1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-14 05:07:05 +01:00

Compare commits

..

9 Commits

Author SHA1 Message Date
e307bb7528 Reorganise to abstract kernels that know about the lattice layout.
Move these back into grid.
2018-09-04 12:30:00 +01:00
5b8b630919 Finished the four quark optimisation for Bag parameters.
To do:

   Abstract the cache blocking from the contraction with lambda functions.
   Share code between PionFieldXX with and without momentum. Share with the Meson field code somehow.
   Assemble the WWVV in a standalone routine.
   Play similar lambda function trick for the four quark operator.
   Hack it first by doing the MesonField Routine in here too.
2018-08-28 14:11:03 +01:00
81287133f3 New files 2018-08-28 11:32:41 +01:00
bd27940f78 Reorder the loop 2018-08-28 11:32:23 +01:00
d45647698d Extra test code 2018-08-28 11:31:19 +01:00
d6ac6e75cc Some query functions 2018-08-28 11:30:51 +01:00
ba34d7b206 Pion Field test module 2018-08-28 11:30:14 +01:00
80003787c9 Use MKL DGEMM 2018-08-28 11:14:27 +01:00
f523dddef0 Remove verbose 2018-08-28 11:14:07 +01:00
1108 changed files with 88704 additions and 80648 deletions

27
.gitignore vendored
View File

@ -83,7 +83,6 @@ ltmain.sh
.Trashes
ehthumbs.db
Thumbs.db
.dirstamp
# build directory #
###################
@ -98,8 +97,11 @@ build.sh
# Eigen source #
################
Grid/Eigen
Eigen/*
lib/Eigen/*
# FFTW source #
################
lib/fftw/*
# libtool macros #
##################
@ -110,8 +112,21 @@ m4/libtool.m4
################
gh-pages/
# Buck files #
##############
.buck*
buck-out
BUCK
make-bin-BUCK.sh
# generated sources #
#####################
Grid/qcd/spin/gamma-gen/*.h
Grid/qcd/spin/gamma-gen/*.cc
Grid/util/Version.h
lib/qcd/spin/gamma-gen/*.h
lib/qcd/spin/gamma-gen/*.cc
lib/version.h
# vs code editor files #
########################
.vscode/
.vscode/settings.json
settings.json

View File

@ -9,11 +9,6 @@ matrix:
- os: osx
osx_image: xcode8.3
compiler: clang
env: PREC=single
- os: osx
osx_image: xcode8.3
compiler: clang
env: PREC=double
before_install:
- export GRIDDIR=`pwd`
@ -21,7 +16,7 @@ before_install:
- if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]]; then export PATH="${GRIDDIR}/clang/bin:${PATH}"; fi
- if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]]; then export LD_LIBRARY_PATH="${GRIDDIR}/clang/lib:${LD_LIBRARY_PATH}"; fi
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew update; fi
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew install libmpc openssl; fi
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew install libmpc; fi
install:
- export CWD=`pwd`
@ -38,7 +33,6 @@ install:
- which $CXX
- $CXX --version
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then export LDFLAGS='-L/usr/local/lib'; fi
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then export EXTRACONF='--with-openssl=/usr/local/opt/openssl'; fi
script:
- ./bootstrap.sh
@ -55,7 +49,12 @@ script:
- make -j4
- make install
- cd $CWD/build
- ../configure --enable-precision=$PREC --enable-simd=SSE4 --enable-comms=none --with-lime=$CWD/build/lime/install ${EXTRACONF}
- ../configure --enable-precision=single --enable-simd=SSE4 --enable-comms=none --with-lime=$CWD/build/lime/install
- make -j4
- ./benchmarks/Benchmark_dwf --threads 1 --debug-signals
- echo make clean
- ../configure --enable-precision=double --enable-simd=SSE4 --enable-comms=none --with-lime=$CWD/build/lime/install
- make -j4
- ./benchmarks/Benchmark_dwf --threads 1 --debug-signals
- make check

View File

@ -1,5 +0,0 @@
Version : 0.8.0
- Clang 3.5 and above, ICPC v16 and above, GCC 6.3 and above recommended
- MPI and MPI3 comms optimisations for KNL and OPA finished
- Half precision comms

View File

@ -1,63 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/DisableWarnings.h
Copyright (C) 2016
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef DISABLE_WARNINGS_H
#define DISABLE_WARNINGS_H
#if defined __GNUC__ && __GNUC__>=6
#pragma GCC diagnostic ignored "-Wignored-attributes"
#endif
//disables and intel compiler specific warning (in json.hpp)
#pragma warning disable 488
#ifdef __NVCC__
//disables nvcc specific warning in json.hpp
#pragma clang diagnostic ignored "-Wdeprecated-register"
#pragma diag_suppress unsigned_compare_with_zero
#pragma diag_suppress cast_to_qualified_type
//disables nvcc specific warning in many files
#pragma diag_suppress esa_on_defaulted_function_ignored
#pragma diag_suppress extra_semicolon
//Eigen only
#endif
// Disable vectorisation in Eigen on the Power8/9 and PowerPC
#ifdef __ALTIVEC__
#define EIGEN_DONT_VECTORIZE
#endif
#ifdef __VSX__
#define EIGEN_DONT_VECTORIZE
#endif
#endif

View File

@ -1,59 +0,0 @@
#include <Grid/GridCore.h>
#pragma once
// Force Eigen to use MKL if Grid has been configured with --enable-mkl
#ifdef USE_MKL
#define EIGEN_USE_MKL_ALL
#endif
#if defined __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#endif
/* NVCC save and restore compile environment*/
#ifdef __NVCC__
#pragma push
#pragma diag_suppress code_is_unreachable
#pragma push_macro("__CUDA_ARCH__")
#pragma push_macro("__NVCC__")
#pragma push_macro("__CUDACC__")
#undef __CUDA_ARCH__
#undef __NVCC__
#undef __CUDACC__
#define __NVCC__REDEFINE__
#endif
/* SYCL save and restore compile environment*/
#ifdef GRID_SYCL
#pragma push
#pragma push_macro("__SYCL_DEVICE_ONLY__")
#undef __SYCL_DEVICE_ONLY__
#define EIGEN_DONT_VECTORIZE
//#undef EIGEN_USE_SYCL
#define __SYCL__REDEFINE__
#endif
#include <Grid/Eigen/Dense>
#include <Grid/Eigen/unsupported/CXX11/Tensor>
/* NVCC restore */
#ifdef __NVCC__REDEFINE__
#pragma pop_macro("__CUDACC__")
#pragma pop_macro("__NVCC__")
#pragma pop_macro("GRID_SIMT")
#pragma pop
#endif
/*SYCL restore*/
#ifdef __SYCL__REDEFINE__
#pragma pop_macro("__SYCL_DEVICE_ONLY__")
#pragma pop
#endif
#if defined __GNUC__
#pragma GCC diagnostic pop
#endif

View File

@ -1 +0,0 @@
#include <Grid/Grid_Eigen_Dense.h>

View File

@ -1,635 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/CoarsenedMatrix.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_ALGORITHM_COARSENED_MATRIX_H
#define GRID_ALGORITHM_COARSENED_MATRIX_H
NAMESPACE_BEGIN(Grid);
template<class vobj,class CComplex>
inline void blockMaskedInnerProduct(Lattice<CComplex> &CoarseInner,
const Lattice<decltype(innerProduct(vobj(),vobj()))> &FineMask,
const Lattice<vobj> &fineX,
const Lattice<vobj> &fineY)
{
typedef decltype(innerProduct(vobj(),vobj())) dotp;
GridBase *coarse(CoarseInner.Grid());
GridBase *fine (fineX.Grid());
Lattice<dotp> fine_inner(fine); fine_inner.Checkerboard() = fineX.Checkerboard();
Lattice<dotp> fine_inner_msk(fine);
// Multiply could be fused with innerProduct
// Single block sum kernel could do both masks.
fine_inner = localInnerProduct(fineX,fineY);
mult(fine_inner_msk, fine_inner,FineMask);
blockSum(CoarseInner,fine_inner_msk);
}
class Geometry {
public:
int npoint;
std::vector<int> directions ;
std::vector<int> displacements;
Geometry(int _d) {
int base = (_d==5) ? 1:0;
// make coarse grid stencil for 4d , not 5d
if ( _d==5 ) _d=4;
npoint = 2*_d+1;
directions.resize(npoint);
displacements.resize(npoint);
for(int d=0;d<_d;d++){
directions[d ] = d+base;
directions[d+_d] = d+base;
displacements[d ] = +1;
displacements[d+_d]= -1;
}
directions [2*_d]=0;
displacements[2*_d]=0;
}
};
template<class Fobj,class CComplex,int nbasis>
class Aggregation {
public:
typedef iVector<CComplex,nbasis > siteVector;
typedef Lattice<siteVector> CoarseVector;
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj > FineField;
GridBase *CoarseGrid;
GridBase *FineGrid;
std::vector<Lattice<Fobj> > subspace;
int checkerboard;
int Checkerboard(void){return checkerboard;}
Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :
CoarseGrid(_CoarseGrid),
FineGrid(_FineGrid),
subspace(nbasis,_FineGrid),
checkerboard(_checkerboard)
{
};
void Orthogonalise(void){
CoarseScalar InnerProd(CoarseGrid);
std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
blockOrthogonalise(InnerProd,subspace);
}
void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
blockProject(CoarseVec,FineVec,subspace);
}
void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
FineVec.Checkerboard() = subspace[0].Checkerboard();
blockPromote(CoarseVec,FineVec,subspace);
}
virtual void CreateSubspace(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) {
RealD scale;
ConjugateGradient<FineField> CG(1.0e-2,100,false);
FineField noise(FineGrid);
FineField Mn(FineGrid);
for(int b=0;b<nn;b++){
subspace[b] = Zero();
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
for(int i=0;i<1;i++){
CG(hermop,noise,subspace[b]);
noise = subspace[b];
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
}
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
subspace[b] = noise;
}
}
////////////////////////////////////////////////////////////////////////////////////////////////
// World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
// and this is the best I found
////////////////////////////////////////////////////////////////////////////////////////////////
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
int nn,
double hi,
double lo,
int orderfilter,
int ordermin,
int orderstep,
double filterlo
) {
RealD scale;
FineField noise(FineGrid);
FineField Mn(FineGrid);
FineField tmp(FineGrid);
// New normalised noise
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
// Initial matrix element
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
int b =0;
{
// Filter
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
Cheb(hermop,noise,Mn);
// normalise
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
b++;
}
// Generate a full sequence of Chebyshevs
{
lo=filterlo;
noise=Mn;
FineField T0(FineGrid); T0 = noise;
FineField T1(FineGrid);
FineField T2(FineGrid);
FineField y(FineGrid);
FineField *Tnm = &T0;
FineField *Tn = &T1;
FineField *Tnp = &T2;
// Tn=T1 = (xscale M + mscale)in
RealD xscale = 2.0/(hi-lo);
RealD mscale = -(hi+lo)/(hi-lo);
hermop.HermOp(T0,y);
T1=y*xscale+noise*mscale;
for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
hermop.HermOp(*Tn,y);
autoView( y_v , y, AcceleratorWrite);
autoView( Tn_v , (*Tn), AcceleratorWrite);
autoView( Tnp_v , (*Tnp), AcceleratorWrite);
autoView( Tnm_v , (*Tnm), AcceleratorWrite);
const int Nsimd = CComplex::Nsimd();
accelerator_forNB(ss, FineGrid->oSites(), Nsimd, {
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
});
// Possible more fine grained control is needed than a linear sweep,
// but huge productivity gain if this is simple algorithm and not a tunable
int m =1;
if ( n>=ordermin ) m=n-ordermin;
if ( (m%orderstep)==0 ) {
Mn=*Tnp;
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
b++;
}
// Cycle pointers to avoid copies
FineField *swizzle = Tnm;
Tnm =Tn;
Tn =Tnp;
Tnp =swizzle;
}
}
assert(b==nn);
}
};
// Fine Object == (per site) type of fine field
// nbasis == number of deflation vectors
template<class Fobj,class CComplex,int nbasis>
class CoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
public:
typedef iVector<CComplex,nbasis > siteVector;
typedef Lattice<CComplex > CoarseComplexField;
typedef Lattice<siteVector> CoarseVector;
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
typedef iMatrix<CComplex,nbasis > Cobj;
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj > FineField;
////////////////////
// Data members
////////////////////
Geometry geom;
GridBase * _grid;
int hermitian;
CartesianStencil<siteVector,siteVector,int> Stencil;
std::vector<CoarseMatrix> A;
///////////////////////
// Interface
///////////////////////
GridBase * Grid(void) { return _grid; }; // this is all the linalg routines need to know
void M (const CoarseVector &in, CoarseVector &out)
{
conformable(_grid,in.Grid());
conformable(in.Grid(),out.Grid());
SimpleCompressor<siteVector> compressor;
Stencil.HaloExchange(in,compressor);
autoView( in_v , in, AcceleratorRead);
autoView( out_v , out, AcceleratorWrite);
typedef LatticeView<Cobj> Aview;
Vector<Aview> AcceleratorViewContainer;
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
Aview *Aview_p = & AcceleratorViewContainer[0];
const int Nsimd = CComplex::Nsimd();
typedef decltype(coalescedRead(in_v[0])) calcVector;
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
int osites=Grid()->oSites();
accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, {
int ss = sss/nbasis;
int b = sss%nbasis;
calcComplex res = Zero();
calcVector nbr;
int ptype;
StencilEntry *SE;
for(int point=0;point<geom.npoint;point++){
SE=Stencil.GetEntry(ptype,point,ss);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else {
nbr = coalescedRead(Stencil.CommBuf()[SE->_offset]);
}
acceleratorSynchronise();
for(int bb=0;bb<nbasis;bb++) {
res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
}
}
coalescedWrite(out_v[ss](b),res);
});
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
};
void Mdag (const CoarseVector &in, CoarseVector &out)
{
if(hermitian) {
// corresponds to Petrov-Galerkin coarsening
return M(in,out);
} else {
// corresponds to Galerkin coarsening
CoarseVector tmp(Grid());
G5C(tmp, in);
M(tmp, out);
G5C(out, out);
}
};
void MdirComms(const CoarseVector &in)
{
SimpleCompressor<siteVector> compressor;
Stencil.HaloExchange(in,compressor);
}
void MdirCalc(const CoarseVector &in, CoarseVector &out, int point)
{
conformable(_grid,in.Grid());
conformable(_grid,out.Grid());
typedef LatticeView<Cobj> Aview;
Vector<Aview> AcceleratorViewContainer;
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
Aview *Aview_p = & AcceleratorViewContainer[0];
autoView( out_v , out, AcceleratorWrite);
autoView( in_v , in, AcceleratorRead);
const int Nsimd = CComplex::Nsimd();
typedef decltype(coalescedRead(in_v[0])) calcVector;
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, {
int ss = sss/nbasis;
int b = sss%nbasis;
calcComplex res = Zero();
calcVector nbr;
int ptype;
StencilEntry *SE;
SE=Stencil.GetEntry(ptype,point,ss);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else {
nbr = coalescedRead(Stencil.CommBuf()[SE->_offset]);
}
acceleratorSynchronise();
for(int bb=0;bb<nbasis;bb++) {
res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
}
coalescedWrite(out_v[ss](b),res);
});
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
}
void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out)
{
this->MdirComms(in);
int ndir=geom.npoint-1;
if ((out.size()!=ndir)&&(out.size()!=ndir+1)) {
std::cout <<"MdirAll out size "<< out.size()<<std::endl;
std::cout <<"MdirAll ndir "<< ndir<<std::endl;
assert(0);
}
for(int p=0;p<ndir;p++){
MdirCalc(in,out[p],p);
}
};
void Mdir(const CoarseVector &in, CoarseVector &out, int dir, int disp){
this->MdirComms(in);
int ndim = in.Grid()->Nd();
//////////////
// 4D action like wilson
// 0+ => 0
// 0- => 1
// 1+ => 2
// 1- => 3
// etc..
//////////////
// 5D action like DWF
// 1+ => 0
// 1- => 1
// 2+ => 2
// 2- => 3
// etc..
auto point = [dir, disp, ndim](){
if(dir == 0 and disp == 0)
return 8;
else if ( ndim==4 ) {
return (4 * dir + 1 - disp) / 2;
} else {
return (4 * (dir-1) + 1 - disp) / 2;
}
}();
MdirCalc(in,out,point);
};
void Mdiag(const CoarseVector &in, CoarseVector &out)
{
int point=geom.npoint-1;
MdirCalc(in, out, point); // No comms
};
CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) :
_grid(&CoarseGrid),
geom(CoarseGrid._ndimension),
hermitian(hermitian_),
Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements,0),
A(geom.npoint,&CoarseGrid)
{
};
void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop,
Aggregation<Fobj,CComplex,nbasis> & Subspace)
{
typedef Lattice<typename Fobj::tensor_reduced> FineComplexField;
typedef typename Fobj::scalar_type scalar_type;
FineComplexField one(FineGrid); one=scalar_type(1.0,0.0);
FineComplexField zero(FineGrid); zero=scalar_type(0.0,0.0);
std::vector<FineComplexField> masks(geom.npoint,FineGrid);
FineComplexField imask(FineGrid); // contributions from within this block
FineComplexField omask(FineGrid); // contributions from outwith this block
FineComplexField evenmask(FineGrid);
FineComplexField oddmask(FineGrid);
FineField phi(FineGrid);
FineField tmp(FineGrid);
FineField zz(FineGrid); zz=Zero();
FineField Mphi(FineGrid);
FineField Mphie(FineGrid);
FineField Mphio(FineGrid);
std::vector<FineField> Mphi_p(geom.npoint,FineGrid);
Lattice<iScalar<vInteger> > coor (FineGrid);
Lattice<iScalar<vInteger> > bcoor(FineGrid);
Lattice<iScalar<vInteger> > bcb (FineGrid); bcb = Zero();
CoarseVector iProj(Grid());
CoarseVector oProj(Grid());
CoarseVector SelfProj(Grid());
CoarseComplexField iZProj(Grid());
CoarseComplexField oZProj(Grid());
CoarseScalar InnerProd(Grid());
// Orthogonalise the subblocks over the basis
blockOrthogonalise(InnerProd,Subspace.subspace);
// Compute the matrix elements of linop between this orthonormal
// set of vectors.
int self_stencil=-1;
for(int p=0;p<geom.npoint;p++)
{
int dir = geom.directions[p];
int disp = geom.displacements[p];
A[p]=Zero();
if( geom.displacements[p]==0){
self_stencil=p;
}
Integer block=(FineGrid->_rdimensions[dir])/(Grid()->_rdimensions[dir]);
LatticeCoordinate(coor,dir);
///////////////////////////////////////////////////////
// Work out even and odd block checkerboarding for fast diagonal term
///////////////////////////////////////////////////////
if ( disp==1 ) {
bcb = bcb + div(coor,block);
}
if ( disp==0 ) {
masks[p]= Zero();
} else if ( disp==1 ) {
masks[p] = where(mod(coor,block)==(block-1),one,zero);
} else if ( disp==-1 ) {
masks[p] = where(mod(coor,block)==(Integer)0,one,zero);
}
}
evenmask = where(mod(bcb,2)==(Integer)0,one,zero);
oddmask = one-evenmask;
assert(self_stencil!=-1);
for(int i=0;i<nbasis;i++){
phi=Subspace.subspace[i];
// std::cout << GridLogMessage<< "CoarsenMatrix vector "<<i << std::endl;
linop.OpDirAll(phi,Mphi_p);
linop.OpDiag (phi,Mphi_p[geom.npoint-1]);
for(int p=0;p<geom.npoint;p++){
Mphi = Mphi_p[p];
int dir = geom.directions[p];
int disp = geom.displacements[p];
if ( (disp==-1) || (!hermitian ) ) {
////////////////////////////////////////////////////////////////////////
// Pick out contributions coming from this cell and neighbour cell
////////////////////////////////////////////////////////////////////////
omask = masks[p];
imask = one-omask;
for(int j=0;j<nbasis;j++){
blockMaskedInnerProduct(oZProj,omask,Subspace.subspace[j],Mphi);
autoView( iZProj_v , iZProj, AcceleratorRead) ;
autoView( oZProj_v , oZProj, AcceleratorRead) ;
autoView( A_p , A[p], AcceleratorWrite);
autoView( A_self , A[self_stencil], AcceleratorWrite);
accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_p[ss](j,i),oZProj_v(ss)); });
}
}
}
///////////////////////////////////////////
// Faster alternate self coupling.. use hermiticity to save 2x
///////////////////////////////////////////
{
mult(tmp,phi,evenmask); linop.Op(tmp,Mphie);
mult(tmp,phi,oddmask ); linop.Op(tmp,Mphio);
{
autoView( tmp_ , tmp, AcceleratorWrite);
autoView( evenmask_ , evenmask, AcceleratorRead);
autoView( oddmask_ , oddmask, AcceleratorRead);
autoView( Mphie_ , Mphie, AcceleratorRead);
autoView( Mphio_ , Mphio, AcceleratorRead);
accelerator_for(ss, FineGrid->oSites(), Fobj::Nsimd(),{
coalescedWrite(tmp_[ss],evenmask_(ss)*Mphie_(ss) + oddmask_(ss)*Mphio_(ss));
});
}
blockProject(SelfProj,tmp,Subspace.subspace);
autoView( SelfProj_ , SelfProj, AcceleratorRead);
autoView( A_self , A[self_stencil], AcceleratorWrite);
accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{
for(int j=0;j<nbasis;j++){
coalescedWrite(A_self[ss](j,i), SelfProj_(ss)(j));
}
});
}
}
if(hermitian) {
std::cout << GridLogMessage << " ForceHermitian, new code "<<std::endl;
ForceHermitian();
}
}
void ForceHermitian(void) {
CoarseMatrix Diff (Grid());
for(int p=0;p<geom.npoint;p++){
int dir = geom.directions[p];
int disp = geom.displacements[p];
if(disp==-1) {
// Find the opposite link
for(int pp=0;pp<geom.npoint;pp++){
int dirp = geom.directions[pp];
int dispp = geom.displacements[pp];
if ( (dirp==dir) && (dispp==1) ){
// Diff = adj(Cshift(A[p],dir,1)) - A[pp];
// std::cout << GridLogMessage<<" Replacing stencil leg "<<pp<<" with leg "<<p<< " diff "<<norm2(Diff) <<std::endl;
A[pp] = adj(Cshift(A[p],dir,1));
}
}
}
}
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,296 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/Cshift.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef _GRID_FFT_H_
#define _GRID_FFT_H_
#ifdef HAVE_FFTW
#ifdef USE_MKL
#include <fftw/fftw3.h>
#else
#include <fftw3.h>
#endif
#endif
NAMESPACE_BEGIN(Grid);
template<class scalar> struct FFTW { };
#ifdef HAVE_FFTW
template<> struct FFTW<ComplexD> {
public:
typedef fftw_complex FFTW_scalar;
typedef fftw_plan FFTW_plan;
static FFTW_plan fftw_plan_many_dft(int rank, const int *n,int howmany,
FFTW_scalar *in, const int *inembed,
int istride, int idist,
FFTW_scalar *out, const int *onembed,
int ostride, int odist,
int sign, unsigned flags) {
return ::fftw_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags);
}
static void fftw_flops(const FFTW_plan p,double *add, double *mul, double *fmas){
::fftw_flops(p,add,mul,fmas);
}
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out) {
::fftw_execute_dft(p,in,out);
}
inline static void fftw_destroy_plan(const FFTW_plan p) {
::fftw_destroy_plan(p);
}
};
template<> struct FFTW<ComplexF> {
public:
typedef fftwf_complex FFTW_scalar;
