mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-13 04:37:05 +01:00
Compare commits
276 Commits
da81a73b4a
...
feature/ft
Author | SHA1 | Date | |
---|---|---|---|
bffd30abec | |||
da919949f9 | |||
b12b4fdaff | |||
557fa483ff | |||
fc15d55df6 | |||
53573d7d94 | |||
bb3c177000 | |||
a3322b470f | |||
f8f408e7a9 | |||
baac1127d0 | |||
6f1328160c | |||
04cf902791 | |||
7a5b1c1a19 | |||
18d2d7da4a | |||
b461184797 | |||
4563b39305 | |||
c9d5674d5b | |||
486412635a | |||
8b23a1546a | |||
a901e4e369 | |||
804d9367d4 | |||
41d8adca95 | |||
059e8e5bb0 | |||
b3ee8ded96 | |||
cf3584ad15 | |||
a66973163f | |||
4502a8c8a1 | |||
9c902e4c2d | |||
f3eb36adcf | |||
7c246606c1 | |||
172c75029e | |||
6ae52da571 | |||
4ee9c68053 | |||
a15b4378a3 | |||
89fdd7f8dd | |||
c328be24b7 | |||
a73dc6dbf4 | |||
eee2a2657f | |||
12b8be7cb9 | |||
63c223ea5d | |||
2877fb4a2c | |||
d299c86633 | |||
6ce52092e8 | |||
b5926c1d21 | |||
9563238e9b | |||
fb9b1d76ca | |||
1739146599 | |||
ed20b39ab3 | |||
284fc05f15 | |||
07a07b6fa3 | |||
dc80b08969 | |||
a49a161f8d | |||
a6479ca50f | |||
0e607a55e7 | |||
c4b9f71357 | |||
394e506aea | |||
e19b26341b | |||
cfe1b13225 | |||
890c5ea1cd | |||
a87378d3b6 | |||
832fc08809 | |||
9a1ad6a5eb | |||
a90eafad24 | |||
ad14a82742 | |||
14e9d8ed9f | |||
0ac85fa70b | |||
c371de42b9 | |||
ccf147d6c1 | |||
7aa12b446f | |||
c293228102 | |||
5c4c9f721a | |||
057f86c1de | |||
cd52e3cbc2 | |||
24602e1259 | |||
8a098889fc | |||
5c3ace7c3e | |||
aa148455b7 | |||
98cf247f33 | |||
0cf16522d1 | |||
7b7c75f9e5 | |||
aefd255a3c | |||
1c5aa939fd | |||
3a0ff17be0 | |||
47829ae5cc | |||
bfa7b69aff | |||
2aaa959b5f | |||
ce2970b93a | |||
7b76970d10 | |||
9fd41882d2 | |||
ff2ea5de18 | |||
5147a42818 | |||
57552d8ca3 | |||
13713b2a76 | |||
36a14e4ee3 | |||
b4cc788b8c | |||
0f0e7512f3 | |||
1196b1a161 | |||
2c8c3be9ee | |||
5b79d51c22 | |||
da890dc293 | |||
93d0a1e73a | |||
f0a8c7d045 | |||
db8793777c | |||
c745484e65 | |||
461cd045c6 | |||
fee65d7a75 | |||
31f9971dbf | |||
d87296f3e8 | |||
be94cf1c6f | |||
cc04dc42dc | |||
070b61f08f | |||
ee3b3c4c56 | |||
462d706a63 | |||
ee0d460c8e | |||
cd15abe9d1 | |||
9f40467e24 | |||
d0b6593823 | |||
79fc821d8d | |||
d7fdb9a7e6 | |||
b74de51c18 | |||
44b466e072 | |||
5e5b471bb2 | |||
9c2565f64e | |||
e1d0a7cec3 | |||
b19ae8f465 | |||
cdff2c8e18 | |||
eb702f581b | |||
3d13fd56c5 | |||
6f51b49ef8 | |||
addc638856 | |||
42ae36bc28 | |||
c69f73ff9f | |||
ca5ae8a2e6 | |||
d967eb53de | |||
839f9f1bbe | |||
b754a152c6 | |||
e07cb2b9de | |||
a1f8bbb078 | |||
7909683f3b | |||
25f71913b7 | |||
34ddd2b7b1 | |||
d5fd90b2f3 | |||
b7c7000d0d | |||
551f6c4edd | |||
defd814750 | |||
3d517bbd2a | |||
78ab955fec | |||
dd13937bb6 | |||
66a1b63aa9 | |||
22c611bd1a | |||
c9bb1bf8ea | |||
9e489887cf | |||
9feb801bb9 | |||
c00b495933 | |||
d22eebe553 | |||
8bcbd82680 | |||
dfa617c439 | |||
48d1f0df89 | |||
b75cb7a12c | |||
332563e037 | |||
0cce97a4fe | |||
95a8e4be64 | |||
abcd6b8cb6 | |||
e8f21c9b6d | |||
e054078b11 | |||
6835a7f208 | |||
f59993b979 | |||
2290b8f680 | |||
2c54be651c | |||
e859a199df | |||
0a3682ad0b | |||
59abaeb5cd | |||
3e448435d3 | |||
a294bc3c5b | |||
b302ad3d49 | |||
82fc4b1e94 | |||
b4f1740380 | |||
031f85247c | |||
639cc6f73a | |||
09946cf1ba | |||
f4fa95e7cb | |||
100e29e35e | |||
4cbe471a83 | |||
8bece1f861 | |||
a3ca71ec01 | |||
e0543e8af5 | |||
c1eb80d01a | |||
a26121d97b | |||
043031a757 | |||
807aeebe4c | |||
8aa1a37aad | |||
4efa042f50 | |||
c7cb37e970 | |||
d34b207eab | |||
0e6fa6f6b8 | |||
38b87de53f | |||
aa5047a9e4 | |||
24b6ee0df9 | |||
1e79cc9cbe | |||
b3925df9c3 | |||
351795ac3a | |||
9c9c42d0df | |||
b6ad1bafc7 | |||
a5ca40f446 | |||
9ab54c5565 | |||
4341d96bde | |||
5fac47a26d | |||
e064f17346 | |||
afe10ba2a2 | |||
7cc3435ba8 | |||
541772313c | |||
3747494a09 | |||
f2b98d0dcc | |||
80471bf762 | |||
a06f63c110 | |||
0ae4478cd9 | |||
ae4e705e09 | |||
f5dcea9dbf | |||
2207309f8a | |||
2111e7ab5f | |||
d29abfdcaf | |||
a751c42cc5 | |||
6a3bc9865e | |||
4d5f7e4377 | |||
78b117fb78 | |||
ded63a1319 | |||
df3e4d1e9c | |||
b58fd80379 | |||
7f6e0f57d0 | |||
cae27678d8 | |||
48ff655bad | |||
2525ad4623 | |||
e7020017c5 | |||
eacebfad74 | |||
3bc2da5321 | |||
2d710d6bfd | |||
6532b7f32b | |||
7b41b92d99 | |||
dd557af84b | |||
59b9d0e030 | |||
b82eee4733 | |||
6a87487544 | |||
fcf5023845 | |||
c8adad6d8b | |||
737d3ffb98 | |||
b01e67bab1 | |||
8a70314f54 | |||
36ae6e5aba | |||
9db585cfeb | |||
c564611ba7 | |||
e187bcb85c | |||
be18ffe3b4 | |||
0d63dce4e2 | |||
26b30e1551 | |||
7fc58ac293 | |||
3a86cce8c1 | |||
37884d369f | |||
9246e653cd | |||
64283c8673 | |||
755002da9c | |||
31b8e8b437 | |||
0ec0de97e6 | |||
6c3ade5d89 | |||
980c5f9a34 | |||
471ca5f281 | |||
e82ddcff5d | |||
b9dcad89e8 | |||
993f43ef4a | |||
2b43308208 | |||
04a1ac3a76 | |||
990b8798bd | |||
b334a73a44 | |||
5d113d1c70 | |||
c14977aeab | |||
3e94838204 | |||
c0a0b8ca62 |
1052
BLAS_benchmark/BatchBlasBench.cc
Normal file
1052
BLAS_benchmark/BatchBlasBench.cc
Normal file
File diff suppressed because it is too large
Load Diff
2
BLAS_benchmark/compile-command
Normal file
2
BLAS_benchmark/compile-command
Normal file
@ -0,0 +1,2 @@
|
||||
|
||||
mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench
|
@ -59,6 +59,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/lattice/Lattice.h>
|
||||
#include <Grid/cshift/Cshift.h>
|
||||
#include <Grid/stencil/Stencil.h>
|
||||
#include <Grid/stencil/GeneralLocalStencil.h>
|
||||
#include <Grid/parallelIO/BinaryIO.h>
|
||||
#include <Grid/algorithms/Algorithms.h>
|
||||
NAMESPACE_CHECK(GridCore)
|
||||
|
@ -30,9 +30,14 @@ directory
|
||||
|
||||
#include <type_traits>
|
||||
#include <cassert>
|
||||
#include <exception>
|
||||
|
||||
#define NAMESPACE_BEGIN(A) namespace A {
|
||||
#define NAMESPACE_END(A) }
|
||||
#define GRID_NAMESPACE_BEGIN NAMESPACE_BEGIN(Grid)
|
||||
#define GRID_NAMESPACE_END NAMESPACE_END(Grid)
|
||||
#define NAMESPACE_CHECK(x) struct namespaceTEST##x {}; static_assert(std::is_same<namespaceTEST##x, ::namespaceTEST##x>::value,"Not in :: at" );
|
||||
|
||||
#define EXCEPTION_CHECK_BEGIN(A) try {
|
||||
#define EXCEPTION_CHECK_END(A) } catch ( std::exception e ) { BACKTRACEFP(stderr); std::cerr << __PRETTY_FUNCTION__ << " : " <<__LINE__<< " Caught exception "<<e.what()<<std::endl; throw; }
|
||||
|
||||
|
@ -29,6 +29,9 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#ifndef GRID_ALGORITHMS_H
|
||||
#define GRID_ALGORITHMS_H
|
||||
|
||||
NAMESPACE_CHECK(blas);
|
||||
#include <Grid/algorithms/blas/BatchedBlas.h>
|
||||
|
||||
NAMESPACE_CHECK(algorithms);
|
||||
#include <Grid/algorithms/SparseMatrix.h>
|
||||
#include <Grid/algorithms/LinearOperator.h>
|
||||
@ -44,7 +47,10 @@ NAMESPACE_CHECK(SparseMatrix);
|
||||
#include <Grid/algorithms/approx/RemezGeneral.h>
|
||||
#include <Grid/algorithms/approx/ZMobius.h>
|
||||
NAMESPACE_CHECK(approx);
|
||||
#include <Grid/algorithms/iterative/Deflation.h>
|
||||
#include <Grid/algorithms/deflation/Deflation.h>
|
||||
#include <Grid/algorithms/deflation/MultiRHSBlockProject.h>
|
||||
#include <Grid/algorithms/deflation/MultiRHSDeflation.h>
|
||||
NAMESPACE_CHECK(deflation);
|
||||
#include <Grid/algorithms/iterative/ConjugateGradient.h>
|
||||
NAMESPACE_CHECK(ConjGrad);
|
||||
#include <Grid/algorithms/iterative/BiCGSTAB.h>
|
||||
@ -67,10 +73,11 @@ NAMESPACE_CHECK(BiCGSTAB);
|
||||
#include <Grid/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h>
|
||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
|
||||
#include <Grid/algorithms/iterative/PowerMethod.h>
|
||||
|
||||
#include <Grid/algorithms/iterative/AdefGeneric.h>
|
||||
#include <Grid/algorithms/iterative/AdefMrhs.h>
|
||||
NAMESPACE_CHECK(PowerMethod);
|
||||
#include <Grid/algorithms/CoarsenedMatrix.h>
|
||||
NAMESPACE_CHECK(CoarsendMatrix);
|
||||
#include <Grid/algorithms/multigrid/MultiGrid.h>
|
||||
NAMESPACE_CHECK(multigrid);
|
||||
#include <Grid/algorithms/FFT.h>
|
||||
|
||||
#endif
|
||||
|
@ -145,6 +145,44 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// Create a shifted HermOp
|
||||
////////////////////////////////////////////////////////////////////
|
||||
template<class Field>
|
||||
class ShiftedHermOpLinearOperator : public LinearOperatorBase<Field> {
|
||||
LinearOperatorBase<Field> &_Mat;
|
||||
RealD _shift;
|
||||
public:
|
||||
ShiftedHermOpLinearOperator(LinearOperatorBase<Field> &Mat,RealD shift): _Mat(Mat), _shift(shift){};
|
||||
// Support for coarsening to a multigrid
|
||||
void OpDiag (const Field &in, Field &out) {
|
||||
assert(0);
|
||||
}
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
||||
assert(0);
|
||||
}
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){
|
||||
assert(0);
|
||||
};
|
||||
void Op (const Field &in, Field &out){
|
||||
HermOp(in,out);
|
||||
}
|
||||
void AdjOp (const Field &in, Field &out){
|
||||
HermOp(in,out);
|
||||
}
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
HermOp(in,out);
|
||||
ComplexD dot = innerProduct(in,out);
|
||||
n1=real(dot);
|
||||
n2=norm2(out);
|
||||
}
|
||||
void HermOp(const Field &in, Field &out){
|
||||
_Mat.HermOp(in,out);
|
||||
out = out + _shift*in;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// Wrap an already herm matrix
|
||||
////////////////////////////////////////////////////////////////////
|
||||
|
@ -90,9 +90,8 @@ public:
|
||||
order=_order;
|
||||
|
||||
if(order < 2) exit(-1);
|
||||
Coeffs.resize(order);
|
||||
Coeffs.assign(0.,order);
|
||||
Coeffs[order-1] = 1.;
|
||||
Coeffs.resize(order,0.0);
|
||||
Coeffs[order-1] = 1.0;
|
||||
};
|
||||
|
||||
// PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's.
|
||||
|
@ -40,7 +40,7 @@ public:
|
||||
RealD norm;
|
||||
RealD lo,hi;
|
||||
|
||||
MultiShiftFunction(int n,RealD _lo,RealD _hi): poles(n), residues(n), lo(_lo), hi(_hi) {;};
|
||||
MultiShiftFunction(int n,RealD _lo,RealD _hi): poles(n), residues(n), tolerances(n), lo(_lo), hi(_hi) {;};
|
||||
RealD approx(RealD x);
|
||||
void csv(std::ostream &out);
|
||||
void gnuplot(std::ostream &out);
|
||||
|
@ -42,6 +42,7 @@ Author: Peter Boyle <pboyle@bnl.gov>
|
||||
#ifdef GRID_ONE_MKL
|
||||
#include <oneapi/mkl.hpp>
|
||||
#endif
|
||||
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
// Need to rearrange lattice data to be in the right format for a
|
||||
// batched multiply. Might as well make these static, dense packed
|
||||
@ -88,9 +89,10 @@ public:
|
||||
gridblasHandle = theGridAccelerator;
|
||||
#endif
|
||||
#ifdef GRID_ONE_MKL
|
||||
cl::sycl::cpu_selector selector;
|
||||
cl::sycl::gpu_selector selector;
|
||||
cl::sycl::device selectedDevice { selector };
|
||||
gridblasHandle =new sycl::queue (selectedDevice);
|
||||
cl::sycl::property_list q_prop{cl::sycl::property::queue::in_order()};
|
||||
gridblasHandle =new sycl::queue (selectedDevice,q_prop);
|
||||
#endif
|
||||
gridblasInit=1;
|
||||
}
|
||||
@ -206,6 +208,9 @@ public:
|
||||
assert(Bkn.size()==batchCount);
|
||||
assert(Cmn.size()==batchCount);
|
||||
|
||||
assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
|
||||
assert(OpB!=GridBLAS_OP_T);
|
||||
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
@ -265,26 +270,130 @@ public:
|
||||
assert(err==CUBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
//MKL’s cblas_<T>gemm_batch & OneAPI
|
||||
#warning "oneMKL implementation not built "
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
// Need a default/reference implementation
|
||||
int sda = lda*k;
|
||||
int sdb = ldb*k;
|
||||
int sdc = ldc*n;
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
ComplexD c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
|
||||
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
|
||||
int64_t m64=m;
|
||||
int64_t n64=n;
|
||||
int64_t k64=k;
|
||||
int64_t lda64=lda;
|
||||
int64_t ldb64=ldb;
|
||||
int64_t ldc64=ldc;
|
||||
int64_t batchCount64=batchCount;
|
||||
|
||||
oneapi::mkl::transpose iOpA;
|
||||
oneapi::mkl::transpose iOpB;
|
||||
|
||||
if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
|
||||
if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
|
||||
if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
|
||||
if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
|
||||
if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
|
||||
if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
|
||||
|
||||
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
|
||||
&iOpA,
|
||||
&iOpB,
|
||||
&m64,&n64,&k64,
|
||||
(ComplexD *) &alpha_p[0],
|
||||
(const ComplexD **)&Amk[0], (const int64_t *)&lda64,
|
||||
(const ComplexD **)&Bkn[0], (const int64_t *)&ldb64,
|
||||
(ComplexD *) &beta_p[0],
|
||||
(ComplexD **)&Cmn[0], (const int64_t *)&ldc64,
|
||||
(int64_t)1,&batchCount64,std::vector<sycl::event>());
|
||||
synchronise();
|
||||
#if 0
|
||||
// This code was used to check the mat mul on Sunspot/OneMKL
|
||||
std::cerr << " Called SYCL batched ZGEMM OpA "<< OpA << " OpB "<<OpB <<std::endl;
|
||||
std::vector<ComplexD> A(m*k); // pointer list to matrices
|
||||
std::vector<ComplexD> B(k*n);
|
||||
std::vector<ComplexD> C(m*n);
|
||||
// int sda = lda*k;
|
||||
// int sdb = ldb*k;
|
||||
// int sdc = ldc*n;
|
||||
std::cerr << " Checking the GEMM results "<<std::endl;
|
||||
for (int p = 0; p < 1; ++p) {
|
||||
ComplexD * Amk_p; // pointer list to matrices
|
||||
ComplexD * Bkn_p; // pointer list to matrices
|
||||
ComplexD * Cmn_p; // pointer list to matrices
|
||||
acceleratorCopyFromDevice((void *)&Amk[p],(void *)&Amk_p,sizeof(ComplexD*));
|
||||
acceleratorCopyFromDevice((void *)&Bkn[p],(void *)&Bkn_p,sizeof(ComplexD*));
|
||||
acceleratorCopyFromDevice((void *)&Cmn[p],(void *)&Cmn_p,sizeof(ComplexD*));
|
||||
std::cerr << " p " << p << " copied pointers "<<std::endl;
|
||||
acceleratorCopyFromDevice((void *)Amk_p,(void *)&A[0],m*k*sizeof(ComplexD));
|
||||
acceleratorCopyFromDevice((void *)Bkn_p,(void *)&B[0],k*n*sizeof(ComplexD));
|
||||
acceleratorCopyFromDevice((void *)Cmn_p,(void *)&C[0],m*n*sizeof(ComplexD));
|
||||
std::cerr << " p " << p << " copied matrices "<<std::endl;
|
||||
std::cerr << " C[0] "<<C[0]<<std::endl;
|
||||
std::cerr << " A[0] "<<A[0]<<std::endl;
|
||||
std::cerr << " B[0] "<<B[0]<<std::endl;
|
||||
std::cerr << " m "<<m<<std::endl;
|
||||
std::cerr << " n "<<n<<std::endl;
|
||||
std::cerr << " k "<<k<<std::endl;
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
ComplexD c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk) {
|
||||
int idx_a, idx_b;
|
||||
// int lda = m; // m x k column major
|
||||
// int ldb = k; // k x n column major
|
||||
// int ldc = m; // m x b column major
|
||||
if(OpA!=GridBLAS_OP_N) {
|
||||
idx_a =kk + mm*lda;
|
||||
} else {
|
||||
idx_a =mm + kk*lda;
|
||||
}
|
||||
if(OpB!=GridBLAS_OP_N) {
|
||||
idx_b =nn + kk*ldb;
|
||||
} else {
|
||||
idx_b =kk + nn*ldb;
|
||||
}
|
||||
// std::cerr << " idx_a "<<idx_a<<" idx_b "<<idx_b<<std::endl;
|
||||
|
||||
ComplexD Ac = A[idx_a];
|
||||
ComplexD Bc = B[idx_b];
|
||||
if(OpA==GridBLAS_OP_C) Ac = conjugate(Ac);
|
||||
if(OpB==GridBLAS_OP_C) Bc = conjugate(Bc);
|
||||
|
||||
c_mn += Ac*Bc;
|
||||
}
|
||||
std::cerr << " beta "<<beta<<" alpha "<<alpha<<" C_"<<mm<<","<<nn<<" "<<c_mn<<" "<<C[mm + nn*ldc]<<std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
// synchronise();
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
// Need a default/reference implementation; use Eigen
|
||||
if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
|
||||
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
|
||||
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
|
||||
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
|
||||
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
|
||||
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
|
||||
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
|
||||
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
|
||||
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
|
||||
} );
|
||||
} else {
|
||||
assert(0);
|
||||
}
|
||||
#endif
|
||||
RealD t1=usecond();
|
||||
RealD flops = 8.0*m*n*k*batchCount;
|
||||
RealD bytes = 1.0*sizeof(ComplexD)*(m*k+k*n+m*n)*batchCount;
|
||||
@ -305,6 +414,9 @@ public:
|
||||
RealD t2=usecond();
|
||||
int32_t batchCount = Amk.size();
|
||||
|
||||
assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
|
||||
assert(OpB!=GridBLAS_OP_T);
|
||||
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
@ -365,26 +477,69 @@ public:
|
||||
assert(err==CUBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
//MKL’s cblas_<T>gemm_batch & OneAPI
|
||||
#warning "oneMKL implementation not built "
|
||||
int64_t m64=m;
|
||||
int64_t n64=n;
|
||||
int64_t k64=k;
|
||||
int64_t lda64=lda;
|
||||
int64_t ldb64=ldb;
|
||||
int64_t ldc64=ldc;
|
||||
int64_t batchCount64=batchCount;
|
||||
|
||||
oneapi::mkl::transpose iOpA;
|
||||
oneapi::mkl::transpose iOpB;
|
||||
|
||||
if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
|
||||
if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
|
||||
if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
|
||||
if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
|
||||
if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
|
||||
if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
|
||||
|
||||
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
|
||||
&iOpA,
|
||||
&iOpB,
|
||||
&m64,&n64,&k64,
|
||||
(ComplexF *) &alpha_p[0],
|
||||
(const ComplexF **)&Amk[0], (const int64_t *)&lda64,
|
||||
(const ComplexF **)&Bkn[0], (const int64_t *)&ldb64,
|
||||
(ComplexF *) &beta_p[0],
|
||||
(ComplexF **)&Cmn[0], (const int64_t *)&ldc64,
|
||||
(int64_t)1,&batchCount64,std::vector<sycl::event>());
|
||||
synchronise();
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
int sda = lda*k;
|
||||
int sdb = ldb*k;
|
||||
int sdc = ldc*n;
|
||||
ComplexF alphaf(real(alpha),imag(alpha));
|
||||
ComplexF betaf(real(beta),imag(beta));
|
||||
// Need a default/reference implementation
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
ComplexF c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
|
||||
Cmn[p][mm + nn*ldc] = (alphaf)*c_mn + (betaf)*Cmn[p][mm + nn*ldc ];
|
||||
}
|
||||
// Need a default/reference implementation; use Eigen
|
||||
if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
|
||||
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
|
||||
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
|
||||
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
|
||||
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
|
||||
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
|
||||
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
|
||||
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
|
||||
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
|
||||
} );
|
||||
} else {
|
||||
assert(0);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
RealD t1=usecond();
|
||||
RealD flops = 8.0*m*n*k*batchCount;
|
||||
@ -407,6 +562,9 @@ public:
|
||||
RealD t2=usecond();
|
||||
int32_t batchCount = Amk.size();
|
||||
|
||||
assert(OpA!=GridBLAS_OP_C); // Real case no conjugate
|
||||
assert(OpB!=GridBLAS_OP_C);
|
||||
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
@ -466,24 +624,69 @@ public:
|
||||
assert(err==CUBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
//MKL’s cblas_<T>gemm_batch & OneAPI
|
||||
#warning "oneMKL implementation not built "
|
||||
int64_t m64=m;
|
||||
int64_t n64=n;
|
||||
int64_t k64=k;
|
||||
int64_t lda64=lda;
|
||||
int64_t ldb64=ldb;
|
||||
int64_t ldc64=ldc;
|
||||
int64_t batchCount64=batchCount;
|
||||
|
||||
oneapi::mkl::transpose iOpA;
|
||||
oneapi::mkl::transpose iOpB;
|
||||
|
||||
if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
|
||||
if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
|
||||
if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
|
||||
if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
|
||||
if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
|
||||
if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
|
||||
|
||||
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
|
||||
&iOpA,
|
||||
&iOpB,
|
||||
&m64,&n64,&k64,
|
||||
(float *) &alpha_p[0],
|
||||
(const float **)&Amk[0], (const int64_t *)&lda64,
|
||||
(const float **)&Bkn[0], (const int64_t *)&ldb64,
|
||||
(float *) &beta_p[0],
|
||||
(float **)&Cmn[0], (const int64_t *)&ldc64,
|
||||
(int64_t)1,&batchCount64,std::vector<sycl::event>());
|
||||
synchronise();
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
int sda = lda*k;
|
||||
int sdb = ldb*k;
|
||||
int sdc = ldc*n;
|
||||
// Need a default/reference implementation
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
RealD c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
|
||||
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
|
||||
}
|
||||
// Need a default/reference implementation; use Eigen
|
||||
if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k);
|
||||
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n);
|
||||
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m);
|
||||
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],k,n);
|
||||
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],m,k);
|
||||
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k);
|
||||
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXf> eAmk(Amk[p],k,m);
|
||||
Eigen::Map<Eigen::MatrixXf> eBkn(Bkn[p],n,k);
|
||||
Eigen::Map<Eigen::MatrixXf> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
|
||||
} );
|
||||
} else {
|
||||
assert(0);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
RealD t1=usecond();
|
||||
RealD flops = 2.0*m*n*k*batchCount;
|
||||
@ -494,7 +697,6 @@ public:
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// Double precision real GEMM
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void gemmBatched(GridBLASOperation_t OpA,
|
||||
GridBLASOperation_t OpB,
|
||||
int m,int n, int k,
|
||||
@ -507,6 +709,9 @@ public:
|
||||
RealD t2=usecond();
|
||||
int32_t batchCount = Amk.size();
|
||||
|
||||
assert(OpA!=GridBLAS_OP_C); // Real case no conjugate
|
||||
assert(OpB!=GridBLAS_OP_C);
|
||||
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
@ -567,161 +772,124 @@ public:
|
||||
assert(err==CUBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
/*
|
||||
int64_t m64=m;
|
||||
int64_t n64=n;
|
||||
int64_t k64=k;
|
||||
int64_t lda64=lda;
|
||||
int64_t ldb64=ldb;
|
||||
int64_t ldc64=ldc;
|
||||
int64_t batchCount64=batchCount;
|
||||
oneapi::mkl::blas::column_major::gemm_batch(*theGridAccelerator,
|
||||
onemkl::transpose::N,
|
||||
onemkl::transpose::N,
|
||||
&m64,&n64,&k64,
|
||||
(double *) &alpha_p[0],
|
||||
(double **)&Amk[0], lda,
|
||||
(double **)&Bkn[0], ldb,
|
||||
(double *) &beta_p[0],
|
||||
(double **)&Cmn[0], ldc,
|
||||
1,&batchCount64);
|
||||
*/
|
||||
//MKL’s cblas_<T>gemm_batch & OneAPI
|
||||
#warning "oneMKL implementation not built "
|
||||
|
||||
oneapi::mkl::transpose iOpA;
|
||||
oneapi::mkl::transpose iOpB;
|
||||
|
||||
if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
|
||||
if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
|
||||
if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
|
||||
if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
|
||||
if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
|
||||
if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
|
||||
|
||||
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
|
||||
&iOpA,
|
||||
&iOpB,
|
||||
&m64,&n64,&k64,
|
||||
(double *) &alpha_p[0],
|
||||
(const double **)&Amk[0], (const int64_t *)&lda64,
|
||||
(const double **)&Bkn[0], (const int64_t *)&ldb64,
|
||||
(double *) &beta_p[0],
|
||||
(double **)&Cmn[0], (const int64_t *)&ldc64,
|
||||
(int64_t)1,&batchCount64,std::vector<sycl::event>());
|
||||
synchronise();
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
int sda = lda*k;
|
||||
int sdb = ldb*k;
|
||||
int sdc = ldc*n;
|
||||
// Need a default/reference implementation
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
RealD c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
|
||||
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
|
||||
}
|
||||
// Need a default/reference implementation; use Eigen
|
||||
if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k);
|
||||
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n);
|
||||
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_N) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m);
|
||||
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],k,n);
|
||||
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_T) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],m,k);
|
||||
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k);
|
||||
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk * eBkn.transpose() ;
|
||||
});
|
||||
} else if ( (OpA == GridBLAS_OP_T ) && (OpB == GridBLAS_OP_T) ) {
|
||||
thread_for (p, batchCount, {
|
||||
Eigen::Map<Eigen::MatrixXd> eAmk(Amk[p],k,m);
|
||||
Eigen::Map<Eigen::MatrixXd> eBkn(Bkn[p],n,k);
|
||||
Eigen::Map<Eigen::MatrixXd> eCmn(Cmn[p],m,n);
|
||||
eCmn = beta * eCmn + alpha * eAmk.transpose() * eBkn.transpose() ;
|
||||
});
|
||||
} else {
|
||||
assert(0);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
RealD t1=usecond();
|
||||
RealD flops = 2.0*m*n*k*batchCount;
|
||||
RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount;
|
||||
}
|
||||
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Strided case used by benchmark, but generally unused in Grid
|
||||
// Keep a code example in double complex, but don't generate the single and real variants for now
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void gemmStridedBatched(int m,int n, int k,
|
||||
ComplexD alpha,
|
||||
ComplexD* Amk, // pointer list to matrices
|
||||
ComplexD* Bkn,
|
||||
ComplexD beta,
|
||||
ComplexD* Cmn,
|
||||
int batchCount)
|
||||
{
|
||||
// Use C-row major storage, so transpose calls
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
int sda = m*k;
|
||||
int sdb = k*n;
|
||||
int sdc = m*n;
|
||||
deviceVector<ComplexD> alpha_p(1);
|
||||
deviceVector<ComplexD> beta_p(1);
|
||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
|
||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
|
||||
|
||||
// std::cout << "blasZgemmStridedBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
|
||||
// std::cout << "blasZgemmStridedBatched ld "<<lda<<","<<ldb<<","<<ldc<<std::endl;
|
||||
// std::cout << "blasZgemmStridedBatched sd "<<sda<<","<<sdb<<","<<sdc<<std::endl;
|
||||
#ifdef GRID_HIP
|
||||
auto err = hipblasZgemmStridedBatched(gridblasHandle,
|
||||
HIPBLAS_OP_N,
|
||||
HIPBLAS_OP_N,
|
||||
m,n,k,
|
||||
(hipblasDoubleComplex *) &alpha_p[0],
|
||||
(hipblasDoubleComplex *) Amk, lda, sda,
|
||||
(hipblasDoubleComplex *) Bkn, ldb, sdb,
|
||||
(hipblasDoubleComplex *) &beta_p[0],
|
||||
(hipblasDoubleComplex *) Cmn, ldc, sdc,
|
||||
batchCount);
|
||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
cublasZgemmStridedBatched(gridblasHandle,
|
||||
CUBLAS_OP_N,
|
||||
CUBLAS_OP_N,
|
||||
m,n,k,
|
||||
(cuDoubleComplex *) &alpha_p[0],
|
||||
(cuDoubleComplex *) Amk, lda, sda,
|
||||
(cuDoubleComplex *) Bkn, ldb, sdb,
|
||||
(cuDoubleComplex *) &beta_p[0],
|
||||
(cuDoubleComplex *) Cmn, ldc, sdc,
|
||||
batchCount);
|
||||
#endif
|
||||
#if defined(GRID_SYCL) || defined(GRID_ONE_MKL)
|
||||
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
|
||||
oneapi::mkl::transpose::N,
|
||||
oneapi::mkl::transpose::N,
|
||||
m,n,k,
|
||||
alpha,
|
||||
(const ComplexD *)Amk,lda,sda,
|
||||
(const ComplexD *)Bkn,ldb,sdb,
|
||||
beta,
|
||||
(ComplexD *)Cmn,ldc,sdc,
|
||||
batchCount);
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL)
|
||||
// Need a default/reference implementation
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
ComplexD c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
|
||||
Cmn[mm + nn*ldc + p*sdc] = (alpha)*c_mn + (beta)*Cmn[mm + nn*ldc + p*sdc];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
template<class CComplex>
|
||||
double benchmark(int M, int N, int K, int BATCH)
|
||||
{
|
||||
int32_t N_A = M*K*BATCH;
|
||||
int32_t N_B = K*N*BATCH;
|
||||
int32_t N_C = M*N*BATCH;
|
||||
deviceVector<ComplexD> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(ComplexD));
|
||||
deviceVector<ComplexD> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(ComplexD));
|
||||
deviceVector<ComplexD> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(ComplexD));
|
||||
ComplexD alpha(1.0);
|
||||
ComplexD beta (1.0);
|
||||
deviceVector<CComplex> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(CComplex));
|
||||
deviceVector<CComplex> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(CComplex));
|
||||
deviceVector<CComplex> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(CComplex));
|
||||
CComplex alpha(1.0);
|
||||
CComplex beta (1.0);
|
||||
RealD flops = 8.0*M*N*K*BATCH;
|
||||
int ncall=10;
|
||||
int ncall=1000;
|
||||
deviceVector<CComplex *> As(BATCH);
|
||||
deviceVector<CComplex *> Bs(BATCH);
|
||||
deviceVector<CComplex *> Cs(BATCH);
|
||||
for(int b = 0 ; b < BATCH;b++) {
|
||||
CComplex *ptr;
|
||||
ptr = &A[b*M*K]; acceleratorPut(As[b],ptr);
|
||||
ptr = &B[b*K*N]; acceleratorPut(Bs[b],ptr);
|
||||
ptr = &C[b*M*N]; acceleratorPut(Cs[b],ptr);
|
||||
}
|
||||
|
||||
// Warm up call
|
||||
gemmBatched(M,N,K,
|
||||
alpha,
|
||||
As, // m x k
|
||||
Bs, // k x n
|
||||
beta,
|
||||
Cs);
|
||||
synchronise();
|
||||
|
||||
RealD t0 = usecond();
|
||||
for(int i=0;i<ncall;i++){
|
||||
gemmStridedBatched(M,N,K,
|
||||
alpha,
|
||||
&A[0], // m x k
|
||||
&B[0], // k x n
|
||||
beta,
|
||||
&C[0], // m x n
|
||||
BATCH);
|
||||
gemmBatched(M,N,K,
|
||||
alpha,
|
||||
As, // m x k
|
||||
Bs, // k x n
|
||||
beta,
|
||||
Cs);
|
||||
synchronise();
|
||||
}
|
||||
synchronise();
|
||||
RealD t1 = usecond();
|
||||
RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K)*BATCH;
|
||||
RealD bytes = 1.0*sizeof(CComplex)*(M*N*2+N*K+M*K)*BATCH;
|
||||
flops = 8.0*M*N*K*BATCH*ncall;
|
||||
flops = flops/(t1-t0)/1.e3;
|
||||
return flops; // Returns gigaflops
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
513
Grid/algorithms/deflation/MultiRHSBlockProject.h
Normal file
513
Grid/algorithms/deflation/MultiRHSBlockProject.h
Normal file
@ -0,0 +1,513 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: MultiRHSDeflation.h
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
/*
|
||||
MultiRHS block projection
|
||||
|
||||
Import basis -> nblock x nbasis x (block x internal)
|
||||
Import vector of fine lattice objects -> nblock x nrhs x (block x internal)
|
||||
|
||||
=> coarse_(nrhs x nbasis )^block = via batched GEMM
|
||||
|
||||
//template<class vobj,class CComplex,int nbasis,class VLattice>
|
||||
//inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
|
||||
// const VLattice &fineData,
|
||||
// const VLattice &Basis)
|
||||
*/
|
||||
|
||||
template<class Field>
|
||||
class MultiRHSBlockProject
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename Field::scalar_type scalar;
|
||||
typedef typename Field::scalar_object scalar_object;
|
||||
typedef Field Fermion;
|
||||
|
||||
int nbasis;
|
||||
GridBase *coarse_grid;
|
||||
GridBase *fine_grid;
|
||||
uint64_t block_vol;
|
||||
uint64_t fine_vol;
|
||||
uint64_t coarse_vol;
|
||||
uint64_t words;
|
||||
|
||||
// Row major layout "C" order:
|
||||
// BLAS_V[coarse_vol][nbasis][block_vol][words]
|
||||
// BLAS_F[coarse_vol][nrhs][block_vol][words]
|
||||
// BLAS_C[coarse_vol][nrhs][nbasis]
|
||||
/*
|
||||
* in Fortran column major notation (cuBlas order)
|
||||
*
|
||||
* Vxb = [v1(x)][..][vn(x)] ... x coarse vol
|
||||
*
|
||||
* Fxr = [r1(x)][..][rm(x)] ... x coarse vol
|
||||
*
|
||||
* Block project:
|
||||
* C_br = V^dag F x coarse vol
|
||||
*
|
||||
* Block promote:
|
||||
* F_xr = Vxb Cbr x coarse_vol
|
||||
*/
|
||||
deviceVector<scalar> BLAS_V; // words * block_vol * nbasis x coarse_vol
|
||||
deviceVector<scalar> BLAS_F; // nrhs x fine_vol * words -- the sources
|
||||
deviceVector<scalar> BLAS_C; // nrhs x coarse_vol * nbasis -- the coarse coeffs
|
||||
|
||||
RealD blasNorm2(deviceVector<scalar> &blas)
|
||||
{
|
||||
scalar ss(0.0);
|
||||
std::vector<scalar> tmp(blas.size());
|
||||
acceleratorCopyFromDevice(&blas[0],&tmp[0],blas.size()*sizeof(scalar));
|
||||
for(int64_t s=0;s<blas.size();s++){
|
||||
ss=ss+tmp[s]*adj(tmp[s]);
|
||||
}
|
||||
coarse_grid->GlobalSum(ss);
|
||||
return real(ss);
|
||||
}
|
||||
|
||||
MultiRHSBlockProject(){};
|
||||
~MultiRHSBlockProject(){ Deallocate(); };
|
||||
|
||||
void Deallocate(void)
|
||||
{
|
||||
nbasis=0;
|
||||
coarse_grid=nullptr;
|
||||
fine_grid=nullptr;
|
||||
fine_vol=0;
|
||||
block_vol=0;
|
||||
coarse_vol=0;
|
||||
words=0;
|
||||
BLAS_V.resize(0);
|
||||
BLAS_F.resize(0);
|
||||
BLAS_C.resize(0);
|
||||
}
|
||||
void Allocate(int _nbasis,GridBase *_fgrid,GridBase *_cgrid)
|
||||
{
|
||||
nbasis=_nbasis;
|
||||
|
||||
fine_grid=_fgrid;
|
||||
coarse_grid=_cgrid;
|
||||
|
||||
fine_vol = fine_grid->lSites();
|
||||
coarse_vol = coarse_grid->lSites();
|
||||
block_vol = fine_vol/coarse_vol;
|
||||
|
||||
words = sizeof(scalar_object)/sizeof(scalar);
|
||||
|
||||
BLAS_V.resize (fine_vol * words * nbasis );
|
||||
}
|
||||
void ImportFineGridVectors(std::vector <Field > &vecs, deviceVector<scalar> &blas)
|
||||
{
|
||||
int nvec = vecs.size();
|
||||
typedef typename Field::vector_object vobj;
|
||||
// std::cout << GridLogMessage <<" BlockProjector importing "<<nvec<< " fine grid vectors" <<std::endl;
|
||||
|
||||
assert(vecs[0].Grid()==fine_grid);
|
||||
|
||||
subdivides(coarse_grid,fine_grid); // require they map
|
||||
|
||||
int _ndimension = coarse_grid->_ndimension;
|
||||
assert(block_vol == fine_grid->oSites() / coarse_grid->oSites());
|
||||
|
||||
Coordinate block_r (_ndimension);
|
||||
for(int d=0 ; d<_ndimension;d++){
|
||||
block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d];
|
||||
}
|
||||
|
||||
uint64_t sz = blas.size();
|
||||
|
||||
acceleratorMemSet(&blas[0],0,blas.size()*sizeof(scalar));
|
||||
|
||||
Coordinate fine_rdimensions = fine_grid->_rdimensions;
|
||||
Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
|
||||
int64_t bv= block_vol;
|
||||
for(int v=0;v<vecs.size();v++){
|
||||
|
||||
// std::cout << " BlockProjector importing vector"<<v<<" "<<norm2(vecs[v])<<std::endl;
|
||||
autoView( fineData , vecs[v], AcceleratorRead);
|
||||
|
||||
auto blasData_p = &blas[0];
|
||||
auto fineData_p = &fineData[0];
|
||||
|
||||
int64_t osites = fine_grid->oSites();
|
||||
|
||||
// loop over fine sites
|
||||
const int Nsimd = vobj::Nsimd();
|
||||
// std::cout << "sz "<<sz<<std::endl;
|
||||
// std::cout << "prod "<<Nsimd * coarse_grid->oSites() * block_vol * nvec * words<<std::endl;
|
||||
assert(sz == Nsimd * coarse_grid->oSites() * block_vol * nvec * words);
|
||||
uint64_t lwords= words; // local variable for copy in to GPU
|
||||
accelerator_for(sf,osites,Nsimd,{
|
||||
#ifdef GRID_SIMT
|
||||
{
|
||||
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
|
||||
#else
|
||||
for(int lane=0;lane<Nsimd;lane++) {
|
||||
#endif
|
||||
// One thread per fine site
|
||||
Coordinate coor_f(_ndimension);
|
||||
Coordinate coor_b(_ndimension);
|
||||
Coordinate coor_c(_ndimension);
|
||||
|
||||
// Fine site to fine coor
|
||||
Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions);
|
||||
|
||||
for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d];
|
||||
for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d];
|
||||
|
||||
int sc;// coarse site
|
||||
int sb;// block site
|
||||
Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions);
|
||||
Lexicographic::IndexFromCoor(coor_b,sb,block_r);
|
||||
|
||||
scalar_object data = extractLane(lane,fineData[sf]);
|
||||
|
||||
// BLAS layout address calculation
|
||||
// words * block_vol * nbasis x coarse_vol
|
||||
// coarse oSite x block vole x lanes
|
||||
int64_t site = (lane*osites + sc*bv)*nvec
|
||||
+ v*bv
|
||||
+ sb;
|
||||
|
||||
// assert(site*lwords<sz);
|
||||
|
||||
scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords];
|
||||
|
||||
*ptr = data;
|
||||
#ifdef GRID_SIMT
|
||||
}
|
||||
#else
|
||||
}
|
||||
#endif
|
||||
});
|
||||
// std::cout << " import fine Blas norm "<<blasNorm2(blas)<<std::endl;
|
||||
// std::cout << " BlockProjector imported vector"<<v<<std::endl;
|
||||
}
|
||||
}
|
||||
void ExportFineGridVectors(std::vector <Field> &vecs, deviceVector<scalar> &blas)
|
||||
{
|
||||
typedef typename Field::vector_object vobj;
|
||||
|
||||
int nvec = vecs.size();
|
||||
|
||||
assert(vecs[0].Grid()==fine_grid);
|
||||
|
||||
subdivides(coarse_grid,fine_grid); // require they map
|
||||
|
||||
int _ndimension = coarse_grid->_ndimension;
|
||||
assert(block_vol == fine_grid->oSites() / coarse_grid->oSites());
|
||||
|
||||
Coordinate block_r (_ndimension);
|
||||
for(int d=0 ; d<_ndimension;d++){
|
||||
block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d];
|
||||
}
|
||||
Coordinate fine_rdimensions = fine_grid->_rdimensions;
|
||||
Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
|
||||
|
||||
// std::cout << " export fine Blas norm "<<blasNorm2(blas)<<std::endl;
|
||||
|
||||
int64_t bv= block_vol;
|
||||
for(int v=0;v<vecs.size();v++){
|
||||
|
||||
autoView( fineData , vecs[v], AcceleratorWrite);
|
||||
|
||||
auto blasData_p = &blas[0];
|
||||
auto fineData_p = &fineData[0];
|
||||
|
||||
int64_t osites = fine_grid->oSites();
|
||||
uint64_t lwords = words;
|
||||
// std::cout << " Nsimd is "<<vobj::Nsimd() << std::endl;
|
||||
// std::cout << " lwords is "<<lwords << std::endl;
|
||||
// std::cout << " sizeof(scalar_object) is "<<sizeof(scalar_object) << std::endl;
|
||||
// loop over fine sites
|
||||
accelerator_for(sf,osites,vobj::Nsimd(),{
|
||||
|
||||
#ifdef GRID_SIMT
|
||||
{
|
||||
int lane=acceleratorSIMTlane(vobj::Nsimd()); // buffer lane
|
||||
#else
|
||||
for(int lane=0;lane<vobj::Nsimd();lane++) {
|
||||
#endif
|
||||
// One thread per fine site
|
||||
Coordinate coor_f(_ndimension);
|
||||
Coordinate coor_b(_ndimension);
|
||||
Coordinate coor_c(_ndimension);
|
||||
|
||||
Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions);
|
||||
|
||||
for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d];
|
||||
for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d];
|
||||
|
||||
int sc;
|
||||
int sb;
|
||||
Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions);
|
||||
Lexicographic::IndexFromCoor(coor_b,sb,block_r);
|
||||
|
||||
// BLAS layout address calculation
|
||||
// words * block_vol * nbasis x coarse_vol
|
||||
int64_t site = (lane*osites + sc*bv)*nvec
|
||||
+ v*bv
|
||||
+ sb;
|
||||
|
||||
scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords];
|
||||
|
||||
scalar_object data = *ptr;
|
||||
|
||||
insertLane(lane,fineData[sf],data);
|
||||
#ifdef GRID_SIMT
|
||||
}
|
||||
#else
|
||||
}
|
||||
#endif
|
||||
});
|
||||
}
|
||||
}
|
||||
template<class vobj>
|
||||
void ImportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas)
|
||||
{
|
||||
int nvec = vecs.size();
|
||||
typedef typename vobj::scalar_object coarse_scalar_object;
|
||||
|
||||
// std::cout << " BlockProjector importing "<<nvec<< " coarse grid vectors" <<std::endl;
|
||||
|
||||
assert(vecs[0].Grid()==coarse_grid);
|
||||
|
||||
int _ndimension = coarse_grid->_ndimension;
|
||||
|
||||
uint64_t sz = blas.size();
|
||||
|
||||
Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
|
||||
|
||||
for(int v=0;v<vecs.size();v++){
|
||||
|
||||
// std::cout << " BlockProjector importing coarse vector"<<v<<" "<<norm2(vecs[v])<<std::endl;
|
||||
autoView( coarseData , vecs[v], AcceleratorRead);
|
||||
|
||||
auto blasData_p = &blas[0];
|
||||
auto coarseData_p = &coarseData[0];
|
||||
|
||||
int64_t osites = coarse_grid->oSites();
|
||||
|
||||
// loop over fine sites
|
||||
const int Nsimd = vobj::Nsimd();
|
||||
uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar);
|
||||
assert(cwords==nbasis);
|
||||
|
||||
accelerator_for(sc,osites,Nsimd,{
|
||||
#ifdef GRID_SIMT
|
||||
{
|
||||
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
|
||||
#else
|
||||
for(int lane=0;lane<Nsimd;lane++) {
|
||||
#endif
|
||||
// C_br per site
|
||||
int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords;
|
||||
|
||||
coarse_scalar_object data = extractLane(lane,coarseData[sc]);
|
||||
|
||||
coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site];
|
||||
|
||||
*ptr = data;
|
||||
#ifdef GRID_SIMT
|
||||
}
|
||||
#else
|
||||
}
|
||||
#endif
|
||||
});
|
||||
// std::cout << " import coarsee Blas norm "<<blasNorm2(blas)<<std::endl;
|
||||
}
|
||||
}
|
||||
template<class vobj>
|
||||
void ExportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas)
|
||||
{
|
||||
int nvec = vecs.size();
|
||||
typedef typename vobj::scalar_object coarse_scalar_object;
|
||||
// std::cout << GridLogMessage<<" BlockProjector exporting "<<nvec<< " coarse grid vectors" <<std::endl;
|
||||
|
||||
assert(vecs[0].Grid()==coarse_grid);
|
||||
|
||||
int _ndimension = coarse_grid->_ndimension;
|
||||
|
||||
uint64_t sz = blas.size();
|
||||
|
||||
Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
|
||||
|
||||
// std::cout << " export coarsee Blas norm "<<blasNorm2(blas)<<std::endl;
|
||||
for(int v=0;v<vecs.size();v++){
|
||||
|
||||
// std::cout << " BlockProjector exporting coarse vector"<<v<<std::endl;
|
||||
autoView( coarseData , vecs[v], AcceleratorWrite);
|
||||
|
||||
auto blasData_p = &blas[0];
|
||||
auto coarseData_p = &coarseData[0];
|
||||
|
||||
int64_t osites = coarse_grid->oSites();
|
||||
|
||||
// loop over fine sites
|
||||
const int Nsimd = vobj::Nsimd();
|
||||
uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar);
|
||||
assert(cwords==nbasis);
|
||||
|
||||
accelerator_for(sc,osites,Nsimd,{
|
||||
// Wrap in a macro "FOR_ALL_LANES(lane,{ ... });
|
||||
#ifdef GRID_SIMT
|
||||
{
|
||||
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
|
||||
#else
|
||||
for(int lane=0;lane<Nsimd;lane++) {
|
||||
#endif
|
||||
int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords;
|
||||
coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site];
|
||||
coarse_scalar_object data = *ptr;
|
||||
insertLane(lane,coarseData[sc],data);
|
||||
#ifdef GRID_SIMT
|
||||
}
|
||||
#else
|
||||
}
|
||||
#endif
|
||||
});
|
||||
}
|
||||
}
|
||||
void ImportBasis(std::vector < Field > &vecs)
|
||||
{
|
||||
// std::cout << " BlockProjector Import basis size "<<vecs.size()<<std::endl;
|
||||
ImportFineGridVectors(vecs,BLAS_V);
|
||||
}
|
||||
|
||||
template<class cobj>
|
||||
void blockProject(std::vector<Field> &fine,std::vector< Lattice<cobj> > & coarse)
|
||||
{
|
||||
int nrhs=fine.size();
|
||||
int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar);
|
||||
// std::cout << "blockProject nbasis " <<nbasis<<" " << _nbasis<<std::endl;
|
||||
assert(nbasis==_nbasis);
|
||||
|
||||
BLAS_F.resize (fine_vol * words * nrhs );
|
||||
BLAS_C.resize (coarse_vol * nbasis * nrhs );
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// Copy in the multi-rhs sources to same data layout
|
||||
/////////////////////////////////////////////
|
||||
// std::cout << "BlockProject import fine"<<std::endl;
|
||||
ImportFineGridVectors(fine,BLAS_F);
|
||||
|
||||
deviceVector<scalar *> Vd(coarse_vol);
|
||||
deviceVector<scalar *> Fd(coarse_vol);
|
||||
deviceVector<scalar *> Cd(coarse_vol);
|
||||
|
||||
// std::cout << "BlockProject pointers"<<std::endl;
|
||||
for(int c=0;c<coarse_vol;c++){
|
||||
// BLAS_V[coarse_vol][nbasis][block_vol][words]
|
||||
// BLAS_F[coarse_vol][nrhs][block_vol][words]
|
||||
// BLAS_C[coarse_vol][nrhs][nbasis]
|
||||
scalar * Vh = & BLAS_V[c*nbasis*block_vol*words];
|
||||
scalar * Fh = & BLAS_F[c*nrhs*block_vol*words];
|
||||
scalar * Ch = & BLAS_C[c*nrhs*nbasis];
|
||||
|
||||
acceleratorPut(Vd[c],Vh);
|
||||
acceleratorPut(Fd[c],Fh);
|
||||
acceleratorPut(Cd[c],Ch);
|
||||
}
|
||||
|
||||
GridBLAS BLAS;
|
||||
|
||||
// std::cout << "BlockProject BLAS"<<std::endl;
|
||||
int64_t vw = block_vol * words;
|
||||
/////////////////////////////////////////
|
||||
// C_br = V^dag R
|
||||
/////////////////////////////////////////
|
||||
BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,
|
||||
nbasis,nrhs,vw,
|
||||
ComplexD(1.0),
|
||||
Vd,
|
||||
Fd,
|
||||
ComplexD(0.0), // wipe out C
|
||||
Cd);
|
||||
BLAS.synchronise();
|
||||
// std::cout << "BlockProject done"<<std::endl;
|
||||
ExportCoarseGridVectors(coarse, BLAS_C);
|
||||
// std::cout << "BlockProject done"<<std::endl;
|
||||
|
||||
}
|
||||
|
||||
template<class cobj>
|
||||
void blockPromote(std::vector<Field> &fine,std::vector<Lattice<cobj> > & coarse)
|
||||
{
|
||||
int nrhs=fine.size();
|
||||
int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar);
|
||||
assert(nbasis==_nbasis);
|
||||
|
||||
BLAS_F.resize (fine_vol * words * nrhs );
|
||||
BLAS_C.resize (coarse_vol * nbasis * nrhs );
|
||||
|
||||
ImportCoarseGridVectors(coarse, BLAS_C);
|
||||
|
||||
GridBLAS BLAS;
|
||||
|
||||
deviceVector<scalar *> Vd(coarse_vol);
|
||||
deviceVector<scalar *> Fd(coarse_vol);
|
||||
deviceVector<scalar *> Cd(coarse_vol);
|
||||
|
||||
for(int c=0;c<coarse_vol;c++){
|
||||
// BLAS_V[coarse_vol][nbasis][block_vol][words]
|
||||
// BLAS_F[coarse_vol][nrhs][block_vol][words]
|
||||
// BLAS_C[coarse_vol][nrhs][nbasis]
|
||||
scalar * Vh = & BLAS_V[c*nbasis*block_vol*words];
|
||||
scalar * Fh = & BLAS_F[c*nrhs*block_vol*words];
|
||||
scalar * Ch = & BLAS_C[c*nrhs*nbasis];
|
||||
acceleratorPut(Vd[c],Vh);
|
||||
acceleratorPut(Fd[c],Fh);
|
||||
acceleratorPut(Cd[c],Ch);
|
||||
}
|
||||
|
||||
/////////////////////////////////////////
|
||||
// Block promote:
|
||||
// F_xr = Vxb Cbr (x coarse_vol)
|
||||
/////////////////////////////////////////
|
||||
|
||||
int64_t vw = block_vol * words;
|
||||
BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
||||
vw,nrhs,nbasis,
|
||||
ComplexD(1.0),
|
||||
Vd,
|
||||
Cd,
|
||||
ComplexD(0.0), // wipe out C
|
||||
Fd);
|
||||
BLAS.synchronise();
|
||||
// std::cout << " blas call done"<<std::endl;
|
||||
|
||||
ExportFineGridVectors(fine, BLAS_F);
|
||||
// std::cout << " exported "<<std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
233
Grid/algorithms/deflation/MultiRHSDeflation.h
Normal file
233
Grid/algorithms/deflation/MultiRHSDeflation.h
Normal file
@ -0,0 +1,233 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: MultiRHSDeflation.h
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
/* Need helper object for BLAS accelerated mrhs projection
|
||||
|
||||
i) MultiRHS Deflation
|
||||
|
||||
Import Evecs -> nev x vol x internal
|
||||
Import vector of Lattice objects -> nrhs x vol x internal
|
||||
=> Cij (nrhs x Nev) via GEMM.
|
||||
=> Guess (nrhs x vol x internal) = C x evecs (via GEMM)
|
||||
Export
|
||||
|
||||
|
||||
ii) MultiRHS block projection
|
||||
|
||||
Import basis -> nblock x nbasis x (block x internal)
|
||||
Import vector of fine lattice objects -> nblock x nrhs x (block x internal)
|
||||
|
||||
=> coarse_(nrhs x nbasis )^block = via batched GEMM
|
||||
|
||||
iii) Alternate interface:
|
||||
Import higher dim Lattice object-> vol x nrhs layout
|
||||
|
||||
*/
|
||||
template<class Field>
|
||||
class MultiRHSDeflation
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename Field::scalar_type scalar;
|
||||
typedef typename Field::scalar_object scalar_object;
|
||||
|
||||
int nev;
|
||||
std::vector<RealD> eval;
|
||||
GridBase *grid;
|
||||
uint64_t vol;
|
||||
uint64_t words;
|
||||
|
||||
deviceVector<scalar> BLAS_E; // nev x vol -- the eigenbasis (up to a 1/sqrt(lambda))
|
||||
deviceVector<scalar> BLAS_R; // nrhs x vol -- the sources
|
||||
deviceVector<scalar> BLAS_G; // nrhs x vol -- the guess
|
||||
deviceVector<scalar> BLAS_C; // nrhs x nev -- the coefficients
|
||||
|
||||
MultiRHSDeflation(){};
|
||||
~MultiRHSDeflation(){ Deallocate(); };
|
||||
|
||||
void Deallocate(void)
|
||||
{
|
||||
nev=0;
|
||||
grid=nullptr;
|
||||
vol=0;
|
||||
words=0;
|
||||
BLAS_E.resize(0);
|
||||
BLAS_R.resize(0);
|
||||
BLAS_C.resize(0);
|
||||
BLAS_G.resize(0);
|
||||
}
|
||||
void Allocate(int _nev,GridBase *_grid)
|
||||
{
|
||||
nev=_nev;
|
||||
grid=_grid;
|
||||
vol = grid->lSites();
|
||||
words = sizeof(scalar_object)/sizeof(scalar);
|
||||
eval.resize(nev);
|
||||
BLAS_E.resize (vol * words * nev );
|
||||
std::cout << GridLogMessage << " Allocate for "<<nev<<" eigenvectors and volume "<<vol<<std::endl;
|
||||
}
|
||||
void ImportEigenVector(Field &evec,RealD &_eval, int ev)
|
||||
{
|
||||
// std::cout << " ev " <<ev<<" eval "<<_eval<< std::endl;
|
||||
assert(ev<eval.size());
|
||||
eval[ev] = _eval;
|
||||
|
||||
int64_t offset = ev*vol*words;
|
||||
autoView(v,evec,AcceleratorRead);
|
||||
acceleratorCopyDeviceToDevice(&v[0],&BLAS_E[offset],sizeof(scalar_object)*vol);
|
||||
|
||||
}
|
||||
void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval)
|
||||
{
|
||||
ImportEigenBasis(evec,_eval,0,evec.size());
|
||||
}
|
||||
// Could use to import a batch of eigenvectors
|
||||
void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval, int _ev0, int _nev)
|
||||
{
|
||||
assert(_ev0+_nev<=evec.size());
|
||||
|
||||
Allocate(_nev,evec[0].Grid());
|
||||
|
||||
// Imports a sub-batch of eigenvectors, _ev0, ..., _ev0+_nev-1
|
||||
for(int e=0;e<nev;e++){
|
||||
std::cout << "Importing eigenvector "<<e<<" evalue "<<_eval[_ev0+e]<<std::endl;
|
||||
ImportEigenVector(evec[_ev0+e],_eval[_ev0+e],e);
|
||||
}
|
||||
}
|
||||
void DeflateSources(std::vector<Field> &source,std::vector<Field> & guess)
|
||||
{
|
||||
int nrhs = source.size();
|
||||
assert(source.size()==guess.size());
|
||||
assert(grid == guess[0].Grid());
|
||||
conformable(guess[0],source[0]);
|
||||
|
||||
int64_t vw = vol * words;
|
||||
|
||||
RealD t0 = usecond();
|
||||
BLAS_R.resize(nrhs * vw); // cost free if size doesn't change
|
||||
BLAS_G.resize(nrhs * vw); // cost free if size doesn't change
|
||||
BLAS_C.resize(nev * nrhs);// cost free if size doesn't change
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// Copy in the multi-rhs sources
|
||||
/////////////////////////////////////////////
|
||||
// for(int r=0;r<nrhs;r++){
|
||||
// std::cout << " source["<<r<<"] = "<<norm2(source[r])<<std::endl;
|
||||
// }
|
||||
for(int r=0;r<nrhs;r++){
|
||||
int64_t offset = r*vw;
|
||||
autoView(v,source[r],AcceleratorRead);
|
||||
acceleratorCopyDeviceToDevice(&v[0],&BLAS_R[offset],sizeof(scalar_object)*vol);
|
||||
}
|
||||
|
||||
/*
|
||||
* in Fortran column major notation (cuBlas order)
|
||||
*
|
||||
* Exe = [e1(x)][..][en(x)]
|
||||
*
|
||||
* Rxr = [r1(x)][..][rm(x)]
|
||||
*
|
||||
* C_er = E^dag R
|
||||
* C_er = C_er / lambda_e
|
||||
* G_xr = Exe Cer
|
||||
*/
|
||||
deviceVector<scalar *> Ed(1);
|
||||
deviceVector<scalar *> Rd(1);
|
||||
deviceVector<scalar *> Cd(1);
|
||||
deviceVector<scalar *> Gd(1);
|
||||
|
||||
scalar * Eh = & BLAS_E[0];
|
||||
scalar * Rh = & BLAS_R[0];
|
||||
scalar * Ch = & BLAS_C[0];
|
||||
scalar * Gh = & BLAS_G[0];
|
||||
|
||||
acceleratorPut(Ed[0],Eh);
|
||||
acceleratorPut(Rd[0],Rh);
|
||||
acceleratorPut(Cd[0],Ch);
|
||||
acceleratorPut(Gd[0],Gh);
|
||||
|
||||
GridBLAS BLAS;
|
||||
|
||||
/////////////////////////////////////////
|
||||
// C_er = E^dag R
|
||||
/////////////////////////////////////////
|
||||
BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,
|
||||
nev,nrhs,vw,
|
||||
ComplexD(1.0),
|
||||
Ed,
|
||||
Rd,
|
||||
ComplexD(0.0), // wipe out C
|
||||
Cd);
|
||||
BLAS.synchronise();
|
||||
|
||||
assert(BLAS_C.size()==nev*nrhs);
|
||||
|
||||
std::vector<scalar> HOST_C(BLAS_C.size()); // nrhs . nev -- the coefficients
|
||||
acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar));
|
||||
grid->GlobalSumVector(&HOST_C[0],nev*nrhs);
|
||||
for(int e=0;e<nev;e++){
|
||||
RealD lam(1.0/eval[e]);
|
||||
for(int r=0;r<nrhs;r++){
|
||||
int off = e+nev*r;
|
||||
HOST_C[off]=HOST_C[off] * lam;
|
||||
// std::cout << "C["<<e<<"]["<<r<<"] ="<<HOST_C[off]<< " eval[e] "<<eval[e] <<std::endl;
|
||||
}
|
||||
}
|
||||
acceleratorCopyToDevice(&HOST_C[0],&BLAS_C[0],BLAS_C.size()*sizeof(scalar));
|
||||
|
||||
|
||||
/////////////////////////////////////////
|
||||
// Guess G_xr = Exe Cer
|
||||
/////////////////////////////////////////
|
||||
BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
||||
vw,nrhs,nev,
|
||||
ComplexD(1.0),
|
||||
Ed, // x . nev
|
||||
Cd, // nev . nrhs
|
||||
ComplexD(0.0),
|
||||
Gd);
|
||||
BLAS.synchronise();
|
||||
|
||||
///////////////////////////////////////
|
||||
// Copy out the multirhs
|
||||
///////////////////////////////////////
|
||||
for(int r=0;r<nrhs;r++){
|
||||
int64_t offset = r*vw;
|
||||
autoView(v,guess[r],AcceleratorWrite);
|
||||
acceleratorCopyDeviceToDevice(&BLAS_G[offset],&v[0],sizeof(scalar_object)*vol);
|
||||
}
|
||||
RealD t1 = usecond();
|
||||
std::cout << GridLogMessage << "MultiRHSDeflation for "<<nrhs<<" sources with "<<nev<<" eigenvectors took " << (t1-t0)/1e3 <<" ms"<<std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -33,109 +33,111 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
* Script A = SolverMatrix
|
||||
* Script P = Preconditioner
|
||||
*
|
||||
* Deflation methods considered
|
||||
* -- Solve P A x = P b [ like Luscher ]
|
||||
* DEF-1 M P A x = M P b [i.e. left precon]
|
||||
* DEF-2 P^T M A x = P^T M b
|
||||
* ADEF-1 Preconditioner = M P + Q [ Q + M + M A Q]
|
||||
* ADEF-2 Preconditioner = P^T M + Q
|
||||
* BNN Preconditioner = P^T M P + Q
|
||||
* BNN2 Preconditioner = M P + P^TM +Q - M P A M
|
||||
*
|
||||
* Implement ADEF-2
|
||||
*
|
||||
* Vstart = P^Tx + Qb
|
||||
* M1 = P^TM + Q
|
||||
* M2=M3=1
|
||||
* Vout = x
|
||||
*/
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
// abstract base
|
||||
template<class Field, class CoarseField>
|
||||
class TwoLevelFlexiblePcg : public LinearFunction<Field>
|
||||
|
||||
template<class Field>
|
||||
class TwoLevelCG : public LinearFunction<Field>
|
||||
{
|
||||
public:
|
||||
int verbose;
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
const int mmax = 5;
|
||||
GridBase *grid;
|
||||
GridBase *coarsegrid;
|
||||
|
||||
LinearOperatorBase<Field> *_Linop
|
||||
OperatorFunction<Field> *_Smoother,
|
||||
LinearFunction<CoarseField> *_CoarseSolver;
|
||||
|
||||
// Need somthing that knows how to get from Coarse to fine and back again
|
||||
// Fine operator, Smoother, CoarseSolver
|
||||
LinearOperatorBase<Field> &_FineLinop;
|
||||
LinearFunction<Field> &_Smoother;
|
||||
|
||||
// more most opertor functions
|
||||
TwoLevelFlexiblePcg(RealD tol,
|
||||
Integer maxit,
|
||||
LinearOperatorBase<Field> *Linop,
|
||||
LinearOperatorBase<Field> *SmootherLinop,
|
||||
OperatorFunction<Field> *Smoother,
|
||||
OperatorFunction<CoarseField> CoarseLinop
|
||||
) :
|
||||
TwoLevelCG(RealD tol,
|
||||
Integer maxit,
|
||||
LinearOperatorBase<Field> &FineLinop,
|
||||
LinearFunction<Field> &Smoother,
|
||||
GridBase *fine) :
|
||||
Tolerance(tol),
|
||||
MaxIterations(maxit),
|
||||
_Linop(Linop),
|
||||
_PreconditionerLinop(PrecLinop),
|
||||
_Preconditioner(Preconditioner)
|
||||
{
|
||||
verbose=0;
|
||||
_FineLinop(FineLinop),
|
||||
_Smoother(Smoother)
|
||||
{
|
||||
grid = fine;
|
||||
};
|
||||
|
||||
// The Pcg routine is common to all, but the various matrices differ from derived
|
||||
// implementation to derived implmentation
|
||||
void operator() (const Field &src, Field &psi){
|
||||
void operator() (const Field &src, Field &psi){
|
||||
|
||||
psi.Checkerboard() = src.Checkerboard();
|
||||
grid = src.Grid();
|
||||
|
||||
|
||||
virtual void operator() (const Field &src, Field &x)
|
||||
{
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg starting single RHS"<<std::endl;
|
||||
RealD f;
|
||||
RealD rtzp,rtz,a,d,b;
|
||||
RealD rptzp;
|
||||
RealD tn;
|
||||
RealD guess = norm2(psi);
|
||||
RealD ssq = norm2(src);
|
||||
RealD rsq = ssq*Tolerance*Tolerance;
|
||||
|
||||
|
||||
/////////////////////////////
|
||||
// Set up history vectors
|
||||
/////////////////////////////
|
||||
std::vector<Field> p (mmax,grid);
|
||||
int mmax = 5;
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
|
||||
std::vector<Field> p(mmax,grid);
|
||||
std::vector<Field> mmp(mmax,grid);
|
||||
std::vector<RealD> pAp(mmax);
|
||||
|
||||
Field x (grid); x = psi;
|
||||
Field z (grid);
|
||||
Field z(grid);
|
||||
Field tmp(grid);
|
||||
Field r (grid);
|
||||
Field mu (grid);
|
||||
|
||||
Field mp (grid);
|
||||
Field r (grid);
|
||||
Field mu (grid);
|
||||
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg allocated"<<std::endl;
|
||||
//Initial residual computation & set up
|
||||
RealD guess = norm2(x);
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg guess nrm "<<guess<<std::endl;
|
||||
RealD src_nrm = norm2(src);
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg src nrm "<<src_nrm<<std::endl;
|
||||
|
||||
if ( src_nrm == 0.0 ) {
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg given trivial source norm "<<src_nrm<<std::endl;
|
||||
x=Zero();
|
||||
}
|
||||
RealD tn;
|
||||
|
||||
GridStopWatch HDCGTimer;
|
||||
HDCGTimer.Start();
|
||||
//////////////////////////
|
||||
// x0 = Vstart -- possibly modify guess
|
||||
//////////////////////////
|
||||
x=src;
|
||||
Vstart(x,src);
|
||||
|
||||
|
||||
// r0 = b -A x0
|
||||
HermOp(x,mmp); // Shouldn't this be something else?
|
||||
_FineLinop.HermOp(x,mmp[0]);
|
||||
axpy (r, -1.0,mmp[0], src); // Recomputes r=src-Ax0
|
||||
{
|
||||
double n1 = norm2(x);
|
||||
double n2 = norm2(mmp[0]);
|
||||
double n3 = norm2(r);
|
||||
std::cout<<GridLogMessage<<"x,vstart,r = "<<n1<<" "<<n2<<" "<<n3<<std::endl;
|
||||
}
|
||||
|
||||
//////////////////////////////////
|
||||
// Compute z = M1 x
|
||||
//////////////////////////////////
|
||||
M1(r,z,tmp,mp,SmootherMirs);
|
||||
PcgM1(r,z);
|
||||
rtzp =real(innerProduct(r,z));
|
||||
|
||||
|
||||
///////////////////////////////////////
|
||||
// Solve for Mss mu = P A z and set p = z-mu
|
||||
// Def2: p = 1 - Q Az = Pright z
|
||||
// Def2 p = 1 - Q Az = Pright z
|
||||
// Other algos M2 is trivial
|
||||
///////////////////////////////////////
|
||||
M2(z,p[0]);
|
||||
PcgM2(z,p[0]);
|
||||
|
||||
RealD ssq = norm2(src);
|
||||
RealD rsq = ssq*Tolerance*Tolerance;
|
||||
|
||||
std::cout << GridLogMessage<<"HDCG: k=0 residual "<<rtzp<<" rsq "<<rsq<<"\n";
|
||||
|
||||
Field pp(grid);
|
||||
|
||||
for (int k=0;k<=MaxIterations;k++){
|
||||
|
||||
@ -143,31 +145,46 @@ class TwoLevelFlexiblePcg : public LinearFunction<Field>
|
||||
int peri_kp = (k+1) % mmax;
|
||||
|
||||
rtz=rtzp;
|
||||
d= M3(p[peri_k],mp,mmp[peri_k],tmp);
|
||||
d= PcgM3(p[peri_k],mmp[peri_k]);
|
||||
a = rtz/d;
|
||||
|
||||
// Memorise this
|
||||
pAp[peri_k] = d;
|
||||
|
||||
|
||||
axpy(x,a,p[peri_k],x);
|
||||
RealD rn = axpy_norm(r,-a,mmp[peri_k],r);
|
||||
|
||||
// Compute z = M x
|
||||
M1(r,z,tmp,mp);
|
||||
|
||||
PcgM1(r,z);
|
||||
|
||||
{
|
||||
RealD n1,n2;
|
||||
n1=norm2(r);
|
||||
n2=norm2(z);
|
||||
std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : vector r,z "<<n1<<" "<<n2<<"\n";
|
||||
}
|
||||
rtzp =real(innerProduct(r,z));
|
||||
std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : inner rtzp "<<rtzp<<"\n";
|
||||
|
||||
M2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
|
||||
// PcgM2(z,p[0]);
|
||||
PcgM2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
|
||||
|
||||
p[peri_kp]=mu;
|
||||
|
||||
p[peri_kp]=p[peri_k];
|
||||
|
||||
// Standard search direction p -> z + b p ; b =
|
||||
// Standard search direction p -> z + b p
|
||||
b = (rtzp)/rtz;
|
||||
|
||||
|
||||
int northog;
|
||||
// k=zero <=> peri_kp=1; northog = 1
|
||||
// k=1 <=> peri_kp=2; northog = 2
|
||||
// ... ... ...
|
||||
// k=mmax-2<=> peri_kp=mmax-1; northog = mmax-1
|
||||
// k=mmax-1<=> peri_kp=0; northog = 1
|
||||
|
||||
// northog = (peri_kp==0)?1:peri_kp; // This is the fCG(mmax) algorithm
|
||||
northog = (k>mmax-1)?(mmax-1):k; // This is the fCG-Tr(mmax-1) algorithm
|
||||
|
||||
std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n";
|
||||
for(int back=0; back < northog; back++){
|
||||
int peri_back = (k-back)%mmax;
|
||||
RealD pbApk= real(innerProduct(mmp[peri_back],p[peri_kp]));
|
||||
@ -176,75 +193,324 @@ class TwoLevelFlexiblePcg : public LinearFunction<Field>
|
||||
}
|
||||
|
||||
RealD rrn=sqrt(rn/ssq);
|
||||
std::cout<<GridLogMessage<<"TwoLevelfPcg: k= "<<k<<" residual = "<<rrn<<std::endl;
|
||||
RealD rtn=sqrt(rtz/ssq);
|
||||
RealD rtnp=sqrt(rtzp/ssq);
|
||||
|
||||
std::cout<<GridLogMessage<<"HDCG: fPcg k= "<<k<<" residual = "<<rrn<<"\n";
|
||||
|
||||
// Stopping condition
|
||||
if ( rn <= rsq ) {
|
||||
|
||||
HermOp(x,mmp); // Shouldn't this be something else?
|
||||
HDCGTimer.Stop();
|
||||
std::cout<<GridLogMessage<<"HDCG: fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
|
||||
|
||||
_FineLinop.HermOp(x,mmp[0]);
|
||||
axpy(tmp,-1.0,src,mmp[0]);
|
||||
|
||||
RealD psinorm = sqrt(norm2(x));
|
||||
RealD srcnorm = sqrt(norm2(src));
|
||||
RealD tmpnorm = sqrt(norm2(tmp));
|
||||
RealD true_residual = tmpnorm/srcnorm;
|
||||
std::cout<<GridLogMessage<<"TwoLevelfPcg: true residual is "<<true_residual<<std::endl;
|
||||
std::cout<<GridLogMessage<<"TwoLevelfPcg: target residual was"<<Tolerance<<std::endl;
|
||||
return k;
|
||||
RealD mmpnorm = sqrt(norm2(mmp[0]));
|
||||
RealD xnorm = sqrt(norm2(x));
|
||||
RealD srcnorm = sqrt(norm2(src));
|
||||
RealD tmpnorm = sqrt(norm2(tmp));
|
||||
RealD true_residual = tmpnorm/srcnorm;
|
||||
std::cout<<GridLogMessage
|
||||
<<"HDCG: true residual is "<<true_residual
|
||||
<<" solution "<<xnorm
|
||||
<<" source "<<srcnorm
|
||||
<<" mmp "<<mmpnorm
|
||||
<<std::endl;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
}
|
||||
// Non-convergence
|
||||
assert(0);
|
||||
HDCGTimer.Stop();
|
||||
std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
|
||||
RealD xnorm = sqrt(norm2(x));
|
||||
RealD srcnorm = sqrt(norm2(src));
|
||||
std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
|
||||
}
|
||||
|
||||
|
||||
|
||||
virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
|
||||
{
|
||||
std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl;
|
||||
src[0].Grid()->Barrier();
|
||||
int nrhs = src.size();
|
||||
std::vector<RealD> f(nrhs);
|
||||
std::vector<RealD> rtzp(nrhs);
|
||||
std::vector<RealD> rtz(nrhs);
|
||||
std::vector<RealD> a(nrhs);
|
||||
std::vector<RealD> d(nrhs);
|
||||
std::vector<RealD> b(nrhs);
|
||||
std::vector<RealD> rptzp(nrhs);
|
||||
/////////////////////////////
|
||||
// Set up history vectors
|
||||
/////////////////////////////
|
||||
int mmax = 3;
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
|
||||
src[0].Grid()->Barrier();
|
||||
std::vector<std::vector<Field> > p(nrhs); for(int r=0;r<nrhs;r++) p[r].resize(mmax,grid);
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg allocated p"<<std::endl;
|
||||
src[0].Grid()->Barrier();
|
||||
std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid);
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg allocated mmp"<<std::endl;
|
||||
src[0].Grid()->Barrier();
|
||||
std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax);
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg allocated pAp"<<std::endl;
|
||||
src[0].Grid()->Barrier();
|
||||
std::vector<Field> z(nrhs,grid);
|
||||
std::vector<Field> mp (nrhs,grid);
|
||||
std::vector<Field> r (nrhs,grid);
|
||||
std::vector<Field> mu (nrhs,grid);
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg allocated z,mp,r,mu"<<std::endl;
|
||||
src[0].Grid()->Barrier();
|
||||
|
||||
//Initial residual computation & set up
|
||||
std::vector<RealD> src_nrm(nrhs);
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
src_nrm[rhs]=norm2(src[rhs]);
|
||||
assert(src_nrm[rhs]!=0.0);
|
||||
}
|
||||
std::vector<RealD> tn(nrhs);
|
||||
|
||||
GridStopWatch HDCGTimer;
|
||||
HDCGTimer.Start();
|
||||
//////////////////////////
|
||||
// x0 = Vstart -- possibly modify guess
|
||||
//////////////////////////
|
||||
Vstart(x,src);
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
// r0 = b -A x0
|
||||
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
|
||||
axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]); // Recomputes r=src-Ax0
|
||||
}
|
||||
|
||||
//////////////////////////////////
|
||||
// Compute z = M1 x
|
||||
//////////////////////////////////
|
||||
// This needs a multiRHS version for acceleration
|
||||
PcgM1(r,z);
|
||||
|
||||
std::vector<RealD> ssq(nrhs);
|
||||
std::vector<RealD> rsq(nrhs);
|
||||
std::vector<Field> pp(nrhs,grid);
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
|
||||
p[rhs][0]=z[rhs];
|
||||
ssq[rhs]=norm2(src[rhs]);
|
||||
rsq[rhs]= ssq[rhs]*Tolerance*Tolerance;
|
||||
std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n";
|
||||
}
|
||||
|
||||
std::vector<RealD> rn(nrhs);
|
||||
for (int k=0;k<=MaxIterations;k++){
|
||||
|
||||
int peri_k = k % mmax;
|
||||
int peri_kp = (k+1) % mmax;
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
rtz[rhs]=rtzp[rhs];
|
||||
d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]);
|
||||
a[rhs] = rtz[rhs]/d[rhs];
|
||||
|
||||
// Memorise this
|
||||
pAp[rhs][peri_k] = d[rhs];
|
||||
|
||||
axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]);
|
||||
rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]);
|
||||
}
|
||||
|
||||
// Compute z = M x (for *all* RHS)
|
||||
PcgM1(r,z);
|
||||
std::cout << GridLogMessage<<"HDCG::fPcg M1 complete"<<std::endl;
|
||||
grid->Barrier();
|
||||
|
||||
RealD max_rn=0.0;
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
|
||||
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
|
||||
|
||||
std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n";
|
||||
|
||||
mu[rhs]=z[rhs];
|
||||
|
||||
p[rhs][peri_kp]=mu[rhs];
|
||||
|
||||
// Standard search direction p == z + b p
|
||||
b[rhs] = (rtzp[rhs])/rtz[rhs];
|
||||
|
||||
int northog = (k>mmax-1)?(mmax-1):k; // This is the fCG-Tr(mmax-1) algorithm
|
||||
std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n";
|
||||
for(int back=0; back < northog; back++){
|
||||
int peri_back = (k-back)%mmax;
|
||||
RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp]));
|
||||
RealD beta = -pbApk/pAp[rhs][peri_back];
|
||||
axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]);
|
||||
}
|
||||
|
||||
RealD rrn=sqrt(rn[rhs]/ssq[rhs]);
|
||||
RealD rtn=sqrt(rtz[rhs]/ssq[rhs]);
|
||||
RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]);
|
||||
|
||||
std::cout<<GridLogMessage<<"HDCG: rhs "<<rhs<<"fPcg k= "<<k<<" residual = "<<rrn<<"\n";
|
||||
if ( rrn > max_rn ) max_rn = rrn;
|
||||
}
|
||||
|
||||
// Stopping condition based on worst case
|
||||
if ( max_rn <= Tolerance ) {
|
||||
|
||||
HDCGTimer.Stop();
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
|
||||
Field tmp(grid);
|
||||
axpy(tmp,-1.0,src[rhs],mmp[rhs][0]);
|
||||
|
||||
RealD mmpnorm = sqrt(norm2(mmp[rhs][0]));
|
||||
RealD xnorm = sqrt(norm2(x[rhs]));
|
||||
RealD srcnorm = sqrt(norm2(src[rhs]));
|
||||
RealD tmpnorm = sqrt(norm2(tmp));
|
||||
RealD true_residual = tmpnorm/srcnorm;
|
||||
std::cout<<GridLogMessage
|
||||
<<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
|
||||
<<" solution "<<xnorm
|
||||
<<" source "<<srcnorm
|
||||
<<" mmp "<<mmpnorm
|
||||
<<std::endl;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
}
|
||||
HDCGTimer.Stop();
|
||||
std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
RealD xnorm = sqrt(norm2(x[rhs]));
|
||||
RealD srcnorm = sqrt(norm2(src[rhs]));
|
||||
std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
public:
|
||||
|
||||
virtual void M(Field & in,Field & out,Field & tmp) {
|
||||
virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out)
|
||||
{
|
||||
std::cout << "PcgM1 default (cheat) mrhs version"<<std::endl;
|
||||
for(int rhs=0;rhs<in.size();rhs++){
|
||||
this->PcgM1(in[rhs],out[rhs]);
|
||||
}
|
||||
}
|
||||
virtual void PcgM1(Field & in, Field & out) =0;
|
||||
virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src)
|
||||
{
|
||||
std::cout << "Vstart default (cheat) mrhs version"<<std::endl;
|
||||
for(int rhs=0;rhs<x.size();rhs++){
|
||||
this->Vstart(x[rhs],src[rhs]);
|
||||
}
|
||||
}
|
||||
virtual void Vstart(Field & x,const Field & src)=0;
|
||||
|
||||
virtual void PcgM2(const Field & in, Field & out) {
|
||||
out=in;
|
||||
}
|
||||
|
||||
virtual void M1(Field & in, Field & out) {// the smoother
|
||||
virtual RealD PcgM3(const Field & p, Field & mmp){
|
||||
RealD dd;
|
||||
_FineLinop.HermOp(p,mmp);
|
||||
ComplexD dot = innerProduct(p,mmp);
|
||||
dd=real(dot);
|
||||
return dd;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Only Def1 has non-trivial Vout.
