_back(&GaugeAction);
|
||||
|
||||
TheHMC.TheAction.push_back(Level1);
|
||||
TheHMC.TheAction.push_back(Level2);
|
||||
TheHMC.TheAction.push_back(Level3);
|
||||
std::cout << GridLogMessage << " Action complete "<< std::endl;
|
||||
|
||||
|
||||
//Action tuning
|
||||
bool
|
||||
tune_rhmc_s=false, eigenrange_s=false,
|
||||
tune_rhmc_DSDR=false, eigenrange_DSDR=false,
|
||||
check_eofa=false,
|
||||
upper_bound_eofa=false, lower_bound_eofa(false);
|
||||
|
||||
std::string lanc_params_s;
|
||||
std::string lanc_params_DSDR;
|
||||
int tune_rhmc_s_action_or_md;
|
||||
int tune_rhmc_DSDR_action_or_md;
|
||||
int eofa_which_hsb;
|
||||
|
||||
for(int i=1;i<argc;i++){
|
||||
std::string sarg(argv[i]);
|
||||
if(sarg == "--tune_rhmc_s"){
|
||||
assert(i < argc-1);
|
||||
tune_rhmc_s=true;
|
||||
tune_rhmc_s_action_or_md = std::stoi(argv[i+1]);
|
||||
}
|
||||
else if(sarg == "--eigenrange_s"){
|
||||
assert(i < argc-1);
|
||||
eigenrange_s=true;
|
||||
lanc_params_s = argv[i+1];
|
||||
}
|
||||
else if(sarg == "--tune_rhmc_DSDR"){
|
||||
assert(i < argc-1);
|
||||
tune_rhmc_DSDR=true;
|
||||
tune_rhmc_DSDR_action_or_md = std::stoi(argv[i+1]);
|
||||
}
|
||||
else if(sarg == "--eigenrange_DSDR"){
|
||||
assert(i < argc-1);
|
||||
eigenrange_DSDR=true;
|
||||
lanc_params_DSDR = argv[i+1];
|
||||
}
|
||||
else if(sarg == "--check_eofa"){
|
||||
assert(i < argc-1);
|
||||
check_eofa = true;
|
||||
eofa_which_hsb = std::stoi(argv[i+1]); //-1 indicates all hasenbusch
|
||||
assert(eofa_which_hsb == -1 || (eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb) );
|
||||
}
|
||||
else if(sarg == "--upper_bound_eofa"){
|
||||
assert(i < argc-1);
|
||||
upper_bound_eofa = true;
|
||||
eofa_which_hsb = std::stoi(argv[i+1]);
|
||||
assert(eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb);
|
||||
}
|
||||
else if(sarg == "--lower_bound_eofa"){
|
||||
assert(i < argc-1);
|
||||
lower_bound_eofa = true;
|
||||
eofa_which_hsb = std::stoi(argv[i+1]);
|
||||
assert(eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb);
|
||||
}
|
||||
}
|
||||
if(tune_rhmc_s || eigenrange_s || tune_rhmc_DSDR || eigenrange_DSDR ||check_eofa || upper_bound_eofa || lower_bound_eofa) {
|
||||
std::cout << GridLogMessage << "Running checks" << std::endl;
|
||||
TheHMC.initializeGaugeFieldAndRNGs(Ud);
|
||||
|
||||
//std::cout << GridLogMessage << "EOFA action solver action tolerance outer=" << ActionMCG_L.Tolerance << " inner=" << ActionMCG_L.InnerTolerance << std::endl;
|
||||
//std::cout << GridLogMessage << "EOFA MD solver tolerance outer=" << DerivMCG_L.Tolerance << " inner=" << DerivMCG_L.InnerTolerance << std::endl;
|
||||
|
||||
if(check_eofa){
|
||||
if(eofa_which_hsb >= 0){
|
||||
std::cout << GridLogMessage << "Starting checking EOFA Hasenbusch " << eofa_which_hsb << std::endl;
|
||||
checkEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
|
||||
std::cout << GridLogMessage << "Finished checking EOFA Hasenbusch " << eofa_which_hsb << std::endl;
|
||||
}else{
|
||||
for(int i=0;i<n_light_hsb;i++){
|
||||
std::cout << GridLogMessage << "Starting checking EOFA Hasenbusch " << i << std::endl;
|
||||
checkEOFA(*EOFA_pfactions[i], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
|
||||
std::cout << GridLogMessage << "Finished checking EOFA Hasenbusch " << i << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
if(upper_bound_eofa) upperBoundEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
|
||||
if(lower_bound_eofa) lowerBoundEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
|
||||
if(eigenrange_s) computeEigenvalues<FermionActionD, FermionFieldD>(lanc_params_s, FGridD, FrbGridD, Ud, Numerator_sD, TheHMC.Resources.GetParallelRNG());
|
||||
if(tune_rhmc_s) checkRHMC<FermionActionD, FermionFieldD, decltype(Quotient_s)>(FGridD, FrbGridD, Ud, Numerator_sD, Denominator_sD, Quotient_s, TheHMC.Resources.GetParallelRNG(), 4, "strange", tune_rhmc_s_action_or_md);
|
||||
if(eigenrange_DSDR) computeEigenvalues<GparityWilsonTMFermionD, GparityWilsonTMFermionD::FermionField>(lanc_params_DSDR, UGridD, UrbGridD, Ud, Numerator_DSDR_D, TheHMC.Resources.GetParallelRNG());
|
||||
if(tune_rhmc_DSDR) checkRHMC<GparityWilsonTMFermionD, GparityWilsonTMFermionD::FermionField, decltype(Quotient_DSDR)>(UGridD, UrbGridD, Ud, Numerator_DSDR_D, Denominator_DSDR_D, Quotient_DSDR, TheHMC.Resources.GetParallelRNG(), 2, "DSDR", tune_rhmc_DSDR_action_or_md);
|
||||
|
||||
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
//Run the HMC
|
||||
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
|
||||
TheHMC.Run();
|
||||
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
} // main
|
873
HMC/Mobius2p1fIDSDRGparityEOFA_48ID.cc
Normal file
873
HMC/Mobius2p1fIDSDRGparityEOFA_48ID.cc
Normal file
@ -0,0 +1,873 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./HMC/Mobius2p1fIDSDRGparityEOFA.cc
|
||||
|
||||
Copyright (C) 2015-2016
|
||||
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace Grid;
|
||||
|
||||
//Production binary for the 40ID G-parity ensemble
|
||||
|
||||
struct RatQuoParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(RatQuoParameters,
|
||||
double, bnd_lo,
|
||||
double, bnd_hi,
|
||||
Integer, action_degree,
|
||||
double, action_tolerance,
|
||||
Integer, md_degree,
|
||||
double, md_tolerance,
|
||||
Integer, reliable_update_freq,
|
||||
Integer, bnd_check_freq);
|
||||
RatQuoParameters() {
|
||||
bnd_lo = 1e-2;
|
||||
bnd_hi = 30;
|
||||
action_degree = 10;
|
||||
action_tolerance = 1e-10;
|
||||
md_degree = 10;
|
||||
md_tolerance = 1e-8;
|
||||
bnd_check_freq = 20;
|
||||
reliable_update_freq = 50;
|
||||
}
|
||||
|
||||
void Export(RationalActionParams &into) const{
|
||||
into.lo = bnd_lo;
|
||||
into.hi = bnd_hi;
|
||||
into.action_degree = action_degree;
|
||||
into.action_tolerance = action_tolerance;
|
||||
into.md_degree = md_degree;
|
||||
into.md_tolerance = md_tolerance;
|
||||
into.BoundsCheckFreq = bnd_check_freq;
|
||||
}
|
||||
};
|
||||
|
||||
struct EOFAparameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(EOFAparameters,
|
||||
OneFlavourRationalParams, rat_params,
|
||||
double, action_tolerance,
|
||||
double, action_mixcg_inner_tolerance,
|
||||
double, md_tolerance,
|
||||
double, md_mixcg_inner_tolerance);
|
||||
|
||||
EOFAparameters() {
|
||||
action_mixcg_inner_tolerance = 1e-8;
|
||||
action_tolerance = 1e-10;
|
||||
md_tolerance = 1e-8;
|
||||
md_mixcg_inner_tolerance = 1e-8;
|
||||
|
||||
rat_params.lo = 1.0;
|
||||
rat_params.hi = 25.0;
|
||||
rat_params.MaxIter = 10000;
|
||||
rat_params.tolerance= 1.0e-9;
|
||||
rat_params.degree = 14;
|
||||
rat_params.precision= 50;
|
||||
}
|
||||
};
|
||||
|
||||
struct EvolParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(EvolParameters,
|
||||
Integer, StartTrajectory,
|
||||
Integer, Trajectories,
|
||||
Integer, SaveInterval,
|
||||
Integer, Steps,
|
||||
RealD, TrajectoryLength,
|
||||
bool, MetropolisTest,
|
||||
std::string, StartingType,
|
||||
std::vector<Integer>, GparityDirs,
|
||||
std::vector<EOFAparameters>, eofa_l,
|
||||
RatQuoParameters, rat_quo_s,
|
||||
RatQuoParameters, rat_quo_DSDR);
|
||||
|
||||
EvolParameters() {
|
||||
//For initial thermalization; afterwards user should switch Metropolis on and use StartingType=CheckpointStart
|
||||
MetropolisTest = false;
|
||||
StartTrajectory = 0;
|
||||
Trajectories = 50;
|
||||
SaveInterval = 5;
|
||||
StartingType = "ColdStart";
|
||||
GparityDirs.resize(3, 1); //1 for G-parity, 0 for periodic
|
||||
Steps = 5;
|
||||
TrajectoryLength = 1.0;
|
||||
}
|
||||
};
|
||||
|
||||
bool fileExists(const std::string &fn){
|
||||
std::ifstream f(fn);
|
||||
return f.good();
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
struct LanczosParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParameters,
|
||||
double, alpha,
|
||||
double, beta,
|
||||
double, mu,
|
||||
int, ord,
|
||||
int, n_stop,
|
||||
int, n_want,
|
||||
int, n_use,
|
||||
double, tolerance);
|
||||
|
||||
LanczosParameters() {
|
||||
alpha = 35;
|
||||
beta = 5;
|
||||
mu = 0;
|
||||
ord = 100;
|
||||
n_stop = 10;
|
||||
n_want = 10;
|
||||
n_use = 15;
|
||||
tolerance = 1e-6;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
template<typename FermionActionD, typename FermionFieldD>
|
||||
void computeEigenvalues(std::string param_file,
|
||||
GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
|
||||
FermionActionD &action, GridParallelRNG &rng){
|
||||
|
||||
LanczosParameters params;
|
||||
if(fileExists(param_file)){
|
||||
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
|
||||
Grid::XmlReader rd(param_file);
|
||||
read(rd, "LanczosParameters", params);
|
||||
}else if(!GlobalSharedMemory::WorldRank){
|
||||
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
|
||||
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
|
||||
Grid::XmlWriter wr(param_file + ".templ");
|
||||
write(wr, "LanczosParameters", params);
|
||||
}
|
||||
|
||||
FermionFieldD gauss_o(rbGrid);
|
||||
FermionFieldD gauss(Grid);
|
||||
gaussian(rng, gauss);
|
||||
pickCheckerboard(Odd, gauss_o, gauss);
|
||||
|
||||
action.ImportGauge(latt);
|
||||
|
||||
SchurDiagMooeeOperator<FermionActionD, FermionFieldD> hermop(action);
|
||||
PlainHermOp<FermionFieldD> hermop_wrap(hermop);
|
||||
//ChebyshevLanczos<FermionFieldD> Cheb(params.alpha, params.beta, params.mu, params.ord);
|
||||
assert(params.mu == 0.0);
|
||||
|
||||
Chebyshev<FermionFieldD> Cheb(params.beta*params.beta, params.alpha*params.alpha, params.ord+1);
|
||||
FunctionHermOp<FermionFieldD> Cheb_wrap(Cheb, hermop);
|
||||
|
||||
std::cout << "IRL: alpha=" << params.alpha << " beta=" << params.beta << " mu=" << params.mu << " ord=" << params.ord << std::endl;
|
||||
ImplicitlyRestartedLanczos<FermionFieldD> IRL(Cheb_wrap, hermop_wrap, params.n_stop, params.n_want, params.n_use, params.tolerance, 10000);
|
||||
|
||||
std::vector<RealD> eval(params.n_use);
|
||||
std::vector<FermionFieldD> evec(params.n_use, rbGrid);
|
||||
int Nconv;
|
||||
IRL.calc(eval, evec, gauss_o, Nconv);
|
||||
|
||||
std::cout << "Eigenvalues:" << std::endl;
|
||||
for(int i=0;i<params.n_want;i++){
|
||||
std::cout << i << " " << eval[i] << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//Check the quality of the RHMC approx
|
||||
//action_or_md toggles checking the action (0), MD (1) or both (2) setups
|
||||
template<typename FermionActionD, typename FermionFieldD, typename RHMCtype>
|
||||
void checkRHMC(GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
|
||||
FermionActionD &numOp, FermionActionD &denOp, RHMCtype &rhmc, GridParallelRNG &rng,
|
||||
int inv_pow, const std::string &quark_descr, int action_or_md){
|
||||
assert(action_or_md == 0 || action_or_md == 1 || action_or_md == 2);
|
||||
|
||||
FermionFieldD gauss_o(rbGrid);
|
||||
FermionFieldD gauss(Grid);
|
||||
gaussian(rng, gauss);
|
||||
pickCheckerboard(Odd, gauss_o, gauss);
|
||||
|
||||
numOp.ImportGauge(latt);
|
||||
denOp.ImportGauge(latt);
|
||||
|
||||
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
|
||||
SchurDifferentiableOperator<FermionImplPolicyD> MdagM(numOp);
|
||||
SchurDifferentiableOperator<FermionImplPolicyD> VdagV(denOp);
|
||||
|
||||
PowerMethod<FermionFieldD> power_method;
|
||||
RealD lambda_max;
|
||||
|
||||
std::cout << "Starting: Get RHMC high bound approx for " << quark_descr << " numerator" << std::endl;
|
||||
|
||||
lambda_max = power_method(MdagM,gauss_o);
|
||||
std::cout << GridLogMessage << "Got lambda_max "<<lambda_max<<std::endl;
|
||||
|
||||
std::cout << "Starting: Get RHMC high bound approx for " << quark_descr << " denominator" << std::endl;
|
||||
lambda_max = power_method(VdagV,gauss_o);
|
||||
std::cout << GridLogMessage << "Got lambda_max "<<lambda_max<<std::endl;
|
||||
|
||||
if(action_or_md == 0 || action_or_md == 2){
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerAction); //use large tolerance to prevent exit on fail; we are trying to tune here!
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerAction);
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerAction);
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerAction);
|
||||
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
}
|
||||
|
||||
std::cout << "-------------------------------------------------------------------------------" << std::endl;
|
||||
|
||||
if(action_or_md == 1 || action_or_md == 2){
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
||||
|
||||
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerMD);
|
||||
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template<typename FermionImplPolicy>
|
||||
void checkEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
|
||||
GridCartesian* FGrid, GridParallelRNG &rng, const LatticeGaugeFieldD &latt){
|
||||
std::cout << GridLogMessage << "Starting EOFA action/bounds check" << std::endl;
|
||||
typename FermionImplPolicy::FermionField eta(FGrid);
|
||||
RealD scale = std::sqrt(0.5);
|
||||
gaussian(rng,eta); eta = eta * scale;
|
||||
|
||||
//Use the inbuilt check
|
||||
EOFA.refresh(latt, eta);
|
||||
EOFA.S(latt);
|
||||
std::cout << GridLogMessage << "Finished EOFA upper action/bounds check" << std::endl;
|
||||
}
|
||||
|
||||
|
||||
template<typename FermionImplPolicy>
|
||||
class EOFAlinop: public LinearOperatorBase<typename FermionImplPolicy::FermionField>{
|
||||
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA;
|
||||
LatticeGaugeFieldD &U;
|
||||
public:
|
||||
EOFAlinop(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA, LatticeGaugeFieldD &U): EOFA(EOFA), U(U){}
|
||||
|
||||
typedef typename FermionImplPolicy::FermionField Field;
|
||||
void OpDiag (const Field &in, Field &out){ assert(0); }
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
|
||||
|
||||
void Op (const Field &in, Field &out){ assert(0); }
|
||||
void AdjOp (const Field &in, Field &out){ assert(0); }
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
|
||||
void HermOp(const Field &in, Field &out){ EOFA.Meofa(U, in, out); }
|
||||
};
|
||||
|
||||
template<typename FermionImplPolicy>
|
||||
void upperBoundEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
|
||||
GridCartesian* FGrid, GridParallelRNG &rng, LatticeGaugeFieldD &latt){
|
||||
std::cout << GridLogMessage << "Starting EOFA upper bound compute" << std::endl;
|
||||
EOFAlinop<FermionImplPolicy> linop(EOFA, latt);
|
||||
typename FermionImplPolicy::FermionField eta(FGrid);
|
||||
gaussian(rng,eta);
|
||||
PowerMethod<typename FermionImplPolicy::FermionField> power_method;
|
||||
auto lambda_max = power_method(linop,eta);
|
||||
std::cout << GridLogMessage << "Upper bound of EOFA operator " << lambda_max << std::endl;
|
||||
}
|
||||
|
||||
//Applications of M^{-1} cost the same as M for EOFA!
|
||||
template<typename FermionImplPolicy>
|
||||
class EOFAinvLinop: public LinearOperatorBase<typename FermionImplPolicy::FermionField>{
|
||||
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA;
|
||||
LatticeGaugeFieldD &U;
|
||||
public:
|
||||
EOFAinvLinop(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA, LatticeGaugeFieldD &U): EOFA(EOFA), U(U){}
|
||||
|
||||
typedef typename FermionImplPolicy::FermionField Field;
|
||||
void OpDiag (const Field &in, Field &out){ assert(0); }
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
|
||||
|
||||
void Op (const Field &in, Field &out){ assert(0); }
|
||||
void AdjOp (const Field &in, Field &out){ assert(0); }
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
|
||||
void HermOp(const Field &in, Field &out){ EOFA.MeofaInv(U, in, out); }
|
||||
};
|
||||
|
||||
template<typename FermionImplPolicy>
|
||||
void lowerBoundEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
|
||||
GridCartesian* FGrid, GridParallelRNG &rng, LatticeGaugeFieldD &latt){
|
||||
std::cout << GridLogMessage << "Starting EOFA lower bound compute using power method on M^{-1}. Inverse of highest eigenvalue is the lowest eigenvalue of M" << std::endl;
|
||||
EOFAinvLinop<FermionImplPolicy> linop(EOFA, latt);
|
||||
typename FermionImplPolicy::FermionField eta(FGrid);
|
||||
gaussian(rng,eta);
|
||||
PowerMethod<typename FermionImplPolicy::FermionField> power_method;
|
||||
auto lambda_max = power_method(linop,eta);
|
||||
std::cout << GridLogMessage << "Lower bound of EOFA operator " << 1./lambda_max << std::endl;
|
||||
}
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class SchurOperatorF>
|
||||
class MixedPrecisionConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
|
||||
public:
|
||||
typedef typename FermionOperatorD::FermionField FieldD;
|
||||
typedef typename FermionOperatorF::FermionField FieldF;
|
||||
|
||||
using OperatorFunction<FieldD>::operator();
|
||||
|
||||
RealD Tolerance;
|
||||
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
|
||||
Integer MaxInnerIterations;
|
||||
Integer MaxOuterIterations;
|
||||
GridBase* SinglePrecGrid4; //Grid for single-precision fields
|
||||
GridBase* SinglePrecGrid5; //Grid for single-precision fields
|
||||
RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
|
||||
|
||||
FermionOperatorF &FermOpF;
|
||||
FermionOperatorD &FermOpD;;
|
||||
SchurOperatorF &LinOpF;
|
||||
SchurOperatorD &LinOpD;
|
||||
|
||||
Integer TotalInnerIterations; //Number of inner CG iterations
|
||||
Integer TotalOuterIterations; //Number of restarts
|
||||
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
|
||||
|
||||
MixedPrecisionConjugateGradientOperatorFunction(RealD tol,
|
||||
Integer maxinnerit,
|
||||
Integer maxouterit,
|
||||
GridBase* _sp_grid4,
|
||||
GridBase* _sp_grid5,
|
||||
FermionOperatorF &_FermOpF,
|
||||
FermionOperatorD &_FermOpD,
|
||||
SchurOperatorF &_LinOpF,
|
||||
SchurOperatorD &_LinOpD):
|
||||
LinOpF(_LinOpF),
|
||||
LinOpD(_LinOpD),
|
||||
FermOpF(_FermOpF),
|
||||
FermOpD(_FermOpD),
|
||||
Tolerance(tol),
|
||||
InnerTolerance(tol),
|
||||
MaxInnerIterations(maxinnerit),
|
||||
MaxOuterIterations(maxouterit),
|
||||
SinglePrecGrid4(_sp_grid4),
|
||||
SinglePrecGrid5(_sp_grid5),
|
||||
OuterLoopNormMult(100.)
