mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-11-02 21:14:32 +00:00 
			
		
		
		
	Compare commits
	
		
			9 Commits
		
	
	
		
			da81a73b4a
			...
			feature/ft
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 
						 | 
					09146cfc43 | ||
| 
						 | 
					a450e96827 | ||
| 
						 | 
					0f3678b9be | ||
| 
						 | 
					8dd8338e14 | ||
| 
						 | 
					11e0dc9851 | ||
| 
						 | 
					f4ef6dae43 | ||
| 
						 | 
					b6e147372b | ||
| 
						 | 
					3a4a662dc6 | ||
| 
						 | 
					8d06bda6fb | 
							
								
								
									
										4
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										4
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							@@ -1,7 +1,3 @@
 | 
			
		||||
# Doxygen stuff
 | 
			
		||||
html/*
 | 
			
		||||
latex/*
 | 
			
		||||
 | 
			
		||||
# Compiled Object files #
 | 
			
		||||
#########################
 | 
			
		||||
*.slo
 | 
			
		||||
 
 | 
			
		||||
@@ -34,7 +34,7 @@
 | 
			
		||||
#pragma push_macro("__SYCL_DEVICE_ONLY__")
 | 
			
		||||
#undef __SYCL_DEVICE_ONLY__
 | 
			
		||||
#define EIGEN_DONT_VECTORIZE
 | 
			
		||||
#undef EIGEN_USE_SYCL
 | 
			
		||||
//#undef EIGEN_USE_SYCL
 | 
			
		||||
#define __SYCL__REDEFINE__
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -66,10 +66,6 @@ if BUILD_FERMION_REPS
 | 
			
		||||
  extra_sources+=$(ADJ_FERMION_FILES)
 | 
			
		||||
  extra_sources+=$(TWOIND_FERMION_FILES)
 | 
			
		||||
endif
 | 
			
		||||
if BUILD_SP
 | 
			
		||||
    extra_sources+=$(SP_FERMION_FILES)
 | 
			
		||||
    extra_sources+=$(SP_TWOIND_FERMION_FILES)
 | 
			
		||||
endif
 | 
			
		||||
 | 
			
		||||
lib_LIBRARIES = libGrid.a
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#define _GRID_FFT_H_
 | 
			
		||||
 | 
			
		||||
#ifdef HAVE_FFTW
 | 
			
		||||
#if defined(USE_MKL) || defined(GRID_SYCL)
 | 
			
		||||
#ifdef USE_MKL
 | 
			
		||||
#include <fftw/fftw3.h>
 | 
			
		||||
#else
 | 
			
		||||
#include <fftw3.h>
 | 
			
		||||
 
 | 
			
		||||
@@ -293,7 +293,7 @@ static void sncndnFK(INTERNAL_PRECISION u, INTERNAL_PRECISION k,
 | 
			
		||||
 * Set type = 0 for the Zolotarev approximation, which is zero at x = 0, and
 | 
			
		||||
 * type = 1 for the approximation which is infinite at x = 0. */
 | 
			
		||||
 | 
			
		||||
zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) {
 | 
			
		||||
zolotarev_data* zolotarev(PRECISION epsilon, int n, int type) {
 | 
			
		||||
  INTERNAL_PRECISION A, c, cp, kp, ksq, sn, cn, dn, Kp, Kj, z, z0, t, M, F,
 | 
			
		||||
    l, invlambda, xi, xisq, *tv, s, opl;
 | 
			
		||||
  int m, czero, ts;
 | 
			
		||||
@@ -375,12 +375,12 @@ zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) {
 | 
			
		||||
  construct_partfrac(d);
 | 
			
		||||
  construct_contfrac(d);
 | 
			
		||||
 | 
			
		||||
  /* Converting everything to ZOLO_PRECISION for external use only */
 | 
			
		||||
  /* Converting everything to PRECISION for external use only */
 | 
			
		||||
 | 
			
		||||
  zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
 | 
			
		||||
  zd -> A = (ZOLO_PRECISION) d -> A;
 | 
			
		||||
  zd -> Delta = (ZOLO_PRECISION) d -> Delta;
 | 
			
		||||
  zd -> epsilon = (ZOLO_PRECISION) d -> epsilon;
 | 
			
		||||
  zd -> A = (PRECISION) d -> A;
 | 
			
		||||
  zd -> Delta = (PRECISION) d -> Delta;
 | 
			
		||||
  zd -> epsilon = (PRECISION) d -> epsilon;
 | 
			
		||||
  zd -> n = d -> n;
 | 
			
		||||
  zd -> type = d -> type;
 | 
			
		||||
  zd -> dn = d -> dn;
 | 
			
		||||
@@ -390,24 +390,24 @@ zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) {
 | 
			
		||||
  zd -> deg_num = d -> deg_num;
 | 
			
		||||
  zd -> deg_denom = d -> deg_denom;
 | 
			
		||||
 | 
			
		||||
  zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m];
 | 
			
		||||
  zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m];
 | 
			
		||||
  free(d -> a);
 | 
			
		||||
 | 
			
		||||
  zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m];
 | 
			
		||||
  zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m];
 | 
			
		||||
  free(d -> ap);
 | 
			
		||||
 | 
			
		||||
  zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m];
 | 
			
		||||
  zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m];
 | 
			
		||||
  free(d -> alpha);
 | 
			
		||||
 | 
			
		||||
  zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m];
 | 
			
		||||
  zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m];
 | 
			
		||||
  free(d -> beta);
 | 
			
		||||
 | 
			
		||||
  zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m];
 | 
			
		||||
  zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m];
 | 
			
		||||
  free(d -> gamma);
 | 
			
		||||
 | 
			
		||||
  free(d);
 | 
			
		||||
@@ -426,7 +426,7 @@ void zolotarev_free(zolotarev_data *zdata)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) {
 | 
			
		||||
zolotarev_data* higham(PRECISION epsilon, int n) {
 | 
			
		||||
  INTERNAL_PRECISION A, M, c, cp, z, z0, t, epssq;
 | 
			
		||||
  int m, czero;
 | 
			
		||||
  zolotarev_data *zd;
 | 
			
		||||
@@ -481,9 +481,9 @@ zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) {
 | 
			
		||||
  /* Converting everything to PRECISION for external use only */
 | 
			
		||||
 | 
			
		||||
  zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
 | 
			
		||||
  zd -> A = (ZOLO_PRECISION) d -> A;
 | 
			
		||||
  zd -> Delta = (ZOLO_PRECISION) d -> Delta;
 | 
			
		||||
  zd -> epsilon = (ZOLO_PRECISION) d -> epsilon;
 | 
			
		||||
  zd -> A = (PRECISION) d -> A;
 | 
			
		||||
  zd -> Delta = (PRECISION) d -> Delta;
 | 
			
		||||
  zd -> epsilon = (PRECISION) d -> epsilon;
 | 
			
		||||
  zd -> n = d -> n;
 | 
			
		||||
  zd -> type = d -> type;
 | 
			
		||||
  zd -> dn = d -> dn;
 | 
			
		||||
@@ -493,24 +493,24 @@ zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) {
 | 
			
		||||
  zd -> deg_num = d -> deg_num;
 | 
			
		||||
  zd -> deg_denom = d -> deg_denom;
 | 
			
		||||
 | 
			
		||||
  zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m];
 | 
			
		||||
  zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m];
 | 
			
		||||
  free(d -> a);
 | 
			
		||||
 | 
			
		||||
  zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m];
 | 
			
		||||
  zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m];
 | 
			
		||||
  free(d -> ap);
 | 
			
		||||
 | 
			
		||||
  zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m];
 | 
			
		||||
  zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m];
 | 
			
		||||
  free(d -> alpha);
 | 
			
		||||
 | 
			
		||||
  zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m];
 | 
			
		||||
  zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m];
 | 
			
		||||
  free(d -> beta);
 | 
			
		||||
 | 
			
		||||
  zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m];
 | 
			
		||||
  zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION));
 | 
			
		||||
  for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m];
 | 
			
		||||
  free(d -> gamma);
 | 
			
		||||
 | 
			
		||||
  free(d);
 | 
			
		||||
@@ -523,17 +523,17 @@ NAMESPACE_END(Grid);
 | 
			
		||||
#ifdef TEST
 | 
			
		||||
 | 
			
		||||
#undef ZERO
 | 
			
		||||
#define ZERO ((ZOLO_PRECISION) 0)
 | 
			
		||||
#define ZERO ((PRECISION) 0)
 | 
			
		||||
#undef ONE
 | 
			
		||||
#define ONE ((ZOLO_PRECISION) 1)
 | 
			
		||||
#define ONE ((PRECISION) 1)
 | 
			
		||||
#undef TWO
 | 
			
		||||
#define TWO ((ZOLO_PRECISION) 2)
 | 
			
		||||
#define TWO ((PRECISION) 2)
 | 
			
		||||
 | 
			
		||||
/* Evaluate the rational approximation R(x) using the factored form */
 | 
			
		||||
 | 
			
		||||
static ZOLO_PRECISION zolotarev_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
 | 
			
		||||
static PRECISION zolotarev_eval(PRECISION x, zolotarev_data* rdata) {
 | 
			
		||||
  int m;
 | 
			
		||||
  ZOLO_PRECISION R;
 | 
			
		||||
  PRECISION R;
 | 
			
		||||
 | 
			
		||||
  if (rdata -> type == 0) {
 | 
			
		||||
    R = rdata -> A * x;
 | 
			
		||||
@@ -551,9 +551,9 @@ static ZOLO_PRECISION zolotarev_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
 | 
			
		||||
 | 
			
		||||
/* Evaluate the rational approximation R(x) using the partial fraction form */
 | 
			
		||||
 | 
			
		||||
static ZOLO_PRECISION zolotarev_partfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
 | 
			
		||||
static PRECISION zolotarev_partfrac_eval(PRECISION x, zolotarev_data* rdata) {
 | 
			
		||||
  int m;
 | 
			
		||||
  ZOLO_PRECISION R = rdata -> alpha[rdata -> da - 1];
 | 
			
		||||
  PRECISION R = rdata -> alpha[rdata -> da - 1];
 | 
			
		||||
  for (m = 0; m < rdata -> dd; m++)
 | 
			
		||||
    R += rdata -> alpha[m] / (x * x - rdata -> ap[m]);
 | 
			
		||||
  if (rdata -> type == 1) R += rdata -> alpha[rdata -> dd] / (x * x);
 | 
			
		||||
@@ -568,18 +568,18 @@ static ZOLO_PRECISION zolotarev_partfrac_eval(ZOLO_PRECISION x, zolotarev_data*
 | 
			
		||||
 * non-signalling overflow this will work correctly since 1/(1/0) = 1/INF = 0,
 | 
			
		||||
 * but with signalling overflow you will get an error message. */
 | 
			
		||||
 | 
			
		||||
static ZOLO_PRECISION zolotarev_contfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
 | 
			
		||||
static PRECISION zolotarev_contfrac_eval(PRECISION x, zolotarev_data* rdata) {
 | 
			
		||||
  int m;
 | 
			
		||||
  ZOLO_PRECISION R = rdata -> beta[0] * x;
 | 
			
		||||
  PRECISION R = rdata -> beta[0] * x;
 | 
			
		||||
  for (m = 1; m < rdata -> db; m++) R = rdata -> beta[m] * x + ONE / R;
 | 
			
		||||
  return R;
 | 
			
		||||
}    
 | 
			
		||||
 | 
			
		||||
/* Evaluate the rational approximation R(x) using Cayley form */
 | 
			
		||||
 | 
			
		||||
static ZOLO_PRECISION zolotarev_cayley_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
 | 
			
		||||
static PRECISION zolotarev_cayley_eval(PRECISION x, zolotarev_data* rdata) {
 | 
			
		||||
  int m;
 | 
			
		||||
  ZOLO_PRECISION T;
 | 
			
		||||
  PRECISION T;
 | 
			
		||||
 | 
			
		||||
  T = rdata -> type == 0 ? ONE : -ONE;
 | 
			
		||||
  for (m = 0; m < rdata -> n; m++)
 | 
			
		||||
@@ -607,7 +607,7 @@ int main(int argc, char** argv) {
 | 
			
		||||
  int m, n, plotpts = 5000, type = 0;
 | 
			
		||||
  float eps, x, ypferr, ycferr, ycaylerr, maxypferr, maxycferr, maxycaylerr;
 | 
			
		||||
  zolotarev_data *rdata;
 | 
			
		||||
  ZOLO_PRECISION y;
 | 
			
		||||
  PRECISION y;
 | 
			
		||||
  FILE *plot_function, *plot_error, 
 | 
			
		||||
    *plot_partfrac, *plot_contfrac, *plot_cayley;
 | 
			
		||||
 | 
			
		||||
@@ -626,13 +626,13 @@ int main(int argc, char** argv) {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  rdata = type == 2 
 | 
			
		||||
    ? higham((ZOLO_PRECISION) eps, n) 
 | 
			
		||||
    : zolotarev((ZOLO_PRECISION) eps, n, type);
 | 
			
		||||
    ? higham((PRECISION) eps, n) 
 | 
			
		||||
    : zolotarev((PRECISION) eps, n, type);
 | 
			
		||||
 | 
			
		||||
  printf("Zolotarev Test: R(epsilon = %g, n = %d, type = %d)\n\t" 
 | 
			
		||||
	 STRINGIFY(VERSION) "\n\t" STRINGIFY(HVERSION)
 | 
			
		||||
	 "\n\tINTERNAL_PRECISION = " STRINGIFY(INTERNAL_PRECISION)
 | 
			
		||||
	 "\tZOLO_PRECISION = " STRINGIFY(ZOLO_PRECISION)
 | 
			
		||||
	 "\tPRECISION = " STRINGIFY(PRECISION)
 | 
			
		||||
	 "\n\n\tRational approximation of degree (%d,%d), %s at x = 0\n"
 | 
			
		||||
	 "\tDelta = %g (maximum error)\n\n"
 | 
			
		||||
	 "\tA = %g (overall factor)\n",
 | 
			
		||||
@@ -681,15 +681,15 @@ int main(int argc, char** argv) {
 | 
			
		||||
    x = 2.4 * (float) m / plotpts - 1.2;
 | 
			
		||||
    if (rdata -> type == 0 || fabs(x) * (float) plotpts > 1.0) {
 | 
			
		||||
      /* skip x = 0 for type 1, as R(0) is singular */
 | 
			
		||||
      y = zolotarev_eval((ZOLO_PRECISION) x, rdata);
 | 
			
		||||
      y = zolotarev_eval((PRECISION) x, rdata);
 | 
			
		||||
      fprintf(plot_function, "%g %g\n", x, (float) y);
 | 
			
		||||
      fprintf(plot_error, "%g %g\n",
 | 
			
		||||
	      x, (float)((y - ((x > 0.0 ? ONE : -ONE))) / rdata -> Delta));
 | 
			
		||||
      ypferr = (float)((zolotarev_partfrac_eval((ZOLO_PRECISION) x, rdata) - y)
 | 
			
		||||
      ypferr = (float)((zolotarev_partfrac_eval((PRECISION) x, rdata) - y)
 | 
			
		||||
		       / rdata -> Delta);
 | 
			
		||||
      ycferr = (float)((zolotarev_contfrac_eval((ZOLO_PRECISION) x, rdata) - y)
 | 
			
		||||
      ycferr = (float)((zolotarev_contfrac_eval((PRECISION) x, rdata) - y)
 | 
			
		||||
		       / rdata -> Delta);
 | 
			
		||||
      ycaylerr = (float)((zolotarev_cayley_eval((ZOLO_PRECISION) x, rdata) - y)
 | 
			
		||||
      ycaylerr = (float)((zolotarev_cayley_eval((PRECISION) x, rdata) - y)
 | 
			
		||||
		       / rdata -> Delta);
 | 
			
		||||
      if (fabs(x) < 1.0 && fabs(x) > rdata -> epsilon) {
 | 
			
		||||
	maxypferr = MAX(maxypferr, fabs(ypferr));
 | 
			
		||||
 
 | 
			
		||||
@@ -9,10 +9,10 @@ NAMESPACE_BEGIN(Approx);
 | 
			
		||||
#define HVERSION Header Time-stamp: <14-OCT-2004 09:26:51.00 adk@MISSCONTRARY>
 | 
			
		||||
 | 
			
		||||
#ifndef ZOLOTAREV_INTERNAL
 | 
			
		||||
#ifndef ZOLO_PRECISION
 | 
			
		||||
#define ZOLO_PRECISION double
 | 
			
		||||
#ifndef PRECISION
 | 
			
		||||
#define PRECISION double
 | 
			
		||||
#endif
 | 
			
		||||
#define ZPRECISION ZOLO_PRECISION
 | 
			
		||||
#define ZPRECISION PRECISION
 | 
			
		||||
#define ZOLOTAREV_DATA zolotarev_data
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
@@ -77,8 +77,8 @@ typedef struct {
 | 
			
		||||
 * zolotarev_data structure. The arguments must satisfy the constraints that
 | 
			
		||||
 * epsilon > 0, n > 0, and type = 0 or 1. */
 | 
			
		||||
 | 
			
		||||
ZOLOTAREV_DATA* higham(ZOLO_PRECISION epsilon, int n) ;
 | 
			
		||||
ZOLOTAREV_DATA* zolotarev(ZOLO_PRECISION epsilon, int n, int type);
 | 
			
		||||
ZOLOTAREV_DATA* higham(PRECISION epsilon, int n) ;
 | 
			
		||||
ZOLOTAREV_DATA* zolotarev(PRECISION epsilon, int n, int type);
 | 
			
		||||
void zolotarev_free(zolotarev_data *zdata);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
@@ -86,4 +86,3 @@ void zolotarev_free(zolotarev_data *zdata);
 | 
			
		||||
NAMESPACE_END(Approx);
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -1,34 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: BatchedBlas.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2023
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
#include <Grid/algorithms/blas/BatchedBlas.h>
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
gridblasHandle_t GridBLAS::gridblasHandle;
 | 
			
		||||
int              GridBLAS::gridblasInit;
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -1,727 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: BatchedBlas.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2023
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
#include <hipblas/hipblas.h>
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
#include <cublas_v2.h>
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
#include <oneapi/mkl.hpp>
 | 
			
		||||
#endif
 | 
			
		||||
#if 0
 | 
			
		||||
#define GRID_ONE_MKL
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_ONE_MKL
 | 
			
		||||
#include <oneapi/mkl.hpp>
 | 
			
		||||
#endif
 | 
			
		||||
///////////////////////////////////////////////////////////////////////	  
 | 
			
		||||
// Need to rearrange lattice data to be in the right format for a
 | 
			
		||||
// batched multiply. Might as well make these static, dense packed
 | 
			
		||||
///////////////////////////////////////////////////////////////////////
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
  typedef hipblasHandle_t gridblasHandle_t;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
  typedef cublasHandle_t gridblasHandle_t;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
  typedef cl::sycl::queue *gridblasHandle_t;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_ONE_MKL
 | 
			
		||||
  typedef cl::sycl::queue *gridblasHandle_t;
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL)
 | 
			
		||||
  typedef int32_t gridblasHandle_t;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
enum GridBLASOperation_t { GridBLAS_OP_N, GridBLAS_OP_T, GridBLAS_OP_C } ;
 | 
			
		||||
 | 
			
		||||
class GridBLAS {
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  static gridblasHandle_t gridblasHandle;
 | 
			
		||||
  static int            gridblasInit;
 | 
			
		||||
  
 | 
			
		||||
  static void Init(void)
 | 
			
		||||
  {
 | 
			
		||||
    if ( ! gridblasInit ) {
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
      std::cout << "cublasCreate"<<std::endl;
 | 
			
		||||
      cublasCreate(&gridblasHandle);
 | 
			
		||||
      cublasSetPointerMode(gridblasHandle, CUBLAS_POINTER_MODE_DEVICE);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
      std::cout << "hipblasCreate"<<std::endl;
 | 
			
		||||
      hipblasCreate(&gridblasHandle);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
      gridblasHandle = theGridAccelerator;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_ONE_MKL
 | 
			
		||||
      cl::sycl::cpu_selector selector;
 | 
			
		||||
      cl::sycl::device selectedDevice { selector };
 | 
			
		||||
      gridblasHandle =new sycl::queue (selectedDevice);
 | 
			
		||||
#endif
 | 
			
		||||
      gridblasInit=1;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  // Force construct once
 | 
			
		||||
  GridBLAS() { Init(); };
 | 
			
		||||
  ~GridBLAS() { };
 | 
			
		||||
  
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // BLAS GEMM conventions:
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // - C = alpha A * B + beta C
 | 
			
		||||
  // Dimensions:
 | 
			
		||||
  // - C_m.n
 | 
			
		||||
  // - A_m.k
 | 
			
		||||
  // - B_k.n
 | 
			
		||||
  // - Flops = 8 M N K
 | 
			
		||||
  // - Bytes = 2*sizeof(word) * (MN+MK+KN)
 | 
			
		||||
  // M=60, N=12
 | 
			
		||||
  // Flop/Byte = 8 . 60.60.12 / (60.12+60.60+60.12)/16 = 4 so expect about 4 TF/s on a GCD
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  void synchronise(void)
 | 
			
		||||
  {
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
    auto err = hipDeviceSynchronize();
 | 
			
		||||
    assert(err==hipSuccess);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
    auto err = cudaDeviceSynchronize();
 | 
			
		||||
    assert(err==cudaSuccess);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
    accelerator_barrier();
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_ONE_MKL
 | 
			
		||||
    gridblasHandle->wait();
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  void gemmBatched(int m,int n, int k,
 | 
			
		||||
		   ComplexD alpha,
 | 
			
		||||
		   deviceVector<ComplexD*> &Amk,  // pointer list to matrices
 | 
			
		||||
		   deviceVector<ComplexD*> &Bkn,
 | 
			
		||||
		   ComplexD beta,
 | 
			
		||||
		   deviceVector<ComplexD*> &Cmn)
 | 
			
		||||
  {
 | 
			
		||||
    gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
 | 
			
		||||
		m,n,k,
 | 
			
		||||
		alpha,
 | 
			
		||||
		Amk,
 | 
			
		||||
		Bkn,
 | 
			
		||||
		beta,
 | 
			
		||||
		Cmn);
 | 
			
		||||
  }
 | 
			
		||||
  void gemmBatched(int m,int n, int k,
 | 
			
		||||
		   ComplexF alpha,
 | 
			
		||||
		   deviceVector<ComplexF*> &Amk,  // pointer list to matrices
 | 
			
		||||
		   deviceVector<ComplexF*> &Bkn,
 | 
			
		||||
		   ComplexF beta,
 | 
			
		||||
		   deviceVector<ComplexF*> &Cmn)
 | 
			
		||||
  {
 | 
			
		||||
    gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
 | 
			
		||||
		m,n,k,
 | 
			
		||||
		alpha,
 | 
			
		||||
		Amk,
 | 
			
		||||
		Bkn,
 | 
			
		||||
		beta,
 | 
			
		||||
		Cmn);
 | 
			
		||||
  }
 | 
			
		||||
  void gemmBatched(int m,int n, int k,
 | 
			
		||||
		   RealD alpha,
 | 
			
		||||
		   deviceVector<RealD*> &Amk,  // pointer list to matrices
 | 
			
		||||
		   deviceVector<RealD*> &Bkn,
 | 
			
		||||
		   RealD beta,
 | 
			
		||||
		   deviceVector<RealD*> &Cmn)
 | 
			
		||||
  {
 | 
			
		||||
    gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
 | 
			
		||||
		m,n,k,
 | 
			
		||||
		alpha,
 | 
			
		||||
		Amk,
 | 
			
		||||
		Bkn,
 | 
			
		||||
		beta,
 | 
			
		||||
		Cmn);
 | 
			
		||||
  }
 | 
			
		||||
  void gemmBatched(int m,int n, int k,
 | 
			
		||||
		   RealF alpha,
 | 
			
		||||
		   deviceVector<RealF*> &Amk,  // pointer list to matrices
 | 
			
		||||
		   deviceVector<RealF*> &Bkn,
 | 
			
		||||
		   RealF beta,
 | 
			
		||||
		   deviceVector<RealF*> &Cmn)
 | 
			
		||||
  {
 | 
			
		||||
    gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
 | 
			
		||||
		m,n,k,
 | 
			
		||||
		alpha,
 | 
			
		||||
		Amk,
 | 
			
		||||
		Bkn,
 | 
			
		||||
		beta,
 | 
			
		||||
		Cmn);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void gemmBatched(GridBLASOperation_t OpA,
 | 
			
		||||
		   GridBLASOperation_t OpB,
 | 
			
		||||
		   int m,int n, int k,
 | 
			
		||||
		   ComplexD alpha,
 | 
			
		||||
		   deviceVector<ComplexD*> &Amk,  // pointer list to matrices
 | 
			
		||||
		   deviceVector<ComplexD*> &Bkn,
 | 
			
		||||
		   ComplexD beta,
 | 
			
		||||
		   deviceVector<ComplexD*> &Cmn)
 | 
			
		||||
  {
 | 
			
		||||
    RealD t2=usecond();
 | 
			
		||||
    int32_t batchCount = Amk.size();
 | 
			
		||||
    assert(Bkn.size()==batchCount);
 | 
			
		||||
    assert(Cmn.size()==batchCount);
 | 
			
		||||
 | 
			
		||||
    int lda = m; // m x k column major
 | 
			
		||||
    int ldb = k; // k x n column major
 | 
			
		||||
    int ldc = m; // m x b column major
 | 
			
		||||
    if(OpA!=GridBLAS_OP_N)
 | 
			
		||||
      lda = k;
 | 
			
		||||
    if(OpB!=GridBLAS_OP_N)
 | 
			
		||||
      ldb = n;
 | 
			
		||||
    
 | 
			
		||||
    static deviceVector<ComplexD> alpha_p(1);
 | 
			
		||||
    static deviceVector<ComplexD> beta_p(1);
 | 
			
		||||
    // can prestore the 1 and the zero on device
 | 
			
		||||
    acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
 | 
			
		||||
    acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
 | 
			
		||||
    RealD t0=usecond();
 | 
			
		||||
    //    std::cout << "ZgemmBatched mnk  "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
    hipblasOperation_t hOpA;
 | 
			
		||||
    hipblasOperation_t hOpB;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
 | 
			
		||||
    auto err = hipblasZgemmBatched(gridblasHandle,
 | 
			
		||||
				   hOpA,
 | 
			
		||||
				   hOpB,
 | 
			
		||||
				   m,n,k,
 | 
			
		||||
				   (hipblasDoubleComplex *) &alpha_p[0],
 | 
			
		||||
				   (hipblasDoubleComplex **)&Amk[0], lda,
 | 
			
		||||
				   (hipblasDoubleComplex **)&Bkn[0], ldb,
 | 
			
		||||
				   (hipblasDoubleComplex *) &beta_p[0],
 | 
			
		||||
				   (hipblasDoubleComplex **)&Cmn[0], ldc,
 | 
			
		||||
				   batchCount);
 | 
			
		||||
    //	 std::cout << " hipblas return code " <<(int)err<<std::endl;
 | 
			
		||||
    assert(err==HIPBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
    cublasOperation_t hOpA;
 | 
			
		||||
    cublasOperation_t hOpB;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
 | 
			
		||||
    auto err = cublasZgemmBatched(gridblasHandle,
 | 
			
		||||
				  hOpA,
 | 
			
		||||
				  hOpB,
 | 
			
		||||
				  m,n,k,
 | 
			
		||||
				  (cuDoubleComplex *) &alpha_p[0],
 | 
			
		||||
				  (cuDoubleComplex **)&Amk[0], lda,
 | 
			
		||||
				  (cuDoubleComplex **)&Bkn[0], ldb,
 | 
			
		||||
				  (cuDoubleComplex *) &beta_p[0],
 | 
			
		||||
				  (cuDoubleComplex **)&Cmn[0], ldc,
 | 
			
		||||
				  batchCount);
 | 
			
		||||
    assert(err==CUBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
    //MKL’s cblas_<T>gemm_batch & OneAPI
 | 
			
		||||
#warning "oneMKL implementation not built "
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
 | 
			
		||||
    // Need a default/reference implementation
 | 
			
		||||
    int sda = lda*k;
 | 
			
		||||
    int sdb = ldb*k;
 | 
			
		||||
    int sdc = ldc*n;
 | 
			
		||||
    for (int p = 0; p < batchCount; ++p) {
 | 
			
		||||
      for (int mm = 0; mm < m; ++mm) {
 | 
			
		||||
	for (int nn = 0; nn < n; ++nn) {
 | 
			
		||||
	  ComplexD c_mn(0.0);
 | 
			
		||||
	  for (int kk = 0; kk < k; ++kk)
 | 
			
		||||
	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
 | 
			
		||||
	  Cmn[p][mm + nn*ldc] =  (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
    //    synchronise();
 | 
			
		||||
     RealD t1=usecond();
 | 
			
		||||
     RealD flops = 8.0*m*n*k*batchCount;
 | 
			
		||||
     RealD bytes = 1.0*sizeof(ComplexD)*(m*k+k*n+m*n)*batchCount;
 | 
			
		||||
     //     std::cout <<GridLogMessage<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl;
 | 
			
		||||
     //     std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
 | 
			
		||||
     //     std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void gemmBatched(GridBLASOperation_t OpA,
 | 
			
		||||
		   GridBLASOperation_t OpB,
 | 
			
		||||
		   int m,int n, int k,
 | 
			
		||||
		   ComplexF alpha,
 | 
			
		||||
		   deviceVector<ComplexF*> &Amk,  // pointer list to matrices
 | 
			
		||||
		   deviceVector<ComplexF*> &Bkn,
 | 
			
		||||
		   ComplexF beta,
 | 
			
		||||
		   deviceVector<ComplexF*> &Cmn)
 | 
			
		||||
  {
 | 
			
		||||
    RealD t2=usecond();
 | 
			
		||||
    int32_t batchCount = Amk.size();
 | 
			
		||||
 | 
			
		||||
    int lda = m; // m x k column major
 | 
			
		||||
    int ldb = k; // k x n column major
 | 
			
		||||
    int ldc = m; // m x b column major
 | 
			
		||||
    if(OpA!=GridBLAS_OP_N)
 | 
			
		||||
      lda = k;
 | 
			
		||||
    if(OpB!=GridBLAS_OP_N)
 | 
			
		||||
      ldb = n;
 | 
			
		||||
    static deviceVector<ComplexF> alpha_p(1);
 | 
			
		||||
    static deviceVector<ComplexF> beta_p(1);
 | 
			
		||||
    // can prestore the 1 and the zero on device
 | 
			
		||||
    acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexF));
 | 
			
		||||
    acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexF));
 | 
			
		||||
    RealD t0=usecond();
 | 
			
		||||
 | 
			
		||||
    assert(Bkn.size()==batchCount);
 | 
			
		||||
    assert(Cmn.size()==batchCount);
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
    hipblasOperation_t hOpA;
 | 
			
		||||
    hipblasOperation_t hOpB;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
 | 
			
		||||
    auto err = hipblasCgemmBatched(gridblasHandle,
 | 
			
		||||
				   hOpA,
 | 
			
		||||
				   hOpB,
 | 
			
		||||
				   m,n,k,
 | 
			
		||||
				   (hipblasComplex *) &alpha_p[0],
 | 
			
		||||
				   (hipblasComplex **)&Amk[0], lda,
 | 
			
		||||
				   (hipblasComplex **)&Bkn[0], ldb,
 | 
			
		||||
				   (hipblasComplex *) &beta_p[0],
 | 
			
		||||
				   (hipblasComplex **)&Cmn[0], ldc,
 | 
			
		||||
				   batchCount);
 | 
			
		||||
 | 
			
		||||
    assert(err==HIPBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
    cublasOperation_t hOpA;
 | 
			
		||||
    cublasOperation_t hOpB;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
 | 
			
		||||
    auto err = cublasCgemmBatched(gridblasHandle,
 | 
			
		||||
				  hOpA,
 | 
			
		||||
				  hOpB,
 | 
			
		||||
				  m,n,k,
 | 
			
		||||
				  (cuComplex *) &alpha_p[0],
 | 
			
		||||
				  (cuComplex **)&Amk[0], lda,
 | 
			
		||||
				  (cuComplex **)&Bkn[0], ldb,
 | 
			
		||||
				  (cuComplex *) &beta_p[0],
 | 
			
		||||
				  (cuComplex **)&Cmn[0], ldc,
 | 
			
		||||
				  batchCount);
 | 
			
		||||
    assert(err==CUBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
    //MKL’s cblas_<T>gemm_batch & OneAPI
 | 
			
		||||
#warning "oneMKL implementation not built "
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
 | 
			
		||||
    int sda = lda*k;
 | 
			
		||||
    int sdb = ldb*k;
 | 
			
		||||
    int sdc = ldc*n;
 | 
			
		||||
    ComplexF alphaf(real(alpha),imag(alpha));
 | 
			
		||||
    ComplexF betaf(real(beta),imag(beta));
 | 
			
		||||
    // Need a default/reference implementation
 | 
			
		||||
    for (int p = 0; p < batchCount; ++p) {
 | 
			
		||||
      for (int mm = 0; mm < m; ++mm) {
 | 
			
		||||
	for (int nn = 0; nn < n; ++nn) {
 | 
			
		||||
	  ComplexF c_mn(0.0);
 | 
			
		||||
	  for (int kk = 0; kk < k; ++kk)
 | 
			
		||||
	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
 | 
			
		||||
	  Cmn[p][mm + nn*ldc] =  (alphaf)*c_mn + (betaf)*Cmn[p][mm + nn*ldc ];
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
     RealD t1=usecond();
 | 
			
		||||
     RealD flops = 8.0*m*n*k*batchCount;
 | 
			
		||||
     RealD bytes = 1.0*sizeof(ComplexF)*(m*k+k*n+m*n)*batchCount;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Single precision real GEMM
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  void gemmBatched(GridBLASOperation_t OpA,
 | 
			
		||||
		   GridBLASOperation_t OpB,
 | 
			
		||||
		   int m,int n, int k,
 | 
			
		||||
		   RealF alpha,
 | 
			
		||||
		   deviceVector<RealF*> &Amk,  // pointer list to matrices
 | 
			
		||||
		   deviceVector<RealF*> &Bkn,
 | 
			
		||||
		   RealF beta,
 | 
			
		||||
		   deviceVector<RealF*> &Cmn)
 | 
			
		||||
  {
 | 
			
		||||
    RealD t2=usecond();
 | 
			
		||||
    int32_t batchCount = Amk.size();
 | 
			
		||||
 | 
			
		||||
    int lda = m; // m x k column major
 | 
			
		||||
    int ldb = k; // k x n column major
 | 
			
		||||
    int ldc = m; // m x b column major
 | 
			
		||||
    if(OpA!=GridBLAS_OP_N)
 | 
			
		||||
      lda = k;
 | 
			
		||||
    if(OpB!=GridBLAS_OP_N)
 | 
			
		||||
      ldb = n;
 | 
			
		||||
    static deviceVector<RealF> alpha_p(1);
 | 
			
		||||
    static deviceVector<RealF> beta_p(1);
 | 
			
		||||
    // can prestore the 1 and the zero on device
 | 
			
		||||
    acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealF));
 | 
			
		||||
    acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealF));
 | 
			
		||||
    RealD t0=usecond();
 | 
			
		||||
 | 
			
		||||
    assert(Bkn.size()==batchCount);
 | 
			
		||||
    assert(Cmn.size()==batchCount);
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
    hipblasOperation_t hOpA;
 | 
			
		||||
    hipblasOperation_t hOpB;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
 | 
			
		||||
    auto err = hipblasSgemmBatched(gridblasHandle,
 | 
			
		||||
				   hOpA,
 | 
			
		||||
				   hOpB,
 | 
			
		||||
				   m,n,k,
 | 
			
		||||
				   (float *) &alpha_p[0],
 | 
			
		||||
				   (float **)&Amk[0], lda,
 | 
			
		||||
				   (float **)&Bkn[0], ldb,
 | 
			
		||||
				   (float *) &beta_p[0],
 | 
			
		||||
				   (float **)&Cmn[0], ldc,
 | 
			
		||||
				   batchCount);
 | 
			
		||||
    assert(err==HIPBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
    cublasOperation_t hOpA;
 | 
			
		||||
    cublasOperation_t hOpB;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
 | 
			
		||||
    auto err = cublasSgemmBatched(gridblasHandle,
 | 
			
		||||
				  hOpA,
 | 
			
		||||
				  hOpB,
 | 
			
		||||
				  m,n,k,
 | 
			
		||||
				  (float *) &alpha_p[0],
 | 
			
		||||
				  (float **)&Amk[0], lda,
 | 
			
		||||
				  (float **)&Bkn[0], ldb,
 | 
			
		||||
				  (float *) &beta_p[0],
 | 
			
		||||
				  (float **)&Cmn[0], ldc,
 | 
			
		||||
				  batchCount);
 | 
			
		||||
    assert(err==CUBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
    //MKL’s cblas_<T>gemm_batch & OneAPI
 | 
			
		||||
#warning "oneMKL implementation not built "
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
 | 
			
		||||
    int sda = lda*k;
 | 
			
		||||
    int sdb = ldb*k;
 | 
			
		||||
    int sdc = ldc*n;
 | 
			
		||||
    // Need a default/reference implementation
 | 
			
		||||
    for (int p = 0; p < batchCount; ++p) {
 | 
			
		||||
      for (int mm = 0; mm < m; ++mm) {
 | 
			
		||||
	for (int nn = 0; nn < n; ++nn) {
 | 
			
		||||
	  RealD c_mn(0.0);
 | 
			
		||||
	  for (int kk = 0; kk < k; ++kk)
 | 
			
		||||
	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
 | 
			
		||||
	  Cmn[p][mm + nn*ldc] =  (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
     RealD t1=usecond();
 | 
			
		||||
     RealD flops = 2.0*m*n*k*batchCount;
 | 
			
		||||
     RealD bytes = 1.0*sizeof(RealF)*(m*k+k*n+m*n)*batchCount;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Double precision real GEMM
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  void gemmBatched(GridBLASOperation_t OpA,
 | 
			
		||||
		   GridBLASOperation_t OpB,
 | 
			
		||||
		   int m,int n, int k,
 | 
			
		||||
		   RealD alpha,
 | 
			
		||||
		   deviceVector<RealD*> &Amk,  // pointer list to matrices
 | 
			
		||||
		   deviceVector<RealD*> &Bkn,
 | 
			
		||||
		   RealD beta,
 | 
			
		||||
		   deviceVector<RealD*> &Cmn)
 | 
			
		||||
  {
 | 
			
		||||
    RealD t2=usecond();
 | 
			
		||||
    int32_t batchCount = Amk.size();
 | 
			
		||||
 | 
			
		||||
    int lda = m; // m x k column major
 | 
			
		||||
    int ldb = k; // k x n column major
 | 
			
		||||
    int ldc = m; // m x b column major
 | 
			
		||||
    if(OpA!=GridBLAS_OP_N)
 | 
			
		||||
      lda = k;
 | 
			
		||||
    if(OpB!=GridBLAS_OP_N)
 | 
			
		||||
      ldb = n;
 | 
			
		||||
    
 | 
			
		||||
    static deviceVector<RealD> alpha_p(1);
 | 
			
		||||
    static deviceVector<RealD> beta_p(1);
 | 
			
		||||
    // can prestore the 1 and the zero on device
 | 
			
		||||
    acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealD));
 | 
			
		||||
    acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealD));
 | 
			
		||||
    RealD t0=usecond();
 | 
			
		||||
 | 
			
		||||
    assert(Bkn.size()==batchCount);
 | 
			
		||||
    assert(Cmn.size()==batchCount);
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
    hipblasOperation_t hOpA;
 | 
			
		||||
    hipblasOperation_t hOpB;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
 | 
			
		||||
    auto err = hipblasDgemmBatched(gridblasHandle,
 | 
			
		||||
				   HIPBLAS_OP_N,
 | 
			
		||||
				   HIPBLAS_OP_N,
 | 
			
		||||
				   m,n,k,
 | 
			
		||||
				   (double *) &alpha_p[0],
 | 
			
		||||
				   (double **)&Amk[0], lda,
 | 
			
		||||
				   (double **)&Bkn[0], ldb,
 | 
			
		||||
				   (double *) &beta_p[0],
 | 
			
		||||
				   (double **)&Cmn[0], ldc,
 | 
			
		||||
				   batchCount);
 | 
			
		||||
    assert(err==HIPBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
    cublasOperation_t hOpA;
 | 
			
		||||
    cublasOperation_t hOpB;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
 | 
			
		||||
    if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
 | 
			
		||||
    if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
 | 
			
		||||
    auto err = cublasDgemmBatched(gridblasHandle,
 | 
			
		||||
				  hOpA,
 | 
			
		||||
				  hOpB,
 | 
			
		||||
				  m,n,k,
 | 
			
		||||
				  (double *) &alpha_p[0],
 | 
			
		||||
				  (double **)&Amk[0], lda,
 | 
			
		||||
				  (double **)&Bkn[0], ldb,
 | 
			
		||||
				  (double *) &beta_p[0],
 | 
			
		||||
				  (double **)&Cmn[0], ldc,
 | 
			
		||||
				  batchCount);
 | 
			
		||||
    assert(err==CUBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
    /*
 | 
			
		||||
      int64_t m64=m;
 | 
			
		||||
      int64_t n64=n;
 | 
			
		||||
      int64_t k64=k;
 | 
			
		||||
      int64_t batchCount64=batchCount;
 | 
			
		||||
      oneapi::mkl::blas::column_major::gemm_batch(*theGridAccelerator,
 | 
			
		||||
      onemkl::transpose::N,
 | 
			
		||||
      onemkl::transpose::N,
 | 
			
		||||
      &m64,&n64,&k64,
 | 
			
		||||
      (double *) &alpha_p[0],
 | 
			
		||||
      (double **)&Amk[0], lda,
 | 
			
		||||
      (double **)&Bkn[0], ldb,
 | 
			
		||||
      (double *) &beta_p[0],
 | 
			
		||||
      (double **)&Cmn[0], ldc,
 | 
			
		||||
      1,&batchCount64);
 | 
			
		||||
     */
 | 
			
		||||
    //MKL’s cblas_<T>gemm_batch & OneAPI
 | 
			
		||||
#warning "oneMKL implementation not built "
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
 | 
			
		||||
    int sda = lda*k;
 | 
			
		||||
    int sdb = ldb*k;
 | 
			
		||||
    int sdc = ldc*n;
 | 
			
		||||
    // Need a default/reference implementation
 | 
			
		||||
    for (int p = 0; p < batchCount; ++p) {
 | 
			
		||||
      for (int mm = 0; mm < m; ++mm) {
 | 
			
		||||
	for (int nn = 0; nn < n; ++nn) {
 | 
			
		||||
	  RealD c_mn(0.0);
 | 
			
		||||
	  for (int kk = 0; kk < k; ++kk)
 | 
			
		||||
	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
 | 
			
		||||
	  Cmn[p][mm + nn*ldc] =  (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
     RealD t1=usecond();
 | 
			
		||||
     RealD flops = 2.0*m*n*k*batchCount;
 | 
			
		||||
     RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Strided case used by benchmark, but generally unused in Grid
 | 
			
		||||
  // Keep a code example in double complex, but don't generate the single and real variants for now
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  
 | 
			
		||||
  void gemmStridedBatched(int m,int n, int k,
 | 
			
		||||
			  ComplexD alpha,
 | 
			
		||||
			  ComplexD* Amk,  // pointer list to matrices
 | 
			
		||||
			  ComplexD* Bkn,
 | 
			
		||||
			  ComplexD beta,
 | 
			
		||||
			  ComplexD* Cmn,
 | 
			
		||||
			  int batchCount)
 | 
			
		||||
  {
 | 
			
		||||
    // Use C-row major storage, so transpose calls
 | 
			
		||||
    int lda = m; // m x k column major
 | 
			
		||||
    int ldb = k; // k x n column major
 | 
			
		||||
    int ldc = m; // m x b column major
 | 
			
		||||
    int sda = m*k;
 | 
			
		||||
    int sdb = k*n;
 | 
			
		||||
    int sdc = m*n;
 | 
			
		||||
    deviceVector<ComplexD> alpha_p(1);
 | 
			
		||||
    deviceVector<ComplexD> beta_p(1);
 | 
			
		||||
    acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
 | 
			
		||||
    acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
 | 
			
		||||
 | 
			
		||||
    //    std::cout << "blasZgemmStridedBatched mnk  "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
 | 
			
		||||
    //    std::cout << "blasZgemmStridedBatched ld   "<<lda<<","<<ldb<<","<<ldc<<std::endl;
 | 
			
		||||
    //    std::cout << "blasZgemmStridedBatched sd   "<<sda<<","<<sdb<<","<<sdc<<std::endl;
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
    auto err = hipblasZgemmStridedBatched(gridblasHandle,
 | 
			
		||||
					  HIPBLAS_OP_N,
 | 
			
		||||
					  HIPBLAS_OP_N,
 | 
			
		||||
					  m,n,k,
 | 
			
		||||
					  (hipblasDoubleComplex *) &alpha_p[0],
 | 
			
		||||
					  (hipblasDoubleComplex *) Amk, lda, sda,
 | 
			
		||||
					  (hipblasDoubleComplex *) Bkn, ldb, sdb,
 | 
			
		||||
					  (hipblasDoubleComplex *) &beta_p[0],
 | 
			
		||||
					  (hipblasDoubleComplex *) Cmn, ldc, sdc,
 | 
			
		||||
					  batchCount);
 | 
			
		||||
    assert(err==HIPBLAS_STATUS_SUCCESS);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_CUDA
 | 
			
		||||
    cublasZgemmStridedBatched(gridblasHandle,
 | 
			
		||||
			      CUBLAS_OP_N,
 | 
			
		||||
			      CUBLAS_OP_N,
 | 
			
		||||
			      m,n,k,
 | 
			
		||||
			      (cuDoubleComplex *) &alpha_p[0],
 | 
			
		||||
			      (cuDoubleComplex *) Amk, lda, sda,
 | 
			
		||||
			      (cuDoubleComplex *) Bkn, ldb, sdb,
 | 
			
		||||
			      (cuDoubleComplex *) &beta_p[0],
 | 
			
		||||
			      (cuDoubleComplex *) Cmn, ldc, sdc,
 | 
			
		||||
			      batchCount);
 | 
			
		||||
#endif
 | 
			
		||||
#if defined(GRID_SYCL) || defined(GRID_ONE_MKL)
 | 
			
		||||
    oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
 | 
			
		||||
						oneapi::mkl::transpose::N,
 | 
			
		||||
						oneapi::mkl::transpose::N,
 | 
			
		||||
						m,n,k,
 | 
			
		||||
						alpha,
 | 
			
		||||
						(const ComplexD *)Amk,lda,sda,
 | 
			
		||||
						(const ComplexD *)Bkn,ldb,sdb,
 | 
			
		||||
						beta,
 | 
			
		||||
						(ComplexD *)Cmn,ldc,sdc,
 | 
			
		||||
						batchCount);
 | 
			
		||||
#endif
 | 
			
		||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL)
 | 
			
		||||
     // Need a default/reference implementation
 | 
			
		||||
     for (int p = 0; p < batchCount; ++p) {
 | 
			
		||||
       for (int mm = 0; mm < m; ++mm) {
 | 
			
		||||
	 for (int nn = 0; nn < n; ++nn) {
 | 
			
		||||
	   ComplexD c_mn(0.0);
 | 
			
		||||
	   for (int kk = 0; kk < k; ++kk)
 | 
			
		||||
	     c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
 | 
			
		||||
	   Cmn[mm + nn*ldc + p*sdc] =  (alpha)*c_mn + (beta)*Cmn[mm + nn*ldc + p*sdc];
 | 
			
		||||
	 }
 | 
			
		||||
       }
 | 
			
		||||
     }
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  double benchmark(int M, int N, int K, int BATCH)
 | 
			
		||||
  {
 | 
			
		||||
    int32_t N_A = M*K*BATCH;
 | 
			
		||||
    int32_t N_B = K*N*BATCH;
 | 
			
		||||
    int32_t N_C = M*N*BATCH;
 | 
			
		||||
    deviceVector<ComplexD> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(ComplexD));
 | 
			
		||||
    deviceVector<ComplexD> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(ComplexD));
 | 
			
		||||
    deviceVector<ComplexD> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(ComplexD));
 | 
			
		||||
    ComplexD alpha(1.0);
 | 
			
		||||
    ComplexD beta (1.0);
 | 
			
		||||
    RealD flops = 8.0*M*N*K*BATCH;
 | 
			
		||||
    int ncall=10;
 | 
			
		||||
    RealD t0 = usecond();
 | 
			
		||||
    for(int i=0;i<ncall;i++){
 | 
			
		||||
      gemmStridedBatched(M,N,K,
 | 
			
		||||
			 alpha,
 | 
			
		||||
			 &A[0], // m x k 
 | 
			
		||||
			 &B[0], // k x n
 | 
			
		||||
			 beta, 
 | 
			
		||||
			 &C[0], // m x n
 | 
			
		||||
			 BATCH);
 | 
			
		||||
    }
 | 
			
		||||
    synchronise();
 | 
			
		||||
    RealD t1 = usecond();
 | 
			
		||||
    RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K)*BATCH;
 | 
			
		||||
    flops = 8.0*M*N*K*BATCH*ncall;
 | 
			
		||||
    flops = flops/(t1-t0)/1.e3;
 | 
			
		||||
    return flops; // Returns gigaflops
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -419,15 +419,14 @@ until convergence
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      if ( Nconv < Nstop ) {
 | 
			
		||||
      if ( Nconv < Nstop )
 | 
			
		||||
	std::cout << GridLogIRL << "Nconv ("<<Nconv<<") < Nstop ("<<Nstop<<")"<<std::endl;
 | 
			
		||||
	std::cout << GridLogIRL << "returning Nstop vectors, the last "<< Nstop-Nconv << "of which might meet convergence criterion only approximately" <<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      eval=eval2;
 | 
			
		||||
      
 | 
			
		||||
      //Keep only converged
 | 
			
		||||
      eval.resize(Nstop);// was Nconv
 | 
			
		||||
      evec.resize(Nstop,grid);// was Nconv
 | 
			
		||||
      eval.resize(Nconv);// Nstop?
 | 
			
		||||
      evec.resize(Nconv,grid);// Nstop?
 | 
			
		||||
      basisSortInPlace(evec,eval,reverse);
 | 
			
		||||
      
 | 
			
		||||
    }
 | 
			
		||||
 
 | 
			
		||||
@@ -176,7 +176,6 @@ template<class T> using cshiftAllocator = std::allocator<T>;
 | 
			
		||||
template<class T> using Vector        = std::vector<T,uvmAllocator<T> >;           
 | 
			
		||||
template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;           
 | 
			
		||||
template<class T> using commVector = std::vector<T,devAllocator<T> >;
 | 
			
		||||
template<class T> using deviceVector  = std::vector<T,devAllocator<T> >;
 | 
			
		||||
template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >;
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
@@ -348,7 +348,6 @@ double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
 | 
			
		||||
  return offbytes;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#undef NVLINK_GET // Define to use get instead of put DMA
 | 
			
		||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
			
		||||
							 void *xmit,
 | 
			
		||||
							 int dest,int dox,
 | 
			
		||||
@@ -381,15 +380,9 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
 | 
			
		||||
      list.push_back(rrq);
 | 
			
		||||
      off_node_bytes+=rbytes;
 | 
			
		||||
    }
 | 
			
		||||
#ifdef NVLINK_GET
 | 
			
		||||
      void *shm = (void *) this->ShmBufferTranslate(from,xmit);
 | 
			
		||||
      assert(shm!=NULL);
 | 
			
		||||
      acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  if (dox) {
 | 
			
		||||
    //  rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
 | 
			
		||||
    if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
			
		||||
      tag= dir+_processor*32;
 | 
			
		||||
      ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
 | 
			
		||||
@@ -397,12 +390,9 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
 | 
			
		||||
      list.push_back(xrq);
 | 
			
		||||
      off_node_bytes+=xbytes;
 | 
			
		||||
    } else {
 | 
			
		||||
#ifndef NVLINK_GET
 | 
			
		||||
      void *shm = (void *) this->ShmBufferTranslate(dest,recv);
 | 
			
		||||
      assert(shm!=NULL);
 | 
			
		||||
      acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
 | 
			
		||||
#endif
 | 
			
		||||
      
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
@@ -412,8 +402,6 @@ void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsReque
 | 
			
		||||
{
 | 
			
		||||
  int nreq=list.size();
 | 
			
		||||
 | 
			
		||||
  acceleratorCopySynchronise();
 | 
			
		||||
 | 
			
		||||
  if (nreq==0) return;
 | 
			
		||||
 | 
			
		||||
  std::vector<MPI_Status> status(nreq);
 | 
			
		||||
 
 | 
			
		||||
@@ -40,9 +40,6 @@ int                 GlobalSharedMemory::_ShmAlloc;
 | 
			
		||||
uint64_t            GlobalSharedMemory::_ShmAllocBytes;
 | 
			
		||||
 | 
			
		||||
std::vector<void *> GlobalSharedMemory::WorldShmCommBufs;
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
void * GlobalSharedMemory::HostCommBuf;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
Grid_MPI_Comm       GlobalSharedMemory::WorldShmComm;
 | 
			
		||||
int                 GlobalSharedMemory::WorldShmRank;
 | 
			
		||||
@@ -69,26 +66,6 @@ void GlobalSharedMemory::SharedMemoryFree(void)
 | 
			
		||||
/////////////////////////////////
 | 
			
		||||
// Alloc, free shmem region
 | 
			
		||||
/////////////////////////////////
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
void *SharedMemory::HostBufferMalloc(size_t bytes){
 | 
			
		||||
  void *ptr = (void *)host_heap_top;
 | 
			
		||||
  host_heap_top  += bytes;
 | 
			
		||||
  host_heap_bytes+= bytes;
 | 
			
		||||
  if (host_heap_bytes >= host_heap_size) {
 | 
			
		||||
    std::cout<< " HostBufferMalloc exceeded heap size -- try increasing with --shm <MB> flag" <<std::endl;
 | 
			
		||||
    std::cout<< " Parameter specified in units of MB (megabytes) " <<std::endl;
 | 
			
		||||
    std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl;
 | 
			
		||||
    std::cout<< " Current bytes is " << (host_heap_bytes/(1024*1024)) <<"MB"<<std::endl;
 | 
			
		||||
    std::cout<< " Current heap  is " << (host_heap_size/(1024*1024)) <<"MB"<<std::endl;
 | 
			
		||||
    assert(host_heap_bytes<host_heap_size);
 | 
			
		||||
  }
 | 
			
		||||
  return ptr;
 | 
			
		||||
}
 | 
			
		||||
void SharedMemory::HostBufferFreeAll(void) { 
 | 
			
		||||
  host_heap_top  =(size_t)HostCommBuf;
 | 
			
		||||
  host_heap_bytes=0;
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
void *SharedMemory::ShmBufferMalloc(size_t bytes){
 | 
			
		||||
  //  bytes = (bytes+sizeof(vRealD))&(~(sizeof(vRealD)-1));// align up bytes
 | 
			
		||||
  void *ptr = (void *)heap_top;
 | 
			
		||||
 
 | 
			
		||||
@@ -75,9 +75,7 @@ public:
 | 
			
		||||
  static int           Hugepages;
 | 
			
		||||
 | 
			
		||||
  static std::vector<void *> WorldShmCommBufs;
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
  static void *HostCommBuf;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
  static Grid_MPI_Comm WorldComm;
 | 
			
		||||
  static int           WorldRank;
 | 
			
		||||
  static int           WorldSize;
 | 
			
		||||
@@ -122,13 +120,6 @@ private:
 | 
			
		||||
  size_t heap_bytes;
 | 
			
		||||
  size_t heap_size;
 | 
			
		||||
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
  size_t host_heap_top;  // set in free all
 | 
			
		||||
  size_t host_heap_bytes;// set in free all
 | 
			
		||||
  void *HostCommBuf;     // set in SetCommunicator
 | 
			
		||||
  size_t host_heap_size; // set in SetCommunicator
 | 
			
		||||
#endif
 | 
			
		||||
  
 | 
			
		||||
protected:
 | 
			
		||||
 | 
			
		||||
  Grid_MPI_Comm    ShmComm; // for barriers
 | 
			
		||||
@@ -160,10 +151,7 @@ public:
 | 
			
		||||
  void *ShmBufferTranslate(int rank,void * local_p);
 | 
			
		||||
  void *ShmBufferMalloc(size_t bytes);
 | 
			
		||||
  void  ShmBufferFreeAll(void) ;
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
  void *HostBufferMalloc(size_t bytes);
 | 
			