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
|
||||
};
|
||||
|
||||
template<class Field, class CoarseField, class Aggregation>
|
||||
class TwoLevelADEF2 : public TwoLevelCG<Field>
|
||||
{
|
||||
public:
|
||||
///////////////////////////////////////////////////////////////////////////////////
|
||||
// Need something that knows how to get from Coarse to fine and back again
|
||||
// void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
|
||||
// void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
|
||||
///////////////////////////////////////////////////////////////////////////////////
|
||||
GridBase *coarsegrid;
|
||||
Aggregation &_Aggregates;
|
||||
LinearFunction<CoarseField> &_CoarseSolver;
|
||||
LinearFunction<CoarseField> &_CoarseSolverPrecise;
|
||||
///////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// more most opertor functions
|
||||
TwoLevelADEF2(RealD tol,
|
||||
Integer maxit,
|
||||
LinearOperatorBase<Field> &FineLinop,
|
||||
LinearFunction<Field> &Smoother,
|
||||
LinearFunction<CoarseField> &CoarseSolver,
|
||||
LinearFunction<CoarseField> &CoarseSolverPrecise,
|
||||
Aggregation &Aggregates
|
||||
) :
|
||||
TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,Aggregates.FineGrid),
|
||||
_CoarseSolver(CoarseSolver),
|
||||
_CoarseSolverPrecise(CoarseSolverPrecise),
|
||||
_Aggregates(Aggregates)
|
||||
{
|
||||
coarsegrid = Aggregates.CoarseGrid;
|
||||
};
|
||||
|
||||
virtual void PcgM1(Field & in, Field & out)
|
||||
{
|
||||
GRID_TRACE("MultiGridPreconditioner ");
|
||||
// [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
|
||||
Field tmp(grid);
|
||||
Field Min(grid);
|
||||
|
||||
PcgM(in,Min); // Smoother call
|
||||
Field tmp(this->grid);
|
||||
Field Min(this->grid);
|
||||
CoarseField PleftProj(this->coarsegrid);
|
||||
CoarseField PleftMss_proj(this->coarsegrid);
|
||||
|
||||
HermOp(Min,out);
|
||||
GridStopWatch SmootherTimer;
|
||||
GridStopWatch MatrixTimer;
|
||||
SmootherTimer.Start();
|
||||
this->_Smoother(in,Min);
|
||||
SmootherTimer.Stop();
|
||||
|
||||
MatrixTimer.Start();
|
||||
this->_FineLinop.HermOp(Min,out);
|
||||
MatrixTimer.Stop();
|
||||
axpy(tmp,-1.0,out,in); // tmp = in - A Min
|
||||
|
||||
ProjectToSubspace(tmp,PleftProj);
|
||||
ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
|
||||
PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]
|
||||
GridStopWatch ProjTimer;
|
||||
GridStopWatch CoarseTimer;
|
||||
GridStopWatch PromTimer;
|
||||
ProjTimer.Start();
|
||||
this->_Aggregates.ProjectToSubspace(PleftProj,tmp);
|
||||
ProjTimer.Stop();
|
||||
CoarseTimer.Start();
|
||||
this->_CoarseSolver(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
|
||||
CoarseTimer.Stop();
|
||||
PromTimer.Start();
|
||||
this->_Aggregates.PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]
|
||||
PromTimer.Stop();
|
||||
std::cout << GridLogPerformance << "PcgM1 breakdown "<<std::endl;
|
||||
std::cout << GridLogPerformance << "\tSmoother " << SmootherTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\tProj " << ProjTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\tCoarse " << CoarseTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\tProm " << PromTimer.Elapsed() <<std::endl;
|
||||
|
||||
axpy(out,1.0,Min,tmp); // Min+tmp
|
||||
}
|
||||
|
||||
virtual void M2(const Field & in, Field & out) {
|
||||
out=in;
|
||||
// Must override for Def2 only
|
||||
// case PcgDef2:
|
||||
// Pright(in,out);
|
||||
// break;
|
||||
}
|
||||
|
||||
virtual RealD M3(const Field & p, Field & mmp){
|
||||
double d,dd;
|
||||
HermOpAndNorm(p,mmp,d,dd);
|
||||
return dd;
|
||||
// Must override for Def1 only
|
||||
// case PcgDef1:
|
||||
// d=linop_d->Mprec(p,mmp,tmp,0,1);// Dag no
|
||||
// linop_d->Mprec(mmp,mp,tmp,1);// Dag yes
|
||||
// Pleft(mp,mmp);
|
||||
// d=real(linop_d->inner(p,mmp));
|
||||
}
|
||||
|
||||
virtual void VstartDef2(Field & xconst Field & src){
|
||||
//case PcgDef2:
|
||||
//case PcgAdef2:
|
||||
//case PcgAdef2f:
|
||||
//case PcgV11f:
|
||||
virtual void Vstart(Field & x,const Field & src)
|
||||
{
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg Vstart "<<std::endl;
|
||||
///////////////////////////////////
|
||||
// Choose x_0 such that
|
||||
// x_0 = guess + (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
|
||||
@ -256,142 +522,78 @@ class TwoLevelFlexiblePcg : public LinearFunction<Field>
|
||||
// = src_s - (A guess)_s - src_s + (A guess)_s
|
||||
// = 0
|
||||
///////////////////////////////////
|
||||
Field r(grid);
|
||||
Field mmp(grid);
|
||||
|
||||
HermOp(x,mmp);
|
||||
axpy (r, -1.0, mmp, src); // r_{-1} = src - A x
|
||||
ProjectToSubspace(r,PleftProj);
|
||||
ApplyInverseCG(PleftProj,PleftMss_proj); // Ass^{-1} r_s
|
||||
PromoteFromSubspace(PleftMss_proj,mmp);
|
||||
x=x+mmp;
|
||||
Field r(this->grid);
|
||||
Field mmp(this->grid);
|
||||
CoarseField PleftProj(this->coarsegrid);
|
||||
CoarseField PleftMss_proj(this->coarsegrid);
|
||||
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg Vstart projecting "<<std::endl;
|
||||
this->_Aggregates.ProjectToSubspace(PleftProj,src);
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg Vstart coarse solve "<<std::endl;
|
||||
this->_CoarseSolverPrecise(PleftProj,PleftMss_proj); // Ass^{-1} r_s
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg Vstart promote "<<std::endl;
|
||||
this->_Aggregates.PromoteFromSubspace(PleftMss_proj,x);
|
||||
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
template<class Field>
|
||||
class TwoLevelADEF1defl : public TwoLevelCG<Field>
|
||||
{
|
||||
public:
|
||||
const std::vector<Field> &evec;
|
||||
const std::vector<RealD> &eval;
|
||||
|
||||
TwoLevelADEF1defl(RealD tol,
|
||||
Integer maxit,
|
||||
LinearOperatorBase<Field> &FineLinop,
|
||||
LinearFunction<Field> &Smoother,
|
||||
std::vector<Field> &_evec,
|
||||
std::vector<RealD> &_eval) :
|
||||
TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,_evec[0].Grid()),
|
||||
evec(_evec),
|
||||
eval(_eval)
|
||||
{};
|
||||
|
||||
// Can just inherit existing M2
|
||||
// Can just inherit existing M3
|
||||
|
||||
// Simple vstart - do nothing
|
||||
virtual void Vstart(Field & x,const Field & src){
|
||||
return;
|
||||
x=src; // Could apply Q
|
||||
};
|
||||
|
||||
// Override PcgM1
|
||||
virtual void PcgM1(Field & in, Field & out)
|
||||
{
|
||||
GRID_TRACE("EvecPreconditioner ");
|
||||
int N=evec.size();
|
||||
Field Pin(this->grid);
|
||||
Field Qin(this->grid);
|
||||
|
||||
//MP + Q = M(1-AQ) + Q = M
|
||||
// // If we are eigenvector deflating in coarse space
|
||||
// // Q = Sum_i |phi_i> 1/lambda_i <phi_i|
|
||||
// // A Q = Sum_i |phi_i> <phi_i|
|
||||
// // M(1-AQ) = M(1-proj) + Q
|
||||
Qin.Checkerboard()=in.Checkerboard();
|
||||
Qin = Zero();
|
||||
Pin = in;
|
||||
for (int i=0;i<N;i++) {
|
||||
const Field& tmp = evec[i];
|
||||
auto ip = TensorRemove(innerProduct(tmp,in));
|
||||
axpy(Qin, ip / eval[i],tmp,Qin);
|
||||
axpy(Pin, -ip ,tmp,Pin);
|
||||
}
|
||||
|
||||
this->_Smoother(Pin,out);
|
||||
|
||||
out = out + Qin;
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Only Def1 has non-trivial Vout. Override in Def1
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
virtual void Vout (Field & in, Field & out,Field & src){
|
||||
out = in;
|
||||
//case PcgDef1:
|
||||
// //Qb + PT x
|
||||
// ProjectToSubspace(src,PleftProj);
|
||||
// ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} r_s
|
||||
// PromoteFromSubspace(PleftMss_proj,tmp);
|
||||
//
|
||||
// Pright(in,out);
|
||||
//
|
||||
// linop_d->axpy(out,tmp,out,1.0);
|
||||
// break;
|
||||
}
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Pright and Pleft are common to all implementations
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
virtual void Pright(Field & in,Field & out){
|
||||
// P_R = [ 1 0 ]
|
||||
// [ -Mss^-1 Msb 0 ]
|
||||
Field in_sbar(grid);
|
||||
|
||||
ProjectToSubspace(in,PleftProj);
|
||||
PromoteFromSubspace(PleftProj,out);
|
||||
axpy(in_sbar,-1.0,out,in); // in_sbar = in - in_s
|
||||
|
||||
HermOp(in_sbar,out);
|
||||
ProjectToSubspace(out,PleftProj); // Mssbar in_sbar (project)
|
||||
|
||||
ApplyInverse (PleftProj,PleftMss_proj); // Mss^{-1} Mssbar
|
||||
PromoteFromSubspace(PleftMss_proj,out); //
|
||||
|
||||
axpy(out,-1.0,out,in_sbar); // in_sbar - Mss^{-1} Mssbar in_sbar
|
||||
}
|
||||
virtual void Pleft (Field & in,Field & out){
|
||||
// P_L = [ 1 -Mbs Mss^-1]
|
||||
// [ 0 0 ]
|
||||
Field in_sbar(grid);
|
||||
Field tmp2(grid);
|
||||
Field Mtmp(grid);
|
||||
|
||||
ProjectToSubspace(in,PleftProj);
|
||||
PromoteFromSubspace(PleftProj,out);
|
||||
axpy(in_sbar,-1.0,out,in); // in_sbar = in - in_s
|
||||
|
||||
ApplyInverse(PleftProj,PleftMss_proj); // Mss^{-1} in_s
|
||||
PromoteFromSubspace(PleftMss_proj,out);
|
||||
|
||||
HermOp(out,Mtmp);
|
||||
|
||||
ProjectToSubspace(Mtmp,PleftProj); // Msbar s Mss^{-1}
|
||||
PromoteFromSubspace(PleftProj,tmp2);
|
||||
|
||||
axpy(out,-1.0,tmp2,Mtmp);
|
||||
axpy(out,-1.0,out,in_sbar); // in_sbar - Msbars Mss^{-1} in_s
|
||||
}
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
class TwoLevelFlexiblePcgADef2 : public TwoLevelFlexiblePcg<Field> {
|
||||
public:
|
||||
virtual void M(Field & in,Field & out,Field & tmp){
|
||||
|
||||
}
|
||||
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp){
|
||||
|
||||
}
|
||||
virtual void M2(Field & in, Field & out){
|
||||
|
||||
}
|
||||
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp){
|
||||
|
||||
}
|
||||
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp){
|
||||
|
||||
}
|
||||
}
|
||||
/*
|
||||
template<class Field>
|
||||
class TwoLevelFlexiblePcgAD : public TwoLevelFlexiblePcg<Field> {
|
||||
public:
|
||||
virtual void M(Field & in,Field & out,Field & tmp);
|
||||
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
|
||||
virtual void M2(Field & in, Field & out);
|
||||
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
|
||||
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
class TwoLevelFlexiblePcgDef1 : public TwoLevelFlexiblePcg<Field> {
|
||||
public:
|
||||
virtual void M(Field & in,Field & out,Field & tmp);
|
||||
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
|
||||
virtual void M2(Field & in, Field & out);
|
||||
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
|
||||
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
|
||||
virtual void Vout (Field & in, Field & out,Field & src,Field & tmp);
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
class TwoLevelFlexiblePcgDef2 : public TwoLevelFlexiblePcg<Field> {
|
||||
public:
|
||||
virtual void M(Field & in,Field & out,Field & tmp);
|
||||
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
|
||||
virtual void M2(Field & in, Field & out);
|
||||
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
|
||||
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
class TwoLevelFlexiblePcgV11: public TwoLevelFlexiblePcg<Field> {
|
||||
public:
|
||||
virtual void M(Field & in,Field & out,Field & tmp);
|
||||
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
|
||||
virtual void M2(Field & in, Field & out);
|
||||
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
|
||||
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
|
||||
}
|
||||
*/
|
||||
#endif
|
||||
|
414
Grid/algorithms/iterative/AdefMrhs.h
Normal file
414
Grid/algorithms/iterative/AdefMrhs.h
Normal file
@ -0,0 +1,414 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/AdefGeneric.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
|
||||
/*
|
||||
* Compared to Tang-2009: P=Pleft. P^T = PRight Q=MssInv.
|
||||
* Script A = SolverMatrix
|
||||
* Script P = Preconditioner
|
||||
*
|
||||
* Implement ADEF-2
|
||||
*
|
||||
* Vstart = P^Tx + Qb
|
||||
* M1 = P^TM + Q
|
||||
* M2=M3=1
|
||||
*/
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
template<class Field>
|
||||
class TwoLevelCGmrhs
|
||||
{
|
||||
public:
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
GridBase *grid;
|
||||
|
||||
// Fine operator, Smoother, CoarseSolver
|
||||
LinearOperatorBase<Field> &_FineLinop;
|
||||
LinearFunction<Field> &_Smoother;
|
||||
|
||||
GridStopWatch ProjectTimer;
|
||||
GridStopWatch PromoteTimer;
|
||||
GridStopWatch DeflateTimer;
|
||||
GridStopWatch CoarseTimer;
|
||||
GridStopWatch FineTimer;
|
||||
GridStopWatch SmoothTimer;
|
||||
GridStopWatch InsertTimer;
|
||||
|
||||
|
||||
// more most opertor functions
|
||||
TwoLevelCGmrhs(RealD tol,
|
||||
Integer maxit,
|
||||
LinearOperatorBase<Field> &FineLinop,
|
||||
LinearFunction<Field> &Smoother,
|
||||
GridBase *fine) :
|
||||
Tolerance(tol),
|
||||
MaxIterations(maxit),
|
||||
_FineLinop(FineLinop),
|
||||
_Smoother(Smoother)
|
||||
{
|
||||
grid = fine;
|
||||
};
|
||||
|
||||
// Vector case
|
||||
virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
|
||||
{
|
||||
std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl;
|
||||
src[0].Grid()->Barrier();
|
||||
int nrhs = src.size();
|
||||
std::vector<RealD> f(nrhs);
|
||||
std::vector<RealD> rtzp(nrhs);
|
||||
std::vector<RealD> rtz(nrhs);
|
||||
std::vector<RealD> a(nrhs);
|
||||
std::vector<RealD> d(nrhs);
|
||||
std::vector<RealD> b(nrhs);
|
||||
std::vector<RealD> rptzp(nrhs);
|
||||
/////////////////////////////
|
||||
// Set up history vectors
|
||||
/////////////////////////////
|
||||
int mmax = 3;
|
||||
|
||||
std::vector<std::vector<Field> > p(nrhs); for(int r=0;r<nrhs;r++) p[r].resize(mmax,grid);
|
||||
std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid);
|
||||
std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax);
|
||||
|
||||
std::vector<Field> z(nrhs,grid);
|
||||
std::vector<Field> mp (nrhs,grid);
|
||||
std::vector<Field> r (nrhs,grid);
|
||||
std::vector<Field> mu (nrhs,grid);
|
||||
|
||||
//Initial residual computation & set up
|
||||
std::vector<RealD> src_nrm(nrhs);
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
src_nrm[rhs]=norm2(src[rhs]);
|
||||
assert(src_nrm[rhs]!=0.0);
|
||||
}
|
||||
std::vector<RealD> tn(nrhs);
|
||||
|
||||
GridStopWatch HDCGTimer;
|
||||
//////////////////////////
|
||||
// x0 = Vstart -- possibly modify guess
|
||||
//////////////////////////
|
||||
Vstart(x,src);
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
// r0 = b -A x0
|
||||
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
|
||||
axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]); // Recomputes r=src-Ax0
|
||||
}
|
||||
|
||||
//////////////////////////////////
|
||||
// Compute z = M1 x
|
||||
//////////////////////////////////
|
||||
// This needs a multiRHS version for acceleration
|
||||
PcgM1(r,z);
|
||||
|
||||
std::vector<RealD> ssq(nrhs);
|
||||
std::vector<RealD> rsq(nrhs);
|
||||
std::vector<Field> pp(nrhs,grid);
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
|
||||
p[rhs][0]=z[rhs];
|
||||
ssq[rhs]=norm2(src[rhs]);
|
||||
rsq[rhs]= ssq[rhs]*Tolerance*Tolerance;
|
||||
// std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n";
|
||||
}
|
||||
|
||||
ProjectTimer.Reset();
|
||||
PromoteTimer.Reset();
|
||||
DeflateTimer.Reset();
|
||||
CoarseTimer.Reset();
|
||||
SmoothTimer.Reset();
|
||||
FineTimer.Reset();
|
||||
InsertTimer.Reset();
|
||||
|
||||
GridStopWatch M1Timer;
|
||||
GridStopWatch M2Timer;
|
||||
GridStopWatch M3Timer;
|
||||
GridStopWatch LinalgTimer;
|
||||
|
||||
HDCGTimer.Start();
|
||||
|
||||
std::vector<RealD> rn(nrhs);
|
||||
for (int k=0;k<=MaxIterations;k++){
|
||||
|
||||
int peri_k = k % mmax;
|
||||
int peri_kp = (k+1) % mmax;
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
rtz[rhs]=rtzp[rhs];
|
||||
M3Timer.Start();
|
||||
d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]);
|
||||
M3Timer.Stop();
|
||||
a[rhs] = rtz[rhs]/d[rhs];
|
||||
|
||||
LinalgTimer.Start();
|
||||
// Memorise this
|
||||
pAp[rhs][peri_k] = d[rhs];
|
||||
|
||||
axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]);
|
||||
rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]);
|
||||
LinalgTimer.Stop();
|
||||
}
|
||||
|
||||
// Compute z = M x (for *all* RHS)
|
||||
M1Timer.Start();
|
||||
PcgM1(r,z);
|
||||
M1Timer.Stop();
|
||||
|
||||
RealD max_rn=0.0;
|
||||
LinalgTimer.Start();
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
|
||||
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
|
||||
|
||||
// std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n";
|
||||
mu[rhs]=z[rhs];
|
||||
|
||||
p[rhs][peri_kp]=mu[rhs];
|
||||
|
||||
// Standard search direction p == z + b p
|
||||
b[rhs] = (rtzp[rhs])/rtz[rhs];
|
||||
|
||||
int northog = (k>mmax-1)?(mmax-1):k; // This is the fCG-Tr(mmax-1) algorithm
|
||||
for(int back=0; back < northog; back++){
|
||||
int peri_back = (k-back)%mmax;
|
||||
RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp]));
|
||||
RealD beta = -pbApk/pAp[rhs][peri_back];
|
||||
axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]);
|
||||
}
|
||||
|
||||
RealD rrn=sqrt(rn[rhs]/ssq[rhs]);
|
||||
RealD rtn=sqrt(rtz[rhs]/ssq[rhs]);
|
||||
RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]);
|
||||
|
||||
std::cout<<GridLogMessage<<"HDCG:fPcg rhs "<<rhs<<" k= "<<k<<" residual = "<<rrn<<"\n";
|
||||
if ( rrn > max_rn ) max_rn = rrn;
|
||||
}
|
||||
LinalgTimer.Stop();
|
||||
|
||||
// Stopping condition based on worst case
|
||||
if ( max_rn <= Tolerance ) {
|
||||
|
||||
HDCGTimer.Stop();
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Linalg "<<LinalgTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : fine M3 "<<M3Timer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : prec M1 "<<M1Timer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"**** M1 breakdown:"<<std::endl;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Project "<<ProjectTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Promote "<<PromoteTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Deflate "<<DeflateTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Coarse "<<CoarseTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Fine "<<FineTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Smooth "<<SmoothTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Insert "<<InsertTimer.Elapsed()<<std::endl;;
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
|
||||
Field tmp(grid);
|
||||
axpy(tmp,-1.0,src[rhs],mmp[rhs][0]);
|
||||
|
||||
RealD mmpnorm = sqrt(norm2(mmp[rhs][0]));
|
||||
RealD xnorm = sqrt(norm2(x[rhs]));
|
||||
RealD srcnorm = sqrt(norm2(src[rhs]));
|
||||
RealD tmpnorm = sqrt(norm2(tmp));
|
||||
RealD true_residual = tmpnorm/srcnorm;
|
||||
std::cout<<GridLogMessage
|
||||
<<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
|
||||
<<" solution "<<xnorm
|
||||
<<" source "<<srcnorm
|
||||
<<" mmp "<<mmpnorm
|
||||
<<std::endl;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
}
|
||||
HDCGTimer.Stop();
|
||||
std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
RealD xnorm = sqrt(norm2(x[rhs]));
|
||||
RealD srcnorm = sqrt(norm2(src[rhs]));
|
||||
std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
public:
|
||||
|
||||
virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out) = 0;
|
||||
virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src) = 0;
|
||||
virtual void PcgM2(const Field & in, Field & out) {
|
||||
out=in;
|
||||
}
|
||||
|
||||
virtual RealD PcgM3(const Field & p, Field & mmp){
|
||||
RealD dd;
|
||||
_FineLinop.HermOp(p,mmp);
|
||||
ComplexD dot = innerProduct(p,mmp);
|
||||
dd=real(dot);
|
||||
return dd;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
template<class Field, class CoarseField>
|
||||
class TwoLevelADEF2mrhs : public TwoLevelCGmrhs<Field>
|
||||
{
|
||||
public:
|
||||
GridBase *coarsegrid;
|
||||
GridBase *coarsegridmrhs;
|
||||
LinearFunction<CoarseField> &_CoarseSolverMrhs;
|
||||
LinearFunction<CoarseField> &_CoarseSolverPreciseMrhs;
|
||||
MultiRHSBlockProject<Field> &_Projector;
|
||||
MultiRHSDeflation<CoarseField> &_Deflator;
|
||||
|
||||
|
||||
TwoLevelADEF2mrhs(RealD tol,
|
||||
Integer maxit,
|
||||
LinearOperatorBase<Field> &FineLinop,
|
||||
LinearFunction<Field> &Smoother,
|
||||
LinearFunction<CoarseField> &CoarseSolverMrhs,
|
||||
LinearFunction<CoarseField> &CoarseSolverPreciseMrhs,
|
||||
MultiRHSBlockProject<Field> &Projector,
|
||||
MultiRHSDeflation<CoarseField> &Deflator,
|
||||
GridBase *_coarsemrhsgrid) :
|
||||
TwoLevelCGmrhs<Field>(tol, maxit,FineLinop,Smoother,Projector.fine_grid),
|
||||
_CoarseSolverMrhs(CoarseSolverMrhs),
|
||||
_CoarseSolverPreciseMrhs(CoarseSolverPreciseMrhs),
|
||||
_Projector(Projector),
|
||||
_Deflator(Deflator)
|
||||
{
|
||||
coarsegrid = Projector.coarse_grid;
|
||||
coarsegridmrhs = _coarsemrhsgrid;// Thi could be in projector
|
||||
};
|
||||
|
||||
// Override Vstart
|
||||
virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src)
|
||||
{
|
||||
int nrhs=x.size();
|
||||
///////////////////////////////////
|
||||
// Choose x_0 such that
|
||||
// x_0 = guess + (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
|
||||
// = [1 - Ass_inv A] Guess + Assinv src
|
||||
// = P^T guess + Assinv src
|
||||
// = Vstart [Tang notation]
|
||||
// This gives:
|
||||
// W^T (src - A x_0) = src_s - A guess_s - r_s
|
||||
// = src_s - (A guess)_s - src_s + (A guess)_s
|
||||
// = 0
|
||||
///////////////////////////////////
|
||||
std::vector<CoarseField> PleftProj(nrhs,this->coarsegrid);
|
||||
std::vector<CoarseField> PleftMss_proj(nrhs,this->coarsegrid);
|
||||
CoarseField PleftProjMrhs(this->coarsegridmrhs);
|
||||
CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
|
||||
|
||||
this->_Projector.blockProject(src,PleftProj);
|
||||
this->_Deflator.DeflateSources(PleftProj,PleftMss_proj);
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
InsertSliceFast(PleftProj[rhs],PleftProjMrhs,rhs,0);
|
||||
InsertSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); // the guess
|
||||
}
|
||||
|
||||
this->_CoarseSolverPreciseMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} r_s
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
ExtractSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0);
|
||||
}
|
||||
this->_Projector.blockPromote(x,PleftMss_proj);
|
||||
}
|
||||
|
||||
virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out){
|
||||
|
||||
int nrhs=in.size();
|
||||
|
||||
// [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
|
||||
std::vector<Field> tmp(nrhs,this->grid);
|
||||
std::vector<Field> Min(nrhs,this->grid);
|
||||
|
||||
std::vector<CoarseField> PleftProj(nrhs,this->coarsegrid);
|
||||
std::vector<CoarseField> PleftMss_proj(nrhs,this->coarsegrid);
|
||||
|
||||
CoarseField PleftProjMrhs(this->coarsegridmrhs);
|
||||
CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
|
||||
this->SmoothTimer.Start();
|
||||
this->_Smoother(in[rhs],Min[rhs]);
|
||||
this->SmoothTimer.Stop();
|
||||
|
||||
this->FineTimer.Start();
|
||||
this->_FineLinop.HermOp(Min[rhs],out[rhs]);
|
||||
|
||||
axpy(tmp[rhs],-1.0,out[rhs],in[rhs]); // resid = in - A Min
|
||||
this->FineTimer.Stop();
|
||||
|
||||
}
|
||||
|
||||
this->ProjectTimer.Start();
|
||||
this->_Projector.blockProject(tmp,PleftProj);
|
||||
this->ProjectTimer.Stop();
|
||||
this->DeflateTimer.Start();
|
||||
this->_Deflator.DeflateSources(PleftProj,PleftMss_proj);
|
||||
this->DeflateTimer.Stop();
|
||||
this->InsertTimer.Start();
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
InsertSliceFast(PleftProj[rhs],PleftProjMrhs,rhs,0);
|
||||
InsertSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); // the guess
|
||||
}
|
||||
this->InsertTimer.Stop();
|
||||
|
||||
this->CoarseTimer.Start();
|
||||
this->_CoarseSolverMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} [in - A Min]_s
|
||||
this->CoarseTimer.Stop();
|
||||
|
||||
this->InsertTimer.Start();
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
ExtractSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0);
|
||||
}
|
||||
this->InsertTimer.Stop();
|
||||
this->PromoteTimer.Start();
|
||||
this->_Projector.blockPromote(tmp,PleftMss_proj);// tmp= Q[in - A Min]
|
||||
this->PromoteTimer.Stop();
|
||||
this->FineTimer.Start();
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
axpy(out[rhs],1.0,Min[rhs],tmp[rhs]); // Min+tmp
|
||||
}
|
||||
this->FineTimer.Stop();
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -54,11 +54,14 @@ public:
|
||||
ConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
|
||||
: Tolerance(tol),
|
||||
MaxIterations(maxit),
|
||||
ErrorOnNoConverge(err_on_no_conv){};
|
||||
ErrorOnNoConverge(err_on_no_conv)
|
||||
{};
|
||||
|
||||
void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
|
||||
|
||||
GRID_TRACE("ConjugateGradient");
|
||||
GridStopWatch PreambleTimer;
|
||||
PreambleTimer.Start();
|
||||
psi.Checkerboard() = src.Checkerboard();
|
||||
|
||||
conformable(psi, src);
|
||||
@ -66,22 +69,26 @@ public:
|
||||
RealD cp, c, a, d, b, ssq, qq;
|
||||
//RealD b_pred;
|
||||
|
||||
Field p(src);
|
||||
Field mmp(src);
|
||||
Field r(src);
|
||||
// Was doing copies
|
||||
Field p(src.Grid());
|
||||
Field mmp(src.Grid());
|
||||
Field r(src.Grid());
|
||||
|
||||
// Initial residual computation & set up
|
||||
ssq = norm2(src);
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
|
||||
Linop.HermOpAndNorm(psi, mmp, d, b);
|
||||
|
||||
r = src - mmp;
|
||||
p = r;
|
||||
|
||||
a = norm2(p);
|
||||
if ( guess == 0.0 ) {
|
||||
r = src;
|
||||
p = r;
|
||||
a = ssq;
|
||||
} else {
|
||||
Linop.HermOpAndNorm(psi, mmp, d, b);
|
||||
r = src - mmp;
|
||||
p = r;
|
||||
a = norm2(p);
|
||||
}
|
||||
cp = a;
|
||||
ssq = norm2(src);
|
||||
|
||||
// Handle trivial case of zero src
|
||||
if (ssq == 0.){
|
||||
@ -111,6 +118,7 @@ public:
|
||||
std::cout << GridLogIterative << std::setprecision(8)
|
||||
<< "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
|
||||
|
||||
PreambleTimer.Stop();
|
||||
GridStopWatch LinalgTimer;
|
||||
GridStopWatch InnerTimer;
|
||||
GridStopWatch AxpyNormTimer;
|
||||
@ -183,13 +191,14 @@ public:
|
||||
<< "\tTrue residual " << true_residual
|
||||
<< "\tTarget " << Tolerance << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "Time breakdown "<<std::endl;
|
||||
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tInner " << InnerTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
|
||||
// std::cout << GridLogMessage << "\tPreamble " << PreambleTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tSolver Elapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "Time breakdown "<<std::endl;
|
||||
std::cout << GridLogPerformance << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\t\tInner " << InnerTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\t\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
|
||||
|
||||
std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl;
|
||||
|
||||
@ -202,12 +211,22 @@ public:
|
||||
}
|
||||
}
|
||||
// Failed. Calculate true residual before giving up
|
||||
Linop.HermOpAndNorm(psi, mmp, d, qq);
|
||||
p = mmp - src;
|
||||
// Linop.HermOpAndNorm(psi, mmp, d, qq);
|
||||
// p = mmp - src;
|
||||
//TrueResidual = sqrt(norm2(p)/ssq);
|
||||
// TrueResidual = 1;
|
||||
|
||||
TrueResidual = sqrt(norm2(p)/ssq);
|
||||
|
||||
std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations<< std::endl;
|
||||
std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations
|
||||
<<" residual "<< std::sqrt(cp / ssq)<< std::endl;
|
||||
SolverTimer.Stop();
|
||||
std::cout << GridLogMessage << "\tPreamble " << PreambleTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tSolver " << SolverTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "Solver breakdown "<<std::endl;
|
||||
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage<< "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\t\tInner " << InnerTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\t\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
|
||||
|
||||
if (ErrorOnNoConverge) assert(0);
|
||||
IterationsToComplete = k;
|
||||
|
@ -144,7 +144,7 @@ public:
|
||||
for(int s=0;s<nshift;s++){
|
||||
rsq[s] = cp * mresidual[s] * mresidual[s];
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShift: shift "<<s
|
||||
<<" target resid "<<rsq[s]<<std::endl;
|
||||
<<" target resid^2 "<<rsq[s]<<std::endl;
|
||||
ps[s] = src;
|
||||
}
|
||||
// r and p for primary
|
||||
|
1220
Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczosCoarse.h
Normal file
1220
Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczosCoarse.h
Normal file
File diff suppressed because it is too large
Load Diff
@ -79,14 +79,16 @@ template<class Field> class ImplicitlyRestartedLanczosHermOpTester : public Imp
|
||||
RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
|
||||
|
||||
std::cout.precision(13);
|
||||
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
|
||||
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
|
||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
|
||||
<<std::endl;
|
||||
|
||||
int conv=0;
|
||||
if( (vv<eresid*eresid) ) conv = 1;
|
||||
|
||||
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
|
||||
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
|
||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
|
||||
<<" target " << eresid*eresid << " conv " <<conv
|
||||
<<std::endl;
|
||||
|
||||
return conv;
|
||||
}
|
||||
};
|
||||
@ -457,7 +459,7 @@ until convergence
|
||||
std::vector<Field>& evec,
|
||||
Field& w,int Nm,int k)
|
||||
{
|
||||
std::cout<<GridLogIRL << "Lanczos step " <<k<<std::endl;
|
||||
std::cout<<GridLogDebug << "Lanczos step " <<k<<std::endl;
|
||||
const RealD tiny = 1.0e-20;
|
||||
assert( k< Nm );
|
||||
|
||||
@ -465,7 +467,7 @@ until convergence
|
||||
|
||||
Field& evec_k = evec[k];
|
||||
|
||||
_PolyOp(evec_k,w); std::cout<<GridLogIRL << "PolyOp" <<std::endl;
|
||||
_PolyOp(evec_k,w); std::cout<<GridLogDebug << "PolyOp" <<std::endl;
|
||||
|
||||
if(k>0) w -= lme[k-1] * evec[k-1];
|
||||
|
||||
@ -480,18 +482,18 @@ until convergence
|
||||
lme[k] = beta;
|
||||
|
||||
if ( (k>0) && ( (k % orth_period) == 0 )) {
|
||||
std::cout<<GridLogIRL << "Orthogonalising " <<k<<std::endl;
|
||||
std::cout<<GridLogDebug << "Orthogonalising " <<k<<std::endl;
|
||||
orthogonalize(w,evec,k); // orthonormalise
|
||||
std::cout<<GridLogIRL << "Orthogonalised " <<k<<std::endl;
|
||||
std::cout<<GridLogDebug << "Orthogonalised " <<k<<std::endl;
|
||||
}
|
||||
|
||||
if(k < Nm-1) evec[k+1] = w;
|
||||
|
||||
std::cout<<GridLogIRL << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
|
||||
std::cout<<GridLogIRL << "Lanczos step alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
|
||||
if ( beta < tiny )
|
||||
std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl;
|
||||
|
||||
std::cout<<GridLogIRL << "Lanczos step complete " <<k<<std::endl;
|
||||
std::cout<<GridLogDebug << "Lanczos step complete " <<k<<std::endl;
|
||||
}
|
||||
|
||||
void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
||||
|
@ -33,7 +33,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Take a matrix and form an NE solver calling a Herm solver
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field> class NormalEquations {
|
||||
template<class Field> class NormalEquations : public LinearFunction<Field>{
|
||||
private:
|
||||
SparseMatrixBase<Field> & _Matrix;
|
||||
OperatorFunction<Field> & _HermitianSolver;
|
||||
@ -60,7 +60,7 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
template<class Field> class HPDSolver {
|
||||
template<class Field> class HPDSolver : public LinearFunction<Field> {
|
||||
private:
|
||||
LinearOperatorBase<Field> & _Matrix;
|
||||
OperatorFunction<Field> & _HermitianSolver;
|
||||
@ -78,13 +78,13 @@ public:
|
||||
void operator() (const Field &in, Field &out){
|
||||
|
||||
_Guess(in,out);
|
||||
_HermitianSolver(_Matrix,in,out); // Mdag M out = Mdag in
|
||||
_HermitianSolver(_Matrix,in,out); //M out = in
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template<class Field> class MdagMSolver {
|
||||
template<class Field> class MdagMSolver : public LinearFunction<Field> {
|
||||
private:
|
||||
SparseMatrixBase<Field> & _Matrix;
|
||||
OperatorFunction<Field> & _HermitianSolver;
|
||||
|
@ -20,7 +20,7 @@ template<class Field> class PowerMethod
|
||||
RealD evalMaxApprox = 0.0;
|
||||
auto src_n = src;
|
||||
auto tmp = src;
|
||||
const int _MAX_ITER_EST_ = 50;
|
||||
const int _MAX_ITER_EST_ = 100;
|
||||
|
||||
for (int i=0;i<_MAX_ITER_EST_;i++) {
|
||||
|
||||
|
@ -499,6 +499,87 @@ namespace Grid {
|
||||
}
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Site diagonal is identity, left preconditioned by Mee^inv
|
||||
// ( 1 - Mee^inv Meo Moo^inv Moe ) phi = Mee_inv ( Mee - Meo Moo^inv Moe Mee^inv ) phi = Mee_inv eta
|
||||
//
|
||||
// Solve:
|
||||
// ( 1 - Mee^inv Meo Moo^inv Moe )^dag ( 1 - Mee^inv Meo Moo^inv Moe ) phi = ( 1 - Mee^inv Meo Moo^inv Moe )^dag Mee_inv eta
|
||||
//
|
||||
// Old notation e<->o
|
||||
//
|
||||
// Left precon by Moo^-1
|
||||
// b) (Doo^{dag} M_oo^-dag) (Moo^-1 Doo) psi_o = [ (D_oo)^dag M_oo^-dag ] Moo^-1 L^{-1} eta_o
|
||||
// eta_o' = (D_oo)^dag M_oo^-dag Moo^-1 (eta_o - Moe Mee^{-1} eta_e)
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field> class SchurRedBlackDiagOneSolve : public SchurRedBlackBase<Field> {
|
||||
public:
|
||||
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Wrap the usual normal equations Schur trick
|
||||
/////////////////////////////////////////////////////
|
||||
SchurRedBlackDiagOneSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
|
||||
const bool _solnAsInitGuess = false)
|
||||
: SchurRedBlackBase<Field>(HermitianRBSolver,initSubGuess,_solnAsInitGuess) {};
|
||||
|
||||
virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
|
||||
{
|
||||
GridBase *grid = _Matrix.RedBlackGrid();
|
||||
GridBase *fgrid= _Matrix.Grid();
|
||||
|
||||
SchurDiagOneOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
|
||||
Field tmp(grid);
|
||||
Field Mtmp(grid);
|
||||
|
||||
pickCheckerboard(Even,src_e,src);
|
||||
pickCheckerboard(Odd ,src_o,src);
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// src_o = Mpcdag *MooeeInv * (source_o - Moe MeeInv source_e)
|
||||
/////////////////////////////////////////////////////
|
||||
_Matrix.MooeeInv(src_e,tmp); assert( tmp.Checkerboard() ==Even);
|
||||
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.Checkerboard() ==Odd);
|
||||
Mtmp=src_o-Mtmp;
|
||||
_Matrix.MooeeInv(Mtmp,tmp); assert( tmp.Checkerboard() ==Odd);
|
||||
|
||||
// get the right MpcDag
|
||||
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.Checkerboard() ==Odd);
|
||||
}
|
||||
|
||||
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
|
||||
{
|
||||
GridBase *grid = _Matrix.RedBlackGrid();
|
||||
GridBase *fgrid= _Matrix.Grid();
|
||||
|
||||
Field tmp(grid);
|
||||
Field sol_e(grid);
|
||||
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
///////////////////////////////////////////////////
|
||||
_Matrix.Meooe(sol_o,tmp); assert( tmp.Checkerboard() ==Even);
|
||||
tmp = src_e-tmp; assert( src_e.Checkerboard() ==Even);
|
||||
_Matrix.MooeeInv(tmp,sol_e); assert( sol_e.Checkerboard() ==Even);
|
||||
|
||||
setCheckerboard(sol,sol_e); assert( sol_e.Checkerboard() ==Even);
|
||||
setCheckerboard(sol,sol_o); assert( sol_o.Checkerboard() ==Odd );
|
||||
};
|
||||
|
||||
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
|
||||
{
|
||||
SchurDiagOneOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
|
||||
};
|
||||
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
|
||||
{
|
||||
SchurDiagOneOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
|
||||
}
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Site diagonal is identity, right preconditioned by Mee^inv
|
||||
// ( 1 - Meo Moo^inv Moe Mee^inv ) phi =( 1 - Meo Moo^inv Moe Mee^inv ) Mee psi = = eta = eta
|
||||
|
478
Grid/algorithms/multigrid/Aggregates.h
Normal file
478
Grid/algorithms/multigrid/Aggregates.h
Normal file
@ -0,0 +1,478 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/Aggregates.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
inline RealD AggregatePowerLaw(RealD x)
|
||||
{
|
||||
// return std::pow(x,-4);
|
||||
// return std::pow(x,-3);
|
||||
return std::pow(x,-5);
|
||||
}
|
||||
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class Aggregation {
|
||||
public:
|
||||
constexpr int Nbasis(void) { return nbasis; };
|
||||
|
||||
typedef iVector<CComplex,nbasis > siteVector;
|
||||
typedef Lattice<siteVector> CoarseVector;
|
||||
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
|
||||
|
||||
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<Fobj > FineField;
|
||||
|
||||
GridBase *CoarseGrid;
|
||||
GridBase *FineGrid;
|
||||
std::vector<Lattice<Fobj> > subspace;
|
||||
int checkerboard;
|
||||
int Checkerboard(void){return checkerboard;}
|
||||
Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :
|
||||
CoarseGrid(_CoarseGrid),
|
||||
FineGrid(_FineGrid),
|
||||
subspace(nbasis,_FineGrid),
|
||||
checkerboard(_checkerboard)
|
||||
{
|
||||
};
|
||||
|
||||
|
||||
void Orthogonalise(void){
|
||||
CoarseScalar InnerProd(CoarseGrid);
|
||||
// std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
|
||||
blockOrthogonalise(InnerProd,subspace);
|
||||
}
|
||||
void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
|
||||
blockProject(CoarseVec,FineVec,subspace);
|
||||
}
|
||||
void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
|
||||
FineVec.Checkerboard() = subspace[0].Checkerboard();
|
||||
blockPromote(CoarseVec,FineVec,subspace);
|
||||
}
|
||||
|
||||
virtual void CreateSubspaceRandom(GridParallelRNG &RNG) {
|
||||
int nn=nbasis;
|
||||
RealD scale;
|
||||
FineField noise(FineGrid);
|
||||
for(int b=0;b<nn;b++){
|
||||
subspace[b] = Zero();
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
subspace[b] = noise;
|
||||
}
|
||||
}
|
||||
virtual void CreateSubspace(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis)
|
||||
{
|
||||
|
||||
RealD scale;
|
||||
|
||||
ConjugateGradient<FineField> CG(1.0e-2,100,false);
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
|
||||
for(int b=0;b<nn;b++){
|
||||
|
||||
subspace[b] = Zero();
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
for(int i=0;i<1;i++){
|
||||
|
||||
CG(hermop,noise,subspace[b]);
|
||||
|
||||
noise = subspace[b];
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
}
|
||||
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
|
||||
subspace[b] = noise;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
|
||||
// and this is the best I found
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
int nn,
|
||||
double hi,
|
||||
double lo,
|
||||
int orderfilter,
|
||||
int ordermin,
|
||||
int orderstep,
|
||||
double filterlo
|
||||
) {
|
||||
|
||||
RealD scale;
|
||||
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
|
||||
// New normalised noise
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
std::cout << GridLogMessage<<" Chebyshev subspace pass-1 : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
|
||||
std::cout << GridLogMessage<<" Chebyshev subspace pass-2 : nbasis"<<nn<<" min "
|
||||
<<ordermin<<" step "<<orderstep
|
||||
<<" lo"<<filterlo<<std::endl;
|
||||
|
||||
// Initial matrix element
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
int b =0;
|
||||
{
|
||||
// Filter
|
||||
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
|
||||
Cheb(hermop,noise,Mn);
|
||||
// normalise
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
b++;
|
||||
}
|
||||
|
||||
// Generate a full sequence of Chebyshevs
|
||||
{
|
||||
lo=filterlo;
|
||||
noise=Mn;
|
||||
|
||||
FineField T0(FineGrid); T0 = noise;
|
||||
FineField T1(FineGrid);
|
||||
FineField T2(FineGrid);
|
||||
FineField y(FineGrid);
|
||||
|
||||
FineField *Tnm = &T0;
|
||||
FineField *Tn = &T1;
|
||||
FineField *Tnp = &T2;
|
||||
|
||||
// Tn=T1 = (xscale M + mscale)in
|
||||
RealD xscale = 2.0/(hi-lo);
|
||||
RealD mscale = -(hi+lo)/(hi-lo);
|
||||
hermop.HermOp(T0,y);
|
||||
T1=y*xscale+noise*mscale;
|
||||
|
||||
for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
|
||||
|
||||
hermop.HermOp(*Tn,y);
|
||||
|
||||
autoView( y_v , y, AcceleratorWrite);
|
||||
autoView( Tn_v , (*Tn), AcceleratorWrite);
|
||||
autoView( Tnp_v , (*Tnp), AcceleratorWrite);
|
||||
autoView( Tnm_v , (*Tnm), AcceleratorWrite);
|
||||
const int Nsimd = CComplex::Nsimd();
|
||||
accelerator_for(ss, FineGrid->oSites(), Nsimd, {
|
||||
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
|
||||
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
|
||||
});
|
||||
|
||||
// Possible more fine grained control is needed than a linear sweep,
|
||||
// but huge productivity gain if this is simple algorithm and not a tunable
|
||||
int m =1;
|
||||
if ( n>=ordermin ) m=n-ordermin;
|
||||
if ( (m%orderstep)==0 ) {
|
||||
Mn=*Tnp;
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
b++;
|
||||
}
|
||||
|
||||
// Cycle pointers to avoid copies
|
||||
FineField *swizzle = Tnm;
|
||||
Tnm =Tn;
|
||||
Tn =Tnp;
|
||||
Tnp =swizzle;
|
||||
|
||||
}
|
||||
}
|
||||
assert(b==nn);
|
||||
}
|
||||
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
int nn,
|
||||
double hi,
|
||||
double lo,
|
||||
int orderfilter
|
||||
) {
|
||||
|
||||
RealD scale;
|
||||
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
|
||||
// New normalised noise
|
||||
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
|
||||
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : nbasis "<<nn<<std::endl;
|
||||
|
||||
|
||||
for(int b =0;b<nbasis;b++)
|
||||
{
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
// Initial matrix element
|
||||
hermop.Op(noise,Mn);
|
||||
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
// Filter
|
||||
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
|
||||
Cheb(hermop,noise,Mn);
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
|
||||
// Refine
|
||||
Chebyshev<FineField> PowerLaw(lo,hi,1000,AggregatePowerLaw);
|
||||
noise = Mn;
|
||||
PowerLaw(hermop,noise,Mn);
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
|
||||
// normalise
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
virtual void CreateSubspaceChebyshevPowerLaw(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
int nn,
|
||||
double hi,
|
||||
int orderfilter
|
||||
) {
|
||||
|
||||
RealD scale;
|
||||
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
|
||||
// New normalised noise
|
||||
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" [0,"<<hi<<"]"<<std::endl;
|
||||
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : nbasis "<<nn<<std::endl;
|
||||
|
||||
for(int b =0;b<nbasis;b++)
|
||||
{
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
// Initial matrix element
|
||||
hermop.Op(noise,Mn);
|
||||
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
// Filter
|
||||
Chebyshev<FineField> Cheb(0.0,hi,orderfilter,AggregatePowerLaw);
|
||||
Cheb(hermop,noise,Mn);
|
||||
// normalise
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
}
|
||||
|
||||
}
|
||||
virtual void CreateSubspaceChebyshevNew(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
double hi
|
||||
) {
|
||||
|
||||
RealD scale;
|
||||
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
|
||||
// New normalised noise
|
||||
for(int b =0;b<nbasis;b++)
|
||||
{
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
// Initial matrix element
|
||||
hermop.Op(noise,Mn);
|
||||
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
// Filter
|
||||
//#opt2(x) = acheb(x,3,90,300)* acheb(x,1,90,50) * acheb(x,0.5,90,200) * acheb(x,0.05,90,400) * acheb(x,0.01,90,1500)
|
||||
/*266
|
||||
Chebyshev<FineField> Cheb1(3.0,hi,300);
|
||||
Chebyshev<FineField> Cheb2(1.0,hi,50);
|
||||
Chebyshev<FineField> Cheb3(0.5,hi,300);
|
||||
Chebyshev<FineField> Cheb4(0.05,hi,500);
|
||||
Chebyshev<FineField> Cheb5(0.01,hi,2000);
|
||||
*/
|
||||
/* 242 */
|
||||
/*
|
||||
Chebyshev<FineField> Cheb3(0.1,hi,300);
|
||||
Chebyshev<FineField> Cheb2(0.02,hi,1000);
|
||||
Chebyshev<FineField> Cheb1(0.003,hi,2000);
|
||||
8?
|
||||
*/
|
||||
/* How many??
|
||||
*/
|
||||
Chebyshev<FineField> Cheb2(0.001,hi,2500); // 169 iters on HDCG after refine
|
||||
Chebyshev<FineField> Cheb1(0.02,hi,600);
|
||||
|
||||
// Chebyshev<FineField> Cheb2(0.001,hi,1500);
|
||||
// Chebyshev<FineField> Cheb1(0.02,hi,600);
|
||||
Cheb1(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
|
||||
hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb1 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
Cheb2(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
|
||||
hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb2 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
// Cheb3(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
|
||||
// hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb3 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
// Cheb4(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
|
||||
// hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb4 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
// Cheb5(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
|
||||
// hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb5 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
subspace[b] = noise;
|
||||
hermop.Op(subspace[b],tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<< " norm " << norm2(noise)<<std::endl;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
virtual void CreateSubspaceMultishift(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
double Lo,double tol,int maxit)
|
||||
{
|
||||
|
||||
RealD scale;
|
||||
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
|
||||
// New normalised noise
|
||||
std::cout << GridLogMessage<<" Multishift subspace : Lo "<<Lo<<std::endl;
|
||||
|
||||
// Filter
|
||||
// [ 1/6(x+Lo) - 1/2(x+2Lo) + 1/2(x+3Lo) -1/6(x+4Lo) = Lo^3 /[ (x+1Lo)(x+2Lo)(x+3Lo)(x+4Lo) ]
|
||||
//
|
||||
// 1/(x+Lo) - 1/(x+2 Lo)
|
||||
double epsilon = Lo/3;
|
||||
std::vector<RealD> alpha({1.0/6.0,-1.0/2.0,1.0/2.0,-1.0/6.0});
|
||||
std::vector<RealD> shifts({Lo,Lo+epsilon,Lo+2*epsilon,Lo+3*epsilon});
|
||||
std::vector<RealD> tols({tol,tol,tol,tol});
|
||||
std::cout << "sizes "<<alpha.size()<<" "<<shifts.size()<<" "<<tols.size()<<std::endl;
|
||||
|
||||
MultiShiftFunction msf(4,0.0,95.0);
|
||||
std::cout << "msf constructed "<<std::endl;
|
||||
msf.poles=shifts;
|
||||
msf.residues=alpha;
|
||||
msf.tolerances=tols;
|
||||
msf.norm=0.0;
|
||||
msf.order=alpha.size();
|
||||
ConjugateGradientMultiShift<FineField> MSCG(maxit,msf);
|
||||
|
||||
for(int b =0;b<nbasis;b++)
|
||||
{
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
// Initial matrix element
|
||||
hermop.Op(noise,Mn);
|
||||
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
MSCG(hermop,noise,Mn);
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
virtual void RefineSubspace(LinearOperatorBase<FineField> &hermop,
|
||||
double Lo,double tol,int maxit)
|
||||
{
|
||||
FineField tmp(FineGrid);
|
||||
for(int b =0;b<nbasis;b++)
|
||||
{
|
||||
ConjugateGradient<FineField> CGsloppy(tol,maxit,false);
|
||||
ShiftedHermOpLinearOperator<FineField> ShiftedFineHermOp(hermop,Lo);
|
||||
tmp=Zero();
|
||||
CGsloppy(hermop,subspace[b],tmp);
|
||||
RealD scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
|
||||
subspace[b]=tmp;
|
||||
hermop.Op(subspace[b],tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
}
|
||||
}
|
||||
virtual void RefineSubspaceHDCG(LinearOperatorBase<FineField> &hermop,
|
||||
TwoLevelADEF2mrhs<FineField,CoarseVector> & theHDCG,
|
||||
int nrhs)
|
||||
{
|
||||
std::vector<FineField> src_mrhs(nrhs,FineGrid);
|
||||
std::vector<FineField> res_mrhs(nrhs,FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
for(int b =0;b<nbasis;b+=nrhs)
|
||||
{
|
||||
tmp = subspace[b];
|
||||
RealD scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
|
||||
subspace[b] =tmp;
|
||||
hermop.Op(subspace[b],tmp);
|
||||
std::cout<<GridLogMessage << "before filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
|
||||
for(int r=0;r<MIN(nbasis-b,nrhs);r++){
|
||||
src_mrhs[r] = subspace[b+r];
|
||||
}
|
||||
for(int r=0;r<nrhs;r++){
|
||||
res_mrhs[r] = Zero();
|
||||
}
|
||||
theHDCG(src_mrhs,res_mrhs);
|
||||
|
||||
for(int r=0;r<MIN(nbasis-b,nrhs);r++){
|
||||
tmp = res_mrhs[r];
|
||||
RealD scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
|
||||
subspace[b+r]=tmp;
|
||||
}
|
||||
hermop.Op(subspace[b],tmp);
|
||||
std::cout<<GridLogMessage << "after filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
};
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -56,243 +56,6 @@ inline void blockMaskedInnerProduct(Lattice<CComplex> &CoarseInner,
|
||||
blockSum(CoarseInner,fine_inner_msk);
|
||||
}
|
||||
|
||||
|
||||
class Geometry {
|
||||
public:
|
||||
int npoint;
|
||||
int base;
|
||||
std::vector<int> directions ;
|
||||
std::vector<int> displacements;
|
||||
std::vector<int> points_dagger;
|
||||
|
||||
Geometry(int _d) {
|
||||
|
||||
base = (_d==5) ? 1:0;
|
||||
|
||||
// make coarse grid stencil for 4d , not 5d
|
||||
if ( _d==5 ) _d=4;
|
||||
|
||||
npoint = 2*_d+1;
|
||||
directions.resize(npoint);
|
||||
displacements.resize(npoint);
|
||||
points_dagger.resize(npoint);
|
||||
for(int d=0;d<_d;d++){
|
||||
directions[d ] = d+base;
|
||||
directions[d+_d] = d+base;
|
||||
displacements[d ] = +1;
|
||||
displacements[d+_d]= -1;
|
||||
points_dagger[d ] = d+_d;
|
||||
points_dagger[d+_d] = d;
|
||||
}
|
||||
directions [2*_d]=0;
|
||||
displacements[2*_d]=0;
|
||||
points_dagger[2*_d]=2*_d;
|
||||
}
|
||||
|
||||
int point(int dir, int disp) {
|
||||
assert(disp == -1 || disp == 0 || disp == 1);
|
||||
assert(base+0 <= dir && dir < base+4);
|
||||
|
||||
// directions faster index = new indexing
|
||||
// 4d (base = 0):
|
||||
// point 0 1 2 3 4 5 6 7 8
|
||||
// dir 0 1 2 3 0 1 2 3 0
|
||||
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
|
||||
// 5d (base = 1):
|
||||
// point 0 1 2 3 4 5 6 7 8
|
||||
// dir 1 2 3 4 1 2 3 4 0
|
||||
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
|
||||
|
||||
// displacements faster index = old indexing
|
||||
// 4d (base = 0):
|
||||
// point 0 1 2 3 4 5 6 7 8
|
||||
// dir 0 0 1 1 2 2 3 3 0
|
||||
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
|
||||
// 5d (base = 1):
|
||||
// point 0 1 2 3 4 5 6 7 8
|
||||
// dir 1 1 2 2 3 3 4 4 0
|
||||
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
|
||||
|
||||
if(dir == 0 and disp == 0)
|
||||
return 8;
|
||||
else // New indexing
|
||||
return (1 - disp) / 2 * 4 + dir - base;
|
||||
// else // Old indexing
|
||||
// return (4 * (dir - base) + 1 - disp) / 2;
|
||||
}
|
||||
};
|
||||
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class Aggregation {
|
||||
public:
|
||||
typedef iVector<CComplex,nbasis > siteVector;
|
||||
typedef Lattice<siteVector> CoarseVector;
|
||||
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
|
||||
|
||||
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<Fobj > FineField;
|
||||
|
||||
GridBase *CoarseGrid;
|
||||
GridBase *FineGrid;
|
||||
std::vector<Lattice<Fobj> > subspace;
|
||||
int checkerboard;
|
||||
int Checkerboard(void){return checkerboard;}
|
||||
Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :
|
||||
CoarseGrid(_CoarseGrid),
|
||||
FineGrid(_FineGrid),
|
||||
subspace(nbasis,_FineGrid),
|
||||
checkerboard(_checkerboard)
|
||||
{
|
||||
};
|
||||
|
||||
void Orthogonalise(void){
|
||||
CoarseScalar InnerProd(CoarseGrid);
|
||||
std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
|
||||
blockOrthogonalise(InnerProd,subspace);
|
||||
}
|
||||
void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
|
||||
blockProject(CoarseVec,FineVec,subspace);
|
||||
}
|
||||
void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
|
||||
FineVec.Checkerboard() = subspace[0].Checkerboard();
|
||||
blockPromote(CoarseVec,FineVec,subspace);
|
||||
}
|
||||
|
||||
virtual void CreateSubspace(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) {
|
||||
|
||||
RealD scale;
|
||||
|
||||
ConjugateGradient<FineField> CG(1.0e-2,100,false);
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
|
||||
for(int b=0;b<nn;b++){
|
||||
|
||||
subspace[b] = Zero();
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
for(int i=0;i<1;i++){
|
||||
|
||||
CG(hermop,noise,subspace[b]);
|
||||
|
||||
noise = subspace[b];
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
}
|
||||
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
|
||||
subspace[b] = noise;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
|
||||
// and this is the best I found
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
int nn,
|
||||
double hi,
|
||||
double lo,
|
||||
int orderfilter,
|
||||
int ordermin,
|
||||
int orderstep,
|
||||
double filterlo
|
||||
) {
|
||||
|
||||
RealD scale;
|
||||
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
|
||||
// New normalised noise
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
// Initial matrix element
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
int b =0;
|
||||
{
|
||||
// Filter
|
||||
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
|
||||
Cheb(hermop,noise,Mn);
|
||||
// normalise
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
b++;
|
||||
}
|
||||
|
||||
// Generate a full sequence of Chebyshevs
|
||||
{
|
||||
lo=filterlo;
|
||||
noise=Mn;
|
||||
|
||||
FineField T0(FineGrid); T0 = noise;
|
||||
FineField T1(FineGrid);
|
||||
FineField T2(FineGrid);
|
||||
FineField y(FineGrid);
|
||||
|
||||
FineField *Tnm = &T0;
|
||||
FineField *Tn = &T1;
|
||||
FineField *Tnp = &T2;
|
||||
|
||||
// Tn=T1 = (xscale M + mscale)in
|
||||
RealD xscale = 2.0/(hi-lo);
|
||||
RealD mscale = -(hi+lo)/(hi-lo);
|
||||
hermop.HermOp(T0,y);
|
||||
T1=y*xscale+noise*mscale;
|
||||
|
||||
for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
|
||||
|
||||
hermop.HermOp(*Tn,y);
|
||||
|
||||
autoView( y_v , y, AcceleratorWrite);
|
||||
autoView( Tn_v , (*Tn), AcceleratorWrite);
|
||||
autoView( Tnp_v , (*Tnp), AcceleratorWrite);
|
||||
autoView( Tnm_v , (*Tnm), AcceleratorWrite);
|
||||
const int Nsimd = CComplex::Nsimd();
|
||||
accelerator_for(ss, FineGrid->oSites(), Nsimd, {
|
||||
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
|
||||
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
|
||||
});
|
||||
|
||||
// Possible more fine grained control is needed than a linear sweep,
|
||||
// but huge productivity gain if this is simple algorithm and not a tunable
|
||||
int m =1;
|
||||
if ( n>=ordermin ) m=n-ordermin;
|
||||
if ( (m%orderstep)==0 ) {
|
||||
Mn=*Tnp;
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
b++;
|
||||
}
|
||||
|
||||
// Cycle pointers to avoid copies
|
||||
FineField *swizzle = Tnm;
|
||||
Tnm =Tn;
|
||||
Tn =Tnp;
|
||||
Tnp =swizzle;
|
||||
|
||||
}
|
||||
}
|
||||
assert(b==nn);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
// Fine Object == (per site) type of fine field
|
||||
// nbasis == number of deflation vectors
|
||||
template<class Fobj,class CComplex,int nbasis>
|
619
Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h
Normal file
619
Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h
Normal file
@ -0,0 +1,619 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
#include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No)
|
||||
|
||||
#include <Grid/lattice/PaddedCell.h>
|
||||
#include <Grid/stencil/GeneralLocalStencil.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
// Fine Object == (per site) type of fine field
|
||||
// nbasis == number of deflation vectors
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class GeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
|
||||
public:
|
||||
|
||||
typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
|
||||
typedef iVector<CComplex,nbasis > siteVector;
|
||||
typedef iMatrix<CComplex,nbasis > siteMatrix;
|
||||
typedef Lattice<iScalar<CComplex> > CoarseComplexField;
|
||||
typedef Lattice<siteVector> CoarseVector;
|
||||
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
|
||||
typedef iMatrix<CComplex,nbasis > Cobj;
|
||||
typedef iVector<CComplex,nbasis > Cvec;
|
||||
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<Fobj > FineField;
|
||||
typedef Lattice<CComplex > FineComplexField;
|
||||
typedef CoarseVector Field;
|
||||
////////////////////
|
||||
// Data members
|
||||
////////////////////
|
||||
int hermitian;
|
||||
GridBase * _FineGrid;
|
||||
GridCartesian * _CoarseGrid;
|
||||
NonLocalStencilGeometry &geom;
|
||||
PaddedCell Cell;
|
||||
GeneralLocalStencil Stencil;
|
||||
|
||||
std::vector<CoarseMatrix> _A;
|
||||
std::vector<CoarseMatrix> _Adag;
|
||||
std::vector<CoarseVector> MultTemporaries;
|
||||
|
||||
///////////////////////
|
||||
// Interface
|
||||
///////////////////////
|
||||
GridBase * Grid(void) { return _CoarseGrid; }; // this is all the linalg routines need to know
|
||||
GridBase * FineGrid(void) { return _FineGrid; }; // this is all the linalg routines need to know
|
||||
GridCartesian * CoarseGrid(void) { return _CoarseGrid; }; // this is all the linalg routines need to know
|
||||
|
||||
/* void ShiftMatrix(RealD shift)
|
||||
{
|
||||
int Nd=_FineGrid->Nd();
|
||||
Coordinate zero_shift(Nd,0);
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
if ( zero_shift==geom.shifts[p] ) {
|
||||
_A[p] = _A[p]+shift;
|
||||
// _Adag[p] = _Adag[p]+shift;
|
||||
}
|
||||
}
|
||||
}
|
||||
void ProjectNearestNeighbour(RealD shift, GeneralCoarseOp &CopyMe)
|
||||
{
|
||||
int nfound=0;
|
||||
std::cout << GridLogMessage <<"GeneralCoarsenedMatrix::ProjectNearestNeighbour "<< CopyMe._A[0].Grid()<<std::endl;
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
for(int pp=0;pp<CopyMe.geom.npoint;pp++){
|
||||
// Search for the same relative shift
|
||||
// Avoids brutal handling of Grid pointers
|
||||
if ( CopyMe.geom.shifts[pp]==geom.shifts[p] ) {
|
||||
_A[p] = CopyMe.Cell.Extract(CopyMe._A[pp]);
|
||||
// _Adag[p] = CopyMe.Cell.Extract(CopyMe._Adag[pp]);
|
||||
nfound++;
|
||||
}
|
||||
}
|
||||
}
|
||||
assert(nfound==geom.npoint);
|
||||
ExchangeCoarseLinks();
|
||||
}
|
||||
*/
|
||||
|
||||
GeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridBase *FineGrid, GridCartesian * CoarseGrid)
|
||||
: geom(_geom),
|
||||
_FineGrid(FineGrid),
|
||||
_CoarseGrid(CoarseGrid),
|
||||
hermitian(1),
|
||||
Cell(_geom.Depth(),_CoarseGrid),
|
||||
Stencil(Cell.grids.back(),geom.shifts)
|
||||
{
|
||||
{
|
||||
int npoint = _geom.npoint;
|
||||
}
|
||||
_A.resize(geom.npoint,CoarseGrid);
|
||||
// _Adag.resize(geom.npoint,CoarseGrid);
|
||||
}
|
||||
void M (const CoarseVector &in, CoarseVector &out)
|
||||
{
|
||||
Mult(_A,in,out);
|
||||
}
|
||||
void Mdag (const CoarseVector &in, CoarseVector &out)
|
||||
{
|
||||
assert(hermitian);
|
||||
Mult(_A,in,out);
|
||||
// if ( hermitian ) M(in,out);
|
||||
// else Mult(_Adag,in,out);
|
||||
}
|
||||
void Mult (std::vector<CoarseMatrix> &A,const CoarseVector &in, CoarseVector &out)
|
||||
{
|
||||
RealD tviews=0; RealD ttot=0; RealD tmult=0; RealD texch=0; RealD text=0; RealD ttemps=0; RealD tcopy=0;
|
||||
RealD tmult2=0;
|
||||
|
||||
ttot=-usecond();
|
||||
conformable(CoarseGrid(),in.Grid());
|
||||
conformable(in.Grid(),out.Grid());
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
CoarseVector tin=in;
|
||||
|
||||
texch-=usecond();
|
||||
CoarseVector pin = Cell.ExchangePeriodic(tin);
|
||||
texch+=usecond();
|
||||
|
||||
CoarseVector pout(pin.Grid());
|
||||
|
||||
int npoint = geom.npoint;
|
||||
typedef LatticeView<Cobj> Aview;
|
||||
typedef LatticeView<Cvec> Vview;
|
||||
|
||||
const int Nsimd = CComplex::Nsimd();
|
||||
|
||||
int64_t osites=pin.Grid()->oSites();
|
||||
|
||||
RealD flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
|
||||
RealD bytes = 1.0*osites*sizeof(siteMatrix)*npoint
|
||||
+ 2.0*osites*sizeof(siteVector)*npoint;
|
||||
|
||||
{
|
||||
tviews-=usecond();
|
||||
autoView( in_v , pin, AcceleratorRead);
|
||||
autoView( out_v , pout, AcceleratorWriteDiscard);
|
||||
autoView( Stencil_v , Stencil, AcceleratorRead);
|
||||
tviews+=usecond();
|
||||
|
||||
// Static and prereserve to keep UVM region live and not resized across multiple calls
|
||||
ttemps-=usecond();
|
||||
MultTemporaries.resize(npoint,pin.Grid());
|
||||
ttemps+=usecond();
|
||||
std::vector<Aview> AcceleratorViewContainer_h;
|
||||
std::vector<Vview> AcceleratorVecViewContainer_h;
|
||||
|
||||
tviews-=usecond();
|
||||
for(int p=0;p<npoint;p++) {
|
||||
AcceleratorViewContainer_h.push_back( A[p].View(AcceleratorRead));
|
||||
AcceleratorVecViewContainer_h.push_back(MultTemporaries[p].View(AcceleratorWrite));
|
||||
}
|
||||
tviews+=usecond();
|
||||
|
||||
static deviceVector<Aview> AcceleratorViewContainer; AcceleratorViewContainer.resize(npoint);
|
||||
static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(npoint);
|
||||
|
||||
auto Aview_p = &AcceleratorViewContainer[0];
|
||||
auto Vview_p = &AcceleratorVecViewContainer[0];
|
||||
tcopy-=usecond();
|
||||
acceleratorCopyToDevice(&AcceleratorViewContainer_h[0],&AcceleratorViewContainer[0],npoint *sizeof(Aview));
|
||||
acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],npoint *sizeof(Vview));
|
||||
tcopy+=usecond();
|
||||
|
||||
tmult-=usecond();
|
||||
accelerator_for(spb, osites*nbasis*npoint, Nsimd, {
|
||||
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
|
||||
int32_t ss = spb/(nbasis*npoint);
|
||||
int32_t bp = spb%(nbasis*npoint);
|
||||
int32_t point= bp/nbasis;
|
||||
int32_t b = bp%nbasis;
|
||||
auto SE = Stencil_v.GetEntry(point,ss);
|
||||
auto nbr = coalescedReadGeneralPermute(in_v[SE->_offset],SE->_permute,Nd);
|
||||
auto res = coalescedRead(Aview_p[point][ss](0,b))*nbr(0);
|
||||
for(int bb=1;bb<nbasis;bb++) {
|
||||
res = res + coalescedRead(Aview_p[point][ss](bb,b))*nbr(bb);
|
||||
}
|
||||
coalescedWrite(Vview_p[point][ss](b),res);
|
||||
});
|
||||
tmult2-=usecond();
|
||||
accelerator_for(sb, osites*nbasis, Nsimd, {
|
||||
int ss = sb/nbasis;
|
||||
int b = sb%nbasis;
|
||||
auto res = coalescedRead(Vview_p[0][ss](b));
|
||||
for(int point=1;point<npoint;point++){
|
||||
res = res + coalescedRead(Vview_p[point][ss](b));
|
||||
}
|
||||
coalescedWrite(out_v[ss](b),res);
|
||||
});
|
||||
tmult2+=usecond();
|
||||
tmult+=usecond();
|
||||
for(int p=0;p<npoint;p++) {
|
||||
AcceleratorViewContainer_h[p].ViewClose();
|
||||
AcceleratorVecViewContainer_h[p].ViewClose();
|
||||
}
|
||||
}
|
||||
|
||||
text-=usecond();
|
||||
out = Cell.Extract(pout);
|
||||
text+=usecond();
|
||||
ttot+=usecond();
|
||||
|
||||
std::cout << GridLogPerformance<<"Coarse 1rhs Mult Aviews "<<tviews<<" us"<<std::endl;
|
||||
std::cout << GridLogPerformance<<"Coarse Mult exch "<<texch<<" us"<<std::endl;
|
||||
std::cout << GridLogPerformance<<"Coarse Mult mult "<<tmult<<" us"<<std::endl;
|
||||
std::cout << GridLogPerformance<<" of which mult2 "<<tmult2<<" us"<<std::endl;
|
||||
std::cout << GridLogPerformance<<"Coarse Mult ext "<<text<<" us"<<std::endl;
|
||||
std::cout << GridLogPerformance<<"Coarse Mult temps "<<ttemps<<" us"<<std::endl;
|
||||
std::cout << GridLogPerformance<<"Coarse Mult copy "<<tcopy<<" us"<<std::endl;
|
||||
std::cout << GridLogPerformance<<"Coarse Mult tot "<<ttot<<" us"<<std::endl;
|
||||
// std::cout << GridLogPerformance<<std::endl;
|
||||
std::cout << GridLogPerformance<<"Coarse Kernel flops "<< flops<<std::endl;
|
||||
std::cout << GridLogPerformance<<"Coarse Kernel flop/s "<< flops/tmult<<" mflop/s"<<std::endl;
|
||||
std::cout << GridLogPerformance<<"Coarse Kernel bytes/s "<< bytes/tmult<<" MB/s"<<std::endl;
|
||||
std::cout << GridLogPerformance<<"Coarse overall flops/s "<< flops/ttot<<" mflop/s"<<std::endl;
|
||||
std::cout << GridLogPerformance<<"Coarse total bytes "<< bytes/1e6<<" MB"<<std::endl;
|
||||
|
||||
};
|
||||
|
||||
void PopulateAdag(void)
|
||||
{
|
||||
for(int64_t bidx=0;bidx<CoarseGrid()->gSites() ;bidx++){
|
||||
Coordinate bcoor;
|
||||
CoarseGrid()->GlobalIndexToGlobalCoor(bidx,bcoor);
|
||||
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
Coordinate scoor = bcoor;
|
||||
for(int mu=0;mu<bcoor.size();mu++){
|
||||
int L = CoarseGrid()->GlobalDimensions()[mu];
|
||||
scoor[mu] = (bcoor[mu] - geom.shifts[p][mu] + L) % L; // Modulo arithmetic
|
||||
}
|
||||
// Flip to poke/peekLocalSite and not too bad
|
||||
auto link = peekSite(_A[p],scoor);
|
||||
int pp = geom.Reverse(p);
|
||||
pokeSite(adj(link),_Adag[pp],bcoor);
|
||||
}
|
||||
}
|
||||
}
|
||||
/////////////////////////////////////////////////////////////
|
||||
//
|
||||
// A) Only reduced flops option is to use a padded cell of depth 4
|
||||
// and apply MpcDagMpc in the padded cell.
