mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-10-26 17:49:33 +00:00 
			
		
		
		
	Compare commits
	
		
			5 Commits
		
	
	
		
			fb9b1d76ca
			...
			feature/rm
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
|  | 69bd7082f1 | ||
|  | 873f039c72 | ||
|  | 16303e5f16 | ||
|  | 88683fa648 | ||
|  | fe5b23e144 | 
							
								
								
									
										54
									
								
								.github/ISSUE_TEMPLATE/bug-report.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										54
									
								
								.github/ISSUE_TEMPLATE/bug-report.yml
									
									
									
									
										vendored
									
									
								
							| @@ -1,54 +0,0 @@ | ||||
| name: Bug report | ||||
| description: Report a bug. | ||||
| title: "<insert title>" | ||||
| labels: [bug] | ||||
|  | ||||
| body: | ||||
|   - type: markdown | ||||
|     attributes: | ||||
|       value: > | ||||
|         Thank you for taking the time to file a bug report. | ||||
|         Please check that the code is pointing to the HEAD of develop | ||||
|         or any commit in master which is tagged with a version number. | ||||
|  | ||||
|   - type: textarea | ||||
|     attributes: | ||||
|       label: "Describe the issue:" | ||||
|       description: > | ||||
|         Describe the issue and any previous attempt to solve it. | ||||
|     validations: | ||||
|       required: true | ||||
|  | ||||
|   - type: textarea | ||||
|     attributes: | ||||
|       label: "Code example:" | ||||
|       description: > | ||||
|         If relevant, show how to reproduce the issue using a minimal working | ||||
|         example. | ||||
|       placeholder: | | ||||
|         << your code here >> | ||||
|       render: shell | ||||
|     validations: | ||||
|       required: false | ||||
|  | ||||
|   - type: textarea | ||||
|     attributes: | ||||
|       label: "Target platform:" | ||||
|       description: > | ||||
|         Give a description of the target platform (CPU, network, compiler). | ||||
|         Please give the full CPU part description, using for example | ||||
|         `cat /proc/cpuinfo | grep 'model name' | uniq` (Linux) | ||||
|         or `sysctl machdep.cpu.brand_string` (macOS) and the full output | ||||
|         the `--version` option of your compiler. | ||||
|     validations: | ||||
|       required: true | ||||
|  | ||||
|   - type: textarea | ||||
|     attributes: | ||||
|       label: "Configure options:" | ||||
|       description: > | ||||
|         Please give the exact configure command used and attach | ||||
|         `config.log`, `grid.config.summary` and the output of `make V=1`. | ||||
|       render: shell | ||||
|     validations: | ||||
|       required: true | ||||
							
								
								
									
										5
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										5
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							| @@ -1,7 +1,3 @@ | ||||
| # Doxygen stuff | ||||
| html/* | ||||
| latex/* | ||||
|  | ||||
| # Compiled Object files # | ||||
| ######################### | ||||
| *.slo | ||||
| @@ -92,7 +88,6 @@ Thumbs.db | ||||
| # build directory # | ||||
| ################### | ||||
| build*/* | ||||
| Documentation/_build | ||||
|  | ||||
| # IDE related files # | ||||
| ##################### | ||||
|   | ||||
							
								
								
									
										61
									
								
								.travis.yml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										61
									
								
								.travis.yml
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,61 @@ | ||||
| language: cpp | ||||
|  | ||||
| cache: | ||||
|   directories: | ||||
|     - clang | ||||
|  | ||||
| matrix: | ||||
|   include: | ||||
|     - os:        osx | ||||
|       osx_image: xcode8.3 | ||||
|       compiler: clang | ||||
|       env: PREC=single | ||||
|     - os:        osx | ||||
|       osx_image: xcode8.3 | ||||
|       compiler: clang | ||||
|       env: PREC=double | ||||
|        | ||||
| before_install: | ||||
|     - export GRIDDIR=`pwd` | ||||
|     - if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]] && [ ! -e clang/bin ]; then wget $CLANG_LINK; tar -xf `basename $CLANG_LINK`; mkdir clang; mv clang+*/* clang/; fi | ||||
|     - if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]]; then export PATH="${GRIDDIR}/clang/bin:${PATH}"; fi | ||||
|     - if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]]; then export LD_LIBRARY_PATH="${GRIDDIR}/clang/lib:${LD_LIBRARY_PATH}"; fi | ||||
|     - if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew update; fi | ||||
|     - if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew install libmpc openssl; fi | ||||
|      | ||||
| install: | ||||
|     - export CWD=`pwd` | ||||
|     - echo $CWD | ||||
|     - export CC=$CC$VERSION | ||||
|     - export CXX=$CXX$VERSION | ||||
|     - echo $PATH | ||||
|     - which autoconf | ||||
|     - autoconf  --version | ||||
|     - which automake | ||||
|     - automake  --version | ||||
|     - which $CC | ||||
|     - $CC  --version | ||||
|     - which $CXX | ||||
|     - $CXX --version | ||||
|     - if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then export LDFLAGS='-L/usr/local/lib'; fi | ||||
|     - if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then export EXTRACONF='--with-openssl=/usr/local/opt/openssl'; fi | ||||
|      | ||||
| script: | ||||
|     - ./bootstrap.sh | ||||
|     - mkdir build | ||||
|     - cd build | ||||
|     - mkdir lime | ||||
|     - cd lime | ||||
|     - mkdir build | ||||
|     - cd build | ||||
|     - wget http://usqcd-software.github.io/downloads/c-lime/lime-1.3.2.tar.gz | ||||
|     - tar xf lime-1.3.2.tar.gz | ||||
|     - cd lime-1.3.2 | ||||
|     - ./configure --prefix=$CWD/build/lime/install | ||||
|     - make -j4 | ||||
|     - make install | ||||
|     - cd $CWD/build | ||||
|     - ../configure --enable-precision=$PREC --enable-simd=SSE4 --enable-comms=none --with-lime=$CWD/build/lime/install ${EXTRACONF} | ||||
|     - make -j4  | ||||
|     - ./benchmarks/Benchmark_dwf --threads 1 --debug-signals | ||||
|     - make check | ||||
| @@ -37,29 +37,19 @@ directory | ||||
| #endif | ||||
|  | ||||
|  //disables and intel compiler specific warning (in json.hpp) | ||||
| #ifdef __ICC | ||||
| #pragma warning disable 488   | ||||
| #endif | ||||
|  | ||||
| #ifdef __NVCC__ | ||||
|  //disables nvcc specific warning in json.hpp | ||||
| #pragma clang diagnostic ignored "-Wdeprecated-register" | ||||
|  | ||||
| #ifdef __NVCC_DIAG_PRAGMA_SUPPORT__ | ||||
|  //disables nvcc specific warning in json.hpp | ||||
| #pragma nv_diag_suppress unsigned_compare_with_zero | ||||
| #pragma nv_diag_suppress cast_to_qualified_type | ||||
|  //disables nvcc specific warning in many files | ||||
| #pragma nv_diag_suppress esa_on_defaulted_function_ignored | ||||
| #pragma nv_diag_suppress extra_semicolon | ||||
| #else | ||||
|  //disables nvcc specific warning in json.hpp | ||||
| #pragma diag_suppress unsigned_compare_with_zero | ||||
| #pragma diag_suppress cast_to_qualified_type | ||||
|  | ||||
|  //disables nvcc specific warning in many files | ||||
| #pragma diag_suppress esa_on_defaulted_function_ignored | ||||
| #pragma diag_suppress extra_semicolon | ||||
| #endif | ||||
|  | ||||
| //Eigen only | ||||
| #endif | ||||
|  | ||||
| // Disable vectorisation in Eigen on the Power8/9 and PowerPC | ||||
|   | ||||
| @@ -44,10 +44,9 @@ Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
| #include <Grid/GridStd.h> | ||||
| #include <Grid/threads/Pragmas.h> | ||||
| #include <Grid/perfmon/Timer.h> | ||||
| //#include <Grid/perfmon/PerfCount.h> | ||||
| #include <Grid/perfmon/PerfCount.h> | ||||
| #include <Grid/util/Util.h> | ||||
| #include <Grid/log/Log.h> | ||||
| #include <Grid/perfmon/Tracing.h> | ||||
| #include <Grid/allocator/Allocator.h> | ||||
| #include <Grid/simd/Simd.h> | ||||
| #include <Grid/threads/ThreadReduction.h> | ||||
| @@ -59,7 +58,6 @@ Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
| #include <Grid/lattice/Lattice.h>       | ||||
| #include <Grid/cshift/Cshift.h>        | ||||
| #include <Grid/stencil/Stencil.h>       | ||||
| #include <Grid/stencil/GeneralLocalStencil.h>       | ||||
| #include <Grid/parallelIO/BinaryIO.h> | ||||
| #include <Grid/algorithms/Algorithms.h>    | ||||
| NAMESPACE_CHECK(GridCore) | ||||
|   | ||||
| @@ -36,7 +36,6 @@ Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
| #include <Grid/GridCore.h> | ||||
| #include <Grid/qcd/QCD.h> | ||||
| #include <Grid/qcd/spin/Spin.h> | ||||
| #include <Grid/qcd/gparity/Gparity.h> | ||||
| #include <Grid/qcd/utils/Utils.h> | ||||
| #include <Grid/qcd/representations/Representations.h> | ||||
| NAMESPACE_CHECK(GridQCDCore); | ||||
|   | ||||
| @@ -16,7 +16,6 @@ | ||||
| #include <functional> | ||||
| #include <stdio.h> | ||||
| #include <stdlib.h> | ||||
| #include <strings.h> | ||||
| #include <stdio.h> | ||||
| #include <signal.h> | ||||
| #include <ctime> | ||||
| @@ -29,7 +28,4 @@ | ||||
| /////////////////// | ||||
| #include "Config.h" | ||||
|  | ||||
| #ifdef TOFU | ||||
| #undef GRID_COMMS_THREADS | ||||
| #endif | ||||
| #endif /* GRID_STD_H */ | ||||
|   | ||||
| @@ -14,11 +14,7 @@ | ||||
| /* NVCC save and restore compile environment*/ | ||||
| #ifdef __NVCC__ | ||||
| #pragma push | ||||
| #ifdef __NVCC_DIAG_PRAGMA_SUPPORT__ | ||||
| #pragma nv_diag_suppress code_is_unreachable | ||||
| #else | ||||
| #pragma diag_suppress code_is_unreachable | ||||
| #endif | ||||
| #pragma push_macro("__CUDA_ARCH__") | ||||
| #pragma push_macro("__NVCC__") | ||||
| #pragma push_macro("__CUDACC__") | ||||
| @@ -34,16 +30,10 @@ | ||||
| #pragma push_macro("__SYCL_DEVICE_ONLY__") | ||||
| #undef __SYCL_DEVICE_ONLY__ | ||||
| #define EIGEN_DONT_VECTORIZE | ||||
| #undef EIGEN_USE_SYCL | ||||
| //#undef EIGEN_USE_SYCL | ||||
| #define __SYCL__REDEFINE__ | ||||
| #endif | ||||
|  | ||||
| /* HIP save and restore compile environment*/ | ||||
| #ifdef GRID_HIP | ||||
| #pragma push | ||||
| #pragma push_macro("__HIP_DEVICE_COMPILE__") | ||||
| #endif | ||||
| #define EIGEN_NO_HIP | ||||
|  | ||||
| #include <Grid/Eigen/Dense> | ||||
| #include <Grid/Eigen/unsupported/CXX11/Tensor> | ||||
| @@ -52,7 +42,7 @@ | ||||
| #ifdef __NVCC__REDEFINE__ | ||||
| #pragma pop_macro("__CUDACC__") | ||||
| #pragma pop_macro("__NVCC__") | ||||
| #pragma pop_macro("__CUDA_ARCH__") | ||||
| #pragma pop_macro("GRID_SIMT") | ||||
| #pragma pop | ||||
| #endif | ||||
|  | ||||
| @@ -62,12 +52,6 @@ | ||||
| #pragma pop | ||||
| #endif | ||||
|  | ||||
| /*HIP restore*/ | ||||
| #ifdef __HIP__REDEFINE__ | ||||
| #pragma pop_macro("__HIP_DEVICE_COMPILE__") | ||||
| #pragma pop | ||||
| #endif | ||||
|  | ||||
| #if defined __GNUC__ | ||||
| #pragma GCC diagnostic pop | ||||
| #endif | ||||
|   | ||||
| @@ -21,7 +21,6 @@ if BUILD_HDF5 | ||||
|   extra_headers+=serialisation/Hdf5Type.h | ||||
| endif | ||||
|  | ||||
|  | ||||
| all: version-cache Version.h | ||||
|  | ||||
| version-cache: | ||||
| @@ -54,23 +53,6 @@ Version.h: version-cache | ||||
| include Make.inc | ||||
| include Eigen.inc | ||||
|  | ||||
| extra_sources+=$(WILS_FERMION_FILES) | ||||
| extra_sources+=$(STAG_FERMION_FILES) | ||||
| if BUILD_ZMOBIUS | ||||
|   extra_sources+=$(ZWILS_FERMION_FILES) | ||||
| endif | ||||
| if BUILD_GPARITY | ||||
|   extra_sources+=$(GP_FERMION_FILES) | ||||
| endif | ||||
| if BUILD_FERMION_REPS | ||||
|   extra_sources+=$(ADJ_FERMION_FILES) | ||||
|   extra_sources+=$(TWOIND_FERMION_FILES) | ||||
| endif | ||||
| if BUILD_SP | ||||
|     extra_sources+=$(SP_FERMION_FILES) | ||||
|     extra_sources+=$(SP_TWOIND_FERMION_FILES) | ||||
| endif | ||||
|  | ||||
| lib_LIBRARIES = libGrid.a | ||||
|  | ||||
| CCFILES += $(extra_sources) | ||||
|   | ||||
| @@ -29,9 +29,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #ifndef GRID_ALGORITHMS_H | ||||
| #define GRID_ALGORITHMS_H | ||||
|  | ||||
| NAMESPACE_CHECK(blas); | ||||
| #include <Grid/algorithms/blas/BatchedBlas.h> | ||||
|  | ||||
| NAMESPACE_CHECK(algorithms); | ||||
| #include <Grid/algorithms/SparseMatrix.h> | ||||
| #include <Grid/algorithms/LinearOperator.h> | ||||
| @@ -47,10 +44,7 @@ NAMESPACE_CHECK(SparseMatrix); | ||||
| #include <Grid/algorithms/approx/RemezGeneral.h> | ||||
| #include <Grid/algorithms/approx/ZMobius.h> | ||||
| NAMESPACE_CHECK(approx); | ||||
| #include <Grid/algorithms/deflation/Deflation.h> | ||||
| #include <Grid/algorithms/deflation/MultiRHSBlockProject.h> | ||||
| #include <Grid/algorithms/deflation/MultiRHSDeflation.h> | ||||
| NAMESPACE_CHECK(deflation); | ||||
| #include <Grid/algorithms/iterative/Deflation.h> | ||||
| #include <Grid/algorithms/iterative/ConjugateGradient.h> | ||||
| NAMESPACE_CHECK(ConjGrad); | ||||
| #include <Grid/algorithms/iterative/BiCGSTAB.h> | ||||
| @@ -60,8 +54,6 @@ NAMESPACE_CHECK(BiCGSTAB); | ||||
| #include <Grid/algorithms/iterative/SchurRedBlack.h> | ||||
| #include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h> | ||||
| #include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h> | ||||
| #include <Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h> | ||||
| #include <Grid/algorithms/iterative/ConjugateGradientMixedPrecBatched.h> | ||||
| #include <Grid/algorithms/iterative/BiCGSTABMixedPrec.h> | ||||
| #include <Grid/algorithms/iterative/BlockConjugateGradient.h> | ||||
| #include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h> | ||||
| @@ -73,11 +65,10 @@ NAMESPACE_CHECK(BiCGSTAB); | ||||
| #include <Grid/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h> | ||||
| #include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h> | ||||
| #include <Grid/algorithms/iterative/PowerMethod.h> | ||||
| #include <Grid/algorithms/iterative/AdefGeneric.h> | ||||
| #include <Grid/algorithms/iterative/AdefMrhs.h> | ||||
|  | ||||
| NAMESPACE_CHECK(PowerMethod); | ||||
| #include <Grid/algorithms/multigrid/MultiGrid.h> | ||||
| NAMESPACE_CHECK(multigrid); | ||||
| #include <Grid/algorithms/CoarsenedMatrix.h> | ||||
| NAMESPACE_CHECK(CoarsendMatrix); | ||||
| #include <Grid/algorithms/FFT.h> | ||||
|  | ||||
| #endif | ||||
|   | ||||
							
								
								
									
										635
									
								
								Grid/algorithms/CoarsenedMatrix.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										635
									
