1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-09 23:45:36 +00:00

Compare commits

...

15 Commits

Author SHA1 Message Date
dbollweg
7f9d06f339
Merge 461cd045c6 into ccf147d6c1 2024-05-16 16:40:21 -04:00
Peter Boyle
ccf147d6c1 Select the compiler that gives better performance on sunspot 2024-05-07 18:45:56 +00:00
Peter Boyle
7aa12b446f New config command for sunspot 2024-05-07 18:45:40 +00:00
Peter Boyle
c293228102 layout control 2024-05-07 18:45:21 +00:00
Peter Boyle
5c4c9f721a Remove pbs file and replace with bench1 and bench2 for 1 and 2 nodes 2024-05-07 18:44:49 +00:00
Peter Boyle
057f86c1de 2 queues works ok in performance 2024-05-07 18:42:50 +00:00
Peter Boyle
cd52e3cbc2 Jobs on subspot 2024-05-07 18:38:15 +00:00
Peter Boyle
24602e1259 Accidental synchronise 2024-05-07 17:28:38 +00:00
Peter Boyle
8a098889fc
Update FlightRecorder.cc 2024-04-30 21:15:08 +01:00
Peter Boyle
ff2ea5de18
Update Tensor_traits.h 2024-04-11 14:25:45 -04:00
dbollweg
461cd045c6 sliceSum cleanup 2024-03-13 18:18:44 -04:00
dbollweg
fee65d7a75
Merge branch 'paboyle:develop' into sycl_slicesum_update 2024-03-13 18:06:17 -04:00
dbollweg
31f9971dbf avoid PI_ERROR_OUT_OF_RESOURCES in sycl sliceSum 2024-03-13 13:39:26 -04:00
dbollweg
d87296f3e8 Merge branch 'develop' of https://github.com/dbollweg/Grid into develop 2024-03-06 16:54:22 -05:00
dbollweg
be94cf1c6f Fewer wait-calls in sycl slicesum 2024-03-06 16:53:13 -05:00
9 changed files with 188 additions and 122 deletions

