1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-14 05:07:05 +01:00

Compare commits

..

3 Commits

113 changed files with 1833 additions and 3544 deletions

View File

@ -12,13 +12,15 @@
#include <iostream>
#include <sys/time.h>
#define GRID_SYCL
#undef GRID_HIP
#undef GRID_CUDA
#ifdef GRID_HIP
#include <hipblas/hipblas.h>
#endif
#ifdef GRID_CUDA
#include <cublas_v2.h>
#endif
#ifdef GRID_SYCL
#include <oneapi/mkl.hpp>
@ -43,90 +45,6 @@ inline void acceleratorFreeDevice(void *ptr,size_t bytes){free(ptr,*theAccelerat
inline void acceleratorMemSet(void *base,int value,size_t bytes) { theAccelerator->memset(base,value,bytes); theAccelerator->wait();}
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { theAccelerator->memcpy(to,from,bytes); theAccelerator->wait();}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ theAccelerator->memcpy(to,from,bytes); theAccelerator->wait();}
#define accelerator_barrier(dummy) { theAccelerator->wait(); }
#endif
#ifdef GRID_HIP
hipStream_t copyStream;
hipStream_t computeStream;
void acceleratorInit(void)
{
int device = 0;
auto discard = hipSetDevice(device);
discard = hipStreamCreate(&copyStream);
discard = hipStreamCreate(&computeStream);
printf("AcceleratorHIPInit\n");
}
inline void *acceleratorAllocDevice(size_t bytes)
{
void *ptr=NULL;
auto err = hipMalloc((void **)&ptr,bytes);
if( err != hipSuccess ) {
ptr = (void *) NULL;
fprintf(stderr," hipMalloc failed for %ld %s \n",bytes,hipGetErrorString(err)); fflush(stderr);
}
return ptr;
};
inline void acceleratorFreeDevice(void *ptr,size_t bytes){ auto discard=hipFree(ptr);};
inline void acceleratorFreeDevice(void *ptr){ auto discard=hipFree(ptr);};
inline void acceleratorMemSet(void *base,int value,size_t bytes) { auto discard=hipMemset(base,value,bytes);}
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { auto discard=hipMemcpy(to,from,bytes, hipMemcpyHostToDevice);}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ auto discard=hipMemcpy(to,from,bytes, hipMemcpyDeviceToHost);}
#define accelerator_barrier(dummy) \
{ \
auto tmp=hipStreamSynchronize(computeStream); \
auto err = hipGetLastError(); \
if ( err != hipSuccess ) { \
printf("After hipDeviceSynchronize() : HIP error %s \n", hipGetErrorString( err )); \
puts(__FILE__); \
printf("Line %d\n",__LINE__); \
exit(0); \
} \
}
#endif
#ifdef GRID_CUDA
cudaStream_t copyStream;
cudaStream_t computeStream;
void acceleratorInit(void)
{
int device = 0;
cudaSetDevice(device);
cudaStreamCreate(&copyStream);
cudaStreamCreate(&computeStream);
}
inline void *acceleratorAllocDevice(size_t bytes)
{
void *ptr=NULL;
auto err = cudaMalloc((void **)&ptr,bytes);
if( err != cudaSuccess ) {
ptr = (void *) NULL;
printf(" cudaMalloc failed for %d %s \n",bytes,cudaGetErrorString(err));
}
return ptr;
};
inline void acceleratorFreeShared(void *ptr){ cudaFree(ptr);};
inline void acceleratorFreeDevice(void *ptr){ cudaFree(ptr);};
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { cudaMemcpy(to,from,bytes, cudaMemcpyHostToDevice);}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ cudaMemcpy(to,from,bytes, cudaMemcpyDeviceToHost);}
inline void acceleratorMemSet(void *base,int value,size_t bytes) { cudaMemset(base,value,bytes);}
#define accelerator_barrier(dummy) \
{ \
cudaStreamSynchronize(computeStream); \
cudaError err = cudaGetLastError(); \
if ( cudaSuccess != err ) { \
printf("accelerator_barrier(): Cuda error %s \n", \
cudaGetErrorString( err )); \
printf("File %s Line %d\n",__FILE__,__LINE__); \
fflush(stdout); \
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess); \
} \
}
#endif
template<class T> void acceleratorPut(T& dev,T&host)
{
acceleratorCopyToDevice(&host,&dev,sizeof(T));
@ -137,6 +55,9 @@ template<class T> T acceleratorGet(T& dev)
acceleratorCopyFromDevice(&dev,&host,sizeof(T));
return host;
}
#define accelerator_barrier(dummy) { theAccelerator->wait(); }
#endif
/**************************************************************
* Allocator
@ -289,270 +210,7 @@ public:
gridblasHandle->wait();
#endif
}
/////////////////////////////////////////////////////////////
// Single matrix GEMM -- fp64 and fp32
/////////////////////////////////////////////////////////////
void gemm(GridBLASOperation_t OpA,
GridBLASOperation_t OpB,
int m,int n, int k,
ComplexD alpha,
ComplexD* Amk, // Device pointer
ComplexD* Bkn,
ComplexD beta,
ComplexD* Cmn)
{
RealD t2=usecond();
assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
assert(OpB!=GridBLAS_OP_T);
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
if(OpA!=GridBLAS_OP_N)
lda = k;
if(OpB!=GridBLAS_OP_N)
ldb = n;
static deviceVector<ComplexD> alpha_p(1);
static deviceVector<ComplexD> beta_p(1);
// can prestore the 1 and the zero on device
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
RealD t0=usecond();
#ifdef GRID_HIP
hipblasOperation_t hOpA;
hipblasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
auto err = hipblasZgemm(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(hipblasDoubleComplex *) &alpha_p[0],
(hipblasDoubleComplex *) Amk, lda,
(hipblasDoubleComplex *) Bkn, ldb,
(hipblasDoubleComplex *) &beta_p[0],
(hipblasDoubleComplex *) Cmn, ldc);
assert(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasOperation_t hOpA;
cublasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
auto err = cublasZgemm(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(cuDoubleComplex *) &alpha_p[0],
(cuDoubleComplex *) Amk, lda,
(cuDoubleComplex *) Bkn, ldb,
(cuDoubleComplex *) &beta_p[0],
(cuDoubleComplex *) Cmn, ldc);
assert(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
int64_t m64=m;
int64_t n64=n;
int64_t k64=k;
int64_t lda64=lda;
int64_t ldb64=ldb;
int64_t ldc64=ldc;
oneapi::mkl::transpose iOpA;
oneapi::mkl::transpose iOpB;
if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
oneapi::mkl::blas::column_major::gemm(*gridblasHandle,
iOpA,
iOpB,
m64,n64,k64,
(ComplexD *) &alpha_p[0],
(const ComplexD *)Amk, (int64_t )lda64,
(const ComplexD *)Bkn, (int64_t )ldb64,
(ComplexD *) &beta_p[0],
(ComplexD *)Cmn, (int64_t)ldc64);
synchronise();
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
// Need a default/reference implementation; use Eigen
if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk,m,k);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn,k,n);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn,m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk,k,m);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn,k,n);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn,m,n);
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk,m,k);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn,n,k);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn,m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk,k,m);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn,n,k);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn,m,n);
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
} else {
assert(0);
}
#endif
RealD t1=usecond();
RealD flops = 8.0*m*n*k;
RealD bytes = 1.0*sizeof(ComplexD)*(m*k+k*n+m*n);
}
void gemm(GridBLASOperation_t OpA,
GridBLASOperation_t OpB,
int m,int n, int k,
ComplexF alpha,
ComplexF* Amk, // Device pointer
ComplexF* Bkn,
ComplexF beta,
ComplexF* Cmn)
{
RealD t2=usecond();
assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
assert(OpB!=GridBLAS_OP_T);
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
if(OpA!=GridBLAS_OP_N)
lda = k;
if(OpB!=GridBLAS_OP_N)
ldb = n;
static deviceVector<ComplexF> alpha_p(1);
static deviceVector<ComplexF> beta_p(1);
// can prestore the 1 and the zero on device
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexF));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexF));
RealD t0=usecond();
#ifdef GRID_HIP
hipblasOperation_t hOpA;
hipblasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
auto err = hipblasCgemm(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(hipblasComplex *) &alpha_p[0],
(hipblasComplex *) Amk, lda,
(hipblasComplex *) Bkn, ldb,
(hipblasComplex *) &beta_p[0],
(hipblasComplex *) Cmn, ldc);
assert(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasOperation_t hOpA;
cublasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
auto err = cublasCgemm(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(cuComplex *) &alpha_p[0],
(cuComplex *) Amk, lda,
(cuComplex *) Bkn, ldb,
(cuComplex *) &beta_p[0],
(cuComplex *) Cmn, ldc);
assert(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
int64_t m64=m;
int64_t n64=n;
int64_t k64=k;
int64_t lda64=lda;
int64_t ldb64=ldb;
int64_t ldc64=ldc;
oneapi::mkl::transpose iOpA;
oneapi::mkl::transpose iOpB;
if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
oneapi::mkl::blas::column_major::gemm(*gridblasHandle,
iOpA,
iOpB,
m64,n64,k64,
(ComplexF *) &alpha_p[0],
(const ComplexF *)Amk, (int64_t )lda64,
(const ComplexF *)Bkn, (int64_t )ldb64,
(ComplexF *) &beta_p[0],
(ComplexF *)Cmn, (int64_t )ldc64);
synchronise();
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
// Need a default/reference implementation; use Eigen
if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk,m,k);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn,k,n);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn,m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk,k,m);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn,k,n);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn,m,n);
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk,m,k);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn,n,k);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn,m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk,k,m);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn,n,k);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn,m,n);
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
} else {
assert(0);
}
#endif
RealD t1=usecond();
RealD flops = 8.0*m*n*k;
RealD bytes = 1.0*sizeof(ComplexF)*(m*k+k*n+m*n);
}
/////////////////////////////////////////////////////////////
void gemmBatched(int m,int n, int k,
ComplexD alpha,
deviceVector<ComplexD*> &Amk, // pointer list to matrices
@ -583,6 +241,36 @@ public:
beta,
Cmn);
}
void gemmBatched(int m,int n, int k,
RealD alpha,
deviceVector<RealD*> &Amk, // pointer list to matrices
deviceVector<RealD*> &Bkn,
RealD beta,
deviceVector<RealD*> &Cmn)
{
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
m,n,k,
alpha,
Amk,
Bkn,
beta,
Cmn);
}
void gemmBatched(int m,int n, int k,
RealF alpha,
deviceVector<RealF*> &Amk, // pointer list to matrices
deviceVector<RealF*> &Bkn,
RealF beta,
deviceVector<RealF*> &Cmn)
{
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
m,n,k,
alpha,
Amk,
Bkn,
beta,
Cmn);
}
void gemmBatched(GridBLASOperation_t OpA,
GridBLASOperation_t OpB,
@ -935,6 +623,301 @@ public:
RealD flops = 8.0*m*n*k*batchCount;
RealD bytes = 1.0*sizeof(ComplexF)*(m*k+k*n+m*n)*batchCount;
}
///////////////////////////////////////////////////////////////////////////
// Single precision real GEMM
///////////////////////////////////////////////////////////////////////////
void gemmBatched(GridBLASOperation_t OpA,
GridBLASOperation_t OpB,
int m,int n, int k,
RealF alpha,
deviceVector<RealF*> &Amk, // pointer list to matrices
deviceVector<RealF*> &Bkn,
RealF beta,
deviceVector<RealF*> &Cmn)
{
RealD t2=usecond();
int32_t batchCount = Amk.size();
assert(OpA!=GridBLAS_OP_C); // Real case no conjugate
assert(OpB!=GridBLAS_OP_C);
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
if(OpA!=GridBLAS_OP_N)
lda = k;
if(OpB!=GridBLAS_OP_N)
ldb = n;
static deviceVector<RealF> alpha_p(1);
static deviceVector<RealF> beta_p(1);
// can prestore the 1 and the zero on device
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealF));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealF));
RealD t0=usecond();
assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount);
#ifdef GRID_HIP
hipblasOperation_t hOpA;
hipblasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
auto err = hipblasSgemmBatched(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(float *) &alpha_p[0],
(float **)&Amk[0], lda,
(float **)&Bkn[0], ldb,
(float *) &beta_p[0],
(float **)&Cmn[0], ldc,
batchCount);
assert(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasOperation_t hOpA;
cublasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
auto err = cublasSgemmBatched(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(float *) &alpha_p[0],
(float **)&Amk[0], lda,
(float **)&Bkn[0], ldb,
(float *) &beta_p[0],
(float **)&Cmn[0], ldc,
batchCount);
assert(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
int64_t m64=m;
int64_t n64=n;
int64_t k64=k;
int64_t lda64=lda;
int64_t ldb64=ldb;
int64_t ldc64=ldc;
int64_t batchCount64=batchCount;
oneapi::mkl::transpose iOpA;
oneapi::mkl::transpose iOpB;
if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
&iOpA,
&iOpB,
&m64,&n64,&k64,
(float *) &alpha_p[0],
(const float **)&Amk[0], (const int64_t *)&lda64,
(const float **)&Bkn[0], (const int64_t *)&ldb64,
(float *) &beta_p[0],
(float **)&Cmn[0], (const int64_t *)&ldc64,
(int64_t)1,&batchCount64,std::vector<sycl::event>());
synchronise();
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
// Need a default/reference implementation; use Eigen
if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
} );
} else {
assert(0);
}
#endif
RealD t1=usecond();
RealD flops = 2.0*m*n*k*batchCount;
RealD bytes = 1.0*sizeof(RealF)*(m*k+k*n+m*n)*batchCount;
}
///////////////////////////////////////////////////////////////////////////
// Double precision real GEMM
///////////////////////////////////////////////////////////////////////////
void gemmBatched(GridBLASOperation_t OpA,
GridBLASOperation_t OpB,
int m,int n, int k,
RealD alpha,
deviceVector<RealD*> &Amk, // pointer list to matrices
deviceVector<RealD*> &Bkn,
RealD beta,
deviceVector<RealD*> &Cmn)
{
RealD t2=usecond();
int32_t batchCount = Amk.size();
assert(OpA!=GridBLAS_OP_C); // Real case no conjugate
assert(OpB!=GridBLAS_OP_C);
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
if(OpA!=GridBLAS_OP_N)
lda = k;
if(OpB!=GridBLAS_OP_N)
ldb = n;
static deviceVector<RealD> alpha_p(1);
static deviceVector<RealD> beta_p(1);
// can prestore the 1 and the zero on device
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealD));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealD));
RealD t0=usecond();
assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount);
#ifdef GRID_HIP
hipblasOperation_t hOpA;
hipblasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
auto err = hipblasDgemmBatched(gridblasHandle,
HIPBLAS_OP_N,
HIPBLAS_OP_N,
m,n,k,
(double *) &alpha_p[0],
(double **)&Amk[0], lda,
(double **)&Bkn[0], ldb,
(double *) &beta_p[0],
(double **)&Cmn[0], ldc,
batchCount);
assert(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasOperation_t hOpA;
cublasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
auto err = cublasDgemmBatched(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(double *) &alpha_p[0],
(double **)&Amk[0], lda,
(double **)&Bkn[0], ldb,
(double *) &beta_p[0],
(double **)&Cmn[0], ldc,
batchCount);
assert(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
int64_t m64=m;
int64_t n64=n;
int64_t k64=k;
int64_t lda64=lda;
int64_t ldb64=ldb;
int64_t ldc64=ldc;
int64_t batchCount64=batchCount;
oneapi::mkl::transpose iOpA;
oneapi::mkl::transpose iOpB;
if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
&iOpA,
&iOpB,
&m64,&n64,&k64,
(double *) &alpha_p[0],
(const double **)&Amk[0], (const int64_t *)&lda64,
(const double **)&Bkn[0], (const int64_t *)&ldb64,
(double *) &beta_p[0],
(double **)&Cmn[0], (const int64_t *)&ldc64,
(int64_t)1,&batchCount64,std::vector<sycl::event>());
synchronise();
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
// Need a default/reference implementation; use Eigen
if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
});
} else {
assert(0);
}
#endif
RealD t1=usecond();
RealD flops = 2.0*m*n*k*batchCount;
RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount;
}
template<class CComplex>
double benchmark(int M, int N, int K, int BATCH)
@ -984,47 +967,6 @@ public:
return flops; // Returns gigaflops
}
template<class CComplex>
double benchmark(int M, int N, int K)
{
int32_t N_A = M*K;
int32_t N_B = K*N;
int32_t N_C = M*N;
deviceVector<CComplex> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(CComplex));
deviceVector<CComplex> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(CComplex));
deviceVector<CComplex> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(CComplex));
CComplex alpha(1.0);
CComplex beta (1.0);
RealD flops = 8.0*M*N*K;
int ncall=10;
gemm(GridBLAS_OP_C,GridBLAS_OP_N,
M,N,K,
alpha,
&A[0], // m x k
&B[0], // k x n
beta,
&C[0]);
synchronise();
RealD t0 = usecond();
for(int i=0;i<ncall;i++){
gemm(GridBLAS_OP_N,GridBLAS_OP_N,
M,N,K,
alpha,
&A[0], // m x k
&B[0], // k x n
beta,
&C[0]);
synchronise();
}
RealD t1 = usecond();
RealD bytes = 1.0*sizeof(CComplex)*(M*N*2+N*K+M*K);
flops = 8.0*M*N*K*ncall;
flops = flops/(t1-t0)/1.e3;
return flops; // Returns gigaflops
}
};
@ -1093,21 +1035,6 @@ static void BLAS(void)
std::cout<< M<<"\t\t"<<N<<"\t\t"<<K<<"\t\t"<<BATCH<<"\t\t"<<p<<std::endl;
}}
fprintf(FP,"\n\n\n");
std::cout << "----------------------------------------------------------"<<std::endl;
std::cout << " M "<<"\t\t"<<"N"<<"\t\t\t"<<"K"<<"\t\t"<<"Gflop/s / rank (inner product matrix)"<<std::endl;
std::cout << "----------------------------------------------------------"<<std::endl;
{
int M=12;
int N=12;
std::vector<int> ks({4*1024*1024, 2*1024*1024, 1024*1024, 256*1024, 1024 });
for( int kk=0;kk<ks.size();kk++ ) {
int K = ks[kk];
double p=blas.benchmark<CComplex>(M,N,K);
fprintf(FP,"%d, %d, %d, %d, %f\n", M, N, K, 1, p);
std::cout<< M<<"\t\t"<<N<<"\t\t"<<K<<"\t\t"<<1<<"\t\t"<<p<<std::endl;
}
}
std::cout << "=================================================================================="<<std::endl;
};

View File

@ -1,2 +1,2 @@
mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench -DGRID_SYCL
mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench

View File

@ -1,5 +0,0 @@
CXX=hipcc
MPICXX=mpicxx
CXXFLAGS="-fPIC -I{$ROCM_PATH}/include/ -I${MPICH_DIR}/include -L/lib64 -I/opt/cray/pe/mpich/8.1.28/ofi/gnu/12.3/include -DGRID_HIP"
LDFLAGS="-L/lib64 -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa -lamdhip64 -lhipblas -lrocblas -lmpi_gnu_123"
hipcc $CXXFLAGS $LDFLAGS BatchBlasBench.cc -o BatchBlasBench

View File

@ -1,2 +0,0 @@
mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench -DGRID_SYCL

View File

@ -50,7 +50,6 @@ NAMESPACE_CHECK(approx);
#include <Grid/algorithms/deflation/Deflation.h>
#include <Grid/algorithms/deflation/MultiRHSBlockProject.h>
#include <Grid/algorithms/deflation/MultiRHSDeflation.h>
#include <Grid/algorithms/deflation/MultiRHSBlockCGLinalg.h>
NAMESPACE_CHECK(deflation);
#include <Grid/algorithms/iterative/ConjugateGradient.h>
NAMESPACE_CHECK(ConjGrad);

View File

@ -168,7 +168,6 @@ public:
template<class vobj>
void FFT_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int dim, int sign){
#ifndef HAVE_FFTW
std::cerr << "FFTW is not compiled but is called"<<std::endl;
assert(0);
#else
conformable(result.Grid(),vgrid);
@ -191,8 +190,7 @@ public:
Lattice<sobj> pgbuf(&pencil_g);
autoView(pgbuf_v , pgbuf, CpuWrite);
std::cout << "CPU view" << std::endl;
typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
typedef typename FFTW<scalar>::FFTW_plan FFTW_plan;
@ -215,7 +213,6 @@ public:
else if ( sign == forward ) div = 1.0;
else assert(0);
std::cout << "Making FFTW plan" << std::endl;
FFTW_plan p;
{
FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0];
@ -229,7 +226,6 @@ public:
}
// Barrel shift and collect global pencil
std::cout << "Making pencil" << std::endl;
Coordinate lcoor(Nd), gcoor(Nd);
result = source;
int pc = processor_coor[dim];
@ -251,7 +247,6 @@ public:
}
}
std::cout << "Looping orthog" << std::endl;
// Loop over orthog coords
int NN=pencil_g.lSites();
GridStopWatch timer;
@ -274,7 +269,6 @@ public:
usec += timer.useconds();
flops+= flops_call*NN;
std::cout << "Writing back results " << std::endl;
// writing out result
{
autoView(pgbuf_v,pgbuf,CpuRead);
@ -291,7 +285,6 @@ public:
}
result = result*div;
std::cout << "Destroying plan " << std::endl;
// destroying plan
FFTW<scalar>::fftw_destroy_plan(p);
#endif

View File

@ -103,38 +103,6 @@ public:
_Mat.MdagM(in,out);
}
};
template<class Matrix,class Field>
class MMdagLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
public:
MMdagLinearOperator(Matrix &Mat): _Mat(Mat){};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
_Mat.Mdiag(in,out);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
_Mat.Mdir(in,out,dir,disp);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
_Mat.MdirAll(in,out);
};
void Op (const Field &in, Field &out){
_Mat.M(in,out);
}
void AdjOp (const Field &in, Field &out){
_Mat.Mdag(in,out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
_Mat.MMdag(in,out);
ComplexD dot = innerProduct(in,out);
n1=real(dot);
n2=norm2(out);
}
void HermOp(const Field &in, Field &out){
_Mat.MMdag(in,out);
}
};
////////////////////////////////////////////////////////////////////
// Construct herm op and shift it for mgrid smoother

View File

@ -45,11 +45,6 @@ public:
M(in,tmp);
Mdag(tmp,out);
}
virtual void MMdag(const Field &in, Field &out) {
Field tmp (in.Grid());
Mdag(in,tmp);
M(tmp,out);
}
virtual void Mdiag (const Field &in, Field &out)=0;
virtual void Mdir (const Field &in, Field &out,int dir, int disp)=0;
virtual void MdirAll (const Field &in, std::vector<Field> &out)=0;

View File

@ -59,7 +59,7 @@ public:
RealD diff = hi-lo;
RealD delta = diff*1.0e-9;
for (RealD x=lo; x<hi; x+=delta) {
delta*=1.02;
delta*=1.1;
RealD f = approx(x);
out<< x<<" "<<f<<std::endl;
}
@ -131,26 +131,6 @@ public:
Coeffs[j] = s * 2.0/order;
}
};
template<class functor>
void Init(RealD _lo,RealD _hi,int _order, functor & func)
{
lo=_lo;
hi=_hi;
order=_order;
if(order < 2) exit(-1);
Coeffs.resize(order);
for(int j=0;j<order;j++){
RealD s=0;
for(int k=0;k<order;k++){
RealD y=std::cos(M_PI*(k+0.5)/order);
RealD x=0.5*(y*(hi-lo)+(hi+lo));
RealD f=func(x);
s=s+f*std::cos( j*M_PI*(k+0.5)/order );
}
Coeffs[j] = s * 2.0/order;
}
};
void JacksonSmooth(void){

View File

@ -1,376 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: MultiRHSBlockCGLinalg.h
Copyright (C) 2024
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
/* Need helper object for BLAS accelerated mrhs blockCG */
template<class Field>
class MultiRHSBlockCGLinalg
{
public:
typedef typename Field::scalar_type scalar;
typedef typename Field::scalar_object scalar_object;
typedef typename Field::vector_object vector_object;
deviceVector<scalar> BLAS_X; // nrhs x vol -- the sources
deviceVector<scalar> BLAS_Y; // nrhs x vol -- the result
deviceVector<scalar> BLAS_C; // nrhs x nrhs -- the coefficients
deviceVector<scalar> BLAS_Cred; // nrhs x nrhs x oSites -- reduction buffer
deviceVector<scalar *> Xdip;
deviceVector<scalar *> Ydip;
deviceVector<scalar *> Cdip;
MultiRHSBlockCGLinalg() {};
~MultiRHSBlockCGLinalg(){ Deallocate(); };
void Deallocate(void)
{
Xdip.resize(0);
Ydip.resize(0);
Cdip.resize(0);
BLAS_Cred.resize(0);
BLAS_C.resize(0);
BLAS_X.resize(0);
BLAS_Y.resize(0);
}
void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0)
{
std::vector<Field> Y_copy(AP.size(),AP[0].Grid());
for(int r=0;r<AP.size();r++){
Y_copy[r] = Y[r];
}
MulMatrix(AP,m,X);
for(int r=0;r<AP.size();r++){
AP[r] = scale*AP[r]+Y_copy[r];
}
}
void MulMatrix(std::vector<Field> &Y, Eigen::MatrixXcd &m , const std::vector<Field> &X)
{
typedef typename Field::scalar_type scomplex;
GridBase *grid;
uint64_t vol;
uint64_t words;
int nrhs = Y.size();
grid = X[0].Grid();
vol = grid->lSites();
words = sizeof(scalar_object)/sizeof(scalar);
int64_t vw = vol * words;
RealD t0 = usecond();
BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
BLAS_C.resize(nrhs * nrhs);// cost free if size doesn't change
RealD t1 = usecond();
/////////////////////////////////////////////
// Copy in the multi-rhs sources
/////////////////////////////////////////////
for(int r=0;r<nrhs;r++){
int64_t offset = r*vw;
autoView(x_v,X[r],AcceleratorRead);
acceleratorCopyDeviceToDevice(&x_v[0],&BLAS_X[offset],sizeof(scalar_object)*vol);
}
// Assumes Eigen storage contiguous
acceleratorCopyToDevice(&m(0,0),&BLAS_C[0],BLAS_C.size()*sizeof(scalar));
/*
* in Fortran column major notation (cuBlas order)
*
* Xxr = [X1(x)][..][Xn(x)]
* Yxr = [Y1(x)][..][Ym(x)]
* Y = X . C
*/
deviceVector<scalar *> Xd(1);
deviceVector<scalar *> Yd(1);
deviceVector<scalar *> Cd(1);
scalar * Xh = & BLAS_X[0];
scalar * Yh = & BLAS_Y[0];
scalar * Ch = & BLAS_C[0];
acceleratorPut(Xd[0],Xh);
acceleratorPut(Yd[0],Yh);
acceleratorPut(Cd[0],Ch);
RealD t2 = usecond();
GridBLAS BLAS;
/////////////////////////////////////////
// Y = X*C (transpose?)
/////////////////////////////////////////
BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
vw,nrhs,nrhs,
scalar(1.0),
Xd,
Cd,
scalar(0.0), // wipe out Y
Yd);
BLAS.synchronise();
RealD t3 = usecond();
// Copy back Y = m X
for(int r=0;r<nrhs;r++){
int64_t offset = r*vw;
autoView(y_v,Y[r],AcceleratorWrite);
acceleratorCopyDeviceToDevice(&BLAS_Y[offset],&y_v[0],sizeof(scalar_object)*vol);
}
RealD t4 = usecond();
std::cout << "MulMatrix alloc took "<< t1-t0<<" us"<<std::endl;
std::cout << "MulMatrix preamble took "<< t2-t1<<" us"<<std::endl;
std::cout << "MulMatrix blas took "<< t3-t2<<" us"<<std::endl;
std::cout << "MulMatrix copy took "<< t4-t3<<" us"<<std::endl;
std::cout << "MulMatrix total "<< t4-t0<<" us"<<std::endl;
}
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y)
{
#if 0
int nrhs;
GridBase *grid;
uint64_t vol;
uint64_t words;
nrhs = X.size();
assert(X.size()==Y.size());
conformable(X[0],Y[0]);
grid = X[0].Grid();
vol = grid->lSites();
words = sizeof(scalar_object)/sizeof(scalar);
int64_t vw = vol * words;
RealD t0 = usecond();
BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
BLAS_C.resize(nrhs * nrhs);// cost free if size doesn't change
RealD t1 = usecond();
/////////////////////////////////////////////
// Copy in the multi-rhs sources
/////////////////////////////////////////////
for(int r=0;r<nrhs;r++){
int64_t offset = r*vw;
autoView(x_v,X[r],AcceleratorRead);
acceleratorCopyDeviceToDevice(&x_v[0],&BLAS_X[offset],sizeof(scalar_object)*vol);
autoView(y_v,Y[r],AcceleratorRead);
acceleratorCopyDeviceToDevice(&y_v[0],&BLAS_Y[offset],sizeof(scalar_object)*vol);
}
RealD t2 = usecond();
/*
* in Fortran column major notation (cuBlas order)
*
* Xxr = [X1(x)][..][Xn(x)]
*
* Yxr = [Y1(x)][..][Ym(x)]
*
* C_rs = X^dag Y
*/
deviceVector<scalar *> Xd(1);
deviceVector<scalar *> Yd(1);
deviceVector<scalar *> Cd(1);
scalar * Xh = & BLAS_X[0];
scalar * Yh = & BLAS_Y[0];
scalar * Ch = & BLAS_C[0];
acceleratorPut(Xd[0],Xh);
acceleratorPut(Yd[0],Yh);
acceleratorPut(Cd[0],Ch);
GridBLAS BLAS;
RealD t3 = usecond();
/////////////////////////////////////////
// C_rs = X^dag Y
/////////////////////////////////////////
BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,
nrhs,nrhs,vw,
ComplexD(1.0),
Xd,
Yd,
ComplexD(0.0), // wipe out C
Cd);
BLAS.synchronise();
RealD t4 = usecond();
std::vector<scalar> HOST_C(BLAS_C.size()); // nrhs . nrhs -- the coefficients
acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar));
grid->GlobalSumVector(&HOST_C[0],nrhs*nrhs);
RealD t5 = usecond();
for(int rr=0;rr<nrhs;rr++){
for(int r=0;r<nrhs;r++){
int off = r+nrhs*rr;
m(r,rr)=HOST_C[off];
}
}
RealD t6 = usecond();
uint64_t M=nrhs;
uint64_t N=nrhs;
uint64_t K=vw;
RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K);
RealD flops = 8.0*M*N*K;
flops = flops/(t4-t3)/1.e3;
bytes = bytes/(t4-t3)/1.e3;
std::cout << "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
std::cout << "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
std::cout << "InnerProductMatrix cp t2 "<< t2-t1<<" us"<<std::endl;
std::cout << "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
std::cout << "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
std::cout << "InnerProductMatrix blas "<< flops<<" GF/s"<<std::endl;
std::cout << "InnerProductMatrix blas "<< bytes<<" GB/s"<<std::endl;
std::cout << "InnerProductMatrix gsum t5 "<< t5-t4<<" us"<<std::endl;
std::cout << "InnerProductMatrix cp t6 "<< t6-t5<<" us"<<std::endl;
std::cout << "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
#else
int nrhs;
GridBase *grid;
uint64_t vol;
uint64_t words;
nrhs = X.size();
assert(X.size()==Y.size());
conformable(X[0],Y[0]);
grid = X[0].Grid();
int rd0 = grid->_rdimensions[0] * grid->_rdimensions[1];
vol = grid->oSites()/rd0;
words = rd0*sizeof(vector_object)/sizeof(scalar);
int64_t vw = vol * words;
assert(vw == grid->lSites()*sizeof(scalar_object)/sizeof(scalar));
RealD t0 = usecond();
BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
BLAS_Cred.resize(nrhs * nrhs * vol);// cost free if size doesn't change
RealD t1 = usecond();
/////////////////////////////////////////////
// Copy in the multi-rhs sources -- layout batched BLAS ready
/////////////////////////////////////////////
for(int r=0;r<nrhs;r++){
autoView(x_v,X[r],AcceleratorRead);
autoView(y_v,Y[r],AcceleratorRead);
scalar *from_x=(scalar *)&x_v[0];
scalar *from_y=(scalar *)&y_v[0];
scalar *BX = &BLAS_X[0];
scalar *BY = &BLAS_Y[0];
accelerator_for(ssw,vw,1,{
uint64_t ss=ssw/words;
uint64_t w=ssw%words;
uint64_t offset = w+r*words+ss*nrhs*words; // [ss][rhs][words]
BX[offset] = from_x[ssw];
BY[offset] = from_y[ssw];
});
}
RealD t2 = usecond();
/*
* in Fortran column major notation (cuBlas order)
*
* Xxr = [X1(x)][..][Xn(x)]
*
* Yxr = [Y1(x)][..][Ym(x)]
*
* C_rs = X^dag Y
*/
Xdip.resize(vol);
Ydip.resize(vol);
Cdip.resize(vol);
std::vector<scalar *> Xh(vol);
std::vector<scalar *> Yh(vol);
std::vector<scalar *> Ch(vol);
for(uint64_t ss=0;ss<vol;ss++){
Xh[ss] = & BLAS_X[ss*nrhs*words];
Yh[ss] = & BLAS_Y[ss*nrhs*words];
Ch[ss] = & BLAS_Cred[ss*nrhs*nrhs];
}
acceleratorCopyToDevice(&Xh[0],&Xdip[0],vol*sizeof(scalar *));
acceleratorCopyToDevice(&Yh[0],&Ydip[0],vol*sizeof(scalar *));
acceleratorCopyToDevice(&Ch[0],&Cdip[0],vol*sizeof(scalar *));
GridBLAS BLAS;
RealD t3 = usecond();
/////////////////////////////////////////
// C_rs = X^dag Y
/////////////////////////////////////////
BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,
nrhs,nrhs,words,
ComplexD(1.0),
Xdip,
Ydip,
ComplexD(0.0), // wipe out C
Cdip);
BLAS.synchronise();
RealD t4 = usecond();
std::vector<scalar> HOST_C(BLAS_Cred.size()); // nrhs . nrhs -- the coefficients
acceleratorCopyFromDevice(&BLAS_Cred[0],&HOST_C[0],BLAS_Cred.size()*sizeof(scalar));
RealD t5 = usecond();
m = Eigen::MatrixXcd::Zero(nrhs,nrhs);
for(int ss=0;ss<vol;ss++){
Eigen::Map<Eigen::MatrixXcd> eC((std::complex<double> *)&HOST_C[ss*nrhs*nrhs],nrhs,nrhs);
m = m + eC;
}
RealD t6l = usecond();
grid->GlobalSumVector((scalar *) &m(0,0),nrhs*nrhs);
RealD t6 = usecond();
uint64_t M=nrhs;
uint64_t N=nrhs;
uint64_t K=vw;
RealD xybytes = grid->lSites()*sizeof(scalar_object);
RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K);
RealD flops = 8.0*M*N*K;
flops = flops/(t4-t3)/1.e3;
bytes = bytes/(t4-t3)/1.e3;
xybytes = 4*xybytes/(t2-t1)/1.e3;
std::cout << "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
std::cout << "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
std::cout << "InnerProductMatrix cp t2 "<< t2-t1<<" us "<<xybytes<<" GB/s"<<std::endl;
std::cout << "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
std::cout << "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
std::cout << "InnerProductMatrix blas "<< flops<<" GF/s"<<std::endl;
std::cout << "InnerProductMatrix blas "<< bytes<<" GB/s"<<std::endl;
std::cout << "InnerProductMatrix cp t5 "<< t5-t4<<" us"<<std::endl;
std::cout << "InnerProductMatrix lsum t6l "<< t6l-t5<<" us"<<std::endl;
std::cout << "InnerProductMatrix gsum t6 "<< t6-t6l<<" us"<<std::endl;
std::cout << "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
#endif
}
};
NAMESPACE_END(Grid);

