mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-11-01 04:24:32 +00:00 
			
		
		
		
	Compare commits
	
		
			84 Commits
		
	
	
		
			ccf147d6c1
			...
			feature/gp
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 
						 | 
					4fefae1745 | ||
| 
						 | 
					758e2edcad | ||
| 
						 | 
					1538b15f3b | ||
| 
						 | 
					deac621c2c | ||
| 
						 | 
					ba974960e6 | ||
| 
						 | 
					6755dc57f8 | ||
| 
						 | 
					aa620ca52c | ||
| 
						 | 
					2c46c942cc | ||
| 
						 | 
					adeba8059a | ||
| 
						 | 
					c4ac528126 | ||
| 
						 | 
					551b93ba8e | ||
| 
						 | 
					ddf7540510 | ||
| 
						 | 
					de68d12c3d | ||
| 
						 | 
					6d26a2a1ad | ||
| 
						 | 
					a1211cdcce | ||
| 
						 | 
					e78acf77ff | ||
| 
						 | 
					f7e9621492 | ||
| 
						 | 
					f14be15f8b | ||
| 
						 | 
					6a3aaa52ef | ||
| 
						 | 
					9ba47b4696 | ||
| 
						 | 
					e85af80c39 | ||
| 
						 | 
					0b91e90dd4 | ||
| 
						 | 
					d184b8c921 | ||
| 
						 | 
					c92e390b08 | ||
| 
						 | 
					5b36a8af54 | ||
| 
						 | 
					75a1f85162 | ||
| 
						 | 
					ac4f2d9798 | ||
| 
						 | 
					c3b99de33f | ||
| 
						 | 
					e1a02bb80a | ||
| 
						 | 
					86f08c6b9a | ||
| 
						 | 
					9f0271039f | ||
| 
						 | 
					24df770f74 | ||
| 
						 | 
					45b6c7effc | ||
| 
						 | 
					1c70d8c4d9 | ||
| 
						 | 
					f0e9a5299f | ||
| 
						 | 
					f1b8ba45e7 | ||
| 
						 | 
					fe998ab578 | ||
| 
						 | 
					c2ee2b5fd1 | ||
| 
						 | 
					3b734ee397 | ||
| 
						 | 
					8637a9512a | ||
| 
						 | 
					7f6e2ee03e | ||
| 
						 | 
					7b02acb2bd | ||
| 
						 | 
					86948c6ea0 | ||
| 
						 | 
					53d226924a | ||
| 
						 | 
					80176b1b39 | ||
| 
						 | 
					29ddafd0fc | ||
| 
						 | 
					0f08364e4f | ||
| 
						 | 
					a198d59381 | ||
| 
						 | 
					3a4f5f2324 | ||
| 
						 | 
					824d84473f | ||
| 
						 | 
					38964a4076 | ||
| 
						 | 
					0d9aa87228 | ||
| 
						 | 
					0e959d9b94 | ||
| 
						 | 
					752f70cd48 | ||
| 
						 | 
					e0e42873c1 | ||
| 
						 | 
					0ff3bf6dc5 | ||
| 
						 | 
					351eab02ae | ||
| 
						 | 
					feee5ccde2 | ||
| 
						 | 
					e0f6a146d8 | ||
| 
						 | 
					daa095c519 | ||
| 
						 | 
					c2676853ca | ||
| 
						 | 
					6a824033f8 | ||
| 
						 | 
					cee6a37639 | ||
| 
						 | 
					6cc3ad110c | ||
| 
						 | 
					e6c6f82c52 | ||
| 
						 | 
					d10d0c4e7f | ||
| 
						 | 
					9c106d625a | ||
| 
						 | 
					6795bbca31 | ||
| 
						 | 
					d161c2dc35 | ||
| 
						 | 
					7a06826cf1 | ||
| 
						 | 
					c3712b8e06 | ||
| 
						 | 
					901ee77b84 | ||
| 
						 | 
					1b84f59273 | ||
| 
						 | 
					1fb41a4300 | ||
| 
						 | 
					287bac946f | ||
| 
						 | 
					80c14be65e | ||
| 
						 | 
					d7a2a4852d | ||
| 
						 | 
					d185f2eaa7 | ||
| 
						 | 
					813d4cd900 | ||
| 
						 | 
					75c6c6b173 | ||
| 
						 | 
					220ad5e3ee | ||
| 
						 | 
					ba5dc670a5 | ||
| 
						 | 
					a0ca362690 | ||
| 
						 | 
					249b6e61ec | 
@@ -34,6 +34,9 @@ directory
 | 
			
		||||
 | 
			
		||||
#if defined __GNUC__ && __GNUC__>=6
 | 
			
		||||
#pragma GCC diagnostic ignored "-Wignored-attributes"
 | 
			
		||||
#endif
 | 
			
		||||
#if defined __GNUC__ 
 | 
			
		||||
#pragma GCC diagnostic ignored "-Wpsabi"
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 //disables and intel compiler specific warning (in json.hpp)
 | 
			
		||||
 
 | 
			
		||||
@@ -36,6 +36,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
#include <Grid/qcd/QCD.h>
 | 
			
		||||
#include <Grid/qcd/spin/Spin.h>
 | 
			
		||||
#include <Grid/qcd/gparity/Gparity.h>
 | 
			
		||||
#include <Grid/qcd/utils/Utils.h>
 | 
			
		||||
#include <Grid/qcd/representations/Representations.h>
 | 
			
		||||
NAMESPACE_CHECK(GridQCDCore);
 | 
			
		||||
 
 | 
			
		||||
@@ -54,6 +54,7 @@ NAMESPACE_CHECK(BiCGSTAB);
 | 
			
		||||
#include <Grid/algorithms/iterative/SchurRedBlack.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/BiCGSTABMixedPrec.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>
 | 
			
		||||
 
 | 
			
		||||
@@ -292,6 +292,7 @@ public:
 | 
			
		||||
template<class Field>
 | 
			
		||||
class ChebyshevLanczos : public Chebyshev<Field> {
 | 
			
		||||
private:
 | 
			
		||||
 | 
			
		||||
  std::vector<RealD> Coeffs;
 | 
			
		||||
  int order;
 | 
			
		||||
  RealD alpha;
 | 
			
		||||
 
 | 
			
		||||
@@ -49,6 +49,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
    Integer TotalInnerIterations; //Number of inner CG iterations
 | 
			
		||||
    Integer TotalOuterIterations; //Number of restarts
 | 
			
		||||
    Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
 | 
			
		||||
    RealD TrueResidual;
 | 
			
		||||
 | 
			
		||||
    //Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
 | 
			
		||||
    LinearFunction<FieldF> *guesser;
 | 
			
		||||
@@ -68,6 +69,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
  void operator() (const FieldD &src_d_in, FieldD &sol_d){
 | 
			
		||||
    std::cout << GridLogMessage << "MixedPrecisionConjugateGradient: Starting mixed precision CG with outer tolerance " << Tolerance << " and inner tolerance " << InnerTolerance << std::endl;
 | 
			
		||||
    TotalInnerIterations = 0;
 | 
			
		||||
	
 | 
			
		||||
    GridStopWatch TotalTimer;
 | 
			
		||||
@@ -80,6 +82,11 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
    RealD stop = src_norm * Tolerance*Tolerance;
 | 
			
		||||
 | 
			
		||||
    GridBase* DoublePrecGrid = src_d_in.Grid();
 | 
			
		||||
 | 
			
		||||
    //Generate precision change workspaces
 | 
			
		||||
    precisionChangeWorkspace wk_dp_from_sp(DoublePrecGrid, SinglePrecGrid);
 | 
			
		||||
    precisionChangeWorkspace wk_sp_from_dp(SinglePrecGrid, DoublePrecGrid);
 | 
			
		||||
 | 
			
		||||
    FieldD tmp_d(DoublePrecGrid);
 | 
			
		||||
    tmp_d.Checkerboard() = cb;
 | 
			
		||||
    
 | 
			
		||||
@@ -97,6 +104,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
    FieldF sol_f(SinglePrecGrid);
 | 
			
		||||
    sol_f.Checkerboard() = cb;
 | 
			
		||||
    
 | 
			
		||||
    std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Starting initial inner CG with tolerance " << inner_tol << std::endl;
 | 
			
		||||
    ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
 | 
			
		||||
    CG_f.ErrorOnNoConverge = false;
 | 
			
		||||
 | 
			
		||||
@@ -120,7 +128,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
      while(norm * inner_tol * inner_tol < stop) inner_tol *= 2;  // inner_tol = sqrt(stop/norm) ??
 | 
			
		||||
 | 
			
		||||
      PrecChangeTimer.Start();
 | 
			
		||||
      precisionChange(src_f, src_d);
 | 
			
		||||
      precisionChange(src_f, src_d, wk_sp_from_dp);
 | 
			
		||||
      PrecChangeTimer.Stop();
 | 
			
		||||
      
 | 
			
		||||
      sol_f = Zero();
 | 
			
		||||
@@ -130,6 +138,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
	(*guesser)(src_f, sol_f);
 | 
			
		||||
 | 
			
		||||
      //Inner CG
 | 
			
		||||
      std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " << outer_iter << " starting inner CG with tolerance " << inner_tol << std::endl;
 | 
			
		||||
      CG_f.Tolerance = inner_tol;
 | 
			
		||||
      InnerCGtimer.Start();
 | 
			
		||||
      CG_f(Linop_f, src_f, sol_f);
 | 
			
		||||
@@ -138,7 +147,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
      
 | 
			
		||||
      //Convert sol back to double and add to double prec solution
 | 
			
		||||
      PrecChangeTimer.Start();
 | 
			
		||||
      precisionChange(tmp_d, sol_f);
 | 
			
		||||
      precisionChange(tmp_d, sol_f, wk_dp_from_sp);
 | 
			
		||||
      PrecChangeTimer.Stop();
 | 
			
		||||
      
 | 
			
		||||
      axpy(sol_d, 1.0, tmp_d, sol_d);
 | 
			
		||||
@@ -150,6 +159,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
    ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations);
 | 
			
		||||
    CG_d(Linop_d, src_d_in, sol_d);
 | 
			
		||||
    TotalFinalStepIterations = CG_d.IterationsToComplete;
 | 
			
		||||
    TrueResidual = CG_d.TrueResidual;
 | 
			
		||||
 | 
			
		||||
    TotalTimer.Stop();
 | 
			
		||||
    std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;
 | 
			
		||||
 
 | 
			
		||||
@@ -52,7 +52,7 @@ public:
 | 
			
		||||
  MultiShiftFunction shifts;
 | 
			
		||||
  std::vector<RealD> TrueResidualShift;
 | 
			
		||||
 | 
			
		||||
  ConjugateGradientMultiShift(Integer maxit,MultiShiftFunction &_shifts) : 
 | 
			
		||||
  ConjugateGradientMultiShift(Integer maxit, const MultiShiftFunction &_shifts) : 
 | 
			
		||||
    MaxIterations(maxit),
 | 
			
		||||
    shifts(_shifts)
 | 
			
		||||
  { 
 | 
			
		||||
@@ -182,6 +182,9 @@ public:
 | 
			
		||||
    for(int s=0;s<nshift;s++) {
 | 
			
		||||
      axpby(psi[s],0.,-bs[s]*alpha[s],src,src);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogIterative << "ConjugateGradientMultiShift: initial rn (|src|^2) =" << rn << " qq (|MdagM src|^2) =" << qq << " d ( dot(src, [MdagM + m_0]src) ) =" << d << " c=" << c << std::endl;
 | 
			
		||||
    
 | 
			
		||||
  
 | 
			
		||||
  ///////////////////////////////////////
 | 
			
		||||
  // Timers
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										411
									
								
								Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										411
									
								
								Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,411 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
 | 
			
		||||
#define GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
//CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision. 
 | 
			
		||||
//The residual is stored in single precision, but the search directions and solution are stored in double precision. 
 | 
			
		||||
//Every update_freq iterations the residual is corrected in double precision. 
 | 
			
		||||
    
 | 
			
		||||
//For safety the a final regular CG is applied to clean up if necessary
 | 
			
		||||
 | 
			
		||||
//Linop to add shift to input linop, used in cleanup CG
 | 
			
		||||
namespace ConjugateGradientMultiShiftMixedPrecSupport{
 | 
			
		||||
template<typename Field>
 | 
			
		||||
class ShiftedLinop: public LinearOperatorBase<Field>{
 | 
			
		||||
public:
 | 
			
		||||
  LinearOperatorBase<Field> &linop_base;
 | 
			
		||||
  RealD shift;
 | 
			
		||||
 | 
			
		||||
  ShiftedLinop(LinearOperatorBase<Field> &_linop_base, RealD _shift): linop_base(_linop_base), shift(_shift){}
 | 
			
		||||
 | 
			
		||||
  void OpDiag (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp){ assert(0); }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){ assert(0); }
 | 
			
		||||
  
 | 
			
		||||
  void Op     (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void AdjOp  (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
 | 
			
		||||
  void HermOp(const Field &in, Field &out){
 | 
			
		||||
    linop_base.HermOp(in, out);
 | 
			
		||||
    axpy(out, shift, in, out);
 | 
			
		||||
  }    
 | 
			
		||||
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
    HermOp(in,out);
 | 
			
		||||
    ComplexD dot = innerProduct(in,out);
 | 
			
		||||
    n1=real(dot);
 | 
			
		||||
    n2=norm2(out);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class FieldD, class FieldF,
 | 
			
		||||
	 typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
 | 
			
		||||
	 typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0> 
 | 
			
		||||
class ConjugateGradientMultiShiftMixedPrec : public OperatorMultiFunction<FieldD>,
 | 
			
		||||
					     public OperatorFunction<FieldD>
 | 
			
		||||
{
 | 
			
		||||
public:                                                
 | 
			
		||||
 | 
			
		||||
  using OperatorFunction<FieldD>::operator();
 | 
			
		||||
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
 | 
			
		||||
  std::vector<int> IterationsToCompleteShift;  // Iterations for this shift
 | 
			
		||||
  int verbose;
 | 
			
		||||
  MultiShiftFunction shifts;
 | 
			
		||||
  std::vector<RealD> TrueResidualShift;
 | 
			
		||||
 | 
			
		||||
  int ReliableUpdateFreq; //number of iterations between reliable updates
 | 
			
		||||
 | 
			
		||||
  GridBase* SinglePrecGrid; //Grid for single-precision fields
 | 
			
		||||
  LinearOperatorBase<FieldF> &Linop_f; //single precision
 | 
			
		||||
 | 
			
		||||
  ConjugateGradientMultiShiftMixedPrec(Integer maxit, const MultiShiftFunction &_shifts,
 | 
			
		||||
				       GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f,
 | 
			
		||||
				       int _ReliableUpdateFreq
 | 
			
		||||
				       ) : 
 | 
			
		||||
    MaxIterations(maxit),  shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq)
 | 
			
		||||
  { 
 | 
			
		||||
    verbose=1;
 | 
			
		||||
    IterationsToCompleteShift.resize(_shifts.order);
 | 
			
		||||
    TrueResidualShift.resize(_shifts.order);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi)
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *grid = src.Grid();
 | 
			
		||||
    int nshift = shifts.order;
 | 
			
		||||
    std::vector<FieldD> results(nshift,grid);
 | 
			
		||||
    (*this)(Linop,src,results,psi);
 | 
			
		||||
  }
 | 
			
		||||
  void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi)
 | 
			
		||||
  {
 | 
			
		||||
    int nshift = shifts.order;
 | 
			
		||||
 | 
			
		||||
    (*this)(Linop,src,results);
 | 
			
		||||
  
 | 
			
		||||
    psi = shifts.norm*src;
 | 
			
		||||
    for(int i=0;i<nshift;i++){
 | 
			
		||||
      psi = psi + shifts.residues[i]*results[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d)
 | 
			
		||||
  { 
 | 
			
		||||
    GridBase *DoublePrecGrid = src_d.Grid();
 | 
			
		||||
    precisionChangeWorkspace wk_f_from_d(SinglePrecGrid, DoublePrecGrid);
 | 
			
		||||
    precisionChangeWorkspace wk_d_from_f(DoublePrecGrid, SinglePrecGrid);
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Convenience references to the info stored in "MultiShiftFunction"
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    int nshift = shifts.order;
 | 
			
		||||
 | 
			
		||||
    std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
 | 
			
		||||
    std::vector<RealD> &mresidual(shifts.tolerances);
 | 
			
		||||
    std::vector<RealD> alpha(nshift,1.0);
 | 
			
		||||
 | 
			
		||||
    //Double precision search directions
 | 
			
		||||
    FieldD p_d(DoublePrecGrid);
 | 
			
		||||
    std::vector<FieldD> ps_d(nshift, DoublePrecGrid);// Search directions (double precision)
 | 
			
		||||
 | 
			
		||||
    FieldD tmp_d(DoublePrecGrid);
 | 
			
		||||
    FieldD r_d(DoublePrecGrid);
 | 
			
		||||
    FieldD mmp_d(DoublePrecGrid);
 | 
			
		||||
 | 
			
		||||
    assert(psi_d.size()==nshift);
 | 
			
		||||
    assert(mass.size()==nshift);
 | 
			
		||||
    assert(mresidual.size()==nshift);
 | 
			
		||||
  
 | 
			
		||||
    // dynamic sized arrays on stack; 2d is a pain with vector
 | 
			
		||||
    RealD  bs[nshift];
 | 
			
		||||
    RealD  rsq[nshift];
 | 
			
		||||
    RealD  z[nshift][2];
 | 
			
		||||
    int     converged[nshift];
 | 
			
		||||
  
 | 
			
		||||
    const int       primary =0;
 | 
			
		||||
  
 | 
			
		||||
    //Primary shift fields CG iteration
 | 
			
		||||
    RealD a,b,c,d;
 | 
			
		||||
    RealD cp,bp,qq; //prev
 | 
			
		||||
  
 | 
			
		||||
    // Matrix mult fields
 | 
			
		||||
    FieldF r_f(SinglePrecGrid);
 | 
			
		||||
    FieldF p_f(SinglePrecGrid);
 | 
			
		||||
    FieldF tmp_f(SinglePrecGrid);
 | 
			
		||||
    FieldF mmp_f(SinglePrecGrid);
 | 
			
		||||
    FieldF src_f(SinglePrecGrid);
 | 
			
		||||
    precisionChange(src_f, src_d, wk_f_from_d);
 | 
			
		||||
 | 
			
		||||
    // Check lightest mass
 | 
			
		||||
    for(int s=0;s<nshift;s++){
 | 
			
		||||
      assert( mass[s]>= mass[primary] );
 | 
			
		||||
      converged[s]=0;
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
    // Wire guess to zero
 | 
			
		||||
    // Residuals "r" are src
 | 
			
		||||
    // First search direction "p" is also src
 | 
			
		||||
    cp = norm2(src_d);
 | 
			
		||||
 | 
			
		||||
    // Handle trivial case of zero src.
 | 
			
		||||
    if( cp == 0. ){
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
	psi_d[s] = Zero();
 | 
			
		||||
	IterationsToCompleteShift[s] = 1;
 | 
			
		||||
	TrueResidualShift[s] = 0.;
 | 
			
		||||
      }
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for(int s=0;s<nshift;s++){
 | 
			
		||||
      rsq[s] = cp * mresidual[s] * mresidual[s];
 | 
			
		||||
      std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift "<< s <<" target resid "<<rsq[s]<<std::endl;
 | 
			
		||||
      ps_d[s] = src_d;
 | 
			
		||||
    }
 | 
			
		||||
    // r and p for primary
 | 
			
		||||
    r_f=src_f; //residual maintained in single
 | 
			
		||||
    p_f=src_f;
 | 
			
		||||
    p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys
 | 
			
		||||
  
 | 
			
		||||
    //MdagM+m[0]
 | 
			
		||||
    Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp)
 | 
			
		||||
    axpy(mmp_f,mass[0],p_f,mmp_f);
 | 
			
		||||
    RealD rn = norm2(p_f);
 | 
			
		||||
    d += rn*mass[0];
 | 
			
		||||
 | 
			
		||||
    b = -cp /d;
 | 
			
		||||
  
 | 
			
		||||
    // Set up the various shift variables
 | 
			
		||||
    int       iz=0;
 | 
			
		||||
    z[0][1-iz] = 1.0;
 | 
			
		||||
    z[0][iz]   = 1.0;
 | 
			
		||||
    bs[0]      = b;
 | 
			
		||||
    for(int s=1;s<nshift;s++){
 | 
			
		||||
      z[s][1-iz] = 1.0;
 | 
			
		||||
      z[s][iz]   = 1.0/( 1.0 - b*(mass[s]-mass[0]));
 | 
			
		||||
      bs[s]      = b*z[s][iz]; 
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
    // r += b[0] A.p[0]
 | 
			
		||||
    // c= norm(r)
 | 
			
		||||
    c=axpy_norm(r_f,b,mmp_f,r_f);
 | 
			
		||||
  
 | 
			
		||||
    for(int s=0;s<nshift;s++) {
 | 
			
		||||
      axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d);
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    // Timers
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer;
 | 
			
		||||
 | 
			
		||||
    SolverTimer.Start();
 | 
			
		||||
  
 | 
			
		||||
    // Iteration loop
 | 
			
		||||
    int k;
 | 
			
		||||
  
 | 
			
		||||
    for (k=1;k<=MaxIterations;k++){    
 | 
			
		||||
      a = c /cp;
 | 
			
		||||
 | 
			
		||||
      //Update double precision search direction by residual
 | 
			
		||||
      PrecChangeTimer.Start();
 | 
			
		||||
      precisionChange(r_d, r_f, wk_d_from_f);
 | 
			
		||||
      PrecChangeTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      AXPYTimer.Start();
 | 
			
		||||
      axpy(p_d,a,p_d,r_d); 
 | 
			
		||||
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
	if ( ! converged[s] ) { 
 | 
			
		||||
	  if (s==0){
 | 
			
		||||
	    axpy(ps_d[s],a,ps_d[s],r_d);
 | 
			
		||||
	  } else{
 | 
			
		||||
	    RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
 | 
			
		||||
	    axpby(ps_d[s],z[s][iz],as,r_d,ps_d[s]);
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      AXPYTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      PrecChangeTimer.Start();
 | 
			
		||||
      precisionChange(p_f, p_d, wk_f_from_d); //get back single prec search direction for linop
 | 
			
		||||
      PrecChangeTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      cp=c;
 | 
			
		||||
      MatrixTimer.Start();  
 | 
			
		||||
      Linop_f.HermOp(p_f,mmp_f); 
 | 
			
		||||
      d=real(innerProduct(p_f,mmp_f));    
 | 
			
		||||
      MatrixTimer.Stop();  
 | 
			
		||||
 | 
			
		||||
      AXPYTimer.Start();
 | 
			
		||||
      axpy(mmp_f,mass[0],p_f,mmp_f);
 | 
			
		||||
      AXPYTimer.Stop();
 | 
			
		||||
      RealD rn = norm2(p_f);
 | 
			
		||||
      d += rn*mass[0];
 | 
			
		||||
    
 | 
			
		||||
      bp=b;
 | 
			
		||||
      b=-cp/d;
 | 
			
		||||
    
 | 
			
		||||
      // Toggle the recurrence history
 | 
			
		||||
      bs[0] = b;
 | 
			
		||||
      iz = 1-iz;
 | 
			
		||||
      ShiftTimer.Start();
 | 
			
		||||
      for(int s=1;s<nshift;s++){
 | 
			
		||||
	if((!converged[s])){
 | 
			
		||||
	  RealD z0 = z[s][1-iz];
 | 
			
		||||
	  RealD z1 = z[s][iz];
 | 
			
		||||
	  z[s][iz] = z0*z1*bp
 | 
			
		||||
	    / (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b)); 
 | 
			
		||||
	  bs[s] = b*z[s][iz]/z0; // NB sign  rel to Mike
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      ShiftTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      //Update double precision solutions
 | 
			
		||||
      AXPYTimer.Start();
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
	int ss = s;
 | 
			
		||||
	if( (!converged[s]) ) { 
 | 
			
		||||
	  axpy(psi_d[ss],-bs[s]*alpha[s],ps_d[s],psi_d[ss]);
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      //Perform reliable update if necessary; otherwise update residual from single-prec mmp
 | 
			
		||||
      RealD c_f = axpy_norm(r_f,b,mmp_f,r_f);
 | 
			
		||||
      AXPYTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      c = c_f;
 | 
			
		||||
 | 
			
		||||
      if(k % ReliableUpdateFreq == 0){
 | 
			
		||||
	//Replace r with true residual
 | 
			
		||||
	MatrixTimer.Start();  
 | 
			
		||||
	Linop_d.HermOp(psi_d[0],mmp_d); 
 | 
			
		||||
	MatrixTimer.Stop();  
 | 
			
		||||
 | 
			
		||||
	AXPYTimer.Start();
 | 
			
		||||
	axpy(mmp_d,mass[0],psi_d[0],mmp_d);
 | 
			
		||||
 | 
			
		||||
	RealD c_d = axpy_norm(r_d, -1.0, mmp_d, src_d);
 | 
			
		||||
	AXPYTimer.Stop();
 | 
			
		||||
 | 
			
		||||
	std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<< ", replaced |r|^2 = "<<c_f <<" with |r|^2 = "<<c_d<<std::endl;
 | 
			
		||||
	
 | 
			
		||||
	PrecChangeTimer.Start();
 | 
			
		||||
	precisionChange(r_f, r_d, wk_f_from_d);
 | 
			
		||||
	PrecChangeTimer.Stop();
 | 
			
		||||
	c = c_d;
 | 
			
		||||
      }
 | 
			
		||||
    
 | 
			
		||||
      // Convergence checks
 | 
			
		||||
      int all_converged = 1;
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
      
 | 
			
		||||
	if ( (!converged[s]) ){
 | 
			
		||||
	  IterationsToCompleteShift[s] = k;
 | 
			
		||||
	
 | 
			
		||||
	  RealD css  = c * z[s][iz]* z[s][iz];
 | 
			
		||||
	
 | 
			
		||||
	  if(css<rsq[s]){
 | 
			
		||||
	    if ( ! converged[s] )
 | 
			
		||||
	      std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
 | 
			
		||||
	    converged[s]=1;
 | 
			
		||||
	  } else {
 | 
			
		||||
	    all_converged=0;
 | 
			
		||||
	  }
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      if ( all_converged ){
 | 
			
		||||
 | 
			
		||||
	SolverTimer.Stop();
 | 
			
		||||
	std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: All shifts have converged iteration "<<k<<std::endl;
 | 
			
		||||
	std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Checking solutions"<<std::endl;
 | 
			
		||||
      
 | 
			
		||||
	// Check answers 
 | 
			
		||||
	for(int s=0; s < nshift; s++) { 
 | 
			
		||||
	  Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq);
 | 
			
		||||
	  axpy(tmp_d,mass[s],psi_d[s],mmp_d);
 | 
			
		||||
	  axpy(r_d,-alpha[s],src_d,tmp_d);
 | 
			
		||||
	  RealD rn = norm2(r_d);
 | 
			
		||||
	  RealD cn = norm2(src_d);
 | 
			
		||||
	  TrueResidualShift[s] = std::sqrt(rn/cn);
 | 
			
		||||
	  std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl;
 | 
			
		||||
 | 
			
		||||
	  //If we have not reached the desired tolerance, do a (mixed precision) CG cleanup
 | 
			
		||||
	  if(rn >= rsq[s]){
 | 
			
		||||
	    CleanupTimer.Start();
 | 
			
		||||
	    std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: performing cleanup step for shift " << s << std::endl;
 | 
			
		||||
 | 
			
		||||
	    //Setup linear operators for final cleanup
 | 
			
		||||
	    ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]);
 | 
			
		||||
	    ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]);
 | 
			
		||||
					       
 | 
			
		||||
	    MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d); 
 | 
			
		||||
	    cg(src_d, psi_d[s]);
 | 
			
		||||
	    
 | 
			
		||||
	    TrueResidualShift[s] = cg.TrueResidual;
 | 
			
		||||
	    CleanupTimer.Stop();
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrec: Time Breakdown for body"<<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tSolver    " << SolverTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\t\tAXPY    " << AXPYTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\t\tMatrix    " << MatrixTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\t\tShift    " << ShiftTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl;
 | 
			
		||||
 | 
			
		||||
	IterationsToComplete = k;	
 | 
			
		||||
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
   
 | 
			
		||||
    }
 | 
			
		||||
    // ugly hack
 | 
			
		||||
    std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
 | 
			
		||||
    //  assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -44,6 +44,7 @@ public:
 | 
			
		||||
				  int, MinRes);    // Must restart
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
//This class is the input parameter class for some testing programs
 | 
			
		||||
struct LocalCoherenceLanczosParams : Serializable {
 | 
			
		||||
public:
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams,
 | 
			
		||||
@@ -155,6 +156,7 @@ public:
 | 
			
		||||
      _coarse_relax_tol(coarse_relax_tol)  
 | 
			
		||||
  {    };
 | 
			
		||||
 | 
			
		||||
  //evalMaxApprox: approximation of largest eval of the fine Chebyshev operator (suitably wrapped by block projection)
 | 
			
		||||
  int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
 | 
			
		||||
  {
 | 
			
		||||
    CoarseField v(B);
 | 
			
		||||
@@ -181,8 +183,16 @@ public:
 | 
			
		||||
    if( (vv<eresid*eresid) ) conv = 1;
 | 
			
		||||
    return conv;
 | 
			
		||||
  }
 | 
			
		||||
  int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
 | 
			
		||||
 | 
			
		||||
  //This function is called at the end of the coarse grid Lanczos. It promotes the coarse eigenvector 'B' to the fine grid,
 | 
			
		||||
  //applies a smoother to the result then computes the computes the *fine grid* eigenvalue (output as 'eval').
 | 
			
		||||
 | 
			
		||||
  //evalMaxApprox should be the approximation of the largest eval of the fine Hermop. However when this function is called by IRL it actually passes the largest eval of the *Chebyshev* operator (as this is the max approx used for the TestConvergence above)
 | 
			
		||||
  //As the largest eval of the Chebyshev is typically several orders of magnitude larger this makes the convergence test pass even when it should not.
 | 
			
		||||
  //We therefore ignore evalMaxApprox here and use a value of 1.0 (note this value is already used by TestCoarse)
 | 
			
		||||
  int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)  
 | 
			
		||||
  {
 | 
			
		||||
    evalMaxApprox = 1.0; //cf above
 | 
			
		||||
    GridBase *FineGrid = _subspace[0].Grid();    
 | 
			
		||||
    int checkerboard   = _subspace[0].Checkerboard();
 | 
			
		||||
    FineField fB(FineGrid);fB.Checkerboard() =checkerboard;
 | 
			
		||||
@@ -201,13 +211,13 @@ public:
 | 
			
		||||
    eval   = vnum/vden;
 | 
			
		||||
    fv -= eval*fB;
 | 
			
		||||
    RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0);
 | 
			
		||||
 | 
			
		||||
    if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
 | 
			
		||||
    
 | 
			
		||||
    std::cout.precision(13);
 | 
			
		||||
    std::cout<<GridLogIRL  << "[" << std::setw(3)<<j<<"] "
 | 
			
		||||
	     <<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
 | 
			
		||||
	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
 | 
			
		||||
	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv << " target " << eresid*eresid
 | 
			
		||||
	     <<std::endl;
 | 
			
		||||
    if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
 | 
			
		||||
    if( (vv<eresid*eresid) ) return 1;
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
@@ -285,6 +295,10 @@ public:
 | 
			
		||||
    evals_coarse.resize(0);
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  //The block inner product is the inner product on the fine grid locally summed over the blocks
 | 
			
		||||
  //to give a Lattice<Scalar> on the coarse grid. This function orthnormalizes the fine-grid subspace
 | 
			
		||||
  //vectors under the block inner product. This step must be performed after computing the fine grid
 | 
			
		||||
  //eigenvectors and before computing the coarse grid eigenvectors.    
 | 
			
		||||
  void Orthogonalise(void ) {
 | 
			
		||||
    CoarseScalar InnerProd(_CoarseGrid);
 | 
			
		||||
    std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
 | 
			
		||||
@@ -328,6 +342,8 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //While this method serves to check the coarse eigenvectors, it also recomputes the eigenvalues from the smoothed reconstructed eigenvectors
 | 
			
		||||
  //hence the smoother can be tuned after running the coarse Lanczos by using a different smoother here
 | 
			
		||||
  void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax) 
 | 
			
		||||
  {
 | 
			
		||||
    assert(evals_fine.size() == nbasis);
 | 
			
		||||
@@ -376,25 +392,31 @@ public:
 | 
			
		||||
    evals_fine.resize(nbasis);
 | 
			
		||||
    subspace.resize(nbasis,_FineGrid);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //cheby_op: Parameters of the fine grid Chebyshev polynomial used for the Lanczos acceleration
 | 
			
		||||
  //cheby_smooth: Parameters of a separate Chebyshev polynomial used after the Lanczos has completed to smooth out high frequency noise in the reconstructed fine grid eigenvectors prior to computing the eigenvalue
 | 
			
		||||
  //relax: Reconstructed eigenvectors (post smoothing) are naturally not as precise as true eigenvectors. This factor acts as a multiplier on the stopping condition when determining whether the results satisfy the user provided stopping condition
 | 
			
		||||
  void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax,
 | 
			
		||||
		  int Nstop, int Nk, int Nm,RealD resid, 
 | 
			
		||||
		  RealD MaxIt, RealD betastp, int MinRes)
 | 
			
		||||
  {
 | 
			
		||||
    Chebyshev<FineField>                          Cheby(cheby_op);
 | 
			
		||||
    ProjectedHermOp<Fobj,CComplex,nbasis>         Op(_FineOp,subspace);
 | 
			
		||||
    ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace);
 | 
			
		||||
    Chebyshev<FineField>                          Cheby(cheby_op); //Chebyshev of fine operator on fine grid
 | 
			
		||||
    ProjectedHermOp<Fobj,CComplex,nbasis>         Op(_FineOp,subspace); //Fine operator on coarse grid with intermediate fine grid conversion
 | 
			
		||||
    ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace); //Chebyshev of fine operator on coarse grid with intermediate fine grid conversion
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    Chebyshev<FineField>                                           ChebySmooth(cheby_smooth);
 | 
			
		||||
    ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax);
 | 
			
		||||
    Chebyshev<FineField>                                           ChebySmooth(cheby_smooth); //lower order Chebyshev of fine operator on fine grid used to smooth regenerated eigenvectors
 | 
			
		||||
    ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax); 
 | 
			
		||||
 | 
			
		||||
    evals_coarse.resize(Nm);
 | 
			
		||||
    evec_coarse.resize(Nm,_CoarseGrid);
 | 
			
		||||
 | 
			
		||||
    CoarseField src(_CoarseGrid);     src=1.0; 
 | 
			
		||||
 | 
			
		||||
    //Note the "tester" here is also responsible for generating the fine grid eigenvalues which are output into the "evals_coarse" array
 | 
			
		||||
    ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
 | 
			
		||||
    int Nconv=0;
 | 
			
		||||
    IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
 | 
			
		||||
@@ -405,6 +427,14 @@ public:
 | 
			
		||||
      std::cout << i << " Coarse eval = " << evals_coarse[i]  << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Get the fine eigenvector 'i' by reconstruction
 | 
			
		||||
  void getFineEvecEval(FineField &evec, RealD &eval, const int i) const{
 | 
			
		||||
    blockPromote(evec_coarse[i],evec,subspace);  
 | 
			
		||||
    eval = evals_coarse[i];
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
    
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
@@ -29,6 +29,8 @@ template<class Field> class PowerMethod
 | 
			
		||||
      RealD vnum = real(innerProduct(src_n,tmp)); // HermOp. 
 | 
			
		||||
      RealD vden = norm2(src_n); 
 | 
			
		||||
      RealD na = vnum/vden; 
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogIterative << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
 | 
			
		||||
      
 | 
			
		||||
      if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) { 
 | 
			
		||||
 	evalMaxApprox = na; 
 | 
			
		||||
 
 | 
			
		||||
@@ -46,3 +46,4 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#include <Grid/lattice/Lattice_unary.h>
 | 
			
		||||
#include <Grid/lattice/Lattice_transfer.h>
 | 
			
		||||
#include <Grid/lattice/Lattice_basis.h>
 | 
			
		||||
#include <Grid/lattice/Lattice_crc.h>
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										42
									
								
								Grid/lattice/Lattice_crc.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										42
									
								
								Grid/lattice/Lattice_crc.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,42 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/lattice/Lattice_crc.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2021
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<class vobj> uint32_t crc(Lattice<vobj> & buf)
 | 
			
		||||
{
 | 
			
		||||
  autoView( buf_v , buf, CpuRead);
 | 
			
		||||
  return ::crc32(0L,(unsigned char *)&buf_v[0],(size_t)sizeof(vobj)*buf.oSites());
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#define CRC(U) std::cout << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -32,8 +32,9 @@
 | 
			
		||||
#include <random>
 | 
			
		||||
 | 
			
		||||
#ifdef RNG_SITMO
 | 
			
		||||
#include <Grid/sitmo_rng/sitmo_prng_engine.hpp>
 | 
			
		||||
#include <Grid/random/sitmo_prng_engine.hpp>
 | 
			
		||||
#endif 
 | 
			
		||||
#include <Grid/random/gaussian.h>
 | 
			
		||||
 | 
			
		||||
#if defined(RNG_SITMO)
 | 
			
		||||
#define RNG_FAST_DISCARD
 | 
			
		||||
@@ -142,8 +143,8 @@ public:
 | 
			
		||||
 | 
			
		||||
  std::vector<RngEngine>                             _generators;
 | 
			
		||||
  std::vector<std::uniform_real_distribution<RealD> > _uniform;
 | 
			
		||||
  std::vector<std::normal_distribution<RealD> >       _gaussian;
 | 
			
		||||
  std::vector<std::discrete_distribution<int32_t> >   _bernoulli;
 | 
			
		||||
  std::vector<Grid::gaussian_distribution<RealD> >       _gaussian;
 | 
			
		||||
  //  std::vector<std::discrete_distribution<int32_t> >   _bernoulli;
 | 
			
		||||
  std::vector<std::uniform_int_distribution<uint32_t> > _uid;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////
 | 
			
		||||
@@ -243,8 +244,8 @@ public:
 | 
			
		||||
  GridSerialRNG() : GridRNGbase() {
 | 
			
		||||
    _generators.resize(1);
 | 
			
		||||
    _uniform.resize(1,std::uniform_real_distribution<RealD>{0,1});
 | 
			
		||||
    _gaussian.resize(1,std::normal_distribution<RealD>(0.0,1.0) );
 | 
			
		||||
    _bernoulli.resize(1,std::discrete_distribution<int32_t>{1,1});
 | 
			
		||||
    _gaussian.resize(1,gaussian_distribution<RealD>(0.0,1.0) );
 | 
			
		||||
    //    _bernoulli.resize(1,std::discrete_distribution<int32_t>{1,1});
 | 
			
		||||
    _uid.resize(1,std::uniform_int_distribution<uint32_t>() );
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
@@ -357,8 +358,8 @@ public:
 | 
			
		||||
 | 
			
		||||
    _generators.resize(_vol);
 | 
			
		||||
    _uniform.resize(_vol,std::uniform_real_distribution<RealD>{0,1});
 | 
			
		||||
    _gaussian.resize(_vol,std::normal_distribution<RealD>(0.0,1.0) );
 | 
			
		||||
    _bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
 | 
			
		||||
    _gaussian.resize(_vol,gaussian_distribution<RealD>(0.0,1.0) );
 | 
			
		||||
    //    _bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
 | 
			
		||||
    _uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
@@ -515,11 +516,11 @@ public:
 | 
			
		||||
 | 
			
		||||
template <class vobj> inline void random(GridParallelRNG &rng,Lattice<vobj> &l)   { rng.fill(l,rng._uniform);  }
 | 
			
		||||
template <class vobj> inline void gaussian(GridParallelRNG &rng,Lattice<vobj> &l) { rng.fill(l,rng._gaussian); }
 | 
			
		||||
template <class vobj> inline void bernoulli(GridParallelRNG &rng,Lattice<vobj> &l){ rng.fill(l,rng._bernoulli);}
 | 
			
		||||
//template <class vobj> inline void bernoulli(GridParallelRNG &rng,Lattice<vobj> &l){ rng.fill(l,rng._bernoulli);}
 | 
			
		||||
 | 
			
		||||
template <class sobj> inline void random(GridSerialRNG &rng,sobj &l)   { rng.fill(l,rng._uniform  ); }
 | 
			
		||||
template <class sobj> inline void gaussian(GridSerialRNG &rng,sobj &l) { rng.fill(l,rng._gaussian ); }
 | 
			
		||||
template <class sobj> inline void bernoulli(GridSerialRNG &rng,sobj &l){ rng.fill(l,rng._bernoulli); }
 | 
			
		||||
//template <class sobj> inline void bernoulli(GridSerialRNG &rng,sobj &l){ rng.fill(l,rng._bernoulli); }
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -855,7 +855,7 @@ void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
void Replicate(Lattice<vobj> &coarse,Lattice<vobj> & fine)
 | 
			
		||||
void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
 | 
			
		||||
@@ -1080,54 +1080,96 @@ vectorizeFromRevLexOrdArray( std::vector<sobj> &in, Lattice<vobj> &out)
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//Convert a Lattice from one precision to another
 | 
			
		||||
template<class VobjOut, class VobjIn>
 | 
			
		||||
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
 | 
			
		||||
{
 | 
			
		||||
  assert(out.Grid()->Nd() == in.Grid()->Nd());
 | 
			
		||||
  for(int d=0;d<out.Grid()->Nd();d++){
 | 
			
		||||
    assert(out.Grid()->FullDimensions()[d] == in.Grid()->FullDimensions()[d]);
 | 
			
		||||
  }
 | 
			
		||||
  out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
  GridBase *in_grid=in.Grid();
 | 
			
		||||
  GridBase *out_grid = out.Grid();
 | 
			
		||||
 | 
			
		||||
  typedef typename VobjOut::scalar_object SobjOut;
 | 
			
		||||
  typedef typename VobjIn::scalar_object SobjIn;
 | 
			
		||||
 | 
			
		||||
  int ndim = out.Grid()->Nd();
 | 
			
		||||
  int out_nsimd = out_grid->Nsimd();
 | 
			
		||||
    
 | 
			
		||||
  std::vector<Coordinate > out_icoor(out_nsimd);
 | 
			
		||||
      
 | 
			
		||||
  for(int lane=0; lane < out_nsimd; lane++){
 | 
			
		||||
    out_icoor[lane].resize(ndim);
 | 
			
		||||
    out_grid->iCoorFromIindex(out_icoor[lane], lane);
 | 
			
		||||
  }
 | 
			
		||||
        
 | 
			
		||||
  std::vector<SobjOut> in_slex_conv(in_grid->lSites());
 | 
			
		||||
  unvectorizeToLexOrdArray(in_slex_conv, in);
 | 
			
		||||
    
 | 
			
		||||
  autoView( out_v , out, CpuWrite);
 | 
			
		||||
  thread_for(out_oidx,out_grid->oSites(),{
 | 
			
		||||
    Coordinate out_ocoor(ndim);
 | 
			
		||||
    out_grid->oCoorFromOindex(out_ocoor, out_oidx);
 | 
			
		||||
 | 
			
		||||
    ExtractPointerArray<SobjOut> ptrs(out_nsimd);      
 | 
			
		||||
 | 
			
		||||
    Coordinate lcoor(out_grid->Nd());
 | 
			
		||||
      
 | 
			
		||||
    for(int lane=0; lane < out_nsimd; lane++){
 | 
			
		||||
      for(int mu=0;mu<ndim;mu++)
 | 
			
		||||
	lcoor[mu] = out_ocoor[mu] + out_grid->_rdimensions[mu]*out_icoor[lane][mu];
 | 
			
		||||
	
 | 
			
		||||
      int llex; Lexicographic::IndexFromCoor(lcoor, llex, out_grid->_ldimensions);
 | 
			
		||||
      ptrs[lane] = &in_slex_conv[llex];
 | 
			
		||||
//The workspace for a precision change operation allowing for the reuse of the mapping to save time on subsequent calls
 | 
			
		||||
class precisionChangeWorkspace{
 | 
			
		||||
  std::pair<Integer,Integer>* fmap_device; //device pointer
 | 
			
		||||
public:
 | 
			
		||||
  precisionChangeWorkspace(GridBase *out_grid, GridBase *in_grid){
 | 
			
		||||
    //Build a map between the sites and lanes of the output field and the input field as we cannot use the Grids on the device
 | 
			
		||||
    assert(out_grid->Nd() == in_grid->Nd());
 | 
			
		||||
    for(int d=0;d<out_grid->Nd();d++){
 | 
			
		||||
      assert(out_grid->FullDimensions()[d] == in_grid->FullDimensions()[d]);
 | 
			
		||||
    }
 | 
			
		||||
    merge(out_v[out_oidx], ptrs, 0);
 | 
			
		||||
  });
 | 
			
		||||
    int Nsimd_out = out_grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
    std::vector<Coordinate> out_icorrs(out_grid->Nsimd()); //reuse these
 | 
			
		||||
    for(int lane=0; lane < out_grid->Nsimd(); lane++)
 | 
			
		||||
      out_grid->iCoorFromIindex(out_icorrs[lane], lane);
 | 
			
		||||
  
 | 
			
		||||
    std::vector<std::pair<Integer,Integer> > fmap_host(out_grid->lSites()); //lsites = osites*Nsimd
 | 
			
		||||
    thread_for(out_oidx,out_grid->oSites(),{
 | 
			
		||||
	Coordinate out_ocorr; 
 | 
			
		||||
	out_grid->oCoorFromOindex(out_ocorr, out_oidx);
 | 
			
		||||
      
 | 
			
		||||
	Coordinate lcorr; //the local coordinate (common to both in and out as full coordinate)
 | 
			
		||||
	for(int out_lane=0; out_lane < Nsimd_out; out_lane++){
 | 
			
		||||
	  out_grid->InOutCoorToLocalCoor(out_ocorr, out_icorrs[out_lane], lcorr);
 | 
			
		||||
	
 | 
			
		||||
	  //int in_oidx = in_grid->oIndex(lcorr), in_lane = in_grid->iIndex(lcorr);
 | 
			
		||||
	  //Note oIndex and OcorrFromOindex (and same for iIndex) are not inverse for checkerboarded lattice, the former coordinates being defined on the full lattice and the latter on the reduced lattice
 | 
			
		||||
	  //Until this is fixed we need to circumvent the problem locally. Here I will use the coordinates defined on the reduced lattice for simplicity
 | 
			
		||||
	  int in_oidx = 0, in_lane = 0;
 | 
			
		||||
	  for(int d=0;d<in_grid->_ndimension;d++){
 | 
			
		||||
	    in_oidx += in_grid->_ostride[d] * ( lcorr[d] % in_grid->_rdimensions[d] );
 | 
			
		||||
	    in_lane += in_grid->_istride[d] * ( lcorr[d] / in_grid->_rdimensions[d] );
 | 
			
		||||
	  }
 | 
			
		||||
	  fmap_host[out_lane + Nsimd_out*out_oidx] = std::pair<Integer,Integer>( in_oidx, in_lane );
 | 
			
		||||
	}
 | 
			
		||||
      });
 | 
			
		||||
 | 
			
		||||
    //Copy the map to the device (if we had a way to tell if an accelerator is in use we could avoid this copy for CPU-only machines)
 | 
			
		||||
    size_t fmap_bytes = out_grid->lSites() * sizeof(std::pair<Integer,Integer>);
 | 
			
		||||
    fmap_device = (std::pair<Integer,Integer>*)acceleratorAllocDevice(fmap_bytes);
 | 
			
		||||
    acceleratorCopyToDevice(fmap_host.data(), fmap_device, fmap_bytes); 
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Prevent moving or copying
 | 
			
		||||
  precisionChangeWorkspace(const precisionChangeWorkspace &r) = delete;
 | 
			
		||||
  precisionChangeWorkspace(precisionChangeWorkspace &&r) = delete;
 | 
			
		||||
  precisionChangeWorkspace &operator=(const precisionChangeWorkspace &r) = delete;
 | 
			
		||||
  precisionChangeWorkspace &operator=(precisionChangeWorkspace &&r) = delete;
 | 
			
		||||
  
 | 
			
		||||
  std::pair<Integer,Integer> const* getMap() const{ return fmap_device; }
 | 
			
		||||
 | 
			
		||||
  ~precisionChangeWorkspace(){
 | 
			
		||||
    acceleratorFreeDevice(fmap_device);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//Convert a lattice of one precision to another. The input workspace contains the mapping data.
 | 
			
		||||
template<class VobjOut, class VobjIn>
 | 
			
		||||
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in, const precisionChangeWorkspace &workspace){
 | 
			
		||||
  static_assert( std::is_same<typename VobjOut::DoublePrecision, typename VobjIn::DoublePrecision>::value == 1, "copyLane: tensor types must be the same" ); //if tensor types are same the DoublePrecision type must be the same
 | 
			
		||||
 | 
			
		||||
  out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
  constexpr int Nsimd_out = VobjOut::Nsimd();
 | 
			
		||||
 | 
			
		||||
  std::pair<Integer,Integer> const* fmap_device = workspace.getMap();
 | 
			
		||||
 | 
			
		||||
  //Do the copy/precision change
 | 
			
		||||
  autoView( out_v , out, AcceleratorWrite);
 | 
			
		||||
  autoView( in_v , in, AcceleratorRead);
 | 
			
		||||
 | 
			
		||||
  accelerator_for(out_oidx, out.Grid()->oSites(), 1,{
 | 
			
		||||
      std::pair<Integer,Integer> const* fmap_osite = fmap_device + out_oidx*Nsimd_out;
 | 
			
		||||
      for(int out_lane=0; out_lane < Nsimd_out; out_lane++){      
 | 
			
		||||
	int in_oidx = fmap_osite[out_lane].first;
 | 
			
		||||
	int in_lane = fmap_osite[out_lane].second;
 | 
			
		||||
	copyLane(out_v[out_oidx], out_lane, in_v[in_oidx], in_lane);
 | 
			
		||||
      }
 | 
			
		||||
    });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//Convert a Lattice from one precision to another
 | 
			
		||||
//Generate the workspace in place; if multiple calls with the same mapping are performed, consider pregenerating the workspace and reusing
 | 
			
		||||
template<class VobjOut, class VobjIn>
 | 
			
		||||
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in){
 | 
			
		||||
  precisionChangeWorkspace workspace(out.Grid(), in.Grid());
 | 
			
		||||
  precisionChange(out, in, workspace);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Communicate between grids
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -69,6 +69,7 @@ GridLogger GridLogDebug  (1, "Debug", GridLogColours, "PURPLE");
 | 
			
		||||
GridLogger GridLogPerformance(1, "Performance", GridLogColours, "GREEN");
 | 
			
		||||
GridLogger GridLogIterative  (1, "Iterative", GridLogColours, "BLUE");
 | 
			
		||||
GridLogger GridLogIntegrator (1, "Integrator", GridLogColours, "BLUE");
 | 
			
		||||
GridLogger GridLogHMC (1, "HMC", GridLogColours, "BLUE");
 | 
			
		||||
 | 
			
		||||
void GridLogConfigure(std::vector<std::string> &logstreams) {
 | 
			
		||||
  GridLogError.Active(0);
 | 
			
		||||
@@ -79,6 +80,7 @@ void GridLogConfigure(std::vector<std::string> &logstreams) {
 | 
			
		||||
  GridLogPerformance.Active(0);
 | 
			
		||||
  GridLogIntegrator.Active(1);
 | 
			
		||||
  GridLogColours.Active(0);
 | 
			
		||||
  GridLogHMC.Active(1);
 | 
			
		||||
 | 
			
		||||
  for (int i = 0; i < logstreams.size(); i++) {
 | 
			
		||||
    if (logstreams[i] == std::string("Error"))       GridLogError.Active(1);
 | 
			
		||||
@@ -87,7 +89,8 @@ void GridLogConfigure(std::vector<std::string> &logstreams) {
 | 
			
		||||
    if (logstreams[i] == std::string("Iterative"))   GridLogIterative.Active(1);
 | 
			
		||||
    if (logstreams[i] == std::string("Debug"))       GridLogDebug.Active(1);
 | 
			
		||||
    if (logstreams[i] == std::string("Performance")) GridLogPerformance.Active(1);
 | 
			
		||||
    if (logstreams[i] == std::string("Integrator"))  GridLogIntegrator.Active(1);
 | 
			
		||||
    if (logstreams[i] == std::string("NoIntegrator"))  GridLogIntegrator.Active(0);
 | 
			
		||||
    if (logstreams[i] == std::string("NoHMC"))         GridLogHMC.Active(0);
 | 
			
		||||
    if (logstreams[i] == std::string("Colours"))     GridLogColours.Active(1);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
@@ -182,6 +182,7 @@ extern GridLogger GridLogDebug  ;
 | 
			
		||||
extern GridLogger GridLogPerformance;
 | 
			
		||||
extern GridLogger GridLogIterative  ;
 | 
			
		||||
extern GridLogger GridLogIntegrator  ;
 | 
			
		||||
extern GridLogger GridLogHMC;
 | 
			
		||||
extern Colours    GridLogColours;
 | 
			
		||||
 | 
			
		||||
std::string demangle(const char* name) ;
 | 
			
		||||
 
 | 
			
		||||
@@ -39,9 +39,11 @@ using namespace Grid;
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
class NerscIO : public BinaryIO { 
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<vLorentzColourMatrixD> GaugeField;
 | 
			
		||||
 | 
			
		||||
  // Enable/disable exiting if the plaquette in the header does not match the value computed (default true)
 | 
			
		||||
  static bool & exitOnReadPlaquetteMismatch(){ static bool v=true; return v; }
 | 
			
		||||
 | 
			
		||||
  static inline void truncate(std::string file){
 | 
			
		||||
    std::ofstream fout(file,std::ios::out);
 | 
			
		||||
  }
 | 
			
		||||
@@ -198,7 +200,7 @@ public:
 | 
			
		||||
      std::cerr << " nersc_csum  " <<std::hex<< nersc_csum << " " << header.checksum<< std::dec<< std::endl;
 | 
			
		||||
      exit(0);
 | 
			
		||||
    }
 | 
			
		||||
    assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
 | 
			
		||||
    if(exitOnReadPlaquetteMismatch()) assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
 | 
			
		||||
    assert(fabs(clone.link_trace-header.link_trace) < 1.0e-6 );
 | 
			
		||||
    assert(nersc_csum == header.checksum );
 | 
			
		||||
      
 | 
			
		||||
 
 | 
			
		||||
@@ -63,6 +63,7 @@ static constexpr int Ngp=2; // gparity index range
 | 
			
		||||
#define ColourIndex  (2)
 | 
			
		||||
#define SpinIndex    (1)
 | 
			
		||||
#define LorentzIndex (0)
 | 
			
		||||
#define GparityFlavourIndex (0)
 | 
			
		||||
 | 
			
		||||
// Also should make these a named enum type
 | 
			
		||||
static constexpr int DaggerNo=0;
 | 
			
		||||
@@ -87,6 +88,8 @@ template<typename T> struct isCoarsened {
 | 
			
		||||
template <typename T> using IfCoarsened    = Invoke<std::enable_if< isCoarsened<T>::value,int> > ;
 | 
			
		||||
template <typename T> using IfNotCoarsened = Invoke<std::enable_if<!isCoarsened<T>::value,int> > ;
 | 
			
		||||
 | 
			
		||||
const int GparityFlavourTensorIndex = 3; //TensorLevel counts from the bottom!
 | 
			
		||||
 | 
			
		||||
// ChrisK very keen to add extra space for Gparity doubling.
 | 
			
		||||
//
 | 
			
		||||
// Also add domain wall index, in a way where Wilson operator 
 | 
			
		||||
@@ -110,8 +113,10 @@ template<typename vtype> using iHalfSpinColourVector      = iScalar<iVector<iVec
 | 
			
		||||
    template<typename vtype> using iSpinColourSpinColourMatrix  = iScalar<iMatrix<iMatrix<iMatrix<iMatrix<vtype, Nc>, Ns>, Nc>, Ns> >;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<typename vtype> using iGparityFlavourVector                = iVector<iScalar<iScalar<vtype> >, Ngp>;
 | 
			
		||||
template<typename vtype> using iGparitySpinColourVector       = iVector<iVector<iVector<vtype, Nc>, Ns>, Ngp >;
 | 
			
		||||
template<typename vtype> using iGparityHalfSpinColourVector   = iVector<iVector<iVector<vtype, Nc>, Nhs>, Ngp >;
 | 
			
		||||
template<typename vtype> using iGparityFlavourMatrix = iMatrix<iScalar<iScalar<vtype> >, Ngp>;
 | 
			
		||||
 | 
			
		||||
// Spin matrix
 | 
			
		||||
typedef iSpinMatrix<Complex  >          SpinMatrix;
 | 
			
		||||
@@ -176,6 +181,16 @@ typedef iDoubleStoredColourMatrix<vComplex > vDoubleStoredColourMatrix;
 | 
			
		||||
typedef iDoubleStoredColourMatrix<vComplexF> vDoubleStoredColourMatrixF;
 | 
			
		||||
typedef iDoubleStoredColourMatrix<vComplexD> vDoubleStoredColourMatrixD;
 | 
			
		||||
 | 
			
		||||
//G-parity flavour matrix
 | 
			
		||||
typedef iGparityFlavourMatrix<Complex> GparityFlavourMatrix;
 | 
			
		||||
typedef iGparityFlavourMatrix<ComplexF> GparityFlavourMatrixF;
 | 
			
		||||
typedef iGparityFlavourMatrix<ComplexD> GparityFlavourMatrixD;
 | 
			
		||||
 | 
			
		||||
typedef iGparityFlavourMatrix<vComplex> vGparityFlavourMatrix;
 | 
			
		||||
typedef iGparityFlavourMatrix<vComplexF> vGparityFlavourMatrixF;
 | 
			
		||||
typedef iGparityFlavourMatrix<vComplexD> vGparityFlavourMatrixD;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// Spin vector
 | 
			
		||||
typedef iSpinVector<Complex >           SpinVector;
 | 
			
		||||
typedef iSpinVector<ComplexF>           SpinVectorF;
 | 
			
		||||
@@ -220,6 +235,16 @@ typedef iHalfSpinColourVector<ComplexD> HalfSpinColourVectorD;
 | 
			
		||||
typedef iHalfSpinColourVector<vComplex > vHalfSpinColourVector;
 | 
			
		||||
typedef iHalfSpinColourVector<vComplexF> vHalfSpinColourVectorF;
 | 
			
		||||
typedef iHalfSpinColourVector<vComplexD> vHalfSpinColourVectorD;
 | 
			
		||||
 | 
			
		||||
//G-parity flavour vector
 | 
			
		||||
typedef iGparityFlavourVector<Complex >         GparityFlavourVector;
 | 
			
		||||
typedef iGparityFlavourVector<ComplexF>         GparityFlavourVectorF;
 | 
			
		||||
typedef iGparityFlavourVector<ComplexD>         GparityFlavourVectorD;
 | 
			
		||||
 | 
			
		||||
typedef iGparityFlavourVector<vComplex >         vGparityFlavourVector;
 | 
			
		||||
typedef iGparityFlavourVector<vComplexF>         vGparityFlavourVectorF;
 | 
			
		||||
typedef iGparityFlavourVector<vComplexD>         vGparityFlavourVectorD;
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
// singlets
 | 
			
		||||
typedef iSinglet<Complex >         TComplex;     // FIXME This is painful. Tensor singlet complex type.
 | 
			
		||||
 
 | 
			
		||||
@@ -36,7 +36,8 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
// These can move into a params header and be given MacroMagic serialisation
 | 
			
		||||
struct GparityWilsonImplParams {
 | 
			
		||||
  Coordinate twists;
 | 
			
		||||
  Coordinate twists; //Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction. 
 | 
			
		||||
                     //mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
 | 
			
		||||
  GparityWilsonImplParams() : twists(Nd, 0) {};
 | 
			
		||||
};
 | 
			
		||||
  
 | 
			
		||||
@@ -65,7 +66,8 @@ struct StaggeredImplParams {
 | 
			
		||||
				    RealD, tolerance, 
 | 
			
		||||
				    int,   degree, 
 | 
			
		||||
				    int,   precision,
 | 
			
		||||
				    int,   BoundsCheckFreq);
 | 
			
		||||
				    int,   BoundsCheckFreq,
 | 
			
		||||
				    RealD, BoundsCheckTol);
 | 
			
		||||
    
 | 
			
		||||
  // MaxIter and tolerance, vectors??
 | 
			
		||||
    
 | 
			
		||||
@@ -76,15 +78,61 @@ struct StaggeredImplParams {
 | 
			
		||||
				RealD tol      = 1.0e-8, 
 | 
			
		||||
                           	int _degree    = 10,
 | 
			
		||||
				int _precision = 64,
 | 
			
		||||
				int _BoundsCheckFreq=20)
 | 
			
		||||
				int _BoundsCheckFreq=20,
 | 
			
		||||
				double _BoundsCheckTol=1e-6)
 | 
			
		||||
      : lo(_lo),
 | 
			
		||||
	hi(_hi),
 | 
			
		||||
	MaxIter(_maxit),
 | 
			
		||||
	tolerance(tol),
 | 
			
		||||
	degree(_degree),
 | 
			
		||||
        precision(_precision),
 | 
			
		||||
        BoundsCheckFreq(_BoundsCheckFreq){};
 | 
			
		||||
        BoundsCheckFreq(_BoundsCheckFreq),
 | 
			
		||||
        BoundsCheckTol(_BoundsCheckTol){};
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  /*Action parameters for the generalized rational action
 | 
			
		||||
    The approximation is for (M^dag M)^{1/inv_pow}
 | 
			
		||||
    where inv_pow is the denominator of the fractional power.
 | 
			
		||||
    Default inv_pow=2 for square root, making this equivalent to 
 | 
			
		||||
    the OneFlavourRational action
 | 
			
		||||
  */
 | 
			
		||||
    struct RationalActionParams : Serializable {
 | 
			
		||||
    GRID_SERIALIZABLE_CLASS_MEMBERS(RationalActionParams, 
 | 
			
		||||
				    int, inv_pow, 
 | 
			
		||||
				    RealD, lo, //low eigenvalue bound of rational approx
 | 
			
		||||
				    RealD, hi, //high eigenvalue bound of rational approx
 | 
			
		||||
				    int,   MaxIter,  //maximum iterations in msCG
 | 
			
		||||
				    RealD, action_tolerance,  //msCG tolerance in action evaluation
 | 
			
		||||
				    int,   action_degree, //rational approx tolerance in action evaluation
 | 
			
		||||
				    RealD, md_tolerance,  //msCG tolerance in MD integration
 | 
			
		||||
				    int,   md_degree, //rational approx tolerance in MD integration
 | 
			
		||||
				    int,   precision, //precision of floating point arithmetic
 | 
			
		||||
				    int,   BoundsCheckFreq); //frequency the approximation is tested (with Metropolis degree/tolerance); 0 disables the check
 | 
			
		||||
  // constructor 
 | 
			
		||||
  RationalActionParams(int _inv_pow = 2,
 | 
			
		||||
		       RealD _lo      = 0.0, 
 | 
			
		||||
		       RealD _hi      = 1.0, 
 | 
			
		||||
		       int _maxit     = 1000,
 | 
			
		||||
		       RealD _action_tolerance      = 1.0e-8, 
 | 
			
		||||
		       int _action_degree    = 10,
 | 
			
		||||
		       RealD _md_tolerance      = 1.0e-8, 
 | 
			
		||||
		       int _md_degree    = 10,
 | 
			
		||||
		       int _precision = 64,
 | 
			
		||||
		       int _BoundsCheckFreq=20)
 | 
			
		||||
    : inv_pow(_inv_pow), 
 | 
			
		||||
      lo(_lo),
 | 
			
		||||
      hi(_hi),
 | 
			
		||||
      MaxIter(_maxit),
 | 
			
		||||
      action_tolerance(_action_tolerance),
 | 
			
		||||
      action_degree(_action_degree),
 | 
			
		||||
      md_tolerance(_md_tolerance),
 | 
			
		||||
      md_degree(_md_degree),
 | 
			
		||||
      precision(_precision),
 | 
			
		||||
      BoundsCheckFreq(_BoundsCheckFreq){};
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -30,6 +30,18 @@ directory
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
  Policy implementation for G-parity boundary conditions
 | 
			
		||||
 | 
			
		||||
  Rather than treating the gauge field as a flavored field, the Grid implementation of G-parity treats the gauge field as a regular
 | 
			
		||||
  field with complex conjugate boundary conditions. In order to ensure the second flavor interacts with the conjugate links and the first
 | 
			
		||||
  with the regular links we overload the functionality of doubleStore, whose purpose is to store the gauge field and the barrel-shifted gauge field
 | 
			
		||||
  to avoid communicating links when applying the Dirac operator, such that the double-stored field contains also a flavor index which maps to
 | 
			
		||||
  either the link or the conjugate link. This flavored field is then used by multLink to apply the correct link to a spinor.
 | 
			
		||||
 | 
			
		||||
  Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction. 
 | 
			
		||||
  mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
 | 
			
		||||
 */
 | 
			
		||||
template <class S, class Representation = FundamentalRepresentation, class Options=CoeffReal>
 | 
			
		||||
class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Representation::Dimension> > {
 | 
			
		||||
public:
 | 
			
		||||
@@ -113,7 +125,7 @@ public:
 | 
			
		||||
    || ((distance== 1)&&(icoor[direction]==1))
 | 
			
		||||
    || ((distance==-1)&&(icoor[direction]==0));
 | 
			
		||||
 | 
			
		||||
    permute_lane = permute_lane && SE->_around_the_world && St.parameters.twists[mmu]; //only if we are going around the world
 | 
			
		||||
    permute_lane = permute_lane && SE->_around_the_world && St.parameters.twists[mmu] && mmu < Nd-1; //only if we are going around the world in a spatial direction
 | 
			
		||||
 | 
			
		||||
    //Apply the links
 | 
			
		||||
    int f_upper = permute_lane ? 1 : 0;
 | 
			
		||||
@@ -139,10 +151,10 @@ public:
 | 
			
		||||
    assert((distance == 1) || (distance == -1));  // nearest neighbour stencil hard code
 | 
			
		||||
    assert((sl == 1) || (sl == 2));
 | 
			
		||||
 | 
			
		||||
    if ( SE->_around_the_world && St.parameters.twists[mmu] ) {
 | 
			
		||||
 | 
			
		||||
    //If this site is an global boundary site, perform the G-parity flavor twist
 | 
			
		||||
    if ( mmu < Nd-1 && SE->_around_the_world && St.parameters.twists[mmu] ) {
 | 
			
		||||
      if ( sl == 2 ) {
 | 
			
		||||
       
 | 
			
		||||
	//Only do the twist for lanes on the edge of the physical node
 | 
			
		||||
	ExtractBuffer<sobj> vals(Nsimd);
 | 
			
		||||
 | 
			
		||||
	extract(chi,vals);
 | 
			
		||||
@@ -197,6 +209,19 @@ public:
 | 
			
		||||
    reg = memory;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //Poke 'poke_f0' onto flavor 0 and 'poke_f1' onto flavor 1 in direction mu of the doubled gauge field Uds
 | 
			
		||||
  inline void pokeGparityDoubledGaugeField(DoubledGaugeField &Uds, const GaugeLinkField &poke_f0, const GaugeLinkField &poke_f1, const int mu){
 | 
			
		||||
    autoView(poke_f0_v, poke_f0, CpuRead);
 | 
			
		||||
    autoView(poke_f1_v, poke_f1, CpuRead);
 | 
			
		||||
    autoView(Uds_v, Uds, CpuWrite);
 | 
			
		||||
    thread_foreach(ss,poke_f0_v,{
 | 
			
		||||
	Uds_v[ss](0)(mu) = poke_f0_v[ss]();
 | 
			
		||||
	Uds_v[ss](1)(mu) = poke_f1_v[ss]();
 | 
			
		||||
      });
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
  inline void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
 | 
			
		||||
  {
 | 
			
		||||
    conformable(Uds.Grid(),GaugeGrid);
 | 
			
		||||
@@ -207,14 +232,19 @@ public:
 | 
			
		||||
    GaugeLinkField Uconj(GaugeGrid);
 | 
			
		||||
   
 | 
			
		||||
    Lattice<iScalar<vInteger> > coor(GaugeGrid);
 | 
			
		||||
        
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
          
 | 
			
		||||
      LatticeCoordinate(coor,mu);
 | 
			
		||||
 | 
			
		||||
    //Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction. 
 | 
			
		||||
    //mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs        
 | 
			
		||||
    for(int mu=0;mu<Nd-1;mu++){
 | 
			
		||||
 | 
			
		||||
      if( Params.twists[mu] ){
 | 
			
		||||
	LatticeCoordinate(coor,mu);
 | 
			
		||||
      }
 | 
			
		||||
          
 | 
			
		||||
      U     = PeekIndex<LorentzIndex>(Umu,mu);
 | 
			
		||||
      Uconj = conjugate(U);
 | 
			
		||||
     
 | 
			
		||||
      // Implement the isospin rotation sign on the boundary between f=1 and f=0
 | 
			
		||||
      // This phase could come from a simple bc 1,1,-1,1 ..
 | 
			
		||||
      int neglink = GaugeGrid->GlobalDimensions()[mu]-1;
 | 
			
		||||
      if ( Params.twists[mu] ) { 
 | 
			
		||||
@@ -229,7 +259,7 @@ public:
 | 
			
		||||
	thread_foreach(ss,U_v,{
 | 
			
		||||
	    Uds_v[ss](0)(mu) = U_v[ss]();
 | 
			
		||||
	    Uds_v[ss](1)(mu) = Uconj_v[ss]();
 | 
			
		||||
	  });
 | 
			
		||||
	});
 | 
			
		||||
      }
 | 
			
		||||
          
 | 
			
		||||
      U     = adj(Cshift(U    ,mu,-1));      // correct except for spanning the boundary
 | 
			
		||||
@@ -260,6 +290,38 @@ public:
 | 
			
		||||
        });
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    { //periodic / antiperiodic temporal BCs
 | 
			
		||||
      int mu = Nd-1;
 | 
			
		||||
      int L   = GaugeGrid->GlobalDimensions()[mu];
 | 
			
		||||
      int Lmu = L - 1;
 | 
			
		||||
 | 
			
		||||
      LatticeCoordinate(coor, mu);
 | 
			
		||||
 | 
			
		||||
      U = PeekIndex<LorentzIndex>(Umu, mu); //Get t-directed links
 | 
			
		||||
      
 | 
			
		||||
      GaugeLinkField *Upoke = &U;
 | 
			
		||||
 | 
			
		||||
      if(Params.twists[mu]){ //antiperiodic
 | 
			
		||||
	Utmp =  where(coor == Lmu, -U, U);
 | 
			
		||||
	Upoke = &Utmp;
 | 
			
		||||
      }
 | 
			
		||||
    
 | 
			
		||||
      Uconj = conjugate(*Upoke); //second flavor interacts with conjugate links      
 | 
			
		||||
      pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu);
 | 
			
		||||
 | 
			
		||||
      //Get the barrel-shifted field
 | 
			
		||||
      Utmp = adj(Cshift(U, mu, -1)); //is a forward shift!
 | 
			
		||||
      Upoke = &Utmp;
 | 
			
		||||
 | 
			
		||||
      if(Params.twists[mu]){
 | 
			
		||||
	U = where(coor == 0, -Utmp, Utmp);  //boundary phase
 | 
			
		||||
	Upoke = &U;
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      Uconj = conjugate(*Upoke);
 | 
			
		||||
      pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu + 4);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
      
 | 
			
		||||
  inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A, int mu) {
 | 
			
		||||
@@ -298,28 +360,48 @@ public:
 | 
			
		||||
  inline void extractLinkField(std::vector<GaugeLinkField> &mat, DoubledGaugeField &Uds){
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
 
 | 
			
		||||
  inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField Ã, int mu) {
 | 
			
		||||
 | 
			
		||||
    int Ls = Btilde.Grid()->_fdimensions[0];
 | 
			
		||||
        
 | 
			
		||||
    GaugeLinkField tmp(mat.Grid());
 | 
			
		||||
    tmp = Zero();
 | 
			
		||||
    int Ls=Btilde.Grid()->_fdimensions[0];
 | 
			
		||||
    
 | 
			
		||||
    {
 | 
			
		||||
      autoView( tmp_v , tmp, CpuWrite);
 | 
			
		||||
      autoView( Atilde_v , Atilde, CpuRead);
 | 
			
		||||
      autoView( Btilde_v , Btilde, CpuRead);
 | 
			
		||||
      thread_for(ss,tmp.Grid()->oSites(),{
 | 
			
		||||
	  for (int s = 0; s < Ls; s++) {
 | 
			
		||||
	    int sF = s + Ls * ss;
 | 
			
		||||
	    auto ttmp = traceIndex<SpinIndex>(outerProduct(Btilde_v[sF], Atilde_v[sF]));
 | 
			
		||||
	    tmp_v[ss]() = tmp_v[ss]() + ttmp(0, 0) + conjugate(ttmp(1, 1));
 | 
			
		||||
	  }
 | 
			
		||||
	});
 | 
			
		||||
      GridBase *GaugeGrid = mat.Grid();
 | 
			
		||||
      Lattice<iScalar<vInteger> > coor(GaugeGrid);
 | 
			
		||||
 | 
			
		||||
      if( Params.twists[mu] ){
 | 
			
		||||
	LatticeCoordinate(coor,mu);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      autoView( mat_v , mat, AcceleratorWrite);
 | 
			
		||||
      autoView( Btilde_v , Btilde, AcceleratorRead);
 | 
			
		||||
      autoView( Atilde_v , Atilde, AcceleratorRead);
 | 
			
		||||
      accelerator_for(sss,mat.Grid()->oSites(), FermionField::vector_type::Nsimd(),{	  
 | 
			
		||||
  	  int sU=sss;
 | 
			
		||||
  	  typedef decltype(coalescedRead(mat_v[sU](mu)() )) ColorMatrixType;
 | 
			
		||||
  	  ColorMatrixType sum;
 | 
			
		||||
  	  zeroit(sum);
 | 
			
		||||
  	  for(int s=0;s<Ls;s++){
 | 
			
		||||
  	    int sF = s+Ls*sU;
 | 
			
		||||
  	    for(int spn=0;spn<Ns;spn++){ //sum over spin
 | 
			
		||||
	      //Flavor 0
 | 
			
		||||
  	      auto bb = coalescedRead(Btilde_v[sF](0)(spn) ); //color vector
 | 
			
		||||
  	      auto aa = coalescedRead(Atilde_v[sF](0)(spn) );
 | 
			
		||||
  	      sum = sum + outerProduct(bb,aa);
 | 
			
		||||
 | 
			
		||||
  	      //Flavor 1
 | 
			
		||||
  	      bb = coalescedRead(Btilde_v[sF](1)(spn) );
 | 
			
		||||
  	      aa = coalescedRead(Atilde_v[sF](1)(spn) );
 | 
			
		||||
  	      sum = sum + conjugate(outerProduct(bb,aa));
 | 
			
		||||
  	    }
 | 
			
		||||
  	  }	    
 | 
			
		||||
  	  coalescedWrite(mat_v[sU](mu)(), sum);
 | 
			
		||||
  	});
 | 
			
		||||
    }
 | 
			
		||||
    PokeIndex<LorentzIndex>(mat, tmp, mu);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -69,6 +69,11 @@ public:
 | 
			
		||||
    return PeriodicBC::ShiftStaple(Link,mu);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Same as Cshift for periodic BCs
 | 
			
		||||
  static inline GaugeLinkField CshiftLink(const GaugeLinkField &Link, int mu, int shift){
 | 
			
		||||
    return PeriodicBC::CshiftLink(Link,mu,shift);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static inline bool isPeriodicGaugeField(void) { return true; }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
@@ -110,6 +115,11 @@ public:
 | 
			
		||||
      return PeriodicBC::CovShiftBackward(Link, mu, field);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //If mu is a conjugate BC direction
 | 
			
		||||
  //Out(x) = U^dag_\mu(x-mu)  | x_\mu != 0
 | 
			
		||||
  //       = U^T_\mu(L-1)  | x_\mu == 0
 | 
			
		||||
  //else
 | 
			
		||||
  //Out(x) = U^dag_\mu(x-mu mod L)
 | 
			
		||||
  static inline GaugeLinkField
 | 
			
		||||
  CovShiftIdentityBackward(const GaugeLinkField &Link, int mu)
 | 
			
		||||
  {
 | 
			
		||||
@@ -129,6 +139,13 @@ public:
 | 
			
		||||
      return PeriodicBC::CovShiftIdentityForward(Link,mu);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //If mu is a conjugate BC direction
 | 
			
		||||
  //Out(x) = S_\mu(x+mu)  | x_\mu != L-1
 | 
			
		||||
  //       = S*_\mu(x+mu)  | x_\mu == L-1
 | 
			
		||||
  //else
 | 
			
		||||
  //Out(x) = S_\mu(x+mu mod L)
 | 
			
		||||
  //Note: While this is used for Staples it is also applicable for shifting gauge links or gauge transformation matrices
 | 
			
		||||
  static inline GaugeLinkField ShiftStaple(const GaugeLinkField &Link, int mu)
 | 
			
		||||
  {
 | 
			
		||||
    assert(_conjDirs.size() == Nd);
 | 
			
		||||
@@ -138,6 +155,27 @@ public:
 | 
			
		||||
      return PeriodicBC::ShiftStaple(Link,mu);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Boundary-aware C-shift of gauge links / gauge transformation matrices
 | 
			
		||||
  //For conjugate BC direction
 | 
			
		||||
  //shift = 1
 | 
			
		||||
  //Out(x) = U_\mu(x+\hat\mu)  | x_\mu != L-1
 | 
			
		||||
  //       = U*_\mu(0)  | x_\mu == L-1
 | 
			
		||||
  //shift = -1
 | 
			
		||||
  //Out(x) = U_\mu(x-mu)  | x_\mu != 0
 | 
			
		||||
  //       = U*_\mu(L-1)  | x_\mu == 0
 | 
			
		||||
  //else
 | 
			
		||||
  //shift = 1
 | 
			
		||||
  //Out(x) = U_\mu(x+\hat\mu mod L)
 | 
			
		||||
  //shift = -1
 | 
			
		||||
  //Out(x) = U_\mu(x-\hat\mu mod L)
 | 
			
		||||
  static inline GaugeLinkField CshiftLink(const GaugeLinkField &Link, int mu, int shift){
 | 
			
		||||
    assert(_conjDirs.size() == Nd);
 | 
			
		||||
    if(_conjDirs[mu]) 
 | 
			
		||||
      return ConjugateBC::CshiftLink(Link,mu,shift);
 | 
			
		||||
    else     
 | 
			
		||||
      return PeriodicBC::CshiftLink(Link,mu,shift);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static inline void       setDirections(std::vector<int> &conjDirs) { _conjDirs=conjDirs; }
 | 
			
		||||
  static inline std::vector<int> getDirections(void) { return _conjDirs; }
 | 
			
		||||
  static inline bool isPeriodicGaugeField(void) { return false; }
 | 
			
		||||
 
 | 
			
		||||
@@ -40,13 +40,66 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
      X=X-Y;
 | 
			
		||||
      RealD Nd = norm2(X);
 | 
			
		||||
      std::cout << "************************* "<<std::endl;
 | 
			
		||||
      std::cout << " noise                         = "<<Nx<<std::endl;
 | 
			
		||||
      std::cout << " (MdagM^-1/2)^2  noise         = "<<Nz<<std::endl;
 | 
			
		||||
      std::cout << " MdagM (MdagM^-1/2)^2  noise   = "<<Ny<<std::endl;
 | 
			
		||||
      std::cout << " noise - MdagM (MdagM^-1/2)^2  noise   = "<<Nd<<std::endl;
 | 
			
		||||
      std::cout << " | noise |^2                         = "<<Nx<<std::endl;
 | 
			
		||||
      std::cout << " | (MdagM^-1/2)^2  noise |^2         = "<<Nz<<std::endl;
 | 
			
		||||
      std::cout << " | MdagM (MdagM^-1/2)^2  noise |^2   = "<<Ny<<std::endl;
 | 
			
		||||
      std::cout << " | noise - MdagM (MdagM^-1/2)^2  noise |^2  = "<<Nd<<std::endl;
 | 
			
		||||
      std::cout << " | noise - MdagM (MdagM^-1/2)^2  noise|/|noise| = " << std::sqrt(Nd/Nx) << std::endl;
 | 
			
		||||
      std::cout << "************************* "<<std::endl;
 | 
			
		||||
      assert( (std::sqrt(Nd/Nx)<tol) && " InverseSqrtBoundsCheck ");
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* For a HermOp = M^dag M, check the approximation of  HermOp^{-1/inv_pow}
 | 
			
		||||
       by computing   |X -    HermOp * [ Hermop^{-1/inv_pow} ]^{inv_pow} X|  < tol  
 | 
			
		||||
       for noise X (aka GaussNoise).
 | 
			
		||||
       ApproxNegPow should be the rational approximation for   X^{-1/inv_pow}
 | 
			
		||||
    */
 | 
			
		||||
    template<class Field> void InversePowerBoundsCheck(int inv_pow,
 | 
			
		||||
						       int MaxIter,double tol,
 | 
			
		||||
						       LinearOperatorBase<Field> &HermOp,
 | 
			
		||||
						       Field &GaussNoise,
 | 
			
		||||
						       MultiShiftFunction &ApproxNegPow) 
 | 
			
		||||
    {
 | 
			
		||||
      GridBase *FermionGrid = GaussNoise.Grid();
 | 
			
		||||
 | 
			
		||||
      Field X(FermionGrid);
 | 
			
		||||
      Field Y(FermionGrid);
 | 
			
		||||
      Field Z(FermionGrid);
 | 
			
		||||
 | 
			
		||||
      Field tmp1(FermionGrid), tmp2(FermionGrid);
 | 
			
		||||
 | 
			
		||||
      X=GaussNoise;
 | 
			
		||||
      RealD Nx = norm2(X);
 | 
			
		||||
 | 
			
		||||
      ConjugateGradientMultiShift<Field> msCG(MaxIter,ApproxNegPow);
 | 
			
		||||
 | 
			
		||||
      tmp1 = X;
 | 
			
		||||
      
 | 
			
		||||
      Field* in = &tmp1;
 | 
			
		||||
      Field* out = &tmp2;
 | 
			
		||||
      for(int i=0;i<inv_pow;i++){ //apply  [ Hermop^{-1/inv_pow}  ]^{inv_pow} X =   HermOp^{-1} X
 | 
			
		||||
	msCG(HermOp, *in, *out); //backwards conventions!
 | 
			
		||||
	if(i!=inv_pow-1) std::swap(in, out);
 | 
			
		||||
      }
 | 
			
		||||
      Z = *out;
 | 
			
		||||
 | 
			
		||||
      RealD Nz = norm2(Z);
 | 
			
		||||
 | 
			
		||||
      HermOp.HermOp(Z,Y);
 | 
			
		||||
      RealD Ny = norm2(Y);
 | 
			
		||||
 | 
			
		||||
      X=X-Y;
 | 
			
		||||
      RealD Nd = norm2(X);
 | 
			
		||||
      std::cout << "************************* "<<std::endl;
 | 
			
		||||
      std::cout << " | noise |^2                         = "<<Nx<<std::endl;
 | 
			