View File

@ -1,5 +1,5 @@
#pragma once
#include <type_traits>
#if defined(GRID_CUDA)
#include <cub/cub.cuh>
@ -90,8 +90,61 @@ template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, V
}
#endif
template<class vobj> inline void sliceSumReduction_cub_large(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
#if defined(GRID_SYCL)
template<class vobj> inline void sliceSumReduction_sycl_small(const vobj *Data, Vector <vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
{
size_t subvol_size = e1*e2;
vobj *mysum = (vobj *) malloc_shared(rd*sizeof(vobj),*theGridAccelerator);
vobj vobj_zero;
zeroit(vobj_zero);
for (int r = 0; r<rd; r++) {
mysum[r] = vobj_zero;
}
commVector<vobj> reduction_buffer(rd*subvol_size);
auto rb_p = &reduction_buffer[0];
// autoView(Data_v, Data, AcceleratorRead);
//prepare reduction buffer
accelerator_for2d( s,subvol_size, r,rd, (size_t)Nsimd,{
int n = s / e2;
int b = s % e2;
int so=r*ostride; // base offset for start of plane
int ss= so+n*stride+b;
coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data[ss]));
});
for (int r = 0; r < rd; r++) {
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
auto Reduction = cl::sycl::reduction(&mysum[r],std::plus<>());
cgh.parallel_for(cl::sycl::range<1>{subvol_size},
Reduction,
[=](cl::sycl::id<1> item, auto &sum) {
auto s = item[0];
sum += rb_p[r*subvol_size+s];
});
});
}
theGridAccelerator->wait();
for (int r = 0; r < rd; r++) {
lvSum[r] = mysum[r];
}
free(mysum,*theGridAccelerator);
}
#endif
template<class vobj> inline void sliceSumReduction_large(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
typedef typename vobj::vector_type vector;
const int words = sizeof(vobj)/sizeof(vector);
const int osites = rd*e1*e2;
@ -106,7 +159,11 @@ template<class vobj> inline void sliceSumReduction_cub_large(const vobj *Data, V
buf[ss] = dat[ss*words+w];
});
sliceSumReduction_cub_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd);
#if defined(GRID_CUDA) || defined(GRID_HIP)
sliceSumReduction_cub_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd);
#elif defined(GRID_SYCL)
sliceSumReduction_sycl_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd);
#endif
for (int r = 0; r < rd; r++) {
lvSum_ptr[w+words*r]=lvSum_small[r];
@ -117,66 +174,24 @@ template<class vobj> inline void sliceSumReduction_cub_large(const vobj *Data, V
}
template<class vobj> inline void sliceSumReduction_cub(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd)
template<class vobj> inline void sliceSumReduction_gpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd)
{
autoView(Data_v, Data, AcceleratorRead); //hipcub/cub cannot deal with large vobjs so we split into small/large case.
autoView(Data_v, Data, AcceleratorRead); //reduction libraries cannot deal with large vobjs so we split into small/large case.
if constexpr (sizeof(vobj) <= 256) {
sliceSumReduction_cub_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
#if defined(GRID_CUDA) || defined(GRID_HIP)
sliceSumReduction_cub_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
#elif defined (GRID_SYCL)
sliceSumReduction_sycl_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
#endif
}
else {
sliceSumReduction_cub_large(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
sliceSumReduction_large(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
}
}
#endif
#if defined(GRID_SYCL)
template<class vobj> inline void sliceSumReduction_sycl(const Lattice<vobj> &Data, Vector <vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
{
typedef typename vobj::scalar_object sobj;
size_t subvol_size = e1*e2;
vobj *mysum = (vobj *) malloc_shared(sizeof(vobj),*theGridAccelerator);
vobj vobj_zero;
zeroit(vobj_zero);
commVector<vobj> reduction_buffer(rd*subvol_size);
auto rb_p = &reduction_buffer[0];
autoView(Data_v, Data, AcceleratorRead);
//prepare reduction buffer
accelerator_for2d( s,subvol_size, r,rd, (size_t)Nsimd,{
int n = s / e2;
int b = s % e2;
int so=r*ostride; // base offset for start of plane
int ss= so+n*stride+b;
coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data_v[ss]));
});
for (int r = 0; r < rd; r++) {
mysum[0] = vobj_zero; //dirty hack: cannot pass vobj_zero as identity to sycl::reduction as its not device_copyable
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
auto Reduction = cl::sycl::reduction(mysum,std::plus<>());
cgh.parallel_for(cl::sycl::range<1>{subvol_size},
Reduction,
[=](cl::sycl::id<1> item, auto &sum) {
auto s = item[0];
sum += rb_p[r*subvol_size+s];
});
});
theGridAccelerator->wait();
lvSum[r] = mysum[0];
}
free(mysum,*theGridAccelerator);
}
#endif
template<class vobj> inline void sliceSumReduction_cpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
{
// sum over reduced dimension planes, breaking out orthog dir
@ -195,13 +210,9 @@ template<class vobj> inline void sliceSumReduction_cpu(const Lattice<vobj> &Data
template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
{
#if defined(GRID_CUDA) || defined(GRID_HIP)
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
sliceSumReduction_cub(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
#elif defined(GRID_SYCL)
sliceSumReduction_sycl(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
sliceSumReduction_gpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
#else
sliceSumReduction_cpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);

View File

@ -405,11 +405,4 @@ NAMESPACE_BEGIN(Grid);
NAMESPACE_END(Grid);
#ifdef GRID_SYCL
template<typename T> struct
sycl::is_device_copyable<T, typename std::enable_if<
Grid::isGridTensor<T>::value && (!std::is_trivially_copyable<T>::value),
void>::type>
: public std::true_type {};
#endif

View File

@ -210,8 +210,8 @@ void acceleratorInit(void)
cl::sycl::gpu_selector selector;
cl::sycl::device selectedDevice { selector };
theGridAccelerator = new sycl::queue (selectedDevice);
// theCopyAccelerator = new sycl::queue (selectedDevice);
theCopyAccelerator = theGridAccelerator; // Should proceed concurrenlty anyway.
theCopyAccelerator = new sycl::queue (selectedDevice);
// theCopyAccelerator = theGridAccelerator; // Should proceed concurrenlty anyway.
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
zeInit(0);

