1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-18 07:47:06 +01:00

Compare commits

..

3 Commits

113 changed files with 1833 additions and 3544 deletions

View File

@ -12,13 +12,15 @@
#include <iostream> #include <iostream>
#include <sys/time.h> #include <sys/time.h>
#define GRID_SYCL
#undef GRID_HIP
#undef GRID_CUDA
#ifdef GRID_HIP #ifdef GRID_HIP
#include <hipblas/hipblas.h> #include <hipblas/hipblas.h>
#endif #endif
#ifdef GRID_CUDA #ifdef GRID_CUDA
#include <cublas_v2.h> #include <cublas_v2.h>
#endif #endif
#ifdef GRID_SYCL #ifdef GRID_SYCL
#include <oneapi/mkl.hpp> #include <oneapi/mkl.hpp>
@ -43,90 +45,6 @@ inline void acceleratorFreeDevice(void *ptr,size_t bytes){free(ptr,*theAccelerat
inline void acceleratorMemSet(void *base,int value,size_t bytes) { theAccelerator->memset(base,value,bytes); theAccelerator->wait();} inline void acceleratorMemSet(void *base,int value,size_t bytes) { theAccelerator->memset(base,value,bytes); theAccelerator->wait();}
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { theAccelerator->memcpy(to,from,bytes); theAccelerator->wait();} inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { theAccelerator->memcpy(to,from,bytes); theAccelerator->wait();}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ theAccelerator->memcpy(to,from,bytes); theAccelerator->wait();} inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ theAccelerator->memcpy(to,from,bytes); theAccelerator->wait();}
#define accelerator_barrier(dummy) { theAccelerator->wait(); }
#endif
#ifdef GRID_HIP
hipStream_t copyStream;
hipStream_t computeStream;
void acceleratorInit(void)
{
int device = 0;
auto discard = hipSetDevice(device);
discard = hipStreamCreate(&copyStream);
discard = hipStreamCreate(&computeStream);
printf("AcceleratorHIPInit\n");
}
inline void *acceleratorAllocDevice(size_t bytes)
{
void *ptr=NULL;
auto err = hipMalloc((void **)&ptr,bytes);
if( err != hipSuccess ) {
ptr = (void *) NULL;
fprintf(stderr," hipMalloc failed for %ld %s \n",bytes,hipGetErrorString(err)); fflush(stderr);
}
return ptr;
};
inline void acceleratorFreeDevice(void *ptr,size_t bytes){ auto discard=hipFree(ptr);};
inline void acceleratorFreeDevice(void *ptr){ auto discard=hipFree(ptr);};
inline void acceleratorMemSet(void *base,int value,size_t bytes) { auto discard=hipMemset(base,value,bytes);}
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { auto discard=hipMemcpy(to,from,bytes, hipMemcpyHostToDevice);}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ auto discard=hipMemcpy(to,from,bytes, hipMemcpyDeviceToHost);}
#define accelerator_barrier(dummy) \
{ \
auto tmp=hipStreamSynchronize(computeStream); \
auto err = hipGetLastError(); \
if ( err != hipSuccess ) { \
printf("After hipDeviceSynchronize() : HIP error %s \n", hipGetErrorString( err )); \
puts(__FILE__); \
printf("Line %d\n",__LINE__); \
exit(0); \
} \
}
#endif
#ifdef GRID_CUDA
cudaStream_t copyStream;
cudaStream_t computeStream;
void acceleratorInit(void)
{
int device = 0;
cudaSetDevice(device);
cudaStreamCreate(&copyStream);
cudaStreamCreate(&computeStream);
}
inline void *acceleratorAllocDevice(size_t bytes)
{
void *ptr=NULL;
auto err = cudaMalloc((void **)&ptr,bytes);
if( err != cudaSuccess ) {
ptr = (void *) NULL;
printf(" cudaMalloc failed for %d %s \n",bytes,cudaGetErrorString(err));
}
return ptr;
};
inline void acceleratorFreeShared(void *ptr){ cudaFree(ptr);};
inline void acceleratorFreeDevice(void *ptr){ cudaFree(ptr);};
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { cudaMemcpy(to,from,bytes, cudaMemcpyHostToDevice);}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ cudaMemcpy(to,from,bytes, cudaMemcpyDeviceToHost);}
inline void acceleratorMemSet(void *base,int value,size_t bytes) { cudaMemset(base,value,bytes);}
#define accelerator_barrier(dummy) \
{ \
cudaStreamSynchronize(computeStream); \
cudaError err = cudaGetLastError(); \
if ( cudaSuccess != err ) { \
printf("accelerator_barrier(): Cuda error %s \n", \
cudaGetErrorString( err )); \
printf("File %s Line %d\n",__FILE__,__LINE__); \
fflush(stdout); \
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess); \
} \
}
#endif
template<class T> void acceleratorPut(T& dev,T&host) template<class T> void acceleratorPut(T& dev,T&host)
{ {
acceleratorCopyToDevice(&host,&dev,sizeof(T)); acceleratorCopyToDevice(&host,&dev,sizeof(T));
@ -137,6 +55,9 @@ template<class T> T acceleratorGet(T& dev)
acceleratorCopyFromDevice(&dev,&host,sizeof(T)); acceleratorCopyFromDevice(&dev,&host,sizeof(T));
return host; return host;
} }
#define accelerator_barrier(dummy) { theAccelerator->wait(); }
#endif
/************************************************************** /**************************************************************
* Allocator * Allocator
@ -290,269 +211,6 @@ public:
#endif #endif
} }
/////////////////////////////////////////////////////////////
// Single matrix GEMM -- fp64 and fp32
/////////////////////////////////////////////////////////////
void gemm(GridBLASOperation_t OpA,
GridBLASOperation_t OpB,
int m,int n, int k,
ComplexD alpha,
ComplexD* Amk, // Device pointer
ComplexD* Bkn,
ComplexD beta,
ComplexD* Cmn)
{
RealD t2=usecond();
assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
assert(OpB!=GridBLAS_OP_T);
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
if(OpA!=GridBLAS_OP_N)
lda = k;
if(OpB!=GridBLAS_OP_N)
ldb = n;
static deviceVector<ComplexD> alpha_p(1);
static deviceVector<ComplexD> beta_p(1);
// can prestore the 1 and the zero on device
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
RealD t0=usecond();
#ifdef GRID_HIP
hipblasOperation_t hOpA;
hipblasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
auto err = hipblasZgemm(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(hipblasDoubleComplex *) &alpha_p[0],
(hipblasDoubleComplex *) Amk, lda,
(hipblasDoubleComplex *) Bkn, ldb,
(hipblasDoubleComplex *) &beta_p[0],
(hipblasDoubleComplex *) Cmn, ldc);
assert(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasOperation_t hOpA;
cublasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
auto err = cublasZgemm(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(cuDoubleComplex *) &alpha_p[0],
(cuDoubleComplex *) Amk, lda,
(cuDoubleComplex *) Bkn, ldb,
(cuDoubleComplex *) &beta_p[0],
(cuDoubleComplex *) Cmn, ldc);
assert(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
int64_t m64=m;
int64_t n64=n;
int64_t k64=k;
int64_t lda64=lda;
int64_t ldb64=ldb;
int64_t ldc64=ldc;
oneapi::mkl::transpose iOpA;
oneapi::mkl::transpose iOpB;
if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
oneapi::mkl::blas::column_major::gemm(*gridblasHandle,
iOpA,
iOpB,
m64,n64,k64,
(ComplexD *) &alpha_p[0],
(const ComplexD *)Amk, (int64_t )lda64,
(const ComplexD *)Bkn, (int64_t )ldb64,
(ComplexD *) &beta_p[0],
(ComplexD *)Cmn, (int64_t)ldc64);
synchronise();
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
// Need a default/reference implementation; use Eigen
if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk,m,k);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn,k,n);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn,m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk,k,m);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn,k,n);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn,m,n);
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk,m,k);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn,n,k);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn,m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) {
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk,k,m);
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn,n,k);
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn,m,n);
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
} else {
assert(0);
}
#endif
RealD t1=usecond();
RealD flops = 8.0*m*n*k;
RealD bytes = 1.0*sizeof(ComplexD)*(m*k+k*n+m*n);
}
void gemm(GridBLASOperation_t OpA,
GridBLASOperation_t OpB,
int m,int n, int k,
ComplexF alpha,
ComplexF* Amk, // Device pointer
ComplexF* Bkn,
ComplexF beta,
ComplexF* Cmn)
{
RealD t2=usecond();
assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
assert(OpB!=GridBLAS_OP_T);
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
if(OpA!=GridBLAS_OP_N)
lda = k;
if(OpB!=GridBLAS_OP_N)
ldb = n;
static deviceVector<ComplexF> alpha_p(1);
static deviceVector<ComplexF> beta_p(1);
// can prestore the 1 and the zero on device
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexF));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexF));
RealD t0=usecond();
#ifdef GRID_HIP
hipblasOperation_t hOpA;
hipblasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
auto err = hipblasCgemm(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(hipblasComplex *) &alpha_p[0],
(hipblasComplex *) Amk, lda,
(hipblasComplex *) Bkn, ldb,
(hipblasComplex *) &beta_p[0],
(hipblasComplex *) Cmn, ldc);
assert(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasOperation_t hOpA;
cublasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
auto err = cublasCgemm(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(cuComplex *) &alpha_p[0],
(cuComplex *) Amk, lda,
(cuComplex *) Bkn, ldb,
(cuComplex *) &beta_p[0],
(cuComplex *) Cmn, ldc);
assert(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
int64_t m64=m;
int64_t n64=n;
int64_t k64=k;
int64_t lda64=lda;
int64_t ldb64=ldb;
int64_t ldc64=ldc;
oneapi::mkl::transpose iOpA;
oneapi::mkl::transpose iOpB;
if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
oneapi::mkl::blas::column_major::gemm(*gridblasHandle,
iOpA,
iOpB,
m64,n64,k64,
(ComplexF *) &alpha_p[0],
(const ComplexF *)Amk, (int64_t )lda64,
(const ComplexF *)Bkn, (int64_t )ldb64,
(ComplexF *) &beta_p[0],
(ComplexF *)Cmn, (int64_t )ldc64);
synchronise();
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
// Need a default/reference implementation; use Eigen
if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk,m,k);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn,k,n);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn,m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk,k,m);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn,k,n);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn,m,n);
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk,m,k);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn,n,k);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn,m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) {
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk,k,m);
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn,n,k);
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn,m,n);
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
} else {
assert(0);
}
#endif
RealD t1=usecond();
RealD flops = 8.0*m*n*k;
RealD bytes = 1.0*sizeof(ComplexF)*(m*k+k*n+m*n);
}
/////////////////////////////////////////////////////////////
void gemmBatched(int m,int n, int k, void gemmBatched(int m,int n, int k,
ComplexD alpha, ComplexD alpha,
deviceVector<ComplexD*> &Amk, // pointer list to matrices deviceVector<ComplexD*> &Amk, // pointer list to matrices
@ -583,6 +241,36 @@ public:
beta, beta,
Cmn); Cmn);
} }
void gemmBatched(int m,int n, int k,
RealD alpha,
deviceVector<RealD*> &Amk, // pointer list to matrices
deviceVector<RealD*> &Bkn,
RealD beta,
deviceVector<RealD*> &Cmn)
{
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
m,n,k,
alpha,
Amk,
Bkn,
beta,
Cmn);
}
void gemmBatched(int m,int n, int k,
RealF alpha,
deviceVector<RealF*> &Amk, // pointer list to matrices
deviceVector<RealF*> &Bkn,
RealF beta,
deviceVector<RealF*> &Cmn)
{
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
m,n,k,
alpha,
Amk,
Bkn,
beta,
Cmn);
}
void gemmBatched(GridBLASOperation_t OpA, void gemmBatched(GridBLASOperation_t OpA,
GridBLASOperation_t OpB, GridBLASOperation_t OpB,
@ -936,6 +624,301 @@ public:
RealD bytes = 1.0*sizeof(ComplexF)*(m*k+k*n+m*n)*batchCount; RealD bytes = 1.0*sizeof(ComplexF)*(m*k+k*n+m*n)*batchCount;
} }
///////////////////////////////////////////////////////////////////////////
// Single precision real GEMM
///////////////////////////////////////////////////////////////////////////
void gemmBatched(GridBLASOperation_t OpA,
GridBLASOperation_t OpB,
int m,int n, int k,
RealF alpha,
deviceVector<RealF*> &Amk, // pointer list to matrices
deviceVector<RealF*> &Bkn,
RealF beta,
deviceVector<RealF*> &Cmn)
{
RealD t2=usecond();
int32_t batchCount = Amk.size();
assert(OpA!=GridBLAS_OP_C); // Real case no conjugate
assert(OpB!=GridBLAS_OP_C);
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
if(OpA!=GridBLAS_OP_N)
lda = k;
if(OpB!=GridBLAS_OP_N)
ldb = n;
static deviceVector<RealF> alpha_p(1);
static deviceVector<RealF> beta_p(1);
// can prestore the 1 and the zero on device
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealF));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealF));
RealD t0=usecond();
assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount);
#ifdef GRID_HIP
hipblasOperation_t hOpA;
hipblasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
auto err = hipblasSgemmBatched(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(float *) &alpha_p[0],
(float **)&Amk[0], lda,
(float **)&Bkn[0], ldb,
(float *) &beta_p[0],
(float **)&Cmn[0], ldc,
batchCount);
assert(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasOperation_t hOpA;
cublasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
auto err = cublasSgemmBatched(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(float *) &alpha_p[0],
(float **)&Amk[0], lda,
(float **)&Bkn[0], ldb,
(float *) &beta_p[0],
(float **)&Cmn[0], ldc,
batchCount);
assert(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
int64_t m64=m;
int64_t n64=n;
int64_t k64=k;
int64_t lda64=lda;
int64_t ldb64=ldb;
int64_t ldc64=ldc;
int64_t batchCount64=batchCount;
oneapi::mkl::transpose iOpA;
oneapi::mkl::transpose iOpB;
if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
&iOpA,
&iOpB,
&m64,&n64,&k64,
(float *) &alpha_p[0],
(const float **)&Amk[0], (const int64_t *)&lda64,
(const float **)&Bkn[0], (const int64_t *)&ldb64,
(float *) &beta_p[0],
(float **)&Cmn[0], (const int64_t *)&ldc64,
(int64_t)1,&batchCount64,std::vector<sycl::event>());
synchronise();
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
// Need a default/reference implementation; use Eigen
if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
} );
} else {
assert(0);
}
#endif
RealD t1=usecond();
RealD flops = 2.0*m*n*k*batchCount;
RealD bytes = 1.0*sizeof(RealF)*(m*k+k*n+m*n)*batchCount;
}
///////////////////////////////////////////////////////////////////////////
// Double precision real GEMM
///////////////////////////////////////////////////////////////////////////
void gemmBatched(GridBLASOperation_t OpA,
GridBLASOperation_t OpB,
int m,int n, int k,
RealD alpha,
deviceVector<RealD*> &Amk, // pointer list to matrices
deviceVector<RealD*> &Bkn,
RealD beta,
deviceVector<RealD*> &Cmn)
{
RealD t2=usecond();
int32_t batchCount = Amk.size();
assert(OpA!=GridBLAS_OP_C); // Real case no conjugate
assert(OpB!=GridBLAS_OP_C);
int lda = m; // m x k column major
int ldb = k; // k x n column major
int ldc = m; // m x b column major
if(OpA!=GridBLAS_OP_N)
lda = k;
if(OpB!=GridBLAS_OP_N)
ldb = n;
static deviceVector<RealD> alpha_p(1);
static deviceVector<RealD> beta_p(1);
// can prestore the 1 and the zero on device
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealD));
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealD));
RealD t0=usecond();
assert(Bkn.size()==batchCount);
assert(Cmn.size()==batchCount);
#ifdef GRID_HIP
hipblasOperation_t hOpA;
hipblasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
auto err = hipblasDgemmBatched(gridblasHandle,
HIPBLAS_OP_N,
HIPBLAS_OP_N,
m,n,k,
(double *) &alpha_p[0],
(double **)&Amk[0], lda,
(double **)&Bkn[0], ldb,
(double *) &beta_p[0],
(double **)&Cmn[0], ldc,
batchCount);
assert(err==HIPBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_CUDA
cublasOperation_t hOpA;
cublasOperation_t hOpB;
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
auto err = cublasDgemmBatched(gridblasHandle,
hOpA,
hOpB,
m,n,k,
(double *) &alpha_p[0],
(double **)&Amk[0], lda,
(double **)&Bkn[0], ldb,
(double *) &beta_p[0],
(double **)&Cmn[0], ldc,
batchCount);
assert(err==CUBLAS_STATUS_SUCCESS);
#endif
#ifdef GRID_SYCL
int64_t m64=m;
int64_t n64=n;
int64_t k64=k;
int64_t lda64=lda;
int64_t ldb64=ldb;
int64_t ldc64=ldc;
int64_t batchCount64=batchCount;
oneapi::mkl::transpose iOpA;
oneapi::mkl::transpose iOpB;
if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
&iOpA,
&iOpB,
&m64,&n64,&k64,
(double *) &alpha_p[0],
(const double **)&Amk[0], (const int64_t *)&lda64,
(const double **)&Bkn[0], (const int64_t *)&ldb64,
(double *) &beta_p[0],
(double **)&Cmn[0], (const int64_t *)&ldc64,
(int64_t)1,&batchCount64,std::vector<sycl::event>());
synchronise();
#endif
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
// Need a default/reference implementation; use Eigen
if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n);
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
});
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k);
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
});
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
thread_for (p, batchCount, {
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m);
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k);
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
});
} else {
assert(0);
}
#endif
RealD t1=usecond();
RealD flops = 2.0*m*n*k*batchCount;
RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount;
}
template<class CComplex> template<class CComplex>
double benchmark(int M, int N, int K, int BATCH) double benchmark(int M, int N, int K, int BATCH)
{ {
@ -984,47 +967,6 @@ public:
return flops; // Returns gigaflops return flops; // Returns gigaflops
} }
template<class CComplex>
double benchmark(int M, int N, int K)
{
int32_t N_A = M*K;
int32_t N_B = K*N;
int32_t N_C = M*N;
deviceVector<CComplex> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(CComplex));
deviceVector<CComplex> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(CComplex));
deviceVector<CComplex> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(CComplex));
CComplex alpha(1.0);
CComplex beta (1.0);
RealD flops = 8.0*M*N*K;
int ncall=10;
gemm(GridBLAS_OP_C,GridBLAS_OP_N,
M,N,K,
alpha,
&A[0], // m x k
&B[0], // k x n
beta,
&C[0]);
synchronise();
RealD t0 = usecond();
for(int i=0;i<ncall;i++){
gemm(GridBLAS_OP_N,GridBLAS_OP_N,
M,N,K,
alpha,
&A[0], // m x k
&B[0], // k x n
beta,
&C[0]);
synchronise();
}
RealD t1 = usecond();
RealD bytes = 1.0*sizeof(CComplex)*(M*N*2+N*K+M*K);
flops = 8.0*M*N*K*ncall;
flops = flops/(t1-t0)/1.e3;
return flops; // Returns gigaflops
}
}; };
@ -1093,21 +1035,6 @@ static void BLAS(void)
std::cout<< M<<"\t\t"<<N<<"\t\t"<<K<<"\t\t"<<BATCH<<"\t\t"<<p<<std::endl; std::cout<< M<<"\t\t"<<N<<"\t\t"<<K<<"\t\t"<<BATCH<<"\t\t"<<p<<std::endl;
}} }}
fprintf(FP,"\n\n\n"); fprintf(FP,"\n\n\n");
std::cout << "----------------------------------------------------------"<<std::endl;
std::cout << " M "<<"\t\t"<<"N"<<"\t\t\t"<<"K"<<"\t\t"<<"Gflop/s / rank (inner product matrix)"<<std::endl;
std::cout << "----------------------------------------------------------"<<std::endl;
{
int M=12;
int N=12;
std::vector<int> ks({4*1024*1024, 2*1024*1024, 1024*1024, 256*1024, 1024 });
for( int kk=0;kk<ks.size();kk++ ) {
int K = ks[kk];
double p=blas.benchmark<CComplex>(M,N,K);
fprintf(FP,"%d, %d, %d, %d, %f\n", M, N, K, 1, p);
std::cout<< M<<"\t\t"<<N<<"\t\t"<<K<<"\t\t"<<1<<"\t\t"<<p<<std::endl;
}
}
std::cout << "=================================================================================="<<std::endl; std::cout << "=================================================================================="<<std::endl;
}; };

View File

@ -1,2 +1,2 @@
mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench -DGRID_SYCL mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench

View File

@ -1,5 +0,0 @@
CXX=hipcc
MPICXX=mpicxx
CXXFLAGS="-fPIC -I{$ROCM_PATH}/include/ -I${MPICH_DIR}/include -L/lib64 -I/opt/cray/pe/mpich/8.1.28/ofi/gnu/12.3/include -DGRID_HIP"
LDFLAGS="-L/lib64 -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa -lamdhip64 -lhipblas -lrocblas -lmpi_gnu_123"
hipcc $CXXFLAGS $LDFLAGS BatchBlasBench.cc -o BatchBlasBench

View File

@ -1,2 +0,0 @@
mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench -DGRID_SYCL

View File

@ -50,7 +50,6 @@ NAMESPACE_CHECK(approx);
#include <Grid/algorithms/deflation/Deflation.h> #include <Grid/algorithms/deflation/Deflation.h>
#include <Grid/algorithms/deflation/MultiRHSBlockProject.h> #include <Grid/algorithms/deflation/MultiRHSBlockProject.h>
#include <Grid/algorithms/deflation/MultiRHSDeflation.h> #include <Grid/algorithms/deflation/MultiRHSDeflation.h>
#include <Grid/algorithms/deflation/MultiRHSBlockCGLinalg.h>
NAMESPACE_CHECK(deflation); NAMESPACE_CHECK(deflation);
#include <Grid/algorithms/iterative/ConjugateGradient.h> #include <Grid/algorithms/iterative/ConjugateGradient.h>
NAMESPACE_CHECK(ConjGrad); NAMESPACE_CHECK(ConjGrad);

View File

@ -168,7 +168,6 @@ public:
template<class vobj> template<class vobj>
void FFT_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int dim, int sign){ void FFT_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int dim, int sign){
#ifndef HAVE_FFTW #ifndef HAVE_FFTW
std::cerr << "FFTW is not compiled but is called"<<std::endl;
assert(0); assert(0);
#else #else
conformable(result.Grid(),vgrid); conformable(result.Grid(),vgrid);
@ -191,7 +190,6 @@ public:
Lattice<sobj> pgbuf(&pencil_g); Lattice<sobj> pgbuf(&pencil_g);
autoView(pgbuf_v , pgbuf, CpuWrite); autoView(pgbuf_v , pgbuf, CpuWrite);
std::cout << "CPU view" << std::endl;
typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar; typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
typedef typename FFTW<scalar>::FFTW_plan FFTW_plan; typedef typename FFTW<scalar>::FFTW_plan FFTW_plan;
@ -215,7 +213,6 @@ public:
else if ( sign == forward ) div = 1.0; else if ( sign == forward ) div = 1.0;
else assert(0); else assert(0);
std::cout << "Making FFTW plan" << std::endl;
FFTW_plan p; FFTW_plan p;
{ {
FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0]; FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0];
@ -229,7 +226,6 @@ public:
} }
// Barrel shift and collect global pencil // Barrel shift and collect global pencil
std::cout << "Making pencil" << std::endl;
Coordinate lcoor(Nd), gcoor(Nd); Coordinate lcoor(Nd), gcoor(Nd);
result = source; result = source;
int pc = processor_coor[dim]; int pc = processor_coor[dim];
@ -251,7 +247,6 @@ public:
} }
} }
std::cout << "Looping orthog" << std::endl;
// Loop over orthog coords // Loop over orthog coords
int NN=pencil_g.lSites(); int NN=pencil_g.lSites();
GridStopWatch timer; GridStopWatch timer;
@ -274,7 +269,6 @@ public:
usec += timer.useconds(); usec += timer.useconds();
flops+= flops_call*NN; flops+= flops_call*NN;
std::cout << "Writing back results " << std::endl;
// writing out result // writing out result
{ {
autoView(pgbuf_v,pgbuf,CpuRead); autoView(pgbuf_v,pgbuf,CpuRead);
@ -291,7 +285,6 @@ public:
} }
result = result*div; result = result*div;
std::cout << "Destroying plan " << std::endl;
// destroying plan // destroying plan
FFTW<scalar>::fftw_destroy_plan(p); FFTW<scalar>::fftw_destroy_plan(p);
#endif #endif

View File

@ -103,38 +103,6 @@ public:
_Mat.MdagM(in,out); _Mat.MdagM(in,out);
} }
}; };
template<class Matrix,class Field>
class MMdagLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
public:
MMdagLinearOperator(Matrix &Mat): _Mat(Mat){};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
_Mat.Mdiag(in,out);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
_Mat.Mdir(in,out,dir,disp);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
_Mat.MdirAll(in,out);
};
void Op (const Field &in, Field &out){
_Mat.M(in,out);
}
void AdjOp (const Field &in, Field &out){
_Mat.Mdag(in,out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
_Mat.MMdag(in,out);
ComplexD dot = innerProduct(in,out);
n1=real(dot);
n2=norm2(out);
}
void HermOp(const Field &in, Field &out){
_Mat.MMdag(in,out);
}
};
//////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////
// Construct herm op and shift it for mgrid smoother // Construct herm op and shift it for mgrid smoother

View File

@ -45,11 +45,6 @@ public:
M(in,tmp); M(in,tmp);
Mdag(tmp,out); Mdag(tmp,out);
} }
virtual void MMdag(const Field &in, Field &out) {
Field tmp (in.Grid());
Mdag(in,tmp);
M(tmp,out);
}
virtual void Mdiag (const Field &in, Field &out)=0; virtual void Mdiag (const Field &in, Field &out)=0;
virtual void Mdir (const Field &in, Field &out,int dir, int disp)=0; virtual void Mdir (const Field &in, Field &out,int dir, int disp)=0;
virtual void MdirAll (const Field &in, std::vector<Field> &out)=0; virtual void MdirAll (const Field &in, std::vector<Field> &out)=0;

View File

@ -59,7 +59,7 @@ public:
RealD diff = hi-lo; RealD diff = hi-lo;
RealD delta = diff*1.0e-9; RealD delta = diff*1.0e-9;
for (RealD x=lo; x<hi; x+=delta) { for (RealD x=lo; x<hi; x+=delta) {
delta*=1.02; delta*=1.1;
RealD f = approx(x); RealD f = approx(x);
out<< x<<" "<<f<<std::endl; out<< x<<" "<<f<<std::endl;
} }
@ -131,26 +131,6 @@ public:
Coeffs[j] = s * 2.0/order; Coeffs[j] = s * 2.0/order;
} }
}; };
template<class functor>
void Init(RealD _lo,RealD _hi,int _order, functor & func)
{
lo=_lo;
hi=_hi;
order=_order;
if(order < 2) exit(-1);
Coeffs.resize(order);
for(int j=0;j<order;j++){
RealD s=0;
for(int k=0;k<order;k++){
RealD y=std::cos(M_PI*(k+0.5)/order);
RealD x=0.5*(y*(hi-lo)+(hi+lo));
RealD f=func(x);
s=s+f*std::cos( j*M_PI*(k+0.5)/order );
}
Coeffs[j] = s * 2.0/order;
}
};
void JacksonSmooth(void){ void JacksonSmooth(void){

View File

@ -1,376 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: MultiRHSBlockCGLinalg.h
Copyright (C) 2024
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
/* Need helper object for BLAS accelerated mrhs blockCG */
template<class Field>
class MultiRHSBlockCGLinalg
{
public:
typedef typename Field::scalar_type scalar;
typedef typename Field::scalar_object scalar_object;
typedef typename Field::vector_object vector_object;
deviceVector<scalar> BLAS_X; // nrhs x vol -- the sources
deviceVector<scalar> BLAS_Y; // nrhs x vol -- the result
deviceVector<scalar> BLAS_C; // nrhs x nrhs -- the coefficients
deviceVector<scalar> BLAS_Cred; // nrhs x nrhs x oSites -- reduction buffer
deviceVector<scalar *> Xdip;
deviceVector<scalar *> Ydip;
deviceVector<scalar *> Cdip;
MultiRHSBlockCGLinalg() {};
~MultiRHSBlockCGLinalg(){ Deallocate(); };
void Deallocate(void)
{
Xdip.resize(0);
Ydip.resize(0);
Cdip.resize(0);
BLAS_Cred.resize(0);
BLAS_C.resize(0);
BLAS_X.resize(0);
BLAS_Y.resize(0);
}
void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0)
{
std::vector<Field> Y_copy(AP.size(),AP[0].Grid());
for(int r=0;r<AP.size();r++){
Y_copy[r] = Y[r];
}
MulMatrix(AP,m,X);
for(int r=0;r<AP.size();r++){
AP[r] = scale*AP[r]+Y_copy[r];
}
}
void MulMatrix(std::vector<Field> &Y, Eigen::MatrixXcd &m , const std::vector<Field> &X)
{
typedef typename Field::scalar_type scomplex;
GridBase *grid;
uint64_t vol;
uint64_t words;
int nrhs = Y.size();
grid = X[0].Grid();
vol = grid->lSites();
words = sizeof(scalar_object)/sizeof(scalar);
int64_t vw = vol * words;
RealD t0 = usecond();
BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
BLAS_C.resize(nrhs * nrhs);// cost free if size doesn't change
RealD t1 = usecond();
/////////////////////////////////////////////
// Copy in the multi-rhs sources
/////////////////////////////////////////////
for(int r=0;r<nrhs;r++){
int64_t offset = r*vw;
autoView(x_v,X[r],AcceleratorRead);
acceleratorCopyDeviceToDevice(&x_v[0],&BLAS_X[offset],sizeof(scalar_object)*vol);
}
// Assumes Eigen storage contiguous
acceleratorCopyToDevice(&m(0,0),&BLAS_C[0],BLAS_C.size()*sizeof(scalar));
/*
* in Fortran column major notation (cuBlas order)
*
* Xxr = [X1(x)][..][Xn(x)]
* Yxr = [Y1(x)][..][Ym(x)]
* Y = X . C
*/
deviceVector<scalar *> Xd(1);
deviceVector<scalar *> Yd(1);
deviceVector<scalar *> Cd(1);
scalar * Xh = & BLAS_X[0];
scalar * Yh = & BLAS_Y[0];
scalar * Ch = & BLAS_C[0];
acceleratorPut(Xd[0],Xh);
acceleratorPut(Yd[0],Yh);
acceleratorPut(Cd[0],Ch);
RealD t2 = usecond();
GridBLAS BLAS;
/////////////////////////////////////////
// Y = X*C (transpose?)
/////////////////////////////////////////
BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
vw,nrhs,nrhs,
scalar(1.0),
Xd,
Cd,
scalar(0.0), // wipe out Y
Yd);
BLAS.synchronise();
RealD t3 = usecond();
// Copy back Y = m X
for(int r=0;r<nrhs;r++){
int64_t offset = r*vw;
autoView(y_v,Y[r],AcceleratorWrite);
acceleratorCopyDeviceToDevice(&BLAS_Y[offset],&y_v[0],sizeof(scalar_object)*vol);
}
RealD t4 = usecond();
std::cout << "MulMatrix alloc took "<< t1-t0<<" us"<<std::endl;
std::cout << "MulMatrix preamble took "<< t2-t1<<" us"<<std::endl;
std::cout << "MulMatrix blas took "<< t3-t2<<" us"<<std::endl;
std::cout << "MulMatrix copy took "<< t4-t3<<" us"<<std::endl;
std::cout << "MulMatrix total "<< t4-t0<<" us"<<std::endl;
}
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y)
{
#if 0
int nrhs;
GridBase *grid;
uint64_t vol;
uint64_t words;
nrhs = X.size();
assert(X.size()==Y.size());
conformable(X[0],Y[0]);
grid = X[0].Grid();
vol = grid->lSites();
words = sizeof(scalar_object)/sizeof(scalar);
int64_t vw = vol * words;
RealD t0 = usecond();
BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
BLAS_C.resize(nrhs * nrhs);// cost free if size doesn't change
RealD t1 = usecond();
/////////////////////////////////////////////
// Copy in the multi-rhs sources
/////////////////////////////////////////////
for(int r=0;r<nrhs;r++){
int64_t offset = r*vw;
autoView(x_v,X[r],AcceleratorRead);
acceleratorCopyDeviceToDevice(&x_v[0],&BLAS_X[offset],sizeof(scalar_object)*vol);
autoView(y_v,Y[r],AcceleratorRead);
acceleratorCopyDeviceToDevice(&y_v[0],&BLAS_Y[offset],sizeof(scalar_object)*vol);
}
RealD t2 = usecond();
/*
* in Fortran column major notation (cuBlas order)
*
* Xxr = [X1(x)][..][Xn(x)]
*
* Yxr = [Y1(x)][..][Ym(x)]
*
* C_rs = X^dag Y
*/
deviceVector<scalar *> Xd(1);
deviceVector<scalar *> Yd(1);
deviceVector<scalar *> Cd(1);
scalar * Xh = & BLAS_X[0];
scalar * Yh = & BLAS_Y[0];
scalar * Ch = & BLAS_C[0];
acceleratorPut(Xd[0],Xh);
acceleratorPut(Yd[0],Yh);
acceleratorPut(Cd[0],Ch);
GridBLAS BLAS;
RealD t3 = usecond();
/////////////////////////////////////////
// C_rs = X^dag Y
/////////////////////////////////////////
BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,
nrhs,nrhs,vw,
ComplexD(1.0),
Xd,
Yd,
ComplexD(0.0), // wipe out C
Cd);
BLAS.synchronise();
RealD t4 = usecond();
std::vector<scalar> HOST_C(BLAS_C.size()); // nrhs . nrhs -- the coefficients
acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar));
grid->GlobalSumVector(&HOST_C[0],nrhs*nrhs);
RealD t5 = usecond();
for(int rr=0;rr<nrhs;rr++){
for(int r=0;r<nrhs;r++){
int off = r+nrhs*rr;
m(r,rr)=HOST_C[off];
}
}
RealD t6 = usecond();
uint64_t M=nrhs;
uint64_t N=nrhs;
uint64_t K=vw;
RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K);
RealD flops = 8.0*M*N*K;
flops = flops/(t4-t3)/1.e3;
bytes = bytes/(t4-t3)/1.e3;
std::cout << "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
std::cout << "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
std::cout << "InnerProductMatrix cp t2 "<< t2-t1<<" us"<<std::endl;
std::cout << "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
std::cout << "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
std::cout << "InnerProductMatrix blas "<< flops<<" GF/s"<<std::endl;
std::cout << "InnerProductMatrix blas "<< bytes<<" GB/s"<<std::endl;
std::cout << "InnerProductMatrix gsum t5 "<< t5-t4<<" us"<<std::endl;
std::cout << "InnerProductMatrix cp t6 "<< t6-t5<<" us"<<std::endl;
std::cout << "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
#else
int nrhs;
GridBase *grid;
uint64_t vol;
uint64_t words;
nrhs = X.size();
assert(X.size()==Y.size());
conformable(X[0],Y[0]);
grid = X[0].Grid();
int rd0 = grid->_rdimensions[0] * grid->_rdimensions[1];
vol = grid->oSites()/rd0;
words = rd0*sizeof(vector_object)/sizeof(scalar);
int64_t vw = vol * words;
assert(vw == grid->lSites()*sizeof(scalar_object)/sizeof(scalar));
RealD t0 = usecond();
BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
BLAS_Cred.resize(nrhs * nrhs * vol);// cost free if size doesn't change
RealD t1 = usecond();
/////////////////////////////////////////////
// Copy in the multi-rhs sources -- layout batched BLAS ready
/////////////////////////////////////////////
for(int r=0;r<nrhs;r++){
autoView(x_v,X[r],AcceleratorRead);
autoView(y_v,Y[r],AcceleratorRead);
scalar *from_x=(scalar *)&x_v[0];
scalar *from_y=(scalar *)&y_v[0];
scalar *BX = &BLAS_X[0];
scalar *BY = &BLAS_Y[0];
accelerator_for(ssw,vw,1,{
uint64_t ss=ssw/words;
uint64_t w=ssw%words;
uint64_t offset = w+r*words+ss*nrhs*words; // [ss][rhs][words]
BX[offset] = from_x[ssw];
BY[offset] = from_y[ssw];
});
}
RealD t2 = usecond();
/*
* in Fortran column major notation (cuBlas order)
*
* Xxr = [X1(x)][..][Xn(x)]
*
* Yxr = [Y1(x)][..][Ym(x)]
*
* C_rs = X^dag Y
*/
Xdip.resize(vol);
Ydip.resize(vol);
Cdip.resize(vol);
std::vector<scalar *> Xh(vol);
std::vector<scalar *> Yh(vol);
std::vector<scalar *> Ch(vol);
for(uint64_t ss=0;ss<vol;ss++){
Xh[ss] = & BLAS_X[ss*nrhs*words];
Yh[ss] = & BLAS_Y[ss*nrhs*words];
Ch[ss] = & BLAS_Cred[ss*nrhs*nrhs];
}
acceleratorCopyToDevice(&Xh[0],&Xdip[0],vol*sizeof(scalar *));
acceleratorCopyToDevice(&Yh[0],&Ydip[0],vol*sizeof(scalar *));
acceleratorCopyToDevice(&Ch[0],&Cdip[0],vol*sizeof(scalar *));
GridBLAS BLAS;
RealD t3 = usecond();
/////////////////////////////////////////
// C_rs = X^dag Y
/////////////////////////////////////////
BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,
nrhs,nrhs,words,
ComplexD(1.0),
Xdip,
Ydip,
ComplexD(0.0), // wipe out C
Cdip);
BLAS.synchronise();
RealD t4 = usecond();
std::vector<scalar> HOST_C(BLAS_Cred.size()); // nrhs . nrhs -- the coefficients
acceleratorCopyFromDevice(&BLAS_Cred[0],&HOST_C[0],BLAS_Cred.size()*sizeof(scalar));
RealD t5 = usecond();
m = Eigen::MatrixXcd::Zero(nrhs,nrhs);
for(int ss=0;ss<vol;ss++){
Eigen::Map<Eigen::MatrixXcd> eC((std::complex<double> *)&HOST_C[ss*nrhs*nrhs],nrhs,nrhs);
m = m + eC;
}
RealD t6l = usecond();
grid->GlobalSumVector((scalar *) &m(0,0),nrhs*nrhs);
RealD t6 = usecond();
uint64_t M=nrhs;
uint64_t N=nrhs;
uint64_t K=vw;
RealD xybytes = grid->lSites()*sizeof(scalar_object);
RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K);
RealD flops = 8.0*M*N*K;
flops = flops/(t4-t3)/1.e3;
bytes = bytes/(t4-t3)/1.e3;
xybytes = 4*xybytes/(t2-t1)/1.e3;
std::cout << "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
std::cout << "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
std::cout << "InnerProductMatrix cp t2 "<< t2-t1<<" us "<<xybytes<<" GB/s"<<std::endl;
std::cout << "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
std::cout << "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
std::cout << "InnerProductMatrix blas "<< flops<<" GF/s"<<std::endl;
std::cout << "InnerProductMatrix blas "<< bytes<<" GB/s"<<std::endl;
std::cout << "InnerProductMatrix cp t5 "<< t5-t4<<" us"<<std::endl;
std::cout << "InnerProductMatrix lsum t6l "<< t6l-t5<<" us"<<std::endl;
std::cout << "InnerProductMatrix gsum t6 "<< t6-t6l<<" us"<<std::endl;
std::cout << "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
#endif
}
};
NAMESPACE_END(Grid);