|
||||
{
|
||||
};
|
||||
|
||||
void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
|
||||
|
||||
std::cout << GridLogMessage << " Mixed precision CG wrapper operator() "<<std::endl;
|
||||
|
||||
SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
|
||||
assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
|
||||
|
||||
precisionChange(FermOpF.Umu, FermOpD.Umu);
|
||||
|
||||
pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
|
||||
pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// Make a mixed precision conjugate gradient
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
MixedPrecisionConjugateGradient<FieldD,FieldF> MPCG(Tolerance,MaxInnerIterations,MaxOuterIterations,SinglePrecGrid5,LinOpF,LinOpD);
|
||||
MPCG.InnerTolerance = InnerTolerance;
|
||||
std::cout << GridLogMessage << "Calling mixed precision Conjugate Gradient" <<std::endl;
|
||||
MPCG(src,psi);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class SchurOperatorF>
|
||||
class MixedPrecisionReliableUpdateConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
|
||||
public:
|
||||
typedef typename FermionOperatorD::FermionField FieldD;
|
||||
typedef typename FermionOperatorF::FermionField FieldF;
|
||||
|
||||
using OperatorFunction<FieldD>::operator();
|
||||
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
|
||||
RealD Delta; //reliable update parameter
|
||||
|
||||
GridBase* SinglePrecGrid4; //Grid for single-precision fields
|
||||
GridBase* SinglePrecGrid5; //Grid for single-precision fields
|
||||
|
||||
FermionOperatorF &FermOpF;
|
||||
FermionOperatorD &FermOpD;;
|
||||
SchurOperatorF &LinOpF;
|
||||
SchurOperatorD &LinOpD;
|
||||
|
||||
MixedPrecisionReliableUpdateConjugateGradientOperatorFunction(RealD tol,
|
||||
RealD delta,
|
||||
Integer maxit,
|
||||
GridBase* _sp_grid4,
|
||||
GridBase* _sp_grid5,
|
||||
FermionOperatorF &_FermOpF,
|
||||
FermionOperatorD &_FermOpD,
|
||||
SchurOperatorF &_LinOpF,
|
||||
SchurOperatorD &_LinOpD):
|
||||
LinOpF(_LinOpF),
|
||||
LinOpD(_LinOpD),
|
||||
FermOpF(_FermOpF),
|
||||
FermOpD(_FermOpD),
|
||||
Tolerance(tol),
|
||||
Delta(delta),
|
||||
MaxIterations(maxit),
|
||||
SinglePrecGrid4(_sp_grid4),
|
||||
SinglePrecGrid5(_sp_grid5)
|
||||
{
|
||||
};
|
||||
|
||||
void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
|
||||
|
||||
std::cout << GridLogMessage << " Mixed precision reliable CG update wrapper operator() "<<std::endl;
|
||||
|
||||
SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
|
||||
assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
|
||||
|
||||
precisionChange(FermOpF.Umu, FermOpD.Umu);
|
||||
|
||||
pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
|
||||
pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// Make a mixed precision conjugate gradient
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
ConjugateGradientReliableUpdate<FieldD,FieldF> MPCG(Tolerance,MaxIterations,Delta,SinglePrecGrid5,LinOpF,LinOpD);
|
||||
std::cout << GridLogMessage << "Calling mixed precision reliable update Conjugate Gradient" <<std::endl;
|
||||
MPCG(src,psi);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
Grid_init(&argc, &argv);
|
||||
int threads = GridThread::GetThreads();
|
||||
// here make a routine to print all the relevant information on the run
|
||||
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
|
||||
|
||||
std::string param_file = "params.xml";
|
||||
bool file_load_check = false;
|
||||
for(int i=1;i<argc;i++){
|
||||
std::string sarg(argv[i]);
|
||||
if(sarg == "--param_file"){
|
||||
assert(i!=argc-1);
|
||||
param_file = argv[i+1];
|
||||
}else if(sarg == "--read_check"){ //check the fields load correctly and pass checksum/plaquette repro
|
||||
file_load_check = true;
|
||||
}
|
||||
}
|
||||
|
||||
//Read the user parameters
|
||||
EvolParameters user_params;
|
||||
|
||||
if(fileExists(param_file)){
|
||||
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
|
||||
Grid::XmlReader rd(param_file);
|
||||
read(rd, "Params", user_params);
|
||||
}else if(!GlobalSharedMemory::WorldRank){
|
||||
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
|
||||
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
|
||||
{
|
||||
Grid::XmlWriter wr(param_file + ".templ");
|
||||
write(wr, "Params", user_params);
|
||||
}
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
||||
|
||||
//Check the parameters
|
||||
if(user_params.GparityDirs.size() != Nd-1){
|
||||
std::cerr << "Error in input parameters: expect GparityDirs to have size = " << Nd-1 << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
for(int i=0;i<Nd-1;i++)
|
||||
if(user_params.GparityDirs[i] != 0 && user_params.GparityDirs[i] != 1){
|
||||
std::cerr << "Error in input parameters: expect GparityDirs values to be 0 (periodic) or 1 (G-parity)" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
|
||||
|
||||
typedef GparityMobiusEOFAFermionD EOFAactionD;
|
||||
typedef GparityMobiusFermionD FermionActionD;
|
||||
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
|
||||
typedef typename FermionActionD::FermionField FermionFieldD;
|
||||
|
||||
typedef GparityMobiusEOFAFermionF EOFAactionF;
|
||||
typedef GparityMobiusFermionF FermionActionF;
|
||||
typedef typename FermionActionF::Impl_t FermionImplPolicyF;
|
||||
typedef typename FermionActionF::FermionField FermionFieldF;
|
||||
|
||||
typedef GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<FermionImplPolicyD,FermionImplPolicyF> MixedPrecRHMC;
|
||||
typedef GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicyD> DoublePrecRHMC;
|
||||
|
||||
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
|
||||
IntegratorParameters MD;
|
||||
typedef ConjugateHMCRunnerD<MinimumNorm2> HMCWrapper; //NB: This is the "Omelyan integrator"
|
||||
typedef HMCWrapper::ImplPolicy GaugeImplPolicy;
|
||||
MD.name = std::string("MinimumNorm2");
|
||||
MD.MDsteps = user_params.Steps;
|
||||
MD.trajL = user_params.TrajectoryLength;
|
||||
|
||||
HMCparameters HMCparams;
|
||||
HMCparams.StartTrajectory = user_params.StartTrajectory;
|
||||
HMCparams.Trajectories = user_params.Trajectories;
|
||||
HMCparams.NoMetropolisUntil= 0;
|
||||
HMCparams.StartingType = user_params.StartingType;
|
||||
HMCparams.MetropolisTest = user_params.MetropolisTest;
|
||||
HMCparams.MD = MD;
|
||||
HMCWrapper TheHMC(HMCparams);
|
||||
|
||||
// Grid from the command line arguments --grid and --mpi
|
||||
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
|
||||
|
||||
CheckpointerParameters CPparams;
|
||||
CPparams.config_prefix = "ckpoint_lat";
|
||||
CPparams.rng_prefix = "ckpoint_rng";
|
||||
CPparams.saveInterval = user_params.SaveInterval;
|
||||
CPparams.format = "IEEE64BIG";
|
||||
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
|
||||
|
||||
//Note that checkpointing saves the RNG state so that this initialization is required only for the very first configuration
|
||||
RNGModuleParameters RNGpar;
|
||||
RNGpar.serial_seeds = "1 2 3 4 5";
|
||||
RNGpar.parallel_seeds = "6 7 8 9 10";
|
||||
TheHMC.Resources.SetRNGSeeds(RNGpar);
|
||||
|
||||
typedef PlaquetteMod<GaugeImplPolicy> PlaqObs;
|
||||
TheHMC.Resources.AddObservable<PlaqObs>();
|
||||
//////////////////////////////////////////////
|
||||
|
||||
//aiming for ainv=2.068 me Bob
|
||||
//Estimated a(ml+mres) [48ID] = 0.001048 0.00104
|
||||
// a(mh+mres) [48ID] = 0.028847 0.02805
|
||||
//Estimate Ls=12, b+c=2 mres~0.0003
|
||||
|
||||
const int Ls = 12;
|
||||
Real beta = 1.946;
|
||||
Real light_mass = 0.00074; //0.00104 - mres_approx;
|
||||
Real strange_mass = 0.02775; //0.02805 - mres_approx
|
||||
Real pv_mass = 1.0;
|
||||
RealD M5 = 1.8;
|
||||
RealD mobius_scale = 2.; //b+c
|
||||
|
||||
RealD mob_bmc = 1.0;
|
||||
RealD mob_b = (mobius_scale + mob_bmc)/2.;
|
||||
RealD mob_c = (mobius_scale - mob_bmc)/2.;
|
||||
|
||||
//Setup the Grids
|
||||
auto UGridD = TheHMC.Resources.GetCartesian();
|
||||
auto UrbGridD = TheHMC.Resources.GetRBCartesian();
|
||||
auto FGridD = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridD);
|
||||
auto FrbGridD = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridD);
|
||||
|
||||
GridCartesian* UGridF = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
|
||||
GridRedBlackCartesian* UrbGridF = SpaceTimeGrid::makeFourDimRedBlackGrid(UGridF);
|
||||
auto FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridF);
|
||||
auto FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridF);
|
||||
|
||||
ConjugateIwasakiGaugeActionD GaugeAction(beta);
|
||||
|
||||
// temporarily need a gauge field
|
||||
LatticeGaugeFieldD Ud(UGridD);
|
||||
LatticeGaugeFieldF Uf(UGridF);
|
||||
|
||||
//Setup the BCs
|
||||
FermionActionD::ImplParams Params;
|
||||
for(int i=0;i<Nd-1;i++) Params.twists[i] = user_params.GparityDirs[i]; //G-parity directions
|
||||
Params.twists[Nd-1] = 1; //APBC in time direction
|
||||
|
||||
std::vector<int> dirs4(Nd);
|
||||
for(int i=0;i<Nd-1;i++) dirs4[i] = user_params.GparityDirs[i];
|
||||
dirs4[Nd-1] = 0; //periodic gauge BC in time
|
||||
|
||||
GaugeImplPolicy::setDirections(dirs4); //gauge BC
|
||||
|
||||
//Run optional gauge field checksum checker and exit
|
||||
if(file_load_check){
|
||||
TheHMC.initializeGaugeFieldAndRNGs(Ud);
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////
|
||||
// Collect actions
|
||||
////////////////////////////////////
|
||||
ActionLevel<HMCWrapper::Field> Level1(1); //light quark + strange quark
|
||||
ActionLevel<HMCWrapper::Field> Level2(4); //DSDR
|
||||
ActionLevel<HMCWrapper::Field> Level3(2); //gauge
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Light EOFA action
|
||||
// have to be careful with the parameters, cf. Test_dwf_gpforce_eofa.cc
|
||||
/////////////////////////////////////////////////////////////
|
||||
typedef SchurDiagMooeeOperator<EOFAactionD,FermionFieldD> EOFAschuropD;
|
||||
typedef SchurDiagMooeeOperator<EOFAactionF,FermionFieldF> EOFAschuropF;
|
||||
typedef ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction<FermionImplPolicyD, FermionImplPolicyF> EOFAmixPrecPFaction;
|
||||
typedef MixedPrecisionConjugateGradientOperatorFunction<EOFAactionD, EOFAactionF, EOFAschuropD, EOFAschuropF> EOFA_mxCG;
|
||||
typedef MixedPrecisionReliableUpdateConjugateGradientOperatorFunction<EOFAactionD, EOFAactionF, EOFAschuropD, EOFAschuropF> EOFA_relupCG;
|
||||
|
||||
std::vector<RealD> eofa_light_masses = { light_mass , 0.004, 0.016, 0.064, 0.256 };
|
||||
std::vector<RealD> eofa_pv_masses = { 0.004 , 0.016, 0.064, 0.256, 1.0 };
|
||||
int n_light_hsb = 5;
|
||||
assert(user_params.eofa_l.size() == n_light_hsb);
|
||||
|
||||
EOFAmixPrecPFaction* EOFA_pfactions[n_light_hsb];
|
||||
|
||||
for(int i=0;i<n_light_hsb;i++){
|
||||
RealD iml = eofa_light_masses[i];
|
||||
RealD ipv = eofa_pv_masses[i];
|
||||
|
||||
EOFAactionD* LopD = new EOFAactionD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, iml, iml, ipv, 0.0, -1, M5, mob_b, mob_c, Params);
|
||||
EOFAactionF* LopF = new EOFAactionF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, iml, iml, ipv, 0.0, -1, M5, mob_b, mob_c, Params);
|
||||
EOFAactionD* RopD = new EOFAactionD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, ipv, iml, ipv, -1.0, 1, M5, mob_b, mob_c, Params);
|
||||
EOFAactionF* RopF = new EOFAactionF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, ipv, iml, ipv, -1.0, 1, M5, mob_b, mob_c, Params);
|
||||
|
||||
EOFAschuropD* linopL_D = new EOFAschuropD(*LopD);
|
||||
EOFAschuropD* linopR_D = new EOFAschuropD(*RopD);
|
||||
|
||||
EOFAschuropF* linopL_F = new EOFAschuropF(*LopF);
|
||||
EOFAschuropF* linopR_F = new EOFAschuropF(*RopF);
|
||||
|
||||
#if 1
|
||||
//Note reusing user_params.eofa_l.action(|md)_mixcg_inner_tolerance as Delta for now
|
||||
EOFA_relupCG* ActionMCG_L = new EOFA_relupCG(user_params.eofa_l[i].action_tolerance, user_params.eofa_l[i].action_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
|
||||
EOFA_relupCG* ActionMCG_R = new EOFA_relupCG(user_params.eofa_l[i].action_tolerance, user_params.eofa_l[i].action_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
|
||||
|
||||
EOFA_relupCG* DerivMCG_L = new EOFA_relupCG(user_params.eofa_l[i].md_tolerance, user_params.eofa_l[i].md_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
|
||||
EOFA_relupCG* DerivMCG_R = new EOFA_relupCG(user_params.eofa_l[i].md_tolerance, user_params.eofa_l[i].md_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
|
||||
|
||||
#else
|
||||
|
||||
EOFA_mxCG* ActionMCG_L = new EOFA_mxCG(user_params.eofa_l[i].action_tolerance, 10000, 1000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
|
||||
ActionMCG_L->InnerTolerance = user_params.eofa_l[i].action_mixcg_inner_tolerance;
|
||||
|
||||
EOFA_mxCG* ActionMCG_R = new EOFA_mxCG(user_params.eofa_l[i].action_tolerance, 10000, 1000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
|
||||
ActionMCG_R->InnerTolerance = user_params.eofa_l[i].action_mixcg_inner_tolerance;
|
||||
|
||||
EOFA_mxCG* DerivMCG_L = new EOFA_mxCG(user_params.eofa_l[i].md_tolerance, 10000, 1000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
|
||||
DerivMCG_L->InnerTolerance = user_params.eofa_l[i].md_mixcg_inner_tolerance;
|
||||
|
||||
EOFA_mxCG* DerivMCG_R = new EOFA_mxCG(user_params.eofa_l[i].md_tolerance, 10000, 1000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
|
||||
DerivMCG_R->InnerTolerance = user_params.eofa_l[i].md_mixcg_inner_tolerance;
|
||||
|
||||
std::cout << GridLogMessage << "Set EOFA action solver action tolerance outer=" << ActionMCG_L->Tolerance << " inner=" << ActionMCG_L->InnerTolerance << std::endl;
|
||||
std::cout << GridLogMessage << "Set EOFA MD solver tolerance outer=" << DerivMCG_L->Tolerance << " inner=" << DerivMCG_L->InnerTolerance << std::endl;
|
||||
#endif
|
||||
|
||||
|
||||
EOFAmixPrecPFaction* EOFA = new EOFAmixPrecPFaction(*LopF, *RopF,
|
||||
*LopD, *RopD,
|
||||
*ActionMCG_L, *ActionMCG_R,
|
||||
*ActionMCG_L, *ActionMCG_R,
|
||||
*DerivMCG_L, *DerivMCG_R,
|
||||
user_params.eofa_l[i].rat_params, true);
|
||||
EOFA_pfactions[i] = EOFA;
|
||||
Level1.push_back(EOFA);
|
||||
}
|
||||
|
||||
////////////////////////////////////
|
||||
// Strange action
|
||||
////////////////////////////////////
|
||||
FermionActionD Numerator_sD(Ud,*FGridD,*FrbGridD,*UGridD,*UrbGridD,strange_mass,M5,mob_b,mob_c,Params);
|
||||
FermionActionD Denominator_sD(Ud,*FGridD,*FrbGridD,*UGridD,*UrbGridD, pv_mass,M5,mob_b,mob_c,Params);
|
||||
|
||||
FermionActionF Numerator_sF(Uf,*FGridF,*FrbGridF,*UGridF,*UrbGridF,strange_mass,M5,mob_b,mob_c,Params);
|
||||
FermionActionF Denominator_sF(Uf,*FGridF,*FrbGridF,*UGridF,*UrbGridF, pv_mass,M5,mob_b,mob_c,Params);
|
||||
|
||||
RationalActionParams rat_act_params_s;
|
||||
rat_act_params_s.inv_pow = 4; // (M^dag M)^{1/4}
|
||||
rat_act_params_s.precision= 60;
|
||||
rat_act_params_s.MaxIter = 10000;
|
||||
user_params.rat_quo_s.Export(rat_act_params_s);
|
||||
std::cout << GridLogMessage << " Heavy quark bounds check every " << rat_act_params_s.BoundsCheckFreq << " trajectories (avg)" << std::endl;
|
||||
|
||||
//MixedPrecRHMC Quotient_s(Denominator_sD, Numerator_sD, Denominator_sF, Numerator_sF, rat_act_params_s, user_params.rat_quo_s.reliable_update_freq);
|
||||
DoublePrecRHMC Quotient_s(Denominator_sD, Numerator_sD, rat_act_params_s);
|
||||
Level1.push_back(&Quotient_s);
|
||||
|
||||
///////////////////////////////////
|
||||
// DSDR action
|
||||
///////////////////////////////////
|
||||
RealD dsdr_mass=-1.8;
|
||||
//Use same DSDR twists as https://arxiv.org/pdf/1208.4412.pdf
|
||||
RealD dsdr_epsilon_f = 0.02; //numerator (in determinant)
|
||||
RealD dsdr_epsilon_b = 0.5;
|
||||
GparityWilsonTMFermionD Numerator_DSDR_D(Ud, *UGridD, *UrbGridD, dsdr_mass, dsdr_epsilon_f, Params);
|
||||
GparityWilsonTMFermionF Numerator_DSDR_F(Uf, *UGridF, *UrbGridF, dsdr_mass, dsdr_epsilon_f, Params);
|
||||
|
||||
GparityWilsonTMFermionD Denominator_DSDR_D(Ud, *UGridD, *UrbGridD, dsdr_mass, dsdr_epsilon_b, Params);
|
||||
GparityWilsonTMFermionF Denominator_DSDR_F(Uf, *UGridF, *UrbGridF, dsdr_mass, dsdr_epsilon_b, Params);
|
||||
|
||||
RationalActionParams rat_act_params_DSDR;
|
||||
rat_act_params_DSDR.inv_pow = 2; // (M^dag M)^{1/2}
|
||||
rat_act_params_DSDR.precision= 60;
|
||||
rat_act_params_DSDR.MaxIter = 10000;
|
||||
user_params.rat_quo_DSDR.Export(rat_act_params_DSDR);
|
||||
std::cout << GridLogMessage << "DSDR quark bounds check every " << rat_act_params_DSDR.BoundsCheckFreq << " trajectories (avg)" << std::endl;
|
||||
|
||||
DoublePrecRHMC Quotient_DSDR(Denominator_DSDR_D, Numerator_DSDR_D, rat_act_params_DSDR);
|
||||
Level2.push_back(&Quotient_DSDR);
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Gauge action
|
||||
/////////////////////////////////////////////////////////////
|
||||
Level3.push_back(&GaugeAction);
|
||||
|
||||
TheHMC.TheAction.push_back(Level1);
|
||||
TheHMC.TheAction.push_back(Level2);
|
||||
TheHMC.TheAction.push_back(Level3);
|
||||
std::cout << GridLogMessage << " Action complete "<< std::endl;
|
||||
|
||||
|
||||
//Action tuning
|
||||
bool
|
||||
tune_rhmc_s=false, eigenrange_s=false,
|
||||
tune_rhmc_DSDR=false, eigenrange_DSDR=false,
|
||||
check_eofa=false,
|
||||
upper_bound_eofa=false, lower_bound_eofa(false);
|
||||
|
||||
std::string lanc_params_s;
|
||||
std::string lanc_params_DSDR;
|
||||
int tune_rhmc_s_action_or_md;
|
||||
int tune_rhmc_DSDR_action_or_md;
|
||||
int eofa_which_hsb;
|
||||
|
||||
for(int i=1;i<argc;i++){
|
||||
std::string sarg(argv[i]);
|
||||
if(sarg == "--tune_rhmc_s"){
|
||||
assert(i < argc-1);
|
||||
tune_rhmc_s=true;
|
||||
tune_rhmc_s_action_or_md = std::stoi(argv[i+1]);
|
||||
}
|
||||
else if(sarg == "--eigenrange_s"){
|
||||
assert(i < argc-1);
|
||||
eigenrange_s=true;
|
||||
lanc_params_s = argv[i+1];
|
||||
}
|
||||
else if(sarg == "--tune_rhmc_DSDR"){
|
||||
assert(i < argc-1);
|
||||
tune_rhmc_DSDR=true;
|
||||
tune_rhmc_DSDR_action_or_md = std::stoi(argv[i+1]);
|
||||
}
|
||||
else if(sarg == "--eigenrange_DSDR"){
|
||||
assert(i < argc-1);
|
||||
eigenrange_DSDR=true;
|
||||
lanc_params_DSDR = argv[i+1];
|
||||
}
|
||||
else if(sarg == "--check_eofa"){
|
||||
assert(i < argc-1);
|
||||
check_eofa = true;
|
||||
eofa_which_hsb = std::stoi(argv[i+1]); //-1 indicates all hasenbusch
|
||||
assert(eofa_which_hsb == -1 || (eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb) );
|
||||
}
|
||||
else if(sarg == "--upper_bound_eofa"){
|
||||
assert(i < argc-1);
|
||||
upper_bound_eofa = true;
|
||||
eofa_which_hsb = std::stoi(argv[i+1]);
|
||||
assert(eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb);
|
||||
}
|
||||
else if(sarg == "--lower_bound_eofa"){
|
||||
assert(i < argc-1);
|
||||
lower_bound_eofa = true;
|
||||
eofa_which_hsb = std::stoi(argv[i+1]);
|
||||
assert(eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb);
|
||||
}
|
||||
}
|
||||
if(tune_rhmc_s || eigenrange_s || tune_rhmc_DSDR || eigenrange_DSDR ||check_eofa || upper_bound_eofa || lower_bound_eofa) {
|
||||
std::cout << GridLogMessage << "Running checks" << std::endl;
|
||||
TheHMC.initializeGaugeFieldAndRNGs(Ud);
|
||||
|
||||
//std::cout << GridLogMessage << "EOFA action solver action tolerance outer=" << ActionMCG_L.Tolerance << " inner=" << ActionMCG_L.InnerTolerance << std::endl;
|
||||
//std::cout << GridLogMessage << "EOFA MD solver tolerance outer=" << DerivMCG_L.Tolerance << " inner=" << DerivMCG_L.InnerTolerance << std::endl;
|
||||
|
||||
|
||||
if(check_eofa){
|
||||
if(eofa_which_hsb >= 0){
|
||||
std::cout << GridLogMessage << "Starting checking EOFA Hasenbusch " << eofa_which_hsb << std::endl;
|
||||
checkEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
|
||||
std::cout << GridLogMessage << "Finished checking EOFA Hasenbusch " << eofa_which_hsb << std::endl;
|
||||
}else{
|
||||
for(int i=0;i<n_light_hsb;i++){
|
||||
std::cout << GridLogMessage << "Starting checking EOFA Hasenbusch " << i << std::endl;
|
||||
checkEOFA(*EOFA_pfactions[i], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
|
||||
std::cout << GridLogMessage << "Finished checking EOFA Hasenbusch " << i << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
if(upper_bound_eofa) upperBoundEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
|
||||
if(lower_bound_eofa) lowerBoundEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
|
||||
if(eigenrange_s) computeEigenvalues<FermionActionD, FermionFieldD>(lanc_params_s, FGridD, FrbGridD, Ud, Numerator_sD, TheHMC.Resources.GetParallelRNG());
|
||||
if(tune_rhmc_s) checkRHMC<FermionActionD, FermionFieldD, decltype(Quotient_s)>(FGridD, FrbGridD, Ud, Numerator_sD, Denominator_sD, Quotient_s, TheHMC.Resources.GetParallelRNG(), 4, "strange", tune_rhmc_s_action_or_md);
|
||||
if(eigenrange_DSDR) computeEigenvalues<GparityWilsonTMFermionD, GparityWilsonTMFermionD::FermionField>(lanc_params_DSDR, UGridD, UrbGridD, Ud, Numerator_DSDR_D, TheHMC.Resources.GetParallelRNG());
|
||||
if(tune_rhmc_DSDR) checkRHMC<GparityWilsonTMFermionD, GparityWilsonTMFermionD::FermionField, decltype(Quotient_DSDR)>(UGridD, UrbGridD, Ud, Numerator_DSDR_D, Denominator_DSDR_D, Quotient_DSDR, TheHMC.Resources.GetParallelRNG(), 2, "DSDR", tune_rhmc_DSDR_action_or_md);
|
||||
|
||||
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
//Run the HMC
|
||||
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
|
||||
TheHMC.Run();
|
||||
|
||||
std::cout << GridLogMessage << " Done" << std::endl;
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
} // main
|
@ -1,19 +1,27 @@
|
||||
#!/bin/bash
|
||||
|
||||
LOG=$1
|
||||
SWEEPS=`grep dH $LOG | wc -l`
|
||||
SWEEPS=`expr $SWEEPS - 80`
|
||||
SWEEPS=`grep dH.= $LOG | wc -l`
|
||||
SWEEPS=`expr $SWEEPS - 100`
|
||||
echo
|
||||
echo $SWEEPS thermalised sweeps
|
||||
echo
|
||||
plaq=`grep Plaq $LOG | tail -n $SWEEPS | awk '{ S=S+$10} END { print S/NR} ' `
|
||||
plaqe=`grep Plaq $LOG | tail -n $SWEEPS | awk '{ S=S+$10 ; SS=SS+$10*$10 } END { print sqrt( (SS/NR - S*S/NR/NR)/NR) } ' `
|
||||
plaq=`grep Plaq $LOG | tail -n $SWEEPS | awk '{ S=S+$12} END { print S/NR} ' `
|
||||
plaqe=`grep Plaq $LOG | tail -n $SWEEPS | awk '{ S=S+$12 ; SS=SS+$12*$12 } END { print sqrt( (SS/NR - S*S/NR/NR)/NR) } ' `
|
||||
echo "Plaquette: $plaq (${plaqe})"
|
||||
echo
|
||||
|
||||
dHv=`grep dH $LOG | tail -n $SWEEPS | awk '{ S=S+$10 ; SS=SS+$10*$10 } END { print sqrt(SS/NR) } ' `
|
||||
edH=`grep dH $LOG | tail -n $SWEEPS | awk '{ S=S+exp(-$10)} END { print S/NR} '`
|
||||
echo "<e-dH>: $edH"
|
||||
grep Plaq $LOG | tail -n $SWEEPS | awk '{ S=S+$12/20; if(NR%20==0){ print NR/20, " ", S; S=0;} } ' > plaq.binned
|
||||
|
||||
plaq=`cat plaq.binned | awk '{ S=S+$2} END { print S/NR} ' `
|
||||
plaqe=`cat plaq.binned | awk '{ S=S+$2 ; SS=SS+$2*$2 } END { print sqrt( (SS/NR - S*S/NR/NR)/NR) } ' `
|
||||
echo "Binned Plaquette: $plaq (${plaqe})"
|
||||
echo
|
||||
|
||||
dHv=`grep dH.= $LOG | tail -n $SWEEPS | awk '{ S=S+$16 ; SS=SS+$16*$16 } END { print sqrt(SS/NR) } ' `
|
||||
edH=`grep dH.= $LOG | tail -n $SWEEPS | awk '{ S=S+exp(-$16)} END { print S/NR} '`
|
||||
dedH=`grep dH.= $LOG | tail -n $SWEEPS | awk '{ S=S+exp(-$16); SS=SS+exp(-$16)*exp(-$16)} END { print sqrt( (SS/NR - S*S/NR/NR)/NR) } '`
|
||||
echo "<e-dH>: $edH (${dedH})"
|
||||
echo "<rms dH>: $dHv"
|
||||
|
||||
TRAJ=`grep Acc $LOG | wc -l`
|
||||
@ -22,12 +30,13 @@ PACC=`expr 100 \* ${ACC} / ${TRAJ} `
|
||||
echo
|
||||
echo "Acceptance $PACC % $ACC / $TRAJ "
|
||||
|
||||
grep Plaq $LOG | awk '{ print $10 }' | uniq > plaq.dat
|
||||
grep dH $LOG | awk '{ print $10 }' > dH.dat
|
||||
echo set yrange [-0.2:1.0] > plot.gnu
|
||||
grep Plaq $LOG | awk '{ print $12 }' | uniq > plaq.dat
|
||||
grep dH.= $LOG | awk '{ print $16 }' > dH.dat
|
||||
echo set yrange [0.58:0.60] > plot.gnu
|
||||
echo set terminal 'pdf' >> plot.gnu
|
||||
echo "f(x) =0.588" >> plot.gnu