View File

@ -447,10 +447,10 @@ public:
/////////////////////////////////////////
BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,
nbasis,nrhs,vw,
scalar(1.0),
ComplexD(1.0),
Vd,
Fd,
scalar(0.0), // wipe out C
ComplexD(0.0), // wipe out C
Cd);
BLAS.synchronise();
// std::cout << "BlockProject done"<<std::endl;
@ -497,10 +497,10 @@ public:
int64_t vw = block_vol * words;
BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
vw,nrhs,nbasis,
scalar(1.0),
ComplexD(1.0),
Vd,
Cd,
scalar(0.0), // wipe out C
ComplexD(0.0), // wipe out C
Fd);
BLAS.synchronise();
// std::cout << " blas call done"<<std::endl;

View File

@ -182,10 +182,10 @@ public:
/////////////////////////////////////////
BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,
nev,nrhs,vw,
scalar(1.0),
ComplexD(1.0),
Ed,
Rd,
scalar(0.0), // wipe out C
ComplexD(0.0), // wipe out C
Cd);
BLAS.synchronise();
@ -210,10 +210,10 @@ public:
/////////////////////////////////////////
BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
vw,nrhs,nev,
scalar(1.0),
ComplexD(1.0),
Ed, // x . nev
Cd, // nev . nrhs
scalar(0.0),
ComplexD(0.0),
Gd);
BLAS.synchronise();

View File

@ -53,7 +53,6 @@ class TwoLevelCGmrhs
// Fine operator, Smoother, CoarseSolver
LinearOperatorBase<Field> &_FineLinop;
LinearFunction<Field> &_Smoother;
MultiRHSBlockCGLinalg<Field> _BlockCGLinalg;
GridStopWatch ProjectTimer;
GridStopWatch PromoteTimer;
@ -80,301 +79,6 @@ class TwoLevelCGmrhs
// Vector case
virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
{
SolveSingleSystem(src,x);
// SolvePrecBlockCG(src,x);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Thin QR factorisation (google it)
////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////
//Dimensions
// R_{ferm x Nblock} = Q_{ferm x Nblock} x C_{Nblock x Nblock} -> ferm x Nblock
//
// Rdag R = m_rr = Herm = L L^dag <-- Cholesky decomposition (LLT routine in Eigen)
//
// Q C = R => Q = R C^{-1}
//
// Want Ident = Q^dag Q = C^{-dag} R^dag R C^{-1} = C^{-dag} L L^dag C^{-1} = 1_{Nblock x Nblock}
//
// Set C = L^{dag}, and then Q^dag Q = ident
//
// Checks:
// Cdag C = Rdag R ; passes.
// QdagQ = 1 ; passes
////////////////////////////////////////////////////////////////////////////////////////////////////
void ThinQRfact (Eigen::MatrixXcd &m_zz,
Eigen::MatrixXcd &C,
Eigen::MatrixXcd &Cinv,
std::vector<Field> & Q,
std::vector<Field> & MQ,
const std::vector<Field> & Z,
const std::vector<Field> & MZ)
{
RealD t0=usecond();
_BlockCGLinalg.InnerProductMatrix(m_zz,MZ,Z);
RealD t1=usecond();
m_zz = 0.5*(m_zz+m_zz.adjoint());
Eigen::MatrixXcd L = m_zz.llt().matrixL();
C = L.adjoint();
Cinv = C.inverse();
RealD t3=usecond();
_BlockCGLinalg.MulMatrix( Q,Cinv,Z);
_BlockCGLinalg.MulMatrix(MQ,Cinv,MZ);
RealD t4=usecond();
std::cout << " ThinQRfact IP :"<< t1-t0<<" us"<<std::endl;
std::cout << " ThinQRfact Eigen :"<< t3-t1<<" us"<<std::endl;
std::cout << " ThinQRfact MulMat:"<< t4-t3<<" us"<<std::endl;
}
virtual void SolvePrecBlockCG (std::vector<Field> &src, std::vector<Field> &X)
{
std::cout << GridLogMessage<<"HDCG: mrhs fPrecBlockcg starting"<<std::endl;
src[0].Grid()->Barrier();
int nrhs = src.size();
// std::vector<RealD> f(nrhs);
// std::vector<RealD> rtzp(nrhs);
// std::vector<RealD> rtz(nrhs);
// std::vector<RealD> a(nrhs);
// std::vector<RealD> d(nrhs);
// std::vector<RealD> b(nrhs);
// std::vector<RealD> rptzp(nrhs);
////////////////////////////////////////////
//Initial residual computation & set up
////////////////////////////////////////////
std::vector<RealD> ssq(nrhs);
for(int rhs=0;rhs<nrhs;rhs++){
ssq[rhs]=norm2(src[rhs]); assert(ssq[rhs]!=0.0);
}
///////////////////////////
// Fields -- eliminate duplicates between fPcg and block cg
///////////////////////////
std::vector<Field> Mtmp(nrhs,grid);
std::vector<Field> tmp(nrhs,grid);
std::vector<Field> Z(nrhs,grid); // Rename Z to R
std::vector<Field> MZ(nrhs,grid); // Rename MZ to Z
std::vector<Field> Q(nrhs,grid); //
std::vector<Field> MQ(nrhs,grid); // Rename to P
std::vector<Field> D(nrhs,grid);
std::vector<Field> AD(nrhs,grid);
/************************************************************************
* Preconditioned Block conjugate gradient rQ
* Generalise Sebastien Birk Thesis, after Dubrulle 2001.
* Introduce preconditioning following Saad Ch9
************************************************************************
* Dimensions:
*
* X,B etc... ==(Nferm x nrhs)
* Matrix A==(Nferm x Nferm)
*
* Nferm = Nspin x Ncolour x Ncomplex x Nlattice_site
* QC => Thin QR factorisation (google it)
*
* R = B-AX
* Z = Mi R
* QC = Z
* D = Q
* for k:
* R = AD
* Z = Mi R
* M = [D^dag R]^{-1}
* X = X + D M C
* QS = Q - Z.M
* D = Q + D S^dag
* C = S C
*/
Eigen::MatrixXcd m_DZ = Eigen::MatrixXcd::Identity(nrhs,nrhs);
Eigen::MatrixXcd m_M = Eigen::MatrixXcd::Identity(nrhs,nrhs);
Eigen::MatrixXcd m_zz = Eigen::MatrixXcd::Zero(nrhs,nrhs);
Eigen::MatrixXcd m_rr = Eigen::MatrixXcd::Zero(nrhs,nrhs);
Eigen::MatrixXcd m_C = Eigen::MatrixXcd::Zero(nrhs,nrhs);
Eigen::MatrixXcd m_Cinv = Eigen::MatrixXcd::Zero(nrhs,nrhs);
Eigen::MatrixXcd m_S = Eigen::MatrixXcd::Zero(nrhs,nrhs);
Eigen::MatrixXcd m_Sinv = Eigen::MatrixXcd::Zero(nrhs,nrhs);
Eigen::MatrixXcd m_tmp = Eigen::MatrixXcd::Identity(nrhs,nrhs);
Eigen::MatrixXcd m_tmp1 = Eigen::MatrixXcd::Identity(nrhs,nrhs);
GridStopWatch HDCGTimer;
//////////////////////////
// x0 = Vstart -- possibly modify guess
//////////////////////////
Vstart(X,src);
//////////////////////////
// R = B-AX
//////////////////////////
for(int rhs=0;rhs<nrhs;rhs++){
// r0 = b -A x0
_FineLinop.HermOp(X[rhs],tmp[rhs]);
axpy (Z[rhs], -1.0,tmp[rhs], src[rhs]); // Computes R=Z=src - A X0
}
//////////////////////////////////
// Compute MZ = M1 Z = M1 B - M1 A x0
//////////////////////////////////
PcgM1(Z,MZ);
//////////////////////////////////
// QC = Z
//////////////////////////////////
ThinQRfact (m_zz, m_C, m_Cinv, Q, MQ, Z, MZ);
//////////////////////////////////
// D=MQ
//////////////////////////////////
for(int b=0;b<nrhs;b++) D[b]=MQ[b]; // LLT rotation of the MZ basis of search dirs
std::cout << GridLogMessage<<"PrecBlockCGrQ vec computed initial residual and QR fact " <<std::endl;
ProjectTimer.Reset();
PromoteTimer.Reset();
DeflateTimer.Reset();
CoarseTimer.Reset();
SmoothTimer.Reset();
FineTimer.Reset();
InsertTimer.Reset();
GridStopWatch M1Timer;
GridStopWatch M2Timer;
GridStopWatch M3Timer;
GridStopWatch LinalgTimer;
GridStopWatch InnerProdTimer;
HDCGTimer.Start();
std::vector<RealD> rn(nrhs);
for (int k=0;k<=MaxIterations;k++){
////////////////////
// Z = AD
////////////////////
M3Timer.Start();
for(int b=0;b<nrhs;b++) _FineLinop.HermOp(D[b], Z[b]);
M3Timer.Stop();
////////////////////
// MZ = M1 Z <==== the Multigrid preconditioner
////////////////////
M1Timer.Start();
PcgM1(Z,MZ);
M1Timer.Stop();
FineTimer.Start();
////////////////////
// M = [D^dag Z]^{-1} = (<Ddag MZ>_M)^{-1} inner prod, generalising Saad derivation of Precon CG
////////////////////
InnerProdTimer.Start();
_BlockCGLinalg.InnerProductMatrix(m_DZ,D,Z);
InnerProdTimer.Stop();
m_M = m_DZ.inverse();
///////////////////////////
// X = X + D MC
///////////////////////////
m_tmp = m_M * m_C;
LinalgTimer.Start();
_BlockCGLinalg.MaddMatrix(X,m_tmp, D,X); // D are the search directions and X takes the updates
LinalgTimer.Stop();
///////////////////////////
// QS = Q - M Z
// (MQ) S = MQ - M (M1Z)
///////////////////////////
LinalgTimer.Start();
_BlockCGLinalg.MaddMatrix(tmp ,m_M, Z, Q,-1.0);
_BlockCGLinalg.MaddMatrix(Mtmp,m_M,MZ,MQ,-1.0);
ThinQRfact (m_zz, m_S, m_Sinv, Q, MQ, tmp, Mtmp);
LinalgTimer.Stop();
////////////////////////////
// D = MQ + D S^dag
////////////////////////////
m_tmp = m_S.adjoint();
LinalgTimer.Start();
_BlockCGLinalg.MaddMatrix(D,m_tmp,D,MQ);
LinalgTimer.Stop();
////////////////////////////
// C = S C
////////////////////////////
m_C = m_S*m_C;
////////////////////////////
// convergence monitor
////////////////////////////
m_rr = m_C.adjoint() * m_C;
FineTimer.Stop();
RealD max_resid=0;
RealD rrsum=0;
RealD sssum=0;
RealD rr;
for(int b=0;b<nrhs;b++) {
rrsum+=real(m_rr(b,b));
sssum+=ssq[b];
rr = real(m_rr(b,b))/ssq[b];
if ( rr > max_resid ) max_resid = rr;
}
std::cout << GridLogMessage <<
"\t Prec BlockCGrQ Iteration "<<k<<" ave resid "<< std::sqrt(rrsum/sssum) << " max "<< std::sqrt(max_resid) <<std::endl;
if ( max_resid < Tolerance*Tolerance ) {
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Linalg "<<LinalgTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : fine H "<<M3Timer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : prec M1 "<<M1Timer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"**** M1 breakdown:"<<std::endl;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Project "<<ProjectTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Promote "<<PromoteTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Deflate "<<DeflateTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Coarse "<<CoarseTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Fine "<<FineTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Smooth "<<SmoothTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Insert "<<InsertTimer.Elapsed()<<std::endl;;
for(int rhs=0;rhs<nrhs;rhs++){
_FineLinop.HermOp(X[rhs],tmp[rhs]);
Field mytmp(grid);
axpy(mytmp,-1.0,src[rhs],tmp[rhs]);
RealD xnorm = sqrt(norm2(X[rhs]));
RealD srcnorm = sqrt(norm2(src[rhs]));
RealD tmpnorm = sqrt(norm2(mytmp));
RealD true_residual = tmpnorm/srcnorm;
std::cout<<GridLogMessage
<<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
<<" solution "<<xnorm
<<" source "<<srcnorm
<<std::endl;
}
return;
}
}
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: PrecBlockCGrQ not converged "<<HDCGTimer.Elapsed()<<std::endl;
assert(0);
}
virtual void SolveSingleSystem (std::vector<Field> &src, std::vector<Field> &x)
{
std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl;
src[0].Grid()->Barrier();
@ -657,23 +361,15 @@ public:
CoarseField PleftProjMrhs(this->coarsegridmrhs);
CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
#undef SMOOTHER_BLOCK_SOLVE
#if SMOOTHER_BLOCK_SOLVE
this->SmoothTimer.Start();
this->_Smoother(in,Min);
this->SmoothTimer.Stop();
#else
for(int rhs=0;rhs<nrhs;rhs++) {
this->SmoothTimer.Start();
this->_Smoother(in[rhs],Min[rhs]);
this->SmoothTimer.Stop();
}
#endif
for(int rhs=0;rhs<nrhs;rhs++) {
this->FineTimer.Start();
this->_FineLinop.HermOp(Min[rhs],out[rhs]);
axpy(tmp[rhs],-1.0,out[rhs],in[rhs]); // resid = in - A Min
this->FineTimer.Stop();
@ -711,7 +407,7 @@ public:
this->FineTimer.Stop();
}
};
NAMESPACE_END(Grid);

View File

@ -31,58 +31,6 @@ directory
NAMESPACE_BEGIN(Grid);
template<class Field>
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y){
typedef typename Field::scalar_type scomplex;
int Nblock = X.size();
for(int b=0;b<Nblock;b++){
for(int bp=0;bp<Nblock;bp++) {
m(b,bp) = innerProduct(X[b],Y[bp]);
}}
}
template<class Field>
void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0){
// Should make this cache friendly with site outermost, parallel_for
// Deal with case AP aliases with either Y or X
//
//Could pack "X" and "AP" into a Nblock x Volume dense array.
// AP(Nrhs x vol) = Y(Nrhs x vol) + scale * m(nrhs x nrhs) * X(nrhs*vol)
typedef typename Field::scalar_type scomplex;
int Nblock = AP.size();
std::vector<Field> tmp(Nblock,X[0]);
for(int b=0;b<Nblock;b++){
tmp[b] = Y[b];
for(int bp=0;bp<Nblock;bp++) {
tmp[b] = tmp[b] +scomplex(scale*m(bp,b))*X[bp];
}
}
for(int b=0;b<Nblock;b++){
AP[b] = tmp[b];
}
}
template<class Field>
void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){
// Should make this cache friendly with site outermost, parallel_for
typedef typename Field::scalar_type scomplex;
int Nblock = AP.size();
for(int b=0;b<Nblock;b++){
AP[b] = Zero();
for(int bp=0;bp<Nblock;bp++) {
AP[b] += scomplex(m(bp,b))*X[bp];
}
}
}
template<class Field>
double normv(const std::vector<Field> &P){
int Nblock = P.size();
double nn = 0.0;
for(int b=0;b<Nblock;b++) {
nn+=norm2(P[b]);
}
return nn;
}
enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS, BlockCGVec, BlockCGrQVec };
//////////////////////////////////////////////////////////////////////////
@ -139,19 +87,10 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
sliceInnerProductMatrix(m_rr,R,R,Orthog);
// Force manifest hermitian to avoid rounding related
/*
int rank=m_rr.rows();
for(int r=0;r<rank;r++){
for(int s=0;s<rank;s++){
std::cout << "QR m_rr["<<r<<","<<s<<"] "<<m_rr(r,s)<<std::endl;
}}
*/
m_rr = 0.5*(m_rr+m_rr.adjoint());
Eigen::MatrixXcd L = m_rr.llt().matrixL();
// ComplexD det = L.determinant();
// std::cout << " Det m_rr "<<det<<std::endl;
C = L.adjoint();
Cinv = C.inverse();
////////////////////////////////////////////////////////////////////////////////////////////////////
@ -171,20 +110,11 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
const std::vector<Field> & R)
{
InnerProductMatrix(m_rr,R,R);
/*
int rank=m_rr.rows();
for(int r=0;r<rank;r++){
for(int s=0;s<rank;s++){
std::cout << "QRvec m_rr["<<r<<","<<s<<"] "<<m_rr(r,s)<<std::endl;
}}
*/
m_rr = 0.5*(m_rr+m_rr.adjoint());
Eigen::MatrixXcd L = m_rr.llt().matrixL();
// ComplexD det = L.determinant();
// std::cout << " Det m_rr "<<det<<std::endl;
C = L.adjoint();
Cinv = C.inverse();
@ -256,7 +186,6 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
sliceNorm(ssq,B,Orthog);
RealD sssum=0;
for(int b=0;b<Nblock;b++) sssum+=ssq[b];
for(int b=0;b<Nblock;b++) std::cout << "src["<<b<<"]" << ssq[b] <<std::endl;
sliceNorm(residuals,B,Orthog);
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
@ -292,9 +221,6 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
Linop.HermOp(X, AD);
tmp = B - AD;
sliceNorm(residuals,tmp,Orthog);
for(int b=0;b<Nblock;b++) std::cout << "res["<<b<<"]" << residuals[b] <<std::endl;
ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
D=Q;
@ -310,8 +236,6 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
GridStopWatch SolverTimer;
SolverTimer.Start();
RealD max_resid=0;
int k;
for (k = 1; k <= MaxIterations; k++) {
@ -356,7 +280,7 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
*/
m_rr = m_C.adjoint() * m_C;
max_resid=0;
RealD max_resid=0;
RealD rrsum=0;
RealD rr;
@ -398,9 +322,7 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
}
}
std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge "<<k<<" / "<<MaxIterations
<<" residual "<< std::sqrt(max_resid)<< std::endl;
std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge" << std::endl;
if (ErrorOnNoConverge) assert(0);
IterationsToComplete = k;
@ -544,6 +466,43 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &
IterationsToComplete = k;
}
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y){
for(int b=0;b<Nblock;b++){
for(int bp=0;bp<Nblock;bp++) {
m(b,bp) = innerProduct(X[b],Y[bp]);
}}
}
void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0){
// Should make this cache friendly with site outermost, parallel_for
// Deal with case AP aliases with either Y or X
std::vector<Field> tmp(Nblock,X[0]);
for(int b=0;b<Nblock;b++){
tmp[b] = Y[b];
for(int bp=0;bp<Nblock;bp++) {
tmp[b] = tmp[b] + scomplex(scale*m(bp,b))*X[bp];
}
}
for(int b=0;b<Nblock;b++){
AP[b] = tmp[b];
}
}
void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){
// Should make this cache friendly with site outermost, parallel_for
for(int b=0;b<Nblock;b++){
AP[b] = Zero();
for(int bp=0;bp<Nblock;bp++) {
AP[b] += scomplex(m(bp,b))*X[bp];
}
}
}
double normv(const std::vector<Field> &P){
double nn = 0.0;
for(int b=0;b<Nblock;b++) {
nn+=norm2(P[b]);
}
return nn;
}
////////////////////////////////////////////////////////////////////////////
// BlockCGrQvec implementation:
//--------------------------
@ -590,7 +549,6 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
RealD sssum=0;
for(int b=0;b<Nblock;b++){ ssq[b] = norm2(B[b]);}
for(int b=0;b<Nblock;b++){ std::cout << "ssq["<<b<<"] "<<ssq[b]<<std::endl;}
for(int b=0;b<Nblock;b++) sssum+=ssq[b];
for(int b=0;b<Nblock;b++){ residuals[b] = norm2(B[b]);}
@ -627,7 +585,6 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
for(int b=0;b<Nblock;b++) {
Linop.HermOp(X[b], AD[b]);
tmp[b] = B[b] - AD[b];
std::cout << "r0["<<b<<"] "<<norm2(tmp[b])<<std::endl;
}
ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);

View File

@ -38,13 +38,12 @@ NAMESPACE_BEGIN(Grid);
// single input vec, single output vec.
/////////////////////////////////////////////////////////////
template <class Field>
class ConjugateGradient : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
// Defaults true.
RealD Tolerance;
@ -58,22 +57,10 @@ public:
ErrorOnNoConverge(err_on_no_conv)
{};
virtual void LogIteration(int k,RealD a,RealD b){
// std::cout << "ConjugageGradient::LogIteration() "<<std::endl;
};
virtual void LogBegin(void){
std::cout << "ConjugageGradient::LogBegin() "<<std::endl;
};
void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
this->LogBegin();
GRID_TRACE("ConjugateGradient");
GRID_TRACE("ConjugateGradient");
GridStopWatch PreambleTimer;
GridStopWatch ConstructTimer;
GridStopWatch NormTimer;
GridStopWatch AssignTimer;
PreambleTimer.Start();
psi.Checkerboard() = src.Checkerboard();
@ -83,19 +70,14 @@ public:
//RealD b_pred;
// Was doing copies
ConstructTimer.Start();
Field p (src.Grid());
Field p(src.Grid());
Field mmp(src.Grid());
Field r (src.Grid());
ConstructTimer.Stop();
Field r(src.Grid());
// Initial residual computation & set up
NormTimer.Start();
ssq = norm2(src);
RealD guess = norm2(psi);
NormTimer.Stop();
assert(std::isnan(guess) == 0);
AssignTimer.Start();
if ( guess == 0.0 ) {
r = src;
p = r;
@ -107,7 +89,6 @@ public:
a = norm2(p);
}
cp = a;
AssignTimer.Stop();
// Handle trivial case of zero src
if (ssq == 0.){
@ -183,7 +164,6 @@ public:
}
LinearCombTimer.Stop();
LinalgTimer.Stop();
LogIteration(k,a,b);
IterationTimer.Stop();
if ( (k % 500) == 0 ) {
@ -240,9 +220,6 @@ public:
<<" residual "<< std::sqrt(cp / ssq)<< std::endl;
SolverTimer.Stop();
std::cout << GridLogMessage << "\tPreamble " << PreambleTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tConstruct " << ConstructTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tNorm " << NormTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tAssign " << AssignTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tSolver " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "Solver breakdown "<<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
@ -256,118 +233,5 @@ public:
}
};
template <class Field>
class ConjugateGradientPolynomial : public ConjugateGradient<Field> {
public:
// Optionally record the CG polynomial
std::vector<double> ak;
std::vector<double> bk;
std::vector<double> poly_p;
std::vector<double> poly_r;
std::vector<double> poly_Ap;
std::vector<double> polynomial;
public:
ConjugateGradientPolynomial(RealD tol, Integer maxit, bool err_on_no_conv = true)
: ConjugateGradient<Field>(tol,maxit,err_on_no_conv)
{ };
void PolyHermOp(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
{
Field tmp(src.Grid());
Field AtoN(src.Grid());
AtoN = src;
psi=AtoN*polynomial[0];
for(int n=1;n<polynomial.size();n++){
tmp = AtoN;
Linop.HermOp(tmp,AtoN);
psi = psi + polynomial[n]*AtoN;
}
}
void CGsequenceHermOp(LinearOperatorBase<Field> &Linop, const Field &src, Field &x)
{
Field Ap(src.Grid());
Field r(src.Grid());
Field p(src.Grid());
p=src;
r=src;
x=Zero();
x.Checkerboard()=src.Checkerboard();
for(int k=0;k<ak.size();k++){
x = x + ak[k]*p;
Linop.HermOp(p,Ap);
r = r - ak[k] * Ap;
p = r + bk[k] * p;
}
}
void Solve(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
{
psi=Zero();
this->operator ()(Linop,src,psi);
}
virtual void LogBegin(void)
{
std::cout << "ConjugageGradientPolynomial::LogBegin() "<<std::endl;
ak.resize(0);
bk.resize(0);
polynomial.resize(0);
poly_Ap.resize(0);
poly_Ap.resize(0);
poly_p.resize(1);
poly_r.resize(1);
poly_p[0]=1.0;
poly_r[0]=1.0;
};
virtual void LogIteration(int k,RealD a,RealD b)
{
// With zero guess,
// p = r = src
//
// iterate:
// x = x + a p
// r = r - a A p
// p = r + b p
//
// [0]
// r = x
// p = x
// Ap=0
//
// [1]
// Ap = A x + 0 ==> shift poly P right by 1 and add 0.
// x = x + a p ==> add polynomials term by term
// r = r - a A p ==> add polynomials term by term
// p = r + b p ==> add polynomials term by term
//
std::cout << "ConjugageGradientPolynomial::LogIteration() "<<k<<std::endl;
ak.push_back(a);
bk.push_back(b);
// Ap= right_shift(p)
poly_Ap.resize(k+1);
poly_Ap[0]=0.0;
for(int i=0;i<k;i++){
poly_Ap[i+1]=poly_p[i];
}
// x = x + a p
polynomial.resize(k);
polynomial[k-1]=0.0;
for(int i=0;i<k;i++){
polynomial[i] = polynomial[i] + a * poly_p[i];
}
// r = r - a Ap
// p = r + b p
poly_r.resize(k+1);
poly_p.resize(k+1);
poly_r[k] = poly_p[k] = 0.0;
for(int i=0;i<k+1;i++){
poly_r[i] = poly_r[i] - a * poly_Ap[i];
poly_p[i] = poly_r[i] + b * poly_p[i];
}
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -102,11 +102,11 @@ public:
assert(mass.size()==nshift);
assert(mresidual.size()==nshift);
// remove dynamic sized arrays on stack; 2d is a pain with vector
std::vector<RealD> bs(nshift);
std::vector<RealD> rsq(nshift);
std::vector<std::array<RealD,2> > z(nshift);
std::vector<int> converged(nshift);
// dynamic sized arrays on stack; 2d is a pain with vector
RealD bs[nshift];
RealD rsq[nshift];
RealD z[nshift][2];
int converged[nshift];
const int primary =0;