								
								Grid/algorithms/CoarsenedMatrix.h
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,635 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/CoarsenedMatrix.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local> | ||||
| Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef  GRID_ALGORITHM_COARSENED_MATRIX_H | ||||
| #define  GRID_ALGORITHM_COARSENED_MATRIX_H | ||||
|  | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class vobj,class CComplex> | ||||
| inline void blockMaskedInnerProduct(Lattice<CComplex> &CoarseInner, | ||||
| 				    const Lattice<decltype(innerProduct(vobj(),vobj()))> &FineMask, | ||||
| 				    const Lattice<vobj> &fineX, | ||||
| 				    const Lattice<vobj> &fineY) | ||||
| { | ||||
|   typedef decltype(innerProduct(vobj(),vobj())) dotp; | ||||
|  | ||||
|   GridBase *coarse(CoarseInner.Grid()); | ||||
|   GridBase *fine  (fineX.Grid()); | ||||
|  | ||||
|   Lattice<dotp> fine_inner(fine); fine_inner.Checkerboard() = fineX.Checkerboard(); | ||||
|   Lattice<dotp> fine_inner_msk(fine); | ||||
|  | ||||
|   // Multiply could be fused with innerProduct | ||||
|   // Single block sum kernel could do both masks. | ||||
|   fine_inner = localInnerProduct(fineX,fineY); | ||||
|   mult(fine_inner_msk, fine_inner,FineMask); | ||||
|   blockSum(CoarseInner,fine_inner_msk); | ||||
| } | ||||
|  | ||||
|  | ||||
| class Geometry { | ||||
| public: | ||||
|   int npoint; | ||||
|   std::vector<int> directions   ; | ||||
|   std::vector<int> displacements; | ||||
|  | ||||
|   Geometry(int _d)  { | ||||
|      | ||||
|     int base = (_d==5) ? 1:0; | ||||
|  | ||||
|     // make coarse grid stencil for 4d , not 5d | ||||
|     if ( _d==5 ) _d=4; | ||||
|  | ||||
|     npoint = 2*_d+1; | ||||
|     directions.resize(npoint); | ||||
|     displacements.resize(npoint); | ||||
|     for(int d=0;d<_d;d++){ | ||||
|       directions[d   ] = d+base; | ||||
|       directions[d+_d] = d+base; | ||||
|       displacements[d  ] = +1; | ||||
|       displacements[d+_d]= -1; | ||||
|     } | ||||
|     directions   [2*_d]=0; | ||||
|     displacements[2*_d]=0; | ||||
|   } | ||||
|  | ||||
| }; | ||||
|    | ||||
| template<class Fobj,class CComplex,int nbasis> | ||||
| class Aggregation   { | ||||
| public: | ||||
|   typedef iVector<CComplex,nbasis >             siteVector; | ||||
|   typedef Lattice<siteVector>                 CoarseVector; | ||||
|   typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix; | ||||
|  | ||||
|   typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field | ||||
|   typedef Lattice<Fobj >        FineField; | ||||
|  | ||||
|   GridBase *CoarseGrid; | ||||
|   GridBase *FineGrid; | ||||
|   std::vector<Lattice<Fobj> > subspace; | ||||
|   int checkerboard; | ||||
|   int Checkerboard(void){return checkerboard;} | ||||
|   Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :  | ||||
|     CoarseGrid(_CoarseGrid), | ||||
|     FineGrid(_FineGrid), | ||||
|     subspace(nbasis,_FineGrid), | ||||
|     checkerboard(_checkerboard) | ||||
|   { | ||||
|   }; | ||||
|    | ||||
|   void Orthogonalise(void){ | ||||
|     CoarseScalar InnerProd(CoarseGrid);  | ||||
|     std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl; | ||||
|     blockOrthogonalise(InnerProd,subspace); | ||||
|   }  | ||||
|   void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){ | ||||
|     blockProject(CoarseVec,FineVec,subspace); | ||||
|   } | ||||
|   void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){ | ||||
|     FineVec.Checkerboard() = subspace[0].Checkerboard(); | ||||
|     blockPromote(CoarseVec,FineVec,subspace); | ||||
|   } | ||||
|  | ||||
|   virtual void CreateSubspace(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) { | ||||
|  | ||||
|     RealD scale; | ||||
|  | ||||
|     ConjugateGradient<FineField> CG(1.0e-2,100,false); | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|  | ||||
|     for(int b=0;b<nn;b++){ | ||||
|        | ||||
|       subspace[b] = Zero(); | ||||
|       gaussian(RNG,noise); | ||||
|       scale = std::pow(norm2(noise),-0.5);  | ||||
|       noise=noise*scale; | ||||
|        | ||||
|       hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise   ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
|  | ||||
|       for(int i=0;i<1;i++){ | ||||
|  | ||||
| 	CG(hermop,noise,subspace[b]); | ||||
|  | ||||
| 	noise = subspace[b]; | ||||
| 	scale = std::pow(norm2(noise),-0.5);  | ||||
| 	noise=noise*scale; | ||||
|  | ||||
|       } | ||||
|  | ||||
|       hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl; | ||||
|       subspace[b]   = noise; | ||||
|  | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit) | ||||
|   // and this is the best I found | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
|   virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop, | ||||
| 				       int nn, | ||||
| 				       double hi, | ||||
| 				       double lo, | ||||
| 				       int orderfilter, | ||||
| 				       int ordermin, | ||||
| 				       int orderstep, | ||||
| 				       double filterlo | ||||
| 				       ) { | ||||
|  | ||||
|     RealD scale; | ||||
|  | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|     FineField tmp(FineGrid); | ||||
|  | ||||
|     // New normalised noise | ||||
|     gaussian(RNG,noise); | ||||
|     scale = std::pow(norm2(noise),-0.5);  | ||||
|     noise=noise*scale; | ||||
|  | ||||
|     // Initial matrix element | ||||
|     hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
|  | ||||
|     int b =0; | ||||
|     { | ||||
|       // Filter | ||||
|       Chebyshev<FineField> Cheb(lo,hi,orderfilter); | ||||
|       Cheb(hermop,noise,Mn); | ||||
|       // normalise | ||||
|       scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale; | ||||
|       subspace[b]   = Mn; | ||||
|       hermop.Op(Mn,tmp);  | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|       b++; | ||||
|     } | ||||
|  | ||||
|     // Generate a full sequence of Chebyshevs | ||||
|     { | ||||
|       lo=filterlo; | ||||
|       noise=Mn; | ||||
|  | ||||
|       FineField T0(FineGrid); T0 = noise;   | ||||
|       FineField T1(FineGrid);  | ||||
|       FineField T2(FineGrid); | ||||
|       FineField y(FineGrid); | ||||
|        | ||||
|       FineField *Tnm = &T0; | ||||
|       FineField *Tn  = &T1; | ||||
|       FineField *Tnp = &T2; | ||||
|  | ||||
|       // Tn=T1 = (xscale M + mscale)in | ||||
|       RealD xscale = 2.0/(hi-lo); | ||||
|       RealD mscale = -(hi+lo)/(hi-lo); | ||||
|       hermop.HermOp(T0,y); | ||||
|       T1=y*xscale+noise*mscale; | ||||
|  | ||||
|       for(int n=2;n<=ordermin+orderstep*(nn-2);n++){ | ||||
| 	 | ||||
| 	hermop.HermOp(*Tn,y); | ||||
|  | ||||
| 	autoView( y_v , y, AcceleratorWrite); | ||||
| 	autoView( Tn_v , (*Tn), AcceleratorWrite); | ||||
| 	autoView( Tnp_v , (*Tnp), AcceleratorWrite); | ||||
| 	autoView( Tnm_v , (*Tnm), AcceleratorWrite); | ||||
| 	const int Nsimd = CComplex::Nsimd(); | ||||
| 	accelerator_forNB(ss, FineGrid->oSites(), Nsimd, { | ||||
| 	  coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss)); | ||||
| 	  coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss)); | ||||
|         }); | ||||
|  | ||||
| 	// Possible more fine grained control is needed than a linear sweep, | ||||
| 	// but huge productivity gain if this is simple algorithm and not a tunable | ||||
| 	int m =1; | ||||
| 	if ( n>=ordermin ) m=n-ordermin; | ||||
| 	if ( (m%orderstep)==0 ) {  | ||||
| 	  Mn=*Tnp; | ||||
| 	  scale = std::pow(norm2(Mn),-0.5);         Mn=Mn*scale; | ||||
| 	  subspace[b] = Mn; | ||||
| 	  hermop.Op(Mn,tmp);  | ||||
| 	  std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
| 	  b++; | ||||
| 	} | ||||
|  | ||||
| 	// Cycle pointers to avoid copies | ||||
| 	FineField *swizzle = Tnm; | ||||
| 	Tnm    =Tn; | ||||
| 	Tn     =Tnp; | ||||
| 	Tnp    =swizzle; | ||||
| 	   | ||||
|       } | ||||
|     } | ||||
|     assert(b==nn); | ||||
|   } | ||||
|  | ||||
| }; | ||||
|  | ||||
| // Fine Object == (per site) type of fine field | ||||
| // nbasis      == number of deflation vectors | ||||
| template<class Fobj,class CComplex,int nbasis> | ||||
| class CoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > >  { | ||||
| public: | ||||
|      | ||||
|   typedef iVector<CComplex,nbasis >           siteVector; | ||||
|   typedef Lattice<CComplex >                  CoarseComplexField; | ||||
|   typedef Lattice<siteVector>                 CoarseVector; | ||||
|   typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix; | ||||
|   typedef iMatrix<CComplex,nbasis >  Cobj; | ||||
|   typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field | ||||
|   typedef Lattice<Fobj >        FineField; | ||||
|  | ||||
|   //////////////////// | ||||
|   // Data members | ||||
|   //////////////////// | ||||
|   Geometry         geom; | ||||
|   GridBase *       _grid;  | ||||
|   int hermitian; | ||||
|  | ||||
|   CartesianStencil<siteVector,siteVector,int> Stencil;  | ||||
|  | ||||
|   std::vector<CoarseMatrix> A; | ||||
|      | ||||
|   /////////////////////// | ||||
|   // Interface | ||||
|   /////////////////////// | ||||
|   GridBase * Grid(void)         { return _grid; };   // this is all the linalg routines need to know | ||||
|  | ||||
|   void M (const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     conformable(_grid,in.Grid()); | ||||
|     conformable(in.Grid(),out.Grid()); | ||||
|  | ||||
|     SimpleCompressor<siteVector> compressor; | ||||
|  | ||||
|     Stencil.HaloExchange(in,compressor); | ||||
|     autoView( in_v , in, AcceleratorRead); | ||||
|     autoView( out_v , out, AcceleratorWrite); | ||||
|     typedef LatticeView<Cobj> Aview; | ||||
|        | ||||
|     Vector<Aview> AcceleratorViewContainer; | ||||
|    | ||||
|     for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead)); | ||||
|     Aview *Aview_p = & AcceleratorViewContainer[0]; | ||||
|  | ||||
|     const int Nsimd = CComplex::Nsimd(); | ||||
|     typedef decltype(coalescedRead(in_v[0])) calcVector; | ||||
|     typedef decltype(coalescedRead(in_v[0](0))) calcComplex; | ||||
|  | ||||
|     int osites=Grid()->oSites(); | ||||
|  | ||||
|     accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, { | ||||
|       int ss = sss/nbasis; | ||||
|       int b  = sss%nbasis; | ||||
|       calcComplex res = Zero(); | ||||
|       calcVector nbr; | ||||
|       int ptype; | ||||
|       StencilEntry *SE; | ||||
|  | ||||
|       for(int point=0;point<geom.npoint;point++){ | ||||
|  | ||||
| 	SE=Stencil.GetEntry(ptype,point,ss); | ||||
| 	   | ||||
| 	if(SE->_is_local) {  | ||||
| 	  nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute); | ||||
| 	} else { | ||||
| 	  nbr = coalescedRead(Stencil.CommBuf()[SE->_offset]); | ||||
| 	} | ||||
| 	acceleratorSynchronise(); | ||||
|  | ||||
| 	for(int bb=0;bb<nbasis;bb++) { | ||||
| 	  res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb); | ||||
| 	} | ||||
|       } | ||||
|       coalescedWrite(out_v[ss](b),res); | ||||
|       }); | ||||
|  | ||||
|     for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose(); | ||||
|   }; | ||||
|  | ||||
|   void Mdag (const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     if(hermitian) { | ||||
|       // corresponds to Petrov-Galerkin coarsening | ||||
|       return M(in,out); | ||||
|     } else { | ||||
|       // corresponds to Galerkin coarsening | ||||
|       CoarseVector tmp(Grid()); | ||||
|       G5C(tmp, in);  | ||||
|       M(tmp, out); | ||||
|       G5C(out, out); | ||||
|     } | ||||
|   }; | ||||
|   void MdirComms(const CoarseVector &in) | ||||
|   { | ||||
|     SimpleCompressor<siteVector> compressor; | ||||
|     Stencil.HaloExchange(in,compressor); | ||||
|   } | ||||
|   void MdirCalc(const CoarseVector &in, CoarseVector &out, int point) | ||||
|   { | ||||
|     conformable(_grid,in.Grid()); | ||||
|     conformable(_grid,out.Grid()); | ||||
|  | ||||
|     typedef LatticeView<Cobj> Aview; | ||||
|     Vector<Aview> AcceleratorViewContainer; | ||||
|     for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead)); | ||||
|     Aview *Aview_p = & AcceleratorViewContainer[0]; | ||||
|  | ||||
|     autoView( out_v , out, AcceleratorWrite); | ||||
|     autoView( in_v  , in, AcceleratorRead); | ||||
|  | ||||
|     const int Nsimd = CComplex::Nsimd(); | ||||
|     typedef decltype(coalescedRead(in_v[0])) calcVector; | ||||
|     typedef decltype(coalescedRead(in_v[0](0))) calcComplex; | ||||
|  | ||||
|     accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, { | ||||
|       int ss = sss/nbasis; | ||||
|       int b  = sss%nbasis; | ||||
|       calcComplex res = Zero(); | ||||
|       calcVector nbr; | ||||
|       int ptype; | ||||
|       StencilEntry *SE; | ||||
|  | ||||
|       SE=Stencil.GetEntry(ptype,point,ss); | ||||
| 	   | ||||
|       if(SE->_is_local) {  | ||||
| 	nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute); | ||||
|       } else { | ||||
| 	nbr = coalescedRead(Stencil.CommBuf()[SE->_offset]); | ||||
|       } | ||||
|       acceleratorSynchronise(); | ||||
|  | ||||
|       for(int bb=0;bb<nbasis;bb++) { | ||||
| 	res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb); | ||||
|       } | ||||
|       coalescedWrite(out_v[ss](b),res); | ||||
|     }); | ||||
|     for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose(); | ||||
|   } | ||||
|   void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out) | ||||
|   { | ||||
|     this->MdirComms(in); | ||||
|     int ndir=geom.npoint-1; | ||||
|     if ((out.size()!=ndir)&&(out.size()!=ndir+1)) {  | ||||
|       std::cout <<"MdirAll out size "<< out.size()<<std::endl; | ||||
|       std::cout <<"MdirAll ndir "<< ndir<<std::endl; | ||||
|       assert(0); | ||||
|     } | ||||
|     for(int p=0;p<ndir;p++){ | ||||
|       MdirCalc(in,out[p],p); | ||||
|     } | ||||
|   }; | ||||
|   void Mdir(const CoarseVector &in, CoarseVector &out, int dir, int disp){ | ||||
|  | ||||
|     this->MdirComms(in); | ||||
|  | ||||
|     int ndim = in.Grid()->Nd(); | ||||
|  | ||||
|     ////////////// | ||||
|     // 4D action like wilson | ||||
|     // 0+ => 0  | ||||
|     // 0- => 1 | ||||
|     // 1+ => 2  | ||||
|     // 1- => 3 | ||||
|     // etc.. | ||||
|     ////////////// | ||||
|     // 5D action like DWF | ||||
|     // 1+ => 0  | ||||
|     // 1- => 1 | ||||
|     // 2+ => 2  | ||||
|     // 2- => 3 | ||||
|     // etc.. | ||||
|     auto point = [dir, disp, ndim](){ | ||||
|       if(dir == 0 and disp == 0) | ||||
| 	return 8; | ||||
|       else if ( ndim==4 ) {  | ||||
| 	return (4 * dir + 1 - disp) / 2; | ||||
|       } else {  | ||||
| 	return (4 * (dir-1) + 1 - disp) / 2; | ||||
|       } | ||||
|     }(); | ||||
|  | ||||
|     MdirCalc(in,out,point); | ||||
|  | ||||
|   }; | ||||
|  | ||||
|   void Mdiag(const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     int point=geom.npoint-1; | ||||
|     MdirCalc(in, out, point); // No comms | ||||
|   }; | ||||
|  | ||||
|    | ||||
|  CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) 	:  | ||||
|  | ||||
|     _grid(&CoarseGrid), | ||||
|     geom(CoarseGrid._ndimension), | ||||
|     hermitian(hermitian_), | ||||
|     Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements,0), | ||||
|       A(geom.npoint,&CoarseGrid) | ||||
|   { | ||||
|   }; | ||||
|  | ||||
|   void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop, | ||||
| 		       Aggregation<Fobj,CComplex,nbasis> & Subspace) | ||||
|   { | ||||
|     typedef Lattice<typename Fobj::tensor_reduced> FineComplexField; | ||||
|     typedef typename Fobj::scalar_type scalar_type; | ||||
|  | ||||
|     FineComplexField one(FineGrid); one=scalar_type(1.0,0.0); | ||||
|     FineComplexField zero(FineGrid); zero=scalar_type(0.0,0.0); | ||||
|  | ||||
|     std::vector<FineComplexField> masks(geom.npoint,FineGrid); | ||||
|     FineComplexField imask(FineGrid); // contributions from within this block | ||||
|     FineComplexField omask(FineGrid); // contributions from outwith this block | ||||
|  | ||||
|     FineComplexField evenmask(FineGrid); | ||||
|     FineComplexField oddmask(FineGrid);  | ||||
|  | ||||
|     FineField     phi(FineGrid); | ||||
|     FineField     tmp(FineGrid); | ||||
|     FineField     zz(FineGrid); zz=Zero(); | ||||
|     FineField    Mphi(FineGrid); | ||||
|     FineField    Mphie(FineGrid); | ||||
|     FineField    Mphio(FineGrid); | ||||
|     std::vector<FineField>     Mphi_p(geom.npoint,FineGrid); | ||||
|  | ||||
|     Lattice<iScalar<vInteger> > coor (FineGrid); | ||||
|     Lattice<iScalar<vInteger> > bcoor(FineGrid); | ||||
|     Lattice<iScalar<vInteger> > bcb  (FineGrid); bcb = Zero(); | ||||
|  | ||||
|     CoarseVector iProj(Grid());  | ||||
|     CoarseVector oProj(Grid());  | ||||
|     CoarseVector SelfProj(Grid());  | ||||
|     CoarseComplexField iZProj(Grid());  | ||||
|     CoarseComplexField oZProj(Grid());  | ||||
|  | ||||
|     CoarseScalar InnerProd(Grid());  | ||||
|  | ||||
|     // Orthogonalise the subblocks over the basis | ||||
|     blockOrthogonalise(InnerProd,Subspace.subspace); | ||||
|  | ||||
|     // Compute the matrix elements of linop between this orthonormal | ||||
|     // set of vectors. | ||||
|     int self_stencil=-1; | ||||
|     for(int p=0;p<geom.npoint;p++) | ||||
|     {  | ||||
|       int dir   = geom.directions[p]; | ||||
|       int disp  = geom.displacements[p]; | ||||
|       A[p]=Zero(); | ||||
|       if( geom.displacements[p]==0){ | ||||
| 	self_stencil=p; | ||||
|       } | ||||
|  | ||||
|       Integer block=(FineGrid->_rdimensions[dir])/(Grid()->_rdimensions[dir]); | ||||
|  | ||||
|       LatticeCoordinate(coor,dir); | ||||
|  | ||||
|       /////////////////////////////////////////////////////// | ||||
|       // Work out even and odd block checkerboarding for fast diagonal term | ||||
|       /////////////////////////////////////////////////////// | ||||
|       if ( disp==1 ) { | ||||
| 	bcb   = bcb + div(coor,block); | ||||
|       } | ||||
| 	 | ||||
|       if ( disp==0 ) { | ||||
| 	  masks[p]= Zero(); | ||||
|       } else if ( disp==1 ) { | ||||
| 	masks[p] = where(mod(coor,block)==(block-1),one,zero); | ||||
|       } else if ( disp==-1 ) { | ||||
| 	masks[p] = where(mod(coor,block)==(Integer)0,one,zero); | ||||
|       } | ||||
|     } | ||||
|     evenmask = where(mod(bcb,2)==(Integer)0,one,zero); | ||||
|     oddmask  = one-evenmask; | ||||
|  | ||||
|     assert(self_stencil!=-1); | ||||
|  | ||||
|     for(int i=0;i<nbasis;i++){ | ||||
|  | ||||
|       phi=Subspace.subspace[i]; | ||||
|  | ||||
|       //      std::cout << GridLogMessage<< "CoarsenMatrix vector "<<i << std::endl; | ||||
|       linop.OpDirAll(phi,Mphi_p); | ||||
|       linop.OpDiag  (phi,Mphi_p[geom.npoint-1]); | ||||
|  | ||||
|       for(int p=0;p<geom.npoint;p++){  | ||||
|  | ||||
| 	Mphi = Mphi_p[p]; | ||||
|  | ||||
| 	int dir   = geom.directions[p]; | ||||
| 	int disp  = geom.displacements[p]; | ||||
|  | ||||
| 	if ( (disp==-1) || (!hermitian ) ) { | ||||
|  | ||||
| 	  //////////////////////////////////////////////////////////////////////// | ||||
| 	  // Pick out contributions coming from this cell and neighbour cell | ||||
| 	  //////////////////////////////////////////////////////////////////////// | ||||
| 	  omask = masks[p]; | ||||
| 	  imask = one-omask; | ||||
| 	 | ||||
| 	  for(int j=0;j<nbasis;j++){ | ||||
| 	     | ||||
| 	    blockMaskedInnerProduct(oZProj,omask,Subspace.subspace[j],Mphi); | ||||
| 	     | ||||
| 	    autoView( iZProj_v , iZProj, AcceleratorRead) ; | ||||
| 	    autoView( oZProj_v , oZProj, AcceleratorRead) ; | ||||
| 	    autoView( A_p     ,  A[p], AcceleratorWrite); | ||||
| 	    autoView( A_self  , A[self_stencil], AcceleratorWrite); | ||||
|  | ||||
| 	    accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_p[ss](j,i),oZProj_v(ss)); }); | ||||
|  | ||||
| 	  } | ||||
| 	} | ||||
|       } | ||||
|  | ||||
|       /////////////////////////////////////////// | ||||
|       // Faster alternate self coupling.. use hermiticity to save 2x | ||||
|       /////////////////////////////////////////// | ||||
|       { | ||||
| 	mult(tmp,phi,evenmask);  linop.Op(tmp,Mphie); | ||||
| 	mult(tmp,phi,oddmask );  linop.Op(tmp,Mphio); | ||||
|  | ||||
| 	{ | ||||
| 	  autoView( tmp_      , tmp, AcceleratorWrite); | ||||
| 	  autoView( evenmask_ , evenmask, AcceleratorRead); | ||||
| 	  autoView( oddmask_  ,  oddmask, AcceleratorRead); | ||||
| 	  autoView( Mphie_    ,  Mphie, AcceleratorRead); | ||||
| 	  autoView( Mphio_    ,  Mphio, AcceleratorRead); | ||||
| 	  accelerator_for(ss, FineGrid->oSites(), Fobj::Nsimd(),{  | ||||
| 	      coalescedWrite(tmp_[ss],evenmask_(ss)*Mphie_(ss) + oddmask_(ss)*Mphio_(ss)); | ||||
| 	    }); | ||||
| 	} | ||||
|  | ||||
| 	blockProject(SelfProj,tmp,Subspace.subspace); | ||||
|  | ||||
| 	autoView( SelfProj_ , SelfProj, AcceleratorRead); | ||||
| 	autoView( A_self  , A[self_stencil], AcceleratorWrite); | ||||
|  | ||||
| 	accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ | ||||
| 	  for(int j=0;j<nbasis;j++){ | ||||
| 	    coalescedWrite(A_self[ss](j,i), SelfProj_(ss)(j)); | ||||
| 	  } | ||||
| 	}); | ||||
|  | ||||
|       } | ||||
|     } | ||||
|     if(hermitian) { | ||||
|       std::cout << GridLogMessage << " ForceHermitian, new code "<<std::endl; | ||||
|       ForceHermitian(); | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   void ForceHermitian(void) { | ||||
|     CoarseMatrix Diff  (Grid()); | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       int dir   = geom.directions[p]; | ||||
|       int disp  = geom.displacements[p]; | ||||
|       if(disp==-1) { | ||||
| 	// Find the opposite link | ||||
| 	for(int pp=0;pp<geom.npoint;pp++){ | ||||
| 	  int dirp   = geom.directions[pp]; | ||||
| 	  int dispp  = geom.displacements[pp]; | ||||
| 	  if ( (dirp==dir) && (dispp==1) ){ | ||||
| 	    //	    Diff = adj(Cshift(A[p],dir,1)) - A[pp];  | ||||
| 	    //	    std::cout << GridLogMessage<<" Replacing stencil leg "<<pp<<" with leg "<<p<< " diff "<<norm2(Diff) <<std::endl; | ||||
| 	    A[pp] = adj(Cshift(A[p],dir,1)); | ||||
| 	  } | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
|   } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
| @@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #define _GRID_FFT_H_ | ||||
|  | ||||
| #ifdef HAVE_FFTW | ||||
| #if defined(USE_MKL) || defined(GRID_SYCL) | ||||
| #ifdef USE_MKL | ||||
| #include <fftw/fftw3.h> | ||||
| #else | ||||
| #include <fftw3.h> | ||||
| @@ -136,7 +136,7 @@ public: | ||||
|     flops=0; | ||||
|     usec =0; | ||||
|     Coordinate layout(Nd,1); | ||||
|     sgrid = new GridCartesian(dimensions,layout,processors,*grid); | ||||
|     sgrid = new GridCartesian(dimensions,layout,processors); | ||||
|   }; | ||||
|      | ||||
|   ~FFT ( void)  { | ||||
| @@ -182,7 +182,7 @@ public: | ||||
|     pencil_gd[dim] = G*processors[dim]; | ||||
|        | ||||
|     // Pencil global vol LxLxGxLxL per node | ||||
|     GridCartesian pencil_g(pencil_gd,layout,processors,*vgrid); | ||||
|     GridCartesian pencil_g(pencil_gd,layout,processors); | ||||
|        | ||||
|     // Construct pencils | ||||
|     typedef typename vobj::scalar_object sobj; | ||||
|   | ||||
| @@ -52,7 +52,6 @@ public: | ||||
|   virtual void AdjOp  (const Field &in, Field &out) = 0; // Abstract base | ||||
|   virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2)=0; | ||||
|   virtual void HermOp(const Field &in, Field &out)=0; | ||||
|   virtual ~LinearOperatorBase(){}; | ||||
| }; | ||||
|  | ||||
|  | ||||
| @@ -145,44 +144,6 @@ public: | ||||
|   } | ||||
| }; | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////// | ||||
| // Create a shifted HermOp | ||||
| //////////////////////////////////////////////////////////////////// | ||||
| template<class Field> | ||||
| class ShiftedHermOpLinearOperator : public LinearOperatorBase<Field> { | ||||
|   LinearOperatorBase<Field> &_Mat; | ||||
|   RealD _shift; | ||||
| public: | ||||
|   ShiftedHermOpLinearOperator(LinearOperatorBase<Field> &Mat,RealD shift): _Mat(Mat), _shift(shift){}; | ||||
|   // Support for coarsening to a multigrid | ||||
|   void OpDiag (const Field &in, Field &out) { | ||||
|     assert(0); | ||||
|   } | ||||
|   void OpDir  (const Field &in, Field &out,int dir,int disp) { | ||||
|     assert(0); | ||||
|   } | ||||
|   void OpDirAll  (const Field &in, std::vector<Field> &out){ | ||||
|     assert(0); | ||||
|   }; | ||||
|   void Op     (const Field &in, Field &out){ | ||||
|     HermOp(in,out); | ||||
|   } | ||||
|   void AdjOp     (const Field &in, Field &out){ | ||||
|     HermOp(in,out); | ||||
|   } | ||||
|   void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ | ||||
|     HermOp(in,out); | ||||
|     ComplexD dot = innerProduct(in,out); | ||||
|     n1=real(dot); | ||||
|     n2=norm2(out); | ||||
|   } | ||||
|   void HermOp(const Field &in, Field &out){ | ||||
|     _Mat.HermOp(in,out); | ||||
|     out = out + _shift*in; | ||||
|   } | ||||
| }; | ||||
|  | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////// | ||||
| // Wrap an already herm matrix | ||||
| //////////////////////////////////////////////////////////////////// | ||||
| @@ -546,7 +507,7 @@ class SchurStaggeredOperator :  public SchurOperatorBase<Field> { | ||||
|   virtual  void MpcDag   (const Field &in, Field &out){ | ||||
|     Mpc(in,out); | ||||
|   } | ||||
|   virtual void MpcDagMpc(const Field &in, Field &out) { | ||||
|   virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) { | ||||
|     assert(0);// Never need with staggered | ||||
|   } | ||||
| }; | ||||
| @@ -564,23 +525,11 @@ public: | ||||
|       (*this)(Linop,in[k],out[k]); | ||||
|     } | ||||
|   }; | ||||
|   virtual ~OperatorFunction(){}; | ||||
| }; | ||||
|  | ||||
| template<class Field> class LinearFunction { | ||||
| public: | ||||
|   virtual void operator() (const Field &in, Field &out) = 0; | ||||
|  | ||||
|   virtual void operator() (const std::vector<Field> &in, std::vector<Field> &out) | ||||
|   { | ||||
|     assert(in.size() == out.size()); | ||||
|  | ||||
|     for (unsigned int i = 0; i < in.size(); ++i) | ||||
|     { | ||||
|       (*this)(in[i], out[i]); | ||||
|     } | ||||
|   } | ||||
|   virtual ~LinearFunction(){}; | ||||
| }; | ||||
|  | ||||
| template<class Field> class IdentityLinearFunction : public LinearFunction<Field> { | ||||
| @@ -626,7 +575,6 @@ class HermOpOperatorFunction : public OperatorFunction<Field> { | ||||
| template<typename Field> | ||||
| class PlainHermOp : public LinearFunction<Field> { | ||||
| public: | ||||
|   using LinearFunction<Field>::operator(); | ||||
|   LinearOperatorBase<Field> &_Linop; | ||||
|        | ||||
|   PlainHermOp(LinearOperatorBase<Field>& linop) : _Linop(linop)  | ||||
| @@ -640,7 +588,6 @@ public: | ||||
| template<typename Field> | ||||
| class FunctionHermOp : public LinearFunction<Field> { | ||||
| public: | ||||
|   using LinearFunction<Field>::operator();  | ||||
|   OperatorFunction<Field>   & _poly; | ||||
|   LinearOperatorBase<Field> &_Linop; | ||||
|        | ||||
|   | ||||
| @@ -30,19 +30,13 @@ Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class Field> using Preconditioner =  LinearFunction<Field> ; | ||||
|  | ||||
| /* | ||||
| template<class Field> class Preconditioner :  public LinearFunction<Field> {  | ||||
|   using LinearFunction<Field>::operator(); | ||||
|   virtual void operator()(const Field &src, Field & psi)=0; | ||||
| }; | ||||
| */ | ||||
|  | ||||
| template<class Field> class TrivialPrecon :  public Preconditioner<Field> {  | ||||
| public: | ||||
|   using Preconditioner<Field>::operator(); | ||||
|   virtual void operator()(const Field &src, Field & psi){ | ||||
|   void operator()(const Field &src, Field & psi){ | ||||
|     psi = src; | ||||
|   } | ||||
|   TrivialPrecon(void){}; | ||||
|   | ||||
| @@ -48,7 +48,6 @@ public: | ||||
|   virtual  void Mdiag    (const Field &in, Field &out)=0; | ||||
|   virtual  void Mdir     (const Field &in, Field &out,int dir, int disp)=0; | ||||
|   virtual  void MdirAll  (const Field &in, std::vector<Field> &out)=0; | ||||
|   virtual ~SparseMatrixBase() {}; | ||||
| }; | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -73,7 +72,7 @@ public: | ||||
|   virtual  void MeooeDag    (const Field &in, Field &out)=0; | ||||
|   virtual  void MooeeDag    (const Field &in, Field &out)=0; | ||||
|   virtual  void MooeeInvDag (const Field &in, Field &out)=0; | ||||
|   virtual ~CheckerBoardedSparseMatrixBase() {}; | ||||
|  | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|   | ||||
| @@ -90,8 +90,9 @@ public: | ||||
|     order=_order; | ||||
|        | ||||
|     if(order < 2) exit(-1); | ||||
|     Coeffs.resize(order,0.0); | ||||
|     Coeffs[order-1] = 1.0; | ||||
|     Coeffs.resize(order); | ||||
|     Coeffs.assign(0.,order); | ||||
|     Coeffs[order-1] = 1.; | ||||
|   }; | ||||
|    | ||||
|   // PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's. | ||||
| @@ -257,12 +258,26 @@ public: | ||||
|     for(int n=2;n<order;n++){ | ||||
|  | ||||
|       Linop.HermOp(*Tn,y); | ||||
| #if 0 | ||||
|       auto y_v = y.View(); | ||||
|       auto Tn_v = Tn->View(); | ||||
|       auto Tnp_v = Tnp->View(); | ||||
|       auto Tnm_v = Tnm->View(); | ||||
|       constexpr int Nsimd = vector_type::Nsimd(); | ||||
|       accelerator_forNB(ss, in.Grid()->oSites(), Nsimd, { | ||||
| 	  coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss)); | ||||
| 	  coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss)); | ||||
|       }); | ||||
|       if ( Coeffs[n] != 0.0) { | ||||
| 	axpy(out,Coeffs[n],*Tnp,out); | ||||
|       } | ||||
| #else | ||||
|       axpby(y,xscale,mscale,y,(*Tn)); | ||||
|       axpby(*Tnp,2.0,-1.0,y,(*Tnm)); | ||||
|       if ( Coeffs[n] != 0.0) { | ||||
| 	axpy(out,Coeffs[n],*Tnp,out); | ||||
|       } | ||||
|  | ||||
| #endif | ||||
|       // Cycle pointers to avoid copies | ||||
|       Field *swizzle = Tnm; | ||||
|       Tnm    =Tn; | ||||
|   | ||||
| @@ -40,7 +40,7 @@ public: | ||||
|   RealD norm; | ||||
|   RealD lo,hi; | ||||
|  | ||||
|   MultiShiftFunction(int n,RealD _lo,RealD _hi): poles(n), residues(n), tolerances(n), lo(_lo), hi(_hi) {;}; | ||||
|   MultiShiftFunction(int n,RealD _lo,RealD _hi): poles(n), residues(n), lo(_lo), hi(_hi) {;}; | ||||
|   RealD approx(RealD x); | ||||
|   void csv(std::ostream &out); | ||||
|   void gnuplot(std::ostream &out); | ||||
|   | ||||
| @@ -293,7 +293,7 @@ static void sncndnFK(INTERNAL_PRECISION u, INTERNAL_PRECISION k, | ||||
|  * Set type = 0 for the Zolotarev approximation, which is zero at x = 0, and | ||||
|  * type = 1 for the approximation which is infinite at x = 0. */ | ||||
|  | ||||
| zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) { | ||||
| zolotarev_data* zolotarev(PRECISION epsilon, int n, int type) { | ||||
|   INTERNAL_PRECISION A, c, cp, kp, ksq, sn, cn, dn, Kp, Kj, z, z0, t, M, F, | ||||
|     l, invlambda, xi, xisq, *tv, s, opl; | ||||
|   int m, czero, ts; | ||||
| @@ -375,12 +375,12 @@ zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) { | ||||
|   construct_partfrac(d); | ||||
|   construct_contfrac(d); | ||||
|  | ||||
|   /* Converting everything to ZOLO_PRECISION for external use only */ | ||||
|   /* Converting everything to PRECISION for external use only */ | ||||
|  | ||||
|   zd = (zolotarev_data*) malloc(sizeof(zolotarev_data)); | ||||
|   zd -> A = (ZOLO_PRECISION) d -> A; | ||||
|   zd -> Delta = (ZOLO_PRECISION) d -> Delta; | ||||
|   zd -> epsilon = (ZOLO_PRECISION) d -> epsilon; | ||||
|   zd -> A = (PRECISION) d -> A; | ||||
|   zd -> Delta = (PRECISION) d -> Delta; | ||||
|   zd -> epsilon = (PRECISION) d -> epsilon; | ||||
|   zd -> n = d -> n; | ||||
|   zd -> type = d -> type; | ||||
|   zd -> dn = d -> dn; | ||||
| @@ -390,24 +390,24 @@ zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) { | ||||
|   zd -> deg_num = d -> deg_num; | ||||
|   zd -> deg_denom = d -> deg_denom; | ||||
|  | ||||
|   zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m]; | ||||
|   zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m]; | ||||
|   free(d -> a); | ||||
|  | ||||
|   zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m]; | ||||
|   zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m]; | ||||
|   free(d -> ap); | ||||
|  | ||||
|   zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m]; | ||||
|   zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m]; | ||||
|   free(d -> alpha); | ||||
|  | ||||
|   zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m]; | ||||
|   zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m]; | ||||
|   free(d -> beta); | ||||
|  | ||||
|   zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m]; | ||||
|   zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m]; | ||||
|   free(d -> gamma); | ||||
|  | ||||
|   free(d); | ||||
| @@ -426,7 +426,7 @@ void zolotarev_free(zolotarev_data *zdata) | ||||
| } | ||||
|  | ||||
|  | ||||
| zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) { | ||||
| zolotarev_data* higham(PRECISION epsilon, int n) { | ||||
|   INTERNAL_PRECISION A, M, c, cp, z, z0, t, epssq; | ||||
|   int m, czero; | ||||
|   zolotarev_data *zd; | ||||
| @@ -481,9 +481,9 @@ zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) { | ||||
|   /* Converting everything to PRECISION for external use only */ | ||||
|  | ||||
|   zd = (zolotarev_data*) malloc(sizeof(zolotarev_data)); | ||||
|   zd -> A = (ZOLO_PRECISION) d -> A; | ||||
|   zd -> Delta = (ZOLO_PRECISION) d -> Delta; | ||||
|   zd -> epsilon = (ZOLO_PRECISION) d -> epsilon; | ||||
|   zd -> A = (PRECISION) d -> A; | ||||
|   zd -> Delta = (PRECISION) d -> Delta; | ||||
|   zd -> epsilon = (PRECISION) d -> epsilon; | ||||
|   zd -> n = d -> n; | ||||
|   zd -> type = d -> type; | ||||
|   zd -> dn = d -> dn; | ||||
| @@ -493,24 +493,24 @@ zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) { | ||||
|   zd -> deg_num = d -> deg_num; | ||||
|   zd -> deg_denom = d -> deg_denom; | ||||
|  | ||||
|   zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m]; | ||||
|   zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m]; | ||||
|   free(d -> a); | ||||
|  | ||||
|   zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m]; | ||||
|   zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m]; | ||||
|   free(d -> ap); | ||||
|  | ||||
|   zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m]; | ||||
|   zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m]; | ||||
|   free(d -> alpha); | ||||
|  | ||||
|   zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m]; | ||||
|   zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m]; | ||||
|   free(d -> beta); | ||||
|  | ||||
|   zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION)); | ||||
|   for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m]; | ||||
|   zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION)); | ||||
|   for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m]; | ||||
|   free(d -> gamma); | ||||
|  | ||||
|   free(d); | ||||
| @@ -523,17 +523,17 @@ NAMESPACE_END(Grid); | ||||
| #ifdef TEST | ||||
|  | ||||
| #undef ZERO | ||||
| #define ZERO ((ZOLO_PRECISION) 0) | ||||
| #define ZERO ((PRECISION) 0) | ||||
| #undef ONE | ||||
| #define ONE ((ZOLO_PRECISION) 1) | ||||
| #define ONE ((PRECISION) 1) | ||||
| #undef TWO | ||||
| #define TWO ((ZOLO_PRECISION) 2) | ||||
| #define TWO ((PRECISION) 2) | ||||
|  | ||||
| /* Evaluate the rational approximation R(x) using the factored form */ | ||||
|  | ||||
| static ZOLO_PRECISION zolotarev_eval(ZOLO_PRECISION x, zolotarev_data* rdata) { | ||||
| static PRECISION zolotarev_eval(PRECISION x, zolotarev_data* rdata) { | ||||
|   int m; | ||||
|   ZOLO_PRECISION R; | ||||
|   PRECISION R; | ||||
|  | ||||
|   if (rdata -> type == 0) { | ||||
|     R = rdata -> A * x; | ||||
| @@ -551,9 +551,9 @@ static ZOLO_PRECISION zolotarev_eval(ZOLO_PRECISION x, zolotarev_data* rdata) { | ||||
|  | ||||
| /* Evaluate the rational approximation R(x) using the partial fraction form */ | ||||
|  | ||||
| static ZOLO_PRECISION zolotarev_partfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) { | ||||
| static PRECISION zolotarev_partfrac_eval(PRECISION x, zolotarev_data* rdata) { | ||||
|   int m; | ||||
|   ZOLO_PRECISION R = rdata -> alpha[rdata -> da - 1]; | ||||
|   PRECISION R = rdata -> alpha[rdata -> da - 1]; | ||||
|   for (m = 0; m < rdata -> dd; m++) | ||||
|     R += rdata -> alpha[m] / (x * x - rdata -> ap[m]); | ||||
|   if (rdata -> type == 1) R += rdata -> alpha[rdata -> dd] / (x * x); | ||||
| @@ -568,18 +568,18 @@ static ZOLO_PRECISION zolotarev_partfrac_eval(ZOLO_PRECISION x, zolotarev_data* | ||||
|  * non-signalling overflow this will work correctly since 1/(1/0) = 1/INF = 0, | ||||
|  * but with signalling overflow you will get an error message. */ | ||||
|  | ||||
| static ZOLO_PRECISION zolotarev_contfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) { | ||||
| static PRECISION zolotarev_contfrac_eval(PRECISION x, zolotarev_data* rdata) { | ||||
|   int m; | ||||
|   ZOLO_PRECISION R = rdata -> beta[0] * x; | ||||
|   PRECISION R = rdata -> beta[0] * x; | ||||
|   for (m = 1; m < rdata -> db; m++) R = rdata -> beta[m] * x + ONE / R; | ||||
|   return R; | ||||
| }     | ||||
|  | ||||
| /* Evaluate the rational approximation R(x) using Cayley form */ | ||||
|  | ||||
| static ZOLO_PRECISION zolotarev_cayley_eval(ZOLO_PRECISION x, zolotarev_data* rdata) { | ||||
| static PRECISION zolotarev_cayley_eval(PRECISION x, zolotarev_data* rdata) { | ||||
|   int m; | ||||
|   ZOLO_PRECISION T; | ||||
|   PRECISION T; | ||||
|  | ||||
|   T = rdata -> type == 0 ? ONE : -ONE; | ||||
|   for (m = 0; m < rdata -> n; m++) | ||||
| @@ -607,7 +607,7 @@ int main(int argc, char** argv) { | ||||
|   int m, n, plotpts = 5000, type = 0; | ||||
|   float eps, x, ypferr, ycferr, ycaylerr, maxypferr, maxycferr, maxycaylerr; | ||||
|   zolotarev_data *rdata; | ||||
|   ZOLO_PRECISION y; | ||||
|   PRECISION y; | ||||
|   FILE *plot_function, *plot_error,  | ||||
|     *plot_partfrac, *plot_contfrac, *plot_cayley; | ||||
|  | ||||
| @@ -626,13 +626,13 @@ int main(int argc, char** argv) { | ||||
|   } | ||||
|  | ||||
|   rdata = type == 2  | ||||
|     ? higham((ZOLO_PRECISION) eps, n)  | ||||
|     : zolotarev((ZOLO_PRECISION) eps, n, type); | ||||
|     ? higham((PRECISION) eps, n)  | ||||
|     : zolotarev((PRECISION) eps, n, type); | ||||
|  | ||||
|   printf("Zolotarev Test: R(epsilon = %g, n = %d, type = %d)\n\t"  | ||||
| 	 STRINGIFY(VERSION) "\n\t" STRINGIFY(HVERSION) | ||||
| 	 "\n\tINTERNAL_PRECISION = " STRINGIFY(INTERNAL_PRECISION) | ||||
| 	 "\tZOLO_PRECISION = " STRINGIFY(ZOLO_PRECISION) | ||||
| 	 "\tPRECISION = " STRINGIFY(PRECISION) | ||||
| 	 "\n\n\tRational approximation of degree (%d,%d), %s at x = 0\n" | ||||
| 	 "\tDelta = %g (maximum error)\n\n" | ||||
| 	 "\tA = %g (overall factor)\n", | ||||
| @@ -681,15 +681,15 @@ int main(int argc, char** argv) { | ||||
|     x = 2.4 * (float) m / plotpts - 1.2; | ||||
|     if (rdata -> type == 0 || fabs(x) * (float) plotpts > 1.0) { | ||||
|       /* skip x = 0 for type 1, as R(0) is singular */ | ||||
|       y = zolotarev_eval((ZOLO_PRECISION) x, rdata); | ||||
|       y = zolotarev_eval((PRECISION) x, rdata); | ||||
|       fprintf(plot_function, "%g %g\n", x, (float) y); | ||||
|       fprintf(plot_error, "%g %g\n", | ||||
| 	      x, (float)((y - ((x > 0.0 ? ONE : -ONE))) / rdata -> Delta)); | ||||
|       ypferr = (float)((zolotarev_partfrac_eval((ZOLO_PRECISION) x, rdata) - y) | ||||
|       ypferr = (float)((zolotarev_partfrac_eval((PRECISION) x, rdata) - y) | ||||
| 		       / rdata -> Delta); | ||||
|       ycferr = (float)((zolotarev_contfrac_eval((ZOLO_PRECISION) x, rdata) - y) | ||||
|       ycferr = (float)((zolotarev_contfrac_eval((PRECISION) x, rdata) - y) | ||||
| 		       / rdata -> Delta); | ||||
|       ycaylerr = (float)((zolotarev_cayley_eval((ZOLO_PRECISION) x, rdata) - y) | ||||
|       ycaylerr = (float)((zolotarev_cayley_eval((PRECISION) x, rdata) - y) | ||||
| 		       / rdata -> Delta); | ||||
|       if (fabs(x) < 1.0 && fabs(x) > rdata -> epsilon) { | ||||
| 	maxypferr = MAX(maxypferr, fabs(ypferr)); | ||||
|   | ||||
| @@ -9,10 +9,10 @@ NAMESPACE_BEGIN(Approx); | ||||
| #define HVERSION Header Time-stamp: <14-OCT-2004 09:26:51.00 adk@MISSCONTRARY> | ||||
|  | ||||
| #ifndef ZOLOTAREV_INTERNAL | ||||
| #ifndef ZOLO_PRECISION | ||||
| #define ZOLO_PRECISION double | ||||
| #ifndef PRECISION | ||||
| #define PRECISION double | ||||
| #endif | ||||
| #define ZPRECISION ZOLO_PRECISION | ||||
| #define ZPRECISION PRECISION | ||||
| #define ZOLOTAREV_DATA zolotarev_data | ||||
| #endif | ||||
|  | ||||
| @@ -77,8 +77,8 @@ typedef struct { | ||||
|  * zolotarev_data structure. The arguments must satisfy the constraints that | ||||
|  * epsilon > 0, n > 0, and type = 0 or 1. */ | ||||
|  | ||||
| ZOLOTAREV_DATA* higham(ZOLO_PRECISION epsilon, int n) ; | ||||
| ZOLOTAREV_DATA* zolotarev(ZOLO_PRECISION epsilon, int n, int type); | ||||
| ZOLOTAREV_DATA* higham(PRECISION epsilon, int n) ; | ||||
| ZOLOTAREV_DATA* zolotarev(PRECISION epsilon, int n, int type); | ||||
| void zolotarev_free(zolotarev_data *zdata); | ||||
| #endif | ||||
|  | ||||
| @@ -86,4 +86,3 @@ void zolotarev_free(zolotarev_data *zdata); | ||||
| NAMESPACE_END(Approx); | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
|  | ||||
|   | ||||
| @@ -1,34 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: BatchedBlas.h | ||||
|  | ||||
|     Copyright (C) 2023 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #include <Grid/GridCore.h> | ||||
| #include <Grid/algorithms/blas/BatchedBlas.h> | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| gridblasHandle_t GridBLAS::gridblasHandle; | ||||
| int              GridBLAS::gridblasInit; | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| @@ -1,727 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: BatchedBlas.h | ||||
|  | ||||
|     Copyright (C) 2023 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| #ifdef GRID_HIP | ||||
| #include <hipblas/hipblas.h> | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
| #include <cublas_v2.h> | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
| #include <oneapi/mkl.hpp> | ||||
| #endif | ||||
| #if 0 | ||||
| #define GRID_ONE_MKL | ||||
| #endif | ||||
| #ifdef GRID_ONE_MKL | ||||
| #include <oneapi/mkl.hpp> | ||||
| #endif | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////////////	   | ||||
| // Need to rearrange lattice data to be in the right format for a | ||||
| // batched multiply. Might as well make these static, dense packed | ||||
| /////////////////////////////////////////////////////////////////////// | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| #ifdef GRID_HIP | ||||
|   typedef hipblasHandle_t gridblasHandle_t; | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|   typedef cublasHandle_t gridblasHandle_t; | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|   typedef cl::sycl::queue *gridblasHandle_t; | ||||
| #endif | ||||
| #ifdef GRID_ONE_MKL | ||||
|   typedef cl::sycl::queue *gridblasHandle_t; | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL) | ||||
|   typedef int32_t gridblasHandle_t; | ||||
| #endif | ||||
|  | ||||
| enum GridBLASOperation_t { GridBLAS_OP_N, GridBLAS_OP_T, GridBLAS_OP_C } ; | ||||
|  | ||||
| class GridBLAS { | ||||
| public: | ||||
|  | ||||
|    | ||||
|   static gridblasHandle_t gridblasHandle; | ||||
|   static int            gridblasInit; | ||||
|    | ||||
|   static void Init(void) | ||||
|   { | ||||
|     if ( ! gridblasInit ) { | ||||
| #ifdef GRID_CUDA | ||||
|       std::cout << "cublasCreate"<<std::endl; | ||||
|       cublasCreate(&gridblasHandle); | ||||
|       cublasSetPointerMode(gridblasHandle, CUBLAS_POINTER_MODE_DEVICE); | ||||
| #endif | ||||
| #ifdef GRID_HIP | ||||
|       std::cout << "hipblasCreate"<<std::endl; | ||||
|       hipblasCreate(&gridblasHandle); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|       gridblasHandle = theGridAccelerator; | ||||
| #endif | ||||
| #ifdef GRID_ONE_MKL | ||||
|       cl::sycl::cpu_selector selector; | ||||
|       cl::sycl::device selectedDevice { selector }; | ||||
|       gridblasHandle =new sycl::queue (selectedDevice); | ||||
| #endif | ||||
|       gridblasInit=1; | ||||
|     } | ||||
|   } | ||||
|    | ||||
|   // Force construct once | ||||
|   GridBLAS() { Init(); }; | ||||
|   ~GridBLAS() { }; | ||||
|    | ||||
|   ///////////////////////////////////////////////////////////////////////////////////// | ||||
|   // BLAS GEMM conventions: | ||||
|   ///////////////////////////////////////////////////////////////////////////////////// | ||||
|   // - C = alpha A * B + beta C | ||||
|   // Dimensions: | ||||
|   // - C_m.n | ||||
|   // - A_m.k | ||||
|   // - B_k.n | ||||
|   // - Flops = 8 M N K | ||||
|   // - Bytes = 2*sizeof(word) * (MN+MK+KN) | ||||
|   // M=60, N=12 | ||||
|   // Flop/Byte = 8 . 60.60.12 / (60.12+60.60+60.12)/16 = 4 so expect about 4 TF/s on a GCD | ||||
|   ///////////////////////////////////////////////////////////////////////////////////// | ||||
|   void synchronise(void) | ||||
|   { | ||||
| #ifdef GRID_HIP | ||||
|     auto err = hipDeviceSynchronize(); | ||||
|     assert(err==hipSuccess); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     auto err = cudaDeviceSynchronize(); | ||||
|     assert(err==cudaSuccess); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|     accelerator_barrier(); | ||||
| #endif | ||||
| #ifdef GRID_ONE_MKL | ||||
|     gridblasHandle->wait(); | ||||
| #endif | ||||
|   } | ||||
|    | ||||
|   void gemmBatched(int m,int n, int k, | ||||
| 		   ComplexD alpha, | ||||
| 		   deviceVector<ComplexD*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<ComplexD*> &Bkn, | ||||
| 		   ComplexD beta, | ||||
| 		   deviceVector<ComplexD*> &Cmn) | ||||
|   { | ||||
|     gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, | ||||
| 		m,n,k, | ||||
| 		alpha, | ||||
| 		Amk, | ||||
| 		Bkn, | ||||
| 		beta, | ||||
| 		Cmn); | ||||
|   } | ||||
|   void gemmBatched(int m,int n, int k, | ||||
| 		   ComplexF alpha, | ||||
| 		   deviceVector<ComplexF*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<ComplexF*> &Bkn, | ||||
| 		   ComplexF beta, | ||||
| 		   deviceVector<ComplexF*> &Cmn) | ||||
|   { | ||||
|     gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, | ||||
| 		m,n,k, | ||||
| 		alpha, | ||||
| 		Amk, | ||||
| 		Bkn, | ||||
| 		beta, | ||||
| 		Cmn); | ||||
|   } | ||||
|   void gemmBatched(int m,int n, int k, | ||||
| 		   RealD alpha, | ||||
| 		   deviceVector<RealD*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<RealD*> &Bkn, | ||||
| 		   RealD beta, | ||||
| 		   deviceVector<RealD*> &Cmn) | ||||
|   { | ||||
|     gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, | ||||
| 		m,n,k, | ||||
| 		alpha, | ||||
| 		Amk, | ||||
| 		Bkn, | ||||
| 		beta, | ||||
| 		Cmn); | ||||
|   } | ||||
|   void gemmBatched(int m,int n, int k, | ||||
| 		   RealF alpha, | ||||
| 		   deviceVector<RealF*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<RealF*> &Bkn, | ||||
| 		   RealF beta, | ||||
| 		   deviceVector<RealF*> &Cmn) | ||||
|   { | ||||
|     gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, | ||||
| 		m,n,k, | ||||
| 		alpha, | ||||
| 		Amk, | ||||
| 		Bkn, | ||||
| 		beta, | ||||
| 		Cmn); | ||||
|   } | ||||
|  | ||||
|   void gemmBatched(GridBLASOperation_t OpA, | ||||
| 		   GridBLASOperation_t OpB, | ||||
| 		   int m,int n, int k, | ||||
| 		   ComplexD alpha, | ||||
| 		   deviceVector<ComplexD*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<ComplexD*> &Bkn, | ||||
| 		   ComplexD beta, | ||||
| 		   deviceVector<ComplexD*> &Cmn) | ||||
|   { | ||||
|     RealD t2=usecond(); | ||||
|     int32_t batchCount = Amk.size(); | ||||
|     assert(Bkn.size()==batchCount); | ||||
|     assert(Cmn.size()==batchCount); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
|     if(OpA!=GridBLAS_OP_N) | ||||
|       lda = k; | ||||
|     if(OpB!=GridBLAS_OP_N) | ||||
|       ldb = n; | ||||
|      | ||||
|     static deviceVector<ComplexD> alpha_p(1); | ||||
|     static deviceVector<ComplexD> beta_p(1); | ||||
|     // can prestore the 1 and the zero on device | ||||
|     acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD)); | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD)); | ||||
|     RealD t0=usecond(); | ||||
|     //    std::cout << "ZgemmBatched mnk  "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl; | ||||
| #ifdef GRID_HIP | ||||
|     hipblasOperation_t hOpA; | ||||
|     hipblasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C; | ||||
|     auto err = hipblasZgemmBatched(gridblasHandle, | ||||
| 				   hOpA, | ||||
| 				   hOpB, | ||||
| 				   m,n,k, | ||||
| 				   (hipblasDoubleComplex *) &alpha_p[0], | ||||
| 				   (hipblasDoubleComplex **)&Amk[0], lda, | ||||
| 				   (hipblasDoubleComplex **)&Bkn[0], ldb, | ||||
| 				   (hipblasDoubleComplex *) &beta_p[0], | ||||
| 				   (hipblasDoubleComplex **)&Cmn[0], ldc, | ||||
| 				   batchCount); | ||||
|     //	 std::cout << " hipblas return code " <<(int)err<<std::endl; | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasOperation_t hOpA; | ||||
|     cublasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C; | ||||
|     auto err = cublasZgemmBatched(gridblasHandle, | ||||
| 				  hOpA, | ||||
| 				  hOpB, | ||||
| 				  m,n,k, | ||||
| 				  (cuDoubleComplex *) &alpha_p[0], | ||||
| 				  (cuDoubleComplex **)&Amk[0], lda, | ||||
| 				  (cuDoubleComplex **)&Bkn[0], ldb, | ||||
| 				  (cuDoubleComplex *) &beta_p[0], | ||||
| 				  (cuDoubleComplex **)&Cmn[0], ldc, | ||||
| 				  batchCount); | ||||
|     assert(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|     //MKL’s cblas_<T>gemm_batch & OneAPI | ||||
| #warning "oneMKL implementation not built " | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) | ||||
|     // Need a default/reference implementation | ||||
|     int sda = lda*k; | ||||
|     int sdb = ldb*k; | ||||
|     int sdc = ldc*n; | ||||
|     for (int p = 0; p < batchCount; ++p) { | ||||
|       for (int mm = 0; mm < m; ++mm) { | ||||
| 	for (int nn = 0; nn < n; ++nn) { | ||||
| 	  ComplexD c_mn(0.0); | ||||
| 	  for (int kk = 0; kk < k; ++kk) | ||||
| 	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb]; | ||||
| 	  Cmn[p][mm + nn*ldc] =  (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ]; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
|     //    synchronise(); | ||||
|      RealD t1=usecond(); | ||||
|      RealD flops = 8.0*m*n*k*batchCount; | ||||
|      RealD bytes = 1.0*sizeof(ComplexD)*(m*k+k*n+m*n)*batchCount; | ||||
|      //     std::cout <<GridLogMessage<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl; | ||||
|      //     std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl; | ||||
|      //     std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl; | ||||
|   } | ||||
|  | ||||
|   void gemmBatched(GridBLASOperation_t OpA, | ||||
| 		   GridBLASOperation_t OpB, | ||||
| 		   int m,int n, int k, | ||||
| 		   ComplexF alpha, | ||||
| 		   deviceVector<ComplexF*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<ComplexF*> &Bkn, | ||||
| 		   ComplexF beta, | ||||
| 		   deviceVector<ComplexF*> &Cmn) | ||||
|   { | ||||
|     RealD t2=usecond(); | ||||
|     int32_t batchCount = Amk.size(); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
|     if(OpA!=GridBLAS_OP_N) | ||||
|       lda = k; | ||||
|     if(OpB!=GridBLAS_OP_N) | ||||
|       ldb = n; | ||||
|     static deviceVector<ComplexF> alpha_p(1); | ||||
|     static deviceVector<ComplexF> beta_p(1); | ||||
|     // can prestore the 1 and the zero on device | ||||
|     acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexF)); | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexF)); | ||||
|     RealD t0=usecond(); | ||||
|  | ||||
|     assert(Bkn.size()==batchCount); | ||||
|     assert(Cmn.size()==batchCount); | ||||
| #ifdef GRID_HIP | ||||
|     hipblasOperation_t hOpA; | ||||
|     hipblasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C; | ||||
|     auto err = hipblasCgemmBatched(gridblasHandle, | ||||
| 				   hOpA, | ||||
| 				   hOpB, | ||||
| 				   m,n,k, | ||||
| 				   (hipblasComplex *) &alpha_p[0], | ||||
| 				   (hipblasComplex **)&Amk[0], lda, | ||||
| 				   (hipblasComplex **)&Bkn[0], ldb, | ||||
| 				   (hipblasComplex *) &beta_p[0], | ||||
| 				   (hipblasComplex **)&Cmn[0], ldc, | ||||
| 				   batchCount); | ||||
|  | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasOperation_t hOpA; | ||||
|     cublasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C; | ||||
|     auto err = cublasCgemmBatched(gridblasHandle, | ||||
| 				  hOpA, | ||||
| 				  hOpB, | ||||
| 				  m,n,k, | ||||
| 				  (cuComplex *) &alpha_p[0], | ||||
| 				  (cuComplex **)&Amk[0], lda, | ||||
| 				  (cuComplex **)&Bkn[0], ldb, | ||||
| 				  (cuComplex *) &beta_p[0], | ||||
| 				  (cuComplex **)&Cmn[0], ldc, | ||||
| 				  batchCount); | ||||
|     assert(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|     //MKL’s cblas_<T>gemm_batch & OneAPI | ||||
| #warning "oneMKL implementation not built " | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) | ||||
|     int sda = lda*k; | ||||
|     int sdb = ldb*k; | ||||
|     int sdc = ldc*n; | ||||
|     ComplexF alphaf(real(alpha),imag(alpha)); | ||||
|     ComplexF betaf(real(beta),imag(beta)); | ||||
|     // Need a default/reference implementation | ||||
|     for (int p = 0; p < batchCount; ++p) { | ||||
|       for (int mm = 0; mm < m; ++mm) { | ||||
| 	for (int nn = 0; nn < n; ++nn) { | ||||
| 	  ComplexF c_mn(0.0); | ||||
| 	  for (int kk = 0; kk < k; ++kk) | ||||
| 	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb]; | ||||
| 	  Cmn[p][mm + nn*ldc] =  (alphaf)*c_mn + (betaf)*Cmn[p][mm + nn*ldc ]; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
|      RealD t1=usecond(); | ||||
|      RealD flops = 8.0*m*n*k*batchCount; | ||||
|      RealD bytes = 1.0*sizeof(ComplexF)*(m*k+k*n+m*n)*batchCount; | ||||
|   } | ||||
|    | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|   // Single precision real GEMM | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
|   void gemmBatched(GridBLASOperation_t OpA, | ||||
| 		   GridBLASOperation_t OpB, | ||||
| 		   int m,int n, int k, | ||||
| 		   RealF alpha, | ||||
| 		   deviceVector<RealF*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<RealF*> &Bkn, | ||||
| 		   RealF beta, | ||||
| 		   deviceVector<RealF*> &Cmn) | ||||
|   { | ||||
|     RealD t2=usecond(); | ||||
|     int32_t batchCount = Amk.size(); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
|     if(OpA!=GridBLAS_OP_N) | ||||
|       lda = k; | ||||
|     if(OpB!=GridBLAS_OP_N) | ||||
|       ldb = n; | ||||
|     static deviceVector<RealF> alpha_p(1); | ||||
|     static deviceVector<RealF> beta_p(1); | ||||
|     // can prestore the 1 and the zero on device | ||||
|     acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealF)); | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealF)); | ||||
|     RealD t0=usecond(); | ||||
|  | ||||
|     assert(Bkn.size()==batchCount); | ||||
|     assert(Cmn.size()==batchCount); | ||||
| #ifdef GRID_HIP | ||||
|     hipblasOperation_t hOpA; | ||||
|     hipblasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C; | ||||
|     auto err = hipblasSgemmBatched(gridblasHandle, | ||||
| 				   hOpA, | ||||
| 				   hOpB, | ||||
| 				   m,n,k, | ||||
| 				   (float *) &alpha_p[0], | ||||
| 				   (float **)&Amk[0], lda, | ||||
| 				   (float **)&Bkn[0], ldb, | ||||
| 				   (float *) &beta_p[0], | ||||
| 				   (float **)&Cmn[0], ldc, | ||||
| 				   batchCount); | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasOperation_t hOpA; | ||||
|     cublasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C; | ||||
|     auto err = cublasSgemmBatched(gridblasHandle, | ||||
| 				  hOpA, | ||||
| 				  hOpB, | ||||
| 				  m,n,k, | ||||
| 				  (float *) &alpha_p[0], | ||||
| 				  (float **)&Amk[0], lda, | ||||
| 				  (float **)&Bkn[0], ldb, | ||||
| 				  (float *) &beta_p[0], | ||||
| 				  (float **)&Cmn[0], ldc, | ||||
| 				  batchCount); | ||||
|     assert(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|     //MKL’s cblas_<T>gemm_batch & OneAPI | ||||
| #warning "oneMKL implementation not built " | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) | ||||
|     int sda = lda*k; | ||||
|     int sdb = ldb*k; | ||||
|     int sdc = ldc*n; | ||||
|     // Need a default/reference implementation | ||||
|     for (int p = 0; p < batchCount; ++p) { | ||||
|       for (int mm = 0; mm < m; ++mm) { | ||||
| 	for (int nn = 0; nn < n; ++nn) { | ||||
| 	  RealD c_mn(0.0); | ||||
| 	  for (int kk = 0; kk < k; ++kk) | ||||
| 	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb]; | ||||
| 	  Cmn[p][mm + nn*ldc] =  (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ]; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
|      RealD t1=usecond(); | ||||
|      RealD flops = 2.0*m*n*k*batchCount; | ||||
|      RealD bytes = 1.0*sizeof(RealF)*(m*k+k*n+m*n)*batchCount; | ||||
|   } | ||||
|    | ||||
|    | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|   // Double precision real GEMM | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
|   void gemmBatched(GridBLASOperation_t OpA, | ||||
| 		   GridBLASOperation_t OpB, | ||||
| 		   int m,int n, int k, | ||||
| 		   RealD alpha, | ||||
| 		   deviceVector<RealD*> &Amk,  // pointer list to matrices | ||||
| 		   deviceVector<RealD*> &Bkn, | ||||
| 		   RealD beta, | ||||
| 		   deviceVector<RealD*> &Cmn) | ||||
|   { | ||||
|     RealD t2=usecond(); | ||||
|     int32_t batchCount = Amk.size(); | ||||
|  | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
|     if(OpA!=GridBLAS_OP_N) | ||||
|       lda = k; | ||||
|     if(OpB!=GridBLAS_OP_N) | ||||
|       ldb = n; | ||||
|      | ||||
|     static deviceVector<RealD> alpha_p(1); | ||||
|     static deviceVector<RealD> beta_p(1); | ||||
|     // can prestore the 1 and the zero on device | ||||
|     acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealD)); | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealD)); | ||||
|     RealD t0=usecond(); | ||||
|  | ||||
|     assert(Bkn.size()==batchCount); | ||||
|     assert(Cmn.size()==batchCount); | ||||
| #ifdef GRID_HIP | ||||
|     hipblasOperation_t hOpA; | ||||
|     hipblasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C; | ||||
|     auto err = hipblasDgemmBatched(gridblasHandle, | ||||
| 				   HIPBLAS_OP_N, | ||||
| 				   HIPBLAS_OP_N, | ||||
| 				   m,n,k, | ||||
| 				   (double *) &alpha_p[0], | ||||
| 				   (double **)&Amk[0], lda, | ||||
| 				   (double **)&Bkn[0], ldb, | ||||
| 				   (double *) &beta_p[0], | ||||
| 				   (double **)&Cmn[0], ldc, | ||||
| 				   batchCount); | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasOperation_t hOpA; | ||||
|     cublasOperation_t hOpB; | ||||
|     if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N; | ||||
|     if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T; | ||||
|     if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C; | ||||
|     if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N; | ||||
|     if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T; | ||||
|     if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C; | ||||
|     auto err = cublasDgemmBatched(gridblasHandle, | ||||
| 				  hOpA, | ||||
| 				  hOpB, | ||||
| 				  m,n,k, | ||||
| 				  (double *) &alpha_p[0], | ||||
| 				  (double **)&Amk[0], lda, | ||||
| 				  (double **)&Bkn[0], ldb, | ||||
| 				  (double *) &beta_p[0], | ||||
| 				  (double **)&Cmn[0], ldc, | ||||
| 				  batchCount); | ||||
|     assert(err==CUBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
|     /* | ||||
|       int64_t m64=m; | ||||
|       int64_t n64=n; | ||||
|       int64_t k64=k; | ||||
|       int64_t batchCount64=batchCount; | ||||
|       oneapi::mkl::blas::column_major::gemm_batch(*theGridAccelerator, | ||||
|       onemkl::transpose::N, | ||||
|       onemkl::transpose::N, | ||||
|       &m64,&n64,&k64, | ||||
|       (double *) &alpha_p[0], | ||||
|       (double **)&Amk[0], lda, | ||||
|       (double **)&Bkn[0], ldb, | ||||
|       (double *) &beta_p[0], | ||||
|       (double **)&Cmn[0], ldc, | ||||
|       1,&batchCount64); | ||||
|      */ | ||||
|     //MKL’s cblas_<T>gemm_batch & OneAPI | ||||
| #warning "oneMKL implementation not built " | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) | ||||
|     int sda = lda*k; | ||||
|     int sdb = ldb*k; | ||||
|     int sdc = ldc*n; | ||||
|     // Need a default/reference implementation | ||||
|     for (int p = 0; p < batchCount; ++p) { | ||||
|       for (int mm = 0; mm < m; ++mm) { | ||||
| 	for (int nn = 0; nn < n; ++nn) { | ||||
| 	  RealD c_mn(0.0); | ||||
| 	  for (int kk = 0; kk < k; ++kk) | ||||
| 	    c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb]; | ||||
| 	  Cmn[p][mm + nn*ldc] =  (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ]; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
|      RealD t1=usecond(); | ||||
|      RealD flops = 2.0*m*n*k*batchCount; | ||||
|      RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount; | ||||
|   } | ||||
|    | ||||
|  | ||||
|    | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Strided case used by benchmark, but generally unused in Grid | ||||
|   // Keep a code example in double complex, but don't generate the single and real variants for now | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|    | ||||
|   void gemmStridedBatched(int m,int n, int k, | ||||
| 			  ComplexD alpha, | ||||
| 			  ComplexD* Amk,  // pointer list to matrices | ||||
| 			  ComplexD* Bkn, | ||||
| 			  ComplexD beta, | ||||
| 			  ComplexD* Cmn, | ||||
| 			  int batchCount) | ||||
|   { | ||||
|     // Use C-row major storage, so transpose calls | ||||
|     int lda = m; // m x k column major | ||||
|     int ldb = k; // k x n column major | ||||
|     int ldc = m; // m x b column major | ||||
|     int sda = m*k; | ||||
|     int sdb = k*n; | ||||
|     int sdc = m*n; | ||||
|     deviceVector<ComplexD> alpha_p(1); | ||||
|     deviceVector<ComplexD> beta_p(1); | ||||
|     acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD)); | ||||
|     acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD)); | ||||
|     //    std::cout << "blasZgemmStridedBatched mnk  "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl; | ||||
|     //    std::cout << "blasZgemmStridedBatched ld   "<<lda<<","<<ldb<<","<<ldc<<std::endl; | ||||
|     //    std::cout << "blasZgemmStridedBatched sd   "<<sda<<","<<sdb<<","<<sdc<<std::endl; | ||||
| #ifdef GRID_HIP | ||||
|     auto err = hipblasZgemmStridedBatched(gridblasHandle, | ||||
| 					  HIPBLAS_OP_N, | ||||
| 					  HIPBLAS_OP_N, | ||||
| 					  m,n,k, | ||||
| 					  (hipblasDoubleComplex *) &alpha_p[0], | ||||
| 					  (hipblasDoubleComplex *) Amk, lda, sda, | ||||
| 					  (hipblasDoubleComplex *) Bkn, ldb, sdb, | ||||
| 					  (hipblasDoubleComplex *) &beta_p[0], | ||||
| 					  (hipblasDoubleComplex *) Cmn, ldc, sdc, | ||||
| 					  batchCount); | ||||
|     assert(err==HIPBLAS_STATUS_SUCCESS); | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cublasZgemmStridedBatched(gridblasHandle, | ||||
| 			      CUBLAS_OP_N, | ||||
| 			      CUBLAS_OP_N, | ||||
| 			      m,n,k, | ||||
| 			      (cuDoubleComplex *) &alpha_p[0], | ||||
| 			      (cuDoubleComplex *) Amk, lda, sda, | ||||
| 			      (cuDoubleComplex *) Bkn, ldb, sdb, | ||||
| 			      (cuDoubleComplex *) &beta_p[0], | ||||
| 			      (cuDoubleComplex *) Cmn, ldc, sdc, | ||||
| 			      batchCount); | ||||
| #endif | ||||
| #if defined(GRID_SYCL) || defined(GRID_ONE_MKL) | ||||
|     oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle, | ||||
| 						oneapi::mkl::transpose::N, | ||||
| 						oneapi::mkl::transpose::N, | ||||
| 						m,n,k, | ||||
| 						alpha, | ||||
| 						(const ComplexD *)Amk,lda,sda, | ||||
| 						(const ComplexD *)Bkn,ldb,sdb, | ||||
| 						beta, | ||||
| 						(ComplexD *)Cmn,ldc,sdc, | ||||
| 						batchCount); | ||||
| #endif | ||||
| #if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL) | ||||
|      // Need a default/reference implementation | ||||
|      for (int p = 0; p < batchCount; ++p) { | ||||
|        for (int mm = 0; mm < m; ++mm) { | ||||
| 	 for (int nn = 0; nn < n; ++nn) { | ||||
| 	   ComplexD c_mn(0.0); | ||||
| 	   for (int kk = 0; kk < k; ++kk) | ||||
| 	     c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb]; | ||||
| 	   Cmn[mm + nn*ldc + p*sdc] =  (alpha)*c_mn + (beta)*Cmn[mm + nn*ldc + p*sdc]; | ||||
| 	 } | ||||
|        } | ||||
|      } | ||||
| #endif | ||||
|   } | ||||
|  | ||||
|   double benchmark(int M, int N, int K, int BATCH) | ||||
|   { | ||||
|     int32_t N_A = M*K*BATCH; | ||||
|     int32_t N_B = K*N*BATCH; | ||||
|     int32_t N_C = M*N*BATCH; | ||||
|     deviceVector<ComplexD> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(ComplexD)); | ||||
|     deviceVector<ComplexD> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(ComplexD)); | ||||
|     deviceVector<ComplexD> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(ComplexD)); | ||||
|     ComplexD alpha(1.0); | ||||
|     ComplexD beta (1.0); | ||||
|     RealD flops = 8.0*M*N*K*BATCH; | ||||
|     int ncall=10; | ||||
|     RealD t0 = usecond(); | ||||
|     for(int i=0;i<ncall;i++){ | ||||
|       gemmStridedBatched(M,N,K, | ||||
| 			 alpha, | ||||
| 			 &A[0], // m x k  | ||||
| 			 &B[0], // k x n | ||||
| 			 beta,  | ||||
| 			 &C[0], // m x n | ||||
| 			 BATCH); | ||||
|     } | ||||
|     synchronise(); | ||||
|     RealD t1 = usecond(); | ||||
|     RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K)*BATCH; | ||||
|     flops = 8.0*M*N*K*BATCH*ncall; | ||||
|     flops = flops/(t1-t0)/1.e3; | ||||
|     return flops; // Returns gigaflops | ||||
|   } | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -1,513 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: MultiRHSDeflation.h | ||||
|  | ||||
|     Copyright (C) 2023 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| /*  | ||||
|    MultiRHS block projection | ||||
|  | ||||
|    Import basis -> nblock x nbasis x  (block x internal)  | ||||
|    Import vector of fine lattice objects -> nblock x nrhs x (block x internal)  | ||||
|  | ||||
|    => coarse_(nrhs x nbasis )^block = via batched GEMM | ||||
|  | ||||
| //template<class vobj,class CComplex,int nbasis,class VLattice> | ||||
| //inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData, | ||||
| //			   const VLattice &fineData, | ||||
| //			   const VLattice &Basis) | ||||
| */ | ||||
|  | ||||
| template<class Field> | ||||
| class MultiRHSBlockProject | ||||
| { | ||||
| public: | ||||
|  | ||||
|   typedef typename Field::scalar_type   scalar; | ||||
|   typedef typename Field::scalar_object scalar_object; | ||||
|   typedef Field Fermion; | ||||
|  | ||||
|   int nbasis; | ||||
|   GridBase *coarse_grid; | ||||
|   GridBase *fine_grid; | ||||
|   uint64_t block_vol; | ||||
|   uint64_t fine_vol; | ||||
|   uint64_t coarse_vol; | ||||
|   uint64_t words; | ||||
|  | ||||
|   // Row major layout "C" order: | ||||
|   // BLAS_V[coarse_vol][nbasis][block_vol][words] | ||||
|   // BLAS_F[coarse_vol][nrhs][block_vol][words] | ||||
|   // BLAS_C[coarse_vol][nrhs][nbasis] | ||||
|   /* | ||||
|    * in Fortran column major notation (cuBlas order) | ||||
|    * | ||||
|    * Vxb = [v1(x)][..][vn(x)] ... x coarse vol | ||||
|    * | ||||
|    * Fxr = [r1(x)][..][rm(x)] ... x coarse vol | ||||
|    * | ||||
|    * Block project: | ||||
|    * C_br = V^dag F x coarse vol | ||||
|    * | ||||
|    * Block promote: | ||||
|    * F_xr = Vxb Cbr x coarse_vol | ||||
|    */   | ||||
|   deviceVector<scalar> BLAS_V;      // words * block_vol * nbasis x coarse_vol  | ||||
|   deviceVector<scalar> BLAS_F;      // nrhs x fine_vol * words   -- the sources | ||||
|   deviceVector<scalar> BLAS_C;      // nrhs x coarse_vol * nbasis -- the coarse coeffs | ||||
|  | ||||
|   RealD blasNorm2(deviceVector<scalar> &blas) | ||||
|   { | ||||
|     scalar ss(0.0); | ||||
|     std::vector<scalar> tmp(blas.size()); | ||||
|     acceleratorCopyFromDevice(&blas[0],&tmp[0],blas.size()*sizeof(scalar)); | ||||
|     for(int64_t s=0;s<blas.size();s++){ | ||||
|       ss=ss+tmp[s]*adj(tmp[s]); | ||||
|     } | ||||
|     coarse_grid->GlobalSum(ss); | ||||
|     return real(ss); | ||||
|   } | ||||
|    | ||||
|   MultiRHSBlockProject(){}; | ||||
|  ~MultiRHSBlockProject(){ Deallocate(); }; | ||||
|    | ||||
|   void Deallocate(void) | ||||
|   { | ||||
|     nbasis=0; | ||||
|     coarse_grid=nullptr; | ||||
|     fine_grid=nullptr; | ||||
|     fine_vol=0; | ||||
|     block_vol=0; | ||||
|     coarse_vol=0; | ||||
|     words=0; | ||||
|     BLAS_V.resize(0); | ||||
|     BLAS_F.resize(0); | ||||
|     BLAS_C.resize(0); | ||||
|   } | ||||
|   void Allocate(int _nbasis,GridBase *_fgrid,GridBase *_cgrid) | ||||
|   { | ||||
|     nbasis=_nbasis; | ||||
|  | ||||
|     fine_grid=_fgrid; | ||||
|     coarse_grid=_cgrid; | ||||
|  | ||||
|     fine_vol   = fine_grid->lSites(); | ||||
|     coarse_vol = coarse_grid->lSites(); | ||||
|     block_vol = fine_vol/coarse_vol; | ||||
|      | ||||
|     words = sizeof(scalar_object)/sizeof(scalar); | ||||
|  | ||||
|     BLAS_V.resize (fine_vol * words * nbasis ); | ||||
|   } | ||||
|   void ImportFineGridVectors(std::vector <Field > &vecs, deviceVector<scalar> &blas) | ||||
|   { | ||||
|     int nvec = vecs.size(); | ||||
|     typedef typename Field::vector_object vobj; | ||||
|     //    std::cout << GridLogMessage <<" BlockProjector importing "<<nvec<< " fine grid vectors" <<std::endl; | ||||
|  | ||||
|     assert(vecs[0].Grid()==fine_grid); | ||||
|  | ||||
|     subdivides(coarse_grid,fine_grid); // require they map | ||||
|  | ||||
|     int _ndimension = coarse_grid->_ndimension; | ||||
|     assert(block_vol == fine_grid->oSites() / coarse_grid->oSites()); | ||||
|      | ||||
|     Coordinate  block_r      (_ndimension); | ||||
|     for(int d=0 ; d<_ndimension;d++){ | ||||
|       block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d]; | ||||
|     } | ||||
|  | ||||
|     uint64_t sz = blas.size(); | ||||
|  | ||||
|     acceleratorMemSet(&blas[0],0,blas.size()*sizeof(scalar)); | ||||
|  | ||||
|     Coordinate fine_rdimensions = fine_grid->_rdimensions; | ||||
|     Coordinate coarse_rdimensions = coarse_grid->_rdimensions; | ||||
|     int64_t bv= block_vol; | ||||
|     for(int v=0;v<vecs.size();v++){ | ||||
|  | ||||
|       //      std::cout << " BlockProjector importing vector"<<v<<" "<<norm2(vecs[v])<<std::endl; | ||||
|       autoView( fineData   , vecs[v], AcceleratorRead); | ||||
|  | ||||
|       auto blasData_p  = &blas[0]; | ||||
|       auto fineData_p  = &fineData[0]; | ||||
|  | ||||
|       int64_t osites = fine_grid->oSites(); | ||||
|  | ||||
|       // loop over fine sites | ||||
|       const int Nsimd = vobj::Nsimd(); | ||||
|       //      std::cout << "sz "<<sz<<std::endl; | ||||
|       //      std::cout << "prod "<<Nsimd * coarse_grid->oSites() * block_vol * nvec * words<<std::endl; | ||||
|       assert(sz == Nsimd * coarse_grid->oSites() * block_vol * nvec * words); | ||||
|       uint64_t lwords= words; // local variable for copy in to GPU | ||||
|       accelerator_for(sf,osites,Nsimd,{ | ||||
| #ifdef GRID_SIMT | ||||
|         { | ||||
| 	  int lane=acceleratorSIMTlane(Nsimd); // buffer lane | ||||
| #else | ||||
| 	  for(int lane=0;lane<Nsimd;lane++) { | ||||
| #endif | ||||
| 	  // One thread per fine site | ||||
| 	  Coordinate coor_f(_ndimension); | ||||
| 	  Coordinate coor_b(_ndimension); | ||||
| 	  Coordinate coor_c(_ndimension); | ||||
|  | ||||
| 	  // Fine site to fine coor | ||||
| 	  Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions); | ||||
|  | ||||
| 	  for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d]; | ||||
| 	  for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d]; | ||||
| 	   | ||||
| 	  int sc;// coarse site | ||||
| 	  int sb;// block site | ||||
| 	  Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions); | ||||
| 	  Lexicographic::IndexFromCoor(coor_b,sb,block_r); | ||||
|  | ||||
|           scalar_object data = extractLane(lane,fineData[sf]); | ||||
|  | ||||
| 	  // BLAS layout address calculation | ||||
| 	  // words * block_vol * nbasis x coarse_vol | ||||
| 	  // coarse oSite x block vole x lanes | ||||
| 	  int64_t site = (lane*osites + sc*bv)*nvec | ||||
|    	               + v*bv | ||||
| 	               + sb; | ||||
|  | ||||
| 	  //	  assert(site*lwords<sz); | ||||
|  | ||||
| 	  scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords]; | ||||
|  | ||||
| 	  *ptr = data; | ||||
| #ifdef GRID_SIMT | ||||
| 	} | ||||
| #else | ||||
| 	} | ||||
| #endif | ||||
|       }); | ||||
|       //      std::cout << " import fine Blas norm "<<blasNorm2(blas)<<std::endl; | ||||
|       //      std::cout << " BlockProjector imported vector"<<v<<std::endl; | ||||
|     } | ||||
|   } | ||||
|   void ExportFineGridVectors(std::vector <Field> &vecs, deviceVector<scalar> &blas) | ||||
|   { | ||||
|     typedef typename Field::vector_object vobj; | ||||
|  | ||||
|     int nvec = vecs.size(); | ||||
|  | ||||
|     assert(vecs[0].Grid()==fine_grid); | ||||
|  | ||||
|     subdivides(coarse_grid,fine_grid); // require they map | ||||
|  | ||||
|     int _ndimension = coarse_grid->_ndimension; | ||||
|     assert(block_vol == fine_grid->oSites() / coarse_grid->oSites()); | ||||
|      | ||||
|     Coordinate  block_r      (_ndimension); | ||||
|     for(int d=0 ; d<_ndimension;d++){ | ||||
|       block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d]; | ||||
|     } | ||||
|     Coordinate fine_rdimensions = fine_grid->_rdimensions; | ||||
|     Coordinate coarse_rdimensions = coarse_grid->_rdimensions; | ||||
|  | ||||
|     //    std::cout << " export fine Blas norm "<<blasNorm2(blas)<<std::endl; | ||||
|  | ||||
|     int64_t bv= block_vol; | ||||
|     for(int v=0;v<vecs.size();v++){ | ||||
|  | ||||
|       autoView( fineData   , vecs[v], AcceleratorWrite); | ||||
|  | ||||
|       auto blasData_p  = &blas[0]; | ||||
|       auto fineData_p    = &fineData[0]; | ||||
|  | ||||
|       int64_t osites = fine_grid->oSites(); | ||||
|       uint64_t lwords = words; | ||||
|       //      std::cout << " Nsimd is "<<vobj::Nsimd() << std::endl; | ||||
|       //      std::cout << " lwords is "<<lwords << std::endl; | ||||
|       //      std::cout << " sizeof(scalar_object) is "<<sizeof(scalar_object) << std::endl; | ||||
|       // loop over fine sites | ||||
|       accelerator_for(sf,osites,vobj::Nsimd(),{ | ||||
|        | ||||
| #ifdef GRID_SIMT | ||||
|         { | ||||
| 	  int lane=acceleratorSIMTlane(vobj::Nsimd()); // buffer lane | ||||
| #else | ||||
| 	  for(int lane=0;lane<vobj::Nsimd();lane++) { | ||||
| #endif | ||||
| 	  // One thread per fine site | ||||
| 	  Coordinate coor_f(_ndimension); | ||||
| 	  Coordinate coor_b(_ndimension); | ||||
| 	  Coordinate coor_c(_ndimension); | ||||
|  | ||||
| 	  Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions); | ||||
|  | ||||
| 	  for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d]; | ||||
| 	  for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d]; | ||||
| 	   | ||||
| 	  int sc; | ||||
| 	  int sb; | ||||
| 	  Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions); | ||||
| 	  Lexicographic::IndexFromCoor(coor_b,sb,block_r); | ||||
|  | ||||
| 	  // BLAS layout address calculation | ||||
| 	  // words * block_vol * nbasis x coarse_vol 	   | ||||
| 	  int64_t site = (lane*osites + sc*bv)*nvec | ||||
|    	               + v*bv | ||||
| 	               + sb; | ||||
|  | ||||
| 	  scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords]; | ||||
|  | ||||
| 	  scalar_object data = *ptr; | ||||
|  | ||||
| 	  insertLane(lane,fineData[sf],data); | ||||
| #ifdef GRID_SIMT | ||||
| 	} | ||||
| #else | ||||
| 	} | ||||
| #endif | ||||
|       }); | ||||
|     } | ||||
|   } | ||||
|   template<class vobj> | ||||
|   void ImportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas) | ||||
|   { | ||||
|     int nvec = vecs.size(); | ||||
|     typedef typename vobj::scalar_object coarse_scalar_object; | ||||
|  | ||||
|     //    std::cout << " BlockProjector importing "<<nvec<< " coarse grid vectors" <<std::endl; | ||||
|  | ||||
|     assert(vecs[0].Grid()==coarse_grid); | ||||
|  | ||||
|     int _ndimension = coarse_grid->_ndimension; | ||||
|  | ||||
|     uint64_t sz = blas.size(); | ||||
|  | ||||
|     Coordinate coarse_rdimensions = coarse_grid->_rdimensions; | ||||
|      | ||||
|     for(int v=0;v<vecs.size();v++){ | ||||
|  | ||||
|       //      std::cout << " BlockProjector importing coarse vector"<<v<<" "<<norm2(vecs[v])<<std::endl; | ||||
|       autoView( coarseData   , vecs[v], AcceleratorRead); | ||||
|  | ||||
|       auto blasData_p  = &blas[0]; | ||||
|       auto coarseData_p  = &coarseData[0]; | ||||
|  | ||||
|       int64_t osites = coarse_grid->oSites(); | ||||
|  | ||||
|       // loop over fine sites | ||||
|       const int Nsimd = vobj::Nsimd(); | ||||
|       uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar); | ||||
|       assert(cwords==nbasis); | ||||
|        | ||||
|       accelerator_for(sc,osites,Nsimd,{ | ||||
| #ifdef GRID_SIMT | ||||
|         { | ||||
| 	  int lane=acceleratorSIMTlane(Nsimd); // buffer lane | ||||
| #else | ||||
| 	  for(int lane=0;lane<Nsimd;lane++) { | ||||
| #endif | ||||
|            // C_br per site | ||||
| 	    int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords; | ||||
| 	     | ||||
| 	    coarse_scalar_object data = extractLane(lane,coarseData[sc]); | ||||
|  | ||||
| 	    coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site]; | ||||
|  | ||||
| 	    *ptr = data; | ||||
| #ifdef GRID_SIMT | ||||
| 	} | ||||
| #else | ||||
| 	} | ||||
| #endif | ||||
|       }); | ||||
|       //      std::cout << " import coarsee Blas norm "<<blasNorm2(blas)<<std::endl; | ||||
|     } | ||||
|   } | ||||
|   template<class vobj> | ||||
|   void ExportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas) | ||||
|   { | ||||
|     int nvec = vecs.size(); | ||||
|     typedef typename vobj::scalar_object coarse_scalar_object; | ||||
|     //    std::cout << GridLogMessage<<" BlockProjector exporting "<<nvec<< " coarse grid vectors" <<std::endl; | ||||
|  | ||||
|     assert(vecs[0].Grid()==coarse_grid); | ||||
|  | ||||
|     int _ndimension = coarse_grid->_ndimension; | ||||
|      | ||||
|     uint64_t sz = blas.size(); | ||||
|  | ||||
|     Coordinate coarse_rdimensions = coarse_grid->_rdimensions; | ||||
|      | ||||
|     //    std::cout << " export coarsee Blas norm "<<blasNorm2(blas)<<std::endl; | ||||
|     for(int v=0;v<vecs.size();v++){ | ||||
|  | ||||
|       //  std::cout << " BlockProjector exporting coarse vector"<<v<<std::endl; | ||||
|       autoView( coarseData   , vecs[v], AcceleratorWrite); | ||||
|  | ||||
|       auto blasData_p  = &blas[0]; | ||||
|       auto coarseData_p  = &coarseData[0]; | ||||
|  | ||||
|       int64_t osites = coarse_grid->oSites(); | ||||
|  | ||||
|       // loop over fine sites | ||||
|       const int Nsimd = vobj::Nsimd(); | ||||
|       uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar); | ||||
|       assert(cwords==nbasis); | ||||
|        | ||||
|       accelerator_for(sc,osites,Nsimd,{ | ||||
| 	  // Wrap in a macro "FOR_ALL_LANES(lane,{ ... }); | ||||
| #ifdef GRID_SIMT | ||||
|         { | ||||
| 	  int lane=acceleratorSIMTlane(Nsimd); // buffer lane | ||||
| #else | ||||
| 	  for(int lane=0;lane<Nsimd;lane++) { | ||||
| #endif | ||||
| 	    int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords; | ||||
| 	    coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site]; | ||||
| 	    coarse_scalar_object data = *ptr; | ||||
| 	    insertLane(lane,coarseData[sc],data); | ||||
| #ifdef GRID_SIMT | ||||
| 	} | ||||
| #else | ||||
| 	} | ||||
| #endif | ||||
|       }); | ||||
|     } | ||||
|   } | ||||
|   void ImportBasis(std::vector < Field > &vecs) | ||||
|   { | ||||
|     //    std::cout << " BlockProjector Import basis size "<<vecs.size()<<std::endl; | ||||
|     ImportFineGridVectors(vecs,BLAS_V); | ||||
|   } | ||||
|  | ||||
|   template<class cobj> | ||||
|   void blockProject(std::vector<Field> &fine,std::vector< Lattice<cobj> > & coarse) | ||||
|   { | ||||
|     int nrhs=fine.size(); | ||||
|     int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar); | ||||
|     //    std::cout << "blockProject nbasis " <<nbasis<<" " << _nbasis<<std::endl; | ||||
|     assert(nbasis==_nbasis); | ||||
|      | ||||
|     BLAS_F.resize (fine_vol * words * nrhs ); | ||||
|     BLAS_C.resize (coarse_vol * nbasis * nrhs ); | ||||
|  | ||||
|     ///////////////////////////////////////////// | ||||
|     // Copy in the multi-rhs sources to same data layout | ||||
|     ///////////////////////////////////////////// | ||||
|     //    std::cout << "BlockProject import fine"<<std::endl; | ||||
|     ImportFineGridVectors(fine,BLAS_F); | ||||
|      | ||||
|     deviceVector<scalar *> Vd(coarse_vol); | ||||
|     deviceVector<scalar *> Fd(coarse_vol); | ||||
|     deviceVector<scalar *> Cd(coarse_vol); | ||||
|  | ||||
|     //    std::cout << "BlockProject pointers"<<std::endl; | ||||
|     for(int c=0;c<coarse_vol;c++){ | ||||
|       // BLAS_V[coarse_vol][nbasis][block_vol][words] | ||||
|       // BLAS_F[coarse_vol][nrhs][block_vol][words] | ||||
|       // BLAS_C[coarse_vol][nrhs][nbasis] | ||||
|       scalar * Vh = & BLAS_V[c*nbasis*block_vol*words]; | ||||
|       scalar * Fh = & BLAS_F[c*nrhs*block_vol*words]; | ||||
|       scalar * Ch = & BLAS_C[c*nrhs*nbasis]; | ||||
|  | ||||
|       acceleratorPut(Vd[c],Vh); | ||||
|       acceleratorPut(Fd[c],Fh); | ||||
|       acceleratorPut(Cd[c],Ch); | ||||
|     } | ||||
|  | ||||
|     GridBLAS BLAS; | ||||
|  | ||||
|     //    std::cout << "BlockProject BLAS"<<std::endl; | ||||
|     int64_t vw = block_vol * words; | ||||
|     ///////////////////////////////////////// | ||||
|     // C_br = V^dag R | ||||
|     ///////////////////////////////////////// | ||||
|     BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,  | ||||
|     		     nbasis,nrhs,vw, | ||||
| 		     ComplexD(1.0), | ||||
| 		     Vd, | ||||
| 		     Fd, | ||||
| 		     ComplexD(0.0),  // wipe out C | ||||
| 		     Cd); | ||||
|     BLAS.synchronise(); | ||||
|     //    std::cout << "BlockProject done"<<std::endl; | ||||
|     ExportCoarseGridVectors(coarse, BLAS_C); | ||||
|     //    std::cout << "BlockProject done"<<std::endl; | ||||
|  | ||||
|   } | ||||
|  | ||||
|   template<class cobj> | ||||
|   void blockPromote(std::vector<Field> &fine,std::vector<Lattice<cobj> > & coarse) | ||||