|
||||
echo "set output 'plaq.${LOG}.pdf'" >> plot.gnu
|
||||
echo "plot 'plaq.dat' w l, 'dH.dat' w l " >> plot.gnu
|
||||
echo "plot 'plaq.dat' w l, f(x) " >> plot.gnu
|
||||
echo
|
||||
gnuplot plot.gnu >& gnu.errs
|
||||
open plaq.${LOG}.pdf
|
||||
|
184
tests/IO/Test_field_array_io.cc
Normal file
184
tests/IO/Test_field_array_io.cc
Normal file
@ -0,0 +1,184 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/IO/Test_field_array_io.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
|
||||
//This test demonstrates and checks a single-file write of an arbitrary array of fields
|
||||
|
||||
uint64_t writeHeader(const uint32_t size, const uint32_t checksum, const std::string &format, const std::string &file){
|
||||
std::ofstream fout(file,std::ios::out|std::ios::in);
|
||||
fout.seekp(0,std::ios::beg);
|
||||
fout << std::setw(10) << size << std::endl;
|
||||
fout << std::hex << std::setw(10) << checksum << std::endl;
|
||||
fout << format << std::endl;
|
||||
return fout.tellp();
|
||||
}
|
||||
|
||||
uint64_t readHeader(uint32_t &size, uint32_t &checksum, std::string &format, const std::string &file){
|
||||
std::ifstream fin(file);
|
||||
std::string line;
|
||||
getline(fin,line);
|
||||
{
|
||||
std::stringstream ss; ss <<line ; ss >> size;
|
||||
}
|
||||
getline(fin,line);
|
||||
{
|
||||
std::stringstream ss; ss <<line ; ss >> std::hex >> checksum;
|
||||
}
|
||||
getline(fin,format);
|
||||
removeWhitespace(format);
|
||||
|
||||
return fin.tellg();
|
||||
}
|
||||
|
||||
template<typename FieldType>
|
||||
void writeFieldArray(const std::string &file, const std::vector<FieldType> &data){
|
||||
typedef typename FieldType::vector_object vobj;
|
||||
typedef typename FieldType::scalar_object sobj;
|
||||
GridBase* grid = data[0].Grid(); //assume all fields have the same Grid
|
||||
BinarySimpleMunger<sobj, sobj> munge; //straight copy
|
||||
|
||||
//We need a 2-pass header write, first to establish the size, the second pass writes the checksum
|
||||
std::string format = getFormatString<typename FieldType::vector_object>();
|
||||
|
||||
uint64_t offset; //leave 64 bits for header
|
||||
if ( grid->IsBoss() ) {
|
||||
NerscIO::truncate(file);
|
||||
offset = writeHeader(data.size(), 0, format, file);
|
||||
}
|
||||
grid->Broadcast(0,(void *)&offset,sizeof(offset)); //use as a barrier
|
||||
|
||||
std::cout << "Data offset write " << offset << std::endl;
|
||||
std::cout << "Data size write " << data.size() << std::endl;
|
||||
uint64_t field_size = uint64_t(grid->gSites()) * sizeof(sobj);
|
||||
std::cout << "Field size = " << field_size << " B" << std::endl;
|
||||
|
||||
uint32_t checksum = 0;
|
||||
for(int i=0;i<data.size();i++){
|
||||
std::cout << "Data field write " << i << " offset " << offset << std::endl;
|
||||
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
|
||||
BinaryIO::writeLatticeObject<vobj,sobj>(const_cast<FieldType &>(data[i]),file,munge,offset,format,
|
||||
nersc_csum,scidac_csuma,scidac_csumb);
|
||||
offset += field_size;
|
||||
checksum ^= nersc_csum + 0x9e3779b9 + (checksum<<6) + (checksum>>2);
|
||||
}
|
||||
std::cout << "Write checksum " << checksum << std::endl;
|
||||
|
||||
if ( grid->IsBoss() ) {
|
||||
writeHeader(data.size(), checksum, format, file);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template<typename FieldType>
|
||||
void readFieldArray(std::vector<FieldType> &data, const std::string &file){
|
||||
typedef typename FieldType::vector_object vobj;
|
||||
typedef typename FieldType::scalar_object sobj;
|
||||
assert(data.size() > 0);
|
||||
GridBase* grid = data[0].Grid(); //assume all fields have the same Grid
|
||||
BinarySimpleUnmunger<sobj, sobj> munge; //straight copy
|
||||
|
||||
uint32_t hdr_checksum, hdr_size;
|
||||
std::string format;
|
||||
uint64_t offset = readHeader(hdr_size, hdr_checksum, format, file);
|
||||
|
||||
std::cout << "Data offset read " << offset << std::endl;
|
||||
std::cout << "Data size read " << hdr_size << std::endl;
|
||||
assert(data.size() == hdr_size);
|
||||
|
||||
uint64_t field_size = uint64_t(grid->gSites()) * sizeof(sobj);
|
||||
|
||||
uint32_t checksum = 0;
|
||||
|
||||
for(int i=0;i<data.size();i++){
|
||||
std::cout << "Data field read " << i << " offset " << offset << std::endl;
|
||||
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
|
||||
BinaryIO::readLatticeObject<vobj,sobj>(data[i],file,munge,offset,format,
|
||||
nersc_csum,scidac_csuma,scidac_csumb);
|
||||
offset += field_size;
|
||||
checksum ^= nersc_csum + 0x9e3779b9 + (checksum<<6) + (checksum>>2);
|
||||
}
|
||||
|
||||
std::cout << "Header checksum " << hdr_checksum << std::endl;
|
||||
std::cout << "Read checksum " << checksum << std::endl;
|
||||
|
||||
|
||||
assert( hdr_checksum == checksum );
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
Coordinate latt = GridDefaultLatt();
|
||||
Coordinate simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
|
||||
Coordinate mpi_layout = GridDefaultMpi();
|
||||
|
||||
const int Ls=8;
|
||||
|
||||
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(latt, simd_layout, mpi_layout);
|
||||
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
|
||||
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
|
||||
|
||||
std::vector<int> seeds4({1,2,3,4});
|
||||
std::vector<int> seeds5({5,6,7,8});
|
||||
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
|
||||
|
||||
typedef DomainWallFermionD::FermionField FermionField;
|
||||
|
||||
int nfield = 20;
|
||||
std::vector<FermionField> data(nfield, FGrid);
|
||||
|
||||
for(int i=0;i<data.size();i++)
|
||||
gaussian(RNG5, data[i]);
|
||||
|
||||
std::string file = "test_field_array_io.0";
|
||||
writeFieldArray(file, data);
|
||||
|
||||
std::vector<FermionField> data_r(nfield, FGrid);
|
||||
readFieldArray(data_r, file);
|
||||
|
||||
for(int i=0;i<nfield;i++){
|
||||
FermionField diff = data_r[i] - data[i];
|
||||
RealD norm_diff = norm2(diff);
|
||||
std::cout << "Norm2 of difference between stored and loaded data index " << i << " : " << norm_diff << std::endl;
|
||||
}
|
||||
|
||||
std::cout << "Done" << std::endl;
|
||||
|
||||
Grid_finalize();
|
||||
}
|
@ -299,12 +299,12 @@ int main (int argc, char ** argv)
|
||||
SpinColourVectorD ferm; gaussian(sRNG,ferm);
|
||||
pokeSite(ferm,src,point);
|
||||
|
||||
const int Ls=32;
|
||||
const int Ls=64;
|
||||
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,&GRID);
|
||||
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,&GRID);
|
||||
|
||||
RealD mass=0.01;
|
||||
RealD M5 =0.8;
|
||||
RealD mass=1.0;
|
||||
RealD M5 =0.99;
|
||||
DomainWallFermionD Ddwf(Umu,*FGrid,*FrbGrid,GRID,RBGRID,mass,M5);
|
||||
|
||||
// Momentum space prop
|
||||
@ -353,6 +353,12 @@ int main (int argc, char ** argv)
|
||||
std::cout << " Taking difference" <<std::endl;
|
||||
std::cout << "Ddwf result4 "<<norm2(result4)<<std::endl;
|
||||
std::cout << "Ddwf ref "<<norm2(ref)<<std::endl;
|
||||
auto twopoint = localInnerProduct(result4,result4);
|
||||
std::vector<TComplex> pion_prop;
|
||||
sliceSum(twopoint,pion_prop,Nd-1);
|
||||
for(int t=0;t<pion_prop.size();t++){
|
||||
std::cout << "Pion_prop["<<t<<"]="<<pion_prop[t]<<std::endl;
|
||||
}
|
||||
|
||||
diff = ref - result4;
|
||||
std::cout << "result - ref "<<norm2(diff)<<std::endl;
|
||||
@ -383,7 +389,7 @@ int main (int argc, char ** argv)
|
||||
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,&GRID);
|
||||
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,&GRID);
|
||||
|
||||
RealD mass=0.01;
|
||||
RealD mass=1.0;
|
||||
RealD M5 =0.8;
|
||||
|
||||
OverlapWilsonCayleyTanhFermionD Dov(Umu,*FGrid,*FrbGrid,GRID,RBGRID,mass,M5,1.0);
|
||||
|
@ -29,14 +29,10 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace Grid;
|
||||
;
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
template<typename Gimpl>
|
||||
void run(double alpha, bool do_fft_gfix){
|
||||
std::vector<int> seeds({1,2,3,4});
|
||||
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
int threads = GridThread::GetThreads();
|
||||
|
||||
Coordinate latt_size = GridDefaultLatt();
|
||||
@ -55,10 +51,7 @@ int main (int argc, char ** argv)
|
||||
FFT theFFT(&GRID);
|
||||
|
||||
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
|
||||
|
||||
std::cout<< "*****************************************************************" <<std::endl;
|
||||
std::cout<< "* Testing we can gauge fix steep descent a RGT of Unit gauge *" <<std::endl;
|
||||
std::cout<< "*****************************************************************" <<std::endl;
|
||||
std::cout<<GridLogMessage << "Using alpha=" << alpha << std::endl;
|
||||
|
||||
// int coulomb_dir = -1;
|
||||
int coulomb_dir = Nd-1;
|
||||
@ -72,81 +65,165 @@ int main (int argc, char ** argv)
|
||||
LatticeColourMatrix xform1(&GRID); // Gauge xform
|
||||
LatticeColourMatrix xform2(&GRID); // Gauge xform
|
||||
LatticeColourMatrix xform3(&GRID); // Gauge xform
|
||||
|
||||
//#########################################################################################
|
||||
|
||||
std::cout<< "*********************************************************************************************************" <<std::endl;
|
||||
std::cout<< "* Testing steepest descent fixing to Landau gauge with randomly transformed unit gauge configuration *" <<std::endl;
|
||||
std::cout<< "*********************************************************************************************************" <<std::endl;
|
||||
|
||||
SU<Nc>::ColdConfiguration(pRNG,Umu); // Unit gauge
|
||||
Uorg=Umu;
|
||||
|
||||
Real init_plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
|
||||
std::cout << " Initial plaquette "<< init_plaq << std::endl;
|
||||
|
||||
//Apply a random gauge transformation to the unit gauge config
|
||||
Urnd=Umu;
|
||||
SU<Nc>::RandomGaugeTransform<Gimpl>(pRNG,Urnd,g);
|
||||
|
||||
SU<Nc>::RandomGaugeTransform(pRNG,Urnd,g); // Unit gauge
|
||||
|
||||
Real plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
|
||||
std::cout << " Initial plaquette "<<plaq << std::endl;
|
||||
|
||||
Real alpha=0.1;
|
||||
|
||||
//Gauge fix the randomly transformed field
|
||||
Umu = Urnd;
|
||||
FourierAcceleratedGaugeFixer<PeriodicGimplR>::SteepestDescentGaugeFix(Umu,xform1,alpha,10000,1.0e-12, 1.0e-12,false);
|
||||
FourierAcceleratedGaugeFixer<Gimpl>::SteepestDescentGaugeFix(Umu,xform1,alpha,10000,1.0e-12, 1.0e-12,false);
|
||||
|
||||
// Check the gauge xform matrices
|
||||
Utmp=Urnd;
|
||||
SU<Nc>::GaugeTransform(Utmp,xform1);
|
||||
SU<Nc>::GaugeTransform<Gimpl>(Utmp,xform1);
|
||||
Utmp = Utmp - Umu;
|
||||
std::cout << " Norm Difference of xformed gauge "<< norm2(Utmp) << std::endl;
|
||||
std::cout << " Check the output gauge transformation matrices applied to the original field produce the xformed field "<< norm2(Utmp) << " (expect 0)" << std::endl;
|
||||
|
||||
|
||||
plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
|
||||
std::cout << " Final plaquette "<<plaq << std::endl;
|
||||
Real plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
|
||||
std::cout << " Final plaquette "<<plaq << " diff " << plaq - init_plaq << " (expect 0)" << std::endl;
|
||||
|
||||
Uorg = Uorg - Umu;
|
||||
std::cout << " Norm Difference "<< norm2(Uorg) << std::endl;
|
||||
std::cout << " Norm "<< norm2(Umu) << std::endl;
|
||||
std::cout << " Norm difference between a unit gauge configuration and the gauge fixed configuration "<< norm2(Uorg) << " (expect 0)" << std::endl;
|
||||
std::cout << " Norm of gauge fixed configuration "<< norm2(Umu) << std::endl;
|
||||
|
||||
//#########################################################################################
|
||||
if(do_fft_gfix){
|
||||
std::cout<< "*************************************************************************************" <<std::endl;
|
||||
std::cout<< "* Testing Fourier accelerated fixing to Landau gauge with unit gauge configuration *" <<std::endl;
|
||||
std::cout<< "*************************************************************************************" <<std::endl;
|
||||
Umu=Urnd;
|
||||
FourierAcceleratedGaugeFixer<Gimpl>::SteepestDescentGaugeFix(Umu,xform2,alpha,10000,1.0e-12, 1.0e-12,true);
|
||||
|
||||
Utmp=Urnd;
|
||||
SU<Nc>::GaugeTransform<Gimpl>(Utmp,xform2);
|
||||
Utmp = Utmp - Umu;
|
||||
std::cout << " Check the output gauge transformation matrices applied to the original field produce the xformed field "<< norm2(Utmp) << " (expect 0)" << std::endl;
|
||||
|
||||
|
||||
std::cout<< "*****************************************************************" <<std::endl;
|
||||
std::cout<< "* Testing Fourier accelerated fixing *" <<std::endl;
|
||||
std::cout<< "*****************************************************************" <<std::endl;
|
||||
Umu=Urnd;
|
||||
FourierAcceleratedGaugeFixer<PeriodicGimplR>::SteepestDescentGaugeFix(Umu,xform2,alpha,10000,1.0e-12, 1.0e-12,true);
|
||||
plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
|
||||
std::cout << " Final plaquette "<<plaq << " diff " << plaq - init_plaq << " (expect 0)" << std::endl;
|
||||
}
|
||||
//#########################################################################################
|
||||
|
||||
Utmp=Urnd;
|
||||
SU<Nc>::GaugeTransform(Utmp,xform2);
|
||||
Utmp = Utmp - Umu;
|
||||
std::cout << " Norm Difference of xformed gauge "<< norm2(Utmp) << std::endl;
|
||||
std::cout<< "******************************************************************************************" <<std::endl;
|
||||
std::cout<< "* Testing steepest descent fixing to Landau gauge with random configuration **" <<std::endl;
|
||||
std::cout<< "******************************************************************************************" <<std::endl;
|
||||
|
||||
SU<Nc>::HotConfiguration(pRNG,Umu);
|
||||
|
||||
plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
|
||||
std::cout << " Final plaquette "<<plaq << std::endl;
|
||||
init_plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
|
||||
std::cout << " Initial plaquette "<< init_plaq << std::endl;
|
||||
|
||||
std::cout<< "*****************************************************************" <<std::endl;
|
||||
std::cout<< "* Testing non-unit configuration *" <<std::endl;
|
||||
std::cout<< "*****************************************************************" <<std::endl;
|
||||
FourierAcceleratedGaugeFixer<Gimpl>::SteepestDescentGaugeFix(Umu,alpha,10000,1.0e-12, 1.0e-12,false);
|
||||
|
||||
SU<Nc>::HotConfiguration(pRNG,Umu); // Unit gauge
|
||||
plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
|
||||
std::cout << " Final plaquette "<<plaq << " diff " << plaq - init_plaq << " (expect 0)" << std::endl;
|
||||
|
||||
plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
|
||||
std::cout << " Initial plaquette "<<plaq << std::endl;
|
||||
//#########################################################################################
|
||||
if(do_fft_gfix){
|
||||
std::cout<< "******************************************************************************************" <<std::endl;
|
||||
std::cout<< "* Testing Fourier accelerated fixing to Landau gauge with random configuration **" <<std::endl;
|
||||
std::cout<< "******************************************************************************************" <<std::endl;
|
||||
|
||||
FourierAcceleratedGaugeFixer<PeriodicGimplR>::SteepestDescentGaugeFix(Umu,alpha,10000,1.0e-12, 1.0e-12,true);
|
||||
SU<Nc>::HotConfiguration(pRNG,Umu);
|
||||
|
||||
plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
|
||||
std::cout << " Final plaquette "<<plaq << std::endl;
|
||||
init_plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
|
||||
std::cout << " Initial plaquette "<< init_plaq << std::endl;
|
||||
|
||||
std::cout<< "*****************************************************************" <<std::endl;
|
||||
std::cout<< "* Testing Fourier accelerated fixing to coulomb gauge *" <<std::endl;
|
||||
std::cout<< "*****************************************************************" <<std::endl;
|
||||
FourierAcceleratedGaugeFixer<Gimpl>::SteepestDescentGaugeFix(Umu,alpha,10000,1.0e-12, 1.0e-12,true);
|
||||
|
||||
plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
|
||||
std::cout << " Final plaquette "<<plaq << " diff " << plaq - init_plaq << " (expect 0)" << std::endl;
|
||||
}
|
||||
//#########################################################################################
|
||||
|
||||
std::cout<< "*******************************************************************************************" <<std::endl;
|
||||
std::cout<< "* Testing steepest descent fixing to coulomb gauge with random configuration *" <<std::endl;
|
||||
std::cout<< "*******************************************************************************************" <<std::endl;
|
||||
|
||||
Umu=Urnd;
|
||||
SU<Nc>::HotConfiguration(pRNG,Umu); // Unit gauge
|
||||
SU<Nc>::HotConfiguration(pRNG,Umu);
|
||||
|
||||
plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
|
||||
std::cout << " Initial plaquette "<<plaq << std::endl;
|
||||
init_plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
|
||||
std::cout << " Initial plaquette "<< init_plaq << std::endl;
|
||||
|
||||
FourierAcceleratedGaugeFixer<PeriodicGimplR>::SteepestDescentGaugeFix(Umu,xform3,alpha,10000,1.0e-12, 1.0e-12,true,coulomb_dir);
|
||||
FourierAcceleratedGaugeFixer<Gimpl>::SteepestDescentGaugeFix(Umu,xform3,alpha,10000,1.0e-12, 1.0e-12,false,coulomb_dir);
|
||||
|
||||
std::cout << Umu<<std::endl;
|
||||
plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
|
||||
std::cout << " Final plaquette "<<plaq << " diff " << plaq - init_plaq << " (expect 0)" << std::endl;
|
||||
|
||||
plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
|
||||
std::cout << " Final plaquette "<<plaq << std::endl;
|
||||
|
||||
//#########################################################################################
|
||||
if(do_fft_gfix){
|
||||
std::cout<< "*******************************************************************************************" <<std::endl;
|
||||
std::cout<< "* Testing Fourier accelerated fixing to coulomb gauge with random configuration *" <<std::endl;
|
||||
std::cout<< "*******************************************************************************************" <<std::endl;
|
||||
|
||||
Umu=Urnd;
|
||||
SU<Nc>::HotConfiguration(pRNG,Umu);
|
||||
|
||||
init_plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
|
||||
std::cout << " Initial plaquette "<< init_plaq << std::endl;
|
||||
|
||||
FourierAcceleratedGaugeFixer<Gimpl>::SteepestDescentGaugeFix(Umu,xform3,alpha,10000,1.0e-12, 1.0e-12,true,coulomb_dir);
|
||||
|
||||
plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
|
||||
std::cout << " Final plaquette "<<plaq << " diff " << plaq - init_plaq << " (expect 0)" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
double alpha=0.1; //step size
|
||||
std::string gimpl = "periodic";
|
||||
bool do_fft_gfix = true; //test fourier transformed gfix as well as steepest descent
|
||||
for(int i=1;i<argc;i++){
|
||||
std::string sarg(argv[i]);
|
||||
if(sarg == "--gimpl"){
|
||||
assert(i<argc-1 && "--gimpl option requires an argument");
|
||||
gimpl = argv[i+1];
|
||||
if(gimpl != "periodic" && gimpl != "conjugate")
|
||||
assert(0 && "Invalid gimpl");
|
||||
}else if(sarg == "--no-fft-gfix"){
|
||||
std::cout << "Not doing the Fourier accelerated gauge fixing tests" << std::endl;
|
||||
do_fft_gfix = false;
|
||||
}else if(sarg == "--alpha"){
|
||||
assert(i<argc-1 && "--alpha option requires an argument");
|
||||
std::istringstream ss(argv[i+1]); ss >> alpha;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if(gimpl == "periodic"){
|
||||
std::cout << GridLogMessage << "Using periodic boundary condition" << std::endl;
|
||||
run<PeriodicGimplR>(alpha, do_fft_gfix);
|
||||
}else{
|
||||
std::vector<int> conjdirs = {1,1,0,0}; //test with 2 conjugate dirs and 2 not
|
||||
std::cout << GridLogMessage << "Using complex conjugate boundary conditions in dimensions ";
|
||||
for(int i=0;i<Nd;i++)
|
||||
if(conjdirs[i])
|
||||
std::cout << i << " ";
|
||||
std::cout << std::endl;
|
||||
|
||||
ConjugateGimplR::setDirections(conjdirs);
|
||||
run<ConjugateGimplR>(alpha, do_fft_gfix);
|
||||
}
|
||||
|
||||
Grid_finalize();
|
||||
}
|
||||
|
@ -228,6 +228,59 @@ void checkGammaL(const Gamma::Algebra a, GridSerialRNG &rng)
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
void checkChargeConjMatrix(){
|
||||
//Check the properties of the charge conjugation matrix
|
||||
//In the Grid basis C = -\gamma^2 \gamma^4
|
||||
SpinMatrix C = testAlgebra[Gamma::Algebra::MinusGammaY] * testAlgebra[Gamma::Algebra::GammaT];
|
||||
SpinMatrix mC = -C;
|
||||
SpinMatrix one = testAlgebra[Gamma::Algebra::Identity];
|
||||
|
||||
std::cout << "Testing properties of charge conjugation matrix C = -\\gamma^2 \\gamma^4 (in Grid's basis)" << std::endl;
|
||||
|
||||
//C^T = -C
|
||||
SpinMatrix Ct = transpose(C);
|
||||
std::cout << GridLogMessage << "C^T=-C ";
|
||||
test(Ct, mC);
|
||||
std::cout << std::endl;
|
||||
|
||||
//C^\dagger = -C
|
||||
SpinMatrix Cdag = adj(C);
|
||||
std::cout << GridLogMessage << "C^dag=-C ";
|
||||
test(Cdag, mC);
|
||||
std::cout << std::endl;
|
||||
|
||||
//C^* = C
|
||||
SpinMatrix Cstar = conjugate(C);
|
||||
std::cout << GridLogMessage << "C^*=C ";
|
||||
test(Cstar, C);
|
||||
std::cout << std::endl;
|
||||
|
||||
//C^{-1} = -C
|
||||
SpinMatrix CinvC = mC * C;
|
||||
std::cout << GridLogMessage << "C^{-1}=-C ";
|
||||
test(CinvC, one);
|
||||
std::cout << std::endl;
|
||||
|
||||
// C^{-1} \gamma^\mu C = -[\gamma^\mu]^T
|
||||
Gamma::Algebra gmu_a[4] = { Gamma::Algebra::GammaX, Gamma::Algebra::GammaY, Gamma::Algebra::GammaZ, Gamma::Algebra::GammaT };
|
||||
for(int mu=0;mu<4;mu++){
|
||||
SpinMatrix gmu = testAlgebra[gmu_a[mu]];
|
||||
SpinMatrix Cinv_gmu_C = mC * gmu * C;
|
||||
SpinMatrix mgmu_T = -transpose(gmu);
|
||||
std::cout << GridLogMessage << "C^{-1} \\gamma^" << mu << " C = -[\\gamma^" << mu << "]^T ";
|
||||
test(Cinv_gmu_C, mgmu_T);
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
//[C, \gamma^5] = 0
|
||||
SpinMatrix Cg5 = C * testAlgebra[Gamma::Algebra::Gamma5];
|
||||
SpinMatrix g5C = testAlgebra[Gamma::Algebra::Gamma5] * C;
|
||||
std::cout << GridLogMessage << "C \\gamma^5 = \\gamma^5 C";
|
||||
test(Cg5, g5C);
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
Grid_init(&argc,&argv);
|
||||
@ -270,6 +323,13 @@ int main(int argc, char *argv[])
|
||||
{
|
||||
checkGammaL(i, sRNG);
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "======== Charge conjugation matrix check" << std::endl;
|
||||
checkChargeConjMatrix();
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
|
||||
|
||||
|
||||
|
||||
Grid_finalize();
|
||||
|
||||
|
@ -55,13 +55,17 @@ static_assert(same_vComplex == 1, "Dirac Operators must have same underlying SIM
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
int nu = 0;
|
||||
|
||||
int tbc_aprd = 0; //use antiperiodic BCs in the time direction?
|
||||
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
for(int i=1;i<argc;i++){
|
||||
if(std::string(argv[i]) == "--Gparity-dir"){
|
||||
std::stringstream ss; ss << argv[i+1]; ss >> nu;
|
||||
std::cout << GridLogMessage << "Set Gparity direction to " << nu << std::endl;
|
||||
}else if(std::string(argv[i]) == "--Tbc-APRD"){
|
||||
tbc_aprd = 1;
|
||||
std::cout << GridLogMessage << "Using antiperiodic BCs in the time direction" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
@ -155,13 +159,18 @@ int main (int argc, char ** argv)
|
||||
|
||||
//Coordinate grid for reference
|
||||
LatticeInteger xcoor_1f5(FGrid_1f);
|
||||
LatticeCoordinate(xcoor_1f5,1+nu);
|
||||
LatticeCoordinate(xcoor_1f5,1+nu); //note '1+nu'! This is because for 5D fields the s-direction is direction 0
|
||||
Replicate(src,src_1f);
|
||||
src_1f = where( xcoor_1f5 >= Integer(L), 2.0*src_1f,src_1f );