|
||||
//
|
||||
// Makes for ONE application of MpcDagMpc per vector instead of 30 or 80.
|
||||
// With the effective cell size around (B+8)^4 perhaps 12^4/4^4 ratio
|
||||
// Cost is 81x more, same as stencil size.
|
||||
//
|
||||
// But: can eliminate comms and do as local dirichlet.
|
||||
//
|
||||
// Local exchange gauge field once.
|
||||
// Apply to all vectors, local only computation.
|
||||
// Must exchange ghost subcells in reverse process of PaddedCell to take inner products
|
||||
//
|
||||
// B) Can reduce cost: pad by 1, apply Deo (4^4+6^4+8^4+8^4 )/ (4x 4^4)
|
||||
// pad by 2, apply Doe
|
||||
// pad by 3, apply Deo
|
||||
// then break out 8x directions; cost is ~10x MpcDagMpc per vector
|
||||
//
|
||||
// => almost factor of 10 in setup cost, excluding data rearrangement
|
||||
//
|
||||
// Intermediates -- ignore the corner terms, leave approximate and force Hermitian
|
||||
// Intermediates -- pad by 2 and apply 1+8+24 = 33 times.
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
//////////////////////////////////////////////////////////
|
||||
// BFM HDCG style approach: Solve a system of equations to get Aij
|
||||
//////////////////////////////////////////////////////////
|
||||
/*
|
||||
* Here, k,l index which possible shift within the 3^Nd "ball" connected by MdagM.
|
||||
*
|
||||
* conj(phases[block]) proj[k][ block*Nvec+j ] = \sum_ball e^{i q_k . delta} < phi_{block,j} | MdagM | phi_{(block+delta),i} >
|
||||
* = \sum_ball e^{iqk.delta} A_ji
|
||||
*
|
||||
* Must invert matrix M_k,l = e^[i q_k . delta_l]
|
||||
*
|
||||
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
|
||||
*/
|
||||
#if 0
|
||||
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
|
||||
Aggregation<Fobj,CComplex,nbasis> & Subspace)
|
||||
{
|
||||
std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
|
||||
GridBase *grid = FineGrid();
|
||||
|
||||
RealD tproj=0.0;
|
||||
RealD teigen=0.0;
|
||||
RealD tmat=0.0;
|
||||
RealD tphase=0.0;
|
||||
RealD tinv=0.0;
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Orthogonalise the subblocks over the basis
|
||||
/////////////////////////////////////////////////////////////
|
||||
CoarseScalar InnerProd(CoarseGrid());
|
||||
blockOrthogonalise(InnerProd,Subspace.subspace);
|
||||
|
||||
const int npoint = geom.npoint;
|
||||
|
||||
Coordinate clatt = CoarseGrid()->GlobalDimensions();
|
||||
int Nd = CoarseGrid()->Nd();
|
||||
|
||||
/*
|
||||
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
|
||||
* Matrix index i is mapped to this shift via
|
||||
* geom.shifts[i]
|
||||
*
|
||||
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
|
||||
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
|
||||
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
|
||||
* = M_{kl} A_ji^{b.b+l}
|
||||
*
|
||||
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
|
||||
*
|
||||
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
|
||||
*
|
||||
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
|
||||
*/
|
||||
teigen-=usecond();
|
||||
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
ComplexD ci(0.0,1.0);
|
||||
for(int k=0;k<npoint;k++){ // Loop over momenta
|
||||
|
||||
for(int l=0;l<npoint;l++){ // Loop over nbr relative
|
||||
ComplexD phase(0.0,0.0);
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
|
||||
}
|
||||
phase=exp(phase*ci);
|
||||
Mkl(k,l) = phase;
|
||||
}
|
||||
}
|
||||
invMkl = Mkl.inverse();
|
||||
teigen+=usecond();
|
||||
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
// Now compute the matrix elements of linop between the orthonormal
|
||||
// set of vectors.
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
FineField phaV(grid); // Phased block basis vector
|
||||
FineField MphaV(grid);// Matrix applied
|
||||
CoarseVector coarseInner(CoarseGrid());
|
||||
|
||||
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
|
||||
std::vector<CoarseVector> FT(npoint,CoarseGrid());
|
||||
for(int i=0;i<nbasis;i++){// Loop over basis vectors
|
||||
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
|
||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
||||
/////////////////////////////////////////////////////
|
||||
// Stick a phase on every block
|
||||
/////////////////////////////////////////////////////
|
||||
tphase-=usecond();
|
||||
CoarseComplexField coor(CoarseGrid());
|
||||
CoarseComplexField pha(CoarseGrid()); pha=Zero();
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
LatticeCoordinate(coor,mu);
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
pha = pha + (TwoPiL * geom.shifts[p][mu]) * coor;
|
||||
}
|
||||
pha =exp(pha*ci);
|
||||
phaV=Zero();
|
||||
blockZAXPY(phaV,pha,Subspace.subspace[i],phaV);
|
||||
tphase+=usecond();
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Multiple phased subspace vector by matrix and project to subspace
|
||||
// Remove local bulk phase to leave relative phases
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
tmat-=usecond();
|
||||
linop.Op(phaV,MphaV);
|
||||
tmat+=usecond();
|
||||
|
||||
tproj-=usecond();
|
||||
blockProject(coarseInner,MphaV,Subspace.subspace);
|
||||
coarseInner = conjugate(pha) * coarseInner;
|
||||
|
||||
ComputeProj[p] = coarseInner;
|
||||
tproj+=usecond();
|
||||
|
||||
}
|
||||
|
||||
tinv-=usecond();
|
||||
for(int k=0;k<npoint;k++){
|
||||
FT[k] = Zero();
|
||||
for(int l=0;l<npoint;l++){
|
||||
FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
|
||||
}
|
||||
|
||||
int osites=CoarseGrid()->oSites();
|
||||
autoView( A_v , _A[k], AcceleratorWrite);
|
||||
autoView( FT_v , FT[k], AcceleratorRead);
|
||||
accelerator_for(sss, osites, 1, {
|
||||
for(int j=0;j<nbasis;j++){
|
||||
A_v[sss](i,j) = FT_v[sss](j);
|
||||
}
|
||||
});
|
||||
}
|
||||
tinv+=usecond();
|
||||
}
|
||||
|
||||
// Only needed if nonhermitian
|
||||
if ( ! hermitian ) {
|
||||
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
|
||||
// PopulateAdag();
|
||||
}
|
||||
|
||||
// Need to write something to populate Adag from A
|
||||
ExchangeCoarseLinks();
|
||||
std::cout << GridLogMessage<<"CoarsenOperator eigen "<<teigen<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator phase "<<tphase<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator mat "<<tmat <<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator proj "<<tproj<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
|
||||
}
|
||||
#else
|
||||
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
|
||||
Aggregation<Fobj,CComplex,nbasis> & Subspace)
|
||||
{
|
||||
std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
|
||||
GridBase *grid = FineGrid();
|
||||
|
||||
RealD tproj=0.0;
|
||||
RealD teigen=0.0;
|
||||
RealD tmat=0.0;
|
||||
RealD tphase=0.0;
|
||||
RealD tphaseBZ=0.0;
|
||||
RealD tinv=0.0;
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Orthogonalise the subblocks over the basis
|
||||
/////////////////////////////////////////////////////////////
|
||||
CoarseScalar InnerProd(CoarseGrid());
|
||||
blockOrthogonalise(InnerProd,Subspace.subspace);
|
||||
|
||||
// for(int s=0;s<Subspace.subspace.size();s++){
|
||||
// std::cout << " subspace norm "<<norm2(Subspace.subspace[s])<<std::endl;
|
||||
// }
|
||||
const int npoint = geom.npoint;
|
||||
|
||||
Coordinate clatt = CoarseGrid()->GlobalDimensions();
|
||||
int Nd = CoarseGrid()->Nd();
|
||||
|
||||
/*
|
||||
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
|
||||
* Matrix index i is mapped to this shift via
|
||||
* geom.shifts[i]
|
||||
*
|
||||
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
|
||||
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
|
||||
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
|
||||
* = M_{kl} A_ji^{b.b+l}
|
||||
*
|
||||
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
|
||||
*
|
||||
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
|
||||
*
|
||||
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
|
||||
*/
|
||||
teigen-=usecond();
|
||||
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
ComplexD ci(0.0,1.0);
|
||||
for(int k=0;k<npoint;k++){ // Loop over momenta
|
||||
|
||||
for(int l=0;l<npoint;l++){ // Loop over nbr relative
|
||||
ComplexD phase(0.0,0.0);
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
|
||||
}
|
||||
phase=exp(phase*ci);
|
||||
Mkl(k,l) = phase;
|
||||
}
|
||||
}
|
||||
invMkl = Mkl.inverse();
|
||||
teigen+=usecond();
|
||||
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
// Now compute the matrix elements of linop between the orthonormal
|
||||
// set of vectors.
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
FineField phaV(grid); // Phased block basis vector
|
||||
FineField MphaV(grid);// Matrix applied
|
||||
std::vector<FineComplexField> phaF(npoint,grid);
|
||||
std::vector<CoarseComplexField> pha(npoint,CoarseGrid());
|
||||
|
||||
CoarseVector coarseInner(CoarseGrid());
|
||||
|
||||
typedef typename CComplex::scalar_type SComplex;
|
||||
FineComplexField one(grid); one=SComplex(1.0);
|
||||
FineComplexField zz(grid); zz = Zero();
|
||||
tphase=-usecond();
|
||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
||||
/////////////////////////////////////////////////////
|
||||
// Stick a phase on every block
|
||||
/////////////////////////////////////////////////////
|
||||
CoarseComplexField coor(CoarseGrid());
|
||||
pha[p]=Zero();
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
LatticeCoordinate(coor,mu);
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
pha[p] = pha[p] + (TwoPiL * geom.shifts[p][mu]) * coor;
|
||||
}
|
||||
pha[p] =exp(pha[p]*ci);
|
||||
|
||||
blockZAXPY(phaF[p],pha[p],one,zz);
|
||||
|
||||
}
|
||||
tphase+=usecond();
|
||||
|
||||
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
|
||||
std::vector<CoarseVector> FT(npoint,CoarseGrid());
|
||||
for(int i=0;i<nbasis;i++){// Loop over basis vectors
|
||||
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
|
||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
||||
tphaseBZ-=usecond();
|
||||
phaV = phaF[p]*Subspace.subspace[i];
|
||||
tphaseBZ+=usecond();
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Multiple phased subspace vector by matrix and project to subspace
|
||||
// Remove local bulk phase to leave relative phases
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
tmat-=usecond();
|
||||
linop.Op(phaV,MphaV);
|
||||
tmat+=usecond();
|
||||
// std::cout << i << " " <<p << " MphaV "<<norm2(MphaV)<<" "<<norm2(phaV)<<std::endl;
|
||||
|
||||
tproj-=usecond();
|
||||
blockProject(coarseInner,MphaV,Subspace.subspace);
|
||||
coarseInner = conjugate(pha[p]) * coarseInner;
|
||||
|
||||
ComputeProj[p] = coarseInner;
|
||||
tproj+=usecond();
|
||||
// std::cout << i << " " <<p << " ComputeProj "<<norm2(ComputeProj[p])<<std::endl;
|
||||
|
||||
}
|
||||
|
||||
tinv-=usecond();
|
||||
for(int k=0;k<npoint;k++){
|
||||
FT[k] = Zero();
|
||||
for(int l=0;l<npoint;l++){
|
||||
FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
|
||||
}
|
||||
|
||||
int osites=CoarseGrid()->oSites();
|
||||
autoView( A_v , _A[k], AcceleratorWrite);
|
||||
autoView( FT_v , FT[k], AcceleratorRead);
|
||||
accelerator_for(sss, osites, 1, {
|
||||
for(int j=0;j<nbasis;j++){
|
||||
A_v[sss](i,j) = FT_v[sss](j);
|
||||
}
|
||||
});
|
||||
}
|
||||
tinv+=usecond();
|
||||
}
|
||||
|
||||
// Only needed if nonhermitian
|
||||
if ( ! hermitian ) {
|
||||
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
|
||||
// PopulateAdag();
|
||||
}
|
||||
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
std::cout << " _A["<<p<<"] "<<norm2(_A[p])<<std::endl;
|
||||
}
|
||||
|
||||
// Need to write something to populate Adag from A
|
||||
ExchangeCoarseLinks();
|
||||
std::cout << GridLogMessage<<"CoarsenOperator eigen "<<teigen<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator phase "<<tphase<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator mat "<<tmat <<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator proj "<<tproj<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
|
||||
}
|
||||
#endif
|
||||
void ExchangeCoarseLinks(void){
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
_A[p] = Cell.ExchangePeriodic(_A[p]);
|
||||
// _Adag[p]= Cell.ExchangePeriodic(_Adag[p]);
|
||||
}
|
||||
}
|
||||
virtual void Mdiag (const Field &in, Field &out){ assert(0);};
|
||||
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);};
|
||||
virtual void MdirAll (const Field &in, std::vector<Field> &out){assert(0);};
|
||||
};
|
||||
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
729
Grid/algorithms/multigrid/GeneralCoarsenedMatrixMultiRHS.h
Normal file
729
Grid/algorithms/multigrid/GeneralCoarsenedMatrixMultiRHS.h
Normal file
@ -0,0 +1,729 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/GeneralCoarsenedMatrixMultiRHS.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
// Fine Object == (per site) type of fine field
|
||||
// nbasis == number of deflation vectors
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class MultiGeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
|
||||
public:
|
||||
typedef typename CComplex::scalar_object SComplex;
|
||||
typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
|
||||
typedef MultiGeneralCoarsenedMatrix<Fobj,CComplex,nbasis> MultiGeneralCoarseOp;
|
||||
|
||||
typedef iVector<CComplex,nbasis > siteVector;
|
||||
typedef iMatrix<CComplex,nbasis > siteMatrix;
|
||||
typedef iVector<SComplex,nbasis > calcVector;
|
||||
typedef iMatrix<SComplex,nbasis > calcMatrix;
|
||||
typedef Lattice<iScalar<CComplex> > CoarseComplexField;
|
||||
typedef Lattice<siteVector> CoarseVector;
|
||||
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
|
||||
typedef iMatrix<CComplex,nbasis > Cobj;
|
||||
typedef iVector<CComplex,nbasis > Cvec;
|
||||
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<Fobj > FineField;
|
||||
typedef Lattice<CComplex > FineComplexField;
|
||||
typedef CoarseVector Field;
|
||||
|
||||
////////////////////
|
||||
// Data members
|
||||
////////////////////
|
||||
GridCartesian * _CoarseGridMulti;
|
||||
NonLocalStencilGeometry geom;
|
||||
NonLocalStencilGeometry geom_srhs;
|
||||
PaddedCell Cell;
|
||||
GeneralLocalStencil Stencil;
|
||||
|
||||
deviceVector<calcVector> BLAS_B;
|
||||
deviceVector<calcVector> BLAS_C;
|
||||
std::vector<deviceVector<calcMatrix> > BLAS_A;
|
||||
|
||||
std::vector<deviceVector<ComplexD *> > BLAS_AP;
|
||||
std::vector<deviceVector<ComplexD *> > BLAS_BP;
|
||||
deviceVector<ComplexD *> BLAS_CP;
|
||||
|
||||
///////////////////////
|
||||
// Interface
|
||||
///////////////////////
|
||||
GridBase * Grid(void) { return _CoarseGridMulti; }; // this is all the linalg routines need to know
|
||||
GridCartesian * CoarseGrid(void) { return _CoarseGridMulti; }; // this is all the linalg routines need to know
|
||||
|
||||
// Can be used to do I/O on the operator matrices externally
|
||||
void SetMatrix (int p,CoarseMatrix & A)
|
||||
{
|
||||
assert(A.size()==geom_srhs.npoint);
|
||||
GridtoBLAS(A[p],BLAS_A[p]);
|
||||
}
|
||||
void GetMatrix (int p,CoarseMatrix & A)
|
||||
{
|
||||
assert(A.size()==geom_srhs.npoint);
|
||||
BLAStoGrid(A[p],BLAS_A[p]);
|
||||
}
|
||||
void CopyMatrix (GeneralCoarseOp &_Op)
|
||||
{
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
auto Aup = _Op.Cell.Extract(_Op._A[p]);
|
||||
//Unpadded
|
||||
GridtoBLAS(Aup,BLAS_A[p]);
|
||||
}
|
||||
}
|
||||
/*
|
||||
void CheckMatrix (GeneralCoarseOp &_Op)
|
||||
{
|
||||
std::cout <<"************* Checking the little direc operator mRHS"<<std::endl;
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
//Unpadded
|
||||
auto Aup = _Op.Cell.Extract(_Op._A[p]);
|
||||
auto Ack = Aup;
|
||||
BLAStoGrid(Ack,BLAS_A[p]);
|
||||
std::cout << p<<" Ack "<<norm2(Ack)<<std::endl;
|
||||
std::cout << p<<" Aup "<<norm2(Aup)<<std::endl;
|
||||
}
|
||||
std::cout <<"************* "<<std::endl;
|
||||
}
|
||||
*/
|
||||
|
||||
MultiGeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridCartesian *CoarseGridMulti) :
|
||||
_CoarseGridMulti(CoarseGridMulti),
|
||||
geom_srhs(_geom),
|
||||
geom(_CoarseGridMulti,_geom.hops,_geom.skip+1),
|
||||
Cell(geom.Depth(),_CoarseGridMulti),
|
||||
Stencil(Cell.grids.back(),geom.shifts) // padded cell stencil
|
||||
{
|
||||
int32_t padded_sites = Cell.grids.back()->lSites();
|
||||
int32_t unpadded_sites = CoarseGridMulti->lSites();
|
||||
|
||||
int32_t nrhs = CoarseGridMulti->FullDimensions()[0]; // # RHS
|
||||
int32_t orhs = nrhs/CComplex::Nsimd();
|
||||
|
||||
padded_sites = padded_sites/nrhs;
|
||||
unpadded_sites = unpadded_sites/nrhs;
|
||||
|
||||
/////////////////////////////////////////////////
|
||||
// Device data vector storage
|
||||
/////////////////////////////////////////////////
|
||||
BLAS_A.resize(geom.npoint);
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
BLAS_A[p].resize (unpadded_sites); // no ghost zone, npoint elements
|
||||
}
|
||||
|
||||
BLAS_B.resize(nrhs *padded_sites); // includes ghost zone
|
||||
BLAS_C.resize(nrhs *unpadded_sites); // no ghost zone
|
||||
BLAS_AP.resize(geom.npoint);
|
||||
BLAS_BP.resize(geom.npoint);
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
BLAS_AP[p].resize(unpadded_sites);
|
||||
BLAS_BP[p].resize(unpadded_sites);
|
||||
}
|
||||
BLAS_CP.resize(unpadded_sites);
|
||||
|
||||
/////////////////////////////////////////////////
|
||||
// Pointers to data
|
||||
/////////////////////////////////////////////////
|
||||
|
||||
// Site identity mapping for A
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
for(int ss=0;ss<unpadded_sites;ss++){
|
||||
ComplexD *ptr = (ComplexD *)&BLAS_A[p][ss];
|
||||
acceleratorPut(BLAS_AP[p][ss],ptr);
|
||||
}
|
||||
}
|
||||
// Site identity mapping for C
|
||||
for(int ss=0;ss<unpadded_sites;ss++){
|
||||
ComplexD *ptr = (ComplexD *)&BLAS_C[ss*nrhs];
|
||||
acceleratorPut(BLAS_CP[ss],ptr);
|
||||
}
|
||||
|
||||
// Neighbour table is more complicated
|
||||
int32_t j=0; // Interior point counter (unpadded)
|
||||
for(int32_t s=0;s<padded_sites;s++){ // 4 volume, padded
|
||||
int ghost_zone=0;
|
||||
for(int32_t point = 0 ; point < geom.npoint; point++){
|
||||
int i=s*orhs*geom.npoint+point;
|
||||
if( Stencil._entries[i]._wrap ) { // stencil is indexed by the oSite of the CoarseGridMulti, hence orhs factor
|
||||
ghost_zone=1; // If general stencil wrapped in any direction, wrap=1
|
||||
}
|
||||
}
|
||||
|
||||
if( ghost_zone==0) {
|
||||
for(int32_t point = 0 ; point < geom.npoint; point++){
|
||||
int i=s*orhs*geom.npoint+point;
|
||||
int32_t nbr = Stencil._entries[i]._offset*CComplex::Nsimd(); // oSite -> lSite
|
||||
assert(nbr<BLAS_B.size());
|
||||
ComplexD * ptr = (ComplexD *)&BLAS_B[nbr];
|
||||
acceleratorPut(BLAS_BP[point][j],ptr); // neighbour indexing in ghost zone volume
|
||||
}
|
||||
j++;
|
||||
}
|
||||
}
|
||||
assert(j==unpadded_sites);
|
||||
}
|
||||
template<class vobj> void GridtoBLAS(const Lattice<vobj> &from,deviceVector<typename vobj::scalar_object> &to)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
GridBase *Fg = from.Grid();
|
||||
assert(!Fg->_isCheckerBoarded);
|
||||
int nd = Fg->_ndimension;
|
||||
|
||||
to.resize(Fg->lSites());
|
||||
|
||||
Coordinate LocalLatt = Fg->LocalDimensions();
|
||||
size_t nsite = 1;
|
||||
for(int i=0;i<nd;i++) nsite *= LocalLatt[i];
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// do the index calc on the GPU
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
Coordinate f_ostride = Fg->_ostride;
|
||||
Coordinate f_istride = Fg->_istride;
|
||||
Coordinate f_rdimensions = Fg->_rdimensions;
|
||||
|
||||
autoView(from_v,from,AcceleratorRead);
|
||||
auto to_v = &to[0];
|
||||
|
||||
const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
accelerator_for(idx,nsite,1,{
|
||||
|
||||
Coordinate from_coor, base;
|
||||
Lexicographic::CoorFromIndex(base,idx,LocalLatt);
|
||||
for(int i=0;i<nd;i++){
|
||||
from_coor[i] = base[i];
|
||||
}
|
||||
int from_oidx = 0; for(int d=0;d<nd;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
|
||||
int from_lane = 0; for(int d=0;d<nd;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
|
||||
|
||||
const vector_type* from = (const vector_type *)&from_v[from_oidx];
|
||||
scalar_type* to = (scalar_type *)&to_v[idx];
|
||||
|
||||
scalar_type stmp;
|
||||
for(int w=0;w<words;w++){
|
||||
stmp = getlane(from[w], from_lane);
|
||||
to[w] = stmp;
|
||||
}
|
||||
});
|
||||
}
|
||||
template<class vobj> void BLAStoGrid(Lattice<vobj> &grid,deviceVector<typename vobj::scalar_object> &in)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
GridBase *Tg = grid.Grid();
|
||||
assert(!Tg->_isCheckerBoarded);
|
||||
int nd = Tg->_ndimension;
|
||||
|
||||
assert(in.size()==Tg->lSites());
|
||||
|
||||
Coordinate LocalLatt = Tg->LocalDimensions();
|
||||
size_t nsite = 1;
|
||||
for(int i=0;i<nd;i++) nsite *= LocalLatt[i];
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// do the index calc on the GPU
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
Coordinate t_ostride = Tg->_ostride;
|
||||
Coordinate t_istride = Tg->_istride;
|
||||
Coordinate t_rdimensions = Tg->_rdimensions;
|
||||
|
||||
autoView(to_v,grid,AcceleratorWrite);
|
||||
auto from_v = &in[0];
|
||||
|
||||
const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
accelerator_for(idx,nsite,1,{
|
||||
|
||||
Coordinate to_coor, base;
|
||||
Lexicographic::CoorFromIndex(base,idx,LocalLatt);
|
||||
for(int i=0;i<nd;i++){
|
||||
to_coor[i] = base[i];
|
||||
}
|
||||
int to_oidx = 0; for(int d=0;d<nd;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
|
||||
int to_lane = 0; for(int d=0;d<nd;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
|
||||
|
||||
vector_type* to = (vector_type *)&to_v[to_oidx];
|
||||
scalar_type* from = (scalar_type *)&from_v[idx];
|
||||
|
||||
scalar_type stmp;
|
||||
for(int w=0;w<words;w++){
|
||||
stmp=from[w];
|
||||
putlane(to[w], stmp, to_lane);
|
||||
}
|
||||
});
|
||||
}
|
||||
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
|
||||
Aggregation<Fobj,CComplex,nbasis> & Subspace,
|
||||
GridBase *CoarseGrid)
|
||||
{
|
||||
#if 0
|
||||
std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl;
|
||||
|
||||
GridBase *grid = Subspace.FineGrid;
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Orthogonalise the subblocks over the basis
|
||||
/////////////////////////////////////////////////////////////
|
||||
CoarseScalar InnerProd(CoarseGrid);
|
||||
blockOrthogonalise(InnerProd,Subspace.subspace);
|
||||
|
||||
const int npoint = geom_srhs.npoint;
|
||||
|
||||
Coordinate clatt = CoarseGrid->GlobalDimensions();
|
||||
int Nd = CoarseGrid->Nd();
|
||||
/*
|
||||
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
|
||||
* Matrix index i is mapped to this shift via
|
||||
* geom.shifts[i]
|
||||
*
|
||||
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
|
||||
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
|
||||
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
|
||||
* = M_{kl} A_ji^{b.b+l}
|
||||
*
|
||||
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
|
||||
*
|
||||
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
|
||||
*
|
||||
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
|
||||
*/
|
||||
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
ComplexD ci(0.0,1.0);
|
||||
for(int k=0;k<npoint;k++){ // Loop over momenta
|
||||
|
||||
for(int l=0;l<npoint;l++){ // Loop over nbr relative
|
||||
ComplexD phase(0.0,0.0);
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu];
|
||||
}
|
||||
phase=exp(phase*ci);
|
||||
Mkl(k,l) = phase;
|
||||
}
|
||||
}
|
||||
invMkl = Mkl.inverse();
|
||||
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
// Now compute the matrix elements of linop between the orthonormal
|
||||
// set of vectors.
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
FineField phaV(grid); // Phased block basis vector
|
||||
FineField MphaV(grid);// Matrix applied
|
||||
std::vector<FineComplexField> phaF(npoint,grid);
|
||||
std::vector<CoarseComplexField> pha(npoint,CoarseGrid);
|
||||
|
||||
CoarseVector coarseInner(CoarseGrid);
|
||||
|
||||
typedef typename CComplex::scalar_type SComplex;
|
||||
FineComplexField one(grid); one=SComplex(1.0);
|
||||
FineComplexField zz(grid); zz = Zero();
|
||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
||||
/////////////////////////////////////////////////////
|
||||
// Stick a phase on every block
|
||||
/////////////////////////////////////////////////////
|
||||
CoarseComplexField coor(CoarseGrid);
|
||||
pha[p]=Zero();
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
LatticeCoordinate(coor,mu);
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor;
|
||||
}
|
||||
pha[p] =exp(pha[p]*ci);
|
||||
|
||||
blockZAXPY(phaF[p],pha[p],one,zz);
|
||||
}
|
||||
|
||||
// Could save on temporary storage here
|
||||
std::vector<CoarseMatrix> _A;
|
||||
_A.resize(geom_srhs.npoint,CoarseGrid);
|
||||
|
||||
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid);
|
||||
CoarseVector FT(CoarseGrid);
|
||||
for(int i=0;i<nbasis;i++){// Loop over basis vectors
|
||||
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
|
||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
||||
|
||||
phaV = phaF[p]*Subspace.subspace[i];
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Multiple phased subspace vector by matrix and project to subspace
|
||||
// Remove local bulk phase to leave relative phases
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
linop.Op(phaV,MphaV);
|
||||
|
||||
// Fixme, could use batched block projector here
|
||||
blockProject(coarseInner,MphaV,Subspace.subspace);
|
||||
|
||||
coarseInner = conjugate(pha[p]) * coarseInner;
|
||||
|
||||
ComputeProj[p] = coarseInner;
|
||||
}
|
||||
|
||||
// Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix.
|
||||
for(int k=0;k<npoint;k++){
|
||||
|
||||
FT = Zero();
|
||||
for(int l=0;l<npoint;l++){
|
||||
FT= FT+ invMkl(l,k)*ComputeProj[l];
|
||||
}
|
||||
|
||||
int osites=CoarseGrid->oSites();
|
||||
autoView( A_v , _A[k], AcceleratorWrite);
|
||||
autoView( FT_v , FT, AcceleratorRead);
|
||||
accelerator_for(sss, osites, 1, {
|
||||
for(int j=0;j<nbasis;j++){
|
||||
A_v[sss](i,j) = FT_v[sss](j);
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
// Only needed if nonhermitian
|
||||
// if ( ! hermitian ) {
|
||||
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
|
||||
// PopulateAdag();
|
||||
// }
|
||||
// Need to write something to populate Adag from A
|
||||
|
||||
for(int p=0;p<geom_srhs.npoint;p++){
|
||||
GridtoBLAS(_A[p],BLAS_A[p]);
|
||||
}
|
||||
/*
|
||||
Grid : Message : 11698.730546 s : CoarsenOperator eigen 1334 us
|
||||
Grid : Message : 11698.730563 s : CoarsenOperator phase 34729 us
|
||||
Grid : Message : 11698.730565 s : CoarsenOperator phaseBZ 2423814 us
|
||||
Grid : Message : 11698.730566 s : CoarsenOperator mat 127890998 us
|
||||
Grid : Message : 11698.730567 s : CoarsenOperator proj 515840840 us
|
||||
Grid : Message : 11698.730568 s : CoarsenOperator inv 103948313 us
|
||||
Takes 600s to compute matrix elements, DOMINATED by the block project.
|
||||
Easy to speed up with the batched block project.
|
||||
Store npoint vectors, get npoint x Nbasis block projection, and 81 fold faster.
|
||||
|
||||
// Block project below taks to 240s
|
||||
Grid : Message : 328.193418 s : CoarsenOperator phase 38338 us
|
||||
Grid : Message : 328.193434 s : CoarsenOperator phaseBZ 1711226 us
|
||||
Grid : Message : 328.193436 s : CoarsenOperator mat 122213270 us
|
||||
//Grid : Message : 328.193438 s : CoarsenOperator proj 1181154 us <-- this is mistimed
|
||||
//Grid : Message : 11698.730568 s : CoarsenOperator inv 103948313 us <-- Cut this ~10x if lucky by loop fusion
|
||||
*/
|
||||
#else
|
||||
RealD tproj=0.0;
|
||||
RealD tmat=0.0;
|
||||
RealD tphase=0.0;
|
||||
RealD tphaseBZ=0.0;
|
||||
RealD tinv=0.0;
|
||||
|
||||
std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl;
|
||||
|
||||
GridBase *grid = Subspace.FineGrid;
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Orthogonalise the subblocks over the basis
|
||||
/////////////////////////////////////////////////////////////
|
||||
CoarseScalar InnerProd(CoarseGrid);
|
||||
blockOrthogonalise(InnerProd,Subspace.subspace);
|
||||
|
||||
|
||||
MultiRHSBlockProject<Lattice<Fobj> > Projector;
|
||||
Projector.Allocate(nbasis,grid,CoarseGrid);
|
||||
Projector.ImportBasis(Subspace.subspace);
|
||||
|
||||
const int npoint = geom_srhs.npoint;
|
||||
|
||||
Coordinate clatt = CoarseGrid->GlobalDimensions();
|
||||
int Nd = CoarseGrid->Nd();
|
||||
/*
|
||||
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
|
||||
* Matrix index i is mapped to this shift via
|
||||
* geom.shifts[i]
|
||||
*
|
||||
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
|
||||
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
|
||||
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
|
||||
* = M_{kl} A_ji^{b.b+l}
|
||||
*
|
||||
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
|
||||
*
|
||||
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
|
||||
*
|
||||
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
|
||||
*/
|
||||
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
ComplexD ci(0.0,1.0);
|
||||
for(int k=0;k<npoint;k++){ // Loop over momenta
|
||||
|
||||
for(int l=0;l<npoint;l++){ // Loop over nbr relative
|
||||
ComplexD phase(0.0,0.0);
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu];
|
||||
}
|
||||
phase=exp(phase*ci);
|
||||
Mkl(k,l) = phase;
|
||||
}
|
||||
}
|
||||
invMkl = Mkl.inverse();
|
||||
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
// Now compute the matrix elements of linop between the orthonormal
|
||||
// set of vectors.
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
FineField phaV(grid); // Phased block basis vector
|
||||
FineField MphaV(grid);// Matrix applied
|
||||
std::vector<FineComplexField> phaF(npoint,grid);
|
||||
std::vector<CoarseComplexField> pha(npoint,CoarseGrid);
|
||||
|
||||
CoarseVector coarseInner(CoarseGrid);
|
||||
|
||||
tphase=-usecond();
|
||||
typedef typename CComplex::scalar_type SComplex;
|
||||
FineComplexField one(grid); one=SComplex(1.0);
|
||||
FineComplexField zz(grid); zz = Zero();
|
||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
||||
/////////////////////////////////////////////////////
|
||||
// Stick a phase on every block
|
||||
/////////////////////////////////////////////////////
|
||||
CoarseComplexField coor(CoarseGrid);
|
||||
pha[p]=Zero();
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
LatticeCoordinate(coor,mu);
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor;
|
||||
}
|
||||
pha[p] =exp(pha[p]*ci);
|
||||
|
||||
blockZAXPY(phaF[p],pha[p],one,zz);
|
||||
}
|
||||
tphase+=usecond();
|
||||
|
||||
// Could save on temporary storage here
|
||||
std::vector<CoarseMatrix> _A;
|
||||
_A.resize(geom_srhs.npoint,CoarseGrid);
|
||||
|
||||
// Count use small chunks than npoint == 81 and save memory
|
||||
int batch = 9;
|
||||
std::vector<FineField> _MphaV(batch,grid);
|
||||
std::vector<CoarseVector> TmpProj(batch,CoarseGrid);
|
||||
|
||||
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid);
|
||||
CoarseVector FT(CoarseGrid);
|
||||
for(int i=0;i<nbasis;i++){// Loop over basis vectors
|
||||
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
|
||||
|
||||
// std::cout << GridLogMessage << " phasing the fine vector "<<std::endl;
|
||||
// Fixme : do this in batches
|
||||
for(int p=0;p<npoint;p+=batch){ // Loop over momenta in npoint
|
||||
|
||||
for(int b=0;b<MIN(batch,npoint-p);b++){
|
||||
tphaseBZ-=usecond();
|
||||
phaV = phaF[p+b]*Subspace.subspace[i];
|
||||
tphaseBZ+=usecond();
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Multiple phased subspace vector by matrix and project to subspace
|
||||
// Remove local bulk phase to leave relative phases
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Memory footprint was an issue
|
||||
tmat-=usecond();
|
||||
linop.Op(phaV,MphaV);
|
||||
_MphaV[b] = MphaV;
|
||||
tmat+=usecond();
|
||||
}
|
||||
|
||||
// std::cout << GridLogMessage << " Calling block project "<<std::endl;
|
||||
tproj-=usecond();
|
||||
Projector.blockProject(_MphaV,TmpProj);
|
||||
tproj+=usecond();
|
||||
|
||||
// std::cout << GridLogMessage << " conj phasing the coarse vectors "<<std::endl;
|
||||
for(int b=0;b<MIN(batch,npoint-p);b++){
|
||||
ComputeProj[p+b] = conjugate(pha[p+b])*TmpProj[b];
|
||||
}
|
||||
}
|
||||
|
||||
// Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix.
|
||||
|
||||
// std::cout << GridLogMessage << " Starting FT inv "<<std::endl;
|
||||
tinv-=usecond();
|
||||
for(int k=0;k<npoint;k++){
|
||||
FT = Zero();
|
||||
// 81 kernel calls as many ComputeProj vectors
|
||||
// Could fuse with a vector of views, but ugly
|
||||
// Could unroll the expression and run fewer kernels -- much more attractive
|
||||
// Could also do non blocking.
|
||||
#if 0
|
||||
for(int l=0;l<npoint;l++){
|
||||
FT= FT+ invMkl(l,k)*ComputeProj[l];
|
||||
}
|
||||
#else
|
||||
const int radix = 9;
|
||||
int ll;
|
||||
for(ll=0;ll+radix-1<npoint;ll+=radix){
|
||||
// When ll = npoint-radix, ll+radix-1 = npoint-1, and we do it all.
|
||||
FT = FT
|
||||
+ invMkl(ll+0,k)*ComputeProj[ll+0]
|
||||
+ invMkl(ll+1,k)*ComputeProj[ll+1]
|
||||
+ invMkl(ll+2,k)*ComputeProj[ll+2]
|
||||
+ invMkl(ll+3,k)*ComputeProj[ll+3]
|
||||
+ invMkl(ll+4,k)*ComputeProj[ll+4]
|
||||
+ invMkl(ll+5,k)*ComputeProj[ll+5]
|
||||
+ invMkl(ll+6,k)*ComputeProj[ll+6]
|
||||
+ invMkl(ll+7,k)*ComputeProj[ll+7]
|
||||
+ invMkl(ll+8,k)*ComputeProj[ll+8];
|
||||
}
|
||||
for(int l=ll;l<npoint;l++){
|
||||
FT= FT+ invMkl(l,k)*ComputeProj[l];
|
||||
}
|
||||
#endif
|
||||
|
||||
// 1 kernel call -- must be cheaper
|
||||
int osites=CoarseGrid->oSites();
|
||||
autoView( A_v , _A[k], AcceleratorWrite);
|
||||
autoView( FT_v , FT, AcceleratorRead);
|
||||
accelerator_for(sss, osites, 1, {
|
||||
for(int j=0;j<nbasis;j++){
|
||||
A_v[sss](i,j) = FT_v[sss](j);
|
||||
}
|
||||
});
|
||||
}
|
||||
tinv+=usecond();
|
||||
}
|
||||
|
||||
// Only needed if nonhermitian
|
||||
// if ( ! hermitian ) {
|
||||
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
|
||||
// PopulateAdag();
|
||||
// }
|
||||
// Need to write something to populate Adag from A
|
||||
// std::cout << GridLogMessage << " Calling GridtoBLAS "<<std::endl;
|
||||
for(int p=0;p<geom_srhs.npoint;p++){
|
||||
GridtoBLAS(_A[p],BLAS_A[p]);
|
||||
}
|
||||
std::cout << GridLogMessage<<"CoarsenOperator phase "<<tphase<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator mat "<<tmat <<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator proj "<<tproj<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
|
||||
#endif
|
||||
}
|
||||
void Mdag(const CoarseVector &in, CoarseVector &out)
|
||||
{
|
||||
this->M(in,out);
|
||||
}
|
||||
void M (const CoarseVector &in, CoarseVector &out)
|
||||
{
|
||||
// std::cout << GridLogMessage << "New Mrhs coarse"<<std::endl;
|
||||
conformable(CoarseGrid(),in.Grid());
|
||||
conformable(in.Grid(),out.Grid());
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
|
||||
RealD t_tot;
|
||||
RealD t_exch;
|
||||
RealD t_GtoB;
|
||||
RealD t_BtoG;
|
||||
RealD t_mult;
|
||||
|
||||
t_tot=-usecond();
|
||||
CoarseVector tin=in;
|
||||
t_exch=-usecond();
|
||||
CoarseVector pin = Cell.ExchangePeriodic(tin); //padded input
|
||||
t_exch+=usecond();
|
||||
|
||||
CoarseVector pout(pin.Grid());
|
||||
|
||||
int npoint = geom.npoint;
|
||||
typedef calcMatrix* Aview;
|
||||
typedef LatticeView<Cvec> Vview;
|
||||
|
||||
const int Nsimd = CComplex::Nsimd();
|
||||
|
||||
int64_t nrhs =pin.Grid()->GlobalDimensions()[0];
|
||||
assert(nrhs>=1);
|
||||
|
||||
RealD flops,bytes;
|
||||
int64_t osites=in.Grid()->oSites(); // unpadded
|
||||
int64_t unpadded_vol = CoarseGrid()->lSites()/nrhs;
|
||||
|
||||
flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
|
||||
bytes = 1.0*osites*sizeof(siteMatrix)*npoint/pin.Grid()->GlobalDimensions()[0]
|
||||
+ 2.0*osites*sizeof(siteVector)*npoint;
|
||||
|
||||
|
||||
t_GtoB=-usecond();
|
||||
GridtoBLAS(pin,BLAS_B);
|
||||
t_GtoB+=usecond();
|
||||
|
||||
GridBLAS BLAS;
|
||||
|
||||
t_mult=-usecond();
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
RealD c = 1.0;
|
||||
if (p==0) c = 0.0;
|
||||
ComplexD beta(c);
|
||||
|
||||
BLAS.gemmBatched(nbasis,nrhs,nbasis,
|
||||
ComplexD(1.0),
|
||||
BLAS_AP[p],
|
||||
BLAS_BP[p],
|
||||
ComplexD(c),
|
||||
BLAS_CP);
|
||||
}
|
||||
BLAS.synchronise();
|
||||
t_mult+=usecond();
|
||||
|
||||
t_BtoG=-usecond();
|
||||
BLAStoGrid(out,BLAS_C);
|
||||
t_BtoG+=usecond();
|
||||
t_tot+=usecond();
|
||||
/*
|
||||
std::cout << GridLogMessage << "New Mrhs coarse DONE "<<std::endl;
|
||||
std::cout << GridLogMessage<<"Coarse Mult exch "<<t_exch<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"Coarse Mult mult "<<t_mult<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"Coarse Mult GtoB "<<t_GtoB<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"Coarse Mult BtoG "<<t_BtoG<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"Coarse Mult tot "<<t_tot<<" us"<<std::endl;
|
||||
*/
|
||||
// std::cout << GridLogMessage<<std::endl;
|
||||
// std::cout << GridLogMessage<<"Coarse Kernel flops "<< flops<<std::endl;
|
||||
// std::cout << GridLogMessage<<"Coarse Kernel flop/s "<< flops/t_mult<<" mflop/s"<<std::endl;
|
||||
// std::cout << GridLogMessage<<"Coarse Kernel bytes/s "<< bytes/t_mult/1000<<" GB/s"<<std::endl;
|
||||
// std::cout << GridLogMessage<<"Coarse overall flops/s "<< flops/t_tot<<" mflop/s"<<std::endl;
|
||||
// std::cout << GridLogMessage<<"Coarse total bytes "<< bytes/1e6<<" MB"<<std::endl;
|
||||
};
|
||||
virtual void Mdiag (const Field &in, Field &out){ assert(0);};
|
||||
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);};
|
||||
virtual void MdirAll (const Field &in, std::vector<Field> &out){assert(0);};
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
238
Grid/algorithms/multigrid/Geometry.h
Normal file
238
Grid/algorithms/multigrid/Geometry.h
Normal file
@ -0,0 +1,238 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////////
|
||||
// Geometry class in cartesian case
|
||||
/////////////////////////////////////////////////////////////////
|
||||
|
||||
class Geometry {
|
||||
public:
|
||||
int npoint;
|
||||
int base;
|
||||
std::vector<int> directions ;
|
||||
std::vector<int> displacements;
|
||||
std::vector<int> points_dagger;
|
||||
|
||||
Geometry(int _d) {
|
||||
|
||||
base = (_d==5) ? 1:0;
|
||||
|
||||
// make coarse grid stencil for 4d , not 5d
|
||||
if ( _d==5 ) _d=4;
|
||||
|
||||
npoint = 2*_d+1;
|
||||
directions.resize(npoint);
|
||||
displacements.resize(npoint);
|
||||
points_dagger.resize(npoint);
|
||||
for(int d=0;d<_d;d++){
|
||||
directions[d ] = d+base;
|
||||
directions[d+_d] = d+base;
|
||||
displacements[d ] = +1;
|
||||
displacements[d+_d]= -1;
|
||||
points_dagger[d ] = d+_d;
|
||||
points_dagger[d+_d] = d;
|
||||
}
|
||||
directions [2*_d]=0;
|
||||
displacements[2*_d]=0;
|
||||
points_dagger[2*_d]=2*_d;
|
||||
}
|
||||
|
||||
int point(int dir, int disp) {
|
||||
assert(disp == -1 || disp == 0 || disp == 1);
|
||||
assert(base+0 <= dir && dir < base+4);
|
||||
|
||||
// directions faster index = new indexing
|
||||
// 4d (base = 0):
|
||||
// point 0 1 2 3 4 5 6 7 8
|
||||
// dir 0 1 2 3 0 1 2 3 0
|
||||
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
|
||||
// 5d (base = 1):
|
||||
// point 0 1 2 3 4 5 6 7 8
|
||||
// dir 1 2 3 4 1 2 3 4 0
|
||||
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
|
||||
|
||||
// displacements faster index = old indexing
|
||||
// 4d (base = 0):
|
||||
// point 0 1 2 3 4 5 6 7 8
|
||||
// dir 0 0 1 1 2 2 3 3 0
|
||||
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
|
||||
// 5d (base = 1):
|
||||
// point 0 1 2 3 4 5 6 7 8
|
||||
// dir 1 1 2 2 3 3 4 4 0
|
||||
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
|
||||
|
||||
if(dir == 0 and disp == 0)
|
||||
return 8;
|
||||
else // New indexing
|
||||
return (1 - disp) / 2 * 4 + dir - base;
|
||||
// else // Old indexing
|
||||
// return (4 * (dir - base) + 1 - disp) / 2;
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////
|
||||
// Less local equivalent of Geometry class in cartesian case
|
||||
/////////////////////////////////////////////////////////////////
|
||||
class NonLocalStencilGeometry {
|
||||
public:
|
||||
// int depth;
|
||||
int skip;
|
||||
int hops;
|
||||
int npoint;
|
||||
std::vector<Coordinate> shifts;
|
||||
Coordinate stencil_size;
|
||||
Coordinate stencil_lo;
|
||||
Coordinate stencil_hi;
|
||||
GridCartesian *grid;
|
||||
GridCartesian *Grid() {return grid;};
|
||||
int Depth(void){return 1;}; // Ghost zone depth
|
||||
int Hops(void){return hops;}; // # of hops=> level of corner fill in in stencil
|
||||
int DimSkip(void){return skip;};
|
||||
|
||||
virtual ~NonLocalStencilGeometry() {};
|
||||
|
||||
int Reverse(int point)
|
||||
{
|
||||
int Nd = Grid()->Nd();
|
||||
Coordinate shft = shifts[point];
|
||||
Coordinate rev(Nd);
|
||||
for(int mu=0;mu<Nd;mu++) rev[mu]= -shft[mu];
|
||||
for(int p=0;p<npoint;p++){
|
||||
if(rev==shifts[p]){
|
||||
return p;
|
||||
}
|
||||
}
|
||||
assert(0);
|
||||
return -1;
|
||||
}
|
||||
void BuildShifts(void)
|
||||
{
|
||||
this->shifts.resize(0);
|
||||
int Nd = this->grid->Nd();
|
||||
|
||||
int dd = this->DimSkip();
|
||||
for(int s0=this->stencil_lo[dd+0];s0<=this->stencil_hi[dd+0];s0++){
|
||||
for(int s1=this->stencil_lo[dd+1];s1<=this->stencil_hi[dd+1];s1++){
|
||||
for(int s2=this->stencil_lo[dd+2];s2<=this->stencil_hi[dd+2];s2++){
|
||||
for(int s3=this->stencil_lo[dd+3];s3<=this->stencil_hi[dd+3];s3++){
|
||||
Coordinate sft(Nd,0);
|
||||
sft[dd+0] = s0;
|
||||
sft[dd+1] = s1;
|
||||
sft[dd+2] = s2;
|
||||
sft[dd+3] = s3;
|
||||
int nhops = abs(s0)+abs(s1)+abs(s2)+abs(s3);
|
||||
if(nhops<=this->hops) this->shifts.push_back(sft);
|
||||
}}}}
|
||||
this->npoint = this->shifts.size();
|
||||
std::cout << GridLogMessage << "NonLocalStencilGeometry has "<< this->npoint << " terms in stencil "<<std::endl;
|
||||
}
|
||||
|
||||
NonLocalStencilGeometry(GridCartesian *_coarse_grid,int _hops,int _skip) : grid(_coarse_grid), hops(_hops), skip(_skip)
|
||||
{
|
||||
Coordinate latt = grid->GlobalDimensions();
|
||||
stencil_size.resize(grid->Nd());
|
||||
stencil_lo.resize(grid->Nd());
|
||||
stencil_hi.resize(grid->Nd());
|
||||
for(int d=0;d<grid->Nd();d++){
|
||||
if ( latt[d] == 1 ) {
|
||||
stencil_lo[d] = 0;
|
||||
stencil_hi[d] = 0;
|
||||
stencil_size[d]= 1;
|
||||
} else if ( latt[d] == 2 ) {
|
||||
stencil_lo[d] = -1;
|
||||
stencil_hi[d] = 0;
|
||||
stencil_size[d]= 2;
|
||||
} else if ( latt[d] > 2 ) {
|
||||
stencil_lo[d] = -1;
|
||||
stencil_hi[d] = 1;
|
||||
stencil_size[d]= 3;
|
||||
}
|
||||
}
|
||||
this->BuildShifts();
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
// Need to worry about red-black now
|
||||
class NonLocalStencilGeometry4D : public NonLocalStencilGeometry {
|
||||
public:
|
||||
virtual int DerivedDimSkip(void) { return 0;};
|
||||
NonLocalStencilGeometry4D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,0) { };
|
||||
virtual ~NonLocalStencilGeometry4D() {};
|
||||
};
|
||||
class NonLocalStencilGeometry5D : public NonLocalStencilGeometry {
|
||||
public:
|
||||
virtual int DerivedDimSkip(void) { return 1; };
|
||||
NonLocalStencilGeometry5D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,1) { };
|
||||
virtual ~NonLocalStencilGeometry5D() {};
|
||||
};
|
||||
/*
|
||||
* Bunch of different options classes
|
||||
*/
|
||||
class NextToNextToNextToNearestStencilGeometry4D : public NonLocalStencilGeometry4D {
|
||||
public:
|
||||
NextToNextToNextToNearestStencilGeometry4D(GridCartesian *Coarse) : NonLocalStencilGeometry4D(Coarse,4)
|
||||
{
|
||||
};
|
||||
};
|
||||
class NextToNextToNextToNearestStencilGeometry5D : public NonLocalStencilGeometry5D {
|
||||
public:
|
||||
NextToNextToNextToNearestStencilGeometry5D(GridCartesian *Coarse) : NonLocalStencilGeometry5D(Coarse,4)
|
||||
{
|
||||
};
|
||||
};
|
||||
class NextToNearestStencilGeometry4D : public NonLocalStencilGeometry4D {
|
||||
public:
|
||||
NextToNearestStencilGeometry4D(GridCartesian *Coarse) : NonLocalStencilGeometry4D(Coarse,2)
|
||||
{
|
||||
};
|
||||
};
|
||||
class NextToNearestStencilGeometry5D : public NonLocalStencilGeometry5D {
|
||||
public:
|
||||
NextToNearestStencilGeometry5D(GridCartesian *Coarse) : NonLocalStencilGeometry5D(Coarse,2)
|
||||
{
|
||||
};
|
||||
};
|
||||
class NearestStencilGeometry4D : public NonLocalStencilGeometry4D {
|
||||
public:
|
||||
NearestStencilGeometry4D(GridCartesian *Coarse) : NonLocalStencilGeometry4D(Coarse,1)
|
||||
{
|
||||
};
|
||||
};
|
||||
class NearestStencilGeometry5D : public NonLocalStencilGeometry5D {
|
||||
public:
|
||||
NearestStencilGeometry5D(GridCartesian *Coarse) : NonLocalStencilGeometry5D(Coarse,1)
|
||||
{
|
||||
};
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
34
Grid/algorithms/multigrid/MultiGrid.h
Normal file
34
Grid/algorithms/multigrid/MultiGrid.h
Normal file
@ -0,0 +1,34 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: Grid/algorithms/multigrid/MultiGrid.h
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
#include <Grid/algorithms/multigrid/Aggregates.h>
|
||||
#include <Grid/algorithms/multigrid/Geometry.h>
|
||||
#include <Grid/algorithms/multigrid/CoarsenedMatrix.h>
|
||||
#include <Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h>
|
||||
#include <Grid/algorithms/multigrid/GeneralCoarsenedMatrixMultiRHS.h>
|
@ -54,6 +54,9 @@ public:
|
||||
size_type bytes = __n*sizeof(_Tp);
|
||||
profilerAllocate(bytes);
|
||||
_Tp *ptr = (_Tp*) MemoryManager::CpuAllocate(bytes);
|
||||
if ( (_Tp*)ptr == (_Tp *) NULL ) {
|
||||
printf("Grid CPU Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
|
||||
}
|
||||
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
|
||||
return ptr;
|
||||
}
|
||||
@ -100,6 +103,9 @@ public:
|
||||
size_type bytes = __n*sizeof(_Tp);
|
||||
profilerAllocate(bytes);
|
||||
_Tp *ptr = (_Tp*) MemoryManager::SharedAllocate(bytes);
|
||||
if ( (_Tp*)ptr == (_Tp *) NULL ) {
|
||||
printf("Grid Shared Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
|
||||
}
|
||||
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
|
||||
return ptr;
|
||||
}
|
||||
@ -145,6 +151,9 @@ public:
|
||||
size_type bytes = __n*sizeof(_Tp);
|
||||
profilerAllocate(bytes);
|
||||
_Tp *ptr = (_Tp*) MemoryManager::AcceleratorAllocate(bytes);
|
||||
if ( (_Tp*)ptr == (_Tp *) NULL ) {
|
||||
printf("Grid Device Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
|
||||
}
|
||||
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
|
||||
return ptr;
|
||||
}
|
||||
@ -175,9 +184,56 @@ template<class T> using cshiftAllocator = std::allocator<T>;
|
||||
|
||||
template<class T> using Vector = std::vector<T,uvmAllocator<T> >;
|
||||
template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;
|
||||
template<class T> using commVector = std::vector<T,devAllocator<T> >;
|
||||
template<class T> using commVector = std::vector<T,devAllocator<T> >;
|
||||
template<class T> using deviceVector = std::vector<T,devAllocator<T> >;
|
||||
template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >;
|
||||
template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >;
|
||||
|
||||
/*
|
||||
template<class T> class vecView
|
||||
{
|
||||
protected:
|
||||
T * data;
|
||||
uint64_t size;
|
||||
ViewMode mode;
|
||||
void * cpu_ptr;
|
||||
public:
|
||||
accelerator_inline T & operator[](size_t i) const { return this->data[i]; };
|
||||
vecView(std::vector<T> &refer_to_me,ViewMode _mode)
|
||||
{
|
||||
cpu_ptr = &refer_to_me[0];
|
||||
size = refer_to_me.size();
|
||||
mode = _mode;
|
||||
data =(T *) MemoryManager::ViewOpen(cpu_ptr,
|
||||
size*sizeof(T),
|
||||
mode,
|
||||
AdviseDefault);
|
||||
}
|
||||
void ViewClose(void)
|
||||
{ // Inform the manager
|
||||
MemoryManager::ViewClose(this->cpu_ptr,this->mode);
|
||||
}
|
||||
};
|
||||
|
||||
template<class T> vecView<T> VectorView(std::vector<T> &vec,ViewMode _mode)
|
||||
{
|
||||
vecView<T> ret(vec,_mode); // does the open
|
||||
return ret; // must be closed
|
||||
}
|
||||
|
||||
// Little autoscope assister
|
||||
template<class View>
|
||||
class VectorViewCloser
|
||||
{
|
||||
View v; // Take a copy of view and call view close when I go out of scope automatically
|
||||
public:
|
||||
VectorViewCloser(View &_v) : v(_v) {};
|
||||
~VectorViewCloser() { auto ptr = v.cpu_ptr; v.ViewClose(); MemoryManager::NotifyDeletion(ptr);}
|
||||
};
|
||||
|
||||
#define autoVecView(v_v,v,mode) \
|
||||
auto v_v = VectorView(v,mode); \
|
||||
ViewCloser<decltype(v_v)> _autoView##v_v(v_v);
|
||||
*/
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -16,6 +16,44 @@ NAMESPACE_BEGIN(Grid);
|
||||
uint64_t total_shared;
|
||||
uint64_t total_device;
|
||||
uint64_t total_host;;
|
||||
|
||||
#if defined(__has_feature)
|
||||
#if __has_feature(leak_sanitizer)
|
||||
#define ASAN_LEAK_CHECK
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef ASAN_LEAK_CHECK
|
||||
#include <sanitizer/asan_interface.h>
|
||||
#include <sanitizer/common_interface_defs.h>
|
||||
#include <sanitizer/lsan_interface.h>
|
||||
#define LEAK_CHECK(A) { __lsan_do_recoverable_leak_check(); }
|
||||
#else
|
||||
#define LEAK_CHECK(A) { }
|
||||
#endif
|
||||
|
||||
void MemoryManager::DisplayMallinfo(void)
|
||||
{
|
||||
#ifdef __linux__
|
||||
struct mallinfo mi; // really want mallinfo2, but glibc version isn't uniform
|
||||
|
||||
mi = mallinfo();
|
||||
|
||||
std::cout << "MemoryManager: Total non-mmapped bytes (arena): "<< (size_t)mi.arena<<std::endl;
|
||||
std::cout << "MemoryManager: # of free chunks (ordblks): "<< (size_t)mi.ordblks<<std::endl;
|
||||
std::cout << "MemoryManager: # of free fastbin blocks (smblks): "<< (size_t)mi.smblks<<std::endl;
|
||||
std::cout << "MemoryManager: # of mapped regions (hblks): "<< (size_t)mi.hblks<<std::endl;
|
||||
std::cout << "MemoryManager: Bytes in mapped regions (hblkhd): "<< (size_t)mi.hblkhd<<std::endl;
|
||||
std::cout << "MemoryManager: Max. total allocated space (usmblks): "<< (size_t)mi.usmblks<<std::endl;
|
||||
std::cout << "MemoryManager: Free bytes held in fastbins (fsmblks): "<< (size_t)mi.fsmblks<<std::endl;
|
||||
std::cout << "MemoryManager: Total allocated space (uordblks): "<< (size_t)mi.uordblks<<std::endl;
|
||||
std::cout << "MemoryManager: Total free space (fordblks): "<< (size_t)mi.fordblks<<std::endl;
|
||||
std::cout << "MemoryManager: Topmost releasable block (keepcost): "<< (size_t)mi.keepcost<<std::endl;
|
||||
#endif
|
||||
LEAK_CHECK();
|
||||
|
||||
}
|
||||
|
||||
void MemoryManager::PrintBytes(void)
|
||||
{
|
||||
std::cout << " MemoryManager : ------------------------------------ "<<std::endl;
|
||||
@ -35,7 +73,7 @@ void MemoryManager::PrintBytes(void)
|
||||
#ifdef GRID_CUDA
|
||||
cuda_mem();
|
||||
#endif
|
||||
|
||||
DisplayMallinfo();
|
||||
}
|
||||
|
||||
uint64_t MemoryManager::DeviceCacheBytes() { return CacheBytes[Acc] + CacheBytes[AccHuge] + CacheBytes[AccSmall]; }
|
||||
|
@ -209,9 +209,10 @@ private:
|
||||
static void CpuViewClose(uint64_t Ptr);
|
||||
static uint64_t CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
|
||||
#endif
|
||||
static void NotifyDeletion(void * CpuPtr);
|
||||
|
||||
public:
|
||||
static void DisplayMallinfo(void);
|
||||
static void NotifyDeletion(void * CpuPtr);
|
||||
static void Print(void);
|
||||
static void PrintAll(void);
|
||||
static void PrintState( void* CpuPtr);
|
||||
|
@ -8,7 +8,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
static char print_buffer [ MAXLINE ];
|
||||
|
||||
#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer;
|
||||
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer;
|
||||
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug << print_buffer;
|
||||
//#define dprintf(...)
|
||||
|
||||
|
||||
@ -111,7 +111,7 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
|
||||
///////////////////////////////////////////////////////////
|
||||
assert(AccCache.state!=Empty);
|
||||
|
||||
mprintf("MemoryManager: Discard(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
|
||||
dprintf("MemoryManager: Discard(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
|
||||
assert(AccCache.accLock==0);
|
||||
assert(AccCache.cpuLock==0);
|
||||
assert(AccCache.CpuPtr!=(uint64_t)NULL);
|
||||
@ -141,7 +141,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
assert(AccCache.state!=Empty);
|
||||
|
||||
mprintf("MemoryManager: Evict cpu %lx acc %lx cpuLock %ld accLock %ld\n",
|
||||
mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld\n",
|
||||
(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr,
|
||||
(uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock);
|
||||
if (AccCache.accLock!=0) return;
|
||||
@ -155,7 +155,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
|
||||
AccCache.AccPtr=(uint64_t)NULL;
|
||||
AccCache.state=CpuDirty; // CPU primary now
|
||||
DeviceBytes -=AccCache.bytes;
|
||||
dprintf("MemoryManager: Free(%lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);
|
||||
dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);
|
||||
}
|
||||
// uint64_t CpuPtr = AccCache.CpuPtr;
|
||||
DeviceEvictions++;
|
||||
@ -169,7 +169,7 @@ void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
|
||||
assert(AccCache.AccPtr!=(uint64_t)NULL);
|
||||
assert(AccCache.CpuPtr!=(uint64_t)NULL);
|
||||
acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
|
||||
mprintf("MemoryManager: Flush %lx -> %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
|
||||
mprintf("MemoryManager: acceleratorCopyFromDevice Flush AccPtr %lx -> CpuPtr %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
|
||||
DeviceToHostBytes+=AccCache.bytes;
|
||||
DeviceToHostXfer++;
|
||||
AccCache.state=Consistent;
|
||||
@ -184,7 +184,7 @@ void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
|
||||
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
|
||||
DeviceBytes+=AccCache.bytes;
|
||||
}
|
||||
mprintf("MemoryManager: Clone %lx <- %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
|
||||
mprintf("MemoryManager: acceleratorCopyToDevice Clone AccPtr %lx <- CpuPtr %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
|
||||
acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
|
||||
HostToDeviceBytes+=AccCache.bytes;
|
||||
HostToDeviceXfer++;
|
||||
@ -474,6 +474,7 @@ void MemoryManager::Print(void)
|
||||
std::cout << GridLogMessage << DeviceEvictions << " Evictions from device " << std::endl;
|
||||
std::cout << GridLogMessage << DeviceDestroy << " Destroyed vectors on device " << std::endl;
|
||||
std::cout << GridLogMessage << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl;
|
||||
acceleratorMem();
|
||||
std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
|
||||
}
|
||||
void MemoryManager::PrintAll(void)
|
||||
|
@ -70,8 +70,8 @@ public:
|
||||
Coordinate _istride; // Inner stride i.e. within simd lane
|
||||
int _osites; // _isites*_osites = product(dimensions).