		||||
      std::cout << " | (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |^2        = "<<Nz<<std::endl;
 | 
			
		||||
      std::cout << " | MdagM (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |^2   = "<<Ny<<std::endl;
 | 
			
		||||
      std::cout << " | noise - MdagM (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |^2  = "<<Nd<<std::endl;
 | 
			
		||||
      std::cout << " | noise - MdagM (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |/| noise |  = "<<std::sqrt(Nd/Nx)<<std::endl;
 | 
			
		||||
      std::cout << "************************* "<<std::endl;
 | 
			
		||||
      assert( (std::sqrt(Nd/Nx)<tol) && " InversePowerBoundsCheck ");
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -44,6 +44,10 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
  // Exact one flavour implementation of DWF determinant ratio //
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  //Note: using mixed prec CG for the heatbath solver in this action class will not work
 | 
			
		||||
  //      because the L, R operators must have their shift coefficients updated throughout the heatbath step
 | 
			
		||||
  //      You will find that the heatbath solver simply won't converge.
 | 
			
		||||
  //      To use mixed precision here use the ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction variant below
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  class ExactOneFlavourRatioPseudoFermionAction : public Action<typename Impl::GaugeField>
 | 
			
		||||
  {
 | 
			
		||||
@@ -57,37 +61,60 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
      bool use_heatbath_forecasting;
 | 
			
		||||
      AbstractEOFAFermion<Impl>& Lop; // the basic LH operator
 | 
			
		||||
      AbstractEOFAFermion<Impl>& Rop; // the basic RH operator
 | 
			
		||||
      SchurRedBlackDiagMooeeSolve<FermionField> SolverHB;
 | 
			
		||||
      SchurRedBlackDiagMooeeSolve<FermionField> SolverHBL;
 | 
			
		||||
      SchurRedBlackDiagMooeeSolve<FermionField> SolverHBR;
 | 
			
		||||
      SchurRedBlackDiagMooeeSolve<FermionField> SolverL;
 | 
			
		||||
      SchurRedBlackDiagMooeeSolve<FermionField> SolverR;
 | 
			
		||||
      SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverL;
 | 
			
		||||
      SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverR;
 | 
			
		||||
      FermionField Phi; // the pseudofermion field for this trajectory
 | 
			
		||||
 | 
			
		||||
      RealD norm2_eta; //|eta|^2 where eta is the random gaussian field used to generate the pseudofermion field
 | 
			
		||||
      bool initial_action; //true for the first call to S after refresh, for which the identity S = |eta|^2 holds provided the rational approx is good
 | 
			
		||||
    public:
 | 
			
		||||
 | 
			
		||||
      //Used in the heatbath, refresh the shift coefficients of the L (LorR=0) or R (LorR=1) operator
 | 
			
		||||
      virtual void heatbathRefreshShiftCoefficients(int LorR, RealD to){
 | 
			
		||||
	AbstractEOFAFermion<Impl>&op = LorR == 0 ? Lop : Rop;
 | 
			
		||||
	op.RefreshShiftCoefficients(to);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      //Use the same solver for L,R in all cases
 | 
			
		||||
      ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop, 
 | 
			
		||||
					      AbstractEOFAFermion<Impl>& _Rop,
 | 
			
		||||
					      OperatorFunction<FermionField>& CG, 
 | 
			
		||||
					      Params& p, 
 | 
			
		||||
					      bool use_fc=false) 
 | 
			
		||||
	: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,CG,CG,CG,CG,CG,p,use_fc) {};
 | 
			
		||||
	
 | 
			
		||||
	: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,CG,CG,CG,CG,CG,CG,p,use_fc) {};
 | 
			
		||||
 | 
			
		||||
      //Use the same solver for L,R in the heatbath but different solvers elsewhere
 | 
			
		||||
      ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop, 
 | 
			
		||||
					      AbstractEOFAFermion<Impl>& _Rop,
 | 
			
		||||
					      OperatorFunction<FermionField>& HeatbathCG, 
 | 
			
		||||
					      OperatorFunction<FermionField>& HeatbathCG,
 | 
			
		||||
					      OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR, 
 | 
			
		||||
					      OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR, 
 | 
			
		||||
					      Params& p, 
 | 
			
		||||
					      bool use_fc=false)
 | 
			
		||||
	: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,HeatbathCG,HeatbathCG, ActionCGL, ActionCGR, DerivCGL,DerivCGR,p,use_fc) {};
 | 
			
		||||
 | 
			
		||||
      //Use different solvers for L,R in all cases
 | 
			
		||||
      ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop, 
 | 
			
		||||
					      AbstractEOFAFermion<Impl>& _Rop,
 | 
			
		||||
					      OperatorFunction<FermionField>& HeatbathCGL, OperatorFunction<FermionField>& HeatbathCGR,
 | 
			
		||||
					      OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR, 
 | 
			
		||||
					      OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR, 
 | 
			
		||||
					      Params& p, 
 | 
			
		||||
					      bool use_fc=false) : 
 | 
			
		||||
        Lop(_Lop), 
 | 
			
		||||
	Rop(_Rop), 
 | 
			
		||||
	SolverHB(HeatbathCG,false,true),
 | 
			
		||||
	SolverHBL(HeatbathCGL,false,true), SolverHBR(HeatbathCGR,false,true),
 | 
			
		||||
	SolverL(ActionCGL, false, true), SolverR(ActionCGR, false, true), 
 | 
			
		||||
	DerivativeSolverL(DerivCGL, false, true), DerivativeSolverR(DerivCGR, false, true), 
 | 
			
		||||
	Phi(_Lop.FermionGrid()), 
 | 
			
		||||
	param(p), 
 | 
			
		||||
        use_heatbath_forecasting(use_fc)
 | 
			
		||||
	use_heatbath_forecasting(use_fc),
 | 
			
		||||
	initial_action(false)
 | 
			
		||||
      {
 | 
			
		||||
        AlgRemez remez(param.lo, param.hi, param.precision);
 | 
			
		||||
 | 
			
		||||
@@ -97,6 +124,8 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
        PowerNegHalf.Init(remez, param.tolerance, true);
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      const FermionField &getPhi() const{ return Phi; }
 | 
			
		||||
 | 
			
		||||
      virtual std::string action_name() { return "ExactOneFlavourRatioPseudoFermionAction"; }
 | 
			
		||||
 | 
			
		||||
      virtual std::string LogParameters() {
 | 
			
		||||
@@ -117,6 +146,19 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
        else{ for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(out, 0.0, in, 1.0, in, s, s); } }
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
 | 
			
		||||
        // P(eta_o) = e^{- eta_o^dag eta_o}
 | 
			
		||||
        //
 | 
			
		||||
        // e^{x^2/2 sig^2} => sig^2 = 0.5.
 | 
			
		||||
        // 
 | 
			
		||||
        RealD scale = std::sqrt(0.5);
 | 
			
		||||
 | 
			
		||||
        FermionField eta    (Lop.FermionGrid());
 | 
			
		||||
        gaussian(pRNG,eta); eta = eta * scale;
 | 
			
		||||
 | 
			
		||||
	refresh(U,eta);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // EOFA heatbath: see Eqn. (29) of arXiv:1706.05843
 | 
			
		||||
      // We generate a Gaussian noise vector \eta, and then compute
 | 
			
		||||
      //  \Phi = M_{\rm EOFA}^{-1/2} * \eta
 | 
			
		||||
@@ -124,12 +166,10 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
      //
 | 
			
		||||
      // As a check of rational require \Phi^dag M_{EOFA} \Phi == eta^dag M^-1/2^dag M M^-1/2 eta = eta^dag eta
 | 
			
		||||
      //
 | 
			
		||||
      virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG)
 | 
			
		||||
      {
 | 
			
		||||
     void refresh(const GaugeField &U, const FermionField &eta) {
 | 
			
		||||
        Lop.ImportGauge(U);
 | 
			
		||||
        Rop.ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
        FermionField eta         (Lop.FermionGrid());
 | 
			
		||||
        FermionField CG_src      (Lop.FermionGrid());
 | 
			
		||||
        FermionField CG_soln     (Lop.FermionGrid());
 | 
			
		||||
        FermionField Forecast_src(Lop.FermionGrid());
 | 
			
		||||
@@ -140,11 +180,6 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
        if(use_heatbath_forecasting){ prev_solns.reserve(param.degree); }
 | 
			
		||||
        ChronoForecast<AbstractEOFAFermion<Impl>, FermionField> Forecast;
 | 
			
		||||
 | 
			
		||||
        // Seed with Gaussian noise vector (var = 0.5)
 | 
			
		||||
        RealD scale = std::sqrt(0.5);
 | 
			
		||||
        gaussian(pRNG,eta);
 | 
			
		||||
        eta = eta * scale;
 | 
			
		||||
 | 
			
		||||
        // \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
 | 
			
		||||
        RealD N(PowerNegHalf.norm);
 | 
			
		||||
        for(int k=0; k<param.degree; ++k){ N += PowerNegHalf.residues[k] / ( 1.0 + PowerNegHalf.poles[k] ); }
 | 
			
		||||
@@ -160,15 +195,16 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
        tmp[1] = Zero();
 | 
			
		||||
        for(int k=0; k<param.degree; ++k){
 | 
			
		||||
          gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
 | 
			
		||||
          Lop.RefreshShiftCoefficients(-gamma_l);
 | 
			
		||||
          heatbathRefreshShiftCoefficients(0, -gamma_l);
 | 
			
		||||
	  //Lop.RefreshShiftCoefficients(-gamma_l);
 | 
			
		||||
          if(use_heatbath_forecasting){ // Forecast CG guess using solutions from previous poles
 | 
			
		||||
            Lop.Mdag(CG_src, Forecast_src);
 | 
			
		||||
            CG_soln = Forecast(Lop, Forecast_src, prev_solns);
 | 
			
		||||
            SolverHB(Lop, CG_src, CG_soln);
 | 
			
		||||
            SolverHBL(Lop, CG_src, CG_soln);
 | 
			
		||||
            prev_solns.push_back(CG_soln);
 | 
			
		||||
          } else {
 | 
			
		||||
            CG_soln = Zero(); // Just use zero as the initial guess
 | 
			
		||||
            SolverHB(Lop, CG_src, CG_soln);
 | 
			
		||||
	    SolverHBL(Lop, CG_src, CG_soln);
 | 
			
		||||
          }
 | 
			
		||||
          Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
 | 
			
		||||
          tmp[1] = tmp[1] + ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Lop.k ) * tmp[0];
 | 
			
		||||
@@ -187,15 +223,16 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
        if(use_heatbath_forecasting){ prev_solns.clear(); } // empirically, LH solns don't help for RH solves
 | 
			
		||||
        for(int k=0; k<param.degree; ++k){
 | 
			
		||||
          gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
 | 
			
		||||
          Rop.RefreshShiftCoefficients(-gamma_l*PowerNegHalf.poles[k]);
 | 
			
		||||
	  heatbathRefreshShiftCoefficients(1, -gamma_l*PowerNegHalf.poles[k]);
 | 
			
		||||
          //Rop.RefreshShiftCoefficients(-gamma_l*PowerNegHalf.poles[k]);
 | 
			
		||||
          if(use_heatbath_forecasting){
 | 
			
		||||
            Rop.Mdag(CG_src, Forecast_src);
 | 
			
		||||
            CG_soln = Forecast(Rop, Forecast_src, prev_solns);
 | 
			
		||||
            SolverHB(Rop, CG_src, CG_soln);
 | 
			
		||||
            SolverHBR(Rop, CG_src, CG_soln);
 | 
			
		||||
            prev_solns.push_back(CG_soln);
 | 
			
		||||
          } else {
 | 
			
		||||
            CG_soln = Zero();
 | 
			
		||||
            SolverHB(Rop, CG_src, CG_soln);
 | 
			
		||||
            SolverHBR(Rop, CG_src, CG_soln);
 | 
			
		||||
          }
 | 
			
		||||
          Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
 | 
			
		||||
          tmp[1] = tmp[1] - ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Rop.k ) * tmp[0];
 | 
			
		||||
@@ -205,49 +242,119 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
        Phi = Phi + tmp[1];
 | 
			
		||||
 | 
			
		||||
        // Reset shift coefficients for energy and force evals
 | 
			
		||||
        Lop.RefreshShiftCoefficients(0.0);
 | 
			
		||||
        Rop.RefreshShiftCoefficients(-1.0);
 | 
			
		||||
        //Lop.RefreshShiftCoefficients(0.0);
 | 
			
		||||
        //Rop.RefreshShiftCoefficients(-1.0);
 | 
			
		||||
	heatbathRefreshShiftCoefficients(0, 0.0);
 | 
			
		||||
	heatbathRefreshShiftCoefficients(1, -1.0);
 | 
			
		||||
 | 
			
		||||
	//Mark that the next call to S is the first after refresh
 | 
			
		||||
	initial_action = true;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
	// Bounds check
 | 
			
		||||
	RealD EtaDagEta = norm2(eta);
 | 
			
		||||
	norm2_eta = EtaDagEta;
 | 
			
		||||
 | 
			
		||||
	//	RealD PhiDagMPhi= norm2(eta);
 | 
			
		||||
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      void Meofa(const GaugeField& U,const FermionField &phi, FermionField & Mphi) 
 | 
			
		||||
      void Meofa(const GaugeField& U,const FermionField &in, FermionField & out) 
 | 
			
		||||
      {
 | 
			
		||||
#if 0
 | 
			
		||||
        Lop.ImportGauge(U);
 | 
			
		||||
        Rop.ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
        FermionField spProj_Phi(Lop.FermionGrid());
 | 
			
		||||
	FermionField mPhi(Lop.FermionGrid());
 | 
			
		||||
        FermionField spProj_in(Lop.FermionGrid());
 | 
			
		||||
        std::vector<FermionField> tmp(2, Lop.FermionGrid());
 | 
			
		||||
	mPhi = phi;
 | 
			
		||||
	out = in;
 | 
			
		||||
	
 | 
			
		||||
        // LH term: S = S - k <\Phi| P_{-} \Omega_{-}^{\dagger} H(mf)^{-1} \Omega_{-} P_{-} |\Phi>
 | 
			
		||||
        spProj(Phi, spProj_Phi, -1, Lop.Ls);
 | 
			
		||||
        Lop.Omega(spProj_Phi, tmp[0], -1, 0);
 | 
			
		||||
        spProj(in, spProj_in, -1, Lop.Ls);
 | 
			
		||||
        Lop.Omega(spProj_in, tmp[0], -1, 0);
 | 
			
		||||
        G5R5(tmp[1], tmp[0]);
 | 
			
		||||
        tmp[0] = Zero();
 | 
			
		||||
        SolverL(Lop, tmp[1], tmp[0]);
 | 
			
		||||
        Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
 | 
			
		||||
        Lop.Omega(tmp[1], tmp[0], -1, 1);
 | 
			
		||||
	mPhi = mPhi -  Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
 | 
			
		||||
	spProj(tmp[0], tmp[1], -1, Lop.Ls);
 | 
			
		||||
 | 
			
		||||
	out = out -  Lop.k * tmp[1];
 | 
			
		||||
 | 
			
		||||
        // RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
 | 
			
		||||
        //               - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
 | 
			
		||||
        spProj(Phi, spProj_Phi, 1, Rop.Ls);
 | 
			
		||||
        Rop.Omega(spProj_Phi, tmp[0], 1, 0);
 | 
			
		||||
        //               - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} |\Phi>
 | 
			
		||||
        spProj(in, spProj_in, 1, Rop.Ls);
 | 
			
		||||
        Rop.Omega(spProj_in, tmp[0], 1, 0);
 | 
			
		||||
        G5R5(tmp[1], tmp[0]);
 | 
			
		||||
        tmp[0] = Zero();
 | 
			
		||||
        SolverR(Rop, tmp[1], tmp[0]);
 | 
			
		||||
        Rop.Dtilde(tmp[0], tmp[1]);
 | 
			
		||||
        Rop.Omega(tmp[1], tmp[0], 1, 1);
 | 
			
		||||
        action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
 | 
			
		||||
#endif
 | 
			
		||||
	spProj(tmp[0], tmp[1], 1, Rop.Ls);
 | 
			
		||||
 | 
			
		||||
        out = out + Rop.k * tmp[1];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      //Due to the structure of EOFA, it is no more expensive to compute the inverse of Meofa
 | 
			
		||||
      //To ensure correctness we can simply reuse the heatbath code but use the rational approx
 | 
			
		||||
      //f(x) = 1/x   which corresponds to alpha_0=0,  alpha_1=1,  beta_1=0 => gamma_1=1
 | 
			
		||||
      void MeofaInv(const GaugeField &U, const FermionField &in, FermionField &out) {
 | 
			
		||||
        Lop.ImportGauge(U);
 | 
			
		||||
        Rop.ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
        FermionField CG_src      (Lop.FermionGrid());
 | 
			
		||||
        FermionField CG_soln     (Lop.FermionGrid());
 | 
			
		||||
        std::vector<FermionField> tmp(2, Lop.FermionGrid());
 | 
			
		||||
 | 
			
		||||
        // \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
 | 
			
		||||
	// = 1 * \eta
 | 
			
		||||
        out = in;
 | 
			
		||||
 | 
			
		||||
        // LH terms:
 | 
			
		||||
        // \Phi = \Phi + k \sum_{k=1}^{N_{p}} P_{-} \Omega_{-}^{\dagger} ( H(mf)
 | 
			
		||||
        //          - \gamma_{l} \Delta_{-}(mf,mb) P_{-} )^{-1} \Omega_{-} P_{-} \eta
 | 
			
		||||
        spProj(in, tmp[0], -1, Lop.Ls);
 | 
			
		||||
        Lop.Omega(tmp[0], tmp[1], -1, 0);
 | 
			
		||||
        G5R5(CG_src, tmp[1]);
 | 
			
		||||
        {
 | 
			
		||||
          heatbathRefreshShiftCoefficients(0, -1.); //-gamma_1 = -1.
 | 
			
		||||
 | 
			
		||||
	  CG_soln = Zero(); // Just use zero as the initial guess
 | 
			
		||||
	  SolverHBL(Lop, CG_src, CG_soln);
 | 
			
		||||
 | 
			
		||||
          Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
 | 
			
		||||
          tmp[1] = Lop.k * tmp[0];
 | 
			
		||||
        }
 | 
			
		||||
        Lop.Omega(tmp[1], tmp[0], -1, 1);
 | 
			
		||||
        spProj(tmp[0], tmp[1], -1, Lop.Ls);
 | 
			
		||||
        out = out + tmp[1];
 | 
			
		||||
 | 
			
		||||
        // RH terms:
 | 
			
		||||
        // \Phi = \Phi - k \sum_{k=1}^{N_{p}} P_{+} \Omega_{+}^{\dagger} ( H(mb)
 | 
			
		||||
        //          - \beta_l\gamma_{l} \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \eta
 | 
			
		||||
        spProj(in, tmp[0], 1, Rop.Ls);
 | 
			
		||||
        Rop.Omega(tmp[0], tmp[1], 1, 0);
 | 
			
		||||
        G5R5(CG_src, tmp[1]);
 | 
			
		||||
        {
 | 
			
		||||
	  heatbathRefreshShiftCoefficients(1, 0.); //-gamma_1 * beta_1 = 0
 | 
			
		||||
 | 
			
		||||
	  CG_soln = Zero();
 | 
			
		||||
	  SolverHBR(Rop, CG_src, CG_soln);
 | 
			
		||||
 | 
			
		||||
          Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
 | 
			
		||||
          tmp[1] = - Rop.k * tmp[0];
 | 
			
		||||
        }
 | 
			
		||||
        Rop.Omega(tmp[1], tmp[0], 1, 1);
 | 
			
		||||
        spProj(tmp[0], tmp[1], 1, Rop.Ls);
 | 
			
		||||
        out = out + tmp[1];
 | 
			
		||||
 | 
			
		||||
        // Reset shift coefficients for energy and force evals
 | 
			
		||||
	heatbathRefreshShiftCoefficients(0, 0.0);
 | 
			
		||||
	heatbathRefreshShiftCoefficients(1, -1.0);
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      // EOFA action: see Eqn. (10) of arXiv:1706.05843
 | 
			
		||||
      virtual RealD S(const GaugeField& U)
 | 
			
		||||
      {
 | 
			
		||||
@@ -271,7 +378,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
        action -= Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
 | 
			
		||||
 | 
			
		||||
        // RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
 | 
			
		||||
        //               - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
 | 
			
		||||
        //               - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} |\Phi>
 | 
			
		||||
        spProj(Phi, spProj_Phi, 1, Rop.Ls);
 | 
			
		||||
        Rop.Omega(spProj_Phi, tmp[0], 1, 0);
 | 
			
		||||
        G5R5(tmp[1], tmp[0]);
 | 
			
		||||
@@ -281,6 +388,26 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
        Rop.Omega(tmp[1], tmp[0], 1, 1);
 | 
			
		||||
        action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
 | 
			
		||||
 | 
			
		||||
	if(initial_action){
 | 
			
		||||
	  //For the first call to S after refresh,  S = |eta|^2. We can use this to ensure the rational approx is good
 | 
			
		||||
	  RealD diff = action - norm2_eta;
 | 
			
		||||
 | 
			
		||||
	  //S_init = eta^dag M^{-1/2} M M^{-1/2} eta
 | 
			
		||||
	  //S_init - eta^dag eta =  eta^dag ( M^{-1/2} M M^{-1/2} - 1 ) eta
 | 
			
		||||
 | 
			
		||||
	  //If approximate solution
 | 
			
		||||
	  //S_init - eta^dag eta =  eta^dag ( [M^{-1/2}+\delta M^{-1/2}] M [M^{-1/2}+\delta M^{-1/2}] - 1 ) eta
 | 
			
		||||
	  //               \approx  eta^dag ( \delta M^{-1/2} M^{1/2} + M^{1/2}\delta M^{-1/2} ) eta
 | 
			
		||||
	  // We divide out |eta|^2 to remove source scaling but the tolerance on this check should still be somewhat higher than the actual approx tolerance
 | 
			
		||||
	  RealD test = fabs(diff)/norm2_eta; //test the quality of the rational approx
 | 
			
		||||
 | 
			
		||||
	  std::cout << GridLogMessage << action_name() << " initial action " << action << " expect " << norm2_eta << "; diff " << diff << std::endl;
 | 
			
		||||
	  std::cout << GridLogMessage << action_name() << "[ eta^dag ( M^{-1/2} M M^{-1/2} - 1 ) eta ]/|eta^2| = " << test << "  expect 0 (tol " << param.BoundsCheckTol << ")" << std::endl;
 | 
			
		||||
 | 
			
		||||
	  assert( ( test < param.BoundsCheckTol ) && " Initial action check failed" );
 | 
			
		||||
	  initial_action = false;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
        return action;
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
@@ -329,6 +456,40 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
      };
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  template<class ImplD, class ImplF>
 | 
			
		||||
  class ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction : public ExactOneFlavourRatioPseudoFermionAction<ImplD>{
 | 
			
		||||
  public:
 | 
			
		||||
    INHERIT_IMPL_TYPES(ImplD);
 | 
			
		||||
    typedef OneFlavourRationalParams Params;
 | 
			
		||||
 | 
			
		||||
  private:
 | 
			
		||||
    AbstractEOFAFermion<ImplF>& LopF; // the basic LH operator
 | 
			
		||||
    AbstractEOFAFermion<ImplF>& RopF; // the basic RH operator
 | 
			
		||||
 | 
			
		||||
  public:
 | 
			
		||||
    
 | 
			
		||||
    virtual std::string action_name() { return "ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction"; }
 | 
			
		||||
    
 | 
			
		||||
    //Used in the heatbath, refresh the shift coefficients of the L (LorR=0) or R (LorR=1) operator
 | 
			
		||||
    virtual void heatbathRefreshShiftCoefficients(int LorR, RealD to){
 | 
			
		||||
      AbstractEOFAFermion<ImplF> &op = LorR == 0 ? LopF : RopF;
 | 
			
		||||
      op.RefreshShiftCoefficients(to);
 | 
			
		||||
      this->ExactOneFlavourRatioPseudoFermionAction<ImplD>::heatbathRefreshShiftCoefficients(LorR,to);
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction(AbstractEOFAFermion<ImplF>& _LopF, 
 | 
			
		||||
							     AbstractEOFAFermion<ImplF>& _RopF,
 | 
			
		||||
							     AbstractEOFAFermion<ImplD>& _LopD, 
 | 
			
		||||
							     AbstractEOFAFermion<ImplD>& _RopD,
 | 
			
		||||
							     OperatorFunction<FermionField>& HeatbathCGL, OperatorFunction<FermionField>& HeatbathCGR,
 | 
			
		||||
							     OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR, 
 | 
			
		||||
							     OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR, 
 | 
			
		||||
							     Params& p, 
 | 
			
		||||
							     bool use_fc=false) : 
 | 
			
		||||
    LopF(_LopF), RopF(_RopF), ExactOneFlavourRatioPseudoFermionAction<ImplD>(_LopD, _RopD, HeatbathCGL, HeatbathCGR, ActionCGL, ActionCGR, DerivCGL, DerivCGR, p, use_fc){}
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										372
									
								
								Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										372
									
								
								Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,372 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
    Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
    Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#ifndef QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_H
 | 
			
		||||
#define QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////////
 | 
			
		||||
    // Generic rational approximation for ratios of operators
 | 
			
		||||
    /////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    /* S_f = -log( det(  [M^dag M]/[V^dag V] )^{1/inv_pow}  )
 | 
			
		||||
           = chi^dag ( [M^dag M]/[V^dag V] )^{-1/inv_pow} chi\
 | 
			
		||||
	   = chi^dag ( [V^dag V]^{-1/2} [M^dag M] [V^dag V]^{-1/2} )^{-1/inv_pow} chi\
 | 
			
		||||
	   = chi^dag [V^dag V]^{1/(2*inv_pow)} [M^dag M]^{-1/inv_pow} [V^dag V]^{1/(2*inv_pow)} chi\
 | 
			
		||||
 | 
			
		||||
	   S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi       
 | 
			
		||||
    
 | 
			
		||||
       BIG WARNING:	   
 | 
			
		||||
       Here V^dag V is referred to in this code as the "numerator" operator and M^dag M is the *denominator* operator.
 | 
			
		||||
       this refers to their position in the pseudofermion action, which is the *inverse* of what appears in the determinant
 | 
			
		||||
       Thus for DWF the numerator operator is the Pauli-Villars operator
 | 
			
		||||
 | 
			
		||||
       Here P/Q \sim R_{1/(2*inv_pow)}  ~ (V^dagV)^{1/(2*inv_pow)}  
 | 
			
		||||
       Here N/D \sim R_{-1/inv_pow} ~ (M^dagM)^{-1/inv_pow}  
 | 
			
		||||
    */
 | 
			
		||||
      
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    class GeneralEvenOddRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
 | 
			
		||||
    public:
 | 
			
		||||
 | 
			
		||||
      INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
 | 
			
		||||
      typedef RationalActionParams Params;
 | 
			
		||||
      Params param;
 | 
			
		||||
 | 
			
		||||
      //For action evaluation
 | 
			
		||||
      MultiShiftFunction ApproxPowerAction   ;  //rational approx for X^{1/inv_pow}
 | 
			
		||||
      MultiShiftFunction ApproxNegPowerAction;  //rational approx for X^{-1/inv_pow}
 | 
			
		||||
      MultiShiftFunction ApproxHalfPowerAction;   //rational approx for X^{1/(2*inv_pow)}
 | 
			
		||||
      MultiShiftFunction ApproxNegHalfPowerAction; //rational approx for X^{-1/(2*inv_pow)}
 | 
			
		||||
 | 
			
		||||
      //For the MD integration
 | 
			
		||||
      MultiShiftFunction ApproxPowerMD   ;  //rational approx for X^{1/inv_pow}
 | 
			
		||||
      MultiShiftFunction ApproxNegPowerMD;  //rational approx for X^{-1/inv_pow}
 | 
			
		||||
      MultiShiftFunction ApproxHalfPowerMD;   //rational approx for X^{1/(2*inv_pow)}
 | 
			
		||||
      MultiShiftFunction ApproxNegHalfPowerMD; //rational approx for X^{-1/(2*inv_pow)}
 | 
			
		||||
 | 
			
		||||
    private:
 | 
			
		||||
     
 | 
			
		||||
      FermionOperator<Impl> & NumOp;// the basic operator
 | 
			
		||||
      FermionOperator<Impl> & DenOp;// the basic operator
 | 
			
		||||
      FermionField PhiEven; // the pseudo fermion field for this trajectory
 | 
			
		||||
      FermionField PhiOdd; // the pseudo fermion field for this trajectory
 | 
			
		||||
 | 
			
		||||
      //Generate the approximation to x^{1/inv_pow} (->approx)   and x^{-1/inv_pow} (-> approx_inv)  by an approx_degree degree rational approximation
 | 
			
		||||
      //CG_tolerance is used to issue a warning if the approximation error is larger than the tolerance of the CG and is otherwise just stored in the MultiShiftFunction for use by the multi-shift
 | 
			
		||||
      static void generateApprox(MultiShiftFunction &approx, MultiShiftFunction &approx_inv, int inv_pow, int approx_degree, double CG_tolerance, AlgRemez &remez){
 | 
			
		||||
	std::cout<<GridLogMessage << "Generating degree "<< approx_degree<<" approximation for x^(1/" << inv_pow << ")"<<std::endl;
 | 
			
		||||
	double error = remez.generateApprox(approx_degree,1,inv_pow);	
 | 
			
		||||
	if(error > CG_tolerance)
 | 
			
		||||
	  std::cout<<GridLogMessage << "WARNING: Remez approximation has a larger error " << error << " than the CG tolerance " << CG_tolerance << "! Try increasing the number of poles" << std::endl;
 | 
			
		||||
	
 | 
			
		||||
	approx.Init(remez, CG_tolerance,false);
 | 
			
		||||
	approx_inv.Init(remez, CG_tolerance,true);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    protected:
 | 
			
		||||
      static constexpr bool Numerator = true;
 | 
			
		||||
      static constexpr bool Denominator = false;
 | 
			
		||||
 | 
			
		||||
      //Allow derived classes to override the multishift CG
 | 
			
		||||
      virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionField &in, FermionField &out){
 | 
			
		||||
	SchurDifferentiableOperator<Impl> schurOp(numerator ? NumOp : DenOp);
 | 
			
		||||
	ConjugateGradientMultiShift<FermionField> msCG(MaxIter, approx);
 | 
			
		||||
	msCG(schurOp,in, out);
 | 
			
		||||
      }
 | 
			
		||||
      virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionField &in, std::vector<FermionField> &out_elems, FermionField &out){
 | 
			
		||||
	SchurDifferentiableOperator<Impl> schurOp(numerator ? NumOp : DenOp);
 | 
			
		||||
	ConjugateGradientMultiShift<FermionField> msCG(MaxIter, approx);
 | 
			
		||||
	msCG(schurOp,in, out_elems, out);
 | 
			
		||||
      }
 | 
			
		||||
      //Allow derived classes to override the gauge import
 | 
			
		||||
      virtual void ImportGauge(const GaugeField &U){
 | 
			
		||||
	NumOp.ImportGauge(U);
 | 
			
		||||
	DenOp.ImportGauge(U);
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
    public:
 | 
			
		||||
 | 
			
		||||
      GeneralEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl>  &_NumOp, 
 | 
			
		||||
						     FermionOperator<Impl>  &_DenOp, 
 | 
			
		||||
						     const Params & p
 | 
			
		||||
						     ) : 
 | 
			
		||||
	NumOp(_NumOp), 
 | 
			
		||||
	DenOp(_DenOp), 
 | 
			
		||||
	PhiOdd (_NumOp.FermionRedBlackGrid()),
 | 
			
		||||
	PhiEven(_NumOp.FermionRedBlackGrid()),
 | 
			
		||||
	param(p) 
 | 
			
		||||
      {
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " initialize: starting" << std::endl;
 | 
			
		||||
	AlgRemez remez(param.lo,param.hi,param.precision);
 | 
			
		||||
 | 
			
		||||
	//Generate approximations for action eval
 | 
			
		||||
	generateApprox(ApproxPowerAction, ApproxNegPowerAction, param.inv_pow, param.action_degree, param.action_tolerance, remez);
 | 
			
		||||
	generateApprox(ApproxHalfPowerAction, ApproxNegHalfPowerAction, 2*param.inv_pow, param.action_degree, param.action_tolerance, remez);
 | 
			
		||||
 | 
			
		||||
	//Generate approximations for MD
 | 
			
		||||
	if(param.md_degree != param.action_degree){ //note the CG tolerance is unrelated to the stopping condition of the Remez algorithm
 | 
			
		||||
	  generateApprox(ApproxPowerMD, ApproxNegPowerMD, param.inv_pow, param.md_degree, param.md_tolerance, remez);
 | 
			
		||||
	  generateApprox(ApproxHalfPowerMD, ApproxNegHalfPowerMD, 2*param.inv_pow, param.md_degree, param.md_tolerance, remez);
 | 
			
		||||
	}else{
 | 
			
		||||
	  std::cout<<GridLogMessage << "Using same rational approximations for MD as for action evaluation" << std::endl;
 | 
			
		||||
	  ApproxPowerMD = ApproxPowerAction; 
 | 
			
		||||
	  ApproxNegPowerMD = ApproxNegPowerAction;
 | 
			
		||||
	  for(int i=0;i<ApproxPowerMD.tolerances.size();i++)
 | 
			
		||||
	    ApproxNegPowerMD.tolerances[i] = ApproxPowerMD.tolerances[i] = param.md_tolerance; //used for multishift
 | 
			
		||||
 | 
			
		||||
	  ApproxHalfPowerMD = ApproxHalfPowerAction;
 | 
			
		||||
	  ApproxNegHalfPowerMD = ApproxNegHalfPowerAction;
 | 
			
		||||
	  for(int i=0;i<ApproxPowerMD.tolerances.size();i++)
 | 
			
		||||
	    ApproxNegHalfPowerMD.tolerances[i] = ApproxHalfPowerMD.tolerances[i] = param.md_tolerance;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " initialize: complete" << std::endl;
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      virtual std::string action_name(){return "GeneralEvenOddRatioRationalPseudoFermionAction";}
 | 
			
		||||
 | 
			
		||||
      virtual std::string LogParameters(){
 | 
			
		||||
	std::stringstream sstream;
 | 
			
		||||
	sstream << GridLogMessage << "["<<action_name()<<"] Power              : 1/" << param.inv_pow <<  std::endl;
 | 
			
		||||
	sstream << GridLogMessage << "["<<action_name()<<"] Low                :" << param.lo <<  std::endl;
 | 
			
		||||
	sstream << GridLogMessage << "["<<action_name()<<"] High               :" << param.hi <<  std::endl;
 | 
			
		||||
	sstream << GridLogMessage << "["<<action_name()<<"] Max iterations     :" << param.MaxIter <<  std::endl;
 | 
			
		||||
	sstream << GridLogMessage << "["<<action_name()<<"] Tolerance (Action) :" << param.action_tolerance <<  std::endl;
 | 
			
		||||
	sstream << GridLogMessage << "["<<action_name()<<"] Degree (Action)    :" << param.action_degree <<  std::endl;
 | 
			
		||||
	sstream << GridLogMessage << "["<<action_name()<<"] Tolerance (MD)     :" << param.md_tolerance <<  std::endl;
 | 
			
		||||
	sstream << GridLogMessage << "["<<action_name()<<"] Degree (MD)        :" << param.md_degree <<  std::endl;
 | 
			
		||||
	sstream << GridLogMessage << "["<<action_name()<<"] Precision          :" << param.precision <<  std::endl;
 | 
			
		||||
	return sstream.str();
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      //Access the fermion field
 | 
			
		||||
      const FermionField &getPhiOdd() const{ return PhiOdd; }
 | 
			
		||||
      
 | 
			
		||||
      virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " refresh: starting" << std::endl;
 | 
			
		||||
	FermionField eta(NumOp.FermionGrid());	
 | 
			
		||||
 | 
			
		||||
	// P(eta) \propto e^{- eta^dag eta}
 | 
			
		||||
	//	
 | 
			
		||||
	// The gaussian function draws from  P(x) \propto e^{- x^2 / 2 }    [i.e. sigma=1]
 | 
			
		||||
	// Thus eta = x/sqrt{2} = x * sqrt(1/2)
 | 
			
		||||
	RealD scale = std::sqrt(0.5);
 | 
			
		||||
	gaussian(pRNG,eta);	eta=eta*scale;
 | 
			
		||||
 | 
			
		||||
	refresh(U,eta);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      //Allow for manual specification of random field for testing
 | 
			
		||||
      void refresh(const GaugeField &U, const FermionField &eta) {
 | 
			
		||||
 | 
			
		||||
	// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi       
 | 
			
		||||
	//
 | 
			
		||||
	// P(phi) = e^{- phi^dag (VdagV)^1/(2*inv_pow) (MdagM)^-1/inv_pow (VdagV)^1/(2*inv_pow) phi}
 | 
			
		||||
	//        = e^{- phi^dag  (VdagV)^1/(2*inv_pow) (MdagM)^-1/(2*inv_pow) (MdagM)^-1/(2*inv_pow)  (VdagV)^1/(2*inv_pow) phi}
 | 
			
		||||
	//
 | 
			
		||||
	// Phi =  (VdagV)^-1/(2*inv_pow) Mdag^{1/(2*inv_pow)} eta 
 | 
			
		||||
	
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " refresh: starting" << std::endl;
 | 
			
		||||
 | 
			
		||||
	FermionField etaOdd (NumOp.FermionRedBlackGrid());
 | 
			
		||||
	FermionField etaEven(NumOp.FermionRedBlackGrid());
 | 
			
		||||
	FermionField     tmp(NumOp.FermionRedBlackGrid());
 | 
			
		||||
 | 
			
		||||
	pickCheckerboard(Even,etaEven,eta);
 | 
			
		||||
	pickCheckerboard(Odd,etaOdd,eta);
 | 
			
		||||
 | 
			
		||||
	ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
	// MdagM^1/(2*inv_pow) eta
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " refresh: doing (M^dag M)^{1/" << 2*param.inv_pow << "} eta" << std::endl;
 | 
			
		||||
	multiShiftInverse(Denominator, ApproxHalfPowerAction, param.MaxIter, etaOdd, tmp);
 | 
			
		||||
 | 
			
		||||
	// VdagV^-1/(2*inv_pow) MdagM^1/(2*inv_pow) eta
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " refresh: doing (V^dag V)^{-1/" << 2*param.inv_pow << "} ( (M^dag M)^{1/" << 2*param.inv_pow << "} eta)" << std::endl;
 | 
			
		||||
	multiShiftInverse(Numerator, ApproxNegHalfPowerAction, param.MaxIter, tmp, PhiOdd);
 | 
			
		||||
		
 | 
			
		||||
	assert(NumOp.ConstEE() == 1);
 | 
			
		||||
	assert(DenOp.ConstEE() == 1);
 | 
			
		||||
	PhiEven = Zero();
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " refresh: starting" << std::endl;
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////////////////////////
 | 
			
		||||
      // S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi       
 | 
			
		||||
      //////////////////////////////////////////////////////
 | 
			
		||||
      virtual RealD S(const GaugeField &U) {
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " compute action: starting" << std::endl;
 | 
			
		||||
	ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
	FermionField X(NumOp.FermionRedBlackGrid());
 | 
			
		||||
	FermionField Y(NumOp.FermionRedBlackGrid());
 | 
			
		||||
 | 
			
		||||
	// VdagV^1/(2*inv_pow) Phi
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " compute action: doing (V^dag V)^{1/" << 2*param.inv_pow << "} Phi" << std::endl;
 | 
			
		||||
	multiShiftInverse(Numerator, ApproxHalfPowerAction, param.MaxIter, PhiOdd,X);
 | 
			
		||||
 | 
			
		||||
	// MdagM^-1/(2*inv_pow) VdagV^1/(2*inv_pow) Phi
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " compute action: doing (M^dag M)^{-1/" << 2*param.inv_pow << "} ( (V^dag V)^{1/" << 2*param.inv_pow << "} Phi)" << std::endl;
 | 
			
		||||
	multiShiftInverse(Denominator, ApproxNegHalfPowerAction, param.MaxIter, X,Y);
 | 
			
		||||
 | 
			
		||||
	// Randomly apply rational bounds checks.
 | 
			
		||||
	int rcheck = rand();
 | 
			
		||||
	auto grid = NumOp.FermionGrid();
 | 
			
		||||
        auto r=rand();
 | 
			
		||||
        grid->Broadcast(0,r);
 | 
			
		||||
 | 
			
		||||
	if ( param.BoundsCheckFreq != 0 && (r % param.BoundsCheckFreq)==0 ) { 
 | 
			
		||||
	  std::cout<<GridLogMessage << action_name() << " compute action: doing bounds check" << std::endl;
 | 
			
		||||
	  FermionField gauss(NumOp.FermionRedBlackGrid());
 | 
			
		||||
	  gauss = PhiOdd;
 | 
			
		||||
	  SchurDifferentiableOperator<Impl> MdagM(DenOp);
 | 
			
		||||
	  std::cout<<GridLogMessage << action_name() << " compute action: checking high bounds" << std::endl;
 | 
			
		||||
	  HighBoundCheck(MdagM,gauss,param.hi);
 | 
			
		||||
	  std::cout<<GridLogMessage << action_name() << " compute action: full approximation" << std::endl;
 | 
			
		||||
	  InversePowerBoundsCheck(param.inv_pow,param.MaxIter,param.action_tolerance*100,MdagM,gauss,ApproxNegPowerAction);
 | 
			
		||||
	  std::cout<<GridLogMessage << action_name() << " compute action: bounds check complete" << std::endl;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	//  Phidag VdagV^1/(2*inv_pow) MdagM^-1/(2*inv_pow)  MdagM^-1/(2*inv_pow) VdagV^1/(2*inv_pow) Phi
 | 
			
		||||
	RealD action = norm2(Y);
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " compute action: complete" << std::endl;
 | 
			
		||||
 | 
			
		||||
	return action;
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      // S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi       
 | 
			
		||||
      //
 | 
			
		||||
      // Here, M is some 5D operator and V is the Pauli-Villars field
 | 
			
		||||
      // N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
 | 
			
		||||
      //
 | 
			
		||||
      // Need  
 | 
			
		||||
      // dS_f/dU =  chi^dag d[P/Q]  N/D   P/Q  chi 
 | 
			
		||||
      //         +  chi^dag   P/Q d[N/D]  P/Q  chi 
 | 
			
		||||
      //         +  chi^dag   P/Q   N/D d[P/Q] chi 
 | 
			
		||||
      //
 | 
			
		||||
      // P/Q is expressed as partial fraction expansion: 
 | 
			
		||||
      // 
 | 
			
		||||
      //           a0 + \sum_k ak/(V^dagV + bk) 
 | 
			
		||||
      //  
 | 
			
		||||
      // d[P/Q] is then  
 | 
			
		||||
      //
 | 
			
		||||
      //          \sum_k -ak [V^dagV+bk]^{-1}  [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1} 
 | 
			
		||||
      //  
 | 
			
		||||
      // and similar for N/D. 
 | 
			
		||||
      // 
 | 
			
		||||
      // Need   
 | 
			
		||||
      //       MpvPhi_k   = [Vdag V + bk]^{-1} chi  
 | 
			
		||||
      //       MpvPhi     = {a0 +  \sum_k ak [Vdag V + bk]^{-1} }chi   
 | 
			
		||||
      //   
 | 
			
		||||
      //       MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi  
 | 
			
		||||
      //       MfMpvPhi   = {a0 +  \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
 | 
			
		||||
      // 
 | 
			
		||||
      //       MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi   
 | 
			
		||||
      //  
 | 
			
		||||
 | 
			
		||||
      virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " deriv: starting" << std::endl;
 | 
			
		||||
	const int n_f  = ApproxNegPowerMD.poles.size();
 | 
			
		||||
	const int n_pv = ApproxHalfPowerMD.poles.size();
 | 
			
		||||
 | 
			
		||||
	std::vector<FermionField> MpvPhi_k     (n_pv,NumOp.FermionRedBlackGrid());
 | 
			
		||||
	std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionRedBlackGrid());
 | 
			
		||||
	std::vector<FermionField> MfMpvPhi_k   (n_f ,NumOp.FermionRedBlackGrid());
 | 
			
		||||
 | 
			
		||||
	FermionField      MpvPhi(NumOp.FermionRedBlackGrid());
 | 
			
		||||
	FermionField    MfMpvPhi(NumOp.FermionRedBlackGrid());
 | 
			
		||||
	FermionField MpvMfMpvPhi(NumOp.FermionRedBlackGrid());
 | 
			
		||||
	FermionField           Y(NumOp.FermionRedBlackGrid());
 | 
			
		||||
 | 
			
		||||
	GaugeField   tmp(NumOp.GaugeGrid());
 | 
			
		||||
 | 
			
		||||
	ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " deriv: doing (V^dag V)^{1/" << 2*param.inv_pow << "} Phi" << std::endl;
 | 
			
		||||
	multiShiftInverse(Numerator, ApproxHalfPowerMD, param.MaxIter, PhiOdd,MpvPhi_k,MpvPhi);
 | 
			
		||||
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " deriv: doing (M^dag M)^{-1/" << param.inv_pow << "} ( (V^dag V)^{1/" << 2*param.inv_pow << "} Phi)" << std::endl;
 | 
			
		||||
	multiShiftInverse(Denominator, ApproxNegPowerMD, param.MaxIter, MpvPhi,MfMpvPhi_k,MfMpvPhi);
 | 
			
		||||
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " deriv: doing (V^dag V)^{1/" << 2*param.inv_pow << "} ( (M^dag M)^{-1/" << param.inv_pow << "} (V^dag V)^{1/" << 2*param.inv_pow << "} Phi)" << std::endl;
 | 
			
		||||
	multiShiftInverse(Numerator, ApproxHalfPowerMD, param.MaxIter, MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
 | 
			
		||||
		
 | 
			
		||||
 | 
			
		||||
	SchurDifferentiableOperator<Impl> MdagM(DenOp);
 | 
			
		||||
	SchurDifferentiableOperator<Impl> VdagV(NumOp);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
	RealD ak;
 | 
			
		||||
 | 
			
		||||
	dSdU = Zero();
 | 
			
		||||
 | 
			
		||||
	// With these building blocks  
 | 
			
		||||
	//  
 | 
			
		||||
	//       dS/dU = 
 | 
			
		||||
	//                 \sum_k -ak MfMpvPhi_k^dag      [ dM^dag M + M^dag dM ] MfMpvPhi_k         (1)
 | 
			
		||||
	//             +   \sum_k -ak MpvMfMpvPhi_k^\dag  [ dV^dag V + V^dag dV ] MpvPhi_k           (2)
 | 
			
		||||
	//                        -ak MpvPhi_k^dag        [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k      (3)
 | 
			
		||||
 | 
			
		||||
	//(1)	
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " deriv: doing dS/dU part (1)" << std::endl;
 | 
			
		||||
	for(int k=0;k<n_f;k++){
 | 
			
		||||
	  ak = ApproxNegPowerMD.residues[k];
 | 
			
		||||
	  MdagM.Mpc(MfMpvPhi_k[k],Y);
 | 
			
		||||
	  MdagM.MpcDagDeriv(tmp , MfMpvPhi_k[k], Y );  dSdU=dSdU+ak*tmp;
 | 
			
		||||
	  MdagM.MpcDeriv(tmp , Y, MfMpvPhi_k[k] );  dSdU=dSdU+ak*tmp;
 | 
			
		||||
	}
 | 
			
		||||
	
 | 
			
		||||
	//(2)
 | 
			
		||||
	//(3)
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " deriv: doing dS/dU part (2)+(3)" << std::endl;
 | 
			
		||||
	for(int k=0;k<n_pv;k++){
 | 
			
		||||
 | 
			
		||||
          ak = ApproxHalfPowerMD.residues[k];
 | 
			
		||||
	  
 | 
			
		||||
	  VdagV.Mpc(MpvPhi_k[k],Y);
 | 
			
		||||
	  VdagV.MpcDagDeriv(tmp,MpvMfMpvPhi_k[k],Y); dSdU=dSdU+ak*tmp;
 | 
			
		||||
	  VdagV.MpcDeriv   (tmp,Y,MpvMfMpvPhi_k[k]);  dSdU=dSdU+ak*tmp;     
 | 
			
		||||
	  
 | 
			
		||||
	  VdagV.Mpc(MpvMfMpvPhi_k[k],Y);                // V as we take Ydag 
 | 
			
		||||
	  VdagV.MpcDeriv   (tmp,Y, MpvPhi_k[k]); dSdU=dSdU+ak*tmp;
 | 
			
		||||
	  VdagV.MpcDagDeriv(tmp,MpvPhi_k[k], Y); dSdU=dSdU+ak*tmp;
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	//dSdU = Ta(dSdU);
 | 
			
		||||
	std::cout<<GridLogMessage << action_name() << " deriv: complete" << std::endl;
 | 
			
		||||
      };
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -0,0 +1,93 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/qcd/action/pseudofermion/GeneralEvenOddRationalRatioMixedPrec.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
    Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
    Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#ifndef QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_MIXED_PREC_H
 | 
			
		||||
#define QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_MIXED_PREC_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Generic rational approximation for ratios of operators utilizing the mixed precision multishift algorithm
 | 
			
		||||
    // cf. GeneralEvenOddRational.h for details
 | 
			
		||||
    /////////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
      
 | 
			
		||||
    template<class ImplD, class ImplF>
 | 
			
		||||
    class GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction : public GeneralEvenOddRatioRationalPseudoFermionAction<ImplD> {
 | 
			
		||||
    private:
 | 
			
		||||
      typedef typename ImplD::FermionField FermionFieldD;
 | 
			
		||||
      typedef typename ImplF::FermionField FermionFieldF;
 | 
			
		||||
 | 
			
		||||
      FermionOperator<ImplD> & NumOpD;
 | 
			
		||||
      FermionOperator<ImplD> & DenOpD;
 | 
			
		||||
     
 | 
			
		||||
      FermionOperator<ImplF> & NumOpF;
 | 
			
		||||
      FermionOperator<ImplF> & DenOpF;
 | 
			
		||||
 | 
			
		||||
      Integer ReliableUpdateFreq;
 | 
			
		||||
    protected:
 | 
			
		||||
 | 
			
		||||
      //Allow derived classes to override the multishift CG
 | 
			
		||||
      virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionFieldD &in, FermionFieldD &out){
 | 
			
		||||
	SchurDifferentiableOperator<ImplD> schurOpD(numerator ? NumOpD : DenOpD);
 | 
			
		||||
	SchurDifferentiableOperator<ImplF> schurOpF(numerator ? NumOpF : DenOpF);
 | 
			
		||||
 | 
			
		||||
	ConjugateGradientMultiShiftMixedPrec<FermionFieldD, FermionFieldF> msCG(MaxIter, approx, NumOpF.FermionRedBlackGrid(), schurOpF, ReliableUpdateFreq);
 | 
			
		||||
	msCG(schurOpD, in, out);
 | 
			
		||||
      }
 | 
			
		||||
      virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionFieldD &in, std::vector<FermionFieldD> &out_elems, FermionFieldD &out){
 | 
			
		||||
	SchurDifferentiableOperator<ImplD> schurOpD(numerator ? NumOpD : DenOpD);
 | 
			
		||||
	SchurDifferentiableOperator<ImplF> schurOpF(numerator ? NumOpF : DenOpF);
 | 
			
		||||
 | 
			
		||||
	ConjugateGradientMultiShiftMixedPrec<FermionFieldD, FermionFieldF> msCG(MaxIter, approx, NumOpF.FermionRedBlackGrid(), schurOpF, ReliableUpdateFreq);
 | 
			
		||||
	msCG(schurOpD, in, out_elems, out);
 | 
			
		||||
      }
 | 
			
		||||
      //Allow derived classes to override the gauge import
 | 
			
		||||
      virtual void ImportGauge(const typename ImplD::GaugeField &Ud){
 | 
			
		||||
	typename ImplF::GaugeField Uf(NumOpF.GaugeGrid());
 | 
			
		||||
	precisionChange(Uf, Ud);
 | 
			
		||||
	
 | 
			
		||||
	NumOpD.ImportGauge(Ud);
 | 
			
		||||
	DenOpD.ImportGauge(Ud);
 | 
			
		||||
 | 
			
		||||
	NumOpF.ImportGauge(Uf);
 | 
			
		||||
	DenOpF.ImportGauge(Uf);
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
    public:
 | 
			
		||||
      GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction(FermionOperator<ImplD>  &_NumOpD, FermionOperator<ImplD>  &_DenOpD, 
 | 
			
		||||
							      FermionOperator<ImplF>  &_NumOpF, FermionOperator<ImplF>  &_DenOpF, 
 | 
			
		||||
							      const RationalActionParams & p, Integer _ReliableUpdateFreq
 | 
			
		||||
							      ) : GeneralEvenOddRatioRationalPseudoFermionAction<ImplD>(_NumOpD, _DenOpD, p),
 | 
			
		||||
								  ReliableUpdateFreq(_ReliableUpdateFreq), NumOpD(_NumOpD), DenOpD(_DenOpD), NumOpF(_NumOpF), DenOpF(_DenOpF){}
 | 
			
		||||
      
 | 
			
		||||
      virtual std::string action_name(){return "GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction";}
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -40,249 +40,31 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
    // Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}  
 | 
			
		||||
  
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    class OneFlavourEvenOddRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
 | 
			
		||||
    class OneFlavourEvenOddRatioRationalPseudoFermionAction : public GeneralEvenOddRatioRationalPseudoFermionAction<Impl> {
 | 
			
		||||
    public:
 | 
			
		||||
 | 
			
		||||
      INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
 | 
			
		||||
      typedef OneFlavourRationalParams Params;
 | 
			
		||||
      Params param;
 | 
			
		||||
 | 
			
		||||
      MultiShiftFunction PowerHalf   ;
 | 
			
		||||
      MultiShiftFunction PowerNegHalf;
 | 
			
		||||
      MultiShiftFunction PowerQuarter;
 | 
			
		||||
      MultiShiftFunction PowerNegQuarter;
 | 
			
		||||
 | 
			
		||||
    private:
 | 
			
		||||
     
 | 
			
		||||
      FermionOperator<Impl> & NumOp;// the basic operator
 | 
			
		||||
      FermionOperator<Impl> & DenOp;// the basic operator
 | 
			
		||||
      FermionField PhiEven; // the pseudo fermion field for this trajectory
 | 
			
		||||
      FermionField PhiOdd; // the pseudo fermion field for this trajectory
 | 
			
		||||
      static RationalActionParams transcribe(const Params &in){
 | 
			
		||||
	RationalActionParams out;
 | 
			
		||||
	out.inv_pow = 2;
 | 
			
		||||
	out.lo = in.lo;
 | 
			
		||||
	out.hi = in.hi;
 | 
			
		||||
	out.MaxIter = in.MaxIter;
 | 
			
		||||
	out.action_tolerance = out.md_tolerance = in.tolerance;
 | 
			
		||||
	out.action_degree = out.md_degree = in.degree;
 | 
			
		||||
	out.precision = in.precision;
 | 
			
		||||
	out.BoundsCheckFreq = in.BoundsCheckFreq;
 | 
			
		||||
	return out;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    public:
 | 
			
		||||
 | 
			
		||||
      OneFlavourEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl>  &_NumOp, 
 | 
			
		||||
					    FermionOperator<Impl>  &_DenOp, 
 | 
			
		||||
					    Params & p
 | 
			
		||||
					    ) : 
 | 
			
		||||
      NumOp(_NumOp), 
 | 
			
		||||
      DenOp(_DenOp), 
 | 
			
		||||
      PhiOdd (_NumOp.FermionRedBlackGrid()),
 | 
			
		||||
      PhiEven(_NumOp.FermionRedBlackGrid()),
 | 
			
		||||
      param(p) 
 | 
			
		||||
      {
 | 
			
		||||
	AlgRemez remez(param.lo,param.hi,param.precision);
 | 
			
		||||
							FermionOperator<Impl>  &_DenOp, 
 | 
			
		||||
							const Params & p
 | 
			
		||||
							) : 
 | 
			
		||||
	GeneralEvenOddRatioRationalPseudoFermionAction<Impl>(_NumOp, _DenOp, transcribe(p)){}
 | 
			
		||||
 | 
			
		||||
	// MdagM^(+- 1/2)
 | 
			
		||||
	std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
 | 
			
		||||
	remez.generateApprox(param.degree,1,2);
 | 
			
		||||
	PowerHalf.Init(remez,param.tolerance,false);
 | 
			
		||||
	PowerNegHalf.Init(remez,param.tolerance,true);
 | 
			
		||||
 | 
			
		||||
	// MdagM^(+- 1/4)
 | 
			
		||||
	std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
 | 
			
		||||
	remez.generateApprox(param.degree,1,4);
 | 
			
		||||
   	PowerQuarter.Init(remez,param.tolerance,false);
 | 
			
		||||
	PowerNegQuarter.Init(remez,param.tolerance,true);
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}
 | 
			
		||||
 | 
			
		||||
      virtual std::string LogParameters(){
 | 
			
		||||
	std::stringstream sstream;
 | 
			
		||||
	sstream << GridLogMessage << "["<<action_name()<<"] Low            :" << param.lo <<  std::endl;
 | 
			
		||||
	sstream << GridLogMessage << "["<<action_name()<<"] High           :" << param.hi <<  std::endl;
 | 
			
		||||
	sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter <<  std::endl;
 | 
			
		||||
	sstream << GridLogMessage << "["<<action_name()<<"] Tolerance      :" << param.tolerance <<  std::endl;
 | 
			
		||||
	sstream << GridLogMessage << "["<<action_name()<<"] Degree         :" << param.degree <<  std::endl;
 | 
			
		||||
	sstream << GridLogMessage << "["<<action_name()<<"] Precision      :" << param.precision <<  std::endl;
 | 
			
		||||
	return sstream.str();
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      
 | 
			
		||||
      virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
 | 
			
		||||
 | 
			
		||||
	// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi       
 | 
			
		||||
	//
 | 
			
		||||
	// P(phi) = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/2 (VdagV)^1/4 phi}
 | 
			
		||||
	//        = e^{- phi^dag  (VdagV)^1/4 (MdagM)^-1/4 (MdagM)^-1/4  (VdagV)^1/4 phi}
 | 
			
		||||
	//
 | 
			
		||||
	// Phi =  (VdagV)^-1/4 Mdag^{1/4} eta 
 | 
			
		||||
	//
 | 
			
		||||
	// P(eta) = e^{- eta^dag eta}
 | 
			
		||||
	//
 | 
			
		||||
	// e^{x^2/2 sig^2} => sig^2 = 0.5.
 | 
			
		||||
	// 
 | 
			
		||||
	// So eta should be of width sig = 1/sqrt(2).
 | 
			
		||||
 | 
			
		||||
	RealD scale = std::sqrt(0.5);
 | 
			
		||||
 | 
			
		||||
	FermionField eta(NumOp.FermionGrid());
 | 
			
		||||
	FermionField etaOdd (NumOp.FermionRedBlackGrid());
 | 
			
		||||
	FermionField etaEven(NumOp.FermionRedBlackGrid());
 | 
			
		||||
	FermionField     tmp(NumOp.FermionRedBlackGrid());
 | 
			
		||||
 | 
			
		||||
	gaussian(pRNG,eta);	eta=eta*scale;
 | 
			
		||||
 | 
			
		||||
	pickCheckerboard(Even,etaEven,eta);
 | 
			
		||||
	pickCheckerboard(Odd,etaOdd,eta);
 | 
			
		||||
 | 
			
		||||
	NumOp.ImportGauge(U);
 | 
			
		||||
	DenOp.ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
	// MdagM^1/4 eta
 | 
			
		||||
	SchurDifferentiableOperator<Impl> MdagM(DenOp);
 | 
			
		||||
	ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerQuarter);
 | 
			
		||||
	msCG_M(MdagM,etaOdd,tmp);
 | 
			
		||||
 | 
			
		||||
	// VdagV^-1/4 MdagM^1/4 eta
 | 
			
		||||
	SchurDifferentiableOperator<Impl> VdagV(NumOp);
 | 
			
		||||
	ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerNegQuarter);
 | 
			
		||||
	msCG_V(VdagV,tmp,PhiOdd);
 | 
			
		||||
 | 
			
		||||
	assert(NumOp.ConstEE() == 1);
 | 
			
		||||
	assert(DenOp.ConstEE() == 1);
 | 
			
		||||
	PhiEven = Zero();
 | 
			
		||||
	
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////////////////////////
 | 
			
		||||
      // S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi       
 | 
			
		||||
      //////////////////////////////////////////////////////
 | 
			
		||||
      virtual RealD S(const GaugeField &U) {
 | 
			
		||||
 | 
			
		||||
	NumOp.ImportGauge(U);
 | 
			
		||||
	DenOp.ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
	FermionField X(NumOp.FermionRedBlackGrid());
 | 
			
		||||
	FermionField Y(NumOp.FermionRedBlackGrid());
 | 
			
		||||
 | 
			
		||||
	// VdagV^1/4 Phi
 | 
			
		||||
	SchurDifferentiableOperator<Impl> VdagV(NumOp);
 | 
			
		||||
	ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
 | 
			
		||||
	msCG_V(VdagV,PhiOdd,X);
 | 
			
		||||
 | 
			
		||||
	// MdagM^-1/4 VdagV^1/4 Phi
 | 
			
		||||
	SchurDifferentiableOperator<Impl> MdagM(DenOp);
 | 
			
		||||
	ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegQuarter);
 | 
			
		||||
	msCG_M(MdagM,X,Y);
 | 
			
		||||
 | 
			
		||||
	// Randomly apply rational bounds checks.
 | 
			
		||||
	auto grid = NumOp.FermionGrid();
 | 
			
		||||
        auto r=rand();
 | 
			
		||||
        grid->Broadcast(0,r);
 | 
			
		||||
        if ( (r%param.BoundsCheckFreq)==0 ) { 
 | 
			
		||||
	  FermionField gauss(NumOp.FermionRedBlackGrid());
 | 
			
		||||
	  gauss = PhiOdd;
 | 
			
		||||
	  HighBoundCheck(MdagM,gauss,param.hi);
 | 
			
		||||
	  InverseSqrtBoundsCheck(param.MaxIter,param.tolerance*100,MdagM,gauss,PowerNegHalf);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	//  Phidag VdagV^1/4 MdagM^-1/4  MdagM^-1/4 VdagV^1/4 Phi
 | 
			
		||||
	RealD action = norm2(Y);
 | 
			
		||||
 | 
			
		||||
	return action;
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      // S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi       
 | 
			
		||||
      //
 | 
			
		||||
      // Here, M is some 5D operator and V is the Pauli-Villars field
 | 
			
		||||
      // N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
 | 
			
		||||
      //
 | 
			
		||||
      // Need  
 | 
			
		||||
      // dS_f/dU =  chi^dag d[P/Q]  N/D   P/Q  chi 
 | 
			
		||||
      //         +  chi^dag   P/Q d[N/D]  P/Q  chi 
 | 
			
		||||
      //         +  chi^dag   P/Q   N/D d[P/Q] chi 
 | 
			
		||||
      //
 | 
			
		||||
      // P/Q is expressed as partial fraction expansion: 
 | 
			
		||||
      // 
 | 
			
		||||
      //           a0 + \sum_k ak/(V^dagV + bk) 
 | 
			
		||||
      //  
 | 
			
		||||
      // d[P/Q] is then  
 | 
			
		||||
      //
 | 
			
		||||
      //          \sum_k -ak [V^dagV+bk]^{-1}  [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1} 
 | 
			
		||||
      //  
 | 
			
		||||
      // and similar for N/D. 
 | 
			
		||||
      // 
 | 
			
		||||
      // Need   
 | 
			
		||||
      //       MpvPhi_k   = [Vdag V + bk]^{-1} chi  
 | 
			
		||||
      //       MpvPhi     = {a0 +  \sum_k ak [Vdag V + bk]^{-1} }chi   
 | 
			
		||||
      //   
 | 
			
		||||
      //       MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi  
 | 
			
		||||
      //       MfMpvPhi   = {a0 +  \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
 | 
			
		||||
      // 
 | 
			
		||||
      //       MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi   
 | 
			
		||||
      //  
 | 
			
		||||
 | 
			
		||||
      virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
 | 
			
		||||
 | 
			
		||||
	const int n_f  = PowerNegHalf.poles.size();
 | 
			
		||||
	const int n_pv = PowerQuarter.poles.size();
 | 
			
		||||
 | 
			
		||||
	std::vector<FermionField> MpvPhi_k     (n_pv,NumOp.FermionRedBlackGrid());
 | 
			
		||||
	std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionRedBlackGrid());
 | 
			
		||||
	std::vector<FermionField> MfMpvPhi_k   (n_f ,NumOp.FermionRedBlackGrid());
 | 
			
		||||
 | 
			
		||||
	FermionField      MpvPhi(NumOp.FermionRedBlackGrid());
 | 
			
		||||
	FermionField    MfMpvPhi(NumOp.FermionRedBlackGrid());
 | 
			
		||||
	FermionField MpvMfMpvPhi(NumOp.FermionRedBlackGrid());
 | 
			
		||||
	FermionField           Y(NumOp.FermionRedBlackGrid());
 | 
			
		||||
 | 
			
		||||
	GaugeField   tmp(NumOp.GaugeGrid());
 | 
			
		||||
 | 
			
		||||
	NumOp.ImportGauge(U);
 | 
			
		||||
	DenOp.ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
	SchurDifferentiableOperator<Impl> VdagV(NumOp);
 | 
			
		||||
	SchurDifferentiableOperator<Impl> MdagM(DenOp);
 | 
			
		||||
 | 
			
		||||
	ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
 | 
			
		||||
	ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegHalf);
 | 
			
		||||
 | 
			
		||||
	msCG_V(VdagV,PhiOdd,MpvPhi_k,MpvPhi);
 | 
			
		||||
	msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi);
 | 
			
		||||
	msCG_V(VdagV,MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
 | 
			
		||||
 | 
			
		||||
	RealD ak;
 | 
			
		||||
 | 
			
		||||
	dSdU = Zero();
 | 
			
		||||
 | 
			
		||||
	// With these building blocks  
 | 
			
		||||
	//  
 | 
			
		||||
	//       dS/dU = 
 | 
			
		||||
	//                 \sum_k -ak MfMpvPhi_k^dag      [ dM^dag M + M^dag dM ] MfMpvPhi_k         (1)
 | 
			
		||||
	//             +   \sum_k -ak MpvMfMpvPhi_k^\dag  [ dV^dag V + V^dag dV ] MpvPhi_k           (2)
 | 
			
		||||
	//                        -ak MpvPhi_k^dag        [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k      (3)
 | 
			
		||||
 | 
			
		||||
	//(1)
 | 
			
		||||
	for(int k=0;k<n_f;k++){
 | 
			
		||||
	  ak = PowerNegHalf.residues[k];
 | 
			
		||||
	  MdagM.Mpc(MfMpvPhi_k[k],Y);
 | 
			
		||||
	  MdagM.MpcDagDeriv(tmp , MfMpvPhi_k[k], Y );  dSdU=dSdU+ak*tmp;
 | 
			
		||||
	  MdagM.MpcDeriv(tmp , Y, MfMpvPhi_k[k] );  dSdU=dSdU+ak*tmp;
 | 
			
		||||
	}
 | 
			
		||||
	
 | 
			
		||||
	//(2)
 | 
			
		||||
	//(3)
 | 
			
		||||
	for(int k=0;k<n_pv;k++){
 | 
			
		||||
 | 
			
		||||
          ak = PowerQuarter.residues[k];
 | 
			
		||||
	  
 | 
			
		||||
	  VdagV.Mpc(MpvPhi_k[k],Y);
 | 
			
		||||
	  VdagV.MpcDagDeriv(tmp,MpvMfMpvPhi_k[k],Y); dSdU=dSdU+ak*tmp;
 | 
			
		||||
	  VdagV.MpcDeriv   (tmp,Y,MpvMfMpvPhi_k[k]);  dSdU=dSdU+ak*tmp;     
 | 
			
		||||
	  
 | 
			
		||||
	  VdagV.Mpc(MpvMfMpvPhi_k[k],Y);                // V as we take Ydag 
 | 
			
		||||
	  VdagV.MpcDeriv   (tmp,Y, MpvPhi_k[k]); dSdU=dSdU+ak*tmp;
 | 
			
		||||
	  VdagV.MpcDagDeriv(tmp,MpvPhi_k[k], Y); dSdU=dSdU+ak*tmp;
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	//dSdU = Ta(dSdU);
 | 
			
		||||
 | 
			
		||||
      };
 | 
			
		||||
      virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}      
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
@@ -40,6 +40,8 @@ directory
 | 
			
		||||
#include <Grid/qcd/action/pseudofermion/OneFlavourRational.h>
 | 
			
		||||
#include <Grid/qcd/action/pseudofermion/OneFlavourRationalRatio.h>
 | 
			
		||||
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRational.h>
 | 
			
		||||
#include <Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h>
 | 
			
		||||
#include <Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatioMixedPrec.h>
 | 
			
		||||
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRationalRatio.h>
 | 
			
		||||
#include <Grid/qcd/action/pseudofermion/ExactOneFlavourRatio.h>
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -83,16 +83,10 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
	return sstream.str();
 | 
			
		||||
      } 
 | 
			
		||||
 | 
			
		||||
      
 | 
			
		||||
      virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
 | 
			
		||||
      //Access the fermion field
 | 
			
		||||
      const FermionField &getPhiOdd() const{ return PhiOdd; }
 | 
			
		||||
 | 
			
		||||
        // P(phi) = e^{- phi^dag Vpc (MpcdagMpc)^-1 Vpcdag phi}
 | 
			
		||||
        //
 | 
			
		||||
        // NumOp == V
 | 
			
		||||
        // DenOp == M
 | 
			
		||||
        //
 | 
			
		||||
        // Take phi_o = Vpcdag^{-1} Mpcdag eta_o  ; eta_o = Mpcdag^{-1} Vpcdag Phi
 | 
			
		||||
        //
 | 
			
		||||
      virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
 | 
			
		||||
        // P(eta_o) = e^{- eta_o^dag eta_o}
 | 
			
		||||
        //
 | 
			
		||||
        // e^{x^2/2 sig^2} => sig^2 = 0.5.
 | 
			
		||||
@@ -100,12 +94,22 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
        RealD scale = std::sqrt(0.5);
 | 
			
		||||
 | 
			
		||||
        FermionField eta    (NumOp.FermionGrid());
 | 
			
		||||
        gaussian(pRNG,eta); eta = eta * scale;
 | 
			
		||||
 | 
			
		||||
	refresh(U,eta);
 | 
			
		||||
      }
 | 
			
		||||
	
 | 
			
		||||
      void refresh(const GaugeField &U, const FermionField &eta) {
 | 
			
		||||
        // P(phi) = e^{- phi^dag Vpc (MpcdagMpc)^-1 Vpcdag phi}
 | 
			
		||||
        //
 | 
			
		||||
        // NumOp == V
 | 
			
		||||
        // DenOp == M
 | 
			
		||||
        //
 | 
			
		||||
        // Take phi_o = Vpcdag^{-1} Mpcdag eta_o  ; eta_o = Mpcdag^{-1} Vpcdag Phi
 | 
			
		||||
        FermionField etaOdd (NumOp.FermionRedBlackGrid());
 | 
			
		||||
        FermionField etaEven(NumOp.FermionRedBlackGrid());
 | 
			
		||||
        FermionField tmp    (NumOp.FermionRedBlackGrid());
 | 
			
		||||
 | 
			
		||||
        gaussian(pRNG,eta);
 | 
			
		||||
 | 
			
		||||
        pickCheckerboard(Even,etaEven,eta);
 | 
			
		||||
        pickCheckerboard(Odd,etaOdd,eta);
 | 
			
		||||
 | 
			
		||||
@@ -125,8 +129,8 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
        DenOp.MooeeDag(etaEven,tmp);
 | 
			
		||||
        NumOp.MooeeInvDag(tmp,PhiEven);
 | 
			
		||||
 | 
			
		||||
        PhiOdd =PhiOdd*scale;
 | 
			
		||||
        PhiEven=PhiEven*scale;
 | 
			
		||||
        //PhiOdd =PhiOdd*scale;
 | 
			
		||||
        //PhiEven=PhiEven*scale;
 | 
			
		||||
        
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										6
									
								
								Grid/qcd/gparity/Gparity.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										6
									
								
								Grid/qcd/gparity/Gparity.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,6 @@
 | 
			
		||||
#ifndef GRID_GPARITY_H_
 | 
			
		||||
#define GRID_GPARITY_H_
 | 
			
		||||
 | 
			
		||||
#include<Grid/qcd/gparity/GparityFlavour.h>
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
							
								
								
									
										34
									
								
								Grid/qcd/gparity/GparityFlavour.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										34
									
								
								Grid/qcd/gparity/GparityFlavour.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,34 @@
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
const std::array<const GparityFlavour, 3> GparityFlavour::sigma_mu = {{
 | 
			
		||||
    GparityFlavour(GparityFlavour::Algebra::SigmaX),
 | 
			
		||||
    GparityFlavour(GparityFlavour::Algebra::SigmaY),
 | 
			
		||||
    GparityFlavour(GparityFlavour::Algebra::SigmaZ)
 | 
			
		||||
    }};
 | 
			
		||||
 | 
			
		||||
const std::array<const GparityFlavour, 6> GparityFlavour::sigma_all = {{
 | 
			
		||||
  GparityFlavour(GparityFlavour::Algebra::Identity),
 | 
			
		||||
  GparityFlavour(GparityFlavour::Algebra::SigmaX),
 | 
			
		||||
  GparityFlavour(GparityFlavour::Algebra::SigmaY),
 | 
			
		||||
  GparityFlavour(GparityFlavour::Algebra::SigmaZ),
 | 
			
		||||
  GparityFlavour(GparityFlavour::Algebra::ProjPlus),
 | 
			
		||||
  GparityFlavour(GparityFlavour::Algebra::ProjMinus)
 | 
			
		||||
}};
 | 
			
		||||
 | 
			
		||||
const std::array<const char *, GparityFlavour::nSigma> GparityFlavour::name = {{
 | 
			
		||||
    "SigmaX",
 | 
			
		||||
    "MinusSigmaX",
 | 
			
		||||
    "SigmaY",
 | 
			
		||||
    "MinusSigmaY",
 | 
			
		||||
    "SigmaZ",
 | 
			
		||||
    "MinusSigmaZ",
 | 
			
		||||
    "Identity",
 | 
			
		||||
    "MinusIdentity",
 | 
			
		||||
    "ProjPlus",
 | 
			
		||||
    "MinusProjPlus",
 | 
			
		||||
    "ProjMinus",
 | 
			
		||||
    "MinusProjMinus"}};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
							
								
								
									
										475
									
								
								Grid/qcd/gparity/GparityFlavour.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										475
									