View File

@ -447,10 +447,10 @@ public:
///////////////////////////////////////// /////////////////////////////////////////
BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N, BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,
nbasis,nrhs,vw, nbasis,nrhs,vw,
scalar(1.0), ComplexD(1.0),
Vd, Vd,
Fd, Fd,
scalar(0.0), // wipe out C ComplexD(0.0), // wipe out C
Cd); Cd);
BLAS.synchronise(); BLAS.synchronise();
// std::cout << "BlockProject done"<<std::endl; // std::cout << "BlockProject done"<<std::endl;
@ -497,10 +497,10 @@ public:
int64_t vw = block_vol * words; int64_t vw = block_vol * words;
BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
vw,nrhs,nbasis, vw,nrhs,nbasis,
scalar(1.0), ComplexD(1.0),
Vd, Vd,
Cd, Cd,
scalar(0.0), // wipe out C ComplexD(0.0), // wipe out C
Fd); Fd);
BLAS.synchronise(); BLAS.synchronise();
// std::cout << " blas call done"<<std::endl; // std::cout << " blas call done"<<std::endl;

View File

@ -182,10 +182,10 @@ public:
///////////////////////////////////////// /////////////////////////////////////////
BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N, BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,
nev,nrhs,vw, nev,nrhs,vw,
scalar(1.0), ComplexD(1.0),
Ed, Ed,
Rd, Rd,
scalar(0.0), // wipe out C ComplexD(0.0), // wipe out C
Cd); Cd);
BLAS.synchronise(); BLAS.synchronise();
@ -210,10 +210,10 @@ public:
///////////////////////////////////////// /////////////////////////////////////////
BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
vw,nrhs,nev, vw,nrhs,nev,
scalar(1.0), ComplexD(1.0),
Ed, // x . nev Ed, // x . nev
Cd, // nev . nrhs Cd, // nev . nrhs
scalar(0.0), ComplexD(0.0),
Gd); Gd);
BLAS.synchronise(); BLAS.synchronise();

View File

@ -53,7 +53,6 @@ class TwoLevelCGmrhs
// Fine operator, Smoother, CoarseSolver // Fine operator, Smoother, CoarseSolver
LinearOperatorBase<Field> &_FineLinop; LinearOperatorBase<Field> &_FineLinop;
LinearFunction<Field> &_Smoother; LinearFunction<Field> &_Smoother;
MultiRHSBlockCGLinalg<Field> _BlockCGLinalg;
GridStopWatch ProjectTimer; GridStopWatch ProjectTimer;
GridStopWatch PromoteTimer; GridStopWatch PromoteTimer;
@ -80,301 +79,6 @@ class TwoLevelCGmrhs
// Vector case // Vector case
virtual void operator() (std::vector<Field> &src, std::vector<Field> &x) virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
{
SolveSingleSystem(src,x);
// SolvePrecBlockCG(src,x);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Thin QR factorisation (google it)
////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////
//Dimensions
// R_{ferm x Nblock} = Q_{ferm x Nblock} x C_{Nblock x Nblock} -> ferm x Nblock
//
// Rdag R = m_rr = Herm = L L^dag <-- Cholesky decomposition (LLT routine in Eigen)
//
// Q C = R => Q = R C^{-1}
//
// Want Ident = Q^dag Q = C^{-dag} R^dag R C^{-1} = C^{-dag} L L^dag C^{-1} = 1_{Nblock x Nblock}
//
// Set C = L^{dag}, and then Q^dag Q = ident
//
// Checks:
// Cdag C = Rdag R ; passes.
// QdagQ = 1 ; passes
////////////////////////////////////////////////////////////////////////////////////////////////////
void ThinQRfact (Eigen::MatrixXcd &m_zz,
Eigen::MatrixXcd &C,
Eigen::MatrixXcd &Cinv,
std::vector<Field> & Q,
std::vector<Field> & MQ,
const std::vector<Field> & Z,
const std::vector<Field> & MZ)
{
RealD t0=usecond();
_BlockCGLinalg.InnerProductMatrix(m_zz,MZ,Z);
RealD t1=usecond();
m_zz = 0.5*(m_zz+m_zz.adjoint());
Eigen::MatrixXcd L = m_zz.llt().matrixL();
C = L.adjoint();
Cinv = C.inverse();
RealD t3=usecond();
_BlockCGLinalg.MulMatrix( Q,Cinv,Z);
_BlockCGLinalg.MulMatrix(MQ,Cinv,MZ);
RealD t4=usecond();
std::cout << " ThinQRfact IP :"<< t1-t0<<" us"<<std::endl;
std::cout << " ThinQRfact Eigen :"<< t3-t1<<" us"<<std::endl;
std::cout << " ThinQRfact MulMat:"<< t4-t3<<" us"<<std::endl;
}
virtual void SolvePrecBlockCG (std::vector<Field> &src, std::vector<Field> &X)
{
std::cout << GridLogMessage<<"HDCG: mrhs fPrecBlockcg starting"<<std::endl;
src[0].Grid()->Barrier();
int nrhs = src.size();
// std::vector<RealD> f(nrhs);
// std::vector<RealD> rtzp(nrhs);
// std::vector<RealD> rtz(nrhs);
// std::vector<RealD> a(nrhs);
// std::vector<RealD> d(nrhs);
// std::vector<RealD> b(nrhs);
// std::vector<RealD> rptzp(nrhs);
////////////////////////////////////////////
//Initial residual computation & set up
////////////////////////////////////////////
std::vector<RealD> ssq(nrhs);
for(int rhs=0;rhs<nrhs;rhs++){
ssq[rhs]=norm2(src[rhs]); assert(ssq[rhs]!=0.0);
}
///////////////////////////
// Fields -- eliminate duplicates between fPcg and block cg
///////////////////////////
std::vector<Field> Mtmp(nrhs,grid);
std::vector<Field> tmp(nrhs,grid);
std::vector<Field> Z(nrhs,grid); // Rename Z to R
std::vector<Field> MZ(nrhs,grid); // Rename MZ to Z
std::vector<Field> Q(nrhs,grid); //
std::vector<Field> MQ(nrhs,grid); // Rename to P
std::vector<Field> D(nrhs,grid);
std::vector<Field> AD(nrhs,grid);
/************************************************************************
* Preconditioned Block conjugate gradient rQ
* Generalise Sebastien Birk Thesis, after Dubrulle 2001.
* Introduce preconditioning following Saad Ch9
************************************************************************
* Dimensions:
*
* X,B etc... ==(Nferm x nrhs)
* Matrix A==(Nferm x Nferm)
*
* Nferm = Nspin x Ncolour x Ncomplex x Nlattice_site
* QC => Thin QR factorisation (google it)
*
* R = B-AX
* Z = Mi R
* QC = Z
* D = Q
* for k:
* R = AD
* Z = Mi R
* M = [D^dag R]^{-1}
* X = X + D M C
* QS = Q - Z.M
* D = Q + D S^dag
* C = S C
*/
Eigen::MatrixXcd m_DZ = Eigen::MatrixXcd::Identity(nrhs,nrhs);
Eigen::MatrixXcd m_M = Eigen::MatrixXcd::Identity(nrhs,nrhs);
Eigen::MatrixXcd m_zz = Eigen::MatrixXcd::Zero(nrhs,nrhs);
Eigen::MatrixXcd m_rr = Eigen::MatrixXcd::Zero(nrhs,nrhs);
Eigen::MatrixXcd m_C = Eigen::MatrixXcd::Zero(nrhs,nrhs);
Eigen::MatrixXcd m_Cinv = Eigen::MatrixXcd::Zero(nrhs,nrhs);
Eigen::MatrixXcd m_S = Eigen::MatrixXcd::Zero(nrhs,nrhs);
Eigen::MatrixXcd m_Sinv = Eigen::MatrixXcd::Zero(nrhs,nrhs);
Eigen::MatrixXcd m_tmp = Eigen::MatrixXcd::Identity(nrhs,nrhs);
Eigen::MatrixXcd m_tmp1 = Eigen::MatrixXcd::Identity(nrhs,nrhs);
GridStopWatch HDCGTimer;
//////////////////////////
// x0 = Vstart -- possibly modify guess
//////////////////////////
Vstart(X,src);
//////////////////////////
// R = B-AX
//////////////////////////
for(int rhs=0;rhs<nrhs;rhs++){
// r0 = b -A x0
_FineLinop.HermOp(X[rhs],tmp[rhs]);
axpy (Z[rhs], -1.0,tmp[rhs], src[rhs]); // Computes R=Z=src - A X0
}
//////////////////////////////////
// Compute MZ = M1 Z = M1 B - M1 A x0
//////////////////////////////////
PcgM1(Z,MZ);
//////////////////////////////////
// QC = Z
//////////////////////////////////
ThinQRfact (m_zz, m_C, m_Cinv, Q, MQ, Z, MZ);
//////////////////////////////////
// D=MQ
//////////////////////////////////
for(int b=0;b<nrhs;b++) D[b]=MQ[b]; // LLT rotation of the MZ basis of search dirs
std::cout << GridLogMessage<<"PrecBlockCGrQ vec computed initial residual and QR fact " <<std::endl;
ProjectTimer.Reset();
PromoteTimer.Reset();
DeflateTimer.Reset();
CoarseTimer.Reset();
SmoothTimer.Reset();
FineTimer.Reset();
InsertTimer.Reset();
GridStopWatch M1Timer;
GridStopWatch M2Timer;
GridStopWatch M3Timer;
GridStopWatch LinalgTimer;
GridStopWatch InnerProdTimer;
HDCGTimer.Start();
std::vector<RealD> rn(nrhs);
for (int k=0;k<=MaxIterations;k++){
////////////////////
// Z = AD
////////////////////
M3Timer.Start();
for(int b=0;b<nrhs;b++) _FineLinop.HermOp(D[b], Z[b]);
M3Timer.Stop();
////////////////////
// MZ = M1 Z <==== the Multigrid preconditioner
////////////////////
M1Timer.Start();
PcgM1(Z,MZ);
M1Timer.Stop();
FineTimer.Start();
////////////////////
// M = [D^dag Z]^{-1} = (<Ddag MZ>_M)^{-1} inner prod, generalising Saad derivation of Precon CG
////////////////////
InnerProdTimer.Start();
_BlockCGLinalg.InnerProductMatrix(m_DZ,D,Z);
InnerProdTimer.Stop();
m_M = m_DZ.inverse();
///////////////////////////
// X = X + D MC
///////////////////////////
m_tmp = m_M * m_C;
LinalgTimer.Start();
_BlockCGLinalg.MaddMatrix(X,m_tmp, D,X); // D are the search directions and X takes the updates
LinalgTimer.Stop();
///////////////////////////
// QS = Q - M Z
// (MQ) S = MQ - M (M1Z)
///////////////////////////
LinalgTimer.Start();
_BlockCGLinalg.MaddMatrix(tmp ,m_M, Z, Q,-1.0);
_BlockCGLinalg.MaddMatrix(Mtmp,m_M,MZ,MQ,-1.0);
ThinQRfact (m_zz, m_S, m_Sinv, Q, MQ, tmp, Mtmp);
LinalgTimer.Stop();
////////////////////////////
// D = MQ + D S^dag
////////////////////////////
m_tmp = m_S.adjoint();
LinalgTimer.Start();
_BlockCGLinalg.MaddMatrix(D,m_tmp,D,MQ);
LinalgTimer.Stop();
////////////////////////////
// C = S C
////////////////////////////
m_C = m_S*m_C;
////////////////////////////
// convergence monitor
////////////////////////////
m_rr = m_C.adjoint() * m_C;
FineTimer.Stop();
RealD max_resid=0;
RealD rrsum=0;
RealD sssum=0;
RealD rr;
for(int b=0;b<nrhs;b++) {
rrsum+=real(m_rr(b,b));
sssum+=ssq[b];
rr = real(m_rr(b,b))/ssq[b];
if ( rr > max_resid ) max_resid = rr;
}
std::cout << GridLogMessage <<
"\t Prec BlockCGrQ Iteration "<<k<<" ave resid "<< std::sqrt(rrsum/sssum) << " max "<< std::sqrt(max_resid) <<std::endl;
if ( max_resid < Tolerance*Tolerance ) {
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Linalg "<<LinalgTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : fine H "<<M3Timer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : prec M1 "<<M1Timer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"**** M1 breakdown:"<<std::endl;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Project "<<ProjectTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Promote "<<PromoteTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Deflate "<<DeflateTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Coarse "<<CoarseTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Fine "<<FineTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Smooth "<<SmoothTimer.Elapsed()<<std::endl;;
std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Insert "<<InsertTimer.Elapsed()<<std::endl;;
for(int rhs=0;rhs<nrhs;rhs++){
_FineLinop.HermOp(X[rhs],tmp[rhs]);
Field mytmp(grid);
axpy(mytmp,-1.0,src[rhs],tmp[rhs]);
RealD xnorm = sqrt(norm2(X[rhs]));
RealD srcnorm = sqrt(norm2(src[rhs]));
RealD tmpnorm = sqrt(norm2(mytmp));
RealD true_residual = tmpnorm/srcnorm;
std::cout<<GridLogMessage
<<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
<<" solution "<<xnorm
<<" source "<<srcnorm
<<std::endl;
}
return;
}
}
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: PrecBlockCGrQ not converged "<<HDCGTimer.Elapsed()<<std::endl;
assert(0);
}
virtual void SolveSingleSystem (std::vector<Field> &src, std::vector<Field> &x)
{ {
std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl; std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl;
src[0].Grid()->Barrier(); src[0].Grid()->Barrier();
@ -657,23 +361,15 @@ public:
CoarseField PleftProjMrhs(this->coarsegridmrhs); CoarseField PleftProjMrhs(this->coarsegridmrhs);
CoarseField PleftMss_projMrhs(this->coarsegridmrhs); CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
#undef SMOOTHER_BLOCK_SOLVE
#if SMOOTHER_BLOCK_SOLVE
this->SmoothTimer.Start();
this->_Smoother(in,Min);
this->SmoothTimer.Stop();
#else
for(int rhs=0;rhs<nrhs;rhs++) { for(int rhs=0;rhs<nrhs;rhs++) {
this->SmoothTimer.Start(); this->SmoothTimer.Start();
this->_Smoother(in[rhs],Min[rhs]); this->_Smoother(in[rhs],Min[rhs]);
this->SmoothTimer.Stop(); this->SmoothTimer.Stop();
}
#endif
for(int rhs=0;rhs<nrhs;rhs++) {
this->FineTimer.Start(); this->FineTimer.Start();
this->_FineLinop.HermOp(Min[rhs],out[rhs]); this->_FineLinop.HermOp(Min[rhs],out[rhs]);
axpy(tmp[rhs],-1.0,out[rhs],in[rhs]); // resid = in - A Min axpy(tmp[rhs],-1.0,out[rhs],in[rhs]); // resid = in - A Min
this->FineTimer.Stop(); this->FineTimer.Stop();

View File

@ -31,58 +31,6 @@ directory
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
template<class Field>
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y){
typedef typename Field::scalar_type scomplex;
int Nblock = X.size();
for(int b=0;b<Nblock;b++){
for(int bp=0;bp<Nblock;bp++) {
m(b,bp) = innerProduct(X[b],Y[bp]);
}}
}
template<class Field>
void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0){
// Should make this cache friendly with site outermost, parallel_for
// Deal with case AP aliases with either Y or X
//
//Could pack "X" and "AP" into a Nblock x Volume dense array.
// AP(Nrhs x vol) = Y(Nrhs x vol) + scale * m(nrhs x nrhs) * X(nrhs*vol)
typedef typename Field::scalar_type scomplex;
int Nblock = AP.size();
std::vector<Field> tmp(Nblock,X[0]);
for(int b=0;b<Nblock;b++){
tmp[b] = Y[b];
for(int bp=0;bp<Nblock;bp++) {
tmp[b] = tmp[b] +scomplex(scale*m(bp,b))*X[bp];
}
}
for(int b=0;b<Nblock;b++){
AP[b] = tmp[b];
}
}
template<class Field>
void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){
// Should make this cache friendly with site outermost, parallel_for
typedef typename Field::scalar_type scomplex;
int Nblock = AP.size();
for(int b=0;b<Nblock;b++){
AP[b] = Zero();
for(int bp=0;bp<Nblock;bp++) {
AP[b] += scomplex(m(bp,b))*X[bp];
}
}
}
template<class Field>
double normv(const std::vector<Field> &P){
int Nblock = P.size();
double nn = 0.0;
for(int b=0;b<Nblock;b++) {
nn+=norm2(P[b]);
}
return nn;
}
enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS, BlockCGVec, BlockCGrQVec }; enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS, BlockCGVec, BlockCGrQVec };
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
@ -139,19 +87,10 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
sliceInnerProductMatrix(m_rr,R,R,Orthog); sliceInnerProductMatrix(m_rr,R,R,Orthog);
// Force manifest hermitian to avoid rounding related // Force manifest hermitian to avoid rounding related
/*
int rank=m_rr.rows();
for(int r=0;r<rank;r++){
for(int s=0;s<rank;s++){
std::cout << "QR m_rr["<<r<<","<<s<<"] "<<m_rr(r,s)<<std::endl;
}}
*/
m_rr = 0.5*(m_rr+m_rr.adjoint()); m_rr = 0.5*(m_rr+m_rr.adjoint());
Eigen::MatrixXcd L = m_rr.llt().matrixL(); Eigen::MatrixXcd L = m_rr.llt().matrixL();
// ComplexD det = L.determinant();
// std::cout << " Det m_rr "<<det<<std::endl;
C = L.adjoint(); C = L.adjoint();
Cinv = C.inverse(); Cinv = C.inverse();
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
@ -171,20 +110,11 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
const std::vector<Field> & R) const std::vector<Field> & R)
{ {
InnerProductMatrix(m_rr,R,R); InnerProductMatrix(m_rr,R,R);
/*
int rank=m_rr.rows();
for(int r=0;r<rank;r++){
for(int s=0;s<rank;s++){
std::cout << "QRvec m_rr["<<r<<","<<s<<"] "<<m_rr(r,s)<<std::endl;
}}
*/
m_rr = 0.5*(m_rr+m_rr.adjoint()); m_rr = 0.5*(m_rr+m_rr.adjoint());
Eigen::MatrixXcd L = m_rr.llt().matrixL(); Eigen::MatrixXcd L = m_rr.llt().matrixL();
// ComplexD det = L.determinant();
// std::cout << " Det m_rr "<<det<<std::endl;
C = L.adjoint(); C = L.adjoint();
Cinv = C.inverse(); Cinv = C.inverse();
@ -256,7 +186,6 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
sliceNorm(ssq,B,Orthog); sliceNorm(ssq,B,Orthog);
RealD sssum=0; RealD sssum=0;
for(int b=0;b<Nblock;b++) sssum+=ssq[b]; for(int b=0;b<Nblock;b++) sssum+=ssq[b];
for(int b=0;b<Nblock;b++) std::cout << "src["<<b<<"]" << ssq[b] <<std::endl;
sliceNorm(residuals,B,Orthog); sliceNorm(residuals,B,Orthog);
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); } for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
@ -292,9 +221,6 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
Linop.HermOp(X, AD); Linop.HermOp(X, AD);
tmp = B - AD; tmp = B - AD;
sliceNorm(residuals,tmp,Orthog);
for(int b=0;b<Nblock;b++) std::cout << "res["<<b<<"]" << residuals[b] <<std::endl;
ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp); ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
D=Q; D=Q;
@ -310,8 +236,6 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
GridStopWatch SolverTimer; GridStopWatch SolverTimer;
SolverTimer.Start(); SolverTimer.Start();
RealD max_resid=0;
int k; int k;
for (k = 1; k <= MaxIterations; k++) { for (k = 1; k <= MaxIterations; k++) {
@ -356,7 +280,7 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
*/ */
m_rr = m_C.adjoint() * m_C; m_rr = m_C.adjoint() * m_C;
max_resid=0; RealD max_resid=0;
RealD rrsum=0; RealD rrsum=0;
RealD rr; RealD rr;
@ -398,9 +322,7 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
} }
} }
std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge" << std::endl;
std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge "<<k<<" / "<<MaxIterations
<<" residual "<< std::sqrt(max_resid)<< std::endl;
if (ErrorOnNoConverge) assert(0); if (ErrorOnNoConverge) assert(0);
IterationsToComplete = k; IterationsToComplete = k;
@ -544,6 +466,43 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &
IterationsToComplete = k; IterationsToComplete = k;
} }
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y){
for(int b=0;b<Nblock;b++){
for(int bp=0;bp<Nblock;bp++) {
m(b,bp) = innerProduct(X[b],Y[bp]);
}}
}
void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0){
// Should make this cache friendly with site outermost, parallel_for
// Deal with case AP aliases with either Y or X
std::vector<Field> tmp(Nblock,X[0]);
for(int b=0;b<Nblock;b++){
tmp[b] = Y[b];
for(int bp=0;bp<Nblock;bp++) {
tmp[b] = tmp[b] + scomplex(scale*m(bp,b))*X[bp];
}
}
for(int b=0;b<Nblock;b++){
AP[b] = tmp[b];
}
}
void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){
// Should make this cache friendly with site outermost, parallel_for
for(int b=0;b<Nblock;b++){
AP[b] = Zero();
for(int bp=0;bp<Nblock;bp++) {
AP[b] += scomplex(m(bp,b))*X[bp];
}
}
}
double normv(const std::vector<Field> &P){
double nn = 0.0;
for(int b=0;b<Nblock;b++) {
nn+=norm2(P[b]);
}
return nn;
}
//////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////
// BlockCGrQvec implementation: // BlockCGrQvec implementation:
//-------------------------- //--------------------------
@ -590,7 +549,6 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
RealD sssum=0; RealD sssum=0;
for(int b=0;b<Nblock;b++){ ssq[b] = norm2(B[b]);} for(int b=0;b<Nblock;b++){ ssq[b] = norm2(B[b]);}
for(int b=0;b<Nblock;b++){ std::cout << "ssq["<<b<<"] "<<ssq[b]<<std::endl;}
for(int b=0;b<Nblock;b++) sssum+=ssq[b]; for(int b=0;b<Nblock;b++) sssum+=ssq[b];
for(int b=0;b<Nblock;b++){ residuals[b] = norm2(B[b]);} for(int b=0;b<Nblock;b++){ residuals[b] = norm2(B[b]);}
@ -627,7 +585,6 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
for(int b=0;b<Nblock;b++) { for(int b=0;b<Nblock;b++) {
Linop.HermOp(X[b], AD[b]); Linop.HermOp(X[b], AD[b]);
tmp[b] = B[b] - AD[b]; tmp[b] = B[b] - AD[b];
std::cout << "r0["<<b<<"] "<<norm2(tmp[b])<<std::endl;
} }
ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp); ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);

View File

@ -38,7 +38,6 @@ NAMESPACE_BEGIN(Grid);
// single input vec, single output vec. // single input vec, single output vec.
///////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////
template <class Field> template <class Field>
class ConjugateGradient : public OperatorFunction<Field> { class ConjugateGradient : public OperatorFunction<Field> {
public: public:
@ -58,22 +57,10 @@ public:
ErrorOnNoConverge(err_on_no_conv) ErrorOnNoConverge(err_on_no_conv)
{}; {};
virtual void LogIteration(int k,RealD a,RealD b){
// std::cout << "ConjugageGradient::LogIteration() "<<std::endl;
};
virtual void LogBegin(void){
std::cout << "ConjugageGradient::LogBegin() "<<std::endl;
};
void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) { void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
this->LogBegin();
GRID_TRACE("ConjugateGradient"); GRID_TRACE("ConjugateGradient");
GridStopWatch PreambleTimer; GridStopWatch PreambleTimer;
GridStopWatch ConstructTimer;
GridStopWatch NormTimer;
GridStopWatch AssignTimer;
PreambleTimer.Start(); PreambleTimer.Start();
psi.Checkerboard() = src.Checkerboard(); psi.Checkerboard() = src.Checkerboard();
@ -83,19 +70,14 @@ public:
//RealD b_pred; //RealD b_pred;
// Was doing copies // Was doing copies
ConstructTimer.Start();
Field p(src.Grid()); Field p(src.Grid());
Field mmp(src.Grid()); Field mmp(src.Grid());
Field r(src.Grid()); Field r(src.Grid());
ConstructTimer.Stop();
// Initial residual computation & set up // Initial residual computation & set up
NormTimer.Start();
ssq = norm2(src); ssq = norm2(src);
RealD guess = norm2(psi); RealD guess = norm2(psi);
NormTimer.Stop();
assert(std::isnan(guess) == 0); assert(std::isnan(guess) == 0);
AssignTimer.Start();
if ( guess == 0.0 ) { if ( guess == 0.0 ) {
r = src; r = src;
p = r; p = r;
@ -107,7 +89,6 @@ public:
a = norm2(p); a = norm2(p);
} }
cp = a; cp = a;
AssignTimer.Stop();
// Handle trivial case of zero src // Handle trivial case of zero src
if (ssq == 0.){ if (ssq == 0.){
@ -183,7 +164,6 @@ public:
} }
LinearCombTimer.Stop(); LinearCombTimer.Stop();
LinalgTimer.Stop(); LinalgTimer.Stop();
LogIteration(k,a,b);
IterationTimer.Stop(); IterationTimer.Stop();
if ( (k % 500) == 0 ) { if ( (k % 500) == 0 ) {
@ -240,9 +220,6 @@ public:
<<" residual "<< std::sqrt(cp / ssq)<< std::endl; <<" residual "<< std::sqrt(cp / ssq)<< std::endl;
SolverTimer.Stop(); SolverTimer.Stop();
std::cout << GridLogMessage << "\tPreamble " << PreambleTimer.Elapsed() <<std::endl; std::cout << GridLogMessage << "\tPreamble " << PreambleTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tConstruct " << ConstructTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tNorm " << NormTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tAssign " << AssignTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tSolver " << SolverTimer.Elapsed() <<std::endl; std::cout << GridLogMessage << "\tSolver " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "Solver breakdown "<<std::endl; std::cout << GridLogMessage << "Solver breakdown "<<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl; std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
@ -256,118 +233,5 @@ public:
} }
}; };
template <class Field>
class ConjugateGradientPolynomial : public ConjugateGradient<Field> {
public:
// Optionally record the CG polynomial
std::vector<double> ak;
std::vector<double> bk;
std::vector<double> poly_p;
std::vector<double> poly_r;
std::vector<double> poly_Ap;
std::vector<double> polynomial;
public:
ConjugateGradientPolynomial(RealD tol, Integer maxit, bool err_on_no_conv = true)
: ConjugateGradient<Field>(tol,maxit,err_on_no_conv)
{ };
void PolyHermOp(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
{
Field tmp(src.Grid());
Field AtoN(src.Grid());
AtoN = src;
psi=AtoN*polynomial[0];
for(int n=1;n<polynomial.size();n++){
tmp = AtoN;
Linop.HermOp(tmp,AtoN);
psi = psi + polynomial[n]*AtoN;
}
}
void CGsequenceHermOp(LinearOperatorBase<Field> &Linop, const Field &src, Field &x)
{
Field Ap(src.Grid());
Field r(src.Grid());
Field p(src.Grid());
p=src;
r=src;
x=Zero();
x.Checkerboard()=src.Checkerboard();
for(int k=0;k<ak.size();k++){
x = x + ak[k]*p;
Linop.HermOp(p,Ap);
r = r - ak[k] * Ap;
p = r + bk[k] * p;
}
}
void Solve(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
{
psi=Zero();
this->operator ()(Linop,src,psi);
}
virtual void LogBegin(void)
{
std::cout << "ConjugageGradientPolynomial::LogBegin() "<<std::endl;
ak.resize(0);
bk.resize(0);
polynomial.resize(0);
poly_Ap.resize(0);
poly_Ap.resize(0);
poly_p.resize(1);
poly_r.resize(1);
poly_p[0]=1.0;
poly_r[0]=1.0;
};
virtual void LogIteration(int k,RealD a,RealD b)
{
// With zero guess,
// p = r = src
//
// iterate:
// x = x + a p
// r = r - a A p
// p = r + b p
//
// [0]
// r = x
// p = x
// Ap=0
//
// [1]
// Ap = A x + 0 ==> shift poly P right by 1 and add 0.
// x = x + a p ==> add polynomials term by term
// r = r - a A p ==> add polynomials term by term
// p = r + b p ==> add polynomials term by term
//
std::cout << "ConjugageGradientPolynomial::LogIteration() "<<k<<std::endl;
ak.push_back(a);
bk.push_back(b);
// Ap= right_shift(p)
poly_Ap.resize(k+1);
poly_Ap[0]=0.0;
for(int i=0;i<k;i++){
poly_Ap[i+1]=poly_p[i];
}
// x = x + a p
polynomial.resize(k);
polynomial[k-1]=0.0;
for(int i=0;i<k;i++){
polynomial[i] = polynomial[i] + a * poly_p[i];
}
// r = r - a Ap
// p = r + b p
poly_r.resize(k+1);
poly_p.resize(k+1);
poly_r[k] = poly_p[k] = 0.0;
for(int i=0;i<k+1;i++){
poly_r[i] = poly_r[i] - a * poly_Ap[i];
poly_p[i] = poly_r[i] + b * poly_p[i];
}
}
};
NAMESPACE_END(Grid); NAMESPACE_END(Grid);
#endif #endif

View File

@ -102,11 +102,11 @@ public:
assert(mass.size()==nshift); assert(mass.size()==nshift);
assert(mresidual.size()==nshift); assert(mresidual.size()==nshift);
// remove dynamic sized arrays on stack; 2d is a pain with vector // dynamic sized arrays on stack; 2d is a pain with vector
std::vector<RealD> bs(nshift); RealD bs[nshift];
std::vector<RealD> rsq(nshift); RealD rsq[nshift];
std::vector<std::array<RealD,2> > z(nshift); RealD z[nshift][2];
std::vector<int> converged(nshift); int converged[nshift];
const int primary =0; const int primary =0;

View File

@ -123,11 +123,11 @@ public:
assert(mresidual.size()==nshift); assert(mresidual.size()==nshift);
// dynamic sized arrays on stack; 2d is a pain with vector // dynamic sized arrays on stack; 2d is a pain with vector
std::vector<RealD> bs(nshift); RealD bs[nshift];
std::vector<RealD> rsq(nshift); RealD rsq[nshift];
std::vector<RealD> rsqf(nshift); RealD rsqf[nshift];
std::vector<std::array<RealD,2> > z(nshift); RealD z[nshift][2];
std::vector<int> converged(nshift); int converged[nshift];
const int primary =0; const int primary =0;

View File

@ -156,11 +156,11 @@ public:
assert(mresidual.size()==nshift); assert(mresidual.size()==nshift);
// dynamic sized arrays on stack; 2d is a pain with vector // dynamic sized arrays on stack; 2d is a pain with vector
std::vector<RealD> bs(nshift); RealD bs[nshift];
std::vector<RealD> rsq(nshift); RealD rsq[nshift];
std::vector<RealD> rsqf(nshift); RealD rsqf[nshift];
std::vector<std::array<RealD,2> > z(nshift); RealD z[nshift][2];
std::vector<int> converged(nshift); int converged[nshift];
const int primary =0; const int primary =0;

View File

@ -279,16 +279,16 @@ public:
Qt = Eigen::MatrixXcd::Identity(Nm,Nm); Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
diagonalize(eval2,lmd2,lme2,Nu,Nm,Nm,Qt,grid); diagonalize(eval2,lmd2,lme2,Nu,Nm,Nm,Qt,grid);
_sort.push(eval2,Nm); _sort.push(eval2,Nm);
// Glog << "#Ritz value before shift: "<< std::endl; Glog << "#Ritz value before shift: "<< std::endl;
for(int i=0; i<Nm; ++i){ for(int i=0; i<Nm; ++i){
// std::cout.precision(13); std::cout.precision(13);
// std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] "; std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
// std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl; std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl;
} }
//---------------------------------------------------------------------- //----------------------------------------------------------------------
if ( Nm>Nk ) { if ( Nm>Nk ) {
// Glog <<" #Apply shifted QR transformations "<<std::endl; Glog <<" #Apply shifted QR transformations "<<std::endl;
//int k2 = Nk+Nu; //int k2 = Nk+Nu;
int k2 = Nk; int k2 = Nk;
@ -326,7 +326,7 @@ public:
Qt = Eigen::MatrixXcd::Identity(Nm,Nm); Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
diagonalize(eval2,lmd2,lme2,Nu,Nk,Nm,Qt,grid); diagonalize(eval2,lmd2,lme2,Nu,Nk,Nm,Qt,grid);
_sort.push(eval2,Nk); _sort.push(eval2,Nk);
// Glog << "#Ritz value after shift: "<< std::endl; Glog << "#Ritz value after shift: "<< std::endl;
for(int i=0; i<Nk; ++i){ for(int i=0; i<Nk; ++i){
// std::cout.precision(13); // std::cout.precision(13);
// std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] "; // std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
@ -644,7 +644,7 @@ private:
// for (int u=0; u<mrhs; ++u) Glog << " out["<<u<<"] = "<<norm2(out[u])<<std::endl; // for (int u=0; u<mrhs; ++u) Glog << " out["<<u<<"] = "<<norm2(out[u])<<std::endl;
k_start +=mrhs; k_start +=mrhs;
} }
// Glog << "LinAlg "<< std::endl; Glog << "LinAlg "<< std::endl;
if (b>0) { if (b>0) {
for (int u=0; u<Nu; ++u) { for (int u=0; u<Nu; ++u) {
@ -678,7 +678,7 @@ private:
} }
w_copy[u] = w[u]; w_copy[u] = w[u];
} }
// Glog << "LinAlg done"<< std::endl; Glog << "LinAlg done"<< std::endl;
// In block version, the steps 6 and 7 in Lanczos construction is // In block version, the steps 6 and 7 in Lanczos construction is
// replaced by the QR decomposition of new basis block. // replaced by the QR decomposition of new basis block.
@ -691,15 +691,15 @@ private:
} }
// re-orthogonalization for numerical stability // re-orthogonalization for numerical stability
// Glog << "Gram Schmidt"<< std::endl; Glog << "Gram Schmidt"<< std::endl;
orthogonalize(w,Nu,evec,R); orthogonalize(w,Nu,evec,R);
// QR part // QR part
for (int u=1; u<Nu; ++u) { for (int u=1; u<Nu; ++u) {
orthogonalize(w[u],w,u); orthogonalize(w[u],w,u);
} }
// Glog << "Gram Schmidt done "<< std::endl; Glog << "Gram Schmidt done "<< std::endl;
// Glog << "LinAlg "<< std::endl; Glog << "LinAlg "<< std::endl;
for (int u=0; u<Nu; ++u) { for (int u=0; u<Nu; ++u) {
//for (int v=0; v<Nu; ++v) { //for (int v=0; v<Nu; ++v) {
for (int v=u; v<Nu; ++v) { for (int v=u; v<Nu; ++v) {
@ -716,7 +716,7 @@ private:
// Glog <<" In block "<< b << "," <<" beta[" << u << "," << k-L << "] = " << lme[u][k] << std::endl; // Glog <<" In block "<< b << "," <<" beta[" << u << "," << k-L << "] = " << lme[u][k] << std::endl;
} }
} }
// Glog << "LinAlg done "<< std::endl; Glog << "LinAlg done "<< std::endl;
if (b < Nm/Nu-1) { if (b < Nm/Nu-1) {
for (int u=0; u<Nu; ++u) { for (int u=0; u<Nu; ++u) {
@ -935,7 +935,7 @@ if (1){
int Nu, int Nb, int Nk, int Nm, int Nu, int Nb, int Nk, int Nm,
Eigen::MatrixXcd& M) Eigen::MatrixXcd& M)
{ {
// Glog << "unpackHermitBlockTriDiagMatToEigen() begin" << '\n'; Glog << "unpackHermitBlockTriDiagMatToEigen() begin" << '\n';
assert( Nk%Nu == 0 && Nm%Nu == 0 ); assert( Nk%Nu == 0 && Nm%Nu == 0 );
assert( Nk <= Nm ); assert( Nk <= Nm );
M = Eigen::MatrixXcd::Zero(Nk,Nk); M = Eigen::MatrixXcd::Zero(Nk,Nk);
@ -953,7 +953,7 @@ if (1){
M(u+(k/Nu)*Nu,k-Nu) = lme[u][k-Nu]; M(u+(k/Nu)*Nu,k-Nu) = lme[u][k-Nu];
} }
} }
// Glog << "unpackHermitBlockTriDiagMatToEigen() end" << std::endl; Glog << "unpackHermitBlockTriDiagMatToEigen() end" << std::endl;
} }
@ -963,7 +963,7 @@ if (1){
int Nu, int Nb, int Nk, int Nm, int Nu, int Nb, int Nk, int Nm,
Eigen::MatrixXcd& M) Eigen::MatrixXcd& M)
{ {
// Glog << "packHermitBlockTriDiagMatfromEigen() begin" << '\n'; Glog << "packHermitBlockTriDiagMatfromEigen() begin" << '\n';
assert( Nk%Nu == 0 && Nm%Nu == 0 ); assert( Nk%Nu == 0 && Nm%Nu == 0 );
assert( Nk <= Nm ); assert( Nk <= Nm );
@ -979,7 +979,7 @@ if (1){
lme[u][k-Nu] = M(u+(k/Nu)*Nu,k-Nu); lme[u][k-Nu] = M(u+(k/Nu)*Nu,k-Nu);
} }
} }
// Glog << "packHermitBlockTriDiagMatfromEigen() end" <<std::endl; Glog << "packHermitBlockTriDiagMatfromEigen() end" <<std::endl;
} }
@ -988,7 +988,7 @@ if (1){
RealD Dsh, RealD Dsh,
Eigen::MatrixXcd& Qprod) Eigen::MatrixXcd& Qprod)
{ {
// Glog << "shiftedQRDecompEigen() begin" << '\n'; Glog << "shiftedQRDecompEigen() begin" << '\n';
Eigen::MatrixXcd Q = Eigen::MatrixXcd::Zero(Nm,Nm); Eigen::MatrixXcd Q = Eigen::MatrixXcd::Zero(Nm,Nm);
Eigen::MatrixXcd R = Eigen::MatrixXcd::Zero(Nm,Nm); Eigen::MatrixXcd R = Eigen::MatrixXcd::Zero(Nm,Nm);
Eigen::MatrixXcd Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm); Eigen::MatrixXcd Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
@ -1004,7 +1004,7 @@ if (1){
// lower triangular part used to represent series // lower triangular part used to represent series
// of Q sequence. // of Q sequence.
// Glog << "shiftedQRDecompEigen() Housholder & QR" << '\n'; Glog << "shiftedQRDecompEigen() Housholder & QR" << '\n';
// equivalent operation of Qprod *= Q // equivalent operation of Qprod *= Q
//M = Eigen::MatrixXcd::Zero(Nm,Nm); //M = Eigen::MatrixXcd::Zero(Nm,Nm);
@ -1025,7 +1025,7 @@ if (1){
Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm); Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
// Glog << "shiftedQRDecompEigen() Mtmp create" << '\n'; Glog << "shiftedQRDecompEigen() Mtmp create" << '\n';
for (int i=0; i<Nm; ++i) { for (int i=0; i<Nm; ++i) {
for (int j=0; j<Nm-(Nu+1); ++j) { for (int j=0; j<Nm-(Nu+1); ++j) {
for (int k=0; k<Nu+1+j; ++k) { for (int k=0; k<Nu+1+j; ++k) {
@ -1033,7 +1033,7 @@ if (1){
} }
} }
} }
// Glog << "shiftedQRDecompEigen() Mtmp loop1" << '\n'; Glog << "shiftedQRDecompEigen() Mtmp loop1" << '\n';
for (int i=0; i<Nm; ++i) { for (int i=0; i<Nm; ++i) {
for (int j=Nm-(Nu+1); j<Nm; ++j) { for (int j=Nm-(Nu+1); j<Nm; ++j) {
for (int k=0; k<Nm; ++k) { for (int k=0; k<Nm; ++k) {
@ -1041,7 +1041,7 @@ if (1){
} }
} }
} }
// Glog << "shiftedQRDecompEigen() Mtmp loop2" << '\n'; Glog << "shiftedQRDecompEigen() Mtmp loop2" << '\n';
//static int ntimes = 2; //static int ntimes = 2;
//for (int j=0; j<Nm-(ntimes*Nu); ++j) { //for (int j=0; j<Nm-(ntimes*Nu); ++j) {
@ -1067,13 +1067,13 @@ if (1){
Mtmp(j,i) = conj(Mtmp(i,j)); Mtmp(j,i) = conj(Mtmp(i,j));
} }
} }
// Glog << "shiftedQRDecompEigen() Mtmp loop3" << '\n'; Glog << "shiftedQRDecompEigen() Mtmp loop3" << '\n';
for (int i=0; i<Nm; ++i) { for (int i=0; i<Nm; ++i) {
Mtmp(i,i) = real(Mtmp(i,i)) + Dsh; Mtmp(i,i) = real(Mtmp(i,i)) + Dsh;
} }
// Glog << "shiftedQRDecompEigen() Mtmp loop4" << '\n'; Glog << "shiftedQRDecompEigen() Mtmp loop4" << '\n';
M = Mtmp; M = Mtmp;
//M = Q.adjoint()*(M*Q); //M = Q.adjoint()*(M*Q);
@ -1085,7 +1085,7 @@ if (1){
// } // }
//} //}
// Glog << "shiftedQRDecompEigen() end" <<std::endl; Glog << "shiftedQRDecompEigen() end" <<std::endl;
} }
void exampleQRDecompEigen(void) void exampleQRDecompEigen(void)