|
||||
|
||||
RealD mass=0.0;
|
||||
RealD M5=1.8;
|
||||
StandardDiracOp Ddwf(Umu_1f,*FGrid_1f,*FrbGrid_1f,*UGrid_1f,*UrbGrid_1f,mass,M5 DOP_PARAMS);
|
||||
|
||||
//Standard Dirac op
|
||||
AcceleratorVector<Complex,4> bc_std(Nd, 1.0);
|
||||
if(tbc_aprd) bc_std[Nd-1] = -1.; //antiperiodic time BC
|
||||
StandardDiracOp::ImplParams std_params(bc_std);
|
||||
StandardDiracOp Ddwf(Umu_1f,*FGrid_1f,*FrbGrid_1f,*UGrid_1f,*UrbGrid_1f,mass,M5 DOP_PARAMS, std_params);
|
||||
|
||||
StandardFermionField src_o_1f(FrbGrid_1f);
|
||||
StandardFermionField result_o_1f(FrbGrid_1f);
|
||||
@ -172,9 +181,11 @@ int main (int argc, char ** argv)
|
||||
ConjugateGradient<StandardFermionField> CG(1.0e-8,10000);
|
||||
CG(HermOpEO,src_o_1f,result_o_1f);
|
||||
|
||||
// const int nu = 3;
|
||||
//Gparity Dirac op
|
||||
std::vector<int> twists(Nd,0);
|
||||
twists[nu] = 1;
|
||||
if(tbc_aprd) twists[Nd-1] = 1;
|
||||
|
||||
GparityDiracOp::ImplParams params;
|
||||
params.twists = twists;
|
||||
GparityDiracOp GPDdwf(Umu_2f,*FGrid_2f,*FrbGrid_2f,*UGrid_2f,*UrbGrid_2f,mass,M5 DOP_PARAMS,params);
|
||||
@ -271,8 +282,11 @@ int main (int argc, char ** argv)
|
||||
std::cout << "2f cb "<<result_o_2f.Checkerboard()<<std::endl;
|
||||
std::cout << "1f cb "<<result_o_1f.Checkerboard()<<std::endl;
|
||||
|
||||
std::cout << " result norms " <<norm2(result_o_2f)<<" " <<norm2(result_o_1f)<<std::endl;
|
||||
//Compare norms
|
||||
std::cout << " result norms 2f: " <<norm2(result_o_2f)<<" 1f: " <<norm2(result_o_1f)<<std::endl;
|
||||
|
||||
|
||||
//Take the 2f solution and convert into the corresponding 1f solution (odd cb only)
|
||||
StandardFermionField res0o (FrbGrid_2f);
|
||||
StandardFermionField res1o (FrbGrid_2f);
|
||||
StandardFermionField res0 (FGrid_2f);
|
||||
@ -281,14 +295,15 @@ int main (int argc, char ** argv)
|
||||
res0=Zero();
|
||||
res1=Zero();
|
||||
|
||||
res0o = PeekIndex<0>(result_o_2f,0);
|
||||
res1o = PeekIndex<0>(result_o_2f,1);
|
||||
res0o = PeekIndex<0>(result_o_2f,0); //flavor 0, odd cb
|
||||
res1o = PeekIndex<0>(result_o_2f,1); //flavor 1, odd cb
|
||||
|
||||
std::cout << "res cb "<<res0o.Checkerboard()<<std::endl;
|
||||
std::cout << "res cb "<<res1o.Checkerboard()<<std::endl;
|
||||
|
||||
setCheckerboard(res0,res0o);
|
||||
setCheckerboard(res1,res1o);
|
||||
//poke odd onto non-cb field
|
||||
setCheckerboard(res0,res0o);
|
||||
setCheckerboard(res1,res1o);
|
||||
|
||||
StandardFermionField replica (FGrid_1f);
|
||||
StandardFermionField replica0(FGrid_1f);
|
||||
@ -296,12 +311,13 @@ int main (int argc, char ** argv)
|
||||
Replicate(res0,replica0);
|
||||
Replicate(res1,replica1);
|
||||
|
||||
//2nd half of doubled lattice has f=1
|
||||
replica = where( xcoor_1f5 >= Integer(L), replica1,replica0 );
|
||||
|
||||
replica0 = Zero();
|
||||
setCheckerboard(replica0,result_o_1f);
|
||||
|
||||
std::cout << "Norm2 solutions is " <<norm2(replica)<<" "<< norm2(replica0)<<std::endl;
|
||||
std::cout << "Norm2 solutions 1f reconstructed from 2f: " <<norm2(replica)<<" Actual 1f: "<< norm2(replica0)<<std::endl;
|
||||
|
||||
replica = replica - replica0;
|
||||
|
||||
|
177
tests/core/Test_gparity_flavour.cc
Normal file
177
tests/core/Test_gparity_flavour.cc
Normal file
@ -0,0 +1,177 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/Test_gparity_flavour.cc
|
||||
|
||||
Copyright (C) 2015-2017
|
||||
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace Grid;
|
||||
|
||||
static constexpr double tolerance = 1.0e-6;
|
||||
static std::array<GparityFlavourMatrix, GparityFlavour::nSigma> testAlgebra;
|
||||
|
||||
void print(const GparityFlavourMatrix &g)
|
||||
{
|
||||
for(int i = 0; i < Ngp; i++)
|
||||
{
|
||||
std::cout << GridLogMessage << "(";
|
||||
for(int j=0;j<Ngp;j++){
|
||||
if ( abs( g(i,j)()() ) == 0 ) {
|
||||
std::cout<< " 0";
|
||||
} else if ( abs(g(i,j)()() - Complex(0,1)) == 0){
|
||||
std::cout<< " i";
|
||||
} else if ( abs(g(i,j)()() + Complex(0,1)) == 0){
|
||||
std::cout<< "-i";
|
||||
} else if ( abs(g(i,j)()() - Complex(1,0)) == 0){
|
||||
std::cout<< " 1";
|
||||
} else if ( abs(g(i,j)()() + Complex(1,0)) == 0){
|
||||
std::cout<< "-1";
|
||||
}
|
||||
std::cout<<((j == Ngp-1) ? ")" : "," );
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
}
|
||||
|
||||
void createTestAlgebra(void)
|
||||
{
|
||||
std::array<GparityFlavourMatrix, 3> testg;
|
||||
const Complex I(0., 1.), mI(0., -1.);
|
||||
|
||||
// 0 1
|
||||
// 1 0
|
||||
testg[0] = Zero();
|
||||
testg[0](0, 1)()() = 1.;
|
||||
testg[0](1, 0)()() = 1.;
|
||||
std::cout << GridLogMessage << "test SigmaX= " << std::endl;
|
||||
print(testg[0]);
|
||||
|
||||
// 0 -i
|
||||
// i 0
|
||||
testg[1] = Zero();
|
||||
testg[1](0, 1)()() = mI;
|
||||
testg[1](1, 0)()() = I;
|
||||
std::cout << GridLogMessage << "test SigmaY= " << std::endl;
|
||||
print(testg[1]);
|
||||
|
||||
// 1 0
|
||||
// 0 -1
|
||||
testg[2] = Zero();
|
||||
testg[2](0, 0)()() = 1.0;
|
||||
testg[2](1, 1)()() = -1.0;
|
||||
std::cout << GridLogMessage << "test SigmaZ= " << std::endl;
|
||||
print(testg[2]);
|
||||
|
||||
|
||||
#define DEFINE_TEST_G(g, exp)\
|
||||
testAlgebra[GparityFlavour::Algebra::g] = exp; \
|
||||
testAlgebra[GparityFlavour::Algebra::Minus##g] = -exp;
|
||||
|
||||
DEFINE_TEST_G(SigmaX , testg[0]);
|
||||
DEFINE_TEST_G(SigmaY , testg[1]);
|
||||
DEFINE_TEST_G(SigmaZ , testg[2]);
|
||||
DEFINE_TEST_G(Identity , 1.);
|
||||
|
||||
GparityFlavourMatrix pplus;
|
||||
pplus = 1.0;
|
||||
pplus = pplus + testg[1];
|
||||
pplus = pplus * 0.5;
|
||||
|
||||
DEFINE_TEST_G(ProjPlus , pplus);
|
||||
|
||||
GparityFlavourMatrix pminus;
|
||||
pminus = 1.0;
|
||||
pminus = pminus - testg[1];
|
||||
pminus = pminus * 0.5;
|
||||
|
||||
DEFINE_TEST_G(ProjMinus , pminus);
|
||||
|
||||
#undef DEFINE_TEST_G
|
||||
}
|
||||
|
||||
template <typename Expr>
|
||||
void test(const Expr &a, const Expr &b)
|
||||
{
|
||||
if (norm2(a - b) < tolerance)
|
||||
{
|
||||
std::cout << "[OK] ";
|
||||
}
|
||||
else
|
||||
{
|
||||
std::cout << "[fail]" << std::endl;
|
||||
std::cout << GridLogError << "a= " << a << std::endl;
|
||||
std::cout << GridLogError << "is different (tolerance= " << tolerance << ") from " << std::endl;
|
||||
std::cout << GridLogError << "b= " << b << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
|
||||
void checkSigma(const GparityFlavour::Algebra a, GridSerialRNG &rng)
|
||||
{
|
||||
GparityFlavourVector v;
|
||||
GparityFlavourMatrix m, &testg = testAlgebra[a];
|
||||
GparityFlavour g(a);
|
||||
|
||||
random(rng, v);
|
||||
random(rng, m);
|
||||
|
||||
std::cout << GridLogMessage << "Checking " << GparityFlavour::name[a] << ": ";
|
||||
std::cout << "vecmul ";
|
||||
test(g*v, testg*v);
|
||||
std::cout << "matlmul ";
|
||||
test(g*m, testg*m);
|
||||
std::cout << "matrmul ";
|
||||
test(m*g, m*testg);
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
Coordinate latt_size = GridDefaultLatt();
|
||||
Coordinate simd_layout = GridDefaultSimd(4,vComplex::Nsimd());
|
||||
Coordinate mpi_layout = GridDefaultMpi();
|
||||
|
||||
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
|
||||
GridSerialRNG sRNG;
|
||||
|
||||
sRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
|
||||
|
||||
std::cout << GridLogMessage << "======== Test algebra" << std::endl;
|
||||
createTestAlgebra();
|
||||
std::cout << GridLogMessage << "======== Multiplication operators check" << std::endl;
|
||||
for (int i = 0; i < GparityFlavour::nSigma; ++i)
|
||||
{
|
||||
checkSigma(i, sRNG);
|
||||
}
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
|
||||
Grid_finalize();
|
||||
|
||||
return EXIT_SUCCESS;
|
||||
}
|
114
tests/core/Test_precision_change.cc
Normal file
114
tests/core/Test_precision_change.cc
Normal file
@ -0,0 +1,114 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/core/Test_precision_change.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace Grid;
|
||||
|
||||
|
||||
int main (int argc, char ** argv){
|
||||
Grid_init(&argc, &argv);
|
||||
int Ls = 16;
|
||||
std::cout << GridLogMessage << "Lattice dimensions: " << GridDefaultLatt() << " and Ls=" << Ls << std::endl;
|
||||
GridCartesian* UGrid_d = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexD::Nsimd()), GridDefaultMpi());
|
||||
GridCartesian* FGrid_d = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid_d);
|
||||
GridRedBlackCartesian* FrbGrid_d = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid_d);
|
||||
|
||||
GridCartesian* UGrid_f = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
|
||||
GridCartesian* FGrid_f = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid_f);
|
||||
GridRedBlackCartesian* FrbGrid_f = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid_f);
|
||||
|
||||
|
||||
std::vector<int> seeds4({1, 2, 3, 4});
|
||||
std::vector<int> seeds5({5, 6, 7, 8});
|
||||
GridParallelRNG RNG5(FGrid_d);
|
||||
RNG5.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG4(UGrid_d);
|
||||
RNG4.SeedFixedIntegers(seeds4);
|
||||
|
||||
//Gauge fields
|
||||
LatticeGaugeFieldD Umu_d(UGrid_d);
|
||||
LatticeGaugeFieldF Umu_f(UGrid_f);
|
||||
LatticeGaugeFieldD Umu_d_r(UGrid_d);
|
||||
LatticeGaugeFieldD Utmp_d(UGrid_d);
|
||||
|
||||
for(int i=0;i<5;i++){
|
||||
random(RNG4, Umu_d);
|
||||
|
||||
precisionChange(Umu_f, Umu_d);
|
||||
std::cout << GridLogMessage << "Norm of double-prec and single-prec gauge fields (should be ~equal): " << norm2(Umu_d) << " " << norm2(Umu_f) << std::endl;
|
||||
precisionChange(Umu_d_r, Umu_f);
|
||||
RealD normdiff = axpy_norm(Utmp_d, -1.0, Umu_d_r, Umu_d);
|
||||
std::cout << GridLogMessage << "Norm of difference of back-converted double-prec gauge fields (should be ~0) = " << normdiff << std::endl;
|
||||
}
|
||||
|
||||
//Fermion fields
|
||||
LatticeFermionD psi_d(FGrid_d);
|
||||
LatticeFermionF psi_f(FGrid_f);
|
||||
LatticeFermionD psi_d_r(FGrid_d);
|
||||
LatticeFermionD psi_tmp_d(FGrid_d);
|
||||
|
||||
for(int i=0;i<5;i++){
|
||||
random(RNG5, psi_d);
|
||||
|
||||
precisionChange(psi_f, psi_d);
|
||||
std::cout << GridLogMessage << "Norm of double-prec and single-prec fermion fields (should be ~equal): " << norm2(psi_d) << " " << norm2(psi_f) << std::endl;
|
||||
precisionChange(psi_d_r, psi_f);
|
||||
RealD normdiff = axpy_norm(psi_tmp_d, -1.0, psi_d_r, psi_d);
|
||||
std::cout << GridLogMessage << "Norm of difference of back-converted double-prec fermion fields (should be ~0)= " << normdiff << std::endl;
|
||||
}
|
||||
|
||||
//Checkerboarded fermion fields
|
||||
LatticeFermionD psi_cb_d(FrbGrid_d);
|
||||
LatticeFermionF psi_cb_f(FrbGrid_f);
|
||||
LatticeFermionD psi_cb_d_r(FrbGrid_d);
|
||||
LatticeFermionD psi_cb_tmp_d(FrbGrid_d);
|
||||
|
||||
for(int i=0;i<5;i++){
|
||||
random(RNG5, psi_d);
|
||||
pickCheckerboard(Odd, psi_cb_d, psi_d);
|
||||
|
||||
precisionChange(psi_cb_f, psi_cb_d);
|
||||
std::cout << GridLogMessage << "Norm of odd-cb double-prec and single-prec fermion fields (should be ~equal): " << norm2(psi_cb_d) << " " << norm2(psi_cb_f) << std::endl;
|
||||
precisionChange(psi_cb_d_r, psi_cb_f);
|
||||
RealD normdiff = axpy_norm(psi_cb_tmp_d, -1.0, psi_cb_d_r, psi_cb_d);
|
||||
std::cout << GridLogMessage << "Norm of difference of back-converted odd-cb double-prec fermion fields (should be ~0)= " << normdiff << std::endl;
|
||||
|
||||
|
||||
pickCheckerboard(Even, psi_cb_d, psi_d);
|
||||
|
||||
precisionChange(psi_cb_f, psi_cb_d);
|
||||
std::cout << GridLogMessage << "Norm of even-cb double-prec and single-prec fermion fields (should be ~equal): " << norm2(psi_cb_d) << " " << norm2(psi_cb_f) << std::endl;
|
||||
precisionChange(psi_cb_d_r, psi_cb_f);
|
||||
normdiff = axpy_norm(psi_cb_tmp_d, -1.0, psi_cb_d_r, psi_cb_d);
|
||||
std::cout << GridLogMessage << "Norm of difference of back-converted even-cb double-prec fermion fields (should be ~0)= " << normdiff << std::endl;
|
||||
}
|
||||
|
||||
|
||||
|
||||
Grid_finalize();
|
||||
}
|
@ -71,26 +71,14 @@ int main (int argc, char ** argv)
|
||||
////////////////////////////////////
|
||||
RealD mass=0.2; //kills the diagonal term
|
||||
RealD M5=1.8;
|
||||
// const int nu = 3;
|
||||
// std::vector<int> twists(Nd,0); // twists[nu] = 1;
|
||||
// GparityDomainWallFermionR::ImplParams params; params.twists = twists;
|
||||
// GparityDomainWallFermionR Ddwf(U,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,params);
|
||||
|
||||
// DomainWallFermionR Dw (U, Grid,RBGrid,mass,M5);
|
||||
|
||||
const int nu = 3;
|
||||
const int nu = 0; //gparity direction
|
||||
std::vector<int> twists(Nd,0);
|
||||
twists[nu] = 1;
|
||||
twists[Nd-1] = 1; //antiperiodic in time
|
||||
GparityDomainWallFermionR::ImplParams params;
|
||||
params.twists = twists;
|
||||
|
||||
/*
|
||||
params.boundary_phases[0] = 1.0;
|
||||
params.boundary_phases[1] = 1.0;
|
||||
params.boundary_phases[2] = 1.0;
|
||||
params.boundary_phases[3] =- 1.0;
|
||||
*/
|
||||
|
||||
|
||||
GparityDomainWallFermionR Dw(U,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,params);
|
||||
|
||||
Dw.M (phi,Mphi);
|
||||
|
@ -71,8 +71,10 @@ int main (int argc, char ** argv)
|
||||
RealD mass=0.01;
|
||||
RealD M5=1.8;
|
||||
|
||||
const int nu = 3;
|
||||
std::vector<int> twists(Nd,0); twists[nu] = 1;
|
||||
const int nu = 1;
|
||||
std::vector<int> twists(Nd,0);
|
||||
twists[nu] = 1;
|
||||
twists[3] = 1;
|
||||
GparityDomainWallFermionR::ImplParams params; params.twists = twists;
|
||||
GparityDomainWallFermionR Ddwf(U,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,params);
|
||||
Ddwf.M (phi,Mphi);
|
||||
@ -91,16 +93,28 @@ int main (int argc, char ** argv)
|
||||
////////////////////////////////////
|
||||
// Modify the gauge field a little
|
||||
////////////////////////////////////
|
||||
RealD dt = 0.0001;
|
||||
RealD dt = 0.01;
|
||||
|
||||
LatticeColourMatrix zz(UGrid); zz=Zero();
|
||||
LatticeColourMatrix mommu(UGrid);
|
||||
LatticeColourMatrix forcemu(UGrid);
|
||||
LatticeGaugeField mom(UGrid);
|
||||
LatticeGaugeField Uprime(UGrid);
|
||||
|
||||
const int Lnu=latt_size[nu];
|
||||
Lattice<iScalar<vInteger> > coor(UGrid);
|
||||
LatticeCoordinate(coor,nu);
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
|
||||
SU<Nc>::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
|
||||
// Traceless antihermitian momentum; gaussian in lie alg
|
||||
SU<Nc>::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu);
|
||||
if(0){
|
||||
if(mu==nu){
|
||||
mommu=where(coor==Lnu-1,mommu,zz);
|
||||
} else {
|
||||
mommu=Zero();
|
||||
}
|
||||
}
|
||||
|
||||
PokeIndex<LorentzIndex>(mom,mommu,mu);
|
||||
|
||||
@ -125,6 +139,12 @@ int main (int argc, char ** argv)
|
||||
|
||||
ComplexD Sprime = innerProduct(MphiPrime ,MphiPrime);
|
||||
|
||||
|
||||
LatticeComplex lip(FGrid); lip=localInnerProduct(Mphi,Mphi);
|
||||
LatticeComplex lipp(FGrid); lipp=localInnerProduct(MphiPrime,MphiPrime);
|
||||
LatticeComplex dip(FGrid); dip = lipp - lip;
|
||||
std::cout << " dip "<<dip<<std::endl;
|
||||
|
||||
//////////////////////////////////////////////
|
||||
// Use derivative to estimate dS
|
||||
//////////////////////////////////////////////
|
||||
|
446
tests/forces/Test_gpdwf_force_1f_2f.cc
Normal file
446
tests/forces/Test_gpdwf_force_1f_2f.cc
Normal file
@ -0,0 +1,446 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./forces/Test_gpdwf_force_1f_2f.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
|
||||
//Here we test the G-parity action and force between the 1f (doubled-lattice) and 2f approaches
|
||||
|
||||
|
||||
void copyConjGauge(LatticeGaugeFieldD &Umu_1f, const LatticeGaugeFieldD &Umu_2f, const int nu){
|
||||
GridBase* UGrid_2f = Umu_2f.Grid();
|
||||
GridBase* UGrid_1f = Umu_1f.Grid();
|
||||
|
||||
Replicate(Umu_2f,Umu_1f);
|
||||
|
||||
int L_2f = UGrid_2f->FullDimensions()[nu];
|
||||
int L_1f = UGrid_1f->FullDimensions()[nu];
|
||||
assert(L_1f == 2 * L_2f);
|
||||
|
||||
//Coordinate grid for reference
|
||||
LatticeInteger xcoor_1f(UGrid_1f);
|
||||
LatticeCoordinate(xcoor_1f,nu);
|
||||
|
||||
//Copy-conjugate the gauge field
|
||||
//First C-shift the lattice by Lx/2
|
||||
{
|
||||
LatticeGaugeField Umu_shift = conjugate( Cshift(Umu_1f,nu,L_2f) );
|
||||
Umu_1f = where( xcoor_1f >= Integer(L_2f), Umu_shift, Umu_1f );
|
||||
|
||||
//We use the in built APBC
|
||||
//Make the gauge field antiperiodic in nu-direction
|
||||
//decltype(PeekIndex<LorentzIndex>(Umu_1f,nu)) Unu(UGrid_1f);
|
||||
//Unu = PeekIndex<LorentzIndex>(Umu_1f,nu);
|
||||
//Unu = where(xcoor_1f == Integer(2*L_2f-1), -Unu, Unu);
|
||||
//PokeIndex<LorentzIndex>(Umu_1f,Unu,nu);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename FermionField2f, typename FermionField1f>
|
||||
void convertFermion1f_from_2f(FermionField1f &out_1f, const FermionField2f &in_2f, const int nu, bool is_4d){
|
||||
GridBase* FGrid_1f = out_1f.Grid();
|
||||
GridBase* FGrid_2f = in_2f.Grid();
|
||||
|
||||
int nuoff = is_4d ? 0 : 1; //s in 0 direction
|
||||
|
||||
int L_2f = FGrid_2f->FullDimensions()[nu+nuoff];
|
||||
int L_1f = FGrid_1f->FullDimensions()[nu+nuoff];
|
||||
assert(L_1f == 2 * L_2f);
|
||||
|
||||
auto in_f0_2fgrid = PeekIndex<GparityFlavourIndex>(in_2f,0); //flavor 0 on 2f Grid
|
||||
FermionField1f in_f0_1fgrid(FGrid_1f);
|
||||
Replicate(in_f0_2fgrid, in_f0_1fgrid); //has flavor 0 on both halves
|
||||
|
||||
auto in_f1_2fgrid = PeekIndex<GparityFlavourIndex>(in_2f,1); //flavor 1 on 2f Grid
|
||||
FermionField1f in_f1_1fgrid(FGrid_1f);
|
||||
Replicate(in_f1_2fgrid, in_f1_1fgrid); //has flavor 1 on both halves
|
||||
|
||||
LatticeInteger xcoor_1f(FGrid_1f);
|
||||
LatticeCoordinate(xcoor_1f,nu+nuoff);
|
||||
|
||||
out_1f = where(xcoor_1f < L_2f, in_f0_1fgrid, in_f1_1fgrid);
|
||||
}
|
||||
|
||||
template<typename GparityAction, typename StandardAction>
|
||||
class RatioActionSetupBase{
|
||||
protected:
|
||||
TwoFlavourEvenOddRatioPseudoFermionAction<WilsonImplD> *pf_1f;
|
||||
TwoFlavourEvenOddRatioPseudoFermionAction<GparityWilsonImplD> *pf_2f;
|
||||
|
||||
GparityAction* action_2f;
|
||||
GparityAction* action_PV_2f;
|
||||
StandardAction* action_1f;
|
||||
StandardAction* action_PV_1f;
|
||||
|
||||
ConjugateGradient<typename StandardAction::FermionField> CG_1f;
|
||||
ConjugateGradient<typename GparityAction::FermionField> CG_2f;
|
||||
|
||||
RatioActionSetupBase(): CG_1f(1.0e-8,10000), CG_2f(1.0e-8,10000){}
|
||||
|
||||
void setupPseudofermion(){
|
||||
pf_1f = new TwoFlavourEvenOddRatioPseudoFermionAction<WilsonImplD>(*action_PV_1f, *action_1f, CG_1f, CG_1f);
|
||||
pf_2f = new TwoFlavourEvenOddRatioPseudoFermionAction<GparityWilsonImplD>(*action_PV_2f, *action_2f, CG_2f, CG_2f);
|
||||
}
|
||||
|
||||
public:
|
||||
GparityAction & action2f(){ return *action_2f; }
|
||||
StandardAction & action1f(){ return *action_1f; }
|
||||
|
||||
void refreshAction(LatticeGaugeField &Umu_2f, typename GparityAction::FermionField &eta_2f,
|
||||
LatticeGaugeField &Umu_1f, typename StandardAction::FermionField &eta_1f){
|
||||
pf_1f->refresh(Umu_1f, eta_1f);
|
||||
pf_2f->refresh(Umu_2f, eta_2f);
|
||||
|
||||
//Compare PhiOdd
|
||||
RealD norm_1f = norm2(pf_1f->getPhiOdd());
|
||||
RealD norm_2f = norm2(pf_2f->getPhiOdd());
|
||||
|
||||
std::cout << "Test PhiOdd 2f: " << norm_2f << " 1f: " << norm_1f << std::endl;
|
||||
}
|
||||
|
||||
void computeAction(RealD &S_2f, RealD &S_1f, LatticeGaugeField &Umu_2f, LatticeGaugeField &Umu_1f){
|
||||
S_1f = pf_1f->S(Umu_1f);
|
||||
S_2f = pf_2f->S(Umu_2f);
|
||||
}
|
||||
|
||||
void computeDeriv(LatticeGaugeField &deriv_2f, LatticeGaugeField &deriv_1f, LatticeGaugeField &Umu_2f, LatticeGaugeField &Umu_1f){
|
||||
pf_1f->deriv(Umu_1f, deriv_1f);
|
||||
pf_2f->deriv(Umu_2f, deriv_2f);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename GparityAction, typename StandardAction>
|
||||
struct setupAction{};
|
||||
|
||||
template<>
|
||||
struct setupAction<GparityWilsonTMFermionD, WilsonTMFermionD>: public RatioActionSetupBase<GparityWilsonTMFermionD, WilsonTMFermionD>{
|
||||
typedef GparityWilsonTMFermionD GparityAction;
|
||||
typedef WilsonTMFermionD StandardAction;
|
||||
|
||||
setupAction(GridCartesian* UGrid_2f, GridRedBlackCartesian* UrbGrid_2f, GridCartesian* FGrid_2f, GridRedBlackCartesian* FrbGrid_2f,
|
||||
GridCartesian* UGrid_1f, GridRedBlackCartesian* UrbGrid_1f, GridCartesian* FGrid_1f, GridRedBlackCartesian* FrbGrid_1f,
|
||||
LatticeGaugeField &Umu_2f, LatticeGaugeField &Umu_1f, int nu): RatioActionSetupBase(){
|
||||
RealD mass=-1.8;
|
||||
//Use same DSDR twists as https://arxiv.org/pdf/1208.4412.pdf
|
||||
RealD epsilon_f = 0.02; //numerator (in determinant)
|
||||
RealD epsilon_b = 0.5;
|
||||
|
||||
std::vector<int> twists(Nd,0);
|
||||
twists[nu] = 1; //GPBC in y
|
||||
twists[3] = 1; //APBC
|
||||
GparityAction::ImplParams params_2f; params_2f.twists = twists;
|
||||
action_2f = new GparityWilsonTMFermionD(Umu_2f,*UGrid_2f,*UrbGrid_2f, mass, epsilon_f, params_2f);
|
||||
action_PV_2f = new GparityWilsonTMFermionD(Umu_2f,*UGrid_2f,*UrbGrid_2f, mass, epsilon_b, params_2f);
|
||||
|
||||
DomainWallFermionD::ImplParams params_1f;
|
||||
params_1f.boundary_phases[nu] = -1;
|
||||
params_1f.boundary_phases[3] = -1;
|
||||
|
||||
action_1f = new WilsonTMFermionD(Umu_1f,*UGrid_1f,*UrbGrid_1f, mass, epsilon_f, params_1f);
|
||||
action_PV_1f = new WilsonTMFermionD(Umu_1f,*UGrid_1f,*UrbGrid_1f, mass, epsilon_b, params_1f);
|
||||
|
||||
setupPseudofermion();
|
||||
}
|
||||
|
||||
static bool is4d(){ return true; }
|
||||
};
|
||||
|
||||
|
||||
template<>
|
||||
struct setupAction<GparityDomainWallFermionD, DomainWallFermionD>: public RatioActionSetupBase<GparityDomainWallFermionD, DomainWallFermionD>{
|
||||
typedef GparityDomainWallFermionD GparityAction;
|
||||
typedef DomainWallFermionD StandardAction;
|
||||
|
||||
setupAction(GridCartesian* UGrid_2f, GridRedBlackCartesian* UrbGrid_2f, GridCartesian* FGrid_2f, GridRedBlackCartesian* FrbGrid_2f,
|
||||
GridCartesian* UGrid_1f, GridRedBlackCartesian* UrbGrid_1f, GridCartesian* FGrid_1f, GridRedBlackCartesian* FrbGrid_1f,
|
||||
LatticeGaugeField &Umu_2f, LatticeGaugeField &Umu_1f, int nu): RatioActionSetupBase(){
|
||||
RealD mass=0.01;
|
||||
RealD M5=1.8;
|
||||
|
||||
std::vector<int> twists(Nd,0);
|
||||
twists[nu] = 1; //GPBC in y
|
||||
twists[3] = 1; //APBC
|
||||
GparityDomainWallFermionD::ImplParams params_2f; params_2f.twists = twists;
|
||||
action_2f = new GparityDomainWallFermionD(Umu_2f,*FGrid_2f,*FrbGrid_2f,*UGrid_2f,*UrbGrid_2f,mass,M5,params_2f);
|
||||
action_PV_2f = new GparityDomainWallFermionD(Umu_2f,*FGrid_2f,*FrbGrid_2f,*UGrid_2f,*UrbGrid_2f,1.0,M5,params_2f);
|
||||
|
||||
DomainWallFermionD::ImplParams params_1f;
|
||||
params_1f.boundary_phases[nu] = -1;
|
||||
params_1f.boundary_phases[3] = -1;
|
||||
|
||||
action_1f = new DomainWallFermionD(Umu_1f,*FGrid_1f,*FrbGrid_1f,*UGrid_1f,*UrbGrid_1f,mass,M5,params_1f);
|
||||
action_PV_1f = new DomainWallFermionD(Umu_1f,*FGrid_1f,*FrbGrid_1f,*UGrid_1f,*UrbGrid_1f,1.0,M5,params_1f);
|
||||
|
||||
setupPseudofermion();
|
||||
}
|
||||
|
||||
static bool is4d(){ return false; }
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
//For EOFA we need a different pseudofermion type
|
||||
template<>
|
||||
struct setupAction<GparityDomainWallEOFAFermionD, DomainWallEOFAFermionD>{
|
||||
typedef GparityDomainWallEOFAFermionD GparityAction;
|
||||
typedef DomainWallEOFAFermionD StandardAction;
|
||||
|
||||
ExactOneFlavourRatioPseudoFermionAction<WilsonImplD> *pf_1f;
|
||||
ExactOneFlavourRatioPseudoFermionAction<GparityWilsonImplD> *pf_2f;
|
||||
|
||||
GparityAction* action_2f;
|
||||
GparityAction* action_PV_2f;
|
||||
StandardAction* action_1f;
|
||||
StandardAction* action_PV_1f;
|
||||
|
||||
ConjugateGradient<typename StandardAction::FermionField> CG_1f;
|
||||
ConjugateGradient<typename GparityAction::FermionField> CG_2f;