View File

@ -247,9 +247,12 @@ void FlightRecorder::ReductionLog(double local,double global)
}
void FlightRecorder::xmitLog(void *buf,uint64_t bytes)
{
if(LoggingMode == LoggingModeNone) return;
if ( ChecksumCommsSend ){
uint64_t *ubuf = (uint64_t *)buf;
if(LoggingMode == LoggingModeNone) return;
#ifdef GRID_SYCL
uint64_t _xor = svm_xor(ubuf,bytes/sizeof(uint64_t));
if(LoggingMode == LoggingModePrint) {
@ -285,12 +288,6 @@ void FlightRecorder::xmitLog(void *buf,uint64_t bytes)
XmitLoggingCounter++;
}
#endif
} else {
uint64_t word = 1;
deviceVector<uint64_t> dev(1);
acceleratorCopyToDevice(&word,&dev[0],sizeof(uint64_t));
acceleratorCopySynchronise();
MPI_Barrier(MPI_COMM_WORLD);
}
}
void FlightRecorder::recvLog(void *buf,uint64_t bytes,int rank)

View File

@ -0,0 +1,67 @@
#!/bin/bash
#PBS -q debug
#PBS -l select=1
#PBS -l walltime=00:20:00
#PBS -A LatticeQCD_aesp_CNDA
#export OMP_PROC_BIND=spread
#unset OMP_PLACES
cd $PBS_O_WORKDIR
source ../sourceme.sh
module load pti-gpu
#cat $PBS_NODEFILE
export OMP_NUM_THREADS=4
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE
#unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
#export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
export MPICH_OFI_NIC_POLICY=GPU
# 12 ppn, 2 nodes, 24 ranks
#
CMD="mpiexec -np 12 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_comms_host_device --mpi 2.2.1.3 --grid 24.32.32.24 \
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32"
#$CMD | tee 1node.comms
CMD="mpiexec -np 1 -ppn 1 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 1.1.1.1 --grid 16.32.32.32 \
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32 "
#$CMD | tee 1tile.dwf
CMD="mpiexec -np 12 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 2.2.1.3 --grid 32.32.32.48 \
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
$CMD | tee 1node.32.32.32.48.dwf
CMD="mpiexec -np 12 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 2.2.1.3 --grid 64.64.32.96 \
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
#$CMD | tee 1node.64.64.32.96.dwf
CMD="mpiexec -np 12 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 2.2.1.3 --grid 64.32.32.48 \
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
#$CMD | tee 1node.64.32.32.48.dwf

View File

@ -1,10 +1,8 @@
#!/bin/bash
## qsub -q EarlyAppAccess -A Aurora_Deployment -I -l select=1 -l walltime=60:00
#PBS -q EarlyAppAccess
#PBS -q workq
#PBS -l select=2
#PBS -l walltime=01:00:00
#PBS -l walltime=00:20:00
#PBS -A LatticeQCD_aesp_CNDA
#export OMP_PROC_BIND=spread
@ -13,11 +11,13 @@
cd $PBS_O_WORKDIR
source ../sourceme.sh
module load pti-gpu
export OMP_NUM_THREADS=3
#cat $PBS_NODEFILE
export OMP_NUM_THREADS=4
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE
#unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST
@ -31,30 +31,25 @@ export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
export MPICH_OFI_NIC_POLICY=GPU
# 12 ppn, 2 nodes, 24 ranks
#
CMD="mpiexec -np 24 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_comms_host_device --mpi 2.3.2.2 --grid 32.24.32.192 \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32"
./Benchmark_comms_host_device --mpi 2.2.2.3 --grid 24.32.32.24 \
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32"
$CMD | tee 2node.comms
#$CMD
CMD="mpiexec -np 24 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 2.3.2.2 --grid 64.96.64.64 --comms-overlap \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32"
./Benchmark_dwf_fp32 --mpi 2.2.2.3 --grid 32.32.64.48 \
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
$CMD | tee 2node.32.32.64.48.dwf
#$CMD
CMD="mpiexec -np 1 -ppn 1 -envall \
CMD="mpiexec -np 24 -ppn 12 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf --mpi 1.1.1.1 --grid 16.32.32.32 --comms-sequential \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32"
./Benchmark_dwf_fp32 --mpi 2.2.2.3 --grid 64.64.64.96 \
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
$CMD | tee 2node.64.64.64.96.dwf
$CMD
CMD="mpiexec -np 1 -ppn 1 -envall \
./gpu_tile_compact.sh \
./Benchmark_dwf_fp32 --mpi 1.1.1.1 --grid 16.32.32.32 --comms-sequential \
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32"
$CMD