								
								Grid/qcd/gparity/GparityFlavour.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,475 @@
 | 
			
		||||
#ifndef GRID_QCD_GPARITY_FLAVOUR_H
 | 
			
		||||
#define GRID_QCD_GPARITY_FLAVOUR_H
 | 
			
		||||
 | 
			
		||||
//Support for flavour-matrix operations acting on the G-parity flavour index
 | 
			
		||||
 | 
			
		||||
#include <array>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
class GparityFlavour {
 | 
			
		||||
  public:
 | 
			
		||||
    GRID_SERIALIZABLE_ENUM(Algebra, undef,
 | 
			
		||||
                           SigmaX, 0,
 | 
			
		||||
			   MinusSigmaX, 1,
 | 
			
		||||
                           SigmaY, 2,
 | 
			
		||||
			   MinusSigmaY, 3,
 | 
			
		||||
                           SigmaZ, 4,
 | 
			
		||||
			   MinusSigmaZ, 5,
 | 
			
		||||
			   Identity, 6,
 | 
			
		||||
			   MinusIdentity, 7,
 | 
			
		||||
			   ProjPlus, 8,
 | 
			
		||||
			   MinusProjPlus, 9,
 | 
			
		||||
			   ProjMinus, 10,
 | 
			
		||||
			   MinusProjMinus, 11
 | 
			
		||||
			   );
 | 
			
		||||
    static constexpr unsigned int nSigma = 12;
 | 
			
		||||
    static const std::array<const char *, nSigma>                name;
 | 
			
		||||
    static const std::array<const GparityFlavour, 3>             sigma_mu;
 | 
			
		||||
    static const std::array<const GparityFlavour, 6>            sigma_all;
 | 
			
		||||
    Algebra                                                      g;
 | 
			
		||||
  public:
 | 
			
		||||
  accelerator GparityFlavour(Algebra initg): g(initg) {}  
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// 0 1  x   vector
 | 
			
		||||
// 1 0
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourSigmaX(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = rhs(1);
 | 
			
		||||
  ret(1) = rhs(0);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = rhs(1,0);
 | 
			
		||||
  ret(0,1) = rhs(1,1);
 | 
			
		||||
  ret(1,0) = rhs(0,0);
 | 
			
		||||
  ret(1,1) = rhs(0,1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = rhs(0,1);
 | 
			
		||||
  ret(0,1) = rhs(0,0);
 | 
			
		||||
  ret(1,0) = rhs(1,1);
 | 
			
		||||
  ret(1,1) = rhs(1,0);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourMinusSigmaX(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = -rhs(1);
 | 
			
		||||
  ret(1) = -rhs(0);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourMinusSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = -rhs(1,0);
 | 
			
		||||
  ret(0,1) = -rhs(1,1);
 | 
			
		||||
  ret(1,0) = -rhs(0,0);
 | 
			
		||||
  ret(1,1) = -rhs(0,1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourMinusSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = -rhs(0,1);
 | 
			
		||||
  ret(0,1) = -rhs(0,0);
 | 
			
		||||
  ret(1,0) = -rhs(1,1);
 | 
			
		||||
  ret(1,1) = -rhs(1,0);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// 0 -i  x   vector
 | 
			
		||||
// i 0
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourSigmaY(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = timesMinusI(rhs(1));
 | 
			
		||||
  ret(1) = timesI(rhs(0));
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = timesMinusI(rhs(1,0));
 | 
			
		||||
  ret(0,1) = timesMinusI(rhs(1,1));
 | 
			
		||||
  ret(1,0) = timesI(rhs(0,0));
 | 
			
		||||
  ret(1,1) = timesI(rhs(0,1));
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = timesI(rhs(0,1));
 | 
			
		||||
  ret(0,1) = timesMinusI(rhs(0,0));
 | 
			
		||||
  ret(1,0) = timesI(rhs(1,1));
 | 
			
		||||
  ret(1,1) = timesMinusI(rhs(1,0));
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourMinusSigmaY(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = timesI(rhs(1));
 | 
			
		||||
  ret(1) = timesMinusI(rhs(0));
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourMinusSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = timesI(rhs(1,0));
 | 
			
		||||
  ret(0,1) = timesI(rhs(1,1));
 | 
			
		||||
  ret(1,0) = timesMinusI(rhs(0,0));
 | 
			
		||||
  ret(1,1) = timesMinusI(rhs(0,1));
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourMinusSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = timesMinusI(rhs(0,1));
 | 
			
		||||
  ret(0,1) = timesI(rhs(0,0));
 | 
			
		||||
  ret(1,0) = timesMinusI(rhs(1,1));
 | 
			
		||||
  ret(1,1) = timesI(rhs(1,0));
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// 1 0  x   vector
 | 
			
		||||
// 0 -1
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourSigmaZ(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = rhs(0);
 | 
			
		||||
  ret(1) = -rhs(1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = rhs(0,0);
 | 
			
		||||
  ret(0,1) = rhs(0,1);
 | 
			
		||||
  ret(1,0) = -rhs(1,0);
 | 
			
		||||
  ret(1,1) = -rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = rhs(0,0);
 | 
			
		||||
  ret(0,1) = -rhs(0,1);
 | 
			
		||||
  ret(1,0) = rhs(1,0);
 | 
			
		||||
  ret(1,1) = -rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourMinusSigmaZ(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = -rhs(0);
 | 
			
		||||
  ret(1) = rhs(1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourMinusSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = -rhs(0,0);
 | 
			
		||||
  ret(0,1) = -rhs(0,1);
 | 
			
		||||
  ret(1,0) = rhs(1,0);
 | 
			
		||||
  ret(1,1) = rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourMinusSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = -rhs(0,0);
 | 
			
		||||
  ret(0,1) = rhs(0,1);
 | 
			
		||||
  ret(1,0) = -rhs(1,0);
 | 
			
		||||
  ret(1,1) = rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourIdentity(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = rhs(0);
 | 
			
		||||
  ret(1) = rhs(1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = rhs(0,0);
 | 
			
		||||
  ret(0,1) = rhs(0,1);
 | 
			
		||||
  ret(1,0) = rhs(1,0);
 | 
			
		||||
  ret(1,1) = rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = rhs(0,0);
 | 
			
		||||
  ret(0,1) = rhs(0,1);
 | 
			
		||||
  ret(1,0) = rhs(1,0);
 | 
			
		||||
  ret(1,1) = rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourMinusIdentity(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = -rhs(0);
 | 
			
		||||
  ret(1) = -rhs(1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourMinusIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = -rhs(0,0);
 | 
			
		||||
  ret(0,1) = -rhs(0,1);
 | 
			
		||||
  ret(1,0) = -rhs(1,0);
 | 
			
		||||
  ret(1,1) = -rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourMinusIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = -rhs(0,0);
 | 
			
		||||
  ret(0,1) = -rhs(0,1);
 | 
			
		||||
  ret(1,0) = -rhs(1,0);
 | 
			
		||||
  ret(1,1) = -rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//G-parity flavour projection 1/2(1+\sigma_2)
 | 
			
		||||
//1 -i
 | 
			
		||||
//i  1
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourProjPlus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = 0.5*rhs(0) + 0.5*timesMinusI(rhs(1));
 | 
			
		||||
  ret(1) = 0.5*timesI(rhs(0)) + 0.5*rhs(1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = 0.5*rhs(0,0) + 0.5*timesMinusI(rhs(1,0));
 | 
			
		||||
  ret(0,1) = 0.5*rhs(0,1) + 0.5*timesMinusI(rhs(1,1));
 | 
			
		||||
  ret(1,0) = 0.5*timesI(rhs(0,0)) + 0.5*rhs(1,0);
 | 
			
		||||
  ret(1,1) = 0.5*timesI(rhs(0,1)) + 0.5*rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = 0.5*rhs(0,0) + 0.5*timesI(rhs(0,1));
 | 
			
		||||
  ret(0,1) = 0.5*timesMinusI(rhs(0,0)) + 0.5*rhs(0,1);
 | 
			
		||||
  ret(1,0) = 0.5*rhs(1,0) + 0.5*timesI(rhs(1,1));
 | 
			
		||||
  ret(1,1) = 0.5*timesMinusI(rhs(1,0)) + 0.5*rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourMinusProjPlus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = -0.5*rhs(0) + 0.5*timesI(rhs(1));
 | 
			
		||||
  ret(1) = 0.5*timesMinusI(rhs(0)) - 0.5*rhs(1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourMinusProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = -0.5*rhs(0,0) + 0.5*timesI(rhs(1,0));
 | 
			
		||||
  ret(0,1) = -0.5*rhs(0,1) + 0.5*timesI(rhs(1,1));
 | 
			
		||||
  ret(1,0) = 0.5*timesMinusI(rhs(0,0)) - 0.5*rhs(1,0);
 | 
			
		||||
  ret(1,1) = 0.5*timesMinusI(rhs(0,1)) - 0.5*rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourMinusProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = -0.5*rhs(0,0) + 0.5*timesMinusI(rhs(0,1));
 | 
			
		||||
  ret(0,1) = 0.5*timesI(rhs(0,0)) - 0.5*rhs(0,1);
 | 
			
		||||
  ret(1,0) = -0.5*rhs(1,0) + 0.5*timesMinusI(rhs(1,1));
 | 
			
		||||
  ret(1,1) = 0.5*timesI(rhs(1,0)) - 0.5*rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//G-parity flavour projection 1/2(1-\sigma_2)
 | 
			
		||||
//1 i
 | 
			
		||||
//-i  1
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourProjMinus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = 0.5*rhs(0) + 0.5*timesI(rhs(1));
 | 
			
		||||
  ret(1) = 0.5*timesMinusI(rhs(0)) + 0.5*rhs(1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = 0.5*rhs(0,0) + 0.5*timesI(rhs(1,0));
 | 
			
		||||
  ret(0,1) = 0.5*rhs(0,1) + 0.5*timesI(rhs(1,1));
 | 
			
		||||
  ret(1,0) = 0.5*timesMinusI(rhs(0,0)) + 0.5*rhs(1,0);
 | 
			
		||||
  ret(1,1) = 0.5*timesMinusI(rhs(0,1)) + 0.5*rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = 0.5*rhs(0,0) + 0.5*timesMinusI(rhs(0,1));
 | 
			
		||||
  ret(0,1) = 0.5*timesI(rhs(0,0)) + 0.5*rhs(0,1);
 | 
			
		||||
  ret(1,0) = 0.5*rhs(1,0) + 0.5*timesMinusI(rhs(1,1));
 | 
			
		||||
  ret(1,1) = 0.5*timesI(rhs(1,0)) + 0.5*rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourMinusProjMinus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = -0.5*rhs(0) + 0.5*timesMinusI(rhs(1));
 | 
			
		||||
  ret(1) = 0.5*timesI(rhs(0)) - 0.5*rhs(1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourMinusProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = -0.5*rhs(0,0) + 0.5*timesMinusI(rhs(1,0));
 | 
			
		||||
  ret(0,1) = -0.5*rhs(0,1) + 0.5*timesMinusI(rhs(1,1));
 | 
			
		||||
  ret(1,0) = 0.5*timesI(rhs(0,0)) - 0.5*rhs(1,0);
 | 
			
		||||
  ret(1,1) = 0.5*timesI(rhs(0,1)) - 0.5*rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourMinusProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = -0.5*rhs(0,0) + 0.5*timesI(rhs(0,1));
 | 
			
		||||
  ret(0,1) = 0.5*timesMinusI(rhs(0,0)) - 0.5*rhs(0,1);
 | 
			
		||||
  ret(1,0) = -0.5*rhs(1,0) + 0.5*timesI(rhs(1,1));
 | 
			
		||||
  ret(1,1) = 0.5*timesMinusI(rhs(1,0)) - 0.5*rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vtype> 
 | 
			
		||||
accelerator_inline auto operator*(const GparityFlavour &G, const iVector<vtype, Ngp> &arg)
 | 
			
		||||
->typename std::enable_if<matchGridTensorIndex<iVector<vtype, Ngp>, GparityFlavourTensorIndex>::value, iVector<vtype, Ngp>>::type
 | 
			
		||||
{
 | 
			
		||||
  iVector<vtype, Ngp> ret;
 | 
			
		||||
 | 
			
		||||
  switch (G.g) 
 | 
			
		||||
  {
 | 
			
		||||
  case GparityFlavour::Algebra::SigmaX:
 | 
			
		||||
    multFlavourSigmaX(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusSigmaX:
 | 
			
		||||
    multFlavourMinusSigmaX(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::SigmaY:
 | 
			
		||||
    multFlavourSigmaY(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusSigmaY:
 | 
			
		||||
    multFlavourMinusSigmaY(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::SigmaZ:
 | 
			
		||||
    multFlavourSigmaZ(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusSigmaZ:
 | 
			
		||||
    multFlavourMinusSigmaZ(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::Identity:
 | 
			
		||||
    multFlavourIdentity(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusIdentity:
 | 
			
		||||
    multFlavourMinusIdentity(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::ProjPlus:
 | 
			
		||||
    multFlavourProjPlus(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusProjPlus:
 | 
			
		||||
    multFlavourMinusProjPlus(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::ProjMinus:
 | 
			
		||||
    multFlavourProjMinus(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusProjMinus:
 | 
			
		||||
    multFlavourMinusProjMinus(ret, arg); break;
 | 
			
		||||
  default: assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vtype> 
 | 
			
		||||
accelerator_inline auto operator*(const GparityFlavour &G, const iMatrix<vtype, Ngp> &arg)
 | 
			
		||||
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype, Ngp>, GparityFlavourTensorIndex>::value, iMatrix<vtype, Ngp>>::type
 | 
			
		||||
{
 | 
			
		||||
  iMatrix<vtype, Ngp> ret;
 | 
			
		||||
 | 
			
		||||
  switch (G.g) 
 | 
			
		||||
  {
 | 
			
		||||
  case GparityFlavour::Algebra::SigmaX:
 | 
			
		||||
    lmultFlavourSigmaX(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusSigmaX:
 | 
			
		||||
    lmultFlavourMinusSigmaX(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::SigmaY:
 | 
			
		||||
    lmultFlavourSigmaY(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusSigmaY:
 | 
			
		||||
    lmultFlavourMinusSigmaY(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::SigmaZ:
 | 
			
		||||
    lmultFlavourSigmaZ(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusSigmaZ:
 | 
			
		||||
    lmultFlavourMinusSigmaZ(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::Identity:
 | 
			
		||||
    lmultFlavourIdentity(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusIdentity:
 | 
			
		||||
    lmultFlavourMinusIdentity(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::ProjPlus:
 | 
			
		||||
    lmultFlavourProjPlus(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusProjPlus:
 | 
			
		||||
    lmultFlavourMinusProjPlus(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::ProjMinus:
 | 
			
		||||
    lmultFlavourProjMinus(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusProjMinus:
 | 
			
		||||
    lmultFlavourMinusProjMinus(ret, arg); break;  
 | 
			
		||||
  default: assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vtype> 
 | 
			
		||||
accelerator_inline auto operator*(const iMatrix<vtype, Ngp> &arg, const GparityFlavour &G)
 | 
			
		||||
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype, Ngp>, GparityFlavourTensorIndex>::value, iMatrix<vtype, Ngp>>::type
 | 
			
		||||
{
 | 
			
		||||
  iMatrix<vtype, Ngp> ret;
 | 
			
		||||
 | 
			
		||||
  switch (G.g) 
 | 
			
		||||
  {
 | 
			
		||||
  case GparityFlavour::Algebra::SigmaX:
 | 
			
		||||
    rmultFlavourSigmaX(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusSigmaX:
 | 
			
		||||
    rmultFlavourMinusSigmaX(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::SigmaY:
 | 
			
		||||
    rmultFlavourSigmaY(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusSigmaY:
 | 
			
		||||
    rmultFlavourMinusSigmaY(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::SigmaZ:
 | 
			
		||||
    rmultFlavourSigmaZ(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusSigmaZ:
 | 
			
		||||
    rmultFlavourMinusSigmaZ(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::Identity:
 | 
			
		||||
    rmultFlavourIdentity(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusIdentity:
 | 
			
		||||
    rmultFlavourMinusIdentity(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::ProjPlus:
 | 
			
		||||
    rmultFlavourProjPlus(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusProjPlus:
 | 
			
		||||
    rmultFlavourMinusProjPlus(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::ProjMinus:
 | 
			
		||||
    rmultFlavourProjMinus(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusProjMinus:
 | 
			
		||||
    rmultFlavourMinusProjMinus(ret, arg); break;
 | 
			
		||||
  default: assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif // include guard
 | 
			
		||||
@@ -129,18 +129,10 @@ public:
 | 
			
		||||
    Runner(S);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
  template <class SmearingPolicy>
 | 
			
		||||
  void Runner(SmearingPolicy &Smearing) {
 | 
			
		||||
    auto UGrid = Resources.GetCartesian();
 | 
			
		||||
    Resources.AddRNGs();
 | 
			
		||||
    Field U(UGrid);
 | 
			
		||||
 | 
			
		||||
    // Can move this outside?
 | 
			
		||||
    typedef IntegratorType<SmearingPolicy> TheIntegrator;
 | 
			
		||||
    TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing);
 | 
			
		||||
  //Use the checkpointer to initialize the RNGs and the gauge field, writing the resulting gauge field into U.
 | 
			
		||||
  //This is called automatically by Run but may be useful elsewhere, e.g. for integrator tuning experiments
 | 
			
		||||
  void initializeGaugeFieldAndRNGs(Field &U){
 | 
			
		||||
    if(!Resources.haveRNGs()) Resources.AddRNGs();
 | 
			
		||||
 | 
			
		||||
    if (Parameters.StartingType == "HotStart") {
 | 
			
		||||
      // Hot start
 | 
			
		||||
@@ -159,14 +151,40 @@ private:
 | 
			
		||||
      Resources.GetCheckPointer()->CheckpointRestore(Parameters.StartTrajectory, U,
 | 
			
		||||
						     Resources.GetSerialRNG(),
 | 
			
		||||
						     Resources.GetParallelRNG());
 | 
			
		||||
    } else if (Parameters.StartingType == "CheckpointStartReseed") {
 | 
			
		||||
      // Same as CheckpointRestart but reseed the RNGs using the fixed integer seeding used for ColdStart and HotStart
 | 
			
		||||
      // Useful for creating new evolution streams from an existing stream
 | 
			
		||||
      
 | 
			
		||||
      // WARNING: Unfortunately because the checkpointer doesn't presently allow us to separately restore the RNG and gauge fields we have to load
 | 
			
		||||
      // an existing RNG checkpoint first; make sure one is available and named correctly
 | 
			
		||||
      Resources.GetCheckPointer()->CheckpointRestore(Parameters.StartTrajectory, U,
 | 
			
		||||
						     Resources.GetSerialRNG(),
 | 
			
		||||
						     Resources.GetParallelRNG());
 | 
			
		||||
      Resources.SeedFixedIntegers();      
 | 
			
		||||
    } else {
 | 
			
		||||
      // others
 | 
			
		||||
      std::cout << GridLogError << "Unrecognized StartingType\n";
 | 
			
		||||
      std::cout
 | 
			
		||||
	<< GridLogError
 | 
			
		||||
	<< "Valid [HotStart, ColdStart, TepidStart, CheckpointStart]\n";
 | 
			
		||||
	<< "Valid [HotStart, ColdStart, TepidStart, CheckpointStart, CheckpointStartReseed]\n";
 | 
			
		||||
      exit(1);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
  template <class SmearingPolicy>
 | 
			
		||||
  void Runner(SmearingPolicy &Smearing) {
 | 
			
		||||
    auto UGrid = Resources.GetCartesian();
 | 
			
		||||
    Field U(UGrid);
 | 
			
		||||
 | 
			
		||||
    initializeGaugeFieldAndRNGs(U);
 | 
			
		||||
 | 
			
		||||
    typedef IntegratorType<SmearingPolicy> TheIntegrator;
 | 
			
		||||
    TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing);
 | 
			
		||||
 | 
			
		||||
    Smearing.set_Field(U);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -115,21 +115,21 @@ private:
 | 
			
		||||
 | 
			
		||||
    random(sRNG, rn_test);
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage
 | 
			
		||||
    std::cout << GridLogHMC
 | 
			
		||||
              << "--------------------------------------------------\n";
 | 
			
		||||
    std::cout << GridLogMessage << "exp(-dH) = " << prob
 | 
			
		||||
    std::cout << GridLogHMC << "exp(-dH) = " << prob
 | 
			
		||||
              << "  Random = " << rn_test << "\n";
 | 
			
		||||
    std::cout << GridLogMessage
 | 
			
		||||
    std::cout << GridLogHMC
 | 
			
		||||
              << "Acc. Probability = " << ((prob < 1.0) ? prob : 1.0) << "\n";
 | 
			
		||||
 | 
			
		||||
    if ((prob > 1.0) || (rn_test <= prob)) {  // accepted
 | 
			
		||||
      std::cout << GridLogMessage << "Metropolis_test -- ACCEPTED\n";
 | 
			
		||||
      std::cout << GridLogMessage
 | 
			
		||||
      std::cout << GridLogHMC << "Metropolis_test -- ACCEPTED\n";
 | 
			
		||||
      std::cout << GridLogHMC
 | 
			
		||||
                << "--------------------------------------------------\n";
 | 
			
		||||
      return true;
 | 
			
		||||
    } else {  // rejected
 | 
			
		||||
      std::cout << GridLogMessage << "Metropolis_test -- REJECTED\n";
 | 
			
		||||
      std::cout << GridLogMessage
 | 
			
		||||
      std::cout << GridLogHMC << "Metropolis_test -- REJECTED\n";
 | 
			
		||||
      std::cout << GridLogHMC
 | 
			
		||||
                << "--------------------------------------------------\n";
 | 
			
		||||
      return false;
 | 
			
		||||
    }
 | 
			
		||||
@@ -145,7 +145,7 @@ private:
 | 
			
		||||
 | 
			
		||||
    std::streamsize current_precision = std::cout.precision();
 | 
			
		||||
    std::cout.precision(15);
 | 
			
		||||
    std::cout << GridLogMessage << "Total H before trajectory = " << H0 << "\n";
 | 
			
		||||
    std::cout << GridLogHMC << "Total H before trajectory = " << H0 << "\n";
 | 
			
		||||
    std::cout.precision(current_precision);
 | 
			
		||||
 | 
			
		||||
    TheIntegrator.integrate(U);
 | 
			
		||||
@@ -165,7 +165,7 @@ private:
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    std::cout.precision(15);
 | 
			
		||||
    std::cout << GridLogMessage << "Total H after trajectory  = " << H1
 | 
			
		||||
    std::cout << GridLogHMC << "Total H after trajectory  = " << H1
 | 
			
		||||
	      << "  dH = " << H1 - H0 << "\n";
 | 
			
		||||
    std::cout.precision(current_precision);
 | 
			
		||||
    
 | 
			
		||||
@@ -196,9 +196,9 @@ public:
 | 
			
		||||
    // Actual updates (evolve a copy Ucopy then copy back eventually)
 | 
			
		||||
    unsigned int FinalTrajectory = Params.Trajectories + Params.NoMetropolisUntil + Params.StartTrajectory;
 | 
			
		||||
    for (int traj = Params.StartTrajectory; traj < FinalTrajectory; ++traj) {
 | 
			
		||||
      std::cout << GridLogMessage << "-- # Trajectory = " << traj << "\n";
 | 
			
		||||
      std::cout << GridLogHMC << "-- # Trajectory = " << traj << "\n";
 | 
			
		||||
      if (traj < Params.StartTrajectory + Params.NoMetropolisUntil) {
 | 
			
		||||
      	std::cout << GridLogMessage << "-- Thermalization" << std::endl;
 | 
			
		||||
      	std::cout << GridLogHMC << "-- Thermalization" << std::endl;
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      double t0=usecond();
 | 
			
		||||
@@ -207,10 +207,10 @@ public:
 | 
			
		||||
      DeltaH = evolve_hmc_step(Ucopy);
 | 
			
		||||
      // Metropolis-Hastings test
 | 
			
		||||
      bool accept = true;
 | 
			
		||||
      if (traj >= Params.StartTrajectory + Params.NoMetropolisUntil) {
 | 
			
		||||
      if (Params.MetropolisTest && traj >= Params.StartTrajectory + Params.NoMetropolisUntil) {
 | 
			
		||||
        accept = metropolis_test(DeltaH);
 | 
			
		||||
      } else {
 | 
			
		||||
      	std::cout << GridLogMessage << "Skipping Metropolis test" << std::endl;
 | 
			
		||||
      	std::cout << GridLogHMC << "Skipping Metropolis test" << std::endl;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      if (accept)
 | 
			
		||||
@@ -219,7 +219,7 @@ public:
 | 
			
		||||
     
 | 
			
		||||
      
 | 
			
		||||
      double t1=usecond();
 | 
			
		||||
      std::cout << GridLogMessage << "Total time for trajectory (s): " << (t1-t0)/1e6 << std::endl;
 | 
			
		||||
      std::cout << GridLogHMC << "Total time for trajectory (s): " << (t1-t0)/1e6 << std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      for (int obs = 0; obs < Observables.size(); obs++) {
 | 
			
		||||
@@ -228,7 +228,7 @@ public:
 | 
			
		||||
      	std::cout << GridLogDebug << "Observables pointer " << Observables[obs] << std::endl;
 | 
			
		||||
        Observables[obs]->TrajectoryComplete(traj + 1, Ucur, sRNG, pRNG);
 | 
			
		||||
      }
 | 
			
		||||
      std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::::" << std::endl;
 | 
			
		||||
      std::cout << GridLogHMC << ":::::::::::::::::::::::::::::::::::::::::::" << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -80,7 +80,9 @@ public:
 | 
			
		||||
      std::cout << GridLogError << "Seeds not initialized" << std::endl;
 | 
			
		||||
      exit(1);
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << "Reseeding serial RNG with seed vector " << SerialSeeds << std::endl;
 | 
			
		||||
    sRNG_.SeedFixedIntegers(SerialSeeds);
 | 
			
		||||
    std::cout << GridLogMessage << "Reseeding parallel RNG with seed vector " << ParallelSeeds << std::endl;
 | 
			
		||||
    pRNG_->SeedFixedIntegers(ParallelSeeds);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 
 | 
			
		||||
@@ -226,6 +226,9 @@ public:
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
  // Random number generators
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
  
 | 
			
		||||
  //Return true if the RNG objects have been instantiated
 | 
			
		||||
  bool haveRNGs() const{ return have_RNG; }
 | 
			
		||||
 | 
			
		||||
  void AddRNGs(std::string s = "") {
 | 
			
		||||
    // Couple the RNGs to the GridModule tagged by s
 | 
			
		||||
 
 | 
			
		||||
@@ -136,8 +136,14 @@ protected:
 | 
			
		||||
      if (as[level].actions.at(a)->is_smeared) Smearer.smeared_force(force);
 | 
			
		||||
      force = FieldImplementation::projectForce(force); // Ta for gauge fields
 | 
			
		||||
      double end_force = usecond();
 | 
			
		||||
      Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites());
 | 
			
		||||
      std::cout << GridLogIntegrator << "["<<level<<"]["<<a<<"] Force average: " << force_abs << std::endl;
 | 
			
		||||
 | 
			
		||||
      Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites()); //average per-site norm.  nb. norm2(latt) = \sum_x norm2(latt[x]) 
 | 
			
		||||
      Real impulse_abs = force_abs * ep * HMC_MOMENTUM_DENOMINATOR;    
 | 
			
		||||
 | 
			
		||||
      Real max_force_abs = std::sqrt(maxLocalNorm2(force));
 | 
			
		||||
      Real max_impulse_abs = max_force_abs * ep * HMC_MOMENTUM_DENOMINATOR;    
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogIntegrator << "["<<level<<"]["<<a<<"] Force average: " << force_abs << " Max force: " << max_force_abs << " Time step: " << ep << " Impulse average: " << impulse_abs << " Max impulse: " << max_impulse_abs << std::endl;
 | 
			
		||||
      Mom -= force * ep* HMC_MOMENTUM_DENOMINATOR;; 
 | 
			
		||||
      double end_full = usecond();
 | 
			
		||||
      double time_full  = (end_full - start_full) / 1e3;
 | 
			
		||||
@@ -249,15 +255,19 @@ public:
 | 
			
		||||
  void refresh(Field& U,  GridSerialRNG & sRNG, GridParallelRNG& pRNG) 
 | 
			
		||||
  {
 | 
			
		||||
    assert(P.Grid() == U.Grid());
 | 
			
		||||
    std::cout << GridLogIntegrator << "Integrator refresh\n";
 | 
			
		||||
    std::cout << GridLogIntegrator << "Integrator refresh" << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogIntegrator << "Generating momentum" << std::endl;
 | 
			
		||||
    FieldImplementation::generate_momenta(P, sRNG, pRNG);
 | 
			
		||||
 | 
			
		||||
    // Update the smeared fields, can be implemented as observer
 | 
			
		||||
    // necessary to keep the fields updated even after a reject
 | 
			
		||||
    // of the Metropolis
 | 
			
		||||
    std::cout << GridLogIntegrator << "Updating smeared fields" << std::endl;
 | 
			
		||||
    Smearer.set_Field(U);
 | 
			
		||||
    // Set the (eventual) representations gauge fields
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogIntegrator << "Updating representations" << std::endl;
 | 
			
		||||
    Representations.update(U);
 | 
			
		||||
 | 
			
		||||
    // The Smearer is attached to a pointer of the gauge field
 | 
			
		||||
@@ -267,6 +277,7 @@ public:
 | 
			
		||||
      for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
 | 
			
		||||
        // get gauge field from the SmearingPolicy and
 | 
			
		||||
        // based on the boolean is_smeared in actionID
 | 
			
		||||
	std::cout << GridLogIntegrator << "Refreshing integrator level " << level << " index " << actionID << std::endl;
 | 
			
		||||
        Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
 | 
			
		||||
        as[level].actions.at(actionID)->refresh(Us, sRNG, pRNG);
 | 
			
		||||
      }
 | 
			
		||||
 
 | 
			
		||||
@@ -99,7 +99,7 @@ public:
 | 
			
		||||
	// using wilson flow by default here
 | 
			
		||||
	WilsonFlow<PeriodicGimplR> WF(Pars.Smearing.steps, Pars.Smearing.step_size, Pars.Smearing.meas_interval);
 | 
			
		||||
	WF.smear_adaptive(Usmear, U, Pars.Smearing.maxTau);
 | 
			
		||||
	Real T0   = WF.energyDensityPlaquette(Usmear);
 | 
			
		||||
	Real T0   = WF.energyDensityPlaquette(Pars.Smearing.maxTau, Usmear);
 | 
			
		||||
	std::cout << GridLogMessage << std::setprecision(std::numeric_limits<Real>::digits10 + 1)
 | 
			
		||||
		  << "T0                : [ " << traj << " ] "<< T0 << std::endl;
 | 
			
		||||
      }
 | 
			
		||||
 
 | 
			
		||||
@@ -7,6 +7,7 @@ Source file: ./lib/qcd/modules/plaquette.h
 | 
			
		||||
Copyright (C) 2017
 | 
			
		||||
 | 
			
		||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
@@ -33,28 +34,44 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
class WilsonFlow: public Smear<Gimpl>{
 | 
			
		||||
public:
 | 
			
		||||
  //Store generic measurements to take during smearing process using std::function
 | 
			
		||||
  typedef std::function<void(int, RealD, const typename Gimpl::GaugeField &)> FunctionType;  //int: step,  RealD: flow time,  GaugeField : the gauge field
 | 
			
		||||
  
 | 
			
		||||
private:
 | 
			
		||||
  unsigned int Nstep;
 | 
			
		||||
  unsigned int measure_interval;
 | 
			
		||||
  mutable RealD epsilon, taus;
 | 
			
		||||
 | 
			
		||||
  RealD epsilon; //for regular smearing this is the time step, for adaptive it is the initial time step
 | 
			
		||||
 
 | 
			
		||||
  std::vector< std::pair<int, FunctionType> > functions; //The int maps to the measurement frequency
 | 
			
		||||
 | 
			
		||||
  mutable WilsonGaugeAction<Gimpl> SG;
 | 
			
		||||
 | 
			
		||||
  void evolve_step(typename Gimpl::GaugeField&) const;
 | 
			
		||||
  void evolve_step_adaptive(typename Gimpl::GaugeField&, RealD);
 | 
			
		||||
  RealD tau(unsigned int t)const {return epsilon*(t+1.0); }
 | 
			
		||||
  //Evolve the gauge field by 1 step and update tau
 | 
			
		||||
  void evolve_step(typename Gimpl::GaugeField &U, RealD &tau) const;
 | 
			
		||||
  //Evolve the gauge field by 1 step and update tau and the current time step eps
 | 
			
		||||
  void evolve_step_adaptive(typename Gimpl::GaugeField&U, RealD &tau, RealD &eps, RealD maxTau) const;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  INHERIT_GIMPL_TYPES(Gimpl)
 | 
			
		||||
 | 
			
		||||
  void resetActions(){ functions.clear(); }
 | 
			
		||||
 | 
			
		||||
  void addMeasurement(int meas_interval, FunctionType meas){ functions.push_back({meas_interval, meas}); }
 | 
			
		||||
 | 
			
		||||
  //Set the class to perform the default measurements: 
 | 
			
		||||
  //the plaquette energy density every step
 | 
			
		||||
  //the plaquette topological charge every 'topq_meas_interval' steps
 | 
			
		||||
  //and output to stdout
 | 
			
		||||
  void setDefaultMeasurements(int topq_meas_interval = 1);
 | 
			
		||||
 | 
			
		||||
  explicit WilsonFlow(unsigned int Nstep, RealD epsilon, unsigned int interval = 1):
 | 
			
		||||
  Nstep(Nstep),
 | 
			
		||||
    epsilon(epsilon),
 | 
			
		||||
    measure_interval(interval),
 | 
			
		||||
    SG(WilsonGaugeAction<Gimpl>(3.0)) {
 | 
			
		||||
    // WilsonGaugeAction with beta 3.0
 | 
			
		||||
    assert(epsilon > 0.0);
 | 
			
		||||
    LogMessage();
 | 
			
		||||
    setDefaultMeasurements(interval);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void LogMessage() {
 | 
			
		||||
@@ -73,9 +90,29 @@ public:
 | 
			
		||||
    // undefined for WilsonFlow
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void smear_adaptive(GaugeField&, const GaugeField&, RealD maxTau);
 | 
			
		||||
  RealD energyDensityPlaquette(unsigned int step, const GaugeField& U) const;
 | 
			
		||||
  RealD energyDensityPlaquette(const GaugeField& U) const;
 | 
			
		||||
  void smear_adaptive(GaugeField&, const GaugeField&, RealD maxTau) const;
 | 
			
		||||
 | 
			
		||||
  //Compute t^2 <E(t)> for time t from the plaquette
 | 
			
		||||
  static RealD energyDensityPlaquette(const RealD t, const GaugeField& U);
 | 
			
		||||
 | 
			
		||||
  //Compute t^2 <E(t)> for time t from the 1x1 cloverleaf form
 | 
			
		||||
  //t is the Wilson flow time
 | 
			
		||||
  static RealD energyDensityCloverleaf(const RealD t, const GaugeField& U);
 | 
			
		||||
  
 | 
			
		||||
  //Evolve the gauge field by Nstep steps of epsilon and return the energy density computed every interval steps
 | 
			
		||||
  //The smeared field is output as V
 | 
			
		||||
  std::vector<RealD> flowMeasureEnergyDensityPlaquette(GaugeField &V, const GaugeField& U, int measure_interval = 1);
 | 
			
		||||
 | 
			
		||||
  //Version that does not return the smeared field
 | 
			
		||||
  std::vector<RealD> flowMeasureEnergyDensityPlaquette(const GaugeField& U, int measure_interval = 1);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //Evolve the gauge field by Nstep steps of epsilon and return the Cloverleaf energy density computed every interval steps
 | 
			
		||||
  //The smeared field is output as V
 | 
			
		||||
  std::vector<RealD> flowMeasureEnergyDensityCloverleaf(GaugeField &V, const GaugeField& U, int measure_interval = 1);
 | 
			
		||||
 | 
			
		||||
  //Version that does not return the smeared field
 | 
			
		||||
  std::vector<RealD> flowMeasureEnergyDensityCloverleaf(const GaugeField& U, int measure_interval = 1);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -83,7 +120,7 @@ public:
 | 
			
		||||
// Implementations
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
 | 
			
		||||
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U, RealD &tau) const{
 | 
			
		||||
  GaugeField Z(U.Grid());
 | 
			
		||||
  GaugeField tmp(U.Grid());
 | 
			
		||||
  SG.deriv(U, Z);
 | 
			
		||||
@@ -99,12 +136,13 @@ void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
 | 
			
		||||
  SG.deriv(U, tmp); Z += tmp;                 // 4/3*(17/36*Z0 -8/9*Z1) +Z2
 | 
			
		||||
  Z *= 3.0/4.0;                               // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
 | 
			
		||||
  Gimpl::update_field(Z, U, -2.0*epsilon);    // V(t+e) = exp(ep*Z)*W2
 | 
			
		||||
  tau += epsilon;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, RealD maxTau) {
 | 
			
		||||
  if (maxTau - taus < epsilon){
 | 
			
		||||
    epsilon = maxTau-taus;
 | 
			
		||||
void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, RealD &tau, RealD &eps, RealD maxTau) const{
 | 
			
		||||
  if (maxTau - tau < eps){
 | 
			
		||||
    eps = maxTau-tau;
 | 
			
		||||
  }
 | 
			
		||||
  //std::cout << GridLogMessage << "Integration epsilon : " << epsilon << std::endl;
 | 
			
		||||
  GaugeField Z(U.Grid());
 | 
			
		||||
@@ -114,95 +152,151 @@ void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, Real
 | 
			
		||||
  SG.deriv(U, Z);
 | 
			
		||||
  Zprime = -Z;
 | 
			
		||||
  Z *= 0.25;                                  // Z0 = 1/4 * F(U)
 | 
			
		||||
  Gimpl::update_field(Z, U, -2.0*epsilon);    // U = W1 = exp(ep*Z0)*W0
 | 
			
		||||
  Gimpl::update_field(Z, U, -2.0*eps);    // U = W1 = exp(ep*Z0)*W0
 | 
			
		||||
 | 
			
		||||
  Z *= -17.0/8.0;
 | 
			
		||||
  SG.deriv(U, tmp); Z += tmp;                 // -17/32*Z0 +Z1
 | 
			
		||||
  Zprime += 2.0*tmp;
 | 
			
		||||
  Z *= 8.0/9.0;                               // Z = -17/36*Z0 +8/9*Z1
 | 
			
		||||
  Gimpl::update_field(Z, U, -2.0*epsilon);    // U_= W2 = exp(ep*Z)*W1
 | 
			
		||||
  Gimpl::update_field(Z, U, -2.0*eps);    // U_= W2 = exp(ep*Z)*W1
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
  Z *= -4.0/3.0;
 | 
			
		||||
  SG.deriv(U, tmp); Z += tmp;                 // 4/3*(17/36*Z0 -8/9*Z1) +Z2
 | 
			
		||||
  Z *= 3.0/4.0;                               // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
 | 
			
		||||
  Gimpl::update_field(Z, U, -2.0*epsilon);    // V(t+e) = exp(ep*Z)*W2
 | 
			
		||||
  Gimpl::update_field(Z, U, -2.0*eps);    // V(t+e) = exp(ep*Z)*W2
 | 
			
		||||
 | 
			
		||||
  // Ramos 
 | 
			
		||||
  Gimpl::update_field(Zprime, Uprime, -2.0*epsilon); // V'(t+e) = exp(ep*Z')*W0
 | 
			
		||||
  Gimpl::update_field(Zprime, Uprime, -2.0*eps); // V'(t+e) = exp(ep*Z')*W0
 | 
			
		||||
  // Compute distance as norm^2 of the difference
 | 
			
		||||
  GaugeField diffU = U - Uprime;
 | 
			
		||||
  RealD diff = norm2(diffU);
 | 
			
		||||
  // adjust integration step
 | 
			
		||||
    
 | 
			
		||||
  taus += epsilon;
 | 
			
		||||
  tau += eps;
 | 
			
		||||
  //std::cout << GridLogMessage << "Adjusting integration step with distance: " << diff << std::endl;
 | 
			
		||||
    
 | 
			
		||||
  epsilon = epsilon*0.95*std::pow(1e-4/diff,1./3.);
 | 
			
		||||
  eps = eps*0.95*std::pow(1e-4/diff,1./3.);
 | 
			
		||||
  //std::cout << GridLogMessage << "New epsilon : " << epsilon << std::endl;
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(unsigned int step, const GaugeField& U) const {
 | 
			
		||||
  RealD td = tau(step);
 | 
			
		||||
  return 2.0 * td * td * SG.S(U)/U.Grid()->gSites();
 | 
			
		||||
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(const RealD t, const GaugeField& U){
 | 
			
		||||
  static WilsonGaugeAction<Gimpl> SG(3.0);
 | 
			
		||||
  return 2.0 * t * t * SG.S(U)/U.Grid()->gSites();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//Compute t^2 <E(t)> for time from the 1x1 cloverleaf form
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
RealD WilsonFlow<Gimpl>::energyDensityCloverleaf(const RealD t, const GaugeField& U){
 | 
			
		||||
  typedef typename Gimpl::GaugeLinkField GaugeMat;
 | 
			
		||||
  typedef typename Gimpl::GaugeField GaugeLorentz;
 | 
			
		||||
 | 
			
		||||
  assert(Nd == 4);
 | 
			
		||||
  //E = 1/2 tr( F_munu F_munu )
 | 
			
		||||
  //However as  F_numu = -F_munu, only need to sum the trace of the squares of the following 6 field strengths:
 | 
			
		||||
  //F_01 F_02 F_03   F_12 F_13  F_23
 | 
			
		||||
  GaugeMat F(U.Grid());
 | 
			
		||||
  LatticeComplexD R(U.Grid());
 | 
			
		||||
  R = Zero();
 | 
			
		||||
  
 | 
			
		||||
  for(int mu=0;mu<3;mu++){
 | 
			
		||||
    for(int nu=mu+1;nu<4;nu++){
 | 
			
		||||
      WilsonLoops<Gimpl>::FieldStrength(F, U, mu, nu);
 | 
			
		||||
      R = R + trace(F*F);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  ComplexD out = sum(R);
 | 
			
		||||
  out = t*t*out / RealD(U.Grid()->gSites());
 | 
			
		||||
  return -real(out); //minus sign necessary for +ve energy
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityPlaquette(GaugeField &V, const GaugeField& U, int measure_interval){
 | 
			
		||||
  std::vector<RealD> out;
 | 
			
		||||
  resetActions();
 | 
			
		||||
  addMeasurement(measure_interval, [&out](int step, RealD t, const typename Gimpl::GaugeField &U){ 
 | 
			
		||||
      std::cout << GridLogMessage << "[WilsonFlow] Computing plaquette energy density for step " << step << std::endl;
 | 
			
		||||
      out.push_back( energyDensityPlaquette(t,U) );
 | 
			
		||||
    });      
 | 
			
		||||
  smear(V,U);
 | 
			
		||||
  return out;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(const GaugeField& U) const {
 | 
			
		||||
  return 2.0 * taus * taus * SG.S(U)/U.Grid()->gSites();
 | 
			
		||||
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityPlaquette(const GaugeField& U, int measure_interval){
 | 
			
		||||
  GaugeField V(U);
 | 
			
		||||
  return flowMeasureEnergyDensityPlaquette(V,U, measure_interval);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityCloverleaf(GaugeField &V, const GaugeField& U, int measure_interval){
 | 
			
		||||
  std::vector<RealD> out;
 | 
			
		||||
  resetActions();
 | 
			
		||||
  addMeasurement(measure_interval, [&out](int step, RealD t, const typename Gimpl::GaugeField &U){ 
 | 
			
		||||
      std::cout << GridLogMessage << "[WilsonFlow] Computing Cloverleaf energy density for step " << step << std::endl;
 | 
			
		||||
      out.push_back( energyDensityCloverleaf(t,U) );
 | 
			
		||||
    });      
 | 
			
		||||
  smear(V,U);
 | 
			
		||||
  return out;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityCloverleaf(const GaugeField& U, int measure_interval){
 | 
			
		||||
  GaugeField V(U);
 | 
			
		||||
  return flowMeasureEnergyDensityCloverleaf(V,U, measure_interval);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//#define WF_TIMING 
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const {
 | 
			
		||||
void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const{
 | 
			
		||||
  out = in;
 | 
			
		||||
  for (unsigned int step = 1; step <= Nstep; step++) {
 | 
			
		||||
  RealD taus = 0.;
 | 
			
		||||
  for (unsigned int step = 1; step <= Nstep; step++) { //step indicates the number of smearing steps applied at the time of measurement
 | 
			
		||||
    auto start = std::chrono::high_resolution_clock::now();
 | 
			
		||||
    evolve_step(out);
 | 
			
		||||
    evolve_step(out, taus);
 | 
			
		||||
    auto end = std::chrono::high_resolution_clock::now();
 | 
			
		||||
    std::chrono::duration<double> diff = end - start;
 | 
			
		||||
#ifdef WF_TIMING
 | 
			
		||||
    std::cout << "Time to evolve " << diff.count() << " s\n";
 | 
			
		||||
#endif
 | 
			
		||||
    std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : "
 | 
			
		||||
		  << step << "  " << tau(step) << "  " 
 | 
			
		||||
	      << energyDensityPlaquette(step,out) << std::endl;
 | 
			
		||||
    if( step % measure_interval == 0){
 | 
			
		||||
      std::cout << GridLogMessage << "[WilsonFlow] Top. charge           : "
 | 
			
		||||
		<< step << "  " 
 | 
			
		||||
		<< WilsonLoops<PeriodicGimplR>::TopologicalCharge(out) << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    //Perform measurements
 | 
			
		||||
    for(auto const &meas : functions)
 | 
			
		||||
      if( step % meas.first == 0 ) meas.second(step,taus,out);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
void WilsonFlow<Gimpl>::smear_adaptive(GaugeField& out, const GaugeField& in, RealD maxTau){
 | 
			
		||||
void WilsonFlow<Gimpl>::smear_adaptive(GaugeField& out, const GaugeField& in, RealD maxTau) const{
 | 
			
		||||
  out = in;
 | 
			
		||||
  taus = epsilon;
 | 
			
		||||
  RealD taus = 0.;
 | 
			
		||||
  RealD eps = epsilon;
 | 
			
		||||
  unsigned int step = 0;
 | 
			
		||||
  do{
 | 
			
		||||
    step++;
 | 
			
		||||
    //std::cout << GridLogMessage << "Evolution time :"<< taus << std::endl;
 | 
			
		||||
    evolve_step_adaptive(out, maxTau);
 | 
			
		||||
    std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : "
 | 
			
		||||
		  << step << "  " << taus << "  "
 | 
			
		||||
	      << energyDensityPlaquette(out) << std::endl;
 | 
			
		||||
    if( step % measure_interval == 0){
 | 
			
		||||
      std::cout << GridLogMessage << "[WilsonFlow] Top. charge           : "
 | 
			
		||||
		<< step << "  " 
 | 
			
		||||
		<< WilsonLoops<PeriodicGimplR>::TopologicalCharge(out) << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    evolve_step_adaptive(out, taus, eps, maxTau);
 | 
			
		||||
    //Perform measurements
 | 
			
		||||
    for(auto const &meas : functions)
 | 
			
		||||
      if( step % meas.first == 0 ) meas.second(step,taus,out);
 | 
			
		||||
  } while (taus < maxTau);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
void WilsonFlow<Gimpl>::setDefaultMeasurements(int topq_meas_interval){
 | 
			
		||||
  addMeasurement(1, [](int step, RealD t, const typename Gimpl::GaugeField &U){
 | 
			
		||||
      std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : "  << step << "  " << t << "  " << energyDensityPlaquette(t,U) << std::endl;
 | 
			
		||||
    });
 | 
			
		||||
  addMeasurement(topq_meas_interval, [](int step, RealD t, const typename Gimpl::GaugeField &U){
 | 
			
		||||
      std::cout << GridLogMessage << "[WilsonFlow] Top. charge           : "  << step << "  " << WilsonLoops<Gimpl>::TopologicalCharge(U) << std::endl;
 | 
			
		||||
    });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -88,6 +88,12 @@ namespace PeriodicBC {
 | 
			
		||||
    return CovShiftBackward(Link,mu,arg);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Boundary-aware C-shift of gauge links / gauge transformation matrices
 | 
			
		||||
  template<class gauge> Lattice<gauge>
 | 
			
		||||
  CshiftLink(const Lattice<gauge> &Link, int mu, int shift)
 | 
			
		||||
  {
 | 
			
		||||
    return Cshift(Link, mu, shift);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -158,6 +164,9 @@ namespace ConjugateBC {
 | 
			
		||||
    //    std::cout<<"Gparity::CovCshiftBackward mu="<<mu<<std::endl;
 | 
			
		||||
    return Cshift(tmp,mu,-1);// moves towards positive mu
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Out(x) = U^dag_\mu(x-mu)  | x_\mu != 0
 | 
			
		||||
  //       = U^T_\mu(L-1)  | x_\mu == 0
 | 
			
		||||
  template<class gauge> Lattice<gauge>
 | 
			
		||||
  CovShiftIdentityBackward(const Lattice<gauge> &Link, int mu) {
 | 
			
		||||
    GridBase *grid = Link.Grid();
 | 
			
		||||
@@ -176,6 +185,9 @@ namespace ConjugateBC {
 | 
			
		||||
    return Link;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Out(x) = S_\mu(x+\hat\mu)  | x_\mu != L-1
 | 
			
		||||
  //       = S*_\mu(0)  | x_\mu == L-1
 | 
			
		||||
  //Note: While this is used for Staples it is also applicable for shifting gauge links or gauge transformation matrices
 | 
			
		||||
  template<class gauge> Lattice<gauge>
 | 
			
		||||
  ShiftStaple(const Lattice<gauge> &Link, int mu)
 | 
			
		||||
  {
 | 
			
		||||
@@ -208,6 +220,35 @@ namespace ConjugateBC {
 | 
			
		||||
    return CovShiftBackward(Link,mu,arg);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Boundary-aware C-shift of gauge links / gauge transformation matrices
 | 
			
		||||
  //shift = 1
 | 
			
		||||
  //Out(x) = U_\mu(x+\hat\mu)  | x_\mu != L-1
 | 
			
		||||
  //       = U*_\mu(0)  | x_\mu == L-1
 | 
			
		||||
  //shift = -1
 | 
			
		||||
  //Out(x) = U_\mu(x-mu)  | x_\mu != 0
 | 
			
		||||
  //       = U*_\mu(L-1)  | x_\mu == 0
 | 
			
		||||
  template<class gauge> Lattice<gauge>
 | 
			
		||||
  CshiftLink(const Lattice<gauge> &Link, int mu, int shift)
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *grid = Link.Grid();
 | 
			
		||||
    int Lmu = grid->GlobalDimensions()[mu] - 1;
 | 
			
		||||
 | 
			
		||||
    Lattice<iScalar<vInteger>> coor(grid);
 | 
			
		||||
    LatticeCoordinate(coor, mu);
 | 
			
		||||
 | 
			
		||||
    Lattice<gauge> tmp(grid);
 | 
			
		||||
    if(shift == 1){
 | 
			
		||||
      tmp = Cshift(Link, mu, 1);
 | 
			
		||||
      tmp = where(coor == Lmu, conjugate(tmp), tmp);
 | 
			
		||||
      return tmp;
 | 
			
		||||
    }else if(shift == -1){
 | 
			
		||||
      tmp = Link;
 | 
			
		||||
      tmp = where(coor == Lmu, conjugate(tmp), tmp);
 | 
			
		||||
      return Cshift(tmp, mu, -1);
 | 
			
		||||
    }else assert(0 && "Invalid shift value");
 | 
			
		||||
    return tmp; //shuts up the compiler fussing about the return type
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -40,27 +40,46 @@ public:
 | 
			
		||||
  typedef typename Gimpl::GaugeLinkField GaugeMat;
 | 
			
		||||
  typedef typename Gimpl::GaugeField GaugeLorentz;
 | 
			
		||||
 | 
			
		||||
  static void GaugeLinkToLieAlgebraField(const std::vector<GaugeMat> &U,std::vector<GaugeMat> &A) {
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      Complex cmi(0.0,-1.0);
 | 
			
		||||
      A[mu] = Ta(U[mu]) * cmi;
 | 
			
		||||
    }
 | 
			
		||||
  //A_\mu(x) = -i Ta(U_\mu(x) )   where Ta(U) = 1/2( U - U^dag ) - 1/2N tr(U - U^dag)  is the traceless antihermitian part. This is an O(A^3) approximation to the logarithm of U
 | 
			
		||||
  static void GaugeLinkToLieAlgebraField(const GaugeMat &U, GaugeMat &A) {
 | 
			
		||||
    Complex cmi(0.0,-1.0);
 | 
			
		||||
    A = Ta(U) * cmi;
 | 
			
		||||
  }
 | 
			
		||||
  static void DmuAmu(const std::vector<GaugeMat> &A,GaugeMat &dmuAmu,int orthog) {
 | 
			
		||||
  
 | 
			
		||||
  //The derivative of the Lie algebra field
 | 
			
		||||
  static void DmuAmu(const std::vector<GaugeMat> &U, GaugeMat &dmuAmu,int orthog) {
 | 
			
		||||
    GridBase* grid = U[0].Grid();
 | 
			
		||||
    GaugeMat Ax(grid);
 | 
			
		||||
    GaugeMat Axm1(grid);
 | 
			
		||||
    GaugeMat Utmp(grid);
 | 
			
		||||
 | 
			
		||||
    dmuAmu=Zero();
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      if ( mu != orthog ) {
 | 
			
		||||
	dmuAmu = dmuAmu + A[mu] - Cshift(A[mu],mu,-1);
 | 
			
		||||
	//Rather than define functionality to work out how the BCs apply to A_\mu we simply use the BC-aware Cshift to the gauge links and compute A_\mu(x) and A_\mu(x-1) separately
 | 
			
		||||
	//Ax = A_\mu(x)
 | 
			
		||||
	GaugeLinkToLieAlgebraField(U[mu], Ax);
 | 
			
		||||
	
 | 
			
		||||
	//Axm1 = A_\mu(x_\mu-1)
 | 
			
		||||
	Utmp = Gimpl::CshiftLink(U[mu], mu, -1);
 | 
			
		||||
	GaugeLinkToLieAlgebraField(Utmp, Axm1);
 | 
			
		||||
	
 | 
			
		||||
	//Derivative
 | 
			
		||||
	dmuAmu = dmuAmu + Ax - Axm1;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }  
 | 
			
		||||
 | 
			
		||||
  static void SteepestDescentGaugeFix(GaugeLorentz &Umu,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1) {
 | 
			
		||||
  //Fix the gauge field Umu
 | 
			
		||||
  //0 < alpha < 1 is related to the step size, cf https://arxiv.org/pdf/1405.5812.pdf
 | 
			
		||||
  static void SteepestDescentGaugeFix(GaugeLorentz &Umu, Real alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1) {
 | 
			
		||||
    GridBase *grid = Umu.Grid();
 | 
			
		||||
    GaugeMat xform(grid);
 | 
			
		||||
    SteepestDescentGaugeFix(Umu,xform,alpha,maxiter,Omega_tol,Phi_tol,Fourier,orthog);
 | 
			
		||||
  }
 | 
			
		||||
  static void SteepestDescentGaugeFix(GaugeLorentz &Umu,GaugeMat &xform,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1) {
 | 
			
		||||
 | 
			
		||||
  //Fix the gauge field Umu and also return the gauge transformation from the original gauge field, xform
 | 
			
		||||
  static void SteepestDescentGaugeFix(GaugeLorentz &Umu,GaugeMat &xform, Real alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1) {
 | 
			
		||||
 | 
			
		||||
    GridBase *grid = Umu.Grid();
 | 
			
		||||
 | 
			
		||||
@@ -122,27 +141,24 @@ public:
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    assert(0 && "Gauge fixing did not converge within the specified number of iterations");
 | 
			
		||||
  };
 | 
			
		||||
  static Real SteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform,Real & alpha, GaugeMat & dmuAmu,int orthog) {
 | 
			
		||||
  static Real SteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform, Real alpha, GaugeMat & dmuAmu,int orthog) {
 | 
			
		||||
    GridBase *grid = U[0].Grid();
 | 
			
		||||
 | 
			
		||||
    std::vector<GaugeMat> A(Nd,grid);
 | 
			
		||||
    GaugeMat g(grid);
 | 
			
		||||
 | 
			
		||||
    GaugeLinkToLieAlgebraField(U,A);
 | 
			
		||||
    ExpiAlphaDmuAmu(A,g,alpha,dmuAmu,orthog);
 | 
			
		||||
 | 
			
		||||
    ExpiAlphaDmuAmu(U,g,alpha,dmuAmu,orthog);
 | 
			
		||||
 | 
			
		||||
    Real vol = grid->gSites();
 | 
			
		||||
    Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
 | 
			
		||||
 | 
			
		||||
    xform = g*xform ;
 | 
			
		||||
    SU<Nc>::GaugeTransform(U,g);
 | 
			
		||||
    SU<Nc>::GaugeTransform<Gimpl>(U,g);
 | 
			
		||||
 | 
			
		||||
    return trG;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform,Real & alpha, GaugeMat & dmuAmu,int orthog) {
 | 
			
		||||
  static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform, Real alpha, GaugeMat & dmuAmu,int orthog) {
 | 
			
		||||
 | 
			
		||||
    GridBase *grid = U[0].Grid();
 | 
			
		||||
 | 
			
		||||
@@ -157,11 +173,7 @@ public:
 | 
			
		||||
 | 
			
		||||
    GaugeMat g(grid);
 | 
			
		||||
    GaugeMat dmuAmu_p(grid);
 | 
			
		||||
    std::vector<GaugeMat> A(Nd,grid);
 | 
			
		||||
 | 
			
		||||
    GaugeLinkToLieAlgebraField(U,A);
 | 
			
		||||
 | 
			
		||||
    DmuAmu(A,dmuAmu,orthog);
 | 
			
		||||
    DmuAmu(U,dmuAmu,orthog);
 | 
			
		||||
 | 
			
		||||
    std::vector<int> mask(Nd,1);
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++) if (mu==orthog) mask[mu]=0;
 | 
			
		||||
@@ -205,16 +217,16 @@ public:
 | 
			
		||||
    Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
 | 
			
		||||
 | 
			
		||||
    xform = g*xform ;
 | 
			
		||||
    SU<Nc>::GaugeTransform(U,g);
 | 
			
		||||
    SU<Nc>::GaugeTransform<Gimpl>(U,g);
 | 
			
		||||
 | 
			
		||||
    return trG;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &A,GaugeMat &g,Real & alpha, GaugeMat &dmuAmu,int orthog) {
 | 
			
		||||
  static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &U,GaugeMat &g, Real alpha, GaugeMat &dmuAmu,int orthog) {
 | 
			
		||||
    GridBase *grid = g.Grid();
 | 
			
		||||
    Complex cialpha(0.0,-alpha);
 | 
			
		||||
    GaugeMat ciadmam(grid);
 | 
			
		||||
    DmuAmu(A,dmuAmu,orthog);
 | 
			
		||||
    DmuAmu(U,dmuAmu,orthog);
 | 
			
		||||
    ciadmam = dmuAmu*cialpha;
 | 
			
		||||
    SU<Nc>::taExp(ciadmam,g);
 | 
			
		||||
  }  
 | 
			
		||||
 
 | 
			
		||||
@@ -694,32 +694,32 @@ public:
 | 
			
		||||
 * Adjoint rep gauge xform
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
  template<typename GaugeField,typename GaugeMat>
 | 
			
		||||
  static void GaugeTransform( GaugeField &Umu, GaugeMat &g){
 | 
			
		||||
  template<typename Gimpl>
 | 
			
		||||
  static void GaugeTransform(typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
 | 
			
		||||
    GridBase *grid = Umu.Grid();
 | 
			
		||||
    conformable(grid,g.Grid());
 | 
			
		||||
 | 
			
		||||
    GaugeMat U(grid);
 | 
			
		||||
    GaugeMat ag(grid); ag = adj(g);
 | 
			
		||||
    typename Gimpl::GaugeLinkField U(grid);
 | 
			
		||||
    typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
 | 
			
		||||
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      U= PeekIndex<LorentzIndex>(Umu,mu);
 | 
			
		||||
      U = g*U*Cshift(ag, mu, 1);
 | 
			
		||||
      U = g*U*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
 | 
			
		||||
      PokeIndex<LorentzIndex>(Umu,U,mu);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  template<typename GaugeMat>
 | 
			
		||||
  static void GaugeTransform( std::vector<GaugeMat> &U, GaugeMat &g){
 | 
			
		||||
  template<typename Gimpl>
 | 
			
		||||
  static void GaugeTransform( std::vector<typename Gimpl::GaugeLinkField> &U, typename Gimpl::GaugeLinkField &g){
 | 
			
		||||
    GridBase *grid = g.Grid();
 | 
			
		||||
    GaugeMat ag(grid); ag = adj(g);
 | 
			
		||||
    typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      U[mu] = g*U[mu]*Cshift(ag, mu, 1);
 | 
			
		||||
      U[mu] = g*U[mu]*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  template<typename GaugeField,typename GaugeMat>
 | 
			
		||||
  static void RandomGaugeTransform(GridParallelRNG &pRNG, GaugeField &Umu, GaugeMat &g){
 | 
			
		||||
  template<typename Gimpl>
 | 
			
		||||
  static void RandomGaugeTransform(GridParallelRNG &pRNG, typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
 | 
			
		||||
    LieRandomize(pRNG,g,1.0);
 | 
			
		||||
    GaugeTransform(Umu,g);
 | 
			
		||||
    GaugeTransform<Gimpl>(Umu,g);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Projects the algebra components a lattice matrix (of dimension ncol*ncol -1 )
 | 
			
		||||
 
 | 
			
		||||
@@ -125,6 +125,56 @@ public:
 | 
			
		||||
    return sumplaq / vol / faces / Nc; // Nd , Nc dependent... FIXME
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
  // sum over all spatial planes of plaquette
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
  static void siteSpatialPlaquette(ComplexField &Plaq,
 | 
			
		||||
                            const std::vector<GaugeMat> &U) {
 | 
			
		||||
    ComplexField sitePlaq(U[0].Grid());
 | 
			
		||||
    Plaq = Zero();
 | 
			
		||||
    for (int mu = 1; mu < Nd-1; mu++) {
 | 
			
		||||
      for (int nu = 0; nu < mu; nu++) {
 | 
			
		||||
        traceDirPlaquette(sitePlaq, U, mu, nu);
 | 
			
		||||
        Plaq = Plaq + sitePlaq;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  // sum over all x,y,z and over all spatial planes of plaquette
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
  static std::vector<RealD> timesliceSumSpatialPlaquette(const GaugeLorentz &Umu) {
 | 
			
		||||
    std::vector<GaugeMat> U(Nd, Umu.Grid());
 | 
			
		||||
    // inefficient here
 | 
			
		||||
    for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
      U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    ComplexField Plaq(Umu.Grid());
 | 
			
		||||
 | 
			
		||||
    siteSpatialPlaquette(Plaq, U);
 | 
			
		||||
    typedef typename ComplexField::scalar_object sobj;
 | 
			
		||||
    std::vector<sobj> Tq;
 | 
			
		||||
    sliceSum(Plaq, Tq, Nd-1);
 | 
			
		||||
 | 
			
		||||
    std::vector<Real> out(Tq.size());
 | 
			
		||||
    for(int t=0;t<Tq.size();t++) out[t] = TensorRemove(Tq[t]).real();
 | 
			
		||||
    return out;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
  // average over all x,y,z and over all spatial planes of plaquette
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
  static std::vector<RealD> timesliceAvgSpatialPlaquette(const GaugeLorentz &Umu) {
 | 
			
		||||
    std::vector<RealD> sumplaq = timesliceSumSpatialPlaquette(Umu);
 | 
			
		||||
    int Lt = Umu.Grid()->FullDimensions()[Nd-1];
 | 
			
		||||
    assert(sumplaq.size() == Lt);
 | 
			
		||||
    double vol = Umu.Grid()->gSites() / Lt;
 | 
			
		||||
    double faces = (1.0 * (Nd - 1)* (Nd - 2)) / 2.0;
 | 
			
		||||
    for(int t=0;t<Lt;t++)
 | 
			
		||||
      sumplaq[t] = sumplaq[t] / vol / faces / Nc; // Nd , Nc dependent... FIXME
 | 
			
		||||
    return sumplaq;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
  // average over all x,y,z the temporal loop
 | 
			
		||||
@@ -363,11 +413,11 @@ public:
 | 
			
		||||
    GaugeMat u = PeekIndex<LorentzIndex>(Umu, mu);  // some redundant copies
 | 
			
		||||
    GaugeMat vu = v*u;
 | 
			
		||||
      //FS = 0.25*Ta(u*v + Cshift(vu, mu, -1));
 | 
			
		||||
      FS = (u*v + Cshift(vu, mu, -1));
 | 
			
		||||
      FS = (u*v + Gimpl::CshiftLink(vu, mu, -1));
 | 
			
		||||
      FS = 0.125*(FS - adj(FS));
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static Real TopologicalCharge(GaugeLorentz &U){
 | 
			
		||||
  static Real TopologicalCharge(const GaugeLorentz &U){
 | 
			
		||||
    // 4d topological charge
 | 
			
		||||
    assert(Nd==4);
 | 
			
		||||
    // Bx = -iF(y,z), By = -iF(z,y), Bz = -iF(x,y)
 | 
			
		||||
@@ -390,6 +440,203 @@ public:
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //Clover-leaf Wilson loop combination for arbitrary mu-extent M and nu extent N,  mu >= nu
 | 
			
		||||
  //cf  https://arxiv.org/pdf/hep-lat/9701012.pdf Eq 7  for 1x2 Wilson loop    
 | 
			
		||||
  //Clockwise ordering
 | 
			
		||||
  static void CloverleafMxN(GaugeMat &FS, const GaugeMat &Umu, const GaugeMat &Unu, int mu, int nu, int M, int N){  
 | 
			
		||||
#define Fmu(A) Gimpl::CovShiftForward(Umu, mu, A)
 | 
			
		||||
#define Bmu(A) Gimpl::CovShiftBackward(Umu, mu, A)
 | 
			
		||||
#define Fnu(A) Gimpl::CovShiftForward(Unu, nu, A)
 | 
			
		||||
#define Bnu(A) Gimpl::CovShiftBackward(Unu, nu, A)
 | 
			
		||||
#define FmuI Gimpl::CovShiftIdentityForward(Umu, mu)
 | 
			
		||||
#define BmuI Gimpl::CovShiftIdentityBackward(Umu, mu)
 | 
			
		||||
#define FnuI Gimpl::CovShiftIdentityForward(Unu, nu)
 | 
			
		||||
#define BnuI Gimpl::CovShiftIdentityBackward(Unu, nu)
 | 
			
		||||
 | 
			
		||||
    //Upper right loop
 | 
			
		||||
    GaugeMat tmp = BmuI;
 | 
			
		||||
    for(int i=1;i<M;i++)
 | 
			
		||||
      tmp = Bmu(tmp);
 | 
			
		||||
    for(int j=0;j<N;j++)
 | 
			
		||||
      tmp = Bnu(tmp);
 | 
			
		||||
    for(int i=0;i<M;i++)
 | 
			
		||||
      tmp = Fmu(tmp);
 | 
			
		||||
    for(int j=0;j<N;j++)
 | 
			
		||||
      tmp = Fnu(tmp);
 | 
			
		||||
      
 | 
			
		||||
    FS = tmp;
 | 
			
		||||
 | 
			
		||||
    //Upper left loop
 | 
			
		||||
    tmp = BnuI;
 | 
			
		||||
    for(int j=1;j<N;j++)
 | 
			
		||||
      tmp = Bnu(tmp);
 | 
			
		||||
    for(int i=0;i<M;i++)
 | 
			
		||||
      tmp = Fmu(tmp);
 | 
			
		||||
    for(int j=0;j<N;j++)
 | 
			
		||||
      tmp = Fnu(tmp);
 | 
			
		||||
    for(int i=0;i<M;i++)
 | 
			
		||||
      tmp = Bmu(tmp);
 | 
			
		||||
      
 | 
			
		||||
    FS = FS + tmp;
 | 
			
		||||
 | 
			
		||||
    //Lower right loop
 | 
			
		||||
    tmp = FnuI;
 | 
			
		||||
    for(int j=1;j<N;j++)
 | 
			
		||||
      tmp = Fnu(tmp);
 | 
			
		||||
    for(int i=0;i<M;i++)
 | 
			
		||||
      tmp = Bmu(tmp);
 | 
			
		||||
    for(int j=0;j<N;j++)
 | 
			
		||||
      tmp = Bnu(tmp);
 | 
			
		||||
    for(int i=0;i<M;i++)
 | 
			
		||||
      tmp = Fmu(tmp);
 | 
			
		||||
      
 | 
			
		||||
    FS = FS + tmp;
 | 
			
		||||
 | 
			
		||||
    //Lower left loop
 | 
			
		||||
    tmp = FmuI;
 | 
			
		||||
    for(int i=1;i<M;i++)
 | 
			
		||||
      tmp = Fmu(tmp);
 | 
			
		||||
    for(int j=0;j<N;j++)
 | 
			
		||||
      tmp = Fnu(tmp);
 | 
			
		||||
    for(int i=0;i<M;i++)
 | 
			
		||||
      tmp = Bmu(tmp);
 | 
			
		||||
    for(int j=0;j<N;j++)
 | 
			
		||||
      tmp = Bnu(tmp);
 | 
			
		||||
 | 
			
		||||
    FS = FS + tmp;
 | 
			
		||||
 | 
			
		||||
#undef Fmu
 | 
			
		||||
#undef Bmu
 | 
			
		||||
#undef Fnu
 | 
			
		||||
#undef Bnu
 | 
			
		||||
#undef FmuI
 | 
			
		||||
#undef BmuI
 | 
			
		||||
#undef FnuI
 | 
			
		||||
#undef BnuI
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Field strength from MxN Wilson loop
 | 
			
		||||
  //Note F_numu = - F_munu
 | 
			
		||||
  static void FieldStrengthMxN(GaugeMat &FS, const GaugeLorentz &U, int mu, int nu, int M, int N){  
 | 
			
		||||
    GaugeMat Umu = PeekIndex<LorentzIndex>(U, mu);
 | 
			
		||||
    GaugeMat Unu = PeekIndex<LorentzIndex>(U, nu);
 | 
			
		||||
    if(M == N){
 | 
			
		||||
      GaugeMat F(Umu.Grid());
 | 
			
		||||
      CloverleafMxN(F, Umu, Unu, mu, nu, M, N);
 | 
			
		||||
      FS = 0.125 * ( F - adj(F) );
 | 
			
		||||
    }else{
 | 
			
		||||
      //Average over both orientations
 | 
			
		||||
      GaugeMat horizontal(Umu.Grid()), vertical(Umu.Grid());
 | 
			
		||||
      CloverleafMxN(horizontal, Umu, Unu, mu, nu, M, N);
 | 
			
		||||
      CloverleafMxN(vertical, Umu, Unu, mu, nu, N, M);
 | 
			
		||||
      FS = 0.0625 * ( horizontal - adj(horizontal) + vertical - adj(vertical) );
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Topological charge contribution from MxN Wilson loops
 | 
			
		||||
  //cf  https://arxiv.org/pdf/hep-lat/9701012.pdf  Eq 6
 | 
			
		||||
  //output is the charge by timeslice: sum over timeslices to obtain the total
 | 
			
		||||
  static std::vector<Real> TimesliceTopologicalChargeMxN(const GaugeLorentz &U, int M, int N){
 | 
			
		||||
    assert(Nd == 4);
 | 
			
		||||
    std::vector<std::vector<GaugeMat*> > F(Nd,std::vector<GaugeMat*>(Nd,nullptr));
 | 
			
		||||
    //Note F_numu = - F_munu
 | 
			
		||||
    //hence we only need to loop over mu,nu,rho,sigma that aren't related by permuting mu,nu  or rho,sigma
 | 
			
		||||
    //Use nu > mu
 | 
			
		||||
    for(int mu=0;mu<Nd-1;mu++){
 | 
			
		||||
      for(int nu=mu+1; nu<Nd; nu++){
 | 
			
		||||
	F[mu][nu] = new GaugeMat(U.Grid());
 | 
			
		||||
	FieldStrengthMxN(*F[mu][nu], U, mu, nu, M, N);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    Real coeff = -1./(32 * M_PI*M_PI * M*M * N*N); //overall sign to match CPS and Grid conventions, possibly related to time direction = 3 vs 0
 | 
			
		||||
 | 
			
		||||
    static const int combs[3][4] = { {0,1,2,3}, {0,2,1,3}, {0,3,1,2} };
 | 
			
		||||
    static const int signs[3] = { 1, -1, 1 }; //epsilon_{mu nu rho sigma}
 | 
			
		||||
 | 
			
		||||
    ComplexField fsum(U.Grid());
 | 
			
		||||
    fsum = Zero();
 | 
			
		||||
    for(int c=0;c<3;c++){
 | 
			
		||||
      int mu = combs[c][0], nu = combs[c][1], rho = combs[c][2], sigma = combs[c][3];
 | 
			
		||||
      int eps = signs[c];
 | 
			
		||||
      fsum = fsum + (8. * coeff * eps) * trace( (*F[mu][nu]) * (*F[rho][sigma]) ); 
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for(int mu=0;mu<Nd-1;mu++)
 | 
			
		||||
      for(int nu=mu+1; nu<Nd; nu++)
 | 
			
		||||
	delete F[mu][nu];
 | 
			
		||||
    
 | 
			
		||||
    typedef typename ComplexField::scalar_object sobj;
 | 
			
		||||
    std::vector<sobj> Tq;
 | 
			
		||||
    sliceSum(fsum, Tq, Nd-1);
 | 
			
		||||
 | 
			
		||||
    std::vector<Real> out(Tq.size());
 | 
			
		||||
    for(int t=0;t<Tq.size();t++) out[t] = TensorRemove(Tq[t]).real();
 | 
			
		||||
    return out;
 | 
			
		||||
  }
 | 
			
		||||
  static Real TopologicalChargeMxN(const GaugeLorentz &U, int M, int N){
 | 
			
		||||
    std::vector<Real> Tq = TimesliceTopologicalChargeMxN(U,M,N);
 | 
			
		||||
    Real out(0);
 | 
			
		||||
    for(int t=0;t<Tq.size();t++) out += Tq[t];
 | 
			
		||||
    return out;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Generate the contributions to the 5Li topological charge from Wilson loops of the following sizes
 | 
			
		||||
  //Use coefficients from hep-lat/9701012
 | 
			
		||||
  //1x1 : c1=(19.-55.*c5)/9.
 | 
			
		||||
  //2x2 : c2=(1-64.*c5)/9.
 | 
			
		||||
  //1x2 : c3=(-64.+640.*c5)/45.
 | 
			
		||||
  //1x3 : c4=1./5.-2.*c5
 | 
			
		||||
  //3x3 : c5=1./20.
 | 
			
		||||
  //Output array outer index contains the loops in the above order
 | 
			
		||||
  //Inner index is the time coordinate
 | 
			
		||||
  static std::vector<std::vector<Real> > TimesliceTopologicalCharge5LiContributions(const GaugeLorentz &U){
 | 
			
		||||
    static const int exts[5][2] = { {1,1}, {2,2}, {1,2}, {1,3}, {3,3} };       
 | 
			
		||||
    std::vector<std::vector<Real> > out(5);
 | 
			
		||||
    for(int i=0;i<5;i++){	
 | 
			
		||||
      out[i] = TimesliceTopologicalChargeMxN(U,exts[i][0],exts[i][1]);
 | 
			
		||||
    }
 | 
			
		||||
    return out;
 | 
			
		||||
  }   
 | 
			
		||||
 | 
			
		||||
  static std::vector<Real> TopologicalCharge5LiContributions(const GaugeLorentz &U){   
 | 
			
		||||
    static const int exts[5][2] = { {1,1}, {2,2}, {1,2}, {1,3}, {3,3} };
 | 
			
		||||
    std::vector<Real> out(5);
 | 
			
		||||
    std::cout << GridLogMessage << "Computing topological charge" << std::endl;
 | 
			
		||||
    for(int i=0;i<5;i++){
 | 
			
		||||
      out[i] = TopologicalChargeMxN(U,exts[i][0],exts[i][1]);
 | 
			
		||||
      std::cout << GridLogMessage << exts[i][0] << "x" << exts[i][1] << " Wilson loop contribution " << out[i] << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    return out;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Compute the 5Li topological charge
 | 
			
		||||
  static std::vector<Real> TimesliceTopologicalCharge5Li(const GaugeLorentz &U){
 | 
			
		||||
    std::vector<std::vector<Real> > loops = TimesliceTopologicalCharge5LiContributions(U);
 | 
			
		||||
 | 
			
		||||
    double c5=1./20.;
 | 
			
		||||
    double c4=1./5.-2.*c5;
 | 
			
		||||
    double c3=(-64.+640.*c5)/45.;
 | 
			
		||||
    double c2=(1-64.*c5)/9.;
 | 
			
		||||
    double c1=(19.-55.*c5)/9.;
 | 
			
		||||
 | 
			
		||||
    int Lt = loops[0].size();
 | 
			
		||||
    std::vector<Real> out(Lt,0.);
 | 
			
		||||
    for(int t=0;t<Lt;t++)
 | 
			
		||||
      out[t] += c1*loops[0][t] + c2*loops[1][t] + c3*loops[2][t] + c4*loops[3][t] + c5*loops[4][t];
 | 
			
		||||
    return out;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static Real TopologicalCharge5Li(const GaugeLorentz &U){
 | 
			
		||||
    std::vector<Real> Qt = TimesliceTopologicalCharge5Li(U);
 | 
			
		||||
    Real Q = 0.;
 | 
			
		||||
    for(int t=0;t<Qt.size();t++) Q += Qt[t];
 | 
			
		||||
    std::cout << GridLogMessage << "5Li Topological charge: " << Q << std::endl;
 | 
			
		||||
    return Q;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
  // Similar to above for rectangle is required
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										200
									
								
								Grid/random/gaussian.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										200
									
								
								Grid/random/gaussian.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,200 @@
 | 
			
		||||
// -*- C++ -*-
 | 
			
		||||
//===--------------------------- random -----------------------------------===//
 | 
			
		||||
//
 | 
			
		||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
			
		||||
// See https://llvm.org/LICENSE.txt for license information.
 | 
			
		||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
			
		||||
//
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
 | 
			
		||||
// Peter Boyle: Taken from libc++ in Clang/LLVM.
 | 
			
		||||
// Reason is that libstdc++ and clang differ in their return order in the normal_distribution / box mueller type step.
 | 
			
		||||
// standardise on one and call it "gaussian_distribution".
 | 
			
		||||
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <cstddef>
 | 
			
		||||
#include <cstdint>
 | 
			
		||||
#include <cmath>
 | 
			
		||||
#include <type_traits>
 | 
			
		||||
#include <initializer_list>
 | 
			
		||||
#include <limits>
 | 
			
		||||
#include <algorithm>
 | 
			
		||||
#include <numeric>
 | 
			
		||||
#include <vector>
 | 
			
		||||
#include <string>
 | 
			
		||||
#include <istream>
 | 
			
		||||
#include <ostream>
 | 
			
		||||
#include <random>
 | 
			
		||||
 | 
			
		||||
// normal_distribution -> gaussian distribution
 | 
			
		||||
namespace Grid {
 | 
			
		||||
 | 
			
		||||
template<class _RealType = double>
 | 
			
		||||
class  gaussian_distribution
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
    // types
 | 
			
		||||
    typedef _RealType result_type;
 | 
			
		||||
 | 
			
		||||
    class param_type
 | 
			
		||||
    {
 | 
			
		||||
        result_type __mean_;
 | 
			
		||||
        result_type __stddev_;
 | 
			
		||||
    public:
 | 
			
		||||
        typedef gaussian_distribution distribution_type;
 | 
			
		||||
 | 
			
		||||
        strong_inline
 | 
			
		||||
        explicit param_type(result_type __mean = 0, result_type __stddev = 1)
 | 
			
		||||
            : __mean_(__mean), __stddev_(__stddev) {}
 | 
			
		||||
 | 
			
		||||
        strong_inline
 | 
			
		||||
        result_type mean() const {return __mean_;}
 | 
			
		||||
        strong_inline
 | 
			
		||||
        result_type stddev() const {return __stddev_;}
 | 
			
		||||
 | 
			
		||||
        friend strong_inline
 | 
			
		||||
            bool operator==(const param_type& __x, const param_type& __y)
 | 
			
		||||
            {return __x.__mean_ == __y.__mean_ && __x.__stddev_ == __y.__stddev_;}
 | 
			
		||||
        friend strong_inline
 | 
			
		||||
            bool operator!=(const param_type& __x, const param_type& __y)
 | 
			
		||||
            {return !(__x == __y);}
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
    param_type __p_;
 | 
			
		||||
    result_type _V_;
 | 
			
		||||
    bool _V_hot_;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
    // constructors and reset functions
 | 
			
		||||
    strong_inline
 | 
			
		||||
    explicit gaussian_distribution(result_type __mean = 0, result_type __stddev = 1)
 | 
			
		||||
        : __p_(param_type(__mean, __stddev)), _V_hot_(false) {}
 | 
			
		||||
    strong_inline
 | 
			
		||||
    explicit gaussian_distribution(const param_type& __p)
 | 
			
		||||
        : __p_(__p), _V_hot_(false) {}
 | 
			
		||||
    strong_inline
 | 
			
		||||
    void reset() {_V_hot_ = false;}
 | 
			
		||||
 | 
			
		||||
    // generating functions
 | 
			
		||||
    template<class _URNG>
 | 
			
		||||
        strong_inline
 | 
			
		||||
        result_type operator()(_URNG& __g)
 | 
			
		||||
        {return (*this)(__g, __p_);}
 | 
			
		||||
    template<class _URNG> result_type operator()(_URNG& __g, const param_type& __p);
 | 
			
		||||
 | 
			
		||||
    // property functions
 | 
			
		||||
    strong_inline
 | 
			
		||||
    result_type mean() const {return __p_.mean();}
 | 
			
		||||
    strong_inline
 | 
			
		||||
    result_type stddev() const {return __p_.stddev();}
 | 
			
		||||
 | 
			
		||||
    strong_inline
 | 
			
		||||
    param_type param() const {return __p_;}
 | 
			
		||||
    strong_inline
 | 
			
		||||
    void param(const param_type& __p) {__p_ = __p;}
 | 
			
		||||
 | 
			
		||||
    strong_inline
 | 
			
		||||
    result_type min() const {return -std::numeric_limits<result_type>::infinity();}
 | 
			
		||||
    strong_inline
 | 
			
		||||
    result_type max() const {return std::numeric_limits<result_type>::infinity();}
 | 
			
		||||
 | 
			
		||||
    friend strong_inline
 | 
			
		||||
        bool operator==(const gaussian_distribution& __x,
 | 
			
		||||
                        const gaussian_distribution& __y)
 | 
			
		||||
        {return __x.__p_ == __y.__p_ && __x._V_hot_ == __y._V_hot_ &&
 | 
			
		||||
                (!__x._V_hot_ || __x._V_ == __y._V_);}
 | 
			
		||||
    friend strong_inline
 | 
			
		||||
        bool operator!=(const gaussian_distribution& __x,
 | 
			
		||||
                        const gaussian_distribution& __y)
 | 
			
		||||
        {return !(__x == __y);}
 | 
			
		||||
 | 
			
		||||
    template <class _CharT, class _Traits, class _RT>
 | 
			
		||||
    friend
 | 
			
		||||
    std::basic_ostream<_CharT, _Traits>&
 | 
			
		||||
    operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | 
			
		||||
               const gaussian_distribution<_RT>& __x);
 | 
			
		||||
 | 
			
		||||
    template <class _CharT, class _Traits, class _RT>
 | 
			
		||||
    friend
 | 
			
		||||
    std::basic_istream<_CharT, _Traits>&
 | 
			
		||||
    operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | 
			
		||||
               gaussian_distribution<_RT>& __x);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <class _RealType>
 | 
			
		||||
template<class _URNG>
 | 
			
		||||
_RealType
 | 
			
		||||
gaussian_distribution<_RealType>::operator()(_URNG& __g, const param_type& __p)
 | 
			
		||||
{
 | 
			
		||||
    result_type _Up;
 | 
			
		||||
    if (_V_hot_)
 | 
			
		||||
    {
 | 
			
		||||
        _V_hot_ = false;
 | 
			
		||||
        _Up = _V_;
 | 
			
		||||
    }
 | 
			
		||||
    else
 | 
			
		||||
    {
 | 
			
		||||
        std::uniform_real_distribution<result_type> _Uni(-1, 1);
 | 
			
		||||
        result_type __u;
 | 
			
		||||
        result_type __v;
 | 
			
		||||
        result_type __s;
 | 
			
		||||
        do
 | 
			
		||||
        {
 | 
			
		||||
            __u = _Uni(__g);
 | 
			
		||||
            __v = _Uni(__g);
 | 
			
		||||
            __s = __u * __u + __v * __v;
 | 
			
		||||
        } while (__s > 1 || __s == 0);
 | 
			
		||||
        result_type _Fp = std::sqrt(-2 * std::log(__s) / __s);
 | 
			
		||||
        _V_ = __v * _Fp;
 | 
			
		||||
        _V_hot_ = true;
 | 
			
		||||
        _Up = __u * _Fp;
 | 
			
		||||
    }
 | 
			
		||||
    return _Up * __p.stddev() + __p.mean();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class _CharT, class _Traits, class _RT>
 | 
			
		||||
std::basic_ostream<_CharT, _Traits>&
 | 
			
		||||
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | 
			
		||||
           const gaussian_distribution<_RT>& __x)
 | 
			
		||||
{
 | 
			
		||||
    auto __save_flags = __os.flags();
 | 
			
		||||
    __os.flags(std::ios_base::dec | std::ios_base::left | std::ios_base::fixed |
 | 
			
		||||
               std::ios_base::scientific);
 | 
			
		||||
    _CharT __sp = __os.widen(' ');
 | 
			
		||||
    __os.fill(__sp);
 | 
			
		||||
    __os << __x.mean() << __sp << __x.stddev() << __sp << __x._V_hot_;
 | 
			
		||||
    if (__x._V_hot_)
 | 
			
		||||
        __os << __sp << __x._V_;
 | 
			
		||||
    __os.flags(__save_flags);
 | 
			
		||||
    return __os;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class _CharT, class _Traits, class _RT>
 | 
			
		||||
std::basic_istream<_CharT, _Traits>&
 | 
			
		||||
operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | 
			
		||||
           gaussian_distribution<_RT>& __x)
 | 
			
		||||
{
 | 
			
		||||
    typedef gaussian_distribution<_RT> _Eng;
 | 
			
		||||
    typedef typename _Eng::result_type result_type;
 | 
			
		||||
    typedef typename _Eng::param_type param_type;
 | 
			
		||||
    auto __save_flags = __is.flags();
 | 
			
		||||
    __is.flags(std::ios_base::dec | std::ios_base::skipws);
 | 
			
		||||
    result_type __mean;
 | 
			
		||||
    result_type __stddev;
 | 
			
		||||
    result_type _Vp = 0;
 | 
			
		||||
    bool _V_hot = false;
 | 
			
		||||
    __is >> __mean >> __stddev >> _V_hot;
 | 
			
		||||
    if (_V_hot)
 | 
			
		||||
        __is >> _Vp;
 | 
			
		||||
    if (!__is.fail())
 | 
			
		||||
    {
 | 
			
		||||
        __x.param(param_type(__mean, __stddev));
 | 
			
		||||
        __x._V_hot_ = _V_hot;
 | 
			
		||||
        __x._V_ = _Vp;
 | 
			
		||||
    }
 | 
			
		||||
    __is.flags(__save_flags);
 | 
			
		||||
    return __is;
 | 
			
		||||
}
 | 
			
		||||
}
 | 
			
		||||
@@ -208,5 +208,46 @@ void merge(vobj &vec,const ExtractPointerArray<sobj> &extracted, int offset)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
//Copy a single lane of a SIMD tensor type from one object to another
 | 
			
		||||
//Output object must be of the same tensor type but may be of a different precision (i.e. it can have a different root data type)
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class vobjOut, class vobjIn>
 | 
			
		||||
accelerator_inline 
 | 
			
		||||
void copyLane(vobjOut & __restrict__ vecOut, int lane_out, const vobjIn & __restrict__ vecIn, int lane_in)
 | 
			
		||||
{
 | 
			
		||||
  static_assert( std::is_same<typename vobjOut::DoublePrecision, typename vobjIn::DoublePrecision>::value == 1, "copyLane: tensor types must be the same" ); //if tensor types are same the DoublePrecision type must be the same
 | 
			
		||||
 | 
			
		||||
  typedef typename vobjOut::vector_type ovector_type;  
 | 
			
		||||
  typedef typename vobjIn::vector_type ivector_type;  
 | 
			
		||||
  constexpr int owords=sizeof(vobjOut)/sizeof(ovector_type);
 | 
			
		||||
  constexpr int iwords=sizeof(vobjIn)/sizeof(ivector_type);
 | 
			
		||||
  static_assert( owords == iwords, "copyLane: Expected number of vector words in input and output objects to be equal" );
 | 
			
		||||
 | 
			
		||||
  typedef typename vobjOut::scalar_type oscalar_type;  
 | 
			
		||||
  typedef typename vobjIn::scalar_type iscalar_type;  
 | 
			
		||||
  typedef typename ExtractTypeMap<oscalar_type>::extract_type oextract_type;
 | 
			
		||||
  typedef typename ExtractTypeMap<iscalar_type>::extract_type iextract_type;
 | 
			
		||||
 | 
			
		||||
  typedef oextract_type * opointer;
 | 
			
		||||
  typedef iextract_type * ipointer;
 | 
			
		||||
 | 
			
		||||
  constexpr int oNsimd=ovector_type::Nsimd();
 | 
			
		||||
  constexpr int iNsimd=ivector_type::Nsimd();
 | 
			
		||||
 | 
			
		||||
  iscalar_type itmp;
 | 
			
		||||
  oscalar_type otmp;
 | 
			
		||||
 | 
			
		||||
  opointer __restrict__  op = (opointer)&vecOut;
 | 
			
		||||
  ipointer __restrict__  ip = (ipointer)&vecIn;
 | 
			
		||||
  for(int w=0;w<owords;w++){
 | 
			
		||||
    memcpy( (char*)&itmp, (char*)(ip + lane_in + iNsimd*w), sizeof(iscalar_type) );
 | 
			
		||||
    otmp = itmp; //potential precision change
 | 
			
		||||
    memcpy( (char*)(op + lane_out + oNsimd*w), (char*)&otmp, sizeof(oscalar_type) );
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -206,7 +206,8 @@ inline void *acceleratorAllocShared(size_t bytes)
 | 
			
		||||
  auto err = cudaMallocManaged((void **)&ptr,bytes);
 | 
			
		||||
  if( err != cudaSuccess ) {
 | 
			
		||||
    ptr = (void *) NULL;
 | 
			
		||||
    printf(" cudaMallocManaged failed for %d %s \n",bytes,cudaGetErrorString(err));
 | 
			
		||||
    printf(" cudaMallocManaged failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
 | 
			
		||||
    if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
 | 
			
		||||
  }
 | 
			
		||||
  return ptr;
 | 
			
		||||
};
 | 
			
		||||
@@ -216,15 +217,47 @@ inline void *acceleratorAllocDevice(size_t bytes)
 | 
			
		||||
  auto err = cudaMalloc((void **)&ptr,bytes);
 | 
			
		||||
  if( err != cudaSuccess ) {
 | 
			
		||||
    ptr = (void *) NULL;
 | 
			
		||||
    printf(" cudaMalloc failed for %d %s \n",bytes,cudaGetErrorString(err));
 | 
			
		||||
    printf(" cudaMalloc failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
 | 
			
		||||
    if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
 | 
			
		||||
  }
 | 
			
		||||
  return ptr;
 | 
			
		||||
};
 | 
			
		||||
inline void acceleratorFreeShared(void *ptr){ cudaFree(ptr);};
 | 
			
		||||
inline void acceleratorFreeDevice(void *ptr){ cudaFree(ptr);};
 | 
			
		||||
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes)  { cudaMemcpy(to,from,bytes, cudaMemcpyHostToDevice);}
 | 
			
		||||
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ cudaMemcpy(to,from,bytes, cudaMemcpyDeviceToHost);}
 | 
			
		||||
inline void acceleratorMemSet(void *base,int value,size_t bytes) { cudaMemset(base,value,bytes);}
 | 
			
		||||
inline void acceleratorFreeShared(void *ptr){
 | 
			
		||||
  auto err = cudaFree(ptr);
 | 
			
		||||
  if( err != cudaSuccess ) {
 | 
			
		||||
    printf(" cudaFree(Shared) failed %s \n",cudaGetErrorString(err)); fflush(stdout);
 | 
			
		||||
    if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
inline void acceleratorFreeDevice(void *ptr){
 | 
			
		||||
  auto err = cudaFree(ptr);
 | 
			
		||||
  if( err != cudaSuccess ) {
 | 
			
		||||
    printf(" cudaFree(Device) failed %s \n",cudaGetErrorString(err)); fflush(stdout);
 | 
			
		||||
    if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes)  {
 | 
			
		||||
  auto err = cudaMemcpy(to,from,bytes, cudaMemcpyHostToDevice);
 | 
			
		||||
  if( err != cudaSuccess ) {
 | 
			
		||||
    printf(" cudaMemcpy(host->device) failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
 | 
			
		||||
    if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){
 | 
			
		||||
  auto err = cudaMemcpy(to,from,bytes, cudaMemcpyDeviceToHost);
 | 
			
		||||
  if( err != cudaSuccess ) {
 | 
			
		||||
    printf(" cudaMemcpy(device->host) failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
 | 
			
		||||
    if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
inline void acceleratorMemSet(void *base,int value,size_t bytes) {
 | 
			
		||||
  auto err = cudaMemset(base,value,bytes);
 | 
			
		||||
  if( err != cudaSuccess ) {
 | 
			
		||||
    printf(" cudaMemSet failed for %lu %s \n",bytes,cudaGetErrorString(err)); fflush(stdout);
 | 
			
		||||
    if (acceleratorAbortOnGpuError) assert(err==cudaSuccess);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) // Asynch
 | 
			
		||||
{
 | 
			
		||||
  cudaMemcpyAsync(to,from,bytes, cudaMemcpyDeviceToDevice,copyStream);
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										473
									