		||||
  void HostBufferFreeAll(void);
 | 
			
		||||
#endif  
 | 
			
		||||
  
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Make info on Nodes & ranks and Shared memory available
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -39,11 +39,9 @@ Author: Christoph Lehner <christoph@lhnr.de>
 | 
			
		||||
#include <hip/hip_runtime_api.h>
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
			
		||||
#define GRID_SYCL_LEVEL_ZERO_IPC
 | 
			
		||||
#define SHM_SOCKETS
 | 
			
		||||
#endif 
 | 
			
		||||
#include <syscall.h>
 | 
			
		||||
#define SHM_SOCKETS 
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#include <sys/socket.h>
 | 
			
		||||
@@ -514,6 +512,46 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
// Hugetlbfs mapping intended
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
#if defined(GRID_CUDA) ||defined(GRID_HIP)  || defined(GRID_SYCL)
 | 
			
		||||
 | 
			
		||||
//if defined(GRID_SYCL)
 | 
			
		||||
#if 0
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
{
 | 
			
		||||
  void * ShmCommBuf ; 
 | 
			
		||||
  assert(_ShmSetup==1);
 | 
			
		||||
  assert(_ShmAlloc==0);
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // allocate the pointer array for shared windows for our group
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  MPI_Barrier(WorldShmComm);
 | 
			
		||||
  WorldShmCommBufs.resize(WorldShmSize);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Each MPI rank should allocate our own buffer
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  ShmCommBuf = acceleratorAllocDevice(bytes);
 | 
			
		||||
 | 
			
		||||
  if (ShmCommBuf == (void *)NULL ) {
 | 
			
		||||
    std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
 | 
			
		||||
    exit(EXIT_FAILURE);  
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  std::cout << WorldRank << Mheader " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes 
 | 
			
		||||
	    << "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
 | 
			
		||||
 | 
			
		||||
  SharedMemoryZero(ShmCommBuf,bytes);
 | 
			
		||||
 | 
			
		||||
  assert(WorldShmSize == 1);
 | 
			
		||||
  for(int r=0;r<WorldShmSize;r++){
 | 
			
		||||
    WorldShmCommBufs[r] = ShmCommBuf;
 | 
			
		||||
  }
 | 
			
		||||
  _ShmAllocBytes=bytes;
 | 
			
		||||
  _ShmAlloc=1;
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if defined(GRID_CUDA) ||defined(GRID_HIP) ||defined(GRID_SYCL)  
 | 
			
		||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
{
 | 
			
		||||
  void * ShmCommBuf ; 
 | 
			
		||||
@@ -536,9 +574,6 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Each MPI rank should allocate our own buffer
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
  HostCommBuf= malloc(bytes);
 | 
			
		||||
#endif  
 | 
			
		||||
  ShmCommBuf = acceleratorAllocDevice(bytes);
 | 
			
		||||
  if (ShmCommBuf == (void *)NULL ) {
 | 
			
		||||
    std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
 | 
			
		||||
@@ -569,8 +604,8 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
 | 
			
		||||
    typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t;
 | 
			
		||||
 | 
			
		||||
    auto zeDevice    = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device());
 | 
			
		||||
    auto zeContext   = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context());
 | 
			
		||||
    auto zeDevice    = cl::sycl::get_native<cl::sycl::backend::level_zero>(theGridAccelerator->get_device());
 | 
			
		||||
    auto zeContext   = cl::sycl::get_native<cl::sycl::backend::level_zero>(theGridAccelerator->get_context());
 | 
			
		||||
      
 | 
			
		||||
    ze_ipc_mem_handle_t ihandle;
 | 
			
		||||
    clone_mem_t handle;
 | 
			
		||||
@@ -703,6 +738,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
			
		||||
  _ShmAllocBytes=bytes;
 | 
			
		||||
  _ShmAlloc=1;
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#else 
 | 
			
		||||
#ifdef GRID_MPI3_SHMMMAP
 | 
			
		||||
@@ -926,12 +962,6 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
 | 
			
		||||
  }
 | 
			
		||||
  ShmBufferFreeAll();
 | 
			
		||||
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
  host_heap_size = heap_size;
 | 
			
		||||
  HostCommBuf= GlobalSharedMemory::HostCommBuf;
 | 
			
		||||
  HostBufferFreeAll();
 | 
			
		||||
#endif  
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // find comm ranks in our SHM group (i.e. which ranks are on our node)
 | 
			
		||||
  /////////////////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -29,27 +29,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
extern std::vector<std::pair<int,int> > Cshift_table; 
 | 
			
		||||
extern commVector<std::pair<int,int> > Cshift_table_device; 
 | 
			
		||||
extern Vector<std::pair<int,int> > Cshift_table; 
 | 
			
		||||
 | 
			
		||||
inline std::pair<int,int> *MapCshiftTable(void)
 | 
			
		||||
{
 | 
			
		||||
  // GPU version
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT    
 | 
			
		||||
  uint64_t sz=Cshift_table.size();
 | 
			
		||||
  if (Cshift_table_device.size()!=sz )    {
 | 
			
		||||
    Cshift_table_device.resize(sz);
 | 
			
		||||
  }
 | 
			
		||||
  acceleratorCopyToDevice((void *)&Cshift_table[0],
 | 
			
		||||
			  (void *)&Cshift_table_device[0],
 | 
			
		||||
			  sizeof(Cshift_table[0])*sz);
 | 
			
		||||
 | 
			
		||||
  return &Cshift_table_device[0];
 | 
			
		||||
#else 
 | 
			
		||||
  return &Cshift_table[0];
 | 
			
		||||
#endif
 | 
			
		||||
  // CPU version use identify map
 | 
			
		||||
}
 | 
			
		||||
///////////////////////////////////////////////////////////////////
 | 
			
		||||
// Gather for when there is no need to SIMD split 
 | 
			
		||||
///////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -93,8 +74,8 @@ Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dim
 | 
			
		||||
  }
 | 
			
		||||
  {
 | 
			
		||||
    auto buffer_p = & buffer[0];
 | 
			
		||||
    auto table = MapCshiftTable();
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT
 | 
			
		||||
    auto table = &Cshift_table[0];
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT    
 | 
			
		||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
			
		||||
    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
			
		||||
	coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second]));
 | 
			
		||||
@@ -244,7 +225,7 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<
 | 
			
		||||
  
 | 
			
		||||
  {
 | 
			
		||||
    auto buffer_p = & buffer[0];
 | 
			
		||||
    auto table = MapCshiftTable();
 | 
			
		||||
    auto table = &Cshift_table[0];
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT    
 | 
			
		||||
    autoView( rhs_v, rhs, AcceleratorWrite);
 | 
			
		||||
    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
			
		||||
@@ -316,6 +297,30 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#if (defined(GRID_CUDA) || defined(GRID_HIP)) && defined(ACCELERATOR_CSHIFT)
 | 
			
		||||
 | 
			
		||||
template <typename T>
 | 
			
		||||
T iDivUp(T a, T b) // Round a / b to nearest higher integer value
 | 
			
		||||
{ return (a % b != 0) ? (a / b + 1) : (a / b); }
 | 
			
		||||
 | 
			
		||||
template <typename T>
 | 
			
		||||
__global__ void populate_Cshift_table(T* vector, T lo, T ro, T e1, T e2, T stride)
 | 
			
		||||
{
 | 
			
		||||
    int idx = blockIdx.x*blockDim.x + threadIdx.x;
 | 
			
		||||
    if (idx >= e1*e2) return;
 | 
			
		||||
 | 
			
		||||
    int n, b, o;
 | 
			
		||||
 | 
			
		||||
    n = idx / e2;
 | 
			
		||||
    b = idx % e2;
 | 
			
		||||
    o = n*stride + b;
 | 
			
		||||
 | 
			
		||||
    vector[2*idx + 0] = lo + o;
 | 
			
		||||
    vector[2*idx + 1] = ro + o;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
// local to node block strided copies
 | 
			
		||||
//////////////////////////////////////////////////////
 | 
			
		||||
@@ -340,12 +345,20 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
 | 
			
		||||
  int ent=0;
 | 
			
		||||
 | 
			
		||||
  if(cbmask == 0x3 ){
 | 
			
		||||
#if (defined(GRID_CUDA) || defined(GRID_HIP)) && defined(ACCELERATOR_CSHIFT)
 | 
			
		||||
    ent = e1*e2;
 | 
			
		||||
    dim3 blockSize(acceleratorThreads());
 | 
			
		||||
    dim3 gridSize(iDivUp((unsigned int)ent, blockSize.x));
 | 
			
		||||
    populate_Cshift_table<<<gridSize, blockSize>>>(&Cshift_table[0].first, lo, ro, e1, e2, stride);
 | 
			
		||||
    accelerator_barrier();
 | 
			
		||||
#else
 | 
			
		||||
    for(int n=0;n<e1;n++){
 | 
			
		||||
      for(int b=0;b<e2;b++){
 | 
			
		||||
        int o =n*stride+b;
 | 
			
		||||
	Cshift_table[ent++] = std::pair<int,int>(lo+o,ro+o);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
  } else { 
 | 
			
		||||
    for(int n=0;n<e1;n++){
 | 
			
		||||
      for(int b=0;b<e2;b++){
 | 
			
		||||
@@ -359,7 +372,7 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  {
 | 
			
		||||
    auto table = MapCshiftTable();
 | 
			
		||||
    auto table = &Cshift_table[0];
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT    
 | 
			
		||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
			
		||||
    autoView(lhs_v , lhs, AcceleratorWrite);
 | 
			
		||||
@@ -396,11 +409,19 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo
 | 
			
		||||
  int ent=0;
 | 
			
		||||
 | 
			
		||||
  if ( cbmask == 0x3 ) {
 | 
			
		||||
#if (defined(GRID_CUDA) || defined(GRID_HIP)) && defined(ACCELERATOR_CSHIFT)
 | 
			
		||||
    ent = e1*e2;
 | 
			
		||||
    dim3 blockSize(acceleratorThreads());
 | 
			
		||||
    dim3 gridSize(iDivUp((unsigned int)ent, blockSize.x));
 | 
			
		||||
    populate_Cshift_table<<<gridSize, blockSize>>>(&Cshift_table[0].first, lo, ro, e1, e2, stride);
 | 
			
		||||
    accelerator_barrier();
 | 
			
		||||
#else
 | 
			
		||||
    for(int n=0;n<e1;n++){
 | 
			
		||||
    for(int b=0;b<e2;b++){
 | 
			
		||||
      int o  =n*stride;
 | 
			
		||||
      Cshift_table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b);
 | 
			
		||||
    }}
 | 
			
		||||
#endif
 | 
			
		||||
  } else {
 | 
			
		||||
    for(int n=0;n<e1;n++){
 | 
			
		||||
    for(int b=0;b<e2;b++){
 | 
			
		||||
@@ -411,7 +432,7 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  {
 | 
			
		||||
    auto table = MapCshiftTable();
 | 
			
		||||
    auto table = &Cshift_table[0];
 | 
			
		||||
#ifdef ACCELERATOR_CSHIFT    
 | 
			
		||||
    autoView( rhs_v, rhs, AcceleratorRead);
 | 
			
		||||
    autoView( lhs_v, lhs, AcceleratorWrite);
 | 
			
		||||
 
 | 
			
		||||
@@ -52,8 +52,7 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
 | 
			
		||||
  int comm_dim        = rhs.Grid()->_processors[dimension] >1 ;
 | 
			
		||||
  int splice_dim      = rhs.Grid()->_simd_layout[dimension]>1 && (comm_dim);
 | 
			
		||||
 | 
			
		||||
  RealD t1,t0;
 | 
			
		||||
  t0=usecond();
 | 
			
		||||
 | 
			
		||||
  if ( !comm_dim ) {
 | 
			
		||||
    //std::cout << "CSHIFT: Cshift_local" <<std::endl;
 | 
			
		||||
    Cshift_local(ret,rhs,dimension,shift); // Handles checkerboarding
 | 
			
		||||
@@ -64,8 +63,6 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
 | 
			
		||||
    //std::cout << "CSHIFT: Cshift_comms" <<std::endl;
 | 
			
		||||
    Cshift_comms(ret,rhs,dimension,shift);
 | 
			
		||||
  }
 | 
			
		||||
  t1=usecond();
 | 
			
		||||
  //  std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl;
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -130,20 +127,16 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
 | 
			
		||||
    
 | 
			
		||||
  int cb= (cbmask==0x2)? Odd : Even;
 | 
			
		||||
  int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
 | 
			
		||||
  RealD tcopy=0.0;
 | 
			
		||||
  RealD tgather=0.0;
 | 
			
		||||
  RealD tscatter=0.0;
 | 
			
		||||
  RealD tcomms=0.0;
 | 
			
		||||
  uint64_t xbytes=0;
 | 
			
		||||
 | 
			
		||||
  for(int x=0;x<rd;x++){       
 | 
			
		||||
 | 
			
		||||
    int sx        =  (x+sshift)%rd;
 | 
			
		||||
    int comm_proc = ((x+sshift)/rd)%pd;
 | 
			
		||||
    
 | 
			
		||||
    if (comm_proc==0) {
 | 
			
		||||
      tcopy-=usecond();
 | 
			
		||||
 | 
			
		||||
      Copy_plane(ret,rhs,dimension,x,sx,cbmask); 
 | 
			
		||||
      tcopy+=usecond();
 | 
			
		||||
 | 
			
		||||
    } else {
 | 
			
		||||
 | 
			
		||||
      int words = buffer_size;
 | 
			
		||||
@@ -151,39 +144,26 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
 | 
			
		||||
 | 
			
		||||
      int bytes = words * sizeof(vobj);
 | 
			
		||||
 | 
			
		||||
      tgather-=usecond();
 | 
			
		||||
      Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask);
 | 
			
		||||
      tgather+=usecond();
 | 
			
		||||
 | 
			
		||||
      //      int rank           = grid->_processor;
 | 
			
		||||
      int recv_from_rank;
 | 
			
		||||
      int xmit_to_rank;
 | 
			
		||||
      grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
 | 
			
		||||
      
 | 
			
		||||
      tcomms-=usecond();
 | 
			
		||||
      //      grid->Barrier();
 | 
			
		||||
 | 
			
		||||
      grid->Barrier();
 | 
			
		||||
 | 
			
		||||
      grid->SendToRecvFrom((void *)&send_buf[0],
 | 
			
		||||
			   xmit_to_rank,
 | 
			
		||||
			   (void *)&recv_buf[0],
 | 
			
		||||
			   recv_from_rank,
 | 
			
		||||
			   bytes);
 | 
			
		||||
      xbytes+=bytes;
 | 
			
		||||
      //      grid->Barrier();
 | 
			
		||||
      tcomms+=usecond();
 | 
			
		||||
 | 
			
		||||
      tscatter-=usecond();
 | 
			
		||||
      grid->Barrier();
 | 
			
		||||
 | 
			
		||||
      Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask);
 | 
			
		||||
      tscatter+=usecond();
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  /*
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
 | 
			
		||||
  */
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
			
		||||
@@ -210,12 +190,6 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
			
		||||
  assert(shift>=0);
 | 
			
		||||
  assert(shift<fd);
 | 
			
		||||
 | 
			
		||||
  RealD tcopy=0.0;
 | 
			
		||||
  RealD tgather=0.0;
 | 
			
		||||
  RealD tscatter=0.0;
 | 
			
		||||
  RealD tcomms=0.0;
 | 
			
		||||
  uint64_t xbytes=0;
 | 
			
		||||
  
 | 
			
		||||
  int permute_type=grid->PermuteType(dimension);
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////
 | 
			
		||||
@@ -253,9 +227,7 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
			
		||||
      pointers[i] = &send_buf_extract[i][0];
 | 
			
		||||
    }
 | 
			
		||||
    int sx   = (x+sshift)%rd;
 | 
			
		||||
    tgather-=usecond();
 | 
			
		||||
    Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
 | 
			
		||||
    tgather+=usecond();
 | 
			
		||||
 | 
			
		||||
    for(int i=0;i<Nsimd;i++){
 | 
			
		||||
      
 | 
			
		||||
@@ -280,8 +252,7 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
			
		||||
      if(nbr_proc){
 | 
			
		||||
	grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank); 
 | 
			
		||||
 | 
			
		||||
	tcomms-=usecond();
 | 
			
		||||
	//	grid->Barrier();
 | 
			
		||||
	grid->Barrier();
 | 
			
		||||
 | 
			
		||||
	send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
 | 
			
		||||
	recv_buf_extract_mpi = &recv_buf_extract[i][0];
 | 
			
		||||
@@ -291,9 +262,7 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
			
		||||
			     recv_from_rank,
 | 
			
		||||
			     bytes);
 | 
			
		||||
 | 
			
		||||
	xbytes+=bytes;
 | 
			
		||||
	//	grid->Barrier();
 | 
			
		||||
	tcomms+=usecond();
 | 
			
		||||
	grid->Barrier();
 | 
			
		||||
 | 
			
		||||
	rpointers[i] = &recv_buf_extract[i][0];
 | 
			
		||||
      } else { 
 | 
			
		||||
@@ -301,17 +270,9 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    tscatter-=usecond();
 | 
			
		||||
    Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
 | 
			
		||||
    tscatter+=usecond();
 | 
			
		||||
  }
 | 
			
		||||
  /*
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
 | 
			
		||||
  */
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
#else 
 | 
			
		||||
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
			
		||||
@@ -331,11 +292,6 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
 | 
			
		||||
  assert(comm_dim==1);
 | 
			
		||||
  assert(shift>=0);
 | 
			
		||||
  assert(shift<fd);
 | 
			
		||||
  RealD tcopy=0.0;
 | 
			
		||||
  RealD tgather=0.0;
 | 
			
		||||
  RealD tscatter=0.0;
 | 
			
		||||
  RealD tcomms=0.0;
 | 
			
		||||
  uint64_t xbytes=0;
 | 
			
		||||
  
 | 
			
		||||
  int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
 | 
			
		||||
  static cshiftVector<vobj> send_buf_v; send_buf_v.resize(buffer_size);
 | 
			
		||||
@@ -359,9 +315,7 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
 | 
			
		||||
    
 | 
			
		||||
    if (comm_proc==0) {
 | 
			
		||||
 | 
			
		||||
      tcopy-=usecond();
 | 
			
		||||
      Copy_plane(ret,rhs,dimension,x,sx,cbmask); 
 | 
			
		||||
      tcopy+=usecond();
 | 
			
		||||
 | 
			
		||||
    } else {
 | 
			
		||||
 | 
			
		||||
@@ -370,9 +324,7 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
 | 
			
		||||
 | 
			
		||||
      int bytes = words * sizeof(vobj);
 | 
			
		||||
 | 
			
		||||
      tgather-=usecond();
 | 
			
		||||
      Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask);
 | 
			
		||||
      tgather+=usecond();
 | 
			
		||||
 | 
			
		||||
      //      int rank           = grid->_processor;
 | 
			
		||||
      int recv_from_rank;
 | 
			
		||||
@@ -380,8 +332,7 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
 | 
			
		||||
      grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      tcomms-=usecond();
 | 
			
		||||
      //      grid->Barrier();
 | 
			
		||||
      grid->Barrier();
 | 
			
		||||
 | 
			
		||||
      acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes);
 | 
			
		||||
      grid->SendToRecvFrom((void *)&send_buf[0],
 | 
			
		||||
@@ -389,24 +340,13 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
 | 
			
		||||
			   (void *)&recv_buf[0],
 | 
			
		||||
			   recv_from_rank,
 | 
			
		||||
			   bytes);
 | 
			
		||||
      xbytes+=bytes;
 | 
			
		||||
      acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes);
 | 
			
		||||
 | 
			
		||||
      //      grid->Barrier();
 | 
			
		||||
      tcomms+=usecond();
 | 
			
		||||
      grid->Barrier();
 | 
			
		||||
 | 
			
		||||
      tscatter-=usecond();
 | 
			
		||||
      Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask);
 | 
			
		||||
      tscatter+=usecond();
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  /*
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
 | 
			
		||||
  */
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
			
		||||
@@ -432,11 +372,6 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
			
		||||
  assert(simd_layout==2);
 | 
			
		||||
  assert(shift>=0);
 | 
			
		||||
  assert(shift<fd);
 | 
			
		||||
  RealD tcopy=0.0;
 | 
			
		||||
  RealD tgather=0.0;
 | 
			
		||||
  RealD tscatter=0.0;
 | 
			
		||||
  RealD tcomms=0.0;
 | 
			
		||||
  uint64_t xbytes=0;
 | 
			
		||||
 | 
			
		||||
  int permute_type=grid->PermuteType(dimension);
 | 
			
		||||
 | 
			
		||||
@@ -479,10 +414,8 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
			
		||||
    for(int i=0;i<Nsimd;i++){       
 | 
			
		||||
      pointers[i] = &send_buf_extract[i][0];
 | 
			
		||||
    }
 | 
			
		||||
    tgather-=usecond();
 | 
			
		||||
    int sx   = (x+sshift)%rd;
 | 
			
		||||
    Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
 | 
			
		||||
    tgather+=usecond();
 | 
			
		||||
 | 
			
		||||
    for(int i=0;i<Nsimd;i++){
 | 
			
		||||
      
 | 
			
		||||
@@ -507,8 +440,7 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
			
		||||
      if(nbr_proc){
 | 
			
		||||
	grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank); 
 | 
			
		||||
 | 
			
		||||
	tcomms-=usecond();
 | 
			
		||||
	//	grid->Barrier();
 | 
			
		||||
	grid->Barrier();
 | 
			
		||||
 | 
			
		||||
	acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes);
 | 
			
		||||
	grid->SendToRecvFrom((void *)send_buf_extract_mpi,
 | 
			
		||||
@@ -517,28 +449,17 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
			
		||||
			     recv_from_rank,
 | 
			
		||||
			     bytes);
 | 
			
		||||
	acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes);
 | 
			
		||||
	xbytes+=bytes;
 | 
			
		||||
 | 
			
		||||
	//	grid->Barrier();
 | 
			
		||||
	tcomms+=usecond();
 | 
			
		||||
	grid->Barrier();
 | 
			
		||||
	rpointers[i] = &recv_buf_extract[i][0];
 | 
			
		||||
      } else { 
 | 
			
		||||
	rpointers[i] = &send_buf_extract[nbr_lane][0];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    tscatter-=usecond();
 | 
			
		||||
    Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
 | 
			
		||||
    tscatter+=usecond();
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
  /*
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
			
		||||
  std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s"<<std::endl;
 | 
			
		||||
  */
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
NAMESPACE_END(Grid); 
 | 
			
		||||
 
 | 
			
		||||
@@ -1,5 +1,4 @@
 | 
			
		||||
#include <Grid/GridCore.h>       
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
std::vector<std::pair<int,int> > Cshift_table; 
 | 
			
		||||
commVector<std::pair<int,int> > Cshift_table_device; 
 | 
			
		||||
Vector<std::pair<int,int> > Cshift_table; 
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
@@ -35,7 +35,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#include <Grid/lattice/Lattice_transpose.h>
 | 
			
		||||
#include <Grid/lattice/Lattice_local.h>
 | 
			
		||||
#include <Grid/lattice/Lattice_reduction.h>
 | 
			
		||||
#include <Grid/lattice/Lattice_crc.h>
 | 
			
		||||
#include <Grid/lattice/Lattice_peekpoke.h>
 | 
			
		||||
#include <Grid/lattice/Lattice_reality.h>
 | 
			
		||||
#include <Grid/lattice/Lattice_real_imag.h>
 | 
			
		||||
@@ -47,4 +46,4 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#include <Grid/lattice/Lattice_unary.h>
 | 
			
		||||
#include <Grid/lattice/Lattice_transfer.h>
 | 
			
		||||
#include <Grid/lattice/Lattice_basis.h>
 | 
			
		||||
#include <Grid/lattice/PaddedCell.h>
 | 
			
		||||
#include <Grid/lattice/Lattice_crc.h>
 | 
			
		||||
 
 | 
			
		||||
@@ -345,9 +345,7 @@ GridUnopClass(UnaryNot, Not(a));
 | 
			
		||||
GridUnopClass(UnaryTrace, trace(a));
 | 
			
		||||
GridUnopClass(UnaryTranspose, transpose(a));
 | 
			
		||||
GridUnopClass(UnaryTa, Ta(a));
 | 
			
		||||
GridUnopClass(UnarySpTa, SpTa(a));
 | 
			
		||||
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
 | 
			
		||||
GridUnopClass(UnaryProjectOnSpGroup, ProjectOnSpGroup(a));
 | 
			
		||||
GridUnopClass(UnaryTimesI, timesI(a));
 | 
			
		||||
GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
 | 
			
		||||
GridUnopClass(UnaryAbs, abs(a));
 | 
			
		||||
@@ -458,9 +456,7 @@ GRID_DEF_UNOP(operator!, UnaryNot);
 | 
			
		||||
GRID_DEF_UNOP(trace, UnaryTrace);
 | 
			
		||||
GRID_DEF_UNOP(transpose, UnaryTranspose);
 | 
			
		||||
GRID_DEF_UNOP(Ta, UnaryTa);
 | 
			
		||||
GRID_DEF_UNOP(SpTa, UnarySpTa);
 | 
			
		||||
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
 | 
			
		||||
GRID_DEF_UNOP(ProjectOnSpGroup, UnaryProjectOnSpGroup);
 | 
			
		||||
GRID_DEF_UNOP(timesI, UnaryTimesI);
 | 
			
		||||
GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
 | 
			
		||||
GRID_DEF_UNOP(abs, UnaryAbs);  // abs overloaded in cmath C++98; DON'T do the
 | 
			
		||||
 
 | 
			
		||||
@@ -270,42 +270,5 @@ RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const L
 | 
			
		||||
    return axpby_norm_fast(ret,a,b,x,y);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/// Trace product
 | 
			
		||||
template<class obj> auto traceProduct(const Lattice<obj> &rhs_1,const Lattice<obj> &rhs_2)
 | 
			
		||||
  -> Lattice<decltype(trace(obj()))>
 | 
			
		||||
{
 | 
			
		||||
  typedef decltype(trace(obj())) robj;
 | 
			
		||||
  Lattice<robj> ret_i(rhs_1.Grid());
 | 
			
		||||
  autoView( rhs1 , rhs_1, AcceleratorRead);
 | 
			
		||||
  autoView( rhs2 , rhs_2, AcceleratorRead);
 | 
			
		||||
  autoView( ret , ret_i, AcceleratorWrite);
 | 
			
		||||
  ret.Checkerboard() = rhs_1.Checkerboard();
 | 
			
		||||
  accelerator_for(ss,rhs1.size(),obj::Nsimd(),{
 | 
			
		||||
      coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2(ss)));
 | 
			
		||||
  });
 | 
			
		||||
  return ret_i;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class obj1,class obj2> auto traceProduct(const Lattice<obj1> &rhs_1,const obj2 &rhs2)
 | 
			
		||||
  -> Lattice<decltype(trace(obj1()))>
 | 
			
		||||
{
 | 
			
		||||
  typedef decltype(trace(obj1())) robj;
 | 
			
		||||
  Lattice<robj> ret_i(rhs_1.Grid());
 | 
			
		||||
  autoView( rhs1 , rhs_1, AcceleratorRead);
 | 
			
		||||
  autoView( ret , ret_i, AcceleratorWrite);
 | 
			
		||||
  ret.Checkerboard() = rhs_1.Checkerboard();
 | 
			
		||||
  accelerator_for(ss,rhs1.size(),obj1::Nsimd(),{
 | 
			
		||||
      coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2));
 | 
			
		||||
  });
 | 
			
		||||
  return ret_i;
 | 
			
		||||
}
 | 
			
		||||
template<class obj1,class obj2> auto traceProduct(const obj2 &rhs_2,const Lattice<obj1> &rhs_1)
 | 
			
		||||
  -> Lattice<decltype(trace(obj1()))>
 | 
			
		||||
{
 | 
			
		||||
  return traceProduct(rhs_1,rhs_2);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -62,7 +62,7 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
 | 
			
		||||
    basis_v.push_back(basis[k].View(AcceleratorWrite));
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
#if ( !(defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)) )
 | 
			
		||||
#if ( (!defined(GRID_CUDA)) )
 | 
			
		||||
  int max_threads = thread_max();
 | 
			
		||||
  Vector < vobj > Bt(Nm * max_threads);
 | 
			
		||||
  thread_region
 | 
			
		||||
 
 | 
			
		||||
@@ -42,13 +42,13 @@ template<class vobj> void DumpSliceNorm(std::string s,Lattice<vobj> &f,int mu=-1
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> uint32_t crc(const Lattice<vobj> & buf)
 | 
			
		||||
template<class vobj> uint32_t crc(Lattice<vobj> & buf)
 | 
			
		||||
{
 | 
			
		||||
  autoView( buf_v , buf, CpuRead);
 | 
			
		||||
  return ::crc32(0L,(unsigned char *)&buf_v[0],(size_t)sizeof(vobj)*buf.oSites());
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#define CRC(U) std::cerr << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
 | 
			
		||||
#define CRC(U) std::cout << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -31,7 +31,6 @@ Author: Christoph Lehner <christoph@lhnr.de>
 | 
			
		||||
#if defined(GRID_SYCL)
 | 
			
		||||
#include <Grid/lattice/Lattice_reduction_sycl.h>
 | 
			
		||||
#endif
 | 
			
		||||
#include <Grid/lattice/Lattice_slicesum_core.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
@@ -281,29 +280,11 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
 | 
			
		||||
  return nrm;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) {
 | 
			
		||||
  GridBase *grid = left.Grid();
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
  uint64_t csum=0;
 | 
			
		||||
  if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone)
 | 
			
		||||
  {
 | 
			
		||||
    // Hack
 | 
			
		||||
    // Fast integer xor checksum. Can also be used in comms now.
 | 
			
		||||
    autoView(l_v,left,AcceleratorRead);
 | 
			
		||||
    Integer words = left.Grid()->oSites()*sizeof(vobj)/sizeof(uint64_t);
 | 
			
		||||
    uint64_t *base= (uint64_t *)&l_v[0];
 | 
			
		||||
    csum=svm_xor(base,words);
 | 
			
		||||
  }
 | 
			
		||||
  FlightRecorder::CsumLog(csum);
 | 
			
		||||
#endif
 | 
			
		||||
  ComplexD nrm = rankInnerProduct(left,right);
 | 
			
		||||
  RealD local = real(nrm);
 | 
			
		||||
  FlightRecorder::NormLog(real(nrm)); 
 | 
			
		||||
  grid->GlobalSum(nrm);
 | 
			
		||||
  FlightRecorder::ReductionLog(local,real(nrm)); 
 | 
			
		||||
  return nrm;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -467,10 +448,19 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
 | 
			
		||||
  int e1=    grid->_slice_nblock[orthogdim];
 | 
			
		||||
  int e2=    grid->_slice_block [orthogdim];
 | 
			
		||||
  int stride=grid->_slice_stride[orthogdim];
 | 
			
		||||
  int ostride=grid->_ostride[orthogdim];
 | 
			
		||||
  
 | 
			
		||||
  //Reduce Data down to lvSum
 | 
			
		||||
  sliceSumReduction(Data,lvSum,rd, e1,e2,stride,ostride,Nsimd);
 | 
			
		||||
 | 
			
		||||
  // sum over reduced dimension planes, breaking out orthog dir
 | 
			
		||||
  // Parallel over orthog direction
 | 
			
		||||
  autoView( Data_v, Data, CpuRead);
 | 
			
		||||
  thread_for( r,rd, {
 | 
			
		||||
    int so=r*grid->_ostride[orthogdim]; // base offset for start of plane 
 | 
			
		||||
    for(int n=0;n<e1;n++){
 | 
			
		||||
      for(int b=0;b<e2;b++){
 | 
			
		||||
	int ss= so+n*stride+b;
 | 
			
		||||
	lvSum[r]=lvSum[r]+Data_v[ss];
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
  // Sum across simd lanes in the plane, breaking out orthog dir.
 | 
			
		||||
  Coordinate icoor(Nd);
 | 
			
		||||
@@ -514,7 +504,6 @@ sliceSum(const Lattice<vobj> &Data,int orthogdim)
 | 
			
		||||
  return result;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim) 
 | 
			
		||||
{
 | 
			
		||||
 
 | 
			
		||||
@@ -30,7 +30,7 @@ int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &
 | 
			
		||||
  cudaGetDevice(&device);
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef GRID_HIP
 | 
			
		||||
  auto r=hipGetDevice(&device);
 | 
			
		||||
  hipGetDevice(&device);
 | 
			
		||||
#endif
 | 
			
		||||
  
 | 
			
		||||
  Iterator warpSize            = gpu_props[device].warpSize;
 | 
			
		||||
 
 | 
			
		||||
@@ -69,29 +69,28 @@ inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osite
 | 
			
		||||
  return result;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class Word> Word svm_xor(Word *vec,uint64_t L)
 | 
			
		||||
{
 | 
			
		||||
  Word xorResult; xorResult = 0;
 | 
			
		||||
  Word *d_sum =(Word *)cl::sycl::malloc_shared(sizeof(Word),*theGridAccelerator);
 | 
			
		||||
  Word identity;  identity=0;
 | 
			
		||||
  theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
 | 
			
		||||
     auto Reduction = cl::sycl::reduction(d_sum,identity,std::bit_xor<>());
 | 
			
		||||
     cgh.parallel_for(cl::sycl::range<1>{L},
 | 
			
		||||
		      Reduction,
 | 
			
		||||
		      [=] (cl::sycl::id<1> index, auto &sum) {
 | 
			
		||||
	 sum ^=vec[index];
 | 
			
		||||
     });
 | 
			
		||||
   });
 | 
			
		||||
  theGridAccelerator->wait();
 | 
			
		||||
  Word ret = d_sum[0];
 | 
			
		||||
  free(d_sum,*theGridAccelerator);
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
template<class Double> Double svm_reduce(Double *vec,uint64_t L)
 | 
			
		||||
{
 | 
			
		||||
  Double sumResult; zeroit(sumResult);
 | 
			
		||||
  Double *d_sum =(Double *)cl::sycl::malloc_shared(sizeof(Double),*theGridAccelerator);
 | 
			
		||||
  Double identity;  zeroit(identity);
 | 
			
		||||
  theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
 | 
			
		||||
     auto Reduction = cl::sycl::reduction(d_sum,identity,std::plus<>());
 | 
			
		||||
     cgh.parallel_for(cl::sycl::range<1>{L},
 | 
			
		||||
		      Reduction,
 | 
			
		||||
		      [=] (cl::sycl::id<1> index, auto &sum) {
 | 
			
		||||
	 sum +=vec[index];
 | 
			
		||||
     });
 | 
			
		||||
   });
 | 
			
		||||
  theGridAccelerator->wait();
 | 
			
		||||
  Double ret = d_sum[0];
 | 
			
		||||
  free(d_sum,*theGridAccelerator);
 | 
			
		||||
  std::cout << " svm_reduce finished "<<L<<" sites sum = " << ret <<std::endl;
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class vobj>
 | 
			
		||||
inline typename vobj::scalar_objectD sumD_gpu_repack(const vobj *lat, Integer osites)
 | 
			
		||||
 
 | 
			
		||||
@@ -152,7 +152,6 @@ public:
 | 
			
		||||
#ifdef RNG_FAST_DISCARD
 | 
			
		||||
  static void Skip(RngEngine &eng,uint64_t site)
 | 
			
		||||
  {
 | 
			
		||||
#if 0
 | 
			
		||||
    /////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Skip by 2^40 elements between successive lattice sites
 | 
			
		||||
    // This goes by 10^12.
 | 
			
		||||
@@ -163,9 +162,9 @@ public:
 | 
			
		||||
    // tens of seconds per trajectory so this is clean in all reasonable cases,
 | 
			
		||||
    // and margin of safety is orders of magnitude.
 | 
			
		||||
    // We could hack Sitmo to skip in the higher order words of state if necessary
 | 
			
		||||
    //
 | 
			
		||||
    // Replace with 2^30 ; avoid problem on large volumes
 | 
			
		||||
    //
 | 
			
		||||
      //
 | 
			
		||||
      // Replace with 2^30 ; avoid problem on large volumes
 | 
			
		||||
      //
 | 
			
		||||
    /////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    //      uint64_t skip = site+1;  //   Old init Skipped then drew.  Checked compat with faster init
 | 
			
		||||
    const int shift = 30;
 | 
			
		||||
@@ -180,9 +179,6 @@ public:
 | 
			
		||||
    assert((skip >> shift)==site); // check for overflow
 | 
			
		||||
 | 
			
		||||
    eng.discard(skip);
 | 
			
		||||
#else
 | 
			
		||||
    eng.discardhi(site);
 | 
			
		||||
#endif
 | 
			
		||||
    //      std::cout << " Engine  " <<site << " state " <<eng<<std::endl;
 | 
			
		||||
  } 
 | 
			
		||||
#endif
 | 
			
		||||
@@ -411,7 +407,7 @@ public:
 | 
			
		||||
      std::cout << GridLogMessage << "Seed SHA256: " << GridChecksum::sha256_string(seeds) << std::endl;
 | 
			
		||||
      SeedFixedIntegers(seeds);
 | 
			
		||||
    }
 | 
			
		||||
  void SeedFixedIntegers(const std::vector<int> &seeds, int britney=0){
 | 
			
		||||
  void SeedFixedIntegers(const std::vector<int> &seeds){
 | 
			
		||||
 | 
			
		||||
    // Everyone generates the same seed_seq based on input seeds
 | 
			
		||||
    CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size());
 | 
			
		||||
@@ -428,6 +424,7 @@ public:
 | 
			
		||||
    // MT implementation does not implement fast discard even though
 | 
			
		||||
    // in principle this is possible
 | 
			
		||||
    ////////////////////////////////////////////////
 | 
			
		||||
#if 1
 | 
			
		||||
    thread_for( lidx, _grid->lSites(), {
 | 
			
		||||
 | 
			
		||||
	int gidx;
 | 
			
		||||
@@ -448,12 +445,29 @@ public:
 | 
			
		||||
	
 | 
			
		||||
	int l_idx=generator_idx(o_idx,i_idx);
 | 
			
		||||
	_generators[l_idx] = master_engine;
 | 
			
		||||
	if ( britney ) { 
 | 
			
		||||
	  Skip(_generators[l_idx],l_idx); // Skip to next RNG sequence
 | 
			
		||||
	} else { 	
 | 
			
		||||
	Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
 | 
			
		||||
    });
 | 
			
		||||
#else
 | 
			
		||||
    // Everybody loops over global volume.
 | 
			
		||||
    thread_for( gidx, _grid->_gsites, {
 | 
			
		||||
 | 
			
		||||
	// Where is it?
 | 
			
		||||
	int rank;
 | 
			
		||||
	int o_idx;
 | 
			
		||||
	int i_idx;
 | 
			
		||||
 | 
			
		||||
	Coordinate gcoor;
 | 
			
		||||
	_grid->GlobalIndexToGlobalCoor(gidx,gcoor);
 | 
			
		||||
	_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
 | 
			
		||||
	
 | 
			
		||||
	// If this is one of mine we take it
 | 
			
		||||
	if( rank == _grid->ThisRank() ){
 | 
			
		||||
	  int l_idx=generator_idx(o_idx,i_idx);
 | 
			
		||||
	  _generators[l_idx] = master_engine;
 | 
			
		||||
	  Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
 | 
			
		||||
	}
 | 
			
		||||
    });
 | 
			
		||||
#endif
 | 
			
		||||
#else 
 | 
			
		||||
    ////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Machine and thread decomposition dependent seeding is efficient
 | 
			
		||||
 
 | 
			
		||||
@@ -1,224 +0,0 @@
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#if defined(GRID_CUDA)
 | 
			
		||||
 | 
			
		||||
#include <cub/cub.cuh>
 | 
			
		||||
#define gpucub cub
 | 
			
		||||
#define gpuError_t cudaError_t
 | 
			
		||||
#define gpuSuccess cudaSuccess
 | 
			
		||||
 | 
			
		||||
#elif defined(GRID_HIP)
 | 
			
		||||
 | 
			
		||||
#include <hipcub/hipcub.hpp>
 | 
			
		||||
#define gpucub hipcub
 | 
			
		||||
#define gpuError_t hipError_t
 | 
			
		||||
#define gpuSuccess hipSuccess
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#if defined(GRID_CUDA) || defined(GRID_HIP)
 | 
			
		||||
template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
 | 
			
		||||
  size_t subvol_size = e1*e2;
 | 
			
		||||
  commVector<vobj> reduction_buffer(rd*subvol_size);
 | 
			
		||||
  auto rb_p = &reduction_buffer[0];
 | 
			
		||||
  vobj zero_init;
 | 
			
		||||
  zeroit(zero_init);
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  void *temp_storage_array = NULL;
 | 
			
		||||
  size_t temp_storage_bytes = 0;
 | 
			
		||||
  vobj *d_out;
 | 
			
		||||
  int* d_offsets;
 | 
			
		||||
 | 
			
		||||
  std::vector<int> offsets(rd+1,0);
 | 
			
		||||
 | 
			
		||||
  for (int i = 0; i < offsets.size(); i++) {
 | 
			
		||||
    offsets[i] = i*subvol_size;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  //Allocate memory for output and offset arrays on device
 | 
			
		||||
  d_out = static_cast<vobj*>(acceleratorAllocDevice(rd*sizeof(vobj)));
 | 
			
		||||
  
 | 
			
		||||
  d_offsets = static_cast<int*>(acceleratorAllocDevice((rd+1)*sizeof(int)));
 | 
			
		||||
  
 | 
			
		||||
  //copy offsets to device
 | 
			
		||||
  acceleratorCopyToDeviceAsync(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream);
 | 
			
		||||
  
 | 
			
		||||
  
 | 
			
		||||
  gpuError_t gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p,d_out, rd, d_offsets, d_offsets+1, ::gpucub::Sum(), zero_init, computeStream);
 | 
			
		||||
  if (gpuErr!=gpuSuccess) {
 | 
			
		||||
    std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce (setup)! Error: " << gpuErr <<std::endl;
 | 
			
		||||
    exit(EXIT_FAILURE);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //allocate memory for temp_storage_array  
 | 
			
		||||
  temp_storage_array = acceleratorAllocDevice(temp_storage_bytes);
 | 
			
		||||
  
 | 
			
		||||
  //prepare buffer for reduction
 | 
			
		||||
  //use non-blocking accelerator_for to avoid syncs (ok because we submit to same computeStream)
 | 
			
		||||
  //use 2d accelerator_for to avoid launch latencies found when serially looping over rd 
 | 
			
		||||
  accelerator_for2dNB( s,subvol_size, r,rd, Nsimd,{ 
 | 
			
		||||
  
 | 
			
		||||
    int n = s / e2;
 | 
			
		||||
    int b = s % e2;
 | 
			
		||||
    int so=r*ostride; // base offset for start of plane 
 | 
			
		||||
    int ss= so+n*stride+b;
 | 
			
		||||
 | 
			
		||||
    coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data[ss]));
 | 
			
		||||
 | 
			
		||||
  });
 | 
			
		||||
  
 | 
			
		||||
  //issue segmented reductions in computeStream
 | 
			
		||||
  gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p, d_out, rd, d_offsets, d_offsets+1,::gpucub::Sum(), zero_init, computeStream);
 | 
			
		||||
  if (gpuErr!=gpuSuccess) {
 | 
			
		||||
    std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce! Error: " << gpuErr <<std::endl;
 | 
			
		||||
    exit(EXIT_FAILURE);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  acceleratorCopyFromDeviceAsync(d_out,&lvSum[0],rd*sizeof(vobj),computeStream);
 | 
			
		||||
  
 | 
			
		||||
  //sync after copy
 | 
			
		||||
  accelerator_barrier();
 | 
			
		||||
 
 | 
			
		||||
  acceleratorFreeDevice(temp_storage_array);
 | 
			
		||||
  acceleratorFreeDevice(d_out);
 | 
			
		||||
  acceleratorFreeDevice(d_offsets);
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
#endif 
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#if defined(GRID_SYCL)
 | 
			
		||||
template<class vobj> inline void sliceSumReduction_sycl_small(const vobj *Data, Vector <vobj> &lvSum, const int  &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
 | 
			
		||||
{
 | 
			
		||||
  size_t subvol_size = e1*e2;
 | 
			
		||||
 | 
			
		||||
  vobj *mysum = (vobj *) malloc_shared(rd*sizeof(vobj),*theGridAccelerator);
 | 
			
		||||
  vobj vobj_zero;
 | 
			
		||||
  zeroit(vobj_zero);
 | 
			
		||||
  for (int r = 0; r<rd; r++) { 
 | 
			
		||||
    mysum[r] = vobj_zero; 
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  commVector<vobj> reduction_buffer(rd*subvol_size);    
 | 
			
		||||
 | 
			
		||||
  auto rb_p = &reduction_buffer[0];
 | 
			
		||||
 | 
			
		||||
  // autoView(Data_v, Data, AcceleratorRead);
 | 
			
		||||
 | 
			
		||||
  //prepare reduction buffer 
 | 
			
		||||
  accelerator_for2d( s,subvol_size, r,rd, (size_t)Nsimd,{ 
 | 
			
		||||
  
 | 
			
		||||
      int n = s / e2;
 | 
			
		||||
      int b = s % e2;
 | 
			
		||||
      int so=r*ostride; // base offset for start of plane 
 | 
			
		||||
      int ss= so+n*stride+b;
 | 
			
		||||
 | 
			
		||||
      coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data[ss]));
 | 
			
		||||
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
  for (int r = 0; r < rd; r++) {
 | 
			
		||||
      theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
 | 
			
		||||
          auto Reduction = cl::sycl::reduction(&mysum[r],std::plus<>());
 | 
			
		||||
          cgh.parallel_for(cl::sycl::range<1>{subvol_size},
 | 
			
		||||
          Reduction,
 | 
			
		||||
          [=](cl::sycl::id<1> item, auto &sum) {
 | 
			
		||||
              auto s = item[0];
 | 
			
		||||
              sum += rb_p[r*subvol_size+s];
 | 
			
		||||
          });
 | 
			
		||||
      });
 | 
			
		||||
      
 | 
			
		||||
     
 | 
			
		||||
  }
 | 
			
		||||
  theGridAccelerator->wait();
 | 
			
		||||
  for (int r = 0; r < rd; r++) {
 | 
			
		||||
    lvSum[r] = mysum[r];
 | 
			
		||||
  }
 | 
			
		||||
  free(mysum,*theGridAccelerator);
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
template<class vobj> inline void sliceSumReduction_large(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
 | 
			
		||||
  typedef typename vobj::vector_type vector;
 | 
			
		||||
  const int words = sizeof(vobj)/sizeof(vector);
 | 
			
		||||
  const int osites = rd*e1*e2;
 | 
			
		||||
  commVector<vector>buffer(osites);
 | 
			
		||||
  vector *dat = (vector *)Data;
 | 
			
		||||
  vector *buf = &buffer[0];
 | 
			
		||||
  Vector<vector> lvSum_small(rd);
 | 
			
		||||
  vector *lvSum_ptr = (vector *)&lvSum[0];
 | 
			
		||||
 | 
			
		||||
  for (int w = 0; w < words; w++) {
 | 
			
		||||
    accelerator_for(ss,osites,1,{
 | 
			
		||||
	    buf[ss] = dat[ss*words+w];
 | 
			
		||||
    });
 | 
			
		||||
 | 
			
		||||
    #if defined(GRID_CUDA) || defined(GRID_HIP)
 | 
			
		||||
      sliceSumReduction_cub_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd);
 | 
			
		||||
    #elif defined(GRID_SYCL)
 | 
			
		||||
      sliceSumReduction_sycl_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd);
 | 
			
		||||
    #endif
 | 
			
		||||
 | 
			
		||||
    for (int r = 0; r < rd; r++) {
 | 
			
		||||
      lvSum_ptr[w+words*r]=lvSum_small[r];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> inline void sliceSumReduction_gpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd)
 | 
			
		||||
{
 | 
			
		||||
  autoView(Data_v, Data, AcceleratorRead); //reduction libraries cannot deal with large vobjs so we split into small/large case.
 | 
			
		||||
    if constexpr (sizeof(vobj) <= 256) { 
 | 
			
		||||
 | 
			
		||||
      #if defined(GRID_CUDA) || defined(GRID_HIP)
 | 
			
		||||
        sliceSumReduction_cub_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
			
		||||
      #elif defined (GRID_SYCL)
 | 
			
		||||
        sliceSumReduction_sycl_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
			
		||||
      #endif
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    else {
 | 
			
		||||
      sliceSumReduction_large(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vobj> inline void sliceSumReduction_cpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
 | 
			
		||||
{
 | 
			
		||||
  // sum over reduced dimension planes, breaking out orthog dir
 | 
			
		||||
  // Parallel over orthog direction
 | 
			
		||||
  autoView( Data_v, Data, CpuRead);
 | 
			
		||||
  thread_for( r,rd, {
 | 
			
		||||
    int so=r*ostride; // base offset for start of plane 
 | 
			
		||||
    for(int n=0;n<e1;n++){
 | 
			
		||||
      for(int b=0;b<e2;b++){
 | 
			
		||||
        int ss= so+n*stride+b;
 | 
			
		||||
        lvSum[r]=lvSum[r]+Data_v[ss];
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd) 
 | 
			
		||||
{
 | 
			
		||||
  #if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
 | 
			
		||||
  
 | 
			
		||||
  sliceSumReduction_gpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
			
		||||
  
 | 
			
		||||
  #else
 | 
			
		||||
  sliceSumReduction_cpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
			
		||||
 | 
			
		||||
  #endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -66,65 +66,6 @@ inline auto TraceIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<
 | 
			
		||||
  return ret;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<int N, class Vec>
 | 
			
		||||
Lattice<iScalar<iScalar<iScalar<Vec> > > > Determinant(const Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=Umu.Grid();
 | 
			
		||||
  auto lvol = grid->lSites();
 | 
			
		||||
  Lattice<iScalar<iScalar<iScalar<Vec> > > > ret(grid);
 | 
			
		||||
  typedef typename Vec::scalar_type scalar;
 | 
			
		||||
  autoView(Umu_v,Umu,CpuRead);
 | 
			
		||||
  autoView(ret_v,ret,CpuWrite);
 | 
			
		||||
  thread_for(site,lvol,{
 | 
			
		||||
    Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
 | 
			
		||||
    Coordinate lcoor;
 | 
			
		||||
    grid->LocalIndexToLocalCoor(site, lcoor);
 | 
			
		||||
    iScalar<iScalar<iMatrix<scalar, N> > > Us;
 | 
			
		||||
    peekLocalSite(Us, Umu_v, lcoor);
 | 
			
		||||
    for(int i=0;i<N;i++){
 | 
			
		||||
      for(int j=0;j<N;j++){
 | 
			
		||||
	scalar tmp= Us()()(i,j);
 | 
			
		||||
	ComplexD ztmp(real(tmp),imag(tmp));
 | 
			
		||||
	EigenU(i,j)=ztmp;
 | 
			
		||||
      }}
 | 
			
		||||
    ComplexD detD  = EigenU.determinant();
 | 
			
		||||
    typename Vec::scalar_type det(detD.real(),detD.imag());
 | 
			
		||||
    pokeLocalSite(det,ret_v,lcoor);
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<int N>
 | 
			
		||||
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > Inverse(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=Umu.Grid();
 | 
			
		||||
  auto lvol = grid->lSites();
 | 
			
		||||
  Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > ret(grid);
 | 
			
		||||
  
 | 
			
		||||
  autoView(Umu_v,Umu,CpuRead);
 | 
			
		||||
  autoView(ret_v,ret,CpuWrite);
 | 
			
		||||
  thread_for(site,lvol,{
 | 
			
		||||
    Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
 | 
			
		||||
    Coordinate lcoor;
 | 
			
		||||
    grid->LocalIndexToLocalCoor(site, lcoor);
 | 
			
		||||
    iScalar<iScalar<iMatrix<ComplexD, N> > > Us;
 | 
			
		||||
    iScalar<iScalar<iMatrix<ComplexD, N> > > Ui;
 | 
			
		||||
    peekLocalSite(Us, Umu_v, lcoor);
 | 
			
		||||
    for(int i=0;i<N;i++){
 | 
			
		||||
      for(int j=0;j<N;j++){
 | 
			
		||||
	EigenU(i,j) = Us()()(i,j);
 | 
			
		||||
      }}
 | 
			
		||||
    Eigen::MatrixXcd EigenUinv = EigenU.inverse();
 | 
			
		||||
    for(int i=0;i<N;i++){
 | 
			
		||||
      for(int j=0;j<N;j++){
 | 
			
		||||
	Ui()()(i,j) = EigenUinv(i,j);
 | 
			
		||||
      }}
 | 
			
		||||
    pokeLocalSite(Ui,ret_v,lcoor);
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -469,13 +469,15 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
 | 
			
		||||
  Coordinate fine_rdimensions = fine->_rdimensions;
 | 
			
		||||
  Coordinate coarse_rdimensions = coarse->_rdimensions;
 | 
			
		||||
 | 
			
		||||
  vobj zz = Zero();
 | 
			
		||||
  
 | 
			
		||||
  accelerator_for(sc,coarse->oSites(),1,{
 | 
			
		||||
 | 
			
		||||
      // One thread per sub block
 | 
			
		||||
      Coordinate coor_c(_ndimension);
 | 
			
		||||
      Lexicographic::CoorFromIndex(coor_c,sc,coarse_rdimensions);  // Block coordinate
 | 
			
		||||
 | 
			
		||||
      vobj cd = Zero();
 | 
			
		||||
      vobj cd = zz;
 | 
			
		||||
      
 | 
			
		||||
      for(int sb=0;sb<blockVol;sb++){
 | 
			
		||||
 | 
			
		||||
@@ -695,68 +697,8 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
 | 
			
		||||
  for(int d=0;d<nd;d++){
 | 
			
		||||
    assert(Fg->_processors[d]  == Tg->_processors[d]);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // the above should guarantee that the operations are local
 | 
			
		||||
  
 | 
			
		||||
#if 1
 | 
			
		||||
 | 
			
		||||
  size_t nsite = 1;
 | 
			
		||||
  for(int i=0;i<nd;i++) nsite *= RegionSize[i];
 | 
			
		||||
  
 | 
			
		||||
  size_t tbytes = 4*nsite*sizeof(int);
 | 
			
		||||
  int *table = (int*)malloc(tbytes);
 | 
			
		||||
 
 | 
			
		||||
  thread_for(idx, nsite, {
 | 
			
		||||
      Coordinate from_coor, to_coor;
 | 
			
		||||
      size_t rem = idx;
 | 
			
		||||
      for(int i=0;i<nd;i++){
 | 
			
		||||
	size_t base_i  = rem % RegionSize[i]; rem /= RegionSize[i];
 | 
			
		||||
	from_coor[i] = base_i + FromLowerLeft[i];
 | 
			
		||||
	to_coor[i] = base_i + ToLowerLeft[i];
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      int foidx = Fg->oIndex(from_coor);
 | 
			
		||||
      int fiidx = Fg->iIndex(from_coor);
 | 
			
		||||
      int toidx = Tg->oIndex(to_coor);
 | 
			
		||||
      int tiidx = Tg->iIndex(to_coor);
 | 
			
		||||
      int* tt = table + 4*idx;
 | 
			
		||||
      tt[0] = foidx;
 | 
			
		||||
      tt[1] = fiidx;
 | 
			
		||||
      tt[2] = toidx;
 | 
			
		||||
      tt[3] = tiidx;
 | 
			
		||||
    });
 | 
			
		||||
  
 | 
			
		||||
  int* table_d = (int*)acceleratorAllocDevice(tbytes);
 | 
			
		||||
  acceleratorCopyToDevice(table,table_d,tbytes);
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
 | 
			
		||||
  autoView(from_v,From,AcceleratorRead);
 | 
			
		||||
  autoView(to_v,To,AcceleratorWrite);
 | 
			
		||||
  
 | 
			
		||||
  accelerator_for(idx,nsite,1,{
 | 
			
		||||
      static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
      int* tt = table_d + 4*idx;
 | 
			
		||||
      int from_oidx = *tt++;
 | 
			
		||||
      int from_lane = *tt++;
 | 
			
		||||
      int to_oidx = *tt++;
 | 
			
		||||
      int to_lane = *tt;
 | 
			
		||||
 | 
			
		||||
      const vector_type* from = (const vector_type *)&from_v[from_oidx];
 | 
			
		||||
      vector_type* to = (vector_type *)&to_v[to_oidx];
 | 
			
		||||
      
 | 
			
		||||
      scalar_type stmp;
 | 
			
		||||
      for(int w=0;w<words;w++){
 | 
			
		||||
	stmp = getlane(from[w], from_lane);
 | 
			
		||||
	putlane(to[w], stmp, to_lane);
 | 
			
		||||
      }
 | 
			
		||||
    });
 | 
			
		||||
  
 | 
			
		||||
  acceleratorFreeDevice(table_d);    
 | 
			
		||||
  free(table);
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
#else  
 | 
			
