1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-14 13:57:07 +01:00

Compare commits

..

5 Commits

7 changed files with 496 additions and 68 deletions

View File

@ -140,7 +140,17 @@ private:
// Can move this outside?
typedef IntegratorType<SmearingPolicy> TheIntegrator;
TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing);
// Metric
//TrivialMetric<typename Implementation::Field> Mtr;
ConjugateGradient<LatticeGaugeField> CG(1.0e-8,10000);
LaplacianParams LapPar(0.0001, 1.0, 10000, 1e-8, 12, 64);
// RealD Kappa = 1.2;
RealD Kappa = Parameters.Kappa;
std::cout << GridLogMessage << "Kappa = " << Kappa << std::endl;
// Better to pass the generalised momenta to the integrator
LaplacianAdjointField<PeriodicGimplR> Laplacian(UGrid, CG, LapPar, Kappa);
TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing, Laplacian);
if (Parameters.StartingType == "HotStart") {
// Hot start

View File

@ -53,6 +53,7 @@ struct HMCparameters: Serializable {
bool, MetropolisTest,
Integer, NoMetropolisUntil,
std::string, StartingType,
RealD, Kappa,
IntegratorParameters, MD)
HMCparameters() {

View File

@ -73,7 +73,8 @@ protected:
double t_U; // Track time passing on each level and for U and for P
std::vector<double> t_P;
MomentaField P;
// MomentaField P;
GeneralisedMomenta<FieldImplementation > P;
SmearingPolicy& Smearer;
RepresentationPolicy Representations;
IntegratorParameters Params;
@ -83,7 +84,7 @@ protected:
void update_P(Field& U, int level, double ep)
{
t_P[level] += ep;
update_P(P, U, level, ep);
update_P(P.Mom, U, level, ep);
std::cout << GridLogIntegrator << "[" << level << "] P " << " dt " << ep << " : t_P " << t_P[level] << std::endl;
}
@ -111,6 +112,21 @@ protected:
// input U actually not used in the fundamental case
// Fundamental updates, include smearing
// Generalised momenta
// Derivative of the kinetic term must be computed before
// Mom is the momenta and gets updated by the
// actions derivatives
MomentaField MomDer(P.Mom.Grid());
P.M.ImportGauge(U);
P.DerivativeU(P.Mom, MomDer);
Mom -= MomDer * ep;
// Auxiliary fields
P.update_auxiliary_momenta(ep*0.5);
P.AuxiliaryFieldsDerivative(MomDer);
Mom -= MomDer * ep;
P.update_auxiliary_momenta(ep*0.5);
for (int a = 0; a < as[level].actions.size(); ++a) {
double start_full = usecond();
Field force(U.Grid());
@ -137,9 +153,83 @@ protected:
as[level].apply(update_P_hireps, Representations, Mom, U, ep);
}
void implicit_update_P(Field& U, int level, double ep, bool intermediate = false) {
t_P[level] += ep;
std::cout << GridLogIntegrator << "[" << level << "] P "
<< " dt " << ep << " : t_P " << t_P[level] << std::endl;
// Fundamental updates, include smearing
MomentaField Msum(P.Mom.Grid());
Msum = Zero();
for (int a = 0; a < as[level].actions.size(); ++a) {
// Compute the force terms for the lagrangian part
// We need to compute the derivative of the actions
// only once
Field force(U.Grid());
conformable(U.Grid(), P.Mom.Grid());
Field& Us = Smearer.get_U(as[level].actions.at(a)->is_smeared);
as[level].actions.at(a)->deriv(Us, force); // deriv should NOT include Ta
std::cout << GridLogIntegrator << "Smearing (on/off): " << as[level].actions.at(a)->is_smeared << std::endl;
if (as[level].actions.at(a)->is_smeared) Smearer.smeared_force(force);
force = FieldImplementation::projectForce(force); // Ta for gauge fields
Real force_abs = std::sqrt(norm2(force) / U.Grid()->gSites());
std::cout << GridLogIntegrator << "|Force| site average: " << force_abs
<< std::endl;
Msum += force;
}
MomentaField NewMom = P.Mom;
MomentaField OldMom = P.Mom;
double threshold = 1e-8;
P.M.ImportGauge(U);
MomentaField MomDer(P.Mom.Grid());
MomentaField MomDer1(P.Mom.Grid());
MomentaField AuxDer(P.Mom.Grid());
MomDer1 = Zero();
MomentaField diff(P.Mom.Grid());
double factor = 2.0;
if (intermediate){
P.DerivativeU(P.Mom, MomDer1);
factor = 1.0;
}
// Auxiliary fields
P.update_auxiliary_momenta(ep*0.5);