								
								HMC/DWF2p1fIwasakiGparity.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										473
									
								
								HMC/DWF2p1fIwasakiGparity.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,473 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./HMC/DWF2p1fIwasakiGparity.cc
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015-2016
 | 
			
		||||
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 | 
			
		||||
//2+1f DWF+I ensemble with G-parity BCs
 | 
			
		||||
//designed to reproduce ensembles in https://arxiv.org/pdf/1908.08640.pdf
 | 
			
		||||
struct RatQuoParameters: Serializable {
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(RatQuoParameters,
 | 
			
		||||
				  double, bnd_lo,
 | 
			
		||||
				  double, bnd_hi,
 | 
			
		||||
				  Integer, action_degree,
 | 
			
		||||
				  double, action_tolerance,
 | 
			
		||||
				  Integer, md_degree,
 | 
			
		||||
				  double, md_tolerance,
 | 
			
		||||
				  Integer, reliable_update_freq,
 | 
			
		||||
				  Integer, bnd_check_freq);
 | 
			
		||||
  RatQuoParameters() { 
 | 
			
		||||
    bnd_lo = 1e-2;
 | 
			
		||||
    bnd_hi = 30;
 | 
			
		||||
    action_degree = 10;
 | 
			
		||||
    action_tolerance = 1e-10;
 | 
			
		||||
    md_degree = 10;
 | 
			
		||||
    md_tolerance = 1e-8;
 | 
			
		||||
    bnd_check_freq = 20;
 | 
			
		||||
    reliable_update_freq = 50;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void Export(RationalActionParams &into) const{
 | 
			
		||||
    into.lo = bnd_lo;
 | 
			
		||||
    into.hi = bnd_hi;
 | 
			
		||||
    into.action_degree = action_degree;
 | 
			
		||||
    into.action_tolerance = action_tolerance;
 | 
			
		||||
    into.md_degree = md_degree;
 | 
			
		||||
    into.md_tolerance = md_tolerance;
 | 
			
		||||
    into.BoundsCheckFreq = bnd_check_freq;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
struct EvolParameters: Serializable {
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(EvolParameters,
 | 
			
		||||
                                  Integer, StartTrajectory,
 | 
			
		||||
                                  Integer, Trajectories,
 | 
			
		||||
				  Integer, SaveInterval,
 | 
			
		||||
				  Integer, Steps,
 | 
			
		||||
                                  bool, MetropolisTest,
 | 
			
		||||
				  std::string, StartingType,
 | 
			
		||||
				  std::vector<Integer>, GparityDirs,
 | 
			
		||||
				  RatQuoParameters, rat_quo_l,
 | 
			
		||||
				  RatQuoParameters, rat_quo_s);
 | 
			
		||||
 | 
			
		||||
  EvolParameters() {
 | 
			
		||||
    //For initial thermalization; afterwards user should switch Metropolis on and use StartingType=CheckpointStart
 | 
			
		||||
    MetropolisTest    = false;
 | 
			
		||||
    StartTrajectory   = 0;
 | 
			
		||||
    Trajectories      = 50;
 | 
			
		||||
    SaveInterval = 5;
 | 
			
		||||
    StartingType      = "ColdStart";
 | 
			
		||||
    GparityDirs.resize(3, 1); //1 for G-parity, 0 for periodic
 | 
			
		||||
    Steps = 5;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
bool fileExists(const std::string &fn){
 | 
			
		||||
  std::ifstream f(fn);
 | 
			
		||||
  return f.good();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
struct LanczosParameters: Serializable {
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParameters,
 | 
			
		||||
				  double, alpha,
 | 
			
		||||
				  double, beta,
 | 
			
		||||
				  double, mu,
 | 
			
		||||
				  int, ord,
 | 
			
		||||
				  int, n_stop,
 | 
			
		||||
				  int, n_want,
 | 
			
		||||
				  int, n_use,
 | 
			
		||||
				  double, tolerance);
 | 
			
		||||
 | 
			
		||||
  LanczosParameters() {
 | 
			
		||||
    alpha = 35;
 | 
			
		||||
    beta = 5;
 | 
			
		||||
    mu = 0;
 | 
			
		||||
    ord = 100;
 | 
			
		||||
    n_stop = 10;
 | 
			
		||||
    n_want = 10;
 | 
			
		||||
    n_use = 15;
 | 
			
		||||
    tolerance = 1e-6;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<typename FermionActionD, typename FermionFieldD>
 | 
			
		||||
void computeEigenvalues(std::string param_file,
 | 
			
		||||
			GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt,  //expect lattice to have been initialized to something
 | 
			
		||||
			FermionActionD &action, GridParallelRNG &rng){
 | 
			
		||||
  
 | 
			
		||||
  LanczosParameters params;
 | 
			
		||||
  if(fileExists(param_file)){
 | 
			
		||||
    std::cout << GridLogMessage << " Reading " << param_file << std::endl;
 | 
			
		||||
    Grid::XmlReader rd(param_file);
 | 
			
		||||
    read(rd, "LanczosParameters", params);
 | 
			
		||||
  }else if(!GlobalSharedMemory::WorldRank){
 | 
			
		||||
    std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
 | 
			
		||||
    Grid::XmlWriter wr(param_file + ".templ");
 | 
			
		||||
    write(wr, "LanczosParameters", params);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  FermionFieldD gauss_o(rbGrid);
 | 
			
		||||
  FermionFieldD gauss(Grid);
 | 
			
		||||
  gaussian(rng, gauss);
 | 
			
		||||
  pickCheckerboard(Odd, gauss_o, gauss);
 | 
			
		||||
 | 
			
		||||
  action.ImportGauge(latt);
 | 
			
		||||
 | 
			
		||||
  SchurDiagMooeeOperator<FermionActionD, FermionFieldD> hermop(action);
 | 
			
		||||
  PlainHermOp<FermionFieldD> hermop_wrap(hermop);
 | 
			
		||||
  //ChebyshevLanczos<FermionFieldD> Cheb(params.alpha, params.beta, params.mu, params.ord);
 | 
			
		||||
  assert(params.mu == 0.0);
 | 
			
		||||
 | 
			
		||||
  Chebyshev<FermionFieldD> Cheb(params.beta*params.beta, params.alpha*params.alpha, params.ord+1);
 | 
			
		||||
  FunctionHermOp<FermionFieldD> Cheb_wrap(Cheb, hermop);
 | 
			
		||||
 | 
			
		||||
  std::cout << "IRL: alpha=" << params.alpha << " beta=" << params.beta << " mu=" << params.mu << " ord=" << params.ord << std::endl;
 | 
			
		||||
  ImplicitlyRestartedLanczos<FermionFieldD> IRL(Cheb_wrap, hermop_wrap, params.n_stop, params.n_want, params.n_use, params.tolerance, 10000);
 | 
			
		||||
 | 
			
		||||
  std::vector<RealD> eval(params.n_use);
 | 
			
		||||
  std::vector<FermionFieldD> evec(params.n_use, rbGrid);
 | 
			
		||||
  int Nconv;
 | 
			
		||||
  IRL.calc(eval, evec, gauss_o, Nconv);
 | 
			
		||||
 | 
			
		||||
  std::cout << "Eigenvalues:" << std::endl;
 | 
			
		||||
  for(int i=0;i<params.n_want;i++){
 | 
			
		||||
    std::cout << i << " " << eval[i] << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//Check the quality of the RHMC approx
 | 
			
		||||
template<typename FermionActionD, typename FermionFieldD, typename RHMCtype>
 | 
			
		||||
void checkRHMC(GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt,  //expect lattice to have been initialized to something
 | 
			
		||||
	       FermionActionD &numOp, FermionActionD &denOp, RHMCtype &rhmc, GridParallelRNG &rng,
 | 
			
		||||
	       int inv_pow, const std::string &quark_descr){
 | 
			
		||||
 | 
			
		||||
  FermionFieldD gauss_o(rbGrid);
 | 
			
		||||
  FermionFieldD gauss(Grid);
 | 
			
		||||
  gaussian(rng, gauss);
 | 
			
		||||
  pickCheckerboard(Odd, gauss_o, gauss);
 | 
			
		||||
 | 
			
		||||
  numOp.ImportGauge(latt);
 | 
			
		||||
  denOp.ImportGauge(latt);
 | 
			
		||||
 | 
			
		||||
  typedef typename FermionActionD::Impl_t FermionImplPolicyD;
 | 
			
		||||
  SchurDifferentiableOperator<FermionImplPolicyD> MdagM(numOp);
 | 
			
		||||
  SchurDifferentiableOperator<FermionImplPolicyD> VdagV(denOp);
 | 
			
		||||
      
 | 
			
		||||
  std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
  InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerAction); //use large tolerance to prevent exit on fail; we are trying to tune here!
 | 
			
		||||
  std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
  InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerAction);
 | 
			
		||||
  std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
  InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerAction);
 | 
			
		||||
  std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
  InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerAction);
 | 
			
		||||
  std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << "-------------------------------------------------------------------------------" << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
  InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerMD); 
 | 
			
		||||
  std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
  InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerMD);
 | 
			
		||||
  std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
  InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerMD);
 | 
			
		||||
  std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
  InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerMD);
 | 
			
		||||
  std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
int main(int argc, char **argv) {
 | 
			
		||||
  Grid_init(&argc, &argv);
 | 
			
		||||
  int threads = GridThread::GetThreads();
 | 
			
		||||
  // here make a routine to print all the relevant information on the run
 | 
			
		||||
  std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::string param_file = "params.xml";
 | 
			
		||||
  bool file_load_check = false;
 | 
			
		||||
  for(int i=1;i<argc;i++){
 | 
			
		||||
    std::string sarg(argv[i]);
 | 
			
		||||
    if(sarg == "--param_file"){
 | 
			
		||||
      assert(i!=argc-1);
 | 
			
		||||
      param_file = argv[i+1];
 | 
			
		||||
    }else if(sarg == "--read_check"){ //check the fields load correctly and pass checksum/plaquette repro
 | 
			
		||||
      file_load_check = true;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Read the user parameters
 | 
			
		||||
  EvolParameters user_params;
 | 
			
		||||
  
 | 
			
		||||
  if(fileExists(param_file)){
 | 
			
		||||
    std::cout << GridLogMessage << " Reading " << param_file << std::endl;
 | 
			
		||||
    Grid::XmlReader rd(param_file);
 | 
			
		||||
    read(rd, "Params", user_params);
 | 
			
		||||
  }else if(!GlobalSharedMemory::WorldRank){
 | 
			
		||||
    std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
 | 
			
		||||
    Grid::XmlWriter wr(param_file + ".templ");
 | 
			
		||||
    write(wr, "Params", user_params);
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << " Done" << std::endl;
 | 
			
		||||
    Grid_finalize();
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Check the parameters
 | 
			
		||||
  if(user_params.GparityDirs.size() != Nd-1){
 | 
			
		||||
    std::cerr << "Error in input parameters: expect GparityDirs to have size = " << Nd-1 << std::endl;
 | 
			
		||||
    exit(1);
 | 
			
		||||
  }
 | 
			
		||||
  for(int i=0;i<Nd-1;i++)
 | 
			
		||||
    if(user_params.GparityDirs[i] != 0 && user_params.GparityDirs[i] != 1){
 | 
			
		||||
      std::cerr << "Error in input parameters: expect GparityDirs values to be 0 (periodic) or 1 (G-parity)" << std::endl;
 | 
			
		||||
      exit(1);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
   // Typedefs to simplify notation
 | 
			
		||||
  typedef GparityDomainWallFermionD FermionActionD;
 | 
			
		||||
  typedef typename FermionActionD::Impl_t FermionImplPolicyD;
 | 
			
		||||
  typedef typename FermionActionD::FermionField FermionFieldD;
 | 
			
		||||
 | 
			
		||||
  typedef GparityDomainWallFermionF FermionActionF;
 | 
			
		||||
  typedef typename FermionActionF::Impl_t FermionImplPolicyF;
 | 
			
		||||
  typedef typename FermionActionF::FermionField FermionFieldF;
 | 
			
		||||
 | 
			
		||||
  typedef GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<FermionImplPolicyD,FermionImplPolicyF> MixedPrecRHMC;
 | 
			
		||||
  typedef GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicyD> DoublePrecRHMC;
 | 
			
		||||
 | 
			
		||||
  //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
 | 
			
		||||
  IntegratorParameters MD;
 | 
			
		||||
  typedef ConjugateHMCRunnerD<MinimumNorm2> HMCWrapper; //NB: This is the "Omelyan integrator"
 | 
			
		||||
  typedef HMCWrapper::ImplPolicy GaugeImplPolicy;
 | 
			
		||||
  MD.name    = std::string("MinimumNorm2");
 | 
			
		||||
  MD.MDsteps = user_params.Steps;
 | 
			
		||||
  MD.trajL   = 1.0;
 | 
			
		||||
 | 
			
		||||
  HMCparameters HMCparams;
 | 
			
		||||
  HMCparams.StartTrajectory  = user_params.StartTrajectory;
 | 
			
		||||
  HMCparams.Trajectories     = user_params.Trajectories;
 | 
			
		||||
  HMCparams.NoMetropolisUntil= 0;
 | 
			
		||||
  HMCparams.StartingType     = user_params.StartingType;
 | 
			
		||||
  HMCparams.MetropolisTest = user_params.MetropolisTest;
 | 
			
		||||
  HMCparams.MD = MD;
 | 
			
		||||
  HMCWrapper TheHMC(HMCparams);
 | 
			
		||||
 | 
			
		||||
  // Grid from the command line arguments --grid and --mpi
 | 
			
		||||
  TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
 | 
			
		||||
 | 
			
		||||
  CheckpointerParameters CPparams;
 | 
			
		||||
  CPparams.config_prefix = "ckpoint_lat";
 | 
			
		||||
  CPparams.rng_prefix    = "ckpoint_rng";
 | 
			
		||||
  CPparams.saveInterval  = user_params.SaveInterval;
 | 
			
		||||
  CPparams.format        = "IEEE64BIG";
 | 
			
		||||
  TheHMC.Resources.LoadNerscCheckpointer(CPparams);
 | 
			
		||||
 | 
			
		||||
  //Note that checkpointing saves the RNG state so that this initialization is required only for the very first configuration
 | 
			
		||||
  RNGModuleParameters RNGpar;
 | 
			
		||||
  RNGpar.serial_seeds = "1 2 3 4 5";
 | 
			
		||||
  RNGpar.parallel_seeds = "6 7 8 9 10";
 | 
			
		||||
  TheHMC.Resources.SetRNGSeeds(RNGpar);
 | 
			
		||||
 | 
			
		||||
  typedef PlaquetteMod<GaugeImplPolicy> PlaqObs;
 | 
			
		||||
  TheHMC.Resources.AddObservable<PlaqObs>();
 | 
			
		||||
  //////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  const int Ls      = 16;
 | 
			
		||||
  Real beta         = 2.13;
 | 
			
		||||
  Real light_mass   = 0.01;
 | 
			
		||||
  Real strange_mass = 0.032;
 | 
			
		||||
  Real pv_mass      = 1.0;
 | 
			
		||||
  RealD M5  = 1.8;
 | 
			
		||||
 | 
			
		||||
  //Setup the Grids
 | 
			
		||||
  auto GridPtrD   = TheHMC.Resources.GetCartesian();
 | 
			
		||||
  auto GridRBPtrD = TheHMC.Resources.GetRBCartesian();
 | 
			
		||||
  auto FGridD     = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtrD);
 | 
			
		||||
  auto FrbGridD   = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtrD);
 | 
			
		||||
 | 
			
		||||
  GridCartesian* GridPtrF = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
 | 
			
		||||
  GridRedBlackCartesian* GridRBPtrF = SpaceTimeGrid::makeFourDimRedBlackGrid(GridPtrF);
 | 
			
		||||
  auto FGridF     = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtrF);
 | 
			
		||||
  auto FrbGridF   = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtrF);
 | 
			
		||||
 | 
			
		||||
  ConjugateIwasakiGaugeActionD GaugeAction(beta);
 | 
			
		||||
 | 
			
		||||
  // temporarily need a gauge field
 | 
			
		||||
  LatticeGaugeFieldD Ud(GridPtrD);
 | 
			
		||||
  LatticeGaugeFieldF Uf(GridPtrF);
 | 
			
		||||
 
 | 
			
		||||
  //Setup the BCs
 | 
			
		||||
  FermionActionD::ImplParams Params;
 | 
			
		||||
  for(int i=0;i<Nd-1;i++) Params.twists[i] = user_params.GparityDirs[i]; //G-parity directions
 | 
			
		||||
  Params.twists[Nd-1] = 1; //APBC in time direction
 | 
			
		||||
 | 
			
		||||
  std::vector<int> dirs4(Nd);
 | 
			
		||||
  for(int i=0;i<Nd-1;i++) dirs4[i] = user_params.GparityDirs[i];
 | 
			
		||||
  dirs4[Nd-1] = 0; //periodic gauge BC in time
 | 
			
		||||
 | 
			
		||||
  GaugeImplPolicy::setDirections(dirs4); //gauge BC
 | 
			
		||||
 | 
			
		||||
  //Run optional gauge field checksum checker and exit
 | 
			
		||||
  if(file_load_check){
 | 
			
		||||
    TheHMC.initializeGaugeFieldAndRNGs(Ud);
 | 
			
		||||
    std::cout << GridLogMessage << " Done" << std::endl;
 | 
			
		||||
    Grid_finalize();
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  // Collect actions
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  ActionLevel<HMCWrapper::Field> Level1(1); //light quark + strange quark
 | 
			
		||||
  ActionLevel<HMCWrapper::Field> Level2(8); //gauge (8 increments per step)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  // Light action
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  FermionActionD Numerator_lD(Ud,*FGridD,*FrbGridD,*GridPtrD,*GridRBPtrD, light_mass,M5,Params);
 | 
			
		||||
  FermionActionD Denominator_lD(Ud,*FGridD,*FrbGridD,*GridPtrD,*GridRBPtrD, pv_mass,M5,Params);
 | 
			
		||||
 | 
			
		||||
  FermionActionF Numerator_lF(Uf,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF, light_mass,M5,Params);
 | 
			
		||||
  FermionActionF Denominator_lF(Uf,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF, pv_mass,M5,Params);
 | 
			
		||||
 | 
			
		||||
  RationalActionParams rat_act_params_l;
 | 
			
		||||
  rat_act_params_l.inv_pow  = 2; // (M^dag M)^{1/2}
 | 
			
		||||
  rat_act_params_l.precision= 60;
 | 
			
		||||
  rat_act_params_l.MaxIter  = 10000;
 | 
			
		||||
  user_params.rat_quo_l.Export(rat_act_params_l);
 | 
			
		||||
  std::cout << GridLogMessage << " Light quark bounds check every " << rat_act_params_l.BoundsCheckFreq << " trajectories (avg)" << std::endl;
 | 
			
		||||
 
 | 
			
		||||
  MixedPrecRHMC Quotient_l(Denominator_lD, Numerator_lD, Denominator_lF, Numerator_lF, rat_act_params_l, user_params.rat_quo_l.reliable_update_freq);
 | 
			
		||||
  //DoublePrecRHMC Quotient_l(Denominator_lD, Numerator_lD, rat_act_params_l);
 | 
			
		||||
  Level1.push_back(&Quotient_l);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  // Strange action
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  FermionActionD Numerator_sD(Ud,*FGridD,*FrbGridD,*GridPtrD,*GridRBPtrD,strange_mass,M5,Params);
 | 
			
		||||
  FermionActionD Denominator_sD(Ud,*FGridD,*FrbGridD,*GridPtrD,*GridRBPtrD, pv_mass,M5,Params);
 | 
			
		||||
 | 
			
		||||
  FermionActionF Numerator_sF(Uf,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,strange_mass,M5,Params);
 | 
			
		||||
  FermionActionF Denominator_sF(Uf,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF, pv_mass,M5,Params);
 | 
			
		||||
 | 
			
		||||
  RationalActionParams rat_act_params_s;
 | 
			
		||||
  rat_act_params_s.inv_pow  = 4; // (M^dag M)^{1/4}
 | 
			
		||||
  rat_act_params_s.precision= 60;
 | 
			
		||||
  rat_act_params_s.MaxIter  = 10000;
 | 
			
		||||
  user_params.rat_quo_s.Export(rat_act_params_s);
 | 
			
		||||
  std::cout << GridLogMessage << " Heavy quark bounds check every " << rat_act_params_l.BoundsCheckFreq << " trajectories (avg)" << std::endl;
 | 
			
		||||
 | 
			
		||||
  MixedPrecRHMC Quotient_s(Denominator_sD, Numerator_sD, Denominator_sF, Numerator_sF, rat_act_params_s, user_params.rat_quo_s.reliable_update_freq); 
 | 
			
		||||
  //DoublePrecRHMC Quotient_s(Denominator_sD, Numerator_sD, rat_act_params_s); 
 | 
			
		||||
  Level1.push_back(&Quotient_s);  
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  // Gauge action
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  Level2.push_back(&GaugeAction);
 | 
			
		||||
  TheHMC.TheAction.push_back(Level1);
 | 
			
		||||
  TheHMC.TheAction.push_back(Level2);
 | 
			
		||||
  std::cout << GridLogMessage << " Action complete "<< std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //Action tuning
 | 
			
		||||
  bool tune_rhmc_l=false, tune_rhmc_s=false, eigenrange_l=false, eigenrange_s=false; 
 | 
			
		||||
  std::string lanc_params_l, lanc_params_s;
 | 
			
		||||
  for(int i=1;i<argc;i++){
 | 
			
		||||
    std::string sarg(argv[i]);
 | 
			
		||||
    if(sarg == "--tune_rhmc_l") tune_rhmc_l=true;
 | 
			
		||||
    else if(sarg == "--tune_rhmc_s") tune_rhmc_s=true;
 | 
			
		||||
    else if(sarg == "--eigenrange_l"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      eigenrange_l=true;
 | 
			
		||||
      lanc_params_l = argv[i+1];
 | 
			
		||||
    }
 | 
			
		||||
    else if(sarg == "--eigenrange_s"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      eigenrange_s=true;
 | 
			
		||||
      lanc_params_s = argv[i+1];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  if(tune_rhmc_l || tune_rhmc_s || eigenrange_l || eigenrange_s){
 | 
			
		||||
    TheHMC.initializeGaugeFieldAndRNGs(Ud);
 | 
			
		||||
    if(eigenrange_l) computeEigenvalues<FermionActionD, FermionFieldD>(lanc_params_l, FGridD, FrbGridD, Ud, Numerator_lD, TheHMC.Resources.GetParallelRNG());
 | 
			
		||||
    if(eigenrange_s) computeEigenvalues<FermionActionD, FermionFieldD>(lanc_params_s, FGridD, FrbGridD, Ud, Numerator_sD, TheHMC.Resources.GetParallelRNG());
 | 
			
		||||
    if(tune_rhmc_l) checkRHMC<FermionActionD, FermionFieldD, decltype(Quotient_l)>(FGridD, FrbGridD, Ud, Numerator_lD, Denominator_lD, Quotient_l, TheHMC.Resources.GetParallelRNG(), 2, "light");
 | 
			
		||||
    if(tune_rhmc_s) checkRHMC<FermionActionD, FermionFieldD, decltype(Quotient_s)>(FGridD, FrbGridD, Ud, Numerator_sD, Denominator_sD, Quotient_s, TheHMC.Resources.GetParallelRNG(), 4, "strange");
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << " Done" << std::endl;
 | 
			
		||||
    Grid_finalize();
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //Run the HMC
 | 
			
		||||
  std::cout << GridLogMessage << " Running the HMC "<< std::endl;
 | 
			
		||||
  TheHMC.Run();
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << " Done" << std::endl;
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
  return 0;
 | 
			
		||||
} // main
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										473
									
								
								HMC/DWF2p1fIwasakiGparityRHMCdouble.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										473
									
								
								HMC/DWF2p1fIwasakiGparityRHMCdouble.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,473 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./HMC/DWF2p1fIwasakiGparity.cc
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015-2016
 | 
			
		||||
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 | 
			
		||||
//2+1f DWF+I ensemble with G-parity BCs
 | 
			
		||||
//designed to reproduce ensembles in https://arxiv.org/pdf/1908.08640.pdf
 | 
			
		||||
struct RatQuoParameters: Serializable {
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(RatQuoParameters,
 | 
			
		||||
				  double, bnd_lo,
 | 
			
		||||
				  double, bnd_hi,
 | 
			
		||||
				  Integer, action_degree,
 | 
			
		||||
				  double, action_tolerance,
 | 
			
		||||
				  Integer, md_degree,
 | 
			
		||||
				  double, md_tolerance,
 | 
			
		||||
				  Integer, reliable_update_freq,
 | 
			
		||||
				  Integer, bnd_check_freq);
 | 
			
		||||
  RatQuoParameters() { 
 | 
			
		||||
    bnd_lo = 1e-2;
 | 
			
		||||
    bnd_hi = 30;
 | 
			
		||||
    action_degree = 10;
 | 
			
		||||
    action_tolerance = 1e-10;
 | 
			
		||||
    md_degree = 10;
 | 
			
		||||
    md_tolerance = 1e-8;
 | 
			
		||||
    bnd_check_freq = 20;
 | 
			
		||||
    reliable_update_freq = 50;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void Export(RationalActionParams &into) const{
 | 
			
		||||
    into.lo = bnd_lo;
 | 
			
		||||
    into.hi = bnd_hi;
 | 
			
		||||
    into.action_degree = action_degree;
 | 
			
		||||
    into.action_tolerance = action_tolerance;
 | 
			
		||||
    into.md_degree = md_degree;
 | 
			
		||||
    into.md_tolerance = md_tolerance;
 | 
			
		||||
    into.BoundsCheckFreq = bnd_check_freq;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
struct EvolParameters: Serializable {
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(EvolParameters,
 | 
			
		||||
                                  Integer, StartTrajectory,
 | 
			
		||||
                                  Integer, Trajectories,
 | 
			
		||||
				  Integer, SaveInterval,
 | 
			
		||||
				  Integer, Steps,
 | 
			
		||||
                                  bool, MetropolisTest,
 | 
			
		||||
				  std::string, StartingType,
 | 
			
		||||
				  std::vector<Integer>, GparityDirs,
 | 
			
		||||
				  RatQuoParameters, rat_quo_l,
 | 
			
		||||
				  RatQuoParameters, rat_quo_s);
 | 
			
		||||
 | 
			
		||||
  EvolParameters() {
 | 
			
		||||
    //For initial thermalization; afterwards user should switch Metropolis on and use StartingType=CheckpointStart
 | 
			
		||||
    MetropolisTest    = false;
 | 
			
		||||
    StartTrajectory   = 0;
 | 
			
		||||
    Trajectories      = 50;
 | 
			
		||||
    SaveInterval = 5;
 | 
			
		||||
    StartingType      = "ColdStart";
 | 
			
		||||
    GparityDirs.resize(3, 1); //1 for G-parity, 0 for periodic
 | 
			
		||||
    Steps = 5;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
bool fileExists(const std::string &fn){
 | 
			
		||||
  std::ifstream f(fn);
 | 
			
		||||
  return f.good();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
struct LanczosParameters: Serializable {
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParameters,
 | 
			
		||||
				  double, alpha,
 | 
			
		||||
				  double, beta,
 | 
			
		||||
				  double, mu,
 | 
			
		||||
				  int, ord,
 | 
			
		||||
				  int, n_stop,
 | 
			
		||||
				  int, n_want,
 | 
			
		||||
				  int, n_use,
 | 
			
		||||
				  double, tolerance);
 | 
			
		||||
 | 
			
		||||
  LanczosParameters() {
 | 
			
		||||
    alpha = 35;
 | 
			
		||||
    beta = 5;
 | 
			
		||||
    mu = 0;
 | 
			
		||||
    ord = 100;
 | 
			
		||||
    n_stop = 10;
 | 
			
		||||
    n_want = 10;
 | 
			
		||||
    n_use = 15;
 | 
			
		||||
    tolerance = 1e-6;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<typename FermionActionD, typename FermionFieldD>
 | 
			
		||||
void computeEigenvalues(std::string param_file,
 | 
			
		||||
			GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt,  //expect lattice to have been initialized to something
 | 
			
		||||
			FermionActionD &action, GridParallelRNG &rng){
 | 
			
		||||
  
 | 
			
		||||
  LanczosParameters params;
 | 
			
		||||
  if(fileExists(param_file)){
 | 
			
		||||
    std::cout << GridLogMessage << " Reading " << param_file << std::endl;
 | 
			
		||||
    Grid::XmlReader rd(param_file);
 | 
			
		||||
    read(rd, "LanczosParameters", params);
 | 
			
		||||
  }else if(!GlobalSharedMemory::WorldRank){
 | 
			
		||||
    std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
 | 
			
		||||
    Grid::XmlWriter wr(param_file + ".templ");
 | 
			
		||||
    write(wr, "LanczosParameters", params);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  FermionFieldD gauss_o(rbGrid);
 | 
			
		||||
  FermionFieldD gauss(Grid);
 | 
			
		||||
  gaussian(rng, gauss);
 | 
			
		||||
  pickCheckerboard(Odd, gauss_o, gauss);
 | 
			
		||||
 | 
			
		||||
  action.ImportGauge(latt);
 | 
			
		||||
 | 
			
		||||
  SchurDiagMooeeOperator<FermionActionD, FermionFieldD> hermop(action);
 | 
			
		||||
  PlainHermOp<FermionFieldD> hermop_wrap(hermop);
 | 
			
		||||
  //ChebyshevLanczos<FermionFieldD> Cheb(params.alpha, params.beta, params.mu, params.ord);
 | 
			
		||||
  assert(params.mu == 0.0);
 | 
			
		||||
 | 
			
		||||
  Chebyshev<FermionFieldD> Cheb(params.beta*params.beta, params.alpha*params.alpha, params.ord+1);
 | 
			
		||||
  FunctionHermOp<FermionFieldD> Cheb_wrap(Cheb, hermop);
 | 
			
		||||
 | 
			
		||||
  std::cout << "IRL: alpha=" << params.alpha << " beta=" << params.beta << " mu=" << params.mu << " ord=" << params.ord << std::endl;
 | 
			
		||||
  ImplicitlyRestartedLanczos<FermionFieldD> IRL(Cheb_wrap, hermop_wrap, params.n_stop, params.n_want, params.n_use, params.tolerance, 10000);
 | 
			
		||||
 | 
			
		||||
  std::vector<RealD> eval(params.n_use);
 | 
			
		||||
  std::vector<FermionFieldD> evec(params.n_use, rbGrid);
 | 
			
		||||
  int Nconv;
 | 
			
		||||
  IRL.calc(eval, evec, gauss_o, Nconv);
 | 
			
		||||
 | 
			
		||||
  std::cout << "Eigenvalues:" << std::endl;
 | 
			
		||||
  for(int i=0;i<params.n_want;i++){
 | 
			
		||||
    std::cout << i << " " << eval[i] << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//Check the quality of the RHMC approx
 | 
			
		||||
template<typename FermionActionD, typename FermionFieldD, typename RHMCtype>
 | 
			
		||||
void checkRHMC(GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt,  //expect lattice to have been initialized to something
 | 
			
		||||
	       FermionActionD &numOp, FermionActionD &denOp, RHMCtype &rhmc, GridParallelRNG &rng,
 | 
			
		||||
	       int inv_pow, const std::string &quark_descr){
 | 
			
		||||
 | 
			
		||||
  FermionFieldD gauss_o(rbGrid);
 | 
			
		||||
  FermionFieldD gauss(Grid);
 | 
			
		||||
  gaussian(rng, gauss);
 | 
			
		||||
  pickCheckerboard(Odd, gauss_o, gauss);
 | 
			
		||||
 | 
			
		||||
  numOp.ImportGauge(latt);
 | 
			
		||||
  denOp.ImportGauge(latt);
 | 
			
		||||
 | 
			
		||||
  typedef typename FermionActionD::Impl_t FermionImplPolicyD;
 | 
			
		||||
  SchurDifferentiableOperator<FermionImplPolicyD> MdagM(numOp);
 | 
			
		||||
  SchurDifferentiableOperator<FermionImplPolicyD> VdagV(denOp);
 | 
			
		||||
      
 | 
			
		||||
  std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
  InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerAction); //use large tolerance to prevent exit on fail; we are trying to tune here!
 | 
			
		||||
  std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
  InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerAction);
 | 
			
		||||
  std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
  InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerAction);
 | 
			
		||||
  std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
  InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerAction);
 | 
			
		||||
  std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << "-------------------------------------------------------------------------------" << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
  InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerMD); 
 | 
			
		||||
  std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
  InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerMD);
 | 
			
		||||
  std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
  InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerMD);
 | 
			
		||||
  std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
  InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerMD);
 | 
			
		||||
  std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
int main(int argc, char **argv) {
 | 
			
		||||
  Grid_init(&argc, &argv);
 | 
			
		||||
  int threads = GridThread::GetThreads();
 | 
			
		||||
  // here make a routine to print all the relevant information on the run
 | 
			
		||||
  std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::string param_file = "params.xml";
 | 
			
		||||
  bool file_load_check = false;
 | 
			
		||||
  for(int i=1;i<argc;i++){
 | 
			
		||||
    std::string sarg(argv[i]);
 | 
			
		||||
    if(sarg == "--param_file"){
 | 
			
		||||
      assert(i!=argc-1);
 | 
			
		||||
      param_file = argv[i+1];
 | 
			
		||||
    }else if(sarg == "--read_check"){ //check the fields load correctly and pass checksum/plaquette repro
 | 
			
		||||
      file_load_check = true;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Read the user parameters
 | 
			
		||||
  EvolParameters user_params;
 | 
			
		||||
  
 | 
			
		||||
  if(fileExists(param_file)){
 | 
			
		||||
    std::cout << GridLogMessage << " Reading " << param_file << std::endl;
 | 
			
		||||
    Grid::XmlReader rd(param_file);
 | 
			
		||||
    read(rd, "Params", user_params);
 | 
			
		||||
  }else if(!GlobalSharedMemory::WorldRank){
 | 
			
		||||
    std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
 | 
			
		||||
    Grid::XmlWriter wr(param_file + ".templ");
 | 
			
		||||
    write(wr, "Params", user_params);
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << " Done" << std::endl;
 | 
			
		||||
    Grid_finalize();
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Check the parameters
 | 
			
		||||
  if(user_params.GparityDirs.size() != Nd-1){
 | 
			
		||||
    std::cerr << "Error in input parameters: expect GparityDirs to have size = " << Nd-1 << std::endl;
 | 
			
		||||
    exit(1);
 | 
			
		||||
  }
 | 
			
		||||
  for(int i=0;i<Nd-1;i++)
 | 
			
		||||
    if(user_params.GparityDirs[i] != 0 && user_params.GparityDirs[i] != 1){
 | 
			
		||||
      std::cerr << "Error in input parameters: expect GparityDirs values to be 0 (periodic) or 1 (G-parity)" << std::endl;
 | 
			
		||||
      exit(1);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
   // Typedefs to simplify notation
 | 
			
		||||
  typedef GparityDomainWallFermionD FermionActionD;
 | 
			
		||||
  typedef typename FermionActionD::Impl_t FermionImplPolicyD;
 | 
			
		||||
  typedef typename FermionActionD::FermionField FermionFieldD;
 | 
			
		||||
 | 
			
		||||
  typedef GparityDomainWallFermionF FermionActionF;
 | 
			
		||||
  typedef typename FermionActionF::Impl_t FermionImplPolicyF;
 | 
			
		||||
  typedef typename FermionActionF::FermionField FermionFieldF;
 | 
			
		||||
 | 
			
		||||
  typedef GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<FermionImplPolicyD,FermionImplPolicyF> MixedPrecRHMC;
 | 
			
		||||
  typedef GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicyD> DoublePrecRHMC;
 | 
			
		||||
 | 
			
		||||
  //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
 | 
			
		||||
  IntegratorParameters MD;
 | 
			
		||||
  typedef ConjugateHMCRunnerD<MinimumNorm2> HMCWrapper; //NB: This is the "Omelyan integrator"
 | 
			
		||||
  typedef HMCWrapper::ImplPolicy GaugeImplPolicy;
 | 
			
		||||
  MD.name    = std::string("MinimumNorm2");
 | 
			
		||||
  MD.MDsteps = user_params.Steps;
 | 
			
		||||
  MD.trajL   = 1.0;
 | 
			
		||||
 | 
			
		||||
  HMCparameters HMCparams;
 | 
			
		||||
  HMCparams.StartTrajectory  = user_params.StartTrajectory;
 | 
			
		||||
  HMCparams.Trajectories     = user_params.Trajectories;
 | 
			
		||||
  HMCparams.NoMetropolisUntil= 0;
 | 
			
		||||
  HMCparams.StartingType     = user_params.StartingType;
 | 
			
		||||
  HMCparams.MetropolisTest = user_params.MetropolisTest;
 | 
			
		||||
  HMCparams.MD = MD;
 | 
			
		||||
  HMCWrapper TheHMC(HMCparams);
 | 
			
		||||
 | 
			
		||||
  // Grid from the command line arguments --grid and --mpi
 | 
			
		||||
  TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
 | 
			
		||||
 | 
			
		||||
  CheckpointerParameters CPparams;
 | 
			
		||||
  CPparams.config_prefix = "ckpoint_lat";
 | 
			
		||||
  CPparams.rng_prefix    = "ckpoint_rng";
 | 
			
		||||
  CPparams.saveInterval  = user_params.SaveInterval;
 | 
			
		||||
  CPparams.format        = "IEEE64BIG";
 | 
			
		||||
  TheHMC.Resources.LoadNerscCheckpointer(CPparams);
 | 
			
		||||
 | 
			
		||||
  //Note that checkpointing saves the RNG state so that this initialization is required only for the very first configuration
 | 
			
		||||
  RNGModuleParameters RNGpar;
 | 
			
		||||
  RNGpar.serial_seeds = "1 2 3 4 5";
 | 
			
		||||
  RNGpar.parallel_seeds = "6 7 8 9 10";
 | 
			
		||||
  TheHMC.Resources.SetRNGSeeds(RNGpar);
 | 
			
		||||
 | 
			
		||||
  typedef PlaquetteMod<GaugeImplPolicy> PlaqObs;
 | 
			
		||||
  TheHMC.Resources.AddObservable<PlaqObs>();
 | 
			
		||||
  //////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  const int Ls      = 16;
 | 
			
		||||
  Real beta         = 2.13;
 | 
			
		||||
  Real light_mass   = 0.01;
 | 
			
		||||
  Real strange_mass = 0.032;
 | 
			
		||||
  Real pv_mass      = 1.0;
 | 
			
		||||
  RealD M5  = 1.8;
 | 
			
		||||
 | 
			
		||||
  //Setup the Grids
 | 
			
		||||
  auto GridPtrD   = TheHMC.Resources.GetCartesian();
 | 
			
		||||
  auto GridRBPtrD = TheHMC.Resources.GetRBCartesian();
 | 
			
		||||
  auto FGridD     = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtrD);
 | 
			
		||||
  auto FrbGridD   = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtrD);
 | 
			
		||||
 | 
			
		||||
  GridCartesian* GridPtrF = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
 | 
			
		||||
  GridRedBlackCartesian* GridRBPtrF = SpaceTimeGrid::makeFourDimRedBlackGrid(GridPtrF);
 | 
			
		||||
  auto FGridF     = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtrF);
 | 
			
		||||
  auto FrbGridF   = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtrF);
 | 
			
		||||
 | 
			
		||||
  ConjugateIwasakiGaugeActionD GaugeAction(beta);
 | 
			
		||||
 | 
			
		||||
  // temporarily need a gauge field
 | 
			
		||||
  LatticeGaugeFieldD Ud(GridPtrD);
 | 
			
		||||
  LatticeGaugeFieldF Uf(GridPtrF);
 | 
			
		||||
 
 | 
			
		||||
  //Setup the BCs
 | 
			
		||||
  FermionActionD::ImplParams Params;
 | 
			
		||||
  for(int i=0;i<Nd-1;i++) Params.twists[i] = user_params.GparityDirs[i]; //G-parity directions
 | 
			
		||||
  Params.twists[Nd-1] = 1; //APBC in time direction
 | 
			
		||||
 | 
			
		||||
  std::vector<int> dirs4(Nd);
 | 
			
		||||
  for(int i=0;i<Nd-1;i++) dirs4[i] = user_params.GparityDirs[i];
 | 
			
		||||
  dirs4[Nd-1] = 0; //periodic gauge BC in time
 | 
			
		||||
 | 
			
		||||
  GaugeImplPolicy::setDirections(dirs4); //gauge BC
 | 
			
		||||
 | 
			
		||||
  //Run optional gauge field checksum checker and exit
 | 
			
		||||
  if(file_load_check){
 | 
			
		||||
    TheHMC.initializeGaugeFieldAndRNGs(Ud);
 | 
			
		||||
    std::cout << GridLogMessage << " Done" << std::endl;
 | 
			
		||||
    Grid_finalize();
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  // Collect actions
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  ActionLevel<HMCWrapper::Field> Level1(1); //light quark + strange quark
 | 
			
		||||
  ActionLevel<HMCWrapper::Field> Level2(8); //gauge (8 increments per step)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  // Light action
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  FermionActionD Numerator_lD(Ud,*FGridD,*FrbGridD,*GridPtrD,*GridRBPtrD, light_mass,M5,Params);
 | 
			
		||||
  FermionActionD Denominator_lD(Ud,*FGridD,*FrbGridD,*GridPtrD,*GridRBPtrD, pv_mass,M5,Params);
 | 
			
		||||
 | 
			
		||||
  FermionActionF Numerator_lF(Uf,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF, light_mass,M5,Params);
 | 
			
		||||
  FermionActionF Denominator_lF(Uf,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF, pv_mass,M5,Params);
 | 
			
		||||
 | 
			
		||||
  RationalActionParams rat_act_params_l;
 | 
			
		||||
  rat_act_params_l.inv_pow  = 2; // (M^dag M)^{1/2}
 | 
			
		||||
  rat_act_params_l.precision= 60;
 | 
			
		||||
  rat_act_params_l.MaxIter  = 10000;
 | 
			
		||||
  user_params.rat_quo_l.Export(rat_act_params_l);
 | 
			
		||||
  std::cout << GridLogMessage << " Light quark bounds check every " << rat_act_params_l.BoundsCheckFreq << " trajectories (avg)" << std::endl;
 | 
			
		||||
 
 | 
			
		||||
  //MixedPrecRHMC Quotient_l(Denominator_lD, Numerator_lD, Denominator_lF, Numerator_lF, rat_act_params_l, user_params.rat_quo_l.reliable_update_freq);
 | 
			
		||||
  DoublePrecRHMC Quotient_l(Denominator_lD, Numerator_lD, rat_act_params_l);
 | 
			
		||||
  Level1.push_back(&Quotient_l);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  // Strange action
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  FermionActionD Numerator_sD(Ud,*FGridD,*FrbGridD,*GridPtrD,*GridRBPtrD,strange_mass,M5,Params);
 | 
			
		||||
  FermionActionD Denominator_sD(Ud,*FGridD,*FrbGridD,*GridPtrD,*GridRBPtrD, pv_mass,M5,Params);
 | 
			
		||||
 | 
			
		||||
  FermionActionF Numerator_sF(Uf,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,strange_mass,M5,Params);
 | 
			
		||||
  FermionActionF Denominator_sF(Uf,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF, pv_mass,M5,Params);
 | 
			
		||||
 | 
			
		||||
  RationalActionParams rat_act_params_s;
 | 
			
		||||
  rat_act_params_s.inv_pow  = 4; // (M^dag M)^{1/4}
 | 
			
		||||
  rat_act_params_s.precision= 60;
 | 
			
		||||
  rat_act_params_s.MaxIter  = 10000;
 | 
			
		||||
  user_params.rat_quo_s.Export(rat_act_params_s);
 | 
			
		||||
  std::cout << GridLogMessage << " Heavy quark bounds check every " << rat_act_params_l.BoundsCheckFreq << " trajectories (avg)" << std::endl;
 | 
			
		||||
 | 
			
		||||
  //MixedPrecRHMC Quotient_s(Denominator_sD, Numerator_sD, Denominator_sF, Numerator_sF, rat_act_params_s, user_params.rat_quo_s.reliable_update_freq); 
 | 
			
		||||
  DoublePrecRHMC Quotient_s(Denominator_sD, Numerator_sD, rat_act_params_s); 
 | 
			
		||||
  Level1.push_back(&Quotient_s);  
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  // Gauge action
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  Level2.push_back(&GaugeAction);
 | 
			
		||||
  TheHMC.TheAction.push_back(Level1);
 | 
			
		||||
  TheHMC.TheAction.push_back(Level2);
 | 
			
		||||
  std::cout << GridLogMessage << " Action complete "<< std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //Action tuning
 | 
			
		||||
  bool tune_rhmc_l=false, tune_rhmc_s=false, eigenrange_l=false, eigenrange_s=false; 
 | 
			
		||||
  std::string lanc_params_l, lanc_params_s;
 | 
			
		||||
  for(int i=1;i<argc;i++){
 | 
			
		||||
    std::string sarg(argv[i]);
 | 
			
		||||
    if(sarg == "--tune_rhmc_l") tune_rhmc_l=true;
 | 
			
		||||
    else if(sarg == "--tune_rhmc_s") tune_rhmc_s=true;
 | 
			
		||||
    else if(sarg == "--eigenrange_l"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      eigenrange_l=true;
 | 
			
		||||
      lanc_params_l = argv[i+1];
 | 
			
		||||
    }
 | 
			
		||||
    else if(sarg == "--eigenrange_s"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      eigenrange_s=true;
 | 
			
		||||
      lanc_params_s = argv[i+1];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  if(tune_rhmc_l || tune_rhmc_s || eigenrange_l || eigenrange_s){
 | 
			
		||||
    TheHMC.initializeGaugeFieldAndRNGs(Ud);
 | 
			
		||||
    if(eigenrange_l) computeEigenvalues<FermionActionD, FermionFieldD>(lanc_params_l, FGridD, FrbGridD, Ud, Numerator_lD, TheHMC.Resources.GetParallelRNG());
 | 
			
		||||
    if(eigenrange_s) computeEigenvalues<FermionActionD, FermionFieldD>(lanc_params_s, FGridD, FrbGridD, Ud, Numerator_sD, TheHMC.Resources.GetParallelRNG());
 | 
			
		||||
    if(tune_rhmc_l) checkRHMC<FermionActionD, FermionFieldD, decltype(Quotient_l)>(FGridD, FrbGridD, Ud, Numerator_lD, Denominator_lD, Quotient_l, TheHMC.Resources.GetParallelRNG(), 2, "light");
 | 
			
		||||
    if(tune_rhmc_s) checkRHMC<FermionActionD, FermionFieldD, decltype(Quotient_s)>(FGridD, FrbGridD, Ud, Numerator_sD, Denominator_sD, Quotient_s, TheHMC.Resources.GetParallelRNG(), 4, "strange");
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << " Done" << std::endl;
 | 
			
		||||
    Grid_finalize();
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //Run the HMC
 | 
			
		||||
  std::cout << GridLogMessage << " Running the HMC "<< std::endl;
 | 
			
		||||
  TheHMC.Run();
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << " Done" << std::endl;
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
  return 0;
 | 
			
		||||
} // main
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										765
									
								
								HMC/Mobius2p1fIDSDRGparityEOFA.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										765
									
								
								HMC/Mobius2p1fIDSDRGparityEOFA.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,765 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./HMC/Mobius2p1fIDSDRGparityEOFA.cc
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015-2016
 | 
			
		||||
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 | 
			
		||||
//We try to reproduce with G-parity BCs the 246 MeV 1.37 GeV ensemble
 | 
			
		||||
//To speed things up we will use Mobius DWF with b+c=32/12 and Ls=12 to match the Ls=32 of the original
 | 
			
		||||
//These parameters match those used in the 2020 K->pipi paper
 | 
			
		||||
 | 
			
		||||
struct RatQuoParameters: Serializable {
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(RatQuoParameters,
 | 
			
		||||
				  double, bnd_lo,
 | 
			
		||||
				  double, bnd_hi,
 | 
			
		||||
				  Integer, action_degree,
 | 
			
		||||
				  double, action_tolerance,
 | 
			
		||||
				  Integer, md_degree,
 | 
			
		||||
				  double, md_tolerance,
 | 
			
		||||
				  Integer, reliable_update_freq,
 | 
			
		||||
				  Integer, bnd_check_freq);
 | 
			
		||||
  RatQuoParameters() { 
 | 
			
		||||
    bnd_lo = 1e-2;
 | 
			
		||||
    bnd_hi = 30;
 | 
			
		||||
    action_degree = 10;
 | 
			
		||||
    action_tolerance = 1e-10;
 | 
			
		||||
    md_degree = 10;
 | 
			
		||||
    md_tolerance = 1e-8;
 | 
			
		||||
    bnd_check_freq = 20;
 | 
			
		||||
    reliable_update_freq = 50;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void Export(RationalActionParams &into) const{
 | 
			
		||||
    into.lo = bnd_lo;
 | 
			
		||||
    into.hi = bnd_hi;
 | 
			
		||||
    into.action_degree = action_degree;
 | 
			
		||||
    into.action_tolerance = action_tolerance;
 | 
			
		||||
    into.md_degree = md_degree;
 | 
			
		||||
    into.md_tolerance = md_tolerance;
 | 
			
		||||
    into.BoundsCheckFreq = bnd_check_freq;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct EOFAparameters: Serializable {
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(EOFAparameters,
 | 
			
		||||
				  OneFlavourRationalParams, rat_params,
 | 
			
		||||
				  double, action_tolerance,
 | 
			
		||||
				  double, action_mixcg_inner_tolerance,
 | 
			
		||||
				  double, md_tolerance,
 | 
			
		||||
				  double, md_mixcg_inner_tolerance);
 | 
			
		||||
 | 
			
		||||
  EOFAparameters() { 
 | 
			
		||||
    action_mixcg_inner_tolerance = 1e-8;
 | 
			
		||||
    action_tolerance = 1e-10;
 | 
			
		||||
    md_tolerance = 1e-8;
 | 
			
		||||
    md_mixcg_inner_tolerance = 1e-8;
 | 
			
		||||
 | 
			
		||||
    rat_params.lo = 0.1;
 | 
			
		||||
    rat_params.hi = 25.0;
 | 
			
		||||
    rat_params.MaxIter  = 10000;
 | 
			
		||||
    rat_params.tolerance= 1.0e-9;
 | 
			
		||||
    rat_params.degree   = 14;
 | 
			
		||||
    rat_params.precision= 50;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct EvolParameters: Serializable {
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(EvolParameters,
 | 
			
		||||
                                  Integer, StartTrajectory,
 | 
			
		||||
                                  Integer, Trajectories,
 | 
			
		||||
				  Integer, SaveInterval,
 | 
			
		||||
				  Integer, Steps,
 | 
			
		||||
                                  bool, MetropolisTest,
 | 
			
		||||
				  std::string, StartingType,
 | 
			
		||||
				  std::vector<Integer>, GparityDirs,
 | 
			
		||||
				  EOFAparameters, eofa_l,
 | 
			
		||||
				  RatQuoParameters, rat_quo_s,
 | 
			
		||||
				  RatQuoParameters, rat_quo_DSDR);
 | 
			
		||||
 | 
			
		||||
  EvolParameters() {
 | 
			
		||||
    //For initial thermalization; afterwards user should switch Metropolis on and use StartingType=CheckpointStart
 | 
			
		||||
    MetropolisTest    = false;
 | 
			
		||||
    StartTrajectory   = 0;
 | 
			
		||||
    Trajectories      = 50;
 | 
			
		||||
    SaveInterval = 5;
 | 
			
		||||
    StartingType      = "ColdStart";
 | 
			
		||||
    GparityDirs.resize(3, 1); //1 for G-parity, 0 for periodic
 | 
			
		||||
    Steps = 5;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
bool fileExists(const std::string &fn){
 | 
			
		||||
  std::ifstream f(fn);
 | 
			
		||||
  return f.good();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
struct LanczosParameters: Serializable {
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParameters,
 | 
			
		||||
				  double, alpha,
 | 
			
		||||
				  double, beta,
 | 
			
		||||
				  double, mu,
 | 
			
		||||
				  int, ord,
 | 
			
		||||
				  int, n_stop,
 | 
			
		||||
				  int, n_want,
 | 
			
		||||
				  int, n_use,
 | 
			
		||||
				  double, tolerance);
 | 
			
		||||
 | 
			
		||||
  LanczosParameters() {
 | 
			
		||||
    alpha = 35;
 | 
			
		||||
    beta = 5;
 | 
			
		||||
    mu = 0;
 | 
			
		||||
    ord = 100;
 | 
			
		||||
    n_stop = 10;
 | 
			
		||||
    n_want = 10;
 | 
			
		||||
    n_use = 15;
 | 
			
		||||
    tolerance = 1e-6;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<typename FermionActionD, typename FermionFieldD>
 | 
			
		||||
void computeEigenvalues(std::string param_file,
 | 
			
		||||
			GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt,  //expect lattice to have been initialized to something
 | 
			
		||||
			FermionActionD &action, GridParallelRNG &rng){
 | 
			
		||||
  
 | 
			
		||||
  LanczosParameters params;
 | 
			
		||||
  if(fileExists(param_file)){
 | 
			
		||||
    std::cout << GridLogMessage << " Reading " << param_file << std::endl;
 | 
			
		||||
    Grid::XmlReader rd(param_file);
 | 
			
		||||
    read(rd, "LanczosParameters", params);
 | 
			
		||||
  }else if(!GlobalSharedMemory::WorldRank){
 | 
			
		||||
    std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
 | 
			
		||||
    Grid::XmlWriter wr(param_file + ".templ");
 | 
			
		||||
    write(wr, "LanczosParameters", params);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  FermionFieldD gauss_o(rbGrid);
 | 
			
		||||
  FermionFieldD gauss(Grid);
 | 
			
		||||
  gaussian(rng, gauss);
 | 
			
		||||
  pickCheckerboard(Odd, gauss_o, gauss);
 | 
			
		||||
 | 
			
		||||
  action.ImportGauge(latt);
 | 
			
		||||
 | 
			
		||||
  SchurDiagMooeeOperator<FermionActionD, FermionFieldD> hermop(action);
 | 
			
		||||
  PlainHermOp<FermionFieldD> hermop_wrap(hermop);
 | 
			
		||||
  //ChebyshevLanczos<FermionFieldD> Cheb(params.alpha, params.beta, params.mu, params.ord);
 | 
			
		||||
  assert(params.mu == 0.0);
 | 
			
		||||
 | 
			
		||||
  Chebyshev<FermionFieldD> Cheb(params.beta*params.beta, params.alpha*params.alpha, params.ord+1);
 | 
			
		||||
  FunctionHermOp<FermionFieldD> Cheb_wrap(Cheb, hermop);
 | 
			
		||||
 | 
			
		||||
  std::cout << "IRL: alpha=" << params.alpha << " beta=" << params.beta << " mu=" << params.mu << " ord=" << params.ord << std::endl;
 | 
			
		||||
  ImplicitlyRestartedLanczos<FermionFieldD> IRL(Cheb_wrap, hermop_wrap, params.n_stop, params.n_want, params.n_use, params.tolerance, 10000);
 | 
			
		||||
 | 
			
		||||
  std::vector<RealD> eval(params.n_use);
 | 
			
		||||
  std::vector<FermionFieldD> evec(params.n_use, rbGrid);
 | 
			
		||||
  int Nconv;
 | 
			
		||||
  IRL.calc(eval, evec, gauss_o, Nconv);
 | 
			
		||||
 | 
			
		||||
  std::cout << "Eigenvalues:" << std::endl;
 | 
			
		||||
  for(int i=0;i<params.n_want;i++){
 | 
			
		||||
    std::cout << i << " " << eval[i] << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//Check the quality of the RHMC approx
 | 
			
		||||
//action_or_md toggles checking the action (0), MD (1) or both (2) setups
 | 
			
		||||
template<typename FermionActionD, typename FermionFieldD, typename RHMCtype>
 | 
			
		||||
void checkRHMC(GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt,  //expect lattice to have been initialized to something
 | 
			
		||||
	       FermionActionD &numOp, FermionActionD &denOp, RHMCtype &rhmc, GridParallelRNG &rng,
 | 
			
		||||
	       int inv_pow, const std::string &quark_descr, int action_or_md){
 | 
			
		||||
  assert(action_or_md == 0 || action_or_md == 1 || action_or_md == 2);
 | 
			
		||||
  
 | 
			
		||||
  FermionFieldD gauss_o(rbGrid);
 | 
			
		||||
  FermionFieldD gauss(Grid);
 | 
			
		||||
  gaussian(rng, gauss);
 | 
			
		||||
  pickCheckerboard(Odd, gauss_o, gauss);
 | 
			
		||||
 | 
			
		||||
  numOp.ImportGauge(latt);
 | 
			
		||||
  denOp.ImportGauge(latt);
 | 
			
		||||
 | 
			
		||||
  typedef typename FermionActionD::Impl_t FermionImplPolicyD;
 | 
			
		||||
  SchurDifferentiableOperator<FermionImplPolicyD> MdagM(numOp);
 | 
			
		||||
  SchurDifferentiableOperator<FermionImplPolicyD> VdagV(denOp);
 | 
			
		||||
 | 
			
		||||
  PowerMethod<FermionFieldD> power_method;
 | 
			
		||||
  RealD lambda_max;
 | 
			
		||||
 | 
			
		||||
  std::cout << "Starting: Get RHMC high bound approx for " << quark_descr << " numerator" << std::endl;
 | 
			
		||||
 | 
			
		||||
  lambda_max = power_method(MdagM,gauss_o);
 | 
			
		||||
  std::cout << GridLogMessage << "Got lambda_max "<<lambda_max<<std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << "Starting: Get RHMC high bound approx for " << quark_descr << " denominator" << std::endl;
 | 
			
		||||
  lambda_max = power_method(VdagV,gauss_o);
 | 
			
		||||
  std::cout << GridLogMessage << "Got lambda_max "<<lambda_max<<std::endl;
 | 
			
		||||
 | 
			
		||||
  if(action_or_md == 0 || action_or_md == 2){
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerAction); //use large tolerance to prevent exit on fail; we are trying to tune here!
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerAction);
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerAction);
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerAction);
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  std::cout << "-------------------------------------------------------------------------------" << std::endl;
 | 
			
		||||
 | 
			
		||||
  if(action_or_md == 1 || action_or_md == 2){
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerMD); 
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerMD);
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerMD);
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerMD);
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<typename FermionImplPolicy>
 | 
			
		||||
void checkEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
 | 
			
		||||
	       GridCartesian* FGrid, GridParallelRNG &rng, const LatticeGaugeFieldD &latt){
 | 
			
		||||
  std::cout << GridLogMessage << "Starting EOFA action/bounds check" << std::endl;
 | 
			
		||||
  typename FermionImplPolicy::FermionField eta(FGrid);
 | 
			
		||||
  RealD scale = std::sqrt(0.5);
 | 
			
		||||
  gaussian(rng,eta); eta = eta * scale;
 | 
			
		||||
 | 
			
		||||
  //Use the inbuilt check
 | 
			
		||||
  EOFA.refresh(latt, eta);
 | 
			
		||||
  EOFA.S(latt);
 | 
			
		||||
  std::cout << GridLogMessage << "Finished EOFA upper action/bounds check" << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<typename FermionImplPolicy>
 | 
			
		||||
class EOFAlinop: public LinearOperatorBase<typename FermionImplPolicy::FermionField>{
 | 
			
		||||
  ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA;
 | 
			
		||||
  LatticeGaugeFieldD &U;
 | 
			
		||||
public:
 | 
			
		||||
  EOFAlinop(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA, LatticeGaugeFieldD &U): EOFA(EOFA), U(U){}
 | 
			
		||||
 | 
			
		||||
  typedef typename FermionImplPolicy::FermionField Field;
 | 
			
		||||
  void OpDiag (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp){ assert(0); }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){ assert(0); } 
 | 
			
		||||
 | 
			
		||||
  void Op     (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void AdjOp  (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
 | 
			
		||||
  void HermOp(const Field &in, Field &out){ EOFA.Meofa(U, in, out); }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<typename FermionImplPolicy>
 | 
			
		||||
void upperBoundEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
 | 
			
		||||
		    GridCartesian* FGrid, GridParallelRNG &rng, LatticeGaugeFieldD &latt){
 | 
			
		||||
  std::cout << GridLogMessage << "Starting EOFA upper bound compute" << std::endl;
 | 
			
		||||
  EOFAlinop<FermionImplPolicy> linop(EOFA, latt);
 | 
			
		||||
  typename FermionImplPolicy::FermionField eta(FGrid);
 | 
			
		||||
  gaussian(rng,eta);
 | 
			
		||||
  PowerMethod<typename FermionImplPolicy::FermionField> power_method;
 | 
			
		||||
  auto lambda_max = power_method(linop,eta);
 | 
			
		||||
  std::cout << GridLogMessage << "Upper bound of EOFA operator " << lambda_max << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//Applications of M^{-1} cost the same as M for EOFA!
 | 
			
		||||
template<typename FermionImplPolicy>
 | 
			
		||||
class EOFAinvLinop: public LinearOperatorBase<typename FermionImplPolicy::FermionField>{
 | 
			
		||||
  ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA;
 | 
			
		||||
  LatticeGaugeFieldD &U;
 | 
			
		||||
public:
 | 
			
		||||
  EOFAinvLinop(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA, LatticeGaugeFieldD &U): EOFA(EOFA), U(U){}
 | 
			
		||||
 | 
			
		||||
  typedef typename FermionImplPolicy::FermionField Field;
 | 
			
		||||
  void OpDiag (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp){ assert(0); }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){ assert(0); } 
 | 
			
		||||
 | 
			
		||||
  void Op     (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void AdjOp  (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
 | 
			
		||||
  void HermOp(const Field &in, Field &out){ EOFA.MeofaInv(U, in, out); }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<typename FermionImplPolicy>
 | 
			
		||||
void lowerBoundEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
 | 
			
		||||
		    GridCartesian* FGrid, GridParallelRNG &rng, LatticeGaugeFieldD &latt){
 | 
			
		||||
  std::cout << GridLogMessage << "Starting EOFA lower bound compute using power method on M^{-1}. Inverse of highest eigenvalue is the lowest eigenvalue of M" << std::endl;
 | 
			
		||||
  EOFAinvLinop<FermionImplPolicy> linop(EOFA, latt);
 | 
			
		||||
  typename FermionImplPolicy::FermionField eta(FGrid);
 | 
			
		||||
  gaussian(rng,eta);
 | 
			
		||||
  PowerMethod<typename FermionImplPolicy::FermionField> power_method;
 | 
			
		||||
  auto lambda_max = power_method(linop,eta);
 | 
			
		||||
  std::cout << GridLogMessage << "Lower bound of EOFA operator " << 1./lambda_max << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
  template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class  SchurOperatorF> 
 | 
			
		||||
  class MixedPrecisionConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
 | 
			
		||||
  public:
 | 
			
		||||
    typedef typename FermionOperatorD::FermionField FieldD;
 | 
			
		||||
    typedef typename FermionOperatorF::FermionField FieldF;
 | 
			
		||||
 | 
			
		||||
    using OperatorFunction<FieldD>::operator();
 | 
			
		||||
 | 
			
		||||
    RealD   Tolerance;
 | 
			
		||||
    RealD   InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
 | 
			
		||||
    Integer MaxInnerIterations;
 | 
			
		||||
    Integer MaxOuterIterations;
 | 
			
		||||
    GridBase* SinglePrecGrid4; //Grid for single-precision fields
 | 
			
		||||
    GridBase* SinglePrecGrid5; //Grid for single-precision fields
 | 
			
		||||
    RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
 | 
			
		||||
 | 
			
		||||
    FermionOperatorF &FermOpF;
 | 
			
		||||
    FermionOperatorD &FermOpD;;
 | 
			
		||||
    SchurOperatorF &LinOpF;
 | 
			
		||||
    SchurOperatorD &LinOpD;
 | 
			
		||||
 | 
			
		||||
    Integer TotalInnerIterations; //Number of inner CG iterations
 | 
			
		||||
    Integer TotalOuterIterations; //Number of restarts
 | 
			
		||||
    Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
 | 
			
		||||
 | 
			
		||||
    MixedPrecisionConjugateGradientOperatorFunction(RealD tol, 
 | 
			
		||||
						    Integer maxinnerit, 
 | 
			
		||||
						    Integer maxouterit, 
 | 
			
		||||
						    GridBase* _sp_grid4, 
 | 
			
		||||
						    GridBase* _sp_grid5, 
 | 
			
		||||
						    FermionOperatorF &_FermOpF,
 | 
			
		||||
						    FermionOperatorD &_FermOpD,
 | 
			
		||||
						    SchurOperatorF   &_LinOpF,
 | 
			
		||||
						    SchurOperatorD   &_LinOpD): 
 | 
			
		||||
      LinOpF(_LinOpF),
 | 
			
		||||
      LinOpD(_LinOpD),
 | 
			
		||||
      FermOpF(_FermOpF),
 | 
			
		||||
      FermOpD(_FermOpD),
 | 
			
		||||
      Tolerance(tol), 
 | 
			
		||||
      InnerTolerance(tol), 
 | 
			
		||||
      MaxInnerIterations(maxinnerit), 
 | 
			
		||||
      MaxOuterIterations(maxouterit), 
 | 
			
		||||
      SinglePrecGrid4(_sp_grid4),
 | 
			
		||||
      SinglePrecGrid5(_sp_grid5),
 | 
			
		||||
      OuterLoopNormMult(100.) 
 | 
			
		||||
    { 
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << " Mixed precision CG wrapper operator() "<<std::endl;
 | 
			
		||||
 | 
			
		||||
      SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
 | 
			
		||||
      assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
 | 
			
		||||
 | 
			
		||||
      precisionChange(FermOpF.Umu, FermOpD.Umu);
 | 
			
		||||
 | 
			
		||||
      pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
 | 
			
		||||
      pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
      // Make a mixed precision conjugate gradient
 | 
			
		||||
      ////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
      MixedPrecisionConjugateGradient<FieldD,FieldF> MPCG(Tolerance,MaxInnerIterations,MaxOuterIterations,SinglePrecGrid5,LinOpF,LinOpD);
 | 
			
		||||
      MPCG.InnerTolerance = InnerTolerance;
 | 
			
		||||
      std::cout << GridLogMessage << "Calling mixed precision Conjugate Gradient" <<std::endl;
 | 
			
		||||
      MPCG(src,psi);
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
int main(int argc, char **argv) {
 | 
			
		||||
  Grid_init(&argc, &argv);
 | 
			
		||||
  int threads = GridThread::GetThreads();
 | 
			
		||||
  // here make a routine to print all the relevant information on the run
 | 
			
		||||
  std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::string param_file = "params.xml";
 | 
			
		||||
  bool file_load_check = false;
 | 
			
		||||
  for(int i=1;i<argc;i++){
 | 
			
		||||
    std::string sarg(argv[i]);
 | 
			
		||||
    if(sarg == "--param_file"){
 | 
			
		||||
      assert(i!=argc-1);
 | 
			
		||||
      param_file = argv[i+1];
 | 
			
		||||
    }else if(sarg == "--read_check"){ //check the fields load correctly and pass checksum/plaquette repro
 | 
			
		||||
      file_load_check = true;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Read the user parameters
 | 
			
		||||
  EvolParameters user_params;
 | 
			
		||||
  
 | 
			
		||||
  if(fileExists(param_file)){
 | 
			
		||||
    std::cout << GridLogMessage << " Reading " << param_file << std::endl;
 | 
			
		||||
    Grid::XmlReader rd(param_file);
 | 
			
		||||
    read(rd, "Params", user_params);
 | 
			
		||||
  }else if(!GlobalSharedMemory::WorldRank){
 | 
			
		||||
    std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
 | 
			
		||||
    {
 | 
			
		||||
      Grid::XmlWriter wr(param_file + ".templ");
 | 
			
		||||
      write(wr, "Params", user_params);
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << " Done" << std::endl;
 | 
			
		||||
    Grid_finalize();
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Check the parameters
 | 
			
		||||
  if(user_params.GparityDirs.size() != Nd-1){
 | 
			
		||||
    std::cerr << "Error in input parameters: expect GparityDirs to have size = " << Nd-1 << std::endl;
 | 
			
		||||
    exit(1);
 | 
			
		||||
  }
 | 
			
		||||
  for(int i=0;i<Nd-1;i++)
 | 
			
		||||
    if(user_params.GparityDirs[i] != 0 && user_params.GparityDirs[i] != 1){
 | 
			
		||||
      std::cerr << "Error in input parameters: expect GparityDirs values to be 0 (periodic) or 1 (G-parity)" << std::endl;
 | 
			
		||||
      exit(1);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  typedef GparityMobiusEOFAFermionD EOFAactionD;
 | 
			
		||||
  typedef GparityMobiusFermionD FermionActionD;
 | 
			
		||||
  typedef typename FermionActionD::Impl_t FermionImplPolicyD;
 | 
			
		||||
  typedef typename FermionActionD::FermionField FermionFieldD;
 | 
			
		||||
 | 
			
		||||
  typedef GparityMobiusEOFAFermionF EOFAactionF;
 | 
			
		||||
  typedef GparityMobiusFermionF FermionActionF;
 | 
			
		||||
  typedef typename FermionActionF::Impl_t FermionImplPolicyF;
 | 
			
		||||
  typedef typename FermionActionF::FermionField FermionFieldF;
 | 
			
		||||
 | 
			
		||||
  typedef GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<FermionImplPolicyD,FermionImplPolicyF> MixedPrecRHMC;
 | 
			
		||||
  typedef GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicyD> DoublePrecRHMC;
 | 
			
		||||
 | 
			
		||||
  //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
 | 
			
		||||
  IntegratorParameters MD;
 | 
			
		||||
  typedef ConjugateHMCRunnerD<MinimumNorm2> HMCWrapper; //NB: This is the "Omelyan integrator"
 | 
			
		||||
  typedef HMCWrapper::ImplPolicy GaugeImplPolicy;
 | 
			
		||||
  MD.name    = std::string("MinimumNorm2");
 | 
			
		||||
  MD.MDsteps = user_params.Steps;
 | 
			
		||||
  MD.trajL   = 1.0;
 | 
			
		||||
 | 
			
		||||
  HMCparameters HMCparams;
 | 
			
		||||
  HMCparams.StartTrajectory  = user_params.StartTrajectory;
 | 
			
		||||
  HMCparams.Trajectories     = user_params.Trajectories;
 | 
			
		||||
  HMCparams.NoMetropolisUntil= 0;
 | 
			
		||||
  HMCparams.StartingType     = user_params.StartingType;
 | 
			
		||||
  HMCparams.MetropolisTest = user_params.MetropolisTest;
 | 
			
		||||
  HMCparams.MD = MD;
 | 
			
		||||
  HMCWrapper TheHMC(HMCparams);
 | 
			
		||||
 | 
			
		||||
  // Grid from the command line arguments --grid and --mpi
 | 
			
		||||
  TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
 | 
			
		||||
 | 
			
		||||
  CheckpointerParameters CPparams;
 | 
			
		||||
  CPparams.config_prefix = "ckpoint_lat";
 | 
			
		||||
  CPparams.rng_prefix    = "ckpoint_rng";
 | 
			
		||||
  CPparams.saveInterval  = user_params.SaveInterval;
 | 
			
		||||
  CPparams.format        = "IEEE64BIG";
 | 
			
		||||
  TheHMC.Resources.LoadNerscCheckpointer(CPparams);
 | 
			
		||||
 | 
			
		||||
  //Note that checkpointing saves the RNG state so that this initialization is required only for the very first configuration
 | 
			
		||||
  RNGModuleParameters RNGpar;
 | 
			
		||||
  RNGpar.serial_seeds = "1 2 3 4 5";
 | 
			
		||||
  RNGpar.parallel_seeds = "6 7 8 9 10";
 | 
			
		||||
  TheHMC.Resources.SetRNGSeeds(RNGpar);
 | 
			
		||||
 | 
			
		||||
  typedef PlaquetteMod<GaugeImplPolicy> PlaqObs;
 | 
			
		||||
  TheHMC.Resources.AddObservable<PlaqObs>();
 | 
			
		||||
  //////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  const int Ls      = 12;
 | 
			
		||||
  Real beta         = 1.75;
 | 
			
		||||
  Real light_mass   = 0.0042; //240 MeV
 | 
			
		||||
  Real strange_mass = 0.045;
 | 
			
		||||
  Real pv_mass      = 1.0;
 | 
			
		||||
  RealD M5  = 1.8;
 | 
			
		||||
  RealD mobius_scale = 32./12.; //b+c
 | 
			
		||||
 | 
			
		||||
  RealD mob_bmc = 1.0;
 | 
			
		||||
  RealD mob_b = (mobius_scale + mob_bmc)/2.;
 | 
			
		||||
  RealD mob_c = (mobius_scale - mob_bmc)/2.;
 | 
			
		||||
 | 
			
		||||
  //Setup the Grids
 | 
			
		||||
  auto UGridD   = TheHMC.Resources.GetCartesian();
 | 
			
		||||
  auto UrbGridD = TheHMC.Resources.GetRBCartesian();
 | 
			
		||||
  auto FGridD     = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridD);
 | 
			
		||||
  auto FrbGridD   = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridD);
 | 
			
		||||
 | 
			
		||||
  GridCartesian* UGridF = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
 | 
			
		||||
  GridRedBlackCartesian* UrbGridF = SpaceTimeGrid::makeFourDimRedBlackGrid(UGridF);
 | 
			
		||||
  auto FGridF     = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridF);
 | 
			
		||||
  auto FrbGridF   = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridF);
 | 
			
		||||
 | 
			
		||||
  ConjugateIwasakiGaugeActionD GaugeAction(beta);
 | 
			
		||||
 | 
			
		||||
  // temporarily need a gauge field
 | 
			
		||||
  LatticeGaugeFieldD Ud(UGridD);
 | 
			
		||||
  LatticeGaugeFieldF Uf(UGridF);
 | 
			
		||||
 
 | 
			
		||||
  //Setup the BCs
 | 
			
		||||
  FermionActionD::ImplParams Params;
 | 
			
		||||
  for(int i=0;i<Nd-1;i++) Params.twists[i] = user_params.GparityDirs[i]; //G-parity directions
 | 
			
		||||
  Params.twists[Nd-1] = 1; //APBC in time direction
 | 
			
		||||
 | 
			
		||||
  std::vector<int> dirs4(Nd);
 | 
			
		||||
  for(int i=0;i<Nd-1;i++) dirs4[i] = user_params.GparityDirs[i];
 | 
			
		||||
  dirs4[Nd-1] = 0; //periodic gauge BC in time
 | 
			
		||||
 | 
			
		||||
  GaugeImplPolicy::setDirections(dirs4); //gauge BC
 | 
			
		||||
 | 
			
		||||
  //Run optional gauge field checksum checker and exit
 | 
			
		||||
  if(file_load_check){
 | 
			
		||||
    TheHMC.initializeGaugeFieldAndRNGs(Ud);
 | 
			
		||||
    std::cout << GridLogMessage << " Done" << std::endl;
 | 
			
		||||
    Grid_finalize();
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  // Collect actions
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  ActionLevel<HMCWrapper::Field> Level1(1); //light quark + strange quark
 | 
			
		||||
  ActionLevel<HMCWrapper::Field> Level2(1); //DSDR
 | 
			
		||||
  ActionLevel<HMCWrapper::Field> Level3(8); //gauge (8 increments per step)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  // Light EOFA action
 | 
			
		||||
  // have to be careful with the parameters, cf. Test_dwf_gpforce_eofa.cc
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  EOFAactionD LopD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, light_mass, light_mass, pv_mass, 0.0, -1, M5, mob_b, mob_c, Params);
 | 
			
		||||
  EOFAactionF LopF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, light_mass, light_mass, pv_mass, 0.0, -1, M5, mob_b, mob_c, Params);
 | 
			
		||||
  EOFAactionD RopD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, pv_mass, light_mass, pv_mass, -1.0, 1, M5, mob_b, mob_c, Params);
 | 
			
		||||
  EOFAactionF RopF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, pv_mass, light_mass, pv_mass, -1.0, 1, M5, mob_b, mob_c, Params);
 | 
			
		||||
 | 
			
		||||
  typedef SchurDiagMooeeOperator<EOFAactionD,FermionFieldD> EOFAschuropD;
 | 
			
		||||
  typedef SchurDiagMooeeOperator<EOFAactionF,FermionFieldF> EOFAschuropF;
 | 
			
		||||
  
 | 
			
		||||
  EOFAschuropD linopL_D(LopD);
 | 
			
		||||
  EOFAschuropD linopR_D(RopD);
 | 
			
		||||
 | 
			
		||||
  EOFAschuropF linopL_F(LopF);
 | 
			
		||||
  EOFAschuropF linopR_F(RopF);
 | 
			
		||||
 | 
			
		||||
  typedef MixedPrecisionConjugateGradientOperatorFunction<EOFAactionD, EOFAactionF, EOFAschuropD, EOFAschuropF> EOFA_mxCG;
 | 
			
		||||
 | 
			
		||||
  EOFA_mxCG ActionMCG_L(user_params.eofa_l.action_tolerance, 10000, 1000, UGridF, FrbGridF, LopF, LopD, linopL_F, linopL_D);
 | 
			
		||||
  ActionMCG_L.InnerTolerance = user_params.eofa_l.action_mixcg_inner_tolerance;
 | 
			
		||||
  
 | 
			
		||||
  EOFA_mxCG ActionMCG_R(user_params.eofa_l.action_tolerance, 10000, 1000, UGridF, FrbGridF, RopF, RopD, linopR_F, linopR_D);
 | 
			
		||||
  ActionMCG_R.InnerTolerance = user_params.eofa_l.action_mixcg_inner_tolerance;
 | 
			
		||||
 | 
			
		||||
  EOFA_mxCG DerivMCG_L(user_params.eofa_l.md_tolerance, 10000, 1000, UGridF, FrbGridF, LopF, LopD, linopL_F, linopL_D);
 | 
			
		||||
  DerivMCG_L.InnerTolerance = user_params.eofa_l.md_mixcg_inner_tolerance;
 | 
			
		||||
 | 
			
		||||
  EOFA_mxCG DerivMCG_R(user_params.eofa_l.md_tolerance, 10000, 1000, UGridF, FrbGridF, RopF, RopD, linopR_F, linopR_D);
 | 
			
		||||
  DerivMCG_R.InnerTolerance = user_params.eofa_l.md_mixcg_inner_tolerance;
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "Set EOFA action solver action tolerance outer=" << ActionMCG_L.Tolerance << " inner=" << ActionMCG_L.InnerTolerance << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Set EOFA MD solver tolerance outer=" << DerivMCG_L.Tolerance << " inner=" << DerivMCG_L.InnerTolerance << std::endl;
 | 
			
		||||
 | 
			
		||||
  ConjugateGradient<FermionFieldD>      ActionCG(user_params.eofa_l.action_tolerance, 10000);
 | 
			
		||||
  ConjugateGradient<FermionFieldD>  DerivativeCG(user_params.eofa_l.md_tolerance, 10000);
 | 
			
		||||
 | 
			
		||||
  // ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicyD> EOFA(LopD, RopD, 
 | 
			
		||||
  // 								   ActionCG, ActionCG, ActionCG, 
 | 
			
		||||
  // 								   DerivativeCG, DerivativeCG, 
 | 
			
		||||
  // 								   user_params.eofa_l.rat_params, true);
 | 
			
		||||
 | 
			
		||||
  // ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicyD> EOFA(LopD, RopD, 
 | 
			
		||||
  // 								   ActionMCG_L, ActionMCG_R, 
 | 
			
		||||
  // 								   ActionMCG_L, ActionMCG_R, 
 | 
			
		||||
  // 								   DerivMCG_L, DerivMCG_R, 
 | 
			
		||||
  // 								   user_params.eofa_l.rat_params, true);
 | 
			
		||||
 | 
			
		||||
  ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction<FermionImplPolicyD, FermionImplPolicyF> EOFA(LopF, RopF,
 | 
			
		||||
													LopD, RopD, 
 | 
			
		||||
													ActionMCG_L, ActionMCG_R, 
 | 
			
		||||
													ActionMCG_L, ActionMCG_R, 
 | 
			
		||||
													DerivMCG_L, DerivMCG_R, 
 | 
			
		||||
													user_params.eofa_l.rat_params, true);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  Level1.push_back(&EOFA);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  // Strange action
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  FermionActionD Numerator_sD(Ud,*FGridD,*FrbGridD,*UGridD,*UrbGridD,strange_mass,M5,mob_b,mob_c,Params);
 | 
			
		||||
  FermionActionD Denominator_sD(Ud,*FGridD,*FrbGridD,*UGridD,*UrbGridD, pv_mass,M5,mob_b,mob_c,Params);
 | 
			
		||||
 | 
			
		||||
  FermionActionF Numerator_sF(Uf,*FGridF,*FrbGridF,*UGridF,*UrbGridF,strange_mass,M5,mob_b,mob_c,Params);
 | 
			
		||||
  FermionActionF Denominator_sF(Uf,*FGridF,*FrbGridF,*UGridF,*UrbGridF, pv_mass,M5,mob_b,mob_c,Params);
 | 
			
		||||
 | 
			
		||||
  RationalActionParams rat_act_params_s;
 | 
			
		||||
  rat_act_params_s.inv_pow  = 4; // (M^dag M)^{1/4}
 | 
			
		||||
  rat_act_params_s.precision= 60;
 | 
			
		||||
  rat_act_params_s.MaxIter  = 10000;
 | 
			
		||||
  user_params.rat_quo_s.Export(rat_act_params_s);
 | 
			
		||||
  std::cout << GridLogMessage << " Heavy quark bounds check every " << rat_act_params_s.BoundsCheckFreq << " trajectories (avg)" << std::endl;
 | 
			
		||||
 | 
			
		||||
  //MixedPrecRHMC Quotient_s(Denominator_sD, Numerator_sD, Denominator_sF, Numerator_sF, rat_act_params_s, user_params.rat_quo_s.reliable_update_freq); 
 | 
			
		||||
  DoublePrecRHMC Quotient_s(Denominator_sD, Numerator_sD, rat_act_params_s); 
 | 
			
		||||
  Level1.push_back(&Quotient_s);  
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////
 | 
			
		||||
  // DSDR action
 | 
			
		||||
  ///////////////////////////////////
 | 
			
		||||
  RealD dsdr_mass=-1.8;   
 | 
			
		||||
  //Use same DSDR twists as https://arxiv.org/pdf/1208.4412.pdf
 | 
			
		||||
  RealD dsdr_epsilon_f = 0.02; //numerator (in determinant)
 | 
			
		||||
  RealD dsdr_epsilon_b = 0.5; 
 | 
			
		||||
  GparityWilsonTMFermionD Numerator_DSDR_D(Ud, *UGridD, *UrbGridD, dsdr_mass, dsdr_epsilon_f, Params);
 | 
			
		||||
  GparityWilsonTMFermionF Numerator_DSDR_F(Uf, *UGridF, *UrbGridF, dsdr_mass, dsdr_epsilon_f, Params);
 | 
			
		||||
 | 
			
		||||
  GparityWilsonTMFermionD Denominator_DSDR_D(Ud, *UGridD, *UrbGridD, dsdr_mass, dsdr_epsilon_b, Params);
 | 
			
		||||
  GparityWilsonTMFermionF Denominator_DSDR_F(Uf, *UGridF, *UrbGridF, dsdr_mass, dsdr_epsilon_b, Params);
 | 
			
		||||
 
 | 
			
		||||
  RationalActionParams rat_act_params_DSDR;
 | 
			
		||||
  rat_act_params_DSDR.inv_pow  = 2; // (M^dag M)^{1/2}
 | 
			
		||||
  rat_act_params_DSDR.precision= 60;
 | 
			
		||||
  rat_act_params_DSDR.MaxIter  = 10000;
 | 
			
		||||
  user_params.rat_quo_DSDR.Export(rat_act_params_DSDR);
 | 
			
		||||
  std::cout << GridLogMessage << "DSDR quark bounds check every " << rat_act_params_DSDR.BoundsCheckFreq << " trajectories (avg)" << std::endl;
 | 
			
		||||
 | 
			
		||||
  DoublePrecRHMC Quotient_DSDR(Denominator_DSDR_D, Numerator_DSDR_D, rat_act_params_DSDR);
 | 
			
		||||
  Level2.push_back(&Quotient_DSDR);
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  // Gauge action
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  Level3.push_back(&GaugeAction);
 | 
			
		||||
 | 
			
		||||
  TheHMC.TheAction.push_back(Level1);
 | 
			
		||||
  TheHMC.TheAction.push_back(Level2);
 | 
			
		||||
  TheHMC.TheAction.push_back(Level3);
 | 
			
		||||
  std::cout << GridLogMessage << " Action complete "<< std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //Action tuning
 | 
			
		||||
  bool 
 | 
			
		||||
    tune_rhmc_s=false, eigenrange_s=false, 
 | 
			
		||||
    tune_rhmc_DSDR=false, eigenrange_DSDR=false, 
 | 
			
		||||
    check_eofa=false, 
 | 
			
		||||
    upper_bound_eofa=false, lower_bound_eofa(false);
 | 
			
		||||
 | 
			
		||||
  std::string lanc_params_s;
 | 
			
		||||
  std::string lanc_params_DSDR;
 | 
			
		||||
  int tune_rhmc_s_action_or_md;
 | 
			
		||||
  int tune_rhmc_DSDR_action_or_md;
 | 
			
		||||
 | 
			
		||||
  for(int i=1;i<argc;i++){
 | 
			
		||||
    std::string sarg(argv[i]);
 | 
			
		||||
    if(sarg == "--tune_rhmc_s"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      tune_rhmc_s=true;
 | 
			
		||||
      tune_rhmc_s_action_or_md = std::stoi(argv[i+1]);
 | 
			
		||||
    }
 | 
			
		||||
    else if(sarg == "--eigenrange_s"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      eigenrange_s=true;
 | 
			
		||||
      lanc_params_s = argv[i+1];
 | 
			
		||||
    }
 | 
			
		||||
    else if(sarg == "--tune_rhmc_DSDR"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      tune_rhmc_DSDR=true;
 | 
			
		||||
      tune_rhmc_DSDR_action_or_md = std::stoi(argv[i+1]);
 | 
			
		||||
    }
 | 
			
		||||
    else if(sarg == "--eigenrange_DSDR"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      eigenrange_DSDR=true;
 | 
			
		||||
      lanc_params_DSDR = argv[i+1];
 | 
			
		||||
    }
 | 
			
		||||
    else if(sarg == "--check_eofa") check_eofa = true;
 | 
			
		||||
    else if(sarg == "--upper_bound_eofa") upper_bound_eofa = true;
 | 
			
		||||
    else if(sarg == "--lower_bound_eofa") lower_bound_eofa = true;
 | 
			
		||||
  }
 | 
			
		||||
  if(tune_rhmc_s || eigenrange_s || tune_rhmc_DSDR || eigenrange_DSDR ||check_eofa || upper_bound_eofa || lower_bound_eofa) {
 | 
			
		||||
    std::cout << GridLogMessage << "Running checks" << std::endl;
 | 
			
		||||
    TheHMC.initializeGaugeFieldAndRNGs(Ud);
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "EOFA action solver action tolerance outer=" << ActionMCG_L.Tolerance << " inner=" << ActionMCG_L.InnerTolerance << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "EOFA MD solver tolerance outer=" << DerivMCG_L.Tolerance << " inner=" << DerivMCG_L.InnerTolerance << std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    if(check_eofa) checkEOFA(EOFA, FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
 | 
			
		||||
    if(upper_bound_eofa) upperBoundEOFA(EOFA, FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
 | 
			
		||||
    if(lower_bound_eofa) lowerBoundEOFA(EOFA, FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
 | 
			
		||||
    if(eigenrange_s) computeEigenvalues<FermionActionD, FermionFieldD>(lanc_params_s, FGridD, FrbGridD, Ud, Numerator_sD, TheHMC.Resources.GetParallelRNG());
 | 
			
		||||
    if(tune_rhmc_s) checkRHMC<FermionActionD, FermionFieldD, decltype(Quotient_s)>(FGridD, FrbGridD, Ud, Numerator_sD, Denominator_sD, Quotient_s, TheHMC.Resources.GetParallelRNG(), 4, "strange",  tune_rhmc_s_action_or_md);
 | 
			
		||||
    if(eigenrange_DSDR) computeEigenvalues<GparityWilsonTMFermionD, GparityWilsonTMFermionD::FermionField>(lanc_params_DSDR, UGridD, UrbGridD, Ud, Numerator_DSDR_D, TheHMC.Resources.GetParallelRNG());
 | 
			
		||||
    if(tune_rhmc_DSDR) checkRHMC<GparityWilsonTMFermionD, GparityWilsonTMFermionD::FermionField, decltype(Quotient_DSDR)>(UGridD, UrbGridD, Ud, Numerator_DSDR_D, Denominator_DSDR_D, Quotient_DSDR, TheHMC.Resources.GetParallelRNG(), 2, "DSDR", tune_rhmc_DSDR_action_or_md);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << " Done" << std::endl;
 | 
			
		||||
    Grid_finalize();
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //Run the HMC
 | 
			
		||||
  std::cout << GridLogMessage << " Running the HMC "<< std::endl;
 | 
			
		||||
  TheHMC.Run();
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << " Done" << std::endl;
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
  return 0;
 | 
			
		||||
} // main
 | 
			
		||||
							
								
								