|
||||
|
||||
public:
|
||||
GparityAction & action2f(){ return *action_2f; }
|
||||
StandardAction & action1f(){ return *action_1f; }
|
||||
|
||||
void refreshAction(LatticeGaugeField &Umu_2f, typename GparityAction::FermionField &eta_2f,
|
||||
LatticeGaugeField &Umu_1f, typename StandardAction::FermionField &eta_1f){
|
||||
pf_1f->refresh(Umu_1f, eta_1f);
|
||||
pf_2f->refresh(Umu_2f, eta_2f);
|
||||
|
||||
//Compare PhiOdd
|
||||
RealD norm_1f = norm2(pf_1f->getPhi());
|
||||
RealD norm_2f = norm2(pf_2f->getPhi());
|
||||
|
||||
std::cout << "Test Phi 2f: " << norm_2f << " 1f: " << norm_1f << std::endl;
|
||||
}
|
||||
|
||||
void computeAction(RealD &S_2f, RealD &S_1f, LatticeGaugeField &Umu_2f, LatticeGaugeField &Umu_1f){
|
||||
S_1f = pf_1f->S(Umu_1f);
|
||||
S_2f = pf_2f->S(Umu_2f);
|
||||
}
|
||||
|
||||
void computeDeriv(LatticeGaugeField &deriv_2f, LatticeGaugeField &deriv_1f, LatticeGaugeField &Umu_2f, LatticeGaugeField &Umu_1f){
|
||||
pf_1f->deriv(Umu_1f, deriv_1f);
|
||||
pf_2f->deriv(Umu_2f, deriv_2f);
|
||||
}
|
||||
|
||||
|
||||
setupAction(GridCartesian* UGrid_2f, GridRedBlackCartesian* UrbGrid_2f, GridCartesian* FGrid_2f, GridRedBlackCartesian* FrbGrid_2f,
|
||||
GridCartesian* UGrid_1f, GridRedBlackCartesian* UrbGrid_1f, GridCartesian* FGrid_1f, GridRedBlackCartesian* FrbGrid_1f,
|
||||
LatticeGaugeField &Umu_2f, LatticeGaugeField &Umu_1f, int nu): CG_1f(1.0e-8,10000), CG_2f(1.0e-8,10000){
|
||||
RealD mass=0.01;
|
||||
RealD M5=1.8;
|
||||
|
||||
std::vector<int> twists(Nd,0);
|
||||
twists[nu] = 1; //GPBC in y
|
||||
twists[3] = 1; //APBC
|
||||
GparityAction::ImplParams params_2f; params_2f.twists = twists;
|
||||
action_2f = new GparityAction(Umu_2f,*FGrid_2f,*FrbGrid_2f,*UGrid_2f,*UrbGrid_2f, mass, mass, 1.0, 0.0, -1, M5, params_2f);
|
||||
action_PV_2f = new GparityAction(Umu_2f,*FGrid_2f,*FrbGrid_2f,*UGrid_2f,*UrbGrid_2f, 1.0, mass, 1.0, -1.0, 1, M5, params_2f); //cf Test_dwf_gpforce_eofa.cc
|
||||
|
||||
StandardAction::ImplParams params_1f;
|
||||
params_1f.boundary_phases[nu] = -1;
|
||||
params_1f.boundary_phases[3] = -1;
|
||||
|
||||
action_1f = new StandardAction(Umu_1f,*FGrid_1f,*FrbGrid_1f,*UGrid_1f,*UrbGrid_1f, mass, mass, 1.0, 0.0, -1, M5, params_1f);
|
||||
action_PV_1f = new StandardAction(Umu_1f,*FGrid_1f,*FrbGrid_1f,*UGrid_1f,*UrbGrid_1f, 1.0, mass, 1.0, -1.0, 1, M5, params_1f);
|
||||
|
||||
OneFlavourRationalParams RationalParams(0.95, 100.0, 5000, 1.0e-12, 12);
|
||||
|
||||
pf_1f = new ExactOneFlavourRatioPseudoFermionAction<WilsonImplD>(*action_1f, *action_PV_1f, CG_1f, CG_1f, CG_1f, CG_1f, CG_1f, RationalParams, true);
|
||||
pf_2f = new ExactOneFlavourRatioPseudoFermionAction<GparityWilsonImplD>(*action_2f, *action_PV_2f, CG_2f, CG_2f, CG_2f, CG_2f, CG_2f, RationalParams, true);
|
||||
}
|
||||
|
||||
static bool is4d(){ return false; }
|
||||
};
|
||||
|
||||
|
||||
template<typename GparityAction, typename StandardAction>
|
||||
void runTest(int argc, char** argv){
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
const int nu = 1;
|
||||
Coordinate latt_2f = GridDefaultLatt();
|
||||
Coordinate latt_1f = latt_2f;
|
||||
latt_1f[nu] *= 2;
|
||||
|
||||
Coordinate simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
|
||||
Coordinate mpi_layout = GridDefaultMpi();
|
||||
|
||||
const int Ls=8;
|
||||
|
||||
GridCartesian * UGrid_1f = SpaceTimeGrid::makeFourDimGrid(latt_1f, simd_layout, mpi_layout);
|
||||
GridRedBlackCartesian * UrbGrid_1f = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_1f);
|
||||
GridCartesian * FGrid_1f = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid_1f);
|
||||
GridRedBlackCartesian * FrbGrid_1f = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid_1f);
|
||||
|
||||
|
||||
GridCartesian * UGrid_2f = SpaceTimeGrid::makeFourDimGrid(latt_2f, simd_layout, mpi_layout);
|
||||
GridRedBlackCartesian * UrbGrid_2f = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_2f);
|
||||
GridCartesian * FGrid_2f = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid_2f);
|
||||
GridRedBlackCartesian * FrbGrid_2f = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid_2f);
|
||||
|
||||
std::vector<int> seeds4({1,2,3,4});
|
||||
std::vector<int> seeds5({5,6,7,8});
|
||||
GridParallelRNG RNG5_2f(FGrid_2f); RNG5_2f.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG4_2f(UGrid_2f); RNG4_2f.SeedFixedIntegers(seeds4);
|
||||
|
||||
LatticeGaugeField Umu_2f(UGrid_2f);
|
||||
SU<Nc>::HotConfiguration(RNG4_2f,Umu_2f);
|
||||
|
||||
LatticeGaugeField Umu_1f(UGrid_1f);
|
||||
copyConjGauge(Umu_1f, Umu_2f, nu);
|
||||
|
||||
typedef typename GparityAction::FermionField GparityFermionField;
|
||||
typedef typename StandardAction::FermionField StandardFermionField;
|
||||
|
||||
setupAction<GparityAction, StandardAction> setup(UGrid_2f, UrbGrid_2f, FGrid_2f, FrbGrid_2f,
|
||||
UGrid_1f, UrbGrid_1f, FGrid_1f, FrbGrid_1f,
|
||||
Umu_2f, Umu_1f, nu);
|
||||
GridBase* FGrid_2f_a = setup.action2f().FermionGrid();
|
||||
GridBase* FGrid_1f_a = setup.action1f().FermionGrid();
|
||||
GridBase* FrbGrid_2f_a = setup.action2f().FermionRedBlackGrid();
|
||||
GridBase* FrbGrid_1f_a = setup.action1f().FermionRedBlackGrid();
|
||||
bool is_4d = setup.is4d();
|
||||
|
||||
//Check components by doing an inversion
|
||||
{
|
||||
setup.action2f().ImportGauge(Umu_2f);
|
||||
setup.action1f().ImportGauge(Umu_1f);
|
||||
|
||||
GparityFermionField src_2f(FGrid_2f_a);
|
||||
gaussian(is_4d ? RNG4_2f : RNG5_2f, src_2f);
|
||||
|
||||
StandardFermionField src_1f(FGrid_1f_a);
|
||||
convertFermion1f_from_2f(src_1f, src_2f, nu, is_4d);
|
||||
|
||||
StandardFermionField src_o_1f(FrbGrid_1f_a);
|
||||
StandardFermionField result_o_1f(FrbGrid_1f_a);
|
||||
pickCheckerboard(Odd,src_o_1f,src_1f);
|
||||
result_o_1f=Zero();
|
||||
|
||||
SchurDiagMooeeOperator<StandardAction,StandardFermionField> HermOpEO_1f(setup.action1f());
|
||||
ConjugateGradient<StandardFermionField> CG_1f(1.0e-8,10000);
|
||||
CG_1f(HermOpEO_1f,src_o_1f,result_o_1f);
|
||||
|
||||
|
||||
GparityFermionField src_o_2f(FrbGrid_2f_a);
|
||||
GparityFermionField result_o_2f(FrbGrid_2f_a);
|
||||
pickCheckerboard(Odd,src_o_2f,src_2f);
|
||||
result_o_2f=Zero();
|
||||
|
||||
SchurDiagMooeeOperator<GparityAction,GparityFermionField> HermOpEO_2f(setup.action2f());
|
||||
ConjugateGradient<GparityFermionField> CG_2f(1.0e-8,10000);
|
||||
CG_2f(HermOpEO_2f,src_o_2f,result_o_2f);
|
||||
|
||||
RealD norm_1f = norm2(result_o_1f);
|
||||
RealD norm_2f = norm2(result_o_2f);
|
||||
|
||||
std::cout << "Test fermion inversion 2f: " << norm_2f << " 1f: " << norm_1f << std::endl;
|
||||
}
|
||||
|
||||
//Generate eta
|
||||
RealD scale = std::sqrt(0.5);
|
||||
|
||||
GparityFermionField eta_2f(FGrid_2f_a);
|
||||
gaussian(is_4d ? RNG4_2f : RNG5_2f,eta_2f); eta_2f = eta_2f * scale;
|
||||
|
||||
StandardFermionField eta_1f(FGrid_1f_a);
|
||||
convertFermion1f_from_2f(eta_1f, eta_2f, nu, is_4d);
|
||||
|
||||
setup.refreshAction(Umu_2f, eta_2f, Umu_1f, eta_1f);
|
||||
|
||||
//Initial action is just |eta^2|
|
||||
RealD S_1f, S_2f;
|
||||
|
||||
setup.computeAction(S_2f, S_1f, Umu_2f, Umu_1f);
|
||||
|
||||
std::cout << "Test Initial action 2f: " << S_2f << " 1f: " << S_1f << " diff: " << S_2f - S_1f << std::endl;
|
||||
|
||||
//Do a random gauge field refresh
|
||||
SU<Nc>::HotConfiguration(RNG4_2f,Umu_2f);
|
||||
copyConjGauge(Umu_1f, Umu_2f, nu);
|
||||
|
||||
//Compute the action again
|
||||
setup.computeAction(S_2f, S_1f, Umu_2f, Umu_1f);
|
||||
|
||||
std::cout << "Test Action after gauge field randomize 2f: " << S_2f << " 1f: " << S_1f << " diff: " << S_2f - S_1f << std::endl;
|
||||
|
||||
//Compute the derivative and test the conjugate relation
|
||||
LatticeGaugeField deriv_2f(UGrid_2f);
|
||||
LatticeGaugeField deriv_1f(UGrid_1f);
|
||||
setup.computeDeriv(deriv_2f, deriv_1f, Umu_2f, Umu_1f);
|
||||
|
||||
//Have to combine the two forces on the 1f by symmetrizing under the complex conjugate
|
||||
{
|
||||
RealD norm2_pre = norm2(deriv_1f);
|
||||
LatticeGaugeField deriv_1f_shift = conjugate( Cshift(deriv_1f, nu, latt_2f[nu]) );
|
||||
deriv_1f = deriv_1f + deriv_1f_shift;
|
||||
std::cout << "Test combine/symmetrize forces on 1f lattice, dS/dU : " << norm2_pre << " -> " << norm2(deriv_1f) << std::endl;
|
||||
}
|
||||
|
||||
LatticeGaugeField deriv_1f_from_2f(UGrid_1f);
|
||||
copyConjGauge(deriv_1f_from_2f, deriv_2f, nu);
|
||||
std::cout << "Test copy-conj 2f dS/dU to obtain equivalent 1f force : " << norm2(deriv_2f) << " -> " << norm2(deriv_1f_from_2f) << std::endl;
|
||||
|
||||
LatticeGaugeField diff_deriv_1f = deriv_1f - deriv_1f_from_2f;
|
||||
|
||||
std::cout << "Test dS/dU 1f constructed from 2f derivative: " << norm2(deriv_1f_from_2f) << " dS/dU 1f actual: " << norm2(deriv_1f) << " Norm of difference: " << norm2(diff_deriv_1f) << std::endl;
|
||||
|
||||
std::cout<< GridLogMessage << "Done" <<std::endl;
|
||||
Grid_finalize();
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
std::string action = "DWF";
|
||||
for(int i=1;i<argc;i++){
|
||||
if(std::string(argv[i]) == "--action"){
|
||||
action = argv[i+1];
|
||||
}
|
||||
}
|
||||
|
||||
if(action == "DWF"){
|
||||
runTest<GparityDomainWallFermionD, DomainWallFermionD>(argc, argv);
|
||||
}else if(action == "EOFA"){
|
||||
runTest<GparityDomainWallEOFAFermionD, DomainWallEOFAFermionD>(argc, argv);
|
||||
}else if(action == "DSDR"){
|
||||
runTest<GparityWilsonTMFermionD, WilsonTMFermionD>(argc,argv);
|
||||
}else{
|
||||
assert(0);
|
||||
}
|
||||
}
|
@ -64,8 +64,12 @@ int main (int argc, char ** argv)
|
||||
////////////////////////////////////
|
||||
RealD mass=0.01;
|
||||
|
||||
const int nu = 3;
|
||||
std::vector<int> twists(Nd,0); twists[nu] = 1;
|
||||
const int nu = 1;
|
||||
const int Lnu=latt_size[nu];
|
||||
|
||||
std::vector<int> twists(Nd,0);
|
||||
twists[nu] = 1;
|
||||
twists[3]=1;
|
||||
GparityWilsonFermionR::ImplParams params; params.twists = twists;
|
||||
GparityWilsonFermionR Wil(U,*UGrid,*UrbGrid,mass,params);
|
||||
Wil.M (phi,Mphi);
|
||||
@ -87,17 +91,28 @@ int main (int argc, char ** argv)
|
||||
RealD dt = 0.01;
|
||||
|
||||
LatticeColourMatrix mommu(UGrid);
|
||||
LatticeColourMatrix zz(UGrid);
|
||||
LatticeColourMatrix forcemu(UGrid);
|
||||
LatticeGaugeField mom(UGrid);
|
||||
LatticeGaugeField Uprime(UGrid);
|
||||
|
||||
|
||||
Lattice<iScalar<vInteger> > coor(UGrid);
|
||||
LatticeCoordinate(coor,nu);
|
||||
zz=Zero();
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
|
||||
// Traceless antihermitian momentum; gaussian in lie alg
|
||||
SU<Nc>::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu);
|
||||
|
||||
SU<Nc>::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu);
|
||||
if(0){
|
||||
if(mu==nu){
|
||||
mommu=where(coor==Lnu-1,mommu,zz);
|
||||
} else {
|
||||
mommu=Zero();
|
||||
}
|
||||
}
|
||||
PokeIndex<LorentzIndex>(mom,mommu,mu);
|
||||
|
||||
|
||||
// fourth order exponential approx
|
||||
autoView( mom_v, mom, CpuRead);
|
||||
autoView( U_v , U, CpuRead);
|
||||
@ -130,6 +145,10 @@ int main (int argc, char ** argv)
|
||||
mommu=Ta(mommu)*2.0;
|
||||
PokeIndex<LorentzIndex>(UdSdU,mommu,mu);
|
||||
}
|
||||
LatticeComplex lip(UGrid); lip=localInnerProduct(Mphi,Mphi);
|
||||
LatticeComplex lipp(UGrid); lipp=localInnerProduct(MphiPrime,MphiPrime);
|
||||
LatticeComplex dip(UGrid); dip = lipp - lip;
|
||||
std::cout << " dip "<<dip<<std::endl;
|
||||
|
||||
LatticeComplex dS(UGrid); dS = Zero();
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
@ -139,12 +158,14 @@ int main (int argc, char ** argv)
|
||||
// Update PF action density
|
||||
dS = dS+trace(mommu*forcemu)*dt;
|
||||
}
|
||||
|
||||
std::cout << "mommu"<<mommu<<std::endl;
|
||||
std::cout << "dS" << dS<<std::endl;
|
||||
|
||||
ComplexD dSpred = sum(dS);
|
||||
|
||||
std::cout << GridLogMessage << " S "<<S<<std::endl;
|
||||
std::cout << GridLogMessage << " Sprime "<<Sprime<<std::endl;
|
||||
std::cout << GridLogMessage << "dS "<<Sprime-S<<std::endl;
|
||||
std::cout << GridLogMessage << "Delta S "<<Sprime-S<<std::endl;
|
||||
std::cout << GridLogMessage << "predict dS "<< dSpred <<std::endl;
|
||||
|
||||
assert( fabs(real(Sprime-S-dSpred)) < 2.0 ) ;
|
||||
|
@ -89,7 +89,49 @@ int main (int argc, char** argv)
|
||||
ExactOneFlavourRatioPseudoFermionAction<WilsonImplR> Meofa(Lop, Rop, CG, CG, CG, CG, CG, Params, false);
|
||||
|
||||
GridSerialRNG sRNG; sRNG.SeedFixedIntegers(seeds4);
|
||||
|
||||
//Check the rational approximation
|
||||
{
|
||||
RealD scale = std::sqrt(0.5);
|
||||
LatticeFermion eta (Lop.FermionGrid());
|
||||
gaussian(RNG5,eta); eta = eta * scale;
|
||||
|
||||
Meofa.refresh(U, eta);
|
||||
|
||||
//Phi = M^{-1/2} eta
|
||||
//M is Hermitian
|
||||
//(Phi, M Phi) = eta^\dagger M^{-1/2} M M^{-1/2} eta = eta^\dagger eta
|
||||
LatticeFermion phi = Meofa.getPhi();
|
||||
LatticeFermion Mphi(FGrid);
|
||||
|
||||
Meofa.Meofa(U, phi, Mphi);
|
||||
std::cout << "Computing inner product" << std::endl;
|
||||
ComplexD inner = innerProduct(phi, Mphi);
|
||||
ComplexD test = inner - norm2(eta);
|
||||
|
||||
std::cout << "(phi, Mphi) - (eta,eta): " << test << " expect 0" << std::endl;
|
||||
|
||||
assert(test.real() < 1e-8);
|
||||
assert(test.imag() < 1e-8);
|
||||
|
||||
//Another test is to use heatbath twice to apply M^{-1/2} to Phi then apply M
|
||||
// M Phi'
|
||||
//= M M^{-1/2} Phi
|
||||
//= M M^{-1/2} M^{-1/2} eta
|
||||
//= eta
|
||||
Meofa.refresh(U, phi);
|
||||
LatticeFermion phi2 = Meofa.getPhi();
|
||||
LatticeFermion test2(FGrid);
|
||||
Meofa.Meofa(U, phi2, test2);
|
||||
test2 = test2 - eta;
|
||||
RealD test2_norm = norm2(test2);
|
||||
std::cout << "|M M^{-1/2} M^{-1/2} eta - eta|^2 = " << test2_norm << " expect 0" << std::endl;
|
||||
assert( test2_norm < 1e-8 );
|
||||
}
|
||||
|
||||
|
||||
Meofa.refresh(U, sRNG, RNG5 );
|
||||
|
||||
RealD S = Meofa.S(U); // pdag M p
|
||||
|
||||
// get the deriv of phidag M phi with respect to "U"
|
||||
|
260
tests/forces/Test_mobius_gparity_eofa_mixed.cc
Normal file
260
tests/forces/Test_mobius_gparity_eofa_mixed.cc
Normal file
@ -0,0 +1,260 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/forces/Test_mobius_gparity_eofa_mixed.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
;
|
||||
|
||||
typedef GparityWilsonImplD FermionImplPolicyD;
|
||||
typedef GparityMobiusEOFAFermionD FermionActionD;
|
||||
typedef typename FermionActionD::FermionField FermionFieldD;
|
||||
|
||||
typedef GparityWilsonImplF FermionImplPolicyF;
|
||||
typedef GparityMobiusEOFAFermionF FermionActionF;
|
||||
typedef typename FermionActionF::FermionField FermionFieldF;
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class SchurOperatorF>
|
||||
class MixedPrecisionConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
|
||||
public:
|
||||
typedef typename FermionOperatorD::FermionField FieldD;
|
||||
typedef typename FermionOperatorF::FermionField FieldF;
|
||||
|
||||
using OperatorFunction<FieldD>::operator();
|
||||
|
||||
RealD Tolerance;
|
||||
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
|
||||
Integer MaxInnerIterations;
|
||||
Integer MaxOuterIterations;
|
||||
GridBase* SinglePrecGrid4; //Grid for single-precision fields
|
||||
GridBase* SinglePrecGrid5; //Grid for single-precision fields
|
||||
RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
|
||||
|
||||
FermionOperatorF &FermOpF;
|
||||
FermionOperatorD &FermOpD;;
|
||||
SchurOperatorF &LinOpF;
|
||||
SchurOperatorD &LinOpD;
|
||||
|
||||
Integer TotalInnerIterations; //Number of inner CG iterations
|
||||
Integer TotalOuterIterations; //Number of restarts
|
||||
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
|
||||
|
||||
MixedPrecisionConjugateGradientOperatorFunction(RealD tol,
|
||||
Integer maxinnerit,
|
||||
Integer maxouterit,
|
||||
GridBase* _sp_grid4,
|
||||
GridBase* _sp_grid5,
|
||||
FermionOperatorF &_FermOpF,
|
||||
FermionOperatorD &_FermOpD,
|
||||
SchurOperatorF &_LinOpF,
|
||||
SchurOperatorD &_LinOpD):
|
||||
LinOpF(_LinOpF),
|
||||
LinOpD(_LinOpD),
|
||||
FermOpF(_FermOpF),
|
||||
FermOpD(_FermOpD),
|
||||
Tolerance(tol),
|
||||
InnerTolerance(tol),
|
||||
MaxInnerIterations(maxinnerit),
|
||||
MaxOuterIterations(maxouterit),
|
||||
SinglePrecGrid4(_sp_grid4),
|
||||
SinglePrecGrid5(_sp_grid5),
|
||||
OuterLoopNormMult(100.)
|
||||
{
|
||||
};
|
||||
|
||||
void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
|
||||
|
||||
std::cout << GridLogMessage << " Mixed precision CG wrapper operator() "<<std::endl;
|
||||
|
||||
SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
|
||||
assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// Must snarf a single precision copy of the gauge field in Linop_d argument
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
//typedef typename FermionOperatorF::GaugeField GaugeFieldF;
|
||||
//typedef typename FermionOperatorF::GaugeLinkField GaugeLinkFieldF;
|
||||
//typedef typename FermionOperatorD::GaugeField GaugeFieldD;
|
||||
//typedef typename FermionOperatorD::GaugeLinkField GaugeLinkFieldD;
|
||||
|
||||
//GridBase * GridPtrF = SinglePrecGrid4;
|
||||
//GridBase * GridPtrD = FermOpD.Umu.Grid();
|
||||
//GaugeFieldF U_f (GridPtrF);
|
||||
//GaugeLinkFieldF Umu_f(GridPtrF);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// Moving this to a Clone method of fermion operator would allow to duplicate the
|
||||
// physics parameters and decrease gauge field copies
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
//typedef typename std::decay<decltype(PeekIndex<LorentzIndex>(FermOpD.Umu, 0))>::type DoubleS
|
||||
|
||||
//GaugeLinkFieldD Umu_d(GridPtrD);
|
||||
//for(int mu=0;mu<Nd*2;mu++){
|
||||
//Umu_d = PeekIndex<LorentzIndex>(FermOpD.Umu, mu);
|
||||
//precisionChange(Umu_f,Umu_d);
|
||||
//PokeIndex<LorentzIndex>(FermOpF.Umu, Umu_f, mu);
|
||||
//}
|
||||
|
||||
precisionChange(FermOpF.Umu, FermOpD.Umu);
|
||||
|
||||
pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
|
||||
pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// Make a mixed precision conjugate gradient
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
MixedPrecisionConjugateGradient<FieldD,FieldF> MPCG(Tolerance,MaxInnerIterations,MaxOuterIterations,SinglePrecGrid5,LinOpF,LinOpD);
|
||||
MPCG.InnerTolerance = InnerTolerance;
|
||||
std::cout << GridLogMessage << "Calling mixed precision Conjugate Gradient" <<std::endl;
|
||||
MPCG(src,psi);
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
||||
|
||||
int main (int argc, char** argv)
|
||||
{
|
||||
Grid_init(&argc, &argv);
|
||||
|
||||
Coordinate latt_size = GridDefaultLatt();
|
||||
Coordinate mpi_layout = GridDefaultMpi();
|
||||
|
||||
const int Ls = 8;
|
||||
|
||||
GridCartesian *UGridD = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplexD::Nsimd()), GridDefaultMpi());
|
||||
GridRedBlackCartesian *UrbGridD = SpaceTimeGrid::makeFourDimRedBlackGrid(UGridD);
|
||||
GridCartesian *FGridD = SpaceTimeGrid::makeFiveDimGrid(Ls, UGridD);
|
||||
GridRedBlackCartesian *FrbGridD = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGridD);
|
||||
|
||||
GridCartesian *UGridF = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplexF::Nsimd()), GridDefaultMpi());
|
||||
GridRedBlackCartesian *UrbGridF = SpaceTimeGrid::makeFourDimRedBlackGrid(UGridF);
|
||||
GridCartesian *FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls, UGridF);
|
||||
GridRedBlackCartesian *FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGridF);
|
||||
|
||||
std::vector<int> seeds4({1,2,3,5});
|
||||
std::vector<int> seeds5({5,6,7,8});
|
||||
GridParallelRNG RNG5(FGridD); RNG5.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG4(UGridD); RNG4.SeedFixedIntegers(seeds4);
|
||||
|
||||
int threads = GridThread::GetThreads();
|
||||
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
|
||||
|
||||
LatticeGaugeFieldD Ud(UGridD);
|
||||
SU<Nc>::HotConfiguration(RNG4,Ud);
|
||||
|
||||
LatticeGaugeFieldF Uf(UGridF);
|
||||
precisionChange(Uf, Ud);
|
||||
|
||||
RealD b = 2.5;
|
||||
RealD c = 1.5;
|
||||
RealD mf = 0.01;
|
||||
RealD mb = 1.0;
|
||||
RealD M5 = 1.8;
|
||||
FermionActionD::ImplParams params;
|
||||
params.twists[0] = 1; //GPBC in X
|
||||
params.twists[Nd-1] = 1; //APRD in T
|
||||
|
||||
std::vector<int> gtwists(4,0);
|
||||
gtwists[0] = 1;
|
||||
|
||||
ConjugateGimplD::setDirections(gtwists);
|
||||
|
||||
FermionActionD LopD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, mf, mf, mb, 0.0, -1, M5, b, c, params);
|
||||
FermionActionD RopD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, mb, mf, mb, -1.0, 1, M5, b, c, params);
|
||||
|
||||
FermionActionF LopF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, mf, mf, mb, 0.0, -1, M5, b, c, params);
|
||||
FermionActionF RopF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, mb, mf, mb, -1.0, 1, M5, b, c, params);
|
||||
|
||||
|
||||
OneFlavourRationalParams OFRp(0.95, 100.0, 5000, 1.0e-12, 12);
|
||||
ConjugateGradient<FermionFieldD> CG(1.0e-10, 10000);
|
||||
|
||||
|
||||
typedef SchurDiagMooeeOperator<FermionActionD,FermionFieldD> EOFAschuropD;
|
||||
typedef SchurDiagMooeeOperator<FermionActionF,FermionFieldF> EOFAschuropF;
|
||||
|
||||
EOFAschuropD linopL_D(LopD);
|
||||
EOFAschuropD linopR_D(RopD);
|
||||
|
||||
EOFAschuropF linopL_F(LopF);
|
||||
EOFAschuropF linopR_F(RopF);
|
||||
|
||||
typedef MixedPrecisionConjugateGradientOperatorFunction<FermionActionD, FermionActionF, EOFAschuropD, EOFAschuropF> EOFA_mxCG;
|
||||
|
||||
EOFA_mxCG MCG_L(1e-10, 10000, 1000, UGridF, FrbGridF, LopF, LopD, linopL_F, linopL_D);
|
||||
MCG_L.InnerTolerance = 1e-5;
|
||||
|
||||
EOFA_mxCG MCG_R(1e-10, 10000, 1000, UGridF, FrbGridF, RopF, RopD, linopR_F, linopR_D);
|
||||
MCG_R.InnerTolerance = 1e-5;
|
||||
|
||||
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicyD> MeofaD(LopD, RopD, CG, CG, CG, CG, CG, OFRp, true);
|
||||
ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction<FermionImplPolicyD, FermionImplPolicyF> MeofaMx(LopF, RopF, LopD, RopD, MCG_L, MCG_R, MCG_L, MCG_R, MCG_L, MCG_R, OFRp, true);
|
||||
|
||||
FermionFieldD eta(FGridD);
|
||||
gaussian(RNG5, eta);
|
||||
|
||||
MeofaD.refresh(Ud, eta);
|
||||
MeofaMx.refresh(Ud, eta);
|
||||
|
||||
FermionFieldD diff_phi(FGridD);
|
||||
diff_phi = MeofaD.getPhi() - MeofaMx.getPhi();
|
||||
|
||||
RealD n = norm2(diff_phi);
|
||||
|
||||
std::cout << GridLogMessage << "Phi(double)=" << norm2(MeofaD.getPhi()) << " Phi(mixed)=" << norm2(MeofaMx.getPhi()) << " diff=" << n << std::endl;
|
||||
|
||||
assert(n < 1e-8);
|
||||
|
||||
RealD Sd = MeofaD.S(Ud);
|
||||
RealD Smx = MeofaMx.S(Ud);
|
||||
|
||||
std::cout << GridLogMessage << "Initial action double=" << Sd << " mixed=" << Smx << " diff=" << Sd-Smx << std::endl;
|
||||
|
||||
assert(fabs(Sd-Smx) < 1e-6);
|
||||
|
||||
SU<Nc>::HotConfiguration(RNG4,Ud);
|
||||
precisionChange(Uf, Ud);
|
||||
|
||||
Sd = MeofaD.S(Ud);
|
||||
Smx = MeofaMx.S(Ud);
|
||||
|
||||
std::cout << GridLogMessage << "After randomizing U, action double=" << Sd << " mixed=" << Smx << " diff=" << Sd-Smx << std::endl;
|
||||
|
||||
assert(fabs(Sd-Smx) < 1e-6);
|
||||
|
||||
std::cout << GridLogMessage << "Done" << std::endl;
|
||||
Grid_finalize();
|
||||
}
|
257
tests/hmc/Test_action_dwf_gparity2fvs1f.cc
Normal file
257
tests/hmc/Test_action_dwf_gparity2fvs1f.cc
Normal file
@ -0,0 +1,257 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: tests/hmc/Test_action_dwf_gparity2fvs1f.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace Grid;
|
||||
|
||||
|
||||
|
||||
template<typename FermionField2f, typename FermionField1f>
|
||||
void copy2fTo1fFermionField(FermionField1f &out, const FermionField2f &in, int gpdir){
|
||||
auto f0_halfgrid = PeekIndex<GparityFlavourIndex>(in,0); //on 2f Grid
|
||||
FermionField1f f0_fullgrid_dbl(out.Grid());
|
||||