|   { | ||||
|     int nrhs=fine.size(); | ||||
|     int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar); | ||||
|     assert(nbasis==_nbasis); | ||||
|      | ||||
|     BLAS_F.resize (fine_vol * words * nrhs ); | ||||
|     BLAS_C.resize (coarse_vol * nbasis * nrhs ); | ||||
|  | ||||
|     ImportCoarseGridVectors(coarse, BLAS_C); | ||||
|  | ||||
|     GridBLAS BLAS; | ||||
|  | ||||
|     deviceVector<scalar *> Vd(coarse_vol); | ||||
|     deviceVector<scalar *> Fd(coarse_vol); | ||||
|     deviceVector<scalar *> Cd(coarse_vol); | ||||
|  | ||||
|     for(int c=0;c<coarse_vol;c++){ | ||||
|       // BLAS_V[coarse_vol][nbasis][block_vol][words] | ||||
|       // BLAS_F[coarse_vol][nrhs][block_vol][words] | ||||
|       // BLAS_C[coarse_vol][nrhs][nbasis] | ||||
|       scalar * Vh = & BLAS_V[c*nbasis*block_vol*words]; | ||||
|       scalar * Fh = & BLAS_F[c*nrhs*block_vol*words]; | ||||
|       scalar * Ch = & BLAS_C[c*nrhs*nbasis]; | ||||
|       acceleratorPut(Vd[c],Vh); | ||||
|       acceleratorPut(Fd[c],Fh); | ||||
|       acceleratorPut(Cd[c],Ch); | ||||
|     } | ||||
|  | ||||
|     ///////////////////////////////////////// | ||||
|     // Block promote: | ||||
|     // F_xr = Vxb Cbr (x coarse_vol) | ||||
|     ///////////////////////////////////////// | ||||
|  | ||||
|     int64_t vw = block_vol * words; | ||||
|     BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,  | ||||
|     		     vw,nrhs,nbasis, | ||||
| 		     ComplexD(1.0), | ||||
| 		     Vd, | ||||
| 		     Cd, | ||||
| 		     ComplexD(0.0),  // wipe out C | ||||
| 		     Fd); | ||||
|     BLAS.synchronise(); | ||||
|     //    std::cout << " blas call done"<<std::endl; | ||||
|      | ||||
|     ExportFineGridVectors(fine, BLAS_F); | ||||
|     //    std::cout << " exported "<<std::endl; | ||||
|   } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -1,233 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: MultiRHSDeflation.h | ||||
|  | ||||
|     Copyright (C) 2023 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| /* Need helper object for BLAS accelerated mrhs projection | ||||
|  | ||||
|    i) MultiRHS Deflation | ||||
|  | ||||
|    Import Evecs -> nev x vol x internal  | ||||
|    Import vector of Lattice objects -> nrhs x vol x internal | ||||
|    => Cij (nrhs x Nev) via GEMM. | ||||
|    => Guess  (nrhs x vol x internal)  = C x evecs (via GEMM) | ||||
|    Export | ||||
|  | ||||
|     | ||||
|    ii) MultiRHS block projection | ||||
|  | ||||
|    Import basis -> nblock x nbasis x  (block x internal)  | ||||
|    Import vector of fine lattice objects -> nblock x nrhs x (block x internal)  | ||||
|  | ||||
|    => coarse_(nrhs x nbasis )^block = via batched GEMM | ||||
|  | ||||
|    iii)   Alternate interface:  | ||||
|    Import higher dim Lattice object-> vol x nrhs layout | ||||
|     | ||||
| */ | ||||
| template<class Field> | ||||
| class MultiRHSDeflation | ||||
| { | ||||
| public: | ||||
|  | ||||
|   typedef typename Field::scalar_type   scalar; | ||||
|   typedef typename Field::scalar_object scalar_object; | ||||
|  | ||||
|   int nev; | ||||
|   std::vector<RealD> eval; | ||||
|   GridBase *grid; | ||||
|   uint64_t vol; | ||||
|   uint64_t words; | ||||
|    | ||||
|   deviceVector<scalar> BLAS_E;      //  nev x vol -- the eigenbasis   (up to a 1/sqrt(lambda)) | ||||
|   deviceVector<scalar> BLAS_R;      // nrhs x vol -- the sources | ||||
|   deviceVector<scalar> BLAS_G;      // nrhs x vol -- the guess | ||||
|   deviceVector<scalar> BLAS_C;      // nrhs x nev -- the coefficients  | ||||
|    | ||||
|   MultiRHSDeflation(){}; | ||||
|   ~MultiRHSDeflation(){ Deallocate(); }; | ||||
|    | ||||
|   void Deallocate(void) | ||||
|   { | ||||
|     nev=0; | ||||
|     grid=nullptr; | ||||
|     vol=0; | ||||
|     words=0; | ||||
|     BLAS_E.resize(0); | ||||
|     BLAS_R.resize(0); | ||||
|     BLAS_C.resize(0); | ||||
|     BLAS_G.resize(0); | ||||
|   } | ||||
|   void Allocate(int _nev,GridBase *_grid) | ||||
|   { | ||||
|     nev=_nev; | ||||
|     grid=_grid; | ||||
|     vol   = grid->lSites(); | ||||
|     words = sizeof(scalar_object)/sizeof(scalar); | ||||
|     eval.resize(nev); | ||||
|     BLAS_E.resize (vol * words * nev ); | ||||
|     std::cout << GridLogMessage << " Allocate for "<<nev<<" eigenvectors and volume "<<vol<<std::endl; | ||||
|   } | ||||
|   void ImportEigenVector(Field &evec,RealD &_eval, int ev) | ||||
|   { | ||||
|     //    std::cout << " ev " <<ev<<" eval "<<_eval<< std::endl; | ||||
|     assert(ev<eval.size()); | ||||
|     eval[ev] = _eval; | ||||
|  | ||||
|     int64_t offset = ev*vol*words; | ||||
|     autoView(v,evec,AcceleratorRead); | ||||
|     acceleratorCopyDeviceToDevice(&v[0],&BLAS_E[offset],sizeof(scalar_object)*vol); | ||||
|  | ||||
|   } | ||||
|   void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval) | ||||
|   { | ||||
|     ImportEigenBasis(evec,_eval,0,evec.size()); | ||||
|   } | ||||
|   // Could use to import a batch of eigenvectors | ||||
|   void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval, int _ev0, int _nev) | ||||
|   { | ||||
|     assert(_ev0+_nev<=evec.size()); | ||||
|  | ||||
|     Allocate(_nev,evec[0].Grid()); | ||||
|      | ||||
|     // Imports a sub-batch of eigenvectors, _ev0, ..., _ev0+_nev-1 | ||||
|     for(int e=0;e<nev;e++){ | ||||
|       std::cout << "Importing eigenvector "<<e<<" evalue "<<_eval[_ev0+e]<<std::endl; | ||||
|       ImportEigenVector(evec[_ev0+e],_eval[_ev0+e],e); | ||||
|     } | ||||
|   } | ||||
|   void DeflateSources(std::vector<Field> &source,std::vector<Field> & guess) | ||||
|   { | ||||
|     int nrhs = source.size(); | ||||
|     assert(source.size()==guess.size()); | ||||
|     assert(grid == guess[0].Grid()); | ||||
|     conformable(guess[0],source[0]); | ||||
|  | ||||
|     int64_t vw = vol * words; | ||||
|  | ||||
|     RealD t0 = usecond(); | ||||
|     BLAS_R.resize(nrhs * vw); // cost free if size doesn't change | ||||
|     BLAS_G.resize(nrhs * vw); // cost free if size doesn't change | ||||
|     BLAS_C.resize(nev * nrhs);// cost free if size doesn't change | ||||
|  | ||||
|     ///////////////////////////////////////////// | ||||
|     // Copy in the multi-rhs sources | ||||
|     ///////////////////////////////////////////// | ||||
|     //    for(int r=0;r<nrhs;r++){ | ||||
|     //      std::cout << " source["<<r<<"] = "<<norm2(source[r])<<std::endl; | ||||
|     //    } | ||||
|     for(int r=0;r<nrhs;r++){ | ||||
|       int64_t offset = r*vw; | ||||
|       autoView(v,source[r],AcceleratorRead); | ||||
|       acceleratorCopyDeviceToDevice(&v[0],&BLAS_R[offset],sizeof(scalar_object)*vol); | ||||
|     } | ||||
|  | ||||
|   /* | ||||
|    * in Fortran column major notation (cuBlas order) | ||||
|    * | ||||
|    * Exe = [e1(x)][..][en(x)] | ||||
|    * | ||||
|    * Rxr = [r1(x)][..][rm(x)] | ||||
|    * | ||||
|    * C_er = E^dag R | ||||
|    * C_er = C_er / lambda_e  | ||||
|    * G_xr = Exe Cer | ||||
|    */ | ||||
|     deviceVector<scalar *> Ed(1); | ||||
|     deviceVector<scalar *> Rd(1); | ||||
|     deviceVector<scalar *> Cd(1); | ||||
|     deviceVector<scalar *> Gd(1); | ||||
|  | ||||
|     scalar * Eh = & BLAS_E[0]; | ||||
|     scalar * Rh = & BLAS_R[0]; | ||||
|     scalar * Ch = & BLAS_C[0]; | ||||
|     scalar * Gh = & BLAS_G[0]; | ||||
|  | ||||
|     acceleratorPut(Ed[0],Eh); | ||||
|     acceleratorPut(Rd[0],Rh); | ||||
|     acceleratorPut(Cd[0],Ch); | ||||
|     acceleratorPut(Gd[0],Gh); | ||||
|  | ||||
|     GridBLAS BLAS; | ||||
|  | ||||
|     ///////////////////////////////////////// | ||||
|     // C_er = E^dag R | ||||
|     ///////////////////////////////////////// | ||||
|     BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,  | ||||
|     		     nev,nrhs,vw, | ||||
| 		     ComplexD(1.0), | ||||
| 		     Ed, | ||||
| 		     Rd, | ||||
| 		     ComplexD(0.0),  // wipe out C | ||||
| 		     Cd); | ||||
|     BLAS.synchronise(); | ||||
|  | ||||
|     assert(BLAS_C.size()==nev*nrhs); | ||||
|  | ||||
|     std::vector<scalar> HOST_C(BLAS_C.size());      // nrhs . nev -- the coefficients  | ||||
|     acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar)); | ||||
|     grid->GlobalSumVector(&HOST_C[0],nev*nrhs); | ||||
|     for(int e=0;e<nev;e++){ | ||||
|       RealD lam(1.0/eval[e]); | ||||
|       for(int r=0;r<nrhs;r++){ | ||||
| 	int off = e+nev*r; | ||||
| 	HOST_C[off]=HOST_C[off] * lam; | ||||
| 	//	std::cout << "C["<<e<<"]["<<r<<"] ="<<HOST_C[off]<< " eval[e] "<<eval[e] <<std::endl; | ||||
|       } | ||||
|     } | ||||
|     acceleratorCopyToDevice(&HOST_C[0],&BLAS_C[0],BLAS_C.size()*sizeof(scalar)); | ||||
|  | ||||
|      | ||||
|     ///////////////////////////////////////// | ||||
|     // Guess G_xr = Exe Cer | ||||
|     ///////////////////////////////////////// | ||||
|     BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,  | ||||
| 		     vw,nrhs,nev, | ||||
| 		     ComplexD(1.0), | ||||
| 		     Ed, // x . nev | ||||
| 		     Cd, // nev . nrhs | ||||
| 		     ComplexD(0.0), | ||||
| 		     Gd); | ||||
|     BLAS.synchronise(); | ||||
|  | ||||
|     /////////////////////////////////////// | ||||
|     // Copy out the multirhs | ||||
|     /////////////////////////////////////// | ||||
|     for(int r=0;r<nrhs;r++){ | ||||
|       int64_t offset = r*vw; | ||||
|       autoView(v,guess[r],AcceleratorWrite); | ||||
|       acceleratorCopyDeviceToDevice(&BLAS_G[offset],&v[0],sizeof(scalar_object)*vol); | ||||
|     } | ||||
|     RealD t1 = usecond(); | ||||
|     std::cout << GridLogMessage << "MultiRHSDeflation for "<<nrhs<<" sources with "<<nev<<" eigenvectors took " << (t1-t0)/1e3 <<" ms"<<std::endl; | ||||
|   } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -33,111 +33,109 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|    * Script A = SolverMatrix  | ||||
|    * Script P = Preconditioner | ||||
|    * | ||||
|    * Deflation methods considered | ||||
|    *      -- Solve P A x = P b        [ like Luscher ] | ||||
|    * DEF-1        M P A x = M P b     [i.e. left precon] | ||||
|    * DEF-2        P^T M A x = P^T M b | ||||
|    * ADEF-1       Preconditioner = M P + Q      [ Q + M + M A Q] | ||||
|    * ADEF-2       Preconditioner = P^T M + Q | ||||
|    * BNN          Preconditioner = P^T M P + Q | ||||
|    * BNN2         Preconditioner = M P + P^TM +Q - M P A M  | ||||
|    *  | ||||
|    * Implement ADEF-2 | ||||
|    * | ||||
|    * Vstart = P^Tx + Qb | ||||
|    * M1 = P^TM + Q | ||||
|    * M2=M3=1 | ||||
|    * Vout = x | ||||
|    */ | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| template<class Field> | ||||
| class TwoLevelCG : public LinearFunction<Field> | ||||
| // abstract base | ||||
| template<class Field, class CoarseField> | ||||
| class TwoLevelFlexiblePcg : public LinearFunction<Field> | ||||
| { | ||||
|  public: | ||||
|   int verbose; | ||||
|   RealD   Tolerance; | ||||
|   Integer MaxIterations; | ||||
|   const int mmax = 5; | ||||
|   GridBase *grid; | ||||
|   GridBase *coarsegrid; | ||||
|  | ||||
|   // Fine operator, Smoother, CoarseSolver | ||||
|   LinearOperatorBase<Field>   &_FineLinop; | ||||
|   LinearFunction<Field>   &_Smoother; | ||||
|   LinearOperatorBase<Field>   *_Linop | ||||
|   OperatorFunction<Field>     *_Smoother, | ||||
|   LinearFunction<CoarseField> *_CoarseSolver; | ||||
|  | ||||
|   // Need somthing that knows how to get from Coarse to fine and back again | ||||
|    | ||||
|   // more most opertor functions | ||||
|   TwoLevelCG(RealD tol, | ||||
|   TwoLevelFlexiblePcg(RealD tol, | ||||
| 		     Integer maxit, | ||||
| 	     LinearOperatorBase<Field>   &FineLinop, | ||||
| 	     LinearFunction<Field>       &Smoother, | ||||
| 	     GridBase *fine) :  | ||||
| 		     LinearOperatorBase<Field> *Linop, | ||||
| 		     LinearOperatorBase<Field> *SmootherLinop, | ||||
| 		     OperatorFunction<Field>   *Smoother, | ||||
| 		     OperatorFunction<CoarseField>  CoarseLinop | ||||
| 		     ) :  | ||||
|       Tolerance(tol),  | ||||
|       MaxIterations(maxit), | ||||
|       _FineLinop(FineLinop), | ||||
|       _Smoother(Smoother) | ||||
|       _Linop(Linop), | ||||
|       _PreconditionerLinop(PrecLinop), | ||||
|       _Preconditioner(Preconditioner) | ||||
|   {  | ||||
|     grid       = fine; | ||||
|     verbose=0; | ||||
|   }; | ||||
|  | ||||
|   virtual void operator() (const Field &src, Field &x) | ||||
|   { | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg starting single RHS"<<std::endl; | ||||
|   // The Pcg routine is common to all, but the various matrices differ from derived  | ||||
|   // implementation to derived implmentation | ||||
|   void operator() (const Field &src, Field &psi){ | ||||
|   void operator() (const Field &src, Field &psi){ | ||||
|  | ||||
|     psi.Checkerboard() = src.Checkerboard(); | ||||
|     grid             = src.Grid(); | ||||
|  | ||||
|     RealD f; | ||||
|     RealD rtzp,rtz,a,d,b; | ||||
|     RealD rptzp; | ||||
|     RealD tn; | ||||
|     RealD guess = norm2(psi); | ||||
|     RealD ssq   = norm2(src); | ||||
|     RealD rsq   = ssq*Tolerance*Tolerance; | ||||
|      | ||||
|     ///////////////////////////// | ||||
|     // Set up history vectors | ||||
|     ///////////////////////////// | ||||
|     int mmax = 5; | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl; | ||||
|     std::vector<Field> p  (mmax,grid); | ||||
|     std::vector<Field> mmp(mmax,grid); | ||||
|     std::vector<RealD> pAp(mmax); | ||||
|  | ||||
|     Field x  (grid); x = psi; | ||||
|     Field z  (grid); | ||||
|     Field tmp(grid); | ||||
|     Field  mp (grid); | ||||
|     Field r  (grid); | ||||
|     Field mu (grid); | ||||
|    | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg allocated"<<std::endl; | ||||
|     //Initial residual computation & set up | ||||
|     RealD guess   = norm2(x); | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg guess nrm "<<guess<<std::endl; | ||||
|     RealD src_nrm = norm2(src); | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg src nrm "<<src_nrm<<std::endl; | ||||
|      | ||||
|     if ( src_nrm == 0.0 ) { | ||||
|       std::cout << GridLogMessage<<"HDCG: fPcg given trivial source norm "<<src_nrm<<std::endl; | ||||
|       x=Zero(); | ||||
|     } | ||||
|     RealD tn; | ||||
|      | ||||
|     GridStopWatch HDCGTimer; | ||||
|     HDCGTimer.Start(); | ||||
|     ////////////////////////// | ||||
|     // x0 = Vstart -- possibly modify guess | ||||
|     ////////////////////////// | ||||
|     x=src; | ||||
|     Vstart(x,src); | ||||
|  | ||||
|     // r0 = b -A x0 | ||||
|     _FineLinop.HermOp(x,mmp[0]); | ||||
|     HermOp(x,mmp); // Shouldn't this be something else? | ||||
|     axpy (r, -1.0,mmp[0], src);    // Recomputes r=src-Ax0 | ||||
|     { | ||||
|       double n1 = norm2(x); | ||||
|       double n2 = norm2(mmp[0]); | ||||
|       double n3 = norm2(r); | ||||
|       std::cout<<GridLogMessage<<"x,vstart,r = "<<n1<<" "<<n2<<" "<<n3<<std::endl; | ||||
|     } | ||||
|  | ||||
|     ////////////////////////////////// | ||||
|     // Compute z = M1 x | ||||
|     ////////////////////////////////// | ||||
|     PcgM1(r,z); | ||||
|     M1(r,z,tmp,mp,SmootherMirs); | ||||
|     rtzp =real(innerProduct(r,z)); | ||||
|  | ||||
|     /////////////////////////////////////// | ||||
|     // Solve for Mss mu = P A z and set p = z-mu | ||||
|     // Def2 p = 1 - Q Az = Pright z | ||||
|     // Def2: p = 1 - Q Az = Pright z  | ||||
|     // Other algos M2 is trivial | ||||
|     /////////////////////////////////////// | ||||
|     PcgM2(z,p[0]); | ||||
|  | ||||
|     RealD ssq =  norm2(src); | ||||
|     RealD rsq =  ssq*Tolerance*Tolerance; | ||||
|  | ||||
|     std::cout << GridLogMessage<<"HDCG: k=0 residual "<<rtzp<<" rsq "<<rsq<<"\n"; | ||||
|  | ||||
|     Field pp(grid); | ||||
|     M2(z,p[0]); | ||||
|  | ||||
|     for (int k=0;k<=MaxIterations;k++){ | ||||
|      | ||||
| @@ -145,7 +143,7 @@ class TwoLevelCG : public LinearFunction<Field> | ||||
|       int peri_kp = (k+1) % mmax; | ||||
|  | ||||
|       rtz=rtzp; | ||||
|       d= PcgM3(p[peri_k],mmp[peri_k]); | ||||
|       d= M3(p[peri_k],mp,mmp[peri_k],tmp); | ||||
|       a = rtz/d; | ||||
|      | ||||
|       // Memorise this | ||||
| @@ -155,36 +153,21 @@ class TwoLevelCG : public LinearFunction<Field> | ||||
|       RealD rn = axpy_norm(r,-a,mmp[peri_k],r); | ||||
|  | ||||
|       // Compute z = M x | ||||
|       PcgM1(r,z); | ||||
|       M1(r,z,tmp,mp); | ||||
|  | ||||
|       { | ||||
| 	RealD n1,n2; | ||||
| 	n1=norm2(r); | ||||
| 	n2=norm2(z); | ||||
| 	std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : vector r,z "<<n1<<" "<<n2<<"\n"; | ||||
|       } | ||||
|       rtzp =real(innerProduct(r,z)); | ||||
|       std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : inner rtzp "<<rtzp<<"\n"; | ||||
|  | ||||
|       //    PcgM2(z,p[0]); | ||||
|       PcgM2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate | ||||
|       M2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate | ||||
|  | ||||
|       p[peri_kp]=mu; | ||||
|       p[peri_kp]=p[peri_k]; | ||||
|  | ||||
|       // Standard search direction  p -> z + b p     | ||||
|       // Standard search direction  p -> z + b p    ; b =  | ||||
|       b = (rtzp)/rtz; | ||||
|  | ||||
|       int northog; | ||||
|       // k=zero  <=> peri_kp=1;        northog = 1 | ||||
|       // k=1     <=> peri_kp=2;        northog = 2 | ||||
|       // ...               ...                  ... | ||||
|       // k=mmax-2<=> peri_kp=mmax-1;   northog = mmax-1 | ||||
|       // k=mmax-1<=> peri_kp=0;        northog = 1 | ||||
|  | ||||
|       //    northog     = (peri_kp==0)?1:peri_kp; // This is the fCG(mmax) algorithm | ||||
|       northog     = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm | ||||
|      | ||||
|       std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n"; | ||||
|       for(int back=0; back < northog; back++){ | ||||
| 	int peri_back = (k-back)%mmax; | ||||
| 	RealD pbApk= real(innerProduct(mmp[peri_back],p[peri_kp])); | ||||
| @@ -193,324 +176,75 @@ class TwoLevelCG : public LinearFunction<Field> | ||||
|       } | ||||
|  | ||||
|       RealD rrn=sqrt(rn/ssq); | ||||
|       RealD rtn=sqrt(rtz/ssq); | ||||
|       RealD rtnp=sqrt(rtzp/ssq); | ||||
|  | ||||
|       std::cout<<GridLogMessage<<"HDCG: fPcg k= "<<k<<" residual = "<<rrn<<"\n"; | ||||
|       std::cout<<GridLogMessage<<"TwoLevelfPcg: k= "<<k<<" residual = "<<rrn<<std::endl; | ||||
|  | ||||
|       // Stopping condition | ||||
|       if ( rn <= rsq ) {  | ||||
|  | ||||
| 	HDCGTimer.Stop(); | ||||
| 	std::cout<<GridLogMessage<<"HDCG: fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;; | ||||
| 	 | ||||
| 	_FineLinop.HermOp(x,mmp[0]);			   | ||||
| 	HermOp(x,mmp); // Shouldn't this be something else? | ||||
| 	axpy(tmp,-1.0,src,mmp[0]); | ||||
| 	 | ||||
| 	RealD  mmpnorm = sqrt(norm2(mmp[0])); | ||||
| 	RealD  xnorm   = sqrt(norm2(x)); | ||||
| 	RealD psinorm = sqrt(norm2(x)); | ||||
| 	RealD srcnorm = sqrt(norm2(src)); | ||||
| 	RealD tmpnorm = sqrt(norm2(tmp)); | ||||
| 	RealD true_residual = tmpnorm/srcnorm; | ||||
| 	std::cout<<GridLogMessage | ||||
| 	       <<"HDCG: true residual is "<<true_residual | ||||
| 	       <<" solution "<<xnorm | ||||
| 	       <<" source "<<srcnorm | ||||
| 	       <<" mmp "<<mmpnorm	   | ||||
| 	       <<std::endl; | ||||
|        | ||||
| 	return; | ||||
|       } | ||||
|  | ||||
|     } | ||||
|     HDCGTimer.Stop(); | ||||
|     std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl; | ||||
|     RealD  xnorm   = sqrt(norm2(x)); | ||||
|     RealD  srcnorm = sqrt(norm2(src)); | ||||
|     std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl; | ||||
|   } | ||||
|  | ||||
|  | ||||
|  | ||||
|   virtual void operator() (std::vector<Field> &src, std::vector<Field> &x) | ||||
|   { | ||||
|     std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl; | ||||
|     src[0].Grid()->Barrier(); | ||||
|     int nrhs = src.size(); | ||||
|     std::vector<RealD> f(nrhs); | ||||
|     std::vector<RealD> rtzp(nrhs); | ||||
|     std::vector<RealD> rtz(nrhs); | ||||
|     std::vector<RealD> a(nrhs); | ||||
|     std::vector<RealD> d(nrhs); | ||||
|     std::vector<RealD> b(nrhs); | ||||
|     std::vector<RealD> rptzp(nrhs); | ||||
|     ///////////////////////////// | ||||
|     // Set up history vectors | ||||
|     ///////////////////////////// | ||||
|     int mmax = 3; | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl; | ||||
|     src[0].Grid()->Barrier(); | ||||
|     std::vector<std::vector<Field> > p(nrhs);   for(int r=0;r<nrhs;r++)  p[r].resize(mmax,grid); | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg allocated p"<<std::endl; | ||||
|     src[0].Grid()->Barrier(); | ||||
|     std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid); | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg allocated mmp"<<std::endl; | ||||
|     src[0].Grid()->Barrier(); | ||||
|     std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax); | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg allocated pAp"<<std::endl; | ||||
|     src[0].Grid()->Barrier(); | ||||
|     std::vector<Field> z(nrhs,grid); | ||||
|     std::vector<Field>  mp (nrhs,grid); | ||||
|     std::vector<Field>  r  (nrhs,grid); | ||||
|     std::vector<Field>  mu (nrhs,grid); | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg allocated z,mp,r,mu"<<std::endl; | ||||
|     src[0].Grid()->Barrier(); | ||||
|  | ||||
|     //Initial residual computation & set up | ||||
|     std::vector<RealD> src_nrm(nrhs); | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|       src_nrm[rhs]=norm2(src[rhs]); | ||||
|       assert(src_nrm[rhs]!=0.0); | ||||
|     } | ||||
|     std::vector<RealD> tn(nrhs); | ||||
|  | ||||
|     GridStopWatch HDCGTimer; | ||||
|     HDCGTimer.Start(); | ||||
|     ////////////////////////// | ||||
|     // x0 = Vstart -- possibly modify guess | ||||
|     ////////////////////////// | ||||
|     Vstart(x,src); | ||||
|  | ||||
|     for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|       // r0 = b -A x0 | ||||
|       _FineLinop.HermOp(x[rhs],mmp[rhs][0]); | ||||
|       axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]);    // Recomputes r=src-Ax0 | ||||
|     } | ||||
|  | ||||
|     ////////////////////////////////// | ||||
|     // Compute z = M1 x | ||||
|     ////////////////////////////////// | ||||
|     // This needs a multiRHS version for acceleration | ||||
|     PcgM1(r,z); | ||||
|  | ||||
|     std::vector<RealD> ssq(nrhs); | ||||
|     std::vector<RealD> rsq(nrhs); | ||||
|     std::vector<Field> pp(nrhs,grid); | ||||
|  | ||||
|     for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|       rtzp[rhs] =real(innerProduct(r[rhs],z[rhs])); | ||||
|       p[rhs][0]=z[rhs]; | ||||
|       ssq[rhs]=norm2(src[rhs]); | ||||
|       rsq[rhs]=  ssq[rhs]*Tolerance*Tolerance; | ||||
|       std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n"; | ||||
|     } | ||||
|  | ||||
|     std::vector<RealD> rn(nrhs); | ||||
|     for (int k=0;k<=MaxIterations;k++){ | ||||
|      | ||||
|       int peri_k  = k % mmax; | ||||
|       int peri_kp = (k+1) % mmax; | ||||
|  | ||||
|       for(int rhs=0;rhs<nrhs;rhs++){ | ||||
| 	rtz[rhs]=rtzp[rhs]; | ||||
| 	d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]); | ||||
| 	a[rhs] = rtz[rhs]/d[rhs]; | ||||
|      | ||||
| 	// Memorise this | ||||
| 	pAp[rhs][peri_k] = d[rhs]; | ||||
|  | ||||
| 	axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]); | ||||
| 	rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]); | ||||
|       } | ||||
|  | ||||
|       // Compute z = M x (for *all* RHS) | ||||
|       PcgM1(r,z); | ||||
|       std::cout << GridLogMessage<<"HDCG::fPcg M1 complete"<<std::endl; | ||||
|       grid->Barrier(); | ||||
|        | ||||
|       RealD max_rn=0.0; | ||||
|       for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|  | ||||
| 	rtzp[rhs] =real(innerProduct(r[rhs],z[rhs])); | ||||
|  | ||||
| 	std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n"; | ||||
| 	 | ||||
| 	mu[rhs]=z[rhs]; | ||||
|  | ||||
| 	p[rhs][peri_kp]=mu[rhs]; | ||||
|  | ||||
| 	// Standard search direction p == z + b p  | ||||
| 	b[rhs] = (rtzp[rhs])/rtz[rhs]; | ||||
|  | ||||
| 	int northog = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm | ||||
| 	std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n"; | ||||
| 	for(int back=0; back < northog; back++){ | ||||
| 	  int peri_back = (k-back)%mmax; | ||||
| 	  RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp])); | ||||
| 	  RealD beta = -pbApk/pAp[rhs][peri_back]; | ||||
| 	  axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]); | ||||
| 	} | ||||
|  | ||||
| 	RealD rrn=sqrt(rn[rhs]/ssq[rhs]); | ||||
| 	RealD rtn=sqrt(rtz[rhs]/ssq[rhs]); | ||||
| 	RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]); | ||||
| 	 | ||||
| 	std::cout<<GridLogMessage<<"HDCG: rhs "<<rhs<<"fPcg k= "<<k<<" residual = "<<rrn<<"\n"; | ||||
| 	if ( rrn > max_rn ) max_rn = rrn; | ||||
|       } | ||||
|  | ||||
|       // Stopping condition based on worst case | ||||
|       if ( max_rn <= Tolerance ) {  | ||||
|  | ||||
| 	HDCGTimer.Stop(); | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;; | ||||
|  | ||||
| 	for(int rhs=0;rhs<nrhs;rhs++){ | ||||
| 	  _FineLinop.HermOp(x[rhs],mmp[rhs][0]);			   | ||||
| 	  Field tmp(grid); | ||||
| 	  axpy(tmp,-1.0,src[rhs],mmp[rhs][0]); | ||||
|        | ||||
| 	  RealD  mmpnorm = sqrt(norm2(mmp[rhs][0])); | ||||
| 	  RealD  xnorm   = sqrt(norm2(x[rhs])); | ||||
| 	  RealD  srcnorm = sqrt(norm2(src[rhs])); | ||||
| 	  RealD  tmpnorm = sqrt(norm2(tmp)); | ||||
| 	  RealD  true_residual = tmpnorm/srcnorm; | ||||
| 	  std::cout<<GridLogMessage | ||||
| 		   <<"HDCG: true residual ["<<rhs<<"] is "<<true_residual | ||||
| 		   <<" solution "<<xnorm | ||||
| 		   <<" source "<<srcnorm | ||||
| 		   <<" mmp "<<mmpnorm	   | ||||
| 		   <<std::endl; | ||||
| 	} | ||||
| 	return; | ||||
|       } | ||||
|        | ||||
|     } | ||||
|     HDCGTimer.Stop(); | ||||
|     std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl; | ||||
|     for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|       RealD  xnorm   = sqrt(norm2(x[rhs])); | ||||
|       RealD  srcnorm = sqrt(norm2(src[rhs])); | ||||
|       std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl; | ||||
| 	std::cout<<GridLogMessage<<"TwoLevelfPcg:   true residual is "<<true_residual<<std::endl; | ||||
| 	std::cout<<GridLogMessage<<"TwoLevelfPcg: target residual was"<<Tolerance<<std::endl; | ||||
| 	return k; | ||||
|       } | ||||
|     } | ||||
|    | ||||
|     // Non-convergence | ||||
|     assert(0); | ||||
|   } | ||||
|  | ||||
|  public: | ||||
|  | ||||
|   virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out) | ||||
|   { | ||||
|     std::cout << "PcgM1 default (cheat) mrhs version"<<std::endl; | ||||
|     for(int rhs=0;rhs<in.size();rhs++){ | ||||
|       this->PcgM1(in[rhs],out[rhs]); | ||||
|     } | ||||
|   } | ||||
|   virtual void PcgM1(Field & in, Field & out)     =0; | ||||
|   virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src) | ||||
|   { | ||||
|     std::cout << "Vstart default (cheat) mrhs version"<<std::endl; | ||||
|     for(int rhs=0;rhs<x.size();rhs++){ | ||||
|       this->Vstart(x[rhs],src[rhs]); | ||||
|     } | ||||
|   } | ||||
|   virtual void Vstart(Field & x,const Field & src)=0; | ||||
|   virtual void M(Field & in,Field & out,Field & tmp) { | ||||
|  | ||||
|   virtual void PcgM2(const Field & in, Field & out) { | ||||
|     out=in; | ||||
|   } | ||||
|  | ||||
|   virtual RealD PcgM3(const Field & p, Field & mmp){ | ||||
|     RealD dd; | ||||
|     _FineLinop.HermOp(p,mmp); | ||||
|     ComplexD dot = innerProduct(p,mmp); | ||||
|     dd=real(dot); | ||||
|     return dd; | ||||
|   } | ||||
|   virtual void M1(Field & in, Field & out) {// the smoother | ||||
|  | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
|   // Only Def1 has non-trivial Vout. | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
|  | ||||
| }; | ||||
|    | ||||
| template<class Field, class CoarseField, class Aggregation> | ||||
| class TwoLevelADEF2 : public TwoLevelCG<Field> | ||||
| { | ||||
|  public: | ||||
|   /////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Need something that knows how to get from Coarse to fine and back again | ||||
|   //  void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){ | ||||
|   //  void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){ | ||||
|   /////////////////////////////////////////////////////////////////////////////////// | ||||
|   GridBase *coarsegrid; | ||||
|   Aggregation &_Aggregates;                     | ||||
|   LinearFunction<CoarseField> &_CoarseSolver; | ||||
|   LinearFunction<CoarseField> &_CoarseSolverPrecise; | ||||
|   /////////////////////////////////////////////////////////////////////////////////// | ||||
|    | ||||
|   // more most opertor functions | ||||
|   TwoLevelADEF2(RealD tol, | ||||
| 		Integer maxit, | ||||
| 		LinearOperatorBase<Field>    &FineLinop, | ||||
| 		LinearFunction<Field>        &Smoother, | ||||
| 		LinearFunction<CoarseField>  &CoarseSolver, | ||||
| 		LinearFunction<CoarseField>  &CoarseSolverPrecise, | ||||
| 		Aggregation &Aggregates | ||||
| 		) : | ||||
|       TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,Aggregates.FineGrid), | ||||
|       _CoarseSolver(CoarseSolver), | ||||
|       _CoarseSolverPrecise(CoarseSolverPrecise), | ||||
|       _Aggregates(Aggregates) | ||||
|   { | ||||
|     coarsegrid = Aggregates.CoarseGrid; | ||||
|   }; | ||||
|  | ||||
|   virtual void PcgM1(Field & in, Field & out) | ||||
|   { | ||||
|     GRID_TRACE("MultiGridPreconditioner "); | ||||
|     // [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min] | ||||
|     Field tmp(grid); | ||||
|     Field Min(grid); | ||||
|  | ||||
|     Field tmp(this->grid); | ||||
|     Field Min(this->grid); | ||||
|     CoarseField PleftProj(this->coarsegrid); | ||||
|     CoarseField PleftMss_proj(this->coarsegrid); | ||||
|     PcgM(in,Min); // Smoother call | ||||
|  | ||||
|     GridStopWatch SmootherTimer; | ||||
|     GridStopWatch MatrixTimer; | ||||
|     SmootherTimer.Start(); | ||||
|     this->_Smoother(in,Min); | ||||
|     SmootherTimer.Stop(); | ||||
|  | ||||
|     MatrixTimer.Start(); | ||||
|     this->_FineLinop.HermOp(Min,out); | ||||
|     MatrixTimer.Stop(); | ||||
|     HermOp(Min,out); | ||||
|     axpy(tmp,-1.0,out,in);          // tmp  = in - A Min | ||||
|  | ||||
|     GridStopWatch ProjTimer; | ||||
|     GridStopWatch CoarseTimer; | ||||
|     GridStopWatch PromTimer; | ||||
|     ProjTimer.Start(); | ||||
|     this->_Aggregates.ProjectToSubspace(PleftProj,tmp);      | ||||
|     ProjTimer.Stop(); | ||||
|     CoarseTimer.Start(); | ||||
|     this->_CoarseSolver(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s | ||||
|     CoarseTimer.Stop(); | ||||
|     PromTimer.Start(); | ||||
|     this->_Aggregates.PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]   | ||||
|     PromTimer.Stop(); | ||||
|     std::cout << GridLogPerformance << "PcgM1 breakdown "<<std::endl; | ||||
|     std::cout << GridLogPerformance << "\tSmoother   " << SmootherTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogPerformance << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogPerformance << "\tProj       " << ProjTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogPerformance << "\tCoarse     " << CoarseTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogPerformance << "\tProm       " << PromTimer.Elapsed() <<std::endl; | ||||
|  | ||||
|     ProjectToSubspace(tmp,PleftProj);      | ||||
|     ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s | ||||
|     PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]   | ||||
|     axpy(out,1.0,Min,tmp); // Min+tmp | ||||
|   } | ||||
|  | ||||
|   virtual void Vstart(Field & x,const Field & src) | ||||
|   { | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg Vstart "<<std::endl; | ||||
|   virtual void M2(const Field & in, Field & out) { | ||||
|     out=in; | ||||
|     // Must override for Def2 only | ||||
|     //  case PcgDef2: | ||||
|     //    Pright(in,out); | ||||
|     //    break; | ||||
|   } | ||||
|  | ||||
|   virtual RealD M3(const Field & p, Field & mmp){ | ||||
|     double d,dd; | ||||
|     HermOpAndNorm(p,mmp,d,dd); | ||||
|     return dd; | ||||
|     // Must override for Def1 only | ||||
|     //  case PcgDef1: | ||||
|     //    d=linop_d->Mprec(p,mmp,tmp,0,1);// Dag no | ||||
|     //      linop_d->Mprec(mmp,mp,tmp,1);// Dag yes | ||||
|     //    Pleft(mp,mmp); | ||||
|     //    d=real(linop_d->inner(p,mmp)); | ||||
|   } | ||||
|  | ||||
|   virtual void VstartDef2(Field & xconst Field & src){ | ||||
|     //case PcgDef2: | ||||
|     //case PcgAdef2:  | ||||
|     //case PcgAdef2f: | ||||
|     //case PcgV11f: | ||||
|     /////////////////////////////////// | ||||
|     // Choose x_0 such that  | ||||
|     // x_0 = guess +  (A_ss^inv) r_s = guess + Ass_inv [src -Aguess] | ||||
| @@ -522,78 +256,142 @@ class TwoLevelADEF2 : public TwoLevelCG<Field> | ||||
|     //                   = src_s - (A guess)_s - src_s  + (A guess)_s  | ||||
|     //                   = 0  | ||||
|     /////////////////////////////////// | ||||
|     Field r(this->grid); | ||||
|     Field mmp(this->grid); | ||||
|     CoarseField PleftProj(this->coarsegrid); | ||||
|     CoarseField PleftMss_proj(this->coarsegrid); | ||||
|     Field r(grid); | ||||
|     Field mmp(grid); | ||||
|      | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg Vstart projecting "<<std::endl; | ||||
|     this->_Aggregates.ProjectToSubspace(PleftProj,src);      | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg Vstart coarse solve "<<std::endl; | ||||
|     this->_CoarseSolverPrecise(PleftProj,PleftMss_proj); // Ass^{-1} r_s | ||||
|     std::cout << GridLogMessage<<"HDCG: fPcg Vstart promote "<<std::endl; | ||||
|     this->_Aggregates.PromoteFromSubspace(PleftMss_proj,x);   | ||||
|     HermOp(x,mmp); | ||||
|     axpy (r, -1.0, mmp, src);        // r_{-1} = src - A x | ||||
|     ProjectToSubspace(r,PleftProj);      | ||||
|     ApplyInverseCG(PleftProj,PleftMss_proj); // Ass^{-1} r_s | ||||
|     PromoteFromSubspace(PleftMss_proj,mmp);   | ||||
|     x=x+mmp; | ||||
|  | ||||
|   } | ||||
|  | ||||
| }; | ||||
|   virtual void Vstart(Field & x,const Field & src){ | ||||
|     return; | ||||
|   } | ||||
|  | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
|   // Only Def1 has non-trivial Vout. Override in Def1 | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
|   virtual void   Vout  (Field & in, Field & out,Field & src){ | ||||
|     out = in; | ||||
|     //case PcgDef1: | ||||
|     //    //Qb + PT x | ||||
|     //    ProjectToSubspace(src,PleftProj);      | ||||
|     //    ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} r_s | ||||
|     //    PromoteFromSubspace(PleftMss_proj,tmp);   | ||||
|     //     | ||||
|     //    Pright(in,out); | ||||
|     //     | ||||
|     //    linop_d->axpy(out,tmp,out,1.0); | ||||
|     //    break; | ||||
|   } | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Pright and Pleft are common to all implementations | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   virtual void Pright(Field & in,Field & out){ | ||||
|     // P_R  = [ 1              0 ]  | ||||
|     //        [ -Mss^-1 Msb    0 ]  | ||||
|     Field in_sbar(grid); | ||||
|  | ||||
|     ProjectToSubspace(in,PleftProj);      | ||||
|     PromoteFromSubspace(PleftProj,out);   | ||||
|     axpy(in_sbar,-1.0,out,in);       // in_sbar = in - in_s  | ||||
|  | ||||
|     HermOp(in_sbar,out); | ||||
|     ProjectToSubspace(out,PleftProj);           // Mssbar in_sbar  (project) | ||||
|  | ||||
|     ApplyInverse     (PleftProj,PleftMss_proj); // Mss^{-1} Mssbar  | ||||
|     PromoteFromSubspace(PleftMss_proj,out);     //  | ||||
|  | ||||
|     axpy(out,-1.0,out,in_sbar);     // in_sbar - Mss^{-1} Mssbar in_sbar | ||||
|   } | ||||
|   virtual void Pleft (Field & in,Field & out){ | ||||
|     // P_L  = [ 1  -Mbs Mss^-1]  | ||||
|     //        [ 0   0         ]  | ||||
|     Field in_sbar(grid); | ||||
|     Field    tmp2(grid); | ||||
|     Field    Mtmp(grid); | ||||
|  | ||||
|     ProjectToSubspace(in,PleftProj);      | ||||
|     PromoteFromSubspace(PleftProj,out);   | ||||
|     axpy(in_sbar,-1.0,out,in);      // in_sbar = in - in_s | ||||
|  | ||||
|     ApplyInverse(PleftProj,PleftMss_proj); // Mss^{-1} in_s | ||||
|     PromoteFromSubspace(PleftMss_proj,out); | ||||
|  | ||||
|     HermOp(out,Mtmp); | ||||
|  | ||||
|     ProjectToSubspace(Mtmp,PleftProj);      // Msbar s Mss^{-1} | ||||
|     PromoteFromSubspace(PleftProj,tmp2); | ||||
|  | ||||
|     axpy(out,-1.0,tmp2,Mtmp); | ||||
|     axpy(out,-1.0,out,in_sbar);     // in_sbar - Msbars Mss^{-1} in_s | ||||
|   } | ||||
| } | ||||
|  | ||||
| template<class Field> | ||||
| class TwoLevelADEF1defl : public TwoLevelCG<Field> | ||||
| { | ||||
| class TwoLevelFlexiblePcgADef2 : public TwoLevelFlexiblePcg<Field> { | ||||
|  public: | ||||
|   const std::vector<Field> &evec; | ||||
|   const std::vector<RealD> &eval; | ||||
|   virtual void M(Field & in,Field & out,Field & tmp){ | ||||
|  | ||||
|   TwoLevelADEF1defl(RealD tol, | ||||
| 		   Integer maxit, | ||||
| 		   LinearOperatorBase<Field>   &FineLinop, | ||||
| 		   LinearFunction<Field>   &Smoother, | ||||
| 		   std::vector<Field> &_evec, | ||||
| 		   std::vector<RealD> &_eval) :  | ||||
|     TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,_evec[0].Grid()), | ||||
|     evec(_evec), | ||||
|     eval(_eval) | ||||
|   {}; | ||||
|   }  | ||||
|   virtual void M1(Field & in, Field & out,Field & tmp,Field & mp){ | ||||
|  | ||||
|   // Can just inherit existing M2 | ||||
|   // Can just inherit existing M3 | ||||
|   } | ||||
|   virtual void M2(Field & in, Field & out){ | ||||
|  | ||||
|   // Simple vstart - do nothing | ||||
|   virtual void Vstart(Field & x,const Field & src){ | ||||
|     x=src; // Could apply Q | ||||
|   }; | ||||
|   } | ||||
|   virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp){ | ||||
|  | ||||
|   // Override PcgM1 | ||||
|   virtual void PcgM1(Field & in, Field & out) | ||||
|   { | ||||
|     GRID_TRACE("EvecPreconditioner "); | ||||
|     int N=evec.size(); | ||||
|     Field Pin(this->grid); | ||||
|     Field Qin(this->grid); | ||||
|   } | ||||
|   virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp){ | ||||
|  | ||||
|     //MP  + Q = M(1-AQ) + Q = M | ||||
|     // // If we are eigenvector deflating in coarse space | ||||
|     // // Q   = Sum_i |phi_i> 1/lambda_i <phi_i| | ||||
|     // // A Q = Sum_i |phi_i> <phi_i| | ||||
|     // // M(1-AQ) = M(1-proj) + Q | ||||
|     Qin.Checkerboard()=in.Checkerboard(); | ||||
|     Qin = Zero(); | ||||
|     Pin = in; | ||||
|     for (int i=0;i<N;i++) { | ||||
|       const Field& tmp = evec[i]; | ||||
|       auto ip = TensorRemove(innerProduct(tmp,in)); | ||||
|       axpy(Qin, ip / eval[i],tmp,Qin); | ||||
|       axpy(Pin, -ip ,tmp,Pin); | ||||
|   } | ||||
| } | ||||
| /* | ||||
| template<class Field> | ||||
| class TwoLevelFlexiblePcgAD : public TwoLevelFlexiblePcg<Field> { | ||||
|  public: | ||||
|   virtual void M(Field & in,Field & out,Field & tmp);  | ||||
|   virtual void M1(Field & in, Field & out,Field & tmp,Field & mp); | ||||
|   virtual void M2(Field & in, Field & out); | ||||
|   virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp); | ||||
|   virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp); | ||||
| } | ||||
|  | ||||
|     this->_Smoother(Pin,out); | ||||
|  | ||||
|     out = out + Qin; | ||||
| template<class Field> | ||||
| class TwoLevelFlexiblePcgDef1 : public TwoLevelFlexiblePcg<Field> { | ||||
|  public: | ||||
|   virtual void M(Field & in,Field & out,Field & tmp);  | ||||
|   virtual void M1(Field & in, Field & out,Field & tmp,Field & mp); | ||||
|   virtual void M2(Field & in, Field & out); | ||||
|   virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp); | ||||
|   virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp); | ||||
|   virtual void   Vout  (Field & in, Field & out,Field & src,Field & tmp); | ||||
| } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| template<class Field> | ||||
| class TwoLevelFlexiblePcgDef2 : public TwoLevelFlexiblePcg<Field> { | ||||
|  public: | ||||
|   virtual void M(Field & in,Field & out,Field & tmp);  | ||||
|   virtual void M1(Field & in, Field & out,Field & tmp,Field & mp); | ||||
|   virtual void M2(Field & in, Field & out); | ||||
|   virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp); | ||||
|   virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp); | ||||
| } | ||||
|  | ||||
| template<class Field> | ||||
| class TwoLevelFlexiblePcgV11: public TwoLevelFlexiblePcg<Field> { | ||||
|  public: | ||||
|   virtual void M(Field & in,Field & out,Field & tmp);  | ||||
|   virtual void M1(Field & in, Field & out,Field & tmp,Field & mp); | ||||
|   virtual void M2(Field & in, Field & out); | ||||
|   virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp); | ||||
|   virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp); | ||||
| } | ||||
| */ | ||||
| #endif | ||||
|   | ||||
| @@ -1,414 +0,0 @@ | ||||
|     /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/iterative/AdefGeneric.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
|     *************************************************************************************/ | ||||
|     /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
|  | ||||
|   /* | ||||
|    * Compared to Tang-2009:  P=Pleft. P^T = PRight Q=MssInv.  | ||||
|    * Script A = SolverMatrix  | ||||
|    * Script P = Preconditioner | ||||
|    * | ||||
|    * Implement ADEF-2 | ||||
|    * | ||||
|    * Vstart = P^Tx + Qb | ||||
|    * M1 = P^TM + Q | ||||
|    * M2=M3=1 | ||||
|    */ | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| template<class Field> | ||||
| class TwoLevelCGmrhs | ||||
| { | ||||
|  public: | ||||
|   RealD   Tolerance; | ||||
|   Integer MaxIterations; | ||||
|   GridBase *grid; | ||||
|  | ||||
|   // Fine operator, Smoother, CoarseSolver | ||||
|   LinearOperatorBase<Field>   &_FineLinop; | ||||
|   LinearFunction<Field>   &_Smoother; | ||||
|  | ||||
|   GridStopWatch ProjectTimer; | ||||
|   GridStopWatch PromoteTimer; | ||||
|   GridStopWatch DeflateTimer; | ||||
|   GridStopWatch CoarseTimer; | ||||
|   GridStopWatch FineTimer; | ||||
|   GridStopWatch SmoothTimer; | ||||
|   GridStopWatch InsertTimer; | ||||
|  | ||||
|    | ||||
|   // more most opertor functions | ||||
|   TwoLevelCGmrhs(RealD tol, | ||||
| 		 Integer maxit, | ||||
| 		 LinearOperatorBase<Field>   &FineLinop, | ||||
| 		 LinearFunction<Field>       &Smoother, | ||||
| 		 GridBase *fine) :  | ||||
|     Tolerance(tol),  | ||||
|     MaxIterations(maxit), | ||||
|     _FineLinop(FineLinop), | ||||
|     _Smoother(Smoother) | ||||
|   { | ||||
|     grid       = fine; | ||||
|   }; | ||||
|    | ||||
|   // Vector case | ||||
|   virtual void operator() (std::vector<Field> &src, std::vector<Field> &x) | ||||
|   { | ||||
|     std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl; | ||||
|     src[0].Grid()->Barrier(); | ||||
|     int nrhs = src.size(); | ||||
|     std::vector<RealD> f(nrhs); | ||||
|     std::vector<RealD> rtzp(nrhs); | ||||
|     std::vector<RealD> rtz(nrhs); | ||||
|     std::vector<RealD> a(nrhs); | ||||
|     std::vector<RealD> d(nrhs); | ||||
|     std::vector<RealD> b(nrhs); | ||||
|     std::vector<RealD> rptzp(nrhs); | ||||
|     ///////////////////////////// | ||||
|     // Set up history vectors | ||||
|     ///////////////////////////// | ||||
|     int mmax = 3; | ||||
|  | ||||
|     std::vector<std::vector<Field> > p(nrhs);   for(int r=0;r<nrhs;r++)  p[r].resize(mmax,grid); | ||||
|     std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid); | ||||
|     std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax); | ||||
|  | ||||
|     std::vector<Field> z(nrhs,grid); | ||||
|     std::vector<Field>  mp (nrhs,grid); | ||||
|     std::vector<Field>  r  (nrhs,grid); | ||||
|     std::vector<Field>  mu (nrhs,grid); | ||||
|  | ||||
|     //Initial residual computation & set up | ||||
|     std::vector<RealD> src_nrm(nrhs); | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|       src_nrm[rhs]=norm2(src[rhs]); | ||||
|       assert(src_nrm[rhs]!=0.0); | ||||
|     } | ||||
|     std::vector<RealD> tn(nrhs); | ||||
|  | ||||
|     GridStopWatch HDCGTimer; | ||||
|     ////////////////////////// | ||||
|     // x0 = Vstart -- possibly modify guess | ||||
|     ////////////////////////// | ||||
|     Vstart(x,src); | ||||
|  | ||||
|     for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|       // r0 = b -A x0 | ||||
|       _FineLinop.HermOp(x[rhs],mmp[rhs][0]); | ||||
|       axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]);    // Recomputes r=src-Ax0 | ||||
|     } | ||||
|  | ||||
|     ////////////////////////////////// | ||||
|     // Compute z = M1 x | ||||
|     ////////////////////////////////// | ||||
|     // This needs a multiRHS version for acceleration | ||||
|     PcgM1(r,z); | ||||
|  | ||||
|     std::vector<RealD> ssq(nrhs); | ||||
|     std::vector<RealD> rsq(nrhs); | ||||
|     std::vector<Field> pp(nrhs,grid); | ||||
|  | ||||
|     for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|       rtzp[rhs] =real(innerProduct(r[rhs],z[rhs])); | ||||
|       p[rhs][0]=z[rhs]; | ||||
|       ssq[rhs]=norm2(src[rhs]); | ||||
|       rsq[rhs]=  ssq[rhs]*Tolerance*Tolerance; | ||||
|       //      std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n"; | ||||
|     } | ||||
|  | ||||
|     ProjectTimer.Reset(); | ||||
|     PromoteTimer.Reset(); | ||||
|     DeflateTimer.Reset(); | ||||
|     CoarseTimer.Reset(); | ||||
|     SmoothTimer.Reset(); | ||||
|     FineTimer.Reset(); | ||||
|     InsertTimer.Reset(); | ||||
|  | ||||
|     GridStopWatch M1Timer; | ||||
|     GridStopWatch M2Timer; | ||||
|     GridStopWatch M3Timer; | ||||
|     GridStopWatch LinalgTimer; | ||||
|  | ||||
|     HDCGTimer.Start(); | ||||
|  | ||||
|     std::vector<RealD> rn(nrhs); | ||||
|     for (int k=0;k<=MaxIterations;k++){ | ||||
|      | ||||
|       int peri_k  = k % mmax; | ||||
|       int peri_kp = (k+1) % mmax; | ||||
|  | ||||
|       for(int rhs=0;rhs<nrhs;rhs++){ | ||||
| 	rtz[rhs]=rtzp[rhs]; | ||||
| 	M3Timer.Start(); | ||||
| 	d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]); | ||||
| 	M3Timer.Stop(); | ||||
| 	a[rhs] = rtz[rhs]/d[rhs]; | ||||
|  | ||||
| 	LinalgTimer.Start(); | ||||
| 	// Memorise this | ||||
| 	pAp[rhs][peri_k] = d[rhs]; | ||||
|  | ||||
| 	axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]); | ||||
| 	rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]); | ||||
| 	LinalgTimer.Stop(); | ||||
|       } | ||||
|  | ||||
|       // Compute z = M x (for *all* RHS) | ||||
|       M1Timer.Start(); | ||||
|       PcgM1(r,z); | ||||
|       M1Timer.Stop(); | ||||
|        | ||||
|       RealD max_rn=0.0; | ||||
|       LinalgTimer.Start(); | ||||
|       for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|  | ||||
| 	rtzp[rhs] =real(innerProduct(r[rhs],z[rhs])); | ||||
|  | ||||
| 	//	std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n"; | ||||
| 	mu[rhs]=z[rhs]; | ||||
|  | ||||
| 	p[rhs][peri_kp]=mu[rhs]; | ||||
|  | ||||
| 	// Standard search direction p == z + b p  | ||||
| 	b[rhs] = (rtzp[rhs])/rtz[rhs]; | ||||
|  | ||||
| 	int northog = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm | ||||
| 	for(int back=0; back < northog; back++){ | ||||
| 	  int peri_back = (k-back)%mmax; | ||||
| 	  RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp])); | ||||
| 	  RealD beta = -pbApk/pAp[rhs][peri_back]; | ||||
| 	  axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]); | ||||
| 	} | ||||
|  | ||||
| 	RealD rrn=sqrt(rn[rhs]/ssq[rhs]); | ||||
| 	RealD rtn=sqrt(rtz[rhs]/ssq[rhs]); | ||||
| 	RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]); | ||||
| 	 | ||||
| 	std::cout<<GridLogMessage<<"HDCG:fPcg rhs "<<rhs<<" k= "<<k<<" residual = "<<rrn<<"\n"; | ||||
| 	if ( rrn > max_rn ) max_rn = rrn; | ||||
|       } | ||||
|       LinalgTimer.Stop(); | ||||
|  | ||||
|       // Stopping condition based on worst case | ||||
|       if ( max_rn <= Tolerance ) {  | ||||
|  | ||||
| 	HDCGTimer.Stop(); | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Linalg  "<<LinalgTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : fine M3 "<<M3Timer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : prec M1 "<<M1Timer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"**** M1 breakdown:"<<std::endl; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Project "<<ProjectTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Promote "<<PromoteTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Deflate "<<DeflateTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Coarse  "<<CoarseTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Fine    "<<FineTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Smooth  "<<SmoothTimer.Elapsed()<<std::endl;; | ||||
| 	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Insert  "<<InsertTimer.Elapsed()<<std::endl;; | ||||
|  | ||||
| 	for(int rhs=0;rhs<nrhs;rhs++){ | ||||
| 	  _FineLinop.HermOp(x[rhs],mmp[rhs][0]);			   | ||||
| 	  Field tmp(grid); | ||||
| 	  axpy(tmp,-1.0,src[rhs],mmp[rhs][0]); | ||||
|        | ||||
| 	  RealD  mmpnorm = sqrt(norm2(mmp[rhs][0])); | ||||
| 	  RealD  xnorm   = sqrt(norm2(x[rhs])); | ||||
| 	  RealD  srcnorm = sqrt(norm2(src[rhs])); | ||||
| 	  RealD  tmpnorm = sqrt(norm2(tmp)); | ||||
| 	  RealD  true_residual = tmpnorm/srcnorm; | ||||
| 	  std::cout<<GridLogMessage | ||||
| 		   <<"HDCG: true residual ["<<rhs<<"] is "<<true_residual | ||||
| 		   <<" solution "<<xnorm | ||||
| 		   <<" source "<<srcnorm | ||||
| 		   <<" mmp "<<mmpnorm	   | ||||
| 		   <<std::endl; | ||||
| 	} | ||||
| 	return; | ||||
|       } | ||||
|        | ||||
|     } | ||||
|     HDCGTimer.Stop(); | ||||
|     std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl; | ||||
|     for(int rhs=0;rhs<nrhs;rhs++){ | ||||
|       RealD  xnorm   = sqrt(norm2(x[rhs])); | ||||
|       RealD  srcnorm = sqrt(norm2(src[rhs])); | ||||
|       std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl; | ||||
|     } | ||||
|   } | ||||
|    | ||||
|  | ||||
|  public: | ||||
|  | ||||
|   virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out) = 0; | ||||
|   virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src) = 0; | ||||
|   virtual void PcgM2(const Field & in, Field & out) { | ||||
|     out=in; | ||||
|   } | ||||
|  | ||||
|   virtual RealD PcgM3(const Field & p, Field & mmp){ | ||||
|     RealD dd; | ||||
|     _FineLinop.HermOp(p,mmp); | ||||
|     ComplexD dot = innerProduct(p,mmp); | ||||
|     dd=real(dot); | ||||
|     return dd; | ||||
|   } | ||||
|  | ||||
| }; | ||||
|  | ||||
| template<class Field, class CoarseField> | ||||
| class TwoLevelADEF2mrhs : public TwoLevelCGmrhs<Field> | ||||
| { | ||||
| public: | ||||
|   GridBase *coarsegrid; | ||||
|   GridBase *coarsegridmrhs; | ||||
|   LinearFunction<CoarseField> &_CoarseSolverMrhs; | ||||
|   LinearFunction<CoarseField> &_CoarseSolverPreciseMrhs; | ||||
|   MultiRHSBlockProject<Field>    &_Projector; | ||||
|   MultiRHSDeflation<CoarseField> &_Deflator; | ||||
|  | ||||
|    | ||||
|   TwoLevelADEF2mrhs(RealD tol, | ||||
| 		    Integer maxit, | ||||
| 		    LinearOperatorBase<Field>    &FineLinop, | ||||
| 		    LinearFunction<Field>        &Smoother, | ||||
| 		    LinearFunction<CoarseField>  &CoarseSolverMrhs, | ||||
| 		    LinearFunction<CoarseField>  &CoarseSolverPreciseMrhs, | ||||
| 		    MultiRHSBlockProject<Field>    &Projector, | ||||
| 		    MultiRHSDeflation<CoarseField> &Deflator, | ||||
| 		    GridBase *_coarsemrhsgrid) : | ||||
|     TwoLevelCGmrhs<Field>(tol, maxit,FineLinop,Smoother,Projector.fine_grid), | ||||
|     _CoarseSolverMrhs(CoarseSolverMrhs), | ||||
|     _CoarseSolverPreciseMrhs(CoarseSolverPreciseMrhs), | ||||
|     _Projector(Projector), | ||||
|     _Deflator(Deflator) | ||||
|   { | ||||
|     coarsegrid = Projector.coarse_grid; | ||||
|     coarsegridmrhs = _coarsemrhsgrid;// Thi could be in projector | ||||
|   }; | ||||
|  | ||||
|   // Override Vstart | ||||
|   virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src) | ||||
|   { | ||||
|     int nrhs=x.size(); | ||||
|     /////////////////////////////////// | ||||
|     // Choose x_0 such that  | ||||
|     // x_0 = guess +  (A_ss^inv) r_s = guess + Ass_inv [src -Aguess] | ||||
|     //                               = [1 - Ass_inv A] Guess + Assinv src | ||||
|     //                               = P^T guess + Assinv src  | ||||
|     //                               = Vstart  [Tang notation] | ||||
|     // This gives: | ||||
|     // W^T (src - A x_0) = src_s - A guess_s - r_s | ||||
|     //                   = src_s - (A guess)_s - src_s  + (A guess)_s  | ||||
|     //                   = 0  | ||||
|     /////////////////////////////////// | ||||
|     std::vector<CoarseField> PleftProj(nrhs,this->coarsegrid); | ||||
|     std::vector<CoarseField> PleftMss_proj(nrhs,this->coarsegrid); | ||||
|     CoarseField PleftProjMrhs(this->coarsegridmrhs); | ||||
|     CoarseField PleftMss_projMrhs(this->coarsegridmrhs); | ||||
|  | ||||
|     this->_Projector.blockProject(src,PleftProj); | ||||
|     this->_Deflator.DeflateSources(PleftProj,PleftMss_proj); | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|       InsertSliceFast(PleftProj[rhs],PleftProjMrhs,rhs,0); | ||||
|       InsertSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); // the guess | ||||
|     } | ||||
|      | ||||
|     this->_CoarseSolverPreciseMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} r_s | ||||
|  | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|       ExtractSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); | ||||
|     } | ||||
|     this->_Projector.blockPromote(x,PleftMss_proj); | ||||
|   } | ||||
|  | ||||
|   virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out){ | ||||
|  | ||||
|     int nrhs=in.size(); | ||||
|  | ||||
|     // [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min] | ||||
|     std::vector<Field> tmp(nrhs,this->grid); | ||||
|     std::vector<Field> Min(nrhs,this->grid); | ||||
|  | ||||
|     std::vector<CoarseField> PleftProj(nrhs,this->coarsegrid); | ||||
|     std::vector<CoarseField> PleftMss_proj(nrhs,this->coarsegrid); | ||||
|  | ||||
|     CoarseField PleftProjMrhs(this->coarsegridmrhs); | ||||
|     CoarseField PleftMss_projMrhs(this->coarsegridmrhs); | ||||
|  | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|  | ||||
|       this->SmoothTimer.Start(); | ||||
|       this->_Smoother(in[rhs],Min[rhs]); | ||||
|       this->SmoothTimer.Stop(); | ||||
|  | ||||
|       this->FineTimer.Start(); | ||||
|       this->_FineLinop.HermOp(Min[rhs],out[rhs]); | ||||
|  | ||||
|       axpy(tmp[rhs],-1.0,out[rhs],in[rhs]);          // resid  = in - A Min | ||||
|       this->FineTimer.Stop(); | ||||
|  | ||||
|     } | ||||
|  | ||||
|     this->ProjectTimer.Start(); | ||||
|     this->_Projector.blockProject(tmp,PleftProj); | ||||
|     this->ProjectTimer.Stop(); | ||||
|     this->DeflateTimer.Start(); | ||||
|     this->_Deflator.DeflateSources(PleftProj,PleftMss_proj); | ||||
|     this->DeflateTimer.Stop(); | ||||
|     this->InsertTimer.Start(); | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|       InsertSliceFast(PleftProj[rhs],PleftProjMrhs,rhs,0); | ||||
|       InsertSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); // the guess | ||||
|     } | ||||
|     this->InsertTimer.Stop(); | ||||
|  | ||||
|     this->CoarseTimer.Start(); | ||||
|     this->_CoarseSolverMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} [in - A Min]_s | ||||
|     this->CoarseTimer.Stop(); | ||||
|  | ||||
|     this->InsertTimer.Start(); | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|       ExtractSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); | ||||
|     } | ||||
|     this->InsertTimer.Stop(); | ||||
|     this->PromoteTimer.Start(); | ||||
|     this->_Projector.blockPromote(tmp,PleftMss_proj);// tmp= Q[in - A Min]   | ||||
|     this->PromoteTimer.Stop(); | ||||
|     this->FineTimer.Start(); | ||||
|     for(int rhs=0;rhs<nrhs;rhs++) { | ||||
|       axpy(out[rhs],1.0,Min[rhs],tmp[rhs]); // Min+tmp | ||||
|     } | ||||
|     this->FineTimer.Stop(); | ||||
|   } | ||||
| }; | ||||
|    | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|  | ||||
| @@ -37,7 +37,6 @@ template<class FieldD, class FieldF, typename std::enable_if< getPrecision<Field | ||||
| class MixedPrecisionBiCGSTAB : public LinearFunction<FieldD>  | ||||
| { | ||||
|   public:                                                 | ||||
|     using LinearFunction<FieldD>::operator(); | ||||
|     RealD   Tolerance; | ||||
|     RealD   InnerTolerance; // Initial tolerance for inner CG. Defaults to Tolerance but can be changed | ||||
|     Integer MaxInnerIterations; | ||||
|   | ||||
| @@ -54,14 +54,10 @@ public: | ||||
|   ConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true) | ||||
|     : Tolerance(tol), | ||||
|       MaxIterations(maxit), | ||||
|       ErrorOnNoConverge(err_on_no_conv) | ||||
|   {}; | ||||
|       ErrorOnNoConverge(err_on_no_conv){}; | ||||
|  | ||||
|   void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) { | ||||
|  | ||||
|     GRID_TRACE("ConjugateGradient"); | ||||
|     GridStopWatch PreambleTimer; | ||||
|     PreambleTimer.Start(); | ||||
|     psi.Checkerboard() = src.Checkerboard(); | ||||
|  | ||||
|     conformable(psi, src); | ||||
| @@ -69,26 +65,22 @@ public: | ||||
|     RealD cp, c, a, d, b, ssq, qq; | ||||
|     //RealD b_pred; | ||||
|  | ||||
|     // Was doing copies | ||||
|     Field p(src.Grid()); | ||||
|     Field mmp(src.Grid()); | ||||
|     Field r(src.Grid()); | ||||
|     Field p(src); | ||||
|     Field mmp(src); | ||||
|     Field r(src); | ||||
|  | ||||
|     // Initial residual computation & set up | ||||
|     ssq = norm2(src); | ||||
|     RealD guess = norm2(psi); | ||||
|     assert(std::isnan(guess) == 0); | ||||
|     if ( guess == 0.0 ) { | ||||
|       r = src; | ||||
|       p = r; | ||||
|       a = ssq; | ||||
|     } else {  | ||||
|      | ||||
|     Linop.HermOpAndNorm(psi, mmp, d, b); | ||||
|      | ||||
|     r = src - mmp; | ||||
|     p = r; | ||||
|  | ||||
|     a = norm2(p); | ||||
|     } | ||||
|     cp = a; | ||||
|     ssq = norm2(src); | ||||
|  | ||||
|     // Handle trivial case of zero src | ||||
|     if (ssq == 0.){ | ||||
| @@ -118,7 +110,6 @@ public: | ||||
|     std::cout << GridLogIterative << std::setprecision(8) | ||||
|               << "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl; | ||||
|  | ||||
|     PreambleTimer.Stop(); | ||||
|     GridStopWatch LinalgTimer; | ||||
|     GridStopWatch InnerTimer; | ||||
|     GridStopWatch AxpyNormTimer; | ||||
| @@ -126,13 +117,9 @@ public: | ||||
|     GridStopWatch MatrixTimer; | ||||
|     GridStopWatch SolverTimer; | ||||
|  | ||||
|     RealD usecs = -usecond(); | ||||
|     SolverTimer.Start(); | ||||
|     int k; | ||||
|     for (k = 1; k <= MaxIterations; k++) { | ||||
|  | ||||
|       GridStopWatch IterationTimer; | ||||
|       IterationTimer.Start(); | ||||
|       c = cp; | ||||
|  | ||||
|       MatrixTimer.Start(); | ||||
| @@ -165,42 +152,31 @@ public: | ||||
|       LinearCombTimer.Stop(); | ||||
|       LinalgTimer.Stop(); | ||||
|  | ||||
|       IterationTimer.Stop(); | ||||
|       if ( (k % 500) == 0 ) { | ||||
| 	std::cout << GridLogMessage << "ConjugateGradient: Iteration " << k | ||||
|                 << " residual " << sqrt(cp/ssq) << " target " << Tolerance << std::endl; | ||||
|       } else {  | ||||
|       std::cout << GridLogIterative << "ConjugateGradient: Iteration " << k | ||||
| 		  << " residual " << sqrt(cp/ssq) << " target " << Tolerance << " took " << IterationTimer.Elapsed() << std::endl; | ||||
|       } | ||||
|                 << " residual " << sqrt(cp/ssq) << " target " << Tolerance << std::endl; | ||||
|  | ||||
|       // Stopping condition | ||||
|       if (cp <= rsq) { | ||||
| 	usecs +=usecond(); | ||||
|         SolverTimer.Stop(); | ||||
|         Linop.HermOpAndNorm(psi, mmp, d, qq); | ||||
|         p = mmp - src; | ||||
| 	GridBase *grid = src.Grid(); | ||||
| 	RealD DwfFlops = (1452. )*grid->gSites()*4*k | ||||
|    	               + (8+4+8+4+4)*12*grid->gSites()*k; // CG linear algebra | ||||
|  | ||||
|         RealD srcnorm = std::sqrt(norm2(src)); | ||||
|         RealD resnorm = std::sqrt(norm2(p)); | ||||
|         RealD true_residual = resnorm / srcnorm; | ||||
|  | ||||
|         std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k  | ||||
| 		  << "\tComputed residual " << std::sqrt(cp / ssq) | ||||
| 		  << "\tTrue residual " << true_residual | ||||
| 		  << "\tTarget " << Tolerance << std::endl; | ||||
|  | ||||
| 	//	std::cout << GridLogMessage << "\tPreamble   " << PreambleTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tSolver Elapsed    " << SolverTimer.Elapsed() <<std::endl; | ||||
|         std::cout << GridLogPerformance << "Time breakdown "<<std::endl; | ||||
| 	std::cout << GridLogPerformance << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogPerformance << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogPerformance << "\t\tInner      " << InnerTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogPerformance << "\t\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl; | ||||
|  | ||||
| 	std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl; | ||||
|         std::cout << GridLogIterative << "Time breakdown "<<std::endl; | ||||
| 	std::cout << GridLogIterative << "\tElapsed    " << SolverTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogIterative << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogIterative << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogIterative << "\tInner      " << InnerTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogIterative << "\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogIterative << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl; | ||||
|  | ||||
|         if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0); | ||||
|  | ||||
| @@ -211,22 +187,12 @@ public: | ||||
|       } | ||||
|     } | ||||
|     // Failed. Calculate true residual before giving up                                                          | ||||
|     // Linop.HermOpAndNorm(psi, mmp, d, qq); | ||||
|     //    p = mmp - src; | ||||
|     //TrueResidual = sqrt(norm2(p)/ssq); | ||||
|     //    TrueResidual = 1; | ||||
|     Linop.HermOpAndNorm(psi, mmp, d, qq); | ||||
|     p = mmp - src; | ||||
|  | ||||
|     std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations | ||||
|     	      <<" residual "<< std::sqrt(cp / ssq)<< std::endl; | ||||
|     SolverTimer.Stop(); | ||||
|     std::cout << GridLogMessage << "\tPreamble   " << PreambleTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogMessage << "\tSolver     " << SolverTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogMessage << "Solver breakdown "<<std::endl; | ||||
|     std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogMessage<< "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogPerformance << "\t\tInner      " << InnerTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogPerformance << "\t\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl; | ||||
|     std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl; | ||||
|     TrueResidual = sqrt(norm2(p)/ssq); | ||||
|  | ||||
|     std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations<< std::endl; | ||||
|  | ||||
|     if (ErrorOnNoConverge) assert(0); | ||||
|     IterationsToComplete = k; | ||||
|   | ||||
| @@ -36,7 +36,6 @@ NAMESPACE_BEGIN(Grid); | ||||
|     typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>  | ||||
|   class MixedPrecisionConjugateGradient : public LinearFunction<FieldD> { | ||||
|   public:                                                 | ||||
|     using LinearFunction<FieldD>::operator(); | ||||
|     RealD   Tolerance; | ||||
|     RealD   InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed | ||||
|     Integer MaxInnerIterations; | ||||
| @@ -49,7 +48,6 @@ NAMESPACE_BEGIN(Grid); | ||||
|     Integer TotalInnerIterations; //Number of inner CG iterations | ||||
|     Integer TotalOuterIterations; //Number of restarts | ||||
|     Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step | ||||
|     RealD TrueResidual; | ||||
|  | ||||
|     //Option to speed up *inner single precision* solves using a LinearFunction that produces a guess | ||||
|     LinearFunction<FieldF> *guesser; | ||||
| @@ -69,7 +67,6 @@ NAMESPACE_BEGIN(Grid); | ||||
|     } | ||||
|    | ||||
|   void operator() (const FieldD &src_d_in, FieldD &sol_d){ | ||||
|     std::cout << GridLogMessage << "MixedPrecisionConjugateGradient: Starting mixed precision CG with outer tolerance " << Tolerance << " and inner tolerance " << InnerTolerance << std::endl; | ||||
|     TotalInnerIterations = 0; | ||||
| 	 | ||||
|     GridStopWatch TotalTimer; | ||||
| @@ -99,7 +96,6 @@ NAMESPACE_BEGIN(Grid); | ||||
|     FieldF sol_f(SinglePrecGrid); | ||||
|     sol_f.Checkerboard() = cb; | ||||
|      | ||||
|     std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Starting initial inner CG with tolerance " << inner_tol << std::endl; | ||||
|     ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations); | ||||
|     CG_f.ErrorOnNoConverge = false; | ||||
|  | ||||
| @@ -109,9 +105,6 @@ NAMESPACE_BEGIN(Grid); | ||||
|      | ||||
|     Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count | ||||
|        | ||||
|     precisionChangeWorkspace pc_wk_sp_to_dp(DoublePrecGrid, SinglePrecGrid); | ||||
|     precisionChangeWorkspace pc_wk_dp_to_sp(SinglePrecGrid, DoublePrecGrid); | ||||
|      | ||||
|     for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){ | ||||
|       //Compute double precision rsd and also new RHS vector. | ||||
|       Linop_d.HermOp(sol_d, tmp_d); | ||||
| @@ -126,7 +119,7 @@ NAMESPACE_BEGIN(Grid); | ||||
|       while(norm * inner_tol * inner_tol < stop) inner_tol *= 2;  // inner_tol = sqrt(stop/norm) ?? | ||||
|  | ||||
|       PrecChangeTimer.Start(); | ||||
|       precisionChange(src_f, src_d, pc_wk_dp_to_sp); | ||||
|       precisionChange(src_f, src_d); | ||||
|       PrecChangeTimer.Stop(); | ||||
|        | ||||
|       sol_f = Zero(); | ||||
| @@ -136,7 +129,6 @@ NAMESPACE_BEGIN(Grid); | ||||
| 	(*guesser)(src_f, sol_f); | ||||
|  | ||||
|       //Inner CG | ||||
|       std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " << outer_iter << " starting inner CG with tolerance " << inner_tol << std::endl; | ||||
|       CG_f.Tolerance = inner_tol; | ||||
|       InnerCGtimer.Start(); | ||||
|       CG_f(Linop_f, src_f, sol_f); | ||||
| @@ -145,7 +137,7 @@ NAMESPACE_BEGIN(Grid); | ||||
|        | ||||
|       //Convert sol back to double and add to double prec solution | ||||
|       PrecChangeTimer.Start(); | ||||
|       precisionChange(tmp_d, sol_f, pc_wk_sp_to_dp); | ||||
|       precisionChange(tmp_d, sol_f); | ||||
|       PrecChangeTimer.Stop(); | ||||
|        | ||||
|       axpy(sol_d, 1.0, tmp_d, sol_d); | ||||
| @@ -157,7 +149,6 @@ NAMESPACE_BEGIN(Grid); | ||||
|     ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations); | ||||
|     CG_d(Linop_d, src_d_in, sol_d); | ||||
|     TotalFinalStepIterations = CG_d.IterationsToComplete; | ||||
|     TrueResidual = CG_d.TrueResidual; | ||||
|  | ||||
|     TotalTimer.Stop(); | ||||
|     std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl; | ||||
|   | ||||
| @@ -1,213 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/iterative/ConjugateGradientMixedPrecBatched.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
|     Author: Raoul Hodgson <raoul.hodgson@ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_CONJUGATE_GRADIENT_MIXED_PREC_BATCHED_H | ||||
| #define GRID_CONJUGATE_GRADIENT_MIXED_PREC_BATCHED_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| //Mixed precision restarted defect correction CG | ||||
| template<class FieldD,class FieldF,  | ||||
|   typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0, | ||||
|   typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>  | ||||
| class MixedPrecisionConjugateGradientBatched : public LinearFunction<FieldD> { | ||||
| public: | ||||
|   using LinearFunction<FieldD>::operator(); | ||||
|   RealD   Tolerance; | ||||
|   RealD   InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed | ||||
|   Integer MaxInnerIterations; | ||||
|   Integer MaxOuterIterations; | ||||
|   Integer MaxPatchupIterations; | ||||
|   GridBase* SinglePrecGrid; //Grid for single-precision fields | ||||
|   RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance | ||||
|   LinearOperatorBase<FieldF> &Linop_f; | ||||
|   LinearOperatorBase<FieldD> &Linop_d; | ||||
|  | ||||
|   //Option to speed up *inner single precision* solves using a LinearFunction that produces a guess | ||||
|   LinearFunction<FieldF> *guesser; | ||||
|   bool updateResidual; | ||||
|    | ||||
|   MixedPrecisionConjugateGradientBatched(RealD tol,  | ||||
|           Integer maxinnerit,  | ||||
|           Integer maxouterit,  | ||||
|           Integer maxpatchit, | ||||
|           GridBase* _sp_grid,  | ||||
|           LinearOperatorBase<FieldF> &_Linop_f,  | ||||
|           LinearOperatorBase<FieldD> &_Linop_d, | ||||
|           bool _updateResidual=true) : | ||||
|     Linop_f(_Linop_f), Linop_d(_Linop_d), | ||||
|     Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit), MaxOuterIterations(maxouterit), MaxPatchupIterations(maxpatchit), SinglePrecGrid(_sp_grid), | ||||
|     OuterLoopNormMult(100.), guesser(NULL), updateResidual(_updateResidual) { }; | ||||
|  | ||||
|   void useGuesser(LinearFunction<FieldF> &g){ | ||||
|     guesser = &g; | ||||
|   } | ||||
|    | ||||
|   void operator() (const FieldD &src_d_in, FieldD &sol_d){ | ||||
|     std::vector<FieldD> srcs_d_in{src_d_in}; | ||||
|     std::vector<FieldD> sols_d{sol_d}; | ||||
|  | ||||
|     (*this)(srcs_d_in,sols_d); | ||||
|  | ||||
|     sol_d = sols_d[0]; | ||||
|   } | ||||
|  | ||||
|   void operator() (const std::vector<FieldD> &src_d_in, std::vector<FieldD> &sol_d){ | ||||
|     assert(src_d_in.size() == sol_d.size()); | ||||
|     int NBatch = src_d_in.size(); | ||||
|  | ||||
|     std::cout << GridLogMessage << "NBatch = " << NBatch << std::endl; | ||||
|  | ||||
|     Integer TotalOuterIterations = 0; //Number of restarts | ||||
|     std::vector<Integer> TotalInnerIterations(NBatch,0);     //Number of inner CG iterations | ||||
|     std::vector<Integer> TotalFinalStepIterations(NBatch,0); //Number of CG iterations in final patch-up step | ||||
|    | ||||
|     GridStopWatch TotalTimer; | ||||
|     TotalTimer.Start(); | ||||
|  | ||||
|     GridStopWatch InnerCGtimer; | ||||
|     GridStopWatch PrecChangeTimer; | ||||
|      | ||||
|     int cb = src_d_in[0].Checkerboard(); | ||||
|      | ||||
|     std::vector<RealD> src_norm; | ||||
|     std::vector<RealD> norm; | ||||
|     std::vector<RealD> stop; | ||||
|      | ||||
|     GridBase* DoublePrecGrid = src_d_in[0].Grid(); | ||||
|     FieldD tmp_d(DoublePrecGrid); | ||||
|     tmp_d.Checkerboard() = cb; | ||||
|      | ||||
|     FieldD tmp2_d(DoublePrecGrid); | ||||
|     tmp2_d.Checkerboard() = cb; | ||||
|  | ||||
|     std::vector<FieldD> src_d; | ||||
|     std::vector<FieldF> src_f; | ||||
|     std::vector<FieldF> sol_f; | ||||
|  | ||||
|     for (int i=0; i<NBatch; i++) { | ||||
|       sol_d[i].Checkerboard() = cb; | ||||
|  | ||||
|       src_norm.push_back(norm2(src_d_in[i])); | ||||
|       norm.push_back(0.); | ||||
|       stop.push_back(src_norm[i] * Tolerance*Tolerance); | ||||
|  | ||||
|       src_d.push_back(src_d_in[i]); //source for next inner iteration, computed from residual during operation | ||||
|  | ||||
|       src_f.push_back(SinglePrecGrid); | ||||
|       src_f[i].Checkerboard() = cb; | ||||
|  | ||||
|       sol_f.push_back(SinglePrecGrid); | ||||
|       sol_f[i].Checkerboard() = cb; | ||||
|     } | ||||
|      | ||||
|     RealD inner_tol = InnerTolerance; | ||||
|      | ||||
|     ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations); | ||||
|     CG_f.ErrorOnNoConverge = false; | ||||
|      | ||||
|     Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count | ||||
|        | ||||
|     for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){ | ||||
|       std::cout << GridLogMessage << std::endl; | ||||
|       std::cout << GridLogMessage << "Outer iteration " << outer_iter << std::endl; | ||||
|        | ||||
|       bool allConverged = true; | ||||
|        | ||||
|       for (int i=0; i<NBatch; i++) { | ||||
|         //Compute double precision rsd and also new RHS vector. | ||||
|         Linop_d.HermOp(sol_d[i], tmp_d); | ||||
|         norm[i] = axpy_norm(src_d[i], -1., tmp_d, src_d_in[i]); //src_d is residual vector | ||||
|          | ||||
|         std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: Outer iteration " << outer_iter <<" solve " << i << " residual "<< norm[i] << " target "<< stop[i] <<std::endl; | ||||
|  | ||||
|         PrecChangeTimer.Start(); | ||||
|         precisionChange(src_f[i], src_d[i]); | ||||
|         PrecChangeTimer.Stop(); | ||||
|          | ||||
|         sol_f[i] = Zero(); | ||||
|        | ||||
|         if(norm[i] > OuterLoopNormMult * stop[i]) { | ||||
|           allConverged = false; | ||||
|         } | ||||
|       } | ||||
|       if (allConverged) break; | ||||
|  | ||||
|       if (updateResidual) { | ||||
|         RealD normMax = *std::max_element(std::begin(norm), std::end(norm)); | ||||
|         RealD stopMax = *std::max_element(std::begin(stop), std::end(stop)); | ||||
|         while( normMax * inner_tol * inner_tol < stopMax) inner_tol *= 2;  // inner_tol = sqrt(stop/norm) ?? | ||||
|         CG_f.Tolerance = inner_tol; | ||||
|       } | ||||
|  | ||||
|       //Optionally improve inner solver guess (eg using known eigenvectors) | ||||
|       if(guesser != NULL) { | ||||
|         (*guesser)(src_f, sol_f); | ||||
|       } | ||||
|  | ||||
|       for (int i=0; i<NBatch; i++) { | ||||
|         //Inner CG | ||||
|         InnerCGtimer.Start(); | ||||
|         CG_f(Linop_f, src_f[i], sol_f[i]); | ||||
|         InnerCGtimer.Stop(); | ||||
|         TotalInnerIterations[i] += CG_f.IterationsToComplete; | ||||
|          | ||||
|         //Convert sol back to double and add to double prec solution | ||||
|         PrecChangeTimer.Start(); | ||||
|         precisionChange(tmp_d, sol_f[i]); | ||||
|         PrecChangeTimer.Stop(); | ||||
|          | ||||
|         axpy(sol_d[i], 1.0, tmp_d, sol_d[i]); | ||||
|       } | ||||
|  | ||||
|     } | ||||
|      | ||||
|     //Final trial CG | ||||
|     std::cout << GridLogMessage << std::endl; | ||||
|     std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: Starting final patch-up double-precision solve"<<std::endl; | ||||
|      | ||||
|     for (int i=0; i<NBatch; i++) { | ||||
|       ConjugateGradient<FieldD> CG_d(Tolerance, MaxPatchupIterations); | ||||
|       CG_d(Linop_d, src_d_in[i], sol_d[i]); | ||||
|       TotalFinalStepIterations[i] += CG_d.IterationsToComplete; | ||||
|     } | ||||
|  | ||||
|     TotalTimer.Stop(); | ||||
|  | ||||
|     std::cout << GridLogMessage << std::endl; | ||||
|     for (int i=0; i<NBatch; i++) { | ||||
|       std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: solve " << i << " Inner CG iterations " << TotalInnerIterations[i] << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations[i] << std::endl; | ||||
|     } | ||||
|     std::cout << GridLogMessage << std::endl; | ||||
|     std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: Total time " << TotalTimer.Elapsed() << " Precision change " << PrecChangeTimer.Elapsed() << " Inner CG total " << InnerCGtimer.Elapsed() << std::endl; | ||||
|      | ||||
|   } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif | ||||
| @@ -44,7 +44,7 @@ public: | ||||
|  | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   //  RealD   Tolerance; | ||||
|   RealD   Tolerance; | ||||
|   Integer MaxIterations; | ||||
|   Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion | ||||
|   std::vector<int> IterationsToCompleteShift;  // Iterations for this shift | ||||
| @@ -52,7 +52,7 @@ public: | ||||
|   MultiShiftFunction shifts; | ||||
|   std::vector<RealD> TrueResidualShift; | ||||
|  | ||||
|   ConjugateGradientMultiShift(Integer maxit, const MultiShiftFunction &_shifts) :  | ||||
|   ConjugateGradientMultiShift(Integer maxit,MultiShiftFunction &_shifts) :  | ||||
|     MaxIterations(maxit), | ||||
|     shifts(_shifts) | ||||
|   {  | ||||
| @@ -84,7 +84,6 @@ public: | ||||
|  | ||||
|   void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector<Field> &psi) | ||||
|   { | ||||
|     GRID_TRACE("ConjugateGradientMultiShift"); | ||||
|    | ||||
|     GridBase *grid = src.Grid(); | ||||
|    | ||||
| @@ -144,7 +143,7 @@ public: | ||||
|     for(int s=0;s<nshift;s++){ | ||||
|       rsq[s] = cp * mresidual[s] * mresidual[s]; | ||||
|       std::cout<<GridLogMessage<<"ConjugateGradientMultiShift: shift "<<s | ||||
| 	       <<" target resid^2 "<<rsq[s]<<std::endl; | ||||
| 	       <<" target resid "<<rsq[s]<<std::endl; | ||||
|       ps[s] = src; | ||||
|     } | ||||
|     // r and p for primary | ||||
| @@ -184,9 +183,6 @@ public: | ||||
|       axpby(psi[s],0.,-bs[s]*alpha[s],src,src); | ||||
|     } | ||||
|    | ||||
|     std::cout << GridLogIterative << "ConjugateGradientMultiShift: initial rn (|src|^2) =" << rn << " qq (|MdagM src|^2) =" << qq << " d ( dot(src, [MdagM + m_0]src) ) =" << d << " c=" << c << std::endl; | ||||
|      | ||||
|    | ||||
|   /////////////////////////////////////// | ||||
|   // Timers | ||||
|   /////////////////////////////////////// | ||||
| @@ -326,7 +322,7 @@ public: | ||||
|       std::cout << GridLogMessage << "Time Breakdown "<<std::endl; | ||||
|       std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed()     <<std::endl; | ||||
|       std::cout << GridLogMessage << "\tAXPY    " << AXPYTimer.Elapsed()     <<std::endl; | ||||
|       std::cout << GridLogMessage << "\tMatrix   " << MatrixTimer.Elapsed()     <<std::endl; | ||||
|       std::cout << GridLogMessage << "\tMarix    " << MatrixTimer.Elapsed()     <<std::endl; | ||||
|       std::cout << GridLogMessage << "\tShift    " << ShiftTimer.Elapsed()     <<std::endl; | ||||
|  | ||||
|       IterationsToComplete = k;	 | ||||
|   | ||||
| @@ -1,373 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: Christopher Kelly <ckelly@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| //CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision.  | ||||
| //The residual is stored in single precision, but the search directions and solution are stored in double precision.  | ||||
| //Every update_freq iterations the residual is corrected in double precision.  | ||||
| //For safety the a final regular CG is applied to clean up if necessary | ||||
|  | ||||
| //PB Pure single, then double fixup | ||||
|  | ||||
| template<class FieldD, class FieldF, | ||||
| 	 typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0, | ||||
| 	 typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>  | ||||
| class ConjugateGradientMultiShiftMixedPrecCleanup : public OperatorMultiFunction<FieldD>, | ||||
| 					     public OperatorFunction<FieldD> | ||||
| { | ||||
| public:                                                 | ||||
|  | ||||
|   using OperatorFunction<FieldD>::operator(); | ||||
|  | ||||
|   RealD   Tolerance; | ||||
|   Integer MaxIterationsMshift; | ||||
|   Integer MaxIterations; | ||||
|   Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion | ||||
|   std::vector<int> IterationsToCompleteShift;  // Iterations for this shift | ||||
|   int verbose; | ||||
|   MultiShiftFunction shifts; | ||||
|   std::vector<RealD> TrueResidualShift; | ||||
|  | ||||
|   int ReliableUpdateFreq; //number of iterations between reliable updates | ||||
|  | ||||
|   GridBase* SinglePrecGrid; //Grid for single-precision fields | ||||
|   LinearOperatorBase<FieldF> &Linop_f; //single precision | ||||
|  | ||||
|   ConjugateGradientMultiShiftMixedPrecCleanup(Integer maxit, const MultiShiftFunction &_shifts, | ||||
| 				       GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f, | ||||
| 				       int _ReliableUpdateFreq) :  | ||||
|     MaxIterationsMshift(maxit),  shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq), | ||||
|     MaxIterations(20000) | ||||
|   {  | ||||
|     verbose=1; | ||||
|     IterationsToCompleteShift.resize(_shifts.order); | ||||
|     TrueResidualShift.resize(_shifts.order); | ||||
|   } | ||||
|  | ||||
|   void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi) | ||||
|   { | ||||
|     GridBase *grid = src.Grid(); | ||||
|     int nshift = shifts.order; | ||||
|     std::vector<FieldD> results(nshift,grid); | ||||
|     (*this)(Linop,src,results,psi); | ||||
|   } | ||||
|   void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi) | ||||
|   { | ||||
|     int nshift = shifts.order; | ||||
|  | ||||
|     (*this)(Linop,src,results); | ||||
|    | ||||
|     psi = shifts.norm*src; | ||||
|     for(int i=0;i<nshift;i++){ | ||||
|       psi = psi + shifts.residues[i]*results[i]; | ||||
|     } | ||||
|  | ||||
|     return; | ||||
|   } | ||||
|  | ||||
|   void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d) | ||||
|   {  | ||||
|     GRID_TRACE("ConjugateGradientMultiShiftMixedPrecCleanup"); | ||||
|     GridBase *DoublePrecGrid = src_d.Grid(); | ||||
|  | ||||
|     //////////////////////////////////////////////////////////////////////// | ||||
|     // Convenience references to the info stored in "MultiShiftFunction" | ||||
|     //////////////////////////////////////////////////////////////////////// | ||||
|     int nshift = shifts.order; | ||||
|  | ||||
|     std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts" | ||||
|     std::vector<RealD> &mresidual(shifts.tolerances); | ||||
|     std::vector<RealD> alpha(nshift,1.0); | ||||
|  | ||||
|     //Double precision search directions | ||||
|     FieldD p_d(DoublePrecGrid); | ||||
|     std::vector<FieldF> ps_f (nshift, SinglePrecGrid);// Search directions (single precision) | ||||
|     std::vector<FieldF> psi_f(nshift, SinglePrecGrid);// solutions (single precision) | ||||
|  | ||||
|     FieldD tmp_d(DoublePrecGrid); | ||||
|     FieldD r_d(DoublePrecGrid); | ||||
|     FieldF r_f(SinglePrecGrid); | ||||
|     FieldD mmp_d(DoublePrecGrid); | ||||
|  | ||||
|     assert(psi_d.size()==nshift); | ||||
|     assert(mass.size()==nshift); | ||||