typedef fftwf_plan FFTW_plan;
static FFTW_plan fftw_plan_many_dft(int rank, const int *n,int howmany,
FFTW_scalar *in, const int *inembed,
int istride, int idist,
FFTW_scalar *out, const int *onembed,
int ostride, int odist,
int sign, unsigned flags) {
return ::fftwf_plan_many_dft(rank,n,howmany,in,inembed,istride,idist,out,onembed,ostride,odist,sign,flags);
}
static void fftw_flops(const FFTW_plan p,double *add, double *mul, double *fmas){
::fftwf_flops(p,add,mul,fmas);
}
inline static void fftw_execute_dft(const FFTW_plan p,FFTW_scalar *in,FFTW_scalar *out) {
::fftwf_execute_dft(p,in,out);
}
inline static void fftw_destroy_plan(const FFTW_plan p) {
::fftwf_destroy_plan(p);
}
};
#endif
#ifndef FFTW_FORWARD
#define FFTW_FORWARD (-1)
#define FFTW_BACKWARD (+1)
#endif
class FFT {
private:
GridCartesian *vgrid;
GridCartesian *sgrid;
int Nd;
double flops;
double flops_call;
uint64_t usec;
Coordinate dimensions;
Coordinate processors;
Coordinate processor_coor;
public:
static const int forward=FFTW_FORWARD;
static const int backward=FFTW_BACKWARD;
double Flops(void) {return flops;}
double MFlops(void) {return flops/usec;}
double USec(void) {return (double)usec;}
FFT ( GridCartesian * grid ) :
vgrid(grid),
Nd(grid->_ndimension),
dimensions(grid->_fdimensions),
processors(grid->_processors),
processor_coor(grid->_processor_coor)
{
flops=0;
usec =0;
Coordinate layout(Nd,1);
sgrid = new GridCartesian(dimensions,layout,processors);
};
~FFT ( void) {
delete sgrid;
}
template<class vobj>
void FFT_dim_mask(Lattice<vobj> &result,const Lattice<vobj> &source,Coordinate mask,int sign){
conformable(result.Grid(),vgrid);
conformable(source.Grid(),vgrid);
Lattice<vobj> tmp(vgrid);
tmp = source;
for(int d=0;d<Nd;d++){
if( mask[d] ) {
FFT_dim(result,tmp,d,sign);
tmp=result;
}
}
}
template<class vobj>
void FFT_all_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int sign){
Coordinate mask(Nd,1);
FFT_dim_mask(result,source,mask,sign);
}
template<class vobj>
void FFT_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int dim, int sign){
#ifndef HAVE_FFTW
assert(0);
#else
conformable(result.Grid(),vgrid);
conformable(source.Grid(),vgrid);
int L = vgrid->_ldimensions[dim];
int G = vgrid->_fdimensions[dim];
Coordinate layout(Nd,1);
Coordinate pencil_gd(vgrid->_fdimensions);
pencil_gd[dim] = G*processors[dim];
// Pencil global vol LxLxGxLxL per node
GridCartesian pencil_g(pencil_gd,layout,processors);
// Construct pencils
typedef typename vobj::scalar_object sobj;
typedef typename sobj::scalar_type scalar;
Lattice<sobj> pgbuf(&pencil_g);
autoView(pgbuf_v , pgbuf, CpuWrite);
typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
typedef typename FFTW<scalar>::FFTW_plan FFTW_plan;
int Ncomp = sizeof(sobj)/sizeof(scalar);
int Nlow = 1;
for(int d=0;d<dim;d++){
Nlow*=vgrid->_ldimensions[d];
}
int rank = 1; /* 1d transforms */
int n[] = {G}; /* 1d transforms of length G */
int howmany = Ncomp;
int odist,idist,istride,ostride;
idist = odist = 1; /* Distance between consecutive FT's */
istride = ostride = Ncomp*Nlow; /* distance between two elements in the same FT */
int *inembed = n, *onembed = n;
scalar div;
if ( sign == backward ) div = 1.0/G;
else if ( sign == forward ) div = 1.0;
else assert(0);
FFTW_plan p;
{
FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0];
FFTW_scalar *out= (FFTW_scalar *)&pgbuf_v[0];
p = FFTW<scalar>::fftw_plan_many_dft(rank,n,howmany,
in,inembed,
istride,idist,
out,onembed,
ostride, odist,
sign,FFTW_ESTIMATE);
}
// Barrel shift and collect global pencil
Coordinate lcoor(Nd), gcoor(Nd);
result = source;
int pc = processor_coor[dim];
for(int p=0;p<processors[dim];p++) {
{
autoView(r_v,result,CpuRead);
autoView(p_v,pgbuf,CpuWrite);
thread_for(idx, sgrid->lSites(),{
Coordinate cbuf(Nd);
sobj s;
sgrid->LocalIndexToLocalCoor(idx,cbuf);
peekLocalSite(s,r_v,cbuf);
cbuf[dim]+=((pc+p) % processors[dim])*L;
pokeLocalSite(s,p_v,cbuf);
});
}
if (p != processors[dim] - 1) {
result = Cshift(result,dim,L);
}
}
// Loop over orthog coords
int NN=pencil_g.lSites();
GridStopWatch timer;
timer.Start();
thread_for( idx,NN,{
Coordinate cbuf(Nd);
pencil_g.LocalIndexToLocalCoor(idx, cbuf);
if ( cbuf[dim] == 0 ) { // restricts loop to plane at lcoor[dim]==0
FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[idx];
FFTW_scalar *out= (FFTW_scalar *)&pgbuf_v[idx];
FFTW<scalar>::fftw_execute_dft(p,in,out);
}
});
timer.Stop();
// performance counting
double add,mul,fma;
FFTW<scalar>::fftw_flops(p,&add,&mul,&fma);
flops_call = add+mul+2.0*fma;
usec += timer.useconds();
flops+= flops_call*NN;
// writing out result
{
autoView(pgbuf_v,pgbuf,CpuRead);
autoView(result_v,result,CpuWrite);
thread_for(idx,sgrid->lSites(),{
Coordinate clbuf(Nd), cgbuf(Nd);
sobj s;
sgrid->LocalIndexToLocalCoor(idx,clbuf);
cgbuf = clbuf;
cgbuf[dim] = clbuf[dim]+L*pc;
peekLocalSite(s,pgbuf_v,cgbuf);
pokeLocalSite(s,result_v,clbuf);
});
}
result = result*div;
// destroying plan
FFTW<scalar>::fftw_destroy_plan(p);
#endif
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,626 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/LinearOperator.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////////////////////////////////
// LinearOperators Take a something and return a something.
/////////////////////////////////////////////////////////////////////////////////////////////
//
// Hopefully linearity is satisfied and the AdjOp is indeed the Hermitian Conjugateugate (transpose if real):
//SBase
// i) F(a x + b y) = aF(x) + b F(y).
// ii) <x|Op|y> = <y|AdjOp|x>^\ast
//
// Would be fun to have a test linearity & Herm Conj function!
/////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class LinearOperatorBase {
public:
// Support for coarsening to a multigrid
virtual void OpDiag (const Field &in, Field &out) = 0; // Abstract base
virtual void OpDir (const Field &in, Field &out,int dir,int disp) = 0; // Abstract base
virtual void OpDirAll (const Field &in, std::vector<Field> &out) = 0; // Abstract base
virtual void Op (const Field &in, Field &out) = 0; // Abstract base
virtual void AdjOp (const Field &in, Field &out) = 0; // Abstract base
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2)=0;
virtual void HermOp(const Field &in, Field &out)=0;
};
/////////////////////////////////////////////////////////////////////////////////////////////
// By sharing the class for Sparse Matrix across multiple operator wrappers, we can share code
// between RB and non-RB variants. Sparse matrix is like the fermion action def, and then
// the wrappers implement the specialisation of "Op" and "AdjOp" to the cases minimising
// replication of code.
//
// I'm not entirely happy with implementation; to share the Schur code between herm and non-herm
// while still having a "OpAndNorm" in the abstract base I had to implement it in both cases
// with an assert trap in the non-herm. This isn't right; there must be a better C++ way to
// do it, but I fear it required multiple inheritance and mixed in abstract base classes
/////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////
// Construct herm op from non-herm matrix
////////////////////////////////////////////////////////////////////
template<class Matrix,class Field>
class MdagMLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
public:
MdagMLinearOperator(Matrix &Mat): _Mat(Mat){};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
_Mat.Mdiag(in,out);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
_Mat.Mdir(in,out,dir,disp);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
_Mat.MdirAll(in,out);
};
void Op (const Field &in, Field &out){
_Mat.M(in,out);
}
void AdjOp (const Field &in, Field &out){
_Mat.Mdag(in,out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
_Mat.MdagM(in,out);
ComplexD dot = innerProduct(in,out);
n1=real(dot);
n2=norm2(out);
}
void HermOp(const Field &in, Field &out){
_Mat.MdagM(in,out);
}
};
////////////////////////////////////////////////////////////////////
// Construct herm op and shift it for mgrid smoother
////////////////////////////////////////////////////////////////////
template<class Matrix,class Field>
class ShiftedMdagMLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
RealD _shift;
public:
ShiftedMdagMLinearOperator(Matrix &Mat,RealD shift): _Mat(Mat), _shift(shift){};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
_Mat.Mdiag(in,out);
assert(0);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
_Mat.Mdir(in,out,dir,disp);
assert(0);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
assert(0);
};
void Op (const Field &in, Field &out){
_Mat.M(in,out);
assert(0);
}
void AdjOp (const Field &in, Field &out){
_Mat.Mdag(in,out);
assert(0);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
HermOp(in,out);
ComplexD dot = innerProduct(in,out);
n1=real(dot);
n2=norm2(out);
}
void HermOp(const Field &in, Field &out){
_Mat.MdagM(in,out);
out = out + _shift*in;
}
};
////////////////////////////////////////////////////////////////////
// Wrap an already herm matrix
////////////////////////////////////////////////////////////////////
template<class Matrix,class Field>
class HermitianLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
public:
HermitianLinearOperator(Matrix &Mat): _Mat(Mat){};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
_Mat.Mdiag(in,out);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
_Mat.Mdir(in,out,dir,disp);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
_Mat.MdirAll(in,out);
};
void Op (const Field &in, Field &out){
_Mat.M(in,out);
}
void AdjOp (const Field &in, Field &out){
_Mat.M(in,out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
HermOp(in,out);
ComplexD dot= innerProduct(in,out); n1=real(dot);
n2=norm2(out);
}
void HermOp(const Field &in, Field &out){
_Mat.M(in,out);
}
};
template<class Matrix,class Field>
class NonHermitianLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
public:
NonHermitianLinearOperator(Matrix &Mat): _Mat(Mat){};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
_Mat.Mdiag(in,out);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
_Mat.Mdir(in,out,dir,disp);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
_Mat.MdirAll(in,out);
};
void Op (const Field &in, Field &out){
_Mat.M(in,out);
}
void AdjOp (const Field &in, Field &out){
_Mat.Mdag(in,out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
assert(0);
}
void HermOp(const Field &in, Field &out){
assert(0);
}
};
//////////////////////////////////////////////////////////
// Even Odd Schur decomp operators; there are several
// ways to introduce the even odd checkerboarding
//////////////////////////////////////////////////////////
template<class Field>
class SchurOperatorBase : public LinearOperatorBase<Field> {
public:
virtual void Mpc (const Field &in, Field &out) =0;
virtual void MpcDag (const Field &in, Field &out) =0;
virtual void MpcDagMpc(const Field &in, Field &out) {
Field tmp(in.Grid());
tmp.Checkerboard() = in.Checkerboard();
Mpc(in,tmp);
MpcDag(tmp,out);
}
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
out.Checkerboard() = in.Checkerboard();
MpcDagMpc(in,out);
ComplexD dot= innerProduct(in,out);
n1=real(dot);
n2=norm2(out);
}
virtual void HermOp(const Field &in, Field &out){
out.Checkerboard() = in.Checkerboard();
MpcDagMpc(in,out);
}
void Op (const Field &in, Field &out){
Mpc(in,out);
}
void AdjOp (const Field &in, Field &out){
MpcDag(in,out);
}
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
assert(0); // must coarsen the unpreconditioned system
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
assert(0);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
assert(0);
};
};
template<class Matrix,class Field>
class SchurDiagMooeeOperator : public SchurOperatorBase<Field> {
public:
Matrix &_Mat;
SchurDiagMooeeOperator (Matrix &Mat): _Mat(Mat){};
virtual void Mpc (const Field &in, Field &out) {
Field tmp(in.Grid());
tmp.Checkerboard() = !in.Checkerboard();
_Mat.Meooe(in,tmp);
_Mat.MooeeInv(tmp,out);
_Mat.Meooe(out,tmp);
_Mat.Mooee(in,out);
axpy(out,-1.0,tmp,out);
}
virtual void MpcDag (const Field &in, Field &out){
Field tmp(in.Grid());
_Mat.MeooeDag(in,tmp);
_Mat.MooeeInvDag(tmp,out);
_Mat.MeooeDag(out,tmp);
_Mat.MooeeDag(in,out);
axpy(out,-1.0,tmp,out);
}
};
template<class Matrix,class Field>
class SchurDiagOneOperator : public SchurOperatorBase<Field> {
protected:
Matrix &_Mat;
public:
SchurDiagOneOperator (Matrix &Mat): _Mat(Mat){};
virtual void Mpc (const Field &in, Field &out) {
Field tmp(in.Grid());
_Mat.Meooe(in,out);
_Mat.MooeeInv(out,tmp);
_Mat.Meooe(tmp,out);
_Mat.MooeeInv(out,tmp);
axpy(out,-1.0,tmp,in);
}
virtual void MpcDag (const Field &in, Field &out){
Field tmp(in.Grid());
_Mat.MooeeInvDag(in,out);
_Mat.MeooeDag(out,tmp);
_Mat.MooeeInvDag(tmp,out);
_Mat.MeooeDag(out,tmp);
axpy(out,-1.0,tmp,in);
}
};
template<class Matrix,class Field>
class SchurDiagTwoOperator : public SchurOperatorBase<Field> {
protected:
Matrix &_Mat;
public:
SchurDiagTwoOperator (Matrix &Mat): _Mat(Mat){};
virtual void Mpc (const Field &in, Field &out) {
Field tmp(in.Grid());
_Mat.MooeeInv(in,out);
_Mat.Meooe(out,tmp);
_Mat.MooeeInv(tmp,out);
_Mat.Meooe(out,tmp);
axpy(out,-1.0,tmp,in);
}
virtual void MpcDag (const Field &in, Field &out){
Field tmp(in.Grid());
_Mat.MeooeDag(in,out);
_Mat.MooeeInvDag(out,tmp);
_Mat.MeooeDag(tmp,out);
_Mat.MooeeInvDag(out,tmp);
axpy(out,-1.0,tmp,in);
}
};
template<class Field>
class NonHermitianSchurOperatorBase : public LinearOperatorBase<Field>
{
public:
virtual void Mpc (const Field& in, Field& out) = 0;
virtual void MpcDag (const Field& in, Field& out) = 0;
virtual void MpcDagMpc(const Field& in, Field& out) {
Field tmp(in.Grid());
tmp.Checkerboard() = in.Checkerboard();
Mpc(in,tmp);
MpcDag(tmp,out);
}
virtual void HermOpAndNorm(const Field& in, Field& out, RealD& n1, RealD& n2) {
assert(0);
}
virtual void HermOp(const Field& in, Field& out) {
assert(0);
}
void Op(const Field& in, Field& out) {
Mpc(in, out);
}
void AdjOp(const Field& in, Field& out) {
MpcDag(in, out);
}
// Support for coarsening to a multigrid
void OpDiag(const Field& in, Field& out) {
assert(0); // must coarsen the unpreconditioned system
}
void OpDir(const Field& in, Field& out, int dir, int disp) {
assert(0);
}
void OpDirAll(const Field& in, std::vector<Field>& out){
assert(0);
};
};
template<class Matrix, class Field>
class NonHermitianSchurDiagMooeeOperator : public NonHermitianSchurOperatorBase<Field>
{
public:
Matrix& _Mat;
NonHermitianSchurDiagMooeeOperator(Matrix& Mat): _Mat(Mat){};
virtual void Mpc(const Field& in, Field& out) {
Field tmp(in.Grid());
tmp.Checkerboard() = !in.Checkerboard();
_Mat.Meooe(in, tmp);
_Mat.MooeeInv(tmp, out);
_Mat.Meooe(out, tmp);
_Mat.Mooee(in, out);
axpy(out, -1.0, tmp, out);
}
virtual void MpcDag(const Field& in, Field& out) {
Field tmp(in.Grid());
_Mat.MeooeDag(in, tmp);
_Mat.MooeeInvDag(tmp, out);
_Mat.MeooeDag(out, tmp);
_Mat.MooeeDag(in, out);
axpy(out, -1.0, tmp, out);
}
};
template<class Matrix,class Field>
class NonHermitianSchurDiagOneOperator : public NonHermitianSchurOperatorBase<Field>
{
protected:
Matrix &_Mat;
public:
NonHermitianSchurDiagOneOperator (Matrix& Mat): _Mat(Mat){};
virtual void Mpc(const Field& in, Field& out) {
Field tmp(in.Grid());
_Mat.Meooe(in, out);
_Mat.MooeeInv(out, tmp);
_Mat.Meooe(tmp, out);
_Mat.MooeeInv(out, tmp);
axpy(out, -1.0, tmp, in);
}
virtual void MpcDag(const Field& in, Field& out) {
Field tmp(in.Grid());
_Mat.MooeeInvDag(in, out);
_Mat.MeooeDag(out, tmp);
_Mat.MooeeInvDag(tmp, out);
_Mat.MeooeDag(out, tmp);
axpy(out, -1.0, tmp, in);
}
};
template<class Matrix, class Field>
class NonHermitianSchurDiagTwoOperator : public NonHermitianSchurOperatorBase<Field>
{
protected:
Matrix& _Mat;
public:
NonHermitianSchurDiagTwoOperator(Matrix& Mat): _Mat(Mat){};
virtual void Mpc(const Field& in, Field& out) {
Field tmp(in.Grid());
_Mat.MooeeInv(in, out);
_Mat.Meooe(out, tmp);
_Mat.MooeeInv(tmp, out);
_Mat.Meooe(out, tmp);
axpy(out, -1.0, tmp, in);
}
virtual void MpcDag(const Field& in, Field& out) {
Field tmp(in.Grid());
_Mat.MeooeDag(in, out);
_Mat.MooeeInvDag(out, tmp);
_Mat.MeooeDag(tmp, out);
_Mat.MooeeInvDag(out, tmp);
axpy(out, -1.0, tmp, in);
}
};
///////////////////////////////////////////////////////////////////////////////////////////////////
// Left handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) psi = eta --> ( 1 - Moo^-1 Moe Mee^-1 Meo ) psi = Moo^-1 eta
// Right handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) Moo^-1 Moo psi = eta --> ( 1 - Moe Mee^-1 Meo Moo^-1) phi=eta ; psi = Moo^-1 phi
///////////////////////////////////////////////////////////////////////////////////////////////////
template<class Matrix,class Field> using SchurDiagOneRH = SchurDiagTwoOperator<Matrix,Field> ;
template<class Matrix,class Field> using SchurDiagOneLH = SchurDiagOneOperator<Matrix,Field> ;
///////////////////////////////////////////////////////////////////////////////////////////////////
// Staggered use
///////////////////////////////////////////////////////////////////////////////////////////////////
template<class Matrix,class Field>
class SchurStaggeredOperator : public SchurOperatorBase<Field> {
protected:
Matrix &_Mat;
Field tmp;
RealD mass;
public:
SchurStaggeredOperator (Matrix &Mat): _Mat(Mat), tmp(_Mat.RedBlackGrid())
{
assert( _Mat.isTrivialEE() );
mass = _Mat.Mass();
}
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
Mpc(in,out);
ComplexD dot= innerProduct(in,out);
n1 = real(dot);
n2 =0.0;
}
virtual void HermOp(const Field &in, Field &out){
Mpc(in,out);
// _Mat.Meooe(in,out);
// _Mat.Meooe(out,tmp);
// axpby(out,-1.0,mass*mass,tmp,in);
}
virtual void Mpc (const Field &in, Field &out)
{
Field tmp(in.Grid());
Field tmp2(in.Grid());
// _Mat.Mooee(in,out);
// _Mat.Mooee(out,tmp);
_Mat.Meooe(in,out);
_Mat.Meooe(out,tmp);
axpby(out,-1.0,mass*mass,tmp,in);
}
virtual void MpcDag (const Field &in, Field &out){
Mpc(in,out);
}
virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
assert(0);// Never need with staggered
}
};
template<class Matrix,class Field> using SchurStagOperator = SchurStaggeredOperator<Matrix,Field>;
/////////////////////////////////////////////////////////////
// Base classes for functions of operators
/////////////////////////////////////////////////////////////
template<class Field> class OperatorFunction {
public:
virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) = 0;
virtual void operator() (LinearOperatorBase<Field> &Linop, const std::vector<Field> &in,std::vector<Field> &out) {
assert(in.size()==out.size());
for(int k=0;k<in.size();k++){
(*this)(Linop,in[k],out[k]);
}
};
};
template<class Field> class LinearFunction {
public:
virtual void operator() (const Field &in, Field &out) = 0;
};
template<class Field> class IdentityLinearFunction : public LinearFunction<Field> {
public:
void operator() (const Field &in, Field &out){
out = in;
};
};
/////////////////////////////////////////////////////////////
// Base classes for Multishift solvers for operators
/////////////////////////////////////////////////////////////
template<class Field> class OperatorMultiFunction {
public:
virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, std::vector<Field> &out) = 0;
};
// FIXME : To think about
// Chroma functionality list defining LinearOperator
/*
virtual void operator() (T& chi, const T& psi, enum PlusMinus isign) const = 0;
virtual void operator() (T& chi, const T& psi, enum PlusMinus isign, Real epsilon) const
virtual const Subset& subset() const = 0;
virtual unsigned long nFlops() const { return 0; }
virtual void deriv(P& ds_u, const T& chi, const T& psi, enum PlusMinus isign) const
class UnprecLinearOperator : public DiffLinearOperator<T,P,Q>
const Subset& subset() const {return all;}
};
*/
////////////////////////////////////////////////////////////////////////////////////////////
// Hermitian operator Linear function and operator function
////////////////////////////////////////////////////////////////////////////////////////////
template<class Field>
class HermOpOperatorFunction : public OperatorFunction<Field> {
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
Linop.HermOp(in,out);
};
};
template<typename Field>
class PlainHermOp : public LinearFunction<Field> {
public:
LinearOperatorBase<Field> &_Linop;
PlainHermOp(LinearOperatorBase<Field>& linop) : _Linop(linop)
{}
void operator()(const Field& in, Field& out) {
_Linop.HermOp(in,out);
}
};
template<typename Field>
class FunctionHermOp : public LinearFunction<Field> {
public:
OperatorFunction<Field> & _poly;
LinearOperatorBase<Field> &_Linop;
FunctionHermOp(OperatorFunction<Field> & poly,LinearOperatorBase<Field>& linop)
: _poly(poly), _Linop(linop) {};
void operator()(const Field& in, Field& out) {
_poly(_Linop,in,out);
}
};
template<class Field>
class Polynomial : public OperatorFunction<Field> {
private:
std::vector<RealD> Coeffs;
public:
using OperatorFunction<Field>::operator();
Polynomial(std::vector<RealD> &_Coeffs) : Coeffs(_Coeffs) { };
// Implement the required interface
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
Field AtoN(in.Grid());
Field Mtmp(in.Grid());
AtoN = in;
out = AtoN*Coeffs[0];
for(int n=1;n<Coeffs.size();n++){
Mtmp = AtoN;
Linop.HermOp(Mtmp,AtoN);
out=out+AtoN*Coeffs[n];
}
};
};
NAMESPACE_END(Grid);