|
||||
int _isites;
|
||||
int _fsites; // _isites*_osites = product(dimensions).
|
||||
int _gsites;
|
||||
int64_t _fsites; // _isites*_osites = product(dimensions).
|
||||
int64_t _gsites;
|
||||
Coordinate _slice_block;// subslice information
|
||||
Coordinate _slice_stride;
|
||||
Coordinate _slice_nblock;
|
||||
@ -91,6 +91,7 @@ public:
|
||||
////////////////////////////////////////////////////////////////
|
||||
virtual int CheckerBoarded(int dim)=0;
|
||||
virtual int CheckerBoard(const Coordinate &site)=0;
|
||||
virtual int CheckerDim(void){ return 0; };
|
||||
virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0;
|
||||
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0;
|
||||
virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift,int cb)=0;
|
||||
@ -183,7 +184,7 @@ public:
|
||||
inline int Nsimd(void) const { return _isites; };// Synonymous with iSites
|
||||
inline int oSites(void) const { return _osites; };
|
||||
inline int lSites(void) const { return _isites*_osites; };
|
||||
inline int gSites(void) const { return _isites*_osites*_Nprocessors; };
|
||||
inline int64_t gSites(void) const { return (int64_t)_isites*(int64_t)_osites*(int64_t)_Nprocessors; };
|
||||
inline int Nd (void) const { return _ndimension;};
|
||||
|
||||
inline const Coordinate LocalStarts(void) { return _lstart; };
|
||||
@ -214,7 +215,7 @@ public:
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Global addressing
|
||||
////////////////////////////////////////////////////////////////
|
||||
void GlobalIndexToGlobalCoor(int gidx,Coordinate &gcoor){
|
||||
void GlobalIndexToGlobalCoor(int64_t gidx,Coordinate &gcoor){
|
||||
assert(gidx< gSites());
|
||||
Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
|
||||
}
|
||||
@ -222,7 +223,7 @@ public:
|
||||
assert(lidx<lSites());
|
||||
Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
|
||||
}
|
||||
void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int & gidx){
|
||||
void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int64_t & gidx){
|
||||
gidx=0;
|
||||
int mult=1;
|
||||
for(int mu=0;mu<_ndimension;mu++) {
|
||||
|
@ -60,6 +60,7 @@ public:
|
||||
int _checker_dim;
|
||||
std::vector<int> _checker_board;
|
||||
|
||||
virtual int CheckerDim(void){ return _checker_dim; };
|
||||
virtual int CheckerBoarded(int dim){
|
||||
if( dim==_checker_dim) return 1;
|
||||
else return 0;
|
||||
|
@ -138,6 +138,14 @@ public:
|
||||
////////////////////////////////////////////////////////////
|
||||
// Face exchange, buffer swap in translational invariant way
|
||||
////////////////////////////////////////////////////////////
|
||||
void CommsComplete(std::vector<CommsRequest_t> &list);
|
||||
void SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int dest,
|
||||
void *recv,
|
||||
int from,
|
||||
int bytes,int dir);
|
||||
|
||||
void SendToRecvFrom(void *xmit,
|
||||
int xmit_to_rank,
|
||||
void *recv,
|
||||
|
@ -306,6 +306,44 @@ void CartesianCommunicator::GlobalSumVector(double *d,int N)
|
||||
int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
|
||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int dest,
|
||||
void *recv,
|
||||
int from,
|
||||
int bytes,int dir)
|
||||
{
|
||||
MPI_Request xrq;
|
||||
MPI_Request rrq;
|
||||
|
||||
assert(dest != _processor);
|
||||
assert(from != _processor);
|
||||
|
||||
int tag;
|
||||
|
||||
tag= dir+from*32;
|
||||
int ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator,&rrq);
|
||||
assert(ierr==0);
|
||||
list.push_back(rrq);
|
||||
|
||||
tag= dir+_processor*32;
|
||||
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator,&xrq);
|
||||
assert(ierr==0);
|
||||
list.push_back(xrq);
|
||||
}
|
||||
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list)
|
||||
{
|
||||
int nreq=list.size();
|
||||
|
||||
if (nreq==0) return;
|
||||
|
||||
std::vector<MPI_Status> status(nreq);
|
||||
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
|
||||
assert(ierr==0);
|
||||
list.resize(0);
|
||||
}
|
||||
|
||||
// Basic Halo comms primitive
|
||||
void CartesianCommunicator::SendToRecvFrom(void *xmit,
|
||||
int dest,
|
||||
|
@ -91,6 +91,17 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
|
||||
{
|
||||
assert(0);
|
||||
}
|
||||
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ assert(0);}
|
||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int dest,
|
||||
void *recv,
|
||||
int from,
|
||||
int bytes,int dir)
|
||||
{
|
||||
assert(0);
|
||||
}
|
||||
|
||||
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes)
|
||||
{
|
||||
bcopy(in,out,bytes*words);
|
||||
|
@ -234,10 +234,20 @@ public:
|
||||
}
|
||||
|
||||
template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){
|
||||
vobj vtmp;
|
||||
vtmp = r;
|
||||
#if 1
|
||||
auto me = View(CpuWrite);
|
||||
thread_for(ss,me.size(),{
|
||||
me[ss]= r;
|
||||
me[ss]= r;
|
||||
});
|
||||
#else
|
||||
auto me = View(AcceleratorWrite);
|
||||
accelerator_for(ss,me.size(),vobj::Nsimd(),{
|
||||
auto stmp=coalescedRead(vtmp);
|
||||
coalescedWrite(me[ss],stmp);
|
||||
});
|
||||
#endif
|
||||
me.ViewClose();
|
||||
return *this;
|
||||
}
|
||||
@ -360,7 +370,7 @@ public:
|
||||
|
||||
template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
for(int g=0;g<o.Grid()->_gsites;g++){
|
||||
for(int64_t g=0;g<o.Grid()->_gsites;g++){
|
||||
|
||||
Coordinate gcoor;
|
||||
o.Grid()->GlobalIndexToGlobalCoor(g,gcoor);
|
||||
|
@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class vobj> void DumpSliceNorm(std::string s,Lattice<vobj> &f,int mu=-1)
|
||||
template<class vobj> void DumpSliceNorm(std::string s,const Lattice<vobj> &f,int mu=-1)
|
||||
{
|
||||
auto ff = localNorm2(f);
|
||||
if ( mu==-1 ) mu = f.Grid()->Nd()-1;
|
||||
|
@ -204,6 +204,27 @@ template<class vobj> inline RealD norm2(const Lattice<vobj> &arg){
|
||||
return real(nrm);
|
||||
}
|
||||
|
||||
|
||||
template<class Op,class T1>
|
||||
inline auto norm2(const LatticeUnaryExpression<Op,T1> & expr) ->RealD
|
||||
{
|
||||
return norm2(closure(expr));
|
||||
}
|
||||
|
||||
template<class Op,class T1,class T2>
|
||||
inline auto norm2(const LatticeBinaryExpression<Op,T1,T2> & expr) ->RealD
|
||||
{
|
||||
return norm2(closure(expr));
|
||||
}
|
||||
|
||||
|
||||
template<class Op,class T1,class T2,class T3>
|
||||
inline auto norm2(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr) ->RealD
|
||||
{
|
||||
return norm2(closure(expr));
|
||||
}
|
||||
|
||||
|
||||
//The global maximum of the site norm2
|
||||
template<class vobj> inline RealD maxLocalNorm2(const Lattice<vobj> &arg)
|
||||
{
|
||||
@ -243,24 +264,8 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
|
||||
const uint64_t sites = grid->oSites();
|
||||
|
||||
// Might make all code paths go this way.
|
||||
#if 0
|
||||
typedef decltype(innerProductD(vobj(),vobj())) inner_t;
|
||||
Vector<inner_t> inner_tmp(sites);
|
||||
auto inner_tmp_v = &inner_tmp[0];
|
||||
{
|
||||
autoView( left_v , left, AcceleratorRead);
|
||||
autoView( right_v,right, AcceleratorRead);
|
||||
// This code could read coalesce
|
||||
// GPU - SIMT lane compliance...
|
||||
accelerator_for( ss, sites, nsimd,{
|
||||
auto x_l = left_v(ss);
|
||||
auto y_l = right_v(ss);
|
||||
coalescedWrite(inner_tmp_v[ss],innerProductD(x_l,y_l));
|
||||
});
|
||||
}
|
||||
#else
|
||||
typedef decltype(innerProduct(vobj(),vobj())) inner_t;
|
||||
Vector<inner_t> inner_tmp(sites);
|
||||
deviceVector<inner_t> inner_tmp(sites);
|
||||
auto inner_tmp_v = &inner_tmp[0];
|
||||
|
||||
{
|
||||
@ -274,7 +279,6 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
|
||||
coalescedWrite(inner_tmp_v[ss],innerProduct(x_l,y_l));
|
||||
});
|
||||
}
|
||||
#endif
|
||||
// This is in single precision and fails some tests
|
||||
auto anrm = sumD(inner_tmp_v,sites);
|
||||
nrm = anrm;
|
||||
@ -352,7 +356,8 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
|
||||
nrm = real(TensorRemove(sum(inner_tmp_v,sites)));
|
||||
#else
|
||||
typedef decltype(innerProduct(x_v[0],y_v[0])) inner_t;
|
||||
Vector<inner_t> inner_tmp(sites);
|
||||
deviceVector<inner_t> inner_tmp;
|
||||
inner_tmp.resize(sites);
|
||||
auto inner_tmp_v = &inner_tmp[0];
|
||||
|
||||
accelerator_for( ss, sites, nsimd,{
|
||||
|
@ -9,14 +9,18 @@ inline typename vobj::scalar_objectD sumD_gpu_tensor(const vobj *lat, Integer os
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_objectD sobjD;
|
||||
sobj *mysum =(sobj *) malloc_shared(sizeof(sobj),*theGridAccelerator);
|
||||
static Vector<sobj> mysum;
|
||||
mysum.resize(1);
|
||||
sobj *mysum_p = & mysum[0];
|
||||
sobj identity; zeroit(identity);
|
||||
mysum[0] = identity;
|
||||
sobj ret ;
|
||||
|
||||
Integer nsimd= vobj::Nsimd();
|
||||
|
||||
|
||||
const cl::sycl::property_list PropList ({ cl::sycl::property::reduction::initialize_to_identity() });
|
||||
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
|
||||
auto Reduction = cl::sycl::reduction(mysum,identity,std::plus<>());
|
||||
auto Reduction = cl::sycl::reduction(mysum_p,identity,std::plus<>(),PropList);
|
||||
cgh.parallel_for(cl::sycl::range<1>{osites},
|
||||
Reduction,
|
||||
[=] (cl::sycl::id<1> item, auto &sum) {
|
||||
@ -26,7 +30,7 @@ inline typename vobj::scalar_objectD sumD_gpu_tensor(const vobj *lat, Integer os
|
||||
});
|
||||
theGridAccelerator->wait();
|
||||
ret = mysum[0];
|
||||
free(mysum,*theGridAccelerator);
|
||||
// free(mysum,*theGridAccelerator);
|
||||
sobjD dret; convertType(dret,ret);
|
||||
return dret;
|
||||
}
|
||||
@ -73,19 +77,23 @@ inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osite
|
||||
template<class Word> Word svm_xor(Word *vec,uint64_t L)
|
||||
{
|
||||
Word xorResult; xorResult = 0;
|
||||
Word *d_sum =(Word *)cl::sycl::malloc_shared(sizeof(Word),*theGridAccelerator);
|
||||
static Vector<Word> d_sum;
|
||||
d_sum.resize(1);
|
||||
Word *d_sum_p=&d_sum[0];
|
||||
Word identity; identity=0;
|
||||
d_sum[0] = identity;
|
||||
const cl::sycl::property_list PropList ({ cl::sycl::property::reduction::initialize_to_identity() });
|
||||
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
|
||||
auto Reduction = cl::sycl::reduction(d_sum,identity,std::bit_xor<>());
|
||||
auto Reduction = cl::sycl::reduction(d_sum_p,identity,std::bit_xor<>(),PropList);
|
||||
cgh.parallel_for(cl::sycl::range<1>{L},
|
||||
Reduction,
|
||||
[=] (cl::sycl::id<1> index, auto &sum) {
|
||||
sum ^=vec[index];
|
||||
sum^=vec[index];
|
||||
});
|
||||
});
|
||||
theGridAccelerator->wait();
|
||||
Word ret = d_sum[0];
|
||||
free(d_sum,*theGridAccelerator);
|
||||
// free(d_sum,*theGridAccelerator);
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
@ -365,9 +365,14 @@ public:
|
||||
_bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
|
||||
_uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
|
||||
}
|
||||
|
||||
template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist){
|
||||
|
||||
template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist)
|
||||
{
|
||||
if ( l.Grid()->_isCheckerBoarded ) {
|
||||
Lattice<vobj> tmp(_grid);
|
||||
fill(tmp,dist);
|
||||
pickCheckerboard(l.Checkerboard(),l,tmp);
|
||||
return;
|
||||
}
|
||||
typedef typename vobj::scalar_object scalar_object;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
@ -430,7 +435,7 @@ public:
|
||||
////////////////////////////////////////////////
|
||||
thread_for( lidx, _grid->lSites(), {
|
||||
|
||||
int gidx;
|
||||
int64_t gidx;
|
||||
int o_idx;
|
||||
int i_idx;
|
||||
int rank;
|
||||
|
@ -1,5 +1,5 @@
|
||||
#pragma once
|
||||
#include <type_traits>
|
||||
|
||||
#if defined(GRID_CUDA)
|
||||
|
||||
#include <cub/cub.cuh>
|
||||
@ -90,8 +90,61 @@ template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, V
|
||||
|
||||
|
||||
}
|
||||
#endif
|
||||
|
||||
template<class vobj> inline void sliceSumReduction_cub_large(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
|
||||
|
||||
#if defined(GRID_SYCL)
|
||||
template<class vobj> inline void sliceSumReduction_sycl_small(const vobj *Data, Vector <vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
|
||||
{
|
||||
size_t subvol_size = e1*e2;
|
||||
|
||||
vobj *mysum = (vobj *) malloc_shared(rd*sizeof(vobj),*theGridAccelerator);
|
||||
vobj vobj_zero;
|
||||
zeroit(vobj_zero);
|
||||
for (int r = 0; r<rd; r++) {
|
||||
mysum[r] = vobj_zero;
|
||||
}
|
||||
|
||||
commVector<vobj> reduction_buffer(rd*subvol_size);
|
||||
|
||||
auto rb_p = &reduction_buffer[0];
|
||||
|
||||
// autoView(Data_v, Data, AcceleratorRead);
|
||||
|
||||
//prepare reduction buffer
|
||||
accelerator_for2d( s,subvol_size, r,rd, (size_t)Nsimd,{
|
||||
|
||||
int n = s / e2;
|
||||
int b = s % e2;
|
||||
int so=r*ostride; // base offset for start of plane
|
||||
int ss= so+n*stride+b;
|
||||
|
||||
coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data[ss]));
|
||||
|
||||
});
|
||||
|
||||
for (int r = 0; r < rd; r++) {
|
||||
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
|
||||
auto Reduction = cl::sycl::reduction(&mysum[r],std::plus<>());
|
||||
cgh.parallel_for(cl::sycl::range<1>{subvol_size},
|
||||
Reduction,
|
||||
[=](cl::sycl::id<1> item, auto &sum) {
|
||||
auto s = item[0];
|
||||
sum += rb_p[r*subvol_size+s];
|
||||
});
|
||||
});
|
||||
|
||||
|
||||
}
|
||||
theGridAccelerator->wait();
|
||||
for (int r = 0; r < rd; r++) {
|
||||
lvSum[r] = mysum[r];
|
||||
}
|
||||
free(mysum,*theGridAccelerator);
|
||||
}
|
||||
#endif
|
||||
|
||||
template<class vobj> inline void sliceSumReduction_large(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
|
||||
typedef typename vobj::vector_type vector;
|
||||
const int words = sizeof(vobj)/sizeof(vector);
|
||||
const int osites = rd*e1*e2;
|
||||
@ -106,8 +159,12 @@ template<class vobj> inline void sliceSumReduction_cub_large(const vobj *Data, V
|
||||
buf[ss] = dat[ss*words+w];
|
||||
});
|
||||
|
||||
sliceSumReduction_cub_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd);
|
||||
|
||||
#if defined(GRID_CUDA) || defined(GRID_HIP)
|
||||
sliceSumReduction_cub_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd);
|
||||
#elif defined(GRID_SYCL)
|
||||
sliceSumReduction_sycl_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd);
|
||||
#endif
|
||||
|
||||
for (int r = 0; r < rd; r++) {
|
||||
lvSum_ptr[w+words*r]=lvSum_small[r];
|
||||
}
|
||||
@ -117,66 +174,24 @@ template<class vobj> inline void sliceSumReduction_cub_large(const vobj *Data, V
|
||||
|
||||
}
|
||||
|
||||
template<class vobj> inline void sliceSumReduction_cub(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd)
|
||||
template<class vobj> inline void sliceSumReduction_gpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd)
|
||||
{
|
||||
autoView(Data_v, Data, AcceleratorRead); //hipcub/cub cannot deal with large vobjs so we split into small/large case.
|
||||
autoView(Data_v, Data, AcceleratorRead); //reduction libraries cannot deal with large vobjs so we split into small/large case.
|
||||
if constexpr (sizeof(vobj) <= 256) {
|
||||
sliceSumReduction_cub_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
|
||||
|
||||
#if defined(GRID_CUDA) || defined(GRID_HIP)
|
||||
sliceSumReduction_cub_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
|
||||
#elif defined (GRID_SYCL)
|
||||
sliceSumReduction_sycl_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
|
||||
#endif
|
||||
|
||||
}
|
||||
else {
|
||||
sliceSumReduction_cub_large(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
|
||||
sliceSumReduction_large(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#if defined(GRID_SYCL)
|
||||
template<class vobj> inline void sliceSumReduction_sycl(const Lattice<vobj> &Data, Vector <vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
size_t subvol_size = e1*e2;
|
||||
|
||||
vobj *mysum = (vobj *) malloc_shared(sizeof(vobj),*theGridAccelerator);
|
||||
vobj vobj_zero;
|
||||
zeroit(vobj_zero);
|
||||
|
||||
commVector<vobj> reduction_buffer(rd*subvol_size);
|
||||
|
||||
auto rb_p = &reduction_buffer[0];
|
||||
|
||||
autoView(Data_v, Data, AcceleratorRead);
|
||||
|
||||
//prepare reduction buffer
|
||||
accelerator_for2d( s,subvol_size, r,rd, (size_t)Nsimd,{
|
||||
|
||||
int n = s / e2;
|
||||
int b = s % e2;
|
||||
int so=r*ostride; // base offset for start of plane
|
||||
int ss= so+n*stride+b;
|
||||
|
||||
coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data_v[ss]));
|
||||
|
||||
});
|
||||
|
||||
for (int r = 0; r < rd; r++) {
|
||||
mysum[0] = vobj_zero; //dirty hack: cannot pass vobj_zero as identity to sycl::reduction as its not device_copyable
|
||||
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
|
||||
auto Reduction = cl::sycl::reduction(mysum,std::plus<>());
|
||||
cgh.parallel_for(cl::sycl::range<1>{subvol_size},
|
||||
Reduction,
|
||||
[=](cl::sycl::id<1> item, auto &sum) {
|
||||
auto s = item[0];
|
||||
sum += rb_p[r*subvol_size+s];
|
||||
});
|
||||
});
|
||||
theGridAccelerator->wait();
|
||||
lvSum[r] = mysum[0];
|
||||
}
|
||||
|
||||
free(mysum,*theGridAccelerator);
|
||||
}
|
||||
#endif
|
||||
|
||||
template<class vobj> inline void sliceSumReduction_cpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
|
||||
{
|
||||
// sum over reduced dimension planes, breaking out orthog dir
|
||||
@ -195,13 +210,9 @@ template<class vobj> inline void sliceSumReduction_cpu(const Lattice<vobj> &Data
|
||||
|
||||
template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
|
||||
{
|
||||
#if defined(GRID_CUDA) || defined(GRID_HIP)
|
||||
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
|
||||
|
||||
sliceSumReduction_cub(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
|
||||
|
||||
#elif defined(GRID_SYCL)
|
||||
|
||||
sliceSumReduction_sycl(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
|
||||
sliceSumReduction_gpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
|
||||
|
||||
#else
|
||||
sliceSumReduction_cpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
|
||||
|
@ -42,50 +42,21 @@ inline void subdivides(GridBase *coarse,GridBase *fine)
|
||||
assert((fine->_rdimensions[d] / coarse->_rdimensions[d])* coarse->_rdimensions[d]==fine->_rdimensions[d]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// remove and insert a half checkerboard
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<class vobj> inline void pickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full)
|
||||
{
|
||||
half.Checkerboard() = cb;
|
||||
|
||||
autoView( half_v, half, CpuWrite);
|
||||
autoView( full_v, full, CpuRead);
|
||||
thread_for(ss, full.Grid()->oSites(),{
|
||||
int cbos;
|
||||
Coordinate coor;
|
||||
full.Grid()->oCoorFromOindex(coor,ss);
|
||||
cbos=half.Grid()->CheckerBoard(coor);
|
||||
|
||||
if (cbos==cb) {
|
||||
int ssh=half.Grid()->oIndex(coor);
|
||||
half_v[ssh] = full_v[ss];
|
||||
}
|
||||
});
|
||||
acceleratorPickCheckerboard(cb,half,full);
|
||||
}
|
||||
template<class vobj> inline void setCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half)
|
||||
{
|
||||
int cb = half.Checkerboard();
|
||||
autoView( half_v , half, CpuRead);
|
||||
autoView( full_v , full, CpuWrite);
|
||||
thread_for(ss,full.Grid()->oSites(),{
|
||||
|
||||
Coordinate coor;
|
||||
int cbos;
|
||||
|
||||
full.Grid()->oCoorFromOindex(coor,ss);
|
||||
cbos=half.Grid()->CheckerBoard(coor);
|
||||
|
||||
if (cbos==cb) {
|
||||
int ssh=half.Grid()->oIndex(coor);
|
||||
full_v[ss]=half_v[ssh];
|
||||
}
|
||||
});
|
||||
acceleratorSetCheckerboard(full,half);
|
||||
}
|
||||
|
||||
template<class vobj> inline void acceleratorPickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full, int checker_dim_half=0)
|
||||
template<class vobj> inline void acceleratorPickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full, int dummy=0)
|
||||
{
|
||||
half.Checkerboard() = cb;
|
||||
autoView(half_v, half, AcceleratorWrite);
|
||||
@ -95,6 +66,7 @@ template<class vobj> inline void acceleratorPickCheckerboard(int cb,Lattice<vobj
|
||||
unsigned long ndim_half = half.Grid()->_ndimension;
|
||||
Coordinate checker_dim_mask_half = half.Grid()->_checker_dim_mask;
|
||||
Coordinate ostride_half = half.Grid()->_ostride;
|
||||
int checker_dim_half = half.Grid()->CheckerDim();
|
||||
accelerator_for(ss, full.Grid()->oSites(),full.Grid()->Nsimd(),{
|
||||
|
||||
Coordinate coor;
|
||||
@ -119,7 +91,7 @@ template<class vobj> inline void acceleratorPickCheckerboard(int cb,Lattice<vobj
|
||||
}
|
||||
});
|
||||
}
|
||||
template<class vobj> inline void acceleratorSetCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half, int checker_dim_half=0)
|
||||
template<class vobj> inline void acceleratorSetCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half, int dummy=0)
|
||||
{
|
||||
int cb = half.Checkerboard();
|
||||
autoView(half_v , half, AcceleratorRead);
|
||||
@ -129,6 +101,7 @@ template<class vobj> inline void acceleratorSetCheckerboard(Lattice<vobj> &full,
|
||||
unsigned long ndim_half = half.Grid()->_ndimension;
|
||||
Coordinate checker_dim_mask_half = half.Grid()->_checker_dim_mask;
|
||||
Coordinate ostride_half = half.Grid()->_ostride;
|
||||
int checker_dim_half = half.Grid()->CheckerDim();
|
||||
accelerator_for(ss,full.Grid()->oSites(),full.Grid()->Nsimd(),{
|
||||
|
||||
Coordinate coor;
|
||||
@ -276,18 +249,33 @@ inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
|
||||
|
||||
autoView( coarseData_ , coarseData, AcceleratorWrite);
|
||||
autoView( ip_ , ip, AcceleratorWrite);
|
||||
RealD t_IP=0;
|
||||
RealD t_co=0;
|
||||
RealD t_za=0;
|
||||
for(int v=0;v<nbasis;v++) {
|
||||
t_IP-=usecond();
|
||||
blockInnerProductD(ip,Basis[v],fineDataRed); // ip = <basis|fine>
|
||||
t_IP+=usecond();
|
||||
t_co-=usecond();
|
||||
accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
|
||||
convertType(coarseData_[sc](v),ip_[sc]);
|
||||
});
|
||||
t_co+=usecond();
|
||||
|
||||
// improve numerical stability of projection
|
||||
// |fine> = |fine> - <basis|fine> |basis>
|
||||
ip=-ip;
|
||||
t_za-=usecond();
|
||||
blockZAXPY(fineDataRed,ip,Basis[v],fineDataRed);
|
||||
t_za+=usecond();
|
||||
}
|
||||
// std::cout << GridLogPerformance << " blockProject : blockInnerProduct : "<<t_IP<<" us"<<std::endl;
|
||||
// std::cout << GridLogPerformance << " blockProject : conv : "<<t_co<<" us"<<std::endl;
|
||||
// std::cout << GridLogPerformance << " blockProject : blockZaxpy : "<<t_za<<" us"<<std::endl;
|
||||
}
|
||||
// This only minimises data motion from CPU to GPU
|
||||
// there is chance of better implementation that does a vxk loop of inner products to data share
|
||||
// at the GPU thread level
|
||||
template<class vobj,class CComplex,int nbasis,class VLattice>
|
||||
inline void batchBlockProject(std::vector<Lattice<iVector<CComplex,nbasis>>> &coarseData,
|
||||
const std::vector<Lattice<vobj>> &fineData,
|
||||
@ -393,8 +381,15 @@ template<class vobj,class CComplex>
|
||||
Lattice<dotp> coarse_inner(coarse);
|
||||
|
||||
// Precision promotion
|
||||
RealD t;
|
||||
t=-usecond();
|
||||
fine_inner = localInnerProductD<vobj>(fineX,fineY);
|
||||
// t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : localInnerProductD "<<t<<" us"<<std::endl;
|
||||
|
||||
t=-usecond();
|
||||
blockSum(coarse_inner,fine_inner);
|
||||
// t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : blockSum "<<t<<" us"<<std::endl;
|
||||
t=-usecond();
|
||||
{
|
||||
autoView( CoarseInner_ , CoarseInner,AcceleratorWrite);
|
||||
autoView( coarse_inner_ , coarse_inner,AcceleratorRead);
|
||||
@ -402,6 +397,7 @@ template<class vobj,class CComplex>
|
||||
convertType(CoarseInner_[ss], TensorRemove(coarse_inner_[ss]));
|
||||
});
|
||||
}
|
||||
// t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : convertType "<<t<<" us"<<std::endl;
|
||||
|
||||
}
|
||||
|
||||
@ -444,6 +440,9 @@ inline void blockNormalise(Lattice<CComplex> &ip,Lattice<vobj> &fineX)
|
||||
template<class vobj>
|
||||
inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
|
||||
{
|
||||
const int maxsubsec=256;
|
||||
typedef iVector<vobj,maxsubsec> vSubsec;
|
||||
|
||||
GridBase * fine = fineData.Grid();
|
||||
GridBase * coarse= coarseData.Grid();
|
||||
|
||||
@ -463,35 +462,62 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
|
||||
autoView( coarseData_ , coarseData, AcceleratorWrite);
|
||||
autoView( fineData_ , fineData, AcceleratorRead);
|
||||
|
||||
auto coarseData_p = &coarseData_[0];
|
||||
auto fineData_p = &fineData_[0];
|
||||
auto coarseData_p = &coarseData_[0];
|
||||
auto fineData_p = &fineData_[0];
|
||||
|
||||
Coordinate fine_rdimensions = fine->_rdimensions;
|
||||
Coordinate coarse_rdimensions = coarse->_rdimensions;
|
||||
|
||||
accelerator_for(sc,coarse->oSites(),1,{
|
||||
vobj zz = Zero();
|
||||
|
||||
// Somewhat lazy calculation
|
||||
// Find the biggest power of two subsection divisor less than or equal to maxsubsec
|
||||
int subsec=maxsubsec;
|
||||
int subvol;
|
||||
subvol=blockVol/subsec;
|
||||
while(subvol*subsec!=blockVol){
|
||||
subsec = subsec/2;
|
||||
subvol=blockVol/subsec;
|
||||
};
|
||||
|
||||
Lattice<vSubsec> coarseTmp(coarse);
|
||||
autoView( coarseTmp_, coarseTmp, AcceleratorWriteDiscard);
|
||||
auto coarseTmp_p= &coarseTmp_[0];
|
||||
|
||||
// Sum within subsecs in a first kernel
|
||||
accelerator_for(sce,subsec*coarse->oSites(),vobj::Nsimd(),{
|
||||
|
||||
int sc=sce/subsec;
|
||||
int e=sce%subsec;
|
||||
|
||||
// One thread per sub block
|
||||
Coordinate coor_c(_ndimension);
|
||||
Lexicographic::CoorFromIndex(coor_c,sc,coarse_rdimensions); // Block coordinate
|
||||
|
||||
vobj cd = Zero();
|
||||
|
||||
for(int sb=0;sb<blockVol;sb++){
|
||||
|
||||
auto cd = coalescedRead(zz);
|
||||
for(int sb=e*subvol;sb<MIN((e+1)*subvol,blockVol);sb++){
|
||||
int sf;
|
||||
Coordinate coor_b(_ndimension);
|
||||
Coordinate coor_f(_ndimension);
|
||||
Lexicographic::CoorFromIndex(coor_b,sb,block_r); // Block sub coordinate
|
||||
for(int d=0;d<_ndimension;d++) coor_f[d]=coor_c[d]*block_r[d] + coor_b[d];
|
||||
Lexicographic::IndexFromCoor(coor_f,sf,fine_rdimensions);
|
||||
|
||||
cd=cd+fineData_p[sf];
|
||||
|
||||
cd=cd+coalescedRead(fineData_p[sf]);
|
||||
}
|
||||
|
||||
coarseData_p[sc] = cd;
|
||||
coalescedWrite(coarseTmp_[sc](e),cd);
|
||||
|
||||
});
|
||||
// Sum across subsecs in a second kernel
|
||||
accelerator_for(sc,coarse->oSites(),vobj::Nsimd(),{
|
||||
auto cd = coalescedRead(coarseTmp_p[sc](0));
|
||||
for(int e=1;e<subsec;e++){
|
||||
cd=cd+coalescedRead(coarseTmp_p[sc](e));
|
||||
}
|
||||
coalescedWrite(coarseData_p[sc],cd);
|
||||
});
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
@ -548,7 +574,7 @@ inline void blockOrthogonalise(Lattice<CComplex> &ip,std::vector<Lattice<vobj> >
|
||||
blockOrthonormalize(ip,Basis);
|
||||
}
|
||||
|
||||
#if 0
|
||||
#ifdef GRID_ACCELERATED
|
||||
// TODO: CPU optimized version here
|
||||
template<class vobj,class CComplex,int nbasis>
|
||||
inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
|
||||
@ -574,26 +600,37 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
|
||||
autoView( fineData_ , fineData, AcceleratorWrite);
|
||||
autoView( coarseData_ , coarseData, AcceleratorRead);
|
||||
|
||||
typedef LatticeView<vobj> Vview;
|
||||
std::vector<Vview> AcceleratorVecViewContainer_h;
|
||||
for(int v=0;v<nbasis;v++) {
|
||||
AcceleratorVecViewContainer_h.push_back(Basis[v].View(AcceleratorRead));
|
||||
}
|
||||
static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(nbasis);
|
||||
acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],nbasis *sizeof(Vview));
|
||||
auto Basis_p = &AcceleratorVecViewContainer[0];
|
||||
// Loop with a cache friendly loop ordering
|
||||
accelerator_for(sf,fine->oSites(),1,{
|
||||
Coordinate frdimensions=fine->_rdimensions;
|
||||
Coordinate crdimensions=coarse->_rdimensions;
|
||||
accelerator_for(sf,fine->oSites(),vobj::Nsimd(),{
|
||||
int sc;
|
||||
Coordinate coor_c(_ndimension);
|
||||
Coordinate coor_f(_ndimension);
|
||||
|
||||
Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
|
||||
Lexicographic::CoorFromIndex(coor_f,sf,frdimensions);
|
||||
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
|
||||
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
|
||||
Lexicographic::IndexFromCoor(coor_c,sc,crdimensions);
|
||||
|
||||
for(int i=0;i<nbasis;i++) {
|
||||
/* auto basis_ = Basis[i], );*/
|
||||
if(i==0) fineData_[sf]=coarseData_[sc](i) *basis_[sf]);
|
||||
else fineData_[sf]=fineData_[sf]+coarseData_[sc](i)*basis_[sf]);
|
||||
}
|
||||
auto sum= coarseData_(sc)(0) *Basis_p[0](sf);
|
||||
for(int i=1;i<nbasis;i++) sum = sum + coarseData_(sc)(i)*Basis_p[i](sf);
|
||||
coalescedWrite(fineData_[sf],sum);
|
||||
});
|
||||
for(int v=0;v<nbasis;v++) {
|
||||
AcceleratorVecViewContainer_h[v].ViewClose();
|
||||
}
|
||||
return;
|
||||
|
||||
}
|
||||
#else
|
||||
// CPU version
|
||||
template<class vobj,class CComplex,int nbasis,class VLattice>
|
||||
inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
|
||||
Lattice<vobj> &fineData,
|
||||
@ -680,7 +717,11 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
static const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
// checks should guarantee that the operations are local
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
GridBase *Fg = From.Grid();
|
||||
GridBase *Tg = To.Grid();
|
||||
@ -695,52 +736,38 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
|
||||
for(int d=0;d<nd;d++){
|
||||
assert(Fg->_processors[d] == Tg->_processors[d]);
|
||||
}
|
||||
// the above should guarantee that the operations are local
|
||||
|
||||
#if 1
|
||||
|
||||
///////////////////////////////////////////////////////////
|
||||
// do the index calc on the GPU
|
||||
///////////////////////////////////////////////////////////
|
||||
Coordinate f_ostride = Fg->_ostride;
|
||||
Coordinate f_istride = Fg->_istride;
|
||||
Coordinate f_rdimensions = Fg->_rdimensions;
|
||||
Coordinate t_ostride = Tg->_ostride;
|
||||
Coordinate t_istride = Tg->_istride;
|
||||
Coordinate t_rdimensions = Tg->_rdimensions;
|
||||
|
||||
size_t nsite = 1;
|
||||
for(int i=0;i<nd;i++) nsite *= RegionSize[i];
|
||||
|
||||
size_t tbytes = 4*nsite*sizeof(int);
|
||||
int *table = (int*)malloc(tbytes);
|
||||
|
||||
thread_for(idx, nsite, {
|
||||
Coordinate from_coor, to_coor;
|
||||
size_t rem = idx;
|
||||
for(int i=0;i<nd;i++){
|
||||
size_t base_i = rem % RegionSize[i]; rem /= RegionSize[i];
|
||||
from_coor[i] = base_i + FromLowerLeft[i];
|
||||
to_coor[i] = base_i + ToLowerLeft[i];
|
||||
}
|
||||
|
||||
int foidx = Fg->oIndex(from_coor);
|
||||
int fiidx = Fg->iIndex(from_coor);
|
||||
int toidx = Tg->oIndex(to_coor);
|
||||
int tiidx = Tg->iIndex(to_coor);
|
||||
int* tt = table + 4*idx;
|
||||
tt[0] = foidx;
|
||||
tt[1] = fiidx;
|
||||
tt[2] = toidx;
|
||||
tt[3] = tiidx;
|
||||
});
|
||||
|
||||
int* table_d = (int*)acceleratorAllocDevice(tbytes);
|
||||
acceleratorCopyToDevice(table,table_d,tbytes);
|
||||
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
|
||||
autoView(from_v,From,AcceleratorRead);
|
||||
autoView(to_v,To,AcceleratorWrite);
|
||||
|
||||
|
||||
accelerator_for(idx,nsite,1,{
|
||||
static const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
int* tt = table_d + 4*idx;
|
||||
int from_oidx = *tt++;
|
||||
int from_lane = *tt++;
|
||||
int to_oidx = *tt++;
|
||||
int to_lane = *tt;
|
||||
|
||||
Coordinate from_coor, to_coor, base;
|
||||
Lexicographic::CoorFromIndex(base,idx,RegionSize);
|
||||
for(int i=0;i<nd;i++){
|
||||
from_coor[i] = base[i] + FromLowerLeft[i];
|
||||
to_coor[i] = base[i] + ToLowerLeft[i];
|
||||
}
|
||||
int from_oidx = 0; for(int d=0;d<nd;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
|
||||
int from_lane = 0; for(int d=0;d<nd;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
|
||||
int to_oidx = 0; for(int d=0;d<nd;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
|
||||
int to_lane = 0; for(int d=0;d<nd;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
|
||||
|
||||
const vector_type* from = (const vector_type *)&from_v[from_oidx];
|
||||
vector_type* to = (vector_type *)&to_v[to_oidx];
|
||||
@ -750,56 +777,146 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
|
||||
stmp = getlane(from[w], from_lane);
|
||||
putlane(to[w], stmp, to_lane);
|
||||
}
|
||||
});
|
||||
|
||||
acceleratorFreeDevice(table_d);
|
||||
free(table);
|
||||
|
||||
|
||||
#else
|
||||
Coordinate ldf = Fg->_ldimensions;
|
||||
Coordinate rdf = Fg->_rdimensions;
|
||||
Coordinate isf = Fg->_istride;
|
||||
Coordinate osf = Fg->_ostride;
|
||||
Coordinate rdt = Tg->_rdimensions;
|
||||
Coordinate ist = Tg->_istride;
|
||||
Coordinate ost = Tg->_ostride;
|
||||
|
||||
autoView( t_v , To, CpuWrite);
|
||||
autoView( f_v , From, CpuRead);
|
||||
thread_for(idx,Fg->lSites(),{
|
||||
sobj s;
|
||||
Coordinate Fcoor(nd);
|
||||
Coordinate Tcoor(nd);
|
||||
Lexicographic::CoorFromIndex(Fcoor,idx,ldf);
|
||||
int in_region=1;
|
||||
for(int d=0;d<nd;d++){
|
||||
if ( (Fcoor[d] < FromLowerLeft[d]) || (Fcoor[d]>=FromLowerLeft[d]+RegionSize[d]) ){
|
||||
in_region=0;
|
||||
}
|
||||
Tcoor[d] = ToLowerLeft[d]+ Fcoor[d]-FromLowerLeft[d];
|
||||
}
|
||||
if (in_region) {
|
||||
#if 0
|
||||
Integer idx_f = 0; for(int d=0;d<nd;d++) idx_f+=isf[d]*(Fcoor[d]/rdf[d]); // inner index from
|
||||
Integer idx_t = 0; for(int d=0;d<nd;d++) idx_t+=ist[d]*(Tcoor[d]/rdt[d]); // inner index to
|
||||
Integer odx_f = 0; for(int d=0;d<nd;d++) odx_f+=osf[d]*(Fcoor[d]%rdf[d]); // outer index from
|
||||
Integer odx_t = 0; for(int d=0;d<nd;d++) odx_t+=ost[d]*(Tcoor[d]%rdt[d]); // outer index to
|
||||
scalar_type * fp = (scalar_type *)&f_v[odx_f];
|
||||
scalar_type * tp = (scalar_type *)&t_v[odx_t];
|
||||
for(int w=0;w<words;w++){
|
||||
tp[w].putlane(fp[w].getlane(idx_f),idx_t);
|
||||
}
|
||||
#else
|
||||
peekLocalSite(s,f_v,Fcoor);
|
||||
pokeLocalSite(s,t_v,Tcoor);
|
||||
#endif
|
||||
}
|
||||
});
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
template<class vobj>
|
||||
void InsertSliceFast(const Lattice<vobj> &From,Lattice<vobj> & To,int slice, int orthog)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
// checks should guarantee that the operations are local
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
GridBase *Fg = From.Grid();
|
||||
GridBase *Tg = To.Grid();
|
||||
assert(!Fg->_isCheckerBoarded);
|
||||
assert(!Tg->_isCheckerBoarded);
|
||||
int Nsimd = Fg->Nsimd();
|
||||
int nF = Fg->_ndimension;
|
||||
int nT = Tg->_ndimension;
|
||||
assert(nF+1 == nT);
|
||||
|
||||
///////////////////////////////////////////////////////////
|
||||
// do the index calc on the GPU
|
||||
///////////////////////////////////////////////////////////
|
||||
Coordinate f_ostride = Fg->_ostride;
|
||||
Coordinate f_istride = Fg->_istride;
|
||||
Coordinate f_rdimensions = Fg->_rdimensions;
|
||||
Coordinate t_ostride = Tg->_ostride;
|
||||
Coordinate t_istride = Tg->_istride;
|
||||
Coordinate t_rdimensions = Tg->_rdimensions;
|
||||
Coordinate RegionSize = Fg->_ldimensions;
|
||||
size_t nsite = 1;
|
||||
for(int i=0;i<nF;i++) nsite *= RegionSize[i]; // whole volume of lower dim grid
|
||||
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
|
||||
autoView(from_v,From,AcceleratorRead);
|
||||
autoView(to_v,To,AcceleratorWrite);
|
||||
|
||||
accelerator_for(idx,nsite,1,{
|
||||
|
||||
Coordinate from_coor(nF), to_coor(nT);
|
||||
Lexicographic::CoorFromIndex(from_coor,idx,RegionSize);
|
||||
int j=0;
|
||||
for(int i=0;i<nT;i++){
|
||||
if ( i!=orthog ) {
|
||||
to_coor[i] = from_coor[j];
|
||||
j++;
|
||||
} else {
|
||||
to_coor[i] = slice;
|
||||
}
|
||||
}
|
||||
int from_oidx = 0; for(int d=0;d<nF;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
|
||||
int from_lane = 0; for(int d=0;d<nF;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
|
||||
int to_oidx = 0; for(int d=0;d<nT;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
|
||||
int to_lane = 0; for(int d=0;d<nT;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
|
||||
|
||||
const vector_type* from = (const vector_type *)&from_v[from_oidx];
|
||||
vector_type* to = (vector_type *)&to_v[to_oidx];
|
||||
|
||||
scalar_type stmp;
|
||||
for(int w=0;w<words;w++){
|
||||
stmp = getlane(from[w], from_lane);
|
||||
putlane(to[w], stmp, to_lane);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
template<class vobj>
|
||||
void ExtractSliceFast(Lattice<vobj> &To,const Lattice<vobj> & From,int slice, int orthog)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
// checks should guarantee that the operations are local
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
GridBase *Fg = From.Grid();
|
||||
GridBase *Tg = To.Grid();
|
||||
assert(!Fg->_isCheckerBoarded);
|
||||
assert(!Tg->_isCheckerBoarded);
|
||||
int Nsimd = Fg->Nsimd();
|
||||
int nF = Fg->_ndimension;
|
||||
int nT = Tg->_ndimension;
|
||||
assert(nT+1 == nF);
|
||||
|
||||
///////////////////////////////////////////////////////////
|
||||
// do the index calc on the GPU
|
||||
///////////////////////////////////////////////////////////
|
||||
Coordinate f_ostride = Fg->_ostride;
|
||||
Coordinate f_istride = Fg->_istride;
|
||||
Coordinate f_rdimensions = Fg->_rdimensions;
|
||||
Coordinate t_ostride = Tg->_ostride;
|
||||
Coordinate t_istride = Tg->_istride;
|
||||
Coordinate t_rdimensions = Tg->_rdimensions;
|
||||
Coordinate RegionSize = Tg->_ldimensions;
|
||||
size_t nsite = 1;
|
||||
for(int i=0;i<nT;i++) nsite *= RegionSize[i]; // whole volume of lower dim grid
|
||||
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
|
||||
autoView(from_v,From,AcceleratorRead);
|
||||
autoView(to_v,To,AcceleratorWrite);
|
||||
|
||||
accelerator_for(idx,nsite,1,{
|
||||
|
||||
Coordinate from_coor(nF), to_coor(nT);
|
||||
Lexicographic::CoorFromIndex(to_coor,idx,RegionSize);
|
||||
int j=0;
|
||||
for(int i=0;i<nF;i++){
|
||||
if ( i!=orthog ) {
|
||||
from_coor[i] = to_coor[j];
|
||||
j++;
|
||||
} else {
|
||||
from_coor[i] = slice;
|
||||
}
|
||||
}
|
||||
int from_oidx = 0; for(int d=0;d<nF;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
|
||||
int from_lane = 0; for(int d=0;d<nF;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
|
||||
int to_oidx = 0; for(int d=0;d<nT;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
|
||||
int to_lane = 0; for(int d=0;d<nT;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
|
||||
|
||||
const vector_type* from = (const vector_type *)&from_v[from_oidx];
|
||||
vector_type* to = (vector_type *)&to_v[to_oidx];
|
||||
|
||||
scalar_type stmp;
|
||||
for(int w=0;w<words;w++){
|
||||
stmp = getlane(from[w], from_lane);
|
||||
putlane(to[w], stmp, to_lane);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
template<class vobj>
|
||||
void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice, int orthog)
|
||||
@ -889,9 +1006,7 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
|
||||
|
||||
}
|
||||
|
||||
|
||||
//Insert subvolume orthogonal to direction 'orthog' with slice index 'slice_lo' from 'lowDim' onto slice index 'slice_hi' of higherDim
|
||||
//The local dimensions of both 'lowDim' and 'higherDim' orthogonal to 'orthog' should be the same
|
||||
//Can I implement with local copyregion??
|
||||
template<class vobj>
|
||||
void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
|
||||
{
|
||||
@ -912,121 +1027,18 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
|
||||
assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
|
||||
}
|
||||
}
|
||||
|
||||
#if 1
|
||||
size_t nsite = lg->lSites()/lg->LocalDimensions()[orthog];
|
||||
size_t tbytes = 4*nsite*sizeof(int);
|
||||
int *table = (int*)malloc(tbytes);
|
||||
|
||||
thread_for(idx,nsite,{
|
||||
Coordinate lcoor(nl);
|
||||
Coordinate hcoor(nh);
|
||||
lcoor[orthog] = slice_lo;
|
||||
hcoor[orthog] = slice_hi;
|
||||
size_t rem = idx;
|
||||
for(int mu=0;mu<nl;mu++){
|
||||
if(mu != orthog){
|
||||
int xmu = rem % lg->LocalDimensions()[mu]; rem /= lg->LocalDimensions()[mu];
|
||||
lcoor[mu] = hcoor[mu] = xmu;
|
||||
}
|
||||
}
|
||||
int loidx = lg->oIndex(lcoor);
|
||||
int liidx = lg->iIndex(lcoor);
|
||||
int hoidx = hg->oIndex(hcoor);
|
||||
int hiidx = hg->iIndex(hcoor);
|
||||
int* tt = table + 4*idx;
|
||||
tt[0] = loidx;
|
||||
tt[1] = liidx;
|
||||
tt[2] = hoidx;
|
||||
tt[3] = hiidx;
|
||||
});
|
||||
|
||||
int* table_d = (int*)acceleratorAllocDevice(tbytes);
|
||||
acceleratorCopyToDevice(table,table_d,tbytes);
|
||||
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
|
||||
autoView(lowDim_v,lowDim,AcceleratorRead);
|
||||
autoView(higherDim_v,higherDim,AcceleratorWrite);
|
||||
|
||||
accelerator_for(idx,nsite,1,{
|
||||
static const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
int* tt = table_d + 4*idx;
|
||||
int from_oidx = *tt++;
|
||||
int from_lane = *tt++;
|
||||
int to_oidx = *tt++;
|
||||
int to_lane = *tt;
|
||||
|
||||
const vector_type* from = (const vector_type *)&lowDim_v[from_oidx];
|
||||
vector_type* to = (vector_type *)&higherDim_v[to_oidx];
|
||||
|
||||
scalar_type stmp;
|
||||
for(int w=0;w<words;w++){
|
||||
stmp = getlane(from[w], from_lane);
|
||||
putlane(to[w], stmp, to_lane);
|
||||
}
|
||||
});
|
||||
|
||||
acceleratorFreeDevice(table_d);
|
||||
free(table);
|
||||
|
||||
#else
|
||||
// the above should guarantee that the operations are local
|
||||
autoView(lowDimv,lowDim,CpuRead);
|
||||
autoView(higherDimv,higherDim,CpuWrite);
|
||||
thread_for(idx,lg->lSites(),{
|
||||
sobj s;
|
||||
Coordinate lcoor(nl);
|
||||
Coordinate hcoor(nh);
|
||||
lg->LocalIndexToLocalCoor(idx,lcoor);
|
||||
if( lcoor[orthog] == slice_lo ) {
|
||||
hcoor=lcoor;
|
||||
hcoor[orthog] = slice_hi;
|
||||
peekLocalSite(s,lowDimv,lcoor);
|
||||
pokeLocalSite(s,higherDimv,hcoor);
|
||||
}
|
||||
});
|
||||
#endif
|
||||
Coordinate sz = lg->_ldimensions;
|
||||
sz[orthog]=1;
|
||||
Coordinate f_ll(nl,0); f_ll[orthog]=slice_lo;
|
||||
Coordinate t_ll(nh,0); t_ll[orthog]=slice_hi;
|
||||
localCopyRegion(lowDim,higherDim,f_ll,t_ll,sz);
|
||||
}
|
||||
|
||||
|
||||
template<class vobj>
|
||||
void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
|
||||
GridBase *lg = lowDim.Grid();
|
||||
GridBase *hg = higherDim.Grid();
|
||||
int nl = lg->_ndimension;
|
||||
int nh = hg->_ndimension;
|
||||
|
||||
assert(nl == nh);
|
||||
assert(orthog<nh);
|
||||
assert(orthog>=0);
|
||||
|
||||
for(int d=0;d<nh;d++){
|
||||
if ( d!=orthog ) {
|
||||
assert(lg->_processors[d] == hg->_processors[d]);
|
||||
assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
|
||||
}
|
||||
}
|
||||
|
||||
// the above should guarantee that the operations are local
|
||||
autoView(lowDimv,lowDim,CpuWrite);
|
||||
autoView(higherDimv,higherDim,CpuRead);
|
||||
thread_for(idx,lg->lSites(),{
|
||||
sobj s;
|
||||
Coordinate lcoor(nl);
|
||||
Coordinate hcoor(nh);
|
||||
lg->LocalIndexToLocalCoor(idx,lcoor);
|
||||
if( lcoor[orthog] == slice_lo ) {
|
||||
hcoor=lcoor;
|
||||
hcoor[orthog] = slice_hi;
|
||||
peekLocalSite(s,higherDimv,hcoor);
|
||||
pokeLocalSite(s,lowDimv,lcoor);
|
||||
}
|
||||
});
|
||||
InsertSliceLocal(higherDim,lowDim,slice_hi,slice_lo,orthog);
|
||||
}
|
||||
|
||||
|
||||
@ -1052,7 +1064,7 @@ void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine)
|
||||
|
||||
Coordinate fcoor(nd);
|
||||
Coordinate ccoor(nd);
|
||||
for(int g=0;g<fg->gSites();g++){
|
||||
for(int64_t g=0;g<fg->gSites();g++){
|
||||
|
||||
fg->GlobalIndexToGlobalCoor(g,fcoor);
|
||||
for(int d=0;d<nd;d++){
|
||||
@ -1738,5 +1750,35 @@ void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// Faster but less accurate blockProject
|
||||
//////////////////////////////////////////////////////
|
||||
template<class vobj,class CComplex,int nbasis,class VLattice>
|
||||
inline void blockProjectFast(Lattice<iVector<CComplex,nbasis > > &coarseData,
|
||||
const Lattice<vobj> &fineData,
|
||||
const VLattice &Basis)
|
||||
{
|
||||
GridBase * fine = fineData.Grid();
|
||||
GridBase * coarse= coarseData.Grid();
|
||||
|
||||
Lattice<iScalar<CComplex> > ip(coarse);
|
||||
|
||||
autoView( coarseData_ , coarseData, AcceleratorWrite);
|
||||
autoView( ip_ , ip, AcceleratorWrite);
|
||||
RealD t_IP=0;
|
||||
RealD t_co=0;
|
||||
for(int v=0;v<nbasis;v++) {
|
||||
t_IP-=usecond();
|
||||
blockInnerProductD(ip,Basis[v],fineData);
|
||||
t_IP+=usecond();
|
||||
t_co-=usecond();
|
||||
accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
|
||||
convertType(coarseData_[sc](v),ip_[sc]);
|
||||
});
|
||||
t_co+=usecond();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -45,6 +45,188 @@ struct CshiftImplGauge: public CshiftImplBase<typename Gimpl::GaugeLinkField::ve
|
||||
typename Gimpl::GaugeLinkField Cshift(const typename Gimpl::GaugeLinkField &in, int dir, int shift) const override{ return Gimpl::CshiftLink(in,dir,shift); }
|
||||
};
|
||||
|
||||
|
||||
/*
|
||||
*
|
||||
* TODO:
|
||||
* -- address elementsof vobj via thread block in Scatter/Gather
|
||||
* -- overlap comms with motion in Face_exchange
|
||||
*
|
||||
*/
|
||||
|
||||
template<class vobj> inline void ScatterSlice(const cshiftVector<vobj> &buf,
|
||||
Lattice<vobj> &lat,
|
||||
int x,
|
||||
int dim,
|
||||
int offset=0)
|
||||
{
|
||||
const int Nsimd=vobj::Nsimd();
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
GridBase *grid = lat.Grid();
|
||||
Coordinate simd = grid->_simd_layout;
|
||||
int Nd = grid->Nd();
|
||||
int block = grid->_slice_block[dim];
|
||||
int stride = grid->_slice_stride[dim];
|
||||
int nblock = grid->_slice_nblock[dim];
|
||||
int rd = grid->_rdimensions[dim];
|
||||
|
||||
int ox = x%rd;
|
||||
int ix = x/rd;
|
||||
|
||||
int isites = 1; for(int d=0;d<Nd;d++) if( d!=dim) isites*=simd[d];
|
||||
|
||||
Coordinate rsimd= simd; rsimd[dim]=1; // maybe reduce Nsimd
|
||||
|
||||
int rNsimd = 1; for(int d=0;d<Nd;d++) rNsimd*=rsimd[d];
|
||||
int rNsimda= Nsimd/simd[dim]; // should be equal
|
||||
assert(rNsimda==rNsimd);
|
||||
int face_ovol=block*nblock;
|
||||
|
||||
// assert(buf.size()==face_ovol*rNsimd);
|
||||
|
||||
/*This will work GPU ONLY unless rNsimd is put in the lexico index*/
|
||||
//Let's make it work on GPU and then make a special accelerator_for that
|
||||
//doesn't hide the SIMD direction and keeps explicit in the threadIdx
|
||||
//for cross platform
|
||||
// FIXME -- can put internal indices into thread loop
|
||||
auto buf_p = & buf[0];
|
||||
autoView(lat_v, lat, AcceleratorWrite);
|
||||
accelerator_for(ss, face_ovol/simd[dim],Nsimd,{
|
||||
|
||||
// scalar layout won't coalesce
|
||||
#ifdef GRID_SIMT
|
||||
{
|
||||
int blane=acceleratorSIMTlane(Nsimd); // buffer lane
|
||||
#else
|
||||
for(int blane=0;blane<Nsimd;blane++) {
|
||||
#endif
|
||||
int olane=blane%rNsimd; // reduced lattice lane
|
||||
int obit =blane/rNsimd;
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// osite -- potentially one bit from simd in the buffer: (ss<<1)|obit
|
||||
///////////////////////////////////////////////////////////////
|
||||
int ssp = ss*simd[dim]+obit;
|
||||
int b = ssp%block;
|
||||
int n = ssp/block;
|
||||
int osite= b+n*stride + ox*block;
|
||||
|
||||
////////////////////////////////////////////
|
||||
// isite -- map lane within buffer to lane within lattice
|
||||
////////////////////////////////////////////
|
||||
Coordinate icoor;
|
||||
int lane;
|
||||
Lexicographic::CoorFromIndex(icoor,olane,rsimd);
|
||||
icoor[dim]=ix;
|
||||
Lexicographic::IndexFromCoor(icoor,lane,simd);
|
||||
|
||||
///////////////////////////////////////////
|
||||
// Transfer into lattice - will coalesce
|
||||
///////////////////////////////////////////
|
||||
// sobj obj = extractLane(blane,buf_p[ss+offset]);
|
||||
// insertLane(lane,lat_v[osite],obj);
|
||||
const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
vector_type * from = (vector_type *)&buf_p[ss+offset];
|
||||
vector_type * to = (vector_type *)&lat_v[osite];
|
||||
scalar_type stmp;
|
||||
for(int w=0;w<words;w++){
|
||||
stmp = getlane(from[w], blane);
|
||||
putlane(to[w], stmp, lane);
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
template<class vobj> inline void GatherSlice(cshiftVector<vobj> &buf,
|
||||
const Lattice<vobj> &lat,
|
||||
int x,
|
||||
int dim,
|
||||
int offset=0)
|
||||
{
|
||||
const int Nsimd=vobj::Nsimd();
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
autoView(lat_v, lat, AcceleratorRead);
|
||||
|
||||
GridBase *grid = lat.Grid();
|
||||
Coordinate simd = grid->_simd_layout;
|
||||
int Nd = grid->Nd();
|
||||
int block = grid->_slice_block[dim];
|
||||
int stride = grid->_slice_stride[dim];
|
||||
int nblock = grid->_slice_nblock[dim];
|
||||
int rd = grid->_rdimensions[dim];
|
||||
|
||||
int ox = x%rd;
|
||||
int ix = x/rd;
|
||||
|
||||
int isites = 1; for(int d=0;d<Nd;d++) if( d!=dim) isites*=simd[d];
|
||||
|
||||
Coordinate rsimd= simd; rsimd[dim]=1; // maybe reduce Nsimd
|
||||
|
||||
int rNsimd = 1; for(int d=0;d<Nd;d++) rNsimd*=rsimd[d];
|
||||
|
||||
int face_ovol=block*nblock;
|
||||
|
||||
// assert(buf.size()==face_ovol*rNsimd);
|
||||
|
||||
/*This will work GPU ONLY unless rNsimd is put in the lexico index*/
|
||||
//Let's make it work on GPU and then make a special accelerator_for that
|
||||
//doesn't hide the SIMD direction and keeps explicit in the threadIdx
|
||||
//for cross platform
|
||||
//For CPU perhaps just run a loop over Nsimd
|
||||
auto buf_p = & buf[0];
|
||||
accelerator_for(ss, face_ovol/simd[dim],Nsimd,{
|
||||
|
||||
// scalar layout won't coalesce
|
||||
#ifdef GRID_SIMT
|
||||
{
|
||||
int blane=acceleratorSIMTlane(Nsimd); // buffer lane
|
||||
#else
|
||||
for(int blane=0;blane<Nsimd;blane++) {
|
||||
#endif
|
||||
int olane=blane%rNsimd; // reduced lattice lane
|
||||
int obit =blane/rNsimd;
|
||||
|
||||
////////////////////////////////////////////
|
||||
// osite
|
||||
////////////////////////////////////////////
|
||||
int ssp = ss*simd[dim]+obit;
|
||||
int b = ssp%block;
|
||||
int n = ssp/block;
|
||||
int osite= b+n*stride + ox*block;
|
||||
|
||||
////////////////////////////////////////////
|
||||
// isite -- map lane within buffer to lane within lattice
|
||||
////////////////////////////////////////////
|
||||
Coordinate icoor;
|
||||
int lane;
|
||||
Lexicographic::CoorFromIndex(icoor,olane,rsimd);
|
||||
icoor[dim]=ix;
|
||||
Lexicographic::IndexFromCoor(icoor,lane,simd);
|
||||
|
||||
///////////////////////////////////////////
|
||||
// Take out of lattice
|
||||
///////////////////////////////////////////
|
||||
// sobj obj = extractLane(lane,lat_v[osite]);
|
||||
// insertLane(blane,buf_p[ss+offset],obj);
|
||||
const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
vector_type * to = (vector_type *)&buf_p[ss+offset];
|
||||
vector_type * from = (vector_type *)&lat_v[osite];
|
||||
scalar_type stmp;
|
||||
for(int w=0;w<words;w++){
|
||||
stmp = getlane(from[w], lane);
|
||||
putlane(to[w], stmp, blane);
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
class PaddedCell {
|
||||
public:
|
||||
GridCartesian * unpadded_grid;
|
||||
@ -63,14 +245,18 @@ public:
|
||||
dims=_grid->Nd();
|
||||
AllocateGrids();
|
||||
Coordinate local =unpadded_grid->LocalDimensions();
|
||||
Coordinate procs =unpadded_grid->ProcessorGrid();
|
||||
for(int d=0;d<dims;d++){
|
||||
assert(local[d]>=depth);
|
||||
if ( procs[d] > 1 ) assert(local[d]>=depth);
|
||||
}
|
||||
}
|
||||
void DeleteGrids(void)
|
||||
{
|
||||
Coordinate processors=unpadded_grid->_processors;
|
||||
for(int d=0;d<grids.size();d++){
|
||||
delete grids[d];
|
||||
if ( processors[d] > 1 ) {
|
||||
delete grids[d];
|
||||
}
|
||||
}
|
||||
grids.resize(0);
|
||||
};
|
||||
@ -81,27 +267,36 @@ public:
|
||||
Coordinate processors=unpadded_grid->_processors;
|
||||
Coordinate plocal =unpadded_grid->LocalDimensions();
|
||||
Coordinate global(dims);
|
||||
|
||||
GridCartesian *old_grid = unpadded_grid;
|
||||
// expand up one dim at a time
|
||||
for(int d=0;d<dims;d++){
|
||||
|
||||
plocal[d] += 2*depth;
|
||||
if ( processors[d] > 1 ) {
|
||||
plocal[d] += 2*depth;
|
||||
|
||||
for(int d=0;d<dims;d++){
|
||||
global[d] = plocal[d]*processors[d];
|
||||
}
|
||||
|
||||
for(int d=0;d<dims;d++){
|
||||
global[d] = plocal[d]*processors[d];
|
||||
old_grid = new GridCartesian(global,simd,processors);
|
||||
}
|
||||
|
||||
grids.push_back(new GridCartesian(global,simd,processors));
|
||||
grids.push_back(old_grid);
|
||||
}
|
||||
};
|
||||
template<class vobj>
|
||||
inline Lattice<vobj> Extract(const Lattice<vobj> &in) const
|
||||
{
|
||||
Coordinate processors=unpadded_grid->_processors;
|
||||
|
||||
Lattice<vobj> out(unpadded_grid);
|
||||
|
||||
Coordinate local =unpadded_grid->LocalDimensions();
|
||||
Coordinate fll(dims,depth); // depends on the MPI spread
|
||||
// depends on the MPI spread
|
||||
Coordinate fll(dims,depth);
|
||||
Coordinate tll(dims,0); // depends on the MPI spread
|
||||
for(int d=0;d<dims;d++){
|
||||
if( processors[d]==1 ) fll[d]=0;
|
||||
}
|
||||
localCopyRegion(in,out,fll,tll,local);
|
||||
return out;
|
||||
}
|
||||
@ -116,10 +311,22 @@ public:
|
||||
}
|
||||
return tmp;
|
||||
}
|
||||
template<class vobj>
|
||||
inline Lattice<vobj> ExchangePeriodic(const Lattice<vobj> &in) const
|
||||
{
|
||||
GridBase *old_grid = in.Grid();
|
||||
int dims = old_grid->Nd();
|
||||
Lattice<vobj> tmp = in;
|
||||
for(int d=0;d<dims;d++){
|
||||
tmp = ExpandPeriodic(d,tmp); // rvalue && assignment
|
||||
}
|
||||
return tmp;
|
||||
}
|
||||
// expand up one dim at a time
|
||||
template<class vobj>
|
||||
inline Lattice<vobj> Expand(int dim, const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const
|
||||
{
|
||||
Coordinate processors=unpadded_grid->_processors;
|
||||
GridBase *old_grid = in.Grid();
|
||||
GridCartesian *new_grid = grids[dim];//These are new grids
|
||||
Lattice<vobj> padded(new_grid);
|
||||
@ -129,46 +336,236 @@ public:
|
||||
if(dim==0) conformable(old_grid,unpadded_grid);
|
||||
else conformable(old_grid,grids[dim-1]);
|
||||
|
||||
std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl;
|
||||
|
||||
double tins=0, tshift=0;
|
||||
|
||||
// Middle bit
|
||||
double t = usecond();
|
||||
for(int x=0;x<local[dim];x++){
|
||||
InsertSliceLocal(in,padded,x,depth+x,dim);
|
||||
}
|
||||
tins += usecond() - t;
|
||||
|
||||
// High bit
|
||||
t = usecond();
|
||||
shifted = cshift.Cshift(in,dim,depth);
|
||||
tshift += usecond() - t;
|
||||
|
||||
t=usecond();
|
||||
for(int x=0;x<depth;x++){
|
||||
InsertSliceLocal(shifted,padded,local[dim]-depth+x,depth+local[dim]+x,dim);
|
||||
}
|
||||
tins += usecond() - t;
|
||||
|
||||
// Low bit
|
||||
t = usecond();
|
||||
shifted = cshift.Cshift(in,dim,-depth);
|
||||
tshift += usecond() - t;
|
||||
|
||||
t = usecond();
|
||||
for(int x=0;x<depth;x++){
|
||||
InsertSliceLocal(shifted,padded,x,x,dim);
|
||||
}
|
||||
tins += usecond() - t;
|
||||
int islocal = 0 ;
|
||||
if ( processors[dim] == 1 ) islocal = 1;
|
||||
|
||||
if ( islocal ) {
|
||||
|
||||
// replace with a copy and maybe grid swizzle
|
||||
// return in;??
|
||||
double t = usecond();
|
||||
padded = in;
|
||||
tins += usecond() - t;
|
||||
|
||||
} else {
|
||||
|
||||
//////////////////////////////////////////////
|
||||
// Replace sequence with
|
||||
// ---------------------
|
||||
// (i) Gather high face(s); start comms
|
||||
// (ii) Gather low face(s); start comms
|
||||
// (iii) Copy middle bit with localCopyRegion
|
||||
// (iv) Complete high face(s), insert slice(s)
|
||||
// (iv) Complete low face(s), insert slice(s)
|
||||
//////////////////////////////////////////////
|
||||
// Middle bit
|
||||
double t = usecond();
|
||||
for(int x=0;x<local[dim];x++){
|
||||
InsertSliceLocal(in,padded,x,depth+x,dim);
|
||||
}
|
||||
tins += usecond() - t;
|
||||
|
||||
// High bit
|
||||
t = usecond();
|
||||
shifted = cshift.Cshift(in,dim,depth);
|
||||
tshift += usecond() - t;
|
||||
|
||||
t=usecond();
|
||||
for(int x=0;x<depth;x++){
|
||||
InsertSliceLocal(shifted,padded,local[dim]-depth+x,depth+local[dim]+x,dim);
|
||||
}
|
||||
tins += usecond() - t;
|
||||
|
||||
// Low bit
|
||||
t = usecond();
|
||||
shifted = cshift.Cshift(in,dim,-depth);
|
||||
tshift += usecond() - t;
|
||||
|
||||
t = usecond();
|
||||
for(int x=0;x<depth;x++){
|
||||
InsertSliceLocal(shifted,padded,x,x,dim);
|
||||
}
|
||||
tins += usecond() - t;
|
||||
|
||||
}
|
||||
std::cout << GridLogPerformance << "PaddedCell::Expand timings: cshift:" << tshift/1000 << "ms, insert-slice:" << tins/1000 << "ms" << std::endl;
|
||||
|
||||
return padded;
|
||||
}
|
||||
|
||||
template<class vobj>
|
||||
inline Lattice<vobj> ExpandPeriodic(int dim, const Lattice<vobj> &in) const
|
||||
{
|
||||
Coordinate processors=unpadded_grid->_processors;
|
||||
GridBase *old_grid = in.Grid();
|
||||
GridCartesian *new_grid = grids[dim];//These are new grids
|
||||
Lattice<vobj> padded(new_grid);
|
||||
// Lattice<vobj> shifted(old_grid);
|
||||
Coordinate local =old_grid->LocalDimensions();
|
||||
Coordinate plocal =new_grid->LocalDimensions();
|
||||
if(dim==0) conformable(old_grid,unpadded_grid);
|
||||
else conformable(old_grid,grids[dim-1]);
|
||||
|
||||
// std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl;
|
||||
double tins=0, tshift=0;
|
||||
|
||||
int islocal = 0 ;
|
||||
if ( processors[dim] == 1 ) islocal = 1;
|
||||
|
||||
if ( islocal ) {
|
||||
padded=in; // slightly different interface could avoid a copy operation
|
||||
} else {
|
||||
Face_exchange(in,padded,dim,depth);
|
||||
return padded;
|
||||
}
|
||||
return padded;
|
||||
}
|
||||
template<class vobj>
|
||||
void Face_exchange(const Lattice<vobj> &from,
|
||||
Lattice<vobj> &to,
|
||||
int dimension,int depth) const
|
||||
{
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
|
||||
RealD t_gather=0.0;
|
||||
RealD t_scatter=0.0;
|
||||
RealD t_comms=0.0;
|
||||
RealD t_copy=0.0;
|
||||
|
||||
// std::cout << GridLogMessage << "dimension " <<dimension<<std::endl;
|
||||
// DumpSliceNorm(std::string("Face_exchange from"),from,dimension);
|
||||
GridBase *grid=from.Grid();
|
||||
GridBase *new_grid=to.Grid();
|
||||
|
||||
Coordinate lds = from.Grid()->_ldimensions;
|
||||
Coordinate nlds= to.Grid()->_ldimensions;
|
||||
Coordinate simd= from.Grid()->_simd_layout;
|
||||
int ld = lds[dimension];
|
||||
int nld = to.Grid()->_ldimensions[dimension];
|
||||
const int Nsimd = vobj::Nsimd();
|
||||
|
||||
assert(depth<=lds[dimension]); // A must be on neighbouring node
|
||||
assert(depth>0); // A caller bug if zero
|
||||
assert(ld+2*depth==nld);
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// Face size and byte calculations
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
int buffer_size = 1;
|
||||
for(int d=0;d<lds.size();d++){
|
||||
if ( d!= dimension) buffer_size=buffer_size*lds[d];
|
||||
}
|
||||
buffer_size = buffer_size / Nsimd;
|
||||
int rNsimd = Nsimd / simd[dimension];
|
||||
assert( buffer_size == from.Grid()->_slice_nblock[dimension]*from.Grid()->_slice_block[dimension] / simd[dimension]);
|
||||
|
||||
static cshiftVector<vobj> send_buf;
|
||||
static cshiftVector<vobj> recv_buf;
|
||||
send_buf.resize(buffer_size*2*depth);
|
||||
recv_buf.resize(buffer_size*2*depth);
|
||||
|
||||
std::vector<CommsRequest_t> fwd_req;
|
||||
std::vector<CommsRequest_t> bwd_req;
|
||||
|
||||
int words = buffer_size;
|
||||
int bytes = words * sizeof(vobj);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// Communication coords
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
int comm_proc = 1;
|
||||
int xmit_to_rank;
|
||||
int recv_from_rank;
|
||||
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// Gather all surface terms up to depth "d"
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
RealD t;
|
||||
RealD t_tot=-usecond();
|
||||
int plane=0;
|
||||
for ( int d=0;d < depth ; d ++ ) {
|
||||
int tag = d*1024 + dimension*2+0;
|
||||
|
||||
t=usecond();
|
||||
GatherSlice(send_buf,from,d,dimension,plane*buffer_size); plane++;
|
||||
t_gather+=usecond()-t;
|
||||
|
||||
t=usecond();
|
||||
grid->SendToRecvFromBegin(fwd_req,
|
||||
(void *)&send_buf[d*buffer_size], xmit_to_rank,
|
||||
(void *)&recv_buf[d*buffer_size], recv_from_rank, bytes, tag);
|
||||
t_comms+=usecond()-t;
|
||||
}
|
||||
for ( int d=0;d < depth ; d ++ ) {
|
||||
int tag = d*1024 + dimension*2+1;
|
||||
|
||||
t=usecond();
|
||||
GatherSlice(send_buf,from,ld-depth+d,dimension,plane*buffer_size); plane++;
|
||||
t_gather+= usecond() - t;
|
||||
|
||||
t=usecond();
|
||||
grid->SendToRecvFromBegin(bwd_req,
|
||||
(void *)&send_buf[(d+depth)*buffer_size], recv_from_rank,
|
||||
(void *)&recv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag);
|
||||
t_comms+=usecond()-t;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// Copy interior -- overlap this with comms
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
int Nd = new_grid->Nd();
|
||||
Coordinate LL(Nd,0);
|
||||
Coordinate sz = grid->_ldimensions;
|
||||
Coordinate toLL(Nd,0);
|
||||
toLL[dimension]=depth;
|
||||
t=usecond();
|
||||
localCopyRegion(from,to,LL,toLL,sz);
|
||||
t_copy= usecond() - t;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// Scatter all faces
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
plane=0;
|
||||
|
||||
t=usecond();
|
||||
grid->CommsComplete(fwd_req);
|
||||
t_comms+= usecond() - t;
|
||||
|
||||
t=usecond();
|
||||
for ( int d=0;d < depth ; d ++ ) {
|
||||
ScatterSlice(recv_buf,to,nld-depth+d,dimension,plane*buffer_size); plane++;
|
||||
}
|
||||
t_scatter= usecond() - t;
|
||||
|
||||
t=usecond();
|
||||
grid->CommsComplete(bwd_req);
|
||||
t_comms+= usecond() - t;
|
||||
|
||||
t=usecond();
|
||||
for ( int d=0;d < depth ; d ++ ) {
|
||||
ScatterSlice(recv_buf,to,d,dimension,plane*buffer_size); plane++;
|
||||
}
|
||||
t_scatter+= usecond() - t;
|
||||
t_tot+=usecond();
|
||||
|
||||
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: gather :" << t_gather/1000 << "ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: scatter:" << t_scatter/1000 << "ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: copy :" << t_copy/1000 << "ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: comms :" << t_comms/1000 << "ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: total :" << t_tot/1000 << "ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: gather :" << depth*4.0*bytes/t_gather << "MB/s"<<std::endl;
|
||||
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: scatter:" << depth*4.0*bytes/t_scatter<< "MB/s"<<std::endl;
|
||||
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: comms :" << (RealD)4.0*bytes/t_comms << "MB/s"<<std::endl;
|
||||
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: face bytes :" << depth*bytes/1e6 << "MB"<<std::endl;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
||||
|
@ -165,7 +165,7 @@ class BinaryIO {
|
||||
* FIXME -- 128^3 x 256 x 16 will overflow.