View File

@ -60,32 +60,6 @@ public:
} }
}; };
template<class Field> class NormalResidual : public LinearFunction<Field>{
private:
SparseMatrixBase<Field> & _Matrix;
OperatorFunction<Field> & _HermitianSolver;
LinearFunction<Field> & _Guess;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations trick
/////////////////////////////////////////////////////
NormalResidual(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver,
LinearFunction<Field> &Guess)
: _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {};
void operator() (const Field &in, Field &out){
Field res(in.Grid());
Field tmp(in.Grid());
MMdagLinearOperator<SparseMatrixBase<Field>,Field> MMdagOp(_Matrix);
_Guess(in,res);
_HermitianSolver(MMdagOp,in,res); // M Mdag res = in ;
_Matrix.Mdag(res,out); // out = Mdag res
}
};
template<class Field> class HPDSolver : public LinearFunction<Field> { template<class Field> class HPDSolver : public LinearFunction<Field> {
private: private:
LinearOperatorBase<Field> & _Matrix; LinearOperatorBase<Field> & _Matrix;

View File

@ -20,7 +20,7 @@ template<class Field> class PowerMethod
RealD evalMaxApprox = 0.0; RealD evalMaxApprox = 0.0;
auto src_n = src; auto src_n = src;
auto tmp = src; auto tmp = src;
const int _MAX_ITER_EST_ = 200; const int _MAX_ITER_EST_ = 100;
for (int i=0;i<_MAX_ITER_EST_;i++) { for (int i=0;i<_MAX_ITER_EST_;i++) {
@ -30,17 +30,18 @@ template<class Field> class PowerMethod
RealD vden = norm2(src_n); RealD vden = norm2(src_n);
RealD na = vnum/vden; RealD na = vnum/vden;
std::cout << GridLogMessage << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl; std::cout << GridLogIterative << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
// if ( (fabs(evalMaxApprox/na - 1.0) < 0.0001) || (i==_MAX_ITER_EST_-1) ) { if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) {
// evalMaxApprox = na;
// return evalMaxApprox;
// }
evalMaxApprox = na; evalMaxApprox = na;
src_n = tmp;
}
std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl; std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
return evalMaxApprox; return evalMaxApprox;
} }
evalMaxApprox = na;
src_n = tmp;
}
assert(0);
return 0;
}
}; };
} }

View File

@ -1,76 +0,0 @@
#pragma once
namespace Grid {
class Band
{
RealD lo, hi;
public:
Band(RealD _lo,RealD _hi)
{
lo=_lo;
hi=_hi;
}
RealD operator() (RealD x){
if ( x>lo && x<hi ){
return 1.0;
} else {
return 0.0;
}
}
};
class PowerSpectrum
{
public:
template<typename T> static RealD normalise(T& v)
{
RealD nn = norm2(v);
nn = sqrt(nn);
v = v * (1.0/nn);
return nn;
}
std::vector<RealD> ranges;
std::vector<int> order;
PowerSpectrum( std::vector<RealD> &bins, std::vector<int> &_order ) : ranges(bins), order(_order) { };
template<class Field>
RealD operator()(LinearOperatorBase<Field> &HermOp, const Field &src)
{
GridBase *grid = src.Grid();
int N=ranges.size();
RealD hi = ranges[N-1];
RealD lo_band = 0.0;
RealD hi_band;
RealD nn=norm2(src);
RealD ss=0.0;
Field tmp = src;
for(int b=0;b<N;b++){
hi_band = ranges[b];
Band Notch(lo_band,hi_band);
Chebyshev<Field> polynomial;
polynomial.Init(0.0,hi,order[b],Notch);
polynomial.JacksonSmooth();
polynomial(HermOp,src,tmp) ;
RealD p=norm2(tmp);
ss=ss+p;
std::cout << GridLogMessage << " PowerSpectrum Band["<<lo_band<<","<<hi_band<<"] power "<<norm2(tmp)/nn<<std::endl;
lo_band=hi_band;
}
std::cout << GridLogMessage << " PowerSpectrum total power "<<ss/nn<<std::endl;
std::cout << GridLogMessage << " PowerSpectrum total power (unnormalised) "<<nn<<std::endl;
return 0;
};
};
}

View File

@ -99,7 +99,7 @@ public:
CoarseMatrix AselfInvEven; CoarseMatrix AselfInvEven;
CoarseMatrix AselfInvOdd; CoarseMatrix AselfInvOdd;
deviceVector<RealD> dag_factor; Vector<RealD> dag_factor;
/////////////////////// ///////////////////////
// Interface // Interface
@ -124,13 +124,9 @@ public:
int npoint = geom.npoint; int npoint = geom.npoint;
typedef LatticeView<Cobj> Aview; typedef LatticeView<Cobj> Aview;
deviceVector<Aview> AcceleratorViewContainer(geom.npoint); Vector<Aview> AcceleratorViewContainer;
hostVector<Aview> hAcceleratorViewContainer(geom.npoint);
for(int p=0;p<geom.npoint;p++) { for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
}
Aview *Aview_p = & AcceleratorViewContainer[0]; Aview *Aview_p = & AcceleratorViewContainer[0];
const int Nsimd = CComplex::Nsimd(); const int Nsimd = CComplex::Nsimd();
@ -165,7 +161,7 @@ public:
coalescedWrite(out_v[ss](b),res); coalescedWrite(out_v[ss](b),res);
}); });
for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose(); for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
}; };
void Mdag (const CoarseVector &in, CoarseVector &out) void Mdag (const CoarseVector &in, CoarseVector &out)
@ -194,14 +190,9 @@ public:
int npoint = geom.npoint; int npoint = geom.npoint;
typedef LatticeView<Cobj> Aview; typedef LatticeView<Cobj> Aview;
Vector<Aview> AcceleratorViewContainer;
deviceVector<Aview> AcceleratorViewContainer(geom.npoint); for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
hostVector<Aview> hAcceleratorViewContainer(geom.npoint);
for(int p=0;p<geom.npoint;p++) {
hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
}
Aview *Aview_p = & AcceleratorViewContainer[0]; Aview *Aview_p = & AcceleratorViewContainer[0];
const int Nsimd = CComplex::Nsimd(); const int Nsimd = CComplex::Nsimd();
@ -210,10 +201,10 @@ public:
int osites=Grid()->oSites(); int osites=Grid()->oSites();
deviceVector<int> points(geom.npoint); Vector<int> points(geom.npoint, 0);
for(int p=0; p<geom.npoint; p++) { for(int p=0; p<geom.npoint; p++)
acceleratorPut(points[p],geom.points_dagger[p]); points[p] = geom.points_dagger[p];
}
auto points_p = &points[0]; auto points_p = &points[0];
RealD* dag_factor_p = &dag_factor[0]; RealD* dag_factor_p = &dag_factor[0];
@ -245,7 +236,7 @@ public:
coalescedWrite(out_v[ss](b),res); coalescedWrite(out_v[ss](b),res);
}); });
for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose(); for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
} }
void MdirComms(const CoarseVector &in) void MdirComms(const CoarseVector &in)
@ -260,14 +251,8 @@ public:
out.Checkerboard() = in.Checkerboard(); out.Checkerboard() = in.Checkerboard();
typedef LatticeView<Cobj> Aview; typedef LatticeView<Cobj> Aview;
Vector<Aview> AcceleratorViewContainer;
deviceVector<Aview> AcceleratorViewContainer(geom.npoint); for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
hostVector<Aview> hAcceleratorViewContainer(geom.npoint);
for(int p=0;p<geom.npoint;p++) {
hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
}
Aview *Aview_p = & AcceleratorViewContainer[0]; Aview *Aview_p = & AcceleratorViewContainer[0];
autoView( out_v , out, AcceleratorWrite); autoView( out_v , out, AcceleratorWrite);
@ -300,7 +285,7 @@ public:
} }
coalescedWrite(out_v[ss](b),res); coalescedWrite(out_v[ss](b),res);
}); });
for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose(); for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
} }
void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out) void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out)
{ {
@ -484,20 +469,14 @@ public:
// determine in what order we need the points // determine in what order we need the points
int npoint = geom.npoint-1; int npoint = geom.npoint-1;
deviceVector<int> points(npoint); Vector<int> points(npoint, 0);
for(int p=0; p<npoint; p++) { for(int p=0; p<npoint; p++)
int val = (dag && !hermitian) ? geom.points_dagger[p] : p; points[p] = (dag && !hermitian) ? geom.points_dagger[p] : p;
acceleratorPut(points[p], val);
}
auto points_p = &points[0]; auto points_p = &points[0];
deviceVector<Aview> AcceleratorViewContainer(geom.npoint); Vector<Aview> AcceleratorViewContainer;
hostVector<Aview> hAcceleratorViewContainer(geom.npoint); for(int p=0;p<npoint;p++) AcceleratorViewContainer.push_back(a[p].View(AcceleratorRead));
for(int p=0;p<geom.npoint;p++) {
hAcceleratorViewContainer[p] = a[p].View(AcceleratorRead);
acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
}
Aview *Aview_p = & AcceleratorViewContainer[0]; Aview *Aview_p = & AcceleratorViewContainer[0];
const int Nsimd = CComplex::Nsimd(); const int Nsimd = CComplex::Nsimd();
@ -560,7 +539,7 @@ public:
}); });
} }
for(int p=0;p<npoint;p++) hAcceleratorViewContainer[p].ViewClose(); for(int p=0;p<npoint;p++) AcceleratorViewContainer[p].ViewClose();
} }
CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) : CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) :
@ -611,13 +590,11 @@ public:
} }
// GPU readable prefactor // GPU readable prefactor
std::vector<RealD> h_dag_factor(nbasis*nbasis);
thread_for(i, nbasis*nbasis, { thread_for(i, nbasis*nbasis, {
int j = i/nbasis; int j = i/nbasis;
int k = i%nbasis; int k = i%nbasis;
h_dag_factor[i] = dag_factor_eigen(j, k); dag_factor[i] = dag_factor_eigen(j, k);
}); });
acceleratorCopyToDevice(&h_dag_factor[0],&dag_factor[0],dag_factor.size()*sizeof(RealD));
} }
void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop, void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop,

View File

@ -174,11 +174,21 @@ template<typename _Tp> inline bool operator!=(const devAllocator<_Tp>&, const d
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
// Template typedefs // Template typedefs
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
template<class T> using hostVector = std::vector<T,alignedAllocator<T> >; // Needs autoview #ifdef ACCELERATOR_CSHIFT
template<class T> using Vector = std::vector<T,uvmAllocator<T> >; // // Cshift on device
template<class T> using uvmVector = std::vector<T,uvmAllocator<T> >; // auto migrating page template<class T> using cshiftAllocator = devAllocator<T>;
template<class T> using deviceVector = std::vector<T,devAllocator<T> >; // device vector #else
// Cshift on host
template<class T> using cshiftAllocator = std::allocator<T>;
#endif
template<class T> using Vector = std::vector<T,uvmAllocator<T> >;
template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;
template<class T> using commVector = std::vector<T,devAllocator<T> >;
template<class T> using deviceVector = std::vector<T,devAllocator<T> >;
template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >;
/*
template<class T> class vecView template<class T> class vecView
{ {
protected: protected:
@ -187,9 +197,8 @@ template<class T> class vecView
ViewMode mode; ViewMode mode;
void * cpu_ptr; void * cpu_ptr;
public: public:
// Rvalue accessor
accelerator_inline T & operator[](size_t i) const { return this->data[i]; }; accelerator_inline T & operator[](size_t i) const { return this->data[i]; };
vecView(Vector<T> &refer_to_me,ViewMode _mode) vecView(std::vector<T> &refer_to_me,ViewMode _mode)
{ {
cpu_ptr = &refer_to_me[0]; cpu_ptr = &refer_to_me[0];
size = refer_to_me.size(); size = refer_to_me.size();
@ -205,15 +214,26 @@ template<class T> class vecView
} }
}; };
template<class T> vecView<T> VectorView(Vector<T> &vec,ViewMode _mode) template<class T> vecView<T> VectorView(std::vector<T> &vec,ViewMode _mode)
{ {
vecView<T> ret(vec,_mode); // does the open vecView<T> ret(vec,_mode); // does the open
return ret; // must be closed return ret; // must be closed
} }
// Little autoscope assister
template<class View>
class VectorViewCloser
{
View v; // Take a copy of view and call view close when I go out of scope automatically
public:
VectorViewCloser(View &_v) : v(_v) {};
~VectorViewCloser() { auto ptr = v.cpu_ptr; v.ViewClose(); MemoryManager::NotifyDeletion(ptr);}
};
#define autoVecView(v_v,v,mode) \ #define autoVecView(v_v,v,mode) \
auto v_v = VectorView(v,mode); \ auto v_v = VectorView(v,mode); \
ViewCloser<decltype(v_v)> _autoView##v_v(v_v); ViewCloser<decltype(v_v)> _autoView##v_v(v_v);
*/
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -15,10 +15,10 @@ void check_huge_pages(void *Buf,uint64_t BYTES)
uint64_t virt_pfn = (uint64_t)Buf / page_size; uint64_t virt_pfn = (uint64_t)Buf / page_size;
off_t offset = sizeof(uint64_t) * virt_pfn; off_t offset = sizeof(uint64_t) * virt_pfn;
uint64_t npages = (BYTES + page_size-1) / page_size; uint64_t npages = (BYTES + page_size-1) / page_size;
std::vector<uint64_t> pagedata(npages); uint64_t pagedata[npages];
uint64_t ret = lseek(fd, offset, SEEK_SET); uint64_t ret = lseek(fd, offset, SEEK_SET);
assert(ret == offset); assert(ret == offset);
ret = ::read(fd, &pagedata[0], sizeof(uint64_t)*npages); ret = ::read(fd, pagedata, sizeof(uint64_t)*npages);
assert(ret == sizeof(uint64_t) * npages); assert(ret == sizeof(uint64_t) * npages);
int nhugepages = npages / 512; int nhugepages = npages / 512;
int n4ktotal, nnothuge; int n4ktotal, nnothuge;

View File

@ -82,7 +82,6 @@ public:
bool _isCheckerBoarded; bool _isCheckerBoarded;
int LocallyPeriodic; int LocallyPeriodic;
Coordinate _checker_dim_mask; Coordinate _checker_dim_mask;
int _checker_dim;
public: public:
@ -92,6 +91,7 @@ public:
//////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////
virtual int CheckerBoarded(int dim)=0; virtual int CheckerBoarded(int dim)=0;
virtual int CheckerBoard(const Coordinate &site)=0; virtual int CheckerBoard(const Coordinate &site)=0;
virtual int CheckerDim(void){ return 0; };
virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0; virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0;
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0; virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0;
virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift,int cb)=0; virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift,int cb)=0;

View File

@ -38,7 +38,7 @@ class GridCartesian: public GridBase {
public: public:
int dummy; int dummy;
// Coordinate _checker_dim_mask; Coordinate _checker_dim_mask;
virtual int CheckerBoardFromOindexTable (int Oindex) { virtual int CheckerBoardFromOindexTable (int Oindex) {
return 0; return 0;
} }
@ -106,7 +106,6 @@ public:
_rdimensions.resize(_ndimension); _rdimensions.resize(_ndimension);
_simd_layout.resize(_ndimension); _simd_layout.resize(_ndimension);
_checker_dim_mask.resize(_ndimension);; _checker_dim_mask.resize(_ndimension);;
_checker_dim = -1;
_lstart.resize(_ndimension); _lstart.resize(_ndimension);
_lend.resize(_ndimension); _lend.resize(_ndimension);

View File

@ -57,10 +57,10 @@ class GridRedBlackCartesian : public GridBase
{ {
public: public:
// Coordinate _checker_dim_mask; // Coordinate _checker_dim_mask;
// int _checker_dim; int _checker_dim;
std::vector<int> _checker_board; std::vector<int> _checker_board;
virtual int isCheckerBoarded(void) const { return 1; }; virtual int CheckerDim(void){ return _checker_dim; };
virtual int CheckerBoarded(int dim){ virtual int CheckerBoarded(int dim){
if( dim==_checker_dim) return 1; if( dim==_checker_dim) return 1;
else return 0; else return 0;

View File

@ -51,6 +51,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#endif #endif
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr> template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto Cshift(const Expression &expr,int dim,int shift) -> decltype(closure(expr)) auto Cshift(const Expression &expr,int dim,int shift) -> decltype(closure(expr))
{ {

View File

@ -30,11 +30,12 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
extern std::vector<std::pair<int,int> > Cshift_table; extern std::vector<std::pair<int,int> > Cshift_table;
extern deviceVector<std::pair<int,int> > Cshift_table_device; extern commVector<std::pair<int,int> > Cshift_table_device;
inline std::pair<int,int> *MapCshiftTable(void) inline std::pair<int,int> *MapCshiftTable(void)
{ {
// GPU version // GPU version
#ifdef ACCELERATOR_CSHIFT
uint64_t sz=Cshift_table.size(); uint64_t sz=Cshift_table.size();
if (Cshift_table_device.size()!=sz ) { if (Cshift_table_device.size()!=sz ) {
Cshift_table_device.resize(sz); Cshift_table_device.resize(sz);
@ -44,13 +45,16 @@ inline std::pair<int,int> *MapCshiftTable(void)
sizeof(Cshift_table[0])*sz); sizeof(Cshift_table[0])*sz);
return &Cshift_table_device[0]; return &Cshift_table_device[0];
#else
return &Cshift_table[0];
#endif
// CPU version use identify map // CPU version use identify map
} }
/////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////
// Gather for when there is no need to SIMD split // Gather for when there is no need to SIMD split
/////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////
template<class vobj> void template<class vobj> void
Gather_plane_simple (const Lattice<vobj> &rhs,deviceVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0) Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
{ {
int rd = rhs.Grid()->_rdimensions[dimension]; int rd = rhs.Grid()->_rdimensions[dimension];
@ -90,10 +94,17 @@ Gather_plane_simple (const Lattice<vobj> &rhs,deviceVector<vobj> &buffer,int dim
{ {
auto buffer_p = & buffer[0]; auto buffer_p = & buffer[0];
auto table = MapCshiftTable(); auto table = MapCshiftTable();
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead); autoView(rhs_v , rhs, AcceleratorRead);
accelerator_for(i,ent,vobj::Nsimd(),{ accelerator_for(i,ent,vobj::Nsimd(),{
coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second])); coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second]));
}); });
#else
autoView(rhs_v , rhs, CpuRead);
thread_for(i,ent,{
buffer_p[table[i].first]=rhs_v[table[i].second];
});
#endif
} }
} }
@ -118,6 +129,7 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
int n1=rhs.Grid()->_slice_stride[dimension]; int n1=rhs.Grid()->_slice_stride[dimension];
if ( cbmask ==0x3){ if ( cbmask ==0x3){
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead); autoView(rhs_v , rhs, AcceleratorRead);
accelerator_for(nn,e1*e2,1,{ accelerator_for(nn,e1*e2,1,{
int n = nn%e1; int n = nn%e1;
@ -128,10 +140,21 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
vobj temp =rhs_v[so+o+b]; vobj temp =rhs_v[so+o+b];
extract<vobj>(temp,pointers,offset); extract<vobj>(temp,pointers,offset);
}); });
#else
autoView(rhs_v , rhs, CpuRead);
thread_for2d(n,e1,b,e2,{
int o = n*n1;
int offset = b+n*e2;
vobj temp =rhs_v[so+o+b];
extract<vobj>(temp,pointers,offset);
});
#endif
} else { } else {
Coordinate rdim=rhs.Grid()->_rdimensions; Coordinate rdim=rhs.Grid()->_rdimensions;
Coordinate cdm =rhs.Grid()->_checker_dim_mask; Coordinate cdm =rhs.Grid()->_checker_dim_mask;
std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb? std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb?
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead); autoView(rhs_v , rhs, AcceleratorRead);
accelerator_for(nn,e1*e2,1,{ accelerator_for(nn,e1*e2,1,{
int n = nn%e1; int n = nn%e1;
@ -152,13 +175,33 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
extract<vobj>(temp,pointers,offset); extract<vobj>(temp,pointers,offset);
} }
}); });
#else
autoView(rhs_v , rhs, CpuRead);
thread_for2d(n,e1,b,e2,{
Coordinate coor;
int o=n*n1;
int oindex = o+b;
int cb = RedBlackCheckerBoardFromOindex(oindex, rdim, cdm);
int ocb=1<<cb;
int offset = b+n*e2;
if ( ocb & cbmask ) {
vobj temp =rhs_v[so+o+b];
extract<vobj>(temp,pointers,offset);
}
});
#endif
} }
} }
////////////////////////////////////////////////////// //////////////////////////////////////////////////////
// Scatter for when there is no need to SIMD split // Scatter for when there is no need to SIMD split
////////////////////////////////////////////////////// //////////////////////////////////////////////////////
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,deviceVector<vobj> &buffer, int dimension,int plane,int cbmask) template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<vobj> &buffer, int dimension,int plane,int cbmask)
{ {
int rd = rhs.Grid()->_rdimensions[dimension]; int rd = rhs.Grid()->_rdimensions[dimension];
@ -202,10 +245,17 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,deviceVector<
{ {
auto buffer_p = & buffer[0]; auto buffer_p = & buffer[0];
auto table = MapCshiftTable(); auto table = MapCshiftTable();
#ifdef ACCELERATOR_CSHIFT
autoView( rhs_v, rhs, AcceleratorWrite); autoView( rhs_v, rhs, AcceleratorWrite);
accelerator_for(i,ent,vobj::Nsimd(),{ accelerator_for(i,ent,vobj::Nsimd(),{
coalescedWrite(rhs_v[table[i].first],coalescedRead(buffer_p[table[i].second])); coalescedWrite(rhs_v[table[i].first],coalescedRead(buffer_p[table[i].second]));
}); });
#else
autoView( rhs_v, rhs, CpuWrite);
thread_for(i,ent,{
rhs_v[table[i].first]=buffer_p[table[i].second];
});
#endif
} }
} }
@ -228,6 +278,7 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
if(cbmask ==0x3 ) { if(cbmask ==0x3 ) {
int _slice_stride = rhs.Grid()->_slice_stride[dimension]; int _slice_stride = rhs.Grid()->_slice_stride[dimension];
int _slice_block = rhs.Grid()->_slice_block[dimension]; int _slice_block = rhs.Grid()->_slice_block[dimension];
#ifdef ACCELERATOR_CSHIFT
autoView( rhs_v , rhs, AcceleratorWrite); autoView( rhs_v , rhs, AcceleratorWrite);
accelerator_for(nn,e1*e2,1,{ accelerator_for(nn,e1*e2,1,{
int n = nn%e1; int n = nn%e1;
@ -236,6 +287,14 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
int offset = b+n*_slice_block; int offset = b+n*_slice_block;
merge(rhs_v[so+o+b],pointers,offset); merge(rhs_v[so+o+b],pointers,offset);
}); });
#else
autoView( rhs_v , rhs, CpuWrite);
thread_for2d(n,e1,b,e2,{
int o = n*_slice_stride;
int offset = b+n*_slice_block;
merge(rhs_v[so+o+b],pointers,offset);
});
#endif
} else { } else {
// Case of SIMD split AND checker dim cannot currently be hit, except in // Case of SIMD split AND checker dim cannot currently be hit, except in
@ -301,11 +360,19 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
{ {
auto table = MapCshiftTable(); auto table = MapCshiftTable();
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead); autoView(rhs_v , rhs, AcceleratorRead);
autoView(lhs_v , lhs, AcceleratorWrite); autoView(lhs_v , lhs, AcceleratorWrite);
accelerator_for(i,ent,vobj::Nsimd(),{ accelerator_for(i,ent,vobj::Nsimd(),{
coalescedWrite(lhs_v[table[i].first],coalescedRead(rhs_v[table[i].second])); coalescedWrite(lhs_v[table[i].first],coalescedRead(rhs_v[table[i].second]));
}); });
#else
autoView(rhs_v , rhs, CpuRead);
autoView(lhs_v , lhs, CpuWrite);
thread_for(i,ent,{
lhs_v[table[i].first]=rhs_v[table[i].second];
});
#endif
} }
} }
@ -345,11 +412,19 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo
{ {
auto table = MapCshiftTable(); auto table = MapCshiftTable();
#ifdef ACCELERATOR_CSHIFT
autoView( rhs_v, rhs, AcceleratorRead); autoView( rhs_v, rhs, AcceleratorRead);
autoView( lhs_v, lhs, AcceleratorWrite); autoView( lhs_v, lhs, AcceleratorWrite);
accelerator_for(i,ent,1,{ accelerator_for(i,ent,1,{
permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type); permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
}); });
#else
autoView( rhs_v, rhs, CpuRead);
autoView( lhs_v, lhs, CpuWrite);
thread_for(i,ent,{
permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
});
#endif
} }
} }

View File

@ -94,7 +94,7 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vob
sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even); sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even);
sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd); sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd);
// std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.Checkerboard()<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl; //std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.checkerboard<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
if ( sshift[0] == sshift[1] ) { if ( sshift[0] == sshift[1] ) {
//std::cout << "Single pass Cshift_comms" <<std::endl; //std::cout << "Single pass Cshift_comms" <<std::endl;
Cshift_comms_simd(ret,rhs,dimension,shift,0x3); Cshift_comms_simd(ret,rhs,dimension,shift,0x3);
@ -104,6 +104,8 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vob
Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
} }
} }
#define ACCELERATOR_CSHIFT_NO_COPY
#ifdef ACCELERATOR_CSHIFT_NO_COPY
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{ {
typedef typename vobj::vector_type vector_type; typedef typename vobj::vector_type vector_type;
@ -123,8 +125,8 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
assert(shift<fd); assert(shift<fd);
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension]; int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
static deviceVector<vobj> send_buf; send_buf.resize(buffer_size); static cshiftVector<vobj> send_buf; send_buf.resize(buffer_size);
static deviceVector<vobj> recv_buf; recv_buf.resize(buffer_size); static cshiftVector<vobj> recv_buf; recv_buf.resize(buffer_size);
int cb= (cbmask==0x2)? Odd : Even; int cb= (cbmask==0x2)? Odd : Even;
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb); int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
@ -159,7 +161,7 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank); grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
tcomms-=usecond(); tcomms-=usecond();
grid->Barrier(); // grid->Barrier();
grid->SendToRecvFrom((void *)&send_buf[0], grid->SendToRecvFrom((void *)&send_buf[0],
xmit_to_rank, xmit_to_rank,
@ -167,7 +169,7 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
recv_from_rank, recv_from_rank,
bytes); bytes);
xbytes+=bytes; xbytes+=bytes;
grid->Barrier(); // grid->Barrier();
tcomms+=usecond(); tcomms+=usecond();
tscatter-=usecond(); tscatter-=usecond();
@ -175,11 +177,13 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
tscatter+=usecond(); tscatter+=usecond();
} }
} }
/*
std::cout << GridLogPerformance << " Cshift copy "<<tcopy/1e3<<" ms"<<std::endl; std::cout << GridLogPerformance << " Cshift copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift gather "<<tgather/1e3<<" ms"<<std::endl; std::cout << GridLogPerformance << " Cshift gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl; std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift comm "<<tcomms/1e3<<" ms"<<std::endl; std::cout << GridLogPerformance << " Cshift comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl; std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
*/
} }
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
@ -220,8 +224,8 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension]; int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
// int words = sizeof(vobj)/sizeof(vector_type); // int words = sizeof(vobj)/sizeof(vector_type);
static std::vector<deviceVector<scalar_object> > send_buf_extract; send_buf_extract.resize(Nsimd); static std::vector<cshiftVector<scalar_object> > send_buf_extract; send_buf_extract.resize(Nsimd);
static std::vector<deviceVector<scalar_object> > recv_buf_extract; recv_buf_extract.resize(Nsimd); static std::vector<cshiftVector<scalar_object> > recv_buf_extract; recv_buf_extract.resize(Nsimd);
scalar_object * recv_buf_extract_mpi; scalar_object * recv_buf_extract_mpi;
scalar_object * send_buf_extract_mpi; scalar_object * send_buf_extract_mpi;
@ -277,7 +281,7 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank); grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
tcomms-=usecond(); tcomms-=usecond();
grid->Barrier(); // grid->Barrier();
send_buf_extract_mpi = &send_buf_extract[nbr_lane][0]; send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
recv_buf_extract_mpi = &recv_buf_extract[i][0]; recv_buf_extract_mpi = &recv_buf_extract[i][0];
@ -288,7 +292,7 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
bytes); bytes);
xbytes+=bytes; xbytes+=bytes;
grid->Barrier(); // grid->Barrier();
tcomms+=usecond(); tcomms+=usecond();
rpointers[i] = &recv_buf_extract[i][0]; rpointers[i] = &recv_buf_extract[i][0];
@ -301,12 +305,242 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask); Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
tscatter+=usecond(); tscatter+=usecond();
} }
/*
std::cout << GridLogPerformance << " Cshift (s) copy "<<tcopy/1e3<<" ms"<<std::endl; std::cout << GridLogPerformance << " Cshift (s) copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) gather "<<tgather/1e3<<" ms"<<std::endl; std::cout << GridLogPerformance << " Cshift (s) gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl; std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) comm "<<tcomms/1e3<<" ms"<<std::endl; std::cout << GridLogPerformance << " Cshift (s) comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl; std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
*/
} }
#else
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
GridBase *grid=rhs.Grid();
Lattice<vobj> temp(rhs.Grid());
int fd = rhs.Grid()->_fdimensions[dimension];
int rd = rhs.Grid()->_rdimensions[dimension];
int pd = rhs.Grid()->_processors[dimension];
int simd_layout = rhs.Grid()->_simd_layout[dimension];
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
assert(simd_layout==1);
assert(comm_dim==1);
assert(shift>=0);
assert(shift<fd);
RealD tcopy=0.0;
RealD tgather=0.0;
RealD tscatter=0.0;
RealD tcomms=0.0;
uint64_t xbytes=0;
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
static cshiftVector<vobj> send_buf_v; send_buf_v.resize(buffer_size);
static cshiftVector<vobj> recv_buf_v; recv_buf_v.resize(buffer_size);
vobj *send_buf;
vobj *recv_buf;
{
grid->ShmBufferFreeAll();
size_t bytes = buffer_size*sizeof(vobj);
send_buf=(vobj *)grid->ShmBufferMalloc(bytes);
recv_buf=(vobj *)grid->ShmBufferMalloc(bytes);
}
int cb= (cbmask==0x2)? Odd : Even;
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
for(int x=0;x<rd;x++){
int sx = (x+sshift)%rd;
int comm_proc = ((x+sshift)/rd)%pd;
if (comm_proc==0) {
tcopy-=usecond();
Copy_plane(ret,rhs,dimension,x,sx,cbmask);
tcopy+=usecond();
} else {
int words = buffer_size;
if (cbmask != 0x3) words=words>>1;
int bytes = words * sizeof(vobj);
tgather-=usecond();
Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask);
tgather+=usecond();
// int rank = grid->_processor;
int recv_from_rank;
int xmit_to_rank;
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
tcomms-=usecond();
// grid->Barrier();
acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes);
grid->SendToRecvFrom((void *)&send_buf[0],
xmit_to_rank,
(void *)&recv_buf[0],
recv_from_rank,
bytes);
xbytes+=bytes;
acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes);
// grid->Barrier();
tcomms+=usecond();
tscatter-=usecond();
Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask);
tscatter+=usecond();
}
}
/*
std::cout << GridLogPerformance << " Cshift copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
*/
}
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
GridBase *grid=rhs.Grid();
const int Nsimd = grid->Nsimd();
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
int fd = grid->_fdimensions[dimension];
int rd = grid->_rdimensions[dimension];
int ld = grid->_ldimensions[dimension];
int pd = grid->_processors[dimension];
int simd_layout = grid->_simd_layout[dimension];
int comm_dim = grid->_processors[dimension] >1 ;
//std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
// << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout
// << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
assert(comm_dim==1);
assert(simd_layout==2);
assert(shift>=0);
assert(shift<fd);
RealD tcopy=0.0;
RealD tgather=0.0;
RealD tscatter=0.0;
RealD tcomms=0.0;
uint64_t xbytes=0;
int permute_type=grid->PermuteType(dimension);
///////////////////////////////////////////////
// Simd direction uses an extract/merge pair
///////////////////////////////////////////////
int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
// int words = sizeof(vobj)/sizeof(vector_type);
static std::vector<cshiftVector<scalar_object> > send_buf_extract; send_buf_extract.resize(Nsimd);
static std::vector<cshiftVector<scalar_object> > recv_buf_extract; recv_buf_extract.resize(Nsimd);
scalar_object * recv_buf_extract_mpi;
scalar_object * send_buf_extract_mpi;
{
size_t bytes = sizeof(scalar_object)*buffer_size;
grid->ShmBufferFreeAll();
send_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
recv_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
}
for(int s=0;s<Nsimd;s++){
send_buf_extract[s].resize(buffer_size);
recv_buf_extract[s].resize(buffer_size);
}
int bytes = buffer_size*sizeof(scalar_object);
ExtractPointerArray<scalar_object> pointers(Nsimd); //
ExtractPointerArray<scalar_object> rpointers(Nsimd); // received pointers
///////////////////////////////////////////
// Work out what to send where
///////////////////////////////////////////
int cb = (cbmask==0x2)? Odd : Even;
int sshift= grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
// loop over outer coord planes orthog to dim
for(int x=0;x<rd;x++){
// FIXME call local permute copy if none are offnode.
for(int i=0;i<Nsimd;i++){
pointers[i] = &send_buf_extract[i][0];
}
tgather-=usecond();
int sx = (x+sshift)%rd;
Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
tgather+=usecond();
for(int i=0;i<Nsimd;i++){
int inner_bit = (Nsimd>>(permute_type+1));
int ic= (i&inner_bit)? 1:0;
int my_coor = rd*ic + x;
int nbr_coor = my_coor+sshift;
int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors
int nbr_ic = (nbr_coor%ld)/rd; // inner coord of peer
int nbr_ox = (nbr_coor%rd); // outer coord of peer
int nbr_lane = (i&(~inner_bit));
int recv_from_rank;
int xmit_to_rank;
if (nbr_ic) nbr_lane|=inner_bit;
assert (sx == nbr_ox);
if(nbr_proc){
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
tcomms-=usecond();
// grid->Barrier();
acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes);
grid->SendToRecvFrom((void *)send_buf_extract_mpi,
xmit_to_rank,
(void *)recv_buf_extract_mpi,
recv_from_rank,
bytes);
acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes);
xbytes+=bytes;
// grid->Barrier();
tcomms+=usecond();
rpointers[i] = &recv_buf_extract[i][0];
} else {
rpointers[i] = &send_buf_extract[nbr_lane][0];
}
}
tscatter-=usecond();
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
tscatter+=usecond();
}
/*
std::cout << GridLogPerformance << " Cshift (s) copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s"<<std::endl;
*/
}
#endif
NAMESPACE_END(Grid); NAMESPACE_END(Grid);
#endif #endif