									
										918
									
								
								HMC/Mobius2p1fIDSDRGparityEOFA_40ID.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										918
									
								
								HMC/Mobius2p1fIDSDRGparityEOFA_40ID.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,918 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./HMC/Mobius2p1fIDSDRGparityEOFA.cc
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015-2016
 | 
			
		||||
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 | 
			
		||||
//Production binary for the 40ID G-parity ensemble
 | 
			
		||||
 | 
			
		||||
struct RatQuoParameters: Serializable {
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(RatQuoParameters,
 | 
			
		||||
				  double, bnd_lo,
 | 
			
		||||
				  double, bnd_hi,
 | 
			
		||||
				  Integer, action_degree,
 | 
			
		||||
				  double, action_tolerance,
 | 
			
		||||
				  Integer, md_degree,
 | 
			
		||||
				  double, md_tolerance,
 | 
			
		||||
				  Integer, reliable_update_freq,
 | 
			
		||||
				  Integer, bnd_check_freq);
 | 
			
		||||
  RatQuoParameters() { 
 | 
			
		||||
    bnd_lo = 1e-2;
 | 
			
		||||
    bnd_hi = 30;
 | 
			
		||||
    action_degree = 10;
 | 
			
		||||
    action_tolerance = 1e-10;
 | 
			
		||||
    md_degree = 10;
 | 
			
		||||
    md_tolerance = 1e-8;
 | 
			
		||||
    bnd_check_freq = 20;
 | 
			
		||||
    reliable_update_freq = 50;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void Export(RationalActionParams &into) const{
 | 
			
		||||
    into.lo = bnd_lo;
 | 
			
		||||
    into.hi = bnd_hi;
 | 
			
		||||
    into.action_degree = action_degree;
 | 
			
		||||
    into.action_tolerance = action_tolerance;
 | 
			
		||||
    into.md_degree = md_degree;
 | 
			
		||||
    into.md_tolerance = md_tolerance;
 | 
			
		||||
    into.BoundsCheckFreq = bnd_check_freq;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct EOFAparameters: Serializable {
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(EOFAparameters,
 | 
			
		||||
				  OneFlavourRationalParams, rat_params,
 | 
			
		||||
				  double, action_tolerance,
 | 
			
		||||
				  double, action_mixcg_inner_tolerance,
 | 
			
		||||
				  double, md_tolerance,
 | 
			
		||||
				  double, md_mixcg_inner_tolerance);
 | 
			
		||||
 | 
			
		||||
  EOFAparameters() { 
 | 
			
		||||
    action_mixcg_inner_tolerance = 1e-8;
 | 
			
		||||
    action_tolerance = 1e-10;
 | 
			
		||||
    md_tolerance = 1e-8;
 | 
			
		||||
    md_mixcg_inner_tolerance = 1e-8;
 | 
			
		||||
 | 
			
		||||
    rat_params.lo = 1.0;
 | 
			
		||||
    rat_params.hi = 25.0;
 | 
			
		||||
    rat_params.MaxIter  = 50000;
 | 
			
		||||
    rat_params.tolerance= 1.0e-9;
 | 
			
		||||
    rat_params.degree   = 14;
 | 
			
		||||
    rat_params.precision= 50;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct EvolParameters: Serializable {
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(EvolParameters,
 | 
			
		||||
                                  Integer, StartTrajectory,
 | 
			
		||||
                                  Integer, Trajectories,
 | 
			
		||||
				  Integer, SaveInterval,
 | 
			
		||||
				  Integer, Steps,
 | 
			
		||||
				  RealD, TrajectoryLength,
 | 
			
		||||
                                  bool, MetropolisTest,
 | 
			
		||||
				  std::string, StartingType,
 | 
			
		||||
				  std::vector<Integer>, GparityDirs,
 | 
			
		||||
				  std::vector<EOFAparameters>, eofa_l,
 | 
			
		||||
				  RatQuoParameters, rat_quo_s,
 | 
			
		||||
				  RatQuoParameters, rat_quo_DSDR);
 | 
			
		||||
 | 
			
		||||
  EvolParameters() {
 | 
			
		||||
    //For initial thermalization; afterwards user should switch Metropolis on and use StartingType=CheckpointStart
 | 
			
		||||
    MetropolisTest    = false;
 | 
			
		||||
    StartTrajectory   = 0;
 | 
			
		||||
    Trajectories      = 50;
 | 
			
		||||
    SaveInterval = 5;
 | 
			
		||||
    StartingType      = "ColdStart";
 | 
			
		||||
    GparityDirs.resize(3, 1); //1 for G-parity, 0 for periodic
 | 
			
		||||
    Steps = 5;
 | 
			
		||||
    TrajectoryLength = 1.0;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
bool fileExists(const std::string &fn){
 | 
			
		||||
  std::ifstream f(fn);
 | 
			
		||||
  return f.good();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
struct LanczosParameters: Serializable {
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParameters,
 | 
			
		||||
				  double, alpha,
 | 
			
		||||
				  double, beta,
 | 
			
		||||
				  double, mu,
 | 
			
		||||
				  int, ord,
 | 
			
		||||
				  int, n_stop,
 | 
			
		||||
				  int, n_want,
 | 
			
		||||
				  int, n_use,
 | 
			
		||||
				  double, tolerance);
 | 
			
		||||
 | 
			
		||||
  LanczosParameters() {
 | 
			
		||||
    alpha = 35;
 | 
			
		||||
    beta = 5;
 | 
			
		||||
    mu = 0;
 | 
			
		||||
    ord = 100;
 | 
			
		||||
    n_stop = 10;
 | 
			
		||||
    n_want = 10;
 | 
			
		||||
    n_use = 15;
 | 
			
		||||
    tolerance = 1e-6;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<typename FermionActionD, typename FermionFieldD>
 | 
			
		||||
void computeEigenvalues(std::string param_file,
 | 
			
		||||
			GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt,  //expect lattice to have been initialized to something
 | 
			
		||||
			FermionActionD &action, GridParallelRNG &rng){
 | 
			
		||||
  
 | 
			
		||||
  LanczosParameters params;
 | 
			
		||||
  if(fileExists(param_file)){
 | 
			
		||||
    std::cout << GridLogMessage << " Reading " << param_file << std::endl;
 | 
			
		||||
    Grid::XmlReader rd(param_file);
 | 
			
		||||
    read(rd, "LanczosParameters", params);
 | 
			
		||||
  }else if(!GlobalSharedMemory::WorldRank){
 | 
			
		||||
    std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
 | 
			
		||||
    Grid::XmlWriter wr(param_file + ".templ");
 | 
			
		||||
    write(wr, "LanczosParameters", params);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  FermionFieldD gauss_o(rbGrid);
 | 
			
		||||
  FermionFieldD gauss(Grid);
 | 
			
		||||
  gaussian(rng, gauss);
 | 
			
		||||
  pickCheckerboard(Odd, gauss_o, gauss);
 | 
			
		||||
 | 
			
		||||
  action.ImportGauge(latt);
 | 
			
		||||
 | 
			
		||||
  SchurDiagMooeeOperator<FermionActionD, FermionFieldD> hermop(action);
 | 
			
		||||
  PlainHermOp<FermionFieldD> hermop_wrap(hermop);
 | 
			
		||||
  //ChebyshevLanczos<FermionFieldD> Cheb(params.alpha, params.beta, params.mu, params.ord);
 | 
			
		||||
  assert(params.mu == 0.0);
 | 
			
		||||
 | 
			
		||||
  Chebyshev<FermionFieldD> Cheb(params.beta*params.beta, params.alpha*params.alpha, params.ord+1);
 | 
			
		||||
  FunctionHermOp<FermionFieldD> Cheb_wrap(Cheb, hermop);
 | 
			
		||||
 | 
			
		||||
  std::cout << "IRL: alpha=" << params.alpha << " beta=" << params.beta << " mu=" << params.mu << " ord=" << params.ord << std::endl;
 | 
			
		||||
  ImplicitlyRestartedLanczos<FermionFieldD> IRL(Cheb_wrap, hermop_wrap, params.n_stop, params.n_want, params.n_use, params.tolerance, 50000);
 | 
			
		||||
 | 
			
		||||
  std::vector<RealD> eval(params.n_use);
 | 
			
		||||
  std::vector<FermionFieldD> evec(params.n_use, rbGrid);
 | 
			
		||||
  int Nconv;
 | 
			
		||||
  IRL.calc(eval, evec, gauss_o, Nconv);
 | 
			
		||||
 | 
			
		||||
  std::cout << "Eigenvalues:" << std::endl;
 | 
			
		||||
  for(int i=0;i<params.n_want;i++){
 | 
			
		||||
    std::cout << i << " " << eval[i] << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//Check the quality of the RHMC approx
 | 
			
		||||
//action_or_md toggles checking the action (0), MD (1) or both (2) setups
 | 
			
		||||
template<typename FermionActionD, typename FermionFieldD, typename RHMCtype>
 | 
			
		||||
void checkRHMC(GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt,  //expect lattice to have been initialized to something
 | 
			
		||||
	       FermionActionD &numOp, FermionActionD &denOp, RHMCtype &rhmc, GridParallelRNG &rng,
 | 
			
		||||
	       int inv_pow, const std::string &quark_descr, int action_or_md){
 | 
			
		||||
  assert(action_or_md == 0 || action_or_md == 1 || action_or_md == 2);
 | 
			
		||||
  
 | 
			
		||||
  FermionFieldD gauss_o(rbGrid);
 | 
			
		||||
  FermionFieldD gauss(Grid);
 | 
			
		||||
  gaussian(rng, gauss);
 | 
			
		||||
  pickCheckerboard(Odd, gauss_o, gauss);
 | 
			
		||||
 | 
			
		||||
  numOp.ImportGauge(latt);
 | 
			
		||||
  denOp.ImportGauge(latt);
 | 
			
		||||
 | 
			
		||||
  typedef typename FermionActionD::Impl_t FermionImplPolicyD;
 | 
			
		||||
  SchurDifferentiableOperator<FermionImplPolicyD> MdagM(numOp);
 | 
			
		||||
  SchurDifferentiableOperator<FermionImplPolicyD> VdagV(denOp);
 | 
			
		||||
 | 
			
		||||
  PowerMethod<FermionFieldD> power_method;
 | 
			
		||||
  RealD lambda_max;
 | 
			
		||||
 | 
			
		||||
  std::cout << "Starting: Get RHMC high bound approx for " << quark_descr << " numerator" << std::endl;
 | 
			
		||||
 | 
			
		||||
  lambda_max = power_method(MdagM,gauss_o);
 | 
			
		||||
  std::cout << GridLogMessage << "Got lambda_max "<<lambda_max<<std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << "Starting: Get RHMC high bound approx for " << quark_descr << " denominator" << std::endl;
 | 
			
		||||
  lambda_max = power_method(VdagV,gauss_o);
 | 
			
		||||
  std::cout << GridLogMessage << "Got lambda_max "<<lambda_max<<std::endl;
 | 
			
		||||
 | 
			
		||||
  if(action_or_md == 0 || action_or_md == 2){
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(inv_pow, 50000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerAction); //use large tolerance to prevent exit on fail; we are trying to tune here!
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(2*inv_pow, 50000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerAction);
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(inv_pow, 50000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerAction);
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(2*inv_pow, 50000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerAction);
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  std::cout << "-------------------------------------------------------------------------------" << std::endl;
 | 
			
		||||
 | 
			
		||||
  if(action_or_md == 1 || action_or_md == 2){
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(inv_pow, 50000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerMD); 
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(2*inv_pow, 50000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerMD);
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(inv_pow, 50000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerMD);
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(2*inv_pow, 50000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerMD);
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<typename FermionImplPolicy>
 | 
			
		||||
void checkEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
 | 
			
		||||
	       GridCartesian* FGrid, GridParallelRNG &rng, const LatticeGaugeFieldD &latt){
 | 
			
		||||
  std::cout << GridLogMessage << "Starting EOFA action/bounds check" << std::endl;
 | 
			
		||||
  typename FermionImplPolicy::FermionField eta(FGrid);
 | 
			
		||||
  RealD scale = std::sqrt(0.5);
 | 
			
		||||
  gaussian(rng,eta); eta = eta * scale;
 | 
			
		||||
 | 
			
		||||
  //Use the inbuilt check
 | 
			
		||||
  EOFA.refresh(latt, eta);
 | 
			
		||||
  EOFA.S(latt);
 | 
			
		||||
  std::cout << GridLogMessage << "Finished EOFA upper action/bounds check" << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<typename FermionImplPolicy>
 | 
			
		||||
class EOFAlinop: public LinearOperatorBase<typename FermionImplPolicy::FermionField>{
 | 
			
		||||
  ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA;
 | 
			
		||||
  LatticeGaugeFieldD &U;
 | 
			
		||||
public:
 | 
			
		||||
  EOFAlinop(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA, LatticeGaugeFieldD &U): EOFA(EOFA), U(U){}
 | 
			
		||||
 | 
			
		||||
  typedef typename FermionImplPolicy::FermionField Field;
 | 
			
		||||
  void OpDiag (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp){ assert(0); }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){ assert(0); } 
 | 
			
		||||
 | 
			
		||||
  void Op     (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void AdjOp  (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
 | 
			
		||||
  void HermOp(const Field &in, Field &out){ EOFA.Meofa(U, in, out); }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<typename FermionImplPolicy>
 | 
			
		||||
void upperBoundEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
 | 
			
		||||
		    GridCartesian* FGrid, GridParallelRNG &rng, LatticeGaugeFieldD &latt){
 | 
			
		||||
  std::cout << GridLogMessage << "Starting EOFA upper bound compute" << std::endl;
 | 
			
		||||
  EOFAlinop<FermionImplPolicy> linop(EOFA, latt);
 | 
			
		||||
  typename FermionImplPolicy::FermionField eta(FGrid);
 | 
			
		||||
  gaussian(rng,eta);
 | 
			
		||||
  PowerMethod<typename FermionImplPolicy::FermionField> power_method;
 | 
			
		||||
  auto lambda_max = power_method(linop,eta);
 | 
			
		||||
  std::cout << GridLogMessage << "Upper bound of EOFA operator " << lambda_max << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//Applications of M^{-1} cost the same as M for EOFA!
 | 
			
		||||
template<typename FermionImplPolicy>
 | 
			
		||||
class EOFAinvLinop: public LinearOperatorBase<typename FermionImplPolicy::FermionField>{
 | 
			
		||||
  ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA;
 | 
			
		||||
  LatticeGaugeFieldD &U;
 | 
			
		||||
public:
 | 
			
		||||
  EOFAinvLinop(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA, LatticeGaugeFieldD &U): EOFA(EOFA), U(U){}
 | 
			
		||||
 | 
			
		||||
  typedef typename FermionImplPolicy::FermionField Field;
 | 
			
		||||
  void OpDiag (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp){ assert(0); }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){ assert(0); } 
 | 
			
		||||
 | 
			
		||||
  void Op     (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void AdjOp  (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
 | 
			
		||||
  void HermOp(const Field &in, Field &out){ EOFA.MeofaInv(U, in, out); }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<typename FermionImplPolicy>
 | 
			
		||||
void lowerBoundEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
 | 
			
		||||
		    GridCartesian* FGrid, GridParallelRNG &rng, LatticeGaugeFieldD &latt){
 | 
			
		||||
  std::cout << GridLogMessage << "Starting EOFA lower bound compute using power method on M^{-1}. Inverse of highest eigenvalue is the lowest eigenvalue of M" << std::endl;
 | 
			
		||||
  EOFAinvLinop<FermionImplPolicy> linop(EOFA, latt);
 | 
			
		||||
  typename FermionImplPolicy::FermionField eta(FGrid);
 | 
			
		||||
  gaussian(rng,eta);
 | 
			
		||||
  PowerMethod<typename FermionImplPolicy::FermionField> power_method;
 | 
			
		||||
  auto lambda_max = power_method(linop,eta);
 | 
			
		||||
  std::cout << GridLogMessage << "Lower bound of EOFA operator " << 1./lambda_max << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
  template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class  SchurOperatorF> 
 | 
			
		||||
  class MixedPrecisionConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
 | 
			
		||||
  public:
 | 
			
		||||
    typedef typename FermionOperatorD::FermionField FieldD;
 | 
			
		||||
    typedef typename FermionOperatorF::FermionField FieldF;
 | 
			
		||||
 | 
			
		||||
    using OperatorFunction<FieldD>::operator();
 | 
			
		||||
 | 
			
		||||
    RealD   Tolerance;
 | 
			
		||||
    RealD   InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
 | 
			
		||||
    Integer MaxInnerIterations;
 | 
			
		||||
    Integer MaxOuterIterations;
 | 
			
		||||
    GridBase* SinglePrecGrid4; //Grid for single-precision fields
 | 
			
		||||
    GridBase* SinglePrecGrid5; //Grid for single-precision fields
 | 
			
		||||
    RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
 | 
			
		||||
 | 
			
		||||
    FermionOperatorF &FermOpF;
 | 
			
		||||
    FermionOperatorD &FermOpD;;
 | 
			
		||||
    SchurOperatorF &LinOpF;
 | 
			
		||||
    SchurOperatorD &LinOpD;
 | 
			
		||||
 | 
			
		||||
    Integer TotalInnerIterations; //Number of inner CG iterations
 | 
			
		||||
    Integer TotalOuterIterations; //Number of restarts
 | 
			
		||||
    Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
 | 
			
		||||
 | 
			
		||||
    MixedPrecisionConjugateGradientOperatorFunction(RealD tol, 
 | 
			
		||||
						    Integer maxinnerit, 
 | 
			
		||||
						    Integer maxouterit, 
 | 
			
		||||
						    GridBase* _sp_grid4, 
 | 
			
		||||
						    GridBase* _sp_grid5, 
 | 
			
		||||
						    FermionOperatorF &_FermOpF,
 | 
			
		||||
						    FermionOperatorD &_FermOpD,
 | 
			
		||||
						    SchurOperatorF   &_LinOpF,
 | 
			
		||||
						    SchurOperatorD   &_LinOpD): 
 | 
			
		||||
      LinOpF(_LinOpF),
 | 
			
		||||
      LinOpD(_LinOpD),
 | 
			
		||||
      FermOpF(_FermOpF),
 | 
			
		||||
      FermOpD(_FermOpD),
 | 
			
		||||
      Tolerance(tol), 
 | 
			
		||||
      InnerTolerance(tol), 
 | 
			
		||||
      MaxInnerIterations(maxinnerit), 
 | 
			
		||||
      MaxOuterIterations(maxouterit), 
 | 
			
		||||
      SinglePrecGrid4(_sp_grid4),
 | 
			
		||||
      SinglePrecGrid5(_sp_grid5),
 | 
			
		||||
      OuterLoopNormMult(100.) 
 | 
			
		||||
    { 
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << " Mixed precision CG wrapper operator() "<<std::endl;
 | 
			
		||||
 | 
			
		||||
      SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
 | 
			
		||||
      assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
 | 
			
		||||
 | 
			
		||||
      precisionChange(FermOpF.Umu, FermOpD.Umu);
 | 
			
		||||
 | 
			
		||||
      pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
 | 
			
		||||
      pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
      // Make a mixed precision conjugate gradient
 | 
			
		||||
      ////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
      MixedPrecisionConjugateGradient<FieldD,FieldF> MPCG(Tolerance,MaxInnerIterations,MaxOuterIterations,SinglePrecGrid5,LinOpF,LinOpD);
 | 
			
		||||
      MPCG.InnerTolerance = InnerTolerance;
 | 
			
		||||
      std::cout << GridLogMessage << "Calling mixed precision Conjugate Gradient" <<std::endl;
 | 
			
		||||
      MPCG(src,psi);
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class  SchurOperatorF> 
 | 
			
		||||
  class MixedPrecisionReliableUpdateConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
 | 
			
		||||
  public:
 | 
			
		||||
    typedef typename FermionOperatorD::FermionField FieldD;
 | 
			
		||||
    typedef typename FermionOperatorF::FermionField FieldF;
 | 
			
		||||
 | 
			
		||||
    using OperatorFunction<FieldD>::operator();
 | 
			
		||||
 | 
			
		||||
    RealD Tolerance;
 | 
			
		||||
    Integer MaxIterations;
 | 
			
		||||
 | 
			
		||||
    RealD Delta; //reliable update parameter
 | 
			
		||||
 | 
			
		||||
    GridBase* SinglePrecGrid4; //Grid for single-precision fields
 | 
			
		||||
    GridBase* SinglePrecGrid5; //Grid for single-precision fields
 | 
			
		||||
 | 
			
		||||
    FermionOperatorF &FermOpF;
 | 
			
		||||
    FermionOperatorD &FermOpD;;
 | 
			
		||||
    SchurOperatorF &LinOpF;
 | 
			
		||||
    SchurOperatorD &LinOpD;
 | 
			
		||||
    
 | 
			
		||||
    MixedPrecisionReliableUpdateConjugateGradientOperatorFunction(RealD tol, 
 | 
			
		||||
								  RealD delta,
 | 
			
		||||
								  Integer maxit, 
 | 
			
		||||
								  GridBase* _sp_grid4, 
 | 
			
		||||
								  GridBase* _sp_grid5, 
 | 
			
		||||
								  FermionOperatorF &_FermOpF,
 | 
			
		||||
								  FermionOperatorD &_FermOpD,
 | 
			
		||||
								  SchurOperatorF   &_LinOpF,
 | 
			
		||||
								  SchurOperatorD   &_LinOpD): 
 | 
			
		||||
      LinOpF(_LinOpF),
 | 
			
		||||
      LinOpD(_LinOpD),
 | 
			
		||||
      FermOpF(_FermOpF),
 | 
			
		||||
      FermOpD(_FermOpD),
 | 
			
		||||
      Tolerance(tol), 
 | 
			
		||||
      Delta(delta),
 | 
			
		||||
      MaxIterations(maxit), 
 | 
			
		||||
      SinglePrecGrid4(_sp_grid4),
 | 
			
		||||
      SinglePrecGrid5(_sp_grid5)
 | 
			
		||||
    { 
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << " Mixed precision reliable CG update wrapper operator() "<<std::endl;
 | 
			
		||||
 | 
			
		||||
      SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
 | 
			
		||||
      assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
 | 
			
		||||
 | 
			
		||||
      precisionChange(FermOpF.Umu, FermOpD.Umu);
 | 
			
		||||
 | 
			
		||||
      pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
 | 
			
		||||
      pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
      // Make a mixed precision conjugate gradient
 | 
			
		||||
      ////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
      ConjugateGradientReliableUpdate<FieldD,FieldF> MPCG(Tolerance,MaxIterations,Delta,SinglePrecGrid5,LinOpF,LinOpD);
 | 
			
		||||
      std::cout << GridLogMessage << "Calling mixed precision reliable update Conjugate Gradient" <<std::endl;
 | 
			
		||||
      MPCG(src,psi);
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
int main(int argc, char **argv) {
 | 
			
		||||
  Grid_init(&argc, &argv);
 | 
			
		||||
  int threads = GridThread::GetThreads();
 | 
			
		||||
  // here make a routine to print all the relevant information on the run
 | 
			
		||||
  std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::string param_file = "params.xml";
 | 
			
		||||
  bool file_load_check = false;
 | 
			
		||||
 | 
			
		||||
  std::string serial_seeds = "1 2 3 4 5";
 | 
			
		||||
  std::string parallel_seeds = "6 7 8 9 10";
 | 
			
		||||
 | 
			
		||||
  int i=1;
 | 
			
		||||
  while(i < argc){
 | 
			
		||||
    std::string sarg(argv[i]);
 | 
			
		||||
    if(sarg == "--param_file"){
 | 
			
		||||
      assert(i!=argc-1);
 | 
			
		||||
      param_file = argv[i+1];
 | 
			
		||||
      i+=2;
 | 
			
		||||
    }else if(sarg == "--read_check"){ //check the fields load correctly and pass checksum/plaquette repro
 | 
			
		||||
      file_load_check = true;
 | 
			
		||||
      i++;
 | 
			
		||||
    }else if(sarg == "--set_seeds"){ //set the rng seeds. Expects two vector args, e.g.  --set_seeds 1.2.3.4 5.6.7.8
 | 
			
		||||
      assert(i < argc-2);
 | 
			
		||||
      std::vector<int> tmp;
 | 
			
		||||
      GridCmdOptionIntVector(argv[i+1],tmp);
 | 
			
		||||
      {
 | 
			
		||||
	std::stringstream ss;
 | 
			
		||||
	for(int j=0;j<tmp.size()-1;j++) ss << tmp[j] << " ";
 | 
			
		||||
	ss << tmp.back();
 | 
			
		||||
	serial_seeds = ss.str();
 | 
			
		||||
      }
 | 
			
		||||
      GridCmdOptionIntVector(argv[i+2],tmp);
 | 
			
		||||
      {
 | 
			
		||||
	std::stringstream ss;
 | 
			
		||||
	for(int j=0;j<tmp.size()-1;j++) ss << tmp[j] << " ";
 | 
			
		||||
	ss << tmp.back();
 | 
			
		||||
	parallel_seeds = ss.str();
 | 
			
		||||
      }
 | 
			
		||||
      i+=3;
 | 
			
		||||
      std::cout << GridLogMessage << "Set serial seeds to " << serial_seeds << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "Set parallel seeds to " << parallel_seeds << std::endl;
 | 
			
		||||
      
 | 
			
		||||
    }else{
 | 
			
		||||
      i++;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  //Read the user parameters
 | 
			
		||||
  EvolParameters user_params;
 | 
			
		||||
  
 | 
			
		||||
  if(fileExists(param_file)){
 | 
			
		||||
    std::cout << GridLogMessage << " Reading " << param_file << std::endl;
 | 
			
		||||
    Grid::XmlReader rd(param_file);
 | 
			
		||||
    read(rd, "Params", user_params);
 | 
			
		||||
  }else if(!GlobalSharedMemory::WorldRank){
 | 
			
		||||
    std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
 | 
			
		||||
    {
 | 
			
		||||
      Grid::XmlWriter wr(param_file + ".templ");
 | 
			
		||||
      write(wr, "Params", user_params);
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << " Done" << std::endl;
 | 
			
		||||
    Grid_finalize();
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Check the parameters
 | 
			
		||||
  if(user_params.GparityDirs.size() != Nd-1){
 | 
			
		||||
    std::cerr << "Error in input parameters: expect GparityDirs to have size = " << Nd-1 << std::endl;
 | 
			
		||||
    exit(1);
 | 
			
		||||
  }
 | 
			
		||||
  for(int i=0;i<Nd-1;i++)
 | 
			
		||||
    if(user_params.GparityDirs[i] != 0 && user_params.GparityDirs[i] != 1){
 | 
			
		||||
      std::cerr << "Error in input parameters: expect GparityDirs values to be 0 (periodic) or 1 (G-parity)" << std::endl;
 | 
			
		||||
      exit(1);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  typedef GparityMobiusEOFAFermionD EOFAactionD;
 | 
			
		||||
  typedef GparityMobiusFermionD FermionActionD;
 | 
			
		||||
  typedef typename FermionActionD::Impl_t FermionImplPolicyD;
 | 
			
		||||
  typedef typename FermionActionD::FermionField FermionFieldD;
 | 
			
		||||
 | 
			
		||||
  typedef GparityMobiusEOFAFermionF EOFAactionF;
 | 
			
		||||
  typedef GparityMobiusFermionF FermionActionF;
 | 
			
		||||
  typedef typename FermionActionF::Impl_t FermionImplPolicyF;
 | 
			
		||||
  typedef typename FermionActionF::FermionField FermionFieldF;
 | 
			
		||||
 | 
			
		||||
  typedef GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<FermionImplPolicyD,FermionImplPolicyF> MixedPrecRHMC;
 | 
			
		||||
  typedef GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicyD> DoublePrecRHMC;
 | 
			
		||||
 | 
			
		||||
  //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
 | 
			
		||||
  IntegratorParameters MD;
 | 
			
		||||
  typedef ConjugateHMCRunnerD<MinimumNorm2> HMCWrapper; //NB: This is the "Omelyan integrator"
 | 
			
		||||
  MD.name    = std::string("MinimumNorm2");
 | 
			
		||||
 | 
			
		||||
  // typedef ConjugateHMCRunnerD<ForceGradient> HMCWrapper;
 | 
			
		||||
  // MD.name    = std::string("ForceGradient");
 | 
			
		||||
  
 | 
			
		||||
  MD.MDsteps = user_params.Steps;
 | 
			
		||||
  MD.trajL   = user_params.TrajectoryLength;
 | 
			
		||||
 | 
			
		||||
  typedef HMCWrapper::ImplPolicy GaugeImplPolicy;
 | 
			
		||||
  
 | 
			
		||||
  HMCparameters HMCparams;
 | 
			
		||||
  HMCparams.StartTrajectory  = user_params.StartTrajectory;
 | 
			
		||||
  HMCparams.Trajectories     = user_params.Trajectories;
 | 
			
		||||
  HMCparams.NoMetropolisUntil= 0;
 | 
			
		||||
  HMCparams.StartingType     = user_params.StartingType;
 | 
			
		||||
  HMCparams.MetropolisTest = user_params.MetropolisTest;
 | 
			
		||||
  HMCparams.MD = MD;
 | 
			
		||||
  HMCWrapper TheHMC(HMCparams);
 | 
			
		||||
 | 
			
		||||
  // Grid from the command line arguments --grid and --mpi
 | 
			
		||||
  TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
 | 
			
		||||
 | 
			
		||||
  CheckpointerParameters CPparams;
 | 
			
		||||
  CPparams.config_prefix = "ckpoint_lat";
 | 
			
		||||
  CPparams.rng_prefix    = "ckpoint_rng";
 | 
			
		||||
  CPparams.saveInterval  = user_params.SaveInterval;
 | 
			
		||||
  CPparams.format        = "IEEE64BIG";
 | 
			
		||||
  TheHMC.Resources.LoadNerscCheckpointer(CPparams);
 | 
			
		||||
 | 
			
		||||
  //Note that checkpointing saves the RNG state so that this initialization is required only for the very first configuration
 | 
			
		||||
  RNGModuleParameters RNGpar;
 | 
			
		||||
  RNGpar.serial_seeds = serial_seeds;
 | 
			
		||||
  RNGpar.parallel_seeds = parallel_seeds;
 | 
			
		||||
  TheHMC.Resources.SetRNGSeeds(RNGpar);
 | 
			
		||||
 | 
			
		||||
  typedef PlaquetteMod<GaugeImplPolicy> PlaqObs;
 | 
			
		||||
  TheHMC.Resources.AddObservable<PlaqObs>();
 | 
			
		||||
  //////////////////////////////////////////////
 | 
			
		||||
  //aiming for ainv=1.723 GeV
 | 
			
		||||
  //                                  me         bob
 | 
			
		||||
  //Estimated  a(ml+mres) [40ID] = 0.001305    0.00131
 | 
			
		||||
  //           a(mh+mres) [40ID] = 0.035910    0.03529
 | 
			
		||||
  //Estimate Ls=12, b+c=2  mres~0.0011
 | 
			
		||||
 | 
			
		||||
  //1/24/2022 initial mres measurement gives mres=0.001,  adjusted light quark mass to 0.0003 from 0.0001
 | 
			
		||||
  
 | 
			
		||||
  const int Ls      = 12;
 | 
			
		||||
  Real beta         = 1.848;
 | 
			
		||||
  Real light_mass   = 0.0003;
 | 
			
		||||
  Real strange_mass = 0.0342;
 | 
			
		||||
  Real pv_mass      = 1.0;
 | 
			
		||||
  RealD M5  = 1.8;
 | 
			
		||||
  RealD mobius_scale = 2.; //b+c
 | 
			
		||||
 | 
			
		||||
  RealD mob_bmc = 1.0;
 | 
			
		||||
  RealD mob_b = (mobius_scale + mob_bmc)/2.;
 | 
			
		||||
  RealD mob_c = (mobius_scale - mob_bmc)/2.;
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage
 | 
			
		||||
	    << "Ensemble parameters:" << std::endl
 | 
			
		||||
	    << "Ls=" << Ls << std::endl
 | 
			
		||||
	    << "beta=" << beta << std::endl
 | 
			
		||||
	    << "light_mass=" << light_mass << std::endl
 | 
			
		||||
	    << "strange_mass=" << strange_mass << std::endl
 | 
			
		||||
	    << "mobius_scale=" << mobius_scale << std::endl;
 | 
			
		||||
  
 | 
			
		||||
  //Setup the Grids
 | 
			
		||||
  auto UGridD   = TheHMC.Resources.GetCartesian();
 | 
			
		||||
  auto UrbGridD = TheHMC.Resources.GetRBCartesian();
 | 
			
		||||
  auto FGridD     = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridD);
 | 
			
		||||
  auto FrbGridD   = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridD);
 | 
			
		||||
 | 
			
		||||
  GridCartesian* UGridF = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
 | 
			
		||||
  GridRedBlackCartesian* UrbGridF = SpaceTimeGrid::makeFourDimRedBlackGrid(UGridF);
 | 
			
		||||
  auto FGridF     = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridF);
 | 
			
		||||
  auto FrbGridF   = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridF);
 | 
			
		||||
 | 
			
		||||
  ConjugateIwasakiGaugeActionD GaugeAction(beta);
 | 
			
		||||
 | 
			
		||||
  // temporarily need a gauge field
 | 
			
		||||
  LatticeGaugeFieldD Ud(UGridD);
 | 
			
		||||
  LatticeGaugeFieldF Uf(UGridF);
 | 
			
		||||
 
 | 
			
		||||
  //Setup the BCs
 | 
			
		||||
  FermionActionD::ImplParams Params;
 | 
			
		||||
  for(int i=0;i<Nd-1;i++) Params.twists[i] = user_params.GparityDirs[i]; //G-parity directions
 | 
			
		||||
  Params.twists[Nd-1] = 1; //APBC in time direction
 | 
			
		||||
 | 
			
		||||
  std::vector<int> dirs4(Nd);
 | 
			
		||||
  for(int i=0;i<Nd-1;i++) dirs4[i] = user_params.GparityDirs[i];
 | 
			
		||||
  dirs4[Nd-1] = 0; //periodic gauge BC in time
 | 
			
		||||
 | 
			
		||||
  GaugeImplPolicy::setDirections(dirs4); //gauge BC
 | 
			
		||||
 | 
			
		||||
  //Run optional gauge field checksum checker and exit
 | 
			
		||||
  if(file_load_check){
 | 
			
		||||
    TheHMC.initializeGaugeFieldAndRNGs(Ud);
 | 
			
		||||
    std::cout << GridLogMessage << " Done" << std::endl;
 | 
			
		||||
    Grid_finalize();
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  // Collect actions
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  ActionLevel<HMCWrapper::Field> Level1(1); //light quark + strange quark
 | 
			
		||||
  ActionLevel<HMCWrapper::Field> Level2(4); //DSDR
 | 
			
		||||
  ActionLevel<HMCWrapper::Field> Level3(2); //gauge
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  // Light EOFA action
 | 
			
		||||
  // have to be careful with the parameters, cf. Test_dwf_gpforce_eofa.cc
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  typedef SchurDiagMooeeOperator<EOFAactionD,FermionFieldD> EOFAschuropD;
 | 
			
		||||
  typedef SchurDiagMooeeOperator<EOFAactionF,FermionFieldF> EOFAschuropF;
 | 
			
		||||
  typedef ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction<FermionImplPolicyD, FermionImplPolicyF> EOFAmixPrecPFaction;
 | 
			
		||||
  typedef MixedPrecisionConjugateGradientOperatorFunction<EOFAactionD, EOFAactionF, EOFAschuropD, EOFAschuropF> EOFA_mxCG;
 | 
			
		||||
  typedef MixedPrecisionReliableUpdateConjugateGradientOperatorFunction<EOFAactionD, EOFAactionF, EOFAschuropD, EOFAschuropF> EOFA_relupCG;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  std::vector<RealD> eofa_light_masses = { light_mass ,  0.004,   0.016,   0.064,   0.256    };
 | 
			
		||||
  std::vector<RealD> eofa_pv_masses =    { 0.004       , 0.016,   0.064,   0.256,   1.0      };
 | 
			
		||||
  int n_light_hsb = 5;
 | 
			
		||||
  assert(user_params.eofa_l.size() == n_light_hsb);
 | 
			
		||||
  
 | 
			
		||||
  EOFAmixPrecPFaction* EOFA_pfactions[n_light_hsb];
 | 
			
		||||
 | 
			
		||||
  for(int i=0;i<n_light_hsb;i++){
 | 
			
		||||
    RealD iml = eofa_light_masses[i];
 | 
			
		||||
    RealD ipv = eofa_pv_masses[i];
 | 
			
		||||
 | 
			
		||||
    EOFAactionD* LopD = new EOFAactionD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, iml, iml, ipv, 0.0, -1, M5, mob_b, mob_c, Params);
 | 
			
		||||
    EOFAactionF* LopF = new EOFAactionF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, iml, iml, ipv, 0.0, -1, M5, mob_b, mob_c, Params);
 | 
			
		||||
    EOFAactionD* RopD = new EOFAactionD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, ipv, iml, ipv, -1.0, 1, M5, mob_b, mob_c, Params);
 | 
			
		||||
    EOFAactionF* RopF = new EOFAactionF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, ipv, iml, ipv, -1.0, 1, M5, mob_b, mob_c, Params);
 | 
			
		||||
 | 
			
		||||
    EOFAschuropD* linopL_D = new EOFAschuropD(*LopD);
 | 
			
		||||
    EOFAschuropD* linopR_D = new EOFAschuropD(*RopD);
 | 
			
		||||
    
 | 
			
		||||
    EOFAschuropF* linopL_F = new EOFAschuropF(*LopF);
 | 
			
		||||
    EOFAschuropF* linopR_F = new EOFAschuropF(*RopF);
 | 
			
		||||
 | 
			
		||||
#if 1
 | 
			
		||||
    //Note reusing user_params.eofa_l.action(|md)_mixcg_inner_tolerance  as Delta for now
 | 
			
		||||
    EOFA_relupCG* ActionMCG_L = new EOFA_relupCG(user_params.eofa_l[i].action_tolerance, user_params.eofa_l[i].action_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
 | 
			
		||||
    EOFA_relupCG* ActionMCG_R = new EOFA_relupCG(user_params.eofa_l[i].action_tolerance, user_params.eofa_l[i].action_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
 | 
			
		||||
 | 
			
		||||
    EOFA_relupCG* DerivMCG_L = new EOFA_relupCG(user_params.eofa_l[i].md_tolerance, user_params.eofa_l[i].md_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
 | 
			
		||||
    EOFA_relupCG* DerivMCG_R = new EOFA_relupCG(user_params.eofa_l[i].md_tolerance, user_params.eofa_l[i].md_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
    EOFA_mxCG* ActionMCG_L = new EOFA_mxCG(user_params.eofa_l[i].action_tolerance, 50000, 1000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
 | 
			
		||||
    ActionMCG_L->InnerTolerance = user_params.eofa_l[i].action_mixcg_inner_tolerance;
 | 
			
		||||
    
 | 
			
		||||
    EOFA_mxCG* ActionMCG_R = new EOFA_mxCG(user_params.eofa_l[i].action_tolerance, 50000, 1000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
 | 
			
		||||
    ActionMCG_R->InnerTolerance = user_params.eofa_l[i].action_mixcg_inner_tolerance;
 | 
			
		||||
    
 | 
			
		||||
    EOFA_mxCG* DerivMCG_L = new EOFA_mxCG(user_params.eofa_l[i].md_tolerance, 50000, 1000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
 | 
			
		||||
    DerivMCG_L->InnerTolerance = user_params.eofa_l[i].md_mixcg_inner_tolerance;
 | 
			
		||||
    
 | 
			
		||||
    EOFA_mxCG* DerivMCG_R = new EOFA_mxCG(user_params.eofa_l[i].md_tolerance, 50000, 1000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
 | 
			
		||||
    DerivMCG_R->InnerTolerance = user_params.eofa_l[i].md_mixcg_inner_tolerance;
 | 
			
		||||
    
 | 
			
		||||
    std::cout << GridLogMessage << "Set EOFA action solver action tolerance outer=" << ActionMCG_L->Tolerance << " inner=" << ActionMCG_L->InnerTolerance << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Set EOFA MD solver tolerance outer=" << DerivMCG_L->Tolerance << " inner=" << DerivMCG_L->InnerTolerance << std::endl;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
    EOFAmixPrecPFaction* EOFA = new EOFAmixPrecPFaction(*LopF, *RopF,
 | 
			
		||||
							*LopD, *RopD, 
 | 
			
		||||
							*ActionMCG_L, *ActionMCG_R, 
 | 
			
		||||
							*ActionMCG_L, *ActionMCG_R, 
 | 
			
		||||
							*DerivMCG_L, *DerivMCG_R, 
 | 
			
		||||
							user_params.eofa_l[i].rat_params, true);
 | 
			
		||||
    EOFA_pfactions[i] = EOFA;
 | 
			
		||||
    Level1.push_back(EOFA);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  // Strange action
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  FermionActionD Numerator_sD(Ud,*FGridD,*FrbGridD,*UGridD,*UrbGridD,strange_mass,M5,mob_b,mob_c,Params);
 | 
			
		||||
  FermionActionD Denominator_sD(Ud,*FGridD,*FrbGridD,*UGridD,*UrbGridD, pv_mass,M5,mob_b,mob_c,Params);
 | 
			
		||||
 | 
			
		||||
  FermionActionF Numerator_sF(Uf,*FGridF,*FrbGridF,*UGridF,*UrbGridF,strange_mass,M5,mob_b,mob_c,Params);
 | 
			
		||||
  FermionActionF Denominator_sF(Uf,*FGridF,*FrbGridF,*UGridF,*UrbGridF, pv_mass,M5,mob_b,mob_c,Params);
 | 
			
		||||
 | 
			
		||||
  RationalActionParams rat_act_params_s;
 | 
			
		||||
  rat_act_params_s.inv_pow  = 4; // (M^dag M)^{1/4}
 | 
			
		||||
  rat_act_params_s.precision= 60;
 | 
			
		||||
  rat_act_params_s.MaxIter  = 50000;
 | 
			
		||||
  user_params.rat_quo_s.Export(rat_act_params_s);
 | 
			
		||||
  std::cout << GridLogMessage << " Heavy quark bounds check every " << rat_act_params_s.BoundsCheckFreq << " trajectories (avg)" << std::endl;
 | 
			
		||||
 | 
			
		||||
  //MixedPrecRHMC Quotient_s(Denominator_sD, Numerator_sD, Denominator_sF, Numerator_sF, rat_act_params_s, user_params.rat_quo_s.reliable_update_freq); 
 | 
			
		||||
  DoublePrecRHMC Quotient_s(Denominator_sD, Numerator_sD, rat_act_params_s); 
 | 
			
		||||
  Level1.push_back(&Quotient_s);  
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////
 | 
			
		||||
  // DSDR action
 | 
			
		||||
  ///////////////////////////////////
 | 
			
		||||
  RealD dsdr_mass=-1.8;   
 | 
			
		||||
  //Use same DSDR twists as https://arxiv.org/pdf/1208.4412.pdf
 | 
			
		||||
  RealD dsdr_epsilon_f = 0.02; //numerator (in determinant)
 | 
			
		||||
  RealD dsdr_epsilon_b = 0.5; 
 | 
			
		||||
  GparityWilsonTMFermionD Numerator_DSDR_D(Ud, *UGridD, *UrbGridD, dsdr_mass, dsdr_epsilon_f, Params);
 | 
			
		||||
  GparityWilsonTMFermionF Numerator_DSDR_F(Uf, *UGridF, *UrbGridF, dsdr_mass, dsdr_epsilon_f, Params);
 | 
			
		||||
 | 
			
		||||
  GparityWilsonTMFermionD Denominator_DSDR_D(Ud, *UGridD, *UrbGridD, dsdr_mass, dsdr_epsilon_b, Params);
 | 
			
		||||
  GparityWilsonTMFermionF Denominator_DSDR_F(Uf, *UGridF, *UrbGridF, dsdr_mass, dsdr_epsilon_b, Params);
 | 
			
		||||
 
 | 
			
		||||
  RationalActionParams rat_act_params_DSDR;
 | 
			
		||||
  rat_act_params_DSDR.inv_pow  = 2; // (M^dag M)^{1/2}
 | 
			
		||||
  rat_act_params_DSDR.precision= 60;
 | 
			
		||||
  rat_act_params_DSDR.MaxIter  = 50000;
 | 
			
		||||
  user_params.rat_quo_DSDR.Export(rat_act_params_DSDR);
 | 
			
		||||
  std::cout << GridLogMessage << "DSDR quark bounds check every " << rat_act_params_DSDR.BoundsCheckFreq << " trajectories (avg)" << std::endl;
 | 
			
		||||
 | 
			
		||||
  DoublePrecRHMC Quotient_DSDR(Denominator_DSDR_D, Numerator_DSDR_D, rat_act_params_DSDR);
 | 
			
		||||
  Level2.push_back(&Quotient_DSDR);
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  // Gauge action
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  Level3.push_back(&GaugeAction);
 | 
			
		||||
 | 
			
		||||
  TheHMC.TheAction.push_back(Level1);
 | 
			
		||||
  TheHMC.TheAction.push_back(Level2);
 | 
			
		||||
  TheHMC.TheAction.push_back(Level3);
 | 
			
		||||
  std::cout << GridLogMessage << " Action complete "<< std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //Action tuning
 | 
			
		||||
  bool 
 | 
			
		||||
    tune_rhmc_s=false, eigenrange_s=false, 
 | 
			
		||||
    tune_rhmc_DSDR=false, eigenrange_DSDR=false, 
 | 
			
		||||
    check_eofa=false, 
 | 
			
		||||
    upper_bound_eofa=false, lower_bound_eofa(false);
 | 
			
		||||
 | 
			
		||||
  std::string lanc_params_s;
 | 
			
		||||
  std::string lanc_params_DSDR;
 | 
			
		||||
  int tune_rhmc_s_action_or_md;
 | 
			
		||||
  int tune_rhmc_DSDR_action_or_md;
 | 
			
		||||
  int eofa_which_hsb;
 | 
			
		||||
 | 
			
		||||
  for(int i=1;i<argc;i++){
 | 
			
		||||
    std::string sarg(argv[i]);
 | 
			
		||||
    if(sarg == "--tune_rhmc_s"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      tune_rhmc_s=true;
 | 
			
		||||
      tune_rhmc_s_action_or_md = std::stoi(argv[i+1]);
 | 
			
		||||
    }
 | 
			
		||||
    else if(sarg == "--eigenrange_s"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      eigenrange_s=true;
 | 
			
		||||
      lanc_params_s = argv[i+1];
 | 
			
		||||
    }
 | 
			
		||||
    else if(sarg == "--tune_rhmc_DSDR"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      tune_rhmc_DSDR=true;
 | 
			
		||||
      tune_rhmc_DSDR_action_or_md = std::stoi(argv[i+1]);
 | 
			
		||||
    }
 | 
			
		||||
    else if(sarg == "--eigenrange_DSDR"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      eigenrange_DSDR=true;
 | 
			
		||||
      lanc_params_DSDR = argv[i+1];
 | 
			
		||||
    }
 | 
			
		||||
    else if(sarg == "--check_eofa"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      check_eofa = true;
 | 
			
		||||
      eofa_which_hsb = std::stoi(argv[i+1]); //-1 indicates all hasenbusch
 | 
			
		||||
      assert(eofa_which_hsb == -1 || (eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb) );
 | 
			
		||||
    }
 | 
			
		||||
    else if(sarg == "--upper_bound_eofa"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      upper_bound_eofa = true;
 | 
			
		||||
      eofa_which_hsb = std::stoi(argv[i+1]);
 | 
			
		||||
      assert(eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb);
 | 
			
		||||
    }
 | 
			
		||||
    else if(sarg == "--lower_bound_eofa"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      lower_bound_eofa = true;      
 | 
			
		||||
      eofa_which_hsb = std::stoi(argv[i+1]);
 | 
			
		||||
      assert(eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  if(tune_rhmc_s || eigenrange_s || tune_rhmc_DSDR || eigenrange_DSDR ||check_eofa || upper_bound_eofa || lower_bound_eofa) {
 | 
			
		||||
    std::cout << GridLogMessage << "Running checks" << std::endl;
 | 
			
		||||
    TheHMC.initializeGaugeFieldAndRNGs(Ud);
 | 
			
		||||
 | 
			
		||||
    //std::cout << GridLogMessage << "EOFA action solver action tolerance outer=" << ActionMCG_L.Tolerance << " inner=" << ActionMCG_L.InnerTolerance << std::endl;
 | 
			
		||||
    //std::cout << GridLogMessage << "EOFA MD solver tolerance outer=" << DerivMCG_L.Tolerance << " inner=" << DerivMCG_L.InnerTolerance << std::endl;
 | 
			
		||||
 | 
			
		||||
    if(check_eofa){
 | 
			
		||||
      if(eofa_which_hsb >= 0){
 | 
			
		||||
	std::cout << GridLogMessage << "Starting checking EOFA Hasenbusch " << eofa_which_hsb << std::endl;
 | 
			
		||||
	checkEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
 | 
			
		||||
	std::cout << GridLogMessage << "Finished checking EOFA Hasenbusch " << eofa_which_hsb << std::endl;
 | 
			
		||||
      }else{
 | 
			
		||||
	for(int i=0;i<n_light_hsb;i++){
 | 
			
		||||
	  std::cout << GridLogMessage << "Starting checking EOFA Hasenbusch " << i << std::endl;
 | 
			
		||||
	  checkEOFA(*EOFA_pfactions[i], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
 | 
			
		||||
	  std::cout << GridLogMessage << "Finished checking EOFA Hasenbusch " << i << std::endl;
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }	  
 | 
			
		||||
    if(upper_bound_eofa) upperBoundEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
 | 
			
		||||
    if(lower_bound_eofa) lowerBoundEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
 | 
			
		||||
    if(eigenrange_s) computeEigenvalues<FermionActionD, FermionFieldD>(lanc_params_s, FGridD, FrbGridD, Ud, Numerator_sD, TheHMC.Resources.GetParallelRNG());
 | 
			
		||||
    if(tune_rhmc_s) checkRHMC<FermionActionD, FermionFieldD, decltype(Quotient_s)>(FGridD, FrbGridD, Ud, Numerator_sD, Denominator_sD, Quotient_s, TheHMC.Resources.GetParallelRNG(), 4, "strange",  tune_rhmc_s_action_or_md);
 | 
			
		||||
    if(eigenrange_DSDR) computeEigenvalues<GparityWilsonTMFermionD, GparityWilsonTMFermionD::FermionField>(lanc_params_DSDR, UGridD, UrbGridD, Ud, Numerator_DSDR_D, TheHMC.Resources.GetParallelRNG());
 | 
			
		||||
    if(tune_rhmc_DSDR) checkRHMC<GparityWilsonTMFermionD, GparityWilsonTMFermionD::FermionField, decltype(Quotient_DSDR)>(UGridD, UrbGridD, Ud, Numerator_DSDR_D, Denominator_DSDR_D, Quotient_DSDR, TheHMC.Resources.GetParallelRNG(), 2, "DSDR", tune_rhmc_DSDR_action_or_md);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << " Done" << std::endl;
 | 
			
		||||
    Grid_finalize();
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //Run the HMC
 | 
			
		||||
  std::cout << GridLogMessage << " Running the HMC "<< std::endl;
 | 
			
		||||
  TheHMC.Run();
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << " Done" << std::endl;
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
  return 0;
 | 
			
		||||
} // main
 | 
			
		||||
							
								
								
									
										873
									
								
								HMC/Mobius2p1fIDSDRGparityEOFA_48ID.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										873
									
								
								HMC/Mobius2p1fIDSDRGparityEOFA_48ID.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,873 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./HMC/Mobius2p1fIDSDRGparityEOFA.cc
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015-2016
 | 
			
		||||
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 | 
			
		||||
//Production binary for the 40ID G-parity ensemble
 | 
			
		||||
 | 
			
		||||
struct RatQuoParameters: Serializable {
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(RatQuoParameters,
 | 
			
		||||
				  double, bnd_lo,
 | 
			
		||||
				  double, bnd_hi,
 | 
			
		||||
				  Integer, action_degree,
 | 
			
		||||
				  double, action_tolerance,
 | 
			
		||||
				  Integer, md_degree,
 | 
			
		||||
				  double, md_tolerance,
 | 
			
		||||
				  Integer, reliable_update_freq,
 | 
			
		||||
				  Integer, bnd_check_freq);
 | 
			
		||||
  RatQuoParameters() { 
 | 
			
		||||
    bnd_lo = 1e-2;
 | 
			
		||||
    bnd_hi = 30;
 | 
			
		||||
    action_degree = 10;
 | 
			
		||||
    action_tolerance = 1e-10;
 | 
			
		||||
    md_degree = 10;
 | 
			
		||||
    md_tolerance = 1e-8;
 | 
			
		||||
    bnd_check_freq = 20;
 | 
			
		||||
    reliable_update_freq = 50;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void Export(RationalActionParams &into) const{
 | 
			
		||||
    into.lo = bnd_lo;
 | 
			
		||||
    into.hi = bnd_hi;
 | 
			
		||||
    into.action_degree = action_degree;
 | 
			
		||||
    into.action_tolerance = action_tolerance;
 | 
			
		||||
    into.md_degree = md_degree;
 | 
			
		||||
    into.md_tolerance = md_tolerance;
 | 
			
		||||
    into.BoundsCheckFreq = bnd_check_freq;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct EOFAparameters: Serializable {
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(EOFAparameters,
 | 
			
		||||
				  OneFlavourRationalParams, rat_params,
 | 
			
		||||
				  double, action_tolerance,
 | 
			
		||||
				  double, action_mixcg_inner_tolerance,
 | 
			
		||||
				  double, md_tolerance,
 | 
			
		||||
				  double, md_mixcg_inner_tolerance);
 | 
			
		||||
 | 
			
		||||
  EOFAparameters() { 
 | 
			
		||||
    action_mixcg_inner_tolerance = 1e-8;
 | 
			
		||||
    action_tolerance = 1e-10;
 | 
			
		||||
    md_tolerance = 1e-8;
 | 
			
		||||
    md_mixcg_inner_tolerance = 1e-8;
 | 
			
		||||
 | 
			
		||||
    rat_params.lo = 1.0;
 | 
			
		||||
    rat_params.hi = 25.0;
 | 
			
		||||
    rat_params.MaxIter  = 10000;
 | 
			
		||||
    rat_params.tolerance= 1.0e-9;
 | 
			
		||||
    rat_params.degree   = 14;
 | 
			
		||||
    rat_params.precision= 50;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct EvolParameters: Serializable {
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(EvolParameters,
 | 
			
		||||
                                  Integer, StartTrajectory,
 | 
			
		||||
                                  Integer, Trajectories,
 | 
			
		||||
				  Integer, SaveInterval,
 | 
			
		||||
				  Integer, Steps,
 | 
			
		||||
				  RealD, TrajectoryLength,
 | 
			
		||||
                                  bool, MetropolisTest,
 | 
			
		||||
				  std::string, StartingType,
 | 
			
		||||
				  std::vector<Integer>, GparityDirs,
 | 
			
		||||
				  std::vector<EOFAparameters>, eofa_l,
 | 
			
		||||
				  RatQuoParameters, rat_quo_s,
 | 
			
		||||
				  RatQuoParameters, rat_quo_DSDR);
 | 
			
		||||
 | 
			
		||||
  EvolParameters() {
 | 
			
		||||
    //For initial thermalization; afterwards user should switch Metropolis on and use StartingType=CheckpointStart
 | 
			
		||||
    MetropolisTest    = false;
 | 
			
		||||
    StartTrajectory   = 0;
 | 
			
		||||
    Trajectories      = 50;
 | 
			
		||||
    SaveInterval = 5;
 | 
			
		||||
    StartingType      = "ColdStart";
 | 
			
		||||
    GparityDirs.resize(3, 1); //1 for G-parity, 0 for periodic
 | 
			
		||||
    Steps = 5;
 | 
			
		||||
    TrajectoryLength = 1.0;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
bool fileExists(const std::string &fn){
 | 
			
		||||
  std::ifstream f(fn);
 | 
			
		||||
  return f.good();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
struct LanczosParameters: Serializable {
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParameters,
 | 
			
		||||
				  double, alpha,
 | 
			
		||||
				  double, beta,
 | 
			
		||||
				  double, mu,
 | 
			
		||||
				  int, ord,
 | 
			
		||||
				  int, n_stop,
 | 
			
		||||
				  int, n_want,
 | 
			
		||||
				  int, n_use,
 | 
			
		||||
				  double, tolerance);
 | 
			
		||||
 | 
			
		||||
  LanczosParameters() {
 | 
			
		||||
    alpha = 35;
 | 
			
		||||
    beta = 5;
 | 
			
		||||
    mu = 0;
 | 
			
		||||
    ord = 100;
 | 
			
		||||
    n_stop = 10;
 | 
			
		||||
    n_want = 10;
 | 
			
		||||
    n_use = 15;
 | 
			
		||||
    tolerance = 1e-6;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<typename FermionActionD, typename FermionFieldD>
 | 
			
		||||
void computeEigenvalues(std::string param_file,
 | 
			
		||||
			GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt,  //expect lattice to have been initialized to something
 | 
			
		||||
			FermionActionD &action, GridParallelRNG &rng){
 | 
			
		||||
  
 | 
			
		||||
  LanczosParameters params;
 | 
			
		||||
  if(fileExists(param_file)){
 | 
			
		||||
    std::cout << GridLogMessage << " Reading " << param_file << std::endl;
 | 
			
		||||
    Grid::XmlReader rd(param_file);
 | 
			
		||||
    read(rd, "LanczosParameters", params);
 | 
			
		||||
  }else if(!GlobalSharedMemory::WorldRank){
 | 
			
		||||
    std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
 | 
			
		||||
    Grid::XmlWriter wr(param_file + ".templ");
 | 
			
		||||
    write(wr, "LanczosParameters", params);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  FermionFieldD gauss_o(rbGrid);
 | 
			
		||||
  FermionFieldD gauss(Grid);
 | 
			
		||||
  gaussian(rng, gauss);
 | 
			
		||||
  pickCheckerboard(Odd, gauss_o, gauss);
 | 
			
		||||
 | 
			
		||||
  action.ImportGauge(latt);
 | 
			
		||||
 | 
			
		||||
  SchurDiagMooeeOperator<FermionActionD, FermionFieldD> hermop(action);
 | 
			
		||||
  PlainHermOp<FermionFieldD> hermop_wrap(hermop);
 | 
			
		||||
  //ChebyshevLanczos<FermionFieldD> Cheb(params.alpha, params.beta, params.mu, params.ord);
 | 
			
		||||
  assert(params.mu == 0.0);
 | 
			
		||||
 | 
			
		||||
  Chebyshev<FermionFieldD> Cheb(params.beta*params.beta, params.alpha*params.alpha, params.ord+1);
 | 
			
		||||
  FunctionHermOp<FermionFieldD> Cheb_wrap(Cheb, hermop);
 | 
			
		||||
 | 
			
		||||
  std::cout << "IRL: alpha=" << params.alpha << " beta=" << params.beta << " mu=" << params.mu << " ord=" << params.ord << std::endl;
 | 
			
		||||
  ImplicitlyRestartedLanczos<FermionFieldD> IRL(Cheb_wrap, hermop_wrap, params.n_stop, params.n_want, params.n_use, params.tolerance, 10000);
 | 
			
		||||
 | 
			
		||||
  std::vector<RealD> eval(params.n_use);
 | 
			
		||||
  std::vector<FermionFieldD> evec(params.n_use, rbGrid);
 | 
			
		||||
  int Nconv;
 | 
			
		||||
  IRL.calc(eval, evec, gauss_o, Nconv);
 | 
			
		||||
 | 
			
		||||
  std::cout << "Eigenvalues:" << std::endl;
 | 
			
		||||
  for(int i=0;i<params.n_want;i++){
 | 
			
		||||
    std::cout << i << " " << eval[i] << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//Check the quality of the RHMC approx
 | 
			
		||||
//action_or_md toggles checking the action (0), MD (1) or both (2) setups
 | 
			
		||||
template<typename FermionActionD, typename FermionFieldD, typename RHMCtype>
 | 
			
		||||
void checkRHMC(GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt,  //expect lattice to have been initialized to something
 | 
			
		||||
	       FermionActionD &numOp, FermionActionD &denOp, RHMCtype &rhmc, GridParallelRNG &rng,
 | 
			
		||||
	       int inv_pow, const std::string &quark_descr, int action_or_md){
 | 
			
		||||
  assert(action_or_md == 0 || action_or_md == 1 || action_or_md == 2);
 | 
			
		||||
  
 | 
			
		||||
  FermionFieldD gauss_o(rbGrid);
 | 
			
		||||
  FermionFieldD gauss(Grid);
 | 
			
		||||
  gaussian(rng, gauss);
 | 
			
		||||
  pickCheckerboard(Odd, gauss_o, gauss);
 | 
			
		||||
 | 
			
		||||
  numOp.ImportGauge(latt);
 | 
			
		||||
  denOp.ImportGauge(latt);
 | 
			
		||||
 | 
			
		||||
  typedef typename FermionActionD::Impl_t FermionImplPolicyD;
 | 
			
		||||
  SchurDifferentiableOperator<FermionImplPolicyD> MdagM(numOp);
 | 
			
		||||
  SchurDifferentiableOperator<FermionImplPolicyD> VdagV(denOp);
 | 
			
		||||
 | 
			
		||||
  PowerMethod<FermionFieldD> power_method;
 | 
			
		||||
  RealD lambda_max;
 | 
			
		||||
 | 
			
		||||
  std::cout << "Starting: Get RHMC high bound approx for " << quark_descr << " numerator" << std::endl;
 | 
			
		||||
 | 
			
		||||
  lambda_max = power_method(MdagM,gauss_o);
 | 
			
		||||
  std::cout << GridLogMessage << "Got lambda_max "<<lambda_max<<std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << "Starting: Get RHMC high bound approx for " << quark_descr << " denominator" << std::endl;
 | 
			
		||||
  lambda_max = power_method(VdagV,gauss_o);
 | 
			
		||||
  std::cout << GridLogMessage << "Got lambda_max "<<lambda_max<<std::endl;
 | 
			
		||||
 | 
			
		||||
  if(action_or_md == 0 || action_or_md == 2){
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerAction); //use large tolerance to prevent exit on fail; we are trying to tune here!
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerAction);
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerAction);
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerAction);
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  std::cout << "-------------------------------------------------------------------------------" << std::endl;
 | 
			
		||||
 | 
			
		||||
  if(action_or_md == 1 || action_or_md == 2){
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerMD); 
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerMD);
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerMD);
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerMD);
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<typename FermionImplPolicy>
 | 
			
		||||
void checkEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
 | 
			
		||||
	       GridCartesian* FGrid, GridParallelRNG &rng, const LatticeGaugeFieldD &latt){
 | 
			
		||||
  std::cout << GridLogMessage << "Starting EOFA action/bounds check" << std::endl;
 | 
			
		||||
  typename FermionImplPolicy::FermionField eta(FGrid);
 | 
			
		||||
  RealD scale = std::sqrt(0.5);
 | 
			
		||||
  gaussian(rng,eta); eta = eta * scale;
 | 
			
		||||
 | 
			
		||||
  //Use the inbuilt check
 | 
			
		||||
  EOFA.refresh(latt, eta);
 | 
			
		||||
  EOFA.S(latt);
 | 
			
		||||
  std::cout << GridLogMessage << "Finished EOFA upper action/bounds check" << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<typename FermionImplPolicy>
 | 
			
		||||
class EOFAlinop: public LinearOperatorBase<typename FermionImplPolicy::FermionField>{
 | 
			
		||||
  ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA;
 | 
			
		||||
  LatticeGaugeFieldD &U;
 | 
			
		||||
public:
 | 
			
		||||
  EOFAlinop(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA, LatticeGaugeFieldD &U): EOFA(EOFA), U(U){}
 | 
			
		||||
 | 
			
		||||
  typedef typename FermionImplPolicy::FermionField Field;
 | 
			
		||||
  void OpDiag (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp){ assert(0); }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){ assert(0); } 
 | 
			
		||||
 | 
			
		||||
  void Op     (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void AdjOp  (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
 | 
			
		||||
  void HermOp(const Field &in, Field &out){ EOFA.Meofa(U, in, out); }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<typename FermionImplPolicy>
 | 
			
		||||
void upperBoundEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
 | 
			
		||||
		    GridCartesian* FGrid, GridParallelRNG &rng, LatticeGaugeFieldD &latt){
 | 
			
		||||
  std::cout << GridLogMessage << "Starting EOFA upper bound compute" << std::endl;
 | 
			
		||||
  EOFAlinop<FermionImplPolicy> linop(EOFA, latt);
 | 
			
		||||
  typename FermionImplPolicy::FermionField eta(FGrid);
 | 
			
		||||
  gaussian(rng,eta);
 | 
			
		||||
  PowerMethod<typename FermionImplPolicy::FermionField> power_method;
 | 
			
		||||
  auto lambda_max = power_method(linop,eta);
 | 
			
		||||
  std::cout << GridLogMessage << "Upper bound of EOFA operator " << lambda_max << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//Applications of M^{-1} cost the same as M for EOFA!
 | 
			
		||||
template<typename FermionImplPolicy>
 | 
			
		||||
class EOFAinvLinop: public LinearOperatorBase<typename FermionImplPolicy::FermionField>{
 | 
			
		||||
  ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA;
 | 
			
		||||
  LatticeGaugeFieldD &U;
 | 
			
		||||
public:
 | 
			
		||||
  EOFAinvLinop(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA, LatticeGaugeFieldD &U): EOFA(EOFA), U(U){}
 | 
			
		||||
 | 
			
		||||
  typedef typename FermionImplPolicy::FermionField Field;
 | 
			
		||||
  void OpDiag (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp){ assert(0); }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){ assert(0); } 
 | 
			
		||||
 | 
			
		||||
  void Op     (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void AdjOp  (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
 | 
			
		||||
  void HermOp(const Field &in, Field &out){ EOFA.MeofaInv(U, in, out); }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<typename FermionImplPolicy>
 | 
			
		||||
void lowerBoundEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
 | 
			
		||||
		    GridCartesian* FGrid, GridParallelRNG &rng, LatticeGaugeFieldD &latt){
 | 
			
		||||
  std::cout << GridLogMessage << "Starting EOFA lower bound compute using power method on M^{-1}. Inverse of highest eigenvalue is the lowest eigenvalue of M" << std::endl;
 | 
			
		||||
  EOFAinvLinop<FermionImplPolicy> linop(EOFA, latt);
 | 
			
		||||
  typename FermionImplPolicy::FermionField eta(FGrid);
 | 
			
		||||
  gaussian(rng,eta);
 | 
			
		||||
  PowerMethod<typename FermionImplPolicy::FermionField> power_method;
 | 
			
		||||
  auto lambda_max = power_method(linop,eta);
 | 
			
		||||
  std::cout << GridLogMessage << "Lower bound of EOFA operator " << 1./lambda_max << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
  template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class  SchurOperatorF> 
 | 
			
		||||
  class MixedPrecisionConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
 | 
			
		||||
  public:
 | 
			
		||||
    typedef typename FermionOperatorD::FermionField FieldD;
 | 
			
		||||
    typedef typename FermionOperatorF::FermionField FieldF;
 | 
			
		||||
 | 
			
		||||
    using OperatorFunction<FieldD>::operator();
 | 
			
		||||
 | 
			
		||||
    RealD   Tolerance;
 | 
			
		||||
    RealD   InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
 | 
			
		||||
    Integer MaxInnerIterations;
 | 
			
		||||
    Integer MaxOuterIterations;
 | 
			
		||||
    GridBase* SinglePrecGrid4; //Grid for single-precision fields
 | 
			
		||||
    GridBase* SinglePrecGrid5; //Grid for single-precision fields
 | 
			
		||||
    RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
 | 
			
		||||
 | 
			
		||||
    FermionOperatorF &FermOpF;
 | 
			
		||||
    FermionOperatorD &FermOpD;;
 | 
			
		||||
    SchurOperatorF &LinOpF;
 | 
			
		||||
    SchurOperatorD &LinOpD;
 | 
			
		||||
 | 
			
		||||
    Integer TotalInnerIterations; //Number of inner CG iterations
 | 
			
		||||
    Integer TotalOuterIterations; //Number of restarts
 | 
			
		||||
    Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
 | 
			
		||||
 | 
			
		||||
    MixedPrecisionConjugateGradientOperatorFunction(RealD tol, 
 | 
			
		||||
						    Integer maxinnerit, 
 | 
			
		||||
						    Integer maxouterit, 
 | 
			
		||||
						    GridBase* _sp_grid4, 
 | 
			
		||||
						    GridBase* _sp_grid5, 
 | 
			
		||||
						    FermionOperatorF &_FermOpF,
 | 
			
		||||
						    FermionOperatorD &_FermOpD,
 | 
			
		||||
						    SchurOperatorF   &_LinOpF,
 | 
			
		||||
						    SchurOperatorD   &_LinOpD): 
 | 
			
		||||
      LinOpF(_LinOpF),
 | 
			
		||||
      LinOpD(_LinOpD),
 | 
			
		||||
      FermOpF(_FermOpF),
 | 
			
		||||
      FermOpD(_FermOpD),
 | 
			
		||||
      Tolerance(tol), 
 | 
			
		||||
      InnerTolerance(tol), 
 | 
			
		||||
      MaxInnerIterations(maxinnerit), 
 | 
			
		||||
      MaxOuterIterations(maxouterit), 
 | 
			
		||||
      SinglePrecGrid4(_sp_grid4),
 | 
			
		||||
      SinglePrecGrid5(_sp_grid5),
 | 
			
		||||
      OuterLoopNormMult(100.) 
 | 
			
		||||
    { 
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << " Mixed precision CG wrapper operator() "<<std::endl;
 | 
			
		||||
 | 
			
		||||
      SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
 | 
			
		||||
      assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
 | 
			
		||||
 | 
			
		||||
      precisionChange(FermOpF.Umu, FermOpD.Umu);
 | 
			
		||||
 | 
			
		||||
      pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
 | 
			
		||||
      pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
      // Make a mixed precision conjugate gradient
 | 
			
		||||
      ////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
      MixedPrecisionConjugateGradient<FieldD,FieldF> MPCG(Tolerance,MaxInnerIterations,MaxOuterIterations,SinglePrecGrid5,LinOpF,LinOpD);
 | 
			
		||||
      MPCG.InnerTolerance = InnerTolerance;
 | 
			
		||||
      std::cout << GridLogMessage << "Calling mixed precision Conjugate Gradient" <<std::endl;
 | 
			
		||||
      MPCG(src,psi);
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class  SchurOperatorF> 
 | 
			
		||||
  class MixedPrecisionReliableUpdateConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
 | 
			
		||||
  public:
 | 
			
		||||
    typedef typename FermionOperatorD::FermionField FieldD;
 | 
			
		||||
    typedef typename FermionOperatorF::FermionField FieldF;
 | 
			
		||||
 | 
			
		||||
    using OperatorFunction<FieldD>::operator();
 | 
			
		||||
 | 
			
		||||
    RealD Tolerance;
 | 
			
		||||
    Integer MaxIterations;
 | 
			
		||||
 | 
			
		||||
    RealD Delta; //reliable update parameter
 | 
			
		||||
 | 
			
		||||
    GridBase* SinglePrecGrid4; //Grid for single-precision fields
 | 
			
		||||
    GridBase* SinglePrecGrid5; //Grid for single-precision fields
 | 
			
		||||
 | 
			
		||||
    FermionOperatorF &FermOpF;
 | 
			
		||||
    FermionOperatorD &FermOpD;;
 | 
			
		||||
    SchurOperatorF &LinOpF;
 | 
			
		||||
    SchurOperatorD &LinOpD;
 | 
			
		||||
    
 | 
			
		||||
    MixedPrecisionReliableUpdateConjugateGradientOperatorFunction(RealD tol, 
 | 
			
		||||
								  RealD delta,
 | 
			
		||||
								  Integer maxit, 
 | 
			
		||||
								  GridBase* _sp_grid4, 
 | 
			
		||||
								  GridBase* _sp_grid5, 
 | 
			
		||||
								  FermionOperatorF &_FermOpF,
 | 
			
		||||
								  FermionOperatorD &_FermOpD,
 | 
			
		||||
								  SchurOperatorF   &_LinOpF,
 | 
			
		||||
								  SchurOperatorD   &_LinOpD): 
 | 
			
		||||
      LinOpF(_LinOpF),
 | 
			
		||||
      LinOpD(_LinOpD),
 | 
			
		||||
      FermOpF(_FermOpF),
 | 
			
		||||
      FermOpD(_FermOpD),
 | 
			
		||||
      Tolerance(tol), 
 | 
			
		||||
      Delta(delta),
 | 
			
		||||
      MaxIterations(maxit), 
 | 
			
		||||
      SinglePrecGrid4(_sp_grid4),
 | 
			
		||||
      SinglePrecGrid5(_sp_grid5)
 | 
			
		||||
    { 
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << " Mixed precision reliable CG update wrapper operator() "<<std::endl;
 | 
			
		||||
 | 
			
		||||
      SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
 | 
			
		||||
      assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
 | 
			
		||||
 | 
			
		||||
      precisionChange(FermOpF.Umu, FermOpD.Umu);
 | 
			
		||||
 | 
			
		||||
      pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
 | 
			
		||||
      pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
      // Make a mixed precision conjugate gradient
 | 
			
		||||
      ////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
      ConjugateGradientReliableUpdate<FieldD,FieldF> MPCG(Tolerance,MaxIterations,Delta,SinglePrecGrid5,LinOpF,LinOpD);
 | 
			
