1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-23 02:02:02 +01:00

Compare commits

..

3 Commits

Author SHA1 Message Date
12d20d8e15 Merge branch 'release/0.10.0' 2023-03-29 16:35:33 -04:00
25777e5967 Merge branch 'release/0.9.0' 2023-03-29 15:27:58 -04:00
deab11e68b Flop cout matches DiRAC-ITT-2020 2020-11-16 17:15:34 +01:00
7 changed files with 297 additions and 59 deletions

View File

@ -128,7 +128,7 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
int recv_from_rank,int dor,
int xbytes,int rbytes, int dir)
{
return xbytes+rbytes;
return 2.0*bytes;
}
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir)
{

View File

@ -91,59 +91,6 @@ void *SharedMemory::ShmBufferSelf(void)
//std::cerr << "ShmBufferSelf "<<ShmRank<<" "<<std::hex<< ShmCommBufs[ShmRank] <<std::dec<<std::endl;
return ShmCommBufs[ShmRank];
}
static inline int divides(int a,int b)
{
return ( b == ( (b/a)*a ) );
}
void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims)
{
////////////////////////////////////////////////////////////////
// Allow user to configure through environment variable
////////////////////////////////////////////////////////////////
char* str = getenv(("GRID_SHM_DIMS_" + std::to_string(ShmDims.size())).c_str());
if ( str ) {
std::vector<int> IntShmDims;
GridCmdOptionIntVector(std::string(str),IntShmDims);
assert(IntShmDims.size() == WorldDims.size());
long ShmSize = 1;
for (int dim=0;dim<WorldDims.size();dim++) {
ShmSize *= (ShmDims[dim] = IntShmDims[dim]);
assert(divides(ShmDims[dim],WorldDims[dim]));
}
assert(ShmSize == WorldShmSize);
return;
}
////////////////////////////////////////////////////////////////
// Powers of 2,3,5 only in prime decomposition for now
////////////////////////////////////////////////////////////////
int ndimension = WorldDims.size();
ShmDims=Coordinate(ndimension,1);
std::vector<int> primes({2,3,5});
int dim = 0;
int last_dim = ndimension - 1;
int AutoShmSize = 1;
while(AutoShmSize != WorldShmSize) {
int p;
for(p=0;p<primes.size();p++) {
int prime=primes[p];
if ( divides(prime,WorldDims[dim]/ShmDims[dim])
&& divides(prime,WorldShmSize/AutoShmSize) ) {
AutoShmSize*=prime;
ShmDims[dim]*=prime;
last_dim = dim;
break;
}
}
if (p == primes.size() && last_dim == dim) {
std::cerr << "GlobalSharedMemory::GetShmDims failed" << std::endl;
exit(EXIT_FAILURE);
}
dim=(dim+1) %ndimension;
}
}
NAMESPACE_END(Grid);

View File

@ -174,6 +174,55 @@ static inline int divides(int a,int b)
{
return ( b == ( (b/a)*a ) );
}
void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims)
{
////////////////////////////////////////////////////////////////
// Allow user to configure through environment variable
////////////////////////////////////////////////////////////////
char* str = getenv(("GRID_SHM_DIMS_" + std::to_string(ShmDims.size())).c_str());
if ( str ) {
std::vector<int> IntShmDims;
GridCmdOptionIntVector(std::string(str),IntShmDims);
assert(IntShmDims.size() == WorldDims.size());
long ShmSize = 1;
for (int dim=0;dim<WorldDims.size();dim++) {
ShmSize *= (ShmDims[dim] = IntShmDims[dim]);
assert(divides(ShmDims[dim],WorldDims[dim]));
}
assert(ShmSize == WorldShmSize);
return;
}
////////////////////////////////////////////////////////////////
// Powers of 2,3,5 only in prime decomposition for now
////////////////////////////////////////////////////////////////
int ndimension = WorldDims.size();
ShmDims=Coordinate(ndimension,1);
std::vector<int> primes({2,3,5});
int dim = 0;
int last_dim = ndimension - 1;
int AutoShmSize = 1;
while(AutoShmSize != WorldShmSize) {
int p;
for(p=0;p<primes.size();p++) {
int prime=primes[p];
if ( divides(prime,WorldDims[dim]/ShmDims[dim])
&& divides(prime,WorldShmSize/AutoShmSize) ) {
AutoShmSize*=prime;
ShmDims[dim]*=prime;
last_dim = dim;
break;
}
}
if (p == primes.size() && last_dim == dim) {
std::cerr << "GlobalSharedMemory::GetShmDims failed" << std::endl;
exit(EXIT_FAILURE);
}
dim=(dim+1) %ndimension;
}
}
void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
{
////////////////////////////////////////////////////////////////

View File

@ -434,7 +434,6 @@ public:
////////////////////////////////////////////////////////////////////////
void CommunicateBegin(std::vector<std::vector<CommsRequest_t> > &reqs)
{
accelerator_barrier();
for(int i=0;i<Packets.size();i++){
_grid->StencilSendToRecvFromBegin(MpiReqs,
Packets[i].send_buf,