View File

@ -1,80 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/SparseMatrix.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_ALGORITHM_SPARSE_MATRIX_H
#define GRID_ALGORITHM_SPARSE_MATRIX_H
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////////////////////////////////
// Interface defining what I expect of a general sparse matrix, such as a Fermion action
/////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SparseMatrixBase {
public:
virtual GridBase *Grid(void) =0;
// Full checkerboar operations
virtual void M (const Field &in, Field &out)=0;
virtual void Mdag (const Field &in, Field &out)=0;
virtual void MdagM(const Field &in, Field &out) {
Field tmp (in.Grid());
M(in,tmp);
Mdag(tmp,out);
}
virtual void Mdiag (const Field &in, Field &out)=0;
virtual void Mdir (const Field &in, Field &out,int dir, int disp)=0;
virtual void MdirAll (const Field &in, std::vector<Field> &out)=0;
};
/////////////////////////////////////////////////////////////////////////////////////////////
// Interface augmented by a red black sparse matrix, such as a Fermion action
/////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class CheckerBoardedSparseMatrixBase : public SparseMatrixBase<Field> {
public:
virtual GridBase *RedBlackGrid(void)=0;
//////////////////////////////////////////////////////////////////////
// Query the even even properties to make algorithmic decisions
//////////////////////////////////////////////////////////////////////
virtual RealD Mass(void) { return 0.0; };
virtual int ConstEE(void) { return 1; }; // Disable assumptions unless overridden
virtual int isTrivialEE(void) { return 0; }; // by a derived class that knows better
// half checkerboard operaions
virtual void Meooe (const Field &in, Field &out)=0;
virtual void Mooee (const Field &in, Field &out)=0;
virtual void MooeeInv (const Field &in, Field &out)=0;
virtual void MeooeDag (const Field &in, Field &out)=0;
virtual void MooeeDag (const Field &in, Field &out)=0;
virtual void MooeeInvDag (const Field &in, Field &out)=0;
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,409 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/approx/Chebyshev.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Christoph Lehner <clehner@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CHEBYSHEV_H
#define GRID_CHEBYSHEV_H
#include <Grid/algorithms/LinearOperator.h>
NAMESPACE_BEGIN(Grid);
struct ChebyParams : Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(ChebyParams,
RealD, alpha,
RealD, beta,
int, Npoly);
};
////////////////////////////////////////////////////////////////////////////////////////////
// Generic Chebyshev approximations
////////////////////////////////////////////////////////////////////////////////////////////
template<class Field>
class Chebyshev : public OperatorFunction<Field> {
private:
using OperatorFunction<Field>::operator();
std::vector<RealD> Coeffs;
int order;
RealD hi;
RealD lo;
public:
void csv(std::ostream &out){
RealD diff = hi-lo;
RealD delta = diff*1.0e-9;
for (RealD x=lo; x<hi; x+=delta) {
delta*=1.1;
RealD f = approx(x);
out<< x<<" "<<f<<std::endl;
}
return;
}
// Convenience for plotting the approximation
void PlotApprox(std::ostream &out) {
out<<"Polynomial approx ["<<lo<<","<<hi<<"]"<<std::endl;
for(RealD x=lo;x<hi;x+=(hi-lo)/50.0){
out <<x<<"\t"<<approx(x)<<std::endl;
}
};
Chebyshev(){};
Chebyshev(ChebyParams p){ Init(p.alpha,p.beta,p.Npoly);};
Chebyshev(RealD _lo,RealD _hi,int _order, RealD (* func)(RealD) ) {Init(_lo,_hi,_order,func);};
Chebyshev(RealD _lo,RealD _hi,int _order) {Init(_lo,_hi,_order);};
////////////////////////////////////////////////////////////////////////////////////////////////////
// c.f. numerical recipes "chebft"/"chebev". This is sec 5.8 "Chebyshev approximation".
////////////////////////////////////////////////////////////////////////////////////////////////////
// CJ: the one we need for Lanczos
void Init(RealD _lo,RealD _hi,int _order)
{
lo=_lo;
hi=_hi;
order=_order;
if(order < 2) exit(-1);
Coeffs.resize(order);
Coeffs.assign(0.,order);
Coeffs[order-1] = 1.;
};
// PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's.
// Similar kick effect below the threshold as Lanczos filter approach
void InitLowPass(RealD _lo,RealD _hi,int _order)
{
lo=_lo;
hi=_hi;
order=_order;
if(order < 2) exit(-1);
Coeffs.resize(order);
for(int j=0;j<order;j++){
RealD k=(order-1.0);
RealD s=std::cos( j*M_PI*(k+0.5)/order );
Coeffs[j] = s * 2.0/order;
}
};
void Init(RealD _lo,RealD _hi,int _order, RealD (* func)(RealD))
{
lo=_lo;
hi=_hi;
order=_order;
if(order < 2) exit(-1);
Coeffs.resize(order);
for(int j=0;j<order;j++){
RealD s=0;
for(int k=0;k<order;k++){
RealD y=std::cos(M_PI*(k+0.5)/order);
RealD x=0.5*(y*(hi-lo)+(hi+lo));
RealD f=func(x);
s=s+f*std::cos( j*M_PI*(k+0.5)/order );
}
Coeffs[j] = s * 2.0/order;
}
};
void JacksonSmooth(void){
RealD M=order;
RealD alpha = M_PI/(M+2);
RealD lmax = std::cos(alpha);
RealD sumUsq =0;
std::vector<RealD> U(M);
std::vector<RealD> a(M);
std::vector<RealD> g(M);
for(int n=0;n<=M;n++){
U[n] = std::sin((n+1)*std::acos(lmax))/std::sin(std::acos(lmax));
sumUsq += U[n]*U[n];
}
sumUsq = std::sqrt(sumUsq);
for(int i=1;i<=M;i++){
a[i] = U[i]/sumUsq;
}
g[0] = 1.0;
for(int m=1;m<=M;m++){
g[m] = 0;
for(int i=0;i<=M-m;i++){
g[m]+= a[i]*a[m+i];
}
}
for(int m=1;m<=M;m++){
Coeffs[m]*=g[m];
}
}
RealD approx(RealD x) // Convenience for plotting the approximation
{
RealD Tn;
RealD Tnm;
RealD Tnp;
RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
RealD T0=1;
RealD T1=y;
RealD sum;
sum = 0.5*Coeffs[0]*T0;
sum+= Coeffs[1]*T1;
Tn =T1;
Tnm=T0;
for(int i=2;i<order;i++){
Tnp=2*y*Tn-Tnm;
Tnm=Tn;
Tn =Tnp;
sum+= Tn*Coeffs[i];
}
return sum;
};
RealD approxD(RealD x)
{
RealD Un;
RealD Unm;
RealD Unp;
RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
RealD U0=1;
RealD U1=2*y;
RealD sum;
sum = Coeffs[1]*U0;
sum+= Coeffs[2]*U1*2.0;
Un =U1;
Unm=U0;
for(int i=2;i<order-1;i++){
Unp=2*y*Un-Unm;
Unm=Un;
Un =Unp;
sum+= Un*Coeffs[i+1]*(i+1.0);
}
return sum/(0.5*(hi-lo));
};
RealD approxInv(RealD z, RealD x0, int maxiter, RealD resid) {
RealD x = x0;
RealD eps;
int i;
for (i=0;i<maxiter;i++) {
eps = approx(x) - z;
if (fabs(eps / z) < resid)
return x;
x = x - eps / approxD(x);
}
return std::numeric_limits<double>::quiet_NaN();
}
// Implement the required interface
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
GridBase *grid=in.Grid();
int vol=grid->gSites();
typedef typename Field::vector_type vector_type;
Field T0(grid); T0 = in;
Field T1(grid);
Field T2(grid);
Field y(grid);
Field *Tnm = &T0;
Field *Tn = &T1;
Field *Tnp = &T2;
// Tn=T1 = (xscale M + mscale)in
RealD xscale = 2.0/(hi-lo);
RealD mscale = -(hi+lo)/(hi-lo);
Linop.HermOp(T0,y);
axpby(T1,xscale,mscale,y,in);
// sum = .5 c[0] T0 + c[1] T1
// out = ()*T0 + Coeffs[1]*T1;
axpby(out,0.5*Coeffs[0],Coeffs[1],T0,T1);
for(int n=2;n<order;n++){
Linop.HermOp(*Tn,y);
#if 0
auto y_v = y.View();
auto Tn_v = Tn->View();
auto Tnp_v = Tnp->View();
auto Tnm_v = Tnm->View();
constexpr int Nsimd = vector_type::Nsimd();
accelerator_forNB(ss, in.Grid()->oSites(), Nsimd, {
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
});
if ( Coeffs[n] != 0.0) {
axpy(out,Coeffs[n],*Tnp,out);
}
#else
axpby(y,xscale,mscale,y,(*Tn));
axpby(*Tnp,2.0,-1.0,y,(*Tnm));
if ( Coeffs[n] != 0.0) {
axpy(out,Coeffs[n],*Tnp,out);
}
#endif
// Cycle pointers to avoid copies
Field *swizzle = Tnm;
Tnm =Tn;
Tn =Tnp;
Tnp =swizzle;
}
}
};
template<class Field>
class ChebyshevLanczos : public Chebyshev<Field> {
private:
std::vector<RealD> Coeffs;
int order;
RealD alpha;
RealD beta;
RealD mu;
public:
ChebyshevLanczos(RealD _alpha,RealD _beta,RealD _mu,int _order) :
alpha(_alpha),
beta(_beta),
mu(_mu)
{
order=_order;
Coeffs.resize(order);
for(int i=0;i<_order;i++){
Coeffs[i] = 0.0;
}
Coeffs[order-1]=1.0;
};
void csv(std::ostream &out){
for (RealD x=-1.2*alpha; x<1.2*alpha; x+=(2.0*alpha)/10000) {
RealD f = approx(x);
out<< x<<" "<<f<<std::endl;
}
return;
}
RealD approx(RealD xx) // Convenience for plotting the approximation
{
RealD Tn;
RealD Tnm;
RealD Tnp;
Real aa = alpha * alpha;
Real bb = beta * beta;
RealD x = ( 2.0 * (xx-mu)*(xx-mu) - (aa+bb) ) / (aa-bb);
RealD y= x;
RealD T0=1;
RealD T1=y;
RealD sum;
sum = 0.5*Coeffs[0]*T0;
sum+= Coeffs[1]*T1;
Tn =T1;
Tnm=T0;
for(int i=2;i<order;i++){
Tnp=2*y*Tn-Tnm;
Tnm=Tn;
Tn =Tnp;
sum+= Tn*Coeffs[i];
}
return sum;
};
// shift_Multiply in Rudy's code
void AminusMuSq(LinearOperatorBase<Field> &Linop, const Field &in, Field &out)
{
GridBase *grid=in.Grid();
Field tmp(grid);
RealD aa= alpha*alpha;
RealD bb= beta * beta;
Linop.HermOp(in,out);
out = out - mu*in;
Linop.HermOp(out,tmp);
tmp = tmp - mu * out;
out = (2.0/ (aa-bb) ) * tmp - ((aa+bb)/(aa-bb))*in;
};
// Implement the required interface
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
GridBase *grid=in.Grid();
int vol=grid->gSites();
Field T0(grid); T0 = in;
Field T1(grid);
Field T2(grid);
Field y(grid);
Field *Tnm = &T0;
Field *Tn = &T1;
Field *Tnp = &T2;
// Tn=T1 = (xscale M )*in
AminusMuSq(Linop,T0,T1);
// sum = .5 c[0] T0 + c[1] T1
out = (0.5*Coeffs[0])*T0 + Coeffs[1]*T1;
for(int n=2;n<order;n++){
AminusMuSq(Linop,*Tn,y);
*Tnp=2.0*y-(*Tnm);
out=out+Coeffs[n]* (*Tnp);
// Cycle pointers to avoid copies
Field *swizzle = Tnm;
Tnm =Tn;
Tn =Tnp;
Tnp =swizzle;
}
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,152 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/approx/Forecast.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef INCLUDED_FORECAST_H
#define INCLUDED_FORECAST_H
NAMESPACE_BEGIN(Grid);
// Abstract base class.
// Takes a matrix (Mat), a source (phi), and a vector of Fields (chi)
// and returns a forecasted solution to the system D*psi = phi (psi).
template<class Matrix, class Field>
class Forecast
{
public:
virtual Field operator()(Matrix &Mat, const Field& phi, const std::vector<Field>& chi) = 0;
};
// Implementation of Brower et al.'s chronological inverter (arXiv:hep-lat/9509012),
// used to forecast solutions across poles of the EOFA heatbath.
//
// Modified from CPS (cps_pp/src/util/dirac_op/d_op_base/comsrc/minresext.C)
template<class Matrix, class Field>
class ChronoForecast : public Forecast<Matrix,Field>
{
public:
Field operator()(Matrix &Mat, const Field& phi, const std::vector<Field>& prev_solns)
{
int degree = prev_solns.size();
Field chi(phi); // forecasted solution
// Trivial cases
if(degree == 0){ chi = Zero(); return chi; }
else if(degree == 1){ return prev_solns[0]; }
// RealD dot;
ComplexD xp;
Field r(phi); // residual
Field Mv(phi);
std::vector<Field> v(prev_solns); // orthonormalized previous solutions
std::vector<Field> MdagMv(degree,phi);
// Array to hold the matrix elements
std::vector<std::vector<ComplexD>> G(degree, std::vector<ComplexD>(degree));
// Solution and source vectors
std::vector<ComplexD> a(degree);
std::vector<ComplexD> b(degree);
// Orthonormalize the vector basis
for(int i=0; i<degree; i++){
v[i] *= 1.0/std::sqrt(norm2(v[i]));
for(int j=i+1; j<degree; j++){ v[j] -= innerProduct(v[i],v[j]) * v[i]; }
}
// Perform sparse matrix multiplication and construct rhs
for(int i=0; i<degree; i++){
b[i] = innerProduct(v[i],phi);
Mat.M(v[i],Mv);
Mat.Mdag(Mv,MdagMv[i]);
G[i][i] = innerProduct(v[i],MdagMv[i]);
}
// Construct the matrix
for(int j=0; j<degree; j++){
for(int k=j+1; k<degree; k++){
G[j][k] = innerProduct(v[j],MdagMv[k]);
G[k][j] = conjugate(G[j][k]);
}}
// Gauss-Jordan elimination with partial pivoting
for(int i=0; i<degree; i++){
// Perform partial pivoting
int k = i;
for(int j=i+1; j<degree; j++){ if(abs(G[j][j]) > abs(G[k][k])){ k = j; } }
if(k != i){
xp = b[k];
b[k] = b[i];
b[i] = xp;
for(int j=0; j<degree; j++){
xp = G[k][j];
G[k][j] = G[i][j];
G[i][j] = xp;
}
}
// Convert matrix to upper triangular form
for(int j=i+1; j<degree; j++){
xp = G[j][i]/G[i][i];
b[j] -= xp * b[i];
for(int k=0; k<degree; k++){ G[j][k] -= xp*G[i][k]; }
}
}
// Use Gaussian elimination to solve equations and calculate initial guess
chi = Zero();
r = phi;
for(int i=degree-1; i>=0; i--){
a[i] = 0.0;
for(int j=i+1; j<degree; j++){ a[i] += G[i][j] * a[j]; }
a[i] = (b[i]-a[i])/G[i][i];
chi += a[i]*v[i];
r -= a[i]*MdagMv[i];
}
RealD true_r(0.0);
ComplexD tmp;
for(int i=0; i<degree; i++){
tmp = -b[i];
for(int j=0; j<degree; j++){ tmp += G[i][j]*a[j]; }
tmp = conjugate(tmp)*tmp;
true_r += std::sqrt(tmp.real());
}
RealD error = std::sqrt(norm2(r)/norm2(phi));
std::cout << GridLogMessage << "ChronoForecast: |res|/|src| = " << error << std::endl;
return chi;
};
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,129 +0,0 @@
#ifndef GRID_JACOBIPOLYNOMIAL_H
#define GRID_JACOBIPOLYNOMIAL_H
#include <Grid/algorithms/LinearOperator.h>
NAMESPACE_BEGIN(Grid);
template<class Field>
class JacobiPolynomial : public OperatorFunction<Field> {
private:
using OperatorFunction<Field>::operator();
int order;
RealD hi;
RealD lo;
RealD alpha;
RealD beta;
public:
void csv(std::ostream &out){
csv(out,lo,hi);
}
void csv(std::ostream &out,RealD llo,RealD hhi){
RealD diff = hhi-llo;
RealD delta = diff*1.0e-5;
for (RealD x=llo-delta; x<=hhi; x+=delta) {
RealD f = approx(x);
out<< x<<" "<<f <<std::endl;
}
return;
}
JacobiPolynomial(){};
JacobiPolynomial(RealD _lo,RealD _hi,int _order,RealD _alpha, RealD _beta)
{
lo=_lo;
hi=_hi;
alpha=_alpha;
beta=_beta;
order=_order;
};
RealD approx(RealD x) // Convenience for plotting the approximation
{
RealD Tn;
RealD Tnm;
RealD Tnp;
RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
RealD T0=1.0;
RealD T1=(alpha-beta)*0.5+(alpha+beta+2.0)*0.5*y;
Tn =T1;
Tnm=T0;
for(int n=2;n<=order;n++){
RealD cnp = 2.0*n*(n+alpha+beta)*(2.0*n-2.0+alpha+beta);
RealD cny = (2.0*n-2.0+alpha+beta)*(2.0*n-1.0+alpha+beta)*(2.0*n+alpha+beta);
RealD cn1 = (2.0*n+alpha+beta-1.0)*(alpha*alpha-beta*beta);
RealD cnm = - 2.0*(n+alpha-1.0)*(n+beta-1.0)*(2.0*n+alpha+beta);
Tnp= ( cny * y *Tn + cn1 * Tn + cnm * Tnm )/ cnp;
Tnm=Tn;
Tn =Tnp;
}
return Tnp;
};
// Implement the required interface
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
GridBase *grid=in.Grid();
int vol=grid->gSites();
Field T0(grid);
Field T1(grid);
Field T2(grid);
Field y(grid);
Field *Tnm = &T0;
Field *Tn = &T1;
Field *Tnp = &T2;
// RealD T0=1.0;
T0=in;
// RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
// = x * 2/(hi-lo) - (hi+lo)/(hi-lo)
Linop.HermOp(T0,y);
RealD xscale = 2.0/(hi-lo);
RealD mscale = -(hi+lo)/(hi-lo);
Linop.HermOp(T0,y);
y=y*xscale+in*mscale;
// RealD T1=(alpha-beta)*0.5+(alpha+beta+2.0)*0.5*y;
RealD halfAmB = (alpha-beta)*0.5;
RealD halfApBp2= (alpha+beta+2.0)*0.5;
T1 = halfAmB * in + halfApBp2*y;
for(int n=2;n<=order;n++){
Linop.HermOp(*Tn,y);
y=xscale*y+mscale*(*Tn);
RealD cnp = 2.0*n*(n+alpha+beta)*(2.0*n-2.0+alpha+beta);
RealD cny = (2.0*n-2.0+alpha+beta)*(2.0*n-1.0+alpha+beta)*(2.0*n+alpha+beta);
RealD cn1 = (2.0*n+alpha+beta-1.0)*(alpha*alpha-beta*beta);
RealD cnm = - 2.0*(n+alpha-1.0)*(n+beta-1.0)*(2.0*n+alpha+beta);
// Tnp= ( cny * y *Tn + cn1 * Tn + cnm * Tnm )/ cnp;
cny=cny/cnp;
cn1=cn1/cnp;
cn1=cn1/cnp;
cnm=cnm/cnp;
*Tnp=cny*y + cn1 *(*Tn) + cnm * (*Tnm);
// Cycle pointers to avoid copies
Field *swizzle = Tnm;
Tnm =Tn;
Tn =Tnp;
Tnp =swizzle;
}
out=*Tnp;
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,473 +0,0 @@
#include<math.h>
#include<stdio.h>
#include<stdlib.h>
#include<string>
#include<iostream>
#include<iomanip>
#include<cassert>
#include<Grid/algorithms/approx/RemezGeneral.h>
// Constructor
AlgRemezGeneral::AlgRemezGeneral(double lower, double upper, long precision,
bigfloat (*f)(bigfloat x, void *data), void *data): f(f),
data(data),
prec(precision),
apstrt(lower), apend(upper), apwidt(upper - lower),
n(0), d(0), pow_n(0), pow_d(0)
{
bigfloat::setDefaultPrecision(prec);
std::cout<<"Approximation bounds are ["<<apstrt<<","<<apend<<"]\n";
std::cout<<"Precision of arithmetic is "<<precision<<std::endl;
}
//Determine the properties of the numerator and denominator polynomials
void AlgRemezGeneral::setupPolyProperties(int num_degree, int den_degree, PolyType num_type_in, PolyType den_type_in){
pow_n = num_degree;
pow_d = den_degree;
if(pow_n % 2 == 0 && num_type_in == PolyType::Odd) assert(0);
if(pow_n % 2 == 1 && num_type_in == PolyType::Even) assert(0);
if(pow_d % 2 == 0 && den_type_in == PolyType::Odd) assert(0);
if(pow_d % 2 == 1 && den_type_in == PolyType::Even) assert(0);
num_type = num_type_in;
den_type = den_type_in;
num_pows.resize(pow_n+1);
den_pows.resize(pow_d+1);
int n_in = 0;
bool odd = num_type == PolyType::Full || num_type == PolyType::Odd;
bool even = num_type == PolyType::Full || num_type == PolyType::Even;
for(int i=0;i<=pow_n;i++){
num_pows[i] = -1;
if(i % 2 == 0 && even) num_pows[i] = n_in++;
if(i % 2 == 1 && odd) num_pows[i] = n_in++;
}
std::cout << n_in << " terms in numerator" << std::endl;
--n_in; //power is 1 less than the number of terms, eg pow=1 a x^1 + b x^0
int d_in = 0;
odd = den_type == PolyType::Full || den_type == PolyType::Odd;
even = den_type == PolyType::Full || den_type == PolyType::Even;
for(int i=0;i<=pow_d;i++){
den_pows[i] = -1;
if(i % 2 == 0 && even) den_pows[i] = d_in++;
if(i % 2 == 1 && odd) den_pows[i] = d_in++;
}
std::cout << d_in << " terms in denominator" << std::endl;
--d_in;
n = n_in;
d = d_in;
}
//Setup algorithm
void AlgRemezGeneral::reinitializeAlgorithm(){
spread = 1.0e37;
iter = 0;
neq = n + d + 1; //not +2 because highest-power term in denominator is fixed to 1
param.resize(neq);
yy.resize(neq+1);
//Initialize linear equation temporaries
A.resize(neq*neq);
B.resize(neq);
IPS.resize(neq);
//Initialize maximum and minimum errors
xx.resize(neq+2);
mm.resize(neq+1);
initialGuess();
//Initialize search steps
step.resize(neq+1);
stpini();
}
double AlgRemezGeneral::generateApprox(const int num_degree, const int den_degree,
const PolyType num_type_in, const PolyType den_type_in,
const double _tolerance, const int report_freq){
//Setup the properties of the polynomial
setupPolyProperties(num_degree, den_degree, num_type_in, den_type_in);
//Setup the algorithm
reinitializeAlgorithm();
bigfloat tolerance = _tolerance;
//Iterate until convergance
while (spread > tolerance) {
if (iter++ % report_freq==0)
std::cout<<"Iteration " <<iter-1<<" spread "<<(double)spread<<" delta "<<(double)delta << std::endl;
equations();
if (delta < tolerance) {
std::cout<<"Iteration " << iter-1 << " delta too small (" << delta << "<" << tolerance << "), try increasing precision\n";
assert(0);
};
assert( delta>= tolerance );
search();
}
int sign;
double error = (double)getErr(mm[0],&sign);
std::cout<<"Converged at "<<iter<<" iterations; error = "<<error<<std::endl;
// Return the maximum error in the approximation
return error;
}
// Initial values of maximal and minimal errors
void AlgRemezGeneral::initialGuess(){
// Supply initial guesses for solution points
long ncheb = neq; // Degree of Chebyshev error estimate
// Find ncheb+1 extrema of Chebyshev polynomial
bigfloat a = ncheb;
bigfloat r;
mm[0] = apstrt;
for (long i = 1; i < ncheb; i++) {
r = 0.5 * (1 - cos((M_PI * i)/(double) a));
//r *= sqrt_bf(r);
r = (exp((double)r)-1.0)/(exp(1.0)-1.0);
mm[i] = apstrt + r * apwidt;
}
mm[ncheb] = apend;
a = 2.0 * ncheb;
for (long i = 0; i <= ncheb; i++) {
r = 0.5 * (1 - cos(M_PI * (2*i+1)/(double) a));
//r *= sqrt_bf(r); // Squeeze to low end of interval
r = (exp((double)r)-1.0)/(exp(1.0)-1.0);
xx[i] = apstrt + r * apwidt;
}
}
// Initialise step sizes
void AlgRemezGeneral::stpini(){
xx[neq+1] = apend;
delta = 0.25;
step[0] = xx[0] - apstrt;
for (int i = 1; i < neq; i++) step[i] = xx[i] - xx[i-1];
step[neq] = step[neq-1];
}
// Search for error maxima and minima
void AlgRemezGeneral::search(){
bigfloat a, q, xm, ym, xn, yn, xx1;
int emsign, ensign, steps;
int meq = neq + 1;
bigfloat eclose = 1.0e30;
bigfloat farther = 0l;
bigfloat xx0 = apstrt;
for (int i = 0; i < meq; i++) {
steps = 0;
xx1 = xx[i]; // Next zero
if (i == meq-1) xx1 = apend;
xm = mm[i];
ym = getErr(xm,&emsign);
q = step[i];
xn = xm + q;
if (xn < xx0 || xn >= xx1) { // Cannot skip over adjacent boundaries
q = -q;
xn = xm;
yn = ym;
ensign = emsign;
} else {
yn = getErr(xn,&ensign);
if (yn < ym) {
q = -q;
xn = xm;
yn = ym;
ensign = emsign;
}
}
while(yn >= ym) { // March until error becomes smaller.
if (++steps > 10)
break;
ym = yn;
xm = xn;
emsign = ensign;
a = xm + q;
if (a == xm || a <= xx0 || a >= xx1)
break;// Must not skip over the zeros either side.
xn = a;
yn = getErr(xn,&ensign);
}
mm[i] = xm; // Position of maximum
yy[i] = ym; // Value of maximum
if (eclose > ym) eclose = ym;
if (farther < ym) farther = ym;
xx0 = xx1; // Walk to next zero.
} // end of search loop
q = (farther - eclose); // Decrease step size if error spread increased
if (eclose != 0.0) q /= eclose; // Relative error spread
if (q >= spread)
delta *= 0.5; // Spread is increasing; decrease step size
spread = q;
for (int i = 0; i < neq; i++) {
q = yy[i+1];
if (q != 0.0) q = yy[i] / q - (bigfloat)1l;
else q = 0.0625;
if (q > (bigfloat)0.25) q = 0.25;
q *= mm[i+1] - mm[i];
step[i] = q * delta;
}
step[neq] = step[neq-1];
for (int i = 0; i < neq; i++) { // Insert new locations for the zeros.
xm = xx[i] - step[i];
if (xm <= apstrt)
continue;
if (xm >= apend)
continue;
if (xm <= mm[i])
xm = (bigfloat)0.5 * (mm[i] + xx[i]);
if (xm >= mm[i+1])
xm = (bigfloat)0.5 * (mm[i+1] + xx[i]);
xx[i] = xm;
}
}
// Solve the equations
void AlgRemezGeneral::equations(){
bigfloat x, y, z;
bigfloat *aa;
for (int i = 0; i < neq; i++) { // set up the equations for solution by simq()
int ip = neq * i; // offset to 1st element of this row of matrix
x = xx[i]; // the guess for this row
y = func(x); // right-hand-side vector
z = (bigfloat)1l;
aa = A.data()+ip;
int t = 0;
for (int j = 0; j <= pow_n; j++) {
if(num_pows[j] != -1){ *aa++ = z; t++; }
z *= x;
}
assert(t == n+1);
z = (bigfloat)1l;
t = 0;
for (int j = 0; j < pow_d; j++) {
if(den_pows[j] != -1){ *aa++ = -y * z; t++; }
z *= x;
}
assert(t == d);
B[i] = y * z; // Right hand side vector
}
// Solve the simultaneous linear equations.
if (simq()){
std::cout<<"simq failed\n";
exit(0);
}
}
// Evaluate the rational form P(x)/Q(x) using coefficients
// from the solution vector param
bigfloat AlgRemezGeneral::approx(const bigfloat x) const{
// Work backwards toward the constant term.
int c = n;
bigfloat yn = param[c--]; // Highest order numerator coefficient
for (int i = pow_n-1; i >= 0; i--) yn = x * yn + (num_pows[i] != -1 ? param[c--] : bigfloat(0l));
c = n+d;
bigfloat yd = 1l; //Highest degree coefficient is 1.0
for (int i = pow_d-1; i >= 0; i--) yd = x * yd + (den_pows[i] != -1 ? param[c--] : bigfloat(0l));
return(yn/yd);
}
// Compute size and sign of the approximation error at x
bigfloat AlgRemezGeneral::getErr(bigfloat x, int *sign) const{
bigfloat f = func(x);
bigfloat e = approx(x) - f;
if (f != 0) e /= f;
if (e < (bigfloat)0.0) {
*sign = -1;
e = -e;
}
else *sign = 1;
return(e);
}
// Solve the system AX=B
int AlgRemezGeneral::simq(){
int ip, ipj, ipk, ipn;
int idxpiv;
int kp, kp1, kpk, kpn;
int nip, nkp;
bigfloat em, q, rownrm, big, size, pivot, sum;
bigfloat *aa;
bigfloat *X = param.data();
int n = neq;
int nm1 = n - 1;
// Initialize IPS and X
int ij = 0;
for (int i = 0; i < n; i++) {
IPS[i] = i;
rownrm = 0.0;
for(int j = 0; j < n; j++) {
q = abs_bf(A[ij]);
if(rownrm < q) rownrm = q;
++ij;
}
if (rownrm == (bigfloat)0l) {
std::cout<<"simq rownrm=0\n";
return(1);
}
X[i] = (bigfloat)1.0 / rownrm;
}
for (int k = 0; k < nm1; k++) {
big = 0.0;
idxpiv = 0;
for (int i = k; i < n; i++) {
ip = IPS[i];
ipk = n*ip + k;
size = abs_bf(A[ipk]) * X[ip];
if (size > big) {
big = size;
idxpiv = i;
}
}
if (big == (bigfloat)0l) {
std::cout<<"simq big=0\n";
return(2);
}
if (idxpiv != k) {
int j = IPS[k];
IPS[k] = IPS[idxpiv];
IPS[idxpiv] = j;
}
kp = IPS[k];
kpk = n*kp + k;
pivot = A[kpk];
kp1 = k+1;
for (int i = kp1; i < n; i++) {
ip = IPS[i];
ipk = n*ip + k;
em = -A[ipk] / pivot;
A[ipk] = -em;
nip = n*ip;
nkp = n*kp;
aa = A.data()+nkp+kp1;
for (int j = kp1; j < n; j++) {
ipj = nip + j;
A[ipj] = A[ipj] + em * *aa++;
}
}
}
kpn = n * IPS[n-1] + n - 1; // last element of IPS[n] th row
if (A[kpn] == (bigfloat)0l) {
std::cout<<"simq A[kpn]=0\n";
return(3);
}
ip = IPS[0];
X[0] = B[ip];
for (int i = 1; i < n; i++) {
ip = IPS[i];
ipj = n * ip;
sum = 0.0;
for (int j = 0; j < i; j++) {
sum += A[ipj] * X[j];
++ipj;
}
X[i] = B[ip] - sum;
}
ipn = n * IPS[n-1] + n - 1;
X[n-1] = X[n-1] / A[ipn];
for (int iback = 1; iback < n; iback++) {
//i goes (n-1),...,1
int i = nm1 - iback;
ip = IPS[i];
nip = n*ip;
sum = 0.0;
aa = A.data()+nip+i+1;
for (int j= i + 1; j < n; j++)
sum += *aa++ * X[j];
X[i] = (X[i] - sum) / A[nip+i];
}
return(0);
}
void AlgRemezGeneral::csv(std::ostream & os) const{
os << "Numerator" << std::endl;
for(int i=0;i<=pow_n;i++){
os << getCoeffNum(i) << "*x^" << i;
if(i!=pow_n) os << " + ";
}
os << std::endl;
os << "Denominator" << std::endl;
for(int i=0;i<=pow_d;i++){
os << getCoeffDen(i) << "*x^" << i;
if(i!=pow_d) os << " + ";
}
os << std::endl;
//For a true minimax solution the errors should all be equal and the signs should oscillate +-+-+- etc
int sign;
os << "Errors at maxima: coordinate, error, (sign)" << std::endl;
for(int i=0;i<neq+1;i++){
os << mm[i] << " " << getErr(mm[i],&sign) << " (" << sign << ")" << std::endl;
}
os << "Scan over range:" << std::endl;
int npt = 60;
bigfloat dlt = (apend - apstrt)/bigfloat(npt-1);
for (bigfloat x=apstrt; x<=apend; x = x + dlt) {
double f = evaluateFunc(x);
double r = evaluateApprox(x);
os<< x<<","<<r<<","<<f<<","<<r-f<<std::endl;
}
return;
}

View File

@ -1,170 +0,0 @@
/*
C.Kelly Jan 2020 based on implementation by M. Clark May 2005
AlgRemezGeneral is an implementation of the Remez algorithm for approximating an arbitrary function by a rational polynomial
It includes optional restriction to odd/even polynomials for the numerator and/or denominator
*/
#ifndef INCLUDED_ALG_REMEZ_GENERAL_H
#define INCLUDED_ALG_REMEZ_GENERAL_H
#include <stddef.h>
#include <Grid/GridStd.h>
#ifdef HAVE_LIBGMP
#include "bigfloat.h"
#else
#include "bigfloat_double.h"
#endif
class AlgRemezGeneral{
public:
enum PolyType { Even, Odd, Full };
private:
// In GSL-style, pass the function as a function pointer. Any data required to evaluate the function is passed in as a void pointer
bigfloat (*f)(bigfloat x, void *data);
void *data;
// The approximation parameters
std::vector<bigfloat> param;
bigfloat norm;
// The number of non-zero terms in the numerator and denominator
int n, d;
// The numerator and denominator degree (i.e. the largest power)
int pow_n, pow_d;
// Specify if the numerator and/or denominator are odd/even polynomials
PolyType num_type;
PolyType den_type;
std::vector<int> num_pows; //contains the mapping, with -1 if not present
std::vector<int> den_pows;
// The bounds of the approximation
bigfloat apstrt, apwidt, apend;
// Variables used to calculate the approximation
int nd1, iter;
std::vector<bigfloat> xx;
std::vector<bigfloat> mm;
std::vector<bigfloat> step;
bigfloat delta, spread;
// Variables used in search
std::vector<bigfloat> yy;
// Variables used in solving linear equations
std::vector<bigfloat> A;
std::vector<bigfloat> B;
std::vector<int> IPS;
// The number of equations we must solve at each iteration (n+d+1)
int neq;
// The precision of the GNU MP library
long prec;
// Initialize member variables associated with the polynomial's properties
void setupPolyProperties(int num_degree, int den_degree, PolyType num_type_in, PolyType den_type_in);
// Initial values of maximal and minmal errors
void initialGuess();
// Initialise step sizes
void stpini();
// Initialize the algorithm
void reinitializeAlgorithm();
// Solve the equations
void equations();
// Search for error maxima and minima
void search();
// Calculate function required for the approximation
inline bigfloat func(bigfloat x) const{
return f(x, data);
}
// Compute size and sign of the approximation error at x
bigfloat getErr(bigfloat x, int *sign) const;
// Solve the system AX=B where X = param
int simq();
// Evaluate the rational form P(x)/Q(x) using coefficients from the solution vector param
bigfloat approx(bigfloat x) const;
public:
AlgRemezGeneral(double lower, double upper, long prec,
bigfloat (*f)(bigfloat x, void *data), void *data);
inline int getDegree(void) const{
assert(n==d);
return n;
}
// Reset the bounds of the approximation
inline void setBounds(double lower, double upper) {
apstrt = lower;
apend = upper;
apwidt = apend - apstrt;
}
// Get the bounds of the approximation
inline void getBounds(double &lower, double &upper) const{
lower=(double)apstrt;
upper=(double)apend;
}
// Run the algorithm to generate the rational approximation
double generateApprox(int num_degree, int den_degree,
PolyType num_type, PolyType den_type,
const double tolerance = 1e-15, const int report_freq = 1000);
inline double generateApprox(int num_degree, int den_degree,
const double tolerance = 1e-15, const int report_freq = 1000){
return generateApprox(num_degree, den_degree, Full, Full, tolerance, report_freq);
}
// Evaluate the rational form P(x)/Q(x) using coefficients from the
// solution vector param
inline double evaluateApprox(double x) const{
return (double)approx((bigfloat)x);
}
// Evaluate the rational form Q(x)/P(x) using coefficients from the solution vector param
inline double evaluateInverseApprox(double x) const{
return 1.0/(double)approx((bigfloat)x);
}
// Calculate function required for the approximation
inline double evaluateFunc(double x) const{
return (double)func((bigfloat)x);
}
// Calculate inverse function required for the approximation
inline double evaluateInverseFunc(double x) const{
return 1.0/(double)func((bigfloat)x);
}
// Dump csv of function, approx and error
void csv(std::ostream &os = std::cout) const;
// Get the coefficient of the term x^i in the numerator
inline double getCoeffNum(const int i) const{
return num_pows[i] == -1 ? 0. : double(param[num_pows[i]]);
}
// Get the coefficient of the term x^i in the denominator
inline double getCoeffDen(const int i) const{
if(i == pow_d) return 1.0;
else return den_pows[i] == -1 ? 0. : double(param[den_pows[i]+n+1]);
}
};
#endif

View File

@ -1,183 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/approx/ZMobius.cc
Copyright (C) 2015
Author: Christopher Kelly <ckelly@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/algorithms/approx/ZMobius.h>
#include <Grid/algorithms/approx/RemezGeneral.h>
NAMESPACE_BEGIN(Grid);
NAMESPACE_BEGIN(Approx);
//Compute the tanh approximation
inline double epsilonMobius(const double x, const std::vector<ComplexD> &w){
int Ls = w.size();
ComplexD fxp = 1., fmp = 1.;
for(int i=0;i<Ls;i++){
fxp = fxp * ( w[i] + x );
fmp = fmp * ( w[i] - x );
}
return ((fxp - fmp)/(fxp + fmp)).real();
}
inline double epsilonMobius(const double x, const std::vector<RealD> &w){
int Ls = w.size();
double fxp = 1., fmp = 1.;
for(int i=0;i<Ls;i++){
fxp = fxp * ( w[i] + x );
fmp = fmp * ( w[i] - x );
}
return (fxp - fmp)/(fxp + fmp);
}
//Compute the tanh approximation in a form suitable for the Remez
bigfloat epsilonMobius(bigfloat x, void* data){
const std::vector<RealD> &omega = *( (std::vector<RealD> const*)data );
bigfloat fxp(1.0);
bigfloat fmp(1.0);
for(int i=0;i<omega.size();i++){
fxp = fxp * ( bigfloat(omega[i]) + x);
fmp = fmp * ( bigfloat(omega[i]) - x);
}
return (fxp - fmp)/(fxp + fmp);
}
//Compute the Zmobius Omega parameters suitable for eigenvalue range -lambda_bound <= lambda <= lambda_bound
//Note omega_i = 1/(b_i + c_i) where b_i and c_i are the Mobius parameters
void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out,
const std::vector<RealD> &omega_in, const int Ls_in,
const RealD lambda_bound){
assert(omega_in.size() == Ls_in);
omega_out.resize(Ls_out);
//Use the Remez algorithm to generate the appropriate rational polynomial
//For odd polynomial, to satisfy Haar condition must take either positive or negative half of range (cf https://arxiv.org/pdf/0803.0439.pdf page 6)
AlgRemezGeneral remez(0, lambda_bound, 64, &epsilonMobius, (void*)&omega_in);
remez.generateApprox(Ls_out-1, Ls_out,AlgRemezGeneral::Odd, AlgRemezGeneral::Even, 1e-15, 100);
remez.csv(std::cout);
//The rational approximation has the form [ f(x) - f(-x) ] / [ f(x) + f(-x) ] where f(x) = \Prod_{i=0}^{L_s-1} ( \omega_i + x )
//cf https://academiccommons.columbia.edu/doi/10.7916/D8T72HD7 pg 102
//omega_i are therefore the negative of the complex roots of f(x)
//We can find the roots by recognizing that the eigenvalues of a matrix A are the roots of the characteristic polynomial
// \rho(\lambda) = det( A - \lambda I ) where I is the unit matrix
//The matrix whose characteristic polynomial is an arbitrary monic polynomial a0 + a1 x + a2 x^2 + ... x^n is the companion matrix
// A = | 0 1 0 0 0 .... 0 |
// | 0 0 1 0 0 .... 0 |
// | : : : : : : |
// | 0 0 0 0 0 1
// | -a0 -a1 -a2 ... ... -an|
//Note the Remez defines the largest power to have unit coefficient
std::vector<RealD> coeffs(Ls_out+1);
for(int i=0;i<Ls_out+1;i+=2) coeffs[i] = coeffs[i] = remez.getCoeffDen(i); //even powers
for(int i=1;i<Ls_out+1;i+=2) coeffs[i] = coeffs[i] = remez.getCoeffNum(i); //odd powers
std::vector<std::complex<RealD> > roots(Ls_out);
//Form the companion matrix
Eigen::MatrixXd compn(Ls_out,Ls_out);
for(int i=0;i<Ls_out-1;i++) compn(i,0) = 0.;
compn(Ls_out - 1, 0) = -coeffs[0];
for(int j=1;j<Ls_out;j++){
for(int i=0;i<Ls_out-1;i++) compn(i,j) = i == j-1 ? 1. : 0.;
compn(Ls_out - 1, j) = -coeffs[j];
}
//Eigensolve
Eigen::EigenSolver<Eigen::MatrixXd> slv(compn, false);
const auto & ev = slv.eigenvalues();
for(int i=0;i<Ls_out;i++)
omega_out[i] = -ev(i);
//Sort ascending (smallest at start of vector!)
std::sort(omega_out.begin(), omega_out.end(),
[&](const ComplexD &a, const ComplexD &b){ return a.real() < b.real() || (a.real() == b.real() && a.imag() < b.imag()); });
//McGlynn thesis pg 122 suggest improved iteration counts if magnitude of omega diminishes towards the center of the 5th dimension
std::vector<ComplexD> omega_tmp = omega_out;
int s_low=0, s_high=Ls_out-1, ss=0;
for(int s_from = Ls_out-1; s_from >= 0; s_from--){ //loop from largest omega
int s_to;
if(ss % 2 == 0){
s_to = s_low++;
}else{
s_to = s_high--;
}
omega_out[s_to] = omega_tmp[s_from];
++ss;
}
std::cout << "Resulting omega_i:" << std::endl;
for(int i=0;i<Ls_out;i++)
std::cout << omega_out[i] << std::endl;
std::cout << "Test result matches the approximate polynomial found by the Remez" << std::endl;
std::cout << "<x> <remez approx> <poly approx> <diff poly approx remez approx> <exact> <diff poly approx exact>\n";
int npt = 60;
double dlt = lambda_bound/double(npt-1);
for (int i =0; i<npt; i++){
double x = i*dlt;
double r = remez.evaluateApprox(x);
double p = epsilonMobius(x, omega_out);
double e = epsilonMobius(x, omega_in);
std::cout << x<< " " << r << " " << p <<" " <<r-p << " " << e << " " << e-p << std::endl;
}
}
//mobius_param = b+c with b-c=1
void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound){
std::vector<RealD> omega_in(Ls_in, 1./mobius_param);
computeZmobiusOmega(omega_out, Ls_out, omega_in, Ls_in, lambda_bound);
}
//ZMobius class takes gamma_i = (b+c) omega_i as its input, where b, c are factored out
void computeZmobiusGamma(std::vector<ComplexD> &gamma_out,
const RealD mobius_param_out, const int Ls_out,
const RealD mobius_param_in, const int Ls_in,
const RealD lambda_bound){
computeZmobiusOmega(gamma_out, Ls_out, mobius_param_in, Ls_in, lambda_bound);
for(int i=0;i<Ls_out;i++) gamma_out[i] = gamma_out[i] * mobius_param_out;
}
//Assumes mobius_param_out == mobius_param_in
void computeZmobiusGamma(std::vector<ComplexD> &gamma_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound){
computeZmobiusGamma(gamma_out, mobius_param, Ls_out, mobius_param, Ls_in, lambda_bound);
}
NAMESPACE_END(Approx);
NAMESPACE_END(Grid);