		||||
      std::cout << GridLogMessage << "Calling mixed precision reliable update Conjugate Gradient" <<std::endl;
 | 
			
		||||
      MPCG(src,psi);
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
int main(int argc, char **argv) {
 | 
			
		||||
  Grid_init(&argc, &argv);
 | 
			
		||||
  int threads = GridThread::GetThreads();
 | 
			
		||||
  // here make a routine to print all the relevant information on the run
 | 
			
		||||
  std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::string param_file = "params.xml";
 | 
			
		||||
  bool file_load_check = false;
 | 
			
		||||
  for(int i=1;i<argc;i++){
 | 
			
		||||
    std::string sarg(argv[i]);
 | 
			
		||||
    if(sarg == "--param_file"){
 | 
			
		||||
      assert(i!=argc-1);
 | 
			
		||||
      param_file = argv[i+1];
 | 
			
		||||
    }else if(sarg == "--read_check"){ //check the fields load correctly and pass checksum/plaquette repro
 | 
			
		||||
      file_load_check = true;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Read the user parameters
 | 
			
		||||
  EvolParameters user_params;
 | 
			
		||||
  
 | 
			
		||||
  if(fileExists(param_file)){
 | 
			
		||||
    std::cout << GridLogMessage << " Reading " << param_file << std::endl;
 | 
			
		||||
    Grid::XmlReader rd(param_file);
 | 
			
		||||
    read(rd, "Params", user_params);
 | 
			
		||||
  }else if(!GlobalSharedMemory::WorldRank){
 | 
			
		||||
    std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
 | 
			
		||||
    {
 | 
			
		||||
      Grid::XmlWriter wr(param_file + ".templ");
 | 
			
		||||
      write(wr, "Params", user_params);
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << " Done" << std::endl;
 | 
			
		||||
    Grid_finalize();
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Check the parameters
 | 
			
		||||
  if(user_params.GparityDirs.size() != Nd-1){
 | 
			
		||||
    std::cerr << "Error in input parameters: expect GparityDirs to have size = " << Nd-1 << std::endl;
 | 
			
		||||
    exit(1);
 | 
			
		||||
  }
 | 
			
		||||
  for(int i=0;i<Nd-1;i++)
 | 
			
		||||
    if(user_params.GparityDirs[i] != 0 && user_params.GparityDirs[i] != 1){
 | 
			
		||||
      std::cerr << "Error in input parameters: expect GparityDirs values to be 0 (periodic) or 1 (G-parity)" << std::endl;
 | 
			
		||||
      exit(1);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  typedef GparityMobiusEOFAFermionD EOFAactionD;
 | 
			
		||||
  typedef GparityMobiusFermionD FermionActionD;
 | 
			
		||||
  typedef typename FermionActionD::Impl_t FermionImplPolicyD;
 | 
			
		||||
  typedef typename FermionActionD::FermionField FermionFieldD;
 | 
			
		||||
 | 
			
		||||
  typedef GparityMobiusEOFAFermionF EOFAactionF;
 | 
			
		||||
  typedef GparityMobiusFermionF FermionActionF;
 | 
			
		||||
  typedef typename FermionActionF::Impl_t FermionImplPolicyF;
 | 
			
		||||
  typedef typename FermionActionF::FermionField FermionFieldF;
 | 
			
		||||
 | 
			
		||||
  typedef GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<FermionImplPolicyD,FermionImplPolicyF> MixedPrecRHMC;
 | 
			
		||||
  typedef GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicyD> DoublePrecRHMC;
 | 
			
		||||
 | 
			
		||||
  //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
 | 
			
		||||
  IntegratorParameters MD;
 | 
			
		||||
  typedef ConjugateHMCRunnerD<MinimumNorm2> HMCWrapper; //NB: This is the "Omelyan integrator"
 | 
			
		||||
  typedef HMCWrapper::ImplPolicy GaugeImplPolicy;
 | 
			
		||||
  MD.name    = std::string("MinimumNorm2");
 | 
			
		||||
  MD.MDsteps = user_params.Steps;
 | 
			
		||||
  MD.trajL   = user_params.TrajectoryLength;
 | 
			
		||||
 | 
			
		||||
  HMCparameters HMCparams;
 | 
			
		||||
  HMCparams.StartTrajectory  = user_params.StartTrajectory;
 | 
			
		||||
  HMCparams.Trajectories     = user_params.Trajectories;
 | 
			
		||||
  HMCparams.NoMetropolisUntil= 0;
 | 
			
		||||
  HMCparams.StartingType     = user_params.StartingType;
 | 
			
		||||
  HMCparams.MetropolisTest = user_params.MetropolisTest;
 | 
			
		||||
  HMCparams.MD = MD;
 | 
			
		||||
  HMCWrapper TheHMC(HMCparams);
 | 
			
		||||
 | 
			
		||||
  // Grid from the command line arguments --grid and --mpi
 | 
			
		||||
  TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
 | 
			
		||||
 | 
			
		||||
  CheckpointerParameters CPparams;
 | 
			
		||||
  CPparams.config_prefix = "ckpoint_lat";
 | 
			
		||||
  CPparams.rng_prefix    = "ckpoint_rng";
 | 
			
		||||
  CPparams.saveInterval  = user_params.SaveInterval;
 | 
			
		||||
  CPparams.format        = "IEEE64BIG";
 | 
			
		||||
  TheHMC.Resources.LoadNerscCheckpointer(CPparams);
 | 
			
		||||
 | 
			
		||||
  //Note that checkpointing saves the RNG state so that this initialization is required only for the very first configuration
 | 
			
		||||
  RNGModuleParameters RNGpar;
 | 
			
		||||
  RNGpar.serial_seeds = "1 2 3 4 5";
 | 
			
		||||
  RNGpar.parallel_seeds = "6 7 8 9 10";
 | 
			
		||||
  TheHMC.Resources.SetRNGSeeds(RNGpar);
 | 
			
		||||
 | 
			
		||||
  typedef PlaquetteMod<GaugeImplPolicy> PlaqObs;
 | 
			
		||||
  TheHMC.Resources.AddObservable<PlaqObs>();
 | 
			
		||||
  //////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  //aiming for ainv=2.068             me          Bob
 | 
			
		||||
  //Estimated  a(ml+mres) [48ID] = 0.001048    0.00104 
 | 
			
		||||
  //           a(mh+mres) [48ID] = 0.028847    0.02805
 | 
			
		||||
  //Estimate Ls=12, b+c=2  mres~0.0003
 | 
			
		||||
 | 
			
		||||
  const int Ls      = 12;
 | 
			
		||||
  Real beta         = 1.946;
 | 
			
		||||
  Real light_mass   = 0.00074;   //0.00104 - mres_approx;
 | 
			
		||||
  Real strange_mass = 0.02775;    //0.02805 - mres_approx
 | 
			
		||||
  Real pv_mass      = 1.0;
 | 
			
		||||
  RealD M5  = 1.8;
 | 
			
		||||
  RealD mobius_scale = 2.; //b+c
 | 
			
		||||
 | 
			
		||||
  RealD mob_bmc = 1.0;
 | 
			
		||||
  RealD mob_b = (mobius_scale + mob_bmc)/2.;
 | 
			
		||||
  RealD mob_c = (mobius_scale - mob_bmc)/2.;
 | 
			
		||||
 | 
			
		||||
  //Setup the Grids
 | 
			
		||||
  auto UGridD   = TheHMC.Resources.GetCartesian();
 | 
			
		||||
  auto UrbGridD = TheHMC.Resources.GetRBCartesian();
 | 
			
		||||
  auto FGridD     = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridD);
 | 
			
		||||
  auto FrbGridD   = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridD);
 | 
			
		||||
 | 
			
		||||
  GridCartesian* UGridF = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
 | 
			
		||||
  GridRedBlackCartesian* UrbGridF = SpaceTimeGrid::makeFourDimRedBlackGrid(UGridF);
 | 
			
		||||
  auto FGridF     = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridF);
 | 
			
		||||
  auto FrbGridF   = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridF);
 | 
			
		||||
 | 
			
		||||
  ConjugateIwasakiGaugeActionD GaugeAction(beta);
 | 
			
		||||
 | 
			
		||||
  // temporarily need a gauge field
 | 
			
		||||
  LatticeGaugeFieldD Ud(UGridD);
 | 
			
		||||
  LatticeGaugeFieldF Uf(UGridF);
 | 
			
		||||
 
 | 
			
		||||
  //Setup the BCs
 | 
			
		||||
  FermionActionD::ImplParams Params;
 | 
			
		||||
  for(int i=0;i<Nd-1;i++) Params.twists[i] = user_params.GparityDirs[i]; //G-parity directions
 | 
			
		||||
  Params.twists[Nd-1] = 1; //APBC in time direction
 | 
			
		||||
 | 
			
		||||
  std::vector<int> dirs4(Nd);
 | 
			
		||||
  for(int i=0;i<Nd-1;i++) dirs4[i] = user_params.GparityDirs[i];
 | 
			
		||||
  dirs4[Nd-1] = 0; //periodic gauge BC in time
 | 
			
		||||
 | 
			
		||||
  GaugeImplPolicy::setDirections(dirs4); //gauge BC
 | 
			
		||||
 | 
			
		||||
  //Run optional gauge field checksum checker and exit
 | 
			
		||||
  if(file_load_check){
 | 
			
		||||
    TheHMC.initializeGaugeFieldAndRNGs(Ud);
 | 
			
		||||
    std::cout << GridLogMessage << " Done" << std::endl;
 | 
			
		||||
    Grid_finalize();
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  // Collect actions
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  ActionLevel<HMCWrapper::Field> Level1(1); //light quark + strange quark
 | 
			
		||||
  ActionLevel<HMCWrapper::Field> Level2(4); //DSDR
 | 
			
		||||
  ActionLevel<HMCWrapper::Field> Level3(2); //gauge
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  // Light EOFA action
 | 
			
		||||
  // have to be careful with the parameters, cf. Test_dwf_gpforce_eofa.cc
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  typedef SchurDiagMooeeOperator<EOFAactionD,FermionFieldD> EOFAschuropD;
 | 
			
		||||
  typedef SchurDiagMooeeOperator<EOFAactionF,FermionFieldF> EOFAschuropF;
 | 
			
		||||
  typedef ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction<FermionImplPolicyD, FermionImplPolicyF> EOFAmixPrecPFaction;
 | 
			
		||||
  typedef MixedPrecisionConjugateGradientOperatorFunction<EOFAactionD, EOFAactionF, EOFAschuropD, EOFAschuropF> EOFA_mxCG;
 | 
			
		||||
  typedef MixedPrecisionReliableUpdateConjugateGradientOperatorFunction<EOFAactionD, EOFAactionF, EOFAschuropD, EOFAschuropF> EOFA_relupCG;
 | 
			
		||||
  
 | 
			
		||||
  std::vector<RealD> eofa_light_masses = { light_mass ,  0.004,   0.016,   0.064,   0.256    };
 | 
			
		||||
  std::vector<RealD> eofa_pv_masses =    { 0.004       , 0.016,   0.064,   0.256,   1.0      };
 | 
			
		||||
  int n_light_hsb = 5;
 | 
			
		||||
  assert(user_params.eofa_l.size() == n_light_hsb);
 | 
			
		||||
  
 | 
			
		||||
  EOFAmixPrecPFaction* EOFA_pfactions[n_light_hsb];
 | 
			
		||||
 | 
			
		||||
  for(int i=0;i<n_light_hsb;i++){
 | 
			
		||||
    RealD iml = eofa_light_masses[i];
 | 
			
		||||
    RealD ipv = eofa_pv_masses[i];
 | 
			
		||||
 | 
			
		||||
    EOFAactionD* LopD = new EOFAactionD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, iml, iml, ipv, 0.0, -1, M5, mob_b, mob_c, Params);
 | 
			
		||||
    EOFAactionF* LopF = new EOFAactionF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, iml, iml, ipv, 0.0, -1, M5, mob_b, mob_c, Params);
 | 
			
		||||
    EOFAactionD* RopD = new EOFAactionD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, ipv, iml, ipv, -1.0, 1, M5, mob_b, mob_c, Params);
 | 
			
		||||
    EOFAactionF* RopF = new EOFAactionF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, ipv, iml, ipv, -1.0, 1, M5, mob_b, mob_c, Params);
 | 
			
		||||
 | 
			
		||||
    EOFAschuropD* linopL_D = new EOFAschuropD(*LopD);
 | 
			
		||||
    EOFAschuropD* linopR_D = new EOFAschuropD(*RopD);
 | 
			
		||||
    
 | 
			
		||||
    EOFAschuropF* linopL_F = new EOFAschuropF(*LopF);
 | 
			
		||||
    EOFAschuropF* linopR_F = new EOFAschuropF(*RopF);
 | 
			
		||||
 | 
			
		||||
#if 1
 | 
			
		||||
    //Note reusing user_params.eofa_l.action(|md)_mixcg_inner_tolerance  as Delta for now
 | 
			
		||||
    EOFA_relupCG* ActionMCG_L = new EOFA_relupCG(user_params.eofa_l[i].action_tolerance, user_params.eofa_l[i].action_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
 | 
			
		||||
    EOFA_relupCG* ActionMCG_R = new EOFA_relupCG(user_params.eofa_l[i].action_tolerance, user_params.eofa_l[i].action_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
 | 
			
		||||
 | 
			
		||||
    EOFA_relupCG* DerivMCG_L = new EOFA_relupCG(user_params.eofa_l[i].md_tolerance, user_params.eofa_l[i].md_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
 | 
			
		||||
    EOFA_relupCG* DerivMCG_R = new EOFA_relupCG(user_params.eofa_l[i].md_tolerance, user_params.eofa_l[i].md_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
    
 | 
			
		||||
    EOFA_mxCG* ActionMCG_L = new EOFA_mxCG(user_params.eofa_l[i].action_tolerance, 10000, 1000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
 | 
			
		||||
    ActionMCG_L->InnerTolerance = user_params.eofa_l[i].action_mixcg_inner_tolerance;
 | 
			
		||||
    
 | 
			
		||||
    EOFA_mxCG* ActionMCG_R = new EOFA_mxCG(user_params.eofa_l[i].action_tolerance, 10000, 1000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
 | 
			
		||||
    ActionMCG_R->InnerTolerance = user_params.eofa_l[i].action_mixcg_inner_tolerance;
 | 
			
		||||
    
 | 
			
		||||
    EOFA_mxCG* DerivMCG_L = new EOFA_mxCG(user_params.eofa_l[i].md_tolerance, 10000, 1000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
 | 
			
		||||
    DerivMCG_L->InnerTolerance = user_params.eofa_l[i].md_mixcg_inner_tolerance;
 | 
			
		||||
    
 | 
			
		||||
    EOFA_mxCG* DerivMCG_R = new EOFA_mxCG(user_params.eofa_l[i].md_tolerance, 10000, 1000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
 | 
			
		||||
    DerivMCG_R->InnerTolerance = user_params.eofa_l[i].md_mixcg_inner_tolerance;
 | 
			
		||||
    
 | 
			
		||||
    std::cout << GridLogMessage << "Set EOFA action solver action tolerance outer=" << ActionMCG_L->Tolerance << " inner=" << ActionMCG_L->InnerTolerance << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Set EOFA MD solver tolerance outer=" << DerivMCG_L->Tolerance << " inner=" << DerivMCG_L->InnerTolerance << std::endl;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
    EOFAmixPrecPFaction* EOFA = new EOFAmixPrecPFaction(*LopF, *RopF,
 | 
			
		||||
							*LopD, *RopD, 
 | 
			
		||||
							*ActionMCG_L, *ActionMCG_R, 
 | 
			
		||||
							*ActionMCG_L, *ActionMCG_R, 
 | 
			
		||||
							*DerivMCG_L, *DerivMCG_R, 
 | 
			
		||||
							user_params.eofa_l[i].rat_params, true);
 | 
			
		||||
    EOFA_pfactions[i] = EOFA;
 | 
			
		||||
    Level1.push_back(EOFA);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  // Strange action
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  FermionActionD Numerator_sD(Ud,*FGridD,*FrbGridD,*UGridD,*UrbGridD,strange_mass,M5,mob_b,mob_c,Params);
 | 
			
		||||
  FermionActionD Denominator_sD(Ud,*FGridD,*FrbGridD,*UGridD,*UrbGridD, pv_mass,M5,mob_b,mob_c,Params);
 | 
			
		||||
 | 
			
		||||
  FermionActionF Numerator_sF(Uf,*FGridF,*FrbGridF,*UGridF,*UrbGridF,strange_mass,M5,mob_b,mob_c,Params);
 | 
			
		||||
  FermionActionF Denominator_sF(Uf,*FGridF,*FrbGridF,*UGridF,*UrbGridF, pv_mass,M5,mob_b,mob_c,Params);
 | 
			
		||||
 | 
			
		||||
  RationalActionParams rat_act_params_s;
 | 
			
		||||
  rat_act_params_s.inv_pow  = 4; // (M^dag M)^{1/4}
 | 
			
		||||
  rat_act_params_s.precision= 60;
 | 
			
		||||
  rat_act_params_s.MaxIter  = 10000;
 | 
			
		||||
  user_params.rat_quo_s.Export(rat_act_params_s);
 | 
			
		||||
  std::cout << GridLogMessage << " Heavy quark bounds check every " << rat_act_params_s.BoundsCheckFreq << " trajectories (avg)" << std::endl;
 | 
			
		||||
 | 
			
		||||
  //MixedPrecRHMC Quotient_s(Denominator_sD, Numerator_sD, Denominator_sF, Numerator_sF, rat_act_params_s, user_params.rat_quo_s.reliable_update_freq); 
 | 
			
		||||
  DoublePrecRHMC Quotient_s(Denominator_sD, Numerator_sD, rat_act_params_s); 
 | 
			
		||||
  Level1.push_back(&Quotient_s);  
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////
 | 
			
		||||
  // DSDR action
 | 
			
		||||
  ///////////////////////////////////
 | 
			
		||||
  RealD dsdr_mass=-1.8;   
 | 
			
		||||
  //Use same DSDR twists as https://arxiv.org/pdf/1208.4412.pdf
 | 
			
		||||
  RealD dsdr_epsilon_f = 0.02; //numerator (in determinant)
 | 
			
		||||
  RealD dsdr_epsilon_b = 0.5; 
 | 
			
		||||
  GparityWilsonTMFermionD Numerator_DSDR_D(Ud, *UGridD, *UrbGridD, dsdr_mass, dsdr_epsilon_f, Params);
 | 
			
		||||
  GparityWilsonTMFermionF Numerator_DSDR_F(Uf, *UGridF, *UrbGridF, dsdr_mass, dsdr_epsilon_f, Params);
 | 
			
		||||
 | 
			
		||||
  GparityWilsonTMFermionD Denominator_DSDR_D(Ud, *UGridD, *UrbGridD, dsdr_mass, dsdr_epsilon_b, Params);
 | 
			
		||||
  GparityWilsonTMFermionF Denominator_DSDR_F(Uf, *UGridF, *UrbGridF, dsdr_mass, dsdr_epsilon_b, Params);
 | 
			
		||||
 
 | 
			
		||||
  RationalActionParams rat_act_params_DSDR;
 | 
			
		||||
  rat_act_params_DSDR.inv_pow  = 2; // (M^dag M)^{1/2}
 | 
			
		||||
  rat_act_params_DSDR.precision= 60;
 | 
			
		||||
  rat_act_params_DSDR.MaxIter  = 10000;
 | 
			
		||||
  user_params.rat_quo_DSDR.Export(rat_act_params_DSDR);
 | 
			
		||||
  std::cout << GridLogMessage << "DSDR quark bounds check every " << rat_act_params_DSDR.BoundsCheckFreq << " trajectories (avg)" << std::endl;
 | 
			
		||||
 | 
			
		||||
  DoublePrecRHMC Quotient_DSDR(Denominator_DSDR_D, Numerator_DSDR_D, rat_act_params_DSDR);
 | 
			
		||||
  Level2.push_back(&Quotient_DSDR);
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  // Gauge action
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  Level3.push_back(&GaugeAction);
 | 
			
		||||
 | 
			
		||||
  TheHMC.TheAction.push_back(Level1);
 | 
			
		||||
  TheHMC.TheAction.push_back(Level2);
 | 
			
		||||
  TheHMC.TheAction.push_back(Level3);
 | 
			
		||||
  std::cout << GridLogMessage << " Action complete "<< std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //Action tuning
 | 
			
		||||
  bool 
 | 
			
		||||
    tune_rhmc_s=false, eigenrange_s=false, 
 | 
			
		||||
    tune_rhmc_DSDR=false, eigenrange_DSDR=false, 
 | 
			
		||||
    check_eofa=false, 
 | 
			
		||||
    upper_bound_eofa=false, lower_bound_eofa(false);
 | 
			
		||||
 | 
			
		||||
  std::string lanc_params_s;
 | 
			
		||||
  std::string lanc_params_DSDR;
 | 
			
		||||
  int tune_rhmc_s_action_or_md;
 | 
			
		||||
  int tune_rhmc_DSDR_action_or_md;
 | 
			
		||||
  int eofa_which_hsb;
 | 
			
		||||
 | 
			
		||||
  for(int i=1;i<argc;i++){
 | 
			
		||||
    std::string sarg(argv[i]);
 | 
			
		||||
    if(sarg == "--tune_rhmc_s"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      tune_rhmc_s=true;
 | 
			
		||||
      tune_rhmc_s_action_or_md = std::stoi(argv[i+1]);
 | 
			
		||||
    }
 | 
			
		||||
    else if(sarg == "--eigenrange_s"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      eigenrange_s=true;
 | 
			
		||||
      lanc_params_s = argv[i+1];
 | 
			
		||||
    }
 | 
			
		||||
    else if(sarg == "--tune_rhmc_DSDR"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      tune_rhmc_DSDR=true;
 | 
			
		||||
      tune_rhmc_DSDR_action_or_md = std::stoi(argv[i+1]);
 | 
			
		||||
    }
 | 
			
		||||
    else if(sarg == "--eigenrange_DSDR"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      eigenrange_DSDR=true;
 | 
			
		||||
      lanc_params_DSDR = argv[i+1];
 | 
			
		||||
    }
 | 
			
		||||
    else if(sarg == "--check_eofa"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      check_eofa = true;
 | 
			
		||||
      eofa_which_hsb = std::stoi(argv[i+1]); //-1 indicates all hasenbusch
 | 
			
		||||
      assert(eofa_which_hsb == -1 || (eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb) );
 | 
			
		||||
    }
 | 
			
		||||
    else if(sarg == "--upper_bound_eofa"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      upper_bound_eofa = true;
 | 
			
		||||
      eofa_which_hsb = std::stoi(argv[i+1]);
 | 
			
		||||
      assert(eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb);
 | 
			
		||||
    }
 | 
			
		||||
    else if(sarg == "--lower_bound_eofa"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      lower_bound_eofa = true;      
 | 
			
		||||
      eofa_which_hsb = std::stoi(argv[i+1]);
 | 
			
		||||
      assert(eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  if(tune_rhmc_s || eigenrange_s || tune_rhmc_DSDR || eigenrange_DSDR ||check_eofa || upper_bound_eofa || lower_bound_eofa) {
 | 
			
		||||
    std::cout << GridLogMessage << "Running checks" << std::endl;
 | 
			
		||||
    TheHMC.initializeGaugeFieldAndRNGs(Ud);
 | 
			
		||||
 | 
			
		||||
    //std::cout << GridLogMessage << "EOFA action solver action tolerance outer=" << ActionMCG_L.Tolerance << " inner=" << ActionMCG_L.InnerTolerance << std::endl;
 | 
			
		||||
    //std::cout << GridLogMessage << "EOFA MD solver tolerance outer=" << DerivMCG_L.Tolerance << " inner=" << DerivMCG_L.InnerTolerance << std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    if(check_eofa){
 | 
			
		||||
      if(eofa_which_hsb >= 0){
 | 
			
		||||
	std::cout << GridLogMessage << "Starting checking EOFA Hasenbusch " << eofa_which_hsb << std::endl;
 | 
			
		||||
	checkEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
 | 
			
		||||
	std::cout << GridLogMessage << "Finished checking EOFA Hasenbusch " << eofa_which_hsb << std::endl;
 | 
			
		||||
      }else{
 | 
			
		||||
	for(int i=0;i<n_light_hsb;i++){
 | 
			
		||||
	  std::cout << GridLogMessage << "Starting checking EOFA Hasenbusch " << i << std::endl;
 | 
			
		||||
	  checkEOFA(*EOFA_pfactions[i], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
 | 
			
		||||
	  std::cout << GridLogMessage << "Finished checking EOFA Hasenbusch " << i << std::endl;
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }	  
 | 
			
		||||
    if(upper_bound_eofa) upperBoundEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
 | 
			
		||||
    if(lower_bound_eofa) lowerBoundEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
 | 
			
		||||
    if(eigenrange_s) computeEigenvalues<FermionActionD, FermionFieldD>(lanc_params_s, FGridD, FrbGridD, Ud, Numerator_sD, TheHMC.Resources.GetParallelRNG());
 | 
			
		||||
    if(tune_rhmc_s) checkRHMC<FermionActionD, FermionFieldD, decltype(Quotient_s)>(FGridD, FrbGridD, Ud, Numerator_sD, Denominator_sD, Quotient_s, TheHMC.Resources.GetParallelRNG(), 4, "strange",  tune_rhmc_s_action_or_md);
 | 
			
		||||
    if(eigenrange_DSDR) computeEigenvalues<GparityWilsonTMFermionD, GparityWilsonTMFermionD::FermionField>(lanc_params_DSDR, UGridD, UrbGridD, Ud, Numerator_DSDR_D, TheHMC.Resources.GetParallelRNG());
 | 
			
		||||
    if(tune_rhmc_DSDR) checkRHMC<GparityWilsonTMFermionD, GparityWilsonTMFermionD::FermionField, decltype(Quotient_DSDR)>(UGridD, UrbGridD, Ud, Numerator_DSDR_D, Denominator_DSDR_D, Quotient_DSDR, TheHMC.Resources.GetParallelRNG(), 2, "DSDR", tune_rhmc_DSDR_action_or_md);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << " Done" << std::endl;
 | 
			
		||||
    Grid_finalize();
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //Run the HMC
 | 
			
		||||
  std::cout << GridLogMessage << " Running the HMC "<< std::endl;
 | 
			
		||||
  TheHMC.Run();
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << " Done" << std::endl;
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
  return 0;
 | 
			
		||||
} // main
 | 
			
		||||
@@ -1,19 +1,27 @@
 | 
			
		||||
#!/bin/bash
 | 
			
		||||
 | 
			
		||||
LOG=$1
 | 
			
		||||
SWEEPS=`grep dH $LOG | wc -l`
 | 
			
		||||
SWEEPS=`expr $SWEEPS - 80`
 | 
			
		||||
SWEEPS=`grep dH.= $LOG | wc -l`
 | 
			
		||||
SWEEPS=`expr $SWEEPS - 100`
 | 
			
		||||
echo
 | 
			
		||||
echo $SWEEPS thermalised sweeps
 | 
			
		||||
echo
 | 
			
		||||
plaq=`grep Plaq $LOG | tail -n $SWEEPS | awk '{ S=S+$10} END { print S/NR} ' `
 | 
			
		||||
plaqe=`grep Plaq $LOG | tail -n $SWEEPS | awk '{ S=S+$10 ; SS=SS+$10*$10 } END { print sqrt( (SS/NR - S*S/NR/NR)/NR) } ' `
 | 
			
		||||
plaq=`grep Plaq $LOG | tail -n $SWEEPS | awk '{ S=S+$12} END { print S/NR} ' `
 | 
			
		||||
plaqe=`grep Plaq $LOG | tail -n $SWEEPS | awk '{ S=S+$12 ; SS=SS+$12*$12 } END { print sqrt( (SS/NR - S*S/NR/NR)/NR) } ' `
 | 
			
		||||
echo "Plaquette: $plaq (${plaqe})"
 | 
			
		||||
echo
 | 
			
		||||
 | 
			
		||||
dHv=`grep dH $LOG | tail -n $SWEEPS | awk '{ S=S+$10 ; SS=SS+$10*$10 } END { print sqrt(SS/NR) } ' `
 | 
			
		||||
edH=`grep dH $LOG | tail -n $SWEEPS | awk '{ S=S+exp(-$10)} END { print S/NR} '`
 | 
			
		||||
echo "<e-dH>: $edH"
 | 
			
		||||
grep  Plaq $LOG | tail -n $SWEEPS | awk '{ S=S+$12/20; if(NR%20==0){ print NR/20, " ", S; S=0;} } '  > plaq.binned
 | 
			
		||||
 | 
			
		||||
plaq=`cat plaq.binned  | awk '{ S=S+$2} END { print S/NR} ' `
 | 
			
		||||
plaqe=`cat plaq.binned | awk '{ S=S+$2 ; SS=SS+$2*$2 } END { print sqrt( (SS/NR - S*S/NR/NR)/NR) } ' `
 | 
			
		||||
echo "Binned Plaquette: $plaq (${plaqe})"
 | 
			
		||||
echo
 | 
			
		||||
 | 
			
		||||
dHv=`grep dH.= $LOG | tail -n $SWEEPS | awk '{ S=S+$16 ; SS=SS+$16*$16 } END { print sqrt(SS/NR) } ' `
 | 
			
		||||
edH=`grep dH.= $LOG | tail -n $SWEEPS | awk '{ S=S+exp(-$16)} END { print S/NR} '`
 | 
			
		||||
dedH=`grep dH.= $LOG | tail -n $SWEEPS | awk '{ S=S+exp(-$16); SS=SS+exp(-$16)*exp(-$16)} END { print sqrt( (SS/NR - S*S/NR/NR)/NR) } '`
 | 
			
		||||
echo "<e-dH>: $edH (${dedH})"
 | 
			
		||||
echo "<rms dH>: $dHv"
 | 
			
		||||
 | 
			
		||||
TRAJ=`grep Acc $LOG | wc -l`
 | 
			
		||||
@@ -22,12 +30,13 @@ PACC=`expr  100 \* ${ACC} / ${TRAJ} `
 | 
			
		||||
echo
 | 
			
		||||
echo "Acceptance $PACC %  $ACC / $TRAJ "
 | 
			
		||||
 | 
			
		||||
grep Plaq $LOG | awk '{ print $10 }' | uniq > plaq.dat
 | 
			
		||||
grep dH $LOG | awk '{ print $10 }' > dH.dat
 | 
			
		||||
echo set yrange [-0.2:1.0] > plot.gnu
 | 
			
		||||
grep Plaq $LOG | awk '{ print $12 }' | uniq > plaq.dat
 | 
			
		||||
grep dH.= $LOG | awk '{ print $16 }' > dH.dat
 | 
			
		||||
echo set yrange [0.58:0.60] > plot.gnu
 | 
			
		||||
echo set terminal 'pdf' >> plot.gnu
 | 
			
		||||
echo "f(x) =0.588" >> plot.gnu
 | 
			
		||||
echo "set output 'plaq.${LOG}.pdf'" >> plot.gnu
 | 
			
		||||
echo "plot 'plaq.dat' w l, 'dH.dat' w l " >> plot.gnu
 | 
			
		||||
echo "plot 'plaq.dat' w l, f(x) " >> plot.gnu
 | 
			
		||||
echo
 | 
			
		||||
gnuplot plot.gnu >& gnu.errs
 | 
			
		||||
open plaq.${LOG}.pdf
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										184
									
								
								tests/IO/Test_field_array_io.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										184
									
								
								tests/IO/Test_field_array_io.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,184 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./tests/IO/Test_field_array_io.cc
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 | 
			
		||||
//This test demonstrates and checks a single-file write of an arbitrary array of fields
 | 
			
		||||
 | 
			
		||||
uint64_t writeHeader(const uint32_t size, const uint32_t checksum, const std::string &format, const std::string &file){
 | 
			
		||||
  std::ofstream fout(file,std::ios::out|std::ios::in);
 | 
			
		||||
  fout.seekp(0,std::ios::beg);
 | 
			
		||||
  fout << std::setw(10) << size << std::endl;
 | 
			
		||||
  fout << std::hex << std::setw(10) << checksum << std::endl;
 | 
			
		||||
  fout << format << std::endl;
 | 
			
		||||
  return fout.tellp();
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
uint64_t readHeader(uint32_t &size, uint32_t &checksum, std::string &format, const std::string &file){
 | 
			
		||||
  std::ifstream fin(file);
 | 
			
		||||
  std::string line;
 | 
			
		||||
  getline(fin,line);
 | 
			
		||||
  {
 | 
			
		||||
    std::stringstream ss; ss <<line ; ss >> size;
 | 
			
		||||
  }
 | 
			
		||||
  getline(fin,line);
 | 
			
		||||
  {
 | 
			
		||||
    std::stringstream ss; ss <<line ; ss >> std::hex >> checksum;
 | 
			
		||||
  }
 | 
			
		||||
  getline(fin,format);
 | 
			
		||||
  removeWhitespace(format);
 | 
			
		||||
      
 | 
			
		||||
  return fin.tellg();
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
template<typename FieldType>
 | 
			
		||||
void writeFieldArray(const std::string &file, const std::vector<FieldType> &data){
 | 
			
		||||
  typedef typename FieldType::vector_object vobj;
 | 
			
		||||
  typedef typename FieldType::scalar_object sobj;
 | 
			
		||||
  GridBase* grid = data[0].Grid(); //assume all fields have the same Grid
 | 
			
		||||
  BinarySimpleMunger<sobj, sobj> munge; //straight copy
 | 
			
		||||
 | 
			
		||||
  //We need a 2-pass header write, first to establish the size, the second pass writes the checksum
 | 
			
		||||
  std::string format = getFormatString<typename FieldType::vector_object>();
 | 
			
		||||
 | 
			
		||||
  uint64_t offset; //leave 64 bits for header
 | 
			
		||||
  if ( grid->IsBoss() ) { 
 | 
			
		||||
    NerscIO::truncate(file);
 | 
			
		||||
    offset = writeHeader(data.size(), 0, format, file);
 | 
			
		||||
  }
 | 
			
		||||
  grid->Broadcast(0,(void *)&offset,sizeof(offset)); //use as a barrier
 | 
			
		||||
 | 
			
		||||
  std::cout << "Data offset write " << offset << std::endl;
 | 
			
		||||
  std::cout << "Data size write " << data.size() << std::endl;
 | 
			
		||||
  uint64_t field_size = uint64_t(grid->gSites()) * sizeof(sobj);
 | 
			
		||||
  std::cout << "Field size = " << field_size << " B" << std::endl;
 | 
			
		||||
 | 
			
		||||
  uint32_t checksum = 0;
 | 
			
		||||
  for(int i=0;i<data.size();i++){
 | 
			
		||||
    std::cout << "Data field write " << i << " offset " << offset << std::endl;
 | 
			
		||||
    uint32_t nersc_csum,scidac_csuma,scidac_csumb;
 | 
			
		||||
    BinaryIO::writeLatticeObject<vobj,sobj>(const_cast<FieldType &>(data[i]),file,munge,offset,format,
 | 
			
		||||
					    nersc_csum,scidac_csuma,scidac_csumb);
 | 
			
		||||
    offset += field_size;
 | 
			
		||||
    checksum ^= nersc_csum + 0x9e3779b9 + (checksum<<6) + (checksum>>2);
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << "Write checksum " << checksum << std::endl;
 | 
			
		||||
 | 
			
		||||
  if ( grid->IsBoss() ) { 
 | 
			
		||||
    writeHeader(data.size(), checksum, format, file);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<typename FieldType>
 | 
			
		||||
void readFieldArray(std::vector<FieldType> &data, const std::string &file){
 | 
			
		||||
  typedef typename FieldType::vector_object vobj;
 | 
			
		||||
  typedef typename FieldType::scalar_object sobj;
 | 
			
		||||
  assert(data.size() > 0);
 | 
			
		||||
  GridBase* grid = data[0].Grid(); //assume all fields have the same Grid
 | 
			
		||||
  BinarySimpleUnmunger<sobj, sobj> munge; //straight copy
 | 
			
		||||
  
 | 
			
		||||
  uint32_t hdr_checksum, hdr_size;
 | 
			
		||||
  std::string format;
 | 
			
		||||
  uint64_t offset = readHeader(hdr_size, hdr_checksum, format, file);
 | 
			
		||||
  
 | 
			
		||||
  std::cout << "Data offset read " << offset << std::endl;  
 | 
			
		||||
  std::cout << "Data size read " << hdr_size << std::endl;
 | 
			
		||||
  assert(data.size() == hdr_size);
 | 
			
		||||
 | 
			
		||||
  uint64_t field_size = uint64_t(grid->gSites()) * sizeof(sobj);
 | 
			
		||||
 | 
			
		||||
  uint32_t checksum = 0;
 | 
			
		||||
 | 
			
		||||
  for(int i=0;i<data.size();i++){
 | 
			
		||||
    std::cout << "Data field read " << i << " offset " << offset << std::endl;
 | 
			
		||||
    uint32_t nersc_csum,scidac_csuma,scidac_csumb;
 | 
			
		||||
    BinaryIO::readLatticeObject<vobj,sobj>(data[i],file,munge,offset,format,
 | 
			
		||||
					   nersc_csum,scidac_csuma,scidac_csumb);
 | 
			
		||||
    offset += field_size;
 | 
			
		||||
    checksum ^= nersc_csum + 0x9e3779b9 + (checksum<<6) + (checksum>>2);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  std::cout << "Header checksum " << hdr_checksum << std::endl;    
 | 
			
		||||
  std::cout << "Read checksum " << checksum << std::endl;
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
  assert( hdr_checksum == checksum );
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
int main (int argc, char ** argv)
 | 
			
		||||
{
 | 
			
		||||
  Grid_init(&argc,&argv);
 | 
			
		||||
 | 
			
		||||
  Coordinate latt   = GridDefaultLatt();
 | 
			
		||||
  Coordinate simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
 | 
			
		||||
  Coordinate mpi_layout  = GridDefaultMpi();
 | 
			
		||||
 | 
			
		||||
  const int Ls=8;
 | 
			
		||||
 | 
			
		||||
  GridCartesian         * UGrid   = SpaceTimeGrid::makeFourDimGrid(latt, simd_layout, mpi_layout);
 | 
			
		||||
  GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
 | 
			
		||||
  GridCartesian         * FGrid   = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
 | 
			
		||||
  GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
 | 
			
		||||
 | 
			
		||||
  std::vector<int> seeds4({1,2,3,4});
 | 
			
		||||
  std::vector<int> seeds5({5,6,7,8});
 | 
			
		||||
  GridParallelRNG RNG5(FGrid);  RNG5.SeedFixedIntegers(seeds5);
 | 
			
		||||
  GridParallelRNG RNG4(UGrid);  RNG4.SeedFixedIntegers(seeds4);
 | 
			
		||||
 | 
			
		||||
  typedef DomainWallFermionD::FermionField FermionField;
 | 
			
		||||
 | 
			
		||||
  int nfield = 20;
 | 
			
		||||
  std::vector<FermionField> data(nfield, FGrid);
 | 
			
		||||
 | 
			
		||||
  for(int i=0;i<data.size();i++)
 | 
			
		||||
    gaussian(RNG5, data[i]);
 | 
			
		||||
  
 | 
			
		||||
  std::string file = "test_field_array_io.0";
 | 
			
		||||
  writeFieldArray(file, data);
 | 
			
		||||
 | 
			
		||||
  std::vector<FermionField> data_r(nfield, FGrid);
 | 
			
		||||
  readFieldArray(data_r, file);
 | 
			
		||||
  
 | 
			
		||||
  for(int i=0;i<nfield;i++){
 | 
			
		||||
    FermionField diff = data_r[i] - data[i];
 | 
			
		||||
    RealD norm_diff = norm2(diff);
 | 
			
		||||
    std::cout << "Norm2 of difference between stored and loaded data index " << i << " : " << norm_diff << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  std::cout << "Done" << std::endl;
 | 
			
		||||
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
}
 | 
			
		||||
@@ -299,12 +299,12 @@ int main (int argc, char ** argv)
 | 
			
		||||
    SpinColourVectorD ferm; gaussian(sRNG,ferm);
 | 
			
		||||
    pokeSite(ferm,src,point);
 | 
			
		||||
 | 
			
		||||
    const int Ls=32;
 | 
			
		||||
    const int Ls=64;
 | 
			
		||||
    GridCartesian         * FGrid   = SpaceTimeGrid::makeFiveDimGrid(Ls,&GRID);
 | 
			
		||||
    GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,&GRID);
 | 
			
		||||
 | 
			
		||||
    RealD mass=0.01;
 | 
			
		||||
    RealD M5  =0.8;
 | 
			
		||||
    RealD mass=1.0;
 | 
			
		||||
    RealD M5  =0.99;
 | 
			
		||||
    DomainWallFermionD Ddwf(Umu,*FGrid,*FrbGrid,GRID,RBGRID,mass,M5);
 | 
			
		||||
 | 
			
		||||
    // Momentum space prop
 | 
			
		||||
@@ -353,6 +353,12 @@ int main (int argc, char ** argv)
 | 
			
		||||
    std::cout << " Taking difference" <<std::endl;
 | 
			
		||||
    std::cout << "Ddwf result4 "<<norm2(result4)<<std::endl;
 | 
			
		||||
    std::cout << "Ddwf ref     "<<norm2(ref)<<std::endl;
 | 
			
		||||
    auto twopoint = localInnerProduct(result4,result4);
 | 
			
		||||
    std::vector<TComplex> pion_prop;
 | 
			
		||||
    sliceSum(twopoint,pion_prop,Nd-1);
 | 
			
		||||
    for(int t=0;t<pion_prop.size();t++){
 | 
			
		||||
      std::cout << "Pion_prop["<<t<<"]="<<pion_prop[t]<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    diff = ref - result4;
 | 
			
		||||
    std::cout << "result - ref     "<<norm2(diff)<<std::endl;
 | 
			
		||||
@@ -383,7 +389,7 @@ int main (int argc, char ** argv)
 | 
			
		||||
    GridCartesian         * FGrid   = SpaceTimeGrid::makeFiveDimGrid(Ls,&GRID);
 | 
			
		||||
    GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,&GRID);
 | 
			
		||||
 | 
			
		||||
    RealD mass=0.01;
 | 
			
		||||
    RealD mass=1.0;
 | 
			
		||||
    RealD M5  =0.8;
 | 
			
		||||
 | 
			
		||||
    OverlapWilsonCayleyTanhFermionD Dov(Umu,*FGrid,*FrbGrid,GRID,RBGRID,mass,M5,1.0);
 | 
			
		||||
 
 | 
			
		||||
@@ -29,14 +29,10 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 ;
 | 
			
		||||
 | 
			
		||||
int main (int argc, char ** argv)
 | 
			
		||||
{
 | 
			
		||||
template<typename Gimpl>
 | 
			
		||||
void run(double alpha, bool do_fft_gfix){
 | 
			
		||||
  std::vector<int> seeds({1,2,3,4});
 | 
			
		||||
 | 
			
		||||
  Grid_init(&argc,&argv);
 | 
			
		||||
 | 
			
		||||
  int threads = GridThread::GetThreads();
 | 
			
		||||
 | 
			
		||||
  Coordinate latt_size   = GridDefaultLatt();
 | 
			
		||||
@@ -55,10 +51,7 @@ int main (int argc, char ** argv)
 | 
			
		||||
  FFT theFFT(&GRID);
 | 
			
		||||
 | 
			
		||||
  std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout<< "*****************************************************************" <<std::endl;
 | 
			
		||||
  std::cout<< "* Testing we can gauge fix steep descent a RGT of Unit gauge    *" <<std::endl;
 | 
			
		||||
  std::cout<< "*****************************************************************" <<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage << "Using alpha=" << alpha << std::endl;
 | 
			
		||||
 | 
			
		||||
  //  int coulomb_dir = -1;
 | 
			
		||||
  int coulomb_dir = Nd-1;
 | 
			
		||||
@@ -72,81 +65,165 @@ int main (int argc, char ** argv)
 | 
			
		||||
  LatticeColourMatrix   xform1(&GRID); // Gauge xform
 | 
			
		||||
  LatticeColourMatrix   xform2(&GRID); // Gauge xform
 | 
			
		||||
  LatticeColourMatrix   xform3(&GRID); // Gauge xform
 | 
			
		||||
 | 
			
		||||
  //#########################################################################################
 | 
			
		||||
 | 
			
		||||
  std::cout<< "*********************************************************************************************************" <<std::endl;
 | 
			
		||||
  std::cout<< "* Testing steepest descent fixing to Landau gauge with randomly transformed unit gauge configuration    *" <<std::endl;
 | 
			
		||||
  std::cout<< "*********************************************************************************************************" <<std::endl;
 | 
			
		||||
  
 | 
			
		||||
  SU<Nc>::ColdConfiguration(pRNG,Umu); // Unit gauge
 | 
			
		||||
  Uorg=Umu;
 | 
			
		||||
 | 
			
		||||
  Real init_plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
 | 
			
		||||
  std::cout << " Initial plaquette "<< init_plaq << std::endl;
 | 
			
		||||
 | 
			
		||||
  //Apply a random gauge transformation to the unit gauge config
 | 
			
		||||
  Urnd=Umu;
 | 
			
		||||
  SU<Nc>::RandomGaugeTransform<Gimpl>(pRNG,Urnd,g);
 | 
			
		||||
 | 
			
		||||
  SU<Nc>::RandomGaugeTransform(pRNG,Urnd,g); // Unit gauge
 | 
			
		||||
 | 
			
		||||
  Real plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
 | 
			
		||||
  std::cout << " Initial plaquette "<<plaq << std::endl;
 | 
			
		||||
 | 
			
		||||
  Real alpha=0.1;
 | 
			
		||||
 | 
			
		||||
  //Gauge fix the randomly transformed field 
 | 
			
		||||
  Umu = Urnd;
 | 
			
		||||
  FourierAcceleratedGaugeFixer<PeriodicGimplR>::SteepestDescentGaugeFix(Umu,xform1,alpha,10000,1.0e-12, 1.0e-12,false);
 | 
			
		||||
  FourierAcceleratedGaugeFixer<Gimpl>::SteepestDescentGaugeFix(Umu,xform1,alpha,10000,1.0e-12, 1.0e-12,false);
 | 
			
		||||
 | 
			
		||||
  // Check the gauge xform matrices
 | 
			
		||||
  Utmp=Urnd;
 | 
			
		||||
  SU<Nc>::GaugeTransform(Utmp,xform1);
 | 
			
		||||
  SU<Nc>::GaugeTransform<Gimpl>(Utmp,xform1);
 | 
			
		||||
  Utmp = Utmp - Umu;
 | 
			
		||||
  std::cout << " Norm Difference of xformed gauge "<< norm2(Utmp) << std::endl;
 | 
			
		||||
  std::cout << " Check the output gauge transformation matrices applied to the original field produce the xformed field "<< norm2(Utmp) << " (expect 0)" << std::endl;
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
  plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
 | 
			
		||||
  std::cout << " Final plaquette "<<plaq << std::endl;
 | 
			
		||||
  Real plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
 | 
			
		||||
  std::cout << " Final plaquette "<<plaq << " diff " << plaq - init_plaq << " (expect 0)" << std::endl;
 | 
			
		||||
 | 
			
		||||
  Uorg = Uorg - Umu;
 | 
			
		||||
  std::cout << " Norm Difference "<< norm2(Uorg) << std::endl;
 | 
			
		||||
  std::cout << " Norm "<< norm2(Umu) << std::endl;
 | 
			
		||||
  std::cout << " Norm difference between a unit gauge configuration and the gauge fixed configuration "<< norm2(Uorg) << " (expect 0)" << std::endl;
 | 
			
		||||
  std::cout << " Norm of gauge fixed configuration "<< norm2(Umu) << std::endl;
 | 
			
		||||
 | 
			
		||||
  //#########################################################################################
 | 
			
		||||
  if(do_fft_gfix){
 | 
			
		||||
    std::cout<< "*************************************************************************************" <<std::endl;
 | 
			
		||||
    std::cout<< "* Testing Fourier accelerated fixing to Landau gauge with unit gauge configuration  *" <<std::endl;
 | 
			
		||||
    std::cout<< "*************************************************************************************" <<std::endl;
 | 
			
		||||
    Umu=Urnd;
 | 
			
		||||
    FourierAcceleratedGaugeFixer<Gimpl>::SteepestDescentGaugeFix(Umu,xform2,alpha,10000,1.0e-12, 1.0e-12,true);
 | 
			
		||||
 | 
			
		||||
    Utmp=Urnd;
 | 
			
		||||
    SU<Nc>::GaugeTransform<Gimpl>(Utmp,xform2);
 | 
			
		||||
    Utmp = Utmp - Umu;
 | 
			
		||||
    std::cout << " Check the output gauge transformation matrices applied to the original field produce the xformed field "<< norm2(Utmp) << " (expect 0)" << std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  std::cout<< "*****************************************************************" <<std::endl;
 | 
			
		||||
  std::cout<< "* Testing Fourier accelerated fixing                            *" <<std::endl;
 | 
			
		||||
  std::cout<< "*****************************************************************" <<std::endl;
 | 
			
		||||
  Umu=Urnd;
 | 
			
		||||
  FourierAcceleratedGaugeFixer<PeriodicGimplR>::SteepestDescentGaugeFix(Umu,xform2,alpha,10000,1.0e-12, 1.0e-12,true);
 | 
			
		||||
    plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
 | 
			
		||||
    std::cout << " Final plaquette "<<plaq << " diff " << plaq - init_plaq << " (expect 0)" << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  //#########################################################################################
 | 
			
		||||
 | 
			
		||||
  Utmp=Urnd;
 | 
			
		||||
  SU<Nc>::GaugeTransform(Utmp,xform2);
 | 
			
		||||
  Utmp = Utmp - Umu;
 | 
			
		||||
  std::cout << " Norm Difference of xformed gauge "<< norm2(Utmp) << std::endl;
 | 
			
		||||
  std::cout<< "******************************************************************************************" <<std::endl;
 | 
			
		||||
  std::cout<< "* Testing steepest descent fixing to Landau gauge with random configuration             **" <<std::endl;
 | 
			
		||||
  std::cout<< "******************************************************************************************" <<std::endl;
 | 
			
		||||
 | 
			
		||||
  SU<Nc>::HotConfiguration(pRNG,Umu);
 | 
			
		||||
 | 
			
		||||
  plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
 | 
			
		||||
  std::cout << " Final plaquette "<<plaq << std::endl;
 | 
			
		||||
  init_plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
 | 
			
		||||
  std::cout << " Initial plaquette "<< init_plaq << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout<< "*****************************************************************" <<std::endl;
 | 
			
		||||
  std::cout<< "* Testing non-unit configuration                                *" <<std::endl;
 | 
			
		||||
  std::cout<< "*****************************************************************" <<std::endl;
 | 
			
		||||
  FourierAcceleratedGaugeFixer<Gimpl>::SteepestDescentGaugeFix(Umu,alpha,10000,1.0e-12, 1.0e-12,false);
 | 
			
		||||
 | 
			
		||||
  SU<Nc>::HotConfiguration(pRNG,Umu); // Unit gauge
 | 
			
		||||
  plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
 | 
			
		||||
  std::cout << " Final plaquette "<<plaq << " diff " << plaq - init_plaq << " (expect 0)" << std::endl;
 | 
			
		||||
 | 
			
		||||
  plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
 | 
			
		||||
  std::cout << " Initial plaquette "<<plaq << std::endl;
 | 
			
		||||
  //#########################################################################################
 | 
			
		||||
  if(do_fft_gfix){
 | 
			
		||||
    std::cout<< "******************************************************************************************" <<std::endl;
 | 
			
		||||
    std::cout<< "* Testing Fourier accelerated fixing to Landau gauge with random configuration          **" <<std::endl;
 | 
			
		||||
    std::cout<< "******************************************************************************************" <<std::endl;
 | 
			
		||||
 | 
			
		||||
  FourierAcceleratedGaugeFixer<PeriodicGimplR>::SteepestDescentGaugeFix(Umu,alpha,10000,1.0e-12, 1.0e-12,true);
 | 
			
		||||
    SU<Nc>::HotConfiguration(pRNG,Umu);
 | 
			
		||||
 | 
			
		||||
  plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
 | 
			
		||||
  std::cout << " Final plaquette "<<plaq << std::endl;
 | 
			
		||||
    init_plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
 | 
			
		||||
    std::cout << " Initial plaquette "<< init_plaq << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout<< "*****************************************************************" <<std::endl;
 | 
			
		||||
  std::cout<< "* Testing Fourier accelerated fixing to coulomb gauge           *" <<std::endl;
 | 
			
		||||
  std::cout<< "*****************************************************************" <<std::endl;
 | 
			
		||||
    FourierAcceleratedGaugeFixer<Gimpl>::SteepestDescentGaugeFix(Umu,alpha,10000,1.0e-12, 1.0e-12,true);
 | 
			
		||||
 | 
			
		||||
    plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
 | 
			
		||||
    std::cout << " Final plaquette "<<plaq << " diff " << plaq - init_plaq << " (expect 0)" << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  //#########################################################################################
 | 
			
		||||
  
 | 
			
		||||
  std::cout<< "*******************************************************************************************" <<std::endl;
 | 
			
		||||
  std::cout<< "* Testing steepest descent fixing to coulomb gauge with random configuration           *" <<std::endl;
 | 
			
		||||
  std::cout<< "*******************************************************************************************" <<std::endl;
 | 
			
		||||
 | 
			
		||||
  Umu=Urnd;
 | 
			
		||||
  SU<Nc>::HotConfiguration(pRNG,Umu); // Unit gauge
 | 
			
		||||
  SU<Nc>::HotConfiguration(pRNG,Umu);
 | 
			
		||||
 | 
			
		||||
  plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
 | 
			
		||||
  std::cout << " Initial plaquette "<<plaq << std::endl;
 | 
			
		||||
  init_plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
 | 
			
		||||
  std::cout << " Initial plaquette "<< init_plaq << std::endl;
 | 
			
		||||
 | 
			
		||||
  FourierAcceleratedGaugeFixer<PeriodicGimplR>::SteepestDescentGaugeFix(Umu,xform3,alpha,10000,1.0e-12, 1.0e-12,true,coulomb_dir);
 | 
			
		||||
  FourierAcceleratedGaugeFixer<Gimpl>::SteepestDescentGaugeFix(Umu,xform3,alpha,10000,1.0e-12, 1.0e-12,false,coulomb_dir);
 | 
			
		||||
 | 
			
		||||
  std::cout << Umu<<std::endl;
 | 
			
		||||
  plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
 | 
			
		||||
  std::cout << " Final plaquette "<<plaq << " diff " << plaq - init_plaq << " (expect 0)" << std::endl;
 | 
			
		||||
 | 
			
		||||
  plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
 | 
			
		||||
  std::cout << " Final plaquette "<<plaq << std::endl;
 | 
			
		||||
 | 
			
		||||
  //#########################################################################################
 | 
			
		||||
  if(do_fft_gfix){
 | 
			
		||||
    std::cout<< "*******************************************************************************************" <<std::endl;
 | 
			
		||||
    std::cout<< "* Testing Fourier accelerated fixing to coulomb gauge with random configuration           *" <<std::endl;
 | 
			
		||||
    std::cout<< "*******************************************************************************************" <<std::endl;
 | 
			
		||||
 | 
			
		||||
    Umu=Urnd;
 | 
			
		||||
    SU<Nc>::HotConfiguration(pRNG,Umu);
 | 
			
		||||
 | 
			
		||||
    init_plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
 | 
			
		||||
    std::cout << " Initial plaquette "<< init_plaq << std::endl;
 | 
			
		||||
 | 
			
		||||
    FourierAcceleratedGaugeFixer<Gimpl>::SteepestDescentGaugeFix(Umu,xform3,alpha,10000,1.0e-12, 1.0e-12,true,coulomb_dir);
 | 
			
		||||
 | 
			
		||||
    plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
 | 
			
		||||
    std::cout << " Final plaquette "<<plaq << " diff " << plaq - init_plaq << " (expect 0)" << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int main (int argc, char ** argv)
 | 
			
		||||
{
 | 
			
		||||
  Grid_init(&argc,&argv);
 | 
			
		||||
 | 
			
		||||
  double alpha=0.1; //step size
 | 
			
		||||
  std::string gimpl = "periodic";
 | 
			
		||||
  bool do_fft_gfix = true; //test fourier transformed gfix as well as steepest descent
 | 
			
		||||
  for(int i=1;i<argc;i++){
 | 
			
		||||
    std::string sarg(argv[i]);
 | 
			
		||||
    if(sarg == "--gimpl"){
 | 
			
		||||
      assert(i<argc-1 && "--gimpl option requires an argument");
 | 
			
		||||
      gimpl = argv[i+1];
 | 
			
		||||
      if(gimpl != "periodic" && gimpl != "conjugate")
 | 
			
		||||
	assert(0 && "Invalid gimpl");
 | 
			
		||||
    }else if(sarg == "--no-fft-gfix"){
 | 
			
		||||
      std::cout << "Not doing the Fourier accelerated gauge fixing tests" << std::endl;
 | 
			
		||||
      do_fft_gfix = false;
 | 
			
		||||
    }else if(sarg == "--alpha"){
 | 
			
		||||
      assert(i<argc-1 && "--alpha option requires an argument");
 | 
			
		||||
      std::istringstream ss(argv[i+1]); ss >> alpha;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  if(gimpl == "periodic"){
 | 
			
		||||
    std::cout << GridLogMessage << "Using periodic boundary condition" << std::endl;
 | 
			
		||||
    run<PeriodicGimplR>(alpha, do_fft_gfix);
 | 
			
		||||
  }else{
 | 
			
		||||
    std::vector<int> conjdirs = {1,1,0,0}; //test with 2 conjugate dirs and 2 not
 | 
			
		||||
    std::cout << GridLogMessage << "Using complex conjugate boundary conditions in dimensions ";
 | 
			
		||||
    for(int i=0;i<Nd;i++)
 | 
			
		||||
      if(conjdirs[i])
 | 
			
		||||
	std::cout << i << " ";   
 | 
			
		||||
    std::cout << std::endl;
 | 
			
		||||
 | 
			
		||||
    ConjugateGimplR::setDirections(conjdirs);
 | 
			
		||||
    run<ConjugateGimplR>(alpha, do_fft_gfix);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
@@ -228,6 +228,59 @@ void checkGammaL(const Gamma::Algebra a, GridSerialRNG &rng)
 | 
			
		||||
  std::cout << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void checkChargeConjMatrix(){
 | 
			
		||||
  //Check the properties of the charge conjugation matrix
 | 
			
		||||
  //In the Grid basis C = -\gamma^2 \gamma^4
 | 
			
		||||
  SpinMatrix C = testAlgebra[Gamma::Algebra::MinusGammaY] * testAlgebra[Gamma::Algebra::GammaT];
 | 
			
		||||
  SpinMatrix mC = -C;
 | 
			
		||||
  SpinMatrix one = testAlgebra[Gamma::Algebra::Identity];
 | 
			
		||||
 | 
			
		||||
  std::cout << "Testing properties of charge conjugation matrix C = -\\gamma^2 \\gamma^4 (in Grid's basis)" << std::endl;
 | 
			
		||||
 | 
			
		||||
  //C^T = -C
 | 
			
		||||
  SpinMatrix Ct = transpose(C);
 | 
			
		||||
  std::cout << GridLogMessage << "C^T=-C ";
 | 
			
		||||
  test(Ct, mC);
 | 
			
		||||
  std::cout << std::endl;
 | 
			
		||||
 | 
			
		||||
  //C^\dagger = -C
 | 
			
		||||
  SpinMatrix Cdag = adj(C);
 | 
			
		||||
  std::cout << GridLogMessage << "C^dag=-C ";
 | 
			
		||||
  test(Cdag, mC);
 | 
			
		||||
  std::cout << std::endl;
 | 
			
		||||
 | 
			
		||||
  //C^* = C
 | 
			
		||||
  SpinMatrix Cstar = conjugate(C);
 | 
			
		||||
  std::cout << GridLogMessage << "C^*=C ";
 | 
			
		||||
  test(Cstar, C);
 | 
			
		||||
  std::cout << std::endl;
 | 
			
		||||
 | 
			
		||||
  //C^{-1} = -C
 | 
			
		||||
  SpinMatrix CinvC = mC * C;
 | 
			
		||||
  std::cout << GridLogMessage << "C^{-1}=-C ";
 | 
			
		||||
  test(CinvC, one);
 | 
			
		||||
  std::cout << std::endl;
 | 
			
		||||
 | 
			
		||||
  // C^{-1} \gamma^\mu C = -[\gamma^\mu]^T
 | 
			
		||||
  Gamma::Algebra gmu_a[4] = { Gamma::Algebra::GammaX, Gamma::Algebra::GammaY, Gamma::Algebra::GammaZ, Gamma::Algebra::GammaT };
 | 
			
		||||
  for(int mu=0;mu<4;mu++){
 | 
			
		||||
    SpinMatrix gmu = testAlgebra[gmu_a[mu]];
 | 
			
		||||
    SpinMatrix Cinv_gmu_C = mC * gmu * C;
 | 
			
		||||
    SpinMatrix mgmu_T = -transpose(gmu);
 | 
			
		||||
    std::cout << GridLogMessage << "C^{-1} \\gamma^" << mu << " C = -[\\gamma^" << mu << "]^T ";
 | 
			
		||||
    test(Cinv_gmu_C, mgmu_T);
 | 
			
		||||
    std::cout << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  //[C, \gamma^5] = 0
 | 
			
		||||
  SpinMatrix Cg5 = C * testAlgebra[Gamma::Algebra::Gamma5];
 | 
			
		||||
  SpinMatrix g5C = testAlgebra[Gamma::Algebra::Gamma5] * C;
 | 
			
		||||
  std::cout << GridLogMessage << "C \\gamma^5 = \\gamma^5 C";
 | 
			
		||||
  test(Cg5, g5C);
 | 
			
		||||
  std::cout << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
int main(int argc, char *argv[])
 | 
			
		||||
{
 | 
			
		||||
  Grid_init(&argc,&argv);
 | 
			
		||||
@@ -270,6 +323,13 @@ int main(int argc, char *argv[])
 | 
			
		||||
  {
 | 
			
		||||
    checkGammaL(i, sRNG);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "======== Charge conjugation matrix check" << std::endl;
 | 
			
		||||
  checkChargeConjMatrix();
 | 
			
		||||
  std::cout << GridLogMessage << std::endl;
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
  
 | 
			
		||||
 
 | 
			
		||||
@@ -55,13 +55,17 @@ static_assert(same_vComplex == 1, "Dirac Operators must have same underlying SIM
 | 
			
		||||
int main (int argc, char ** argv)
 | 
			
		||||
{
 | 
			
		||||
  int nu = 0;
 | 
			
		||||
 | 
			
		||||
  int tbc_aprd = 0; //use antiperiodic BCs in the time direction?
 | 
			
		||||
  
 | 
			
		||||
  Grid_init(&argc,&argv);
 | 
			
		||||
 | 
			
		||||
  for(int i=1;i<argc;i++){
 | 
			
		||||
    if(std::string(argv[i]) == "--Gparity-dir"){
 | 
			
		||||
      std::stringstream ss; ss << argv[i+1]; ss >> nu;
 | 
			
		||||
      std::cout << GridLogMessage << "Set Gparity direction to " << nu << std::endl;
 | 
			
		||||
    }else if(std::string(argv[i]) == "--Tbc-APRD"){
 | 
			
		||||
      tbc_aprd = 1;
 | 
			
		||||
      std::cout << GridLogMessage << "Using antiperiodic BCs in the time direction" << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
@@ -155,13 +159,18 @@ int main (int argc, char ** argv)
 | 
			
		||||
 | 
			
		||||
  //Coordinate grid for reference
 | 
			
		||||
  LatticeInteger    xcoor_1f5(FGrid_1f);
 | 
			
		||||
  LatticeCoordinate(xcoor_1f5,1+nu);
 | 
			
		||||
  LatticeCoordinate(xcoor_1f5,1+nu); //note '1+nu'! This is because for 5D fields the s-direction is direction 0
 | 
			
		||||
  Replicate(src,src_1f);
 | 
			
		||||
  src_1f   = where( xcoor_1f5 >= Integer(L), 2.0*src_1f,src_1f );
 | 
			
		||||
 | 
			
		||||
  RealD mass=0.0;
 | 
			
		||||
  RealD M5=1.8;
 | 
			
		||||
  StandardDiracOp Ddwf(Umu_1f,*FGrid_1f,*FrbGrid_1f,*UGrid_1f,*UrbGrid_1f,mass,M5 DOP_PARAMS);
 | 
			
		||||
 | 
			
		||||
  //Standard Dirac op
 | 
			
		||||
  AcceleratorVector<Complex,4> bc_std(Nd, 1.0);
 | 
			
		||||
  if(tbc_aprd) bc_std[Nd-1] = -1.; //antiperiodic time BC
 | 
			
		||||
  StandardDiracOp::ImplParams std_params(bc_std);
 | 
			
		||||
  StandardDiracOp Ddwf(Umu_1f,*FGrid_1f,*FrbGrid_1f,*UGrid_1f,*UrbGrid_1f,mass,M5 DOP_PARAMS, std_params);
 | 
			
		||||
 | 
			
		||||
  StandardFermionField    src_o_1f(FrbGrid_1f);
 | 
			
		||||
  StandardFermionField result_o_1f(FrbGrid_1f);
 | 
			
		||||
@@ -172,9 +181,11 @@ int main (int argc, char ** argv)
 | 
			
		||||
  ConjugateGradient<StandardFermionField> CG(1.0e-8,10000);
 | 
			
		||||
  CG(HermOpEO,src_o_1f,result_o_1f);
 | 
			
		||||
  
 | 
			
		||||
  //  const int nu = 3;
 | 
			
		||||
  //Gparity Dirac op
 | 
			
		||||
  std::vector<int> twists(Nd,0);
 | 
			
		||||
  twists[nu] = 1;
 | 
			
		||||
  if(tbc_aprd) twists[Nd-1] = 1;
 | 
			
		||||
 | 
			
		||||
  GparityDiracOp::ImplParams params;
 | 
			
		||||
  params.twists = twists;
 | 
			
		||||
  GparityDiracOp GPDdwf(Umu_2f,*FGrid_2f,*FrbGrid_2f,*UGrid_2f,*UrbGrid_2f,mass,M5 DOP_PARAMS,params);
 | 
			
		||||
@@ -271,8 +282,11 @@ int main (int argc, char ** argv)
 | 
			
		||||
  std::cout << "2f cb "<<result_o_2f.Checkerboard()<<std::endl;
 | 
			
		||||
  std::cout << "1f cb "<<result_o_1f.Checkerboard()<<std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << " result norms " <<norm2(result_o_2f)<<" " <<norm2(result_o_1f)<<std::endl;
 | 
			
		||||
  //Compare norms
 | 
			
		||||
  std::cout << " result norms 2f: " <<norm2(result_o_2f)<<" 1f: " <<norm2(result_o_1f)<<std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //Take the 2f solution and convert into the corresponding 1f solution (odd cb only)
 | 
			
		||||
  StandardFermionField    res0o  (FrbGrid_2f); 
 | 
			
		||||
  StandardFermionField    res1o  (FrbGrid_2f); 
 | 
			
		||||
  StandardFermionField    res0  (FGrid_2f); 
 | 
			
		||||
@@ -281,14 +295,15 @@ int main (int argc, char ** argv)
 | 
			
		||||
  res0=Zero();
 | 
			
		||||
  res1=Zero();
 | 
			
		||||
 | 
			
		||||
  res0o = PeekIndex<0>(result_o_2f,0);
 | 
			
		||||
  res1o = PeekIndex<0>(result_o_2f,1);
 | 
			
		||||
  res0o = PeekIndex<0>(result_o_2f,0); //flavor 0, odd cb
 | 
			
		||||
  res1o = PeekIndex<0>(result_o_2f,1); //flavor 1, odd cb
 | 
			
		||||
 | 
			
		||||
  std::cout << "res cb "<<res0o.Checkerboard()<<std::endl;
 | 
			
		||||
  std::cout << "res cb "<<res1o.Checkerboard()<<std::endl;
 | 
			
		||||
 | 
			
		||||
  setCheckerboard(res0,res0o);
 | 
			
		||||
  setCheckerboard(res1,res1o);
 | 
			
		||||
  //poke odd onto non-cb field
 | 
			
		||||
  setCheckerboard(res0,res0o); 
 | 
			
		||||
  setCheckerboard(res1,res1o); 
 | 
			
		||||
 | 
			
		||||
  StandardFermionField replica (FGrid_1f);
 | 
			
		||||
  StandardFermionField replica0(FGrid_1f);
 | 
			
		||||
@@ -296,12 +311,13 @@ int main (int argc, char ** argv)
 | 
			
		||||
  Replicate(res0,replica0);
 | 
			
		||||
  Replicate(res1,replica1);
 | 
			
		||||
 | 
			
		||||
  //2nd half of doubled lattice has f=1
 | 
			
		||||
  replica = where( xcoor_1f5 >= Integer(L), replica1,replica0 );
 | 
			
		||||
 | 
			
		||||
  replica0 = Zero();
 | 
			
		||||
  setCheckerboard(replica0,result_o_1f);
 | 
			
		||||
 | 
			
		||||
  std::cout << "Norm2 solutions is " <<norm2(replica)<<" "<< norm2(replica0)<<std::endl;
 | 
			
		||||
  std::cout << "Norm2 solutions 1f reconstructed from 2f: " <<norm2(replica)<<" Actual 1f: "<< norm2(replica0)<<std::endl;
 | 
			
		||||
 | 
			
		||||
  replica = replica - replica0;
 | 
			
		||||
  
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										177
									
								
								tests/core/Test_gparity_flavour.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										177
									
								
								tests/core/Test_gparity_flavour.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,177 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
Source file: ./tests/Test_gparity_flavour.cc
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015-2017
 | 
			
		||||
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 | 
			
		||||
static constexpr double                      tolerance = 1.0e-6;
 | 
			
		||||
static std::array<GparityFlavourMatrix, GparityFlavour::nSigma> testAlgebra;
 | 
			
		||||
 | 
			
		||||
void print(const GparityFlavourMatrix &g)
 | 
			
		||||
{
 | 
			
		||||
  for(int i = 0; i < Ngp; i++)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage << "(";
 | 
			
		||||
    for(int j=0;j<Ngp;j++){
 | 
			
		||||
      if ( abs( g(i,j)()() ) == 0 ) {
 | 
			
		||||
        std::cout<< " 0";
 | 
			
		||||
      } else if ( abs(g(i,j)()() - Complex(0,1)) == 0){
 | 
			
		||||
        std::cout<< " i";
 | 
			
		||||
      } else if ( abs(g(i,j)()() + Complex(0,1)) == 0){
 | 
			
		||||
        std::cout<< "-i";
 | 
			
		||||
      } else if ( abs(g(i,j)()() - Complex(1,0)) == 0){
 | 
			
		||||
        std::cout<< " 1";
 | 
			
		||||
      } else if ( abs(g(i,j)()() + Complex(1,0)) == 0){
 | 
			
		||||
        std::cout<< "-1";
 | 
			
		||||
      }
 | 
			
		||||
      std::cout<<((j == Ngp-1) ? ")" : "," );
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogMessage << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void createTestAlgebra(void)
 | 
			
		||||
{
 | 
			
		||||
  std::array<GparityFlavourMatrix, 3> testg;
 | 
			
		||||
  const Complex             I(0., 1.), mI(0., -1.);
 | 
			
		||||
 | 
			
		||||
  // 0 1
 | 
			
		||||
  // 1 0
 | 
			
		||||
  testg[0] = Zero();
 | 
			
		||||
  testg[0](0, 1)()() = 1.;
 | 
			
		||||
  testg[0](1, 0)()() = 1.;
 | 
			
		||||
  std::cout << GridLogMessage << "test SigmaX= " << std::endl;
 | 
			
		||||
  print(testg[0]);
 | 
			
		||||
 | 
			
		||||
  // 0 -i
 | 
			
		||||
  // i  0
 | 
			
		||||
  testg[1] = Zero();
 | 
			
		||||
  testg[1](0, 1)()() = mI;
 | 
			
		||||
  testg[1](1, 0)()() = I;
 | 
			
		||||
  std::cout << GridLogMessage << "test SigmaY= " << std::endl;
 | 
			
		||||
  print(testg[1]);
 | 
			
		||||
 | 
			
		||||
  // 1  0
 | 
			
		||||
  // 0 -1
 | 
			
		||||
  testg[2] = Zero();
 | 
			
		||||
  testg[2](0, 0)()() = 1.0;
 | 
			
		||||
  testg[2](1, 1)()() = -1.0;
 | 
			
		||||
  std::cout << GridLogMessage << "test SigmaZ= " << std::endl;
 | 
			
		||||
  print(testg[2]);
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
#define DEFINE_TEST_G(g, exp)\
 | 
			
		||||
testAlgebra[GparityFlavour::Algebra::g]        = exp; \
 | 
			
		||||
testAlgebra[GparityFlavour::Algebra::Minus##g] = -exp;
 | 
			
		||||
  
 | 
			
		||||
  DEFINE_TEST_G(SigmaX      , testg[0]);
 | 
			
		||||
  DEFINE_TEST_G(SigmaY      , testg[1]);
 | 
			
		||||
  DEFINE_TEST_G(SigmaZ      , testg[2]);
 | 
			
		||||
  DEFINE_TEST_G(Identity    , 1.);
 | 
			
		||||
 | 
			
		||||
  GparityFlavourMatrix pplus;
 | 
			
		||||
  pplus = 1.0;
 | 
			
		||||
  pplus = pplus + testg[1];
 | 
			
		||||
  pplus = pplus * 0.5;
 | 
			
		||||
 | 
			
		||||
  DEFINE_TEST_G(ProjPlus    , pplus);
 | 
			
		||||
  
 | 
			
		||||
  GparityFlavourMatrix pminus;
 | 
			
		||||
  pminus = 1.0;
 | 
			
		||||
  pminus = pminus - testg[1];
 | 
			
		||||
  pminus = pminus * 0.5;
 | 
			
		||||
 | 
			
		||||
  DEFINE_TEST_G(ProjMinus    , pminus);
 | 
			
		||||
 | 
			
		||||
#undef DEFINE_TEST_G
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename Expr>
 | 
			
		||||
void test(const Expr &a, const Expr &b)
 | 
			
		||||
{
 | 
			
		||||
  if (norm2(a - b) < tolerance)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << "[OK] ";
 | 
			
		||||
  }
 | 
			
		||||
  else
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << "[fail]" << std::endl;
 | 
			
		||||
    std::cout << GridLogError << "a= " << a << std::endl;
 | 
			
		||||
    std::cout << GridLogError << "is different (tolerance= " << tolerance << ") from " << std::endl;
 | 
			
		||||
    std::cout << GridLogError << "b= " << b << std::endl;
 | 
			
		||||
    exit(EXIT_FAILURE);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void checkSigma(const GparityFlavour::Algebra a, GridSerialRNG &rng)
 | 
			
		||||
{
 | 
			
		||||
  GparityFlavourVector v;
 | 
			
		||||
  GparityFlavourMatrix m, &testg = testAlgebra[a];
 | 
			
		||||
  GparityFlavour      g(a);
 | 
			
		||||
  
 | 
			
		||||
  random(rng, v);
 | 
			
		||||
  random(rng, m);
 | 
			
		||||
  
 | 
			
		||||
  std::cout << GridLogMessage << "Checking " << GparityFlavour::name[a] << ": ";
 | 
			
		||||
  std::cout << "vecmul ";
 | 
			
		||||
  test(g*v, testg*v);
 | 
			
		||||
  std::cout << "matlmul ";
 | 
			
		||||
  test(g*m, testg*m);
 | 
			
		||||
  std::cout << "matrmul ";
 | 
			
		||||
  test(m*g, m*testg);
 | 
			
		||||
  std::cout << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int main(int argc, char *argv[])
 | 
			
		||||
{
 | 
			
		||||
  Grid_init(&argc,&argv);
 | 
			
		||||
  
 | 
			
		||||
  Coordinate latt_size   = GridDefaultLatt();
 | 
			
		||||
  Coordinate simd_layout = GridDefaultSimd(4,vComplex::Nsimd());
 | 
			
		||||
  Coordinate mpi_layout  = GridDefaultMpi();
 | 
			
		||||
  
 | 
			
		||||
  GridCartesian Grid(latt_size,simd_layout,mpi_layout);
 | 
			
		||||
  GridSerialRNG sRNG;
 | 
			
		||||
  
 | 
			
		||||
  sRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
 | 
			
		||||
  
 | 
			
		||||
  std::cout << GridLogMessage << "======== Test algebra" << std::endl;
 | 
			
		||||
  createTestAlgebra();
 | 
			
		||||
  std::cout << GridLogMessage << "======== Multiplication operators check" << std::endl;
 | 
			
		||||
  for (int i = 0; i < GparityFlavour::nSigma; ++i)
 | 
			
		||||
  {
 | 
			
		||||
    checkSigma(i, sRNG);
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogMessage << std::endl;
 | 
			
		||||
  
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
  
 | 
			
		||||
  return EXIT_SUCCESS;
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										114
									
								
								tests/core/Test_precision_change.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										114
									
								
								tests/core/Test_precision_change.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,114 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./tests/core/Test_precision_change.cc
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
int main (int argc, char ** argv){
 | 
			
		||||
  Grid_init(&argc, &argv);
 | 
			
		||||
  int Ls = 16;
 | 
			
		||||
  std::cout << GridLogMessage << "Lattice dimensions: " << GridDefaultLatt() << " and Ls=" << Ls << std::endl;
 | 
			
		||||
  GridCartesian* UGrid_d = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexD::Nsimd()), GridDefaultMpi());
 | 
			
		||||
  GridCartesian* FGrid_d = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid_d);
 | 
			
		||||
  GridRedBlackCartesian* FrbGrid_d = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid_d);
 | 
			
		||||
 | 
			
		||||
  GridCartesian* UGrid_f = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
 | 
			
		||||
  GridCartesian* FGrid_f = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid_f);
 | 
			
		||||
  GridRedBlackCartesian* FrbGrid_f = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid_f);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  std::vector<int> seeds4({1, 2, 3, 4});
 | 
			
		||||
  std::vector<int> seeds5({5, 6, 7, 8});
 | 
			
		||||
  GridParallelRNG RNG5(FGrid_d);
 | 
			
		||||
  RNG5.SeedFixedIntegers(seeds5);
 | 
			
		||||
  GridParallelRNG RNG4(UGrid_d);
 | 
			
		||||
  RNG4.SeedFixedIntegers(seeds4);
 | 
			
		||||
 | 
			
		||||
  //Gauge fields
 | 
			
		||||
  LatticeGaugeFieldD Umu_d(UGrid_d);
 | 
			
		||||
  LatticeGaugeFieldF Umu_f(UGrid_f);
 | 
			
		||||
  LatticeGaugeFieldD Umu_d_r(UGrid_d);
 | 
			
		||||
  LatticeGaugeFieldD Utmp_d(UGrid_d);
 | 
			
		||||
 | 
			
		||||
  for(int i=0;i<5;i++){
 | 
			
		||||
    random(RNG4, Umu_d);
 | 
			
		||||
 | 
			
		||||
    precisionChange(Umu_f, Umu_d);
 | 
			
		||||
    std::cout << GridLogMessage << "Norm of double-prec and single-prec gauge fields (should be ~equal): " << norm2(Umu_d) << " " << norm2(Umu_f) << std::endl;
 | 
			
		||||
    precisionChange(Umu_d_r, Umu_f);
 | 
			
		||||
    RealD normdiff = axpy_norm(Utmp_d, -1.0, Umu_d_r, Umu_d);
 | 
			
		||||
    std::cout << GridLogMessage << "Norm of difference of back-converted double-prec gauge fields (should be ~0) = " << normdiff << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Fermion fields
 | 
			
		||||
  LatticeFermionD psi_d(FGrid_d);
 | 
			
		||||
  LatticeFermionF psi_f(FGrid_f);
 | 
			
		||||
  LatticeFermionD psi_d_r(FGrid_d);
 | 
			
		||||
  LatticeFermionD psi_tmp_d(FGrid_d);
 | 
			
		||||
 | 
			
		||||
  for(int i=0;i<5;i++){
 | 
			
		||||
    random(RNG5, psi_d);
 | 
			
		||||
 | 
			
		||||
    precisionChange(psi_f, psi_d);
 | 
			
		||||
    std::cout << GridLogMessage << "Norm of double-prec and single-prec fermion fields (should be ~equal): " << norm2(psi_d) << " " << norm2(psi_f) << std::endl;
 | 
			
		||||
    precisionChange(psi_d_r, psi_f);
 | 
			
		||||
    RealD normdiff = axpy_norm(psi_tmp_d, -1.0, psi_d_r, psi_d);
 | 
			
		||||
    std::cout << GridLogMessage << "Norm of difference of back-converted double-prec fermion fields (should be ~0)= " << normdiff << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Checkerboarded fermion fields
 | 
			
		||||
  LatticeFermionD psi_cb_d(FrbGrid_d);
 | 
			
		||||
  LatticeFermionF psi_cb_f(FrbGrid_f);
 | 
			
		||||
  LatticeFermionD psi_cb_d_r(FrbGrid_d);
 | 
			
		||||
  LatticeFermionD psi_cb_tmp_d(FrbGrid_d);
 | 
			
		||||
 | 
			
		||||
  for(int i=0;i<5;i++){
 | 
			
		||||
    random(RNG5, psi_d);
 | 
			
		||||
    pickCheckerboard(Odd, psi_cb_d, psi_d);
 | 
			
		||||
     
 | 
			
		||||
    precisionChange(psi_cb_f, psi_cb_d);
 | 
			
		||||
    std::cout << GridLogMessage << "Norm of odd-cb double-prec and single-prec fermion fields (should be ~equal): " << norm2(psi_cb_d) << " " << norm2(psi_cb_f) << std::endl;
 | 
			
		||||
    precisionChange(psi_cb_d_r, psi_cb_f);
 | 
			
		||||
    RealD normdiff = axpy_norm(psi_cb_tmp_d, -1.0, psi_cb_d_r, psi_cb_d);
 | 
			
		||||
    std::cout << GridLogMessage << "Norm of difference of back-converted odd-cb double-prec fermion fields (should be ~0)= " << normdiff << std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    pickCheckerboard(Even, psi_cb_d, psi_d);
 | 
			
		||||
     
 | 
			
		||||
    precisionChange(psi_cb_f, psi_cb_d);
 | 
			
		||||
    std::cout << GridLogMessage << "Norm of even-cb double-prec and single-prec fermion fields (should be ~equal): " << norm2(psi_cb_d) << " " << norm2(psi_cb_f) << std::endl;
 | 
			
		||||
    precisionChange(psi_cb_d_r, psi_cb_f);
 | 
			
		||||
    normdiff = axpy_norm(psi_cb_tmp_d, -1.0, psi_cb_d_r, psi_cb_d);
 | 
			
		||||
    std::cout << GridLogMessage << "Norm of difference of back-converted even-cb double-prec fermion fields (should be ~0)= " << normdiff << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
}
 | 
			
		||||
@@ -71,26 +71,14 @@ int main (int argc, char ** argv)
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  RealD mass=0.2; //kills the diagonal term
 | 
			