		||||
  Coordinate ldf = Fg->_ldimensions;
 | 
			
		||||
  Coordinate rdf = Fg->_rdimensions;
 | 
			
		||||
  Coordinate isf = Fg->_istride;
 | 
			
		||||
@@ -796,8 +738,6 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
 | 
			
		||||
#endif
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -890,8 +830,6 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//Insert subvolume orthogonal to direction 'orthog' with slice index 'slice_lo' from 'lowDim' onto slice index 'slice_hi' of higherDim
 | 
			
		||||
//The local dimensions of both 'lowDim' and 'higherDim' orthogonal to 'orthog' should be the same
 | 
			
		||||
template<class vobj>
 | 
			
		||||
void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
 | 
			
		||||
{
 | 
			
		||||
@@ -913,65 +851,6 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
#if 1
 | 
			
		||||
  size_t nsite = lg->lSites()/lg->LocalDimensions()[orthog];
 | 
			
		||||
  size_t tbytes = 4*nsite*sizeof(int);
 | 
			
		||||
  int *table = (int*)malloc(tbytes);
 | 
			
		||||
  
 | 
			
		||||
  thread_for(idx,nsite,{
 | 
			
		||||
    Coordinate lcoor(nl);
 | 
			
		||||
    Coordinate hcoor(nh);
 | 
			
		||||
    lcoor[orthog] = slice_lo;
 | 
			
		||||
    hcoor[orthog] = slice_hi;
 | 
			
		||||
    size_t rem = idx;
 | 
			
		||||
    for(int mu=0;mu<nl;mu++){
 | 
			
		||||
      if(mu != orthog){
 | 
			
		||||
	int xmu = rem % lg->LocalDimensions()[mu];  rem /= lg->LocalDimensions()[mu];
 | 
			
		||||
	lcoor[mu] = hcoor[mu] = xmu;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    int loidx = lg->oIndex(lcoor);
 | 
			
		||||
    int liidx = lg->iIndex(lcoor);
 | 
			
		||||
    int hoidx = hg->oIndex(hcoor);
 | 
			
		||||
    int hiidx = hg->iIndex(hcoor);
 | 
			
		||||
    int* tt = table + 4*idx;
 | 
			
		||||
    tt[0] = loidx;
 | 
			
		||||
    tt[1] = liidx;
 | 
			
		||||
    tt[2] = hoidx;
 | 
			
		||||
    tt[3] = hiidx;
 | 
			
		||||
    });
 | 
			
		||||
   
 | 
			
		||||
  int* table_d = (int*)acceleratorAllocDevice(tbytes);
 | 
			
		||||
  acceleratorCopyToDevice(table,table_d,tbytes);
 | 
			
		||||
 | 
			
		||||
  typedef typename vobj::vector_type vector_type;
 | 
			
		||||
  typedef typename vobj::scalar_type scalar_type;
 | 
			
		||||
 | 
			
		||||
  autoView(lowDim_v,lowDim,AcceleratorRead);
 | 
			
		||||
  autoView(higherDim_v,higherDim,AcceleratorWrite);
 | 
			
		||||
  
 | 
			
		||||
  accelerator_for(idx,nsite,1,{
 | 
			
		||||
      static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
			
		||||
      int* tt = table_d + 4*idx;
 | 
			
		||||
      int from_oidx = *tt++;
 | 
			
		||||
      int from_lane = *tt++;
 | 
			
		||||
      int to_oidx = *tt++;
 | 
			
		||||
      int to_lane = *tt;
 | 
			
		||||
 | 
			
		||||
      const vector_type* from = (const vector_type *)&lowDim_v[from_oidx];
 | 
			
		||||
      vector_type* to = (vector_type *)&higherDim_v[to_oidx];
 | 
			
		||||
      
 | 
			
		||||
      scalar_type stmp;
 | 
			
		||||
      for(int w=0;w<words;w++){
 | 
			
		||||
	stmp = getlane(from[w], from_lane);
 | 
			
		||||
	putlane(to[w], stmp, to_lane);
 | 
			
		||||
      }
 | 
			
		||||
    });
 | 
			
		||||
  
 | 
			
		||||
  acceleratorFreeDevice(table_d);    
 | 
			
		||||
  free(table);
 | 
			
		||||
  
 | 
			
		||||
#else
 | 
			
		||||
  // the above should guarantee that the operations are local
 | 
			
		||||
  autoView(lowDimv,lowDim,CpuRead);
 | 
			
		||||
  autoView(higherDimv,higherDim,CpuWrite);
 | 
			
		||||
@@ -987,7 +866,6 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
 | 
			
		||||
      pokeLocalSite(s,higherDimv,hcoor);
 | 
			
		||||
    }
 | 
			
		||||
  });
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -45,7 +45,6 @@ public:
 | 
			
		||||
  };
 | 
			
		||||
  // Host only
 | 
			
		||||
  GridBase * getGrid(void) const { return _grid; };
 | 
			
		||||
  vobj* getHostPointer(void) const { return _odata; };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -26,32 +26,14 @@ Author: Peter Boyle pboyle@bnl.gov
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include<Grid/cshift/Cshift.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
//Allow the user to specify how the C-shift is performed, e.g. to respect the appropriate boundary conditions
 | 
			
		||||
template<typename vobj>
 | 
			
		||||
struct CshiftImplBase{
 | 
			
		||||
  virtual Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const = 0;
 | 
			
		||||
  virtual ~CshiftImplBase(){}
 | 
			
		||||
};
 | 
			
		||||
template<typename vobj>
 | 
			
		||||
struct CshiftImplDefault: public CshiftImplBase<vobj>{
 | 
			
		||||
  Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const override{ return Grid::Cshift(in,dir,shift); }
 | 
			
		||||
};
 | 
			
		||||
template<typename Gimpl>
 | 
			
		||||
struct CshiftImplGauge: public CshiftImplBase<typename Gimpl::GaugeLinkField::vector_object>{
 | 
			
		||||
  typename Gimpl::GaugeLinkField Cshift(const typename Gimpl::GaugeLinkField &in, int dir, int shift) const override{ return Gimpl::CshiftLink(in,dir,shift); }
 | 
			
		||||
};  
 | 
			
		||||
 | 
			
		||||
class PaddedCell {
 | 
			
		||||
public:
 | 
			
		||||
  GridCartesian * unpadded_grid;
 | 
			
		||||
  int dims;
 | 
			
		||||
  int depth;
 | 
			
		||||
  std::vector<GridCartesian *> grids;
 | 
			
		||||
 | 
			
		||||
  ~PaddedCell()
 | 
			
		||||
  {
 | 
			
		||||
    DeleteGrids();
 | 
			
		||||
@@ -95,7 +77,7 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  inline Lattice<vobj> Extract(const Lattice<vobj> &in) const
 | 
			
		||||
  inline Lattice<vobj> Extract(Lattice<vobj> &in)
 | 
			
		||||
  {
 | 
			
		||||
    Lattice<vobj> out(unpadded_grid);
 | 
			
		||||
 | 
			
		||||
@@ -106,19 +88,19 @@ public:
 | 
			
		||||
    return out;
 | 
			
		||||
  }
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  inline Lattice<vobj> Exchange(const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const
 | 
			
		||||
  inline Lattice<vobj> Exchange(Lattice<vobj> &in)
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *old_grid = in.Grid();
 | 
			
		||||
    int dims = old_grid->Nd();
 | 
			
		||||
    Lattice<vobj> tmp = in;
 | 
			
		||||
    for(int d=0;d<dims;d++){
 | 
			
		||||
      tmp = Expand(d,tmp,cshift); // rvalue && assignment
 | 
			
		||||
      tmp = Expand(d,tmp); // rvalue && assignment
 | 
			
		||||
    }
 | 
			
		||||
    return tmp;
 | 
			
		||||
  }
 | 
			
		||||
  // expand up one dim at a time
 | 
			
		||||
  template<class vobj>
 | 
			
		||||
  inline Lattice<vobj> Expand(int dim, const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const
 | 
			
		||||
  inline Lattice<vobj> Expand(int dim,Lattice<vobj> &in)
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *old_grid = in.Grid();
 | 
			
		||||
    GridCartesian *new_grid = grids[dim];//These are new grids
 | 
			
		||||
@@ -130,40 +112,20 @@ public:
 | 
			
		||||
    else       conformable(old_grid,grids[dim-1]);
 | 
			
		||||
 | 
			
		||||
    std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl;
 | 
			
		||||
 | 
			
		||||
    double tins=0, tshift=0;
 | 
			
		||||
    
 | 
			
		||||
    // Middle bit
 | 
			
		||||
    double t = usecond();
 | 
			
		||||
    for(int x=0;x<local[dim];x++){
 | 
			
		||||
      InsertSliceLocal(in,padded,x,depth+x,dim);
 | 
			
		||||
    }
 | 
			
		||||
    tins += usecond() - t;
 | 
			
		||||
    
 | 
			
		||||
    // High bit
 | 
			
		||||
    t = usecond();
 | 
			
		||||
    shifted = cshift.Cshift(in,dim,depth);
 | 
			
		||||
    tshift += usecond() - t;
 | 
			
		||||
 | 
			
		||||
    t=usecond();
 | 
			
		||||
    shifted = Cshift(in,dim,depth);
 | 
			
		||||
    for(int x=0;x<depth;x++){
 | 
			
		||||
      InsertSliceLocal(shifted,padded,local[dim]-depth+x,depth+local[dim]+x,dim);
 | 
			
		||||
    }
 | 
			
		||||
    tins += usecond() - t;
 | 
			
		||||
    
 | 
			
		||||
    // Low bit
 | 
			
		||||
    t = usecond();
 | 
			
		||||
    shifted = cshift.Cshift(in,dim,-depth);
 | 
			
		||||
    tshift += usecond() - t;
 | 
			
		||||
    
 | 
			
		||||
    t = usecond();
 | 
			
		||||
    shifted = Cshift(in,dim,-depth);
 | 
			
		||||
    for(int x=0;x<depth;x++){
 | 
			
		||||
      InsertSliceLocal(shifted,padded,x,x,dim);
 | 
			
		||||
    }
 | 
			
		||||
    tins += usecond() - t;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogPerformance << "PaddedCell::Expand timings: cshift:" << tshift/1000 << "ms, insert-slice:" << tins/1000 << "ms" << std::endl;
 | 
			
		||||
    
 | 
			
		||||
    return padded;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -179,11 +179,11 @@ extern GridLogger GridLogSolver;
 | 
			
		||||
extern GridLogger GridLogError;
 | 
			
		||||
extern GridLogger GridLogWarning;
 | 
			
		||||
extern GridLogger GridLogMessage;
 | 
			
		||||
extern GridLogger GridLogDebug;
 | 
			
		||||
extern GridLogger GridLogDebug  ;
 | 
			
		||||
extern GridLogger GridLogPerformance;
 | 
			
		||||
extern GridLogger GridLogDslash;
 | 
			
		||||
extern GridLogger GridLogIterative;
 | 
			
		||||
extern GridLogger GridLogIntegrator;
 | 
			
		||||
extern GridLogger GridLogIterative  ;
 | 
			
		||||
extern GridLogger GridLogIntegrator  ;
 | 
			
		||||
extern GridLogger GridLogHMC;
 | 
			
		||||
extern GridLogger GridLogMemory;
 | 
			
		||||
extern GridLogger GridLogTracing;
 | 
			
		||||
@@ -191,41 +191,6 @@ extern Colours    GridLogColours;
 | 
			
		||||
 | 
			
		||||
std::string demangle(const char* name) ;
 | 
			
		||||
 | 
			
		||||
template<typename... Args>
 | 
			
		||||
inline std::string sjoin(Args&&... args) noexcept {
 | 
			
		||||
    std::ostringstream msg;
 | 
			
		||||
    (msg << ... << args);
 | 
			
		||||
    return msg.str();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*!  @brief make log messages work like python print */
 | 
			
		||||
template <typename... Args>
 | 
			
		||||
inline void Grid_log(Args&&... args) {
 | 
			
		||||
    std::string msg = sjoin(std::forward<Args>(args)...);
 | 
			
		||||
    std::cout << GridLogMessage << msg << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*!  @brief make warning messages work like python print */
 | 
			
		||||
template <typename... Args>
 | 
			
		||||
inline void Grid_warn(Args&&... args) {
 | 
			
		||||
    std::string msg = sjoin(std::forward<Args>(args)...);
 | 
			
		||||
    std::cout << "\033[33m" << GridLogWarning << msg << "\033[0m" << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*!  @brief make error messages work like python print */
 | 
			
		||||
template <typename... Args>
 | 
			
		||||
inline void Grid_error(Args&&... args) {
 | 
			
		||||
    std::string msg = sjoin(std::forward<Args>(args)...);
 | 
			
		||||
    std::cout << "\033[31m" << GridLogError << msg << "\033[0m" << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*!  @brief make pass messages work like python print */
 | 
			
		||||
template <typename... Args>
 | 
			
		||||
inline void Grid_pass(Args&&... args) {
 | 
			
		||||
    std::string msg = sjoin(std::forward<Args>(args)...);
 | 
			
		||||
    std::cout << "\033[32m" << GridLogMessage << msg << "\033[0m" << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#define _NBACKTRACE (256)
 | 
			
		||||
extern void * Grid_backtrace_buffer[_NBACKTRACE];
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -34,7 +34,7 @@ class GridTracer {
 | 
			
		||||
};
 | 
			
		||||
inline void tracePush(const char *name) { roctxRangePushA(name); }
 | 
			
		||||
inline void tracePop(const char *name) { roctxRangePop(); }
 | 
			
		||||
inline int  traceStart(const char *name) { return roctxRangeStart(name); }
 | 
			
		||||
inline int  traceStart(const char *name) { roctxRangeStart(name); }
 | 
			
		||||
inline void traceStop(int ID) { roctxRangeStop(ID); }
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -129,22 +129,6 @@ public:
 | 
			
		||||
  virtual ~Action(){}
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <class GaugeField >
 | 
			
		||||
class EmptyAction : public Action <GaugeField>
 | 
			
		||||
{
 | 
			
		||||
  virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) { assert(0);}; // refresh pseudofermions
 | 
			
		||||
  virtual RealD S(const GaugeField& U) { return 0.0;};                             // evaluate the action
 | 
			
		||||
  virtual void deriv(const GaugeField& U, GaugeField& dSdU) { assert(0); };        // evaluate the action derivative
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////
 | 
			
		||||
  // Logging
 | 
			
		||||
  ///////////////////////////////
 | 
			
		||||
  virtual std::string action_name()    { return std::string("Level Force Log"); };
 | 
			
		||||
  virtual std::string LogParameters()  { return std::string("No parameters");};
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif // ACTION_BASE_H
 | 
			
		||||
 
 | 
			
		||||
@@ -126,16 +126,6 @@ typedef WilsonFermion<WilsonTwoIndexSymmetricImplD> WilsonTwoIndexSymmetricFermi
 | 
			
		||||
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonTwoIndexAntiSymmetricFermionF;
 | 
			
		||||
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonTwoIndexAntiSymmetricFermionD;
 | 
			
		||||
 | 
			
		||||
// Sp(2n)
 | 
			
		||||
typedef WilsonFermion<SpWilsonImplF> SpWilsonFermionF;
 | 
			
		||||
typedef WilsonFermion<SpWilsonImplD> SpWilsonFermionD;
 | 
			
		||||
 | 
			
		||||
typedef WilsonFermion<SpWilsonTwoIndexAntiSymmetricImplF> SpWilsonTwoIndexAntiSymmetricFermionF;
 | 
			
		||||
typedef WilsonFermion<SpWilsonTwoIndexAntiSymmetricImplD> SpWilsonTwoIndexAntiSymmetricFermionD;
 | 
			
		||||
 | 
			
		||||
typedef WilsonFermion<SpWilsonTwoIndexSymmetricImplF> SpWilsonTwoIndexSymmetricFermionF;
 | 
			
		||||
typedef WilsonFermion<SpWilsonTwoIndexSymmetricImplD> SpWilsonTwoIndexSymmetricFermionD;
 | 
			
		||||
 | 
			
		||||
// Twisted mass fermion
 | 
			
		||||
typedef WilsonTMFermion<WilsonImplD2> WilsonTMFermionD2;
 | 
			
		||||
typedef WilsonTMFermion<WilsonImplF> WilsonTMFermionF;
 | 
			
		||||
 
 | 
			
		||||
@@ -261,22 +261,6 @@ typedef WilsonImpl<vComplex,  TwoIndexAntiSymmetricRepresentation, CoeffReal > W
 | 
			
		||||
typedef WilsonImpl<vComplexF, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplF;  // Float
 | 
			
		||||
typedef WilsonImpl<vComplexD, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplD;  // Double
 | 
			
		||||
 | 
			
		||||
//sp 2n
 | 
			
		||||
 | 
			
		||||
typedef WilsonImpl<vComplex,  SpFundamentalRepresentation, CoeffReal > SpWilsonImplR;  // Real.. whichever prec
 | 
			
		||||
typedef WilsonImpl<vComplexF, SpFundamentalRepresentation, CoeffReal > SpWilsonImplF;  // Float
 | 
			
		||||
typedef WilsonImpl<vComplexD, SpFundamentalRepresentation, CoeffReal > SpWilsonImplD;  // Double
 | 
			
		||||
 | 
			
		||||
typedef WilsonImpl<vComplex,  SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplR;  // Real.. whichever prec
 | 
			
		||||
typedef WilsonImpl<vComplexF, SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplF;  // Float
 | 
			
		||||
typedef WilsonImpl<vComplexD, SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplD;  // Double
 | 
			
		||||
 | 
			
		||||
typedef WilsonImpl<vComplex,  SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplR;  // Real.. whichever prec
 | 
			
		||||
typedef WilsonImpl<vComplexF, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplF;  // Float
 | 
			
		||||
typedef WilsonImpl<vComplexD, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplD;  // Double
 | 
			
		||||
 | 
			
		||||
typedef WilsonImpl<vComplex,  SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplR;  // Real.. whichever prec    // adj = 2indx symmetric for Sp(2N)
 | 
			
		||||
typedef WilsonImpl<vComplexF, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplF;  // Float     // adj = 2indx symmetric for Sp(2N)
 | 
			
		||||
typedef WilsonImpl<vComplexD, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplD;  // Double    // adj = 2indx symmetric for Sp(2N)
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -63,9 +63,7 @@ public:
 | 
			
		||||
  virtual void MooeeDag(const FermionField &in, FermionField &out) ;
 | 
			
		||||
  virtual void MooeeInv(const FermionField &in, FermionField &out) ;
 | 
			
		||||
  virtual void MooeeInvDag(const FermionField &in, FermionField &out) ;
 | 
			
		||||
  virtual void M(const FermionField &in, FermionField &out) ;
 | 
			
		||||
  virtual void Mdag(const FermionField &in, FermionField &out) ;
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
  RealD mu; // TwistedMass parameter
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -280,16 +280,20 @@ void StaggeredKernels<Impl>::DhopImproved(StencilImpl &st, LebesgueOrder &lo,
 | 
			
		||||
 | 
			
		||||
  if( interior && exterior ) { 
 | 
			
		||||
    if (Opt == OptGeneric    ) { KERNEL_CALL(DhopSiteGeneric,1); return;}
 | 
			
		||||
    if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHand,1);    return;}
 | 
			
		||||
#ifndef GRID_CUDA
 | 
			
		||||
    if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHand,1);    return;}
 | 
			
		||||
    if (Opt == OptInlineAsm  ) {  ASM_CALL(DhopSiteAsm);     return;}
 | 
			
		||||
#endif
 | 
			
		||||
  } else if( interior ) {
 | 
			
		||||
    if (Opt == OptGeneric    ) { KERNEL_CALL(DhopSiteGenericInt,1); return;}
 | 
			
		||||
#ifndef GRID_CUDA
 | 
			
		||||
    if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandInt,1);    return;}
 | 
			
		||||
#endif
 | 
			
		||||
  } else if( exterior ) { 
 | 
			
		||||
    if (Opt == OptGeneric    ) { KERNEL_CALL(DhopSiteGenericExt,1); return;}
 | 
			
		||||
#ifndef GRID_CUDA
 | 
			
		||||
    if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandExt,1);    return;}
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
  assert(0 && " Kernel optimisation case not covered ");
 | 
			
		||||
}
 | 
			
		||||
@@ -318,13 +322,19 @@ void StaggeredKernels<Impl>::DhopNaive(StencilImpl &st, LebesgueOrder &lo,
 | 
			
		||||
  
 | 
			
		||||
  if( interior && exterior ) { 
 | 
			
		||||
    if (Opt == OptGeneric    ) { KERNEL_CALL(DhopSiteGeneric,0); return;}
 | 
			
		||||
#ifndef GRID_CUDA
 | 
			
		||||
    if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHand,0);    return;}
 | 
			
		||||
#endif
 | 
			
		||||
  } else if( interior ) {
 | 
			
		||||
    if (Opt == OptGeneric    ) { KERNEL_CALL(DhopSiteGenericInt,0); return;}
 | 
			
		||||
#ifndef GRID_CUDA
 | 
			
		||||
    if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandInt,0);    return;}
 | 
			
		||||
#endif
 | 
			
		||||
  } else if( exterior ) { 
 | 
			
		||||
    if (Opt == OptGeneric    ) { KERNEL_CALL(DhopSiteGenericExt,0); return;}
 | 
			
		||||
#ifndef GRID_CUDA
 | 
			
		||||
    if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandExt,0);    return;}
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -423,6 +423,7 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
 | 
			
		||||
#define KERNEL_CALL(A) KERNEL_CALLNB(A); accelerator_barrier();
 | 
			
		||||
 | 
			
		||||
#define KERNEL_CALL_EXT(A)						\
 | 
			
		||||
  const uint64_t    NN = Nsite*Ls;					\
 | 
			
		||||
  const uint64_t    sz = st.surface_list.size();			\
 | 
			
		||||
  auto ptr = &st.surface_list[0];					\
 | 
			
		||||
  accelerator_forNB( ss, sz, Simd::Nsimd(), {				\
 | 
			
		||||
@@ -462,7 +463,6 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st,  DoubledGaugeField
 | 
			
		||||
    autoView(st_v , st,AcceleratorRead);
 | 
			
		||||
 | 
			
		||||
   if( interior && exterior ) {
 | 
			
		||||
     acceleratorFenceComputeStream();
 | 
			
		||||
     if (Opt == WilsonKernelsStatic::OptGeneric    ) { KERNEL_CALL(GenericDhopSite); return;}
 | 
			
		||||
     if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSite);    return;}
 | 
			
		||||
#ifndef GRID_CUDA
 | 
			
		||||
@@ -496,7 +496,6 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st,  DoubledGaugeField
 | 
			
		||||
    autoView(st_v ,st,AcceleratorRead);
 | 
			
		||||
 | 
			
		||||
   if( interior && exterior ) {
 | 
			
		||||
     acceleratorFenceComputeStream();
 | 
			
		||||
     if (Opt == WilsonKernelsStatic::OptGeneric    ) { KERNEL_CALL(GenericDhopSiteDag); return;}
 | 
			
		||||
     if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteDag);    return;}
 | 
			
		||||
#ifndef GRID_CUDA
 | 
			
		||||
 
 | 
			
		||||
@@ -93,25 +93,5 @@ void WilsonTMFermion<Impl>::MooeeInvDag(const FermionField &in, FermionField &ou
 | 
			
		||||
  RealD b    = tm /sq;
 | 
			
		||||
  axpibg5x(out,in,a,b);
 | 
			
		||||
}
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void WilsonTMFermion<Impl>::M(const FermionField &in, FermionField &out) {
 | 
			
		||||
  out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
  this->Dhop(in, out, DaggerNo);
 | 
			
		||||
  FermionField tmp(out.Grid());
 | 
			
		||||
  RealD a = 4.0+this->mass;
 | 
			
		||||
  RealD b = this->mu;
 | 
			
		||||
  axpibg5x(tmp,in,a,b);
 | 
			
		||||
  axpy(out, 1.0, tmp, out);
 | 
			
		||||
}
 | 
			
		||||
template<class Impl>
 | 
			
		||||
void WilsonTMFermion<Impl>::Mdag(const FermionField &in, FermionField &out) {
 | 
			
		||||
  out.Checkerboard() = in.Checkerboard();
 | 
			
		||||
  this->Dhop(in, out, DaggerYes);
 | 
			
		||||
  FermionField tmp(out.Grid());
 | 
			
		||||
  RealD a = 4.0+this->mass;
 | 
			
		||||
  RealD b = -this->mu;
 | 
			
		||||
  axpibg5x(tmp,in,a,b);
 | 
			
		||||
  axpy(out, 1.0, tmp, out);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonCloverFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonKernelsInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonTMFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
#define IMPLEMENTATION SpWilsonImplD
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonCloverFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonKernelsInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonTMFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
#define IMPLEMENTATION SpWilsonImplF
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonCloverFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonKernelsInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonTMFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
#define IMPLEMENTATION SpWilsonTwoIndexAntiSymmetricImplD
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonCloverFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonKernelsInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonTMFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
#define IMPLEMENTATION SpWilsonTwoIndexAntiSymmetricImplF
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonCloverFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonKernelsInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonTMFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
#define IMPLEMENTATION SpWilsonTwoIndexSymmetricImplD
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonCloverFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonKernelsInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
../WilsonTMFermionInstantiation.cc.master
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
#define IMPLEMENTATION SpWilsonTwoIndexSymmetricImplF
 | 
			
		||||
@@ -10,18 +10,12 @@ WILSON_IMPL_LIST=" \
 | 
			
		||||
	   WilsonImplF \
 | 
			
		||||
	   WilsonImplD \
 | 
			
		||||
	   WilsonImplD2 \
 | 
			
		||||
	   SpWilsonImplF \
 | 
			
		||||
	   SpWilsonImplD \
 | 
			
		||||
	   WilsonAdjImplF \
 | 
			
		||||
	   WilsonAdjImplD \
 | 
			
		||||
	   WilsonTwoIndexSymmetricImplF \
 | 
			
		||||
	   WilsonTwoIndexSymmetricImplD \
 | 
			
		||||
	   WilsonTwoIndexAntiSymmetricImplF \
 | 
			
		||||
	   WilsonTwoIndexAntiSymmetricImplD \
 | 
			
		||||
	   SpWilsonTwoIndexAntiSymmetricImplF \
 | 
			
		||||
	   SpWilsonTwoIndexAntiSymmetricImplD \
 | 
			
		||||
	   SpWilsonTwoIndexSymmetricImplF \
 | 
			
		||||
	   SpWilsonTwoIndexSymmetricImplD \
 | 
			
		||||
	   GparityWilsonImplF \
 | 
			
		||||
	   GparityWilsonImplD "
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -39,9 +39,6 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
typedef WilsonGaugeAction<PeriodicGimplR>          WilsonGaugeActionR;
 | 
			
		||||
typedef WilsonGaugeAction<PeriodicGimplF>          WilsonGaugeActionF;
 | 
			
		||||
typedef WilsonGaugeAction<PeriodicGimplD>          WilsonGaugeActionD;
 | 
			
		||||
typedef WilsonGaugeAction<SpPeriodicGimplR>        SpWilsonGaugeActionR;
 | 
			
		||||
typedef WilsonGaugeAction<SpPeriodicGimplF>        SpWilsonGaugeActionF;
 | 
			
		||||
typedef WilsonGaugeAction<SpPeriodicGimplD>        SpWilsonGaugeActionD;
 | 
			
		||||
typedef PlaqPlusRectangleAction<PeriodicGimplR>    PlaqPlusRectangleActionR;
 | 
			
		||||
typedef PlaqPlusRectangleAction<PeriodicGimplF>    PlaqPlusRectangleActionF;
 | 
			
		||||
typedef PlaqPlusRectangleAction<PeriodicGimplD>    PlaqPlusRectangleActionD;
 | 
			
		||||
 
 | 
			
		||||
@@ -61,7 +61,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
  typedef typename Impl::Field Field;
 | 
			
		||||
 | 
			
		||||
// hardcodes the exponential approximation in the template
 | 
			
		||||
template <class S, int Nrepresentation = Nc, int Nexp = 12, class Group = SU<Nc> > class GaugeImplTypes {
 | 
			
		||||
template <class S, int Nrepresentation = Nc, int Nexp = 12 > class GaugeImplTypes {
 | 
			
		||||
public:
 | 
			
		||||
  typedef S Simd;
 | 
			
		||||
  typedef typename Simd::scalar_type scalar_type;
 | 
			
		||||
@@ -78,6 +78,8 @@ public:
 | 
			
		||||
  typedef Lattice<SiteLink>    LinkField; 
 | 
			
		||||
  typedef Lattice<SiteField>   Field;
 | 
			
		||||
 | 
			
		||||
  typedef SU<Nrepresentation> Group;
 | 
			
		||||
 | 
			
		||||
  // Guido: we can probably separate the types from the HMC functions
 | 
			
		||||
  // this will create 2 kind of implementations
 | 
			
		||||
  // probably confusing the users
 | 
			
		||||
@@ -117,7 +119,6 @@ public:
 | 
			
		||||
    //
 | 
			
		||||
    LinkField Pmu(P.Grid());
 | 
			
		||||
    Pmu = Zero();
 | 
			
		||||
 | 
			
		||||
    for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
      Group::GaussianFundamentalLieAlgebraMatrix(pRNG, Pmu);
 | 
			
		||||
      RealD scale = ::sqrt(HMC_MOMENTUM_DENOMINATOR) ;
 | 
			
		||||
@@ -125,12 +126,8 @@ public:
 | 
			
		||||
      PokeIndex<LorentzIndex>(P, Pmu, mu);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  static inline Field projectForce(Field &P) {
 | 
			
		||||
      Field ret(P.Grid());
 | 
			
		||||
      Group::taProj(P, ret);
 | 
			
		||||
      return ret;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  static inline Field projectForce(Field &P) { return Ta(P); }
 | 
			
		||||
 | 
			
		||||
  static inline void update_field(Field& P, Field& U, double ep){
 | 
			
		||||
    //static std::chrono::duration<double> diff;
 | 
			
		||||
@@ -140,15 +137,14 @@ public:
 | 
			
		||||
    autoView(P_v,P,AcceleratorRead);
 | 
			
		||||
    accelerator_for(ss, P.Grid()->oSites(),1,{
 | 
			
		||||
      for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
          U_v[ss](mu) = Exponentiate(P_v[ss](mu), ep, Nexp) * U_v[ss](mu);
 | 
			
		||||
          U_v[ss](mu) = Group::ProjectOnGeneralGroup(U_v[ss](mu));
 | 
			
		||||
        U_v[ss](mu) = ProjectOnGroup(Exponentiate(P_v[ss](mu), ep, Nexp) * U_v[ss](mu));
 | 
			
		||||
      }
 | 
			
		||||
    });
 | 
			
		||||
   //auto end = std::chrono::high_resolution_clock::now();
 | 
			
		||||
   // diff += end - start;
 | 
			
		||||
   // std::cout << "Time to exponentiate matrix " << diff.count() << " s\n";
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
  static inline RealD FieldSquareNorm(Field& U){
 | 
			
		||||
    LatticeComplex Hloc(U.Grid());
 | 
			
		||||
    Hloc = Zero();
 | 
			
		||||
@@ -161,7 +157,7 @@ public:
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static inline void Project(Field &U) {
 | 
			
		||||
    Group::ProjectOnSpecialGroup(U);
 | 
			
		||||
    ProjectSUn(U);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static inline void HotConfiguration(GridParallelRNG &pRNG, Field &U) {
 | 
			
		||||
@@ -175,7 +171,6 @@ public:
 | 
			
		||||
  static inline void ColdConfiguration(GridParallelRNG &pRNG, Field &U) {
 | 
			
		||||
    Group::ColdConfiguration(pRNG, U);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -183,17 +178,10 @@ typedef GaugeImplTypes<vComplex, Nc> GimplTypesR;
 | 
			
		||||
typedef GaugeImplTypes<vComplexF, Nc> GimplTypesF;
 | 
			
		||||
typedef GaugeImplTypes<vComplexD, Nc> GimplTypesD;
 | 
			
		||||
 | 
			
		||||
typedef GaugeImplTypes<vComplex, Nc, 12, Sp<Nc> > SpGimplTypesR;
 | 
			
		||||
typedef GaugeImplTypes<vComplexF, Nc, 12, Sp<Nc> > SpGimplTypesF;
 | 
			
		||||
typedef GaugeImplTypes<vComplexD, Nc, 12, Sp<Nc> > SpGimplTypesD;
 | 
			
		||||
 | 
			
		||||
typedef GaugeImplTypes<vComplex, SU<Nc>::AdjointDimension> GimplAdjointTypesR;
 | 
			
		||||
typedef GaugeImplTypes<vComplexF, SU<Nc>::AdjointDimension> GimplAdjointTypesF;
 | 
			
		||||
typedef GaugeImplTypes<vComplexD, SU<Nc>::AdjointDimension> GimplAdjointTypesD;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif // GRID_GAUGE_IMPL_TYPES_H
 | 
			
		||||
 
 | 
			
		||||
@@ -176,7 +176,7 @@ public:
 | 
			
		||||
      return PeriodicBC::CshiftLink(Link,mu,shift);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static inline void       setDirections(const std::vector<int> &conjDirs) { _conjDirs=conjDirs; }
 | 
			
		||||
  static inline void       setDirections(std::vector<int> &conjDirs) { _conjDirs=conjDirs; }
 | 
			
		||||
  static inline std::vector<int> getDirections(void) { return _conjDirs; }
 | 
			
		||||
  static inline bool isPeriodicGaugeField(void) { return false; }
 | 
			
		||||
};
 | 
			
		||||
@@ -193,11 +193,6 @@ typedef ConjugateGaugeImpl<GimplTypesR> ConjugateGimplR; // Real.. whichever pre
 | 
			
		||||
typedef ConjugateGaugeImpl<GimplTypesF> ConjugateGimplF; // Float
 | 
			
		||||
typedef ConjugateGaugeImpl<GimplTypesD> ConjugateGimplD; // Double
 | 
			
		||||
 | 
			
		||||
typedef PeriodicGaugeImpl<SpGimplTypesR> SpPeriodicGimplR; // Real.. whichever prec
 | 
			
		||||
typedef PeriodicGaugeImpl<SpGimplTypesF> SpPeriodicGimplF; // Float
 | 
			
		||||
typedef PeriodicGaugeImpl<SpGimplTypesD> SpPeriodicGimplD; // Double
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -43,7 +43,7 @@ public:
 | 
			
		||||
private:
 | 
			
		||||
  RealD c_plaq;
 | 
			
		||||
  RealD c_rect;
 | 
			
		||||
  typename WilsonLoops<Gimpl>::StapleAndRectStapleAllWorkspace workspace;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  PlaqPlusRectangleAction(RealD b,RealD c): c_plaq(b),c_rect(c){};
 | 
			
		||||
 | 
			
		||||
@@ -79,18 +79,27 @@ public:
 | 
			
		||||
    GridBase *grid = Umu.Grid();
 | 
			
		||||
 | 
			
		||||
    std::vector<GaugeLinkField> U (Nd,grid);
 | 
			
		||||
    std::vector<GaugeLinkField> U2(Nd,grid);
 | 
			
		||||
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      U[mu] = PeekIndex<LorentzIndex>(Umu,mu);
 | 
			
		||||
      WilsonLoops<Gimpl>::RectStapleDouble(U2[mu],U[mu],mu);
 | 
			
		||||
    }
 | 
			
		||||
    std::vector<GaugeLinkField> RectStaple(Nd,grid), Staple(Nd,grid);
 | 
			
		||||
    WilsonLoops<Gimpl>::StapleAndRectStapleAll(Staple, RectStaple, U, workspace);
 | 
			
		||||
 | 
			
		||||
    GaugeLinkField dSdU_mu(grid);
 | 
			
		||||
    GaugeLinkField staple(grid);
 | 
			
		||||
 | 
			
		||||
    for (int mu=0; mu < Nd; mu++){
 | 
			
		||||
      dSdU_mu = Ta(U[mu]*Staple[mu])*factor_p;
 | 
			
		||||
      dSdU_mu = dSdU_mu + Ta(U[mu]*RectStaple[mu])*factor_r;
 | 
			
		||||
 | 
			
		||||
      // Staple in direction mu
 | 
			
		||||
 | 
			
		||||
      WilsonLoops<Gimpl>::Staple(staple,Umu,mu);
 | 
			
		||||
 | 
			
		||||
      dSdU_mu = Ta(U[mu]*staple)*factor_p;
 | 
			
		||||
 | 
			
		||||
      WilsonLoops<Gimpl>::RectStaple(Umu,staple,U2,U,mu);
 | 
			
		||||
 | 
			
		||||
      dSdU_mu = dSdU_mu + Ta(U[mu]*staple)*factor_r;
 | 
			
		||||
	  
 | 
			
		||||
      PokeIndex<LorentzIndex>(dSdU, dSdU_mu, mu);
 | 
			
		||||
    }
 | 
			
		||||
 
 | 
			
		||||
@@ -225,18 +225,6 @@ template <class RepresentationsPolicy,
 | 
			
		||||
using GenericHMCRunnerHirep =
 | 
			
		||||
				     HMCWrapperTemplate<PeriodicGimplR, Integrator, RepresentationsPolicy>;
 | 
			
		||||
 | 
			
		||||
// sp2n
 | 
			
		||||
 | 
			
		||||
template <template <typename, typename, typename> class Integrator>
 | 
			
		||||
using GenericSpHMCRunner = HMCWrapperTemplate<SpPeriodicGimplR, Integrator>;
 | 
			
		||||
 | 
			
		||||
template <class RepresentationsPolicy,
 | 
			
		||||
          template <typename, typename, typename> class Integrator>
 | 
			
		||||
using GenericSpHMCRunnerHirep =
 | 
			
		||||
                     HMCWrapperTemplate<SpPeriodicGimplR, Integrator, RepresentationsPolicy>;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template <class Implementation, class RepresentationsPolicy, 
 | 
			
		||||
          template <typename, typename, typename> class Integrator>
 | 
			
		||||
using GenericHMCRunnerTemplate = HMCWrapperTemplate<Implementation, Integrator, RepresentationsPolicy>;
 | 
			
		||||
 
 | 
			
		||||
@@ -87,8 +87,6 @@ public:
 | 
			
		||||
 | 
			
		||||
  const ActionSet<Field, RepresentationPolicy> as;
 | 
			
		||||
 | 
			
		||||
  ActionSet<Field,RepresentationPolicy> LevelForces;
 | 
			
		||||
  
 | 
			
		||||
  //Get a pointer to a shared static instance of the "do-nothing" momentum filter to serve as a default
 | 
			
		||||
  static MomentumFilterBase<MomentaField> const* getDefaultMomFilter(){ 
 | 
			
		||||
    static MomentumFilterNone<MomentaField> filter;
 | 
			
		||||
@@ -126,9 +124,6 @@ public:
 | 
			
		||||
    // input U actually not used in the fundamental case
 | 
			
		||||
    // Fundamental updates, include smearing
 | 
			
		||||
 | 
			
		||||
    assert(as.size()==LevelForces.size());
 | 
			
		||||
    
 | 
			
		||||
    Field level_force(U.Grid()); level_force =Zero();
 | 
			
		||||
    for (int a = 0; a < as[level].actions.size(); ++a) {
 | 
			
		||||
 | 
			
		||||
      double start_full = usecond();
 | 
			
		||||
@@ -149,10 +144,7 @@ public:
 | 
			
		||||
      MomFilter->applyFilter(force);
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogIntegrator << " update_P : Level [" << level <<"]["<<a <<"] "<<name<<" dt "<<ep<<  std::endl;
 | 
			
		||||
 | 
			
		||||
      // track the total
 | 
			
		||||
      level_force = level_force+force;
 | 
			
		||||
 | 
			
		||||
      
 | 
			
		||||
      Real force_abs   = std::sqrt(norm2(force)/U.Grid()->gSites()); //average per-site norm.  nb. norm2(latt) = \sum_x norm2(latt[x]) 
 | 
			
		||||
      Real impulse_abs = force_abs * ep * HMC_MOMENTUM_DENOMINATOR;    
 | 
			
		||||
 | 
			
		||||
@@ -175,16 +167,6 @@ public:
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    {
 | 
			
		||||
      // total force
 | 
			
		||||
      Real force_abs   = std::sqrt(norm2(level_force)/U.Grid()->gSites()); //average per-site norm.  nb. norm2(latt) = \sum_x norm2(latt[x]) 
 | 
			
		||||
      Real impulse_abs = force_abs * ep * HMC_MOMENTUM_DENOMINATOR;    
 | 
			
		||||
 | 
			
		||||
      Real force_max   = std::sqrt(maxLocalNorm2(level_force));
 | 
			
		||||
      Real impulse_max = force_max * ep * HMC_MOMENTUM_DENOMINATOR;    
 | 
			
		||||
      LevelForces[level].actions.at(0)->deriv_log(force_abs,force_max,impulse_abs,impulse_max);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Force from the other representations
 | 
			
		||||
    as[level].apply(update_P_hireps, Representations, Mom, U, ep);
 | 
			
		||||
 | 
			
		||||
@@ -234,16 +216,6 @@ public:
 | 
			
		||||
 | 
			
		||||
    //Default the momentum filter to "do-nothing"
 | 
			
		||||
    MomFilter = getDefaultMomFilter();
 | 
			
		||||
 | 
			
		||||
    for (int level = 0; level < as.size(); ++level) {
 | 
			
		||||
      int multiplier = as.at(level).multiplier;
 | 
			
		||||
      ActionLevel<Field, RepresentationPolicy> * Level = new ActionLevel<Field, RepresentationPolicy>(multiplier);
 | 
			
		||||
      Level->push_back(new EmptyAction<Field>); 
 | 
			
		||||
      LevelForces.push_back(*Level);
 | 
			
		||||
      // does it copy by value or reference??
 | 
			
		||||
      // - answer it copies by value, BUT the action level contains a reference that is NOT updated.
 | 
			
		||||
      // Unsafe code in Guido's area
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  virtual ~Integrator() {}
 | 
			
		||||
@@ -261,14 +233,10 @@ public:
 | 
			
		||||
 | 
			
		||||
  void reset_timer(void)
 | 
			
		||||
  {
 | 
			
		||||
    assert(as.size()==LevelForces.size());
 | 
			
		||||
    for (int level = 0; level < as.size(); ++level) {
 | 
			
		||||
      for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
 | 
			
		||||
        as[level].actions.at(actionID)->reset_timer();
 | 
			
		||||
      }
 | 
			
		||||
      int actionID=0;
 | 
			
		||||
      assert(LevelForces.at(level).actions.size()==1);
 | 
			
		||||
      LevelForces.at(level).actions.at(actionID)->reset_timer();
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void print_timer(void)
 | 
			
		||||
@@ -330,16 +298,6 @@ public:
 | 
			
		||||
		  <<" calls "     << as[level].actions.at(actionID)->deriv_num
 | 
			
		||||
		  << std::endl;
 | 
			
		||||
      }
 | 
			
		||||
      int actionID=0;
 | 
			
		||||
      std::cout << GridLogMessage 
 | 
			
		||||
		  << LevelForces[level].actions.at(actionID)->action_name()
 | 
			
		||||
		  <<"["<<level<<"]["<< actionID<<"] :\n\t\t "
 | 
			
		||||
		  <<" force max " << LevelForces[level].actions.at(actionID)->deriv_max_average()
 | 
			
		||||
		  <<" norm "      << LevelForces[level].actions.at(actionID)->deriv_norm_average()
 | 
			
		||||
		  <<" Fdt max  "  << LevelForces[level].actions.at(actionID)->Fdt_max_average()
 | 
			
		||||
		  <<" Fdt norm "  << LevelForces[level].actions.at(actionID)->Fdt_norm_average()
 | 
			
		||||
		  <<" calls "     << LevelForces[level].actions.at(actionID)->deriv_num
 | 
			
		||||
		  << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::"<< std::endl;
 | 
			
		||||
  }
 | 
			
		||||
@@ -361,13 +319,6 @@ public:
 | 
			
		||||
	std::cout << as[level].actions.at(actionID)->LogParameters();
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << " [Integrator] Total Force loggers: "<< LevelForces.size() <<std::endl;
 | 
			
		||||
    for (int level = 0; level < LevelForces.size(); ++level) {
 | 
			
		||||
      std::cout << GridLogMessage << "[Integrator] ---- Level: "<< level << std::endl;
 | 
			
		||||
      for (int actionID = 0; actionID < LevelForces[level].actions.size(); ++actionID) {
 | 
			
		||||
	std::cout << GridLogMessage << "["<< LevelForces[level].actions.at(actionID)->action_name() << "] ID: " << actionID << std::endl;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::"<< std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
@@ -449,7 +400,6 @@ public:
 | 
			
		||||
  RealD S(Field& U) 
 | 
			
		||||
  {  // here also U not used
 | 
			
		||||
 | 
			
		||||
    assert(as.size()==LevelForces.size());
 | 
			
		||||
    std::cout << GridLogIntegrator << "Integrator action\n";
 | 
			
		||||
 | 
			
		||||
    RealD H = - FieldImplementation::FieldSquareNorm(P)/HMC_MOMENTUM_DENOMINATOR; // - trace (P*P)/denom
 | 
			
		||||
 
 | 
			
		||||
@@ -13,7 +13,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 * Empty since HMC updates already the fundamental representation 
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
template <int ncolour, class group_name>
 | 
			
		||||
template <int ncolour>
 | 
			
		||||
class FundamentalRep {
 | 
			
		||||
public:
 | 
			
		||||
  static const int Dimension = ncolour;
 | 
			
		||||
@@ -21,7 +21,7 @@ public:
 | 
			
		||||
 | 
			
		||||
  // typdef to be used by the Representations class in HMC to get the
 | 
			
		||||
  // types for the higher representation fields
 | 
			
		||||
  typedef typename GaugeGroup<ncolour,group_name>::LatticeMatrix LatticeMatrix;
 | 
			
		||||
  typedef typename SU<ncolour>::LatticeMatrix LatticeMatrix;
 | 
			
		||||
  typedef LatticeGaugeField LatticeField;
 | 
			
		||||
  
 | 
			
		||||
  explicit FundamentalRep(GridBase* grid) {} //do nothing
 | 
			
		||||
@@ -45,8 +45,7 @@ public:
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
typedef	 FundamentalRep<Nc,GroupName::SU> FundamentalRepresentation;
 | 
			
		||||
typedef	 FundamentalRep<Nc,GroupName::Sp> SpFundamentalRepresentation;
 | 
			
		||||
typedef	 FundamentalRep<Nc> FundamentalRepresentation;
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);  
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -20,14 +20,14 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 * in the SUnTwoIndex.h file
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
template <int ncolour, TwoIndexSymmetry S, class group_name = GroupName::SU>
 | 
			
		||||
template <int ncolour, TwoIndexSymmetry S>
 | 
			
		||||
class TwoIndexRep {
 | 
			
		||||
public:
 | 
			
		||||
  // typdef to be used by the Representations class in HMC to get the
 | 
			
		||||
  // types for the higher representation fields
 | 
			
		||||
  typedef typename GaugeGroupTwoIndex<ncolour, S, group_name>::LatticeTwoIndexMatrix LatticeMatrix;
 | 
			
		||||
  typedef typename GaugeGroupTwoIndex<ncolour, S, group_name>::LatticeTwoIndexField LatticeField;
 | 
			
		||||
  static const int Dimension = GaugeGroupTwoIndex<ncolour,S,group_name>::Dimension;
 | 
			
		||||
  typedef typename SU_TwoIndex<ncolour, S>::LatticeTwoIndexMatrix LatticeMatrix;
 | 
			
		||||
  typedef typename SU_TwoIndex<ncolour, S>::LatticeTwoIndexField LatticeField;
 | 
			
		||||
  static const int Dimension = ncolour * (ncolour + S) / 2;
 | 
			
		||||
  static const bool isFundamental = false;
 | 
			
		||||
 | 
			
		||||
  LatticeField U;
 | 
			
		||||
@@ -43,10 +43,10 @@ public:
 | 
			
		||||
    U = Zero();
 | 
			
		||||
    LatticeColourMatrix tmp(Uin.Grid());
 | 
			
		||||
 | 
			
		||||
    Vector<typename GaugeGroup<ncolour,group_name>::Matrix> eij(Dimension);
 | 
			
		||||
    Vector<typename SU<ncolour>::Matrix> eij(Dimension);
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < Dimension; a++)
 | 
			
		||||
      GaugeGroupTwoIndex<ncolour, S, group_name>::base(a, eij[a]);
 | 
			
		||||
      SU_TwoIndex<ncolour, S>::base(a, eij[a]);
 | 
			
		||||
 | 
			
		||||
    for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
      auto Uin_mu = peekLorentz(Uin, mu);
 | 
			
		||||
@@ -71,7 +71,7 @@ public:
 | 
			
		||||
 | 
			
		||||
      out_mu = Zero();
 | 
			
		||||
 | 
			
		||||
      typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector h(in.Grid());
 | 
			
		||||
      typename SU<ncolour>::LatticeAlgebraVector h(in.Grid());
 | 
			
		||||
      projectOnAlgebra(h, in_mu, double(Nc + 2 * S));  // factor T(r)/T(fund)
 | 
			
		||||
      FundamentalLieAlgebraMatrix(h, out_mu);          // apply scale only once
 | 
			
		||||
      pokeLorentz(out, out_mu, mu);
 | 
			
		||||
@@ -80,23 +80,20 @@ public:
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
  void projectOnAlgebra(typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h_out,
 | 
			
		||||
  void projectOnAlgebra(typename SU<ncolour>::LatticeAlgebraVector &h_out,
 | 
			
		||||
                        const LatticeMatrix &in, Real scale = 1.0) const {
 | 
			
		||||
    GaugeGroupTwoIndex<ncolour, S,group_name>::projectOnAlgebra(h_out, in, scale);
 | 
			
		||||
    SU_TwoIndex<ncolour, S>::projectOnAlgebra(h_out, in, scale);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void FundamentalLieAlgebraMatrix(
 | 
			
		||||
				   typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h,
 | 
			
		||||
				   typename GaugeGroup<ncolour, group_name>::LatticeMatrix &out, Real scale = 1.0) const {
 | 
			
		||||
    GaugeGroup<ncolour,group_name>::FundamentalLieAlgebraMatrix(h, out, scale);
 | 
			
		||||
				   typename SU<ncolour>::LatticeAlgebraVector &h,
 | 
			
		||||
				   typename SU<ncolour>::LatticeMatrix &out, Real scale = 1.0) const {
 | 
			
		||||
    SU<ncolour>::FundamentalLieAlgebraMatrix(h, out, scale);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
typedef TwoIndexRep<Nc, Symmetric, GroupName::SU> TwoIndexSymmetricRepresentation;
 | 
			
		||||
typedef TwoIndexRep<Nc, AntiSymmetric, GroupName::SU> TwoIndexAntiSymmetricRepresentation;
 | 
			
		||||
 | 
			
		||||
typedef TwoIndexRep<Nc, Symmetric, GroupName::Sp> SpTwoIndexSymmetricRepresentation;
 | 
			
		||||
typedef TwoIndexRep<Nc, AntiSymmetric, GroupName::Sp> SpTwoIndexAntiSymmetricRepresentation;
 | 
			
		||||
typedef TwoIndexRep<Nc, Symmetric> TwoIndexSymmetricRepresentation;
 | 
			
		||||
typedef TwoIndexRep<Nc, AntiSymmetric> TwoIndexAntiSymmetricRepresentation;
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -1,4 +1,3 @@
 | 
			
		||||
 | 
			
		||||
/*!
 | 
			
		||||
  @file GaugeConfiguration.h
 | 
			
		||||
  @brief Declares the GaugeConfiguration class
 | 
			
		||||
@@ -7,15 +6,6 @@
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class T> void Dump(const Lattice<T> & lat,
 | 
			
		||||
			    std::string s,
 | 
			
		||||
			    Coordinate site = Coordinate({0,0,0,0}))
 | 
			
		||||
{
 | 
			
		||||
  typename T::scalar_object tmp;
 | 
			
		||||
  peekSite(tmp,lat,site);
 | 
			
		||||
  std::cout << " Dump "<<s<<" "<<tmp<<std::endl;
 | 
			
		||||
}
 | 
			
		||||
/*!
 | 
			
		||||
  @brief Smeared configuration masked container
 | 
			
		||||
  Modified for a multi-subset smearing (aka Luscher Flowed HMC)
 | 
			
		||||
@@ -38,101 +28,6 @@ private:
 | 
			
		||||
  typedef typename SU3Adjoint::LatticeAdjMatrix  AdjMatrixField;
 | 
			
		||||
  typedef typename SU3Adjoint::LatticeAdjVector  AdjVectorField;
 | 
			
		||||
 | 
			
		||||
  void BaseSmearDerivative(GaugeField& SigmaTerm,
 | 
			
		||||
			   const GaugeField& iLambda,
 | 
			
		||||
			   const GaugeField& U,
 | 
			
		||||
			   int mmu, RealD rho)
 | 
			
		||||
  {
 | 
			
		||||
    // Reference
 | 
			
		||||
    // Morningstar, Peardon, Phys.Rev.D69,054501(2004)
 | 
			
		||||
    // Equation 75
 | 
			
		||||
    // Computing Sigma_mu, derivative of S[fat links] with respect to the thin links
 | 
			
		||||
    // Output SigmaTerm
 | 
			
		||||
 | 
			
		||||
    GridBase *grid = U.Grid();
 | 
			
		||||
 | 
			
		||||
    WilsonLoops<Gimpl> WL;
 | 
			
		||||
    GaugeLinkField staple(grid), u_tmp(grid);
 | 
			
		||||
    GaugeLinkField iLambda_mu(grid), iLambda_nu(grid);
 | 
			
		||||
    GaugeLinkField U_mu(grid), U_nu(grid);
 | 
			
		||||
    GaugeLinkField sh_field(grid), temp_Sigma(grid);
 | 
			
		||||
    Real rho_munu, rho_numu;
 | 
			
		||||
 | 
			
		||||
    rho_munu = rho;
 | 
			
		||||
    rho_numu = rho;
 | 
			
		||||
    for(int mu = 0; mu < Nd; ++mu){
 | 
			
		||||
      U_mu       = peekLorentz(      U, mu);
 | 
			
		||||
      iLambda_mu = peekLorentz(iLambda, mu);
 | 
			
		||||
 | 
			
		||||
      for(int nu = 0; nu < Nd; ++nu){
 | 
			
		||||
	if(nu==mu) continue;
 | 
			
		||||
 | 
			
		||||
	U_nu       = peekLorentz(      U, nu);
 | 
			
		||||
 | 
			
		||||
	// Nd(nd-1) = 12 staples normally.
 | 
			
		||||
	// We must compute 6 of these
 | 
			
		||||
	// in FTHMC case
 | 
			
		||||
	if ( (mu==mmu)||(nu==mmu) )
 | 
			
		||||
	  WL.StapleUpper(staple, U, mu, nu);
 | 
			
		||||
	
 | 
			
		||||
	if(nu==mmu) {
 | 
			
		||||
	  iLambda_nu = peekLorentz(iLambda, nu);
 | 
			
		||||
 | 
			
		||||
	  temp_Sigma = -rho_numu*staple*iLambda_nu;  //ok
 | 
			
		||||
	  //-r_numu*U_nu(x+mu)*Udag_mu(x+nu)*Udag_nu(x)*Lambda_nu(x)
 | 
			
		||||
	  Gimpl::AddLink(SigmaTerm, temp_Sigma, mu);
 | 
			
		||||
 | 
			
		||||
	  sh_field = Cshift(iLambda_nu, mu, 1);// general also for Gparity?
 | 
			
		||||
 | 
			
		||||
	  temp_Sigma = rho_numu*sh_field*staple; //ok
 | 
			
		||||
	  //r_numu*Lambda_nu(mu)*U_nu(x+mu)*Udag_mu(x+nu)*Udag_nu(x)
 | 
			
		||||
	  Gimpl::AddLink(SigmaTerm, temp_Sigma, mu);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if ( mu == mmu ) { 
 | 
			