View File

@ -1,57 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/approx/ZMobius.h
Copyright (C) 2015
Author: Christopher Kelly <ckelly@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_ZMOBIUS_APPROX_H
#define GRID_ZMOBIUS_APPROX_H
#include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid);
NAMESPACE_BEGIN(Approx);
//Compute the Zmobius Omega parameters suitable for eigenvalue range -lambda_bound <= lambda <= lambda_bound
//Note omega_i = 1/(b_i + c_i) where b_i and c_i are the Mobius parameters
void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out,
const std::vector<RealD> &omega_in, const int Ls_in,
const RealD lambda_bound);
//mobius_param = b+c with b-c=1
void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound);
//ZMobius class takes gamma_i = (b+c) omega_i as its input, where b, c are factored out
void computeZmobiusGamma(std::vector<ComplexD> &gamma_out,
const RealD mobius_param_out, const int Ls_out,
const RealD mobius_param_in, const int Ls_in,
const RealD lambda_bound);
//Assumes mobius_param_out == mobius_param_in
void computeZmobiusGamma(std::vector<ComplexD> &gamma_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound);
NAMESPACE_END(Approx);
NAMESPACE_END(Grid);
#endif

View File

@ -1,234 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/BiCGSTAB.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: juettner <juettner@soton.ac.uk>
Author: David Murphy <djmurphy@mit.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_BICGSTAB_H
#define GRID_BICGSTAB_H
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////
// Base classes for iterative processes based on operators
// single input vec, single output vec.
/////////////////////////////////////////////////////////////
template <class Field>
class BiCGSTAB : public OperatorFunction<Field>
{
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
// Defaults true.
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
BiCGSTAB(RealD tol, Integer maxit, bool err_on_no_conv = true) :
Tolerance(tol), MaxIterations(maxit), ErrorOnNoConverge(err_on_no_conv){};
void operator()(LinearOperatorBase<Field>& Linop, const Field& src, Field& psi)
{
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
RealD cp(0), rho(1), rho_prev(0), alpha(1), beta(0), omega(1);
RealD a(0), bo(0), b(0), ssq(0);
Field p(src);
Field r(src);
Field rhat(src);
Field v(src);
Field s(src);
Field t(src);
Field h(src);
v = Zero();
p = Zero();
// Initial residual computation & set up
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
Linop.Op(psi, v);
b = norm2(v);
r = src - v;
rhat = r;
a = norm2(r);
ssq = norm2(src);
std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: guess " << guess << std::endl;
std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: src " << ssq << std::endl;
std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: mp " << b << std::endl;
std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: r " << a << std::endl;
RealD rsq = Tolerance * Tolerance * ssq;
// Check if guess is really REALLY good :)
if(a <= rsq){ return; }
std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: k=0 residual " << a << " target " << rsq << std::endl;
GridStopWatch LinalgTimer;
GridStopWatch InnerTimer;
GridStopWatch AxpyNormTimer;
GridStopWatch LinearCombTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
int k;
for (k = 1; k <= MaxIterations; k++)
{
rho_prev = rho;
LinalgTimer.Start();
InnerTimer.Start();
ComplexD Crho = innerProduct(rhat,r);
InnerTimer.Stop();
rho = Crho.real();
beta = (rho / rho_prev) * (alpha / omega);
LinearCombTimer.Start();
bo = beta * omega;
{
autoView( p_v , p, AcceleratorWrite);
autoView( r_v , r, AcceleratorRead);
autoView( v_v , v, AcceleratorRead);
accelerator_for(ss, p_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(p_v[ss], beta*p_v(ss) - bo*v_v(ss) + r_v(ss));
});
}
LinearCombTimer.Stop();
LinalgTimer.Stop();
MatrixTimer.Start();
Linop.Op(p,v);
MatrixTimer.Stop();
LinalgTimer.Start();
InnerTimer.Start();
ComplexD Calpha = innerProduct(rhat,v);
InnerTimer.Stop();
alpha = rho / Calpha.real();
LinearCombTimer.Start();
{
autoView( p_v , p, AcceleratorRead);
autoView( r_v , r, AcceleratorRead);
autoView( v_v , v, AcceleratorRead);
autoView( psi_v,psi, AcceleratorRead);
autoView( h_v , h, AcceleratorWrite);
autoView( s_v , s, AcceleratorWrite);
accelerator_for(ss, h_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(h_v[ss], alpha*p_v(ss) + psi_v(ss));
});
accelerator_for(ss, s_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(s_v[ss], -alpha*v_v(ss) + r_v(ss));
});
}
LinearCombTimer.Stop();
LinalgTimer.Stop();
MatrixTimer.Start();
Linop.Op(s,t);
MatrixTimer.Stop();
LinalgTimer.Start();
InnerTimer.Start();
ComplexD Comega = innerProduct(t,s);
InnerTimer.Stop();
omega = Comega.real() / norm2(t);
LinearCombTimer.Start();
{
autoView( psi_v,psi, AcceleratorWrite);
autoView( r_v , r, AcceleratorWrite);
autoView( h_v , h, AcceleratorRead);
autoView( s_v , s, AcceleratorRead);
autoView( t_v , t, AcceleratorRead);
accelerator_for(ss, psi_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(psi_v[ss], h_v(ss) + omega * s_v(ss));
coalescedWrite(r_v[ss], -omega * t_v(ss) + s_v(ss));
});
}
LinearCombTimer.Stop();
cp = norm2(r);
LinalgTimer.Stop();
std::cout << GridLogIterative << "BiCGSTAB: Iteration " << k << " residual " << sqrt(cp/ssq) << " target " << Tolerance << std::endl;
// Stopping condition
if(cp <= rsq)
{
SolverTimer.Stop();
Linop.Op(psi, v);
p = v - src;
RealD srcnorm = sqrt(norm2(src));
RealD resnorm = sqrt(norm2(p));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "BiCGSTAB Converged on iteration " << k << std::endl;
std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp/ssq) << std::endl;
std::cout << GridLogMessage << "\tTrue residual " << true_residual << std::endl;
std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl;
std::cout << GridLogMessage << "Time breakdown " << std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "\tInner " << InnerTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "\tAxpyNorm " << AxpyNormTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() << std::endl;
if(ErrorOnNoConverge){ assert(true_residual / Tolerance < 10000.0); }
IterationsToComplete = k;
return;
}
}
std::cout << GridLogMessage << "BiCGSTAB did NOT converge" << std::endl;
if(ErrorOnNoConverge){ assert(0); }
IterationsToComplete = k;
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,158 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/BiCGSTABMixedPrec.h
Copyright (C) 2015
Author: Christopher Kelly <ckelly@phys.columbia.edu>
Author: David Murphy <djmurphy@mit.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_BICGSTAB_MIXED_PREC_H
#define GRID_BICGSTAB_MIXED_PREC_H
NAMESPACE_BEGIN(Grid);
// Mixed precision restarted defect correction BiCGSTAB
template<class FieldD, class FieldF, typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0, typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class MixedPrecisionBiCGSTAB : public LinearFunction<FieldD>
{
public:
RealD Tolerance;
RealD InnerTolerance; // Initial tolerance for inner CG. Defaults to Tolerance but can be changed
Integer MaxInnerIterations;
Integer MaxOuterIterations;
GridBase* SinglePrecGrid; // Grid for single-precision fields
RealD OuterLoopNormMult; // Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
LinearOperatorBase<FieldF> &Linop_f;
LinearOperatorBase<FieldD> &Linop_d;
Integer TotalInnerIterations; //Number of inner CG iterations
Integer TotalOuterIterations; //Number of restarts
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
LinearFunction<FieldF> *guesser;
MixedPrecisionBiCGSTAB(RealD tol, Integer maxinnerit, Integer maxouterit, GridBase* _sp_grid,
LinearOperatorBase<FieldF>& _Linop_f, LinearOperatorBase<FieldD>& _Linop_d) :
Linop_f(_Linop_f), Linop_d(_Linop_d), Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit),
MaxOuterIterations(maxouterit), SinglePrecGrid(_sp_grid), OuterLoopNormMult(100.), guesser(NULL) {};
void useGuesser(LinearFunction<FieldF>& g){
guesser = &g;
}
void operator() (const FieldD& src_d_in, FieldD& sol_d)
{
TotalInnerIterations = 0;
GridStopWatch TotalTimer;
TotalTimer.Start();
int cb = src_d_in.Checkerboard();
sol_d.Checkerboard() = cb;
RealD src_norm = norm2(src_d_in);
RealD stop = src_norm * Tolerance*Tolerance;
GridBase* DoublePrecGrid = src_d_in.Grid();
FieldD tmp_d(DoublePrecGrid);
tmp_d.Checkerboard() = cb;
FieldD tmp2_d(DoublePrecGrid);
tmp2_d.Checkerboard() = cb;
FieldD src_d(DoublePrecGrid);
src_d = src_d_in; //source for next inner iteration, computed from residual during operation
RealD inner_tol = InnerTolerance;
FieldF src_f(SinglePrecGrid);
src_f.Checkerboard() = cb;
FieldF sol_f(SinglePrecGrid);
sol_f.Checkerboard() = cb;
BiCGSTAB<FieldF> CG_f(inner_tol, MaxInnerIterations);
CG_f.ErrorOnNoConverge = false;
GridStopWatch InnerCGtimer;
GridStopWatch PrecChangeTimer;
Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++)
{
// Compute double precision rsd and also new RHS vector.
Linop_d.Op(sol_d, tmp_d);
RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector
std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Outer iteration " << outer_iter << " residual " << norm << " target " << stop << std::endl;
if(norm < OuterLoopNormMult * stop){
std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Outer iteration converged on iteration " << outer_iter << std::endl;
break;
}
while(norm * inner_tol * inner_tol < stop){ inner_tol *= 2; } // inner_tol = sqrt(stop/norm) ??
PrecChangeTimer.Start();
precisionChange(src_f, src_d);
PrecChangeTimer.Stop();
sol_f = Zero();
//Optionally improve inner solver guess (eg using known eigenvectors)
if(guesser != NULL){ (*guesser)(src_f, sol_f); }
//Inner CG
CG_f.Tolerance = inner_tol;
InnerCGtimer.Start();
CG_f(Linop_f, src_f, sol_f);
InnerCGtimer.Stop();
TotalInnerIterations += CG_f.IterationsToComplete;
//Convert sol back to double and add to double prec solution
PrecChangeTimer.Start();
precisionChange(tmp_d, sol_f);
PrecChangeTimer.Stop();
axpy(sol_d, 1.0, tmp_d, sol_d);
}
//Final trial CG
std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Starting final patch-up double-precision solve" << std::endl;
BiCGSTAB<FieldD> CG_d(Tolerance, MaxInnerIterations);
CG_d(Linop_d, src_d_in, sol_d);
TotalFinalStepIterations = CG_d.IterationsToComplete;
TotalTimer.Stop();
std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;
std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Total time " << TotalTimer.Elapsed() << " Precision change " << PrecChangeTimer.Elapsed() << " Inner CG total " << InnerCGtimer.Elapsed() << std::endl;
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,248 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/CommunicationAvoidingGeneralisedMinimalResidual.h
Copyright (C) 2015
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
#define GRID_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
namespace Grid {
template<class Field>
class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // Throw an assert when CAGMRES fails to converge,
// defaults to true
RealD Tolerance;
Integer MaxIterations;
Integer RestartLength;
Integer MaxNumberOfRestarts;
Integer IterationCount; // Number of iterations the CAGMRES took to finish,
// filled in upon completion
GridStopWatch MatrixTimer;
GridStopWatch LinalgTimer;
GridStopWatch QrTimer;
GridStopWatch CompSolutionTimer;
Eigen::MatrixXcd H;
std::vector<ComplexD> y;
std::vector<ComplexD> gamma;
std::vector<ComplexD> c;
std::vector<ComplexD> s;
CommunicationAvoidingGeneralisedMinimalResidual(RealD tol,
Integer maxit,
Integer restart_length,
bool err_on_no_conv = true)
: Tolerance(tol)
, MaxIterations(maxit)
, RestartLength(restart_length)
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
, ErrorOnNoConverge(err_on_no_conv)
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
, y(RestartLength + 1, 0.)
, gamma(RestartLength + 1, 0.)
, c(RestartLength + 1, 0.)
, s(RestartLength + 1, 0.) {};
void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
std::cout << GridLogWarning << "This algorithm currently doesn't differ from regular GMRES" << std::endl;
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
RealD cp;
RealD ssq = norm2(src);
RealD rsq = Tolerance * Tolerance * ssq;
Field r(src.Grid());
std::cout << std::setprecision(4) << std::scientific;
std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual: guess " << guess << std::endl;
std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual: src " << ssq << std::endl;
MatrixTimer.Reset();
LinalgTimer.Reset();
QrTimer.Reset();
CompSolutionTimer.Reset();
GridStopWatch SolverTimer;
SolverTimer.Start();
IterationCount = 0;
for (int k=0; k<MaxNumberOfRestarts; k++) {
cp = outerLoopBody(LinOp, src, psi, rsq);
// Stopping condition
if (cp <= rsq) {
SolverTimer.Stop();
LinOp.Op(psi,r);
axpy(r,-1.0,src,r);
RealD srcnorm = sqrt(ssq);
RealD resnorm = sqrt(norm2(r));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "CommunicationAvoidingGeneralisedMinimalResidual: Converged on iteration " << IterationCount
<< " computed residual " << sqrt(cp / ssq)
<< " true residual " << true_residual
<< " target " << Tolerance << std::endl;
std::cout << GridLogMessage << "CAGMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "CAGMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "CAGMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "CAGMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "CAGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
return;
}
}
std::cout << GridLogMessage << "CommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl;
if (ErrorOnNoConverge)
assert(0);
}
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
RealD cp = 0;
Field w(src.Grid());
Field r(src.Grid());
// this should probably be made a class member so that it is only allocated once, not in every restart
std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
MatrixTimer.Start();
LinOp.Op(psi, w);
MatrixTimer.Stop();
LinalgTimer.Start();
r = src - w;
gamma[0] = sqrt(norm2(r));
ComplexD scale = 1.0/gamma[0];
v[0] = scale * r;
LinalgTimer.Stop();
for (int i=0; i<RestartLength; i++) {
IterationCount++;
arnoldiStep(LinOp, v, w, i);
qrUpdate(i);
cp = norm(gamma[i+1]);
std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual: Iteration " << IterationCount
<< " residual " << cp << " target " << rsq << std::endl;
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
computeSolution(v, psi, i);
return cp;
}
}
assert(0); // Never reached
return cp;
}
void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, Field &w, int iter) {
MatrixTimer.Start();
LinOp.Op(v[iter], w);
MatrixTimer.Stop();
LinalgTimer.Start();
for (int i = 0; i <= iter; ++i) {
H(iter, i) = innerProduct(v[i], w);
w = w - ComplexD(H(iter, i)) * v[i];
}
H(iter, iter + 1) = sqrt(norm2(w));
v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
LinalgTimer.Stop();
}
void qrUpdate(int iter) {
QrTimer.Start();
for (int i = 0; i < iter ; ++i) {
auto tmp = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
H(iter, i) = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
H(iter, i + 1) = tmp;
}
// Compute new Givens Rotation
auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
c[iter] = H(iter, iter) / nu;
s[iter] = H(iter, iter + 1) / nu;
// Apply new Givens rotation
H(iter, iter) = nu;
H(iter, iter + 1) = 0.;
gamma[iter + 1] = -s[iter] * gamma[iter];
gamma[iter] = conjugate(c[iter]) * gamma[iter];
QrTimer.Stop();
}
void computeSolution(std::vector<Field> const &v, Field &psi, int iter) {
CompSolutionTimer.Start();
for (int i = iter; i >= 0; i--) {
y[i] = gamma[i];
for (int k = i + 1; k <= iter; k++)
y[i] = y[i] - ComplexD(H(k, i)) * y[k];
y[i] = y[i] / ComplexD(H(i, i));
}
for (int i = 0; i <= iter; i++)
psi = psi + v[i] * y[i];
CompSolutionTimer.Stop();
}
};
}
#endif