View File

@ -1,5 +1,5 @@
#include <Grid/GridCore.h> #include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
std::vector<std::pair<int,int> > Cshift_table; std::vector<std::pair<int,int> > Cshift_table;
deviceVector<std::pair<int,int> > Cshift_table_device; commVector<std::pair<int,int> > Cshift_table_device;
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -236,20 +236,17 @@ public:
template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){ template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){
vobj vtmp; vobj vtmp;
vtmp = r; vtmp = r;
#if 0 #if 1
deviceVector<vobj> vvtmp(1);
acceleratorPut(vvtmp[0],vtmp);
vobj *vvtmp_p = & vvtmp[0];
auto me = View(AcceleratorWrite);
accelerator_for(ss,me.size(),vobj::Nsimd(),{
auto stmp=coalescedRead(*vvtmp_p);
coalescedWrite(me[ss],stmp);
});
#else
auto me = View(CpuWrite); auto me = View(CpuWrite);
thread_for(ss,me.size(),{ thread_for(ss,me.size(),{
me[ss]= r; me[ss]= r;
}); });
#else
auto me = View(AcceleratorWrite);
accelerator_for(ss,me.size(),vobj::Nsimd(),{
auto stmp=coalescedRead(vtmp);
coalescedWrite(me[ss],stmp);
});
#endif #endif
me.ViewClose(); me.ViewClose();
return *this; return *this;

View File

@ -53,19 +53,36 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
typedef decltype(basis[0]) Field; typedef decltype(basis[0]) Field;
typedef decltype(basis[0].View(AcceleratorRead)) View; typedef decltype(basis[0].View(AcceleratorRead)) View;
hostVector<View> h_basis_v(basis.size()); Vector<View> basis_v; basis_v.reserve(basis.size());
deviceVector<View> d_basis_v(basis.size()); typedef typename std::remove_reference<decltype(basis_v[0][0])>::type vobj;
typedef typename std::remove_reference<decltype(h_basis_v[0][0])>::type vobj;
typedef typename std::remove_reference<decltype(Qt(0,0))>::type Coeff_t; typedef typename std::remove_reference<decltype(Qt(0,0))>::type Coeff_t;
GridBase* grid = basis[0].Grid(); GridBase* grid = basis[0].Grid();
for(int k=0;k<basis.size();k++){ for(int k=0;k<basis.size();k++){
h_basis_v[k] = basis[k].View(AcceleratorWrite); basis_v.push_back(basis[k].View(AcceleratorWrite));
acceleratorPut(d_basis_v[k],h_basis_v[k]);
} }
View *basis_vp = &d_basis_v[0]; #if ( !(defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)) )
int max_threads = thread_max();
Vector < vobj > Bt(Nm * max_threads);
thread_region
{
vobj* B = &Bt[Nm * thread_num()];
thread_for_in_region(ss, grid->oSites(),{
for(int j=j0; j<j1; ++j) B[j]=0.;
for(int j=j0; j<j1; ++j){
for(int k=k0; k<k1; ++k){
B[j] +=Qt(j,k) * basis_v[k][ss];
}
}
for(int j=j0; j<j1; ++j){
basis_v[j][ss] = B[j];
}
});
}
#else
View *basis_vp = &basis_v[0];
int nrot = j1-j0; int nrot = j1-j0;
if (!nrot) // edge case not handled gracefully by Cuda if (!nrot) // edge case not handled gracefully by Cuda
@ -74,19 +91,17 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
uint64_t oSites =grid->oSites(); uint64_t oSites =grid->oSites();
uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead
deviceVector <vobj> Bt(siteBlock * nrot); Vector <vobj> Bt(siteBlock * nrot);
auto Bp=&Bt[0]; auto Bp=&Bt[0];
// GPU readable copy of matrix // GPU readable copy of matrix
hostVector<Coeff_t> h_Qt_jv(Nm*Nm); Vector<Coeff_t> Qt_jv(Nm*Nm);
deviceVector<Coeff_t> Qt_jv(Nm*Nm);
Coeff_t *Qt_p = & Qt_jv[0]; Coeff_t *Qt_p = & Qt_jv[0];
thread_for(i,Nm*Nm,{ thread_for(i,Nm*Nm,{
int j = i/Nm; int j = i/Nm;
int k = i%Nm; int k = i%Nm;
h_Qt_jv[i]=Qt(j,k); Qt_p[i]=Qt(j,k);
}); });
acceleratorCopyToDevice(&h_Qt_jv[0],Qt_p,Nm*Nm*sizeof(Coeff_t));
// Block the loop to keep storage footprint down // Block the loop to keep storage footprint down
for(uint64_t s=0;s<oSites;s+=siteBlock){ for(uint64_t s=0;s<oSites;s+=siteBlock){
@ -122,8 +137,9 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
coalescedWrite(basis_vp[jj][sss],coalescedRead(Bp[ss*nrot+j])); coalescedWrite(basis_vp[jj][sss],coalescedRead(Bp[ss*nrot+j]));
}); });
} }
#endif
for(int k=0;k<basis.size();k++) h_basis_v[k].ViewClose(); for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
} }
// Extract a single rotated vector // Extract a single rotated vector
@ -136,19 +152,16 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in
result.Checkerboard() = basis[0].Checkerboard(); result.Checkerboard() = basis[0].Checkerboard();
hostVector<View> h_basis_v(basis.size()); Vector<View> basis_v; basis_v.reserve(basis.size());
deviceVector<View> d_basis_v(basis.size());
for(int k=0;k<basis.size();k++){ for(int k=0;k<basis.size();k++){
h_basis_v[k]=basis[k].View(AcceleratorRead); basis_v.push_back(basis[k].View(AcceleratorRead));
acceleratorPut(d_basis_v[k],h_basis_v[k]);
} }
vobj zz=Zero(); vobj zz=Zero();
deviceVector<double> Qt_jv(Nm); Vector<double> Qt_jv(Nm);
double * Qt_j = & Qt_jv[0]; double * Qt_j = & Qt_jv[0];
for(int k=0;k<Nm;++k) acceleratorPut(Qt_j[k],Qt(j,k)); for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k);
auto basis_vp=& d_basis_v[0]; auto basis_vp=& basis_v[0];
autoView(result_v,result,AcceleratorWrite); autoView(result_v,result,AcceleratorWrite);
accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{ accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
vobj zzz=Zero(); vobj zzz=Zero();
@ -158,7 +171,7 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in
} }
coalescedWrite(result_v[ss], B); coalescedWrite(result_v[ss], B);
}); });
for(int k=0;k<basis.size();k++) h_basis_v[k].ViewClose(); for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
} }
template<class Field> template<class Field>

View File

@ -165,7 +165,7 @@ inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
int Nsimd = grid->Nsimd(); int Nsimd = grid->Nsimd();
// assert( l.Checkerboard()== grid->CheckerBoard(site)); assert( l.Checkerboard()== grid->CheckerBoard(site));
assert( sizeof(sobj)*Nsimd == sizeof(vobj)); assert( sizeof(sobj)*Nsimd == sizeof(vobj));
static const int words=sizeof(vobj)/sizeof(vector_type); static const int words=sizeof(vobj)/sizeof(vector_type);
@ -179,7 +179,7 @@ inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
for(int w=0;w<words;w++){ for(int w=0;w<words;w++){
pt[w] = getlane(vp[w],idx); pt[w] = getlane(vp[w],idx);
} }
// std::cout << "peekLocalSite "<<site<<" "<<odx<<","<<idx<<" "<<s<<std::endl;
return; return;
}; };
template<class vobj,class sobj> template<class vobj,class sobj>
@ -202,7 +202,7 @@ inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site)
int Nsimd = grid->Nsimd(); int Nsimd = grid->Nsimd();
// assert( l.Checkerboard()== grid->CheckerBoard(site)); assert( l.Checkerboard()== grid->CheckerBoard(site));
assert( sizeof(sobj)*Nsimd == sizeof(vobj)); assert( sizeof(sobj)*Nsimd == sizeof(vobj));
static const int words=sizeof(vobj)/sizeof(vector_type); static const int words=sizeof(vobj)/sizeof(vector_type);

View File

@ -46,7 +46,7 @@ inline typename vobj::scalar_object sum_cpu(const vobj *arg, Integer osites)
// const int Nsimd = vobj::Nsimd(); // const int Nsimd = vobj::Nsimd();
const int nthread = GridThread::GetThreads(); const int nthread = GridThread::GetThreads();
std::vector<sobj> sumarray(nthread); Vector<sobj> sumarray(nthread);
for(int i=0;i<nthread;i++){ for(int i=0;i<nthread;i++){
sumarray[i]=Zero(); sumarray[i]=Zero();
} }
@ -75,7 +75,7 @@ inline typename vobj::scalar_objectD sumD_cpu(const vobj *arg, Integer osites)
const int nthread = GridThread::GetThreads(); const int nthread = GridThread::GetThreads();
std::vector<sobj> sumarray(nthread); Vector<sobj> sumarray(nthread);
for(int i=0;i<nthread;i++){ for(int i=0;i<nthread;i++){
sumarray[i]=Zero(); sumarray[i]=Zero();
} }
@ -343,6 +343,18 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
autoView( x_v, x, AcceleratorRead); autoView( x_v, x, AcceleratorRead);
autoView( y_v, y, AcceleratorRead); autoView( y_v, y, AcceleratorRead);
autoView( z_v, z, AcceleratorWrite); autoView( z_v, z, AcceleratorWrite);
#if 0
typedef decltype(innerProductD(x_v[0],y_v[0])) inner_t;
Vector<inner_t> inner_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
accelerator_for( ss, sites, nsimd,{
auto tmp = a*x_v(ss)+b*y_v(ss);
coalescedWrite(inner_tmp_v[ss],innerProductD(tmp,tmp));
coalescedWrite(z_v[ss],tmp);
});
nrm = real(TensorRemove(sum(inner_tmp_v,sites)));
#else
typedef decltype(innerProduct(x_v[0],y_v[0])) inner_t; typedef decltype(innerProduct(x_v[0],y_v[0])) inner_t;
deviceVector<inner_t> inner_tmp; deviceVector<inner_t> inner_tmp;
inner_tmp.resize(sites); inner_tmp.resize(sites);
@ -354,6 +366,7 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
coalescedWrite(z_v[ss],tmp); coalescedWrite(z_v[ss],tmp);
}); });
nrm = real(TensorRemove(sumD(inner_tmp_v,sites))); nrm = real(TensorRemove(sumD(inner_tmp_v,sites)));
#endif
grid->GlobalSum(nrm); grid->GlobalSum(nrm);
return nrm; return nrm;
} }
@ -364,7 +377,7 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti
conformable(left,right); conformable(left,right);
typedef typename vobj::vector_typeD vector_type; typedef typename vobj::vector_typeD vector_type;
std::vector<ComplexD> tmp(2); Vector<ComplexD> tmp(2);
GridBase *grid = left.Grid(); GridBase *grid = left.Grid();
@ -374,8 +387,8 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti
// GPU // GPU
typedef decltype(innerProductD(vobj(),vobj())) inner_t; typedef decltype(innerProductD(vobj(),vobj())) inner_t;
typedef decltype(innerProductD(vobj(),vobj())) norm_t; typedef decltype(innerProductD(vobj(),vobj())) norm_t;
deviceVector<inner_t> inner_tmp(sites); Vector<inner_t> inner_tmp(sites);
deviceVector<norm_t> norm_tmp(sites); Vector<norm_t> norm_tmp(sites);
auto inner_tmp_v = &inner_tmp[0]; auto inner_tmp_v = &inner_tmp[0];
auto norm_tmp_v = &norm_tmp[0]; auto norm_tmp_v = &norm_tmp[0];
{ {
@ -425,9 +438,7 @@ inline auto sum(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)
// sliceSum, sliceInnerProduct, sliceAxpy, sliceNorm etc... // sliceSum, sliceInnerProduct, sliceAxpy, sliceNorm etc...
////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj> inline void sliceSum(const Lattice<vobj> &Data, template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<typename vobj::scalar_object> &result,int orthogdim)
std::vector<typename vobj::scalar_object> &result,
int orthogdim)
{ {
/////////////////////////////////////////////////////// ///////////////////////////////////////////////////////
// FIXME precision promoted summation // FIXME precision promoted summation
@ -449,8 +460,8 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,
int ld=grid->_ldimensions[orthogdim]; int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim]; int rd=grid->_rdimensions[orthogdim];
std::vector<vobj> lvSum(rd); // will locally sum vectors first Vector<vobj> lvSum(rd); // will locally sum vectors first
std::vector<sobj> lsSum(ld,Zero()); // sum across these down to scalars Vector<sobj> lsSum(ld,Zero()); // sum across these down to scalars
ExtractBuffer<sobj> extracted(Nsimd); // splitting the SIMD ExtractBuffer<sobj> extracted(Nsimd); // splitting the SIMD
result.resize(fd); // And then global sum to return the same vector to every node result.resize(fd); // And then global sum to return the same vector to every node
@ -508,20 +519,7 @@ sliceSum(const Lattice<vobj> &Data,int orthogdim)
return result; return result;
} }
/*
Reimplement
1)
template<class vobj>
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)
2)
template<class vobj>
static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
3)
-- Make Slice Mul Matrix call sliceMaddMatrix
*/
template<class vobj> template<class vobj>
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim) static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)
{ {
@ -541,8 +539,8 @@ static void sliceInnerProductVector( std::vector<ComplexD> & result, const Latti
int ld=grid->_ldimensions[orthogdim]; int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim]; int rd=grid->_rdimensions[orthogdim];
std::vector<vector_type> lvSum(rd); // will locally sum vectors first Vector<vector_type> lvSum(rd); // will locally sum vectors first
std::vector<scalar_type > lsSum(ld,scalar_type(0.0)); // sum across these down to scalars Vector<scalar_type > lsSum(ld,scalar_type(0.0)); // sum across these down to scalars
ExtractBuffer<iScalar<scalar_type> > extracted(Nsimd); // splitting the SIMD ExtractBuffer<iScalar<scalar_type> > extracted(Nsimd); // splitting the SIMD
result.resize(fd); // And then global sum to return the same vector to every node for IO to file result.resize(fd); // And then global sum to return the same vector to every node for IO to file
@ -672,96 +670,203 @@ static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice
} }
}; };
/*
inline GridBase *makeSubSliceGrid(const GridBase *BlockSolverGrid,int Orthog) inline GridBase *makeSubSliceGrid(const GridBase *BlockSolverGrid,int Orthog)
{ {
int NN = BlockSolverGrid->_ndimension; int NN = BlockSolverGrid->_ndimension;
int nsimd = BlockSolverGrid->Nsimd(); int nsimd = BlockSolverGrid->Nsimd();
std::vector<int> latt_phys(NN-1); std::vector<int> latt_phys(0);
Coordinate simd_phys; std::vector<int> simd_phys(0);
std::vector<int> mpi_phys(NN-1); std::vector<int> mpi_phys(0);
Coordinate checker_dim_mask(NN-1);
int checker_dim=-1;
int dd;
for(int d=0;d<NN;d++){ for(int d=0;d<NN;d++){
if( d!=Orthog ) { if( d!=Orthog ) {
latt_phys[dd]=BlockSolverGrid->_fdimensions[d]; latt_phys.push_back(BlockSolverGrid->_fdimensions[d]);
mpi_phys[dd] =BlockSolverGrid->_processors[d]; simd_phys.push_back(BlockSolverGrid->_simd_layout[d]);
checker_dim_mask[dd] = BlockSolverGrid->_checker_dim_mask[d]; mpi_phys.push_back(BlockSolverGrid->_processors[d]);
if ( d == BlockSolverGrid->_checker_dim ) checker_dim = dd;
dd++;
} }
} }
simd_phys=GridDefaultSimd(latt_phys.size(),nsimd); return (GridBase *)new GridCartesian(latt_phys,simd_phys,mpi_phys);
GridCartesian *tmp = new GridCartesian(latt_phys,simd_phys,mpi_phys);
if(BlockSolverGrid->_isCheckerBoarded) {
GridRedBlackCartesian *ret = new GridRedBlackCartesian(tmp,checker_dim_mask,checker_dim);
delete tmp;
return (GridBase *) ret;
} else {
return (GridBase *) tmp;
}
} }
*/
template<class vobj> template<class vobj>
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0) static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)
{ {
GridBase *FullGrid = X.Grid();
GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
Lattice<vobj> Ys(SliceGrid);
Lattice<vobj> Rs(SliceGrid);
Lattice<vobj> Xs(SliceGrid);
Lattice<vobj> RR(FullGrid);
RR = R; // Copies checkerboard for insert
typedef typename vobj::scalar_object sobj; typedef typename vobj::scalar_object sobj;
typedef typename vobj::vector_type vector_type; typedef typename vobj::vector_type vector_type;
int Nslice = X.Grid()->GlobalDimensions()[Orthog];
for(int i=0;i<Nslice;i++){ int Nblock = X.Grid()->GlobalDimensions()[Orthog];
ExtractSlice(Ys,Y,i,Orthog);
ExtractSlice(Rs,R,i,Orthog); GridBase *FullGrid = X.Grid();
Rs=Ys; // GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
for(int j=0;j<Nslice;j++){
ExtractSlice(Xs,X,j,Orthog); // Lattice<vobj> Xslice(SliceGrid);
Rs = Rs + Xs*(scale*aa(j,i)); // Lattice<vobj> Rslice(SliceGrid);
assert( FullGrid->_simd_layout[Orthog]==1);
// int nh = FullGrid->_ndimension;
// int nl = SliceGrid->_ndimension;
// int nl = nh-1;
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
int stride=FullGrid->_slice_stride[Orthog];
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
autoView( X_v, X, CpuRead);
autoView( Y_v, Y, CpuRead);
autoView( R_v, R, CpuWrite);
thread_region
{
Vector<vobj> s_x(Nblock);
thread_for_collapse_in_region(2, n,nblock, {
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
s_x[i] = X_v[o+i*ostride];
} }
InsertSlice(Rs,RR,i,Orthog);
vobj dot;
for(int i=0;i<Nblock;i++){
dot = Y_v[o+i*ostride];
for(int j=0;j<Nblock;j++){
dot = dot + s_x[j]*(scale*aa(j,i));
}
R_v[o+i*ostride]=dot;
}
}});
} }
R=RR; // Copy back handles arguments aliasing case
delete SliceGrid;
}; };
template<class vobj> template<class vobj>
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0) static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0)
{ {
R=Zero(); typedef typename vobj::scalar_object sobj;
sliceMaddMatrix(R,aa,X,R,Orthog,scale); typedef typename vobj::vector_type vector_type;
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
GridBase *FullGrid = X.Grid();
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
// Lattice<vobj> Xslice(SliceGrid);
// Lattice<vobj> Rslice(SliceGrid);
assert( FullGrid->_simd_layout[Orthog]==1);
// int nh = FullGrid->_ndimension;
// int nl = SliceGrid->_ndimension;
// int nl=1;
//FIXME package in a convenient iterator
// thread_for2d_in_region
//Should loop over a plane orthogonal to direction "Orthog"
int stride=FullGrid->_slice_stride[Orthog];
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
autoView( R_v, R, CpuWrite);
autoView( X_v, X, CpuRead);
thread_region
{
std::vector<vobj> s_x(Nblock);
thread_for_collapse_in_region( 2 ,n,nblock,{
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
s_x[i] = X_v[o+i*ostride];
}
vobj dot;
for(int i=0;i<Nblock;i++){
dot = s_x[0]*(scale*aa(0,i));
for(int j=1;j<Nblock;j++){
dot = dot + s_x[j]*(scale*aa(j,i));
}
R_v[o+i*ostride]=dot;
}
}});
}
}; };
template<class vobj> template<class vobj>
static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog) static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
{ {
GridBase *SliceGrid = makeSubSliceGrid(lhs.Grid(),Orthog);
Lattice<vobj> ls(SliceGrid);
Lattice<vobj> rs(SliceGrid);
typedef typename vobj::scalar_object sobj; typedef typename vobj::scalar_object sobj;
typedef typename vobj::vector_type vector_type; typedef typename vobj::vector_type vector_type;
int Nslice = lhs.Grid()->GlobalDimensions()[Orthog];
mat = Eigen::MatrixXcd::Zero(Nslice,Nslice); GridBase *FullGrid = lhs.Grid();
for(int s=0;s<Nslice;s++){ // GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
ExtractSlice(ls,lhs,s,Orthog);
for(int ss=0;ss<Nslice;ss++){ int Nblock = FullGrid->GlobalDimensions()[Orthog];
ExtractSlice(rs,rhs,ss,Orthog);
mat(s,ss) = innerProduct(ls,rs); // Lattice<vobj> Lslice(SliceGrid);
// Lattice<vobj> Rslice(SliceGrid);
mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
assert( FullGrid->_simd_layout[Orthog]==1);
// int nh = FullGrid->_ndimension;
// int nl = SliceGrid->_ndimension;
// int nl = nh-1;
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
int stride=FullGrid->_slice_stride[Orthog];
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
typedef typename vobj::vector_typeD vector_typeD;
autoView( lhs_v, lhs, CpuRead);
autoView( rhs_v, rhs, CpuRead);
thread_region
{
std::vector<vobj> Left(Nblock);
std::vector<vobj> Right(Nblock);
Eigen::MatrixXcd mat_thread = Eigen::MatrixXcd::Zero(Nblock,Nblock);
thread_for_collapse_in_region( 2, n,nblock,{
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
Left [i] = lhs_v[o+i*ostride];
Right[i] = rhs_v[o+i*ostride];
}
for(int i=0;i<Nblock;i++){
for(int j=0;j<Nblock;j++){
auto tmp = innerProduct(Left[i],Right[j]);
auto rtmp = TensorRemove(tmp);
auto red = Reduce(rtmp);
mat_thread(i,j) += std::complex<double>(real(red),imag(red));
}}
}});
thread_critical
{
mat += mat_thread;
} }
} }
delete SliceGrid;
for(int i=0;i<Nblock;i++){
for(int j=0;j<Nblock;j++){
ComplexD sum = mat(i,j);
FullGrid->GlobalSum(sum);
mat(i,j)=sum;
}}
return;
} }
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -214,12 +214,22 @@ inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osi
// Move out of UVM // Move out of UVM
// Turns out I had messed up the synchronise after move to compute stream // Turns out I had messed up the synchronise after move to compute stream
// as running this on the default stream fools the synchronise // as running this on the default stream fools the synchronise
deviceVector<sobj> buffer(numBlocks); #undef UVM_BLOCK_BUFFER
#ifndef UVM_BLOCK_BUFFER
commVector<sobj> buffer(numBlocks);
sobj *buffer_v = &buffer[0]; sobj *buffer_v = &buffer[0];
sobj result; sobj result;
reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size); reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
accelerator_barrier(); accelerator_barrier();
acceleratorCopyFromDevice(buffer_v,&result,sizeof(result)); acceleratorCopyFromDevice(buffer_v,&result,sizeof(result));
#else
Vector<sobj> buffer(numBlocks);
sobj *buffer_v = &buffer[0];
sobj result;
reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
accelerator_barrier();
result = *buffer_v;
#endif
return result; return result;
} }
@ -234,7 +244,7 @@ inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osi
const int words = sizeof(vobj)/sizeof(vector); const int words = sizeof(vobj)/sizeof(vector);
deviceVector<vector> buffer(osites); Vector<vector> buffer(osites);
vector *dat = (vector *)lat; vector *dat = (vector *)lat;
vector *buf = &buffer[0]; vector *buf = &buffer[0];
iScalar<vector> *tbuf =(iScalar<vector> *) &buffer[0]; iScalar<vector> *tbuf =(iScalar<vector> *) &buffer[0];

View File

@ -4,20 +4,23 @@ NAMESPACE_BEGIN(Grid);
// Possibly promote to double and sum // Possibly promote to double and sum
///////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////////////
template <class vobj> template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu_tensor(const vobj *lat, Integer osites) inline typename vobj::scalar_objectD sumD_gpu_tensor(const vobj *lat, Integer osites)
{ {
typedef typename vobj::scalar_object sobj; typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_objectD sobjD; typedef typename vobj::scalar_objectD sobjD;
static Vector<sobj> mysum;
mysum.resize(1);
sobj *mysum_p = & mysum[0];
sobj identity; zeroit(identity); sobj identity; zeroit(identity);
sobj ret; zeroit(ret); mysum[0] = identity;
sobj ret ;
Integer nsimd= vobj::Nsimd(); Integer nsimd= vobj::Nsimd();
{
sycl::buffer<sobj, 1> abuff(&ret, {1}); const cl::sycl::property_list PropList ({ cl::sycl::property::reduction::initialize_to_identity() });
theGridAccelerator->submit([&](cl::sycl::handler &cgh) { theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
auto Reduction = cl::sycl::reduction(abuff,cgh,identity,std::plus<>()); auto Reduction = cl::sycl::reduction(mysum_p,identity,std::plus<>(),PropList);
cgh.parallel_for(cl::sycl::range<1>{osites}, cgh.parallel_for(cl::sycl::range<1>{osites},
Reduction, Reduction,
[=] (cl::sycl::id<1> item, auto &sum) { [=] (cl::sycl::id<1> item, auto &sum) {
@ -25,7 +28,9 @@ inline typename vobj::scalar_objectD sumD_gpu_tensor(const vobj *lat, Integer os
sum +=Reduce(lat[osite]); sum +=Reduce(lat[osite]);
}); });
}); });
} theGridAccelerator->wait();
ret = mysum[0];
// free(mysum,*theGridAccelerator);
sobjD dret; convertType(dret,ret); sobjD dret; convertType(dret,ret);
return dret; return dret;
} }
@ -71,22 +76,59 @@ inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osite
template<class Word> Word svm_xor(Word *vec,uint64_t L) template<class Word> Word svm_xor(Word *vec,uint64_t L)
{ {
Word xorResult; xorResult = 0;
static Vector<Word> d_sum;
d_sum.resize(1);
Word *d_sum_p=&d_sum[0];
Word identity; identity=0; Word identity; identity=0;
Word ret = 0; d_sum[0] = identity;
{ const cl::sycl::property_list PropList ({ cl::sycl::property::reduction::initialize_to_identity() });
sycl::buffer<Word, 1> abuff(&ret, {1});
theGridAccelerator->submit([&](cl::sycl::handler &cgh) { theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
auto Reduction = cl::sycl::reduction(abuff,cgh,identity,std::bit_xor<>()); auto Reduction = cl::sycl::reduction(d_sum_p,identity,std::bit_xor<>(),PropList);
cgh.parallel_for(cl::sycl::range<1>{L}, cgh.parallel_for(cl::sycl::range<1>{L},
Reduction, Reduction,
[=] (cl::sycl::id<1> index, auto &sum) { [=] (cl::sycl::id<1> index, auto &sum) {
sum^=vec[index]; sum^=vec[index];
}); });
}); });
}
theGridAccelerator->wait(); theGridAccelerator->wait();
Word ret = d_sum[0];
// free(d_sum,*theGridAccelerator);
return ret; return ret;
} }
NAMESPACE_END(Grid); NAMESPACE_END(Grid);
/*
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu_repack(const vobj *lat, Integer osites)
{
typedef typename vobj::vector_type vector;
typedef typename vobj::scalar_type scalar;
typedef typename vobj::scalar_typeD scalarD;
typedef typename vobj::scalar_objectD sobjD;
sobjD ret;
scalarD *ret_p = (scalarD *)&ret;
const int nsimd = vobj::Nsimd();
const int words = sizeof(vobj)/sizeof(vector);
Vector<scalar> buffer(osites*nsimd);
scalar *buf = &buffer[0];
vector *dat = (vector *)lat;
for(int w=0;w<words;w++) {
accelerator_for(ss,osites,nsimd,{
int lane = acceleratorSIMTlane(nsimd);
buf[ss*nsimd+lane] = dat[ss*words+w].getlane(lane);
});
//Precision change at this point is to late to gain precision
ret_p[w] = svm_reduce(buf,nsimd*osites);
}
return ret;
}
*/

View File

@ -21,18 +21,9 @@ NAMESPACE_BEGIN(Grid);
#if defined(GRID_CUDA) || defined(GRID_HIP) #if defined(GRID_CUDA) || defined(GRID_HIP)
template<class vobj> template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
inline void sliceSumReduction_cub_small(const vobj *Data,
std::vector<vobj> &lvSum,
const int rd,
const int e1,
const int e2,
const int stride,
const int ostride,
const int Nsimd)
{
size_t subvol_size = e1*e2; size_t subvol_size = e1*e2;
deviceVector<vobj> reduction_buffer(rd*subvol_size); commVector<vobj> reduction_buffer(rd*subvol_size);
auto rb_p = &reduction_buffer[0]; auto rb_p = &reduction_buffer[0];
vobj zero_init; vobj zero_init;
zeroit(zero_init); zeroit(zero_init);
@ -103,15 +94,7 @@ inline void sliceSumReduction_cub_small(const vobj *Data,
#if defined(GRID_SYCL) #if defined(GRID_SYCL)
template<class vobj> template<class vobj> inline void sliceSumReduction_sycl_small(const vobj *Data, Vector <vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
inline void sliceSumReduction_sycl_small(const vobj *Data,
std::vector <vobj> &lvSum,
const int &rd,
const int &e1,
const int &e2,
const int &stride,
const int &ostride,
const int &Nsimd)
{ {
size_t subvol_size = e1*e2; size_t subvol_size = e1*e2;
@ -122,7 +105,7 @@ inline void sliceSumReduction_sycl_small(const vobj *Data,
mysum[r] = vobj_zero; mysum[r] = vobj_zero;
} }
deviceVector<vobj> reduction_buffer(rd*subvol_size); commVector<vobj> reduction_buffer(rd*subvol_size);
auto rb_p = &reduction_buffer[0]; auto rb_p = &reduction_buffer[0];
@ -161,23 +144,14 @@ inline void sliceSumReduction_sycl_small(const vobj *Data,
} }
#endif #endif
template<class vobj> template<class vobj> inline void sliceSumReduction_large(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
inline void sliceSumReduction_large(const vobj *Data,
std::vector<vobj> &lvSum,
const int rd,
const int e1,
const int e2,
const int stride,
const int ostride,
const int Nsimd)
{
typedef typename vobj::vector_type vector; typedef typename vobj::vector_type vector;
const int words = sizeof(vobj)/sizeof(vector); const int words = sizeof(vobj)/sizeof(vector);
const int osites = rd*e1*e2; const int osites = rd*e1*e2;
deviceVector<vector>buffer(osites); commVector<vector>buffer(osites);
vector *dat = (vector *)Data; vector *dat = (vector *)Data;
vector *buf = &buffer[0]; vector *buf = &buffer[0];
std::vector<vector> lvSum_small(rd); Vector<vector> lvSum_small(rd);
vector *lvSum_ptr = (vector *)&lvSum[0]; vector *lvSum_ptr = (vector *)&lvSum[0];
for (int w = 0; w < words; w++) { for (int w = 0; w < words; w++) {
@ -194,18 +168,13 @@ inline void sliceSumReduction_large(const vobj *Data,
for (int r = 0; r < rd; r++) { for (int r = 0; r < rd; r++) {
lvSum_ptr[w+words*r]=lvSum_small[r]; lvSum_ptr[w+words*r]=lvSum_small[r];
} }
}
} }
template<class vobj>
inline void sliceSumReduction_gpu(const Lattice<vobj> &Data, }
std::vector<vobj> &lvSum,
const int rd, template<class vobj> inline void sliceSumReduction_gpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd)
const int e1,
const int e2,
const int stride,
const int ostride,
const int Nsimd)
{ {
autoView(Data_v, Data, AcceleratorRead); //reduction libraries cannot deal with large vobjs so we split into small/large case. autoView(Data_v, Data, AcceleratorRead); //reduction libraries cannot deal with large vobjs so we split into small/large case.
if constexpr (sizeof(vobj) <= 256) { if constexpr (sizeof(vobj) <= 256) {
@ -223,15 +192,7 @@ inline void sliceSumReduction_gpu(const Lattice<vobj> &Data,
} }
template<class vobj> template<class vobj> inline void sliceSumReduction_cpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
inline void sliceSumReduction_cpu(const Lattice<vobj> &Data,
std::vector<vobj> &lvSum,
const int &rd,
const int &e1,
const int &e2,
const int &stride,
const int &ostride,
const int &Nsimd)
{ {
// sum over reduced dimension planes, breaking out orthog dir // sum over reduced dimension planes, breaking out orthog dir
// Parallel over orthog direction // Parallel over orthog direction
@ -247,19 +208,15 @@ inline void sliceSumReduction_cpu(const Lattice<vobj> &Data,
}); });
} }
template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data, template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
std::vector<vobj> &lvSum,
const int &rd,
const int &e1,
const int &e2,
const int &stride,
const int &ostride,
const int &Nsimd)
{ {
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL) #if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
sliceSumReduction_gpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd); sliceSumReduction_gpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
#else #else
sliceSumReduction_cpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd); sliceSumReduction_cpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
#endif #endif
} }

View File

@ -43,49 +43,20 @@ inline void subdivides(GridBase *coarse,GridBase *fine)
} }
} }
//////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////
// remove and insert a half checkerboard // remove and insert a half checkerboard
//////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj> inline void pickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full) template<class vobj> inline void pickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full)
{ {
half.Checkerboard() = cb; acceleratorPickCheckerboard(cb,half,full);
autoView( half_v, half, CpuWrite);
autoView( full_v, full, CpuRead);
thread_for(ss, full.Grid()->oSites(),{
int cbos;
Coordinate coor;
full.Grid()->oCoorFromOindex(coor,ss);
cbos=half.Grid()->CheckerBoard(coor);
if (cbos==cb) {
int ssh=half.Grid()->oIndex(coor);
half_v[ssh] = full_v[ss];
}
});
} }
template<class vobj> inline void setCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half) template<class vobj> inline void setCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half)
{ {
int cb = half.Checkerboard(); acceleratorSetCheckerboard(full,half);
autoView( half_v , half, CpuRead);
autoView( full_v , full, CpuWrite);
thread_for(ss,full.Grid()->oSites(),{
Coordinate coor;
int cbos;
full.Grid()->oCoorFromOindex(coor,ss);
cbos=half.Grid()->CheckerBoard(coor);
if (cbos==cb) {
int ssh=half.Grid()->oIndex(coor);
full_v[ss]=half_v[ssh];
}
});
} }
template<class vobj> inline void acceleratorPickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full, int checker_dim_half=0) template<class vobj> inline void acceleratorPickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full, int dummy=0)
{ {
half.Checkerboard() = cb; half.Checkerboard() = cb;
autoView(half_v, half, AcceleratorWrite); autoView(half_v, half, AcceleratorWrite);
@ -95,6 +66,7 @@ template<class vobj> inline void acceleratorPickCheckerboard(int cb,Lattice<vobj
unsigned long ndim_half = half.Grid()->_ndimension; unsigned long ndim_half = half.Grid()->_ndimension;
Coordinate checker_dim_mask_half = half.Grid()->_checker_dim_mask; Coordinate checker_dim_mask_half = half.Grid()->_checker_dim_mask;
Coordinate ostride_half = half.Grid()->_ostride; Coordinate ostride_half = half.Grid()->_ostride;
int checker_dim_half = half.Grid()->CheckerDim();
accelerator_for(ss, full.Grid()->oSites(),full.Grid()->Nsimd(),{ accelerator_for(ss, full.Grid()->oSites(),full.Grid()->Nsimd(),{
Coordinate coor; Coordinate coor;
@ -119,7 +91,7 @@ template<class vobj> inline void acceleratorPickCheckerboard(int cb,Lattice<vobj
} }
}); });
} }
template<class vobj> inline void acceleratorSetCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half, int checker_dim_half=0) template<class vobj> inline void acceleratorSetCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half, int dummy=0)
{ {
int cb = half.Checkerboard(); int cb = half.Checkerboard();
autoView(half_v , half, AcceleratorRead); autoView(half_v , half, AcceleratorRead);
@ -129,6 +101,7 @@ template<class vobj> inline void acceleratorSetCheckerboard(Lattice<vobj> &full,
unsigned long ndim_half = half.Grid()->_ndimension; unsigned long ndim_half = half.Grid()->_ndimension;
Coordinate checker_dim_mask_half = half.Grid()->_checker_dim_mask; Coordinate checker_dim_mask_half = half.Grid()->_checker_dim_mask;
Coordinate ostride_half = half.Grid()->_ostride; Coordinate ostride_half = half.Grid()->_ostride;
int checker_dim_half = half.Grid()->CheckerDim();
accelerator_for(ss,full.Grid()->oSites(),full.Grid()->Nsimd(),{ accelerator_for(ss,full.Grid()->oSites(),full.Grid()->Nsimd(),{
Coordinate coor; Coordinate coor;
@ -981,14 +954,8 @@ void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice
hcoor[orthog] = slice; hcoor[orthog] = slice;
for(int d=0;d<nh;d++){ for(int d=0;d<nh;d++){
if ( d!=orthog ) { if ( d!=orthog ) {
hcoor[d]=lcoor[ddl]; hcoor[d]=lcoor[ddl++];
if ( hg->_checker_dim == d ) {
hcoor[d]=hcoor[d]*2; // factor in the full coor for peekLocalSite
lcoor[ddl]=lcoor[ddl]*2; // factor in the full coor for peekLocalSite
} }
ddl++;
}
} }
peekLocalSite(s,lowDimv,lcoor); peekLocalSite(s,lowDimv,lcoor);
pokeLocalSite(s,higherDimv,hcoor); pokeLocalSite(s,higherDimv,hcoor);
@ -1009,7 +976,6 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
assert(orthog<nh); assert(orthog<nh);
assert(orthog>=0); assert(orthog>=0);
assert(hg->_processors[orthog]==1); assert(hg->_processors[orthog]==1);
lowDim.Checkerboard() = higherDim.Checkerboard();
int dl; dl = 0; int dl; dl = 0;
for(int d=0;d<nh;d++){ for(int d=0;d<nh;d++){
@ -1027,16 +993,11 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
Coordinate lcoor(nl); Coordinate lcoor(nl);
Coordinate hcoor(nh); Coordinate hcoor(nh);
lg->LocalIndexToLocalCoor(idx,lcoor); lg->LocalIndexToLocalCoor(idx,lcoor);
hcoor[orthog] = slice;
int ddl=0; int ddl=0;
hcoor[orthog] = slice;
for(int d=0;d<nh;d++){ for(int d=0;d<nh;d++){
if ( d!=orthog ) { if ( d!=orthog ) {
hcoor[d]=lcoor[ddl]; hcoor[d]=lcoor[ddl++];
if ( hg->_checker_dim == d ) {
hcoor[d]=hcoor[d]*2; // factor in the full gridd coor for peekLocalSite
lcoor[ddl]=lcoor[ddl]*2; // factor in the full coor for peekLocalSite
}
ddl++;
} }
} }
peekLocalSite(s,higherDimv,hcoor); peekLocalSite(s,higherDimv,hcoor);