|     assert(mresidual.size()==nshift); | ||||
|    | ||||
|     // dynamic sized arrays on stack; 2d is a pain with vector | ||||
|     RealD  bs[nshift]; | ||||
|     RealD  rsq[nshift]; | ||||
|     RealD  rsqf[nshift]; | ||||
|     RealD  z[nshift][2]; | ||||
|     int     converged[nshift]; | ||||
|    | ||||
|     const int       primary =0; | ||||
|    | ||||
|     //Primary shift fields CG iteration | ||||
|     RealD a,b,c,d; | ||||
|     RealD cp,bp,qq; //prev | ||||
|    | ||||
|     // Matrix mult fields | ||||
|     FieldF p_f(SinglePrecGrid); | ||||
|     FieldF mmp_f(SinglePrecGrid); | ||||
|  | ||||
|     // Check lightest mass | ||||
|     for(int s=0;s<nshift;s++){ | ||||
|       assert( mass[s]>= mass[primary] ); | ||||
|       converged[s]=0; | ||||
|     } | ||||
|    | ||||
|     // Wire guess to zero | ||||
|     // Residuals "r" are src | ||||
|     // First search direction "p" is also src | ||||
|     cp = norm2(src_d); | ||||
|  | ||||
|     // Handle trivial case of zero src. | ||||
|     if( cp == 0. ){ | ||||
|       for(int s=0;s<nshift;s++){ | ||||
| 	psi_d[s] = Zero(); | ||||
| 	psi_f[s] = Zero(); | ||||
| 	IterationsToCompleteShift[s] = 1; | ||||
| 	TrueResidualShift[s] = 0.; | ||||
|       } | ||||
|       return; | ||||
|     } | ||||
|  | ||||
|     for(int s=0;s<nshift;s++){ | ||||
|       rsq[s] = cp * mresidual[s] * mresidual[s]; | ||||
|       rsqf[s] =rsq[s]; | ||||
|       std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: shift "<< s <<" target resid "<<rsq[s]<<std::endl; | ||||
|       //      ps_d[s] = src_d; | ||||
|       precisionChange(ps_f[s],src_d); | ||||
|     } | ||||
|     // r and p for primary | ||||
|     p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys | ||||
|     r_d = p_d; | ||||
|      | ||||
|     //MdagM+m[0] | ||||
|     precisionChange(p_f,p_d); | ||||
|     Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp) | ||||
|     precisionChange(tmp_d,mmp_f); | ||||
|     Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp) | ||||
|     tmp_d = tmp_d - mmp_d; | ||||
|     std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl; | ||||
|     //    assert(norm2(tmp_d)< 1.0e-4); | ||||
|  | ||||
|     axpy(mmp_d,mass[0],p_d,mmp_d); | ||||
|     RealD rn = norm2(p_d); | ||||
|     d += rn*mass[0]; | ||||
|  | ||||
|     b = -cp /d; | ||||
|    | ||||
|     // Set up the various shift variables | ||||
|     int       iz=0; | ||||
|     z[0][1-iz] = 1.0; | ||||
|     z[0][iz]   = 1.0; | ||||
|     bs[0]      = b; | ||||
|     for(int s=1;s<nshift;s++){ | ||||
|       z[s][1-iz] = 1.0; | ||||
|       z[s][iz]   = 1.0/( 1.0 - b*(mass[s]-mass[0])); | ||||
|       bs[s]      = b*z[s][iz];  | ||||
|     } | ||||
|    | ||||
|     // r += b[0] A.p[0] | ||||
|     // c= norm(r) | ||||
|     c=axpy_norm(r_d,b,mmp_d,r_d); | ||||
|    | ||||
|     for(int s=0;s<nshift;s++) { | ||||
|       axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d); | ||||
|       precisionChange(psi_f[s],psi_d[s]); | ||||
|     } | ||||
|    | ||||
|     /////////////////////////////////////// | ||||
|     // Timers | ||||
|     /////////////////////////////////////// | ||||
|     GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer; | ||||
|  | ||||
|     SolverTimer.Start(); | ||||
|    | ||||
|     // Iteration loop | ||||
|     int k; | ||||
|    | ||||
|     for (k=1;k<=MaxIterationsMshift;k++){     | ||||
|  | ||||
|       a = c /cp; | ||||
|       AXPYTimer.Start(); | ||||
|       axpy(p_d,a,p_d,r_d);  | ||||
|       AXPYTimer.Stop(); | ||||
|  | ||||
|       PrecChangeTimer.Start(); | ||||
|       precisionChange(r_f, r_d); | ||||
|       PrecChangeTimer.Stop(); | ||||
|  | ||||
|       AXPYTimer.Start(); | ||||
|       for(int s=0;s<nshift;s++){ | ||||
| 	if ( ! converged[s] ) {  | ||||
| 	  if (s==0){ | ||||
| 	    axpy(ps_f[s],a,ps_f[s],r_f); | ||||
| 	  } else{ | ||||
| 	    RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b); | ||||
| 	    axpby(ps_f[s],z[s][iz],as,r_f,ps_f[s]); | ||||
| 	  } | ||||
| 	} | ||||
|       } | ||||
|       AXPYTimer.Stop(); | ||||
|  | ||||
|       cp=c; | ||||
|       PrecChangeTimer.Start(); | ||||
|       precisionChange(p_f, p_d); //get back single prec search direction for linop | ||||
|       PrecChangeTimer.Stop(); | ||||
|       MatrixTimer.Start();   | ||||
|       Linop_f.HermOp(p_f,mmp_f); | ||||
|       MatrixTimer.Stop();   | ||||
|       PrecChangeTimer.Start(); | ||||
|       precisionChange(mmp_d, mmp_f); // From Float to Double | ||||
|       PrecChangeTimer.Stop(); | ||||
|  | ||||
|       d=real(innerProduct(p_d,mmp_d));     | ||||
|       axpy(mmp_d,mass[0],p_d,mmp_d); | ||||
|       RealD rn = norm2(p_d); | ||||
|       d += rn*mass[0]; | ||||
|      | ||||
|       bp=b; | ||||
|       b=-cp/d; | ||||
|  | ||||
|       // Toggle the recurrence history | ||||
|       bs[0] = b; | ||||
|       iz = 1-iz; | ||||
|       ShiftTimer.Start(); | ||||
|       for(int s=1;s<nshift;s++){ | ||||
| 	if((!converged[s])){ | ||||
| 	  RealD z0 = z[s][1-iz]; | ||||
| 	  RealD z1 = z[s][iz]; | ||||
| 	  z[s][iz] = z0*z1*bp | ||||
| 	    / (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b));  | ||||
| 	  bs[s] = b*z[s][iz]/z0; // NB sign  rel to Mike | ||||
| 	} | ||||
|       } | ||||
|       ShiftTimer.Stop(); | ||||
|  | ||||
|       //Update single precision solutions | ||||
|       AXPYTimer.Start(); | ||||
|       for(int s=0;s<nshift;s++){ | ||||
| 	int ss = s; | ||||
| 	if( (!converged[s]) ) {  | ||||
| 	  axpy(psi_f[ss],-bs[s]*alpha[s],ps_f[s],psi_f[ss]); | ||||
| 	} | ||||
|       } | ||||
|       c = axpy_norm(r_d,b,mmp_d,r_d); | ||||
|       AXPYTimer.Stop(); | ||||
|      | ||||
|       // Convergence checks | ||||
|       int all_converged = 1; | ||||
|       for(int s=0;s<nshift;s++){ | ||||
|        | ||||
| 	if ( (!converged[s]) ){ | ||||
| 	  IterationsToCompleteShift[s] = k; | ||||
| 	 | ||||
| 	  RealD css  = c * z[s][iz]* z[s][iz]; | ||||
| 	 | ||||
| 	  if(css<rsqf[s]){ | ||||
| 	    if ( ! converged[s] ) | ||||
| 	      std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup k="<<k<<" Shift "<<s<<" has converged"<<std::endl; | ||||
| 	    converged[s]=1; | ||||
| 	  } else { | ||||
| 	    all_converged=0; | ||||
| 	  } | ||||
|  | ||||
| 	} | ||||
|       } | ||||
|  | ||||
|       if ( all_converged || k == MaxIterationsMshift-1){ | ||||
|  | ||||
| 	SolverTimer.Stop(); | ||||
|  | ||||
| 	for(int s=0;s<nshift;s++){ | ||||
| 	  precisionChange(psi_d[s],psi_f[s]); | ||||
| 	} | ||||
|  | ||||
| 	 | ||||
| 	if ( all_converged ){ | ||||
| 	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: All shifts have converged iteration "<<k<<std::endl; | ||||
| 	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: Checking solutions"<<std::endl; | ||||
| 	} else { | ||||
| 	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: Not all shifts have converged iteration "<<k<<std::endl; | ||||
| 	} | ||||
| 	 | ||||
| 	// Check answers  | ||||
| 	for(int s=0; s < nshift; s++) {  | ||||
| 	  Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq); | ||||
| 	  axpy(tmp_d,mass[s],psi_d[s],mmp_d); | ||||
| 	  axpy(r_d,-alpha[s],src_d,tmp_d); | ||||
| 	  RealD rn = norm2(r_d); | ||||
| 	  RealD cn = norm2(src_d); | ||||
| 	  TrueResidualShift[s] = std::sqrt(rn/cn); | ||||
| 	  std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl; | ||||
|  | ||||
| 	  //If we have not reached the desired tolerance, do a (mixed precision) CG cleanup | ||||
| 	  if(rn >= rsq[s]){ | ||||
| 	    CleanupTimer.Start(); | ||||
| 	    std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: performing cleanup step for shift " << s << std::endl; | ||||
|  | ||||
| 	    //Setup linear operators for final cleanup | ||||
| 	    ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]); | ||||
| 	    ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]); | ||||
| 					        | ||||
| 	    MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d);  | ||||
| 	    cg(src_d, psi_d[s]); | ||||
| 	     | ||||
| 	    TrueResidualShift[s] = cg.TrueResidual; | ||||
| 	    CleanupTimer.Stop(); | ||||
| 	  } | ||||
| 	} | ||||
|  | ||||
| 	std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrecCleanup: Time Breakdown for body"<<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tSolver    " << SolverTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\t\tAXPY    " << AXPYTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\t\tMatrix    " << MatrixTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\t\tShift    " << ShiftTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl; | ||||
|  | ||||
| 	IterationsToComplete = k;	 | ||||
|  | ||||
| 	return; | ||||
|       } | ||||
|     | ||||
|     } | ||||
|     std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl; | ||||
|     assert(0); | ||||
|   } | ||||
|  | ||||
| }; | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| @@ -1,416 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: Christopher Kelly <ckelly@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H | ||||
| #define GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| //CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision.  | ||||
| //The residual is stored in single precision, but the search directions and solution are stored in double precision.  | ||||
| //Every update_freq iterations the residual is corrected in double precision.  | ||||
|      | ||||
| //For safety the a final regular CG is applied to clean up if necessary | ||||
|  | ||||
| //Linop to add shift to input linop, used in cleanup CG | ||||
| namespace ConjugateGradientMultiShiftMixedPrecSupport{ | ||||
| template<typename Field> | ||||
| class ShiftedLinop: public LinearOperatorBase<Field>{ | ||||
| public: | ||||
|   LinearOperatorBase<Field> &linop_base; | ||||
|   RealD shift; | ||||
|  | ||||
|   ShiftedLinop(LinearOperatorBase<Field> &_linop_base, RealD _shift): linop_base(_linop_base), shift(_shift){} | ||||
|  | ||||
|   void OpDiag (const Field &in, Field &out){ assert(0); } | ||||
|   void OpDir  (const Field &in, Field &out,int dir,int disp){ assert(0); } | ||||
|   void OpDirAll  (const Field &in, std::vector<Field> &out){ assert(0); } | ||||
|    | ||||
|   void Op     (const Field &in, Field &out){ assert(0); } | ||||
|   void AdjOp  (const Field &in, Field &out){ assert(0); } | ||||
|  | ||||
|   void HermOp(const Field &in, Field &out){ | ||||
|     linop_base.HermOp(in, out); | ||||
|     axpy(out, shift, in, out); | ||||
|   }     | ||||
|  | ||||
|   void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ | ||||
|     HermOp(in,out); | ||||
|     ComplexD dot = innerProduct(in,out); | ||||
|     n1=real(dot); | ||||
|     n2=norm2(out); | ||||
|   } | ||||
| }; | ||||
| }; | ||||
|  | ||||
|  | ||||
| template<class FieldD, class FieldF, | ||||
| 	 typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0, | ||||
| 	 typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>  | ||||
| class ConjugateGradientMultiShiftMixedPrec : public OperatorMultiFunction<FieldD>, | ||||
| 					     public OperatorFunction<FieldD> | ||||
| { | ||||
| public:                                                 | ||||
|  | ||||
|   using OperatorFunction<FieldD>::operator(); | ||||
|  | ||||
|   RealD   Tolerance; | ||||
|   Integer MaxIterationsMshift; | ||||
|   Integer MaxIterations; | ||||
|   Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion | ||||
|   std::vector<int> IterationsToCompleteShift;  // Iterations for this shift | ||||
|   int verbose; | ||||
|   MultiShiftFunction shifts; | ||||
|   std::vector<RealD> TrueResidualShift; | ||||
|  | ||||
|   int ReliableUpdateFreq; //number of iterations between reliable updates | ||||
|  | ||||
|   GridBase* SinglePrecGrid; //Grid for single-precision fields | ||||
|   LinearOperatorBase<FieldF> &Linop_f; //single precision | ||||
|  | ||||
|   ConjugateGradientMultiShiftMixedPrec(Integer maxit, const MultiShiftFunction &_shifts, | ||||
| 				       GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f, | ||||
| 				       int _ReliableUpdateFreq) :  | ||||
|     MaxIterationsMshift(maxit),  shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq), | ||||
|     MaxIterations(20000) | ||||
|   {  | ||||
|     verbose=1; | ||||
|     IterationsToCompleteShift.resize(_shifts.order); | ||||
|     TrueResidualShift.resize(_shifts.order); | ||||
|   } | ||||
|  | ||||
|   void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi) | ||||
|   { | ||||
|     GridBase *grid = src.Grid(); | ||||
|     int nshift = shifts.order; | ||||
|     std::vector<FieldD> results(nshift,grid); | ||||
|     (*this)(Linop,src,results,psi); | ||||
|   } | ||||
|   void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi) | ||||
|   { | ||||
|     int nshift = shifts.order; | ||||
|  | ||||
|     (*this)(Linop,src,results); | ||||
|    | ||||
|     psi = shifts.norm*src; | ||||
|     for(int i=0;i<nshift;i++){ | ||||
|       psi = psi + shifts.residues[i]*results[i]; | ||||
|     } | ||||
|  | ||||
|     return; | ||||
|   } | ||||
|  | ||||
|   void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d) | ||||
|   {  | ||||
|     GRID_TRACE("ConjugateGradientMultiShiftMixedPrec"); | ||||
|     GridBase *DoublePrecGrid = src_d.Grid(); | ||||
|  | ||||
|     precisionChangeWorkspace pc_wk_s_to_d(DoublePrecGrid,SinglePrecGrid); | ||||
|     precisionChangeWorkspace pc_wk_d_to_s(SinglePrecGrid,DoublePrecGrid); | ||||
|      | ||||
|     //////////////////////////////////////////////////////////////////////// | ||||
|     // Convenience references to the info stored in "MultiShiftFunction" | ||||
|     //////////////////////////////////////////////////////////////////////// | ||||
|     int nshift = shifts.order; | ||||
|  | ||||
|     std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts" | ||||
|     std::vector<RealD> &mresidual(shifts.tolerances); | ||||
|     std::vector<RealD> alpha(nshift,1.0); | ||||
|  | ||||
|     //Double precision search directions | ||||
|     FieldD p_d(DoublePrecGrid); | ||||
|     std::vector<FieldD> ps_d(nshift, DoublePrecGrid);// Search directions (double precision) | ||||
|  | ||||
|     FieldD tmp_d(DoublePrecGrid); | ||||
|     FieldD r_d(DoublePrecGrid); | ||||
|     FieldD mmp_d(DoublePrecGrid); | ||||
|  | ||||
|     assert(psi_d.size()==nshift); | ||||
|     assert(mass.size()==nshift); | ||||
|     assert(mresidual.size()==nshift); | ||||
|    | ||||
|     // dynamic sized arrays on stack; 2d is a pain with vector | ||||
|     RealD  bs[nshift]; | ||||
|     RealD  rsq[nshift]; | ||||
|     RealD  rsqf[nshift]; | ||||
|     RealD  z[nshift][2]; | ||||
|     int     converged[nshift]; | ||||
|    | ||||
|     const int       primary =0; | ||||
|    | ||||
|     //Primary shift fields CG iteration | ||||
|     RealD a,b,c,d; | ||||
|     RealD cp,bp,qq; //prev | ||||
|    | ||||
|     // Matrix mult fields | ||||
|     FieldF p_f(SinglePrecGrid); | ||||
|     FieldF mmp_f(SinglePrecGrid); | ||||
|  | ||||
|     // Check lightest mass | ||||
|     for(int s=0;s<nshift;s++){ | ||||
|       assert( mass[s]>= mass[primary] ); | ||||
|       converged[s]=0; | ||||
|     } | ||||
|    | ||||
|     // Wire guess to zero | ||||
|     // Residuals "r" are src | ||||
|     // First search direction "p" is also src | ||||
|     cp = norm2(src_d); | ||||
|  | ||||
|     // Handle trivial case of zero src. | ||||
|     if( cp == 0. ){ | ||||
|       for(int s=0;s<nshift;s++){ | ||||
| 	psi_d[s] = Zero(); | ||||
| 	IterationsToCompleteShift[s] = 1; | ||||
| 	TrueResidualShift[s] = 0.; | ||||
|       } | ||||
|       return; | ||||
|     } | ||||
|  | ||||
|     for(int s=0;s<nshift;s++){ | ||||
|       rsq[s] = cp * mresidual[s] * mresidual[s]; | ||||
|       rsqf[s] =rsq[s]; | ||||
|       std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift "<< s <<" target resid "<<rsq[s]<<std::endl; | ||||
|       ps_d[s] = src_d; | ||||
|     } | ||||
|     // r and p for primary | ||||
|     p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys | ||||
|     r_d = p_d; | ||||
|      | ||||
|     //MdagM+m[0] | ||||
|     precisionChange(p_f, p_d, pc_wk_d_to_s); | ||||
|  | ||||
|     Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp) | ||||
|     precisionChange(tmp_d, mmp_f, pc_wk_s_to_d); | ||||
|     Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp) | ||||
|     tmp_d = tmp_d - mmp_d; | ||||
|     std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl; | ||||
|     assert(norm2(tmp_d)< 1.0); | ||||
|  | ||||
|     axpy(mmp_d,mass[0],p_d,mmp_d); | ||||
|     RealD rn = norm2(p_d); | ||||
|     d += rn*mass[0]; | ||||
|  | ||||
|     b = -cp /d; | ||||
|    | ||||
|     // Set up the various shift variables | ||||
|     int       iz=0; | ||||
|     z[0][1-iz] = 1.0; | ||||
|     z[0][iz]   = 1.0; | ||||
|     bs[0]      = b; | ||||
|     for(int s=1;s<nshift;s++){ | ||||
|       z[s][1-iz] = 1.0; | ||||
|       z[s][iz]   = 1.0/( 1.0 - b*(mass[s]-mass[0])); | ||||
|       bs[s]      = b*z[s][iz];  | ||||
|     } | ||||
|    | ||||
|     // r += b[0] A.p[0] | ||||
|     // c= norm(r) | ||||
|     c=axpy_norm(r_d,b,mmp_d,r_d); | ||||
|    | ||||
|     for(int s=0;s<nshift;s++) { | ||||
|       axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d); | ||||
|     } | ||||
|    | ||||
|     /////////////////////////////////////// | ||||
|     // Timers | ||||
|     /////////////////////////////////////// | ||||
|     GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer; | ||||
|  | ||||
|     SolverTimer.Start(); | ||||
|    | ||||
|     // Iteration loop | ||||
|     int k; | ||||
|    | ||||
|     for (k=1;k<=MaxIterationsMshift;k++){     | ||||
|  | ||||
|       a = c /cp; | ||||
|       AXPYTimer.Start(); | ||||
|       axpy(p_d,a,p_d,r_d);  | ||||
|  | ||||
|       for(int s=0;s<nshift;s++){ | ||||
| 	if ( ! converged[s] ) {  | ||||
| 	  if (s==0){ | ||||
| 	    axpy(ps_d[s],a,ps_d[s],r_d); | ||||
| 	  } else{ | ||||
| 	    RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b); | ||||
| 	    axpby(ps_d[s],z[s][iz],as,r_d,ps_d[s]); | ||||
| 	  } | ||||
| 	} | ||||
|       } | ||||
|       AXPYTimer.Stop(); | ||||
|  | ||||
|       PrecChangeTimer.Start(); | ||||
|       precisionChange(p_f, p_d, pc_wk_d_to_s); //get back single prec search direction for linop | ||||
|       PrecChangeTimer.Stop(); | ||||
|  | ||||
|       cp=c; | ||||
|       MatrixTimer.Start();   | ||||
|       Linop_f.HermOp(p_f,mmp_f); | ||||
|       MatrixTimer.Stop();   | ||||
|  | ||||
|       PrecChangeTimer.Start(); | ||||
|       precisionChange(mmp_d, mmp_f, pc_wk_s_to_d); // From Float to Double | ||||
|       PrecChangeTimer.Stop(); | ||||
|  | ||||
|       AXPYTimer.Start(); | ||||
|       d=real(innerProduct(p_d,mmp_d));     | ||||
|       axpy(mmp_d,mass[0],p_d,mmp_d); | ||||
|       AXPYTimer.Stop(); | ||||
|       RealD rn = norm2(p_d); | ||||
|       d += rn*mass[0]; | ||||
|      | ||||
|       bp=b; | ||||
|       b=-cp/d; | ||||
|  | ||||
|       // Toggle the recurrence history | ||||
|       bs[0] = b; | ||||
|       iz = 1-iz; | ||||
|       ShiftTimer.Start(); | ||||
|       for(int s=1;s<nshift;s++){ | ||||
| 	if((!converged[s])){ | ||||
| 	  RealD z0 = z[s][1-iz]; | ||||
| 	  RealD z1 = z[s][iz]; | ||||
| 	  z[s][iz] = z0*z1*bp | ||||
| 	    / (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b));  | ||||
| 	  bs[s] = b*z[s][iz]/z0; // NB sign  rel to Mike | ||||
| 	} | ||||
|       } | ||||
|       ShiftTimer.Stop(); | ||||
|  | ||||
|       //Update double precision solutions | ||||
|       AXPYTimer.Start(); | ||||
|       for(int s=0;s<nshift;s++){ | ||||
| 	int ss = s; | ||||
| 	if( (!converged[s]) ) {  | ||||
| 	  axpy(psi_d[ss],-bs[s]*alpha[s],ps_d[s],psi_d[ss]); | ||||
| 	} | ||||
|       } | ||||
|  | ||||
|       //Perform reliable update if necessary; otherwise update residual from single-prec mmp | ||||
|       c = axpy_norm(r_d,b,mmp_d,r_d); | ||||
|  | ||||
|       AXPYTimer.Stop(); | ||||
|  | ||||
|       if(k % ReliableUpdateFreq == 0){ | ||||
| 	RealD c_old = c; | ||||
| 	//Replace r with true residual | ||||
| 	MatrixTimer.Start();   | ||||
| 	Linop_d.HermOp(psi_d[0],mmp_d);  | ||||
| 	MatrixTimer.Stop();   | ||||
|  | ||||
| 	AXPYTimer.Start(); | ||||
| 	axpy(mmp_d,mass[0],psi_d[0],mmp_d); | ||||
|  | ||||
| 	c = axpy_norm(r_d, -1.0, mmp_d, src_d); | ||||
| 	AXPYTimer.Stop(); | ||||
|  | ||||
| 	std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<< ", replaced |r|^2 = "<<c_old <<" with |r|^2 = "<<c<<std::endl; | ||||
|       } | ||||
|      | ||||
|       // Convergence checks | ||||
|       int all_converged = 1; | ||||
|       for(int s=0;s<nshift;s++){ | ||||
|        | ||||
| 	if ( (!converged[s]) ){ | ||||
| 	  IterationsToCompleteShift[s] = k; | ||||
| 	 | ||||
| 	  RealD css  = c * z[s][iz]* z[s][iz]; | ||||
| 	 | ||||
| 	  if(css<rsqf[s]){ | ||||
| 	    if ( ! converged[s] ) | ||||
| 	      std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<<" Shift "<<s<<" has converged"<<std::endl; | ||||
| 	    converged[s]=1; | ||||
| 	  } else { | ||||
| 	    all_converged=0; | ||||
| 	  } | ||||
|  | ||||
| 	} | ||||
|       } | ||||
|  | ||||
|       if ( all_converged || k == MaxIterationsMshift-1){ | ||||
|  | ||||
| 	SolverTimer.Stop(); | ||||
|  | ||||
| 	if ( all_converged ){ | ||||
| 	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: All shifts have converged iteration "<<k<<std::endl; | ||||
| 	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Checking solutions"<<std::endl; | ||||
| 	} else { | ||||
| 	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Not all shifts have converged iteration "<<k<<std::endl; | ||||
| 	} | ||||
| 	 | ||||
| 	// Check answers  | ||||
| 	for(int s=0; s < nshift; s++) {  | ||||
| 	  Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq); | ||||
| 	  axpy(tmp_d,mass[s],psi_d[s],mmp_d); | ||||
| 	  axpy(r_d,-alpha[s],src_d,tmp_d); | ||||
| 	  RealD rn = norm2(r_d); | ||||
| 	  RealD cn = norm2(src_d); | ||||
| 	  TrueResidualShift[s] = std::sqrt(rn/cn); | ||||
| 	  std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl; | ||||
|  | ||||
| 	  //If we have not reached the desired tolerance, do a (mixed precision) CG cleanup | ||||
| 	  if(rn >= rsq[s]){ | ||||
| 	    CleanupTimer.Start(); | ||||
| 	    std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: performing cleanup step for shift " << s << std::endl; | ||||
|  | ||||
| 	    //Setup linear operators for final cleanup | ||||
| 	    ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]); | ||||
| 	    ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]); | ||||
| 					        | ||||
| 	    MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d);  | ||||
| 	    cg(src_d, psi_d[s]); | ||||
| 	     | ||||
| 	    TrueResidualShift[s] = cg.TrueResidual; | ||||
| 	    CleanupTimer.Stop(); | ||||
| 	  } | ||||
| 	} | ||||
|  | ||||
| 	std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrec: Time Breakdown for body"<<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tSolver    " << SolverTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\t\tAXPY    " << AXPYTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\t\tMatrix    " << MatrixTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\t\tShift    " << ShiftTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed()     <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl; | ||||
|  | ||||
| 	IterationsToComplete = k;	 | ||||
|  | ||||
| 	return; | ||||
|       } | ||||
|     | ||||
|     } | ||||
|     std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl; | ||||
|     assert(0); | ||||
|   } | ||||
|  | ||||
| }; | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
| @@ -48,7 +48,7 @@ public: | ||||
|   LinearOperatorBase<FieldF> &Linop_f; | ||||
|   LinearOperatorBase<FieldD> &Linop_d; | ||||
|   GridBase* SinglePrecGrid; | ||||
|   RealD Delta; //reliable update parameter. A reliable update is performed when the residual drops by a factor of Delta relative to its value at the last update | ||||
|   RealD Delta; //reliable update parameter | ||||
|  | ||||
|   //Optional ability to switch to a different linear operator once the tolerance reaches a certain point. Useful for single/half -> single/single | ||||
|   LinearOperatorBase<FieldF> *Linop_fallback; | ||||
| @@ -65,9 +65,7 @@ public: | ||||
|       ErrorOnNoConverge(err_on_no_conv), | ||||
|       DoFinalCleanup(true), | ||||
|       Linop_fallback(NULL) | ||||
|   { | ||||
|     assert(Delta > 0. && Delta < 1. && "Expect  0 < Delta < 1"); | ||||
|   }; | ||||
|   {}; | ||||
|  | ||||
|   void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){ | ||||
|     Linop_fallback = &_Linop_fallback; | ||||
| @@ -75,7 +73,6 @@ public: | ||||
|   } | ||||
|      | ||||
|   void operator()(const FieldD &src, FieldD &psi) { | ||||
|     GRID_TRACE("ConjugateGradientReliableUpdate"); | ||||
|     LinearOperatorBase<FieldF> *Linop_f_use = &Linop_f; | ||||
|     bool using_fallback = false; | ||||
|        | ||||
| @@ -118,12 +115,9 @@ public: | ||||
|     } | ||||
|  | ||||
|     //Single prec initialization | ||||
|     precisionChangeWorkspace pc_wk_sp_to_dp(src.Grid(), SinglePrecGrid); | ||||
|     precisionChangeWorkspace pc_wk_dp_to_sp(SinglePrecGrid, src.Grid()); | ||||
|      | ||||
|     FieldF r_f(SinglePrecGrid); | ||||
|     r_f.Checkerboard() = r.Checkerboard(); | ||||
|     precisionChange(r_f, r, pc_wk_dp_to_sp); | ||||
|     precisionChange(r_f, r); | ||||
|  | ||||
|     FieldF psi_f(r_f); | ||||
|     psi_f = Zero(); | ||||
| @@ -139,7 +133,6 @@ public: | ||||
|     GridStopWatch LinalgTimer; | ||||
|     GridStopWatch MatrixTimer; | ||||
|     GridStopWatch SolverTimer; | ||||
|     GridStopWatch PrecChangeTimer; | ||||
|  | ||||
|     SolverTimer.Start(); | ||||
|     int k = 0; | ||||
| @@ -179,9 +172,7 @@ public: | ||||
|       // Stopping condition | ||||
|       if (cp <= rsq) { | ||||
| 	//Although not written in the paper, I assume that I have to add on the final solution | ||||
| 	PrecChangeTimer.Start(); | ||||
| 	precisionChange(mmp, psi_f, pc_wk_sp_to_dp); | ||||
| 	PrecChangeTimer.Stop(); | ||||
| 	precisionChange(mmp, psi_f); | ||||
| 	psi = psi + mmp; | ||||
| 	 | ||||
| 	 | ||||
| @@ -202,9 +193,6 @@ public: | ||||
| 	std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tPrecChange " << PrecChangeTimer.Elapsed() <<std::endl; | ||||
| 	std::cout << GridLogMessage << "\tPrecChange avg time " << PrecChangeTimer.Elapsed()/(2*l+1) <<std::endl; | ||||
|  | ||||
|  | ||||
| 	IterationsToComplete = k;	 | ||||
| 	ReliableUpdatesPerformed = l; | ||||
| @@ -225,21 +213,14 @@ public: | ||||
|       else if(cp < Delta * MaxResidSinceLastRelUp) { //reliable update | ||||
| 	std::cout << GridLogMessage << "ConjugateGradientReliableUpdate " | ||||
| 		  << cp << "(residual) < " << Delta << "(Delta) * " << MaxResidSinceLastRelUp << "(MaxResidSinceLastRelUp) on iteration " << k << " : performing reliable update\n"; | ||||
| 	PrecChangeTimer.Start(); | ||||
| 	precisionChange(mmp, psi_f, pc_wk_sp_to_dp); | ||||
| 	PrecChangeTimer.Stop(); | ||||
| 	precisionChange(mmp, psi_f); | ||||
| 	psi = psi + mmp; | ||||
|  | ||||
| 	MatrixTimer.Start(); | ||||
| 	Linop_d.HermOpAndNorm(psi, mmp, d, qq); | ||||
| 	MatrixTimer.Stop(); | ||||
| 	 | ||||
| 	r = src - mmp; | ||||
|  | ||||
| 	psi_f = Zero(); | ||||
| 	PrecChangeTimer.Start(); | ||||
| 	precisionChange(r_f, r, pc_wk_dp_to_sp); | ||||
| 	PrecChangeTimer.Stop(); | ||||
| 	precisionChange(r_f, r); | ||||
| 	cp = norm2(r); | ||||
| 	MaxResidSinceLastRelUp = cp; | ||||
|  | ||||
|   | ||||
| @@ -33,19 +33,16 @@ namespace Grid { | ||||
| template<class Field> | ||||
| class ZeroGuesser: public LinearFunction<Field> { | ||||
| public: | ||||
|   using LinearFunction<Field>::operator(); | ||||
|     virtual void operator()(const Field &src, Field &guess) { guess = Zero(); }; | ||||
| }; | ||||
| template<class Field> | ||||
| class DoNothingGuesser: public LinearFunction<Field> { | ||||
| public: | ||||
|   using LinearFunction<Field>::operator(); | ||||
|   virtual void operator()(const Field &src, Field &guess) {  }; | ||||
| }; | ||||
| template<class Field> | ||||
| class SourceGuesser: public LinearFunction<Field> { | ||||
| public: | ||||
|   using LinearFunction<Field>::operator(); | ||||
|   virtual void operator()(const Field &src, Field &guess) { guess = src; }; | ||||
| }; | ||||
| 
 | ||||
| @@ -57,24 +54,15 @@ class DeflatedGuesser: public LinearFunction<Field> { | ||||
| private: | ||||
|   const std::vector<Field> &evec; | ||||
|   const std::vector<RealD> &eval; | ||||
|   const unsigned int       N; | ||||
| 
 | ||||
| public: | ||||
|   using LinearFunction<Field>::operator(); | ||||
| 
 | ||||
|   DeflatedGuesser(const std::vector<Field> & _evec,const std::vector<RealD> & _eval) | ||||
|   : DeflatedGuesser(_evec, _eval, _evec.size()) | ||||
|   {} | ||||
| 
 | ||||
|   DeflatedGuesser(const std::vector<Field> & _evec, const std::vector<RealD> & _eval, const unsigned int _N) | ||||
|   : evec(_evec), eval(_eval), N(_N) | ||||
|   { | ||||
|     assert(evec.size()==eval.size()); | ||||
|     assert(N <= evec.size()); | ||||
|   }  | ||||
|   DeflatedGuesser(const std::vector<Field> & _evec,const std::vector<RealD> & _eval) : evec(_evec), eval(_eval) {}; | ||||
| 
 | ||||
|   virtual void operator()(const Field &src,Field &guess) { | ||||
|     guess = Zero(); | ||||
|     assert(evec.size()==eval.size()); | ||||
|     auto N = evec.size(); | ||||
|     for (int i=0;i<N;i++) { | ||||
|       const Field& tmp = evec[i]; | ||||
|       axpy(guess,TensorRemove(innerProduct(tmp,src)) / eval[i],tmp,guess); | ||||
| @@ -91,7 +79,6 @@ private: | ||||
|   const std::vector<RealD>       &eval_coarse; | ||||
| public: | ||||
|    | ||||
|   using LinearFunction<FineField>::operator(); | ||||
|   LocalCoherenceDeflatedGuesser(const std::vector<FineField>   &_subspace, | ||||
| 				const std::vector<CoarseField> &_evec_coarse, | ||||
| 				const std::vector<RealD>       &_eval_coarse) | ||||
| @@ -113,42 +100,6 @@ public: | ||||
|     blockPromote(guess_coarse,guess,subspace); | ||||
|     guess.Checkerboard() = src.Checkerboard(); | ||||
|   }; | ||||
| 
 | ||||
|   void operator()(const std::vector<FineField> &src,std::vector<FineField> &guess) { | ||||
|     int Nevec = (int)evec_coarse.size(); | ||||
|     int Nsrc = (int)src.size(); | ||||
|     // make temp variables
 | ||||
|     std::vector<CoarseField> src_coarse(Nsrc,evec_coarse[0].Grid()); | ||||
|     std::vector<CoarseField> guess_coarse(Nsrc,evec_coarse[0].Grid());     | ||||
|     //Preporcessing
 | ||||
|     std::cout << GridLogMessage << "Start BlockProject for loop" << std::endl; | ||||
|     for (int j=0;j<Nsrc;j++) | ||||
|     { | ||||
|     guess_coarse[j] = Zero(); | ||||
|     std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl; | ||||
|     blockProject(src_coarse[j],src[j],subspace); | ||||
|     } | ||||
|     //deflation set up for eigen vector batchsize 1 and source batch size equal number of sources
 | ||||
|     std::cout << GridLogMessage << "Start ProjectAccum for loop" << std::endl; | ||||
|     for (int i=0;i<Nevec;i++) | ||||
|     { | ||||
|       std::cout << GridLogMessage << "ProjectAccum Nvec: " << i << std::endl; | ||||
|       const CoarseField & tmp = evec_coarse[i]; | ||||
|       for (int j=0;j<Nsrc;j++) | ||||
|       { | ||||
|         axpy(guess_coarse[j],TensorRemove(innerProduct(tmp,src_coarse[j])) / eval_coarse[i],tmp,guess_coarse[j]); | ||||
|       } | ||||
|     } | ||||
|     //postprocessing
 | ||||
|     std::cout << GridLogMessage << "Start BlockPromote for loop" << std::endl; | ||||
|     for (int j=0;j<Nsrc;j++) | ||||
|     { | ||||
|     std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl; | ||||
|     blockPromote(guess_coarse[j],guess[j],subspace); | ||||
|     guess[j].Checkerboard() = src[j].Checkerboard(); | ||||
|     } | ||||
|   }; | ||||
| 
 | ||||
| }; | ||||
| 
 | ||||
| 
 | ||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							| @@ -79,16 +79,14 @@ template<class Field> class ImplicitlyRestartedLanczosHermOpTester  : public Imp | ||||
|     RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0); | ||||
|  | ||||
|     std::cout.precision(13); | ||||
|  | ||||
|     int conv=0; | ||||
|     if( (vv<eresid*eresid) ) conv = 1; | ||||
|  | ||||
|     std::cout<<GridLogIRL  << "[" << std::setw(3)<<j<<"] " | ||||
| 	     <<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")" | ||||
| 	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv | ||||
| 	     <<" target " << eresid*eresid << " conv " <<conv | ||||
| 	     <<std::endl; | ||||
|  | ||||
|     int conv=0; | ||||
|     if( (vv<eresid*eresid) ) conv = 1; | ||||
|  | ||||
|     return conv; | ||||
|   } | ||||
| }; | ||||
| @@ -421,15 +419,14 @@ until convergence | ||||
| 	} | ||||
|       } | ||||
|  | ||||
|       if ( Nconv < Nstop ) { | ||||
|       if ( Nconv < Nstop ) | ||||
| 	std::cout << GridLogIRL << "Nconv ("<<Nconv<<") < Nstop ("<<Nstop<<")"<<std::endl; | ||||
| 	std::cout << GridLogIRL << "returning Nstop vectors, the last "<< Nstop-Nconv << "of which might meet convergence criterion only approximately" <<std::endl; | ||||
|       } | ||||
|  | ||||
|       eval=eval2; | ||||
|        | ||||
|       //Keep only converged | ||||
|       eval.resize(Nstop);// was Nconv | ||||
|       evec.resize(Nstop,grid);// was Nconv | ||||
|       eval.resize(Nconv);// Nstop? | ||||
|       evec.resize(Nconv,grid);// Nstop? | ||||
|       basisSortInPlace(evec,eval,reverse); | ||||
|        | ||||
|     } | ||||
| @@ -459,7 +456,7 @@ until convergence | ||||
| 	    std::vector<Field>& evec, | ||||
| 	    Field& w,int Nm,int k) | ||||
|   { | ||||
|     std::cout<<GridLogDebug << "Lanczos step " <<k<<std::endl; | ||||
|     std::cout<<GridLogIRL << "Lanczos step " <<k<<std::endl; | ||||
|     const RealD tiny = 1.0e-20; | ||||
|     assert( k< Nm ); | ||||
|  | ||||
| @@ -467,7 +464,7 @@ until convergence | ||||
|  | ||||
|     Field& evec_k = evec[k]; | ||||
|  | ||||
|     _PolyOp(evec_k,w);    std::cout<<GridLogDebug << "PolyOp" <<std::endl; | ||||
|     _PolyOp(evec_k,w);    std::cout<<GridLogIRL << "PolyOp" <<std::endl; | ||||
|  | ||||
|     if(k>0) w -= lme[k-1] * evec[k-1]; | ||||
|  | ||||
| @@ -482,18 +479,18 @@ until convergence | ||||
|     lme[k] = beta; | ||||
|  | ||||
|     if ( (k>0) && ( (k % orth_period) == 0 )) { | ||||
|       std::cout<<GridLogDebug << "Orthogonalising " <<k<<std::endl; | ||||
|       std::cout<<GridLogIRL << "Orthogonalising " <<k<<std::endl; | ||||
|       orthogonalize(w,evec,k); // orthonormalise | ||||
|       std::cout<<GridLogDebug << "Orthogonalised " <<k<<std::endl; | ||||
|       std::cout<<GridLogIRL << "Orthogonalised " <<k<<std::endl; | ||||
|     } | ||||
|  | ||||
|     if(k < Nm-1) evec[k+1] = w; | ||||
|  | ||||
|     std::cout<<GridLogIRL << "Lanczos step alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl; | ||||
|     std::cout<<GridLogIRL << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl; | ||||
|     if ( beta < tiny )  | ||||
|       std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl; | ||||
|  | ||||
|     std::cout<<GridLogDebug << "Lanczos step complete " <<k<<std::endl; | ||||
|     std::cout<<GridLogIRL << "Lanczos step complete " <<k<<std::endl; | ||||
|   } | ||||
|  | ||||
|   void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme,  | ||||
|   | ||||
| @@ -44,7 +44,6 @@ public: | ||||
| 				  int, MinRes);    // Must restart | ||||
| }; | ||||
|  | ||||
| //This class is the input parameter class for some testing programs | ||||
| struct LocalCoherenceLanczosParams : Serializable { | ||||
| public: | ||||
|   GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams, | ||||
| @@ -68,7 +67,6 @@ public: | ||||
| template<class Fobj,class CComplex,int nbasis> | ||||
| class ProjectedHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > { | ||||
| public: | ||||
|   using LinearFunction<Lattice<iVector<CComplex,nbasis > > >::operator(); | ||||
|   typedef iVector<CComplex,nbasis >           CoarseSiteVector; | ||||
|   typedef Lattice<CoarseSiteVector>           CoarseField; | ||||
|   typedef Lattice<CComplex>   CoarseScalar; // used for inner products on fine field | ||||
| @@ -99,7 +97,6 @@ public: | ||||
| template<class Fobj,class CComplex,int nbasis> | ||||
| class ProjectedFunctionHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > { | ||||
| public: | ||||
|   using LinearFunction<Lattice<iVector<CComplex,nbasis > > >::operator(); | ||||
|   typedef iVector<CComplex,nbasis >           CoarseSiteVector; | ||||
|   typedef Lattice<CoarseSiteVector>           CoarseField; | ||||
|   typedef Lattice<CComplex>   CoarseScalar; // used for inner products on fine field | ||||
| @@ -147,23 +144,15 @@ public: | ||||
|   RealD                             _coarse_relax_tol; | ||||
|   std::vector<FineField>        &_subspace; | ||||
|    | ||||
|   int _largestEvalIdxForReport; //The convergence of the LCL is based on the evals of the coarse grid operator, not those of the underlying fine grid operator | ||||
|                                 //As a result we do not know what the eval range of the fine operator is until the very end, making tuning the Cheby bounds very difficult | ||||
|                                 //To work around this issue, every restart we separately reconstruct the fine operator eval for the lowest and highest evec and print these | ||||
|                                 //out alongside the evals of the coarse operator. To do so we need to know the index of the largest eval (i.e. Nstop-1) | ||||
|                                 //NOTE: If largestEvalIdxForReport=-1 (default) then this is not performed | ||||
|    | ||||
|   ImplicitlyRestartedLanczosSmoothedTester(LinearFunction<CoarseField>   &Poly, | ||||
| 					   OperatorFunction<FineField>   &smoother, | ||||
| 					   LinearOperatorBase<FineField> &Linop, | ||||
| 					   std::vector<FineField>        &subspace, | ||||
| 					   RealD coarse_relax_tol=5.0e3, | ||||
| 					   int largestEvalIdxForReport=-1)  | ||||
| 					   RealD coarse_relax_tol=5.0e3)  | ||||
|     : _smoother(smoother), _Linop(Linop), _Poly(Poly), _subspace(subspace), | ||||
|       _coarse_relax_tol(coarse_relax_tol), _largestEvalIdxForReport(largestEvalIdxForReport) | ||||
|       _coarse_relax_tol(coarse_relax_tol)   | ||||
|   {    }; | ||||
|  | ||||
|   //evalMaxApprox: approximation of largest eval of the fine Chebyshev operator (suitably wrapped by block projection) | ||||
|   int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox) | ||||
|   { | ||||
|     CoarseField v(B); | ||||
| @@ -186,26 +175,12 @@ public: | ||||
| 	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv | ||||
| 	     <<std::endl; | ||||
|  | ||||
|     if(_largestEvalIdxForReport != -1 && (j==0 || j==_largestEvalIdxForReport)){ | ||||
|       std::cout<<GridLogIRL << "Estimating true eval of fine grid operator for eval idx " << j << std::endl; | ||||
|       RealD tmp_eval; | ||||
|       ReconstructEval(j,eresid,B,tmp_eval,1.0); //don't use evalMaxApprox of coarse operator! (cf below) | ||||
|     } | ||||
|      | ||||
|     int conv=0; | ||||
|     if( (vv<eresid*eresid) ) conv = 1; | ||||
|     return conv; | ||||
|   } | ||||
|  | ||||
|   //This function is called at the end of the coarse grid Lanczos. It promotes the coarse eigenvector 'B' to the fine grid, | ||||
|   //applies a smoother to the result then computes the computes the *fine grid* eigenvalue (output as 'eval'). | ||||
|  | ||||
|   //evalMaxApprox should be the approximation of the largest eval of the fine Hermop. However when this function is called by IRL it actually passes the largest eval of the *Chebyshev* operator (as this is the max approx used for the TestConvergence above) | ||||
|   //As the largest eval of the Chebyshev is typically several orders of magnitude larger this makes the convergence test pass even when it should not. | ||||
|   //We therefore ignore evalMaxApprox here and use a value of 1.0 (note this value is already used by TestCoarse) | ||||
|   int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox) | ||||
|   { | ||||
|     evalMaxApprox = 1.0; //cf above | ||||
|     GridBase *FineGrid = _subspace[0].Grid();     | ||||
|     int checkerboard   = _subspace[0].Checkerboard(); | ||||
|     FineField fB(FineGrid);fB.Checkerboard() =checkerboard; | ||||
| @@ -224,13 +199,13 @@ public: | ||||
|     eval   = vnum/vden; | ||||
|     fv -= eval*fB; | ||||
|     RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0); | ||||
|     if ( j > nbasis ) eresid = eresid*_coarse_relax_tol; | ||||
|  | ||||
|     std::cout.precision(13); | ||||
|     std::cout<<GridLogIRL  << "[" << std::setw(3)<<j<<"] " | ||||
| 	     <<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")" | ||||
| 	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv << " target " << eresid*eresid | ||||
| 	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv | ||||
| 	     <<std::endl; | ||||
|     if ( j > nbasis ) eresid = eresid*_coarse_relax_tol; | ||||
|     if( (vv<eresid*eresid) ) return 1; | ||||
|     return 0; | ||||
|   } | ||||
| @@ -308,10 +283,6 @@ public: | ||||
|     evals_coarse.resize(0); | ||||
|   }; | ||||
|  | ||||
|   //The block inner product is the inner product on the fine grid locally summed over the blocks | ||||
|   //to give a Lattice<Scalar> on the coarse grid. This function orthnormalizes the fine-grid subspace | ||||
|   //vectors under the block inner product. This step must be performed after computing the fine grid | ||||
|   //eigenvectors and before computing the coarse grid eigenvectors.     | ||||
|   void Orthogonalise(void ) { | ||||
|     CoarseScalar InnerProd(_CoarseGrid); | ||||
|     std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl; | ||||
| @@ -355,8 +326,6 @@ public: | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   //While this method serves to check the coarse eigenvectors, it also recomputes the eigenvalues from the smoothed reconstructed eigenvectors | ||||
|   //hence the smoother can be tuned after running the coarse Lanczos by using a different smoother here | ||||
|   void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax)  | ||||
|   { | ||||
|     assert(evals_fine.size() == nbasis); | ||||
| @@ -405,31 +374,25 @@ public: | ||||
|     evals_fine.resize(nbasis); | ||||
|     subspace.resize(nbasis,_FineGrid); | ||||
|   } | ||||
|  | ||||
|  | ||||
|   //cheby_op: Parameters of the fine grid Chebyshev polynomial used for the Lanczos acceleration | ||||
|   //cheby_smooth: Parameters of a separate Chebyshev polynomial used after the Lanczos has completed to smooth out high frequency noise in the reconstructed fine grid eigenvectors prior to computing the eigenvalue | ||||
|   //relax: Reconstructed eigenvectors (post smoothing) are naturally not as precise as true eigenvectors. This factor acts as a multiplier on the stopping condition when determining whether the results satisfy the user provided stopping condition | ||||
|   void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax, | ||||
| 		  int Nstop, int Nk, int Nm,RealD resid,  | ||||
| 		  RealD MaxIt, RealD betastp, int MinRes) | ||||
|   { | ||||
|     Chebyshev<FineField>                          Cheby(cheby_op); //Chebyshev of fine operator on fine grid | ||||
|     ProjectedHermOp<Fobj,CComplex,nbasis>         Op(_FineOp,subspace); //Fine operator on coarse grid with intermediate fine grid conversion | ||||
|     ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace); //Chebyshev of fine operator on coarse grid with intermediate fine grid conversion | ||||
|     Chebyshev<FineField>                          Cheby(cheby_op); | ||||
|     ProjectedHermOp<Fobj,CComplex,nbasis>         Op(_FineOp,subspace); | ||||
|     ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace); | ||||
|     ////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|     // create a smoother and see if we can get a cheap convergence test and smooth inside the IRL | ||||
|     ////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
|     Chebyshev<FineField>                                           ChebySmooth(cheby_smooth); //lower order Chebyshev of fine operator on fine grid used to smooth regenerated eigenvectors | ||||
|     ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax,Nstop-1);  | ||||
|     Chebyshev<FineField>                                           ChebySmooth(cheby_smooth); | ||||
|     ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax); | ||||
|  | ||||
|     evals_coarse.resize(Nm); | ||||
|     evec_coarse.resize(Nm,_CoarseGrid); | ||||
|  | ||||
|     CoarseField src(_CoarseGrid);     src=1.0;  | ||||
|  | ||||
|     //Note the "tester" here is also responsible for generating the fine grid eigenvalues which are output into the "evals_coarse" array | ||||
|     ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes); | ||||
|     int Nconv=0; | ||||
|     IRL.calc(evals_coarse,evec_coarse,src,Nconv,false); | ||||
| @@ -440,14 +403,6 @@ public: | ||||
|       std::cout << i << " Coarse eval = " << evals_coarse[i]  << std::endl; | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   //Get the fine eigenvector 'i' by reconstruction | ||||
|   void getFineEvecEval(FineField &evec, RealD &eval, const int i) const{ | ||||
|     blockPromote(evec_coarse[i],evec,subspace);   | ||||
|     eval = evals_coarse[i]; | ||||
|   } | ||||
|      | ||||
|      | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|   | ||||
| @@ -33,7 +33,7 @@ NAMESPACE_BEGIN(Grid); | ||||
| /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Take a matrix and form an NE solver calling a Herm solver | ||||
| /////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<class Field> class NormalEquations : public LinearFunction<Field>{ | ||||
| template<class Field> class NormalEquations { | ||||
| private: | ||||
|   SparseMatrixBase<Field> & _Matrix; | ||||
|   OperatorFunction<Field> & _HermitianSolver; | ||||
| @@ -60,7 +60,7 @@ public: | ||||
|   }      | ||||
| }; | ||||
|  | ||||
| template<class Field> class HPDSolver : public LinearFunction<Field> { | ||||
| template<class Field> class HPDSolver { | ||||
| private: | ||||
|   LinearOperatorBase<Field> & _Matrix; | ||||
|   OperatorFunction<Field> & _HermitianSolver; | ||||
| @@ -78,13 +78,13 @@ public: | ||||
|   void operator() (const Field &in, Field &out){ | ||||
|   | ||||
|     _Guess(in,out); | ||||
|     _HermitianSolver(_Matrix,in,out);  //M out = in | ||||
|     _HermitianSolver(_Matrix,in,out);  // Mdag M out = Mdag in | ||||
|  | ||||
|   }      | ||||
| }; | ||||
|  | ||||
|  | ||||
| template<class Field> class MdagMSolver : public LinearFunction<Field> { | ||||
| template<class Field> class MdagMSolver { | ||||
| private: | ||||
|   SparseMatrixBase<Field> & _Matrix; | ||||
|   OperatorFunction<Field> & _HermitianSolver; | ||||
|   | ||||
| @@ -20,7 +20,7 @@ template<class Field> class PowerMethod | ||||
|     RealD evalMaxApprox = 0.0;  | ||||
|     auto src_n = src;  | ||||
|     auto tmp = src;  | ||||
|     const int _MAX_ITER_EST_ = 100;  | ||||
|     const int _MAX_ITER_EST_ = 50;  | ||||
|  | ||||
|     for (int i=0;i<_MAX_ITER_EST_;i++) {  | ||||
|        | ||||
| @@ -30,8 +30,6 @@ template<class Field> class PowerMethod | ||||
|       RealD vden = norm2(src_n);  | ||||
|       RealD na = vnum/vden;  | ||||
|        | ||||
|       std::cout << GridLogIterative << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl; | ||||
|        | ||||
|       if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) {  | ||||
|  	evalMaxApprox = na;  | ||||
| 	std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl; | ||||
|   | ||||
| @@ -43,7 +43,7 @@ NAMESPACE_BEGIN(Grid); | ||||
| template<class Field> | ||||
| class PrecGeneralisedConjugateResidual : public LinearFunction<Field> { | ||||
| public:                                                 | ||||
|   using LinearFunction<Field>::operator(); | ||||
|  | ||||
|   RealD   Tolerance; | ||||
|   Integer MaxIterations; | ||||
|   int verbose; | ||||
|   | ||||
| @@ -43,7 +43,7 @@ NAMESPACE_BEGIN(Grid); | ||||
| template<class Field> | ||||
| class PrecGeneralisedConjugateResidualNonHermitian : public LinearFunction<Field> { | ||||
| public:                                                 | ||||
|   using LinearFunction<Field>::operator(); | ||||
|  | ||||
|   RealD   Tolerance; | ||||
|   Integer MaxIterations; | ||||
|   int verbose; | ||||
| @@ -119,8 +119,7 @@ public: | ||||
|   RealD GCRnStep(const Field &src, Field &psi,RealD rsq){ | ||||
|  | ||||
|     RealD cp; | ||||
|     ComplexD a, b; | ||||
|     //    ComplexD zAz; | ||||
|     ComplexD a, b, zAz; | ||||
|     RealD zAAz; | ||||
|     ComplexD rq; | ||||
|  | ||||
| @@ -147,7 +146,7 @@ public: | ||||
|     ////////////////////////////////// | ||||
|     MatTimer.Start(); | ||||
|     Linop.Op(psi,Az); | ||||
|     //    zAz = innerProduct(Az,psi); | ||||
|     zAz = innerProduct(Az,psi); | ||||
|     zAAz= norm2(Az); | ||||
|     MatTimer.Stop(); | ||||
|      | ||||
| @@ -171,7 +170,7 @@ public: | ||||
|  | ||||
|     LinalgTimer.Start(); | ||||
|  | ||||
|     //    zAz = innerProduct(Az,psi); | ||||
|     zAz = innerProduct(Az,psi); | ||||
|     zAAz= norm2(Az); | ||||
|  | ||||
|     //p[0],q[0],qq[0]  | ||||
| @@ -213,7 +212,7 @@ public: | ||||
|       MatTimer.Start(); | ||||
|       Linop.Op(z,Az); | ||||
|       MatTimer.Stop(); | ||||
|       //      zAz = innerProduct(Az,psi); | ||||
|       zAz = innerProduct(Az,psi); | ||||
|       zAAz= norm2(Az); | ||||
|  | ||||
|       LinalgTimer.Start(); | ||||
|   | ||||
| @@ -132,31 +132,6 @@ namespace Grid { | ||||
|       (*this)(_Matrix,in,out,guess); | ||||
|     } | ||||
|  | ||||
|     void RedBlackSource(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &src_o)  | ||||
|     { | ||||
|       GridBase *grid = _Matrix.RedBlackGrid(); | ||||
|       Field tmp(grid); | ||||
|       int nblock = in.size(); | ||||
|       for(int b=0;b<nblock;b++){ | ||||
| 	RedBlackSource(_Matrix,in[b],tmp,src_o[b]); | ||||
|       } | ||||
|     } | ||||
|     // James can write his own deflated guesser | ||||
|     // with optimised code for the inner products | ||||
|     //    RedBlackSolveSplitGrid(); | ||||
|     //    RedBlackSolve(_Matrix,src_o,sol_o);  | ||||
|  | ||||
|     void RedBlackSolution(Matrix &_Matrix, const std::vector<Field> &in, const std::vector<Field> &sol_o, std::vector<Field> &out) | ||||
|     { | ||||
|       GridBase *grid = _Matrix.RedBlackGrid(); | ||||
|       Field tmp(grid); | ||||
|       int nblock = in.size(); | ||||
|       for(int b=0;b<nblock;b++) { | ||||
| 	pickCheckerboard(Even,tmp,in[b]); | ||||
| 	RedBlackSolution(_Matrix,sol_o[b],tmp,out[b]); | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     template<class Guesser> | ||||
|     void operator()(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &out,Guesser &guess)  | ||||
|     { | ||||
| @@ -175,27 +150,22 @@ namespace Grid { | ||||
|       //////////////////////////////////////////////// | ||||
|       // Prepare RedBlack source | ||||
|       //////////////////////////////////////////////// | ||||
|       RedBlackSource(_Matrix,in,src_o); | ||||
| 	//      for(int b=0;b<nblock;b++){ | ||||
| 	//	RedBlackSource(_Matrix,in[b],tmp,src_o[b]); | ||||
| 	//      } | ||||
|        | ||||
|       for(int b=0;b<nblock;b++){ | ||||
| 	RedBlackSource(_Matrix,in[b],tmp,src_o[b]); | ||||
|       } | ||||
|       //////////////////////////////////////////////// | ||||
|       // Make the guesses | ||||
|       //////////////////////////////////////////////// | ||||
|       if ( subGuess ) guess_save.resize(nblock,grid); | ||||
|  | ||||
|        | ||||
|       if(useSolnAsInitGuess) { | ||||
|       for(int b=0;b<nblock;b++){ | ||||
|         if(useSolnAsInitGuess) { | ||||
|           pickCheckerboard(Odd, sol_o[b], out[b]); | ||||
|         } | ||||
|         } else { | ||||
|         guess(src_o, sol_o);  | ||||
|           guess(src_o[b],sol_o[b]);  | ||||
|         } | ||||
|  | ||||
| 	if ( subGuess ) {  | ||||
|         for(int b=0;b<nblock;b++){ | ||||
| 	  guess_save[b] = sol_o[b]; | ||||
| 	} | ||||
|       } | ||||
|   | ||||
| @@ -1,478 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/Aggregates.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local> | ||||
| Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| inline RealD AggregatePowerLaw(RealD x) | ||||
| { | ||||
|   //  return std::pow(x,-4); | ||||
|   //  return std::pow(x,-3); | ||||
|   return std::pow(x,-5); | ||||
| } | ||||
|  | ||||
| template<class Fobj,class CComplex,int nbasis> | ||||
| class Aggregation { | ||||
| public: | ||||
|   constexpr int Nbasis(void) { return nbasis; }; | ||||
|    | ||||
|   typedef iVector<CComplex,nbasis >             siteVector; | ||||
|   typedef Lattice<siteVector>                 CoarseVector; | ||||
|   typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix; | ||||
|  | ||||
|   typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field | ||||
|   typedef Lattice<Fobj >        FineField; | ||||
|  | ||||
|   GridBase *CoarseGrid; | ||||
|   GridBase *FineGrid; | ||||
|   std::vector<Lattice<Fobj> > subspace; | ||||
|   int checkerboard; | ||||
|   int Checkerboard(void){return checkerboard;} | ||||
|   Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :  | ||||
|     CoarseGrid(_CoarseGrid), | ||||
|     FineGrid(_FineGrid), | ||||
|     subspace(nbasis,_FineGrid), | ||||
|     checkerboard(_checkerboard) | ||||
|   { | ||||
|   }; | ||||
|    | ||||
|    | ||||
|   void Orthogonalise(void){ | ||||
|     CoarseScalar InnerProd(CoarseGrid);  | ||||
|     //    std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl; | ||||
|     blockOrthogonalise(InnerProd,subspace); | ||||
|   }  | ||||
|   void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){ | ||||
|     blockProject(CoarseVec,FineVec,subspace); | ||||
|   } | ||||
|   void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){ | ||||
|     FineVec.Checkerboard() = subspace[0].Checkerboard(); | ||||
|     blockPromote(CoarseVec,FineVec,subspace); | ||||
|   } | ||||
|  | ||||
|   virtual void CreateSubspaceRandom(GridParallelRNG  &RNG) { | ||||
|     int nn=nbasis; | ||||
|     RealD scale; | ||||
|     FineField noise(FineGrid); | ||||
|     for(int b=0;b<nn;b++){ | ||||
|       subspace[b] = Zero(); | ||||
|       gaussian(RNG,noise); | ||||
|       scale = std::pow(norm2(noise),-0.5);  | ||||
|       noise=noise*scale; | ||||
|       subspace[b] = noise; | ||||
|     } | ||||
|   } | ||||
|   virtual void CreateSubspace(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) | ||||
|   { | ||||
|  | ||||
|     RealD scale; | ||||
|  | ||||
|     ConjugateGradient<FineField> CG(1.0e-2,100,false); | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|  | ||||
|     for(int b=0;b<nn;b++){ | ||||
|        | ||||
|       subspace[b] = Zero(); | ||||
|       gaussian(RNG,noise); | ||||
|       scale = std::pow(norm2(noise),-0.5);  | ||||
|       noise=noise*scale; | ||||
|        | ||||
|       hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise   ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
|  | ||||
|       for(int i=0;i<1;i++){ | ||||
|  | ||||
| 	CG(hermop,noise,subspace[b]); | ||||
|  | ||||
| 	noise = subspace[b]; | ||||
| 	scale = std::pow(norm2(noise),-0.5);  | ||||
| 	noise=noise*scale; | ||||
|  | ||||
|       } | ||||
|  | ||||
|       hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl; | ||||
|       subspace[b]   = noise; | ||||
|  | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit) | ||||
|   // and this is the best I found | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
|   virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop, | ||||
| 				       int nn, | ||||
| 				       double hi, | ||||
| 				       double lo, | ||||
| 				       int orderfilter, | ||||
| 				       int ordermin, | ||||
| 				       int orderstep, | ||||
| 				       double filterlo | ||||
| 				       ) { | ||||
|  | ||||
|     RealD scale; | ||||
|  | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|     FineField tmp(FineGrid); | ||||
|  | ||||
|     // New normalised noise | ||||
|     gaussian(RNG,noise); | ||||
|     scale = std::pow(norm2(noise),-0.5);  | ||||
|     noise=noise*scale; | ||||
|  | ||||
|     std::cout << GridLogMessage<<" Chebyshev subspace pass-1 : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl; | ||||
|     std::cout << GridLogMessage<<" Chebyshev subspace pass-2 : nbasis"<<nn<<" min " | ||||
| 	      <<ordermin<<" step "<<orderstep | ||||
| 	      <<" lo"<<filterlo<<std::endl; | ||||
|  | ||||
|     // Initial matrix element | ||||
|     hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
|  | ||||
|     int b =0; | ||||
|     { | ||||
|       // Filter | ||||
|       Chebyshev<FineField> Cheb(lo,hi,orderfilter); | ||||
|       Cheb(hermop,noise,Mn); | ||||
|       // normalise | ||||
|       scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale; | ||||
|       subspace[b]   = Mn; | ||||
|       hermop.Op(Mn,tmp);  | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|       b++; | ||||
|     } | ||||
|  | ||||
|     // Generate a full sequence of Chebyshevs | ||||
|     { | ||||
|       lo=filterlo; | ||||
|       noise=Mn; | ||||
|  | ||||
|       FineField T0(FineGrid); T0 = noise;   | ||||
|       FineField T1(FineGrid);  | ||||
|       FineField T2(FineGrid); | ||||
|       FineField y(FineGrid); | ||||
|        | ||||
|       FineField *Tnm = &T0; | ||||
|       FineField *Tn  = &T1; | ||||
|       FineField *Tnp = &T2; | ||||
|  | ||||
|       // Tn=T1 = (xscale M + mscale)in | ||||
|       RealD xscale = 2.0/(hi-lo); | ||||
|       RealD mscale = -(hi+lo)/(hi-lo); | ||||
|       hermop.HermOp(T0,y); | ||||
|       T1=y*xscale+noise*mscale; | ||||
|  | ||||
|       for(int n=2;n<=ordermin+orderstep*(nn-2);n++){ | ||||
| 	 | ||||
| 	hermop.HermOp(*Tn,y); | ||||
|  | ||||
| 	autoView( y_v , y, AcceleratorWrite); | ||||
| 	autoView( Tn_v , (*Tn), AcceleratorWrite); | ||||
| 	autoView( Tnp_v , (*Tnp), AcceleratorWrite); | ||||
| 	autoView( Tnm_v , (*Tnm), AcceleratorWrite); | ||||
| 	const int Nsimd = CComplex::Nsimd(); | ||||
| 	accelerator_for(ss, FineGrid->oSites(), Nsimd, { | ||||
| 	  coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss)); | ||||
| 	  coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss)); | ||||
|         }); | ||||
|  | ||||
| 	// Possible more fine grained control is needed than a linear sweep, | ||||
| 	// but huge productivity gain if this is simple algorithm and not a tunable | ||||
| 	int m =1; | ||||
| 	if ( n>=ordermin ) m=n-ordermin; | ||||
| 	if ( (m%orderstep)==0 ) {  | ||||
| 	  Mn=*Tnp; | ||||
| 	  scale = std::pow(norm2(Mn),-0.5);         Mn=Mn*scale; | ||||
| 	  subspace[b] = Mn; | ||||
| 	  hermop.Op(Mn,tmp);  | ||||
| 	  std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
| 	  b++; | ||||
| 	} | ||||
|  | ||||
| 	// Cycle pointers to avoid copies | ||||
| 	FineField *swizzle = Tnm; | ||||
| 	Tnm    =Tn; | ||||
| 	Tn     =Tnp; | ||||
| 	Tnp    =swizzle; | ||||
| 	   | ||||
|       } | ||||
|     } | ||||
|     assert(b==nn); | ||||
|   } | ||||
|   virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop, | ||||
| 				       int nn, | ||||
| 				       double hi, | ||||
| 				       double lo, | ||||
| 				       int orderfilter | ||||
| 				       ) { | ||||
|  | ||||
|     RealD scale; | ||||
|  | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|     FineField tmp(FineGrid); | ||||
|  | ||||
|     // New normalised noise | ||||
|     std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl; | ||||
|     std::cout << GridLogMessage<<" Chebyshev subspace pure noise  : nbasis "<<nn<<std::endl; | ||||
|  | ||||
|  | ||||
|     for(int b =0;b<nbasis;b++) | ||||
|     { | ||||
|       gaussian(RNG,noise); | ||||
|       scale = std::pow(norm2(noise),-0.5);  | ||||
|       noise=noise*scale; | ||||
|  | ||||
|       // Initial matrix element | ||||
|       hermop.Op(noise,Mn); | ||||
|       if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
|  | ||||
|       // Filter | ||||
|       Chebyshev<FineField> Cheb(lo,hi,orderfilter); | ||||
|       Cheb(hermop,noise,Mn); | ||||
|       scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale; | ||||
|  | ||||
|       // Refine | ||||
|       Chebyshev<FineField> PowerLaw(lo,hi,1000,AggregatePowerLaw); | ||||
|       noise = Mn; | ||||
|       PowerLaw(hermop,noise,Mn); | ||||
|       scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale; | ||||
|  | ||||
|       // normalise | ||||
|       subspace[b]   = Mn; | ||||
|       hermop.Op(Mn,tmp);  | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|     } | ||||
|  | ||||
|   } | ||||
|  | ||||
|   virtual void CreateSubspaceChebyshevPowerLaw(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop, | ||||
| 					       int nn, | ||||
| 					       double hi, | ||||
| 					       int orderfilter | ||||
| 					       ) { | ||||
|  | ||||
|     RealD scale; | ||||
|  | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|     FineField tmp(FineGrid); | ||||
|  | ||||
|     // New normalised noise | ||||
|     std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" [0,"<<hi<<"]"<<std::endl; | ||||
|     std::cout << GridLogMessage<<" Chebyshev subspace pure noise  : nbasis "<<nn<<std::endl; | ||||
|  | ||||
|     for(int b =0;b<nbasis;b++) | ||||
|     { | ||||
|       gaussian(RNG,noise); | ||||
|       scale = std::pow(norm2(noise),-0.5);  | ||||
|       noise=noise*scale; | ||||
|  | ||||
|       // Initial matrix element | ||||
|       hermop.Op(noise,Mn); | ||||
|       if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
|       // Filter | ||||
|       Chebyshev<FineField> Cheb(0.0,hi,orderfilter,AggregatePowerLaw); | ||||
|       Cheb(hermop,noise,Mn); | ||||
|       // normalise | ||||
|       scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale; | ||||
|       subspace[b]   = Mn; | ||||
|       hermop.Op(Mn,tmp);  | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|     } | ||||
|  | ||||
|   } | ||||
|   virtual void CreateSubspaceChebyshevNew(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop, | ||||
| 					  double hi | ||||
| 					  ) { | ||||
|  | ||||
|     RealD scale; | ||||
|  | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|     FineField tmp(FineGrid); | ||||
|  | ||||
|     // New normalised noise | ||||
|     for(int b =0;b<nbasis;b++) | ||||
|     { | ||||
|       gaussian(RNG,noise); | ||||
|       scale = std::pow(norm2(noise),-0.5);  | ||||
|       noise=noise*scale; | ||||
|  | ||||
|       // Initial matrix element | ||||
|       hermop.Op(noise,Mn); | ||||
|       if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
|       // Filter | ||||
|       //#opt2(x) =  acheb(x,3,90,300)* acheb(x,1,90,50) * acheb(x,0.5,90,200) * acheb(x,0.05,90,400) * acheb(x,0.01,90,1500) | ||||
|       /*266 | ||||
|       Chebyshev<FineField> Cheb1(3.0,hi,300); | ||||
|       Chebyshev<FineField> Cheb2(1.0,hi,50); | ||||
|       Chebyshev<FineField> Cheb3(0.5,hi,300); | ||||
|       Chebyshev<FineField> Cheb4(0.05,hi,500); | ||||
|       Chebyshev<FineField> Cheb5(0.01,hi,2000); | ||||
|       */ | ||||
|       /* 242 */ | ||||
|       /* | ||||
|       Chebyshev<FineField> Cheb3(0.1,hi,300); | ||||
|       Chebyshev<FineField> Cheb2(0.02,hi,1000); | ||||
|       Chebyshev<FineField> Cheb1(0.003,hi,2000); | ||||
|       8? | ||||
|       */ | ||||
|       /* How many?? | ||||
|       */ | ||||
|       Chebyshev<FineField> Cheb2(0.001,hi,2500); // 169 iters on HDCG after refine | ||||
|       Chebyshev<FineField> Cheb1(0.02,hi,600); | ||||
|  | ||||
|       //      Chebyshev<FineField> Cheb2(0.001,hi,1500); | ||||
|       //      Chebyshev<FineField> Cheb1(0.02,hi,600); | ||||
|       Cheb1(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale; | ||||
|       hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb1 <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|       Cheb2(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale; | ||||
|       hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb2 <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|       //      Cheb3(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale; | ||||
|       //      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb3 <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|       //      Cheb4(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale; | ||||
|       //      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb4 <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|       //      Cheb5(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale; | ||||
|       //      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb5 <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|       subspace[b]   = noise; | ||||
|       hermop.Op(subspace[b],tmp);  | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<< " norm " << norm2(noise)<<std::endl; | ||||
|     } | ||||
|  | ||||
|   } | ||||
|  | ||||
|   virtual void CreateSubspaceMultishift(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop, | ||||
| 					double Lo,double tol,int maxit) | ||||
|   { | ||||
|  | ||||
|     RealD scale; | ||||
|  | ||||
|     FineField noise(FineGrid); | ||||
|     FineField Mn(FineGrid); | ||||
|     FineField tmp(FineGrid); | ||||
|  | ||||
|     // New normalised noise | ||||
|     std::cout << GridLogMessage<<" Multishift subspace : Lo "<<Lo<<std::endl; | ||||
|  | ||||
|     // Filter | ||||
|     // [ 1/6(x+Lo)  - 1/2(x+2Lo) + 1/2(x+3Lo)  -1/6(x+4Lo) = Lo^3 /[ (x+1Lo)(x+2Lo)(x+3Lo)(x+4Lo) ] | ||||
|     // | ||||
|     // 1/(x+Lo)  - 1/(x+2 Lo) | ||||
|     double epsilon      = Lo/3; | ||||
|     std::vector<RealD> alpha({1.0/6.0,-1.0/2.0,1.0/2.0,-1.0/6.0}); | ||||
|     std::vector<RealD> shifts({Lo,Lo+epsilon,Lo+2*epsilon,Lo+3*epsilon}); | ||||
|     std::vector<RealD> tols({tol,tol,tol,tol}); | ||||
|     std::cout << "sizes "<<alpha.size()<<" "<<shifts.size()<<" "<<tols.size()<<std::endl; | ||||
|  | ||||
|     MultiShiftFunction msf(4,0.0,95.0); | ||||
|     std::cout << "msf constructed "<<std::endl; | ||||
|     msf.poles=shifts; | ||||
|     msf.residues=alpha; | ||||
|     msf.tolerances=tols; | ||||
|     msf.norm=0.0; | ||||
|     msf.order=alpha.size(); | ||||
|     ConjugateGradientMultiShift<FineField> MSCG(maxit,msf); | ||||
|      | ||||
|     for(int b =0;b<nbasis;b++) | ||||
|     { | ||||
|       gaussian(RNG,noise); | ||||
|       scale = std::pow(norm2(noise),-0.5);  | ||||
|       noise=noise*scale; | ||||
|  | ||||
|       // Initial matrix element | ||||
|       hermop.Op(noise,Mn); | ||||
|       if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl; | ||||
|  | ||||
|       MSCG(hermop,noise,Mn); | ||||
|       scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale; | ||||
|       subspace[b]   = Mn; | ||||
|       hermop.Op(Mn,tmp);  | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|  | ||||
|     } | ||||
|  | ||||
|   } | ||||
|   virtual void RefineSubspace(LinearOperatorBase<FineField> &hermop, | ||||
| 			      double Lo,double tol,int maxit) | ||||
|   { | ||||
|     FineField tmp(FineGrid); | ||||
|     for(int b =0;b<nbasis;b++) | ||||
|     { | ||||
|       ConjugateGradient<FineField>  CGsloppy(tol,maxit,false); | ||||
|       ShiftedHermOpLinearOperator<FineField> ShiftedFineHermOp(hermop,Lo); | ||||
|       tmp=Zero(); | ||||
|       CGsloppy(hermop,subspace[b],tmp); | ||||
|       RealD scale = std::pow(norm2(tmp),-0.5); 	tmp=tmp*scale; | ||||
|       subspace[b]=tmp; | ||||
|       hermop.Op(subspace[b],tmp); | ||||
|       std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|     } | ||||
|   } | ||||
|   virtual void RefineSubspaceHDCG(LinearOperatorBase<FineField> &hermop, | ||||
| 				  TwoLevelADEF2mrhs<FineField,CoarseVector> & theHDCG, | ||||
| 				  int nrhs) | ||||
|   { | ||||
|     std::vector<FineField> src_mrhs(nrhs,FineGrid); | ||||
|     std::vector<FineField> res_mrhs(nrhs,FineGrid); | ||||
|     FineField tmp(FineGrid); | ||||
|     for(int b =0;b<nbasis;b+=nrhs) | ||||
|     { | ||||
|       tmp = subspace[b]; | ||||
|       RealD scale = std::pow(norm2(tmp),-0.5); 	tmp=tmp*scale; | ||||
|       subspace[b] =tmp; | ||||
|       hermop.Op(subspace[b],tmp); | ||||
|       std::cout<<GridLogMessage << "before filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|  | ||||
|       for(int r=0;r<MIN(nbasis-b,nrhs);r++){ | ||||
| 	src_mrhs[r] = subspace[b+r]; | ||||
|       } | ||||
|       for(int r=0;r<nrhs;r++){ | ||||
| 	res_mrhs[r] = Zero(); | ||||
|       } | ||||
|       theHDCG(src_mrhs,res_mrhs); | ||||
|  | ||||
|       for(int r=0;r<MIN(nbasis-b,nrhs);r++){ | ||||
| 	tmp = res_mrhs[r]; | ||||
| 	RealD scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale; | ||||
| 	subspace[b+r]=tmp; | ||||
|       } | ||||
|       hermop.Op(subspace[b],tmp); | ||||
|       std::cout<<GridLogMessage << "after filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; | ||||
|     } | ||||
|   } | ||||
|  | ||||
|    | ||||
|    | ||||
| }; | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| @@ -1,814 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/CoarsenedMatrix.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local> | ||||
| Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef  GRID_ALGORITHM_COARSENED_MATRIX_H | ||||
| #define  GRID_ALGORITHM_COARSENED_MATRIX_H | ||||
|  | ||||
| #include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No) | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class vobj,class CComplex> | ||||
| inline void blockMaskedInnerProduct(Lattice<CComplex> &CoarseInner, | ||||
| 				    const Lattice<decltype(innerProduct(vobj(),vobj()))> &FineMask, | ||||
| 				    const Lattice<vobj> &fineX, | ||||
| 				    const Lattice<vobj> &fineY) | ||||
| { | ||||
|   typedef decltype(innerProduct(vobj(),vobj())) dotp; | ||||
|  | ||||
|   GridBase *coarse(CoarseInner.Grid()); | ||||
|   GridBase *fine  (fineX.Grid()); | ||||
|  | ||||
|   Lattice<dotp> fine_inner(fine); fine_inner.Checkerboard() = fineX.Checkerboard(); | ||||
|   Lattice<dotp> fine_inner_msk(fine); | ||||
|  | ||||
|   // Multiply could be fused with innerProduct | ||||
|   // Single block sum kernel could do both masks. | ||||
|   fine_inner = localInnerProduct(fineX,fineY); | ||||
|   mult(fine_inner_msk, fine_inner,FineMask); | ||||
|   blockSum(CoarseInner,fine_inner_msk); | ||||
| } | ||||
|  | ||||
| // Fine Object == (per site) type of fine field | ||||
| // nbasis      == number of deflation vectors | ||||
| template<class Fobj,class CComplex,int nbasis> | ||||
| class CoarsenedMatrix : public CheckerBoardedSparseMatrixBase<Lattice<iVector<CComplex,nbasis > > >  { | ||||
| public: | ||||
|      | ||||
|   typedef iVector<CComplex,nbasis >           siteVector; | ||||
|   typedef Lattice<CComplex >                  CoarseComplexField; | ||||
|   typedef Lattice<siteVector>                 CoarseVector; | ||||
|   typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix; | ||||
|   typedef iMatrix<CComplex,nbasis >  Cobj; | ||||
|   typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field | ||||
|   typedef Lattice<Fobj >        FineField; | ||||
|   typedef CoarseVector FermionField; | ||||
|  | ||||
|   // enrich interface, use default implementation as in FermionOperator /////// | ||||
|   void Dminus(CoarseVector const& in, CoarseVector& out) { out = in; } | ||||
|   void DminusDag(CoarseVector const& in, CoarseVector& out) { out = in; } | ||||
|   void ImportPhysicalFermionSource(CoarseVector const& input, CoarseVector& imported) { imported = input; } | ||||
|   void ImportUnphysicalFermion(CoarseVector const& input, CoarseVector& imported) { imported = input; } | ||||
|   void ExportPhysicalFermionSolution(CoarseVector const& solution, CoarseVector& exported) { exported = solution; }; | ||||
|   void ExportPhysicalFermionSource(CoarseVector const& solution, CoarseVector& exported) { exported = solution; }; | ||||
|  | ||||
|   //////////////////// | ||||
|   // Data members | ||||
|   //////////////////// | ||||
|   Geometry         geom; | ||||
|   GridBase *       _grid;  | ||||
|   GridBase*        _cbgrid; | ||||
|   int hermitian; | ||||
|  | ||||
|   CartesianStencil<siteVector,siteVector,DefaultImplParams> Stencil;  | ||||
|   CartesianStencil<siteVector,siteVector,DefaultImplParams> StencilEven; | ||||
|   CartesianStencil<siteVector,siteVector,DefaultImplParams> StencilOdd; | ||||
|  | ||||
|   std::vector<CoarseMatrix> A; | ||||
|   std::vector<CoarseMatrix> Aeven; | ||||
|   std::vector<CoarseMatrix> Aodd; | ||||
|  | ||||
|   CoarseMatrix AselfInv; | ||||
|   CoarseMatrix AselfInvEven; | ||||
|   CoarseMatrix AselfInvOdd; | ||||
|  | ||||
|   Vector<RealD> dag_factor; | ||||
|  | ||||
|   /////////////////////// | ||||
|   // Interface | ||||
|   /////////////////////// | ||||
|   GridBase * Grid(void)         { return _grid; };   // this is all the linalg routines need to know | ||||
|   GridBase * RedBlackGrid()     { return _cbgrid; }; | ||||
|  | ||||
|   int ConstEE() { return 0; } | ||||
|  | ||||
|   void M (const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     conformable(_grid,in.Grid()); | ||||
|     conformable(in.Grid(),out.Grid()); | ||||
|     out.Checkerboard() = in.Checkerboard(); | ||||
|  | ||||
|     SimpleCompressor<siteVector> compressor; | ||||
|  | ||||
|     Stencil.HaloExchange(in,compressor); | ||||
|     autoView( in_v , in, AcceleratorRead); | ||||
|     autoView( out_v , out, AcceleratorWrite); | ||||
|     autoView( Stencil_v  , Stencil, AcceleratorRead); | ||||
|     int npoint = geom.npoint; | ||||
|     typedef LatticeView<Cobj> Aview; | ||||
|        | ||||
|     Vector<Aview> AcceleratorViewContainer; | ||||
|    | ||||
|     for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead)); | ||||
|     Aview *Aview_p = & AcceleratorViewContainer[0]; | ||||
|  | ||||
|     const int Nsimd = CComplex::Nsimd(); | ||||
|     typedef decltype(coalescedRead(in_v[0])) calcVector; | ||||
|     typedef decltype(coalescedRead(in_v[0](0))) calcComplex; | ||||
|  | ||||
|     int osites=Grid()->oSites(); | ||||
|  | ||||
|     accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, { | ||||
|       int ss = sss/nbasis; | ||||
|       int b  = sss%nbasis; | ||||
|       calcComplex res = Zero(); | ||||
|       calcVector nbr; | ||||
|       int ptype; | ||||
|       StencilEntry *SE; | ||||
|  | ||||
|       for(int point=0;point<npoint;point++){ | ||||
|  | ||||
| 	SE=Stencil_v.GetEntry(ptype,point,ss); | ||||
| 	   | ||||
| 	if(SE->_is_local) {  | ||||
| 	  nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute); | ||||
| 	} else { | ||||
| 	  nbr = coalescedRead(Stencil_v.CommBuf()[SE->_offset]); | ||||
| 	} | ||||
| 	acceleratorSynchronise(); | ||||
|  | ||||
| 	for(int bb=0;bb<nbasis;bb++) { | ||||
| 	  res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb); | ||||
| 	} | ||||
|       } | ||||
|       coalescedWrite(out_v[ss](b),res); | ||||
|       }); | ||||
|  | ||||
|     for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose(); | ||||
|   }; | ||||
|  | ||||
|   void Mdag (const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     if(hermitian) { | ||||
|       // corresponds to Petrov-Galerkin coarsening | ||||
|       return M(in,out); | ||||
|     } else { | ||||
|       // corresponds to Galerkin coarsening | ||||
|       return MdagNonHermitian(in, out); | ||||
|     } | ||||
|   }; | ||||
|  | ||||
|   void MdagNonHermitian(const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     conformable(_grid,in.Grid()); | ||||
|     conformable(in.Grid(),out.Grid()); | ||||
|     out.Checkerboard() = in.Checkerboard(); | ||||
|  | ||||
|     SimpleCompressor<siteVector> compressor; | ||||
|  | ||||
|     Stencil.HaloExchange(in,compressor); | ||||
|     autoView( in_v , in, AcceleratorRead); | ||||
|     autoView( out_v , out, AcceleratorWrite); | ||||
|     autoView( Stencil_v  , Stencil, AcceleratorRead); | ||||
|     int npoint = geom.npoint; | ||||
|     typedef LatticeView<Cobj> Aview; | ||||
|  | ||||
|     Vector<Aview> AcceleratorViewContainer; | ||||
|  | ||||
|     for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead)); | ||||
|     Aview *Aview_p = & AcceleratorViewContainer[0]; | ||||
|  | ||||
|     const int Nsimd = CComplex::Nsimd(); | ||||
|     typedef decltype(coalescedRead(in_v[0])) calcVector; | ||||
|     typedef decltype(coalescedRead(in_v[0](0))) calcComplex; | ||||
|  | ||||
|     int osites=Grid()->oSites(); | ||||
|  | ||||
|     Vector<int> points(geom.npoint, 0); | ||||
|     for(int p=0; p<geom.npoint; p++) | ||||
|       points[p] = geom.points_dagger[p]; | ||||
|  | ||||
|     auto points_p = &points[0]; | ||||
|  | ||||
|     RealD* dag_factor_p = &dag_factor[0]; | ||||
|  | ||||
|     accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, { | ||||
|       int ss = sss/nbasis; | ||||
|       int b  = sss%nbasis; | ||||
|       calcComplex res = Zero(); | ||||
|       calcVector nbr; | ||||
|       int ptype; | ||||
|       StencilEntry *SE; | ||||
|  | ||||
|       for(int p=0;p<npoint;p++){ | ||||
|         int point = points_p[p]; | ||||
|  | ||||
| 	SE=Stencil_v.GetEntry(ptype,point,ss); | ||||
|  | ||||
| 	if(SE->_is_local) { | ||||
| 	  nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute); | ||||
| 	} else { | ||||
| 	  nbr = coalescedRead(Stencil_v.CommBuf()[SE->_offset]); | ||||
| 	} | ||||
| 	acceleratorSynchronise(); | ||||
|  | ||||
| 	for(int bb=0;bb<nbasis;bb++) { | ||||
| 	  res = res + dag_factor_p[b*nbasis+bb]*coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb); | ||||
| 	} | ||||
|       } | ||||
|       coalescedWrite(out_v[ss](b),res); | ||||
|       }); | ||||
|  | ||||
|     for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose(); | ||||
|   } | ||||
|  | ||||
|   void MdirComms(const CoarseVector &in) | ||||
|   { | ||||
|     SimpleCompressor<siteVector> compressor; | ||||
|     Stencil.HaloExchange(in,compressor); | ||||
|   } | ||||
|   void MdirCalc(const CoarseVector &in, CoarseVector &out, int point) | ||||
|   { | ||||
|     conformable(_grid,in.Grid()); | ||||
|     conformable(_grid,out.Grid()); | ||||
|     out.Checkerboard() = in.Checkerboard(); | ||||
|  | ||||
|     typedef LatticeView<Cobj> Aview; | ||||
|     Vector<Aview> AcceleratorViewContainer; | ||||
|     for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead)); | ||||
|     Aview *Aview_p = & AcceleratorViewContainer[0]; | ||||
|  | ||||
|     autoView( out_v , out, AcceleratorWrite); | ||||
|     autoView( in_v  , in, AcceleratorRead); | ||||
|     autoView( Stencil_v  , Stencil, AcceleratorRead); | ||||
|  | ||||
|     const int Nsimd = CComplex::Nsimd(); | ||||
|     typedef decltype(coalescedRead(in_v[0])) calcVector; | ||||
|     typedef decltype(coalescedRead(in_v[0](0))) calcComplex; | ||||
|  | ||||
|     accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, { | ||||
|       int ss = sss/nbasis; | ||||
|       int b  = sss%nbasis; | ||||
|       calcComplex res = Zero(); | ||||
|       calcVector nbr; | ||||
|       int ptype; | ||||
|       StencilEntry *SE; | ||||
|  | ||||
|       SE=Stencil_v.GetEntry(ptype,point,ss); | ||||
| 	   | ||||
|       if(SE->_is_local) {  | ||||
| 	nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute); | ||||
|       } else { | ||||
| 	nbr = coalescedRead(Stencil_v.CommBuf()[SE->_offset]); | ||||
|       } | ||||
|       acceleratorSynchronise(); | ||||
|  | ||||
|       for(int bb=0;bb<nbasis;bb++) { | ||||
| 	res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb); | ||||
|       } | ||||
|       coalescedWrite(out_v[ss](b),res); | ||||
|     }); | ||||
|     for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose(); | ||||
|   } | ||||
|   void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out) | ||||
|   { | ||||
|     this->MdirComms(in); | ||||
|     int ndir=geom.npoint-1; | ||||
|     if ((out.size()!=ndir)&&(out.size()!=ndir+1)) {  | ||||
|       std::cout <<"MdirAll out size "<< out.size()<<std::endl; | ||||
|       std::cout <<"MdirAll ndir "<< ndir<<std::endl; | ||||
|       assert(0); | ||||
|     } | ||||
|     for(int p=0;p<ndir;p++){ | ||||
|       MdirCalc(in,out[p],p); | ||||
|     } | ||||
|   }; | ||||
|   void Mdir(const CoarseVector &in, CoarseVector &out, int dir, int disp){ | ||||
|  | ||||
|     this->MdirComms(in); | ||||
|  | ||||
|     MdirCalc(in,out,geom.point(dir,disp)); | ||||
|   }; | ||||
|  | ||||
|   void Mdiag(const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     int point=geom.npoint-1; | ||||
|     MdirCalc(in, out, point); // No comms | ||||
|   }; | ||||
|  | ||||
|   void Mooee(const CoarseVector &in, CoarseVector &out) { | ||||
|     MooeeInternal(in, out, DaggerNo, InverseNo); | ||||
|   } | ||||
|  | ||||
|   void MooeeInv(const CoarseVector &in, CoarseVector &out) { | ||||
|     MooeeInternal(in, out, DaggerNo, InverseYes); | ||||
|   } | ||||
|  | ||||
|   void MooeeDag(const CoarseVector &in, CoarseVector &out) { | ||||
|     MooeeInternal(in, out, DaggerYes, InverseNo); | ||||
|   } | ||||
|  | ||||
|   void MooeeInvDag(const CoarseVector &in, CoarseVector &out) { | ||||
|     MooeeInternal(in, out, DaggerYes, InverseYes); | ||||
|   } | ||||
|  | ||||
|   void Meooe(const CoarseVector &in, CoarseVector &out) { | ||||
|     if(in.Checkerboard() == Odd) { | ||||
|       DhopEO(in, out, DaggerNo); | ||||
|     } else { | ||||
|       DhopOE(in, out, DaggerNo); | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   void MeooeDag(const CoarseVector &in, CoarseVector &out) { | ||||
|     if(in.Checkerboard() == Odd) { | ||||
|       DhopEO(in, out, DaggerYes); | ||||
|     } else { | ||||
|       DhopOE(in, out, DaggerYes); | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   void Dhop(const CoarseVector &in, CoarseVector &out, int dag) { | ||||
|     conformable(in.Grid(), _grid); // verifies full grid | ||||
|     conformable(in.Grid(), out.Grid()); | ||||
|  | ||||
|     out.Checkerboard() = in.Checkerboard(); | ||||
|  | ||||
|     DhopInternal(Stencil, A, in, out, dag); | ||||
|   } | ||||
|  | ||||
|   void DhopOE(const CoarseVector &in, CoarseVector &out, int dag) { | ||||
|     conformable(in.Grid(), _cbgrid);    // verifies half grid | ||||
|     conformable(in.Grid(), out.Grid()); // drops the cb check | ||||
|  | ||||
|     assert(in.Checkerboard() == Even); | ||||
|     out.Checkerboard() = Odd; | ||||
|  | ||||
|     DhopInternal(StencilEven, Aodd, in, out, dag); | ||||
|   } | ||||
|  | ||||
|   void DhopEO(const CoarseVector &in, CoarseVector &out, int dag) { | ||||
|     conformable(in.Grid(), _cbgrid);    // verifies half grid | ||||
|     conformable(in.Grid(), out.Grid()); // drops the cb check | ||||
|  | ||||
|     assert(in.Checkerboard() == Odd); | ||||