View File

@ -1,161 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ConjugateGradientMixedPrec.h
Copyright (C) 2015
Author: Christopher Kelly <ckelly@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CONJUGATE_GRADIENT_MIXED_PREC_H
#define GRID_CONJUGATE_GRADIENT_MIXED_PREC_H
NAMESPACE_BEGIN(Grid);
//Mixed precision restarted defect correction CG
template<class FieldD,class FieldF,
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class MixedPrecisionConjugateGradient : public LinearFunction<FieldD> {
public:
RealD Tolerance;
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
Integer MaxInnerIterations;
Integer MaxOuterIterations;
GridBase* SinglePrecGrid; //Grid for single-precision fields
RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
LinearOperatorBase<FieldF> &Linop_f;
LinearOperatorBase<FieldD> &Linop_d;
Integer TotalInnerIterations; //Number of inner CG iterations
Integer TotalOuterIterations; //Number of restarts
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
LinearFunction<FieldF> *guesser;
MixedPrecisionConjugateGradient(RealD tol,
Integer maxinnerit,
Integer maxouterit,
GridBase* _sp_grid,
LinearOperatorBase<FieldF> &_Linop_f,
LinearOperatorBase<FieldD> &_Linop_d) :
Linop_f(_Linop_f), Linop_d(_Linop_d),
Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit), MaxOuterIterations(maxouterit), SinglePrecGrid(_sp_grid),
OuterLoopNormMult(100.), guesser(NULL){ };
void useGuesser(LinearFunction<FieldF> &g){
guesser = &g;
}
void operator() (const FieldD &src_d_in, FieldD &sol_d){
TotalInnerIterations = 0;
GridStopWatch TotalTimer;
TotalTimer.Start();
int cb = src_d_in.Checkerboard();
sol_d.Checkerboard() = cb;
RealD src_norm = norm2(src_d_in);
RealD stop = src_norm * Tolerance*Tolerance;
GridBase* DoublePrecGrid = src_d_in.Grid();
FieldD tmp_d(DoublePrecGrid);
tmp_d.Checkerboard() = cb;
FieldD tmp2_d(DoublePrecGrid);
tmp2_d.Checkerboard() = cb;
FieldD src_d(DoublePrecGrid);
src_d = src_d_in; //source for next inner iteration, computed from residual during operation
RealD inner_tol = InnerTolerance;
FieldF src_f(SinglePrecGrid);
src_f.Checkerboard() = cb;
FieldF sol_f(SinglePrecGrid);
sol_f.Checkerboard() = cb;
ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
CG_f.ErrorOnNoConverge = false;
GridStopWatch InnerCGtimer;
GridStopWatch PrecChangeTimer;
Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){
//Compute double precision rsd and also new RHS vector.
Linop_d.HermOp(sol_d, tmp_d);
RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " <<outer_iter<<" residual "<< norm<< " target "<< stop<<std::endl;
if(norm < OuterLoopNormMult * stop){
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration converged on iteration " <<outer_iter <<std::endl;
break;
}
while(norm * inner_tol * inner_tol < stop) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ??
PrecChangeTimer.Start();
precisionChange(src_f, src_d);
PrecChangeTimer.Stop();
sol_f = Zero();
//Optionally improve inner solver guess (eg using known eigenvectors)
if(guesser != NULL)
(*guesser)(src_f, sol_f);
//Inner CG
CG_f.Tolerance = inner_tol;
InnerCGtimer.Start();
CG_f(Linop_f, src_f, sol_f);
InnerCGtimer.Stop();
TotalInnerIterations += CG_f.IterationsToComplete;
//Convert sol back to double and add to double prec solution
PrecChangeTimer.Start();
precisionChange(tmp_d, sol_f);
PrecChangeTimer.Stop();
axpy(sol_d, 1.0, tmp_d, sol_d);
}
//Final trial CG
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Starting final patch-up double-precision solve"<<std::endl;
ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations);
CG_d(Linop_d, src_d_in, sol_d);
TotalFinalStepIterations = CG_d.IterationsToComplete;
TotalTimer.Stop();
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Total time " << TotalTimer.Elapsed() << " Precision change " << PrecChangeTimer.Elapsed() << " Inner CG total " << InnerCGtimer.Elapsed() << std::endl;
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,342 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CONJUGATE_MULTI_SHIFT_GRADIENT_H
#define GRID_CONJUGATE_MULTI_SHIFT_GRADIENT_H
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////
// Base classes for iterative processes based on operators
// single input vec, single output vec.
/////////////////////////////////////////////////////////////
template<class Field>
class ConjugateGradientMultiShift : public OperatorMultiFunction<Field>,
public OperatorFunction<Field>
{
public:
using OperatorFunction<Field>::operator();
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
std::vector<int> IterationsToCompleteShift; // Iterations for this shift
int verbose;
MultiShiftFunction shifts;
std::vector<RealD> TrueResidualShift;
ConjugateGradientMultiShift(Integer maxit,MultiShiftFunction &_shifts) :
MaxIterations(maxit),
shifts(_shifts)
{
verbose=1;
IterationsToCompleteShift.resize(_shifts.order);
TrueResidualShift.resize(_shifts.order);
}
void operator() (LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
{
GridBase *grid = src.Grid();
int nshift = shifts.order;
std::vector<Field> results(nshift,grid);
(*this)(Linop,src,results,psi);
}
void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector<Field> &results, Field &psi)
{
int nshift = shifts.order;
(*this)(Linop,src,results);
psi = shifts.norm*src;
for(int i=0;i<nshift;i++){
psi = psi + shifts.residues[i]*results[i];
}
return;
}
void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector<Field> &psi)
{
GridBase *grid = src.Grid();
////////////////////////////////////////////////////////////////////////
// Convenience references to the info stored in "MultiShiftFunction"
////////////////////////////////////////////////////////////////////////
int nshift = shifts.order;
std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
std::vector<RealD> &mresidual(shifts.tolerances);
std::vector<RealD> alpha(nshift,1.0);
std::vector<Field> ps(nshift,grid);// Search directions
assert(psi.size()==nshift);
assert(mass.size()==nshift);
assert(mresidual.size()==nshift);
// dynamic sized arrays on stack; 2d is a pain with vector
RealD bs[nshift];
RealD rsq[nshift];
RealD z[nshift][2];
int converged[nshift];
const int primary =0;
//Primary shift fields CG iteration
RealD a,b,c,d;
RealD cp,bp,qq; //prev
// Matrix mult fields
Field r(grid);
Field p(grid);
Field tmp(grid);
Field mmp(grid);
// Check lightest mass
for(int s=0;s<nshift;s++){
assert( mass[s]>= mass[primary] );
converged[s]=0;
}
// Wire guess to zero
// Residuals "r" are src
// First search direction "p" is also src
cp = norm2(src);
// Handle trivial case of zero src.
if( cp == 0. ){
for(int s=0;s<nshift;s++){
psi[s] = Zero();
IterationsToCompleteShift[s] = 1;
TrueResidualShift[s] = 0.;
}
return;
}
for(int s=0;s<nshift;s++){
rsq[s] = cp * mresidual[s] * mresidual[s];
std::cout<<GridLogMessage<<"ConjugateGradientMultiShift: shift "<<s
<<" target resid "<<rsq[s]<<std::endl;
ps[s] = src;
}
// r and p for primary
r=src;
p=src;
//MdagM+m[0]
Linop.HermOpAndNorm(p,mmp,d,qq);
axpy(mmp,mass[0],p,mmp);
RealD rn = norm2(p);
d += rn*mass[0];
// have verified that inner product of
// p and mmp is equal to d after this since
// the d computation is tricky
// qq = real(innerProduct(p,mmp));
// std::cout<<GridLogMessage << "debug equal ? qq "<<qq<<" d "<< d<<std::endl;
b = -cp /d;
// Set up the various shift variables
int iz=0;
z[0][1-iz] = 1.0;
z[0][iz] = 1.0;
bs[0] = b;
for(int s=1;s<nshift;s++){
z[s][1-iz] = 1.0;
z[s][iz] = 1.0/( 1.0 - b*(mass[s]-mass[0]));
bs[s] = b*z[s][iz];
}
// r += b[0] A.p[0]
// c= norm(r)
c=axpy_norm(r,b,mmp,r);
for(int s=0;s<nshift;s++) {
axpby(psi[s],0.,-bs[s]*alpha[s],src,src);
}
///////////////////////////////////////
// Timers
///////////////////////////////////////
GridStopWatch AXPYTimer;
GridStopWatch ShiftTimer;
GridStopWatch QRTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
// Iteration loop
int k;
for (k=1;k<=MaxIterations;k++){
a = c /cp;
AXPYTimer.Start();
axpy(p,a,p,r);
AXPYTimer.Stop();
// Note to self - direction ps is iterated seperately
// for each shift. Does not appear to have any scope
// for avoiding linear algebra in "single" case.
//
// However SAME r is used. Could load "r" and update
// ALL ps[s]. 2/3 Bandwidth saving
// New Kernel: Load r, vector of coeffs, vector of pointers ps
AXPYTimer.Start();
for(int s=0;s<nshift;s++){
if ( ! converged[s] ) {
if (s==0){
axpy(ps[s],a,ps[s],r);
} else{
RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
axpby(ps[s],z[s][iz],as,r,ps[s]);
}
}
}
AXPYTimer.Stop();
cp=c;
MatrixTimer.Start();
//Linop.HermOpAndNorm(p,mmp,d,qq); // d is used
// The below is faster on KNL
Linop.HermOp(p,mmp);
d=real(innerProduct(p,mmp));
MatrixTimer.Stop();
AXPYTimer.Start();
axpy(mmp,mass[0],p,mmp);
AXPYTimer.Stop();
RealD rn = norm2(p);
d += rn*mass[0];
bp=b;
b=-cp/d;
AXPYTimer.Start();
c=axpy_norm(r,b,mmp,r);
AXPYTimer.Stop();
// Toggle the recurrence history
bs[0] = b;
iz = 1-iz;
ShiftTimer.Start();
for(int s=1;s<nshift;s++){
if((!converged[s])){
RealD z0 = z[s][1-iz];
RealD z1 = z[s][iz];
z[s][iz] = z0*z1*bp
/ (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b));
bs[s] = b*z[s][iz]/z0; // NB sign rel to Mike
}
}
ShiftTimer.Stop();
for(int s=0;s<nshift;s++){
int ss = s;
// Scope for optimisation here in case of "single".
// Could load psi[0] and pull all ps[s] in.
// if ( single ) ss=primary;
// Bandwith saving in single case is Ls * 3 -> 2+Ls, so ~ 3x saving
// Pipelined CG gain:
//
// New Kernel: Load r, vector of coeffs, vector of pointers ps
// New Kernel: Load psi[0], vector of coeffs, vector of pointers ps
// If can predict the coefficient bs then we can fuse these and avoid write reread cyce
// on ps[s].
// Before: 3 x npole + 3 x npole
// After : 2 x npole (ps[s]) => 3x speed up of multishift CG.
if( (!converged[s]) ) {
axpy(psi[ss],-bs[s]*alpha[s],ps[s],psi[ss]);
}
}
// Convergence checks
int all_converged = 1;
for(int s=0;s<nshift;s++){
if ( (!converged[s]) ){
IterationsToCompleteShift[s] = k;
RealD css = c * z[s][iz]* z[s][iz];
if(css<rsq[s]){
if ( ! converged[s] )
std::cout<<GridLogMessage<<"ConjugateGradientMultiShift k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
converged[s]=1;
} else {
all_converged=0;
}
}
}
if ( all_converged ){
SolverTimer.Stop();
std::cout<<GridLogMessage<< "CGMultiShift: All shifts have converged iteration "<<k<<std::endl;
std::cout<<GridLogMessage<< "CGMultiShift: Checking solutions"<<std::endl;
// Check answers
for(int s=0; s < nshift; s++) {
Linop.HermOpAndNorm(psi[s],mmp,d,qq);
axpy(tmp,mass[s],psi[s],mmp);
axpy(r,-alpha[s],src,tmp);
RealD rn = norm2(r);
RealD cn = norm2(src);
TrueResidualShift[s] = std::sqrt(rn/cn);
std::cout<<GridLogMessage<<"CGMultiShift: shift["<<s<<"] true residual "<< TrueResidualShift[s] <<std::endl;
}
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tAXPY " << AXPYTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMarix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tShift " << ShiftTimer.Elapsed() <<std::endl;
IterationsToComplete = k;
return;
}
}
// ugly hack
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
// assert(0);
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,258 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ConjugateGradientReliableUpdate.h
Copyright (C) 2015
Author: Christopher Kelly <ckelly@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CONJUGATE_GRADIENT_RELIABLE_UPDATE_H
#define GRID_CONJUGATE_GRADIENT_RELIABLE_UPDATE_H
NAMESPACE_BEGIN(Grid);
template<class FieldD,class FieldF,
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class ConjugateGradientReliableUpdate : public LinearFunction<FieldD> {
public:
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
// Defaults true.
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
Integer ReliableUpdatesPerformed;
bool DoFinalCleanup; //Final DP cleanup, defaults to true
Integer IterationsToCleanup; //Final DP cleanup step iterations
LinearOperatorBase<FieldF> &Linop_f;
LinearOperatorBase<FieldD> &Linop_d;
GridBase* SinglePrecGrid;
RealD Delta; //reliable update parameter
//Optional ability to switch to a different linear operator once the tolerance reaches a certain point. Useful for single/half -> single/single
LinearOperatorBase<FieldF> *Linop_fallback;
RealD fallback_transition_tol;
ConjugateGradientReliableUpdate(RealD tol, Integer maxit, RealD _delta, GridBase* _sp_grid, LinearOperatorBase<FieldF> &_Linop_f, LinearOperatorBase<FieldD> &_Linop_d, bool err_on_no_conv = true)
: Tolerance(tol),
MaxIterations(maxit),
Delta(_delta),
Linop_f(_Linop_f),
Linop_d(_Linop_d),
SinglePrecGrid(_sp_grid),
ErrorOnNoConverge(err_on_no_conv),
DoFinalCleanup(true),
Linop_fallback(NULL)
{};
void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){
Linop_fallback = &_Linop_fallback;
fallback_transition_tol = _fallback_transition_tol;
}
void operator()(const FieldD &src, FieldD &psi) {
LinearOperatorBase<FieldF> *Linop_f_use = &Linop_f;
bool using_fallback = false;
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
RealD cp, c, a, d, b, ssq, qq, b_pred;
FieldD p(src);
FieldD mmp(src);
FieldD r(src);
// Initial residual computation & set up
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
Linop_d.HermOpAndNorm(psi, mmp, d, b);
r = src - mmp;
p = r;
a = norm2(p);
cp = a;
ssq = norm2(src);
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: guess " << guess << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: src " << ssq << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: mp " << d << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: mmp " << b << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: cp,r " << cp << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: p " << a << std::endl;
RealD rsq = Tolerance * Tolerance * ssq;
// Check if guess is really REALLY good :)
if (cp <= rsq) {
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate guess was REALLY good\n";
std::cout << GridLogMessage << "\tComputed residual " << std::sqrt(cp / ssq)<<std::endl;
return;
}
//Single prec initialization
FieldF r_f(SinglePrecGrid);
r_f.Checkerboard() = r.Checkerboard();
precisionChange(r_f, r);
FieldF psi_f(r_f);
psi_f = Zero();
FieldF p_f(r_f);
FieldF mmp_f(r_f);
RealD MaxResidSinceLastRelUp = cp; //initial residual
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
GridStopWatch LinalgTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
int k = 0;
int l = 0;
for (k = 1; k <= MaxIterations; k++) {
c = cp;
MatrixTimer.Start();
Linop_f_use->HermOpAndNorm(p_f, mmp_f, d, qq);
MatrixTimer.Stop();
LinalgTimer.Start();
a = c / d;
b_pred = a * (a * qq - d) / c;
cp = axpy_norm(r_f, -a, mmp_f, r_f);
b = cp / c;
// Fuse these loops ; should be really easy
psi_f = a * p_f + psi_f;
//p_f = p_f * b + r_f;
LinalgTimer.Stop();
std::cout << GridLogIterative << "ConjugateGradientReliableUpdate: Iteration " << k
<< " residual " << cp << " target " << rsq << std::endl;
std::cout << GridLogDebug << "a = "<< a << " b_pred = "<< b_pred << " b = "<< b << std::endl;
std::cout << GridLogDebug << "qq = "<< qq << " d = "<< d << " c = "<< c << std::endl;
if(cp > MaxResidSinceLastRelUp){
std::cout << GridLogIterative << "ConjugateGradientReliableUpdate: updating MaxResidSinceLastRelUp : " << MaxResidSinceLastRelUp << " -> " << cp << std::endl;
MaxResidSinceLastRelUp = cp;
}
// Stopping condition
if (cp <= rsq) {
//Although not written in the paper, I assume that I have to add on the final solution
precisionChange(mmp, psi_f);
psi = psi + mmp;
SolverTimer.Stop();
Linop_d.HermOpAndNorm(psi, mmp, d, qq);
p = mmp - src;
RealD srcnorm = std::sqrt(norm2(src));
RealD resnorm = std::sqrt(norm2(p));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate Converged on iteration " << k << " after " << l << " reliable updates" << std::endl;
std::cout << GridLogMessage << "\tComputed residual " << std::sqrt(cp / ssq)<<std::endl;
std::cout << GridLogMessage << "\tTrue residual " << true_residual<<std::endl;
std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl;
std::cout << GridLogMessage << "Time breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
IterationsToComplete = k;
ReliableUpdatesPerformed = l;
if(DoFinalCleanup){
//Do a final CG to cleanup
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate performing final cleanup.\n";
ConjugateGradient<FieldD> CG(Tolerance,MaxIterations);
CG.ErrorOnNoConverge = ErrorOnNoConverge;
CG(Linop_d,src,psi);
IterationsToCleanup = CG.IterationsToComplete;
}
else if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate complete.\n";
return;
}
else if(cp < Delta * MaxResidSinceLastRelUp) { //reliable update
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate "
<< cp << "(residual) < " << Delta << "(Delta) * " << MaxResidSinceLastRelUp << "(MaxResidSinceLastRelUp) on iteration " << k << " : performing reliable update\n";
precisionChange(mmp, psi_f);
psi = psi + mmp;
Linop_d.HermOpAndNorm(psi, mmp, d, qq);
r = src - mmp;
psi_f = Zero();
precisionChange(r_f, r);
cp = norm2(r);
MaxResidSinceLastRelUp = cp;
b = cp/c;
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate new residual " << cp << std::endl;
l = l+1;
}
p_f = p_f * b + r_f; //update search vector after reliable update appears to help convergence
if(!using_fallback && Linop_fallback != NULL && cp < fallback_transition_tol){
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate switching to fallback linear operator on iteration " << k << " at residual " << cp << std::endl;
Linop_f_use = Linop_fallback;
using_fallback = true;
}
}
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate did NOT converge"
<< std::endl;
if (ErrorOnNoConverge) assert(0);
IterationsToComplete = k;
ReliableUpdatesPerformed = l;
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,113 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ConjugateResidual.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CONJUGATE_RESIDUAL_H
#define GRID_CONJUGATE_RESIDUAL_H
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////
// Base classes for iterative processes based on operators
// single input vec, single output vec.
/////////////////////////////////////////////////////////////
template<class Field>
class ConjugateResidual : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
RealD Tolerance;
Integer MaxIterations;
int verbose;
ConjugateResidual(RealD tol,Integer maxit) : Tolerance(tol), MaxIterations(maxit) {
verbose=0;
};
void operator() (LinearOperatorBase<Field> &Linop,const Field &src, Field &psi){
RealD a, b; // c, d;
RealD cp, ssq,rsq;
RealD rAr, rAAr, rArp;
RealD pAp, pAAp;
GridBase *grid = src.Grid();
psi=Zero();
Field r(grid), p(grid), Ap(grid), Ar(grid);
r=src;
p=src;
Linop.HermOpAndNorm(p,Ap,pAp,pAAp);
Linop.HermOpAndNorm(r,Ar,rAr,rAAr);
cp =norm2(r);
ssq=norm2(src);
rsq=Tolerance*Tolerance*ssq;
if (verbose) std::cout<<GridLogMessage<<"ConjugateResidual: iteration " <<0<<" residual "<<cp<< " target"<< rsq<<std::endl;
for(int k=1;k<MaxIterations;k++){
a = rAr/pAAp;
axpy(psi,a,p,psi);
cp = axpy_norm(r,-a,Ap,r);
rArp=rAr;
Linop.HermOpAndNorm(r,Ar,rAr,rAAr);
b =rAr/rArp;
axpy(p,b,p,r);
pAAp=axpy_norm(Ap,b,Ap,Ar);
if(verbose) std::cout<<GridLogMessage<<"ConjugateResidual: iteration " <<k<<" residual "<<cp<< " target"<< rsq<<std::endl;
if(cp<rsq) {
Linop.HermOp(psi,Ap);
axpy(r,-1.0,src,Ap);
RealD true_resid = norm2(r)/ssq;
std::cout<<GridLogMessage<<"ConjugateResidual: Converged on iteration " <<k
<< " computed residual "<<std::sqrt(cp/ssq)
<< " true residual "<<std::sqrt(true_resid)
<< " target " <<Tolerance <<std::endl;
return;
}
}
std::cout<<GridLogMessage<<"ConjugateResidual did NOT converge"<<std::endl;
assert(0);
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,258 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/FlexibleCommunicationAvoidingGeneralisedMinimalResidual.h
Copyright (C) 2015
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_FLEXIBLE_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
#define GRID_FLEXIBLE_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
namespace Grid {
template<class Field>
class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // Throw an assert when FCAGMRES fails to converge,
// defaults to true
RealD Tolerance;
Integer MaxIterations;
Integer RestartLength;
Integer MaxNumberOfRestarts;
Integer IterationCount; // Number of iterations the FCAGMRES took to finish,
// filled in upon completion
GridStopWatch MatrixTimer;
GridStopWatch PrecTimer;
GridStopWatch LinalgTimer;
GridStopWatch QrTimer;
GridStopWatch CompSolutionTimer;
Eigen::MatrixXcd H;
std::vector<ComplexD> y;
std::vector<ComplexD> gamma;
std::vector<ComplexD> c;
std::vector<ComplexD> s;
LinearFunction<Field> &Preconditioner;
FlexibleCommunicationAvoidingGeneralisedMinimalResidual(RealD tol,
Integer maxit,
LinearFunction<Field> &Prec,
Integer restart_length,
bool err_on_no_conv = true)
: Tolerance(tol)
, MaxIterations(maxit)
, RestartLength(restart_length)
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
, ErrorOnNoConverge(err_on_no_conv)
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
, y(RestartLength + 1, 0.)
, gamma(RestartLength + 1, 0.)
, c(RestartLength + 1, 0.)
, s(RestartLength + 1, 0.)
, Preconditioner(Prec) {};
void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
std::cout << GridLogWarning << "This algorithm currently doesn't differ from regular FGMRES" << std::endl;
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
RealD cp;
RealD ssq = norm2(src);
RealD rsq = Tolerance * Tolerance * ssq;
Field r(src.Grid());
std::cout << std::setprecision(4) << std::scientific;
std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: guess " << guess << std::endl;
std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: src " << ssq << std::endl;
PrecTimer.Reset();
MatrixTimer.Reset();
LinalgTimer.Reset();
QrTimer.Reset();
CompSolutionTimer.Reset();
GridStopWatch SolverTimer;
SolverTimer.Start();
IterationCount = 0;
for (int k=0; k<MaxNumberOfRestarts; k++) {
cp = outerLoopBody(LinOp, src, psi, rsq);
// Stopping condition
if (cp <= rsq) {
SolverTimer.Stop();
LinOp.Op(psi,r);
axpy(r,-1.0,src,r);
RealD srcnorm = sqrt(ssq);
RealD resnorm = sqrt(norm2(r));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: Converged on iteration " << IterationCount
<< " computed residual " << sqrt(cp / ssq)
<< " true residual " << true_residual
<< " target " << Tolerance << std::endl;
std::cout << GridLogMessage << "FCAGMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FCAGMRES Time elapsed: Precon " << PrecTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FCAGMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FCAGMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FCAGMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FCAGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
return;
}
}
std::cout << GridLogMessage << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl;
if (ErrorOnNoConverge)
assert(0);
}
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
RealD cp = 0;
Field w(src.Grid());
Field r(src.Grid());
// these should probably be made class members so that they are only allocated once, not in every restart
std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
std::vector<Field> z(RestartLength + 1, src.Grid()); for (auto &elem : z) elem = Zero();
MatrixTimer.Start();
LinOp.Op(psi, w);
MatrixTimer.Stop();
LinalgTimer.Start();
r = src - w;
gamma[0] = sqrt(norm2(r));
v[0] = (1. / gamma[0]) * r;
LinalgTimer.Stop();
for (int i=0; i<RestartLength; i++) {
IterationCount++;
arnoldiStep(LinOp, v, z, w, i);
qrUpdate(i);
cp = norm(gamma[i+1]);
std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: Iteration " << IterationCount
<< " residual " << cp << " target " << rsq << std::endl;
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
computeSolution(z, psi, i);
return cp;
}
}
assert(0); // Never reached
return cp;
}
void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, std::vector<Field> &z, Field &w, int iter) {
PrecTimer.Start();
Preconditioner(v[iter], z[iter]);
PrecTimer.Stop();
MatrixTimer.Start();
LinOp.Op(z[iter], w);
MatrixTimer.Stop();
LinalgTimer.Start();
for (int i = 0; i <= iter; ++i) {
H(iter, i) = innerProduct(v[i], w);
w = w - ComplexD(H(iter, i)) * v[i];
}
H(iter, iter + 1) = sqrt(norm2(w));
v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
LinalgTimer.Stop();
}
void qrUpdate(int iter) {
QrTimer.Start();
for (int i = 0; i < iter ; ++i) {
auto tmp = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
H(iter, i) = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
H(iter, i + 1) = tmp;
}
// Compute new Givens Rotation
auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
c[iter] = H(iter, iter) / nu;
s[iter] = H(iter, iter + 1) / nu;
// Apply new Givens rotation
H(iter, iter) = nu;
H(iter, iter + 1) = 0.;
gamma[iter + 1] = -s[iter] * gamma[iter];
gamma[iter] = conjugate(c[iter]) * gamma[iter];
QrTimer.Stop();
}
void computeSolution(std::vector<Field> const &z, Field &psi, int iter) {
CompSolutionTimer.Start();
for (int i = iter; i >= 0; i--) {
y[i] = gamma[i];
for (int k = i + 1; k <= iter; k++)
y[i] = y[i] - ComplexD(H(k, i)) * y[k];
y[i] = y[i] / ComplexD(H(i, i));
}
for (int i = 0; i <= iter; i++)
psi = psi + z[i] * y[i];
CompSolutionTimer.Stop();
}
};
}
#endif

View File

@ -1,256 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/FlexibleGeneralisedMinimalResidual.h
Copyright (C) 2015
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
#define GRID_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
namespace Grid {
template<class Field>
class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // Throw an assert when FGMRES fails to converge,
// defaults to true
RealD Tolerance;
Integer MaxIterations;
Integer RestartLength;
Integer MaxNumberOfRestarts;
Integer IterationCount; // Number of iterations the FGMRES took to finish,
// filled in upon completion
GridStopWatch MatrixTimer;
GridStopWatch PrecTimer;
GridStopWatch LinalgTimer;
GridStopWatch QrTimer;
GridStopWatch CompSolutionTimer;
Eigen::MatrixXcd H;
std::vector<ComplexD> y;
std::vector<ComplexD> gamma;
std::vector<ComplexD> c;
std::vector<ComplexD> s;
LinearFunction<Field> &Preconditioner;
FlexibleGeneralisedMinimalResidual(RealD tol,
Integer maxit,
LinearFunction<Field> &Prec,
Integer restart_length,
bool err_on_no_conv = true)
: Tolerance(tol)
, MaxIterations(maxit)
, RestartLength(restart_length)
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
, ErrorOnNoConverge(err_on_no_conv)
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
, y(RestartLength + 1, 0.)
, gamma(RestartLength + 1, 0.)
, c(RestartLength + 1, 0.)
, s(RestartLength + 1, 0.)
, Preconditioner(Prec) {};
void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
RealD cp;
RealD ssq = norm2(src);
RealD rsq = Tolerance * Tolerance * ssq;
Field r(src.Grid());
std::cout << std::setprecision(4) << std::scientific;
std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual: guess " << guess << std::endl;
std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual: src " << ssq << std::endl;
PrecTimer.Reset();
MatrixTimer.Reset();
LinalgTimer.Reset();
QrTimer.Reset();
CompSolutionTimer.Reset();
GridStopWatch SolverTimer;
SolverTimer.Start();
IterationCount = 0;
for (int k=0; k<MaxNumberOfRestarts; k++) {
cp = outerLoopBody(LinOp, src, psi, rsq);
// Stopping condition
if (cp <= rsq) {
SolverTimer.Stop();
LinOp.Op(psi,r);
axpy(r,-1.0,src,r);
RealD srcnorm = sqrt(ssq);
RealD resnorm = sqrt(norm2(r));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "FlexibleGeneralisedMinimalResidual: Converged on iteration " << IterationCount
<< " computed residual " << sqrt(cp / ssq)
<< " true residual " << true_residual
<< " target " << Tolerance << std::endl;
std::cout << GridLogMessage << "FGMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FGMRES Time elapsed: Precon " << PrecTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FGMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FGMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FGMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "FGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
return;
}
}
std::cout << GridLogMessage << "FlexibleGeneralisedMinimalResidual did NOT converge" << std::endl;
if (ErrorOnNoConverge)
assert(0);
}
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
RealD cp = 0;
Field w(src.Grid());
Field r(src.Grid());
// these should probably be made class members so that they are only allocated once, not in every restart
std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
std::vector<Field> z(RestartLength + 1, src.Grid()); for (auto &elem : z) elem = Zero();
MatrixTimer.Start();
LinOp.Op(psi, w);
MatrixTimer.Stop();
LinalgTimer.Start();
r = src - w;
gamma[0] = sqrt(norm2(r));
v[0] = (1. / gamma[0]) * r;
LinalgTimer.Stop();
for (int i=0; i<RestartLength; i++) {
IterationCount++;
arnoldiStep(LinOp, v, z, w, i);
qrUpdate(i);
cp = norm(gamma[i+1]);
std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual: Iteration " << IterationCount
<< " residual " << cp << " target " << rsq << std::endl;
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
computeSolution(z, psi, i);
return cp;
}
}
assert(0); // Never reached
return cp;
}
void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, std::vector<Field> &z, Field &w, int iter) {
PrecTimer.Start();
Preconditioner(v[iter], z[iter]);
PrecTimer.Stop();
MatrixTimer.Start();
LinOp.Op(z[iter], w);
MatrixTimer.Stop();
LinalgTimer.Start();
for (int i = 0; i <= iter; ++i) {
H(iter, i) = innerProduct(v[i], w);
w = w - ComplexD(H(iter, i)) * v[i];
}
H(iter, iter + 1) = sqrt(norm2(w));
v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
LinalgTimer.Stop();
}
void qrUpdate(int iter) {
QrTimer.Start();
for (int i = 0; i < iter ; ++i) {
auto tmp = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
H(iter, i) = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
H(iter, i + 1) = tmp;
}
// Compute new Givens Rotation
auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
c[iter] = H(iter, iter) / nu;
s[iter] = H(iter, iter + 1) / nu;
// Apply new Givens rotation
H(iter, iter) = nu;
H(iter, iter + 1) = 0.;
gamma[iter + 1] = -s[iter] * gamma[iter];
gamma[iter] = conjugate(c[iter]) * gamma[iter];
QrTimer.Stop();
}
void computeSolution(std::vector<Field> const &z, Field &psi, int iter) {
CompSolutionTimer.Start();
for (int i = iter; i >= 0; i--) {
y[i] = gamma[i];
for (int k = i + 1; k <= iter; k++)
y[i] = y[i] - ComplexD(H(k, i)) * y[k];
y[i] = y[i] / ComplexD(H(i, i));
}
for (int i = 0; i <= iter; i++)
psi = psi + z[i] * y[i];
CompSolutionTimer.Stop();
}
};
}
#endif

View File

@ -1,244 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/GeneralisedMinimalResidual.h
Copyright (C) 2015
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_GENERALISED_MINIMAL_RESIDUAL_H
#define GRID_GENERALISED_MINIMAL_RESIDUAL_H
namespace Grid {
template<class Field>
class GeneralisedMinimalResidual : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // Throw an assert when GMRES fails to converge,
// defaults to true
RealD Tolerance;
Integer MaxIterations;
Integer RestartLength;
Integer MaxNumberOfRestarts;
Integer IterationCount; // Number of iterations the GMRES took to finish,
// filled in upon completion
GridStopWatch MatrixTimer;
GridStopWatch LinalgTimer;
GridStopWatch QrTimer;
GridStopWatch CompSolutionTimer;
Eigen::MatrixXcd H;
std::vector<ComplexD> y;
std::vector<ComplexD> gamma;
std::vector<ComplexD> c;
std::vector<ComplexD> s;
GeneralisedMinimalResidual(RealD tol,
Integer maxit,
Integer restart_length,
bool err_on_no_conv = true)
: Tolerance(tol)
, MaxIterations(maxit)
, RestartLength(restart_length)
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
, ErrorOnNoConverge(err_on_no_conv)
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
, y(RestartLength + 1, 0.)
, gamma(RestartLength + 1, 0.)
, c(RestartLength + 1, 0.)
, s(RestartLength + 1, 0.) {};
void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
RealD cp;
RealD ssq = norm2(src);
RealD rsq = Tolerance * Tolerance * ssq;
Field r(src.Grid());
std::cout << std::setprecision(4) << std::scientific;
std::cout << GridLogIterative << "GeneralisedMinimalResidual: guess " << guess << std::endl;
std::cout << GridLogIterative << "GeneralisedMinimalResidual: src " << ssq << std::endl;
MatrixTimer.Reset();
LinalgTimer.Reset();
QrTimer.Reset();
CompSolutionTimer.Reset();
GridStopWatch SolverTimer;
SolverTimer.Start();
IterationCount = 0;
for (int k=0; k<MaxNumberOfRestarts; k++) {
cp = outerLoopBody(LinOp, src, psi, rsq);
// Stopping condition
if (cp <= rsq) {
SolverTimer.Stop();
LinOp.Op(psi,r);
axpy(r,-1.0,src,r);
RealD srcnorm = sqrt(ssq);
RealD resnorm = sqrt(norm2(r));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "GeneralisedMinimalResidual: Converged on iteration " << IterationCount
<< " computed residual " << sqrt(cp / ssq)
<< " true residual " << true_residual
<< " target " << Tolerance << std::endl;
std::cout << GridLogMessage << "GMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "GMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "GMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "GMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "GMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
return;
}
}
std::cout << GridLogMessage << "GeneralisedMinimalResidual did NOT converge" << std::endl;
if (ErrorOnNoConverge)
assert(0);
}
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
RealD cp = 0;
Field w(src.Grid());
Field r(src.Grid());
// this should probably be made a class member so that it is only allocated once, not in every restart
std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
MatrixTimer.Start();
LinOp.Op(psi, w);
MatrixTimer.Stop();
LinalgTimer.Start();
r = src - w;
gamma[0] = sqrt(norm2(r));
v[0] = (1. / gamma[0]) * r;
LinalgTimer.Stop();
for (int i=0; i<RestartLength; i++) {
IterationCount++;
arnoldiStep(LinOp, v, w, i);
qrUpdate(i);
cp = norm(gamma[i+1]);
std::cout << GridLogIterative << "GeneralisedMinimalResidual: Iteration " << IterationCount
<< " residual " << cp << " target " << rsq << std::endl;
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
computeSolution(v, psi, i);
return cp;
}
}
assert(0); // Never reached
return cp;
}
void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, Field &w, int iter) {
MatrixTimer.Start();
LinOp.Op(v[iter], w);
MatrixTimer.Stop();
LinalgTimer.Start();
for (int i = 0; i <= iter; ++i) {
H(iter, i) = innerProduct(v[i], w);
w = w - ComplexD(H(iter, i)) * v[i];
}
H(iter, iter + 1) = sqrt(norm2(w));
v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
LinalgTimer.Stop();
}
void qrUpdate(int iter) {
QrTimer.Start();
for (int i = 0; i < iter ; ++i) {
auto tmp = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
H(iter, i) = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
H(iter, i + 1) = tmp;
}
// Compute new Givens Rotation
auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
c[iter] = H(iter, iter) / nu;
s[iter] = H(iter, iter + 1) / nu;
// Apply new Givens rotation
H(iter, iter) = nu;
H(iter, iter + 1) = 0.;
gamma[iter + 1] = -s[iter] * gamma[iter];
gamma[iter] = conjugate(c[iter]) * gamma[iter];
QrTimer.Stop();
}
void computeSolution(std::vector<Field> const &v, Field &psi, int iter) {
CompSolutionTimer.Start();
for (int i = iter; i >= 0; i--) {
y[i] = gamma[i];
for (int k = i + 1; k <= iter; k++)
y[i] = y[i] - ComplexD(H(k, i)) * y[k];
y[i] = y[i] / ComplexD(H(i, i));
}
for (int i = 0; i <= iter; i++)
psi = psi + v[i] * y[i];
CompSolutionTimer.Stop();
}
};
}
#endif

View File

@ -1,157 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/MinimalResidual.h
Copyright (C) 2015
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_MINIMAL_RESIDUAL_H
#define GRID_MINIMAL_RESIDUAL_H
namespace Grid {
template<class Field> class MinimalResidual : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // throw an assert when the MR fails to converge.
// Defaults true.
RealD Tolerance;
Integer MaxIterations;
RealD overRelaxParam;
Integer IterationsToComplete; // Number of iterations the MR took to finish.
// Filled in upon completion
MinimalResidual(RealD tol, Integer maxit, Real ovrelparam = 1.0, bool err_on_no_conv = true)
: Tolerance(tol), MaxIterations(maxit), overRelaxParam(ovrelparam), ErrorOnNoConverge(err_on_no_conv){};
void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
ComplexD a, c;
RealD d;
Field Mr(src);
Field r(src);
// Initial residual computation & set up
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
RealD ssq = norm2(src);
RealD rsq = Tolerance * Tolerance * ssq;
Linop.Op(psi, Mr);
r = src - Mr;
RealD cp = norm2(r);
std::cout << std::setprecision(4) << std::scientific;
std::cout << GridLogIterative << "MinimalResidual: guess " << guess << std::endl;
std::cout << GridLogIterative << "MinimalResidual: src " << ssq << std::endl;
std::cout << GridLogIterative << "MinimalResidual: cp,r " << cp << std::endl;
if (cp <= rsq) {
return;
}
std::cout << GridLogIterative << "MinimalResidual: k=0 residual " << cp << " target " << rsq << std::endl;
GridStopWatch LinalgTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
int k;
for (k = 1; k <= MaxIterations; k++) {
MatrixTimer.Start();
Linop.Op(r, Mr);
MatrixTimer.Stop();
LinalgTimer.Start();
c = innerProduct(Mr, r);
d = norm2(Mr);
a = c / d;
a = a * overRelaxParam;
psi = psi + r * a;
r = r - Mr * a;
cp = norm2(r);
LinalgTimer.Stop();
std::cout << GridLogIterative << "MinimalResidual: Iteration " << k
<< " residual " << cp << " target " << rsq << std::endl;
std::cout << GridLogDebug << "a = " << a << " c = " << c << " d = " << d << std::endl;
// Stopping condition
if (cp <= rsq) {
SolverTimer.Stop();
Linop.Op(psi, Mr);
r = src - Mr;
RealD srcnorm = sqrt(ssq);
RealD resnorm = sqrt(norm2(r));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "MinimalResidual Converged on iteration " << k
<< " computed residual " << sqrt(cp / ssq)
<< " true residual " << true_residual
<< " target " << Tolerance << std::endl;
std::cout << GridLogMessage << "MR Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "MR Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "MR Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
if (ErrorOnNoConverge)
assert(true_residual / Tolerance < 10000.0);
IterationsToComplete = k;
return;
}
}
std::cout << GridLogMessage << "MinimalResidual did NOT converge"
<< std::endl;
if (ErrorOnNoConverge)
assert(0);
IterationsToComplete = k;
}
};
} // namespace Grid
#endif