		||||
	  sh_field = Cshift(iLambda_mu, nu, 1);
 | 
			
		||||
 | 
			
		||||
	  temp_Sigma = -rho_munu*staple*U_nu*sh_field*adj(U_nu); //ok
 | 
			
		||||
	  //-r_munu*U_nu(x+mu)*Udag_mu(x+nu)*Lambda_mu(x+nu)*Udag_nu(x)
 | 
			
		||||
	  Gimpl::AddLink(SigmaTerm, temp_Sigma, mu);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	//	staple = Zero();
 | 
			
		||||
	sh_field = Cshift(U_nu, mu, 1);
 | 
			
		||||
 | 
			
		||||
	temp_Sigma = Zero();
 | 
			
		||||
 | 
			
		||||
	if ( mu == mmu )
 | 
			
		||||
	  temp_Sigma = -rho_munu*adj(sh_field)*adj(U_mu)*iLambda_mu*U_nu;
 | 
			
		||||
 | 
			
		||||
	if ( nu == mmu ) {
 | 
			
		||||
	  temp_Sigma += rho_numu*adj(sh_field)*adj(U_mu)*iLambda_nu*U_nu;
 | 
			
		||||
 | 
			
		||||
	  u_tmp = adj(U_nu)*iLambda_nu;
 | 
			
		||||
	  sh_field = Cshift(u_tmp, mu, 1);
 | 
			
		||||
	  temp_Sigma += -rho_numu*sh_field*adj(U_mu)*U_nu;
 | 
			
		||||
	}
 | 
			
		||||
	
 | 
			
		||||
	sh_field = Cshift(temp_Sigma, nu, -1);
 | 
			
		||||
	Gimpl::AddLink(SigmaTerm, sh_field, mu);
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  void BaseSmear(GaugeLinkField& Cup, const GaugeField& U,int mu,RealD rho) {
 | 
			
		||||
    GridBase *grid = U.Grid();
 | 
			
		||||
    GaugeLinkField tmp_stpl(grid);
 | 
			
		||||
    WilsonLoops<Gimpl> WL;
 | 
			
		||||
    Cup = Zero();
 | 
			
		||||
    for(int nu=0; nu<Nd; ++nu){
 | 
			
		||||
      if (nu != mu) {
 | 
			
		||||
	// get the staple in direction mu, nu
 | 
			
		||||
	WL.Staple(tmp_stpl, U, mu, nu);  //nb staple conventions of IroIro and Grid differ by a dagger
 | 
			
		||||
	Cup += adj(tmp_stpl*rho);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  // Adjoint vector to GaugeField force
 | 
			
		||||
  void InsertForce(GaugeField &Fdet,AdjVectorField &Fdet_nu,int nu)
 | 
			
		||||
  {
 | 
			
		||||
@@ -152,54 +47,27 @@ private:
 | 
			
		||||
    GaugeLinkField UtaU(PlaqL.Grid());
 | 
			
		||||
    GaugeLinkField D(PlaqL.Grid());
 | 
			
		||||
    AdjMatrixField Dbc(PlaqL.Grid());
 | 
			
		||||
    AdjMatrixField Dbc_opt(PlaqL.Grid());
 | 
			
		||||
    LatticeComplex tmp(PlaqL.Grid());
 | 
			
		||||
    const int Ngen = SU3Adjoint::Dimension;
 | 
			
		||||
    Complex ci(0,1);
 | 
			
		||||
    ColourMatrix   ta,tb,tc;
 | 
			
		||||
    RealD t=0;
 | 
			
		||||
    RealD tp=0;
 | 
			
		||||
    RealD tta=0;
 | 
			
		||||
    RealD tpk=0;
 | 
			
		||||
    t-=usecond();
 | 
			
		||||
    
 | 
			
		||||
    for(int a=0;a<Ngen;a++) {
 | 
			
		||||
      tta-=usecond();
 | 
			
		||||
      SU3::generator(a, ta);
 | 
			
		||||
      ta = 2.0 * ci * ta;
 | 
			
		||||
      // Qlat Tb = 2i Tb^Grid
 | 
			
		||||
      UtaU= adj(PlaqL)*ta*PlaqR; // 6ms
 | 
			
		||||
      tta+=usecond();
 | 
			
		||||
      ////////////////////////////////////////////
 | 
			
		||||
      // Could add this entire C-loop to a projection routine
 | 
			
		||||
      // for performance. Could also pick checkerboard on UtaU
 | 
			
		||||
      // and set checkerboard on result for 2x perf
 | 
			
		||||
      ////////////////////////////////////////////
 | 
			
		||||
      UtaU= 2.0*ci*adj(PlaqL)*ta*PlaqR;
 | 
			
		||||
      for(int c=0;c<Ngen;c++) {
 | 
			
		||||
	SU3::generator(c, tc);
 | 
			
		||||
	tc = 2.0*ci*tc;
 | 
			
		||||
	tp-=usecond(); 
 | 
			
		||||
	D = Ta( tc *UtaU); // 2ms
 | 
			
		||||
#if 1
 | 
			
		||||
	SU3::LieAlgebraProject(Dbc_opt,D,c); // 5.5ms
 | 
			
		||||
#else
 | 
			
		||||
	D = Ta( (2.0)*ci*tc *UtaU);
 | 
			
		||||
	for(int b=0;b<Ngen;b++){
 | 
			
		||||
	  SU3::generator(b, tb);
 | 
			
		||||
	  tmp =-trace(ci*tb*D); 
 | 
			
		||||
	  PokeIndex<ColourIndex>(Dbc,tmp,b,c);  // Adjoint rep
 | 
			
		||||
	}
 | 
			
		||||
#endif
 | 
			
		||||
	tp+=usecond();
 | 
			
		||||
      }
 | 
			
		||||
      //      Dump(Dbc_opt,"Dbc_opt");
 | 
			
		||||
      //      Dump(Dbc,"Dbc");
 | 
			
		||||
      tpk-=usecond();
 | 
			
		||||
      tmp = trace(MpInvJx * Dbc_opt);
 | 
			
		||||
      tmp = trace(MpInvJx * Dbc);
 | 
			
		||||
      PokeIndex<ColourIndex>(Fdet2,tmp,a);
 | 
			
		||||
      tpk+=usecond();
 | 
			
		||||
    }
 | 
			
		||||
    t+=usecond();
 | 
			
		||||
    std::cout << GridLogPerformance << " Compute_MpInvJx_dNxxdSy " << t/1e3 << " ms  proj "<<tp/1e3<< " ms"
 | 
			
		||||
	      << " ta "<<tta/1e3<<" ms" << " poke "<<tpk/1e3<< " ms"<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  void ComputeNxy(const GaugeLinkField &PlaqL,const GaugeLinkField &PlaqR,AdjMatrixField &NxAd)
 | 
			
		||||
@@ -211,17 +79,12 @@ private:
 | 
			
		||||
    ColourMatrix   tc;
 | 
			
		||||
    for(int b=0;b<Ngen;b++) {
 | 
			
		||||
      SU3::generator(b, tb);
 | 
			
		||||
      tb = 2.0 * ci * tb;
 | 
			
		||||
      Nx = Ta( adj(PlaqL)*tb * PlaqR );
 | 
			
		||||
#if 1
 | 
			
		||||
      SU3::LieAlgebraProject(NxAd,Nx,b);
 | 
			
		||||
#else
 | 
			
		||||
      Nx = (2.0)*Ta( adj(PlaqL)*ci*tb * PlaqR );
 | 
			
		||||
      for(int c=0;c<Ngen;c++) {
 | 
			
		||||
	SU3::generator(c, tc);
 | 
			
		||||
	auto tmp =closure( -trace(ci*tc*Nx)); 
 | 
			
		||||
	PokeIndex<ColourIndex>(NxAd,tmp,c,b); 
 | 
			
		||||
      }
 | 
			
		||||
#endif
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void ApplyMask(GaugeField &U,int smr)
 | 
			
		||||
@@ -301,7 +164,8 @@ public:
 | 
			
		||||
    // Computes ALL the staples -- could compute one only and do it here
 | 
			
		||||
    RealD time;
 | 
			
		||||
    time=-usecond();
 | 
			
		||||
    BaseSmear(Cmu, U,mu,rho);
 | 
			
		||||
    this->StoutSmearing->BaseSmear(C, U);
 | 
			
		||||
    Cmu = peekLorentz(C, mu);
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Assemble Luscher exp diff map J matrix 
 | 
			
		||||
@@ -345,36 +209,6 @@ public:
 | 
			
		||||
    // dJ(x)/dxe
 | 
			
		||||
    //////////////////////////////////////
 | 
			
		||||
    time=-usecond();
 | 
			
		||||
#if 1
 | 
			
		||||
    std::vector<AdjMatrixField>  dJdX;    dJdX.resize(8,grid);
 | 
			
		||||
    std::vector<AdjMatrix> TRb_s; TRb_s.resize(8);
 | 
			
		||||
    AdjMatrixField tbXn(grid);
 | 
			
		||||
    AdjMatrixField sumXtbX(grid);
 | 
			
		||||
    AdjMatrixField t2(grid);
 | 
			
		||||
    AdjMatrixField dt2(grid);
 | 
			
		||||
    AdjMatrixField t3(grid);
 | 
			
		||||
    AdjMatrixField dt3(grid);
 | 
			
		||||
    AdjMatrixField aunit(grid);
 | 
			
		||||
 | 
			
		||||
    for(int b=0;b<8;b++){
 | 
			
		||||
      SU3Adjoint::generator(b, TRb_s[b]);
 | 
			
		||||
      dJdX[b] = TRb_s[b];
 | 
			
		||||
    }
 | 
			
		||||
    aunit = ComplexD(1.0);
 | 
			
		||||
    // Could put into an accelerator_for
 | 
			
		||||
    X  = (-1.0)*ZxAd; 
 | 
			
		||||
    t2 = X;
 | 
			
		||||
    for (int j = 12; j > 1; --j) {
 | 
			
		||||
      t3  = t2*(1.0 / (j + 1))  + aunit;
 | 
			
		||||
      t2  = X * t3;
 | 
			
		||||
      for(int b=0;b<8;b++){
 | 
			
		||||
	dJdX[b]= TRb_s[b] * t3 + X * dJdX[b]*(1.0 / (j + 1));
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    for(int b=0;b<8;b++){
 | 
			
		||||
      dJdX[b] = -dJdX[b];
 | 
			
		||||
    }
 | 
			
		||||
#else
 | 
			
		||||
    std::vector<AdjMatrixField>  dJdX;    dJdX.resize(8,grid);
 | 
			
		||||
    AdjMatrixField tbXn(grid);
 | 
			
		||||
    AdjMatrixField sumXtbX(grid);
 | 
			
		||||
@@ -390,15 +224,14 @@ public:
 | 
			
		||||
      X  = (-1.0)*ZxAd; 
 | 
			
		||||
      t2 = X;
 | 
			
		||||
      dt2 = TRb;
 | 
			
		||||
      for (int j = 12; j > 1; --j) {
 | 
			
		||||
	t3  = t2*(1.0 / (j + 1))  + aunit;
 | 
			
		||||
      for (int j = 20; j > 1; --j) {
 | 
			
		||||
	t3 = t2*(1.0 / (j + 1))  + aunit;
 | 
			
		||||
	dt3 = dt2*(1.0 / (j + 1));
 | 
			
		||||
	t2 = X * t3;
 | 
			
		||||
	dt2 = TRb * t3 + X * dt3;
 | 
			
		||||
      }
 | 
			
		||||
      dJdX[b] = -dt2; 
 | 
			
		||||
    }
 | 
			
		||||
#endif  
 | 
			
		||||
    time+=usecond();
 | 
			
		||||
    std::cout << GridLogMessage << "dJx took "<<time<< " us"<<std::endl;
 | 
			
		||||
    /////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -448,8 +281,8 @@ public:
 | 
			
		||||
    
 | 
			
		||||
    for(int e =0 ; e<8 ; e++){
 | 
			
		||||
      LatticeComplexD tr(grid);
 | 
			
		||||
      //      ColourMatrix te;
 | 
			
		||||
      //      SU3::generator(e, te);
 | 
			
		||||
      ColourMatrix te;
 | 
			
		||||
      SU3::generator(e, te);
 | 
			
		||||
      tr = trace(dJdX[e] * nMpInv);
 | 
			
		||||
      pokeColour(dJdXe_nMpInv,tr,e);
 | 
			
		||||
    }
 | 
			
		||||
@@ -660,25 +493,20 @@ public:
 | 
			
		||||
    //////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Assemble the N matrix
 | 
			
		||||
    //////////////////////////////////////////////////////////////////
 | 
			
		||||
    double rho=this->StoutSmearing->SmearRho[1];
 | 
			
		||||
    BaseSmear(Cmu, U,mu,rho);
 | 
			
		||||
 | 
			
		||||
    // Computes ALL the staples -- could compute one only here
 | 
			
		||||
    this->StoutSmearing->BaseSmear(C, U);
 | 
			
		||||
    Cmu = peekLorentz(C, mu);
 | 
			
		||||
    Umu = peekLorentz(U, mu);
 | 
			
		||||
    Complex ci(0,1);
 | 
			
		||||
    for(int b=0;b<Ngen;b++) {
 | 
			
		||||
      SU3::generator(b, Tb);
 | 
			
		||||
      // Qlat Tb = 2i Tb^Grid
 | 
			
		||||
      Nb = (2.0)*Ta( ci*Tb * Umu * adj(Cmu));
 | 
			
		||||
      // FIXME -- replace this with LieAlgebraProject
 | 
			
		||||
#if 0
 | 
			
		||||
      SU3::LieAlgebraProject(Ncb,tmp,b);
 | 
			
		||||
#else
 | 
			
		||||
      for(int c=0;c<Ngen;c++) {
 | 
			
		||||
	SU3::generator(c, Tc);
 | 
			
		||||
	auto tmp = -trace(ci*Tc*Nb); // Luchang's norm: (2Tc) (2Td) N^db = -2 delta cd N^db // - was important
 | 
			
		||||
	PokeIndex<ColourIndex>(Ncb,tmp,c,b); 
 | 
			
		||||
      }
 | 
			
		||||
#endif
 | 
			
		||||
    }      
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////////////////
 | 
			
		||||
@@ -865,19 +693,15 @@ private:
 | 
			
		||||
					  const GaugeField& GaugeK,int level) 
 | 
			
		||||
  {
 | 
			
		||||
    GridBase* grid = GaugeK.Grid();
 | 
			
		||||
    GaugeField SigmaK(grid), iLambda(grid);
 | 
			
		||||
    GaugeField C(grid), SigmaK(grid), iLambda(grid);
 | 
			
		||||
    GaugeField SigmaKPrimeA(grid);
 | 
			
		||||
    GaugeField SigmaKPrimeB(grid);
 | 
			
		||||
    GaugeLinkField iLambda_mu(grid);
 | 
			
		||||
    GaugeLinkField iQ(grid), e_iQ(grid);
 | 
			
		||||
    GaugeLinkField SigmaKPrime_mu(grid);
 | 
			
		||||
    GaugeLinkField GaugeKmu(grid), Cmu(grid);
 | 
			
		||||
 | 
			
		||||
    int mmu= (level/2) %Nd;
 | 
			
		||||
    int cb= (level%2);
 | 
			
		||||
    double rho=this->StoutSmearing->SmearRho[1];
 | 
			
		||||
 | 
			
		||||
    // Can override this to do one direction only.
 | 
			
		||||
    
 | 
			
		||||
    this->StoutSmearing->BaseSmear(C, GaugeK);
 | 
			
		||||
    SigmaK = Zero();
 | 
			
		||||
    iLambda = Zero();
 | 
			
		||||
 | 
			
		||||
@@ -888,38 +712,18 @@ private:
 | 
			
		||||
    // Could get away with computing only one polarisation here
 | 
			
		||||
    // int mu= (smr/2) %Nd;
 | 
			
		||||
    // SigmaKprime_A has only one component
 | 
			
		||||
#if 0
 | 
			
		||||
    BaseSmear(Cmu, GaugeK,mu,rho);
 | 
			
		||||
    GaugeKmu = peekLorentz(GaugeK, mu);
 | 
			
		||||
    SigmaKPrime_mu = peekLorentz(SigmaKPrimeA, mu);
 | 
			
		||||
    iQ = Ta(Cmu * adj(GaugeKmu));
 | 
			
		||||
    this->set_iLambda(iLambda_mu, e_iQ, iQ, SigmaKPrime_mu, GaugeKmu);
 | 
			
		||||
    pokeLorentz(SigmaK, SigmaKPrime_mu * e_iQ + adj(Cmu) * iLambda_mu, mu);
 | 
			
		||||
    pokeLorentz(iLambda, iLambda_mu, mu);
 | 
			
		||||
    BaseSmearDerivative(SigmaK, iLambda,GaugeK,mu,rho);  // derivative of SmearBase
 | 
			
		||||
#else
 | 
			
		||||
    //    GaugeField C(grid);
 | 
			
		||||
    //    this->StoutSmearing->BaseSmear(C, GaugeK);
 | 
			
		||||
    //    for (int mu = 0; mu < Nd; mu++)
 | 
			
		||||
    int mu =mmu;
 | 
			
		||||
    BaseSmear(Cmu, GaugeK,mu,rho);
 | 
			
		||||
    for (int mu = 0; mu < Nd; mu++)
 | 
			
		||||
    {
 | 
			
		||||
      // Cmu = peekLorentz(C, mu);
 | 
			
		||||
      Cmu = peekLorentz(C, mu);
 | 
			
		||||
      GaugeKmu = peekLorentz(GaugeK, mu);
 | 
			
		||||
      SigmaKPrime_mu = peekLorentz(SigmaKPrimeA, mu);
 | 
			
		||||
      iQ = Ta(Cmu * adj(GaugeKmu));
 | 
			
		||||
      this->set_iLambda(iLambda_mu, e_iQ, iQ, SigmaKPrime_mu, GaugeKmu);
 | 
			
		||||
      pokeLorentz(SigmaK, SigmaKPrime_mu * e_iQ + adj(Cmu) * iLambda_mu, mu);
 | 
			
		||||
      pokeLorentz(iLambda, iLambda_mu, mu);
 | 
			
		||||
      std::cout << " mu "<<mu<<" SigmaKPrime_mu"<<norm2(SigmaKPrime_mu)<< " iLambda_mu " <<norm2(iLambda_mu)<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    //    GaugeField SigmaKcopy(grid);
 | 
			
		||||
    //    SigmaKcopy = SigmaK;
 | 
			
		||||
    BaseSmearDerivative(SigmaK, iLambda,GaugeK,mu,rho);  // derivative of SmearBase
 | 
			
		||||
    //    this->StoutSmearing->derivative(SigmaK, iLambda,GaugeK);  // derivative of SmearBase
 | 
			
		||||
    //    SigmaKcopy = SigmaKcopy - SigmaK;
 | 
			
		||||
    //    std::cout << " BaseSmearDerivative fast path error" <<norm2(SigmaKcopy)<<std::endl;
 | 
			
		||||
#endif
 | 
			
		||||
    this->StoutSmearing->derivative(SigmaK, iLambda,GaugeK);  // derivative of SmearBase
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // propagate the rest of the force as identity map, just add back
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -1,389 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/smearing/HISQSmearing.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2023
 | 
			
		||||
 | 
			
		||||
Author: D. A. Clarke <clarke.davida@gmail.com> 
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*
 | 
			
		||||
    @file HISQSmearing.h
 | 
			
		||||
    @brief Declares classes related to HISQ smearing 
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#pragma once
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
#include <Grid/lattice/PaddedCell.h>
 | 
			
		||||
#include <Grid/stencil/GeneralLocalStencil.h>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// TODO: find a way to fold this into the stencil header. need to access grid to get
 | 
			
		||||
// Nd, since you don't want to inherit from QCD.h
 | 
			
		||||
/*!  @brief append arbitrary shift path to shifts */
 | 
			
		||||
template<typename... Args>
 | 
			
		||||
void appendShift(std::vector<Coordinate>& shifts, int dir, Args... args) {
 | 
			
		||||
    Coordinate shift(Nd,0);
 | 
			
		||||
    generalShift(shift, dir, args...); 
 | 
			
		||||
    // push_back creates an element at the end of shifts and
 | 
			
		||||
    // assigns the data in the argument to it.
 | 
			
		||||
    shifts.push_back(shift);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*!  @brief figure out the stencil index from mu and nu */
 | 
			
		||||
accelerator_inline int stencilIndex(int mu, int nu) {
 | 
			
		||||
    // Nshifts depends on how you built the stencil
 | 
			
		||||
    int Nshifts = 6;
 | 
			
		||||
    return Nshifts*nu + Nd*Nshifts*mu;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*!  @brief structure holding the link treatment */
 | 
			
		||||
struct SmearingParameters{
 | 
			
		||||
    SmearingParameters(){}
 | 
			
		||||
    Real c_1;               // 1 link
 | 
			
		||||
    Real c_naik;            // Naik term
 | 
			
		||||
    Real c_3;               // 3 link
 | 
			
		||||
    Real c_5;               // 5 link
 | 
			
		||||
    Real c_7;               // 7 link
 | 
			
		||||
    Real c_lp;              // 5 link Lepage
 | 
			
		||||
    SmearingParameters(Real c1, Real cnaik, Real c3, Real c5, Real c7, Real clp) 
 | 
			
		||||
        : c_1(c1),
 | 
			
		||||
          c_naik(cnaik),
 | 
			
		||||
          c_3(c3),
 | 
			
		||||
          c_5(c5),
 | 
			
		||||
          c_7(c7),
 | 
			
		||||
          c_lp(clp){}
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*!  @brief create fat links from link variables */
 | 
			
		||||
template<class Gimpl> 
 | 
			
		||||
class Smear_HISQ : public Gimpl {
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
    GridCartesian* const _grid;
 | 
			
		||||
    SmearingParameters _linkTreatment;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
    INHERIT_GIMPL_TYPES(Gimpl);
 | 
			
		||||
    typedef typename Gimpl::GaugeField     GF;
 | 
			
		||||
    typedef typename Gimpl::GaugeLinkField LF;
 | 
			
		||||
    typedef typename Gimpl::ComplexField   CF;
 | 
			
		||||
 | 
			
		||||
    // Don't allow default values here.
 | 
			
		||||
    Smear_HISQ(GridCartesian* grid, Real c1, Real cnaik, Real c3, Real c5, Real c7, Real clp) 
 | 
			
		||||
        : _grid(grid), 
 | 
			
		||||
          _linkTreatment(c1,cnaik,c3,c5,c7,clp) {
 | 
			
		||||
        assert(Nc == 3 && "HISQ smearing currently implemented only for Nc==3");
 | 
			
		||||
        assert(Nd == 4 && "HISQ smearing only defined for Nd==4");
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Allow to pass a pointer to a C-style, double array for MILC convenience
 | 
			
		||||
    Smear_HISQ(GridCartesian* grid, double* coeff) 
 | 
			
		||||
        : _grid(grid), 
 | 
			
		||||
          _linkTreatment(coeff[0],coeff[1],coeff[2],coeff[3],coeff[4],coeff[5]) {
 | 
			
		||||
        assert(Nc == 3 && "HISQ smearing currently implemented only for Nc==3");
 | 
			
		||||
        assert(Nd == 4 && "HISQ smearing only defined for Nd==4");
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    ~Smear_HISQ() {}
 | 
			
		||||
 | 
			
		||||
    // Intent: OUT--u_smr, u_naik
 | 
			
		||||
    //          IN--u_thin
 | 
			
		||||
    void smear(GF& u_smr, GF& u_naik, GF& u_thin) const {
 | 
			
		||||
 | 
			
		||||
        SmearingParameters lt = this->_linkTreatment;
 | 
			
		||||
        auto grid = this->_grid;
 | 
			
		||||
 | 
			
		||||
        // Create a padded cell of extra padding depth=1 and fill the padding.
 | 
			
		||||
        int depth = 1;
 | 
			
		||||
        PaddedCell Ghost(depth,grid);
 | 
			
		||||
        GF Ughost = Ghost.Exchange(u_thin);
 | 
			
		||||
 | 
			
		||||
        // This is where auxiliary N-link fields and the final smear will be stored. 
 | 
			
		||||
        GF Ughost_fat(Ughost.Grid());
 | 
			
		||||
        GF Ughost_3link(Ughost.Grid());
 | 
			
		||||
        GF Ughost_5linkA(Ughost.Grid());
 | 
			
		||||
        GF Ughost_5linkB(Ughost.Grid());
 | 
			
		||||
 | 
			
		||||
        // mu-nu plane stencil. We allow mu==nu to make indexing the stencil easier,
 | 
			
		||||
        // but these entries will not be used. 
 | 
			
		||||
        std::vector<Coordinate> shifts;
 | 
			
		||||
        for(int mu=0;mu<Nd;mu++)
 | 
			
		||||
        for(int nu=0;nu<Nd;nu++) {
 | 
			
		||||
            appendShift(shifts,mu);
 | 
			
		||||
            appendShift(shifts,nu);
 | 
			
		||||
            appendShift(shifts,shiftSignal::NO_SHIFT);
 | 
			
		||||
            appendShift(shifts,mu,Back(nu));
 | 
			
		||||
            appendShift(shifts,Back(nu));
 | 
			
		||||
            appendShift(shifts,Back(mu));
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // A GeneralLocalStencil has two indices: a site and stencil index 
 | 
			
		||||
        GeneralLocalStencil gStencil(Ughost.Grid(),shifts);
 | 
			
		||||
 | 
			
		||||
        // This is where contributions from the smearing get added together
 | 
			
		||||
        Ughost_fat=Zero();
 | 
			
		||||
 | 
			
		||||
        // This loop handles 3-, 5-, and 7-link constructs, minus Lepage and Naik.
 | 
			
		||||
        for(int mu=0;mu<Nd;mu++) {
 | 
			
		||||
 | 
			
		||||
            // TODO: This approach is slightly memory inefficient. It uses 25% extra memory 
 | 
			
		||||
            Ughost_3link =Zero();
 | 
			
		||||
            Ughost_5linkA=Zero();
 | 
			
		||||
            Ughost_5linkB=Zero();
 | 
			
		||||
 | 
			
		||||
            // Create the accessors
 | 
			
		||||
            autoView(U_v       , Ughost       , AcceleratorRead);
 | 
			
		||||
            autoView(U_fat_v   , Ughost_fat   , AcceleratorWrite);
 | 
			
		||||
            autoView(U_3link_v , Ughost_3link , AcceleratorWrite);
 | 
			
		||||
            autoView(U_5linkA_v, Ughost_5linkA, AcceleratorWrite);
 | 
			
		||||
            autoView(U_5linkB_v, Ughost_5linkB, AcceleratorWrite);
 | 
			
		||||
 | 
			
		||||
            // We infer some types that will be needed in the calculation.
 | 
			
		||||
            typedef decltype(gStencil.GetEntry(0,0)) stencilElement;
 | 
			
		||||
            typedef decltype(coalescedReadGeneralPermute(U_v[0](0),gStencil.GetEntry(0,0)->_permute,Nd)) U3matrix;
 | 
			
		||||
 | 
			
		||||
            int Nsites = U_v.size();
 | 
			
		||||
            auto gStencil_v = gStencil.View(); 
 | 
			
		||||
 | 
			
		||||
            accelerator_for(site,Nsites,Simd::Nsimd(),{ // ----------- 3-link constructs
 | 
			
		||||
                stencilElement SE0, SE1, SE2, SE3, SE4, SE5;
 | 
			
		||||
                U3matrix U0, U1, U2, U3, U4, U5, W;
 | 
			
		||||
                for(int nu=0;nu<Nd;nu++) {
 | 
			
		||||
                    if(nu==mu) continue;
 | 
			
		||||
                    int s = stencilIndex(mu,nu);
 | 
			
		||||
 | 
			
		||||
                    // The stencil gives us support points in the mu-nu plane that we will use to
 | 
			
		||||
                    // grab the links we need.
 | 
			
		||||
                    SE0 = gStencil_v.GetEntry(s+0,site); int x_p_mu      = SE0->_offset;
 | 
			
		||||
                    SE1 = gStencil_v.GetEntry(s+1,site); int x_p_nu      = SE1->_offset;
 | 
			
		||||
                    SE2 = gStencil_v.GetEntry(s+2,site); int x           = SE2->_offset;
 | 
			
		||||
                    SE3 = gStencil_v.GetEntry(s+3,site); int x_p_mu_m_nu = SE3->_offset;
 | 
			
		||||
                    SE4 = gStencil_v.GetEntry(s+4,site); int x_m_nu      = SE4->_offset;
 | 
			
		||||
                    SE5 = gStencil_v.GetEntry(s+5,site); int x_m_mu      = SE5->_offset;
 | 
			
		||||
 | 
			
		||||
                    // When you're deciding whether to take an adjoint, the question is: how is the
 | 
			
		||||
                    // stored link oriented compared to the one you want? If I imagine myself travelling
 | 
			
		||||
                    // with the to-be-updated link, I have two possible, alternative 3-link paths I can
 | 
			
		||||
                    // take, one starting by going to the left, the other starting by going to the right.
 | 
			
		||||
                    U0 = coalescedReadGeneralPermute(U_v[x_p_mu     ](nu),SE0->_permute,Nd);
 | 
			
		||||
                    U1 = coalescedReadGeneralPermute(U_v[x_p_nu     ](mu),SE1->_permute,Nd);
 | 
			
		||||
                    U2 = coalescedReadGeneralPermute(U_v[x          ](nu),SE2->_permute,Nd);
 | 
			
		||||
                    U3 = coalescedReadGeneralPermute(U_v[x_p_mu_m_nu](nu),SE3->_permute,Nd);
 | 
			
		||||
                    U4 = coalescedReadGeneralPermute(U_v[x_m_nu     ](mu),SE4->_permute,Nd);
 | 
			
		||||
                    U5 = coalescedReadGeneralPermute(U_v[x_m_nu     ](nu),SE4->_permute,Nd);
 | 
			
		||||
 | 
			
		||||
                    //  "left"          "right"
 | 
			
		||||
                    W = U2*U1*adj(U0) + adj(U5)*U4*U3;
 | 
			
		||||
 | 
			
		||||
                    // Save 3-link construct for later and add to smeared field.
 | 
			
		||||
                    coalescedWrite(U_3link_v[x](nu), W);
 | 
			
		||||
 | 
			
		||||
                    // The index operator (x) returns the coalesced read on GPU. The view [] index returns 
 | 
			
		||||
                    // a reference to the vector object. The [x](mu) returns a reference to the densely 
 | 
			
		||||
                    // packed (contiguous in memory) mu-th element of the vector object. On CPU, 
 | 
			
		||||
                    // coalescedRead/Write is the identity mapping assigning vector object to vector object.
 | 
			
		||||
                    // But on GPU it's non-trivial and maps scalar object to vector object and vice versa.
 | 
			
		||||
                    coalescedWrite(U_fat_v[x](mu), U_fat_v(x)(mu) + lt.c_3*W);
 | 
			
		||||
                }
 | 
			
		||||
            })
 | 
			
		||||
 | 
			
		||||
            accelerator_for(site,Nsites,Simd::Nsimd(),{ // ----------- 5-link 
 | 
			
		||||
                stencilElement SE0, SE1, SE2, SE3, SE4, SE5;
 | 
			
		||||
                U3matrix U0, U1, U2, U3, U4, U5, W;
 | 
			
		||||
                int sigmaIndex = 0;
 | 
			
		||||
                for(int nu=0;nu<Nd;nu++) {
 | 
			
		||||
                    if(nu==mu) continue;
 | 
			
		||||
                    int s = stencilIndex(mu,nu);
 | 
			
		||||
                    for(int rho=0;rho<Nd;rho++) {
 | 
			
		||||
                        if (rho == mu || rho == nu) continue;
 | 
			
		||||
 | 
			
		||||
                        SE0 = gStencil_v.GetEntry(s+0,site); int x_p_mu      = SE0->_offset;
 | 
			
		||||
                        SE1 = gStencil_v.GetEntry(s+1,site); int x_p_nu      = SE1->_offset;
 | 
			
		||||
                        SE2 = gStencil_v.GetEntry(s+2,site); int x           = SE2->_offset;
 | 
			
		||||
                        SE3 = gStencil_v.GetEntry(s+3,site); int x_p_mu_m_nu = SE3->_offset;
 | 
			
		||||
                        SE4 = gStencil_v.GetEntry(s+4,site); int x_m_nu      = SE4->_offset;
 | 
			
		||||
 | 
			
		||||
                        U0 = coalescedReadGeneralPermute(      U_v[x_p_mu     ](nu ),SE0->_permute,Nd);
 | 
			
		||||
                        U1 = coalescedReadGeneralPermute(U_3link_v[x_p_nu     ](rho),SE1->_permute,Nd);
 | 
			
		||||
                        U2 = coalescedReadGeneralPermute(      U_v[x          ](nu ),SE2->_permute,Nd);
 | 
			
		||||
                        U3 = coalescedReadGeneralPermute(      U_v[x_p_mu_m_nu](nu ),SE3->_permute,Nd);
 | 
			
		||||
                        U4 = coalescedReadGeneralPermute(U_3link_v[x_m_nu     ](rho),SE4->_permute,Nd);
 | 
			
		||||
                        U5 = coalescedReadGeneralPermute(      U_v[x_m_nu     ](nu ),SE4->_permute,Nd);
 | 
			
		||||
 | 
			
		||||
                        W  = U2*U1*adj(U0) + adj(U5)*U4*U3;
 | 
			
		||||
 | 
			
		||||
                        if(sigmaIndex<3) {
 | 
			
		||||
                            coalescedWrite(U_5linkA_v[x](rho), W);
 | 
			
		||||
                        } else {
 | 
			
		||||
                            coalescedWrite(U_5linkB_v[x](rho), W);
 | 
			
		||||
                        }    
 | 
			
		||||
 | 
			
		||||
                        coalescedWrite(U_fat_v[x](mu), U_fat_v(x)(mu) + lt.c_5*W);
 | 
			
		||||
                        sigmaIndex++;
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
            })
 | 
			
		||||
 | 
			
		||||
            accelerator_for(site,Nsites,Simd::Nsimd(),{ // ----------- 7-link
 | 
			
		||||
                stencilElement SE0, SE1, SE2, SE3, SE4, SE5;
 | 
			
		||||
                U3matrix U0, U1, U2, U3, U4, U5, W;
 | 
			
		||||
                int sigmaIndex = 0;
 | 
			
		||||
                for(int nu=0;nu<Nd;nu++) {
 | 
			
		||||
                    if(nu==mu) continue;
 | 
			
		||||
                    int s = stencilIndex(mu,nu);
 | 
			
		||||
                    for(int rho=0;rho<Nd;rho++) {
 | 
			
		||||
                        if (rho == mu || rho == nu) continue;
 | 
			
		||||
 | 
			
		||||
                        SE0 = gStencil_v.GetEntry(s+0,site); int x_p_mu      = SE0->_offset;
 | 
			
		||||
                        SE1 = gStencil_v.GetEntry(s+1,site); int x_p_nu      = SE1->_offset;
 | 
			
		||||
                        SE2 = gStencil_v.GetEntry(s+2,site); int x           = SE2->_offset;
 | 
			
		||||
                        SE3 = gStencil_v.GetEntry(s+3,site); int x_p_mu_m_nu = SE3->_offset;
 | 
			
		||||
                        SE4 = gStencil_v.GetEntry(s+4,site); int x_m_nu      = SE4->_offset;
 | 
			
		||||
 | 
			
		||||
                        U0 = coalescedReadGeneralPermute(U_v[x_p_mu](nu),SE0->_permute,Nd);
 | 
			
		||||
                        if(sigmaIndex<3) {
 | 
			
		||||
                            U1 = coalescedReadGeneralPermute(U_5linkB_v[x_p_nu](rho),SE1->_permute,Nd);
 | 
			
		||||
                        } else {
 | 
			
		||||
                            U1 = coalescedReadGeneralPermute(U_5linkA_v[x_p_nu](rho),SE1->_permute,Nd);
 | 
			
		||||
                        }  
 | 
			
		||||
                        U2 = coalescedReadGeneralPermute(U_v[x](nu),SE2->_permute,Nd);
 | 
			
		||||
                        U3 = coalescedReadGeneralPermute(U_v[x_p_mu_m_nu](nu),SE3->_permute,Nd);
 | 
			
		||||
                        if(sigmaIndex<3) {
 | 
			
		||||
                            U4 = coalescedReadGeneralPermute(U_5linkB_v[x_m_nu](rho),SE4->_permute,Nd);
 | 
			
		||||
                        } else {
 | 
			
		||||
                            U4 = coalescedReadGeneralPermute(U_5linkA_v[x_m_nu](rho),SE4->_permute,Nd);
 | 
			
		||||
                        }  
 | 
			
		||||
                        U5 = coalescedReadGeneralPermute(U_v[x_m_nu](nu),SE4->_permute,Nd);
 | 
			
		||||
 | 
			
		||||
                        W  = U2*U1*adj(U0) + adj(U5)*U4*U3;
 | 
			
		||||
 | 
			
		||||
                        coalescedWrite(U_fat_v[x](mu), U_fat_v(x)(mu) + lt.c_7*W);
 | 
			
		||||
                        sigmaIndex++;
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
            })
 | 
			
		||||
 | 
			
		||||
        } // end mu loop
 | 
			
		||||
 | 
			
		||||
        // c1, c3, c5, c7 construct contributions
 | 
			
		||||
        u_smr = Ghost.Extract(Ughost_fat) + lt.c_1*u_thin;
 | 
			
		||||
 | 
			
		||||
        // Load up U and V std::vectors to access thin and smeared links.
 | 
			
		||||
        std::vector<LF> U(Nd, grid);
 | 
			
		||||
        std::vector<LF> V(Nd, grid);
 | 
			
		||||
        std::vector<LF> Vnaik(Nd, grid);
 | 
			
		||||
        for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
            U[mu] = PeekIndex<LorentzIndex>(u_thin, mu);
 | 
			
		||||
            V[mu] = PeekIndex<LorentzIndex>(u_smr, mu);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        for(int mu=0;mu<Nd;mu++) {
 | 
			
		||||
 | 
			
		||||
            // Naik
 | 
			
		||||
            Vnaik[mu] = lt.c_naik*Gimpl::CovShiftForward(U[mu],mu,
 | 
			
		||||
                                    Gimpl::CovShiftForward(U[mu],mu,
 | 
			
		||||
                                      Gimpl::CovShiftIdentityForward(U[mu],mu)));
 | 
			
		||||
 | 
			
		||||
            // LePage
 | 
			
		||||
            for (int nu_h=1;nu_h<Nd;nu_h++) {
 | 
			
		||||
                int nu=(mu+nu_h)%Nd;
 | 
			
		||||
                                // nu, nu, mu, Back(nu), Back(nu)
 | 
			
		||||
                V[mu] = V[mu] + lt.c_lp*Gimpl::CovShiftForward(U[nu],nu,
 | 
			
		||||
                                          Gimpl::CovShiftForward(U[nu],nu,
 | 
			
		||||
                                            Gimpl::CovShiftForward(U[mu],mu,
 | 
			
		||||
                                              Gimpl::CovShiftBackward(U[nu],nu,
 | 
			
		||||
                                                Gimpl::CovShiftIdentityBackward(U[nu],nu)))))
 | 
			
		||||
                                // Back(nu), Back(nu), mu, nu, nu
 | 
			
		||||
                              + lt.c_lp*Gimpl::CovShiftBackward(U[nu],nu,
 | 
			
		||||
                                          Gimpl::CovShiftBackward(U[nu],nu,
 | 
			
		||||
                                            Gimpl::CovShiftForward(U[mu],mu,
 | 
			
		||||
                                              Gimpl::CovShiftForward(U[nu],nu,
 | 
			
		||||
                                                Gimpl::CovShiftIdentityForward(U[nu],nu)))));
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // Put V back into u_smr.
 | 
			
		||||
        for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
            PokeIndex<LorentzIndex>(u_smr , V[mu]    , mu);
 | 
			
		||||
            PokeIndex<LorentzIndex>(u_naik, Vnaik[mu], mu);
 | 
			
		||||
        }
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    // Intent: OUT--u_proj
 | 
			
		||||
    //          IN--u_mu
 | 
			
		||||
    void projectU3(GF& u_proj, GF& u_mu) const {
 | 
			
		||||
 | 
			
		||||
        auto grid = this->_grid;
 | 
			
		||||
 | 
			
		||||
        LF V(grid), Q(grid), sqrtQinv(grid), id_3(grid), diff(grid);
 | 
			
		||||
        CF c0(grid), c1(grid), c2(grid), g0(grid), g1(grid), g2(grid), S(grid), R(grid), theta(grid), 
 | 
			
		||||
           u(grid), v(grid), w(grid), den(grid), f0(grid), f1(grid), f2(grid);
 | 
			
		||||
 | 
			
		||||
        // Follow MILC 10.1103/PhysRevD.82.074501, eqs (B2-B3) and (C1-C8)
 | 
			
		||||
        for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
            V  = PeekIndex<LorentzIndex>(u_mu, mu);
 | 
			
		||||
            Q  = adj(V)*V;
 | 
			
		||||
            c0 =        real(trace(Q));
 | 
			
		||||
            c1 = (1/2.)*real(trace(Q*Q));
 | 
			
		||||
            c2 = (1/3.)*real(trace(Q*Q*Q));
 | 
			
		||||
            S  = (1/3.)*c1-(1/18.)*c0*c0;
 | 
			
		||||
            if (norm2(S)<1e-28) {
 | 
			
		||||
                g0 = (1/3.)*c0; g1 = g0; g2 = g1;
 | 
			
		||||
            } else {
 | 
			
		||||
                R     = (1/2.)*c2-(1/3. )*c0*c1+(1/27.)*c0*c0*c0;
 | 
			
		||||
                theta = acos(R*pow(S,-1.5));
 | 
			
		||||
                g0    = (1/3.)*c0+2.*sqrt(S)*cos((1/3.)*theta-2*M_PI/3.);
 | 
			
		||||
                g1    = (1/3.)*c0+2.*sqrt(S)*cos((1/3.)*theta          );
 | 
			
		||||
                g2    = (1/3.)*c0+2.*sqrt(S)*cos((1/3.)*theta+2*M_PI/3.);
 | 
			
		||||
            }
 | 
			
		||||
//            if (fabs(Q.determinant()/(g0*g1*g2)-1.0) > 1e-5) { SVD }
 | 
			
		||||
            u     = sqrt(g0) + sqrt(g1) + sqrt(g2);
 | 
			
		||||
            v     = sqrt(g0*g1) + sqrt(g0*g2) + sqrt(g1*g2);
 | 
			
		||||
            w     = sqrt(g0*g1*g2);
 | 
			
		||||
            den   = w*(u*v-w);
 | 
			
		||||
            f0    = (-w*(u*u+v)+u*v*v)/den;
 | 
			
		||||
            f1    = (-w-u*u*u+2.*u*v)/den;
 | 
			
		||||
            f2    = u/den;
 | 
			
		||||
            id_3  = 1.;
 | 
			
		||||
 | 
			
		||||
            sqrtQinv = f0*id_3 + f1*Q + f2*Q*Q;
 | 
			
		||||
 | 
			
		||||
            PokeIndex<LorentzIndex>(u_proj, V*sqrtQinv, mu);
 | 
			
		||||
        }
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//    void derivative(const GaugeField& Gauge) const {
 | 
			
		||||
//    };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
@@ -5,5 +5,4 @@
 | 
			
		||||
#include <Grid/qcd/smearing/StoutSmearing.h>
 | 
			
		||||
#include <Grid/qcd/smearing/GaugeConfiguration.h>
 | 
			
		||||
#include <Grid/qcd/smearing/WilsonFlow.h>
 | 
			
		||||
#include <Grid/qcd/smearing/HISQSmearing.h>
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -69,7 +69,7 @@ public:
 | 
			
		||||
  /*! Construct stout smearing object from explicitly specified rho matrix */
 | 
			
		||||
  Smear_Stout(const std::vector<double>& rho_)
 | 
			
		||||
    : OwnedBase{new Smear_APE<Gimpl>(rho_)}, SmearBase{OwnedBase.get()} {
 | 
			
		||||
    std::cout << GridLogDebug << "Stout smearing constructor : Smear_Stout(const std::vector<double>& " << rho_ << " )" << std::endl;
 | 
			
		||||
    std::cout << GridLogDebug << "Stout smearing constructor : Smear_Stout(const std::vector<double>& " << rho_ << " )" << std::endl
 | 
			
		||||
    assert(Nc == 3 && "Stout smearing currently implemented only for Nc==3");
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -37,14 +37,13 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
// Make these members of an Impl class for BC's.
 | 
			
		||||
 | 
			
		||||
namespace PeriodicBC { 
 | 
			
		||||
  //Out(x) = Link(x)*field(x+mu)
 | 
			
		||||
 | 
			
		||||
  template<class covariant,class gauge> Lattice<covariant> CovShiftForward(const Lattice<gauge> &Link, 
 | 
			
		||||
									   int mu,
 | 
			
		||||
									   const Lattice<covariant> &field)
 | 
			
		||||
  {
 | 
			
		||||
    return Link*Cshift(field,mu,1);// moves towards negative mu
 | 
			
		||||
  }
 | 
			
		||||
  //Out(x) = Link^dag(x-mu)*field(x-mu)
 | 
			
		||||
  template<class covariant,class gauge> Lattice<covariant> CovShiftBackward(const Lattice<gauge> &Link, 
 | 
			
		||||
									    int mu,
 | 
			
		||||
									    const Lattice<covariant> &field)
 | 
			
		||||
@@ -53,19 +52,19 @@ namespace PeriodicBC {
 | 
			
		||||
    tmp = adj(Link)*field;
 | 
			
		||||
    return Cshift(tmp,mu,-1);// moves towards positive mu
 | 
			
		||||
  }
 | 
			
		||||
  //Out(x) = Link^dag(x-mu)
 | 
			
		||||
 | 
			
		||||
  template<class gauge> Lattice<gauge>
 | 
			
		||||
  CovShiftIdentityBackward(const Lattice<gauge> &Link, int mu) 
 | 
			
		||||
  {
 | 
			
		||||
    return Cshift(adj(Link), mu, -1);
 | 
			
		||||
  }
 | 
			
		||||
  //Out(x) = Link(x)
 | 
			
		||||
 | 
			
		||||
  template<class gauge> Lattice<gauge>
 | 
			
		||||
  CovShiftIdentityForward(const Lattice<gauge> &Link, int mu)
 | 
			
		||||
  {
 | 
			
		||||
    return Link;
 | 
			
		||||
  }
 | 
			
		||||
  //Link(x) = Link(x+mu)
 | 
			
		||||
 | 
			
		||||
  template<class gauge> Lattice<gauge>
 | 
			
		||||
  ShiftStaple(const Lattice<gauge> &Link, int mu)
 | 
			
		||||
  {
 | 
			
		||||
 
 | 
			
		||||
@@ -1,528 +0,0 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/utils/GaugeGroup.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: neo <cossu@post.kek.jp>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef QCD_UTIL_GAUGEGROUP_H
 | 
			
		||||
#define QCD_UTIL_GAUGEGROUP_H
 | 
			
		||||
 | 
			
		||||
// Important detail: nvcc requires all template parameters to have names.
 | 
			
		||||
// This is the only reason why the second template parameter has a name.
 | 
			
		||||
#define ONLY_IF_SU                                                       \
 | 
			
		||||
  typename dummy_name = group_name,                                      \
 | 
			
		||||
           typename named_dummy = std::enable_if_t <                                 \
 | 
			
		||||
                          std::is_same<dummy_name, group_name>::value && \
 | 
			
		||||
                      is_su<dummy_name>::value >
 | 
			
		||||
 | 
			
		||||
#define ONLY_IF_Sp                                                       \
 | 
			
		||||
  typename dummy_name = group_name,                                      \
 | 
			
		||||
           typename named_dummy = std::enable_if_t <                                 \
 | 
			
		||||
                          std::is_same<dummy_name, group_name>::value && \
 | 
			
		||||
                      is_sp<dummy_name>::value >
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
namespace GroupName {
 | 
			
		||||
class SU {};
 | 
			
		||||
class Sp {};
 | 
			
		||||
}  // namespace GroupName
 | 
			
		||||
 | 
			
		||||
template <typename group_name>
 | 
			
		||||
struct is_su {
 | 
			
		||||
  static const bool value = false;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <>
 | 
			
		||||
struct is_su<GroupName::SU> {
 | 
			
		||||
  static const bool value = true;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <typename group_name>
 | 
			
		||||
struct is_sp {
 | 
			
		||||
  static const bool value = false;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <>
 | 
			
		||||
struct is_sp<GroupName::Sp> {
 | 
			
		||||
  static const bool value = true;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <typename group_name>
 | 
			
		||||
constexpr int compute_adjoint_dimension(int ncolour);
 | 
			
		||||
 | 
			
		||||
template <>
 | 
			
		||||
constexpr int compute_adjoint_dimension<GroupName::SU>(int ncolour) {
 | 
			
		||||
  return ncolour * ncolour - 1;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <>
 | 
			
		||||
constexpr int compute_adjoint_dimension<GroupName::Sp>(int ncolour) {
 | 
			
		||||
  return ncolour / 2 * (ncolour + 1);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <int ncolour, class group_name>
 | 
			
		||||
class GaugeGroup {
 | 
			
		||||
 public:
 | 
			
		||||
  static const int Dimension = ncolour;
 | 
			
		||||
  static const int AdjointDimension =
 | 
			
		||||
      compute_adjoint_dimension<group_name>(ncolour);
 | 
			
		||||
  static const int AlgebraDimension =
 | 
			
		||||
      compute_adjoint_dimension<group_name>(ncolour);
 | 
			
		||||
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iSU2Matrix = iScalar<iScalar<iMatrix<vtype, 2> > >;
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iGroupMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iAlgebraVector = iScalar<iScalar<iVector<vtype, AdjointDimension> > >;
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iSUnAlgebraMatrix =
 | 
			
		||||
    iScalar<iScalar<iMatrix<vtype, AdjointDimension> > >;
 | 
			
		||||
  static int su2subgroups(void) { return su2subgroups(group_name()); }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Types can be accessed as SU<2>::Matrix , SU<2>::vSUnMatrix,
 | 
			
		||||
  // SU<2>::LatticeMatrix etc...
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  typedef iGroupMatrix<Complex> Matrix;
 | 
			
		||||
  typedef iGroupMatrix<ComplexF> MatrixF;
 | 
			
		||||
  typedef iGroupMatrix<ComplexD> MatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef iGroupMatrix<vComplex> vMatrix;
 | 
			
		||||
  typedef iGroupMatrix<vComplexF> vMatrixF;
 | 
			
		||||
  typedef iGroupMatrix<vComplexD> vMatrixD;
 | 
			
		||||
 | 
			
		||||
  // For the projectors to the algebra
 | 
			
		||||
  // these should be real...
 | 
			
		||||
  // keeping complex for consistency with the SIMD vector types
 | 
			
		||||
  typedef iAlgebraVector<Complex> AlgebraVector;
 | 
			
		||||
  typedef iAlgebraVector<ComplexF> AlgebraVectorF;
 | 
			
		||||
  typedef iAlgebraVector<ComplexD> AlgebraVectorD;
 | 
			
		||||
 | 
			
		||||
  typedef iAlgebraVector<vComplex> vAlgebraVector;
 | 
			
		||||
  typedef iAlgebraVector<vComplexF> vAlgebraVectorF;
 | 
			
		||||
  typedef iAlgebraVector<vComplexD> vAlgebraVectorD;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<vMatrix> LatticeMatrix;
 | 
			
		||||
  typedef Lattice<vMatrixF> LatticeMatrixF;
 | 
			
		||||
  typedef Lattice<vMatrixD> LatticeMatrixD;
 | 
			
		||||
  
 | 
			
		||||
  typedef Lattice<vAlgebraVector> LatticeAlgebraVector;
 | 
			
		||||
  typedef Lattice<vAlgebraVectorF> LatticeAlgebraVectorF;
 | 
			
		||||
  typedef Lattice<vAlgebraVectorD> LatticeAlgebraVectorD;
 | 
			
		||||
   
 | 
			
		||||
  typedef iSUnAlgebraMatrix<vComplex>  vAlgebraMatrix;
 | 
			
		||||
  typedef iSUnAlgebraMatrix<vComplexF> vAlgebraMatrixF;
 | 
			
		||||
  typedef iSUnAlgebraMatrix<vComplexD> vAlgebraMatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<vAlgebraMatrix>  LatticeAlgebraMatrix;
 | 
			
		||||
  typedef Lattice<vAlgebraMatrixF> LatticeAlgebraMatrixF;
 | 
			
		||||
  typedef Lattice<vAlgebraMatrixD> LatticeAlgebraMatrixD;
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
  typedef iSU2Matrix<Complex> SU2Matrix;
 | 
			
		||||
  typedef iSU2Matrix<ComplexF> SU2MatrixF;
 | 
			
		||||
  typedef iSU2Matrix<ComplexD> SU2MatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef iSU2Matrix<vComplex> vSU2Matrix;
 | 
			
		||||
  typedef iSU2Matrix<vComplexF> vSU2MatrixF;
 | 
			
		||||
  typedef iSU2Matrix<vComplexD> vSU2MatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<vSU2Matrix> LatticeSU2Matrix;
 | 
			
		||||
  typedef Lattice<vSU2MatrixF> LatticeSU2MatrixF;
 | 
			
		||||
  typedef Lattice<vSU2MatrixD> LatticeSU2MatrixD;
 | 
			
		||||
 | 
			
		||||
  // Private implementation details are specified in the following files:
 | 
			
		||||
  // Grid/qcd/utils/SUn.impl
 | 
			
		||||
  // Grid/qcd/utils/SUn.impl
 | 
			
		||||
  // The public part of the interface follows below and refers to these
 | 
			
		||||
  // private member functions.
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/utils/SUn.impl.h>
 | 
			
		||||
#include <Grid/qcd/utils/Sp2n.impl.h>
 | 
			
		||||
 | 
			
		||||
 public:
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void generator(int lieIndex, iGroupMatrix<cplx> &ta) {
 | 
			
		||||
    return generator(lieIndex, ta, group_name());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static accelerator_inline void su2SubGroupIndex(int &i1, int &i2, int su2_index) {
 | 
			
		||||
    return su2SubGroupIndex(i1, i2, su2_index, group_name());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void testGenerators(void) { testGenerators(group_name()); }
 | 
			
		||||
 | 
			
		||||
  static void printGenerators(void) {
 | 
			
		||||
    for (int gen = 0; gen < AlgebraDimension; gen++) {
 | 
			
		||||
      Matrix ta;
 | 
			
		||||
      generator(gen, ta);
 | 
			
		||||
      std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
 | 
			
		||||
                << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << ta << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <typename LatticeMatrixType>
 | 
			
		||||
  static void LieRandomize(GridParallelRNG &pRNG, LatticeMatrixType &out,
 | 
			
		||||
                           double scale = 1.0) {
 | 
			
		||||
    GridBase *grid = out.Grid();
 | 
			
		||||
 | 
			
		||||
    typedef typename LatticeMatrixType::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
    typedef iSinglet<vector_type> vTComplexType;
 | 
			
		||||
 | 
			
		||||
    typedef Lattice<vTComplexType> LatticeComplexType;
 | 
			
		||||
    typedef typename GridTypeMapper<
 | 
			
		||||
        typename LatticeMatrixType::vector_object>::scalar_object MatrixType;
 | 
			
		||||
 | 
			
		||||
    LatticeComplexType ca(grid);
 | 
			
		||||
    LatticeMatrixType lie(grid);
 | 
			
		||||
    LatticeMatrixType la(grid);
 | 
			
		||||
    ComplexD ci(0.0, scale);
 | 
			
		||||
    MatrixType ta;
 | 
			
		||||
 | 
			
		||||
    lie = Zero();
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < AlgebraDimension; a++) {
 | 
			
		||||
      random(pRNG, ca);
 | 
			
		||||
 | 
			
		||||
      ca = (ca + conjugate(ca)) * 0.5;
 | 
			
		||||
      ca = ca - 0.5;
 | 
			
		||||
 | 
			
		||||
      generator(a, ta);
 | 
			
		||||
 | 
			
		||||
      la = ci * ca * ta;
 | 
			
		||||
 | 
			
		||||
      lie = lie + la;  // e^{i la ta}
 | 
			
		||||
    }
 | 
			
		||||
    taExp(lie, out);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void GaussianFundamentalLieAlgebraMatrix(GridParallelRNG &pRNG,
 | 
			
		||||
                                                  LatticeMatrix &out,
 | 
			
		||||
                                                  Real scale = 1.0) {
 | 
			
		||||
    GridBase *grid = out.Grid();
 | 
			
		||||
    LatticeReal ca(grid);
 | 
			
		||||
    LatticeMatrix la(grid);
 | 
			
		||||
    Complex ci(0.0, scale);
 | 
			
		||||
    Matrix ta;
 | 
			
		||||
 | 
			
		||||
    out = Zero();
 | 
			
		||||
    for (int a = 0; a < AlgebraDimension; a++) {
 | 
			
		||||
      gaussian(pRNG, ca);
 | 
			
		||||
      generator(a, ta);
 | 
			
		||||
      la = toComplex(ca) * ta;
 | 
			
		||||
      out += la;
 | 
			
		||||
    }
 | 
			
		||||
    out *= ci;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void FundamentalLieAlgebraMatrix(const LatticeAlgebraVector &h,
 | 
			
		||||
                                          LatticeMatrix &out,
 | 
			
		||||
                                          Real scale = 1.0) {
 | 
			
		||||
    conformable(h, out);
 | 
			
		||||
    GridBase *grid = out.Grid();
 | 
			
		||||
    LatticeMatrix la(grid);
 | 
			
		||||
    Matrix ta;
 | 
			
		||||
 | 
			
		||||
    out = Zero();
 | 
			
		||||
    for (int a = 0; a < AlgebraDimension; a++) {
 | 
			
		||||
      generator(a, ta);
 | 
			
		||||
      la = peekColour(h, a) * timesI(ta) * scale;
 | 
			
		||||
      out += la;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Projects the algebra components a lattice matrix (of dimension ncol*ncol -1
 | 
			
		||||
  // ) inverse operation: FundamentalLieAlgebraMatrix
 | 
			
		||||
  static void projectOnAlgebra(LatticeAlgebraVector &h_out,
 | 
			
		||||
                               const LatticeMatrix &in, Real scale = 1.0) {
 | 
			
		||||
    conformable(h_out, in);
 | 
			
		||||
    h_out = Zero();
 | 
			
		||||
    Matrix Ta;
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < AlgebraDimension; a++) {
 | 
			
		||||
      generator(a, Ta);
 | 
			
		||||
      pokeColour(h_out, -2.0 * (trace(timesI(Ta) * in)) * scale, a);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
   
 | 
			
		||||
  template <class vtype>
 | 
			
		||||
  accelerator_inline static iScalar<vtype> ProjectOnGeneralGroup(const iScalar<vtype> &r) {
 | 
			
		||||
    return ProjectOnGeneralGroup(r, group_name());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <class vtype, int N>
 | 
			
		||||
  accelerator_inline static iVector<vtype,N> ProjectOnGeneralGroup(const iVector<vtype,N> &r) {
 | 
			
		||||
    return ProjectOnGeneralGroup(r, group_name());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
 | 
			
		||||
  accelerator_inline static iMatrix<vtype,N> ProjectOnGeneralGroup(const iMatrix<vtype,N> &arg) {
 | 
			
		||||
    return ProjectOnGeneralGroup(arg, group_name());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <int N,class vComplex_t>                  // Projects on the general groups U(N), Sp(2N)xZ2 i.e. determinant is allowed a complex phase.
 | 
			
		||||
  static void ProjectOnGeneralGroup(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >, Nd> > &U) {
 | 
			
		||||
    for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
      auto Umu = PeekIndex<LorentzIndex>(U, mu);
 | 
			
		||||
      Umu = ProjectOnGeneralGroup(Umu);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
       