		||||
  RealD M5=1.8;
 | 
			
		||||
  //  const int nu = 3;
 | 
			
		||||
  //  std::vector<int> twists(Nd,0); // twists[nu] = 1;
 | 
			
		||||
  //  GparityDomainWallFermionR::ImplParams params;  params.twists = twists;
 | 
			
		||||
  //  GparityDomainWallFermionR Ddwf(U,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,params);
 | 
			
		||||
 | 
			
		||||
  //  DomainWallFermionR Dw     (U,     Grid,RBGrid,mass,M5);
 | 
			
		||||
 | 
			
		||||
  const int nu = 3;
 | 
			
		||||
  const int nu = 0; //gparity direction
 | 
			
		||||
  std::vector<int> twists(Nd,0);
 | 
			
		||||
  twists[nu] = 1;
 | 
			
		||||
  twists[Nd-1] = 1; //antiperiodic in time
 | 
			
		||||
  GparityDomainWallFermionR::ImplParams params;
 | 
			
		||||
  params.twists = twists;
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
  params.boundary_phases[0] = 1.0;
 | 
			
		||||
  params.boundary_phases[1] = 1.0;
 | 
			
		||||
  params.boundary_phases[2] = 1.0;
 | 
			
		||||
  params.boundary_phases[3] =- 1.0;
 | 
			
		||||
  */
 | 
			
		||||
  
 | 
			
		||||
 
 | 
			
		||||
  GparityDomainWallFermionR Dw(U,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,params);
 | 
			
		||||
 | 
			
		||||
  Dw.M   (phi,Mphi);
 | 
			
		||||
 
 | 
			
		||||
@@ -71,8 +71,10 @@ int main (int argc, char ** argv)
 | 
			
		||||
  RealD mass=0.01; 
 | 
			
		||||
  RealD M5=1.8; 
 | 
			
		||||
 | 
			
		||||
  const int nu = 3;
 | 
			
		||||
  std::vector<int> twists(Nd,0);  twists[nu] = 1;
 | 
			
		||||
  const int nu = 1;
 | 
			
		||||
  std::vector<int> twists(Nd,0);
 | 
			
		||||
  twists[nu] = 1;
 | 
			
		||||
  twists[3] = 1;
 | 
			
		||||
  GparityDomainWallFermionR::ImplParams params;  params.twists = twists;
 | 
			
		||||
  GparityDomainWallFermionR Ddwf(U,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,params);
 | 
			
		||||
  Ddwf.M   (phi,Mphi);
 | 
			
		||||
@@ -91,16 +93,28 @@ int main (int argc, char ** argv)
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  // Modify the gauge field a little 
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  RealD dt = 0.0001;
 | 
			
		||||
  RealD dt = 0.01;
 | 
			
		||||
 | 
			
		||||
  LatticeColourMatrix zz(UGrid); zz=Zero();
 | 
			
		||||
  LatticeColourMatrix mommu(UGrid); 
 | 
			
		||||
  LatticeColourMatrix forcemu(UGrid); 
 | 
			
		||||
  LatticeGaugeField mom(UGrid); 
 | 
			
		||||
  LatticeGaugeField Uprime(UGrid); 
 | 
			
		||||
 | 
			
		||||
  const int Lnu=latt_size[nu];
 | 
			
		||||
  Lattice<iScalar<vInteger> > coor(UGrid);
 | 
			
		||||
  LatticeCoordinate(coor,nu);
 | 
			
		||||
  for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
 | 
			
		||||
    SU<Nc>::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
 | 
			
		||||
    // Traceless antihermitian momentum; gaussian in lie alg
 | 
			
		||||
    SU<Nc>::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu);
 | 
			
		||||
    if(0){
 | 
			
		||||
      if(mu==nu){
 | 
			
		||||
	mommu=where(coor==Lnu-1,mommu,zz);
 | 
			
		||||
      } else {
 | 
			
		||||
	mommu=Zero();
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    PokeIndex<LorentzIndex>(mom,mommu,mu);
 | 
			
		||||
 | 
			
		||||
@@ -125,6 +139,12 @@ int main (int argc, char ** argv)
 | 
			
		||||
 | 
			
		||||
  ComplexD Sprime    = innerProduct(MphiPrime   ,MphiPrime);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  LatticeComplex lip(FGrid); lip=localInnerProduct(Mphi,Mphi);
 | 
			
		||||
  LatticeComplex lipp(FGrid); lipp=localInnerProduct(MphiPrime,MphiPrime);
 | 
			
		||||
  LatticeComplex dip(FGrid); dip = lipp - lip;
 | 
			
		||||
  std::cout << " dip "<<dip<<std::endl;
 | 
			
		||||
  
 | 
			
		||||
  //////////////////////////////////////////////
 | 
			
		||||
  // Use derivative to estimate dS
 | 
			
		||||
  //////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										446
									
								
								tests/forces/Test_gpdwf_force_1f_2f.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										446
									
								
								tests/forces/Test_gpdwf_force_1f_2f.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,446 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./forces/Test_gpdwf_force_1f_2f.cc
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 | 
			
		||||
//Here we test the G-parity action and force between the 1f (doubled-lattice) and 2f approaches 
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void copyConjGauge(LatticeGaugeFieldD &Umu_1f, const LatticeGaugeFieldD &Umu_2f, const int nu){
 | 
			
		||||
  GridBase* UGrid_2f = Umu_2f.Grid();
 | 
			
		||||
  GridBase* UGrid_1f = Umu_1f.Grid();
 | 
			
		||||
 | 
			
		||||
  Replicate(Umu_2f,Umu_1f);
 | 
			
		||||
 | 
			
		||||
  int L_2f = UGrid_2f->FullDimensions()[nu];
 | 
			
		||||
  int L_1f = UGrid_1f->FullDimensions()[nu]; 
 | 
			
		||||
  assert(L_1f == 2 * L_2f);
 | 
			
		||||
 | 
			
		||||
  //Coordinate grid for reference
 | 
			
		||||
  LatticeInteger xcoor_1f(UGrid_1f);
 | 
			
		||||
  LatticeCoordinate(xcoor_1f,nu);
 | 
			
		||||
 | 
			
		||||
  //Copy-conjugate the gauge field
 | 
			
		||||
  //First C-shift the lattice by Lx/2
 | 
			
		||||
  {
 | 
			
		||||
    LatticeGaugeField Umu_shift = conjugate( Cshift(Umu_1f,nu,L_2f) );
 | 
			
		||||
    Umu_1f = where( xcoor_1f >= Integer(L_2f), Umu_shift, Umu_1f );
 | 
			
		||||
 | 
			
		||||
    //We use the in built APBC 
 | 
			
		||||
    //Make the gauge field antiperiodic in nu-direction
 | 
			
		||||
    //decltype(PeekIndex<LorentzIndex>(Umu_1f,nu)) Unu(UGrid_1f);
 | 
			
		||||
    //Unu = PeekIndex<LorentzIndex>(Umu_1f,nu);
 | 
			
		||||
    //Unu = where(xcoor_1f == Integer(2*L_2f-1), -Unu, Unu);
 | 
			
		||||
    //PokeIndex<LorentzIndex>(Umu_1f,Unu,nu);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<typename FermionField2f, typename FermionField1f>
 | 
			
		||||
void convertFermion1f_from_2f(FermionField1f &out_1f, const FermionField2f &in_2f, const int nu, bool is_4d){
 | 
			
		||||
  GridBase* FGrid_1f = out_1f.Grid();
 | 
			
		||||
  GridBase* FGrid_2f = in_2f.Grid();
 | 
			
		||||
 | 
			
		||||
  int nuoff = is_4d ? 0 : 1;   //s in 0 direction
 | 
			
		||||
 | 
			
		||||
  int L_2f = FGrid_2f->FullDimensions()[nu+nuoff];
 | 
			
		||||
  int L_1f = FGrid_1f->FullDimensions()[nu+nuoff];
 | 
			
		||||
  assert(L_1f == 2 * L_2f);
 | 
			
		||||
  
 | 
			
		||||
  auto in_f0_2fgrid = PeekIndex<GparityFlavourIndex>(in_2f,0); //flavor 0 on 2f Grid
 | 
			
		||||
  FermionField1f in_f0_1fgrid(FGrid_1f);
 | 
			
		||||
  Replicate(in_f0_2fgrid, in_f0_1fgrid); //has flavor 0 on both halves
 | 
			
		||||
 | 
			
		||||
  auto in_f1_2fgrid = PeekIndex<GparityFlavourIndex>(in_2f,1); //flavor 1 on 2f Grid
 | 
			
		||||
  FermionField1f in_f1_1fgrid(FGrid_1f);
 | 
			
		||||
  Replicate(in_f1_2fgrid, in_f1_1fgrid); //has flavor 1 on both halves
 | 
			
		||||
 | 
			
		||||
  LatticeInteger xcoor_1f(FGrid_1f);
 | 
			
		||||
  LatticeCoordinate(xcoor_1f,nu+nuoff);
 | 
			
		||||
  
 | 
			
		||||
  out_1f = where(xcoor_1f < L_2f, in_f0_1fgrid, in_f1_1fgrid);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<typename GparityAction, typename StandardAction>
 | 
			
		||||
class RatioActionSetupBase{
 | 
			
		||||
protected:
 | 
			
		||||
  TwoFlavourEvenOddRatioPseudoFermionAction<WilsonImplD> *pf_1f;
 | 
			
		||||
  TwoFlavourEvenOddRatioPseudoFermionAction<GparityWilsonImplD> *pf_2f;
 | 
			
		||||
 | 
			
		||||
  GparityAction* action_2f;
 | 
			
		||||
  GparityAction* action_PV_2f;
 | 
			
		||||
  StandardAction* action_1f;
 | 
			
		||||
  StandardAction* action_PV_1f;
 | 
			
		||||
 | 
			
		||||
  ConjugateGradient<typename StandardAction::FermionField> CG_1f;
 | 
			
		||||
  ConjugateGradient<typename GparityAction::FermionField> CG_2f;
 | 
			
		||||
 | 
			
		||||
  RatioActionSetupBase(): CG_1f(1.0e-8,10000), CG_2f(1.0e-8,10000){}
 | 
			
		||||
 | 
			
		||||
  void setupPseudofermion(){
 | 
			
		||||
    pf_1f = new TwoFlavourEvenOddRatioPseudoFermionAction<WilsonImplD>(*action_PV_1f, *action_1f, CG_1f, CG_1f);
 | 
			
		||||
    pf_2f = new TwoFlavourEvenOddRatioPseudoFermionAction<GparityWilsonImplD>(*action_PV_2f, *action_2f, CG_2f, CG_2f);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  GparityAction & action2f(){ return *action_2f; }
 | 
			
		||||
  StandardAction & action1f(){ return *action_1f; }
 | 
			
		||||
 | 
			
		||||
  void refreshAction(LatticeGaugeField &Umu_2f, typename GparityAction::FermionField &eta_2f,
 | 
			
		||||
		     LatticeGaugeField &Umu_1f, typename StandardAction::FermionField &eta_1f){  
 | 
			
		||||
    pf_1f->refresh(Umu_1f, eta_1f);
 | 
			
		||||
    pf_2f->refresh(Umu_2f, eta_2f);
 | 
			
		||||
 | 
			
		||||
    //Compare PhiOdd
 | 
			
		||||
    RealD norm_1f = norm2(pf_1f->getPhiOdd());
 | 
			
		||||
    RealD norm_2f = norm2(pf_2f->getPhiOdd());
 | 
			
		||||
    
 | 
			
		||||
    std::cout << "Test PhiOdd 2f: " << norm_2f << " 1f: " << norm_1f << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void computeAction(RealD &S_2f, RealD &S_1f, LatticeGaugeField &Umu_2f, LatticeGaugeField &Umu_1f){
 | 
			
		||||
    S_1f = pf_1f->S(Umu_1f);
 | 
			
		||||
    S_2f = pf_2f->S(Umu_2f);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void computeDeriv(LatticeGaugeField &deriv_2f, LatticeGaugeField &deriv_1f, LatticeGaugeField &Umu_2f, LatticeGaugeField &Umu_1f){    
 | 
			
		||||
    pf_1f->deriv(Umu_1f, deriv_1f);
 | 
			
		||||
    pf_2f->deriv(Umu_2f, deriv_2f);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<typename GparityAction, typename StandardAction>
 | 
			
		||||
struct setupAction{};
 | 
			
		||||
 | 
			
		||||
template<>
 | 
			
		||||
struct setupAction<GparityWilsonTMFermionD, WilsonTMFermionD>: public RatioActionSetupBase<GparityWilsonTMFermionD, WilsonTMFermionD>{
 | 
			
		||||
  typedef GparityWilsonTMFermionD GparityAction;
 | 
			
		||||
  typedef WilsonTMFermionD StandardAction;
 | 
			
		||||
  
 | 
			
		||||
  setupAction(GridCartesian* UGrid_2f, GridRedBlackCartesian* UrbGrid_2f,  GridCartesian* FGrid_2f, GridRedBlackCartesian* FrbGrid_2f,
 | 
			
		||||
	      GridCartesian* UGrid_1f, GridRedBlackCartesian* UrbGrid_1f,  GridCartesian* FGrid_1f, GridRedBlackCartesian* FrbGrid_1f,
 | 
			
		||||
	      LatticeGaugeField &Umu_2f, LatticeGaugeField &Umu_1f, int nu): RatioActionSetupBase(){
 | 
			
		||||
    RealD mass=-1.8;   
 | 
			
		||||
    //Use same DSDR twists as https://arxiv.org/pdf/1208.4412.pdf
 | 
			
		||||
    RealD epsilon_f = 0.02; //numerator (in determinant)
 | 
			
		||||
    RealD epsilon_b = 0.5; 
 | 
			
		||||
 | 
			
		||||
    std::vector<int> twists(Nd,0);
 | 
			
		||||
    twists[nu] = 1; //GPBC in y
 | 
			
		||||
    twists[3] = 1; //APBC
 | 
			
		||||
    GparityAction::ImplParams params_2f;  params_2f.twists = twists;
 | 
			
		||||
    action_2f = new GparityWilsonTMFermionD(Umu_2f,*UGrid_2f,*UrbGrid_2f, mass, epsilon_f, params_2f);
 | 
			
		||||
    action_PV_2f = new GparityWilsonTMFermionD(Umu_2f,*UGrid_2f,*UrbGrid_2f, mass, epsilon_b, params_2f);
 | 
			
		||||
 | 
			
		||||
    DomainWallFermionD::ImplParams params_1f;  
 | 
			
		||||
    params_1f.boundary_phases[nu] = -1; 
 | 
			
		||||
    params_1f.boundary_phases[3] = -1; 
 | 
			
		||||
 | 
			
		||||
    action_1f = new WilsonTMFermionD(Umu_1f,*UGrid_1f,*UrbGrid_1f, mass, epsilon_f, params_1f);
 | 
			
		||||
    action_PV_1f = new WilsonTMFermionD(Umu_1f,*UGrid_1f,*UrbGrid_1f, mass, epsilon_b, params_1f);
 | 
			
		||||
 | 
			
		||||
    setupPseudofermion();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static bool is4d(){ return true; }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<>
 | 
			
		||||
struct setupAction<GparityDomainWallFermionD, DomainWallFermionD>: public RatioActionSetupBase<GparityDomainWallFermionD, DomainWallFermionD>{
 | 
			
		||||
  typedef GparityDomainWallFermionD GparityAction;
 | 
			
		||||
  typedef DomainWallFermionD StandardAction;
 | 
			
		||||
  
 | 
			
		||||
  setupAction(GridCartesian* UGrid_2f, GridRedBlackCartesian* UrbGrid_2f,  GridCartesian* FGrid_2f, GridRedBlackCartesian* FrbGrid_2f,
 | 
			
		||||
	      GridCartesian* UGrid_1f, GridRedBlackCartesian* UrbGrid_1f,  GridCartesian* FGrid_1f, GridRedBlackCartesian* FrbGrid_1f,
 | 
			
		||||
	      LatticeGaugeField &Umu_2f, LatticeGaugeField &Umu_1f, int nu): RatioActionSetupBase(){
 | 
			
		||||
    RealD mass=0.01;   
 | 
			
		||||
    RealD M5=1.8; 
 | 
			
		||||
 | 
			
		||||
    std::vector<int> twists(Nd,0);
 | 
			
		||||
    twists[nu] = 1; //GPBC in y
 | 
			
		||||
    twists[3] = 1; //APBC
 | 
			
		||||
    GparityDomainWallFermionD::ImplParams params_2f;  params_2f.twists = twists;
 | 
			
		||||
    action_2f = new GparityDomainWallFermionD(Umu_2f,*FGrid_2f,*FrbGrid_2f,*UGrid_2f,*UrbGrid_2f,mass,M5,params_2f);
 | 
			
		||||
    action_PV_2f = new GparityDomainWallFermionD(Umu_2f,*FGrid_2f,*FrbGrid_2f,*UGrid_2f,*UrbGrid_2f,1.0,M5,params_2f);
 | 
			
		||||
 | 
			
		||||
    DomainWallFermionD::ImplParams params_1f;  
 | 
			
		||||
    params_1f.boundary_phases[nu] = -1; 
 | 
			
		||||
    params_1f.boundary_phases[3] = -1; 
 | 
			
		||||
 | 
			
		||||
    action_1f = new DomainWallFermionD(Umu_1f,*FGrid_1f,*FrbGrid_1f,*UGrid_1f,*UrbGrid_1f,mass,M5,params_1f);
 | 
			
		||||
    action_PV_1f = new DomainWallFermionD(Umu_1f,*FGrid_1f,*FrbGrid_1f,*UGrid_1f,*UrbGrid_1f,1.0,M5,params_1f);
 | 
			
		||||
 | 
			
		||||
    setupPseudofermion();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static bool is4d(){ return false; }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//For EOFA we need a different pseudofermion type
 | 
			
		||||
template<>
 | 
			
		||||
struct setupAction<GparityDomainWallEOFAFermionD, DomainWallEOFAFermionD>{
 | 
			
		||||
  typedef GparityDomainWallEOFAFermionD GparityAction;
 | 
			
		||||
  typedef DomainWallEOFAFermionD StandardAction;
 | 
			
		||||
 | 
			
		||||
  ExactOneFlavourRatioPseudoFermionAction<WilsonImplD> *pf_1f;
 | 
			
		||||
  ExactOneFlavourRatioPseudoFermionAction<GparityWilsonImplD> *pf_2f;
 | 
			
		||||
 | 
			
		||||
  GparityAction* action_2f;
 | 
			
		||||
  GparityAction* action_PV_2f;
 | 
			
		||||
  StandardAction* action_1f;
 | 
			
		||||
  StandardAction* action_PV_1f;
 | 
			
		||||
 | 
			
		||||
  ConjugateGradient<typename StandardAction::FermionField> CG_1f;
 | 
			
		||||
  ConjugateGradient<typename GparityAction::FermionField> CG_2f;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  GparityAction & action2f(){ return *action_2f; }
 | 
			
		||||
  StandardAction & action1f(){ return *action_1f; }
 | 
			
		||||
 | 
			
		||||
  void refreshAction(LatticeGaugeField &Umu_2f, typename GparityAction::FermionField &eta_2f,
 | 
			
		||||
		     LatticeGaugeField &Umu_1f, typename StandardAction::FermionField &eta_1f){  
 | 
			
		||||
    pf_1f->refresh(Umu_1f, eta_1f);
 | 
			
		||||
    pf_2f->refresh(Umu_2f, eta_2f);
 | 
			
		||||
 | 
			
		||||
    //Compare PhiOdd
 | 
			
		||||
    RealD norm_1f = norm2(pf_1f->getPhi());
 | 
			
		||||
    RealD norm_2f = norm2(pf_2f->getPhi());
 | 
			
		||||
    
 | 
			
		||||
    std::cout << "Test Phi 2f: " << norm_2f << " 1f: " << norm_1f << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void computeAction(RealD &S_2f, RealD &S_1f, LatticeGaugeField &Umu_2f, LatticeGaugeField &Umu_1f){
 | 
			
		||||
    S_1f = pf_1f->S(Umu_1f);
 | 
			
		||||
    S_2f = pf_2f->S(Umu_2f);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void computeDeriv(LatticeGaugeField &deriv_2f, LatticeGaugeField &deriv_1f, LatticeGaugeField &Umu_2f, LatticeGaugeField &Umu_1f){    
 | 
			
		||||
    pf_1f->deriv(Umu_1f, deriv_1f);
 | 
			
		||||
    pf_2f->deriv(Umu_2f, deriv_2f);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  setupAction(GridCartesian* UGrid_2f, GridRedBlackCartesian* UrbGrid_2f,  GridCartesian* FGrid_2f, GridRedBlackCartesian* FrbGrid_2f,
 | 
			
		||||
	      GridCartesian* UGrid_1f, GridRedBlackCartesian* UrbGrid_1f,  GridCartesian* FGrid_1f, GridRedBlackCartesian* FrbGrid_1f,
 | 
			
		||||
	      LatticeGaugeField &Umu_2f, LatticeGaugeField &Umu_1f, int nu): CG_1f(1.0e-8,10000), CG_2f(1.0e-8,10000){
 | 
			
		||||
    RealD mass=0.01;   
 | 
			
		||||
    RealD M5=1.8; 
 | 
			
		||||
 | 
			
		||||
    std::vector<int> twists(Nd,0);
 | 
			
		||||
    twists[nu] = 1; //GPBC in y
 | 
			
		||||
    twists[3] = 1; //APBC
 | 
			
		||||
    GparityAction::ImplParams params_2f;  params_2f.twists = twists;
 | 
			
		||||
    action_2f = new GparityAction(Umu_2f,*FGrid_2f,*FrbGrid_2f,*UGrid_2f,*UrbGrid_2f, mass, mass, 1.0, 0.0, -1, M5, params_2f);
 | 
			
		||||
    action_PV_2f = new GparityAction(Umu_2f,*FGrid_2f,*FrbGrid_2f,*UGrid_2f,*UrbGrid_2f, 1.0, mass, 1.0, -1.0, 1, M5, params_2f); //cf Test_dwf_gpforce_eofa.cc
 | 
			
		||||
 | 
			
		||||
    StandardAction::ImplParams params_1f;  
 | 
			
		||||
    params_1f.boundary_phases[nu] = -1; 
 | 
			
		||||
    params_1f.boundary_phases[3] = -1; 
 | 
			
		||||
 | 
			
		||||
    action_1f = new StandardAction(Umu_1f,*FGrid_1f,*FrbGrid_1f,*UGrid_1f,*UrbGrid_1f, mass, mass, 1.0, 0.0, -1, M5, params_1f);
 | 
			
		||||
    action_PV_1f = new StandardAction(Umu_1f,*FGrid_1f,*FrbGrid_1f,*UGrid_1f,*UrbGrid_1f, 1.0, mass, 1.0, -1.0, 1, M5, params_1f);
 | 
			
		||||
 | 
			
		||||
    OneFlavourRationalParams RationalParams(0.95, 100.0, 5000, 1.0e-12, 12);
 | 
			
		||||
 | 
			
		||||
    pf_1f = new ExactOneFlavourRatioPseudoFermionAction<WilsonImplD>(*action_1f, *action_PV_1f, CG_1f, CG_1f, CG_1f, CG_1f, CG_1f, RationalParams, true);
 | 
			
		||||
    pf_2f = new ExactOneFlavourRatioPseudoFermionAction<GparityWilsonImplD>(*action_2f, *action_PV_2f, CG_2f, CG_2f, CG_2f, CG_2f, CG_2f, RationalParams, true);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static bool is4d(){ return false; }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<typename GparityAction, typename StandardAction>
 | 
			
		||||
void runTest(int argc, char** argv){
 | 
			
		||||
  Grid_init(&argc,&argv);
 | 
			
		||||
 | 
			
		||||
  const int nu = 1;
 | 
			
		||||
  Coordinate latt_2f   = GridDefaultLatt();
 | 
			
		||||
  Coordinate latt_1f   = latt_2f;
 | 
			
		||||
  latt_1f[nu] *= 2;
 | 
			
		||||
 | 
			
		||||
  Coordinate simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
 | 
			
		||||
  Coordinate mpi_layout  = GridDefaultMpi();
 | 
			
		||||
 | 
			
		||||
  const int Ls=8;
 | 
			
		||||
 | 
			
		||||
  GridCartesian         * UGrid_1f   = SpaceTimeGrid::makeFourDimGrid(latt_1f, simd_layout, mpi_layout);
 | 
			
		||||
  GridRedBlackCartesian * UrbGrid_1f = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_1f);
 | 
			
		||||
  GridCartesian         * FGrid_1f   = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid_1f);
 | 
			
		||||
  GridRedBlackCartesian * FrbGrid_1f = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid_1f);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  GridCartesian         * UGrid_2f   = SpaceTimeGrid::makeFourDimGrid(latt_2f, simd_layout, mpi_layout);
 | 
			
		||||
  GridRedBlackCartesian * UrbGrid_2f = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_2f);
 | 
			
		||||
  GridCartesian         * FGrid_2f   = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid_2f);
 | 
			
		||||
  GridRedBlackCartesian * FrbGrid_2f = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid_2f);
 | 
			
		||||
 | 
			
		||||
  std::vector<int> seeds4({1,2,3,4});
 | 
			
		||||
  std::vector<int> seeds5({5,6,7,8});
 | 
			
		||||
  GridParallelRNG RNG5_2f(FGrid_2f);  RNG5_2f.SeedFixedIntegers(seeds5);
 | 
			
		||||
  GridParallelRNG RNG4_2f(UGrid_2f);  RNG4_2f.SeedFixedIntegers(seeds4);
 | 
			
		||||
 | 
			
		||||
  LatticeGaugeField Umu_2f(UGrid_2f);
 | 
			
		||||
  SU<Nc>::HotConfiguration(RNG4_2f,Umu_2f);
 | 
			
		||||
 | 
			
		||||
  LatticeGaugeField Umu_1f(UGrid_1f);
 | 
			
		||||
  copyConjGauge(Umu_1f, Umu_2f, nu);
 | 
			
		||||
 | 
			
		||||
  typedef typename GparityAction::FermionField GparityFermionField;
 | 
			
		||||
  typedef typename StandardAction::FermionField StandardFermionField;
 | 
			
		||||
 | 
			
		||||
  setupAction<GparityAction, StandardAction> setup(UGrid_2f, UrbGrid_2f, FGrid_2f, FrbGrid_2f,
 | 
			
		||||
						   UGrid_1f, UrbGrid_1f, FGrid_1f, FrbGrid_1f,
 | 
			
		||||
						   Umu_2f, Umu_1f, nu);
 | 
			
		||||
  GridBase* FGrid_2f_a = setup.action2f().FermionGrid();
 | 
			
		||||
  GridBase* FGrid_1f_a = setup.action1f().FermionGrid();
 | 
			
		||||
  GridBase* FrbGrid_2f_a = setup.action2f().FermionRedBlackGrid();
 | 
			
		||||
  GridBase* FrbGrid_1f_a = setup.action1f().FermionRedBlackGrid();
 | 
			
		||||
  bool is_4d = setup.is4d();
 | 
			
		||||
 | 
			
		||||
  //Check components by doing an inversion
 | 
			
		||||
  {
 | 
			
		||||
    setup.action2f().ImportGauge(Umu_2f);
 | 
			
		||||
    setup.action1f().ImportGauge(Umu_1f);
 | 
			
		||||
 | 
			
		||||
    GparityFermionField src_2f(FGrid_2f_a);
 | 
			
		||||
    gaussian(is_4d ? RNG4_2f : RNG5_2f, src_2f);
 | 
			
		||||
    
 | 
			
		||||
    StandardFermionField src_1f(FGrid_1f_a);
 | 
			
		||||
    convertFermion1f_from_2f(src_1f, src_2f, nu, is_4d);
 | 
			
		||||
 | 
			
		||||
    StandardFermionField src_o_1f(FrbGrid_1f_a);
 | 
			
		||||
    StandardFermionField result_o_1f(FrbGrid_1f_a);
 | 
			
		||||
    pickCheckerboard(Odd,src_o_1f,src_1f);
 | 
			
		||||
    result_o_1f=Zero();
 | 
			
		||||
 | 
			
		||||
    SchurDiagMooeeOperator<StandardAction,StandardFermionField> HermOpEO_1f(setup.action1f());
 | 
			
		||||
    ConjugateGradient<StandardFermionField> CG_1f(1.0e-8,10000);
 | 
			
		||||
    CG_1f(HermOpEO_1f,src_o_1f,result_o_1f);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    GparityFermionField src_o_2f(FrbGrid_2f_a);
 | 
			
		||||
    GparityFermionField result_o_2f(FrbGrid_2f_a);
 | 
			
		||||
    pickCheckerboard(Odd,src_o_2f,src_2f);
 | 
			
		||||
    result_o_2f=Zero();
 | 
			
		||||
 | 
			
		||||
    SchurDiagMooeeOperator<GparityAction,GparityFermionField> HermOpEO_2f(setup.action2f());
 | 
			
		||||
    ConjugateGradient<GparityFermionField> CG_2f(1.0e-8,10000);
 | 
			
		||||
    CG_2f(HermOpEO_2f,src_o_2f,result_o_2f);
 | 
			
		||||
 | 
			
		||||
    RealD norm_1f = norm2(result_o_1f);
 | 
			
		||||
    RealD norm_2f = norm2(result_o_2f);
 | 
			
		||||
 | 
			
		||||
    std::cout << "Test fermion inversion 2f: " << norm_2f << " 1f: " << norm_1f << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Generate eta
 | 
			
		||||
  RealD scale = std::sqrt(0.5);
 | 
			
		||||
 | 
			
		||||
  GparityFermionField eta_2f(FGrid_2f_a);    
 | 
			
		||||
  gaussian(is_4d ? RNG4_2f : RNG5_2f,eta_2f); eta_2f = eta_2f * scale;
 | 
			
		||||
 | 
			
		||||
  StandardFermionField eta_1f(FGrid_1f_a);    
 | 
			
		||||
  convertFermion1f_from_2f(eta_1f, eta_2f, nu, is_4d);
 | 
			
		||||
  
 | 
			
		||||
  setup.refreshAction(Umu_2f, eta_2f, Umu_1f, eta_1f);
 | 
			
		||||
 
 | 
			
		||||
  //Initial action is just |eta^2|
 | 
			
		||||
  RealD S_1f, S_2f;
 | 
			
		||||
 | 
			
		||||
  setup.computeAction(S_2f, S_1f, Umu_2f, Umu_1f);
 | 
			
		||||
 | 
			
		||||
  std::cout << "Test Initial action 2f: " << S_2f << " 1f: " << S_1f << " diff: " << S_2f - S_1f << std::endl;
 | 
			
		||||
 | 
			
		||||
  //Do a random gauge field refresh
 | 
			
		||||
  SU<Nc>::HotConfiguration(RNG4_2f,Umu_2f);
 | 
			
		||||
  copyConjGauge(Umu_1f, Umu_2f, nu);
 | 
			
		||||
 | 
			
		||||
  //Compute the action again
 | 
			
		||||
  setup.computeAction(S_2f, S_1f, Umu_2f, Umu_1f);
 | 
			
		||||
  
 | 
			
		||||
  std::cout << "Test Action after gauge field randomize 2f: " << S_2f << " 1f: " << S_1f << " diff: " << S_2f - S_1f << std::endl;
 | 
			
		||||
 | 
			
		||||
  //Compute the derivative and test the conjugate relation
 | 
			
		||||
  LatticeGaugeField deriv_2f(UGrid_2f);
 | 
			
		||||
  LatticeGaugeField deriv_1f(UGrid_1f);
 | 
			
		||||
  setup.computeDeriv(deriv_2f, deriv_1f, Umu_2f, Umu_1f);
 | 
			
		||||
 | 
			
		||||
  //Have to combine the two forces on the 1f by symmetrizing under the complex conjugate
 | 
			
		||||
  {
 | 
			
		||||
    RealD norm2_pre = norm2(deriv_1f);
 | 
			
		||||
    LatticeGaugeField deriv_1f_shift = conjugate( Cshift(deriv_1f, nu, latt_2f[nu]) );
 | 
			
		||||
    deriv_1f = deriv_1f + deriv_1f_shift;
 | 
			
		||||
    std::cout << "Test combine/symmetrize forces on 1f lattice, dS/dU : " << norm2_pre << " -> " << norm2(deriv_1f) << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  LatticeGaugeField deriv_1f_from_2f(UGrid_1f);  
 | 
			
		||||
  copyConjGauge(deriv_1f_from_2f, deriv_2f, nu);
 | 
			
		||||
  std::cout << "Test copy-conj 2f dS/dU to obtain equivalent 1f force : " << norm2(deriv_2f) << " -> " << norm2(deriv_1f_from_2f) << std::endl;
 | 
			
		||||
  
 | 
			
		||||
  LatticeGaugeField diff_deriv_1f = deriv_1f - deriv_1f_from_2f;
 | 
			
		||||
 | 
			
		||||
  std::cout << "Test dS/dU 1f constructed from 2f derivative: " << norm2(deriv_1f_from_2f) << "  dS/dU 1f actual: " << norm2(deriv_1f) << "  Norm of difference: " << norm2(diff_deriv_1f) << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout<< GridLogMessage << "Done" <<std::endl;
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
int main (int argc, char ** argv)
 | 
			
		||||
{
 | 
			
		||||
  std::string action = "DWF";
 | 
			
		||||
  for(int i=1;i<argc;i++){
 | 
			
		||||
    if(std::string(argv[i]) == "--action"){
 | 
			
		||||
      action = argv[i+1];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  if(action == "DWF"){
 | 
			
		||||
    runTest<GparityDomainWallFermionD, DomainWallFermionD>(argc, argv);
 | 
			
		||||
  }else if(action == "EOFA"){
 | 
			
		||||
    runTest<GparityDomainWallEOFAFermionD, DomainWallEOFAFermionD>(argc, argv);
 | 
			
		||||
  }else if(action == "DSDR"){
 | 
			
		||||
    runTest<GparityWilsonTMFermionD, WilsonTMFermionD>(argc,argv);
 | 
			
		||||
  }else{
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
@@ -64,8 +64,12 @@ int main (int argc, char ** argv)
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  RealD mass=0.01; 
 | 
			
		||||
 | 
			
		||||
  const int nu = 3;
 | 
			
		||||
  std::vector<int> twists(Nd,0);  twists[nu] = 1;
 | 
			
		||||
  const int nu = 1;
 | 
			
		||||
  const int Lnu=latt_size[nu];
 | 
			
		||||
 | 
			
		||||
  std::vector<int> twists(Nd,0);
 | 
			
		||||
  twists[nu] = 1;
 | 
			
		||||
  twists[3]=1;
 | 
			
		||||
  GparityWilsonFermionR::ImplParams params;  params.twists = twists;
 | 
			
		||||
  GparityWilsonFermionR Wil(U,*UGrid,*UrbGrid,mass,params);
 | 
			
		||||
  Wil.M   (phi,Mphi);
 | 
			
		||||
@@ -87,17 +91,28 @@ int main (int argc, char ** argv)
 | 
			
		||||
  RealD dt = 0.01;
 | 
			
		||||
 | 
			
		||||
  LatticeColourMatrix mommu(UGrid); 
 | 
			
		||||
  LatticeColourMatrix zz(UGrid);
 | 
			
		||||
  LatticeColourMatrix forcemu(UGrid); 
 | 
			
		||||
  LatticeGaugeField mom(UGrid); 
 | 
			
		||||
  LatticeGaugeField Uprime(UGrid); 
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  Lattice<iScalar<vInteger> > coor(UGrid);
 | 
			
		||||
  LatticeCoordinate(coor,nu);
 | 
			
		||||
  zz=Zero();
 | 
			
		||||
  for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
 | 
			
		||||
    // Traceless antihermitian momentum; gaussian in lie alg
 | 
			
		||||
    SU<Nc>::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); 
 | 
			
		||||
 | 
			
		||||
    SU<Nc>::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu);
 | 
			
		||||
    if(0){
 | 
			
		||||
      if(mu==nu){
 | 
			
		||||
	mommu=where(coor==Lnu-1,mommu,zz);
 | 
			
		||||
      } else {
 | 
			
		||||
	mommu=Zero();
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    PokeIndex<LorentzIndex>(mom,mommu,mu);
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
    // fourth order exponential approx
 | 
			
		||||
    autoView( mom_v, mom, CpuRead);
 | 
			
		||||
    autoView( U_v , U, CpuRead);
 | 
			
		||||
@@ -130,6 +145,10 @@ int main (int argc, char ** argv)
 | 
			
		||||
    mommu=Ta(mommu)*2.0;
 | 
			
		||||
    PokeIndex<LorentzIndex>(UdSdU,mommu,mu);
 | 
			
		||||
  }
 | 
			
		||||
  LatticeComplex lip(UGrid); lip=localInnerProduct(Mphi,Mphi);
 | 
			
		||||
  LatticeComplex lipp(UGrid); lipp=localInnerProduct(MphiPrime,MphiPrime);
 | 
			
		||||
  LatticeComplex dip(UGrid); dip = lipp - lip;
 | 
			
		||||
  std::cout << " dip "<<dip<<std::endl;
 | 
			
		||||
 | 
			
		||||
  LatticeComplex dS(UGrid); dS = Zero();
 | 
			
		||||
  for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
@@ -139,12 +158,14 @@ int main (int argc, char ** argv)
 | 
			
		||||
    // Update PF action density
 | 
			
		||||
    dS = dS+trace(mommu*forcemu)*dt;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  std::cout << "mommu"<<mommu<<std::endl;
 | 
			
		||||
  std::cout << "dS" << dS<<std::endl;
 | 
			
		||||
  
 | 
			
		||||
  ComplexD dSpred    = sum(dS);
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << " S      "<<S<<std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << " Sprime "<<Sprime<<std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "dS      "<<Sprime-S<<std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Delta S "<<Sprime-S<<std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "predict dS    "<< dSpred <<std::endl;
 | 
			
		||||
 | 
			
		||||
  assert( fabs(real(Sprime-S-dSpred)) < 2.0 ) ;
 | 
			
		||||
 
 | 
			
		||||
@@ -89,7 +89,49 @@ int main (int argc, char** argv)
 | 
			
		||||
  ExactOneFlavourRatioPseudoFermionAction<WilsonImplR> Meofa(Lop, Rop, CG, CG, CG, CG, CG, Params, false);
 | 
			
		||||
 | 
			
		||||
  GridSerialRNG  sRNG; sRNG.SeedFixedIntegers(seeds4);
 | 
			
		||||
 | 
			
		||||
  //Check the rational approximation
 | 
			
		||||
  {    
 | 
			
		||||
    RealD scale = std::sqrt(0.5);
 | 
			
		||||
    LatticeFermion eta    (Lop.FermionGrid());
 | 
			
		||||
    gaussian(RNG5,eta); eta = eta * scale;
 | 
			
		||||
 | 
			
		||||
    Meofa.refresh(U, eta);
 | 
			
		||||
    
 | 
			
		||||
    //Phi = M^{-1/2} eta
 | 
			
		||||
    //M is Hermitian    
 | 
			
		||||
    //(Phi, M Phi) = eta^\dagger  M^{-1/2} M M^{-1/2} eta = eta^\dagger eta
 | 
			
		||||
    LatticeFermion phi = Meofa.getPhi();
 | 
			
		||||
    LatticeFermion Mphi(FGrid);
 | 
			
		||||
    
 | 
			
		||||
    Meofa.Meofa(U, phi, Mphi);
 | 
			
		||||
    std::cout << "Computing inner product" << std::endl;
 | 
			
		||||
    ComplexD inner = innerProduct(phi, Mphi);
 | 
			
		||||
    ComplexD test = inner - norm2(eta);
 | 
			
		||||
    
 | 
			
		||||
    std::cout << "(phi, Mphi) - (eta,eta): " << test << "  expect 0" << std::endl;
 | 
			
		||||
 | 
			
		||||
    assert(test.real() < 1e-8);
 | 
			
		||||
    assert(test.imag() < 1e-8);
 | 
			
		||||
 | 
			
		||||
    //Another test is to use heatbath twice to apply M^{-1/2} to Phi then apply M
 | 
			
		||||
    // M  Phi' 
 | 
			
		||||
    //= M M^{-1/2} Phi 
 | 
			
		||||
    //= M M^{-1/2} M^{-1/2} eta 
 | 
			
		||||
    //= eta
 | 
			
		||||
    Meofa.refresh(U, phi);
 | 
			
		||||
    LatticeFermion phi2 = Meofa.getPhi();
 | 
			
		||||
    LatticeFermion test2(FGrid);
 | 
			
		||||
    Meofa.Meofa(U, phi2, test2);
 | 
			
		||||
    test2  = test2 - eta;
 | 
			
		||||
    RealD test2_norm = norm2(test2);
 | 
			
		||||
    std::cout << "|M M^{-1/2} M^{-1/2} eta - eta|^2 = " << test2_norm << " expect 0" << std::endl;
 | 
			
		||||
    assert( test2_norm < 1e-8 );
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  Meofa.refresh(U, sRNG, RNG5 );
 | 
			
		||||
 | 
			
		||||
  RealD S = Meofa.S(U); // pdag M p
 | 
			
		||||
 | 
			
		||||
  // get the deriv of phidag M phi with respect to "U"
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										260
									
								
								tests/forces/Test_mobius_gparity_eofa_mixed.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										260
									
								
								tests/forces/Test_mobius_gparity_eofa_mixed.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,260 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./tests/forces/Test_mobius_gparity_eofa_mixed.cc
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2017
 | 
			
		||||
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: David Murphy <dmurphy@phys.columbia.edu>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 ;
 | 
			
		||||
 | 
			
		||||
typedef GparityWilsonImplD FermionImplPolicyD;
 | 
			
		||||
typedef GparityMobiusEOFAFermionD FermionActionD;
 | 
			
		||||
typedef typename FermionActionD::FermionField FermionFieldD;
 | 
			
		||||
 | 
			
		||||
typedef GparityWilsonImplF FermionImplPolicyF;
 | 
			
		||||
typedef GparityMobiusEOFAFermionF FermionActionF;
 | 
			
		||||
typedef typename FermionActionF::FermionField FermionFieldF;
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
  template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class  SchurOperatorF> 
 | 
			
		||||
  class MixedPrecisionConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
 | 
			
		||||
  public:
 | 
			
		||||
    typedef typename FermionOperatorD::FermionField FieldD;
 | 
			
		||||
    typedef typename FermionOperatorF::FermionField FieldF;
 | 
			
		||||
 | 
			
		||||
    using OperatorFunction<FieldD>::operator();
 | 
			
		||||
 | 
			
		||||
    RealD   Tolerance;
 | 
			
		||||
    RealD   InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
 | 
			
		||||
    Integer MaxInnerIterations;
 | 
			
		||||
    Integer MaxOuterIterations;
 | 
			
		||||
    GridBase* SinglePrecGrid4; //Grid for single-precision fields
 | 
			
		||||
    GridBase* SinglePrecGrid5; //Grid for single-precision fields
 | 
			
		||||
    RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
 | 
			
		||||
 | 
			
		||||
    FermionOperatorF &FermOpF;
 | 
			
		||||
    FermionOperatorD &FermOpD;;
 | 
			
		||||
    SchurOperatorF &LinOpF;
 | 
			
		||||
    SchurOperatorD &LinOpD;
 | 
			
		||||
 | 
			
		||||
    Integer TotalInnerIterations; //Number of inner CG iterations
 | 
			
		||||
    Integer TotalOuterIterations; //Number of restarts
 | 
			
		||||
    Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
 | 
			
		||||
 | 
			
		||||
    MixedPrecisionConjugateGradientOperatorFunction(RealD tol, 
 | 
			
		||||
						    Integer maxinnerit, 
 | 
			
		||||
						    Integer maxouterit, 
 | 
			
		||||
						    GridBase* _sp_grid4, 
 | 
			
		||||
						    GridBase* _sp_grid5, 
 | 
			
		||||
						    FermionOperatorF &_FermOpF,
 | 
			
		||||
						    FermionOperatorD &_FermOpD,
 | 
			
		||||
						    SchurOperatorF   &_LinOpF,
 | 
			
		||||
						    SchurOperatorD   &_LinOpD): 
 | 
			
		||||
      LinOpF(_LinOpF),
 | 
			
		||||
      LinOpD(_LinOpD),
 | 
			
		||||
      FermOpF(_FermOpF),
 | 
			
		||||
      FermOpD(_FermOpD),
 | 
			
		||||
      Tolerance(tol), 
 | 
			
		||||
      InnerTolerance(tol), 
 | 
			
		||||
      MaxInnerIterations(maxinnerit), 
 | 
			
		||||
      MaxOuterIterations(maxouterit), 
 | 
			
		||||
      SinglePrecGrid4(_sp_grid4),
 | 
			
		||||
      SinglePrecGrid5(_sp_grid5),
 | 
			
		||||
      OuterLoopNormMult(100.) 
 | 
			
		||||
    { 
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << " Mixed precision CG wrapper operator() "<<std::endl;
 | 
			
		||||
 | 
			
		||||
      SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
 | 
			
		||||
      assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
      // Must snarf a single precision copy of the gauge field in Linop_d argument
 | 
			
		||||
      ////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
      //typedef typename FermionOperatorF::GaugeField GaugeFieldF;
 | 
			
		||||
      //typedef typename FermionOperatorF::GaugeLinkField GaugeLinkFieldF;
 | 
			
		||||
      //typedef typename FermionOperatorD::GaugeField GaugeFieldD;
 | 
			
		||||
      //typedef typename FermionOperatorD::GaugeLinkField GaugeLinkFieldD;
 | 
			
		||||
 | 
			
		||||
      //GridBase * GridPtrF = SinglePrecGrid4;
 | 
			
		||||
      //GridBase * GridPtrD = FermOpD.Umu.Grid();
 | 
			
		||||
      //GaugeFieldF     U_f  (GridPtrF);
 | 
			
		||||
      //GaugeLinkFieldF Umu_f(GridPtrF);
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
      // Moving this to a Clone method of fermion operator would allow to duplicate the 
 | 
			
		||||
      // physics parameters and decrease gauge field copies
 | 
			
		||||
      ////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
      //typedef typename std::decay<decltype(PeekIndex<LorentzIndex>(FermOpD.Umu, 0))>::type DoubleS
 | 
			
		||||
 | 
			
		||||
      //GaugeLinkFieldD Umu_d(GridPtrD);
 | 
			
		||||
      //for(int mu=0;mu<Nd*2;mu++){ 
 | 
			
		||||
      //Umu_d = PeekIndex<LorentzIndex>(FermOpD.Umu, mu);
 | 
			
		||||
      //precisionChange(Umu_f,Umu_d);
 | 
			
		||||
      //PokeIndex<LorentzIndex>(FermOpF.Umu, Umu_f, mu);
 | 
			
		||||
      //}
 | 
			
		||||
 | 
			
		||||
      precisionChange(FermOpF.Umu, FermOpD.Umu);
 | 
			
		||||
 | 
			
		||||
      pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
 | 
			
		||||
      pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
      // Make a mixed precision conjugate gradient
 | 
			
		||||
      ////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
      MixedPrecisionConjugateGradient<FieldD,FieldF> MPCG(Tolerance,MaxInnerIterations,MaxOuterIterations,SinglePrecGrid5,LinOpF,LinOpD);
 | 
			
		||||
      MPCG.InnerTolerance = InnerTolerance;
 | 
			
		||||
      std::cout << GridLogMessage << "Calling mixed precision Conjugate Gradient" <<std::endl;
 | 
			
		||||
      MPCG(src,psi);
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
int main (int argc, char** argv)
 | 
			
		||||
{
 | 
			
		||||
  Grid_init(&argc, &argv);
 | 
			
		||||
 | 
			
		||||
  Coordinate latt_size   = GridDefaultLatt();
 | 
			
		||||
  Coordinate mpi_layout  = GridDefaultMpi();
 | 
			
		||||
 | 
			
		||||
  const int Ls = 8;
 | 
			
		||||
 | 
			
		||||
  GridCartesian         *UGridD   = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplexD::Nsimd()), GridDefaultMpi());
 | 
			
		||||
  GridRedBlackCartesian *UrbGridD = SpaceTimeGrid::makeFourDimRedBlackGrid(UGridD);
 | 
			
		||||
  GridCartesian         *FGridD   = SpaceTimeGrid::makeFiveDimGrid(Ls, UGridD);
 | 
			
		||||
  GridRedBlackCartesian *FrbGridD = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGridD);
 | 
			
		||||
 | 
			
		||||
  GridCartesian         *UGridF   = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplexF::Nsimd()), GridDefaultMpi());
 | 
			
		||||
  GridRedBlackCartesian *UrbGridF = SpaceTimeGrid::makeFourDimRedBlackGrid(UGridF);
 | 
			
		||||
  GridCartesian         *FGridF   = SpaceTimeGrid::makeFiveDimGrid(Ls, UGridF);
 | 
			
		||||
  GridRedBlackCartesian *FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGridF);
 | 
			
		||||
 | 
			
		||||
  std::vector<int> seeds4({1,2,3,5});
 | 
			
		||||
  std::vector<int> seeds5({5,6,7,8});
 | 
			
		||||
  GridParallelRNG RNG5(FGridD);  RNG5.SeedFixedIntegers(seeds5);
 | 
			
		||||
  GridParallelRNG RNG4(UGridD);  RNG4.SeedFixedIntegers(seeds4);
 | 
			
		||||
 | 
			
		||||
  int threads = GridThread::GetThreads();
 | 
			
		||||
  std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
 | 
			
		||||
 | 
			
		||||
  LatticeGaugeFieldD Ud(UGridD);
 | 
			
		||||
  SU<Nc>::HotConfiguration(RNG4,Ud);
 | 
			
		||||
 | 
			
		||||
  LatticeGaugeFieldF Uf(UGridF);
 | 
			
		||||
  precisionChange(Uf, Ud);
 | 
			
		||||
 | 
			
		||||
  RealD b  = 2.5;
 | 
			
		||||
  RealD c  = 1.5;
 | 
			
		||||
  RealD mf = 0.01;
 | 
			
		||||
  RealD mb = 1.0;
 | 
			
		||||
  RealD M5 = 1.8;
 | 
			
		||||
  FermionActionD::ImplParams params;
 | 
			
		||||
  params.twists[0] = 1; //GPBC in X
 | 
			
		||||
  params.twists[Nd-1] = 1; //APRD in T
 | 
			
		||||
 | 
			
		||||
  std::vector<int> gtwists(4,0);
 | 
			
		||||
  gtwists[0] = 1;
 | 
			
		||||
 | 
			
		||||
  ConjugateGimplD::setDirections(gtwists);
 | 
			
		||||
 | 
			
		||||
  FermionActionD LopD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, mf, mf, mb, 0.0, -1, M5, b, c, params);
 | 
			
		||||
  FermionActionD RopD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, mb, mf, mb, -1.0, 1, M5, b, c, params);
 | 
			
		||||
 | 
			
		||||
  FermionActionF LopF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, mf, mf, mb, 0.0, -1, M5, b, c, params);
 | 
			
		||||
  FermionActionF RopF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, mb, mf, mb, -1.0, 1, M5, b, c, params);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  OneFlavourRationalParams OFRp(0.95, 100.0, 5000, 1.0e-12, 12);
 | 
			
		||||
  ConjugateGradient<FermionFieldD> CG(1.0e-10, 10000);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  typedef SchurDiagMooeeOperator<FermionActionD,FermionFieldD> EOFAschuropD;
 | 
			
		||||
  typedef SchurDiagMooeeOperator<FermionActionF,FermionFieldF> EOFAschuropF;
 | 
			
		||||
  
 | 
			
		||||
  EOFAschuropD linopL_D(LopD);
 | 
			
		||||
  EOFAschuropD linopR_D(RopD);
 | 
			
		||||
 | 
			
		||||
  EOFAschuropF linopL_F(LopF);
 | 
			
		||||
  EOFAschuropF linopR_F(RopF);
 | 
			
		||||
 | 
			
		||||
  typedef MixedPrecisionConjugateGradientOperatorFunction<FermionActionD, FermionActionF, EOFAschuropD, EOFAschuropF> EOFA_mxCG;
 | 
			
		||||
 | 
			
		||||
  EOFA_mxCG MCG_L(1e-10, 10000, 1000, UGridF, FrbGridF, LopF, LopD, linopL_F, linopL_D);
 | 
			
		||||
  MCG_L.InnerTolerance = 1e-5;
 | 
			
		||||
 | 
			
		||||
  EOFA_mxCG MCG_R(1e-10, 10000, 1000, UGridF, FrbGridF, RopF, RopD, linopR_F, linopR_D);
 | 
			
		||||
  MCG_R.InnerTolerance = 1e-5;
 | 
			
		||||
 | 
			
		||||
  ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicyD> MeofaD(LopD, RopD, CG, CG, CG, CG, CG, OFRp, true);
 | 
			
		||||
  ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction<FermionImplPolicyD, FermionImplPolicyF> MeofaMx(LopF, RopF, LopD, RopD, MCG_L, MCG_R, MCG_L, MCG_R, MCG_L, MCG_R, OFRp, true);
 | 
			
		||||
  
 | 
			
		||||
  FermionFieldD eta(FGridD);
 | 
			
		||||
  gaussian(RNG5, eta);
 | 
			
		||||
 | 
			
		||||
  MeofaD.refresh(Ud, eta);
 | 
			
		||||
  MeofaMx.refresh(Ud, eta);
 | 
			
		||||
 | 
			
		||||
  FermionFieldD diff_phi(FGridD);
 | 
			
		||||
  diff_phi = MeofaD.getPhi() - MeofaMx.getPhi();
 | 
			
		||||
 | 
			
		||||
  RealD n = norm2(diff_phi);
 | 
			
		||||
  
 | 
			
		||||
  std::cout << GridLogMessage << "Phi(double)=" << norm2(MeofaD.getPhi()) << " Phi(mixed)=" << norm2(MeofaMx.getPhi()) << " diff=" << n << std::endl;
 | 
			
		||||
 | 
			
		||||
  assert(n < 1e-8);
 | 
			
		||||
 | 
			
		||||
  RealD Sd = MeofaD.S(Ud);
 | 
			
		||||
  RealD Smx = MeofaMx.S(Ud);
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "Initial action double=" << Sd << " mixed=" << Smx << " diff=" << Sd-Smx << std::endl;
 | 
			
		||||
 | 
			
		||||
  assert(fabs(Sd-Smx) < 1e-6);
 | 
			
		||||
 | 
			
		||||
  SU<Nc>::HotConfiguration(RNG4,Ud);
 | 
			
		||||
  precisionChange(Uf, Ud);
 | 
			
		||||
 | 
			
		||||
  Sd = MeofaD.S(Ud);
 | 
			
		||||
  Smx = MeofaMx.S(Ud);
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "After randomizing U, action double=" << Sd << " mixed=" << Smx << " diff=" << Sd-Smx << std::endl;
 | 
			
		||||
 | 
			
		||||
  assert(fabs(Sd-Smx) < 1e-6);
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "Done" << std::endl;
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										257
									
								
								tests/hmc/Test_action_dwf_gparity2fvs1f.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										257
									
								
								tests/hmc/Test_action_dwf_gparity2fvs1f.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,257 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: tests/hmc/Test_action_dwf_gparity2fvs1f.cc
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
    Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
    Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<typename FermionField2f, typename FermionField1f>
 | 
			
		||||
void copy2fTo1fFermionField(FermionField1f &out, const FermionField2f &in, int gpdir){
 | 
			
		||||
  auto f0_halfgrid = PeekIndex<GparityFlavourIndex>(in,0); //on 2f Grid
 | 
			
		||||
  FermionField1f f0_fullgrid_dbl(out.Grid());
 | 
			
		||||
  Replicate(f0_halfgrid, f0_fullgrid_dbl); //double it up to live on the 1f Grid
 | 
			
		||||
 | 
			
		||||
  auto f1_halfgrid = PeekIndex<GparityFlavourIndex>(in,1);
 | 
			
		||||
  FermionField1f f1_fullgrid_dbl(out.Grid());
 | 
			
		||||
  Replicate(f1_halfgrid, f1_fullgrid_dbl);
 | 
			
		||||
  
 | 
			
		||||
  const Coordinate &dim_2f = in.Grid()->GlobalDimensions();
 | 
			
		||||
  const Coordinate &dim_1f = out.Grid()->GlobalDimensions();
 | 
			
		||||
 | 
			
		||||
  //We have to be careful for 5d fields; the s-direction is placed before the x,y,z,t and so we need to shift gpdir by 1
 | 
			
		||||
  std::cout << "gpdir " << gpdir << std::endl;
 | 
			
		||||
 | 
			
		||||
  gpdir+=1;
 | 
			
		||||
  std::cout << "gpdir for 5D fields " << gpdir << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << "dim_2f " << dim_2f << std::endl;
 | 
			
		||||
  std::cout << "dim_1f " << dim_1f << std::endl;
 | 
			
		||||
  
 | 
			
		||||
  assert(dim_1f[gpdir] == 2*dim_2f[gpdir]);
 | 
			
		||||
 | 
			
		||||
  LatticeInteger xcoor_1f(out.Grid()); //5d lattice integer
 | 
			
		||||
  LatticeCoordinate(xcoor_1f,gpdir);
 | 
			
		||||
 | 
			
		||||
  int L = dim_2f[gpdir];
 | 
			
		||||
 | 
			
		||||
  out = where(xcoor_1f < L, f0_fullgrid_dbl, f1_fullgrid_dbl);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//Both have the same field type
 | 
			
		||||
void copy2fTo1fGaugeField(LatticeGaugeField &out, const LatticeGaugeField &in, int gpdir){
 | 
			
		||||
  LatticeGaugeField U_dbl(out.Grid());
 | 
			
		||||
  Replicate(in, U_dbl);
 | 
			
		||||
  
 | 
			
		||||
  LatticeGaugeField Uconj_dbl = conjugate( U_dbl );
 | 
			
		||||
 | 
			
		||||
  const Coordinate &dim_2f = in.Grid()->GlobalDimensions();
 | 
			
		||||
  
 | 
			
		||||
  LatticeInteger xcoor_1f(out.Grid());
 | 
			
		||||
  LatticeCoordinate(xcoor_1f,gpdir);
 | 
			
		||||
 | 
			
		||||
  int L = dim_2f[gpdir];
 | 
			
		||||
  
 | 
			
		||||
  out = where(xcoor_1f < L, U_dbl, Uconj_dbl);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
std::ostream & operator<<(std::ostream &os, const Coordinate &x){
 | 
			
		||||
  os << "(";
 | 
			
		||||
  for(int i=0;i<x.size();i++) os << x[i] <<  (i<x.size()-1 ? " " : "");
 | 
			
		||||
  os << ")";
 | 
			
		||||
  return os;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
int main(int argc, char **argv) {
 | 
			
		||||
  using namespace Grid;
 | 
			
		||||
  
 | 
			
		||||
  Grid_init(&argc, &argv);
 | 
			
		||||
  int threads = GridThread::GetThreads();
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
 | 
			
		||||
 | 
			
		||||
  int Ls = 16;
 | 
			
		||||
 | 
			
		||||
  Coordinate latt_2f = GridDefaultLatt();
 | 
			
		||||
  Coordinate simd_layout = GridDefaultSimd(Nd, vComplexD::Nsimd());
 | 
			
		||||
  Coordinate mpi_layout = GridDefaultMpi();
 | 
			
		||||
 | 
			
		||||
  int mu = 0; //Gparity direction
 | 
			
		||||
 | 
			
		||||
  Coordinate latt_1f = latt_2f;
 | 
			
		||||
  latt_1f[mu] *= 2;
 | 
			
		||||
 | 
			
		||||
  GridCartesian         * UGrid_1f   = SpaceTimeGrid::makeFourDimGrid(latt_1f, simd_layout, mpi_layout);
 | 
			
		||||
  GridRedBlackCartesian * UrbGrid_1f = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_1f);
 | 
			
		||||
  GridCartesian         * FGrid_1f   = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid_1f);
 | 
			
		||||
  GridRedBlackCartesian * FrbGrid_1f = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid_1f);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  GridCartesian         * UGrid_2f   = SpaceTimeGrid::makeFourDimGrid(latt_2f, simd_layout, mpi_layout);
 | 
			
		||||
  GridRedBlackCartesian * UrbGrid_2f = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_2f);
 | 
			
		||||
  GridCartesian         * FGrid_2f   = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid_2f);
 | 
			
		||||
  GridRedBlackCartesian * FrbGrid_2f = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid_2f);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  std::cout << "SIMD layout " << simd_layout << std::endl;
 | 
			
		||||
  std::cout << "MPI layout " << mpi_layout << std::endl;
 | 
			
		||||
  std::cout << "2f dimensions " << latt_2f << std::endl;
 | 
			
		||||
  std::cout << "1f dimensions " << latt_1f << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::vector<int> seeds4({1,2,3,4});
 | 
			
		||||
  std::vector<int> seeds5({5,6,7,8});
 | 
			
		||||
  GridParallelRNG          RNG5_2f(FGrid_2f);  RNG5_2f.SeedFixedIntegers(seeds5);
 | 
			
		||||
  GridParallelRNG          RNG4_2f(UGrid_2f);  RNG4_2f.SeedFixedIntegers(seeds4);
 | 
			
		||||
 | 
			
		||||
  std::cout << "Generating hot 2f gauge configuration" << std::endl;
 | 
			
		||||
  LatticeGaugeField Umu_2f(UGrid_2f);
 | 
			
		||||
  SU<Nc>::HotConfiguration(RNG4_2f,Umu_2f);
 | 
			
		||||
 | 
			
		||||
  std::cout << "Copying 2f->1f gauge field" << std::endl;
 | 
			
		||||
  LatticeGaugeField Umu_1f(UGrid_1f);
 | 
			
		||||
  copy2fTo1fGaugeField(Umu_1f, Umu_2f, mu);  
 | 
			
		||||
 | 
			
		||||
  typedef GparityWilsonImplR FermionImplPolicy2f;
 | 
			
		||||
  typedef GparityDomainWallFermionR FermionAction2f;
 | 
			
		||||
  typedef typename FermionAction2f::FermionField FermionField2f;
 | 
			
		||||
  
 | 
			
		||||
  typedef WilsonImplR FermionImplPolicy1f;
 | 
			
		||||
  typedef DomainWallFermionR FermionAction1f;
 | 
			
		||||
  typedef typename FermionAction1f::FermionField FermionField1f;
 | 
			
		||||
 | 
			
		||||
  std::cout << "Generating eta 2f" << std::endl;
 | 
			
		||||
  FermionField2f eta_2f(FGrid_2f);
 | 
			
		||||
  gaussian(RNG5_2f, eta_2f);
 | 
			
		||||
 | 
			
		||||
  RealD scale = std::sqrt(0.5);
 | 
			
		||||
  eta_2f=eta_2f*scale;
 | 
			
		||||
 | 
			
		||||
  std::cout << "Copying 2f->1f eta" << std::endl;
 | 
			
		||||
  FermionField1f eta_1f(FGrid_1f);
 | 
			
		||||
  copy2fTo1fFermionField(eta_1f, eta_2f, mu);
 | 
			
		||||
  
 | 
			
		||||
  Real beta         = 2.13;
 | 
			
		||||
  Real light_mass   = 0.01;
 | 
			
		||||
  Real strange_mass = 0.032;
 | 
			
		||||
  Real pv_mass      = 1.0;
 | 
			
		||||
  RealD M5  = 1.8;
 | 
			
		||||
 | 
			
		||||
  //Setup the Dirac operators
 | 
			
		||||
  std::cout << "Initializing Dirac operators" << std::endl;
 | 
			
		||||
  
 | 
			
		||||
  FermionAction2f::ImplParams Params_2f;
 | 
			
		||||
  Params_2f.twists[mu] = 1;
 | 
			
		||||
  Params_2f.twists[Nd-1] = 1; //APBC in time direction
 | 
			
		||||
 | 
			
		||||
  //note 'Num' and 'Den' here refer to the determinant ratio, not the operator ratio in the pseudofermion action where the two are inverted
 | 
			
		||||
  //to my mind the Pauli Villars and 'denominator' are synonymous but the Grid convention has this as the 'Numerator' operator in the RHMC implementation
 | 
			
		||||
  FermionAction2f NumOp_2f(Umu_2f,*FGrid_2f,*FrbGrid_2f,*UGrid_2f, *UrbGrid_2f, light_mass,M5,Params_2f); 
 | 
			
		||||
  FermionAction2f DenOp_2f(Umu_2f,*FGrid_2f,*FrbGrid_2f,*UGrid_2f, *UrbGrid_2f, pv_mass, M5,Params_2f);
 | 
			
		||||
 | 
			
		||||
  FermionAction1f::ImplParams Params_1f;
 | 
			
		||||
  Params_1f.boundary_phases[mu] = -1; //antiperiodic in doubled lattice in GP direction
 | 
			
		||||
  Params_1f.boundary_phases[Nd-1] = -1;
 | 
			
		||||
  
 | 
			
		||||
  FermionAction1f NumOp_1f(Umu_1f,*FGrid_1f,*FrbGrid_1f,*UGrid_1f, *UrbGrid_1f, light_mass,M5,Params_1f);
 | 
			
		||||
  FermionAction1f DenOp_1f(Umu_1f,*FGrid_1f,*FrbGrid_1f,*UGrid_1f, *UrbGrid_1f, pv_mass, M5,Params_1f);
 | 
			
		||||
 | 
			
		||||
  //Test the replication routines by running a CG on eta
 | 
			
		||||
  double StoppingCondition = 1e-10;
 | 
			
		||||
  double MaxCGIterations = 30000;
 | 
			
		||||
  ConjugateGradient<FermionField2f>  CG_2f(StoppingCondition,MaxCGIterations);
 | 
			
		||||
  ConjugateGradient<FermionField1f>  CG_1f(StoppingCondition,MaxCGIterations);
 | 
			
		||||
 | 
			
		||||
  NumOp_1f.ImportGauge(Umu_1f);
 | 
			
		||||
  NumOp_2f.ImportGauge(Umu_2f);
 | 
			
		||||
 | 
			
		||||
  FermionField1f test_1f(FGrid_1f);
 | 
			
		||||
  FermionField2f test_2f(FGrid_2f);
 | 
			
		||||
  
 | 
			
		||||
  MdagMLinearOperator<FermionAction1f, FermionField1f> Linop_1f(NumOp_1f);
 | 
			
		||||
  MdagMLinearOperator<FermionAction2f, FermionField2f> Linop_2f(NumOp_2f);
 | 
			
		||||
  
 | 
			
		||||
  CG_1f(Linop_1f, eta_1f, test_1f);
 | 
			
		||||
  CG_2f(Linop_2f, eta_2f, test_2f);
 | 
			
		||||
  RealD test_1f_norm = norm2(test_1f);
 | 
			
		||||
  RealD test_2f_norm = norm2(test_2f);
 | 
			
		||||
 | 
			
		||||
  std::cout << "Verification of replication routines: " << test_1f_norm << " " << test_2f_norm << " " << test_1f_norm - test_2f_norm << std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#if 1
 | 
			
		||||
  typedef GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy2f> Action2f;
 | 
			
		||||
  typedef GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy1f> Action1f;
 | 
			
		||||
 | 
			
		||||
  RationalActionParams rational_params;
 | 
			
		||||
  rational_params.inv_pow = 2;
 | 
			
		||||
  rational_params.lo = 1e-5;
 | 
			
		||||
  rational_params.hi = 32;
 | 
			
		||||
  rational_params.md_degree = 16;
 | 
			
		||||
  rational_params.action_degree = 16;
 | 
			
		||||
 | 
			
		||||
  Action2f action_2f(DenOp_2f, NumOp_2f, rational_params);
 | 
			
		||||
  Action1f action_1f(DenOp_1f, NumOp_1f, rational_params);
 | 
			
		||||
#else
 | 
			
		||||
  typedef TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy2f> Action2f;
 | 
			
		||||
  typedef TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy1f> Action1f;
 | 
			
		||||
 | 
			
		||||
  Action2f action_2f(DenOp_2f, NumOp_2f, CG_2f, CG_2f);
 | 
			
		||||
  Action1f action_1f(DenOp_1f, NumOp_1f, CG_1f, CG_1f);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  std::cout << "Action refresh" << std::endl;
 | 
			
		||||
  action_2f.refresh(Umu_2f, eta_2f);
 | 
			
		||||
  action_1f.refresh(Umu_1f, eta_1f);
 | 
			
		||||
 | 
			
		||||
  std::cout << "Action compute post heatbath" << std::endl;
 | 
			
		||||
  RealD S_2f = action_2f.S(Umu_2f);
 | 
			
		||||
  RealD S_1f = action_1f.S(Umu_1f);
 | 
			
		||||
 | 
			
		||||
  std::cout << "Action comparison post heatbath" << std::endl;
 | 
			
		||||
  std::cout << S_2f << " " << S_1f << " " << S_2f-S_1f << std::endl;
 | 
			
		||||
 | 
			
		||||
  //Change the gauge field between refresh and action eval else the matrix and inverse matrices all cancel and we just get |eta|^2
 | 
			
		||||
  SU<Nc>::HotConfiguration(RNG4_2f,Umu_2f);
 | 
			
		||||
  copy2fTo1fGaugeField(Umu_1f, Umu_2f, mu);  
 | 
			
		||||
 | 
			
		||||
  //Now compute the action with the new gauge field
 | 
			
		||||
  std::cout << "Action compute post gauge field update" << std::endl;
 | 
			
		||||
  S_2f = action_2f.S(Umu_2f);
 | 
			
		||||
  S_1f = action_1f.S(Umu_1f);
 | 
			
		||||
 | 
			
		||||
  std::cout << "Action comparison post gauge field update" << std::endl;
 | 
			
		||||
  std::cout << S_2f << " " << S_1f << " " << S_2f-S_1f << std::endl;
 | 
			
		||||
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
} // main
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -58,7 +58,7 @@ int main(int argc, char **argv) {
 | 
			
		||||
  CheckpointerParameters CPparams;  
 | 
			
		||||
  CPparams.config_prefix = "ckpoint_EODWF_lat";
 | 
			
		||||
  CPparams.rng_prefix = "ckpoint_EODWF_rng";
 | 
			
		||||
  CPparams.saveInterval = 5;
 | 
			
		||||
  CPparams.saveInterval = 1;
 | 
			
		||||
  CPparams.format = "IEEE64BIG";
 | 
			
		||||
  
 | 
			
		||||
  TheHMC.Resources.LoadNerscCheckpointer(CPparams);
 | 
			
		||||
@@ -79,7 +79,7 @@ int main(int argc, char **argv) {
 | 
			
		||||
  // that have a complex construction
 | 
			
		||||
  // standard
 | 
			
		||||
  RealD beta = 2.6 ;
 | 
			
		||||
  const int nu = 3;
 | 
			
		||||
  const int nu = 1;
 | 
			
		||||
  std::vector<int> twists(Nd,0);
 | 
			
		||||
  twists[nu] = 1;
 | 
			
		||||
  ConjugateGimplD::setDirections(twists);
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										139
									
								
								tests/hmc/Test_rhmc_EOWilsonRatioPowQuarter.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										139
									
								
								tests/hmc/Test_rhmc_EOWilsonRatioPowQuarter.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,139 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./tests/Test_rhmc_EOWilsonRatio.cc
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
 | 
			
		||||
//This test is for the Wilson action with the determinant det( M^dag M)^1/4
 | 
			
		||||
//testing the generic RHMC 
 | 
			
		||||
 | 
			
		||||
int main(int argc, char **argv) {
 | 
			
		||||
  using namespace Grid;
 | 
			
		||||
   ;
 | 
			
		||||
 | 
			
		||||
  Grid_init(&argc, &argv);
 | 
			
		||||
  int threads = GridThread::GetThreads();
 | 
			
		||||
  // here make a routine to print all the relevant information on the run
 | 
			
		||||
  std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
 | 
			
		||||
 | 
			
		||||
   // Typedefs to simplify notation
 | 
			
		||||
  typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;  // Uses the default minimum norm
 | 
			
		||||
  typedef WilsonImplR FermionImplPolicy;
 | 
			
		||||
  typedef WilsonFermionR FermionAction;
 | 
			
		||||
  typedef typename FermionAction::FermionField FermionField;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
 | 
			
		||||
  HMCWrapper TheHMC;
 | 
			
		||||
 | 
			
		||||
  // Grid from the command line
 | 
			
		||||
  TheHMC.Resources.AddFourDimGrid("gauge");
 | 
			
		||||
 | 
			
		||||
  // Checkpointer definition
 | 
			
		||||
  CheckpointerParameters CPparams;  
 | 
			
		||||
  CPparams.config_prefix = "ckpoint_lat";
 | 
			
		||||
  CPparams.rng_prefix = "ckpoint_rng";
 | 
			
		||||
  CPparams.saveInterval = 5;
 | 
			
		||||
  CPparams.format = "IEEE64BIG";
 | 
			
		||||
  
 | 
			
		||||
  TheHMC.Resources.LoadNerscCheckpointer(CPparams);
 | 
			
		||||
 | 
			
		||||
  RNGModuleParameters RNGpar;
 | 
			
		||||
  RNGpar.serial_seeds = "1 2 3 4 5";
 | 
			
		||||
  RNGpar.parallel_seeds = "6 7 8 9 10";
 | 
			
		||||
  TheHMC.Resources.SetRNGSeeds(RNGpar);
 | 
			
		||||
 | 
			
		||||
  // Construct observables
 | 
			
		||||
  typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs;
 | 
			
		||||
  TheHMC.Resources.AddObservable<PlaqObs>();
 | 
			
		||||
  //////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  // Collect actions, here use more encapsulation
 | 
			
		||||
  // need wrappers of the fermionic classes 
 | 
			
		||||
  // that have a complex construction
 | 
			
		||||
  // standard
 | 
			
		||||
  RealD beta = 5.6 ;
 | 
			
		||||
  WilsonGaugeActionR Waction(beta);
 | 
			
		||||
    
 | 
			
		||||
  auto GridPtr = TheHMC.Resources.GetCartesian();
 | 
			
		||||
  auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
 | 
			
		||||
 | 
			
		||||
  // temporarily need a gauge field
 | 
			
		||||
  LatticeGaugeField U(GridPtr);
 | 
			
		||||
 | 
			
		||||
  Real mass = -0.77;
 | 
			
		||||
  Real pv   = 0.0;
 | 
			
		||||
 | 
			
		||||
  // Can we define an overloaded operator that does not need U and initialises
 | 
			
		||||
  // it with zeroes?
 | 
			
		||||
  FermionAction DenOp(U, *GridPtr, *GridRBPtr, mass);
 | 
			
		||||
  FermionAction NumOp(U, *GridPtr, *GridRBPtr, pv);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  // 1/2+1/2 flavour
 | 
			
		||||
  // RationalActionParams(int _inv_pow = 2,
 | 
			
		||||
  // 		       RealD _lo      = 0.0, 
 | 
			
		||||
  // 		       RealD _hi      = 1.0, 
 | 
			
		||||
  // 		       int _maxit     = 1000,
 | 
			
		||||
  // 		       RealD tol      = 1.0e-8, 
 | 
			
		||||
  // 		       int _degree    = 10,
 | 
			
		||||
  // 		       int _precision = 64,
 | 
			
		||||
  // 		       int _BoundsCheckFreq=20)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  int inv_pow = 4;
 | 
			
		||||
  RationalActionParams Params(inv_pow,1.0e-2,64.0,1000,1.0e-6,14,64,1);
 | 
			
		||||
 | 
			
		||||
  GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy> RHMC(NumOp,DenOp,Params);
 | 
			
		||||
 | 
			
		||||
    // Collect actions
 | 
			
		||||
  ActionLevel<HMCWrapper::Field> Level1(1);
 | 
			
		||||
  Level1.push_back(&RHMC);
 | 
			
		||||
 | 
			
		||||
  ActionLevel<HMCWrapper::Field> Level2(4);
 | 
			
		||||
  Level2.push_back(&Waction);
 | 
			
		||||
 | 
			
		||||
  TheHMC.TheAction.push_back(Level1);
 | 
			
		||||
  TheHMC.TheAction.push_back(Level2);
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  // HMC parameters are serialisable 
 | 
			
		||||
  TheHMC.Parameters.MD.MDsteps = 20;
 | 
			
		||||
  TheHMC.Parameters.MD.trajL   = 1.0;
 | 
			
		||||
 | 
			
		||||
  TheHMC.ReadCommandLine(argc, argv); // these can be parameters from file
 | 
			
		||||
  TheHMC.Run();
 | 
			
		||||
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
 | 
			
		||||
} // main
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										119
									
								
								tests/hmc/Test_rhmc_EOWilsonRatio_doubleVsMixedPrec.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										119
									
								
								tests/hmc/Test_rhmc_EOWilsonRatio_doubleVsMixedPrec.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,119 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./tests/Test_rhmc_EOWilsonRatio_doubleVsMixedPrec.cc
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
 | 
			
		||||
//This test ensures the mixed precision RHMC gives the same result as the regular double precision
 | 
			
		||||
int main(int argc, char **argv) {
 | 
			
		||||
  using namespace Grid;
 | 
			
		||||
 | 
			
		||||
  Grid_init(&argc, &argv);
 | 
			
		||||
  int threads = GridThread::GetThreads();
 | 
			
		||||
  std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
 | 
			
		||||
 | 
			
		||||
  typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;  // Uses the default minimum norm
 | 
			
		||||
 | 
			
		||||
  typedef WilsonImplD FermionImplPolicyD;
 | 
			
		||||
  typedef WilsonFermionD FermionActionD;
 | 
			
		||||
  typedef typename FermionActionD::FermionField FermionFieldD;
 | 
			
		||||
 | 
			
		||||
  typedef WilsonImplF FermionImplPolicyF;
 | 
			
		||||
  typedef WilsonFermionF FermionActionF;
 | 
			
		||||
  typedef typename FermionActionF::FermionField FermionFieldF;
 | 
			
		||||
 | 
			
		||||
  //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
 | 
			
		||||
  HMCWrapper TheHMC;
 | 
			
		||||
  TheHMC.Resources.AddFourDimGrid("gauge");
 | 
			
		||||
 | 
			
		||||
  RNGModuleParameters RNGpar;
 | 
			
		||||
  RNGpar.serial_seeds = "1 2 3 4 5";
 | 
			
		||||
  RNGpar.parallel_seeds = "6 7 8 9 10";
 | 
			
		||||
  TheHMC.Resources.SetRNGSeeds(RNGpar);
 | 
			
		||||
 | 
			
		||||
  auto GridPtrD = TheHMC.Resources.GetCartesian();
 | 
			
		||||
  auto GridRBPtrD = TheHMC.Resources.GetRBCartesian();
 | 
			
		||||
 | 
			
		||||
  GridCartesian* GridPtrF = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
 | 
			
		||||
  GridRedBlackCartesian* GridRBPtrF = SpaceTimeGrid::makeFourDimRedBlackGrid(GridPtrF);
 | 
			
		||||
 | 
			
		||||
  // temporarily need a gauge field
 | 
			
		||||
  LatticeGaugeFieldD Ud(GridPtrD);
 | 
			
		||||
  LatticeGaugeFieldF Uf(GridPtrF);
 | 
			
		||||
 | 
			
		||||
  Real mass = -0.77;
 | 
			
		||||
  Real pv   = 0.0;
 | 
			
		||||
 | 
			
		||||
  FermionActionD DenOpD(Ud, *GridPtrD, *GridRBPtrD, mass);
 | 
			
		||||
  FermionActionD NumOpD(Ud, *GridPtrD, *GridRBPtrD, pv);
 | 
			
		||||
 | 
			
		||||
  FermionActionF DenOpF(Uf, *GridPtrF, *GridRBPtrF, mass);
 | 
			
		||||
  FermionActionF NumOpF(Uf, *GridPtrF, *GridRBPtrF, pv);
 | 
			
		||||
 | 
			
		||||
  TheHMC.Resources.AddRNGs();
 | 
			
		||||
  PeriodicGimplR::HotConfiguration(TheHMC.Resources.GetParallelRNG(), Ud);
 | 
			
		||||
 | 
			
		||||
  std::string seed_string = "the_seed";
 | 
			
		||||
 | 
			
		||||
  //Setup the pseudofermion actions
 | 
			
		||||
  RationalActionParams GenParams;
 | 
			
		||||
  GenParams.inv_pow = 2;
 | 
			
		||||
  GenParams.lo = 1e-2;
 | 
			
		||||
  GenParams.hi = 64.0;
 | 
			
		||||
  GenParams.MaxIter = 1000;
 | 
			
		||||
  GenParams.action_tolerance = GenParams.md_tolerance = 1e-6;
 | 
			
		||||
  GenParams.action_degree = GenParams.md_degree = 6;
 | 
			
		||||
  GenParams.precision = 64;
 | 
			
		||||
  GenParams.BoundsCheckFreq = 20;
 | 
			
		||||
 | 
			
		||||
  GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicyD> GenD(NumOpD,DenOpD,GenParams);
 | 
			
		||||
  GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<FermionImplPolicyD, FermionImplPolicyF> GenFD(NumOpD, DenOpD, 
 | 
			
		||||
													NumOpF, DenOpF, 
 | 
			
		||||
													GenParams, 50);
 | 
			
		||||
  TheHMC.Resources.GetParallelRNG().SeedUniqueString(seed_string);
 | 
			
		||||
  GenD.refresh(Ud, TheHMC.Resources.GetSerialRNG(), TheHMC.Resources.GetParallelRNG());    
 | 
			
		||||
  RealD Sd = GenD.S(Ud);
 | 
			
		||||
  LatticeGaugeField derivD(Ud);
 | 
			
		||||
  GenD.deriv(Ud,derivD);   
 | 
			
		||||
 | 
			
		||||
  TheHMC.Resources.GetParallelRNG().SeedUniqueString(seed_string);
 | 
			
		||||
  GenFD.refresh(Ud, TheHMC.Resources.GetSerialRNG(), TheHMC.Resources.GetParallelRNG());    
 | 
			
		||||
  RealD Sfd = GenFD.S(Ud);
 | 
			
		||||
  LatticeGaugeField derivFD(Ud);
 | 
			
		||||
  GenFD.deriv(Ud,derivFD);   
 | 
			
		||||
 | 
			
		||||
  //Compare
 | 
			
		||||
  std::cout << "Action : " << Sd << " " << Sfd << " reldiff " << (Sd - Sfd)/Sd << std::endl;
 | 
			
		||||
  
 | 
			
		||||
  LatticeGaugeField diff(Ud);
 | 
			
		||||
  axpy(diff, -1.0, derivD, derivFD);
 | 
			
		||||
  std::cout << "Norm of difference in deriv " << sqrt(norm2(diff)) << std::endl;
 | 
			
		||||
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
  return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										122
									
								
								tests/hmc/Test_rhmc_EOWilsonRatio_genericVsOneFlavor.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										122
									
								
								tests/hmc/Test_rhmc_EOWilsonRatio_genericVsOneFlavor.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,122 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./tests/Test_rhmc_EOWilsonRatio_genericVsOneFlavor.cc
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
 | 
			
		||||
//This test ensures that the OneFlavourEvenOddRatioRationalPseudoFermionAction and GeneralEvenOddRatioRationalPseudoFermionAction action (with parameters set appropriately0
 | 
			