P.AuxiliaryFieldsDerivative(AuxDer);
Msum += AuxDer;
// Here run recursively
int counter = 1;
RealD RelativeError;
do {
std::cout << GridLogIntegrator << "UpdateP implicit step "<< counter << std::endl;
// Compute the derivative of the kinetic term
// with respect to the gauge field
P.DerivativeU(NewMom, MomDer);
Real force_abs = std::sqrt(norm2(MomDer) / U.Grid()->gSites());
std::cout << GridLogIntegrator << "|Force| laplacian site average: " << force_abs
<< std::endl;
NewMom = P.Mom - ep* 0.5 * (2.0*Msum + factor*MomDer + MomDer1);// simplify
diff = NewMom - OldMom;
counter++;
RelativeError = std::sqrt(norm2(diff))/std::sqrt(norm2(NewMom));
std::cout << GridLogIntegrator << "UpdateP RelativeError: " << RelativeError << std::endl;
OldMom = NewMom;
} while (RelativeError > threshold);
P.Mom = NewMom;
// update the auxiliary fields momenta
P.update_auxiliary_momenta(ep*0.5);
}
void update_U(Field& U, double ep)
{
update_U(P, U, ep);
update_U(P.Mom, U, ep);
t_U += ep;
int fl = levels - 1;
@ -158,15 +248,64 @@ protected:
Representations.update(U); // void functions if fundamental representation
}
void implicit_update_U(Field&U, double ep){
t_U += ep;
int fl = levels - 1;
std::cout << GridLogIntegrator << " " << "[" << fl << "] U " << " dt " << ep << " : t_U " << t_U << std::endl;
MomentaField Mom1(P.Mom.Grid());
MomentaField Mom2(P.Mom.Grid());
RealD RelativeError;
Field diff(U.Grid());
Real threshold = 1e-8;
int counter = 1;
int MaxCounter = 100;
Field OldU = U;
Field NewU = U;
P.M.ImportGauge(U);
P.DerivativeP(Mom1); // first term in the derivative
P.update_auxiliary_fields(ep*0.5);
MomentaField sum=Mom1;
do {
std::cout << GridLogIntegrator << "UpdateU implicit step "<< counter << std::endl;
P.DerivativeP(Mom2); // second term in the derivative, on the updated U
sum = (Mom1 + Mom2);
for (int mu = 0; mu < Nd; mu++) {
auto Umu = PeekIndex<LorentzIndex>(U, mu);
auto Pmu = PeekIndex<LorentzIndex>(sum, mu);
Umu = expMat(Pmu, ep * 0.5, 12) * Umu;
PokeIndex<LorentzIndex>(NewU, ProjectOnGroup(Umu), mu);
}
diff = NewU - OldU;
RelativeError = std::sqrt(norm2(diff))/std::sqrt(norm2(NewU));
std::cout << GridLogIntegrator << "UpdateU RelativeError: " << RelativeError << std::endl;
P.M.ImportGauge(NewU);
OldU = NewU; // some redundancy to be eliminated
counter++;
} while (RelativeError > threshold && counter < MaxCounter);
U = NewU;
P.update_auxiliary_fields(ep*0.5);
}
virtual void step(Field& U, int level, int first, int last) = 0;
public:
Integrator(GridBase* grid, IntegratorParameters Par,
ActionSet<Field, RepresentationPolicy>& Aset,
SmearingPolicy& Sm)
SmearingPolicy& Sm, Metric<MomentaField>& M)
: Params(Par),
as(Aset),
P(grid),
P(grid, M),
levels(Aset.size()),
Smearer(Sm),
Representations(grid)
@ -203,7 +342,9 @@ public:
void reverse_momenta()
{
P *= -1.0;
// P *= -1.0;
P.Mom *= -1.0;
P.AuxMom *= -1.0;
}
// to be used by the actionlevel class to iterate
@ -223,10 +364,13 @@ public:
// Initialization of momenta and actions
void refresh(Field& U, GridParallelRNG& pRNG)
{
assert(P.Grid() == U.Grid());
assert(P.Mom.Grid() == U.Grid());
std::cout << GridLogIntegrator << "Integrator refresh\n";
FieldImplementation::generate_momenta(P, pRNG);
// FieldImplementation::generate_momenta(P.Mom, pRNG);
P.M.ImportGauge(U);
P.MomentaDistribution(pRNG);
// Update the smeared fields, can be implemented as observer
// necessary to keep the fields updated even after a reject
@ -272,9 +416,11 @@ public:
std::cout << GridLogIntegrator << "Integrator action\n";
RealD H = - FieldImplementation::FieldSquareNorm(P)/HMC_MOMENTUM_DENOMINATOR; // - trace (P*P)/denom
// RealD H = - FieldImplementation::FieldSquareNorm(P)/HMC_MOMENTUM_DENOMINATOR; // - trace (P*P)/denom
P.M.ImportGauge(U);
RealD H = - P.MomentaAction();
RealD Hterm;
std::cout << GridLogMessage << "Momentum action H_p = " << H << "\n";
// Actions
for (int level = 0; level < as.size(); ++level) {