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  template <int N,class vComplex_t>
 | 
			
		||||
  static Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > ProjectOnGeneralGroup(const Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu) {
 | 
			
		||||
    return ProjectOnGeneralGroup(Umu, group_name());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <int N,class vComplex_t>       // Projects on SU(N), Sp(2N), with unit determinant, by first projecting on general group and then enforcing unit determinant
 | 
			
		||||
  static void ProjectOnSpecialGroup(Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu) {
 | 
			
		||||
       Umu = ProjectOnGeneralGroup(Umu);
 | 
			
		||||
       auto det = Determinant(Umu);
 | 
			
		||||
 | 
			
		||||
       det = conjugate(det);
 | 
			
		||||
 | 
			
		||||
       for (int i = 0; i < N; i++) {
 | 
			
		||||
           auto element = PeekIndex<ColourIndex>(Umu, N - 1, i);
 | 
			
		||||
           element = element * det;
 | 
			
		||||
           PokeIndex<ColourIndex>(Umu, element, Nc - 1, i);
 | 
			
		||||
       }
 | 
			
		||||
   }
 | 
			
		||||
 | 
			
		||||
  template <int N,class vComplex_t>    // reunitarise, resimplectify... previously ProjectSUn
 | 
			
		||||
    static void ProjectOnSpecialGroup(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >, Nd> > &U) {
 | 
			
		||||
      // Reunitarise
 | 
			
		||||
      for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
        auto Umu = PeekIndex<LorentzIndex>(U, mu);
 | 
			
		||||
        ProjectOnSpecialGroup(Umu);
 | 
			
		||||
        PokeIndex<LorentzIndex>(U, Umu, mu);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
  template <typename GaugeField>
 | 
			
		||||
  static void HotConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
 | 
			
		||||
    typedef typename GaugeField::vector_type vector_type;
 | 
			
		||||
    typedef iGroupMatrix<vector_type> vMatrixType;
 | 
			
		||||
    typedef Lattice<vMatrixType> LatticeMatrixType;
 | 
			
		||||
 | 
			
		||||
    LatticeMatrixType Umu(out.Grid());
 | 
			
		||||
    LatticeMatrixType tmp(out.Grid());
 | 
			
		||||
    for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
      //      LieRandomize(pRNG, Umu, 1.0);
 | 
			
		||||
      //      PokeIndex<LorentzIndex>(out, Umu, mu);
 | 
			
		||||
      gaussian(pRNG,Umu);
 | 
			
		||||
      tmp = Ta(Umu);
 | 
			
		||||
      taExp(tmp,Umu);
 | 
			
		||||
      ProjectOnSpecialGroup(Umu);
 | 
			
		||||
      //      ProjectSUn(Umu);
 | 
			
		||||
      PokeIndex<LorentzIndex>(out, Umu, mu);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  template <typename GaugeField>
 | 
			
		||||
  static void TepidConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
 | 
			
		||||
    typedef typename GaugeField::vector_type vector_type;
 | 
			
		||||
    typedef iGroupMatrix<vector_type> vMatrixType;
 | 
			
		||||
    typedef Lattice<vMatrixType> LatticeMatrixType;
 | 
			
		||||
 | 
			
		||||
    LatticeMatrixType Umu(out.Grid());
 | 
			
		||||
    for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
      LieRandomize(pRNG, Umu, 0.01);
 | 
			
		||||
      PokeIndex<LorentzIndex>(out, Umu, mu);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  template <typename GaugeField>
 | 
			
		||||
  static void ColdConfiguration(GaugeField &out) {
 | 
			
		||||
    typedef typename GaugeField::vector_type vector_type;
 | 
			
		||||
    typedef iGroupMatrix<vector_type> vMatrixType;
 | 
			
		||||
    typedef Lattice<vMatrixType> LatticeMatrixType;
 | 
			
		||||
 | 
			
		||||
    LatticeMatrixType Umu(out.Grid());
 | 
			
		||||
    Umu = 1.0;
 | 
			
		||||
    for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
      PokeIndex<LorentzIndex>(out, Umu, mu);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  template <typename GaugeField>
 | 
			
		||||
  static void ColdConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
 | 
			
		||||
    ColdConfiguration(out);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <typename LatticeMatrixType>
 | 
			
		||||
  static void taProj(const LatticeMatrixType &in, LatticeMatrixType &out) {
 | 
			
		||||
    taProj(in, out, group_name());
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  template <typename LatticeMatrixType>
 | 
			
		||||
  static void taExp(const LatticeMatrixType &x, LatticeMatrixType &ex) {
 | 
			
		||||
    typedef typename LatticeMatrixType::scalar_type ComplexType;
 | 
			
		||||
 | 
			
		||||
    LatticeMatrixType xn(x.Grid());
 | 
			
		||||
    RealD nfac = 1.0;
 | 
			
		||||
 | 
			
		||||
    xn = x;
 | 
			
		||||
    ex = xn + ComplexType(1.0);  // 1+x
 | 
			
		||||
 | 
			
		||||
    // Do a 12th order exponentiation
 | 
			
		||||
    for (int i = 2; i <= 12; ++i) {
 | 
			
		||||
      nfac = nfac / RealD(i);  // 1/2, 1/2.3 ...
 | 
			
		||||
      xn = xn * x;             // x2, x3,x4....
 | 
			
		||||
      ex = ex + xn * nfac;     // x2/2!, x3/3!....
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
// Ta are hermitian (?)
 | 
			
		||||
// Anti herm is i Ta basis
 | 
			
		||||
static void LieAlgebraProject(LatticeAlgebraMatrix &out,const LatticeMatrix &in, int b)
 | 
			
		||||
{
 | 
			
		||||
  conformable(in, out);
 | 
			
		||||
  GridBase *grid = out.Grid();
 | 
			
		||||
  LatticeComplex tmp(grid);
 | 
			
		||||
  Matrix ta;
 | 
			
		||||
  // Using Luchang's projection convention
 | 
			
		||||
  //  2 Tr{Ta Tb} A_b= 2/2 delta ab A_b = A_a
 | 
			
		||||
  autoView(out_v,out,AcceleratorWrite);
 | 
			
		||||
  autoView(in_v,in,AcceleratorRead);
 | 
			
		||||
  int N = ncolour;
 | 
			
		||||
  int NNm1 = N * (N - 1);
 | 
			
		||||
  int hNNm1= NNm1/2;
 | 
			
		||||
  RealD sqrt_2 = sqrt(2.0);
 | 
			
		||||
  Complex ci(0.0,1.0);
 | 
			
		||||
  for(int su2Index=0;su2Index<hNNm1;su2Index++){
 | 
			
		||||
    int i1, i2;
 | 
			
		||||
    su2SubGroupIndex(i1, i2, su2Index);
 | 
			
		||||
    int ax = su2Index*2;
 | 
			
		||||
    int ay = su2Index*2+1;
 | 
			
		||||
    accelerator_for(ss,grid->oSites(),1,{
 | 
			
		||||
	// in is traceless ANTI-hermitian whereas Grid generators are Hermitian.
 | 
			
		||||
	// trace( Ta x Ci in)
 | 
			
		||||
	// Bet I need to move to real part with mult by -i
 | 
			
		||||
	out_v[ss]()()(ax,b) = 0.5*(real(in_v[ss]()()(i2,i1)) - real(in_v[ss]()()(i1,i2)));
 | 
			
		||||
	out_v[ss]()()(ay,b) = 0.5*(imag(in_v[ss]()()(i1,i2)) + imag(in_v[ss]()()(i2,i1)));
 | 
			
		||||
      });
 | 
			
		||||
  }
 | 
			
		||||
  for(int diagIndex=0;diagIndex<N-1;diagIndex++){
 | 
			
		||||
    int k = diagIndex + 1; // diagIndex starts from 0
 | 
			
		||||
    int a = NNm1+diagIndex;
 | 
			
		||||
    RealD scale = 1.0/sqrt(2.0*k*(k+1));
 | 
			
		||||
    accelerator_for(ss,grid->oSites(),vComplex::Nsimd(),{
 | 
			
		||||
	auto tmp = in_v[ss]()()(0,0);
 | 
			
		||||
	for(int i=1;i<k;i++){
 | 
			
		||||
	  tmp=tmp+in_v[ss]()()(i,i);
 | 
			
		||||
	}
 | 
			
		||||
	tmp = tmp - in_v[ss]()()(k,k)*k;
 | 
			
		||||
	out_v[ss]()()(a,b) =imag(tmp) * scale;
 | 
			
		||||
      });
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
};
 | 
			
		||||
    
 | 
			
		||||
template <int ncolour>
 | 
			
		||||
using SU = GaugeGroup<ncolour, GroupName::SU>;
 | 
			
		||||
 | 
			
		||||
template <int ncolour>
 | 
			
		||||
using Sp = GaugeGroup<ncolour, GroupName::Sp>;
 | 
			
		||||
 | 
			
		||||
typedef SU<2> SU2;
 | 
			
		||||
typedef SU<3> SU3;
 | 
			
		||||
typedef SU<4> SU4;
 | 
			
		||||
typedef SU<5> SU5;
 | 
			
		||||
 | 
			
		||||
typedef SU<Nc> FundamentalMatrices;
 | 
			
		||||
    
 | 
			
		||||
typedef Sp<2> Sp2;
 | 
			
		||||
typedef Sp<4> Sp4;
 | 
			
		||||
typedef Sp<6> Sp6;
 | 
			
		||||
typedef Sp<8> Sp8;
 | 
			
		||||
 | 
			
		||||
template <int N,class vComplex_t>
 | 
			
		||||
static void ProjectSUn(Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu)
 | 
			
		||||
{
 | 
			
		||||
    GaugeGroup<N,GroupName::SU>::ProjectOnSpecialGroup(Umu);
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
template <int N,class vComplex_t>
 | 
			
		||||
static void ProjectSUn(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >,Nd> > &U)
 | 
			
		||||
{
 | 
			
		||||
    GaugeGroup<N,GroupName::SU>::ProjectOnSpecialGroup(U);
 | 
			
		||||
}
 | 
			
		||||
    
 | 
			
		||||
template <int N,class vComplex_t>
 | 
			
		||||
static void ProjectSpn(Lattice<iScalar<iScalar<iMatrix<vComplex_t, N> > > > &Umu)
 | 
			
		||||
{
 | 
			
		||||
    GaugeGroup<N,GroupName::Sp>::ProjectOnSpecialGroup(Umu);
 | 
			
		||||
}
 | 
			
		||||
    
 | 
			
		||||
template <int N,class vComplex_t>
 | 
			
		||||
static void ProjectSpn(Lattice<iVector<iScalar<iMatrix<vComplex_t, N> >,Nd> > &U)
 | 
			
		||||
{
 | 
			
		||||
    GaugeGroup<N,GroupName::Sp>::ProjectOnSpecialGroup(U);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Explicit specialisation for SU(3).
 | 
			
		||||
static void ProjectSU3(Lattice<iScalar<iScalar<iMatrix<vComplexD, 3> > > > &Umu)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid = Umu.Grid();
 | 
			
		||||
  const int x = 0;
 | 
			
		||||
  const int y = 1;
 | 
			
		||||
  const int z = 2;
 | 
			
		||||
  // Reunitarise
 | 
			
		||||
  Umu = ProjectOnGroup(Umu);
 | 
			
		||||
  autoView(Umu_v, Umu, CpuWrite);
 | 
			
		||||
  thread_for(ss, grid->oSites(), {
 | 
			
		||||
    auto cm = Umu_v[ss];
 | 
			
		||||
    cm()()(2, x) = adj(cm()()(0, y) * cm()()(1, z) -
 | 
			
		||||
                       cm()()(0, z) * cm()()(1, y));  // x= yz-zy
 | 
			
		||||
    cm()()(2, y) = adj(cm()()(0, z) * cm()()(1, x) -
 | 
			
		||||
                       cm()()(0, x) * cm()()(1, z));  // y= zx-xz
 | 
			
		||||
    cm()()(2, z) = adj(cm()()(0, x) * cm()()(1, y) -
 | 
			
		||||
                       cm()()(0, y) * cm()()(1, x));  // z= xy-yx
 | 
			
		||||
    Umu_v[ss] = cm;
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
static void ProjectSU3(Lattice<iVector<iScalar<iMatrix<vComplexD, 3> >, Nd> > &U)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid = U.Grid();
 | 
			
		||||
  // Reunitarise
 | 
			
		||||
  for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
    auto Umu = PeekIndex<LorentzIndex>(U, mu);
 | 
			
		||||
    Umu = ProjectOnGroup(Umu);
 | 
			
		||||
    ProjectSU3(Umu);
 | 
			
		||||
    PokeIndex<LorentzIndex>(U, Umu, mu);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,371 +0,0 @@
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
//
 | 
			
		||||
// * Two index representation generators
 | 
			
		||||
//
 | 
			
		||||
// * Normalisation for the fundamental generators:
 | 
			
		||||
//   trace ta tb = 1/2 delta_ab = T_F delta_ab
 | 
			
		||||
//   T_F = 1/2  for SU(N) groups
 | 
			
		||||
//
 | 
			
		||||
//
 | 
			
		||||
//   base for NxN two index (anti-symmetric) matrices
 | 
			
		||||
//   normalized to 1 (d_ij is the kroenecker delta)
 | 
			
		||||
//
 | 
			
		||||
//   (e^(ij)_{kl} = 1 / sqrt(2) (d_ik d_jl +/- d_jk d_il)
 | 
			
		||||
//
 | 
			
		||||
//   Then the generators are written as
 | 
			
		||||
//
 | 
			
		||||
//   (iT_a)^(ij)(lk) = i * ( tr[e^(ij)^dag e^(lk) T^trasp_a] +
 | 
			
		||||
//   tr[e^(lk)e^(ij)^dag T_a] )  //
 | 
			
		||||
//
 | 
			
		||||
//
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
// Authors: David Preti, Guido Cossu
 | 
			
		||||
 | 
			
		||||
#ifndef QCD_UTIL_GAUGEGROUPTWOINDEX_H
 | 
			
		||||
#define QCD_UTIL_GAUGEGROUPTWOINDEX_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
enum TwoIndexSymmetry { Symmetric = 1, AntiSymmetric = -1 };
 | 
			
		||||
 | 
			
		||||
constexpr inline Real delta(int a, int b) { return (a == b) ? 1.0 : 0.0; }
 | 
			
		||||
 | 
			
		||||
namespace detail {
 | 
			
		||||
 | 
			
		||||
template <class cplx, int nc, TwoIndexSymmetry S>
 | 
			
		||||
struct baseOffDiagonalSpHelper;
 | 
			
		||||
 | 
			
		||||
template <class cplx, int nc>
 | 
			
		||||
struct baseOffDiagonalSpHelper<cplx, nc, AntiSymmetric> {
 | 
			
		||||
  static const int ngroup = nc / 2;
 | 
			
		||||
  static void baseOffDiagonalSp(int i, int j, iScalar<iScalar<iMatrix<cplx, nc> > > &eij) {
 | 
			
		||||
    eij = Zero();
 | 
			
		||||
    RealD tmp;
 | 
			
		||||
 | 
			
		||||
    if ((i == ngroup + j) && (1 <= j) && (j < ngroup)) {
 | 
			
		||||
      for (int k = 0; k < j+1; k++) {
 | 
			
		||||
        if (k < j) {
 | 
			
		||||
          tmp = 1 / sqrt(j * (j + 1));
 | 
			
		||||
          eij()()(k, k + ngroup) = tmp;
 | 
			
		||||
          eij()()(k + ngroup, k) = -tmp;
 | 
			
		||||
        }
 | 
			
		||||
        if (k == j) {
 | 
			
		||||
          tmp = -j / sqrt(j * (j + 1));
 | 
			
		||||
          eij()()(k, k + ngroup) = tmp;
 | 
			
		||||
          eij()()(k + ngroup, k) = -tmp;
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    else if (i != ngroup + j) {
 | 
			
		||||
      for (int k = 0; k < nc; k++)
 | 
			
		||||
        for (int l = 0; l < nc; l++) {
 | 
			
		||||
          eij()()(l, k) =
 | 
			
		||||
              delta(i, k) * delta(j, l) - delta(j, k) * delta(i, l);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    RealD nrm = 1. / std::sqrt(2.0);
 | 
			
		||||
    eij = eij * nrm;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <class cplx, int nc>
 | 
			
		||||
struct baseOffDiagonalSpHelper<cplx, nc, Symmetric> {
 | 
			
		||||
  static void baseOffDiagonalSp(int i, int j, iScalar<iScalar<iMatrix<cplx, nc> > > &eij) {
 | 
			
		||||
    eij = Zero();
 | 
			
		||||
    for (int k = 0; k < nc; k++)
 | 
			
		||||
      for (int l = 0; l < nc; l++)
 | 
			
		||||
        eij()()(l, k) =
 | 
			
		||||
            delta(i, k) * delta(j, l) + delta(j, k) * delta(i, l);
 | 
			
		||||
 | 
			
		||||
    RealD nrm = 1. / std::sqrt(2.0);
 | 
			
		||||
    eij = eij * nrm;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
}   // closing detail namespace
 | 
			
		||||
 | 
			
		||||
template <int ncolour, TwoIndexSymmetry S, class group_name>
 | 
			
		||||
class GaugeGroupTwoIndex : public GaugeGroup<ncolour, group_name> {
 | 
			
		||||
 public:
 | 
			
		||||
  // The chosen convention is that we are taking ncolour to be N in SU<N> but 2N
 | 
			
		||||
  // in Sp(2N). ngroup is equal to N for SU but 2N/2 = N for Sp(2N).
 | 
			
		||||
  static_assert(std::is_same<group_name, GroupName::SU>::value or
 | 
			
		||||
                    std::is_same<group_name, GroupName::Sp>::value,
 | 
			
		||||
                "ngroup is only implemented for SU and Sp currently.");
 | 
			
		||||
  static const int ngroup =
 | 
			
		||||
      std::is_same<group_name, GroupName::SU>::value ? ncolour : ncolour / 2;
 | 
			
		||||
  static const int Dimension =
 | 
			
		||||
      (ncolour * (ncolour + S) / 2) + (std::is_same<group_name, GroupName::Sp>::value ? (S - 1) / 2 : 0);
 | 
			
		||||
  static const int DimensionAS =
 | 
			
		||||
      (ncolour * (ncolour - 1) / 2) + (std::is_same<group_name, GroupName::Sp>::value ? (- 1) : 0);
 | 
			
		||||
  static const int DimensionS =
 | 
			
		||||
      ncolour * (ncolour + 1) / 2;
 | 
			
		||||
  static const int NumGenerators =
 | 
			
		||||
      GaugeGroup<ncolour, group_name>::AlgebraDimension;
 | 
			
		||||
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iGroupTwoIndexMatrix = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
 | 
			
		||||
 | 
			
		||||
  typedef iGroupTwoIndexMatrix<Complex> TIMatrix;
 | 
			
		||||
  typedef iGroupTwoIndexMatrix<ComplexF> TIMatrixF;
 | 
			
		||||
  typedef iGroupTwoIndexMatrix<ComplexD> TIMatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef iGroupTwoIndexMatrix<vComplex> vTIMatrix;
 | 
			
		||||
  typedef iGroupTwoIndexMatrix<vComplexF> vTIMatrixF;
 | 
			
		||||
  typedef iGroupTwoIndexMatrix<vComplexD> vTIMatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<vTIMatrix> LatticeTwoIndexMatrix;
 | 
			
		||||
  typedef Lattice<vTIMatrixF> LatticeTwoIndexMatrixF;
 | 
			
		||||
  typedef Lattice<vTIMatrixD> LatticeTwoIndexMatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<iVector<iScalar<iMatrix<vComplex, Dimension> >, Nd> >
 | 
			
		||||
      LatticeTwoIndexField;
 | 
			
		||||
  typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> >
 | 
			
		||||
      LatticeTwoIndexFieldF;
 | 
			
		||||
  typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> >
 | 
			
		||||
      LatticeTwoIndexFieldD;
 | 
			
		||||
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iGroupMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
 | 
			
		||||
 | 
			
		||||
  typedef iGroupMatrix<Complex> Matrix;
 | 
			
		||||
  typedef iGroupMatrix<ComplexF> MatrixF;
 | 
			
		||||
  typedef iGroupMatrix<ComplexD> MatrixD;
 | 
			
		||||
    
 | 
			
		||||
private:
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void baseDiagonal(int Index, iGroupMatrix<cplx> &eij) {
 | 
			
		||||
    eij = Zero();
 | 
			
		||||
    eij()()(Index - ncolour * (ncolour - 1) / 2,
 | 
			
		||||
            Index - ncolour * (ncolour - 1) / 2) = 1.0;
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void baseOffDiagonal(int i, int j, iGroupMatrix<cplx> &eij, GroupName::SU) {
 | 
			
		||||
    eij = Zero();
 | 
			
		||||
    for (int k = 0; k < ncolour; k++)
 | 
			
		||||
      for (int l = 0; l < ncolour; l++)
 | 
			
		||||
        eij()()(l, k) =
 | 
			
		||||
            delta(i, k) * delta(j, l) + S * delta(j, k) * delta(i, l);
 | 
			
		||||
 | 
			
		||||
    RealD nrm = 1. / std::sqrt(2.0);
 | 
			
		||||
    eij = eij * nrm;
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void baseOffDiagonal(int i, int j, iGroupMatrix<cplx> &eij, GroupName::Sp) {
 | 
			
		||||
    detail::baseOffDiagonalSpHelper<cplx, ncolour, S>::baseOffDiagonalSp(i, j, eij);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
    
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void base(int Index, iGroupMatrix<cplx> &eij) {
 | 
			
		||||
  // returns (e)^(ij)_{kl} necessary for change of base U_F -> U_R
 | 
			
		||||
    assert(Index < Dimension);
 | 
			
		||||
    eij = Zero();
 | 
			
		||||
  // for the linearisation of the 2 indexes
 | 
			
		||||
    static int a[ncolour * (ncolour - 1) / 2][2];  // store the a <-> i,j
 | 
			
		||||
    static bool filled = false;
 | 
			
		||||
    if (!filled) {
 | 
			
		||||
      int counter = 0;
 | 
			
		||||
      for (int i = 1; i < ncolour; i++) {
 | 
			
		||||
      for (int j = 0; j < i; j++) {
 | 
			
		||||
        if (std::is_same<group_name, GroupName::Sp>::value)
 | 
			
		||||
          {
 | 
			
		||||
            if (j==0 && i==ngroup+j && S==-1) {
 | 
			
		||||
            //std::cout << "skipping" << std::endl; // for Sp2n this vanishes identically.
 | 
			
		||||
              j = j+1;
 | 
			
		||||
            }
 | 
			
		||||
          }
 | 
			
		||||
          a[counter][0] = i;
 | 
			
		||||
          a[counter][1] = j;
 | 
			
		||||
          counter++;
 | 
			
		||||
          }
 | 
			
		||||
      }
 | 
			
		||||
      filled = true;
 | 
			
		||||
    }
 | 
			
		||||
    if (Index < ncolour*ncolour - DimensionS)
 | 
			
		||||
    {
 | 
			
		||||
      baseOffDiagonal(a[Index][0], a[Index][1], eij, group_name());
 | 
			
		||||
    } else {
 | 
			
		||||
      baseDiagonal(Index, eij);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  static void printBase(void) {
 | 
			
		||||
    for (int gen = 0; gen < Dimension; gen++) {
 | 
			
		||||
      Matrix tmp;
 | 
			
		||||
      base(gen, tmp);
 | 
			
		||||
      std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
 | 
			
		||||
                << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << tmp << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void generator(int Index, iGroupTwoIndexMatrix<cplx> &i2indTa) {
 | 
			
		||||
    Vector<iGroupMatrix<cplx> > ta(NumGenerators);
 | 
			
		||||
    Vector<iGroupMatrix<cplx> > eij(Dimension);
 | 
			
		||||
    iGroupMatrix<cplx> tmp;
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < NumGenerators; a++)
 | 
			
		||||
      GaugeGroup<ncolour, group_name>::generator(a, ta[a]);
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < Dimension; a++) base(a, eij[a]);
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < Dimension; a++) {
 | 
			
		||||
      tmp = transpose(eij[a]*ta[Index]) + transpose(eij[a]) * ta[Index];
 | 
			
		||||
      for (int b = 0; b < Dimension; b++) {
 | 
			
		||||
        Complex iTr = TensorRemove(timesI(trace(tmp * eij[b])));
 | 
			
		||||
        i2indTa()()(a, b) = iTr;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void printGenerators(void) {
 | 
			
		||||
    for (int gen = 0; gen < NumGenerators; gen++) {
 | 
			
		||||
      TIMatrix i2indTa;
 | 
			
		||||
      generator(gen, i2indTa);
 | 
			
		||||
      std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
 | 
			
		||||
                << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << i2indTa << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void testGenerators(void) {
 | 
			
		||||
    TIMatrix i2indTa, i2indTb;
 | 
			
		||||
    std::cout << GridLogMessage << "2IndexRep - Checking if traceless"
 | 
			
		||||
              << std::endl;
 | 
			
		||||
    for (int a = 0; a < NumGenerators; a++) {
 | 
			
		||||
      generator(a, i2indTa);
 | 
			
		||||
      std::cout << GridLogMessage << a << std::endl;
 | 
			
		||||
      assert(norm2(trace(i2indTa)) < 1.0e-6);
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "2IndexRep - Checking if antihermitean"
 | 
			
		||||
              << std::endl;
 | 
			
		||||
    for (int a = 0; a < NumGenerators; a++) {
 | 
			
		||||
      generator(a, i2indTa);
 | 
			
		||||
      std::cout << GridLogMessage << a << std::endl;
 | 
			
		||||
      assert(norm2(adj(i2indTa) + i2indTa) < 1.0e-6);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage
 | 
			
		||||
              << "2IndexRep - Checking Tr[Ta*Tb]=delta(a,b)*(N +- 2)/2"
 | 
			
		||||
              << std::endl;
 | 
			
		||||
    for (int a = 0; a < NumGenerators; a++) {
 | 
			
		||||
      for (int b = 0; b < NumGenerators; b++) {
 | 
			
		||||
        generator(a, i2indTa);
 | 
			
		||||
        generator(b, i2indTb);
 | 
			
		||||
 | 
			
		||||
        // generator returns iTa, so we need a minus sign here
 | 
			
		||||
        Complex Tr = -TensorRemove(trace(i2indTa * i2indTb));
 | 
			
		||||
        std::cout << GridLogMessage << "a=" << a << "b=" << b << "Tr=" << Tr
 | 
			
		||||
                  << std::endl;
 | 
			
		||||
        if (a == b) {
 | 
			
		||||
          assert(real(Tr) - ((ncolour + S * 2) * 0.5) < 1e-8);
 | 
			
		||||
        } else {
 | 
			
		||||
          assert(real(Tr) < 1e-8);
 | 
			
		||||
        }
 | 
			
		||||
        assert(imag(Tr) < 1e-8);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void TwoIndexLieAlgebraMatrix(
 | 
			
		||||
      const typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h,
 | 
			
		||||
      LatticeTwoIndexMatrix &out, Real scale = 1.0) {
 | 
			
		||||
    conformable(h, out);
 | 
			
		||||
    GridBase *grid = out.Grid();
 | 
			
		||||
    LatticeTwoIndexMatrix la(grid);
 | 
			
		||||
    TIMatrix i2indTa;
 | 
			
		||||
 | 
			
		||||
    out = Zero();
 | 
			
		||||
    for (int a = 0; a < NumGenerators; a++) {
 | 
			
		||||
      generator(a, i2indTa);
 | 
			
		||||
      la = peekColour(h, a) * i2indTa;
 | 
			
		||||
      out += la;
 | 
			
		||||
    }
 | 
			
		||||
    out *= scale;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Projects the algebra components
 | 
			
		||||
  // of a lattice matrix ( of dimension ncol*ncol -1 )
 | 
			
		||||
  static void projectOnAlgebra(
 | 
			
		||||
      typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h_out,
 | 
			
		||||
      const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
 | 
			
		||||
    conformable(h_out, in);
 | 
			
		||||
    h_out = Zero();
 | 
			
		||||
    TIMatrix i2indTa;
 | 
			
		||||
    Real coefficient = -2.0 / (ncolour + 2 * S) * scale;
 | 
			
		||||
    // 2/(Nc +/- 2) for the normalization of the trace in the two index rep
 | 
			
		||||
    for (int a = 0; a < NumGenerators; a++) {
 | 
			
		||||
      generator(a, i2indTa);
 | 
			
		||||
      pokeColour(h_out, real(trace(i2indTa * in)) * coefficient, a);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // a projector that keeps the generators stored to avoid the overhead of
 | 
			
		||||
  // recomputing them
 | 
			
		||||
  static void projector(
 | 
			
		||||
      typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h_out,
 | 
			
		||||
      const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
 | 
			
		||||
    conformable(h_out, in);
 | 
			
		||||
    // to store the generators
 | 
			
		||||
    static std::vector<TIMatrix> i2indTa(NumGenerators);
 | 
			
		||||
    h_out = Zero();
 | 
			
		||||
    static bool precalculated = false;
 | 
			
		||||
    if (!precalculated) {
 | 
			
		||||
      precalculated = true;
 | 
			
		||||
      for (int a = 0; a < NumGenerators; a++) generator(a, i2indTa[a]);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    Real coefficient =
 | 
			
		||||
        -2.0 / (ncolour + 2 * S) * scale;  // 2/(Nc +/- 2) for the normalization
 | 
			
		||||
    // of the trace in the two index rep
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < NumGenerators; a++) {
 | 
			
		||||
      auto tmp = real(trace(i2indTa[a] * in)) * coefficient;
 | 
			
		||||
      pokeColour(h_out, tmp, a);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <int ncolour, TwoIndexSymmetry S>
 | 
			
		||||
using SU_TwoIndex = GaugeGroupTwoIndex<ncolour, S, GroupName::SU>;
 | 
			
		||||
 | 
			
		||||
// Some useful type names
 | 
			
		||||
typedef SU_TwoIndex<Nc, Symmetric> TwoIndexSymmMatrices;
 | 
			
		||||
typedef SU_TwoIndex<Nc, AntiSymmetric> TwoIndexAntiSymmMatrices;
 | 
			
		||||
 | 
			
		||||
typedef SU_TwoIndex<2, Symmetric> SU2TwoIndexSymm;
 | 
			
		||||
typedef SU_TwoIndex<3, Symmetric> SU3TwoIndexSymm;
 | 
			
		||||
typedef SU_TwoIndex<4, Symmetric> SU4TwoIndexSymm;
 | 
			
		||||
typedef SU_TwoIndex<5, Symmetric> SU5TwoIndexSymm;
 | 
			
		||||
 | 
			
		||||
typedef SU_TwoIndex<2, AntiSymmetric> SU2TwoIndexAntiSymm;
 | 
			
		||||
typedef SU_TwoIndex<3, AntiSymmetric> SU3TwoIndexAntiSymm;
 | 
			
		||||
typedef SU_TwoIndex<4, AntiSymmetric> SU4TwoIndexAntiSymm;
 | 
			
		||||
typedef SU_TwoIndex<5, AntiSymmetric> SU5TwoIndexAntiSymm;
 | 
			
		||||
 | 
			
		||||
template <int ncolour, TwoIndexSymmetry S>
 | 
			
		||||
using Sp_TwoIndex = GaugeGroupTwoIndex<ncolour, S, GroupName::Sp>;
 | 
			
		||||
 | 
			
		||||
typedef Sp_TwoIndex<Nc, Symmetric> SpTwoIndexSymmMatrices;
 | 
			
		||||
typedef Sp_TwoIndex<Nc, AntiSymmetric> SpTwoIndexAntiSymmMatrices;
 | 
			
		||||
 | 
			
		||||
typedef Sp_TwoIndex<2, Symmetric> Sp2TwoIndexSymm;
 | 
			
		||||
typedef Sp_TwoIndex<4, Symmetric> Sp4TwoIndexSymm;
 | 
			
		||||
 | 
			
		||||
typedef Sp_TwoIndex<4, AntiSymmetric> Sp4TwoIndexAntiSymm;
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
							
								
								
									
										930
									
								
								Grid/qcd/utils/SUn.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										930
									
								
								Grid/qcd/utils/SUn.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,930 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/utils/SUn.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: neo <cossu@post.kek.jp>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
			   /*  END LEGAL */
 | 
			
		||||
#ifndef QCD_UTIL_SUN_H
 | 
			
		||||
#define QCD_UTIL_SUN_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<int N, class Vec>
 | 
			
		||||
Lattice<iScalar<iScalar<iScalar<Vec> > > > Determinant(const Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=Umu.Grid();
 | 
			
		||||
  auto lvol = grid->lSites();
 | 
			
		||||
  Lattice<iScalar<iScalar<iScalar<Vec> > > > ret(grid);
 | 
			
		||||
 | 
			
		||||
  autoView(Umu_v,Umu,CpuRead);
 | 
			
		||||
  autoView(ret_v,ret,CpuWrite);
 | 
			
		||||
  thread_for(site,lvol,{
 | 
			
		||||
    Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
 | 
			
		||||
    Coordinate lcoor;
 | 
			
		||||
    grid->LocalIndexToLocalCoor(site, lcoor);
 | 
			
		||||
    iScalar<iScalar<iMatrix<ComplexD, N> > > Us;
 | 
			
		||||
    peekLocalSite(Us, Umu_v, lcoor);
 | 
			
		||||
    for(int i=0;i<N;i++){
 | 
			
		||||
      for(int j=0;j<N;j++){
 | 
			
		||||
	EigenU(i,j) = Us()()(i,j);
 | 
			
		||||
      }}
 | 
			
		||||
    ComplexD detD  = EigenU.determinant();
 | 
			
		||||
    typename Vec::scalar_type det(detD.real(),detD.imag());
 | 
			
		||||
    pokeLocalSite(det,ret_v,lcoor);
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<int N, class Vec>
 | 
			
		||||
static void ProjectSUn(Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu)
 | 
			
		||||
{
 | 
			
		||||
  Umu      = ProjectOnGroup(Umu);
 | 
			
		||||
  auto det = Determinant(Umu);
 | 
			
		||||
 | 
			
		||||
  det = conjugate(det);
 | 
			
		||||
 | 
			
		||||
  for(int i=0;i<N;i++){
 | 
			
		||||
    auto element = PeekIndex<ColourIndex>(Umu,N-1,i);
 | 
			
		||||
    element = element * det;
 | 
			
		||||
    PokeIndex<ColourIndex>(Umu,element,Nc-1,i);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
template<int N,class Vec>
 | 
			
		||||
static void ProjectSUn(Lattice<iVector<iScalar<iMatrix<Vec, N> >,Nd> > &U)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=U.Grid();
 | 
			
		||||
  // Reunitarise
 | 
			
		||||
  for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
    auto Umu = PeekIndex<LorentzIndex>(U,mu);
 | 
			
		||||
    Umu      = ProjectOnGroup(Umu);
 | 
			
		||||
    ProjectSUn(Umu);
 | 
			
		||||
    PokeIndex<LorentzIndex>(U,Umu,mu);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <int ncolour>
 | 
			
		||||
class SU {
 | 
			
		||||
public:
 | 
			
		||||
  static const int Dimension = ncolour;
 | 
			
		||||
  static const int AdjointDimension = ncolour * ncolour - 1;
 | 
			
		||||
  static int su2subgroups(void) { return (ncolour * (ncolour - 1)) / 2; }
 | 
			
		||||
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iSU2Matrix = iScalar<iScalar<iMatrix<vtype, 2> > >;
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iSUnAlgebraVector =
 | 
			
		||||
    iScalar<iScalar<iVector<vtype, AdjointDimension> > >;
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Types can be accessed as SU<2>::Matrix , SU<2>::vSUnMatrix,
 | 
			
		||||
  // SU<2>::LatticeMatrix etc...
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  typedef iSUnMatrix<Complex> Matrix;
 | 
			
		||||
  typedef iSUnMatrix<ComplexF> MatrixF;
 | 
			
		||||
  typedef iSUnMatrix<ComplexD> MatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef iSUnMatrix<vComplex> vMatrix;
 | 
			
		||||
  typedef iSUnMatrix<vComplexF> vMatrixF;
 | 
			
		||||
  typedef iSUnMatrix<vComplexD> vMatrixD;
 | 
			
		||||
 | 
			
		||||
  // For the projectors to the algebra
 | 
			
		||||
  // these should be real...
 | 
			
		||||
  // keeping complex for consistency with the SIMD vector types
 | 
			
		||||
  typedef iSUnAlgebraVector<Complex> AlgebraVector;
 | 
			
		||||
  typedef iSUnAlgebraVector<ComplexF> AlgebraVectorF;
 | 
			
		||||
  typedef iSUnAlgebraVector<ComplexD> AlgebraVectorD;
 | 
			
		||||
 | 
			
		||||
  typedef iSUnAlgebraVector<vComplex> vAlgebraVector;
 | 
			
		||||
  typedef iSUnAlgebraVector<vComplexF> vAlgebraVectorF;
 | 
			
		||||
  typedef iSUnAlgebraVector<vComplexD> vAlgebraVectorD;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<vMatrix> LatticeMatrix;
 | 
			
		||||
  typedef Lattice<vMatrixF> LatticeMatrixF;
 | 
			
		||||
  typedef Lattice<vMatrixD> LatticeMatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<vAlgebraVector> LatticeAlgebraVector;
 | 
			
		||||
  typedef Lattice<vAlgebraVectorF> LatticeAlgebraVectorF;
 | 
			
		||||
  typedef Lattice<vAlgebraVectorD> LatticeAlgebraVectorD;
 | 
			
		||||
 | 
			
		||||
  typedef iSU2Matrix<Complex> SU2Matrix;
 | 
			
		||||
  typedef iSU2Matrix<ComplexF> SU2MatrixF;
 | 
			
		||||
  typedef iSU2Matrix<ComplexD> SU2MatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef iSU2Matrix<vComplex> vSU2Matrix;
 | 
			
		||||
  typedef iSU2Matrix<vComplexF> vSU2MatrixF;
 | 
			
		||||
  typedef iSU2Matrix<vComplexD> vSU2MatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<vSU2Matrix> LatticeSU2Matrix;
 | 
			
		||||
  typedef Lattice<vSU2MatrixF> LatticeSU2MatrixF;
 | 
			
		||||
  typedef Lattice<vSU2MatrixD> LatticeSU2MatrixD;
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // There are N^2-1 generators for SU(N).
 | 
			
		||||
  //
 | 
			
		||||
  // We take a traceless hermitian generator basis as follows
 | 
			
		||||
  //
 | 
			
		||||
  // * Normalisation: trace ta tb = 1/2 delta_ab = T_F delta_ab
 | 
			
		||||
  //   T_F = 1/2  for SU(N) groups
 | 
			
		||||
  //
 | 
			
		||||
  // * Off diagonal
 | 
			
		||||
  //    - pairs of rows i1,i2 behaving like pauli matrices signma_x, sigma_y
 | 
			
		||||
  //
 | 
			
		||||
  //    - there are (Nc-1-i1) slots for i2 on each row [ x  0  x ]
 | 
			
		||||
  //      direct count off each row
 | 
			
		||||
  //
 | 
			
		||||
  //    - Sum of all pairs is Nc(Nc-1)/2: proof arithmetic series
 | 
			
		||||
  //
 | 
			
		||||
  //      (Nc-1) + (Nc-2)+...  1      ==> Nc*(Nc-1)/2
 | 
			
		||||
  //      1+ 2+          +   + Nc-1
 | 
			
		||||
  //
 | 
			
		||||
  //    - There are 2 x Nc (Nc-1)/ 2 of these = Nc^2 - Nc
 | 
			
		||||
  //
 | 
			
		||||
  //    - We enumerate the row-col pairs.
 | 
			
		||||
  //    - for each row col pair there is a (sigma_x) and a (sigma_y) like
 | 
			
		||||
  //    generator
 | 
			
		||||
  //
 | 
			
		||||
  //
 | 
			
		||||
  //   t^a_ij = { in 0.. Nc(Nc-1)/2 -1} =>  1/2(delta_{i,i1} delta_{j,i2} +
 | 
			
		||||
  //   delta_{i,i1} delta_{j,i2})
 | 
			
		||||
  //   t^a_ij = { in Nc(Nc-1)/2 ... Nc(Nc-1) - 1} =>  i/2( delta_{i,i1}
 | 
			
		||||
  //   delta_{j,i2} - i delta_{i,i1} delta_{j,i2})
 | 
			
		||||
  //
 | 
			
		||||
  // * Diagonal; must be traceless and normalised
 | 
			
		||||
  //   - Sequence is
 | 
			
		||||
  //   N  (1,-1,0,0...)
 | 
			
		||||
  //   N  (1, 1,-2,0...)
 | 
			
		||||
  //   N  (1, 1, 1,-3,0...)
 | 
			
		||||
  //   N  (1, 1, 1, 1,-4,0...)
 | 
			
		||||
  //
 | 
			
		||||
  //   where 1/2 = N^2 (1+.. m^2)etc.... for the m-th diagonal generator
 | 
			
		||||
  //   NB this gives the famous SU3 result for su2 index 8
 | 
			
		||||
  //
 | 
			
		||||
  //   N= sqrt(1/2 . 1/6 ) = 1/2 . 1/sqrt(3)
 | 
			
		||||
  //
 | 
			
		||||
  //   ( 1      )
 | 
			
		||||
  //   (    1   ) / sqrt(3) /2  = 1/2 lambda_8
 | 
			
		||||
  //   (      -2)
 | 
			
		||||
  //
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void generator(int lieIndex, iSUnMatrix<cplx> &ta) {
 | 
			
		||||
    // map lie index to which type of generator
 | 
			
		||||
    int diagIndex;
 | 
			
		||||
    int su2Index;
 | 
			
		||||
    int sigxy;
 | 
			
		||||
    int NNm1 = ncolour * (ncolour - 1);
 | 
			
		||||
    if (lieIndex >= NNm1) {
 | 
			
		||||
      diagIndex = lieIndex - NNm1;
 | 
			
		||||
      generatorDiagonal(diagIndex, ta);
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
    sigxy = lieIndex & 0x1;  // even or odd
 | 
			
		||||
    su2Index = lieIndex >> 1;
 | 
			
		||||
    if (sigxy)
 | 
			
		||||
      generatorSigmaY(su2Index, ta);
 | 
			
		||||
    else
 | 
			
		||||
      generatorSigmaX(su2Index, ta);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void generatorSigmaY(int su2Index, iSUnMatrix<cplx> &ta) {
 | 
			
		||||
    ta = Zero();
 | 
			
		||||
    int i1, i2;
 | 
			
		||||
    su2SubGroupIndex(i1, i2, su2Index);
 | 
			
		||||
    ta()()(i1, i2) = 1.0;
 | 
			
		||||
    ta()()(i2, i1) = 1.0;
 | 
			
		||||
    ta = ta * 0.5;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void generatorSigmaX(int su2Index, iSUnMatrix<cplx> &ta) {
 | 
			
		||||
    ta = Zero();
 | 
			
		||||
    cplx i(0.0, 1.0);
 | 
			
		||||
    int i1, i2;
 | 
			
		||||
    su2SubGroupIndex(i1, i2, su2Index);
 | 
			
		||||
    ta()()(i1, i2) = i;
 | 
			
		||||
    ta()()(i2, i1) = -i;
 | 
			
		||||
    ta = ta * 0.5;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void generatorDiagonal(int diagIndex, iSUnMatrix<cplx> &ta) {
 | 
			
		||||
    // diag ({1, 1, ..., 1}(k-times), -k, 0, 0, ...)
 | 
			
		||||
    ta = Zero();
 | 
			
		||||
    int k = diagIndex + 1;                  // diagIndex starts from 0
 | 
			
		||||
    for (int i = 0; i <= diagIndex; i++) {  // k iterations
 | 
			
		||||
      ta()()(i, i) = 1.0;
 | 
			
		||||
    }
 | 
			
		||||
    ta()()(k, k) = -k;  // indexing starts from 0
 | 
			
		||||
    RealD nrm = 1.0 / std::sqrt(2.0 * k * (k + 1));
 | 
			
		||||
    ta = ta * nrm;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Map a su2 subgroup number to the pair of rows that are non zero
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  static void su2SubGroupIndex(int &i1, int &i2, int su2_index) {
 | 
			
		||||
    assert((su2_index >= 0) && (su2_index < (ncolour * (ncolour - 1)) / 2));
 | 
			
		||||
 | 
			
		||||
    int spare = su2_index;
 | 
			
		||||
    for (i1 = 0; spare >= (ncolour - 1 - i1); i1++) {
 | 
			
		||||
      spare = spare - (ncolour - 1 - i1);  // remove the Nc-1-i1 terms
 | 
			
		||||
    }
 | 
			
		||||
    i2 = i1 + 1 + spare;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Pull out a subgroup and project on to real coeffs x pauli basis
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  template <class vcplx>
 | 
			
		||||
  static void su2Extract(Lattice<iSinglet<vcplx> > &Determinant,
 | 
			
		||||
                         Lattice<iSU2Matrix<vcplx> > &subgroup,
 | 
			
		||||
                         const Lattice<iSUnMatrix<vcplx> > &source,
 | 
			
		||||
                         int su2_index) {
 | 
			
		||||
    GridBase *grid(source.Grid());
 | 
			
		||||
    conformable(subgroup, source);
 | 
			
		||||
    conformable(subgroup, Determinant);
 | 
			
		||||
    int i0, i1;
 | 
			
		||||
    su2SubGroupIndex(i0, i1, su2_index);
 | 
			
		||||
 | 
			
		||||
    autoView( subgroup_v , subgroup,AcceleratorWrite);
 | 
			
		||||
    autoView( source_v   , source,AcceleratorRead);
 | 
			
		||||
    autoView( Determinant_v , Determinant,AcceleratorWrite);
 | 
			
		||||
    accelerator_for(ss, grid->oSites(), 1, {
 | 
			
		||||
 | 
			
		||||
      subgroup_v[ss]()()(0, 0) = source_v[ss]()()(i0, i0);
 | 
			
		||||
      subgroup_v[ss]()()(0, 1) = source_v[ss]()()(i0, i1);
 | 
			
		||||
      subgroup_v[ss]()()(1, 0) = source_v[ss]()()(i1, i0);
 | 
			
		||||
      subgroup_v[ss]()()(1, 1) = source_v[ss]()()(i1, i1);
 | 
			
		||||
 | 
			
		||||
      iSU2Matrix<vcplx> Sigma = subgroup_v[ss];
 | 
			
		||||
 | 
			
		||||
      Sigma = Sigma - adj(Sigma) + trace(adj(Sigma));
 | 
			
		||||
 | 
			
		||||
      subgroup_v[ss] = Sigma;
 | 
			
		||||
 | 
			
		||||
      // this should be purely real
 | 
			
		||||
      Determinant_v[ss] =
 | 
			
		||||
	Sigma()()(0, 0) * Sigma()()(1, 1) - Sigma()()(0, 1) * Sigma()()(1, 0);
 | 
			
		||||
    });
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Set matrix to one and insert a pauli subgroup
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  template <class vcplx>
 | 
			
		||||
  static void su2Insert(const Lattice<iSU2Matrix<vcplx> > &subgroup,
 | 
			
		||||
                        Lattice<iSUnMatrix<vcplx> > &dest, int su2_index) {
 | 
			
		||||
    GridBase *grid(dest.Grid());
 | 
			
		||||
    conformable(subgroup, dest);
 | 
			
		||||
    int i0, i1;
 | 
			
		||||
    su2SubGroupIndex(i0, i1, su2_index);
 | 
			
		||||
 | 
			
		||||
    dest = 1.0;  // start out with identity
 | 
			
		||||
    autoView( dest_v , dest, AcceleratorWrite);
 | 
			
		||||
    autoView( subgroup_v, subgroup, AcceleratorRead);
 | 
			
		||||
    accelerator_for(ss, grid->oSites(),1,
 | 
			
		||||
    {
 | 
			
		||||
      dest_v[ss]()()(i0, i0) = subgroup_v[ss]()()(0, 0);
 | 
			
		||||
      dest_v[ss]()()(i0, i1) = subgroup_v[ss]()()(0, 1);
 | 
			
		||||
      dest_v[ss]()()(i1, i0) = subgroup_v[ss]()()(1, 0);
 | 
			
		||||
      dest_v[ss]()()(i1, i1) = subgroup_v[ss]()()(1, 1);
 | 
			
		||||
    });
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////
 | 
			
		||||
  // Generate e^{ Re Tr Staple Link} dlink
 | 
			
		||||
  //
 | 
			
		||||
  // *** Note Staple should be appropriate linear compbination between all
 | 
			
		||||
  // staples.
 | 
			
		||||
  // *** If already by beta pass coefficient 1.0.
 | 
			
		||||
  // *** This routine applies the additional 1/Nc factor that comes after trace
 | 
			
		||||
  // in action.
 | 
			
		||||
  //
 | 
			
		||||
  ///////////////////////////////////////////////
 | 
			
		||||
  static void SubGroupHeatBath(GridSerialRNG &sRNG, GridParallelRNG &pRNG,
 | 
			
		||||
			       RealD beta,  // coeff multiplying staple in action (with no 1/Nc)
 | 
			
		||||
			       LatticeMatrix &link,
 | 
			
		||||
			       const LatticeMatrix &barestaple,  // multiplied by action coeffs so th
 | 
			
		||||
			       int su2_subgroup, int nheatbath, LatticeInteger &wheremask) 
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *grid = link.Grid();
 | 
			
		||||
 | 
			
		||||
    const RealD twopi = 2.0 * M_PI;
 | 
			
		||||
 | 
			
		||||
    LatticeMatrix staple(grid);
 | 
			
		||||
 | 
			
		||||
    staple = barestaple * (beta / ncolour);
 | 
			
		||||
 | 
			
		||||
    LatticeMatrix V(grid);
 | 
			
		||||
    V = link * staple;
 | 
			
		||||
 | 
			
		||||
    // Subgroup manipulation in the lie algebra space
 | 
			
		||||
    LatticeSU2Matrix u(grid);  // Kennedy pendleton "u" real projected normalised Sigma
 | 
			
		||||
    LatticeSU2Matrix uinv(grid);
 | 
			
		||||
    LatticeSU2Matrix ua(grid);  // a in pauli form
 | 
			
		||||
    LatticeSU2Matrix b(grid);   // rotated matrix after hb
 | 
			
		||||
 | 
			
		||||
    // Some handy constant fields
 | 
			
		||||
    LatticeComplex ones(grid);
 | 
			
		||||
    ones = 1.0;
 | 
			
		||||
    LatticeComplex zeros(grid);
 | 
			
		||||
    zeros = Zero();
 | 
			
		||||
    LatticeReal rones(grid);
 | 
			
		||||
    rones = 1.0;
 | 
			
		||||
    LatticeReal rzeros(grid);
 | 
			
		||||
    rzeros = Zero();
 | 
			
		||||
    LatticeComplex udet(grid);  // determinant of real(staple)
 | 
			
		||||
    LatticeInteger mask_true(grid);
 | 
			
		||||
    mask_true = 1;
 | 
			
		||||
    LatticeInteger mask_false(grid);
 | 
			
		||||
    mask_false = 0;
 | 
			
		||||
 | 
			
		||||
    /*
 | 
			
		||||
      PLB 156 P393 (1985) (Kennedy and Pendleton)
 | 
			
		||||
 | 
			
		||||
      Note: absorb "beta" into the def of sigma compared to KP paper; staple
 | 
			
		||||
      passed to this routine has "beta" already multiplied in
 | 
			
		||||
 | 
			
		||||
      Action linear in links h and of form:
 | 
			
		||||
 | 
			
		||||
      beta S = beta  Sum_p (1 - 1/Nc Re Tr Plaq )
 | 
			
		||||
 | 
			
		||||
      Writing Sigma = 1/Nc (beta Sigma') where sum over staples is "Sigma' "
 | 
			
		||||
 | 
			
		||||
      beta S = const - beta/Nc Re Tr h Sigma'
 | 
			
		||||
      = const - Re Tr h Sigma
 | 
			
		||||
 | 
			
		||||
      Decompose h and Sigma into (1, sigma_j) ; h_i real, h^2=1, Sigma_i complex
 | 
			
		||||
      arbitrary.
 | 
			
		||||
 | 
			
		||||
      Tr h Sigma = h_i Sigma_j Tr (sigma_i sigma_j)  = h_i Sigma_j 2 delta_ij
 | 
			
		||||
      Re Tr h Sigma = 2 h_j Re Sigma_j
 | 
			
		||||
 | 
			
		||||
      Normalised re Sigma_j = xi u_j
 | 
			
		||||
 | 
			
		||||
      With u_j a unit vector and U can be in SU(2);
 | 
			
		||||
 | 
			
		||||
      Re Tr h Sigma = 2 h_j Re Sigma_j = 2 xi (h.u)
 | 
			
		||||
 | 
			
		||||
      4xi^2 = Det [ Sig - Sig^dag  + 1 Tr Sigdag]
 | 
			
		||||
      u   = 1/2xi [ Sig - Sig^dag  + 1 Tr Sigdag]
 | 
			
		||||
 | 
			
		||||
      xi = sqrt(Det)/2;
 | 
			
		||||
 | 
			
		||||
      Write a= u h in SU(2); a has pauli decomp a_j;
 | 
			
		||||
 | 
			
		||||
      Note: Product b' xi is unvariant because scaling Sigma leaves
 | 
			
		||||
      normalised vector "u" fixed; Can rescale Sigma so b' = 1.
 | 
			
		||||
    */
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////////////////////
 | 
			