View File

@ -54,7 +54,7 @@ struct CshiftImplGauge: public CshiftImplBase<typename Gimpl::GaugeLinkField::ve
* *
*/ */
template<class vobj> inline void ScatterSlice(const deviceVector<vobj> &buf, template<class vobj> inline void ScatterSlice(const cshiftVector<vobj> &buf,
Lattice<vobj> &lat, Lattice<vobj> &lat,
int x, int x,
int dim, int dim,
@ -140,7 +140,7 @@ template<class vobj> inline void ScatterSlice(const deviceVector<vobj> &buf,
}); });
} }
template<class vobj> inline void GatherSlice(deviceVector<vobj> &buf, template<class vobj> inline void GatherSlice(cshiftVector<vobj> &buf,
const Lattice<vobj> &lat, const Lattice<vobj> &lat,
int x, int x,
int dim, int dim,
@ -462,8 +462,8 @@ public:
int rNsimd = Nsimd / simd[dimension]; int rNsimd = Nsimd / simd[dimension];
assert( buffer_size == from.Grid()->_slice_nblock[dimension]*from.Grid()->_slice_block[dimension] / simd[dimension]); assert( buffer_size == from.Grid()->_slice_nblock[dimension]*from.Grid()->_slice_block[dimension] / simd[dimension]);
static deviceVector<vobj> send_buf; static cshiftVector<vobj> send_buf;
static deviceVector<vobj> recv_buf; static cshiftVector<vobj> recv_buf;
send_buf.resize(buffer_size*2*depth); send_buf.resize(buffer_size*2*depth);
recv_buf.resize(buffer_size*2*depth); recv_buf.resize(buffer_size*2*depth);

View File

@ -90,16 +90,16 @@ public:
void M5D(const FermionField &psi, void M5D(const FermionField &psi,
const FermionField &phi, const FermionField &phi,
FermionField &chi, FermionField &chi,
std::vector<Coeff_t> &lower, Vector<Coeff_t> &lower,
std::vector<Coeff_t> &diag, Vector<Coeff_t> &diag,
std::vector<Coeff_t> &upper); Vector<Coeff_t> &upper);
void M5Ddag(const FermionField &psi, void M5Ddag(const FermionField &psi,
const FermionField &phi, const FermionField &phi,
FermionField &chi, FermionField &chi,
std::vector<Coeff_t> &lower, Vector<Coeff_t> &lower,
std::vector<Coeff_t> &diag, Vector<Coeff_t> &diag,
std::vector<Coeff_t> &upper); Vector<Coeff_t> &upper);
virtual void Instantiatable(void)=0; virtual void Instantiatable(void)=0;
@ -119,35 +119,35 @@ public:
RealD mass_plus, mass_minus; RealD mass_plus, mass_minus;
// Save arguments to SetCoefficientsInternal // Save arguments to SetCoefficientsInternal
std::vector<Coeff_t> _gamma; Vector<Coeff_t> _gamma;
RealD _zolo_hi; RealD _zolo_hi;
RealD _b; RealD _b;
RealD _c; RealD _c;
// Cayley form Moebius (tanh and zolotarev) // Cayley form Moebius (tanh and zolotarev)
std::vector<Coeff_t> omega; Vector<Coeff_t> omega;
std::vector<Coeff_t> bs; // S dependent coeffs Vector<Coeff_t> bs; // S dependent coeffs
std::vector<Coeff_t> cs; Vector<Coeff_t> cs;
std::vector<Coeff_t> as; Vector<Coeff_t> as;
// For preconditioning Cayley form // For preconditioning Cayley form
std::vector<Coeff_t> bee; Vector<Coeff_t> bee;
std::vector<Coeff_t> cee; Vector<Coeff_t> cee;
std::vector<Coeff_t> aee; Vector<Coeff_t> aee;
std::vector<Coeff_t> beo; Vector<Coeff_t> beo;
std::vector<Coeff_t> ceo; Vector<Coeff_t> ceo;
std::vector<Coeff_t> aeo; Vector<Coeff_t> aeo;
// LDU factorisation of the eeoo matrix // LDU factorisation of the eeoo matrix
std::vector<Coeff_t> lee; Vector<Coeff_t> lee;
std::vector<Coeff_t> leem; Vector<Coeff_t> leem;
std::vector<Coeff_t> uee; Vector<Coeff_t> uee;
std::vector<Coeff_t> ueem; Vector<Coeff_t> ueem;
std::vector<Coeff_t> dee; Vector<Coeff_t> dee;
// Matrices of 5d ee inverse params // Matrices of 5d ee inverse params
// std::vector<iSinglet<Simd> > MatpInv; Vector<iSinglet<Simd> > MatpInv;
// std::vector<iSinglet<Simd> > MatmInv; Vector<iSinglet<Simd> > MatmInv;
// std::vector<iSinglet<Simd> > MatpInvDag; Vector<iSinglet<Simd> > MatpInvDag;
// std::vector<iSinglet<Simd> > MatmInvDag; Vector<iSinglet<Simd> > MatmInvDag;
/////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////
// Conserved current utilities // Conserved current utilities
@ -187,7 +187,7 @@ public:
protected: protected:
virtual void SetCoefficientsZolotarev(RealD zolohi,Approx::zolotarev_data *zdata,RealD b,RealD c); virtual void SetCoefficientsZolotarev(RealD zolohi,Approx::zolotarev_data *zdata,RealD b,RealD c);
virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c); virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c);
virtual void SetCoefficientsInternal(RealD zolo_hi,std::vector<Coeff_t> & gamma,RealD b,RealD c); virtual void SetCoefficientsInternal(RealD zolo_hi,Vector<Coeff_t> & gamma,RealD b,RealD c);
}; };
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -90,12 +90,12 @@ protected:
RealD mass; RealD mass;
RealD R; RealD R;
RealD ZoloHiInv; RealD ZoloHiInv;
std::vector<double> Beta; Vector<double> Beta;
std::vector<double> cc;; Vector<double> cc;;
std::vector<double> cc_d;; Vector<double> cc_d;;
std::vector<double> sqrt_cc; Vector<double> sqrt_cc;
std::vector<double> See; Vector<double> See;
std::vector<double> Aee; Vector<double> Aee;
}; };

View File

@ -69,10 +69,10 @@ public:
// Instantiate different versions depending on Impl // Instantiate different versions depending on Impl
///////////////////////////////////////////////////// /////////////////////////////////////////////////////
void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi, void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi,
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper); Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi, void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi,
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper); Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
virtual void RefreshShiftCoefficients(RealD new_shift); virtual void RefreshShiftCoefficients(RealD new_shift);
@ -83,7 +83,7 @@ public:
RealD _M5, const ImplParams& p=ImplParams()); RealD _M5, const ImplParams& p=ImplParams());
protected: protected:
void SetCoefficientsInternal(RealD zolo_hi, std::vector<Coeff_t>& gamma, RealD b, RealD c); void SetCoefficientsInternal(RealD zolo_hi, Vector<Coeff_t>& gamma, RealD b, RealD c);
}; };
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -102,11 +102,11 @@ public:
GaugeField &mat, GaugeField &mat,
const FermionField &A, const FermionField &B, int dag); const FermionField &A, const FermionField &B, int dag);
void DhopInternal(StencilImpl &st, DoubledGaugeField &U,DoubledGaugeField &UUU, void DhopInternal(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,DoubledGaugeField &UUU,
const FermionField &in, FermionField &out, int dag); const FermionField &in, FermionField &out, int dag);
void DhopInternalSerialComms(StencilImpl &st, DoubledGaugeField &U,DoubledGaugeField &UUU, void DhopInternalSerialComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,DoubledGaugeField &UUU,
const FermionField &in, FermionField &out, int dag); const FermionField &in, FermionField &out, int dag);
void DhopInternalOverlappedComms(StencilImpl &st, DoubledGaugeField &U,DoubledGaugeField &UUU, void DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,DoubledGaugeField &UUU,
const FermionField &in, FermionField &out, int dag); const FermionField &in, FermionField &out, int dag);
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
@ -164,6 +164,8 @@ public:
DoubledGaugeField UUUmuEven; DoubledGaugeField UUUmuEven;
DoubledGaugeField UUUmuOdd; DoubledGaugeField UUUmuOdd;
LebesgueOrder Lebesgue;
LebesgueOrder LebesgueEvenOdd;
/////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////
// Conserved current utilities // Conserved current utilities

View File

@ -100,6 +100,7 @@ public:
int dag); int dag);
void DhopInternal(StencilImpl & st, void DhopInternal(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &U,
DoubledGaugeField &UUU, DoubledGaugeField &UUU,
const FermionField &in, const FermionField &in,
@ -107,6 +108,7 @@ public:
int dag); int dag);
void DhopInternalOverlappedComms(StencilImpl & st, void DhopInternalOverlappedComms(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &U,
DoubledGaugeField &UUU, DoubledGaugeField &UUU,
const FermionField &in, const FermionField &in,
@ -114,6 +116,7 @@ public:
int dag); int dag);
void DhopInternalSerialComms(StencilImpl & st, void DhopInternalSerialComms(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &U,
DoubledGaugeField &UUU, DoubledGaugeField &UUU,
const FermionField &in, const FermionField &in,
@ -189,6 +192,8 @@ public:
DoubledGaugeField UUUmuEven; DoubledGaugeField UUUmuEven;
DoubledGaugeField UUUmuOdd; DoubledGaugeField UUUmuOdd;
LebesgueOrder Lebesgue;
LebesgueOrder LebesgueEvenOdd;
// Comms buffer // Comms buffer
// std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf; // std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf;

View File

@ -42,11 +42,11 @@ public:
public: public:
// Shift operator coefficients for red-black preconditioned Mobius EOFA // Shift operator coefficients for red-black preconditioned Mobius EOFA
std::vector<Coeff_t> Mooee_shift; Vector<Coeff_t> Mooee_shift;
std::vector<Coeff_t> MooeeInv_shift_lc; Vector<Coeff_t> MooeeInv_shift_lc;
std::vector<Coeff_t> MooeeInv_shift_norm; Vector<Coeff_t> MooeeInv_shift_norm;
std::vector<Coeff_t> MooeeInvDag_shift_lc; Vector<Coeff_t> MooeeInvDag_shift_lc;
std::vector<Coeff_t> MooeeInvDag_shift_norm; Vector<Coeff_t> MooeeInvDag_shift_norm;
virtual void Instantiatable(void) {}; virtual void Instantiatable(void) {};
@ -74,18 +74,18 @@ public:
// Instantiate different versions depending on Impl // Instantiate different versions depending on Impl
///////////////////////////////////////////////////// /////////////////////////////////////////////////////
void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi, void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi,
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper); Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
void M5D_shift(const FermionField& psi, const FermionField& phi, FermionField& chi, void M5D_shift(const FermionField& psi, const FermionField& phi, FermionField& chi,
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper, Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper,
std::vector<Coeff_t>& shift_coeffs); Vector<Coeff_t>& shift_coeffs);
void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi, void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi,
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper); Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
void M5Ddag_shift(const FermionField& psi, const FermionField& phi, FermionField& chi, void M5Ddag_shift(const FermionField& psi, const FermionField& phi, FermionField& chi,
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper, Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper,
std::vector<Coeff_t>& shift_coeffs); Vector<Coeff_t>& shift_coeffs);
virtual void RefreshShiftCoefficients(RealD new_shift); virtual void RefreshShiftCoefficients(RealD new_shift);

View File

@ -102,11 +102,11 @@ public:
GaugeField &mat, GaugeField &mat,
const FermionField &A, const FermionField &B, int dag); const FermionField &A, const FermionField &B, int dag);
void DhopInternal(StencilImpl &st, DoubledGaugeField &U, void DhopInternal(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag); const FermionField &in, FermionField &out, int dag);
void DhopInternalSerialComms(StencilImpl &st, DoubledGaugeField &U, void DhopInternalSerialComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag); const FermionField &in, FermionField &out, int dag);
void DhopInternalOverlappedComms(StencilImpl &st, DoubledGaugeField &U, void DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag); const FermionField &in, FermionField &out, int dag);
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
@ -152,6 +152,9 @@ public:
DoubledGaugeField UmuEven; DoubledGaugeField UmuEven;
DoubledGaugeField UmuOdd; DoubledGaugeField UmuOdd;
LebesgueOrder Lebesgue;
LebesgueOrder LebesgueEvenOdd;
/////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////
// Conserved current utilities // Conserved current utilities
/////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////

View File

@ -94,8 +94,8 @@ protected:
RealD R; RealD R;
RealD amax; RealD amax;
RealD scale; RealD scale;
std::vector<double> p; Vector<double> p;
std::vector<double> q; Vector<double> q;
}; };

View File

@ -35,7 +35,7 @@ template<class Matrix, class Field>
class KappaSimilarityTransform { class KappaSimilarityTransform {
public: public:
INHERIT_IMPL_TYPES(Matrix); INHERIT_IMPL_TYPES(Matrix);
std::vector<Coeff_t> kappa, kappaDag, kappaInv, kappaInvDag; Vector<Coeff_t> kappa, kappaDag, kappaInv, kappaInvDag;
KappaSimilarityTransform (Matrix &zmob) { KappaSimilarityTransform (Matrix &zmob) {
for (int i=0;i<(int)zmob.bs.size();i++) { for (int i=0;i<(int)zmob.bs.size();i++) {

View File

@ -49,10 +49,10 @@ template<class Impl> class StaggeredKernels : public FermionOperator<Impl> , pub
public: public:
void DhopImproved(StencilImpl &st, void DhopImproved(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &UUU, DoubledGaugeField &U, DoubledGaugeField &UUU,
const FermionField &in, FermionField &out, int dag, int interior,int exterior); const FermionField &in, FermionField &out, int dag, int interior,int exterior);
void DhopNaive(StencilImpl &st, void DhopNaive(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag, int interior,int exterior); const FermionField &in, FermionField &out, int dag, int interior,int exterior);

View File

@ -47,7 +47,7 @@ public:
static int PartialCompressionFactor(GridBase *grid) { return 1;} static int PartialCompressionFactor(GridBase *grid) { return 1;}
#endif #endif
template<class vobj,class cobj,class compressor> template<class vobj,class cobj,class compressor>
static void Gather_plane_simple (deviceVector<std::pair<int,int> >& table, static void Gather_plane_simple (commVector<std::pair<int,int> >& table,
const Lattice<vobj> &rhs, const Lattice<vobj> &rhs,
cobj *buffer, cobj *buffer,
compressor &compress, compressor &compress,
@ -109,7 +109,7 @@ public:
// Reorder the fifth dim to be s=Ls-1 , s=0, s=1,...,Ls-2. // Reorder the fifth dim to be s=Ls-1 , s=0, s=1,...,Ls-2.
//////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj,class cobj,class compressor> template<class vobj,class cobj,class compressor>
static void Gather_plane_exchange(deviceVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs, static void Gather_plane_exchange(commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
std::vector<cobj *> pointers,int dimension,int plane,int cbmask, std::vector<cobj *> pointers,int dimension,int plane,int cbmask,
compressor &compress,int type,int partial) compressor &compress,int type,int partial)
{ {
@ -197,7 +197,7 @@ public:
#endif #endif
template<class vobj,class cobj,class compressor> template<class vobj,class cobj,class compressor>
static void Gather_plane_simple (deviceVector<std::pair<int,int> >& table, static void Gather_plane_simple (commVector<std::pair<int,int> >& table,
const Lattice<vobj> &rhs, const Lattice<vobj> &rhs,
cobj *buffer, cobj *buffer,
compressor &compress, compressor &compress,
@ -208,7 +208,7 @@ public:
else FaceGatherSimple::Gather_plane_simple(table,rhs,buffer,compress,off,so,partial); else FaceGatherSimple::Gather_plane_simple(table,rhs,buffer,compress,off,so,partial);
} }
template<class vobj,class cobj,class compressor> template<class vobj,class cobj,class compressor>
static void Gather_plane_exchange(deviceVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs, static void Gather_plane_exchange(commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
std::vector<cobj *> pointers,int dimension,int plane,int cbmask, std::vector<cobj *> pointers,int dimension,int plane,int cbmask,
compressor &compress,int type,int partial) compressor &compress,int type,int partial)
{ {
@ -402,6 +402,7 @@ public:
typedef CartesianStencil<vobj,cobj,Parameters> Base; typedef CartesianStencil<vobj,cobj,Parameters> Base;
typedef typename Base::View_type View_type; typedef typename Base::View_type View_type;
typedef typename Base::StencilVector StencilVector;
// Vector<int> surface_list; // Vector<int> surface_list;
WilsonStencil(GridBase *grid, WilsonStencil(GridBase *grid,

View File

@ -126,16 +126,13 @@ public:
void DerivInternal(StencilImpl &st, DoubledGaugeField &U, GaugeField &mat, void DerivInternal(StencilImpl &st, DoubledGaugeField &U, GaugeField &mat,
const FermionField &A, const FermionField &B, int dag); const FermionField &A, const FermionField &B, int dag);
void DhopInternal(StencilImpl &st, void DhopInternal(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag); const FermionField &in, FermionField &out, int dag);
void DhopInternalSerial(StencilImpl &st, void DhopInternalSerial(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag); const FermionField &in, FermionField &out, int dag);
void DhopInternalOverlappedComms(StencilImpl &st, void DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag); const FermionField &in, FermionField &out, int dag);
// Constructor // Constructor
@ -171,6 +168,9 @@ public:
DoubledGaugeField UmuEven; DoubledGaugeField UmuEven;
DoubledGaugeField UmuOdd; DoubledGaugeField UmuOdd;
LebesgueOrder Lebesgue;
LebesgueOrder LebesgueEvenOdd;
WilsonAnisotropyCoefficients anisotropyCoeff; WilsonAnisotropyCoefficients anisotropyCoeff;
/////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////

View File

@ -135,18 +135,21 @@ public:
int dag); int dag);
void DhopInternal(StencilImpl & st, void DhopInternal(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &U,
const FermionField &in, const FermionField &in,
FermionField &out, FermionField &out,
int dag); int dag);
void DhopInternalOverlappedComms(StencilImpl & st, void DhopInternalOverlappedComms(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &U,
const FermionField &in, const FermionField &in,
FermionField &out, FermionField &out,
int dag); int dag);
void DhopInternalSerialComms(StencilImpl & st, void DhopInternalSerialComms(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &U,
const FermionField &in, const FermionField &in,
FermionField &out, FermionField &out,
@ -200,6 +203,9 @@ public:
DoubledGaugeField UmuEven; DoubledGaugeField UmuEven;
DoubledGaugeField UmuOdd; DoubledGaugeField UmuOdd;
LebesgueOrder Lebesgue;
LebesgueOrder LebesgueEvenOdd;
// Comms buffer // Comms buffer
// std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf; // std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf;

View File

@ -58,7 +58,7 @@ public:
{ {
// RealD eps = 1.0; // RealD eps = 1.0;
std::cout<<GridLogMessage << "ZMobiusFermion (b="<<b<<",c="<<c<<") with Ls= "<<this->Ls<<" gamma passed in"<<std::endl; std::cout<<GridLogMessage << "ZMobiusFermion (b="<<b<<",c="<<c<<") with Ls= "<<this->Ls<<" gamma passed in"<<std::endl;
std::vector<Coeff_t> zgamma(this->Ls); Vector<Coeff_t> zgamma(this->Ls);
for(int s=0;s<this->Ls;s++){ for(int s=0;s<this->Ls;s++){
zgamma[s] = gamma[s]; zgamma[s] = gamma[s];
} }

View File

@ -156,18 +156,18 @@ template<class Impl>
void CayleyFermion5D<Impl>::M5D (const FermionField &psi, FermionField &chi) void CayleyFermion5D<Impl>::M5D (const FermionField &psi, FermionField &chi)
{ {
int Ls=this->Ls; int Ls=this->Ls;
std::vector<Coeff_t> diag (Ls,1.0); Vector<Coeff_t> diag (Ls,1.0);
std::vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1]=mass_minus; Vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1]=mass_minus;
std::vector<Coeff_t> lower(Ls,-1.0); lower[0] =mass_plus; Vector<Coeff_t> lower(Ls,-1.0); lower[0] =mass_plus;
M5D(psi,chi,chi,lower,diag,upper); M5D(psi,chi,chi,lower,diag,upper);
} }
template<class Impl> template<class Impl>
void CayleyFermion5D<Impl>::Meooe5D (const FermionField &psi, FermionField &Din) void CayleyFermion5D<Impl>::Meooe5D (const FermionField &psi, FermionField &Din)
{ {
int Ls=this->Ls; int Ls=this->Ls;
std::vector<Coeff_t> diag = bs; Vector<Coeff_t> diag = bs;
std::vector<Coeff_t> upper= cs; Vector<Coeff_t> upper= cs;
std::vector<Coeff_t> lower= cs; Vector<Coeff_t> lower= cs;
upper[Ls-1]=-mass_minus*upper[Ls-1]; upper[Ls-1]=-mass_minus*upper[Ls-1];
lower[0] =-mass_plus*lower[0]; lower[0] =-mass_plus*lower[0];
M5D(psi,psi,Din,lower,diag,upper); M5D(psi,psi,Din,lower,diag,upper);
@ -176,9 +176,9 @@ void CayleyFermion5D<Impl>::Meooe5D (const FermionField &psi, FermionField &D
template<class Impl> void CayleyFermion5D<Impl>::Meo5D (const FermionField &psi, FermionField &chi) template<class Impl> void CayleyFermion5D<Impl>::Meo5D (const FermionField &psi, FermionField &chi)
{ {
int Ls=this->Ls; int Ls=this->Ls;
std::vector<Coeff_t> diag = beo; Vector<Coeff_t> diag = beo;
std::vector<Coeff_t> upper(Ls); Vector<Coeff_t> upper(Ls);
std::vector<Coeff_t> lower(Ls); Vector<Coeff_t> lower(Ls);
for(int i=0;i<Ls;i++) { for(int i=0;i<Ls;i++) {
upper[i]=-ceo[i]; upper[i]=-ceo[i];
lower[i]=-ceo[i]; lower[i]=-ceo[i];
@ -191,9 +191,9 @@ template<class Impl>
void CayleyFermion5D<Impl>::Mooee (const FermionField &psi, FermionField &chi) void CayleyFermion5D<Impl>::Mooee (const FermionField &psi, FermionField &chi)
{ {
int Ls=this->Ls; int Ls=this->Ls;
std::vector<Coeff_t> diag = bee; Vector<Coeff_t> diag = bee;
std::vector<Coeff_t> upper(Ls); Vector<Coeff_t> upper(Ls);
std::vector<Coeff_t> lower(Ls); Vector<Coeff_t> lower(Ls);
for(int i=0;i<Ls;i++) { for(int i=0;i<Ls;i++) {
upper[i]=-cee[i]; upper[i]=-cee[i];
lower[i]=-cee[i]; lower[i]=-cee[i];
@ -206,9 +206,9 @@ template<class Impl>
void CayleyFermion5D<Impl>::MooeeDag (const FermionField &psi, FermionField &chi) void CayleyFermion5D<Impl>::MooeeDag (const FermionField &psi, FermionField &chi)
{ {
int Ls=this->Ls; int Ls=this->Ls;
std::vector<Coeff_t> diag = bee; Vector<Coeff_t> diag = bee;
std::vector<Coeff_t> upper(Ls); Vector<Coeff_t> upper(Ls);
std::vector<Coeff_t> lower(Ls); Vector<Coeff_t> lower(Ls);
for (int s=0;s<Ls;s++){ for (int s=0;s<Ls;s++){
// Assemble the 5d matrix // Assemble the 5d matrix
@ -236,9 +236,9 @@ template<class Impl>
void CayleyFermion5D<Impl>::M5Ddag (const FermionField &psi, FermionField &chi) void CayleyFermion5D<Impl>::M5Ddag (const FermionField &psi, FermionField &chi)
{ {
int Ls=this->Ls; int Ls=this->Ls;
std::vector<Coeff_t> diag(Ls,1.0); Vector<Coeff_t> diag(Ls,1.0);
std::vector<Coeff_t> upper(Ls,-1.0); Vector<Coeff_t> upper(Ls,-1.0);
std::vector<Coeff_t> lower(Ls,-1.0); Vector<Coeff_t> lower(Ls,-1.0);
upper[Ls-1]=-mass_plus*upper[Ls-1]; upper[Ls-1]=-mass_plus*upper[Ls-1];
lower[0] =-mass_minus*lower[0]; lower[0] =-mass_minus*lower[0];
M5Ddag(psi,chi,chi,lower,diag,upper); M5Ddag(psi,chi,chi,lower,diag,upper);
@ -248,9 +248,9 @@ template<class Impl>
void CayleyFermion5D<Impl>::MeooeDag5D (const FermionField &psi, FermionField &Din) void CayleyFermion5D<Impl>::MeooeDag5D (const FermionField &psi, FermionField &Din)
{ {
int Ls=this->Ls; int Ls=this->Ls;
std::vector<Coeff_t> diag =bs; Vector<Coeff_t> diag =bs;
std::vector<Coeff_t> upper=cs; Vector<Coeff_t> upper=cs;
std::vector<Coeff_t> lower=cs; Vector<Coeff_t> lower=cs;
for (int s=0;s<Ls;s++){ for (int s=0;s<Ls;s++){
if ( s== 0 ) { if ( s== 0 ) {
@ -394,7 +394,7 @@ void CayleyFermion5D<Impl>::MeoDeriv(GaugeField &mat,const FermionField &U,const
template<class Impl> template<class Impl>
void CayleyFermion5D<Impl>::SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c) void CayleyFermion5D<Impl>::SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c)
{ {
std::vector<Coeff_t> gamma(this->Ls); Vector<Coeff_t> gamma(this->Ls);
for(int s=0;s<this->Ls;s++) gamma[s] = zdata->gamma[s]; for(int s=0;s<this->Ls;s++) gamma[s] = zdata->gamma[s];
SetCoefficientsInternal(1.0,gamma,b,c); SetCoefficientsInternal(1.0,gamma,b,c);
} }
@ -402,13 +402,13 @@ void CayleyFermion5D<Impl>::SetCoefficientsTanh(Approx::zolotarev_data *zdata,Re
template<class Impl> template<class Impl>
void CayleyFermion5D<Impl>::SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata,RealD b,RealD c) void CayleyFermion5D<Impl>::SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata,RealD b,RealD c)
{ {
std::vector<Coeff_t> gamma(this->Ls); Vector<Coeff_t> gamma(this->Ls);
for(int s=0;s<this->Ls;s++) gamma[s] = zdata->gamma[s]; for(int s=0;s<this->Ls;s++) gamma[s] = zdata->gamma[s];
SetCoefficientsInternal(zolo_hi,gamma,b,c); SetCoefficientsInternal(zolo_hi,gamma,b,c);
} }
//Zolo //Zolo
template<class Impl> template<class Impl>
void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,std::vector<Coeff_t> & gamma,RealD b,RealD c) void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,Vector<Coeff_t> & gamma,RealD b,RealD c)
{ {
int Ls=this->Ls; int Ls=this->Ls;

View File

@ -43,9 +43,9 @@ void
CayleyFermion5D<Impl>::M5D(const FermionField &psi_i, CayleyFermion5D<Impl>::M5D(const FermionField &psi_i,
const FermionField &phi_i, const FermionField &phi_i,
FermionField &chi_i, FermionField &chi_i,
std::vector<Coeff_t> &lower, Vector<Coeff_t> &lower,
std::vector<Coeff_t> &diag, Vector<Coeff_t> &diag,
std::vector<Coeff_t> &upper) Vector<Coeff_t> &upper)
{ {
chi_i.Checkerboard()=psi_i.Checkerboard(); chi_i.Checkerboard()=psi_i.Checkerboard();
@ -55,16 +55,12 @@ CayleyFermion5D<Impl>::M5D(const FermionField &psi_i,
autoView(chi , chi_i,AcceleratorWrite); autoView(chi , chi_i,AcceleratorWrite);
assert(phi.Checkerboard() == psi.Checkerboard()); assert(phi.Checkerboard() == psi.Checkerboard());
auto pdiag = &diag[0];
auto pupper = &upper[0];
auto plower = &lower[0];
int Ls =this->Ls; int Ls =this->Ls;
static deviceVector<Coeff_t> d_diag(Ls) ; acceleratorCopyToDevice(&diag[0] ,&d_diag[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_upper(Ls); acceleratorCopyToDevice(&upper[0],&d_upper[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_lower(Ls); acceleratorCopyToDevice(&lower[0],&d_lower[0],Ls*sizeof(Coeff_t));
auto pdiag = &d_diag[0];
auto pupper = &d_upper[0];
auto plower = &d_lower[0];
// 10 = 3 complex mult + 2 complex add // 10 = 3 complex mult + 2 complex add
// Flops = 10.0*(Nc*Ns) *Ls*vol (/2 for red black counting) // Flops = 10.0*(Nc*Ns) *Ls*vol (/2 for red black counting)
uint64_t nloop = grid->oSites(); uint64_t nloop = grid->oSites();
@ -86,9 +82,9 @@ void
CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi_i, CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi_i,
const FermionField &phi_i, const FermionField &phi_i,
FermionField &chi_i, FermionField &chi_i,
std::vector<Coeff_t> &lower, Vector<Coeff_t> &lower,
std::vector<Coeff_t> &diag, Vector<Coeff_t> &diag,
std::vector<Coeff_t> &upper) Vector<Coeff_t> &upper)
{ {
chi_i.Checkerboard()=psi_i.Checkerboard(); chi_i.Checkerboard()=psi_i.Checkerboard();
GridBase *grid=psi_i.Grid(); GridBase *grid=psi_i.Grid();
@ -97,16 +93,12 @@ CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi_i,
autoView(chi , chi_i,AcceleratorWrite); autoView(chi , chi_i,AcceleratorWrite);
assert(phi.Checkerboard() == psi.Checkerboard()); assert(phi.Checkerboard() == psi.Checkerboard());
auto pdiag = &diag[0];
auto pupper = &upper[0];
auto plower = &lower[0];
int Ls=this->Ls; int Ls=this->Ls;
static deviceVector<Coeff_t> d_diag(Ls) ; acceleratorCopyToDevice(&diag[0] ,&d_diag[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_upper(Ls); acceleratorCopyToDevice(&upper[0],&d_upper[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_lower(Ls); acceleratorCopyToDevice(&lower[0],&d_lower[0],Ls*sizeof(Coeff_t));
auto pdiag = &d_diag[0];
auto pupper = &d_upper[0];
auto plower = &d_lower[0];
// Flops = 6.0*(Nc*Ns) *Ls*vol // Flops = 6.0*(Nc*Ns) *Ls*vol
uint64_t nloop = grid->oSites(); uint64_t nloop = grid->oSites();
accelerator_for(sss,nloop,Simd::Nsimd(),{ accelerator_for(sss,nloop,Simd::Nsimd(),{
@ -134,17 +126,11 @@ CayleyFermion5D<Impl>::MooeeInv (const FermionField &psi_i, FermionField &chi
int Ls=this->Ls; int Ls=this->Ls;
static deviceVector<Coeff_t> d_lee(Ls); acceleratorCopyToDevice(&lee[0],&d_lee[0],Ls*sizeof(Coeff_t)); auto plee = & lee [0];
static deviceVector<Coeff_t> d_dee(Ls); acceleratorCopyToDevice(&dee[0],&d_dee[0],Ls*sizeof(Coeff_t)); auto pdee = & dee [0];
static deviceVector<Coeff_t> d_uee(Ls); acceleratorCopyToDevice(&uee[0],&d_uee[0],Ls*sizeof(Coeff_t)); auto puee = & uee [0];
static deviceVector<Coeff_t> d_leem(Ls); acceleratorCopyToDevice(&leem[0],&d_leem[0],Ls*sizeof(Coeff_t)); auto pleem = & leem[0];
static deviceVector<Coeff_t> d_ueem(Ls); acceleratorCopyToDevice(&ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t)); auto pueem = & ueem[0];
auto plee = & d_lee [0];
auto pdee = & d_dee [0];
auto puee = & d_uee [0];
auto pleem = & d_leem[0];
auto pueem = & d_ueem[0];
uint64_t nloop = grid->oSites()/Ls; uint64_t nloop = grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(),{ accelerator_for(sss,nloop,Simd::Nsimd(),{
@ -196,17 +182,11 @@ CayleyFermion5D<Impl>::MooeeInvDag (const FermionField &psi_i, FermionField &chi
autoView(psi , psi_i,AcceleratorRead); autoView(psi , psi_i,AcceleratorRead);
autoView(chi , chi_i,AcceleratorWrite); autoView(chi , chi_i,AcceleratorWrite);
static deviceVector<Coeff_t> d_lee(Ls); acceleratorCopyToDevice(&lee[0],&d_lee[0],Ls*sizeof(Coeff_t)); auto plee = & lee [0];
static deviceVector<Coeff_t> d_dee(Ls); acceleratorCopyToDevice(&dee[0],&d_dee[0],Ls*sizeof(Coeff_t)); auto pdee = & dee [0];
static deviceVector<Coeff_t> d_uee(Ls); acceleratorCopyToDevice(&uee[0],&d_uee[0],Ls*sizeof(Coeff_t)); auto puee = & uee [0];
static deviceVector<Coeff_t> d_leem(Ls); acceleratorCopyToDevice(&leem[0],&d_leem[0],Ls*sizeof(Coeff_t)); auto pleem = & leem[0];
static deviceVector<Coeff_t> d_ueem(Ls); acceleratorCopyToDevice(&ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t)); auto pueem = & ueem[0];
auto plee = & d_lee [0];
auto pdee = & d_dee [0];
auto puee = & d_uee [0];
auto pleem = & d_leem[0];
auto pueem = & d_ueem[0];
assert(psi.Checkerboard() == psi.Checkerboard()); assert(psi.Checkerboard() == psi.Checkerboard());

View File

@ -1,5 +1,3 @@
#if 0
/************************************************************************************* /*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid Grid physics library, www.github.com/paboyle/Grid
@ -820,5 +818,3 @@ CayleyFermion5D<Impl>::MooeeInternal(const FermionField &psi, FermionField &chi,
} }
NAMESPACE_END(Grid); NAMESPACE_END(Grid);
#endif

View File

@ -41,7 +41,7 @@ NAMESPACE_BEGIN(Grid);
// Pplus backwards.. // Pplus backwards..
template<class Impl> template<class Impl>
void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi_i, const FermionField& phi_i,FermionField& chi_i, void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi_i, const FermionField& phi_i,FermionField& chi_i,
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper) Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper)
{ {
chi_i.Checkerboard() = psi_i.Checkerboard(); chi_i.Checkerboard() = psi_i.Checkerboard();
int Ls = this->Ls; int Ls = this->Ls;
@ -50,15 +50,9 @@ void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi_i, const FermionFi
autoView( psi , psi_i, AcceleratorRead); autoView( psi , psi_i, AcceleratorRead);
autoView( chi , chi_i, AcceleratorWrite); autoView( chi , chi_i, AcceleratorWrite);
assert(phi.Checkerboard() == psi.Checkerboard()); assert(phi.Checkerboard() == psi.Checkerboard());
auto pdiag = &diag[0];
static deviceVector<Coeff_t> d_diag(Ls); acceleratorCopyToDevice(&diag[0],&d_diag[0],Ls*sizeof(Coeff_t)); auto pupper = &upper[0];
static deviceVector<Coeff_t> d_upper(Ls);acceleratorCopyToDevice(&upper[0],&d_upper[0],Ls*sizeof(Coeff_t)); auto plower = &lower[0];
static deviceVector<Coeff_t> d_lower(Ls);acceleratorCopyToDevice(&lower[0],&d_lower[0],Ls*sizeof(Coeff_t));
auto pdiag = &d_diag[0];
auto pupper = &d_upper[0];
auto plower = &d_lower[0];
// Flops = 6.0*(Nc*Ns) *Ls*vol // Flops = 6.0*(Nc*Ns) *Ls*vol
auto nloop=grid->oSites()/Ls; auto nloop=grid->oSites()/Ls;
@ -79,7 +73,7 @@ void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi_i, const FermionFi
template<class Impl> template<class Impl>
void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi_i, const FermionField& phi_i, FermionField& chi_i, void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi_i, const FermionField& phi_i, FermionField& chi_i,
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper) Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper)
{ {
chi_i.Checkerboard() = psi_i.Checkerboard(); chi_i.Checkerboard() = psi_i.Checkerboard();
GridBase* grid = psi_i.Grid(); GridBase* grid = psi_i.Grid();
@ -89,14 +83,9 @@ void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi_i, const Fermio
autoView( phi , phi_i, AcceleratorRead); autoView( phi , phi_i, AcceleratorRead);
autoView( chi , chi_i, AcceleratorWrite); autoView( chi , chi_i, AcceleratorWrite);
assert(phi.Checkerboard() == psi.Checkerboard()); assert(phi.Checkerboard() == psi.Checkerboard());
auto pdiag = &diag[0];
static deviceVector<Coeff_t> d_diag(Ls); acceleratorCopyToDevice(&diag[0],&d_diag[0],Ls*sizeof(Coeff_t)); auto pupper = &upper[0];
static deviceVector<Coeff_t> d_upper(Ls);acceleratorCopyToDevice(&upper[0],&d_upper[0],Ls*sizeof(Coeff_t)); auto plower = &lower[0];
static deviceVector<Coeff_t> d_lower(Ls);acceleratorCopyToDevice(&lower[0],&d_lower[0],Ls*sizeof(Coeff_t));
auto pdiag = &d_diag[0];
auto pupper = &d_upper[0];
auto plower = &d_lower[0];
// Flops = 6.0*(Nc*Ns) *Ls*vol // Flops = 6.0*(Nc*Ns) *Ls*vol
@ -125,17 +114,12 @@ void DomainWallEOFAFermion<Impl>::MooeeInv(const FermionField& psi_i, FermionFie
autoView( chi, chi_i, AcceleratorWrite); autoView( chi, chi_i, AcceleratorWrite);
int Ls = this->Ls; int Ls = this->Ls;
static deviceVector<Coeff_t> d_lee(Ls); acceleratorCopyToDevice(&this->lee[0],&d_lee[0],Ls*sizeof(Coeff_t)); auto plee = & this->lee[0];
static deviceVector<Coeff_t> d_dee(Ls); acceleratorCopyToDevice(&this->dee[0],&d_dee[0],Ls*sizeof(Coeff_t)); auto pdee = & this->dee[0];
static deviceVector<Coeff_t> d_uee(Ls); acceleratorCopyToDevice(&this->uee[0],&d_uee[0],Ls*sizeof(Coeff_t)); auto puee = & this->uee[0];
static deviceVector<Coeff_t> d_leem(Ls); acceleratorCopyToDevice(&this->leem[0],&d_leem[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_ueem(Ls); acceleratorCopyToDevice(&this->ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t));
auto plee = & d_lee [0]; auto pleem = & this->leem[0];
auto pdee = & d_dee [0]; auto pueem = & this->ueem[0];
auto puee = & d_uee [0];
auto pleem = & d_leem[0];
auto pueem = & d_ueem[0];
uint64_t nloop=grid->oSites()/Ls; uint64_t nloop=grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(),{ accelerator_for(sss,nloop,Simd::Nsimd(),{