View File

@ -123,11 +123,11 @@ public:
assert(mresidual.size()==nshift);
// dynamic sized arrays on stack; 2d is a pain with vector
std::vector<RealD> bs(nshift);
std::vector<RealD> rsq(nshift);
std::vector<RealD> rsqf(nshift);
std::vector<std::array<RealD,2> > z(nshift);
std::vector<int> converged(nshift);
RealD bs[nshift];
RealD rsq[nshift];
RealD rsqf[nshift];
RealD z[nshift][2];
int converged[nshift];
const int primary =0;

View File

@ -156,11 +156,11 @@ public:
assert(mresidual.size()==nshift);
// dynamic sized arrays on stack; 2d is a pain with vector
std::vector<RealD> bs(nshift);
std::vector<RealD> rsq(nshift);
std::vector<RealD> rsqf(nshift);
std::vector<std::array<RealD,2> > z(nshift);
std::vector<int> converged(nshift);
RealD bs[nshift];
RealD rsq[nshift];
RealD rsqf[nshift];
RealD z[nshift][2];
int converged[nshift];
const int primary =0;

View File

@ -143,7 +143,7 @@ public:
ip = innerProduct(evec[j],w);
if(if_print)
if( norm(ip)/norm2(w) > 1e-14)
Glog<<"orthogonalize before: "<<j<<" of "<<k<<" "<< ip <<std::endl;
Glog<<"orthogonalize before: "<<j<<" of "<<k<<" "<< ip <<std::endl;
w = w - ip * evec[j];
if(if_print) {
ip = innerProduct(evec[j],w);
@ -279,16 +279,16 @@ public:
Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
diagonalize(eval2,lmd2,lme2,Nu,Nm,Nm,Qt,grid);
_sort.push(eval2,Nm);
// Glog << "#Ritz value before shift: "<< std::endl;
Glog << "#Ritz value before shift: "<< std::endl;
for(int i=0; i<Nm; ++i){
// std::cout.precision(13);
// std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
// std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl;
std::cout.precision(13);
std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl;
}
//----------------------------------------------------------------------
if ( Nm>Nk ) {
// Glog <<" #Apply shifted QR transformations "<<std::endl;
Glog <<" #Apply shifted QR transformations "<<std::endl;
//int k2 = Nk+Nu;
int k2 = Nk;
@ -326,11 +326,11 @@ public:
Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
diagonalize(eval2,lmd2,lme2,Nu,Nk,Nm,Qt,grid);
_sort.push(eval2,Nk);
// Glog << "#Ritz value after shift: "<< std::endl;
Glog << "#Ritz value after shift: "<< std::endl;
for(int i=0; i<Nk; ++i){
// std::cout.precision(13);
// std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
// std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl;
// std::cout.precision(13);
// std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
// std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl;
}
}
//----------------------------------------------------------------------
@ -644,7 +644,7 @@ private:
// for (int u=0; u<mrhs; ++u) Glog << " out["<<u<<"] = "<<norm2(out[u])<<std::endl;
k_start +=mrhs;
}
// Glog << "LinAlg "<< std::endl;
Glog << "LinAlg "<< std::endl;
if (b>0) {
for (int u=0; u<Nu; ++u) {
@ -678,7 +678,7 @@ private:
}
w_copy[u] = w[u];
}
// Glog << "LinAlg done"<< std::endl;
Glog << "LinAlg done"<< std::endl;
// In block version, the steps 6 and 7 in Lanczos construction is
// replaced by the QR decomposition of new basis block.
@ -691,15 +691,15 @@ private:
}
// re-orthogonalization for numerical stability
// Glog << "Gram Schmidt"<< std::endl;
Glog << "Gram Schmidt"<< std::endl;
orthogonalize(w,Nu,evec,R);
// QR part
for (int u=1; u<Nu; ++u) {
orthogonalize(w[u],w,u);
}
// Glog << "Gram Schmidt done "<< std::endl;
Glog << "Gram Schmidt done "<< std::endl;
// Glog << "LinAlg "<< std::endl;
Glog << "LinAlg "<< std::endl;
for (int u=0; u<Nu; ++u) {
//for (int v=0; v<Nu; ++v) {
for (int v=u; v<Nu; ++v) {
@ -716,7 +716,7 @@ private:
// Glog <<" In block "<< b << "," <<" beta[" << u << "," << k-L << "] = " << lme[u][k] << std::endl;
}
}
// Glog << "LinAlg done "<< std::endl;
Glog << "LinAlg done "<< std::endl;
if (b < Nm/Nu-1) {
for (int u=0; u<Nu; ++u) {
@ -935,7 +935,7 @@ if (1){
int Nu, int Nb, int Nk, int Nm,
Eigen::MatrixXcd& M)
{
// Glog << "unpackHermitBlockTriDiagMatToEigen() begin" << '\n';
Glog << "unpackHermitBlockTriDiagMatToEigen() begin" << '\n';
assert( Nk%Nu == 0 && Nm%Nu == 0 );
assert( Nk <= Nm );
M = Eigen::MatrixXcd::Zero(Nk,Nk);
@ -953,7 +953,7 @@ if (1){
M(u+(k/Nu)*Nu,k-Nu) = lme[u][k-Nu];
}
}
// Glog << "unpackHermitBlockTriDiagMatToEigen() end" << std::endl;
Glog << "unpackHermitBlockTriDiagMatToEigen() end" << std::endl;
}
@ -963,7 +963,7 @@ if (1){
int Nu, int Nb, int Nk, int Nm,
Eigen::MatrixXcd& M)
{
// Glog << "packHermitBlockTriDiagMatfromEigen() begin" << '\n';
Glog << "packHermitBlockTriDiagMatfromEigen() begin" << '\n';
assert( Nk%Nu == 0 && Nm%Nu == 0 );
assert( Nk <= Nm );
@ -979,7 +979,7 @@ if (1){
lme[u][k-Nu] = M(u+(k/Nu)*Nu,k-Nu);
}
}
// Glog << "packHermitBlockTriDiagMatfromEigen() end" <<std::endl;
Glog << "packHermitBlockTriDiagMatfromEigen() end" <<std::endl;
}
@ -988,7 +988,7 @@ if (1){
RealD Dsh,
Eigen::MatrixXcd& Qprod)
{
// Glog << "shiftedQRDecompEigen() begin" << '\n';
Glog << "shiftedQRDecompEigen() begin" << '\n';
Eigen::MatrixXcd Q = Eigen::MatrixXcd::Zero(Nm,Nm);
Eigen::MatrixXcd R = Eigen::MatrixXcd::Zero(Nm,Nm);
Eigen::MatrixXcd Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
@ -1004,7 +1004,7 @@ if (1){
// lower triangular part used to represent series
// of Q sequence.
// Glog << "shiftedQRDecompEigen() Housholder & QR" << '\n';
Glog << "shiftedQRDecompEigen() Housholder & QR" << '\n';
// equivalent operation of Qprod *= Q
//M = Eigen::MatrixXcd::Zero(Nm,Nm);
@ -1025,7 +1025,7 @@ if (1){
Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
// Glog << "shiftedQRDecompEigen() Mtmp create" << '\n';
Glog << "shiftedQRDecompEigen() Mtmp create" << '\n';
for (int i=0; i<Nm; ++i) {
for (int j=0; j<Nm-(Nu+1); ++j) {
for (int k=0; k<Nu+1+j; ++k) {
@ -1033,7 +1033,7 @@ if (1){
}
}
}
// Glog << "shiftedQRDecompEigen() Mtmp loop1" << '\n';
Glog << "shiftedQRDecompEigen() Mtmp loop1" << '\n';
for (int i=0; i<Nm; ++i) {
for (int j=Nm-(Nu+1); j<Nm; ++j) {
for (int k=0; k<Nm; ++k) {
@ -1041,7 +1041,7 @@ if (1){
}
}
}
// Glog << "shiftedQRDecompEigen() Mtmp loop2" << '\n';
Glog << "shiftedQRDecompEigen() Mtmp loop2" << '\n';
//static int ntimes = 2;
//for (int j=0; j<Nm-(ntimes*Nu); ++j) {
@ -1067,13 +1067,13 @@ if (1){
Mtmp(j,i) = conj(Mtmp(i,j));
}
}
// Glog << "shiftedQRDecompEigen() Mtmp loop3" << '\n';
Glog << "shiftedQRDecompEigen() Mtmp loop3" << '\n';
for (int i=0; i<Nm; ++i) {
Mtmp(i,i) = real(Mtmp(i,i)) + Dsh;
}
// Glog << "shiftedQRDecompEigen() Mtmp loop4" << '\n';
Glog << "shiftedQRDecompEigen() Mtmp loop4" << '\n';
M = Mtmp;
//M = Q.adjoint()*(M*Q);
@ -1085,7 +1085,7 @@ if (1){
// }
//}
// Glog << "shiftedQRDecompEigen() end" <<std::endl;
Glog << "shiftedQRDecompEigen() end" <<std::endl;
}
void exampleQRDecompEigen(void)

View File

@ -60,32 +60,6 @@ public:
}
};
template<class Field> class NormalResidual : public LinearFunction<Field>{
private:
SparseMatrixBase<Field> & _Matrix;
OperatorFunction<Field> & _HermitianSolver;
LinearFunction<Field> & _Guess;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations trick
/////////////////////////////////////////////////////
NormalResidual(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver,
LinearFunction<Field> &Guess)
: _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {};
void operator() (const Field &in, Field &out){
Field res(in.Grid());
Field tmp(in.Grid());
MMdagLinearOperator<SparseMatrixBase<Field>,Field> MMdagOp(_Matrix);
_Guess(in,res);
_HermitianSolver(MMdagOp,in,res); // M Mdag res = in ;
_Matrix.Mdag(res,out); // out = Mdag res
}
};
template<class Field> class HPDSolver : public LinearFunction<Field> {
private:
LinearOperatorBase<Field> & _Matrix;

View File

@ -20,7 +20,7 @@ template<class Field> class PowerMethod
RealD evalMaxApprox = 0.0;
auto src_n = src;
auto tmp = src;
const int _MAX_ITER_EST_ = 200;
const int _MAX_ITER_EST_ = 100;
for (int i=0;i<_MAX_ITER_EST_;i++) {
@ -30,17 +30,18 @@ template<class Field> class PowerMethod
RealD vden = norm2(src_n);
RealD na = vnum/vden;
std::cout << GridLogMessage << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
std::cout << GridLogIterative << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
// if ( (fabs(evalMaxApprox/na - 1.0) < 0.0001) || (i==_MAX_ITER_EST_-1) ) {
// evalMaxApprox = na;
// return evalMaxApprox;
// }
if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) {
evalMaxApprox = na;
std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
return evalMaxApprox;
}
evalMaxApprox = na;
src_n = tmp;
}
std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
return evalMaxApprox;
assert(0);
return 0;
}
};
}

View File

@ -1,76 +0,0 @@
#pragma once
namespace Grid {
class Band
{
RealD lo, hi;
public:
Band(RealD _lo,RealD _hi)
{
lo=_lo;
hi=_hi;
}
RealD operator() (RealD x){
if ( x>lo && x<hi ){
return 1.0;
} else {
return 0.0;
}
}
};
class PowerSpectrum
{
public:
template<typename T> static RealD normalise(T& v)
{
RealD nn = norm2(v);
nn = sqrt(nn);
v = v * (1.0/nn);
return nn;
}
std::vector<RealD> ranges;
std::vector<int> order;
PowerSpectrum( std::vector<RealD> &bins, std::vector<int> &_order ) : ranges(bins), order(_order) { };
template<class Field>
RealD operator()(LinearOperatorBase<Field> &HermOp, const Field &src)
{
GridBase *grid = src.Grid();
int N=ranges.size();
RealD hi = ranges[N-1];
RealD lo_band = 0.0;
RealD hi_band;
RealD nn=norm2(src);
RealD ss=0.0;
Field tmp = src;
for(int b=0;b<N;b++){
hi_band = ranges[b];
Band Notch(lo_band,hi_band);
Chebyshev<Field> polynomial;
polynomial.Init(0.0,hi,order[b],Notch);
polynomial.JacksonSmooth();
polynomial(HermOp,src,tmp) ;
RealD p=norm2(tmp);
ss=ss+p;
std::cout << GridLogMessage << " PowerSpectrum Band["<<lo_band<<","<<hi_band<<"] power "<<norm2(tmp)/nn<<std::endl;
lo_band=hi_band;
}
std::cout << GridLogMessage << " PowerSpectrum total power "<<ss/nn<<std::endl;
std::cout << GridLogMessage << " PowerSpectrum total power (unnormalised) "<<nn<<std::endl;
return 0;
};
};
}

View File

@ -99,7 +99,7 @@ public:
CoarseMatrix AselfInvEven;
CoarseMatrix AselfInvOdd;
deviceVector<RealD> dag_factor;
Vector<RealD> dag_factor;
///////////////////////
// Interface
@ -124,13 +124,9 @@ public:
int npoint = geom.npoint;
typedef LatticeView<Cobj> Aview;
deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
hostVector<Aview> hAcceleratorViewContainer(geom.npoint);
Vector<Aview> AcceleratorViewContainer;
for(int p=0;p<geom.npoint;p++) {
hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
}
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
Aview *Aview_p = & AcceleratorViewContainer[0];
const int Nsimd = CComplex::Nsimd();
@ -165,7 +161,7 @@ public:
coalescedWrite(out_v[ss](b),res);
});
for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
};
void Mdag (const CoarseVector &in, CoarseVector &out)
@ -194,14 +190,9 @@ public:
int npoint = geom.npoint;
typedef LatticeView<Cobj> Aview;
Vector<Aview> AcceleratorViewContainer;
deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
hostVector<Aview> hAcceleratorViewContainer(geom.npoint);
for(int p=0;p<geom.npoint;p++) {
hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
}
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
Aview *Aview_p = & AcceleratorViewContainer[0];
const int Nsimd = CComplex::Nsimd();
@ -210,10 +201,10 @@ public:
int osites=Grid()->oSites();
deviceVector<int> points(geom.npoint);
for(int p=0; p<geom.npoint; p++) {
acceleratorPut(points[p],geom.points_dagger[p]);
}
Vector<int> points(geom.npoint, 0);
for(int p=0; p<geom.npoint; p++)
points[p] = geom.points_dagger[p];
auto points_p = &points[0];
RealD* dag_factor_p = &dag_factor[0];
@ -245,7 +236,7 @@ public:
coalescedWrite(out_v[ss](b),res);
});
for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
}
void MdirComms(const CoarseVector &in)
@ -260,14 +251,8 @@ public:
out.Checkerboard() = in.Checkerboard();
typedef LatticeView<Cobj> Aview;
deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
hostVector<Aview> hAcceleratorViewContainer(geom.npoint);
for(int p=0;p<geom.npoint;p++) {
hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
}
Vector<Aview> AcceleratorViewContainer;
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
Aview *Aview_p = & AcceleratorViewContainer[0];
autoView( out_v , out, AcceleratorWrite);
@ -300,7 +285,7 @@ public:
}
coalescedWrite(out_v[ss](b),res);
});
for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
}
void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out)
{
@ -484,20 +469,14 @@ public:
// determine in what order we need the points
int npoint = geom.npoint-1;
deviceVector<int> points(npoint);
for(int p=0; p<npoint; p++) {
int val = (dag && !hermitian) ? geom.points_dagger[p] : p;
acceleratorPut(points[p], val);
}
Vector<int> points(npoint, 0);
for(int p=0; p<npoint; p++)
points[p] = (dag && !hermitian) ? geom.points_dagger[p] : p;
auto points_p = &points[0];
deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
hostVector<Aview> hAcceleratorViewContainer(geom.npoint);
for(int p=0;p<geom.npoint;p++) {
hAcceleratorViewContainer[p] = a[p].View(AcceleratorRead);
acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
}
Vector<Aview> AcceleratorViewContainer;
for(int p=0;p<npoint;p++) AcceleratorViewContainer.push_back(a[p].View(AcceleratorRead));
Aview *Aview_p = & AcceleratorViewContainer[0];
const int Nsimd = CComplex::Nsimd();
@ -560,7 +539,7 @@ public:
});
}
for(int p=0;p<npoint;p++) hAcceleratorViewContainer[p].ViewClose();
for(int p=0;p<npoint;p++) AcceleratorViewContainer[p].ViewClose();
}
CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) :
@ -611,13 +590,11 @@ public:
}
// GPU readable prefactor
std::vector<RealD> h_dag_factor(nbasis*nbasis);
thread_for(i, nbasis*nbasis, {
int j = i/nbasis;
int k = i%nbasis;
h_dag_factor[i] = dag_factor_eigen(j, k);
dag_factor[i] = dag_factor_eigen(j, k);
});
acceleratorCopyToDevice(&h_dag_factor[0],&dag_factor[0],dag_factor.size()*sizeof(RealD));
}
void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop,

View File

@ -174,11 +174,21 @@ template<typename _Tp> inline bool operator!=(const devAllocator<_Tp>&, const d
////////////////////////////////////////////////////////////////////////////////
// Template typedefs
////////////////////////////////////////////////////////////////////////////////
template<class T> using hostVector = std::vector<T,alignedAllocator<T> >; // Needs autoview
template<class T> using Vector = std::vector<T,uvmAllocator<T> >; //
template<class T> using uvmVector = std::vector<T,uvmAllocator<T> >; // auto migrating page
template<class T> using deviceVector = std::vector<T,devAllocator<T> >; // device vector
#ifdef ACCELERATOR_CSHIFT
// Cshift on device
template<class T> using cshiftAllocator = devAllocator<T>;
#else
// Cshift on host
template<class T> using cshiftAllocator = std::allocator<T>;
#endif
template<class T> using Vector = std::vector<T,uvmAllocator<T> >;
template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;
template<class T> using commVector = std::vector<T,devAllocator<T> >;
template<class T> using deviceVector = std::vector<T,devAllocator<T> >;
template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >;
/*
template<class T> class vecView
{
protected:
@ -187,9 +197,8 @@ template<class T> class vecView
ViewMode mode;
void * cpu_ptr;
public:
// Rvalue accessor
accelerator_inline T & operator[](size_t i) const { return this->data[i]; };
vecView(Vector<T> &refer_to_me,ViewMode _mode)
vecView(std::vector<T> &refer_to_me,ViewMode _mode)
{
cpu_ptr = &refer_to_me[0];
size = refer_to_me.size();
@ -205,15 +214,26 @@ template<class T> class vecView
}
};
template<class T> vecView<T> VectorView(Vector<T> &vec,ViewMode _mode)
template<class T> vecView<T> VectorView(std::vector<T> &vec,ViewMode _mode)
{
vecView<T> ret(vec,_mode); // does the open
return ret; // must be closed
}
// Little autoscope assister
template<class View>
class VectorViewCloser
{
View v; // Take a copy of view and call view close when I go out of scope automatically
public:
VectorViewCloser(View &_v) : v(_v) {};
~VectorViewCloser() { auto ptr = v.cpu_ptr; v.ViewClose(); MemoryManager::NotifyDeletion(ptr);}
};
#define autoVecView(v_v,v,mode) \
auto v_v = VectorView(v,mode); \
ViewCloser<decltype(v_v)> _autoView##v_v(v_v);
*/
NAMESPACE_END(Grid);

View File

@ -15,10 +15,10 @@ void check_huge_pages(void *Buf,uint64_t BYTES)
uint64_t virt_pfn = (uint64_t)Buf / page_size;
off_t offset = sizeof(uint64_t) * virt_pfn;
uint64_t npages = (BYTES + page_size-1) / page_size;
std::vector<uint64_t> pagedata(npages);
uint64_t pagedata[npages];
uint64_t ret = lseek(fd, offset, SEEK_SET);
assert(ret == offset);
ret = ::read(fd, &pagedata[0], sizeof(uint64_t)*npages);
ret = ::read(fd, pagedata, sizeof(uint64_t)*npages);
assert(ret == sizeof(uint64_t) * npages);
int nhugepages = npages / 512;
int n4ktotal, nnothuge;

View File

@ -82,7 +82,6 @@ public:
bool _isCheckerBoarded;
int LocallyPeriodic;
Coordinate _checker_dim_mask;
int _checker_dim;
public:
@ -90,8 +89,9 @@ public:
// Checkerboarding interface is virtual and overridden by
// GridCartesian / GridRedBlackCartesian
////////////////////////////////////////////////////////////////
virtual int CheckerBoarded(int dim) =0;
virtual int CheckerBoarded(int dim)=0;
virtual int CheckerBoard(const Coordinate &site)=0;
virtual int CheckerDim(void){ return 0; };
virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0;
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0;
virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift,int cb)=0;

View File

@ -38,7 +38,7 @@ class GridCartesian: public GridBase {
public:
int dummy;
// Coordinate _checker_dim_mask;
Coordinate _checker_dim_mask;
virtual int CheckerBoardFromOindexTable (int Oindex) {
return 0;
}
@ -46,7 +46,7 @@ public:
{
return 0;
}
virtual int CheckerBoarded(int dim) {
virtual int CheckerBoarded(int dim){
return 0;
}
virtual int CheckerBoard(const Coordinate &site){
@ -106,7 +106,6 @@ public:
_rdimensions.resize(_ndimension);
_simd_layout.resize(_ndimension);
_checker_dim_mask.resize(_ndimension);;
_checker_dim = -1;
_lstart.resize(_ndimension);
_lend.resize(_ndimension);

View File

@ -57,10 +57,10 @@ class GridRedBlackCartesian : public GridBase
{
public:
// Coordinate _checker_dim_mask;
// int _checker_dim;
int _checker_dim;
std::vector<int> _checker_board;
virtual int isCheckerBoarded(void) const { return 1; };
virtual int CheckerDim(void){ return _checker_dim; };
virtual int CheckerBoarded(int dim){
if( dim==_checker_dim) return 1;
else return 0;
@ -148,7 +148,7 @@ public:
{
Init(base->_fdimensions,base->_simd_layout,base->_processors,checker_dim_mask,checker_dim) ;
}
virtual ~GridRedBlackCartesian() = default;
void Init(const Coordinate &dimensions,

View File

@ -51,6 +51,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#endif
NAMESPACE_BEGIN(Grid);
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto Cshift(const Expression &expr,int dim,int shift) -> decltype(closure(expr))
{

View File

@ -30,11 +30,12 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
extern std::vector<std::pair<int,int> > Cshift_table;
extern deviceVector<std::pair<int,int> > Cshift_table_device;
extern commVector<std::pair<int,int> > Cshift_table_device;
inline std::pair<int,int> *MapCshiftTable(void)
{
// GPU version
#ifdef ACCELERATOR_CSHIFT
uint64_t sz=Cshift_table.size();
if (Cshift_table_device.size()!=sz ) {
Cshift_table_device.resize(sz);
@ -44,13 +45,16 @@ inline std::pair<int,int> *MapCshiftTable(void)
sizeof(Cshift_table[0])*sz);
return &Cshift_table_device[0];
#else
return &Cshift_table[0];
#endif
// CPU version use identify map
}
///////////////////////////////////////////////////////////////////
// Gather for when there is no need to SIMD split
///////////////////////////////////////////////////////////////////
template<class vobj> void
Gather_plane_simple (const Lattice<vobj> &rhs,deviceVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
{
int rd = rhs.Grid()->_rdimensions[dimension];
@ -90,10 +94,17 @@ Gather_plane_simple (const Lattice<vobj> &rhs,deviceVector<vobj> &buffer,int dim
{
auto buffer_p = & buffer[0];
auto table = MapCshiftTable();
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead);
accelerator_for(i,ent,vobj::Nsimd(),{
coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second]));
});
#else
autoView(rhs_v , rhs, CpuRead);
thread_for(i,ent,{
buffer_p[table[i].first]=rhs_v[table[i].second];
});
#endif
}
}
@ -118,6 +129,7 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
int n1=rhs.Grid()->_slice_stride[dimension];
if ( cbmask ==0x3){
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead);
accelerator_for(nn,e1*e2,1,{
int n = nn%e1;
@ -128,10 +140,21 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
vobj temp =rhs_v[so+o+b];
extract<vobj>(temp,pointers,offset);
});
#else
autoView(rhs_v , rhs, CpuRead);
thread_for2d(n,e1,b,e2,{
int o = n*n1;
int offset = b+n*e2;
vobj temp =rhs_v[so+o+b];
extract<vobj>(temp,pointers,offset);
});
#endif
} else {
Coordinate rdim=rhs.Grid()->_rdimensions;
Coordinate cdm =rhs.Grid()->_checker_dim_mask;
std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb?
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead);
accelerator_for(nn,e1*e2,1,{
int n = nn%e1;
@ -152,13 +175,33 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
extract<vobj>(temp,pointers,offset);
}
});
#else
autoView(rhs_v , rhs, CpuRead);
thread_for2d(n,e1,b,e2,{
Coordinate coor;
int o=n*n1;
int oindex = o+b;
int cb = RedBlackCheckerBoardFromOindex(oindex, rdim, cdm);
int ocb=1<<cb;
int offset = b+n*e2;
if ( ocb & cbmask ) {
vobj temp =rhs_v[so+o+b];
extract<vobj>(temp,pointers,offset);
}
});
#endif
}
}
//////////////////////////////////////////////////////
// Scatter for when there is no need to SIMD split
//////////////////////////////////////////////////////
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,deviceVector<vobj> &buffer, int dimension,int plane,int cbmask)
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<vobj> &buffer, int dimension,int plane,int cbmask)
{
int rd = rhs.Grid()->_rdimensions[dimension];
@ -202,10 +245,17 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,deviceVector<
{
auto buffer_p = & buffer[0];
auto table = MapCshiftTable();
#ifdef ACCELERATOR_CSHIFT
autoView( rhs_v, rhs, AcceleratorWrite);
accelerator_for(i,ent,vobj::Nsimd(),{
coalescedWrite(rhs_v[table[i].first],coalescedRead(buffer_p[table[i].second]));
});
#else
autoView( rhs_v, rhs, CpuWrite);
thread_for(i,ent,{
rhs_v[table[i].first]=buffer_p[table[i].second];
});
#endif
}
}
@ -228,6 +278,7 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
if(cbmask ==0x3 ) {
int _slice_stride = rhs.Grid()->_slice_stride[dimension];
int _slice_block = rhs.Grid()->_slice_block[dimension];
#ifdef ACCELERATOR_CSHIFT
autoView( rhs_v , rhs, AcceleratorWrite);
accelerator_for(nn,e1*e2,1,{
int n = nn%e1;
@ -236,6 +287,14 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
int offset = b+n*_slice_block;
merge(rhs_v[so+o+b],pointers,offset);
});
#else
autoView( rhs_v , rhs, CpuWrite);
thread_for2d(n,e1,b,e2,{
int o = n*_slice_stride;
int offset = b+n*_slice_block;
merge(rhs_v[so+o+b],pointers,offset);
});
#endif
} else {
// Case of SIMD split AND checker dim cannot currently be hit, except in
@ -301,11 +360,19 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
{
auto table = MapCshiftTable();
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead);
autoView(lhs_v , lhs, AcceleratorWrite);
accelerator_for(i,ent,vobj::Nsimd(),{
coalescedWrite(lhs_v[table[i].first],coalescedRead(rhs_v[table[i].second]));
});
#else
autoView(rhs_v , rhs, CpuRead);
autoView(lhs_v , lhs, CpuWrite);
thread_for(i,ent,{
lhs_v[table[i].first]=rhs_v[table[i].second];
});
#endif
}
}
@ -345,11 +412,19 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo
{
auto table = MapCshiftTable();
#ifdef ACCELERATOR_CSHIFT
autoView( rhs_v, rhs, AcceleratorRead);
autoView( lhs_v, lhs, AcceleratorWrite);
accelerator_for(i,ent,1,{
permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
});
#else
autoView( rhs_v, rhs, CpuRead);
autoView( lhs_v, lhs, CpuWrite);
thread_for(i,ent,{
permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
});
#endif
}
}