View File

@ -101,8 +101,8 @@ public:
std::string integrator_name(){return "LeapFrog";}
LeapFrog(GridBase* grid, IntegratorParameters Par, ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(grid, Par, Aset, Sm){};
LeapFrog(GridBase* grid, IntegratorParameters Par, ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm, Metric<Field>& M)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(grid, Par, Aset, Sm,M){};
void step(Field& U, int level, int _first, int _last) {
int fl = this->as.size() - 1;
@ -144,8 +144,8 @@ private:
public:
INHERIT_FIELD_TYPES(FieldImplementation);
MinimumNorm2(GridBase* grid, IntegratorParameters Par, ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(grid, Par, Aset, Sm){};
MinimumNorm2(GridBase* grid, IntegratorParameters Par, ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm, Metric<Field>& M)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(grid, Par, Aset, Sm,M){};
std::string integrator_name(){return "MininumNorm2";}
@ -207,9 +207,9 @@ public:
// Looks like dH scales as dt^4. tested wilson/wilson 2 level.
ForceGradient(GridBase* grid, IntegratorParameters Par,
ActionSet<Field, RepresentationPolicy>& Aset,
SmearingPolicy& Sm)
SmearingPolicy& Sm, Metric<Field>& M)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(
grid, Par, Aset, Sm){};
grid, Par, Aset, Sm,M){};
std::string integrator_name(){return "ForceGradient";}
@ -271,6 +271,139 @@ public:
}
};
////////////////////////////////
// Riemannian Manifold HMC
// Girolami et al
////////////////////////////////
// correct
template <class FieldImplementation, class SmearingPolicy,
class RepresentationPolicy =
Representations<FundamentalRepresentation> >
class ImplicitLeapFrog : public Integrator<FieldImplementation, SmearingPolicy,
RepresentationPolicy> {
public:
typedef ImplicitLeapFrog<FieldImplementation, SmearingPolicy, RepresentationPolicy>
Algorithm;
INHERIT_FIELD_TYPES(FieldImplementation);
// Riemannian manifold metric operator
// Hermitian operator Fisher
std::string integrator_name(){return "ImplicitLeapFrog";}
ImplicitLeapFrog(GridBase* grid, IntegratorParameters Par,
ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm, Metric<Field>& M)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(
grid, Par, Aset, Sm, M){};
void step(Field& U, int level, int _first, int _last) {
int fl = this->as.size() - 1;
// level : current level
// fl : final level
// eps : current step size
// Get current level step size
RealD eps = this->Params.trajL/this->Params.MDsteps;
for (int l = 0; l <= level; ++l) eps /= this->as[l].multiplier;
int multiplier = this->as[level].multiplier;
for (int e = 0; e < multiplier; ++e) {
int first_step = _first && (e == 0);
int last_step = _last && (e == multiplier - 1);
if (first_step) { // initial half step
this->implicit_update_P(U, level, eps / 2.0);
}
if (level == fl) { // lowest level
this->implicit_update_U(U, eps);
} else { // recursive function call
this->step(U, level + 1, first_step, last_step);
}
//int mm = last_step ? 1 : 2;
if (last_step){
this->update_P(U, level, eps / 2.0);
} else {
this->implicit_update_P(U, level, eps, true);// works intermediate step
// this->update_P(U, level, eps); // looks not reversible
}
}
}
};
// This is not completely tested
template <class FieldImplementation, class SmearingPolicy,
class RepresentationPolicy =
Representations<FundamentalRepresentation> >
class ImplicitMinimumNorm2 : public Integrator<FieldImplementation, SmearingPolicy,
RepresentationPolicy> {
private:
const RealD lambda = 0.1931833275037836;
public:
INHERIT_FIELD_TYPES(FieldImplementation);
ImplicitMinimumNorm2(GridBase* grid, IntegratorParameters Par,
ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm, Metric<Field>& M)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(
grid, Par, Aset, Sm, M){};
std::string integrator_name(){return "ImplicitMininumNorm2";}
void step(Field& U, int level, int _first, int _last) {
// level : current level
// fl : final level
// eps : current step size
int fl = this->as.size() - 1;
RealD eps = this->Params.trajL/this->Params.MDsteps * 2.0;
for (int l = 0; l <= level; ++l) eps /= 2.0 * this->as[l].multiplier;
// Nesting: 2xupdate_U of size eps/2
// Next level is eps/2/multiplier
int multiplier = this->as[level].multiplier;
for (int e = 0; e < multiplier; ++e) { // steps per step
int first_step = _first && (e == 0);
int last_step = _last && (e == multiplier - 1);
if (first_step) { // initial half step
this->implicit_update_P(U, level, lambda * eps);
}
if (level == fl) { // lowest level
this->implicit_update_U(U, 0.5 * eps);
} else { // recursive function call
this->step(U, level + 1, first_step, 0);
}
this->implicit_update_P(U, level, (1.0 - 2.0 * lambda) * eps, true);
if (level == fl) { // lowest level
this->implicit_update_U(U, 0.5 * eps);
} else { // recursive function call
this->step(U, level + 1, 0, last_step);
}
//int mm = (last_step) ? 1 : 2;
//this->update_P(U, level, lambda * eps * mm);
if (last_step) {
this->update_P(U, level, eps * lambda);
} else {
this->implicit_update_P(U, level, lambda * eps*2.0, true);
}
}
}
};
NAMESPACE_END(Grid);
#endif // INTEGRATOR_INCLUDED