View File

@ -1,276 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h
Copyright (C) 2015
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_MIXED_PRECISION_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
#define GRID_MIXED_PRECISION_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
namespace Grid {
template<class FieldD, class FieldF, typename std::enable_if<getPrecision<FieldD>::value == 2, int>::type = 0, typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction<FieldD> {
public:
using OperatorFunction<FieldD>::operator();
bool ErrorOnNoConverge; // Throw an assert when MPFGMRES fails to converge,
// defaults to true
RealD Tolerance;
Integer MaxIterations;
Integer RestartLength;
Integer MaxNumberOfRestarts;
Integer IterationCount; // Number of iterations the MPFGMRES took to finish,
// filled in upon completion
GridStopWatch MatrixTimer;
GridStopWatch PrecTimer;
GridStopWatch LinalgTimer;
GridStopWatch QrTimer;
GridStopWatch CompSolutionTimer;
GridStopWatch ChangePrecTimer;
Eigen::MatrixXcd H;
std::vector<ComplexD> y;
std::vector<ComplexD> gamma;
std::vector<ComplexD> c;
std::vector<ComplexD> s;
GridBase* SinglePrecGrid;
LinearFunction<FieldF> &Preconditioner;
MixedPrecisionFlexibleGeneralisedMinimalResidual(RealD tol,
Integer maxit,
GridBase * sp_grid,
LinearFunction<FieldF> &Prec,
Integer restart_length,
bool err_on_no_conv = true)
: Tolerance(tol)
, MaxIterations(maxit)
, RestartLength(restart_length)
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
, ErrorOnNoConverge(err_on_no_conv)
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
, y(RestartLength + 1, 0.)
, gamma(RestartLength + 1, 0.)
, c(RestartLength + 1, 0.)
, s(RestartLength + 1, 0.)
, SinglePrecGrid(sp_grid)
, Preconditioner(Prec) {};
void operator()(LinearOperatorBase<FieldD> &LinOp, const FieldD &src, FieldD &psi) {
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
RealD cp;
RealD ssq = norm2(src);
RealD rsq = Tolerance * Tolerance * ssq;
FieldD r(src.Grid());
std::cout << std::setprecision(4) << std::scientific;
std::cout << GridLogIterative << "MPFGMRES: guess " << guess << std::endl;
std::cout << GridLogIterative << "MPFGMRES: src " << ssq << std::endl;
PrecTimer.Reset();
MatrixTimer.Reset();
LinalgTimer.Reset();
QrTimer.Reset();
CompSolutionTimer.Reset();
ChangePrecTimer.Reset();
GridStopWatch SolverTimer;
SolverTimer.Start();
IterationCount = 0;
for (int k=0; k<MaxNumberOfRestarts; k++) {
cp = outerLoopBody(LinOp, src, psi, rsq);
// Stopping condition
if (cp <= rsq) {
SolverTimer.Stop();
LinOp.Op(psi,r);
axpy(r,-1.0,src,r);
RealD srcnorm = sqrt(ssq);
RealD resnorm = sqrt(norm2(r));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "MPFGMRES: Converged on iteration " << IterationCount
<< " computed residual " << sqrt(cp / ssq)
<< " true residual " << true_residual
<< " target " << Tolerance << std::endl;
std::cout << GridLogMessage << "MPFGMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "MPFGMRES Time elapsed: Precon " << PrecTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "MPFGMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "MPFGMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "MPFGMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "MPFGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "MPFGMRES Time elapsed: PrecChange " << ChangePrecTimer.Elapsed() << std::endl;
return;
}
}
std::cout << GridLogMessage << "MPFGMRES did NOT converge" << std::endl;
if (ErrorOnNoConverge)
assert(0);
}
RealD outerLoopBody(LinearOperatorBase<FieldD> &LinOp, const FieldD &src, FieldD &psi, RealD rsq) {
RealD cp = 0;
FieldD w(src.Grid());
FieldD r(src.Grid());
// these should probably be made class members so that they are only allocated once, not in every restart
std::vector<FieldD> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
std::vector<FieldD> z(RestartLength + 1, src.Grid()); for (auto &elem : z) elem = Zero();
MatrixTimer.Start();
LinOp.Op(psi, w);
MatrixTimer.Stop();
LinalgTimer.Start();
r = src - w;
gamma[0] = sqrt(norm2(r));
v[0] = (1. / gamma[0]) * r;
LinalgTimer.Stop();
for (int i=0; i<RestartLength; i++) {
IterationCount++;
arnoldiStep(LinOp, v, z, w, i);
qrUpdate(i);
cp = norm(gamma[i+1]);
std::cout << GridLogIterative << "MPFGMRES: Iteration " << IterationCount
<< " residual " << cp << " target " << rsq << std::endl;
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
computeSolution(z, psi, i);
return cp;
}
}
assert(0); // Never reached
return cp;
}
void arnoldiStep(LinearOperatorBase<FieldD> &LinOp, std::vector<FieldD> &v, std::vector<FieldD> &z, FieldD &w, int iter) {
FieldF v_f(SinglePrecGrid);
FieldF z_f(SinglePrecGrid);
ChangePrecTimer.Start();
precisionChange(v_f, v[iter]);
precisionChange(z_f, z[iter]);
ChangePrecTimer.Stop();
PrecTimer.Start();
Preconditioner(v_f, z_f);
PrecTimer.Stop();
ChangePrecTimer.Start();
precisionChange(z[iter], z_f);
ChangePrecTimer.Stop();
MatrixTimer.Start();
LinOp.Op(z[iter], w);
MatrixTimer.Stop();
LinalgTimer.Start();
for (int i = 0; i <= iter; ++i) {
H(iter, i) = innerProduct(v[i], w);
w = w - ComplexD(H(iter, i)) * v[i];
}
H(iter, iter + 1) = sqrt(norm2(w));
v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
LinalgTimer.Stop();
}
void qrUpdate(int iter) {
QrTimer.Start();
for (int i = 0; i < iter ; ++i) {
auto tmp = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
H(iter, i) = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
H(iter, i + 1) = tmp;
}
// Compute new Givens Rotation
auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
c[iter] = H(iter, iter) / nu;
s[iter] = H(iter, iter + 1) / nu;
// Apply new Givens rotation
H(iter, iter) = nu;
H(iter, iter + 1) = 0.;
gamma[iter + 1] = -s[iter] * gamma[iter];
gamma[iter] = conjugate(c[iter]) * gamma[iter];
QrTimer.Stop();
}
void computeSolution(std::vector<FieldD> const &z, FieldD &psi, int iter) {
CompSolutionTimer.Start();
for (int i = iter; i >= 0; i--) {
y[i] = gamma[i];
for (int k = i + 1; k <= iter; k++)
y[i] = y[i] - ComplexD(H(k, i)) * y[k];
y[i] = y[i] / ComplexD(H(i, i));
}
for (int i = 0; i <= iter; i++)
psi = psi + z[i] * y[i];
CompSolutionTimer.Stop();
}
};
}
#endif

View File

@ -1,112 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/NormalEquations.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_NORMAL_EQUATIONS_H
#define GRID_NORMAL_EQUATIONS_H
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Take a matrix and form an NE solver calling a Herm solver
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class NormalEquations {
private:
SparseMatrixBase<Field> & _Matrix;
OperatorFunction<Field> & _HermitianSolver;
LinearFunction<Field> & _Guess;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations trick
/////////////////////////////////////////////////////
NormalEquations(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver,
LinearFunction<Field> &Guess)
: _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {};
void operator() (const Field &in, Field &out){
Field src(in.Grid());
Field tmp(in.Grid());
MdagMLinearOperator<SparseMatrixBase<Field>,Field> MdagMOp(_Matrix);
_Matrix.Mdag(in,src);
_Guess(src,out);
_HermitianSolver(MdagMOp,src,out); // Mdag M out = Mdag in
}
};
template<class Field> class HPDSolver {
private:
LinearOperatorBase<Field> & _Matrix;
OperatorFunction<Field> & _HermitianSolver;
LinearFunction<Field> & _Guess;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations trick
/////////////////////////////////////////////////////
HPDSolver(LinearOperatorBase<Field> &Matrix,
OperatorFunction<Field> &HermitianSolver,
LinearFunction<Field> &Guess)
: _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {};
void operator() (const Field &in, Field &out){
_Guess(in,out);
_HermitianSolver(_Matrix,in,out); // Mdag M out = Mdag in
}
};
template<class Field> class MdagMSolver {
private:
SparseMatrixBase<Field> & _Matrix;
OperatorFunction<Field> & _HermitianSolver;
LinearFunction<Field> & _Guess;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations trick
/////////////////////////////////////////////////////
MdagMSolver(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver,
LinearFunction<Field> &Guess)
: _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {};
void operator() (const Field &in, Field &out){
MdagMLinearOperator<SparseMatrixBase<Field>,Field> MdagMOp(_Matrix);
_Guess(in,out);
_HermitianSolver(MdagMOp,in,out); // Mdag M out = Mdag in
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,45 +0,0 @@
#pragma once
namespace Grid {
template<class Field> class PowerMethod
{
public:
template<typename T> static RealD normalise(T& v)
{
RealD nn = norm2(v);
nn = sqrt(nn);
v = v * (1.0/nn);
return nn;
}
RealD operator()(LinearOperatorBase<Field> &HermOp, const Field &src)
{
GridBase *grid = src.Grid();
// quickly get an idea of the largest eigenvalue to more properly normalize the residuum
RealD evalMaxApprox = 0.0;
auto src_n = src;
auto tmp = src;
const int _MAX_ITER_EST_ = 50;
for (int i=0;i<_MAX_ITER_EST_;i++) {
normalise(src_n);
HermOp.HermOp(src_n,tmp);
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
RealD vden = norm2(src_n);
RealD na = vnum/vden;
if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) {
evalMaxApprox = na;
std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
return evalMaxApprox;
}
evalMaxApprox = na;
src_n = tmp;
}
assert(0);
return 0;
}
};
}

View File

@ -1,119 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/PrecConjugateResidual.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_PREC_CONJUGATE_RESIDUAL_H
#define GRID_PREC_CONJUGATE_RESIDUAL_H
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////
// Base classes for iterative processes based on operators
// single input vec, single output vec.
/////////////////////////////////////////////////////////////
template<class Field>
class PrecConjugateResidual : public OperatorFunction<Field> {
public:
RealD Tolerance;
Integer MaxIterations;
int verbose;
LinearFunction<Field> &Preconditioner;
PrecConjugateResidual(RealD tol,Integer maxit,LinearFunction<Field> &Prec) : Tolerance(tol), MaxIterations(maxit), Preconditioner(Prec)
{
verbose=1;
};
void operator() (LinearOperatorBase<Field> &Linop,const Field &src, Field &psi){
RealD a, b, c, d;
RealD cp, ssq,rsq;
RealD rAr, rAAr, rArp;
RealD pAp, pAAp;
GridBase *grid = src.Grid();
Field r(grid), p(grid), Ap(grid), Ar(grid), z(grid);
psi=zero;
r = src;
Preconditioner(r,p);
Linop.HermOpAndNorm(p,Ap,pAp,pAAp);
Ar=Ap;
rAr=pAp;
rAAr=pAAp;
cp =norm2(r);
ssq=norm2(src);
rsq=Tolerance*Tolerance*ssq;
if (verbose) std::cout<<GridLogMessage<<"PrecConjugateResidual: iteration " <<0<<" residual "<<cp<< " target"<< rsq<<std::endl;
for(int k=0;k<MaxIterations;k++){
Preconditioner(Ap,z);
RealD rq= real(innerProduct(Ap,z));
a = rAr/rq;
axpy(psi,a,p,psi);
cp = axpy_norm(r,-a,z,r);
rArp=rAr;
Linop.HermOpAndNorm(r,Ar,rAr,rAAr);
b =rAr/rArp;
axpy(p,b,p,r);
pAAp=axpy_norm(Ap,b,Ap,Ar);
if(verbose) std::cout<<GridLogMessage<<"PrecConjugateResidual: iteration " <<k<<" residual "<<cp<< " target"<< rsq<<std::endl;
if(cp<rsq) {
Linop.HermOp(psi,Ap);
axpy(r,-1.0,src,Ap);
RealD true_resid = norm2(r)/ssq;
std::cout<<GridLogMessage<<"PrecConjugateResidual: Converged on iteration " <<k
<< " computed residual "<<sqrt(cp/ssq)
<< " true residual "<<sqrt(true_resid)
<< " target " <<Tolerance <<std::endl;
return;
}
}
std::cout<<GridLogMessage<<"PrecConjugateResidual did NOT converge"<<std::endl;
assert(0);
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,239 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/PrecGeneralisedConjugateResidual.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_PREC_GCR_H
#define GRID_PREC_GCR_H
///////////////////////////////////////////////////////////////////////////////////////////////////////
//VPGCR Abe and Zhang, 2005.
//INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING
//Computing and Information Volume 2, Number 2, Pages 147-161
//NB. Likely not original reference since they are focussing on a preconditioner variant.
// but VPGCR was nicely written up in their paper
///////////////////////////////////////////////////////////////////////////////////////////////////////
NAMESPACE_BEGIN(Grid);
#define GCRLogLevel std::cout << GridLogMessage <<std::string(level,'\t')<< " Level "<<level<<" "
template<class Field>
class PrecGeneralisedConjugateResidual : public LinearFunction<Field> {
public:
RealD Tolerance;
Integer MaxIterations;
int verbose;
int mmax;
int nstep;
int steps;
int level;
GridStopWatch PrecTimer;
GridStopWatch MatTimer;
GridStopWatch LinalgTimer;
LinearFunction<Field> &Preconditioner;
LinearOperatorBase<Field> &Linop;
void Level(int lv) { level=lv; };
PrecGeneralisedConjugateResidual(RealD tol,Integer maxit,LinearOperatorBase<Field> &_Linop,LinearFunction<Field> &Prec,int _mmax,int _nstep) :
Tolerance(tol),
MaxIterations(maxit),
Linop(_Linop),
Preconditioner(Prec),
mmax(_mmax),
nstep(_nstep)
{
level=1;
verbose=1;
};
void operator() (const Field &src, Field &psi){
psi=Zero();
RealD cp, ssq,rsq;
ssq=norm2(src);
rsq=Tolerance*Tolerance*ssq;
Field r(src.Grid());
PrecTimer.Reset();
MatTimer.Reset();
LinalgTimer.Reset();
GridStopWatch SolverTimer;
SolverTimer.Start();
steps=0;
for(int k=0;k<MaxIterations;k++){
cp=GCRnStep(src,psi,rsq);
GCRLogLevel <<"PGCR("<<mmax<<","<<nstep<<") "<< steps <<" steps cp = "<<cp<<" target "<<rsq <<std::endl;
if(cp<rsq) {
SolverTimer.Stop();
Linop.HermOp(psi,r);
axpy(r,-1.0,src,r);
RealD tr = norm2(r);
GCRLogLevel<<"PGCR: Converged on iteration " <<steps
<< " computed residual "<<sqrt(cp/ssq)
<< " true residual " <<sqrt(tr/ssq)
<< " target " <<Tolerance <<std::endl;
GCRLogLevel<<"PGCR Time elapsed: Total "<< SolverTimer.Elapsed() <<std::endl;
/*
GCRLogLevel<<"PGCR Time elapsed: Precon "<< PrecTimer.Elapsed() <<std::endl;
GCRLogLevel<<"PGCR Time elapsed: Matrix "<< MatTimer.Elapsed() <<std::endl;
GCRLogLevel<<"PGCR Time elapsed: Linalg "<< LinalgTimer.Elapsed() <<std::endl;
*/
return;
}
}
GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl;
// assert(0);
}
RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
RealD cp;
RealD a, b;
RealD zAz, zAAz;
RealD rq;
GridBase *grid = src.Grid();
Field r(grid);
Field z(grid);
Field tmp(grid);
Field ttmp(grid);
Field Az(grid);
////////////////////////////////
// history for flexible orthog
////////////////////////////////
std::vector<Field> q(mmax,grid);
std::vector<Field> p(mmax,grid);
std::vector<RealD> qq(mmax);
GCRLogLevel<< "PGCR nStep("<<nstep<<")"<<std::endl;
//////////////////////////////////
// initial guess x0 is taken as nonzero.
// r0=src-A x0 = src
//////////////////////////////////
MatTimer.Start();
Linop.HermOpAndNorm(psi,Az,zAz,zAAz);
MatTimer.Stop();
LinalgTimer.Start();
r=src-Az;
LinalgTimer.Stop();
GCRLogLevel<< "PGCR true residual r = src - A psi "<<norm2(r) <<std::endl;
/////////////////////
// p = Prec(r)
/////////////////////
PrecTimer.Start();
Preconditioner(r,z);
PrecTimer.Stop();
MatTimer.Start();
Linop.HermOpAndNorm(z,Az,zAz,zAAz);
MatTimer.Stop();
LinalgTimer.Start();
//p[0],q[0],qq[0]
p[0]= z;
q[0]= Az;
qq[0]= zAAz;
cp =norm2(r);
LinalgTimer.Stop();
for(int k=0;k<nstep;k++){
steps++;
int kp = k+1;
int peri_k = k %mmax;
int peri_kp= kp%mmax;
LinalgTimer.Start();
rq= real(innerProduct(r,q[peri_k])); // what if rAr not real?
a = rq/qq[peri_k];
axpy(psi,a,p[peri_k],psi);
cp = axpy_norm(r,-a,q[peri_k],r);
LinalgTimer.Stop();
GCRLogLevel<< "PGCR step["<<steps<<"] resid " << cp << " target " <<rsq<<std::endl;
if((k==nstep-1)||(cp<rsq)){
return cp;
}
PrecTimer.Start();
Preconditioner(r,z);// solve Az = r
PrecTimer.Stop();
MatTimer.Start();
Linop.HermOpAndNorm(z,Az,zAz,zAAz);
MatTimer.Stop();
LinalgTimer.Start();
q[peri_kp]=Az;
p[peri_kp]=z;
int northog = ((kp)>(mmax-1))?(mmax-1):(kp); // if more than mmax done, we orthog all mmax history.
for(int back=0;back<northog;back++){
int peri_back=(k-back)%mmax; assert((k-back)>=0);
b=-real(innerProduct(q[peri_back],Az))/qq[peri_back];
p[peri_kp]=p[peri_kp]+b*p[peri_back];
q[peri_kp]=q[peri_kp]+b*q[peri_back];
}
qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm
LinalgTimer.Stop();
}
assert(0); // never reached
return cp;
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,241 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/PrecGeneralisedConjugateResidual.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_PREC_GCR_NON_HERM_H
#define GRID_PREC_GCR_NON_HERM_H
///////////////////////////////////////////////////////////////////////////////////////////////////////
//VPGCR Abe and Zhang, 2005.
//INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING
//Computing and Information Volume 2, Number 2, Pages 147-161
//NB. Likely not original reference since they are focussing on a preconditioner variant.
// but VPGCR was nicely written up in their paper
///////////////////////////////////////////////////////////////////////////////////////////////////////
NAMESPACE_BEGIN(Grid);
#define GCRLogLevel std::cout << GridLogMessage <<std::string(level,'\t')<< " Level "<<level<<" "
template<class Field>
class PrecGeneralisedConjugateResidualNonHermitian : public LinearFunction<Field> {
public:
RealD Tolerance;
Integer MaxIterations;
int verbose;
int mmax;
int nstep;
int steps;
int level;
GridStopWatch PrecTimer;
GridStopWatch MatTimer;
GridStopWatch LinalgTimer;
LinearFunction<Field> &Preconditioner;
LinearOperatorBase<Field> &Linop;
void Level(int lv) { level=lv; };
PrecGeneralisedConjugateResidualNonHermitian(RealD tol,Integer maxit,LinearOperatorBase<Field> &_Linop,LinearFunction<Field> &Prec,int _mmax,int _nstep) :
Tolerance(tol),
MaxIterations(maxit),
Linop(_Linop),
Preconditioner(Prec),
mmax(_mmax),
nstep(_nstep)
{
level=1;
verbose=1;
};
void operator() (const Field &src, Field &psi){
psi=Zero();
RealD cp, ssq,rsq;
ssq=norm2(src);
rsq=Tolerance*Tolerance*ssq;
Field r(src.Grid());
PrecTimer.Reset();
MatTimer.Reset();
LinalgTimer.Reset();
GridStopWatch SolverTimer;
SolverTimer.Start();
steps=0;
for(int k=0;k<MaxIterations;k++){
cp=GCRnStep(src,psi,rsq);
GCRLogLevel <<"PGCR("<<mmax<<","<<nstep<<") "<< steps <<" steps cp = "<<cp<<" target "<<rsq <<std::endl;
if(cp<rsq) {
SolverTimer.Stop();
Linop.Op(psi,r);
axpy(r,-1.0,src,r);
RealD tr = norm2(r);
GCRLogLevel<<"PGCR: Converged on iteration " <<steps
<< " computed residual "<<sqrt(cp/ssq)
<< " true residual " <<sqrt(tr/ssq)
<< " target " <<Tolerance <<std::endl;
GCRLogLevel<<"PGCR Time elapsed: Total "<< SolverTimer.Elapsed() <<std::endl;
return;
}
}
GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl;
// assert(0);
}
RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
RealD cp;
ComplexD a, b, zAz;
RealD zAAz;
ComplexD rq;
GridBase *grid = src.Grid();
Field r(grid);
Field z(grid);
Field tmp(grid);
Field ttmp(grid);
Field Az(grid);
////////////////////////////////
// history for flexible orthog
////////////////////////////////
std::vector<Field> q(mmax,grid);
std::vector<Field> p(mmax,grid);
std::vector<RealD> qq(mmax);
GCRLogLevel<< "PGCR nStep("<<nstep<<")"<<std::endl;
//////////////////////////////////
// initial guess x0 is taken as nonzero.
// r0=src-A x0 = src
//////////////////////////////////
MatTimer.Start();
Linop.Op(psi,Az);
zAz = innerProduct(Az,psi);
zAAz= norm2(Az);
MatTimer.Stop();
LinalgTimer.Start();
r=src-Az;
LinalgTimer.Stop();
GCRLogLevel<< "PGCR true residual r = src - A psi "<<norm2(r) <<std::endl;
/////////////////////
// p = Prec(r)
/////////////////////
PrecTimer.Start();
Preconditioner(r,z);
PrecTimer.Stop();
MatTimer.Start();
Linop.Op(z,Az);
MatTimer.Stop();
LinalgTimer.Start();
zAz = innerProduct(Az,psi);
zAAz= norm2(Az);
//p[0],q[0],qq[0]
p[0]= z;
q[0]= Az;
qq[0]= zAAz;
cp =norm2(r);
LinalgTimer.Stop();
for(int k=0;k<nstep;k++){
steps++;
int kp = k+1;
int peri_k = k %mmax;
int peri_kp= kp%mmax;
LinalgTimer.Start();
rq= innerProduct(q[peri_k],r); // what if rAr not real?
a = rq/qq[peri_k];
axpy(psi,a,p[peri_k],psi);
cp = axpy_norm(r,-a,q[peri_k],r);
LinalgTimer.Stop();
GCRLogLevel<< "PGCR step["<<steps<<"] resid " << cp << " target " <<rsq<<std::endl;
if((k==nstep-1)||(cp<rsq)){
return cp;
}
PrecTimer.Start();
Preconditioner(r,z);// solve Az = r
PrecTimer.Stop();
MatTimer.Start();
Linop.Op(z,Az);
MatTimer.Stop();
zAz = innerProduct(Az,psi);
zAAz= norm2(Az);
LinalgTimer.Start();
q[peri_kp]=Az;
p[peri_kp]=z;
int northog = ((kp)>(mmax-1))?(mmax-1):(kp); // if more than mmax done, we orthog all mmax history.
for(int back=0;back<northog;back++){
int peri_back=(k-back)%mmax; assert((k-back)>=0);
b=-real(innerProduct(q[peri_back],Az))/qq[peri_back];
p[peri_kp]=p[peri_kp]+b*p[peri_back];
q[peri_kp]=q[peri_kp]+b*q[peri_back];
}
qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm
LinalgTimer.Stop();
}
assert(0); // never reached
return cp;
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,371 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithmsf/iterative/QuasiMinimalResidual.h
Copyright (C) 2019
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template<class Field>
RealD innerG5ProductReal(Field &l, Field &r)
{
Gamma G5(Gamma::Algebra::Gamma5);
Field tmp(l.Grid());
// tmp = G5*r;
G5R5(tmp,r);
ComplexD ip =innerProduct(l,tmp);
std::cout << "innerProductRealG5R5 "<<ip<<std::endl;
return ip.real();
}
template<class Field>
class QuasiMinimalResidual : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge;
RealD Tolerance;
Integer MaxIterations;
Integer IterationCount;
QuasiMinimalResidual(RealD tol,
Integer maxit,
bool err_on_no_conv = true)
: Tolerance(tol)
, MaxIterations(maxit)
, ErrorOnNoConverge(err_on_no_conv)
{};
#if 1
void operator()(LinearOperatorBase<Field> &LinOp, const Field &b, Field &x)
{
RealD resid;
IterationCount=0;
RealD rho, rho_1, xi, gamma, gamma_1, theta, theta_1;
RealD eta, delta, ep, beta;
GridBase *Grid = b.Grid();
Field r(Grid), d(Grid), s(Grid);
Field v(Grid), w(Grid), y(Grid), z(Grid);
Field v_tld(Grid), w_tld(Grid), y_tld(Grid), z_tld(Grid);
Field p(Grid), q(Grid), p_tld(Grid);
Real normb = norm2(b);
LinOp.Op(x,r); r = b - r;
assert(normb> 0.0);
resid = norm2(r)/normb;
if (resid <= Tolerance) {
return;
}
v_tld = r;
y = v_tld;
rho = norm2(y);
// Take Gamma5 conjugate
// Gamma G5(Gamma::Algebra::Gamma5);
// G5R5(w_tld,r);
// w_tld = G5* v_tld;
w_tld=v_tld;
z = w_tld;
xi = norm2(z);
gamma = 1.0;
eta = -1.0;
theta = 0.0;
for (int i = 1; i <= MaxIterations; i++) {
// Breakdown tests
assert( rho != 0.0);
assert( xi != 0.0);
v = (1. / rho) * v_tld;
y = (1. / rho) * y;
w = (1. / xi) * w_tld;
z = (1. / xi) * z;
ComplexD Zdelta = innerProduct(z, y); // Complex?
std::cout << "Zdelta "<<Zdelta<<std::endl;
delta = Zdelta.real();
y_tld = y;
z_tld = z;
if (i > 1) {
p = y_tld - (xi * delta / ep) * p;
q = z_tld - (rho * delta / ep) * q;
} else {
p = y_tld;
q = z_tld;
}
LinOp.Op(p,p_tld); // p_tld = A * p;
ComplexD Zep = innerProduct(q, p_tld);
ep=Zep.real();
std::cout << "Zep "<<Zep <<std::endl;
// Complex Audit
assert(abs(ep)>0);
beta = ep / delta;
assert(abs(beta)>0);
v_tld = p_tld - beta * v;
y = v_tld;
rho_1 = rho;
rho = norm2(y);
LinOp.AdjOp(q,w_tld);
w_tld = w_tld - beta * w;
z = w_tld;
xi = norm2(z);
gamma_1 = gamma;
theta_1 = theta;
theta = rho / (gamma_1 * beta);
gamma = 1.0 / sqrt(1.0 + theta * theta);
std::cout << "theta "<<theta<<std::endl;
std::cout << "gamma "<<gamma<<std::endl;
assert(abs(gamma)> 0.0);
eta = -eta * rho_1 * gamma* gamma / (beta * gamma_1 * gamma_1);
if (i > 1) {
d = eta * p + (theta_1 * theta_1 * gamma * gamma) * d;
s = eta * p_tld + (theta_1 * theta_1 * gamma * gamma) * s;
} else {
d = eta * p;
s = eta * p_tld;
}
x =x+d; // update approximation vector
r =r-s; // compute residual
if ((resid = norm2(r) / normb) <= Tolerance) {
return;
}
std::cout << "Iteration "<<i<<" resid " << resid<<std::endl;
}
assert(0);
return; // no convergence
}
#else
// QMRg5 SMP thesis
void operator()(LinearOperatorBase<Field> &LinOp, const Field &b, Field &x)
{
// Real scalars
GridBase *grid = b.Grid();
Field r(grid);
Field p_m(grid), p_m_minus_1(grid), p_m_minus_2(grid);
Field v_m(grid), v_m_minus_1(grid), v_m_plus_1(grid);
Field tmp(grid);
RealD w;
RealD z1, z2;
RealD delta_m, delta_m_minus_1;
RealD c_m_plus_1, c_m, c_m_minus_1;
RealD s_m_plus_1, s_m, s_m_minus_1;
RealD alpha, beta, gamma, epsilon;
RealD mu, nu, rho, theta, xi, chi;
RealD mod2r, mod2b;
RealD tau2, target2;
mod2b=norm2(b);
/////////////////////////
// Initial residual
/////////////////////////
LinOp.Op(x,tmp);
r = b - tmp;
/////////////////////////
// \mu = \rho = |r_0|
/////////////////////////
mod2r = norm2(r);
rho = sqrt( mod2r);
mu=rho;
std::cout << "QuasiMinimalResidual rho "<< rho<<std::endl;
/////////////////////////
// Zero negative history
/////////////////////////
v_m_plus_1 = Zero();
v_m_minus_1 = Zero();
p_m_minus_1 = Zero();
p_m_minus_2 = Zero();
// v0
v_m = (1.0/rho)*r;
/////////////////////////
// Initial coeffs
/////////////////////////
delta_m_minus_1 = 1.0;
c_m_minus_1 = 1.0;
c_m = 1.0;
s_m_minus_1 = 0.0;
s_m = 0.0;
/////////////////////////
// Set up convergence check
/////////////////////////
tau2 = mod2r;
target2 = mod2b * Tolerance*Tolerance;
for(int iter = 0 ; iter < MaxIterations; iter++){
/////////////////////////
// \delta_m = (v_m, \gamma_5 v_m)
/////////////////////////
delta_m = innerG5ProductReal(v_m,v_m);
std::cout << "QuasiMinimalResidual delta_m "<< delta_m<<std::endl;
/////////////////////////
// tmp = A v_m
/////////////////////////
LinOp.Op(v_m,tmp);
/////////////////////////
// \alpha = (v_m, \gamma_5 temp) / \delta_m
/////////////////////////
alpha = innerG5ProductReal(v_m,tmp);
alpha = alpha/delta_m ;
std::cout << "QuasiMinimalResidual alpha "<< alpha<<std::endl;
/////////////////////////
// \beta = \rho \delta_m / \delta_{m-1}
/////////////////////////
beta = rho * delta_m / delta_m_minus_1;
std::cout << "QuasiMinimalResidual beta "<< beta<<std::endl;
/////////////////////////
// \tilde{v}_{m+1} = temp - \alpha v_m - \beta v_{m-1}
/////////////////////////
v_m_plus_1 = tmp - alpha*v_m - beta*v_m_minus_1;
///////////////////////////////
// \rho = || \tilde{v}_{m+1} ||
///////////////////////////////
rho = sqrt( norm2(v_m_plus_1) );
std::cout << "QuasiMinimalResidual rho "<< rho<<std::endl;
///////////////////////////////
// v_{m+1} = \tilde{v}_{m+1}
///////////////////////////////
v_m_plus_1 = (1.0 / rho) * v_m_plus_1;
////////////////////////////////
// QMR recurrence coefficients.
////////////////////////////////
theta = s_m_minus_1 * beta;
gamma = c_m_minus_1 * beta;
epsilon = c_m * gamma + s_m * alpha;
xi = -s_m * gamma + c_m * alpha;
nu = sqrt( xi*xi + rho*rho );
c_m_plus_1 = fabs(xi) / nu;
if ( xi == 0.0 ) {
s_m_plus_1 = 1.0;
} else {
s_m_plus_1 = c_m_plus_1 * rho / xi;
}
chi = c_m_plus_1 * xi + s_m_plus_1 * rho;
std::cout << "QuasiMinimalResidual coeffs "<< theta <<" "<<gamma<<" "<< epsilon<<" "<< xi<<" "<< nu<<std::endl;
std::cout << "QuasiMinimalResidual coeffs "<< chi <<std::endl;
////////////////////////////////
//p_m=(v_m - \epsilon p_{m-1} - \theta p_{m-2}) / \chi
////////////////////////////////
p_m = (1.0/chi) * v_m - (epsilon/chi) * p_m_minus_1 - (theta/chi) * p_m_minus_2;
////////////////////////////////////////////////////////////////
// \psi = \psi + c_{m+1} \mu p_m
////////////////////////////////////////////////////////////////
x = x + ( c_m_plus_1 * mu ) * p_m;
////////////////////////////////////////
//
////////////////////////////////////////
mu = -s_m_plus_1 * mu;
delta_m_minus_1 = delta_m;
c_m_minus_1 = c_m;
c_m = c_m_plus_1;
s_m_minus_1 = s_m;
s_m = s_m_plus_1;
////////////////////////////////////
// Could use pointer swizzle games.
////////////////////////////////////
v_m_minus_1 = v_m;
v_m = v_m_plus_1;
p_m_minus_2 = p_m_minus_1;
p_m_minus_1 = p_m;
/////////////////////////////////////
// Convergence checks
/////////////////////////////////////
z1 = RealD(iter+1.0);
z2 = z1 + 1.0;
tau2 = tau2 *( z2 / z1 ) * s_m * s_m;
std::cout << " QuasiMinimumResidual iteration "<< iter<<std::endl;
std::cout << " QuasiMinimumResidual tau bound "<< tau2<<std::endl;
// Compute true residual
mod2r = tau2;
if ( 1 || (tau2 < (100.0 * target2)) ) {
LinOp.Op(x,tmp);
r = b - tmp;
mod2r = norm2(r);
std::cout << " QuasiMinimumResidual true residual is "<< mod2r<<std::endl;
}
if ( mod2r < target2 ) {
std::cout << " QuasiMinimumResidual has converged"<<std::endl;
return;
}
}
}
#endif
};
NAMESPACE_END(Grid);