|     out.Checkerboard() = Even; | ||||
|  | ||||
|     DhopInternal(StencilOdd, Aeven, in, out, dag); | ||||
|   } | ||||
|  | ||||
|   void MooeeInternal(const CoarseVector &in, CoarseVector &out, int dag, int inv) { | ||||
|     out.Checkerboard() = in.Checkerboard(); | ||||
|     assert(in.Checkerboard() == Odd || in.Checkerboard() == Even); | ||||
|  | ||||
|     CoarseMatrix *Aself = nullptr; | ||||
|     if(in.Grid()->_isCheckerBoarded) { | ||||
|       if(in.Checkerboard() == Odd) { | ||||
|         Aself = (inv) ? &AselfInvOdd : &Aodd[geom.npoint-1]; | ||||
|         DselfInternal(StencilOdd, *Aself, in, out, dag); | ||||
|       } else { | ||||
|         Aself = (inv) ? &AselfInvEven : &Aeven[geom.npoint-1]; | ||||
|         DselfInternal(StencilEven, *Aself, in, out, dag); | ||||
|       } | ||||
|     } else { | ||||
|       Aself = (inv) ? &AselfInv : &A[geom.npoint-1]; | ||||
|       DselfInternal(Stencil, *Aself, in, out, dag); | ||||
|     } | ||||
|     assert(Aself != nullptr); | ||||
|   } | ||||
|  | ||||
|   void DselfInternal(CartesianStencil<siteVector,siteVector,DefaultImplParams> &st, CoarseMatrix &a, | ||||
|                        const CoarseVector &in, CoarseVector &out, int dag) { | ||||
|     int point = geom.npoint-1; | ||||
|     autoView( out_v, out, AcceleratorWrite); | ||||
|     autoView( in_v,  in,  AcceleratorRead); | ||||
|     autoView( st_v,  st,  AcceleratorRead); | ||||
|     autoView( a_v,   a,   AcceleratorRead); | ||||
|  | ||||
|     const int Nsimd = CComplex::Nsimd(); | ||||
|     typedef decltype(coalescedRead(in_v[0])) calcVector; | ||||
|     typedef decltype(coalescedRead(in_v[0](0))) calcComplex; | ||||
|  | ||||
|     RealD* dag_factor_p = &dag_factor[0]; | ||||
|  | ||||
|     if(dag) { | ||||
|       accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, { | ||||
|         int ss = sss/nbasis; | ||||
|         int b  = sss%nbasis; | ||||
|         calcComplex res = Zero(); | ||||
|         calcVector nbr; | ||||
|         int ptype; | ||||
|         StencilEntry *SE; | ||||
|  | ||||
|         SE=st_v.GetEntry(ptype,point,ss); | ||||
|  | ||||
|         if(SE->_is_local) { | ||||
|           nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute); | ||||
|         } else { | ||||
|           nbr = coalescedRead(st_v.CommBuf()[SE->_offset]); | ||||
|         } | ||||
|         acceleratorSynchronise(); | ||||
|  | ||||
|         for(int bb=0;bb<nbasis;bb++) { | ||||
|           res = res + dag_factor_p[b*nbasis+bb]*coalescedRead(a_v[ss](b,bb))*nbr(bb); | ||||
|         } | ||||
|         coalescedWrite(out_v[ss](b),res); | ||||
|       }); | ||||
|     } else { | ||||
|       accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, { | ||||
|         int ss = sss/nbasis; | ||||
|         int b  = sss%nbasis; | ||||
|         calcComplex res = Zero(); | ||||
|         calcVector nbr; | ||||
|         int ptype; | ||||
|         StencilEntry *SE; | ||||
|  | ||||
|         SE=st_v.GetEntry(ptype,point,ss); | ||||
|  | ||||
|         if(SE->_is_local) { | ||||
|           nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute); | ||||
|         } else { | ||||
|           nbr = coalescedRead(st_v.CommBuf()[SE->_offset]); | ||||
|         } | ||||
|         acceleratorSynchronise(); | ||||
|  | ||||
|         for(int bb=0;bb<nbasis;bb++) { | ||||
|           res = res + coalescedRead(a_v[ss](b,bb))*nbr(bb); | ||||
|         } | ||||
|         coalescedWrite(out_v[ss](b),res); | ||||
|       }); | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   void DhopInternal(CartesianStencil<siteVector,siteVector,DefaultImplParams> &st, std::vector<CoarseMatrix> &a, | ||||
|                     const CoarseVector &in, CoarseVector &out, int dag) { | ||||
|     SimpleCompressor<siteVector> compressor; | ||||
|  | ||||
|     st.HaloExchange(in,compressor); | ||||
|     autoView( in_v,  in,  AcceleratorRead); | ||||
|     autoView( out_v, out, AcceleratorWrite); | ||||
|     autoView( st_v , st,  AcceleratorRead); | ||||
|     typedef LatticeView<Cobj> Aview; | ||||
|  | ||||
|     // determine in what order we need the points | ||||
|     int npoint = geom.npoint-1; | ||||
|     Vector<int> points(npoint, 0); | ||||
|     for(int p=0; p<npoint; p++) | ||||
|       points[p] = (dag && !hermitian) ? geom.points_dagger[p] : p; | ||||
|  | ||||
|     auto points_p = &points[0]; | ||||
|  | ||||
|     Vector<Aview> AcceleratorViewContainer; | ||||
|     for(int p=0;p<npoint;p++) AcceleratorViewContainer.push_back(a[p].View(AcceleratorRead)); | ||||
|     Aview *Aview_p = & AcceleratorViewContainer[0]; | ||||
|  | ||||
|     const int Nsimd = CComplex::Nsimd(); | ||||
|     typedef decltype(coalescedRead(in_v[0])) calcVector; | ||||
|     typedef decltype(coalescedRead(in_v[0](0))) calcComplex; | ||||
|  | ||||
|     RealD* dag_factor_p = &dag_factor[0]; | ||||
|  | ||||
|     if(dag) { | ||||
|       accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, { | ||||
|         int ss = sss/nbasis; | ||||
|         int b  = sss%nbasis; | ||||
|         calcComplex res = Zero(); | ||||
|         calcVector nbr; | ||||
|         int ptype; | ||||
|         StencilEntry *SE; | ||||
|  | ||||
|         for(int p=0;p<npoint;p++){ | ||||
|           int point = points_p[p]; | ||||
|           SE=st_v.GetEntry(ptype,point,ss); | ||||
|  | ||||
|           if(SE->_is_local) { | ||||
|             nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute); | ||||
|           } else { | ||||
|             nbr = coalescedRead(st_v.CommBuf()[SE->_offset]); | ||||
|           } | ||||
|           acceleratorSynchronise(); | ||||
|  | ||||
|           for(int bb=0;bb<nbasis;bb++) { | ||||
|             res = res + dag_factor_p[b*nbasis+bb]*coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb); | ||||
|           } | ||||
|         } | ||||
|         coalescedWrite(out_v[ss](b),res); | ||||
|       }); | ||||
|     } else { | ||||
|       accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, { | ||||
|         int ss = sss/nbasis; | ||||
|         int b  = sss%nbasis; | ||||
|         calcComplex res = Zero(); | ||||
|         calcVector nbr; | ||||
|         int ptype; | ||||
|         StencilEntry *SE; | ||||
|  | ||||
|         for(int p=0;p<npoint;p++){ | ||||
|           int point = points_p[p]; | ||||
|           SE=st_v.GetEntry(ptype,point,ss); | ||||
|  | ||||
|           if(SE->_is_local) { | ||||
|             nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute); | ||||
|           } else { | ||||
|             nbr = coalescedRead(st_v.CommBuf()[SE->_offset]); | ||||
|           } | ||||
|           acceleratorSynchronise(); | ||||
|  | ||||
|           for(int bb=0;bb<nbasis;bb++) { | ||||
|             res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb); | ||||
|           } | ||||
|         } | ||||
|         coalescedWrite(out_v[ss](b),res); | ||||
|       }); | ||||
|     } | ||||
|  | ||||
|     for(int p=0;p<npoint;p++) AcceleratorViewContainer[p].ViewClose(); | ||||
|   } | ||||
|    | ||||
|   CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) 	: | ||||
|     _grid(&CoarseGrid), | ||||
|     _cbgrid(new GridRedBlackCartesian(&CoarseGrid)), | ||||
|     geom(CoarseGrid._ndimension), | ||||
|     hermitian(hermitian_), | ||||
|     Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements), | ||||
|     StencilEven(_cbgrid,geom.npoint,Even,geom.directions,geom.displacements), | ||||
|     StencilOdd(_cbgrid,geom.npoint,Odd,geom.directions,geom.displacements), | ||||
|     A(geom.npoint,&CoarseGrid), | ||||
|     Aeven(geom.npoint,_cbgrid), | ||||
|     Aodd(geom.npoint,_cbgrid), | ||||
|     AselfInv(&CoarseGrid), | ||||
|     AselfInvEven(_cbgrid), | ||||
|     AselfInvOdd(_cbgrid), | ||||
|     dag_factor(nbasis*nbasis) | ||||
|   { | ||||
|     fillFactor(); | ||||
|   }; | ||||
|  | ||||
|   CoarsenedMatrix(GridCartesian &CoarseGrid, GridRedBlackCartesian &CoarseRBGrid, int hermitian_=0) 	: | ||||
|  | ||||
|     _grid(&CoarseGrid), | ||||
|     _cbgrid(&CoarseRBGrid), | ||||
|     geom(CoarseGrid._ndimension), | ||||
|     hermitian(hermitian_), | ||||
|     Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements), | ||||
|     StencilEven(&CoarseRBGrid,geom.npoint,Even,geom.directions,geom.displacements), | ||||
|     StencilOdd(&CoarseRBGrid,geom.npoint,Odd,geom.directions,geom.displacements), | ||||
|     A(geom.npoint,&CoarseGrid), | ||||
|     Aeven(geom.npoint,&CoarseRBGrid), | ||||
|     Aodd(geom.npoint,&CoarseRBGrid), | ||||
|     AselfInv(&CoarseGrid), | ||||
|     AselfInvEven(&CoarseRBGrid), | ||||
|     AselfInvOdd(&CoarseRBGrid), | ||||
|     dag_factor(nbasis*nbasis) | ||||
|   { | ||||
|     fillFactor(); | ||||
|   }; | ||||
|  | ||||
|   void fillFactor() { | ||||
|     Eigen::MatrixXd dag_factor_eigen = Eigen::MatrixXd::Ones(nbasis, nbasis); | ||||
|     if(!hermitian) { | ||||
|       const int nb = nbasis/2; | ||||
|       dag_factor_eigen.block(0,nb,nb,nb) *= -1.0; | ||||
|       dag_factor_eigen.block(nb,0,nb,nb) *= -1.0; | ||||
|     } | ||||
|  | ||||
|     // GPU readable prefactor | ||||
|     thread_for(i, nbasis*nbasis, { | ||||
|       int j = i/nbasis; | ||||
|       int k = i%nbasis; | ||||
|       dag_factor[i] = dag_factor_eigen(j, k); | ||||
|     }); | ||||
|   } | ||||
|  | ||||
|   void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop, | ||||
| 		       Aggregation<Fobj,CComplex,nbasis> & Subspace) | ||||
|   { | ||||
|     typedef Lattice<typename Fobj::tensor_reduced> FineComplexField; | ||||
|     typedef typename Fobj::scalar_type scalar_type; | ||||
|  | ||||
|     std::cout << GridLogMessage<< "CoarsenMatrix "<< std::endl; | ||||
|  | ||||
|     FineComplexField one(FineGrid); one=scalar_type(1.0,0.0); | ||||
|     FineComplexField zero(FineGrid); zero=scalar_type(0.0,0.0); | ||||
|  | ||||
|     std::vector<FineComplexField> masks(geom.npoint,FineGrid); | ||||
|     FineComplexField imask(FineGrid); // contributions from within this block | ||||
|     FineComplexField omask(FineGrid); // contributions from outwith this block | ||||
|  | ||||
|     FineComplexField evenmask(FineGrid); | ||||
|     FineComplexField oddmask(FineGrid);  | ||||
|  | ||||
|     FineField     phi(FineGrid); | ||||
|     FineField     tmp(FineGrid); | ||||
|     FineField     zz(FineGrid); zz=Zero(); | ||||
|     FineField    Mphi(FineGrid); | ||||
|     FineField    Mphie(FineGrid); | ||||
|     FineField    Mphio(FineGrid); | ||||
|     std::vector<FineField>     Mphi_p(geom.npoint,FineGrid); | ||||
|  | ||||
|     Lattice<iScalar<vInteger> > coor (FineGrid); | ||||
|     Lattice<iScalar<vInteger> > bcoor(FineGrid); | ||||
|     Lattice<iScalar<vInteger> > bcb  (FineGrid); bcb = Zero(); | ||||
|  | ||||
|     CoarseVector iProj(Grid());  | ||||
|     CoarseVector oProj(Grid());  | ||||
|     CoarseVector SelfProj(Grid());  | ||||
|     CoarseComplexField iZProj(Grid());  | ||||
|     CoarseComplexField oZProj(Grid());  | ||||
|  | ||||
|     CoarseScalar InnerProd(Grid());  | ||||
|  | ||||
|     std::cout << GridLogMessage<< "CoarsenMatrix Orthog "<< std::endl; | ||||
|     // Orthogonalise the subblocks over the basis | ||||
|     blockOrthogonalise(InnerProd,Subspace.subspace); | ||||
|  | ||||
|     // Compute the matrix elements of linop between this orthonormal | ||||
|     // set of vectors. | ||||
|     std::cout << GridLogMessage<< "CoarsenMatrix masks "<< std::endl; | ||||
|     int self_stencil=-1; | ||||
|     for(int p=0;p<geom.npoint;p++) | ||||
|     {  | ||||
|       int dir   = geom.directions[p]; | ||||
|       int disp  = geom.displacements[p]; | ||||
|       A[p]=Zero(); | ||||
|       if( geom.displacements[p]==0){ | ||||
| 	self_stencil=p; | ||||
|       } | ||||
|  | ||||
|       Integer block=(FineGrid->_rdimensions[dir])/(Grid()->_rdimensions[dir]); | ||||
|  | ||||
|       LatticeCoordinate(coor,dir); | ||||
|  | ||||
|       /////////////////////////////////////////////////////// | ||||
|       // Work out even and odd block checkerboarding for fast diagonal term | ||||
|       /////////////////////////////////////////////////////// | ||||
|       if ( disp==1 ) { | ||||
| 	bcb   = bcb + div(coor,block); | ||||
|       } | ||||
| 	 | ||||
|       if ( disp==0 ) { | ||||
| 	  masks[p]= Zero(); | ||||
|       } else if ( disp==1 ) { | ||||
| 	masks[p] = where(mod(coor,block)==(block-1),one,zero); | ||||
|       } else if ( disp==-1 ) { | ||||
| 	masks[p] = where(mod(coor,block)==(Integer)0,one,zero); | ||||
|       } | ||||
|     } | ||||
|     evenmask = where(mod(bcb,2)==(Integer)0,one,zero); | ||||
|     oddmask  = one-evenmask; | ||||
|  | ||||
|     assert(self_stencil!=-1); | ||||
|  | ||||
|     for(int i=0;i<nbasis;i++){ | ||||
|  | ||||
|       phi=Subspace.subspace[i]; | ||||
|  | ||||
|       std::cout << GridLogMessage<< "CoarsenMatrix vector "<<i << std::endl; | ||||
|       linop.OpDirAll(phi,Mphi_p); | ||||
|       linop.OpDiag  (phi,Mphi_p[geom.npoint-1]); | ||||
|  | ||||
|       for(int p=0;p<geom.npoint;p++){  | ||||
|  | ||||
| 	Mphi = Mphi_p[p]; | ||||
|  | ||||
| 	int dir   = geom.directions[p]; | ||||
| 	int disp  = geom.displacements[p]; | ||||
|  | ||||
| 	if ( (disp==-1) || (!hermitian ) ) { | ||||
|  | ||||
| 	  //////////////////////////////////////////////////////////////////////// | ||||
| 	  // Pick out contributions coming from this cell and neighbour cell | ||||
| 	  //////////////////////////////////////////////////////////////////////// | ||||
| 	  omask = masks[p]; | ||||
| 	  imask = one-omask; | ||||
| 	 | ||||
| 	  for(int j=0;j<nbasis;j++){ | ||||
| 	     | ||||
| 	    blockMaskedInnerProduct(oZProj,omask,Subspace.subspace[j],Mphi); | ||||
| 	     | ||||
| 	    autoView( iZProj_v , iZProj, AcceleratorRead) ; | ||||
| 	    autoView( oZProj_v , oZProj, AcceleratorRead) ; | ||||
| 	    autoView( A_p     ,  A[p], AcceleratorWrite); | ||||
| 	    autoView( A_self  , A[self_stencil], AcceleratorWrite); | ||||
|  | ||||
| 	    accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_p[ss](j,i),oZProj_v(ss)); }); | ||||
| 	    if ( hermitian && (disp==-1) ) { | ||||
| 	      for(int pp=0;pp<geom.npoint;pp++){// Find the opposite link and set <j|A|i> = <i|A|j>* | ||||
| 		int dirp   = geom.directions[pp]; | ||||
| 		int dispp  = geom.displacements[pp]; | ||||
| 		if ( (dirp==dir) && (dispp==1) ){ | ||||
| 		  auto sft = conjugate(Cshift(oZProj,dir,1)); | ||||
| 		  autoView( sft_v    ,  sft  , AcceleratorWrite); | ||||
| 		  autoView( A_pp     ,  A[pp], AcceleratorWrite); | ||||
| 		  accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_pp[ss](i,j),sft_v(ss)); }); | ||||
| 		} | ||||
| 	      } | ||||
| 	    } | ||||
|  | ||||
| 	  } | ||||
| 	} | ||||
|       } | ||||
|  | ||||
|       /////////////////////////////////////////// | ||||
|       // Faster alternate self coupling.. use hermiticity to save 2x | ||||
|       /////////////////////////////////////////// | ||||
|       { | ||||
| 	mult(tmp,phi,evenmask);  linop.Op(tmp,Mphie); | ||||
| 	mult(tmp,phi,oddmask );  linop.Op(tmp,Mphio); | ||||
|  | ||||
| 	{ | ||||
| 	  autoView( tmp_      , tmp, AcceleratorWrite); | ||||
| 	  autoView( evenmask_ , evenmask, AcceleratorRead); | ||||
| 	  autoView( oddmask_  ,  oddmask, AcceleratorRead); | ||||
| 	  autoView( Mphie_    ,  Mphie, AcceleratorRead); | ||||
| 	  autoView( Mphio_    ,  Mphio, AcceleratorRead); | ||||
| 	  accelerator_for(ss, FineGrid->oSites(), Fobj::Nsimd(),{  | ||||
| 	      coalescedWrite(tmp_[ss],evenmask_(ss)*Mphie_(ss) + oddmask_(ss)*Mphio_(ss)); | ||||
| 	    }); | ||||
| 	} | ||||
|  | ||||
| 	blockProject(SelfProj,tmp,Subspace.subspace); | ||||
|  | ||||
| 	autoView( SelfProj_ , SelfProj, AcceleratorRead); | ||||
| 	autoView( A_self  , A[self_stencil], AcceleratorWrite); | ||||
|  | ||||
| 	accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ | ||||
| 	  for(int j=0;j<nbasis;j++){ | ||||
| 	    coalescedWrite(A_self[ss](j,i), SelfProj_(ss)(j)); | ||||
| 	  } | ||||
| 	}); | ||||
|  | ||||
|       } | ||||
|     } | ||||
|     if(hermitian) { | ||||
|       std::cout << GridLogMessage << " ForceHermitian, new code "<<std::endl; | ||||
|     } | ||||
|  | ||||
|     InvertSelfStencilLink(); std::cout << GridLogMessage << "Coarse self link inverted" << std::endl; | ||||
|     FillHalfCbs(); std::cout << GridLogMessage << "Coarse half checkerboards filled" << std::endl; | ||||
|   } | ||||
|  | ||||
|   void InvertSelfStencilLink() { | ||||
|     std::cout << GridLogDebug << "CoarsenedMatrix::InvertSelfStencilLink" << std::endl; | ||||
|     int localVolume = Grid()->lSites(); | ||||
|  | ||||
|     typedef typename Cobj::scalar_object scalar_object; | ||||
|  | ||||
|     autoView(Aself_v,    A[geom.npoint-1], CpuRead); | ||||
|     autoView(AselfInv_v, AselfInv,         CpuWrite); | ||||
|     thread_for(site, localVolume, { // NOTE: Not able to bring this to GPU because of Eigen + peek/poke | ||||
|       Eigen::MatrixXcd selfLinkEigen    = Eigen::MatrixXcd::Zero(nbasis, nbasis); | ||||
|       Eigen::MatrixXcd selfLinkInvEigen = Eigen::MatrixXcd::Zero(nbasis, nbasis); | ||||
|  | ||||
|       scalar_object selfLink    = Zero(); | ||||
|       scalar_object selfLinkInv = Zero(); | ||||
|  | ||||
|       Coordinate lcoor; | ||||
|  | ||||
|       Grid()->LocalIndexToLocalCoor(site, lcoor); | ||||
|       peekLocalSite(selfLink, Aself_v, lcoor); | ||||
|  | ||||
|       for (int i = 0; i < nbasis; ++i) | ||||
|         for (int j = 0; j < nbasis; ++j) | ||||
|           selfLinkEigen(i, j) = static_cast<ComplexD>(TensorRemove(selfLink(i, j))); | ||||
|  | ||||
|       selfLinkInvEigen = selfLinkEigen.inverse(); | ||||
|  | ||||
|       for(int i = 0; i < nbasis; ++i) | ||||
|         for(int j = 0; j < nbasis; ++j) | ||||
|           selfLinkInv(i, j) = selfLinkInvEigen(i, j); | ||||
|  | ||||
|       pokeLocalSite(selfLinkInv, AselfInv_v, lcoor); | ||||
|     }); | ||||
|   } | ||||
|  | ||||
|   void FillHalfCbs() { | ||||
|     std::cout << GridLogDebug << "CoarsenedMatrix::FillHalfCbs" << std::endl; | ||||
|     for(int p = 0; p < geom.npoint; ++p) { | ||||
|       pickCheckerboard(Even, Aeven[p], A[p]); | ||||
|       pickCheckerboard(Odd, Aodd[p], A[p]); | ||||
|     } | ||||
|     pickCheckerboard(Even, AselfInvEven, AselfInv); | ||||
|     pickCheckerboard(Odd, AselfInvOdd, AselfInv); | ||||
|   } | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
| @@ -1,619 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| #include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No) | ||||
|  | ||||
| #include <Grid/lattice/PaddedCell.h> | ||||
| #include <Grid/stencil/GeneralLocalStencil.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| // Fine Object == (per site) type of fine field | ||||
| // nbasis      == number of deflation vectors | ||||
| template<class Fobj,class CComplex,int nbasis> | ||||
| class GeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > >  { | ||||
| public: | ||||
|  | ||||
|   typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp; | ||||
|   typedef iVector<CComplex,nbasis >           siteVector; | ||||
|   typedef iMatrix<CComplex,nbasis >           siteMatrix; | ||||
|   typedef Lattice<iScalar<CComplex> >         CoarseComplexField; | ||||
|   typedef Lattice<siteVector>                 CoarseVector; | ||||
|   typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix; | ||||
|   typedef iMatrix<CComplex,nbasis >  Cobj; | ||||
|   typedef iVector<CComplex,nbasis >  Cvec; | ||||
|   typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field | ||||
|   typedef Lattice<Fobj >        FineField; | ||||
|   typedef Lattice<CComplex >    FineComplexField; | ||||
|   typedef CoarseVector Field; | ||||
|   //////////////////// | ||||
|   // Data members | ||||
|   //////////////////// | ||||
|   int hermitian; | ||||
|   GridBase      *       _FineGrid;  | ||||
|   GridCartesian *       _CoarseGrid;  | ||||
|   NonLocalStencilGeometry &geom; | ||||
|   PaddedCell Cell; | ||||
|   GeneralLocalStencil Stencil; | ||||
|    | ||||
|   std::vector<CoarseMatrix> _A; | ||||
|   std::vector<CoarseMatrix> _Adag; | ||||
|   std::vector<CoarseVector> MultTemporaries; | ||||
|  | ||||
|   /////////////////////// | ||||
|   // Interface | ||||
|   /////////////////////// | ||||
|   GridBase      * Grid(void)           { return _CoarseGrid; };   // this is all the linalg routines need to know | ||||
|   GridBase      * FineGrid(void)       { return _FineGrid; };   // this is all the linalg routines need to know | ||||
|   GridCartesian * CoarseGrid(void)     { return _CoarseGrid; };   // this is all the linalg routines need to know | ||||
|  | ||||
|   /*  void ShiftMatrix(RealD shift) | ||||
|   { | ||||
|     int Nd=_FineGrid->Nd();  | ||||
|     Coordinate zero_shift(Nd,0); | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       if ( zero_shift==geom.shifts[p] ) { | ||||
| 	_A[p] = _A[p]+shift; | ||||
| 	//	_Adag[p] = _Adag[p]+shift; | ||||
|       } | ||||
|     }     | ||||
|   } | ||||
|   void ProjectNearestNeighbour(RealD shift, GeneralCoarseOp &CopyMe) | ||||
|   { | ||||
|     int nfound=0; | ||||
|     std::cout << GridLogMessage <<"GeneralCoarsenedMatrix::ProjectNearestNeighbour "<< CopyMe._A[0].Grid()<<std::endl; | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       for(int pp=0;pp<CopyMe.geom.npoint;pp++){ | ||||
|  	// Search for the same relative shift | ||||
| 	// Avoids brutal handling of Grid pointers | ||||
| 	if ( CopyMe.geom.shifts[pp]==geom.shifts[p] ) { | ||||
| 	  _A[p] = CopyMe.Cell.Extract(CopyMe._A[pp]); | ||||
| 	  //	  _Adag[p] = CopyMe.Cell.Extract(CopyMe._Adag[pp]); | ||||
| 	  nfound++; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
|     assert(nfound==geom.npoint); | ||||
|     ExchangeCoarseLinks(); | ||||
|   } | ||||
|   */ | ||||
|    | ||||
|   GeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridBase *FineGrid, GridCartesian * CoarseGrid) | ||||
|     : geom(_geom), | ||||
|       _FineGrid(FineGrid), | ||||
|       _CoarseGrid(CoarseGrid), | ||||
|       hermitian(1), | ||||
|       Cell(_geom.Depth(),_CoarseGrid), | ||||
|       Stencil(Cell.grids.back(),geom.shifts) | ||||
|   { | ||||
|     { | ||||
|       int npoint = _geom.npoint; | ||||
|     } | ||||
|     _A.resize(geom.npoint,CoarseGrid); | ||||
|     //    _Adag.resize(geom.npoint,CoarseGrid); | ||||
|   } | ||||
|   void M (const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     Mult(_A,in,out); | ||||
|   } | ||||
|   void Mdag (const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     assert(hermitian); | ||||
|     Mult(_A,in,out); | ||||
|     //    if ( hermitian ) M(in,out); | ||||
|     //    else Mult(_Adag,in,out); | ||||
|   } | ||||
|   void Mult (std::vector<CoarseMatrix> &A,const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     RealD tviews=0;    RealD ttot=0;    RealD tmult=0;   RealD texch=0;    RealD text=0; RealD ttemps=0; RealD tcopy=0; | ||||
|     RealD tmult2=0; | ||||
|  | ||||
|     ttot=-usecond(); | ||||
|     conformable(CoarseGrid(),in.Grid()); | ||||
|     conformable(in.Grid(),out.Grid()); | ||||
|     out.Checkerboard() = in.Checkerboard(); | ||||
|     CoarseVector tin=in; | ||||
|  | ||||
|     texch-=usecond(); | ||||
|     CoarseVector pin = Cell.ExchangePeriodic(tin); | ||||
|     texch+=usecond(); | ||||
|  | ||||
|     CoarseVector pout(pin.Grid()); | ||||
|  | ||||
|     int npoint = geom.npoint; | ||||
|     typedef LatticeView<Cobj> Aview; | ||||
|     typedef LatticeView<Cvec> Vview; | ||||
|        | ||||
|     const int Nsimd = CComplex::Nsimd(); | ||||
|      | ||||
|     int64_t osites=pin.Grid()->oSites(); | ||||
|  | ||||
|     RealD flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd(); | ||||
|     RealD bytes = 1.0*osites*sizeof(siteMatrix)*npoint | ||||
|                 + 2.0*osites*sizeof(siteVector)*npoint; | ||||
|        | ||||
|     { | ||||
|       tviews-=usecond(); | ||||
|       autoView( in_v , pin, AcceleratorRead); | ||||
|       autoView( out_v , pout, AcceleratorWriteDiscard); | ||||
|       autoView( Stencil_v  , Stencil, AcceleratorRead); | ||||
|       tviews+=usecond(); | ||||
|  | ||||
|       // Static and prereserve to keep UVM region live and not resized across multiple calls | ||||
|       ttemps-=usecond(); | ||||
|       MultTemporaries.resize(npoint,pin.Grid());        | ||||
|       ttemps+=usecond(); | ||||
|       std::vector<Aview> AcceleratorViewContainer_h; | ||||
|       std::vector<Vview> AcceleratorVecViewContainer_h;  | ||||
|  | ||||
|       tviews-=usecond(); | ||||
|       for(int p=0;p<npoint;p++) { | ||||
| 	AcceleratorViewContainer_h.push_back(      A[p].View(AcceleratorRead)); | ||||
| 	AcceleratorVecViewContainer_h.push_back(MultTemporaries[p].View(AcceleratorWrite)); | ||||
|       } | ||||
|       tviews+=usecond(); | ||||
|  | ||||
|       static deviceVector<Aview> AcceleratorViewContainer; AcceleratorViewContainer.resize(npoint); | ||||
|       static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(npoint);  | ||||
|        | ||||
|       auto Aview_p = &AcceleratorViewContainer[0]; | ||||
|       auto Vview_p = &AcceleratorVecViewContainer[0]; | ||||
|       tcopy-=usecond(); | ||||
|       acceleratorCopyToDevice(&AcceleratorViewContainer_h[0],&AcceleratorViewContainer[0],npoint *sizeof(Aview)); | ||||
|       acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],npoint *sizeof(Vview)); | ||||
|       tcopy+=usecond(); | ||||
|  | ||||
|       tmult-=usecond(); | ||||
|       accelerator_for(spb, osites*nbasis*npoint, Nsimd, { | ||||
| 	  typedef decltype(coalescedRead(in_v[0](0))) calcComplex; | ||||
| 	  int32_t ss   = spb/(nbasis*npoint); | ||||
| 	  int32_t bp   = spb%(nbasis*npoint); | ||||
| 	  int32_t point= bp/nbasis; | ||||
| 	  int32_t b    = bp%nbasis; | ||||
| 	  auto SE  = Stencil_v.GetEntry(point,ss); | ||||
| 	  auto nbr = coalescedReadGeneralPermute(in_v[SE->_offset],SE->_permute,Nd); | ||||
| 	  auto res = coalescedRead(Aview_p[point][ss](0,b))*nbr(0); | ||||
| 	  for(int bb=1;bb<nbasis;bb++) { | ||||
| 	    res = res + coalescedRead(Aview_p[point][ss](bb,b))*nbr(bb); | ||||
| 	  } | ||||
| 	  coalescedWrite(Vview_p[point][ss](b),res); | ||||
|       }); | ||||
|       tmult2-=usecond(); | ||||
|       accelerator_for(sb, osites*nbasis, Nsimd, { | ||||
| 	  int ss = sb/nbasis; | ||||
| 	  int b  = sb%nbasis; | ||||
| 	  auto res = coalescedRead(Vview_p[0][ss](b)); | ||||
| 	  for(int point=1;point<npoint;point++){ | ||||
| 	    res = res + coalescedRead(Vview_p[point][ss](b)); | ||||
| 	  } | ||||
| 	  coalescedWrite(out_v[ss](b),res); | ||||
|       }); | ||||
|       tmult2+=usecond(); | ||||
|       tmult+=usecond(); | ||||
|       for(int p=0;p<npoint;p++) { | ||||
| 	AcceleratorViewContainer_h[p].ViewClose(); | ||||
| 	AcceleratorVecViewContainer_h[p].ViewClose(); | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     text-=usecond(); | ||||
|     out = Cell.Extract(pout); | ||||
|     text+=usecond(); | ||||
|     ttot+=usecond(); | ||||
|      | ||||
|     std::cout << GridLogPerformance<<"Coarse 1rhs Mult Aviews "<<tviews<<" us"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Mult exch "<<texch<<" us"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Mult mult "<<tmult<<" us"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<" of which mult2  "<<tmult2<<" us"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Mult ext  "<<text<<" us"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Mult temps "<<ttemps<<" us"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Mult copy  "<<tcopy<<" us"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Mult tot  "<<ttot<<" us"<<std::endl; | ||||
|     //    std::cout << GridLogPerformance<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Kernel flops "<< flops<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Kernel flop/s "<< flops/tmult<<" mflop/s"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse Kernel bytes/s "<< bytes/tmult<<" MB/s"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse overall flops/s "<< flops/ttot<<" mflop/s"<<std::endl; | ||||
|     std::cout << GridLogPerformance<<"Coarse total bytes   "<< bytes/1e6<<" MB"<<std::endl; | ||||
|  | ||||
|   }; | ||||
|    | ||||
|   void PopulateAdag(void) | ||||
|   { | ||||
|     for(int64_t bidx=0;bidx<CoarseGrid()->gSites() ;bidx++){ | ||||
|       Coordinate bcoor; | ||||
|       CoarseGrid()->GlobalIndexToGlobalCoor(bidx,bcoor); | ||||
|        | ||||
|       for(int p=0;p<geom.npoint;p++){ | ||||
| 	Coordinate scoor = bcoor; | ||||
| 	for(int mu=0;mu<bcoor.size();mu++){ | ||||
| 	  int L = CoarseGrid()->GlobalDimensions()[mu]; | ||||
| 	  scoor[mu] = (bcoor[mu] - geom.shifts[p][mu] + L) % L; // Modulo arithmetic | ||||
| 	} | ||||
| 	// Flip to poke/peekLocalSite and not too bad | ||||
| 	auto link = peekSite(_A[p],scoor); | ||||
| 	int pp = geom.Reverse(p); | ||||
| 	pokeSite(adj(link),_Adag[pp],bcoor); | ||||
|       } | ||||
|     } | ||||
|   } | ||||
|   ///////////////////////////////////////////////////////////// | ||||
|   //  | ||||
|   // A) Only reduced flops option is to use a padded cell of depth 4 | ||||
|   // and apply MpcDagMpc in the padded cell. | ||||
|   // | ||||
|   // Makes for ONE application of MpcDagMpc per vector instead of 30 or 80. | ||||
|   // With the effective cell size around (B+8)^4 perhaps 12^4/4^4 ratio | ||||
|   // Cost is 81x more, same as stencil size. | ||||
|   // | ||||
|   // But: can eliminate comms and do as local dirichlet. | ||||
|   // | ||||
|   // Local exchange gauge field once. | ||||
|   // Apply to all vectors, local only computation. | ||||
|   // Must exchange ghost subcells in reverse process of PaddedCell to take inner products | ||||
|   // | ||||
|   // B) Can reduce cost: pad by 1, apply Deo      (4^4+6^4+8^4+8^4 )/ (4x 4^4) | ||||
|   //                     pad by 2, apply Doe | ||||
|   //                     pad by 3, apply Deo | ||||
|   //                     then break out 8x directions; cost is ~10x MpcDagMpc per vector | ||||
|   // | ||||
|   // => almost factor of 10 in setup cost, excluding data rearrangement | ||||
|   // | ||||
|   // Intermediates -- ignore the corner terms, leave approximate and force Hermitian | ||||
|   // Intermediates -- pad by 2 and apply 1+8+24 = 33 times. | ||||
|   ///////////////////////////////////////////////////////////// | ||||
|  | ||||
|     ////////////////////////////////////////////////////////// | ||||
|     // BFM HDCG style approach: Solve a system of equations to get Aij | ||||
|     ////////////////////////////////////////////////////////// | ||||
|     /* | ||||
|      *     Here, k,l index which possible shift within the 3^Nd "ball" connected by MdagM. | ||||
|      * | ||||
|      *     conj(phases[block]) proj[k][ block*Nvec+j ] =  \sum_ball  e^{i q_k . delta} < phi_{block,j} | MdagM | phi_{(block+delta),i} >  | ||||
|      *                                                 =  \sum_ball e^{iqk.delta} A_ji | ||||
|      * | ||||
|      *     Must invert matrix M_k,l = e^[i q_k . delta_l] | ||||
|      * | ||||
|      *     Where q_k = delta_k . (2*M_PI/global_nb[mu]) | ||||
|      */ | ||||
| #if 0 | ||||
|   void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop, | ||||
| 		       Aggregation<Fobj,CComplex,nbasis> & Subspace) | ||||
|   { | ||||
|     std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl; | ||||
|     GridBase *grid = FineGrid(); | ||||
|  | ||||
|     RealD tproj=0.0; | ||||
|     RealD teigen=0.0; | ||||
|     RealD tmat=0.0; | ||||
|     RealD tphase=0.0; | ||||
|     RealD tinv=0.0; | ||||
|  | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     // Orthogonalise the subblocks over the basis | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     CoarseScalar InnerProd(CoarseGrid());  | ||||
|     blockOrthogonalise(InnerProd,Subspace.subspace); | ||||
|  | ||||
|     const int npoint = geom.npoint; | ||||
|        | ||||
|     Coordinate clatt = CoarseGrid()->GlobalDimensions(); | ||||
|     int Nd = CoarseGrid()->Nd(); | ||||
|  | ||||
|       /* | ||||
|        *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM. | ||||
|        *     Matrix index i is mapped to this shift via  | ||||
|        *               geom.shifts[i] | ||||
|        * | ||||
|        *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]  | ||||
|        *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >  | ||||
|        *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l} | ||||
|        *       = M_{kl} A_ji^{b.b+l} | ||||
|        * | ||||
|        *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l] | ||||
|        *   | ||||
|        *     Where q_k = delta_k . (2*M_PI/global_nb[mu]) | ||||
|        * | ||||
|        *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j} | ||||
|        */ | ||||
|     teigen-=usecond(); | ||||
|     Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint); | ||||
|     Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint); | ||||
|     ComplexD ci(0.0,1.0); | ||||
|     for(int k=0;k<npoint;k++){ // Loop over momenta | ||||
|  | ||||
|       for(int l=0;l<npoint;l++){ // Loop over nbr relative | ||||
| 	ComplexD phase(0.0,0.0); | ||||
| 	for(int mu=0;mu<Nd;mu++){ | ||||
| 	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu]; | ||||
| 	  phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu]; | ||||
| 	} | ||||
| 	phase=exp(phase*ci); | ||||
| 	Mkl(k,l) = phase; | ||||
|       } | ||||
|     } | ||||
|     invMkl = Mkl.inverse(); | ||||
|     teigen+=usecond(); | ||||
|  | ||||
|     /////////////////////////////////////////////////////////////////////// | ||||
|     // Now compute the matrix elements of linop between the orthonormal | ||||
|     // set of vectors. | ||||
|     /////////////////////////////////////////////////////////////////////// | ||||
|     FineField phaV(grid); // Phased block basis vector | ||||
|     FineField MphaV(grid);// Matrix applied | ||||
|     CoarseVector coarseInner(CoarseGrid()); | ||||
|  | ||||
|     std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid()); | ||||
|     std::vector<CoarseVector>          FT(npoint,CoarseGrid()); | ||||
|     for(int i=0;i<nbasis;i++){// Loop over basis vectors | ||||
|       std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl; | ||||
|       for(int p=0;p<npoint;p++){ // Loop over momenta in npoint | ||||
| 	///////////////////////////////////////////////////// | ||||
| 	// Stick a phase on every block | ||||
| 	///////////////////////////////////////////////////// | ||||
| 	tphase-=usecond(); | ||||
| 	CoarseComplexField coor(CoarseGrid()); | ||||
| 	CoarseComplexField pha(CoarseGrid());	pha=Zero(); | ||||
| 	for(int mu=0;mu<Nd;mu++){ | ||||
| 	  LatticeCoordinate(coor,mu); | ||||
| 	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu]; | ||||
| 	  pha = pha + (TwoPiL * geom.shifts[p][mu]) * coor; | ||||
| 	} | ||||
| 	pha  =exp(pha*ci); | ||||
| 	phaV=Zero(); | ||||
| 	blockZAXPY(phaV,pha,Subspace.subspace[i],phaV); | ||||
| 	tphase+=usecond(); | ||||
|  | ||||
| 	///////////////////////////////////////////////////////////////////// | ||||
| 	// Multiple phased subspace vector by matrix and project to subspace | ||||
| 	// Remove local bulk phase to leave relative phases | ||||
| 	///////////////////////////////////////////////////////////////////// | ||||
| 	tmat-=usecond(); | ||||
| 	linop.Op(phaV,MphaV); | ||||
| 	tmat+=usecond(); | ||||
|  | ||||
| 	tproj-=usecond(); | ||||
| 	blockProject(coarseInner,MphaV,Subspace.subspace); | ||||
| 	coarseInner = conjugate(pha) * coarseInner; | ||||
|  | ||||
| 	ComputeProj[p] = coarseInner; | ||||
| 	tproj+=usecond(); | ||||
|  | ||||
|       } | ||||
|  | ||||
|       tinv-=usecond(); | ||||
|       for(int k=0;k<npoint;k++){ | ||||
| 	FT[k] = Zero(); | ||||
| 	for(int l=0;l<npoint;l++){ | ||||
| 	  FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l]; | ||||
| 	} | ||||
|        | ||||
| 	int osites=CoarseGrid()->oSites(); | ||||
| 	autoView( A_v  , _A[k], AcceleratorWrite); | ||||
| 	autoView( FT_v  , FT[k], AcceleratorRead); | ||||
| 	accelerator_for(sss, osites, 1, { | ||||
| 	    for(int j=0;j<nbasis;j++){ | ||||
| 	      A_v[sss](i,j) = FT_v[sss](j); | ||||
| 	    } | ||||
|         }); | ||||
|       } | ||||
|       tinv+=usecond(); | ||||
|     } | ||||
|  | ||||
|     // Only needed if nonhermitian | ||||
|     if ( ! hermitian ) { | ||||
|       //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl; | ||||
|       //      PopulateAdag(); | ||||
|     } | ||||
|  | ||||
|     // Need to write something to populate Adag from A | ||||
|     ExchangeCoarseLinks(); | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator eigen  "<<teigen<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator phase  "<<tphase<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator mat    "<<tmat <<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator proj   "<<tproj<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl; | ||||
|   } | ||||
| #else | ||||
|   void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop, | ||||
| 		       Aggregation<Fobj,CComplex,nbasis> & Subspace) | ||||
|   { | ||||
|     std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl; | ||||
|     GridBase *grid = FineGrid(); | ||||
|  | ||||
|     RealD tproj=0.0; | ||||
|     RealD teigen=0.0; | ||||
|     RealD tmat=0.0; | ||||
|     RealD tphase=0.0; | ||||
|     RealD tphaseBZ=0.0; | ||||
|     RealD tinv=0.0; | ||||
|  | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     // Orthogonalise the subblocks over the basis | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     CoarseScalar InnerProd(CoarseGrid());  | ||||
|     blockOrthogonalise(InnerProd,Subspace.subspace); | ||||
|  | ||||
|     //    for(int s=0;s<Subspace.subspace.size();s++){ | ||||
|       //      std::cout << " subspace norm "<<norm2(Subspace.subspace[s])<<std::endl; | ||||
|     //    } | ||||
|     const int npoint = geom.npoint; | ||||
|        | ||||
|     Coordinate clatt = CoarseGrid()->GlobalDimensions(); | ||||
|     int Nd = CoarseGrid()->Nd(); | ||||
|  | ||||
|       /* | ||||
|        *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM. | ||||
|        *     Matrix index i is mapped to this shift via  | ||||
|        *               geom.shifts[i] | ||||
|        * | ||||
|        *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]  | ||||
|        *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >  | ||||
|        *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l} | ||||
|        *       = M_{kl} A_ji^{b.b+l} | ||||
|        * | ||||
|        *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l] | ||||
|        *   | ||||
|        *     Where q_k = delta_k . (2*M_PI/global_nb[mu]) | ||||
|        * | ||||
|        *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j} | ||||
|        */ | ||||
|     teigen-=usecond(); | ||||
|     Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint); | ||||
|     Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint); | ||||
|     ComplexD ci(0.0,1.0); | ||||
|     for(int k=0;k<npoint;k++){ // Loop over momenta | ||||
|  | ||||
|       for(int l=0;l<npoint;l++){ // Loop over nbr relative | ||||
| 	ComplexD phase(0.0,0.0); | ||||
| 	for(int mu=0;mu<Nd;mu++){ | ||||
| 	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu]; | ||||
| 	  phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu]; | ||||
| 	} | ||||
| 	phase=exp(phase*ci); | ||||
| 	Mkl(k,l) = phase; | ||||
|       } | ||||
|     } | ||||
|     invMkl = Mkl.inverse(); | ||||
|     teigen+=usecond(); | ||||
|  | ||||
|     /////////////////////////////////////////////////////////////////////// | ||||
|     // Now compute the matrix elements of linop between the orthonormal | ||||
|     // set of vectors. | ||||
|     /////////////////////////////////////////////////////////////////////// | ||||
|     FineField phaV(grid); // Phased block basis vector | ||||
|     FineField MphaV(grid);// Matrix applied | ||||
|     std::vector<FineComplexField> phaF(npoint,grid); | ||||
|     std::vector<CoarseComplexField> pha(npoint,CoarseGrid()); | ||||
|      | ||||
|     CoarseVector coarseInner(CoarseGrid()); | ||||
|      | ||||
|     typedef typename CComplex::scalar_type SComplex; | ||||
|     FineComplexField one(grid); one=SComplex(1.0); | ||||
|     FineComplexField zz(grid); zz = Zero(); | ||||
|     tphase=-usecond(); | ||||
|     for(int p=0;p<npoint;p++){ // Loop over momenta in npoint | ||||
|       ///////////////////////////////////////////////////// | ||||
|       // Stick a phase on every block | ||||
|       ///////////////////////////////////////////////////// | ||||
|       CoarseComplexField coor(CoarseGrid()); | ||||
|       pha[p]=Zero(); | ||||
|       for(int mu=0;mu<Nd;mu++){ | ||||
| 	LatticeCoordinate(coor,mu); | ||||
| 	RealD TwoPiL =  M_PI * 2.0/ clatt[mu]; | ||||
| 	pha[p] = pha[p] + (TwoPiL * geom.shifts[p][mu]) * coor; | ||||
|       } | ||||
|       pha[p]  =exp(pha[p]*ci); | ||||
|  | ||||
|       blockZAXPY(phaF[p],pha[p],one,zz); | ||||
|        | ||||
|     } | ||||
|     tphase+=usecond(); | ||||
|      | ||||
|     std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid()); | ||||
|     std::vector<CoarseVector>          FT(npoint,CoarseGrid()); | ||||
|     for(int i=0;i<nbasis;i++){// Loop over basis vectors | ||||
|       std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl; | ||||
|       for(int p=0;p<npoint;p++){ // Loop over momenta in npoint | ||||
| 	tphaseBZ-=usecond(); | ||||
| 	phaV = phaF[p]*Subspace.subspace[i]; | ||||
| 	tphaseBZ+=usecond(); | ||||
|  | ||||
| 	///////////////////////////////////////////////////////////////////// | ||||
| 	// Multiple phased subspace vector by matrix and project to subspace | ||||
| 	// Remove local bulk phase to leave relative phases | ||||
| 	///////////////////////////////////////////////////////////////////// | ||||
| 	tmat-=usecond(); | ||||
| 	linop.Op(phaV,MphaV); | ||||
| 	tmat+=usecond(); | ||||
| 	//	std::cout << i << " " <<p << " MphaV "<<norm2(MphaV)<<" "<<norm2(phaV)<<std::endl; | ||||
|  | ||||
| 	tproj-=usecond(); | ||||
| 	blockProject(coarseInner,MphaV,Subspace.subspace); | ||||
| 	coarseInner = conjugate(pha[p]) * coarseInner; | ||||
|  | ||||
| 	ComputeProj[p] = coarseInner; | ||||
| 	tproj+=usecond(); | ||||
| 	//	std::cout << i << " " <<p << " ComputeProj "<<norm2(ComputeProj[p])<<std::endl; | ||||
|  | ||||
|       } | ||||
|  | ||||
|       tinv-=usecond(); | ||||
|       for(int k=0;k<npoint;k++){ | ||||
| 	FT[k] = Zero(); | ||||
| 	for(int l=0;l<npoint;l++){ | ||||
| 	  FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l]; | ||||
| 	} | ||||
|        | ||||
| 	int osites=CoarseGrid()->oSites(); | ||||
| 	autoView( A_v  , _A[k], AcceleratorWrite); | ||||
| 	autoView( FT_v  , FT[k], AcceleratorRead); | ||||
| 	accelerator_for(sss, osites, 1, { | ||||
| 	    for(int j=0;j<nbasis;j++){ | ||||
| 	      A_v[sss](i,j) = FT_v[sss](j); | ||||
| 	    } | ||||
|         }); | ||||
|       } | ||||
|       tinv+=usecond(); | ||||
|     } | ||||
|  | ||||
|     // Only needed if nonhermitian | ||||
|     if ( ! hermitian ) { | ||||
|       //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl; | ||||
|       //      PopulateAdag(); | ||||
|     } | ||||
|  | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       std::cout << " _A["<<p<<"] "<<norm2(_A[p])<<std::endl; | ||||
|     } | ||||
|  | ||||
|     // Need to write something to populate Adag from A | ||||
|     ExchangeCoarseLinks(); | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator eigen  "<<teigen<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator phase  "<<tphase<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator mat    "<<tmat <<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator proj   "<<tproj<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl; | ||||
|   } | ||||
| #endif   | ||||
|   void ExchangeCoarseLinks(void){ | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       _A[p] = Cell.ExchangePeriodic(_A[p]); | ||||
|       //      _Adag[p]= Cell.ExchangePeriodic(_Adag[p]); | ||||
|     } | ||||
|   } | ||||
|   virtual  void Mdiag    (const Field &in, Field &out){ assert(0);}; | ||||
|   virtual  void Mdir     (const Field &in, Field &out,int dir, int disp){assert(0);}; | ||||
|   virtual  void MdirAll  (const Field &in, std::vector<Field> &out){assert(0);}; | ||||
| }; | ||||
|  | ||||
|  | ||||
|    | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -1,729 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/GeneralCoarsenedMatrixMultiRHS.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| // Fine Object == (per site) type of fine field | ||||
| // nbasis      == number of deflation vectors | ||||
| template<class Fobj,class CComplex,int nbasis> | ||||
| class MultiGeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > >  { | ||||
| public: | ||||
|   typedef typename CComplex::scalar_object SComplex; | ||||
|   typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp; | ||||
|   typedef MultiGeneralCoarsenedMatrix<Fobj,CComplex,nbasis> MultiGeneralCoarseOp; | ||||
|  | ||||
|   typedef iVector<CComplex,nbasis >           siteVector; | ||||
|   typedef iMatrix<CComplex,nbasis >           siteMatrix; | ||||
|   typedef iVector<SComplex,nbasis >           calcVector; | ||||
|   typedef iMatrix<SComplex,nbasis >           calcMatrix; | ||||
|   typedef Lattice<iScalar<CComplex> >         CoarseComplexField; | ||||
|   typedef Lattice<siteVector>                 CoarseVector; | ||||
|   typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix; | ||||
|   typedef iMatrix<CComplex,nbasis >  Cobj; | ||||
|   typedef iVector<CComplex,nbasis >  Cvec; | ||||
|   typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field | ||||
|   typedef Lattice<Fobj >        FineField; | ||||
|   typedef Lattice<CComplex >    FineComplexField; | ||||
|   typedef CoarseVector Field; | ||||
|  | ||||
|   //////////////////// | ||||
|   // Data members | ||||
|   //////////////////// | ||||
|   GridCartesian *       _CoarseGridMulti;  | ||||
|   NonLocalStencilGeometry geom; | ||||
|   NonLocalStencilGeometry geom_srhs; | ||||
|   PaddedCell Cell; | ||||
|   GeneralLocalStencil Stencil; | ||||
|  | ||||
|   deviceVector<calcVector> BLAS_B; | ||||
|   deviceVector<calcVector> BLAS_C; | ||||
|   std::vector<deviceVector<calcMatrix> > BLAS_A; | ||||
|  | ||||
|   std::vector<deviceVector<ComplexD *> > BLAS_AP; | ||||
|   std::vector<deviceVector<ComplexD *> > BLAS_BP; | ||||
|   deviceVector<ComplexD *>               BLAS_CP; | ||||
|  | ||||
|   /////////////////////// | ||||
|   // Interface | ||||
|   /////////////////////// | ||||
|   GridBase      * Grid(void)           { return _CoarseGridMulti; };   // this is all the linalg routines need to know | ||||
|   GridCartesian * CoarseGrid(void)     { return _CoarseGridMulti; };   // this is all the linalg routines need to know | ||||
|  | ||||
|   // Can be used to do I/O on the operator matrices externally | ||||
|   void SetMatrix (int p,CoarseMatrix & A) | ||||
|   { | ||||
|     assert(A.size()==geom_srhs.npoint); | ||||
|     GridtoBLAS(A[p],BLAS_A[p]); | ||||
|   } | ||||
|   void GetMatrix (int p,CoarseMatrix & A) | ||||
|   { | ||||
|     assert(A.size()==geom_srhs.npoint); | ||||
|     BLAStoGrid(A[p],BLAS_A[p]); | ||||
|   } | ||||
|   void CopyMatrix (GeneralCoarseOp &_Op) | ||||
|   { | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       auto Aup = _Op.Cell.Extract(_Op._A[p]); | ||||
|       //Unpadded | ||||
|       GridtoBLAS(Aup,BLAS_A[p]); | ||||
|     } | ||||
|   } | ||||
|   /* | ||||
|   void CheckMatrix (GeneralCoarseOp &_Op) | ||||
|   { | ||||
|     std::cout <<"************* Checking the little direc operator mRHS"<<std::endl; | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       //Unpadded | ||||
|       auto Aup = _Op.Cell.Extract(_Op._A[p]); | ||||
|       auto Ack = Aup; | ||||
|       BLAStoGrid(Ack,BLAS_A[p]); | ||||
|       std::cout << p<<" Ack "<<norm2(Ack)<<std::endl; | ||||
|       std::cout << p<<" Aup "<<norm2(Aup)<<std::endl; | ||||
|     } | ||||
|     std::cout <<"************* "<<std::endl; | ||||
|   } | ||||
|   */ | ||||
|    | ||||
|   MultiGeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridCartesian *CoarseGridMulti) : | ||||
|     _CoarseGridMulti(CoarseGridMulti), | ||||
|     geom_srhs(_geom), | ||||
|     geom(_CoarseGridMulti,_geom.hops,_geom.skip+1), | ||||
|     Cell(geom.Depth(),_CoarseGridMulti), | ||||
|     Stencil(Cell.grids.back(),geom.shifts) // padded cell stencil | ||||
|   { | ||||
|     int32_t padded_sites   = Cell.grids.back()->lSites(); | ||||
|     int32_t unpadded_sites = CoarseGridMulti->lSites(); | ||||
|      | ||||
|     int32_t nrhs  = CoarseGridMulti->FullDimensions()[0];  // # RHS | ||||
|     int32_t orhs  = nrhs/CComplex::Nsimd(); | ||||
|  | ||||
|     padded_sites   = padded_sites/nrhs; | ||||
|     unpadded_sites = unpadded_sites/nrhs; | ||||
|      | ||||
|     ///////////////////////////////////////////////// | ||||
|     // Device data vector storage | ||||
|     ///////////////////////////////////////////////// | ||||
|     BLAS_A.resize(geom.npoint); | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       BLAS_A[p].resize (unpadded_sites); // no ghost zone, npoint elements | ||||
|     } | ||||
|      | ||||
|     BLAS_B.resize(nrhs *padded_sites);   // includes ghost zone | ||||
|     BLAS_C.resize(nrhs *unpadded_sites); // no ghost zone | ||||
|     BLAS_AP.resize(geom.npoint); | ||||
|     BLAS_BP.resize(geom.npoint); | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       BLAS_AP[p].resize(unpadded_sites); | ||||
|       BLAS_BP[p].resize(unpadded_sites); | ||||
|     } | ||||
|     BLAS_CP.resize(unpadded_sites); | ||||
|  | ||||
|     ///////////////////////////////////////////////// | ||||
|     // Pointers to data | ||||
|     ///////////////////////////////////////////////// | ||||
|  | ||||
|     // Site identity mapping for A | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       for(int ss=0;ss<unpadded_sites;ss++){ | ||||
| 	ComplexD *ptr = (ComplexD *)&BLAS_A[p][ss]; | ||||
| 	acceleratorPut(BLAS_AP[p][ss],ptr); | ||||
|       } | ||||
|     } | ||||
|     // Site identity mapping for C | ||||
|     for(int ss=0;ss<unpadded_sites;ss++){ | ||||
|       ComplexD *ptr = (ComplexD *)&BLAS_C[ss*nrhs]; | ||||
|       acceleratorPut(BLAS_CP[ss],ptr); | ||||
|     } | ||||
|  | ||||
|     // Neighbour table is more complicated | ||||
|     int32_t j=0; // Interior point counter (unpadded) | ||||
|     for(int32_t s=0;s<padded_sites;s++){ // 4 volume, padded | ||||
|       int ghost_zone=0; | ||||
|       for(int32_t point = 0 ; point < geom.npoint; point++){ | ||||
| 	int i=s*orhs*geom.npoint+point; | ||||
| 	if( Stencil._entries[i]._wrap ) { // stencil is indexed by the oSite of the CoarseGridMulti, hence orhs factor | ||||
| 	  ghost_zone=1; // If general stencil wrapped in any direction, wrap=1 | ||||
| 	} | ||||
|       } | ||||
|  | ||||
|       if( ghost_zone==0) { | ||||
| 	for(int32_t point = 0 ; point < geom.npoint; point++){ | ||||
| 	  int i=s*orhs*geom.npoint+point; | ||||
|  	  int32_t nbr = Stencil._entries[i]._offset*CComplex::Nsimd(); // oSite -> lSite | ||||
| 	  assert(nbr<BLAS_B.size()); | ||||
| 	  ComplexD * ptr = (ComplexD *)&BLAS_B[nbr]; | ||||
| 	  acceleratorPut(BLAS_BP[point][j],ptr); // neighbour indexing in ghost zone volume | ||||
| 	} | ||||
| 	j++; | ||||
|       } | ||||
|     } | ||||
|     assert(j==unpadded_sites); | ||||
|   } | ||||
|   template<class vobj> void GridtoBLAS(const Lattice<vobj> &from,deviceVector<typename vobj::scalar_object> &to) | ||||
|   { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   GridBase *Fg = from.Grid(); | ||||
|   assert(!Fg->_isCheckerBoarded); | ||||
|   int nd = Fg->_ndimension; | ||||
|  | ||||
|   to.resize(Fg->lSites()); | ||||
|  | ||||
|   Coordinate LocalLatt = Fg->LocalDimensions(); | ||||
|   size_t nsite = 1; | ||||
|   for(int i=0;i<nd;i++) nsite *= LocalLatt[i]; | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // do the index calc on the GPU | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   Coordinate f_ostride = Fg->_ostride; | ||||
|   Coordinate f_istride = Fg->_istride; | ||||
|   Coordinate f_rdimensions = Fg->_rdimensions; | ||||
|  | ||||
|   autoView(from_v,from,AcceleratorRead); | ||||
|   auto to_v = &to[0]; | ||||
|  | ||||
|   const int words=sizeof(vobj)/sizeof(vector_type); | ||||
|   accelerator_for(idx,nsite,1,{ | ||||
|        | ||||
|       Coordinate from_coor, base; | ||||
|       Lexicographic::CoorFromIndex(base,idx,LocalLatt); | ||||
|       for(int i=0;i<nd;i++){ | ||||
| 	from_coor[i] = base[i]; | ||||
|       } | ||||
|       int from_oidx = 0; for(int d=0;d<nd;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]); | ||||
|       int from_lane = 0; for(int d=0;d<nd;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]); | ||||
|  | ||||
|       const vector_type* from = (const vector_type *)&from_v[from_oidx]; | ||||
|       scalar_type* to = (scalar_type *)&to_v[idx]; | ||||
|        | ||||
|       scalar_type stmp; | ||||
|       for(int w=0;w<words;w++){ | ||||
| 	stmp = getlane(from[w], from_lane); | ||||
| 	to[w] = stmp; | ||||
|       } | ||||
|     }); | ||||
|   }     | ||||
|   template<class vobj> void BLAStoGrid(Lattice<vobj> &grid,deviceVector<typename vobj::scalar_object> &in) | ||||
|   { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   GridBase *Tg = grid.Grid(); | ||||
|   assert(!Tg->_isCheckerBoarded); | ||||
|   int nd = Tg->_ndimension; | ||||
|    | ||||
|   assert(in.size()==Tg->lSites()); | ||||
|  | ||||
|   Coordinate LocalLatt = Tg->LocalDimensions(); | ||||
|   size_t nsite = 1; | ||||
|   for(int i=0;i<nd;i++) nsite *= LocalLatt[i]; | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // do the index calc on the GPU | ||||
|   //////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   Coordinate t_ostride = Tg->_ostride; | ||||
|   Coordinate t_istride = Tg->_istride; | ||||
|   Coordinate t_rdimensions = Tg->_rdimensions; | ||||
|  | ||||
|   autoView(to_v,grid,AcceleratorWrite); | ||||
|   auto from_v = &in[0]; | ||||
|  | ||||
|   const int words=sizeof(vobj)/sizeof(vector_type); | ||||
|   accelerator_for(idx,nsite,1,{ | ||||
|        | ||||
|       Coordinate to_coor, base; | ||||
|       Lexicographic::CoorFromIndex(base,idx,LocalLatt); | ||||
|       for(int i=0;i<nd;i++){ | ||||
| 	to_coor[i] = base[i]; | ||||
|       } | ||||
|       int to_oidx = 0; for(int d=0;d<nd;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]); | ||||
|       int to_lane = 0; for(int d=0;d<nd;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]); | ||||
|  | ||||
|       vector_type* to = (vector_type *)&to_v[to_oidx]; | ||||
|       scalar_type* from = (scalar_type *)&from_v[idx]; | ||||
|        | ||||
|       scalar_type stmp; | ||||
|       for(int w=0;w<words;w++){ | ||||
| 	stmp=from[w]; | ||||
| 	putlane(to[w], stmp, to_lane); | ||||
|       } | ||||
|     }); | ||||
|   } | ||||
|   void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop, | ||||
| 		       Aggregation<Fobj,CComplex,nbasis> & Subspace, | ||||
| 		       GridBase *CoarseGrid) | ||||
|   { | ||||
| #if 0 | ||||
|     std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl; | ||||
|  | ||||
|     GridBase *grid = Subspace.FineGrid; | ||||
|  | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     // Orthogonalise the subblocks over the basis | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     CoarseScalar InnerProd(CoarseGrid);  | ||||
|     blockOrthogonalise(InnerProd,Subspace.subspace); | ||||
|  | ||||
|     const int npoint = geom_srhs.npoint; | ||||
|  | ||||
|     Coordinate clatt = CoarseGrid->GlobalDimensions(); | ||||
|     int Nd = CoarseGrid->Nd(); | ||||
|       /* | ||||
|        *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM. | ||||
|        *     Matrix index i is mapped to this shift via  | ||||
|        *               geom.shifts[i] | ||||
|        * | ||||
|        *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]  | ||||
|        *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >  | ||||
|        *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l} | ||||
|        *       = M_{kl} A_ji^{b.b+l} | ||||
|        * | ||||
|        *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l] | ||||
|        *   | ||||
|        *     Where q_k = delta_k . (2*M_PI/global_nb[mu]) | ||||
|        * | ||||
|        *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j} | ||||
|        */ | ||||
|     Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint); | ||||
|     Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint); | ||||
|     ComplexD ci(0.0,1.0); | ||||
|     for(int k=0;k<npoint;k++){ // Loop over momenta | ||||
|  | ||||
|       for(int l=0;l<npoint;l++){ // Loop over nbr relative | ||||
| 	ComplexD phase(0.0,0.0); | ||||
| 	for(int mu=0;mu<Nd;mu++){ | ||||
| 	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu]; | ||||
| 	  phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu]; | ||||
| 	} | ||||
| 	phase=exp(phase*ci); | ||||
| 	Mkl(k,l) = phase; | ||||
|       } | ||||
|     } | ||||
|     invMkl = Mkl.inverse(); | ||||
|  | ||||
|     /////////////////////////////////////////////////////////////////////// | ||||
|     // Now compute the matrix elements of linop between the orthonormal | ||||
|     // set of vectors. | ||||
|     /////////////////////////////////////////////////////////////////////// | ||||
|     FineField phaV(grid); // Phased block basis vector | ||||
|     FineField MphaV(grid);// Matrix applied | ||||
|     std::vector<FineComplexField> phaF(npoint,grid); | ||||
|     std::vector<CoarseComplexField> pha(npoint,CoarseGrid); | ||||
|      | ||||
|     CoarseVector coarseInner(CoarseGrid); | ||||
|      | ||||
|     typedef typename CComplex::scalar_type SComplex; | ||||
|     FineComplexField one(grid); one=SComplex(1.0); | ||||
|     FineComplexField zz(grid); zz = Zero(); | ||||
|     for(int p=0;p<npoint;p++){ // Loop over momenta in npoint | ||||
|       ///////////////////////////////////////////////////// | ||||
|       // Stick a phase on every block | ||||
|       ///////////////////////////////////////////////////// | ||||
|       CoarseComplexField coor(CoarseGrid); | ||||
|       pha[p]=Zero(); | ||||
|       for(int mu=0;mu<Nd;mu++){ | ||||
| 	LatticeCoordinate(coor,mu); | ||||
| 	RealD TwoPiL =  M_PI * 2.0/ clatt[mu]; | ||||
| 	pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor; | ||||
|       } | ||||
|       pha[p]  =exp(pha[p]*ci);	 | ||||
|  | ||||
|       blockZAXPY(phaF[p],pha[p],one,zz); | ||||
|     } | ||||
|  | ||||
|     // Could save on temporary storage here | ||||
|     std::vector<CoarseMatrix> _A; | ||||
|     _A.resize(geom_srhs.npoint,CoarseGrid); | ||||
|  | ||||
|     std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid); | ||||
|     CoarseVector          FT(CoarseGrid); | ||||
|     for(int i=0;i<nbasis;i++){// Loop over basis vectors | ||||
|       std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl; | ||||
|       for(int p=0;p<npoint;p++){ // Loop over momenta in npoint | ||||
|  | ||||
| 	phaV = phaF[p]*Subspace.subspace[i]; | ||||
|  | ||||
| 	///////////////////////////////////////////////////////////////////// | ||||
| 	// Multiple phased subspace vector by matrix and project to subspace | ||||
| 	// Remove local bulk phase to leave relative phases | ||||
| 	///////////////////////////////////////////////////////////////////// | ||||
| 	linop.Op(phaV,MphaV); | ||||
|  | ||||
| 	// Fixme, could use batched block projector here | ||||
| 	blockProject(coarseInner,MphaV,Subspace.subspace); | ||||
|  | ||||
| 	coarseInner = conjugate(pha[p]) * coarseInner; | ||||
|  | ||||
| 	ComputeProj[p] = coarseInner; | ||||
|       } | ||||
|  | ||||
|       // Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix. | ||||
|       for(int k=0;k<npoint;k++){ | ||||
|  | ||||
| 	FT = Zero(); | ||||
| 	for(int l=0;l<npoint;l++){ | ||||
| 	  FT= FT+ invMkl(l,k)*ComputeProj[l]; | ||||
| 	} | ||||
|        | ||||
| 	int osites=CoarseGrid->oSites(); | ||||
| 	autoView( A_v  , _A[k], AcceleratorWrite); | ||||
| 	autoView( FT_v  , FT, AcceleratorRead); | ||||
| 	accelerator_for(sss, osites, 1, { | ||||
| 	    for(int j=0;j<nbasis;j++){ | ||||
| 	      A_v[sss](i,j) = FT_v[sss](j); | ||||
| 	    } | ||||
|         }); | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     // Only needed if nonhermitian | ||||
|     //    if ( ! hermitian ) { | ||||
|     //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl; | ||||
|     //      PopulateAdag(); | ||||
|     //    } | ||||
|     // Need to write something to populate Adag from A | ||||
|  | ||||
|     for(int p=0;p<geom_srhs.npoint;p++){ | ||||
|       GridtoBLAS(_A[p],BLAS_A[p]); | ||||
|     } | ||||
|     /* | ||||
| Grid : Message : 11698.730546 s : CoarsenOperator eigen  1334 us | ||||
| Grid : Message : 11698.730563 s : CoarsenOperator phase  34729 us | ||||
| Grid : Message : 11698.730565 s : CoarsenOperator phaseBZ 2423814 us | ||||
| Grid : Message : 11698.730566 s : CoarsenOperator mat    127890998 us | ||||
| Grid : Message : 11698.730567 s : CoarsenOperator proj   515840840 us | ||||
| Grid : Message : 11698.730568 s : CoarsenOperator inv    103948313 us | ||||
| Takes 600s to compute matrix elements, DOMINATED by the block project. | ||||
| Easy to speed up with the batched block project. | ||||
| Store npoint vectors, get npoint x Nbasis block projection, and 81 fold faster. | ||||
|  | ||||
| // Block project below taks to 240s | ||||
| Grid : Message : 328.193418 s : CoarsenOperator phase      38338 us | ||||
| Grid : Message : 328.193434 s : CoarsenOperator phaseBZ  1711226 us | ||||
| Grid : Message : 328.193436 s : CoarsenOperator mat    122213270 us | ||||
| //Grid : Message : 328.193438 s : CoarsenOperator proj   1181154 us <-- this is mistimed | ||||
| //Grid : Message : 11698.730568 s : CoarsenOperator inv  103948313 us <-- Cut this ~10x if lucky by loop fusion | ||||
|      */ | ||||
| #else | ||||
|     RealD tproj=0.0; | ||||
|     RealD tmat=0.0; | ||||
|     RealD tphase=0.0; | ||||
|     RealD tphaseBZ=0.0; | ||||
|     RealD tinv=0.0; | ||||
|  | ||||
|     std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl; | ||||
|  | ||||
|     GridBase *grid = Subspace.FineGrid; | ||||
|  | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     // Orthogonalise the subblocks over the basis | ||||
|     ///////////////////////////////////////////////////////////// | ||||
|     CoarseScalar InnerProd(CoarseGrid);  | ||||
|     blockOrthogonalise(InnerProd,Subspace.subspace); | ||||
|  | ||||
|  | ||||
|     MultiRHSBlockProject<Lattice<Fobj> >    Projector; | ||||
|     Projector.Allocate(nbasis,grid,CoarseGrid); | ||||
|     Projector.ImportBasis(Subspace.subspace); | ||||
|      | ||||
|     const int npoint = geom_srhs.npoint; | ||||
|  | ||||
|     Coordinate clatt = CoarseGrid->GlobalDimensions(); | ||||
|     int Nd = CoarseGrid->Nd(); | ||||
|       /* | ||||
|        *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM. | ||||
|        *     Matrix index i is mapped to this shift via  | ||||
|        *               geom.shifts[i] | ||||
|        * | ||||
|        *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]  | ||||
|        *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >  | ||||
|        *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l} | ||||
|        *       = M_{kl} A_ji^{b.b+l} | ||||
|        * | ||||
|        *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l] | ||||
|        *   | ||||
|        *     Where q_k = delta_k . (2*M_PI/global_nb[mu]) | ||||
|        * | ||||
|        *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j} | ||||
|        */ | ||||
|     Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint); | ||||
|     Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint); | ||||
|     ComplexD ci(0.0,1.0); | ||||
|     for(int k=0;k<npoint;k++){ // Loop over momenta | ||||
|  | ||||
|       for(int l=0;l<npoint;l++){ // Loop over nbr relative | ||||
| 	ComplexD phase(0.0,0.0); | ||||
| 	for(int mu=0;mu<Nd;mu++){ | ||||
| 	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu]; | ||||
| 	  phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu]; | ||||
| 	} | ||||
| 	phase=exp(phase*ci); | ||||
| 	Mkl(k,l) = phase; | ||||
|       } | ||||
|     } | ||||
|     invMkl = Mkl.inverse(); | ||||
|  | ||||
|     /////////////////////////////////////////////////////////////////////// | ||||
|     // Now compute the matrix elements of linop between the orthonormal | ||||
|     // set of vectors. | ||||
|     /////////////////////////////////////////////////////////////////////// | ||||
|     FineField phaV(grid); // Phased block basis vector | ||||
|     FineField MphaV(grid);// Matrix applied | ||||
|     std::vector<FineComplexField> phaF(npoint,grid); | ||||
|     std::vector<CoarseComplexField> pha(npoint,CoarseGrid); | ||||
|      | ||||
|     CoarseVector coarseInner(CoarseGrid); | ||||
|      | ||||
|     tphase=-usecond(); | ||||
|     typedef typename CComplex::scalar_type SComplex; | ||||
|     FineComplexField one(grid); one=SComplex(1.0); | ||||
|     FineComplexField zz(grid); zz = Zero(); | ||||
|     for(int p=0;p<npoint;p++){ // Loop over momenta in npoint | ||||
|       ///////////////////////////////////////////////////// | ||||
|       // Stick a phase on every block | ||||
|       ///////////////////////////////////////////////////// | ||||
|       CoarseComplexField coor(CoarseGrid); | ||||
|       pha[p]=Zero(); | ||||
|       for(int mu=0;mu<Nd;mu++){ | ||||
| 	LatticeCoordinate(coor,mu); | ||||
| 	RealD TwoPiL =  M_PI * 2.0/ clatt[mu]; | ||||
| 	pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor; | ||||
|       } | ||||
|       pha[p]  =exp(pha[p]*ci);	 | ||||
|  | ||||
|       blockZAXPY(phaF[p],pha[p],one,zz); | ||||
|     } | ||||
|     tphase+=usecond(); | ||||
|  | ||||
|     // Could save on temporary storage here | ||||
|     std::vector<CoarseMatrix> _A; | ||||
|     _A.resize(geom_srhs.npoint,CoarseGrid); | ||||
|  | ||||
|     // Count use small chunks than npoint == 81 and save memory | ||||
|     int batch = 9; | ||||
|     std::vector<FineField>    _MphaV(batch,grid); | ||||
|     std::vector<CoarseVector> TmpProj(batch,CoarseGrid); | ||||
|  | ||||
|     std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid); | ||||
|     CoarseVector          FT(CoarseGrid); | ||||
|     for(int i=0;i<nbasis;i++){// Loop over basis vectors | ||||
|       std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl; | ||||
|  | ||||
|       //      std::cout << GridLogMessage << " phasing the fine vector "<<std::endl; | ||||
|       // Fixme : do this in batches | ||||
|       for(int p=0;p<npoint;p+=batch){ // Loop over momenta in npoint | ||||
|  | ||||
| 	for(int b=0;b<MIN(batch,npoint-p);b++){ | ||||
| 	  tphaseBZ-=usecond(); | ||||
| 	  phaV = phaF[p+b]*Subspace.subspace[i]; | ||||
| 	  tphaseBZ+=usecond(); | ||||
|  | ||||
| 	  ///////////////////////////////////////////////////////////////////// | ||||
| 	  // Multiple phased subspace vector by matrix and project to subspace | ||||
| 	  // Remove local bulk phase to leave relative phases | ||||
| 	  ///////////////////////////////////////////////////////////////////// | ||||
| 	  // Memory footprint was an issue | ||||
| 	  tmat-=usecond(); | ||||
| 	  linop.Op(phaV,MphaV); | ||||
| 	  _MphaV[b] = MphaV; | ||||
| 	  tmat+=usecond(); | ||||
| 	}       | ||||
|  | ||||
| 	//	std::cout << GridLogMessage << " Calling block project "<<std::endl; | ||||
| 	tproj-=usecond(); | ||||
| 	Projector.blockProject(_MphaV,TmpProj); | ||||
| 	tproj+=usecond(); | ||||
| 	 | ||||
| 	//	std::cout << GridLogMessage << " conj phasing the coarse vectors "<<std::endl; | ||||
| 	for(int b=0;b<MIN(batch,npoint-p);b++){ | ||||
| 	  ComputeProj[p+b] = conjugate(pha[p+b])*TmpProj[b]; | ||||
| 	} | ||||
|       } | ||||
|  | ||||
|       // Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix. | ||||
|        | ||||
|       // std::cout << GridLogMessage << " Starting FT inv "<<std::endl; | ||||
|       tinv-=usecond(); | ||||
|       for(int k=0;k<npoint;k++){ | ||||
| 	FT = Zero(); | ||||
| 	// 81 kernel calls as many ComputeProj vectors | ||||
| 	// Could fuse with a vector of views, but ugly | ||||
| 	// Could unroll the expression and run fewer kernels -- much more attractive | ||||
| 	// Could also do non blocking. | ||||
| #if 0	 | ||||
| 	for(int l=0;l<npoint;l++){ | ||||
| 	  FT= FT+ invMkl(l,k)*ComputeProj[l]; | ||||
| 	} | ||||
| #else | ||||
| 	const int radix = 9; | ||||
| 	int ll; | ||||
| 	for(ll=0;ll+radix-1<npoint;ll+=radix){ | ||||
| 	  // When ll = npoint-radix, ll+radix-1 = npoint-1, and we do it all. | ||||
| 	  FT = FT  | ||||
| 	    + invMkl(ll+0,k)*ComputeProj[ll+0] | ||||
| 	    + invMkl(ll+1,k)*ComputeProj[ll+1] | ||||
| 	    + invMkl(ll+2,k)*ComputeProj[ll+2] | ||||
| 	    + invMkl(ll+3,k)*ComputeProj[ll+3] | ||||
| 	    + invMkl(ll+4,k)*ComputeProj[ll+4] | ||||
| 	    + invMkl(ll+5,k)*ComputeProj[ll+5] | ||||
| 	    + invMkl(ll+6,k)*ComputeProj[ll+6] | ||||
| 	    + invMkl(ll+7,k)*ComputeProj[ll+7] | ||||
| 	    + invMkl(ll+8,k)*ComputeProj[ll+8]; | ||||
| 	} | ||||
| 	for(int l=ll;l<npoint;l++){ | ||||
| 	  FT= FT+ invMkl(l,k)*ComputeProj[l]; | ||||
| 	} | ||||
| #endif | ||||
|        | ||||
| 	// 1 kernel call -- must be cheaper | ||||
| 	int osites=CoarseGrid->oSites(); | ||||
| 	autoView( A_v  , _A[k], AcceleratorWrite); | ||||
| 	autoView( FT_v  , FT, AcceleratorRead); | ||||
| 	accelerator_for(sss, osites, 1, { | ||||
| 	    for(int j=0;j<nbasis;j++){ | ||||
| 	      A_v[sss](i,j) = FT_v[sss](j); | ||||
| 	    } | ||||
|         }); | ||||
|       } | ||||
|       tinv+=usecond(); | ||||
|     } | ||||
|  | ||||
|     // Only needed if nonhermitian | ||||
|     //    if ( ! hermitian ) { | ||||
|     //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl; | ||||
|     //      PopulateAdag(); | ||||
|     //    } | ||||
|     // Need to write something to populate Adag from A | ||||
|     //    std::cout << GridLogMessage << " Calling GridtoBLAS "<<std::endl; | ||||
|     for(int p=0;p<geom_srhs.npoint;p++){ | ||||
|       GridtoBLAS(_A[p],BLAS_A[p]); | ||||
|     } | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator phase  "<<tphase<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator mat    "<<tmat <<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator proj   "<<tproj<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl; | ||||
| #endif | ||||
|   } | ||||
|   void Mdag(const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     this->M(in,out); | ||||
|   } | ||||
|   void M (const CoarseVector &in, CoarseVector &out) | ||||
|   { | ||||
|     //    std::cout << GridLogMessage << "New Mrhs coarse"<<std::endl; | ||||
|     conformable(CoarseGrid(),in.Grid()); | ||||
|     conformable(in.Grid(),out.Grid()); | ||||
|     out.Checkerboard() = in.Checkerboard(); | ||||
|  | ||||
|     RealD t_tot; | ||||
|     RealD t_exch; | ||||
|     RealD t_GtoB; | ||||
|     RealD t_BtoG; | ||||
|     RealD t_mult; | ||||
|  | ||||
|     t_tot=-usecond(); | ||||
|     CoarseVector tin=in; | ||||
|     t_exch=-usecond(); | ||||
|     CoarseVector pin = Cell.ExchangePeriodic(tin); //padded input | ||||
|     t_exch+=usecond(); | ||||
|  | ||||
|     CoarseVector pout(pin.Grid()); | ||||
|  | ||||
|     int npoint = geom.npoint; | ||||
|     typedef calcMatrix* Aview; | ||||
|     typedef LatticeView<Cvec> Vview; | ||||
|        | ||||
|     const int Nsimd = CComplex::Nsimd(); | ||||
|  | ||||
|     int64_t nrhs  =pin.Grid()->GlobalDimensions()[0]; | ||||
|     assert(nrhs>=1); | ||||
|  | ||||
|     RealD flops,bytes; | ||||
|     int64_t osites=in.Grid()->oSites(); // unpadded | ||||
|     int64_t unpadded_vol = CoarseGrid()->lSites()/nrhs; | ||||
|      | ||||
|     flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd(); | ||||
|     bytes = 1.0*osites*sizeof(siteMatrix)*npoint/pin.Grid()->GlobalDimensions()[0] | ||||
|           + 2.0*osites*sizeof(siteVector)*npoint; | ||||
|      | ||||
|  | ||||
|     t_GtoB=-usecond(); | ||||
|     GridtoBLAS(pin,BLAS_B); | ||||
|     t_GtoB+=usecond(); | ||||
|  | ||||
|     GridBLAS BLAS; | ||||
|  | ||||
|     t_mult=-usecond(); | ||||
|     for(int p=0;p<geom.npoint;p++){ | ||||
|       RealD c = 1.0; | ||||
|       if (p==0) c = 0.0; | ||||
|       ComplexD beta(c); | ||||
|  | ||||
|       BLAS.gemmBatched(nbasis,nrhs,nbasis, | ||||
| 		       ComplexD(1.0), | ||||
| 		       BLAS_AP[p],  | ||||
| 		       BLAS_BP[p],  | ||||
| 		       ComplexD(c),  | ||||
| 		       BLAS_CP); | ||||
|     } | ||||
|     BLAS.synchronise(); | ||||
|     t_mult+=usecond(); | ||||
|  | ||||
|     t_BtoG=-usecond(); | ||||
|     BLAStoGrid(out,BLAS_C); | ||||
|     t_BtoG+=usecond(); | ||||
|     t_tot+=usecond(); | ||||
|     /* | ||||
|     std::cout << GridLogMessage << "New Mrhs coarse DONE "<<std::endl; | ||||
|     std::cout << GridLogMessage<<"Coarse Mult exch "<<t_exch<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"Coarse Mult mult "<<t_mult<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"Coarse Mult GtoB  "<<t_GtoB<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"Coarse Mult BtoG  "<<t_BtoG<<" us"<<std::endl; | ||||
|     std::cout << GridLogMessage<<"Coarse Mult tot  "<<t_tot<<" us"<<std::endl; | ||||
|     */ | ||||
|     //    std::cout << GridLogMessage<<std::endl; | ||||
|     //    std::cout << GridLogMessage<<"Coarse Kernel flops "<< flops<<std::endl; | ||||
|     //    std::cout << GridLogMessage<<"Coarse Kernel flop/s "<< flops/t_mult<<" mflop/s"<<std::endl; | ||||
|     //    std::cout << GridLogMessage<<"Coarse Kernel bytes/s "<< bytes/t_mult/1000<<" GB/s"<<std::endl; | ||||
|     //    std::cout << GridLogMessage<<"Coarse overall flops/s "<< flops/t_tot<<" mflop/s"<<std::endl; | ||||
|     //    std::cout << GridLogMessage<<"Coarse total bytes   "<< bytes/1e6<<" MB"<<std::endl; | ||||
|   }; | ||||
|   virtual  void Mdiag    (const Field &in, Field &out){ assert(0);}; | ||||
|   virtual  void Mdir     (const Field &in, Field &out,int dir, int disp){assert(0);}; | ||||
|   virtual  void MdirAll  (const Field &in, std::vector<Field> &out){assert(0);}; | ||||
| }; | ||||
|    | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -1,238 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////// | ||||
| // Geometry class in cartesian case | ||||
| ///////////////////////////////////////////////////////////////// | ||||
|  | ||||
| class Geometry { | ||||
| public: | ||||
|   int npoint; | ||||
|   int base; | ||||
|   std::vector<int> directions   ; | ||||
|   std::vector<int> displacements; | ||||
|   std::vector<int> points_dagger; | ||||
|  | ||||
|   Geometry(int _d)  { | ||||
|      | ||||
|     base = (_d==5) ? 1:0; | ||||
|  | ||||
|     // make coarse grid stencil for 4d , not 5d | ||||
|     if ( _d==5 ) _d=4; | ||||
|  | ||||
|     npoint = 2*_d+1; | ||||
|     directions.resize(npoint); | ||||
|     displacements.resize(npoint); | ||||
|     points_dagger.resize(npoint); | ||||
|     for(int d=0;d<_d;d++){ | ||||
|       directions[d   ] = d+base; | ||||
|       directions[d+_d] = d+base; | ||||
|       displacements[d  ] = +1; | ||||
|       displacements[d+_d]= -1; | ||||
|       points_dagger[d   ] = d+_d; | ||||
|       points_dagger[d+_d] = d; | ||||
|     } | ||||
|     directions   [2*_d]=0; | ||||
|     displacements[2*_d]=0; | ||||
|     points_dagger[2*_d]=2*_d; | ||||
|   } | ||||
|  | ||||
|   int point(int dir, int disp) { | ||||
|     assert(disp == -1 || disp == 0 || disp == 1); | ||||
|     assert(base+0 <= dir && dir < base+4); | ||||
|  | ||||
|     // directions faster index = new indexing | ||||
|     // 4d (base = 0): | ||||
|     // point 0  1  2  3  4  5  6  7  8 | ||||
|     // dir   0  1  2  3  0  1  2  3  0 | ||||
|     // disp +1 +1 +1 +1 -1 -1 -1 -1  0 | ||||
|     // 5d (base = 1): | ||||
|     // point 0  1  2  3  4  5  6  7  8 | ||||
|     // dir   1  2  3  4  1  2  3  4  0 | ||||
|     // disp +1 +1 +1 +1 -1 -1 -1 -1  0 | ||||
|  | ||||
|     // displacements faster index = old indexing | ||||
|     // 4d (base = 0): | ||||
|     // point 0  1  2  3  4  5  6  7  8 | ||||
|     // dir   0  0  1  1  2  2  3  3  0 | ||||
|     // disp +1 -1 +1 -1 +1 -1 +1 -1  0 | ||||
|     // 5d (base = 1): | ||||
|     // point 0  1  2  3  4  5  6  7  8 | ||||
|     // dir   1  1  2  2  3  3  4  4  0 | ||||
|     // disp +1 -1 +1 -1 +1 -1 +1 -1  0 | ||||
|  | ||||
|     if(dir == 0 and disp == 0) | ||||
|       return 8; | ||||
|     else // New indexing | ||||
|       return (1 - disp) / 2 * 4 + dir - base; | ||||
|     // else // Old indexing | ||||
|     //   return (4 * (dir - base) + 1 - disp) / 2; | ||||
|   } | ||||
| }; | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////// | ||||
| // Less local equivalent of Geometry class in cartesian case | ||||
| ///////////////////////////////////////////////////////////////// | ||||
| class NonLocalStencilGeometry { | ||||
| public: | ||||
|   //  int depth; | ||||
|   int skip; | ||||
|   int hops; | ||||
|   int npoint; | ||||
|   std::vector<Coordinate> shifts; | ||||
|   Coordinate stencil_size; | ||||
|   Coordinate stencil_lo; | ||||
|   Coordinate stencil_hi; | ||||
|   GridCartesian *grid; | ||||
|   GridCartesian *Grid() {return grid;}; | ||||
|   int Depth(void){return 1;};   // Ghost zone depth | ||||
|   int Hops(void){return hops;}; // # of hops=> level of corner fill in in stencil | ||||
|   int DimSkip(void){return skip;}; | ||||
|  | ||||
|   virtual ~NonLocalStencilGeometry() {}; | ||||
|  | ||||
|   int  Reverse(int point) | ||||
|   { | ||||
|     int Nd = Grid()->Nd(); | ||||
|     Coordinate shft = shifts[point]; | ||||
|     Coordinate rev(Nd); | ||||
|     for(int mu=0;mu<Nd;mu++) rev[mu]= -shft[mu]; | ||||
|     for(int p=0;p<npoint;p++){ | ||||
|       if(rev==shifts[p]){ | ||||
| 	return p; | ||||
|       } | ||||
|     } | ||||
|     assert(0); | ||||
|     return -1; | ||||
|   } | ||||
|   void BuildShifts(void) | ||||
|   { | ||||
|     this->shifts.resize(0); | ||||
|     int Nd = this->grid->Nd(); | ||||
|  | ||||
|     int dd = this->DimSkip(); | ||||
|     for(int s0=this->stencil_lo[dd+0];s0<=this->stencil_hi[dd+0];s0++){ | ||||
|     for(int s1=this->stencil_lo[dd+1];s1<=this->stencil_hi[dd+1];s1++){ | ||||
|     for(int s2=this->stencil_lo[dd+2];s2<=this->stencil_hi[dd+2];s2++){ | ||||
|     for(int s3=this->stencil_lo[dd+3];s3<=this->stencil_hi[dd+3];s3++){ | ||||
|       Coordinate sft(Nd,0); | ||||
|       sft[dd+0] = s0; | ||||
|       sft[dd+1] = s1; | ||||
|       sft[dd+2] = s2; | ||||
|       sft[dd+3] = s3; | ||||
|       int nhops = abs(s0)+abs(s1)+abs(s2)+abs(s3); | ||||
|       if(nhops<=this->hops) this->shifts.push_back(sft); | ||||
|     }}}} | ||||
|     this->npoint = this->shifts.size(); | ||||
|     std::cout << GridLogMessage << "NonLocalStencilGeometry has "<< this->npoint << " terms in stencil "<<std::endl; | ||||
|   } | ||||
|    | ||||
|   NonLocalStencilGeometry(GridCartesian *_coarse_grid,int _hops,int _skip) : grid(_coarse_grid), hops(_hops), skip(_skip) | ||||
|   { | ||||
|     Coordinate latt = grid->GlobalDimensions(); | ||||
|     stencil_size.resize(grid->Nd()); | ||||
|     stencil_lo.resize(grid->Nd()); | ||||
|     stencil_hi.resize(grid->Nd()); | ||||
|     for(int d=0;d<grid->Nd();d++){ | ||||
|      if ( latt[d] == 1 ) { | ||||
|       stencil_lo[d] = 0; | ||||
|       stencil_hi[d] = 0; | ||||
|       stencil_size[d]= 1; | ||||
|      } else if ( latt[d] == 2 ) { | ||||
|       stencil_lo[d] = -1; | ||||
|       stencil_hi[d] = 0; | ||||
|       stencil_size[d]= 2; | ||||
|      } else if ( latt[d] > 2 ) { | ||||
|        stencil_lo[d] = -1; | ||||
|        stencil_hi[d] =  1; | ||||
|        stencil_size[d]= 3; | ||||
|      } | ||||
|     } | ||||
|     this->BuildShifts(); | ||||
|   }; | ||||
|  | ||||
| }; | ||||
|  | ||||
| // Need to worry about red-black now | ||||
| class NonLocalStencilGeometry4D : public NonLocalStencilGeometry { | ||||
| public: | ||||
|   virtual int DerivedDimSkip(void) { return 0;}; | ||||
|   NonLocalStencilGeometry4D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,0) { }; | ||||
|   virtual ~NonLocalStencilGeometry4D() {}; | ||||
| }; | ||||
| class NonLocalStencilGeometry5D : public NonLocalStencilGeometry { | ||||
| public: | ||||
|   virtual int DerivedDimSkip(void) { return 1; };  | ||||
|   NonLocalStencilGeometry5D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,1)  { }; | ||||
|   virtual ~NonLocalStencilGeometry5D() {}; | ||||
| }; | ||||
| /* | ||||
|  * Bunch of different options classes | ||||
|  */ | ||||
| class NextToNextToNextToNearestStencilGeometry4D : public NonLocalStencilGeometry4D { | ||||
| public: | ||||
|   NextToNextToNextToNearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,4) | ||||
|   { | ||||
|   }; | ||||
| }; | ||||
| class NextToNextToNextToNearestStencilGeometry5D : public  NonLocalStencilGeometry5D { | ||||
| public: | ||||
|   NextToNextToNextToNearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,4) | ||||
|   { | ||||
|   }; | ||||
| }; | ||||
| class NextToNearestStencilGeometry4D : public  NonLocalStencilGeometry4D { | ||||
| public: | ||||
|   NextToNearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,2) | ||||
|   { | ||||
|   }; | ||||
| }; | ||||
| class NextToNearestStencilGeometry5D : public  NonLocalStencilGeometry5D { | ||||
| public: | ||||
|   NextToNearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,2) | ||||
|   { | ||||
|   }; | ||||
| }; | ||||
| class NearestStencilGeometry4D : public  NonLocalStencilGeometry4D { | ||||
| public: | ||||
|   NearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,1) | ||||
|   { | ||||
|   }; | ||||
| }; | ||||
| class NearestStencilGeometry5D : public  NonLocalStencilGeometry5D { | ||||
| public: | ||||
|   NearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,1) | ||||
|   { | ||||
|   }; | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -1,34 +0,0 @@ | ||||
|     /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
|     Source file: Grid/algorithms/multigrid/MultiGrid.h | ||||
|  | ||||
|     Copyright (C) 2023 | ||||
|  | ||||
| Author: Peter Boyle <pboyle@bnl.gov> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
|     *************************************************************************************/ | ||||
|     /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| #include <Grid/algorithms/multigrid/Aggregates.h> | ||||
| #include <Grid/algorithms/multigrid/Geometry.h> | ||||
| #include <Grid/algorithms/multigrid/CoarsenedMatrix.h> | ||||
| #include <Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h> | ||||
| #include <Grid/algorithms/multigrid/GeneralCoarsenedMatrixMultiRHS.h> | ||||
							