|
||||
*/
|
||||
|
||||
int global_site;
|
||||
int64_t global_site;
|
||||
|
||||
Lexicographic::CoorFromIndex(coor,local_site,local_vol);
|
||||
|
||||
@ -175,8 +175,8 @@ class BinaryIO {
|
||||
|
||||
Lexicographic::IndexFromCoor(coor,global_site,global_vol);
|
||||
|
||||
uint32_t gsite29 = global_site%29;
|
||||
uint32_t gsite31 = global_site%31;
|
||||
uint64_t gsite29 = global_site%29;
|
||||
uint64_t gsite31 = global_site%31;
|
||||
|
||||
site_crc = crc32(0,(unsigned char *)site_buf,sizeof(fobj));
|
||||
// std::cout << "Site "<<local_site << " crc "<<std::hex<<site_crc<<std::dec<<std::endl;
|
||||
@ -545,7 +545,9 @@ class BinaryIO {
|
||||
const std::string &format,
|
||||
uint32_t &nersc_csum,
|
||||
uint32_t &scidac_csuma,
|
||||
uint32_t &scidac_csumb)
|
||||
uint32_t &scidac_csumb,
|
||||
int control=BINARYIO_LEXICOGRAPHIC
|
||||
)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::Realified::scalar_type word; word w=0;
|
||||
@ -556,7 +558,7 @@ class BinaryIO {
|
||||
std::vector<sobj> scalardata(lsites);
|
||||
std::vector<fobj> iodata(lsites); // Munge, checksum, byte order in here
|
||||
|
||||
IOobject(w,grid,iodata,file,offset,format,BINARYIO_READ|BINARYIO_LEXICOGRAPHIC,
|
||||
IOobject(w,grid,iodata,file,offset,format,BINARYIO_READ|control,
|
||||
nersc_csum,scidac_csuma,scidac_csumb);
|
||||
|
||||
GridStopWatch timer;
|
||||
@ -582,7 +584,8 @@ class BinaryIO {
|
||||
const std::string &format,
|
||||
uint32_t &nersc_csum,
|
||||
uint32_t &scidac_csuma,
|
||||
uint32_t &scidac_csumb)
|
||||
uint32_t &scidac_csumb,
|
||||
int control=BINARYIO_LEXICOGRAPHIC)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::Realified::scalar_type word; word w=0;
|
||||
@ -607,7 +610,7 @@ class BinaryIO {
|
||||
while (attemptsLeft >= 0)
|
||||
{
|
||||
grid->Barrier();
|
||||
IOobject(w,grid,iodata,file,offset,format,BINARYIO_WRITE|BINARYIO_LEXICOGRAPHIC,
|
||||
IOobject(w,grid,iodata,file,offset,format,BINARYIO_WRITE|control,
|
||||
nersc_csum,scidac_csuma,scidac_csumb);
|
||||
if (checkWrite)
|
||||
{
|
||||
@ -617,7 +620,7 @@ class BinaryIO {
|
||||
|
||||
std::cout << GridLogMessage << "writeLatticeObject: read back object" << std::endl;
|
||||
grid->Barrier();
|
||||
IOobject(w,grid,ckiodata,file,ckoffset,format,BINARYIO_READ|BINARYIO_LEXICOGRAPHIC,
|
||||
IOobject(w,grid,ckiodata,file,ckoffset,format,BINARYIO_READ|control,
|
||||
cknersc_csum,ckscidac_csuma,ckscidac_csumb);
|
||||
if ((cknersc_csum != nersc_csum) or (ckscidac_csuma != scidac_csuma) or (ckscidac_csumb != scidac_csumb))
|
||||
{
|
||||
|
@ -162,8 +162,14 @@ template<class vobj> void ScidacMetaData(Lattice<vobj> & field,
|
||||
{
|
||||
uint32_t scidac_checksuma = stoull(scidacChecksum_.suma,0,16);
|
||||
uint32_t scidac_checksumb = stoull(scidacChecksum_.sumb,0,16);
|
||||
if ( scidac_csuma !=scidac_checksuma) return 0;
|
||||
if ( scidac_csumb !=scidac_checksumb) return 0;
|
||||
std::cout << GridLogMessage << " scidacChecksumVerify computed "<<scidac_csuma<<" expected "<<scidac_checksuma <<std::endl;
|
||||
std::cout << GridLogMessage << " scidacChecksumVerify computed "<<scidac_csumb<<" expected "<<scidac_checksumb <<std::endl;
|
||||
if ( scidac_csuma !=scidac_checksuma) {
|
||||
return 0;
|
||||
};
|
||||
if ( scidac_csumb !=scidac_checksumb) {
|
||||
return 0;
|
||||
};
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -206,7 +212,7 @@ class GridLimeReader : public BinaryIO {
|
||||
// Read a generic lattice field and verify checksum
|
||||
////////////////////////////////////////////
|
||||
template<class vobj>
|
||||
void readLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name)
|
||||
void readLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name,int control=BINARYIO_LEXICOGRAPHIC)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
scidacChecksum scidacChecksum_;
|
||||
@ -238,7 +244,7 @@ class GridLimeReader : public BinaryIO {
|
||||
uint64_t offset= ftello(File);
|
||||
// std::cout << " ReadLatticeObject from offset "<<offset << std::endl;
|
||||
BinarySimpleMunger<sobj,sobj> munge;
|
||||
BinaryIO::readLatticeObject< vobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
|
||||
BinaryIO::readLatticeObject< vobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb,control);
|
||||
std::cout << GridLogMessage << "SciDAC checksum A " << std::hex << scidac_csuma << std::dec << std::endl;
|
||||
std::cout << GridLogMessage << "SciDAC checksum B " << std::hex << scidac_csumb << std::dec << std::endl;
|
||||
/////////////////////////////////////////////
|
||||
@ -408,7 +414,7 @@ class GridLimeWriter : public BinaryIO
|
||||
// in communicator used by the field.Grid()
|
||||
////////////////////////////////////////////////////
|
||||
template<class vobj>
|
||||
void writeLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name)
|
||||
void writeLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name,int control=BINARYIO_LEXICOGRAPHIC)
|
||||
{
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// NB: FILE and iostream are jointly writing disjoint sequences in the
|
||||
@ -459,7 +465,7 @@ class GridLimeWriter : public BinaryIO
|
||||
///////////////////////////////////////////
|
||||
std::string format = getFormatString<vobj>();
|
||||
BinarySimpleMunger<sobj,sobj> munge;
|
||||
BinaryIO::writeLatticeObject<vobj,sobj>(field, filename, munge, offset1, format,nersc_csum,scidac_csuma,scidac_csumb);
|
||||
BinaryIO::writeLatticeObject<vobj,sobj>(field, filename, munge, offset1, format,nersc_csum,scidac_csuma,scidac_csumb,control);
|
||||
|
||||
///////////////////////////////////////////
|
||||
// Wind forward and close the record
|
||||
@ -512,7 +518,8 @@ class ScidacWriter : public GridLimeWriter {
|
||||
////////////////////////////////////////////////
|
||||
template <class vobj, class userRecord>
|
||||
void writeScidacFieldRecord(Lattice<vobj> &field,userRecord _userRecord,
|
||||
const unsigned int recordScientificPrec = 0)
|
||||
const unsigned int recordScientificPrec = 0,
|
||||
int control=BINARYIO_LEXICOGRAPHIC)
|
||||
{
|
||||
GridBase * grid = field.Grid();
|
||||
|
||||
@ -534,7 +541,7 @@ class ScidacWriter : public GridLimeWriter {
|
||||
writeLimeObject(0,0,_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
|
||||
}
|
||||
// Collective call
|
||||
writeLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA)); // Closes message with checksum
|
||||
writeLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA),control); // Closes message with checksum
|
||||
}
|
||||
};
|
||||
|
||||
@ -553,7 +560,8 @@ class ScidacReader : public GridLimeReader {
|
||||
// Write generic lattice field in scidac format
|
||||
////////////////////////////////////////////////
|
||||
template <class vobj, class userRecord>
|
||||
void readScidacFieldRecord(Lattice<vobj> &field,userRecord &_userRecord)
|
||||
void readScidacFieldRecord(Lattice<vobj> &field,userRecord &_userRecord,
|
||||
int control=BINARYIO_LEXICOGRAPHIC)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
GridBase * grid = field.Grid();
|
||||
@ -571,7 +579,7 @@ class ScidacReader : public GridLimeReader {
|
||||
readLimeObject(header ,std::string("FieldMetaData"),std::string(GRID_FORMAT)); // Open message
|
||||
readLimeObject(_userRecord,_userRecord.SerialisableClassName(),std::string(SCIDAC_RECORD_XML));
|
||||
readLimeObject(_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
|
||||
readLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA));
|
||||
readLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA),control);
|
||||
}
|
||||
void skipPastBinaryRecord(void) {
|
||||
std::string rec_name(ILDG_BINARY_DATA);
|
||||
|
@ -90,6 +90,7 @@ public:
|
||||
exit(1);
|
||||
}
|
||||
Parameters.StartingType = arg;
|
||||
std::cout <<GridLogMessage << " GenericHMCrunner --StartingType "<<arg<<std::endl;
|
||||
}
|
||||
|
||||
if (GridCmdOptionExists(argv, argv + argc, "--StartingTrajectory")) {
|
||||
@ -97,6 +98,7 @@ public:
|
||||
std::vector<int> ivec(0);
|
||||
GridCmdOptionIntVector(arg, ivec);
|
||||
Parameters.StartTrajectory = ivec[0];
|
||||
std::cout <<GridLogMessage << " GenericHMCrunner --StartingTrajectory "<<ivec[0]<<std::endl;
|
||||
}
|
||||
|
||||
if (GridCmdOptionExists(argv, argv + argc, "--Trajectories")) {
|
||||
@ -104,6 +106,7 @@ public:
|
||||
std::vector<int> ivec(0);
|
||||
GridCmdOptionIntVector(arg, ivec);
|
||||
Parameters.Trajectories = ivec[0];
|
||||
std::cout << GridLogMessage<<" GenericHMCrunner Command Line --Trajectories "<<ivec[0]<<std::endl;
|
||||
}
|
||||
|
||||
if (GridCmdOptionExists(argv, argv + argc, "--Thermalizations")) {
|
||||
@ -111,6 +114,7 @@ public:
|
||||
std::vector<int> ivec(0);
|
||||
GridCmdOptionIntVector(arg, ivec);
|
||||
Parameters.NoMetropolisUntil = ivec[0];
|
||||
std::cout << GridLogMessage<<" GenericHMCrunner --Thermalizations "<<ivec[0]<<std::endl;
|
||||
}
|
||||
if (GridCmdOptionExists(argv, argv + argc, "--ParameterFile")) {
|
||||
arg = GridCmdOptionPayload(argv, argv + argc, "--ParameterFile");
|
||||
|
@ -137,9 +137,11 @@ public:
|
||||
|
||||
double start_force = usecond();
|
||||
|
||||
MemoryManager::Print();
|
||||
as[level].actions.at(a)->deriv_timer_start();
|
||||
as[level].actions.at(a)->deriv(Smearer, force); // deriv should NOT include Ta
|
||||
as[level].actions.at(a)->deriv_timer_stop();
|
||||
MemoryManager::Print();
|
||||
|
||||
auto name = as[level].actions.at(a)->action_name();
|
||||
|
||||
@ -246,7 +248,11 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
virtual ~Integrator() {}
|
||||
virtual ~Integrator()
|
||||
{
|
||||
// Pain in the ass to clean up the Level pointers
|
||||
// Guido's design is at fault as per comment above in constructor
|
||||
}
|
||||
|
||||
virtual std::string integrator_name() = 0;
|
||||
|
||||
@ -460,6 +466,7 @@ public:
|
||||
for (int level = 0; level < as.size(); ++level) {
|
||||
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
|
||||
|
||||
MemoryManager::Print();
|
||||
// get gauge field from the SmearingPolicy and
|
||||
// based on the boolean is_smeared in actionID
|
||||
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] action eval " << std::endl;
|
||||
@ -468,6 +475,7 @@ public:
|
||||
as[level].actions.at(actionID)->S_timer_stop();
|
||||
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] H = " << Hterm << std::endl;
|
||||
H += Hterm;
|
||||
MemoryManager::Print();
|
||||
|
||||
}
|
||||
as[level].apply(S_hireps, Representations, level, H);
|
||||
|
@ -32,7 +32,9 @@ private:
|
||||
// Smear_Stout<Gimpl> *StoutSmearing;
|
||||
// std::vector<GaugeField> SmearedSet;
|
||||
|
||||
GridRedBlackCartesian * UrbGrid; // keep a copy of the redblack grid for life of object
|
||||
std::vector<LatticeLorentzComplex> masks;
|
||||
std::vector<int> cbs;
|
||||
|
||||
typedef typename SU3Adjoint::AMatrix AdjMatrix;
|
||||
typedef typename SU3Adjoint::LatticeAdjMatrix AdjMatrixField;
|
||||
@ -147,6 +149,25 @@ private:
|
||||
}
|
||||
pokeLorentz(Fdet, Fdet_pol, nu);
|
||||
}
|
||||
|
||||
void Compute_MpInvJx_dNxxdSy(int cb,
|
||||
const GaugeLinkField &PlaqL,
|
||||
const GaugeLinkField &PlaqR,
|
||||
AdjMatrixField MpInvJx,
|
||||
AdjVectorField &Fdet2 )
|
||||
{
|
||||
GaugeLinkField PlaqLeo(UrbGrid);
|
||||
GaugeLinkField PlaqReo(UrbGrid);
|
||||
AdjMatrixField MpInvJxeo(UrbGrid);
|
||||
AdjVectorField Fdet2eo(UrbGrid);
|
||||
pickCheckerboard(cb,PlaqLeo,PlaqL);
|
||||
pickCheckerboard(cb,PlaqReo,PlaqR);
|
||||
pickCheckerboard(cb,MpInvJxeo,MpInvJx);
|
||||
Fdet2eo.Checkerboard()=cb;
|
||||
Compute_MpInvJx_dNxxdSy(PlaqLeo,PlaqReo,MpInvJxeo,Fdet2eo);
|
||||
setCheckerboard(Fdet2,Fdet2eo);
|
||||
}
|
||||
|
||||
void Compute_MpInvJx_dNxxdSy(const GaugeLinkField &PlaqL,const GaugeLinkField &PlaqR, AdjMatrixField MpInvJx,AdjVectorField &Fdet2 )
|
||||
{
|
||||
GaugeLinkField UtaU(PlaqL.Grid());
|
||||
@ -278,8 +299,9 @@ public:
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Mask the gauge field
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
int cb = cbs[smr];
|
||||
auto mask=PeekIndex<LorentzIndex>(masks[smr],mu); // the cb mask
|
||||
|
||||
|
||||
Umsk = U;
|
||||
ApplyMask(Umsk,smr);
|
||||
Utmp = peekLorentz(Umsk,mu);
|
||||
@ -442,7 +464,7 @@ public:
|
||||
AdjMatrixField MpInvJx_nu(grid);
|
||||
MpInvJx = (-1.0)*MpAdInv * JxAd;// rho is on the plaq factor
|
||||
|
||||
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx,FdetV);
|
||||
Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx,FdetV);
|
||||
Fdet2_mu=FdetV;
|
||||
Fdet1_mu=Zero();
|
||||
|
||||
@ -499,7 +521,7 @@ public:
|
||||
|
||||
time=-usecond();
|
||||
PlaqR=(-1.0)*PlaqR;
|
||||
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx,FdetV);
|
||||
Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx,FdetV);
|
||||
Fdet2_nu = FdetV;
|
||||
time+=usecond();
|
||||
std::cout << GridLogMessage << "Compute_MpInvJx_dNxxSy (occurs 6x) took "<<time<< " us"<<std::endl;
|
||||
@ -520,7 +542,7 @@ public:
|
||||
|
||||
|
||||
MpInvJx_nu = Cshift(MpInvJx,mu,-1);
|
||||
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV);
|
||||
Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx_nu,FdetV);
|
||||
Fdet2_nu = Fdet2_nu+FdetV;
|
||||
|
||||
///////////////// -ve nu /////////////////
|
||||
@ -539,7 +561,7 @@ public:
|
||||
Fdet1_nu = Fdet1_nu + transpose(Nxy)*dJdXe_nMpInv_y;
|
||||
|
||||
MpInvJx_nu = Cshift(MpInvJx,nu,1);
|
||||
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV);
|
||||
Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx_nu,FdetV);
|
||||
Fdet2_nu = Fdet2_nu+FdetV;
|
||||
|
||||
// x==
|
||||
@ -560,7 +582,7 @@ public:
|
||||
|
||||
MpInvJx_nu = Cshift(MpInvJx,mu,-1);
|
||||
MpInvJx_nu = Cshift(MpInvJx_nu,nu,1);
|
||||
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV);
|
||||
Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx_nu,FdetV);
|
||||
Fdet2_nu = Fdet2_nu+FdetV;
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
@ -589,7 +611,7 @@ public:
|
||||
|
||||
MpInvJx_nu = Cshift(MpInvJx,nu,-1);
|
||||
|
||||
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV);
|
||||
Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx_nu,FdetV);
|
||||
Fdet2_mu = Fdet2_mu+FdetV;
|
||||
|
||||
// __
|
||||
@ -609,7 +631,7 @@ public:
|
||||
|
||||
MpInvJx_nu = Cshift(MpInvJx,nu,1);
|
||||
|
||||
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV);
|
||||
Compute_MpInvJx_dNxxdSy(cb,PlaqL,PlaqR,MpInvJx_nu,FdetV);
|
||||
Fdet2_mu = Fdet2_mu+FdetV;
|
||||
|
||||
}
|
||||
@ -931,6 +953,10 @@ private:
|
||||
public:
|
||||
|
||||
/* Standard constructor */
|
||||
virtual ~SmearedConfigurationMasked()
|
||||
{
|
||||
delete UrbGrid;
|
||||
}
|
||||
SmearedConfigurationMasked(GridCartesian* _UGrid, unsigned int Nsmear, Smear_Stout<Gimpl>& Stout)
|
||||
: SmearedConfiguration<Gimpl>(_UGrid, Nsmear,Stout)
|
||||
{
|
||||
@ -939,7 +965,6 @@ public:
|
||||
// was resized in base class
|
||||
assert(this->SmearedSet.size()==Nsmear);
|
||||
|
||||
GridRedBlackCartesian * UrbGrid;
|
||||
UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(_UGrid);
|
||||
LatticeComplex one(_UGrid); one = ComplexD(1.0,0.0);
|
||||
LatticeComplex tmp(_UGrid);
|
||||
@ -947,10 +972,11 @@ public:
|
||||
for (unsigned int i = 0; i < this->smearingLevels; ++i) {
|
||||
|
||||
masks.push_back(*(new LatticeLorentzComplex(_UGrid)));
|
||||
|
||||
int mu= (i/2) %Nd;
|
||||
int cb= (i%2);
|
||||
LatticeComplex tmpcb(UrbGrid);
|
||||
|
||||
cbs.push_back(cb);
|
||||
|
||||
masks[i]=Zero();
|
||||
////////////////////
|
||||
@ -962,7 +988,6 @@ public:
|
||||
PokeIndex<LorentzIndex>(masks[i],tmp, mu);
|
||||
|
||||
}
|
||||
delete UrbGrid;
|
||||
}
|
||||
|
||||
virtual void smeared_force(GaugeField &SigmaTilde)
|
||||
|
@ -170,7 +170,7 @@ public:
|
||||
typedef decltype(coalescedReadGeneralPermute(U_v[0](0),gStencil.GetEntry(0,0)->_permute,Nd)) U3matrix;
|
||||
|
||||
int Nsites = U_v.size();
|
||||
auto gStencil_v = gStencil.View();
|
||||
auto gStencil_v = gStencil.View(AcceleratorRead);
|
||||
|
||||
accelerator_for(site,Nsites,Simd::Nsimd(),{ // ----------- 3-link constructs
|
||||
stencilElement SE0, SE1, SE2, SE3, SE4, SE5;
|
||||
@ -386,4 +386,4 @@ public:
|
||||
};
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -418,32 +418,32 @@ static void LieAlgebraProject(LatticeAlgebraMatrix &out,const LatticeMatrix &in,
|
||||
int hNNm1= NNm1/2;
|
||||
RealD sqrt_2 = sqrt(2.0);
|
||||
Complex ci(0.0,1.0);
|
||||
for(int su2Index=0;su2Index<hNNm1;su2Index++){
|
||||
int i1, i2;
|
||||
su2SubGroupIndex(i1, i2, su2Index);
|
||||
int ax = su2Index*2;
|
||||
int ay = su2Index*2+1;
|
||||
accelerator_for(ss,grid->oSites(),1,{
|
||||
|
||||
const int nsimd= Matrix::Nsimd();
|
||||
accelerator_for(ss,grid->oSites(),nsimd,{
|
||||
for(int su2Index=0;su2Index<hNNm1;su2Index++){
|
||||
int i1, i2;
|
||||
su2SubGroupIndex(i1, i2, su2Index);
|
||||
int ax = su2Index*2;
|
||||
int ay = su2Index*2+1;
|
||||
// in is traceless ANTI-hermitian whereas Grid generators are Hermitian.
|
||||
// trace( Ta x Ci in)
|
||||
// Bet I need to move to real part with mult by -i
|
||||
out_v[ss]()()(ax,b) = 0.5*(real(in_v[ss]()()(i2,i1)) - real(in_v[ss]()()(i1,i2)));
|
||||
out_v[ss]()()(ay,b) = 0.5*(imag(in_v[ss]()()(i1,i2)) + imag(in_v[ss]()()(i2,i1)));
|
||||
});
|
||||
}
|
||||
for(int diagIndex=0;diagIndex<N-1;diagIndex++){
|
||||
int k = diagIndex + 1; // diagIndex starts from 0
|
||||
int a = NNm1+diagIndex;
|
||||
RealD scale = 1.0/sqrt(2.0*k*(k+1));
|
||||
accelerator_for(ss,grid->oSites(),vComplex::Nsimd(),{
|
||||
auto tmp = in_v[ss]()()(0,0);
|
||||
coalescedWrite(out_v[ss]()()(ax,b),0.5*(real(in_v(ss)()()(i2,i1)) - real(in_v(ss)()()(i1,i2))));
|
||||
coalescedWrite(out_v[ss]()()(ay,b),0.5*(imag(in_v(ss)()()(i1,i2)) + imag(in_v(ss)()()(i2,i1))));
|
||||
}
|
||||
for(int diagIndex=0;diagIndex<N-1;diagIndex++){
|
||||
int k = diagIndex + 1; // diagIndex starts from 0
|
||||
int a = NNm1+diagIndex;
|
||||
RealD scale = 1.0/sqrt(2.0*k*(k+1));
|
||||
auto tmp = in_v(ss)()()(0,0);
|
||||
for(int i=1;i<k;i++){
|
||||
tmp=tmp+in_v[ss]()()(i,i);
|
||||
tmp=tmp+in_v(ss)()()(i,i);
|
||||
}
|
||||
tmp = tmp - in_v[ss]()()(k,k)*k;
|
||||
out_v[ss]()()(a,b) =imag(tmp) * scale;
|
||||
});
|
||||
}
|
||||
tmp = tmp - in_v(ss)()()(k,k)*k;
|
||||
coalescedWrite(out_v[ss]()()(a,b),imag(tmp) * scale);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
|
@ -118,7 +118,7 @@ static void generatorDiagonal(int diagIndex, iGroupMatrix<cplx> &ta) {
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Map a su2 subgroup number to the pair of rows that are non zero
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
static void su2SubGroupIndex(int &i1, int &i2, int su2_index, GroupName::SU) {
|
||||
static accelerator_inline void su2SubGroupIndex(int &i1, int &i2, int su2_index, GroupName::SU) {
|
||||
assert((su2_index >= 0) && (su2_index < (ncolour * (ncolour - 1)) / 2));
|
||||
|
||||
int spare = su2_index;
|
||||
|
@ -488,7 +488,7 @@ public:
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
{ //view scope
|
||||
autoView( gStaple_v , gStaple, AcceleratorWrite);
|
||||
auto gStencil_v = gStencil.View();
|
||||
auto gStencil_v = gStencil.View(AcceleratorRead);
|
||||
|
||||
accelerator_for(ss, ggrid->oSites(), (size_t)ggrid->Nsimd(), {
|
||||
decltype(coalescedRead(Ug_dirs_v[0][0])) stencil_ss;
|
||||
@ -1200,7 +1200,7 @@ public:
|
||||
|
||||
{ //view scope
|
||||
autoView( gStaple_v , gStaple, AcceleratorWrite);
|
||||
auto gStencil_v = gStencil.View();
|
||||
auto gStencil_v = gStencil.View(AcceleratorRead);
|
||||
|
||||
accelerator_for(ss, ggrid->oSites(), (size_t)ggrid->Nsimd(), {
|
||||
decltype(coalescedRead(Ug_dirs_v[0][0])) stencil_ss;
|
||||
|
@ -1130,6 +1130,14 @@ static_assert(sizeof(SIMD_Ftype) == sizeof(SIMD_Itype), "SIMD vector lengths inc
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// Fixme need coalesced read gpermute
|
||||
template<class vobj> void gpermute(vobj & inout,int perm){
|
||||
vobj tmp=inout;
|
||||
if (perm & 0x1 ) { permute(inout,tmp,0); tmp=inout;}
|
||||
if (perm & 0x2 ) { permute(inout,tmp,1); tmp=inout;}
|
||||
if (perm & 0x4 ) { permute(inout,tmp,2); tmp=inout;}
|
||||
if (perm & 0x8 ) { permute(inout,tmp,3); tmp=inout;}
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -99,6 +99,8 @@ using std::log;
|
||||
using std::exp;
|
||||
using std::sin;
|
||||
using std::cos;
|
||||
using std::asin;
|
||||
using std::acos;
|
||||
|
||||
|
||||
accelerator_inline RealF conjugate(const RealF & r){ return r; }
|
||||
|
@ -32,7 +32,12 @@ NAMESPACE_BEGIN(Grid);
|
||||
struct GeneralStencilEntry {
|
||||
uint64_t _offset; // 4 bytes
|
||||
uint8_t _permute; // 1 bytes // Horrible alignment properties
|
||||
uint8_t _wrap; // 1 bytes // Horrible alignment properties
|
||||
};
|
||||
struct GeneralStencilEntryReordered : public GeneralStencilEntry {
|
||||
uint64_t _input;
|
||||
};
|
||||
|
||||
// Could pack to 8 + 4 + 4 = 128 bit and use
|
||||
|
||||
class GeneralLocalStencilView {
|
||||
@ -46,7 +51,7 @@ class GeneralLocalStencilView {
|
||||
accelerator_inline GeneralStencilEntry * GetEntry(int point,int osite) const {
|
||||
return & this->_entries_p[point+this->_npoints*osite];
|
||||
}
|
||||
|
||||
void ViewClose(void){};
|
||||
};
|
||||
////////////////////////////////////////
|
||||
// The Stencil Class itself
|
||||
@ -61,7 +66,7 @@ protected:
|
||||
public:
|
||||
GridBase *Grid(void) const { return _grid; }
|
||||
|
||||
View_type View(void) const {
|
||||
View_type View(int mode) const {
|
||||
View_type accessor(*( (View_type *) this));
|
||||
return accessor;
|
||||
}
|
||||
@ -101,17 +106,23 @@ public:
|
||||
// Simpler version using icoor calculation
|
||||
////////////////////////////////////////////////
|
||||
SE._permute =0;
|
||||
SE._wrap=0;
|
||||
for(int d=0;d<Coor.size();d++){
|
||||
|
||||
int fd = grid->_fdimensions[d];
|
||||
int rd = grid->_rdimensions[d];
|
||||
int ld = grid->_ldimensions[d];
|
||||
int ly = grid->_simd_layout[d];
|
||||
|
||||
assert((ly==1)||(ly==2));
|
||||
assert((ly==1)||(ly==2)||(ly==grid->Nsimd()));
|
||||
|
||||
int shift = (shifts[ii][d]+fd)%fd; // make it strictly positive 0.. L-1
|
||||
int x = Coor[d]; // x in [0... rd-1] as an oSite
|
||||
|
||||
if ( (x + shift)%fd != (x+shift)%ld ){
|
||||
SE._wrap = 1;
|
||||
}
|
||||
|
||||
int permute_dim = grid->PermuteDim(d);
|
||||
int permute_slice=0;
|
||||
if(permute_dim){
|
||||
|
@ -460,3 +460,9 @@ void vprefetch(const iMatrix<v, N> &vv) {
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
||||
#ifdef GRID_SYCL
|
||||
template<class vec> struct sycl::is_device_copyable<Grid::iScalar<vec> > : public std::true_type {};
|
||||
template<class vec,int N> struct sycl::is_device_copyable<Grid::iVector<vec,N> > : public std::true_type {};
|
||||
template<class vec,int N> struct sycl::is_device_copyable<Grid::iMatrix<vec,N> > : public std::true_type {};
|
||||
#endif
|
||||
|
@ -405,11 +405,4 @@ NAMESPACE_BEGIN(Grid);
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
||||
#ifdef GRID_SYCL
|
||||
template<typename T> struct
|
||||
sycl::is_device_copyable<T, typename std::enable_if<
|
||||
Grid::isGridTensor<T>::value && (!std::is_trivially_copyable<T>::value),
|
||||
void>::type>
|
||||
: public std::true_type {};
|
||||
#endif
|
||||
|
||||
|
@ -122,7 +122,7 @@ hipStream_t computeStream;
|
||||
void acceleratorInit(void)
|
||||
{
|
||||
int nDevices = 1;
|
||||
hipGetDeviceCount(&nDevices);
|
||||
auto discard = hipGetDeviceCount(&nDevices);
|
||||
gpu_props = new hipDeviceProp_t[nDevices];
|
||||
|
||||
char * localRankStr = NULL;
|
||||
@ -149,7 +149,7 @@ void acceleratorInit(void)
|
||||
#define GPU_PROP_FMT(canMapHostMemory,FMT) printf("AcceleratorHipInit: " #canMapHostMemory ": " FMT" \n",prop.canMapHostMemory);
|
||||
#define GPU_PROP(canMapHostMemory) GPU_PROP_FMT(canMapHostMemory,"%d");
|
||||
|
||||
auto r=hipGetDeviceProperties(&gpu_props[i], i);
|
||||
discard = hipGetDeviceProperties(&gpu_props[i], i);
|
||||
hipDeviceProp_t prop;
|
||||
prop = gpu_props[i];
|
||||
totalDeviceMem = prop.totalGlobalMem;
|
||||
@ -186,13 +186,13 @@ void acceleratorInit(void)
|
||||
}
|
||||
int device = rank;
|
||||
#endif
|
||||
hipSetDevice(device);
|
||||
hipStreamCreate(©Stream);
|
||||
hipStreamCreate(&computeStream);
|
||||
discard = hipSetDevice(device);
|
||||
discard = hipStreamCreate(©Stream);
|
||||
discard = hipStreamCreate(&computeStream);
|
||||
const int len=64;
|
||||
char busid[len];
|
||||
if( rank == world_rank ) {
|
||||
hipDeviceGetPCIBusId(busid, len, device);
|
||||
discard = hipDeviceGetPCIBusId(busid, len, device);
|
||||
printf("local rank %d device %d bus id: %s\n", rank, device, busid);
|
||||
}
|
||||
if ( world_rank == 0 ) printf("AcceleratorHipInit: ================================================\n");
|
||||
@ -210,8 +210,8 @@ void acceleratorInit(void)
|
||||
cl::sycl::gpu_selector selector;
|
||||
cl::sycl::device selectedDevice { selector };
|
||||
theGridAccelerator = new sycl::queue (selectedDevice);
|
||||
// theCopyAccelerator = new sycl::queue (selectedDevice);
|
||||
theCopyAccelerator = theGridAccelerator; // Should proceed concurrenlty anyway.
|
||||
theCopyAccelerator = new sycl::queue (selectedDevice);
|
||||
// theCopyAccelerator = theGridAccelerator; // Should proceed concurrenlty anyway.
|
||||
|
||||
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
|
||||
zeInit(0);
|
||||
|
@ -117,7 +117,7 @@ accelerator_inline int acceleratorSIMTlane(int Nsimd) {
|
||||
#endif
|
||||
} // CUDA specific
|
||||
|
||||
inline void cuda_mem(void)
|
||||
inline void acceleratorMem(void)
|
||||
{
|
||||
size_t free_t,total_t,used_t;
|
||||
cudaMemGetInfo(&free_t,&total_t);
|
||||
@ -125,6 +125,11 @@ inline void cuda_mem(void)
|
||||
std::cout << " MemoryManager : GPU used "<<used_t<<" free "<<free_t<< " total "<<total_t<<std::endl;
|
||||
}
|
||||
|
||||
inline void cuda_mem(void)
|
||||
{
|
||||
acceleratorMem();
|
||||
}
|
||||
|
||||
#define accelerator_for2dNB( iter1, num1, iter2, num2, nsimd, ... ) \
|
||||
{ \
|
||||
int nt=acceleratorThreads(); \
|
||||
@ -137,6 +142,18 @@ inline void cuda_mem(void)
|
||||
dim3 cu_blocks ((num1+nt-1)/nt,num2,1); \
|
||||
LambdaApply<<<cu_blocks,cu_threads,0,computeStream>>>(num1,num2,nsimd,lambda); \
|
||||
}
|
||||
#define prof_accelerator_for2dNB( iter1, num1, iter2, num2, nsimd, ... ) \
|
||||
{ \
|
||||
int nt=acceleratorThreads(); \
|
||||
typedef uint64_t Iterator; \
|
||||
auto lambda = [=] accelerator \
|
||||
(Iterator iter1,Iterator iter2,Iterator lane) mutable { \
|
||||
__VA_ARGS__; \
|
||||
}; \
|
||||
dim3 cu_threads(nsimd,acceleratorThreads(),1); \
|
||||
dim3 cu_blocks ((num1+nt-1)/nt,num2,1); \
|
||||
ProfileLambdaApply<<<cu_blocks,cu_threads,0,computeStream>>>(num1,num2,nsimd,lambda); \
|
||||
}
|
||||
|
||||
#define accelerator_for6dNB(iter1, num1, \
|
||||
iter2, num2, \
|
||||
@ -157,6 +174,20 @@ inline void cuda_mem(void)
|
||||
Lambda6Apply<<<cu_blocks,cu_threads,0,computeStream>>>(num1,num2,num3,num4,num5,num6,lambda); \
|
||||
}
|
||||
|
||||
|
||||
#define accelerator_for2dNB( iter1, num1, iter2, num2, nsimd, ... ) \
|
||||
{ \
|
||||
int nt=acceleratorThreads(); \
|
||||
typedef uint64_t Iterator; \
|
||||
auto lambda = [=] accelerator \
|
||||
(Iterator iter1,Iterator iter2,Iterator lane) mutable { \
|
||||
__VA_ARGS__; \
|
||||
}; \
|
||||
dim3 cu_threads(nsimd,acceleratorThreads(),1); \
|
||||
dim3 cu_blocks ((num1+nt-1)/nt,num2,1); \
|
||||
LambdaApply<<<cu_blocks,cu_threads,0,computeStream>>>(num1,num2,nsimd,lambda); \
|
||||
}
|
||||
|
||||
template<typename lambda> __global__
|
||||
void LambdaApply(uint64_t num1, uint64_t num2, uint64_t num3, lambda Lambda)
|
||||
{
|
||||
@ -168,6 +199,17 @@ void LambdaApply(uint64_t num1, uint64_t num2, uint64_t num3, lambda Lambda)
|
||||
Lambda(x,y,z);
|
||||
}
|
||||
}
|
||||
template<typename lambda> __global__
|
||||
void ProfileLambdaApply(uint64_t num1, uint64_t num2, uint64_t num3, lambda Lambda)
|
||||
{
|
||||
// Weird permute is to make lane coalesce for large blocks
|
||||
uint64_t x = threadIdx.y + blockDim.y*blockIdx.x;
|
||||
uint64_t y = threadIdx.z + blockDim.z*blockIdx.y;
|
||||
uint64_t z = threadIdx.x;
|
||||
if ( (x < num1) && (y<num2) && (z<num3) ) {
|
||||
Lambda(x,y,z);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename lambda> __global__
|
||||
void Lambda6Apply(uint64_t num1, uint64_t num2, uint64_t num3,
|
||||
@ -208,6 +250,7 @@ inline void *acceleratorAllocShared(size_t bytes)
|
||||
if( err != cudaSuccess ) {
|
||||
ptr = (void *) NULL;
|
||||
printf(" cudaMallocManaged failed for %d %s \n",bytes,cudaGetErrorString(err));
|
||||
assert(0);
|
||||
}
|
||||
return ptr;
|
||||
};
|
||||
@ -234,6 +277,7 @@ inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes
|
||||
}
|
||||
inline void acceleratorCopySynchronise(void) { cudaStreamSynchronize(copyStream); };
|
||||
|
||||
|
||||
inline int acceleratorIsCommunicable(void *ptr)
|
||||
{
|
||||
// int uvm=0;
|
||||
@ -265,6 +309,11 @@ NAMESPACE_END(Grid);
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
inline void acceleratorMem(void)
|
||||
{
|
||||
std::cout <<" SYCL acceleratorMem not implemented"<<std::endl;
|
||||
}
|
||||
|
||||
extern cl::sycl::queue *theGridAccelerator;
|
||||
extern cl::sycl::queue *theCopyAccelerator;
|
||||
|
||||
@ -344,6 +393,15 @@ NAMESPACE_BEGIN(Grid);
|
||||
#define accelerator __host__ __device__
|
||||
#define accelerator_inline __host__ __device__ inline
|
||||
|
||||
inline void acceleratorMem(void)
|
||||
{
|
||||
size_t free_t,total_t,used_t;
|
||||
auto discard = hipMemGetInfo(&free_t,&total_t);
|
||||
used_t=total_t-free_t;
|
||||
std::cout << " MemoryManager : GPU used "<<used_t<<" free "<<free_t<< " total "<<total_t<<std::endl;
|
||||
}
|
||||
|
||||
|
||||
extern hipStream_t copyStream;
|
||||
extern hipStream_t computeStream;
|
||||
/*These routines define mapping from thread grid to loop & vector lane indexing */
|
||||
@ -404,7 +462,7 @@ void LambdaApply(uint64_t numx, uint64_t numy, uint64_t numz, lambda Lambda)
|
||||
|
||||
#define accelerator_barrier(dummy) \
|
||||
{ \
|
||||
auto r=hipStreamSynchronize(computeStream); \
|
||||
auto tmp=hipStreamSynchronize(computeStream); \
|
||||
auto err = hipGetLastError(); \
|
||||
if ( err != hipSuccess ) { \
|
||||
printf("After hipDeviceSynchronize() : HIP error %s \n", hipGetErrorString( err )); \
|
||||
@ -420,7 +478,7 @@ inline void *acceleratorAllocShared(size_t bytes)
|
||||
auto err = hipMallocManaged((void **)&ptr,bytes);
|
||||
if( err != hipSuccess ) {
|
||||
ptr = (void *) NULL;
|
||||
printf(" hipMallocManaged failed for %ld %s \n",bytes,hipGetErrorString(err));
|
||||
fprintf(stderr," hipMallocManaged failed for %ld %s \n",bytes,hipGetErrorString(err)); fflush(stderr);
|
||||
}
|
||||
return ptr;
|
||||
};
|
||||
@ -432,26 +490,30 @@ inline void *acceleratorAllocDevice(size_t bytes)
|
||||
auto err = hipMalloc((void **)&ptr,bytes);
|
||||
if( err != hipSuccess ) {
|
||||
ptr = (void *) NULL;
|
||||
printf(" hipMalloc failed for %ld %s \n",bytes,hipGetErrorString(err));
|
||||
fprintf(stderr," hipMalloc failed for %ld %s \n",bytes,hipGetErrorString(err)); fflush(stderr);
|
||||
}
|
||||
return ptr;
|
||||
};
|
||||
|
||||
inline void acceleratorFreeShared(void *ptr){ auto r=hipFree(ptr);};
|
||||
inline void acceleratorFreeDevice(void *ptr){ auto r=hipFree(ptr);};
|
||||
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { auto r=hipMemcpy(to,from,bytes, hipMemcpyHostToDevice);}
|
||||
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ auto r=hipMemcpy(to,from,bytes, hipMemcpyDeviceToHost);}
|
||||
inline void acceleratorCopyToDeviceAsync(void *from, void *to, size_t bytes, hipStream_t stream = copyStream) { auto r = hipMemcpyAsync(to,from,bytes, hipMemcpyHostToDevice, stream);}
|
||||
inline void acceleratorCopyFromDeviceAsync(void *from, void *to, size_t bytes, hipStream_t stream = copyStream) { auto r = hipMemcpyAsync(to,from,bytes, hipMemcpyDeviceToHost, stream);}
|
||||
inline void acceleratorFreeShared(void *ptr){ auto discard=hipFree(ptr);};
|
||||
inline void acceleratorFreeDevice(void *ptr){ auto discard=hipFree(ptr);};
|
||||
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { auto discard=hipMemcpy(to,from,bytes, hipMemcpyHostToDevice);}
|
||||
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ auto discard=hipMemcpy(to,from,bytes, hipMemcpyDeviceToHost);}
|
||||
//inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) { hipMemcpy(to,from,bytes, hipMemcpyDeviceToDevice);}
|
||||
//inline void acceleratorCopySynchronise(void) { }
|
||||
inline void acceleratorMemSet(void *base,int value,size_t bytes) { auto r=hipMemset(base,value,bytes);}
|
||||
inline void acceleratorMemSet(void *base,int value,size_t bytes) { auto discard=hipMemset(base,value,bytes);}
|
||||
|
||||
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) // Asynch
|
||||
{
|
||||
auto r=hipMemcpyDtoDAsync(to,from,bytes, copyStream);
|
||||
auto discard=hipMemcpyDtoDAsync(to,from,bytes, copyStream);
|
||||
}
|
||||
inline void acceleratorCopySynchronise(void) { auto r=hipStreamSynchronize(copyStream); };
|
||||
inline void acceleratorCopyToDeviceAsync(void *from, void *to, size_t bytes, hipStream_t stream = copyStream) {
|
||||
auto r = hipMemcpyAsync(to,from,bytes, hipMemcpyHostToDevice, stream);
|
||||
}
|
||||
inline void acceleratorCopyFromDeviceAsync(void *from, void *to, size_t bytes, hipStream_t stream = copyStream) {
|
||||
auto r = hipMemcpyAsync(to,from,bytes, hipMemcpyDeviceToHost, stream);
|
||||
}
|
||||
inline void acceleratorCopySynchronise(void) { auto discard=hipStreamSynchronize(copyStream); };
|
||||
|
||||
#endif
|
||||
|
||||
@ -461,6 +523,9 @@ inline void acceleratorCopySynchronise(void) { auto r=hipStreamSynchronize(copyS
|
||||
#if defined(GRID_SYCL) || defined(GRID_CUDA) || defined(GRID_HIP)
|
||||
// FIXME -- the non-blocking nature got broken March 30 2023 by PAB
|
||||
#define accelerator_forNB( iter1, num1, nsimd, ... ) accelerator_for2dNB( iter1, num1, iter2, 1, nsimd, {__VA_ARGS__} );
|
||||
#define prof_accelerator_for( iter1, num1, nsimd, ... ) \
|
||||
prof_accelerator_for2dNB( iter1, num1, iter2, 1, nsimd, {__VA_ARGS__} );\
|
||||
accelerator_barrier(dummy);
|
||||
|
||||
#define accelerator_for( iter, num, nsimd, ... ) \
|
||||
accelerator_forNB(iter, num, nsimd, { __VA_ARGS__ } ); \
|
||||
@ -482,7 +547,15 @@ inline void acceleratorCopySynchronise(void) { auto r=hipStreamSynchronize(copyS
|
||||
|
||||
#undef GRID_SIMT
|
||||
|
||||
|
||||
inline void acceleratorMem(void)
|
||||
{
|
||||
/*
|
||||
struct rusage rusage;
|
||||
getrusage( RUSAGE_SELF, &rusage );
|
||||
return (size_t)rusage.ru_maxrss;
|
||||
*/
|
||||
std::cout <<" system acceleratorMem not implemented"<<std::endl;
|
||||
}
|
||||
|
||||
#define accelerator
|
||||
#define accelerator_inline strong_inline
|
||||
@ -582,5 +655,18 @@ inline void acceleratorCopyDeviceToDevice(void *from,void *to,size_t bytes)
|
||||
acceleratorCopySynchronise();
|
||||
}
|
||||
|
||||
template<class T> void acceleratorPut(T& dev,T&host)
|
||||
{
|
||||
acceleratorCopyToDevice(&host,&dev,sizeof(T));
|
||||
}
|
||||
template<class T> T acceleratorGet(T& dev)
|
||||
{
|
||||
T host;
|
||||
acceleratorCopyFromDevice(&dev,&host,sizeof(T));
|
||||
return host;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -94,6 +94,13 @@ static constexpr int MaxDims = GRID_MAX_LATTICE_DIMENSION;
|
||||
|
||||
typedef AcceleratorVector<int,MaxDims> Coordinate;
|
||||
|
||||
template<class T,int _ndim>
|
||||
inline bool operator==(const AcceleratorVector<T,_ndim> &v,const AcceleratorVector<T,_ndim> &w)
|
||||
{
|
||||
if (v.size()!=w.size()) return false;
|
||||
for(int i=0;i<v.size();i++) if ( v[i]!=w[i] ) return false;
|
||||
return true;
|
||||
}
|
||||
template<class T,int _ndim>
|
||||
inline std::ostream & operator<<(std::ostream &os, const AcceleratorVector<T,_ndim> &v)
|
||||
{
|
||||
|
@ -247,9 +247,12 @@ void FlightRecorder::ReductionLog(double local,double global)
|
||||
}
|
||||
void FlightRecorder::xmitLog(void *buf,uint64_t bytes)
|
||||
{
|
||||
if(LoggingMode == LoggingModeNone) return;
|
||||
|
||||
if ( ChecksumCommsSend ){
|
||||
uint64_t *ubuf = (uint64_t *)buf;
|
||||
if(LoggingMode == LoggingModeNone) return;
|
||||
|
||||
#ifdef GRID_SYCL
|
||||
uint64_t _xor = svm_xor(ubuf,bytes/sizeof(uint64_t));
|
||||
if(LoggingMode == LoggingModePrint) {
|
||||
@ -285,12 +288,6 @@ void FlightRecorder::xmitLog(void *buf,uint64_t bytes)
|
||||
XmitLoggingCounter++;
|
||||
}
|
||||
#endif
|
||||
} else {
|
||||
uint64_t word = 1;
|
||||
deviceVector<uint64_t> dev(1);
|
||||
acceleratorCopyToDevice(&word,&dev[0],sizeof(uint64_t));
|
||||
acceleratorCopySynchronise();
|
||||
MPI_Barrier(MPI_COMM_WORLD);
|
||||
}
|
||||
}
|
||||
void FlightRecorder::recvLog(void *buf,uint64_t bytes,int rank)
|
||||
|
@ -292,6 +292,7 @@ void GridBanner(void)
|
||||
std::cout << "Build " << GRID_BUILD_STR(GRID_BUILD_REF) << std::endl;
|
||||
#endif
|
||||
std::cout << std::endl;
|
||||
std::cout << std::setprecision(9);
|
||||
}
|
||||
|
||||
void Grid_init(int *argc,char ***argv)
|
||||
@ -424,7 +425,7 @@ void Grid_init(int *argc,char ***argv)
|
||||
// Logging
|
||||
////////////////////////////////////
|
||||
std::vector<std::string> logstreams;
|
||||
std::string defaultLog("Error,Warning,Message,Performance");
|
||||
std::string defaultLog("Error,Warning,Message");
|
||||
GridCmdOptionCSL(defaultLog,logstreams);
|
||||
GridLogConfigure(logstreams);
|
||||
|
||||
@ -548,6 +549,10 @@ void Grid_init(int *argc,char ***argv)
|
||||
|
||||
void Grid_finalize(void)
|
||||
{
|
||||
std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
|
||||
std::cout<<GridLogMessage<<"******* Grid Finalize ******"<<std::endl;
|
||||
std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
|
||||
|
||||
#if defined (GRID_COMMS_MPI) || defined (GRID_COMMS_MPI3) || defined (GRID_COMMS_MPIT)
|
||||
MPI_Barrier(MPI_COMM_WORLD);
|
||||
MPI_Finalize();
|
||||
|
@ -8,7 +8,7 @@ namespace Grid{
|
||||
public:
|
||||
|
||||
template<class coor_t>
|
||||
static accelerator_inline void CoorFromIndex (coor_t& coor,int index,const coor_t &dims){
|
||||
static accelerator_inline void CoorFromIndex (coor_t& coor,int64_t index,const coor_t &dims){
|
||||
int nd= dims.size();
|
||||
coor.resize(nd);
|
||||
for(int d=0;d<nd;d++){
|
||||
@ -18,28 +18,45 @@ namespace Grid{
|
||||
}
|
||||
|
||||
template<class coor_t>
|
||||
static accelerator_inline void IndexFromCoor (const coor_t& coor,int &index,const coor_t &dims){
|
||||
static accelerator_inline void IndexFromCoor (const coor_t& coor,int64_t &index,const coor_t &dims){
|
||||
int nd=dims.size();
|
||||
int stride=1;
|
||||
index=0;
|
||||
for(int d=0;d<nd;d++){
|
||||
index = index+stride*coor[d];
|
||||
index = index+(int64_t)stride*coor[d];
|
||||
stride=stride*dims[d];
|
||||
}
|
||||
}
|
||||
template<class coor_t>
|
||||
static accelerator_inline void IndexFromCoor (const coor_t& coor,int &index,const coor_t &dims){
|
||||
int64_t index64;
|
||||
IndexFromCoor(coor,index64,dims);
|
||||
assert(index64<2*1024*1024*1024LL);
|
||||
index = (int) index64;
|
||||
}
|
||||
|
||||
template<class coor_t>
|
||||
static inline void IndexFromCoorReversed (const coor_t& coor,int &index,const coor_t &dims){
|
||||
static inline void IndexFromCoorReversed (const coor_t& coor,int64_t &index,const coor_t &dims){
|
||||
int nd=dims.size();
|
||||
int stride=1;
|
||||
index=0;
|
||||
for(int d=nd-1;d>=0;d--){
|
||||
index = index+stride*coor[d];
|
||||
index = index+(int64_t)stride*coor[d];
|
||||
stride=stride*dims[d];
|
||||
}
|
||||
}
|
||||
template<class coor_t>
|
||||
static inline void CoorFromIndexReversed (coor_t& coor,int index,const coor_t &dims){
|
||||
static inline void IndexFromCoorReversed (const coor_t& coor,int &index,const coor_t &dims){
|
||||
int64_t index64;
|
||||
IndexFromCoorReversed(coor,index64,dims);
|
||||
if ( index64>=2*1024*1024*1024LL ){
|
||||
std::cout << " IndexFromCoorReversed " << coor<<" index " << index64<< " dims "<<dims<<std::endl;
|
||||
}
|
||||
assert(index64<2*1024*1024*1024LL);
|
||||
index = (int) index64;
|
||||
}
|
||||
template<class coor_t>
|
||||
static inline void CoorFromIndexReversed (coor_t& coor,int64_t index,const coor_t &dims){
|
||||
int nd= dims.size();
|
||||
coor.resize(nd);
|
||||
for(int d=nd-1;d>=0;d--){
|
||||
|
238
HMC/ComputeWilsonFlow.cc
Normal file
238
HMC/ComputeWilsonFlow.cc
Normal file
@ -0,0 +1,238 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: HMC/ComputeWilsonFlow.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||
Author: Shuhei Yamamoto <syamamoto@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
#include <string>
|
||||
|
||||
namespace Grid{
|
||||
struct WFParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(WFParameters,
|
||||
int, steps,
|
||||
double, step_size,
|
||||
int, meas_interval,
|
||||
double, maxTau, // for the adaptive algorithm
|
||||
int, meas_interval_density,
|
||||
std::string, path);
|
||||
|
||||
|
||||
template <class ReaderClass >
|
||||
WFParameters(Reader<ReaderClass>& Reader){
|
||||
read(Reader, "WilsonFlow", *this);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
struct ConfParameters: Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(ConfParameters,
|
||||
std::string, conf_path,
|
||||
std::string, conf_prefix,
|
||||
std::string, conf_smr_prefix,
|
||||
std::string, rng_prefix,
|
||||
int, StartConfiguration,
|
||||
int, EndConfiguration,
|
||||
int, Skip);
|
||||
|
||||
template <class ReaderClass >
|
||||
ConfParameters(Reader<ReaderClass>& Reader){
|
||||
read(Reader, "Configurations", *this);
|
||||
}
|
||||
|
||||
};
|
||||
}
|
||||
|
||||
template <class T> void writeFile(T& in, std::string const fname){
|
||||
#ifdef HAVE_LIME
|
||||
// Ref: https://github.com/paboyle/Grid/blob/feature/scidac-wp1/tests/debug/Test_general_coarse_hdcg_phys48.cc#L111
|
||||
std::cout << Grid::GridLogMessage << "Writes to: " << fname << std::endl;
|
||||
Grid::emptyUserRecord record;
|
||||
Grid::ScidacWriter WR(in.Grid()->IsBoss());
|
||||
WR.open(fname);
|
||||
WR.writeScidacFieldRecord(in,record,0);
|
||||
WR.close();
|
||||
#endif
|
||||
// What is the appropriate way to throw error?
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
using namespace Grid;
|
||||
|
||||
Grid_init(&argc, &argv);
|
||||
GridLogLayout();
|
||||
|
||||
auto latt_size = GridDefaultLatt();
|
||||
auto simd_layout = GridDefaultSimd(Nd, vComplex::Nsimd());
|
||||
auto mpi_layout = GridDefaultMpi();
|
||||
GridCartesian Grid(latt_size, simd_layout, mpi_layout);
|
||||
|
||||
std::vector<int> seeds({1, 2, 3, 4, 5});
|
||||
GridSerialRNG sRNG;
|
||||
GridParallelRNG pRNG(&Grid);
|
||||
pRNG.SeedFixedIntegers(seeds);
|
||||
|
||||
LatticeGaugeField Umu(&Grid), Uflow(&Grid);
|
||||
|
||||
typedef Grid::XmlReader Serialiser;
|
||||
Serialiser Reader("input.xml", false, "root");
|
||||
WFParameters WFPar(Reader);
|
||||
ConfParameters CPar(Reader);
|
||||
CheckpointerParameters CPPar(CPar.conf_path+CPar.conf_prefix, CPar.conf_path+CPar.conf_smr_prefix, CPar.conf_path+CPar.rng_prefix);
|
||||
NerscHmcCheckpointer<PeriodicGimplR> CPNersc(CPPar);
|
||||
|
||||
for (int conf = CPar.StartConfiguration; conf <= CPar.EndConfiguration; conf+= CPar.Skip){
|
||||
|
||||
CPNersc.CheckpointRestore(conf, Umu, sRNG, pRNG);
|
||||
|
||||
std::cout << std::setprecision(15);
|
||||
std::cout << GridLogMessage << "Initial plaquette: "<< WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu) << std::endl;
|
||||
|
||||
std::string file_pre = WFPar.path;
|
||||
std::string file_post = CPar.conf_prefix + "." + std::to_string(conf);
|
||||
|
||||
WilsonFlow<PeriodicGimplR> WF(WFPar.step_size,WFPar.steps,WFPar.meas_interval);
|
||||
WF.addMeasurement(WFPar.meas_interval_density, [&file_pre,&file_post,&conf](int step, RealD t, const typename PeriodicGimplR::GaugeField &U){
|
||||
|
||||
typedef typename PeriodicGimplR::GaugeLinkField GaugeMat;
|
||||
typedef typename PeriodicGimplR::ComplexField ComplexField;
|
||||
|
||||
assert(Nd == 4);
|
||||
|
||||
// NOTE:
|
||||
// Ideally, turn the folloing into methods of the appropriate class
|
||||
///////////// Compute Energy Density via Clover Leaf /////////////////////////////////////////////////
|
||||
///// Taken from qcd/smearing/WilsonFlow.h
|
||||
// For plq, use static sitePlaquette from class WilsonLoops in Grid/qcd/utils/WilsonLoops.h and divide it by #faces=(1.0 * Nd * (Nd - 1)) / 2.0, ncol=3
|
||||
//E = 1/2 tr( F_munu F_munu )
|
||||
//However as F_numu = -F_munu, only need to sum the trace of the squares of the following 6 field strengths:
|
||||
//F_01 F_02 F_03 F_12 F_13 F_23
|
||||
GaugeMat F(U.Grid());
|
||||
//LatticeComplexD R(U.Grid());
|
||||
ComplexField R(U.Grid());
|
||||
R = Zero();
|
||||
|
||||
for(int mu=0;mu<3;mu++){
|
||||
for(int nu=mu+1;nu<4;nu++){
|
||||
WilsonLoops<PeriodicGimplR>::FieldStrength(F, U, mu, nu);
|
||||
R = R + trace(F*F);
|
||||
}
|
||||
}
|
||||
R = (-1.0) * R;
|
||||
|
||||
//// Taken from qcd/utils/WilsonLoops.h
|
||||
|
||||
// Bx = -iF(y,z), By = -iF(z,y), Bz = -iF(x,y)
|
||||
GaugeMat Bx(U.Grid()), By(U.Grid()), Bz(U.Grid());
|
||||
WilsonLoops<PeriodicGimplR>::FieldStrength(Bx, U, Ydir, Zdir);
|
||||
WilsonLoops<PeriodicGimplR>::FieldStrength(By, U, Zdir, Xdir);
|
||||
WilsonLoops<PeriodicGimplR>::FieldStrength(Bz, U, Xdir, Ydir);
|
||||
|
||||
// Ex = -iF(t,x), Ey = -iF(t,y), Ez = -iF(t,z)
|
||||
GaugeMat Ex(U.Grid()), Ey(U.Grid()), Ez(U.Grid());
|
||||
WilsonLoops<PeriodicGimplR>::FieldStrength(Ex, U, Tdir, Xdir);
|
||||
WilsonLoops<PeriodicGimplR>::FieldStrength(Ey, U, Tdir, Ydir);
|
||||
WilsonLoops<PeriodicGimplR>::FieldStrength(Ez, U, Tdir, Zdir);
|
||||
|
||||
double coeff = 8.0/(32.0*M_PI*M_PI);
|
||||
ComplexField qfield = coeff*trace(Bx*Ex + By*Ey + Bz*Ez);
|
||||
//ComplexField qfield Plq(U.Grid());
|
||||
//WilsonLoops<PeriodicGimplR>::sitePlaquette(Plq, U);
|
||||
//double coeff = 2.0 / (1.0 * Nd * (Nd - 1)) / 3.0;
|
||||
//Plq = coeff * Plq;
|
||||
|
||||
int tau = std::round(t);
|
||||
std::string efile = file_pre + "E_dnsty_" + std::to_string(tau) + "_" + file_post;
|
||||
writeFile(R,efile);
|
||||
std::string tfile = file_pre + "Top_dnsty_" + std::to_string(tau) + "_" + file_post;
|
||||
writeFile(qfield,tfile);
|
||||
|
||||
RealD E = real(sum(R))/ RealD(U.Grid()->gSites());
|
||||
RealD T = real( sum(qfield) );
|
||||
Coordinate scoor; for (int mu=0; mu < Nd; mu++) scoor[mu] = 0;
|
||||
RealD E0 = real(peekSite(R,scoor));
|
||||
RealD T0 = real(peekSite(qfield,scoor));
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Saved energy density (clover) & topo. charge density: " << conf << " " << step << " " << tau << " "
|
||||
<< "(E_avg,T_sum) " << E << " " << T << " (E, T at origin) " << E0 << " " << T0 << std::endl;
|
||||
|
||||
});
|
||||
|
||||
int t=WFPar.maxTau;
|
||||
WF.smear(Uflow, Umu);
|
||||
|
||||
RealD WFlow_plaq = WilsonLoops<PeriodicGimplR>::avgPlaquette(Uflow);
|
||||
RealD WFlow_TC = WilsonLoops<PeriodicGimplR>::TopologicalCharge(Uflow);
|
||||
RealD WFlow_T0 = WF.energyDensityPlaquette(t,Uflow); // t
|
||||
RealD WFlow_EC = WF.energyDensityCloverleaf(t,Uflow);
|
||||
std::cout << GridLogMessage << "Plaquette "<< conf << " " << WFlow_plaq << std::endl;
|
||||
std::cout << GridLogMessage << "T0 "<< conf << " " << WFlow_T0 << std::endl;
|
||||
std::cout << GridLogMessage << "TC0 "<< conf << " " << WFlow_EC << std::endl;
|
||||
std::cout << GridLogMessage << "TopologicalCharge "<< conf << " " << WFlow_TC << std::endl;
|
||||
|
||||
std::cout<< GridLogMessage << " Admissibility check:\n";
|
||||
const double sp_adm = 0.067; // admissible threshold
|
||||
const double pl_adm = 1.0-sp_adm/Nc;
|
||||
std::cout << GridLogMessage << " (pl_adm =" << pl_adm << ")\n";
|
||||
|
||||
// Need min and reduce min for this function
|
||||
//double sp_max = NC_*(1.0-stpl.plaq_min(U,pl_adm));
|
||||
double sp_ave = Nc*(1.0-WFlow_plaq);
|
||||
|
||||
//std::cout<< GridLogMessage << " sp_max = " << sp_max <<"\n";
|
||||
std::cout<< GridLogMessage << " sp_ave = " << sp_ave <<"\n";
|
||||
std::cout<< GridLogMessage << " (sp_admissible = "<< sp_adm <<")\n";
|
||||
//std::cout<< GridLogMessage << " sp_admissible - sp_max = "<<sp_adm-sp_max <<"\n";
|
||||
std::cout<< GridLogMessage << " sp_admissible - sp_ave = "<<sp_adm-sp_ave <<"\n";
|
||||
}
|
||||
Grid_finalize();
|
||||
} // main
|
||||
|
||||
|
||||
/*
|
||||
Input file example
|
||||
|
||||
|
||||
JSON
|
||||
|
||||
{
|
||||
"WilsonFlow":{
|
||||
"steps": 200,
|
||||
"step_size": 0.01,
|
||||
"meas_interval": 50,
|
||||
"maxTau": 2.0
|
||||
},
|
||||
"Configurations":{
|
||||
"conf_prefix": "ckpoint_lat",
|
||||
"rng_prefix": "ckpoint_rng",
|
||||
"StartConfiguration": 3000,
|
||||
"EndConfiguration": 3000,
|
||||
"Skip": 5
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
*/
|
@ -58,7 +58,7 @@ int main(int argc, char **argv) {
|
||||
HMCparameters HMCparams;
|
||||
HMCparams.StartTrajectory = 0;
|
||||
HMCparams.Trajectories = 200;
|
||||
HMCparams.NoMetropolisUntil= 20;
|
||||
HMCparams.NoMetropolisUntil= 0;
|
||||
// "[HotStart, ColdStart, TepidStart, CheckpointStart]\n";
|
||||
HMCparams.StartingType =std::string("ColdStart");
|
||||
HMCparams.MD = MD;
|
||||
@ -70,7 +70,7 @@ int main(int argc, char **argv) {
|
||||
CheckpointerParameters CPparams;
|
||||
CPparams.config_prefix = "ckpoint_EODWF_lat";
|
||||
CPparams.rng_prefix = "ckpoint_EODWF_rng";
|
||||
CPparams.saveInterval = 10;
|
||||
CPparams.saveInterval = 1;
|
||||
CPparams.format = "IEEE64BIG";
|
||||
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
|
||||
|
||||
@ -186,6 +186,8 @@ int main(int argc, char **argv) {
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// HMC parameters are serialisable
|
||||
TheHMC.ReadCommandLine(argc,argv); // params on CML or from param file
|
||||
TheHMC.initializeGaugeFieldAndRNGs(U);
|
||||
|
||||
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
|
||||
TheHMC.Run(); // no smearing
|
||||
|
92
HMC/site_autocorrelation.cc
Normal file
92
HMC/site_autocorrelation.cc
Normal file
@ -0,0 +1,92 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file:
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
#include <string>
|
||||
|
||||
template <class T> void readFile(T& out, std::string const fname){
|
||||
#ifdef HAVE_LIME
|
||||
Grid::emptyUserRecord record;
|
||||
Grid::ScidacReader RD;
|
||||
RD.open(fname);
|
||||
RD.readScidacFieldRecord(out,record);
|
||||
RD.close();
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
using namespace Grid;
|
||||
|
||||
Grid_init(&argc, &argv);
|
||||
GridLogLayout();
|
||||
|
||||
auto latt_size = GridDefaultLatt();
|
||||
auto simd_layout = GridDefaultSimd(Nd, vComplex::Nsimd());
|
||||
auto mpi_layout = GridDefaultMpi();
|
||||
GridCartesian Grid(latt_size, simd_layout, mpi_layout);
|
||||
|
||||
LatticeComplexD plaq1(&Grid), plaq2(&Grid);
|
||||
|
||||
FieldMetaData header;
|
||||
|
||||
double vol = plaq1.Grid()->gSites();
|
||||
|
||||
std::string file1(argv[1]);
|
||||
std::cout << "Reading "<<file1<<std::endl;
|
||||
readFile(plaq1,file1);
|
||||
std::string file2(argv[2]);
|
||||
std::cout << "Reading "<<file2<<std::endl;
|
||||
readFile(plaq2,file2);
|
||||
|
||||
auto p1bar = TensorRemove(sum(plaq1));
|
||||
auto p2bar = TensorRemove(sum(plaq2));
|
||||
|
||||
p1bar = p1bar / vol;
|
||||
p2bar = p2bar / vol;
|
||||
|
||||
std::cout<< GridLogMessage << "p1bar = "<<p1bar<<std::endl;
|
||||
std::cout<< GridLogMessage << "p2bar = "<<p2bar<<std::endl;
|
||||
|
||||
auto corr_site = plaq1 * plaq2 - p1bar * p2bar;
|
||||
auto corr_bar = TensorRemove(sum(corr_site))/vol;
|
||||
|
||||
auto cov1_site = plaq1 * plaq1 - p1bar * p1bar;
|
||||
auto cov1_bar = TensorRemove(sum(cov1_site))/vol;
|
||||
|
||||
auto cov2_site = plaq2 * plaq2 - p2bar * p2bar;
|
||||
auto cov2_bar = TensorRemove(sum(cov2_site))/vol;
|
||||
|
||||
std::cout<< GridLogMessage << "cov_bar = "<<corr_bar<<std::endl;
|
||||
|
||||
std::cout<< GridLogMessage << "corr_bar = "<<corr_bar/sqrt(cov1_bar*cov2_bar)<<std::endl;
|
||||
|
||||
Grid_finalize();
|
||||
} // main
|
||||
|
||||
|
81
HMC/site_plaquette.cc
Normal file
81
HMC/site_plaquette.cc
Normal file
@ -0,0 +1,81 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file:
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Peter Boyle
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
#include <string>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
template <class T> void writeFile(T& out, std::string const fname){
|
||||
#ifdef HAVE_LIME
|
||||
emptyUserRecord record;
|
||||
ScidacWriter WR(out.Grid()->IsBoss());
|
||||
WR.open(fname);
|
||||
WR.writeScidacFieldRecord(out,record,0,Grid::BinaryIO::BINARYIO_LEXICOGRAPHIC);
|
||||
WR.close();
|
||||
#endif
|
||||
}
|
||||
NAMESPACE_END(Grid);
|
||||
int main(int argc, char **argv) {
|
||||
using namespace Grid;
|
||||
|
||||
Grid_init(&argc, &argv);
|
||||
GridLogLayout();
|
||||
|
||||
auto latt_size = GridDefaultLatt();
|
||||
auto simd_layout = GridDefaultSimd(Nd, vComplex::Nsimd());
|
||||
auto mpi_layout = GridDefaultMpi();
|
||||
GridCartesian Grid(latt_size, simd_layout, mpi_layout);
|
||||
|
||||
LatticeGaugeField Umu(&Grid);
|
||||
std::vector<LatticeColourMatrix> U(4,&Grid);
|
||||
LatticeComplexD plaq(&Grid);
|
||||
|
||||
FieldMetaData header;
|
||||
|
||||
double vol = Umu.Grid()->gSites();
|
||||
double faces = (1.0 * Nd * (Nd - 1)) / 2.0;
|
||||
double Ncdiv = 1.0/Nc;
|
||||
|
||||
std::string file1(argv[1]);
|
||||
std::string file2(argv[2]);
|
||||
std::cout << "Reading "<<file1<<std::endl;
|
||||
NerscIO::readConfiguration(Umu,header,file1);
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
U[mu] = PeekIndex<LorentzIndex>(Umu,mu);
|
||||
}
|
||||
SU3WilsonLoops::sitePlaquette(plaq,U);
|
||||
|
||||
plaq = plaq *(Ncdiv/faces);
|
||||
|
||||
std::cout << "Writing "<<file2<<std::endl;
|
||||
writeFile(plaq,file2);
|
||||
|
||||
Grid_finalize();
|
||||
} // main
|
||||
|
||||
|
49
TODO
49
TODO
@ -1,6 +1,50 @@
|
||||
- - Slice sum optimisation & A2A - atomic addition
|
||||
i) Refine subspace with HDCG & recompute
|
||||
ii) Block Lanczos in coarse space
|
||||
iii) Batched block project in the operator computation
|
||||
|
||||
-------
|
||||
|
||||
i) Clean up CoarsenedMatrix, GeneralCoarsenedMatrix, GeneralCoarsenedMatrixMultiRHS
|
||||
|
||||
-- Ideally want a SINGLE implementation that does MultiRHS **AND** works with one RHS.