Replicate(f0_halfgrid, f0_fullgrid_dbl); //double it up to live on the 1f Grid
|
||||
|
||||
auto f1_halfgrid = PeekIndex<GparityFlavourIndex>(in,1);
|
||||
FermionField1f f1_fullgrid_dbl(out.Grid());
|
||||
Replicate(f1_halfgrid, f1_fullgrid_dbl);
|
||||
|
||||
const Coordinate &dim_2f = in.Grid()->GlobalDimensions();
|
||||
const Coordinate &dim_1f = out.Grid()->GlobalDimensions();
|
||||
|
||||
//We have to be careful for 5d fields; the s-direction is placed before the x,y,z,t and so we need to shift gpdir by 1
|
||||
std::cout << "gpdir " << gpdir << std::endl;
|
||||
|
||||
gpdir+=1;
|
||||
std::cout << "gpdir for 5D fields " << gpdir << std::endl;
|
||||
|
||||
std::cout << "dim_2f " << dim_2f << std::endl;
|
||||
std::cout << "dim_1f " << dim_1f << std::endl;
|
||||
|
||||
assert(dim_1f[gpdir] == 2*dim_2f[gpdir]);
|
||||
|
||||
LatticeInteger xcoor_1f(out.Grid()); //5d lattice integer
|
||||
LatticeCoordinate(xcoor_1f,gpdir);
|
||||
|
||||
int L = dim_2f[gpdir];
|
||||
|
||||
out = where(xcoor_1f < L, f0_fullgrid_dbl, f1_fullgrid_dbl);
|
||||
}
|
||||
|
||||
//Both have the same field type
|
||||
void copy2fTo1fGaugeField(LatticeGaugeField &out, const LatticeGaugeField &in, int gpdir){
|
||||
LatticeGaugeField U_dbl(out.Grid());
|
||||
Replicate(in, U_dbl);
|
||||
|
||||
LatticeGaugeField Uconj_dbl = conjugate( U_dbl );
|
||||
|
||||
const Coordinate &dim_2f = in.Grid()->GlobalDimensions();
|
||||
|
||||
LatticeInteger xcoor_1f(out.Grid());
|
||||
LatticeCoordinate(xcoor_1f,gpdir);
|
||||
|
||||
int L = dim_2f[gpdir];
|
||||
|
||||
out = where(xcoor_1f < L, U_dbl, Uconj_dbl);
|
||||
}
|
||||
|
||||
|
||||
std::ostream & operator<<(std::ostream &os, const Coordinate &x){
|
||||
os << "(";
|
||||
for(int i=0;i<x.size();i++) os << x[i] << (i<x.size()-1 ? " " : "");
|
||||
os << ")";
|
||||
return os;
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
using namespace Grid;
|
||||
|
||||
Grid_init(&argc, &argv);
|
||||
int threads = GridThread::GetThreads();
|
||||
|
||||
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
|
||||
|
||||
int Ls = 16;
|
||||
|
||||
Coordinate latt_2f = GridDefaultLatt();
|
||||
Coordinate simd_layout = GridDefaultSimd(Nd, vComplexD::Nsimd());
|
||||
Coordinate mpi_layout = GridDefaultMpi();
|
||||
|
||||
int mu = 0; //Gparity direction
|
||||
|
||||
Coordinate latt_1f = latt_2f;
|
||||
latt_1f[mu] *= 2;
|
||||
|
||||
GridCartesian * UGrid_1f = SpaceTimeGrid::makeFourDimGrid(latt_1f, simd_layout, mpi_layout);
|
||||
GridRedBlackCartesian * UrbGrid_1f = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_1f);
|
||||
GridCartesian * FGrid_1f = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid_1f);
|
||||
GridRedBlackCartesian * FrbGrid_1f = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid_1f);
|
||||
|
||||
|
||||
GridCartesian * UGrid_2f = SpaceTimeGrid::makeFourDimGrid(latt_2f, simd_layout, mpi_layout);
|
||||
GridRedBlackCartesian * UrbGrid_2f = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_2f);
|
||||
GridCartesian * FGrid_2f = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid_2f);
|
||||
GridRedBlackCartesian * FrbGrid_2f = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid_2f);
|
||||
|
||||
|
||||
std::cout << "SIMD layout " << simd_layout << std::endl;
|
||||
std::cout << "MPI layout " << mpi_layout << std::endl;
|
||||
std::cout << "2f dimensions " << latt_2f << std::endl;
|
||||
std::cout << "1f dimensions " << latt_1f << std::endl;
|
||||
|
||||
std::vector<int> seeds4({1,2,3,4});
|
||||
std::vector<int> seeds5({5,6,7,8});
|
||||
GridParallelRNG RNG5_2f(FGrid_2f); RNG5_2f.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG4_2f(UGrid_2f); RNG4_2f.SeedFixedIntegers(seeds4);
|
||||
|
||||
std::cout << "Generating hot 2f gauge configuration" << std::endl;
|
||||
LatticeGaugeField Umu_2f(UGrid_2f);
|
||||
SU<Nc>::HotConfiguration(RNG4_2f,Umu_2f);
|
||||
|
||||
std::cout << "Copying 2f->1f gauge field" << std::endl;
|
||||
LatticeGaugeField Umu_1f(UGrid_1f);
|
||||
copy2fTo1fGaugeField(Umu_1f, Umu_2f, mu);
|
||||
|
||||
typedef GparityWilsonImplR FermionImplPolicy2f;
|
||||
typedef GparityDomainWallFermionR FermionAction2f;
|
||||
typedef typename FermionAction2f::FermionField FermionField2f;
|
||||
|
||||
typedef WilsonImplR FermionImplPolicy1f;
|
||||
typedef DomainWallFermionR FermionAction1f;
|
||||
typedef typename FermionAction1f::FermionField FermionField1f;
|
||||
|
||||
std::cout << "Generating eta 2f" << std::endl;
|
||||
FermionField2f eta_2f(FGrid_2f);
|
||||
gaussian(RNG5_2f, eta_2f);
|
||||
|
||||
RealD scale = std::sqrt(0.5);
|
||||
eta_2f=eta_2f*scale;
|
||||
|
||||
std::cout << "Copying 2f->1f eta" << std::endl;
|
||||
FermionField1f eta_1f(FGrid_1f);
|
||||
copy2fTo1fFermionField(eta_1f, eta_2f, mu);
|
||||
|
||||
Real beta = 2.13;
|
||||
Real light_mass = 0.01;
|
||||
Real strange_mass = 0.032;
|
||||
Real pv_mass = 1.0;
|
||||
RealD M5 = 1.8;
|
||||
|
||||
//Setup the Dirac operators
|
||||
std::cout << "Initializing Dirac operators" << std::endl;
|
||||
|
||||
FermionAction2f::ImplParams Params_2f;
|
||||
Params_2f.twists[mu] = 1;
|
||||
Params_2f.twists[Nd-1] = 1; //APBC in time direction
|
||||
|
||||
//note 'Num' and 'Den' here refer to the determinant ratio, not the operator ratio in the pseudofermion action where the two are inverted
|
||||
//to my mind the Pauli Villars and 'denominator' are synonymous but the Grid convention has this as the 'Numerator' operator in the RHMC implementation
|
||||
FermionAction2f NumOp_2f(Umu_2f,*FGrid_2f,*FrbGrid_2f,*UGrid_2f, *UrbGrid_2f, light_mass,M5,Params_2f);
|
||||
FermionAction2f DenOp_2f(Umu_2f,*FGrid_2f,*FrbGrid_2f,*UGrid_2f, *UrbGrid_2f, pv_mass, M5,Params_2f);
|
||||
|
||||
FermionAction1f::ImplParams Params_1f;
|
||||
Params_1f.boundary_phases[mu] = -1; //antiperiodic in doubled lattice in GP direction
|
||||
Params_1f.boundary_phases[Nd-1] = -1;
|
||||
|
||||
FermionAction1f NumOp_1f(Umu_1f,*FGrid_1f,*FrbGrid_1f,*UGrid_1f, *UrbGrid_1f, light_mass,M5,Params_1f);
|
||||
FermionAction1f DenOp_1f(Umu_1f,*FGrid_1f,*FrbGrid_1f,*UGrid_1f, *UrbGrid_1f, pv_mass, M5,Params_1f);
|
||||
|
||||
//Test the replication routines by running a CG on eta
|
||||
double StoppingCondition = 1e-10;
|
||||
double MaxCGIterations = 30000;
|
||||
ConjugateGradient<FermionField2f> CG_2f(StoppingCondition,MaxCGIterations);
|
||||
ConjugateGradient<FermionField1f> CG_1f(StoppingCondition,MaxCGIterations);
|
||||
|
||||
NumOp_1f.ImportGauge(Umu_1f);
|
||||
NumOp_2f.ImportGauge(Umu_2f);
|
||||
|
||||
FermionField1f test_1f(FGrid_1f);
|
||||
FermionField2f test_2f(FGrid_2f);
|
||||
|
||||
MdagMLinearOperator<FermionAction1f, FermionField1f> Linop_1f(NumOp_1f);
|
||||
MdagMLinearOperator<FermionAction2f, FermionField2f> Linop_2f(NumOp_2f);
|
||||
|
||||
CG_1f(Linop_1f, eta_1f, test_1f);
|
||||
CG_2f(Linop_2f, eta_2f, test_2f);
|
||||
RealD test_1f_norm = norm2(test_1f);
|
||||
RealD test_2f_norm = norm2(test_2f);
|
||||
|
||||
std::cout << "Verification of replication routines: " << test_1f_norm << " " << test_2f_norm << " " << test_1f_norm - test_2f_norm << std::endl;
|
||||
|
||||
|
||||
#if 1
|
||||
typedef GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy2f> Action2f;
|
||||
typedef GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy1f> Action1f;
|
||||
|
||||
RationalActionParams rational_params;
|
||||
rational_params.inv_pow = 2;
|
||||
rational_params.lo = 1e-5;
|
||||
rational_params.hi = 32;
|
||||
rational_params.md_degree = 16;
|
||||
rational_params.action_degree = 16;
|
||||
|
||||
Action2f action_2f(DenOp_2f, NumOp_2f, rational_params);
|
||||
Action1f action_1f(DenOp_1f, NumOp_1f, rational_params);
|
||||
#else
|
||||
typedef TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy2f> Action2f;
|
||||
typedef TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy1f> Action1f;
|
||||
|
||||
Action2f action_2f(DenOp_2f, NumOp_2f, CG_2f, CG_2f);
|
||||
Action1f action_1f(DenOp_1f, NumOp_1f, CG_1f, CG_1f);
|
||||
#endif
|
||||
|
||||
|
||||
std::cout << "Action refresh" << std::endl;
|
||||
action_2f.refresh(Umu_2f, eta_2f);
|
||||
action_1f.refresh(Umu_1f, eta_1f);
|
||||
|
||||
std::cout << "Action compute post heatbath" << std::endl;
|
||||
RealD S_2f = action_2f.S(Umu_2f);
|
||||
RealD S_1f = action_1f.S(Umu_1f);
|
||||
|
||||
std::cout << "Action comparison post heatbath" << std::endl;
|
||||
std::cout << S_2f << " " << S_1f << " " << S_2f-S_1f << std::endl;
|
||||
|
||||
//Change the gauge field between refresh and action eval else the matrix and inverse matrices all cancel and we just get |eta|^2
|
||||
SU<Nc>::HotConfiguration(RNG4_2f,Umu_2f);
|
||||
copy2fTo1fGaugeField(Umu_1f, Umu_2f, mu);
|
||||
|
||||
//Now compute the action with the new gauge field
|
||||
std::cout << "Action compute post gauge field update" << std::endl;
|
||||
S_2f = action_2f.S(Umu_2f);
|
||||
S_1f = action_1f.S(Umu_1f);
|
||||
|
||||
std::cout << "Action comparison post gauge field update" << std::endl;
|
||||
std::cout << S_2f << " " << S_1f << " " << S_2f-S_1f << std::endl;
|
||||
|
||||
Grid_finalize();
|
||||
} // main
|
||||
|
||||
|
@ -58,7 +58,7 @@ int main(int argc, char **argv) {
|
||||
CheckpointerParameters CPparams;
|
||||
CPparams.config_prefix = "ckpoint_EODWF_lat";
|
||||
CPparams.rng_prefix = "ckpoint_EODWF_rng";
|
||||
CPparams.saveInterval = 5;
|
||||
CPparams.saveInterval = 1;
|
||||
CPparams.format = "IEEE64BIG";
|
||||
|
||||
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
|
||||
@ -79,7 +79,7 @@ int main(int argc, char **argv) {
|
||||
// that have a complex construction
|
||||
// standard
|
||||
RealD beta = 2.6 ;
|
||||
const int nu = 3;
|
||||
const int nu = 1;
|
||||
std::vector<int> twists(Nd,0);
|
||||
twists[nu] = 1;
|
||||
ConjugateGimplD::setDirections(twists);
|
||||
|
139
tests/hmc/Test_rhmc_EOWilsonRatioPowQuarter.cc
Normal file
139
tests/hmc/Test_rhmc_EOWilsonRatioPowQuarter.cc
Normal file
@ -0,0 +1,139 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/Test_rhmc_EOWilsonRatio.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
//This test is for the Wilson action with the determinant det( M^dag M)^1/4
|
||||
//testing the generic RHMC
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
using namespace Grid;
|
||||
;
|
||||
|
||||
Grid_init(&argc, &argv);
|
||||
int threads = GridThread::GetThreads();
|
||||
// here make a routine to print all the relevant information on the run
|
||||
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
|
||||
|
||||
// Typedefs to simplify notation
|
||||
typedef GenericHMCRunner<MinimumNorm2> HMCWrapper; // Uses the default minimum norm
|
||||
typedef WilsonImplR FermionImplPolicy;
|
||||
typedef WilsonFermionR FermionAction;
|
||||
typedef typename FermionAction::FermionField FermionField;
|
||||
|
||||
|
||||
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
|
||||
HMCWrapper TheHMC;
|
||||
|
||||
// Grid from the command line
|
||||
TheHMC.Resources.AddFourDimGrid("gauge");
|
||||
|
||||
// Checkpointer definition
|
||||
CheckpointerParameters CPparams;
|
||||
CPparams.config_prefix = "ckpoint_lat";
|
||||
CPparams.rng_prefix = "ckpoint_rng";
|
||||
CPparams.saveInterval = 5;
|
||||
CPparams.format = "IEEE64BIG";
|
||||
|
||||
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
|
||||
|
||||
RNGModuleParameters RNGpar;
|
||||
RNGpar.serial_seeds = "1 2 3 4 5";
|
||||
RNGpar.parallel_seeds = "6 7 8 9 10";
|
||||
TheHMC.Resources.SetRNGSeeds(RNGpar);
|
||||
|
||||
// Construct observables
|
||||
typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs;
|
||||
TheHMC.Resources.AddObservable<PlaqObs>();
|
||||
//////////////////////////////////////////////
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Collect actions, here use more encapsulation
|
||||
// need wrappers of the fermionic classes
|
||||
// that have a complex construction
|
||||
// standard
|
||||
RealD beta = 5.6 ;
|
||||
WilsonGaugeActionR Waction(beta);
|
||||
|
||||
auto GridPtr = TheHMC.Resources.GetCartesian();
|
||||
auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
|
||||
|
||||
// temporarily need a gauge field
|
||||
LatticeGaugeField U(GridPtr);
|
||||
|
||||
Real mass = -0.77;
|
||||
Real pv = 0.0;
|
||||
|
||||
// Can we define an overloaded operator that does not need U and initialises
|
||||
// it with zeroes?
|
||||
FermionAction DenOp(U, *GridPtr, *GridRBPtr, mass);
|
||||
FermionAction NumOp(U, *GridPtr, *GridRBPtr, pv);
|
||||
|
||||
|
||||
// 1/2+1/2 flavour
|
||||
// RationalActionParams(int _inv_pow = 2,
|
||||
// RealD _lo = 0.0,
|
||||
// RealD _hi = 1.0,
|
||||
// int _maxit = 1000,
|
||||
// RealD tol = 1.0e-8,
|
||||
// int _degree = 10,
|
||||
// int _precision = 64,
|
||||
// int _BoundsCheckFreq=20)
|
||||
|
||||
|
||||
int inv_pow = 4;
|
||||
RationalActionParams Params(inv_pow,1.0e-2,64.0,1000,1.0e-6,14,64,1);
|
||||
|
||||
GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy> RHMC(NumOp,DenOp,Params);
|
||||
|
||||
// Collect actions
|
||||
ActionLevel<HMCWrapper::Field> Level1(1);
|
||||
Level1.push_back(&RHMC);
|
||||
|
||||
ActionLevel<HMCWrapper::Field> Level2(4);
|
||||
Level2.push_back(&Waction);
|
||||
|
||||
TheHMC.TheAction.push_back(Level1);
|
||||
TheHMC.TheAction.push_back(Level2);
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
// HMC parameters are serialisable
|
||||
TheHMC.Parameters.MD.MDsteps = 20;
|
||||
TheHMC.Parameters.MD.trajL = 1.0;
|
||||
|
||||
TheHMC.ReadCommandLine(argc, argv); // these can be parameters from file
|
||||
TheHMC.Run();
|
||||
|
||||
Grid_finalize();
|
||||
|
||||
} // main
|
||||
|
||||
|
||||
|
||||
|
||||
|
119
tests/hmc/Test_rhmc_EOWilsonRatio_doubleVsMixedPrec.cc
Normal file
119
tests/hmc/Test_rhmc_EOWilsonRatio_doubleVsMixedPrec.cc
Normal file
@ -0,0 +1,119 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/Test_rhmc_EOWilsonRatio_doubleVsMixedPrec.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
//This test ensures the mixed precision RHMC gives the same result as the regular double precision
|
||||
int main(int argc, char **argv) {
|
||||
using namespace Grid;
|
||||
|
||||
Grid_init(&argc, &argv);
|
||||
int threads = GridThread::GetThreads();
|
||||
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
|
||||
|
||||
typedef GenericHMCRunner<MinimumNorm2> HMCWrapper; // Uses the default minimum norm
|
||||
|
||||
typedef WilsonImplD FermionImplPolicyD;
|
||||
typedef WilsonFermionD FermionActionD;
|
||||
typedef typename FermionActionD::FermionField FermionFieldD;
|
||||
|
||||
typedef WilsonImplF FermionImplPolicyF;
|
||||
typedef WilsonFermionF FermionActionF;
|
||||
typedef typename FermionActionF::FermionField FermionFieldF;
|
||||
|
||||
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
|
||||
HMCWrapper TheHMC;
|
||||
TheHMC.Resources.AddFourDimGrid("gauge");
|
||||
|
||||
RNGModuleParameters RNGpar;
|
||||
RNGpar.serial_seeds = "1 2 3 4 5";
|
||||
RNGpar.parallel_seeds = "6 7 8 9 10";
|
||||
TheHMC.Resources.SetRNGSeeds(RNGpar);
|
||||
|
||||
auto GridPtrD = TheHMC.Resources.GetCartesian();
|
||||
auto GridRBPtrD = TheHMC.Resources.GetRBCartesian();
|
||||
|
||||
GridCartesian* GridPtrF = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
|
||||
GridRedBlackCartesian* GridRBPtrF = SpaceTimeGrid::makeFourDimRedBlackGrid(GridPtrF);
|
||||
|
||||
// temporarily need a gauge field
|
||||
LatticeGaugeFieldD Ud(GridPtrD);
|
||||
LatticeGaugeFieldF Uf(GridPtrF);
|
||||
|
||||
Real mass = -0.77;
|
||||
Real pv = 0.0;
|
||||
|
||||
FermionActionD DenOpD(Ud, *GridPtrD, *GridRBPtrD, mass);
|
||||
FermionActionD NumOpD(Ud, *GridPtrD, *GridRBPtrD, pv);
|
||||
|
||||
FermionActionF DenOpF(Uf, *GridPtrF, *GridRBPtrF, mass);
|
||||
FermionActionF NumOpF(Uf, *GridPtrF, *GridRBPtrF, pv);
|
||||
|
||||
TheHMC.Resources.AddRNGs();
|
||||
PeriodicGimplR::HotConfiguration(TheHMC.Resources.GetParallelRNG(), Ud);
|
||||
|
||||
std::string seed_string = "the_seed";
|
||||
|
||||
//Setup the pseudofermion actions
|
||||
RationalActionParams GenParams;
|
||||
GenParams.inv_pow = 2;
|
||||
GenParams.lo = 1e-2;
|
||||
GenParams.hi = 64.0;
|
||||
GenParams.MaxIter = 1000;
|
||||
GenParams.action_tolerance = GenParams.md_tolerance = 1e-6;
|
||||
GenParams.action_degree = GenParams.md_degree = 6;
|
||||
GenParams.precision = 64;
|
||||
GenParams.BoundsCheckFreq = 20;
|
||||
|
||||
GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicyD> GenD(NumOpD,DenOpD,GenParams);
|
||||
GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<FermionImplPolicyD, FermionImplPolicyF> GenFD(NumOpD, DenOpD,
|
||||
NumOpF, DenOpF,
|
||||
GenParams, 50);
|
||||
TheHMC.Resources.GetParallelRNG().SeedUniqueString(seed_string);
|
||||
GenD.refresh(Ud, TheHMC.Resources.GetSerialRNG(), TheHMC.Resources.GetParallelRNG());
|
||||
RealD Sd = GenD.S(Ud);
|
||||
LatticeGaugeField derivD(Ud);
|
||||
GenD.deriv(Ud,derivD);
|
||||
|
||||
TheHMC.Resources.GetParallelRNG().SeedUniqueString(seed_string);
|
||||
GenFD.refresh(Ud, TheHMC.Resources.GetSerialRNG(), TheHMC.Resources.GetParallelRNG());
|
||||
RealD Sfd = GenFD.S(Ud);
|
||||
LatticeGaugeField derivFD(Ud);
|
||||
GenFD.deriv(Ud,derivFD);
|
||||
|
||||
//Compare
|
||||
std::cout << "Action : " << Sd << " " << Sfd << " reldiff " << (Sd - Sfd)/Sd << std::endl;
|
||||
|
||||
LatticeGaugeField diff(Ud);
|
||||
axpy(diff, -1.0, derivD, derivFD);
|
||||
std::cout << "Norm of difference in deriv " << sqrt(norm2(diff)) << std::endl;
|
||||
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
||||
|
122
tests/hmc/Test_rhmc_EOWilsonRatio_genericVsOneFlavor.cc
Normal file
122
tests/hmc/Test_rhmc_EOWilsonRatio_genericVsOneFlavor.cc
Normal file
@ -0,0 +1,122 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/Test_rhmc_EOWilsonRatio_genericVsOneFlavor.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
//This test ensures that the OneFlavourEvenOddRatioRationalPseudoFermionAction and GeneralEvenOddRatioRationalPseudoFermionAction action (with parameters set appropriately0
|
||||
//give the same results
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
using namespace Grid;
|
||||
|
||||
Grid_init(&argc, &argv);
|
||||
int threads = GridThread::GetThreads();
|
||||
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
|
||||
|
||||
typedef GenericHMCRunner<MinimumNorm2> HMCWrapper; // Uses the default minimum norm
|
||||
typedef WilsonImplR FermionImplPolicy;
|
||||
typedef WilsonFermionR FermionAction;
|
||||
typedef typename FermionAction::FermionField FermionField;
|
||||
|
||||
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
|
||||
HMCWrapper TheHMC;
|
||||
TheHMC.Resources.AddFourDimGrid("gauge");
|
||||
|
||||
|
||||
// // Checkpointer definition
|
||||
// CheckpointerParameters CPparams;
|
||||
// CPparams.config_prefix = "ckpoint_lat";
|
||||
// CPparams.rng_prefix = "ckpoint_rng";
|
||||
// CPparams.saveInterval = 5;
|
||||
// CPparams.format = "IEEE64BIG";
|
||||
|
||||
// TheHMC.Resources.LoadNerscCheckpointer(CPparams);
|
||||
|
||||
RNGModuleParameters RNGpar;
|
||||
RNGpar.serial_seeds = "1 2 3 4 5";
|
||||
RNGpar.parallel_seeds = "6 7 8 9 10";
|
||||
TheHMC.Resources.SetRNGSeeds(RNGpar);
|
||||
|
||||
auto GridPtr = TheHMC.Resources.GetCartesian();
|
||||
auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
|
||||
|
||||
// temporarily need a gauge field
|
||||
LatticeGaugeField U(GridPtr);
|
||||
|
||||
Real mass = -0.77;
|
||||
Real pv = 0.0;
|
||||
|
||||
FermionAction DenOp(U, *GridPtr, *GridRBPtr, mass);
|
||||
FermionAction NumOp(U, *GridPtr, *GridRBPtr, pv);
|
||||
|
||||
TheHMC.Resources.AddRNGs();
|
||||
PeriodicGimplR::HotConfiguration(TheHMC.Resources.GetParallelRNG(), U);
|
||||
|
||||
std::string seed_string = "the_seed";
|
||||
|
||||
//1f action
|
||||
OneFlavourRationalParams OneFParams(1.0e-2,64.0,1000,1.0e-6,6);
|
||||
|
||||
OneFlavourEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy> OneF(NumOp,DenOp,OneFParams);
|
||||
TheHMC.Resources.GetParallelRNG().SeedUniqueString(seed_string);
|
||||
OneF.refresh(U, TheHMC.Resources.GetParallelRNG());
|
||||
RealD OneFS = OneF.S(U);
|
||||
LatticeGaugeField OneFderiv(U);
|
||||
OneF.deriv(U,OneFderiv);
|
||||
|
||||
//general action
|
||||
RationalActionParams GenParams;
|
||||
GenParams.inv_pow = 2;
|
||||
GenParams.lo = OneFParams.lo;
|
||||
GenParams.hi = OneFParams.hi;
|
||||
GenParams.MaxIter = OneFParams.MaxIter;
|
||||
GenParams.action_tolerance = GenParams.md_tolerance = OneFParams.tolerance;
|
||||
GenParams.action_degree = GenParams.md_degree = OneFParams.degree;
|
||||
GenParams.precision = OneFParams.precision;
|
||||
GenParams.BoundsCheckFreq = OneFParams.BoundsCheckFreq;
|
||||
|
||||
GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy> Gen(NumOp,DenOp,GenParams);
|
||||
TheHMC.Resources.GetParallelRNG().SeedUniqueString(seed_string);
|
||||
Gen.refresh(U, TheHMC.Resources.GetParallelRNG());
|
||||
RealD GenS = Gen.S(U);
|
||||
LatticeGaugeField Genderiv(U);
|
||||
Gen.deriv(U,Genderiv);
|
||||
|
||||
|
||||
//Compare
|
||||
std::cout << "Action : " << OneFS << " " << GenS << " reldiff " << (OneFS - GenS)/OneFS << std::endl;
|
||||
|
||||
LatticeGaugeField diff(U);
|
||||
axpy(diff, -1.0, Genderiv, OneFderiv);
|
||||
std::cout << "Norm of difference in deriv " << sqrt(norm2(diff)) << std::endl;
|
||||
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
||||
|
425
tests/lanczos/Test_compressed_lanczos_gparity.cc
Normal file
425
tests/lanczos/Test_compressed_lanczos_gparity.cc
Normal file
@ -0,0 +1,425 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/Test_compressed_lanczos_gparity.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
Author: Leans heavily on Christoph Lehner's code
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
/*
|
||||
* Reimplement the badly named "multigrid" lanczos as compressed Lanczos using the features
|
||||
* in Grid that were intended to be used to support blocked Aggregates, from
|
||||
*/
|
||||
#include <Grid/Grid.h>
|
||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
|
||||
#include <Grid/algorithms/iterative/LocalCoherenceLanczos.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
|
||||
// template<class VectorInt>
|
||||
// void GridCmdOptionIntVector(const std::string &str, VectorInt & vec)
|
||||
// {
|
||||
// vec.resize(0);
|
||||
// std::stringstream ss(str);
|
||||
// int i;
|
||||
// while (ss >> i){
|
||||
// vec.push_back(i);
|
||||
// if(std::ispunct(ss.peek()))
|
||||
// ss.ignore();
|
||||
// }
|
||||
// return;
|
||||
// }
|
||||
|
||||
|
||||
//For the CPS configurations we have to manually seed the RNG and deal with an incorrect factor of 2 in the plaquette metadata
|
||||
void readConfiguration(LatticeGaugeFieldD &U,
|
||||
const std::string &config,
|
||||
bool is_cps_cfg = false){
|
||||
|
||||
if(is_cps_cfg) NerscIO::exitOnReadPlaquetteMismatch() = false;
|
||||
|
||||
typedef GaugeStatistics<ConjugateGimplD> GaugeStats;
|
||||
|
||||
FieldMetaData header;
|
||||
NerscIO::readConfiguration<GaugeStats>(U, header, config);
|
||||
|
||||
if(is_cps_cfg) NerscIO::exitOnReadPlaquetteMismatch() = true;
|
||||
}
|
||||
|
||||
//Lanczos parameters in CPS conventions
|
||||
struct CPSLanczosParams : Serializable {
|
||||
public:
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(CPSLanczosParams,
|
||||
RealD, alpha,
|
||||
RealD, beta,
|
||||
int, ch_ord,
|
||||
int, N_use,
|
||||
int, N_get,
|
||||
int, N_true_get,
|
||||
RealD, stop_rsd,
|
||||
int, maxits);
|
||||
|
||||
//Translations
|
||||
ChebyParams getChebyParams() const{
|
||||
ChebyParams out;
|
||||
out.alpha = beta*beta; //aka lo
|
||||
out.beta = alpha*alpha; //aka hi
|
||||
out.Npoly = ch_ord+1;
|
||||
return out;
|
||||
}
|
||||
int Nstop() const{ return N_true_get; }
|
||||
int Nm() const{ return N_use; }
|
||||
int Nk() const{ return N_get; }
|
||||
};
|
||||
|
||||
//Maybe this class should be in the main library?