View File

@ -1,621 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/SchurRedBlack.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_SCHUR_RED_BLACK_H
#define GRID_SCHUR_RED_BLACK_H
/*
* Red black Schur decomposition
*
* M = (Mee Meo) = (1 0 ) (Mee 0 ) (1 Mee^{-1} Meo)
* (Moe Moo) (Moe Mee^-1 1 ) (0 Moo-Moe Mee^-1 Meo) (0 1 )
* = L D U
*
* L^-1 = (1 0 )
* (-MoeMee^{-1} 1 )
* L^{dag} = ( 1 Mee^{-dag} Moe^{dag} )
* ( 0 1 )
* L^{-d} = ( 1 -Mee^{-dag} Moe^{dag} )
* ( 0 1 )
*
* U^-1 = (1 -Mee^{-1} Meo)
* (0 1 )
* U^{dag} = ( 1 0)
* (Meo^dag Mee^{-dag} 1)
* U^{-dag} = ( 1 0)
* (-Meo^dag Mee^{-dag} 1)
***********************
* M psi = eta
***********************
*Odd
* i) D_oo psi_o = L^{-1} eta_o
* eta_o' = (D_oo)^dag (eta_o - Moe Mee^{-1} eta_e)
*
* Wilson:
* (D_oo)^{\dag} D_oo psi_o = (D_oo)^dag L^{-1} eta_o
* Stag:
* D_oo psi_o = L^{-1} eta = (eta_o - Moe Mee^{-1} eta_e)
*
* L^-1 eta_o= (1 0 ) (e
* (-MoeMee^{-1} 1 )
*
*Even
* ii) Mee psi_e + Meo psi_o = src_e
*
* => sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
*
*
* TODO: Other options:
*
* a) change checkerboards for Schur e<->o
*
* Left precon by Moo^-1
* b) Doo^{dag} M_oo^-dag Moo^-1 Doo psi_0 = (D_oo)^dag M_oo^-dag Moo^-1 L^{-1} eta_o
* eta_o' = (D_oo)^dag M_oo^-dag Moo^-1 (eta_o - Moe Mee^{-1} eta_e)
*
* Right precon by Moo^-1
* c) M_oo^-dag Doo^{dag} Doo Moo^-1 phi_0 = M_oo^-dag (D_oo)^dag L^{-1} eta_o
* eta_o' = M_oo^-dag (D_oo)^dag (eta_o - Moe Mee^{-1} eta_e)
* psi_o = M_oo^-1 phi_o
* TODO: Deflation
*/
namespace Grid {
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Use base class to share code
///////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Take a matrix and form a Red Black solver calling a Herm solver
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SchurRedBlackBase {
protected:
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
OperatorFunction<Field> & _HermitianRBSolver;
int CBfactorise;
bool subGuess;
bool useSolnAsInitGuess; // if true user-supplied solution vector is used as initial guess for solver
public:
SchurRedBlackBase(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
const bool _solnAsInitGuess = false) :
_HermitianRBSolver(HermitianRBSolver),
useSolnAsInitGuess(_solnAsInitGuess)
{
CBfactorise = 0;
subtractGuess(initSubGuess);
};
void subtractGuess(const bool initSubGuess)
{
subGuess = initSubGuess;
}
bool isSubtractGuess(void)
{
return subGuess;
}
/////////////////////////////////////////////////////////////
// Shared code
/////////////////////////////////////////////////////////////
void operator() (Matrix & _Matrix,const Field &in, Field &out){
ZeroGuesser<Field> guess;
(*this)(_Matrix,in,out,guess);
}
void operator()(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &out)
{
ZeroGuesser<Field> guess;
(*this)(_Matrix,in,out,guess);
}
template<class Guesser>
void operator()(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &out,Guesser &guess)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
int nblock = in.size();
std::vector<Field> src_o(nblock,grid);
std::vector<Field> sol_o(nblock,grid);
std::vector<Field> guess_save;
Field resid(fgrid);
Field tmp(grid);
////////////////////////////////////////////////
// Prepare RedBlack source
////////////////////////////////////////////////
for(int b=0;b<nblock;b++){
RedBlackSource(_Matrix,in[b],tmp,src_o[b]);
}
////////////////////////////////////////////////
// Make the guesses
////////////////////////////////////////////////
if ( subGuess ) guess_save.resize(nblock,grid);
for(int b=0;b<nblock;b++){
if(useSolnAsInitGuess) {
pickCheckerboard(Odd, sol_o[b], out[b]);
} else {
guess(src_o[b],sol_o[b]);
}
if ( subGuess ) {
guess_save[b] = sol_o[b];
}
}
//////////////////////////////////////////////////////////////
// Call the block solver
//////////////////////////////////////////////////////////////
std::cout<<GridLogMessage << "SchurRedBlackBase calling the solver for "<<nblock<<" RHS" <<std::endl;
RedBlackSolve(_Matrix,src_o,sol_o);
////////////////////////////////////////////////
// A2A boolean behavioural control & reconstruct other checkerboard
////////////////////////////////////////////////
for(int b=0;b<nblock;b++) {
if (subGuess) sol_o[b] = sol_o[b] - guess_save[b];
///////// Needs even source //////////////
pickCheckerboard(Even,tmp,in[b]);
RedBlackSolution(_Matrix,sol_o[b],tmp,out[b]);
/////////////////////////////////////////////////
// Check unprec residual if possible
/////////////////////////////////////////////////
if ( ! subGuess ) {
_Matrix.M(out[b],resid);
resid = resid-in[b];
RealD ns = norm2(in[b]);
RealD nr = norm2(resid);
std::cout<<GridLogMessage<< "SchurRedBlackBase solver true unprec resid["<<b<<"] "<<std::sqrt(nr/ns) << std::endl;
} else {
std::cout<<GridLogMessage<< "SchurRedBlackBase Guess subtracted after solve["<<b<<"] " << std::endl;
}
}
}
template<class Guesser>
void operator() (Matrix & _Matrix,const Field &in, Field &out,Guesser &guess){
// FIXME CGdiagonalMee not implemented virtual function
// FIXME use CBfactorise to control schur decomp
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
Field resid(fgrid);
Field src_o(grid);
Field src_e(grid);
Field sol_o(grid);
////////////////////////////////////////////////
// RedBlack source
////////////////////////////////////////////////
RedBlackSource(_Matrix,in,src_e,src_o);
////////////////////////////////
// Construct the guess
////////////////////////////////
if(useSolnAsInitGuess) {
pickCheckerboard(Odd, sol_o, out);
} else {
guess(src_o,sol_o);
}
Field guess_save(grid);
guess_save = sol_o;
//////////////////////////////////////////////////////////////
// Call the red-black solver
//////////////////////////////////////////////////////////////
RedBlackSolve(_Matrix,src_o,sol_o);
////////////////////////////////////////////////
// Fionn A2A boolean behavioural control
////////////////////////////////////////////////
if (subGuess) sol_o= sol_o-guess_save;
///////////////////////////////////////////////////
// RedBlack solution needs the even source
///////////////////////////////////////////////////
RedBlackSolution(_Matrix,sol_o,src_e,out);
// Verify the unprec residual
if ( ! subGuess ) {
_Matrix.M(out,resid);
resid = resid-in;
RealD ns = norm2(in);
RealD nr = norm2(resid);
std::cout<<GridLogMessage << "SchurRedBlackBase solver true unprec resid "<< std::sqrt(nr/ns) << std::endl;
} else {
std::cout << GridLogMessage << "SchurRedBlackBase Guess subtracted after solve." << std::endl;
}
}
/////////////////////////////////////////////////////////////
// Override in derived.
/////////////////////////////////////////////////////////////
virtual void RedBlackSource (Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o) =0;
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol) =0;
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o) =0;
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)=0;
};
template<class Field> class SchurRedBlackStaggeredSolve : public SchurRedBlackBase<Field> {
public:
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
SchurRedBlackStaggeredSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
const bool _solnAsInitGuess = false)
: SchurRedBlackBase<Field> (HermitianRBSolver,initSubGuess,_solnAsInitGuess)
{
}
//////////////////////////////////////////////////////
// Override RedBlack specialisation
//////////////////////////////////////////////////////
virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
Field tmp(grid);
Field Mtmp(grid);
pickCheckerboard(Even,src_e,src);
pickCheckerboard(Odd ,src_o,src);
/////////////////////////////////////////////////////
// src_o = (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.Checkerboard() ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.Checkerboard() ==Odd);
tmp=src_o-Mtmp; assert( tmp.Checkerboard() ==Odd);
_Matrix.Mooee(tmp,src_o); // Extra factor of "m" in source from dumb choice of matrix norm.
}
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e_c,Field &sol)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
Field tmp(grid);
Field sol_e(grid);
Field src_e(grid);
src_e = src_e_c; // Const correctness
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o,tmp); assert( tmp.Checkerboard() ==Even);
src_e = src_e-tmp; assert( src_e.Checkerboard() ==Even);
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_e); assert( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_o); assert( sol_o.Checkerboard() ==Odd );
}
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
{
SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.Checkerboard()==Odd);
};
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
{
SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
}
};
template<class Field> using SchurRedBlackStagSolve = SchurRedBlackStaggeredSolve<Field>;
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Site diagonal has Mooee on it.
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SchurRedBlackDiagMooeeSolve : public SchurRedBlackBase<Field> {
public:
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
const bool _solnAsInitGuess = false)
: SchurRedBlackBase<Field> (HermitianRBSolver,initSubGuess,_solnAsInitGuess) {};
//////////////////////////////////////////////////////
// Override RedBlack specialisation
//////////////////////////////////////////////////////
virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
Field tmp(grid);
Field Mtmp(grid);
pickCheckerboard(Even,src_e,src);
pickCheckerboard(Odd ,src_o,src);
/////////////////////////////////////////////////////
// src_o = Mdag * (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.Checkerboard() ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.Checkerboard() ==Odd);
tmp=src_o-Mtmp; assert( tmp.Checkerboard() ==Odd);
// get the right MpcDag
SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.Checkerboard() ==Odd);
}
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
Field tmp(grid);
Field sol_e(grid);
Field src_e_i(grid);
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o,tmp); assert( tmp.Checkerboard() ==Even);
src_e_i = src_e-tmp; assert( src_e_i.Checkerboard() ==Even);
_Matrix.MooeeInv(src_e_i,sol_e); assert( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_e); assert( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_o); assert( sol_o.Checkerboard() ==Odd );
}
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
{
SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.Checkerboard()==Odd);
};
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
{
SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
}
};
template<class Field> class NonHermitianSchurRedBlackDiagMooeeSolve : public SchurRedBlackBase<Field>
{
public:
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
NonHermitianSchurRedBlackDiagMooeeSolve(OperatorFunction<Field>& RBSolver, const bool initSubGuess = false,
const bool _solnAsInitGuess = false)
: SchurRedBlackBase<Field>(RBSolver, initSubGuess, _solnAsInitGuess) {};
//////////////////////////////////////////////////////
// Override RedBlack specialisation
//////////////////////////////////////////////////////
virtual void RedBlackSource(Matrix& _Matrix, const Field& src, Field& src_e, Field& src_o)
{
GridBase* grid = _Matrix.RedBlackGrid();
GridBase* fgrid = _Matrix.Grid();
Field tmp(grid);
Field Mtmp(grid);
pickCheckerboard(Even, src_e, src);
pickCheckerboard(Odd , src_o, src);
/////////////////////////////////////////////////////
// src_o = Mdag * (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e, tmp); assert( tmp.Checkerboard() == Even );
_Matrix.Meooe (tmp, Mtmp); assert( Mtmp.Checkerboard() == Odd );
src_o -= Mtmp; assert( src_o.Checkerboard() == Odd );
}
virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol)
{
GridBase* grid = _Matrix.RedBlackGrid();
GridBase* fgrid = _Matrix.Grid();
Field tmp(grid);
Field sol_e(grid);
Field src_e_i(grid);
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o, tmp); assert( tmp.Checkerboard() == Even );
src_e_i = src_e - tmp; assert( src_e_i.Checkerboard() == Even );
_Matrix.MooeeInv(src_e_i, sol_e); assert( sol_e.Checkerboard() == Even );
setCheckerboard(sol, sol_e); assert( sol_e.Checkerboard() == Even );
setCheckerboard(sol, sol_o); assert( sol_o.Checkerboard() == Odd );
}
virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o)
{
NonHermitianSchurDiagMooeeOperator<Matrix,Field> _OpEO(_Matrix);
this->_HermitianRBSolver(_OpEO, src_o, sol_o); assert(sol_o.Checkerboard() == Odd);
}
virtual void RedBlackSolve(Matrix& _Matrix, const std::vector<Field>& src_o, std::vector<Field>& sol_o)
{
NonHermitianSchurDiagMooeeOperator<Matrix,Field> _OpEO(_Matrix);
this->_HermitianRBSolver(_OpEO, src_o, sol_o);
}
};
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Site diagonal is identity, right preconditioned by Mee^inv
// ( 1 - Meo Moo^inv Moe Mee^inv ) phi =( 1 - Meo Moo^inv Moe Mee^inv ) Mee psi = = eta = eta
//=> psi = MeeInv phi
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SchurRedBlackDiagTwoSolve : public SchurRedBlackBase<Field> {
public:
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
/////////////////////////////////////////////////////
// Wrap the usual normal equations Schur trick
/////////////////////////////////////////////////////
SchurRedBlackDiagTwoSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
const bool _solnAsInitGuess = false)
: SchurRedBlackBase<Field>(HermitianRBSolver,initSubGuess,_solnAsInitGuess) {};
virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
Field tmp(grid);
Field Mtmp(grid);
pickCheckerboard(Even,src_e,src);
pickCheckerboard(Odd ,src_o,src);
/////////////////////////////////////////////////////
// src_o = Mdag * (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.Checkerboard() ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.Checkerboard() ==Odd);
tmp=src_o-Mtmp; assert( tmp.Checkerboard() ==Odd);
// get the right MpcDag
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.Checkerboard() ==Odd);
}
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
Field sol_o_i(grid);
Field tmp(grid);
Field sol_e(grid);
////////////////////////////////////////////////
// MooeeInv due to pecond
////////////////////////////////////////////////
_Matrix.MooeeInv(sol_o,tmp);
sol_o_i = tmp;
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o_i,tmp); assert( tmp.Checkerboard() ==Even);
tmp = src_e-tmp; assert( src_e.Checkerboard() ==Even);
_Matrix.MooeeInv(tmp,sol_e); assert( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_e); assert( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_o_i); assert( sol_o_i.Checkerboard() ==Odd );
};
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
{
SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
};
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
{
SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
}
};
template<class Field> class NonHermitianSchurRedBlackDiagTwoSolve : public SchurRedBlackBase<Field>
{
public:
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
/////////////////////////////////////////////////////
// Wrap the usual normal equations Schur trick
/////////////////////////////////////////////////////
NonHermitianSchurRedBlackDiagTwoSolve(OperatorFunction<Field>& RBSolver, const bool initSubGuess = false,
const bool _solnAsInitGuess = false)
: SchurRedBlackBase<Field>(RBSolver, initSubGuess, _solnAsInitGuess) {};
virtual void RedBlackSource(Matrix& _Matrix, const Field& src, Field& src_e, Field& src_o)
{
GridBase* grid = _Matrix.RedBlackGrid();
GridBase* fgrid = _Matrix.Grid();
Field tmp(grid);
Field Mtmp(grid);
pickCheckerboard(Even, src_e, src);
pickCheckerboard(Odd , src_o, src);
/////////////////////////////////////////////////////
// src_o = Mdag * (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e, tmp); assert( tmp.Checkerboard() == Even );
_Matrix.Meooe (tmp, Mtmp); assert( Mtmp.Checkerboard() == Odd );
src_o -= Mtmp; assert( src_o.Checkerboard() == Odd );
}
virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol)
{
GridBase* grid = _Matrix.RedBlackGrid();
GridBase* fgrid = _Matrix.Grid();
Field sol_o_i(grid);
Field tmp(grid);
Field sol_e(grid);
////////////////////////////////////////////////
// MooeeInv due to pecond
////////////////////////////////////////////////
_Matrix.MooeeInv(sol_o, tmp);
sol_o_i = tmp;
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o_i, tmp); assert( tmp.Checkerboard() == Even );
tmp = src_e - tmp; assert( src_e.Checkerboard() == Even );
_Matrix.MooeeInv(tmp, sol_e); assert( sol_e.Checkerboard() == Even );
setCheckerboard(sol, sol_e); assert( sol_e.Checkerboard() == Even );
setCheckerboard(sol, sol_o_i); assert( sol_o_i.Checkerboard() == Odd );
};
virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o)
{
NonHermitianSchurDiagTwoOperator<Matrix,Field> _OpEO(_Matrix);
this->_HermitianRBSolver(_OpEO, src_o, sol_o);
};
virtual void RedBlackSolve(Matrix& _Matrix, const std::vector<Field>& src_o, std::vector<Field>& sol_o)
{
NonHermitianSchurDiagTwoOperator<Matrix,Field> _OpEO(_Matrix);
this->_HermitianRBSolver(_OpEO, src_o, sol_o);
}
};
}
#endif

View File

@ -1,131 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/AlignedAllocator.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template<typename _Tp>
class alignedAllocator {
public:
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef _Tp* pointer;
typedef const _Tp* const_pointer;
typedef _Tp& reference;
typedef const _Tp& const_reference;
typedef _Tp value_type;
template<typename _Tp1> struct rebind { typedef alignedAllocator<_Tp1> other; };
alignedAllocator() throw() { }
alignedAllocator(const alignedAllocator&) throw() { }
template<typename _Tp1> alignedAllocator(const alignedAllocator<_Tp1>&) throw() { }
~alignedAllocator() throw() { }
pointer address(reference __x) const { return &__x; }
size_type max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
pointer allocate(size_type __n, const void* _p= 0)
{
size_type bytes = __n*sizeof(_Tp);
profilerAllocate(bytes);
_Tp *ptr = (_Tp*) MemoryManager::CpuAllocate(bytes);
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
return ptr;
}
void deallocate(pointer __p, size_type __n)
{
size_type bytes = __n * sizeof(_Tp);
profilerFree(bytes);
MemoryManager::CpuFree((void *)__p,bytes);
}
// FIXME: hack for the copy constructor, eventually it must be avoided
//void construct(pointer __p, const _Tp& __val) { new((void *)__p) _Tp(__val); };
void construct(pointer __p, const _Tp& __val) { assert(0);};
void construct(pointer __p) { };
void destroy(pointer __p) { };
};
template<typename _Tp> inline bool operator==(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return true; }
template<typename _Tp> inline bool operator!=(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return false; }
template<typename _Tp>
class uvmAllocator {
public:
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef _Tp* pointer;
typedef const _Tp* const_pointer;
typedef _Tp& reference;
typedef const _Tp& const_reference;
typedef _Tp value_type;
template<typename _Tp1> struct rebind { typedef uvmAllocator<_Tp1> other; };
uvmAllocator() throw() { }
uvmAllocator(const uvmAllocator&) throw() { }
template<typename _Tp1> uvmAllocator(const uvmAllocator<_Tp1>&) throw() { }
~uvmAllocator() throw() { }
pointer address(reference __x) const { return &__x; }
size_type max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
pointer allocate(size_type __n, const void* _p= 0)
{
size_type bytes = __n*sizeof(_Tp);
profilerAllocate(bytes);
_Tp *ptr = (_Tp*) MemoryManager::SharedAllocate(bytes);
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
return ptr;
}
void deallocate(pointer __p, size_type __n)
{
size_type bytes = __n * sizeof(_Tp);
profilerFree(bytes);
MemoryManager::SharedFree((void *)__p,bytes);
}
// FIXME: hack for the copy constructor, eventually it must be avoided
void construct(pointer __p, const _Tp& __val) { new((void *)__p) _Tp(__val); };
//void construct(pointer __p, const _Tp& __val) { };
void construct(pointer __p) { };
void destroy(pointer __p) { };
};
template<typename _Tp> inline bool operator==(const uvmAllocator<_Tp>&, const uvmAllocator<_Tp>&){ return true; }
template<typename _Tp> inline bool operator!=(const uvmAllocator<_Tp>&, const uvmAllocator<_Tp>&){ return false; }
////////////////////////////////////////////////////////////////////////////////
// Template typedefs
////////////////////////////////////////////////////////////////////////////////
template<class T> using commAllocator = uvmAllocator<T>;
template<class T> using Vector = std::vector<T,uvmAllocator<T> >;
template<class T> using commVector = std::vector<T,uvmAllocator<T> >;
//template<class T> using Matrix = std::vector<std::vector<T,alignedAllocator<T> > >;
NAMESPACE_END(Grid);

View File

@ -1,4 +0,0 @@
#pragma once
#include <Grid/allocator/MemoryStats.h>
#include <Grid/allocator/MemoryManager.h>
#include <Grid/allocator/AlignedAllocator.h>

View File

@ -1,244 +0,0 @@
#include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid);
/*Allocation types, saying which pointer cache should be used*/
#define Cpu (0)
#define CpuSmall (1)
#define Acc (2)
#define AccSmall (3)
#define Shared (4)
#define SharedSmall (5)
uint64_t total_shared;
uint64_t total_device;
uint64_t total_host;;
void MemoryManager::PrintBytes(void)
{
std::cout << " MemoryManager : "<<total_shared<<" shared bytes "<<std::endl;
std::cout << " MemoryManager : "<<total_device<<" accelerator bytes "<<std::endl;
std::cout << " MemoryManager : "<<total_host <<" cpu bytes "<<std::endl;
}
//////////////////////////////////////////////////////////////////////
// Data tables for recently freed pooiniter caches
//////////////////////////////////////////////////////////////////////
MemoryManager::AllocationCacheEntry MemoryManager::Entries[MemoryManager::NallocType][MemoryManager::NallocCacheMax];
int MemoryManager::Victim[MemoryManager::NallocType];
int MemoryManager::Ncache[MemoryManager::NallocType] = { 8, 32, 8, 32, 8, 32 };
//////////////////////////////////////////////////////////////////////
// Actual allocation and deallocation utils
//////////////////////////////////////////////////////////////////////
void *MemoryManager::AcceleratorAllocate(size_t bytes)
{
void *ptr = (void *) Lookup(bytes,Acc);
if ( ptr == (void *) NULL ) {
ptr = (void *) acceleratorAllocDevice(bytes);
total_device+=bytes;
}
return ptr;
}
void MemoryManager::AcceleratorFree (void *ptr,size_t bytes)
{
void *__freeme = Insert(ptr,bytes,Acc);
if ( __freeme ) {
acceleratorFreeDevice(__freeme);
total_device-=bytes;
// PrintBytes();
}
}
void *MemoryManager::SharedAllocate(size_t bytes)
{
void *ptr = (void *) Lookup(bytes,Shared);
if ( ptr == (void *) NULL ) {
ptr = (void *) acceleratorAllocShared(bytes);
total_shared+=bytes;
// std::cout <<"AcceleratorAllocate: allocated Shared pointer "<<std::hex<<ptr<<std::dec<<std::endl;
// PrintBytes();
}
return ptr;
}
void MemoryManager::SharedFree (void *ptr,size_t bytes)
{
void *__freeme = Insert(ptr,bytes,Shared);
if ( __freeme ) {
acceleratorFreeShared(__freeme);
total_shared-=bytes;
// PrintBytes();
}
}
#ifdef GRID_UVM
void *MemoryManager::CpuAllocate(size_t bytes)
{
void *ptr = (void *) Lookup(bytes,Cpu);
if ( ptr == (void *) NULL ) {
ptr = (void *) acceleratorAllocShared(bytes);
total_host+=bytes;
}
return ptr;
}
void MemoryManager::CpuFree (void *_ptr,size_t bytes)
{
NotifyDeletion(_ptr);
void *__freeme = Insert(_ptr,bytes,Cpu);
if ( __freeme ) {
acceleratorFreeShared(__freeme);
total_host-=bytes;
}
}
#else
void *MemoryManager::CpuAllocate(size_t bytes)
{
void *ptr = (void *) Lookup(bytes,Cpu);
if ( ptr == (void *) NULL ) {
ptr = (void *) acceleratorAllocCpu(bytes);
total_host+=bytes;
}
return ptr;
}
void MemoryManager::CpuFree (void *_ptr,size_t bytes)
{
NotifyDeletion(_ptr);
void *__freeme = Insert(_ptr,bytes,Cpu);
if ( __freeme ) {
acceleratorFreeCpu(__freeme);
total_host-=bytes;
}
}
#endif
//////////////////////////////////////////
// call only once
//////////////////////////////////////////
void MemoryManager::Init(void)
{
char * str;
int Nc;
int NcS;
str= getenv("GRID_ALLOC_NCACHE_LARGE");
if ( str ) {
Nc = atoi(str);
if ( (Nc>=0) && (Nc < NallocCacheMax)) {
Ncache[Cpu]=Nc;
Ncache[Acc]=Nc;
Ncache[Shared]=Nc;
}
}
str= getenv("GRID_ALLOC_NCACHE_SMALL");
if ( str ) {
Nc = atoi(str);
if ( (Nc>=0) && (Nc < NallocCacheMax)) {
Ncache[CpuSmall]=Nc;
Ncache[AccSmall]=Nc;
Ncache[SharedSmall]=Nc;
}
}
std::cout << GridLogMessage<< "MemoryManager::Init() setting up"<<std::endl;
#ifdef ALLOCATION_CACHE
std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent allocations: SMALL "<<Ncache[CpuSmall]<<" LARGE "<<Ncache[Cpu]<<std::endl;
#endif
#ifdef GRID_UVM
std::cout << GridLogMessage<< "MemoryManager::Init() Unified memory space"<<std::endl;
#ifdef GRID_CUDA
std::cout << GridLogMessage<< "MemoryManager::Init() Using cudaMallocManaged"<<std::endl;
#endif
#ifdef GRID_HIP
std::cout << GridLogMessage<< "MemoryManager::Init() Using hipMallocManaged"<<std::endl;
#endif
#ifdef GRID_SYCL
std::cout << GridLogMessage<< "MemoryManager::Init() Using SYCL malloc_shared"<<std::endl;
#endif
#else
std::cout << GridLogMessage<< "MemoryManager::Init() Non unified: Caching accelerator data in dedicated memory"<<std::endl;
#ifdef GRID_CUDA
std::cout << GridLogMessage<< "MemoryManager::Init() Using cudaMalloc"<<std::endl;
#endif
#ifdef GRID_HIP
std::cout << GridLogMessage<< "MemoryManager::Init() Using hipMalloc"<<std::endl;
#endif
#ifdef GRID_SYCL
std::cout << GridLogMessage<< "MemoryManager::Init() Using SYCL malloc_device"<<std::endl;
#endif
#endif
}
void *MemoryManager::Insert(void *ptr,size_t bytes,int type)
{
#ifdef ALLOCATION_CACHE
bool small = (bytes < GRID_ALLOC_SMALL_LIMIT);
int cache = type + small;
return Insert(ptr,bytes,Entries[cache],Ncache[cache],Victim[cache]);
#else
return ptr;
#endif
}
void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim)
{
assert(ncache>0);
#ifdef GRID_OMP
assert(omp_in_parallel()==0);
#endif
void * ret = NULL;
int v = -1;
for(int e=0;e<ncache;e++) {
if ( entries[e].valid==0 ) {
v=e;
break;
}
}
if ( v==-1 ) {
v=victim;
victim = (victim+1)%ncache;
}
if ( entries[v].valid ) {
ret = entries[v].address;
entries[v].valid = 0;
entries[v].address = NULL;
entries[v].bytes = 0;
}
entries[v].address=ptr;
entries[v].bytes =bytes;
entries[v].valid =1;
return ret;
}
void *MemoryManager::Lookup(size_t bytes,int type)
{
#ifdef ALLOCATION_CACHE
bool small = (bytes < GRID_ALLOC_SMALL_LIMIT);
int cache = type+small;
return Lookup(bytes,Entries[cache],Ncache[cache]);
#else
return NULL;
#endif
}
void *MemoryManager::Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache)
{
assert(ncache>0);
#ifdef GRID_OMP
assert(omp_in_parallel()==0);
#endif
for(int e=0;e<ncache;e++){
if ( entries[e].valid && ( entries[e].bytes == bytes ) ) {
entries[e].valid = 0;
return entries[e].address;
}
}
return NULL;
}
NAMESPACE_END(Grid);