		||||
    // Real part of Pauli decomposition
 | 
			
		||||
    // Note a subgroup can project to zero in cold start
 | 
			
		||||
    ////////////////////////////////////////////////////////
 | 
			
		||||
    su2Extract(udet, u, V, su2_subgroup);
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////
 | 
			
		||||
    // Normalising this vector if possible; else identity
 | 
			
		||||
    //////////////////////////////////////////////////////
 | 
			
		||||
    LatticeComplex xi(grid);
 | 
			
		||||
 | 
			
		||||
    LatticeSU2Matrix lident(grid);
 | 
			
		||||
 | 
			
		||||
    SU2Matrix ident = Complex(1.0);
 | 
			
		||||
    SU2Matrix pauli1;
 | 
			
		||||
    SU<2>::generator(0, pauli1);
 | 
			
		||||
    SU2Matrix pauli2;
 | 
			
		||||
    SU<2>::generator(1, pauli2);
 | 
			
		||||
    SU2Matrix pauli3;
 | 
			
		||||
    SU<2>::generator(2, pauli3);
 | 
			
		||||
    pauli1 = timesI(pauli1) * 2.0;
 | 
			
		||||
    pauli2 = timesI(pauli2) * 2.0;
 | 
			
		||||
    pauli3 = timesI(pauli3) * 2.0;
 | 
			
		||||
 | 
			
		||||
    LatticeComplex cone(grid);
 | 
			
		||||
    LatticeReal adet(grid);
 | 
			
		||||
    adet = abs(toReal(udet));
 | 
			
		||||
    lident = Complex(1.0);
 | 
			
		||||
    cone = Complex(1.0);
 | 
			
		||||
    Real machine_epsilon = 1.0e-7;
 | 
			
		||||
    u = where(adet > machine_epsilon, u, lident);
 | 
			
		||||
    udet = where(adet > machine_epsilon, udet, cone);
 | 
			
		||||
 | 
			
		||||
    xi = 0.5 * sqrt(udet);  // 4xi^2 = Det [ Sig - Sig^dag  + 1 Tr Sigdag]
 | 
			
		||||
    u = 0.5 * u *
 | 
			
		||||
      pow(xi, -1.0);  //  u   = 1/2xi [ Sig - Sig^dag  + 1 Tr Sigdag]
 | 
			
		||||
 | 
			
		||||
    // Debug test for sanity
 | 
			
		||||
    uinv = adj(u);
 | 
			
		||||
    b = u * uinv - 1.0;
 | 
			
		||||
    assert(norm2(b) < 1.0e-4);
 | 
			
		||||
 | 
			
		||||
    /*
 | 
			
		||||
      Measure: Haar measure dh has d^4a delta(1-|a^2|)
 | 
			
		||||
      In polars:
 | 
			
		||||
      da = da0 r^2 sin theta dr dtheta dphi delta( 1 - r^2 -a0^2)
 | 
			
		||||
      = da0 r^2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r)(sqrt(1-a0^) +
 | 
			
		||||
      r) )
 | 
			
		||||
      = da0 r/2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r) )
 | 
			
		||||
 | 
			
		||||
      Action factor Q(h) dh  = e^-S[h]  dh =  e^{  xi Tr uh} dh    // beta enters
 | 
			
		||||
      through xi
 | 
			
		||||
      =  e^{2 xi (h.u)} dh
 | 
			
		||||
      =  e^{2 xi h0u0}.e^{2 xi h1u1}.e^{2 xi
 | 
			
		||||
      h2u2}.e^{2 xi h3u3} dh
 | 
			
		||||
 | 
			
		||||
      Therefore for each site, take xi for that site
 | 
			
		||||
      i) generate  |a0|<1 with dist
 | 
			
		||||
      (1-a0^2)^0.5 e^{2 xi a0 } da0
 | 
			
		||||
 | 
			
		||||
      Take alpha = 2 xi  = 2 xi [ recall 2 beta/Nc unmod staple norm]; hence 2.0/Nc
 | 
			
		||||
      factor in Chroma ]
 | 
			
		||||
      A. Generate two uniformly distributed pseudo-random numbers R and R', R'',
 | 
			
		||||
      R''' in the unit interval;
 | 
			
		||||
      B. Set X = -(ln R)/alpha, X' =-(ln R')/alpha;
 | 
			
		||||
      C. Set C = cos^2(2pi R"), with R" another uniform random number in [0,1] ;
 | 
			
		||||
      D. Set A = XC;
 | 
			
		||||
      E. Let d  = X'+A;
 | 
			
		||||
      F. If R'''^2 :> 1 - 0.5 d,  go back to A;
 | 
			
		||||
      G. Set a0 = 1 - d;
 | 
			
		||||
 | 
			
		||||
      Note that in step D setting B ~ X - A and using B in place of A in step E will
 | 
			
		||||
      generate a second independent a 0 value.
 | 
			
		||||
    */
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////////
 | 
			
		||||
    // count the number of sites by picking "1"'s out of hat
 | 
			
		||||
    /////////////////////////////////////////////////////////
 | 
			
		||||
    Integer hit = 0;
 | 
			
		||||
    LatticeReal rtmp(grid);
 | 
			
		||||
    rtmp = where(wheremask, rones, rzeros);
 | 
			
		||||
    RealD numSites = sum(rtmp);
 | 
			
		||||
    RealD numAccepted;
 | 
			
		||||
    LatticeInteger Accepted(grid);
 | 
			
		||||
    Accepted = Zero();
 | 
			
		||||
    LatticeInteger newlyAccepted(grid);
 | 
			
		||||
 | 
			
		||||
    std::vector<LatticeReal> xr(4, grid);
 | 
			
		||||
    std::vector<LatticeReal> a(4, grid);
 | 
			
		||||
    LatticeReal d(grid);
 | 
			
		||||
    d = Zero();
 | 
			
		||||
    LatticeReal alpha(grid);
 | 
			
		||||
 | 
			
		||||
    //    std::cout<<GridLogMessage<<"xi "<<xi <<std::endl;
 | 
			
		||||
    xi = 2.0 *xi;
 | 
			
		||||
    alpha = toReal(xi);
 | 
			
		||||
 | 
			
		||||
    do {
 | 
			
		||||
      // A. Generate two uniformly distributed pseudo-random numbers R and R',
 | 
			
		||||
      // R'', R''' in the unit interval;
 | 
			
		||||
      random(pRNG, xr[0]);
 | 
			
		||||
      random(pRNG, xr[1]);
 | 
			
		||||
      random(pRNG, xr[2]);
 | 
			
		||||
      random(pRNG, xr[3]);
 | 
			
		||||
 | 
			
		||||
      // B. Set X = - ln R/alpha, X' = -ln R'/alpha
 | 
			
		||||
      xr[1] = -log(xr[1]) / alpha;
 | 
			
		||||
      xr[2] = -log(xr[2]) / alpha;
 | 
			
		||||
 | 
			
		||||
      // C. Set C = cos^2(2piR'')
 | 
			
		||||
      xr[3] = cos(xr[3] * twopi);
 | 
			
		||||
      xr[3] = xr[3] * xr[3];
 | 
			
		||||
 | 
			
		||||
      LatticeReal xrsq(grid);
 | 
			
		||||
 | 
			
		||||
      // D. Set A = XC;
 | 
			
		||||
      // E. Let d  = X'+A;
 | 
			
		||||
      xrsq = xr[2] + xr[1] * xr[3];
 | 
			
		||||
 | 
			
		||||
      d = where(Accepted, d, xr[2] + xr[1] * xr[3]);
 | 
			
		||||
 | 
			
		||||
      // F. If R'''^2 :> 1 - 0.5 d,  go back to A;
 | 
			
		||||
      LatticeReal thresh(grid);
 | 
			
		||||
      thresh = 1.0 - d * 0.5;
 | 
			
		||||
      xrsq = xr[0] * xr[0];
 | 
			
		||||
      LatticeInteger ione(grid);
 | 
			
		||||
      ione = 1;
 | 
			
		||||
      LatticeInteger izero(grid);
 | 
			
		||||
      izero = Zero();
 | 
			
		||||
 | 
			
		||||
      newlyAccepted = where(xrsq < thresh, ione, izero);
 | 
			
		||||
      Accepted = where(newlyAccepted, newlyAccepted, Accepted);
 | 
			
		||||
      Accepted = where(wheremask, Accepted, izero);
 | 
			
		||||
 | 
			
		||||
      // FIXME need an iSum for integer to avoid overload on return type??
 | 
			
		||||
      rtmp = where(Accepted, rones, rzeros);
 | 
			
		||||
      numAccepted = sum(rtmp);
 | 
			
		||||
 | 
			
		||||
      hit++;
 | 
			
		||||
 | 
			
		||||
    } while ((numAccepted < numSites) && (hit < nheatbath));
 | 
			
		||||
 | 
			
		||||
    // G. Set a0 = 1 - d;
 | 
			
		||||
    a[0] = Zero();
 | 
			
		||||
    a[0] = where(wheremask, 1.0 - d, a[0]);
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////
 | 
			
		||||
    //    ii) generate a_i uniform on two sphere radius (1-a0^2)^0.5
 | 
			
		||||
    //////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    LatticeReal a123mag(grid);
 | 
			
		||||
    a123mag = sqrt(abs(1.0 - a[0] * a[0]));
 | 
			
		||||
 | 
			
		||||
    LatticeReal cos_theta(grid);
 | 
			
		||||
    LatticeReal sin_theta(grid);
 | 
			
		||||
    LatticeReal phi(grid);
 | 
			
		||||
 | 
			
		||||
    random(pRNG, phi);
 | 
			
		||||
    phi = phi * twopi;  // uniform in [0,2pi]
 | 
			
		||||
    random(pRNG, cos_theta);
 | 
			
		||||
    cos_theta = (cos_theta * 2.0) - 1.0;  // uniform in [-1,1]
 | 
			
		||||
    sin_theta = sqrt(abs(1.0 - cos_theta * cos_theta));
 | 
			
		||||
 | 
			
		||||
    a[1] = a123mag * sin_theta * cos(phi);
 | 
			
		||||
    a[2] = a123mag * sin_theta * sin(phi);
 | 
			
		||||
    a[3] = a123mag * cos_theta;
 | 
			
		||||
 | 
			
		||||
    ua = toComplex(a[0]) * ident  + toComplex(a[1]) * pauli1 +
 | 
			
		||||
         toComplex(a[2]) * pauli2 + toComplex(a[3]) * pauli3;
 | 
			
		||||
 | 
			
		||||
    b = 1.0;
 | 
			
		||||
    b = where(wheremask, uinv * ua, b);
 | 
			
		||||
    su2Insert(b, V, su2_subgroup);
 | 
			
		||||
 | 
			
		||||
    // mask the assignment back based on Accptance
 | 
			
		||||
    link = where(Accepted, V * link, link);
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////
 | 
			
		||||
    // Debug Checks
 | 
			
		||||
    // SU2 check
 | 
			
		||||
    LatticeSU2Matrix check(grid);  // rotated matrix after hb
 | 
			
		||||
    u = Zero();
 | 
			
		||||
    check = ua * adj(ua) - 1.0;
 | 
			
		||||
    check = where(Accepted, check, u);
 | 
			
		||||
    assert(norm2(check) < 1.0e-4);
 | 
			
		||||
 | 
			
		||||
    check = b * adj(b) - 1.0;
 | 
			
		||||
    check = where(Accepted, check, u);
 | 
			
		||||
    assert(norm2(check) < 1.0e-4);
 | 
			
		||||
 | 
			
		||||
    LatticeMatrix Vcheck(grid);
 | 
			
		||||
    Vcheck = Zero();
 | 
			
		||||
    Vcheck = where(Accepted, V * adj(V) - 1.0, Vcheck);
 | 
			
		||||
    //    std::cout<<GridLogMessage << "SU3 check " <<norm2(Vcheck)<<std::endl;
 | 
			
		||||
    assert(norm2(Vcheck) < 1.0e-4);
 | 
			
		||||
 | 
			
		||||
    // Verify the link stays in SU(3)
 | 
			
		||||
    //    std::cout<<GridLogMessage <<"Checking the modified link"<<std::endl;
 | 
			
		||||
    Vcheck = link * adj(link) - 1.0;
 | 
			
		||||
    assert(norm2(Vcheck) < 1.0e-4);
 | 
			
		||||
    /////////////////////////////////
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void printGenerators(void) {
 | 
			
		||||
    for (int gen = 0; gen < AdjointDimension; gen++) {
 | 
			
		||||
      Matrix ta;
 | 
			
		||||
      generator(gen, ta);
 | 
			
		||||
      std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
 | 
			
		||||
                << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << ta << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  static void testGenerators(void) {
 | 
			
		||||
    Matrix ta;
 | 
			
		||||
    Matrix tb;
 | 
			
		||||
    std::cout << GridLogMessage
 | 
			
		||||
              << "Fundamental - Checking trace ta tb is 0.5 delta_ab"
 | 
			
		||||
              << std::endl;
 | 
			
		||||
    for (int a = 0; a < AdjointDimension; a++) {
 | 
			
		||||
      for (int b = 0; b < AdjointDimension; b++) {
 | 
			
		||||
        generator(a, ta);
 | 
			
		||||
        generator(b, tb);
 | 
			
		||||
        Complex tr = TensorRemove(trace(ta * tb));
 | 
			
		||||
        std::cout << GridLogMessage << "(" << a << "," << b << ") =  " << tr
 | 
			
		||||
                  << std::endl;
 | 
			
		||||
        if (a == b) assert(abs(tr - Complex(0.5)) < 1.0e-6);
 | 
			
		||||
        if (a != b) assert(abs(tr) < 1.0e-6);
 | 
			
		||||
      }
 | 
			
		||||
      std::cout << GridLogMessage << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << "Fundamental - Checking if hermitian"
 | 
			
		||||
              << std::endl;
 | 
			
		||||
    for (int a = 0; a < AdjointDimension; a++) {
 | 
			
		||||
      generator(a, ta);
 | 
			
		||||
      std::cout << GridLogMessage << a << std::endl;
 | 
			
		||||
      assert(norm2(ta - adj(ta)) < 1.0e-6);
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "Fundamental - Checking if traceless"
 | 
			
		||||
              << std::endl;
 | 
			
		||||
    for (int a = 0; a < AdjointDimension; a++) {
 | 
			
		||||
      generator(a, ta);
 | 
			
		||||
      Complex tr = TensorRemove(trace(ta));
 | 
			
		||||
      std::cout << GridLogMessage << a << " " << std::endl;
 | 
			
		||||
      assert(abs(tr) < 1.0e-6);
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // reunitarise??
 | 
			
		||||
  template <typename LatticeMatrixType>
 | 
			
		||||
  static void LieRandomize(GridParallelRNG &pRNG, LatticeMatrixType &out, double scale = 1.0) 
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *grid = out.Grid();
 | 
			
		||||
 | 
			
		||||
    typedef typename LatticeMatrixType::vector_type vector_type;
 | 
			
		||||
 | 
			
		||||
    typedef iSinglet<vector_type> vTComplexType;
 | 
			
		||||
 | 
			
		||||
    typedef Lattice<vTComplexType> LatticeComplexType;
 | 
			
		||||
    typedef typename GridTypeMapper<typename LatticeMatrixType::vector_object>::scalar_object MatrixType;
 | 
			
		||||
 | 
			
		||||
    LatticeComplexType ca(grid);
 | 
			
		||||
    LatticeMatrixType lie(grid);
 | 
			
		||||
    LatticeMatrixType la(grid);
 | 
			
		||||
    ComplexD ci(0.0, scale);
 | 
			
		||||
    //    ComplexD cone(1.0, 0.0);
 | 
			
		||||
    MatrixType ta;
 | 
			
		||||
 | 
			
		||||
    lie = Zero();
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < AdjointDimension; a++) {
 | 
			
		||||
      random(pRNG, ca);
 | 
			
		||||
 | 
			
		||||
      ca = (ca + conjugate(ca)) * 0.5;
 | 
			
		||||
      ca = ca - 0.5;
 | 
			
		||||
 | 
			
		||||
      generator(a, ta);
 | 
			
		||||
 | 
			
		||||
      la = ci * ca * ta;
 | 
			
		||||
 | 
			
		||||
      lie = lie + la;  // e^{i la ta}
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
    taExp(lie, out);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void GaussianFundamentalLieAlgebraMatrix(GridParallelRNG &pRNG,
 | 
			
		||||
                                                  LatticeMatrix &out,
 | 
			
		||||
                                                  Real scale = 1.0) {
 | 
			
		||||
    GridBase *grid = out.Grid();
 | 
			
		||||
    LatticeReal ca(grid);
 | 
			
		||||
    LatticeMatrix la(grid);
 | 
			
		||||
    Complex ci(0.0, scale);
 | 
			
		||||
    Matrix ta;
 | 
			
		||||
 | 
			
		||||
    out = Zero();
 | 
			
		||||
    for (int a = 0; a < AdjointDimension; a++) {
 | 
			
		||||
      gaussian(pRNG, ca);
 | 
			
		||||
      generator(a, ta);
 | 
			
		||||
      la = toComplex(ca) * ta;
 | 
			
		||||
      out += la;
 | 
			
		||||
    }
 | 
			
		||||
    out *= ci;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void FundamentalLieAlgebraMatrix(const LatticeAlgebraVector &h,
 | 
			
		||||
                                          LatticeMatrix &out,
 | 
			
		||||
                                          Real scale = 1.0) {
 | 
			
		||||
    conformable(h, out);
 | 
			
		||||
    GridBase *grid = out.Grid();
 | 
			
		||||
    LatticeMatrix la(grid);
 | 
			
		||||
    Matrix ta;
 | 
			
		||||
 | 
			
		||||
    out = Zero();
 | 
			
		||||
    for (int a = 0; a < AdjointDimension; a++) {
 | 
			
		||||
      generator(a, ta);
 | 
			
		||||
      la = peekColour(h, a) * timesI(ta) * scale;
 | 
			
		||||
      out += la;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
/*
 | 
			
		||||
 * Fundamental rep gauge xform
 | 
			
		||||
 */
 | 
			
		||||
  template<typename Fundamental,typename GaugeMat>
 | 
			
		||||
  static void GaugeTransformFundamental( Fundamental &ferm, GaugeMat &g){
 | 
			
		||||
    GridBase *grid = ferm._grid;
 | 
			
		||||
    conformable(grid,g._grid);
 | 
			
		||||
    ferm = g*ferm;
 | 
			
		||||
  }
 | 
			
		||||
/*
 | 
			
		||||
 * Adjoint rep gauge xform
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
  template<typename Gimpl>
 | 
			
		||||
  static void GaugeTransform(typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
 | 
			
		||||
    GridBase *grid = Umu.Grid();
 | 
			
		||||
    conformable(grid,g.Grid());
 | 
			
		||||
 | 
			
		||||
    typename Gimpl::GaugeLinkField U(grid);
 | 
			
		||||
    typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
 | 
			
		||||
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      U= PeekIndex<LorentzIndex>(Umu,mu);
 | 
			
		||||
      U = g*U*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
 | 
			
		||||
      PokeIndex<LorentzIndex>(Umu,U,mu);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  template<typename Gimpl>
 | 
			
		||||
  static void GaugeTransform( std::vector<typename Gimpl::GaugeLinkField> &U, typename Gimpl::GaugeLinkField &g){
 | 
			
		||||
    GridBase *grid = g.Grid();
 | 
			
		||||
    typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      U[mu] = g*U[mu]*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  template<typename Gimpl>
 | 
			
		||||
  static void RandomGaugeTransform(GridParallelRNG &pRNG, typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
 | 
			
		||||
    LieRandomize(pRNG,g,1.0);
 | 
			
		||||
    GaugeTransform<Gimpl>(Umu,g);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Projects the algebra components a lattice matrix (of dimension ncol*ncol -1 )
 | 
			
		||||
  // inverse operation: FundamentalLieAlgebraMatrix
 | 
			
		||||
  static void projectOnAlgebra(LatticeAlgebraVector &h_out, const LatticeMatrix &in, Real scale = 1.0) {
 | 
			
		||||
    conformable(h_out, in);
 | 
			
		||||
    h_out = Zero();
 | 
			
		||||
    Matrix Ta;
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < AdjointDimension; a++) {
 | 
			
		||||
      generator(a, Ta);
 | 
			
		||||
      pokeColour(h_out, - 2.0 * (trace(timesI(Ta) * in)) * scale, a);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <typename GaugeField>
 | 
			
		||||
  static void HotConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
 | 
			
		||||
    typedef typename GaugeField::vector_type vector_type;
 | 
			
		||||
    typedef iSUnMatrix<vector_type> vMatrixType;
 | 
			
		||||
    typedef Lattice<vMatrixType> LatticeMatrixType;
 | 
			
		||||
 | 
			
		||||
    LatticeMatrixType Umu(out.Grid());
 | 
			
		||||
    LatticeMatrixType tmp(out.Grid());
 | 
			
		||||
    for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
      //      LieRandomize(pRNG, Umu, 1.0);
 | 
			
		||||
      //      PokeIndex<LorentzIndex>(out, Umu, mu);
 | 
			
		||||
      gaussian(pRNG,Umu);
 | 
			
		||||
      tmp = Ta(Umu);
 | 
			
		||||
      taExp(tmp,Umu);
 | 
			
		||||
      ProjectSUn(Umu);
 | 
			
		||||
      PokeIndex<LorentzIndex>(out, Umu, mu);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  template<typename GaugeField>
 | 
			
		||||
  static void TepidConfiguration(GridParallelRNG &pRNG,GaugeField &out){
 | 
			
		||||
    typedef typename GaugeField::vector_type vector_type;
 | 
			
		||||
    typedef iSUnMatrix<vector_type> vMatrixType;
 | 
			
		||||
    typedef Lattice<vMatrixType> LatticeMatrixType;
 | 
			
		||||
 | 
			
		||||
    LatticeMatrixType Umu(out.Grid());
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      LieRandomize(pRNG,Umu,0.01);
 | 
			
		||||
      PokeIndex<LorentzIndex>(out,Umu,mu);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  template<typename GaugeField>
 | 
			
		||||
  static void ColdConfiguration(GaugeField &out){
 | 
			
		||||
    typedef typename GaugeField::vector_type vector_type;
 | 
			
		||||
    typedef iSUnMatrix<vector_type> vMatrixType;
 | 
			
		||||
    typedef Lattice<vMatrixType> LatticeMatrixType;
 | 
			
		||||
 | 
			
		||||
    LatticeMatrixType Umu(out.Grid());
 | 
			
		||||
    Umu=1.0;
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      PokeIndex<LorentzIndex>(out,Umu,mu);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  template<typename GaugeField>
 | 
			
		||||
  static void ColdConfiguration(GridParallelRNG &pRNG,GaugeField &out){
 | 
			
		||||
    ColdConfiguration(out);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<typename LatticeMatrixType>
 | 
			
		||||
  static void taProj( const LatticeMatrixType &in,  LatticeMatrixType &out){
 | 
			
		||||
    out = Ta(in);
 | 
			
		||||
  }
 | 
			
		||||
  template <typename LatticeMatrixType>
 | 
			
		||||
  static void taExp(const LatticeMatrixType &x, LatticeMatrixType &ex) {
 | 
			
		||||
    typedef typename LatticeMatrixType::scalar_type ComplexType;
 | 
			
		||||
 | 
			
		||||
    LatticeMatrixType xn(x.Grid());
 | 
			
		||||
    RealD nfac = 1.0;
 | 
			
		||||
 | 
			
		||||
    xn = x;
 | 
			
		||||
    ex = xn + ComplexType(1.0);  // 1+x
 | 
			
		||||
 | 
			
		||||
    // Do a 12th order exponentiation
 | 
			
		||||
    for (int i = 2; i <= 12; ++i) {
 | 
			
		||||
      nfac = nfac / RealD(i);  // 1/2, 1/2.3 ...
 | 
			
		||||
      xn = xn * x;             // x2, x3,x4....
 | 
			
		||||
      ex = ex + xn * nfac;     // x2/2!, x3/3!....
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<int N>
 | 
			
		||||
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > Inverse(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=Umu.Grid();
 | 
			
		||||
  auto lvol = grid->lSites();
 | 
			
		||||
  Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > ret(grid);
 | 
			
		||||
  
 | 
			
		||||
  autoView(Umu_v,Umu,CpuRead);
 | 
			
		||||
  autoView(ret_v,ret,CpuWrite);
 | 
			
		||||
  thread_for(site,lvol,{
 | 
			
		||||
    Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
 | 
			
		||||
    Coordinate lcoor;
 | 
			
		||||
    grid->LocalIndexToLocalCoor(site, lcoor);
 | 
			
		||||
    iScalar<iScalar<iMatrix<ComplexD, N> > > Us;
 | 
			
		||||
    iScalar<iScalar<iMatrix<ComplexD, N> > > Ui;
 | 
			
		||||
    peekLocalSite(Us, Umu_v, lcoor);
 | 
			
		||||
    for(int i=0;i<N;i++){
 | 
			
		||||
      for(int j=0;j<N;j++){
 | 
			
		||||
	EigenU(i,j) = Us()()(i,j);
 | 
			
		||||
      }}
 | 
			
		||||
    Eigen::MatrixXcd EigenUinv = EigenU.inverse();
 | 
			
		||||
    for(int i=0;i<N;i++){
 | 
			
		||||
      for(int j=0;j<N;j++){
 | 
			
		||||
	Ui()()(i,j) = EigenUinv(i,j);
 | 
			
		||||
      }}
 | 
			
		||||
    pokeLocalSite(Ui,ret_v,lcoor);
 | 
			
		||||
  });
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
// Explicit specialisation for SU(3).
 | 
			
		||||
// Explicit specialisation for SU(3).
 | 
			
		||||
static void
 | 
			
		||||
ProjectSU3 (Lattice<iScalar<iScalar<iMatrix<vComplexD, 3> > > > &Umu)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=Umu.Grid();
 | 
			
		||||
  const int x=0;
 | 
			
		||||
  const int y=1;
 | 
			
		||||
  const int z=2;
 | 
			
		||||
  // Reunitarise
 | 
			
		||||
  Umu = ProjectOnGroup(Umu);
 | 
			
		||||
  autoView(Umu_v,Umu,CpuWrite);
 | 
			
		||||
  thread_for(ss,grid->oSites(),{
 | 
			
		||||
      auto cm = Umu_v[ss];
 | 
			
		||||
      cm()()(2,x) = adj(cm()()(0,y)*cm()()(1,z)-cm()()(0,z)*cm()()(1,y)); //x= yz-zy
 | 
			
		||||
      cm()()(2,y) = adj(cm()()(0,z)*cm()()(1,x)-cm()()(0,x)*cm()()(1,z)); //y= zx-xz
 | 
			
		||||
      cm()()(2,z) = adj(cm()()(0,x)*cm()()(1,y)-cm()()(0,y)*cm()()(1,x)); //z= xy-yx
 | 
			
		||||
      Umu_v[ss]=cm;
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
static void ProjectSU3(Lattice<iVector<iScalar<iMatrix<vComplexD, 3> >,Nd> > &U)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid=U.Grid();
 | 
			
		||||
  // Reunitarise
 | 
			
		||||
  for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
    auto Umu = PeekIndex<LorentzIndex>(U,mu);
 | 
			
		||||
    Umu      = ProjectOnGroup(Umu);
 | 
			
		||||
    ProjectSU3(Umu);
 | 
			
		||||
    PokeIndex<LorentzIndex>(U,Umu,mu);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
typedef SU<2> SU2;
 | 
			
		||||
typedef SU<3> SU3;
 | 
			
		||||
typedef SU<4> SU4;
 | 
			
		||||
typedef SU<5> SU5;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
typedef SU<Nc> FundamentalMatrices;
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,580 +0,0 @@
 | 
			
		||||
// This file is #included into the body of the class template definition of
 | 
			
		||||
// GaugeGroup. So, image there to be
 | 
			
		||||
//
 | 
			
		||||
// template <int ncolour, class group_name>
 | 
			
		||||
// class GaugeGroup {
 | 
			
		||||
//
 | 
			
		||||
// around it.
 | 
			
		||||
//
 | 
			
		||||
// Please note that the unconventional file extension makes sure that it
 | 
			
		||||
// doesn't get found by the scripts/filelist during bootstrapping.
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
 | 
			
		||||
template <ONLY_IF_SU>
 | 
			
		||||
static int su2subgroups(GroupName::SU) { return (ncolour * (ncolour - 1)) / 2; }
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// There are N^2-1 generators for SU(N).
 | 
			
		||||
//
 | 
			
		||||
// We take a traceless hermitian generator basis as follows
 | 
			
		||||
//
 | 
			
		||||
// * Normalisation: trace ta tb = 1/2 delta_ab = T_F delta_ab
 | 
			
		||||
//   T_F = 1/2  for SU(N) groups
 | 
			
		||||
//
 | 
			
		||||
// * Off diagonal
 | 
			
		||||
//    - pairs of rows i1,i2 behaving like pauli matrices signma_x, sigma_y
 | 
			
		||||
//
 | 
			
		||||
//    - there are (Nc-1-i1) slots for i2 on each row [ x  0  x ]
 | 
			
		||||
//      direct count off each row
 | 
			
		||||
//
 | 
			
		||||
//    - Sum of all pairs is Nc(Nc-1)/2: proof arithmetic series
 | 
			
		||||
//
 | 
			
		||||
//      (Nc-1) + (Nc-2)+...  1      ==> Nc*(Nc-1)/2
 | 
			
		||||
//      1+ 2+          +   + Nc-1
 | 
			
		||||
//
 | 
			
		||||
//    - There are 2 x Nc (Nc-1)/ 2 of these = Nc^2 - Nc
 | 
			
		||||
//
 | 
			
		||||
//    - We enumerate the row-col pairs.
 | 
			
		||||
//    - for each row col pair there is a (sigma_x) and a (sigma_y) like
 | 
			
		||||
//    generator
 | 
			
		||||
//
 | 
			
		||||
//
 | 
			
		||||
//   t^a_ij = { in 0.. Nc(Nc-1)/2 -1} =>  1/2(delta_{i,i1} delta_{j,i2} +
 | 
			
		||||
//   delta_{i,i1} delta_{j,i2})
 | 
			
		||||
//   t^a_ij = { in Nc(Nc-1)/2 ... Nc(Nc-1) - 1} =>  i/2( delta_{i,i1}
 | 
			
		||||
//   delta_{j,i2} - i delta_{i,i1} delta_{j,i2})
 | 
			
		||||
//
 | 
			
		||||
// * Diagonal; must be traceless and normalised
 | 
			
		||||
//   - Sequence is
 | 
			
		||||
//   N  (1,-1,0,0...)
 | 
			
		||||
//   N  (1, 1,-2,0...)
 | 
			
		||||
//   N  (1, 1, 1,-3,0...)
 | 
			
		||||
//   N  (1, 1, 1, 1,-4,0...)
 | 
			
		||||
//
 | 
			
		||||
//   where 1/2 = N^2 (1+.. m^2)etc.... for the m-th diagonal generator
 | 
			
		||||
//   NB this gives the famous SU3 result for su2 index 8
 | 
			
		||||
//
 | 
			
		||||
//   N= sqrt(1/2 . 1/6 ) = 1/2 . 1/sqrt(3)
 | 
			
		||||
//
 | 
			
		||||
//   ( 1      )
 | 
			
		||||
//   (    1   ) / sqrt(3) /2  = 1/2 lambda_8
 | 
			
		||||
//   (      -2)
 | 
			
		||||
//
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template <class cplx, ONLY_IF_SU>
 | 
			
		||||
static void generator(int lieIndex, iGroupMatrix<cplx> &ta, GroupName::SU) {
 | 
			
		||||
  // map lie index to which type of generator
 | 
			
		||||
  int diagIndex;
 | 
			
		||||
  int su2Index;
 | 
			
		||||
  int sigxy;
 | 
			
		||||
  int NNm1 = ncolour * (ncolour - 1);
 | 
			
		||||
  if (lieIndex >= NNm1) {
 | 
			
		||||
    diagIndex = lieIndex - NNm1;
 | 
			
		||||
    generatorDiagonal(diagIndex, ta);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
  sigxy = lieIndex & 0x1;  // even or odd
 | 
			
		||||
  su2Index = lieIndex >> 1;
 | 
			
		||||
  if (sigxy)
 | 
			
		||||
    generatorSigmaY(su2Index, ta);
 | 
			
		||||
  else
 | 
			
		||||
    generatorSigmaX(su2Index, ta);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class cplx, ONLY_IF_SU>
 | 
			
		||||
static void generatorSigmaY(int su2Index, iGroupMatrix<cplx> &ta) {
 | 
			
		||||
  ta = Zero();
 | 
			
		||||
  int i1, i2;
 | 
			
		||||
  su2SubGroupIndex(i1, i2, su2Index);
 | 
			
		||||
  ta()()(i1, i2) = 1.0;
 | 
			
		||||
  ta()()(i2, i1) = 1.0;
 | 
			
		||||
  ta = ta * 0.5;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class cplx, ONLY_IF_SU>
 | 
			
		||||
static void generatorSigmaX(int su2Index, iGroupMatrix<cplx> &ta) {
 | 
			
		||||
  ta = Zero();
 | 
			
		||||
  cplx i(0.0, 1.0);
 | 
			
		||||
  int i1, i2;
 | 
			
		||||
  su2SubGroupIndex(i1, i2, su2Index);
 | 
			
		||||
  ta()()(i1, i2) = i;
 | 
			
		||||
  ta()()(i2, i1) = -i;
 | 
			
		||||
  ta = ta * 0.5;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class cplx, ONLY_IF_SU>
 | 
			
		||||
static void generatorDiagonal(int diagIndex, iGroupMatrix<cplx> &ta) {
 | 
			
		||||
  // diag ({1, 1, ..., 1}(k-times), -k, 0, 0, ...)
 | 
			
		||||
  ta = Zero();
 | 
			
		||||
  int k = diagIndex + 1;                  // diagIndex starts from 0
 | 
			
		||||
  for (int i = 0; i <= diagIndex; i++) {  // k iterations
 | 
			
		||||
    ta()()(i, i) = 1.0;
 | 
			
		||||
  }
 | 
			
		||||
  ta()()(k, k) = -k;  // indexing starts from 0
 | 
			
		||||
  RealD nrm = 1.0 / std::sqrt(2.0 * k * (k + 1));
 | 
			
		||||
  ta = ta * nrm;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Map a su2 subgroup number to the pair of rows that are non zero
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
static void su2SubGroupIndex(int &i1, int &i2, int su2_index, GroupName::SU) {
 | 
			
		||||
  assert((su2_index >= 0) && (su2_index < (ncolour * (ncolour - 1)) / 2));
 | 
			
		||||
 | 
			
		||||
  int spare = su2_index;
 | 
			
		||||
  for (i1 = 0; spare >= (ncolour - 1 - i1); i1++) {
 | 
			
		||||
    spare = spare - (ncolour - 1 - i1);  // remove the Nc-1-i1 terms
 | 
			
		||||
  }
 | 
			
		||||
  i2 = i1 + 1 + spare;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Pull out a subgroup and project on to real coeffs x pauli basis
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template <class vcplx, ONLY_IF_SU>
 | 
			
		||||
static void su2Extract(Lattice<iSinglet<vcplx> > &Determinant,
 | 
			
		||||
                       Lattice<iSU2Matrix<vcplx> > &subgroup,
 | 
			
		||||
                       const Lattice<iGroupMatrix<vcplx> > &source,
 | 
			
		||||
                       int su2_index) {
 | 
			
		||||
  GridBase *grid(source.Grid());
 | 
			
		||||
  conformable(subgroup, source);
 | 
			
		||||
  conformable(subgroup, Determinant);
 | 
			
		||||
  int i0, i1;
 | 
			
		||||
  su2SubGroupIndex(i0, i1, su2_index);
 | 
			
		||||
 | 
			
		||||
  autoView(subgroup_v, subgroup, AcceleratorWrite);
 | 
			
		||||
  autoView(source_v, source, AcceleratorRead);
 | 
			
		||||
  autoView(Determinant_v, Determinant, AcceleratorWrite);
 | 
			
		||||
  accelerator_for(ss, grid->oSites(), 1, {
 | 
			
		||||
    subgroup_v[ss]()()(0, 0) = source_v[ss]()()(i0, i0);
 | 
			
		||||
    subgroup_v[ss]()()(0, 1) = source_v[ss]()()(i0, i1);
 | 
			
		||||
    subgroup_v[ss]()()(1, 0) = source_v[ss]()()(i1, i0);
 | 
			
		||||
    subgroup_v[ss]()()(1, 1) = source_v[ss]()()(i1, i1);
 | 
			
		||||
 | 
			
		||||
    iSU2Matrix<vcplx> Sigma = subgroup_v[ss];
 | 
			
		||||
 | 
			
		||||
    Sigma = Sigma - adj(Sigma) + trace(adj(Sigma));
 | 
			
		||||
 | 
			
		||||
    subgroup_v[ss] = Sigma;
 | 
			
		||||
 | 
			
		||||
    // this should be purely real
 | 
			
		||||
    Determinant_v[ss] =
 | 
			
		||||
        Sigma()()(0, 0) * Sigma()()(1, 1) - Sigma()()(0, 1) * Sigma()()(1, 0);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Set matrix to one and insert a pauli subgroup
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template <class vcplx, ONLY_IF_SU>
 | 
			
		||||
static void su2Insert(const Lattice<iSU2Matrix<vcplx> > &subgroup,
 | 
			
		||||
                      Lattice<iGroupMatrix<vcplx> > &dest, int su2_index) {
 | 
			
		||||
  GridBase *grid(dest.Grid());
 | 
			
		||||
  conformable(subgroup, dest);
 | 
			
		||||
  int i0, i1;
 | 
			
		||||
  su2SubGroupIndex(i0, i1, su2_index);
 | 
			
		||||
 | 
			
		||||
  dest = 1.0;  // start out with identity
 | 
			
		||||
  autoView(dest_v, dest, AcceleratorWrite);
 | 
			
		||||
  autoView(subgroup_v, subgroup, AcceleratorRead);
 | 
			
		||||
  accelerator_for(ss, grid->oSites(), 1, {
 | 
			
		||||
    dest_v[ss]()()(i0, i0) = subgroup_v[ss]()()(0, 0);
 | 
			
		||||
    dest_v[ss]()()(i0, i1) = subgroup_v[ss]()()(0, 1);
 | 
			
		||||
    dest_v[ss]()()(i1, i0) = subgroup_v[ss]()()(1, 0);
 | 
			
		||||
    dest_v[ss]()()(i1, i1) = subgroup_v[ss]()()(1, 1);
 | 
			
		||||
  });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////
 | 
			
		||||
// Generate e^{ Re Tr Staple Link} dlink
 | 
			
		||||
//
 | 
			
		||||
// *** Note Staple should be appropriate linear compbination between all
 | 
			
		||||
// staples.
 | 
			
		||||
// *** If already by beta pass coefficient 1.0.
 | 
			
		||||
// *** This routine applies the additional 1/Nc factor that comes after trace
 | 
			
		||||
// in action.
 | 
			
		||||
//
 | 
			
		||||
///////////////////////////////////////////////
 | 
			
		||||
template <ONLY_IF_SU>
 | 
			
		||||
static void SubGroupHeatBath(
 | 
			
		||||
    GridSerialRNG &sRNG, GridParallelRNG &pRNG,
 | 
			
		||||
    RealD beta,  // coeff multiplying staple in action (with no 1/Nc)
 | 
			
		||||
    LatticeMatrix &link,
 | 
			
		||||
    const LatticeMatrix &barestaple,  // multiplied by action coeffs so th
 | 
			
		||||
    int su2_subgroup, int nheatbath, LatticeInteger &wheremask) {
 | 
			
		||||
  GridBase *grid = link.Grid();
 | 
			
		||||
 | 
			
		||||
  const RealD twopi = 2.0 * M_PI;
 | 
			
		||||
 | 
			
		||||
  LatticeMatrix staple(grid);
 | 
			
		||||
 | 
			
		||||
  staple = barestaple * (beta / ncolour);
 | 
			
		||||
 | 
			
		||||
  LatticeMatrix V(grid);
 | 
			
		||||
  V = link * staple;
 | 
			
		||||
 | 
			
		||||
  // Subgroup manipulation in the lie algebra space
 | 
			
		||||
  LatticeSU2Matrix u(
 | 
			
		||||
      grid);  // Kennedy pendleton "u" real projected normalised Sigma
 | 
			
		||||
  LatticeSU2Matrix uinv(grid);
 | 
			
		||||
  LatticeSU2Matrix ua(grid);  // a in pauli form
 | 
			
		||||
  LatticeSU2Matrix b(grid);   // rotated matrix after hb
 | 
			
		||||
 | 
			
		||||
  // Some handy constant fields
 | 
			
		||||
  LatticeComplex ones(grid);
 | 
			
		||||
  ones = 1.0;
 | 
			
		||||
  LatticeComplex zeros(grid);
 | 
			
		||||
  zeros = Zero();
 | 
			
		||||
  LatticeReal rones(grid);
 | 
			
		||||
  rones = 1.0;
 | 
			
		||||
  LatticeReal rzeros(grid);
 | 
			
		||||
  rzeros = Zero();
 | 
			
		||||
  LatticeComplex udet(grid);  // determinant of real(staple)
 | 
			
		||||
  LatticeInteger mask_true(grid);
 | 
			
		||||
  mask_true = 1;
 | 
			
		||||
  LatticeInteger mask_false(grid);
 | 
			
		||||
  mask_false = 0;
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
    PLB 156 P393 (1985) (Kennedy and Pendleton)
 | 
			
		||||
 | 
			
		||||
    Note: absorb "beta" into the def of sigma compared to KP paper; staple
 | 
			
		||||
    passed to this routine has "beta" already multiplied in
 | 
			
		||||
 | 
			
		||||
    Action linear in links h and of form:
 | 
			
		||||
 | 
			
		||||
    beta S = beta  Sum_p (1 - 1/Nc Re Tr Plaq )
 | 
			
		||||
 | 
			
		||||
    Writing Sigma = 1/Nc (beta Sigma') where sum over staples is "Sigma' "
 | 
			
		||||
 | 
			
		||||
    beta S = const - beta/Nc Re Tr h Sigma'
 | 
			
		||||
    = const - Re Tr h Sigma
 | 
			
		||||
 | 
			
		||||
    Decompose h and Sigma into (1, sigma_j) ; h_i real, h^2=1, Sigma_i complex
 | 
			
		||||
    arbitrary.
 | 
			
		||||
 | 
			
		||||
    Tr h Sigma = h_i Sigma_j Tr (sigma_i sigma_j)  = h_i Sigma_j 2 delta_ij
 | 
			
		||||
    Re Tr h Sigma = 2 h_j Re Sigma_j
 | 
			
		||||
 | 
			
		||||
    Normalised re Sigma_j = xi u_j
 | 
			
		||||
 | 
			
		||||
    With u_j a unit vector and U can be in SU(2);
 | 
			
		||||
 | 
			
		||||
    Re Tr h Sigma = 2 h_j Re Sigma_j = 2 xi (h.u)
 | 
			
		||||
 | 
			
		||||
    4xi^2 = Det [ Sig - Sig^dag  + 1 Tr Sigdag]
 | 
			
		||||
    u   = 1/2xi [ Sig - Sig^dag  + 1 Tr Sigdag]
 | 
			
		||||
 | 
			
		||||
    xi = sqrt(Det)/2;
 | 
			
		||||
 | 
			
		||||
    Write a= u h in SU(2); a has pauli decomp a_j;
 | 
			
		||||
 | 
			
		||||
    Note: Product b' xi is unvariant because scaling Sigma leaves
 | 
			
		||||
    normalised vector "u" fixed; Can rescale Sigma so b' = 1.
 | 
			
		||||
  */
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////
 | 
			
		||||
  // Real part of Pauli decomposition
 | 
			
		||||
  // Note a subgroup can project to zero in cold start
 | 
			
		||||
  ////////////////////////////////////////////////////////
 | 
			
		||||
  su2Extract(udet, u, V, su2_subgroup);
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
  // Normalising this vector if possible; else identity
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
  LatticeComplex xi(grid);
 | 
			
		||||
 | 
			
		||||
  LatticeSU2Matrix lident(grid);
 | 
			
		||||
 | 
			
		||||
  SU2Matrix ident = Complex(1.0);
 | 
			
		||||
  SU2Matrix pauli1;
 | 
			
		||||
  GaugeGroup<2, GroupName::SU>::generator(0, pauli1);
 | 
			
		||||
  SU2Matrix pauli2;
 | 
			
		||||
  GaugeGroup<2, GroupName::SU>::generator(1, pauli2);
 | 
			
		||||
  SU2Matrix pauli3;
 | 
			
		||||
  GaugeGroup<2, GroupName::SU>::generator(2, pauli3);
 | 
			
		||||
  pauli1 = timesI(pauli1) * 2.0;
 | 
			
		||||
  pauli2 = timesI(pauli2) * 2.0;
 | 
			
		||||
  pauli3 = timesI(pauli3) * 2.0;
 | 
			
		||||
 | 
			
		||||
  LatticeComplex cone(grid);
 | 
			
		||||
  LatticeReal adet(grid);
 | 
			
		||||
  adet = abs(toReal(udet));
 | 
			
		||||
  lident = Complex(1.0);
 | 
			
		||||
  cone = Complex(1.0);
 | 
			
		||||
  Real machine_epsilon = 1.0e-7;
 | 
			
		||||
  u = where(adet > machine_epsilon, u, lident);
 | 
			
		||||
  udet = where(adet > machine_epsilon, udet, cone);
 | 
			
		||||
 | 
			
		||||
  xi = 0.5 * sqrt(udet);        // 4xi^2 = Det [ Sig - Sig^dag  + 1 Tr Sigdag]
 | 
			
		||||
  u = 0.5 * u * pow(xi, -1.0);  //  u   = 1/2xi [ Sig - Sig^dag  + 1 Tr Sigdag]
 | 
			
		||||
 | 
			
		||||
  // Debug test for sanity
 | 
			
		||||
  uinv = adj(u);
 | 
			
		||||
  b = u * uinv - 1.0;
 | 
			
		||||
  assert(norm2(b) < 1.0e-4);
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
    Measure: Haar measure dh has d^4a delta(1-|a^2|)
 | 
			
		||||
    In polars:
 | 
			
		||||
    da = da0 r^2 sin theta dr dtheta dphi delta( 1 - r^2 -a0^2)
 | 
			
		||||
    = da0 r^2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r)(sqrt(1-a0^) +
 | 
			
		||||
    r) )
 | 
			
		||||
    = da0 r/2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r) )
 | 
			
		||||
 | 
			
		||||
    Action factor Q(h) dh  = e^-S[h]  dh =  e^{  xi Tr uh} dh    // beta
 | 
			
		||||
    enters through xi =  e^{2 xi (h.u)} dh =  e^{2 xi h0u0}.e^{2 xi h1u1}.e^{2
 | 
			
		||||
    xi h2u2}.e^{2 xi h3u3} dh
 | 
			
		||||
 | 
			
		||||
    Therefore for each site, take xi for that site
 | 
			
		||||
    i) generate  |a0|<1 with dist
 | 
			
		||||
    (1-a0^2)^0.5 e^{2 xi a0 } da0
 | 
			
		||||
 | 
			
		||||
    Take alpha = 2 xi  = 2 xi [ recall 2 beta/Nc unmod staple norm];
 | 
			
		||||
    hence 2.0/Nc factor in Chroma ] A. Generate two uniformly distributed
 | 
			
		||||
    pseudo-random numbers R and R', R'', R''' in the unit interval; B. Set X =
 | 
			
		||||
    -(ln R)/alpha, X' =-(ln R')/alpha; C. Set C = cos^2(2pi R"), with R"
 | 
			
		||||
    another uniform random number in [0,1] ; D. Set A = XC; E. Let d  = X'+A;
 | 
			
		||||
    F. If R'''^2 :> 1 - 0.5 d,  go back to A;
 | 
			
		||||
    G. Set a0 = 1 - d;
 | 
			
		||||
 | 
			
		||||
    Note that in step D setting B ~ X - A and using B in place of A in step E
 | 
			
		||||
    will generate a second independent a 0 value.
 | 
			
		||||
  */
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////
 | 
			
		||||
  // count the number of sites by picking "1"'s out of hat
 | 
			
		||||
  /////////////////////////////////////////////////////////
 | 
			
		||||
  Integer hit = 0;
 | 
			
		||||
  LatticeReal rtmp(grid);
 | 
			
		||||
  rtmp = where(wheremask, rones, rzeros);
 | 
			
		||||
  RealD numSites = sum(rtmp);
 | 
			
		||||
  RealD numAccepted;
 | 
			
		||||
  LatticeInteger Accepted(grid);
 | 
			
		||||
  Accepted = Zero();
 | 
			
		||||
  LatticeInteger newlyAccepted(grid);
 | 
			
		||||
 | 
			
		||||
  std::vector<LatticeReal> xr(4, grid);
 | 
			
		||||
  std::vector<LatticeReal> a(4, grid);
 | 
			
		||||
  LatticeReal d(grid);
 | 
			
		||||
  d = Zero();
 | 
			
		||||
  LatticeReal alpha(grid);
 | 
			
		||||
 | 
			
		||||
  //    std::cout<<GridLogMessage<<"xi "<<xi <<std::endl;
 | 
			
		||||
  xi = 2.0 * xi;
 | 
			
		||||
  alpha = toReal(xi);
 | 
			
		||||
 | 
			
		||||
  do {
 | 
			
		||||
    // A. Generate two uniformly distributed pseudo-random numbers R and R',
 | 
			
		||||
    // R'', R''' in the unit interval;
 | 
			
		||||
    random(pRNG, xr[0]);
 | 
			
		||||
    random(pRNG, xr[1]);
 | 
			
		||||
    random(pRNG, xr[2]);
 | 
			
		||||
    random(pRNG, xr[3]);
 | 
			
		||||
 | 
			
		||||
    // B. Set X = - ln R/alpha, X' = -ln R'/alpha
 | 
			
		||||
    xr[1] = -log(xr[1]) / alpha;
 | 
			
		||||
    xr[2] = -log(xr[2]) / alpha;
 | 
			
		||||
 | 
			
		||||
    // C. Set C = cos^2(2piR'')
 | 
			
		||||
    xr[3] = cos(xr[3] * twopi);
 | 
			
		||||
    xr[3] = xr[3] * xr[3];
 | 
			
		||||
 | 
			
		||||
    LatticeReal xrsq(grid);
 | 
			
		||||
 | 
			
		||||
    // D. Set A = XC;
 | 
			
		||||
    // E. Let d  = X'+A;
 | 
			
		||||
    xrsq = xr[2] + xr[1] * xr[3];
 | 
			
		||||
 | 
			
		||||
    d = where(Accepted, d, xr[2] + xr[1] * xr[3]);
 | 
			
		||||
 | 
			
		||||
    // F. If R'''^2 :> 1 - 0.5 d,  go back to A;
 | 
			
		||||
    LatticeReal thresh(grid);
 | 
			
		||||
    thresh = 1.0 - d * 0.5;
 | 
			
		||||
    xrsq = xr[0] * xr[0];
 | 
			
		||||
    LatticeInteger ione(grid);
 | 
			
		||||
    ione = 1;
 | 
			
		||||
    LatticeInteger izero(grid);
 | 
			
		||||
    izero = Zero();
 | 
			
		||||
 | 
			
		||||
    newlyAccepted = where(xrsq < thresh, ione, izero);
 | 
			
		||||
    Accepted = where(newlyAccepted, newlyAccepted, Accepted);
 | 
			
		||||
    Accepted = where(wheremask, Accepted, izero);
 | 
			
		||||
 | 
			
		||||
    // FIXME need an iSum for integer to avoid overload on return type??
 | 
			
		||||
    rtmp = where(Accepted, rones, rzeros);
 | 
			
		||||
    numAccepted = sum(rtmp);
 | 
			
		||||
 | 
			
		||||
    hit++;
 | 
			
		||||
 | 
			
		||||
  } while ((numAccepted < numSites) && (hit < nheatbath));
 | 
			
		||||
 | 
			
		||||
  // G. Set a0 = 1 - d;
 | 
			
		||||
  a[0] = Zero();
 | 
			
		||||
  a[0] = where(wheremask, 1.0 - d, a[0]);
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////
 | 
			
		||||
  //    ii) generate a_i uniform on two sphere radius (1-a0^2)^0.5
 | 
			
		||||
  //////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  LatticeReal a123mag(grid);
 | 
			
		||||
  a123mag = sqrt(abs(1.0 - a[0] * a[0]));
 | 
			
		||||
 | 
			
		||||
  LatticeReal cos_theta(grid);
 | 
			
		||||
  LatticeReal sin_theta(grid);
 | 
			
		||||
  LatticeReal phi(grid);
 | 
			
		||||
 | 
			
		||||
  random(pRNG, phi);
 | 
			
		||||
  phi = phi * twopi;  // uniform in [0,2pi]
 | 
			
		||||
  random(pRNG, cos_theta);
 | 
			
		||||
  cos_theta = (cos_theta * 2.0) - 1.0;  // uniform in [-1,1]
 | 
			
		||||
  sin_theta = sqrt(abs(1.0 - cos_theta * cos_theta));
 | 
			
		||||
 | 
			
		||||
  a[1] = a123mag * sin_theta * cos(phi);
 | 
			
		||||
  a[2] = a123mag * sin_theta * sin(phi);
 | 
			
		||||
  a[3] = a123mag * cos_theta;
 | 
			
		||||
 | 
			
		||||
  ua = toComplex(a[0]) * ident + toComplex(a[1]) * pauli1 +
 | 
			
		||||
       toComplex(a[2]) * pauli2 + toComplex(a[3]) * pauli3;
 | 
			
		||||
 | 
			
		||||
  b = 1.0;
 | 
			
		||||
  b = where(wheremask, uinv * ua, b);
 | 
			
		||||
  su2Insert(b, V, su2_subgroup);
 | 
			
		||||
 | 
			
		||||
  // mask the assignment back based on Accptance
 | 
			
		||||
  link = where(Accepted, V * link, link);
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////
 | 
			
		||||
  // Debug Checks
 | 
			
		||||
  // SU2 check
 | 
			
		||||
  LatticeSU2Matrix check(grid);  // rotated matrix after hb
 | 
			
		||||
  u = Zero();
 | 
			
		||||
  check = ua * adj(ua) - 1.0;
 | 
			
		||||
  check = where(Accepted, check, u);
 | 
			
		||||
  assert(norm2(check) < 1.0e-4);
 | 
			
		||||
 | 
			
		||||
  check = b * adj(b) - 1.0;
 | 
			
		||||
  check = where(Accepted, check, u);
 | 
			
		||||
  assert(norm2(check) < 1.0e-4);
 | 
			
		||||
 | 
			
		||||
  LatticeMatrix Vcheck(grid);
 | 
			
		||||
  Vcheck = Zero();
 | 
			
		||||
  Vcheck = where(Accepted, V * adj(V) - 1.0, Vcheck);
 | 
			
		||||
  //    std::cout<<GridLogMessage << "SU3 check " <<norm2(Vcheck)<<std::endl;
 | 
			
		||||
  assert(norm2(Vcheck) < 1.0e-4);
 | 
			
		||||
 | 
			
		||||
  // Verify the link stays in SU(3)
 | 
			
		||||
  //    std::cout<<GridLogMessage <<"Checking the modified link"<<std::endl;
 | 
			
		||||
  Vcheck = link * adj(link) - 1.0;
 | 
			
		||||
  assert(norm2(Vcheck) < 1.0e-4);
 | 
			
		||||
  /////////////////////////////////
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <ONLY_IF_SU>
 | 
			
		||||
static void testGenerators(GroupName::SU) {
 | 
			
		||||
  Matrix ta;
 | 
			
		||||
  Matrix tb;
 | 
			
		||||
  std::cout << GridLogMessage
 | 
			
		||||
            << "Fundamental - Checking trace ta tb is 0.5 delta_ab"
 | 
			
		||||
            << std::endl;
 | 
			
		||||
  for (int a = 0; a < AdjointDimension; a++) {
 | 
			
		||||
    for (int b = 0; b < AdjointDimension; b++) {
 | 
			
		||||
      generator(a, ta);
 | 
			
		||||
      generator(b, tb);
 | 
			
		||||
      Complex tr = TensorRemove(trace(ta * tb));
 | 
			
		||||
      std::cout << GridLogMessage << "(" << a << "," << b << ") =  " << tr
 | 
			
		||||
                << std::endl;
 | 
			
		||||
      if (a == b) assert(abs(tr - Complex(0.5)) < 1.0e-6);
 | 
			
		||||
      if (a != b) assert(abs(tr) < 1.0e-6);
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogMessage << "Fundamental - Checking if hermitian"
 | 
			
		||||
            << std::endl;
 | 
			
		||||
  for (int a = 0; a < AdjointDimension; a++) {
 | 
			
		||||
    generator(a, ta);
 | 
			
		||||
    std::cout << GridLogMessage << a << std::endl;
 | 
			
		||||
    assert(norm2(ta - adj(ta)) < 1.0e-6);
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogMessage << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "Fundamental - Checking if traceless"
 | 
			
		||||
            << std::endl;
 | 
			
		||||
  for (int a = 0; a < AdjointDimension; a++) {
 | 
			
		||||
    generator(a, ta);
 | 
			
		||||
    Complex tr = TensorRemove(trace(ta));
 | 
			
		||||
    std::cout << GridLogMessage << a << " " << std::endl;
 | 
			
		||||
    assert(abs(tr) < 1.0e-6);
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogMessage << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template <int N, class vtype>
 | 
			
		||||
static Lattice<iScalar<iScalar<iMatrix<vtype, N> > > >
 | 
			
		||||
ProjectOnGeneralGroup(const Lattice<iScalar<iScalar<iMatrix<vtype, N> > > > &Umu, GroupName::SU) {
 | 
			
		||||
  return ProjectOnGroup(Umu);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class vtype>
 | 
			
		||||
accelerator_inline static iScalar<vtype> ProjectOnGeneralGroup(const iScalar<vtype> &r, GroupName::SU) {
 | 
			
		||||
  return ProjectOnGroup(r);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class vtype, int N>
 | 
			
		||||
accelerator_inline static iVector<vtype,N> ProjectOnGeneralGroup(const iVector<vtype,N> &r, GroupName::SU) {
 | 
			
		||||
  return ProjectOnGroup(r);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
 | 
			
		||||
accelerator_inline static iMatrix<vtype,N> ProjectOnGeneralGroup(const iMatrix<vtype,N> &arg, GroupName::SU) {
 | 
			
		||||
  return ProjectOnGroup(arg);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename LatticeMatrixType>
 | 
			
		||||
static void taProj(const LatticeMatrixType &in, LatticeMatrixType &out, GroupName::SU) {
 | 
			
		||||
  out = Ta(in);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Fundamental rep gauge xform
 | 
			
		||||
 */
 | 
			
		||||
template<typename Fundamental,typename GaugeMat>
 | 
			
		||||
static void GaugeTransformFundamental( Fundamental &ferm, GaugeMat &g){
 | 
			
		||||
  GridBase *grid = ferm._grid;
 | 
			
		||||
  conformable(grid,g._grid);
 | 
			
		||||
  ferm = g*ferm;
 | 
			
		||||
}
 | 
			
		||||
/*
 | 
			
		||||
 * Adjoint rep gauge xform
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
template<typename Gimpl>
 | 
			
		||||
static void GaugeTransform(typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
 | 
			
		||||
  GridBase *grid = Umu.Grid();
 | 
			
		||||
  conformable(grid,g.Grid());
 | 
			
		||||
 | 
			
		||||
  typename Gimpl::GaugeLinkField U(grid);
 | 
			
		||||
  typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
 | 
			
		||||
 | 
			
		||||
  for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
    U= PeekIndex<LorentzIndex>(Umu,mu);
 | 
			
		||||
    U = g*U*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
 | 
			
		||||
    PokeIndex<LorentzIndex>(Umu,U,mu);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
template<typename Gimpl>
 | 
			
		||||
static void GaugeTransform( std::vector<typename Gimpl::GaugeLinkField> &U, typename Gimpl::GaugeLinkField &g){
 | 
			
		||||
  GridBase *grid = g.Grid();
 | 
			
		||||
  typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
 | 
			
		||||
  for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
    U[mu] = g*U[mu]*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
template<typename Gimpl>
 | 
			
		||||
static void RandomGaugeTransform(GridParallelRNG &pRNG, typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
 | 
			
		||||
  LieRandomize(pRNG,g,1.0);
 | 
			
		||||
  GaugeTransform<Gimpl>(Umu,g);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -51,10 +51,6 @@ public:
 | 
			
		||||
  typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> > LatticeAdjFieldF;
 | 
			
		||||
  typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> > LatticeAdjFieldD;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<iScalar<iScalar<iVector<vComplex, Dimension> > > >  LatticeAdjVector;
 | 
			
		||||
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
@@ -62,8 +58,8 @@ public:
 | 
			
		||||
    // returns i(T_Adj)^index necessary for the projectors
 | 
			
		||||
    // see definitions above
 | 
			
		||||
    iAdjTa = Zero();
 | 
			
		||||
    Vector<iSUnMatrix<cplx> > ta(ncolour * ncolour - 1);
 | 
			
		||||
    iSUnMatrix<cplx> tmp;
 | 
			
		||||
    Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > ta(ncolour * ncolour - 1);
 | 
			
		||||
    typename SU<ncolour>::template iSUnMatrix<cplx> tmp;
 | 
			
		||||
 | 
			
		||||
    // FIXME not very efficient to get all the generators everytime
 | 
			
		||||
    for (int a = 0; a < Dimension; a++) SU<ncolour>::generator(a, ta[a]);
 | 
			
		||||
@@ -71,7 +67,8 @@ public:
 | 
			
		||||
    for (int a = 0; a < Dimension; a++) {
 | 
			
		||||
      tmp = ta[a] * ta[Index] - ta[Index] * ta[a];
 | 
			
		||||
      for (int b = 0; b < (ncolour * ncolour - 1); b++) {
 | 
			
		||||
        iSUnMatrix<cplx> tmp1 = 2.0 * tmp * ta[b];  // 2.0 from the normalization
 | 
			
		||||
        typename SU<ncolour>::template iSUnMatrix<cplx> tmp1 =
 | 
			
		||||
	  2.0 * tmp * ta[b];  // 2.0 from the normalization
 | 
			
		||||
        Complex iTr = TensorRemove(timesI(trace(tmp1)));
 | 
			
		||||
        //iAdjTa()()(b, a) = iTr;
 | 
			
		||||
        iAdjTa()()(a, b) = iTr;
 | 
			
		||||
@@ -137,7 +134,8 @@ public:
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < Dimension; a++) {
 | 
			
		||||
      generator(a, iTa);
 | 
			
		||||
      pokeColour(h_out, real(trace(iTa * in)) * coefficient, a);
 | 
			
		||||
      LatticeComplex tmp = real(trace(iTa * in)) * coefficient;
 | 
			
		||||
      pokeColour(h_out, tmp, a);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										273
									