View File

@ -131,9 +131,9 @@ void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi, FermionField& chi
else{ shiftm = -shift*(mq3-mq2); } else{ shiftm = -shift*(mq3-mq2); }
} }
std::vector<Coeff_t> diag(Ls,1.0); Vector<Coeff_t> diag(Ls,1.0);
std::vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = mq1 + shiftm; Vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = mq1 + shiftm;
std::vector<Coeff_t> lower(Ls,-1.0); lower[0] = mq1 + shiftp; Vector<Coeff_t> lower(Ls,-1.0); lower[0] = mq1 + shiftp;
#if(0) #if(0)
std::cout << GridLogMessage << "DomainWallEOFAFermion::M5D(FF&,FF&):" << std::endl; std::cout << GridLogMessage << "DomainWallEOFAFermion::M5D(FF&,FF&):" << std::endl;
@ -168,9 +168,9 @@ void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi, FermionField&
else{ shiftm = -shift*(mq3-mq2); } else{ shiftm = -shift*(mq3-mq2); }
} }
std::vector<Coeff_t> diag(Ls,1.0); Vector<Coeff_t> diag(Ls,1.0);
std::vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = mq1 + shiftp; Vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = mq1 + shiftp;
std::vector<Coeff_t> lower(Ls,-1.0); lower[0] = mq1 + shiftm; Vector<Coeff_t> lower(Ls,-1.0); lower[0] = mq1 + shiftm;
this->M5Ddag(psi, chi, chi, lower, diag, upper); this->M5Ddag(psi, chi, chi, lower, diag, upper);
} }
@ -181,9 +181,9 @@ void DomainWallEOFAFermion<Impl>::Mooee(const FermionField& psi, FermionField& c
{ {
int Ls = this->Ls; int Ls = this->Ls;
std::vector<Coeff_t> diag = this->bee; Vector<Coeff_t> diag = this->bee;
std::vector<Coeff_t> upper(Ls); Vector<Coeff_t> upper(Ls);
std::vector<Coeff_t> lower(Ls); Vector<Coeff_t> lower(Ls);
for(int s=0; s<Ls; s++){ for(int s=0; s<Ls; s++){
upper[s] = -this->cee[s]; upper[s] = -this->cee[s];
@ -200,9 +200,9 @@ void DomainWallEOFAFermion<Impl>::MooeeDag(const FermionField& psi, FermionField
{ {
int Ls = this->Ls; int Ls = this->Ls;
std::vector<Coeff_t> diag = this->bee; Vector<Coeff_t> diag = this->bee;
std::vector<Coeff_t> upper(Ls); Vector<Coeff_t> upper(Ls);
std::vector<Coeff_t> lower(Ls); Vector<Coeff_t> lower(Ls);
for(int s=0; s<Ls; s++){ for(int s=0; s<Ls; s++){
upper[s] = -this->cee[s]; upper[s] = -this->cee[s];
@ -218,7 +218,7 @@ void DomainWallEOFAFermion<Impl>::MooeeDag(const FermionField& psi, FermionField
//Zolo //Zolo
template<class Impl> template<class Impl>
void DomainWallEOFAFermion<Impl>::SetCoefficientsInternal(RealD zolo_hi, std::vector<Coeff_t>& gamma, RealD b, RealD c) void DomainWallEOFAFermion<Impl>::SetCoefficientsInternal(RealD zolo_hi, Vector<Coeff_t>& gamma, RealD b, RealD c)
{ {
int Ls = this->Ls; int Ls = this->Ls;
int pm = this->pm; int pm = this->pm;

View File

@ -61,6 +61,8 @@ ImprovedStaggeredFermion5D<Impl>::ImprovedStaggeredFermion5D(GridCartesian
UUUmu(&FourDimGrid), UUUmu(&FourDimGrid),
UUUmuEven(&FourDimRedBlackGrid), UUUmuEven(&FourDimRedBlackGrid),
UUUmuOdd(&FourDimRedBlackGrid), UUUmuOdd(&FourDimRedBlackGrid),
Lebesgue(&FourDimGrid),
LebesgueEvenOdd(&FourDimRedBlackGrid),
_tmp(&FiveDimRedBlackGrid) _tmp(&FiveDimRedBlackGrid)
{ {
@ -275,18 +277,18 @@ void ImprovedStaggeredFermion5D<Impl>::DhopDerivOE(GaugeField &mat,
/*CHANGE */ /*CHANGE */
template<class Impl> template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::DhopInternal(StencilImpl & st, void ImprovedStaggeredFermion5D<Impl>::DhopInternal(StencilImpl & st, LebesgueOrder &lo,
DoubledGaugeField & U,DoubledGaugeField & UUU, DoubledGaugeField & U,DoubledGaugeField & UUU,
const FermionField &in, FermionField &out,int dag) const FermionField &in, FermionField &out,int dag)
{ {
if ( StaggeredKernelsStatic::Comms == StaggeredKernelsStatic::CommsAndCompute ) if ( StaggeredKernelsStatic::Comms == StaggeredKernelsStatic::CommsAndCompute )
DhopInternalOverlappedComms(st,U,UUU,in,out,dag); DhopInternalOverlappedComms(st,lo,U,UUU,in,out,dag);
else else
DhopInternalSerialComms(st,U,UUU,in,out,dag); DhopInternalSerialComms(st,lo,U,UUU,in,out,dag);
} }
template<class Impl> template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, void ImprovedStaggeredFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, LebesgueOrder &lo,
DoubledGaugeField & U,DoubledGaugeField & UUU, DoubledGaugeField & U,DoubledGaugeField & UUU,
const FermionField &in, FermionField &out,int dag) const FermionField &in, FermionField &out,int dag)
{ {
@ -311,7 +313,7 @@ void ImprovedStaggeredFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl &
{ {
int interior=1; int interior=1;
int exterior=0; int exterior=0;
Kernels::DhopImproved(st,U,UUU,in,out,dag,interior,exterior); Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
} }
st.CommsMerge(compressor); st.CommsMerge(compressor);
@ -321,12 +323,12 @@ void ImprovedStaggeredFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl &
{ {
int interior=0; int interior=0;
int exterior=1; int exterior=1;
Kernels::DhopImproved(st,U,UUU,in,out,dag,interior,exterior); Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
} }
} }
template<class Impl> template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st, void ImprovedStaggeredFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st, LebesgueOrder &lo,
DoubledGaugeField & U,DoubledGaugeField & UUU, DoubledGaugeField & U,DoubledGaugeField & UUU,
const FermionField &in, FermionField &out,int dag) const FermionField &in, FermionField &out,int dag)
{ {
@ -339,7 +341,7 @@ void ImprovedStaggeredFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st,
{ {
int interior=1; int interior=1;
int exterior=1; int exterior=1;
Kernels::DhopImproved(st,U,UUU,in,out,dag,interior,exterior); Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
} }
} }
/*CHANGE END*/ /*CHANGE END*/
@ -355,7 +357,7 @@ void ImprovedStaggeredFermion5D<Impl>::DhopOE(const FermionField &in, FermionFie
assert(in.Checkerboard()==Even); assert(in.Checkerboard()==Even);
out.Checkerboard() = Odd; out.Checkerboard() = Odd;
DhopInternal(StencilEven,UmuOdd,UUUmuOdd,in,out,dag); DhopInternal(StencilEven,LebesgueEvenOdd,UmuOdd,UUUmuOdd,in,out,dag);
} }
template<class Impl> template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag) void ImprovedStaggeredFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
@ -366,7 +368,7 @@ void ImprovedStaggeredFermion5D<Impl>::DhopEO(const FermionField &in, FermionFie
assert(in.Checkerboard()==Odd); assert(in.Checkerboard()==Odd);
out.Checkerboard() = Even; out.Checkerboard() = Even;
DhopInternal(StencilOdd,UmuEven,UUUmuEven,in,out,dag); DhopInternal(StencilOdd,LebesgueEvenOdd,UmuEven,UUUmuEven,in,out,dag);
} }
template<class Impl> template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::Dhop(const FermionField &in, FermionField &out,int dag) void ImprovedStaggeredFermion5D<Impl>::Dhop(const FermionField &in, FermionField &out,int dag)
@ -376,7 +378,7 @@ void ImprovedStaggeredFermion5D<Impl>::Dhop(const FermionField &in, FermionField
out.Checkerboard() = in.Checkerboard(); out.Checkerboard() = in.Checkerboard();
DhopInternal(Stencil,Umu,UUUmu,in,out,dag); DhopInternal(Stencil,Lebesgue,Umu,UUUmu,in,out,dag);
} }
///////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////

View File

@ -48,6 +48,8 @@ ImprovedStaggeredFermion<Impl>::ImprovedStaggeredFermion(GridCartesian &Fgrid, G
StencilEven(&Hgrid, npoint, Even, directions, displacements,p), // source is Even StencilEven(&Hgrid, npoint, Even, directions, displacements,p), // source is Even
StencilOdd(&Hgrid, npoint, Odd, directions, displacements,p), // source is Odd StencilOdd(&Hgrid, npoint, Odd, directions, displacements,p), // source is Odd
mass(_mass), mass(_mass),
Lebesgue(_grid),
LebesgueEvenOdd(_cbgrid),
Umu(&Fgrid), Umu(&Fgrid),
UmuEven(&Hgrid), UmuEven(&Hgrid),
UmuOdd(&Hgrid), UmuOdd(&Hgrid),
@ -337,7 +339,7 @@ void ImprovedStaggeredFermion<Impl>::Dhop(const FermionField &in, FermionField &
out.Checkerboard() = in.Checkerboard(); out.Checkerboard() = in.Checkerboard();
DhopInternal(Stencil, Umu, UUUmu, in, out, dag); DhopInternal(Stencil, Lebesgue, Umu, UUUmu, in, out, dag);
} }
template <class Impl> template <class Impl>
@ -349,7 +351,7 @@ void ImprovedStaggeredFermion<Impl>::DhopOE(const FermionField &in, FermionField
assert(in.Checkerboard() == Even); assert(in.Checkerboard() == Even);
out.Checkerboard() = Odd; out.Checkerboard() = Odd;
DhopInternal(StencilEven, UmuOdd, UUUmuOdd, in, out, dag); DhopInternal(StencilEven, LebesgueEvenOdd, UmuOdd, UUUmuOdd, in, out, dag);
} }
template <class Impl> template <class Impl>
@ -361,7 +363,7 @@ void ImprovedStaggeredFermion<Impl>::DhopEO(const FermionField &in, FermionField
assert(in.Checkerboard() == Odd); assert(in.Checkerboard() == Odd);
out.Checkerboard() = Even; out.Checkerboard() = Even;
DhopInternal(StencilOdd, UmuEven, UUUmuEven, in, out, dag); DhopInternal(StencilOdd, LebesgueEvenOdd, UmuEven, UUUmuEven, in, out, dag);
} }
template <class Impl> template <class Impl>
@ -392,19 +394,19 @@ void ImprovedStaggeredFermion<Impl>::DhopDir(const FermionField &in, FermionFiel
template <class Impl> template <class Impl>
void ImprovedStaggeredFermion<Impl>::DhopInternal(StencilImpl &st, void ImprovedStaggeredFermion<Impl>::DhopInternal(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &U,
DoubledGaugeField &UUU, DoubledGaugeField &UUU,
const FermionField &in, const FermionField &in,
FermionField &out, int dag) FermionField &out, int dag)
{ {
if ( StaggeredKernelsStatic::Comms == StaggeredKernelsStatic::CommsAndCompute ) if ( StaggeredKernelsStatic::Comms == StaggeredKernelsStatic::CommsAndCompute )
DhopInternalOverlappedComms(st,U,UUU,in,out,dag); DhopInternalOverlappedComms(st,lo,U,UUU,in,out,dag);
else else
DhopInternalSerialComms(st,U,UUU,in,out,dag); DhopInternalSerialComms(st,lo,U,UUU,in,out,dag);
} }
template <class Impl> template <class Impl>
void ImprovedStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, void ImprovedStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &U,
DoubledGaugeField &UUU, DoubledGaugeField &UUU,
const FermionField &in, const FermionField &in,
@ -427,7 +429,7 @@ void ImprovedStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st
{ {
int interior=1; int interior=1;
int exterior=0; int exterior=0;
Kernels::DhopImproved(st,U,UUU,in,out,dag,interior,exterior); Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
} }
st.CommunicateComplete(requests); st.CommunicateComplete(requests);
@ -438,13 +440,13 @@ void ImprovedStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st
{ {
int interior=0; int interior=0;
int exterior=1; int exterior=1;
Kernels::DhopImproved(st,U,UUU,in,out,dag,interior,exterior); Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
} }
} }
template <class Impl> template <class Impl>
void ImprovedStaggeredFermion<Impl>::DhopInternalSerialComms(StencilImpl &st, void ImprovedStaggeredFermion<Impl>::DhopInternalSerialComms(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &U,
DoubledGaugeField &UUU, DoubledGaugeField &UUU,
const FermionField &in, const FermionField &in,
@ -458,7 +460,7 @@ void ImprovedStaggeredFermion<Impl>::DhopInternalSerialComms(StencilImpl &st,
{ {
int interior=1; int interior=1;
int exterior=1; int exterior=1;
Kernels::DhopImproved(st,U,UUU,in,out,dag,interior,exterior); Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
} }
}; };

View File

@ -39,7 +39,7 @@ NAMESPACE_BEGIN(Grid);
template<class Impl> template<class Impl>
void MobiusEOFAFermion<Impl>::M5D(const FermionField &psi_i, const FermionField &phi_i, FermionField &chi_i, void MobiusEOFAFermion<Impl>::M5D(const FermionField &psi_i, const FermionField &phi_i, FermionField &chi_i,
std::vector<Coeff_t> &lower, std::vector<Coeff_t> &diag, std::vector<Coeff_t> &upper) Vector<Coeff_t> &lower, Vector<Coeff_t> &diag, Vector<Coeff_t> &upper)
{ {
chi_i.Checkerboard() = psi_i.Checkerboard(); chi_i.Checkerboard() = psi_i.Checkerboard();
GridBase *grid = psi_i.Grid(); GridBase *grid = psi_i.Grid();
@ -50,13 +50,9 @@ void MobiusEOFAFermion<Impl>::M5D(const FermionField &psi_i, const FermionField
assert(phi.Checkerboard() == psi.Checkerboard()); assert(phi.Checkerboard() == psi.Checkerboard());
static deviceVector<Coeff_t> d_diag(Ls); acceleratorCopyToDevice(&diag[0],&d_diag[0],Ls*sizeof(Coeff_t)); auto pdiag = &diag[0];
static deviceVector<Coeff_t> d_upper(Ls);acceleratorCopyToDevice(&upper[0],&d_upper[0],Ls*sizeof(Coeff_t)); auto pupper = &upper[0];
static deviceVector<Coeff_t> d_lower(Ls);acceleratorCopyToDevice(&lower[0],&d_lower[0],Ls*sizeof(Coeff_t)); auto plower = &lower[0];
auto pdiag = &d_diag[0];
auto pupper = &d_upper[0];
auto plower = &d_lower[0];
// Flops = 6.0*(Nc*Ns) *Ls*vol // Flops = 6.0*(Nc*Ns) *Ls*vol
int nloop = grid->oSites()/Ls; int nloop = grid->oSites()/Ls;
@ -78,8 +74,8 @@ void MobiusEOFAFermion<Impl>::M5D(const FermionField &psi_i, const FermionField
template<class Impl> template<class Impl>
void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField &psi_i, const FermionField &phi_i, FermionField &chi_i, void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField &psi_i, const FermionField &phi_i, FermionField &chi_i,
std::vector<Coeff_t> &lower, std::vector<Coeff_t> &diag, std::vector<Coeff_t> &upper, Vector<Coeff_t> &lower, Vector<Coeff_t> &diag, Vector<Coeff_t> &upper,
std::vector<Coeff_t> &shift_coeffs) Vector<Coeff_t> &shift_coeffs)
{ {
chi_i.Checkerboard() = psi_i.Checkerboard(); chi_i.Checkerboard() = psi_i.Checkerboard();
GridBase *grid = psi_i.Grid(); GridBase *grid = psi_i.Grid();
@ -93,15 +89,10 @@ void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField &psi_i, const Fermion
assert(phi.Checkerboard() == psi.Checkerboard()); assert(phi.Checkerboard() == psi.Checkerboard());
static deviceVector<Coeff_t> d_diag(Ls); acceleratorCopyToDevice(&diag[0],&d_diag[0],Ls*sizeof(Coeff_t)); auto pdiag = &diag[0];
static deviceVector<Coeff_t> d_upper(Ls);acceleratorCopyToDevice(&upper[0],&d_upper[0],Ls*sizeof(Coeff_t)); auto pupper = &upper[0];
static deviceVector<Coeff_t> d_lower(Ls);acceleratorCopyToDevice(&lower[0],&d_lower[0],Ls*sizeof(Coeff_t)); auto plower = &lower[0];
static deviceVector<Coeff_t> d_shift_coeffs(Ls);acceleratorCopyToDevice(&shift_coeffs[0],&d_shift_coeffs[0],Ls*sizeof(Coeff_t)); auto pshift_coeffs = &shift_coeffs[0];
auto pdiag = &d_diag[0];
auto pupper = &d_upper[0];
auto plower = &d_lower[0];
auto pshift_coeffs = &d_shift_coeffs[0];
// Flops = 6.0*(Nc*Ns) *Ls*vol // Flops = 6.0*(Nc*Ns) *Ls*vol
int nloop = grid->oSites()/Ls; int nloop = grid->oSites()/Ls;
@ -128,7 +119,7 @@ void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField &psi_i, const Fermion
template<class Impl> template<class Impl>
void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField &psi_i, const FermionField &phi_i, FermionField &chi_i, void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField &psi_i, const FermionField &phi_i, FermionField &chi_i,
std::vector<Coeff_t> &lower, std::vector<Coeff_t> &diag, std::vector<Coeff_t> &upper) Vector<Coeff_t> &lower, Vector<Coeff_t> &diag, Vector<Coeff_t> &upper)
{ {
chi_i.Checkerboard() = psi_i.Checkerboard(); chi_i.Checkerboard() = psi_i.Checkerboard();
GridBase *grid = psi_i.Grid(); GridBase *grid = psi_i.Grid();
@ -139,13 +130,9 @@ void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField &psi_i, const FermionFie
assert(phi.Checkerboard() == psi.Checkerboard()); assert(phi.Checkerboard() == psi.Checkerboard());
static deviceVector<Coeff_t> d_diag(Ls); acceleratorCopyToDevice(&diag[0],&d_diag[0],Ls*sizeof(Coeff_t)); auto pdiag = &diag[0];
static deviceVector<Coeff_t> d_upper(Ls);acceleratorCopyToDevice(&upper[0],&d_upper[0],Ls*sizeof(Coeff_t)); auto pupper = &upper[0];
static deviceVector<Coeff_t> d_lower(Ls);acceleratorCopyToDevice(&lower[0],&d_lower[0],Ls*sizeof(Coeff_t)); auto plower = &lower[0];
auto pdiag = &d_diag[0];
auto pupper = &d_upper[0];
auto plower = &d_lower[0];
// Flops = 6.0*(Nc*Ns) *Ls*vol // Flops = 6.0*(Nc*Ns) *Ls*vol
int nloop = grid->oSites()/Ls; int nloop = grid->oSites()/Ls;
@ -167,8 +154,8 @@ void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField &psi_i, const FermionFie
template<class Impl> template<class Impl>
void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField &psi_i, const FermionField &phi_i, FermionField &chi_i, void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField &psi_i, const FermionField &phi_i, FermionField &chi_i,
std::vector<Coeff_t> &lower, std::vector<Coeff_t> &diag, std::vector<Coeff_t> &upper, Vector<Coeff_t> &lower, Vector<Coeff_t> &diag, Vector<Coeff_t> &upper,
std::vector<Coeff_t> &shift_coeffs) Vector<Coeff_t> &shift_coeffs)
{ {
chi_i.Checkerboard() = psi_i.Checkerboard(); chi_i.Checkerboard() = psi_i.Checkerboard();
GridBase *grid = psi_i.Grid(); GridBase *grid = psi_i.Grid();
@ -180,15 +167,10 @@ void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField &psi_i, const Ferm
assert(phi.Checkerboard() == psi.Checkerboard()); assert(phi.Checkerboard() == psi.Checkerboard());
static deviceVector<Coeff_t> d_diag(Ls); acceleratorCopyToDevice(&diag[0],&d_diag[0],Ls*sizeof(Coeff_t)); auto pdiag = &diag[0];
static deviceVector<Coeff_t> d_upper(Ls);acceleratorCopyToDevice(&upper[0],&d_upper[0],Ls*sizeof(Coeff_t)); auto pupper = &upper[0];
static deviceVector<Coeff_t> d_lower(Ls);acceleratorCopyToDevice(&lower[0],&d_lower[0],Ls*sizeof(Coeff_t)); auto plower = &lower[0];
static deviceVector<Coeff_t> d_shift_coeffs(Ls);acceleratorCopyToDevice(&shift_coeffs[0],&d_shift_coeffs[0],Ls*sizeof(Coeff_t)); auto pshift_coeffs = &shift_coeffs[0];
auto pdiag = &d_diag[0];
auto pupper = &d_upper[0];
auto plower = &d_lower[0];
auto pshift_coeffs = &d_shift_coeffs[0];
// Flops = 6.0*(Nc*Ns) *Ls*vol // Flops = 6.0*(Nc*Ns) *Ls*vol
auto pm = this->pm; auto pm = this->pm;
@ -230,17 +212,11 @@ void MobiusEOFAFermion<Impl>::MooeeInv(const FermionField &psi_i, FermionField &
autoView(psi , psi_i, AcceleratorRead); autoView(psi , psi_i, AcceleratorRead);
autoView(chi , chi_i, AcceleratorWrite); autoView(chi , chi_i, AcceleratorWrite);
static deviceVector<Coeff_t> d_lee(Ls); acceleratorCopyToDevice(&this->lee[0],&d_lee[0],Ls*sizeof(Coeff_t)); auto plee = & this->lee [0];
static deviceVector<Coeff_t> d_dee(Ls); acceleratorCopyToDevice(&this->dee[0],&d_dee[0],Ls*sizeof(Coeff_t)); auto pdee = & this->dee [0];
static deviceVector<Coeff_t> d_uee(Ls); acceleratorCopyToDevice(&this->uee[0],&d_uee[0],Ls*sizeof(Coeff_t)); auto puee = & this->uee [0];
static deviceVector<Coeff_t> d_leem(Ls); acceleratorCopyToDevice(&this->leem[0],&d_leem[0],Ls*sizeof(Coeff_t)); auto pleem= & this->leem[0];
static deviceVector<Coeff_t> d_ueem(Ls); acceleratorCopyToDevice(&this->ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t)); auto pueem= & this->ueem[0];
auto plee = & d_lee [0];
auto pdee = & d_dee [0];
auto puee = & d_uee [0];
auto pleem = & d_leem[0];
auto pueem = & d_ueem[0];
if(this->shift != 0.0){ MooeeInv_shift(psi_i,chi_i); return; } if(this->shift != 0.0){ MooeeInv_shift(psi_i,chi_i); return; }
@ -292,24 +268,14 @@ void MobiusEOFAFermion<Impl>::MooeeInv_shift(const FermionField &psi_i, FermionF
autoView(psi , psi_i, AcceleratorRead); autoView(psi , psi_i, AcceleratorRead);
autoView(chi , chi_i, AcceleratorWrite); autoView(chi , chi_i, AcceleratorWrite);
// Move into object and constructor
static deviceVector<Coeff_t> d_lee(Ls); acceleratorCopyToDevice(&this->lee[0],&d_lee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_dee(Ls); acceleratorCopyToDevice(&this->dee[0],&d_dee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_uee(Ls); acceleratorCopyToDevice(&this->uee[0],&d_uee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_leem(Ls); acceleratorCopyToDevice(&this->leem[0],&d_leem[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_ueem(Ls); acceleratorCopyToDevice(&this->ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t));
auto pm = this->pm; auto pm = this->pm;
auto plee = & d_lee [0]; auto plee = & this->lee [0];
auto pdee = & d_dee [0]; auto pdee = & this->dee [0];
auto puee = & d_uee [0]; auto puee = & this->uee [0];
auto pleem = & d_leem[0]; auto pleem= & this->leem[0];
auto pueem = & d_ueem[0]; auto pueem= & this->ueem[0];
auto pMooeeInv_shift_lc = &MooeeInv_shift_lc[0];
static deviceVector<Coeff_t> d_MooeeInv_shift_lc(Ls); acceleratorCopyToDevice(&MooeeInv_shift_lc[0],&d_MooeeInv_shift_lc[0],Ls*sizeof(Coeff_t)); auto pMooeeInv_shift_norm = &MooeeInv_shift_norm[0];
static deviceVector<Coeff_t> d_MooeeInv_shift_norm(Ls); acceleratorCopyToDevice(&MooeeInv_shift_norm[0],&d_MooeeInv_shift_norm[0],Ls*sizeof(Coeff_t));
auto pMooeeInv_shift_lc = &d_MooeeInv_shift_lc[0];
auto pMooeeInv_shift_norm = &d_MooeeInv_shift_norm[0];
int nloop = grid->oSites()/Ls; int nloop = grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(),{ accelerator_for(sss,nloop,Simd::Nsimd(),{
@ -367,17 +333,11 @@ void MobiusEOFAFermion<Impl>::MooeeInvDag(const FermionField &psi_i, FermionFiel
autoView(psi , psi_i, AcceleratorRead); autoView(psi , psi_i, AcceleratorRead);
autoView(chi , chi_i, AcceleratorWrite); autoView(chi , chi_i, AcceleratorWrite);
static deviceVector<Coeff_t> d_lee(Ls); acceleratorCopyToDevice(&this->lee[0],&d_lee[0],Ls*sizeof(Coeff_t)); auto plee = & this->lee [0];
static deviceVector<Coeff_t> d_dee(Ls); acceleratorCopyToDevice(&this->dee[0],&d_dee[0],Ls*sizeof(Coeff_t)); auto pdee = & this->dee [0];
static deviceVector<Coeff_t> d_uee(Ls); acceleratorCopyToDevice(&this->uee[0],&d_uee[0],Ls*sizeof(Coeff_t)); auto puee = & this->uee [0];
static deviceVector<Coeff_t> d_leem(Ls); acceleratorCopyToDevice(&this->leem[0],&d_leem[0],Ls*sizeof(Coeff_t)); auto pleem= & this->leem[0];
static deviceVector<Coeff_t> d_ueem(Ls); acceleratorCopyToDevice(&this->ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t)); auto pueem= & this->ueem[0];
auto plee = & d_lee [0];
auto pdee = & d_dee [0];
auto puee = & d_uee [0];
auto pleem = & d_leem[0];
auto pueem = & d_ueem[0];
int nloop = grid->oSites()/Ls; int nloop = grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(),{ accelerator_for(sss,nloop,Simd::Nsimd(),{
@ -426,28 +386,14 @@ void MobiusEOFAFermion<Impl>::MooeeInvDag_shift(const FermionField &psi_i, Fermi
autoView(chi , chi_i, AcceleratorWrite); autoView(chi , chi_i, AcceleratorWrite);
int Ls = this->Ls; int Ls = this->Ls;
static deviceVector<Coeff_t> d_lee(Ls); acceleratorCopyToDevice(&this->lee[0],&d_lee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_dee(Ls); acceleratorCopyToDevice(&this->dee[0],&d_dee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_uee(Ls); acceleratorCopyToDevice(&this->uee[0],&d_uee[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_leem(Ls); acceleratorCopyToDevice(&this->leem[0],&d_leem[0],Ls*sizeof(Coeff_t));
static deviceVector<Coeff_t> d_ueem(Ls); acceleratorCopyToDevice(&this->ueem[0],&d_ueem[0],Ls*sizeof(Coeff_t));
auto pm = this->pm; auto pm = this->pm;
auto plee = & d_lee [0]; auto plee = & this->lee [0];
auto pdee = & d_dee [0]; auto pdee = & this->dee [0];
auto puee = & d_uee [0]; auto puee = & this->uee [0];
auto pleem = & d_leem[0]; auto pleem= & this->leem[0];
auto pueem = & d_ueem[0]; auto pueem= & this->ueem[0];
auto pMooeeInvDag_shift_lc = &MooeeInvDag_shift_lc[0];
static deviceVector<Coeff_t> d_MooeeInvDag_shift_lc(Ls); auto pMooeeInvDag_shift_norm = &MooeeInvDag_shift_norm[0];
static deviceVector<Coeff_t> d_MooeeInvDag_shift_norm(Ls);
acceleratorCopyToDevice(&MooeeInvDag_shift_lc[0],&d_MooeeInvDag_shift_lc[0],Ls*sizeof(Coeff_t));
acceleratorCopyToDevice(&MooeeInvDag_shift_norm[0],&d_MooeeInvDag_shift_norm[0],Ls*sizeof(Coeff_t));
auto pMooeeInvDag_shift_lc = &d_MooeeInvDag_shift_lc[0];
auto pMooeeInvDag_shift_norm = &d_MooeeInvDag_shift_norm[0];
// auto pMooeeInvDag_shift_lc = &MooeeInvDag_shift_lc[0];
// auto pMooeeInvDag_shift_norm = &MooeeInvDag_shift_norm[0];
int nloop = grid->oSites()/Ls; int nloop = grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(),{ accelerator_for(sss,nloop,Simd::Nsimd(),{

View File

@ -196,9 +196,9 @@ void MobiusEOFAFermion<Impl>::M5D(const FermionField& psi, FermionField& chi)
{ {
int Ls = this->Ls; int Ls = this->Ls;
std::vector<Coeff_t> diag(Ls,1.0); Vector<Coeff_t> diag(Ls,1.0);
std::vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = this->mq1; Vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = this->mq1;
std::vector<Coeff_t> lower(Ls,-1.0); lower[0] = this->mq1; Vector<Coeff_t> lower(Ls,-1.0); lower[0] = this->mq1;
// no shift term // no shift term
if(this->shift == 0.0){ this->M5D(psi, chi, chi, lower, diag, upper); } if(this->shift == 0.0){ this->M5D(psi, chi, chi, lower, diag, upper); }
@ -212,9 +212,9 @@ void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField& psi, FermionField& chi)
{ {
int Ls = this->Ls; int Ls = this->Ls;
std::vector<Coeff_t> diag(Ls,1.0); Vector<Coeff_t> diag(Ls,1.0);
std::vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = this->mq1; Vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = this->mq1;
std::vector<Coeff_t> lower(Ls,-1.0); lower[0] = this->mq1; Vector<Coeff_t> lower(Ls,-1.0); lower[0] = this->mq1;
// no shift term // no shift term
if(this->shift == 0.0){ this->M5Ddag(psi, chi, chi, lower, diag, upper); } if(this->shift == 0.0){ this->M5Ddag(psi, chi, chi, lower, diag, upper); }
@ -230,9 +230,9 @@ void MobiusEOFAFermion<Impl>::Mooee(const FermionField& psi, FermionField& chi)
int Ls = this->Ls; int Ls = this->Ls;
// coefficients of Mooee // coefficients of Mooee
std::vector<Coeff_t> diag = this->bee; Vector<Coeff_t> diag = this->bee;
std::vector<Coeff_t> upper(Ls); Vector<Coeff_t> upper(Ls);
std::vector<Coeff_t> lower(Ls); Vector<Coeff_t> lower(Ls);
for(int s=0; s<Ls; s++){ for(int s=0; s<Ls; s++){
upper[s] = -this->cee[s]; upper[s] = -this->cee[s];
lower[s] = -this->cee[s]; lower[s] = -this->cee[s];
@ -253,9 +253,9 @@ void MobiusEOFAFermion<Impl>::MooeeDag(const FermionField& psi, FermionField& ch
int Ls = this->Ls; int Ls = this->Ls;
// coefficients of MooeeDag // coefficients of MooeeDag
std::vector<Coeff_t> diag = this->bee; Vector<Coeff_t> diag = this->bee;
std::vector<Coeff_t> upper(Ls); Vector<Coeff_t> upper(Ls);
std::vector<Coeff_t> lower(Ls); Vector<Coeff_t> lower(Ls);
for(int s=0; s<Ls; s++){ for(int s=0; s<Ls; s++){
if(s==0) { if(s==0) {
upper[s] = -this->cee[s+1]; upper[s] = -this->cee[s+1];
@ -314,10 +314,10 @@ void MobiusEOFAFermion<Impl>::SetCoefficientsPrecondShiftOps()
// Tridiagonal solve for MooeeInvDag_shift_lc // Tridiagonal solve for MooeeInvDag_shift_lc
{ {
Coeff_t m(0.0); Coeff_t m(0.0);
std::vector<Coeff_t> d = Mooee_shift; Vector<Coeff_t> d = Mooee_shift;
std::vector<Coeff_t> u(Ls,0.0); Vector<Coeff_t> u(Ls,0.0);
std::vector<Coeff_t> y(Ls,0.0); Vector<Coeff_t> y(Ls,0.0);
std::vector<Coeff_t> q(Ls,0.0); Vector<Coeff_t> q(Ls,0.0);
if(pm == 1){ u[0] = 1.0; } if(pm == 1){ u[0] = 1.0; }
else{ u[Ls-1] = 1.0; } else{ u[Ls-1] = 1.0; }

View File

@ -48,6 +48,8 @@ NaiveStaggeredFermion<Impl>::NaiveStaggeredFermion(GridCartesian &Fgrid, GridRed
StencilEven(&Hgrid, npoint, Even, directions, displacements,p), // source is Even StencilEven(&Hgrid, npoint, Even, directions, displacements,p), // source is Even
StencilOdd(&Hgrid, npoint, Odd, directions, displacements,p), // source is Odd StencilOdd(&Hgrid, npoint, Odd, directions, displacements,p), // source is Odd
mass(_mass), mass(_mass),
Lebesgue(_grid),
LebesgueEvenOdd(_cbgrid),
Umu(&Fgrid), Umu(&Fgrid),
UmuEven(&Hgrid), UmuEven(&Hgrid),
UmuOdd(&Hgrid), UmuOdd(&Hgrid),
@ -266,7 +268,7 @@ void NaiveStaggeredFermion<Impl>::Dhop(const FermionField &in, FermionField &out
out.Checkerboard() = in.Checkerboard(); out.Checkerboard() = in.Checkerboard();
DhopInternal(Stencil, Umu, in, out, dag); DhopInternal(Stencil, Lebesgue, Umu, in, out, dag);
} }
template <class Impl> template <class Impl>
@ -278,7 +280,7 @@ void NaiveStaggeredFermion<Impl>::DhopOE(const FermionField &in, FermionField &o
assert(in.Checkerboard() == Even); assert(in.Checkerboard() == Even);
out.Checkerboard() = Odd; out.Checkerboard() = Odd;
DhopInternal(StencilEven, UmuOdd, in, out, dag); DhopInternal(StencilEven, LebesgueEvenOdd, UmuOdd, in, out, dag);
} }
template <class Impl> template <class Impl>
@ -290,7 +292,7 @@ void NaiveStaggeredFermion<Impl>::DhopEO(const FermionField &in, FermionField &o
assert(in.Checkerboard() == Odd); assert(in.Checkerboard() == Odd);
out.Checkerboard() = Even; out.Checkerboard() = Even;
DhopInternal(StencilOdd, UmuEven, in, out, dag); DhopInternal(StencilOdd, LebesgueEvenOdd, UmuEven, in, out, dag);
} }
template <class Impl> template <class Impl>
@ -321,18 +323,18 @@ void NaiveStaggeredFermion<Impl>::DhopDir(const FermionField &in, FermionField &
template <class Impl> template <class Impl>
void NaiveStaggeredFermion<Impl>::DhopInternal(StencilImpl &st, void NaiveStaggeredFermion<Impl>::DhopInternal(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &U,
const FermionField &in, const FermionField &in,
FermionField &out, int dag) FermionField &out, int dag)
{ {
if ( StaggeredKernelsStatic::Comms == StaggeredKernelsStatic::CommsAndCompute ) if ( StaggeredKernelsStatic::Comms == StaggeredKernelsStatic::CommsAndCompute )
DhopInternalOverlappedComms(st,U,in,out,dag); DhopInternalOverlappedComms(st,lo,U,in,out,dag);
else else
DhopInternalSerialComms(st,U,in,out,dag); DhopInternalSerialComms(st,lo,U,in,out,dag);
} }
template <class Impl> template <class Impl>
void NaiveStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, void NaiveStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &U,
const FermionField &in, const FermionField &in,
FermionField &out, int dag) FermionField &out, int dag)
@ -354,7 +356,7 @@ void NaiveStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st,
{ {
int interior=1; int interior=1;
int exterior=0; int exterior=0;
Kernels::DhopNaive(st,U,in,out,dag,interior,exterior); Kernels::DhopNaive(st,lo,U,in,out,dag,interior,exterior);
} }
st.CommunicateComplete(requests); st.CommunicateComplete(requests);
@ -365,12 +367,12 @@ void NaiveStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st,
{ {
int interior=0; int interior=0;
int exterior=1; int exterior=1;
Kernels::DhopNaive(st,U,in,out,dag,interior,exterior); Kernels::DhopNaive(st,lo,U,in,out,dag,interior,exterior);
} }
} }
template <class Impl> template <class Impl>
void NaiveStaggeredFermion<Impl>::DhopInternalSerialComms(StencilImpl &st, void NaiveStaggeredFermion<Impl>::DhopInternalSerialComms(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &U,
const FermionField &in, const FermionField &in,
FermionField &out, int dag) FermionField &out, int dag)
@ -383,7 +385,7 @@ void NaiveStaggeredFermion<Impl>::DhopInternalSerialComms(StencilImpl &st,
{ {
int interior=1; int interior=1;
int exterior=1; int exterior=1;
Kernels::DhopNaive(st,U,in,out,dag,interior,exterior); Kernels::DhopNaive(st,lo,U,in,out,dag,interior,exterior);
} }
}; };

View File

@ -375,6 +375,23 @@ void StaggeredKernels<Impl>::DhopSiteHandExt(StencilView &st,
} }
} }
/*
#define DHOP_SITE_HAND_INSTANTIATE(IMPL) \
template void StaggeredKernels<IMPL>::DhopSiteHand(StencilImpl &st, LebesgueOrder &lo, \
DoubledGaugeFieldView &U,DoubledGaugeFieldView &UUU, \
SiteSpinor *buf, int LLs, int sU, \
const FermionFieldView &in, FermionFieldView &out, int dag); \
\
template void StaggeredKernels<IMPL>::DhopSiteHandInt(StencilImpl &st, LebesgueOrder &lo, \
DoubledGaugeFieldView &U,DoubledGaugeFieldView &UUU, \
SiteSpinor *buf, int LLs, int sU, \
const FermionFieldView &in, FermionFieldView &out, int dag); \
\
template void StaggeredKernels<IMPL>::DhopSiteHandExt(StencilImpl &st, LebesgueOrder &lo, \
DoubledGaugeFieldView &U,DoubledGaugeFieldView &UUU, \
SiteSpinor *buf, int LLs, int sU, \
const FermionFieldView &in, FermionFieldView &out, int dag); \
*/
#undef LOAD_CHI #undef LOAD_CHI
#undef HAND_DECLARATIONS #undef HAND_DECLARATIONS