View File

@ -55,13 +55,13 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
RealD t1,t0;
t0=usecond();
if ( !comm_dim ) {
// std::cout << "CSHIFT: Cshift_local" <<std::endl;
//std::cout << "CSHIFT: Cshift_local" <<std::endl;
Cshift_local(ret,rhs,dimension,shift); // Handles checkerboarding
} else if ( splice_dim ) {
// std::cout << "CSHIFT: Cshift_comms_simd call - splice_dim = " << splice_dim << " shift " << shift << " dimension = " << dimension << std::endl;
//std::cout << "CSHIFT: Cshift_comms_simd call - splice_dim = " << splice_dim << " shift " << shift << " dimension = " << dimension << std::endl;
Cshift_comms_simd(ret,rhs,dimension,shift);
} else {
// std::cout << "CSHIFT: Cshift_comms" <<std::endl;
//std::cout << "CSHIFT: Cshift_comms" <<std::endl;
Cshift_comms(ret,rhs,dimension,shift);
}
t1=usecond();
@ -94,16 +94,18 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vob
sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even);
sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd);
// std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.Checkerboard()<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
//std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.checkerboard<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
if ( sshift[0] == sshift[1] ) {
// std::cout << "Single pass Cshift_comms" <<std::endl;
//std::cout << "Single pass Cshift_comms" <<std::endl;
Cshift_comms_simd(ret,rhs,dimension,shift,0x3);
} else {
// std::cout << "Two pass Cshift_comms" <<std::endl;
//std::cout << "Two pass Cshift_comms" <<std::endl;
Cshift_comms_simd(ret,rhs,dimension,shift,0x1);// if checkerboard is unfavourable take two passes
Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
}
}
#define ACCELERATOR_CSHIFT_NO_COPY
#ifdef ACCELERATOR_CSHIFT_NO_COPY
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
typedef typename vobj::vector_type vector_type;
@ -123,8 +125,8 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
assert(shift<fd);
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
static deviceVector<vobj> send_buf; send_buf.resize(buffer_size);
static deviceVector<vobj> recv_buf; recv_buf.resize(buffer_size);
static cshiftVector<vobj> send_buf; send_buf.resize(buffer_size);
static cshiftVector<vobj> recv_buf; recv_buf.resize(buffer_size);
int cb= (cbmask==0x2)? Odd : Even;
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
@ -159,7 +161,7 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
tcomms-=usecond();
grid->Barrier();
// grid->Barrier();
grid->SendToRecvFrom((void *)&send_buf[0],
xmit_to_rank,
@ -167,7 +169,7 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
recv_from_rank,
bytes);
xbytes+=bytes;
grid->Barrier();
// grid->Barrier();
tcomms+=usecond();
tscatter-=usecond();
@ -175,11 +177,13 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
tscatter+=usecond();
}
}
/*
std::cout << GridLogPerformance << " Cshift copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
*/
}
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
@ -197,9 +201,9 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
int simd_layout = grid->_simd_layout[dimension];
int comm_dim = grid->_processors[dimension] >1 ;
// std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
// << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout
// << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
//std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
// << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout
// << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
assert(comm_dim==1);
assert(simd_layout==2);
@ -220,8 +224,8 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
// int words = sizeof(vobj)/sizeof(vector_type);
static std::vector<deviceVector<scalar_object> > send_buf_extract; send_buf_extract.resize(Nsimd);
static std::vector<deviceVector<scalar_object> > recv_buf_extract; recv_buf_extract.resize(Nsimd);
static std::vector<cshiftVector<scalar_object> > send_buf_extract; send_buf_extract.resize(Nsimd);
static std::vector<cshiftVector<scalar_object> > recv_buf_extract; recv_buf_extract.resize(Nsimd);
scalar_object * recv_buf_extract_mpi;
scalar_object * send_buf_extract_mpi;
@ -277,7 +281,7 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
tcomms-=usecond();
grid->Barrier();
// grid->Barrier();
send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
recv_buf_extract_mpi = &recv_buf_extract[i][0];
@ -288,7 +292,7 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
bytes);
xbytes+=bytes;
grid->Barrier();
// grid->Barrier();
tcomms+=usecond();
rpointers[i] = &recv_buf_extract[i][0];
@ -301,12 +305,242 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
tscatter+=usecond();
}
/*
std::cout << GridLogPerformance << " Cshift (s) copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
*/
}
#else
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
GridBase *grid=rhs.Grid();
Lattice<vobj> temp(rhs.Grid());
int fd = rhs.Grid()->_fdimensions[dimension];
int rd = rhs.Grid()->_rdimensions[dimension];
int pd = rhs.Grid()->_processors[dimension];
int simd_layout = rhs.Grid()->_simd_layout[dimension];
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
assert(simd_layout==1);
assert(comm_dim==1);
assert(shift>=0);
assert(shift<fd);
RealD tcopy=0.0;
RealD tgather=0.0;
RealD tscatter=0.0;
RealD tcomms=0.0;
uint64_t xbytes=0;
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
static cshiftVector<vobj> send_buf_v; send_buf_v.resize(buffer_size);
static cshiftVector<vobj> recv_buf_v; recv_buf_v.resize(buffer_size);
vobj *send_buf;
vobj *recv_buf;
{
grid->ShmBufferFreeAll();
size_t bytes = buffer_size*sizeof(vobj);
send_buf=(vobj *)grid->ShmBufferMalloc(bytes);
recv_buf=(vobj *)grid->ShmBufferMalloc(bytes);
}
int cb= (cbmask==0x2)? Odd : Even;
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
for(int x=0;x<rd;x++){
int sx = (x+sshift)%rd;
int comm_proc = ((x+sshift)/rd)%pd;
if (comm_proc==0) {
tcopy-=usecond();
Copy_plane(ret,rhs,dimension,x,sx,cbmask);
tcopy+=usecond();
} else {
int words = buffer_size;
if (cbmask != 0x3) words=words>>1;
int bytes = words * sizeof(vobj);
tgather-=usecond();
Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask);
tgather+=usecond();
// int rank = grid->_processor;
int recv_from_rank;
int xmit_to_rank;
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
tcomms-=usecond();
// grid->Barrier();
acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes);
grid->SendToRecvFrom((void *)&send_buf[0],
xmit_to_rank,
(void *)&recv_buf[0],
recv_from_rank,
bytes);
xbytes+=bytes;
acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes);
// grid->Barrier();
tcomms+=usecond();
tscatter-=usecond();
Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask);
tscatter+=usecond();
}
}
/*
std::cout << GridLogPerformance << " Cshift copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
*/
}
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
GridBase *grid=rhs.Grid();
const int Nsimd = grid->Nsimd();
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
int fd = grid->_fdimensions[dimension];
int rd = grid->_rdimensions[dimension];
int ld = grid->_ldimensions[dimension];
int pd = grid->_processors[dimension];
int simd_layout = grid->_simd_layout[dimension];
int comm_dim = grid->_processors[dimension] >1 ;
//std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
// << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout
// << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
assert(comm_dim==1);
assert(simd_layout==2);
assert(shift>=0);
assert(shift<fd);
RealD tcopy=0.0;
RealD tgather=0.0;
RealD tscatter=0.0;
RealD tcomms=0.0;
uint64_t xbytes=0;
int permute_type=grid->PermuteType(dimension);
///////////////////////////////////////////////
// Simd direction uses an extract/merge pair
///////////////////////////////////////////////
int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
// int words = sizeof(vobj)/sizeof(vector_type);
static std::vector<cshiftVector<scalar_object> > send_buf_extract; send_buf_extract.resize(Nsimd);
static std::vector<cshiftVector<scalar_object> > recv_buf_extract; recv_buf_extract.resize(Nsimd);
scalar_object * recv_buf_extract_mpi;
scalar_object * send_buf_extract_mpi;
{
size_t bytes = sizeof(scalar_object)*buffer_size;
grid->ShmBufferFreeAll();
send_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
recv_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
}
for(int s=0;s<Nsimd;s++){
send_buf_extract[s].resize(buffer_size);
recv_buf_extract[s].resize(buffer_size);
}
int bytes = buffer_size*sizeof(scalar_object);
ExtractPointerArray<scalar_object> pointers(Nsimd); //
ExtractPointerArray<scalar_object> rpointers(Nsimd); // received pointers
///////////////////////////////////////////
// Work out what to send where
///////////////////////////////////////////
int cb = (cbmask==0x2)? Odd : Even;
int sshift= grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
// loop over outer coord planes orthog to dim
for(int x=0;x<rd;x++){
// FIXME call local permute copy if none are offnode.
for(int i=0;i<Nsimd;i++){
pointers[i] = &send_buf_extract[i][0];
}
tgather-=usecond();
int sx = (x+sshift)%rd;
Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
tgather+=usecond();
for(int i=0;i<Nsimd;i++){
int inner_bit = (Nsimd>>(permute_type+1));
int ic= (i&inner_bit)? 1:0;
int my_coor = rd*ic + x;
int nbr_coor = my_coor+sshift;
int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors
int nbr_ic = (nbr_coor%ld)/rd; // inner coord of peer
int nbr_ox = (nbr_coor%rd); // outer coord of peer
int nbr_lane = (i&(~inner_bit));
int recv_from_rank;
int xmit_to_rank;
if (nbr_ic) nbr_lane|=inner_bit;
assert (sx == nbr_ox);
if(nbr_proc){
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
tcomms-=usecond();
// grid->Barrier();
acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes);
grid->SendToRecvFrom((void *)send_buf_extract_mpi,
xmit_to_rank,
(void *)recv_buf_extract_mpi,
recv_from_rank,
bytes);
acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes);
xbytes+=bytes;
// grid->Barrier();
tcomms+=usecond();
rpointers[i] = &recv_buf_extract[i][0];
} else {
rpointers[i] = &send_buf_extract[nbr_lane][0];
}
}
tscatter-=usecond();
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
tscatter+=usecond();
}
/*
std::cout << GridLogPerformance << " Cshift (s) copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s"<<std::endl;
*/
}
#endif
NAMESPACE_END(Grid);
#endif

View File

@ -1,5 +1,5 @@
#include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid);
std::vector<std::pair<int,int> > Cshift_table;
deviceVector<std::pair<int,int> > Cshift_table_device;
commVector<std::pair<int,int> > Cshift_table_device;
NAMESPACE_END(Grid);

View File

@ -236,20 +236,17 @@ public:
template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){
vobj vtmp;
vtmp = r;
#if 0
deviceVector<vobj> vvtmp(1);
acceleratorPut(vvtmp[0],vtmp);
vobj *vvtmp_p = & vvtmp[0];
auto me = View(AcceleratorWrite);
accelerator_for(ss,me.size(),vobj::Nsimd(),{
auto stmp=coalescedRead(*vvtmp_p);
coalescedWrite(me[ss],stmp);
});
#else
#if 1
auto me = View(CpuWrite);
thread_for(ss,me.size(),{
me[ss]= r;
});
#else
auto me = View(AcceleratorWrite);
accelerator_for(ss,me.size(),vobj::Nsimd(),{
auto stmp=coalescedRead(vtmp);
coalescedWrite(me[ss],stmp);
});
#endif
me.ViewClose();
return *this;

View File

@ -53,19 +53,36 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
typedef decltype(basis[0]) Field;
typedef decltype(basis[0].View(AcceleratorRead)) View;
hostVector<View> h_basis_v(basis.size());
deviceVector<View> d_basis_v(basis.size());
typedef typename std::remove_reference<decltype(h_basis_v[0][0])>::type vobj;
Vector<View> basis_v; basis_v.reserve(basis.size());
typedef typename std::remove_reference<decltype(basis_v[0][0])>::type vobj;
typedef typename std::remove_reference<decltype(Qt(0,0))>::type Coeff_t;
GridBase* grid = basis[0].Grid();
for(int k=0;k<basis.size();k++){
h_basis_v[k] = basis[k].View(AcceleratorWrite);
acceleratorPut(d_basis_v[k],h_basis_v[k]);
basis_v.push_back(basis[k].View(AcceleratorWrite));
}
View *basis_vp = &d_basis_v[0];
#if ( !(defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)) )
int max_threads = thread_max();
Vector < vobj > Bt(Nm * max_threads);
thread_region
{
vobj* B = &Bt[Nm * thread_num()];
thread_for_in_region(ss, grid->oSites(),{
for(int j=j0; j<j1; ++j) B[j]=0.;
for(int j=j0; j<j1; ++j){
for(int k=k0; k<k1; ++k){
B[j] +=Qt(j,k) * basis_v[k][ss];
}
}
for(int j=j0; j<j1; ++j){
basis_v[j][ss] = B[j];
}
});
}
#else
View *basis_vp = &basis_v[0];
int nrot = j1-j0;
if (!nrot) // edge case not handled gracefully by Cuda
@ -74,19 +91,17 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
uint64_t oSites =grid->oSites();
uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead
deviceVector <vobj> Bt(siteBlock * nrot);
Vector <vobj> Bt(siteBlock * nrot);
auto Bp=&Bt[0];
// GPU readable copy of matrix
hostVector<Coeff_t> h_Qt_jv(Nm*Nm);
deviceVector<Coeff_t> Qt_jv(Nm*Nm);
Vector<Coeff_t> Qt_jv(Nm*Nm);
Coeff_t *Qt_p = & Qt_jv[0];
thread_for(i,Nm*Nm,{
int j = i/Nm;
int k = i%Nm;
h_Qt_jv[i]=Qt(j,k);
Qt_p[i]=Qt(j,k);
});
acceleratorCopyToDevice(&h_Qt_jv[0],Qt_p,Nm*Nm*sizeof(Coeff_t));
// Block the loop to keep storage footprint down
for(uint64_t s=0;s<oSites;s+=siteBlock){
@ -122,8 +137,9 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
coalescedWrite(basis_vp[jj][sss],coalescedRead(Bp[ss*nrot+j]));
});
}
#endif
for(int k=0;k<basis.size();k++) h_basis_v[k].ViewClose();
for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
}
// Extract a single rotated vector
@ -136,19 +152,16 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in
result.Checkerboard() = basis[0].Checkerboard();
hostVector<View> h_basis_v(basis.size());
deviceVector<View> d_basis_v(basis.size());
Vector<View> basis_v; basis_v.reserve(basis.size());
for(int k=0;k<basis.size();k++){
h_basis_v[k]=basis[k].View(AcceleratorRead);
acceleratorPut(d_basis_v[k],h_basis_v[k]);
basis_v.push_back(basis[k].View(AcceleratorRead));
}
vobj zz=Zero();
deviceVector<double> Qt_jv(Nm);
Vector<double> Qt_jv(Nm);
double * Qt_j = & Qt_jv[0];
for(int k=0;k<Nm;++k) acceleratorPut(Qt_j[k],Qt(j,k));
for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k);
auto basis_vp=& d_basis_v[0];
auto basis_vp=& basis_v[0];
autoView(result_v,result,AcceleratorWrite);
accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
vobj zzz=Zero();
@ -158,7 +171,7 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in
}
coalescedWrite(result_v[ss], B);
});
for(int k=0;k<basis.size();k++) h_basis_v[k].ViewClose();
for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
}
template<class Field>

View File

@ -165,7 +165,7 @@ inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
int Nsimd = grid->Nsimd();
// assert( l.Checkerboard()== grid->CheckerBoard(site));
assert( l.Checkerboard()== grid->CheckerBoard(site));
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
static const int words=sizeof(vobj)/sizeof(vector_type);
@ -179,7 +179,7 @@ inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
for(int w=0;w<words;w++){
pt[w] = getlane(vp[w],idx);
}
// std::cout << "peekLocalSite "<<site<<" "<<odx<<","<<idx<<" "<<s<<std::endl;
return;
};
template<class vobj,class sobj>
@ -202,7 +202,7 @@ inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site)
int Nsimd = grid->Nsimd();
// assert( l.Checkerboard()== grid->CheckerBoard(site));
assert( l.Checkerboard()== grid->CheckerBoard(site));
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
static const int words=sizeof(vobj)/sizeof(vector_type);

View File

@ -46,7 +46,7 @@ inline typename vobj::scalar_object sum_cpu(const vobj *arg, Integer osites)
// const int Nsimd = vobj::Nsimd();
const int nthread = GridThread::GetThreads();
std::vector<sobj> sumarray(nthread);
Vector<sobj> sumarray(nthread);
for(int i=0;i<nthread;i++){
sumarray[i]=Zero();
}
@ -75,7 +75,7 @@ inline typename vobj::scalar_objectD sumD_cpu(const vobj *arg, Integer osites)
const int nthread = GridThread::GetThreads();
std::vector<sobj> sumarray(nthread);
Vector<sobj> sumarray(nthread);
for(int i=0;i<nthread;i++){
sumarray[i]=Zero();
}
@ -343,6 +343,18 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
autoView( x_v, x, AcceleratorRead);
autoView( y_v, y, AcceleratorRead);
autoView( z_v, z, AcceleratorWrite);
#if 0
typedef decltype(innerProductD(x_v[0],y_v[0])) inner_t;
Vector<inner_t> inner_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
accelerator_for( ss, sites, nsimd,{
auto tmp = a*x_v(ss)+b*y_v(ss);
coalescedWrite(inner_tmp_v[ss],innerProductD(tmp,tmp));
coalescedWrite(z_v[ss],tmp);
});
nrm = real(TensorRemove(sum(inner_tmp_v,sites)));
#else
typedef decltype(innerProduct(x_v[0],y_v[0])) inner_t;
deviceVector<inner_t> inner_tmp;
inner_tmp.resize(sites);
@ -354,6 +366,7 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
coalescedWrite(z_v[ss],tmp);
});
nrm = real(TensorRemove(sumD(inner_tmp_v,sites)));
#endif
grid->GlobalSum(nrm);
return nrm;
}
@ -364,7 +377,7 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti
conformable(left,right);
typedef typename vobj::vector_typeD vector_type;
std::vector<ComplexD> tmp(2);
Vector<ComplexD> tmp(2);
GridBase *grid = left.Grid();
@ -374,8 +387,8 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti
// GPU
typedef decltype(innerProductD(vobj(),vobj())) inner_t;
typedef decltype(innerProductD(vobj(),vobj())) norm_t;
deviceVector<inner_t> inner_tmp(sites);
deviceVector<norm_t> norm_tmp(sites);
Vector<inner_t> inner_tmp(sites);
Vector<norm_t> norm_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
auto norm_tmp_v = &norm_tmp[0];
{
@ -425,9 +438,7 @@ inline auto sum(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)
// sliceSum, sliceInnerProduct, sliceAxpy, sliceNorm etc...
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,
std::vector<typename vobj::scalar_object> &result,
int orthogdim)
template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<typename vobj::scalar_object> &result,int orthogdim)
{
///////////////////////////////////////////////////////
// FIXME precision promoted summation
@ -449,8 +460,8 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
std::vector<vobj> lvSum(rd); // will locally sum vectors first
std::vector<sobj> lsSum(ld,Zero()); // sum across these down to scalars
Vector<vobj> lvSum(rd); // will locally sum vectors first
Vector<sobj> lsSum(ld,Zero()); // sum across these down to scalars
ExtractBuffer<sobj> extracted(Nsimd); // splitting the SIMD
result.resize(fd); // And then global sum to return the same vector to every node
@ -508,20 +519,7 @@ sliceSum(const Lattice<vobj> &Data,int orthogdim)
return result;
}
/*
Reimplement
1)
template<class vobj>
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)
2)
template<class vobj>
static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
3)
-- Make Slice Mul Matrix call sliceMaddMatrix
*/
template<class vobj>
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)
{
@ -541,8 +539,8 @@ static void sliceInnerProductVector( std::vector<ComplexD> & result, const Latti
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
std::vector<vector_type> lvSum(rd); // will locally sum vectors first
std::vector<scalar_type > lsSum(ld,scalar_type(0.0)); // sum across these down to scalars
Vector<vector_type> lvSum(rd); // will locally sum vectors first
Vector<scalar_type > lsSum(ld,scalar_type(0.0)); // sum across these down to scalars
ExtractBuffer<iScalar<scalar_type> > extracted(Nsimd); // splitting the SIMD
result.resize(fd); // And then global sum to return the same vector to every node for IO to file
@ -672,96 +670,203 @@ static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice
}
};
/*
inline GridBase *makeSubSliceGrid(const GridBase *BlockSolverGrid,int Orthog)
{
int NN = BlockSolverGrid->_ndimension;
int nsimd = BlockSolverGrid->Nsimd();
std::vector<int> latt_phys(NN-1);
Coordinate simd_phys;
std::vector<int> mpi_phys(NN-1);
Coordinate checker_dim_mask(NN-1);
int checker_dim=-1;
int dd;
std::vector<int> latt_phys(0);
std::vector<int> simd_phys(0);
std::vector<int> mpi_phys(0);
for(int d=0;d<NN;d++){
if( d!=Orthog ) {
latt_phys[dd]=BlockSolverGrid->_fdimensions[d];
mpi_phys[dd] =BlockSolverGrid->_processors[d];
checker_dim_mask[dd] = BlockSolverGrid->_checker_dim_mask[d];
if ( d == BlockSolverGrid->_checker_dim ) checker_dim = dd;
dd++;
latt_phys.push_back(BlockSolverGrid->_fdimensions[d]);
simd_phys.push_back(BlockSolverGrid->_simd_layout[d]);
mpi_phys.push_back(BlockSolverGrid->_processors[d]);
}
}
simd_phys=GridDefaultSimd(latt_phys.size(),nsimd);
GridCartesian *tmp = new GridCartesian(latt_phys,simd_phys,mpi_phys);
if(BlockSolverGrid->_isCheckerBoarded) {
GridRedBlackCartesian *ret = new GridRedBlackCartesian(tmp,checker_dim_mask,checker_dim);
delete tmp;
return (GridBase *) ret;
} else {
return (GridBase *) tmp;
}
return (GridBase *)new GridCartesian(latt_phys,simd_phys,mpi_phys);
}
*/
template<class vobj>
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)
{
GridBase *FullGrid = X.Grid();
GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
Lattice<vobj> Ys(SliceGrid);
Lattice<vobj> Rs(SliceGrid);
Lattice<vobj> Xs(SliceGrid);
Lattice<vobj> RR(FullGrid);
RR = R; // Copies checkerboard for insert
typedef typename vobj::scalar_object sobj;
typedef typename vobj::vector_type vector_type;
int Nslice = X.Grid()->GlobalDimensions()[Orthog];
for(int i=0;i<Nslice;i++){
ExtractSlice(Ys,Y,i,Orthog);
ExtractSlice(Rs,R,i,Orthog);
Rs=Ys;
for(int j=0;j<Nslice;j++){
ExtractSlice(Xs,X,j,Orthog);
Rs = Rs + Xs*(scale*aa(j,i));
}
InsertSlice(Rs,RR,i,Orthog);
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
GridBase *FullGrid = X.Grid();
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
// Lattice<vobj> Xslice(SliceGrid);
// Lattice<vobj> Rslice(SliceGrid);
assert( FullGrid->_simd_layout[Orthog]==1);
// int nh = FullGrid->_ndimension;
// int nl = SliceGrid->_ndimension;
// int nl = nh-1;
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
int stride=FullGrid->_slice_stride[Orthog];
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
autoView( X_v, X, CpuRead);
autoView( Y_v, Y, CpuRead);
autoView( R_v, R, CpuWrite);
thread_region
{
Vector<vobj> s_x(Nblock);
thread_for_collapse_in_region(2, n,nblock, {
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
s_x[i] = X_v[o+i*ostride];
}
vobj dot;
for(int i=0;i<Nblock;i++){
dot = Y_v[o+i*ostride];
for(int j=0;j<Nblock;j++){
dot = dot + s_x[j]*(scale*aa(j,i));
}
R_v[o+i*ostride]=dot;
}
}});
}
R=RR; // Copy back handles arguments aliasing case
delete SliceGrid;
};
template<class vobj>
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0)
{
R=Zero();
sliceMaddMatrix(R,aa,X,R,Orthog,scale);
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::vector_type vector_type;
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
GridBase *FullGrid = X.Grid();
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
// Lattice<vobj> Xslice(SliceGrid);
// Lattice<vobj> Rslice(SliceGrid);
assert( FullGrid->_simd_layout[Orthog]==1);
// int nh = FullGrid->_ndimension;
// int nl = SliceGrid->_ndimension;
// int nl=1;
//FIXME package in a convenient iterator
// thread_for2d_in_region
//Should loop over a plane orthogonal to direction "Orthog"
int stride=FullGrid->_slice_stride[Orthog];
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
autoView( R_v, R, CpuWrite);
autoView( X_v, X, CpuRead);
thread_region
{
std::vector<vobj> s_x(Nblock);
thread_for_collapse_in_region( 2 ,n,nblock,{
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
s_x[i] = X_v[o+i*ostride];
}
vobj dot;
for(int i=0;i<Nblock;i++){
dot = s_x[0]*(scale*aa(0,i));
for(int j=1;j<Nblock;j++){
dot = dot + s_x[j]*(scale*aa(j,i));
}
R_v[o+i*ostride]=dot;
}
}});
}
};
template<class vobj>
static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
{
GridBase *SliceGrid = makeSubSliceGrid(lhs.Grid(),Orthog);
Lattice<vobj> ls(SliceGrid);
Lattice<vobj> rs(SliceGrid);
typedef typename vobj::scalar_object sobj;
typedef typename vobj::vector_type vector_type;
int Nslice = lhs.Grid()->GlobalDimensions()[Orthog];
mat = Eigen::MatrixXcd::Zero(Nslice,Nslice);
for(int s=0;s<Nslice;s++){
ExtractSlice(ls,lhs,s,Orthog);
for(int ss=0;ss<Nslice;ss++){
ExtractSlice(rs,rhs,ss,Orthog);
mat(s,ss) = innerProduct(ls,rs);
}
GridBase *FullGrid = lhs.Grid();
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
int Nblock = FullGrid->GlobalDimensions()[Orthog];
// Lattice<vobj> Lslice(SliceGrid);
// Lattice<vobj> Rslice(SliceGrid);
mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
assert( FullGrid->_simd_layout[Orthog]==1);
// int nh = FullGrid->_ndimension;
// int nl = SliceGrid->_ndimension;
// int nl = nh-1;
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
int stride=FullGrid->_slice_stride[Orthog];
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
typedef typename vobj::vector_typeD vector_typeD;
autoView( lhs_v, lhs, CpuRead);
autoView( rhs_v, rhs, CpuRead);
thread_region
{
std::vector<vobj> Left(Nblock);
std::vector<vobj> Right(Nblock);
Eigen::MatrixXcd mat_thread = Eigen::MatrixXcd::Zero(Nblock,Nblock);
thread_for_collapse_in_region( 2, n,nblock,{
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
Left [i] = lhs_v[o+i*ostride];
Right[i] = rhs_v[o+i*ostride];
}
for(int i=0;i<Nblock;i++){
for(int j=0;j<Nblock;j++){
auto tmp = innerProduct(Left[i],Right[j]);
auto rtmp = TensorRemove(tmp);
auto red = Reduce(rtmp);
mat_thread(i,j) += std::complex<double>(real(red),imag(red));
}}
}});
thread_critical
{
mat += mat_thread;
}
}
delete SliceGrid;
for(int i=0;i<Nblock;i++){
for(int j=0;j<Nblock;j++){
ComplexD sum = mat(i,j);
FullGrid->GlobalSum(sum);
mat(i,j)=sum;
}}
return;
}
NAMESPACE_END(Grid);

View File

@ -214,12 +214,22 @@ inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osi
// Move out of UVM
// Turns out I had messed up the synchronise after move to compute stream
// as running this on the default stream fools the synchronise
deviceVector<sobj> buffer(numBlocks);
#undef UVM_BLOCK_BUFFER
#ifndef UVM_BLOCK_BUFFER
commVector<sobj> buffer(numBlocks);
sobj *buffer_v = &buffer[0];
sobj result;
reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
accelerator_barrier();
acceleratorCopyFromDevice(buffer_v,&result,sizeof(result));
#else
Vector<sobj> buffer(numBlocks);
sobj *buffer_v = &buffer[0];
sobj result;
reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
accelerator_barrier();
result = *buffer_v;
#endif
return result;
}
@ -234,7 +244,7 @@ inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osi
const int words = sizeof(vobj)/sizeof(vector);
deviceVector<vector> buffer(osites);
Vector<vector> buffer(osites);
vector *dat = (vector *)lat;
vector *buf = &buffer[0];
iScalar<vector> *tbuf =(iScalar<vector> *) &buffer[0];

View File

@ -4,28 +4,33 @@ NAMESPACE_BEGIN(Grid);
// Possibly promote to double and sum
/////////////////////////////////////////////////////////////////////////////////////////////////////////
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu_tensor(const vobj *lat, Integer osites)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_objectD sobjD;
static Vector<sobj> mysum;
mysum.resize(1);
sobj *mysum_p = & mysum[0];
sobj identity; zeroit(identity);
sobj ret; zeroit(ret);
mysum[0] = identity;
sobj ret ;
Integer nsimd= vobj::Nsimd();
{
sycl::buffer<sobj, 1> abuff(&ret, {1});
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
auto Reduction = cl::sycl::reduction(abuff,cgh,identity,std::plus<>());
cgh.parallel_for(cl::sycl::range<1>{osites},
Reduction,
[=] (cl::sycl::id<1> item, auto &sum) {
auto osite = item[0];
sum +=Reduce(lat[osite]);
});
});
}
const cl::sycl::property_list PropList ({ cl::sycl::property::reduction::initialize_to_identity() });
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
auto Reduction = cl::sycl::reduction(mysum_p,identity,std::plus<>(),PropList);
cgh.parallel_for(cl::sycl::range<1>{osites},
Reduction,
[=] (cl::sycl::id<1> item, auto &sum) {
auto osite = item[0];
sum +=Reduce(lat[osite]);
});
});
theGridAccelerator->wait();
ret = mysum[0];
// free(mysum,*theGridAccelerator);
sobjD dret; convertType(dret,ret);
return dret;
}
@ -71,22 +76,59 @@ inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osite
template<class Word> Word svm_xor(Word *vec,uint64_t L)
{
Word xorResult; xorResult = 0;
static Vector<Word> d_sum;
d_sum.resize(1);
Word *d_sum_p=&d_sum[0];
Word identity; identity=0;
Word ret = 0;
{
sycl::buffer<Word, 1> abuff(&ret, {1});
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
auto Reduction = cl::sycl::reduction(abuff,cgh,identity,std::bit_xor<>());
cgh.parallel_for(cl::sycl::range<1>{L},
Reduction,
[=] (cl::sycl::id<1> index, auto &sum) {
sum ^=vec[index];
});
});
}
d_sum[0] = identity;
const cl::sycl::property_list PropList ({ cl::sycl::property::reduction::initialize_to_identity() });
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
auto Reduction = cl::sycl::reduction(d_sum_p,identity,std::bit_xor<>(),PropList);
cgh.parallel_for(cl::sycl::range<1>{L},
Reduction,
[=] (cl::sycl::id<1> index, auto &sum) {
sum^=vec[index];
});
});
theGridAccelerator->wait();
Word ret = d_sum[0];
// free(d_sum,*theGridAccelerator);
return ret;
}
NAMESPACE_END(Grid);
/*
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu_repack(const vobj *lat, Integer osites)
{
typedef typename vobj::vector_type vector;
typedef typename vobj::scalar_type scalar;
typedef typename vobj::scalar_typeD scalarD;
typedef typename vobj::scalar_objectD sobjD;
sobjD ret;
scalarD *ret_p = (scalarD *)&ret;
const int nsimd = vobj::Nsimd();
const int words = sizeof(vobj)/sizeof(vector);
Vector<scalar> buffer(osites*nsimd);
scalar *buf = &buffer[0];
vector *dat = (vector *)lat;
for(int w=0;w<words;w++) {
accelerator_for(ss,osites,nsimd,{
int lane = acceleratorSIMTlane(nsimd);
buf[ss*nsimd+lane] = dat[ss*words+w].getlane(lane);
});
//Precision change at this point is to late to gain precision
ret_p[w] = svm_reduce(buf,nsimd*osites);
}
return ret;
}
*/

View File

@ -21,18 +21,9 @@ NAMESPACE_BEGIN(Grid);
#if defined(GRID_CUDA) || defined(GRID_HIP)
template<class vobj>
inline void sliceSumReduction_cub_small(const vobj *Data,
std::vector<vobj> &lvSum,
const int rd,
const int e1,
const int e2,
const int stride,
const int ostride,
const int Nsimd)
{
template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
size_t subvol_size = e1*e2;
deviceVector<vobj> reduction_buffer(rd*subvol_size);
commVector<vobj> reduction_buffer(rd*subvol_size);
auto rb_p = &reduction_buffer[0];
vobj zero_init;
zeroit(zero_init);
@ -103,15 +94,7 @@ inline void sliceSumReduction_cub_small(const vobj *Data,
#if defined(GRID_SYCL)
template<class vobj>
inline void sliceSumReduction_sycl_small(const vobj *Data,
std::vector <vobj> &lvSum,
const int &rd,
const int &e1,
const int &e2,
const int &stride,
const int &ostride,
const int &Nsimd)
template<class vobj> inline void sliceSumReduction_sycl_small(const vobj *Data, Vector <vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
{
size_t subvol_size = e1*e2;
@ -122,7 +105,7 @@ inline void sliceSumReduction_sycl_small(const vobj *Data,
mysum[r] = vobj_zero;
}
deviceVector<vobj> reduction_buffer(rd*subvol_size);
commVector<vobj> reduction_buffer(rd*subvol_size);
auto rb_p = &reduction_buffer[0];
@ -161,23 +144,14 @@ inline void sliceSumReduction_sycl_small(const vobj *Data,
}
#endif
template<class vobj>
inline void sliceSumReduction_large(const vobj *Data,
std::vector<vobj> &lvSum,
const int rd,
const int e1,
const int e2,
const int stride,
const int ostride,
const int Nsimd)
{
template<class vobj> inline void sliceSumReduction_large(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
typedef typename vobj::vector_type vector;
const int words = sizeof(vobj)/sizeof(vector);
const int osites = rd*e1*e2;
deviceVector<vector>buffer(osites);
commVector<vector>buffer(osites);
vector *dat = (vector *)Data;
vector *buf = &buffer[0];
std::vector<vector> lvSum_small(rd);
Vector<vector> lvSum_small(rd);
vector *lvSum_ptr = (vector *)&lvSum[0];
for (int w = 0; w < words; w++) {
@ -194,18 +168,13 @@ inline void sliceSumReduction_large(const vobj *Data,
for (int r = 0; r < rd; r++) {
lvSum_ptr[w+words*r]=lvSum_small[r];
}
}
}
template<class vobj>
inline void sliceSumReduction_gpu(const Lattice<vobj> &Data,
std::vector<vobj> &lvSum,
const int rd,
const int e1,
const int e2,
const int stride,
const int ostride,
const int Nsimd)
template<class vobj> inline void sliceSumReduction_gpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd)
{
autoView(Data_v, Data, AcceleratorRead); //reduction libraries cannot deal with large vobjs so we split into small/large case.
if constexpr (sizeof(vobj) <= 256) {
@ -223,15 +192,7 @@ inline void sliceSumReduction_gpu(const Lattice<vobj> &Data,
}
template<class vobj>
inline void sliceSumReduction_cpu(const Lattice<vobj> &Data,
std::vector<vobj> &lvSum,
const int &rd,
const int &e1,
const int &e2,
const int &stride,
const int &ostride,
const int &Nsimd)
template<class vobj> inline void sliceSumReduction_cpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
{
// sum over reduced dimension planes, breaking out orthog dir
// Parallel over orthog direction
@ -247,20 +208,16 @@ inline void sliceSumReduction_cpu(const Lattice<vobj> &Data,
});
}
template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data,
std::vector<vobj> &lvSum,
const int &rd,
const int &e1,
const int &e2,
const int &stride,
const int &ostride,
const int &Nsimd)
template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
{
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
sliceSumReduction_gpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
#else
#else
sliceSumReduction_cpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
#endif
#endif
}