View File

@ -458,8 +458,7 @@ inline void acceleratorCopySynchronise(void) { hipStreamSynchronize(copyStream);
// Common on all GPU targets
//////////////////////////////////////////////
#if defined(GRID_SYCL) || defined(GRID_CUDA) || defined(GRID_HIP)
// FIXME -- the non-blocking nature got broken March 30 2023 by PAB
#define accelerator_forNB( iter1, num1, nsimd, ... ) accelerator_for2dNB( iter1, num1, iter2, 1, nsimd, {__VA_ARGS__} );
#define accelerator_forNB( iter1, num1, nsimd, ... ) accelerator_for2dNB( iter1, num1, iter2, 1, nsimd, {__VA_ARGS__} );
#define accelerator_for( iter, num, nsimd, ... ) \
accelerator_forNB(iter, num, nsimd, { __VA_ARGS__ } ); \
@ -526,7 +525,7 @@ inline void acceleratorFreeCpu (void *ptr){free(ptr);};
//////////////////////////////////////////////
#ifdef GRID_SYCL
inline void acceleratorFenceComputeStream(void){ theGridAccelerator->submit_barrier();};
inline void acceleratorFenceComputeStream(void){ accelerator_barrier();};
#else
// Ordering within a stream guaranteed on Nvidia & AMD
inline void acceleratorFenceComputeStream(void){ };

View File

@ -53,7 +53,7 @@ static int readInt(int* argc, char*** argv, std::string&& option, int defaultVal
static float readFloat(int* argc, char*** argv, std::string&& option, float defaultValue) {
std::string arg;
double ret = defaultValue;
float ret = defaultValue;
if(checkPresent(argc, argv, option)) {
arg = getContent(argc, argv, option);
GridCmdOptionFloat(arg, ret);