								
								
									
										67
									
								
								Grid/allocator/AlignedAllocator.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										67
									
								
								Grid/allocator/AlignedAllocator.cc
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,67 @@ | ||||
| #include <Grid/GridCore.h> | ||||
| #include <fcntl.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| MemoryStats *MemoryProfiler::stats = nullptr; | ||||
| bool         MemoryProfiler::debug = false; | ||||
|  | ||||
| void check_huge_pages(void *Buf,uint64_t BYTES) | ||||
| { | ||||
| #ifdef __linux__ | ||||
|   int fd = open("/proc/self/pagemap", O_RDONLY); | ||||
|   assert(fd >= 0); | ||||
|   const int page_size = 4096; | ||||
|   uint64_t virt_pfn = (uint64_t)Buf / page_size; | ||||
|   off_t offset = sizeof(uint64_t) * virt_pfn; | ||||
|   uint64_t npages = (BYTES + page_size-1) / page_size; | ||||
|   uint64_t pagedata[npages]; | ||||
|   uint64_t ret = lseek(fd, offset, SEEK_SET); | ||||
|   assert(ret == offset); | ||||
|   ret = ::read(fd, pagedata, sizeof(uint64_t)*npages); | ||||
|   assert(ret == sizeof(uint64_t) * npages); | ||||
|   int nhugepages = npages / 512; | ||||
|   int n4ktotal, nnothuge; | ||||
|   n4ktotal = 0; | ||||
|   nnothuge = 0; | ||||
|   for (int i = 0; i < nhugepages; ++i) { | ||||
|     uint64_t baseaddr = (pagedata[i*512] & 0x7fffffffffffffULL) * page_size; | ||||
|     for (int j = 0; j < 512; ++j) { | ||||
|       uint64_t pageaddr = (pagedata[i*512+j] & 0x7fffffffffffffULL) * page_size; | ||||
|       ++n4ktotal; | ||||
|       if (pageaddr != baseaddr + j * page_size) | ||||
| 	++nnothuge; | ||||
|     } | ||||
|   } | ||||
|   int rank = CartesianCommunicator::RankWorld(); | ||||
|   printf("rank %d Allocated %d 4k pages, %d not in huge pages\n", rank, n4ktotal, nnothuge); | ||||
| #endif | ||||
| } | ||||
|  | ||||
| std::string sizeString(const size_t bytes) | ||||
| { | ||||
|   constexpr unsigned int bufSize = 256; | ||||
|   const char             *suffixes[7] = {"", "K", "M", "G", "T", "P", "E"}; | ||||
|   char                   buf[256]; | ||||
|   size_t                 s     = 0; | ||||
|   double                 count = bytes; | ||||
|    | ||||
|   while (count >= 1024 && s < 7) | ||||
|     { | ||||
|       s++; | ||||
|       count /= 1024; | ||||
|     } | ||||
|   if (count - floor(count) == 0.0) | ||||
|     { | ||||
|       snprintf(buf, bufSize, "%d %sB", (int)count, suffixes[s]); | ||||
|     } | ||||
|   else | ||||
|     { | ||||
|       snprintf(buf, bufSize, "%.1f %sB", count, suffixes[s]); | ||||
|     } | ||||
|    | ||||
|   return std::string(buf); | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| @@ -65,7 +65,8 @@ public: | ||||
|     MemoryManager::CpuFree((void *)__p,bytes); | ||||
|   } | ||||
|  | ||||
|   // FIXME: hack for the copy constructor: it must be avoided to avoid single thread loop | ||||
|   // FIXME: hack for the copy constructor, eventually it must be avoided | ||||
|   //void construct(pointer __p, const _Tp& __val) { new((void *)__p) _Tp(__val); }; | ||||
|   void construct(pointer __p, const _Tp& __val) { assert(0);}; | ||||
|   void construct(pointer __p) { }; | ||||
|   void destroy(pointer __p) { }; | ||||
| @@ -73,9 +74,6 @@ public: | ||||
| template<typename _Tp>  inline bool operator==(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return true; } | ||||
| template<typename _Tp>  inline bool operator!=(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return false; } | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Unified virtual memory | ||||
| ////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<typename _Tp> | ||||
| class uvmAllocator { | ||||
| public:  | ||||
| @@ -111,120 +109,22 @@ public: | ||||
|     MemoryManager::SharedFree((void *)__p,bytes); | ||||
|   } | ||||
|  | ||||
|   // FIXME: hack for the copy constructor, eventually it must be avoided | ||||
|   void construct(pointer __p, const _Tp& __val) { new((void *)__p) _Tp(__val); }; | ||||
|   //void construct(pointer __p, const _Tp& __val) { }; | ||||
|   void construct(pointer __p) { }; | ||||
|   void destroy(pointer __p) { }; | ||||
| }; | ||||
| template<typename _Tp>  inline bool operator==(const uvmAllocator<_Tp>&, const uvmAllocator<_Tp>&){ return true; } | ||||
| template<typename _Tp>  inline bool operator!=(const uvmAllocator<_Tp>&, const uvmAllocator<_Tp>&){ return false; } | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
| // Device memory | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
| template<typename _Tp> | ||||
| class devAllocator { | ||||
| public:  | ||||
|   typedef std::size_t     size_type; | ||||
|   typedef std::ptrdiff_t  difference_type; | ||||
|   typedef _Tp*       pointer; | ||||
|   typedef const _Tp* const_pointer; | ||||
|   typedef _Tp&       reference; | ||||
|   typedef const _Tp& const_reference; | ||||
|   typedef _Tp        value_type; | ||||
|  | ||||
|   template<typename _Tp1>  struct rebind { typedef devAllocator<_Tp1> other; }; | ||||
|   devAllocator() throw() { } | ||||
|   devAllocator(const devAllocator&) throw() { } | ||||
|   template<typename _Tp1> devAllocator(const devAllocator<_Tp1>&) throw() { } | ||||
|   ~devAllocator() throw() { } | ||||
|   pointer       address(reference __x)       const { return &__x; } | ||||
|   size_type  max_size() const throw() { return size_t(-1) / sizeof(_Tp); } | ||||
|  | ||||
|   pointer allocate(size_type __n, const void* _p= 0) | ||||
|   {  | ||||
|     size_type bytes = __n*sizeof(_Tp); | ||||
|     profilerAllocate(bytes); | ||||
|     _Tp *ptr = (_Tp*) MemoryManager::AcceleratorAllocate(bytes); | ||||
|     assert( ( (_Tp*)ptr != (_Tp *)NULL ) ); | ||||
|     return ptr; | ||||
|   } | ||||
|  | ||||
|   void deallocate(pointer __p, size_type __n)  | ||||
|   {  | ||||
|     size_type bytes = __n * sizeof(_Tp); | ||||
|     profilerFree(bytes); | ||||
|     MemoryManager::AcceleratorFree((void *)__p,bytes); | ||||
|   } | ||||
|   void construct(pointer __p, const _Tp& __val) { }; | ||||
|   void construct(pointer __p) { }; | ||||
|   void destroy(pointer __p) { }; | ||||
| }; | ||||
| template<typename _Tp>  inline bool operator==(const devAllocator<_Tp>&, const devAllocator<_Tp>&){ return true; } | ||||
| template<typename _Tp>  inline bool operator!=(const devAllocator<_Tp>&, const devAllocator<_Tp>&){ return false; } | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
| // Template typedefs | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
| #ifdef ACCELERATOR_CSHIFT | ||||
| // Cshift on device | ||||
| template<class T> using cshiftAllocator = devAllocator<T>; | ||||
| #else | ||||
| // Cshift on host | ||||
| template<class T> using cshiftAllocator = std::allocator<T>; | ||||
| #endif | ||||
|  | ||||
| template<class T> using commAllocator = uvmAllocator<T>; | ||||
| template<class T> using Vector     = std::vector<T,uvmAllocator<T> >;            | ||||
| template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;            | ||||
| template<class T> using commVector    = std::vector<T,devAllocator<T> >; | ||||
| template<class T> using deviceVector  = std::vector<T,devAllocator<T> >; | ||||
| template<class T> using cshiftVector  = std::vector<T,cshiftAllocator<T> >; | ||||
|  | ||||
| /* | ||||
| template<class T> class vecView | ||||
| { | ||||
|  protected: | ||||
|   T * data; | ||||
|   uint64_t size; | ||||
|   ViewMode mode; | ||||
|   void * cpu_ptr; | ||||
|  public: | ||||
|   accelerator_inline T & operator[](size_t i) const { return this->data[i]; }; | ||||
|   vecView(std::vector<T> &refer_to_me,ViewMode _mode) | ||||
|   { | ||||
|     cpu_ptr = &refer_to_me[0]; | ||||
|     size = refer_to_me.size(); | ||||
|     mode = _mode; | ||||
|     data =(T *) MemoryManager::ViewOpen(cpu_ptr, | ||||
| 					size*sizeof(T), | ||||
| 					mode, | ||||
| 					AdviseDefault); | ||||
|   } | ||||
|   void ViewClose(void) | ||||
|   { // Inform the manager | ||||
|     MemoryManager::ViewClose(this->cpu_ptr,this->mode);     | ||||
|   } | ||||
| }; | ||||
|  | ||||
| template<class T> vecView<T> VectorView(std::vector<T> &vec,ViewMode _mode) | ||||
| { | ||||
|   vecView<T> ret(vec,_mode); // does the open | ||||
|   return ret;                // must be closed | ||||
| } | ||||
|  | ||||
| // Little autoscope assister | ||||
| template<class View>  | ||||
| class VectorViewCloser | ||||
| { | ||||
|   View v;  // Take a copy of view and call view close when I go out of scope automatically | ||||
|  public: | ||||
|   VectorViewCloser(View &_v) : v(_v) {}; | ||||
|   ~VectorViewCloser() { auto ptr = v.cpu_ptr; v.ViewClose();  MemoryManager::NotifyDeletion(ptr);} | ||||
| }; | ||||
|  | ||||
| #define autoVecView(v_v,v,mode)					\ | ||||
|   auto v_v = VectorView(v,mode);				\ | ||||
|   ViewCloser<decltype(v_v)> _autoView##v_v(v_v); | ||||
| */ | ||||
| template<class T> using commVector = std::vector<T,uvmAllocator<T> >; | ||||
| //template<class T> using Matrix     = std::vector<std::vector<T,alignedAllocator<T> > >; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|   | ||||
| @@ -4,156 +4,106 @@ NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| /*Allocation types, saying which pointer cache should be used*/ | ||||
| #define Cpu      (0) | ||||
| #define CpuHuge  (1) | ||||
| #define CpuSmall (2) | ||||
| #define Acc      (3) | ||||
| #define AccHuge  (4) | ||||
| #define AccSmall (5) | ||||
| #define Shared   (6) | ||||
| #define SharedHuge  (7) | ||||
| #define SharedSmall (8) | ||||
| #undef GRID_MM_VERBOSE  | ||||
| #define CpuSmall (1) | ||||
| #define Acc      (2) | ||||
| #define AccSmall (3) | ||||
| #define Shared   (4) | ||||
| #define SharedSmall (5) | ||||
| uint64_t total_shared; | ||||
| uint64_t total_device; | ||||
| uint64_t total_host;; | ||||
| void MemoryManager::PrintBytes(void) | ||||
| { | ||||
|   std::cout << " MemoryManager : ------------------------------------ "<<std::endl; | ||||
|   std::cout << " MemoryManager : PrintBytes "<<std::endl; | ||||
|   std::cout << " MemoryManager : ------------------------------------ "<<std::endl; | ||||
|   std::cout << " MemoryManager : "<<(total_shared>>20)<<" shared      Mbytes "<<std::endl; | ||||
|   std::cout << " MemoryManager : "<<(total_device>>20)<<" accelerator Mbytes "<<std::endl; | ||||
|   std::cout << " MemoryManager : "<<(total_host>>20)  <<" cpu         Mbytes "<<std::endl; | ||||
|   uint64_t cacheBytes; | ||||
|   cacheBytes = CacheBytes[Cpu]; | ||||
|   std::cout << " MemoryManager : "<<(cacheBytes>>20) <<" cpu cache Mbytes "<<std::endl; | ||||
|   cacheBytes = CacheBytes[Acc]; | ||||
|   std::cout << " MemoryManager : "<<(cacheBytes>>20) <<" acc cache Mbytes "<<std::endl; | ||||
|   cacheBytes = CacheBytes[Shared]; | ||||
|   std::cout << " MemoryManager : "<<(cacheBytes>>20) <<" shared cache Mbytes "<<std::endl; | ||||
|    | ||||
| #ifdef GRID_CUDA | ||||
|   cuda_mem(); | ||||
| #endif | ||||
|    | ||||
|   std::cout << " MemoryManager : "<<total_shared<<" shared      bytes "<<std::endl; | ||||
|   std::cout << " MemoryManager : "<<total_device<<" accelerator bytes "<<std::endl; | ||||
|   std::cout << " MemoryManager : "<<total_host  <<" cpu         bytes "<<std::endl; | ||||
| } | ||||
|  | ||||
| uint64_t MemoryManager::DeviceCacheBytes() { return CacheBytes[Acc] + CacheBytes[AccHuge] + CacheBytes[AccSmall]; } | ||||
| uint64_t MemoryManager::HostCacheBytes()   { return CacheBytes[Cpu] + CacheBytes[CpuHuge] + CacheBytes[CpuSmall]; } | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////// | ||||
| // Data tables for recently freed pooiniter caches | ||||
| ////////////////////////////////////////////////////////////////////// | ||||
| MemoryManager::AllocationCacheEntry MemoryManager::Entries[MemoryManager::NallocType][MemoryManager::NallocCacheMax]; | ||||
| int MemoryManager::Victim[MemoryManager::NallocType]; | ||||
| int MemoryManager::Ncache[MemoryManager::NallocType] = { 2, 0, 8, 8, 0, 16, 8, 0, 16 }; | ||||
| uint64_t MemoryManager::CacheBytes[MemoryManager::NallocType]; | ||||
| int MemoryManager::Ncache[MemoryManager::NallocType] = { 8, 32, 8, 32, 8, 32 }; | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////// | ||||
| // Actual allocation and deallocation utils | ||||
| ////////////////////////////////////////////////////////////////////// | ||||
| void *MemoryManager::AcceleratorAllocate(size_t bytes) | ||||
| { | ||||
|   total_device+=bytes; | ||||
|   void *ptr = (void *) Lookup(bytes,Acc); | ||||
|   if ( ptr == (void *) NULL ) { | ||||
|     ptr = (void *) acceleratorAllocDevice(bytes); | ||||
|     total_device+=bytes; | ||||
|   } | ||||
| #ifdef GRID_MM_VERBOSE | ||||
|   std::cout <<"AcceleratorAllocate "<<std::endl; | ||||
|   PrintBytes(); | ||||
| #endif | ||||
|   return ptr; | ||||
| } | ||||
| void  MemoryManager::AcceleratorFree    (void *ptr,size_t bytes) | ||||
| { | ||||
|   total_device-=bytes; | ||||
|   void *__freeme = Insert(ptr,bytes,Acc); | ||||
|   if ( __freeme ) { | ||||
|     acceleratorFreeDevice(__freeme); | ||||
|     total_device-=bytes; | ||||
|     //    PrintBytes(); | ||||
|   } | ||||
| #ifdef GRID_MM_VERBOSE | ||||
|   std::cout <<"AcceleratorFree "<<std::endl; | ||||
|   PrintBytes(); | ||||
| #endif | ||||
| } | ||||
| void *MemoryManager::SharedAllocate(size_t bytes) | ||||
| { | ||||
|   total_shared+=bytes; | ||||
|   void *ptr = (void *) Lookup(bytes,Shared); | ||||
|   if ( ptr == (void *) NULL ) { | ||||
|     ptr = (void *) acceleratorAllocShared(bytes); | ||||
|     total_shared+=bytes; | ||||
|     //    std::cout <<"AcceleratorAllocate: allocated Shared pointer "<<std::hex<<ptr<<std::dec<<std::endl; | ||||
|     //    PrintBytes(); | ||||
|   } | ||||
| #ifdef GRID_MM_VERBOSE | ||||
|   std::cout <<"SharedAllocate "<<std::endl; | ||||
|   PrintBytes(); | ||||
| #endif | ||||
|   return ptr; | ||||
| } | ||||
| void  MemoryManager::SharedFree    (void *ptr,size_t bytes) | ||||
| { | ||||
|   total_shared-=bytes; | ||||
|   void *__freeme = Insert(ptr,bytes,Shared); | ||||
|   if ( __freeme ) { | ||||
|     acceleratorFreeShared(__freeme); | ||||
|     total_shared-=bytes; | ||||
|     //    PrintBytes(); | ||||
|   } | ||||
| #ifdef GRID_MM_VERBOSE | ||||
|   std::cout <<"SharedFree "<<std::endl; | ||||
|   PrintBytes(); | ||||
| #endif | ||||
| } | ||||
| #ifdef GRID_UVM | ||||
| void *MemoryManager::CpuAllocate(size_t bytes) | ||||
| { | ||||
|   total_host+=bytes; | ||||
|   void *ptr = (void *) Lookup(bytes,Cpu); | ||||
|   if ( ptr == (void *) NULL ) { | ||||
|     ptr = (void *) acceleratorAllocShared(bytes); | ||||
|     total_host+=bytes; | ||||
|   } | ||||
| #ifdef GRID_MM_VERBOSE | ||||
|   std::cout <<"CpuAllocate "<<std::endl; | ||||
|   PrintBytes(); | ||||
| #endif | ||||
|   return ptr; | ||||
| } | ||||
| void  MemoryManager::CpuFree    (void *_ptr,size_t bytes) | ||||
| { | ||||
|   total_host-=bytes; | ||||
|   NotifyDeletion(_ptr); | ||||
|   void *__freeme = Insert(_ptr,bytes,Cpu); | ||||
|   if ( __freeme ) {  | ||||
|     acceleratorFreeShared(__freeme); | ||||
|     total_host-=bytes; | ||||
|   } | ||||
| #ifdef GRID_MM_VERBOSE | ||||
|   std::cout <<"CpuFree "<<std::endl; | ||||
|   PrintBytes(); | ||||
| #endif | ||||
| } | ||||
| #else | ||||
| void *MemoryManager::CpuAllocate(size_t bytes) | ||||
| { | ||||
|   total_host+=bytes; | ||||
|   void *ptr = (void *) Lookup(bytes,Cpu); | ||||
|   if ( ptr == (void *) NULL ) { | ||||
|     ptr = (void *) acceleratorAllocCpu(bytes); | ||||
|     total_host+=bytes; | ||||
|   } | ||||
| #ifdef GRID_MM_VERBOSE | ||||
|   std::cout <<"CpuAllocate "<<std::endl; | ||||
|   PrintBytes(); | ||||
| #endif | ||||
|   return ptr; | ||||
| } | ||||
| void  MemoryManager::CpuFree    (void *_ptr,size_t bytes) | ||||
| { | ||||
|   total_host-=bytes; | ||||
|   NotifyDeletion(_ptr); | ||||
|   void *__freeme = Insert(_ptr,bytes,Cpu); | ||||
|   if ( __freeme ) {  | ||||
|     acceleratorFreeCpu(__freeme); | ||||
|     total_host-=bytes; | ||||
|   } | ||||
| #ifdef GRID_MM_VERBOSE | ||||
|   std::cout <<"CpuFree "<<std::endl; | ||||
|   PrintBytes(); | ||||
| #endif | ||||
| } | ||||
| #endif | ||||
|  | ||||
| @@ -165,6 +115,7 @@ void MemoryManager::Init(void) | ||||
|  | ||||
|   char * str; | ||||
|   int Nc; | ||||
|   int NcS; | ||||
|    | ||||
|   str= getenv("GRID_ALLOC_NCACHE_LARGE"); | ||||
|   if ( str ) { | ||||
| @@ -176,16 +127,6 @@ void MemoryManager::Init(void) | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   str= getenv("GRID_ALLOC_NCACHE_HUGE"); | ||||
|   if ( str ) { | ||||
|     Nc = atoi(str); | ||||
|     if ( (Nc>=0) && (Nc < NallocCacheMax)) { | ||||
|       Ncache[CpuHuge]=Nc; | ||||
|       Ncache[AccHuge]=Nc; | ||||
|       Ncache[SharedHuge]=Nc; | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   str= getenv("GRID_ALLOC_NCACHE_SMALL"); | ||||
|   if ( str ) { | ||||
|     Nc = atoi(str); | ||||
| @@ -195,20 +136,9 @@ void MemoryManager::Init(void) | ||||
|       Ncache[SharedSmall]=Nc; | ||||
|     } | ||||
|   } | ||||
|  | ||||
| } | ||||
|  | ||||
| void MemoryManager::InitMessage(void) { | ||||
|  | ||||
| #ifndef GRID_UVM | ||||
|   std::cout << GridLogMessage << "MemoryManager Cache "<< MemoryManager::DeviceMaxBytes <<" bytes "<<std::endl; | ||||
| #endif | ||||
|    | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() setting up"<<std::endl; | ||||
| #ifdef ALLOCATION_CACHE | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent host   allocations: SMALL "<<Ncache[CpuSmall]<<" LARGE "<<Ncache[Cpu]<<" HUGE "<<Ncache[CpuHuge]<<std::endl; | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent device allocations: SMALL "<<Ncache[AccSmall]<<" LARGE "<<Ncache[Acc]<<" Huge "<<Ncache[AccHuge]<<std::endl; | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent shared allocations: SMALL "<<Ncache[SharedSmall]<<" LARGE "<<Ncache[Shared]<<" Huge "<<Ncache[SharedHuge]<<std::endl; | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent allocations: SMALL "<<Ncache[CpuSmall]<<" LARGE "<<Ncache[Cpu]<<std::endl; | ||||
| #endif | ||||
|  | ||||
| #ifdef GRID_UVM | ||||
| @@ -234,31 +164,26 @@ void MemoryManager::InitMessage(void) { | ||||
|   std::cout << GridLogMessage<< "MemoryManager::Init() Using SYCL malloc_device"<<std::endl; | ||||
| #endif | ||||
| #endif | ||||
|  | ||||
| } | ||||
|  | ||||
| void *MemoryManager::Insert(void *ptr,size_t bytes,int type)  | ||||
| { | ||||
| #ifdef ALLOCATION_CACHE | ||||
|   int cache; | ||||
|   if      (bytes < GRID_ALLOC_SMALL_LIMIT) cache = type + 2; | ||||
|   else if (bytes >= GRID_ALLOC_HUGE_LIMIT) cache = type + 1; | ||||
|   else                                     cache = type; | ||||
|  | ||||
|   return Insert(ptr,bytes,Entries[cache],Ncache[cache],Victim[cache],CacheBytes[cache]);   | ||||
|   bool small = (bytes < GRID_ALLOC_SMALL_LIMIT); | ||||
|   int cache = type + small; | ||||
|   return Insert(ptr,bytes,Entries[cache],Ncache[cache],Victim[cache]);   | ||||
| #else | ||||
|   return ptr; | ||||
| #endif | ||||
| } | ||||
|  | ||||
| void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim, uint64_t &cacheBytes)  | ||||
| void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim)  | ||||
| { | ||||
|   assert(ncache>0); | ||||
| #ifdef GRID_OMP | ||||
|   assert(omp_in_parallel()==0); | ||||
| #endif  | ||||
|  | ||||
|   if (ncache == 0) return ptr; | ||||
|  | ||||
|   void * ret = NULL; | ||||
|   int v = -1; | ||||
|  | ||||
| @@ -276,7 +201,6 @@ void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries | ||||
|  | ||||
|   if ( entries[v].valid ) { | ||||
|     ret = entries[v].address; | ||||
|     cacheBytes -= entries[v].bytes; | ||||
|     entries[v].valid = 0; | ||||
|     entries[v].address = NULL; | ||||
|     entries[v].bytes = 0; | ||||
| @@ -285,7 +209,6 @@ void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries | ||||
|   entries[v].address=ptr; | ||||
|   entries[v].bytes  =bytes; | ||||
|   entries[v].valid  =1; | ||||
|   cacheBytes += bytes; | ||||
|  | ||||
|   return ret; | ||||
| } | ||||
| @@ -293,26 +216,23 @@ void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries | ||||
| void *MemoryManager::Lookup(size_t bytes,int type) | ||||
| { | ||||
| #ifdef ALLOCATION_CACHE | ||||
|   int cache; | ||||
|   if      (bytes < GRID_ALLOC_SMALL_LIMIT) cache = type + 2; | ||||
|   else if (bytes >= GRID_ALLOC_HUGE_LIMIT) cache = type + 1; | ||||
|   else                                     cache = type; | ||||
|  | ||||
|   return Lookup(bytes,Entries[cache],Ncache[cache],CacheBytes[cache]); | ||||
|   bool small = (bytes < GRID_ALLOC_SMALL_LIMIT); | ||||
|   int cache = type+small; | ||||
|   return Lookup(bytes,Entries[cache],Ncache[cache]); | ||||
| #else | ||||
|   return NULL; | ||||
| #endif | ||||
| } | ||||
|  | ||||
| void *MemoryManager::Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache,uint64_t & cacheBytes)  | ||||
| void *MemoryManager::Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache)  | ||||
| { | ||||
|   assert(ncache>0); | ||||
| #ifdef GRID_OMP | ||||
|   assert(omp_in_parallel()==0); | ||||
| #endif  | ||||
|   for(int e=0;e<ncache;e++){ | ||||
|     if ( entries[e].valid && ( entries[e].bytes == bytes ) ) { | ||||
|       entries[e].valid = 0; | ||||
|       cacheBytes -= entries[e].bytes; | ||||
|       return entries[e].address; | ||||
|     } | ||||
|   } | ||||
|   | ||||
| @@ -34,13 +34,9 @@ NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| // Move control to configure.ac and Config.h? | ||||
|  | ||||
| #define ALLOCATION_CACHE | ||||
| #define GRID_ALLOC_ALIGN (2*1024*1024) | ||||
| #define GRID_ALLOC_SMALL_LIMIT (4096) | ||||
| #define GRID_ALLOC_HUGE_LIMIT  (2147483648) | ||||
|  | ||||
| #define STRINGIFY(x) #x | ||||
| #define TOSTRING(x) STRINGIFY(x) | ||||
| #define FILE_LINE __FILE__ ":" TOSTRING(__LINE__) | ||||
| #define AUDIT(a) MemoryManager::Audit(FILE_LINE) | ||||
|  | ||||
| /*Pinning pages is costly*/ | ||||
| //////////////////////////////////////////////////////////////////////////// | ||||
| @@ -71,21 +67,6 @@ enum ViewMode { | ||||
|   CpuWriteDiscard = 0x10 // same for now | ||||
| }; | ||||
|  | ||||
| struct MemoryStatus { | ||||
|   uint64_t     DeviceBytes; | ||||
|   uint64_t     DeviceLRUBytes; | ||||
|   uint64_t     DeviceMaxBytes; | ||||
|   uint64_t     HostToDeviceBytes; | ||||
|   uint64_t     DeviceToHostBytes; | ||||
|   uint64_t     HostToDeviceXfer; | ||||
|   uint64_t     DeviceToHostXfer; | ||||
|   uint64_t     DeviceEvictions; | ||||
|   uint64_t     DeviceDestroy; | ||||
|   uint64_t     DeviceAllocCacheBytes; | ||||
|   uint64_t     HostAllocCacheBytes; | ||||
| }; | ||||
|  | ||||
|  | ||||
| class MemoryManager { | ||||
| private: | ||||
|  | ||||
| @@ -99,27 +80,24 @@ private: | ||||
|   } AllocationCacheEntry; | ||||
|  | ||||
|   static const int NallocCacheMax=128;  | ||||
|   static const int NallocType=9; | ||||
|   static const int NallocType=6; | ||||
|   static AllocationCacheEntry Entries[NallocType][NallocCacheMax]; | ||||
|   static int Victim[NallocType]; | ||||
|   static int Ncache[NallocType]; | ||||
|   static uint64_t CacheBytes[NallocType]; | ||||
|  | ||||
|   ///////////////////////////////////////////////// | ||||
|   // Free pool | ||||
|   ///////////////////////////////////////////////// | ||||
|   static void *Insert(void *ptr,size_t bytes,int type) ; | ||||
|   static void *Lookup(size_t bytes,int type) ; | ||||
|   static void *Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim,uint64_t &cbytes) ; | ||||
|   static void *Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache,uint64_t &cbytes) ; | ||||
|   static void *Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim) ; | ||||
|   static void *Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache) ; | ||||
|  | ||||
|  public: | ||||
|   static void PrintBytes(void); | ||||
|   static void Audit(std::string s); | ||||
|   static void Init(void); | ||||
|   static void InitMessage(void); | ||||
|   static void *AcceleratorAllocate(size_t bytes); | ||||
|   static void  AcceleratorFree    (void *ptr,size_t bytes); | ||||
|   static void PrintBytes(void); | ||||
|  public: | ||||
|   static void Init(void); | ||||
|   static void *SharedAllocate(size_t bytes); | ||||
|   static void  SharedFree    (void *ptr,size_t bytes); | ||||
|   static void *CpuAllocate(size_t bytes); | ||||
| @@ -135,27 +113,6 @@ private: | ||||
|   static uint64_t     DeviceToHostBytes; | ||||
|   static uint64_t     HostToDeviceXfer; | ||||
|   static uint64_t     DeviceToHostXfer; | ||||
|   static uint64_t     DeviceEvictions; | ||||
|   static uint64_t     DeviceDestroy; | ||||
|    | ||||
|   static uint64_t     DeviceCacheBytes(); | ||||
|   static uint64_t     HostCacheBytes(); | ||||
|  | ||||
|   static MemoryStatus GetFootprint(void) { | ||||
|     MemoryStatus stat; | ||||
|     stat.DeviceBytes       = DeviceBytes; | ||||
|     stat.DeviceLRUBytes    = DeviceLRUBytes; | ||||
|     stat.DeviceMaxBytes    = DeviceMaxBytes; | ||||
|     stat.HostToDeviceBytes = HostToDeviceBytes; | ||||
|     stat.DeviceToHostBytes = DeviceToHostBytes; | ||||
|     stat.HostToDeviceXfer  = HostToDeviceXfer; | ||||
|     stat.DeviceToHostXfer  = DeviceToHostXfer; | ||||
|     stat.DeviceEvictions   = DeviceEvictions; | ||||
|     stat.DeviceDestroy     = DeviceDestroy; | ||||
|     stat.DeviceAllocCacheBytes = DeviceCacheBytes(); | ||||
|     stat.HostAllocCacheBytes   = HostCacheBytes(); | ||||
|     return stat; | ||||
|   }; | ||||
|   | ||||
|  private: | ||||
| #ifndef GRID_UVM | ||||
| @@ -209,12 +166,10 @@ private: | ||||
|   static void     CpuViewClose(uint64_t Ptr); | ||||
|   static uint64_t CpuViewOpen(uint64_t  CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint); | ||||
| #endif | ||||
|   static void NotifyDeletion(void * CpuPtr); | ||||
|  | ||||
|  public: | ||||
|   static void NotifyDeletion(void * CpuPtr); | ||||
|   static void Print(void); | ||||
|   static void PrintAll(void); | ||||
|   static void PrintState( void* CpuPtr); | ||||
|   static int   isOpen   (void* CpuPtr); | ||||
|   static void  ViewClose(void* CpuPtr,ViewMode mode); | ||||
|   static void *ViewOpen (void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint); | ||||
|   | ||||
| @@ -1,16 +1,10 @@ | ||||
| #include <Grid/GridCore.h> | ||||
|  | ||||
| #ifndef GRID_UVM | ||||
|  | ||||
| #warning "Using explicit device memory copies" | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| #define MAXLINE 512 | ||||
| static char print_buffer [ MAXLINE ]; | ||||
|  | ||||
| #define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer; | ||||
| #define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug << print_buffer; | ||||
| //#define dprintf(...)  | ||||
|  | ||||
| #define dprintf(...) | ||||
|  | ||||
| //////////////////////////////////////////////////////////// | ||||
| // For caching copies of data on device | ||||
| @@ -28,8 +22,6 @@ uint64_t  MemoryManager::HostToDeviceBytes; | ||||
| uint64_t  MemoryManager::DeviceToHostBytes; | ||||
| uint64_t  MemoryManager::HostToDeviceXfer; | ||||
| uint64_t  MemoryManager::DeviceToHostXfer; | ||||
| uint64_t  MemoryManager::DeviceEvictions; | ||||
| uint64_t  MemoryManager::DeviceDestroy; | ||||
|  | ||||
| //////////////////////////////////// | ||||
| // Priority ordering for unlocked entries | ||||
| @@ -111,17 +103,15 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache) | ||||
|   /////////////////////////////////////////////////////////// | ||||
|   assert(AccCache.state!=Empty); | ||||
|    | ||||
|   dprintf("MemoryManager: Discard(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);  | ||||
|   //  dprintf("MemoryManager: Discard(%llx) %llx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);  | ||||
|   assert(AccCache.accLock==0); | ||||
|   assert(AccCache.cpuLock==0); | ||||
|   assert(AccCache.CpuPtr!=(uint64_t)NULL); | ||||
|   if(AccCache.AccPtr) { | ||||
|     AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes); | ||||
|     DeviceDestroy++; | ||||
|     DeviceBytes   -=AccCache.bytes; | ||||
|     LRUremove(AccCache); | ||||
|     AccCache.AccPtr=(uint64_t) NULL; | ||||
|     dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);   | ||||
|     //    dprintf("MemoryManager: Free(%llx) LRU %lld Total %lld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);   | ||||
|   } | ||||
|   uint64_t CpuPtr = AccCache.CpuPtr; | ||||
|   EntryErase(CpuPtr); | ||||
| @@ -130,36 +120,26 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache) | ||||
| void MemoryManager::Evict(AcceleratorViewEntry &AccCache) | ||||
| { | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|   // Make CPU consistent, remove from Accelerator, remove from LRU, LEAVE CPU only entry | ||||
|   // Cannot be acclocked. If allocated must be in LRU pool. | ||||
|   // | ||||
|   // Nov 2022... Felix issue: Allocating two CpuPtrs, can have an entry in LRU-q with CPUlock. | ||||
|   //                          and require to evict the AccPtr copy. Eviction was a mistake in CpuViewOpen | ||||
|   //                          but there is a weakness where CpuLock entries are attempted for erase | ||||
|   //                          Take these OUT LRU queue when CPU locked? | ||||
|   //                          Cannot take out the table as cpuLock data is important. | ||||
|   // Make CPU consistent, remove from Accelerator, remove entry | ||||
|   // Cannot be locked. If allocated must be in LRU pool. | ||||
|   /////////////////////////////////////////////////////////////////////////// | ||||
|   assert(AccCache.state!=Empty); | ||||
|    | ||||
|   mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld\n", | ||||
| 	  (uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr, | ||||
| 	  (uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock);  | ||||
|   if (AccCache.accLock!=0) return; | ||||
|   if (AccCache.cpuLock!=0) return; | ||||
|   //  dprintf("MemoryManager: Evict(%llx) %llx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);  | ||||
|   assert(AccCache.accLock==0); | ||||
|   assert(AccCache.cpuLock==0); | ||||
|   if(AccCache.state==AccDirty) { | ||||
|     Flush(AccCache); | ||||
|   } | ||||
|   assert(AccCache.CpuPtr!=(uint64_t)NULL); | ||||
|   if(AccCache.AccPtr) { | ||||
|     AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes); | ||||
|     LRUremove(AccCache); | ||||
|     AccCache.AccPtr=(uint64_t)NULL; | ||||
|     AccCache.state=CpuDirty; // CPU primary now | ||||
|     DeviceBytes   -=AccCache.bytes; | ||||
|     dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);   | ||||
|     LRUremove(AccCache); | ||||
|     //    dprintf("MemoryManager: Free(%llx) footprint now %lld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);   | ||||
|   } | ||||
|   //  uint64_t CpuPtr = AccCache.CpuPtr; | ||||
|   DeviceEvictions++; | ||||
|   //  EntryErase(CpuPtr); | ||||
|   uint64_t CpuPtr = AccCache.CpuPtr; | ||||
|   EntryErase(CpuPtr); | ||||
| } | ||||
| void MemoryManager::Flush(AcceleratorViewEntry &AccCache) | ||||
| { | ||||
| @@ -169,7 +149,7 @@ void MemoryManager::Flush(AcceleratorViewEntry &AccCache) | ||||
|   assert(AccCache.AccPtr!=(uint64_t)NULL); | ||||
|   assert(AccCache.CpuPtr!=(uint64_t)NULL); | ||||
|   acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes); | ||||
|   mprintf("MemoryManager: acceleratorCopyFromDevice Flush AccPtr %lx -> CpuPtr %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout); | ||||
|   //  dprintf("MemoryManager: Flush  %llx -> %llx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout); | ||||
|   DeviceToHostBytes+=AccCache.bytes; | ||||
|   DeviceToHostXfer++; | ||||
|   AccCache.state=Consistent; | ||||
| @@ -184,7 +164,7 @@ void MemoryManager::Clone(AcceleratorViewEntry &AccCache) | ||||
|     AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes); | ||||
|     DeviceBytes+=AccCache.bytes; | ||||
|   } | ||||
|   mprintf("MemoryManager: acceleratorCopyToDevice   Clone AccPtr %lx <- CpuPtr %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout); | ||||
|   //  dprintf("MemoryManager: Clone %llx <- %llx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout); | ||||
|   acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes); | ||||
|   HostToDeviceBytes+=AccCache.bytes; | ||||
|   HostToDeviceXfer++; | ||||
| @@ -210,7 +190,6 @@ void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache) | ||||
| void MemoryManager::ViewClose(void* Ptr,ViewMode mode) | ||||
| { | ||||
|   if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){ | ||||
|     dprintf("AcceleratorViewClose %lx\n",(uint64_t)Ptr); | ||||
|     AcceleratorViewClose((uint64_t)Ptr); | ||||
|   } else if( (mode==CpuRead)||(mode==CpuWrite)){ | ||||
|     CpuViewClose((uint64_t)Ptr); | ||||
| @@ -222,7 +201,6 @@ void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvis | ||||
| { | ||||
|   uint64_t CpuPtr = (uint64_t)_CpuPtr; | ||||
|   if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){ | ||||
|     dprintf("AcceleratorViewOpen %lx\n",(uint64_t)CpuPtr); | ||||
|     return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint); | ||||
|   } else if( (mode==CpuRead)||(mode==CpuWrite)){ | ||||
|     return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint); | ||||
| @@ -233,16 +211,13 @@ void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvis | ||||
| } | ||||
| void  MemoryManager::EvictVictims(uint64_t bytes) | ||||
| { | ||||
|   assert(bytes<DeviceMaxBytes); | ||||
|   while(bytes+DeviceLRUBytes > DeviceMaxBytes){ | ||||
|     if ( DeviceLRUBytes > 0){ | ||||
|       assert(LRU.size()>0); | ||||
|       uint64_t victim = LRU.back(); // From the LRU | ||||
|       uint64_t victim = LRU.back(); | ||||
|       auto AccCacheIterator = EntryLookup(victim); | ||||
|       auto & AccCache = AccCacheIterator->second; | ||||
|       Evict(AccCache); | ||||
|     } else { | ||||
|       return; | ||||
|     } | ||||
|   } | ||||
| } | ||||
| @@ -252,25 +227,18 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod | ||||
|   // Find if present, otherwise get or force an empty | ||||
|   //////////////////////////////////////////////////////////////////////////// | ||||
|   if ( EntryPresent(CpuPtr)==0 ){ | ||||
|     EvictVictims(bytes); | ||||
|     EntryCreate(CpuPtr,bytes,mode,hint); | ||||
|   } | ||||
|  | ||||
|   auto AccCacheIterator = EntryLookup(CpuPtr); | ||||
|   auto & AccCache = AccCacheIterator->second; | ||||
|   if (!AccCache.AccPtr) { | ||||
|     EvictVictims(bytes);  | ||||
|   }  | ||||
|    | ||||
|   assert((mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard)); | ||||
|  | ||||
|   assert(AccCache.cpuLock==0);  // Programming error | ||||
|  | ||||
|   if(AccCache.state!=Empty) { | ||||
|     dprintf("ViewOpen found entry %lx %lx : %ld %ld accLock %ld\n", | ||||
| 		    (uint64_t)AccCache.CpuPtr, | ||||
| 		    (uint64_t)CpuPtr, | ||||
| 		    (uint64_t)AccCache.bytes, | ||||
| 	            (uint64_t)bytes, | ||||
| 		    (uint64_t)AccCache.accLock); | ||||
|     assert(AccCache.CpuPtr == CpuPtr); | ||||
|     assert(AccCache.bytes  ==bytes); | ||||
|   } | ||||
| @@ -305,7 +273,6 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod | ||||
|       AccCache.state  = Consistent; // Empty + AccRead => Consistent | ||||
|     } | ||||
|     AccCache.accLock= 1; | ||||
|     dprintf("Copied Empty entry into device accLock= %d\n",AccCache.accLock); | ||||
|   } else if(AccCache.state==CpuDirty ){ | ||||
|     if(mode==AcceleratorWriteDiscard) { | ||||
|       CpuDiscard(AccCache); | ||||
| @@ -318,30 +285,28 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod | ||||
|       AccCache.state  = Consistent; // CpuDirty + AccRead => Consistent | ||||
|     } | ||||
|     AccCache.accLock++; | ||||
|     dprintf("CpuDirty entry into device ++accLock= %d\n",AccCache.accLock); | ||||
|     //    printf("Copied CpuDirty entry into device accLock %d\n",AccCache.accLock); | ||||
|   } else if(AccCache.state==Consistent) { | ||||
|     if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard)) | ||||
|       AccCache.state  = AccDirty;   // Consistent + AcceleratorWrite=> AccDirty | ||||
|     else | ||||
|       AccCache.state  = Consistent; // Consistent + AccRead => Consistent | ||||
|     AccCache.accLock++; | ||||
|     dprintf("Consistent entry into device ++accLock= %d\n",AccCache.accLock); | ||||
|     //    printf("Consistent entry into device accLock %d\n",AccCache.accLock); | ||||
|   } else if(AccCache.state==AccDirty) { | ||||
|     if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard)) | ||||
|       AccCache.state  = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty | ||||
|     else | ||||
|       AccCache.state  = AccDirty; // AccDirty + AccRead => AccDirty | ||||
|     AccCache.accLock++; | ||||
|     dprintf("AccDirty entry ++accLock= %d\n",AccCache.accLock); | ||||
|     //    printf("AccDirty entry into device accLock %d\n",AccCache.accLock); | ||||
|   } else { | ||||
|     assert(0); | ||||
|   } | ||||
|  | ||||
|   assert(AccCache.accLock>0); | ||||
|   // If view is opened on device must remove from LRU | ||||
|   // If view is opened on device remove from LRU | ||||
|   if(AccCache.LRU_valid==1){ | ||||
|     // must possibly remove from LRU as now locked on GPU | ||||
|     dprintf("AccCache entry removed from LRU \n"); | ||||
|     LRUremove(AccCache); | ||||
|   } | ||||
|  | ||||
| @@ -362,12 +327,10 @@ void MemoryManager::AcceleratorViewClose(uint64_t CpuPtr) | ||||
|   assert(AccCache.accLock>0); | ||||
|  | ||||
|   AccCache.accLock--; | ||||
|  | ||||
|   // Move to LRU queue if not locked and close on device | ||||
|   if(AccCache.accLock==0) { | ||||
|     dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock); | ||||
|     LRUinsert(AccCache); | ||||
|   } else { | ||||
|     dprintf("AccleratorViewClose %lx AccLock decremented to %ld\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock); | ||||
|   } | ||||
| } | ||||
| void MemoryManager::CpuViewClose(uint64_t CpuPtr) | ||||
| @@ -398,17 +361,13 @@ uint64_t MemoryManager::CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,V | ||||
|   // Find if present, otherwise get or force an empty | ||||
|   //////////////////////////////////////////////////////////////////////////// | ||||
|   if ( EntryPresent(CpuPtr)==0 ){ | ||||
|     EvictVictims(bytes); | ||||
|     EntryCreate(CpuPtr,bytes,mode,transient); | ||||
|   } | ||||
|  | ||||
|   auto AccCacheIterator = EntryLookup(CpuPtr); | ||||
|   auto & AccCache = AccCacheIterator->second; | ||||
|    | ||||
|   // CPU doesn't need to free space | ||||
|   //  if (!AccCache.AccPtr) { | ||||
|   //    EvictVictims(bytes); | ||||
|   //  } | ||||
|  | ||||
|   assert((mode==CpuRead)||(mode==CpuWrite)); | ||||
|   assert(AccCache.accLock==0);  // Programming error | ||||
|  | ||||
| @@ -460,30 +419,20 @@ void  MemoryManager::NotifyDeletion(void *_ptr) | ||||
| } | ||||
| void  MemoryManager::Print(void) | ||||
| { | ||||
|   PrintBytes(); | ||||
|   std::cout << GridLogMessage << "--------------------------------------------" << std::endl; | ||||
|   std::cout << GridLogMessage << "Memory Manager                             " << std::endl; | ||||
|   std::cout << GridLogMessage << "--------------------------------------------" << std::endl; | ||||
|   std::cout << GridLogMessage << DeviceBytes   << " bytes allocated on device " << std::endl; | ||||
|   std::cout << GridLogMessage << DeviceLRUBytes<< " bytes evictable on device " << std::endl; | ||||
|   std::cout << GridLogMessage << DeviceMaxBytes<< " bytes max on device       " << std::endl; | ||||
|   std::cout << GridLogMessage << HostToDeviceXfer << " transfers        to   device " << std::endl; | ||||
|   std::cout << GridLogMessage << DeviceToHostXfer << " transfers        from device " << std::endl; | ||||
|   std::cout << GridLogMessage << HostToDeviceBytes<< " bytes transfered to   device " << std::endl; | ||||
|   std::cout << GridLogMessage << DeviceToHostBytes<< " bytes transfered from device " << std::endl; | ||||
|   std::cout << GridLogMessage << DeviceEvictions  << " Evictions from device " << std::endl; | ||||
|   std::cout << GridLogMessage << DeviceDestroy    << " Destroyed vectors on device " << std::endl; | ||||
|   std::cout << GridLogMessage << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl; | ||||
|   acceleratorMem(); | ||||
|   std::cout << GridLogMessage << "--------------------------------------------" << std::endl; | ||||
| } | ||||
| void  MemoryManager::PrintAll(void) | ||||
| { | ||||
|   Print(); | ||||
|   std::cout << GridLogMessage << std::endl; | ||||
|   std::cout << GridLogMessage << "--------------------------------------------" << std::endl; | ||||
|   std::cout << GridLogMessage << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl; | ||||
|   std::cout << GridLogMessage << "--------------------------------------------" << std::endl; | ||||
|   std::cout << GridLogDebug << "--------------------------------------------" << std::endl; | ||||
|   std::cout << GridLogDebug << "Memory Manager                             " << std::endl; | ||||
|   std::cout << GridLogDebug << "--------------------------------------------" << std::endl; | ||||
|   std::cout << GridLogDebug << DeviceBytes   << " bytes allocated on device " << std::endl; | ||||
|   std::cout << GridLogDebug << DeviceLRUBytes<< " bytes evictable on device " << std::endl; | ||||
|   std::cout << GridLogDebug << DeviceMaxBytes<< " bytes max on device       " << std::endl; | ||||
|   std::cout << GridLogDebug << HostToDeviceXfer << " transfers        to   device " << std::endl; | ||||
|   std::cout << GridLogDebug << DeviceToHostXfer << " transfers        from device " << std::endl; | ||||
|   std::cout << GridLogDebug << HostToDeviceBytes<< " bytes transfered to   device " << std::endl; | ||||
|   std::cout << GridLogDebug << DeviceToHostBytes<< " bytes transfered from device " << std::endl; | ||||
|   std::cout << GridLogDebug << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl; | ||||
|   std::cout << GridLogDebug << "--------------------------------------------" << std::endl; | ||||
|   std::cout << GridLogDebug << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl; | ||||
|   std::cout << GridLogDebug << "--------------------------------------------" << std::endl; | ||||
|   for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){ | ||||
|     auto &AccCache = it->second; | ||||
|      | ||||
| @@ -493,13 +442,13 @@ void  MemoryManager::PrintAll(void) | ||||
|     if ( AccCache.state==AccDirty ) str = std::string("AccDirty"); | ||||
|     if ( AccCache.state==Consistent)str = std::string("Consistent"); | ||||
|  | ||||
|     std::cout << GridLogMessage << "0x"<<std::hex<<AccCache.CpuPtr<<std::dec | ||||
|     std::cout << GridLogDebug << "0x"<<std::hex<<AccCache.CpuPtr<<std::dec | ||||
| 	      << "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str | ||||
| 	      << "\t" << AccCache.cpuLock | ||||
| 	      << "\t" << AccCache.accLock | ||||
| 	      << "\t" << AccCache.LRU_valid<<std::endl; | ||||
|   } | ||||
|   std::cout << GridLogMessage << "--------------------------------------------" << std::endl; | ||||
|   std::cout << GridLogDebug << "--------------------------------------------" << std::endl; | ||||
|  | ||||
| }; | ||||
| int   MemoryManager::isOpen   (void* _CpuPtr)  | ||||
| @@ -513,89 +462,6 @@ int   MemoryManager::isOpen   (void* _CpuPtr) | ||||
|     return 0; | ||||
|   } | ||||
| } | ||||
| void MemoryManager::Audit(std::string s) | ||||
| { | ||||
|   uint64_t CpuBytes=0; | ||||
|   uint64_t AccBytes=0; | ||||
|   uint64_t LruBytes1=0; | ||||
|   uint64_t LruBytes2=0; | ||||
|   uint64_t LruCnt=0; | ||||
|    | ||||
|   std::cout << " Memory Manager::Audit() from "<<s<<std::endl; | ||||
|   for(auto it=LRU.begin();it!=LRU.end();it++){ | ||||
|     uint64_t cpuPtr = *it; | ||||
|     assert(EntryPresent(cpuPtr)); | ||||
|     auto AccCacheIterator = EntryLookup(cpuPtr); | ||||
|     auto & AccCache = AccCacheIterator->second; | ||||
|     LruBytes2+=AccCache.bytes; | ||||
|     assert(AccCache.LRU_valid==1); | ||||
|     assert(AccCache.LRU_entry==it); | ||||
|   } | ||||
|   std::cout << " Memory Manager::Audit() LRU queue matches table entries "<<std::endl; | ||||
|  | ||||
|   for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){ | ||||
|     auto &AccCache = it->second; | ||||
|      | ||||
|     std::string str; | ||||
|     if ( AccCache.state==Empty    ) str = std::string("Empty"); | ||||
|     if ( AccCache.state==CpuDirty ) str = std::string("CpuDirty"); | ||||
|     if ( AccCache.state==AccDirty ) str = std::string("AccDirty"); | ||||
|     if ( AccCache.state==Consistent)str = std::string("Consistent"); | ||||
|  | ||||
|     CpuBytes+=AccCache.bytes; | ||||
|     if( AccCache.AccPtr )    AccBytes+=AccCache.bytes; | ||||
|     if( AccCache.LRU_valid ) LruBytes1+=AccCache.bytes; | ||||
|     if( AccCache.LRU_valid ) LruCnt++; | ||||
|      | ||||
|     if ( AccCache.cpuLock || AccCache.accLock ) { | ||||
|       assert(AccCache.LRU_valid==0); | ||||
|  | ||||
|       std::cout << GridLogError << s<< "\n\t 0x"<<std::hex<<AccCache.CpuPtr<<std::dec | ||||
| 		<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str | ||||
| 		<< "\t cpuLock  " << AccCache.cpuLock | ||||
| 		<< "\t accLock  " << AccCache.accLock | ||||
| 		<< "\t LRUvalid " << AccCache.LRU_valid<<std::endl; | ||||
|     } | ||||
|  | ||||
|     assert( AccCache.cpuLock== 0 ) ; | ||||
|     assert( AccCache.accLock== 0 ) ; | ||||
|   } | ||||
|   std::cout << " Memory Manager::Audit() no locked table entries "<<std::endl; | ||||
|   assert(LruBytes1==LruBytes2); | ||||
|   assert(LruBytes1==DeviceLRUBytes); | ||||
|   std::cout << " Memory Manager::Audit() evictable bytes matches sum over table "<<std::endl; | ||||
|   assert(AccBytes==DeviceBytes); | ||||
|   std::cout << " Memory Manager::Audit() device bytes matches sum over table "<<std::endl; | ||||
|   assert(LruCnt == LRU.size()); | ||||
|   std::cout << " Memory Manager::Audit() LRU entry count matches "<<std::endl; | ||||
|  | ||||
| } | ||||
|  | ||||
| void MemoryManager::PrintState(void* _CpuPtr) | ||||
| { | ||||
|   uint64_t CpuPtr = (uint64_t)_CpuPtr; | ||||
|  | ||||
|   if ( EntryPresent(CpuPtr) ){ | ||||
|     auto AccCacheIterator = EntryLookup(CpuPtr); | ||||
|     auto & AccCache = AccCacheIterator->second; | ||||
|     std::string str; | ||||
|     if ( AccCache.state==Empty    ) str = std::string("Empty"); | ||||
|     if ( AccCache.state==CpuDirty ) str = std::string("CpuDirty"); | ||||
|     if ( AccCache.state==AccDirty ) str = std::string("AccDirty"); | ||||
|     if ( AccCache.state==Consistent)str = std::string("Consistent"); | ||||
|     if ( AccCache.state==EvictNext) str = std::string("EvictNext"); | ||||
|  | ||||
|     std::cout << GridLogMessage << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl; | ||||
|     std::cout << GridLogMessage << "\tx"<<std::hex<<AccCache.CpuPtr<<std::dec | ||||
|     << "\tx"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str | ||||
|     << "\t" << AccCache.cpuLock | ||||
|     << "\t" << AccCache.accLock | ||||
|     << "\t" << AccCache.LRU_valid<<std::endl; | ||||
|  | ||||
|   } else { | ||||
|     std::cout << GridLogMessage << "No Entry in AccCache table." << std::endl;  | ||||
|   } | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|   | ||||
| @@ -1,6 +1,7 @@ | ||||
| #include <Grid/GridCore.h> | ||||
| #ifdef GRID_UVM | ||||
|  | ||||
| #warning "Grid is assuming unified virtual memory address space" | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| ///////////////////////////////////////////////////////////////////////////////// | ||||
| // View management is 1:1 address space mapping | ||||
| @@ -12,19 +13,11 @@ uint64_t  MemoryManager::HostToDeviceBytes; | ||||
| uint64_t  MemoryManager::DeviceToHostBytes; | ||||
| uint64_t  MemoryManager::HostToDeviceXfer; | ||||
| uint64_t  MemoryManager::DeviceToHostXfer; | ||||
| uint64_t  MemoryManager::DeviceEvictions; | ||||
| uint64_t  MemoryManager::DeviceDestroy; | ||||
|  | ||||
| void  MemoryManager::Audit(std::string s){}; | ||||
| void  MemoryManager::ViewClose(void* AccPtr,ViewMode mode){}; | ||||
| void *MemoryManager::ViewOpen(void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint){ return CpuPtr; }; | ||||
| int   MemoryManager::isOpen   (void* CpuPtr) { return 0;} | ||||
| void  MemoryManager::PrintState(void* CpuPtr) | ||||
| { | ||||
| std::cout << GridLogMessage << "Host<->Device memory movement not currently managed by Grid." << std::endl; | ||||
| }; | ||||
| void  MemoryManager::Print(void){}; | ||||
| void  MemoryManager::PrintAll(void){}; | ||||
| void  MemoryManager::NotifyDeletion(void *ptr){}; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|   | ||||
| @@ -70,8 +70,8 @@ public: | ||||
|   Coordinate _istride;    // Inner stride i.e. within simd lane | ||||
|   int _osites;                  // _isites*_osites = product(dimensions). | ||||
|   int _isites; | ||||
|   int64_t _fsites;                  // _isites*_osites = product(dimensions). | ||||
|   int64_t _gsites; | ||||
|   int _fsites;                  // _isites*_osites = product(dimensions). | ||||
|   int _gsites; | ||||
|   Coordinate _slice_block;// subslice information | ||||
|   Coordinate _slice_stride; | ||||
|   Coordinate _slice_nblock; | ||||
| @@ -183,7 +183,7 @@ public: | ||||
|   inline int Nsimd(void)  const { return _isites; };// Synonymous with iSites | ||||
|   inline int oSites(void) const { return _osites; }; | ||||
|   inline int lSites(void) const { return _isites*_osites; };  | ||||
|   inline int64_t gSites(void) const { return (int64_t)_isites*(int64_t)_osites*(int64_t)_Nprocessors; };  | ||||
|   inline int gSites(void) const { return _isites*_osites*_Nprocessors; };  | ||||
|   inline int Nd    (void) const { return _ndimension;}; | ||||
|  | ||||
|   inline const Coordinate LocalStarts(void)             { return _lstart;    }; | ||||
| @@ -214,7 +214,7 @@ public: | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Global addressing | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   void GlobalIndexToGlobalCoor(int64_t gidx,Coordinate &gcoor){ | ||||
|   void GlobalIndexToGlobalCoor(int gidx,Coordinate &gcoor){ | ||||
|     assert(gidx< gSites()); | ||||
|     Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions); | ||||
|   } | ||||
| @@ -222,7 +222,7 @@ public: | ||||
|     assert(lidx<lSites()); | ||||
|     Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions); | ||||
|   } | ||||
|   void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int64_t & gidx){ | ||||
|   void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int & gidx){ | ||||
|     gidx=0; | ||||
|     int mult=1; | ||||
|     for(int mu=0;mu<_ndimension;mu++) { | ||||
|   | ||||
| @@ -36,7 +36,7 @@ static const int CbBlack=1; | ||||
| static const int Even   =CbRed; | ||||
| static const int Odd    =CbBlack; | ||||
|  | ||||
| accelerator_inline int RedBlackCheckerBoardFromOindex (int oindex,const Coordinate &rdim,const Coordinate &chk_dim_msk) | ||||
| accelerator_inline int RedBlackCheckerBoardFromOindex (int oindex, Coordinate &rdim, Coordinate &chk_dim_msk) | ||||
| { | ||||
|   int nd=rdim.size(); | ||||
|   Coordinate coor(nd); | ||||
|   | ||||
| @@ -33,8 +33,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| bool Stencil_force_mpi = true; | ||||
|  | ||||
| /////////////////////////////////////////////////////////////// | ||||
| // Info that is setup once and indept of cartesian layout | ||||
| /////////////////////////////////////////////////////////////// | ||||
|   | ||||
| @@ -1,3 +1,4 @@ | ||||
|  | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
| @@ -35,8 +36,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| extern bool Stencil_force_mpi ; | ||||
|  | ||||
| class CartesianCommunicator : public SharedMemory { | ||||
|  | ||||
| public:     | ||||
| @@ -53,11 +52,10 @@ public: | ||||
|   // Communicator should know nothing of the physics grid, only processor grid. | ||||
|   //////////////////////////////////////////// | ||||
|   int              _Nprocessors;     // How many in all | ||||
|   int              _processor;       // linear processor rank | ||||
|   unsigned long    _ndimension; | ||||
|   Coordinate _shm_processors;  // Which dimensions get relayed out over processors lanes. | ||||
|   Coordinate _processors;      // Which dimensions get relayed out over processors lanes. | ||||
|   int              _processor;       // linear processor rank | ||||
|   Coordinate _processor_coor;  // linear processor coordinate | ||||
|   unsigned long    _ndimension; | ||||
|   static Grid_MPI_Comm      communicator_world; | ||||
|   Grid_MPI_Comm             communicator; | ||||
|   std::vector<Grid_MPI_Comm> communicator_halo; | ||||
| @@ -98,7 +96,6 @@ public: | ||||
|   int                      BossRank(void)          ; | ||||
|   int                      ThisRank(void)          ; | ||||
|   const Coordinate & ThisProcessorCoor(void) ; | ||||
|   const Coordinate & ShmGrid(void)  { return _shm_processors; }  ; | ||||
|   const Coordinate & ProcessorGrid(void)     ; | ||||
|   int                      ProcessorCount(void)    ; | ||||
|  | ||||
| @@ -107,13 +104,10 @@ public: | ||||
|   //////////////////////////////////////////////////////////////////////////////// | ||||
|   static int  RankWorld(void) ; | ||||
|   static void BroadcastWorld(int root,void* data, int bytes); | ||||
|   static void BarrierWorld(void); | ||||
|    | ||||
|   //////////////////////////////////////////////////////////// | ||||
|   // Reduction | ||||
|   //////////////////////////////////////////////////////////// | ||||
|   void GlobalMax(RealD &); | ||||
|   void GlobalMax(RealF &); | ||||
|   void GlobalSum(RealF &); | ||||
|   void GlobalSumVector(RealF *,int N); | ||||
|   void GlobalSum(RealD &); | ||||
| @@ -131,39 +125,46 @@ public: | ||||
|   template<class obj> void GlobalSum(obj &o){ | ||||
|     typedef typename obj::scalar_type scalar_type; | ||||
|     int words = sizeof(obj)/sizeof(scalar_type); | ||||
|     scalar_type * ptr = (scalar_type *)& o; // Safe alias  | ||||
|     scalar_type * ptr = (scalar_type *)& o; | ||||
|     GlobalSumVector(ptr,words); | ||||
|   } | ||||
|    | ||||
|   //////////////////////////////////////////////////////////// | ||||
|   // Face exchange, buffer swap in translational invariant way | ||||
|   //////////////////////////////////////////////////////////// | ||||
|   void CommsComplete(std::vector<CommsRequest_t> &list); | ||||
|   void SendToRecvFromBegin(std::vector<CommsRequest_t> &list, | ||||
| 			   void *xmit, | ||||
| 			   int dest, | ||||
| 			   void *recv, | ||||
| 			   int from, | ||||
| 			   int bytes,int dir); | ||||
|    | ||||
|   void SendToRecvFrom(void *xmit, | ||||
| 		      int xmit_to_rank, | ||||
| 		      void *recv, | ||||
| 		      int recv_from_rank, | ||||
| 		      int bytes); | ||||
|    | ||||
|   double StencilSendToRecvFrom(void *xmit, | ||||
| 			       int xmit_to_rank,int do_xmit, | ||||
|   void SendRecvPacket(void *xmit, | ||||
| 		      void *recv, | ||||
| 			       int recv_from_rank,int do_recv, | ||||
| 		      int xmit_to_rank, | ||||
| 		      int recv_from_rank, | ||||
| 		      int bytes); | ||||
|    | ||||
|   void SendToRecvFromBegin(std::vector<CommsRequest_t> &list, | ||||
| 			   void *xmit, | ||||
| 			   int xmit_to_rank, | ||||
| 			   void *recv, | ||||
| 			   int recv_from_rank, | ||||
| 			   int bytes); | ||||
|    | ||||
|   void SendToRecvFromComplete(std::vector<CommsRequest_t> &waitall); | ||||
|  | ||||
|   double StencilSendToRecvFrom(void *xmit, | ||||
| 			       int xmit_to_rank, | ||||
| 			       void *recv, | ||||
| 			       int recv_from_rank, | ||||
| 			       int bytes,int dir); | ||||
|  | ||||
|   double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list, | ||||
| 				    void *xmit, | ||||
| 				    int xmit_to_rank,int do_xmit, | ||||
| 				    int xmit_to_rank, | ||||
| 				    void *recv, | ||||
| 				    int recv_from_rank,int do_recv, | ||||
| 				    int xbytes,int rbytes,int dir); | ||||
| 				    int recv_from_rank, | ||||
| 				    int bytes,int dir); | ||||
|    | ||||
|    | ||||
|   void StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int i); | ||||
|   | ||||
| @@ -43,16 +43,8 @@ void CartesianCommunicator::Init(int *argc, char ***argv) | ||||
|  | ||||
|   MPI_Initialized(&flag); // needed to coexist with other libs apparently | ||||
|   if ( !flag ) { | ||||
|  | ||||
| #ifndef GRID_COMMS_THREADS | ||||
|     nCommThreads=1; | ||||
|     // wrong results here too | ||||
|     // For now: comms-overlap leads to wrong results in Benchmark_wilson even on single node MPI runs | ||||
|     // other comms schemes are ok | ||||
|     MPI_Init_thread(argc,argv,MPI_THREAD_SERIALIZED,&provided); | ||||
| #else | ||||
|     MPI_Init_thread(argc,argv,MPI_THREAD_MULTIPLE,&provided); | ||||
| #endif | ||||
|  | ||||
|     //If only 1 comms thread we require any threading mode other than SINGLE, but for multiple comms threads we need MULTIPLE | ||||
|     if( (nCommThreads == 1) && (provided == MPI_THREAD_SINGLE) ) { | ||||
|       assert(0); | ||||
| @@ -106,7 +98,7 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors) | ||||
|   // Remap using the shared memory optimising routine | ||||
|   // The remap creates a comm which must be freed | ||||
|   //////////////////////////////////////////////////// | ||||
|   GlobalSharedMemory::OptimalCommunicator    (processors,optimal_comm,_shm_processors); | ||||
|   GlobalSharedMemory::OptimalCommunicator    (processors,optimal_comm); | ||||
|   InitFromMPICommunicator(processors,optimal_comm); | ||||
|   SetCommunicator(optimal_comm); | ||||
|   /////////////////////////////////////////////////// | ||||
| @@ -124,13 +116,12 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const | ||||
|   int parent_ndimension = parent._ndimension; assert(_ndimension >= parent._ndimension); | ||||
|   Coordinate parent_processor_coor(_ndimension,0); | ||||
|   Coordinate parent_processors    (_ndimension,1); | ||||
|   Coordinate shm_processors       (_ndimension,1); | ||||
|  | ||||
|   // Can make 5d grid from 4d etc... | ||||
|   int pad = _ndimension-parent_ndimension; | ||||
|   for(int d=0;d<parent_ndimension;d++){ | ||||
|     parent_processor_coor[pad+d]=parent._processor_coor[d]; | ||||
|     parent_processors    [pad+d]=parent._processors[d]; | ||||
|     shm_processors       [pad+d]=parent._shm_processors[d]; | ||||
|   } | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -155,7 +146,6 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const | ||||
|     ccoor[d] = parent_processor_coor[d] % processors[d]; | ||||
|     scoor[d] = parent_processor_coor[d] / processors[d]; | ||||
|     ssize[d] = parent_processors[d]     / processors[d]; | ||||
|     if ( processors[d] < shm_processors[d] ) shm_processors[d] = processors[d]; // subnode splitting. | ||||
|   } | ||||
|  | ||||
|   // rank within subcomm ; srank is rank of subcomm within blocks of subcomms | ||||
| @@ -277,16 +267,6 @@ void CartesianCommunicator::GlobalXOR(uint64_t &u){ | ||||
|   int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_BXOR,communicator); | ||||
|   assert(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::GlobalMax(float &f) | ||||
| { | ||||
|   int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_MAX,communicator); | ||||
|   assert(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::GlobalMax(double &d) | ||||
| { | ||||
|   int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_MAX,communicator); | ||||
|   assert(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::GlobalSum(float &f){ | ||||
|   int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator); | ||||
|   assert(ierr==0); | ||||
| @@ -306,44 +286,6 @@ void CartesianCommunicator::GlobalSumVector(double *d,int N) | ||||
|   int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator); | ||||
|   assert(ierr==0); | ||||
| } | ||||
|  | ||||
| void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list, | ||||
| 						void *xmit, | ||||
| 						int dest, | ||||
| 						void *recv, | ||||
| 						int from, | ||||
| 						int bytes,int dir) | ||||
| { | ||||
|   MPI_Request xrq; | ||||
|   MPI_Request rrq; | ||||
|  | ||||
|   assert(dest != _processor); | ||||
|   assert(from != _processor); | ||||
|  | ||||
|   int tag; | ||||
|  | ||||
|   tag= dir+from*32; | ||||
|   int ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator,&rrq); | ||||
|   assert(ierr==0); | ||||
|   list.push_back(rrq); | ||||
|    | ||||
|   tag= dir+_processor*32; | ||||
|   ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator,&xrq); | ||||
|   assert(ierr==0); | ||||
|   list.push_back(xrq); | ||||
| } | ||||
| void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list) | ||||
| { | ||||
|   int nreq=list.size(); | ||||
|  | ||||
|   if (nreq==0) return; | ||||
|  | ||||
|   std::vector<MPI_Status> status(nreq); | ||||
|   int ierr = MPI_Waitall(nreq,&list[0],&status[0]); | ||||
|   assert(ierr==0); | ||||
|   list.resize(0); | ||||
| } | ||||
|  | ||||
| // Basic Halo comms primitive | ||||
| void CartesianCommunicator::SendToRecvFrom(void *xmit, | ||||
| 					   int dest, | ||||
| @@ -352,47 +294,78 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit, | ||||
| 					   int bytes) | ||||
| { | ||||
|   std::vector<CommsRequest_t> reqs(0); | ||||
|   unsigned long  xcrc = crc32(0L, Z_NULL, 0); | ||||
|   unsigned long  rcrc = crc32(0L, Z_NULL, 0); | ||||
|  | ||||
|   //    unsigned long  xcrc = crc32(0L, Z_NULL, 0); | ||||
|   //    unsigned long  rcrc = crc32(0L, Z_NULL, 0); | ||||
|   //    xcrc = crc32(xcrc,(unsigned char *)xmit,bytes); | ||||
|   SendToRecvFromBegin(reqs,xmit,dest,recv,from,bytes); | ||||
|   SendToRecvFromComplete(reqs); | ||||
|   //    rcrc = crc32(rcrc,(unsigned char *)recv,bytes); | ||||
|   //    printf("proc %d SendToRecvFrom %d bytes %lx %lx\n",_processor,bytes,xcrc,rcrc); | ||||
| } | ||||
| void CartesianCommunicator::SendRecvPacket(void *xmit, | ||||
| 					   void *recv, | ||||
| 					   int sender, | ||||
| 					   int receiver, | ||||
| 					   int bytes) | ||||
| { | ||||
|   MPI_Status stat; | ||||
|   assert(sender != receiver); | ||||
|   int tag = sender; | ||||
|   if ( _processor == sender ) { | ||||
|     MPI_Send(xmit, bytes, MPI_CHAR,receiver,tag,communicator); | ||||
|   } | ||||
|   if ( _processor == receiver ) {  | ||||
|     MPI_Recv(recv, bytes, MPI_CHAR,sender,tag,communicator,&stat); | ||||
|   } | ||||
| } | ||||
| // Basic Halo comms primitive | ||||
| void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list, | ||||
| 						void *xmit, | ||||
| 						int dest, | ||||
| 						void *recv, | ||||
| 						int from, | ||||
| 						int bytes) | ||||
| { | ||||
|   int myrank = _processor; | ||||
|   int ierr; | ||||
|  | ||||
|   // Enforce no UVM in comms, device or host OK | ||||
|   assert(acceleratorIsCommunicable(xmit)); | ||||
|   assert(acceleratorIsCommunicable(recv)); | ||||
|   if ( CommunicatorPolicy == CommunicatorPolicyConcurrent ) {  | ||||
|     MPI_Request xrq; | ||||
|     MPI_Request rrq; | ||||
|  | ||||
|     ierr =MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator,&rrq); | ||||
|     ierr|=MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator,&xrq); | ||||
|      | ||||
|     assert(ierr==0); | ||||
|     list.push_back(xrq); | ||||
|     list.push_back(rrq); | ||||
|   } else {  | ||||
|     // Give the CPU to MPI immediately; can use threads to overlap optionally | ||||
|   //  printf("proc %d SendToRecvFrom %d bytes Sendrecv \n",_processor,bytes); | ||||
|     ierr=MPI_Sendrecv(xmit,bytes,MPI_CHAR,dest,myrank, | ||||
| 		      recv,bytes,MPI_CHAR,from, from, | ||||
| 		      communicator,MPI_STATUS_IGNORE); | ||||
|     assert(ierr==0); | ||||
|  | ||||
|   //  xcrc = crc32(xcrc,(unsigned char *)xmit,bytes); | ||||
|   //  rcrc = crc32(rcrc,(unsigned char *)recv,bytes); | ||||
|   //  printf("proc %d SendToRecvFrom %d bytes xcrc %lx rcrc %lx\n",_processor,bytes,xcrc,rcrc); fflush | ||||
|   } | ||||
| // Basic Halo comms primitive | ||||
| } | ||||
|  | ||||
| double CartesianCommunicator::StencilSendToRecvFrom( void *xmit, | ||||
| 						     int dest, int dox, | ||||
| 						     int dest, | ||||
| 						     void *recv, | ||||
| 						     int from, int dor, | ||||
| 						     int from, | ||||
| 						     int bytes,int dir) | ||||
| { | ||||
|   std::vector<CommsRequest_t> list; | ||||
|   double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir); | ||||
|   double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,recv,from,bytes,dir); | ||||
|   StencilSendToRecvFromComplete(list,dir); | ||||
|   return offbytes; | ||||
| } | ||||
|  | ||||
| #undef NVLINK_GET // Define to use get instead of put DMA | ||||
| double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list, | ||||
| 							 void *xmit, | ||||
| 							 int dest,int dox, | ||||
| 							 int dest, | ||||
| 							 void *recv, | ||||
| 							 int from,int dor, | ||||
| 							 int xbytes,int rbytes,int dir) | ||||
| 							 int from, | ||||
| 							 int bytes,int dir) | ||||
| { | ||||
|   int ncomm  =communicator_halo.size();  | ||||
|   int commdir=dir%ncomm; | ||||
| @@ -409,49 +382,39 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques | ||||
|   assert(from != _processor); | ||||
|   assert(gme  == ShmRank); | ||||
|   double off_node_bytes=0.0; | ||||
|   int tag; | ||||
|  | ||||
|   if ( dor ) { | ||||
|     if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) { | ||||
|       tag= dir+from*32; | ||||
|       ierr=MPI_Irecv(recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq); | ||||
|   if ( gfrom ==MPI_UNDEFINED) { | ||||
|     ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator_halo[commdir],&rrq); | ||||
|     assert(ierr==0); | ||||
|     list.push_back(rrq); | ||||
|       off_node_bytes+=rbytes; | ||||
|     } | ||||
| #ifdef NVLINK_GET | ||||
|       void *shm = (void *) this->ShmBufferTranslate(from,xmit); | ||||
|       assert(shm!=NULL); | ||||
|       acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes); | ||||
| #endif | ||||
|     off_node_bytes+=bytes; | ||||
|   } | ||||
|  | ||||
|   if (dox) { | ||||
|     //  rcrc = crc32(rcrc,(unsigned char *)recv,bytes); | ||||
|     if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) { | ||||
|       tag= dir+_processor*32; | ||||
|       ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq); | ||||
|   if ( gdest == MPI_UNDEFINED ) { | ||||
|     ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator_halo[commdir],&xrq); | ||||
|     assert(ierr==0); | ||||
|     list.push_back(xrq); | ||||
|       off_node_bytes+=xbytes; | ||||
|     } else { | ||||
| #ifndef NVLINK_GET | ||||
|       void *shm = (void *) this->ShmBufferTranslate(dest,recv); | ||||
|       assert(shm!=NULL); | ||||
|       acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes); | ||||
| #endif | ||||
|        | ||||
|     off_node_bytes+=bytes; | ||||
|   } | ||||
|  | ||||
|   if ( CommunicatorPolicy == CommunicatorPolicySequential ) {  | ||||
|     this->StencilSendToRecvFromComplete(list,dir); | ||||
|   } | ||||
|  | ||||
|   return off_node_bytes; | ||||
| } | ||||
| void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir) | ||||
| void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir) | ||||
| { | ||||
|   SendToRecvFromComplete(waitall); | ||||
| } | ||||
| void CartesianCommunicator::StencilBarrier(void) | ||||
| { | ||||
|   MPI_Barrier  (ShmComm); | ||||
| } | ||||
| void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list) | ||||
| { | ||||
|   int nreq=list.size(); | ||||
|  | ||||
|   acceleratorCopySynchronise(); | ||||
|  | ||||
|   if (nreq==0) return; | ||||
|  | ||||
|   std::vector<MPI_Status> status(nreq); | ||||
| @@ -459,13 +422,6 @@ void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsReque | ||||
|   assert(ierr==0); | ||||
|   list.resize(0); | ||||
| } | ||||
| void CartesianCommunicator::StencilBarrier(void) | ||||
| { | ||||
|   MPI_Barrier  (ShmComm); | ||||
| } | ||||
| //void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list) | ||||
| //{ | ||||
| //} | ||||
| void CartesianCommunicator::Barrier(void) | ||||
| { | ||||
|   int ierr = MPI_Barrier(communicator); | ||||
| @@ -485,10 +441,6 @@ int CartesianCommunicator::RankWorld(void){ | ||||
|   MPI_Comm_rank(communicator_world,&r); | ||||
|   return r; | ||||
| } | ||||
| void CartesianCommunicator::BarrierWorld(void){ | ||||
|   int ierr = MPI_Barrier(communicator_world); | ||||
|   assert(ierr==0); | ||||
| } | ||||
| void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) | ||||
| { | ||||
|   int ierr= MPI_Bcast(data, | ||||
| @@ -531,3 +483,5 @@ void CartesianCommunicator::AllToAll(void  *in,void *out,uint64_t words,uint64_t | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -45,14 +45,12 @@ void CartesianCommunicator::Init(int *argc, char *** arv) | ||||
| CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)  | ||||
|   : CartesianCommunicator(processors)  | ||||
| { | ||||
|   _shm_processors = Coordinate(processors.size(),1); | ||||
|   srank=0; | ||||
|   SetCommunicator(communicator_world); | ||||
| } | ||||
|  | ||||
| CartesianCommunicator::CartesianCommunicator(const Coordinate &processors) | ||||
| { | ||||
|   _shm_processors = Coordinate(processors.size(),1); | ||||
|   _processors = processors; | ||||
|   _ndimension = processors.size();  assert(_ndimension>=1); | ||||
|   _processor_coor.resize(_ndimension); | ||||
| @@ -69,8 +67,6 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors) | ||||
|  | ||||
| CartesianCommunicator::~CartesianCommunicator(){} | ||||
|  | ||||
| void CartesianCommunicator::GlobalMax(float &){} | ||||
| void CartesianCommunicator::GlobalMax(double &){} | ||||
| void CartesianCommunicator::GlobalSum(float &){} | ||||
| void CartesianCommunicator::GlobalSumVector(float *,int N){} | ||||
| void CartesianCommunicator::GlobalSum(double &){} | ||||
| @@ -81,6 +77,15 @@ void CartesianCommunicator::GlobalSumVector(uint64_t *,int N){} | ||||
| void CartesianCommunicator::GlobalXOR(uint32_t &){} | ||||
| void CartesianCommunicator::GlobalXOR(uint64_t &){} | ||||
|  | ||||
| void CartesianCommunicator::SendRecvPacket(void *xmit, | ||||
| 					   void *recv, | ||||
| 					   int xmit_to_rank, | ||||
| 					   int recv_from_rank, | ||||
| 					   int bytes) | ||||
| { | ||||
|   assert(0); | ||||
| } | ||||
|  | ||||
|  | ||||
| // Basic Halo comms primitive -- should never call in single node | ||||
| void CartesianCommunicator::SendToRecvFrom(void *xmit, | ||||
| @@ -91,17 +96,20 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit, | ||||
| { | ||||
|   assert(0); | ||||
| } | ||||
| void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ assert(0);} | ||||
| void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list, | ||||
| 						void *xmit, | ||||
| 						int dest, | ||||
| 						void *recv, | ||||
| 						int from, | ||||
| 						int bytes,int dir) | ||||
| 						int bytes) | ||||
| { | ||||
|   assert(0); | ||||
| } | ||||
|  | ||||
| void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list) | ||||
| { | ||||
|   assert(0); | ||||
| } | ||||
| void CartesianCommunicator::AllToAll(int dim,void  *in,void *out,uint64_t words,uint64_t bytes) | ||||
| { | ||||
|   bcopy(in,out,bytes*words); | ||||
| @@ -115,7 +123,6 @@ int  CartesianCommunicator::RankWorld(void){return 0;} | ||||
| void CartesianCommunicator::Barrier(void){} | ||||
| void CartesianCommunicator::Broadcast(int root,void* data, int bytes) {} | ||||
| void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) { } | ||||
| void CartesianCommunicator::BarrierWorld(void) { } | ||||
| int  CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor) {  return 0;} | ||||
| void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor){  coor = _processor_coor; } | ||||
| void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest) | ||||
| @@ -125,24 +132,31 @@ void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest | ||||
| } | ||||
|  | ||||
| double CartesianCommunicator::StencilSendToRecvFrom( void *xmit, | ||||
| 						     int xmit_to_rank,int dox, | ||||
| 						     int xmit_to_rank, | ||||
| 						     void *recv, | ||||
| 						     int recv_from_rank,int dor, | ||||
| 						     int recv_from_rank, | ||||
| 						     int bytes, int dir) | ||||
| { | ||||
|   std::vector<CommsRequest_t> list; | ||||
|   // Discard the "dir" | ||||
|   SendToRecvFromBegin   (list,xmit,xmit_to_rank,recv,recv_from_rank,bytes); | ||||
|   SendToRecvFromComplete(list); | ||||
|   return 2.0*bytes; | ||||
| } | ||||
| double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list, | ||||
| 							 void *xmit, | ||||
| 							 int xmit_to_rank,int dox, | ||||
| 							 int xmit_to_rank, | ||||
| 							 void *recv, | ||||
| 							 int recv_from_rank,int dor, | ||||
| 							 int xbytes,int rbytes, int dir) | ||||
| 							 int recv_from_rank, | ||||
| 							 int bytes, int dir) | ||||
| { | ||||
|   return xbytes+rbytes; | ||||
|   // Discard the "dir" | ||||
|   SendToRecvFromBegin(list,xmit,xmit_to_rank,recv,recv_from_rank,bytes); | ||||
|   return 2.0*bytes; | ||||
| } | ||||
| void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir) | ||||
| { | ||||
|   SendToRecvFromComplete(waitall); | ||||
| } | ||||
|  | ||||
| void CartesianCommunicator::StencilBarrier(void){}; | ||||
|   | ||||
| @@ -40,9 +40,6 @@ int                 GlobalSharedMemory::_ShmAlloc; | ||||
| uint64_t            GlobalSharedMemory::_ShmAllocBytes; | ||||
|  | ||||
| std::vector<void *> GlobalSharedMemory::WorldShmCommBufs; | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
| void * GlobalSharedMemory::HostCommBuf; | ||||
| #endif | ||||
|  | ||||
| Grid_MPI_Comm       GlobalSharedMemory::WorldShmComm; | ||||
| int                 GlobalSharedMemory::WorldShmRank; | ||||
| @@ -69,26 +66,6 @@ void GlobalSharedMemory::SharedMemoryFree(void) | ||||
| ///////////////////////////////// | ||||
| // Alloc, free shmem region | ||||
| ///////////////////////////////// | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
| void *SharedMemory::HostBufferMalloc(size_t bytes){ | ||||
|   void *ptr = (void *)host_heap_top; | ||||
|   host_heap_top  += bytes; | ||||
|   host_heap_bytes+= bytes; | ||||
|   if (host_heap_bytes >= host_heap_size) { | ||||
|     std::cout<< " HostBufferMalloc exceeded heap size -- try increasing with --shm <MB> flag" <<std::endl; | ||||
|     std::cout<< " Parameter specified in units of MB (megabytes) " <<std::endl; | ||||
|     std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl; | ||||
|     std::cout<< " Current bytes is " << (host_heap_bytes/(1024*1024)) <<"MB"<<std::endl; | ||||
|     std::cout<< " Current heap  is " << (host_heap_size/(1024*1024)) <<"MB"<<std::endl; | ||||
|     assert(host_heap_bytes<host_heap_size); | ||||
|   } | ||||
|   return ptr; | ||||
| } | ||||
| void SharedMemory::HostBufferFreeAll(void) {  | ||||
|   host_heap_top  =(size_t)HostCommBuf; | ||||
|   host_heap_bytes=0; | ||||
| } | ||||
| #endif | ||||
| void *SharedMemory::ShmBufferMalloc(size_t bytes){ | ||||
|   //  bytes = (bytes+sizeof(vRealD))&(~(sizeof(vRealD)-1));// align up bytes | ||||
|   void *ptr = (void *)heap_top; | ||||
| @@ -114,59 +91,6 @@ void *SharedMemory::ShmBufferSelf(void) | ||||
|   //std::cerr << "ShmBufferSelf "<<ShmRank<<" "<<std::hex<< ShmCommBufs[ShmRank] <<std::dec<<std::endl; | ||||
|   return ShmCommBufs[ShmRank]; | ||||
| } | ||||
| static inline int divides(int a,int b) | ||||
| { | ||||
|   return ( b == ( (b/a)*a ) ); | ||||
| } | ||||
| void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims) | ||||
| { | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Allow user to configure through environment variable | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   char* str = getenv(("GRID_SHM_DIMS_" + std::to_string(ShmDims.size())).c_str()); | ||||
|   if ( str ) { | ||||
|     std::vector<int> IntShmDims; | ||||
|     GridCmdOptionIntVector(std::string(str),IntShmDims); | ||||
|     assert(IntShmDims.size() == WorldDims.size()); | ||||
|     long ShmSize = 1; | ||||
|     for (int dim=0;dim<WorldDims.size();dim++) { | ||||
|       ShmSize *= (ShmDims[dim] = IntShmDims[dim]); | ||||
|       assert(divides(ShmDims[dim],WorldDims[dim])); | ||||
|     } | ||||
|     assert(ShmSize == WorldShmSize); | ||||
|     return; | ||||
|   } | ||||
|    | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Powers of 2,3,5 only in prime decomposition for now | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   int ndimension = WorldDims.size(); | ||||
|   ShmDims=Coordinate(ndimension,1); | ||||
|  | ||||
|   std::vector<int> primes({2,3,5}); | ||||
|  | ||||
|   int dim = 0; | ||||
|   int last_dim = ndimension - 1; | ||||
|   int AutoShmSize = 1; | ||||
|   while(AutoShmSize != WorldShmSize) { | ||||
|     int p; | ||||
|     for(p=0;p<primes.size();p++) { | ||||
|       int prime=primes[p]; | ||||
|       if ( divides(prime,WorldDims[dim]/ShmDims[dim]) | ||||
|         && divides(prime,WorldShmSize/AutoShmSize)  ) { | ||||
|   AutoShmSize*=prime; | ||||
|   ShmDims[dim]*=prime; | ||||
|   last_dim = dim; | ||||
|   break; | ||||
|       } | ||||
|     } | ||||
|     if (p == primes.size() && last_dim == dim) { | ||||
|       std::cerr << "GlobalSharedMemory::GetShmDims failed" << std::endl; | ||||
|       exit(EXIT_FAILURE); | ||||
|     } | ||||
|     dim=(dim+1) %ndimension; | ||||
|   } | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid);  | ||||
|  | ||||
|   | ||||
| @@ -75,9 +75,7 @@ public: | ||||
|   static int           Hugepages; | ||||
|  | ||||
|   static std::vector<void *> WorldShmCommBufs; | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|   static void *HostCommBuf; | ||||
| #endif | ||||
|  | ||||
|   static Grid_MPI_Comm WorldComm; | ||||
|   static int           WorldRank; | ||||
|   static int           WorldSize; | ||||
| @@ -95,17 +93,16 @@ public: | ||||
|   // Create an optimal reordered communicator that makes MPI_Cart_create get it right | ||||
|   ////////////////////////////////////////////////////////////////////////////////////// | ||||
|   static void Init(Grid_MPI_Comm comm); // Typically MPI_COMM_WORLD | ||||
|   // Turns MPI_COMM_WORLD into right layout for Cartesian | ||||
|   static void OptimalCommunicator            (const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims);  | ||||
|   static void OptimalCommunicatorHypercube   (const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims);  | ||||
|   static void OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims);  | ||||
|   static void OptimalCommunicator            (const Coordinate &processors,Grid_MPI_Comm & optimal_comm);  // Turns MPI_COMM_WORLD into right layout for Cartesian | ||||
|   static void OptimalCommunicatorHypercube   (const Coordinate &processors,Grid_MPI_Comm & optimal_comm);  // Turns MPI_COMM_WORLD into right layout for Cartesian | ||||
|   static void OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm);  // Turns MPI_COMM_WORLD into right layout for Cartesian | ||||
|   static void GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims); | ||||
|   /////////////////////////////////////////////////// | ||||
|   // Provide shared memory facilities off comm world | ||||
|   /////////////////////////////////////////////////// | ||||
|   static void SharedMemoryAllocate(uint64_t bytes, int flags); | ||||
|   static void SharedMemoryFree(void); | ||||
|   static void SharedMemoryCopy(void *dest,void *src,size_t bytes); | ||||
|   static void SharedMemoryCopy(void *dest,const void *src,size_t bytes); | ||||
|   static void SharedMemoryZero(void *dest,size_t bytes); | ||||
|  | ||||
| }; | ||||
| @@ -122,13 +119,6 @@ private: | ||||
|   size_t heap_bytes; | ||||
|   size_t heap_size; | ||||
|  | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|   size_t host_heap_top;  // set in free all | ||||
|   size_t host_heap_bytes;// set in free all | ||||
|   void *HostCommBuf;     // set in SetCommunicator | ||||
|   size_t host_heap_size; // set in SetCommunicator | ||||
| #endif | ||||
|    | ||||
| protected: | ||||
|  | ||||
|   Grid_MPI_Comm    ShmComm; // for barriers | ||||
| @@ -160,10 +150,7 @@ public: | ||||
|   void *ShmBufferTranslate(int rank,void * local_p); | ||||
|   void *ShmBufferMalloc(size_t bytes); | ||||
|   void  ShmBufferFreeAll(void) ; | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|   void *HostBufferMalloc(size_t bytes); | ||||
|   void HostBufferFreeAll(void); | ||||
| #endif   | ||||
|    | ||||
|   ////////////////////////////////////////////////////////////////////////// | ||||
|   // Make info on Nodes & ranks and Shared memory available | ||||
|   ////////////////////////////////////////////////////////////////////////// | ||||
|   | ||||
| @@ -7,7 +7,6 @@ | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: Christoph Lehner <christoph@lhnr.de> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
| @@ -27,133 +26,15 @@ Author: Christoph Lehner <christoph@lhnr.de> | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
|  | ||||
| #define Mheader "SharedMemoryMpi: " | ||||
|  | ||||
| #include <Grid/GridCore.h> | ||||
| #include <pwd.h> | ||||
|  | ||||
| #ifdef GRID_CUDA | ||||
| #include <cuda_runtime_api.h> | ||||
| #endif | ||||
| #ifdef GRID_HIP | ||||
| #include <hip/hip_runtime_api.h> | ||||
| #endif | ||||
| #ifdef GRID_SYCL | ||||
| #ifdef ACCELERATOR_AWARE_MPI | ||||
| #define GRID_SYCL_LEVEL_ZERO_IPC | ||||
| #define SHM_SOCKETS | ||||
| #endif  | ||||
| #include <syscall.h> | ||||
| #endif | ||||
|  | ||||
| #include <sys/socket.h> | ||||
| #include <sys/un.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid);  | ||||
|  | ||||
| #ifdef SHM_SOCKETS | ||||
|  | ||||
| /* | ||||
|  * Barbaric extra intranode communication route in case we need sockets to pass FDs | ||||
|  * Forced by level_zero not being nicely designed | ||||
|  */ | ||||
| static int sock; | ||||
| static const char *sock_path_fmt = "/tmp/GridUnixSocket.%d"; | ||||
| static char sock_path[256]; | ||||
| class UnixSockets { | ||||
| public: | ||||
|   static void Open(int rank) | ||||
|   { | ||||
|     int errnum; | ||||
|  | ||||
|     sock = socket(AF_UNIX, SOCK_DGRAM, 0);  assert(sock>0); | ||||
|  | ||||
|     struct sockaddr_un sa_un = { 0 }; | ||||
|     sa_un.sun_family = AF_UNIX; | ||||
|     snprintf(sa_un.sun_path, sizeof(sa_un.sun_path),sock_path_fmt,rank); | ||||
|     unlink(sa_un.sun_path); | ||||
|     if (bind(sock, (struct sockaddr *)&sa_un, sizeof(sa_un))) { | ||||
|       perror("bind failure"); | ||||
|       exit(EXIT_FAILURE); | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   static int RecvFileDescriptor(void) | ||||
|   { | ||||
|     int n; | ||||
|     int fd; | ||||
|     char buf[1]; | ||||
|     struct iovec iov; | ||||
|     struct msghdr msg; | ||||
|     struct cmsghdr *cmsg; | ||||
|     char cms[CMSG_SPACE(sizeof(int))]; | ||||
|  | ||||
|     iov.iov_base = buf; | ||||
|     iov.iov_len = 1; | ||||
|  | ||||
|     memset(&msg, 0, sizeof msg); | ||||
|     msg.msg_name = 0; | ||||
|     msg.msg_namelen = 0; | ||||
|     msg.msg_iov = &iov; | ||||
|     msg.msg_iovlen = 1; | ||||
|  | ||||
|     msg.msg_control = (caddr_t)cms; | ||||
|     msg.msg_controllen = sizeof cms; | ||||
|  | ||||
|     if((n=recvmsg(sock, &msg, 0)) < 0) { | ||||
|       perror("recvmsg failed"); | ||||
|       return -1; | ||||
|     } | ||||
|     if(n == 0){ | ||||
|       perror("recvmsg returned 0"); | ||||
|       return -1; | ||||
|     } | ||||
|     cmsg = CMSG_FIRSTHDR(&msg); | ||||
|  | ||||
|     memmove(&fd, CMSG_DATA(cmsg), sizeof(int)); | ||||
|  | ||||
|     return fd; | ||||
|   } | ||||
|  | ||||
|   static void SendFileDescriptor(int fildes,int xmit_to_rank) | ||||
|   { | ||||
|     struct msghdr msg; | ||||
|     struct iovec iov; | ||||
|     struct cmsghdr *cmsg = NULL; | ||||
|     char ctrl[CMSG_SPACE(sizeof(int))]; | ||||
|     char data = ' '; | ||||
|  | ||||
|     memset(&msg, 0, sizeof(struct msghdr)); | ||||
|     memset(ctrl, 0, CMSG_SPACE(sizeof(int))); | ||||
|     iov.iov_base = &data; | ||||
|     iov.iov_len = sizeof(data); | ||||
|      | ||||
|     sprintf(sock_path,sock_path_fmt,xmit_to_rank); | ||||
|      | ||||
|     struct sockaddr_un sa_un = { 0 }; | ||||
|     sa_un.sun_family = AF_UNIX; | ||||
|     snprintf(sa_un.sun_path, sizeof(sa_un.sun_path),sock_path_fmt,xmit_to_rank); | ||||
|  | ||||
|     msg.msg_name = (void *)&sa_un; | ||||
|     msg.msg_namelen = sizeof(sa_un); | ||||
|     msg.msg_iov = &iov; | ||||
|     msg.msg_iovlen = 1; | ||||
|     msg.msg_controllen =  CMSG_SPACE(sizeof(int)); | ||||
|     msg.msg_control = ctrl; | ||||
|  | ||||
|     cmsg = CMSG_FIRSTHDR(&msg); | ||||
|     cmsg->cmsg_level = SOL_SOCKET; | ||||
|     cmsg->cmsg_type = SCM_RIGHTS; | ||||
|     cmsg->cmsg_len = CMSG_LEN(sizeof(int)); | ||||
|  | ||||
|     *((int *) CMSG_DATA(cmsg)) = fildes; | ||||
|  | ||||
|     sendmsg(sock, &msg, 0); | ||||
|   }; | ||||
| }; | ||||
| #endif | ||||
|  | ||||
|  | ||||
| #define header "SharedMemoryMpi: " | ||||
| /*Construct from an MPI communicator*/ | ||||
| void GlobalSharedMemory::Init(Grid_MPI_Comm comm) | ||||
| { | ||||
| @@ -166,18 +47,13 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm) | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
|   // Split into groups that can share memory | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
| #ifndef GRID_MPI3_SHM_NONE | ||||
|   MPI_Comm_split_type(comm, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL,&WorldShmComm); | ||||
| #else | ||||
|   MPI_Comm_split(comm, WorldRank, 0, &WorldShmComm); | ||||
| #endif | ||||
|  | ||||
|   MPI_Comm_rank(WorldShmComm     ,&WorldShmRank); | ||||
|   MPI_Comm_size(WorldShmComm     ,&WorldShmSize); | ||||
|  | ||||
|   if ( WorldRank == 0) { | ||||
|     std::cout << Mheader " World communicator of size " <<WorldSize << std::endl;   | ||||
|     std::cout << Mheader " Node  communicator of size " <<WorldShmSize << std::endl; | ||||
|     std::cout << header " World communicator of size " <<WorldSize << std::endl;   | ||||
|     std::cout << header " Node  communicator of size " <<WorldShmSize << std::endl; | ||||
|   } | ||||
|   // WorldShmComm, WorldShmSize, WorldShmRank | ||||
|  | ||||
| @@ -185,7 +61,6 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm) | ||||
|   WorldNodes = WorldSize/WorldShmSize; | ||||
|   assert( (WorldNodes * WorldShmSize) == WorldSize ); | ||||
|  | ||||
|  | ||||
|   // FIXME: Check all WorldShmSize are the same ? | ||||
|  | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
| @@ -264,7 +139,7 @@ int Log2Size(int TwoToPower,int MAXLOG2) | ||||
|   } | ||||
|   return log2size; | ||||
| } | ||||
| void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM) | ||||
| void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm) | ||||
| { | ||||
|   ////////////////////////////////////////////////////////////////////////////// | ||||
|   // Look and see if it looks like an HPE 8600 based on hostname conventions | ||||
| @@ -277,11 +152,46 @@ void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_M | ||||
|   gethostname(name,namelen); | ||||
|   int nscan = sscanf(name,"r%di%dn%d",&R,&I,&N) ; | ||||
|  | ||||
|   if(nscan==3 && HPEhypercube ) OptimalCommunicatorHypercube(processors,optimal_comm,SHM); | ||||
|   else                          OptimalCommunicatorSharedMemory(processors,optimal_comm,SHM); | ||||
|   if(nscan==3 && HPEhypercube ) OptimalCommunicatorHypercube(processors,optimal_comm); | ||||
|   else                          OptimalCommunicatorSharedMemory(processors,optimal_comm); | ||||
| } | ||||
| static inline int divides(int a,int b) | ||||
| { | ||||
|   return ( b == ( (b/a)*a ) ); | ||||
| } | ||||
| void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims) | ||||
| { | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Powers of 2,3,5 only in prime decomposition for now | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   int ndimension = WorldDims.size(); | ||||
|   ShmDims=Coordinate(ndimension,1); | ||||
|  | ||||
| void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM) | ||||
|   std::vector<int> primes({2,3,5}); | ||||
|  | ||||
|   int dim = 0; | ||||
|   int last_dim = ndimension - 1; | ||||
|   int AutoShmSize = 1; | ||||
|   while(AutoShmSize != WorldShmSize) { | ||||
|     int p; | ||||
|     for(p=0;p<primes.size();p++) { | ||||
|       int prime=primes[p]; | ||||
|       if ( divides(prime,WorldDims[dim]/ShmDims[dim]) | ||||
|         && divides(prime,WorldShmSize/AutoShmSize)  ) { | ||||
| 	AutoShmSize*=prime; | ||||
| 	ShmDims[dim]*=prime; | ||||
| 	last_dim = dim; | ||||
| 	break; | ||||
|       } | ||||
|     } | ||||
|     if (p == primes.size() && last_dim == dim) { | ||||
|       std::cerr << "GlobalSharedMemory::GetShmDims failed" << std::endl; | ||||
|       exit(EXIT_FAILURE); | ||||
|     } | ||||
|     dim=(dim+1) %ndimension; | ||||
|   } | ||||
| } | ||||
| void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processors,Grid_MPI_Comm & optimal_comm) | ||||
| { | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Assert power of two shm_size. | ||||
| @@ -354,7 +264,6 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo | ||||
|   Coordinate HyperCoor(ndimension); | ||||
|  | ||||
|   GetShmDims(WorldDims,ShmDims); | ||||
|   SHM = ShmDims; | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Establish torus of processes and nodes with sub-blockings | ||||
| @@ -402,7 +311,7 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo | ||||
|   int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm); | ||||
|   assert(ierr==0); | ||||
| } | ||||
| void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM) | ||||
| void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm) | ||||
| { | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Identify subblock of ranks on node spreading across dims | ||||
| @@ -414,8 +323,6 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce | ||||
|   Coordinate ShmCoor(ndimension);    Coordinate NodeCoor(ndimension);   Coordinate WorldCoor(ndimension); | ||||
|  | ||||
|   GetShmDims(WorldDims,ShmDims); | ||||
|   SHM=ShmDims; | ||||
|  | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   // Establish torus of processes and nodes with sub-blockings | ||||
|   //////////////////////////////////////////////////////////////// | ||||
| @@ -454,7 +361,7 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce | ||||
| #ifdef GRID_MPI3_SHMGET | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| { | ||||
|   std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl; | ||||
|   std::cout << header "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl; | ||||
|   assert(_ShmSetup==1); | ||||
|   assert(_ShmAlloc==0); | ||||
|  | ||||
| @@ -513,7 +420,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| //////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Hugetlbfs mapping intended | ||||
| //////////////////////////////////////////////////////////////////////////////////////////// | ||||
| #if defined(GRID_CUDA) ||defined(GRID_HIP)  || defined(GRID_SYCL) | ||||
| #ifdef GRID_CUDA | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| { | ||||
|   void * ShmCommBuf ;  | ||||
| @@ -536,91 +443,41 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Each MPI rank should allocate our own buffer | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|   HostCommBuf= malloc(bytes); | ||||
| #endif   | ||||
|   ShmCommBuf = acceleratorAllocDevice(bytes); | ||||
|   auto err =  cudaMalloc(&ShmCommBuf, bytes); | ||||
|   if ( err !=  cudaSuccess) { | ||||
|     std::cerr << " SharedMemoryMPI.cc cudaMallocManaged failed for " << bytes<<" bytes " <<cudaGetErrorString(err)<< std::endl; | ||||
|     exit(EXIT_FAILURE);   | ||||
|   } | ||||
|   if (ShmCommBuf == (void *)NULL ) { | ||||
|     std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl; | ||||
|     std::cerr << " SharedMemoryMPI.cc cudaMallocManaged failed NULL pointer for " << bytes<<" bytes " << std::endl; | ||||
|     exit(EXIT_FAILURE);   | ||||
|   } | ||||
|   if ( WorldRank == 0 ){ | ||||
|     std::cout << WorldRank << Mheader " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes  | ||||
| 	      << "bytes at "<< std::hex<< ShmCommBuf << " - "<<(bytes-1+(uint64_t)ShmCommBuf) <<std::dec<<" for comms buffers " <<std::endl; | ||||
|     std::cout << header " SharedMemoryMPI.cc cudaMalloc "<< bytes << "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl; | ||||
|   } | ||||
|   SharedMemoryZero(ShmCommBuf,bytes); | ||||
|   std::cout<< "Setting up IPC"<<std::endl; | ||||
|  | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Loop over ranks/gpu's on our node | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| #ifdef SHM_SOCKETS | ||||
|   UnixSockets::Open(WorldShmRank); | ||||
| #endif | ||||
|   for(int r=0;r<WorldShmSize;r++){ | ||||
|      | ||||
|     MPI_Barrier(WorldShmComm); | ||||
|  | ||||
| #ifndef GRID_MPI3_SHM_NONE | ||||
|     ////////////////////////////////////////////////// | ||||
|     // If it is me, pass around the IPC access key | ||||
|     ////////////////////////////////////////////////// | ||||
|     void * thisBuf = ShmCommBuf; | ||||
|     if(!Stencil_force_mpi) { | ||||
| #ifdef GRID_SYCL_LEVEL_ZERO_IPC | ||||
|     typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t; | ||||
|  | ||||
|     auto zeDevice    = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device()); | ||||
|     auto zeContext   = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context()); | ||||
|        | ||||
|     ze_ipc_mem_handle_t ihandle; | ||||
|     clone_mem_t handle; | ||||
|      | ||||
|     if ( r==WorldShmRank ) {  | ||||
|       auto err = zeMemGetIpcHandle(zeContext,ShmCommBuf,&ihandle); | ||||
|       if ( err != ZE_RESULT_SUCCESS ) { | ||||
| 	std::cerr << "SharedMemoryMPI.cc zeMemGetIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl; | ||||
| 	exit(EXIT_FAILURE); | ||||
|       } else { | ||||
| 	std::cout << "SharedMemoryMPI.cc zeMemGetIpcHandle succeeded for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl; | ||||
|       } | ||||
|       memcpy((void *)&handle.fd,(void *)&ihandle,sizeof(int)); | ||||
|       handle.pid = getpid(); | ||||
|       memcpy((void *)&handle.ze,(void *)&ihandle,sizeof(ihandle)); | ||||
| #ifdef SHM_SOCKETS | ||||
|       for(int rr=0;rr<WorldShmSize;rr++){ | ||||
| 	if(rr!=r){ | ||||
| 	  UnixSockets::SendFileDescriptor(handle.fd,rr); | ||||
| 	} | ||||
|       } | ||||
| #endif | ||||
|     } | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     cudaIpcMemHandle_t handle; | ||||
|      | ||||
|     if ( r==WorldShmRank ) {  | ||||
|       auto err = cudaIpcGetMemHandle(&handle,ShmCommBuf); | ||||
|       err = cudaIpcGetMemHandle(&handle,ShmCommBuf); | ||||
|       if ( err !=  cudaSuccess) { | ||||
| 	std::cerr << " SharedMemoryMPI.cc cudaIpcGetMemHandle failed for rank" << r <<" "<<cudaGetErrorString(err)<< std::endl; | ||||
| 	exit(EXIT_FAILURE); | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
| #ifdef GRID_HIP | ||||
|     hipIpcMemHandle_t handle;     | ||||
|     if ( r==WorldShmRank ) {  | ||||
|       auto err = hipIpcGetMemHandle(&handle,ShmCommBuf); | ||||
|       if ( err !=  hipSuccess) { | ||||
| 	std::cerr << " SharedMemoryMPI.cc hipIpcGetMemHandle failed for rank" << r <<" "<<hipGetErrorString(err)<< std::endl; | ||||
| 	exit(EXIT_FAILURE); | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
|  | ||||
|     ////////////////////////////////////////////////// | ||||
|     // Share this IPC handle across the Shm Comm | ||||
|     ////////////////////////////////////////////////// | ||||
|     {  | ||||
|       MPI_Barrier(WorldShmComm); | ||||
|       int ierr=MPI_Bcast(&handle, | ||||
| 			 sizeof(handle), | ||||
| 			 MPI_BYTE, | ||||
| @@ -632,83 +489,28 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
|     /////////////////////////////////////////////////////////////// | ||||
|     // If I am not the source, overwrite thisBuf with remote buffer | ||||
|     /////////////////////////////////////////////////////////////// | ||||
|  | ||||
| #ifdef GRID_SYCL_LEVEL_ZERO_IPC | ||||
|     void * thisBuf = ShmCommBuf; | ||||
|     if ( r!=WorldShmRank ) {  | ||||
|       thisBuf = nullptr; | ||||
|       int myfd; | ||||
| #ifdef SHM_SOCKETS | ||||
|       myfd=UnixSockets::RecvFileDescriptor(); | ||||
| #else | ||||
|       std::cout<<"mapping seeking remote pid/fd " | ||||
| 	       <<handle.pid<<"/" | ||||
| 	       <<handle.fd<<std::endl; | ||||
|  | ||||
|       int pidfd = syscall(SYS_pidfd_open,handle.pid,0); | ||||
|       std::cout<<"Using IpcHandle pidfd "<<pidfd<<"\n"; | ||||
|       //      int myfd  = syscall(SYS_pidfd_getfd,pidfd,handle.fd,0); | ||||
|       myfd  = syscall(438,pidfd,handle.fd,0); | ||||
|       int err_t = errno; | ||||
|       if (myfd < 0) { | ||||
|         fprintf(stderr,"pidfd_getfd returned %d errno was %d\n", myfd,err_t); fflush(stderr); | ||||
| 	perror("pidfd_getfd failed "); | ||||
| 	assert(0); | ||||
|       } | ||||
| #endif | ||||
|       std::cout<<"Using IpcHandle mapped remote pid "<<handle.pid <<" FD "<<handle.fd <<" to myfd "<<myfd<<"\n"; | ||||
|       memcpy((void *)&ihandle,(void *)&handle.ze,sizeof(ihandle)); | ||||
|       memcpy((void *)&ihandle,(void *)&myfd,sizeof(int)); | ||||
|  | ||||
|       auto err = zeMemOpenIpcHandle(zeContext,zeDevice,ihandle,0,&thisBuf); | ||||
|       if ( err != ZE_RESULT_SUCCESS ) { | ||||
| 	std::cerr << "SharedMemoryMPI.cc "<<zeContext<<" "<<zeDevice<<std::endl; | ||||
| 	std::cerr << "SharedMemoryMPI.cc zeMemOpenIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;  | ||||
| 	exit(EXIT_FAILURE); | ||||
|       } else { | ||||
| 	std::cout << "SharedMemoryMPI.cc zeMemOpenIpcHandle succeeded for rank "<<r<<std::endl; | ||||
| 	std::cout << "SharedMemoryMPI.cc zeMemOpenIpcHandle pointer is "<<std::hex<<thisBuf<<std::dec<<std::endl; | ||||
|       } | ||||
|       assert(thisBuf!=nullptr); | ||||
|     } | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
|     if ( r!=WorldShmRank ) {  | ||||
|       auto err = cudaIpcOpenMemHandle(&thisBuf,handle,cudaIpcMemLazyEnablePeerAccess); | ||||
|       err = cudaIpcOpenMemHandle(&thisBuf,handle,cudaIpcMemLazyEnablePeerAccess); | ||||
|       if ( err !=  cudaSuccess) { | ||||
| 	std::cerr << " SharedMemoryMPI.cc cudaIpcOpenMemHandle failed for rank" << r <<" "<<cudaGetErrorString(err)<< std::endl; | ||||
| 	exit(EXIT_FAILURE); | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
| #ifdef GRID_HIP | ||||
|     if ( r!=WorldShmRank ) {  | ||||
|       auto err = hipIpcOpenMemHandle(&thisBuf,handle,hipIpcMemLazyEnablePeerAccess); | ||||
|       if ( err !=  hipSuccess) { | ||||
| 	std::cerr << " SharedMemoryMPI.cc hipIpcOpenMemHandle failed for rank" << r <<" "<<hipGetErrorString(err)<< std::endl; | ||||
| 	exit(EXIT_FAILURE); | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
|     /////////////////////////////////////////////////////////////// | ||||
|     // Save a copy of the device buffers | ||||
|     /////////////////////////////////////////////////////////////// | ||||
|     } | ||||
|     WorldShmCommBufs[r] = thisBuf; | ||||
| #else | ||||
|     WorldShmCommBufs[r] = ShmCommBuf; | ||||
| #endif | ||||
|     MPI_Barrier(WorldShmComm); | ||||
|   } | ||||
|  | ||||
|   _ShmAllocBytes=bytes; | ||||
|   _ShmAlloc=1; | ||||
| } | ||||
|  | ||||
| #else  | ||||
| #ifdef GRID_MPI3_SHMMMAP | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| { | ||||
|   std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl; | ||||
|   std::cout << header "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl; | ||||
|   assert(_ShmSetup==1); | ||||
|   assert(_ShmAlloc==0); | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -745,7 +547,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
|     assert(((uint64_t)ptr&0x3F)==0); | ||||
|     close(fd); | ||||
|     WorldShmCommBufs[r] =ptr; | ||||
|     //    std::cout << Mheader "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl; | ||||
|     //    std::cout << header "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl; | ||||
|   } | ||||
|   _ShmAlloc=1; | ||||
|   _ShmAllocBytes  = bytes; | ||||
| @@ -755,7 +557,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| #ifdef GRID_MPI3_SHM_NONE | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| { | ||||
|   std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl; | ||||
|   std::cout << header "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl; | ||||
|   assert(_ShmSetup==1); | ||||
|   assert(_ShmAlloc==0); | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -802,7 +604,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| //////////////////////////////////////////////////////////////////////////////////////////// | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| {  | ||||
|   std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl; | ||||
|   std::cout << header "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl; | ||||
|   assert(_ShmSetup==1); | ||||
|   assert(_ShmAlloc==0);  | ||||
|   MPI_Barrier(WorldShmComm); | ||||
| @@ -831,6 +633,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| #endif | ||||
|       void * ptr =  mmap(NULL,size, PROT_READ | PROT_WRITE, mmap_flag, fd, 0); | ||||
|        | ||||
|       //      std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< size<< "bytes)"<<std::endl; | ||||
|       if ( ptr == (void * )MAP_FAILED ) {        | ||||
| 	perror("failed mmap");      | ||||
| 	assert(0);     | ||||
| @@ -874,16 +677,16 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| ///////////////////////////////////////////////////////////////////////// | ||||
| void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes) | ||||
| { | ||||
| #if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL) | ||||
|   acceleratorMemSet(dest,0,bytes); | ||||
| #ifdef GRID_CUDA | ||||
|   cudaMemset(dest,0,bytes); | ||||
| #else | ||||
|   bzero(dest,bytes); | ||||
| #endif | ||||
| } | ||||
| void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes) | ||||
| void GlobalSharedMemory::SharedMemoryCopy(void *dest,const void *src,size_t bytes) | ||||
| { | ||||
| #if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL) | ||||
|   acceleratorCopyToDevice(src,dest,bytes); | ||||
| #ifdef GRID_CUDA | ||||
|   cudaMemcpy(dest,src,bytes,cudaMemcpyDefault); | ||||
| #else    | ||||
|   bcopy(src,dest,bytes); | ||||
| #endif | ||||
| @@ -902,11 +705,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm) | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
|   // Split into groups that can share memory | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
| #ifndef GRID_MPI3_SHM_NONE | ||||
|   MPI_Comm_split_type(comm, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL,&ShmComm); | ||||
| #else | ||||
|   MPI_Comm_split(comm, rank, 0, &ShmComm); | ||||
| #endif | ||||
|   MPI_Comm_rank(ShmComm     ,&ShmRank); | ||||
|   MPI_Comm_size(ShmComm     ,&ShmSize); | ||||
|   ShmCommBufs.resize(ShmSize); | ||||
| @@ -926,12 +725,6 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm) | ||||
|   } | ||||
|   ShmBufferFreeAll(); | ||||
|  | ||||
| #ifndef ACCELERATOR_AWARE_MPI | ||||
|   host_heap_size = heap_size; | ||||
|   HostCommBuf= GlobalSharedMemory::HostCommBuf; | ||||
|   HostBufferFreeAll(); | ||||
| #endif   | ||||
|  | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
|   // find comm ranks in our SHM group (i.e. which ranks are on our node) | ||||
|   ///////////////////////////////////////////////////////////////////// | ||||
| @@ -942,18 +735,25 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm) | ||||
|   std::vector<int> ranks(size);   for(int r=0;r<size;r++) ranks[r]=r; | ||||
|   MPI_Group_translate_ranks (FullGroup,size,&ranks[0],ShmGroup, &ShmRanks[0]);  | ||||
|  | ||||
| #ifdef GRID_SHM_FORCE_MPI | ||||
|   // Hide the shared memory path between ranks | ||||
|   { | ||||
| #ifdef GRID_IBM_SUMMIT | ||||
|   // Hide the shared memory path between sockets  | ||||
|   // if even number of nodes | ||||
|   if ( (ShmSize & 0x1)==0 ) { | ||||
|     int SocketSize = ShmSize/2; | ||||
|     int mySocket = ShmRank/SocketSize;  | ||||
|     for(int r=0;r<size;r++){ | ||||
|       if ( r!=rank ) { | ||||
|       int hisRank=ShmRanks[r]; | ||||
|       if ( hisRank!= MPI_UNDEFINED ) { | ||||
| 	int hisSocket=hisRank/SocketSize; | ||||
| 	if ( hisSocket != mySocket ) { | ||||
| 	  ShmRanks[r] = MPI_UNDEFINED; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
|   } | ||||
| #endif | ||||
|  | ||||
|   //SharedMemoryTest(); | ||||
|   SharedMemoryTest(); | ||||
| } | ||||
| ////////////////////////////////////////////////////////////////// | ||||
| // On node barrier | ||||
|   | ||||
| @@ -29,7 +29,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #include <Grid/GridCore.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid);  | ||||
| #define header "SharedMemoryNone: " | ||||
|  | ||||
| /*Construct from an MPI communicator*/ | ||||
| void GlobalSharedMemory::Init(Grid_MPI_Comm comm) | ||||
| @@ -48,47 +47,14 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm) | ||||
|   _ShmSetup=1; | ||||
| } | ||||
|  | ||||
| void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM) | ||||
| void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm) | ||||
| { | ||||
|   optimal_comm = WorldComm; | ||||
|   SHM = Coordinate(processors.size(),1); | ||||
| } | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Hugetlbfs mapping intended, use anonymous mmap | ||||
| //////////////////////////////////////////////////////////////////////////////////////////// | ||||
| #if 1 | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| { | ||||
|   std::cout << header "SharedMemoryAllocate "<< bytes<< " GPU implementation "<<std::endl; | ||||
|   void * ShmCommBuf ;  | ||||
|   assert(_ShmSetup==1); | ||||
|   assert(_ShmAlloc==0); | ||||
|  | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Each MPI rank should allocate our own buffer | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   ShmCommBuf = acceleratorAllocDevice(bytes); | ||||
|  | ||||
|   if (ShmCommBuf == (void *)NULL ) { | ||||
|     std::cerr << " SharedMemoryNone.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl; | ||||
|     exit(EXIT_FAILURE);   | ||||
|   } | ||||
|   if ( WorldRank == 0 ){ | ||||
|     std::cout << WorldRank << header " SharedMemoryNone.cc acceleratorAllocDevice "<< bytes  | ||||
| 	      << "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl; | ||||
|   } | ||||
|   SharedMemoryZero(ShmCommBuf,bytes); | ||||
|  | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // Loop over ranks/gpu's on our node | ||||
|   /////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   WorldShmCommBufs[0] = ShmCommBuf; | ||||
|  | ||||
|   _ShmAllocBytes=bytes; | ||||
|   _ShmAlloc=1; | ||||
| } | ||||
| #else | ||||
| void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
| { | ||||
|   void * ShmCommBuf ;  | ||||
| @@ -117,15 +83,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags) | ||||
|   _ShmAllocBytes=bytes; | ||||
|   _ShmAlloc=1; | ||||
| }; | ||||
| #endif | ||||
| void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes) | ||||
| { | ||||
|   acceleratorMemSet(dest,0,bytes); | ||||
| } | ||||
| void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes) | ||||
| { | ||||
|   acceleratorCopyToDevice(src,dest,bytes); | ||||
| } | ||||
|  | ||||
| //////////////////////////////////////////////////////// | ||||
| // Global shared functionality finished | ||||
| // Now move to per communicator functionality | ||||
|   | ||||
| @@ -52,8 +52,23 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>  | ||||
| auto Cshift(const Expression &expr,int dim,int shift)  -> decltype(closure(expr))  | ||||
| template<typename Op, typename T1>  | ||||
| auto Cshift(const LatticeUnaryExpression<Op,T1> &expr,int dim,int shift) | ||||
|     -> Lattice<decltype(expr.op.func(eval(0, expr.arg1)))>  | ||||
| { | ||||
|   return Cshift(closure(expr),dim,shift); | ||||
| } | ||||
| template <class Op, class T1, class T2> | ||||
| auto Cshift(const LatticeBinaryExpression<Op,T1,T2> &expr,int dim,int shift) | ||||
|   -> Lattice<decltype(expr.op.func(eval(0, expr.arg1),eval(0, expr.arg2)))>  | ||||
| { | ||||
|   return Cshift(closure(expr),dim,shift); | ||||
| } | ||||
| template <class Op, class T1, class T2, class T3> | ||||
| auto Cshift(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr,int dim,int shift) | ||||
|   -> Lattice<decltype(expr.op.func(eval(0, expr.arg1), | ||||
| 				   eval(0, expr.arg2), | ||||
| 				   eval(0, expr.arg3)))>  | ||||
| { | ||||
|   return Cshift(closure(expr),dim,shift); | ||||
| } | ||||
|   | ||||
| @@ -29,32 +29,13 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| extern std::vector<std::pair<int,int> > Cshift_table;  | ||||
| extern commVector<std::pair<int,int> > Cshift_table_device;  | ||||
| extern Vector<std::pair<int,int> > Cshift_table;  | ||||
|  | ||||
| inline std::pair<int,int> *MapCshiftTable(void) | ||||
| { | ||||
|   // GPU version | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|   uint64_t sz=Cshift_table.size(); | ||||
|   if (Cshift_table_device.size()!=sz )    { | ||||
|     Cshift_table_device.resize(sz); | ||||
|   } | ||||
|   acceleratorCopyToDevice((void *)&Cshift_table[0], | ||||
| 			  (void *)&Cshift_table_device[0], | ||||
| 			  sizeof(Cshift_table[0])*sz); | ||||
|  | ||||
|   return &Cshift_table_device[0]; | ||||
| #else  | ||||
|   return &Cshift_table[0]; | ||||
| #endif | ||||
|   // CPU version use identify map | ||||
| } | ||||
| /////////////////////////////////////////////////////////////////// | ||||
| // Gather for when there is no need to SIMD split  | ||||
| /////////////////////////////////////////////////////////////////// | ||||
| template<class vobj> void  | ||||
| Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0) | ||||
| Gather_plane_simple (const Lattice<vobj> &rhs,commVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0) | ||||
| { | ||||
|   int rd = rhs.Grid()->_rdimensions[dimension]; | ||||
|  | ||||
| @@ -92,19 +73,12 @@ Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dim | ||||
|      } | ||||
|   } | ||||
|   { | ||||
|     auto buffer_p = & buffer[0]; | ||||
|     auto table = MapCshiftTable(); | ||||
| #ifdef ACCELERATOR_CSHIFT | ||||
|     autoView(rhs_v , rhs, AcceleratorRead); | ||||
|     accelerator_for(i,ent,vobj::Nsimd(),{ | ||||
| 	coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second])); | ||||
|     }); | ||||
| #else | ||||
|     autoView(rhs_v , rhs, CpuRead); | ||||
|     thread_for(i,ent,{ | ||||
|     auto buffer_p = & buffer[0]; | ||||
|     auto table = &Cshift_table[0]; | ||||
|     accelerator_for(i,ent,1,{ | ||||
|       buffer_p[table[i].first]=rhs_v[table[i].second]; | ||||
|     }); | ||||
| #endif | ||||
|   } | ||||
| } | ||||
|  | ||||
| @@ -129,36 +103,21 @@ Gather_plane_extract(const Lattice<vobj> &rhs, | ||||
|   int n1=rhs.Grid()->_slice_stride[dimension]; | ||||
|  | ||||
|   if ( cbmask ==0x3){ | ||||
| #ifdef ACCELERATOR_CSHIFT | ||||
|     autoView(rhs_v , rhs, AcceleratorRead); | ||||
|     accelerator_for(nn,e1*e2,1,{ | ||||
| 	int n = nn%e1; | ||||
| 	int b = nn/e1; | ||||
|     accelerator_for2d(n,e1,b,e2,1,{ | ||||
| 	int o      =   n*n1; | ||||
| 	int offset = b+n*e2; | ||||
| 	 | ||||
| 	vobj temp =rhs_v[so+o+b]; | ||||
| 	extract<vobj>(temp,pointers,offset); | ||||
|       }); | ||||
| #else | ||||
|     autoView(rhs_v , rhs, CpuRead); | ||||
|     thread_for2d(n,e1,b,e2,{ | ||||
| 	int o      =   n*n1; | ||||
| 	int offset = b+n*e2; | ||||
| 	 | ||||
| 	vobj temp =rhs_v[so+o+b]; | ||||
| 	extract<vobj>(temp,pointers,offset); | ||||
|       }); | ||||
| #endif | ||||
|   } else {  | ||||
|     autoView(rhs_v , rhs, AcceleratorRead); | ||||
|  | ||||
|     Coordinate rdim=rhs.Grid()->_rdimensions; | ||||
|     Coordinate cdm =rhs.Grid()->_checker_dim_mask; | ||||
|     std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb? | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|     autoView(rhs_v , rhs, AcceleratorRead); | ||||
|     accelerator_for(nn,e1*e2,1,{ | ||||
| 	int n = nn%e1; | ||||
| 	int b = nn/e1; | ||||
|     accelerator_for2d(n,e1,b,e2,1,{ | ||||
|  | ||||
| 	Coordinate coor; | ||||
|  | ||||
| @@ -175,33 +134,13 @@ Gather_plane_extract(const Lattice<vobj> &rhs, | ||||
| 	  extract<vobj>(temp,pointers,offset); | ||||
| 	} | ||||
|       }); | ||||
| #else | ||||
|     autoView(rhs_v , rhs, CpuRead); | ||||
|     thread_for2d(n,e1,b,e2,{ | ||||
|  | ||||
| 	Coordinate coor; | ||||
|  | ||||
| 	int o=n*n1; | ||||
| 	int oindex = o+b; | ||||
|  | ||||
|        	int cb = RedBlackCheckerBoardFromOindex(oindex, rdim, cdm); | ||||
|  | ||||
| 	int ocb=1<<cb; | ||||
| 	int offset = b+n*e2; | ||||
|  | ||||
| 	if ( ocb & cbmask ) { | ||||
| 	  vobj temp =rhs_v[so+o+b]; | ||||
| 	  extract<vobj>(temp,pointers,offset); | ||||
| 	} | ||||
|       }); | ||||
| #endif | ||||
|   } | ||||
| } | ||||
|  | ||||
| ////////////////////////////////////////////////////// | ||||
| // Scatter for when there is no need to SIMD split | ||||
| ////////////////////////////////////////////////////// | ||||
| template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<vobj> &buffer, int dimension,int plane,int cbmask) | ||||
| template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,commVector<vobj> &buffer, int dimension,int plane,int cbmask) | ||||
| { | ||||
|   int rd = rhs.Grid()->_rdimensions[dimension]; | ||||
|  | ||||
| @@ -243,19 +182,12 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector< | ||||
|   } | ||||
|    | ||||
|   { | ||||
|     auto buffer_p = & buffer[0]; | ||||
|     auto table = MapCshiftTable(); | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|     autoView( rhs_v, rhs, AcceleratorWrite); | ||||
|     accelerator_for(i,ent,vobj::Nsimd(),{ | ||||
| 	coalescedWrite(rhs_v[table[i].first],coalescedRead(buffer_p[table[i].second])); | ||||
|     }); | ||||
| #else | ||||
|     autoView( rhs_v, rhs, CpuWrite); | ||||
|     thread_for(i,ent,{ | ||||
|     auto buffer_p = & buffer[0]; | ||||
|     auto table = &Cshift_table[0]; | ||||
|     accelerator_for(i,ent,1,{ | ||||
| 	rhs_v[table[i].first]=buffer_p[table[i].second]; | ||||
|     }); | ||||
| #endif | ||||
|   } | ||||
| } | ||||
|  | ||||
| @@ -276,32 +208,18 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA | ||||
|   int e2=rhs.Grid()->_slice_block[dimension]; | ||||
|  | ||||
|   if(cbmask ==0x3 ) { | ||||
|     int _slice_stride = rhs.Grid()->_slice_stride[dimension]; | ||||
|     int _slice_block = rhs.Grid()->_slice_block[dimension]; | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|     autoView( rhs_v , rhs, AcceleratorWrite); | ||||
|     accelerator_for(nn,e1*e2,1,{ | ||||
| 	int n = nn%e1; | ||||
| 	int b = nn/e1; | ||||
| 	int o      = n*_slice_stride; | ||||
| 	int offset = b+n*_slice_block; | ||||
|     accelerator_for2d(n,e1,b,e2,1,{ | ||||
| 	int o      = n*rhs.Grid()->_slice_stride[dimension]; | ||||
| 	int offset = b+n*rhs.Grid()->_slice_block[dimension]; | ||||
| 	merge(rhs_v[so+o+b],pointers,offset); | ||||
|       }); | ||||
| #else | ||||
|     autoView( rhs_v , rhs, CpuWrite); | ||||
|     thread_for2d(n,e1,b,e2,{ | ||||
| 	int o      = n*_slice_stride; | ||||
| 	int offset = b+n*_slice_block; | ||||
| 	merge(rhs_v[so+o+b],pointers,offset); | ||||
|     }); | ||||
| #endif | ||||
|   } else {  | ||||
|  | ||||
|     // Case of SIMD split AND checker dim cannot currently be hit, except in  | ||||
|     // Test_cshift_red_black code. | ||||
|     std::cout << "Scatter_plane merge assert(0); think this is buggy FIXME "<< std::endl;// think this is buggy FIXME | ||||
|     //    std::cout << "Scatter_plane merge assert(0); think this is buggy FIXME "<< std::endl;// think this is buggy FIXME | ||||
|     std::cout<<" Unthreaded warning -- buffer is not densely packed ??"<<std::endl; | ||||
|     assert(0); // This will fail if hit on GPU | ||||
|     autoView( rhs_v, rhs, CpuWrite); | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
| @@ -359,20 +277,12 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs | ||||
|   } | ||||
|  | ||||
|   { | ||||
|     auto table = MapCshiftTable(); | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|     autoView(rhs_v , rhs, AcceleratorRead); | ||||
|     autoView(lhs_v , lhs, AcceleratorWrite); | ||||
|     accelerator_for(i,ent,vobj::Nsimd(),{ | ||||
|       coalescedWrite(lhs_v[table[i].first],coalescedRead(rhs_v[table[i].second])); | ||||
|     }); | ||||
| #else | ||||
|     autoView(rhs_v , rhs, CpuRead); | ||||
|     autoView(lhs_v , lhs, CpuWrite); | ||||
|     thread_for(i,ent,{ | ||||
|     auto table = &Cshift_table[0]; | ||||
|     accelerator_for(i,ent,1,{ | ||||
|       lhs_v[table[i].first]=rhs_v[table[i].second]; | ||||
|     }); | ||||
| #endif | ||||
|   } | ||||
| } | ||||
|  | ||||
| @@ -411,20 +321,12 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo | ||||
|   } | ||||
|  | ||||
|   { | ||||
|     auto table = MapCshiftTable(); | ||||
| #ifdef ACCELERATOR_CSHIFT     | ||||
|     autoView( rhs_v, rhs, AcceleratorRead); | ||||
|     autoView( lhs_v, lhs, AcceleratorWrite); | ||||
|     auto table = &Cshift_table[0]; | ||||
|     accelerator_for(i,ent,1,{ | ||||
|       permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type); | ||||
|     }); | ||||
| #else | ||||
|     autoView( rhs_v, rhs, CpuRead); | ||||
|     autoView( lhs_v, lhs, CpuWrite); | ||||
|     thread_for(i,ent,{ | ||||
|       permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type); | ||||
|     }); | ||||
| #endif | ||||
|   } | ||||
| } | ||||
|  | ||||
|   | ||||
| @@ -52,8 +52,7 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension | ||||
|   int comm_dim        = rhs.Grid()->_processors[dimension] >1 ; | ||||
|   int splice_dim      = rhs.Grid()->_simd_layout[dimension]>1 && (comm_dim); | ||||
|  | ||||
|   RealD t1,t0; | ||||
|   t0=usecond(); | ||||
|  | ||||
|   if ( !comm_dim ) { | ||||
|     //std::cout << "CSHIFT: Cshift_local" <<std::endl; | ||||
|     Cshift_local(ret,rhs,dimension,shift); // Handles checkerboarding | ||||
| @@ -64,8 +63,6 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension | ||||
|     //std::cout << "CSHIFT: Cshift_comms" <<std::endl; | ||||
|     Cshift_comms(ret,rhs,dimension,shift); | ||||
|   } | ||||
|   t1=usecond(); | ||||
|   //  std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl; | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
| @@ -104,8 +101,7 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vob | ||||
|     Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration | ||||
|   } | ||||
| } | ||||
| #define ACCELERATOR_CSHIFT_NO_COPY | ||||
| #ifdef ACCELERATOR_CSHIFT_NO_COPY | ||||
|  | ||||
| template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) | ||||
| { | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
| @@ -125,65 +121,46 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r | ||||
|   assert(shift<fd); | ||||
|    | ||||
|   int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension]; | ||||
|   static cshiftVector<vobj> send_buf; send_buf.resize(buffer_size); | ||||
|   static cshiftVector<vobj> recv_buf; recv_buf.resize(buffer_size); | ||||
|   commVector<vobj> send_buf(buffer_size); | ||||
|   commVector<vobj> recv_buf(buffer_size); | ||||
|  | ||||
|   int cb= (cbmask==0x2)? Odd : Even; | ||||
|   int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb); | ||||
|   RealD tcopy=0.0; | ||||
|   RealD tgather=0.0; | ||||
|   RealD tscatter=0.0; | ||||
|   RealD tcomms=0.0; | ||||
|   uint64_t xbytes=0; | ||||
|  | ||||
|   for(int x=0;x<rd;x++){        | ||||
|  | ||||
|     int sx        =  (x+sshift)%rd; | ||||
|     int comm_proc = ((x+sshift)/rd)%pd; | ||||
|      | ||||
|     if (comm_proc==0) { | ||||
|       tcopy-=usecond(); | ||||
|  | ||||
|       Copy_plane(ret,rhs,dimension,x,sx,cbmask);  | ||||
|       tcopy+=usecond(); | ||||
|  | ||||
|     } else { | ||||
|  | ||||
|       int words = buffer_size; | ||||
|       int words = send_buf.size(); | ||||
|       if (cbmask != 0x3) words=words>>1; | ||||
|  | ||||
|       int bytes = words * sizeof(vobj); | ||||
|  | ||||
|       tgather-=usecond(); | ||||
|       Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask); | ||||
|       tgather+=usecond(); | ||||
|  | ||||
|       //      int rank           = grid->_processor; | ||||
|       int recv_from_rank; | ||||
|       int xmit_to_rank; | ||||
|       grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank); | ||||
|  | ||||
|       tcomms-=usecond(); | ||||
|       //      grid->Barrier(); | ||||
|  | ||||
|       grid->SendToRecvFrom((void *)&send_buf[0], | ||||
| 			   xmit_to_rank, | ||||
| 			   (void *)&recv_buf[0], | ||||
| 			   recv_from_rank, | ||||
| 			   bytes); | ||||
|       xbytes+=bytes; | ||||
|       //      grid->Barrier(); | ||||
|       tcomms+=usecond(); | ||||
|       grid->Barrier(); | ||||
|  | ||||
|       tscatter-=usecond(); | ||||
|       Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask); | ||||
|       tscatter+=usecond(); | ||||
|     } | ||||
|   } | ||||
|   /* | ||||
|   std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl; | ||||
|   */ | ||||
| } | ||||
|  | ||||
| template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) | ||||
| @@ -210,12 +187,6 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
|   assert(shift>=0); | ||||
|   assert(shift<fd); | ||||
|  | ||||
|   RealD tcopy=0.0; | ||||
|   RealD tgather=0.0; | ||||
|   RealD tscatter=0.0; | ||||
|   RealD tcomms=0.0; | ||||
|   uint64_t xbytes=0; | ||||
|    | ||||
|   int permute_type=grid->PermuteType(dimension); | ||||
|  | ||||
|   /////////////////////////////////////////////// | ||||
| @@ -224,15 +195,8 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
|   int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension]; | ||||
|   //  int words = sizeof(vobj)/sizeof(vector_type); | ||||
|  | ||||
|   static std::vector<cshiftVector<scalar_object> >  send_buf_extract; send_buf_extract.resize(Nsimd); | ||||
|   static std::vector<cshiftVector<scalar_object> >  recv_buf_extract; recv_buf_extract.resize(Nsimd); | ||||
|   scalar_object *  recv_buf_extract_mpi; | ||||
|   scalar_object *  send_buf_extract_mpi; | ||||
|   | ||||
|   for(int s=0;s<Nsimd;s++){ | ||||
|     send_buf_extract[s].resize(buffer_size); | ||||
|     recv_buf_extract[s].resize(buffer_size); | ||||
|   } | ||||
|   std::vector<commVector<scalar_object> >   send_buf_extract(Nsimd,commVector<scalar_object>(buffer_size) ); | ||||
|   std::vector<commVector<scalar_object> >   recv_buf_extract(Nsimd,commVector<scalar_object>(buffer_size) ); | ||||
|  | ||||
|   int bytes = buffer_size*sizeof(scalar_object); | ||||
|  | ||||
| @@ -253,9 +217,7 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
|       pointers[i] = &send_buf_extract[i][0]; | ||||
|     } | ||||
|     int sx   = (x+sshift)%rd; | ||||
|     tgather-=usecond(); | ||||
|     Gather_plane_extract(rhs,pointers,dimension,sx,cbmask); | ||||
|     tgather+=usecond(); | ||||
|  | ||||
|     for(int i=0;i<Nsimd;i++){ | ||||
|        | ||||
| @@ -280,267 +242,23 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo | ||||
|       if(nbr_proc){ | ||||
| 	grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);  | ||||
|  | ||||
| 	tcomms-=usecond(); | ||||
| 	//	grid->Barrier(); | ||||
|  | ||||
| 	send_buf_extract_mpi = &send_buf_extract[nbr_lane][0]; | ||||
| 	recv_buf_extract_mpi = &recv_buf_extract[i][0]; | ||||
| 	grid->SendToRecvFrom((void *)send_buf_extract_mpi, | ||||
| 	grid->SendToRecvFrom((void *)&send_buf_extract[nbr_lane][0], | ||||
| 			     xmit_to_rank, | ||||
| 			     (void *)recv_buf_extract_mpi, | ||||
| 			     (void *)&recv_buf_extract[i][0], | ||||
| 			     recv_from_rank, | ||||
| 			     bytes); | ||||
|  | ||||
| 	xbytes+=bytes; | ||||
| 	//	grid->Barrier(); | ||||
| 	tcomms+=usecond(); | ||||
|  | ||||
| 	grid->Barrier(); | ||||
| 	rpointers[i] = &recv_buf_extract[i][0]; | ||||
|       } else {  | ||||
| 	rpointers[i] = &send_buf_extract[nbr_lane][0]; | ||||
|       } | ||||
|  | ||||
|     } | ||||
|     tscatter-=usecond(); | ||||
|     Scatter_plane_merge(ret,rpointers,dimension,x,cbmask); | ||||
|     tscatter+=usecond(); | ||||
|   } | ||||
|   /* | ||||
|   std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl; | ||||
|   */ | ||||
| } | ||||
| #else  | ||||
| template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) | ||||
| { | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|  | ||||
|   GridBase *grid=rhs.Grid(); | ||||
|   Lattice<vobj> temp(rhs.Grid()); | ||||
|  | ||||
|   int fd              = rhs.Grid()->_fdimensions[dimension]; | ||||
|   int rd              = rhs.Grid()->_rdimensions[dimension]; | ||||
|   int pd              = rhs.Grid()->_processors[dimension]; | ||||
|   int simd_layout     = rhs.Grid()->_simd_layout[dimension]; | ||||
|   int comm_dim        = rhs.Grid()->_processors[dimension] >1 ; | ||||
|   assert(simd_layout==1); | ||||
|   assert(comm_dim==1); | ||||
|   assert(shift>=0); | ||||
|   assert(shift<fd); | ||||
|   RealD tcopy=0.0; | ||||
|   RealD tgather=0.0; | ||||
|   RealD tscatter=0.0; | ||||
|   RealD tcomms=0.0; | ||||
|   uint64_t xbytes=0; | ||||
|    | ||||
|   int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension]; | ||||
|   static cshiftVector<vobj> send_buf_v; send_buf_v.resize(buffer_size); | ||||
|   static cshiftVector<vobj> recv_buf_v; recv_buf_v.resize(buffer_size); | ||||
|   vobj *send_buf; | ||||
|   vobj *recv_buf; | ||||
|   { | ||||
|     grid->ShmBufferFreeAll(); | ||||
|     size_t bytes = buffer_size*sizeof(vobj); | ||||
|     send_buf=(vobj *)grid->ShmBufferMalloc(bytes); | ||||
|     recv_buf=(vobj *)grid->ShmBufferMalloc(bytes); | ||||
|   } | ||||
|      | ||||
|   int cb= (cbmask==0x2)? Odd : Even; | ||||
|   int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb); | ||||
|  | ||||
|   for(int x=0;x<rd;x++){        | ||||
|  | ||||
|     int sx        =  (x+sshift)%rd; | ||||
|     int comm_proc = ((x+sshift)/rd)%pd; | ||||
|      | ||||
|     if (comm_proc==0) { | ||||
|  | ||||
|       tcopy-=usecond(); | ||||
|       Copy_plane(ret,rhs,dimension,x,sx,cbmask);  | ||||
|       tcopy+=usecond(); | ||||
|  | ||||
|     } else { | ||||
|  | ||||
|       int words = buffer_size; | ||||
|       if (cbmask != 0x3) words=words>>1; | ||||
|  | ||||
|       int bytes = words * sizeof(vobj); | ||||
|  | ||||
|       tgather-=usecond(); | ||||
|       Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask); | ||||
|       tgather+=usecond(); | ||||
|  | ||||
|       //      int rank           = grid->_processor; | ||||
|       int recv_from_rank; | ||||
|       int xmit_to_rank; | ||||
|       grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank); | ||||
|  | ||||
|  | ||||
|       tcomms-=usecond(); | ||||
|       //      grid->Barrier(); | ||||
|  | ||||
|       acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes); | ||||
|       grid->SendToRecvFrom((void *)&send_buf[0], | ||||
| 			   xmit_to_rank, | ||||
| 			   (void *)&recv_buf[0], | ||||
| 			   recv_from_rank, | ||||
| 			   bytes); | ||||
|       xbytes+=bytes; | ||||
|       acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes); | ||||
|  | ||||
|       //      grid->Barrier(); | ||||
|       tcomms+=usecond(); | ||||
|  | ||||
|       tscatter-=usecond(); | ||||
|       Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask); | ||||
|       tscatter+=usecond(); | ||||
|     } | ||||
|   } | ||||
|   /* | ||||
|   std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl; | ||||
|   */ | ||||
| } | ||||
|  | ||||
| template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask) | ||||
| { | ||||
|   GridBase *grid=rhs.Grid(); | ||||
|   const int Nsimd = grid->Nsimd(); | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_object scalar_object; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|     | ||||
|   int fd = grid->_fdimensions[dimension]; | ||||
|   int rd = grid->_rdimensions[dimension]; | ||||
|   int ld = grid->_ldimensions[dimension]; | ||||
|   int pd = grid->_processors[dimension]; | ||||
|   int simd_layout     = grid->_simd_layout[dimension]; | ||||
|   int comm_dim        = grid->_processors[dimension] >1 ; | ||||
|  | ||||
|   //std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd | ||||
|   //    << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout  | ||||
|   //    << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl; | ||||
|  | ||||
|   assert(comm_dim==1); | ||||
|   assert(simd_layout==2); | ||||
|   assert(shift>=0); | ||||
|   assert(shift<fd); | ||||
|   RealD tcopy=0.0; | ||||
|   RealD tgather=0.0; | ||||
|   RealD tscatter=0.0; | ||||
|   RealD tcomms=0.0; | ||||
|   uint64_t xbytes=0; | ||||
|  | ||||
|   int permute_type=grid->PermuteType(dimension); | ||||
|  | ||||
|   /////////////////////////////////////////////// | ||||
|   // Simd direction uses an extract/merge pair | ||||
|   /////////////////////////////////////////////// | ||||
|   int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension]; | ||||
|   //  int words = sizeof(vobj)/sizeof(vector_type); | ||||
|  | ||||
|   static std::vector<cshiftVector<scalar_object> >  send_buf_extract; send_buf_extract.resize(Nsimd); | ||||
|   static std::vector<cshiftVector<scalar_object> >  recv_buf_extract; recv_buf_extract.resize(Nsimd); | ||||
|   scalar_object *  recv_buf_extract_mpi; | ||||
|   scalar_object *  send_buf_extract_mpi; | ||||
|   { | ||||
|     size_t bytes = sizeof(scalar_object)*buffer_size; | ||||
|     grid->ShmBufferFreeAll(); | ||||
|     send_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes); | ||||
|     recv_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes); | ||||
|   } | ||||
|   for(int s=0;s<Nsimd;s++){ | ||||
|     send_buf_extract[s].resize(buffer_size); | ||||
|     recv_buf_extract[s].resize(buffer_size); | ||||
|   } | ||||
|  | ||||
|   int bytes = buffer_size*sizeof(scalar_object); | ||||
|  | ||||
|   ExtractPointerArray<scalar_object>  pointers(Nsimd); //  | ||||
|   ExtractPointerArray<scalar_object> rpointers(Nsimd); // received pointers | ||||
|  | ||||
|   /////////////////////////////////////////// | ||||
|   // Work out what to send where | ||||
|   /////////////////////////////////////////// | ||||
|   int cb    = (cbmask==0x2)? Odd : Even; | ||||
|   int sshift= grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb); | ||||
|  | ||||
|   // loop over outer coord planes orthog to dim | ||||
|   for(int x=0;x<rd;x++){        | ||||
|  | ||||
|     // FIXME call local permute copy if none are offnode. | ||||
|     for(int i=0;i<Nsimd;i++){        | ||||
|       pointers[i] = &send_buf_extract[i][0]; | ||||
|     } | ||||
|     tgather-=usecond(); | ||||
|     int sx   = (x+sshift)%rd; | ||||
|     Gather_plane_extract(rhs,pointers,dimension,sx,cbmask); | ||||
|     tgather+=usecond(); | ||||
|  | ||||
|     for(int i=0;i<Nsimd;i++){ | ||||
|        | ||||
|       int inner_bit = (Nsimd>>(permute_type+1)); | ||||
|       int ic= (i&inner_bit)? 1:0; | ||||
|  | ||||
|       int my_coor          = rd*ic + x; | ||||
|       int nbr_coor         = my_coor+sshift; | ||||
|       int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors | ||||
|  | ||||
|       int nbr_ic   = (nbr_coor%ld)/rd;    // inner coord of peer | ||||
|       int nbr_ox   = (nbr_coor%rd);       // outer coord of peer | ||||
|       int nbr_lane = (i&(~inner_bit)); | ||||
|  | ||||
|       int recv_from_rank; | ||||
|       int xmit_to_rank; | ||||
|  | ||||
|       if (nbr_ic) nbr_lane|=inner_bit; | ||||
|  | ||||
|       assert (sx == nbr_ox); | ||||
|  | ||||
|       if(nbr_proc){ | ||||
| 	grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);  | ||||
|  | ||||
| 	tcomms-=usecond(); | ||||
| 	//	grid->Barrier(); | ||||
|  | ||||
| 	acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes); | ||||
| 	grid->SendToRecvFrom((void *)send_buf_extract_mpi, | ||||
| 			     xmit_to_rank, | ||||
| 			     (void *)recv_buf_extract_mpi, | ||||
| 			     recv_from_rank, | ||||
| 			     bytes); | ||||
| 	acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes); | ||||
| 	xbytes+=bytes; | ||||
|  | ||||
| 	//	grid->Barrier(); | ||||
| 	tcomms+=usecond(); | ||||
| 	rpointers[i] = &recv_buf_extract[i][0]; | ||||
|       } else {  | ||||
| 	rpointers[i] = &send_buf_extract[nbr_lane][0]; | ||||
|   } | ||||
|  | ||||
| } | ||||
|     tscatter-=usecond(); | ||||
|     Scatter_plane_merge(ret,rpointers,dimension,x,cbmask); | ||||
|     tscatter+=usecond(); | ||||
|  | ||||
|   } | ||||
|   /* | ||||
|   std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl; | ||||
|   std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s"<<std::endl; | ||||
|   */ | ||||
| } | ||||
| #endif | ||||
| NAMESPACE_END(Grid);  | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -1,5 +1,4 @@ | ||||
| #include <Grid/GridCore.h>        | ||||
| NAMESPACE_BEGIN(Grid); | ||||
| std::vector<std::pair<int,int> > Cshift_table;  | ||||
| commVector<std::pair<int,int> > Cshift_table_device;  | ||||
| Vector<std::pair<int,int> > Cshift_table;  | ||||
| NAMESPACE_END(Grid); | ||||
|   | ||||
							