View File

@ -1119,39 +1119,33 @@ void A2Autils<FImpl>::ContractFourQuarkColourDiagonal(const PropagatorField &WWV
assert(gamma0.size()==gamma1.size());
int Ng = gamma0.size();
// Make device accessible copy
Vector<Gamma> Gamma0v (Ng);
Vector<Gamma> Gamma1v (Ng);
Gamma *Gamma0 = & Gamma0v[0];
Gamma *Gamma1 = & Gamma1v[0];
for(int g=0;g<Ng;g++) {
Gamma0[g]=gamma0[g];
Gamma1[g]=gamma1[g];
}
GridBase *grid = WWVV0.Grid();
typedef typename ComplexField::vector_object vobj;
autoView(WWVV0_v , WWVV0,AcceleratorRead);
autoView(WWVV1_v , WWVV1,AcceleratorRead);
autoView(O_trtr_v, O_trtr,AcceleratorWrite);
autoView(O_fig8_v, O_fig8,AcceleratorWrite);
accelerator_for(ss,grid->oSites(),vobj::Nsimd(),{
autoView(WWVV0_v , WWVV0,CpuRead);
autoView(WWVV1_v , WWVV1,CpuRead);
autoView(O_trtr_v, O_trtr,CpuWrite);
autoView(O_fig8_v, O_fig8,CpuWrite);
thread_for(ss,grid->oSites(),{
auto VV0 = WWVV0_v(ss);
auto VV1 = WWVV1_v(ss);
typedef typename ComplexField::vector_object vobj;
vobj v_trtr;
vobj v_fig8;
auto VV0 = WWVV0_v[ss];
auto VV1 = WWVV1_v[ss];
for(int g=0;g<Ng;g++){
auto v_trtr = trace(VV0 * gamma0[g])* trace(VV1*gamma1[g]);
auto v_fig8 = trace(VV0 * gamma0[g] * VV1 * gamma1[g]);
v_trtr = trace(VV0 * gamma0[g])* trace(VV1*gamma1[g]);
v_fig8 = trace(VV0 * gamma0[g] * VV1 * gamma1[g]);
if ( g==0 ) {
coalescedWrite(O_trtr_v[ss], v_trtr);
coalescedWrite(O_fig8_v[ss], v_fig8);
O_trtr_v[ss] = v_trtr;
O_fig8_v[ss] = v_fig8;
} else {
coalescedWrite(O_trtr_v[ss], O_trtr_v(ss)+v_trtr);
coalescedWrite(O_fig8_v[ss], O_fig8_v(ss)+v_fig8);
O_trtr_v[ss]+= v_trtr;
O_fig8_v[ss]+= v_fig8;
}
}
@ -1171,36 +1165,25 @@ void A2Autils<FImpl>::ContractFourQuarkColourMix(const PropagatorField &WWVV0,
GridBase *grid = WWVV0.Grid();