244
tests/core/Test_fft_matt.cc Normal file
View File

@ -0,0 +1,244 @@
/*************************************************************************************
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT,
Gamma::Algebra::Gamma5
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
int threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
Coordinate latt_size = GridDefaultLatt();
Coordinate simd_layout = GridDefaultSimd(Nd,vComplexD::Nsimd());
Coordinate mpi_layout = GridDefaultMpi();
int vol = 1;
for(int d=0;d<latt_size.size();d++){
vol = vol * latt_size[d];
}
GridCartesian GRID(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGRID(&GRID);
LatticeComplexD coor(&GRID);
ComplexD ci(0.0,1.0);
std::vector<int> seeds({1,2,3,4});
GridSerialRNG sRNG; sRNG.SeedFixedIntegers(seeds); // naughty seeding
GridParallelRNG pRNG(&GRID);
pRNG.SeedFixedIntegers(seeds);
LatticeGaugeFieldD Umu(&GRID);
SU<Nc>::ColdConfiguration(pRNG,Umu); // Unit gauge
////////////////////////////////////////////////////
// Wilson test
////////////////////////////////////////////////////
{
LatticeFermionD src(&GRID); gaussian(pRNG,src);
LatticeFermionD src_p(&GRID);
LatticeFermionD tmp(&GRID);
LatticeFermionD ref(&GRID);
LatticeFermionD result(&GRID);
RealD mass=0.1;
WilsonFermionD Dw(Umu,GRID,RBGRID,mass);
Dw.M(src,ref);
std::cout << "Norm src "<<norm2(src)<<std::endl;
std::cout << "Norm Dw x src "<<norm2(ref)<<std::endl;
{
FFT theFFT(&GRID);
////////////////
// operator in Fourier space
////////////////
tmp =ref;
theFFT.FFT_all_dim(result,tmp,FFT::forward);
std::cout<<"FFT[ Dw x src ] "<< norm2(result)<<std::endl;
tmp = src;
theFFT.FFT_all_dim(src_p,tmp,FFT::forward);
std::cout<<"FFT[ src ] "<< norm2(src_p)<<std::endl;
/////////////////////////////////////////////////////////////////
// work out the predicted FT from Fourier
/////////////////////////////////////////////////////////////////
auto FGrid = &GRID;
LatticeFermionD Kinetic(FGrid); Kinetic = Zero();
LatticeComplexD kmu(FGrid);
LatticeInteger scoor(FGrid);
LatticeComplexD sk (FGrid); sk = Zero();
LatticeComplexD sk2(FGrid); sk2= Zero();
LatticeComplexD W(FGrid); W= Zero();
LatticeComplexD one(FGrid); one =ComplexD(1.0,0.0);
ComplexD ci(0.0,1.0);
for(int mu=0;mu<Nd;mu++) {
RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
LatticeCoordinate(kmu,mu);
kmu = TwoPiL * kmu;
sk2 = sk2 + 2.0*sin(kmu*0.5)*sin(kmu*0.5);
sk = sk + sin(kmu) *sin(kmu);
// -1/2 Dw -> 1/2 gmu (eip - emip) = i sinp gmu
Kinetic = Kinetic + sin(kmu)*ci*(Gamma(Gmu[mu])*src_p);
}
W = mass + sk2;
Kinetic = Kinetic + W * src_p;
std::cout<<"Momentum space src "<< norm2(src_p)<<std::endl;
std::cout<<"Momentum space Dw x src "<< norm2(Kinetic)<<std::endl;
std::cout<<"FT[Coordinate space Dw] "<< norm2(result)<<std::endl;
result = result - Kinetic;
std::cout<<"diff "<< norm2(result)<<std::endl;
}
std::cout << " =======================================" <<std::endl;
std::cout << " Checking FourierFreePropagator x Dw = 1" <<std::endl;
std::cout << " =======================================" <<std::endl;
std::cout << "Dw src = " <<norm2(src)<<std::endl;
std::cout << "Dw tmp = " <<norm2(tmp)<<std::endl;
Dw.M(src,tmp);
Dw.FreePropagator(tmp,ref,mass);
std::cout << "Dw ref = " <<norm2(ref)<<std::endl;
ref = ref - src;
std::cout << "Dw ref-src = " <<norm2(ref)<<std::endl;
}
////////////////////////////////////////////////////
// Wilson prop
////////////////////////////////////////////////////
{
std::cout<<"****************************************"<<std::endl;
std::cout << "Wilson Mom space 4d propagator \n";
std::cout<<"****************************************"<<std::endl;
LatticeFermionD src(&GRID); gaussian(pRNG,src);
LatticeFermionD tmp(&GRID);
LatticeFermionD ref(&GRID);
LatticeFermionD diff(&GRID);
src=Zero();
Coordinate point(4,0); // 0,0,0,0
SpinColourVectorD ferm;
ferm=Zero();
ferm()(0)(0) = ComplexD(1.0);
pokeSite(ferm,src,point);
RealD mass=0.1;
WilsonFermionD Dw(Umu,GRID,RBGRID,mass);
// Momentum space prop
std::cout << " Solving by FFT and Feynman rules" <<std::endl;
Dw.FreePropagator(src,ref,mass) ;
Gamma G5(Gamma::Algebra::Gamma5);
LatticeFermionD result(&GRID);
const int sdir=0;
////////////////////////////////////////////////////////////////////////
// Conjugate gradient on normal equations system
////////////////////////////////////////////////////////////////////////
std::cout << " Solving by Conjugate Gradient (CGNE)" <<std::endl;
Dw.Mdag(src,tmp);
src=tmp;
MdagMLinearOperator<WilsonFermionD,LatticeFermionD> HermOp(Dw);
ConjugateGradient<LatticeFermionD> CG(1.0e-10,10000);
CG(HermOp,src,result);
////////////////////////////////////////////////////////////////////////
std::cout << " Taking difference" <<std::endl;
std::cout << "Dw result "<<norm2(result)<<std::endl;
std::cout << "Dw ref "<<norm2(ref)<<std::endl;
diff = ref - result;
std::cout << "result - ref "<<norm2(diff)<<std::endl;
DumpSliceNorm("Slice Norm Solution ",result,Nd-1);
}
////////////////////////////////////////////////////
//Gauge invariance test
////////////////////////////////////////////////////
{
std::cout<<"****************************************"<<std::endl;
std::cout << "Gauge invariance test \n";
std::cout<<"****************************************"<<std::endl;
LatticeGaugeField U_GT(&GRID); // Gauge transformed field
LatticeColourMatrix g(&GRID); // local Gauge xform matrix
U_GT = Umu;
// Make a random xform to teh gauge field
SU<Nc>::RandomGaugeTransform(pRNG,U_GT,g); // Unit gauge
LatticeFermionD src(&GRID);
LatticeFermionD tmp(&GRID);
LatticeFermionD ref(&GRID);
LatticeFermionD diff(&GRID);
// could loop over colors
src=Zero();
Coordinate point(4,0); // 0,0,0,0
SpinColourVectorD ferm;
ferm=Zero();
ferm()(0)(0) = ComplexD(1.0);
pokeSite(ferm,src,point);
RealD mass=0.1;
WilsonFermionD Dw(U_GT,GRID,RBGRID,mass);
// Momentum space prop
std::cout << " Solving by FFT and Feynman rules" <<std::endl;
Dw.FreePropagator(src,ref,mass) ;
Gamma G5(Gamma::Algebra::Gamma5);
LatticeFermionD result(&GRID);
const int sdir=0;
////////////////////////////////////////////////////////////////////////
// Conjugate gradient on normal equations system
////////////////////////////////////////////////////////////////////////
std::cout << " Solving by Conjugate Gradient (CGNE)" <<std::endl;
Dw.Mdag(src,tmp);
src=tmp;
MdagMLinearOperator<WilsonFermionD,LatticeFermionD> HermOp(Dw);
ConjugateGradient<LatticeFermionD> CG(1.0e-10,10000);
CG(HermOp,src,result);
////////////////////////////////////////////////////////////////////////
std::cout << " Taking difference" <<std::endl;
std::cout << "Dw result "<<norm2(result)<<std::endl;
std::cout << "Dw ref "<<norm2(ref)<<std::endl;
diff = ref - result;
std::cout << "result - ref "<<norm2(diff)<<std::endl;
DumpSliceNorm("Slice Norm Solution ",result,Nd-1);
}
Grid_finalize();
}