								
								
									
										23405
									
								
								Grid/json/json.hpp
									
									
									
									
									
								
							
							
						
						
									
										23405
									
								
								Grid/json/json.hpp
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							| @@ -35,10 +35,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #include <Grid/lattice/Lattice_transpose.h> | ||||
| #include <Grid/lattice/Lattice_local.h> | ||||
| #include <Grid/lattice/Lattice_reduction.h> | ||||
| #include <Grid/lattice/Lattice_crc.h> | ||||
| #include <Grid/lattice/Lattice_peekpoke.h> | ||||
| #include <Grid/lattice/Lattice_reality.h> | ||||
| #include <Grid/lattice/Lattice_real_imag.h> | ||||
| //#include <Grid/lattice/Lattice_reality.h> | ||||
| #include <Grid/lattice/Lattice_comparison_utils.h> | ||||
| #include <Grid/lattice/Lattice_comparison.h> | ||||
| #include <Grid/lattice/Lattice_coordinate.h> | ||||
| @@ -47,4 +45,3 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| #include <Grid/lattice/Lattice_unary.h> | ||||
| #include <Grid/lattice/Lattice_transfer.h> | ||||
| #include <Grid/lattice/Lattice_basis.h> | ||||
| #include <Grid/lattice/PaddedCell.h> | ||||
|   | ||||
| @@ -42,28 +42,13 @@ NAMESPACE_BEGIN(Grid); | ||||
| //////////////////////////////////////////////////// | ||||
| // Predicated where support | ||||
| //////////////////////////////////////////////////// | ||||
| #ifdef GRID_SIMT | ||||
| // drop to scalar in SIMT; cleaner in fact | ||||
| template <class iobj, class vobj, class robj> | ||||
| accelerator_inline vobj predicatedWhere(const iobj &predicate,  | ||||
| 					const vobj &iftrue,  | ||||
| 					const robj &iffalse)  | ||||
| { | ||||
|   Integer mask = TensorRemove(predicate); | ||||
|   typename std::remove_const<vobj>::type ret= iffalse; | ||||
|   if (mask) ret=iftrue; | ||||
|   return ret; | ||||
| } | ||||
| #else | ||||
| template <class iobj, class vobj, class robj> | ||||
| accelerator_inline vobj predicatedWhere(const iobj &predicate,  | ||||
| 					const vobj &iftrue,  | ||||
| 					const robj &iffalse)  | ||||
| { | ||||
| accelerator_inline vobj predicatedWhere(const iobj &predicate, const vobj &iftrue, | ||||
|                             const robj &iffalse) { | ||||
|   typename std::remove_const<vobj>::type ret; | ||||
|  | ||||
|   typedef typename vobj::scalar_object scalar_object; | ||||
|   //  typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   const int Nsimd = vobj::vector_type::Nsimd(); | ||||
| @@ -83,7 +68,6 @@ accelerator_inline vobj predicatedWhere(const iobj &predicate, | ||||
|   merge(ret, falsevals); | ||||
|   return ret; | ||||
| } | ||||
| #endif | ||||
|  | ||||
| ///////////////////////////////////////////////////// | ||||
| //Specialization of getVectorType for lattices | ||||
| @@ -97,62 +81,32 @@ struct getVectorType<Lattice<T> >{ | ||||
| //--  recursive evaluation of expressions; -- | ||||
| // handle leaves of syntax tree | ||||
| /////////////////////////////////////////////////// | ||||
| template<class sobj, | ||||
|   typename std::enable_if<!is_lattice<sobj>::value&&!is_lattice_expr<sobj>::value,sobj>::type * = nullptr>  | ||||
| accelerator_inline  | ||||
| template<class sobj> accelerator_inline  | ||||
| sobj eval(const uint64_t ss, const sobj &arg) | ||||
| { | ||||
|   return arg; | ||||
| } | ||||
| template <class lobj> accelerator_inline  | ||||
| auto eval(const uint64_t ss, const LatticeView<lobj> &arg) -> decltype(arg(ss)) | ||||
| { | ||||
|   return arg(ss); | ||||
| } | ||||
|  | ||||
| //////////////////////////////////////////// | ||||
| //--  recursive evaluation of expressions; -- | ||||
| // whole vector return, used only for expression return type inference | ||||
| /////////////////////////////////////////////////// | ||||
| template<class sobj> accelerator_inline  | ||||
| sobj vecEval(const uint64_t ss, const sobj &arg) | ||||
| { | ||||
|   return arg; | ||||
| } | ||||
| template <class lobj> accelerator_inline  | ||||
| const lobj & vecEval(const uint64_t ss, const LatticeView<lobj> &arg)  | ||||
| const lobj & eval(const uint64_t ss, const LatticeView<lobj> &arg)  | ||||
| { | ||||
|   return arg[ss]; | ||||
| } | ||||
|  | ||||
| /////////////////////////////////////////////////// | ||||
| // handle nodes in syntax tree- eval one operand | ||||
| // vecEval needed (but never called as all expressions offloaded) to infer the return type | ||||
| // in SIMT contexts of closure. | ||||
| /////////////////////////////////////////////////// | ||||
| template <typename Op, typename T1> accelerator_inline  | ||||
| auto vecEval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr)   | ||||
|   -> decltype(expr.op.func( vecEval(ss, expr.arg1))) | ||||
| // What needs this? | ||||
| // Cannot be legal on accelerator | ||||
| // Comparison must convert | ||||
| #if 1 | ||||
| template <class lobj> accelerator_inline  | ||||
| const lobj & eval(const uint64_t ss, const Lattice<lobj> &arg)  | ||||
| { | ||||
|   return expr.op.func( vecEval(ss, expr.arg1) ); | ||||
| } | ||||
| // vecEval two operands | ||||
| template <typename Op, typename T1, typename T2> accelerator_inline | ||||
| auto vecEval(const uint64_t ss, const LatticeBinaryExpression<Op, T1, T2> &expr)   | ||||
|   -> decltype(expr.op.func( vecEval(ss,expr.arg1),vecEval(ss,expr.arg2))) | ||||
| { | ||||
|   return expr.op.func( vecEval(ss,expr.arg1), vecEval(ss,expr.arg2) ); | ||||
| } | ||||
| // vecEval three operands | ||||
| template <typename Op, typename T1, typename T2, typename T3> accelerator_inline | ||||
| auto vecEval(const uint64_t ss, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)   | ||||
|   -> decltype(expr.op.func(vecEval(ss, expr.arg1), vecEval(ss, expr.arg2), vecEval(ss, expr.arg3))) | ||||
| { | ||||
|   return expr.op.func(vecEval(ss, expr.arg1), vecEval(ss, expr.arg2), vecEval(ss, expr.arg3)); | ||||
|   auto view = arg.View(AcceleratorRead); | ||||
|   return view[ss]; | ||||
| } | ||||
| #endif | ||||
|  | ||||
| /////////////////////////////////////////////////// | ||||
| // handle nodes in syntax tree- eval one operand coalesced | ||||
| // handle nodes in syntax tree- eval one operand | ||||
| /////////////////////////////////////////////////// | ||||
| template <typename Op, typename T1> accelerator_inline  | ||||
| auto eval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr)   | ||||
| @@ -160,41 +114,23 @@ auto eval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr) | ||||
| { | ||||
|   return expr.op.func( eval(ss, expr.arg1) ); | ||||
| } | ||||
| /////////////////////// | ||||
| // eval two operands | ||||
| /////////////////////// | ||||
| template <typename Op, typename T1, typename T2> accelerator_inline | ||||
| auto eval(const uint64_t ss, const LatticeBinaryExpression<Op, T1, T2> &expr)   | ||||
|   -> decltype(expr.op.func( eval(ss,expr.arg1),eval(ss,expr.arg2))) | ||||
| { | ||||
|   return expr.op.func( eval(ss,expr.arg1), eval(ss,expr.arg2) ); | ||||
| } | ||||
| /////////////////////// | ||||
| // eval three operands | ||||
| /////////////////////// | ||||
| template <typename Op, typename T1, typename T2, typename T3> accelerator_inline | ||||
| auto eval(const uint64_t ss, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)   | ||||
|   -> decltype(expr.op.func(eval(ss, expr.arg1),  | ||||
| 			   eval(ss, expr.arg2),  | ||||
| 			   eval(ss, expr.arg3))) | ||||
|   -> decltype(expr.op.func(eval(ss, expr.arg1), eval(ss, expr.arg2), eval(ss, expr.arg3))) | ||||
| { | ||||
| #ifdef GRID_SIMT | ||||
|   // Handles Nsimd (vInteger) != Nsimd(ComplexD) | ||||
|   typedef decltype(vecEval(ss, expr.arg2)) rvobj; | ||||
|   typedef typename std::remove_reference<rvobj>::type vobj; | ||||
|  | ||||
|   const int Nsimd = vobj::vector_type::Nsimd(); | ||||
|  | ||||
|   auto vpred = vecEval(ss,expr.arg1); | ||||
|  | ||||
|   ExtractBuffer<Integer> mask(Nsimd); | ||||
|   extract<vInteger, Integer>(TensorRemove(vpred), mask); | ||||
|  | ||||
|   int s = acceleratorSIMTlane(Nsimd); | ||||
|   return expr.op.func(mask[s], | ||||
| 		      eval(ss, expr.arg2),  | ||||
| 		      eval(ss, expr.arg3)); | ||||
| #else | ||||
|   return expr.op.func(eval(ss, expr.arg1), | ||||
| 		      eval(ss, expr.arg2),  | ||||
| 		      eval(ss, expr.arg3)); | ||||
| #endif | ||||
|   return expr.op.func(eval(ss, expr.arg1), eval(ss, expr.arg2), eval(ss, expr.arg3)); | ||||
| } | ||||
|  | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| @@ -292,7 +228,7 @@ template <typename Op, typename T1, typename T2> inline | ||||
| void ExpressionViewOpen(LatticeBinaryExpression<Op, T1, T2> &expr)  | ||||
| { | ||||
|   ExpressionViewOpen(expr.arg1);  // recurse AST | ||||
|   ExpressionViewOpen(expr.arg2);  // rrecurse AST | ||||
|   ExpressionViewOpen(expr.arg2);  // recurse AST | ||||
| } | ||||
| template <typename Op, typename T1, typename T2, typename T3> | ||||
| inline void ExpressionViewOpen(LatticeTrinaryExpression<Op, T1, T2, T3> &expr)  | ||||
| @@ -336,22 +272,28 @@ inline void ExpressionViewClose(LatticeTrinaryExpression<Op, T1, T2, T3> &expr) | ||||
| // Unary operators and funcs | ||||
| //////////////////////////////////////////// | ||||
| #define GridUnopClass(name, ret)					\ | ||||
|   template <class arg>							\ | ||||
|   struct name {								\ | ||||
|     template<class _arg> static auto accelerator_inline func(const _arg a) -> decltype(ret) { return ret; } \ | ||||
|     static auto accelerator_inline func(const arg a) -> decltype(ret) { return ret; } \ | ||||
|   }; | ||||
|  | ||||
| GridUnopClass(UnarySub, -a); | ||||
| GridUnopClass(UnaryNot, Not(a)); | ||||
| GridUnopClass(UnaryAdj, adj(a)); | ||||
| GridUnopClass(UnaryConj, conjugate(a)); | ||||
| GridUnopClass(UnaryTrace, trace(a)); | ||||
| GridUnopClass(UnaryTranspose, transpose(a)); | ||||
| GridUnopClass(UnaryTa, Ta(a)); | ||||
| GridUnopClass(UnarySpTa, SpTa(a)); | ||||
| GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a)); | ||||
| GridUnopClass(UnaryProjectOnSpGroup, ProjectOnSpGroup(a)); | ||||
| GridUnopClass(UnaryReal, real(a)); | ||||
| GridUnopClass(UnaryImag, imag(a)); | ||||
| GridUnopClass(UnaryToReal, toReal(a)); | ||||
| GridUnopClass(UnaryToComplex, toComplex(a)); | ||||
| GridUnopClass(UnaryTimesI, timesI(a)); | ||||
| GridUnopClass(UnaryTimesMinusI, timesMinusI(a)); | ||||
| GridUnopClass(UnaryAbs, abs(a)); | ||||
| GridUnopClass(UnarySqrt, sqrt(a)); | ||||
| GridUnopClass(UnaryRsqrt, rsqrt(a)); | ||||
| GridUnopClass(UnarySin, sin(a)); | ||||
| GridUnopClass(UnaryCos, cos(a)); | ||||
| GridUnopClass(UnaryAsin, asin(a)); | ||||
| @@ -363,10 +305,10 @@ GridUnopClass(UnaryExp, exp(a)); | ||||
| // Binary operators | ||||
| //////////////////////////////////////////// | ||||
| #define GridBinOpClass(name, combination)			\ | ||||
|   template <class left, class right>				\ | ||||
|   struct name {							\ | ||||
|     template <class _left, class _right>			\ | ||||
|     static auto accelerator_inline				\ | ||||
|     func(const _left &lhs, const _right &rhs)			\ | ||||
|     func(const left &lhs, const right &rhs)			\ | ||||
|       -> decltype(combination) const				\ | ||||
|     {								\ | ||||
|       return combination;					\ | ||||
| @@ -386,10 +328,10 @@ GridBinOpClass(BinaryOrOr, lhs || rhs); | ||||
| // Trinary conditional op | ||||
| //////////////////////////////////////////////////// | ||||
| #define GridTrinOpClass(name, combination)				\ | ||||
|   template <class predicate, class left, class right>			\ | ||||
|   struct name {								\ | ||||
|     template <class _predicate,class _left, class _right>		\ | ||||
|     static auto accelerator_inline					\ | ||||
|     func(const _predicate &pred, const _left &lhs, const _right &rhs)	\ | ||||
|     func(const predicate &pred, const left &lhs, const right &rhs)	\ | ||||
|       -> decltype(combination) const					\ | ||||
|     {									\ | ||||
|       return combination;						\ | ||||
| @@ -397,17 +339,17 @@ GridBinOpClass(BinaryOrOr, lhs || rhs); | ||||
|   }; | ||||
|  | ||||
| GridTrinOpClass(TrinaryWhere, | ||||
| 		(predicatedWhere< | ||||
| 		 typename std::remove_reference<_predicate>::type,  | ||||
| 		 typename std::remove_reference<_left>::type, | ||||
| 		 typename std::remove_reference<_right>::type>(pred, lhs,rhs))); | ||||
| 		(predicatedWhere<predicate,  | ||||
| 		 typename std::remove_reference<left>::type, | ||||
| 		 typename std::remove_reference<right>::type>(pred, lhs,rhs))); | ||||
|  | ||||
| //////////////////////////////////////////// | ||||
| // Operator syntactical glue | ||||
| //////////////////////////////////////////// | ||||
| #define GRID_UNOP(name)   name | ||||
| #define GRID_BINOP(name)  name | ||||
| #define GRID_TRINOP(name) name | ||||
|  | ||||
| #define GRID_UNOP(name)   name<decltype(eval(0, arg))> | ||||
| #define GRID_BINOP(name)  name<decltype(eval(0, lhs)), decltype(eval(0, rhs))> | ||||
| #define GRID_TRINOP(name) name<decltype(eval(0, pred)), decltype(eval(0, lhs)), decltype(eval(0, rhs))> | ||||
|  | ||||
| #define GRID_DEF_UNOP(op, name)						\ | ||||
|   template <typename T1, typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value,T1>::type * = nullptr> \ | ||||
| @@ -453,19 +395,22 @@ GridTrinOpClass(TrinaryWhere, | ||||
| GRID_DEF_UNOP(operator-, UnarySub); | ||||
| GRID_DEF_UNOP(Not, UnaryNot); | ||||
| GRID_DEF_UNOP(operator!, UnaryNot); | ||||
| //GRID_DEF_UNOP(adj, UnaryAdj); | ||||
| //GRID_DEF_UNOP(conjugate, UnaryConj); | ||||
| GRID_DEF_UNOP(adj, UnaryAdj); | ||||
| GRID_DEF_UNOP(conjugate, UnaryConj); | ||||
| GRID_DEF_UNOP(trace, UnaryTrace); | ||||
| GRID_DEF_UNOP(transpose, UnaryTranspose); | ||||
| GRID_DEF_UNOP(Ta, UnaryTa); | ||||
| GRID_DEF_UNOP(SpTa, UnarySpTa); | ||||
| GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup); | ||||
| GRID_DEF_UNOP(ProjectOnSpGroup, UnaryProjectOnSpGroup); | ||||
| GRID_DEF_UNOP(real, UnaryReal); | ||||
| GRID_DEF_UNOP(imag, UnaryImag); | ||||
| GRID_DEF_UNOP(toReal, UnaryToReal); | ||||
| GRID_DEF_UNOP(toComplex, UnaryToComplex); | ||||
| GRID_DEF_UNOP(timesI, UnaryTimesI); | ||||
| GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI); | ||||
| GRID_DEF_UNOP(abs, UnaryAbs);  // abs overloaded in cmath C++98; DON'T do the | ||||
|                                // abs-fabs-dabs-labs thing | ||||
| GRID_DEF_UNOP(sqrt, UnarySqrt); | ||||
| GRID_DEF_UNOP(rsqrt, UnaryRsqrt); | ||||
| GRID_DEF_UNOP(sin, UnarySin); | ||||
| GRID_DEF_UNOP(cos, UnaryCos); | ||||
| GRID_DEF_UNOP(asin, UnaryAsin); | ||||
| @@ -490,36 +435,29 @@ GRID_DEF_TRINOP(where, TrinaryWhere); | ||||
| ///////////////////////////////////////////////////////////// | ||||
| template <class Op, class T1> | ||||
| auto closure(const LatticeUnaryExpression<Op, T1> &expr) | ||||
|   -> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1)))>::type >  | ||||
|   -> Lattice<decltype(expr.op.func(eval(0, expr.arg1)))>  | ||||
| { | ||||
|   Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1)))>::type > ret(expr); | ||||
|   Lattice<decltype(expr.op.func(eval(0, expr.arg1)))> ret(expr); | ||||
|   return ret; | ||||
| } | ||||
| template <class Op, class T1, class T2> | ||||
| auto closure(const LatticeBinaryExpression<Op, T1, T2> &expr) | ||||
|   -> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),vecEval(0, expr.arg2)))>::type > | ||||
|   -> Lattice<decltype(expr.op.func(eval(0, expr.arg1),eval(0, expr.arg2)))>  | ||||
| { | ||||
|   Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),vecEval(0, expr.arg2)))>::type > ret(expr); | ||||
|   Lattice<decltype(expr.op.func(eval(0, expr.arg1),eval(0, expr.arg2)))> ret(expr); | ||||
|   return ret; | ||||
| } | ||||
| template <class Op, class T1, class T2, class T3> | ||||
| auto closure(const LatticeTrinaryExpression<Op, T1, T2, T3> &expr) | ||||
|   -> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1), | ||||
| 				   vecEval(0, expr.arg2), | ||||
| 				   vecEval(0, expr.arg3)))>::type > | ||||
|   -> Lattice<decltype(expr.op.func(eval(0, expr.arg1), | ||||
| 				   eval(0, expr.arg2), | ||||
| 				   eval(0, expr.arg3)))>  | ||||
| { | ||||
|   Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1), | ||||
| 				vecEval(0, expr.arg2), | ||||
| 			        vecEval(0, expr.arg3)))>::type >  ret(expr); | ||||
|   Lattice<decltype(expr.op.func(eval(0, expr.arg1), | ||||
| 				eval(0, expr.arg2), | ||||
| 				eval(0, expr.arg3)))>  ret(expr); | ||||
|   return ret; | ||||
| } | ||||
| #define EXPRESSION_CLOSURE(function)					\ | ||||
|   template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr> \ | ||||
|     auto function(Expression &expr) -> decltype(function(closure(expr))) \ | ||||
|   {									\ | ||||
|     return function(closure(expr));					\ | ||||
|   } | ||||
|  | ||||
|  | ||||
| #undef GRID_UNOP | ||||
| #undef GRID_BINOP | ||||
|   | ||||
| @@ -36,7 +36,6 @@ NAMESPACE_BEGIN(Grid); | ||||
| ////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
| void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){ | ||||
|   GRID_TRACE("mult"); | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
| @@ -54,7 +53,6 @@ void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){ | ||||
|    | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
| void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){ | ||||
|   GRID_TRACE("mac"); | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|   conformable(ret,rhs); | ||||
|   conformable(lhs,rhs); | ||||
| @@ -62,9 +60,9 @@ void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){ | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
|   autoView( rhs_v , rhs, AcceleratorRead); | ||||
|   accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{ | ||||
|     decltype(coalescedRead(obj1())) tmp; | ||||
|     auto lhs_t=lhs_v(ss); | ||||
|     auto rhs_t=rhs_v(ss); | ||||
|     auto tmp  =ret_v(ss); | ||||
|     mac(&tmp,&lhs_t,&rhs_t); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
| @@ -72,7 +70,6 @@ void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){ | ||||
|    | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
| void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){ | ||||
|   GRID_TRACE("sub"); | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|   conformable(ret,rhs); | ||||
|   conformable(lhs,rhs); | ||||
| @@ -89,7 +86,6 @@ void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){ | ||||
| } | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
| void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){ | ||||
|   GRID_TRACE("add"); | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|   conformable(ret,rhs); | ||||
|   conformable(lhs,rhs); | ||||
| @@ -110,7 +106,6 @@ void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){ | ||||
| ////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
| void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){ | ||||
|   GRID_TRACE("mult"); | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|   conformable(lhs,ret); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
| @@ -124,13 +119,12 @@ void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){ | ||||
|    | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
| void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){ | ||||
|   GRID_TRACE("mac"); | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|   conformable(ret,lhs); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( lhs_v , lhs, AcceleratorRead); | ||||
|   accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{ | ||||
|     auto tmp  =ret_v(ss); | ||||
|     decltype(coalescedRead(obj1())) tmp; | ||||
|     auto lhs_t=lhs_v(ss); | ||||
|     mac(&tmp,&lhs_t,&rhs); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
| @@ -139,7 +133,6 @@ void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){ | ||||
|    | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
| void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){ | ||||
|   GRID_TRACE("sub"); | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|   conformable(ret,lhs); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
| @@ -153,7 +146,6 @@ void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){ | ||||
| } | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
| void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){ | ||||
|   GRID_TRACE("add"); | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|   conformable(lhs,ret); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
| @@ -171,7 +163,6 @@ void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){ | ||||
| ////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
| void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){ | ||||
|   GRID_TRACE("mult"); | ||||
|   ret.Checkerboard() = rhs.Checkerboard(); | ||||
|   conformable(ret,rhs); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
| @@ -186,13 +177,12 @@ void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){ | ||||
|    | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
| void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){ | ||||
|   GRID_TRACE("mac"); | ||||
|   ret.Checkerboard() = rhs.Checkerboard(); | ||||
|   conformable(ret,rhs); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
|   autoView( rhs_v , lhs, AcceleratorRead); | ||||
|   accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{ | ||||
|     auto tmp  =ret_v(ss); | ||||
|     decltype(coalescedRead(obj1())) tmp; | ||||
|     auto rhs_t=rhs_v(ss); | ||||
|     mac(&tmp,&lhs,&rhs_t); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
| @@ -201,7 +191,6 @@ void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){ | ||||
|    | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
| void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){ | ||||
|   GRID_TRACE("sub"); | ||||
|   ret.Checkerboard() = rhs.Checkerboard(); | ||||
|   conformable(ret,rhs); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
| @@ -215,7 +204,6 @@ void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){ | ||||
| } | ||||
| template<class obj1,class obj2,class obj3> inline | ||||
| void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){ | ||||
|   GRID_TRACE("add"); | ||||
|   ret.Checkerboard() = rhs.Checkerboard(); | ||||
|   conformable(ret,rhs); | ||||
|   autoView( ret_v , ret, AcceleratorWrite); | ||||
| @@ -230,7 +218,6 @@ void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){ | ||||
|    | ||||
| template<class sobj,class vobj> inline | ||||
| void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y){ | ||||
|   GRID_TRACE("axpy"); | ||||
|   ret.Checkerboard() = x.Checkerboard(); | ||||
|   conformable(ret,x); | ||||
|   conformable(x,y); | ||||
| @@ -238,13 +225,12 @@ void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> & | ||||
|   autoView( x_v , x, AcceleratorRead); | ||||
|   autoView( y_v , y, AcceleratorRead); | ||||
|   accelerator_for(ss,x_v.size(),vobj::Nsimd(),{ | ||||
|     auto tmp = a*coalescedRead(x_v[ss])+coalescedRead(y_v[ss]); | ||||
|     auto tmp = a*x_v(ss)+y_v(ss); | ||||
|     coalescedWrite(ret_v[ss],tmp); | ||||
|   }); | ||||
| } | ||||
| template<class sobj,class vobj> inline | ||||
| void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y){ | ||||
|   GRID_TRACE("axpby"); | ||||
|   ret.Checkerboard() = x.Checkerboard(); | ||||
|   conformable(ret,x); | ||||
|   conformable(x,y); | ||||
| @@ -260,52 +246,13 @@ void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice | ||||
| template<class sobj,class vobj> inline | ||||
| RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y) | ||||
| { | ||||
|   GRID_TRACE("axpy_norm"); | ||||
|     return axpy_norm_fast(ret,a,x,y); | ||||
| } | ||||
| template<class sobj,class vobj> inline | ||||
| RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y) | ||||
| { | ||||
|   GRID_TRACE("axpby_norm"); | ||||
|     return axpby_norm_fast(ret,a,b,x,y); | ||||
| } | ||||
|  | ||||
| /// Trace product | ||||
| template<class obj> auto traceProduct(const Lattice<obj> &rhs_1,const Lattice<obj> &rhs_2) | ||||
|   -> Lattice<decltype(trace(obj()))> | ||||
| { | ||||
|   typedef decltype(trace(obj())) robj; | ||||
|   Lattice<robj> ret_i(rhs_1.Grid()); | ||||
|   autoView( rhs1 , rhs_1, AcceleratorRead); | ||||
|   autoView( rhs2 , rhs_2, AcceleratorRead); | ||||
|   autoView( ret , ret_i, AcceleratorWrite); | ||||
|   ret.Checkerboard() = rhs_1.Checkerboard(); | ||||
|   accelerator_for(ss,rhs1.size(),obj::Nsimd(),{ | ||||
|       coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2(ss))); | ||||
|   }); | ||||
|   return ret_i; | ||||
| } | ||||
|  | ||||
| template<class obj1,class obj2> auto traceProduct(const Lattice<obj1> &rhs_1,const obj2 &rhs2) | ||||
|   -> Lattice<decltype(trace(obj1()))> | ||||
| { | ||||
|   typedef decltype(trace(obj1())) robj; | ||||
|   Lattice<robj> ret_i(rhs_1.Grid()); | ||||
|   autoView( rhs1 , rhs_1, AcceleratorRead); | ||||
|   autoView( ret , ret_i, AcceleratorWrite); | ||||
|   ret.Checkerboard() = rhs_1.Checkerboard(); | ||||
|   accelerator_for(ss,rhs1.size(),obj1::Nsimd(),{ | ||||
|       coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2)); | ||||
|   }); | ||||
|   return ret_i; | ||||
| } | ||||
| template<class obj1,class obj2> auto traceProduct(const obj2 &rhs_2,const Lattice<obj1> &rhs_1) | ||||
|   -> Lattice<decltype(trace(obj1()))> | ||||
| { | ||||
|   return traceProduct(rhs_1,rhs_2); | ||||
| } | ||||
|  | ||||
|  | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
|   | ||||
| @@ -88,13 +88,6 @@ public: | ||||
|     LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this),mode); | ||||
|     accessor.ViewClose(); | ||||
|   } | ||||
|  | ||||
|   // Helper function to print the state of this object in the AccCache | ||||
|   void PrintCacheState(void) | ||||
|   { | ||||
|     MemoryManager::PrintState(this->_odata); | ||||
|   } | ||||
|  | ||||
|   ///////////////////////////////////////////////////////////////////////////////// | ||||
|   // Return a view object that may be dereferenced in site loops. | ||||
|   // The view is trivially copy constructible and may be copied to an accelerator device | ||||
| @@ -117,7 +110,6 @@ public: | ||||
|   //////////////////////////////////////////////////////////////////////////////// | ||||
|   template <typename Op, typename T1> inline Lattice<vobj> & operator=(const LatticeUnaryExpression<Op,T1> &expr) | ||||
|   { | ||||
|     GRID_TRACE("ExpressionTemplateEval"); | ||||
|     GridBase *egrid(nullptr); | ||||
|     GridFromExpression(egrid,expr); | ||||
|     assert(egrid!=nullptr); | ||||
| @@ -131,9 +123,9 @@ public: | ||||
|     auto exprCopy = expr; | ||||
|     ExpressionViewOpen(exprCopy); | ||||
|     auto me  = View(AcceleratorWriteDiscard); | ||||
|     accelerator_for(ss,me.size(),vobj::Nsimd(),{ | ||||
|     accelerator_for(ss,me.size(),1,{ | ||||
|       auto tmp = eval(ss,exprCopy); | ||||
|       coalescedWrite(me[ss],tmp); | ||||
|       vstream(me[ss],tmp); | ||||
|     }); | ||||
|     me.ViewClose(); | ||||
|     ExpressionViewClose(exprCopy); | ||||
| @@ -141,7 +133,6 @@ public: | ||||
|   } | ||||
|   template <typename Op, typename T1,typename T2> inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr) | ||||
|   { | ||||
|     GRID_TRACE("ExpressionTemplateEval"); | ||||
|     GridBase *egrid(nullptr); | ||||
|     GridFromExpression(egrid,expr); | ||||
|     assert(egrid!=nullptr); | ||||
| @@ -155,9 +146,9 @@ public: | ||||
|     auto exprCopy = expr; | ||||
|     ExpressionViewOpen(exprCopy); | ||||
|     auto me  = View(AcceleratorWriteDiscard); | ||||
|     accelerator_for(ss,me.size(),vobj::Nsimd(),{ | ||||
|     accelerator_for(ss,me.size(),1,{ | ||||
|       auto tmp = eval(ss,exprCopy); | ||||
|       coalescedWrite(me[ss],tmp); | ||||
|       vstream(me[ss],tmp); | ||||
|     }); | ||||
|     me.ViewClose(); | ||||
|     ExpressionViewClose(exprCopy); | ||||
| @@ -165,7 +156,6 @@ public: | ||||
|   } | ||||
|   template <typename Op, typename T1,typename T2,typename T3> inline Lattice<vobj> & operator=(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr) | ||||
|   { | ||||
|     GRID_TRACE("ExpressionTemplateEval"); | ||||
|     GridBase *egrid(nullptr); | ||||
|     GridFromExpression(egrid,expr); | ||||
|     assert(egrid!=nullptr); | ||||
| @@ -178,9 +168,9 @@ public: | ||||
|     auto exprCopy = expr; | ||||
|     ExpressionViewOpen(exprCopy); | ||||
|     auto me  = View(AcceleratorWriteDiscard); | ||||
|     accelerator_for(ss,me.size(),vobj::Nsimd(),{ | ||||
|     accelerator_for(ss,me.size(),1,{ | ||||
|       auto tmp = eval(ss,exprCopy); | ||||
|       coalescedWrite(me[ss],tmp); | ||||
|       vstream(me[ss],tmp); | ||||
|     }); | ||||
|     me.ViewClose(); | ||||
|     ExpressionViewClose(exprCopy); | ||||
| @@ -234,20 +224,10 @@ public: | ||||
|   } | ||||
|  | ||||
|   template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){ | ||||
|     vobj vtmp; | ||||
|     vtmp = r; | ||||
| #if 1 | ||||
|     auto me  = View(CpuWrite); | ||||
|     thread_for(ss,me.size(),{ | ||||
| 	me[ss]= r; | ||||
|     }); | ||||
| #else     | ||||
|     auto me  = View(AcceleratorWrite); | ||||
|     accelerator_for(ss,me.size(),vobj::Nsimd(),{ | ||||
| 	auto stmp=coalescedRead(vtmp); | ||||
| 	coalescedWrite(me[ss],stmp); | ||||
|     }); | ||||
| #endif     | ||||
|     me.ViewClose(); | ||||
|     return *this; | ||||
|   } | ||||
| @@ -301,8 +281,8 @@ public: | ||||
|     typename std::enable_if<!std::is_same<robj,vobj>::value,int>::type i=0; | ||||
|     conformable(*this,r); | ||||
|     this->checkerboard = r.Checkerboard(); | ||||
|     auto him= r.View(AcceleratorRead); | ||||
|     auto me =   View(AcceleratorWriteDiscard); | ||||
|     auto him= r.View(AcceleratorRead); | ||||
|     accelerator_for(ss,me.size(),vobj::Nsimd(),{ | ||||
|       coalescedWrite(me[ss],him(ss)); | ||||
|     }); | ||||
| @@ -316,8 +296,8 @@ public: | ||||
|   inline Lattice<vobj> & operator = (const Lattice<vobj> & r){ | ||||
|     this->checkerboard = r.Checkerboard(); | ||||
|     conformable(*this,r); | ||||
|     auto him= r.View(AcceleratorRead); | ||||
|     auto me =   View(AcceleratorWriteDiscard); | ||||
|     auto him= r.View(AcceleratorRead); | ||||
|     accelerator_for(ss,me.size(),vobj::Nsimd(),{ | ||||
|       coalescedWrite(me[ss],him(ss)); | ||||
|     }); | ||||
| @@ -370,7 +350,7 @@ public: | ||||
|  | ||||
| template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){ | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   for(int64_t g=0;g<o.Grid()->_gsites;g++){ | ||||
|   for(int g=0;g<o.Grid()->_gsites;g++){ | ||||
|  | ||||
|     Coordinate gcoor; | ||||
|     o.Grid()->GlobalIndexToGlobalCoor(g,gcoor); | ||||
|   | ||||
| @@ -54,34 +54,13 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm) | ||||
|   typedef decltype(basis[0].View(AcceleratorRead)) View; | ||||
|  | ||||
|   Vector<View> basis_v; basis_v.reserve(basis.size()); | ||||
|   typedef typename std::remove_reference<decltype(basis_v[0][0])>::type vobj; | ||||
|   typedef typename std::remove_reference<decltype(Qt(0,0))>::type Coeff_t; | ||||
|   GridBase* grid = basis[0].Grid(); | ||||
|        | ||||
|   for(int k=0;k<basis.size();k++){ | ||||
|     basis_v.push_back(basis[k].View(AcceleratorWrite)); | ||||
|   } | ||||
|  | ||||
| #if ( !(defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)) ) | ||||
|   int max_threads = thread_max(); | ||||
|   Vector < vobj > Bt(Nm * max_threads); | ||||
|   thread_region | ||||
|     { | ||||
|       vobj* B = &Bt[Nm * thread_num()]; | ||||
|       thread_for_in_region(ss, grid->oSites(),{ | ||||
| 	  for(int j=j0; j<j1; ++j) B[j]=0.; | ||||
|  | ||||
| 	  for(int j=j0; j<j1; ++j){ | ||||
| 	    for(int k=k0; k<k1; ++k){ | ||||
| 	      B[j] +=Qt(j,k) * basis_v[k][ss]; | ||||
| 	    } | ||||
| 	  } | ||||
| 	  for(int j=j0; j<j1; ++j){ | ||||
| 	    basis_v[j][ss] = B[j]; | ||||
| 	  } | ||||
| 	}); | ||||
|     } | ||||
| #else | ||||
|   View *basis_vp = &basis_v[0]; | ||||
|  | ||||
|   int nrot = j1-j0; | ||||
| @@ -91,12 +70,14 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm) | ||||
|   uint64_t oSites   =grid->oSites(); | ||||
|   uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead | ||||
|  | ||||
|   typedef typename std::remove_reference<decltype(basis_v[0][0])>::type vobj; | ||||
|  | ||||
|   Vector <vobj> Bt(siteBlock * nrot);  | ||||
|   auto Bp=&Bt[0]; | ||||
|  | ||||
|   // GPU readable copy of matrix | ||||
|   Vector<Coeff_t> Qt_jv(Nm*Nm); | ||||
|   Coeff_t *Qt_p = & Qt_jv[0]; | ||||
|   Vector<double> Qt_jv(Nm*Nm); | ||||
|   double *Qt_p = & Qt_jv[0]; | ||||
|   thread_for(i,Nm*Nm,{ | ||||
|       int j = i/Nm; | ||||
|       int k = i%Nm; | ||||
| @@ -125,7 +106,7 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm) | ||||
|  | ||||
| 	for(int k=k0; k<k1; ++k){ | ||||
| 	  auto tmp = coalescedRead(Bp[ss*nrot+j]); | ||||
| 	  coalescedWrite(Bp[ss*nrot+j],tmp+ Qt_p[jj*Nm+k] * coalescedRead(basis_vp[k][sss])); | ||||
| 	  coalescedWrite(Bp[ss*nrot+j],tmp+ Qt_p[jj*Nm+k] * coalescedRead(basis_v[k][sss])); | ||||
| 	} | ||||
|       }); | ||||
|  | ||||
| @@ -134,10 +115,9 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm) | ||||
| 	int jj  =j0+j; | ||||
| 	int ss =sj/nrot; | ||||
| 	int sss=ss+s; | ||||
| 	coalescedWrite(basis_vp[jj][sss],coalescedRead(Bp[ss*nrot+j])); | ||||
| 	coalescedWrite(basis_v[jj][sss],coalescedRead(Bp[ss*nrot+j])); | ||||
|       }); | ||||
|   } | ||||
| #endif | ||||
|  | ||||
|   for(int k=0;k<basis.size();k++) basis_v[k].ViewClose(); | ||||
| } | ||||
| @@ -161,13 +141,11 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in | ||||
|   double * Qt_j = & Qt_jv[0]; | ||||
|   for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k); | ||||
|  | ||||
|   auto basis_vp=& basis_v[0]; | ||||
|   autoView(result_v,result,AcceleratorWrite); | ||||
|   accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{ | ||||
|     vobj zzz=Zero(); | ||||
|     auto B=coalescedRead(zzz); | ||||
|     auto B=coalescedRead(zz); | ||||
|     for(int k=k0; k<k1; ++k){ | ||||
|       B +=Qt_j[k] * coalescedRead(basis_vp[k][ss]); | ||||
|       B +=Qt_j[k] * coalescedRead(basis_v[k][ss]); | ||||
|     } | ||||
|     coalescedWrite(result_v[ss], B); | ||||
|   }); | ||||
|   | ||||
| @@ -42,6 +42,34 @@ NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| typedef iScalar<vInteger> vPredicate ; | ||||
|  | ||||
| /* | ||||
| template <class iobj, class vobj, class robj> accelerator_inline  | ||||
| vobj predicatedWhere(const iobj &predicate, const vobj &iftrue, const robj &iffalse)  | ||||
| { | ||||
|   typename std::remove_const<vobj>::type ret; | ||||
|  | ||||
|   typedef typename vobj::scalar_object scalar_object; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   const int Nsimd = vobj::vector_type::Nsimd(); | ||||
|  | ||||
|   ExtractBuffer<Integer> mask(Nsimd); | ||||
|   ExtractBuffer<scalar_object> truevals(Nsimd); | ||||
|   ExtractBuffer<scalar_object> falsevals(Nsimd); | ||||
|  | ||||
|   extract(iftrue, truevals); | ||||
|   extract(iffalse, falsevals); | ||||
|   extract<vInteger, Integer>(TensorRemove(predicate), mask); | ||||
|  | ||||
|   for (int s = 0; s < Nsimd; s++) { | ||||
|     if (mask[s]) falsevals[s] = truevals[s]; | ||||
|   } | ||||
|  | ||||
|   merge(ret, falsevals); | ||||
|   return ret; | ||||
| } | ||||
| */ | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
| // compare lattice to lattice | ||||
| ////////////////////////////////////////////////////////////////////////// | ||||
|   | ||||
| @@ -1,55 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/lattice/Lattice_crc.h | ||||
|  | ||||
|     Copyright (C) 2021 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class vobj> void DumpSliceNorm(std::string s,const Lattice<vobj> &f,int mu=-1) | ||||
| { | ||||
|   auto ff = localNorm2(f); | ||||
|   if ( mu==-1 ) mu = f.Grid()->Nd()-1; | ||||
|   typedef typename vobj::tensor_reduced normtype; | ||||
|   typedef typename normtype::scalar_object scalar; | ||||
|   std::vector<scalar> sff; | ||||
|   sliceSum(ff,sff,mu); | ||||
|   for(int t=0;t<sff.size();t++){ | ||||
|     std::cout << s<<" "<<t<<" "<<sff[t]<<std::endl; | ||||
|   } | ||||
| } | ||||
|  | ||||
| template<class vobj> uint32_t crc(const Lattice<vobj> & buf) | ||||
| { | ||||
|   autoView( buf_v , buf, CpuRead); | ||||
|   return ::crc32(0L,(unsigned char *)&buf_v[0],(size_t)sizeof(vobj)*buf.oSites()); | ||||
| } | ||||
|  | ||||
| #define CRC(U) std::cerr << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|  | ||||
| @@ -32,6 +32,7 @@ template<class vobj> | ||||
| static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)  | ||||
| {     | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   int Nblock = X.Grid()->GlobalDimensions()[Orthog]; | ||||
| @@ -81,6 +82,7 @@ template<class vobj> | ||||
| static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0)  | ||||
| {     | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   int Nblock = X.Grid()->GlobalDimensions()[Orthog]; | ||||
| @@ -128,6 +130,7 @@ template<class vobj> | ||||
| static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)  | ||||
| { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|    | ||||
|   GridBase *FullGrid  = lhs.Grid(); | ||||
|   | ||||
| @@ -96,6 +96,9 @@ void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){ | ||||
|  | ||||
|   GridBase *grid=l.Grid(); | ||||
|  | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   int Nsimd = grid->Nsimd(); | ||||
|  | ||||
|   assert( l.Checkerboard()== l.Grid()->CheckerBoard(site)); | ||||
| @@ -122,17 +125,14 @@ void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){ | ||||
| ////////////////////////////////////////////////////////// | ||||
| // Peek a scalar object from the SIMD array | ||||
| ////////////////////////////////////////////////////////// | ||||
| template<class vobj> | ||||
| typename vobj::scalar_object peekSite(const Lattice<vobj> &l,const Coordinate &site){ | ||||
|   typename vobj::scalar_object s; | ||||
|   peekSite(s,l,site); | ||||
|   return s; | ||||
| }         | ||||
| template<class vobj,class sobj> | ||||
| void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){ | ||||
|          | ||||
|   GridBase *grid=l.Grid(); | ||||
|  | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   int Nsimd = grid->Nsimd(); | ||||
|  | ||||
|   assert( l.Checkerboard() == l.Grid()->CheckerBoard(site)); | ||||
| @@ -173,23 +173,15 @@ inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site) | ||||
|   idx= grid->iIndex(site); | ||||
|   odx= grid->oIndex(site); | ||||
|    | ||||
|   const vector_type *vp = (const vector_type *) &l[odx]; | ||||
|   scalar_type * vp = (scalar_type *)&l[odx]; | ||||
|   scalar_type * pt = (scalar_type *)&s; | ||||
|        | ||||
|   for(int w=0;w<words;w++){ | ||||
|     pt[w] = getlane(vp[w],idx); | ||||
|     pt[w] = vp[idx+w*Nsimd]; | ||||
|   } | ||||
|        | ||||
|   return; | ||||
| }; | ||||
| template<class vobj,class sobj> | ||||
| inline void peekLocalSite(sobj &s,const Lattice<vobj> &l,Coordinate &site) | ||||
| { | ||||
|   autoView(lv,l,CpuRead); | ||||
|   peekLocalSite(s,lv,site); | ||||
|   return; | ||||
| }; | ||||
|  | ||||
| // Must be CPU write view | ||||
| template<class vobj,class sobj> | ||||
| inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site) | ||||
| @@ -210,22 +202,14 @@ inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site) | ||||
|   idx= grid->iIndex(site); | ||||
|   odx= grid->oIndex(site); | ||||
|  | ||||
|   vector_type * vp = (vector_type *)&l[odx]; | ||||
|   scalar_type * vp = (scalar_type *)&l[odx]; | ||||
|   scalar_type * pt = (scalar_type *)&s; | ||||
|   for(int w=0;w<words;w++){ | ||||
|     putlane(vp[w],pt[w],idx); | ||||
|     vp[idx+w*Nsimd] = pt[w]; | ||||
|   } | ||||
|   return; | ||||
| }; | ||||
|  | ||||
| template<class vobj,class sobj> | ||||
| inline void pokeLocalSite(const sobj &s, Lattice<vobj> &l,Coordinate &site) | ||||
| { | ||||
|   autoView(lv,l,CpuWrite); | ||||
|   pokeLocalSite(s,lv,site); | ||||
|   return; | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
|  | ||||
|   | ||||
| @@ -1,79 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/lattice/Lattice_reality.h | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
| Author: neo <cossu@post.kek.jp> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #ifndef GRID_LATTICE_REAL_IMAG_H | ||||
| #define GRID_LATTICE_REAL_IMAG_H | ||||
|  | ||||
|  | ||||
| // FIXME .. this is the sector of the code  | ||||
| // I am most worried about the directions | ||||
| // The choice of burying complex in the SIMD | ||||
| // is making the use of "real" and "imag" very cumbersome | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class vobj> inline Lattice<vobj> real(const Lattice<vobj> &lhs){ | ||||
|   Lattice<vobj> ret(lhs.Grid()); | ||||
|  | ||||
|   autoView( lhs_v, lhs, AcceleratorRead); | ||||
|   autoView( ret_v, ret, AcceleratorWrite); | ||||
|  | ||||
|   ret.Checkerboard()=lhs.Checkerboard(); | ||||
|   accelerator_for( ss, lhs_v.size(), 1, { | ||||
|     ret_v[ss] =real(lhs_v[ss]); | ||||
|   }); | ||||
|   return ret; | ||||
| }; | ||||
| template<class vobj> inline Lattice<vobj> imag(const Lattice<vobj> &lhs){ | ||||
|   Lattice<vobj> ret(lhs.Grid()); | ||||
|  | ||||
|   autoView( lhs_v, lhs, AcceleratorRead); | ||||
|   autoView( ret_v, ret, AcceleratorWrite); | ||||
|  | ||||
|   ret.Checkerboard()=lhs.Checkerboard(); | ||||
|   accelerator_for( ss, lhs_v.size(), 1, { | ||||
|     ret_v[ss] =imag(lhs_v[ss]); | ||||
|   }); | ||||
|   return ret; | ||||
| }; | ||||
|  | ||||
| template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>  | ||||
|   auto real(const Expression &expr) -> decltype(real(closure(expr)))		 | ||||
| {									 | ||||
|   return real(closure(expr));					 | ||||
| } | ||||
| template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>  | ||||
|   auto imag(const Expression &expr) -> decltype(imag(closure(expr)))		 | ||||
| {									 | ||||
|   return imag(closure(expr));					 | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif | ||||
| @@ -45,8 +45,8 @@ template<class vobj> inline Lattice<vobj> adj(const Lattice<vobj> &lhs){ | ||||
|   autoView( ret_v, ret, AcceleratorWrite); | ||||
|  | ||||
|   ret.Checkerboard()=lhs.Checkerboard(); | ||||
|   accelerator_for( ss, lhs_v.size(), 1, { | ||||
|      ret_v[ss] = adj(lhs_v[ss]); | ||||
|   accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), { | ||||
|     coalescedWrite(ret_v[ss], adj(lhs_v(ss))); | ||||
|   }); | ||||
|   return ret; | ||||
| }; | ||||
| @@ -64,53 +64,6 @@ template<class vobj> inline Lattice<vobj> conjugate(const Lattice<vobj> &lhs){ | ||||
|   return ret; | ||||
| }; | ||||
|  | ||||
| template<class vobj> inline Lattice<typename vobj::Complexified> toComplex(const Lattice<vobj> &lhs){ | ||||
|   Lattice<typename vobj::Complexified> ret(lhs.Grid()); | ||||
|  | ||||
|   autoView( lhs_v, lhs, AcceleratorRead); | ||||
|   autoView( ret_v, ret, AcceleratorWrite); | ||||
|  | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|   accelerator_for( ss, lhs_v.size(), 1, { | ||||
|     ret_v[ss] = toComplex(lhs_v[ss]); | ||||
|   }); | ||||
|   return ret; | ||||
| }; | ||||
| template<class vobj> inline Lattice<typename vobj::Realified> toReal(const Lattice<vobj> &lhs){ | ||||
|   Lattice<typename vobj::Realified> ret(lhs.Grid()); | ||||
|  | ||||
|   autoView( lhs_v, lhs, AcceleratorRead); | ||||
|   autoView( ret_v, ret, AcceleratorWrite); | ||||
|  | ||||
|   ret.Checkerboard() = lhs.Checkerboard(); | ||||
|   accelerator_for( ss, lhs_v.size(), 1, { | ||||
|     ret_v[ss] = toReal(lhs_v[ss]); | ||||
|   }); | ||||
|   return ret; | ||||
| }; | ||||
|  | ||||
|  | ||||
| template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>  | ||||
| auto toComplex(const Expression &expr)  -> decltype(closure(expr))  | ||||
| { | ||||
|   return toComplex(closure(expr)); | ||||
| } | ||||
| template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>  | ||||
| auto toReal(const Expression &expr)  -> decltype(closure(expr))  | ||||
| { | ||||
|   return toReal(closure(expr)); | ||||
| } | ||||
| template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>  | ||||
| auto adj(const Expression &expr)  -> decltype(closure(expr))  | ||||
| { | ||||
|   return adj(closure(expr)); | ||||
| } | ||||
| template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>  | ||||
| auto conjugate(const Expression &expr)  -> decltype(closure(expr))  | ||||
| { | ||||
|   return conjugate(closure(expr)); | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| #endif | ||||
|   | ||||
| @@ -28,10 +28,6 @@ Author: Christoph Lehner <christoph@lhnr.de> | ||||
| #if defined(GRID_CUDA)||defined(GRID_HIP) | ||||
| #include <Grid/lattice/Lattice_reduction_gpu.h> | ||||
| #endif | ||||
| #if defined(GRID_SYCL) | ||||
| #include <Grid/lattice/Lattice_reduction_sycl.h> | ||||
| #endif | ||||
| #include <Grid/lattice/Lattice_slicesum_core.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| @@ -95,40 +91,17 @@ inline typename vobj::scalar_objectD sumD_cpu(const vobj *arg, Integer osites) | ||||
|   for(int i=0;i<nthread;i++){ | ||||
|     ssum = ssum+sumarray[i]; | ||||
|   }  | ||||
|   return ssum; | ||||
| } | ||||
| /* | ||||
| Threaded max, don't use for now | ||||
| template<class Double> | ||||
| inline Double max(const Double *arg, Integer osites) | ||||
| { | ||||
|   //  const int Nsimd = vobj::Nsimd(); | ||||
|   const int nthread = GridThread::GetThreads(); | ||||
|    | ||||
|   std::vector<Double> maxarray(nthread); | ||||
|   typedef typename vobj::scalar_object ssobj; | ||||
|   ssobj ret = ssum; | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
|   thread_for(thr,nthread, { | ||||
|     int nwork, mywork, myoff; | ||||
|     nwork = osites; | ||||
|     GridThread::GetWork(nwork,thr,mywork,myoff); | ||||
|     Double max=arg[0]; | ||||
|     for(int ss=myoff;ss<mywork+myoff; ss++){ | ||||
|       if( arg[ss] > max ) max = arg[ss]; | ||||
|     } | ||||
|     maxarray[thr]=max; | ||||
|   }); | ||||
|  | ||||
|   Double tmax=maxarray[0]; | ||||
|   for(int i=0;i<nthread;i++){ | ||||
|     if (maxarray[i]>tmax) tmax = maxarray[i]; | ||||
|   }  | ||||
|   return tmax; | ||||
| } | ||||
| */ | ||||
| template<class vobj> | ||||
| inline typename vobj::scalar_object sum(const vobj *arg, Integer osites) | ||||
| { | ||||
| #if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL) | ||||
| #if defined(GRID_CUDA)||defined(GRID_HIP) | ||||
|   return sum_gpu(arg,osites); | ||||
| #else | ||||
|   return sum_cpu(arg,osites); | ||||
| @@ -137,61 +110,25 @@ inline typename vobj::scalar_object sum(const vobj *arg, Integer osites) | ||||
| template<class vobj> | ||||
| inline typename vobj::scalar_objectD sumD(const vobj *arg, Integer osites) | ||||
| { | ||||
| #if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL) | ||||
| #if defined(GRID_CUDA)||defined(GRID_HIP) | ||||
|   return sumD_gpu(arg,osites); | ||||
| #else | ||||
|   return sumD_cpu(arg,osites); | ||||
| #endif   | ||||
| } | ||||
| template<class vobj> | ||||
| inline typename vobj::scalar_objectD sumD_large(const vobj *arg, Integer osites) | ||||
| { | ||||
| #if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL) | ||||
|   return sumD_gpu_large(arg,osites); | ||||
| #else | ||||
|   return sumD_cpu(arg,osites); | ||||
| #endif   | ||||
| } | ||||
|  | ||||
| template<class vobj> | ||||
| inline typename vobj::scalar_object rankSum(const Lattice<vobj> &arg) | ||||
| { | ||||
|   Integer osites = arg.Grid()->oSites(); | ||||
| #if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL) | ||||
|   autoView( arg_v, arg, AcceleratorRead); | ||||
|   return sum_gpu(&arg_v[0],osites); | ||||
| #else | ||||
|   autoView(arg_v, arg, CpuRead); | ||||
|   return sum_cpu(&arg_v[0],osites); | ||||
| #endif   | ||||
| } | ||||
|  | ||||
| template<class vobj> | ||||
| inline typename vobj::scalar_object sum(const Lattice<vobj> &arg) | ||||
| { | ||||
|   auto ssum = rankSum(arg); | ||||
|   arg.Grid()->GlobalSum(ssum); | ||||
|   return ssum; | ||||
| } | ||||
|  | ||||
| template<class vobj> | ||||
| inline typename vobj::scalar_object rankSumLarge(const Lattice<vobj> &arg) | ||||
| { | ||||
| #if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL) | ||||
| #if defined(GRID_CUDA)||defined(GRID_HIP) | ||||
|   autoView( arg_v, arg, AcceleratorRead); | ||||
|   Integer osites = arg.Grid()->oSites(); | ||||
|   return sum_gpu_large(&arg_v[0],osites); | ||||
|   auto ssum= sum_gpu(&arg_v[0],osites); | ||||
| #else | ||||
|   autoView(arg_v, arg, CpuRead); | ||||
|   Integer osites = arg.Grid()->oSites(); | ||||
|   return sum_cpu(&arg_v[0],osites); | ||||
|   auto ssum= sum_cpu(&arg_v[0],osites); | ||||
| #endif   | ||||
| } | ||||
|  | ||||
| template<class vobj> | ||||
| inline typename vobj::scalar_object sum_large(const Lattice<vobj> &arg) | ||||
| { | ||||
|   auto ssum = rankSumLarge(arg); | ||||
|   arg.Grid()->GlobalSum(ssum); | ||||
|   return ssum; | ||||
| } | ||||
| @@ -204,57 +141,11 @@ template<class vobj> inline RealD norm2(const Lattice<vobj> &arg){ | ||||
|   return real(nrm);  | ||||
| } | ||||
|  | ||||
|  | ||||
| template<class Op,class T1> | ||||
| inline auto norm2(const LatticeUnaryExpression<Op,T1> & expr)  ->RealD | ||||
| { | ||||
|   return norm2(closure(expr)); | ||||
| } | ||||
|  | ||||
| template<class Op,class T1,class T2> | ||||
| inline auto norm2(const LatticeBinaryExpression<Op,T1,T2> & expr)      ->RealD | ||||
| { | ||||
|   return norm2(closure(expr)); | ||||
| } | ||||
|  | ||||
|  | ||||
| template<class Op,class T1,class T2,class T3> | ||||
| inline auto norm2(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)      ->RealD | ||||
| { | ||||
|   return norm2(closure(expr)); | ||||
| } | ||||
|  | ||||
|  | ||||
| //The global maximum of the site norm2 | ||||
| template<class vobj> inline RealD maxLocalNorm2(const Lattice<vobj> &arg) | ||||
| { | ||||
|   typedef typename vobj::tensor_reduced vscalar;  //iScalar<iScalar<.... <vPODtype> > > | ||||
|   typedef typename vscalar::scalar_object  scalar;   //iScalar<iScalar<.... <PODtype> > > | ||||
|  | ||||
|   Lattice<vscalar> inner = localNorm2(arg); | ||||
|  | ||||
|   auto grid = arg.Grid(); | ||||
|  | ||||
|   RealD max; | ||||
|   for(int l=0;l<grid->lSites();l++){ | ||||
|     Coordinate coor; | ||||
|     scalar val; | ||||
|     RealD r; | ||||
|     grid->LocalIndexToLocalCoor(l,coor); | ||||
|     peekLocalSite(val,inner,coor); | ||||
|     r=real(TensorRemove(val)); | ||||
|     if( (l==0) || (r>max)){ | ||||
|       max=r; | ||||
|     } | ||||
|   } | ||||
|   grid->GlobalMax(max); | ||||
|   return max; | ||||
| } | ||||
|  | ||||
| // Double inner product | ||||
| template<class vobj> | ||||
| inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) | ||||
| { | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_typeD vector_type; | ||||
|   ComplexD  nrm; | ||||
|    | ||||
| @@ -264,67 +155,33 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> & | ||||
|   const uint64_t sites = grid->oSites(); | ||||
|    | ||||
|   // Might make all code paths go this way. | ||||
| #if 0 | ||||
|   typedef decltype(innerProductD(vobj(),vobj())) inner_t; | ||||
|   Vector<inner_t> inner_tmp(sites); | ||||
|   auto inner_tmp_v = &inner_tmp[0]; | ||||
|   { | ||||
|     autoView( left_v , left, AcceleratorRead); | ||||
|     autoView( right_v,right, AcceleratorRead); | ||||
|     // This code could read coalesce | ||||
|     // GPU - SIMT lane compliance... | ||||
|     accelerator_for( ss, sites, nsimd,{ | ||||
| 	auto x_l = left_v(ss); | ||||
| 	auto y_l = right_v(ss); | ||||
| 	coalescedWrite(inner_tmp_v[ss],innerProductD(x_l,y_l)); | ||||
|     }); | ||||
|   } | ||||
| #else | ||||
|   typedef decltype(innerProduct(vobj(),vobj())) inner_t; | ||||
|   Vector<inner_t> inner_tmp(sites); | ||||
|   auto inner_tmp_v = &inner_tmp[0]; | ||||
|      | ||||
|   { | ||||
|     autoView( left_v , left, AcceleratorRead); | ||||
|     autoView( right_v,right, AcceleratorRead); | ||||
|  | ||||
|     // GPU - SIMT lane compliance... | ||||
|     accelerator_for( ss, sites, nsimd,{ | ||||
| 	auto x_l = left_v(ss); | ||||
| 	auto y_l = right_v(ss); | ||||
| 	coalescedWrite(inner_tmp_v[ss],innerProduct(x_l,y_l)); | ||||
|     accelerator_for( ss, sites, 1,{ | ||||
| 	auto x_l = left_v[ss]; | ||||
| 	auto y_l = right_v[ss]; | ||||
| 	inner_tmp_v[ss]=innerProductD(x_l,y_l); | ||||
|     }); | ||||
|   } | ||||
| #endif | ||||
|  | ||||
|   // This is in single precision and fails some tests | ||||
|   auto anrm = sumD(inner_tmp_v,sites);   | ||||
|   auto anrm = sum(inner_tmp_v,sites);   | ||||
|   nrm = anrm; | ||||
|   return nrm; | ||||
| } | ||||
|  | ||||
|  | ||||
| template<class vobj> | ||||
| inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) { | ||||
|   GridBase *grid = left.Grid(); | ||||
|  | ||||
| #ifdef GRID_SYCL | ||||
|   uint64_t csum=0; | ||||
|   if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone) | ||||
|   { | ||||
|     // Hack | ||||
|     // Fast integer xor checksum. Can also be used in comms now. | ||||
|     autoView(l_v,left,AcceleratorRead); | ||||
|     Integer words = left.Grid()->oSites()*sizeof(vobj)/sizeof(uint64_t); | ||||
|     uint64_t *base= (uint64_t *)&l_v[0]; | ||||
|     csum=svm_xor(base,words); | ||||
|   } | ||||
|   FlightRecorder::CsumLog(csum); | ||||
| #endif | ||||
|   ComplexD nrm = rankInnerProduct(left,right); | ||||
|   RealD local = real(nrm); | ||||
|   FlightRecorder::NormLog(real(nrm));  | ||||
|   grid->GlobalSum(nrm); | ||||
|   FlightRecorder::ReductionLog(local,real(nrm));  | ||||
|   return nrm; | ||||
| } | ||||
|  | ||||
| @@ -348,7 +205,8 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt | ||||
|   conformable(z,x); | ||||
|   conformable(x,y); | ||||
|  | ||||
|   //  typedef typename vobj::vector_typeD vector_type; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_typeD vector_type; | ||||
|   RealD  nrm; | ||||
|    | ||||
|   GridBase *grid = x.Grid(); | ||||
| @@ -360,29 +218,17 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt | ||||
|   autoView( x_v, x, AcceleratorRead); | ||||
|   autoView( y_v, y, AcceleratorRead); | ||||
|   autoView( z_v, z, AcceleratorWrite); | ||||
| #if 0 | ||||
|  | ||||
|   typedef decltype(innerProductD(x_v[0],y_v[0])) inner_t; | ||||
|   Vector<inner_t> inner_tmp(sites); | ||||
|   auto inner_tmp_v = &inner_tmp[0]; | ||||
|  | ||||
|   accelerator_for( ss, sites, nsimd,{ | ||||
|       auto tmp = a*x_v(ss)+b*y_v(ss); | ||||
|       coalescedWrite(inner_tmp_v[ss],innerProductD(tmp,tmp)); | ||||
|       coalescedWrite(z_v[ss],tmp); | ||||
|   accelerator_for( ss, sites, 1,{ | ||||
|       auto tmp = a*x_v[ss]+b*y_v[ss]; | ||||
|       inner_tmp_v[ss]=innerProductD(tmp,tmp); | ||||
|       z_v[ss]=tmp; | ||||
|   }); | ||||
|   nrm = real(TensorRemove(sum(inner_tmp_v,sites))); | ||||
| #else | ||||
|   typedef decltype(innerProduct(x_v[0],y_v[0])) inner_t; | ||||
|   Vector<inner_t> inner_tmp(sites); | ||||
|   auto inner_tmp_v = &inner_tmp[0]; | ||||
|  | ||||
|   accelerator_for( ss, sites, nsimd,{ | ||||
|       auto tmp = a*x_v(ss)+b*y_v(ss); | ||||
|       coalescedWrite(inner_tmp_v[ss],innerProduct(tmp,tmp)); | ||||
|       coalescedWrite(z_v[ss],tmp); | ||||
|   }); | ||||
|   nrm = real(TensorRemove(sumD(inner_tmp_v,sites))); | ||||
| #endif | ||||
|   grid->GlobalSum(nrm); | ||||
|   return nrm;  | ||||
| } | ||||
| @@ -392,6 +238,7 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti | ||||
| { | ||||
|   conformable(left,right); | ||||
|  | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_typeD vector_type; | ||||
|   Vector<ComplexD> tmp(2); | ||||
|  | ||||
| @@ -462,7 +309,6 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector< | ||||
|   // But easily avoided by using double precision fields | ||||
|   /////////////////////////////////////////////////////// | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_object::scalar_type scalar_type; | ||||
|   GridBase  *grid = Data.Grid(); | ||||
|   assert(grid!=NULL); | ||||
|  | ||||
| @@ -488,10 +334,19 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector< | ||||
|   int e1=    grid->_slice_nblock[orthogdim]; | ||||
|   int e2=    grid->_slice_block [orthogdim]; | ||||
|   int stride=grid->_slice_stride[orthogdim]; | ||||
|   int ostride=grid->_ostride[orthogdim]; | ||||
|  | ||||
|   //Reduce Data down to lvSum | ||||
|   sliceSumReduction(Data,lvSum,rd, e1,e2,stride,ostride,Nsimd); | ||||
|   // sum over reduced dimension planes, breaking out orthog dir | ||||
|   // Parallel over orthog direction | ||||
|   autoView( Data_v, Data, CpuRead); | ||||
|   thread_for( r,rd, { | ||||
|     int so=r*grid->_ostride[orthogdim]; // base offset for start of plane  | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
| 	int ss= so+n*stride+b; | ||||
| 	lvSum[r]=lvSum[r]+Data_v[ss]; | ||||
|       } | ||||
|     } | ||||
|   }); | ||||
|  | ||||
|   // Sum across simd lanes in the plane, breaking out orthog dir. | ||||
|   Coordinate icoor(Nd); | ||||
| @@ -512,29 +367,21 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector< | ||||
|   } | ||||
|    | ||||
|   // sum over nodes. | ||||
|   sobj gsum; | ||||
|   for(int t=0;t<fd;t++){ | ||||
|     int pt = t/ld; // processor plane | ||||
|     int lt = t%ld; | ||||
|     if ( pt == grid->_processor_coor[orthogdim] ) { | ||||
|       result[t]=lsSum[lt]; | ||||
|       gsum=lsSum[lt]; | ||||
|     } else { | ||||
|       result[t]=Zero(); | ||||
|       gsum=Zero(); | ||||
|     } | ||||
|  | ||||
|   } | ||||
|   scalar_type * ptr = (scalar_type *) &result[0]; | ||||
|   int words = fd*sizeof(sobj)/sizeof(scalar_type); | ||||
|   grid->GlobalSumVector(ptr, words); | ||||
| } | ||||
| template<class vobj> inline | ||||
| std::vector<typename vobj::scalar_object>  | ||||
| sliceSum(const Lattice<vobj> &Data,int orthogdim) | ||||
| { | ||||
|   std::vector<typename vobj::scalar_object> result; | ||||
|   sliceSum(Data,result,orthogdim); | ||||
|   return result; | ||||
| } | ||||
|     grid->GlobalSum(gsum); | ||||
|  | ||||
|     result[t]=gsum; | ||||
|   } | ||||
| } | ||||
|  | ||||
| template<class vobj> | ||||
| static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)  | ||||
| @@ -640,7 +487,6 @@ template<class vobj> | ||||
| static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice<vobj> &X,const Lattice<vobj> &Y, | ||||
| 			    int orthogdim,RealD scale=1.0)  | ||||
| {     | ||||
|   // perhaps easier to just promote A to a field and use regular madd | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
| @@ -671,7 +517,8 @@ static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice | ||||
|     for(int l=0;l<Nsimd;l++){ | ||||
|       grid->iCoorFromIindex(icoor,l); | ||||
|       int ldx =r+icoor[orthogdim]*rd; | ||||
|       av.putlane(scalar_type(a[ldx])*zscale,l); | ||||
|       scalar_type *as =(scalar_type *)&av; | ||||
|       as[l] = scalar_type(a[ldx])*zscale; | ||||
|     } | ||||
|  | ||||
|     tensor_reduced at; at=av; | ||||
| @@ -711,6 +558,7 @@ template<class vobj> | ||||
| static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)  | ||||
| {     | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   int Nblock = X.Grid()->GlobalDimensions()[Orthog]; | ||||
| @@ -764,6 +612,7 @@ template<class vobj> | ||||
| static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0)  | ||||
| {     | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   int Nblock = X.Grid()->GlobalDimensions()[Orthog]; | ||||
| @@ -817,6 +666,7 @@ template<class vobj> | ||||
| static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)  | ||||
| { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|    | ||||
|   GridBase *FullGrid  = lhs.Grid(); | ||||
|   | ||||
| @@ -2,13 +2,12 @@ NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| #ifdef GRID_HIP | ||||
| extern hipDeviceProp_t *gpu_props; | ||||
| #define WARP_SIZE 64 | ||||
| #endif | ||||
| #ifdef GRID_CUDA | ||||
| extern cudaDeviceProp *gpu_props; | ||||
| #define WARP_SIZE 32 | ||||
| #endif | ||||
|  | ||||
| #define WARP_SIZE 32 | ||||
| __device__ unsigned int retirementCount = 0; | ||||
|  | ||||
| template <class Iterator> | ||||
| @@ -23,27 +22,28 @@ unsigned int nextPow2(Iterator x) { | ||||
| } | ||||
|  | ||||
| template <class Iterator> | ||||
| int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &threads, Iterator &blocks) { | ||||
| void getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &threads, Iterator &blocks) { | ||||
|    | ||||
|   int device; | ||||
| #ifdef GRID_CUDA | ||||
|   cudaGetDevice(&device); | ||||
| #endif | ||||
| #ifdef GRID_HIP | ||||
|   auto r=hipGetDevice(&device); | ||||
|   hipGetDevice(&device); | ||||
| #endif | ||||
|    | ||||
|   Iterator warpSize            = gpu_props[device].warpSize; | ||||
|   Iterator sharedMemPerBlock   = gpu_props[device].sharedMemPerBlock; | ||||
|   Iterator maxThreadsPerBlock  = gpu_props[device].maxThreadsPerBlock; | ||||
|   Iterator multiProcessorCount = gpu_props[device].multiProcessorCount; | ||||
|   /*   | ||||
|    | ||||
|   std::cout << GridLogDebug << "GPU has:" << std::endl; | ||||
|   std::cout << GridLogDebug << "\twarpSize            = " << warpSize << std::endl; | ||||
|   std::cout << GridLogDebug << "\tsharedMemPerBlock   = " << sharedMemPerBlock << std::endl; | ||||
|   std::cout << GridLogDebug << "\tmaxThreadsPerBlock  = " << maxThreadsPerBlock << std::endl; | ||||
|   std::cout << GridLogDebug << "\tmaxThreadsPerBlock  = " << warpSize << std::endl; | ||||
|   std::cout << GridLogDebug << "\tmultiProcessorCount = " << multiProcessorCount << std::endl; | ||||
|   */   | ||||
|    | ||||
|   if (warpSize != WARP_SIZE) { | ||||
|     std::cout << GridLogError << "The warp size of the GPU in use does not match the warp size set when compiling Grid." << std::endl; | ||||
|     exit(EXIT_FAILURE); | ||||
| @@ -51,14 +51,10 @@ int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator & | ||||
|    | ||||
|   // let the number of threads in a block be a multiple of 2, starting from warpSize | ||||
|   threads = warpSize; | ||||
|   if ( threads*sizeofsobj > sharedMemPerBlock ) { | ||||
|     std::cout << GridLogError << "The object is too large for the shared memory." << std::endl; | ||||
|     return 0; | ||||
|   } | ||||
|   while( 2*threads*sizeofsobj < sharedMemPerBlock && 2*threads <= maxThreadsPerBlock ) threads *= 2; | ||||
|   // keep all the streaming multiprocessors busy | ||||
|   blocks = nextPow2(multiProcessorCount); | ||||
|   return 1; | ||||
|    | ||||
| } | ||||
|  | ||||
| template <class sobj, class Iterator> | ||||
| @@ -68,7 +64,7 @@ __device__ void reduceBlock(volatile sobj *sdata, sobj mySum, const Iterator tid | ||||
|    | ||||
|   // cannot use overloaded operators for sobj as they are not volatile-qualified | ||||
|   memcpy((void *)&sdata[tid], (void *)&mySum, sizeof(sobj)); | ||||
|   acceleratorSynchronise(); | ||||
|   __syncwarp(); | ||||
|    | ||||
|   const Iterator VEC = WARP_SIZE; | ||||
|   const Iterator vid = tid & (VEC-1); | ||||
| @@ -82,9 +78,9 @@ __device__ void reduceBlock(volatile sobj *sdata, sobj mySum, const Iterator tid | ||||
|       beta += temp; | ||||
|       memcpy((void *)&sdata[tid], (void *)&beta, sizeof(sobj)); | ||||
|     } | ||||
|     acceleratorSynchronise(); | ||||
|     __syncwarp(); | ||||
|   } | ||||
|   acceleratorSynchroniseAll(); | ||||
|   __syncthreads(); | ||||
|    | ||||
|   if (threadIdx.x == 0) { | ||||
|     beta  = Zero(); | ||||
| @@ -94,7 +90,7 @@ __device__ void reduceBlock(volatile sobj *sdata, sobj mySum, const Iterator tid | ||||
|     } | ||||
|     memcpy((void *)&sdata[0], (void *)&beta, sizeof(sobj)); | ||||
|   } | ||||
|   acceleratorSynchroniseAll(); | ||||
|   __syncthreads(); | ||||
| } | ||||
|  | ||||
|  | ||||
| @@ -198,7 +194,7 @@ __global__ void reduceKernel(const vobj *lat, sobj *buffer, Iterator n) { | ||||
| // Possibly promote to double and sum | ||||
| ///////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template <class vobj> | ||||
| inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osites)  | ||||
| inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)  | ||||
| { | ||||
|   typedef typename vobj::scalar_objectD sobj; | ||||
|   typedef decltype(lat) Iterator; | ||||
| @@ -207,77 +203,17 @@ inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osi | ||||
|   Integer size = osites*nsimd; | ||||
|  | ||||
|   Integer numThreads, numBlocks; | ||||
|   int ok = getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks); | ||||
|   assert(ok); | ||||
|  | ||||
|   getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks); | ||||
|   Integer smemSize = numThreads * sizeof(sobj); | ||||
|   // Move out of UVM | ||||
|   // Turns out I had messed up the synchronise after move to compute stream | ||||
|   // as running this on the default stream fools the synchronise | ||||
| #undef UVM_BLOCK_BUFFER   | ||||
| #ifndef UVM_BLOCK_BUFFER   | ||||
|   commVector<sobj> buffer(numBlocks); | ||||
|   sobj *buffer_v = &buffer[0]; | ||||
|   sobj result; | ||||
|   reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size); | ||||
|   accelerator_barrier(); | ||||
|   acceleratorCopyFromDevice(buffer_v,&result,sizeof(result)); | ||||
| #else | ||||
|  | ||||
|   Vector<sobj> buffer(numBlocks); | ||||
|   sobj *buffer_v = &buffer[0]; | ||||
|   sobj result; | ||||
|   reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size); | ||||
|    | ||||
|   reduceKernel<<< numBlocks, numThreads, smemSize >>>(lat, buffer_v, size); | ||||
|   accelerator_barrier(); | ||||
|   result = *buffer_v; | ||||
| #endif | ||||
|   auto result = buffer_v[0]; | ||||
|   return result; | ||||
| } | ||||
|  | ||||
| template <class vobj> | ||||
| inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osites) | ||||
| { | ||||
|   typedef typename vobj::vector_type  vector; | ||||
|   typedef typename vobj::scalar_typeD scalarD; | ||||
|   typedef typename vobj::scalar_objectD sobj; | ||||
|   sobj ret; | ||||
|   scalarD *ret_p = (scalarD *)&ret; | ||||
|    | ||||
|   const int words = sizeof(vobj)/sizeof(vector); | ||||
|  | ||||
|   Vector<vector> buffer(osites); | ||||
|   vector *dat = (vector *)lat; | ||||
|   vector *buf = &buffer[0]; | ||||
|   iScalar<vector> *tbuf =(iScalar<vector> *)  &buffer[0]; | ||||
|   for(int w=0;w<words;w++) { | ||||
|  | ||||
|     accelerator_for(ss,osites,1,{ | ||||
| 	buf[ss] = dat[ss*words+w]; | ||||
|       }); | ||||
|        | ||||
|     ret_p[w] = sumD_gpu_small(tbuf,osites); | ||||
|   } | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
| template <class vobj> | ||||
| inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites) | ||||
| { | ||||
|   typedef typename vobj::scalar_objectD sobj; | ||||
|   sobj ret; | ||||
|    | ||||
|   Integer nsimd= vobj::Nsimd(); | ||||
|   Integer size = osites*nsimd; | ||||
|   Integer numThreads, numBlocks; | ||||
|   int ok = getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks); | ||||
|    | ||||
|   if ( ok ) { | ||||
|     ret = sumD_gpu_small(lat,osites); | ||||
|   } else { | ||||
|     ret = sumD_gpu_large(lat,osites); | ||||
|   } | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Return as same precision as input performing reduction in double precision though | ||||
| ///////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -290,13 +226,6 @@ inline typename vobj::scalar_object sum_gpu(const vobj *lat, Integer osites) | ||||
|   return result; | ||||
| } | ||||
|  | ||||
| template <class vobj> | ||||
| inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osites) | ||||
| { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   sobj result; | ||||
|   result = sumD_gpu_large(lat,osites); | ||||
|   return result; | ||||
| } | ||||
|  | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|   | ||||
| @@ -1,132 +0,0 @@ | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Possibly promote to double and sum | ||||
| ///////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
| template <class vobj> | ||||
| inline typename vobj::scalar_objectD sumD_gpu_tensor(const vobj *lat, Integer osites)  | ||||
| { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_objectD sobjD; | ||||
|   static Vector<sobj> mysum; | ||||
|   mysum.resize(1); | ||||
|   sobj *mysum_p = & mysum[0]; | ||||
|   sobj identity; zeroit(identity); | ||||
|   sobj ret ;  | ||||
|  | ||||
|   Integer nsimd= vobj::Nsimd(); | ||||
|  | ||||
|   const cl::sycl::property_list PropList ({ cl::sycl::property::reduction::initialize_to_identity() }); | ||||
|   theGridAccelerator->submit([&](cl::sycl::handler &cgh) { | ||||
|     auto Reduction = cl::sycl::reduction(mysum_p,identity,std::plus<>(),PropList); | ||||
|      cgh.parallel_for(cl::sycl::range<1>{osites}, | ||||
| 		      Reduction, | ||||
| 		      [=] (cl::sycl::id<1> item, auto &sum) { | ||||
|       auto osite   = item[0]; | ||||
|       sum +=Reduce(lat[osite]); | ||||
|      }); | ||||
|    }); | ||||
|   theGridAccelerator->wait(); | ||||
|   ret = mysum[0]; | ||||
|   //  free(mysum,*theGridAccelerator); | ||||
|   sobjD dret; convertType(dret,ret); | ||||
|   return dret; | ||||
| } | ||||
|  | ||||
| template <class vobj> | ||||
| inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osites) | ||||
| { | ||||
|   return sumD_gpu_tensor(lat,osites); | ||||
| } | ||||
| template <class vobj> | ||||
| inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osites) | ||||
| { | ||||
|   return sumD_gpu_large(lat,osites); | ||||
| } | ||||
|  | ||||
| template <class vobj> | ||||
| inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites) | ||||
| { | ||||
|   return sumD_gpu_large(lat,osites); | ||||
| } | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Return as same precision as input performing reduction in double precision though | ||||
| ///////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| template <class vobj> | ||||
| inline typename vobj::scalar_object sum_gpu(const vobj *lat, Integer osites)  | ||||
| { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   sobj result; | ||||
|   result = sumD_gpu(lat,osites); | ||||
|   return result; | ||||
| } | ||||
|  | ||||
| template <class vobj> | ||||
| inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osites) | ||||
| { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   sobj result; | ||||
|   result = sumD_gpu_large(lat,osites); | ||||
|   return result; | ||||
| } | ||||
|  | ||||
|  | ||||
| template<class Word> Word svm_xor(Word *vec,uint64_t L) | ||||
| { | ||||
|   Word xorResult; xorResult = 0; | ||||
|   static Vector<Word> d_sum; | ||||
|   d_sum.resize(1); | ||||
|   Word *d_sum_p=&d_sum[0]; | ||||
|   Word identity;  identity=0; | ||||
|   const cl::sycl::property_list PropList ({ cl::sycl::property::reduction::initialize_to_identity() }); | ||||
|   theGridAccelerator->submit([&](cl::sycl::handler &cgh) { | ||||
|     auto Reduction = cl::sycl::reduction(d_sum_p,identity,std::bit_xor<>(),PropList); | ||||
|      cgh.parallel_for(cl::sycl::range<1>{L}, | ||||
| 		      Reduction, | ||||
| 		      [=] (cl::sycl::id<1> index, auto &sum) { | ||||
| 	 sum ^=vec[index]; | ||||
|      }); | ||||
|    }); | ||||
|   theGridAccelerator->wait(); | ||||
|   Word ret = d_sum[0]; | ||||
|   //  free(d_sum,*theGridAccelerator); | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
| /* | ||||
|  | ||||
| template <class vobj> | ||||
| inline typename vobj::scalar_objectD sumD_gpu_repack(const vobj *lat, Integer osites) | ||||
| { | ||||
|   typedef typename vobj::vector_type  vector; | ||||
|   typedef typename vobj::scalar_type  scalar; | ||||
|  | ||||
|   typedef typename vobj::scalar_typeD scalarD; | ||||
|   typedef typename vobj::scalar_objectD sobjD; | ||||
|  | ||||
|   sobjD ret; | ||||
|   scalarD *ret_p = (scalarD *)&ret; | ||||
|    | ||||
|   const int nsimd = vobj::Nsimd(); | ||||
|   const int words = sizeof(vobj)/sizeof(vector); | ||||
|  | ||||
|   Vector<scalar> buffer(osites*nsimd); | ||||
|   scalar *buf = &buffer[0]; | ||||
|   vector *dat = (vector *)lat; | ||||
|  | ||||
|   for(int w=0;w<words;w++) { | ||||
|  | ||||
|     accelerator_for(ss,osites,nsimd,{ | ||||
| 	int lane = acceleratorSIMTlane(nsimd); | ||||
| 	buf[ss*nsimd+lane] = dat[ss*words+w].getlane(lane); | ||||
|     }); | ||||
|     //Precision change at this point is to late to gain precision | ||||
|     ret_p[w] = svm_reduce(buf,nsimd*osites); | ||||
|   } | ||||
|   return ret; | ||||
| } | ||||
| */ | ||||
| @@ -152,7 +152,6 @@ public: | ||||
| #ifdef RNG_FAST_DISCARD | ||||
|   static void Skip(RngEngine &eng,uint64_t site) | ||||
|   { | ||||
| #if 0 | ||||
|     ///////////////////////////////////////////////////////////////////////////////////// | ||||
|     // Skip by 2^40 elements between successive lattice sites | ||||
|     // This goes by 10^12. | ||||
| @@ -180,9 +179,6 @@ public: | ||||
|     assert((skip >> shift)==site); // check for overflow | ||||
|  | ||||
|     eng.discard(skip); | ||||
| #else | ||||
|     eng.discardhi(site); | ||||
| #endif | ||||
|     //      std::cout << " Engine  " <<site << " state " <<eng<<std::endl; | ||||
|   }  | ||||
| #endif | ||||
| @@ -365,14 +361,9 @@ public: | ||||
|     _bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1}); | ||||
|     _uid.resize(_vol,std::uniform_int_distribution<uint32_t>() ); | ||||
|   } | ||||
|   template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist) | ||||
|   { | ||||
|     if ( l.Grid()->_isCheckerBoarded ) { | ||||
|       Lattice<vobj> tmp(_grid); | ||||
|       fill(tmp,dist); | ||||
|       pickCheckerboard(l.Checkerboard(),l,tmp); | ||||
|       return; | ||||
|     } | ||||
|  | ||||
|   template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist){ | ||||
|  | ||||
|     typedef typename vobj::scalar_object scalar_object; | ||||
|     typedef typename vobj::scalar_type scalar_type; | ||||
|     typedef typename vobj::vector_type vector_type; | ||||
| @@ -416,7 +407,7 @@ public: | ||||
|       std::cout << GridLogMessage << "Seed SHA256: " << GridChecksum::sha256_string(seeds) << std::endl; | ||||
|       SeedFixedIntegers(seeds); | ||||
|     } | ||||
|   void SeedFixedIntegers(const std::vector<int> &seeds, int britney=0){ | ||||
|   void SeedFixedIntegers(const std::vector<int> &seeds){ | ||||
|  | ||||
|     // Everyone generates the same seed_seq based on input seeds | ||||
|     CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size()); | ||||
| @@ -433,29 +424,22 @@ public: | ||||
|     // MT implementation does not implement fast discard even though | ||||
|     // in principle this is possible | ||||
|     //////////////////////////////////////////////// | ||||
|     thread_for( lidx, _grid->lSites(), { | ||||
|  | ||||
| 	int64_t gidx; | ||||
|     // Everybody loops over global volume. | ||||
|     thread_for( gidx, _grid->_gsites, { | ||||
| 	// Where is it? | ||||
| 	int rank; | ||||
| 	int o_idx; | ||||
| 	int i_idx; | ||||
| 	int rank; | ||||
| 	Coordinate pcoor; | ||||
| 	Coordinate lcoor; | ||||
| 	Coordinate gcoor; | ||||
| 	_grid->LocalIndexToLocalCoor(lidx,lcoor); | ||||
| 	pcoor=_grid->ThisProcessorCoor(); | ||||
| 	_grid->ProcessorCoorLocalCoorToGlobalCoor(pcoor,lcoor,gcoor); | ||||
| 	_grid->GlobalCoorToGlobalIndex(gcoor,gidx); | ||||
|  | ||||
| 	Coordinate gcoor; | ||||
| 	_grid->GlobalIndexToGlobalCoor(gidx,gcoor); | ||||
| 	_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor); | ||||
| 	 | ||||
| 	assert(rank == _grid->ThisRank() ); | ||||
| 	 | ||||
| 	// If this is one of mine we take it | ||||
| 	if( rank == _grid->ThisRank() ){ | ||||
| 	  int l_idx=generator_idx(o_idx,i_idx); | ||||
| 	  _generators[l_idx] = master_engine; | ||||
| 	if ( britney ) {  | ||||
| 	  Skip(_generators[l_idx],l_idx); // Skip to next RNG sequence | ||||
| 	} else { 	 | ||||
| 	  Skip(_generators[l_idx],gidx); // Skip to next RNG sequence | ||||
| 	} | ||||
|     }); | ||||
|   | ||||
| @@ -1,224 +0,0 @@ | ||||
| #pragma once | ||||
|  | ||||
| #if defined(GRID_CUDA) | ||||
|  | ||||
| #include <cub/cub.cuh> | ||||
| #define gpucub cub | ||||
| #define gpuError_t cudaError_t | ||||
| #define gpuSuccess cudaSuccess | ||||
|  | ||||
| #elif defined(GRID_HIP) | ||||
|  | ||||
| #include <hipcub/hipcub.hpp> | ||||
| #define gpucub hipcub | ||||
| #define gpuError_t hipError_t | ||||
| #define gpuSuccess hipSuccess | ||||
|  | ||||
| #endif | ||||
|  | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
|  | ||||
| #if defined(GRID_CUDA) || defined(GRID_HIP) | ||||
| template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) { | ||||
|   size_t subvol_size = e1*e2; | ||||
|   commVector<vobj> reduction_buffer(rd*subvol_size); | ||||
|   auto rb_p = &reduction_buffer[0]; | ||||
|   vobj zero_init; | ||||
|   zeroit(zero_init); | ||||
|  | ||||
|    | ||||
|   void *temp_storage_array = NULL; | ||||
|   size_t temp_storage_bytes = 0; | ||||
|   vobj *d_out; | ||||
|   int* d_offsets; | ||||
|  | ||||
|   std::vector<int> offsets(rd+1,0); | ||||
|  | ||||
|   for (int i = 0; i < offsets.size(); i++) { | ||||
|     offsets[i] = i*subvol_size; | ||||
|   } | ||||
|    | ||||
|   //Allocate memory for output and offset arrays on device | ||||
|   d_out = static_cast<vobj*>(acceleratorAllocDevice(rd*sizeof(vobj))); | ||||
|    | ||||
|   d_offsets = static_cast<int*>(acceleratorAllocDevice((rd+1)*sizeof(int))); | ||||
|    | ||||
|   //copy offsets to device | ||||
|   acceleratorCopyToDeviceAsync(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream); | ||||
|    | ||||
|    | ||||
|   gpuError_t gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p,d_out, rd, d_offsets, d_offsets+1, ::gpucub::Sum(), zero_init, computeStream); | ||||
|   if (gpuErr!=gpuSuccess) { | ||||
|     std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce (setup)! Error: " << gpuErr <<std::endl; | ||||
|     exit(EXIT_FAILURE); | ||||
|   } | ||||
|  | ||||
|   //allocate memory for temp_storage_array   | ||||
|   temp_storage_array = acceleratorAllocDevice(temp_storage_bytes); | ||||
|    | ||||
|   //prepare buffer for reduction | ||||
|   //use non-blocking accelerator_for to avoid syncs (ok because we submit to same computeStream) | ||||
|   //use 2d accelerator_for to avoid launch latencies found when serially looping over rd  | ||||
|   accelerator_for2dNB( s,subvol_size, r,rd, Nsimd,{  | ||||
|    | ||||
|     int n = s / e2; | ||||
|     int b = s % e2; | ||||
|     int so=r*ostride; // base offset for start of plane  | ||||
|     int ss= so+n*stride+b; | ||||
|  | ||||
|     coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data[ss])); | ||||
|  | ||||
|   }); | ||||
|    | ||||
|   //issue segmented reductions in computeStream | ||||
|   gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p, d_out, rd, d_offsets, d_offsets+1,::gpucub::Sum(), zero_init, computeStream); | ||||
|   if (gpuErr!=gpuSuccess) { | ||||
|     std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce! Error: " << gpuErr <<std::endl; | ||||
|     exit(EXIT_FAILURE); | ||||
|   } | ||||
|    | ||||
|   acceleratorCopyFromDeviceAsync(d_out,&lvSum[0],rd*sizeof(vobj),computeStream); | ||||
|    | ||||
|   //sync after copy | ||||
|   accelerator_barrier(); | ||||
|   | ||||
|   acceleratorFreeDevice(temp_storage_array); | ||||
|   acceleratorFreeDevice(d_out); | ||||
|   acceleratorFreeDevice(d_offsets); | ||||
|    | ||||
|  | ||||
| } | ||||
| #endif  | ||||
|  | ||||
|  | ||||
| #if defined(GRID_SYCL) | ||||
| template<class vobj> inline void sliceSumReduction_sycl_small(const vobj *Data, Vector <vobj> &lvSum, const int  &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd) | ||||
| { | ||||
|   size_t subvol_size = e1*e2; | ||||
|  | ||||
|   vobj *mysum = (vobj *) malloc_shared(rd*sizeof(vobj),*theGridAccelerator); | ||||
|   vobj vobj_zero; | ||||
|   zeroit(vobj_zero); | ||||
|   for (int r = 0; r<rd; r++) {  | ||||
|     mysum[r] = vobj_zero;  | ||||
|   } | ||||
|  | ||||
|   commVector<vobj> reduction_buffer(rd*subvol_size);     | ||||
|  | ||||
|   auto rb_p = &reduction_buffer[0]; | ||||
|  | ||||
|   // autoView(Data_v, Data, AcceleratorRead); | ||||
|  | ||||
|   //prepare reduction buffer  | ||||
|   accelerator_for2d( s,subvol_size, r,rd, (size_t)Nsimd,{  | ||||
|    | ||||
|       int n = s / e2; | ||||
|       int b = s % e2; | ||||
|       int so=r*ostride; // base offset for start of plane  | ||||
|       int ss= so+n*stride+b; | ||||
|  | ||||
|       coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data[ss])); | ||||
|  | ||||
|   }); | ||||
|  | ||||
|   for (int r = 0; r < rd; r++) { | ||||
|       theGridAccelerator->submit([&](cl::sycl::handler &cgh) { | ||||
|           auto Reduction = cl::sycl::reduction(&mysum[r],std::plus<>()); | ||||
|           cgh.parallel_for(cl::sycl::range<1>{subvol_size}, | ||||
|           Reduction, | ||||
|           [=](cl::sycl::id<1> item, auto &sum) { | ||||
|               auto s = item[0]; | ||||
|               sum += rb_p[r*subvol_size+s]; | ||||
|           }); | ||||
|       }); | ||||
|        | ||||
|       | ||||
|   } | ||||
|   theGridAccelerator->wait(); | ||||
|   for (int r = 0; r < rd; r++) { | ||||
|     lvSum[r] = mysum[r]; | ||||
|   } | ||||
|   free(mysum,*theGridAccelerator); | ||||
| } | ||||
| #endif | ||||
|  | ||||
| template<class vobj> inline void sliceSumReduction_large(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) { | ||||
|   typedef typename vobj::vector_type vector; | ||||
|   const int words = sizeof(vobj)/sizeof(vector); | ||||
|   const int osites = rd*e1*e2; | ||||
|   commVector<vector>buffer(osites); | ||||
|   vector *dat = (vector *)Data; | ||||
|   vector *buf = &buffer[0]; | ||||
|   Vector<vector> lvSum_small(rd); | ||||
|   vector *lvSum_ptr = (vector *)&lvSum[0]; | ||||
|  | ||||
|   for (int w = 0; w < words; w++) { | ||||
|     accelerator_for(ss,osites,1,{ | ||||
| 	    buf[ss] = dat[ss*words+w]; | ||||
|     }); | ||||
|  | ||||
|     #if defined(GRID_CUDA) || defined(GRID_HIP) | ||||
|       sliceSumReduction_cub_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd); | ||||
|     #elif defined(GRID_SYCL) | ||||
|       sliceSumReduction_sycl_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd); | ||||
|     #endif | ||||
|  | ||||
|     for (int r = 0; r < rd; r++) { | ||||
|       lvSum_ptr[w+words*r]=lvSum_small[r]; | ||||
|     } | ||||
|  | ||||
|   } | ||||
|  | ||||
|    | ||||
| } | ||||
|  | ||||
| template<class vobj> inline void sliceSumReduction_gpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) | ||||
| { | ||||
|   autoView(Data_v, Data, AcceleratorRead); //reduction libraries cannot deal with large vobjs so we split into small/large case. | ||||
|     if constexpr (sizeof(vobj) <= 256) {  | ||||
|  | ||||
|       #if defined(GRID_CUDA) || defined(GRID_HIP) | ||||
|         sliceSumReduction_cub_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd); | ||||
|       #elif defined (GRID_SYCL) | ||||
|         sliceSumReduction_sycl_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd); | ||||
|       #endif | ||||
|  | ||||
|     } | ||||
|     else { | ||||
|       sliceSumReduction_large(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd); | ||||
|     } | ||||
| } | ||||
|  | ||||
|  | ||||
| template<class vobj> inline void sliceSumReduction_cpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd) | ||||
| { | ||||
|   // sum over reduced dimension planes, breaking out orthog dir | ||||
|   // Parallel over orthog direction | ||||
|   autoView( Data_v, Data, CpuRead); | ||||
|   thread_for( r,rd, { | ||||
|     int so=r*ostride; // base offset for start of plane  | ||||
|     for(int n=0;n<e1;n++){ | ||||
|       for(int b=0;b<e2;b++){ | ||||
|         int ss= so+n*stride+b; | ||||
|         lvSum[r]=lvSum[r]+Data_v[ss]; | ||||
|       } | ||||
|     } | ||||
|   }); | ||||
| } | ||||
|  | ||||
| template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)  | ||||
| { | ||||
|   #if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL) | ||||
|    | ||||
|   sliceSumReduction_gpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd); | ||||
|    | ||||
|   #else | ||||
|   sliceSumReduction_cpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd); | ||||
|  | ||||
|   #endif | ||||
| } | ||||
|  | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| @@ -66,65 +66,6 @@ inline auto TraceIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex< | ||||
|   return ret; | ||||
| }; | ||||
|  | ||||
| template<int N, class Vec> | ||||
| Lattice<iScalar<iScalar<iScalar<Vec> > > > Determinant(const Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu) | ||||
| { | ||||
|   GridBase *grid=Umu.Grid(); | ||||
|   auto lvol = grid->lSites(); | ||||
|   Lattice<iScalar<iScalar<iScalar<Vec> > > > ret(grid); | ||||
|   typedef typename Vec::scalar_type scalar; | ||||
|   autoView(Umu_v,Umu,CpuRead); | ||||
|   autoView(ret_v,ret,CpuWrite); | ||||
|   thread_for(site,lvol,{ | ||||
|     Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N); | ||||
|     Coordinate lcoor; | ||||
|     grid->LocalIndexToLocalCoor(site, lcoor); | ||||
|     iScalar<iScalar<iMatrix<scalar, N> > > Us; | ||||
|     peekLocalSite(Us, Umu_v, lcoor); | ||||
|     for(int i=0;i<N;i++){ | ||||
|       for(int j=0;j<N;j++){ | ||||
| 	scalar tmp= Us()()(i,j); | ||||
| 	ComplexD ztmp(real(tmp),imag(tmp)); | ||||
| 	EigenU(i,j)=ztmp; | ||||
|       }} | ||||
|     ComplexD detD  = EigenU.determinant(); | ||||
|     typename Vec::scalar_type det(detD.real(),detD.imag()); | ||||
|     pokeLocalSite(det,ret_v,lcoor); | ||||
|   }); | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
| template<int N> | ||||
| Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > Inverse(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu) | ||||
| { | ||||
|   GridBase *grid=Umu.Grid(); | ||||
|   auto lvol = grid->lSites(); | ||||
|   Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > ret(grid); | ||||
|    | ||||
|   autoView(Umu_v,Umu,CpuRead); | ||||
|   autoView(ret_v,ret,CpuWrite); | ||||
|   thread_for(site,lvol,{ | ||||
|     Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N); | ||||
|     Coordinate lcoor; | ||||
|     grid->LocalIndexToLocalCoor(site, lcoor); | ||||
|     iScalar<iScalar<iMatrix<ComplexD, N> > > Us; | ||||
|     iScalar<iScalar<iMatrix<ComplexD, N> > > Ui; | ||||
|     peekLocalSite(Us, Umu_v, lcoor); | ||||
|     for(int i=0;i<N;i++){ | ||||
|       for(int j=0;j<N;j++){ | ||||
| 	EigenU(i,j) = Us()()(i,j); | ||||
|       }} | ||||
|     Eigen::MatrixXcd EigenUinv = EigenU.inverse(); | ||||
|     for(int i=0;i<N;i++){ | ||||
|       for(int j=0;j<N;j++){ | ||||
| 	Ui()()(i,j) = EigenUinv(i,j); | ||||
|       }} | ||||
|     pokeLocalSite(Ui,ret_v,lcoor); | ||||
|   }); | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
| #endif | ||||
|  | ||||
|   | ||||
| @@ -85,76 +85,6 @@ template<class vobj> inline void setCheckerboard(Lattice<vobj> &full,const Latti | ||||
|   }); | ||||
| } | ||||
|  | ||||
| template<class vobj> inline void acceleratorPickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full, int checker_dim_half=0) | ||||
| { | ||||
|   half.Checkerboard() = cb; | ||||
|   autoView(half_v, half, AcceleratorWrite); | ||||
|   autoView(full_v, full, AcceleratorRead); | ||||
|   Coordinate rdim_full             = full.Grid()->_rdimensions; | ||||
|   Coordinate rdim_half             = half.Grid()->_rdimensions; | ||||
|   unsigned long ndim_half          = half.Grid()->_ndimension; | ||||
|   Coordinate checker_dim_mask_half = half.Grid()->_checker_dim_mask; | ||||
|   Coordinate ostride_half          = half.Grid()->_ostride; | ||||
|   accelerator_for(ss, full.Grid()->oSites(),full.Grid()->Nsimd(),{ | ||||
|      | ||||
|     Coordinate coor; | ||||
|     int cbos; | ||||
|     int linear=0; | ||||
|  | ||||
|     Lexicographic::CoorFromIndex(coor,ss,rdim_full); | ||||
|     assert(coor.size()==ndim_half); | ||||
|  | ||||
|     for(int d=0;d<ndim_half;d++){  | ||||
|       if(checker_dim_mask_half[d]) linear += coor[d]; | ||||
|     } | ||||
|     cbos = (linear&0x1); | ||||
|  | ||||
|     if (cbos==cb) { | ||||
|       int ssh=0; | ||||
|       for(int d=0;d<ndim_half;d++) { | ||||
|         if (d == checker_dim_half) ssh += ostride_half[d] * ((coor[d] / 2) % rdim_half[d]); | ||||
|         else ssh += ostride_half[d] * (coor[d] % rdim_half[d]); | ||||
|       } | ||||
|       coalescedWrite(half_v[ssh],full_v(ss)); | ||||
|     } | ||||
|   }); | ||||
| } | ||||
| template<class vobj> inline void acceleratorSetCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half, int checker_dim_half=0) | ||||
| { | ||||
|   int cb = half.Checkerboard(); | ||||
|   autoView(half_v , half, AcceleratorRead); | ||||
|   autoView(full_v , full, AcceleratorWrite); | ||||
|   Coordinate rdim_full             = full.Grid()->_rdimensions; | ||||
|   Coordinate rdim_half             = half.Grid()->_rdimensions; | ||||
|   unsigned long ndim_half          = half.Grid()->_ndimension; | ||||
|   Coordinate checker_dim_mask_half = half.Grid()->_checker_dim_mask; | ||||
|   Coordinate ostride_half          = half.Grid()->_ostride; | ||||
|   accelerator_for(ss,full.Grid()->oSites(),full.Grid()->Nsimd(),{ | ||||
|  | ||||
|     Coordinate coor; | ||||
|     int cbos; | ||||
|     int linear=0; | ||||
|    | ||||
|     Lexicographic::CoorFromIndex(coor,ss,rdim_full); | ||||
|     assert(coor.size()==ndim_half); | ||||
|  | ||||
|     for(int d=0;d<ndim_half;d++){  | ||||
|       if(checker_dim_mask_half[d]) linear += coor[d]; | ||||
|     } | ||||
|     cbos = (linear&0x1); | ||||
|  | ||||
|     if (cbos==cb) { | ||||
|       int ssh=0; | ||||
|       for(int d=0;d<ndim_half;d++){ | ||||
|         if (d == checker_dim_half) ssh += ostride_half[d] * ((coor[d] / 2) % rdim_half[d]); | ||||
|         else ssh += ostride_half[d] * (coor[d] % rdim_half[d]); | ||||
|       } | ||||
|       coalescedWrite(full_v[ss],half_v(ssh)); | ||||
|     } | ||||
|  | ||||
|   }); | ||||
| } | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////////////////////// | ||||
| // Flexible Type Conversion for internal promotion to double as well as graceful | ||||
| // treatment of scalar-compatible types | ||||
| @@ -167,20 +97,6 @@ accelerator_inline void convertType(ComplexF & out, const std::complex<float> & | ||||
|   out = in; | ||||
| } | ||||
|  | ||||
| template<typename T> | ||||
| accelerator_inline EnableIf<isGridFundamental<T>> convertType(T & out, const T & in) { | ||||
|   out = in; | ||||
| } | ||||
|  | ||||
| // This would allow for conversions between GridFundamental types, but is not strictly needed as yet | ||||
| /*template<typename T1, typename T2> | ||||
| accelerator_inline typename std::enable_if<isGridFundamental<T1>::value && isGridFundamental<T2>::value>::type | ||||
| // Or to make this very broad, conversions between anything that's not a GridTensor could be allowed | ||||
| //accelerator_inline typename std::enable_if<!isGridTensor<T1>::value && !isGridTensor<T2>::value>::type | ||||
| convertType(T1 & out, const T2 & in) { | ||||
|   out = in; | ||||
| }*/ | ||||
|  | ||||
| #ifdef GRID_SIMT | ||||
| accelerator_inline void convertType(vComplexF & out, const ComplexF & in) { | ||||
|   ((ComplexF*)&out)[acceleratorSIMTlane(vComplexF::Nsimd())] = in; | ||||
| @@ -194,25 +110,25 @@ accelerator_inline void convertType(vComplexD2 & out, const ComplexD & in) { | ||||
| #endif | ||||
|  | ||||
| accelerator_inline void convertType(vComplexF & out, const vComplexD2 & in) { | ||||
|   precisionChange(out,in); | ||||
|   out.v = Optimization::PrecisionChange::DtoS(in._internal[0].v,in._internal[1].v); | ||||
| } | ||||
|  | ||||
| accelerator_inline void convertType(vComplexD2 & out, const vComplexF & in) { | ||||
|   precisionChange(out,in); | ||||
|   Optimization::PrecisionChange::StoD(in.v,out._internal[0].v,out._internal[1].v); | ||||
| } | ||||
|  | ||||
| template<typename T1,typename T2> | ||||
| accelerator_inline void convertType(iScalar<T1> & out, const iScalar<T2> & in) { | ||||
|   convertType(out._internal,in._internal); | ||||
| } | ||||
| template<typename T1,typename T2,int N> | ||||
|   accelerator_inline void convertType(iMatrix<T1,N> & out, const iMatrix<T2,N> & in); | ||||
| template<typename T1,typename T2,int N> | ||||
|   accelerator_inline void convertType(iVector<T1,N> & out, const iVector<T2,N> & in); | ||||
|  | ||||
| template<typename T1,typename T2> | ||||
| accelerator_inline NotEnableIf<isGridScalar<T1>> convertType(T1 & out, const iScalar<T2> & in) { | ||||
| template<typename T1,typename T2, typename std::enable_if<!isGridScalar<T1>::value, T1>::type* = nullptr> | ||||
| accelerator_inline void convertType(T1 & out, const iScalar<T2> & in) { | ||||
|   convertType(out,in._internal); | ||||
| } | ||||
|  | ||||
| template<typename T1,typename T2> | ||||
| accelerator_inline NotEnableIf<isGridScalar<T2>> convertType(iScalar<T1> & out, const T2 & in) { | ||||
| accelerator_inline void convertType(iScalar<T1> & out, const T2 & in) { | ||||
|   convertType(out._internal,in); | ||||
| } | ||||
|  | ||||
| @@ -229,6 +145,11 @@ accelerator_inline void convertType(iVector<T1,N> & out, const iVector<T2,N> & i | ||||
|     convertType(out._internal[i],in._internal[i]); | ||||
| } | ||||
|  | ||||
| template<typename T, typename std::enable_if<isGridFundamental<T>::value, T>::type* = nullptr> | ||||
| accelerator_inline void convertType(T & out, const T & in) { | ||||
|   out = in; | ||||
| } | ||||
|  | ||||
| template<typename T1,typename T2> | ||||
| accelerator_inline void convertType(Lattice<T1> & out, const Lattice<T2> & in) { | ||||
|   autoView( out_v , out,AcceleratorWrite); | ||||
| @@ -276,63 +197,19 @@ inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData, | ||||
|  | ||||
|   autoView( coarseData_ , coarseData, AcceleratorWrite); | ||||
|   autoView( ip_         , ip,         AcceleratorWrite); | ||||
|   RealD t_IP=0; | ||||
|   RealD t_co=0; | ||||
|   RealD t_za=0; | ||||
|   for(int v=0;v<nbasis;v++) { | ||||
|     t_IP-=usecond(); | ||||
|     blockInnerProductD(ip,Basis[v],fineDataRed); // ip = <basis|fine> | ||||
|     t_IP+=usecond(); | ||||
|     t_co-=usecond(); | ||||
|     accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), { | ||||
| 	convertType(coarseData_[sc](v),ip_[sc]); | ||||
|     }); | ||||
|     t_co+=usecond(); | ||||
|  | ||||
|     // improve numerical stability of projection | ||||
|     // |fine> = |fine> - <basis|fine> |basis> | ||||
|     ip=-ip; | ||||
|     t_za-=usecond(); | ||||
|     blockZAXPY(fineDataRed,ip,Basis[v],fineDataRed);  | ||||
|     t_za+=usecond(); | ||||
|   } | ||||
|   //  std::cout << GridLogPerformance << " blockProject : blockInnerProduct :  "<<t_IP<<" us"<<std::endl; | ||||
|   //  std::cout << GridLogPerformance << " blockProject : conv              :  "<<t_co<<" us"<<std::endl; | ||||
|   //  std::cout << GridLogPerformance << " blockProject : blockZaxpy        :  "<<t_za<<" us"<<std::endl; | ||||
| } | ||||
| // This only minimises data motion from CPU to GPU | ||||
| // there is chance of better implementation that does a vxk loop of inner products to data share | ||||
| // at the GPU thread level | ||||
| template<class vobj,class CComplex,int nbasis,class VLattice> | ||||
| inline void batchBlockProject(std::vector<Lattice<iVector<CComplex,nbasis>>> &coarseData, | ||||
|                                const std::vector<Lattice<vobj>> &fineData, | ||||
|                                const VLattice &Basis) | ||||
| { | ||||
|   int NBatch = fineData.size(); | ||||
|   assert(coarseData.size() == NBatch); | ||||
|  | ||||
|   GridBase * fine  = fineData[0].Grid(); | ||||
|   GridBase * coarse= coarseData[0].Grid(); | ||||
|  | ||||
|   Lattice<iScalar<CComplex>> ip(coarse); | ||||
|   std::vector<Lattice<vobj>> fineDataCopy = fineData; | ||||
|  | ||||
|   autoView(ip_, ip, AcceleratorWrite); | ||||
|   for(int v=0;v<nbasis;v++) { | ||||
|     for (int k=0; k<NBatch; k++) { | ||||
|       autoView( coarseData_ , coarseData[k], AcceleratorWrite); | ||||
|       blockInnerProductD(ip,Basis[v],fineDataCopy[k]); // ip = <basis|fine> | ||||
|       accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), { | ||||
|         convertType(coarseData_[sc](v),ip_[sc]); | ||||
|       }); | ||||
|  | ||||
|       // improve numerical stability of projection | ||||
|       // |fine> = |fine> - <basis|fine> |basis> | ||||
|       ip=-ip; | ||||
|       blockZAXPY(fineDataCopy[k],ip,Basis[v],fineDataCopy[k]);  | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| template<class vobj,class vobj2,class CComplex> | ||||
|   inline void blockZAXPY(Lattice<vobj> &fineZ, | ||||
| @@ -363,8 +240,6 @@ template<class vobj,class vobj2,class CComplex> | ||||
|   autoView( fineX_  , fineX, AcceleratorRead); | ||||
|   autoView( fineY_  , fineY, AcceleratorRead); | ||||
|   autoView( coarseA_, coarseA, AcceleratorRead); | ||||
|   Coordinate fine_rdimensions = fine->_rdimensions; | ||||
|   Coordinate coarse_rdimensions = coarse->_rdimensions; | ||||
|  | ||||
|   accelerator_for(sf, fine->oSites(), CComplex::Nsimd(), { | ||||
|  | ||||
| @@ -372,9 +247,9 @@ template<class vobj,class vobj2,class CComplex> | ||||
|       Coordinate coor_c(_ndimension); | ||||
|       Coordinate coor_f(_ndimension); | ||||
|  | ||||
|       Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions); | ||||