View File

@ -42,50 +42,21 @@ inline void subdivides(GridBase *coarse,GridBase *fine)
assert((fine->_rdimensions[d] / coarse->_rdimensions[d])* coarse->_rdimensions[d]==fine->_rdimensions[d]);
}
}
////////////////////////////////////////////////////////////////////////////////////////////
// remove and insert a half checkerboard
////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj> inline void pickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full)
{
half.Checkerboard() = cb;
autoView( half_v, half, CpuWrite);
autoView( full_v, full, CpuRead);
thread_for(ss, full.Grid()->oSites(),{
int cbos;
Coordinate coor;
full.Grid()->oCoorFromOindex(coor,ss);
cbos=half.Grid()->CheckerBoard(coor);
if (cbos==cb) {
int ssh=half.Grid()->oIndex(coor);
half_v[ssh] = full_v[ss];
}
});
acceleratorPickCheckerboard(cb,half,full);
}
template<class vobj> inline void setCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half)
{
int cb = half.Checkerboard();
autoView( half_v , half, CpuRead);
autoView( full_v , full, CpuWrite);
thread_for(ss,full.Grid()->oSites(),{
Coordinate coor;
int cbos;
full.Grid()->oCoorFromOindex(coor,ss);
cbos=half.Grid()->CheckerBoard(coor);
if (cbos==cb) {
int ssh=half.Grid()->oIndex(coor);
full_v[ss]=half_v[ssh];
}
});
acceleratorSetCheckerboard(full,half);
}
template<class vobj> inline void acceleratorPickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full, int checker_dim_half=0)
template<class vobj> inline void acceleratorPickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full, int dummy=0)
{
half.Checkerboard() = cb;
autoView(half_v, half, AcceleratorWrite);
@ -95,6 +66,7 @@ template<class vobj> inline void acceleratorPickCheckerboard(int cb,Lattice<vobj
unsigned long ndim_half = half.Grid()->_ndimension;
Coordinate checker_dim_mask_half = half.Grid()->_checker_dim_mask;
Coordinate ostride_half = half.Grid()->_ostride;
int checker_dim_half = half.Grid()->CheckerDim();
accelerator_for(ss, full.Grid()->oSites(),full.Grid()->Nsimd(),{
Coordinate coor;
@ -119,7 +91,7 @@ template<class vobj> inline void acceleratorPickCheckerboard(int cb,Lattice<vobj
}
});
}
template<class vobj> inline void acceleratorSetCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half, int checker_dim_half=0)
template<class vobj> inline void acceleratorSetCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half, int dummy=0)
{
int cb = half.Checkerboard();
autoView(half_v , half, AcceleratorRead);
@ -129,6 +101,7 @@ template<class vobj> inline void acceleratorSetCheckerboard(Lattice<vobj> &full,
unsigned long ndim_half = half.Grid()->_ndimension;
Coordinate checker_dim_mask_half = half.Grid()->_checker_dim_mask;
Coordinate ostride_half = half.Grid()->_ostride;
int checker_dim_half = half.Grid()->CheckerDim();
accelerator_for(ss,full.Grid()->oSites(),full.Grid()->Nsimd(),{
Coordinate coor;
@ -981,14 +954,8 @@ void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice
hcoor[orthog] = slice;
for(int d=0;d<nh;d++){
if ( d!=orthog ) {
hcoor[d]=lcoor[ddl];
if ( hg->_checker_dim == d ) {
hcoor[d]=hcoor[d]*2; // factor in the full coor for peekLocalSite
lcoor[ddl]=lcoor[ddl]*2; // factor in the full coor for peekLocalSite
}
ddl++;
hcoor[d]=lcoor[ddl++];
}
}
peekLocalSite(s,lowDimv,lcoor);
pokeLocalSite(s,higherDimv,hcoor);
@ -1009,7 +976,6 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
assert(orthog<nh);
assert(orthog>=0);
assert(hg->_processors[orthog]==1);
lowDim.Checkerboard() = higherDim.Checkerboard();
int dl; dl = 0;
for(int d=0;d<nh;d++){
@ -1027,16 +993,11 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
Coordinate lcoor(nl);
Coordinate hcoor(nh);
lg->LocalIndexToLocalCoor(idx,lcoor);
hcoor[orthog] = slice;
int ddl=0;
hcoor[orthog] = slice;
for(int d=0;d<nh;d++){
if ( d!=orthog ) {
hcoor[d]=lcoor[ddl];
if ( hg->_checker_dim == d ) {
hcoor[d]=hcoor[d]*2; // factor in the full gridd coor for peekLocalSite
lcoor[ddl]=lcoor[ddl]*2; // factor in the full coor for peekLocalSite
}
ddl++;
hcoor[d]=lcoor[ddl++];
}
}
peekLocalSite(s,higherDimv,hcoor);

View File

@ -54,7 +54,7 @@ struct CshiftImplGauge: public CshiftImplBase<typename Gimpl::GaugeLinkField::ve
*
*/
template<class vobj> inline void ScatterSlice(const deviceVector<vobj> &buf,
template<class vobj> inline void ScatterSlice(const cshiftVector<vobj> &buf,
Lattice<vobj> &lat,
int x,
int dim,
@ -140,7 +140,7 @@ template<class vobj> inline void ScatterSlice(const deviceVector<vobj> &buf,
});
}
template<class vobj> inline void GatherSlice(deviceVector<vobj> &buf,
template<class vobj> inline void GatherSlice(cshiftVector<vobj> &buf,
const Lattice<vobj> &lat,
int x,
int dim,
@ -462,8 +462,8 @@ public:
int rNsimd = Nsimd / simd[dimension];
assert( buffer_size == from.Grid()->_slice_nblock[dimension]*from.Grid()->_slice_block[dimension] / simd[dimension]);
static deviceVector<vobj> send_buf;
static deviceVector<vobj> recv_buf;
static cshiftVector<vobj> send_buf;
static cshiftVector<vobj> recv_buf;
send_buf.resize(buffer_size*2*depth);
recv_buf.resize(buffer_size*2*depth);

View File

@ -90,16 +90,16 @@ public:
void M5D(const FermionField &psi,
const FermionField &phi,
FermionField &chi,
std::vector<Coeff_t> &lower,
std::vector<Coeff_t> &diag,
std::vector<Coeff_t> &upper);
Vector<Coeff_t> &lower,
Vector<Coeff_t> &diag,
Vector<Coeff_t> &upper);
void M5Ddag(const FermionField &psi,
const FermionField &phi,
FermionField &chi,
std::vector<Coeff_t> &lower,
std::vector<Coeff_t> &diag,
std::vector<Coeff_t> &upper);
Vector<Coeff_t> &lower,
Vector<Coeff_t> &diag,
Vector<Coeff_t> &upper);
virtual void Instantiatable(void)=0;
@ -119,35 +119,35 @@ public:
RealD mass_plus, mass_minus;
// Save arguments to SetCoefficientsInternal
std::vector<Coeff_t> _gamma;
Vector<Coeff_t> _gamma;
RealD _zolo_hi;
RealD _b;
RealD _c;
// Cayley form Moebius (tanh and zolotarev)
std::vector<Coeff_t> omega;
std::vector<Coeff_t> bs; // S dependent coeffs
std::vector<Coeff_t> cs;
std::vector<Coeff_t> as;
Vector<Coeff_t> omega;
Vector<Coeff_t> bs; // S dependent coeffs
Vector<Coeff_t> cs;
Vector<Coeff_t> as;
// For preconditioning Cayley form
std::vector<Coeff_t> bee;
std::vector<Coeff_t> cee;
std::vector<Coeff_t> aee;
std::vector<Coeff_t> beo;
std::vector<Coeff_t> ceo;
std::vector<Coeff_t> aeo;
Vector<Coeff_t> bee;
Vector<Coeff_t> cee;
Vector<Coeff_t> aee;
Vector<Coeff_t> beo;
Vector<Coeff_t> ceo;
Vector<Coeff_t> aeo;
// LDU factorisation of the eeoo matrix
std::vector<Coeff_t> lee;
std::vector<Coeff_t> leem;
std::vector<Coeff_t> uee;
std::vector<Coeff_t> ueem;
std::vector<Coeff_t> dee;
Vector<Coeff_t> lee;
Vector<Coeff_t> leem;
Vector<Coeff_t> uee;
Vector<Coeff_t> ueem;
Vector<Coeff_t> dee;
// Matrices of 5d ee inverse params
// std::vector<iSinglet<Simd> > MatpInv;
// std::vector<iSinglet<Simd> > MatmInv;
// std::vector<iSinglet<Simd> > MatpInvDag;
// std::vector<iSinglet<Simd> > MatmInvDag;
Vector<iSinglet<Simd> > MatpInv;
Vector<iSinglet<Simd> > MatmInv;
Vector<iSinglet<Simd> > MatpInvDag;
Vector<iSinglet<Simd> > MatmInvDag;
///////////////////////////////////////////////////////////////
// Conserved current utilities
@ -187,7 +187,7 @@ public:
protected:
virtual void SetCoefficientsZolotarev(RealD zolohi,Approx::zolotarev_data *zdata,RealD b,RealD c);
virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c);
virtual void SetCoefficientsInternal(RealD zolo_hi,std::vector<Coeff_t> & gamma,RealD b,RealD c);
virtual void SetCoefficientsInternal(RealD zolo_hi,Vector<Coeff_t> & gamma,RealD b,RealD c);
};
NAMESPACE_END(Grid);

View File

@ -90,12 +90,12 @@ protected:
RealD mass;
RealD R;
RealD ZoloHiInv;
std::vector<double> Beta;
std::vector<double> cc;;
std::vector<double> cc_d;;
std::vector<double> sqrt_cc;
std::vector<double> See;
std::vector<double> Aee;
Vector<double> Beta;
Vector<double> cc;;
Vector<double> cc_d;;
Vector<double> sqrt_cc;
Vector<double> See;
Vector<double> Aee;
};

View File

@ -69,10 +69,10 @@ public:
// Instantiate different versions depending on Impl
/////////////////////////////////////////////////////
void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi,
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi,
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
virtual void RefreshShiftCoefficients(RealD new_shift);
@ -83,7 +83,7 @@ public:
RealD _M5, const ImplParams& p=ImplParams());
protected:
void SetCoefficientsInternal(RealD zolo_hi, std::vector<Coeff_t>& gamma, RealD b, RealD c);
void SetCoefficientsInternal(RealD zolo_hi, Vector<Coeff_t>& gamma, RealD b, RealD c);
};
NAMESPACE_END(Grid);

View File

@ -102,11 +102,11 @@ public:
GaugeField &mat,
const FermionField &A, const FermionField &B, int dag);
void DhopInternal(StencilImpl &st, DoubledGaugeField &U,DoubledGaugeField &UUU,
void DhopInternal(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,DoubledGaugeField &UUU,
const FermionField &in, FermionField &out, int dag);
void DhopInternalSerialComms(StencilImpl &st, DoubledGaugeField &U,DoubledGaugeField &UUU,
void DhopInternalSerialComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,DoubledGaugeField &UUU,
const FermionField &in, FermionField &out, int dag);
void DhopInternalOverlappedComms(StencilImpl &st, DoubledGaugeField &U,DoubledGaugeField &UUU,
void DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,DoubledGaugeField &UUU,
const FermionField &in, FermionField &out, int dag);
//////////////////////////////////////////////////////////////////////////
@ -164,6 +164,8 @@ public:
DoubledGaugeField UUUmuEven;
DoubledGaugeField UUUmuOdd;
LebesgueOrder Lebesgue;
LebesgueOrder LebesgueEvenOdd;
///////////////////////////////////////////////////////////////
// Conserved current utilities

View File

@ -100,6 +100,7 @@ public:
int dag);
void DhopInternal(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U,
DoubledGaugeField &UUU,
const FermionField &in,
@ -107,6 +108,7 @@ public:
int dag);
void DhopInternalOverlappedComms(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U,
DoubledGaugeField &UUU,
const FermionField &in,
@ -114,6 +116,7 @@ public:
int dag);
void DhopInternalSerialComms(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U,
DoubledGaugeField &UUU,
const FermionField &in,
@ -189,6 +192,8 @@ public:
DoubledGaugeField UUUmuEven;
DoubledGaugeField UUUmuOdd;
LebesgueOrder Lebesgue;
LebesgueOrder LebesgueEvenOdd;
// Comms buffer
// std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf;

View File

@ -42,11 +42,11 @@ public:
public:
// Shift operator coefficients for red-black preconditioned Mobius EOFA
std::vector<Coeff_t> Mooee_shift;
std::vector<Coeff_t> MooeeInv_shift_lc;
std::vector<Coeff_t> MooeeInv_shift_norm;
std::vector<Coeff_t> MooeeInvDag_shift_lc;
std::vector<Coeff_t> MooeeInvDag_shift_norm;
Vector<Coeff_t> Mooee_shift;
Vector<Coeff_t> MooeeInv_shift_lc;
Vector<Coeff_t> MooeeInv_shift_norm;
Vector<Coeff_t> MooeeInvDag_shift_lc;
Vector<Coeff_t> MooeeInvDag_shift_norm;
virtual void Instantiatable(void) {};
@ -74,18 +74,18 @@ public:
// Instantiate different versions depending on Impl
/////////////////////////////////////////////////////
void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi,
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
void M5D_shift(const FermionField& psi, const FermionField& phi, FermionField& chi,
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
std::vector<Coeff_t>& shift_coeffs);
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper,
Vector<Coeff_t>& shift_coeffs);
void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi,
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
void M5Ddag_shift(const FermionField& psi, const FermionField& phi, FermionField& chi,
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
std::vector<Coeff_t>& shift_coeffs);
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper,
Vector<Coeff_t>& shift_coeffs);
virtual void RefreshShiftCoefficients(RealD new_shift);

View File

@ -102,11 +102,11 @@ public:
GaugeField &mat,
const FermionField &A, const FermionField &B, int dag);
void DhopInternal(StencilImpl &st, DoubledGaugeField &U,
void DhopInternal(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
void DhopInternalSerialComms(StencilImpl &st, DoubledGaugeField &U,
void DhopInternalSerialComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
void DhopInternalOverlappedComms(StencilImpl &st, DoubledGaugeField &U,
void DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
//////////////////////////////////////////////////////////////////////////
@ -152,6 +152,9 @@ public:
DoubledGaugeField UmuEven;
DoubledGaugeField UmuOdd;
LebesgueOrder Lebesgue;
LebesgueOrder LebesgueEvenOdd;
///////////////////////////////////////////////////////////////
// Conserved current utilities
///////////////////////////////////////////////////////////////

View File

@ -94,8 +94,8 @@ protected:
RealD R;
RealD amax;
RealD scale;
std::vector<double> p;
std::vector<double> q;
Vector<double> p;
Vector<double> q;
};

View File

@ -35,7 +35,7 @@ template<class Matrix, class Field>
class KappaSimilarityTransform {
public:
INHERIT_IMPL_TYPES(Matrix);
std::vector<Coeff_t> kappa, kappaDag, kappaInv, kappaInvDag;
Vector<Coeff_t> kappa, kappaDag, kappaInv, kappaInvDag;
KappaSimilarityTransform (Matrix &zmob) {
for (int i=0;i<(int)zmob.bs.size();i++) {

View File

@ -49,10 +49,10 @@ template<class Impl> class StaggeredKernels : public FermionOperator<Impl> , pub
public:
void DhopImproved(StencilImpl &st,
void DhopImproved(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &UUU,
const FermionField &in, FermionField &out, int dag, int interior,int exterior);
void DhopNaive(StencilImpl &st,
void DhopNaive(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag, int interior,int exterior);

View File

@ -47,7 +47,7 @@ public:
static int PartialCompressionFactor(GridBase *grid) { return 1;}
#endif
template<class vobj,class cobj,class compressor>
static void Gather_plane_simple (deviceVector<std::pair<int,int> >& table,
static void Gather_plane_simple (commVector<std::pair<int,int> >& table,
const Lattice<vobj> &rhs,
cobj *buffer,
compressor &compress,
@ -109,7 +109,7 @@ public:
// Reorder the fifth dim to be s=Ls-1 , s=0, s=1,...,Ls-2.
////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj,class cobj,class compressor>
static void Gather_plane_exchange(deviceVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
static void Gather_plane_exchange(commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
std::vector<cobj *> pointers,int dimension,int plane,int cbmask,
compressor &compress,int type,int partial)
{
@ -197,7 +197,7 @@ public:
#endif
template<class vobj,class cobj,class compressor>
static void Gather_plane_simple (deviceVector<std::pair<int,int> >& table,
static void Gather_plane_simple (commVector<std::pair<int,int> >& table,
const Lattice<vobj> &rhs,
cobj *buffer,
compressor &compress,
@ -208,7 +208,7 @@ public:
else FaceGatherSimple::Gather_plane_simple(table,rhs,buffer,compress,off,so,partial);
}
template<class vobj,class cobj,class compressor>
static void Gather_plane_exchange(deviceVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
static void Gather_plane_exchange(commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
std::vector<cobj *> pointers,int dimension,int plane,int cbmask,
compressor &compress,int type,int partial)
{
@ -402,6 +402,7 @@ public:
typedef CartesianStencil<vobj,cobj,Parameters> Base;
typedef typename Base::View_type View_type;
typedef typename Base::StencilVector StencilVector;
// Vector<int> surface_list;
WilsonStencil(GridBase *grid,

View File

@ -126,17 +126,14 @@ public:
void DerivInternal(StencilImpl &st, DoubledGaugeField &U, GaugeField &mat,
const FermionField &A, const FermionField &B, int dag);
void DhopInternal(StencilImpl &st,
DoubledGaugeField &U,
void DhopInternal(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
void DhopInternalSerial(StencilImpl &st,
DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
void DhopInternalSerial(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
void DhopInternalOverlappedComms(StencilImpl &st,
DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
void DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
// Constructor
WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
@ -171,6 +168,9 @@ public:
DoubledGaugeField UmuEven;
DoubledGaugeField UmuOdd;
LebesgueOrder Lebesgue;
LebesgueOrder LebesgueEvenOdd;
WilsonAnisotropyCoefficients anisotropyCoeff;
///////////////////////////////////////////////////////////////

View File

@ -135,18 +135,21 @@ public:
int dag);
void DhopInternal(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out,
int dag);
void DhopInternalOverlappedComms(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out,
int dag);
void DhopInternalSerialComms(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out,
@ -200,6 +203,9 @@ public:
DoubledGaugeField UmuEven;
DoubledGaugeField UmuOdd;
LebesgueOrder Lebesgue;
LebesgueOrder LebesgueEvenOdd;
// Comms buffer
// std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf;

View File

@ -58,7 +58,7 @@ public:
{
// RealD eps = 1.0;
std::cout<<GridLogMessage << "ZMobiusFermion (b="<<b<<",c="<<c<<") with Ls= "<<this->Ls<<" gamma passed in"<<std::endl;
std::vector<Coeff_t> zgamma(this->Ls);
Vector<Coeff_t> zgamma(this->Ls);
for(int s=0;s<this->Ls;s++){
zgamma[s] = gamma[s];
}

View File

@ -156,18 +156,18 @@ template<class Impl>
void CayleyFermion5D<Impl>::M5D (const FermionField &psi, FermionField &chi)
{
int Ls=this->Ls;
std::vector<Coeff_t> diag (Ls,1.0);
std::vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1]=mass_minus;
std::vector<Coeff_t> lower(Ls,-1.0); lower[0] =mass_plus;
Vector<Coeff_t> diag (Ls,1.0);
Vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1]=mass_minus;
Vector<Coeff_t> lower(Ls,-1.0); lower[0] =mass_plus;
M5D(psi,chi,chi,lower,diag,upper);
}
template<class Impl>
void CayleyFermion5D<Impl>::Meooe5D (const FermionField &psi, FermionField &Din)
{
int Ls=this->Ls;
std::vector<Coeff_t> diag = bs;
std::vector<Coeff_t> upper= cs;
std::vector<Coeff_t> lower= cs;
Vector<Coeff_t> diag = bs;
Vector<Coeff_t> upper= cs;
Vector<Coeff_t> lower= cs;
upper[Ls-1]=-mass_minus*upper[Ls-1];
lower[0] =-mass_plus*lower[0];
M5D(psi,psi,Din,lower,diag,upper);
@ -176,9 +176,9 @@ void CayleyFermion5D<Impl>::Meooe5D (const FermionField &psi, FermionField &D
template<class Impl> void CayleyFermion5D<Impl>::Meo5D (const FermionField &psi, FermionField &chi)
{
int Ls=this->Ls;
std::vector<Coeff_t> diag = beo;
std::vector<Coeff_t> upper(Ls);
std::vector<Coeff_t> lower(Ls);
Vector<Coeff_t> diag = beo;
Vector<Coeff_t> upper(Ls);
Vector<Coeff_t> lower(Ls);
for(int i=0;i<Ls;i++) {
upper[i]=-ceo[i];
lower[i]=-ceo[i];
@ -191,9 +191,9 @@ template<class Impl>
void CayleyFermion5D<Impl>::Mooee (const FermionField &psi, FermionField &chi)
{
int Ls=this->Ls;
std::vector<Coeff_t> diag = bee;
std::vector<Coeff_t> upper(Ls);
std::vector<Coeff_t> lower(Ls);
Vector<Coeff_t> diag = bee;
Vector<Coeff_t> upper(Ls);
Vector<Coeff_t> lower(Ls);
for(int i=0;i<Ls;i++) {
upper[i]=-cee[i];
lower[i]=-cee[i];
@ -206,9 +206,9 @@ template<class Impl>
void CayleyFermion5D<Impl>::MooeeDag (const FermionField &psi, FermionField &chi)
{
int Ls=this->Ls;
std::vector<Coeff_t> diag = bee;
std::vector<Coeff_t> upper(Ls);
std::vector<Coeff_t> lower(Ls);
Vector<Coeff_t> diag = bee;
Vector<Coeff_t> upper(Ls);
Vector<Coeff_t> lower(Ls);
for (int s=0;s<Ls;s++){
// Assemble the 5d matrix
@ -236,9 +236,9 @@ template<class Impl>
void CayleyFermion5D<Impl>::M5Ddag (const FermionField &psi, FermionField &chi)
{
int Ls=this->Ls;
std::vector<Coeff_t> diag(Ls,1.0);
std::vector<Coeff_t> upper(Ls,-1.0);
std::vector<Coeff_t> lower(Ls,-1.0);
Vector<Coeff_t> diag(Ls,1.0);
Vector<Coeff_t> upper(Ls,-1.0);
Vector<Coeff_t> lower(Ls,-1.0);
upper[Ls-1]=-mass_plus*upper[Ls-1];
lower[0] =-mass_minus*lower[0];
M5Ddag(psi,chi,chi,lower,diag,upper);
@ -248,9 +248,9 @@ template<class Impl>
void CayleyFermion5D<Impl>::MeooeDag5D (const FermionField &psi, FermionField &Din)
{
int Ls=this->Ls;
std::vector<Coeff_t> diag =bs;
std::vector<Coeff_t> upper=cs;
std::vector<Coeff_t> lower=cs;
Vector<Coeff_t> diag =bs;
Vector<Coeff_t> upper=cs;
Vector<Coeff_t> lower=cs;
for (int s=0;s<Ls;s++){
if ( s== 0 ) {
@ -394,7 +394,7 @@ void CayleyFermion5D<Impl>::MeoDeriv(GaugeField &mat,const FermionField &U,const
template<class Impl>
void CayleyFermion5D<Impl>::SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c)
{
std::vector<Coeff_t> gamma(this->Ls);
Vector<Coeff_t> gamma(this->Ls);
for(int s=0;s<this->Ls;s++) gamma[s] = zdata->gamma[s];
SetCoefficientsInternal(1.0,gamma,b,c);
}
@ -402,13 +402,13 @@ void CayleyFermion5D<Impl>::SetCoefficientsTanh(Approx::zolotarev_data *zdata,Re
template<class Impl>
void CayleyFermion5D<Impl>::SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata,RealD b,RealD c)
{
std::vector<Coeff_t> gamma(this->Ls);
Vector<Coeff_t> gamma(this->Ls);
for(int s=0;s<this->Ls;s++) gamma[s] = zdata->gamma[s];
SetCoefficientsInternal(zolo_hi,gamma,b,c);
}
//Zolo
template<class Impl>
void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,std::vector<Coeff_t> & gamma,RealD b,RealD c)
void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,Vector<Coeff_t> & gamma,RealD b,RealD c)
{
int Ls=this->Ls;

View File

@ -43,9 +43,9 @@ void
CayleyFermion5D<Impl>::M5D(const FermionField &psi_i,
const FermionField &phi_i,
FermionField &chi_i,
std::vector<Coeff_t> &lower,
std::vector<Coeff_t> &diag,
std::vector<Coeff_t> &upper)
Vector<Coeff_t> &lower,
Vector<Coeff_t> &diag,
Vector<Coeff_t> &upper)
{
chi_i.Checkerboard()=psi_i.Checkerboard();
@ -55,15 +55,11 @@ CayleyFermion5D<Impl>::M5D(const FermionField &psi_i,
autoView(chi , chi_i,AcceleratorWrite);
assert(phi.Checkerboard() == psi.Checkerboard());
int Ls =this->Ls;
auto pdiag = &diag[0];
auto pupper = &upper[0];
auto plower = &lower[0];
static deviceVector<Coeff_t> d_diag(Ls) ; acceleratorCopyToDevice(&diag[0] ,&d_diag[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_upper(Ls); acceleratorCopyToDevice(&upper[0],&d_upper[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_lower(Ls); acceleratorCopyToDevice(&lower[0],&d_lower[0],Ls*sizeof(Coeff_t));
auto pdiag = &d_diag[0];
auto pupper = &d_upper[0];
auto plower = &d_lower[0];
int Ls =this->Ls;
// 10 = 3 complex mult + 2 complex add
// Flops = 10.0*(Nc*Ns) *Ls*vol (/2 for red black counting)
@ -86,9 +82,9 @@ void
CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi_i,
const FermionField &phi_i,
FermionField &chi_i,
std::vector<Coeff_t> &lower,
std::vector<Coeff_t> &diag,
std::vector<Coeff_t> &upper)
Vector<Coeff_t> &lower,
Vector<Coeff_t> &diag,
Vector<Coeff_t> &upper)
{
chi_i.Checkerboard()=psi_i.Checkerboard();
GridBase *grid=psi_i.Grid();
@ -97,15 +93,11 @@ CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi_i,
autoView(chi , chi_i,AcceleratorWrite);
assert(phi.Checkerboard() == psi.Checkerboard());
int Ls=this->Ls;
auto pdiag = &diag[0];
auto pupper = &upper[0];
auto plower = &lower[0];
static deviceVector<Coeff_t> d_diag(Ls) ; acceleratorCopyToDevice(&diag[0] ,&d_diag[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_upper(Ls); acceleratorCopyToDevice(&upper[0],&d_upper[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_lower(Ls); acceleratorCopyToDevice(&lower[0],&d_lower[0],Ls*sizeof(Coeff_t));
auto pdiag = &d_diag[0];
auto pupper = &d_upper[0];
auto plower = &d_lower[0];
int Ls=this->Ls;
// Flops = 6.0*(Nc*Ns) *Ls*vol
uint64_t nloop = grid->oSites();
@ -134,17 +126,11 @@ CayleyFermion5D<Impl>::MooeeInv (const FermionField &psi_i, FermionField &chi
int Ls=this->Ls;
static deviceVector<Coeff_t> d_lee(Ls); acceleratorCopyToDevice(&lee[0],&d_lee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_dee(Ls); acceleratorCopyToDevice(&dee[0],&d_dee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_uee(Ls); acceleratorCopyToDevice(&uee[0],&d_uee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_leem(Ls); acceleratorCopyToDevice(&leem[0],&d_leem[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_ueem(Ls); acceleratorCopyToDevice(&ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t));
auto plee = & d_lee [0];
auto pdee = & d_dee [0];
auto puee = & d_uee [0];
auto pleem = & d_leem[0];
auto pueem = & d_ueem[0];
auto plee = & lee [0];
auto pdee = & dee [0];
auto puee = & uee [0];
auto pleem = & leem[0];
auto pueem = & ueem[0];
uint64_t nloop = grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(),{
@ -196,17 +182,11 @@ CayleyFermion5D<Impl>::MooeeInvDag (const FermionField &psi_i, FermionField &chi
autoView(psi , psi_i,AcceleratorRead);
autoView(chi , chi_i,AcceleratorWrite);
static deviceVector<Coeff_t> d_lee(Ls); acceleratorCopyToDevice(&lee[0],&d_lee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_dee(Ls); acceleratorCopyToDevice(&dee[0],&d_dee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_uee(Ls); acceleratorCopyToDevice(&uee[0],&d_uee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_leem(Ls); acceleratorCopyToDevice(&leem[0],&d_leem[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_ueem(Ls); acceleratorCopyToDevice(&ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t));
auto plee = & d_lee [0];
auto pdee = & d_dee [0];
auto puee = & d_uee [0];
auto pleem = & d_leem[0];
auto pueem = & d_ueem[0];
auto plee = & lee [0];
auto pdee = & dee [0];
auto puee = & uee [0];
auto pleem = & leem[0];
auto pueem = & ueem[0];
assert(psi.Checkerboard() == psi.Checkerboard());