View File

@ -256,7 +256,7 @@ void StaggeredKernels<Impl>::DhopDirKernel(StencilImpl &st, DoubledGaugeFieldVie
}); });
template <class Impl> template <class Impl>
void StaggeredKernels<Impl>::DhopImproved(StencilImpl &st, void StaggeredKernels<Impl>::DhopImproved(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &UUU, DoubledGaugeField &U, DoubledGaugeField &UUU,
const FermionField &in, FermionField &out, int dag, int interior,int exterior) const FermionField &in, FermionField &out, int dag, int interior,int exterior)
{ {
@ -294,7 +294,7 @@ void StaggeredKernels<Impl>::DhopImproved(StencilImpl &st,
assert(0 && " Kernel optimisation case not covered "); assert(0 && " Kernel optimisation case not covered ");
} }
template <class Impl> template <class Impl>
void StaggeredKernels<Impl>::DhopNaive(StencilImpl &st, void StaggeredKernels<Impl>::DhopNaive(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag, int interior,int exterior) const FermionField &in, FermionField &out, int dag, int interior,int exterior)
{ {

View File

@ -58,9 +58,15 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
Umu(_FourDimGrid), Umu(_FourDimGrid),
UmuEven(_FourDimRedBlackGrid), UmuEven(_FourDimRedBlackGrid),
UmuOdd (_FourDimRedBlackGrid), UmuOdd (_FourDimRedBlackGrid),
Lebesgue(_FourDimGrid),
LebesgueEvenOdd(_FourDimRedBlackGrid),
_tmp(&FiveDimRedBlackGrid), _tmp(&FiveDimRedBlackGrid),
Dirichlet(0) Dirichlet(0)
{ {
Stencil.lo = &Lebesgue;
StencilEven.lo = &LebesgueEvenOdd;
StencilOdd.lo = &LebesgueEvenOdd;
// some assertions // some assertions
assert(FiveDimGrid._ndimension==5); assert(FiveDimGrid._ndimension==5);
assert(FourDimGrid._ndimension==4); assert(FourDimGrid._ndimension==4);
@ -299,19 +305,19 @@ void WilsonFermion5D<Impl>::DhopDerivOE(GaugeField &mat,
} }
template<class Impl> template<class Impl>
void WilsonFermion5D<Impl>::DhopInternal(StencilImpl & st, void WilsonFermion5D<Impl>::DhopInternal(StencilImpl & st, LebesgueOrder &lo,
DoubledGaugeField & U, DoubledGaugeField & U,
const FermionField &in, FermionField &out,int dag) const FermionField &in, FermionField &out,int dag)
{ {
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute ) if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute )
DhopInternalOverlappedComms(st,U,in,out,dag); DhopInternalOverlappedComms(st,lo,U,in,out,dag);
else else
DhopInternalSerialComms(st,U,in,out,dag); DhopInternalSerialComms(st,lo,U,in,out,dag);
} }
template<class Impl> template<class Impl>
void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, LebesgueOrder &lo,
DoubledGaugeField & U, DoubledGaugeField & U,
const FermionField &in, FermionField &out,int dag) const FermionField &in, FermionField &out,int dag)
{ {
@ -325,12 +331,10 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st,
// Start comms // Gather intranode and extra node differentiated?? // Start comms // Gather intranode and extra node differentiated??
///////////////////////////// /////////////////////////////
{ {
// std::cout << " WilsonFermion5D gather " <<std::endl;
GRID_TRACE("Gather"); GRID_TRACE("Gather");
st.HaloExchangeOptGather(in,compressor); // Put the barrier in the routine st.HaloExchangeOptGather(in,compressor); // Put the barrier in the routine
} }
// std::cout << " WilsonFermion5D Communicate Begin " <<std::endl;
std::vector<std::vector<CommsRequest_t> > requests; std::vector<std::vector<CommsRequest_t> > requests;
auto id=traceStart("Communicate overlapped"); auto id=traceStart("Communicate overlapped");
st.CommunicateBegin(requests); st.CommunicateBegin(requests);
@ -339,7 +343,6 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st,
// Overlap with comms // Overlap with comms
///////////////////////////// /////////////////////////////
{ {
// std::cout << " WilsonFermion5D Comms merge " <<std::endl;
GRID_TRACE("MergeSHM"); GRID_TRACE("MergeSHM");
st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
} }
@ -347,7 +350,6 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st,
///////////////////////////// /////////////////////////////
// do the compute interior // do the compute interior
///////////////////////////// /////////////////////////////
// std::cout << " WilsonFermion5D Interior " <<std::endl;
int Opt = WilsonKernelsStatic::Opt; // Why pass this. Kernels should know int Opt = WilsonKernelsStatic::Opt; // Why pass this. Kernels should know
if (dag == DaggerYes) { if (dag == DaggerYes) {
GRID_TRACE("DhopDagInterior"); GRID_TRACE("DhopDagInterior");
@ -360,7 +362,6 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st,
///////////////////////////// /////////////////////////////
// Complete comms // Complete comms
///////////////////////////// /////////////////////////////
// std::cout << " WilsonFermion5D Comms Complete " <<std::endl;
st.CommunicateComplete(requests); st.CommunicateComplete(requests);
traceStop(id); traceStop(id);
@ -368,13 +369,11 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st,
// do the compute exterior // do the compute exterior
///////////////////////////// /////////////////////////////
{ {
// std::cout << " WilsonFermion5D Comms Merge " <<std::endl;
GRID_TRACE("Merge"); GRID_TRACE("Merge");
st.CommsMerge(compressor); st.CommsMerge(compressor);
} }
// std::cout << " WilsonFermion5D Exterior " <<std::endl;
if (dag == DaggerYes) { if (dag == DaggerYes) {
GRID_TRACE("DhopDagExterior"); GRID_TRACE("DhopDagExterior");
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,0,1); Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,0,1);
@ -382,12 +381,11 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st,
GRID_TRACE("DhopExterior"); GRID_TRACE("DhopExterior");
Kernels::DhopKernel (Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,0,1); Kernels::DhopKernel (Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,0,1);
} }
// std::cout << " WilsonFermion5D Done " <<std::endl;
} }
template<class Impl> template<class Impl>
void WilsonFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st, void WilsonFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st, LebesgueOrder &lo,
DoubledGaugeField & U, DoubledGaugeField & U,
const FermionField &in, const FermionField &in,
FermionField &out,int dag) FermionField &out,int dag)
@ -397,13 +395,11 @@ void WilsonFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st,
int LLs = in.Grid()->_rdimensions[0]; int LLs = in.Grid()->_rdimensions[0];
// std::cout << " WilsonFermion5D Halo exch " <<std::endl;
{ {
GRID_TRACE("HaloExchange"); GRID_TRACE("HaloExchange");
st.HaloExchangeOpt(in,compressor); st.HaloExchangeOpt(in,compressor);
} }
// std::cout << " WilsonFermion5D Dhop " <<std::endl;
int Opt = WilsonKernelsStatic::Opt; int Opt = WilsonKernelsStatic::Opt;
if (dag == DaggerYes) { if (dag == DaggerYes) {
GRID_TRACE("DhopDag"); GRID_TRACE("DhopDag");
@ -412,7 +408,6 @@ void WilsonFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st,
GRID_TRACE("Dhop"); GRID_TRACE("Dhop");
Kernels::DhopKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out); Kernels::DhopKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out);
} }
// std::cout << " WilsonFermion5D Done " <<std::endl;
} }
@ -425,7 +420,7 @@ void WilsonFermion5D<Impl>::DhopOE(const FermionField &in, FermionField &out,int
assert(in.Checkerboard()==Even); assert(in.Checkerboard()==Even);
out.Checkerboard() = Odd; out.Checkerboard() = Odd;
DhopInternal(StencilEven,UmuOdd,in,out,dag); DhopInternal(StencilEven,LebesgueEvenOdd,UmuOdd,in,out,dag);
} }
template<class Impl> template<class Impl>
void WilsonFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag) void WilsonFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
@ -436,7 +431,7 @@ void WilsonFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int
assert(in.Checkerboard()==Odd); assert(in.Checkerboard()==Odd);
out.Checkerboard() = Even; out.Checkerboard() = Even;
DhopInternal(StencilOdd,UmuEven,in,out,dag); DhopInternal(StencilOdd,LebesgueEvenOdd,UmuEven,in,out,dag);
} }
template<class Impl> template<class Impl>
void WilsonFermion5D<Impl>::Dhop(const FermionField &in, FermionField &out,int dag) void WilsonFermion5D<Impl>::Dhop(const FermionField &in, FermionField &out,int dag)
@ -446,7 +441,7 @@ void WilsonFermion5D<Impl>::Dhop(const FermionField &in, FermionField &out,int d
out.Checkerboard() = in.Checkerboard(); out.Checkerboard() = in.Checkerboard();
DhopInternal(Stencil,Umu,in,out,dag); DhopInternal(Stencil,Lebesgue,Umu,in,out,dag);
} }
template<class Impl> template<class Impl>
void WilsonFermion5D<Impl>::DW(const FermionField &in, FermionField &out,int dag) void WilsonFermion5D<Impl>::DW(const FermionField &in, FermionField &out,int dag)

View File

@ -52,12 +52,17 @@ WilsonFermion<Impl>::WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
StencilEven(&Hgrid, npoint, Even, directions,displacements,p), // source is Even StencilEven(&Hgrid, npoint, Even, directions,displacements,p), // source is Even
StencilOdd(&Hgrid, npoint, Odd, directions,displacements,p), // source is Odd StencilOdd(&Hgrid, npoint, Odd, directions,displacements,p), // source is Odd
mass(_mass), mass(_mass),
Lebesgue(_grid),
LebesgueEvenOdd(_cbgrid),
Umu(&Fgrid), Umu(&Fgrid),
UmuEven(&Hgrid), UmuEven(&Hgrid),
UmuOdd(&Hgrid), UmuOdd(&Hgrid),
_tmp(&Hgrid), _tmp(&Hgrid),
anisotropyCoeff(anis) anisotropyCoeff(anis)
{ {
Stencil.lo = &Lebesgue;
StencilEven.lo = &LebesgueEvenOdd;
StencilOdd.lo = &LebesgueEvenOdd;
// Allocate the required comms buffer // Allocate the required comms buffer
ImportGauge(_Umu); ImportGauge(_Umu);
if (anisotropyCoeff.isAnisotropic){ if (anisotropyCoeff.isAnisotropic){
@ -309,7 +314,7 @@ void WilsonFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int da
out.Checkerboard() = in.Checkerboard(); out.Checkerboard() = in.Checkerboard();
DhopInternal(Stencil, Umu, in, out, dag); DhopInternal(Stencil, Lebesgue, Umu, in, out, dag);
} }
template <class Impl> template <class Impl>
@ -321,7 +326,7 @@ void WilsonFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int
assert(in.Checkerboard() == Even); assert(in.Checkerboard() == Even);
out.Checkerboard() = Odd; out.Checkerboard() = Odd;
DhopInternal(StencilEven, UmuOdd, in, out, dag); DhopInternal(StencilEven, LebesgueEvenOdd, UmuOdd, in, out, dag);
} }
template <class Impl> template <class Impl>
@ -333,7 +338,7 @@ void WilsonFermion<Impl>::DhopEO(const FermionField &in, FermionField &out,int d
assert(in.Checkerboard() == Odd); assert(in.Checkerboard() == Odd);
out.Checkerboard() = Even; out.Checkerboard() = Even;
DhopInternal(StencilOdd, UmuEven, in, out, dag); DhopInternal(StencilOdd, LebesgueEvenOdd, UmuEven, in, out, dag);
} }
template <class Impl> template <class Impl>
@ -386,21 +391,21 @@ void WilsonFermion<Impl>::DhopDirCalc(const FermionField &in, FermionField &out,
}; };
template <class Impl> template <class Impl>
void WilsonFermion<Impl>::DhopInternal(StencilImpl &st, void WilsonFermion<Impl>::DhopInternal(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &U,
const FermionField &in, const FermionField &in,
FermionField &out, int dag) FermionField &out, int dag)
{ {
#ifdef GRID_OMP #ifdef GRID_OMP
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute ) if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute )
DhopInternalOverlappedComms(st,U,in,out,dag); DhopInternalOverlappedComms(st,lo,U,in,out,dag);
else else
#endif #endif
DhopInternalSerial(st,U,in,out,dag); DhopInternalSerial(st,lo,U,in,out,dag);
} }
template <class Impl> template <class Impl>
void WilsonFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, void WilsonFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &U,
const FermionField &in, const FermionField &in,
FermionField &out, int dag) FermionField &out, int dag)
@ -469,7 +474,7 @@ void WilsonFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st,
template <class Impl> template <class Impl>
void WilsonFermion<Impl>::DhopInternalSerial(StencilImpl &st, void WilsonFermion<Impl>::DhopInternalSerial(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &U,
const FermionField &in, const FermionField &in,
FermionField &out, int dag) FermionField &out, int dag)

View File

@ -40,11 +40,11 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
/// Switch off the 5d vectorised code optimisations /// Switch off the 5d vectorised code optimisations
#undef DWFVEC5D #undef DWFVEC5D
static std::vector<vComplexF> signsF; static Vector<vComplexF> signsF;
template<typename vtype> template<typename vtype>
int setupSigns(std::vector<vtype>& signs ){ int setupSigns(Vector<vtype>& signs ){
std::vector<vtype> bother(2); Vector<vtype> bother(2);
signs = bother; signs = bother;
vrsign(signs[0]); vrsign(signs[0]);
visign(signs[1]); visign(signs[1]);
@ -364,7 +364,7 @@ WilsonKernels<ZDomainWallVec5dImplF>::AsmDhopSiteDagExt(StencilView &st, Doubled
#include <simd/Intel512double.h> #include <simd/Intel512double.h>
static std::vector<vComplexD> signsD; static Vector<vComplexD> signsD;
static int signInitD = setupSigns(signsD); static int signInitD = setupSigns(signsD);
#define MAYBEPERM(A,perm) if (perm) { A ; } #define MAYBEPERM(A,perm) if (perm) { A ; }

View File

@ -434,7 +434,7 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
#define ASM_CALL(A) \ #define ASM_CALL(A) \
thread_for( sss, Nsite, { \ thread_for( sss, Nsite, { \
int ss = sss; /*st.lo->Reorder(sss);*/ \ int ss = st.lo->Reorder(sss); \
int sU = ss; \ int sU = ss; \
int sF = ss*Ls; \ int sF = ss*Ls; \
WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,Ls,1,in_v,out_v); \ WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,Ls,1,in_v,out_v); \

View File

@ -40,7 +40,7 @@ public:
U = Zero(); U = Zero();
LatticeColourMatrix tmp(Uin.Grid()); LatticeColourMatrix tmp(Uin.Grid());
std::vector<typename SU<ncolour>::Matrix> ta(Dimension); Vector<typename SU<ncolour>::Matrix> ta(Dimension);
// Debug lines // Debug lines
// LatticeMatrix uno(Uin.Grid()); // LatticeMatrix uno(Uin.Grid());

View File

@ -43,7 +43,7 @@ public:
U = Zero(); U = Zero();
LatticeColourMatrix tmp(Uin.Grid()); LatticeColourMatrix tmp(Uin.Grid());
std::vector<typename GaugeGroup<ncolour,group_name>::Matrix> eij(Dimension); Vector<typename GaugeGroup<ncolour,group_name>::Matrix> eij(Dimension);
for (int a = 0; a < Dimension; a++) for (int a = 0; a < Dimension; a++)
GaugeGroupTwoIndex<ncolour, S, group_name>::base(a, eij[a]); GaugeGroupTwoIndex<ncolour, S, group_name>::base(a, eij[a]);

View File

@ -32,7 +32,9 @@ private:
// Smear_Stout<Gimpl> *StoutSmearing; // Smear_Stout<Gimpl> *StoutSmearing;
// std::vector<GaugeField> SmearedSet; // std::vector<GaugeField> SmearedSet;
GridRedBlackCartesian * UrbGrid; // keep a copy of the redblack grid for life of object
std::vector<LatticeLorentzComplex> masks; std::vector<LatticeLorentzComplex> masks;
std::vector<int> cbs;
typedef typename SU3Adjoint::AMatrix AdjMatrix; typedef typename SU3Adjoint::AMatrix AdjMatrix;
typedef typename SU3Adjoint::LatticeAdjMatrix AdjMatrixField; typedef typename SU3Adjoint::LatticeAdjMatrix AdjMatrixField;
@ -147,6 +149,25 @@ private:
} }
pokeLorentz(Fdet, Fdet_pol, nu); pokeLorentz(Fdet, Fdet_pol, nu);
} }
void Compute_MpInvJx_dNxxdSy(int cb,
const GaugeLinkField &PlaqL,
const GaugeLinkField &PlaqR,
AdjMatrixField MpInvJx,
AdjVectorField &Fdet2 )
{
GaugeLinkField PlaqLeo(UrbGrid);
GaugeLinkField PlaqReo(UrbGrid);
AdjMatrixField MpInvJxeo(UrbGrid);
AdjVectorField Fdet2eo(UrbGrid);
pickCheckerboard(cb,PlaqLeo,PlaqL);
pickCheckerboard(cb,PlaqReo,PlaqR);
pickCheckerboard(cb,MpInvJxeo,MpInvJx);
Fdet2eo.Checkerboard()=cb;
Compute_MpInvJx_dNxxdSy(PlaqLeo,PlaqReo,MpInvJxeo,Fdet2eo);
setCheckerboard(Fdet2,Fdet2eo);
}
void Compute_MpInvJx_dNxxdSy(const GaugeLinkField &PlaqL,const GaugeLinkField &PlaqR, AdjMatrixField MpInvJx,AdjVectorField &Fdet2 ) void Compute_MpInvJx_dNxxdSy(const GaugeLinkField &PlaqL,const GaugeLinkField &PlaqR, AdjMatrixField MpInvJx,AdjVectorField &Fdet2 )
{ {
GaugeLinkField UtaU(PlaqL.Grid()); GaugeLinkField UtaU(PlaqL.Grid());
@ -278,6 +299,7 @@ public:
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
// Mask the gauge field // Mask the gauge field
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
int cb = cbs[smr];
auto mask=PeekIndex<LorentzIndex>(masks[smr],mu); // the cb mask auto mask=PeekIndex<LorentzIndex>(masks[smr],mu); // the cb mask
Umsk = U; Umsk = U;
@ -442,7 +464,7 @@ public:
AdjMatrixField MpInvJx_nu(grid); AdjMatrixField MpInvJx_nu(grid);
MpInvJx = (-1.0)*MpAdInv * JxAd;// rho is on the plaq factor MpInvJx = (-1.0)*MpAdInv * JxAd;// rho is on the plaq factor
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx,FdetV); Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx,FdetV);
Fdet2_mu=FdetV; Fdet2_mu=FdetV;
Fdet1_mu=Zero(); Fdet1_mu=Zero();
@ -499,7 +521,7 @@ public:
time=-usecond(); time=-usecond();
PlaqR=(-1.0)*PlaqR; PlaqR=(-1.0)*PlaqR;
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx,FdetV); Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx,FdetV);
Fdet2_nu = FdetV; Fdet2_nu = FdetV;
time+=usecond(); time+=usecond();
std::cout << GridLogMessage << "Compute_MpInvJx_dNxxSy (occurs 6x) took "<<time<< " us"<<std::endl; std::cout << GridLogMessage << "Compute_MpInvJx_dNxxSy (occurs 6x) took "<<time<< " us"<<std::endl;
@ -520,7 +542,7 @@ public:
MpInvJx_nu = Cshift(MpInvJx,mu,-1); MpInvJx_nu = Cshift(MpInvJx,mu,-1);
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV); Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx_nu,FdetV);
Fdet2_nu = Fdet2_nu+FdetV; Fdet2_nu = Fdet2_nu+FdetV;
///////////////// -ve nu ///////////////// ///////////////// -ve nu /////////////////
@ -539,7 +561,7 @@ public:
Fdet1_nu = Fdet1_nu + transpose(Nxy)*dJdXe_nMpInv_y; Fdet1_nu = Fdet1_nu + transpose(Nxy)*dJdXe_nMpInv_y;
MpInvJx_nu = Cshift(MpInvJx,nu,1); MpInvJx_nu = Cshift(MpInvJx,nu,1);
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV); Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx_nu,FdetV);
Fdet2_nu = Fdet2_nu+FdetV; Fdet2_nu = Fdet2_nu+FdetV;
// x== // x==
@ -560,7 +582,7 @@ public:
MpInvJx_nu = Cshift(MpInvJx,mu,-1); MpInvJx_nu = Cshift(MpInvJx,mu,-1);
MpInvJx_nu = Cshift(MpInvJx_nu,nu,1); MpInvJx_nu = Cshift(MpInvJx_nu,nu,1);
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV); Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx_nu,FdetV);
Fdet2_nu = Fdet2_nu+FdetV; Fdet2_nu = Fdet2_nu+FdetV;
///////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////
@ -589,7 +611,7 @@ public:
MpInvJx_nu = Cshift(MpInvJx,nu,-1); MpInvJx_nu = Cshift(MpInvJx,nu,-1);
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV); Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx_nu,FdetV);
Fdet2_mu = Fdet2_mu+FdetV; Fdet2_mu = Fdet2_mu+FdetV;
// __ // __
@ -609,7 +631,7 @@ public:
MpInvJx_nu = Cshift(MpInvJx,nu,1); MpInvJx_nu = Cshift(MpInvJx,nu,1);
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV); Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx_nu,FdetV);
Fdet2_mu = Fdet2_mu+FdetV; Fdet2_mu = Fdet2_mu+FdetV;
} }
@ -931,6 +953,10 @@ private:
public: public:
/* Standard constructor */ /* Standard constructor */
virtual ~SmearedConfigurationMasked()
{
delete UrbGrid;
}
SmearedConfigurationMasked(GridCartesian* _UGrid, unsigned int Nsmear, Smear_Stout<Gimpl>& Stout) SmearedConfigurationMasked(GridCartesian* _UGrid, unsigned int Nsmear, Smear_Stout<Gimpl>& Stout)
: SmearedConfiguration<Gimpl>(_UGrid, Nsmear,Stout) : SmearedConfiguration<Gimpl>(_UGrid, Nsmear,Stout)
{ {
@ -939,7 +965,6 @@ public:
// was resized in base class // was resized in base class
assert(this->SmearedSet.size()==Nsmear); assert(this->SmearedSet.size()==Nsmear);
GridRedBlackCartesian * UrbGrid;
UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(_UGrid); UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(_UGrid);
LatticeComplex one(_UGrid); one = ComplexD(1.0,0.0); LatticeComplex one(_UGrid); one = ComplexD(1.0,0.0);
LatticeComplex tmp(_UGrid); LatticeComplex tmp(_UGrid);
@ -947,11 +972,12 @@ public:
for (unsigned int i = 0; i < this->smearingLevels; ++i) { for (unsigned int i = 0; i < this->smearingLevels; ++i) {
masks.push_back(*(new LatticeLorentzComplex(_UGrid))); masks.push_back(*(new LatticeLorentzComplex(_UGrid)));
int mu= (i/2) %Nd; int mu= (i/2) %Nd;
int cb= (i%2); int cb= (i%2);
LatticeComplex tmpcb(UrbGrid); LatticeComplex tmpcb(UrbGrid);
cbs.push_back(cb);
masks[i]=Zero(); masks[i]=Zero();
//////////////////// ////////////////////
// Setup the mask // Setup the mask
@ -962,7 +988,6 @@ public:
PokeIndex<LorentzIndex>(masks[i],tmp, mu); PokeIndex<LorentzIndex>(masks[i],tmp, mu);
} }
delete UrbGrid;
} }
virtual void smeared_force(GaugeField &SigmaTilde) virtual void smeared_force(GaugeField &SigmaTilde)

View File

@ -158,12 +158,12 @@ void A2Autils<FImpl>::MesonField(TensorType &mat,
int MFrvol = rd*Lblock*Rblock*Nmom; int MFrvol = rd*Lblock*Rblock*Nmom;
int MFlvol = ld*Lblock*Rblock*Nmom; int MFlvol = ld*Lblock*Rblock*Nmom;
std::vector<SpinMatrix_v > lvSum(MFrvol); Vector<SpinMatrix_v > lvSum(MFrvol);
thread_for( r, MFrvol,{ thread_for( r, MFrvol,{
lvSum[r] = Zero(); lvSum[r] = Zero();
}); });
std::vector<SpinMatrix_s > lsSum(MFlvol); Vector<SpinMatrix_s > lsSum(MFlvol);
thread_for(r,MFlvol,{ thread_for(r,MFlvol,{
lsSum[r]=scalar_type(0.0); lsSum[r]=scalar_type(0.0);
}); });
@ -346,12 +346,12 @@ void A2Autils<FImpl>::PionFieldXX(Eigen::Tensor<ComplexD,3> &mat,
int MFrvol = rd*Lblock*Rblock; int MFrvol = rd*Lblock*Rblock;
int MFlvol = ld*Lblock*Rblock; int MFlvol = ld*Lblock*Rblock;
std::vector<vector_type > lvSum(MFrvol); Vector<vector_type > lvSum(MFrvol);
thread_for(r,MFrvol,{ thread_for(r,MFrvol,{
lvSum[r] = Zero(); lvSum[r] = Zero();
}); });
std::vector<scalar_type > lsSum(MFlvol); Vector<scalar_type > lsSum(MFlvol);
thread_for(r,MFlvol,{ thread_for(r,MFlvol,{
lsSum[r]=scalar_type(0.0); lsSum[r]=scalar_type(0.0);
}); });
@ -493,12 +493,12 @@ void A2Autils<FImpl>::PionFieldWVmom(Eigen::Tensor<ComplexD,4> &mat,
int MFrvol = rd*Lblock*Rblock*Nmom; int MFrvol = rd*Lblock*Rblock*Nmom;
int MFlvol = ld*Lblock*Rblock*Nmom; int MFlvol = ld*Lblock*Rblock*Nmom;
std::vector<vector_type > lvSum(MFrvol); Vector<vector_type > lvSum(MFrvol);
thread_for(r,MFrvol,{ thread_for(r,MFrvol,{
lvSum[r] = Zero(); lvSum[r] = Zero();
}); });
std::vector<scalar_type > lsSum(MFlvol); Vector<scalar_type > lsSum(MFlvol);
thread_for(r,MFlvol,{ thread_for(r,MFlvol,{
lsSum[r]=scalar_type(0.0); lsSum[r]=scalar_type(0.0);
}); });
@ -700,13 +700,13 @@ void A2Autils<FImpl>::AslashField(TensorType &mat,
int MFrvol = rd*Lblock*Rblock*Nem; int MFrvol = rd*Lblock*Rblock*Nem;
int MFlvol = ld*Lblock*Rblock*Nem; int MFlvol = ld*Lblock*Rblock*Nem;
std::vector<vector_type> lvSum(MFrvol); Vector<vector_type> lvSum(MFrvol);
thread_for(r,MFrvol, thread_for(r,MFrvol,
{ {
lvSum[r] = Zero(); lvSum[r] = Zero();
}); });
std::vector<scalar_type> lsSum(MFlvol); Vector<scalar_type> lsSum(MFlvol);
thread_for(r,MFlvol, thread_for(r,MFlvol,
{ {
lsSum[r] = scalar_type(0.0); lsSum[r] = scalar_type(0.0);

View File

@ -971,9 +971,7 @@ void BaryonUtils<FImpl>::BaryonGamma3pt(
autoView( vq_ti , q_ti , AcceleratorRead); autoView( vq_ti , q_ti , AcceleratorRead);
autoView( vq_tf , q_tf , AcceleratorRead); autoView( vq_tf , q_tf , AcceleratorRead);
deviceVector<mobj> my_Dq_spec(2); Vector<mobj> my_Dq_spec{Dq_spec1,Dq_spec2};
acceleratorPut(my_Dq_spec[0],Dq_spec1);
acceleratorPut(my_Dq_spec[1],Dq_spec2);
mobj * Dq_spec_p = &my_Dq_spec[0]; mobj * Dq_spec_p = &my_Dq_spec[0];
if (group == 1) { if (group == 1) {
@ -1302,8 +1300,7 @@ void BaryonUtils<FImpl>::SigmaToNucleonEye(const PropagatorField &qq_loop,
autoView( vd_tf , qd_tf , AcceleratorRead); autoView( vd_tf , qd_tf , AcceleratorRead);
autoView( vs_ti , qs_ti , AcceleratorRead); autoView( vs_ti , qs_ti , AcceleratorRead);
deviceVector<mobj> my_Dq_spec(1); Vector<mobj> my_Dq_spec{Du_spec};
acceleratorPut(my_Dq_spec[0],Du_spec);
mobj * Dq_spec_p = &my_Dq_spec[0]; mobj * Dq_spec_p = &my_Dq_spec[0];
if(op == "Q1"){ if(op == "Q1"){
@ -1356,8 +1353,7 @@ void BaryonUtils<FImpl>::SigmaToNucleonNonEye(const PropagatorField &qq_ti,
autoView( vd_tf , qd_tf , AcceleratorRead ); autoView( vd_tf , qd_tf , AcceleratorRead );
autoView( vs_ti , qs_ti , AcceleratorRead ); autoView( vs_ti , qs_ti , AcceleratorRead );
deviceVector<mobj> my_Dq_spec(1); Vector<mobj> my_Dq_spec{Du_spec};
acceleratorPut(my_Dq_spec[0],Du_spec);
mobj * Dq_spec_p = &my_Dq_spec[0]; mobj * Dq_spec_p = &my_Dq_spec[0];
if(op == "Q1"){ if(op == "Q1"){
@ -1548,9 +1544,7 @@ void BaryonUtils<FImpl>::XiToSigmaEye(const PropagatorField &qq_loop,
autoView( vd_tf , qd_tf , AcceleratorRead); autoView( vd_tf , qd_tf , AcceleratorRead);
autoView( vs_ti , qs_ti , AcceleratorRead); autoView( vs_ti , qs_ti , AcceleratorRead);
deviceVector<mobj> my_Dq_spec(2); Vector<mobj> my_Dq_spec{Dd_spec,Ds_spec};
acceleratorPut(my_Dq_spec[0],Dd_spec);
acceleratorPut(my_Dq_spec[0],Ds_spec);
mobj * Dq_spec_p = &my_Dq_spec[0]; mobj * Dq_spec_p = &my_Dq_spec[0];
if(op == "Q1"){ if(op == "Q1"){

View File

@ -418,33 +418,33 @@ static void LieAlgebraProject(LatticeAlgebraMatrix &out,const LatticeMatrix &in,
int hNNm1= NNm1/2; int hNNm1= NNm1/2;
RealD sqrt_2 = sqrt(2.0); RealD sqrt_2 = sqrt(2.0);
Complex ci(0.0,1.0); Complex ci(0.0,1.0);
const int nsimd= Matrix::Nsimd();
accelerator_for(ss,grid->oSites(),nsimd,{
for(int su2Index=0;su2Index<hNNm1;su2Index++){ for(int su2Index=0;su2Index<hNNm1;su2Index++){
int i1, i2; int i1, i2;
su2SubGroupIndex(i1, i2, su2Index); su2SubGroupIndex(i1, i2, su2Index);
int ax = su2Index*2; int ax = su2Index*2;
int ay = su2Index*2+1; int ay = su2Index*2+1;
accelerator_for(ss,grid->oSites(),1,{
// in is traceless ANTI-hermitian whereas Grid generators are Hermitian. // in is traceless ANTI-hermitian whereas Grid generators are Hermitian.
// trace( Ta x Ci in) // trace( Ta x Ci in)
// Bet I need to move to real part with mult by -i // Bet I need to move to real part with mult by -i
out_v[ss]()()(ax,b) = 0.5*(real(in_v[ss]()()(i2,i1)) - real(in_v[ss]()()(i1,i2))); coalescedWrite(out_v[ss]()()(ax,b),0.5*(real(in_v(ss)()()(i2,i1)) - real(in_v(ss)()()(i1,i2))));
out_v[ss]()()(ay,b) = 0.5*(imag(in_v[ss]()()(i1,i2)) + imag(in_v[ss]()()(i2,i1))); coalescedWrite(out_v[ss]()()(ay,b),0.5*(imag(in_v(ss)()()(i1,i2)) + imag(in_v(ss)()()(i2,i1))));
});
} }
for(int diagIndex=0;diagIndex<N-1;diagIndex++){ for(int diagIndex=0;diagIndex<N-1;diagIndex++){
int k = diagIndex + 1; // diagIndex starts from 0 int k = diagIndex + 1; // diagIndex starts from 0
int a = NNm1+diagIndex; int a = NNm1+diagIndex;
RealD scale = 1.0/sqrt(2.0*k*(k+1)); RealD scale = 1.0/sqrt(2.0*k*(k+1));
accelerator_for(ss,grid->oSites(),vComplex::Nsimd(),{ auto tmp = in_v(ss)()()(0,0);
auto tmp = in_v[ss]()()(0,0);
for(int i=1;i<k;i++){ for(int i=1;i<k;i++){
tmp=tmp+in_v[ss]()()(i,i); tmp=tmp+in_v(ss)()()(i,i);
}
tmp = tmp - in_v(ss)()()(k,k)*k;
coalescedWrite(out_v[ss]()()(a,b),imag(tmp) * scale);
} }
tmp = tmp - in_v[ss]()()(k,k)*k;
out_v[ss]()()(a,b) =imag(tmp) * scale;
}); });
} }
}
}; };

View File

@ -118,7 +118,7 @@ static void generatorDiagonal(int diagIndex, iGroupMatrix<cplx> &ta) {
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
// Map a su2 subgroup number to the pair of rows that are non zero // Map a su2 subgroup number to the pair of rows that are non zero
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
static void su2SubGroupIndex(int &i1, int &i2, int su2_index, GroupName::SU) { static accelerator_inline void su2SubGroupIndex(int &i1, int &i2, int su2_index, GroupName::SU) {
assert((su2_index >= 0) && (su2_index < (ncolour * (ncolour - 1)) / 2)); assert((su2_index >= 0) && (su2_index < (ncolour * (ncolour - 1)) / 2));
int spare = su2_index; int spare = su2_index;

View File

@ -62,7 +62,7 @@ public:
// returns i(T_Adj)^index necessary for the projectors // returns i(T_Adj)^index necessary for the projectors
// see definitions above // see definitions above
iAdjTa = Zero(); iAdjTa = Zero();
iSUnMatrix<cplx> ta[ncolour * ncolour - 1]; Vector<iSUnMatrix<cplx> > ta(ncolour * ncolour - 1);
iSUnMatrix<cplx> tmp; iSUnMatrix<cplx> tmp;
// FIXME not very efficient to get all the generators everytime // FIXME not very efficient to get all the generators everytime

View File

@ -72,7 +72,7 @@ public:
} }
// Resident in managed memory // Resident in managed memory
deviceVector<GeneralStencilEntry> _entries; Vector<GeneralStencilEntry> _entries;
GeneralLocalStencil(GridBase *grid, const std::vector<Coordinate> &shifts) GeneralLocalStencil(GridBase *grid, const std::vector<Coordinate> &shifts)
{ {
@ -141,7 +141,7 @@ public:
//////////////////////////////////////////////// ////////////////////////////////////////////////
// Store in look up table // Store in look up table
//////////////////////////////////////////////// ////////////////////////////////////////////////
acceleratorPut(this->_entries[lex],SE); this->_entries[lex] = SE;
} }
}); });
} }

View File

@ -1,4 +1,3 @@
#if 0
/************************************************************************************* /*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid Grid physics library, www.github.com/paboyle/Grid
@ -242,4 +241,3 @@ void LebesgueOrder::ZGraph(void)
} }
NAMESPACE_END(Grid); NAMESPACE_END(Grid);
#endif

View File

@ -72,7 +72,7 @@ public:
void ThreadInterleave(void); void ThreadInterleave(void);
private: private:
deviceVector<IndexInteger> _LebesgueReorder; Vector<IndexInteger> _LebesgueReorder;
}; };

View File

@ -19,7 +19,7 @@ public:
static int PartialCompressionFactor(GridBase *grid) {return 1;}; static int PartialCompressionFactor(GridBase *grid) {return 1;};
// Decompress is after merge so ok // Decompress is after merge so ok
template<class vobj,class cobj,class compressor> template<class vobj,class cobj,class compressor>
static void Gather_plane_simple (deviceVector<std::pair<int,int> >& table, static void Gather_plane_simple (commVector<std::pair<int,int> >& table,
const Lattice<vobj> &rhs, const Lattice<vobj> &rhs,
cobj *buffer, cobj *buffer,
compressor &compress, compressor &compress,
@ -35,7 +35,7 @@ public:
rhs_v.ViewClose(); rhs_v.ViewClose();
} }
template<class vobj,class cobj,class compressor> template<class vobj,class cobj,class compressor>
static void Gather_plane_exchange(deviceVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs, static void Gather_plane_exchange(commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
std::vector<cobj *> pointers,int dimension,int plane,int cbmask, std::vector<cobj *> pointers,int dimension,int plane,int cbmask,
compressor &compress,int type,int partial) compressor &compress,int type,int partial)
{ {
@ -83,6 +83,25 @@ public:
// Wilson compressor will add alternate policies for Dirichlet // Wilson compressor will add alternate policies for Dirichlet
// and possibly partial Dirichlet for DWF // and possibly partial Dirichlet for DWF
//////////////////////////////////// ////////////////////////////////////
/*
class FaceGatherDirichlet
{
// If it's dirichlet we don't assemble comms buffers
//
// Rely on zeroes in gauge field to drive the correct result
// NAN propgagation: field will locally wrap, so fermion should NOT contain NAN and just permute
template<class vobj,class cobj,class compressor>
static void Gather_plane_simple (commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,cobj *buffer,compressor &compress, int off,int so){};
template<class vobj,class cobj,class compressor>
static void Gather_plane_exchange(commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
Vector<cobj *> pointers,int dimension,int plane,int cbmask,
compressor &compress,int type) {}
template<class decompressor,class Merger>
static void Merge(decompressor decompress,Merge &mm) { }
template<class decompressor,class Decompression>
static void Decompress(decompressor decompress,Decompression &dd) {}
};
*/
template<class vobj,class FaceGather> template<class vobj,class FaceGather>
class SimpleCompressorGather : public FaceGather { class SimpleCompressorGather : public FaceGather {