|
||||
|
||||
-- -- Getting there. One RHS is hard due to vectorisation & hardwired coarse5d layout
|
||||
-- Compromise: Wrap it in a copy in/out for a slice.
|
||||
|
||||
-- Bad for Lanczos: need to do a BLOCK Lanczos instead. Longer term.
|
||||
|
||||
-- **** Make the test do ONLY the single RHS. ****
|
||||
-- I/O for the matrix elements required.
|
||||
-- Make the Adef2 build an eigenvector deflater and a block projector
|
||||
--
|
||||
|
||||
-- Work with Regensburg on tests.
|
||||
-- Plan interface preserving the coarsened matrix interface (??)
|
||||
|
||||
-- Move functionality from GeneralCoarsenedMatrix INTO GeneralCoarsenedMatrixMultiRHS -- DONE
|
||||
-- Don't immediately delete original
|
||||
-- Instead make the new one self contained, then delete.
|
||||
-- New DWF inverter test.
|
||||
|
||||
// void PopulateAdag(void)
|
||||
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop, Aggregation<Fobj,CComplex,nbasis> & Subspace) -- DONE
|
||||
ExchangeCoarseLinks();
|
||||
|
||||
iii) Aurora -- christoph's problem -- DONE
|
||||
Aurora -- Carleton's problem staggered.
|
||||
|
||||
iv) Dennis merge and test Aurora -- DONE (save test)
|
||||
|
||||
v) Merge Ed Bennet's request --DONE
|
||||
|
||||
vi) Repro CG -- get down to the level of single node testing via split grid test
|
||||
|
||||
|
||||
=========================
|
||||
|
||||
===============
|
||||
- - Slice sum optimisation & A2A - atomic addition -- Dennis
|
||||
- - Also faster non-atomic reduction
|
||||
- - Remaining PRs
|
||||
- - DDHMC
|
||||
- - MixedPrec is the action eval, high precision
|
||||
- - MixedPrecCleanup is the force eval, low precision
|
||||
@ -17,7 +61,6 @@ DDHMC
|
||||
-- Multishift Mixed Precision - DONE
|
||||
-- Pole dependent residual - DONE
|
||||
|
||||
|
||||
=======
|
||||
-- comms threads issue??
|
||||
-- Part done: Staggered kernel performance on GPU
|
||||
|
@ -261,23 +261,25 @@ public:
|
||||
fprintf(FP,"\n\n");
|
||||
};
|
||||
|
||||
|
||||
template<class CComplex>
|
||||
static void BLAS(void)
|
||||
{
|
||||
//int nbasis, int nrhs, int coarseVol
|
||||
int basis[] = { 16,32,64 };
|
||||
int rhs[] = { 8,16,32 };
|
||||
int vol = 4*4*4*4;
|
||||
int rhs[] = { 8,12,16 };
|
||||
int vol = 8*8*8*8;
|
||||
int blk = 4*4*4*4;
|
||||
|
||||
GridBLAS blas;
|
||||
|
||||
|
||||
int fpbits = sizeof(CComplex)*4;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << "= batched GEMM (double precision) "<<std::endl;
|
||||
std::cout<<GridLogMessage << "= batched GEMM fp"<<fpbits<<std::endl;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " M "<<"\t\t"<<"N"<<"\t\t\t"<<"K"<<"\t\t"<<"Gflop/s / rank (coarse mrhs)"<<std::endl;
|
||||
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
|
||||
|
||||
fprintf(FP,"GEMM\n\n M, N, K, BATCH, GF/s per rank\n");
|
||||
fprintf(FP,"GEMM\n\n M, N, K, BATCH, GF/s per rank fp%d\n",fpbits);
|
||||
|
||||
for(int b=0;b<3;b++){
|
||||
for(int r=0;r<3;r++){
|
||||
@ -285,7 +287,7 @@ public:
|
||||
int N=rhs[r];
|
||||
int K=basis[b];
|
||||
int BATCH=vol;
|
||||
double p=blas.benchmark(M,N,K,BATCH);
|
||||
double p=blas.benchmark<CComplex>(M,N,K,BATCH);
|
||||
|
||||
fprintf(FP,"%d, %d, %d, %d, %f\n", M, N, K, BATCH, p);
|
||||
|
||||
@ -299,9 +301,9 @@ public:
|
||||
for(int r=0;r<3;r++){
|
||||
int M=basis[b];
|
||||
int N=rhs[r];
|
||||
int K=vol;
|
||||
int K=blk;
|
||||
int BATCH=vol;
|
||||
double p=blas.benchmark(M,N,K,BATCH);
|
||||
double p=blas.benchmark<CComplex>(M,N,K,BATCH);
|
||||
|
||||
fprintf(FP,"%d, %d, %d, %d, %f\n", M, N, K, BATCH, p);
|
||||
std::cout<<GridLogMessage<<std::setprecision(3)
|
||||
@ -313,10 +315,10 @@ public:
|
||||
for(int b=0;b<3;b++){
|
||||
for(int r=0;r<3;r++){
|
||||
int M=rhs[r];
|
||||
int N=vol;
|
||||
int N=blk;
|
||||
int K=basis[b];
|
||||
int BATCH=vol;
|
||||
double p=blas.benchmark(M,N,K,BATCH);
|
||||
double p=blas.benchmark<CComplex>(M,N,K,BATCH);
|
||||
|
||||
fprintf(FP,"%d, %d, %d, %d, %f\n", M, N, K, BATCH, p);
|
||||
std::cout<<GridLogMessage<<std::setprecision(3)
|
||||
@ -867,6 +869,7 @@ int main (int argc, char ** argv)
|
||||
int do_memory=1;
|
||||
int do_comms =1;
|
||||
int do_blas =1;
|
||||
int do_dslash=1;
|
||||
|
||||
int sel=4;
|
||||
std::vector<int> L_list({8,12,16,24,32});
|
||||
@ -877,6 +880,7 @@ int main (int argc, char ** argv)
|
||||
std::vector<double> staggered;
|
||||
|
||||
int Ls=1;
|
||||
if (do_dslash){
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " Clover dslash 4D vectorised (temporarily Wilson)" <<std::endl;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
@ -901,6 +905,7 @@ int main (int argc, char ** argv)
|
||||
staggered.push_back(result);
|
||||
}
|
||||
|
||||
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " Summary table Ls="<<Ls <<std::endl;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
@ -909,8 +914,33 @@ int main (int argc, char ** argv)
|
||||
std::cout<<GridLogMessage << L_list[l] <<" \t\t "<< clover[l]<<" \t\t "<<dwf4[l] << " \t\t "<< staggered[l]<<std::endl;
|
||||
}
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
}
|
||||
|
||||
int NN=NN_global;
|
||||
if(do_dslash){
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " Per Node Summary table Ls="<<Ls <<std::endl;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " L \t\t Clover\t\t DWF4\t\t Staggered (GF/s per node)" <<std::endl;
|
||||
fprintf(FP,"Per node summary table\n");
|
||||
fprintf(FP,"\n");
|
||||
fprintf(FP,"L , Wilson, DWF4, Staggered, GF/s per node\n");
|
||||
fprintf(FP,"\n");
|
||||
for(int l=0;l<L_list.size();l++){
|
||||
std::cout<<GridLogMessage << L_list[l] <<" \t\t "<< clover[l]/NN<<" \t "<<dwf4[l]/NN<< " \t "<<staggered[l]/NN<<std::endl;
|
||||
fprintf(FP,"%d , %.0f, %.0f, %.0f\n",L_list[l],clover[l]/NN/1000.,dwf4[l]/NN/1000.,staggered[l]/NN/1000.);
|
||||
}
|
||||
fprintf(FP,"\n");
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " Comparison point result: " << 0.5*(dwf4[sel]+dwf4[selm1])/NN << " Mflop/s per node"<<std::endl;
|
||||
std::cout<<GridLogMessage << " Comparison point is 0.5*("<<dwf4[sel]/NN<<"+"<<dwf4[selm1]/NN << ") "<<std::endl;
|
||||
std::cout<<std::setprecision(3);
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
}
|
||||
|
||||
|
||||
if ( do_memory ) {
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " Memory benchmark " <<std::endl;
|
||||
@ -918,15 +948,6 @@ int main (int argc, char ** argv)
|
||||
Benchmark::Memory();
|
||||
}
|
||||
|
||||
if ( do_blas ) {
|
||||
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " Batched BLAS benchmark " <<std::endl;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
Benchmark::BLAS();
|
||||
#endif
|
||||
}
|
||||
|
||||
if ( do_su4 ) {
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " SU(4) benchmark " <<std::endl;
|
||||
@ -941,28 +962,14 @@ int main (int argc, char ** argv)
|
||||
Benchmark::Comms();
|
||||
}
|
||||
|
||||
if ( do_blas ) {
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " Per Node Summary table Ls="<<Ls <<std::endl;
|
||||
std::cout<<GridLogMessage << " Batched BLAS benchmark " <<std::endl;
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " L \t\t Clover\t\t DWF4\t\t Staggered (GF/s per node)" <<std::endl;
|
||||
fprintf(FP,"Per node summary table\n");
|
||||
fprintf(FP,"\n");
|
||||
fprintf(FP,"L , Wilson, DWF4, Staggered, GF/s per node\n");
|
||||
fprintf(FP,"\n");
|
||||
for(int l=0;l<L_list.size();l++){
|
||||
std::cout<<GridLogMessage << L_list[l] <<" \t\t "<< clover[l]/NN<<" \t "<<dwf4[l]/NN<< " \t "<<staggered[l]/NN<<std::endl;
|
||||
fprintf(FP,"%d , %.0f, %.0f, %.0f\n",L_list[l],clover[l]/NN/1000.,dwf4[l]/NN/1000.,staggered[l]/NN/1000.);
|
||||
}
|
||||
fprintf(FP,"\n");
|
||||
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " Comparison point result: " << 0.5*(dwf4[sel]+dwf4[selm1])/NN << " Mflop/s per node"<<std::endl;
|
||||
std::cout<<GridLogMessage << " Comparison point is 0.5*("<<dwf4[sel]/NN<<"+"<<dwf4[selm1]/NN << ") "<<std::endl;
|
||||
std::cout<<std::setprecision(3);
|
||||
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
|
||||
|
||||
Benchmark::BLAS<ComplexD>();
|
||||
Benchmark::BLAS<ComplexF>();
|
||||
}
|
||||
|
||||
Grid_finalize();
|
||||
fclose(FP);
|
||||
}
|
||||
|
44
scripts/prequisites.sh
Executable file
44
scripts/prequisites.sh
Executable file
@ -0,0 +1,44 @@
|
||||
#!/bin/bash
|
||||
|
||||
if [ $1 = "install" ]
|
||||
then
|
||||
dir=`pwd`
|
||||
cd $HOME
|
||||
git clone -c feature.manyFiles=true https://github.com/spack/spack.git
|
||||
source $HOME/spack/share/spack/setup-env.sh
|
||||
|
||||
spack install autoconf
|
||||
spack install automake
|
||||
spack install c-lime cppflags=-fPIE
|
||||
spack install fftw
|
||||
spack install llvm
|
||||
spack install gmp
|
||||
spack install mpfr
|
||||
spack install cuda@11.8
|
||||
spack install openmpi
|
||||
spack install openssl
|
||||
spack install hdf5
|
||||
else
|
||||
source $HOME/spack/share/spack/setup-env.sh
|
||||
fi
|
||||
|
||||
spack load autoconf
|
||||
spack load automake
|
||||
spack load c-lime
|
||||
spack load fftw
|
||||
spack load llvm
|
||||
spack load gmp
|
||||
spack load mpfr
|
||||
spack load cuda@11.8
|
||||
spack load openmpi
|
||||
spack load openssl
|
||||
spack load hdf5
|
||||
|
||||
export FFTW=`spack find --paths fftw | grep ^fftw | awk '{print $2}' `
|
||||
export HDF5=`spack find --paths hdf5 | grep ^hdf5 | awk '{print $2}' `
|
||||
export CLIME=`spack find --paths c-lime | grep ^c-lime | awk '{print $2}' `
|
||||
export MPFR=`spack find --paths mpfr | grep ^mpfr | awk '{print $2}' `
|
||||
export GMP=`spack find --paths gmp | grep ^gmp | awk '{print $2}' `
|
||||
export NVIDIA=$CUDA_HOME
|
||||
export NVIDIALIB=$NVIDIA/targets/x86_64-linux/lib/
|
||||
export LD_LIBRARY_PATH=$NVIDIALIB:$FFTW/lib/:$MPFR/lib:$LD_LIBRARY_PATH
|
67
systems/Aurora/benchmarks/bench1.pbs
Normal file
67
systems/Aurora/benchmarks/bench1.pbs
Normal file
@ -0,0 +1,67 @@
|
||||
#!/bin/bash
|
||||
|
||||
#PBS -q debug
|
||||
#PBS -l select=1
|
||||
#PBS -l walltime=00:20:00
|
||||
#PBS -A LatticeQCD_aesp_CNDA
|
||||
|
||||
#export OMP_PROC_BIND=spread
|
||||
#unset OMP_PLACES
|
||||
|
||||
cd $PBS_O_WORKDIR
|
||||
|
||||
source ../sourceme.sh
|
||||
module load pti-gpu
|
||||
|
||||
#cat $PBS_NODEFILE
|
||||
|
||||
export OMP_NUM_THREADS=4
|
||||
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
|
||||
|
||||
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE
|
||||
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE
|
||||
#unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST
|
||||
|
||||
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
|
||||
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
|
||||
#export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
|
||||
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576
|
||||
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
|
||||
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
|
||||
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
|
||||
export MPICH_OFI_NIC_POLICY=GPU
|
||||
|
||||
# 12 ppn, 2 nodes, 24 ranks
|
||||
#
|
||||
CMD="mpiexec -np 12 -ppn 12 -envall \
|
||||
./gpu_tile_compact.sh \
|
||||
./Benchmark_comms_host_device --mpi 2.2.1.3 --grid 24.32.32.24 \
|
||||
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32"
|
||||
#$CMD | tee 1node.comms
|
||||
|
||||
|
||||
CMD="mpiexec -np 1 -ppn 1 -envall \
|
||||
./gpu_tile_compact.sh \
|
||||
./Benchmark_dwf_fp32 --mpi 1.1.1.1 --grid 16.32.32.32 \
|
||||
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32 "
|
||||
#$CMD | tee 1tile.dwf
|
||||
|
||||
CMD="mpiexec -np 12 -ppn 12 -envall \
|
||||
./gpu_tile_compact.sh \
|
||||
./Benchmark_dwf_fp32 --mpi 2.2.1.3 --grid 32.32.32.48 \
|
||||
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
|
||||
$CMD | tee 1node.32.32.32.48.dwf
|
||||
|
||||
|
||||
CMD="mpiexec -np 12 -ppn 12 -envall \
|
||||
./gpu_tile_compact.sh \
|
||||
./Benchmark_dwf_fp32 --mpi 2.2.1.3 --grid 64.64.32.96 \
|
||||
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
|
||||
#$CMD | tee 1node.64.64.32.96.dwf
|
||||
|
||||
CMD="mpiexec -np 12 -ppn 12 -envall \
|
||||
./gpu_tile_compact.sh \
|
||||
./Benchmark_dwf_fp32 --mpi 2.2.1.3 --grid 64.32.32.48 \
|
||||
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
|
||||
#$CMD | tee 1node.64.32.32.48.dwf
|
||||
|
@ -1,10 +1,8 @@
|
||||
#!/bin/bash
|
||||
|
||||
## qsub -q EarlyAppAccess -A Aurora_Deployment -I -l select=1 -l walltime=60:00
|
||||
|
||||
#PBS -q EarlyAppAccess
|
||||
#PBS -q workq
|
||||
#PBS -l select=2
|
||||
#PBS -l walltime=01:00:00
|
||||
#PBS -l walltime=00:20:00
|
||||
#PBS -A LatticeQCD_aesp_CNDA
|
||||
|
||||
#export OMP_PROC_BIND=spread
|
||||
@ -13,11 +11,13 @@
|
||||
cd $PBS_O_WORKDIR
|
||||
|
||||
source ../sourceme.sh
|
||||
module load pti-gpu
|
||||
|
||||
export OMP_NUM_THREADS=3
|
||||
#cat $PBS_NODEFILE
|
||||
|
||||
export OMP_NUM_THREADS=4
|
||||
export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
|
||||
|
||||
|
||||
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE
|
||||
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE
|
||||
#unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST
|
||||
@ -31,30 +31,25 @@ export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
|
||||
export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
|
||||
export MPICH_OFI_NIC_POLICY=GPU
|
||||
|
||||
# 12 ppn, 2 nodes, 24 ranks
|
||||
#
|
||||
CMD="mpiexec -np 24 -ppn 12 -envall \
|
||||
./gpu_tile_compact.sh \
|
||||
./Benchmark_comms_host_device --mpi 2.3.2.2 --grid 32.24.32.192 \
|
||||
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32"
|
||||
./Benchmark_comms_host_device --mpi 2.2.2.3 --grid 24.32.32.24 \
|
||||
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32"
|
||||
$CMD | tee 2node.comms
|
||||
|
||||
#$CMD
|
||||
|
||||
CMD="mpiexec -np 24 -ppn 12 -envall \
|
||||
./gpu_tile_compact.sh \
|
||||
./Benchmark_dwf_fp32 --mpi 2.3.2.2 --grid 64.96.64.64 --comms-overlap \
|
||||
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32"
|
||||
./Benchmark_dwf_fp32 --mpi 2.2.2.3 --grid 32.32.64.48 \
|
||||
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
|
||||
$CMD | tee 2node.32.32.64.48.dwf
|
||||
|
||||
#$CMD
|
||||
|
||||
CMD="mpiexec -np 1 -ppn 1 -envall \
|
||||
CMD="mpiexec -np 24 -ppn 12 -envall \
|
||||
./gpu_tile_compact.sh \
|
||||
./Benchmark_dwf --mpi 1.1.1.1 --grid 16.32.32.32 --comms-sequential \
|
||||
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32"
|
||||
./Benchmark_dwf_fp32 --mpi 2.2.2.3 --grid 64.64.64.96 \
|
||||
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads 32 --comms-overlap"
|
||||
$CMD | tee 2node.64.64.64.96.dwf
|
||||
|
||||
$CMD
|
||||
|
||||
CMD="mpiexec -np 1 -ppn 1 -envall \
|
||||
./gpu_tile_compact.sh \
|
||||
./Benchmark_dwf_fp32 --mpi 1.1.1.1 --grid 16.32.32.32 --comms-sequential \
|
||||
--shm-mpi 1 --shm 2048 --device-mem 32000 --accelerator-threads 32"
|
||||
|
||||
$CMD
|
@ -1,33 +1,34 @@
|
||||
#!/bin/bash
|
||||
|
||||
export NUMA_MAP=(2 2 2 3 3 3 2 2 2 3 3 3 )
|
||||
#export NUMA_MAP=(0 0 0 1 1 1 0 0 0 1 1 1 )
|
||||
export NUMA_PMAP=(0 0 0 1 1 1 0 0 0 1 1 1 )
|
||||
export NIC_MAP=(0 1 2 4 5 6 0 1 2 4 5 6 )
|
||||
export GPU_MAP=(0 1 2 3 4 5 0 1 2 3 4 5 )
|
||||
export TILE_MAP=(0 0 0 0 0 0 1 1 1 1 1 1 )
|
||||
#export NUMA_MAP=(2 2 2 3 3 3 2 2 2 3 3 3 )
|
||||
#export NUMA_MAP=(0 0 1 1 0 0 1 1 0 0 1 1);
|
||||
#export GPU_MAP=(0.0 0.1 3.0 3.1 1.0 1.1 4.0 4.1 2.0 2.1 5.0 5.1)
|
||||
|
||||
export NUMA_MAP=(0 0 0 0 0 0 1 1 1 1 1 1 );
|
||||
export GPU_MAP=(0.0 1.0 2.0 3.0 4.0 5.0 0.1 1.1 2.1 3.1 4.1 5.1 )
|
||||
|
||||
export NUMA=${NUMA_MAP[$PALS_LOCAL_RANKID]}
|
||||
export NUMAP=${NUMA_PMAP[$PALS_LOCAL_RANKID]}
|
||||
export NIC=${NIC_MAP[$PALS_LOCAL_RANKID]}
|
||||
export gpu_id=${GPU_MAP[$PALS_LOCAL_RANKID]}
|
||||
export tile_id=${TILE_MAP[$PALS_LOCAL_RANKID]}
|
||||
|
||||
#export GRID_MPICH_NIC_BIND=$NIC
|
||||
#export ONEAPI_DEVICE_SELECTOR=level_zero:$gpu_id.$tile_id
|
||||
|
||||
unset EnableWalkerPartition
|
||||
export EnableImplicitScaling=0
|
||||
export ZE_AFFINITY_MASK=$gpu_id.$tile_id
|
||||
export ZE_AFFINITY_MASK=$gpu_id
|
||||
export ONEAPI_DEVICE_FILTER=gpu,level_zero
|
||||
|
||||
#export ZE_ENABLE_PCI_ID_DEVICE_ORDER=1
|
||||
#export SYCL_PI_LEVEL_ZERO_DEVICE_SCOPE_EVENTS=0
|
||||
#export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||
export SYCL_PI_LEVEL_ZERO_DEVICE_SCOPE_EVENTS=0
|
||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||
export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE=0:5
|
||||
#export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE=0:2
|
||||
#export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE_FOR_D2D_COPY=1
|
||||
export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE_FOR_D2D_COPY=1
|
||||
#export SYCL_PI_LEVEL_ZERO_USM_RESIDENT=1
|
||||
|
||||
#echo "rank $PALS_RANKID ; local rank $PALS_LOCAL_RANKID ; ZE_AFFINITY_MASK=$ZE_AFFINITY_MASK ; NUMA $NUMA "
|
||||
echo "rank $PALS_RANKID ; local rank $PALS_LOCAL_RANKID ; ZE_AFFINITY_MASK=$ZE_AFFINITY_MASK ; NUMA $NUMA "
|
||||
|
||||
numactl -m $NUMA -N $NUMAP "$@"
|
||||
if [ $PALS_RANKID = "0" ]
|
||||
then
|
||||
# numactl -m $NUMA -N $NUMA onetrace --chrome-device-timeline "$@"
|
||||
# numactl -m $NUMA -N $NUMA unitrace --chrome-kernel-logging --chrome-mpi-logging --chrome-sycl-logging --demangle "$@"
|
||||
numactl -m $NUMA -N $NUMA "$@"
|
||||
else
|
||||
numactl -m $NUMA -N $NUMA "$@"
|
||||
fi
|
||||
|
@ -1,16 +1,18 @@
|
||||
|
||||
export LDFLAGS="-fiopenmp -fsycl -fsycl-device-code-split=per_kernel -fsycl-targets=spir64_gen -Xs -device -Xs pvc -fsycl-device-lib=all -lze_loader -L${MKLROOT}/lib -qmkl=parallel -fsycl -lsycl "
|
||||
export CXXFLAGS="-O3 -fiopenmp -fsycl-unnamed-lambda -fsycl -I$INSTALL/include -Wno-tautological-compare -I$HOME/ -qmkl=parallel -fsycl -fno-exceptions -fsycl-targets=spir64_gen -Xs -device -Xs pvc "
|
||||
../../configure \
|
||||
--enable-simd=GPU \
|
||||
--enable-gen-simd-width=64 \
|
||||
--enable-comms=mpi-auto \
|
||||
--enable-debug \
|
||||
--disable-gparity \
|
||||
--disable-fermion-reps \
|
||||
--with-lime=$CLIME \
|
||||
--enable-shm=nvlink \
|
||||
--enable-accelerator=sycl \
|
||||
--enable-accelerator-aware-mpi=no\
|
||||
--enable-accelerator-aware-mpi=yes\
|
||||
--enable-unified=no \
|
||||
MPICXX=mpicxx \
|
||||
CXX=icpx \
|
||||
LDFLAGS="-fiopenmp -fsycl -fsycl-device-code-split=per_kernel -fsycl-device-lib=all -lze_loader -L${MKLROOT}/lib -qmkl=parallel -lsycl" \
|
||||
CXXFLAGS="-fiopenmp -fsycl-unnamed-lambda -fsycl -I$INSTALL/include -Wno-tautological-compare -I$HOME/ -qmkl=parallel"
|
||||
CXX=icpx
|
||||
|
||||
|
23
systems/Aurora/config-command-leak
Normal file
23
systems/Aurora/config-command-leak
Normal file
@ -0,0 +1,23 @@
|
||||
source ~/spack/share/spack/setup-env.sh
|
||||
spack load c-lime
|
||||
export CLIME=`spack find --paths c-lime | grep ^c-lime | awk '{print $2}' `
|
||||
export TCMALLOC=`spack find --paths gperftools | grep ^gperftools | awk '{print $2}' `
|
||||
export LD_LIBRARY_PATH=${TCMALLOC}/lib:$LD_LIBRARY_PATH
|
||||
|
||||
../../configure \
|
||||
--enable-debug \
|
||||
--enable-simd=GPU \
|
||||
--enable-gen-simd-width=64 \
|
||||
--enable-comms=mpi-auto \
|
||||
--disable-gparity \
|
||||
--disable-fermion-reps \
|
||||
--with-lime=$CLIME \
|
||||
--enable-shm=nvlink \
|
||||
--enable-accelerator=sycl \
|
||||
--enable-accelerator-aware-mpi=yes\
|
||||
--enable-unified=no \
|
||||
MPICXX=mpicxx \
|
||||
CXX=icpx \
|
||||
LDFLAGS="-fiopenmp -fsycl-device-lib=all -lze_loader -L${MKLROOT}/lib -qmkl=parallel -fsycl -lsycl -Xarch_host -fsanitize=leak -fsycl-device-code-split=per_kernel" \
|
||||
CXXFLAGS="-fiopenmp -fsycl-unnamed-lambda -I$INSTALL/include -Wno-tautological-compare -I$HOME/ -qmkl=parallel -Xarch_host -fsycl -fsanitize=leak "
|
||||
|
22
systems/Aurora/config-command-sanitize
Normal file
22
systems/Aurora/config-command-sanitize
Normal file
@ -0,0 +1,22 @@
|
||||
# -fsycl-targets=spir64_gen -Xs\" -device pvc \"
|
||||
# -fsycl-targets=intel_gpu_pvc_vg,intel_gpu_pvc
|
||||
# -fsycl-targets=intel_gpu_pvc
|
||||
|
||||
unset DEVICE
|
||||
export LDFLAGS="-fiopenmp -fsycl -fsycl-device-code-split=per_kernel -fsycl-targets=spir64_gen -Xs -device -Xs pvc -fsycl-device-lib=all -lze_loader -L${MKLROOT}/lib -qmkl=parallel -fsycl -lsycl -Xarch_host -fsanitize=address"
|
||||
export CXXFLAGS="-O3 -fiopenmp -fsycl-unnamed-lambda -fsycl -I$INSTALL/include -Wno-tautological-compare -I$HOME/ -qmkl=parallel -fsycl -fno-exceptions -Xarch_host -fsanitize=address -fsycl-targets=spir64_gen -Xs -device -Xs pvc "
|
||||
../../configure \
|
||||
--enable-simd=GPU \
|
||||
--enable-gen-simd-width=64 \
|
||||
--enable-comms=mpi-auto \
|
||||
--enable-debug \
|
||||
--disable-gparity \
|
||||
--disable-fermion-reps \
|
||||
--with-lime=$CLIME \
|
||||
--enable-shm=nvlink \
|
||||
--enable-accelerator=sycl \
|
||||
--enable-accelerator-aware-mpi=yes\
|
||||
--enable-unified=no \
|
||||
MPICXX=mpicxx \
|
||||
CXX=icpx
|
||||
|
@ -1,12 +1,22 @@
|
||||
source ~/spack/share/spack/setup-env.sh
|
||||
spack load c-lime
|
||||
export CLIME=`spack find --paths c-lime | grep ^c-lime | awk '{print $2}' `
|
||||
#spack load libefence
|
||||
#export EFENCE=`spack find --paths libefence | grep ^libefence | awk '{print $2}' `
|
||||
#export LD_LIBRARY_PATH=${EFENCE}/lib:$LD_LIBRARY_PATH
|
||||
#spack load gperftools
|
||||
export TCMALLOC=/home/paboyle/gperftools/install
|
||||
export LD_LIBRARY_PATH=${TCMALLOC}/lib:$LD_LIBRARY_PATH
|
||||
export INTELGT_AUTO_ATTACH_DISABLE=1
|
||||
|
||||
#export ONEAPI_DEVICE_SELECTOR=level_zero:0.0
|
||||
#module load oneapi/release/2023.12.15.001
|
||||
#module use /soft/modulefiles
|
||||
#module load intel_compute_runtime/release/agama-devel-682.22
|
||||
|
||||
module use /soft/modulefiles
|
||||
module load intel_compute_runtime/release/agama-devel-682.22
|
||||
|
||||
export FI_CXI_DEFAULT_CQ_SIZE=131072
|
||||
export FI_CXI_CQ_FILL_PERCENT=20
|
||||
|
||||
export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file"
|
||||
#export FI_CXI_DEFAULT_CQ_SIZE=131072
|
||||
#export FI_CXI_CQ_FILL_PERCENT=20
|
||||
#export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file"
|
||||
#export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-intel-enable-auto-large-GRF-mode"
|
||||
|
||||
#
|
||||
@ -14,13 +24,17 @@ export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file"
|
||||
# -ftarget-register-alloc-mode=pvc:small
|
||||
# -ftarget-register-alloc-mode=pvc:large
|
||||
# -ftarget-register-alloc-mode=pvc:auto
|
||||
#
|
||||
#export MPIR_CVAR_CH4_OFI_ENABLE_HMEM=1
|
||||
|
||||
export HTTP_PROXY=http://proxy.alcf.anl.gov:3128
|
||||
export HTTPS_PROXY=http://proxy.alcf.anl.gov:3128
|
||||
export http_proxy=http://proxy.alcf.anl.gov:3128
|
||||
export https_proxy=http://proxy.alcf.anl.gov:3128
|
||||
#export MPIR_CVAR_CH4_OFI_ENABLE_HMEM=1
|
||||
git config --global http.proxy http://proxy.alcf.anl.gov:3128
|
||||
|
||||
#source ~/spack/share/spack/setup-env.sh
|
||||
#spack load gperftools
|
||||
#export TCMALLOC=`spack find --paths gperftools | grep ^gperftools | awk '{print $2}' `
|
||||
#export LD_LIBRARY_PATH=${TCMALLOC}/lib:$LD_LIBRARY_PATH
|
||||
|
||||
export SYCL_PROGRAM_COMPILE_OPTIONS="-ze-opt-large-register-file"
|
||||
|
76
systems/Frontier/benchmarks/Benchmark_usqcd.csv
Normal file
76
systems/Frontier/benchmarks/Benchmark_usqcd.csv
Normal file
@ -0,0 +1,76 @@
|
||||
Memory Bandwidth
|
||||
|
||||
Bytes, GB/s per node
|
||||
6291456, 379.297050
|
||||
100663296, 3754.674992
|
||||
509607936, 6521.472413
|
||||
1610612736, 8513.456479
|
||||
3932160000, 9018.901766
|
||||
|
||||
|
||||
GEMM
|
||||
|
||||
M, N, K, BATCH, GF/s per rank
|
||||
16, 8, 16, 256, 0.564958
|
||||
16, 16, 16, 256, 243.148058
|
||||
16, 32, 16, 256, 440.346877
|
||||
32, 8, 32, 256, 439.194136
|
||||
32, 16, 32, 256, 847.334141
|
||||
32, 32, 32, 256, 1430.892623
|
||||
64, 8, 64, 256, 1242.756741
|
||||
64, 16, 64, 256, 2196.689493
|
||||
64, 32, 64, 256, 3697.458072
|
||||
16, 8, 256, 256, 899.582627
|
||||
16, 16, 256, 256, 1673.537756
|
||||
16, 32, 256, 256, 2959.597089
|
||||
32, 8, 256, 256, 1558.858630
|
||||
32, 16, 256, 256, 2864.839445
|
||||
32, 32, 256, 256, 4810.671254
|
||||
64, 8, 256, 256, 2386.092942
|
||||
64, 16, 256, 256, 4451.665937
|
||||
64, 32, 256, 256, 5942.124095
|
||||
8, 256, 16, 256, 799.867271
|
||||
16, 256, 16, 256, 1584.624888
|
||||
32, 256, 16, 256, 1949.422338
|
||||
8, 256, 32, 256, 1389.417474
|
||||
16, 256, 32, 256, 2668.344493
|
||||
32, 256, 32, 256, 3234.162120
|
||||
8, 256, 64, 256, 2150.925128
|
||||
16, 256, 64, 256, 4012.488132
|
||||
32, 256, 64, 256, 5154.785521
|
||||
|
||||
|
||||
|
||||
Communications
|
||||
|
||||
Packet bytes, direction, GB/s per node
|
||||
4718592, 1, 245.026198
|
||||
4718592, 2, 251.180996
|
||||
4718592, 3, 361.110977
|
||||
4718592, 5, 247.898447
|
||||
4718592, 6, 249.867523
|
||||
4718592, 7, 359.033061
|
||||
15925248, 1, 255.030946
|
||||
15925248, 2, 264.453890
|
||||
15925248, 3, 392.949183
|
||||
15925248, 5, 256.040644
|
||||
15925248, 6, 264.681896
|
||||
15925248, 7, 392.102622
|
||||
37748736, 1, 258.823333
|
||||
37748736, 2, 268.181577
|
||||
37748736, 3, 401.478191
|
||||
37748736, 5, 258.995363
|
||||
37748736, 6, 268.206586
|
||||
37748736, 7, 400.397611
|
||||
|
||||
|
||||
Per node summary table
|
||||
|
||||
L , Wilson, DWF4, Staggered, GF/s per node
|
||||
|
||||
8 , 155, 1386, 50
|
||||
12 , 694, 4208, 230
|
||||
16 , 1841, 6675, 609
|
||||
24 , 3934, 8573, 1641
|
||||
32 , 5083, 9771, 3086
|
||||
|
|
702
systems/Frontier/benchmarks/Benchmark_usqcd.log
Normal file
702
systems/Frontier/benchmarks/Benchmark_usqcd.log
Normal file
@ -0,0 +1,702 @@
|
||||
RANK 1 using GPU 1
|
||||
RANK 5 using GPU 6
|
||||
RANK 0 using GPU 0
|
||||
RANK 2 using GPU 2
|
||||
RANK 3 using GPU 3
|
||||
RANK 6 using GPU 5
|
||||
RANK 7 using GPU 4
|
||||
RANK 4 using GPU 7
|
||||
world_rank 0 has 1 devices
|
||||
AcceleratorHipInit: ========================
|
||||
AcceleratorHipInit: Device Number : 0
|
||||
AcceleratorHipInit: ========================
|
||||
AcceleratorHipInit: Device identifier: AMD Instinct MI250X
|
||||
AcceleratorHipInit: totalGlobalMem: 68702699520
|
||||
AcceleratorHipInit: isMultiGpuBoard: 0
|
||||
AcceleratorHipInit: warpSize: 64
|
||||
AcceleratorHipInit: using default device
|
||||
AcceleratorHipInit: assume user or srun sets ROCR_VISIBLE_DEVICES and numa binding
|
||||
AcceleratorHipInit: Configure options --enable-setdevice=no
|
||||
local rank 0 device 0 bus id: 0000:c1:00.0
|
||||
AcceleratorHipInit: ================================================
|
||||
SharedMemoryMpi: World communicator of size 8
|
||||
SharedMemoryMpi: Node communicator of size 8
|
||||
0SharedMemoryMpi: SharedMemoryMPI.cc acceleratorAllocDevice 4294967296bytes at 0x7ff651800000 - 7ff7517fffff for comms buffers
|
||||
Setting up IPC
|
||||
|
||||
__|__|__|__|__|__|__|__|__|__|__|__|__|__|__
|
||||
__|__|__|__|__|__|__|__|__|__|__|__|__|__|__
|
||||
__|_ | | | | | | | | | | | | _|__
|
||||
__|_ _|__
|
||||
__|_ GGGG RRRR III DDDD _|__
|
||||
__|_ G R R I D D _|__
|
||||
__|_ G R R I D D _|__
|
||||
__|_ G GG RRRR I D D _|__
|
||||
__|_ G G R R I D D _|__
|
||||
__|_ GGGG R R III DDDD _|__
|
||||
__|_ _|__
|
||||
__|__|__|__|__|__|__|__|__|__|__|__|__|__|__
|
||||
__|__|__|__|__|__|__|__|__|__|__|__|__|__|__
|
||||
| | | | | | | | | | | | | |
|
||||
|
||||
|
||||
Copyright (C) 2015 Peter Boyle, Azusa Yamaguchi, Guido Cossu, Antonin Portelli and other authors
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
Current Grid git commit hash=9a1ad6a5eb29a369d74784e7483c60e578323d76: (HEAD -> develop, origin/develop, origin/HEAD) clean
|
||||
|
||||
Grid : Message : ================================================
|
||||
Grid : Message : MPI is initialised and logging filters activated
|
||||
Grid : Message : ================================================
|
||||
Grid : Message : This rank is running on host frontier01320
|
||||
Grid : Message : Requested 4294967296 byte stencil comms buffers
|
||||
Grid : Message : MemoryManager Cache 54962159616 bytes
|
||||
Grid : Message : MemoryManager::Init() setting up
|
||||
Grid : Message : MemoryManager::Init() cache pool for recent host allocations: SMALL 8 LARGE 2 HUGE 0
|
||||
Grid : Message : MemoryManager::Init() cache pool for recent device allocations: SMALL 16 LARGE 8 Huge 0
|
||||
Grid : Message : MemoryManager::Init() cache pool for recent shared allocations: SMALL 16 LARGE 8 Huge 0
|
||||
Grid : Message : MemoryManager::Init() Non unified: Caching accelerator data in dedicated memory
|
||||
Grid : Message : MemoryManager::Init() Using hipMalloc
|
||||
Grid : Message : 0.293720 s : ==================================================================================
|
||||
Grid : Message : 0.293790 s : = Grid is setup to use 1 threads
|
||||
Grid : Message : 0.293800 s : ==================================================================================
|
||||
Grid : Message : 0.293810 s : Grid Default Decomposition patterns
|
||||
Grid : Message : 0.293810 s : OpenMP threads : 1
|
||||
Grid : Message : 0.293820 s : MPI tasks : 1 2 2 2
|
||||
Grid : Message : 0.293870 s : vReal : 512bits ; 1 2 2 2
|
||||
Grid : Message : 0.293890 s : vRealF : 512bits ; 2 2 2 2
|
||||
Grid : Message : 0.293910 s : vRealD : 512bits ; 1 2 2 2
|
||||
Grid : Message : 0.293920 s : vComplex : 512bits ; 1 1 2 2
|
||||
Grid : Message : 0.293930 s : vComplexF : 512bits ; 1 2 2 2
|
||||
Grid : Message : 0.293960 s : vComplexD : 512bits ; 1 1 2 2
|
||||
Grid : Message : 0.293970 s : ==================================================================================
|
||||
Grid : Message : 0.293980 s : ==================================================================================
|
||||
Grid : Message : 0.293990 s : Clover dslash 4D vectorised (temporarily Wilson)
|
||||
Grid : Message : 0.294000 s : ==================================================================================
|
||||
Grid : Message : 0.301330 s : ==================================================================================
|
||||
Grid : Message : 0.301360 s : Benchmark DWF on 8^4 local volume
|
||||
Grid : Message : 0.301370 s : * Nc : 3
|
||||
Grid : Message : 0.301380 s : * Global volume : 8 16 16 16
|
||||
Grid : Message : 0.301410 s : * Ls : 1
|
||||
Grid : Message : 0.301420 s : * ranks : 8
|
||||
Grid : Message : 0.301430 s : * nodes : 1
|
||||
Grid : Message : 0.301440 s : * ranks/node : 8
|
||||
Grid : Message : 0.301450 s : * ranks geom : 1 2 2 2
|
||||
Grid : Message : 0.301460 s : * Using 1 threads
|
||||
Grid : Message : 0.301470 s : ==================================================================================
|
||||
Grid : Message : 0.345030 s : Initialised RNGs
|
||||
Grid : Message : 0.158302 s : ==================================================================================
|
||||
Grid : Message : 0.158310 s : * Using GENERIC Nc WilsonKernels
|
||||
Grid : Message : 0.158311 s : * Using Overlapped Comms/Compute
|
||||
Grid : Message : 0.158312 s : * SINGLE precision
|
||||
Grid : Message : 0.158313 s : ==================================================================================
|
||||
Grid : Message : 0.240681 s : Deo FlopsPerSite is 1344
|
||||
Grid : Message : 0.240711 s : Deo mflop/s = 154914.0 (130.8) 139367.7-159565.9
|
||||
Grid : Message : 0.240715 s : Deo mflop/s per rank 19364.3
|
||||
Grid : Message : 0.240716 s : Deo mflop/s per node 154914.0
|
||||
Grid : Message : 0.240718 s : ==================================================================================
|
||||
Grid : Message : 0.240719 s : * Using UNROLLED WilsonKernels
|
||||
Grid : Message : 0.240719 s : * Using Overlapped Comms/Compute
|
||||
Grid : Message : 0.240719 s : * SINGLE precision
|
||||
Grid : Message : 0.240719 s : ==================================================================================
|
||||
Grid : Message : 0.315028 s : Deo FlopsPerSite is 1344.0
|
||||
Grid : Message : 0.315033 s : Deo mflop/s = 151459.5 (142.0) 131856.9-157286.4
|
||||
Grid : Message : 0.315036 s : Deo mflop/s per rank 18932.4
|
||||
Grid : Message : 0.315037 s : Deo mflop/s per node 151459.5
|
||||
Grid : Message : 0.315038 s : ==================================================================================
|
||||
Grid : Message : 0.315040 s : 8^4 x 1 Deo Best mflop/s = 154914.0 ; 154914.0 per node
|
||||
Grid : Message : 0.315042 s : 8^4 x 1 Deo Worst mflop/s = 151459.5 ; 151459.5 per node
|
||||
Grid : Message : 0.315043 s : G/S/C ; G/O/C ; G/S/S ; G/O/S
|
||||
Grid : Message : 0.315043 s : 154914.0 ; 151459.5 ;
|
||||
Grid : Message : 0.315044 s : ==================================================================================
|
||||
Grid : Message : 0.316507 s : ==================================================================================
|
||||
Grid : Message : 0.316510 s : Benchmark DWF on 12^4 local volume
|
||||
Grid : Message : 0.316511 s : * Nc : 3
|
||||
Grid : Message : 0.316512 s : * Global volume : 12 24 24 24
|
||||
Grid : Message : 0.316515 s : * Ls : 1
|
||||
Grid : Message : 0.316516 s : * ranks : 8
|
||||
Grid : Message : 0.316517 s : * nodes : 1
|
||||
Grid : Message : 0.316518 s : * ranks/node : 8
|
||||
Grid : Message : 0.316518 s : * ranks geom : 1 2 2 2
|
||||
Grid : Message : 0.316519 s : * Using 1 threads
|
||||
Grid : Message : 0.316520 s : ==================================================================================
|
||||
Grid : Message : 0.327883 s : Initialised RNGs
|
||||
Grid : Message : 0.786395 s : ==================================================================================
|
||||
Grid : Message : 0.786404 s : * Using GENERIC Nc WilsonKernels
|
||||
Grid : Message : 0.786405 s : * Using Overlapped Comms/Compute
|
||||
Grid : Message : 0.786406 s : * SINGLE precision
|
||||
Grid : Message : 0.786406 s : ==================================================================================
|
||||
Grid : Message : 0.871646 s : Deo FlopsPerSite is 1344.0
|
||||
Grid : Message : 0.871659 s : Deo mflop/s = 684982.2 (632.4) 609162.5-714594.5
|
||||
Grid : Message : 0.871663 s : Deo mflop/s per rank 85622.8
|
||||
Grid : Message : 0.871664 s : Deo mflop/s per node 684982.2
|
||||
Grid : Message : 0.871665 s : ==================================================================================
|
||||
Grid : Message : 0.871665 s : * Using UNROLLED WilsonKernels
|
||||
Grid : Message : 0.871665 s : * Using Overlapped Comms/Compute
|
||||
Grid : Message : 0.871665 s : * SINGLE precision
|
||||
Grid : Message : 0.871665 s : ==================================================================================
|
||||
Grid : Message : 0.953697 s : Deo FlopsPerSite is 1344.0
|
||||
Grid : Message : 0.953702 s : Deo mflop/s = 693556.6 (576.5) 663552.0-719204.7
|
||||
Grid : Message : 0.953705 s : Deo mflop/s per rank 86694.6
|
||||
Grid : Message : 0.953706 s : Deo mflop/s per node 693556.6
|
||||
Grid : Message : 0.953707 s : ==================================================================================
|
||||
Grid : Message : 0.953708 s : 12^4 x 1 Deo Best mflop/s = 693556.6 ; 693556.6 per node
|
||||
Grid : Message : 0.953710 s : 12^4 x 1 Deo Worst mflop/s = 684982.2 ; 684982.2 per node
|
||||
Grid : Message : 0.953712 s : G/S/C ; G/O/C ; G/S/S ; G/O/S
|
||||
Grid : Message : 0.953712 s : 684982.2 ; 693556.6 ;
|
||||
Grid : Message : 0.953713 s : ==================================================================================
|
||||
Grid : Message : 0.957609 s : ==================================================================================
|
||||
Grid : Message : 0.957613 s : Benchmark DWF on 16^4 local volume
|
||||
Grid : Message : 0.957614 s : * Nc : 3
|
||||
Grid : Message : 0.957615 s : * Global volume : 16 32 32 32
|
||||
Grid : Message : 0.957620 s : * Ls : 1
|
||||
Grid : Message : 0.957621 s : * ranks : 8
|
||||
Grid : Message : 0.957622 s : * nodes : 1
|
||||
Grid : Message : 0.957623 s : * ranks/node : 8
|
||||
Grid : Message : 0.957623 s : * ranks geom : 1 2 2 2
|
||||
Grid : Message : 0.957624 s : * Using 1 threads
|
||||
Grid : Message : 0.957625 s : ==================================================================================
|
||||
Grid : Message : 0.985828 s : Initialised RNGs
|
||||
Grid : Message : 2.379761 s : ==================================================================================
|
||||
Grid : Message : 2.379772 s : * Using GENERIC Nc WilsonKernels
|
||||
Grid : Message : 2.379773 s : * Using Overlapped Comms/Compute
|
||||
Grid : Message : 2.379774 s : * SINGLE precision
|
||||
Grid : Message : 2.379775 s : ==================================================================================
|
||||
Grid : Message : 2.486712 s : Deo FlopsPerSite is 1344.0
|
||||
Grid : Message : 2.486725 s : Deo mflop/s = 1803226.1 (1139.4) 1646362.3-1864135.1
|
||||
Grid : Message : 2.486729 s : Deo mflop/s per rank 225403.3
|
||||
Grid : Message : 2.486731 s : Deo mflop/s per node 1803226.1
|
||||
Grid : Message : 2.486732 s : ==================================================================================
|
||||
Grid : Message : 2.486732 s : * Using UNROLLED WilsonKernels
|
||||
Grid : Message : 2.486732 s : * Using Overlapped Comms/Compute
|
||||
Grid : Message : 2.486732 s : * SINGLE precision
|
||||
Grid : Message : 2.486732 s : ==================================================================================
|
||||
Grid : Message : 2.584407 s : Deo FlopsPerSite is 1344.0
|
||||
Grid : Message : 2.584412 s : Deo mflop/s = 1840587.3 (1119.6) 1779401.7-1914791.0
|
||||
Grid : Message : 2.584415 s : Deo mflop/s per rank 230073.4
|
||||
Grid : Message : 2.584416 s : Deo mflop/s per node 1840587.3
|
||||
Grid : Message : 2.584417 s : ==================================================================================
|
||||
Grid : Message : 2.584418 s : 16^4 x 1 Deo Best mflop/s = 1840587.3 ; 1840587.3 per node
|
||||
Grid : Message : 2.584420 s : 16^4 x 1 Deo Worst mflop/s = 1803226.1 ; 1803226.1 per node
|
||||
Grid : Message : 2.584422 s : G/S/C ; G/O/C ; G/S/S ; G/O/S
|
||||
Grid : Message : 2.584422 s : 1803226.1 ; 1840587.3 ;
|
||||
Grid : Message : 2.584423 s : ==================================================================================
|
||||
Grid : Message : 2.592858 s : ==================================================================================
|
||||
Grid : Message : 2.592862 s : Benchmark DWF on 24^4 local volume
|
||||
Grid : Message : 2.592863 s : * Nc : 3
|
||||
Grid : Message : 2.592864 s : * Global volume : 24 48 48 48
|
||||
Grid : Message : 2.592869 s : * Ls : 1
|
||||
Grid : Message : 2.592870 s : * ranks : 8
|
||||
Grid : Message : 2.592871 s : * nodes : 1
|
||||
Grid : Message : 2.592872 s : * ranks/node : 8
|
||||
Grid : Message : 2.592872 s : * ranks geom : 1 2 2 2
|
||||
Grid : Message : 2.592873 s : * Using 1 threads
|
||||
Grid : Message : 2.592874 s : ==================================================================================
|
||||
Grid : Message : 2.715623 s : Initialised RNGs
|
||||
Grid : Message : 9.608838 s : ==================================================================================
|
||||
Grid : Message : 9.608852 s : * Using GENERIC Nc WilsonKernels
|
||||
Grid : Message : 9.608853 s : * Using Overlapped Comms/Compute
|
||||
Grid : Message : 9.608854 s : * SINGLE precision
|
||||
Grid : Message : 9.608855 s : ==================================================================================
|
||||
Grid : Message : 9.870294 s : Deo FlopsPerSite is 1344.0
|
||||
Grid : Message : 9.870309 s : Deo mflop/s = 3861903.3 (1708.9) 3511078.3-3937368.2
|
||||
Grid : Message : 9.870313 s : Deo mflop/s per rank 482737.9
|
||||
Grid : Message : 9.870314 s : Deo mflop/s per node 3861903.3
|
||||
Grid : Message : 9.870315 s : ==================================================================================
|
||||
Grid : Message : 9.870316 s : * Using UNROLLED WilsonKernels
|
||||
Grid : Message : 9.870316 s : * Using Overlapped Comms/Compute
|
||||
Grid : Message : 9.870317 s : * SINGLE precision
|
||||
Grid : Message : 9.870317 s : ==================================================================================
|
||||
Grid : Message : 10.101619 s : Deo FlopsPerSite is 1344.0
|
||||
Grid : Message : 10.101624 s : Deo mflop/s = 3933599.5 (1412.7) 3835758.7-4008152.3
|
||||
Grid : Message : 10.101627 s : Deo mflop/s per rank 491699.9
|
||||
Grid : Message : 10.101628 s : Deo mflop/s per node 3933599.5
|
||||
Grid : Message : 10.101629 s : ==================================================================================
|
||||
Grid : Message : 10.101629 s : 24^4 x 1 Deo Best mflop/s = 3933599.5 ; 3933599.5 per node
|
||||
Grid : Message : 10.101631 s : 24^4 x 1 Deo Worst mflop/s = 3861903.3 ; 3861903.3 per node
|
||||
Grid : Message : 10.101633 s : G/S/C ; G/O/C ; G/S/S ; G/O/S
|
||||
Grid : Message : 10.101633 s : 3861903.3 ; 3933599.5 ;
|
||||
Grid : Message : 10.101634 s : ==================================================================================
|
||||
Grid : Message : 10.139642 s : ==================================================================================
|
||||
Grid : Message : 10.139652 s : Benchmark DWF on 32^4 local volume
|
||||
Grid : Message : 10.139653 s : * Nc : 3
|
||||
Grid : Message : 10.139654 s : * Global volume : 32 64 64 64
|
||||
Grid : Message : 10.139661 s : * Ls : 1
|
||||
Grid : Message : 10.139661 s : * ranks : 8
|
||||
Grid : Message : 10.139662 s : * nodes : 1
|
||||
Grid : Message : 10.139662 s : * ranks/node : 8
|
||||
Grid : Message : 10.139662 s : * ranks geom : 1 2 2 2
|
||||
Grid : Message : 10.139663 s : * Using 1 threads
|
||||
Grid : Message : 10.139663 s : ==================================================================================
|
||||
Grid : Message : 10.502161 s : Initialised RNGs
|
||||
Grid : Message : 32.211092 s : ==================================================================================
|
||||
Grid : Message : 32.211107 s : * Using GENERIC Nc WilsonKernels
|
||||
Grid : Message : 32.211108 s : * Using Overlapped Comms/Compute
|
||||
Grid : Message : 32.211109 s : * SINGLE precision
|
||||
Grid : Message : 32.211110 s : ==================================================================================
|
||||
Grid : Message : 32.841718 s : Deo FlopsPerSite is 1344.0
|
||||
Grid : Message : 32.841732 s : Deo mflop/s = 4988499.9 (2722.5) 4244837.8-5120022.3
|
||||
Grid : Message : 32.841736 s : Deo mflop/s per rank 623562.5
|
||||
Grid : Message : 32.841737 s : Deo mflop/s per node 4988499.9
|
||||
Grid : Message : 32.841738 s : ==================================================================================
|
||||
Grid : Message : 32.841739 s : * Using UNROLLED WilsonKernels
|
||||
Grid : Message : 32.841739 s : * Using Overlapped Comms/Compute
|
||||
Grid : Message : 32.841740 s : * SINGLE precision
|
||||
Grid : Message : 32.841740 s : ==================================================================================
|
||||
Grid : Message : 33.407434 s : Deo FlopsPerSite is 1344.0
|
||||
Grid : Message : 33.407442 s : Deo mflop/s = 5082758.0 (1883.1) 4971027.0-5205119.6
|
||||
Grid : Message : 33.407446 s : Deo mflop/s per rank 635344.7
|
||||
Grid : Message : 33.407447 s : Deo mflop/s per node 5082758.0
|
||||
Grid : Message : 33.407448 s : ==================================================================================
|
||||
Grid : Message : 33.407448 s : 32^4 x 1 Deo Best mflop/s = 5082758.0 ; 5082758.0 per node
|
||||
Grid : Message : 33.407450 s : 32^4 x 1 Deo Worst mflop/s = 4988499.9 ; 4988499.9 per node
|
||||
Grid : Message : 33.407452 s : G/S/C ; G/O/C ; G/S/S ; G/O/S
|
||||
Grid : Message : 33.407452 s : 4988499.9 ; 5082758.0 ;
|
||||
Grid : Message : 33.407453 s : ==================================================================================
|
||||
Grid : Message : 33.506785 s : ==================================================================================
|
||||
Grid : Message : 33.506798 s : Domain wall dslash 4D vectorised
|
||||
Grid : Message : 33.506799 s : ==================================================================================
|
||||
Grid : Message : 33.530686 s : ==================================================================================
|
||||
Grid : Message : 33.530689 s : Benchmark DWF on 8^4 local volume
|
||||
Grid : Message : 33.530690 s : * Nc : 3
|
||||
Grid : Message : 33.530691 s : * Global volume : 8 16 16 16
|
||||
Grid : Message : 33.530698 s : * Ls : 12
|
||||
Grid : Message : 33.530699 s : * ranks : 8
|
||||
Grid : Message : 33.530700 s : * nodes : 1
|
||||
Grid : Message : 33.530701 s : * ranks/node : 8
|
||||
Grid : Message : 33.530702 s : * ranks geom : 1 2 2 2
|
||||
Grid : Message : 33.530703 s : * Using 1 threads
|
||||
Grid : Message : 33.530704 s : ==================================================================================
|
||||
Grid : Message : 33.545465 s : Initialised RNGs
|
||||
Grid : Message : 33.752384 s : ==================================================================================
|
||||
Grid : Message : 33.752397 s : * Using GENERIC Nc WilsonKernels
|
||||
Grid : Message : 33.752398 s : * Using Overlapped Comms/Compute
|
||||
Grid : Message : 33.752399 s : * SINGLE precision
|
||||
Grid : Message : 33.752400 s : ==================================================================================
|
||||
Grid : Message : 33.851964 s : Deo FlopsPerSite is 1344.0
|
||||
Grid : Message : 33.851977 s : Deo mflop/s = 1383287.7 (849.8) 1321205.8-1420651.4
|
||||
Grid : Message : 33.851981 s : Deo mflop/s per rank 172911.0
|
||||
Grid : Message : 33.851983 s : Deo mflop/s per node 1383287.7
|
||||
Grid : Message : 33.851984 s : ==================================================================================
|
||||
Grid : Message : 33.851984 s : * Using UNROLLED WilsonKernels
|
||||
Grid : Message : 33.851984 s : * Using Overlapped Comms/Compute
|
||||
Grid : Message : 33.851984 s : * SINGLE precision
|
||||
Grid : Message : 33.851984 s : ==================================================================================
|
||||
Grid : Message : 33.949235 s : Deo FlopsPerSite is 1344.0
|
||||
Grid : Message : 33.949240 s : Deo mflop/s = 1386335.8 (734.6) 1341325.6-1428330.6
|
||||
Grid : Message : 33.949243 s : Deo mflop/s per rank 173292.0
|
||||
Grid : Message : 33.949244 s : Deo mflop/s per node 1386335.8
|
||||
Grid : Message : 33.949245 s : ==================================================================================
|
||||
Grid : Message : 33.949245 s : 8^4 x 12 Deo Best mflop/s = 1386335.8 ; 1386335.8 per node
|
||||
Grid : Message : 33.949247 s : 8^4 x 12 Deo Worst mflop/s = 1383287.7 ; 1383287.7 per node
|
||||
Grid : Message : 33.949249 s : G/S/C ; G/O/C ; G/S/S ; G/O/S
|
||||
Grid : Message : 33.949249 s : 1383287.7 ; 1386335.8 ;
|
||||
Grid : Message : 33.949250 s : ==================================================================================
|
||||
Grid : Message : 33.952789 s : ==================================================================================
|
||||
Grid : Message : 33.952793 s : Benchmark DWF on 12^4 local volume
|
||||
Grid : Message : 33.952794 s : * Nc : 3
|
||||
Grid : Message : 33.952795 s : * Global volume : 12 24 24 24
|
||||
Grid : Message : 33.952800 s : * Ls : 12
|
||||
Grid : Message : 33.952801 s : * ranks : 8
|
||||
Grid : Message : 33.952802 s : * nodes : 1
|
||||
Grid : Message : 33.952803 s : * ranks/node : 8
|
||||
Grid : Message : 33.952803 s : * ranks geom : 1 2 2 2
|
||||
Grid : Message : 33.952804 s : * Using 1 threads
|
||||
Grid : Message : 33.952805 s : ==================================================================================
|
||||
Grid : Message : 34.362200 s : Initialised RNGs
|
||||
Grid : Message : 34.969821 s : ==================================================================================
|
||||
Grid : Message : 34.969832 s : * Using GENERIC Nc WilsonKernels
|
||||
Grid : Message : 34.969833 s : * Using Overlapped Comms/Compute
|
||||
Grid : Message : 34.969834 s : * SINGLE precision
|
||||
Grid : Message : 34.969835 s : ==================================================================================
|
||||
Grid : Message : 35.135545 s : Deo FlopsPerSite is 1344.0
|
||||
Grid : Message : 35.135558 s : Deo mflop/s = 4208495.6 (2165.0) 4053699.5-4315228.5
|
||||
Grid : Message : 35.135562 s : Deo mflop/s per rank 526062.0
|
||||
Grid : Message : 35.135563 s : Deo mflop/s per node 4208495.6
|
||||
Grid : Message : 35.135564 s : ==================================================================================
|
||||
Grid : Message : 35.135565 s : * Using UNROLLED WilsonKernels
|
||||
Grid : Message : 35.135565 s : * Using Overlapped Comms/Compute
|
||||
Grid : Message : 35.135565 s : * SINGLE precision
|
||||
Grid : Message : 35.135565 s : ==================================================================================
|
||||
Grid : Message : 35.299710 s : Deo FlopsPerSite is 1344.0
|
||||
Grid : Message : 35.299715 s : Deo mflop/s = 4156968.7 (1450.2) 4053699.5-4219939.5
|
||||
Grid : Message : 35.299718 s : Deo mflop/s per rank 519621.1
|
||||
Grid : Message : 35.299719 s : Deo mflop/s per node 4156968.7
|
||||
Grid : Message : 35.299721 s : ==================================================================================
|
||||
Grid : Message : 35.299721 s : 12^4 x 12 Deo Best mflop/s = 4208495.6 ; 4208495.6 per node
|
||||
Grid : Message : 35.299723 s : 12^4 x 12 Deo Worst mflop/s = 4156968.7 ; 4156968.7 per node
|
||||
Grid : Message : 35.299725 s : G/S/C ; G/O/C ; G/S/S ; G/O/S
|
||||
Grid : Message : 35.299725 s : 4208495.6 ; 4156968.7 ;
|
||||
Grid : Message : 35.299726 s : ==================================================================================
|
||||
Grid : Message : 35.309687 s : ==================================================================================
|
||||
Grid : Message : 35.309693 s : Benchmark DWF on 16^4 local volume
|
||||
Grid : Message : 35.309694 s : * Nc : 3
|
||||
Grid : Message : 35.309695 s : * Global volume : 16 32 32 32
|
||||
Grid : Message : 35.309701 s : * Ls : 12
|
||||
Grid : Message : 35.309702 s : * ranks : 8
|
||||
Grid : Message : 35.309703 s : * nodes : 1
|
||||
Grid : Message : 35.309704 s : * ranks/node : 8
|
||||
Grid : Message : 35.309704 s : * ranks geom : 1 2 2 2
|
||||
Grid : Message : 35.309705 s : * Using 1 threads
|
||||
Grid : Message : 35.309706 s : ==================================================================================
|
||||
Grid : Message : 35.448780 s : Initialised RNGs
|
||||
Grid : Message : 38.468764 s : ==================================================================================
|
||||
Grid : Message : 38.468777 s : * Using GENERIC Nc WilsonKernels
|
||||
Grid : Message : 38.468778 s : * Using Overlapped Comms/Compute
|
||||
Grid : Message : 38.468779 s : * SINGLE precision
|
||||
Grid : Message : 38.468780 s : ==================================================================================
|
||||
Grid : Message : 38.801024 s : Deo FlopsPerSite is 1344.0
|
||||
Grid : Message : 38.801040 s : Deo mflop/s = 6674673.6 (2168.6) 6484445.4-6797200.1
|
||||
Grid : Message : 38.801044 s : Deo mflop/s per rank 834334.2
|
||||
Grid : Message : 38.801045 s : Deo mflop/s per node 6674673.6
|
||||
Grid : Message : 38.801046 s : ==================================================================================
|
||||
Grid : Message : 38.801047 s : * Using UNROLLED WilsonKernels
|
||||
Grid : Message : 38.801048 s : * Using Overlapped Comms/Compute
|
||||
Grid : Message : 38.801049 s : * SINGLE precision
|
||||
Grid : Message : 38.801049 s : ==================================================================================
|
||||
Grid : Message : 39.129777 s : Deo FlopsPerSite is 1344.0
|
||||
Grid : Message : 39.129783 s : Deo mflop/s = 6560128.4 (2117.4) 6405846.1-6679081.3
|
||||
Grid : Message : 39.129786 s : Deo mflop/s per rank 820016.1
|
||||
Grid : Message : 39.129787 s : Deo mflop/s per node 6560128.4
|
||||
Grid : Message : 39.129788 s : ==================================================================================
|
||||
Grid : Message : 39.129788 s : 16^4 x 12 Deo Best mflop/s = 6674673.6 ; 6674673.6 per node
|
||||
Grid : Message : 39.129790 s : 16^4 x 12 Deo Worst mflop/s = 6560128.4 ; 6560128.4 per node
|
||||
Grid : Message : 39.129792 s : G/S/C ; G/O/C ; G/S/S ; G/O/S
|
||||
Grid : Message : 39.129793 s : 6674673.6 ; 6560128.4 ;
|
||||
Grid : Message : 39.129795 s : ==================================================================================
|
||||
Grid : Message : 39.161251 s : ==================================================================================
|
||||
Grid : Message : 39.161265 s : Benchmark DWF on 24^4 local volume
|
||||
Grid : Message : 39.161266 s : * Nc : 3
|
||||
Grid : Message : 39.161267 s : * Global volume : 24 48 48 48
|
||||
Grid : Message : 39.161274 s : * Ls : 12
|
||||
Grid : Message : 39.161275 s : * ranks : 8
|
||||
Grid : Message : 39.161276 s : * nodes : 1
|
||||
Grid : Message : 39.161277 s : * ranks/node : 8
|
||||
Grid : Message : 39.161277 s : * ranks geom : 1 2 2 2
|
||||
Grid : Message : 39.161278 s : * Using 1 threads
|
||||
Grid : Message : 39.161279 s : ==================================================================================
|
||||
Grid : Message : 39.911996 s : Initialised RNGs
|
||||
Grid : Message : 54.971914 s : ==================================================================================
|
||||
Grid : Message : 54.971928 s : * Using GENERIC Nc WilsonKernels
|
||||
Grid : Message : 54.971929 s : * Using Overlapped Comms/Compute
|
||||
Grid : Message : 54.971930 s : * SINGLE precision
|
||||
Grid : Message : 54.971931 s : ==================================================================================
|
||||
Grid : Message : 56.309445 s : Deo FlopsPerSite is 1344.0
|
||||
Grid : Message : 56.309462 s : Deo mflop/s = 8572660.7 (1374.9) 8483366.4-8644399.6
|
||||
Grid : Message : 56.309467 s : Deo mflop/s per rank 1071582.6
|
||||
Grid : Message : 56.309468 s : Deo mflop/s per node 8572660.7
|
||||
Grid : Message : 56.309469 s : ==================================================================================
|
||||
Grid : Message : 56.309471 s : * Using UNROLLED WilsonKernels
|
||||
Grid : Message : 56.309472 s : * Using Overlapped Comms/Compute
|
||||
Grid : Message : 56.309473 s : * SINGLE precision
|
||||
Grid : Message : 56.309474 s : ==================================================================================
|
||||
Grid : Message : 57.640707 s : Deo FlopsPerSite is 1344.0
|
||||
Grid : Message : 57.640714 s : Deo mflop/s = 8200141.3 (1445.8) 8113545.6-8286307.9
|
||||
Grid : Message : 57.640717 s : Deo mflop/s per rank 1025017.7
|
||||
Grid : Message : 57.640718 s : Deo mflop/s per node 8200141.3
|
||||
Grid : Message : 57.640719 s : ==================================================================================
|
||||
Grid : Message : 57.640720 s : 24^4 x 12 Deo Best mflop/s = 8572660.7 ; 8572660.7 per node
|
||||
Grid : Message : 57.640723 s : 24^4 x 12 Deo Worst mflop/s = 8200141.3 ; 8200141.3 per node
|
||||
Grid : Message : 57.640725 s : G/S/C ; G/O/C ; G/S/S ; G/O/S
|
||||
Grid : Message : 57.640725 s : 8572660.7 ; 8200141.3 ;
|
||||
Grid : Message : 57.640727 s : ==================================================================================
|
||||
Grid : Message : 57.806175 s : ==================================================================================
|
||||
Grid : Message : 57.806190 s : Benchmark DWF on 32^4 local volume
|
||||
Grid : Message : 57.806191 s : * Nc : 3
|
||||
Grid : Message : 57.806192 s : * Global volume : 32 64 64 64
|
||||
Grid : Message : 57.806200 s : * Ls : 12
|
||||
Grid : Message : 57.806200 s : * ranks : 8
|
||||
Grid : Message : 57.806200 s : * nodes : 1
|
||||
Grid : Message : 57.806200 s : * ranks/node : 8
|
||||
Grid : Message : 57.806200 s : * ranks geom : 1 2 2 2
|
||||
Grid : Message : 57.806201 s : * Using 1 threads
|
||||
Grid : Message : 57.806201 s : ==================================================================================
|
||||
Grid : Message : 60.313153 s : Initialised RNGs
|
||||
Grid : Message : 107.830286 s : ==================================================================================
|
||||
Grid : Message : 107.830306 s : * Using GENERIC Nc WilsonKernels
|
||||
Grid : Message : 107.830307 s : * Using Overlapped Comms/Compute
|
||||
Grid : Message : 107.830308 s : * SINGLE precision
|
||||
Grid : Message : 107.830309 s : ==================================================================================
|
||||
Grid : Message : 111.479603 s : Deo FlopsPerSite is 1344.0
|
||||
Grid : Message : 111.479625 s : Deo mflop/s = 9771387.8 (1000.8) 9688589.9-9830800.0
|
||||
Grid : Message : 111.479629 s : Deo mflop/s per rank 1221423.5
|
||||
Grid : Message : 111.479630 s : Deo mflop/s per node 9771387.8
|
||||
Grid : Message : 111.479631 s : ==================================================================================
|
||||
Grid : Message : 111.479631 s : * Using UNROLLED WilsonKernels
|
||||
Grid : Message : 111.479631 s : * Using Overlapped Comms/Compute
|
||||
Grid : Message : 111.479631 s : * SINGLE precision
|
||||
Grid : Message : 111.479631 s : ==================================================================================
|
||||
Grid : Message : 115.406559 s : Deo FlopsPerSite is 1344.0
|
||||
Grid : Message : 115.406573 s : Deo mflop/s = 8785297.3 (1739.6) 8628282.5-8911307.5
|
||||
Grid : Message : 115.406576 s : Deo mflop/s per rank 1098162.2
|
||||
Grid : Message : 115.406577 s : Deo mflop/s per node 8785297.3
|
||||
Grid : Message : 115.406578 s : ==================================================================================
|
||||
Grid : Message : 115.406578 s : 32^4 x 12 Deo Best mflop/s = 9771387.8 ; 9771387.8 per node
|
||||
Grid : Message : 115.406580 s : 32^4 x 12 Deo Worst mflop/s = 8785297.3 ; 8785297.3 per node
|
||||
Grid : Message : 115.406581 s : G/S/C ; G/O/C ; G/S/S ; G/O/S
|
||||
Grid : Message : 115.406581 s : 9771387.8 ; 8785297.3 ;
|
||||
Grid : Message : 115.406582 s : ==================================================================================
|
||||
Grid : Message : 115.918888 s : ==================================================================================
|
||||
Grid : Message : 115.918902 s : Improved Staggered dslash 4D vectorised
|
||||
Grid : Message : 115.918903 s : ==================================================================================
|
||||
Grid : Message : 115.920344 s : ==================================================================================
|
||||
Grid : Message : 115.920346 s : Benchmark ImprovedStaggered on 8^4 local volume
|
||||
Grid : Message : 115.920347 s : * Global volume : 8 16 16 16
|
||||
Grid : Message : 115.920354 s : * ranks : 8
|
||||
Grid : Message : 115.920355 s : * nodes : 1
|
||||
Grid : Message : 115.920356 s : * ranks/node : 8
|
||||
Grid : Message : 115.920357 s : * ranks geom : 1 2 2 2
|
||||
Grid : Message : 115.920376 s : * Using 1 threads
|
||||
Grid : Message : 115.920377 s : ==================================================================================
|
||||
Grid : Message : 115.923522 s : Initialised RNGs
|
||||
Grid : Message : 116.904870 s : ==================================================================================
|
||||
Grid : Message : 116.904950 s : * Using GENERIC Nc StaggeredKernels
|
||||
Grid : Message : 116.904960 s : * SINGLE precision
|
||||
Grid : Message : 116.904970 s : ==================================================================================
|
||||
Grid : Message : 116.288979 s : Deo mflop/s = 49708.9 (22.9) 44075.3-50609.3
|
||||
Grid : Message : 116.289000 s : Deo mflop/s per rank 6213.6
|
||||
Grid : Message : 116.289002 s : Deo mflop/s per node 49708.9
|
||||
Grid : Message : 116.289003 s : ==================================================================================
|
||||
Grid : Message : 116.289004 s : * SINGLE precision
|
||||
Grid : Message : 116.289005 s : ==================================================================================
|
||||
Grid : Message : 116.481632 s : Deo mflop/s = 49737.1 (13.5) 48517.0-50338.0
|
||||
Grid : Message : 116.481639 s : Deo mflop/s per rank 6217.1
|
||||
Grid : Message : 116.481640 s : Deo mflop/s per node 49737.1
|
||||
Grid : Message : 116.481641 s : ==================================================================================
|
||||
Grid : Message : 116.481642 s : 8^4 Deo Best mflop/s = 49737.1 ; 49737.1 per node
|
||||
Grid : Message : 116.481644 s : 8^4 Deo Worst mflop/s = 49708.9 ; 49708.9 per node
|
||||
Grid : Message : 116.481646 s : G/S/C ; G/O/C ; G/S/S ; G/O/S
|
||||
Grid : Message : 116.481646 s : 49708.9 ; 49737.1 ;
|
||||
Grid : Message : 116.481647 s : ==================================================================================
|
||||
Grid : Message : 116.483458 s : ==================================================================================
|
||||
Grid : Message : 116.483461 s : Benchmark ImprovedStaggered on 12^4 local volume
|
||||
Grid : Message : 116.483462 s : * Global volume : 12 24 24 24
|
||||
Grid : Message : 116.483465 s : * ranks : 8
|
||||
Grid : Message : 116.483466 s : * nodes : 1
|
||||
Grid : Message : 116.483466 s : * ranks/node : 8
|
||||
Grid : Message : 116.483466 s : * ranks geom : 1 2 2 2
|
||||
Grid : Message : 116.483467 s : * Using 1 threads
|
||||