View File

@ -1,5 +1,3 @@
#if 0
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -820,5 +818,3 @@ CayleyFermion5D<Impl>::MooeeInternal(const FermionField &psi, FermionField &chi,
}
NAMESPACE_END(Grid);
#endif

View File

@ -41,7 +41,7 @@ NAMESPACE_BEGIN(Grid);
// Pplus backwards..
template<class Impl>
void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi_i, const FermionField& phi_i,FermionField& chi_i,
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper)
{
chi_i.Checkerboard() = psi_i.Checkerboard();
int Ls = this->Ls;
@ -50,15 +50,9 @@ void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi_i, const FermionFi
autoView( psi , psi_i, AcceleratorRead);
autoView( chi , chi_i, AcceleratorWrite);
assert(phi.Checkerboard() == psi.Checkerboard());
static deviceVector<Coeff_t> d_diag(Ls); acceleratorCopyToDevice(&diag[0],&d_diag[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_upper(Ls);acceleratorCopyToDevice(&upper[0],&d_upper[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_lower(Ls);acceleratorCopyToDevice(&lower[0],&d_lower[0],Ls*sizeof(Coeff_t));
auto pdiag = &d_diag[0];
auto pupper = &d_upper[0];
auto plower = &d_lower[0];
auto pdiag = &diag[0];
auto pupper = &upper[0];
auto plower = &lower[0];
// Flops = 6.0*(Nc*Ns) *Ls*vol
auto nloop=grid->oSites()/Ls;
@ -79,7 +73,7 @@ void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi_i, const FermionFi
template<class Impl>
void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi_i, const FermionField& phi_i, FermionField& chi_i,
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper)
{
chi_i.Checkerboard() = psi_i.Checkerboard();
GridBase* grid = psi_i.Grid();
@ -89,14 +83,9 @@ void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi_i, const Fermio
autoView( phi , phi_i, AcceleratorRead);
autoView( chi , chi_i, AcceleratorWrite);
assert(phi.Checkerboard() == psi.Checkerboard());
static deviceVector<Coeff_t> d_diag(Ls); acceleratorCopyToDevice(&diag[0],&d_diag[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_upper(Ls);acceleratorCopyToDevice(&upper[0],&d_upper[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_lower(Ls);acceleratorCopyToDevice(&lower[0],&d_lower[0],Ls*sizeof(Coeff_t));
auto pdiag = &d_diag[0];
auto pupper = &d_upper[0];
auto plower = &d_lower[0];
auto pdiag = &diag[0];
auto pupper = &upper[0];
auto plower = &lower[0];
// Flops = 6.0*(Nc*Ns) *Ls*vol
@ -125,18 +114,13 @@ void DomainWallEOFAFermion<Impl>::MooeeInv(const FermionField& psi_i, FermionFie
autoView( chi, chi_i, AcceleratorWrite);
int Ls = this->Ls;
static deviceVector<Coeff_t> d_lee(Ls); acceleratorCopyToDevice(&this->lee[0],&d_lee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_dee(Ls); acceleratorCopyToDevice(&this->dee[0],&d_dee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_uee(Ls); acceleratorCopyToDevice(&this->uee[0],&d_uee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_leem(Ls); acceleratorCopyToDevice(&this->leem[0],&d_leem[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_ueem(Ls); acceleratorCopyToDevice(&this->ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t));
auto plee = & this->lee[0];
auto pdee = & this->dee[0];
auto puee = & this->uee[0];
auto pleem = & this->leem[0];
auto pueem = & this->ueem[0];
auto plee = & d_lee [0];
auto pdee = & d_dee [0];
auto puee = & d_uee [0];
auto pleem = & d_leem[0];
auto pueem = & d_ueem[0];
uint64_t nloop=grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(),{
uint64_t ss=sss*Ls;

View File

@ -131,9 +131,9 @@ void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi, FermionField& chi
else{ shiftm = -shift*(mq3-mq2); }
}
std::vector<Coeff_t> diag(Ls,1.0);
std::vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = mq1 + shiftm;
std::vector<Coeff_t> lower(Ls,-1.0); lower[0] = mq1 + shiftp;
Vector<Coeff_t> diag(Ls,1.0);
Vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = mq1 + shiftm;
Vector<Coeff_t> lower(Ls,-1.0); lower[0] = mq1 + shiftp;
#if(0)
std::cout << GridLogMessage << "DomainWallEOFAFermion::M5D(FF&,FF&):" << std::endl;
@ -168,9 +168,9 @@ void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi, FermionField&
else{ shiftm = -shift*(mq3-mq2); }
}
std::vector<Coeff_t> diag(Ls,1.0);
std::vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = mq1 + shiftp;
std::vector<Coeff_t> lower(Ls,-1.0); lower[0] = mq1 + shiftm;
Vector<Coeff_t> diag(Ls,1.0);
Vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = mq1 + shiftp;
Vector<Coeff_t> lower(Ls,-1.0); lower[0] = mq1 + shiftm;
this->M5Ddag(psi, chi, chi, lower, diag, upper);
}
@ -181,9 +181,9 @@ void DomainWallEOFAFermion<Impl>::Mooee(const FermionField& psi, FermionField& c
{
int Ls = this->Ls;
std::vector<Coeff_t> diag = this->bee;
std::vector<Coeff_t> upper(Ls);
std::vector<Coeff_t> lower(Ls);
Vector<Coeff_t> diag = this->bee;
Vector<Coeff_t> upper(Ls);
Vector<Coeff_t> lower(Ls);
for(int s=0; s<Ls; s++){
upper[s] = -this->cee[s];
@ -200,9 +200,9 @@ void DomainWallEOFAFermion<Impl>::MooeeDag(const FermionField& psi, FermionField
{
int Ls = this->Ls;
std::vector<Coeff_t> diag = this->bee;
std::vector<Coeff_t> upper(Ls);
std::vector<Coeff_t> lower(Ls);
Vector<Coeff_t> diag = this->bee;
Vector<Coeff_t> upper(Ls);
Vector<Coeff_t> lower(Ls);
for(int s=0; s<Ls; s++){
upper[s] = -this->cee[s];
@ -218,7 +218,7 @@ void DomainWallEOFAFermion<Impl>::MooeeDag(const FermionField& psi, FermionField
//Zolo
template<class Impl>
void DomainWallEOFAFermion<Impl>::SetCoefficientsInternal(RealD zolo_hi, std::vector<Coeff_t>& gamma, RealD b, RealD c)
void DomainWallEOFAFermion<Impl>::SetCoefficientsInternal(RealD zolo_hi, Vector<Coeff_t>& gamma, RealD b, RealD c)
{
int Ls = this->Ls;
int pm = this->pm;

View File

@ -61,6 +61,8 @@ ImprovedStaggeredFermion5D<Impl>::ImprovedStaggeredFermion5D(GridCartesian
UUUmu(&FourDimGrid),
UUUmuEven(&FourDimRedBlackGrid),
UUUmuOdd(&FourDimRedBlackGrid),
Lebesgue(&FourDimGrid),
LebesgueEvenOdd(&FourDimRedBlackGrid),
_tmp(&FiveDimRedBlackGrid)
{
@ -275,18 +277,18 @@ void ImprovedStaggeredFermion5D<Impl>::DhopDerivOE(GaugeField &mat,
/*CHANGE */
template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::DhopInternal(StencilImpl & st,
void ImprovedStaggeredFermion5D<Impl>::DhopInternal(StencilImpl & st, LebesgueOrder &lo,
DoubledGaugeField & U,DoubledGaugeField & UUU,
const FermionField &in, FermionField &out,int dag)
{
if ( StaggeredKernelsStatic::Comms == StaggeredKernelsStatic::CommsAndCompute )
DhopInternalOverlappedComms(st,U,UUU,in,out,dag);
DhopInternalOverlappedComms(st,lo,U,UUU,in,out,dag);
else
DhopInternalSerialComms(st,U,UUU,in,out,dag);
DhopInternalSerialComms(st,lo,U,UUU,in,out,dag);
}
template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st,
void ImprovedStaggeredFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, LebesgueOrder &lo,
DoubledGaugeField & U,DoubledGaugeField & UUU,
const FermionField &in, FermionField &out,int dag)
{
@ -311,7 +313,7 @@ void ImprovedStaggeredFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl &
{
int interior=1;
int exterior=0;
Kernels::DhopImproved(st,U,UUU,in,out,dag,interior,exterior);
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
}
st.CommsMerge(compressor);
@ -321,12 +323,12 @@ void ImprovedStaggeredFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl &
{
int interior=0;
int exterior=1;
Kernels::DhopImproved(st,U,UUU,in,out,dag,interior,exterior);
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
}
}
template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st,
void ImprovedStaggeredFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st, LebesgueOrder &lo,
DoubledGaugeField & U,DoubledGaugeField & UUU,
const FermionField &in, FermionField &out,int dag)
{
@ -339,7 +341,7 @@ void ImprovedStaggeredFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st,
{
int interior=1;
int exterior=1;
Kernels::DhopImproved(st,U,UUU,in,out,dag,interior,exterior);
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
}
}
/*CHANGE END*/
@ -355,7 +357,7 @@ void ImprovedStaggeredFermion5D<Impl>::DhopOE(const FermionField &in, FermionFie
assert(in.Checkerboard()==Even);
out.Checkerboard() = Odd;
DhopInternal(StencilEven,UmuOdd,UUUmuOdd,in,out,dag);
DhopInternal(StencilEven,LebesgueEvenOdd,UmuOdd,UUUmuOdd,in,out,dag);
}
template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
@ -366,7 +368,7 @@ void ImprovedStaggeredFermion5D<Impl>::DhopEO(const FermionField &in, FermionFie
assert(in.Checkerboard()==Odd);
out.Checkerboard() = Even;
DhopInternal(StencilOdd,UmuEven,UUUmuEven,in,out,dag);
DhopInternal(StencilOdd,LebesgueEvenOdd,UmuEven,UUUmuEven,in,out,dag);
}
template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::Dhop(const FermionField &in, FermionField &out,int dag)
@ -376,7 +378,7 @@ void ImprovedStaggeredFermion5D<Impl>::Dhop(const FermionField &in, FermionField
out.Checkerboard() = in.Checkerboard();
DhopInternal(Stencil,Umu,UUUmu,in,out,dag);
DhopInternal(Stencil,Lebesgue,Umu,UUUmu,in,out,dag);
}
/////////////////////////////////////////////////////////////////////////

View File

@ -48,6 +48,8 @@ ImprovedStaggeredFermion<Impl>::ImprovedStaggeredFermion(GridCartesian &Fgrid, G
StencilEven(&Hgrid, npoint, Even, directions, displacements,p), // source is Even
StencilOdd(&Hgrid, npoint, Odd, directions, displacements,p), // source is Odd
mass(_mass),
Lebesgue(_grid),
LebesgueEvenOdd(_cbgrid),
Umu(&Fgrid),
UmuEven(&Hgrid),
UmuOdd(&Hgrid),
@ -337,7 +339,7 @@ void ImprovedStaggeredFermion<Impl>::Dhop(const FermionField &in, FermionField &
out.Checkerboard() = in.Checkerboard();
DhopInternal(Stencil, Umu, UUUmu, in, out, dag);
DhopInternal(Stencil, Lebesgue, Umu, UUUmu, in, out, dag);
}
template <class Impl>
@ -349,7 +351,7 @@ void ImprovedStaggeredFermion<Impl>::DhopOE(const FermionField &in, FermionField
assert(in.Checkerboard() == Even);
out.Checkerboard() = Odd;
DhopInternal(StencilEven, UmuOdd, UUUmuOdd, in, out, dag);
DhopInternal(StencilEven, LebesgueEvenOdd, UmuOdd, UUUmuOdd, in, out, dag);
}
template <class Impl>
@ -361,7 +363,7 @@ void ImprovedStaggeredFermion<Impl>::DhopEO(const FermionField &in, FermionField
assert(in.Checkerboard() == Odd);
out.Checkerboard() = Even;
DhopInternal(StencilOdd, UmuEven, UUUmuEven, in, out, dag);
DhopInternal(StencilOdd, LebesgueEvenOdd, UmuEven, UUUmuEven, in, out, dag);
}
template <class Impl>
@ -392,19 +394,19 @@ void ImprovedStaggeredFermion<Impl>::DhopDir(const FermionField &in, FermionFiel
template <class Impl>
void ImprovedStaggeredFermion<Impl>::DhopInternal(StencilImpl &st,
void ImprovedStaggeredFermion<Impl>::DhopInternal(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
DoubledGaugeField &UUU,
const FermionField &in,
FermionField &out, int dag)
{
if ( StaggeredKernelsStatic::Comms == StaggeredKernelsStatic::CommsAndCompute )
DhopInternalOverlappedComms(st,U,UUU,in,out,dag);
DhopInternalOverlappedComms(st,lo,U,UUU,in,out,dag);
else
DhopInternalSerialComms(st,U,UUU,in,out,dag);
DhopInternalSerialComms(st,lo,U,UUU,in,out,dag);
}
template <class Impl>
void ImprovedStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st,
void ImprovedStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
DoubledGaugeField &UUU,
const FermionField &in,
@ -427,7 +429,7 @@ void ImprovedStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st
{
int interior=1;
int exterior=0;
Kernels::DhopImproved(st,U,UUU,in,out,dag,interior,exterior);
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
}
st.CommunicateComplete(requests);
@ -438,13 +440,13 @@ void ImprovedStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st
{
int interior=0;
int exterior=1;
Kernels::DhopImproved(st,U,UUU,in,out,dag,interior,exterior);
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
}
}
template <class Impl>
void ImprovedStaggeredFermion<Impl>::DhopInternalSerialComms(StencilImpl &st,
void ImprovedStaggeredFermion<Impl>::DhopInternalSerialComms(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
DoubledGaugeField &UUU,
const FermionField &in,
@ -458,7 +460,7 @@ void ImprovedStaggeredFermion<Impl>::DhopInternalSerialComms(StencilImpl &st,
{
int interior=1;
int exterior=1;
Kernels::DhopImproved(st,U,UUU,in,out,dag,interior,exterior);
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
}
};

View File

@ -39,7 +39,7 @@ NAMESPACE_BEGIN(Grid);
template<class Impl>
void MobiusEOFAFermion<Impl>::M5D(const FermionField &psi_i, const FermionField &phi_i, FermionField &chi_i,
std::vector<Coeff_t> &lower, std::vector<Coeff_t> &diag, std::vector<Coeff_t> &upper)
Vector<Coeff_t> &lower, Vector<Coeff_t> &diag, Vector<Coeff_t> &upper)
{
chi_i.Checkerboard() = psi_i.Checkerboard();
GridBase *grid = psi_i.Grid();
@ -50,13 +50,9 @@ void MobiusEOFAFermion<Impl>::M5D(const FermionField &psi_i, const FermionField
assert(phi.Checkerboard() == psi.Checkerboard());
static deviceVector<Coeff_t> d_diag(Ls); acceleratorCopyToDevice(&diag[0],&d_diag[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_upper(Ls);acceleratorCopyToDevice(&upper[0],&d_upper[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_lower(Ls);acceleratorCopyToDevice(&lower[0],&d_lower[0],Ls*sizeof(Coeff_t));
auto pdiag = &d_diag[0];
auto pupper = &d_upper[0];
auto plower = &d_lower[0];
auto pdiag = &diag[0];
auto pupper = &upper[0];
auto plower = &lower[0];
// Flops = 6.0*(Nc*Ns) *Ls*vol
int nloop = grid->oSites()/Ls;
@ -78,8 +74,8 @@ void MobiusEOFAFermion<Impl>::M5D(const FermionField &psi_i, const FermionField
template<class Impl>
void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField &psi_i, const FermionField &phi_i, FermionField &chi_i,
std::vector<Coeff_t> &lower, std::vector<Coeff_t> &diag, std::vector<Coeff_t> &upper,
std::vector<Coeff_t> &shift_coeffs)
Vector<Coeff_t> &lower, Vector<Coeff_t> &diag, Vector<Coeff_t> &upper,
Vector<Coeff_t> &shift_coeffs)
{
chi_i.Checkerboard() = psi_i.Checkerboard();
GridBase *grid = psi_i.Grid();
@ -90,18 +86,13 @@ void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField &psi_i, const Fermion
auto pm = this->pm;
int shift_s = (pm == 1) ? (Ls-1) : 0; // s-component modified by shift operator
assert(phi.Checkerboard() == psi.Checkerboard());
static deviceVector<Coeff_t> d_diag(Ls); acceleratorCopyToDevice(&diag[0],&d_diag[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_upper(Ls);acceleratorCopyToDevice(&upper[0],&d_upper[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_lower(Ls);acceleratorCopyToDevice(&lower[0],&d_lower[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_shift_coeffs(Ls);acceleratorCopyToDevice(&shift_coeffs[0],&d_shift_coeffs[0],Ls*sizeof(Coeff_t));
auto pdiag = &d_diag[0];
auto pupper = &d_upper[0];
auto plower = &d_lower[0];
auto pshift_coeffs = &d_shift_coeffs[0];
auto pdiag = &diag[0];
auto pupper = &upper[0];
auto plower = &lower[0];
auto pshift_coeffs = &shift_coeffs[0];
// Flops = 6.0*(Nc*Ns) *Ls*vol
int nloop = grid->oSites()/Ls;
@ -128,7 +119,7 @@ void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField &psi_i, const Fermion
template<class Impl>
void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField &psi_i, const FermionField &phi_i, FermionField &chi_i,
std::vector<Coeff_t> &lower, std::vector<Coeff_t> &diag, std::vector<Coeff_t> &upper)
Vector<Coeff_t> &lower, Vector<Coeff_t> &diag, Vector<Coeff_t> &upper)
{
chi_i.Checkerboard() = psi_i.Checkerboard();
GridBase *grid = psi_i.Grid();
@ -139,13 +130,9 @@ void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField &psi_i, const FermionFie
assert(phi.Checkerboard() == psi.Checkerboard());
static deviceVector<Coeff_t> d_diag(Ls); acceleratorCopyToDevice(&diag[0],&d_diag[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_upper(Ls);acceleratorCopyToDevice(&upper[0],&d_upper[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_lower(Ls);acceleratorCopyToDevice(&lower[0],&d_lower[0],Ls*sizeof(Coeff_t));
auto pdiag = &d_diag[0];
auto pupper = &d_upper[0];
auto plower = &d_lower[0];
auto pdiag = &diag[0];
auto pupper = &upper[0];
auto plower = &lower[0];
// Flops = 6.0*(Nc*Ns) *Ls*vol
int nloop = grid->oSites()/Ls;
@ -167,8 +154,8 @@ void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField &psi_i, const FermionFie
template<class Impl>
void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField &psi_i, const FermionField &phi_i, FermionField &chi_i,
std::vector<Coeff_t> &lower, std::vector<Coeff_t> &diag, std::vector<Coeff_t> &upper,
std::vector<Coeff_t> &shift_coeffs)
Vector<Coeff_t> &lower, Vector<Coeff_t> &diag, Vector<Coeff_t> &upper,
Vector<Coeff_t> &shift_coeffs)
{
chi_i.Checkerboard() = psi_i.Checkerboard();
GridBase *grid = psi_i.Grid();
@ -180,15 +167,10 @@ void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField &psi_i, const Ferm
assert(phi.Checkerboard() == psi.Checkerboard());
static deviceVector<Coeff_t> d_diag(Ls); acceleratorCopyToDevice(&diag[0],&d_diag[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_upper(Ls);acceleratorCopyToDevice(&upper[0],&d_upper[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_lower(Ls);acceleratorCopyToDevice(&lower[0],&d_lower[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_shift_coeffs(Ls);acceleratorCopyToDevice(&shift_coeffs[0],&d_shift_coeffs[0],Ls*sizeof(Coeff_t));
auto pdiag = &d_diag[0];
auto pupper = &d_upper[0];
auto plower = &d_lower[0];
auto pshift_coeffs = &d_shift_coeffs[0];
auto pdiag = &diag[0];
auto pupper = &upper[0];
auto plower = &lower[0];
auto pshift_coeffs = &shift_coeffs[0];
// Flops = 6.0*(Nc*Ns) *Ls*vol
auto pm = this->pm;
@ -230,17 +212,11 @@ void MobiusEOFAFermion<Impl>::MooeeInv(const FermionField &psi_i, FermionField &
autoView(psi , psi_i, AcceleratorRead);
autoView(chi , chi_i, AcceleratorWrite);
static deviceVector<Coeff_t> d_lee(Ls); acceleratorCopyToDevice(&this->lee[0],&d_lee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_dee(Ls); acceleratorCopyToDevice(&this->dee[0],&d_dee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_uee(Ls); acceleratorCopyToDevice(&this->uee[0],&d_uee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_leem(Ls); acceleratorCopyToDevice(&this->leem[0],&d_leem[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_ueem(Ls); acceleratorCopyToDevice(&this->ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t));
auto plee = & d_lee [0];
auto pdee = & d_dee [0];
auto puee = & d_uee [0];
auto pleem = & d_leem[0];
auto pueem = & d_ueem[0];
auto plee = & this->lee [0];
auto pdee = & this->dee [0];
auto puee = & this->uee [0];
auto pleem= & this->leem[0];
auto pueem= & this->ueem[0];
if(this->shift != 0.0){ MooeeInv_shift(psi_i,chi_i); return; }
@ -292,24 +268,14 @@ void MobiusEOFAFermion<Impl>::MooeeInv_shift(const FermionField &psi_i, FermionF
autoView(psi , psi_i, AcceleratorRead);
autoView(chi , chi_i, AcceleratorWrite);
// Move into object and constructor
static deviceVector<Coeff_t> d_lee(Ls); acceleratorCopyToDevice(&this->lee[0],&d_lee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_dee(Ls); acceleratorCopyToDevice(&this->dee[0],&d_dee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_uee(Ls); acceleratorCopyToDevice(&this->uee[0],&d_uee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_leem(Ls); acceleratorCopyToDevice(&this->leem[0],&d_leem[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_ueem(Ls); acceleratorCopyToDevice(&this->ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t));
auto pm = this->pm;
auto plee = & d_lee [0];
auto pdee = & d_dee [0];
auto puee = & d_uee [0];
auto pleem = & d_leem[0];
auto pueem = & d_ueem[0];
static deviceVector<Coeff_t> d_MooeeInv_shift_lc(Ls); acceleratorCopyToDevice(&MooeeInv_shift_lc[0],&d_MooeeInv_shift_lc[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_MooeeInv_shift_norm(Ls); acceleratorCopyToDevice(&MooeeInv_shift_norm[0],&d_MooeeInv_shift_norm[0],Ls*sizeof(Coeff_t));
auto pMooeeInv_shift_lc = &d_MooeeInv_shift_lc[0];
auto pMooeeInv_shift_norm = &d_MooeeInv_shift_norm[0];
auto plee = & this->lee [0];
auto pdee = & this->dee [0];
auto puee = & this->uee [0];
auto pleem= & this->leem[0];
auto pueem= & this->ueem[0];
auto pMooeeInv_shift_lc = &MooeeInv_shift_lc[0];
auto pMooeeInv_shift_norm = &MooeeInv_shift_norm[0];
int nloop = grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(),{
@ -367,17 +333,11 @@ void MobiusEOFAFermion<Impl>::MooeeInvDag(const FermionField &psi_i, FermionFiel
autoView(psi , psi_i, AcceleratorRead);
autoView(chi , chi_i, AcceleratorWrite);
static deviceVector<Coeff_t> d_lee(Ls); acceleratorCopyToDevice(&this->lee[0],&d_lee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_dee(Ls); acceleratorCopyToDevice(&this->dee[0],&d_dee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_uee(Ls); acceleratorCopyToDevice(&this->uee[0],&d_uee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_leem(Ls); acceleratorCopyToDevice(&this->leem[0],&d_leem[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_ueem(Ls); acceleratorCopyToDevice(&this->ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t));
auto plee = & d_lee [0];
auto pdee = & d_dee [0];
auto puee = & d_uee [0];
auto pleem = & d_leem[0];
auto pueem = & d_ueem[0];
auto plee = & this->lee [0];
auto pdee = & this->dee [0];
auto puee = & this->uee [0];
auto pleem= & this->leem[0];
auto pueem= & this->ueem[0];
int nloop = grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(),{
@ -426,28 +386,14 @@ void MobiusEOFAFermion<Impl>::MooeeInvDag_shift(const FermionField &psi_i, Fermi
autoView(chi , chi_i, AcceleratorWrite);
int Ls = this->Ls;
static deviceVector<Coeff_t> d_lee(Ls); acceleratorCopyToDevice(&this->lee[0],&d_lee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_dee(Ls); acceleratorCopyToDevice(&this->dee[0],&d_dee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_uee(Ls); acceleratorCopyToDevice(&this->uee[0],&d_uee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_leem(Ls); acceleratorCopyToDevice(&this->leem[0],&d_leem[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_ueem(Ls); acceleratorCopyToDevice(&this->ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t));
auto pm = this->pm;
auto plee = & d_lee [0];
auto pdee = & d_dee [0];
auto puee = & d_uee [0];
auto pleem = & d_leem[0];
auto pueem = & d_ueem[0];
static deviceVector<Coeff_t> d_MooeeInvDag_shift_lc(Ls);
static deviceVector<Coeff_t> d_MooeeInvDag_shift_norm(Ls);
acceleratorCopyToDevice(&MooeeInvDag_shift_lc[0],&d_MooeeInvDag_shift_lc[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&MooeeInvDag_shift_norm[0],&d_MooeeInvDag_shift_norm[0],Ls*sizeof(Coeff_t));
auto pMooeeInvDag_shift_lc = &d_MooeeInvDag_shift_lc[0];
auto pMooeeInvDag_shift_norm = &d_MooeeInvDag_shift_norm[0];
// auto pMooeeInvDag_shift_lc = &MooeeInvDag_shift_lc[0];
// auto pMooeeInvDag_shift_norm = &MooeeInvDag_shift_norm[0];
auto plee = & this->lee [0];
auto pdee = & this->dee [0];
auto puee = & this->uee [0];
auto pleem= & this->leem[0];
auto pueem= & this->ueem[0];
auto pMooeeInvDag_shift_lc = &MooeeInvDag_shift_lc[0];
auto pMooeeInvDag_shift_norm = &MooeeInvDag_shift_norm[0];
int nloop = grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(),{

View File

@ -196,9 +196,9 @@ void MobiusEOFAFermion<Impl>::M5D(const FermionField& psi, FermionField& chi)
{
int Ls = this->Ls;
std::vector<Coeff_t> diag(Ls,1.0);
std::vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = this->mq1;
std::vector<Coeff_t> lower(Ls,-1.0); lower[0] = this->mq1;
Vector<Coeff_t> diag(Ls,1.0);
Vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = this->mq1;
Vector<Coeff_t> lower(Ls,-1.0); lower[0] = this->mq1;
// no shift term
if(this->shift == 0.0){ this->M5D(psi, chi, chi, lower, diag, upper); }
@ -212,9 +212,9 @@ void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField& psi, FermionField& chi)
{
int Ls = this->Ls;
std::vector<Coeff_t> diag(Ls,1.0);
std::vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = this->mq1;
std::vector<Coeff_t> lower(Ls,-1.0); lower[0] = this->mq1;
Vector<Coeff_t> diag(Ls,1.0);
Vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = this->mq1;
Vector<Coeff_t> lower(Ls,-1.0); lower[0] = this->mq1;
// no shift term
if(this->shift == 0.0){ this->M5Ddag(psi, chi, chi, lower, diag, upper); }
@ -230,9 +230,9 @@ void MobiusEOFAFermion<Impl>::Mooee(const FermionField& psi, FermionField& chi)
int Ls = this->Ls;
// coefficients of Mooee
std::vector<Coeff_t> diag = this->bee;
std::vector<Coeff_t> upper(Ls);
std::vector<Coeff_t> lower(Ls);
Vector<Coeff_t> diag = this->bee;
Vector<Coeff_t> upper(Ls);
Vector<Coeff_t> lower(Ls);
for(int s=0; s<Ls; s++){
upper[s] = -this->cee[s];
lower[s] = -this->cee[s];
@ -253,9 +253,9 @@ void MobiusEOFAFermion<Impl>::MooeeDag(const FermionField& psi, FermionField& ch
int Ls = this->Ls;
// coefficients of MooeeDag
std::vector<Coeff_t> diag = this->bee;
std::vector<Coeff_t> upper(Ls);
std::vector<Coeff_t> lower(Ls);
Vector<Coeff_t> diag = this->bee;
Vector<Coeff_t> upper(Ls);
Vector<Coeff_t> lower(Ls);
for(int s=0; s<Ls; s++){
if(s==0) {
upper[s] = -this->cee[s+1];
@ -314,10 +314,10 @@ void MobiusEOFAFermion<Impl>::SetCoefficientsPrecondShiftOps()
// Tridiagonal solve for MooeeInvDag_shift_lc
{
Coeff_t m(0.0);
std::vector<Coeff_t> d = Mooee_shift;
std::vector<Coeff_t> u(Ls,0.0);
std::vector<Coeff_t> y(Ls,0.0);
std::vector<Coeff_t> q(Ls,0.0);
Vector<Coeff_t> d = Mooee_shift;
Vector<Coeff_t> u(Ls,0.0);
Vector<Coeff_t> y(Ls,0.0);
Vector<Coeff_t> q(Ls,0.0);
if(pm == 1){ u[0] = 1.0; }
else{ u[Ls-1] = 1.0; }