|       Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions); | ||||
|       for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d]; | ||||
|       Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions); | ||||
|       Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions); | ||||
|  | ||||
|       // z = A x + y | ||||
| #ifdef GRID_SIMT | ||||
| @@ -408,15 +283,8 @@ template<class vobj,class CComplex> | ||||
|   Lattice<dotp> coarse_inner(coarse); | ||||
|  | ||||
|   // Precision promotion | ||||
|   RealD t; | ||||
|   t=-usecond(); | ||||
|   fine_inner = localInnerProductD<vobj>(fineX,fineY); | ||||
|   //  t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : localInnerProductD "<<t<<" us"<<std::endl; | ||||
|    | ||||
|   t=-usecond(); | ||||
|   blockSum(coarse_inner,fine_inner); | ||||
|   //  t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : blockSum "<<t<<" us"<<std::endl; | ||||
|   t=-usecond(); | ||||
|   { | ||||
|     autoView( CoarseInner_  , CoarseInner,AcceleratorWrite); | ||||
|     autoView( coarse_inner_ , coarse_inner,AcceleratorRead); | ||||
| @@ -424,7 +292,6 @@ template<class vobj,class CComplex> | ||||
|       convertType(CoarseInner_[ss], TensorRemove(coarse_inner_[ss])); | ||||
|     }); | ||||
|   } | ||||
|   //  t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : convertType "<<t<<" us"<<std::endl; | ||||
|   | ||||
| } | ||||
|  | ||||
| @@ -467,9 +334,6 @@ inline void blockNormalise(Lattice<CComplex> &ip,Lattice<vobj> &fineX) | ||||
| template<class vobj> | ||||
| inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)  | ||||
| { | ||||
|   const int maxsubsec=256; | ||||
|   typedef iVector<vobj,maxsubsec> vSubsec; | ||||
|  | ||||
|   GridBase * fine  = fineData.Grid(); | ||||
|   GridBase * coarse= coarseData.Grid(); | ||||
|  | ||||
| @@ -489,62 +353,26 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData) | ||||
|   autoView( coarseData_ , coarseData, AcceleratorWrite); | ||||
|   autoView( fineData_   , fineData, AcceleratorRead); | ||||
|  | ||||
|   auto coarseData_p  = &coarseData_[0]; | ||||
|   auto fineData_p    = &fineData_[0]; | ||||
|    | ||||
|   Coordinate fine_rdimensions = fine->_rdimensions; | ||||
|   Coordinate coarse_rdimensions = coarse->_rdimensions; | ||||
|  | ||||
|   vobj zz = Zero(); | ||||
|  | ||||
|   // Somewhat lazy calculation | ||||
|   // Find the biggest power of two subsection divisor less than or equal to maxsubsec | ||||
|   int subsec=maxsubsec; | ||||
|   int subvol; | ||||
|   subvol=blockVol/subsec; | ||||
|   while(subvol*subsec!=blockVol){ | ||||
|     subsec = subsec/2; | ||||
|     subvol=blockVol/subsec; | ||||
|   }; | ||||
|  | ||||
|   Lattice<vSubsec> coarseTmp(coarse); | ||||
|   autoView( coarseTmp_, coarseTmp, AcceleratorWriteDiscard); | ||||
|   auto coarseTmp_p= &coarseTmp_[0]; | ||||
|    | ||||
|   // Sum within subsecs in a first kernel | ||||
|   accelerator_for(sce,subsec*coarse->oSites(),vobj::Nsimd(),{ | ||||
|  | ||||
|       int sc=sce/subsec; | ||||
|       int e=sce%subsec; | ||||
|   accelerator_for(sc,coarse->oSites(),1,{ | ||||
|  | ||||
|       // One thread per sub block | ||||
|       Coordinate coor_c(_ndimension); | ||||
|       Lexicographic::CoorFromIndex(coor_c,sc,coarse_rdimensions);  // Block coordinate | ||||
|       Lexicographic::CoorFromIndex(coor_c,sc,coarse->_rdimensions);  // Block coordinate | ||||
|       coarseData_[sc]=Zero(); | ||||
|  | ||||
|       for(int sb=0;sb<blockVol;sb++){ | ||||
|  | ||||
|       auto cd = coalescedRead(zz); | ||||
|       for(int sb=e*subvol;sb<MIN((e+1)*subvol,blockVol);sb++){ | ||||
| 	int sf; | ||||
| 	Coordinate coor_b(_ndimension); | ||||
| 	Coordinate coor_f(_ndimension); | ||||
| 	Lexicographic::CoorFromIndex(coor_b,sb,block_r);               // Block sub coordinate | ||||
| 	for(int d=0;d<_ndimension;d++) coor_f[d]=coor_c[d]*block_r[d] + coor_b[d]; | ||||
| 	Lexicographic::IndexFromCoor(coor_f,sf,fine_rdimensions); | ||||
| 	Lexicographic::IndexFromCoor(coor_f,sf,fine->_rdimensions); | ||||
|  | ||||
| 	cd=cd+coalescedRead(fineData_p[sf]); | ||||
| 	coarseData_[sc]=coarseData_[sc]+fineData_[sf]; | ||||
|       } | ||||
|  | ||||
|       coalescedWrite(coarseTmp_[sc](e),cd); | ||||
|  | ||||
|     }); | ||||
|    // Sum across subsecs in a second kernel | ||||
|    accelerator_for(sc,coarse->oSites(),vobj::Nsimd(),{ | ||||
|       auto cd = coalescedRead(coarseTmp_p[sc](0)); | ||||
|       for(int e=1;e<subsec;e++){ | ||||
| 	cd=cd+coalescedRead(coarseTmp_p[sc](e)); | ||||
|       } | ||||
|       coalescedWrite(coarseData_p[sc],cd); | ||||
|    }); | ||||
|  | ||||
|   return; | ||||
| } | ||||
|  | ||||
| @@ -601,7 +429,7 @@ inline void blockOrthogonalise(Lattice<CComplex> &ip,std::vector<Lattice<vobj> > | ||||
|   blockOrthonormalize(ip,Basis); | ||||
| } | ||||
|  | ||||
| #ifdef GRID_ACCELERATED | ||||
| #if 0 | ||||
| // TODO: CPU optimized version here | ||||
| template<class vobj,class CComplex,int nbasis> | ||||
| inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData, | ||||
| @@ -627,37 +455,26 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData, | ||||
|   autoView( fineData_   , fineData, AcceleratorWrite); | ||||
|   autoView( coarseData_ , coarseData, AcceleratorRead); | ||||
|  | ||||
|   typedef LatticeView<vobj> Vview; | ||||
|   std::vector<Vview> AcceleratorVecViewContainer_h;  | ||||
|   for(int v=0;v<nbasis;v++) { | ||||
|     AcceleratorVecViewContainer_h.push_back(Basis[v].View(AcceleratorRead)); | ||||
|   } | ||||
|   static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(nbasis);  | ||||
|   acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],nbasis *sizeof(Vview)); | ||||
|   auto Basis_p = &AcceleratorVecViewContainer[0]; | ||||
|   // Loop with a cache friendly loop ordering | ||||
|   Coordinate frdimensions=fine->_rdimensions; | ||||
|   Coordinate crdimensions=coarse->_rdimensions; | ||||
|   accelerator_for(sf,fine->oSites(),vobj::Nsimd(),{ | ||||
|   accelerator_for(sf,fine->oSites(),1,{ | ||||
|     int sc; | ||||
|     Coordinate coor_c(_ndimension); | ||||
|     Coordinate coor_f(_ndimension); | ||||
|  | ||||
|     Lexicographic::CoorFromIndex(coor_f,sf,frdimensions); | ||||
|     Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions); | ||||
|     for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d]; | ||||
|     Lexicographic::IndexFromCoor(coor_c,sc,crdimensions); | ||||
|     Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions); | ||||
|  | ||||
|     auto sum= coarseData_(sc)(0) *Basis_p[0](sf); | ||||
|     for(int i=1;i<nbasis;i++) sum = sum + coarseData_(sc)(i)*Basis_p[i](sf); | ||||
|     coalescedWrite(fineData_[sf],sum); | ||||
|   }); | ||||
|   for(int v=0;v<nbasis;v++) { | ||||
|     AcceleratorVecViewContainer_h[v].ViewClose(); | ||||
|     for(int i=0;i<nbasis;i++) { | ||||
|       /*      auto basis_ = Basis[i],  );*/ | ||||
|       if(i==0) fineData_[sf]=coarseData_[sc](i) *basis_[sf]); | ||||
|       else     fineData_[sf]=fineData_[sf]+coarseData_[sc](i)*basis_[sf]); | ||||
|     } | ||||
|   }); | ||||
|   return; | ||||
|    | ||||
| } | ||||
| #else | ||||
| // CPU version | ||||
| template<class vobj,class CComplex,int nbasis,class VLattice> | ||||
| inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData, | ||||
| 			 Lattice<vobj>   &fineData, | ||||
| @@ -681,26 +498,6 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData, | ||||
| } | ||||
| #endif | ||||
|  | ||||
| template<class vobj,class CComplex,int nbasis,class VLattice> | ||||
| inline void batchBlockPromote(const std::vector<Lattice<iVector<CComplex,nbasis>>> &coarseData, | ||||
|                                std::vector<Lattice<vobj>> &fineData, | ||||
|                                const VLattice &Basis) | ||||
| { | ||||
|   int NBatch = coarseData.size(); | ||||
|   assert(fineData.size() == NBatch); | ||||
|  | ||||
|   GridBase * fine   = fineData[0].Grid(); | ||||
|   GridBase * coarse = coarseData[0].Grid(); | ||||
|   for (int k=0; k<NBatch; k++) | ||||
|     fineData[k]=Zero(); | ||||
|   for (int i=0;i<nbasis;i++) { | ||||
|     for (int k=0; k<NBatch; k++) { | ||||
|       Lattice<iScalar<CComplex>> ip = PeekIndex<0>(coarseData[k],i); | ||||
|       blockZAXPY(fineData[k],ip,Basis[i],fineData[k]); | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| // Useful for precision conversion, or indeed anything where an operator= does a conversion on scalars. | ||||
| // Simd layouts need not match since we use peek/poke Local | ||||
| template<class vobj,class vvobj> | ||||
| @@ -744,11 +541,7 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   const int words=sizeof(vobj)/sizeof(vector_type); | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // checks should guarantee that the operations are local | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   static const int words=sizeof(vobj)/sizeof(vector_type); | ||||
|  | ||||
|   GridBase *Fg = From.Grid(); | ||||
|   GridBase *Tg = To.Grid(); | ||||
| @@ -764,186 +557,43 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro | ||||
|     assert(Fg->_processors[d]  == Tg->_processors[d]); | ||||
|   } | ||||
|  | ||||
|   /////////////////////////////////////////////////////////// | ||||
|   // do the index calc on the GPU | ||||
|   /////////////////////////////////////////////////////////// | ||||
|   Coordinate f_ostride = Fg->_ostride; | ||||
|   Coordinate f_istride = Fg->_istride; | ||||
|   Coordinate f_rdimensions = Fg->_rdimensions; | ||||
|   Coordinate t_ostride = Tg->_ostride; | ||||
|   Coordinate t_istride = Tg->_istride; | ||||
|   Coordinate t_rdimensions = Tg->_rdimensions; | ||||
|   // the above should guarantee that the operations are local | ||||
|   Coordinate ldf = Fg->_ldimensions; | ||||
|   Coordinate rdf = Fg->_rdimensions; | ||||
|   Coordinate isf = Fg->_istride; | ||||
|   Coordinate osf = Fg->_ostride; | ||||
|   Coordinate rdt = Tg->_rdimensions; | ||||
|   Coordinate ist = Tg->_istride; | ||||
|   Coordinate ost = Tg->_ostride; | ||||
|  | ||||
|   size_t nsite = 1; | ||||
|   for(int i=0;i<nd;i++) nsite *= RegionSize[i]; | ||||
|  | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|  | ||||
|   autoView(from_v,From,AcceleratorRead); | ||||
|   autoView(to_v,To,AcceleratorWrite); | ||||
|  | ||||
|   accelerator_for(idx,nsite,1,{ | ||||
|  | ||||
|       Coordinate from_coor, to_coor, base; | ||||
|       Lexicographic::CoorFromIndex(base,idx,RegionSize); | ||||
|       for(int i=0;i<nd;i++){ | ||||
| 	from_coor[i] = base[i] + FromLowerLeft[i]; | ||||
| 	to_coor[i] = base[i] + ToLowerLeft[i]; | ||||
|   autoView( t_v , To, AcceleratorWrite); | ||||
|   autoView( f_v , From, AcceleratorRead); | ||||
|   accelerator_for(idx,Fg->lSites(),1,{ | ||||
|     sobj s; | ||||
|     Coordinate Fcoor(nd); | ||||
|     Coordinate Tcoor(nd); | ||||
|     Lexicographic::CoorFromIndex(Fcoor,idx,ldf); | ||||
|     int in_region=1; | ||||
|     for(int d=0;d<nd;d++){ | ||||
|       if ( (Fcoor[d] < FromLowerLeft[d]) || (Fcoor[d]>=FromLowerLeft[d]+RegionSize[d]) ){  | ||||
| 	in_region=0; | ||||
|       } | ||||
|       int from_oidx = 0; for(int d=0;d<nd;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]); | ||||
|       int from_lane = 0; for(int d=0;d<nd;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]); | ||||
|       int to_oidx   = 0; for(int d=0;d<nd;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]); | ||||
|       int to_lane   = 0; for(int d=0;d<nd;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]); | ||||
|  | ||||
|       const vector_type* from = (const vector_type *)&from_v[from_oidx]; | ||||
|       vector_type* to = (vector_type *)&to_v[to_oidx]; | ||||
|        | ||||
|       scalar_type stmp; | ||||
|       Tcoor[d] = ToLowerLeft[d]+ Fcoor[d]-FromLowerLeft[d]; | ||||
|     } | ||||
|     if (in_region) { | ||||
|       Integer idx_f = 0; for(int d=0;d<nd;d++) idx_f+=isf[d]*(Fcoor[d]/rdf[d]); | ||||
|       Integer idx_t = 0; for(int d=0;d<nd;d++) idx_t+=ist[d]*(Tcoor[d]/rdt[d]); | ||||
|       Integer odx_f = 0; for(int d=0;d<nd;d++) odx_f+=osf[d]*(Fcoor[d]%rdf[d]); | ||||
|       Integer odx_t = 0; for(int d=0;d<nd;d++) odx_t+=ost[d]*(Tcoor[d]%rdt[d]); | ||||
|       scalar_type * fp = (scalar_type *)&f_v[odx_f]; | ||||
|       scalar_type * tp = (scalar_type *)&t_v[odx_t]; | ||||
|       for(int w=0;w<words;w++){ | ||||
| 	stmp = getlane(from[w], from_lane); | ||||
| 	putlane(to[w], stmp, to_lane); | ||||
| 	tp[idx_t+w*Nsimd] = fp[idx_f+w*Nsimd];  // FIXME IF RRII layout, type pun no worke | ||||
|       } | ||||
|     } | ||||
|   }); | ||||
| } | ||||
|  | ||||
| template<class vobj> | ||||
| void InsertSliceFast(const Lattice<vobj> &From,Lattice<vobj> & To,int slice, int orthog) | ||||
| { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   const int words=sizeof(vobj)/sizeof(vector_type); | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // checks should guarantee that the operations are local | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   GridBase *Fg = From.Grid(); | ||||
|   GridBase *Tg = To.Grid(); | ||||
|   assert(!Fg->_isCheckerBoarded); | ||||
|   assert(!Tg->_isCheckerBoarded); | ||||
|   int Nsimd = Fg->Nsimd(); | ||||
|   int nF = Fg->_ndimension; | ||||
|   int nT = Tg->_ndimension; | ||||
|   assert(nF+1 == nT); | ||||
|  | ||||
|   /////////////////////////////////////////////////////////// | ||||
|   // do the index calc on the GPU | ||||
|   /////////////////////////////////////////////////////////// | ||||
|   Coordinate f_ostride = Fg->_ostride; | ||||
|   Coordinate f_istride = Fg->_istride; | ||||
|   Coordinate f_rdimensions = Fg->_rdimensions; | ||||
|   Coordinate t_ostride = Tg->_ostride; | ||||
|   Coordinate t_istride = Tg->_istride; | ||||
|   Coordinate t_rdimensions = Tg->_rdimensions; | ||||
|   Coordinate RegionSize = Fg->_ldimensions; | ||||
|   size_t nsite = 1; | ||||
|   for(int i=0;i<nF;i++) nsite *= RegionSize[i]; // whole volume of lower dim grid | ||||
|  | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|  | ||||
|   autoView(from_v,From,AcceleratorRead); | ||||
|   autoView(to_v,To,AcceleratorWrite); | ||||
|  | ||||
|   accelerator_for(idx,nsite,1,{ | ||||
|  | ||||
|       Coordinate from_coor(nF), to_coor(nT); | ||||
|       Lexicographic::CoorFromIndex(from_coor,idx,RegionSize); | ||||
|       int j=0; | ||||
|       for(int i=0;i<nT;i++){ | ||||
| 	if ( i!=orthog ) {  | ||||
| 	  to_coor[i] = from_coor[j]; | ||||
| 	  j++; | ||||
| 	} else { | ||||
| 	  to_coor[i] = slice; | ||||
| 	} | ||||
|       } | ||||
|       int from_oidx = 0; for(int d=0;d<nF;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]); | ||||
|       int from_lane = 0; for(int d=0;d<nF;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]); | ||||
|       int to_oidx   = 0; for(int d=0;d<nT;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]); | ||||
|       int to_lane   = 0; for(int d=0;d<nT;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]); | ||||
|  | ||||
|       const vector_type* from = (const vector_type *)&from_v[from_oidx]; | ||||
|       vector_type* to = (vector_type *)&to_v[to_oidx]; | ||||
|        | ||||
|       scalar_type stmp; | ||||
|       for(int w=0;w<words;w++){ | ||||
| 	stmp = getlane(from[w], from_lane); | ||||
| 	putlane(to[w], stmp, to_lane); | ||||
|       } | ||||
|   }); | ||||
| } | ||||
|  | ||||
| template<class vobj> | ||||
| void ExtractSliceFast(Lattice<vobj> &To,const Lattice<vobj> & From,int slice, int orthog) | ||||
| { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   const int words=sizeof(vobj)/sizeof(vector_type); | ||||
|  | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   // checks should guarantee that the operations are local | ||||
|   ////////////////////////////////////////////////////////////////////////////////////////// | ||||
|   GridBase *Fg = From.Grid(); | ||||
|   GridBase *Tg = To.Grid(); | ||||
|   assert(!Fg->_isCheckerBoarded); | ||||
|   assert(!Tg->_isCheckerBoarded); | ||||
|   int Nsimd = Fg->Nsimd(); | ||||
|   int nF = Fg->_ndimension; | ||||
|   int nT = Tg->_ndimension; | ||||
|   assert(nT+1 == nF); | ||||
|  | ||||
|   /////////////////////////////////////////////////////////// | ||||
|   // do the index calc on the GPU | ||||
|   /////////////////////////////////////////////////////////// | ||||
|   Coordinate f_ostride = Fg->_ostride; | ||||
|   Coordinate f_istride = Fg->_istride; | ||||
|   Coordinate f_rdimensions = Fg->_rdimensions; | ||||
|   Coordinate t_ostride = Tg->_ostride; | ||||
|   Coordinate t_istride = Tg->_istride; | ||||
|   Coordinate t_rdimensions = Tg->_rdimensions; | ||||
|   Coordinate RegionSize = Tg->_ldimensions; | ||||
|   size_t nsite = 1; | ||||
|   for(int i=0;i<nT;i++) nsite *= RegionSize[i]; // whole volume of lower dim grid | ||||
|  | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|  | ||||
|   autoView(from_v,From,AcceleratorRead); | ||||
|   autoView(to_v,To,AcceleratorWrite); | ||||
|  | ||||
|   accelerator_for(idx,nsite,1,{ | ||||
|  | ||||
|       Coordinate from_coor(nF), to_coor(nT); | ||||
|       Lexicographic::CoorFromIndex(to_coor,idx,RegionSize); | ||||
|       int j=0; | ||||
|       for(int i=0;i<nF;i++){ | ||||
| 	if ( i!=orthog ) {  | ||||
| 	  from_coor[i] = to_coor[j]; | ||||
| 	  j++; | ||||
| 	} else { | ||||
| 	  from_coor[i] = slice; | ||||
| 	} | ||||
|       } | ||||
|       int from_oidx = 0; for(int d=0;d<nF;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]); | ||||
|       int from_lane = 0; for(int d=0;d<nF;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]); | ||||
|       int to_oidx   = 0; for(int d=0;d<nT;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]); | ||||
|       int to_lane   = 0; for(int d=0;d<nT;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]); | ||||
|  | ||||
|       const vector_type* from = (const vector_type *)&from_v[from_oidx]; | ||||
|       vector_type* to = (vector_type *)&to_v[to_oidx]; | ||||
|        | ||||
|       scalar_type stmp; | ||||
|       for(int w=0;w<words;w++){ | ||||
| 	stmp = getlane(from[w], from_lane); | ||||
| 	putlane(to[w], stmp, to_lane); | ||||
|       } | ||||
|   }); | ||||
| } | ||||
|  | ||||
| template<class vobj> | ||||
| void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice, int orthog) | ||||
| @@ -1033,7 +683,7 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic | ||||
|  | ||||
| } | ||||
|  | ||||
| //Can I implement with local copyregion?? | ||||
|  | ||||
| template<class vobj> | ||||
| void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog) | ||||
| { | ||||
| @@ -1054,23 +704,66 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int | ||||
|     assert(lg->_ldimensions[d] == hg->_ldimensions[d]); | ||||
|   } | ||||
|   } | ||||
|   Coordinate sz = lg->_ldimensions; | ||||
|   sz[orthog]=1; | ||||
|   Coordinate f_ll(nl,0); f_ll[orthog]=slice_lo; | ||||
|   Coordinate t_ll(nh,0); t_ll[orthog]=slice_hi; | ||||
|   localCopyRegion(lowDim,higherDim,f_ll,t_ll,sz); | ||||
|  | ||||
|   // the above should guarantee that the operations are local | ||||
|   autoView(lowDimv,lowDim,CpuRead); | ||||
|   autoView(higherDimv,higherDim,CpuWrite); | ||||
|   thread_for(idx,lg->lSites(),{ | ||||
|     sobj s; | ||||
|     Coordinate lcoor(nl); | ||||
|     Coordinate hcoor(nh); | ||||
|     lg->LocalIndexToLocalCoor(idx,lcoor); | ||||
|     if( lcoor[orthog] == slice_lo ) {  | ||||
|       hcoor=lcoor; | ||||
|       hcoor[orthog] = slice_hi; | ||||
|       peekLocalSite(s,lowDimv,lcoor); | ||||
|       pokeLocalSite(s,higherDimv,hcoor); | ||||
|     } | ||||
|   }); | ||||
| } | ||||
|  | ||||
|  | ||||
| template<class vobj> | ||||
| void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog) | ||||
| { | ||||
|   InsertSliceLocal(higherDim,lowDim,slice_hi,slice_lo,orthog); | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|  | ||||
|   GridBase *lg = lowDim.Grid(); | ||||
|   GridBase *hg = higherDim.Grid(); | ||||
|   int nl = lg->_ndimension; | ||||
|   int nh = hg->_ndimension; | ||||
|  | ||||
|   assert(nl == nh); | ||||
|   assert(orthog<nh); | ||||
|   assert(orthog>=0); | ||||
|  | ||||
|   for(int d=0;d<nh;d++){ | ||||
|     if ( d!=orthog ) { | ||||
|     assert(lg->_processors[d]  == hg->_processors[d]); | ||||
|     assert(lg->_ldimensions[d] == hg->_ldimensions[d]); | ||||
|   } | ||||
|   } | ||||
|  | ||||
|   // the above should guarantee that the operations are local | ||||
|   autoView(lowDimv,lowDim,CpuWrite); | ||||
|   autoView(higherDimv,higherDim,CpuRead); | ||||
|   thread_for(idx,lg->lSites(),{ | ||||
|     sobj s; | ||||
|     Coordinate lcoor(nl); | ||||
|     Coordinate hcoor(nh); | ||||
|     lg->LocalIndexToLocalCoor(idx,lcoor); | ||||
|     if( lcoor[orthog] == slice_lo ) {  | ||||
|       hcoor=lcoor; | ||||
|       hcoor[orthog] = slice_hi; | ||||
|       peekLocalSite(s,higherDimv,hcoor); | ||||
|       pokeLocalSite(s,lowDimv,lcoor); | ||||
|     } | ||||
|   }); | ||||
| } | ||||
|  | ||||
|  | ||||
| template<class vobj> | ||||
| void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine) | ||||
| void Replicate(Lattice<vobj> &coarse,Lattice<vobj> & fine) | ||||
| { | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|  | ||||
| @@ -1091,7 +784,7 @@ void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine) | ||||
|  | ||||
|   Coordinate fcoor(nd); | ||||
|   Coordinate ccoor(nd); | ||||
|   for(int64_t g=0;g<fg->gSites();g++){ | ||||
|   for(int g=0;g<fg->gSites();g++){ | ||||
|  | ||||
|     fg->GlobalIndexToGlobalCoor(g,fcoor); | ||||
|     for(int d=0;d<nd;d++){ | ||||
| @@ -1295,27 +988,9 @@ vectorizeFromRevLexOrdArray( std::vector<sobj> &in, Lattice<vobj> &out) | ||||
|   }); | ||||
| } | ||||
|  | ||||
| //Very fast precision change. Requires in/out objects to reside on same Grid (e.g. by using double2 for the double-precision field) | ||||
| //Convert a Lattice from one precision to another | ||||
| template<class VobjOut, class VobjIn> | ||||
| void precisionChangeFast(Lattice<VobjOut> &out, const Lattice<VobjIn> &in) | ||||
| { | ||||
|   typedef typename VobjOut::vector_type Vout; | ||||
|   typedef typename VobjIn::vector_type Vin; | ||||
|   const int N = sizeof(VobjOut)/sizeof(Vout); | ||||
|   conformable(out.Grid(),in.Grid()); | ||||
|   out.Checkerboard() = in.Checkerboard(); | ||||
|   int nsimd = out.Grid()->Nsimd(); | ||||
|   autoView( out_v  , out, AcceleratorWrite); | ||||
|   autoView(  in_v ,   in, AcceleratorRead); | ||||
|   accelerator_for(idx,out.Grid()->oSites(),1,{ | ||||
|       Vout *vout = (Vout *)&out_v[idx]; | ||||
|       Vin  *vin  = (Vin  *)&in_v[idx]; | ||||
|       precisionChange(vout,vin,N); | ||||
|   }); | ||||
| } | ||||
| //Convert a Lattice from one precision to another (original, slow implementation) | ||||
| template<class VobjOut, class VobjIn> | ||||
| void precisionChangeOrig(Lattice<VobjOut> &out, const Lattice<VobjIn> &in) | ||||
| void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in) | ||||
| { | ||||
|   assert(out.Grid()->Nd() == in.Grid()->Nd()); | ||||
|   for(int d=0;d<out.Grid()->Nd();d++){ | ||||
| @@ -1330,7 +1005,7 @@ void precisionChangeOrig(Lattice<VobjOut> &out, const Lattice<VobjIn> &in) | ||||
|  | ||||
|   int ndim = out.Grid()->Nd(); | ||||
|   int out_nsimd = out_grid->Nsimd(); | ||||
|   int in_nsimd = in_grid->Nsimd(); | ||||
|      | ||||
|   std::vector<Coordinate > out_icoor(out_nsimd); | ||||
|        | ||||
|   for(int lane=0; lane < out_nsimd; lane++){ | ||||
| @@ -1361,128 +1036,6 @@ void precisionChangeOrig(Lattice<VobjOut> &out, const Lattice<VobjIn> &in) | ||||
|   }); | ||||
| } | ||||
|  | ||||
| //The workspace for a precision change operation allowing for the reuse of the mapping to save time on subsequent calls | ||||
| class precisionChangeWorkspace{ | ||||
|   std::pair<Integer,Integer>* fmap_device; //device pointer | ||||
|   //maintain grids for checking | ||||
|   GridBase* _out_grid; | ||||
|   GridBase* _in_grid; | ||||
| public: | ||||
|   precisionChangeWorkspace(GridBase *out_grid, GridBase *in_grid): _out_grid(out_grid), _in_grid(in_grid){ | ||||
|     //Build a map between the sites and lanes of the output field and the input field as we cannot use the Grids on the device | ||||
|     assert(out_grid->Nd() == in_grid->Nd()); | ||||
|     for(int d=0;d<out_grid->Nd();d++){ | ||||
|       assert(out_grid->FullDimensions()[d] == in_grid->FullDimensions()[d]); | ||||
|     } | ||||
|     int Nsimd_out = out_grid->Nsimd(); | ||||
|  | ||||
|     std::vector<Coordinate> out_icorrs(out_grid->Nsimd()); //reuse these | ||||
|     for(int lane=0; lane < out_grid->Nsimd(); lane++) | ||||
|       out_grid->iCoorFromIindex(out_icorrs[lane], lane); | ||||
|    | ||||
|     std::vector<std::pair<Integer,Integer> > fmap_host(out_grid->lSites()); //lsites = osites*Nsimd | ||||
|     thread_for(out_oidx,out_grid->oSites(),{ | ||||
| 	Coordinate out_ocorr;  | ||||
| 	out_grid->oCoorFromOindex(out_ocorr, out_oidx); | ||||
|        | ||||
| 	Coordinate lcorr; //the local coordinate (common to both in and out as full coordinate) | ||||
| 	for(int out_lane=0; out_lane < Nsimd_out; out_lane++){ | ||||
| 	  out_grid->InOutCoorToLocalCoor(out_ocorr, out_icorrs[out_lane], lcorr); | ||||
| 	 | ||||
| 	  //int in_oidx = in_grid->oIndex(lcorr), in_lane = in_grid->iIndex(lcorr); | ||||
| 	  //Note oIndex and OcorrFromOindex (and same for iIndex) are not inverse for checkerboarded lattice, the former coordinates being defined on the full lattice and the latter on the reduced lattice | ||||
| 	  //Until this is fixed we need to circumvent the problem locally. Here I will use the coordinates defined on the reduced lattice for simplicity | ||||
| 	  int in_oidx = 0, in_lane = 0; | ||||
| 	  for(int d=0;d<in_grid->_ndimension;d++){ | ||||
| 	    in_oidx += in_grid->_ostride[d] * ( lcorr[d] % in_grid->_rdimensions[d] ); | ||||
| 	    in_lane += in_grid->_istride[d] * ( lcorr[d] / in_grid->_rdimensions[d] ); | ||||
| 	  } | ||||
| 	  fmap_host[out_lane + Nsimd_out*out_oidx] = std::pair<Integer,Integer>( in_oidx, in_lane ); | ||||
| 	} | ||||
|       }); | ||||
|  | ||||
|     //Copy the map to the device (if we had a way to tell if an accelerator is in use we could avoid this copy for CPU-only machines) | ||||
|     size_t fmap_bytes = out_grid->lSites() * sizeof(std::pair<Integer,Integer>); | ||||
|     fmap_device = (std::pair<Integer,Integer>*)acceleratorAllocDevice(fmap_bytes); | ||||
|     acceleratorCopyToDevice(fmap_host.data(), fmap_device, fmap_bytes);  | ||||
|   } | ||||
|  | ||||
|   //Prevent moving or copying | ||||
|   precisionChangeWorkspace(const precisionChangeWorkspace &r) = delete; | ||||
|   precisionChangeWorkspace(precisionChangeWorkspace &&r) = delete; | ||||
|   precisionChangeWorkspace &operator=(const precisionChangeWorkspace &r) = delete; | ||||
|   precisionChangeWorkspace &operator=(precisionChangeWorkspace &&r) = delete; | ||||
|    | ||||
|   std::pair<Integer,Integer> const* getMap() const{ return fmap_device; } | ||||
|  | ||||
|   void checkGrids(GridBase* out, GridBase* in) const{ | ||||
|     conformable(out, _out_grid); | ||||
|     conformable(in, _in_grid); | ||||
|   } | ||||
|    | ||||
|   ~precisionChangeWorkspace(){ | ||||
|     acceleratorFreeDevice(fmap_device); | ||||
|   } | ||||
| }; | ||||
|  | ||||
|  | ||||
| //We would like to use precisionChangeFast when possible. However usage of this requires the Grids to be the same (runtime check) | ||||
| //*and* the precisionChange(VobjOut::vector_type, VobjIn, int) function to be defined for the types; this requires an extra compile-time check which we do using some SFINAE trickery | ||||
| template<class VobjOut, class VobjIn> | ||||
| auto _precisionChangeFastWrap(Lattice<VobjOut> &out, const Lattice<VobjIn> &in, int dummy)->decltype( precisionChange( ((typename VobjOut::vector_type*)0), ((typename VobjIn::vector_type*)0), 1), int()){ | ||||
|   if(out.Grid() == in.Grid()){ | ||||
|     precisionChangeFast(out,in); | ||||
|     return 1; | ||||
|   }else{ | ||||
|     return 0; | ||||
|   } | ||||
| } | ||||
| template<class VobjOut, class VobjIn> | ||||
| int _precisionChangeFastWrap(Lattice<VobjOut> &out, const Lattice<VobjIn> &in, long dummy){ //note long here is intentional; it means the above is preferred if available | ||||
|   return 0; | ||||
| } | ||||
|  | ||||
|  | ||||
| //Convert a lattice of one precision to another. Much faster than original implementation but requires a pregenerated workspace | ||||
| //which contains the mapping data. | ||||
| template<class VobjOut, class VobjIn> | ||||
| void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in, const precisionChangeWorkspace &workspace){ | ||||
|   if(_precisionChangeFastWrap(out,in,0)) return; | ||||
|    | ||||
|   static_assert( std::is_same<typename VobjOut::scalar_typeD, typename VobjIn::scalar_typeD>::value == 1, "precisionChange: tensor types must be the same" ); //if tensor types are same the DoublePrecision type must be the same | ||||
|  | ||||
|   out.Checkerboard() = in.Checkerboard(); | ||||
|   constexpr int Nsimd_out = VobjOut::Nsimd(); | ||||
|  | ||||
|   workspace.checkGrids(out.Grid(),in.Grid()); | ||||
|   std::pair<Integer,Integer> const* fmap_device = workspace.getMap(); | ||||
|  | ||||
|   //Do the copy/precision change | ||||
|   autoView( out_v , out, AcceleratorWrite); | ||||
|   autoView( in_v , in, AcceleratorRead); | ||||
|  | ||||
|   accelerator_for(out_oidx, out.Grid()->oSites(), 1,{ | ||||
|       std::pair<Integer,Integer> const* fmap_osite = fmap_device + out_oidx*Nsimd_out; | ||||
|       for(int out_lane=0; out_lane < Nsimd_out; out_lane++){       | ||||
| 	int in_oidx = fmap_osite[out_lane].first; | ||||
| 	int in_lane = fmap_osite[out_lane].second; | ||||
| 	copyLane(out_v[out_oidx], out_lane, in_v[in_oidx], in_lane); | ||||
|       } | ||||
|     }); | ||||
| } | ||||
|  | ||||
| //Convert a Lattice from one precision to another. Much faster than original implementation but slower than precisionChangeFast | ||||
| //or precisionChange called with pregenerated workspace, as it needs to internally generate the workspace on the host and copy to device | ||||
| template<class VobjOut, class VobjIn> | ||||
| void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in){ | ||||
|   if(_precisionChangeFastWrap(out,in,0)) return;    | ||||
|   precisionChangeWorkspace workspace(out.Grid(), in.Grid()); | ||||
|   precisionChange(out, in, workspace); | ||||
| } | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
| // Communicate between grids | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -1777,35 +1330,5 @@ void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj>   & split) | ||||
|   } | ||||
| } | ||||
|  | ||||
| ////////////////////////////////////////////////////// | ||||
| // Faster but less accurate blockProject | ||||
| ////////////////////////////////////////////////////// | ||||
| template<class vobj,class CComplex,int nbasis,class VLattice> | ||||
| inline void blockProjectFast(Lattice<iVector<CComplex,nbasis > > &coarseData, | ||||
| 			     const             Lattice<vobj>   &fineData, | ||||
| 			     const VLattice &Basis) | ||||
| { | ||||
|   GridBase * fine  = fineData.Grid(); | ||||
|   GridBase * coarse= coarseData.Grid(); | ||||
|  | ||||
|   Lattice<iScalar<CComplex> > ip(coarse); | ||||
|  | ||||
|   autoView( coarseData_ , coarseData, AcceleratorWrite); | ||||
|   autoView( ip_         , ip,         AcceleratorWrite); | ||||
|   RealD t_IP=0; | ||||
|   RealD t_co=0; | ||||
|   for(int v=0;v<nbasis;v++) { | ||||
|     t_IP-=usecond(); | ||||
|     blockInnerProductD(ip,Basis[v],fineData);  | ||||
|     t_IP+=usecond(); | ||||
|     t_co-=usecond(); | ||||
|     accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), { | ||||
| 	convertType(coarseData_[sc](v),ip_[sc]); | ||||
|       }); | ||||
|     t_co+=usecond(); | ||||
|   } | ||||
| } | ||||
|  | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|   | ||||
| @@ -45,7 +45,6 @@ public: | ||||
|   }; | ||||
|   // Host only | ||||
|   GridBase * getGrid(void) const { return _grid; }; | ||||
|   vobj* getHostPointer(void) const { return _odata; }; | ||||
| }; | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////////////////////////////// | ||||
| @@ -68,13 +67,8 @@ public: | ||||
|   accelerator_inline const vobj & operator()(size_t i) const { return this->_odata[i]; } | ||||
| #endif | ||||
|  | ||||
| #if 1 | ||||
|   //  accelerator_inline const vobj & operator[](size_t i) const { return this->_odata[i]; }; | ||||
|   accelerator_inline vobj       & operator[](size_t i) const { return this->_odata[i]; }; | ||||
| #else | ||||
|   accelerator_inline const vobj & operator[](size_t i) const { return this->_odata[i]; }; | ||||
|   accelerator_inline vobj       & operator[](size_t i)       { return this->_odata[i]; }; | ||||
| #endif | ||||
|  | ||||
|   accelerator_inline uint64_t begin(void) const { return 0;}; | ||||
|   accelerator_inline uint64_t end(void)   const { return this->_odata_size; }; | ||||
|   | ||||
| @@ -43,7 +43,7 @@ inline void whereWolf(Lattice<vobj> &ret,const Lattice<iobj> &predicate,Lattice< | ||||
|   conformable(iftrue,predicate); | ||||
|   conformable(iftrue,ret); | ||||
|  | ||||
|   GridBase *grid=iftrue.Grid(); | ||||
|   GridBase *grid=iftrue._grid; | ||||
|  | ||||
|   typedef typename vobj::scalar_object scalar_object; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
| @@ -52,23 +52,22 @@ inline void whereWolf(Lattice<vobj> &ret,const Lattice<iobj> &predicate,Lattice< | ||||
|  | ||||
|   const int Nsimd = grid->Nsimd(); | ||||
|  | ||||
|   autoView(iftrue_v,iftrue,CpuRead); | ||||
|   autoView(iffalse_v,iffalse,CpuRead); | ||||
|   autoView(predicate_v,predicate,CpuRead); | ||||
|   autoView(ret_v,ret,CpuWrite); | ||||
|   Integer NN= grid->oSites(); | ||||
|   thread_for(ss,NN,{ | ||||
|     Integer mask; | ||||
|     scalar_object trueval; | ||||
|     scalar_object falseval; | ||||
|     for(int l=0;l<Nsimd;l++){ | ||||
|       trueval =extractLane(l,iftrue_v[ss]); | ||||
|       falseval=extractLane(l,iffalse_v[ss]); | ||||
|       mask    =extractLane(l,predicate_v[ss]); | ||||
|       if (mask) falseval=trueval; | ||||
|       insertLane(l,ret_v[ss],falseval); | ||||
|   std::vector<Integer> mask(Nsimd); | ||||
|   std::vector<scalar_object> truevals (Nsimd); | ||||
|   std::vector<scalar_object> falsevals(Nsimd); | ||||
|  | ||||
|   parallel_for(int ss=0;ss<iftrue._grid->oSites(); ss++){ | ||||
|  | ||||
|     extract(iftrue._odata[ss]   ,truevals); | ||||
|     extract(iffalse._odata[ss]  ,falsevals); | ||||
|     extract<vInteger,Integer>(TensorRemove(predicate._odata[ss]),mask); | ||||
|  | ||||
|     for(int s=0;s<Nsimd;s++){ | ||||
|       if (mask[s]) falsevals[s]=truevals[s]; | ||||
|     } | ||||
|  | ||||
|     merge(ret._odata[ss],falsevals); | ||||
|   } | ||||
|   }); | ||||
| } | ||||
|  | ||||
| template<class vobj,class iobj> | ||||
| @@ -77,9 +76,9 @@ inline Lattice<vobj> whereWolf(const Lattice<iobj> &predicate,Lattice<vobj> &ift | ||||
|   conformable(iftrue,iffalse); | ||||
|   conformable(iftrue,predicate); | ||||
|  | ||||
|   Lattice<vobj> ret(iftrue.Grid()); | ||||
|   Lattice<vobj> ret(iftrue._grid); | ||||
|  | ||||
|   whereWolf(ret,predicate,iftrue,iffalse); | ||||
|   where(ret,predicate,iftrue,iffalse); | ||||
|  | ||||
|   return ret; | ||||
| } | ||||
|   | ||||
| @@ -1,571 +0,0 @@ | ||||
| /************************************************************************************* | ||||
|     Grid physics library, www.github.com/paboyle/Grid  | ||||
|  | ||||
|     Source file: ./lib/lattice/PaddedCell.h | ||||
|  | ||||
|     Copyright (C) 2019 | ||||
|  | ||||
| Author: Peter Boyle pboyle@bnl.gov | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
|     the Free Software Foundation; either version 2 of the License, or | ||||
|     (at your option) any later version. | ||||
|  | ||||
|     This program is distributed in the hope that it will be useful, | ||||
|     but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|     GNU General Public License for more details. | ||||
|  | ||||
|     You should have received a copy of the GNU General Public License along | ||||
|     with this program; if not, write to the Free Software Foundation, Inc., | ||||
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
|     See the full license in the file "LICENSE" in the top level distribution directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| #include<Grid/cshift/Cshift.h> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| //Allow the user to specify how the C-shift is performed, e.g. to respect the appropriate boundary conditions | ||||
| template<typename vobj> | ||||
| struct CshiftImplBase{ | ||||
|   virtual Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const = 0; | ||||
|   virtual ~CshiftImplBase(){} | ||||
| }; | ||||
| template<typename vobj> | ||||
| struct CshiftImplDefault: public CshiftImplBase<vobj>{ | ||||
|   Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const override{ return Grid::Cshift(in,dir,shift); } | ||||
| }; | ||||
| template<typename Gimpl> | ||||
| struct CshiftImplGauge: public CshiftImplBase<typename Gimpl::GaugeLinkField::vector_object>{ | ||||
|   typename Gimpl::GaugeLinkField Cshift(const typename Gimpl::GaugeLinkField &in, int dir, int shift) const override{ return Gimpl::CshiftLink(in,dir,shift); } | ||||
| };   | ||||
|  | ||||
|  | ||||
| /* | ||||
|  * | ||||
|  * TODO:  | ||||
|  *  -- address elementsof vobj via thread block in Scatter/Gather | ||||
|  *  -- overlap comms with motion in Face_exchange | ||||
|  * | ||||
|  */ | ||||
|  | ||||
| template<class vobj> inline void ScatterSlice(const cshiftVector<vobj> &buf, | ||||
| 					      Lattice<vobj> &lat, | ||||
| 					      int x, | ||||
| 					      int dim, | ||||
| 					      int offset=0) | ||||
| { | ||||
|   const int Nsimd=vobj::Nsimd(); | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   GridBase *grid = lat.Grid(); | ||||
|   Coordinate simd = grid->_simd_layout; | ||||
|   int Nd          = grid->Nd(); | ||||
|   int block       = grid->_slice_block[dim]; | ||||
|   int stride      = grid->_slice_stride[dim]; | ||||
|   int nblock      = grid->_slice_nblock[dim]; | ||||
|   int rd          = grid->_rdimensions[dim]; | ||||
|  | ||||
|   int ox = x%rd; | ||||
|   int ix = x/rd; | ||||
|  | ||||
|   int isites = 1; for(int d=0;d<Nd;d++) if( d!=dim) isites*=simd[d]; | ||||
|  | ||||
|   Coordinate rsimd= simd;  rsimd[dim]=1; // maybe reduce Nsimd | ||||
|  | ||||
|   int rNsimd = 1; for(int d=0;d<Nd;d++) rNsimd*=rsimd[d]; | ||||
|   int rNsimda= Nsimd/simd[dim]; // should be equal | ||||
|   assert(rNsimda==rNsimd); | ||||
|   int face_ovol=block*nblock; | ||||
|  | ||||
|   //  assert(buf.size()==face_ovol*rNsimd); | ||||
|  | ||||
|   /*This will work GPU ONLY unless rNsimd is put in the lexico index*/ | ||||
|   //Let's make it work on GPU and then make a special accelerator_for that | ||||
|   //doesn't hide the SIMD direction and keeps explicit in the threadIdx | ||||
|   //for cross platform | ||||
|   // FIXME -- can put internal indices into thread loop | ||||
|   auto buf_p = & buf[0]; | ||||
|   autoView(lat_v, lat, AcceleratorWrite); | ||||
|   accelerator_for(ss, face_ovol/simd[dim],Nsimd,{ | ||||
|  | ||||
|     // scalar layout won't coalesce | ||||
| #ifdef GRID_SIMT | ||||
|       { | ||||
| 	int blane=acceleratorSIMTlane(Nsimd); // buffer lane | ||||
| #else | ||||
|       for(int blane=0;blane<Nsimd;blane++) { | ||||
| #endif | ||||
| 	int olane=blane%rNsimd;               // reduced lattice lane | ||||
| 	int obit =blane/rNsimd; | ||||
|  | ||||
| 	/////////////////////////////////////////////////////////////// | ||||
| 	// osite -- potentially one bit from simd in the buffer: (ss<<1)|obit | ||||
| 	/////////////////////////////////////////////////////////////// | ||||
| 	int ssp = ss*simd[dim]+obit; | ||||
| 	int b    = ssp%block; | ||||
| 	int n    = ssp/block; | ||||
| 	int osite= b+n*stride + ox*block; | ||||
| 	 | ||||
| 	//////////////////////////////////////////// | ||||
| 	// isite -- map lane within buffer to lane within lattice | ||||
| 	//////////////////////////////////////////// | ||||
| 	Coordinate icoor; | ||||
| 	int lane; | ||||
| 	Lexicographic::CoorFromIndex(icoor,olane,rsimd); | ||||
| 	icoor[dim]=ix; | ||||
| 	Lexicographic::IndexFromCoor(icoor,lane,simd); | ||||
| 	 | ||||
| 	/////////////////////////////////////////// | ||||
| 	// Transfer into lattice - will coalesce | ||||
| 	/////////////////////////////////////////// | ||||
| 	//	sobj obj = extractLane(blane,buf_p[ss+offset]); | ||||
| 	//	insertLane(lane,lat_v[osite],obj); | ||||
| 	const int words=sizeof(vobj)/sizeof(vector_type); | ||||
| 	vector_type * from = (vector_type *)&buf_p[ss+offset]; | ||||
| 	vector_type * to   = (vector_type *)&lat_v[osite]; | ||||
| 	scalar_type stmp; | ||||
| 	for(int w=0;w<words;w++){ | ||||
| 	  stmp = getlane(from[w], blane); | ||||
| 	  putlane(to[w], stmp, lane); | ||||
| 	} | ||||
|       } | ||||
|   }); | ||||
| } | ||||
|  | ||||
| template<class vobj> inline void GatherSlice(cshiftVector<vobj> &buf, | ||||
| 					     const Lattice<vobj> &lat, | ||||
| 					     int x, | ||||
| 					     int dim, | ||||
| 					     int offset=0) | ||||
| { | ||||
|   const int Nsimd=vobj::Nsimd(); | ||||
|   typedef typename vobj::scalar_object sobj; | ||||
|   typedef typename vobj::scalar_type scalar_type; | ||||
|   typedef typename vobj::vector_type vector_type; | ||||
|  | ||||
|   autoView(lat_v, lat, AcceleratorRead); | ||||
|  | ||||
|   GridBase *grid = lat.Grid(); | ||||
|   Coordinate simd = grid->_simd_layout; | ||||
|   int Nd          = grid->Nd(); | ||||
|   int block       = grid->_slice_block[dim]; | ||||
|   int stride      = grid->_slice_stride[dim]; | ||||
|   int nblock      = grid->_slice_nblock[dim]; | ||||
|   int rd          = grid->_rdimensions[dim]; | ||||
|  | ||||
|   int ox = x%rd; | ||||
|   int ix = x/rd; | ||||
|  | ||||
|   int isites = 1; for(int d=0;d<Nd;d++) if( d!=dim) isites*=simd[d]; | ||||
|  | ||||
|   Coordinate rsimd= simd;  rsimd[dim]=1; // maybe reduce Nsimd | ||||
|  | ||||
|   int rNsimd = 1; for(int d=0;d<Nd;d++) rNsimd*=rsimd[d]; | ||||
|    | ||||
|   int face_ovol=block*nblock; | ||||
|  | ||||
|   //  assert(buf.size()==face_ovol*rNsimd); | ||||
|  | ||||
|   /*This will work GPU ONLY unless rNsimd is put in the lexico index*/ | ||||
|   //Let's make it work on GPU and then make a special accelerator_for that | ||||
|   //doesn't hide the SIMD direction and keeps explicit in the threadIdx | ||||
|   //for cross platform | ||||
|   //For CPU perhaps just run a loop over Nsimd | ||||
|   auto buf_p = & buf[0]; | ||||
|   accelerator_for(ss, face_ovol/simd[dim],Nsimd,{ | ||||
|  | ||||
|     // scalar layout won't coalesce | ||||
| #ifdef GRID_SIMT | ||||
|       { | ||||
| 	int blane=acceleratorSIMTlane(Nsimd); // buffer lane | ||||
| #else | ||||
|       for(int blane=0;blane<Nsimd;blane++) { | ||||
| #endif | ||||
| 	int olane=blane%rNsimd;               // reduced lattice lane | ||||
| 	int obit =blane/rNsimd; | ||||
| 	 | ||||
| 	//////////////////////////////////////////// | ||||
| 	// osite | ||||
| 	//////////////////////////////////////////// | ||||
| 	int ssp = ss*simd[dim]+obit; | ||||
| 	int b    = ssp%block; | ||||
| 	int n    = ssp/block; | ||||
| 	int osite= b+n*stride + ox*block; | ||||
|  | ||||
| 	//////////////////////////////////////////// | ||||
| 	// isite -- map lane within buffer to lane within lattice | ||||
| 	//////////////////////////////////////////// | ||||
| 	Coordinate icoor; | ||||
| 	int lane; | ||||
| 	Lexicographic::CoorFromIndex(icoor,olane,rsimd); | ||||
| 	icoor[dim]=ix; | ||||
| 	Lexicographic::IndexFromCoor(icoor,lane,simd); | ||||
| 	 | ||||
| 	/////////////////////////////////////////// | ||||
| 	// Take out of lattice | ||||
| 	/////////////////////////////////////////// | ||||
| 	//	sobj obj = extractLane(lane,lat_v[osite]); | ||||
| 	//	insertLane(blane,buf_p[ss+offset],obj); | ||||
| 	const int words=sizeof(vobj)/sizeof(vector_type); | ||||
| 	vector_type * to    = (vector_type *)&buf_p[ss+offset]; | ||||
| 	vector_type * from  = (vector_type *)&lat_v[osite]; | ||||
| 	scalar_type stmp; | ||||
| 	for(int w=0;w<words;w++){ | ||||
| 	  stmp = getlane(from[w], lane); | ||||
| 	  putlane(to[w], stmp, blane); | ||||
| 	} | ||||
|       } | ||||
|   }); | ||||
| } | ||||
|  | ||||
|  | ||||
| class PaddedCell { | ||||
| public: | ||||
|   GridCartesian * unpadded_grid; | ||||
|   int dims; | ||||
|   int depth; | ||||
|   std::vector<GridCartesian *> grids; | ||||
|  | ||||
|   ~PaddedCell() | ||||
|   { | ||||
|     DeleteGrids(); | ||||
|   } | ||||
|   PaddedCell(int _depth,GridCartesian *_grid) | ||||
|   { | ||||
|     unpadded_grid = _grid; | ||||
|     depth=_depth; | ||||
|     dims=_grid->Nd(); | ||||
|     AllocateGrids(); | ||||
|     Coordinate local     =unpadded_grid->LocalDimensions(); | ||||
|     Coordinate procs     =unpadded_grid->ProcessorGrid(); | ||||
|     for(int d=0;d<dims;d++){ | ||||
|       if ( procs[d] > 1 ) assert(local[d]>=depth); | ||||
|     } | ||||
|   } | ||||
|   void DeleteGrids(void) | ||||
|   { | ||||
|     Coordinate processors=unpadded_grid->_processors; | ||||
|     for(int d=0;d<grids.size();d++){ | ||||
|       if ( processors[d] > 1 ) {  | ||||
| 	delete grids[d]; | ||||
|       } | ||||
|     } | ||||
|     grids.resize(0); | ||||
|   }; | ||||
|   void AllocateGrids(void) | ||||
|   { | ||||
|     Coordinate local     =unpadded_grid->LocalDimensions(); | ||||
|     Coordinate simd      =unpadded_grid->_simd_layout; | ||||
|     Coordinate processors=unpadded_grid->_processors; | ||||
|     Coordinate plocal    =unpadded_grid->LocalDimensions(); | ||||
|     Coordinate global(dims); | ||||
|     GridCartesian *old_grid = unpadded_grid; | ||||
|     // expand up one dim at a time | ||||
|     for(int d=0;d<dims;d++){ | ||||
|  | ||||
|       if ( processors[d] > 1 ) {  | ||||
| 	plocal[d] += 2*depth;  | ||||
|        | ||||
| 	for(int d=0;d<dims;d++){ | ||||
| 	  global[d] = plocal[d]*processors[d]; | ||||
| 	} | ||||
|  | ||||
| 	old_grid = new GridCartesian(global,simd,processors); | ||||
|       } | ||||
|       grids.push_back(old_grid); | ||||
|     } | ||||
|   }; | ||||
|   template<class vobj> | ||||
|   inline Lattice<vobj> Extract(const Lattice<vobj> &in) const | ||||
|   { | ||||
|     Coordinate processors=unpadded_grid->_processors; | ||||
|  | ||||
|     Lattice<vobj> out(unpadded_grid); | ||||
|  | ||||
|     Coordinate local     =unpadded_grid->LocalDimensions(); | ||||
|     // depends on the MPI spread       | ||||
|     Coordinate fll(dims,depth); | ||||
|     Coordinate tll(dims,0); // depends on the MPI spread | ||||
|     for(int d=0;d<dims;d++){ | ||||
|       if( processors[d]==1 ) fll[d]=0; | ||||
|     } | ||||
|     localCopyRegion(in,out,fll,tll,local); | ||||
|     return out; | ||||
|   } | ||||
|   template<class vobj> | ||||
|   inline Lattice<vobj> Exchange(const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const | ||||
|   { | ||||
|     GridBase *old_grid = in.Grid(); | ||||
|     int dims = old_grid->Nd(); | ||||
|     Lattice<vobj> tmp = in; | ||||
|     for(int d=0;d<dims;d++){ | ||||
|       tmp = Expand(d,tmp,cshift); // rvalue && assignment | ||||
|     } | ||||
|     return tmp; | ||||
|   } | ||||
|   template<class vobj> | ||||
|   inline Lattice<vobj> ExchangePeriodic(const Lattice<vobj> &in) const | ||||
|   { | ||||
|     GridBase *old_grid = in.Grid(); | ||||
|     int dims = old_grid->Nd(); | ||||
|     Lattice<vobj> tmp = in; | ||||
|     for(int d=0;d<dims;d++){ | ||||
|       tmp = ExpandPeriodic(d,tmp); // rvalue && assignment | ||||
|     } | ||||
|     return tmp; | ||||
|   } | ||||
|   // expand up one dim at a time | ||||
|   template<class vobj> | ||||
|   inline Lattice<vobj> Expand(int dim, const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const | ||||
|   { | ||||
|     Coordinate processors=unpadded_grid->_processors; | ||||
|     GridBase *old_grid = in.Grid(); | ||||
|     GridCartesian *new_grid = grids[dim];//These are new grids | ||||
|     Lattice<vobj>  padded(new_grid); | ||||
|     Lattice<vobj> shifted(old_grid);     | ||||
|     Coordinate local     =old_grid->LocalDimensions(); | ||||
|     Coordinate plocal    =new_grid->LocalDimensions(); | ||||
|     if(dim==0) conformable(old_grid,unpadded_grid); | ||||
|     else       conformable(old_grid,grids[dim-1]); | ||||
|  | ||||
|     double tins=0, tshift=0; | ||||
|  | ||||
|     int islocal = 0 ; | ||||
|     if ( processors[dim] == 1 ) islocal = 1; | ||||
|  | ||||
|     if ( islocal ) { | ||||
|  | ||||
|       // replace with a copy and maybe grid swizzle | ||||
|       // return in;?? | ||||
|       double t = usecond(); | ||||
|       padded = in; | ||||
|       tins += usecond() - t; | ||||
|        | ||||
|     } else { | ||||
|  | ||||
|       ////////////////////////////////////////////// | ||||
|       // Replace sequence with | ||||
|       // --------------------- | ||||
|       // (i) Gather high face(s); start comms | ||||
|       // (ii) Gather low  face(s); start comms | ||||
|       // (iii) Copy middle bit with localCopyRegion | ||||
|       // (iv) Complete high face(s), insert slice(s) | ||||
|       // (iv) Complete low  face(s), insert slice(s) | ||||
|       ////////////////////////////////////////////// | ||||
|       // Middle bit | ||||
|       double t = usecond(); | ||||
|       for(int x=0;x<local[dim];x++){ | ||||
| 	InsertSliceLocal(in,padded,x,depth+x,dim); | ||||
|       } | ||||
|       tins += usecond() - t; | ||||
|      | ||||
|       // High bit | ||||
|       t = usecond(); | ||||
|       shifted = cshift.Cshift(in,dim,depth); | ||||
|       tshift += usecond() - t; | ||||
|  | ||||
|       t=usecond(); | ||||
|       for(int x=0;x<depth;x++){ | ||||
| 	InsertSliceLocal(shifted,padded,local[dim]-depth+x,depth+local[dim]+x,dim); | ||||
|       } | ||||
|       tins += usecond() - t; | ||||
|      | ||||
|       // Low bit | ||||
|       t = usecond(); | ||||
|       shifted = cshift.Cshift(in,dim,-depth); | ||||
|       tshift += usecond() - t; | ||||
|      | ||||
|       t = usecond(); | ||||
|       for(int x=0;x<depth;x++){ | ||||
| 	InsertSliceLocal(shifted,padded,x,x,dim); | ||||
|       } | ||||
|       tins += usecond() - t; | ||||
|  | ||||
|     } | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand timings: cshift:" << tshift/1000 << "ms, insert-slice:" << tins/1000 << "ms" << std::endl; | ||||
|      | ||||
|     return padded; | ||||
|   } | ||||
|  | ||||
|   template<class vobj> | ||||
|   inline Lattice<vobj> ExpandPeriodic(int dim, const Lattice<vobj> &in) const | ||||
|   { | ||||
|     Coordinate processors=unpadded_grid->_processors; | ||||
|     GridBase *old_grid = in.Grid(); | ||||
|     GridCartesian *new_grid = grids[dim];//These are new grids | ||||
|     Lattice<vobj>  padded(new_grid); | ||||
|     //    Lattice<vobj> shifted(old_grid);     | ||||
|     Coordinate local     =old_grid->LocalDimensions(); | ||||
|     Coordinate plocal    =new_grid->LocalDimensions(); | ||||
|     if(dim==0) conformable(old_grid,unpadded_grid); | ||||
|     else       conformable(old_grid,grids[dim-1]); | ||||
|  | ||||
|     //    std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl; | ||||
|     double tins=0, tshift=0; | ||||
|  | ||||
|     int islocal = 0 ; | ||||
|     if ( processors[dim] == 1 ) islocal = 1; | ||||
|  | ||||
|     if ( islocal ) { | ||||
|       padded=in; // slightly different interface could avoid a copy operation | ||||
|     } else { | ||||
|       Face_exchange(in,padded,dim,depth); | ||||
|       return padded; | ||||
|     } | ||||
|     return padded; | ||||
|   } | ||||
|   template<class vobj> | ||||
|   void Face_exchange(const Lattice<vobj> &from, | ||||
| 		     Lattice<vobj> &to, | ||||
| 		     int dimension,int depth) const | ||||
|   { | ||||
|     typedef typename vobj::vector_type vector_type; | ||||
|     typedef typename vobj::scalar_type scalar_type; | ||||
|     typedef typename vobj::scalar_object sobj; | ||||
|  | ||||
|     RealD t_gather=0.0; | ||||
|     RealD t_scatter=0.0; | ||||
|     RealD t_comms=0.0; | ||||
|     RealD t_copy=0.0; | ||||
|      | ||||
|     //    std::cout << GridLogMessage << "dimension " <<dimension<<std::endl; | ||||
|     //    DumpSliceNorm(std::string("Face_exchange from"),from,dimension); | ||||
|     GridBase *grid=from.Grid(); | ||||
|     GridBase *new_grid=to.Grid(); | ||||
|  | ||||
|     Coordinate lds = from.Grid()->_ldimensions; | ||||
|     Coordinate nlds=   to.Grid()->_ldimensions; | ||||
|     Coordinate simd= from.Grid()->_simd_layout; | ||||
|     int ld    = lds[dimension]; | ||||
|     int nld   = to.Grid()->_ldimensions[dimension]; | ||||
|     const int Nsimd = vobj::Nsimd(); | ||||
|  | ||||
|     assert(depth<=lds[dimension]); // A must be on neighbouring node | ||||
|     assert(depth>0);   // A caller bug if zero | ||||
|     assert(ld+2*depth==nld); | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     // Face size and byte calculations | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     int buffer_size = 1; | ||||
|     for(int d=0;d<lds.size();d++){ | ||||
|       if ( d!= dimension) buffer_size=buffer_size*lds[d]; | ||||
|     } | ||||
|     buffer_size = buffer_size  / Nsimd; | ||||
|     int rNsimd = Nsimd / simd[dimension]; | ||||
|     assert( buffer_size == from.Grid()->_slice_nblock[dimension]*from.Grid()->_slice_block[dimension] / simd[dimension]); | ||||
|  | ||||
|     static cshiftVector<vobj> send_buf;  | ||||
|     static cshiftVector<vobj> recv_buf; | ||||
|     send_buf.resize(buffer_size*2*depth);     | ||||
|     recv_buf.resize(buffer_size*2*depth); | ||||
|  | ||||
|     std::vector<CommsRequest_t> fwd_req;    | ||||
|     std::vector<CommsRequest_t> bwd_req;    | ||||
|  | ||||
|     int words = buffer_size; | ||||
|     int bytes = words * sizeof(vobj); | ||||
|  | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     // Communication coords | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     int comm_proc = 1; | ||||
|     int xmit_to_rank; | ||||
|     int recv_from_rank; | ||||
|     grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank); | ||||
|  | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     // Gather all surface terms up to depth "d" | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     RealD t; | ||||
|     RealD t_tot=-usecond(); | ||||
|     int plane=0; | ||||
|     for ( int d=0;d < depth ; d ++ ) { | ||||
|       int tag = d*1024 + dimension*2+0; | ||||
|  | ||||
|       t=usecond(); | ||||
|       GatherSlice(send_buf,from,d,dimension,plane*buffer_size); plane++; | ||||
|       t_gather+=usecond()-t; | ||||
|  | ||||
|       t=usecond(); | ||||
|       grid->SendToRecvFromBegin(fwd_req, | ||||
| 				(void *)&send_buf[d*buffer_size], xmit_to_rank, | ||||
| 				(void *)&recv_buf[d*buffer_size], recv_from_rank, bytes, tag); | ||||
|       t_comms+=usecond()-t; | ||||
|      } | ||||
|     for ( int d=0;d < depth ; d ++ ) { | ||||
|       int tag = d*1024 + dimension*2+1; | ||||
|  | ||||
|       t=usecond(); | ||||
|       GatherSlice(send_buf,from,ld-depth+d,dimension,plane*buffer_size); plane++; | ||||
|       t_gather+= usecond() - t; | ||||
|  | ||||
|       t=usecond(); | ||||
|       grid->SendToRecvFromBegin(bwd_req, | ||||
| 				(void *)&send_buf[(d+depth)*buffer_size], recv_from_rank, | ||||
| 				(void *)&recv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag); | ||||
|       t_comms+=usecond()-t; | ||||
|     } | ||||
|  | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     // Copy interior -- overlap this with comms | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     int Nd = new_grid->Nd(); | ||||
|     Coordinate LL(Nd,0); | ||||
|     Coordinate sz = grid->_ldimensions; | ||||
|     Coordinate toLL(Nd,0); | ||||
|     toLL[dimension]=depth; | ||||
|     t=usecond(); | ||||
|     localCopyRegion(from,to,LL,toLL,sz); | ||||
|     t_copy= usecond() - t; | ||||
|      | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     // Scatter all faces | ||||
|     //////////////////////////////////////////////////////////////////////////// | ||||
|     plane=0; | ||||
|  | ||||
|     t=usecond(); | ||||
|     grid->CommsComplete(fwd_req); | ||||
|     t_comms+= usecond() - t; | ||||
|  | ||||
|     t=usecond(); | ||||
|     for ( int d=0;d < depth ; d ++ ) { | ||||
|       ScatterSlice(recv_buf,to,nld-depth+d,dimension,plane*buffer_size); plane++; | ||||
|     } | ||||
|     t_scatter= usecond() - t; | ||||
|  | ||||
|     t=usecond(); | ||||
|     grid->CommsComplete(bwd_req); | ||||
|     t_comms+= usecond() - t; | ||||
|      | ||||
|     t=usecond(); | ||||
|     for ( int d=0;d < depth ; d ++ ) { | ||||
|       ScatterSlice(recv_buf,to,d,dimension,plane*buffer_size); plane++; | ||||
|     } | ||||
|     t_scatter+= usecond() - t; | ||||
|     t_tot+=usecond(); | ||||
|  | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: gather :" << t_gather/1000  << "ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: scatter:" << t_scatter/1000   << "ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: copy   :" << t_copy/1000      << "ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: comms  :" << t_comms/1000     << "ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: total  :" << t_tot/1000     << "ms"<<std::endl; | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: gather :" << depth*4.0*bytes/t_gather << "MB/s"<<std::endl; | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: scatter:" << depth*4.0*bytes/t_scatter<< "MB/s"<<std::endl; | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: comms  :" << (RealD)4.0*bytes/t_comms   << "MB/s"<<std::endl; | ||||
|     std::cout << GridLogPerformance << "PaddedCell::Expand new timings: face bytes  :" << depth*bytes/1e6 << "MB"<<std::endl; | ||||
|   } | ||||
|    | ||||
| }; | ||||
|   | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
|  | ||||
|  | ||||
| @@ -65,40 +65,29 @@ GridLogger GridLogSolver (1, "Solver", GridLogColours, "NORMAL"); | ||||
| GridLogger GridLogError  (1, "Error" , GridLogColours, "RED"); | ||||
| GridLogger GridLogWarning(1, "Warning", GridLogColours, "YELLOW"); | ||||
| GridLogger GridLogMessage(1, "Message", GridLogColours, "NORMAL"); | ||||
| GridLogger GridLogMemory (1, "Memory", GridLogColours, "NORMAL"); | ||||
| GridLogger GridLogTracing(1, "Tracing", GridLogColours, "NORMAL"); | ||||
| GridLogger GridLogDebug  (1, "Debug", GridLogColours, "PURPLE"); | ||||
| GridLogger GridLogPerformance(1, "Performance", GridLogColours, "GREEN"); | ||||
| GridLogger GridLogDslash     (1, "Dslash", GridLogColours, "BLUE"); | ||||
| GridLogger GridLogIterative  (1, "Iterative", GridLogColours, "BLUE"); | ||||
| GridLogger GridLogIntegrator (1, "Integrator", GridLogColours, "BLUE"); | ||||
| GridLogger GridLogHMC (1, "HMC", GridLogColours, "BLUE"); | ||||
|  | ||||
| void GridLogConfigure(std::vector<std::string> &logstreams) { | ||||
|   GridLogError.Active(1); | ||||
|   GridLogError.Active(0); | ||||
|   GridLogWarning.Active(0); | ||||
|   GridLogMessage.Active(1); // at least the messages should be always on | ||||
|   GridLogMemory.Active(0);  | ||||
|   GridLogTracing.Active(0);  | ||||
|   GridLogIterative.Active(0); | ||||
|   GridLogDebug.Active(0); | ||||
|   GridLogPerformance.Active(0); | ||||
|   GridLogDslash.Active(0); | ||||
|   GridLogIntegrator.Active(1); | ||||
|   GridLogColours.Active(0); | ||||
|   GridLogHMC.Active(1); | ||||
|  | ||||
|   for (int i = 0; i < logstreams.size(); i++) { | ||||
|     if (logstreams[i] == std::string("Tracing"))     GridLogTracing.Active(1); | ||||
|     if (logstreams[i] == std::string("Memory"))      GridLogMemory.Active(1); | ||||
|     if (logstreams[i] == std::string("Error"))       GridLogError.Active(1); | ||||
|     if (logstreams[i] == std::string("Warning"))     GridLogWarning.Active(1); | ||||
|     if (logstreams[i] == std::string("NoMessage"))   GridLogMessage.Active(0); | ||||
|     if (logstreams[i] == std::string("Iterative"))   GridLogIterative.Active(1); | ||||
|     if (logstreams[i] == std::string("Debug"))       GridLogDebug.Active(1); | ||||
|     if (logstreams[i] == std::string("Performance")) GridLogPerformance.Active(1); | ||||
|     if (logstreams[i] == std::string("Dslash"))      GridLogDslash.Active(1); | ||||
|     if (logstreams[i] == std::string("NoIntegrator"))GridLogIntegrator.Active(0); | ||||
|     if (logstreams[i] == std::string("NoHMC"))       GridLogHMC.Active(0); | ||||
|     if (logstreams[i] == std::string("Integrator"))  GridLogIntegrator.Active(1); | ||||
|     if (logstreams[i] == std::string("Colours"))     GridLogColours.Active(1); | ||||
|   } | ||||
| } | ||||
|   | ||||
| @@ -130,16 +130,13 @@ public: | ||||
|   friend std::ostream& operator<< (std::ostream& stream, Logger& log){ | ||||
|  | ||||
|     if ( log.active ) { | ||||
|       std::ios_base::fmtflags f(stream.flags()); | ||||
|  | ||||
|       stream << log.background()<<  std::left; | ||||
|       if (log.topWidth > 0) | ||||
|       { | ||||
|         stream << std::setw(log.topWidth); | ||||
|       } | ||||
|       stream << log.topName << log.background()<< " : "; | ||||
|       //      stream << log.colour() <<  std::left; | ||||
|       stream <<  std::left; | ||||
|       stream << log.colour() <<  std::left; | ||||
|       if (log.chanWidth > 0) | ||||
|       { | ||||
|         stream << std::setw(log.chanWidth); | ||||
| @@ -154,9 +151,7 @@ public: | ||||
| 	stream << log.evidence() | ||||
| 	       << now	       << log.background() << " : " ; | ||||
|       } | ||||
|       //      stream << log.colour(); | ||||
|       stream <<  std::right; | ||||
|       stream.flags(f); | ||||
|       stream << log.colour(); | ||||
|       return stream; | ||||
|     } else {  | ||||
|       return devnull; | ||||
| @@ -181,51 +176,12 @@ extern GridLogger GridLogWarning; | ||||
| extern GridLogger GridLogMessage; | ||||
| extern GridLogger GridLogDebug  ; | ||||
| extern GridLogger GridLogPerformance; | ||||
| extern GridLogger GridLogDslash; | ||||
| extern GridLogger GridLogIterative  ; | ||||
| extern GridLogger GridLogIntegrator  ; | ||||
| extern GridLogger GridLogHMC; | ||||
| extern GridLogger GridLogMemory; | ||||
| extern GridLogger GridLogTracing; | ||||
| extern Colours    GridLogColours; | ||||
|  | ||||
| std::string demangle(const char* name) ; | ||||
|  | ||||
| template<typename... Args> | ||||
| inline std::string sjoin(Args&&... args) noexcept { | ||||
|     std::ostringstream msg; | ||||
|     (msg << ... << args); | ||||
|     return msg.str(); | ||||
| } | ||||
|  | ||||
| /*!  @brief make log messages work like python print */ | ||||
| template <typename... Args> | ||||
| inline void Grid_log(Args&&... args) { | ||||
|     std::string msg = sjoin(std::forward<Args>(args)...); | ||||
|     std::cout << GridLogMessage << msg << std::endl; | ||||
| } | ||||
|  | ||||
| /*!  @brief make warning messages work like python print */ | ||||
| template <typename... Args> | ||||
| inline void Grid_warn(Args&&... args) { | ||||
|     std::string msg = sjoin(std::forward<Args>(args)...); | ||||
|     std::cout << "\033[33m" << GridLogWarning << msg << "\033[0m" << std::endl; | ||||
| } | ||||
|  | ||||
| /*!  @brief make error messages work like python print */ | ||||
| template <typename... Args> | ||||
| inline void Grid_error(Args&&... args) { | ||||
|     std::string msg = sjoin(std::forward<Args>(args)...); | ||||
|     std::cout << "\033[31m" << GridLogError << msg << "\033[0m" << std::endl; | ||||
| } | ||||
|  | ||||
| /*!  @brief make pass messages work like python print */ | ||||
| template <typename... Args> | ||||
| inline void Grid_pass(Args&&... args) { | ||||
|     std::string msg = sjoin(std::forward<Args>(args)...); | ||||
|     std::cout << "\033[32m" << GridLogMessage << msg << "\033[0m" << std::endl; | ||||
| } | ||||
|  | ||||
| #define _NBACKTRACE (256) | ||||
| extern void * Grid_backtrace_buffer[_NBACKTRACE]; | ||||
|  | ||||
|   | ||||
| @@ -1,4 +1,3 @@ | ||||
| #include <Grid/GridCore.h> | ||||
|  | ||||
| int Grid::BinaryIO::latticeWriteMaxRetry = -1; | ||||
| Grid::BinaryIO::IoPerf Grid::BinaryIO::lastPerf; | ||||
|   | ||||
| @@ -79,13 +79,6 @@ inline void removeWhitespace(std::string &key) | ||||
| /////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
| class BinaryIO { | ||||
|  public: | ||||
|   struct IoPerf | ||||
|   { | ||||
|     uint64_t size{0},time{0}; | ||||
|     double   mbytesPerSecond{0.}; | ||||
|   }; | ||||
|  | ||||
|   static IoPerf lastPerf; | ||||
|   static int latticeWriteMaxRetry; | ||||
|  | ||||
|   ///////////////////////////////////////////////////////////////////////////// | ||||
| @@ -165,7 +158,7 @@ class BinaryIO { | ||||
| 	 * FIXME -- 128^3 x 256 x 16 will overflow. | ||||
| 	 */ | ||||
| 	 | ||||
| 	int64_t global_site; | ||||
| 	int global_site; | ||||
|  | ||||
| 	Lexicographic::CoorFromIndex(coor,local_site,local_vol); | ||||
|  | ||||
| @@ -175,8 +168,8 @@ class BinaryIO { | ||||
|  | ||||
| 	Lexicographic::IndexFromCoor(coor,global_site,global_vol); | ||||
|  | ||||
| 	uint64_t gsite29   = global_site%29; | ||||
| 	uint64_t gsite31   = global_site%31; | ||||
| 	uint32_t gsite29   = global_site%29; | ||||
| 	uint32_t gsite31   = global_site%31; | ||||
| 	 | ||||
| 	site_crc = crc32(0,(unsigned char *)site_buf,sizeof(fobj)); | ||||
| 	//	std::cout << "Site "<<local_site << " crc "<<std::hex<<site_crc<<std::dec<<std::endl; | ||||
| @@ -509,15 +502,12 @@ class BinaryIO { | ||||
|       timer.Stop(); | ||||
|     } | ||||
|      | ||||
|     lastPerf.size            = sizeof(fobj)*iodata.size()*nrank; | ||||
|     lastPerf.time            = timer.useconds(); | ||||
|     lastPerf.mbytesPerSecond = lastPerf.size/1024./1024./(lastPerf.time/1.0e6); | ||||
|     std::cout<<GridLogMessage<<"IOobject: "; | ||||
|     if ( control & BINARYIO_READ) std::cout << " read  "; | ||||
|     else                          std::cout << " write "; | ||||
|     uint64_t bytes = sizeof(fobj)*iodata.size()*nrank; | ||||
|     std::cout<< lastPerf.size <<" bytes in "<< timer.Elapsed() <<" " | ||||
| 	     << lastPerf.mbytesPerSecond <<" MB/s "<<std::endl; | ||||
|     std::cout<< bytes <<" bytes in "<<timer.Elapsed() <<" " | ||||
| 	     << (double)bytes/ (double)timer.useconds() <<" MB/s "<<std::endl; | ||||
|  | ||||
|     std::cout<<GridLogMessage<<"IOobject: endian and checksum overhead "<<bstimer.Elapsed()  <<std::endl; | ||||
|  | ||||
| @@ -545,9 +535,7 @@ class BinaryIO { | ||||
| 				       const std::string &format, | ||||
| 				       uint32_t &nersc_csum, | ||||
| 				       uint32_t &scidac_csuma, | ||||
| 				       uint32_t &scidac_csumb, | ||||
| 				       int control=BINARYIO_LEXICOGRAPHIC | ||||
| 				       ) | ||||
| 				       uint32_t &scidac_csumb) | ||||
|   { | ||||
|     typedef typename vobj::scalar_object sobj; | ||||
|     typedef typename vobj::Realified::scalar_type word;    word w=0; | ||||
| @@ -558,7 +546,7 @@ class BinaryIO { | ||||
|     std::vector<sobj> scalardata(lsites);  | ||||
|     std::vector<fobj>     iodata(lsites); // Munge, checksum, byte order in here | ||||
|      | ||||
|     IOobject(w,grid,iodata,file,offset,format,BINARYIO_READ|control, | ||||
|     IOobject(w,grid,iodata,file,offset,format,BINARYIO_READ|BINARYIO_LEXICOGRAPHIC, | ||||
| 	     nersc_csum,scidac_csuma,scidac_csumb); | ||||
|  | ||||
|     GridStopWatch timer;  | ||||
| @@ -584,8 +572,7 @@ class BinaryIO { | ||||
| 					  const std::string &format, | ||||
| 					  uint32_t &nersc_csum, | ||||
| 					  uint32_t &scidac_csuma, | ||||
| 					  uint32_t &scidac_csumb, | ||||
| 					  int control=BINARYIO_LEXICOGRAPHIC) | ||||
| 					  uint32_t &scidac_csumb) | ||||
|   { | ||||
|     typedef typename vobj::scalar_object sobj; | ||||
|     typedef typename vobj::Realified::scalar_type word;    word w=0; | ||||
| @@ -610,7 +597,7 @@ class BinaryIO { | ||||
|     while (attemptsLeft >= 0) | ||||
|     { | ||||
|       grid->Barrier(); | ||||
|       IOobject(w,grid,iodata,file,offset,format,BINARYIO_WRITE|control, | ||||
|       IOobject(w,grid,iodata,file,offset,format,BINARYIO_WRITE|BINARYIO_LEXICOGRAPHIC, | ||||
| 	             nersc_csum,scidac_csuma,scidac_csumb); | ||||
|       if (checkWrite) | ||||
|       { | ||||
| @@ -620,7 +607,7 @@ class BinaryIO { | ||||
|  | ||||
|         std::cout << GridLogMessage << "writeLatticeObject: read back object" << std::endl; | ||||
|         grid->Barrier(); | ||||
|         IOobject(w,grid,ckiodata,file,ckoffset,format,BINARYIO_READ|control, | ||||
|         IOobject(w,grid,ckiodata,file,ckoffset,format,BINARYIO_READ|BINARYIO_LEXICOGRAPHIC, | ||||
| 	               cknersc_csum,ckscidac_csuma,ckscidac_csumb); | ||||
|         if ((cknersc_csum != nersc_csum) or (ckscidac_csuma != scidac_csuma) or (ckscidac_csumb != scidac_csumb)) | ||||
|         { | ||||
| @@ -676,15 +663,10 @@ class BinaryIO { | ||||
| 	     nersc_csum,scidac_csuma,scidac_csumb); | ||||
|  | ||||
|     timer.Start(); | ||||
|     thread_for(lidx,lsites,{  // FIX ME, suboptimal implementation | ||||
|     thread_for(lidx,lsites,{ | ||||
|       std::vector<RngStateType> tmp(RngStateCount); | ||||
|       std::copy(iodata[lidx].begin(),iodata[lidx].end(),tmp.begin()); | ||||
|       Coordinate lcoor; | ||||
|       grid->LocalIndexToLocalCoor(lidx, lcoor); | ||||
|       int o_idx=grid->oIndex(lcoor); | ||||
|       int i_idx=grid->iIndex(lcoor); | ||||
|       int gidx=parallel_rng.generator_idx(o_idx,i_idx); | ||||
|       parallel_rng.SetState(tmp,gidx); | ||||
|       parallel_rng.SetState(tmp,lidx); | ||||
|       }); | ||||
|     timer.Stop(); | ||||
|  | ||||
| @@ -741,12 +723,7 @@ class BinaryIO { | ||||
|     std::vector<RNGstate> iodata(lsites); | ||||
|     thread_for(lidx,lsites,{ | ||||
|       std::vector<RngStateType> tmp(RngStateCount); | ||||
|       Coordinate lcoor; | ||||
|       grid->LocalIndexToLocalCoor(lidx, lcoor); | ||||
|       int o_idx=grid->oIndex(lcoor); | ||||
|       int i_idx=grid->iIndex(lcoor); | ||||
|       int gidx=parallel_rng.generator_idx(o_idx,i_idx); | ||||
|       parallel_rng.GetState(tmp,gidx); | ||||
|       parallel_rng.GetState(tmp,lidx); | ||||
|       std::copy(tmp.begin(),tmp.end(),iodata[lidx].begin()); | ||||
|     }); | ||||
|     timer.Stop(); | ||||
|   | ||||
| @@ -31,7 +31,6 @@ directory | ||||
| #include <fstream> | ||||
| #include <iomanip> | ||||
| #include <iostream> | ||||
| #include <string> | ||||
| #include <map> | ||||
|  | ||||
| #include <pwd.h> | ||||
| @@ -162,14 +161,8 @@ template<class vobj> void ScidacMetaData(Lattice<vobj> & field, | ||||
|  { | ||||
|    uint32_t scidac_checksuma = stoull(scidacChecksum_.suma,0,16); | ||||
|    uint32_t scidac_checksumb = stoull(scidacChecksum_.sumb,0,16); | ||||
|    std::cout << GridLogMessage << " scidacChecksumVerify computed "<<scidac_csuma<<" expected "<<scidac_checksuma <<std::endl; | ||||
|    std::cout << GridLogMessage << " scidacChecksumVerify computed "<<scidac_csumb<<" expected "<<scidac_checksumb <<std::endl; | ||||
|    if ( scidac_csuma !=scidac_checksuma) { | ||||
|      return 0; | ||||
|    }; | ||||
|    if ( scidac_csumb !=scidac_checksumb) { | ||||
|      return 0; | ||||
|    }; | ||||
|    if ( scidac_csuma !=scidac_checksuma) return 0; | ||||
|    if ( scidac_csumb !=scidac_checksumb) return 0; | ||||
|    return 1; | ||||
|  } | ||||
|  | ||||
| @@ -212,7 +205,7 @@ class GridLimeReader : public BinaryIO { | ||||
|   // Read a generic lattice field and verify checksum | ||||
|   //////////////////////////////////////////// | ||||
|   template<class vobj> | ||||
|   void readLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name,int control=BINARYIO_LEXICOGRAPHIC) | ||||
|   void readLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name) | ||||
|   { | ||||
|     typedef typename vobj::scalar_object sobj; | ||||
|     scidacChecksum scidacChecksum_; | ||||
| @@ -244,7 +237,7 @@ class GridLimeReader : public BinaryIO { | ||||
| 	uint64_t offset= ftello(File); | ||||
| 	//	std::cout << " ReadLatticeObject from offset "<<offset << std::endl; | ||||
| 	BinarySimpleMunger<sobj,sobj> munge; | ||||
| 	BinaryIO::readLatticeObject< vobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb,control); | ||||
| 	BinaryIO::readLatticeObject< vobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb); | ||||
| 	std::cout << GridLogMessage << "SciDAC checksum A " << std::hex << scidac_csuma << std::dec << std::endl; | ||||
| 	std::cout << GridLogMessage << "SciDAC checksum B " << std::hex << scidac_csumb << std::dec << std::endl; | ||||
| 	///////////////////////////////////////////// | ||||
| @@ -414,7 +407,7 @@ class GridLimeWriter : public BinaryIO | ||||
|   // in communicator used by the field.Grid() | ||||
|   //////////////////////////////////////////////////// | ||||
|   template<class vobj> | ||||
|   void writeLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name,int control=BINARYIO_LEXICOGRAPHIC) | ||||
|   void writeLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name) | ||||
|   { | ||||
|     //////////////////////////////////////////////////////////////////// | ||||
|     // NB: FILE and iostream are jointly writing disjoint sequences in the | ||||
| @@ -465,7 +458,7 @@ class GridLimeWriter : public BinaryIO | ||||
|     /////////////////////////////////////////// | ||||
|     std::string format = getFormatString<vobj>(); | ||||
|     BinarySimpleMunger<sobj,sobj> munge; | ||||
|     BinaryIO::writeLatticeObject<vobj,sobj>(field, filename, munge, offset1, format,nersc_csum,scidac_csuma,scidac_csumb,control); | ||||
|     BinaryIO::writeLatticeObject<vobj,sobj>(field, filename, munge, offset1, format,nersc_csum,scidac_csuma,scidac_csumb); | ||||
|  | ||||
|     /////////////////////////////////////////// | ||||
|     // Wind forward and close the record | ||||
| @@ -518,8 +511,7 @@ class ScidacWriter : public GridLimeWriter { | ||||
|   //////////////////////////////////////////////// | ||||
|   template <class vobj, class userRecord> | ||||
|   void writeScidacFieldRecord(Lattice<vobj> &field,userRecord _userRecord, | ||||
|                               const unsigned int recordScientificPrec = 0, | ||||
| 			      int control=BINARYIO_LEXICOGRAPHIC) | ||||
|                               const unsigned int recordScientificPrec = 0)  | ||||
|   { | ||||
|     GridBase * grid = field.Grid(); | ||||
|  | ||||
| @@ -541,7 +533,7 @@ class ScidacWriter : public GridLimeWriter { | ||||
|       writeLimeObject(0,0,_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML)); | ||||
|     } | ||||
|     // Collective call | ||||
|     writeLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA),control);      // Closes message with checksum | ||||
|     writeLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA));      // Closes message with checksum | ||||
|   } | ||||
| }; | ||||
|  | ||||
| @@ -560,8 +552,7 @@ class ScidacReader : public GridLimeReader { | ||||
|   // Write generic lattice field in scidac format | ||||
|   //////////////////////////////////////////////// | ||||
|   template <class vobj, class userRecord> | ||||
|   void readScidacFieldRecord(Lattice<vobj> &field,userRecord &_userRecord, | ||||
| 			     int control=BINARYIO_LEXICOGRAPHIC)  | ||||
|   void readScidacFieldRecord(Lattice<vobj> &field,userRecord &_userRecord)  | ||||
|   { | ||||
|     typedef typename vobj::scalar_object sobj; | ||||
|     GridBase * grid = field.Grid(); | ||||
| @@ -579,14 +570,12 @@ class ScidacReader : public GridLimeReader { | ||||
|     readLimeObject(header ,std::string("FieldMetaData"),std::string(GRID_FORMAT)); // Open message  | ||||
|     readLimeObject(_userRecord,_userRecord.SerialisableClassName(),std::string(SCIDAC_RECORD_XML)); | ||||
|     readLimeObject(_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML)); | ||||
|     readLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA),control); | ||||
|     readLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA)); | ||||
|   } | ||||
|   void skipPastBinaryRecord(void) { | ||||
|     std::string rec_name(ILDG_BINARY_DATA); | ||||
|     while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) {  | ||||
|       if ( !strncmp(limeReaderType(LimeR), rec_name.c_str(),strlen(rec_name.c_str()) )  ) { | ||||
|   // in principle should do the line below, but that breaks backard compatibility with old data | ||||
|   // skipPastObjectRecord(std::string(GRID_FIELD_NORM)); | ||||
| 	skipPastObjectRecord(std::string(SCIDAC_CHECKSUM)); | ||||
| 	return; | ||||
|       } | ||||
| @@ -630,12 +619,12 @@ class IldgWriter : public ScidacWriter { | ||||
|   // Don't require scidac records EXCEPT checksum | ||||
|   // Use Grid MetaData object if present. | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   template <class stats = PeriodicGaugeStatistics> | ||||
|   void writeConfiguration(Lattice<vLorentzColourMatrixD > &Umu,int sequence,std::string LFN,std::string description)  | ||||
|   template <class vsimd> | ||||
|   void writeConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu,int sequence,std::string LFN,std::string description)  | ||||
|   { | ||||
|     GridBase * grid = Umu.Grid(); | ||||
|     typedef Lattice<vLorentzColourMatrixD> GaugeField; | ||||
|     typedef vLorentzColourMatrixD vobj; | ||||
|     typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField; | ||||
|     typedef iLorentzColourMatrix<vsimd> vobj; | ||||
|     typedef typename vobj::scalar_object sobj; | ||||
|  | ||||
|     //////////////////////////////////////// | ||||
| @@ -647,9 +636,6 @@ class IldgWriter : public ScidacWriter { | ||||
|  | ||||
|     ScidacMetaData(Umu,header,_scidacRecord,_scidacFile); | ||||
|  | ||||
|     stats Stats; | ||||
|     Stats(Umu,header); | ||||
|      | ||||
|     std::string format = header.floating_point; | ||||
|     header.ensemble_id    = description; | ||||
|     header.ensemble_label = description; | ||||
| @@ -663,8 +649,7 @@ class IldgWriter : public ScidacWriter { | ||||
|     // Fill ILDG header data struct | ||||
|     ////////////////////////////////////////////////////// | ||||
|     ildgFormat ildgfmt ; | ||||
|     const std::string stNC = std::to_string( Nc ) ; | ||||
|     ildgfmt.field          = std::string("su"+stNC+"gauge"); | ||||
|     ildgfmt.field     = std::string("su3gauge"); | ||||
|  | ||||
|     if ( format == std::string("IEEE32BIG") ) {  | ||||
|       ildgfmt.precision = 32; | ||||
| @@ -720,10 +705,10 @@ class IldgReader : public GridLimeReader { | ||||
|   // Else use ILDG MetaData object if present. | ||||
|   // Else use SciDAC MetaData object if present. | ||||
|   //////////////////////////////////////////////////////////////// | ||||
|   template <class stats = PeriodicGaugeStatistics> | ||||
|   void readConfiguration(Lattice<vLorentzColourMatrixD> &Umu, FieldMetaData &FieldMetaData_) { | ||||
|   template <class vsimd> | ||||
|   void readConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu, FieldMetaData &FieldMetaData_) { | ||||
|  | ||||
|     typedef Lattice<vLorentzColourMatrixD > GaugeField; | ||||
|     typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField; | ||||
|     typedef typename GaugeField::vector_object  vobj; | ||||
|     typedef typename vobj::scalar_object sobj; | ||||
|  | ||||
| @@ -881,8 +866,7 @@ class IldgReader : public GridLimeReader { | ||||
|     } else {  | ||||
|  | ||||
|       assert(found_ildgFormat); | ||||
|       const std::string stNC = std::to_string( Nc ) ; | ||||
|       assert ( ildgFormat_.field == std::string("su"+stNC+"gauge") ); | ||||
|       assert ( ildgFormat_.field == std::string("su3gauge") ); | ||||
|  | ||||
|       /////////////////////////////////////////////////////////////////////////////////////// | ||||
|       // Populate our Grid metadata as best we can | ||||
| @@ -890,7 +874,7 @@ class IldgReader : public GridLimeReader { | ||||
|  | ||||
|       std::ostringstream vers; vers << ildgFormat_.version; | ||||
|       FieldMetaData_.hdr_version = vers.str(); | ||||
|       FieldMetaData_.data_type = std::string("4D_SU"+stNC+"_GAUGE_"+stNC+"x"+stNC); | ||||
|       FieldMetaData_.data_type = std::string("4D_SU3_GAUGE_3X3"); | ||||
|  | ||||
|       FieldMetaData_.nd=4; | ||||
|       FieldMetaData_.dimension.resize(4); | ||||
| @@ -937,8 +921,7 @@ class IldgReader : public GridLimeReader { | ||||
|  | ||||
|     if ( found_FieldMetaData || found_usqcdInfo ) { | ||||
|       FieldMetaData checker; | ||||
|       stats Stats; | ||||
|       Stats(Umu,checker); | ||||
|       GaugeStatistics(Umu,checker); | ||||
|       assert(fabs(checker.plaquette  - FieldMetaData_.plaquette )<1.0e-5); | ||||
|       assert(fabs(checker.link_trace - FieldMetaData_.link_trace)<1.0e-5); | ||||
|       std::cout << GridLogMessage<<"Plaquette and link trace match " << std::endl; | ||||
|   | ||||
| @@ -6,8 +6,8 @@ | ||||
|  | ||||
|     Copyright (C) 2015 | ||||
|  | ||||
|  | ||||
|     Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|     Author: Jamie Hudspith <renwick.james.hudspth@gmail.com> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
| @@ -128,7 +128,7 @@ inline void MachineCharacteristics(FieldMetaData &header) | ||||
|   std::time_t t = std::time(nullptr); | ||||
|   std::tm tm_ = *std::localtime(&t); | ||||
|   std::ostringstream oss;  | ||||
|   oss << std::put_time(&tm_, "%c %Z"); | ||||
|   //      oss << std::put_time(&tm_, "%c %Z"); | ||||
|   header.creation_date = oss.str(); | ||||
|   header.archive_date  = header.creation_date; | ||||
|  | ||||
| @@ -176,18 +176,29 @@ template<class vobj> inline void PrepareMetaData(Lattice<vobj> & field, FieldMet | ||||
|   GridMetaData(grid,header);  | ||||
|   MachineCharacteristics(header); | ||||
| } | ||||
| template<class Impl> | ||||
| class GaugeStatistics | ||||
| inline void GaugeStatistics(Lattice<vLorentzColourMatrixF> & data,FieldMetaData &header) | ||||
| { | ||||
| public: | ||||
|   void operator()(Lattice<vLorentzColourMatrixD> & data,FieldMetaData &header) | ||||
|   { | ||||
|     header.link_trace = WilsonLoops<Impl>::linkTrace(data); | ||||
|     header.plaquette  = WilsonLoops<Impl>::avgPlaquette(data); | ||||
|   // How to convert data precision etc... | ||||
|   header.link_trace=WilsonLoops<PeriodicGimplF>::linkTrace(data); | ||||
|   header.plaquette =WilsonLoops<PeriodicGimplF>::avgPlaquette(data); | ||||
| } | ||||
| inline void GaugeStatistics(Lattice<vLorentzColourMatrixD> & data,FieldMetaData &header) | ||||
| { | ||||
|   // How to convert data precision etc... | ||||
|   header.link_trace=WilsonLoops<PeriodicGimplD>::linkTrace(data); | ||||
|   header.plaquette =WilsonLoops<PeriodicGimplD>::avgPlaquette(data); | ||||
| } | ||||
| template<> inline void PrepareMetaData<vLorentzColourMatrixF>(Lattice<vLorentzColourMatrixF> & field, FieldMetaData &header) | ||||
| { | ||||
|     | ||||
|   GridBase *grid = field.Grid(); | ||||
|   std::string format = getFormatString<vLorentzColourMatrixF>(); | ||||
|   header.floating_point = format; | ||||
|   header.checksum = 0x0; // Nersc checksum unused in ILDG, Scidac | ||||
|   GridMetaData(grid,header);  | ||||
|   GaugeStatistics(field,header); | ||||
|   MachineCharacteristics(header); | ||||
| } | ||||
| }; | ||||
| typedef GaugeStatistics<PeriodicGimplD> PeriodicGaugeStatistics; | ||||
| typedef GaugeStatistics<ConjugateGimplD> ConjugateGaugeStatistics; | ||||
| template<> inline void PrepareMetaData<vLorentzColourMatrixD>(Lattice<vLorentzColourMatrixD> & field, FieldMetaData &header) | ||||
| { | ||||
|   GridBase *grid = field.Grid(); | ||||
| @@ -195,6 +206,7 @@ template<> inline void PrepareMetaData<vLorentzColourMatrixD>(Lattice<vLorentzCo | ||||
|   header.floating_point = format; | ||||
|   header.checksum = 0x0; // Nersc checksum unused in ILDG, Scidac | ||||
|   GridMetaData(grid,header);  | ||||
|   GaugeStatistics(field,header); | ||||
|   MachineCharacteristics(header); | ||||
| } | ||||
|  | ||||
| @@ -203,24 +215,20 @@ template<> inline void PrepareMetaData<vLorentzColourMatrixD>(Lattice<vLorentzCo | ||||
| ////////////////////////////////////////////////////////////////////// | ||||
| inline void reconstruct3(LorentzColourMatrix & cm) | ||||
| { | ||||
|   assert( Nc < 4 && Nc > 1 ) ; | ||||
|   const int x=0; | ||||
|   const int y=1; | ||||
|   const int z=2; | ||||
|   for(int mu=0;mu<Nd;mu++){ | ||||
|     #if Nc == 2 | ||||
|       cm(mu)()(1,0) = -adj(cm(mu)()(0,y)) ; | ||||
|       cm(mu)()(1,1) =  adj(cm(mu)()(0,x)) ; | ||||
|     #else | ||||
|       const int x=0 , y=1 , z=2 ; // a little disinenuous labelling | ||||
|     cm(mu)()(2,x) = adj(cm(mu)()(0,y)*cm(mu)()(1,z)-cm(mu)()(0,z)*cm(mu)()(1,y)); //x= yz-zy | ||||
|     cm(mu)()(2,y) = adj(cm(mu)()(0,z)*cm(mu)()(1,x)-cm(mu)()(0,x)*cm(mu)()(1,z)); //y= zx-xz | ||||
|     cm(mu)()(2,z) = adj(cm(mu)()(0,x)*cm(mu)()(1,y)-cm(mu)()(0,y)*cm(mu)()(1,x)); //z= xy-yx | ||||
|     #endif | ||||
|   } | ||||
| } | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
| // Some data types for intermediate storage | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
| template<typename vtype> using iLorentzColour2x3 = iVector<iVector<iVector<vtype, Nc>, Nc-1>, Nd >; | ||||
| template<typename vtype> using iLorentzColour2x3 = iVector<iVector<iVector<vtype, Nc>, 2>, Nd >; | ||||
|  | ||||
| typedef iLorentzColour2x3<Complex>  LorentzColour2x3; | ||||
| typedef iLorentzColour2x3<ComplexF> LorentzColour2x3F; | ||||
| @@ -282,6 +290,7 @@ struct GaugeSimpleMunger{ | ||||
|  | ||||
| template <class fobj, class sobj> | ||||
| struct GaugeSimpleUnmunger { | ||||
|  | ||||
|   void operator()(sobj &in, fobj &out) { | ||||
|     for (int mu = 0; mu < Nd; mu++) { | ||||
|       for (int i = 0; i < Nc; i++) { | ||||
| @@ -320,8 +329,8 @@ template<class fobj,class sobj> | ||||
| struct Gauge3x2munger{ | ||||
|   void operator() (fobj &in,sobj &out){ | ||||
|     for(int mu=0;mu<Nd;mu++){ | ||||
|       for(int i=0;i<Nc-1;i++){ | ||||
| 	for(int j=0;j<Nc;j++){ | ||||
|       for(int i=0;i<2;i++){ | ||||
| 	for(int j=0;j<3;j++){ | ||||
| 	  out(mu)()(i,j) = in(mu)(i)(j); | ||||
| 	}} | ||||
|     } | ||||
| @@ -333,8 +342,8 @@ template<class fobj,class sobj> | ||||
| struct Gauge3x2unmunger{ | ||||
|   void operator() (sobj &in,fobj &out){ | ||||
|     for(int mu=0;mu<Nd;mu++){ | ||||
|       for(int i=0;i<Nc-1;i++){ | ||||
| 	for(int j=0;j<Nc;j++){ | ||||
|       for(int i=0;i<2;i++){ | ||||
| 	for(int j=0;j<3;j++){ | ||||
| 	  out(mu)(i)(j) = in(mu)()(i,j); | ||||
| 	}} | ||||
|     } | ||||
|   | ||||
| @@ -9,7 +9,6 @@ | ||||
|     Author: Matt Spraggs <matthew.spraggs@gmail.com> | ||||
|     Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|     Author: paboyle <paboyle@ph.ed.ac.uk> | ||||
|     Author: Jamie Hudspith <renwick.james.hudspth@gmail.com> | ||||
|  | ||||
|     This program is free software; you can redistribute it and/or modify | ||||
|     it under the terms of the GNU General Public License as published by | ||||
| @@ -31,8 +30,6 @@ | ||||
| #ifndef GRID_NERSC_IO_H | ||||
| #define GRID_NERSC_IO_H | ||||
|  | ||||
| #include <string> | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| using namespace Grid; | ||||
| @@ -42,10 +39,6 @@ using namespace Grid; | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
| class NerscIO : public BinaryIO {  | ||||
| public: | ||||
|   typedef Lattice<vLorentzColourMatrixD> GaugeField; | ||||
|  | ||||
|   // Enable/disable exiting if the plaquette in the header does not match the value computed (default true) | ||||
|   static bool & exitOnReadPlaquetteMismatch(){ static bool v=true; return v; } | ||||
|  | ||||
|   static inline void truncate(std::string file){ | ||||
|     std::ofstream fout(file,std::ios::out); | ||||
| @@ -136,12 +129,12 @@ public: | ||||
|   // Now the meat: the object readers | ||||
|   ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
|   template<class GaugeStats=PeriodicGaugeStatistics> | ||||
|   static inline void readConfiguration(GaugeField &Umu, | ||||
|   template<class vsimd> | ||||
|   static inline void readConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu, | ||||
| 				       FieldMetaData& header, | ||||
| 				       std::string file, | ||||
| 				       GaugeStats GaugeStatisticsCalculator=GaugeStats()) | ||||
| 				       std::string file) | ||||
|   { | ||||
|     typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField; | ||||
|  | ||||
|     GridBase *grid = Umu.Grid(); | ||||
|     uint64_t offset = readHeader(file,Umu.Grid(),header); | ||||
| @@ -150,35 +143,33 @@ public: | ||||
|  | ||||
|     std::string format(header.floating_point); | ||||
|  | ||||
|     const int ieee32big = (format == std::string("IEEE32BIG")); | ||||
|     const int ieee32    = (format == std::string("IEEE32")); | ||||
|     const int ieee64big = (format == std::string("IEEE64BIG")); | ||||
|     const int ieee64    = (format == std::string("IEEE64") || \ | ||||
| 			   format == std::string("IEEE64LITTLE")); | ||||
|     int ieee32big = (format == std::string("IEEE32BIG")); | ||||
|     int ieee32    = (format == std::string("IEEE32")); | ||||
|     int ieee64big = (format == std::string("IEEE64BIG")); | ||||
|     int ieee64    = (format == std::string("IEEE64") || format == std::string("IEEE64LITTLE")); | ||||
|  | ||||
|     uint32_t nersc_csum,scidac_csuma,scidac_csumb; | ||||
|     // depending on datatype, set up munger; | ||||
|     // munger is a function of <floating point, Real, data_type> | ||||
|     const std::string stNC = std::to_string( Nc ) ; | ||||
|     if ( header.data_type == std::string("4D_SU"+stNC+"_GAUGE") ) { | ||||
|     if ( header.data_type == std::string("4D_SU3_GAUGE") ) { | ||||
|       if ( ieee32 || ieee32big ) { | ||||
| 	BinaryIO::readLatticeObject<vLorentzColourMatrixD, LorentzColour2x3F>  | ||||
| 	BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>, LorentzColour2x3F>  | ||||
| 	  (Umu,file,Gauge3x2munger<LorentzColour2x3F,LorentzColourMatrix>(), offset,format, | ||||
| 	   nersc_csum,scidac_csuma,scidac_csumb); | ||||
|       } | ||||
|       if ( ieee64 || ieee64big ) { | ||||
| 	BinaryIO::readLatticeObject<vLorentzColourMatrixD, LorentzColour2x3D>  | ||||
| 	BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>, LorentzColour2x3D>  | ||||
| 	  (Umu,file,Gauge3x2munger<LorentzColour2x3D,LorentzColourMatrix>(),offset,format, | ||||
| 	   nersc_csum,scidac_csuma,scidac_csumb); | ||||
|       } | ||||
|     } else if ( header.data_type == std::string("4D_SU"+stNC+"_GAUGE_"+stNC+"x"+stNC) ) { | ||||
|     } else if ( header.data_type == std::string("4D_SU3_GAUGE_3x3") ) { | ||||
|       if ( ieee32 || ieee32big ) { | ||||
| 	BinaryIO::readLatticeObject<vLorentzColourMatrixD,LorentzColourMatrixF> | ||||
| 	BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>,LorentzColourMatrixF> | ||||
| 	  (Umu,file,GaugeSimpleMunger<LorentzColourMatrixF,LorentzColourMatrix>(),offset,format, | ||||
| 	   nersc_csum,scidac_csuma,scidac_csumb); | ||||
|       } | ||||
|       if ( ieee64 || ieee64big ) { | ||||
| 	BinaryIO::readLatticeObject<vLorentzColourMatrixD,LorentzColourMatrixD> | ||||
| 	BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>,LorentzColourMatrixD> | ||||
| 	  (Umu,file,GaugeSimpleMunger<LorentzColourMatrixD,LorentzColourMatrix>(),offset,format, | ||||
| 	   nersc_csum,scidac_csuma,scidac_csumb); | ||||
|       } | ||||
| @@ -186,7 +177,7 @@ public: | ||||
|       assert(0); | ||||
|     } | ||||
|  | ||||
|     GaugeStats Stats; Stats(Umu,clone); | ||||
|     GaugeStatistics(Umu,clone); | ||||
|  | ||||
|     std::cout<<GridLogMessage <<"NERSC Configuration "<<file<<" checksum "<<std::hex<<nersc_csum<< std::dec | ||||
| 	     <<" header   "<<std::hex<<header.checksum<<std::dec <<std::endl; | ||||
| @@ -205,40 +196,31 @@ public: | ||||
|       std::cerr << " nersc_csum  " <<std::hex<< nersc_csum << " " << header.checksum<< std::dec<< std::endl; | ||||
|       exit(0); | ||||
|     } | ||||
|     if(exitOnReadPlaquetteMismatch()) assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 ); | ||||
|     assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 ); | ||||
|     assert(fabs(clone.link_trace-header.link_trace) < 1.0e-6 ); | ||||
|     assert(nersc_csum == header.checksum ); | ||||
|        | ||||
|     std::cout<<GridLogMessage <<"NERSC Configuration "<<file<< " and plaquette, link trace, and checksum agree"<<std::endl; | ||||
|   } | ||||
|  | ||||
|   // Preferred interface | ||||
|   template<class GaugeStats=PeriodicGaugeStatistics> | ||||
|   static inline void writeConfiguration(Lattice<vLorentzColourMatrixD > &Umu, | ||||
| 					std::string file,  | ||||
| 					std::string ens_label = std::string("DWF"), | ||||
| 					std::string ens_id = std::string("UKQCD"), | ||||
| 					unsigned int sequence_number = 1) | ||||
|   { | ||||
|     writeConfiguration(Umu,file,0,1,ens_label,ens_id,sequence_number); | ||||
|   } | ||||
|   template<class GaugeStats=PeriodicGaugeStatistics> | ||||
|   static inline void writeConfiguration(Lattice<vLorentzColourMatrixD > &Umu, | ||||
|   template<class vsimd> | ||||
|   static inline void writeConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu, | ||||
| 					std::string file,  | ||||
| 					int two_row, | ||||
| 					int bits32, | ||||
| 					std::string ens_label = std::string("DWF"), | ||||
| 					std::string ens_id = std::string("UKQCD"), | ||||
| 					unsigned int sequence_number = 1) | ||||
| 					int bits32) | ||||
|   { | ||||
|     typedef vLorentzColourMatrixD vobj; | ||||
|     typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField; | ||||
|  | ||||
|     typedef iLorentzColourMatrix<vsimd> vobj; | ||||
|     typedef typename vobj::scalar_object sobj; | ||||
|  | ||||
|     FieldMetaData header; | ||||
|     header.sequence_number = sequence_number; | ||||
|     header.ensemble_id     = ens_id; | ||||
|     header.ensemble_label  = ens_label; | ||||
|     header.hdr_version     = "1.0" ; | ||||
|     /////////////////////////////////////////// | ||||
|     // Following should become arguments | ||||
|     /////////////////////////////////////////// | ||||
|     header.sequence_number = 1; | ||||
|     header.ensemble_id     = "UKQCD"; | ||||
|     header.ensemble_label  = "DWF"; | ||||
|  | ||||
|     typedef LorentzColourMatrixD fobj3D; | ||||
|     typedef LorentzColour2x3D    fobj2D; | ||||
| @@ -247,19 +229,15 @@ public: | ||||
|  | ||||
|     GridMetaData(grid,header); | ||||
|     assert(header.nd==4); | ||||
|     GaugeStats Stats; Stats(Umu,header); | ||||
|     GaugeStatistics(Umu,header); | ||||
|     MachineCharacteristics(header); | ||||
|  | ||||
| 	uint64_t offset; | ||||
|  | ||||
|     // Sod it -- always write NcxNc double | ||||
|     // Sod it -- always write 3x3 double | ||||
|     header.floating_point = std::string("IEEE64BIG"); | ||||
|     const std::string stNC = std::to_string( Nc ) ; | ||||
|     if( two_row ) { | ||||
|       header.data_type = std::string("4D_SU" + stNC + "_GAUGE" ); | ||||
|     } else { | ||||
|       header.data_type = std::string("4D_SU" + stNC + "_GAUGE_" + stNC + "x" + stNC ); | ||||
|     } | ||||
|     header.data_type      = std::string("4D_SU3_GAUGE_3x3"); | ||||
|     GaugeSimpleUnmunger<fobj3D,sobj> munge; | ||||
| 	if ( grid->IsBoss() ) {  | ||||
| 	  truncate(file); | ||||
|     offset = writeHeader(header,file); | ||||
| @@ -267,15 +245,8 @@ public: | ||||
| 	grid->Broadcast(0,(void *)&offset,sizeof(offset)); | ||||
|  | ||||
|     uint32_t nersc_csum,scidac_csuma,scidac_csumb; | ||||
|     if( two_row ) { | ||||
|       Gauge3x2unmunger<fobj2D,sobj> munge; | ||||
|       BinaryIO::writeLatticeObject<vobj,fobj2D>(Umu,file,munge,offset,header.floating_point, | ||||
| 						nersc_csum,scidac_csuma,scidac_csumb); | ||||
|     } else { | ||||
|       GaugeSimpleUnmunger<fobj3D,sobj> munge; | ||||
|     BinaryIO::writeLatticeObject<vobj,fobj3D>(Umu,file,munge,offset,header.floating_point, | ||||
| 					      nersc_csum,scidac_csuma,scidac_csumb); | ||||
|     } | ||||
|     header.checksum = nersc_csum; | ||||
| 	if ( grid->IsBoss() ) {  | ||||
|     writeHeader(header,file); | ||||
| @@ -308,6 +279,7 @@ public: | ||||
|     MachineCharacteristics(header); | ||||
|  | ||||
| 	uint64_t offset; | ||||
|    | ||||
| #ifdef RNG_RANLUX | ||||
|     header.floating_point = std::string("UINT64"); | ||||
|     header.data_type      = std::string("RANLUX48"); | ||||
|   | ||||
| @@ -154,7 +154,7 @@ public: | ||||
|     grid->Barrier(); timer.Stop(); | ||||
|     std::cout << Grid::GridLogMessage << "OpenQcdIO::readConfiguration: redistribute overhead " << timer.Elapsed() << std::endl; | ||||
|  | ||||
|     PeriodicGaugeStatistics Stats; Stats(Umu, clone); | ||||
|     GaugeStatistics(Umu, clone); | ||||
|  | ||||
|     RealD plaq_diff = fabs(clone.plaquette - header.plaquette); | ||||
|  | ||||
|   | ||||
| @@ -208,7 +208,7 @@ public: | ||||
|  | ||||
|     FieldMetaData clone(header); | ||||
|  | ||||
|     PeriodicGaugeStatistics Stats; Stats(Umu, clone); | ||||
|     GaugeStatistics(Umu, clone); | ||||
|  | ||||
|     RealD plaq_diff = fabs(clone.plaquette - header.plaquette); | ||||
|  | ||||
|   | ||||
Some files were not shown because too many files have changed in this diff Show More
		Reference in New Issue
	
	Block a user