		||||
//give the same results
 | 
			
		||||
 | 
			
		||||
int main(int argc, char **argv) {
 | 
			
		||||
  using namespace Grid;
 | 
			
		||||
 | 
			
		||||
  Grid_init(&argc, &argv);
 | 
			
		||||
  int threads = GridThread::GetThreads();
 | 
			
		||||
  std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
 | 
			
		||||
 | 
			
		||||
  typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;  // Uses the default minimum norm
 | 
			
		||||
  typedef WilsonImplR FermionImplPolicy;
 | 
			
		||||
  typedef WilsonFermionR FermionAction;
 | 
			
		||||
  typedef typename FermionAction::FermionField FermionField;
 | 
			
		||||
 | 
			
		||||
  //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
 | 
			
		||||
  HMCWrapper TheHMC;
 | 
			
		||||
  TheHMC.Resources.AddFourDimGrid("gauge");
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  // // Checkpointer definition
 | 
			
		||||
  // CheckpointerParameters CPparams;  
 | 
			
		||||
  // CPparams.config_prefix = "ckpoint_lat";
 | 
			
		||||
  // CPparams.rng_prefix = "ckpoint_rng";
 | 
			
		||||
  // CPparams.saveInterval = 5;
 | 
			
		||||
  // CPparams.format = "IEEE64BIG";
 | 
			
		||||
  
 | 
			
		||||
  // TheHMC.Resources.LoadNerscCheckpointer(CPparams);
 | 
			
		||||
 | 
			
		||||
  RNGModuleParameters RNGpar;
 | 
			
		||||
  RNGpar.serial_seeds = "1 2 3 4 5";
 | 
			
		||||
  RNGpar.parallel_seeds = "6 7 8 9 10";
 | 
			
		||||
  TheHMC.Resources.SetRNGSeeds(RNGpar);
 | 
			
		||||
 | 
			
		||||
  auto GridPtr = TheHMC.Resources.GetCartesian();
 | 
			
		||||
  auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
 | 
			
		||||
 | 
			
		||||
  // temporarily need a gauge field
 | 
			
		||||
  LatticeGaugeField U(GridPtr);
 | 
			
		||||
 | 
			
		||||
  Real mass = -0.77;
 | 
			
		||||
  Real pv   = 0.0;
 | 
			
		||||
 | 
			
		||||
  FermionAction DenOp(U, *GridPtr, *GridRBPtr, mass);
 | 
			
		||||
  FermionAction NumOp(U, *GridPtr, *GridRBPtr, pv);
 | 
			
		||||
 | 
			
		||||
  TheHMC.Resources.AddRNGs();
 | 
			
		||||
  PeriodicGimplR::HotConfiguration(TheHMC.Resources.GetParallelRNG(), U);
 | 
			
		||||
 | 
			
		||||
  std::string seed_string = "the_seed";
 | 
			
		||||
 | 
			
		||||
  //1f action
 | 
			
		||||
  OneFlavourRationalParams OneFParams(1.0e-2,64.0,1000,1.0e-6,6); 
 | 
			
		||||
 | 
			
		||||
  OneFlavourEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy> OneF(NumOp,DenOp,OneFParams);
 | 
			
		||||
  TheHMC.Resources.GetParallelRNG().SeedUniqueString(seed_string);
 | 
			
		||||
  OneF.refresh(U, TheHMC.Resources.GetParallelRNG());    
 | 
			
		||||
  RealD OneFS = OneF.S(U);
 | 
			
		||||
  LatticeGaugeField OneFderiv(U);
 | 
			
		||||
  OneF.deriv(U,OneFderiv);    
 | 
			
		||||
  
 | 
			
		||||
  //general action
 | 
			
		||||
  RationalActionParams GenParams;
 | 
			
		||||
  GenParams.inv_pow = 2;
 | 
			
		||||
  GenParams.lo = OneFParams.lo;
 | 
			
		||||
  GenParams.hi = OneFParams.hi;
 | 
			
		||||
  GenParams.MaxIter = OneFParams.MaxIter;
 | 
			
		||||
  GenParams.action_tolerance = GenParams.md_tolerance = OneFParams.tolerance;
 | 
			
		||||
  GenParams.action_degree = GenParams.md_degree = OneFParams.degree;
 | 
			
		||||
  GenParams.precision = OneFParams.precision;
 | 
			
		||||
  GenParams.BoundsCheckFreq = OneFParams.BoundsCheckFreq;
 | 
			
		||||
 | 
			
		||||
  GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy> Gen(NumOp,DenOp,GenParams);
 | 
			
		||||
  TheHMC.Resources.GetParallelRNG().SeedUniqueString(seed_string);
 | 
			
		||||
  Gen.refresh(U, TheHMC.Resources.GetParallelRNG());    
 | 
			
		||||
  RealD GenS = Gen.S(U);
 | 
			
		||||
  LatticeGaugeField Genderiv(U);
 | 
			
		||||
  Gen.deriv(U,Genderiv);   
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //Compare
 | 
			
		||||
  std::cout << "Action : " << OneFS << " " << GenS << " reldiff " << (OneFS - GenS)/OneFS << std::endl;
 | 
			
		||||
  
 | 
			
		||||
  LatticeGaugeField diff(U);
 | 
			
		||||
  axpy(diff, -1.0, Genderiv, OneFderiv);
 | 
			
		||||
  std::cout << "Norm of difference in deriv " << sqrt(norm2(diff)) << std::endl;
 | 
			
		||||
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
  return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										425
									
								
								tests/lanczos/Test_compressed_lanczos_gparity.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										425
									
								
								tests/lanczos/Test_compressed_lanczos_gparity.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,425 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./tests/Test_compressed_lanczos_gparity.cc
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2017
 | 
			
		||||
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
Author: Leans heavily on Christoph Lehner's code
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
/*
 | 
			
		||||
 *  Reimplement the badly named "multigrid" lanczos as compressed Lanczos using the features 
 | 
			
		||||
 *  in Grid that were intended to be used to support blocked Aggregates, from
 | 
			
		||||
 */
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/LocalCoherenceLanczos.h>
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 | 
			
		||||
// template<class VectorInt>
 | 
			
		||||
// void GridCmdOptionIntVector(const std::string &str, VectorInt & vec)
 | 
			
		||||
// {
 | 
			
		||||
//   vec.resize(0);
 | 
			
		||||
//   std::stringstream ss(str);
 | 
			
		||||
//   int i;
 | 
			
		||||
//   while (ss >> i){
 | 
			
		||||
//     vec.push_back(i);
 | 
			
		||||
//     if(std::ispunct(ss.peek()))
 | 
			
		||||
//       ss.ignore();
 | 
			
		||||
//   }
 | 
			
		||||
//   return;
 | 
			
		||||
// }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//For the CPS configurations we have to manually seed the RNG and deal with an incorrect factor of 2 in the plaquette metadata
 | 
			
		||||
void readConfiguration(LatticeGaugeFieldD &U,
 | 
			
		||||
		       const std::string &config,
 | 
			
		||||
		       bool is_cps_cfg = false){
 | 
			
		||||
 | 
			
		||||
  if(is_cps_cfg) NerscIO::exitOnReadPlaquetteMismatch() = false;
 | 
			
		||||
 | 
			
		||||
  typedef GaugeStatistics<ConjugateGimplD> GaugeStats;
 | 
			
		||||
     
 | 
			
		||||
  FieldMetaData header;
 | 
			
		||||
  NerscIO::readConfiguration<GaugeStats>(U, header, config);
 | 
			
		||||
 | 
			
		||||
  if(is_cps_cfg) NerscIO::exitOnReadPlaquetteMismatch() = true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//Lanczos parameters in CPS conventions
 | 
			
		||||
struct CPSLanczosParams : Serializable {
 | 
			
		||||
public:
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(CPSLanczosParams,
 | 
			
		||||
				  RealD, alpha,
 | 
			
		||||
				  RealD, beta,
 | 
			
		||||
				  int, ch_ord,
 | 
			
		||||
				  int, N_use,
 | 
			
		||||
				  int, N_get,
 | 
			
		||||
				  int, N_true_get,
 | 
			
		||||
				  RealD, stop_rsd,
 | 
			
		||||
				  int, maxits);
 | 
			
		||||
 | 
			
		||||
  //Translations
 | 
			
		||||
  ChebyParams getChebyParams() const{
 | 
			
		||||
    ChebyParams out;
 | 
			
		||||
    out.alpha = beta*beta; //aka lo
 | 
			
		||||
    out.beta = alpha*alpha; //aka hi
 | 
			
		||||
    out.Npoly = ch_ord+1;
 | 
			
		||||
    return out;
 | 
			
		||||
  }
 | 
			
		||||
  int Nstop() const{ return N_true_get; }
 | 
			
		||||
  int Nm() const{ return N_use; }
 | 
			
		||||
  int Nk() const{ return N_get; }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
//Maybe this class should be in the main library?
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
class LocalCoherenceLanczosScidac : public LocalCoherenceLanczos<Fobj,CComplex,nbasis>
 | 
			
		||||
{ 
 | 
			
		||||
public:
 | 
			
		||||
  typedef iVector<CComplex,nbasis >           CoarseSiteVector;
 | 
			
		||||
  typedef Lattice<CoarseSiteVector>           CoarseField;
 | 
			
		||||
  typedef Lattice<CComplex>   CoarseScalar; // used for inner products on fine field
 | 
			
		||||
  typedef Lattice<Fobj>          FineField;
 | 
			
		||||
 | 
			
		||||
  LocalCoherenceLanczosScidac(GridBase *FineGrid,GridBase *CoarseGrid,
 | 
			
		||||
			      LinearOperatorBase<FineField> &FineOp,
 | 
			
		||||
			      int checkerboard) 
 | 
			
		||||
    // Base constructor
 | 
			
		||||
    : LocalCoherenceLanczos<Fobj,CComplex,nbasis>(FineGrid,CoarseGrid,FineOp,checkerboard) 
 | 
			
		||||
  {};
 | 
			
		||||
 | 
			
		||||
  void checkpointFine(std::string evecs_file,std::string evals_file)
 | 
			
		||||
  {
 | 
			
		||||
    assert(this->subspace.size()==nbasis);
 | 
			
		||||
    emptyUserRecord record;
 | 
			
		||||
    Grid::ScidacWriter WR(this->_FineGrid->IsBoss());
 | 
			
		||||
    WR.open(evecs_file);
 | 
			
		||||
    for(int k=0;k<nbasis;k++) {
 | 
			
		||||
      WR.writeScidacFieldRecord(this->subspace[k],record);
 | 
			
		||||
    }
 | 
			
		||||
    WR.close();
 | 
			
		||||
    
 | 
			
		||||
    XmlWriter WRx(evals_file);
 | 
			
		||||
    write(WRx,"evals",this->evals_fine);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void checkpointFineRestore(std::string evecs_file,std::string evals_file)
 | 
			
		||||
  {
 | 
			
		||||
    this->evals_fine.resize(nbasis);
 | 
			
		||||
    this->subspace.resize(nbasis,this->_FineGrid);
 | 
			
		||||
    
 | 
			
		||||
    std::cout << GridLogIRL<< "checkpointFineRestore:  Reading evals from "<<evals_file<<std::endl;
 | 
			
		||||
    XmlReader RDx(evals_file);
 | 
			
		||||
    read(RDx,"evals",this->evals_fine);
 | 
			
		||||
    
 | 
			
		||||
    assert(this->evals_fine.size()==nbasis);
 | 
			
		||||
    
 | 
			
		||||
    std::cout << GridLogIRL<< "checkpointFineRestore:  Reading evecs from "<<evecs_file<<std::endl;
 | 
			
		||||
    emptyUserRecord record;
 | 
			
		||||
    Grid::ScidacReader RD ;
 | 
			
		||||
    RD.open(evecs_file);
 | 
			
		||||
    for(int k=0;k<nbasis;k++) {
 | 
			
		||||
      this->subspace[k].Checkerboard()=this->_checkerboard;
 | 
			
		||||
      RD.readScidacFieldRecord(this->subspace[k],record);
 | 
			
		||||
      
 | 
			
		||||
    }
 | 
			
		||||
    RD.close();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void checkpointCoarse(std::string evecs_file,std::string evals_file)
 | 
			
		||||
  {
 | 
			
		||||
    int n = this->evec_coarse.size();
 | 
			
		||||
    emptyUserRecord record;
 | 
			
		||||
    Grid::ScidacWriter WR(this->_CoarseGrid->IsBoss());
 | 
			
		||||
    WR.open(evecs_file);
 | 
			
		||||
    for(int k=0;k<n;k++) {
 | 
			
		||||
      WR.writeScidacFieldRecord(this->evec_coarse[k],record);
 | 
			
		||||
    }
 | 
			
		||||
    WR.close();
 | 
			
		||||
    
 | 
			
		||||
    XmlWriter WRx(evals_file);
 | 
			
		||||
    write(WRx,"evals",this->evals_coarse);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void checkpointCoarseRestore(std::string evecs_file,std::string evals_file,int nvec)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << "resizing coarse vecs to " << nvec<< std::endl;
 | 
			
		||||
    this->evals_coarse.resize(nvec);
 | 
			
		||||
    this->evec_coarse.resize(nvec,this->_CoarseGrid);
 | 
			
		||||
    std::cout << GridLogIRL<< "checkpointCoarseRestore:  Reading evals from "<<evals_file<<std::endl;
 | 
			
		||||
    XmlReader RDx(evals_file);
 | 
			
		||||
    read(RDx,"evals",this->evals_coarse);
 | 
			
		||||
 | 
			
		||||
    assert(this->evals_coarse.size()==nvec);
 | 
			
		||||
    emptyUserRecord record;
 | 
			
		||||
    std::cout << GridLogIRL<< "checkpointCoarseRestore:  Reading evecs from "<<evecs_file<<std::endl;
 | 
			
		||||
    Grid::ScidacReader RD ;
 | 
			
		||||
    RD.open(evecs_file);
 | 
			
		||||
    for(int k=0;k<nvec;k++) {
 | 
			
		||||
      RD.readScidacFieldRecord(this->evec_coarse[k],record);
 | 
			
		||||
    }
 | 
			
		||||
    RD.close();
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//Note:  because we rely upon physical properties we must use a "real" gauge configuration
 | 
			
		||||
int main (int argc, char ** argv) {
 | 
			
		||||
  Grid_init(&argc,&argv);
 | 
			
		||||
  GridLogIRL.TimingMode(1);
 | 
			
		||||
 | 
			
		||||
  std::vector<int> blockSize = {2,2,2,2,2};
 | 
			
		||||
  std::vector<int> GparityDirs = {1,1,1}; //1 for each GP direction
 | 
			
		||||
 | 
			
		||||
  int Ls = 12;
 | 
			
		||||
  RealD mass = 0.01;
 | 
			
		||||
  RealD M5 = 1.8;
 | 
			
		||||
  bool is_cps_cfg = false;
 | 
			
		||||
 | 
			
		||||
  CPSLanczosParams fine, coarse;
 | 
			
		||||
 | 
			
		||||
  fine.alpha = 2;
 | 
			
		||||
  fine.beta = 0.1;
 | 
			
		||||
  fine.ch_ord = 100;
 | 
			
		||||
  fine.N_use = 70;
 | 
			
		||||
  fine.N_get = 60;
 | 
			
		||||
  fine.N_true_get = 60;
 | 
			
		||||
  fine.stop_rsd = 1e-8;
 | 
			
		||||
  fine.maxits = 10000;
 | 
			
		||||
 | 
			
		||||
  coarse.alpha = 2;
 | 
			
		||||
  coarse.beta = 0.1;
 | 
			
		||||
  coarse.ch_ord = 100;
 | 
			
		||||
  coarse.N_use = 200;
 | 
			
		||||
  coarse.N_get = 190;
 | 
			
		||||
  coarse.N_true_get = 190;
 | 
			
		||||
  coarse.stop_rsd = 1e-8;
 | 
			
		||||
  coarse.maxits = 10000;
 | 
			
		||||
 | 
			
		||||
  double coarse_relax_tol = 1e5;
 | 
			
		||||
  int smoother_ord = 20;
 | 
			
		||||
  
 | 
			
		||||
  if(argc < 3){
 | 
			
		||||
    std::cout << GridLogMessage << "Usage: <exe> <config> <gparity dirs> <options>" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "<gparity dirs> should have the format a.b.c where a,b,c are 0,1 depending on whether there are G-parity BCs in that direction" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Options:" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--Ls <value> : Set Ls (default 12)" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--mass <value> : Set the mass (default 0.01)" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--block <value> : Set the block size. Format should be a.b.c.d.e where a-e are the block extents  (default 2.2.2.2.2)" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--is_cps_cfg : Indicate that the configuration was generated with CPS where until recently the stored plaquette was wrong by a factor of 2" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--write_irl_templ: Write a template for the parameters file of the Lanczos to \"irl_templ.xml\"" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--read_irl_fine <filename>: Real the parameters file for the fine Lanczos" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--read_irl_coarse <filename>: Real the parameters file for the coarse Lanczos" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--write_fine <filename stub>: Write fine evecs/evals to filename starting with the stub" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--read_fine <filename stub>: Read fine evecs/evals from filename starting with the stub" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--write_coarse <filename stub>: Write coarse evecs/evals to filename starting with the stub" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--read_coarse <filename stub>: Read coarse evecs/evals from filename starting with the stub" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--smoother_ord :  Set the Chebyshev order of the smoother (default 20)" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--coarse_relax_tol : Set the relaxation parameter for evaluating the residual of the reconstructed eigenvectors outside of the basis (default 1e5)" << std::endl;
 | 
			
		||||
    Grid_finalize();
 | 
			
		||||
    return 1;
 | 
			
		||||
  }
 | 
			
		||||
  std::string config = argv[1];
 | 
			
		||||
  GridCmdOptionIntVector(argv[2], GparityDirs);
 | 
			
		||||
  assert(GparityDirs.size() == 3);
 | 
			
		||||
 | 
			
		||||
  bool write_fine = false;
 | 
			
		||||
  std::string write_fine_file;
 | 
			
		||||
 | 
			
		||||
  bool read_fine = false;
 | 
			
		||||
  std::string read_fine_file;
 | 
			
		||||
 | 
			
		||||
  bool write_coarse = false;
 | 
			
		||||
  std::string write_coarse_file;
 | 
			
		||||
 | 
			
		||||
  bool read_coarse = false;
 | 
			
		||||
  std::string read_coarse_file;
 | 
			
		||||
 
 | 
			
		||||
  for(int i=3;i<argc;i++){
 | 
			
		||||
    std::string sarg = argv[i];
 | 
			
		||||
    if(sarg == "--Ls"){
 | 
			
		||||
      Ls = std::stoi(argv[i+1]);
 | 
			
		||||
      std::cout << GridLogMessage << "Set Ls to " << Ls << std::endl;
 | 
			
		||||
    }else if(sarg == "--mass"){
 | 
			
		||||
      std::istringstream ss(argv[i+1]); ss >> mass;
 | 
			
		||||
      std::cout << GridLogMessage << "Set quark mass to " << mass << std::endl;
 | 
			
		||||
    }else if(sarg == "--block"){
 | 
			
		||||
      GridCmdOptionIntVector(argv[i+1], blockSize);
 | 
			
		||||
      assert(blockSize.size() == 5);
 | 
			
		||||
      std::cout << GridLogMessage << "Set block size to ";
 | 
			
		||||
      for(int q=0;q<5;q++) std::cout << blockSize[q] << " ";
 | 
			
		||||
      std::cout << std::endl;      
 | 
			
		||||
    }else if(sarg == "--is_cps_cfg"){
 | 
			
		||||
      is_cps_cfg = true;
 | 
			
		||||
    }else if(sarg == "--write_irl_templ"){
 | 
			
		||||
      XmlWriter writer("irl_templ.xml");
 | 
			
		||||
      write(writer,"Params",fine);
 | 
			
		||||
      Grid_finalize();
 | 
			
		||||
      return 0;
 | 
			
		||||
    }else if(sarg == "--read_irl_fine"){
 | 
			
		||||
      std::cout << GridLogMessage << "Reading fine IRL params from " << argv[i+1] << std::endl;
 | 
			
		||||
      XmlReader reader(argv[i+1]);
 | 
			
		||||
      read(reader, "Params", fine);
 | 
			
		||||
    }else if(sarg == "--read_irl_coarse"){
 | 
			
		||||
      std::cout << GridLogMessage << "Reading coarse IRL params from " << argv[i+1] << std::endl;
 | 
			
		||||
      XmlReader reader(argv[i+1]);
 | 
			
		||||
      read(reader, "Params", coarse);
 | 
			
		||||
    }else if(sarg == "--write_fine"){
 | 
			
		||||
      write_fine = true;
 | 
			
		||||
      write_fine_file = argv[i+1];
 | 
			
		||||
    }else if(sarg == "--read_fine"){
 | 
			
		||||
      read_fine = true;
 | 
			
		||||
      read_fine_file = argv[i+1];
 | 
			
		||||
    }else if(sarg == "--write_coarse"){
 | 
			
		||||
      write_coarse = true;
 | 
			
		||||
      write_coarse_file = argv[i+1];
 | 
			
		||||
    }else if(sarg == "--read_coarse"){
 | 
			
		||||
      read_coarse = true;
 | 
			
		||||
      read_coarse_file = argv[i+1];
 | 
			
		||||
    }else if(sarg == "--smoother_ord"){
 | 
			
		||||
      std::istringstream ss(argv[i+1]); ss >> smoother_ord;
 | 
			
		||||
      std::cout << GridLogMessage << "Set smoother order to " << smoother_ord << std::endl;
 | 
			
		||||
    }else if(sarg == "--coarse_relax_tol"){
 | 
			
		||||
      std::istringstream ss(argv[i+1]); ss >> coarse_relax_tol;
 | 
			
		||||
      std::cout << GridLogMessage << "Set coarse IRL relaxation parameter to " << coarse_relax_tol << std::endl;
 | 
			
		||||
    }      
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  //Fine grids
 | 
			
		||||
  GridCartesian         * UGrid     = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),  GridDefaultSimd(Nd,vComplex::Nsimd()),   GridDefaultMpi());
 | 
			
		||||
  GridRedBlackCartesian * UrbGrid   = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
 | 
			
		||||
  GridCartesian         * FGrid     = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
 | 
			
		||||
  GridRedBlackCartesian * FrbGrid   = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
 | 
			
		||||
 | 
			
		||||
  //Setup G-parity BCs
 | 
			
		||||
  assert(Nd == 4);
 | 
			
		||||
  std::vector<int> dirs4(4);
 | 
			
		||||
  for(int i=0;i<3;i++) dirs4[i] = GparityDirs[i];
 | 
			
		||||
  dirs4[3] = 0; //periodic gauge BC in time
 | 
			
		||||
  
 | 
			
		||||
  std::cout << GridLogMessage << "Gauge BCs: " << dirs4 << std::endl;
 | 
			
		||||
  ConjugateGimplD::setDirections(dirs4); //gauge BC
 | 
			
		||||
 | 
			
		||||
  GparityWilsonImplD::ImplParams Params;
 | 
			
		||||
  for(int i=0;i<Nd-1;i++) Params.twists[i] = GparityDirs[i]; //G-parity directions
 | 
			
		||||
  Params.twists[Nd-1] = 1; //APBC in time direction
 | 
			
		||||
  std::cout << GridLogMessage << "Fermion BCs: " << Params.twists << std::endl;
 | 
			
		||||
  
 | 
			
		||||
  //Read the gauge field
 | 
			
		||||
  LatticeGaugeField Umu(UGrid);  
 | 
			
		||||
  readConfiguration(Umu, config, is_cps_cfg);
 | 
			
		||||
 | 
			
		||||
  //Setup the coarse grids  
 | 
			
		||||
  auto fineLatt     = GridDefaultLatt();
 | 
			
		||||
  Coordinate coarseLatt(4);
 | 
			
		||||
  for (int d=0;d<4;d++){
 | 
			
		||||
    coarseLatt[d] = fineLatt[d]/blockSize[d];    assert(coarseLatt[d]*blockSize[d]==fineLatt[d]);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage<< " 5d coarse lattice is ";
 | 
			
		||||
  for (int i=0;i<4;i++){
 | 
			
		||||
    std::cout << coarseLatt[i]<<"x";
 | 
			
		||||
  } 
 | 
			
		||||
  int cLs = Ls/blockSize[4]; assert(cLs*blockSize[4]==Ls);
 | 
			
		||||
  std::cout << cLs<<std::endl;
 | 
			
		||||
  
 | 
			
		||||
  GridCartesian         * CoarseGrid4    = SpaceTimeGrid::makeFourDimGrid(coarseLatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
 | 
			
		||||
  GridRedBlackCartesian * CoarseGrid4rb  = SpaceTimeGrid::makeFourDimRedBlackGrid(CoarseGrid4);
 | 
			
		||||
  GridCartesian         * CoarseGrid5    = SpaceTimeGrid::makeFiveDimGrid(cLs,CoarseGrid4);
 | 
			
		||||
 | 
			
		||||
  //Dirac operator
 | 
			
		||||
  GparityDomainWallFermionD action(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mass, M5, Params);
 | 
			
		||||
  typedef GparityDomainWallFermionD::FermionField FermionField;
 | 
			
		||||
  
 | 
			
		||||
  SchurDiagTwoOperator<GparityDomainWallFermionD,FermionField> SchurOp(action);
 | 
			
		||||
 | 
			
		||||
  typedef GparityWilsonImplD::SiteSpinor SiteSpinor;
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "Keep " << fine.N_true_get   << " fine   vectors" << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Keep " << coarse.N_true_get << " coarse vectors" << std::endl;
 | 
			
		||||
  assert(coarse.N_true_get >= fine.N_true_get);
 | 
			
		||||
 | 
			
		||||
  const int nbasis= 60;
 | 
			
		||||
  assert(nbasis<=fine.N_true_get);
 | 
			
		||||
  LocalCoherenceLanczosScidac<SiteSpinor,vTComplex,nbasis> _LocalCoherenceLanczos(FrbGrid,CoarseGrid5,SchurOp,Odd);
 | 
			
		||||
  std::cout << GridLogMessage << "Constructed LocalCoherenceLanczos" << std::endl;
 | 
			
		||||
 | 
			
		||||
  //Compute and/or read fine evecs
 | 
			
		||||
  if(read_fine){
 | 
			
		||||
    _LocalCoherenceLanczos.checkpointFineRestore(read_fine_file + "_evecs.scidac", read_fine_file + "_evals.xml");
 | 
			
		||||
  }else{
 | 
			
		||||
    std::cout << GridLogMessage << "Performing fine grid IRL" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Using Chebyshev alpha=" << fine.alpha << " beta=" << fine.beta << " ord=" << fine.ch_ord << std::endl;
 | 
			
		||||
    _LocalCoherenceLanczos.calcFine(fine.getChebyParams(),
 | 
			
		||||
				    fine.Nstop(),fine.Nk(),fine.Nm(),
 | 
			
		||||
				    fine.stop_rsd,fine.maxits,0,0);
 | 
			
		||||
    if(write_fine){
 | 
			
		||||
      std::cout << GridLogIRL<<"Checkpointing Fine evecs"<<std::endl;
 | 
			
		||||
      _LocalCoherenceLanczos.checkpointFine(write_fine_file + "_evecs.scidac", write_fine_file + "_evals.xml");
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  //Block orthonormalise (this should be part of calcFine?)
 | 
			
		||||
  std::cout << GridLogIRL<<"Orthogonalising"<<std::endl;
 | 
			
		||||
  _LocalCoherenceLanczos.Orthogonalise();
 | 
			
		||||
  std::cout << GridLogIRL<<"Orthogonaled"<<std::endl;
 | 
			
		||||
 | 
			
		||||
  ChebyParams smoother = fine.getChebyParams();
 | 
			
		||||
  smoother.Npoly = smoother_ord+1;
 | 
			
		||||
 | 
			
		||||
  if(read_coarse){
 | 
			
		||||
    _LocalCoherenceLanczos.checkpointCoarseRestore(read_coarse_file + "_evecs.scidac", read_coarse_file + "_evals.xml",coarse.Nstop());
 | 
			
		||||
 | 
			
		||||
  }else{
 | 
			
		||||
    std::cout << GridLogMessage << "Performing coarse grid IRL" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Using Chebyshev alpha=" << coarse.alpha << " beta=" << coarse.beta << " ord=" << coarse.ch_ord << std::endl;	
 | 
			
		||||
    _LocalCoherenceLanczos.calcCoarse(coarse.getChebyParams(), smoother, coarse_relax_tol,
 | 
			
		||||
				      coarse.Nstop(), coarse.Nk() ,coarse.Nm(),
 | 
			
		||||
				      coarse.stop_rsd, coarse.maxits, 
 | 
			
		||||
				      0,0);
 | 
			
		||||
 | 
			
		||||
    if(write_coarse){
 | 
			
		||||
      std::cout << GridLogIRL<<"Checkpointing Coarse evecs"<<std::endl;
 | 
			
		||||
      _LocalCoherenceLanczos.checkpointCoarse(write_coarse_file + "_evecs.scidac", write_coarse_file + "_evals.xml");
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Test the eigenvectors
 | 
			
		||||
  FermionField evec(FrbGrid);
 | 
			
		||||
  FermionField tmp(FrbGrid);
 | 
			
		||||
  RealD eval;
 | 
			
		||||
  
 | 
			
		||||
  for(int i=0;i<coarse.N_true_get;i++){    
 | 
			
		||||
    _LocalCoherenceLanczos.getFineEvecEval(evec, eval, i);
 | 
			
		||||
    SchurOp.HermOp(evec, tmp);
 | 
			
		||||
    tmp = tmp - eval*evec;
 | 
			
		||||
    std::cout << GridLogMessage << "Eval " << eval << " resid " << sqrt(norm2(tmp)) << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -31,14 +31,38 @@ using namespace std;
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 ;
 | 
			
		||||
 | 
			
		||||
typedef typename GparityDomainWallFermionR::FermionField FermionField;
 | 
			
		||||
template<typename Action>
 | 
			
		||||
struct Setup{};
 | 
			
		||||
 | 
			
		||||
RealD AllZero(RealD x){ return 0.;}
 | 
			
		||||
template<>
 | 
			
		||||
struct Setup<GparityMobiusFermionR>{
 | 
			
		||||
  static GparityMobiusFermionR* getAction(LatticeGaugeField &Umu,
 | 
			
		||||
					  GridCartesian* FGrid, GridRedBlackCartesian* FrbGrid, GridCartesian* UGrid, GridRedBlackCartesian* UrbGrid){
 | 
			
		||||
    RealD mass=0.01;
 | 
			
		||||
    RealD M5=1.8;
 | 
			
		||||
    RealD mob_b=1.5;
 | 
			
		||||
    GparityMobiusFermionD ::ImplParams params;
 | 
			
		||||
    std::vector<int> twists({1,1,1,0});
 | 
			
		||||
    params.twists = twists;
 | 
			
		||||
    return new GparityMobiusFermionR(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,mob_b,mob_b-1.,params);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
int main (int argc, char ** argv)
 | 
			
		||||
{
 | 
			
		||||
  Grid_init(&argc,&argv);
 | 
			
		||||
template<>
 | 
			
		||||
struct Setup<DomainWallFermionR>{
 | 
			
		||||
  static DomainWallFermionR* getAction(LatticeGaugeField &Umu,
 | 
			
		||||
					  GridCartesian* FGrid, GridRedBlackCartesian* FrbGrid, GridCartesian* UGrid, GridRedBlackCartesian* UrbGrid){
 | 
			
		||||
    RealD mass=0.01;
 | 
			
		||||
    RealD M5=1.8;
 | 
			
		||||
    return new DomainWallFermionR(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<typename Action>
 | 
			
		||||
void run(){
 | 
			
		||||
  typedef typename Action::FermionField FermionField;
 | 
			
		||||
  const int Ls=8;
 | 
			
		||||
 | 
			
		||||
  GridCartesian         * UGrid   = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
 | 
			
		||||
@@ -56,24 +80,10 @@ int main (int argc, char ** argv)
 | 
			
		||||
  LatticeGaugeField Umu(UGrid); 
 | 
			
		||||
  SU<Nc>::HotConfiguration(RNG4, Umu);
 | 
			
		||||
 | 
			
		||||
  std::vector<LatticeColourMatrix> U(4,UGrid);
 | 
			
		||||
  for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
    U[mu] = PeekIndex<LorentzIndex>(Umu,mu);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  RealD mass=0.01;
 | 
			
		||||
  RealD M5=1.8;
 | 
			
		||||
  RealD mob_b=1.5;
 | 
			
		||||
//  DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
 | 
			
		||||
  GparityMobiusFermionD ::ImplParams params;
 | 
			
		||||
  std::vector<int> twists({1,1,1,0});
 | 
			
		||||
  params.twists = twists;
 | 
			
		||||
  GparityMobiusFermionR  Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,mob_b,mob_b-1.,params);
 | 
			
		||||
 | 
			
		||||
//  MdagMLinearOperator<DomainWallFermionR,LatticeFermion> HermOp(Ddwf);
 | 
			
		||||
//  SchurDiagTwoOperator<DomainWallFermionR,LatticeFermion> HermOp(Ddwf);
 | 
			
		||||
  SchurDiagTwoOperator<GparityMobiusFermionR,FermionField> HermOp(Ddwf);
 | 
			
		||||
//  SchurDiagMooeeOperator<DomainWallFermionR,LatticeFermion> HermOp(Ddwf);
 | 
			
		||||
  Action *action = Setup<Action>::getAction(Umu,FGrid,FrbGrid,UGrid,UrbGrid);
 | 
			
		||||
 
 | 
			
		||||
  //MdagMLinearOperator<Action,FermionField> HermOp(Ddwf);
 | 
			
		||||
  SchurDiagTwoOperator<Action,FermionField> HermOp(*action);
 | 
			
		||||
 | 
			
		||||
  const int Nstop = 30;
 | 
			
		||||
  const int Nk = 40;
 | 
			
		||||
@@ -90,8 +100,7 @@ int main (int argc, char ** argv)
 | 
			
		||||
     PlainHermOp<FermionField> Op     (HermOp);
 | 
			
		||||
 | 
			
		||||
  ImplicitlyRestartedLanczos<FermionField> IRL(OpCheby,Op,Nstop,Nk,Nm,resid,MaxIt);
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
 
 | 
			
		||||
  std::vector<RealD>          eval(Nm);
 | 
			
		||||
  FermionField    src(FrbGrid); 
 | 
			
		||||
  gaussian(RNG5rb,src);
 | 
			
		||||
@@ -103,6 +112,28 @@ int main (int argc, char ** argv)
 | 
			
		||||
  int Nconv;
 | 
			
		||||
  IRL.calc(eval,evec,src,Nconv);
 | 
			
		||||
 | 
			
		||||
  delete action;
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
int main (int argc, char ** argv)
 | 
			
		||||
{
 | 
			
		||||
  Grid_init(&argc,&argv);
 | 
			
		||||
 | 
			
		||||
  std::string action = "GparityMobius";
 | 
			
		||||
  for(int i=1;i<argc;i++){
 | 
			
		||||
    if(std::string(argv[i]) == "-action"){
 | 
			
		||||
      action = argv[i+1];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  if(action == "GparityMobius"){
 | 
			
		||||
    run<GparityMobiusFermionR>();
 | 
			
		||||
  }else if(action == "DWF"){
 | 
			
		||||
    run<DomainWallFermionR>();
 | 
			
		||||
  }else{
 | 
			
		||||
    std::cout << "Unknown action" << std::endl;
 | 
			
		||||
    exit(1);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										576
									
								
								tests/lanczos/Test_evec_compression.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										576
									
								
								tests/lanczos/Test_evec_compression.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,576 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./tests/Test_evec_compression.cc
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2017
 | 
			
		||||
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
/*
 | 
			
		||||
 *
 | 
			
		||||
 * This test generates eigenvectors using the Lanczos algorithm then attempts to use local coherence compression
 | 
			
		||||
 * to express those vectors in terms of a basis formed from a subset. This test is useful for finding the optimal
 | 
			
		||||
 * blocking and basis size for performing a Local Coherence Lanczos
 | 
			
		||||
 */
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/LocalCoherenceLanczos.h>
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 | 
			
		||||
//For the CPS configurations we have to manually seed the RNG and deal with an incorrect factor of 2 in the plaquette metadata
 | 
			
		||||
template<typename Gimpl>
 | 
			
		||||
void readConfiguration(LatticeGaugeFieldD &U,
 | 
			
		||||
		       const std::string &config,
 | 
			
		||||
		       bool is_cps_cfg = false){
 | 
			
		||||
 | 
			
		||||
  if(is_cps_cfg) NerscIO::exitOnReadPlaquetteMismatch() = false;
 | 
			
		||||
 | 
			
		||||
  typedef GaugeStatistics<Gimpl> GaugeStats;
 | 
			
		||||
     
 | 
			
		||||
  FieldMetaData header;
 | 
			
		||||
  NerscIO::readConfiguration<GaugeStats>(U, header, config);
 | 
			
		||||
 | 
			
		||||
  if(is_cps_cfg) NerscIO::exitOnReadPlaquetteMismatch() = true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//Lanczos parameters in CPS conventions
 | 
			
		||||
struct CPSLanczosParams : Serializable {
 | 
			
		||||
public:
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(CPSLanczosParams,
 | 
			
		||||
				  RealD, alpha,
 | 
			
		||||
				  RealD, beta,
 | 
			
		||||
				  int, ch_ord,
 | 
			
		||||
				  int, N_use,
 | 
			
		||||
				  int, N_get,
 | 
			
		||||
				  int, N_true_get,
 | 
			
		||||
				  RealD, stop_rsd,
 | 
			
		||||
				  int, maxits);
 | 
			
		||||
 | 
			
		||||
  //Translations
 | 
			
		||||
  ChebyParams getChebyParams() const{
 | 
			
		||||
    ChebyParams out;
 | 
			
		||||
    out.alpha = beta*beta; //aka lo
 | 
			
		||||
    out.beta = alpha*alpha; //aka hi
 | 
			
		||||
    out.Npoly = ch_ord+1;
 | 
			
		||||
    return out;
 | 
			
		||||
  }
 | 
			
		||||
  int Nstop() const{ return N_true_get; }
 | 
			
		||||
  int Nm() const{ return N_use; }
 | 
			
		||||
  int Nk() const{ return N_get; }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
class LocalCoherenceCompressor{
 | 
			
		||||
public:
 | 
			
		||||
  typedef iVector<CComplex,nbasis >           CoarseSiteVector;
 | 
			
		||||
  typedef Lattice<CComplex>                   CoarseScalar; // used for inner products on fine field
 | 
			
		||||
  typedef Lattice<CoarseSiteVector>           CoarseField;
 | 
			
		||||
  typedef Lattice<Fobj>                       FineField;
 | 
			
		||||
  
 | 
			
		||||
  void compress(std::vector<FineField> &basis,
 | 
			
		||||
		std::vector<CoarseField> &compressed_evecs,
 | 
			
		||||
		const std::vector<FineField> &evecs_in,
 | 
			
		||||
		GridBase *FineGrid,
 | 
			
		||||
		GridBase *CoarseGrid){
 | 
			
		||||
    int nevecs = evecs_in.size();
 | 
			
		||||
    assert(nevecs > nbasis);
 | 
			
		||||
    
 | 
			
		||||
    //Construct the basis
 | 
			
		||||
    basis.resize(nbasis, FineGrid);
 | 
			
		||||
    for(int b=0;b<nbasis;b++) basis[b] = evecs_in[b];
 | 
			
		||||
 | 
			
		||||
    //Block othornormalize basis
 | 
			
		||||
    CoarseScalar InnerProd(CoarseGrid);
 | 
			
		||||
    std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
 | 
			
		||||
    blockOrthogonalise(InnerProd,basis);
 | 
			
		||||
    std::cout << GridLogMessage <<" Gramm-Schmidt pass 2"<<std::endl;
 | 
			
		||||
    blockOrthogonalise(InnerProd,basis);
 | 
			
		||||
 | 
			
		||||
    //The coarse grid representation is the field of vectors of block inner products
 | 
			
		||||
    std::cout << GridLogMessage << "Compressing eigevectors" << std::endl;
 | 
			
		||||
    compressed_evecs.resize(nevecs, CoarseGrid);
 | 
			
		||||
    for(int i=0;i<nevecs;i++) blockProject(compressed_evecs[i], evecs_in[i], basis);
 | 
			
		||||
    std::cout << GridLogMessage << "Compression complete" << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void uncompress(FineField &evec, const int i, const std::vector<FineField> &basis, const std::vector<CoarseField> &compressed_evecs) const{
 | 
			
		||||
    blockPromote(compressed_evecs[i],evec,basis);  
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Test uncompressed eigenvectors of Linop.HermOp to precision 'base_tolerance' for i<nbasis and 'base_tolerance*relax' for i>=nbasis
 | 
			
		||||
  //Because the uncompressed evec has a lot of high mode noise (unimportant for deflation) we apply a smoother before testing.
 | 
			
		||||
  //The Chebyshev used by the Lanczos should be sufficient as a smoother
 | 
			
		||||
  bool testCompression(LinearOperatorBase<FineField> &Linop, OperatorFunction<FineField>   &smoother,
 | 
			
		||||
		       const std::vector<FineField> &basis, const std::vector<CoarseField> &compressed_evecs, const std::vector<RealD> &evals,
 | 
			
		||||
		       const RealD base_tolerance, const RealD relax){
 | 
			
		||||
    std::cout << GridLogMessage << "Testing quality of uncompressed evecs (after smoothing)" << std::endl;
 | 
			
		||||
   
 | 
			
		||||
    GridBase* FineGrid = basis[0].Grid();
 | 
			
		||||
    GridBase* CoarseGrid = compressed_evecs[0].Grid();
 | 
			
		||||
 | 
			
		||||
    bool fail = false;
 | 
			
		||||
    FineField evec(FineGrid), Mevec(FineGrid), evec_sm(FineGrid);
 | 
			
		||||
    for(int i=0;i<compressed_evecs.size();i++){
 | 
			
		||||
      std::cout << GridLogMessage << "Uncompressing evec " << i << std::endl;
 | 
			
		||||
      uncompress(evec, i, basis, compressed_evecs);
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << "Smoothing evec " << i << std::endl;
 | 
			
		||||
      smoother(Linop, evec, evec_sm);
 | 
			
		||||
      
 | 
			
		||||
      std::cout << GridLogMessage << "Computing residual for evec " << i << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "Linop" << std::endl;
 | 
			
		||||
      Linop.HermOp(evec_sm, Mevec);
 | 
			
		||||
      std::cout << GridLogMessage << "Linalg" << std::endl;
 | 
			
		||||
      Mevec = Mevec - evals[i]*evec_sm;
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << "Resid" << std::endl;
 | 
			
		||||
      RealD tol = base_tolerance * (i<nbasis ? 1. : relax);
 | 
			
		||||
      RealD res = sqrt(norm2(Mevec));
 | 
			
		||||
      std::cout << GridLogMessage << "Evec idx " << i << " res " << res << " tol " << tol << std::endl;
 | 
			
		||||
      if(res > tol) fail = true;
 | 
			
		||||
    }
 | 
			
		||||
    return fail;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Compare uncompressed evecs to original evecs
 | 
			
		||||
  void compareEvecs(const std::vector<FineField> &basis, const std::vector<CoarseField> &compressed_evecs, const std::vector<FineField> &orig_evecs){
 | 
			
		||||
    std::cout << GridLogMessage << "Comparing uncompressed evecs to original evecs" << std::endl;
 | 
			
		||||
    
 | 
			
		||||
    GridBase* FineGrid = basis[0].Grid();
 | 
			
		||||
    GridBase* CoarseGrid = compressed_evecs[0].Grid();
 | 
			
		||||
 | 
			
		||||
    FineField evec(FineGrid), diff(FineGrid);
 | 
			
		||||
    for(int i=0;i<compressed_evecs.size();i++){
 | 
			
		||||
      std::cout << GridLogMessage << "Uncompressing evec " << i << std::endl;
 | 
			
		||||
      uncompress(evec, i, basis, compressed_evecs);
 | 
			
		||||
      diff = orig_evecs[i] - evec;
 | 
			
		||||
      RealD res = sqrt(norm2(diff));
 | 
			
		||||
      std::cout << GridLogMessage << "Evec idx " << i << " res " << res << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
void compareBlockPromoteTimings(const std::vector<Lattice<Fobj> > &basis, const std::vector<Lattice<iVector<CComplex,nbasis > > > &compressed_evecs){
 | 
			
		||||
  typedef iVector<CComplex,nbasis >           CoarseSiteVector;
 | 
			
		||||
  typedef Lattice<CComplex>                   CoarseScalar; 
 | 
			
		||||
  typedef Lattice<CoarseSiteVector>           CoarseField;
 | 
			
		||||
  typedef Lattice<Fobj>                       FineField;
 | 
			
		||||
 | 
			
		||||
  GridStopWatch timer;
 | 
			
		||||
  
 | 
			
		||||
  GridBase* FineGrid = basis[0].Grid();
 | 
			
		||||
  GridBase* CoarseGrid = compressed_evecs[0].Grid();
 | 
			
		||||
 | 
			
		||||
  FineField v1(FineGrid), v2(FineGrid);
 | 
			
		||||
 | 
			
		||||
  //Start with a cold start
 | 
			
		||||
  for(int i=0;i<basis.size();i++){
 | 
			
		||||
    autoView( b_ , basis[i], CpuWrite);
 | 
			
		||||
  }
 | 
			
		||||
  for(int i=0;i<compressed_evecs.size();i++){
 | 
			
		||||
    autoView( b_ , compressed_evecs[i], CpuWrite);
 | 
			
		||||
  }
 | 
			
		||||
  {
 | 
			
		||||
    autoView( b_, v1, CpuWrite );
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  timer.Start();
 | 
			
		||||
  blockPromote(compressed_evecs[0],v1,basis);  
 | 
			
		||||
  timer.Stop();
 | 
			
		||||
  std::cout << GridLogMessage << "Time for cold blockPromote v1 " << timer.Elapsed() << std::endl;
 | 
			
		||||
 | 
			
		||||
  //Test to ensure it is actually doing a cold start by repeating
 | 
			
		||||
  for(int i=0;i<basis.size();i++){
 | 
			
		||||
    autoView( b_ , basis[i], CpuWrite);
 | 
			
		||||
  }
 | 
			
		||||
  for(int i=0;i<compressed_evecs.size();i++){
 | 
			
		||||
    autoView( b_ , compressed_evecs[i], CpuWrite);
 | 
			
		||||
  }
 | 
			
		||||
  {
 | 
			
		||||
    autoView( b_, v1, CpuWrite );
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  timer.Reset();
 | 
			
		||||
  timer.Start();
 | 
			
		||||
  blockPromote(compressed_evecs[0],v1,basis);  
 | 
			
		||||
  timer.Stop();
 | 
			
		||||
  std::cout << GridLogMessage << "Time for cold blockPromote v1 repeat (should be the same as above) " << timer.Elapsed() << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
struct Args{
 | 
			
		||||
  int Ls;
 | 
			
		||||
  RealD mass;
 | 
			
		||||
  RealD M5;
 | 
			
		||||
  bool is_cps_cfg;
 | 
			
		||||
  RealD mobius_scale; //b+c
 | 
			
		||||
  
 | 
			
		||||
  CPSLanczosParams fine;
 | 
			
		||||
  double coarse_relax_tol;
 | 
			
		||||
 | 
			
		||||
  std::vector<int> blockSize;
 | 
			
		||||
  std::vector<int> GparityDirs;
 | 
			
		||||
 | 
			
		||||
  bool write_fine;
 | 
			
		||||
  std::string write_fine_file;
 | 
			
		||||
  bool read_fine;
 | 
			
		||||
  std::string read_fine_file;
 | 
			
		||||
 | 
			
		||||
  int basis_size;
 | 
			
		||||
  
 | 
			
		||||
  Args(){
 | 
			
		||||
    blockSize = {2,2,2,2,2};
 | 
			
		||||
    GparityDirs = {1,1,1}; //1 for each GP direction
 | 
			
		||||
    
 | 
			
		||||
    Ls = 12;
 | 
			
		||||
    mass = 0.01;
 | 
			
		||||
    M5 = 1.8;
 | 
			
		||||
    is_cps_cfg = false;
 | 
			
		||||
    mobius_scale = 2;
 | 
			
		||||
    
 | 
			
		||||
    fine.alpha = 2;
 | 
			
		||||
    fine.beta = 0.1;
 | 
			
		||||
    fine.ch_ord = 100;
 | 
			
		||||
    fine.N_use = 70;
 | 
			
		||||
    fine.N_get = 60;
 | 
			
		||||
    fine.N_true_get = 60;
 | 
			
		||||
    fine.stop_rsd = 1e-8;
 | 
			
		||||
    fine.maxits = 10000;
 | 
			
		||||
 | 
			
		||||
    coarse_relax_tol = 1e5;
 | 
			
		||||
 | 
			
		||||
    write_fine = false;
 | 
			
		||||
    read_fine = false;
 | 
			
		||||
 | 
			
		||||
    basis_size = 100;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
GparityWilsonImplD::ImplParams setupGparityParams(const std::vector<int> &GparityDirs){
 | 
			
		||||
  //Setup G-parity BCs
 | 
			
		||||
  assert(Nd == 4);
 | 
			
		||||
  std::vector<int> dirs4(4);
 | 
			
		||||
  for(int i=0;i<3;i++) dirs4[i] = GparityDirs[i];
 | 
			
		||||
  dirs4[3] = 0; //periodic gauge BC in time
 | 
			
		||||
  
 | 
			
		||||
  std::cout << GridLogMessage << "Gauge BCs: " << dirs4 << std::endl;
 | 
			
		||||
  ConjugateGimplD::setDirections(dirs4); //gauge BC
 | 
			
		||||
 | 
			
		||||
  GparityWilsonImplD::ImplParams Params;
 | 
			
		||||
  for(int i=0;i<Nd-1;i++) Params.twists[i] = GparityDirs[i]; //G-parity directions
 | 
			
		||||
  Params.twists[Nd-1] = 1; //APBC in time direction
 | 
			
		||||
  std::cout << GridLogMessage << "Fermion BCs: " << Params.twists << std::endl;
 | 
			
		||||
  return Params;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
WilsonImplD::ImplParams setupParams(){
 | 
			
		||||
  WilsonImplD::ImplParams Params;
 | 
			
		||||
  Complex one(1.0);
 | 
			
		||||
  Complex mone(-1.0);
 | 
			
		||||
  for(int i=0;i<Nd-1;i++) Params.boundary_phases[i] = one;
 | 
			
		||||
  Params.boundary_phases[Nd-1] = mone;
 | 
			
		||||
  return Params;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<int nbasis, typename ActionType>
 | 
			
		||||
void run_b(ActionType &action, const std::string &config, const Args &args){
 | 
			
		||||
  //Fine grids
 | 
			
		||||
  GridCartesian         * UGrid     = (GridCartesian*)action.GaugeGrid();
 | 
			
		||||
  GridRedBlackCartesian * UrbGrid   = (GridRedBlackCartesian*)action.GaugeRedBlackGrid();
 | 
			
		||||
  GridCartesian         * FGrid     = (GridCartesian*)action.FermionGrid();
 | 
			
		||||
  GridRedBlackCartesian * FrbGrid   = (GridRedBlackCartesian*)action.FermionRedBlackGrid();
 | 
			
		||||
 | 
			
		||||
  //Setup the coarse grids  
 | 
			
		||||
  auto fineLatt     = GridDefaultLatt();
 | 
			
		||||
  Coordinate coarseLatt(4);
 | 
			
		||||
  for (int d=0;d<4;d++){
 | 
			
		||||
    coarseLatt[d] = fineLatt[d]/args.blockSize[d];    assert(coarseLatt[d]*args.blockSize[d]==fineLatt[d]);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage<< " 5d coarse lattice is ";
 | 
			
		||||
  for (int i=0;i<4;i++){
 | 
			
		||||
    std::cout << coarseLatt[i]<<"x";
 | 
			
		||||
  } 
 | 
			
		||||
  int cLs = args.Ls/args.blockSize[4]; assert(cLs*args.blockSize[4]==args.Ls);
 | 
			
		||||
  std::cout << cLs<<std::endl;
 | 
			
		||||
  
 | 
			
		||||
  GridCartesian         * CoarseGrid4    = SpaceTimeGrid::makeFourDimGrid(coarseLatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
 | 
			
		||||
  GridRedBlackCartesian * CoarseGrid4rb  = SpaceTimeGrid::makeFourDimRedBlackGrid(CoarseGrid4);
 | 
			
		||||
  GridCartesian         * CoarseGrid5    = SpaceTimeGrid::makeFiveDimGrid(cLs,CoarseGrid4);
 | 
			
		||||
  typedef vTComplex CComplex; 
 | 
			
		||||
  typedef iVector<CComplex,nbasis >           CoarseSiteVector;
 | 
			
		||||
  typedef Lattice<CComplex>                   CoarseScalar;
 | 
			
		||||
  typedef Lattice<CoarseSiteVector>           CoarseField;
 | 
			
		||||
 | 
			
		||||
  typedef typename ActionType::FermionField FermionField; 
 | 
			
		||||
  
 | 
			
		||||
  SchurDiagTwoOperator<ActionType,FermionField> SchurOp(action);
 | 
			
		||||
 | 
			
		||||
  typedef typename ActionType::SiteSpinor SiteSpinor;
 | 
			
		||||
 | 
			
		||||
  const CPSLanczosParams &fine = args.fine;
 | 
			
		||||
  
 | 
			
		||||
  //Do the fine Lanczos
 | 
			
		||||
  std::vector<RealD> evals;
 | 
			
		||||
  std::vector<FermionField> evecs;
 | 
			
		||||
 | 
			
		||||
  if(args.read_fine){
 | 
			
		||||
    evals.resize(fine.N_true_get);
 | 
			
		||||
    evecs.resize(fine.N_true_get, FrbGrid);
 | 
			
		||||
 | 
			
		||||
    std::string evals_file = args.read_fine_file + "_evals.xml";
 | 
			
		||||
    std::string evecs_file = args.read_fine_file + "_evecs.scidac";
 | 
			
		||||
    
 | 
			
		||||
    std::cout << GridLogIRL<< "Reading evals from "<<evals_file<<std::endl;
 | 
			
		||||
    XmlReader RDx(evals_file);
 | 
			
		||||
    read(RDx,"evals",evals);
 | 
			
		||||
    
 | 
			
		||||
    assert(evals.size()==fine.N_true_get);
 | 
			
		||||
    
 | 
			
		||||
    std::cout << GridLogIRL<< "Reading evecs from "<<evecs_file<<std::endl;
 | 
			
		||||
    emptyUserRecord record;
 | 
			
		||||
    Grid::ScidacReader RD ;
 | 
			
		||||
    RD.open(evecs_file);
 | 
			
		||||
    for(int k=0;k<fine.N_true_get;k++) {
 | 
			
		||||
      evecs[k].Checkerboard()=Odd;
 | 
			
		||||
      RD.readScidacFieldRecord(evecs[k],record);
 | 
			
		||||
      
 | 
			
		||||
    }
 | 
			
		||||
    RD.close();
 | 
			
		||||
  }else{ 
 | 
			
		||||
    int Nstop = fine.Nstop(); //==N_true_get
 | 
			
		||||
    int Nm = fine.Nm();
 | 
			
		||||
    int Nk = fine.Nk();
 | 
			
		||||
    RealD resid = fine.stop_rsd;
 | 
			
		||||
    int MaxIt = fine.maxits;
 | 
			
		||||
    
 | 
			
		||||
    assert(nbasis<=Nm);    
 | 
			
		||||
    Chebyshev<FermionField>      Cheby(fine.getChebyParams());
 | 
			
		||||
    FunctionHermOp<FermionField> ChebyOp(Cheby,SchurOp);
 | 
			
		||||
    PlainHermOp<FermionField>    Op(SchurOp);
 | 
			
		||||
 | 
			
		||||
    evals.resize(Nm);
 | 
			
		||||
    evecs.resize(Nm,FrbGrid);
 | 
			
		||||
    
 | 
			
		||||
    ImplicitlyRestartedLanczos<FermionField> IRL(ChebyOp,Op,Nstop,Nk,Nm,resid,MaxIt,0,0);
 | 
			
		||||
 | 
			
		||||
    FermionField src(FrbGrid); 
 | 
			
		||||
    typedef typename FermionField::scalar_type Scalar;
 | 
			
		||||
    src=Scalar(1.0); 
 | 
			
		||||
    src.Checkerboard() = Odd;
 | 
			
		||||
 | 
			
		||||
    int Nconv;
 | 
			
		||||
    IRL.calc(evals, evecs,src,Nconv,false);
 | 
			
		||||
    if(Nconv < Nstop) assert(0 && "Fine lanczos failed to converge the required number of evecs"); //algorithm doesn't consider this a failure
 | 
			
		||||
    if(Nconv > Nstop){
 | 
			
		||||
      //Yes this potentially throws away some evecs but it is better than having a random number of evecs between Nstop and Nm!
 | 
			
		||||
      evals.resize(Nstop);
 | 
			
		||||
      evecs.resize(Nstop, FrbGrid);
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    if(args.write_fine){
 | 
			
		||||
      std::string evals_file = args.write_fine_file + "_evals.xml";
 | 
			
		||||
      std::string evecs_file = args.write_fine_file + "_evecs.scidac";
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogIRL<< "Writing evecs to "<<evecs_file<<std::endl;
 | 
			
		||||
 | 
			
		||||
      emptyUserRecord record;
 | 
			
		||||
      Grid::ScidacWriter WR(FrbGrid->IsBoss());
 | 
			
		||||
      WR.open(evecs_file);
 | 
			
		||||
      for(int k=0;k<evecs.size();k++) {
 | 
			
		||||
	WR.writeScidacFieldRecord(evecs[k],record);
 | 
			
		||||
      }
 | 
			
		||||
      WR.close();
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogIRL<< "Writing evals to "<<evals_file<<std::endl;
 | 
			
		||||
      
 | 
			
		||||
      XmlWriter WRx(evals_file);
 | 
			
		||||
      write(WRx,"evals",evals);
 | 
			
		||||
    }    
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  //Do the compression
 | 
			
		||||
  LocalCoherenceCompressor<SiteSpinor,vTComplex,nbasis> compressor;
 | 
			
		||||
  std::vector<FermionField> basis(nbasis,FrbGrid);
 | 
			
		||||
  std::vector<CoarseField> compressed_evecs(evecs.size(),CoarseGrid5);
 | 
			
		||||
  
 | 
			
		||||
  compressor.compress(basis, compressed_evecs, evecs, FrbGrid, CoarseGrid5);
 | 
			
		||||
 | 
			
		||||
  compareBlockPromoteTimings(basis, compressed_evecs);
 | 
			
		||||
 | 
			
		||||
  //Compare uncompressed and original evecs
 | 
			
		||||
  compressor.compareEvecs(basis, compressed_evecs, evecs);
 | 
			
		||||
  
 | 
			
		||||
  //Create the smoother
 | 
			
		||||
  Chebyshev<FermionField> smoother(fine.getChebyParams());
 | 
			
		||||
  
 | 
			
		||||
  //Test the quality of the uncompressed evecs
 | 
			
		||||
  assert( compressor.testCompression(SchurOp, smoother, basis, compressed_evecs, evals, fine.stop_rsd, args.coarse_relax_tol) );   
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<typename ActionType>
 | 
			
		||||
void run(ActionType &action, const std::string &config, const Args &args){
 | 
			
		||||
  switch(args.basis_size){
 | 
			
		||||
  case 50:
 | 
			
		||||
    return run_b<50>(action,config,args);
 | 
			
		||||
  case 100:
 | 
			
		||||
    return run_b<100>(action,config,args);
 | 
			
		||||
  case 150:
 | 
			
		||||
    return run_b<150>(action,config,args);
 | 
			
		||||
  case 200:
 | 
			
		||||
    return run_b<200>(action,config,args);
 | 
			
		||||
  case 250:
 | 
			
		||||
    return run_b<250>(action,config,args);
 | 
			
		||||
  default:
 | 
			
		||||
    assert(0 && "Unsupported basis size: allowed values are 50,100,200");
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//Note:  because we rely upon physical properties we must use a "real" gauge configuration
 | 
			
		||||
int main (int argc, char ** argv) {
 | 
			
		||||
  Grid_init(&argc,&argv);
 | 
			
		||||
  GridLogIRL.TimingMode(1);
 | 
			
		||||
 | 
			
		||||
  if(argc < 3){
 | 
			
		||||
    std::cout << GridLogMessage << "Usage: <exe> <config file> <gparity dirs> <options>" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "<gparity dirs> should have the format a.b.c where a,b,c are 0,1 depending on whether there are G-parity BCs in that direction" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Options:" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--Ls <value> : Set Ls (default 12)" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--mass <value> : Set the mass (default 0.01)" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--block <value> : Set the block size. Format should be a.b.c.d.e where a-e are the block extents  (default 2.2.2.2.2)" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--is_cps_cfg : Indicate that the configuration was generated with CPS where until recently the stored plaquette was wrong by a factor of 2" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--write_irl_templ: Write a template for the parameters file of the Lanczos to \"irl_templ.xml\"" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--read_irl_fine <filename>: Real the parameters file for the fine Lanczos" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--write_fine <filename stub>: Write fine evecs/evals to filename starting with the stub" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--read_fine <filename stub>: Read fine evecs/evals from filename starting with the stub" << std::endl;    
 | 
			
		||||
    std::cout << GridLogMessage << "--coarse_relax_tol : Set the relaxation parameter for evaluating the residual of the reconstructed eigenvectors outside of the basis (default 1e5)" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--action : Set the action from 'DWF', 'Mobius'  (default Mobius)" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--mobius_scale : Set the Mobius scale b+c (default 2)" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--basis_size : Set the basis size from 50,100,150,200,250 (default 100)" << std::endl;
 | 
			
		||||
 | 
			
		||||
    Grid_finalize();
 | 
			
		||||
    return 1;
 | 
			
		||||
  }
 | 
			
		||||
  std::string config = argv[1];
 | 
			
		||||
 | 
			
		||||
  Args args;
 | 
			
		||||
  GridCmdOptionIntVector(argv[2], args.GparityDirs);
 | 
			
		||||
  assert(args.GparityDirs.size() == 3);
 | 
			
		||||
 | 
			
		||||
  std::string action_s = "Mobius"; 
 | 
			
		||||
  
 | 
			
		||||
  for(int i=3;i<argc;i++){
 | 
			
		||||
    std::string sarg = argv[i];
 | 
			
		||||
    if(sarg == "--Ls"){
 | 
			
		||||
      args.Ls = std::stoi(argv[i+1]);
 | 
			
		||||
      std::cout << GridLogMessage << "Set Ls to " << args.Ls << std::endl;
 | 
			
		||||
    }else if(sarg == "--mass"){
 | 
			
		||||
      std::istringstream ss(argv[i+1]); ss >> args.mass;
 | 
			
		||||
      std::cout << GridLogMessage << "Set quark mass to " << args.mass << std::endl;
 | 
			
		||||
    }else if(sarg == "--block"){
 | 
			
		||||
      GridCmdOptionIntVector(argv[i+1], args.blockSize);
 | 
			
		||||
      assert(args.blockSize.size() == 5);
 | 
			
		||||
      std::cout << GridLogMessage << "Set block size to ";
 | 
			
		||||
      for(int q=0;q<5;q++) std::cout << args.blockSize[q] << " ";
 | 
			
		||||
      std::cout << std::endl;      
 | 
			
		||||
    }else if(sarg == "--is_cps_cfg"){
 | 
			
		||||
      args.is_cps_cfg = true;
 | 
			
		||||
    }else if(sarg == "--write_irl_templ"){
 | 
			
		||||
      XmlWriter writer("irl_templ.xml");
 | 
			
		||||
      write(writer,"Params",args.fine);
 | 
			
		||||
      Grid_finalize();
 | 
			
		||||
      return 0;
 | 
			
		||||
    }else if(sarg == "--read_irl_fine"){
 | 
			
		||||
      std::cout << GridLogMessage << "Reading fine IRL params from " << argv[i+1] << std::endl;
 | 
			
		||||
      XmlReader reader(argv[i+1]);
 | 
			
		||||
      read(reader, "Params", args.fine);
 | 
			
		||||
    }else if(sarg == "--write_fine"){
 | 
			
		||||
      args.write_fine = true;
 | 
			
		||||
      args.write_fine_file = argv[i+1];
 | 
			
		||||
    }else if(sarg == "--read_fine"){
 | 
			
		||||
      args.read_fine = true;
 | 
			
		||||
      args.read_fine_file = argv[i+1];
 | 
			
		||||
    }else if(sarg == "--coarse_relax_tol"){
 | 
			
		||||
      std::istringstream ss(argv[i+1]); ss >> args.coarse_relax_tol;
 | 
			
		||||
      std::cout << GridLogMessage << "Set coarse IRL relaxation parameter to " << args.coarse_relax_tol << std::endl;
 | 
			
		||||
    }else if(sarg == "--action"){
 | 
			
		||||
      action_s = argv[i+1];
 | 
			
		||||
      std::cout << "Action set to " << action_s << std::endl;
 | 
			
		||||
    }else if(sarg == "--mobius_scale"){
 | 
			
		||||
      std::istringstream ss(argv[i+1]); ss >> args.mobius_scale;
 | 
			
		||||
      std::cout << GridLogMessage << "Set Mobius scale to " << args.mobius_scale << std::endl;
 | 
			
		||||
    }else if(sarg == "--basis_size"){
 | 
			
		||||
      args.basis_size = std::stoi(argv[i+1]);
 | 
			
		||||
      std::cout << GridLogMessage << "Set basis size to " << args.basis_size << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  //Fine grids
 | 
			
		||||
  GridCartesian         * UGrid     = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),  GridDefaultSimd(Nd,vComplex::Nsimd()),   GridDefaultMpi());
 | 
			
		||||
  GridRedBlackCartesian * UrbGrid   = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
 | 
			
		||||
  GridCartesian         * FGrid     = SpaceTimeGrid::makeFiveDimGrid(args.Ls,UGrid);
 | 
			
		||||
  GridRedBlackCartesian * FrbGrid   = SpaceTimeGrid::makeFiveDimRedBlackGrid(args.Ls,UGrid);
 | 
			
		||||
 | 
			
		||||
  LatticeGaugeField Umu(UGrid);  
 | 
			
		||||
  
 | 
			
		||||
  bool is_gparity = false;
 | 
			
		||||
  for(auto g : args.GparityDirs) if(g) is_gparity = true;
 | 
			
		||||
 | 
			
		||||
  double bmc =  1.;      
 | 
			
		||||
  double b = (args.mobius_scale + bmc)/2.;  // b = 1/2 [ (b+c) + (b-c) ]
 | 
			
		||||
  double c = (args.mobius_scale - bmc)/2.;  // c = 1/2 [ (b+c) - (b-c) ]
 | 
			
		||||
    
 | 
			
		||||
  if(is_gparity){
 | 
			
		||||
    GparityWilsonImplD::ImplParams Params = setupGparityParams(args.GparityDirs);
 | 
			
		||||
    readConfiguration<ConjugateGimplD>(Umu, config, args.is_cps_cfg);   //Read the gauge field
 | 
			
		||||
    
 | 
			
		||||
    if(action_s == "DWF"){    
 | 
			
		||||
      GparityDomainWallFermionD action(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, args.mass, args.M5, Params);
 | 
			
		||||
      run(action, config, args);
 | 
			
		||||
    }else if(action_s == "Mobius"){
 | 
			
		||||
      GparityMobiusFermionD action(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, args.mass, args.M5, b, c, Params);
 | 
			
		||||
      run(action, config, args);	    
 | 
			
		||||
    }      
 | 
			
		||||
  }else{
 | 
			
		||||
    WilsonImplD::ImplParams Params = setupParams();
 | 
			
		||||
    readConfiguration<PeriodicGimplD>(Umu, config, args.is_cps_cfg);   //Read the gauge field
 | 
			
		||||
    
 | 
			
		||||
    if(action_s == "DWF"){    
 | 
			
		||||
      DomainWallFermionD action(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, args.mass, args.M5, Params);
 | 
			
		||||
      run(action, config, args);
 | 
			
		||||
    }else if(action_s == "Mobius"){
 | 
			
		||||
      MobiusFermionD action(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, args.mass, args.M5, b, c, Params);
 | 
			
		||||
      run(action, config, args);	    
 | 
			
		||||
    }
 | 
			
		||||
  } 
 | 
			
		||||
  
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										184
									
								
								tests/solver/Test_dwf_multishift_mixedprec.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										184
									
								
								tests/solver/Test_dwf_multishift_mixedprec.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,184 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./tests/Test_dwf_multishift_mixedprec.cc
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 | 
			
		||||
template<typename SpeciesD, typename SpeciesF, typename GaugeStatisticsType>
 | 
			
		||||
void run_test(int argc, char ** argv, const typename SpeciesD::ImplParams ¶ms){
 | 
			
		||||
  const int Ls = 16;
 | 
			
		||||
  GridCartesian* UGrid_d = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexD::Nsimd()), GridDefaultMpi());
 | 
			
		||||
  GridRedBlackCartesian* UrbGrid_d = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_d);
 | 
			
		||||
  GridCartesian* FGrid_d = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid_d);
 | 
			
		||||
  GridRedBlackCartesian* FrbGrid_d = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid_d);
 | 
			
		||||
 | 
			
		||||
  GridCartesian* UGrid_f = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
 | 
			
		||||
  GridRedBlackCartesian* UrbGrid_f = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_f);
 | 
			
		||||
  GridCartesian* FGrid_f = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid_f);
 | 
			
		||||
  GridRedBlackCartesian* FrbGrid_f = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid_f);
 | 
			
		||||
 | 
			
		||||
  typedef typename SpeciesD::FermionField FermionFieldD;
 | 
			
		||||
  typedef typename SpeciesF::FermionField FermionFieldF;
 | 
			
		||||
  
 | 
			
		||||
  std::vector<int> seeds4({1, 2, 3, 4});
 | 
			
		||||
  std::vector<int> seeds5({5, 6, 7, 8});
 | 
			
		||||
  GridParallelRNG RNG5(FGrid_d);
 | 
			
		||||
  RNG5.SeedFixedIntegers(seeds5);
 | 
			
		||||
  GridParallelRNG RNG4(UGrid_d);
 | 
			
		||||
  RNG4.SeedFixedIntegers(seeds4);
 | 
			
		||||
 | 
			
		||||
  FermionFieldD src_d(FGrid_d);
 | 
			
		||||
  random(RNG5, src_d);
 | 
			
		||||
 | 
			
		||||
  LatticeGaugeFieldD Umu_d(UGrid_d);
 | 
			
		||||
 | 
			
		||||
  //CPS-created G-parity ensembles have a factor of 2 error in the plaquette that causes the read to fail unless we workaround it
 | 
			
		||||
  bool gparity_plaquette_fix = false;
 | 
			
		||||
  for(int i=1;i<argc;i++){
 | 
			
		||||
    if(std::string(argv[i]) == "--gparity_plaquette_fix"){
 | 
			
		||||
      gparity_plaquette_fix=true;
 | 
			
		||||
      break;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  bool cfg_loaded=false;
 | 
			
		||||
  for(int i=1;i<argc;i++){
 | 
			
		||||
    if(std::string(argv[i]) == "--load_config"){
 | 
			
		||||
      assert(i != argc-1);
 | 
			
		||||
      std::string file = argv[i+1];
 | 
			
		||||
      NerscIO io;
 | 
			
		||||
      FieldMetaData metadata;
 | 
			
		||||
 | 
			
		||||
      if(gparity_plaquette_fix) NerscIO::exitOnReadPlaquetteMismatch() = false;
 | 
			
		||||
 | 
			
		||||
      io.readConfiguration<GaugeStatisticsType>(Umu_d, metadata, file);
 | 
			
		||||
 | 
			
		||||
      if(gparity_plaquette_fix){
 | 
			
		||||
	metadata.plaquette *= 2.; //correct header value
 | 
			
		||||
 | 
			
		||||
	//Get the true plaquette
 | 
			
		||||
	FieldMetaData tmp;
 | 
			
		||||
	GaugeStatisticsType gs; gs(Umu_d, tmp);
 | 
			
		||||
	
 | 
			
		||||
	std::cout << "After correction: plaqs " << tmp.plaquette << " " << metadata.plaquette << std::endl;
 | 
			
		||||
	assert(fabs(tmp.plaquette -metadata.plaquette ) < 1.0e-5 );
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      cfg_loaded=true;
 | 
			
		||||
      break;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  if(!cfg_loaded)
 | 
			
		||||
    SU<Nc>::HotConfiguration(RNG4, Umu_d);
 | 
			
		||||
 | 
			
		||||
  LatticeGaugeFieldF Umu_f(UGrid_f);
 | 
			
		||||
  precisionChange(Umu_f, Umu_d);
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "Lattice dimensions: " << GridDefaultLatt() << "   Ls: " << Ls << std::endl;
 | 
			
		||||
 | 
			
		||||
  RealD mass = 0.01;
 | 
			
		||||
  RealD M5 = 1.8;
 | 
			
		||||
  SpeciesD Ddwf_d(Umu_d, *FGrid_d, *FrbGrid_d, *UGrid_d, *UrbGrid_d, mass, M5, params);
 | 
			
		||||
  SpeciesF Ddwf_f(Umu_f, *FGrid_f, *FrbGrid_f, *UGrid_f, *UrbGrid_f, mass, M5, params);
 | 
			
		||||
 | 
			
		||||
  FermionFieldD src_o_d(FrbGrid_d);
 | 
			
		||||
  pickCheckerboard(Odd, src_o_d, src_d);
 | 
			
		||||
 | 
			
		||||
  SchurDiagMooeeOperator<SpeciesD, FermionFieldD> HermOpEO_d(Ddwf_d);
 | 
			
		||||
  SchurDiagMooeeOperator<SpeciesF, FermionFieldF> HermOpEO_f(Ddwf_f);
 | 
			
		||||
 | 
			
		||||
  AlgRemez remez(1e-4, 64, 50);
 | 
			
		||||
  int order = 15;
 | 
			
		||||
  remez.generateApprox(order, 1, 2); //sqrt
 | 
			
		||||
 | 
			
		||||
  MultiShiftFunction shifts(remez, 1e-10, false);
 | 
			
		||||
 | 
			
		||||
  int relup_freq = 50;
 | 
			
		||||
  double t1=usecond();
 | 
			
		||||
  ConjugateGradientMultiShiftMixedPrec<FermionFieldD,FermionFieldF> mcg(10000, shifts, FrbGrid_f, HermOpEO_f, relup_freq);
 | 
			
		||||
 | 
			
		||||
  std::vector<FermionFieldD> results_o_d(order, FrbGrid_d);
 | 
			
		||||
  mcg(HermOpEO_d, src_o_d, results_o_d);
 | 
			
		||||
  double t2=usecond();
 | 
			
		||||
 | 
			
		||||
  //Crosscheck double and mixed prec results
 | 
			
		||||
  ConjugateGradientMultiShift<FermionFieldD> dmcg(10000, shifts);
 | 
			
		||||
  std::vector<FermionFieldD> results_o_d_2(order, FrbGrid_d);
 | 
			
		||||
  dmcg(HermOpEO_d, src_o_d, results_o_d_2);
 | 
			
		||||
  double t3=usecond();
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "Comparison of mixed prec results to double prec results |mixed - double|^2 :" << std::endl;
 | 
			
		||||
  FermionFieldD tmp(FrbGrid_d);
 | 
			
		||||
  for(int i=0;i<order;i++){
 | 
			
		||||
    RealD ndiff = axpy_norm(tmp, -1., results_o_d[i], results_o_d_2[i]);
 | 
			
		||||
    std::cout << i << " " << ndiff << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  std::cout<<GridLogMessage << "Mixed precision algorithm: Total usec    =   "<< (t2-t1)<<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage << "Double precision algorithm: Total usec    =   "<< (t3-t2)<<std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
int main (int argc, char ** argv)
 | 
			
		||||
{
 | 
			
		||||
  Grid_init(&argc, &argv);
 | 
			
		||||
 | 
			
		||||
  bool gparity = false;
 | 
			
		||||
  int gpdir;
 | 
			
		||||
 | 
			
		||||
  for(int i=1;i<argc;i++){
 | 
			
		||||
    std::string arg(argv[i]);
 | 
			
		||||
    if(arg == "--Gparity"){
 | 
			
		||||
      assert(i!=argc-1);
 | 
			
		||||
      gpdir = std::stoi(argv[i+1]);
 | 
			
		||||
      assert(gpdir >= 0 && gpdir <= 2); //spatial!
 | 
			
		||||
      gparity = true;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  if(gparity){
 | 
			
		||||
    std::cout << "Running test with G-parity BCs in " << gpdir << " direction" << std::endl;
 | 
			
		||||
    GparityWilsonImplParams params;
 | 
			
		||||
    params.twists[gpdir] = 1;
 | 
			
		||||
    
 | 
			
		||||
    std::vector<int> conj_dirs(Nd,0);
 | 
			
		||||
    conj_dirs[gpdir] = 1;
 | 
			
		||||
    ConjugateGimplD::setDirections(conj_dirs);
 | 
			
		||||
 | 
			
		||||
    run_test<GparityDomainWallFermionD, GparityDomainWallFermionF, ConjugateGaugeStatistics>(argc,argv,params);
 | 
			
		||||
  }else{
 | 
			
		||||
    std::cout << "Running test with periodic BCs" << std::endl;
 | 
			
		||||
    WilsonImplParams params;
 | 
			
		||||
    run_test<DomainWallFermionD, DomainWallFermionF, PeriodicGaugeStatistics>(argc,argv,params);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										125
									
								
								tests/solver/Test_eofa_inv.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										125
									
								
								tests/solver/Test_eofa_inv.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,125 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./tests/solver/Test_eofa_inv.cc
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2017
 | 
			
		||||
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: David Murphy <dmurphy@phys.columbia.edu>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 ;
 | 
			
		||||
 | 
			
		||||
int main (int argc, char** argv)
 | 
			
		||||
{
 | 
			
		||||
  Grid_init(&argc, &argv);
 | 
			
		||||
 | 
			
		||||
  Coordinate latt_size   = GridDefaultLatt();
 | 
			
		||||
  Coordinate simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
 | 
			
		||||
  Coordinate mpi_layout  = GridDefaultMpi();
 | 
			
		||||
 | 
			
		||||
  const int Ls = 8;
 | 
			
		||||
 | 
			
		||||
  GridCartesian         *UGrid   = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
 | 
			
		||||
  GridRedBlackCartesian *UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
 | 
			
		||||
  GridCartesian         *FGrid   = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
 | 
			
		||||
  GridRedBlackCartesian *FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
 | 
			
		||||
 | 
			
		||||
  // Want a different conf at every run
 | 
			
		||||
  // First create an instance of an engine.
 | 
			
		||||
  std::random_device rnd_device;
 | 
			
		||||
  // Specify the engine and distribution.
 | 
			
		||||
  std::mt19937 mersenne_engine(rnd_device());
 | 
			
		||||
  std::uniform_int_distribution<int> dist(1, 100);
 | 
			
		||||
 | 
			
		||||
  auto gen = std::bind(dist, mersenne_engine);
 | 
			
		||||
  std::vector<int> seeds4(4);
 | 
			
		||||
  generate(begin(seeds4), end(seeds4), gen);
 | 
			
		||||
 | 
			
		||||
  //std::vector<int> seeds4({1,2,3,5});
 | 
			
		||||
  std::vector<int> seeds5({5,6,7,8});
 | 
			
		||||
  GridParallelRNG RNG5(FGrid);  RNG5.SeedFixedIntegers(seeds5);
 | 
			
		||||
  GridParallelRNG RNG4(UGrid);  RNG4.SeedFixedIntegers(seeds4);
 | 
			
		||||
 | 
			
		||||
  int threads = GridThread::GetThreads();
 | 
			
		||||
  std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
 | 
			
		||||
 | 
			
		||||
  LatticeFermion phi        (FGrid);  gaussian(RNG5, phi);
 | 
			
		||||
  LatticeFermion Mphi       (FGrid);
 | 
			
		||||
  LatticeFermion MphiPrime  (FGrid);
 | 
			
		||||
 | 
			
		||||
  LatticeGaugeField U(UGrid);
 | 
			
		||||
  SU<Nc>::HotConfiguration(RNG4,U);
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  // Unmodified matrix element
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  RealD b  = 2.5;
 | 
			
		||||
  RealD c  = 1.5;
 | 
			
		||||
  RealD mf = 0.01;
 | 
			
		||||
  RealD mb = 1.0;
 | 
			
		||||
  RealD M5 = 1.8;
 | 
			
		||||
  MobiusEOFAFermionR Lop(U, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mb, 0.0, -1, M5, b, c);
 | 
			
		||||
  MobiusEOFAFermionR Rop(U, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, mf, mb, -1.0, 1, M5, b, c);
 | 
			
		||||
  OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-10, 12);
 | 
			
		||||
  ConjugateGradient<LatticeFermion> CG(1.0e-10, 5000);
 | 
			
		||||
  ExactOneFlavourRatioPseudoFermionAction<WilsonImplR> Meofa(Lop, Rop, CG, CG, CG, CG, CG, Params, false);
 | 
			
		||||
 | 
			
		||||
  GridSerialRNG  sRNG; sRNG.SeedFixedIntegers(seeds4);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //Random field
 | 
			
		||||
  LatticeFermion eta(FGrid);
 | 
			
		||||
  gaussian(RNG5,eta);
 | 
			
		||||
  
 | 
			
		||||
  //Check left inverse
 | 
			
		||||
  LatticeFermion Meta(FGrid);
 | 
			
		||||
  Meofa.Meofa(U, eta, Meta);
 | 
			
		||||
 | 
			
		||||
  LatticeFermion MinvMeta(FGrid);
 | 
			
		||||
  Meofa.MeofaInv(U, Meta, MinvMeta);
 | 
			
		||||
 | 
			
		||||
  LatticeFermion diff = MinvMeta - eta;
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "eta: " << norm2(eta) << " M*eta: " << norm2(Meta) << " M^{-1}*M*eta: " << norm2(MinvMeta) << "  M^{-1}*M*eta - eta: " << norm2(diff) << " (expect 0)" << std::endl;
 | 
			
		||||
  assert(norm2(diff) < 1e-8);
 | 
			
		||||
 | 
			
		||||
  //Check right inverse
 | 
			
		||||
  LatticeFermion MinvEta(FGrid);
 | 
			
		||||
  Meofa.MeofaInv(U, eta, MinvEta);
 | 
			
		||||
 | 
			
		||||
  LatticeFermion MMinvEta(FGrid);
 | 
			
		||||
  Meofa.Meofa(U, MinvEta, MMinvEta);
 | 
			
		||||
 | 
			
		||||
  diff = MMinvEta - eta;
 | 
			
		||||
  
 | 
			
		||||
  std::cout << GridLogMessage << "eta: " << norm2(eta) << " M^{-1}*eta: " << norm2(MinvEta) << " M*M^{-1}*eta: " << norm2(MMinvEta) << "  M*M^{-1}*eta - eta: " << norm2(diff) << " (expect 0)" << std::endl;
 | 
			
		||||
  assert(norm2(diff) < 1e-8);
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "Done" << std::endl;
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
}
 | 
			
		||||
		Reference in New Issue
	
	Block a user