View File

@ -48,6 +48,8 @@ NaiveStaggeredFermion<Impl>::NaiveStaggeredFermion(GridCartesian &Fgrid, GridRed
StencilEven(&Hgrid, npoint, Even, directions, displacements,p), // source is Even
StencilOdd(&Hgrid, npoint, Odd, directions, displacements,p), // source is Odd
mass(_mass),
Lebesgue(_grid),
LebesgueEvenOdd(_cbgrid),
Umu(&Fgrid),
UmuEven(&Hgrid),
UmuOdd(&Hgrid),
@ -266,7 +268,7 @@ void NaiveStaggeredFermion<Impl>::Dhop(const FermionField &in, FermionField &out
out.Checkerboard() = in.Checkerboard();
DhopInternal(Stencil, Umu, in, out, dag);
DhopInternal(Stencil, Lebesgue, Umu, in, out, dag);
}
template <class Impl>
@ -278,7 +280,7 @@ void NaiveStaggeredFermion<Impl>::DhopOE(const FermionField &in, FermionField &o
assert(in.Checkerboard() == Even);
out.Checkerboard() = Odd;
DhopInternal(StencilEven, UmuOdd, in, out, dag);
DhopInternal(StencilEven, LebesgueEvenOdd, UmuOdd, in, out, dag);
}
template <class Impl>
@ -290,7 +292,7 @@ void NaiveStaggeredFermion<Impl>::DhopEO(const FermionField &in, FermionField &o
assert(in.Checkerboard() == Odd);
out.Checkerboard() = Even;
DhopInternal(StencilOdd, UmuEven, in, out, dag);
DhopInternal(StencilOdd, LebesgueEvenOdd, UmuEven, in, out, dag);
}
template <class Impl>
@ -321,18 +323,18 @@ void NaiveStaggeredFermion<Impl>::DhopDir(const FermionField &in, FermionField &
template <class Impl>
void NaiveStaggeredFermion<Impl>::DhopInternal(StencilImpl &st,
void NaiveStaggeredFermion<Impl>::DhopInternal(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out, int dag)
{
if ( StaggeredKernelsStatic::Comms == StaggeredKernelsStatic::CommsAndCompute )
DhopInternalOverlappedComms(st,U,in,out,dag);
DhopInternalOverlappedComms(st,lo,U,in,out,dag);
else
DhopInternalSerialComms(st,U,in,out,dag);
DhopInternalSerialComms(st,lo,U,in,out,dag);
}
template <class Impl>
void NaiveStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st,
void NaiveStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out, int dag)
@ -354,7 +356,7 @@ void NaiveStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st,
{
int interior=1;
int exterior=0;
Kernels::DhopNaive(st,U,in,out,dag,interior,exterior);
Kernels::DhopNaive(st,lo,U,in,out,dag,interior,exterior);
}
st.CommunicateComplete(requests);
@ -365,12 +367,12 @@ void NaiveStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st,
{
int interior=0;
int exterior=1;
Kernels::DhopNaive(st,U,in,out,dag,interior,exterior);
Kernels::DhopNaive(st,lo,U,in,out,dag,interior,exterior);
}
}
template <class Impl>
void NaiveStaggeredFermion<Impl>::DhopInternalSerialComms(StencilImpl &st,
void NaiveStaggeredFermion<Impl>::DhopInternalSerialComms(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out, int dag)
@ -383,7 +385,7 @@ void NaiveStaggeredFermion<Impl>::DhopInternalSerialComms(StencilImpl &st,
{
int interior=1;
int exterior=1;
Kernels::DhopNaive(st,U,in,out,dag,interior,exterior);
Kernels::DhopNaive(st,lo,U,in,out,dag,interior,exterior);
}
};

View File

@ -375,6 +375,23 @@ void StaggeredKernels<Impl>::DhopSiteHandExt(StencilView &st,
}
}
/*
#define DHOP_SITE_HAND_INSTANTIATE(IMPL) \
template void StaggeredKernels<IMPL>::DhopSiteHand(StencilImpl &st, LebesgueOrder &lo, \
DoubledGaugeFieldView &U,DoubledGaugeFieldView &UUU, \
SiteSpinor *buf, int LLs, int sU, \
const FermionFieldView &in, FermionFieldView &out, int dag); \
\
template void StaggeredKernels<IMPL>::DhopSiteHandInt(StencilImpl &st, LebesgueOrder &lo, \
DoubledGaugeFieldView &U,DoubledGaugeFieldView &UUU, \
SiteSpinor *buf, int LLs, int sU, \
const FermionFieldView &in, FermionFieldView &out, int dag); \
\
template void StaggeredKernels<IMPL>::DhopSiteHandExt(StencilImpl &st, LebesgueOrder &lo, \
DoubledGaugeFieldView &U,DoubledGaugeFieldView &UUU, \
SiteSpinor *buf, int LLs, int sU, \
const FermionFieldView &in, FermionFieldView &out, int dag); \
*/
#undef LOAD_CHI
#undef HAND_DECLARATIONS

View File

@ -256,7 +256,7 @@ void StaggeredKernels<Impl>::DhopDirKernel(StencilImpl &st, DoubledGaugeFieldVie
});
template <class Impl>
void StaggeredKernels<Impl>::DhopImproved(StencilImpl &st,
void StaggeredKernels<Impl>::DhopImproved(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &UUU,
const FermionField &in, FermionField &out, int dag, int interior,int exterior)
{
@ -294,7 +294,7 @@ void StaggeredKernels<Impl>::DhopImproved(StencilImpl &st,
assert(0 && " Kernel optimisation case not covered ");
}
template <class Impl>
void StaggeredKernels<Impl>::DhopNaive(StencilImpl &st,
void StaggeredKernels<Impl>::DhopNaive(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag, int interior,int exterior)
{

View File

@ -58,9 +58,15 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
Umu(_FourDimGrid),
UmuEven(_FourDimRedBlackGrid),
UmuOdd (_FourDimRedBlackGrid),
Lebesgue(_FourDimGrid),
LebesgueEvenOdd(_FourDimRedBlackGrid),
_tmp(&FiveDimRedBlackGrid),
Dirichlet(0)
{
Stencil.lo = &Lebesgue;
StencilEven.lo = &LebesgueEvenOdd;
StencilOdd.lo = &LebesgueEvenOdd;
// some assertions
assert(FiveDimGrid._ndimension==5);
assert(FourDimGrid._ndimension==4);
@ -299,19 +305,19 @@ void WilsonFermion5D<Impl>::DhopDerivOE(GaugeField &mat,
}
template<class Impl>
void WilsonFermion5D<Impl>::DhopInternal(StencilImpl & st,
void WilsonFermion5D<Impl>::DhopInternal(StencilImpl & st, LebesgueOrder &lo,
DoubledGaugeField & U,
const FermionField &in, FermionField &out,int dag)
{
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute )
DhopInternalOverlappedComms(st,U,in,out,dag);
DhopInternalOverlappedComms(st,lo,U,in,out,dag);
else
DhopInternalSerialComms(st,U,in,out,dag);
DhopInternalSerialComms(st,lo,U,in,out,dag);
}
template<class Impl>
void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st,
void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, LebesgueOrder &lo,
DoubledGaugeField & U,
const FermionField &in, FermionField &out,int dag)
{
@ -325,12 +331,10 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st,
// Start comms // Gather intranode and extra node differentiated??
/////////////////////////////
{
// std::cout << " WilsonFermion5D gather " <<std::endl;
GRID_TRACE("Gather");
st.HaloExchangeOptGather(in,compressor); // Put the barrier in the routine
}
// std::cout << " WilsonFermion5D Communicate Begin " <<std::endl;
std::vector<std::vector<CommsRequest_t> > requests;
auto id=traceStart("Communicate overlapped");
st.CommunicateBegin(requests);
@ -339,7 +343,6 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st,
// Overlap with comms
/////////////////////////////
{
// std::cout << " WilsonFermion5D Comms merge " <<std::endl;
GRID_TRACE("MergeSHM");
st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
}
@ -347,7 +350,6 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st,
/////////////////////////////
// do the compute interior
/////////////////////////////
// std::cout << " WilsonFermion5D Interior " <<std::endl;
int Opt = WilsonKernelsStatic::Opt; // Why pass this. Kernels should know
if (dag == DaggerYes) {
GRID_TRACE("DhopDagInterior");
@ -360,7 +362,6 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st,
/////////////////////////////
// Complete comms
/////////////////////////////
// std::cout << " WilsonFermion5D Comms Complete " <<std::endl;
st.CommunicateComplete(requests);
traceStop(id);
@ -368,13 +369,11 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st,
// do the compute exterior
/////////////////////////////
{
// std::cout << " WilsonFermion5D Comms Merge " <<std::endl;
GRID_TRACE("Merge");
st.CommsMerge(compressor);
}
// std::cout << " WilsonFermion5D Exterior " <<std::endl;
if (dag == DaggerYes) {
GRID_TRACE("DhopDagExterior");
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,0,1);
@ -382,12 +381,11 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st,
GRID_TRACE("DhopExterior");
Kernels::DhopKernel (Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,0,1);
}
// std::cout << " WilsonFermion5D Done " <<std::endl;
}
template<class Impl>
void WilsonFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st,
void WilsonFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st, LebesgueOrder &lo,
DoubledGaugeField & U,
const FermionField &in,
FermionField &out,int dag)
@ -397,13 +395,11 @@ void WilsonFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st,
int LLs = in.Grid()->_rdimensions[0];
// std::cout << " WilsonFermion5D Halo exch " <<std::endl;
{
GRID_TRACE("HaloExchange");
st.HaloExchangeOpt(in,compressor);
}
// std::cout << " WilsonFermion5D Dhop " <<std::endl;
int Opt = WilsonKernelsStatic::Opt;
if (dag == DaggerYes) {
GRID_TRACE("DhopDag");
@ -412,7 +408,6 @@ void WilsonFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st,
GRID_TRACE("Dhop");
Kernels::DhopKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out);
}
// std::cout << " WilsonFermion5D Done " <<std::endl;
}
@ -425,7 +420,7 @@ void WilsonFermion5D<Impl>::DhopOE(const FermionField &in, FermionField &out,int
assert(in.Checkerboard()==Even);
out.Checkerboard() = Odd;
DhopInternal(StencilEven,UmuOdd,in,out,dag);
DhopInternal(StencilEven,LebesgueEvenOdd,UmuOdd,in,out,dag);
}
template<class Impl>
void WilsonFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
@ -436,7 +431,7 @@ void WilsonFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int
assert(in.Checkerboard()==Odd);
out.Checkerboard() = Even;
DhopInternal(StencilOdd,UmuEven,in,out,dag);
DhopInternal(StencilOdd,LebesgueEvenOdd,UmuEven,in,out,dag);
}
template<class Impl>
void WilsonFermion5D<Impl>::Dhop(const FermionField &in, FermionField &out,int dag)
@ -446,7 +441,7 @@ void WilsonFermion5D<Impl>::Dhop(const FermionField &in, FermionField &out,int d
out.Checkerboard() = in.Checkerboard();
DhopInternal(Stencil,Umu,in,out,dag);
DhopInternal(Stencil,Lebesgue,Umu,in,out,dag);
}
template<class Impl>
void WilsonFermion5D<Impl>::DW(const FermionField &in, FermionField &out,int dag)

View File

@ -52,12 +52,17 @@ WilsonFermion<Impl>::WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
StencilEven(&Hgrid, npoint, Even, directions,displacements,p), // source is Even
StencilOdd(&Hgrid, npoint, Odd, directions,displacements,p), // source is Odd
mass(_mass),
Lebesgue(_grid),
LebesgueEvenOdd(_cbgrid),
Umu(&Fgrid),
UmuEven(&Hgrid),
UmuOdd(&Hgrid),
_tmp(&Hgrid),
anisotropyCoeff(anis)
{
Stencil.lo = &Lebesgue;
StencilEven.lo = &LebesgueEvenOdd;
StencilOdd.lo = &LebesgueEvenOdd;
// Allocate the required comms buffer
ImportGauge(_Umu);
if (anisotropyCoeff.isAnisotropic){
@ -309,7 +314,7 @@ void WilsonFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int da
out.Checkerboard() = in.Checkerboard();
DhopInternal(Stencil, Umu, in, out, dag);
DhopInternal(Stencil, Lebesgue, Umu, in, out, dag);
}
template <class Impl>
@ -321,7 +326,7 @@ void WilsonFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int
assert(in.Checkerboard() == Even);
out.Checkerboard() = Odd;
DhopInternal(StencilEven, UmuOdd, in, out, dag);
DhopInternal(StencilEven, LebesgueEvenOdd, UmuOdd, in, out, dag);
}
template <class Impl>
@ -333,7 +338,7 @@ void WilsonFermion<Impl>::DhopEO(const FermionField &in, FermionField &out,int d
assert(in.Checkerboard() == Odd);
out.Checkerboard() = Even;
DhopInternal(StencilOdd, UmuEven, in, out, dag);
DhopInternal(StencilOdd, LebesgueEvenOdd, UmuEven, in, out, dag);
}
template <class Impl>
@ -386,21 +391,21 @@ void WilsonFermion<Impl>::DhopDirCalc(const FermionField &in, FermionField &out,
};
template <class Impl>
void WilsonFermion<Impl>::DhopInternal(StencilImpl &st,
void WilsonFermion<Impl>::DhopInternal(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out, int dag)
{
#ifdef GRID_OMP
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute )
DhopInternalOverlappedComms(st,U,in,out,dag);
DhopInternalOverlappedComms(st,lo,U,in,out,dag);
else
#endif
DhopInternalSerial(st,U,in,out,dag);
DhopInternalSerial(st,lo,U,in,out,dag);
}
template <class Impl>
void WilsonFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st,
void WilsonFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out, int dag)
@ -469,10 +474,10 @@ void WilsonFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st,
template <class Impl>
void WilsonFermion<Impl>::DhopInternalSerial(StencilImpl &st,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out, int dag)
void WilsonFermion<Impl>::DhopInternalSerial(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out, int dag)
{
GRID_TRACE("DhopSerial");
assert((dag == DaggerNo) || (dag == DaggerYes));

View File

@ -40,11 +40,11 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
/// Switch off the 5d vectorised code optimisations
#undef DWFVEC5D
static std::vector<vComplexF> signsF;
static Vector<vComplexF> signsF;
template<typename vtype>
int setupSigns(std::vector<vtype>& signs ){
std::vector<vtype> bother(2);
int setupSigns(Vector<vtype>& signs ){
Vector<vtype> bother(2);
signs = bother;
vrsign(signs[0]);
visign(signs[1]);
@ -364,7 +364,7 @@ WilsonKernels<ZDomainWallVec5dImplF>::AsmDhopSiteDagExt(StencilView &st, Doubled
#include <simd/Intel512double.h>
static std::vector<vComplexD> signsD;
static Vector<vComplexD> signsD;
static int signInitD = setupSigns(signsD);
#define MAYBEPERM(A,perm) if (perm) { A ; }

View File

@ -434,7 +434,7 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
#define ASM_CALL(A) \
thread_for( sss, Nsite, { \
int ss = sss; /*st.lo->Reorder(sss);*/ \
int ss = st.lo->Reorder(sss); \
int sU = ss; \
int sF = ss*Ls; \
WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,Ls,1,in_v,out_v); \

View File

@ -40,7 +40,7 @@ public:
U = Zero();
LatticeColourMatrix tmp(Uin.Grid());
std::vector<typename SU<ncolour>::Matrix> ta(Dimension);
Vector<typename SU<ncolour>::Matrix> ta(Dimension);
// Debug lines
// LatticeMatrix uno(Uin.Grid());

View File

@ -43,7 +43,7 @@ public:
U = Zero();
LatticeColourMatrix tmp(Uin.Grid());
std::vector<typename GaugeGroup<ncolour,group_name>::Matrix> eij(Dimension);
Vector<typename GaugeGroup<ncolour,group_name>::Matrix> eij(Dimension);
for (int a = 0; a < Dimension; a++)
GaugeGroupTwoIndex<ncolour, S, group_name>::base(a, eij[a]);

View File

@ -32,7 +32,9 @@ private:
// Smear_Stout<Gimpl> *StoutSmearing;
// std::vector<GaugeField> SmearedSet;
GridRedBlackCartesian * UrbGrid; // keep a copy of the redblack grid for life of object
std::vector<LatticeLorentzComplex> masks;
std::vector<int> cbs;
typedef typename SU3Adjoint::AMatrix AdjMatrix;
typedef typename SU3Adjoint::LatticeAdjMatrix AdjMatrixField;
@ -147,6 +149,25 @@ private:
}
pokeLorentz(Fdet, Fdet_pol, nu);
}
void Compute_MpInvJx_dNxxdSy(int cb,
const GaugeLinkField &PlaqL,
const GaugeLinkField &PlaqR,
AdjMatrixField MpInvJx,
AdjVectorField &Fdet2 )
{
GaugeLinkField PlaqLeo(UrbGrid);
GaugeLinkField PlaqReo(UrbGrid);
AdjMatrixField MpInvJxeo(UrbGrid);
AdjVectorField Fdet2eo(UrbGrid);
pickCheckerboard(cb,PlaqLeo,PlaqL);
pickCheckerboard(cb,PlaqReo,PlaqR);
pickCheckerboard(cb,MpInvJxeo,MpInvJx);
Fdet2eo.Checkerboard()=cb;
Compute_MpInvJx_dNxxdSy(PlaqLeo,PlaqReo,MpInvJxeo,Fdet2eo);
setCheckerboard(Fdet2,Fdet2eo);
}
void Compute_MpInvJx_dNxxdSy(const GaugeLinkField &PlaqL,const GaugeLinkField &PlaqR, AdjMatrixField MpInvJx,AdjVectorField &Fdet2 )
{
GaugeLinkField UtaU(PlaqL.Grid());
@ -278,8 +299,9 @@ public:
////////////////////////////////////////////////////////////////////////////////
// Mask the gauge field
////////////////////////////////////////////////////////////////////////////////
int cb = cbs[smr];
auto mask=PeekIndex<LorentzIndex>(masks[smr],mu); // the cb mask
Umsk = U;
ApplyMask(Umsk,smr);
Utmp = peekLorentz(Umsk,mu);
@ -442,7 +464,7 @@ public:
AdjMatrixField MpInvJx_nu(grid);
MpInvJx = (-1.0)*MpAdInv * JxAd;// rho is on the plaq factor
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx,FdetV);
Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx,FdetV);
Fdet2_mu=FdetV;
Fdet1_mu=Zero();
@ -499,7 +521,7 @@ public:
time=-usecond();
PlaqR=(-1.0)*PlaqR;
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx,FdetV);
Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx,FdetV);
Fdet2_nu = FdetV;
time+=usecond();
std::cout << GridLogMessage << "Compute_MpInvJx_dNxxSy (occurs 6x) took "<<time<< " us"<<std::endl;
@ -520,7 +542,7 @@ public:
MpInvJx_nu = Cshift(MpInvJx,mu,-1);
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV);
Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx_nu,FdetV);
Fdet2_nu = Fdet2_nu+FdetV;
///////////////// -ve nu /////////////////
@ -539,7 +561,7 @@ public:
Fdet1_nu = Fdet1_nu + transpose(Nxy)*dJdXe_nMpInv_y;
MpInvJx_nu = Cshift(MpInvJx,nu,1);
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV);
Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx_nu,FdetV);
Fdet2_nu = Fdet2_nu+FdetV;
// x==
@ -560,7 +582,7 @@ public:
MpInvJx_nu = Cshift(MpInvJx,mu,-1);
MpInvJx_nu = Cshift(MpInvJx_nu,nu,1);
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV);
Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx_nu,FdetV);
Fdet2_nu = Fdet2_nu+FdetV;
/////////////////////////////////////////////////////////////////////
@ -589,7 +611,7 @@ public:
MpInvJx_nu = Cshift(MpInvJx,nu,-1);
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV);
Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx_nu,FdetV);
Fdet2_mu = Fdet2_mu+FdetV;
// __
@ -609,7 +631,7 @@ public:
MpInvJx_nu = Cshift(MpInvJx,nu,1);
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV);
Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx_nu,FdetV);
Fdet2_mu = Fdet2_mu+FdetV;
}
@ -931,6 +953,10 @@ private:
public:
/* Standard constructor */
virtual ~SmearedConfigurationMasked()
{
delete UrbGrid;
}
SmearedConfigurationMasked(GridCartesian* _UGrid, unsigned int Nsmear, Smear_Stout<Gimpl>& Stout)
: SmearedConfiguration<Gimpl>(_UGrid, Nsmear,Stout)
{
@ -939,7 +965,6 @@ public:
// was resized in base class
assert(this->SmearedSet.size()==Nsmear);
GridRedBlackCartesian * UrbGrid;
UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(_UGrid);
LatticeComplex one(_UGrid); one = ComplexD(1.0,0.0);
LatticeComplex tmp(_UGrid);
@ -947,10 +972,11 @@ public:
for (unsigned int i = 0; i < this->smearingLevels; ++i) {
masks.push_back(*(new LatticeLorentzComplex(_UGrid)));
int mu= (i/2) %Nd;
int cb= (i%2);
LatticeComplex tmpcb(UrbGrid);
cbs.push_back(cb);
masks[i]=Zero();
////////////////////
@ -962,7 +988,6 @@ public:
PokeIndex<LorentzIndex>(masks[i],tmp, mu);
}
delete UrbGrid;
}
virtual void smeared_force(GaugeField &SigmaTilde)

View File

@ -158,12 +158,12 @@ void A2Autils<FImpl>::MesonField(TensorType &mat,
int MFrvol = rd*Lblock*Rblock*Nmom;
int MFlvol = ld*Lblock*Rblock*Nmom;
std::vector<SpinMatrix_v > lvSum(MFrvol);
Vector<SpinMatrix_v > lvSum(MFrvol);
thread_for( r, MFrvol,{
lvSum[r] = Zero();
});
std::vector<SpinMatrix_s > lsSum(MFlvol);
Vector<SpinMatrix_s > lsSum(MFlvol);
thread_for(r,MFlvol,{
lsSum[r]=scalar_type(0.0);
});
@ -346,12 +346,12 @@ void A2Autils<FImpl>::PionFieldXX(Eigen::Tensor<ComplexD,3> &mat,
int MFrvol = rd*Lblock*Rblock;
int MFlvol = ld*Lblock*Rblock;
std::vector<vector_type > lvSum(MFrvol);
Vector<vector_type > lvSum(MFrvol);
thread_for(r,MFrvol,{
lvSum[r] = Zero();
});
std::vector<scalar_type > lsSum(MFlvol);
Vector<scalar_type > lsSum(MFlvol);
thread_for(r,MFlvol,{
lsSum[r]=scalar_type(0.0);
});
@ -493,12 +493,12 @@ void A2Autils<FImpl>::PionFieldWVmom(Eigen::Tensor<ComplexD,4> &mat,
int MFrvol = rd*Lblock*Rblock*Nmom;
int MFlvol = ld*Lblock*Rblock*Nmom;
std::vector<vector_type > lvSum(MFrvol);
Vector<vector_type > lvSum(MFrvol);
thread_for(r,MFrvol,{
lvSum[r] = Zero();
});
std::vector<scalar_type > lsSum(MFlvol);
Vector<scalar_type > lsSum(MFlvol);
thread_for(r,MFlvol,{
lsSum[r]=scalar_type(0.0);
});
@ -700,13 +700,13 @@ void A2Autils<FImpl>::AslashField(TensorType &mat,
int MFrvol = rd*Lblock*Rblock*Nem;
int MFlvol = ld*Lblock*Rblock*Nem;
std::vector<vector_type> lvSum(MFrvol);
Vector<vector_type> lvSum(MFrvol);
thread_for(r,MFrvol,
{
lvSum[r] = Zero();
});
std::vector<scalar_type> lsSum(MFlvol);
Vector<scalar_type> lsSum(MFlvol);
thread_for(r,MFlvol,
{
lsSum[r] = scalar_type(0.0);

View File

@ -971,9 +971,7 @@ void BaryonUtils<FImpl>::BaryonGamma3pt(
autoView( vq_ti , q_ti , AcceleratorRead);
autoView( vq_tf , q_tf , AcceleratorRead);
deviceVector<mobj> my_Dq_spec(2);
acceleratorPut(my_Dq_spec[0],Dq_spec1);
acceleratorPut(my_Dq_spec[1],Dq_spec2);
Vector<mobj> my_Dq_spec{Dq_spec1,Dq_spec2};
mobj * Dq_spec_p = &my_Dq_spec[0];
if (group == 1) {
@ -1302,8 +1300,7 @@ void BaryonUtils<FImpl>::SigmaToNucleonEye(const PropagatorField &qq_loop,
autoView( vd_tf , qd_tf , AcceleratorRead);
autoView( vs_ti , qs_ti , AcceleratorRead);
deviceVector<mobj> my_Dq_spec(1);
acceleratorPut(my_Dq_spec[0],Du_spec);
Vector<mobj> my_Dq_spec{Du_spec};
mobj * Dq_spec_p = &my_Dq_spec[0];
if(op == "Q1"){
@ -1356,8 +1353,7 @@ void BaryonUtils<FImpl>::SigmaToNucleonNonEye(const PropagatorField &qq_ti,
autoView( vd_tf , qd_tf , AcceleratorRead );
autoView( vs_ti , qs_ti , AcceleratorRead );
deviceVector<mobj> my_Dq_spec(1);
acceleratorPut(my_Dq_spec[0],Du_spec);
Vector<mobj> my_Dq_spec{Du_spec};
mobj * Dq_spec_p = &my_Dq_spec[0];
if(op == "Q1"){
@ -1548,9 +1544,7 @@ void BaryonUtils<FImpl>::XiToSigmaEye(const PropagatorField &qq_loop,
autoView( vd_tf , qd_tf , AcceleratorRead);
autoView( vs_ti , qs_ti , AcceleratorRead);
deviceVector<mobj> my_Dq_spec(2);
acceleratorPut(my_Dq_spec[0],Dd_spec);
acceleratorPut(my_Dq_spec[0],Ds_spec);
Vector<mobj> my_Dq_spec{Dd_spec,Ds_spec};
mobj * Dq_spec_p = &my_Dq_spec[0];
if(op == "Q1"){

View File

@ -418,32 +418,32 @@ static void LieAlgebraProject(LatticeAlgebraMatrix &out,const LatticeMatrix &in,
int hNNm1= NNm1/2;
RealD sqrt_2 = sqrt(2.0);
Complex ci(0.0,1.0);
for(int su2Index=0;su2Index<hNNm1;su2Index++){
int i1, i2;
su2SubGroupIndex(i1, i2, su2Index);
int ax = su2Index*2;
int ay = su2Index*2+1;
accelerator_for(ss,grid->oSites(),1,{
const int nsimd= Matrix::Nsimd();
accelerator_for(ss,grid->oSites(),nsimd,{
for(int su2Index=0;su2Index<hNNm1;su2Index++){
int i1, i2;
su2SubGroupIndex(i1, i2, su2Index);
int ax = su2Index*2;
int ay = su2Index*2+1;
// in is traceless ANTI-hermitian whereas Grid generators are Hermitian.
// trace( Ta x Ci in)
// Bet I need to move to real part with mult by -i
out_v[ss]()()(ax,b) = 0.5*(real(in_v[ss]()()(i2,i1)) - real(in_v[ss]()()(i1,i2)));
out_v[ss]()()(ay,b) = 0.5*(imag(in_v[ss]()()(i1,i2)) + imag(in_v[ss]()()(i2,i1)));
});
}
for(int diagIndex=0;diagIndex<N-1;diagIndex++){
int k = diagIndex + 1; // diagIndex starts from 0
int a = NNm1+diagIndex;
RealD scale = 1.0/sqrt(2.0*k*(k+1));
accelerator_for(ss,grid->oSites(),vComplex::Nsimd(),{
auto tmp = in_v[ss]()()(0,0);
coalescedWrite(out_v[ss]()()(ax,b),0.5*(real(in_v(ss)()()(i2,i1)) - real(in_v(ss)()()(i1,i2))));
coalescedWrite(out_v[ss]()()(ay,b),0.5*(imag(in_v(ss)()()(i1,i2)) + imag(in_v(ss)()()(i2,i1))));
}
for(int diagIndex=0;diagIndex<N-1;diagIndex++){
int k = diagIndex + 1; // diagIndex starts from 0
int a = NNm1+diagIndex;
RealD scale = 1.0/sqrt(2.0*k*(k+1));
auto tmp = in_v(ss)()()(0,0);
for(int i=1;i<k;i++){
tmp=tmp+in_v[ss]()()(i,i);
tmp=tmp+in_v(ss)()()(i,i);
}
tmp = tmp - in_v[ss]()()(k,k)*k;
out_v[ss]()()(a,b) =imag(tmp) * scale;
});
}
tmp = tmp - in_v(ss)()()(k,k)*k;
coalescedWrite(out_v[ss]()()(a,b),imag(tmp) * scale);
}
});
}

View File

@ -118,7 +118,7 @@ static void generatorDiagonal(int diagIndex, iGroupMatrix<cplx> &ta) {
////////////////////////////////////////////////////////////////////////
// Map a su2 subgroup number to the pair of rows that are non zero
////////////////////////////////////////////////////////////////////////
static void su2SubGroupIndex(int &i1, int &i2, int su2_index, GroupName::SU) {
static accelerator_inline void su2SubGroupIndex(int &i1, int &i2, int su2_index, GroupName::SU) {
assert((su2_index >= 0) && (su2_index < (ncolour * (ncolour - 1)) / 2));
int spare = su2_index;

View File

@ -62,7 +62,7 @@ public:
// returns i(T_Adj)^index necessary for the projectors
// see definitions above
iAdjTa = Zero();
iSUnMatrix<cplx> ta[ncolour * ncolour - 1];
Vector<iSUnMatrix<cplx> > ta(ncolour * ncolour - 1);
iSUnMatrix<cplx> tmp;
// FIXME not very efficient to get all the generators everytime

View File

@ -72,7 +72,7 @@ public:
}
// Resident in managed memory
deviceVector<GeneralStencilEntry> _entries;
Vector<GeneralStencilEntry> _entries;
GeneralLocalStencil(GridBase *grid, const std::vector<Coordinate> &shifts)
{
@ -141,7 +141,7 @@ public:
////////////////////////////////////////////////
// Store in look up table
////////////////////////////////////////////////
acceleratorPut(this->_entries[lex],SE);
this->_entries[lex] = SE;
}
});
}

View File

@ -1,4 +1,3 @@
#if 0
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -242,4 +241,3 @@ void LebesgueOrder::ZGraph(void)
}
NAMESPACE_END(Grid);
#endif

View File

@ -72,7 +72,7 @@ public:
void ThreadInterleave(void);
private:
deviceVector<IndexInteger> _LebesgueReorder;
Vector<IndexInteger> _LebesgueReorder;
};

View File

@ -19,7 +19,7 @@ public:
static int PartialCompressionFactor(GridBase *grid) {return 1;};
// Decompress is after merge so ok
template<class vobj,class cobj,class compressor>
static void Gather_plane_simple (deviceVector<std::pair<int,int> >& table,
static void Gather_plane_simple (commVector<std::pair<int,int> >& table,
const Lattice<vobj> &rhs,
cobj *buffer,
compressor &compress,
@ -35,7 +35,7 @@ public:
rhs_v.ViewClose();
}
template<class vobj,class cobj,class compressor>
static void Gather_plane_exchange(deviceVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
static void Gather_plane_exchange(commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
std::vector<cobj *> pointers,int dimension,int plane,int cbmask,
compressor &compress,int type,int partial)
{
@ -83,6 +83,25 @@ public:
// Wilson compressor will add alternate policies for Dirichlet
// and possibly partial Dirichlet for DWF
////////////////////////////////////
/*
class FaceGatherDirichlet
{
// If it's dirichlet we don't assemble comms buffers
//
// Rely on zeroes in gauge field to drive the correct result
// NAN propgagation: field will locally wrap, so fermion should NOT contain NAN and just permute
template<class vobj,class cobj,class compressor>
static void Gather_plane_simple (commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,cobj *buffer,compressor &compress, int off,int so){};
template<class vobj,class cobj,class compressor>
static void Gather_plane_exchange(commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
Vector<cobj *> pointers,int dimension,int plane,int cbmask,
compressor &compress,int type) {}
template<class decompressor,class Merger>
static void Merge(decompressor decompress,Merge &mm) { }
template<class decompressor,class Decompression>
static void Decompress(decompressor decompress,Decompression &dd) {}
};
*/
template<class vobj,class FaceGather>
class SimpleCompressorGather : public FaceGather {