								
								Grid/qcd/utils/SUnTwoIndex.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										273
									
								
								Grid/qcd/utils/SUnTwoIndex.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,273 @@
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
//
 | 
			
		||||
// * Two index representation generators
 | 
			
		||||
//
 | 
			
		||||
// * Normalisation for the fundamental generators:
 | 
			
		||||
//   trace ta tb = 1/2 delta_ab = T_F delta_ab
 | 
			
		||||
//   T_F = 1/2  for SU(N) groups
 | 
			
		||||
//
 | 
			
		||||
//
 | 
			
		||||
//   base for NxN two index (anti-symmetric) matrices
 | 
			
		||||
//   normalized to 1 (d_ij is the kroenecker delta)
 | 
			
		||||
//
 | 
			
		||||
//   (e^(ij)_{kl} = 1 / sqrt(2) (d_ik d_jl +/- d_jk d_il)
 | 
			
		||||
//
 | 
			
		||||
//   Then the generators are written as
 | 
			
		||||
//
 | 
			
		||||
//   (iT_a)^(ij)(lk) = i * ( tr[e^(ij)^dag e^(lk) T^trasp_a] +
 | 
			
		||||
//   tr[e^(lk)e^(ij)^dag T_a] )  //
 | 
			
		||||
//   
 | 
			
		||||
//
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
// Authors: David Preti, Guido Cossu
 | 
			
		||||
 | 
			
		||||
#ifndef QCD_UTIL_SUN2INDEX_H
 | 
			
		||||
#define QCD_UTIL_SUN2INDEX_H
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
enum TwoIndexSymmetry { Symmetric = 1, AntiSymmetric = -1 };
 | 
			
		||||
 | 
			
		||||
inline Real delta(int a, int b) { return (a == b) ? 1.0 : 0.0; }
 | 
			
		||||
 | 
			
		||||
template <int ncolour, TwoIndexSymmetry S>
 | 
			
		||||
class SU_TwoIndex : public SU<ncolour> {
 | 
			
		||||
public:
 | 
			
		||||
  static const int Dimension = ncolour * (ncolour + S) / 2;
 | 
			
		||||
  static const int NumGenerators = SU<ncolour>::AdjointDimension;
 | 
			
		||||
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iSUnTwoIndexMatrix = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
 | 
			
		||||
 | 
			
		||||
  typedef iSUnTwoIndexMatrix<Complex> TIMatrix;
 | 
			
		||||
  typedef iSUnTwoIndexMatrix<ComplexF> TIMatrixF;
 | 
			
		||||
  typedef iSUnTwoIndexMatrix<ComplexD> TIMatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef iSUnTwoIndexMatrix<vComplex> vTIMatrix;
 | 
			
		||||
  typedef iSUnTwoIndexMatrix<vComplexF> vTIMatrixF;
 | 
			
		||||
  typedef iSUnTwoIndexMatrix<vComplexD> vTIMatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<vTIMatrix> LatticeTwoIndexMatrix;
 | 
			
		||||
  typedef Lattice<vTIMatrixF> LatticeTwoIndexMatrixF;
 | 
			
		||||
  typedef Lattice<vTIMatrixD> LatticeTwoIndexMatrixD;
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<iVector<iScalar<iMatrix<vComplex, Dimension> >, Nd> >
 | 
			
		||||
  LatticeTwoIndexField;
 | 
			
		||||
  typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> >
 | 
			
		||||
  LatticeTwoIndexFieldF;
 | 
			
		||||
  typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> >
 | 
			
		||||
  LatticeTwoIndexFieldD;
 | 
			
		||||
 | 
			
		||||
  template <typename vtype>
 | 
			
		||||
  using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
 | 
			
		||||
 | 
			
		||||
  typedef iSUnMatrix<Complex> Matrix;
 | 
			
		||||
  typedef iSUnMatrix<ComplexF> MatrixF;
 | 
			
		||||
  typedef iSUnMatrix<ComplexD> MatrixD;
 | 
			
		||||
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void base(int Index, iSUnMatrix<cplx> &eij) {
 | 
			
		||||
    // returns (e)^(ij)_{kl} necessary for change of base U_F -> U_R
 | 
			
		||||
    assert(Index < NumGenerators);
 | 
			
		||||
    eij = Zero();
 | 
			
		||||
 | 
			
		||||
    // for the linearisation of the 2 indexes 
 | 
			
		||||
    static int a[ncolour * (ncolour - 1) / 2][2]; // store the a <-> i,j
 | 
			
		||||
    static bool filled = false;
 | 
			
		||||
    if (!filled) {
 | 
			
		||||
      int counter = 0;
 | 
			
		||||
      for (int i = 1; i < ncolour; i++) {
 | 
			
		||||
        for (int j = 0; j < i; j++) {
 | 
			
		||||
          a[counter][0] = i;
 | 
			
		||||
          a[counter][1] = j;
 | 
			
		||||
          counter++;
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
      filled = true;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (Index < ncolour * (ncolour - 1) / 2) {
 | 
			
		||||
      baseOffDiagonal(a[Index][0], a[Index][1], eij);
 | 
			
		||||
    } else {
 | 
			
		||||
      baseDiagonal(Index, eij);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void baseDiagonal(int Index, iSUnMatrix<cplx> &eij) {
 | 
			
		||||
    eij = Zero();
 | 
			
		||||
    eij()()(Index - ncolour * (ncolour - 1) / 2,
 | 
			
		||||
            Index - ncolour * (ncolour - 1) / 2) = 1.0;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void baseOffDiagonal(int i, int j, iSUnMatrix<cplx> &eij) {
 | 
			
		||||
    eij = Zero();
 | 
			
		||||
    for (int k = 0; k < ncolour; k++)
 | 
			
		||||
      for (int l = 0; l < ncolour; l++)
 | 
			
		||||
        eij()()(l, k) = delta(i, k) * delta(j, l) +
 | 
			
		||||
	  S * delta(j, k) * delta(i, l);
 | 
			
		||||
 | 
			
		||||
    RealD nrm = 1. / std::sqrt(2.0);
 | 
			
		||||
    eij = eij * nrm;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void printBase(void) {
 | 
			
		||||
    for (int gen = 0; gen < Dimension; gen++) {
 | 
			
		||||
      Matrix tmp;
 | 
			
		||||
      base(gen, tmp);
 | 
			
		||||
      std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
 | 
			
		||||
                << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << tmp << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <class cplx>
 | 
			
		||||
  static void generator(int Index, iSUnTwoIndexMatrix<cplx> &i2indTa) {
 | 
			
		||||
    Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > ta(
 | 
			
		||||
								ncolour * ncolour - 1);
 | 
			
		||||
    Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > eij(Dimension);
 | 
			
		||||
    typename SU<ncolour>::template iSUnMatrix<cplx> tmp;
 | 
			
		||||
    i2indTa = Zero();
 | 
			
		||||
    
 | 
			
		||||
    for (int a = 0; a < ncolour * ncolour - 1; a++)
 | 
			
		||||
      SU<ncolour>::generator(a, ta[a]);
 | 
			
		||||
    
 | 
			
		||||
    for (int a = 0; a < Dimension; a++) base(a, eij[a]);
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < Dimension; a++) {
 | 
			
		||||
      tmp = transpose(ta[Index]) * adj(eij[a]) + adj(eij[a]) * ta[Index];
 | 
			
		||||
      for (int b = 0; b < Dimension; b++) {
 | 
			
		||||
        typename SU<ncolour>::template iSUnMatrix<cplx> tmp1 =
 | 
			
		||||
	  tmp * eij[b]; 
 | 
			
		||||
        Complex iTr = TensorRemove(timesI(trace(tmp1)));
 | 
			
		||||
        i2indTa()()(a, b) = iTr;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void printGenerators(void) {
 | 
			
		||||
    for (int gen = 0; gen < ncolour * ncolour - 1; gen++) {
 | 
			
		||||
      TIMatrix i2indTa;
 | 
			
		||||
      generator(gen, i2indTa);
 | 
			
		||||
      std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
 | 
			
		||||
                << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << i2indTa << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void testGenerators(void) {
 | 
			
		||||
    TIMatrix i2indTa, i2indTb;
 | 
			
		||||
    std::cout << GridLogMessage << "2IndexRep - Checking if traceless"
 | 
			
		||||
              << std::endl;
 | 
			
		||||
    for (int a = 0; a < ncolour * ncolour - 1; a++) {
 | 
			
		||||
      generator(a, i2indTa);
 | 
			
		||||
      std::cout << GridLogMessage << a << std::endl;
 | 
			
		||||
      assert(norm2(trace(i2indTa)) < 1.0e-6);
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "2IndexRep - Checking if antihermitean"
 | 
			
		||||
              << std::endl;
 | 
			
		||||
    for (int a = 0; a < ncolour * ncolour - 1; a++) {
 | 
			
		||||
      generator(a, i2indTa);
 | 
			
		||||
      std::cout << GridLogMessage << a << std::endl;
 | 
			
		||||
      assert(norm2(adj(i2indTa) + i2indTa) < 1.0e-6);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage
 | 
			
		||||
              << "2IndexRep - Checking Tr[Ta*Tb]=delta(a,b)*(N +- 2)/2"
 | 
			
		||||
              << std::endl;
 | 
			
		||||
    for (int a = 0; a < ncolour * ncolour - 1; a++) {
 | 
			
		||||
      for (int b = 0; b < ncolour * ncolour - 1; b++) {
 | 
			
		||||
        generator(a, i2indTa);
 | 
			
		||||
        generator(b, i2indTb);
 | 
			
		||||
 | 
			
		||||
        // generator returns iTa, so we need a minus sign here
 | 
			
		||||
        Complex Tr = -TensorRemove(trace(i2indTa * i2indTb));
 | 
			
		||||
        std::cout << GridLogMessage << "a=" << a << "b=" << b << "Tr=" << Tr
 | 
			
		||||
                  << std::endl;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void TwoIndexLieAlgebraMatrix(
 | 
			
		||||
				       const typename SU<ncolour>::LatticeAlgebraVector &h,
 | 
			
		||||
				       LatticeTwoIndexMatrix &out, Real scale = 1.0) {
 | 
			
		||||
    conformable(h, out);
 | 
			
		||||
    GridBase *grid = out.Grid();
 | 
			
		||||
    LatticeTwoIndexMatrix la(grid);
 | 
			
		||||
    TIMatrix i2indTa;
 | 
			
		||||
 | 
			
		||||
    out = Zero();
 | 
			
		||||
    for (int a = 0; a < ncolour * ncolour - 1; a++) {
 | 
			
		||||
      generator(a, i2indTa);
 | 
			
		||||
      la = peekColour(h, a) * i2indTa;
 | 
			
		||||
      out += la;
 | 
			
		||||
    }
 | 
			
		||||
    out *= scale;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Projects the algebra components 
 | 
			
		||||
  // of a lattice matrix ( of dimension ncol*ncol -1 )
 | 
			
		||||
  static void projectOnAlgebra(
 | 
			
		||||
			       typename SU<ncolour>::LatticeAlgebraVector &h_out,
 | 
			
		||||
			       const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
 | 
			
		||||
    conformable(h_out, in);
 | 
			
		||||
    h_out = Zero();
 | 
			
		||||
    TIMatrix i2indTa;
 | 
			
		||||
    Real coefficient = -2.0 / (ncolour + 2 * S) * scale;
 | 
			
		||||
    // 2/(Nc +/- 2) for the normalization of the trace in the two index rep
 | 
			
		||||
    for (int a = 0; a < ncolour * ncolour - 1; a++) {
 | 
			
		||||
      generator(a, i2indTa);
 | 
			
		||||
      auto tmp = real(trace(i2indTa * in)) * coefficient;
 | 
			
		||||
      pokeColour(h_out, tmp, a);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // a projector that keeps the generators stored to avoid the overhead of
 | 
			
		||||
  // recomputing them
 | 
			
		||||
  static void projector(typename SU<ncolour>::LatticeAlgebraVector &h_out,
 | 
			
		||||
                        const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
 | 
			
		||||
    conformable(h_out, in);
 | 
			
		||||
    // to store the generators
 | 
			
		||||
    static std::vector<TIMatrix> i2indTa(ncolour * ncolour -1); 
 | 
			
		||||
    h_out = Zero();
 | 
			
		||||
    static bool precalculated = false;
 | 
			
		||||
    if (!precalculated) {
 | 
			
		||||
      precalculated = true;
 | 
			
		||||
      for (int a = 0; a < ncolour * ncolour - 1; a++) generator(a, i2indTa[a]);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    Real coefficient =
 | 
			
		||||
      -2.0 / (ncolour + 2 * S) * scale;  // 2/(Nc +/- 2) for the normalization
 | 
			
		||||
    // of the trace in the two index rep
 | 
			
		||||
 | 
			
		||||
    for (int a = 0; a < ncolour * ncolour - 1; a++) {
 | 
			
		||||
      auto tmp = real(trace(i2indTa[a] * in)) * coefficient;
 | 
			
		||||
      pokeColour(h_out, tmp, a);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// Some useful type names
 | 
			
		||||
typedef SU_TwoIndex<Nc, Symmetric> TwoIndexSymmMatrices;
 | 
			
		||||
typedef SU_TwoIndex<Nc, AntiSymmetric> TwoIndexAntiSymmMatrices;
 | 
			
		||||
 | 
			
		||||
typedef SU_TwoIndex<2, Symmetric> SU2TwoIndexSymm;
 | 
			
		||||
typedef SU_TwoIndex<3, Symmetric> SU3TwoIndexSymm;
 | 
			
		||||
typedef SU_TwoIndex<4, Symmetric> SU4TwoIndexSymm;
 | 
			
		||||
typedef SU_TwoIndex<5, Symmetric> SU5TwoIndexSymm;
 | 
			
		||||
 | 
			
		||||
typedef SU_TwoIndex<2, AntiSymmetric> SU2TwoIndexAntiSymm;
 | 
			
		||||
typedef SU_TwoIndex<3, AntiSymmetric> SU3TwoIndexAntiSymm;
 | 
			
		||||
typedef SU_TwoIndex<4, AntiSymmetric> SU4TwoIndexAntiSymm;
 | 
			
		||||
typedef SU_TwoIndex<5, AntiSymmetric> SU5TwoIndexAntiSymm;
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,317 +0,0 @@
 | 
			
		||||
// This file is #included into the body of the class template definition of
 | 
			
		||||
// GaugeGroup. So, image there to be
 | 
			
		||||
//
 | 
			
		||||
// template <int ncolour, class group_name>
 | 
			
		||||
// class GaugeGroup {
 | 
			
		||||
//
 | 
			
		||||
// around it.
 | 
			
		||||
//
 | 
			
		||||
// Please note that the unconventional file extension makes sure that it
 | 
			
		||||
// doesn't get found by the scripts/filelist during bootstrapping.
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
template <ONLY_IF_Sp>
 | 
			
		||||
static int su2subgroups(GroupName::Sp) { return (ncolour/2 * (ncolour/2 - 1)) / 2; }
 | 
			
		||||
 | 
			
		||||
// Sp(2N) has N(2N+1) = 2N^2+N generators
 | 
			
		||||
//
 | 
			
		||||
// normalise the generators such that
 | 
			
		||||
// Trace ( Ta Tb) = 1/2 delta_ab
 | 
			
		||||
//
 | 
			
		||||
// N generators in the cartan, 2N^2 off
 | 
			
		||||
// off diagonal:
 | 
			
		||||
//     there are 6 types named a,b,c,d and w,z
 | 
			
		||||
//     abcd are N(N-1)/2 each while wz are N each
 | 
			
		||||
 | 
			
		||||
template <class cplx, ONLY_IF_Sp>
 | 
			
		||||
static void generator(int lieIndex, iGroupMatrix<cplx> &ta, GroupName::Sp) {
 | 
			
		||||
  // map lie index into type of generators: diagonal, abcd type, wz type
 | 
			
		||||
 | 
			
		||||
  const int nsp = ncolour/2;
 | 
			
		||||
  int diagIndex;
 | 
			
		||||
  int aIndex, bIndex, cIndex, dIndex;
 | 
			
		||||
  int wIndex, zIndex;  // a,b,c,d are N(N-1)/2 and w,z are N
 | 
			
		||||
  const int mod = nsp * (nsp - 1) * 0.5;
 | 
			
		||||
  const int offdiag =
 | 
			
		||||
      2 * nsp * nsp;  // number of generators not in the cartan subalgebra
 | 
			
		||||
  const int wmod = 4 * mod;
 | 
			
		||||
  const int zmod = wmod + nsp;
 | 
			
		||||
  if (lieIndex >= offdiag) {
 | 
			
		||||
    diagIndex = lieIndex - offdiag;  // 0, ... ,N-1
 | 
			
		||||
    // std::cout << GridLogMessage << "diag type " << std::endl;
 | 
			
		||||
    generatorDiagtype(diagIndex, ta);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
  if ((lieIndex >= wmod) && (lieIndex < zmod)) {
 | 
			
		||||
    // std::cout << GridLogMessage << "w type " << std::endl;
 | 
			
		||||
    wIndex = lieIndex - wmod;  // 0, ... ,N-1
 | 
			
		||||
    generatorWtype(wIndex, ta);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
  if ((lieIndex >= zmod) && (lieIndex < offdiag)) {
 | 
			
		||||
    // std::cout << GridLogMessage << "z type " << std::endl;
 | 
			
		||||
    // std::cout << GridLogMessage << "lie index " << lieIndex << std::endl;
 | 
			
		||||
    // std::cout << GridLogMessage << "z mod " << zmod << std::endl;
 | 
			
		||||
    zIndex = lieIndex - zmod;  // 0, ... ,N-1
 | 
			
		||||
    generatorZtype(zIndex, ta);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
  if (lieIndex < mod) {  // atype 0, ... , N(N-1)/2=mod
 | 
			
		||||
    // std::cout << GridLogMessage << "a type " << std::endl;
 | 
			
		||||
    aIndex = lieIndex;
 | 
			
		||||
    // std::cout << GridLogMessage << "a indx " << aIndex << std::endl;
 | 
			
		||||
    generatorAtype(aIndex, ta);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
  if ((lieIndex >= mod) && lieIndex < 2 * mod) {  // btype mod, ... , 2mod-1
 | 
			
		||||
    // std::cout << GridLogMessage << "b type " << std::endl;
 | 
			
		||||
    bIndex = lieIndex - mod;
 | 
			
		||||
    generatorBtype(bIndex, ta);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
  if ((lieIndex >= 2 * mod) &&
 | 
			
		||||
      lieIndex < 3 * mod) {  // ctype 2mod, ... , 3mod-1
 | 
			
		||||
    // std::cout << GridLogMessage << "c type " << std::endl;
 | 
			
		||||
    cIndex = lieIndex - 2 * mod;
 | 
			
		||||
    generatorCtype(cIndex, ta);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
  if ((lieIndex >= 3 * mod) &&
 | 
			
		||||
      lieIndex < wmod) {  // ctype 3mod, ... , 4mod-1 = wmod-1
 | 
			
		||||
    // std::cout << GridLogMessage << "d type " << std::endl;
 | 
			
		||||
    dIndex = lieIndex - 3 * mod;
 | 
			
		||||
    generatorDtype(dIndex, ta);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
}  // end of generator
 | 
			
		||||
 | 
			
		||||
template <class cplx, ONLY_IF_Sp>
 | 
			
		||||
static void generatorDiagtype(int diagIndex, iGroupMatrix<cplx> &ta) {
 | 
			
		||||
  // ta(i,i) = - ta(i+N,i+N) = 1/2 for each i index of the cartan subalgebra
 | 
			
		||||
 | 
			
		||||
  const int nsp=ncolour/2;
 | 
			
		||||
  ta = Zero();
 | 
			
		||||
  RealD nrm = 1.0 / 2;
 | 
			
		||||
 | 
			
		||||
  ta()()(diagIndex, diagIndex) = nrm;
 | 
			
		||||
  ta()()(diagIndex + nsp, diagIndex + nsp) = -nrm;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class cplx, ONLY_IF_Sp>
 | 
			
		||||
static void generatorAtype(int aIndex, iGroupMatrix<cplx> &ta) {
 | 
			
		||||
  // ta(i,j) = ta(j,i) = -ta(i+N,j+N) = -ta(j+N,i+N) = 1 / 2 sqrt(2)
 | 
			
		||||
  // with i<j and i=0,...,N-2
 | 
			
		||||
  // follows that j=i+1, ... , N
 | 
			
		||||
  int i1, i2;
 | 
			
		||||
  const int nsp=ncolour/2;
 | 
			
		||||
  ta = Zero();
 | 
			
		||||
  RealD nrm = 1 / (2 * std::sqrt(2));
 | 
			
		||||
 | 
			
		||||
  su2SubGroupIndex(i1, i2, aIndex);
 | 
			
		||||
  ta()()(i1, i2) = 1;
 | 
			
		||||
  ta()()(i2, i1) = 1;
 | 
			
		||||
  ta()()(i1 + nsp, i2 + nsp) = -1;
 | 
			
		||||
  ta()()(i2 + nsp, i1 + nsp) = -1;
 | 
			
		||||
 | 
			
		||||
  ta = ta * nrm;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class cplx, ONLY_IF_Sp>
 | 
			
		||||
static void generatorBtype(int bIndex, iGroupMatrix<cplx> &ta) {
 | 
			
		||||
  // ta(i,j) = -ta(j,i) = ta(i+N,j+N) = -ta(j+N,i+N) = i / 1/ 2 sqrt(2)
 | 
			
		||||
  // with i<j and i=0,...,N-2
 | 
			
		||||
  // follows that j=i+1, ... , N-1
 | 
			
		||||
 | 
			
		||||
  const int nsp=ncolour/2;
 | 
			
		||||
  int i1, i2;
 | 
			
		||||
  ta = Zero();
 | 
			
		||||
  cplx i(0.0, 1.0);
 | 
			
		||||
  RealD nrm = 1 / (2 * std::sqrt(2));
 | 
			
		||||
  su2SubGroupIndex(i1, i2, bIndex);
 | 
			
		||||
 | 
			
		||||
  ta()()(i1, i2) = i;
 | 
			
		||||
  ta()()(i2, i1) = -i;
 | 
			
		||||
  ta()()(i1 + nsp, i2 + nsp) = i;
 | 
			
		||||
  ta()()(i2 + nsp, i1 + nsp) = -i;
 | 
			
		||||
 | 
			
		||||
  ta = ta * nrm;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class cplx, ONLY_IF_Sp>
 | 
			
		||||
static void generatorCtype(int cIndex, iGroupMatrix<cplx> &ta) {
 | 
			
		||||
  // ta(i,j+N) = ta(j,i+N) = ta(i+N,j) = ta(j+N,i) = 1 / 2 sqrt(2)
 | 
			
		||||
 | 
			
		||||
  const int nsp=ncolour/2;
 | 
			
		||||
  int i1, i2;
 | 
			
		||||
  ta = Zero();
 | 
			
		||||
  RealD nrm = 1 / (2 * std::sqrt(2));
 | 
			
		||||
  su2SubGroupIndex(i1, i2, cIndex);
 | 
			
		||||
 | 
			
		||||
  ta()()(i1, i2 + nsp) = 1;
 | 
			
		||||
  ta()()(i2, i1 + nsp) = 1;
 | 
			
		||||
  ta()()(i1 + nsp, i2) = 1;
 | 
			
		||||
  ta()()(i2 + nsp, i1) = 1;
 | 
			
		||||
 | 
			
		||||
  ta = ta * nrm;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class cplx, ONLY_IF_Sp>
 | 
			
		||||
static void generatorDtype(int dIndex, iGroupMatrix<cplx> &ta) {
 | 
			
		||||
  // ta(i,j+N) = ta(j,i+N) = -ta(i+N,j) = -ta(j+N,i) = i /  2 sqrt(2)
 | 
			
		||||
 | 
			
		||||
  const int nsp=ncolour/2;
 | 
			
		||||
  int i1, i2;
 | 
			
		||||
  ta = Zero();
 | 
			
		||||
  cplx i(0.0, 1.0);
 | 
			
		||||
  RealD nrm = 1 / (2 * std::sqrt(2));
 | 
			
		||||
  su2SubGroupIndex(i1, i2, dIndex);
 | 
			
		||||
 | 
			
		||||
  ta()()(i1, i2 + nsp) = i;
 | 
			
		||||
  ta()()(i2, i1 + nsp) = i;
 | 
			
		||||
  ta()()(i1 + nsp, i2) = -i;
 | 
			
		||||
  ta()()(i2 + nsp, i1) = -i;
 | 
			
		||||
 | 
			
		||||
  ta = ta * nrm;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class cplx, ONLY_IF_Sp>
 | 
			
		||||
static void generatorWtype(int wIndex, iGroupMatrix<cplx> &ta) {
 | 
			
		||||
  // ta(i,i+N) =  ta(i+N,i) = 1/2
 | 
			
		||||
 | 
			
		||||
  const int nsp=ncolour/2;
 | 
			
		||||
  ta = Zero();
 | 
			
		||||
  RealD nrm = 1.0 / 2;  // check
 | 
			
		||||
 | 
			
		||||
  ta()()(wIndex, wIndex + nsp) = 1;
 | 
			
		||||
  ta()()(wIndex + nsp, wIndex) = 1;
 | 
			
		||||
 | 
			
		||||
  ta = ta * nrm;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class cplx, ONLY_IF_Sp>
 | 
			
		||||
static void generatorZtype(int zIndex, iGroupMatrix<cplx> &ta) {
 | 
			
		||||
  // ta(i,i+N) = - ta(i+N,i) = i/2
 | 
			
		||||
 | 
			
		||||
  const int nsp=ncolour/2;
 | 
			
		||||
  ta = Zero();
 | 
			
		||||
  RealD nrm = 1.0 / 2;  // check
 | 
			
		||||
  cplx i(0.0, 1.0);
 | 
			
		||||
  ta()()(zIndex, zIndex + nsp) = i;
 | 
			
		||||
  ta()()(zIndex + nsp, zIndex) = -i;
 | 
			
		||||
 | 
			
		||||
  ta = ta * nrm;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Map a su2 subgroup number to the pair of rows that are non zero
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template <ONLY_IF_Sp>
 | 
			
		||||
static void su2SubGroupIndex(int &i1, int &i2, int su2_index, GroupName::Sp) {
 | 
			
		||||
  const int nsp=ncolour/2;
 | 
			
		||||
  assert((su2_index >= 0) && (su2_index < (nsp * (nsp - 1)) / 2));
 | 
			
		||||
 | 
			
		||||
  int spare = su2_index;
 | 
			
		||||
  for (i1 = 0; spare >= (nsp - 1 - i1); i1++) {
 | 
			
		||||
    spare = spare - (nsp - 1 - i1);  // remove the Nc-1-i1 terms
 | 
			
		||||
  }
 | 
			
		||||
  i2 = i1 + 1 + spare;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void testGenerators(GroupName::Sp) {
 | 
			
		||||
  Matrix ta;
 | 
			
		||||
  Matrix tb;
 | 
			
		||||
  std::cout << GridLogMessage
 | 
			
		||||
            << "Fundamental - Checking trace ta tb is 0.5 delta_ab "
 | 
			
		||||
            << std::endl;
 | 
			
		||||
  for (int a = 0; a < AlgebraDimension; a++) {
 | 
			
		||||
    for (int b = 0; b < AlgebraDimension; b++) {
 | 
			
		||||
      generator(a, ta);
 | 
			
		||||
      generator(b, tb);
 | 
			
		||||
      Complex tr = TensorRemove(trace(ta * tb));
 | 
			
		||||
      std::cout << GridLogMessage << "(" << a << "," << b << ") =  " << tr
 | 
			
		||||
                << std::endl;
 | 
			
		||||
      if (a == b) assert(abs(tr - Complex(0.5)) < 1.0e-6);
 | 
			
		||||
      if (a != b) assert(abs(tr) < 1.0e-6);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogMessage << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Fundamental - Checking if hermitian"
 | 
			
		||||
            << std::endl;
 | 
			
		||||
  for (int a = 0; a < AlgebraDimension; a++) {
 | 
			
		||||
    generator(a, ta);
 | 
			
		||||
    std::cout << GridLogMessage << a << std::endl;
 | 
			
		||||
    assert(norm2(ta - adj(ta)) < 1.0e-6);
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogMessage << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Fundamental - Checking if traceless"
 | 
			
		||||
            << std::endl;
 | 
			
		||||
  for (int a = 0; a < AlgebraDimension; a++) {
 | 
			
		||||
    generator(a, ta);
 | 
			
		||||
    Complex tr = TensorRemove(trace(ta));
 | 
			
		||||
    std::cout << GridLogMessage << a << std::endl;
 | 
			
		||||
    assert(abs(tr) < 1.0e-6);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <int N>
 | 
			
		||||
static Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > >
 | 
			
		||||
ProjectOnGeneralGroup(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu, GroupName::Sp) {
 | 
			
		||||
  return ProjectOnSpGroup(Umu);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class vtype>
 | 
			
		||||
accelerator_inline static iScalar<vtype> ProjectOnGeneralGroup(const iScalar<vtype> &r, GroupName::Sp) {
 | 
			
		||||
  return ProjectOnSpGroup(r);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class vtype, int N>
 | 
			
		||||
accelerator_inline static iVector<vtype,N> ProjectOnGeneralGroup(const iVector<vtype,N> &r, GroupName::Sp) {
 | 
			
		||||
  return ProjectOnSpGroup(r);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
 | 
			
		||||
accelerator_inline static iMatrix<vtype,N> ProjectOnGeneralGroup(const iMatrix<vtype,N> &arg, GroupName::Sp) {
 | 
			
		||||
  return ProjectOnSpGroup(arg);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename LatticeMatrixType>   
 | 
			
		||||
static void taProj(const LatticeMatrixType &in, LatticeMatrixType &out, GroupName::Sp) {
 | 
			
		||||
  out = SpTa(in);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
template <ONLY_IF_Sp>
 | 
			
		||||
static void Omega(LatticeColourMatrixD &in) {
 | 
			
		||||
  const int nsp=ncolour/2;
 | 
			
		||||
  LatticeColourMatrixD OmegaLatt(in.Grid());
 | 
			
		||||
  LatticeColourMatrixD identity(in.Grid());
 | 
			
		||||
  ColourMatrix Omega;
 | 
			
		||||
 | 
			
		||||
  OmegaLatt = Zero();
 | 
			
		||||
  Omega = Zero();
 | 
			
		||||
  identity = 1.;
 | 
			
		||||
 | 
			
		||||
  for (int i = 0; i < nsp; i++) {
 | 
			
		||||
    Omega()()(i, nsp + i) = 1.;
 | 
			
		||||
    Omega()()(nsp + i, i) = -1;
 | 
			
		||||
  }
 | 
			
		||||
  OmegaLatt = OmegaLatt + (identity * Omega);
 | 
			
		||||
  in = OmegaLatt;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <ONLY_IF_Sp, class vtype, int N>
 | 
			
		||||
static void Omega(iScalar<iScalar<iMatrix<vtype, N> > > &in) {
 | 
			
		||||
  const int nsp=ncolour/2;
 | 
			
		||||
    
 | 
			
		||||
  iScalar<iScalar<iMatrix<vtype, N> > > Omega;
 | 
			
		||||
  Omega = Zero();
 | 
			
		||||
 | 
			
		||||
  for (int i = 0; i < nsp; i++) {
 | 
			
		||||
    Omega()()(i, nsp + i) = 1.;
 | 
			
		||||
    Omega()()(nsp + i, i) = -1;
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  in = Omega;
 | 
			
		||||
}
 | 
			
		||||
@@ -8,9 +8,9 @@
 | 
			
		||||
#include <Grid/qcd/utils/ScalarObjs.h>
 | 
			
		||||
 | 
			
		||||
// Include representations
 | 
			
		||||
#include <Grid/qcd/utils/GaugeGroup.h>
 | 
			
		||||
#include <Grid/qcd/utils/SUn.h>
 | 
			
		||||
#include <Grid/qcd/utils/SUnAdjoint.h>
 | 
			
		||||
#include <Grid/qcd/utils/GaugeGroupTwoIndex.h>
 | 
			
		||||
#include <Grid/qcd/utils/SUnTwoIndex.h>
 | 
			
		||||
 | 
			
		||||
// All-to-all contraction kernels that touch the 
 | 
			
		||||
// internal lattice structure
 | 
			
		||||
 
 | 
			
		||||
@@ -290,7 +290,7 @@ public:
 | 
			
		||||
  }
 | 
			
		||||
*/
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
  // the sum over all nu-oriented staples for nu != mu on each site
 | 
			
		||||
  // the sum over all staples on each site
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
  static void Staple(GaugeMat &staple, const GaugeLorentz &Umu, int mu) {
 | 
			
		||||
 | 
			
		||||
@@ -300,10 +300,6 @@ public:
 | 
			
		||||
    for (int d = 0; d < Nd; d++) {
 | 
			
		||||
      U[d] = PeekIndex<LorentzIndex>(Umu, d);
 | 
			
		||||
    }
 | 
			
		||||
    Staple(staple, U, mu);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void Staple(GaugeMat &staple, const std::vector<GaugeMat> &U, int mu) {
 | 
			
		||||
    staple = Zero();
 | 
			
		||||
 | 
			
		||||
    for (int nu = 0; nu < Nd; nu++) {
 | 
			
		||||
@@ -339,203 +335,6 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /////////////
 | 
			
		||||
  //Staples for each direction mu, summed over nu != mu
 | 
			
		||||
  //staple: output staples for each mu (Nd)
 | 
			
		||||
  //U: link array (Nd)
 | 
			
		||||
  /////////////
 | 
			
		||||
  static void StapleAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U) {
 | 
			
		||||
    assert(staple.size() == Nd); assert(U.size() == Nd);
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++) Staple(staple[mu], U, mu);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //A workspace class allowing reuse of the stencil
 | 
			
		||||
  class WilsonLoopPaddedStencilWorkspace{
 | 
			
		||||
    std::unique_ptr<GeneralLocalStencil> stencil;
 | 
			
		||||
    size_t nshift;
 | 
			
		||||
 | 
			
		||||
    void generateStencil(GridBase* padded_grid){
 | 
			
		||||
      double t0 = usecond();
 | 
			
		||||
      
 | 
			
		||||
      //Generate shift arrays
 | 
			
		||||
      std::vector<Coordinate> shifts = this->getShifts();
 | 
			
		||||
      nshift = shifts.size();
 | 
			
		||||
      
 | 
			
		||||
      double t1 = usecond();
 | 
			
		||||
      //Generate local stencil
 | 
			
		||||
      stencil.reset(new GeneralLocalStencil(padded_grid,shifts));
 | 
			
		||||
      double t2 = usecond();
 | 
			
		||||
      std::cout << GridLogPerformance << " WilsonLoopPaddedWorkspace timings: coord:" << (t1-t0)/1000 << "ms, stencil:" << (t2-t1)/1000 << "ms" << std::endl;   
 | 
			
		||||
    }
 | 
			
		||||
  public:
 | 
			
		||||
    //Get the stencil. If not already generated, or if generated using a different Grid than in PaddedCell, it will be created on-the-fly
 | 
			
		||||
    const GeneralLocalStencil & getStencil(const PaddedCell &pcell){
 | 
			
		||||
      assert(pcell.depth >= this->paddingDepth());
 | 
			
		||||
      if(!stencil || stencil->Grid() != (GridBase*)pcell.grids.back() ) generateStencil((GridBase*)pcell.grids.back());
 | 
			
		||||
      return *stencil;
 | 
			
		||||
    }
 | 
			
		||||
    size_t Nshift() const{ return nshift; }
 | 
			
		||||
    
 | 
			
		||||
    virtual std::vector<Coordinate> getShifts() const = 0;
 | 
			
		||||
    virtual int paddingDepth() const = 0; //padding depth required
 | 
			
		||||
    
 | 
			
		||||
    virtual ~WilsonLoopPaddedStencilWorkspace(){}
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  //This workspace allows the sharing of a common PaddedCell object between multiple stencil workspaces
 | 
			
		||||
  class WilsonLoopPaddedWorkspace{
 | 
			
		||||
    std::vector<WilsonLoopPaddedStencilWorkspace*> stencil_wk;
 | 
			
		||||
    std::unique_ptr<PaddedCell> pcell;
 | 
			
		||||
 | 
			
		||||
    void generatePcell(GridBase* unpadded_grid){
 | 
			
		||||
      assert(stencil_wk.size());
 | 
			
		||||
      int max_depth = 0;
 | 
			
		||||
      for(auto const &s : stencil_wk) max_depth=std::max(max_depth, s->paddingDepth());
 | 
			
		||||
      
 | 
			
		||||
      pcell.reset(new PaddedCell(max_depth, dynamic_cast<GridCartesian*>(unpadded_grid)));
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
  public:
 | 
			
		||||
    //Add a stencil definition. This should be done before the first call to retrieve a stencil object.
 | 
			
		||||
    //Takes ownership of the pointer
 | 
			
		||||
    void addStencil(WilsonLoopPaddedStencilWorkspace *stencil){
 | 
			
		||||
      assert(!pcell);
 | 
			
		||||
      stencil_wk.push_back(stencil);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    const GeneralLocalStencil & getStencil(const size_t stencil_idx, GridBase* unpadded_grid){
 | 
			
		||||
      if(!pcell || pcell->unpadded_grid != unpadded_grid) generatePcell(unpadded_grid);
 | 
			
		||||
      return stencil_wk[stencil_idx]->getStencil(*pcell);
 | 
			
		||||
    }      
 | 
			
		||||
    const PaddedCell & getPaddedCell(GridBase* unpadded_grid){
 | 
			
		||||
      if(!pcell || pcell->unpadded_grid != unpadded_grid) generatePcell(unpadded_grid);
 | 
			
		||||
      return *pcell;
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    ~WilsonLoopPaddedWorkspace(){
 | 
			
		||||
      for(auto &s : stencil_wk) delete s;
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  //A workspace class allowing reuse of the stencil
 | 
			
		||||
  class StaplePaddedAllWorkspace: public WilsonLoopPaddedStencilWorkspace{
 | 
			
		||||
  public:
 | 
			
		||||
    std::vector<Coordinate> getShifts() const override{
 | 
			
		||||
      std::vector<Coordinate> shifts;
 | 
			
		||||
      for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
	for(int nu=0;nu<Nd;nu++){
 | 
			
		||||
	  if(nu != mu){
 | 
			
		||||
	    Coordinate shift_0(Nd,0);
 | 
			
		||||
	    Coordinate shift_mu(Nd,0); shift_mu[mu]=1;
 | 
			
		||||
	    Coordinate shift_nu(Nd,0); shift_nu[nu]=1;
 | 
			
		||||
	    Coordinate shift_mnu(Nd,0); shift_mnu[nu]=-1;
 | 
			
		||||
	    Coordinate shift_mnu_pmu(Nd,0); shift_mnu_pmu[nu]=-1; shift_mnu_pmu[mu]=1;
 | 
			
		||||
      
 | 
			
		||||
	    //U_nu(x+mu)U^dag_mu(x+nu) U^dag_nu(x)
 | 
			
		||||
	    shifts.push_back(shift_0);
 | 
			
		||||
	    shifts.push_back(shift_nu);
 | 
			
		||||
	    shifts.push_back(shift_mu);
 | 
			
		||||
      
 | 
			
		||||
	    //U_nu^dag(x-nu+mu) U_mu^dag(x-nu) U_nu(x-nu)
 | 
			
		||||
	    shifts.push_back(shift_mnu);
 | 
			
		||||
	    shifts.push_back(shift_mnu);
 | 
			
		||||
	    shifts.push_back(shift_mnu_pmu);
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      return shifts;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    int paddingDepth() const override{ return 1; }
 | 
			
		||||
  }; 
 | 
			
		||||
 | 
			
		||||
  //Padded cell implementation of the staple method for all mu, summed over nu != mu
 | 
			
		||||
  //staple: output staple for each mu, summed over nu != mu (Nd)
 | 
			
		||||
  //U_padded: the gauge link fields padded out using the PaddedCell class
 | 
			
		||||
  //Cell: the padded cell class
 | 
			
		||||
  static void StaplePaddedAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U_padded, const PaddedCell &Cell) {
 | 
			
		||||
    StaplePaddedAllWorkspace wk;
 | 
			
		||||
    StaplePaddedAll(staple,U_padded,Cell,wk.getStencil(Cell));
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  //Padded cell implementation of the staple method for all mu, summed over nu != mu
 | 
			
		||||
  //staple: output staple for each mu, summed over nu != mu (Nd)
 | 
			
		||||
  //U_padded: the gauge link fields padded out using the PaddedCell class
 | 
			
		||||
  //Cell: the padded cell class
 | 
			
		||||
  //gStencil: the precomputed generalized local stencil for the staple
 | 
			
		||||
  static void StaplePaddedAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U_padded, const PaddedCell &Cell, const GeneralLocalStencil &gStencil)
 | 
			
		||||
  {
 | 
			
		||||
    double t0 = usecond();
 | 
			
		||||
    assert(U_padded.size() == Nd); assert(staple.size() == Nd);
 | 
			
		||||
    assert(U_padded[0].Grid() == (GridBase*)Cell.grids.back());
 | 
			
		||||
    assert(Cell.depth >= 1);
 | 
			
		||||
    GridBase *ggrid = U_padded[0].Grid(); //padded cell grid
 | 
			
		||||
 | 
			
		||||
    int shift_mu_off = gStencil._npoints/Nd;
 | 
			
		||||
    
 | 
			
		||||
    //Open views to padded gauge links and keep open over mu loop
 | 
			
		||||
    typedef LatticeView<typename GaugeMat::vector_object> GaugeViewType;
 | 
			
		||||
    size_t vsize = Nd*sizeof(GaugeViewType);
 | 
			
		||||
    GaugeViewType* Ug_dirs_v_host = (GaugeViewType*)malloc(vsize);
 | 
			
		||||
    for(int i=0;i<Nd;i++) Ug_dirs_v_host[i] = U_padded[i].View(AcceleratorRead);
 | 
			
		||||
    GaugeViewType* Ug_dirs_v = (GaugeViewType*)acceleratorAllocDevice(vsize);
 | 
			
		||||
    acceleratorCopyToDevice(Ug_dirs_v_host,Ug_dirs_v,vsize);
 | 
			
		||||
    
 | 
			
		||||
    GaugeMat gStaple(ggrid);
 | 
			
		||||
 | 
			
		||||
    int outer_off = 0;
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      { //view scope
 | 
			
		||||
	autoView( gStaple_v , gStaple, AcceleratorWrite);
 | 
			
		||||
	auto gStencil_v = gStencil.View();
 | 
			
		||||
	
 | 
			
		||||
	accelerator_for(ss, ggrid->oSites(), (size_t)ggrid->Nsimd(), {
 | 
			
		||||
	    decltype(coalescedRead(Ug_dirs_v[0][0])) stencil_ss;
 | 
			
		||||
	    stencil_ss = Zero();
 | 
			
		||||
	    int off = outer_off;
 | 
			
		||||
	    
 | 
			
		||||
	    for(int nu=0;nu<Nd;nu++){
 | 
			
		||||
	      if(nu != mu){	  
 | 
			
		||||
		GeneralStencilEntry const* e = gStencil_v.GetEntry(off++,ss);
 | 
			
		||||
		auto U0 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(off++,ss);
 | 
			
		||||
		auto U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(off++,ss);
 | 
			
		||||
		auto U2 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
 | 
			
		||||
      
 | 
			
		||||
		stencil_ss = stencil_ss + U2 * U1 * U0;
 | 
			
		||||
 | 
			
		||||
		e = gStencil_v.GetEntry(off++,ss);
 | 
			
		||||
		U0 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
 | 
			
		||||
		e = gStencil_v.GetEntry(off++,ss);
 | 
			
		||||
		U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(off++,ss);
 | 
			
		||||
		U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
 | 
			
		||||
 | 
			
		||||
		stencil_ss = stencil_ss + U2 * U1 * U0;
 | 
			
		||||
	      }
 | 
			
		||||
	    }
 | 
			
		||||
		
 | 
			
		||||
	    coalescedWrite(gStaple_v[ss],stencil_ss);
 | 
			
		||||
	  }
 | 
			
		||||
	  );
 | 
			
		||||
      } //ensure views are all closed!
 | 
			
		||||
      
 | 
			
		||||
      staple[mu] = Cell.Extract(gStaple);
 | 
			
		||||
      outer_off += shift_mu_off;
 | 
			
		||||
    }//mu loop
 | 
			
		||||
 | 
			
		||||
    for(int i=0;i<Nd;i++) Ug_dirs_v_host[i].ViewClose();
 | 
			
		||||
    free(Ug_dirs_v_host);
 | 
			
		||||
    acceleratorFreeDevice(Ug_dirs_v);
 | 
			
		||||
    
 | 
			
		||||
    double t1=usecond();
 | 
			
		||||
    
 | 
			
		||||
    std::cout << GridLogPerformance << "StaplePaddedAll timing:" << (t1-t0)/1000 << "ms" << std::endl;   
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
   