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class LocalCoherenceLanczosScidac : public LocalCoherenceLanczos<Fobj,CComplex,nbasis>
|
||||
{
|
||||
public:
|
||||
typedef iVector<CComplex,nbasis > CoarseSiteVector;
|
||||
typedef Lattice<CoarseSiteVector> CoarseField;
|
||||
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<Fobj> FineField;
|
||||
|
||||
LocalCoherenceLanczosScidac(GridBase *FineGrid,GridBase *CoarseGrid,
|
||||
LinearOperatorBase<FineField> &FineOp,
|
||||
int checkerboard)
|
||||
// Base constructor
|
||||
: LocalCoherenceLanczos<Fobj,CComplex,nbasis>(FineGrid,CoarseGrid,FineOp,checkerboard)
|
||||
{};
|
||||
|
||||
void checkpointFine(std::string evecs_file,std::string evals_file)
|
||||
{
|
||||
assert(this->subspace.size()==nbasis);
|
||||
emptyUserRecord record;
|
||||
Grid::ScidacWriter WR(this->_FineGrid->IsBoss());
|
||||
WR.open(evecs_file);
|
||||
for(int k=0;k<nbasis;k++) {
|
||||
WR.writeScidacFieldRecord(this->subspace[k],record);
|
||||
}
|
||||
WR.close();
|
||||
|
||||
XmlWriter WRx(evals_file);
|
||||
write(WRx,"evals",this->evals_fine);
|
||||
}
|
||||
|
||||
void checkpointFineRestore(std::string evecs_file,std::string evals_file)
|
||||
{
|
||||
this->evals_fine.resize(nbasis);
|
||||
this->subspace.resize(nbasis,this->_FineGrid);
|
||||
|
||||
std::cout << GridLogIRL<< "checkpointFineRestore: Reading evals from "<<evals_file<<std::endl;
|
||||
XmlReader RDx(evals_file);
|
||||
read(RDx,"evals",this->evals_fine);
|
||||
|
||||
assert(this->evals_fine.size()==nbasis);
|
||||
|
||||
std::cout << GridLogIRL<< "checkpointFineRestore: Reading evecs from "<<evecs_file<<std::endl;
|
||||
emptyUserRecord record;
|
||||
Grid::ScidacReader RD ;
|
||||
RD.open(evecs_file);
|
||||
for(int k=0;k<nbasis;k++) {
|
||||
this->subspace[k].Checkerboard()=this->_checkerboard;
|
||||
RD.readScidacFieldRecord(this->subspace[k],record);
|
||||
|
||||
}
|
||||
RD.close();
|
||||
}
|
||||
|
||||
void checkpointCoarse(std::string evecs_file,std::string evals_file)
|
||||
{
|
||||
int n = this->evec_coarse.size();
|
||||
emptyUserRecord record;
|
||||
Grid::ScidacWriter WR(this->_CoarseGrid->IsBoss());
|
||||
WR.open(evecs_file);
|
||||
for(int k=0;k<n;k++) {
|
||||
WR.writeScidacFieldRecord(this->evec_coarse[k],record);
|
||||
}
|
||||
WR.close();
|
||||
|
||||
XmlWriter WRx(evals_file);
|
||||
write(WRx,"evals",this->evals_coarse);
|
||||
}
|
||||
|
||||
void checkpointCoarseRestore(std::string evecs_file,std::string evals_file,int nvec)
|
||||
{
|
||||
std::cout << "resizing coarse vecs to " << nvec<< std::endl;
|
||||
this->evals_coarse.resize(nvec);
|
||||
this->evec_coarse.resize(nvec,this->_CoarseGrid);
|
||||
std::cout << GridLogIRL<< "checkpointCoarseRestore: Reading evals from "<<evals_file<<std::endl;
|
||||
XmlReader RDx(evals_file);
|
||||
read(RDx,"evals",this->evals_coarse);
|
||||
|
||||
assert(this->evals_coarse.size()==nvec);
|
||||
emptyUserRecord record;
|
||||
std::cout << GridLogIRL<< "checkpointCoarseRestore: Reading evecs from "<<evecs_file<<std::endl;
|
||||
Grid::ScidacReader RD ;
|
||||
RD.open(evecs_file);
|
||||
for(int k=0;k<nvec;k++) {
|
||||
RD.readScidacFieldRecord(this->evec_coarse[k],record);
|
||||
}
|
||||
RD.close();
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
//Note: because we rely upon physical properties we must use a "real" gauge configuration
|
||||
int main (int argc, char ** argv) {
|
||||
Grid_init(&argc,&argv);
|
||||
GridLogIRL.TimingMode(1);
|
||||
|
||||
std::vector<int> blockSize = {2,2,2,2,2};
|
||||
std::vector<int> GparityDirs = {1,1,1}; //1 for each GP direction
|
||||
|
||||
int Ls = 12;
|
||||
RealD mass = 0.01;
|
||||
RealD M5 = 1.8;
|
||||
bool is_cps_cfg = false;
|
||||
|
||||
CPSLanczosParams fine, coarse;
|
||||
|
||||
fine.alpha = 2;
|
||||
fine.beta = 0.1;
|
||||
fine.ch_ord = 100;
|
||||
fine.N_use = 70;
|
||||
fine.N_get = 60;
|
||||
fine.N_true_get = 60;
|
||||
fine.stop_rsd = 1e-8;
|
||||
fine.maxits = 10000;
|
||||
|
||||
coarse.alpha = 2;
|
||||
coarse.beta = 0.1;
|
||||
coarse.ch_ord = 100;
|
||||
coarse.N_use = 200;
|
||||
coarse.N_get = 190;
|
||||
coarse.N_true_get = 190;
|
||||
coarse.stop_rsd = 1e-8;
|
||||
coarse.maxits = 10000;
|
||||
|
||||
double coarse_relax_tol = 1e5;
|
||||
int smoother_ord = 20;
|
||||
|
||||
if(argc < 3){
|
||||
std::cout << GridLogMessage << "Usage: <exe> <config> <gparity dirs> <options>" << std::endl;
|
||||
std::cout << GridLogMessage << "<gparity dirs> should have the format a.b.c where a,b,c are 0,1 depending on whether there are G-parity BCs in that direction" << std::endl;
|
||||
std::cout << GridLogMessage << "Options:" << std::endl;
|
||||
std::cout << GridLogMessage << "--Ls <value> : Set Ls (default 12)" << std::endl;
|
||||
std::cout << GridLogMessage << "--mass <value> : Set the mass (default 0.01)" << std::endl;
|
||||
std::cout << GridLogMessage << "--block <value> : Set the block size. Format should be a.b.c.d.e where a-e are the block extents (default 2.2.2.2.2)" << std::endl;
|
||||
std::cout << GridLogMessage << "--is_cps_cfg : Indicate that the configuration was generated with CPS where until recently the stored plaquette was wrong by a factor of 2" << std::endl;
|
||||
std::cout << GridLogMessage << "--write_irl_templ: Write a template for the parameters file of the Lanczos to \"irl_templ.xml\"" << std::endl;
|
||||
std::cout << GridLogMessage << "--read_irl_fine <filename>: Real the parameters file for the fine Lanczos" << std::endl;
|
||||
std::cout << GridLogMessage << "--read_irl_coarse <filename>: Real the parameters file for the coarse Lanczos" << std::endl;
|
||||
std::cout << GridLogMessage << "--write_fine <filename stub>: Write fine evecs/evals to filename starting with the stub" << std::endl;
|
||||
std::cout << GridLogMessage << "--read_fine <filename stub>: Read fine evecs/evals from filename starting with the stub" << std::endl;
|
||||
std::cout << GridLogMessage << "--write_coarse <filename stub>: Write coarse evecs/evals to filename starting with the stub" << std::endl;
|
||||
std::cout << GridLogMessage << "--read_coarse <filename stub>: Read coarse evecs/evals from filename starting with the stub" << std::endl;
|
||||
std::cout << GridLogMessage << "--smoother_ord : Set the Chebyshev order of the smoother (default 20)" << std::endl;
|
||||
std::cout << GridLogMessage << "--coarse_relax_tol : Set the relaxation parameter for evaluating the residual of the reconstructed eigenvectors outside of the basis (default 1e5)" << std::endl;
|
||||
Grid_finalize();
|
||||
return 1;
|
||||
}
|
||||
std::string config = argv[1];
|
||||
GridCmdOptionIntVector(argv[2], GparityDirs);
|
||||
assert(GparityDirs.size() == 3);
|
||||
|
||||
bool write_fine = false;
|
||||
std::string write_fine_file;
|
||||
|
||||
bool read_fine = false;
|
||||
std::string read_fine_file;
|
||||
|
||||
bool write_coarse = false;
|
||||
std::string write_coarse_file;
|
||||
|
||||
bool read_coarse = false;
|
||||
std::string read_coarse_file;
|
||||
|
||||
for(int i=3;i<argc;i++){
|
||||
std::string sarg = argv[i];
|
||||
if(sarg == "--Ls"){
|
||||
Ls = std::stoi(argv[i+1]);
|
||||
std::cout << GridLogMessage << "Set Ls to " << Ls << std::endl;
|
||||
}else if(sarg == "--mass"){
|
||||
std::istringstream ss(argv[i+1]); ss >> mass;
|
||||
std::cout << GridLogMessage << "Set quark mass to " << mass << std::endl;
|
||||
}else if(sarg == "--block"){
|
||||
GridCmdOptionIntVector(argv[i+1], blockSize);
|
||||
assert(blockSize.size() == 5);
|
||||
std::cout << GridLogMessage << "Set block size to ";
|
||||
for(int q=0;q<5;q++) std::cout << blockSize[q] << " ";
|
||||
std::cout << std::endl;
|
||||
}else if(sarg == "--is_cps_cfg"){
|
||||
is_cps_cfg = true;
|
||||
}else if(sarg == "--write_irl_templ"){
|
||||
XmlWriter writer("irl_templ.xml");
|
||||
write(writer,"Params",fine);
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}else if(sarg == "--read_irl_fine"){
|
||||
std::cout << GridLogMessage << "Reading fine IRL params from " << argv[i+1] << std::endl;
|
||||
XmlReader reader(argv[i+1]);
|
||||
read(reader, "Params", fine);
|
||||
}else if(sarg == "--read_irl_coarse"){
|
||||
std::cout << GridLogMessage << "Reading coarse IRL params from " << argv[i+1] << std::endl;
|
||||
XmlReader reader(argv[i+1]);
|
||||
read(reader, "Params", coarse);
|
||||
}else if(sarg == "--write_fine"){
|
||||
write_fine = true;
|
||||
write_fine_file = argv[i+1];
|
||||
}else if(sarg == "--read_fine"){
|
||||
read_fine = true;
|
||||
read_fine_file = argv[i+1];
|
||||
}else if(sarg == "--write_coarse"){
|
||||
write_coarse = true;
|
||||
write_coarse_file = argv[i+1];
|
||||
}else if(sarg == "--read_coarse"){
|
||||
read_coarse = true;
|
||||
read_coarse_file = argv[i+1];
|
||||
}else if(sarg == "--smoother_ord"){
|
||||
std::istringstream ss(argv[i+1]); ss >> smoother_ord;
|
||||
std::cout << GridLogMessage << "Set smoother order to " << smoother_ord << std::endl;
|
||||
}else if(sarg == "--coarse_relax_tol"){
|
||||
std::istringstream ss(argv[i+1]); ss >> coarse_relax_tol;
|
||||
std::cout << GridLogMessage << "Set coarse IRL relaxation parameter to " << coarse_relax_tol << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
//Fine grids
|
||||
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
|
||||
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
|
||||
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
|
||||
|
||||
//Setup G-parity BCs
|
||||
assert(Nd == 4);
|
||||
std::vector<int> dirs4(4);
|
||||
for(int i=0;i<3;i++) dirs4[i] = GparityDirs[i];
|
||||
dirs4[3] = 0; //periodic gauge BC in time
|
||||
|
||||
std::cout << GridLogMessage << "Gauge BCs: " << dirs4 << std::endl;
|
||||
ConjugateGimplD::setDirections(dirs4); //gauge BC
|
||||
|
||||
GparityWilsonImplD::ImplParams Params;
|
||||
for(int i=0;i<Nd-1;i++) Params.twists[i] = GparityDirs[i]; //G-parity directions
|
||||
Params.twists[Nd-1] = 1; //APBC in time direction
|
||||
std::cout << GridLogMessage << "Fermion BCs: " << Params.twists << std::endl;
|
||||
|
||||
//Read the gauge field
|
||||
LatticeGaugeField Umu(UGrid);
|
||||
readConfiguration(Umu, config, is_cps_cfg);
|
||||
|
||||
//Setup the coarse grids
|
||||
auto fineLatt = GridDefaultLatt();
|
||||
Coordinate coarseLatt(4);
|
||||
for (int d=0;d<4;d++){
|
||||
coarseLatt[d] = fineLatt[d]/blockSize[d]; assert(coarseLatt[d]*blockSize[d]==fineLatt[d]);
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage<< " 5d coarse lattice is ";
|
||||
for (int i=0;i<4;i++){
|
||||
std::cout << coarseLatt[i]<<"x";
|
||||
}
|
||||
int cLs = Ls/blockSize[4]; assert(cLs*blockSize[4]==Ls);
|
||||
std::cout << cLs<<std::endl;
|
||||
|
||||
GridCartesian * CoarseGrid4 = SpaceTimeGrid::makeFourDimGrid(coarseLatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
|
||||
GridRedBlackCartesian * CoarseGrid4rb = SpaceTimeGrid::makeFourDimRedBlackGrid(CoarseGrid4);
|
||||
GridCartesian * CoarseGrid5 = SpaceTimeGrid::makeFiveDimGrid(cLs,CoarseGrid4);
|
||||
|
||||
//Dirac operator
|
||||
GparityDomainWallFermionD action(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mass, M5, Params);
|
||||
typedef GparityDomainWallFermionD::FermionField FermionField;
|
||||
|
||||
SchurDiagTwoOperator<GparityDomainWallFermionD,FermionField> SchurOp(action);
|
||||
|
||||
typedef GparityWilsonImplD::SiteSpinor SiteSpinor;
|
||||
|
||||
std::cout << GridLogMessage << "Keep " << fine.N_true_get << " fine vectors" << std::endl;
|
||||
std::cout << GridLogMessage << "Keep " << coarse.N_true_get << " coarse vectors" << std::endl;
|
||||
assert(coarse.N_true_get >= fine.N_true_get);
|
||||
|
||||
const int nbasis= 60;
|
||||
assert(nbasis<=fine.N_true_get);
|
||||
LocalCoherenceLanczosScidac<SiteSpinor,vTComplex,nbasis> _LocalCoherenceLanczos(FrbGrid,CoarseGrid5,SchurOp,Odd);
|
||||
std::cout << GridLogMessage << "Constructed LocalCoherenceLanczos" << std::endl;
|
||||
|
||||
//Compute and/or read fine evecs
|
||||
if(read_fine){
|
||||
_LocalCoherenceLanczos.checkpointFineRestore(read_fine_file + "_evecs.scidac", read_fine_file + "_evals.xml");
|
||||
}else{
|
||||
std::cout << GridLogMessage << "Performing fine grid IRL" << std::endl;
|
||||
std::cout << GridLogMessage << "Using Chebyshev alpha=" << fine.alpha << " beta=" << fine.beta << " ord=" << fine.ch_ord << std::endl;
|
||||
_LocalCoherenceLanczos.calcFine(fine.getChebyParams(),
|
||||
fine.Nstop(),fine.Nk(),fine.Nm(),
|
||||
fine.stop_rsd,fine.maxits,0,0);
|
||||
if(write_fine){
|
||||
std::cout << GridLogIRL<<"Checkpointing Fine evecs"<<std::endl;
|
||||
_LocalCoherenceLanczos.checkpointFine(write_fine_file + "_evecs.scidac", write_fine_file + "_evals.xml");
|
||||
}
|
||||
}
|
||||
|
||||
//Block orthonormalise (this should be part of calcFine?)
|
||||
std::cout << GridLogIRL<<"Orthogonalising"<<std::endl;
|
||||
_LocalCoherenceLanczos.Orthogonalise();
|
||||
std::cout << GridLogIRL<<"Orthogonaled"<<std::endl;
|
||||
|
||||
ChebyParams smoother = fine.getChebyParams();
|
||||
smoother.Npoly = smoother_ord+1;
|
||||
|
||||
if(read_coarse){
|
||||
_LocalCoherenceLanczos.checkpointCoarseRestore(read_coarse_file + "_evecs.scidac", read_coarse_file + "_evals.xml",coarse.Nstop());
|
||||
|
||||
}else{
|
||||
std::cout << GridLogMessage << "Performing coarse grid IRL" << std::endl;
|
||||
std::cout << GridLogMessage << "Using Chebyshev alpha=" << coarse.alpha << " beta=" << coarse.beta << " ord=" << coarse.ch_ord << std::endl;
|
||||
_LocalCoherenceLanczos.calcCoarse(coarse.getChebyParams(), smoother, coarse_relax_tol,
|
||||
coarse.Nstop(), coarse.Nk() ,coarse.Nm(),
|
||||
coarse.stop_rsd, coarse.maxits,
|
||||
0,0);
|
||||
|
||||
if(write_coarse){
|
||||
std::cout << GridLogIRL<<"Checkpointing Coarse evecs"<<std::endl;
|
||||
_LocalCoherenceLanczos.checkpointCoarse(write_coarse_file + "_evecs.scidac", write_coarse_file + "_evals.xml");
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//Test the eigenvectors
|
||||
FermionField evec(FrbGrid);
|
||||
FermionField tmp(FrbGrid);
|
||||
RealD eval;
|
||||
|
||||
for(int i=0;i<coarse.N_true_get;i++){
|
||||
_LocalCoherenceLanczos.getFineEvecEval(evec, eval, i);
|
||||
SchurOp.HermOp(evec, tmp);
|
||||
tmp = tmp - eval*evec;
|
||||
std::cout << GridLogMessage << "Eval " << eval << " resid " << sqrt(norm2(tmp)) << std::endl;
|
||||
}
|
||||
|
||||
Grid_finalize();
|
||||
}
|
||||
|
@ -31,14 +31,38 @@ using namespace std;
|
||||
using namespace Grid;
|
||||
;
|
||||
|
||||
typedef typename GparityDomainWallFermionR::FermionField FermionField;
|
||||
template<typename Action>
|
||||
struct Setup{};
|
||||
|
||||
RealD AllZero(RealD x){ return 0.;}
|
||||
template<>
|
||||
struct Setup<GparityMobiusFermionR>{
|
||||
static GparityMobiusFermionR* getAction(LatticeGaugeField &Umu,
|
||||
GridCartesian* FGrid, GridRedBlackCartesian* FrbGrid, GridCartesian* UGrid, GridRedBlackCartesian* UrbGrid){
|
||||
RealD mass=0.01;
|
||||
RealD M5=1.8;
|
||||
RealD mob_b=1.5;
|
||||
GparityMobiusFermionD ::ImplParams params;
|
||||
std::vector<int> twists({1,1,1,0});
|
||||
params.twists = twists;
|
||||
return new GparityMobiusFermionR(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,mob_b,mob_b-1.,params);
|
||||
}
|
||||
};
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
Grid_init(&argc,&argv);
|
||||
template<>
|
||||
struct Setup<DomainWallFermionR>{
|
||||
static DomainWallFermionR* getAction(LatticeGaugeField &Umu,
|
||||
GridCartesian* FGrid, GridRedBlackCartesian* FrbGrid, GridCartesian* UGrid, GridRedBlackCartesian* UrbGrid){
|
||||
RealD mass=0.01;
|
||||
RealD M5=1.8;
|
||||
return new DomainWallFermionR(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
template<typename Action>
|
||||
void run(){
|
||||
typedef typename Action::FermionField FermionField;
|
||||
const int Ls=8;
|
||||
|
||||
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
|
||||
@ -56,24 +80,10 @@ int main (int argc, char ** argv)
|
||||
LatticeGaugeField Umu(UGrid);
|
||||
SU<Nc>::HotConfiguration(RNG4, Umu);
|
||||
|
||||
std::vector<LatticeColourMatrix> U(4,UGrid);
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
U[mu] = PeekIndex<LorentzIndex>(Umu,mu);
|
||||
}
|
||||
|
||||
RealD mass=0.01;
|
||||
RealD M5=1.8;
|
||||
RealD mob_b=1.5;
|
||||
// DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
|
||||
GparityMobiusFermionD ::ImplParams params;
|
||||
std::vector<int> twists({1,1,1,0});
|
||||
params.twists = twists;
|
||||
GparityMobiusFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,mob_b,mob_b-1.,params);
|
||||
|
||||
// MdagMLinearOperator<DomainWallFermionR,LatticeFermion> HermOp(Ddwf);
|
||||
// SchurDiagTwoOperator<DomainWallFermionR,LatticeFermion> HermOp(Ddwf);
|
||||
SchurDiagTwoOperator<GparityMobiusFermionR,FermionField> HermOp(Ddwf);
|
||||
// SchurDiagMooeeOperator<DomainWallFermionR,LatticeFermion> HermOp(Ddwf);
|
||||
Action *action = Setup<Action>::getAction(Umu,FGrid,FrbGrid,UGrid,UrbGrid);
|
||||
|
||||
//MdagMLinearOperator<Action,FermionField> HermOp(Ddwf);
|
||||
SchurDiagTwoOperator<Action,FermionField> HermOp(*action);
|
||||
|
||||
const int Nstop = 30;
|
||||
const int Nk = 40;
|
||||
@ -90,8 +100,7 @@ int main (int argc, char ** argv)
|
||||
PlainHermOp<FermionField> Op (HermOp);
|
||||
|
||||
ImplicitlyRestartedLanczos<FermionField> IRL(OpCheby,Op,Nstop,Nk,Nm,resid,MaxIt);
|
||||
|
||||
|
||||
|
||||
std::vector<RealD> eval(Nm);
|
||||
FermionField src(FrbGrid);
|
||||
gaussian(RNG5rb,src);
|
||||
@ -103,6 +112,28 @@ int main (int argc, char ** argv)
|
||||
int Nconv;
|
||||
IRL.calc(eval,evec,src,Nconv);
|
||||
|
||||
delete action;
|
||||
}
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
std::string action = "GparityMobius";
|
||||
for(int i=1;i<argc;i++){
|
||||
if(std::string(argv[i]) == "-action"){
|
||||
action = argv[i+1];
|
||||
}
|
||||
}
|
||||
|
||||
if(action == "GparityMobius"){
|
||||
run<GparityMobiusFermionR>();
|
||||
}else if(action == "DWF"){
|
||||
run<DomainWallFermionR>();
|
||||
}else{
|
||||
std::cout << "Unknown action" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
|
||||
Grid_finalize();
|
||||
}
|
||||
|
576
tests/lanczos/Test_evec_compression.cc
Normal file
576
tests/lanczos/Test_evec_compression.cc
Normal file
@ -0,0 +1,576 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/Test_evec_compression.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
/*
|
||||
*
|
||||
* This test generates eigenvectors using the Lanczos algorithm then attempts to use local coherence compression
|
||||
* to express those vectors in terms of a basis formed from a subset. This test is useful for finding the optimal
|
||||
* blocking and basis size for performing a Local Coherence Lanczos
|
||||
*/
|
||||
#include <Grid/Grid.h>
|
||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
|
||||
#include <Grid/algorithms/iterative/LocalCoherenceLanczos.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
|
||||
//For the CPS configurations we have to manually seed the RNG and deal with an incorrect factor of 2 in the plaquette metadata
|
||||
template<typename Gimpl>
|
||||
void readConfiguration(LatticeGaugeFieldD &U,
|
||||
const std::string &config,
|
||||
bool is_cps_cfg = false){
|
||||
|
||||
if(is_cps_cfg) NerscIO::exitOnReadPlaquetteMismatch() = false;
|
||||
|
||||
typedef GaugeStatistics<Gimpl> GaugeStats;
|
||||
|
||||
FieldMetaData header;
|
||||
NerscIO::readConfiguration<GaugeStats>(U, header, config);
|
||||
|
||||
if(is_cps_cfg) NerscIO::exitOnReadPlaquetteMismatch() = true;
|
||||
}
|
||||
|
||||
//Lanczos parameters in CPS conventions
|
||||
struct CPSLanczosParams : Serializable {
|
||||
public:
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(CPSLanczosParams,
|
||||
RealD, alpha,
|
||||
RealD, beta,
|
||||
int, ch_ord,
|
||||
int, N_use,
|
||||
int, N_get,
|
||||
int, N_true_get,
|
||||
RealD, stop_rsd,
|
||||
int, maxits);
|
||||
|
||||
//Translations
|
||||
ChebyParams getChebyParams() const{
|
||||
ChebyParams out;
|
||||
out.alpha = beta*beta; //aka lo
|
||||
out.beta = alpha*alpha; //aka hi
|
||||
out.Npoly = ch_ord+1;
|
||||
return out;
|
||||
}
|
||||
int Nstop() const{ return N_true_get; }
|
||||
int Nm() const{ return N_use; }
|
||||
int Nk() const{ return N_get; }
|
||||
};
|
||||
|
||||
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class LocalCoherenceCompressor{
|
||||
public:
|
||||
typedef iVector<CComplex,nbasis > CoarseSiteVector;
|
||||
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<CoarseSiteVector> CoarseField;
|
||||
typedef Lattice<Fobj> FineField;
|
||||
|
||||
void compress(std::vector<FineField> &basis,
|
||||
std::vector<CoarseField> &compressed_evecs,
|
||||
const std::vector<FineField> &evecs_in,
|
||||
GridBase *FineGrid,
|
||||
GridBase *CoarseGrid){
|
||||
int nevecs = evecs_in.size();
|
||||
assert(nevecs > nbasis);
|
||||
|
||||
//Construct the basis
|
||||
basis.resize(nbasis, FineGrid);
|
||||
for(int b=0;b<nbasis;b++) basis[b] = evecs_in[b];
|
||||
|
||||
//Block othornormalize basis
|
||||
CoarseScalar InnerProd(CoarseGrid);
|
||||
std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
|
||||
blockOrthogonalise(InnerProd,basis);
|
||||
std::cout << GridLogMessage <<" Gramm-Schmidt pass 2"<<std::endl;
|
||||
blockOrthogonalise(InnerProd,basis);
|
||||
|
||||
//The coarse grid representation is the field of vectors of block inner products
|
||||
std::cout << GridLogMessage << "Compressing eigevectors" << std::endl;
|
||||
compressed_evecs.resize(nevecs, CoarseGrid);
|
||||
for(int i=0;i<nevecs;i++) blockProject(compressed_evecs[i], evecs_in[i], basis);
|
||||
std::cout << GridLogMessage << "Compression complete" << std::endl;
|
||||
}
|
||||
|
||||
void uncompress(FineField &evec, const int i, const std::vector<FineField> &basis, const std::vector<CoarseField> &compressed_evecs) const{
|
||||
blockPromote(compressed_evecs[i],evec,basis);
|
||||
}
|
||||
|
||||
//Test uncompressed eigenvectors of Linop.HermOp to precision 'base_tolerance' for i<nbasis and 'base_tolerance*relax' for i>=nbasis
|
||||
//Because the uncompressed evec has a lot of high mode noise (unimportant for deflation) we apply a smoother before testing.