View File

@ -31,6 +31,7 @@
#define STENCIL_MAX (16)
#include <Grid/stencil/SimpleCompressor.h> // subdir aggregate
#include <Grid/stencil/Lebesgue.h> // subdir aggregate
#include <Grid/stencil/GeneralLocalStencil.h>
//////////////////////////////////////////////////////////////////////////////////////////
@ -255,6 +256,7 @@ protected:
GridBase * _grid;
public:
GridBase *Grid(void) const { return _grid; }
LebesgueOrder *lo;
////////////////////////////////////////////////////////////////////////
// Needed to conveniently communicate gparity parameters into GPU memory
@ -271,11 +273,11 @@ public:
int face_table_computed;
int partialDirichlet;
int fullDirichlet;
std::vector<deviceVector<std::pair<int,int> > > face_table ;
deviceVector<int> surface_list;
std::vector<commVector<std::pair<int,int> > > face_table ;
Vector<int> surface_list;
std::vector<StencilEntry> _entries; // Resident in host memory
deviceVector<StencilEntry> _entries_device; // Resident in device memory
stencilVector<StencilEntry> _entries; // Resident in managed memory
commVector<StencilEntry> _entries_device; // Resident in device memory
std::vector<Packet> Packets;
std::vector<Merge> Mergers;
std::vector<Merge> MergersSHM;
@ -365,9 +367,10 @@ public:
void CommunicateBegin(std::vector<std::vector<CommsRequest_t> > &reqs)
{
// All GPU kernel tasks must complete
accelerator_barrier(); // All kernels should ALREADY be complete
_grid->StencilBarrier(); // Everyone is here, so noone running slow and still using receive buffer
// accelerator_barrier(); // All kernels should ALREADY be complete
// _grid->StencilBarrier(); // Everyone is here, so noone running slow and still using receive buffer
// But the HaloGather had a barrier too.
#ifdef ACCELERATOR_AWARE_MPI
for(int i=0;i<Packets.size();i++){
_grid->StencilSendToRecvFromBegin(MpiReqs,
Packets[i].send_buf,
@ -376,6 +379,23 @@ public:
Packets[i].from_rank,Packets[i].do_recv,
Packets[i].xbytes,Packets[i].rbytes,i);
}
#else
#warning "Using COPY VIA HOST BUFFERS IN STENCIL"
for(int i=0;i<Packets.size();i++){
// Introduce a host buffer with a cheap slab allocator and zero cost wipe all
Packets[i].host_send_buf = _grid->HostBufferMalloc(Packets[i].xbytes);
Packets[i].host_recv_buf = _grid->HostBufferMalloc(Packets[i].rbytes);
if ( Packets[i].do_send ) {
acceleratorCopyFromDevice(Packets[i].send_buf, Packets[i].host_send_buf,Packets[i].xbytes);
}
_grid->StencilSendToRecvFromBegin(MpiReqs,
Packets[i].host_send_buf,
Packets[i].to_rank,Packets[i].do_send,
Packets[i].host_recv_buf,
Packets[i].from_rank,Packets[i].do_recv,
Packets[i].xbytes,Packets[i].rbytes,i);
}
#endif
// Get comms started then run checksums
// Having this PRIOR to the dslash seems to make Sunspot work... (!)
for(int i=0;i<Packets.size();i++){
@ -390,9 +410,18 @@ public:
if ( this->partialDirichlet ) DslashLogPartial();
else if ( this->fullDirichlet ) DslashLogDirichlet();
else DslashLogFull();
acceleratorCopySynchronise();// is in the StencilSendToRecvFromComplete
accelerator_barrier();
// acceleratorCopySynchronise() is in the StencilSendToRecvFromComplete
// accelerator_barrier();
_grid->StencilBarrier();
#ifndef ACCELERATOR_AWARE_MPI
#warning "Using COPY VIA HOST BUFFERS IN STENCIL"
for(int i=0;i<Packets.size();i++){
if ( Packets[i].do_recv ) {
acceleratorCopyToDevice(Packets[i].host_recv_buf, Packets[i].recv_buf,Packets[i].rbytes);
}
}
_grid->HostBufferFreeAll();
#endif
// run any checksums
for(int i=0;i<Packets.size();i++){
if ( Packets[i].do_recv )
@ -473,7 +502,7 @@ public:
template<class compressor>
void HaloGather(const Lattice<vobj> &source,compressor &compress)
{
accelerator_barrier();
// accelerator_barrier();
_grid->StencilBarrier();// Synch shared memory on a single nodes
assert(source.Grid()==_grid);
@ -487,7 +516,6 @@ public:
HaloGatherDir(source,compress,point,face_idx);
}
accelerator_barrier(); // All my local gathers are complete
_grid->StencilBarrier();// Synch shared memory on a single nodes
face_table_computed=1;
assert(u_comm_offset==_unified_buffer_size);
}
@ -640,7 +668,7 @@ public:
for(int point=0;point<this->_npoints;point++){
this->same_node[point] = this->SameNode(point);
}
int32_t surface_list_size=0;
for(int site = 0 ;site< vol4;site++){
int local = 1;
for(int point=0;point<this->_npoints;point++){
@ -650,30 +678,11 @@ public:
}
if(local == 0) {
for(int s=0;s<Ls;s++){
surface_list_size++;
surface_list.push_back(site*Ls+s);
}
}
}
std::cout << "BuildSurfaceList size is "<<surface_list.size()<<std::endl;
surface_list.resize(surface_list_size);
std::vector<int> surface_list_host(surface_list_size);
int32_t ss=0;
for(int site = 0 ;site< vol4;site++){
int local = 1;
for(int point=0;point<this->_npoints;point++){
if( (!this->GetNodeLocal(site*Ls,point)) && (!this->same_node[point]) ){
local = 0;
}
}
if(local == 0) {
for(int s=0;s<Ls;s++){
int idx=site*Ls+s;
surface_list_host[ss]= idx;
ss++;
}
}
}
acceleratorCopyToDevice(&surface_list_host[0],&surface_list[0],surface_list_size*sizeof(int));
//std::cout << "BuildSurfaceList size is "<<surface_list.size()<<std::endl;
}
/// Introduce a block structure and switch off comms on boundaries
void DirichletBlock(const Coordinate &dirichlet_block)

View File

@ -207,10 +207,10 @@ cl::sycl::queue *theCopyAccelerator;
void acceleratorInit(void)
{
int nDevices = 1;
// cl::sycl::gpu_selector selector;
// cl::sycl::device selectedDevice { selector };
theGridAccelerator = new sycl::queue (sycl::gpu_selector_v);
theCopyAccelerator = new sycl::queue (sycl::gpu_selector_v);
cl::sycl::gpu_selector selector;
cl::sycl::device selectedDevice { selector };
theGridAccelerator = new sycl::queue (selectedDevice);
theCopyAccelerator = new sycl::queue (selectedDevice);
// theCopyAccelerator = theGridAccelerator; // Should proceed concurrenlty anyway.
#ifdef GRID_SYCL_LEVEL_ZERO_IPC

View File

@ -464,12 +464,16 @@ void Grid_init(int *argc,char ***argv)
std::cout<<GridLogMessage<<std::endl;
std::cout<<GridLogMessage<<"Performance:"<<std::endl;
std::cout<<GridLogMessage<<std::endl;
std::cout<<GridLogMessage<<" --comms-concurrent : Asynchronous MPI calls; several dirs at a time "<<std::endl;
std::cout<<GridLogMessage<<" --comms-sequential : Synchronous MPI calls; one dirs at a time "<<std::endl;
std::cout<<GridLogMessage<<" --comms-overlap : Overlap comms with compute "<<std::endl;
std::cout<<GridLogMessage<<std::endl;
std::cout<<GridLogMessage<<" --dslash-generic: Wilson kernel for generic Nc"<<std::endl;
std::cout<<GridLogMessage<<" --dslash-unroll : Wilson kernel for Nc=3"<<std::endl;
std::cout<<GridLogMessage<<" --dslash-asm : Wilson kernel for AVX512"<<std::endl;
std::cout<<GridLogMessage<<std::endl;
std::cout<<GridLogMessage<<" --lebesgue : Cache oblivious Lebesgue curve/Morton order/Z-graph stencil looping"<<std::endl;
std::cout<<GridLogMessage<<" --cacheblocking n.m.o.p : Hypercuboidal cache blocking"<<std::endl;
std::cout<<GridLogMessage<<std::endl;
exit(EXIT_SUCCESS);
}
@ -497,8 +501,28 @@ void Grid_init(int *argc,char ***argv)
WilsonKernelsStatic::Comms = WilsonKernelsStatic::CommsThenCompute;
StaggeredKernelsStatic::Comms = StaggeredKernelsStatic::CommsThenCompute;
}
if( GridCmdOptionExists(*argv,*argv+*argc,"--comms-concurrent") ){
CartesianCommunicator::SetCommunicatorPolicy(CartesianCommunicator::CommunicatorPolicyConcurrent);
}
if( GridCmdOptionExists(*argv,*argv+*argc,"--comms-sequential") ){
CartesianCommunicator::SetCommunicatorPolicy(CartesianCommunicator::CommunicatorPolicySequential);
}
if( GridCmdOptionExists(*argv,*argv+*argc,"--lebesgue") ){
LebesgueOrder::UseLebesgueOrder=1;
}
CartesianCommunicator::nCommThreads = 1;
#ifdef GRID_COMMS_THREADS
if( GridCmdOptionExists(*argv,*argv+*argc,"--comms-threads") ){
arg= GridCmdOptionPayload(*argv,*argv+*argc,"--comms-threads");
GridCmdOptionInt(arg,CartesianCommunicator::nCommThreads);
assert(CartesianCommunicator::nCommThreads > 0);
}
#endif
if( GridCmdOptionExists(*argv,*argv+*argc,"--cacheblocking") ){
arg= GridCmdOptionPayload(*argv,*argv+*argc,"--cacheblocking");
GridCmdOptionIntVector(arg,LebesgueOrder::Block);
}
if( GridCmdOptionExists(*argv,*argv+*argc,"--notimestamp") ){
GridLogTimestamp(0);
} else {
@ -549,31 +573,8 @@ void GridLogLayout() {
void * Grid_backtrace_buffer[_NBACKTRACE];
void Grid_usr_signal_handler(int sig,siginfo_t *si,void * ptr)
{
fprintf(stderr,"Signal handler on host %s\n",hostname);
fprintf(stderr,"Caught signal %d\n",si->si_signo);
fprintf(stderr," mem address %llx\n",(unsigned long long)si->si_addr);
fprintf(stderr," code %d\n",si->si_code);
// x86 64bit
#ifdef __linux__
#ifdef __x86_64__
ucontext_t * uc= (ucontext_t *)ptr;
struct sigcontext *sc = (struct sigcontext *)&uc->uc_mcontext;
fprintf(stderr," instruction %llx\n",(unsigned long long)sc->rip);
#endif
#endif
fflush(stderr);
BACKTRACEFP(stderr);
fprintf(stderr,"Called backtrace\n");
fflush(stdout);
fflush(stderr);
return;
}
void Grid_sa_signal_handler(int sig,siginfo_t *si,void * ptr)
{
fprintf(stderr,"Signal handler on host %s\n",hostname);
fprintf(stderr,"Caught signal %d\n",si->si_signo);
fprintf(stderr," mem address %llx\n",(unsigned long long)si->si_addr);
fprintf(stderr," code %d\n",si->si_code);
@ -584,7 +585,7 @@ void Grid_sa_signal_handler(int sig,siginfo_t *si,void * ptr)
ucontext_t * uc= (ucontext_t *)ptr;
struct sigcontext *sc = (struct sigcontext *)&uc->uc_mcontext;
fprintf(stderr," instruction %llx\n",(unsigned long long)sc->rip);
#define REG(A) fprintf(stderr," %s %lx\n",#A,sc-> A);
#define REG(A) printf(" %s %lx\n",#A,sc-> A);
REG(rdi);
REG(rsi);
REG(rbp);
@ -617,8 +618,8 @@ void Grid_sa_signal_handler(int sig,siginfo_t *si,void * ptr)
void Grid_exit_handler(void)
{
// BACKTRACEFP(stdout);
// fflush(stdout);
BACKTRACEFP(stdout);
fflush(stdout);
}
void Grid_debug_handler_init(void)
{
@ -626,10 +627,10 @@ void Grid_debug_handler_init(void)
sigemptyset (&sa.sa_mask);
sa.sa_sigaction= Grid_sa_signal_handler;
sa.sa_flags = SA_SIGINFO;
// sigaction(SIGSEGV,&sa,NULL);
sigaction(SIGSEGV,&sa,NULL);
sigaction(SIGTRAP,&sa,NULL);
sigaction(SIGBUS,&sa,NULL);
// sigaction(SIGUSR2,&sa,NULL);
sigaction(SIGUSR2,&sa,NULL);
feenableexcept( FE_INVALID|FE_OVERFLOW|FE_DIVBYZERO);
@ -637,14 +638,7 @@ void Grid_debug_handler_init(void)
sigaction(SIGKILL,&sa,NULL);
sigaction(SIGILL,&sa,NULL);
// Non terminating SIGUSR1/2 handler
struct sigaction sa_ping;
sigemptyset (&sa_ping.sa_mask);
sa_ping.sa_sigaction= Grid_usr_signal_handler;
sa_ping.sa_flags = SA_SIGINFO;
sigaction(SIGHUP,&sa_ping,NULL);
// atexit(Grid_exit_handler);
atexit(Grid_exit_handler);
}
NAMESPACE_END(Grid);

View File

@ -644,6 +644,11 @@ int main (int argc, char ** argv)
Grid_init(&argc,&argv);
CartesianCommunicator::SetCommunicatorPolicy(CartesianCommunicator::CommunicatorPolicySequential);
#ifdef KNL
LebesgueOrder::Block = std::vector<int>({8,2,2,2});
#else
LebesgueOrder::Block = std::vector<int>({2,2,2,2});
#endif
Benchmark::Decomposition();
int do_su4=1;

View File

@ -70,7 +70,7 @@ int main (int argc, char ** argv)
pRNG.SeedFixedIntegers(std::vector<int>({56,17,89,101}));
std::vector<double> stop(threads);
std::vector<Vec> sum(threads);
Vector<Vec> sum(threads);
std::vector<LatticeVec> x(threads,&Grid);
for(int t=0;t<threads;t++){

View File

@ -78,9 +78,9 @@ int main (int argc, char ** argv)
double t0,t1;
typedef typename DomainWallFermionD::Coeff_t Coeff_t;
std::vector<Coeff_t> diag = Dw.bs;
std::vector<Coeff_t> upper= Dw.cs;
std::vector<Coeff_t> lower= Dw.cs;
Vector<Coeff_t> diag = Dw.bs;
Vector<Coeff_t> upper= Dw.cs;
Vector<Coeff_t> lower= Dw.cs;
upper[Ls-1]=-Dw.mass_minus*upper[Ls-1];
lower[0] =-Dw.mass_plus*lower[0];

View File

@ -861,7 +861,7 @@ int main (int argc, char ** argv)
}
CartesianCommunicator::SetCommunicatorPolicy(CartesianCommunicator::CommunicatorPolicySequential);
// LebesgueOrder::Block = std::vector<int>({2,2,2,2});
LebesgueOrder::Block = std::vector<int>({2,2,2,2});
Benchmark::Decomposition();

View File

@ -225,6 +225,18 @@ case ${ac_SFW_FP16} in
AC_MSG_ERROR(["SFW FP16 option not supported ${ac_SFW_FP16}"]);;
esac
############### Default to accelerator cshift, but revert to host if UCX is buggy or other reasons
AC_ARG_ENABLE([accelerator-aware-mpi],
[AS_HELP_STRING([--enable-accelerator-aware-mpi=yes|no],[run mpi transfers from device])],
[ac_ACCELERATOR_AWARE_MPI=${enable_accelerator_aware_mpi}], [ac_ACCELERATOR_AWARE_MPI=yes])
case ${ac_ACCELERATOR_AWARE_MPI} in
yes)
AC_DEFINE([ACCELERATOR_CSHIFT],[1],[ Cshift runs on host])
AC_DEFINE([ACCELERATOR_AWARE_MPI],[1],[ Stencil can use device pointers]);;
*);;
esac
############### SYCL/CUDA/HIP/none
AC_ARG_ENABLE([accelerator],
@ -652,6 +664,16 @@ case ${ac_SHM_FAST_PATH} in
*) ;;
esac
############### communication type selection
AC_ARG_ENABLE([comms-threads],[AS_HELP_STRING([--enable-comms-threads | --disable-comms-threads],[Use multiple threads in MPI calls])],[ac_COMMS_THREADS=${enable_comms_threads}],[ac_COMMS_THREADS=yes])
case ${ac_COMMS_THREADS} in
yes)
AC_DEFINE([GRID_COMMS_THREADING],[1],[GRID_COMMS_NONE] )
;;
*) ;;
esac
############### communication type selection
AC_ARG_ENABLE([comms],[AS_HELP_STRING([--enable-comms=none|mpi|mpi-auto],[Select communications])],[ac_COMMS=${enable_comms}],[ac_COMMS=none])

View File

@ -1,23 +0,0 @@
#Ahead of time compile for PVC
export LDFLAGS="-fiopenmp -fsycl -fsycl-device-code-split=per_kernel -fsycl-targets=spir64_gen -Xs -device -Xs pvc -fsycl-device-lib=all -lze_loader -L${MKLROOT}/lib -qmkl=parallel -fsycl -lsycl "
export CXXFLAGS="-O3 -fiopenmp -fsycl-unnamed-lambda -fsycl -Wno-tautological-compare -qmkl=parallel -fsycl -fno-exceptions -fsycl-targets=spir64_gen -Xs -device -Xs pvc "
#JIT compile
#export LDFLAGS="-fiopenmp -fsycl -fsycl-device-code-split=per_kernel -fsycl-device-lib=all -lze_loader -L${MKLROOT}/lib -qmkl=parallel -fsycl -lsycl "
#export CXXFLAGS="-O3 -fiopenmp -fsycl-unnamed-lambda -fsycl -Wno-tautological-compare -qmkl=parallel -fsycl -fno-exceptions "
../../configure \
--enable-simd=GPU \
--enable-gen-simd-width=64 \
--enable-comms=mpi-auto \
--enable-debug \
--disable-gparity \
--disable-fermion-reps \
--with-lime=$CLIME \
--enable-shm=nvlink \
--enable-accelerator=sycl \
--enable-accelerator-aware-mpi=yes\
--enable-unified=no \
MPICXX=mpicxx \
CXX=icpx

View File

@ -1,15 +0,0 @@
#module load oneapi/release/2023.12.15.001
#module load mpich/icc-all-debug-pmix-gpu/52.2
#module load mpich-config/mode/deterministic
#module load intel_compute_runtime/release/821.35
source ~/spack/share/spack/setup-env.sh
spack load c-lime
spack load openssl
export CLIME=`spack find --paths c-lime | grep ^c-lime | awk '{print $2}' `
export HTTP_PROXY=http://proxy.alcf.anl.gov:3128
export HTTPS_PROXY=http://proxy.alcf.anl.gov:3128
export http_proxy=http://proxy.alcf.anl.gov:3128
export https_proxy=http://proxy.alcf.anl.gov:3128
git config --global http.proxy http://proxy.alcf.anl.gov:3128
export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file"

View File

@ -1,74 +0,0 @@
#!/bin/bash
#PBS -l select=512
#PBS -q EarlyAppAccess
#PBS -A LatticeQCD_aesp_CNDA
#PBS -l walltime=6:00:00
#PBS -N reproBigJob
#PBS -k doe
#export OMP_PROC_BIND=spread
#unset OMP_PLACES
#module load oneapi/eng-compiler/2023.05.15.003
#module load mpich/51.2/icc-all-deterministic-pmix-gpu
# 56 cores / 6 threads ~9
export OMP_NUM_THREADS=6
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=10485760
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
#export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
#export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE=1
export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE_FOR_D2D_COPY=1
export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file"
export GRID_PRINT_ENTIRE_LOG=0
export GRID_CHECKSUM_RECV_BUF=0
export GRID_CHECKSUM_SEND_BUF=0
export MPICH_OFI_NIC_POLICY=GPU
#export MPIR_CVAR_ALLREDUCE_DEVICE_COLLECTIVE=0
#export MPIR_CVAR_REDUCE_DEVICE_COLLECTIVE=0
#export MPIR_CVAR_ALLREDUCE_INTRA_ALGORITHM=recursive_doubling
#unset MPIR_CVAR_CH4_COLL_SELECTION_TUNING_JSON_FILE
#unset MPIR_CVAR_COLL_SELECTION_TUNING_JSON_FILE
#unset MPIR_CVAR_CH4_POSIX_COLL_SELECTION_TUNING_JSON_FILE
cd $PBS_O_WORKDIR
cp $PBS_NODEFILE nodefile
DIR=reproBigJob.$PBS_JOBID
mkdir -p $DIR
cd $DIR
cp $PBS_NODEFILE nodefile
BINARY=../Test_dwf_mixedcg_prec
echo > pingjob <<EOF
while read node ;
do
echo ssh $node killall -s USR1 -- ../Test_dwf_mixedcg_prec
done < nodefile
EOF
CMD="mpiexec -np 6144 -ppn 12 -envall --hostfile nodefile \
../gpu_tile_compact.sh \
$BINARY --mpi 8.8.8.12 --grid 128.128.128.288 \
--shm-mpi 0 --shm 4096 --device-mem 32000 --accelerator-threads 32 --seconds 18000 --debug-stdout --log Message --debug-signals --comms-overlap"
echo $CMD > command-line
env > environment
$CMD
grep Oops Grid.stderr.* > failures.$PBS_JOBID
rm core.*

View File

@ -1,38 +1,67 @@
#!/bin/bash
#PBS -q EarlyAppAccess
#PBS -q debug
#PBS -l select=1
#PBS -l walltime=00:20:00
#PBS -A LatticeQCD_aesp_CNDA
#export OMP_PROC_BIND=spread
#unset OMP_PLACES
cd $PBS_O_WORKDIR
source ../sourceme.sh
module load pti-gpu
cp $PBS_NODEFILE nodefile
#cat $PBS_NODEFILE
export OMP_NUM_THREADS=4
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE
unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE
unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE
#unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
#export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
export MPICH_OFI_NIC_POLICY=GPU
# 12 ppn, 2 nodes, 24 ranks
#
CMD="mpiexec -np 12 -ppn 12 -envall \
./Benchmark_dwf_fp32 --mpi 2.1.2.3 --grid 32.32.64.48 \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32 --debug-signals"
./gpu_tile_compact.sh \
./Benchmark_comms_host_device --mpi 2.2.1.3 --grid 24.32.32.24 \
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32"
#$CMD | tee 1node.comms
#for f in 1 2 3 4 5 6 7 8
for f in 1
do
echo $CMD
$CMD | tee 1node.32.32.64.48.dwf.hbm.$f
done
CMD="mpiexec -np 1 -ppn 1 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 1.1.1.1 --grid 16.32.32.32 \
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32 "
#$CMD | tee 1tile.dwf
CMD="mpiexec -np 12 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 2.2.1.3 --grid 32.32.32.48 \
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
$CMD | tee 1node.32.32.32.48.dwf
CMD="mpiexec -np 12 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 2.2.1.3 --grid 64.64.32.96 \
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
#$CMD | tee 1node.64.64.32.96.dwf
CMD="mpiexec -np 12 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 2.2.1.3 --grid 64.32.32.48 \
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
#$CMD | tee 1node.64.32.32.48.dwf

View File

@ -1,6 +1,6 @@
#!/bin/bash
#PBS -q EarlyAppAccess
#PBS -q workq
#PBS -l select=2
#PBS -l walltime=00:20:00
#PBS -A LatticeQCD_aesp_CNDA
@ -11,16 +11,17 @@
cd $PBS_O_WORKDIR
source ../sourceme.sh
#module load pti-gpu
module load pti-gpu
cp $PBS_NODEFILE nodefile
#cat $PBS_NODEFILE
export OMP_NUM_THREADS=4
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE
#unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
@ -33,26 +34,22 @@ export MPICH_OFI_NIC_POLICY=GPU
# 12 ppn, 2 nodes, 24 ranks
#
CMD="mpiexec -np 24 -ppn 12 -envall \
./gpu_tile.sh \
./gpu_tile_compact.sh \
./Benchmark_comms_host_device --mpi 2.2.2.3 --grid 24.32.32.24 \
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32"
#$CMD | tee 2node.comms.hbm
$CMD | tee 2node.comms
CMD="mpiexec -np 24 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 2.2.2.3 --grid 32.32.64.48 \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap --debug-signals"
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
$CMD | tee 2node.32.32.64.48.dwf
#for f in 1 2 3 4 5 6 7 8
for f in 1
do
echo $CMD
$CMD | tee 2node.32.32.64.48.dwf.hbm.$f
done
CMD="mpiexec -np 24 -ppn 12 -envall \
./gpu_tile.sh \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 2.2.2.3 --grid 64.64.64.96 \
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
#$CMD | tee 2node.64.64.64.96.dwf.hbm
$CMD | tee 2node.64.64.64.96.dwf

View File

@ -1,6 +1,6 @@
export LDFLAGS="-fiopenmp -fsycl -fsycl-device-code-split=per_kernel -fsycl-device-lib=all -lze_loader -L${MKLROOT}/lib -qmkl=parallel -fsycl -lsycl "
export CXXFLAGS="-O3 -fiopenmp -fsycl-unnamed-lambda -fsycl -I$INSTALL/include -Wno-tautological-compare -I$HOME/ -qmkl=parallel -fsycl -fno-exceptions "
export LDFLAGS="-fiopenmp -fsycl -fsycl-device-code-split=per_kernel -fsycl-targets=spir64_gen -Xs -device -Xs pvc -fsycl-device-lib=all -lze_loader -L${MKLROOT}/lib -qmkl=parallel -fsycl -lsycl "
export CXXFLAGS="-O3 -fiopenmp -fsycl-unnamed-lambda -fsycl -I$INSTALL/include -Wno-tautological-compare -I$HOME/ -qmkl=parallel -fsycl -fno-exceptions -fsycl-targets=spir64_gen -Xs -device -Xs pvc "
../../configure \
--enable-simd=GPU \
--enable-gen-simd-width=64 \

View File

@ -1,14 +1,40 @@
module load oneapi/release/2023.12.15.001
#module load mpich/icc-all-debug-pmix-gpu/52.2
#module load mpich-config/mode/deterministic
#module load intel_compute_runtime/release/821.35
source ~/spack/share/spack/setup-env.sh
spack load c-lime
spack load openssl
export CLIME=`spack find --paths c-lime | grep ^c-lime | awk '{print $2}' `
#spack load libefence
#export EFENCE=`spack find --paths libefence | grep ^libefence | awk '{print $2}' `
#export LD_LIBRARY_PATH=${EFENCE}/lib:$LD_LIBRARY_PATH
#spack load gperftools
export TCMALLOC=/home/paboyle/gperftools/install
export LD_LIBRARY_PATH=${TCMALLOC}/lib:$LD_LIBRARY_PATH
export INTELGT_AUTO_ATTACH_DISABLE=1
#export ONEAPI_DEVICE_SELECTOR=level_zero:0.0
#module load oneapi/release/2023.12.15.001
#module use /soft/modulefiles
#module load intel_compute_runtime/release/agama-devel-682.22
#export FI_CXI_DEFAULT_CQ_SIZE=131072
#export FI_CXI_CQ_FILL_PERCENT=20
#export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file"
#export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-intel-enable-auto-large-GRF-mode"
#
# -ftarget-register-alloc-mode=pvc:default
# -ftarget-register-alloc-mode=pvc:small
# -ftarget-register-alloc-mode=pvc:large
# -ftarget-register-alloc-mode=pvc:auto
#export MPIR_CVAR_CH4_OFI_ENABLE_HMEM=1
export HTTP_PROXY=http://proxy.alcf.anl.gov:3128
export HTTPS_PROXY=http://proxy.alcf.anl.gov:3128
export http_proxy=http://proxy.alcf.anl.gov:3128
export https_proxy=http://proxy.alcf.anl.gov:3128
git config --global http.proxy http://proxy.alcf.anl.gov:3128
#source ~/spack/share/spack/setup-env.sh
#spack load gperftools
#export TCMALLOC=`spack find --paths gperftools | grep ^gperftools | awk '{print $2}' `
#export LD_LIBRARY_PATH=${TCMALLOC}/lib:$LD_LIBRARY_PATH
export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file"

View File

@ -2,8 +2,7 @@
## qsub -q EarlyAppAccess -A Aurora_Deployment -I -l select=1 -l walltime=60:00
#PBS -l select=16
#PBS -q EarlyAppAccess
#PBS -l select=16:system=sunspot,place=scatter
#PBS -A LatticeQCD_aesp_CNDA
#PBS -l walltime=01:00:00
#PBS -N dwf
@ -14,14 +13,19 @@
cd $PBS_O_WORKDIR
source ../sourceme.sh
#source ../sourceme.sh
cat $PBS_NODEFILE
#export MPICH_COLL_SYNC=1
#export MPICH_ENV_DISPLAY=1
export MPICH_
export OMP_NUM_THREADS=3
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
module load oneapi/eng-compiler/2023.05.15.003
module load mpich/51.2/icc-all-deterministic-pmix-gpu
#export LD_LIBRARY_PATH=/soft/restricted/CNDA/updates/2023.05.15.001/oneapi/compiler/eng-20230512/compiler/linux/lib/:$LD_LIBRARY_PATH
#module load mpich/51.2/icc-all-deterministic-pmix-gpu
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE
#unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST

View File

@ -1,7 +1,6 @@
#!/bin/bash
#PBS -l select=16
#PBS -q EarlyAppAccess
#PBS -l select=16:system=sunspot,place=scatter
#PBS -A LatticeQCD_aesp_CNDA
#PBS -l walltime=02:00:00
#PBS -N repro1gpu
@ -10,9 +9,8 @@
#export OMP_PROC_BIND=spread
#unset OMP_PLACES
#module load oneapi/eng-compiler/2023.05.15.003
#module load mpich/51.2/icc-all-deterministic-pmix-gpu
module load oneapi/eng-compiler/2023.05.15.003
module load mpich/51.2/icc-all-deterministic-pmix-gpu
# 56 cores / 6 threads ~9
export OMP_NUM_THREADS=6
@ -36,8 +34,6 @@ export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file"
cd $PBS_O_WORKDIR
source ../sourceme.sh
NN=`cat $PBS_NODEFILE | wc -l`
echo $PBS_NODEFILE
cat $PBS_NODEFILE

Some files were not shown because too many files have changed in this diff Show More