// Make device accessible copy
Vector<Gamma> Gamma0v (Ng);
Vector<Gamma> Gamma1v (Ng);
Gamma *Gamma0 = & Gamma0v[0];
Gamma *Gamma1 = & Gamma1v[0];
for(int g=0;g<Ng;g++) {
Gamma0[g]=gamma0[g];
Gamma1[g]=gamma1[g];
}
autoView( WWVV0_v , WWVV0,CpuRead);
autoView( WWVV1_v , WWVV1,CpuRead);
autoView( O_trtr_v, O_trtr,CpuWrite);
autoView( O_fig8_v, O_fig8,CpuWrite);
autoView( WWVV0_v , WWVV0,AcceleratorRead);
autoView( WWVV1_v , WWVV1,AcceleratorRead);
autoView( O_trtr_v, O_trtr,AcceleratorWrite);
autoView( O_fig8_v, O_fig8,AcceleratorWrite);
thread_for(ss,grid->oSites(),{
typedef typename ComplexField::vector_object vobj;
accelerator_for(ss,grid->oSites(),vobj::Nsimd(),{
auto VV0 = WWVV0_v(ss);
auto VV1 = WWVV1_v(ss);
typedef decltype(trace(VV0)) scalar;
typedef typename ComplexField::vector_object vobj;
auto VV0 = WWVV0_v[ss];
auto VV1 = WWVV1_v[ss];
for(int g=0;g<Ng;g++){
auto VV0G = VV0 * gamma0[g]; // Spin multiply
auto VV1G = VV1 * gamma1[g];
scalar v_trtr=Zero();
scalar v_fig8=Zero();
vobj v_trtr=Zero();
vobj v_fig8=Zero();
/////////////////////////////////////////
// Colour mixed
@ -1214,7 +1197,7 @@ void A2Autils<FImpl>::ContractFourQuarkColourMix(const PropagatorField &WWVV0,
// Wick1 [ spin TR TR ]
//
// (VV0*G0)_ss,ba . (VV1*G1)_tt,ab
//
//
// Wick2 [ spin fig8 ]
//
// (VV0*G0)_st,aa (VV1*G1)_ts,bb
@ -1251,11 +1234,11 @@ Bag [8,4] fig8 (-227.58,3.58808e-17) trtr (-32.5776,1.83286e-17) // - 1602
}}}}
if ( g==0 ) {
coalescedWrite(O_trtr_v[ss] , v_trtr);
coalescedWrite(O_fig8_v[ss] , v_fig8);
O_trtr_v[ss] = v_trtr;
O_fig8_v[ss] = v_fig8;
} else {
coalescedWrite(O_trtr_v[ss],O_trtr_v(ss) + v_trtr);
coalescedWrite(O_fig8_v[ss],O_fig8_v(ss) + v_fig8);
O_trtr_v[ss]+= v_trtr;
O_fig8_v[ss]+= v_fig8;
}
}