|
||||
//The Chebyshev used by the Lanczos should be sufficient as a smoother
|
||||
bool testCompression(LinearOperatorBase<FineField> &Linop, OperatorFunction<FineField> &smoother,
|
||||
const std::vector<FineField> &basis, const std::vector<CoarseField> &compressed_evecs, const std::vector<RealD> &evals,
|
||||
const RealD base_tolerance, const RealD relax){
|
||||
std::cout << GridLogMessage << "Testing quality of uncompressed evecs (after smoothing)" << std::endl;
|
||||
|
||||
GridBase* FineGrid = basis[0].Grid();
|
||||
GridBase* CoarseGrid = compressed_evecs[0].Grid();
|
||||
|
||||
bool fail = false;
|
||||
FineField evec(FineGrid), Mevec(FineGrid), evec_sm(FineGrid);
|
||||
for(int i=0;i<compressed_evecs.size();i++){
|
||||
std::cout << GridLogMessage << "Uncompressing evec " << i << std::endl;
|
||||
uncompress(evec, i, basis, compressed_evecs);
|
||||
|
||||
std::cout << GridLogMessage << "Smoothing evec " << i << std::endl;
|
||||
smoother(Linop, evec, evec_sm);
|
||||
|
||||
std::cout << GridLogMessage << "Computing residual for evec " << i << std::endl;
|
||||
std::cout << GridLogMessage << "Linop" << std::endl;
|
||||
Linop.HermOp(evec_sm, Mevec);
|
||||
std::cout << GridLogMessage << "Linalg" << std::endl;
|
||||
Mevec = Mevec - evals[i]*evec_sm;
|
||||
|
||||
std::cout << GridLogMessage << "Resid" << std::endl;
|
||||
RealD tol = base_tolerance * (i<nbasis ? 1. : relax);
|
||||
RealD res = sqrt(norm2(Mevec));
|
||||
std::cout << GridLogMessage << "Evec idx " << i << " res " << res << " tol " << tol << std::endl;
|
||||
if(res > tol) fail = true;
|
||||
}
|
||||
return fail;
|
||||
}
|
||||
|
||||
//Compare uncompressed evecs to original evecs
|
||||
void compareEvecs(const std::vector<FineField> &basis, const std::vector<CoarseField> &compressed_evecs, const std::vector<FineField> &orig_evecs){
|
||||
std::cout << GridLogMessage << "Comparing uncompressed evecs to original evecs" << std::endl;
|
||||
|
||||
GridBase* FineGrid = basis[0].Grid();
|
||||
GridBase* CoarseGrid = compressed_evecs[0].Grid();
|
||||
|
||||
FineField evec(FineGrid), diff(FineGrid);
|
||||
for(int i=0;i<compressed_evecs.size();i++){
|
||||
std::cout << GridLogMessage << "Uncompressing evec " << i << std::endl;
|
||||
uncompress(evec, i, basis, compressed_evecs);
|
||||
diff = orig_evecs[i] - evec;
|
||||
RealD res = sqrt(norm2(diff));
|
||||
std::cout << GridLogMessage << "Evec idx " << i << " res " << res << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
void compareBlockPromoteTimings(const std::vector<Lattice<Fobj> > &basis, const std::vector<Lattice<iVector<CComplex,nbasis > > > &compressed_evecs){
|
||||
typedef iVector<CComplex,nbasis > CoarseSiteVector;
|
||||
typedef Lattice<CComplex> CoarseScalar;
|
||||
typedef Lattice<CoarseSiteVector> CoarseField;
|
||||
typedef Lattice<Fobj> FineField;
|
||||
|
||||
GridStopWatch timer;
|
||||
|
||||
GridBase* FineGrid = basis[0].Grid();
|
||||
GridBase* CoarseGrid = compressed_evecs[0].Grid();
|
||||
|
||||
FineField v1(FineGrid), v2(FineGrid);
|
||||
|
||||
//Start with a cold start
|
||||
for(int i=0;i<basis.size();i++){
|
||||
autoView( b_ , basis[i], CpuWrite);
|
||||
}
|
||||
for(int i=0;i<compressed_evecs.size();i++){
|
||||
autoView( b_ , compressed_evecs[i], CpuWrite);
|
||||
}
|
||||
{
|
||||
autoView( b_, v1, CpuWrite );
|
||||
}
|
||||
|
||||
timer.Start();
|
||||
blockPromote(compressed_evecs[0],v1,basis);
|
||||
timer.Stop();
|
||||
std::cout << GridLogMessage << "Time for cold blockPromote v1 " << timer.Elapsed() << std::endl;
|
||||
|
||||
//Test to ensure it is actually doing a cold start by repeating
|
||||
for(int i=0;i<basis.size();i++){
|
||||
autoView( b_ , basis[i], CpuWrite);
|
||||
}
|
||||
for(int i=0;i<compressed_evecs.size();i++){
|
||||
autoView( b_ , compressed_evecs[i], CpuWrite);
|
||||
}
|
||||
{
|
||||
autoView( b_, v1, CpuWrite );
|
||||
}
|
||||
|
||||
timer.Reset();
|
||||
timer.Start();
|
||||
blockPromote(compressed_evecs[0],v1,basis);
|
||||
timer.Stop();
|
||||
std::cout << GridLogMessage << "Time for cold blockPromote v1 repeat (should be the same as above) " << timer.Elapsed() << std::endl;
|
||||
}
|
||||
|
||||
struct Args{
|
||||
int Ls;
|
||||
RealD mass;
|
||||
RealD M5;
|
||||
bool is_cps_cfg;
|
||||
RealD mobius_scale; //b+c
|
||||
|
||||
CPSLanczosParams fine;
|
||||
double coarse_relax_tol;
|
||||
|
||||
std::vector<int> blockSize;
|
||||
std::vector<int> GparityDirs;
|
||||
|
||||
bool write_fine;
|
||||
std::string write_fine_file;
|
||||
bool read_fine;
|
||||
std::string read_fine_file;
|
||||
|
||||
int basis_size;
|
||||
|
||||
Args(){
|
||||
blockSize = {2,2,2,2,2};
|
||||
GparityDirs = {1,1,1}; //1 for each GP direction
|
||||
|
||||
Ls = 12;
|
||||
mass = 0.01;
|
||||
M5 = 1.8;
|
||||
is_cps_cfg = false;
|
||||
mobius_scale = 2;
|
||||
|
||||
fine.alpha = 2;
|
||||
fine.beta = 0.1;
|
||||
fine.ch_ord = 100;
|
||||
fine.N_use = 70;
|
||||
fine.N_get = 60;
|
||||
fine.N_true_get = 60;
|
||||
fine.stop_rsd = 1e-8;
|
||||
fine.maxits = 10000;
|
||||
|
||||
coarse_relax_tol = 1e5;
|
||||
|
||||
write_fine = false;
|
||||
read_fine = false;
|
||||
|
||||
basis_size = 100;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
GparityWilsonImplD::ImplParams setupGparityParams(const std::vector<int> &GparityDirs){
|
||||
//Setup G-parity BCs
|
||||
assert(Nd == 4);
|
||||
std::vector<int> dirs4(4);
|
||||
for(int i=0;i<3;i++) dirs4[i] = GparityDirs[i];
|
||||
dirs4[3] = 0; //periodic gauge BC in time
|
||||
|
||||
std::cout << GridLogMessage << "Gauge BCs: " << dirs4 << std::endl;
|
||||
ConjugateGimplD::setDirections(dirs4); //gauge BC
|
||||
|
||||
GparityWilsonImplD::ImplParams Params;
|
||||
for(int i=0;i<Nd-1;i++) Params.twists[i] = GparityDirs[i]; //G-parity directions
|
||||
Params.twists[Nd-1] = 1; //APBC in time direction
|
||||
std::cout << GridLogMessage << "Fermion BCs: " << Params.twists << std::endl;
|
||||
return Params;
|
||||
}
|
||||
|
||||
WilsonImplD::ImplParams setupParams(){
|
||||
WilsonImplD::ImplParams Params;
|
||||
Complex one(1.0);
|
||||
Complex mone(-1.0);
|
||||
for(int i=0;i<Nd-1;i++) Params.boundary_phases[i] = one;
|
||||
Params.boundary_phases[Nd-1] = mone;
|
||||
return Params;
|
||||
}
|
||||
|
||||
template<int nbasis, typename ActionType>
|
||||
void run_b(ActionType &action, const std::string &config, const Args &args){
|
||||
//Fine grids
|
||||
GridCartesian * UGrid = (GridCartesian*)action.GaugeGrid();
|
||||
GridRedBlackCartesian * UrbGrid = (GridRedBlackCartesian*)action.GaugeRedBlackGrid();
|
||||
GridCartesian * FGrid = (GridCartesian*)action.FermionGrid();
|
||||
GridRedBlackCartesian * FrbGrid = (GridRedBlackCartesian*)action.FermionRedBlackGrid();
|
||||
|
||||
//Setup the coarse grids
|
||||
auto fineLatt = GridDefaultLatt();
|
||||
Coordinate coarseLatt(4);
|
||||
for (int d=0;d<4;d++){
|
||||
coarseLatt[d] = fineLatt[d]/args.blockSize[d]; assert(coarseLatt[d]*args.blockSize[d]==fineLatt[d]);
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage<< " 5d coarse lattice is ";
|
||||
for (int i=0;i<4;i++){
|
||||
std::cout << coarseLatt[i]<<"x";
|
||||
}
|
||||
int cLs = args.Ls/args.blockSize[4]; assert(cLs*args.blockSize[4]==args.Ls);
|
||||
std::cout << cLs<<std::endl;
|
||||
|
||||
GridCartesian * CoarseGrid4 = SpaceTimeGrid::makeFourDimGrid(coarseLatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
|
||||
GridRedBlackCartesian * CoarseGrid4rb = SpaceTimeGrid::makeFourDimRedBlackGrid(CoarseGrid4);
|
||||
GridCartesian * CoarseGrid5 = SpaceTimeGrid::makeFiveDimGrid(cLs,CoarseGrid4);
|
||||
typedef vTComplex CComplex;
|
||||
typedef iVector<CComplex,nbasis > CoarseSiteVector;
|
||||
typedef Lattice<CComplex> CoarseScalar;
|
||||
typedef Lattice<CoarseSiteVector> CoarseField;
|
||||
|
||||
typedef typename ActionType::FermionField FermionField;
|
||||
|
||||
SchurDiagTwoOperator<ActionType,FermionField> SchurOp(action);
|
||||
|
||||
typedef typename ActionType::SiteSpinor SiteSpinor;
|
||||
|
||||
const CPSLanczosParams &fine = args.fine;
|
||||
|
||||
//Do the fine Lanczos
|
||||
std::vector<RealD> evals;
|
||||
std::vector<FermionField> evecs;
|
||||
|
||||
if(args.read_fine){
|
||||
evals.resize(fine.N_true_get);
|
||||
evecs.resize(fine.N_true_get, FrbGrid);
|
||||
|
||||
std::string evals_file = args.read_fine_file + "_evals.xml";
|
||||
std::string evecs_file = args.read_fine_file + "_evecs.scidac";
|
||||
|
||||
std::cout << GridLogIRL<< "Reading evals from "<<evals_file<<std::endl;
|
||||
XmlReader RDx(evals_file);
|
||||
read(RDx,"evals",evals);
|
||||
|
||||
assert(evals.size()==fine.N_true_get);
|
||||
|
||||
std::cout << GridLogIRL<< "Reading evecs from "<<evecs_file<<std::endl;
|
||||
emptyUserRecord record;
|
||||
Grid::ScidacReader RD ;
|
||||
RD.open(evecs_file);
|
||||
for(int k=0;k<fine.N_true_get;k++) {
|
||||
evecs[k].Checkerboard()=Odd;
|
||||
RD.readScidacFieldRecord(evecs[k],record);
|
||||
|
||||
}
|
||||
RD.close();
|
||||
}else{
|
||||
int Nstop = fine.Nstop(); //==N_true_get
|
||||
int Nm = fine.Nm();
|
||||
int Nk = fine.Nk();
|
||||
RealD resid = fine.stop_rsd;
|
||||
int MaxIt = fine.maxits;
|
||||
|
||||
assert(nbasis<=Nm);
|
||||
Chebyshev<FermionField> Cheby(fine.getChebyParams());
|
||||
FunctionHermOp<FermionField> ChebyOp(Cheby,SchurOp);
|
||||
PlainHermOp<FermionField> Op(SchurOp);
|
||||
|
||||
evals.resize(Nm);
|
||||
evecs.resize(Nm,FrbGrid);
|
||||
|
||||
ImplicitlyRestartedLanczos<FermionField> IRL(ChebyOp,Op,Nstop,Nk,Nm,resid,MaxIt,0,0);
|
||||
|
||||
FermionField src(FrbGrid);
|
||||
typedef typename FermionField::scalar_type Scalar;
|
||||
src=Scalar(1.0);
|
||||
src.Checkerboard() = Odd;
|
||||
|
||||
int Nconv;
|
||||
IRL.calc(evals, evecs,src,Nconv,false);
|
||||
if(Nconv < Nstop) assert(0 && "Fine lanczos failed to converge the required number of evecs"); //algorithm doesn't consider this a failure
|
||||
if(Nconv > Nstop){
|
||||
//Yes this potentially throws away some evecs but it is better than having a random number of evecs between Nstop and Nm!
|
||||
evals.resize(Nstop);
|
||||
evecs.resize(Nstop, FrbGrid);
|
||||
}
|
||||
|
||||
if(args.write_fine){
|
||||
std::string evals_file = args.write_fine_file + "_evals.xml";
|
||||
std::string evecs_file = args.write_fine_file + "_evecs.scidac";
|
||||
|
||||
std::cout << GridLogIRL<< "Writing evecs to "<<evecs_file<<std::endl;
|
||||
|
||||
emptyUserRecord record;
|
||||
Grid::ScidacWriter WR(FrbGrid->IsBoss());
|
||||
WR.open(evecs_file);
|
||||
for(int k=0;k<evecs.size();k++) {
|
||||
WR.writeScidacFieldRecord(evecs[k],record);
|
||||
}
|
||||
WR.close();
|
||||
|
||||
std::cout << GridLogIRL<< "Writing evals to "<<evals_file<<std::endl;
|
||||
|
||||
XmlWriter WRx(evals_file);
|
||||
write(WRx,"evals",evals);
|
||||
}
|
||||
}
|
||||
|
||||
//Do the compression
|
||||
LocalCoherenceCompressor<SiteSpinor,vTComplex,nbasis> compressor;
|
||||
std::vector<FermionField> basis(nbasis,FrbGrid);
|
||||
std::vector<CoarseField> compressed_evecs(evecs.size(),CoarseGrid5);
|
||||
|
||||
compressor.compress(basis, compressed_evecs, evecs, FrbGrid, CoarseGrid5);
|
||||
|
||||
compareBlockPromoteTimings(basis, compressed_evecs);
|
||||
|
||||
//Compare uncompressed and original evecs
|
||||
compressor.compareEvecs(basis, compressed_evecs, evecs);
|
||||
|
||||
//Create the smoother
|
||||
Chebyshev<FermionField> smoother(fine.getChebyParams());
|
||||
|
||||
//Test the quality of the uncompressed evecs
|
||||
assert( compressor.testCompression(SchurOp, smoother, basis, compressed_evecs, evals, fine.stop_rsd, args.coarse_relax_tol) );
|
||||
}
|
||||
|
||||
template<typename ActionType>
|
||||
void run(ActionType &action, const std::string &config, const Args &args){
|
||||
switch(args.basis_size){
|
||||
case 50:
|
||||
return run_b<50>(action,config,args);
|
||||
case 100:
|
||||
return run_b<100>(action,config,args);
|
||||
case 150:
|
||||
return run_b<150>(action,config,args);
|
||||
case 200:
|
||||
return run_b<200>(action,config,args);
|
||||
case 250:
|
||||
return run_b<250>(action,config,args);
|
||||
default:
|
||||
assert(0 && "Unsupported basis size: allowed values are 50,100,200");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
//Note: because we rely upon physical properties we must use a "real" gauge configuration
|
||||
int main (int argc, char ** argv) {
|
||||
Grid_init(&argc,&argv);
|
||||
GridLogIRL.TimingMode(1);
|
||||
|
||||
if(argc < 3){
|
||||
std::cout << GridLogMessage << "Usage: <exe> <config file> <gparity dirs> <options>" << std::endl;
|
||||
std::cout << GridLogMessage << "<gparity dirs> should have the format a.b.c where a,b,c are 0,1 depending on whether there are G-parity BCs in that direction" << std::endl;
|
||||
std::cout << GridLogMessage << "Options:" << std::endl;
|
||||
std::cout << GridLogMessage << "--Ls <value> : Set Ls (default 12)" << std::endl;
|
||||
std::cout << GridLogMessage << "--mass <value> : Set the mass (default 0.01)" << std::endl;
|
||||
std::cout << GridLogMessage << "--block <value> : Set the block size. Format should be a.b.c.d.e where a-e are the block extents (default 2.2.2.2.2)" << std::endl;
|
||||
std::cout << GridLogMessage << "--is_cps_cfg : Indicate that the configuration was generated with CPS where until recently the stored plaquette was wrong by a factor of 2" << std::endl;
|
||||
std::cout << GridLogMessage << "--write_irl_templ: Write a template for the parameters file of the Lanczos to \"irl_templ.xml\"" << std::endl;
|
||||
std::cout << GridLogMessage << "--read_irl_fine <filename>: Real the parameters file for the fine Lanczos" << std::endl;
|
||||
std::cout << GridLogMessage << "--write_fine <filename stub>: Write fine evecs/evals to filename starting with the stub" << std::endl;
|
||||
std::cout << GridLogMessage << "--read_fine <filename stub>: Read fine evecs/evals from filename starting with the stub" << std::endl;
|
||||
std::cout << GridLogMessage << "--coarse_relax_tol : Set the relaxation parameter for evaluating the residual of the reconstructed eigenvectors outside of the basis (default 1e5)" << std::endl;
|
||||
std::cout << GridLogMessage << "--action : Set the action from 'DWF', 'Mobius' (default Mobius)" << std::endl;
|
||||
std::cout << GridLogMessage << "--mobius_scale : Set the Mobius scale b+c (default 2)" << std::endl;
|
||||
std::cout << GridLogMessage << "--basis_size : Set the basis size from 50,100,150,200,250 (default 100)" << std::endl;
|
||||
|
||||
Grid_finalize();
|
||||
return 1;
|
||||
}
|
||||
std::string config = argv[1];
|
||||
|
||||
Args args;
|
||||
GridCmdOptionIntVector(argv[2], args.GparityDirs);
|
||||
assert(args.GparityDirs.size() == 3);
|
||||
|
||||
std::string action_s = "Mobius";
|
||||
|
||||
for(int i=3;i<argc;i++){
|
||||
std::string sarg = argv[i];
|
||||
if(sarg == "--Ls"){
|
||||
args.Ls = std::stoi(argv[i+1]);
|
||||
std::cout << GridLogMessage << "Set Ls to " << args.Ls << std::endl;
|
||||
}else if(sarg == "--mass"){
|
||||
std::istringstream ss(argv[i+1]); ss >> args.mass;
|
||||
std::cout << GridLogMessage << "Set quark mass to " << args.mass << std::endl;
|
||||
}else if(sarg == "--block"){
|
||||
GridCmdOptionIntVector(argv[i+1], args.blockSize);
|
||||
assert(args.blockSize.size() == 5);
|
||||
std::cout << GridLogMessage << "Set block size to ";
|
||||
for(int q=0;q<5;q++) std::cout << args.blockSize[q] << " ";
|
||||
std::cout << std::endl;
|
||||
}else if(sarg == "--is_cps_cfg"){
|
||||
args.is_cps_cfg = true;
|
||||
}else if(sarg == "--write_irl_templ"){
|
||||
XmlWriter writer("irl_templ.xml");
|
||||
write(writer,"Params",args.fine);
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}else if(sarg == "--read_irl_fine"){
|
||||
std::cout << GridLogMessage << "Reading fine IRL params from " << argv[i+1] << std::endl;
|
||||
XmlReader reader(argv[i+1]);
|
||||
read(reader, "Params", args.fine);
|
||||
}else if(sarg == "--write_fine"){
|
||||
args.write_fine = true;
|
||||
args.write_fine_file = argv[i+1];
|
||||
}else if(sarg == "--read_fine"){
|
||||
args.read_fine = true;
|
||||
args.read_fine_file = argv[i+1];
|
||||
}else if(sarg == "--coarse_relax_tol"){
|
||||
std::istringstream ss(argv[i+1]); ss >> args.coarse_relax_tol;
|
||||
std::cout << GridLogMessage << "Set coarse IRL relaxation parameter to " << args.coarse_relax_tol << std::endl;
|
||||
}else if(sarg == "--action"){
|
||||
action_s = argv[i+1];
|
||||
std::cout << "Action set to " << action_s << std::endl;
|
||||
}else if(sarg == "--mobius_scale"){
|
||||
std::istringstream ss(argv[i+1]); ss >> args.mobius_scale;
|
||||
std::cout << GridLogMessage << "Set Mobius scale to " << args.mobius_scale << std::endl;
|
||||
}else if(sarg == "--basis_size"){
|
||||
args.basis_size = std::stoi(argv[i+1]);
|
||||
std::cout << GridLogMessage << "Set basis size to " << args.basis_size << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
//Fine grids
|
||||
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
|
||||
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(args.Ls,UGrid);
|
||||
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(args.Ls,UGrid);
|
||||
|
||||
LatticeGaugeField Umu(UGrid);
|
||||
|
||||
bool is_gparity = false;
|
||||
for(auto g : args.GparityDirs) if(g) is_gparity = true;
|
||||
|
||||
double bmc = 1.;
|
||||
double b = (args.mobius_scale + bmc)/2.; // b = 1/2 [ (b+c) + (b-c) ]
|
||||
double c = (args.mobius_scale - bmc)/2.; // c = 1/2 [ (b+c) - (b-c) ]
|
||||
|
||||
if(is_gparity){
|
||||
GparityWilsonImplD::ImplParams Params = setupGparityParams(args.GparityDirs);
|
||||
readConfiguration<ConjugateGimplD>(Umu, config, args.is_cps_cfg); //Read the gauge field
|
||||
|
||||
if(action_s == "DWF"){
|
||||
GparityDomainWallFermionD action(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, args.mass, args.M5, Params);
|
||||
run(action, config, args);
|
||||
}else if(action_s == "Mobius"){
|
||||
GparityMobiusFermionD action(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, args.mass, args.M5, b, c, Params);
|
||||
run(action, config, args);
|
||||
}
|
||||
}else{
|
||||
WilsonImplD::ImplParams Params = setupParams();
|
||||
readConfiguration<PeriodicGimplD>(Umu, config, args.is_cps_cfg); //Read the gauge field
|
||||
|
||||
if(action_s == "DWF"){
|
||||
DomainWallFermionD action(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, args.mass, args.M5, Params);
|
||||
run(action, config, args);
|
||||
}else if(action_s == "Mobius"){
|
||||
MobiusFermionD action(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, args.mass, args.M5, b, c, Params);
|
||||
run(action, config, args);
|
||||
}
|
||||
}
|
||||
|
||||
Grid_finalize();
|
||||
}
|
184
tests/solver/Test_dwf_multishift_mixedprec.cc
Normal file
184
tests/solver/Test_dwf_multishift_mixedprec.cc
Normal file
@ -0,0 +1,184 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/Test_dwf_multishift_mixedprec.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace Grid;
|
||||
|
||||
template<typename SpeciesD, typename SpeciesF, typename GaugeStatisticsType>
|
||||
void run_test(int argc, char ** argv, const typename SpeciesD::ImplParams ¶ms){
|
||||
const int Ls = 16;
|
||||
GridCartesian* UGrid_d = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexD::Nsimd()), GridDefaultMpi());
|
||||
GridRedBlackCartesian* UrbGrid_d = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_d);
|
||||
GridCartesian* FGrid_d = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid_d);
|
||||
GridRedBlackCartesian* FrbGrid_d = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid_d);
|
||||
|
||||
GridCartesian* UGrid_f = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
|
||||
GridRedBlackCartesian* UrbGrid_f = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_f);
|
||||
GridCartesian* FGrid_f = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid_f);
|
||||
GridRedBlackCartesian* FrbGrid_f = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid_f);
|
||||
|
||||
typedef typename SpeciesD::FermionField FermionFieldD;
|
||||
typedef typename SpeciesF::FermionField FermionFieldF;
|
||||
|
||||
std::vector<int> seeds4({1, 2, 3, 4});
|
||||
std::vector<int> seeds5({5, 6, 7, 8});
|
||||
GridParallelRNG RNG5(FGrid_d);
|
||||
RNG5.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG4(UGrid_d);
|
||||
RNG4.SeedFixedIntegers(seeds4);
|
||||
|
||||
FermionFieldD src_d(FGrid_d);
|
||||
random(RNG5, src_d);
|
||||
|
||||
LatticeGaugeFieldD Umu_d(UGrid_d);
|
||||
|
||||
//CPS-created G-parity ensembles have a factor of 2 error in the plaquette that causes the read to fail unless we workaround it
|
||||
bool gparity_plaquette_fix = false;
|
||||
for(int i=1;i<argc;i++){
|
||||
if(std::string(argv[i]) == "--gparity_plaquette_fix"){
|
||||
gparity_plaquette_fix=true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
bool cfg_loaded=false;
|
||||
for(int i=1;i<argc;i++){
|
||||
if(std::string(argv[i]) == "--load_config"){
|
||||
assert(i != argc-1);
|
||||
std::string file = argv[i+1];
|
||||
NerscIO io;
|
||||
FieldMetaData metadata;
|
||||
|
||||
if(gparity_plaquette_fix) NerscIO::exitOnReadPlaquetteMismatch() = false;
|
||||
|
||||
io.readConfiguration<GaugeStatisticsType>(Umu_d, metadata, file);
|
||||
|
||||
if(gparity_plaquette_fix){
|
||||
metadata.plaquette *= 2.; //correct header value
|
||||
|
||||
//Get the true plaquette
|
||||
FieldMetaData tmp;
|
||||
GaugeStatisticsType gs; gs(Umu_d, tmp);
|
||||
|
||||
std::cout << "After correction: plaqs " << tmp.plaquette << " " << metadata.plaquette << std::endl;
|
||||
assert(fabs(tmp.plaquette -metadata.plaquette ) < 1.0e-5 );
|
||||
}
|
||||
|
||||
cfg_loaded=true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if(!cfg_loaded)
|
||||
SU<Nc>::HotConfiguration(RNG4, Umu_d);
|
||||
|
||||
LatticeGaugeFieldF Umu_f(UGrid_f);
|
||||
precisionChange(Umu_f, Umu_d);
|
||||
|
||||
std::cout << GridLogMessage << "Lattice dimensions: " << GridDefaultLatt() << " Ls: " << Ls << std::endl;
|
||||
|
||||
RealD mass = 0.01;
|
||||
RealD M5 = 1.8;
|
||||
SpeciesD Ddwf_d(Umu_d, *FGrid_d, *FrbGrid_d, *UGrid_d, *UrbGrid_d, mass, M5, params);
|
||||
SpeciesF Ddwf_f(Umu_f, *FGrid_f, *FrbGrid_f, *UGrid_f, *UrbGrid_f, mass, M5, params);
|
||||
|
||||
FermionFieldD src_o_d(FrbGrid_d);
|
||||
pickCheckerboard(Odd, src_o_d, src_d);
|
||||
|
||||
SchurDiagMooeeOperator<SpeciesD, FermionFieldD> HermOpEO_d(Ddwf_d);
|
||||
SchurDiagMooeeOperator<SpeciesF, FermionFieldF> HermOpEO_f(Ddwf_f);
|
||||
|
||||
AlgRemez remez(1e-4, 64, 50);
|
||||
int order = 15;
|
||||
remez.generateApprox(order, 1, 2); //sqrt
|
||||
|
||||
MultiShiftFunction shifts(remez, 1e-10, false);
|
||||
|
||||
int relup_freq = 50;
|
||||
double t1=usecond();
|
||||
ConjugateGradientMultiShiftMixedPrec<FermionFieldD,FermionFieldF> mcg(10000, shifts, FrbGrid_f, HermOpEO_f, relup_freq);
|
||||
|
||||
std::vector<FermionFieldD> results_o_d(order, FrbGrid_d);
|
||||
mcg(HermOpEO_d, src_o_d, results_o_d);
|
||||
double t2=usecond();
|
||||
|
||||
//Crosscheck double and mixed prec results
|
||||
ConjugateGradientMultiShift<FermionFieldD> dmcg(10000, shifts);
|
||||
std::vector<FermionFieldD> results_o_d_2(order, FrbGrid_d);
|
||||
dmcg(HermOpEO_d, src_o_d, results_o_d_2);
|
||||
double t3=usecond();
|
||||
|
||||
std::cout << GridLogMessage << "Comparison of mixed prec results to double prec results |mixed - double|^2 :" << std::endl;
|
||||
FermionFieldD tmp(FrbGrid_d);
|
||||
for(int i=0;i<order;i++){
|
||||
RealD ndiff = axpy_norm(tmp, -1., results_o_d[i], results_o_d_2[i]);
|
||||
std::cout << i << " " << ndiff << std::endl;
|
||||
}
|
||||
|
||||
std::cout<<GridLogMessage << "Mixed precision algorithm: Total usec = "<< (t2-t1)<<std::endl;
|
||||
std::cout<<GridLogMessage << "Double precision algorithm: Total usec = "<< (t3-t2)<<std::endl;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
Grid_init(&argc, &argv);
|
||||
|
||||
bool gparity = false;
|
||||
int gpdir;
|
||||
|
||||
for(int i=1;i<argc;i++){
|
||||
std::string arg(argv[i]);
|
||||
if(arg == "--Gparity"){
|
||||
assert(i!=argc-1);
|
||||
gpdir = std::stoi(argv[i+1]);
|
||||
assert(gpdir >= 0 && gpdir <= 2); //spatial!
|
||||
gparity = true;
|
||||
}
|
||||
}
|
||||
if(gparity){
|
||||
std::cout << "Running test with G-parity BCs in " << gpdir << " direction" << std::endl;
|
||||
GparityWilsonImplParams params;
|
||||
params.twists[gpdir] = 1;
|
||||
|
||||
std::vector<int> conj_dirs(Nd,0);
|
||||
conj_dirs[gpdir] = 1;
|
||||
ConjugateGimplD::setDirections(conj_dirs);
|
||||
|
||||
run_test<GparityDomainWallFermionD, GparityDomainWallFermionF, ConjugateGaugeStatistics>(argc,argv,params);
|
||||
}else{
|
||||
std::cout << "Running test with periodic BCs" << std::endl;
|
||||
WilsonImplParams params;
|
||||
run_test<DomainWallFermionD, DomainWallFermionF, PeriodicGaugeStatistics>(argc,argv,params);
|
||||
}
|
||||
|
||||
Grid_finalize();
|
||||
}
|
125
tests/solver/Test_eofa_inv.cc
Normal file
125
tests/solver/Test_eofa_inv.cc
Normal file
@ -0,0 +1,125 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/solver/Test_eofa_inv.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: David Murphy <dmurphy@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
;
|
||||
|
||||
int main (int argc, char** argv)
|
||||
{
|
||||
Grid_init(&argc, &argv);
|
||||
|
||||
Coordinate latt_size = GridDefaultLatt();
|
||||
Coordinate simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
|
||||
Coordinate mpi_layout = GridDefaultMpi();
|
||||
|
||||
const int Ls = 8;
|
||||
|
||||
GridCartesian *UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
|
||||
GridRedBlackCartesian *UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridCartesian *FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
|
||||
GridRedBlackCartesian *FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
|
||||
|
||||
// Want a different conf at every run
|
||||
// First create an instance of an engine.
|
||||
std::random_device rnd_device;
|
||||
// Specify the engine and distribution.
|
||||
std::mt19937 mersenne_engine(rnd_device());
|
||||
std::uniform_int_distribution<int> dist(1, 100);
|
||||
|
||||
auto gen = std::bind(dist, mersenne_engine);
|
||||
std::vector<int> seeds4(4);
|
||||
generate(begin(seeds4), end(seeds4), gen);
|
||||
|
||||
//std::vector<int> seeds4({1,2,3,5});
|
||||
std::vector<int> seeds5({5,6,7,8});
|
||||
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
|
||||
|
||||
int threads = GridThread::GetThreads();
|
||||
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
|
||||
|
||||
LatticeFermion phi (FGrid); gaussian(RNG5, phi);
|
||||
LatticeFermion Mphi (FGrid);
|
||||
LatticeFermion MphiPrime (FGrid);
|
||||
|
||||
LatticeGaugeField U(UGrid);
|
||||
SU<Nc>::HotConfiguration(RNG4,U);
|
||||
|
||||
////////////////////////////////////
|
||||
// Unmodified matrix element
|
||||
////////////////////////////////////
|
||||
RealD b = 2.5;
|
||||
RealD c = 1.5;
|
||||
RealD mf = 0.01;
|
||||
RealD mb = 1.0;
|
||||
RealD M5 = 1.8;
|
||||
MobiusEOFAFermionR Lop(U, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mb, 0.0, -1, M5, b, c);
|
||||
MobiusEOFAFermionR Rop(U, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, mf, mb, -1.0, 1, M5, b, c);
|
||||
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-10, 12);
|
||||
ConjugateGradient<LatticeFermion> CG(1.0e-10, 5000);
|
||||
ExactOneFlavourRatioPseudoFermionAction<WilsonImplR> Meofa(Lop, Rop, CG, CG, CG, CG, CG, Params, false);
|
||||
|
||||
GridSerialRNG sRNG; sRNG.SeedFixedIntegers(seeds4);
|
||||
|
||||
|
||||
//Random field
|
||||
LatticeFermion eta(FGrid);
|
||||
gaussian(RNG5,eta);
|
||||
|
||||
//Check left inverse
|
||||
LatticeFermion Meta(FGrid);
|
||||
Meofa.Meofa(U, eta, Meta);
|
||||
|
||||
LatticeFermion MinvMeta(FGrid);
|
||||
Meofa.MeofaInv(U, Meta, MinvMeta);
|
||||
|
||||
LatticeFermion diff = MinvMeta - eta;
|
||||
|
||||
std::cout << GridLogMessage << "eta: " << norm2(eta) << " M*eta: " << norm2(Meta) << " M^{-1}*M*eta: " << norm2(MinvMeta) << " M^{-1}*M*eta - eta: " << norm2(diff) << " (expect 0)" << std::endl;
|
||||
assert(norm2(diff) < 1e-8);
|
||||
|
||||
//Check right inverse
|
||||
LatticeFermion MinvEta(FGrid);
|
||||
Meofa.MeofaInv(U, eta, MinvEta);
|
||||
|
||||
LatticeFermion MMinvEta(FGrid);
|
||||
Meofa.Meofa(U, MinvEta, MMinvEta);
|
||||
|
||||
diff = MMinvEta - eta;
|
||||
|
||||
std::cout << GridLogMessage << "eta: " << norm2(eta) << " M^{-1}*eta: " << norm2(MinvEta) << " M*M^{-1}*eta: " << norm2(MMinvEta) << " M*M^{-1}*eta - eta: " << norm2(diff) << " (expect 0)" << std::endl;
|
||||
assert(norm2(diff) < 1e-8);
|
||||
|
||||
std::cout << GridLogMessage << "Done" << std::endl;
|
||||
Grid_finalize();
|
||||
}
|
Reference in New Issue
Block a user