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
  // the sum over all staples on each site in direction mu,nu, upper part
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
@@ -908,14 +707,18 @@ public:
 | 
			
		||||
  // the sum over all staples on each site
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
  static void RectStapleDouble(GaugeMat &U2, const GaugeMat &U, int mu) {
 | 
			
		||||
    U2 = U * Gimpl::CshiftLink(U, mu, 1);
 | 
			
		||||
    U2 = U * Cshift(U, mu, 1);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Hop by two optimisation strategy. Use RectStapleDouble to obtain 'U2'
 | 
			
		||||
  // Hop by two optimisation strategy does not work nicely with Gparity. (could
 | 
			
		||||
  // do,
 | 
			
		||||
  // but need to track two deep where cross boundary and apply a conjugation).
 | 
			
		||||
  // Must differentiate this in Gimpl, and use Gimpl::isPeriodicGaugeField to do
 | 
			
		||||
  // so .
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  static void RectStapleOptimised(GaugeMat &Stap, const std::vector<GaugeMat> &U2,
 | 
			
		||||
                                  const std::vector<GaugeMat> &U, int mu) {
 | 
			
		||||
  static void RectStapleOptimised(GaugeMat &Stap, std::vector<GaugeMat> &U2,
 | 
			
		||||
                                  std::vector<GaugeMat> &U, int mu) {
 | 
			
		||||
 | 
			
		||||
    Stap = Zero();
 | 
			
		||||
 | 
			
		||||
@@ -929,9 +732,9 @@ public:
 | 
			
		||||
 | 
			
		||||
        // Up staple    ___ ___
 | 
			
		||||
        //             |       |
 | 
			
		||||
        tmp = Gimpl::CshiftLink(adj(U[nu]), nu, -1);
 | 
			
		||||
        tmp = Cshift(adj(U[nu]), nu, -1);
 | 
			
		||||
        tmp = adj(U2[mu]) * tmp;
 | 
			
		||||
        tmp = Gimpl::CshiftLink(tmp, mu, -2);
 | 
			
		||||
        tmp = Cshift(tmp, mu, -2);
 | 
			
		||||
 | 
			
		||||
        Staple2x1 = Gimpl::CovShiftForward(U[nu], nu, tmp);
 | 
			
		||||
 | 
			
		||||
@@ -939,14 +742,14 @@ public:
 | 
			
		||||
        //             |___ ___|
 | 
			
		||||
        //
 | 
			
		||||
        tmp = adj(U2[mu]) * U[nu];
 | 
			
		||||
        Staple2x1 += Gimpl::CovShiftBackward(U[nu], nu, Gimpl::CshiftLink(tmp, mu, -2));
 | 
			
		||||
        Staple2x1 += Gimpl::CovShiftBackward(U[nu], nu, Cshift(tmp, mu, -2));
 | 
			
		||||
 | 
			
		||||
        //              ___ ___
 | 
			
		||||
        //             |    ___|
 | 
			
		||||
        //             |___ ___|
 | 
			
		||||
        //
 | 
			
		||||
 | 
			
		||||
        Stap += Gimpl::CshiftLink(Gimpl::CovShiftForward(U[mu], mu, Staple2x1), mu, 1);
 | 
			
		||||
        Stap += Cshift(Gimpl::CovShiftForward(U[mu], mu, Staple2x1), mu, 1);
 | 
			
		||||
 | 
			
		||||
        //              ___ ___
 | 
			
		||||
        //             |___    |
 | 
			
		||||
@@ -955,7 +758,7 @@ public:
 | 
			
		||||
 | 
			
		||||
        //  tmp= Staple2x1* Cshift(U[mu],mu,-2);
 | 
			
		||||
        //  Stap+= Cshift(tmp,mu,1) ;
 | 
			
		||||
        Stap += Gimpl::CshiftLink(Staple2x1, mu, 1) * Gimpl::CshiftLink(U[mu], mu, -1);
 | 
			
		||||
        Stap += Cshift(Staple2x1, mu, 1) * Cshift(U[mu], mu, -1);
 | 
			
		||||
        ;
 | 
			
		||||
 | 
			
		||||
        //       --
 | 
			
		||||
@@ -963,10 +766,10 @@ public:
 | 
			
		||||
        //
 | 
			
		||||
        //      |  |
 | 
			
		||||
 | 
			
		||||
        tmp = Gimpl::CshiftLink(adj(U2[nu]), nu, -2);
 | 
			
		||||
        tmp = Cshift(adj(U2[nu]), nu, -2);
 | 
			
		||||
        tmp = Gimpl::CovShiftBackward(U[mu], mu, tmp);
 | 
			
		||||
        tmp = U2[nu] * Gimpl::CshiftLink(tmp, nu, 2);
 | 
			
		||||
        Stap += Gimpl::CshiftLink(tmp, mu, 1);
 | 
			
		||||
        tmp = U2[nu] * Cshift(tmp, nu, 2);
 | 
			
		||||
        Stap += Cshift(tmp, mu, 1);
 | 
			
		||||
 | 
			
		||||
        //      |  |
 | 
			
		||||
        //
 | 
			
		||||
@@ -975,12 +778,25 @@ public:
 | 
			
		||||
 | 
			
		||||
        tmp = Gimpl::CovShiftBackward(U[mu], mu, U2[nu]);
 | 
			
		||||
        tmp = adj(U2[nu]) * tmp;
 | 
			
		||||
        tmp = Gimpl::CshiftLink(tmp, nu, -2);
 | 
			
		||||
        Stap += Gimpl::CshiftLink(tmp, mu, 1);
 | 
			
		||||
        tmp = Cshift(tmp, nu, -2);
 | 
			
		||||
        Stap += Cshift(tmp, mu, 1);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void RectStaple(GaugeMat &Stap, const GaugeLorentz &Umu, int mu) {
 | 
			
		||||
    RectStapleUnoptimised(Stap, Umu, mu);
 | 
			
		||||
  }
 | 
			
		||||
  static void RectStaple(const GaugeLorentz &Umu, GaugeMat &Stap,
 | 
			
		||||
                         std::vector<GaugeMat> &U2, std::vector<GaugeMat> &U,
 | 
			
		||||
                         int mu) {
 | 
			
		||||
    if (Gimpl::isPeriodicGaugeField()) {
 | 
			
		||||
      RectStapleOptimised(Stap, U2, U, mu);
 | 
			
		||||
    } else {
 | 
			
		||||
      RectStapleUnoptimised(Stap, Umu, mu);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void RectStapleUnoptimised(GaugeMat &Stap, const GaugeLorentz &Umu,
 | 
			
		||||
                                    int mu) {
 | 
			
		||||
    GridBase *grid = Umu.Grid();
 | 
			
		||||
@@ -1079,288 +895,6 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void RectStaple(GaugeMat &Stap, const GaugeLorentz &Umu, int mu) {
 | 
			
		||||
    RectStapleUnoptimised(Stap, Umu, mu);
 | 
			
		||||
  }
 | 
			
		||||
  static void RectStaple(const GaugeLorentz &Umu, GaugeMat &Stap,
 | 
			
		||||
                         std::vector<GaugeMat> &U2, std::vector<GaugeMat> &U,
 | 
			
		||||
                         int mu) {
 | 
			
		||||
    RectStapleOptimised(Stap, U2, U, mu);
 | 
			
		||||
  }
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
  //Compute the rectangular staples for all orientations
 | 
			
		||||
  //Stap : Array of staples (Nd)
 | 
			
		||||
  //U: Gauge links in each direction (Nd)
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
  static void RectStapleAll(std::vector<GaugeMat> &Stap, const std::vector<GaugeMat> &U){
 | 
			
		||||
    assert(Stap.size() == Nd); assert(U.size() == Nd);
 | 
			
		||||
    std::vector<GaugeMat> U2(Nd,U[0].Grid());
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++) RectStapleDouble(U2[mu], U[mu], mu);
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++) RectStapleOptimised(Stap[mu], U2, U, mu);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //A workspace class allowing reuse of the stencil
 | 
			
		||||
  class RectStaplePaddedAllWorkspace: public WilsonLoopPaddedStencilWorkspace{
 | 
			
		||||
  public:
 | 
			
		||||
    std::vector<Coordinate> getShifts() const override{
 | 
			
		||||
      std::vector<Coordinate> shifts;
 | 
			
		||||
      for (int mu = 0; mu < Nd; mu++){
 | 
			
		||||
	for (int nu = 0; nu < Nd; nu++) {
 | 
			
		||||
	  if (nu != mu) {
 | 
			
		||||
	    auto genShift = [&](int mushift,int nushift){
 | 
			
		||||
	      Coordinate out(Nd,0); out[mu]=mushift; out[nu]=nushift; return out;
 | 
			
		||||
	    };
 | 
			
		||||
 | 
			
		||||
	    //tmp6 = tmp5(x+mu) = U_mu(x+mu)U_nu(x+2mu)U_mu^dag(x+nu+mu) U_mu^dag(x+nu) U_nu^dag(x)
 | 
			
		||||
	    shifts.push_back(genShift(0,0));
 | 
			
		||||
	    shifts.push_back(genShift(0,+1));
 | 
			
		||||
	    shifts.push_back(genShift(+1,+1));
 | 
			
		||||
	    shifts.push_back(genShift(+2,0));
 | 
			
		||||
	    shifts.push_back(genShift(+1,0));
 | 
			
		||||
 | 
			
		||||
	    //tmp5 = tmp4(x+mu) = U_mu(x+mu)U^dag_nu(x-nu+2mu)U^dag_mu(x-nu+mu)U^dag_mu(x-nu)U_nu(x-nu)
 | 
			
		||||
	    shifts.push_back(genShift(0,-1));
 | 
			
		||||
	    shifts.push_back(genShift(0,-1));
 | 
			
		||||
	    shifts.push_back(genShift(+1,-1));
 | 
			
		||||
	    shifts.push_back(genShift(+2,-1));
 | 
			
		||||
	    shifts.push_back(genShift(+1,0));
 | 
			
		||||
 | 
			
		||||
	    //tmp5 = tmp4(x+mu) = U^dag_nu(x-nu+mu)U^dag_mu(x-nu)U^dag_mu(x-mu-nu)U_nu(x-mu-nu)U_mu(x-mu)
 | 
			
		||||
	    shifts.push_back(genShift(-1,0));
 | 
			
		||||
	    shifts.push_back(genShift(-1,-1));
 | 
			
		||||
	    shifts.push_back(genShift(-1,-1));
 | 
			
		||||
	    shifts.push_back(genShift(0,-1));
 | 
			
		||||
	    shifts.push_back(genShift(+1,-1));
 | 
			
		||||
 | 
			
		||||
	    //tmp5 = tmp4(x+mu) = U_nu(x+mu)U_mu^dag(x+nu)U_mu^dag(x-mu+nu)U_nu^dag(x-mu)U_mu(x-mu)
 | 
			
		||||
	    shifts.push_back(genShift(-1,0));
 | 
			
		||||
	    shifts.push_back(genShift(-1,0));
 | 
			
		||||
	    shifts.push_back(genShift(-1,+1));
 | 
			
		||||
	    shifts.push_back(genShift(0,+1));
 | 
			
		||||
	    shifts.push_back(genShift(+1,0));
 | 
			
		||||
 | 
			
		||||
	    //tmp6 = tmp5(x+mu) = U_nu(x+mu)U_nu(x+mu+nu)U_mu^dag(x+2nu)U_nu^dag(x+nu)U_nu^dag(x)
 | 
			
		||||
	    shifts.push_back(genShift(0,0));
 | 
			
		||||
	    shifts.push_back(genShift(0,+1));
 | 
			
		||||
	    shifts.push_back(genShift(0,+2));
 | 
			
		||||
	    shifts.push_back(genShift(+1,+1));
 | 
			
		||||
	    shifts.push_back(genShift(+1,0));
 | 
			
		||||
 | 
			
		||||
	    //tmp5 = tmp4(x+mu) = U_nu^dag(x+mu-nu)U_nu^dag(x+mu-2nu)U_mu^dag(x-2nu)U_nu(x-2nu)U_nu(x-nu)
 | 
			
		||||
	    shifts.push_back(genShift(0,-1));
 | 
			
		||||
	    shifts.push_back(genShift(0,-2));
 | 
			
		||||
	    shifts.push_back(genShift(0,-2));
 | 
			
		||||
	    shifts.push_back(genShift(+1,-2));
 | 
			
		||||
	    shifts.push_back(genShift(+1,-1));
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      return shifts;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    int paddingDepth() const override{ return 2; }
 | 
			
		||||
  }; 
 | 
			
		||||
 | 
			
		||||
  //Padded cell implementation of the rectangular staple method for all mu, summed over nu != mu
 | 
			
		||||
  //staple: output staple for each mu, summed over nu != mu (Nd)
 | 
			
		||||
  //U_padded: the gauge link fields padded out using the PaddedCell class
 | 
			
		||||
  //Cell: the padded cell class
 | 
			
		||||
  static void RectStaplePaddedAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U_padded, const PaddedCell &Cell) {
 | 
			
		||||
    RectStaplePaddedAllWorkspace wk;
 | 
			
		||||
    RectStaplePaddedAll(staple,U_padded,Cell,wk.getStencil(Cell));
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  //Padded cell implementation of the rectangular staple method for all mu, summed over nu != mu
 | 
			
		||||
  //staple: output staple for each mu, summed over nu != mu (Nd)
 | 
			
		||||
  //U_padded: the gauge link fields padded out using the PaddedCell class
 | 
			
		||||
  //Cell: the padded cell class
 | 
			
		||||
  //gStencil: the stencil
 | 
			
		||||
  static void RectStaplePaddedAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U_padded, const PaddedCell &Cell, const GeneralLocalStencil &gStencil) {
 | 
			
		||||
    double t0 = usecond();
 | 
			
		||||
    assert(U_padded.size() == Nd); assert(staple.size() == Nd);
 | 
			
		||||
    assert(U_padded[0].Grid() == (GridBase*)Cell.grids.back());
 | 
			
		||||
    assert(Cell.depth >= 2);
 | 
			
		||||
    GridBase *ggrid = U_padded[0].Grid(); //padded cell grid
 | 
			
		||||
 | 
			
		||||
    size_t nshift = gStencil._npoints;
 | 
			
		||||
    int mu_off_delta = nshift / Nd;
 | 
			
		||||
    
 | 
			
		||||
    //Open views to padded gauge links and keep open over mu loop
 | 
			
		||||
    typedef LatticeView<typename GaugeMat::vector_object> GaugeViewType;
 | 
			
		||||
    size_t vsize = Nd*sizeof(GaugeViewType);
 | 
			
		||||
    GaugeViewType* Ug_dirs_v_host = (GaugeViewType*)malloc(vsize);
 | 
			
		||||
    for(int i=0;i<Nd;i++) Ug_dirs_v_host[i] = U_padded[i].View(AcceleratorRead);
 | 
			
		||||
    GaugeViewType* Ug_dirs_v = (GaugeViewType*)acceleratorAllocDevice(vsize);
 | 
			
		||||
    acceleratorCopyToDevice(Ug_dirs_v_host,Ug_dirs_v,vsize);
 | 
			
		||||
 | 
			
		||||
    GaugeMat gStaple(ggrid); //temp staple object on padded grid
 | 
			
		||||
 | 
			
		||||
    int offset = 0;
 | 
			
		||||
    for(int mu=0; mu<Nd; mu++){
 | 
			
		||||
 | 
			
		||||
      { //view scope
 | 
			
		||||
	autoView( gStaple_v , gStaple, AcceleratorWrite);
 | 
			
		||||
	auto gStencil_v = gStencil.View();
 | 
			
		||||
 | 
			
		||||
	accelerator_for(ss, ggrid->oSites(), (size_t)ggrid->Nsimd(), {
 | 
			
		||||
	    decltype(coalescedRead(Ug_dirs_v[0][0])) stencil_ss;
 | 
			
		||||
	    stencil_ss = Zero();
 | 
			
		||||
	    int s=offset;
 | 
			
		||||
	    for(int nu=0;nu<Nd;nu++){
 | 
			
		||||
	      if(nu != mu){
 | 
			
		||||
		//tmp6 = tmp5(x+mu) = U_mu(x+mu)U_nu(x+2mu)U_mu^dag(x+nu+mu) U_mu^dag(x+nu) U_nu^dag(x)
 | 
			
		||||
		GeneralStencilEntry const* e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		auto U0 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		auto U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		auto U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		auto U3 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		auto U4 = coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd);
 | 
			
		||||
	    
 | 
			
		||||
		stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
 | 
			
		||||
 | 
			
		||||
		//tmp5 = tmp4(x+mu) = U_mu(x+mu)U^dag_nu(x-nu+2mu)U^dag_mu(x-nu+mu)U^dag_mu(x-nu)U_nu(x-nu)
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U0 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U3 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U4 = coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd);
 | 
			
		||||
 | 
			
		||||
		stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
 | 
			
		||||
 | 
			
		||||
		//tmp5 = tmp4(x+mu) = U^dag_nu(x-nu+mu)U^dag_mu(x-nu)U^dag_mu(x-mu-nu)U_nu(x-mu-nu)U_mu(x-mu)
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U0 = coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd);
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U1 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U3 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U4 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
 | 
			
		||||
 | 
			
		||||
		stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
 | 
			
		||||
 | 
			
		||||
		//tmp5 = tmp4(x+mu) = U_nu(x+mu)U_mu^dag(x+nu)U_mu^dag(x-mu+nu)U_nu^dag(x-mu)U_mu(x-mu)
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U0 = coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd);
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U3 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U4 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
 | 
			
		||||
 | 
			
		||||
		stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
 | 
			
		||||
 | 
			
		||||
		//tmp6 = tmp5(x+mu) = U_nu(x+mu)U_nu(x+mu+nu)U_mu^dag(x+2nu)U_nu^dag(x+nu)U_nu^dag(x)
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U0 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U3 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U4 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
 | 
			
		||||
 | 
			
		||||
		stencil_ss = stencil_ss + U4*U3*U2*U1*U0;   
 | 
			
		||||
 | 
			
		||||
		//tmp5 = tmp4(x+mu) = U_nu^dag(x+mu-nu)U_nu^dag(x+mu-2nu)U_mu^dag(x-2nu)U_nu(x-2nu)U_nu(x-nu)
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U0 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U1 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U3 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
 | 
			
		||||
		e = gStencil_v.GetEntry(s++,ss);
 | 
			
		||||
		U4 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
 | 
			
		||||
 | 
			
		||||
		stencil_ss = stencil_ss + U4*U3*U2*U1*U0;   
 | 
			
		||||
 | 
			
		||||
	      }
 | 
			
		||||
	    }
 | 
			
		||||
	    coalescedWrite(gStaple_v[ss],stencil_ss);
 | 
			
		||||
	  }
 | 
			
		||||
	  );
 | 
			
		||||
	offset += mu_off_delta;
 | 
			
		||||
      }//kernel/view scope
 | 
			
		||||
 | 
			
		||||
      staple[mu] = Cell.Extract(gStaple);    
 | 
			
		||||
    }//mu loop
 | 
			
		||||
  
 | 
			
		||||
    for(int i=0;i<Nd;i++) Ug_dirs_v_host[i].ViewClose();
 | 
			
		||||
    free(Ug_dirs_v_host);
 | 
			
		||||
    acceleratorFreeDevice(Ug_dirs_v);
 | 
			
		||||
    
 | 
			
		||||
    double t1 = usecond();
 | 
			
		||||
    
 | 
			
		||||
    std::cout << GridLogPerformance << "RectStaplePaddedAll timings:" << (t1-t0)/1000 << "ms" << std::endl;   
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //A workspace for reusing the PaddedCell and GeneralLocalStencil objects
 | 
			
		||||
  class StapleAndRectStapleAllWorkspace: public WilsonLoopPaddedWorkspace{
 | 
			
		||||
  public:
 | 
			
		||||
    StapleAndRectStapleAllWorkspace(){
 | 
			
		||||
      this->addStencil(new StaplePaddedAllWorkspace);
 | 
			
		||||
      this->addStencil(new RectStaplePaddedAllWorkspace);
 | 
			
		||||
    }
 | 
			
		||||
  };     
 | 
			
		||||
    
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
  //Compute the 1x1 and 1x2 staples for all orientations
 | 
			
		||||
  //Stap : Array of staples (Nd)
 | 
			
		||||
  //RectStap: Array of rectangular staples (Nd)
 | 
			
		||||
  //U: Gauge links in each direction (Nd)
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
  static void StapleAndRectStapleAll(std::vector<GaugeMat> &Stap, std::vector<GaugeMat> &RectStap, const std::vector<GaugeMat> &U){
 | 
			
		||||
    StapleAndRectStapleAllWorkspace wk;
 | 
			
		||||
    StapleAndRectStapleAll(Stap,RectStap,U,wk);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
  //Compute the 1x1 and 1x2 staples for all orientations
 | 
			
		||||
  //Stap : Array of staples (Nd)
 | 
			
		||||
  //RectStap: Array of rectangular staples (Nd)
 | 
			
		||||
  //U: Gauge links in each direction (Nd)
 | 
			
		||||
  //wk: a workspace containing stored PaddedCell and GeneralLocalStencil objects to maximize reuse
 | 
			
		||||
  /////////////////////////////////////////////////////
 | 
			
		||||
  static void StapleAndRectStapleAll(std::vector<GaugeMat> &Stap, std::vector<GaugeMat> &RectStap, const std::vector<GaugeMat> &U, StapleAndRectStapleAllWorkspace &wk){
 | 
			
		||||
#if 0
 | 
			
		||||
    StapleAll(Stap, U);
 | 
			
		||||
    RectStapleAll(RectStap, U);
 | 
			
		||||
#else
 | 
			
		||||
    double t0 = usecond();
 | 
			
		||||
 | 
			
		||||
    GridCartesian* unpadded_grid = dynamic_cast<GridCartesian*>(U[0].Grid());
 | 
			
		||||
    const PaddedCell &Ghost = wk.getPaddedCell(unpadded_grid);
 | 
			
		||||
        
 | 
			
		||||
    CshiftImplGauge<Gimpl> cshift_impl;
 | 
			
		||||
    std::vector<GaugeMat> U_pad(Nd, Ghost.grids.back());
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++) U_pad[mu] = Ghost.Exchange(U[mu], cshift_impl);
 | 
			
		||||
    double t1 = usecond();
 | 
			
		||||
    StaplePaddedAll(Stap, U_pad, Ghost, wk.getStencil(0,unpadded_grid) );
 | 
			
		||||
    double t2 = usecond();
 | 
			
		||||
    RectStaplePaddedAll(RectStap, U_pad, Ghost, wk.getStencil(1,unpadded_grid));
 | 
			
		||||
    double t3 = usecond();
 | 
			
		||||
    std::cout << GridLogPerformance << "StapleAndRectStapleAll timings: pad:" << (t1-t0)/1000 << "ms, staple:" << (t2-t1)/1000 << "ms, rect-staple:" << (t3-t2)/1000 << "ms" << std::endl;
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
  // Wilson loop of size (R1, R2), oriented in mu,nu plane
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -1133,13 +1133,4 @@ static_assert(sizeof(SIMD_Ftype) == sizeof(SIMD_Itype), "SIMD vector lengths inc
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_SYCL
 | 
			
		||||
template<> struct sycl::is_device_copyable<Grid::vComplexF> : public std::true_type {};
 | 
			
		||||
template<> struct sycl::is_device_copyable<Grid::vComplexD> : public std::true_type {};
 | 
			
		||||
template<> struct sycl::is_device_copyable<Grid::vRealF   > : public std::true_type {};
 | 
			
		||||
template<> struct sycl::is_device_copyable<Grid::vRealD   > : public std::true_type {};
 | 
			
		||||
template<> struct sycl::is_device_copyable<Grid::vInteger > : public std::true_type {};
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -218,10 +218,6 @@ public:
 | 
			
		||||
    // -------------------------------------------------
 | 
			
		||||
    // misc
 | 
			
		||||
    // -------------------------------------------------
 | 
			
		||||
    void discardhi(uint64_t z) {
 | 
			
		||||
      _s[3] += z;
 | 
			
		||||
      encrypt_counter();
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    // req: 26.5.1.4 Random number engine requirements, p.908 table 117, row 9
 | 
			
		||||
    // Advances e’s state ei to ei+z by any means equivalent to z
 | 
			
		||||
@@ -391,4 +387,4 @@ private:
 | 
			
		||||
#undef MIXK
 | 
			
		||||
#undef MIX2
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
#endif
 | 
			
		||||
@@ -43,7 +43,7 @@ class GeneralLocalStencilView {
 | 
			
		||||
  int                               _npoints; // Move to template param?
 | 
			
		||||
  GeneralStencilEntry*  _entries_p;
 | 
			
		||||
 | 
			
		||||
  accelerator_inline GeneralStencilEntry * GetEntry(int point,int osite) const { 
 | 
			
		||||
  accelerator_inline GeneralStencilEntry * GetEntry(int point,int osite) { 
 | 
			
		||||
    return & this->_entries_p[point+this->_npoints*osite]; 
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
@@ -79,113 +79,63 @@ public:
 | 
			
		||||
    this->_entries.resize(npoints* osites);
 | 
			
		||||
    this->_entries_p = &_entries[0];
 | 
			
		||||
 | 
			
		||||
    thread_for(site, osites, {
 | 
			
		||||
	Coordinate Coor;
 | 
			
		||||
	Coordinate NbrCoor;
 | 
			
		||||
 | 
			
		||||
	for(Integer ii=0;ii<npoints;ii++){
 | 
			
		||||
	  Integer lex = site*npoints+ii;
 | 
			
		||||
	  GeneralStencilEntry SE;
 | 
			
		||||
	  ////////////////////////////////////////////////
 | 
			
		||||
	  // Outer index of neighbour Offset calculation
 | 
			
		||||
	  ////////////////////////////////////////////////
 | 
			
		||||
	  grid->oCoorFromOindex(Coor,site);
 | 
			
		||||
	  for(int d=0;d<Coor.size();d++){
 | 
			
		||||
	    int rd = grid->_rdimensions[d];
 | 
			
		||||
	    NbrCoor[d] = (Coor[d] + shifts[ii][d] + rd )%rd;
 | 
			
		||||
	  }
 | 
			
		||||
	  SE._offset      = grid->oIndexReduced(NbrCoor);
 | 
			
		||||
 | 
			
		||||
	  ////////////////////////////////////////////////
 | 
			
		||||
	  // Inner index permute calculation
 | 
			
		||||
	  // Simpler version using icoor calculation
 | 
			
		||||
	  ////////////////////////////////////////////////
 | 
			
		||||
	  SE._permute =0;
 | 
			
		||||
	  for(int d=0;d<Coor.size();d++){
 | 
			
		||||
 | 
			
		||||
	    int fd = grid->_fdimensions[d];
 | 
			
		||||
	    int rd = grid->_rdimensions[d];
 | 
			
		||||
	    int ly = grid->_simd_layout[d];
 | 
			
		||||
 | 
			
		||||
	    assert((ly==1)||(ly==2));
 | 
			
		||||
 | 
			
		||||
	    int shift = (shifts[ii][d]+fd)%fd;  // make it strictly positive 0.. L-1
 | 
			
		||||
	    int x = Coor[d];                // x in [0... rd-1] as an oSite 
 | 
			
		||||
 | 
			
		||||
	    int permute_dim  = grid->PermuteDim(d);
 | 
			
		||||
	    int permute_slice=0;
 | 
			
		||||
	    if(permute_dim){    
 | 
			
		||||
	      int  num = shift%rd; // Slice within dest osite cell of slice zero
 | 
			
		||||
	      int wrap = shift/rd; // Number of osite local volume cells crossed through
 | 
			
		||||
	      // x+num < rd dictates whether we are in same permute state as slice 0
 | 
			
		||||
	      if ( x< rd-num ) permute_slice=wrap;
 | 
			
		||||
	      else             permute_slice=(wrap+1)%ly;
 | 
			
		||||
	    }
 | 
			
		||||
	    if ( permute_slice ) {
 | 
			
		||||
	      int ptype       =grid->PermuteType(d);
 | 
			
		||||
	      uint8_t mask    =0x1<<ptype;
 | 
			
		||||
	      SE._permute    |= mask;
 | 
			
		||||
	    }
 | 
			
		||||
	  }	
 | 
			
		||||
	  ////////////////////////////////////////////////
 | 
			
		||||
	  // Store in look up table
 | 
			
		||||
	  ////////////////////////////////////////////////
 | 
			
		||||
	  this->_entries[lex] = SE;
 | 
			
		||||
    Coordinate Coor;
 | 
			
		||||
    Coordinate NbrCoor;
 | 
			
		||||
    for(Integer site=0;site<osites;site++){
 | 
			
		||||
      for(Integer ii=0;ii<npoints;ii++){
 | 
			
		||||
	Integer lex = site*npoints+ii;
 | 
			
		||||
	GeneralStencilEntry SE;
 | 
			
		||||
	////////////////////////////////////////////////
 | 
			
		||||
	// Outer index of neighbour Offset calculation
 | 
			
		||||
	////////////////////////////////////////////////
 | 
			
		||||
	grid->oCoorFromOindex(Coor,site);
 | 
			
		||||
	for(int d=0;d<Coor.size();d++){
 | 
			
		||||
	  int rd = grid->_rdimensions[d];
 | 
			
		||||
	  NbrCoor[d] = (Coor[d] + shifts[ii][d] + rd )%rd;
 | 
			
		||||
	}
 | 
			
		||||
      });
 | 
			
		||||
	SE._offset      = grid->oIndexReduced(NbrCoor);
 | 
			
		||||
 | 
			
		||||
	////////////////////////////////////////////////
 | 
			
		||||
	// Inner index permute calculation
 | 
			
		||||
	// Simpler version using icoor calculation
 | 
			
		||||
	////////////////////////////////////////////////
 | 
			
		||||
	SE._permute =0;
 | 
			
		||||
	for(int d=0;d<Coor.size();d++){
 | 
			
		||||
 | 
			
		||||
	  int fd = grid->_fdimensions[d];
 | 
			
		||||
	  int rd = grid->_rdimensions[d];
 | 
			
		||||
	  int ly = grid->_simd_layout[d];
 | 
			
		||||
 | 
			
		||||
	  assert((ly==1)||(ly==2));
 | 
			
		||||
 | 
			
		||||
	  int shift = (shifts[ii][d]+fd)%fd;  // make it strictly positive 0.. L-1
 | 
			
		||||
	  int x = Coor[d];                // x in [0... rd-1] as an oSite 
 | 
			
		||||
 | 
			
		||||
	  int permute_dim  = grid->PermuteDim(d);
 | 
			
		||||
	  int permute_slice=0;
 | 
			
		||||
	  if(permute_dim){    
 | 
			
		||||
	    int  num = shift%rd; // Slice within dest osite cell of slice zero
 | 
			
		||||
	    int wrap = shift/rd; // Number of osite local volume cells crossed through
 | 
			
		||||
                                  // x+num < rd dictates whether we are in same permute state as slice 0
 | 
			
		||||
	    if ( x< rd-num ) permute_slice=wrap;
 | 
			
		||||
	    else             permute_slice=(wrap+1)%ly;
 | 
			
		||||
	  }
 | 
			
		||||
	  if ( permute_slice ) {
 | 
			
		||||
	    int ptype       =grid->PermuteType(d);
 | 
			
		||||
	    uint8_t mask    =0x1<<ptype;
 | 
			
		||||
	    SE._permute    |= mask;
 | 
			
		||||
	  }
 | 
			
		||||
	}	
 | 
			
		||||
	////////////////////////////////////////////////
 | 
			
		||||
	// Store in look up table
 | 
			
		||||
	////////////////////////////////////////////////
 | 
			
		||||
	this->_entries[lex] = SE;
 | 
			
		||||
      }
 | 
			
		||||
    }      
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////
 | 
			
		||||
// Some machinery to streamline making a stencil 
 | 
			
		||||
////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
class shiftSignal {
 | 
			
		||||
public:
 | 
			
		||||
    enum {
 | 
			
		||||
        BACKWARD_CONST = 16,
 | 
			
		||||
        NO_SHIFT       = -1
 | 
			
		||||
    };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// TODO: put a check somewhere that BACKWARD_CONST > Nd!
 | 
			
		||||
 | 
			
		||||
/*!  @brief signals that you want to go backwards in direction dir */
 | 
			
		||||
inline int Back(const int dir) {
 | 
			
		||||
    // generalShift will use BACKWARD_CONST to determine whether we step forward or 
 | 
			
		||||
    // backward. Trick inspired by SIMULATeQCD. 
 | 
			
		||||
    return dir + shiftSignal::BACKWARD_CONST;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*!  @brief shift one unit in direction dir */
 | 
			
		||||
template<typename... Args>
 | 
			
		||||
void generalShift(Coordinate& shift, int dir) {
 | 
			
		||||
    if (dir >= shiftSignal::BACKWARD_CONST) {
 | 
			
		||||
        dir -= shiftSignal::BACKWARD_CONST;
 | 
			
		||||
        shift[dir]+=-1;
 | 
			
		||||
    } else if (dir == shiftSignal::NO_SHIFT) {
 | 
			
		||||
        ; // do nothing
 | 
			
		||||
    } else {
 | 
			
		||||
        shift[dir]+=1;
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*!  @brief follow a path of directions, shifting one unit in each direction */
 | 
			
		||||
template<typename... Args>
 | 
			
		||||
void generalShift(Coordinate& shift, int dir, Args... args) {
 | 
			
		||||
    if (dir >= shiftSignal::BACKWARD_CONST) {
 | 
			
		||||
        dir -= shiftSignal::BACKWARD_CONST;
 | 
			
		||||
        shift[dir]+=-1;
 | 
			
		||||
    } else if (dir == shiftSignal::NO_SHIFT) {
 | 
			
		||||
        ; // do nothing
 | 
			
		||||
    } else {
 | 
			
		||||
        shift[dir]+=1;
 | 
			
		||||
    }
 | 
			
		||||
    generalShift(shift, args...);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -32,7 +32,6 @@
 | 
			
		||||
 | 
			
		||||
#include <Grid/stencil/SimpleCompressor.h>   // subdir aggregate
 | 
			
		||||
#include <Grid/stencil/Lebesgue.h>   // subdir aggregate
 | 
			
		||||
#include <Grid/stencil/GeneralLocalStencil.h>
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Must not lose sight that goal is to be able to construct really efficient
 | 
			
		||||
@@ -70,6 +69,57 @@ struct DefaultImplParams {
 | 
			
		||||
void Gather_plane_table_compute (GridBase *grid,int dimension,int plane,int cbmask,
 | 
			
		||||
				 int off,std::vector<std::pair<int,int> > & table);
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
template<class vobj,class cobj,class compressor>
 | 
			
		||||
void Gather_plane_simple_table (commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,cobj *buffer,compressor &compress, int off,int so)   __attribute__((noinline));
 | 
			
		||||
 | 
			
		||||
template<class vobj,class cobj,class compressor>
 | 
			
		||||
void Gather_plane_simple_table (commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,cobj *buffer,compressor &compress, int off,int so)
 | 
			
		||||
{
 | 
			
		||||
  int num=table.size();
 | 
			
		||||
  std::pair<int,int> *table_v = & table[0];
 | 
			
		||||
 | 
			
		||||
  auto rhs_v = rhs.View(AcceleratorRead);
 | 
			
		||||
  accelerator_forNB( i,num, vobj::Nsimd(), {
 | 
			
		||||
    compress.Compress(buffer[off+table_v[i].first],rhs_v[so+table_v[i].second]);
 | 
			
		||||
  });
 | 
			
		||||
  rhs_v.ViewClose();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////////////////////
 | 
			
		||||
// Gather for when there *is* need to SIMD split with compression
 | 
			
		||||
///////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class cobj,class vobj,class compressor>
 | 
			
		||||
void Gather_plane_exchange_table(const Lattice<vobj> &rhs,
 | 
			
		||||
				 commVector<cobj *> pointers,
 | 
			
		||||
				 int dimension,int plane,
 | 
			
		||||
				 int cbmask,compressor &compress,int type) __attribute__((noinline));
 | 
			
		||||
 | 
			
		||||
template<class cobj,class vobj,class compressor>
 | 
			
		||||
void Gather_plane_exchange_table(commVector<std::pair<int,int> >& table,
 | 
			
		||||
				 const Lattice<vobj> &rhs,
 | 
			
		||||
				 std::vector<cobj *> &pointers,int dimension,int plane,int cbmask,
 | 
			
		||||
				 compressor &compress,int type)
 | 
			
		||||
{
 | 
			
		||||
  assert( (table.size()&0x1)==0);
 | 
			
		||||
  int num=table.size()/2;
 | 
			
		||||
  int so  = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
 | 
			
		||||
 | 
			
		||||
  auto rhs_v = rhs.View(AcceleratorRead);
 | 
			
		||||
  auto rhs_p = &rhs_v[0];
 | 
			
		||||
  auto p0=&pointers[0][0];
 | 
			
		||||
  auto p1=&pointers[1][0];
 | 
			
		||||
  auto tp=&table[0];
 | 
			
		||||
  accelerator_forNB(j, num, vobj::Nsimd(), {
 | 
			
		||||
      compress.CompressExchange(p0,p1, rhs_p, j,
 | 
			
		||||
				so+tp[2*j  ].second,
 | 
			
		||||
				so+tp[2*j+1].second,
 | 
			
		||||
				type);
 | 
			
		||||
  });
 | 
			
		||||
  rhs_v.ViewClose();
 | 
			
		||||
}
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
void DslashResetCounts(void);
 | 
			
		||||
void DslashGetCounts(uint64_t &dirichlet,uint64_t &partial,uint64_t &full);
 | 
			
		||||
void DslashLogFull(void);
 | 
			
		||||
@@ -207,10 +257,6 @@ public:
 | 
			
		||||
  struct Packet {
 | 
			
		||||
    void * send_buf;
 | 
			
		||||
    void * recv_buf;
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
    void * host_send_buf; // Allocate this if not MPI_CUDA_AWARE
 | 
			
		||||
    void * host_recv_buf; // Allocate this if not MPI_CUDA_AWARE
 | 
			
		||||
#endif
 | 
			
		||||
    Integer to_rank;
 | 
			
		||||
    Integer from_rank;
 | 
			
		||||
    Integer do_send;
 | 
			
		||||
@@ -277,7 +323,7 @@ public:
 | 
			
		||||
  Vector<int> surface_list;
 | 
			
		||||
 | 
			
		||||
  stencilVector<StencilEntry>  _entries; // Resident in managed memory
 | 
			
		||||
  commVector<StencilEntry>     _entries_device; // Resident in device memory
 | 
			
		||||
  commVector<StencilEntry>     _entries_device; // Resident in managed memory
 | 
			
		||||
  std::vector<Packet> Packets;
 | 
			
		||||
  std::vector<Merge> Mergers;
 | 
			
		||||
  std::vector<Merge> MergersSHM;
 | 
			
		||||
@@ -361,16 +407,33 @@ public:
 | 
			
		||||
  // Use OpenMP Tasks for cleaner ???
 | 
			
		||||
  // must be called *inside* parallel region
 | 
			
		||||
  //////////////////////////////////////////
 | 
			
		||||
  /*
 | 
			
		||||
  void CommunicateThreaded()
 | 
			
		||||
  {
 | 
			
		||||
#ifdef GRID_OMP
 | 
			
		||||
    int mythread = omp_get_thread_num();
 | 
			
		||||
    int nthreads = CartesianCommunicator::nCommThreads;
 | 
			
		||||
#else
 | 
			
		||||
    int mythread = 0;
 | 
			
		||||
    int nthreads = 1;
 | 
			
		||||
#endif
 | 
			
		||||
    if (nthreads == -1) nthreads = 1;
 | 
			
		||||
    if (mythread < nthreads) {
 | 
			
		||||
      for (int i = mythread; i < Packets.size(); i += nthreads) {
 | 
			
		||||
	uint64_t bytes = _grid->StencilSendToRecvFrom(Packets[i].send_buf,
 | 
			
		||||
						      Packets[i].to_rank,
 | 
			
		||||
						      Packets[i].recv_buf,
 | 
			
		||||
						      Packets[i].from_rank,
 | 
			
		||||
						      Packets[i].bytes,i);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  */
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Non blocking send and receive. Necessarily parallel.
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  void CommunicateBegin(std::vector<std::vector<CommsRequest_t> > &reqs)
 | 
			
		||||
  {
 | 
			
		||||
    // All GPU kernel tasks must complete
 | 
			
		||||
    //    accelerator_barrier();     // All kernels should ALREADY be complete
 | 
			
		||||
    //    _grid->StencilBarrier();   // Everyone is here, so noone running slow and still using receive buffer
 | 
			
		||||
                               // But the HaloGather had a barrier too.
 | 
			
		||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
			
		||||
    for(int i=0;i<Packets.size();i++){
 | 
			
		||||
      _grid->StencilSendToRecvFromBegin(MpiReqs,
 | 
			
		||||
					Packets[i].send_buf,
 | 
			
		||||
@@ -379,54 +442,16 @@ public:
 | 
			
		||||
					Packets[i].from_rank,Packets[i].do_recv,
 | 
			
		||||
					Packets[i].xbytes,Packets[i].rbytes,i);
 | 
			
		||||
    }
 | 
			
		||||
#else
 | 
			
		||||
#warning "Using COPY VIA HOST BUFFERS IN STENCIL"
 | 
			
		||||
    for(int i=0;i<Packets.size();i++){
 | 
			
		||||
      // Introduce a host buffer with a cheap slab allocator and zero cost wipe all
 | 
			
		||||
      Packets[i].host_send_buf = _grid->HostBufferMalloc(Packets[i].xbytes);
 | 
			
		||||
      Packets[i].host_recv_buf = _grid->HostBufferMalloc(Packets[i].rbytes);
 | 
			
		||||
      if ( Packets[i].do_send ) {
 | 
			
		||||
	acceleratorCopyFromDevice(Packets[i].send_buf, Packets[i].host_send_buf,Packets[i].xbytes);
 | 
			
		||||
      }
 | 
			
		||||
      _grid->StencilSendToRecvFromBegin(MpiReqs,
 | 
			
		||||
					Packets[i].host_send_buf,
 | 
			
		||||
					Packets[i].to_rank,Packets[i].do_send,
 | 
			
		||||
					Packets[i].host_recv_buf,
 | 
			
		||||
					Packets[i].from_rank,Packets[i].do_recv,
 | 
			
		||||
					Packets[i].xbytes,Packets[i].rbytes,i);
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
    // Get comms started then run checksums
 | 
			
		||||
    // Having this PRIOR to the dslash seems to make Sunspot work... (!)
 | 
			
		||||
    for(int i=0;i<Packets.size();i++){
 | 
			
		||||
      if ( Packets[i].do_send )
 | 
			
		||||
	FlightRecorder::xmitLog(Packets[i].send_buf,Packets[i].xbytes);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void CommunicateComplete(std::vector<std::vector<CommsRequest_t> > &reqs)
 | 
			
		||||
  {
 | 
			
		||||
    _grid->StencilSendToRecvFromComplete(MpiReqs,0); // MPI is done
 | 
			
		||||
    _grid->StencilSendToRecvFromComplete(MpiReqs,0);
 | 
			
		||||
    if   ( this->partialDirichlet ) DslashLogPartial();
 | 
			
		||||
    else if ( this->fullDirichlet ) DslashLogDirichlet();
 | 
			
		||||
    else DslashLogFull();
 | 
			
		||||
    // acceleratorCopySynchronise() is in the StencilSendToRecvFromComplete
 | 
			
		||||
    //    accelerator_barrier(); 
 | 
			
		||||
    acceleratorCopySynchronise();
 | 
			
		||||
    _grid->StencilBarrier(); 
 | 
			
		||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
			
		||||
#warning "Using COPY VIA HOST BUFFERS IN STENCIL"
 | 
			
		||||
    for(int i=0;i<Packets.size();i++){
 | 
			
		||||
      if ( Packets[i].do_recv ) {
 | 
			
		||||
	acceleratorCopyToDevice(Packets[i].host_recv_buf, Packets[i].recv_buf,Packets[i].rbytes);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    _grid->HostBufferFreeAll();
 | 
			
		||||
#endif
 | 
			
		||||
    // run any checksums
 | 
			
		||||
    for(int i=0;i<Packets.size();i++){
 | 
			
		||||
      if ( Packets[i].do_recv )
 | 
			
		||||
	FlightRecorder::recvLog(Packets[i].recv_buf,Packets[i].rbytes,Packets[i].from_rank);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Blocking send and receive. Either sequential or parallel.
 | 
			
		||||
@@ -502,7 +527,6 @@ public:
 | 
			
		||||
  template<class compressor>
 | 
			
		||||
  void HaloGather(const Lattice<vobj> &source,compressor &compress)
 | 
			
		||||
  {
 | 
			
		||||
    //    accelerator_barrier();
 | 
			
		||||
    _grid->StencilBarrier();// Synch shared memory on a single nodes
 | 
			
		||||
 | 
			
		||||
    assert(source.Grid()==_grid);
 | 
			
		||||
@@ -515,9 +539,10 @@ public:
 | 
			
		||||
      compress.Point(point);
 | 
			
		||||
      HaloGatherDir(source,compress,point,face_idx);
 | 
			
		||||
    }
 | 
			
		||||
    accelerator_barrier(); // All my local gathers are complete
 | 
			
		||||
    accelerator_barrier();
 | 
			
		||||
    face_table_computed=1;
 | 
			
		||||
    assert(u_comm_offset==_unified_buffer_size);
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /////////////////////////
 | 
			
		||||
@@ -553,7 +578,6 @@ public:
 | 
			
		||||
      accelerator_forNB(j, words, cobj::Nsimd(), {
 | 
			
		||||
	  coalescedWrite(to[j] ,coalescedRead(from [j]));
 | 
			
		||||
      });
 | 
			
		||||
      acceleratorFenceComputeStream();
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
@@ -644,7 +668,6 @@ public:
 | 
			
		||||
    for(int i=0;i<dd.size();i++){
 | 
			
		||||
      decompressor::DecompressFace(decompress,dd[i]);
 | 
			
		||||
    }
 | 
			
		||||
    acceleratorFenceComputeStream(); // dependent kernels
 | 
			
		||||
  }
 | 
			
		||||
  ////////////////////////////////////////
 | 
			
		||||
  // Set up routines
 | 
			
		||||
@@ -682,7 +705,7 @@ public:
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    //std::cout << "BuildSurfaceList size is "<<surface_list.size()<<std::endl;
 | 
			
		||||
    std::cout << "BuildSurfaceList size is "<<surface_list.size()<<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  /// Introduce a block structure and switch off comms on boundaries
 | 
			
		||||
  void DirichletBlock(const Coordinate &dirichlet_block)
 | 
			
		||||
@@ -737,8 +760,7 @@ public:
 | 
			
		||||
		   int checkerboard,
 | 
			
		||||
		   const std::vector<int> &directions,
 | 
			
		||||
		   const std::vector<int> &distances,
 | 
			
		||||
		   Parameters p=Parameters(),
 | 
			
		||||
		   bool preserve_shm=false)
 | 
			
		||||
		   Parameters p=Parameters())
 | 
			
		||||
  {
 | 
			
		||||
    face_table_computed=0;
 | 
			
		||||
    _grid    = grid;
 | 
			
		||||
@@ -832,9 +854,7 @@ public:
 | 
			
		||||
    /////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    const int Nsimd = grid->Nsimd();
 | 
			
		||||
 | 
			
		||||
    // Allow for multiple stencils to exist simultaneously
 | 
			
		||||
    if (!preserve_shm)
 | 
			
		||||
      _grid->ShmBufferFreeAll();
 | 
			
		||||
    _grid->ShmBufferFreeAll();
 | 
			
		||||
 | 
			
		||||
    int maxl=2;
 | 
			
		||||
    u_simd_send_buf.resize(maxl);
 | 
			
		||||
@@ -1200,6 +1220,7 @@ public:
 | 
			
		||||
	  ///////////////////////////////////////////////////////////
 | 
			
		||||
	  int do_send = (comms_send|comms_partial_send) && (!shm_send );
 | 
			
		||||
	  int do_recv = (comms_send|comms_partial_send) && (!shm_recv );
 | 
			
		||||
	  
 | 
			
		||||
	  AddPacket((void *)&send_buf[comm_off],
 | 
			
		||||
		    (void *)&recv_buf[comm_off],
 | 
			
		||||
		    xmit_to_rank, do_send,
 | 
			
		||||
 
 | 
			
		||||
@@ -73,16 +73,6 @@ vobj coalescedReadPermute(const vobj & __restrict__ vec,int ptype,int doperm,int
 | 
			
		||||
    return vec;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
//'perm_mask' acts as a bitmask
 | 
			
		||||
template<class vobj> accelerator_inline
 | 
			
		||||
vobj coalescedReadGeneralPermute(const vobj & __restrict__ vec,int perm_mask,int nd,int lane=0)
 | 
			
		||||
{
 | 
			
		||||
  auto obj = vec, tmp = vec;
 | 
			
		||||
  for (int d=0;d<nd;d++)
 | 
			
		||||
    if (perm_mask & (0x1 << d)) { permute(obj,tmp,d); tmp=obj;}
 | 
			
		||||
  return obj;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vobj> accelerator_inline
 | 
			
		||||
void coalescedWrite(vobj & __restrict__ vec,const vobj & __restrict__ extracted,int lane=0)
 | 
			
		||||
{
 | 
			
		||||
@@ -93,7 +83,7 @@ void coalescedWriteNonTemporal(vobj & __restrict__ vec,const vobj & __restrict__
 | 
			
		||||
{
 | 
			
		||||
  vstream(vec, extracted);
 | 
			
		||||
}
 | 
			
		||||
#else //==GRID_SIMT
 | 
			
		||||
#else
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//#ifndef GRID_SYCL
 | 
			
		||||
@@ -176,14 +166,6 @@ typename vobj::scalar_object coalescedReadPermute(const vobj & __restrict__ vec,
 | 
			
		||||
  return extractLane(plane,vec);
 | 
			
		||||
}
 | 
			
		||||
template<class vobj> accelerator_inline
 | 
			
		||||
typename vobj::scalar_object coalescedReadGeneralPermute(const vobj & __restrict__ vec,int perm_mask,int nd,int lane=acceleratorSIMTlane(vobj::Nsimd()))
 | 
			
		||||
{
 | 
			
		||||
  int plane = lane;
 | 
			
		||||
  for (int d=0;d<nd;d++)
 | 
			
		||||
    plane = (perm_mask & (0x1 << d)) ? plane ^ (vobj::Nsimd() >> (d + 1)) : plane;
 | 
			
		||||
  return extractLane(plane,vec);
 | 
			
		||||
}
 | 
			
		||||
template<class vobj> accelerator_inline
 | 
			
		||||
void coalescedWrite(vobj & __restrict__ vec,const typename vobj::scalar_object & __restrict__ extracted,int lane=acceleratorSIMTlane(vobj::Nsimd()))
 | 
			
		||||
{
 | 
			
		||||
  insertLane(lane,vec,extracted);
 | 
			
		||||
 
 | 
			
		||||
@@ -66,61 +66,13 @@ template<class vtype,int N> accelerator_inline iMatrix<vtype,N> Ta(const iMatrix
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vtype> accelerator_inline iScalar<vtype> SpTa(const iScalar<vtype>&r)
 | 
			
		||||
{
 | 
			
		||||
  iScalar<vtype> ret;
 | 
			
		||||
  ret._internal = SpTa(r._internal);
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
template<class vtype,int N> accelerator_inline iVector<vtype,N> SpTa(const iVector<vtype,N>&r)
 | 
			
		||||
{
 | 
			
		||||
  iVector<vtype,N> ret;
 | 
			
		||||
  for(int i=0;i<N;i++){
 | 
			
		||||
    ret._internal[i] = SpTa(r._internal[i]);
 | 
			
		||||
  }
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
 | 
			
		||||
accelerator_inline iMatrix<vtype,N> SpTa(const iMatrix<vtype,N> &arg)
 | 
			
		||||
{
 | 
			
		||||
  // Generalises Ta to Sp2n
 | 
			
		||||
  // Applies the following projections
 | 
			
		||||
  // P_{antihermitian} P_{antihermitian-Sp-algebra} P_{traceless}
 | 
			
		||||
  // where the ordering matters
 | 
			
		||||
  // P_{traceless} subtracts the trace
 | 
			
		||||
  // P_{antihermitian-Sp-algebra} provides the block structure of the algebra based on U = exp(T) i.e. anti-hermitian generators
 | 
			
		||||
  // P_{antihermitian} does in-adj(in) / 2
 | 
			
		||||
  iMatrix<vtype,N> ret(arg);
 | 
			
		||||
  double factor = (1.0/(double)N);
 | 
			
		||||
  vtype nrm;
 | 
			
		||||
  nrm = 0.5;
 | 
			
		||||
    
 | 
			
		||||
  ret = arg - (trace(arg)*factor);
 | 
			
		||||
    
 | 
			
		||||
  for(int c1=0;c1<N/2;c1++)
 | 
			
		||||
  {
 | 
			
		||||
      for(int c2=0;c2<N/2;c2++)
 | 
			
		||||
      {
 | 
			
		||||
          ret._internal[c1][c2] = nrm*(conjugate(ret._internal[c1+N/2][c2+N/2]) + ret._internal[c1][c2]); // new[up-left] = old[up-left]+old*[down-right]
 | 
			
		||||
          ret._internal[c1][c2+N/2] = nrm*(ret._internal[c1][c2+N/2] - conjugate(ret._internal[c1+N/2][c2])); // new[up-right] = old[up-right]-old*[down-left]
 | 
			
		||||
      }
 | 
			
		||||
      for(int c2=N/2;c2<N;c2++)
 | 
			
		||||
      {
 | 
			
		||||
          ret._internal[c1+N/2][c2-N/2] = -conjugate(ret._internal[c1][c2]);  //  reconstructs lower blocks
 | 
			
		||||
          ret._internal[c1+N/2][c2] = conjugate(ret._internal[c1][c2-N/2]);   //  from upper blocks
 | 
			
		||||
      }
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  ret = (ret - adj(ret))*0.5;
 | 
			
		||||
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////// 
 | 
			
		||||
// ProjectOnGroup function for scalar, vector, matrix 
 | 
			
		||||
// Projects on orthogonal, unitary group
 | 
			
		||||
/////////////////////////////////////////////// 
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vtype> accelerator_inline iScalar<vtype> ProjectOnGroup(const iScalar<vtype>&r)
 | 
			
		||||
{
 | 
			
		||||
  iScalar<vtype> ret;
 | 
			
		||||
@@ -138,12 +90,10 @@ template<class vtype,int N> accelerator_inline iVector<vtype,N> ProjectOnGroup(c
 | 
			
		||||
template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr> 
 | 
			
		||||
accelerator_inline iMatrix<vtype,N> ProjectOnGroup(const iMatrix<vtype,N> &arg)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename iMatrix<vtype,N>::scalar_type scalar;
 | 
			
		||||
  // need a check for the group type?
 | 
			
		||||
  iMatrix<vtype,N> ret(arg);
 | 
			
		||||
  vtype nrm;
 | 
			
		||||
  vtype inner;
 | 
			
		||||
  scalar one(1.0);
 | 
			
		||||
  for(int c1=0;c1<N;c1++){
 | 
			
		||||
 | 
			
		||||
    // Normalises row c1
 | 
			
		||||
@@ -152,7 +102,7 @@ accelerator_inline iMatrix<vtype,N> ProjectOnGroup(const iMatrix<vtype,N> &arg)
 | 
			
		||||
      inner += innerProduct(ret._internal[c1][c2],ret._internal[c1][c2]);
 | 
			
		||||
 | 
			
		||||
    nrm = sqrt(inner);
 | 
			
		||||
    nrm = one/nrm;
 | 
			
		||||
    nrm = 1.0/nrm;
 | 
			
		||||
    for(int c2=0;c2<N;c2++)
 | 
			
		||||
      ret._internal[c1][c2]*= nrm;
 | 
			
		||||
      
 | 
			
		||||
@@ -177,7 +127,7 @@ accelerator_inline iMatrix<vtype,N> ProjectOnGroup(const iMatrix<vtype,N> &arg)
 | 
			
		||||
      inner += innerProduct(ret._internal[c1][c2],ret._internal[c1][c2]);
 | 
			
		||||
 | 
			
		||||
    nrm = sqrt(inner);
 | 
			
		||||
    nrm = one/nrm;
 | 
			
		||||
    nrm = 1.0/nrm;
 | 
			
		||||
    for(int c2=0;c2<N;c2++)
 | 
			
		||||
      ret._internal[c1][c2]*= nrm;
 | 
			
		||||
  }
 | 
			
		||||
@@ -185,85 +135,6 @@ accelerator_inline iMatrix<vtype,N> ProjectOnGroup(const iMatrix<vtype,N> &arg)
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// re-do for sp2n
 | 
			
		||||
 | 
			
		||||
// Ta cannot be defined here for Sp2n because I need the generators from the Sp class
 | 
			
		||||
// It is defined in gauge impl types
 | 
			
		||||
 | 
			
		||||
template<class vtype> accelerator_inline iScalar<vtype> ProjectOnSpGroup(const iScalar<vtype>&r)
 | 
			
		||||
{
 | 
			
		||||
  iScalar<vtype> ret;
 | 
			
		||||
  ret._internal = ProjectOnSpGroup(r._internal);
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
template<class vtype,int N> accelerator_inline iVector<vtype,N> ProjectOnSpGroup(const iVector<vtype,N>&r)
 | 
			
		||||
{
 | 
			
		||||
  iVector<vtype,N> ret;
 | 
			
		||||
  for(int i=0;i<N;i++){
 | 
			
		||||
    ret._internal[i] = ProjectOnSpGroup(r._internal[i]);
 | 
			
		||||
  }
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// int N is 2n in Sp(2n)
 | 
			
		||||
template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
 | 
			
		||||
accelerator_inline iMatrix<vtype,N> ProjectOnSpGroup(const iMatrix<vtype,N> &arg)
 | 
			
		||||
{
 | 
			
		||||
  // need a check for the group type?
 | 
			
		||||
  iMatrix<vtype,N> ret(arg);
 | 
			
		||||
  vtype nrm;
 | 
			
		||||
  vtype inner;
 | 
			
		||||
  
 | 
			
		||||
  for(int c1=0;c1<N/2;c1++)
 | 
			
		||||
  {
 | 
			
		||||
      
 | 
			
		||||
    for (int b=0; b<c1; b++)                  // remove the b-rows from U_c1
 | 
			
		||||
    {
 | 
			
		||||
      decltype(ret._internal[b][b]*ret._internal[b][b]) pr;
 | 
			
		||||
      decltype(ret._internal[b][b]*ret._internal[b][b]) prn;
 | 
			
		||||
      zeroit(pr);
 | 
			
		||||
      zeroit(prn);
 | 
			
		||||
          
 | 
			
		||||
      for(int c=0; c<N; c++)
 | 
			
		||||
      {
 | 
			
		||||
        pr += conjugate(ret._internal[c1][c])*ret._internal[b][c];        // <U_c1 | U_b >
 | 
			
		||||
        prn += conjugate(ret._internal[c1][c])*ret._internal[b+N/2][c];   // <U_c1 | U_{b+N} >
 | 
			
		||||
      }
 | 
			
		||||
       
 | 
			
		||||
 | 
			
		||||
      for(int c=0; c<N; c++)
 | 
			
		||||
      {
 | 
			
		||||
        ret._internal[c1][c] -= (conjugate(pr) * ret._internal[b][c] + conjugate(prn) * ret._internal[b+N/2][c] );    //  U_c1 -= (  <U_c1 | U_b > U_b + <U_c1 | U_{b+N} > U_{b+N}  )
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    zeroit(inner);
 | 
			
		||||
    for(int c2=0;c2<N;c2++)
 | 
			
		||||
    {
 | 
			
		||||
      inner += innerProduct(ret._internal[c1][c2],ret._internal[c1][c2]);
 | 
			
		||||
    }
 | 
			
		||||
      
 | 
			
		||||
    nrm = sqrt(inner);
 | 
			
		||||
    nrm = 1.0/nrm;
 | 
			
		||||
    for(int c2=0;c2<N;c2++)
 | 
			
		||||
    {
 | 
			
		||||
      ret._internal[c1][c2]*= nrm;
 | 
			
		||||
    }
 | 
			
		||||
      
 | 
			
		||||
    for(int c2=0;c2<N/2;c2++)
 | 
			
		||||
    {
 | 
			
		||||
      ret._internal[c1+N/2][c2+N/2] = conjugate(ret._internal[c1][c2]);          // down right in the new matrix = (up-left)* of the old matrix
 | 
			
		||||
    }
 | 
			
		||||
      
 | 
			
		||||
    for(int c2=N/2;c2<N;c2++)
 | 
			
		||||
    {
 | 
			
		||||
      ret._internal[c1+N/2][c2-N/2] = -conjugate(ret._internal[c1][c2]);;     // down left in the new matrix = -(up-right)* of the old
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -53,8 +53,9 @@ template<class vtype, int N> accelerator_inline iVector<vtype, N> Exponentiate(c
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// Specialisation: Cayley-Hamilton exponential for SU(3)
 | 
			
		||||
#if 0
 | 
			
		||||
#ifndef GRID_ACCELERATED
 | 
			
		||||
template<class vtype, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0>::type * =nullptr> 
 | 
			
		||||
accelerator_inline iMatrix<vtype,3> Exponentiate(const iMatrix<vtype,3> &arg, RealD alpha  , Integer Nexp = DEFAULT_MAT_EXP )
 | 
			
		||||
{
 | 
			
		||||
 
 | 
			
		||||
Some files were not shown because too many files have changed in this diff Show More
		Reference in New Issue
	
	Block a user