Grid : Message : 116.483468 s : ==================================================================================
|
||||
Grid : Message : 116.489279 s : Initialised RNGs
|
||||
Grid : Message : 116.945016 s : ==================================================================================
|
||||
Grid : Message : 116.945025 s : * Using GENERIC Nc StaggeredKernels
|
||||
Grid : Message : 116.945026 s : * SINGLE precision
|
||||
Grid : Message : 116.945027 s : ==================================================================================
|
||||
Grid : Message : 117.159821 s : Deo mflop/s = 229778.4 (89.5) 223656.1-233547.5
|
||||
Grid : Message : 117.159835 s : Deo mflop/s per rank 28722.3
|
||||
Grid : Message : 117.159837 s : Deo mflop/s per node 229778.4
|
||||
Grid : Message : 117.159838 s : ==================================================================================
|
||||
Grid : Message : 117.159838 s : * SINGLE precision
|
||||
Grid : Message : 117.159838 s : ==================================================================================
|
||||
Grid : Message : 117.371102 s : Deo mflop/s = 229516.6 (61.8) 225781.1-233547.5
|
||||
Grid : Message : 117.371109 s : Deo mflop/s per rank 28689.6
|
||||
Grid : Message : 117.371110 s : Deo mflop/s per node 229516.6
|
||||
Grid : Message : 117.371111 s : ==================================================================================
|
||||
Grid : Message : 117.371111 s : 12^4 Deo Best mflop/s = 229778.4 ; 229778.4 per node
|
||||
Grid : Message : 117.371113 s : 12^4 Deo Worst mflop/s = 229516.6 ; 229516.6 per node
|
||||
Grid : Message : 117.371115 s : G/S/C ; G/O/C ; G/S/S ; G/O/S
|
||||
Grid : Message : 117.371115 s : 229778.4 ; 229516.6 ;
|
||||
Grid : Message : 117.371116 s : ==================================================================================
|
||||
Grid : Message : 117.373669 s : ==================================================================================
|
||||
Grid : Message : 117.373673 s : Benchmark ImprovedStaggered on 16^4 local volume
|
||||
Grid : Message : 117.373674 s : * Global volume : 16 32 32 32
|
||||
Grid : Message : 117.373678 s : * ranks : 8
|
||||
Grid : Message : 117.373679 s : * nodes : 1
|
||||
Grid : Message : 117.373679 s : * ranks/node : 8
|
||||
Grid : Message : 117.373679 s : * ranks geom : 1 2 2 2
|
||||
Grid : Message : 117.373680 s : * Using 1 threads
|
||||
Grid : Message : 117.373681 s : ==================================================================================
|
||||
Grid : Message : 117.386495 s : Initialised RNGs
|
||||
Grid : Message : 118.755695 s : ==================================================================================
|
||||
Grid : Message : 118.755706 s : * Using GENERIC Nc StaggeredKernels
|
||||
Grid : Message : 118.755707 s : * SINGLE precision
|
||||
Grid : Message : 118.755708 s : ==================================================================================
|
||||
Grid : Message : 119.178990 s : Deo mflop/s = 608844.0 (126.1) 596065.5-615608.7
|
||||
Grid : Message : 119.179160 s : Deo mflop/s per rank 76105.5
|
||||
Grid : Message : 119.179180 s : Deo mflop/s per node 608844.0
|
||||
Grid : Message : 119.179190 s : ==================================================================================
|
||||
Grid : Message : 119.179200 s : * SINGLE precision
|
||||
Grid : Message : 119.179200 s : ==================================================================================
|
||||
Grid : Message : 119.271093 s : Deo mflop/s = 605259.7 (188.7) 591372.1-614349.7
|
||||
Grid : Message : 119.271101 s : Deo mflop/s per rank 75657.5
|
||||
Grid : Message : 119.271103 s : Deo mflop/s per node 605259.7
|
||||
Grid : Message : 119.271104 s : ==================================================================================
|
||||
Grid : Message : 119.271105 s : 16^4 Deo Best mflop/s = 608844.0 ; 608844.0 per node
|
||||
Grid : Message : 119.271107 s : 16^4 Deo Worst mflop/s = 605259.7 ; 605259.7 per node
|
||||
Grid : Message : 119.271109 s : G/S/C ; G/O/C ; G/S/S ; G/O/S
|
||||
Grid : Message : 119.271109 s : 608844.0 ; 605259.7 ;
|
||||
Grid : Message : 119.271110 s : ==================================================================================
|
||||
Grid : Message : 119.275303 s : ==================================================================================
|
||||
Grid : Message : 119.275308 s : Benchmark ImprovedStaggered on 24^4 local volume
|
||||
Grid : Message : 119.275309 s : * Global volume : 24 48 48 48
|
||||
Grid : Message : 119.275315 s : * ranks : 8
|
||||
Grid : Message : 119.275316 s : * nodes : 1
|
||||
Grid : Message : 119.275317 s : * ranks/node : 8
|
||||
Grid : Message : 119.275317 s : * ranks geom : 1 2 2 2
|
||||
Grid : Message : 119.275318 s : * Using 1 threads
|
||||
Grid : Message : 119.275319 s : ==================================================================================
|
||||
Grid : Message : 119.328765 s : Initialised RNGs
|
||||
Grid : Message : 126.866160 s : ==================================================================================
|
||||
Grid : Message : 126.866270 s : * Using GENERIC Nc StaggeredKernels
|
||||
Grid : Message : 126.866280 s : * SINGLE precision
|
||||
Grid : Message : 126.866290 s : ==================================================================================
|
||||
Grid : Message : 126.604376 s : Deo mflop/s = 1641161.6 (335.5) 1619660.5-1663961.9
|
||||
Grid : Message : 126.604392 s : Deo mflop/s per rank 205145.2
|
||||
Grid : Message : 126.604394 s : Deo mflop/s per node 1641161.6
|
||||
Grid : Message : 126.604395 s : ==================================================================================
|
||||
Grid : Message : 126.604396 s : * SINGLE precision
|
||||
Grid : Message : 126.604396 s : ==================================================================================
|
||||
Grid : Message : 127.829420 s : Deo mflop/s = 1620972.4 (344.9) 1602593.4-1644174.3
|
||||
Grid : Message : 127.829520 s : Deo mflop/s per rank 202621.6
|
||||
Grid : Message : 127.829530 s : Deo mflop/s per node 1620972.4
|
||||
Grid : Message : 127.829540 s : ==================================================================================
|
||||
Grid : Message : 127.829550 s : 24^4 Deo Best mflop/s = 1641161.6 ; 1641161.6 per node
|
||||
Grid : Message : 127.829570 s : 24^4 Deo Worst mflop/s = 1620972.4 ; 1620972.4 per node
|
||||
Grid : Message : 127.829590 s : G/S/C ; G/O/C ; G/S/S ; G/O/S
|
||||
Grid : Message : 127.829590 s : 1641161.6 ; 1620972.4 ;
|
||||
Grid : Message : 127.829600 s : ==================================================================================
|
||||
Grid : Message : 127.107891 s : ==================================================================================
|
||||
Grid : Message : 127.107903 s : Benchmark ImprovedStaggered on 32^4 local volume
|
||||
Grid : Message : 127.107904 s : * Global volume : 32 64 64 64
|
||||
Grid : Message : 127.107912 s : * ranks : 8
|
||||
Grid : Message : 127.107913 s : * nodes : 1
|
||||
Grid : Message : 127.107914 s : * ranks/node : 8
|
||||
Grid : Message : 127.107914 s : * ranks geom : 1 2 2 2
|
||||
Grid : Message : 127.107915 s : * Using 1 threads
|
||||
Grid : Message : 127.107916 s : ==================================================================================
|
||||
Grid : Message : 127.257116 s : Initialised RNGs
|
||||
Grid : Message : 148.527930 s : ==================================================================================
|
||||
Grid : Message : 148.527941 s : * Using GENERIC Nc StaggeredKernels
|
||||
Grid : Message : 148.527942 s : * SINGLE precision
|
||||
Grid : Message : 148.527943 s : ==================================================================================
|
||||
Grid : Message : 149.401625 s : Deo mflop/s = 3085543.7 (956.0) 2934476.4-3115147.4
|
||||
Grid : Message : 149.401643 s : Deo mflop/s per rank 385693.0
|
||||
Grid : Message : 149.401645 s : Deo mflop/s per node 3085543.7
|
||||
Grid : Message : 149.401646 s : ==================================================================================
|
||||
Grid : Message : 149.401647 s : * SINGLE precision
|
||||
Grid : Message : 149.401648 s : ==================================================================================
|
||||
Grid : Message : 150.204533 s : Deo mflop/s = 3053468.5 (343.9) 3030688.8-3077255.0
|
||||
Grid : Message : 150.204540 s : Deo mflop/s per rank 381683.6
|
||||
Grid : Message : 150.204541 s : Deo mflop/s per node 3053468.5
|
||||
Grid : Message : 150.204542 s : ==================================================================================
|
||||
Grid : Message : 150.204543 s : 32^4 Deo Best mflop/s = 3085543.7 ; 3085543.7 per node
|
||||
Grid : Message : 150.204545 s : 32^4 Deo Worst mflop/s = 3053468.5 ; 3053468.5 per node
|
||||
Grid : Message : 150.204547 s : G/S/C ; G/O/C ; G/S/S ; G/O/S
|
||||
Grid : Message : 150.204547 s : 3085543.7 ; 3053468.5 ;
|
||||
Grid : Message : 150.204548 s : ==================================================================================
|
||||
Grid : Message : 150.292848 s : ==================================================================================
|
||||
Grid : Message : 150.292864 s : Summary table Ls=12
|
||||
Grid : Message : 150.292866 s : ==================================================================================
|
||||
Grid : Message : 150.292866 s : L Clover DWF4 Staggered
|
||||
Grid : Message : 150.292867 s : 8 154914.0 1386335.8 49737.1
|
||||
Grid : Message : 150.292880 s : 12 693556.6 4208495.6 229778.4
|
||||
Grid : Message : 150.292882 s : 16 1840587.3 6674673.6 608844.0
|
||||
Grid : Message : 150.292884 s : 24 3933599.5 8572660.7 1641161.6
|
||||
Grid : Message : 150.292886 s : 32 5082758.0 9771387.8 3085543.7
|
||||
Grid : Message : 150.292888 s : ==================================================================================
|
||||
Grid : Message : 150.292888 s : ==================================================================================
|
||||
Grid : Message : 150.292888 s : Memory benchmark
|
||||
Grid : Message : 150.292888 s : ==================================================================================
|
||||
Grid : Message : 150.295495 s : ==================================================================================
|
||||
Grid : Message : 150.295497 s : = Benchmarking a*x + y bandwidth
|
||||
Grid : Message : 150.295498 s : ==================================================================================
|
||||
Grid : Message : 150.295499 s : L bytes GB/s Gflop/s seconds GB/s / node
|
||||
Grid : Message : 150.295500 s : ----------------------------------------------------------
|
||||
Grid : Message : 160.682233 s : 8 6291456.000 379.297 31.608 10.367 379.297
|
||||
Grid : Message : 161.851979 s : 16 100663296.000 3754.675 312.890 1.047 3754.675
|
||||
Grid : Message : 162.458098 s : 24 509607936.000 6521.472 543.456 0.603 6521.472
|
||||
Grid : Message : 162.924116 s : 32 1610612736.000 8513.456 709.455 0.462 8513.456
|
||||
Grid : Message : 163.363877 s : 40 3932160000.000 9018.902 751.575 0.436 9018.902
|
||||
Grid : Message : 163.363976 s : ==================================================================================
|
||||
Grid : Message : 163.363978 s : Batched BLAS benchmark
|
||||
Grid : Message : 163.363979 s : ==================================================================================
|
||||
hipblasCreate
|
||||
Grid : Message : 163.364046 s : ==================================================================================
|
||||
Grid : Message : 163.364048 s : = batched GEMM (double precision)
|
||||
Grid : Message : 163.364048 s : ==================================================================================
|
||||
Grid : Message : 163.364048 s : M N K Gflop/s / rank (coarse mrhs)
|
||||
Grid : Message : 163.364049 s : ----------------------------------------------------------
|
||||
Grid : Message : 163.438476 s : 16 8 16 256 0.565
|
||||
Grid : Message : 163.438944 s : 16 16 16 256 243.148
|
||||
Grid : Message : 163.439501 s : 16 32 16 256 440.347
|
||||
Grid : Message : 163.440003 s : 32 8 32 256 439.194
|
||||
Grid : Message : 163.440463 s : 32 16 32 256 847.334
|
||||
Grid : Message : 163.441051 s : 32 32 32 256 1430.893
|
||||
Grid : Message : 163.441679 s : 64 8 64 256 1242.757
|
||||
Grid : Message : 163.442354 s : 64 16 64 256 2196.689
|
||||
Grid : Message : 163.443196 s : 64 32 64 256 3697.458
|
||||
Grid : Message : 163.443200 s : ----------------------------------------------------------
|
||||
Grid : Message : 163.443201 s : M N K Gflop/s / rank (block project)
|
||||
Grid : Message : 163.443202 s : ----------------------------------------------------------
|
||||
Grid : Message : 163.444013 s : 16 8 256 256 899.583
|
||||
Grid : Message : 163.444933 s : 16 16 256 256 1673.538
|
||||
Grid : Message : 163.446013 s : 16 32 256 256 2959.597
|
||||
Grid : Message : 163.446951 s : 32 8 256 256 1558.859
|
||||
Grid : Message : 163.447970 s : 32 16 256 256 2864.839
|
||||
Grid : Message : 163.449240 s : 32 32 256 256 4810.671
|
||||
Grid : Message : 163.450524 s : 64 8 256 256 2386.093
|
||||
Grid : Message : 163.451877 s : 64 16 256 256 4451.666
|
||||
Grid : Message : 163.453806 s : 64 32 256 256 5942.124
|
||||
Grid : Message : 163.453809 s : ----------------------------------------------------------
|
||||
Grid : Message : 163.453810 s : M N K Gflop/s / rank (block promote)
|
||||
Grid : Message : 163.453811 s : ----------------------------------------------------------
|
||||
Grid : Message : 163.454716 s : 8 256 16 256 799.867
|
||||
Grid : Message : 163.455690 s : 16 256 16 256 1584.625
|
||||
Grid : Message : 163.457209 s : 32 256 16 256 1949.422
|
||||
Grid : Message : 163.458254 s : 8 256 32 256 1389.417
|
||||
Grid : Message : 163.459339 s : 16 256 32 256 2668.344
|
||||
Grid : Message : 163.461158 s : 32 256 32 256 3234.162
|
||||
Grid : Message : 163.462566 s : 8 256 64 256 2150.925
|
||||
Grid : Message : 163.464066 s : 16 256 64 256 4012.488
|
||||
Grid : Message : 163.466272 s : 32 256 64 256 5154.786
|
||||
Grid : Message : 163.466276 s : ==================================================================================
|
||||
Grid : Message : 163.466277 s : ==================================================================================
|
||||
Grid : Message : 163.466278 s : Communications benchmark
|
||||
Grid : Message : 163.466279 s : ==================================================================================
|
||||
Grid : Message : 163.466280 s : ====================================================================================================
|
||||
Grid : Message : 163.466280 s : = Benchmarking threaded STENCIL halo exchange in 3 dimensions
|
||||
Grid : Message : 163.466281 s : ====================================================================================================
|
||||
Grid : Message : 163.466281 s : L Ls bytes MB/s uni MB/s bidi
|
||||
Grid : Message : 163.521339 s : 16 12 4718592 122513.099 245026.198
|
||||
Grid : Message : 163.551417 s : 16 12 4718592 125590.498 251180.996
|
||||
Grid : Message : 163.572339 s : 16 12 4718592 180555.489 361110.977
|
||||
Grid : Message : 163.602810 s : 16 12 4718592 123949.223 247898.447
|
||||
Grid : Message : 163.633041 s : 16 12 4718592 124933.761 249867.523
|
||||
Grid : Message : 163.654084 s : 16 12 4718592 179516.530 359033.061
|
||||
Grid : Message : 163.756280 s : 24 12 15925248 127515.473 255030.946
|
||||
Grid : Message : 163.852651 s : 24 12 15925248 132226.945 264453.890
|
||||
Grid : Message : 163.917510 s : 24 12 15925248 196474.591 392949.183
|
||||
Grid : Message : 164.170390 s : 24 12 15925248 128020.322 256040.644
|
||||
Grid : Message : 164.113321 s : 24 12 15925248 132340.948 264681.896
|
||||
Grid : Message : 164.178314 s : 24 12 15925248 196051.311 392102.622
|
||||
Grid : Message : 164.413983 s : 32 12 37748736 129411.666 258823.333
|
||||
Grid : Message : 164.639218 s : 32 12 37748736 134090.789 268181.577
|
||||
Grid : Message : 164.789675 s : 32 12 37748736 200739.096 401478.191
|
||||
Grid : Message : 165.228910 s : 32 12 37748736 129497.681 258995.363
|
||||
Grid : Message : 165.248096 s : 32 12 37748736 134103.293 268206.586
|
||||
Grid : Message : 165.398958 s : 32 12 37748736 200198.805 400397.611
|
||||
Grid : Message : 165.399411 s : ==================================================================================
|
||||
Grid : Message : 165.399413 s : Per Node Summary table Ls=12
|
||||
Grid : Message : 165.399414 s : ==================================================================================
|
||||
Grid : Message : 165.399414 s : L Clover DWF4 Staggered (GF/s per node)
|
||||
Grid : Message : 165.399417 s : 8 154914.003 1386335.817 49737.127
|
||||
Grid : Message : 165.399423 s : 12 693556.579 4208495.611 229778.435
|
||||
Grid : Message : 165.399426 s : 16 1840587.280 6674673.647 608844.000
|
||||
Grid : Message : 165.399429 s : 24 3933599.545 8572660.656 1641161.613
|
||||
Grid : Message : 165.399432 s : 32 5082757.996 9771387.820 3085543.742
|
||||
Grid : Message : 165.399435 s : ==================================================================================
|
||||
Grid : Message : 165.399435 s : ==================================================================================
|
||||
Grid : Message : 165.399435 s : Comparison point result: 9172024.238 Mflop/s per node
|
||||
Grid : Message : 165.399436 s : Comparison point is 0.5*(9771387.820+8572660.656)
|
||||
Grid : Message : 165.399438 s : ==================================================================================
|
||||
Grid : Message : 165.399438 s : *******************************************
|
||||
Grid : Message : 165.399438 s : ******* Grid Finalize ******
|
||||
Grid : Message : 165.399438 s : *******************************************
|
43
systems/Frontier/benchmarks/bench2.slurm
Executable file
43
systems/Frontier/benchmarks/bench2.slurm
Executable file
@ -0,0 +1,43 @@
|
||||
#!/bin/bash -l
|
||||
#SBATCH --job-name=bench
|
||||
##SBATCH --partition=small-g
|
||||
#SBATCH --nodes=2
|
||||
#SBATCH --ntasks-per-node=8
|
||||
#SBATCH --cpus-per-task=7
|
||||
#SBATCH --gpus-per-node=8
|
||||
#SBATCH --time=00:10:00
|
||||
#SBATCH --account=phy157_dwf
|
||||
#SBATCH --gpu-bind=none
|
||||
#SBATCH --exclusive
|
||||
#SBATCH --mem=0
|
||||
|
||||
cat << EOF > select_gpu
|
||||
#!/bin/bash
|
||||
export GPU_MAP=(0 1 2 3 7 6 5 4)
|
||||
export NUMA_MAP=(3 3 1 1 2 2 0 0)
|
||||
export GPU=\${GPU_MAP[\$SLURM_LOCALID]}
|
||||
export NUMA=\${NUMA_MAP[\$SLURM_LOCALID]}
|
||||
export HIP_VISIBLE_DEVICES=\$GPU
|
||||
unset ROCR_VISIBLE_DEVICES
|
||||
echo RANK \$SLURM_LOCALID using GPU \$GPU
|
||||
exec numactl -m \$NUMA -N \$NUMA \$*
|
||||
EOF
|
||||
|
||||
chmod +x ./select_gpu
|
||||
|
||||
root=$HOME/Frontier/Grid/systems/Frontier/
|
||||
source ${root}/sourceme.sh
|
||||
|
||||
export OMP_NUM_THREADS=7
|
||||
export MPICH_GPU_SUPPORT_ENABLED=1
|
||||
export MPICH_SMP_SINGLE_COPY_MODE=XPMEM
|
||||
|
||||
for vol in 32.32.32.64
|
||||
do
|
||||
srun ./select_gpu ./Benchmark_dwf_fp32 --mpi 2.2.2.2 --accelerator-threads 8 --comms-overlap --shm 2048 --shm-mpi 0 --grid $vol > log.shm0.ov.$vol
|
||||
srun ./select_gpu ./Benchmark_dwf_fp32 --mpi 2.2.2.2 --accelerator-threads 8 --comms-overlap --shm 2048 --shm-mpi 1 --grid $vol > log.shm1.ov.$vol
|
||||
|
||||
srun ./select_gpu ./Benchmark_dwf_fp32 --mpi 2.2.2.2 --accelerator-threads 8 --comms-sequential --shm 2048 --shm-mpi 0 --grid $vol > log.shm0.seq.$vol
|
||||
srun ./select_gpu ./Benchmark_dwf_fp32 --mpi 2.2.2.2 --accelerator-threads 8 --comms-sequential --shm 2048 --shm-mpi 1 --grid $vol > log.shm1.seq.$vol
|
||||
done
|
||||
|
38
systems/Frontier/benchmarks/benchusqcd.slurm
Executable file
38
systems/Frontier/benchmarks/benchusqcd.slurm
Executable file
@ -0,0 +1,38 @@
|
||||
#!/bin/bash -l
|
||||
#SBATCH --job-name=bench
|
||||
##SBATCH --partition=small-g
|
||||
##SBATCH -q debug
|
||||
#SBATCH --nodes=1
|
||||
#SBATCH --ntasks-per-node=8
|
||||
#SBATCH --cpus-per-task=7
|
||||
#SBATCH --gpus-per-node=8
|
||||
#SBATCH --time=00:30:00
|
||||
#SBATCH --account=phy157_dwf
|
||||
#SBATCH --gpu-bind=none
|
||||
#SBATCH --exclusive
|
||||
#SBATCH --mem=0
|
||||
|
||||
cat << EOF > select_gpu
|
||||
#!/bin/bash
|
||||
export GPU_MAP=(0 1 2 3 7 6 5 4)
|
||||
export NUMA_MAP=(3 3 1 1 2 2 0 0)
|
||||
export GPU=\${GPU_MAP[\$SLURM_LOCALID]}
|
||||
export NUMA=\${NUMA_MAP[\$SLURM_LOCALID]}
|
||||
export HIP_VISIBLE_DEVICES=\$GPU
|
||||
unset ROCR_VISIBLE_DEVICES
|
||||
echo RANK \$SLURM_LOCALID using GPU \$GPU
|
||||
exec numactl -m \$NUMA -N \$NUMA \$*
|
||||
EOF
|
||||
|
||||
chmod +x ./select_gpu
|
||||
|
||||
root=$HOME/Frontier/Grid/systems/Frontier/
|
||||
source ${root}/sourceme.sh
|
||||
|
||||
export OMP_NUM_THREADS=7
|
||||
export MPICH_GPU_SUPPORT_ENABLED=1
|
||||
#export MPICH_SMP_SINGLE_COPY_MODE=XPMEM
|
||||
|
||||
srun ./select_gpu ./Benchmark_usqcd --grid 32.32.32.32 --mpi 1.2.2.2 --accelerator-threads 8 --comms-overlap --shm 4096 --shm-mpi 0 --grid $vol > Benchmark_usqcd.log
|
||||
|
||||
|
@ -15,8 +15,8 @@ CLIME=`spack find --paths c-lime@2-3-9 | grep c-lime| cut -c 15-`
|
||||
--with-mpfr=/opt/cray/pe/gcc/mpfr/3.1.4/ \
|
||||
--disable-fermion-reps \
|
||||
CXX=hipcc MPICXX=mpicxx \
|
||||
CXXFLAGS="-fPIC -I{$ROCM_PATH}/include/ -I${MPICH_DIR}/include -L/lib64 -fgpu-sanitize" \
|
||||
LDFLAGS="-L/lib64 -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa -lamdhip64 -lhipblas -lrocblas"
|
||||
CXXFLAGS="-fPIC -I{$ROCM_PATH}/include/ -I${MPICH_DIR}/include -L/lib64 " \
|
||||
LDFLAGS="-L/lib64 -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa -lamdhip64 -lhipblas -lrocblas"
|
||||
|
||||
|
||||
|
||||
|
13
systems/Frontier/mpiwrapper.sh
Executable file
13
systems/Frontier/mpiwrapper.sh
Executable file
@ -0,0 +1,13 @@
|
||||
#!/bin/bash
|
||||
|
||||
lrank=$SLURM_LOCALID
|
||||
lgpu=(0 1 2 3 7 6 5 4)
|
||||
|
||||
export ROCR_VISIBLE_DEVICES=${lgpu[$lrank]}
|
||||
|
||||
echo "`hostname` - $lrank device=$ROCR_VISIBLE_DEVICES "
|
||||
|
||||
$*
|
||||
|
||||
|
||||
|
@ -1,10 +1,9 @@
|
||||
. /autofs/nccs-svm1_home1/paboyle/Crusher/Grid/spack/share/spack/setup-env.sh
|
||||
spack load c-lime
|
||||
#export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/sw/crusher/spack-envs/base/opt/cray-sles15-zen3/gcc-11.2.0/gperftools-2.9.1-72ubwtuc5wcz2meqltbfdb76epufgzo2/lib
|
||||
module load emacs
|
||||
module load PrgEnv-gnu
|
||||
module load rocm
|
||||
module load cray-mpich/8.1.23
|
||||
module load cray-mpich
|
||||
module load gmp
|
||||
module load cray-fftw
|
||||
module load craype-accel-amd-gfx90a
|
||||
|
9
systems/Frontier/wrap.sh
Executable file
9
systems/Frontier/wrap.sh
Executable file
@ -0,0 +1,9 @@
|
||||
#!/bin/sh
|
||||
|
||||
export HIP_VISIBLE_DEVICES=$ROCR_VISIBLE_DEVICES
|
||||
unset ROCR_VISIBLE_DEVICES
|
||||
|
||||
#rank=$SLURM_PROCID
|
||||
#rocprof -d rocprof.$rank -o rocprof.$rank/results.rank$SLURM_PROCID.csv --sys-trace $@
|
||||
|
||||
$@
|
@ -2,11 +2,11 @@
|
||||
--enable-comms=mpi \
|
||||
--enable-simd=GPU \
|
||||
--enable-shm=nvlink \
|
||||
--enable-gen-simd-width=64 \
|
||||
--enable-accelerator=cuda \
|
||||
--enable-gen-simd-width=64 \
|
||||
--disable-gparity \
|
||||
--with-lime=/mnt/lustre/tursafs1/home/tc002/tc002/dc-boyl1/spack/spack/opt/spack/linux-rhel8-zen/gcc-8.4.1/c-lime-2-3-9-e6wxqrid6rqmd45z7n32dxkvkykpvyez \
|
||||
--enable-accelerator-cshift \
|
||||
--disable-unified \
|
||||
CXX=nvcc \
|
||||
LDFLAGS="-cudart shared " \
|
||||
CXXFLAGS="-ccbin mpicxx -gencode arch=compute_80,code=sm_80 -std=c++14 -cudart shared"
|
||||
LDFLAGS="-cudart shared -lcublas " \
|
||||
CXXFLAGS="-ccbin mpicxx -gencode arch=compute_80,code=sm_80 -std=c++17 -cudart shared --diag-suppress 177,550,611"
|
||||
|
@ -1,6 +1,7 @@
|
||||
module load cuda/11.4.1 openmpi/4.1.1-cuda11.4.1 ucx/1.12.0-cuda11.4.1
|
||||
#module load cuda/11.4.1 openmpi/4.1.1 ucx/1.10.1
|
||||
export PREFIX=/home/tc002/tc002/shared/env/prefix/
|
||||
export LD_LIBRARY_PATH=$PREFIX/lib/:$LD_LIBRARY_PATH
|
||||
module load cuda/12.3
|
||||
module load ucx/1.15.0-cuda12.3
|
||||
module load openmpi/4.1.5-cuda12.3
|
||||
source /home/dp207/dp207/shared/env/production/env-base.sh
|
||||
source /home/dp207/dp207/shared/env/production/env-gpu.sh
|
||||
unset SBATCH_EXPORT
|
||||
|
||||
|
@ -1,3 +1,2 @@
|
||||
CXXFLAGS=-I/opt/local/include LDFLAGS=-L/opt/local/lib/ CXX=c++-13 MPICXX=mpicxx ../../configure --enable-simd=GEN --enable-comms=mpi-auto --enable-unified=yes --prefix $HOME/QCD/GridInstall --with-lime=/Users/peterboyle/QCD/SciDAC/install/ --with-openssl=$BREW --disable-fermion-reps --disable-gparity --disable-debug
|
||||
|
||||
|
||||
|
@ -142,7 +142,9 @@ int main (int argc, char ** argv)
|
||||
std:: cout << " CG site flops = "<< CGsiteflops <<std::endl;
|
||||
int iters;
|
||||
|
||||
time_t now;
|
||||
time_t start = time(NULL);
|
||||
UGrid->Broadcast(0,(void *)&start,sizeof(start));
|
||||
|
||||
FlightRecorder::ContinueOnFail = 0;
|
||||
FlightRecorder::PrintEntireLog = 0;
|
||||
@ -162,9 +164,9 @@ int main (int argc, char ** argv)
|
||||
}
|
||||
std::cerr << "******************* SINGLE PRECISION SOLVE "<<iter<<std::endl;
|
||||
result_o = Zero();
|
||||
t1=usecond();
|
||||
t1=usecond();
|
||||
mCG(src_o,result_o);
|
||||
t2=usecond();
|
||||
t2=usecond();
|
||||
iters = mCG.TotalInnerIterations; //Number of inner CG iterations
|
||||
flops = MdagMsiteflops*4*FrbGrid->gSites()*iters;
|
||||
flops+= CGsiteflops*FrbGrid->gSites()*iters;
|
||||
@ -176,7 +178,8 @@ int main (int argc, char ** argv)
|
||||
|
||||
std::cout << " FlightRecorder is OK! "<<std::endl;
|
||||
iter ++;
|
||||
} while (time(NULL) < (start + nsecs/10) );
|
||||
now = time(NULL); UGrid->Broadcast(0,(void *)&now,sizeof(now));
|
||||
} while (now < (start + nsecs/10) );
|
||||
|
||||
std::cout << GridLogMessage << "::::::::::::: Starting double precision CG" << std::endl;
|
||||
ConjugateGradient<LatticeFermionD> CG(1.0e-8,10000);
|
||||
@ -189,7 +192,7 @@ int main (int argc, char ** argv)
|
||||
}
|
||||
std::cerr << "******************* DOUBLE PRECISION SOLVE "<<i<<std::endl;
|
||||
result_o_2 = Zero();
|
||||
t1=usecond();
|
||||
t1=usecond();
|
||||
CG(HermOpEO,src_o,result_o_2);
|
||||
t2=usecond();
|
||||
iters = CG.IterationsToComplete;
|
||||
@ -201,8 +204,9 @@ int main (int argc, char ** argv)
|
||||
std::cout << " DoublePrecision error count "<< FlightRecorder::ErrorCount()<<std::endl;
|
||||
assert(FlightRecorder::ErrorCount()==0);
|
||||
std::cout << " FlightRecorder is OK! "<<std::endl;
|
||||
now = time(NULL); UGrid->Broadcast(0,(void *)&now,sizeof(now));
|
||||
i++;
|
||||
} while (time(NULL) < (start + nsecs) );
|
||||
} while (now < (start + nsecs) );
|
||||
|
||||
LatticeFermionD diff_o(FrbGrid);
|
||||
RealD diff = axpy_norm(diff_o, -1.0, result_o, result_o_2);
|
||||
|
118
tests/debug/Test_8888.cc
Normal file
118
tests/debug/Test_8888.cc
Normal file
@ -0,0 +1,118 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/Test_general_coarse_hdcg.cc
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h>
|
||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczosCoarse.h>
|
||||
#include <Grid/algorithms/iterative/AdefMrhs.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
const int Ls=8;
|
||||
const int nbasis = 40;
|
||||
const int cb = 0 ;
|
||||
RealD mass=0.01;
|
||||
RealD M5=1.8;
|
||||
RealD b=1.0;
|
||||
RealD c=0.0;
|
||||
|
||||
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
|
||||
GridDefaultSimd(Nd,vComplex::Nsimd()),
|
||||
GridDefaultMpi());
|
||||
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
|
||||
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
|
||||
|
||||
///////////////////////// RNGs /////////////////////////////////
|
||||
std::vector<int> seeds4({1,2,3,4});
|
||||
std::vector<int> seeds5({5,6,7,8});
|
||||
std::vector<int> cseeds({5,6,7,8});
|
||||
|
||||
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
|
||||
|
||||
///////////////////////// Configuration /////////////////////////////////
|
||||
LatticeGaugeField Umu(UGrid);
|
||||
|
||||
FieldMetaData header;
|
||||
std::string file("ckpoint_EODWF_lat.125");
|
||||
NerscIO::readConfiguration(Umu,header,file);
|
||||
|
||||
//////////////////////// Fermion action //////////////////////////////////
|
||||
MobiusFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,b,c);
|
||||
|
||||
MdagMLinearOperator<MobiusFermionD, LatticeFermion> HermOp(Ddwf);
|
||||
|
||||
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << " Fine Power method "<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
|
||||
LatticeFermionD pm_src(FGrid);
|
||||
pm_src = ComplexD(1.0);
|
||||
PowerMethod<LatticeFermionD> fPM;
|
||||
fPM(HermOp,pm_src);
|
||||
|
||||
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << " Fine Lanczos (poly, low) "<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
|
||||
int Nk=80;
|
||||
int Nm=Nk*3;
|
||||
int Nstop=8;
|
||||
int Nconv_test_interval=1;
|
||||
|
||||
// Chebyshev<LatticeFermionD> IRLChebyLo(0.2,64.0,201); // 1 iter
|
||||
Chebyshev<LatticeFermionD> IRLChebyLo(0.0,55.0,101); // 1 iter
|
||||
FunctionHermOp<LatticeFermionD> PolyOp(IRLChebyLo,HermOp);
|
||||
PlainHermOp<LatticeFermionD> Op(HermOp);
|
||||
|
||||
ImplicitlyRestartedLanczos IRL(PolyOp,
|
||||
Op,
|
||||
Nk, // sought vecs
|
||||
Nk, // sought vecs
|
||||
Nm, // spare vecs
|
||||
1.0e-8,
|
||||
10 // Max iterations
|
||||
);
|
||||
|
||||
int Nconv;
|
||||
std::vector<RealD> eval(Nm);
|
||||
std::vector<LatticeFermionD> evec(Nm,FGrid);
|
||||
LatticeFermionD irl_src(FGrid);
|
||||
|
||||
IRL.calc(eval,evec,irl_src,Nconv);
|
||||
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
@ -392,9 +392,27 @@ void TestCGschur(What & Ddwf,
|
||||
GridParallelRNG *RNG5)
|
||||
{
|
||||
LatticeFermion src (FGrid); random(*RNG5,src);
|
||||
LatticeFermion result(FGrid); result=Zero();
|
||||
LatticeFermion result1(FGrid); result1=Zero();
|
||||
LatticeFermion result2(FGrid); result2=Zero();
|
||||
LatticeFermion result3(FGrid); result3=Zero();
|
||||
|
||||
ConjugateGradient<LatticeFermion> CG(1.0e-8,10000);
|
||||
SchurRedBlackDiagMooeeSolve<LatticeFermion> SchurSolver(CG);
|
||||
SchurSolver(Ddwf,src,result);
|
||||
SchurSolver(Ddwf,src,result1);
|
||||
|
||||
SchurRedBlackDiagOneSolve<LatticeFermion> SchurSolverSymm1(CG);
|
||||
SchurSolverSymm1(Ddwf,src,result2);
|
||||
|
||||
SchurRedBlackDiagTwoSolve<LatticeFermion> SchurSolverSymm2(CG);
|
||||
SchurSolverSymm2(Ddwf,src,result3);
|
||||
|
||||
std::cout << GridLogMessage << " Standard " <<norm2(result1)<<std::endl;
|
||||
|
||||
std::cout << GridLogMessage << " Symm1 " <<norm2(result2)<<std::endl;
|
||||
result2=result2-result1;
|
||||
std::cout << GridLogMessage << " diff " <<norm2(result2) <<std::endl;
|
||||
|
||||
std::cout << GridLogMessage << " Symm2 " <<norm2(result3)<<std::endl;
|
||||
result3=result3-result1;
|
||||
std::cout << GridLogMessage << " diff " <<norm2(result3) <<std::endl;
|
||||
}
|
||||
|
320
tests/debug/Test_general_coarse.cc
Normal file
320
tests/debug/Test_general_coarse.cc
Normal file
@ -0,0 +1,320 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/Test_padded_cell.cc
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
#include <Grid/lattice/PaddedCell.h>
|
||||
#include <Grid/stencil/GeneralLocalStencil.h>
|
||||
|
||||
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidual.h>
|
||||
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidualNonHermitian.h>
|
||||
#include <Grid/algorithms/iterative/BiCGSTAB.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
|
||||
gridblasHandle_t GridBLAS::gridblasHandle;
|
||||
int GridBLAS::gridblasInit;
|
||||
|
||||
///////////////////////
|
||||
// Tells little dirac op to use MdagM as the .Op()
|
||||
///////////////////////
|
||||
template<class Field>
|
||||
class HermOpAdaptor : public LinearOperatorBase<Field>
|
||||
{
|
||||
LinearOperatorBase<Field> & wrapped;
|
||||
public:
|
||||
HermOpAdaptor(LinearOperatorBase<Field> &wrapme) : wrapped(wrapme) {};
|
||||
void OpDiag (const Field &in, Field &out) { assert(0); }
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); }
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); };
|
||||
void Op (const Field &in, Field &out){
|
||||
wrapped.HermOp(in,out);
|
||||
}
|
||||
void AdjOp (const Field &in, Field &out){
|
||||
wrapped.HermOp(in,out);
|
||||
}
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
|
||||
void HermOp(const Field &in, Field &out){
|
||||
wrapped.HermOp(in,out);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
const int Ls=4;
|
||||
|
||||
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
|
||||
GridDefaultSimd(Nd,vComplex::Nsimd()),
|
||||
GridDefaultMpi());
|
||||
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
|
||||
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
|
||||
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
|
||||
|
||||
// Construct a coarsened grid
|
||||
Coordinate clatt = GridDefaultLatt();
|
||||
for(int d=0;d<clatt.size();d++){
|
||||
clatt[d] = clatt[d]/4;
|
||||
}
|
||||
|
||||
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt,
|
||||
GridDefaultSimd(Nd,vComplex::Nsimd()),
|
||||
GridDefaultMpi());;
|
||||
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
|
||||
|
||||
std::vector<int> seeds4({1,2,3,4});
|
||||
std::vector<int> seeds5({5,6,7,8});
|
||||
std::vector<int> cseeds({5,6,7,8});
|
||||
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
|
||||
GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds);
|
||||
|
||||
LatticeFermion src(FGrid); random(RNG5,src);
|
||||
LatticeFermion result(FGrid); result=Zero();
|
||||
LatticeFermion ref(FGrid); ref=Zero();
|
||||
LatticeFermion tmp(FGrid);
|
||||
LatticeFermion err(FGrid);
|
||||
LatticeGaugeField Umu(UGrid);
|
||||
SU<Nc>::HotConfiguration(RNG4,Umu);
|
||||
// Umu=Zero();
|
||||
|
||||
RealD mass=0.1;
|
||||
RealD M5=1.8;
|
||||
|
||||
DomainWallFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
|
||||
|
||||
const int nbasis = 62;
|
||||
const int cb = 0 ;
|
||||
LatticeFermion prom(FGrid);
|
||||
|
||||
std::vector<LatticeFermion> subspace(nbasis,FGrid);
|
||||
|
||||
std::cout<<GridLogMessage<<"Calling Aggregation class" <<std::endl;
|
||||
|
||||
///////////////////////////////////////////////////////////
|
||||
// Squared operator is in HermOp
|
||||
///////////////////////////////////////////////////////////
|
||||
MdagMLinearOperator<DomainWallFermionD,LatticeFermion> HermDefOp(Ddwf);
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// Random aggregation space
|
||||
///////////////////////////////////////////////////
|
||||
std::cout<<GridLogMessage << "Building random aggregation class"<< std::endl;
|
||||
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
|
||||
Subspace Aggregates(Coarse5d,FGrid,cb);
|
||||
Aggregates.CreateSubspaceRandom(RNG5);
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// Build little dirac op
|
||||
///////////////////////////////////////////////////
|
||||
std::cout<<GridLogMessage << "Building little Dirac operator"<< std::endl;
|
||||
|
||||
typedef GeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LittleDiracOperator;
|
||||
typedef LittleDiracOperator::CoarseVector CoarseVector;
|
||||
|
||||
NextToNextToNextToNearestStencilGeometry5D geom(Coarse5d);
|
||||
LittleDiracOperator LittleDiracOp(geom,FGrid,Coarse5d);
|
||||
LittleDiracOperator LittleDiracOpCol(geom,FGrid,Coarse5d);
|
||||
|
||||
HermOpAdaptor<LatticeFermionD> HOA(HermDefOp);
|
||||
|
||||
LittleDiracOp.CoarsenOperator(HOA,Aggregates);
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// Test the operator
|
||||
///////////////////////////////////////////////////
|
||||
CoarseVector c_src (Coarse5d);
|
||||
CoarseVector c_res (Coarse5d);
|
||||
CoarseVector c_res_dag(Coarse5d);
|
||||
CoarseVector c_proj(Coarse5d);
|
||||
|
||||
subspace=Aggregates.subspace;
|
||||
|
||||
// random(CRNG,c_src);
|
||||
c_src = 1.0;
|
||||
|
||||
blockPromote(c_src,err,subspace);
|
||||
|
||||
prom=Zero();
|
||||
for(int b=0;b<nbasis;b++){
|
||||
prom=prom+subspace[b];
|
||||
}
|
||||
err=err-prom;
|
||||
std::cout<<GridLogMessage<<"Promoted back from subspace: err "<<norm2(err)<<std::endl;
|
||||
std::cout<<GridLogMessage<<"c_src "<<norm2(c_src)<<std::endl;
|
||||
std::cout<<GridLogMessage<<"prom "<<norm2(prom)<<std::endl;
|
||||
|
||||
HermDefOp.HermOp(prom,tmp);
|
||||
|
||||
blockProject(c_proj,tmp,subspace);
|
||||
std::cout<<GridLogMessage<<" Called Big Dirac Op "<<norm2(tmp)<<std::endl;
|
||||
|
||||
std::cout<<GridLogMessage<<" Calling little Dirac Op "<<std::endl;
|
||||
LittleDiracOp.M(c_src,c_res);
|
||||
LittleDiracOp.Mdag(c_src,c_res_dag);
|
||||
|
||||
std::cout<<GridLogMessage<<"Little dop : "<<norm2(c_res)<<std::endl;
|
||||
std::cout<<GridLogMessage<<"Little dop dag : "<<norm2(c_res_dag)<<std::endl;
|
||||
std::cout<<GridLogMessage<<"Big dop in subspace : "<<norm2(c_proj)<<std::endl;
|
||||
|
||||
c_proj = c_proj - c_res;
|
||||
std::cout<<GridLogMessage<<" ldop error: "<<norm2(c_proj)<<std::endl;
|
||||
|
||||
c_res_dag = c_res_dag - c_res;
|
||||
std::cout<<GridLogMessage<<"Little dopDag - dop: "<<norm2(c_res_dag)<<std::endl;
|
||||
|
||||
std::cout<<GridLogMessage << "Testing Hermiticity stochastically "<< std::endl;
|
||||
CoarseVector phi(Coarse5d);
|
||||
CoarseVector chi(Coarse5d);
|
||||
CoarseVector Aphi(Coarse5d);
|
||||
CoarseVector Achi(Coarse5d);
|
||||
|
||||
random(CRNG,phi);
|
||||
random(CRNG,chi);
|
||||
|
||||
std::cout<<GridLogMessage<<"Made randoms "<<norm2(phi)<<" " << norm2(chi)<<std::endl;
|
||||
|
||||
LittleDiracOp.M(phi,Aphi);
|
||||
|
||||
LittleDiracOp.Mdag(chi,Achi);
|
||||
|
||||
std::cout<<GridLogMessage<<"Aphi "<<norm2(Aphi)<<" A chi" << norm2(Achi)<<std::endl;
|
||||
|
||||
ComplexD pAc = innerProduct(chi,Aphi);
|
||||
ComplexD cAp = innerProduct(phi,Achi);
|
||||
ComplexD cAc = innerProduct(chi,Achi);
|
||||
ComplexD pAp = innerProduct(phi,Aphi);
|
||||
|
||||
std::cout<<GridLogMessage<< "pAc "<<pAc<<" cAp "<< cAp<< " diff "<<pAc-adj(cAp)<<std::endl;
|
||||
std::cout<<GridLogMessage<< "pAp "<<pAp<<" cAc "<< cAc<<"Should be real"<< std::endl;
|
||||
|
||||
std::cout<<GridLogMessage<<"Testing linearity"<<std::endl;
|
||||
CoarseVector PhiPlusChi(Coarse5d);
|
||||
CoarseVector APhiPlusChi(Coarse5d);
|
||||
CoarseVector linerr(Coarse5d);
|
||||
PhiPlusChi = phi+chi;
|
||||
LittleDiracOp.M(PhiPlusChi,APhiPlusChi);
|
||||
|
||||
linerr= APhiPlusChi-Aphi;
|
||||
linerr= linerr-Achi;
|
||||
std::cout<<GridLogMessage<<"**Diff "<<norm2(linerr)<<std::endl;
|
||||
|
||||
std::cout<<GridLogMessage<<std::endl;
|
||||
std::cout<<GridLogMessage<<std::endl;
|
||||
std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
|
||||
std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
|
||||
std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
|
||||
//////////////////////////////////////////////////////////////////////////////////////
|
||||
// Create a higher dim coarse grid
|
||||
//////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
const int nrhs=vComplex::Nsimd()*3;
|
||||
|
||||
Coordinate mpi=GridDefaultMpi();
|
||||
Coordinate rhMpi ({1,1,mpi[0],mpi[1],mpi[2],mpi[3]});
|
||||
Coordinate rhLatt({nrhs,1,clatt[0],clatt[1],clatt[2],clatt[3]});
|
||||
Coordinate rhSimd({vComplex::Nsimd(),1, 1,1,1,1});
|
||||
|
||||
GridCartesian *CoarseMrhs = new GridCartesian(rhLatt,rhSimd,rhMpi);
|
||||
|
||||
#if 0
|
||||
MultiGeneralCoarsenedMatrix mrhs(LittleDiracOp,CoarseMrhs);
|
||||
typedef decltype(mrhs) MultiGeneralCoarsenedMatrix_t;
|
||||
|
||||
//////////////////////////////////////////
|
||||
// Test against single RHS
|
||||
//////////////////////////////////////////
|
||||
{
|
||||
GridParallelRNG rh_CRNG(CoarseMrhs);rh_CRNG.SeedFixedIntegers(cseeds);
|
||||
CoarseVector rh_phi(CoarseMrhs);
|
||||
CoarseVector rh_res(CoarseMrhs);
|
||||
random(rh_CRNG,rh_phi);
|
||||
|
||||
std::cout << "Warmup"<<std::endl;
|
||||
mrhs.M(rh_phi,rh_res);
|
||||
const int ncall=5;
|
||||
RealD t0=-usecond();
|
||||
for(int i=0;i<ncall;i++){
|
||||
std::cout << "Call "<<i<<"/"<<ncall<<std::endl;
|
||||
mrhs.M(rh_phi,rh_res);
|
||||
}
|
||||
t0+=usecond();
|
||||
RealD t1=0;
|
||||
for(int r=0;r<nrhs;r++){
|
||||
std::cout << " compare to single RHS "<<r<<"/"<<nrhs<<std::endl;
|
||||
ExtractSlice(phi,rh_phi,r,0);
|
||||
ExtractSlice(chi,rh_res,r,0);
|
||||
LittleDiracOp.M(phi,Aphi);
|
||||
t1-=usecond();
|
||||
for(int i=0;i<ncall;i++){
|
||||
std::cout << "Call "<<i<<"/"<<ncall<<std::endl;
|
||||
LittleDiracOp.M(phi,Aphi);
|
||||
}
|
||||
t1+=usecond();
|
||||
Coordinate site({0,0,0,0,0});
|
||||
auto bad = peekSite(chi,site);
|
||||
auto good = peekSite(Aphi,site);
|
||||
std::cout << " mrhs [" <<r <<"] "<< norm2(chi)<<std::endl;
|
||||
std::cout << " srhs [" <<r <<"] "<< norm2(Aphi)<<std::endl;
|
||||
chi=chi-Aphi;
|
||||
RealD diff =norm2(chi);
|
||||
std::cout << r << " diff " << diff<<std::endl;
|
||||
assert(diff < 1.0e-10);
|
||||
}
|
||||
std::cout << nrhs<< " mrhs " << t0/ncall/nrhs <<" us"<<std::endl;
|
||||
std::cout << nrhs<< " srhs " << t1/ncall/nrhs <<" us"<<std::endl;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////
|
||||
// Test against single RHS
|
||||
//////////////////////////////////////////
|
||||
{
|
||||
typedef HermitianLinearOperator<MultiGeneralCoarsenedMatrix_t,CoarseVector> HermMatrix;
|
||||
HermMatrix MrhsCoarseOp (mrhs);
|
||||
|
||||
GridParallelRNG rh_CRNG(CoarseMrhs);rh_CRNG.SeedFixedIntegers(cseeds);
|
||||
ConjugateGradient<CoarseVector> mrhsCG(1.0e-8,2000,true);
|
||||
CoarseVector rh_res(CoarseMrhs);
|
||||
CoarseVector rh_src(CoarseMrhs);
|
||||
random(rh_CRNG,rh_src);
|
||||
rh_res= Zero();
|
||||
mrhsCG(MrhsCoarseOp,rh_src,rh_res);
|
||||
}
|
||||
|
||||
#endif
|
||||
std::cout<<GridLogMessage<<std::endl;
|
||||
std::cout<<GridLogMessage<<std::endl;
|
||||
std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
|
||||
std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
|
||||
std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
|
||||
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
304
tests/debug/Test_general_coarse_hdcg.cc
Normal file
304
tests/debug/Test_general_coarse_hdcg.cc
Normal file
@ -0,0 +1,304 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/Test_general_coarse_hdcg.cc
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h>
|
||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczosCoarse.h>
|
||||
#include <Grid/algorithms/iterative/AdefMrhs.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
|
||||
// Want Op in CoarsenOp to call MatPcDagMatPc
|
||||
template<class Field>
|
||||
class HermOpAdaptor : public LinearOperatorBase<Field>
|
||||
{
|
||||
LinearOperatorBase<Field> & wrapped;
|
||||
public:
|
||||
HermOpAdaptor(LinearOperatorBase<Field> &wrapme) : wrapped(wrapme) {};
|
||||
void Op (const Field &in, Field &out) { wrapped.HermOp(in,out); }
|
||||
void HermOp(const Field &in, Field &out) { wrapped.HermOp(in,out); }
|
||||
void AdjOp (const Field &in, Field &out){ wrapped.HermOp(in,out); }
|
||||
void OpDiag (const Field &in, Field &out) { assert(0); }
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); }
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out) { assert(0); };
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
|
||||
};
|
||||
|
||||
template<class Field> class CGSmoother : public LinearFunction<Field>
|
||||
{
|
||||
public:
|
||||
using LinearFunction<Field>::operator();
|
||||
typedef LinearOperatorBase<Field> FineOperator;
|
||||
FineOperator & _SmootherOperator;
|
||||
int iters;
|
||||
CGSmoother(int _iters, FineOperator &SmootherOperator) :
|
||||
_SmootherOperator(SmootherOperator),
|
||||
iters(_iters)
|
||||
{
|
||||
std::cout << GridLogMessage<<" Mirs smoother order "<<iters<<std::endl;
|
||||
};
|
||||
void operator() (const Field &in, Field &out)
|
||||
{
|
||||
ConjugateGradient<Field> CG(0.0,iters,false); // non-converge is just fine in a smoother
|
||||
|
||||
out=Zero();
|
||||
|
||||
CG(_SmootherOperator,in,out);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
const int Ls=24;
|
||||
const int nbasis = 60;
|
||||
const int cb = 0 ;
|
||||
RealD mass=0.00078;
|
||||
RealD M5=1.8;
|
||||
RealD b=1.5;
|
||||
RealD c=0.5;
|
||||
|
||||
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
|
||||
GridDefaultSimd(Nd,vComplex::Nsimd()),
|
||||
GridDefaultMpi());
|
||||
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
|
||||
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
|
||||
|
||||
// Construct a coarsened grid with 4^4 cell
|
||||
Coordinate Block({4,4,4,4});
|
||||
Coordinate clatt = GridDefaultLatt();
|
||||
for(int d=0;d<clatt.size();d++){
|
||||
clatt[d] = clatt[d]/Block[d];
|
||||
}
|
||||
|
||||
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt,
|
||||
GridDefaultSimd(Nd,vComplex::Nsimd()),
|
||||
GridDefaultMpi());;
|
||||
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
|
||||
|
||||
///////////////////////// RNGs /////////////////////////////////
|
||||
std::vector<int> seeds4({1,2,3,4});
|
||||
std::vector<int> seeds5({5,6,7,8});
|
||||
std::vector<int> cseeds({5,6,7,8});
|
||||
|
||||
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
|
||||
GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds);
|
||||
|
||||
///////////////////////// Configuration /////////////////////////////////
|
||||
LatticeGaugeField Umu(UGrid);
|
||||
|
||||
FieldMetaData header;
|
||||
std::string file("ckpoint_EODWF_lat.125");
|
||||
NerscIO::readConfiguration(Umu,header,file);
|
||||
|
||||
//////////////////////// Fermion action //////////////////////////////////
|
||||
MobiusFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,b,c);
|
||||
|
||||
SchurDiagMooeeOperator<MobiusFermionD, LatticeFermion> HermOpEO(Ddwf);
|
||||
|
||||
typedef HermOpAdaptor<LatticeFermionD> HermFineMatrix;
|
||||
HermFineMatrix FineHermOp(HermOpEO);
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
///////////// Coarse basis and Little Dirac Operator ///////
|
||||
////////////////////////////////////////////////////////////
|
||||
typedef GeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LittleDiracOperator;
|
||||
typedef LittleDiracOperator::CoarseVector CoarseVector;
|
||||
|
||||
NextToNextToNextToNearestStencilGeometry5D geom(Coarse5d);
|
||||
|
||||
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
|
||||
Subspace Aggregates(Coarse5d,FrbGrid,cb);
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// Need to check about red-black grid coarsening
|
||||
////////////////////////////////////////////////////////////
|
||||
|
||||
int refine=1;
|
||||
// Aggregates.CreateSubspaceMultishift(RNG5,HermOpEO,
|
||||
// 0.0003,1.0e-5,2000); // Lo, tol, maxit
|
||||
// Aggregates.CreateSubspaceChebyshev(RNG5,HermOpEO,nbasis,95.,0.01,1500);// <== last run
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << "Create Subspace"<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
Aggregates.CreateSubspaceChebyshevNew(RNG5,HermOpEO,95.);
|
||||
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << "Refine Subspace"<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
Aggregates.RefineSubspace(HermOpEO,0.001,1.0e-3,3000); // 172 iters
|
||||
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << "Coarsen after refine"<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
Aggregates.Orthogonalise();
|
||||
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << "Building MultiRHS Coarse operator"<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
ConjugateGradient<CoarseVector> coarseCG(4.0e-2,20000,true);
|
||||
|
||||
const int nrhs=12;
|
||||
|
||||
Coordinate mpi=GridDefaultMpi();
|
||||
Coordinate rhMpi ({1,1,mpi[0],mpi[1],mpi[2],mpi[3]});
|
||||
Coordinate rhLatt({nrhs,1,clatt[0],clatt[1],clatt[2],clatt[3]});
|
||||
Coordinate rhSimd({vComplex::Nsimd(),1, 1,1,1,1});
|
||||
|
||||
GridCartesian *CoarseMrhs = new GridCartesian(rhLatt,rhSimd,rhMpi);
|
||||
typedef MultiGeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> MultiGeneralCoarsenedMatrix_t;
|
||||
MultiGeneralCoarsenedMatrix_t mrhs(geom,CoarseMrhs);
|
||||
|
||||
mrhs.CoarsenOperator(FineHermOp,Aggregates,Coarse5d);
|
||||
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << " Coarse Lanczos "<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
|
||||
typedef HermitianLinearOperator<MultiGeneralCoarsenedMatrix_t,CoarseVector> MrhsHermMatrix;
|
||||
Chebyshev<CoarseVector> IRLCheby(0.01,42.0,301); // 1 iter
|
||||
MrhsHermMatrix MrhsCoarseOp (mrhs);
|
||||
|
||||
CoarseVector pm_src(CoarseMrhs);
|
||||
pm_src = ComplexD(1.0);
|
||||
PowerMethod<CoarseVector> cPM;
|
||||
cPM(MrhsCoarseOp,pm_src);
|
||||
|
||||
int Nk=192;
|
||||
int Nm=384;
|
||||
int Nstop=Nk;
|
||||
int Nconv_test_interval=1;
|
||||
|
||||
ImplicitlyRestartedBlockLanczosCoarse<CoarseVector> IRL(MrhsCoarseOp,
|
||||
Coarse5d,
|
||||
CoarseMrhs,
|
||||
nrhs,
|
||||
IRLCheby,
|
||||
Nstop,
|
||||
Nconv_test_interval,
|
||||
nrhs,
|
||||
Nk,
|
||||
Nm,
|
||||
1e-5,10);
|
||||
|
||||
int Nconv;
|
||||
std::vector<RealD> eval(Nm);
|
||||
std::vector<CoarseVector> evec(Nm,Coarse5d);
|
||||
std::vector<CoarseVector> c_src(nrhs,Coarse5d);
|
||||
|
||||
//////////////////////////////////////////
|
||||
// Block projector for coarse/fine
|
||||
//////////////////////////////////////////
|
||||
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << "Calling mRHS HDCG"<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
MultiRHSBlockProject<LatticeFermionD> MrhsProjector;
|
||||
MrhsProjector.Allocate(nbasis,FrbGrid,Coarse5d);
|
||||
MrhsProjector.ImportBasis(Aggregates.subspace);
|
||||
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << " Recompute coarse evecs "<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
evec.resize(Nm,Coarse5d);
|
||||
eval.resize(Nm);
|
||||
for(int r=0;r<nrhs;r++){
|
||||
random(CRNG,c_src[r]);
|
||||
}
|
||||
|
||||
IRL.calc(eval,evec,c_src,Nconv,LanczosType::irbl);
|
||||
|
||||
///////////////////////
|
||||
// Deflation guesser object
|
||||
///////////////////////
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << " Reimport coarse evecs "<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
MultiRHSDeflation<CoarseVector> MrhsGuesser;
|
||||
MrhsGuesser.ImportEigenBasis(evec,eval);
|
||||
|
||||
//////////////////////////
|
||||
// Extra HDCG parameters
|
||||
//////////////////////////
|
||||
int maxit=3000;
|
||||
ConjugateGradient<CoarseVector> CG(5.0e-2,maxit,false);
|
||||
RealD lo=2.0;
|
||||
int ord = 7;
|
||||
|
||||
DoNothingGuesser<CoarseVector> DoNothing;
|
||||
HPDSolver<CoarseVector> HPDSolveMrhs(MrhsCoarseOp,CG,DoNothing);
|
||||
|
||||
/////////////////////////////////////////////////
|
||||
// Mirs smoother
|
||||
/////////////////////////////////////////////////
|
||||
RealD MirsShift = lo;
|
||||
ShiftedHermOpLinearOperator<LatticeFermionD> ShiftedFineHermOp(HermOpEO,MirsShift);
|
||||
CGSmoother<LatticeFermionD> CGsmooth(ord,ShiftedFineHermOp) ;
|
||||
|
||||
TwoLevelADEF2mrhs<LatticeFermion,CoarseVector>
|
||||
HDCGmrhs(1.0e-8, 500,
|
||||
FineHermOp,
|
||||
CGsmooth,
|
||||
HPDSolveMrhs, // Used in M1
|
||||
HPDSolveMrhs, // Used in Vstart
|
||||
MrhsProjector,
|
||||
MrhsGuesser,
|
||||
CoarseMrhs);
|
||||
|
||||
std::vector<LatticeFermionD> src_mrhs(nrhs,FrbGrid);
|
||||
std::vector<LatticeFermionD> res_mrhs(nrhs,FrbGrid);
|
||||
|
||||
for(int r=0;r<nrhs;r++){
|
||||
random(RNG5,src_mrhs[r]);
|
||||
res_mrhs[r]=Zero();
|
||||
}
|
||||
|
||||
HDCGmrhs(src_mrhs,res_mrhs);
|
||||
|
||||
// Standard CG
|
||||
#if 1
|
||||
{
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << "Calling red black CG"<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
|
||||
LatticeFermion result(FrbGrid); result=Zero();
|
||||
LatticeFermion src(FrbGrid); random(RNG5,src);
|
||||
result=Zero();
|
||||
|
||||
ConjugateGradient<LatticeFermionD> CGfine(1.0e-8,30000,false);
|
||||
CGfine(HermOpEO, src, result);
|
||||
}
|
||||
#endif
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
444
tests/debug/Test_general_coarse_hdcg_phys.cc
Normal file
444
tests/debug/Test_general_coarse_hdcg_phys.cc
Normal file
@ -0,0 +1,444 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/Test_general_coarse_hdcg.cc
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
#include <Grid/lattice/PaddedCell.h>
|
||||
#include <Grid/stencil/GeneralLocalStencil.h>
|
||||
//#include <Grid/algorithms/GeneralCoarsenedMatrix.h>
|
||||
#include <Grid/algorithms/iterative/AdefGeneric.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
|
||||
template<class Coarsened>
|
||||
void SaveOperator(Coarsened &Operator,std::string file)
|
||||
{
|
||||
#ifdef HAVE_LIME
|
||||
emptyUserRecord record;
|
||||
ScidacWriter WR(Operator.Grid()->IsBoss());
|
||||
assert(Operator._A.size()==Operator.geom.npoint);
|
||||
WR.open(file);
|
||||
for(int p=0;p<Operator._A.size();p++){
|
||||
auto tmp = Operator.Cell.Extract(Operator._A[p]);
|
||||
WR.writeScidacFieldRecord(tmp,record,0,0);
|
||||
// WR.writeScidacFieldRecord(tmp,record,0,BINARYIO_LEXICOGRAPHIC);
|
||||
}
|
||||
WR.close();
|
||||
#endif
|
||||
}
|
||||
template<class Coarsened>
|
||||
void LoadOperator(Coarsened &Operator,std::string file)
|
||||
{
|
||||
#ifdef HAVE_LIME
|
||||
emptyUserRecord record;
|
||||
Grid::ScidacReader RD ;
|
||||
RD.open(file);
|
||||
assert(Operator._A.size()==Operator.geom.npoint);
|
||||
for(int p=0;p<Operator.geom.npoint;p++){
|
||||
conformable(Operator._A[p].Grid(),Operator.CoarseGrid());
|
||||
// RD.readScidacFieldRecord(Operator._A[p],record,BINARYIO_LEXICOGRAPHIC);
|
||||
RD.readScidacFieldRecord(Operator._A[p],record,0);
|
||||
}
|
||||
RD.close();
|
||||
Operator.ExchangeCoarseLinks();
|
||||
#endif
|
||||
}
|
||||
template<class Coarsened>
|
||||
void ReLoadOperator(Coarsened &Operator,std::string file)
|
||||
{
|
||||
#ifdef HAVE_LIME
|
||||
emptyUserRecord record;
|
||||
Grid::ScidacReader RD ;
|
||||
RD.open(file);
|
||||
assert(Operator._A.size()==Operator.geom.npoint);
|
||||
for(int p=0;p<Operator.geom.npoint;p++){
|
||||
auto tmp=Operator.Cell.Extract(Operator._A[p]);
|
||||
RD.readScidacFieldRecord(tmp,record,0);
|
||||
Operator._A[p] = Operator.Cell.ExchangePeriodic(tmp);
|
||||
}
|
||||
RD.close();
|
||||
#endif
|
||||
}
|
||||
template<class aggregation>
|
||||
void SaveBasis(aggregation &Agg,std::string file)
|
||||
{
|
||||
#ifdef HAVE_LIME
|
||||
emptyUserRecord record;
|
||||
ScidacWriter WR(Agg.FineGrid->IsBoss());
|
||||
WR.open(file);
|
||||
for(int b=0;b<Agg.subspace.size();b++){
|
||||
//WR.writeScidacFieldRecord(Agg.subspace[b],record,0,BINARYIO_LEXICOGRAPHIC);
|
||||
WR.writeScidacFieldRecord(Agg.subspace[b],record,0,0);
|
||||
}
|
||||
WR.close();
|
||||
#endif
|
||||
}
|
||||
template<class aggregation>
|
||||
void LoadBasis(aggregation &Agg, std::string file)
|
||||
{
|
||||
#ifdef HAVE_LIME
|
||||
emptyUserRecord record;
|
||||
ScidacReader RD ;
|
||||
RD.open(file);
|
||||
for(int b=0;b<Agg.subspace.size();b++){
|
||||
// RD.readScidacFieldRecord(Agg.subspace[b],record,BINARYIO_LEXICOGRAPHIC);
|
||||
RD.readScidacFieldRecord(Agg.subspace[b],record,0);
|
||||
}
|
||||
RD.close();
|
||||
#endif
|
||||
}
|
||||
|
||||
RealD InverseApproximation(RealD x){
|
||||
return 1.0/x;
|
||||
}
|
||||
|
||||
// Want Op in CoarsenOp to call MatPcDagMatPc
|
||||
template<class Field>
|
||||
class HermOpAdaptor : public LinearOperatorBase<Field>
|
||||
{
|
||||
LinearOperatorBase<Field> & wrapped;
|
||||
public:
|
||||
HermOpAdaptor(LinearOperatorBase<Field> &wrapme) : wrapped(wrapme) {};
|
||||
void Op (const Field &in, Field &out) { wrapped.HermOp(in,out); }
|
||||
void HermOp(const Field &in, Field &out) { wrapped.HermOp(in,out); }
|
||||
void AdjOp (const Field &in, Field &out){ wrapped.HermOp(in,out); }
|
||||
void OpDiag (const Field &in, Field &out) { assert(0); }
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); }
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out) { assert(0); };
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
|
||||
};
|
||||
/*
|
||||
template<class Field> class ChebyshevSmoother : public LinearFunction<Field>
|
||||
{
|
||||
public:
|
||||
using LinearFunction<Field>::operator();
|
||||
typedef LinearOperatorBase<Field> FineOperator;
|
||||
FineOperator & _SmootherOperator;
|
||||
Chebyshev<Field> Cheby;
|
||||
ChebyshevSmoother(RealD _lo,RealD _hi,int _ord, FineOperator &SmootherOperator) :
|
||||
_SmootherOperator(SmootherOperator),
|
||||
Cheby(_lo,_hi,_ord,InverseApproximation)
|
||||
{
|
||||
std::cout << GridLogMessage<<" Chebyshev smoother order "<<_ord<<" ["<<_lo<<","<<_hi<<"]"<<std::endl;
|
||||
};
|
||||
void operator() (const Field &in, Field &out)
|
||||
{
|
||||
Field tmp(in.Grid());
|
||||
tmp = in;
|
||||
Cheby(_SmootherOperator,tmp,out);
|
||||
}
|
||||
};
|
||||
*/
|
||||
template<class Field> class CGSmoother : public LinearFunction<Field>
|
||||
{
|
||||
public:
|
||||
using LinearFunction<Field>::operator();
|
||||
typedef LinearOperatorBase<Field> FineOperator;
|
||||
FineOperator & _SmootherOperator;
|
||||
int iters;
|
||||
CGSmoother(int _iters, FineOperator &SmootherOperator) :
|
||||
_SmootherOperator(SmootherOperator),
|
||||
iters(_iters)
|
||||
{
|
||||
std::cout << GridLogMessage<<" Mirs smoother order "<<iters<<std::endl;
|
||||
};
|
||||
void operator() (const Field &in, Field &out)
|
||||
{
|
||||
ConjugateGradient<Field> CG(0.0,iters,false); // non-converge is just fine in a smoother
|
||||
CG(_SmootherOperator,in,out);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
const int Ls=24;
|
||||
const int nbasis = 62;
|
||||
const int cb = 0 ;
|
||||
RealD mass=0.00078;
|
||||
RealD M5=1.8;
|
||||
RealD b=1.5;
|
||||
RealD c=0.5;
|
||||
|
||||
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
|
||||
GridDefaultSimd(Nd,vComplex::Nsimd()),
|
||||
GridDefaultMpi());
|
||||
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
|
||||
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
|
||||
|
||||
// Construct a coarsened grid with 4^4 cell
|
||||
Coordinate Block({4,4,6,4});
|
||||
Coordinate clatt = GridDefaultLatt();
|
||||
for(int d=0;d<clatt.size();d++){
|
||||
clatt[d] = clatt[d]/Block[d];
|
||||
}
|
||||
|
||||
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt,
|
||||
GridDefaultSimd(Nd,vComplex::Nsimd()),
|
||||
GridDefaultMpi());;
|
||||
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
|
||||
|
||||
///////////////////////// RNGs /////////////////////////////////
|
||||
std::vector<int> seeds4({1,2,3,4});
|
||||
std::vector<int> seeds5({5,6,7,8});
|
||||
std::vector<int> cseeds({5,6,7,8});
|
||||
|
||||
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
|
||||
GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds);
|
||||
|
||||
///////////////////////// Configuration /////////////////////////////////
|
||||
LatticeGaugeField Umu(UGrid);
|
||||
|
||||
FieldMetaData header;
|
||||
std::string file("ckpoint_lat.1000");
|
||||
NerscIO::readConfiguration(Umu,header,file);
|
||||
|
||||
//////////////////////// Fermion action //////////////////////////////////
|
||||
MobiusFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,b,c);
|
||||
|
||||
SchurDiagMooeeOperator<MobiusFermionD, LatticeFermion> HermOpEO(Ddwf);
|
||||
|
||||
typedef HermOpAdaptor<LatticeFermionD> HermFineMatrix;
|
||||
HermFineMatrix FineHermOp(HermOpEO);
|
||||
|
||||
LatticeFermion result(FrbGrid); result=Zero();
|
||||
|
||||
LatticeFermion src(FrbGrid); random(RNG5,src);
|
||||
|
||||
// Run power method on FineHermOp
|
||||
PowerMethod<LatticeFermion> PM; PM(HermOpEO,src);
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
///////////// Coarse basis and Little Dirac Operator ///////
|
||||
////////////////////////////////////////////////////////////
|
||||
typedef GeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LittleDiracOperator;
|
||||
typedef LittleDiracOperator::CoarseVector CoarseVector;
|
||||
|
||||
NextToNextToNextToNearestStencilGeometry5D geom(Coarse5d);
|
||||
NearestStencilGeometry5D geom_nn(Coarse5d);
|
||||
|
||||
// Warning: This routine calls PVdagM.Op, not PVdagM.HermOp
|
||||
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
|
||||
Subspace Aggregates(Coarse5d,FrbGrid,cb);
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// Need to check about red-black grid coarsening
|
||||
////////////////////////////////////////////////////////////
|
||||
LittleDiracOperator LittleDiracOp(geom,FrbGrid,Coarse5d);
|
||||
|
||||
std::string subspace_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Subspace.phys48.rat.scidac.62");
|
||||
std::string refine_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Refine.phys48.rat.scidac.62");
|
||||
std::string ldop_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/LittleDiracOp.phys48.rat.scidac.62");
|
||||
bool load_agg=true;
|
||||
bool load_refine=true;
|
||||
bool load_mat=true;
|
||||
if ( load_agg ) {
|
||||
LoadBasis(Aggregates,subspace_file);
|
||||
} else {
|
||||
|
||||
// NBASIS=40
|
||||
// Best so far: ord 2000 [0.01,95], 500,500 -- 466 iters
|
||||
// slurm-398626.out:Grid : Message : 141.295253 s : 500 filt [1] <n|MdagM|n> 0.000103622063
|
||||
|
||||
|
||||
//Grid : Message : 33.870465 s : Chebyshev subspace pass-1 : ord 2000 [0.001,95]
|
||||
//Grid : Message : 33.870485 s : Chebyshev subspace pass-2 : nbasis40 min 1000 step 1000 lo0
|
||||
//slurm-1482200.out : filt ~ 0.004 -- not as low mode projecting -- took 626 iters
|
||||
|
||||
// To try: 2000 [0.1,95] ,2000,500,500 -- slurm-1482213.out 586 iterations
|
||||
|
||||
// To try: 2000 [0.01,95] ,2000,500,500 -- 469 (think I bumped 92 to 95) (??)