Binary file not shown.

View File

@ -0,0 +1,155 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_hmc_WilsonFermionGauge.cc
Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
namespace Grid{
struct RMHMCActionParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(RMHMCActionParameters,
double, gauge_beta)
template <class ReaderClass >
RMHMCActionParameters(Reader<ReaderClass>& Reader){
read(Reader, "Action", *this);
}
};
}
int main(int argc, char **argv) {
using namespace Grid;
// using namespace Grid::QCD;
Grid_init(&argc, &argv);
GridLogIntegrator.Active(1);
int threads = GridThread::GetThreads();
// here make a routine to print all the relevant information on the run
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
// Typedefs to simplify notation
typedef GenericHMCRunner<ImplicitMinimumNorm2> HMCWrapper; // Uses the default minimum norm
// Serialiser
// typedef Grid::JSONReader Serialiser;
typedef Grid::XmlReader Serialiser;
HMCWrapper TheHMC;
TheHMC.ReadCommandLine(argc, argv); // these can be parameters from file
// Reader, file should come from command line
if (TheHMC.ParameterFile.empty()){
std::cout << "Input file not specified."
<< "Use --ParameterFile option in the command line.\nAborting"
<< std::endl;
exit(1);
}
Serialiser Reader(TheHMC.ParameterFile);
RMHMCActionParameters ActionParams(Reader);
// Grid from the command line
TheHMC.Resources.AddFourDimGrid("gauge");
// Checkpointer definition
CheckpointerParameters CPparams(Reader);
// TheHMC.Resources.LoadBinaryCheckpointer(CPparams);
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
RNGModuleParameters RNGpar(Reader);
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables
typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs;
typedef TopologicalChargeMod<HMCWrapper::ImplPolicy> QObs;
TheHMC.Resources.AddObservable<PlaqObs>();
TopologyObsParameters TopParams(Reader);
TheHMC.Resources.AddObservable<QObs>(TopParams);
/////////////////////////////////////////////////////////////
// Collect actions
WilsonGaugeActionR Waction(ActionParams.gauge_beta);
ActionLevel<HMCWrapper::Field> Level1(1);
Level1.push_back(&Waction);
TheHMC.TheAction.push_back(Level1);
/////////////////////////////////////////////////////////////
TheHMC.Parameters.initialize(Reader);
TheHMC.Run();
Grid_finalize();
} // main
/* Examples for input files
JSON
{
"Checkpointer": {
"config_prefix": "ckpoint_json_lat",
"rng_prefix": "ckpoint_json_rng",
"saveInterval": 10,
"format": "IEEE64BIG"
},
"RandomNumberGenerator": {
"serial_seeds": "1 2 3 4 6",
"parallel_seeds": "55 7 8 9 11"
},
"Action":{
"gauge_beta": 5.8
},
"TopologyMeasurement":{
"interval": 1,
"do_smearing": true,
"Smearing":{
"steps": 200,
"step_size": 0.01,
"meas_interval": 50,
"maxTau": 2.0
}
},
"HMC":{
"StartTrajectory": 0,
"Trajectories": 10,
"MetropolisTest": true,
"NoMetropolisUntil": 10,
"StartingType": "HotStart",
"MD":{
"name": "MinimumNorm2",
"MDsteps": 40,
"trajL": 1.0
}
}
}
XML example not provided yet
*/