View File

@ -1,33 +1,34 @@
#!/bin/bash
export NUMA_MAP=(2 2 2 3 3 3 2 2 2 3 3 3 )
#export NUMA_MAP=(0 0 0 1 1 1 0 0 0 1 1 1 )
export NUMA_PMAP=(0 0 0 1 1 1 0 0 0 1 1 1 )
export NIC_MAP=(0 1 2 4 5 6 0 1 2 4 5 6 )
export GPU_MAP=(0 1 2 3 4 5 0 1 2 3 4 5 )
export TILE_MAP=(0 0 0 0 0 0 1 1 1 1 1 1 )
#export NUMA_MAP=(2 2 2 3 3 3 2 2 2 3 3 3 )
#export NUMA_MAP=(0 0 1 1 0 0 1 1 0 0 1 1);
#export GPU_MAP=(0.0 0.1 3.0 3.1 1.0 1.1 4.0 4.1 2.0 2.1 5.0 5.1)
export NUMA_MAP=(0 0 0 0 0 0 1 1 1 1 1 1 );
export GPU_MAP=(0.0 1.0 2.0 3.0 4.0 5.0 0.1 1.1 2.1 3.1 4.1 5.1 )
export NUMA=${NUMA_MAP[$PALS_LOCAL_RANKID]}
export NUMAP=${NUMA_PMAP[$PALS_LOCAL_RANKID]}
export NIC=${NIC_MAP[$PALS_LOCAL_RANKID]}
export gpu_id=${GPU_MAP[$PALS_LOCAL_RANKID]}
export tile_id=${TILE_MAP[$PALS_LOCAL_RANKID]}
#export GRID_MPICH_NIC_BIND=$NIC
#export ONEAPI_DEVICE_SELECTOR=level_zero:$gpu_id.$tile_id
unset EnableWalkerPartition
export EnableImplicitScaling=0
export ZE_AFFINITY_MASK=$gpu_id.$tile_id
export ZE_AFFINITY_MASK=$gpu_id
export ONEAPI_DEVICE_FILTER=gpu,level_zero
#export ZE_ENABLE_PCI_ID_DEVICE_ORDER=1
#export SYCL_PI_LEVEL_ZERO_DEVICE_SCOPE_EVENTS=0
#export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_PI_LEVEL_ZERO_DEVICE_SCOPE_EVENTS=0
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE=0:5
#export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE=0:2
#export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE_FOR_D2D_COPY=1
export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE_FOR_D2D_COPY=1
#export SYCL_PI_LEVEL_ZERO_USM_RESIDENT=1
#echo "rank $PALS_RANKID ; local rank $PALS_LOCAL_RANKID ; ZE_AFFINITY_MASK=$ZE_AFFINITY_MASK ; NUMA $NUMA "
echo "rank $PALS_RANKID ; local rank $PALS_LOCAL_RANKID ; ZE_AFFINITY_MASK=$ZE_AFFINITY_MASK ; NUMA $NUMA "
numactl -m $NUMA -N $NUMAP "$@"
if [ $PALS_RANKID = "0" ]
then
# numactl -m $NUMA -N $NUMA onetrace --chrome-device-timeline "$@"
# numactl -m $NUMA -N $NUMA unitrace --chrome-kernel-logging --chrome-mpi-logging --chrome-sycl-logging --demangle "$@"
numactl -m $NUMA -N $NUMA "$@"
else
numactl -m $NUMA -N $NUMA "$@"
fi

View File

@ -7,7 +7,7 @@
--disable-fermion-reps \
--enable-shm=nvlink \
--enable-accelerator=sycl \
--enable-accelerator-aware-mpi=no\
--enable-accelerator-aware-mpi=yes\
--enable-unified=no \
MPICXX=mpicxx \
CXX=icpx \

View File

@ -1,7 +1,9 @@
#export ONEAPI_DEVICE_SELECTOR=level_zero:0.0
module use /soft/modulefiles
module load intel_compute_runtime/release/agama-devel-682.22
module load oneapi/release/2023.12.15.001
#module use /soft/modulefiles
#module load intel_compute_runtime/release/agama-devel-682.22
export FI_CXI_DEFAULT_CQ_SIZE=131072
export FI_CXI_CQ_FILL_PERCENT=20