View File

@ -31,6 +31,7 @@
#define STENCIL_MAX (16) #define STENCIL_MAX (16)
#include <Grid/stencil/SimpleCompressor.h> // subdir aggregate #include <Grid/stencil/SimpleCompressor.h> // subdir aggregate
#include <Grid/stencil/Lebesgue.h> // subdir aggregate
#include <Grid/stencil/GeneralLocalStencil.h> #include <Grid/stencil/GeneralLocalStencil.h>
////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////
@ -255,6 +256,7 @@ protected:
GridBase * _grid; GridBase * _grid;
public: public:
GridBase *Grid(void) const { return _grid; } GridBase *Grid(void) const { return _grid; }
LebesgueOrder *lo;
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
// Needed to conveniently communicate gparity parameters into GPU memory // Needed to conveniently communicate gparity parameters into GPU memory
@ -271,11 +273,11 @@ public:
int face_table_computed; int face_table_computed;
int partialDirichlet; int partialDirichlet;
int fullDirichlet; int fullDirichlet;
std::vector<deviceVector<std::pair<int,int> > > face_table ; std::vector<commVector<std::pair<int,int> > > face_table ;
deviceVector<int> surface_list; Vector<int> surface_list;
std::vector<StencilEntry> _entries; // Resident in host memory stencilVector<StencilEntry> _entries; // Resident in managed memory
deviceVector<StencilEntry> _entries_device; // Resident in device memory commVector<StencilEntry> _entries_device; // Resident in device memory
std::vector<Packet> Packets; std::vector<Packet> Packets;
std::vector<Merge> Mergers; std::vector<Merge> Mergers;
std::vector<Merge> MergersSHM; std::vector<Merge> MergersSHM;
@ -365,9 +367,10 @@ public:
void CommunicateBegin(std::vector<std::vector<CommsRequest_t> > &reqs) void CommunicateBegin(std::vector<std::vector<CommsRequest_t> > &reqs)
{ {
// All GPU kernel tasks must complete // All GPU kernel tasks must complete
accelerator_barrier(); // All kernels should ALREADY be complete // accelerator_barrier(); // All kernels should ALREADY be complete
_grid->StencilBarrier(); // Everyone is here, so noone running slow and still using receive buffer // _grid->StencilBarrier(); // Everyone is here, so noone running slow and still using receive buffer
// But the HaloGather had a barrier too. // But the HaloGather had a barrier too.
#ifdef ACCELERATOR_AWARE_MPI
for(int i=0;i<Packets.size();i++){ for(int i=0;i<Packets.size();i++){
_grid->StencilSendToRecvFromBegin(MpiReqs, _grid->StencilSendToRecvFromBegin(MpiReqs,
Packets[i].send_buf, Packets[i].send_buf,
@ -376,6 +379,23 @@ public:
Packets[i].from_rank,Packets[i].do_recv, Packets[i].from_rank,Packets[i].do_recv,
Packets[i].xbytes,Packets[i].rbytes,i); Packets[i].xbytes,Packets[i].rbytes,i);
} }
#else
#warning "Using COPY VIA HOST BUFFERS IN STENCIL"
for(int i=0;i<Packets.size();i++){
// Introduce a host buffer with a cheap slab allocator and zero cost wipe all
Packets[i].host_send_buf = _grid->HostBufferMalloc(Packets[i].xbytes);
Packets[i].host_recv_buf = _grid->HostBufferMalloc(Packets[i].rbytes);
if ( Packets[i].do_send ) {
acceleratorCopyFromDevice(Packets[i].send_buf, Packets[i].host_send_buf,Packets[i].xbytes);
}
_grid->StencilSendToRecvFromBegin(MpiReqs,
Packets[i].host_send_buf,
Packets[i].to_rank,Packets[i].do_send,
Packets[i].host_recv_buf,
Packets[i].from_rank,Packets[i].do_recv,
Packets[i].xbytes,Packets[i].rbytes,i);
}
#endif
// Get comms started then run checksums // Get comms started then run checksums
// Having this PRIOR to the dslash seems to make Sunspot work... (!) // Having this PRIOR to the dslash seems to make Sunspot work... (!)
for(int i=0;i<Packets.size();i++){ for(int i=0;i<Packets.size();i++){
@ -390,9 +410,18 @@ public:
if ( this->partialDirichlet ) DslashLogPartial(); if ( this->partialDirichlet ) DslashLogPartial();
else if ( this->fullDirichlet ) DslashLogDirichlet(); else if ( this->fullDirichlet ) DslashLogDirichlet();
else DslashLogFull(); else DslashLogFull();
acceleratorCopySynchronise();// is in the StencilSendToRecvFromComplete // acceleratorCopySynchronise() is in the StencilSendToRecvFromComplete
accelerator_barrier(); // accelerator_barrier();
_grid->StencilBarrier(); _grid->StencilBarrier();
#ifndef ACCELERATOR_AWARE_MPI
#warning "Using COPY VIA HOST BUFFERS IN STENCIL"
for(int i=0;i<Packets.size();i++){
if ( Packets[i].do_recv ) {
acceleratorCopyToDevice(Packets[i].host_recv_buf, Packets[i].recv_buf,Packets[i].rbytes);
}
}
_grid->HostBufferFreeAll();
#endif
// run any checksums // run any checksums
for(int i=0;i<Packets.size();i++){ for(int i=0;i<Packets.size();i++){
if ( Packets[i].do_recv ) if ( Packets[i].do_recv )
@ -473,7 +502,7 @@ public:
template<class compressor> template<class compressor>
void HaloGather(const Lattice<vobj> &source,compressor &compress) void HaloGather(const Lattice<vobj> &source,compressor &compress)
{ {
accelerator_barrier(); // accelerator_barrier();
_grid->StencilBarrier();// Synch shared memory on a single nodes _grid->StencilBarrier();// Synch shared memory on a single nodes
assert(source.Grid()==_grid); assert(source.Grid()==_grid);
@ -487,7 +516,6 @@ public:
HaloGatherDir(source,compress,point,face_idx); HaloGatherDir(source,compress,point,face_idx);
} }
accelerator_barrier(); // All my local gathers are complete accelerator_barrier(); // All my local gathers are complete
_grid->StencilBarrier();// Synch shared memory on a single nodes
face_table_computed=1; face_table_computed=1;
assert(u_comm_offset==_unified_buffer_size); assert(u_comm_offset==_unified_buffer_size);
} }
@ -640,7 +668,7 @@ public:
for(int point=0;point<this->_npoints;point++){ for(int point=0;point<this->_npoints;point++){
this->same_node[point] = this->SameNode(point); this->same_node[point] = this->SameNode(point);
} }
int32_t surface_list_size=0;
for(int site = 0 ;site< vol4;site++){ for(int site = 0 ;site< vol4;site++){
int local = 1; int local = 1;
for(int point=0;point<this->_npoints;point++){ for(int point=0;point<this->_npoints;point++){
@ -650,30 +678,11 @@ public:
} }
if(local == 0) { if(local == 0) {
for(int s=0;s<Ls;s++){ for(int s=0;s<Ls;s++){
surface_list_size++; surface_list.push_back(site*Ls+s);
} }
} }
} }
std::cout << "BuildSurfaceList size is "<<surface_list.size()<<std::endl; //std::cout << "BuildSurfaceList size is "<<surface_list.size()<<std::endl;
surface_list.resize(surface_list_size);
std::vector<int> surface_list_host(surface_list_size);
int32_t ss=0;
for(int site = 0 ;site< vol4;site++){
int local = 1;
for(int point=0;point<this->_npoints;point++){
if( (!this->GetNodeLocal(site*Ls,point)) && (!this->same_node[point]) ){
local = 0;
}
}
if(local == 0) {
for(int s=0;s<Ls;s++){
int idx=site*Ls+s;
surface_list_host[ss]= idx;
ss++;
}
}
}
acceleratorCopyToDevice(&surface_list_host[0],&surface_list[0],surface_list_size*sizeof(int));
} }
/// Introduce a block structure and switch off comms on boundaries /// Introduce a block structure and switch off comms on boundaries
void DirichletBlock(const Coordinate &dirichlet_block) void DirichletBlock(const Coordinate &dirichlet_block)

View File

@ -207,10 +207,10 @@ cl::sycl::queue *theCopyAccelerator;
void acceleratorInit(void) void acceleratorInit(void)
{ {
int nDevices = 1; int nDevices = 1;
// cl::sycl::gpu_selector selector; cl::sycl::gpu_selector selector;
// cl::sycl::device selectedDevice { selector }; cl::sycl::device selectedDevice { selector };
theGridAccelerator = new sycl::queue (sycl::gpu_selector_v); theGridAccelerator = new sycl::queue (selectedDevice);
theCopyAccelerator = new sycl::queue (sycl::gpu_selector_v); theCopyAccelerator = new sycl::queue (selectedDevice);
// theCopyAccelerator = theGridAccelerator; // Should proceed concurrenlty anyway. // theCopyAccelerator = theGridAccelerator; // Should proceed concurrenlty anyway.
#ifdef GRID_SYCL_LEVEL_ZERO_IPC #ifdef GRID_SYCL_LEVEL_ZERO_IPC

View File

@ -464,12 +464,16 @@ void Grid_init(int *argc,char ***argv)
std::cout<<GridLogMessage<<std::endl; std::cout<<GridLogMessage<<std::endl;
std::cout<<GridLogMessage<<"Performance:"<<std::endl; std::cout<<GridLogMessage<<"Performance:"<<std::endl;
std::cout<<GridLogMessage<<std::endl; std::cout<<GridLogMessage<<std::endl;
std::cout<<GridLogMessage<<" --comms-concurrent : Asynchronous MPI calls; several dirs at a time "<<std::endl;
std::cout<<GridLogMessage<<" --comms-sequential : Synchronous MPI calls; one dirs at a time "<<std::endl;
std::cout<<GridLogMessage<<" --comms-overlap : Overlap comms with compute "<<std::endl; std::cout<<GridLogMessage<<" --comms-overlap : Overlap comms with compute "<<std::endl;
std::cout<<GridLogMessage<<std::endl; std::cout<<GridLogMessage<<std::endl;
std::cout<<GridLogMessage<<" --dslash-generic: Wilson kernel for generic Nc"<<std::endl; std::cout<<GridLogMessage<<" --dslash-generic: Wilson kernel for generic Nc"<<std::endl;
std::cout<<GridLogMessage<<" --dslash-unroll : Wilson kernel for Nc=3"<<std::endl; std::cout<<GridLogMessage<<" --dslash-unroll : Wilson kernel for Nc=3"<<std::endl;
std::cout<<GridLogMessage<<" --dslash-asm : Wilson kernel for AVX512"<<std::endl; std::cout<<GridLogMessage<<" --dslash-asm : Wilson kernel for AVX512"<<std::endl;
std::cout<<GridLogMessage<<std::endl; std::cout<<GridLogMessage<<std::endl;
std::cout<<GridLogMessage<<" --lebesgue : Cache oblivious Lebesgue curve/Morton order/Z-graph stencil looping"<<std::endl;
std::cout<<GridLogMessage<<" --cacheblocking n.m.o.p : Hypercuboidal cache blocking"<<std::endl;
std::cout<<GridLogMessage<<std::endl; std::cout<<GridLogMessage<<std::endl;
exit(EXIT_SUCCESS); exit(EXIT_SUCCESS);
} }
@ -497,8 +501,28 @@ void Grid_init(int *argc,char ***argv)
WilsonKernelsStatic::Comms = WilsonKernelsStatic::CommsThenCompute; WilsonKernelsStatic::Comms = WilsonKernelsStatic::CommsThenCompute;
StaggeredKernelsStatic::Comms = StaggeredKernelsStatic::CommsThenCompute; StaggeredKernelsStatic::Comms = StaggeredKernelsStatic::CommsThenCompute;
} }
if( GridCmdOptionExists(*argv,*argv+*argc,"--comms-concurrent") ){
CartesianCommunicator::SetCommunicatorPolicy(CartesianCommunicator::CommunicatorPolicyConcurrent);
}
if( GridCmdOptionExists(*argv,*argv+*argc,"--comms-sequential") ){
CartesianCommunicator::SetCommunicatorPolicy(CartesianCommunicator::CommunicatorPolicySequential);
}
if( GridCmdOptionExists(*argv,*argv+*argc,"--lebesgue") ){
LebesgueOrder::UseLebesgueOrder=1;
}
CartesianCommunicator::nCommThreads = 1; CartesianCommunicator::nCommThreads = 1;
#ifdef GRID_COMMS_THREADS
if( GridCmdOptionExists(*argv,*argv+*argc,"--comms-threads") ){
arg= GridCmdOptionPayload(*argv,*argv+*argc,"--comms-threads");
GridCmdOptionInt(arg,CartesianCommunicator::nCommThreads);
assert(CartesianCommunicator::nCommThreads > 0);
}
#endif
if( GridCmdOptionExists(*argv,*argv+*argc,"--cacheblocking") ){
arg= GridCmdOptionPayload(*argv,*argv+*argc,"--cacheblocking");
GridCmdOptionIntVector(arg,LebesgueOrder::Block);
}
if( GridCmdOptionExists(*argv,*argv+*argc,"--notimestamp") ){ if( GridCmdOptionExists(*argv,*argv+*argc,"--notimestamp") ){
GridLogTimestamp(0); GridLogTimestamp(0);
} else { } else {
@ -549,31 +573,8 @@ void GridLogLayout() {
void * Grid_backtrace_buffer[_NBACKTRACE]; void * Grid_backtrace_buffer[_NBACKTRACE];
void Grid_usr_signal_handler(int sig,siginfo_t *si,void * ptr)
{
fprintf(stderr,"Signal handler on host %s\n",hostname);
fprintf(stderr,"Caught signal %d\n",si->si_signo);
fprintf(stderr," mem address %llx\n",(unsigned long long)si->si_addr);
fprintf(stderr," code %d\n",si->si_code);
// x86 64bit
#ifdef __linux__
#ifdef __x86_64__
ucontext_t * uc= (ucontext_t *)ptr;
struct sigcontext *sc = (struct sigcontext *)&uc->uc_mcontext;
fprintf(stderr," instruction %llx\n",(unsigned long long)sc->rip);
#endif
#endif
fflush(stderr);
BACKTRACEFP(stderr);
fprintf(stderr,"Called backtrace\n");
fflush(stdout);
fflush(stderr);
return;
}
void Grid_sa_signal_handler(int sig,siginfo_t *si,void * ptr) void Grid_sa_signal_handler(int sig,siginfo_t *si,void * ptr)
{ {
fprintf(stderr,"Signal handler on host %s\n",hostname);
fprintf(stderr,"Caught signal %d\n",si->si_signo); fprintf(stderr,"Caught signal %d\n",si->si_signo);
fprintf(stderr," mem address %llx\n",(unsigned long long)si->si_addr); fprintf(stderr," mem address %llx\n",(unsigned long long)si->si_addr);
fprintf(stderr," code %d\n",si->si_code); fprintf(stderr," code %d\n",si->si_code);
@ -584,7 +585,7 @@ void Grid_sa_signal_handler(int sig,siginfo_t *si,void * ptr)
ucontext_t * uc= (ucontext_t *)ptr; ucontext_t * uc= (ucontext_t *)ptr;
struct sigcontext *sc = (struct sigcontext *)&uc->uc_mcontext; struct sigcontext *sc = (struct sigcontext *)&uc->uc_mcontext;
fprintf(stderr," instruction %llx\n",(unsigned long long)sc->rip); fprintf(stderr," instruction %llx\n",(unsigned long long)sc->rip);
#define REG(A) fprintf(stderr," %s %lx\n",#A,sc-> A); #define REG(A) printf(" %s %lx\n",#A,sc-> A);
REG(rdi); REG(rdi);
REG(rsi); REG(rsi);
REG(rbp); REG(rbp);
@ -617,8 +618,8 @@ void Grid_sa_signal_handler(int sig,siginfo_t *si,void * ptr)
void Grid_exit_handler(void) void Grid_exit_handler(void)
{ {
// BACKTRACEFP(stdout); BACKTRACEFP(stdout);
// fflush(stdout); fflush(stdout);
} }
void Grid_debug_handler_init(void) void Grid_debug_handler_init(void)
{ {
@ -626,10 +627,10 @@ void Grid_debug_handler_init(void)
sigemptyset (&sa.sa_mask); sigemptyset (&sa.sa_mask);
sa.sa_sigaction= Grid_sa_signal_handler; sa.sa_sigaction= Grid_sa_signal_handler;
sa.sa_flags = SA_SIGINFO; sa.sa_flags = SA_SIGINFO;
// sigaction(SIGSEGV,&sa,NULL); sigaction(SIGSEGV,&sa,NULL);
sigaction(SIGTRAP,&sa,NULL); sigaction(SIGTRAP,&sa,NULL);
sigaction(SIGBUS,&sa,NULL); sigaction(SIGBUS,&sa,NULL);
// sigaction(SIGUSR2,&sa,NULL); sigaction(SIGUSR2,&sa,NULL);
feenableexcept( FE_INVALID|FE_OVERFLOW|FE_DIVBYZERO); feenableexcept( FE_INVALID|FE_OVERFLOW|FE_DIVBYZERO);
@ -637,14 +638,7 @@ void Grid_debug_handler_init(void)
sigaction(SIGKILL,&sa,NULL); sigaction(SIGKILL,&sa,NULL);
sigaction(SIGILL,&sa,NULL); sigaction(SIGILL,&sa,NULL);
// Non terminating SIGUSR1/2 handler atexit(Grid_exit_handler);
struct sigaction sa_ping;
sigemptyset (&sa_ping.sa_mask);
sa_ping.sa_sigaction= Grid_usr_signal_handler;
sa_ping.sa_flags = SA_SIGINFO;
sigaction(SIGHUP,&sa_ping,NULL);
// atexit(Grid_exit_handler);
} }
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -644,6 +644,11 @@ int main (int argc, char ** argv)
Grid_init(&argc,&argv); Grid_init(&argc,&argv);
CartesianCommunicator::SetCommunicatorPolicy(CartesianCommunicator::CommunicatorPolicySequential); CartesianCommunicator::SetCommunicatorPolicy(CartesianCommunicator::CommunicatorPolicySequential);
#ifdef KNL
LebesgueOrder::Block = std::vector<int>({8,2,2,2});
#else
LebesgueOrder::Block = std::vector<int>({2,2,2,2});
#endif
Benchmark::Decomposition(); Benchmark::Decomposition();
int do_su4=1; int do_su4=1;

View File

@ -70,7 +70,7 @@ int main (int argc, char ** argv)
pRNG.SeedFixedIntegers(std::vector<int>({56,17,89,101})); pRNG.SeedFixedIntegers(std::vector<int>({56,17,89,101}));
std::vector<double> stop(threads); std::vector<double> stop(threads);
std::vector<Vec> sum(threads); Vector<Vec> sum(threads);
std::vector<LatticeVec> x(threads,&Grid); std::vector<LatticeVec> x(threads,&Grid);
for(int t=0;t<threads;t++){ for(int t=0;t<threads;t++){

View File

@ -78,9 +78,9 @@ int main (int argc, char ** argv)
double t0,t1; double t0,t1;
typedef typename DomainWallFermionD::Coeff_t Coeff_t; typedef typename DomainWallFermionD::Coeff_t Coeff_t;
std::vector<Coeff_t> diag = Dw.bs; Vector<Coeff_t> diag = Dw.bs;
std::vector<Coeff_t> upper= Dw.cs; Vector<Coeff_t> upper= Dw.cs;
std::vector<Coeff_t> lower= Dw.cs; Vector<Coeff_t> lower= Dw.cs;
upper[Ls-1]=-Dw.mass_minus*upper[Ls-1]; upper[Ls-1]=-Dw.mass_minus*upper[Ls-1];
lower[0] =-Dw.mass_plus*lower[0]; lower[0] =-Dw.mass_plus*lower[0];

View File

@ -861,7 +861,7 @@ int main (int argc, char ** argv)
} }
CartesianCommunicator::SetCommunicatorPolicy(CartesianCommunicator::CommunicatorPolicySequential); CartesianCommunicator::SetCommunicatorPolicy(CartesianCommunicator::CommunicatorPolicySequential);
// LebesgueOrder::Block = std::vector<int>({2,2,2,2}); LebesgueOrder::Block = std::vector<int>({2,2,2,2});
Benchmark::Decomposition(); Benchmark::Decomposition();

View File

@ -225,6 +225,18 @@ case ${ac_SFW_FP16} in
AC_MSG_ERROR(["SFW FP16 option not supported ${ac_SFW_FP16}"]);; AC_MSG_ERROR(["SFW FP16 option not supported ${ac_SFW_FP16}"]);;
esac esac
############### Default to accelerator cshift, but revert to host if UCX is buggy or other reasons
AC_ARG_ENABLE([accelerator-aware-mpi],
[AS_HELP_STRING([--enable-accelerator-aware-mpi=yes|no],[run mpi transfers from device])],
[ac_ACCELERATOR_AWARE_MPI=${enable_accelerator_aware_mpi}], [ac_ACCELERATOR_AWARE_MPI=yes])
case ${ac_ACCELERATOR_AWARE_MPI} in
yes)
AC_DEFINE([ACCELERATOR_CSHIFT],[1],[ Cshift runs on host])
AC_DEFINE([ACCELERATOR_AWARE_MPI],[1],[ Stencil can use device pointers]);;
*);;
esac
############### SYCL/CUDA/HIP/none ############### SYCL/CUDA/HIP/none
AC_ARG_ENABLE([accelerator], AC_ARG_ENABLE([accelerator],
@ -652,6 +664,16 @@ case ${ac_SHM_FAST_PATH} in
*) ;; *) ;;
esac esac
############### communication type selection
AC_ARG_ENABLE([comms-threads],[AS_HELP_STRING([--enable-comms-threads | --disable-comms-threads],[Use multiple threads in MPI calls])],[ac_COMMS_THREADS=${enable_comms_threads}],[ac_COMMS_THREADS=yes])
case ${ac_COMMS_THREADS} in
yes)
AC_DEFINE([GRID_COMMS_THREADING],[1],[GRID_COMMS_NONE] )
;;
*) ;;
esac
############### communication type selection ############### communication type selection
AC_ARG_ENABLE([comms],[AS_HELP_STRING([--enable-comms=none|mpi|mpi-auto],[Select communications])],[ac_COMMS=${enable_comms}],[ac_COMMS=none]) AC_ARG_ENABLE([comms],[AS_HELP_STRING([--enable-comms=none|mpi|mpi-auto],[Select communications])],[ac_COMMS=${enable_comms}],[ac_COMMS=none])

View File

@ -1,23 +0,0 @@
#Ahead of time compile for PVC
export LDFLAGS="-fiopenmp -fsycl -fsycl-device-code-split=per_kernel -fsycl-targets=spir64_gen -Xs -device -Xs pvc -fsycl-device-lib=all -lze_loader -L${MKLROOT}/lib -qmkl=parallel -fsycl -lsycl "
export CXXFLAGS="-O3 -fiopenmp -fsycl-unnamed-lambda -fsycl -Wno-tautological-compare -qmkl=parallel -fsycl -fno-exceptions -fsycl-targets=spir64_gen -Xs -device -Xs pvc "
#JIT compile
#export LDFLAGS="-fiopenmp -fsycl -fsycl-device-code-split=per_kernel -fsycl-device-lib=all -lze_loader -L${MKLROOT}/lib -qmkl=parallel -fsycl -lsycl "
#export CXXFLAGS="-O3 -fiopenmp -fsycl-unnamed-lambda -fsycl -Wno-tautological-compare -qmkl=parallel -fsycl -fno-exceptions "
../../configure \
--enable-simd=GPU \
--enable-gen-simd-width=64 \
--enable-comms=mpi-auto \
--enable-debug \
--disable-gparity \
--disable-fermion-reps \
--with-lime=$CLIME \
--enable-shm=nvlink \
--enable-accelerator=sycl \
--enable-accelerator-aware-mpi=yes\
--enable-unified=no \
MPICXX=mpicxx \
CXX=icpx

View File

@ -1,15 +0,0 @@
#module load oneapi/release/2023.12.15.001
#module load mpich/icc-all-debug-pmix-gpu/52.2
#module load mpich-config/mode/deterministic
#module load intel_compute_runtime/release/821.35
source ~/spack/share/spack/setup-env.sh
spack load c-lime
spack load openssl
export CLIME=`spack find --paths c-lime | grep ^c-lime | awk '{print $2}' `
export HTTP_PROXY=http://proxy.alcf.anl.gov:3128
export HTTPS_PROXY=http://proxy.alcf.anl.gov:3128
export http_proxy=http://proxy.alcf.anl.gov:3128
export https_proxy=http://proxy.alcf.anl.gov:3128
git config --global http.proxy http://proxy.alcf.anl.gov:3128
export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file"

View File

@ -1,74 +0,0 @@
#!/bin/bash
#PBS -l select=512
#PBS -q EarlyAppAccess
#PBS -A LatticeQCD_aesp_CNDA
#PBS -l walltime=6:00:00
#PBS -N reproBigJob
#PBS -k doe
#export OMP_PROC_BIND=spread
#unset OMP_PLACES
#module load oneapi/eng-compiler/2023.05.15.003
#module load mpich/51.2/icc-all-deterministic-pmix-gpu
# 56 cores / 6 threads ~9
export OMP_NUM_THREADS=6
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=10485760
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
#export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
#export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE=1
export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE_FOR_D2D_COPY=1
export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file"
export GRID_PRINT_ENTIRE_LOG=0
export GRID_CHECKSUM_RECV_BUF=0
export GRID_CHECKSUM_SEND_BUF=0
export MPICH_OFI_NIC_POLICY=GPU
#export MPIR_CVAR_ALLREDUCE_DEVICE_COLLECTIVE=0
#export MPIR_CVAR_REDUCE_DEVICE_COLLECTIVE=0
#export MPIR_CVAR_ALLREDUCE_INTRA_ALGORITHM=recursive_doubling
#unset MPIR_CVAR_CH4_COLL_SELECTION_TUNING_JSON_FILE
#unset MPIR_CVAR_COLL_SELECTION_TUNING_JSON_FILE
#unset MPIR_CVAR_CH4_POSIX_COLL_SELECTION_TUNING_JSON_FILE
cd $PBS_O_WORKDIR
cp $PBS_NODEFILE nodefile
DIR=reproBigJob.$PBS_JOBID
mkdir -p $DIR
cd $DIR
cp $PBS_NODEFILE nodefile
BINARY=../Test_dwf_mixedcg_prec
echo > pingjob <<EOF
while read node ;
do
echo ssh $node killall -s USR1 -- ../Test_dwf_mixedcg_prec
done < nodefile
EOF
CMD="mpiexec -np 6144 -ppn 12 -envall --hostfile nodefile \
../gpu_tile_compact.sh \
$BINARY --mpi 8.8.8.12 --grid 128.128.128.288 \
--shm-mpi 0 --shm 4096 --device-mem 32000 --accelerator-threads 32 --seconds 18000 --debug-stdout --log Message --debug-signals --comms-overlap"
echo $CMD > command-line
env > environment
$CMD
grep Oops Grid.stderr.* > failures.$PBS_JOBID
rm core.*

View File

@ -1,38 +1,67 @@
#!/bin/bash #!/bin/bash
#PBS -q EarlyAppAccess #PBS -q debug
#PBS -l select=1 #PBS -l select=1
#PBS -l walltime=00:20:00 #PBS -l walltime=00:20:00
#PBS -A LatticeQCD_aesp_CNDA #PBS -A LatticeQCD_aesp_CNDA
#export OMP_PROC_BIND=spread
#unset OMP_PLACES
cd $PBS_O_WORKDIR cd $PBS_O_WORKDIR
source ../sourceme.sh source ../sourceme.sh
module load pti-gpu
cp $PBS_NODEFILE nodefile #cat $PBS_NODEFILE
export OMP_NUM_THREADS=4 export OMP_NUM_THREADS=4
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1 export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE
unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE #unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE
unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST #unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE
#unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0 #export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0 #export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
#export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1 #export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576 #export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072 #export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16 #export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16 #export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
export MPICH_OFI_NIC_POLICY=GPU export MPICH_OFI_NIC_POLICY=GPU
# 12 ppn, 2 nodes, 24 ranks
#
CMD="mpiexec -np 12 -ppn 12 -envall \ CMD="mpiexec -np 12 -ppn 12 -envall \
./Benchmark_dwf_fp32 --mpi 2.1.2.3 --grid 32.32.64.48 \ ./gpu_tile_compact.sh \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32 --debug-signals" ./Benchmark_comms_host_device --mpi 2.2.1.3 --grid 24.32.32.24 \
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32"
#$CMD | tee 1node.comms
#for f in 1 2 3 4 5 6 7 8
for f in 1 CMD="mpiexec -np 1 -ppn 1 -envall \
do ./gpu_tile_compact.sh \
echo $CMD ./Benchmark_dwf_fp32 --mpi 1.1.1.1 --grid 16.32.32.32 \
$CMD | tee 1node.32.32.64.48.dwf.hbm.$f --shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32 "
done #$CMD | tee 1tile.dwf
CMD="mpiexec -np 12 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 2.2.1.3 --grid 32.32.32.48 \
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
$CMD | tee 1node.32.32.32.48.dwf
CMD="mpiexec -np 12 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 2.2.1.3 --grid 64.64.32.96 \
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
#$CMD | tee 1node.64.64.32.96.dwf
CMD="mpiexec -np 12 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 2.2.1.3 --grid 64.32.32.48 \
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
#$CMD | tee 1node.64.32.32.48.dwf

View File

@ -1,6 +1,6 @@
#!/bin/bash #!/bin/bash
#PBS -q EarlyAppAccess #PBS -q workq
#PBS -l select=2 #PBS -l select=2
#PBS -l walltime=00:20:00 #PBS -l walltime=00:20:00
#PBS -A LatticeQCD_aesp_CNDA #PBS -A LatticeQCD_aesp_CNDA
@ -11,16 +11,17 @@
cd $PBS_O_WORKDIR cd $PBS_O_WORKDIR
source ../sourceme.sh source ../sourceme.sh
#module load pti-gpu module load pti-gpu
#cat $PBS_NODEFILE
cp $PBS_NODEFILE nodefile
export OMP_NUM_THREADS=4 export OMP_NUM_THREADS=4
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1 export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE #unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE #unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE
#unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST #unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0 export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0 export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1 export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
@ -33,26 +34,22 @@ export MPICH_OFI_NIC_POLICY=GPU
# 12 ppn, 2 nodes, 24 ranks # 12 ppn, 2 nodes, 24 ranks
# #
CMD="mpiexec -np 24 -ppn 12 -envall \ CMD="mpiexec -np 24 -ppn 12 -envall \
./gpu_tile.sh \ ./gpu_tile_compact.sh \
./Benchmark_comms_host_device --mpi 2.2.2.3 --grid 24.32.32.24 \ ./Benchmark_comms_host_device --mpi 2.2.2.3 --grid 24.32.32.24 \
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32" --shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32"
#$CMD | tee 2node.comms.hbm $CMD | tee 2node.comms
CMD="mpiexec -np 24 -ppn 12 -envall \ CMD="mpiexec -np 24 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 2.2.2.3 --grid 32.32.64.48 \ ./Benchmark_dwf_fp32 --mpi 2.2.2.3 --grid 32.32.64.48 \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap --debug-signals" --shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
$CMD | tee 2node.32.32.64.48.dwf
#for f in 1 2 3 4 5 6 7 8
for f in 1
do
echo $CMD
$CMD | tee 2node.32.32.64.48.dwf.hbm.$f
done
CMD="mpiexec -np 24 -ppn 12 -envall \ CMD="mpiexec -np 24 -ppn 12 -envall \
./gpu_tile.sh \ ./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 2.2.2.3 --grid 64.64.64.96 \ ./Benchmark_dwf_fp32 --mpi 2.2.2.3 --grid 64.64.64.96 \
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap" --shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
#$CMD | tee 2node.64.64.64.96.dwf.hbm $CMD | tee 2node.64.64.64.96.dwf

View File

@ -1,6 +1,6 @@
export LDFLAGS="-fiopenmp -fsycl -fsycl-device-code-split=per_kernel -fsycl-device-lib=all -lze_loader -L${MKLROOT}/lib -qmkl=parallel -fsycl -lsycl " export LDFLAGS="-fiopenmp -fsycl -fsycl-device-code-split=per_kernel -fsycl-targets=spir64_gen -Xs -device -Xs pvc -fsycl-device-lib=all -lze_loader -L${MKLROOT}/lib -qmkl=parallel -fsycl -lsycl "
export CXXFLAGS="-O3 -fiopenmp -fsycl-unnamed-lambda -fsycl -I$INSTALL/include -Wno-tautological-compare -I$HOME/ -qmkl=parallel -fsycl -fno-exceptions " export CXXFLAGS="-O3 -fiopenmp -fsycl-unnamed-lambda -fsycl -I$INSTALL/include -Wno-tautological-compare -I$HOME/ -qmkl=parallel -fsycl -fno-exceptions -fsycl-targets=spir64_gen -Xs -device -Xs pvc "
../../configure \ ../../configure \
--enable-simd=GPU \ --enable-simd=GPU \
--enable-gen-simd-width=64 \ --enable-gen-simd-width=64 \

View File

@ -1,14 +1,40 @@
module load oneapi/release/2023.12.15.001
#module load mpich/icc-all-debug-pmix-gpu/52.2
#module load mpich-config/mode/deterministic
#module load intel_compute_runtime/release/821.35
source ~/spack/share/spack/setup-env.sh source ~/spack/share/spack/setup-env.sh
spack load c-lime spack load c-lime
spack load openssl
export CLIME=`spack find --paths c-lime | grep ^c-lime | awk '{print $2}' ` export CLIME=`spack find --paths c-lime | grep ^c-lime | awk '{print $2}' `
#spack load libefence
#export EFENCE=`spack find --paths libefence | grep ^libefence | awk '{print $2}' `
#export LD_LIBRARY_PATH=${EFENCE}/lib:$LD_LIBRARY_PATH
#spack load gperftools
export TCMALLOC=/home/paboyle/gperftools/install
export LD_LIBRARY_PATH=${TCMALLOC}/lib:$LD_LIBRARY_PATH
export INTELGT_AUTO_ATTACH_DISABLE=1
#export ONEAPI_DEVICE_SELECTOR=level_zero:0.0
#module load oneapi/release/2023.12.15.001
#module use /soft/modulefiles
#module load intel_compute_runtime/release/agama-devel-682.22
#export FI_CXI_DEFAULT_CQ_SIZE=131072
#export FI_CXI_CQ_FILL_PERCENT=20
#export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file"
#export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-intel-enable-auto-large-GRF-mode"
#
# -ftarget-register-alloc-mode=pvc:default
# -ftarget-register-alloc-mode=pvc:small
# -ftarget-register-alloc-mode=pvc:large
# -ftarget-register-alloc-mode=pvc:auto
#export MPIR_CVAR_CH4_OFI_ENABLE_HMEM=1
export HTTP_PROXY=http://proxy.alcf.anl.gov:3128 export HTTP_PROXY=http://proxy.alcf.anl.gov:3128
export HTTPS_PROXY=http://proxy.alcf.anl.gov:3128 export HTTPS_PROXY=http://proxy.alcf.anl.gov:3128
export http_proxy=http://proxy.alcf.anl.gov:3128 export http_proxy=http://proxy.alcf.anl.gov:3128
export https_proxy=http://proxy.alcf.anl.gov:3128 export https_proxy=http://proxy.alcf.anl.gov:3128
git config --global http.proxy http://proxy.alcf.anl.gov:3128 git config --global http.proxy http://proxy.alcf.anl.gov:3128
#source ~/spack/share/spack/setup-env.sh
#spack load gperftools
#export TCMALLOC=`spack find --paths gperftools | grep ^gperftools | awk '{print $2}' `
#export LD_LIBRARY_PATH=${TCMALLOC}/lib:$LD_LIBRARY_PATH
export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file" export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file"

View File

@ -2,8 +2,7 @@
## qsub -q EarlyAppAccess -A Aurora_Deployment -I -l select=1 -l walltime=60:00 ## qsub -q EarlyAppAccess -A Aurora_Deployment -I -l select=1 -l walltime=60:00
#PBS -l select=16 #PBS -l select=16:system=sunspot,place=scatter
#PBS -q EarlyAppAccess
#PBS -A LatticeQCD_aesp_CNDA #PBS -A LatticeQCD_aesp_CNDA
#PBS -l walltime=01:00:00 #PBS -l walltime=01:00:00
#PBS -N dwf #PBS -N dwf
@ -14,14 +13,19 @@
cd $PBS_O_WORKDIR cd $PBS_O_WORKDIR
source ../sourceme.sh #source ../sourceme.sh
cat $PBS_NODEFILE cat $PBS_NODEFILE
#export MPICH_COLL_SYNC=1
#export MPICH_ENV_DISPLAY=1
export MPICH_
export OMP_NUM_THREADS=3 export OMP_NUM_THREADS=3
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1 export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
module load oneapi/eng-compiler/2023.05.15.003
module load mpich/51.2/icc-all-deterministic-pmix-gpu
#export LD_LIBRARY_PATH=/soft/restricted/CNDA/updates/2023.05.15.001/oneapi/compiler/eng-20230512/compiler/linux/lib/:$LD_LIBRARY_PATH
#module load mpich/51.2/icc-all-deterministic-pmix-gpu
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE #unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE #unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE
#unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST #unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST

View File

@ -1,7 +1,6 @@
#!/bin/bash #!/bin/bash
#PBS -l select=16 #PBS -l select=16:system=sunspot,place=scatter
#PBS -q EarlyAppAccess
#PBS -A LatticeQCD_aesp_CNDA #PBS -A LatticeQCD_aesp_CNDA
#PBS -l walltime=02:00:00 #PBS -l walltime=02:00:00
#PBS -N repro1gpu #PBS -N repro1gpu
@ -10,9 +9,8 @@
#export OMP_PROC_BIND=spread #export OMP_PROC_BIND=spread
#unset OMP_PLACES #unset OMP_PLACES
module load oneapi/eng-compiler/2023.05.15.003
#module load oneapi/eng-compiler/2023.05.15.003 module load mpich/51.2/icc-all-deterministic-pmix-gpu
#module load mpich/51.2/icc-all-deterministic-pmix-gpu
# 56 cores / 6 threads ~9 # 56 cores / 6 threads ~9
export OMP_NUM_THREADS=6 export OMP_NUM_THREADS=6
@ -36,8 +34,6 @@ export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file"
cd $PBS_O_WORKDIR cd $PBS_O_WORKDIR
source ../sourceme.sh
NN=`cat $PBS_NODEFILE | wc -l` NN=`cat $PBS_NODEFILE | wc -l`
echo $PBS_NODEFILE echo $PBS_NODEFILE
cat $PBS_NODEFILE cat $PBS_NODEFILE

Some files were not shown because too many files have changed in this diff Show More