|
||||
// To try: 2000 [0.025,95],2000,500,500
|
||||
// To try: 2000 [0.005,95],2000,500,500
|
||||
|
||||
// NBASIS=44 -- HDCG paper was 64 vectors; AMD compiler craps out at 48
|
||||
// To try: 2000 [0.01,95] ,2000,500,500 -- 419 lowest slurm-1482355.out
|
||||
// To try: 2000 [0.025,95] ,2000,500,500 -- 487
|
||||
// To try: 2000 [0.005,95] ,2000,500,500
|
||||
/*
|
||||
Smoother [3,92] order 16
|
||||
slurm-1482355.out:Grid : Message : 35.239686 s : Chebyshev subspace pass-1 : ord 2000 [0.01,95]
|
||||
slurm-1482355.out:Grid : Message : 35.239714 s : Chebyshev subspace pass-2 : nbasis44 min 500 step 500 lo0
|
||||
slurm-1482355.out:Grid : Message : 5561.305552 s : HDCG: Pcg converged in 419 iterations and 2616.202598 s
|
||||
|
||||
slurm-1482367.out:Grid : Message : 43.157235 s : Chebyshev subspace pass-1 : ord 2000 [0.025,95]
|
||||
slurm-1482367.out:Grid : Message : 43.157257 s : Chebyshev subspace pass-2 : nbasis44 min 500 step 500 lo0
|
||||
slurm-1482367.out:Grid : Message : 6169.469330 s : HDCG: Pcg converged in 487 iterations and 3131.185821 s
|
||||
*/
|
||||
/*
|
||||
Aggregates.CreateSubspaceChebyshev(RNG5,HermOpEO,nbasis,
|
||||
95.0,0.0075,
|
||||
2500,
|
||||
500,
|
||||
500,
|
||||
0.0);
|
||||
*/
|
||||
|
||||
/*
|
||||
Aggregates.CreateSubspaceChebyshevPowerLaw(RNG5,HermOpEO,nbasis,
|
||||
95.0,
|
||||
2000);
|
||||
*/
|
||||
|
||||
Aggregates.CreateSubspaceMultishift(RNG5,HermOpEO,
|
||||
0.0003,1.0e-5,2000); // Lo, tol, maxit
|
||||
/*
|
||||
Aggregates.CreateSubspaceChebyshev(RNG5,HermOpEO,nbasis,
|
||||
95.0,0.05,
|
||||
2000,
|
||||
500,
|
||||
500,
|
||||
0.0);
|
||||
*/
|
||||
/*
|
||||
Aggregates.CreateSubspaceChebyshev(RNG5,HermOpEO,nbasis,
|
||||
95.0,0.01,
|
||||
2000,
|
||||
500,
|
||||
500,
|
||||
0.0);
|
||||
*/
|
||||
// Aggregates.CreateSubspaceChebyshev(RNG5,HermOpEO,nbasis,95.,0.01,1500); -- running slurm-1484934.out nbasis 56
|
||||
|
||||
// Aggregates.CreateSubspaceChebyshev(RNG5,HermOpEO,nbasis,95.,0.01,1500); <== last run
|
||||
SaveBasis(Aggregates,subspace_file);
|
||||
}
|
||||
|
||||
int refine=1;
|
||||
if(refine){
|
||||
if ( load_refine ) {
|
||||
LoadBasis(Aggregates,refine_file);
|
||||
} else {
|
||||
// HDCG used Pcg to refine
|
||||
Aggregates.RefineSubspace(HermOpEO,0.001,1.0e-3,3000);
|
||||
SaveBasis(Aggregates,refine_file);
|
||||
}
|
||||
}
|
||||
|
||||
Aggregates.Orthogonalise();
|
||||
if ( load_mat ) {
|
||||
LoadOperator(LittleDiracOp,ldop_file);
|
||||
} else {
|
||||
LittleDiracOp.CoarsenOperator(FineHermOp,Aggregates);
|
||||
SaveOperator(LittleDiracOp,ldop_file);
|
||||
}
|
||||
|
||||
// I/O test:
|
||||
CoarseVector c_src(Coarse5d); random(CRNG,c_src);
|
||||
CoarseVector c_res(Coarse5d);
|
||||
CoarseVector c_ref(Coarse5d);
|
||||
|
||||
//////////////////////////////////////////
|
||||
// Build a coarse lanczos
|
||||
//////////////////////////////////////////
|
||||
typedef HermitianLinearOperator<LittleDiracOperator,CoarseVector> HermMatrix;
|
||||
HermMatrix CoarseOp (LittleDiracOp);
|
||||
|
||||
int Nk=192;
|
||||
int Nm=256;
|
||||
int Nstop=Nk;
|
||||
|
||||
Chebyshev<CoarseVector> IRLCheby(0.005,40.0,201);
|
||||
// Chebyshev<CoarseVector> IRLCheby(0.010,45.0,201); // 1 iter
|
||||
FunctionHermOp<CoarseVector> IRLOpCheby(IRLCheby,CoarseOp);
|
||||
PlainHermOp<CoarseVector> IRLOp (CoarseOp);
|
||||
|
||||
ImplicitlyRestartedLanczos<CoarseVector> IRL(IRLOpCheby,IRLOp,Nstop,Nk,Nm,1e-5,10);
|
||||
|
||||
int Nconv;
|
||||
std::vector<RealD> eval(Nm);
|
||||
std::vector<CoarseVector> evec(Nm,Coarse5d);
|
||||
|
||||
PowerMethod<CoarseVector> cPM; cPM(CoarseOp,c_src);
|
||||
|
||||
IRL.calc(eval,evec,c_src,Nconv);
|
||||
|
||||
//////////////////////////////////////////
|
||||
// Deflated guesser
|
||||
//////////////////////////////////////////
|
||||
DeflatedGuesser<CoarseVector> DeflCoarseGuesser(evec,eval);
|
||||
|
||||
int maxit=30000;
|
||||
ConjugateGradient<CoarseVector> CG(1.0e-10,maxit,false);
|
||||
ConjugateGradient<LatticeFermionD> CGfine(1.0e-8,30000,false);
|
||||
|
||||
//////////////////////////////////////////
|
||||
// HDCG
|
||||
//////////////////////////////////////////
|
||||
|
||||
std::vector<RealD> los({2.0,2.5}); // Nbasis 40 == 36,36 iters
|
||||
std::vector<int> ords({9}); // Nbasis 40 == 40 iters (320 mults)
|
||||
|
||||
for(int l=0;l<los.size();l++){
|
||||
|
||||
RealD lo = los[l];
|
||||
|
||||
for(int o=0;o<ords.size();o++){
|
||||
|
||||
//////////////////////////////////////////
|
||||
// Sloppy coarse solve
|
||||
//////////////////////////////////////////
|
||||
|
||||
ConjugateGradient<CoarseVector> CGsloppy(4.0e-2,maxit,false);
|
||||
HPDSolver<CoarseVector> HPDSolveSloppy(CoarseOp,CGsloppy,DeflCoarseGuesser);
|
||||
HPDSolver<CoarseVector> HPDSolve(CoarseOp,CG,DeflCoarseGuesser);
|
||||
|
||||
//////////////////////////////////////////
|
||||
// IRS shifted smoother based on CG
|
||||
//////////////////////////////////////////
|
||||
RealD MirsShift = lo;
|
||||
ShiftedHermOpLinearOperator<LatticeFermionD> ShiftedFineHermOp(HermOpEO,MirsShift);
|
||||
CGSmoother<LatticeFermionD> CGsmooth(ords[o],ShiftedFineHermOp) ;
|
||||
|
||||
//////////////////////////////////////////
|
||||
// Build a HDCG solver
|
||||
//////////////////////////////////////////
|
||||
TwoLevelADEF2<LatticeFermion,CoarseVector,Subspace>
|
||||
HDCG(1.0e-8, 700,
|
||||
FineHermOp,
|
||||
CGsmooth,
|
||||
HPDSolveSloppy,
|
||||
HPDSolve,
|
||||
Aggregates);
|
||||
|
||||
result=Zero();
|
||||
HDCG(src,result);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
// Standard CG
|
||||
result=Zero();
|
||||
CGfine(HermOpEO, src, result);
|
||||
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
513
tests/debug/Test_general_coarse_hdcg_phys48.cc
Normal file
513
tests/debug/Test_general_coarse_hdcg_phys48.cc
Normal file
@ -0,0 +1,513 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/Test_general_coarse_hdcg.cc
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h>
|
||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczosCoarse.h>
|
||||
#include <Grid/algorithms/iterative/AdefMrhs.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
|
||||
class HDCGwrapper {
|
||||
|
||||
};
|
||||
|
||||
/*
|
||||
template<class Coarsened>
|
||||
void SaveOperator(Coarsened &Operator,std::string file)
|
||||
{
|
||||
#ifdef HAVE_LIME
|
||||
emptyUserRecord record;
|
||||
ScidacWriter WR(Operator.Grid()->IsBoss());
|
||||
assert(Operator._A.size()==Operator.geom.npoint);
|
||||
WR.open(file);
|
||||
for(int p=0;p<Operator._A.size();p++){
|
||||
auto tmp = Operator.Cell.Extract(Operator._A[p]);
|
||||
WR.writeScidacFieldRecord(tmp,record,0,0);
|
||||
// WR.writeScidacFieldRecord(tmp,record,0,BINARYIO_LEXICOGRAPHIC);
|
||||
}
|
||||
WR.close();
|
||||
#endif
|
||||
}
|
||||
template<class Coarsened>
|
||||
void LoadOperator(Coarsened &Operator,std::string file)
|
||||
{
|
||||
#ifdef HAVE_LIME
|
||||
emptyUserRecord record;
|
||||
Grid::ScidacReader RD ;
|
||||
RD.open(file);
|
||||
assert(Operator._A.size()==Operator.geom.npoint);
|
||||
for(int p=0;p<Operator.geom.npoint;p++){
|
||||
conformable(Operator._A[p].Grid(),Operator.CoarseGrid());
|
||||
// RD.readScidacFieldRecord(Operator._A[p],record,BINARYIO_LEXICOGRAPHIC);
|
||||
RD.readScidacFieldRecord(Operator._A[p],record,0);
|
||||
}
|
||||
RD.close();
|
||||
Operator.ExchangeCoarseLinks();
|
||||
#endif
|
||||
}
|
||||
template<class Coarsened>
|
||||
void ReLoadOperator(Coarsened &Operator,std::string file)
|
||||
{
|
||||
#ifdef HAVE_LIME
|
||||
emptyUserRecord record;
|
||||
Grid::ScidacReader RD ;
|
||||
RD.open(file);
|
||||
assert(Operator._A.size()==Operator.geom.npoint);
|
||||
for(int p=0;p<Operator.geom.npoint;p++){
|
||||
auto tmp=Operator.Cell.Extract(Operator._A[p]);
|
||||
RD.readScidacFieldRecord(tmp,record,0);
|
||||
Operator._A[p] = Operator.Cell.ExchangePeriodic(tmp);
|
||||
}
|
||||
RD.close();
|
||||
#endif
|
||||
}
|
||||
*/
|
||||
template<class aggregation>
|
||||
void SaveBasis(aggregation &Agg,std::string file)
|
||||
{
|
||||
#ifdef HAVE_LIME
|
||||
emptyUserRecord record;
|
||||
ScidacWriter WR(Agg.FineGrid->IsBoss());
|
||||
WR.open(file);
|
||||
for(int b=0;b<Agg.subspace.size();b++){
|
||||
//WR.writeScidacFieldRecord(Agg.subspace[b],record,0,BINARYIO_LEXICOGRAPHIC);
|
||||
WR.writeScidacFieldRecord(Agg.subspace[b],record,0,0);
|
||||
}
|
||||
WR.close();
|
||||
#endif
|
||||
}
|
||||
template<class aggregation>
|
||||
void LoadBasis(aggregation &Agg, std::string file)
|
||||
{
|
||||
#ifdef HAVE_LIME
|
||||
emptyUserRecord record;
|
||||
ScidacReader RD ;
|
||||
RD.open(file);
|
||||
for(int b=0;b<Agg.subspace.size();b++){
|
||||
// RD.readScidacFieldRecord(Agg.subspace[b],record,BINARYIO_LEXICOGRAPHIC);
|
||||
RD.readScidacFieldRecord(Agg.subspace[b],record,0);
|
||||
}
|
||||
RD.close();
|
||||
#endif
|
||||
}
|
||||
template<class CoarseVector>
|
||||
void SaveEigenvectors(std::vector<RealD> &eval,
|
||||
std::vector<CoarseVector> &evec,
|
||||
std::string evec_file,
|
||||
std::string eval_file)
|
||||
{
|
||||
#ifdef HAVE_LIME
|
||||
emptyUserRecord record;
|
||||
ScidacWriter WR(evec[0].Grid()->IsBoss());
|
||||
WR.open(evec_file);
|
||||
for(int b=0;b<evec.size();b++){
|
||||
WR.writeScidacFieldRecord(evec[b],record,0,0);
|
||||
}
|
||||
WR.close();
|
||||
XmlWriter WRx(eval_file);
|
||||
write(WRx,"evals",eval);
|
||||
#endif
|
||||
}
|
||||
template<class CoarseVector>
|
||||
void LoadEigenvectors(std::vector<RealD> &eval,
|
||||
std::vector<CoarseVector> &evec,
|
||||
std::string evec_file,
|
||||
std::string eval_file)
|
||||
{
|
||||
#ifdef HAVE_LIME
|
||||
XmlReader RDx(eval_file);
|
||||
read(RDx,"evals",eval);
|
||||
emptyUserRecord record;
|
||||
|
||||
Grid::ScidacReader RD ;
|
||||
RD.open(evec_file);
|
||||
assert(evec.size()==eval.size());
|
||||
for(int k=0;k<eval.size();k++) {
|
||||
RD.readScidacFieldRecord(evec[k],record);
|
||||
}
|
||||
RD.close();
|
||||
#endif
|
||||
}
|
||||
|
||||
// Want Op in CoarsenOp to call MatPcDagMatPc
|
||||
template<class Field>
|
||||
class HermOpAdaptor : public LinearOperatorBase<Field>
|
||||
{
|
||||
LinearOperatorBase<Field> & wrapped;
|
||||
public:
|
||||
HermOpAdaptor(LinearOperatorBase<Field> &wrapme) : wrapped(wrapme) {};
|
||||
void Op (const Field &in, Field &out) { wrapped.HermOp(in,out); }
|
||||
void HermOp(const Field &in, Field &out) { wrapped.HermOp(in,out); }
|
||||
void AdjOp (const Field &in, Field &out){ wrapped.HermOp(in,out); }
|
||||
void OpDiag (const Field &in, Field &out) { assert(0); }
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); }
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out) { assert(0); };
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
|
||||
};
|
||||
|
||||
template<class Field> class CGSmoother : public LinearFunction<Field>
|
||||
{
|
||||
public:
|
||||
using LinearFunction<Field>::operator();
|
||||
typedef LinearOperatorBase<Field> FineOperator;
|
||||
FineOperator & _SmootherOperator;
|
||||
int iters;
|
||||
CGSmoother(int _iters, FineOperator &SmootherOperator) :
|
||||
_SmootherOperator(SmootherOperator),
|
||||
iters(_iters)
|
||||
{
|
||||
std::cout << GridLogMessage<<" Mirs smoother order "<<iters<<std::endl;
|
||||
};
|
||||
void operator() (const Field &in, Field &out)
|
||||
{
|
||||
ConjugateGradient<Field> CG(0.0,iters,false); // non-converge is just fine in a smoother
|
||||
|
||||
out=Zero();
|
||||
|
||||
CG(_SmootherOperator,in,out);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
const int Ls=24;
|
||||
const int nbasis = 62;
|
||||
const int cb = 0 ;
|
||||
RealD mass=0.00078;
|
||||
RealD M5=1.8;
|
||||
RealD b=1.5;
|
||||
RealD c=0.5;
|
||||
|
||||
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
|
||||
GridDefaultSimd(Nd,vComplex::Nsimd()),
|
||||
GridDefaultMpi());
|
||||
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
|
||||
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
|
||||
|
||||
// Construct a coarsened grid with 4^4 cell
|
||||
Coordinate Block({4,4,6,4});
|
||||
Coordinate clatt = GridDefaultLatt();
|
||||
for(int d=0;d<clatt.size();d++){
|
||||
clatt[d] = clatt[d]/Block[d];
|
||||
}
|
||||
|
||||
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt,
|
||||
GridDefaultSimd(Nd,vComplex::Nsimd()),
|
||||
GridDefaultMpi());;
|
||||
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
|
||||
|
||||
///////////////////////// RNGs /////////////////////////////////
|
||||
std::vector<int> seeds4({1,2,3,4});
|
||||
std::vector<int> seeds5({5,6,7,8});
|
||||
std::vector<int> cseeds({5,6,7,8});
|
||||
|
||||
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
|
||||
GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds);
|
||||
|
||||
///////////////////////// Configuration /////////////////////////////////
|
||||
LatticeGaugeField Umu(UGrid);
|
||||
|
||||
FieldMetaData header;
|
||||
std::string file("ckpoint_lat.1000");
|
||||
NerscIO::readConfiguration(Umu,header,file);
|
||||
|
||||
//////////////////////// Fermion action //////////////////////////////////
|
||||
MobiusFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,b,c);
|
||||
|
||||
SchurDiagMooeeOperator<MobiusFermionD, LatticeFermion> HermOpEO(Ddwf);
|
||||
|
||||
typedef HermOpAdaptor<LatticeFermionD> HermFineMatrix;
|
||||
HermFineMatrix FineHermOp(HermOpEO);
|
||||
|
||||
// Run power method on FineHermOp
|
||||
// PowerMethod<LatticeFermion> PM; PM(HermOpEO,src);
|
||||
////////////////////////////////////////////////////////////
|
||||
///////////// Coarse basis and Little Dirac Operator ///////
|
||||
////////////////////////////////////////////////////////////
|
||||
typedef GeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LittleDiracOperator;
|
||||
typedef LittleDiracOperator::CoarseVector CoarseVector;
|
||||
|
||||
NextToNextToNextToNearestStencilGeometry5D geom(Coarse5d);
|
||||
|
||||
// Warning: This routine calls PVdagM.Op, not PVdagM.HermOp
|
||||
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
|
||||
Subspace Aggregates(Coarse5d,FrbGrid,cb);
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// Need to check about red-black grid coarsening
|
||||
////////////////////////////////////////////////////////////
|
||||
// LittleDiracOperator LittleDiracOp(geom,FrbGrid,Coarse5d);
|
||||
|
||||
std::string subspace_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Subspace.phys48.new.62");
|
||||
std::string refine_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Refine.phys48.hdcg.62");
|
||||
std::string ldop_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/LittleDiracOp.phys48.new.62");
|
||||
std::string evec_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/evecs.scidac");
|
||||
std::string eval_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/eval.xml");
|
||||
bool load_agg=false;
|
||||
bool load_refine=false;
|
||||
bool load_mat=false;
|
||||
bool load_evec=false;
|
||||
std::cout << GridLogMessage <<" Restoring from checkpoint "<<std::endl;
|
||||
int refine=1;
|
||||
if ( load_agg ) {
|
||||
if ( !(refine) || (!load_refine) ) {
|
||||
LoadBasis(Aggregates,subspace_file);
|
||||
}
|
||||
} else {
|
||||
// Aggregates.CreateSubspaceMultishift(RNG5,HermOpEO,
|
||||
// 0.0003,1.0e-5,2000); // Lo, tol, maxit
|
||||
Aggregates.CreateSubspaceChebyshev(RNG5,HermOpEO,nbasis,95.,0.01,1500); <== last run
|
||||
// Aggregates.CreateSubspaceChebyshevNew(RNG5,HermOpEO,95.); // 176 with refinement
|
||||
// Aggregates.CreateSubspaceChebyshev(RNG5,HermOpEO,nbasis,95.,0.001,3000,1500,200,0.0); // Attempt to resurrect
|
||||
SaveBasis(Aggregates,subspace_file);
|
||||
}
|
||||
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << "Building MultiRHS Coarse operator"<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
ConjugateGradient<CoarseVector> coarseCG(4.0e-2,20000,true);
|
||||
|
||||
const int nrhs=vComplex::Nsimd()*3; // 12
|
||||
|
||||
Coordinate mpi=GridDefaultMpi();
|
||||
Coordinate rhMpi ({1,1,mpi[0],mpi[1],mpi[2],mpi[3]});
|
||||
Coordinate rhLatt({nrhs,1,clatt[0],clatt[1],clatt[2],clatt[3]});
|
||||
Coordinate rhSimd({vComplex::Nsimd(),1, 1,1,1,1});
|
||||
|
||||
GridCartesian *CoarseMrhs = new GridCartesian(rhLatt,rhSimd,rhMpi);
|
||||
typedef MultiGeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> MultiGeneralCoarsenedMatrix_t;
|
||||
MultiGeneralCoarsenedMatrix_t mrhs(geom,CoarseMrhs);
|
||||
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << " Coarse Lanczos "<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
|
||||
typedef HermitianLinearOperator<MultiGeneralCoarsenedMatrix_t,CoarseVector> MrhsHermMatrix;
|
||||
// FunctionHermOp<CoarseVector> IRLOpCheby(IRLCheby,CoarseOp);
|
||||
// PlainHermOp<CoarseVector> IRLOp (CoarseOp);
|
||||
Chebyshev<CoarseVector> IRLCheby(0.006,42.0,301); // 1 iter
|
||||
MrhsHermMatrix MrhsCoarseOp (mrhs);
|
||||
|
||||
CoarseVector pm_src(CoarseMrhs);
|
||||
pm_src = ComplexD(1.0);
|
||||
PowerMethod<CoarseVector> cPM; cPM(MrhsCoarseOp,pm_src);
|
||||
|
||||
int Nk=192;
|
||||
int Nm=384;
|
||||
int Nstop=Nk;
|
||||
int Nconv_test_interval=1;
|
||||
|
||||
ImplicitlyRestartedBlockLanczosCoarse<CoarseVector> IRL(MrhsCoarseOp,
|
||||
Coarse5d,
|
||||
CoarseMrhs,
|
||||
nrhs,
|
||||
IRLCheby,
|
||||
Nstop,
|
||||
Nconv_test_interval,
|
||||
nrhs,
|
||||
Nk,
|
||||
Nm,
|
||||
1e-5,10);
|
||||
|
||||
int Nconv;
|
||||
std::vector<RealD> eval(Nm);
|
||||
std::vector<CoarseVector> evec(Nm,Coarse5d);
|
||||
std::vector<CoarseVector> c_src(nrhs,Coarse5d);
|
||||
|
||||
///////////////////////
|
||||
// Deflation guesser object
|
||||
///////////////////////
|
||||
MultiRHSDeflation<CoarseVector> MrhsGuesser;
|
||||
|
||||
//////////////////////////////////////////
|
||||
// Block projector for coarse/fine
|
||||
//////////////////////////////////////////
|
||||
MultiRHSBlockProject<LatticeFermionD> MrhsProjector;
|
||||
|
||||
//////////////////////////
|
||||
// Extra HDCG parameters
|
||||
//////////////////////////
|
||||
int maxit=3000;
|
||||
ConjugateGradient<CoarseVector> CG(5.0e-2,maxit,false);
|
||||
RealD lo=2.0;
|
||||
int ord = 7;
|
||||
|
||||
DoNothingGuesser<CoarseVector> DoNothing;
|
||||
HPDSolver<CoarseVector> HPDSolveMrhs(MrhsCoarseOp,CG,DoNothing);
|
||||
HPDSolver<CoarseVector> HPDSolveMrhsRefine(MrhsCoarseOp,CG,DoNothing);
|
||||
|
||||
/////////////////////////////////////////////////
|
||||
// Mirs smoother
|
||||
/////////////////////////////////////////////////
|
||||
RealD MirsShift = lo;
|
||||
ShiftedHermOpLinearOperator<LatticeFermionD> ShiftedFineHermOp(HermOpEO,MirsShift);
|
||||
CGSmoother<LatticeFermionD> CGsmooth(ord,ShiftedFineHermOp) ;
|
||||
|
||||
|
||||
if ( load_refine ) {
|
||||
LoadBasis(Aggregates,refine_file);
|
||||
} else {
|
||||
#if 1
|
||||
// Make a copy as subspace gets block orthogonalised
|
||||
// HDCG used Pcg to refine
|
||||
int Refineord = 11;
|
||||
// Not as good as refining with shifted CG (169 iters), but 10%
|
||||
// Datapoints
|
||||
//- refining to 0.001 and shift 0.0 is expensive, but gets to 180 outer iterations
|
||||
//- refining to 0.001 and shift 0.001 is cheap, but gets to 240 outer iterations
|
||||
//- refining to 0.0005 and shift 0.0005 is cheap, but gets to 230 outer iterations
|
||||
//- refining to 0.001 and shift 0.0001 220 iterations
|
||||
//- refining to 0.001 and shift 0.00003
|
||||
RealD RefineShift = 0.00003;
|
||||
RealD RefineTol = 0.001;
|
||||
ShiftedHermOpLinearOperator<LatticeFermionD> RefineFineHermOp(HermOpEO,RefineShift);
|
||||
|
||||
mrhs.CoarsenOperator(RefineFineHermOp,Aggregates,Coarse5d);
|
||||
|
||||
MrhsProjector.Allocate(nbasis,FrbGrid,Coarse5d);
|
||||
|
||||
MrhsProjector.ImportBasis(Aggregates.subspace);
|
||||
|
||||
// Lanczos with random start
|
||||
for(int r=0;r<nrhs;r++){
|
||||
random(CRNG,c_src[r]);
|
||||
}
|
||||
IRL.calc(eval,evec,c_src,Nconv,LanczosType::irbl);
|
||||
|
||||
MrhsGuesser.ImportEigenBasis(evec,eval);
|
||||
|
||||
CGSmoother<LatticeFermionD> CGsmooth(Refineord,ShiftedFineHermOp) ;
|
||||
TwoLevelADEF2mrhs<LatticeFermion,CoarseVector>
|
||||
HDCGmrhsRefine(RefineTol, 500,
|
||||
RefineFineHermOp,
|
||||
CGsmooth,
|
||||
HPDSolveMrhs, // Used in M1
|
||||
HPDSolveMrhs, // Used in Vstart
|
||||
MrhsProjector,
|
||||
MrhsGuesser,
|
||||
CoarseMrhs);
|
||||
|
||||
// Reload the first pass aggregates, because we orthogonalised them
|
||||
LoadBasis(Aggregates,subspace_file);
|
||||
|
||||
Aggregates.RefineSubspaceHDCG(HermOpEO,
|
||||
HDCGmrhsRefine,
|
||||
nrhs);
|
||||
|
||||
#else
|
||||
Aggregates.RefineSubspace(HermOpEO,0.001,1.0e-3,3000); // 172 iters
|
||||
#endif
|
||||
|
||||
SaveBasis(Aggregates,refine_file);
|
||||
}
|
||||
Aggregates.Orthogonalise();
|
||||
|
||||
/*
|
||||
if ( load_mat ) {
|
||||
LoadOperator(LittleDiracOp,ldop_file);
|
||||
} else {
|
||||
LittleDiracOp.CoarsenOperator(FineHermOp,Aggregates);
|
||||
SaveOperator(LittleDiracOp,ldop_file);
|
||||
}
|
||||
*/
|
||||
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << "Coarsen after refine"<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
|
||||
mrhs.CoarsenOperator(FineHermOp,Aggregates,Coarse5d);
|
||||
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << " Recompute coarse evecs ; use old evecs as source "<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
evec.resize(Nm,Coarse5d);
|
||||
eval.resize(Nm);
|
||||
for(int r=0;r<nrhs;r++){
|
||||
// c_src[r]=Zero();
|
||||
random(CRNG,c_src[r]);
|
||||
}
|
||||
for(int e=0;e<evec.size();e++){
|
||||
// int r = e%nrhs;
|
||||
// c_src[r] = c_src[r]+evec[r];
|
||||
}
|
||||
IRL.calc(eval,evec,c_src,Nconv,LanczosType::irbl);
|
||||
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << " Reimport coarse evecs "<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
MrhsGuesser.ImportEigenBasis(evec,eval);
|
||||
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << "Calling mRHS HDCG"<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
MrhsProjector.Allocate(nbasis,FrbGrid,Coarse5d);
|
||||
MrhsProjector.ImportBasis(Aggregates.subspace);
|
||||
|
||||
TwoLevelADEF2mrhs<LatticeFermion,CoarseVector>
|
||||
HDCGmrhs(1.0e-8, 500,
|
||||
FineHermOp,
|
||||
CGsmooth,
|
||||
HPDSolveMrhs, // Used in M1
|
||||
HPDSolveMrhs, // Used in Vstart
|
||||
MrhsProjector,
|
||||
MrhsGuesser,
|
||||
CoarseMrhs);
|
||||
|
||||
std::vector<LatticeFermionD> src_mrhs(nrhs,FrbGrid);
|
||||
std::vector<LatticeFermionD> res_mrhs(nrhs,FrbGrid);
|
||||
|
||||
for(int r=0;r<nrhs;r++){
|
||||
random(RNG5,src_mrhs[r]);
|
||||
res_mrhs[r]=Zero();
|
||||
}
|
||||
|
||||
HDCGmrhs(src_mrhs,res_mrhs);
|
||||
|
||||
// Standard CG
|
||||
#if 0
|
||||
{
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << "Calling red black CG"<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
|
||||
LatticeFermion result(FrbGrid); result=Zero();
|
||||
LatticeFermion src(FrbGrid); random(RNG5,src);
|
||||
result=Zero();
|
||||
|
||||
CGfine(HermOpEO, src, result);
|
||||
}
|
||||
#endif
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
388
tests/debug/Test_general_coarse_hdcg_phys48_mixed.cc
Normal file
388
tests/debug/Test_general_coarse_hdcg_phys48_mixed.cc
Normal file
@ -0,0 +1,388 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/Test_general_coarse_hdcg.cc
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h>
|
||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczosCoarse.h>
|
||||
#include <Grid/algorithms/iterative/AdefMrhs.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
|
||||
template<class aggregation>
|
||||
void SaveBasis(aggregation &Agg,std::string file)
|
||||
{
|
||||
#ifdef HAVE_LIME
|
||||
emptyUserRecord record;
|
||||
ScidacWriter WR(Agg.FineGrid->IsBoss());
|
||||
WR.open(file);
|
||||
for(int b=0;b<Agg.subspace.size();b++){
|
||||
WR.writeScidacFieldRecord(Agg.subspace[b],record,0,Grid::BinaryIO::BINARYIO_LEXICOGRAPHIC);
|
||||
// WR.writeScidacFieldRecord(Agg.subspace[b],record);
|
||||
}
|
||||
WR.close();
|
||||
#endif
|
||||
}
|
||||
template<class aggregation>
|
||||
void LoadBasis(aggregation &Agg, std::string file)
|
||||
{
|
||||
#ifdef HAVE_LIME
|
||||
emptyUserRecord record;
|
||||
ScidacReader RD ;
|
||||
RD.open(file);
|
||||
for(int b=0;b<Agg.subspace.size();b++){
|
||||
RD.readScidacFieldRecord(Agg.subspace[b],record,Grid::BinaryIO::BINARYIO_LEXICOGRAPHIC);
|
||||
// RD.readScidacFieldRecord(Agg.subspace[b],record,0);
|
||||
}
|
||||
RD.close();
|
||||
#endif
|
||||
}
|
||||
template<class CoarseVector>
|
||||
void SaveEigenvectors(std::vector<RealD> &eval,
|
||||
std::vector<CoarseVector> &evec,
|
||||
std::string evec_file,
|
||||
std::string eval_file)
|
||||
{
|
||||
#ifdef HAVE_LIME
|
||||
emptyUserRecord record;
|
||||
ScidacWriter WR(evec[0].Grid()->IsBoss());
|
||||
WR.open(evec_file);
|
||||
for(int b=0;b<evec.size();b++){
|
||||
WR.writeScidacFieldRecord(evec[b],record,0,0);
|
||||
}
|
||||
WR.close();
|
||||
XmlWriter WRx(eval_file);
|
||||
write(WRx,"evals",eval);
|
||||
#endif
|
||||
}
|
||||
template<class CoarseVector>
|
||||
void LoadEigenvectors(std::vector<RealD> &eval,
|
||||
std::vector<CoarseVector> &evec,
|
||||
std::string evec_file,
|
||||
std::string eval_file)
|
||||
{
|
||||
#ifdef HAVE_LIME
|
||||
XmlReader RDx(eval_file);
|
||||
read(RDx,"evals",eval);
|
||||
emptyUserRecord record;
|
||||
|
||||
Grid::ScidacReader RD ;
|
||||
RD.open(evec_file);
|
||||
assert(evec.size()==eval.size());
|
||||
for(int k=0;k<eval.size();k++) {
|
||||
RD.readScidacFieldRecord(evec[k],record);
|
||||
}
|
||||
RD.close();
|
||||
#endif
|
||||
}
|
||||
|
||||
// Want Op in CoarsenOp to call MatPcDagMatPc
|
||||
template<class Field>
|
||||
class HermOpAdaptor : public LinearOperatorBase<Field>
|
||||
{
|
||||
LinearOperatorBase<Field> & wrapped;
|
||||
public:
|
||||
HermOpAdaptor(LinearOperatorBase<Field> &wrapme) : wrapped(wrapme) {};
|
||||
void Op (const Field &in, Field &out) { wrapped.HermOp(in,out); }
|
||||
void HermOp(const Field &in, Field &out) { wrapped.HermOp(in,out); }
|
||||
void AdjOp (const Field &in, Field &out){ wrapped.HermOp(in,out); }
|
||||
void OpDiag (const Field &in, Field &out) { assert(0); }
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); }
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out) { assert(0); };
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
|
||||
};
|
||||
|
||||
template<class Field> class CGSmoother : public LinearFunction<Field>
|
||||
{
|
||||
public:
|
||||
using LinearFunction<Field>::operator();
|
||||
typedef LinearOperatorBase<Field> FineOperator;
|
||||
FineOperator & _SmootherOperator;
|
||||
int iters;
|
||||
CGSmoother(int _iters, FineOperator &SmootherOperator) :
|
||||
_SmootherOperator(SmootherOperator),
|
||||
iters(_iters)
|
||||
{
|
||||
std::cout << GridLogMessage<<" Mirs smoother order "<<iters<<std::endl;
|
||||
};
|
||||
void operator() (const Field &in, Field &out)
|
||||
{
|
||||
ConjugateGradient<Field> CG(0.0,iters,false); // non-converge is just fine in a smoother
|
||||
|
||||
out=Zero();
|
||||
|
||||
CG(_SmootherOperator,in,out);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
const int Ls=24;
|
||||
const int nbasis = 62;
|
||||
const int cb = 0 ;
|
||||
RealD mass=0.00078;
|
||||
RealD M5=1.8;
|
||||
RealD b=1.5;
|
||||
RealD c=0.5;
|
||||
|
||||
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
|
||||
GridDefaultSimd(Nd,vComplex::Nsimd()),
|
||||
GridDefaultMpi());
|
||||
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
|
||||
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
|
||||
|
||||
// Construct a coarsened grid with 4^4 cell
|
||||
Coordinate Block({4,4,6,4});
|
||||
Coordinate clatt = GridDefaultLatt();
|
||||
for(int d=0;d<clatt.size();d++){
|
||||
clatt[d] = clatt[d]/Block[d];
|
||||
}
|
||||
|
||||
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt,
|
||||
GridDefaultSimd(Nd,vComplex::Nsimd()),
|
||||
GridDefaultMpi());;
|
||||
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
|
||||
|
||||
///////////////////////// RNGs /////////////////////////////////
|
||||
std::vector<int> seeds4({1,2,3,4});
|
||||
std::vector<int> seeds5({5,6,7,8});
|
||||
std::vector<int> cseeds({5,6,7,8});
|
||||
|
||||
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
|
||||
GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds);
|
||||
|
||||
///////////////////////// Configuration /////////////////////////////////
|
||||
LatticeGaugeField Umu(UGrid);
|
||||
|
||||
FieldMetaData header;
|
||||
std::string file("ckpoint_lat.1000");
|
||||
NerscIO::readConfiguration(Umu,header,file);
|
||||
|
||||
//////////////////////// Fermion action //////////////////////////////////
|
||||
MobiusFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,b,c);
|
||||
|
||||
SchurDiagMooeeOperator<MobiusFermionD, LatticeFermion> HermOpEO(Ddwf);
|
||||
|
||||
typedef HermOpAdaptor<LatticeFermionD> HermFineMatrix;
|
||||
HermFineMatrix FineHermOp(HermOpEO);
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
///////////// Coarse basis and Little Dirac Operator ///////
|
||||
////////////////////////////////////////////////////////////
|
||||
typedef GeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LittleDiracOperator;
|
||||
typedef LittleDiracOperator::CoarseVector CoarseVector;
|
||||
|
||||
NextToNextToNextToNearestStencilGeometry5D geom(Coarse5d);
|
||||
|
||||
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
|
||||
Subspace Aggregates(Coarse5d,FrbGrid,cb);
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// Need to check about red-black grid coarsening
|
||||
////////////////////////////////////////////////////////////
|
||||
|
||||
std::string subspace_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Subspace.phys48.mixed.2500.60");
|
||||
// std::string subspace_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Subspace.phys48.new.62");
|
||||
std::string refine_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Refine.phys48.mixed.2500.60");
|
||||
std::string ldop_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/LittleDiracOp.phys48.mixed.60");
|
||||
std::string evec_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/evecs.scidac");
|
||||
std::string eval_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/eval.xml");
|
||||
bool load_agg=true;
|
||||
bool load_refine=true;
|
||||
bool load_mat=false;
|
||||
bool load_evec=false;
|
||||
|
||||
int refine=1;
|
||||
if ( load_agg ) {
|
||||
if ( !(refine) || (!load_refine) ) {
|
||||
LoadBasis(Aggregates,subspace_file);
|
||||
}
|
||||
} else {
|
||||
// Aggregates.CreateSubspaceMultishift(RNG5,HermOpEO,
|
||||
// 0.0003,1.0e-5,2000); // Lo, tol, maxit
|
||||
// Aggregates.CreateSubspaceChebyshev(RNG5,HermOpEO,nbasis,95.,0.01,1500);// <== last run
|
||||
Aggregates.CreateSubspaceChebyshevNew(RNG5,HermOpEO,95.);
|
||||
SaveBasis(Aggregates,subspace_file);
|
||||
}
|
||||
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << "Building MultiRHS Coarse operator"<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
ConjugateGradient<CoarseVector> coarseCG(4.0e-2,20000,true);
|
||||
|
||||
const int nrhs=12;
|
||||
|
||||
Coordinate mpi=GridDefaultMpi();
|
||||
Coordinate rhMpi ({1,1,mpi[0],mpi[1],mpi[2],mpi[3]});
|
||||
Coordinate rhLatt({nrhs,1,clatt[0],clatt[1],clatt[2],clatt[3]});
|
||||
Coordinate rhSimd({vComplex::Nsimd(),1, 1,1,1,1});
|
||||
|
||||
GridCartesian *CoarseMrhs = new GridCartesian(rhLatt,rhSimd,rhMpi);
|
||||
typedef MultiGeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> MultiGeneralCoarsenedMatrix_t;
|
||||
MultiGeneralCoarsenedMatrix_t mrhs(geom,CoarseMrhs);
|
||||
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << " Coarse Lanczos "<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
|
||||
typedef HermitianLinearOperator<MultiGeneralCoarsenedMatrix_t,CoarseVector> MrhsHermMatrix;
|
||||
Chebyshev<CoarseVector> IRLCheby(0.005,42.0,301); // 1 iter
|
||||
MrhsHermMatrix MrhsCoarseOp (mrhs);
|
||||
|
||||
CoarseVector pm_src(CoarseMrhs);
|
||||
pm_src = ComplexD(1.0);
|
||||
PowerMethod<CoarseVector> cPM; cPM(MrhsCoarseOp,pm_src);
|
||||
|
||||
int Nk=192;
|
||||
int Nm=384;
|
||||
int Nstop=Nk;
|
||||
int Nconv_test_interval=1;
|
||||
|
||||
ImplicitlyRestartedBlockLanczosCoarse<CoarseVector> IRL(MrhsCoarseOp,
|
||||
Coarse5d,
|
||||
CoarseMrhs,
|
||||
nrhs,
|
||||
IRLCheby,
|
||||
Nstop,
|
||||
Nconv_test_interval,
|
||||
nrhs,
|
||||
Nk,
|
||||
Nm,
|
||||
1e-5,10);
|
||||
|
||||
int Nconv;
|
||||
std::vector<RealD> eval(Nm);
|
||||
std::vector<CoarseVector> evec(Nm,Coarse5d);
|
||||
std::vector<CoarseVector> c_src(nrhs,Coarse5d);
|
||||
|
||||
///////////////////////
|
||||
// Deflation guesser object
|
||||
///////////////////////
|
||||
MultiRHSDeflation<CoarseVector> MrhsGuesser;
|
||||
|
||||
//////////////////////////////////////////
|
||||
// Block projector for coarse/fine
|
||||
//////////////////////////////////////////
|
||||
MultiRHSBlockProject<LatticeFermionD> MrhsProjector;
|
||||
|
||||
//////////////////////////
|
||||
// Extra HDCG parameters
|
||||
//////////////////////////
|
||||
int maxit=3000;
|
||||
ConjugateGradient<CoarseVector> CG(5.0e-2,maxit,false);
|
||||
RealD lo=2.0;
|
||||
int ord = 7;
|
||||
|
||||
DoNothingGuesser<CoarseVector> DoNothing;
|
||||
HPDSolver<CoarseVector> HPDSolveMrhs(MrhsCoarseOp,CG,DoNothing);
|
||||
HPDSolver<CoarseVector> HPDSolveMrhsRefine(MrhsCoarseOp,CG,DoNothing);
|
||||
|
||||
/////////////////////////////////////////////////
|
||||
// Mirs smoother
|
||||
/////////////////////////////////////////////////
|
||||
RealD MirsShift = lo;
|
||||
ShiftedHermOpLinearOperator<LatticeFermionD> ShiftedFineHermOp(HermOpEO,MirsShift);
|
||||
CGSmoother<LatticeFermionD> CGsmooth(ord,ShiftedFineHermOp) ;
|
||||
|
||||
|
||||
if ( load_refine ) {
|
||||
LoadBasis(Aggregates,refine_file);
|
||||
} else {
|
||||
Aggregates.RefineSubspace(HermOpEO,0.001,1.0e-3,3000); // 172 iters
|
||||
SaveBasis(Aggregates,refine_file);
|
||||
}
|
||||
Aggregates.Orthogonalise();
|
||||
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << "Coarsen after refine"<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
mrhs.CoarsenOperator(FineHermOp,Aggregates,Coarse5d);
|
||||
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << " Recompute coarse evecs "<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
evec.resize(Nm,Coarse5d);
|
||||
eval.resize(Nm);
|
||||
for(int r=0;r<nrhs;r++){
|
||||
random(CRNG,c_src[r]);
|
||||
}
|
||||
IRL.calc(eval,evec,c_src,Nconv,LanczosType::irbl);
|
||||
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << " Reimport coarse evecs "<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
MrhsGuesser.ImportEigenBasis(evec,eval);
|
||||
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << "Calling mRHS HDCG"<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
MrhsProjector.Allocate(nbasis,FrbGrid,Coarse5d);
|
||||
MrhsProjector.ImportBasis(Aggregates.subspace);
|
||||
|
||||
TwoLevelADEF2mrhs<LatticeFermion,CoarseVector>
|
||||
HDCGmrhs(1.0e-8, 500,
|
||||
FineHermOp,
|
||||
CGsmooth,
|
||||
HPDSolveMrhs, // Used in M1
|
||||
HPDSolveMrhs, // Used in Vstart
|
||||
MrhsProjector,
|
||||
MrhsGuesser,
|
||||
CoarseMrhs);
|
||||
|
||||
std::vector<LatticeFermionD> src_mrhs(nrhs,FrbGrid);
|
||||
std::vector<LatticeFermionD> res_mrhs(nrhs,FrbGrid);
|
||||
|
||||
for(int r=0;r<nrhs;r++){
|
||||
random(RNG5,src_mrhs[r]);
|
||||
res_mrhs[r]=Zero();
|
||||
}
|
||||
|
||||
HDCGmrhs(src_mrhs,res_mrhs);
|
||||
|
||||
// Standard CG
|
||||
#if 1
|
||||
{
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << "Calling red black CG"<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
|
||||
LatticeFermion result(FrbGrid); result=Zero();
|
||||
LatticeFermion src(FrbGrid); random(RNG5,src);
|
||||
result=Zero();
|
||||
|
||||
ConjugateGradient<LatticeFermionD> CGfine(1.0e-8,30000,false);
|
||||
CGfine(HermOpEO, src, result);
|
||||
}
|
||||
#endif
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
396
tests/debug/Test_general_coarse_hdcg_phys96_mixed.cc
Normal file
396
tests/debug/Test_general_coarse_hdcg_phys96_mixed.cc
Normal file
@ -0,0 +1,396 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/Test_general_coarse_hdcg.cc
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h>
|
||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczosCoarse.h>
|
||||
#include <Grid/algorithms/iterative/AdefMrhs.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
|
||||
template<class aggregation>
|
||||
void SaveBasis(aggregation &Agg,std::string file)
|
||||
{
|
||||
#ifdef HAVE_LIME
|
||||
emptyUserRecord record;
|
||||
ScidacWriter WR(Agg.FineGrid->IsBoss());
|
||||
WR.open(file);
|
||||
for(int b=0;b<Agg.subspace.size();b++){
|
||||
WR.writeScidacFieldRecord(Agg.subspace[b],record,0,Grid::BinaryIO::BINARYIO_LEXICOGRAPHIC);
|
||||
// WR.writeScidacFieldRecord(Agg.subspace[b],record);
|
||||
}
|
||||
WR.close();
|
||||
#endif
|
||||
}
|
||||
template<class aggregation>
|
||||
void LoadBasis(aggregation &Agg, std::string file)
|
||||
{
|
||||
#ifdef HAVE_LIME
|
||||
emptyUserRecord record;
|
||||
ScidacReader RD ;
|
||||
RD.open(file);
|
||||
for(int b=0;b<Agg.subspace.size();b++){
|
||||
RD.readScidacFieldRecord(Agg.subspace[b],record,Grid::BinaryIO::BINARYIO_LEXICOGRAPHIC);
|
||||
// RD.readScidacFieldRecord(Agg.subspace[b],record,0);
|
||||
}
|
||||
RD.close();
|
||||
#endif
|
||||
}
|
||||
template<class CoarseVector>
|
||||
void SaveEigenvectors(std::vector<RealD> &eval,
|
||||
std::vector<CoarseVector> &evec,
|
||||
std::string evec_file,
|
||||
std::string eval_file)
|
||||
{
|
||||
#ifdef HAVE_LIME
|
||||
emptyUserRecord record;
|
||||
ScidacWriter WR(evec[0].Grid()->IsBoss());
|
||||
WR.open(evec_file);
|
||||
for(int b=0;b<evec.size();b++){
|
||||
WR.writeScidacFieldRecord(evec[b],record,0,0);
|
||||
}
|
||||
WR.close();
|
||||
XmlWriter WRx(eval_file);
|
||||
write(WRx,"evals",eval);
|
||||
#endif
|
||||
}
|
||||
template<class CoarseVector>
|
||||
void LoadEigenvectors(std::vector<RealD> &eval,
|
||||
std::vector<CoarseVector> &evec,
|
||||
std::string evec_file,
|
||||
std::string eval_file)
|
||||
{
|
||||
#ifdef HAVE_LIME
|
||||
XmlReader RDx(eval_file);
|
||||
read(RDx,"evals",eval);
|
||||
emptyUserRecord record;
|
||||
|
||||
Grid::ScidacReader RD ;
|
||||
RD.open(evec_file);
|
||||
assert(evec.size()==eval.size());
|
||||
for(int k=0;k<eval.size();k++) {
|
||||
RD.readScidacFieldRecord(evec[k],record);
|
||||
}
|
||||
RD.close();
|
||||
#endif
|
||||
}
|
||||
|
||||
// Want Op in CoarsenOp to call MatPcDagMatPc
|
||||
template<class Field>
|
||||
class HermOpAdaptor : public LinearOperatorBase<Field>
|
||||
{
|
||||
LinearOperatorBase<Field> & wrapped;
|
||||
public:
|
||||
HermOpAdaptor(LinearOperatorBase<Field> &wrapme) : wrapped(wrapme) {};
|
||||
void Op (const Field &in, Field &out) { wrapped.HermOp(in,out); }
|
||||
void HermOp(const Field &in, Field &out) { wrapped.HermOp(in,out); }
|
||||
void AdjOp (const Field &in, Field &out){ wrapped.HermOp(in,out); }
|
||||
void OpDiag (const Field &in, Field &out) { assert(0); }
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); }
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out) { assert(0); };
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
|
||||
};
|
||||
|
||||
template<class Field> class CGSmoother : public LinearFunction<Field>
|
||||
{
|
||||
public:
|
||||
using LinearFunction<Field>::operator();
|
||||
typedef LinearOperatorBase<Field> FineOperator;
|
||||
FineOperator & _SmootherOperator;
|
||||
int iters;
|
||||
CGSmoother(int _iters, FineOperator &SmootherOperator) :
|
||||
_SmootherOperator(SmootherOperator),
|
||||
iters(_iters)
|
||||
{
|
||||
std::cout << GridLogMessage<<" Mirs smoother order "<<iters<<std::endl;
|
||||
};
|
||||
void operator() (const Field &in, Field &out)
|
||||
{
|
||||
ConjugateGradient<Field> CG(0.0,iters,false); // non-converge is just fine in a smoother
|
||||
|
||||
out=Zero();
|
||||
|
||||
CG(_SmootherOperator,in,out);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
const int Ls=24;
|
||||
const int nbasis = 60;
|
||||
const int cb = 0 ;
|
||||
RealD mass=0.00078;
|
||||
RealD M5=1.8;
|
||||
RealD b=1.5;
|
||||
RealD c=0.5;
|
||||
|
||||
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
|
||||
GridDefaultSimd(Nd,vComplex::Nsimd()),
|
||||
GridDefaultMpi());
|
||||
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
|
||||
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
|
||||
|
||||
// Construct a coarsened grid with 4^4 cell
|
||||
// Coordinate Block({4,4,6,4});
|
||||
Coordinate Block({4,4,4,4});
|
||||
Coordinate clatt = GridDefaultLatt();
|
||||
for(int d=0;d<clatt.size();d++){
|
||||
clatt[d] = clatt[d]/Block[d];
|
||||
}
|
||||
|
||||
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt,
|
||||
GridDefaultSimd(Nd,vComplex::Nsimd()),
|
||||
GridDefaultMpi());;
|
||||
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
|
||||
|
||||
///////////////////////// RNGs /////////////////////////////////
|
||||
std::vector<int> seeds4({1,2,3,4});
|
||||
std::vector<int> seeds5({5,6,7,8});
|
||||
std::vector<int> cseeds({5,6,7,8});
|
||||
|
||||
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
|
||||
GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds);
|
||||
|
||||
///////////////////////// Configuration /////////////////////////////////
|
||||
LatticeGaugeField Umu(UGrid);
|
||||
|
||||
FieldMetaData header;
|
||||
std::string file("/lustre/orion/phy157/proj-shared/phy157_dwf/lehner/ensemble-Ha/ckpoint_lat.2250");
|
||||
NerscIO::readConfiguration(Umu,header,file);
|
||||
|
||||
//////////////////////// Fermion action //////////////////////////////////
|
||||
MobiusFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,b,c);
|
||||
|
||||
SchurDiagMooeeOperator<MobiusFermionD, LatticeFermion> HermOpEO(Ddwf);
|
||||
|
||||
typedef HermOpAdaptor<LatticeFermionD> HermFineMatrix;
|
||||
HermFineMatrix FineHermOp(HermOpEO);
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
///////////// Coarse basis and Little Dirac Operator ///////
|
||||
////////////////////////////////////////////////////////////
|
||||
typedef GeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LittleDiracOperator;
|
||||
typedef LittleDiracOperator::CoarseVector CoarseVector;
|
||||
|
||||
NextToNextToNextToNearestStencilGeometry5D geom(Coarse5d);
|
||||
|
||||
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
|
||||
Subspace Aggregates(Coarse5d,FrbGrid,cb);
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// Need to check about red-black grid coarsening
|
||||
////////////////////////////////////////////////////////////
|
||||
|
||||
// std::string subspace_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Subspace.phys96.mixed.2500.60");
|
||||
std::string subspace_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Refine.phys96.mixed.2500.60");
|
||||
std::string refine_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Refine.phys96.mixed.2500.60_v2");
|
||||
std::string ldop_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/LittleDiracOp.phys96.mixed.60");
|
||||
std::string evec_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/evecs.scidac");
|
||||
std::string eval_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/eval.xml");
|
||||
bool load_agg=true;
|
||||
bool load_refine=true;
|
||||
bool load_mat=false;
|
||||
bool load_evec=false;
|
||||
|
||||
int refine=1;
|
||||
if ( load_agg ) {
|
||||
if ( !(refine) || (!load_refine) ) {
|
||||
LoadBasis(Aggregates,subspace_file);
|
||||
}
|
||||
} else {
|
||||
Aggregates.CreateSubspaceChebyshevNew(RNG5,HermOpEO,95.);
|
||||
SaveBasis(Aggregates,subspace_file);
|
||||
}
|
||||
|
||||
if ( load_refine ) {
|
||||
std::cout << " Load Refine "<< refine_file <<std::endl;
|
||||
LoadBasis(Aggregates,refine_file);
|
||||
} else {
|
||||
Aggregates.RefineSubspace(HermOpEO,0.001,3.0e-4,3000); // 172 iters
|
||||
// Aggregates.RefineSubspace(HermOpEO,0.001,3.0e-4,2500); // 172 iters
|
||||
SaveBasis(Aggregates,refine_file);
|
||||
}
|
||||
Aggregates.Orthogonalise();
|
||||
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << "Building MultiRHS Coarse operator"<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
|
||||
const int nrhs=12;
|
||||
|
||||
Coordinate mpi=GridDefaultMpi();
|
||||
Coordinate rhMpi ({1,1,mpi[0],mpi[1],mpi[2],mpi[3]});
|
||||
Coordinate rhLatt({nrhs,1,clatt[0],clatt[1],clatt[2],clatt[3]});
|
||||
Coordinate rhSimd({vComplex::Nsimd(),1, 1,1,1,1});
|
||||
|
||||
GridCartesian *CoarseMrhs = new GridCartesian(rhLatt,rhSimd,rhMpi);
|
||||
typedef MultiGeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> MultiGeneralCoarsenedMatrix_t;
|
||||
MultiGeneralCoarsenedMatrix_t mrhs(geom,CoarseMrhs);
|
||||
|
||||
///////////////////////
|
||||
// Deflation guesser object
|
||||
///////////////////////
|
||||
MultiRHSDeflation<CoarseVector> MrhsGuesser;
|
||||
|
||||
//////////////////////////////////////////
|
||||
// Block projector for coarse/fine
|
||||
//////////////////////////////////////////
|
||||
MultiRHSBlockProject<LatticeFermionD> MrhsProjector;
|
||||
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << "Coarsen after refine"<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
mrhs.CoarsenOperator(FineHermOp,Aggregates,Coarse5d);
|
||||
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << " Coarse Lanczos "<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
|
||||
typedef HermitianLinearOperator<MultiGeneralCoarsenedMatrix_t,CoarseVector> MrhsHermMatrix;
|
||||
// Chebyshev<CoarseVector> IRLCheby(0.0012,42.0,301); // 4.4.6.4
|
||||
// Chebyshev<CoarseVector> IRLCheby(0.0012,42.0,501); // for 4.4.4.4 blocking 350 evs
|
||||
// Chebyshev<CoarseVector> IRLCheby(0.0014,42.0,501); // for 4.4.4.4 blocking 700 evs
|
||||
// Chebyshev<CoarseVector> IRLCheby(0.002,42.0,501); // for 4.4.4.4 blocking 1226 evs
|
||||
// Chebyshev<CoarseVector> IRLCheby(0.0025,42.0,501); // for 4.4.4.4 blocking 1059 evs
|
||||
// 3e-4,2);
|
||||
Chebyshev<CoarseVector> IRLCheby(0.0018,42.0,301); // for 4.4.4.4 blocking // 790 evs
|
||||
|
||||
MrhsHermMatrix MrhsCoarseOp (mrhs);
|
||||
|
||||
CoarseVector pm_src(CoarseMrhs);
|
||||
pm_src = ComplexD(1.0);
|
||||
PowerMethod<CoarseVector> cPM; cPM(MrhsCoarseOp,pm_src);
|
||||
|
||||
// int Nk=nrhs*30; // 4.4.6.4
|
||||
// int Nk=nrhs*80;
|
||||
int Nk=nrhs*60; // 720
|
||||
int Nm=Nk*4; // 2880 ; generally finishes at 1440
|
||||
int Nstop=512;
|
||||
int Nconv_test_interval=1;
|
||||
|
||||
ImplicitlyRestartedBlockLanczosCoarse<CoarseVector> IRL(MrhsCoarseOp,
|
||||
Coarse5d,
|
||||
CoarseMrhs,
|
||||
nrhs,
|
||||
IRLCheby,
|
||||
Nstop,
|
||||
Nconv_test_interval,
|
||||
nrhs,
|
||||
Nk,
|
||||
Nm,
|
||||
3e-4,2);
|
||||
|
||||
std::vector<RealD> eval(Nm);
|
||||
std::vector<CoarseVector> evec(Nm,Coarse5d);
|
||||
std::vector<CoarseVector> c_src(nrhs,Coarse5d);
|
||||
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << " Recompute coarse evecs "<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
evec.resize(Nm,Coarse5d);
|
||||
eval.resize(Nm);
|
||||
for(int r=0;r<nrhs;r++){
|
||||
random(CRNG,c_src[r]);
|
||||
}
|
||||
int Nconv;
|
||||
IRL.calc(eval,evec,c_src,Nconv,LanczosType::rbl);
|
||||
Nconv = eval.size();
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << " import coarse evecs "<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
MrhsGuesser.ImportEigenBasis(evec,eval);
|
||||
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << "Calling mRHS HDCG"<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
MrhsProjector.Allocate(nbasis,FrbGrid,Coarse5d);
|
||||
MrhsProjector.ImportBasis(Aggregates.subspace);
|
||||
|
||||
//////////////////////////
|
||||
// Extra HDCG parameters
|
||||
//////////////////////////
|
||||
int maxit=3000;
|
||||
ConjugateGradient<CoarseVector> CG(7.5e-2,maxit,false);
|
||||
RealD lo=2.0;
|
||||
int ord = 7;
|
||||
|
||||
DoNothingGuesser<CoarseVector> DoNothing;
|
||||
HPDSolver<CoarseVector> HPDSolveMrhs(MrhsCoarseOp,CG,DoNothing);
|
||||
HPDSolver<CoarseVector> HPDSolveMrhsRefine(MrhsCoarseOp,CG,DoNothing);
|
||||
|
||||
/////////////////////////////////////////////////
|
||||
// Mirs smoother
|
||||
/////////////////////////////////////////////////
|
||||
RealD MirsShift = lo;
|
||||
ShiftedHermOpLinearOperator<LatticeFermionD> ShiftedFineHermOp(HermOpEO,MirsShift);
|
||||
CGSmoother<LatticeFermionD> CGsmooth(ord,ShiftedFineHermOp) ;
|
||||
|
||||
|
||||
TwoLevelADEF2mrhs<LatticeFermion,CoarseVector>
|
||||
HDCGmrhs(1.0e-8, 500,
|
||||
FineHermOp,
|
||||
CGsmooth,
|
||||
HPDSolveMrhs, // Used in M1
|
||||
HPDSolveMrhs, // Used in Vstart
|
||||
MrhsProjector,
|
||||
MrhsGuesser,
|
||||
CoarseMrhs);
|
||||
|
||||
std::vector<LatticeFermionD> src_mrhs(nrhs,FrbGrid);
|
||||
std::vector<LatticeFermionD> res_mrhs(nrhs,FrbGrid);
|
||||
|
||||
for(int r=0;r<nrhs;r++){
|
||||
random(RNG5,src_mrhs[r]);
|
||||
res_mrhs[r]=Zero();
|
||||
}
|
||||
|
||||
HDCGmrhs(src_mrhs,res_mrhs);
|
||||
|
||||
// Standard CG
|
||||
#if 0
|
||||
{
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
std::cout << "Calling red black CG"<<std::endl;
|
||||
std::cout << "**************************************"<<std::endl;
|
||||
|
||||
LatticeFermion result(FrbGrid); result=Zero();
|
||||
LatticeFermion src(FrbGrid); random(RNG5,src);
|
||||
result=Zero();
|
||||
|
||||
ConjugateGradient<LatticeFermionD> CGfine(1.0e-8,30000,false);
|
||||
CGfine(HermOpEO, src, result);
|
||||
}
|
||||
#endif
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
267
tests/debug/Test_general_coarse_pvdagm.cc
Normal file
267
tests/debug/Test_general_coarse_pvdagm.cc
Normal file
@ -0,0 +1,267 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/Test_padded_cell.cc
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
#include <Grid/lattice/PaddedCell.h>
|
||||
#include <Grid/stencil/GeneralLocalStencil.h>
|
||||
|
||||
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidual.h>
|
||||
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidualNonHermitian.h>
|
||||
#include <Grid/algorithms/iterative/BiCGSTAB.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
|
||||
template<class Field>
|
||||
class HermOpAdaptor : public LinearOperatorBase<Field>
|
||||
{
|
||||
LinearOperatorBase<Field> & wrapped;
|
||||
public:
|
||||
HermOpAdaptor(LinearOperatorBase<Field> &wrapme) : wrapped(wrapme) {};
|
||||
void OpDiag (const Field &in, Field &out) { assert(0); }
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); }
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); };
|
||||
void Op (const Field &in, Field &out){
|
||||
wrapped.HermOp(in,out);
|
||||
}
|
||||
void AdjOp (const Field &in, Field &out){
|
||||
wrapped.HermOp(in,out);
|
||||
}
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
|
||||
void HermOp(const Field &in, Field &out){
|
||||
wrapped.HermOp(in,out);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
template<class Matrix,class Field>
|
||||
class PVdagMLinearOperator : public LinearOperatorBase<Field> {
|
||||
Matrix &_Mat;
|
||||
Matrix &_PV;
|
||||
public:
|
||||
PVdagMLinearOperator(Matrix &Mat,Matrix &PV): _Mat(Mat),_PV(PV){};
|
||||
|
||||
void OpDiag (const Field &in, Field &out) { assert(0); }
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); }
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); };
|
||||
void Op (const Field &in, Field &out){
|
||||
Field tmp(in.Grid());
|
||||
_Mat.M(in,tmp);
|
||||
_PV.Mdag(tmp,out);
|
||||
}
|
||||
void AdjOp (const Field &in, Field &out){
|
||||
Field tmp(in.Grid());
|
||||
_PV.M(tmp,out);
|
||||
_Mat.Mdag(in,tmp);
|
||||
}
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
|
||||
void HermOp(const Field &in, Field &out){
|
||||
std::cout << "HermOp"<<std::endl;
|
||||
Field tmp(in.Grid());
|
||||
_Mat.M(in,tmp);
|
||||
_PV.Mdag(tmp,out);
|
||||
_PV.M(out,tmp);
|
||||
_Mat.Mdag(tmp,out);
|
||||
std::cout << "HermOp done "<<norm2(out)<<std::endl;
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
template<class Field> class DumbOperator : public LinearOperatorBase<Field> {
|
||||
public:
|
||||
LatticeComplex scale;
|
||||
DumbOperator(GridBase *grid) : scale(grid)
|
||||
{
|
||||
scale = 0.0;
|
||||
LatticeComplex scalesft(grid);
|
||||
LatticeComplex scaletmp(grid);
|
||||
for(int d=0;d<4;d++){
|
||||
Lattice<iScalar<vInteger> > x(grid); LatticeCoordinate(x,d+1);
|
||||
LatticeCoordinate(scaletmp,d+1);
|
||||
scalesft = Cshift(scaletmp,d+1,1);
|
||||
scale = 100.0*scale + where( mod(x ,2)==(Integer)0, scalesft,scaletmp);
|
||||
}
|
||||
std::cout << " scale\n" << scale << std::endl;
|
||||
}
|
||||
// Support for coarsening to a multigrid
|
||||
void OpDiag (const Field &in, Field &out) {};
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp){};
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out) {};
|
||||
|
||||
void Op (const Field &in, Field &out){
|
||||
out = scale * in;
|
||||
}
|
||||
void AdjOp (const Field &in, Field &out){
|
||||
out = scale * in;
|
||||
}
|
||||
void HermOp(const Field &in, Field &out){
|
||||
double n1, n2;
|
||||
HermOpAndNorm(in,out,n1,n2);
|
||||
}
|
||||
void HermOpAndNorm(const Field &in, Field &out,double &n1,double &n2){
|
||||
ComplexD dot;
|
||||
|
||||
out = scale * in;
|
||||
|
||||
dot= innerProduct(in,out);
|
||||
n1=real(dot);
|
||||
|
||||
dot = innerProduct(out,out);
|
||||
n2=real(dot);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
const int Ls=2;
|
||||
|
||||
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
|
||||
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
||||
|
||||
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
|
||||
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
|
||||
|
||||
// Construct a coarsened grid
|
||||
Coordinate clatt = GridDefaultLatt();
|
||||
for(int d=0;d<clatt.size();d++){
|
||||
clatt[d] = clatt[d]/4;
|
||||
}
|
||||
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());;
|
||||
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
|
||||
|
||||
std::vector<int> seeds4({1,2,3,4});
|
||||
std::vector<int> seeds5({5,6,7,8});
|
||||
std::vector<int> cseeds({5,6,7,8});
|
||||
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
|
||||
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
|
||||
GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds);
|
||||
|
||||
LatticeFermion src(FGrid); random(RNG5,src);
|
||||
LatticeFermion result(FGrid); result=Zero();
|
||||
LatticeFermion ref(FGrid); ref=Zero();
|
||||
LatticeFermion tmp(FGrid);
|
||||
LatticeFermion err(FGrid);
|
||||
LatticeGaugeField Umu(UGrid);
|
||||
|
||||
FieldMetaData header;
|
||||
std::string file("ckpoint_lat.4000");
|
||||
NerscIO::readConfiguration(Umu,header,file);
|
||||
//Umu = 1.0;
|
||||
|
||||
RealD mass=0.5;
|
||||
RealD M5=1.8;
|
||||
|
||||
DomainWallFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
|
||||
DomainWallFermionD Dpv(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,1.0,M5);
|
||||
|
||||
const int nbasis = 1;
|
||||
const int cb = 0 ;
|
||||
LatticeFermion prom(FGrid);
|
||||
|
||||
typedef GeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LittleDiracOperator;
|
||||
typedef LittleDiracOperator::CoarseVector CoarseVector;
|
||||
|
||||
NextToNearestStencilGeometry5D geom(Coarse5d);
|
||||
|
||||
std::cout<<GridLogMessage<<std::endl;
|
||||
std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
|
||||
std::cout<<GridLogMessage<<std::endl;
|
||||
|
||||
PVdagMLinearOperator<DomainWallFermionD,LatticeFermionD> PVdagM(Ddwf,Dpv);
|
||||
HermOpAdaptor<LatticeFermionD> HOA(PVdagM);
|
||||
|
||||
// Run power method on HOA??
|
||||
PowerMethod<LatticeFermion> PM; PM(HOA,src);
|
||||
|
||||
// Warning: This routine calls PVdagM.Op, not PVdagM.HermOp
|
||||
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
|
||||
Subspace AggregatesPD(Coarse5d,FGrid,cb);
|
||||
AggregatesPD.CreateSubspaceChebyshev(RNG5,
|
||||
HOA,
|
||||
nbasis,
|
||||
5000.0,
|
||||
0.02,
|
||||
100,
|
||||
50,
|
||||
50,
|
||||
0.0);
|
||||
|
||||
LittleDiracOperator LittleDiracOpPV(geom,FGrid,Coarse5d);
|
||||
LittleDiracOpPV.CoarsenOperator(PVdagM,AggregatesPD);
|
||||
|
||||
std::cout<<GridLogMessage<<std::endl;
|
||||
std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
|
||||
std::cout<<GridLogMessage<<std::endl;
|
||||
std::cout<<GridLogMessage<<"Testing coarsened operator "<<std::endl;
|
||||
|
||||
CoarseVector c_src (Coarse5d);
|
||||
CoarseVector c_res (Coarse5d);
|
||||
CoarseVector c_proj(Coarse5d);
|
||||
|
||||
std::vector<LatticeFermion> subspace(nbasis,FGrid);
|
||||
subspace=AggregatesPD.subspace;
|
||||
|
||||
Complex one(1.0);
|
||||
c_src = one; // 1 in every element for vector 1.
|
||||
blockPromote(c_src,err,subspace);
|
||||
|
||||
prom=Zero();
|
||||
for(int b=0;b<nbasis;b++){
|
||||
prom=prom+subspace[b];
|
||||
}
|
||||
err=err-prom;
|
||||
std::cout<<GridLogMessage<<"Promoted back from subspace: err "<<norm2(err)<<std::endl;
|
||||
std::cout<<GridLogMessage<<"c_src "<<norm2(c_src)<<std::endl;
|
||||
std::cout<<GridLogMessage<<"prom "<<norm2(prom)<<std::endl;
|
||||
|
||||
PVdagM.Op(prom,tmp);
|
||||
blockProject(c_proj,tmp,subspace);
|
||||
std::cout<<GridLogMessage<<" Called Big Dirac Op "<<norm2(tmp)<<std::endl;
|
||||
|
||||
LittleDiracOpPV.M(c_src,c_res);
|
||||
std::cout<<GridLogMessage<<" Called Little Dirac Op c_src "<< norm2(c_src) << " c_res "<< norm2(c_res) <<std::endl;
|
||||
|
||||
std::cout<<GridLogMessage<<"Little dop : "<<norm2(c_res)<<std::endl;
|
||||
// std::cout<<GridLogMessage<<" Little "<< c_res<<std::endl;
|
||||
|
||||
std::cout<<GridLogMessage<<"Big dop in subspace : "<<norm2(c_proj)<<std::endl;
|
||||
// std::cout<<GridLogMessage<<" Big "<< c_proj<<std::endl;
|
||||
c_proj = c_proj - c_res;
|
||||
std::cout<<GridLogMessage<<" ldop error: "<<norm2(c_proj)<<std::endl;
|
||||
// std::cout<<GridLogMessage<<" error "<< c_proj<<std::endl;
|
||||
|
||||
std::cout<<GridLogMessage<<std::endl;
|
||||
std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
|
||||
std::cout<<GridLogMessage<<std::endl;
|
||||
std::cout<<GridLogMessage << "Done "<< std::endl;
|
||||
|
||||
Grid_finalize();
|
||||
return 0;
|
||||
}
|
Reference in New Issue
Block a user