View File

@ -1,181 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/MemoryManager.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <list>
#include <unordered_map>
NAMESPACE_BEGIN(Grid);
// Move control to configure.ac and Config.h?
#define ALLOCATION_CACHE
#define GRID_ALLOC_ALIGN (2*1024*1024)
#define GRID_ALLOC_SMALL_LIMIT (4096)
/*Pinning pages is costly*/
////////////////////////////////////////////////////////////////////////////
// Advise the LatticeAccelerator class
////////////////////////////////////////////////////////////////////////////
enum ViewAdvise {
AdviseDefault = 0x0, // Regular data
AdviseInfrequentUse = 0x1 // Advise that the data is used infrequently. This can
// significantly influence performance of bulk storage.
// AdviseTransient = 0x2, // Data will mostly be read. On some architectures
// enables read-only copies of memory to be kept on
// host and device.
// AdviseAcceleratorWriteDiscard = 0x4 // Field will be written in entirety on device
};
////////////////////////////////////////////////////////////////////////////
// View Access Mode
////////////////////////////////////////////////////////////////////////////
enum ViewMode {
AcceleratorRead = 0x01,
AcceleratorWrite = 0x02,
AcceleratorWriteDiscard = 0x04,
CpuRead = 0x08,
CpuWrite = 0x10,
CpuWriteDiscard = 0x10 // same for now
};
class MemoryManager {
private:
////////////////////////////////////////////////////////////
// For caching recently freed allocations
////////////////////////////////////////////////////////////
typedef struct {
void *address;
size_t bytes;
int valid;
} AllocationCacheEntry;
static const int NallocCacheMax=128;
static const int NallocType=6;
static AllocationCacheEntry Entries[NallocType][NallocCacheMax];
static int Victim[NallocType];
static int Ncache[NallocType];
/////////////////////////////////////////////////
// Free pool
/////////////////////////////////////////////////
static void *Insert(void *ptr,size_t bytes,int type) ;
static void *Lookup(size_t bytes,int type) ;
static void *Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim) ;
static void *Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache) ;
static void *AcceleratorAllocate(size_t bytes);
static void AcceleratorFree (void *ptr,size_t bytes);
static void PrintBytes(void);
public:
static void Init(void);
static void *SharedAllocate(size_t bytes);
static void SharedFree (void *ptr,size_t bytes);
static void *CpuAllocate(size_t bytes);
static void CpuFree (void *ptr,size_t bytes);
////////////////////////////////////////////////////////
// Footprint tracking
////////////////////////////////////////////////////////
static uint64_t DeviceBytes;
static uint64_t DeviceLRUBytes;
static uint64_t DeviceMaxBytes;
static uint64_t HostToDeviceBytes;
static uint64_t DeviceToHostBytes;
static uint64_t HostToDeviceXfer;
static uint64_t DeviceToHostXfer;
private:
#ifndef GRID_UVM
//////////////////////////////////////////////////////////////////////
// Data tables for ViewCache
//////////////////////////////////////////////////////////////////////
typedef std::list<uint64_t> LRU_t;
typedef typename LRU_t::iterator LRUiterator;
typedef struct {
int LRU_valid;
LRUiterator LRU_entry;
uint64_t CpuPtr;
uint64_t AccPtr;
size_t bytes;
uint32_t transient;
uint32_t state;
uint32_t accLock;
uint32_t cpuLock;
} AcceleratorViewEntry;
typedef std::unordered_map<uint64_t,AcceleratorViewEntry> AccViewTable_t;
typedef typename AccViewTable_t::iterator AccViewTableIterator ;
static AccViewTable_t AccViewTable;
static LRU_t LRU;
/////////////////////////////////////////////////
// Device motion
/////////////////////////////////////////////////
static void Create(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
static void EvictVictims(uint64_t bytes); // Frees up <bytes>
static void Evict(AcceleratorViewEntry &AccCache);
static void Flush(AcceleratorViewEntry &AccCache);
static void Clone(AcceleratorViewEntry &AccCache);
static void AccDiscard(AcceleratorViewEntry &AccCache);
static void CpuDiscard(AcceleratorViewEntry &AccCache);
// static void LRUupdate(AcceleratorViewEntry &AccCache);
static void LRUinsert(AcceleratorViewEntry &AccCache);
static void LRUremove(AcceleratorViewEntry &AccCache);
// manage entries in the table
static int EntryPresent(uint64_t CpuPtr);
static void EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
static void EntryErase (uint64_t CpuPtr);
static AccViewTableIterator EntryLookup(uint64_t CpuPtr);
static void EntrySet (uint64_t CpuPtr,AcceleratorViewEntry &entry);
static void AcceleratorViewClose(uint64_t AccPtr);
static uint64_t AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
static void CpuViewClose(uint64_t Ptr);
static uint64_t CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
#endif
static void NotifyDeletion(void * CpuPtr);
public:
static void Print(void);
static int isOpen (void* CpuPtr);
static void ViewClose(void* CpuPtr,ViewMode mode);
static void *ViewOpen (void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
};
NAMESPACE_END(Grid);

View File

@ -1,468 +0,0 @@
#include <Grid/GridCore.h>
#ifndef GRID_UVM
#warning "Using explicit device memory copies"
NAMESPACE_BEGIN(Grid);
#define dprintf(...)
////////////////////////////////////////////////////////////
// For caching copies of data on device
////////////////////////////////////////////////////////////
MemoryManager::AccViewTable_t MemoryManager::AccViewTable;
MemoryManager::LRU_t MemoryManager::LRU;
////////////////////////////////////////////////////////
// Footprint tracking
////////////////////////////////////////////////////////
uint64_t MemoryManager::DeviceBytes;
uint64_t MemoryManager::DeviceLRUBytes;
uint64_t MemoryManager::DeviceMaxBytes = 1024*1024*128;
uint64_t MemoryManager::HostToDeviceBytes;
uint64_t MemoryManager::DeviceToHostBytes;
uint64_t MemoryManager::HostToDeviceXfer;
uint64_t MemoryManager::DeviceToHostXfer;
////////////////////////////////////
// Priority ordering for unlocked entries
// Empty
// CpuDirty
// Consistent
// AccDirty
////////////////////////////////////
#define Empty (0x0) /*Entry unoccupied */
#define CpuDirty (0x1) /*CPU copy is golden, Acc buffer MAY not be allocated*/
#define Consistent (0x2) /*ACC copy AND CPU copy are valid */
#define AccDirty (0x4) /*ACC copy is golden */
#define EvictNext (0x8) /*Priority for eviction*/
/////////////////////////////////////////////////
// Mechanics of data table maintenance
/////////////////////////////////////////////////
int MemoryManager::EntryPresent(uint64_t CpuPtr)
{
if(AccViewTable.empty()) return 0;
auto count = AccViewTable.count(CpuPtr); assert((count==0)||(count==1));
return count;
}
void MemoryManager::EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
{
assert(!EntryPresent(CpuPtr));
AcceleratorViewEntry AccCache;
AccCache.CpuPtr = CpuPtr;
AccCache.AccPtr = (uint64_t)NULL;
AccCache.bytes = bytes;
AccCache.state = CpuDirty;
AccCache.LRU_valid=0;
AccCache.transient=0;
AccCache.accLock=0;
AccCache.cpuLock=0;
AccViewTable[CpuPtr] = AccCache;
}
MemoryManager::AccViewTableIterator MemoryManager::EntryLookup(uint64_t CpuPtr)
{
assert(EntryPresent(CpuPtr));
auto AccCacheIterator = AccViewTable.find(CpuPtr);
assert(AccCacheIterator!=AccViewTable.end());
return AccCacheIterator;
}
void MemoryManager::EntryErase(uint64_t CpuPtr)
{
auto AccCache = EntryLookup(CpuPtr);
AccViewTable.erase(CpuPtr);
}
void MemoryManager::LRUinsert(AcceleratorViewEntry &AccCache)
{
assert(AccCache.LRU_valid==0);
if (AccCache.transient) {
LRU.push_back(AccCache.CpuPtr);
AccCache.LRU_entry = --LRU.end();
} else {
LRU.push_front(AccCache.CpuPtr);
AccCache.LRU_entry = LRU.begin();
}
AccCache.LRU_valid = 1;
DeviceLRUBytes+=AccCache.bytes;
}
void MemoryManager::LRUremove(AcceleratorViewEntry &AccCache)
{
assert(AccCache.LRU_valid==1);
LRU.erase(AccCache.LRU_entry);
AccCache.LRU_valid = 0;
DeviceLRUBytes-=AccCache.bytes;
}
/////////////////////////////////////////////////
// Accelerator cache motion & consistency logic
/////////////////////////////////////////////////
void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
{
///////////////////////////////////////////////////////////
// Remove from Accelerator, remove entry, without flush
// Cannot be locked. If allocated Must be in LRU pool.
///////////////////////////////////////////////////////////
assert(AccCache.state!=Empty);
// dprintf("MemoryManager: Discard(%llx) %llx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
assert(AccCache.accLock==0);
assert(AccCache.cpuLock==0);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
if(AccCache.AccPtr) {
AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
DeviceBytes -=AccCache.bytes;
LRUremove(AccCache);
// dprintf("MemoryManager: Free(%llx) LRU %lld Total %lld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);
}
uint64_t CpuPtr = AccCache.CpuPtr;
EntryErase(CpuPtr);
}
void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
{
///////////////////////////////////////////////////////////////////////////
// Make CPU consistent, remove from Accelerator, remove entry
// Cannot be locked. If allocated must be in LRU pool.
///////////////////////////////////////////////////////////////////////////
assert(AccCache.state!=Empty);
// dprintf("MemoryManager: Evict(%llx) %llx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
assert(AccCache.accLock==0);
assert(AccCache.cpuLock==0);
if(AccCache.state==AccDirty) {
Flush(AccCache);
}
assert(AccCache.CpuPtr!=(uint64_t)NULL);
if(AccCache.AccPtr) {
AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
DeviceBytes -=AccCache.bytes;
LRUremove(AccCache);
// dprintf("MemoryManager: Free(%llx) footprint now %lld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);
}
uint64_t CpuPtr = AccCache.CpuPtr;
EntryErase(CpuPtr);
}
void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
{
assert(AccCache.state==AccDirty);
assert(AccCache.cpuLock==0);
assert(AccCache.accLock==0);
assert(AccCache.AccPtr!=(uint64_t)NULL);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
// dprintf("MemoryManager: Flush %llx -> %llx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
DeviceToHostBytes+=AccCache.bytes;
DeviceToHostXfer++;
AccCache.state=Consistent;
}
void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
{
assert(AccCache.state==CpuDirty);
assert(AccCache.cpuLock==0);
assert(AccCache.accLock==0);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
if(AccCache.AccPtr==(uint64_t)NULL){
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
DeviceBytes+=AccCache.bytes;
}
// dprintf("MemoryManager: Clone %llx <- %llx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
HostToDeviceBytes+=AccCache.bytes;
HostToDeviceXfer++;
AccCache.state=Consistent;
}
void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache)
{
assert(AccCache.state!=Empty);
assert(AccCache.cpuLock==0);
assert(AccCache.accLock==0);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
if(AccCache.AccPtr==(uint64_t)NULL){
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
DeviceBytes+=AccCache.bytes;
}
AccCache.state=AccDirty;
}
/////////////////////////////////////////////////////////////////////////////////
// View management
/////////////////////////////////////////////////////////////////////////////////
void MemoryManager::ViewClose(void* Ptr,ViewMode mode)
{
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
AcceleratorViewClose((uint64_t)Ptr);
} else if( (mode==CpuRead)||(mode==CpuWrite)){
CpuViewClose((uint64_t)Ptr);
} else {
assert(0);
}
}
void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
{
uint64_t CpuPtr = (uint64_t)_CpuPtr;
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint);
} else if( (mode==CpuRead)||(mode==CpuWrite)){
return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint);
} else {
assert(0);
return NULL;
}
}
void MemoryManager::EvictVictims(uint64_t bytes)
{
while(bytes+DeviceLRUBytes > DeviceMaxBytes){
if ( DeviceLRUBytes > 0){
assert(LRU.size()>0);
uint64_t victim = LRU.back();
auto AccCacheIterator = EntryLookup(victim);
auto & AccCache = AccCacheIterator->second;
Evict(AccCache);
}
}
}
uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
{
////////////////////////////////////////////////////////////////////////////
// Find if present, otherwise get or force an empty
////////////////////////////////////////////////////////////////////////////
if ( EntryPresent(CpuPtr)==0 ){
EvictVictims(bytes);
EntryCreate(CpuPtr,bytes,mode,hint);
}
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
assert((mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard));
assert(AccCache.cpuLock==0); // Programming error
if(AccCache.state!=Empty) {
assert(AccCache.CpuPtr == CpuPtr);
assert(AccCache.bytes ==bytes);
}
/*
* State transitions and actions
*
* Action State StateNext Flush Clone
*
* AccRead Empty Consistent - Y
* AccWrite Empty AccDirty - Y
* AccRead CpuDirty Consistent - Y
* AccWrite CpuDirty AccDirty - Y
* AccRead Consistent Consistent - -
* AccWrite Consistent AccDirty - -
* AccRead AccDirty AccDirty - -
* AccWrite AccDirty AccDirty - -
*/
if(AccCache.state==Empty) {
assert(AccCache.LRU_valid==0);
AccCache.CpuPtr = CpuPtr;
AccCache.AccPtr = (uint64_t)NULL;
AccCache.bytes = bytes;
AccCache.state = CpuDirty; // Cpu starts primary
if(mode==AcceleratorWriteDiscard){
CpuDiscard(AccCache);
AccCache.state = AccDirty; // Empty + AcceleratorWrite=> AccDirty
} else if(mode==AcceleratorWrite){
Clone(AccCache);
AccCache.state = AccDirty; // Empty + AcceleratorWrite=> AccDirty
} else {
Clone(AccCache);
AccCache.state = Consistent; // Empty + AccRead => Consistent
}
AccCache.accLock= 1;
} else if(AccCache.state==CpuDirty ){
if(mode==AcceleratorWriteDiscard) {
CpuDiscard(AccCache);
AccCache.state = AccDirty; // CpuDirty + AcceleratorWrite=> AccDirty
} else if(mode==AcceleratorWrite) {
Clone(AccCache);
AccCache.state = AccDirty; // CpuDirty + AcceleratorWrite=> AccDirty
} else {
Clone(AccCache);
AccCache.state = Consistent; // CpuDirty + AccRead => Consistent
}
AccCache.accLock++;
// printf("Copied CpuDirty entry into device accLock %d\n",AccCache.accLock);
} else if(AccCache.state==Consistent) {
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
AccCache.state = AccDirty; // Consistent + AcceleratorWrite=> AccDirty
else
AccCache.state = Consistent; // Consistent + AccRead => Consistent
AccCache.accLock++;
// printf("Consistent entry into device accLock %d\n",AccCache.accLock);
} else if(AccCache.state==AccDirty) {
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
AccCache.state = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty
else
AccCache.state = AccDirty; // AccDirty + AccRead => AccDirty
AccCache.accLock++;
// printf("AccDirty entry into device accLock %d\n",AccCache.accLock);
} else {
assert(0);
}
// If view is opened on device remove from LRU
if(AccCache.LRU_valid==1){
// must possibly remove from LRU as now locked on GPU
LRUremove(AccCache);
}
int transient =hint;
AccCache.transient= transient? EvictNext : 0;
return AccCache.AccPtr;
}
////////////////////////////////////
// look up & decrement lock count
////////////////////////////////////
void MemoryManager::AcceleratorViewClose(uint64_t CpuPtr)
{
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
assert(AccCache.cpuLock==0);
assert(AccCache.accLock>0);
AccCache.accLock--;
// Move to LRU queue if not locked and close on device
if(AccCache.accLock==0) {
LRUinsert(AccCache);
}
}
void MemoryManager::CpuViewClose(uint64_t CpuPtr)
{
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
assert(AccCache.cpuLock>0);
assert(AccCache.accLock==0);
AccCache.cpuLock--;
}
/*
* Action State StateNext Flush Clone
*
* CpuRead Empty CpuDirty - -
* CpuWrite Empty CpuDirty - -
* CpuRead CpuDirty CpuDirty - -
* CpuWrite CpuDirty CpuDirty - -
* CpuRead Consistent Consistent - -
* CpuWrite Consistent CpuDirty - -
* CpuRead AccDirty Consistent Y -
* CpuWrite AccDirty CpuDirty Y -
*/
uint64_t MemoryManager::CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise transient)
{
////////////////////////////////////////////////////////////////////////////
// Find if present, otherwise get or force an empty
////////////////////////////////////////////////////////////////////////////
if ( EntryPresent(CpuPtr)==0 ){
EvictVictims(bytes);
EntryCreate(CpuPtr,bytes,mode,transient);
}
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
assert((mode==CpuRead)||(mode==CpuWrite));
assert(AccCache.accLock==0); // Programming error
if(AccCache.state!=Empty) {
assert(AccCache.CpuPtr == CpuPtr);
assert(AccCache.bytes==bytes);
}
if(AccCache.state==Empty) {
AccCache.CpuPtr = CpuPtr;
AccCache.AccPtr = (uint64_t)NULL;
AccCache.bytes = bytes;
AccCache.state = CpuDirty; // Empty + CpuRead/CpuWrite => CpuDirty
AccCache.accLock= 0;
AccCache.cpuLock= 1;
} else if(AccCache.state==CpuDirty ){
// AccPtr dont care, deferred allocate
AccCache.state = CpuDirty; // CpuDirty +CpuRead/CpuWrite => CpuDirty
AccCache.cpuLock++;
} else if(AccCache.state==Consistent) {
assert(AccCache.AccPtr != (uint64_t)NULL);
if(mode==CpuWrite)
AccCache.state = CpuDirty; // Consistent +CpuWrite => CpuDirty
else
AccCache.state = Consistent; // Consistent +CpuRead => Consistent
AccCache.cpuLock++;
} else if(AccCache.state==AccDirty) {
assert(AccCache.AccPtr != (uint64_t)NULL);
Flush(AccCache);
if(mode==CpuWrite) AccCache.state = CpuDirty; // AccDirty +CpuWrite => CpuDirty, Flush
else AccCache.state = Consistent; // AccDirty +CpuRead => Consistent, Flush
AccCache.cpuLock++;
} else {
assert(0); // should be unreachable
}
AccCache.transient= transient? EvictNext : 0;
return AccCache.CpuPtr;
}
void MemoryManager::NotifyDeletion(void *_ptr)
{
// Look up in ViewCache
uint64_t ptr = (uint64_t)_ptr;
if(EntryPresent(ptr)) {
auto e = EntryLookup(ptr);
AccDiscard(e->second);
}
}
void MemoryManager::Print(void)
{
std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
std::cout << GridLogDebug << "Memory Manager " << std::endl;
std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
std::cout << GridLogDebug << DeviceBytes << " bytes allocated on device " << std::endl;
std::cout << GridLogDebug << DeviceLRUBytes<< " bytes evictable on device " << std::endl;
std::cout << GridLogDebug << DeviceMaxBytes<< " bytes max on device " << std::endl;
std::cout << GridLogDebug << HostToDeviceXfer << " transfers to device " << std::endl;
std::cout << GridLogDebug << DeviceToHostXfer << " transfers from device " << std::endl;
std::cout << GridLogDebug << HostToDeviceBytes<< " bytes transfered to device " << std::endl;
std::cout << GridLogDebug << DeviceToHostBytes<< " bytes transfered from device " << std::endl;
std::cout << GridLogDebug << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl;
std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
std::cout << GridLogDebug << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl;
std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){
auto &AccCache = it->second;
std::string str;
if ( AccCache.state==Empty ) str = std::string("Empty");
if ( AccCache.state==CpuDirty ) str = std::string("CpuDirty");
if ( AccCache.state==AccDirty ) str = std::string("AccDirty");
if ( AccCache.state==Consistent)str = std::string("Consistent");
std::cout << GridLogDebug << "0x"<<std::hex<<AccCache.CpuPtr<<std::dec
<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
<< "\t" << AccCache.cpuLock
<< "\t" << AccCache.accLock
<< "\t" << AccCache.LRU_valid<<std::endl;
}
std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
};
int MemoryManager::isOpen (void* _CpuPtr)
{
uint64_t CpuPtr = (uint64_t)_CpuPtr;
if ( EntryPresent(CpuPtr) ){
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
return AccCache.cpuLock+AccCache.accLock;
} else {
return 0;
}
}
NAMESPACE_END(Grid);
#endif

View File

@ -1,24 +0,0 @@
#include <Grid/GridCore.h>
#ifdef GRID_UVM
#warning "Grid is assuming unified virtual memory address space"
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////////////////////
// View management is 1:1 address space mapping
/////////////////////////////////////////////////////////////////////////////////
uint64_t MemoryManager::DeviceBytes;
uint64_t MemoryManager::DeviceLRUBytes;
uint64_t MemoryManager::DeviceMaxBytes = 1024*1024*128;
uint64_t MemoryManager::HostToDeviceBytes;
uint64_t MemoryManager::DeviceToHostBytes;
uint64_t MemoryManager::HostToDeviceXfer;
uint64_t MemoryManager::DeviceToHostXfer;
void MemoryManager::ViewClose(void* AccPtr,ViewMode mode){};
void *MemoryManager::ViewOpen(void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint){ return CpuPtr; };
int MemoryManager::isOpen (void* CpuPtr) { return 0;}
void MemoryManager::Print(void){};
void MemoryManager::NotifyDeletion(void *ptr){};
NAMESPACE_END(Grid);
#endif

View File

@ -1,67 +0,0 @@
#include <Grid/GridCore.h>
#include <fcntl.h>
NAMESPACE_BEGIN(Grid);
MemoryStats *MemoryProfiler::stats = nullptr;
bool MemoryProfiler::debug = false;
void check_huge_pages(void *Buf,uint64_t BYTES)
{
#ifdef __linux__
int fd = open("/proc/self/pagemap", O_RDONLY);
assert(fd >= 0);
const int page_size = 4096;
uint64_t virt_pfn = (uint64_t)Buf / page_size;
off_t offset = sizeof(uint64_t) * virt_pfn;
uint64_t npages = (BYTES + page_size-1) / page_size;
uint64_t pagedata[npages];
uint64_t ret = lseek(fd, offset, SEEK_SET);
assert(ret == offset);
ret = ::read(fd, pagedata, sizeof(uint64_t)*npages);
assert(ret == sizeof(uint64_t) * npages);
int nhugepages = npages / 512;
int n4ktotal, nnothuge;
n4ktotal = 0;
nnothuge = 0;
for (int i = 0; i < nhugepages; ++i) {
uint64_t baseaddr = (pagedata[i*512] & 0x7fffffffffffffULL) * page_size;
for (int j = 0; j < 512; ++j) {
uint64_t pageaddr = (pagedata[i*512+j] & 0x7fffffffffffffULL) * page_size;
++n4ktotal;
if (pageaddr != baseaddr + j * page_size)
++nnothuge;
}
}
int rank = CartesianCommunicator::RankWorld();
printf("rank %d Allocated %d 4k pages, %d not in huge pages\n", rank, n4ktotal, nnothuge);
#endif
}
std::string sizeString(const size_t bytes)
{
constexpr unsigned int bufSize = 256;
const char *suffixes[7] = {"", "K", "M", "G", "T", "P", "E"};
char buf[256];
size_t s = 0;
double count = bytes;
while (count >= 1024 && s < 7)
{
s++;
count /= 1024;
}
if (count - floor(count) == 0.0)
{
snprintf(buf, bufSize, "%d %sB", (int)count, suffixes[s]);
}
else
{
snprintf(buf, bufSize, "%.1f %sB", count, suffixes[s]);
}
return std::string(buf);
}
NAMESPACE_END(Grid);

View File

@ -1,95 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/MemoryStats.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
std::string sizeString(size_t bytes);
struct MemoryStats
{
size_t totalAllocated{0}, maxAllocated{0},
currentlyAllocated{0}, totalFreed{0};
};
class MemoryProfiler
{
public:
static MemoryStats *stats;
static bool debug;
};
#define memString(bytes) std::to_string(bytes) + " (" + sizeString(bytes) + ")"
#define profilerDebugPrint \
if (MemoryProfiler::stats) \
{ \
auto s = MemoryProfiler::stats; \
std::cout << GridLogDebug << "[Memory debug] Stats " << MemoryProfiler::stats << std::endl; \
std::cout << GridLogDebug << "[Memory debug] total : " << memString(s->totalAllocated) \
<< std::endl; \
std::cout << GridLogDebug << "[Memory debug] max : " << memString(s->maxAllocated) \
<< std::endl; \
std::cout << GridLogDebug << "[Memory debug] current: " << memString(s->currentlyAllocated) \
<< std::endl; \
std::cout << GridLogDebug << "[Memory debug] freed : " << memString(s->totalFreed) \
<< std::endl; \
}
#define profilerAllocate(bytes) \
if (MemoryProfiler::stats) \
{ \
auto s = MemoryProfiler::stats; \
s->totalAllocated += (bytes); \
s->currentlyAllocated += (bytes); \
s->maxAllocated = std::max(s->maxAllocated, s->currentlyAllocated); \
} \
if (MemoryProfiler::debug) \
{ \
std::cout << GridLogDebug << "[Memory debug] allocating " << memString(bytes) << std::endl; \
profilerDebugPrint; \
}
#define profilerFree(bytes) \
if (MemoryProfiler::stats) \
{ \
auto s = MemoryProfiler::stats; \
s->totalFreed += (bytes); \
s->currentlyAllocated -= (bytes); \
} \
if (MemoryProfiler::debug) \
{ \
std::cout << GridLogDebug << "[Memory debug] freeing " << memString(bytes) << std::endl; \
profilerDebugPrint; \
}
void check_huge_pages(void *Buf,uint64_t BYTES);
NAMESPACE_END(Grid);

View File

@ -1,291 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/cartesian/Cartesian_base.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CARTESIAN_BASE_H
#define GRID_CARTESIAN_BASE_H
NAMESPACE_BEGIN(Grid);
//////////////////////////////////////////////////////////////////////
// Commicator provides information on the processor grid
//////////////////////////////////////////////////////////////////////
// unsigned long _ndimension;
// Coordinate _processors; // processor grid
// int _processor; // linear processor rank
// Coordinate _processor_coor; // linear processor rank
//////////////////////////////////////////////////////////////////////
class GridBase : public CartesianCommunicator , public GridThread {
public:
int dummy;
// Give Lattice access
template<class object> friend class Lattice;
GridBase(const Coordinate & processor_grid) : CartesianCommunicator(processor_grid) { LocallyPeriodic=0;};
GridBase(const Coordinate & processor_grid,
const CartesianCommunicator &parent,
int &split_rank)
: CartesianCommunicator(processor_grid,parent,split_rank) {LocallyPeriodic=0;};
GridBase(const Coordinate & processor_grid,
const CartesianCommunicator &parent)
: CartesianCommunicator(processor_grid,parent,dummy) {LocallyPeriodic=0;};
virtual ~GridBase() = default;
// Physics Grid information.
Coordinate _simd_layout;// Which dimensions get relayed out over simd lanes.
Coordinate _fdimensions;// (full) Global dimensions of array prior to cb removal
Coordinate _gdimensions;// Global dimensions of array after cb removal
Coordinate _ldimensions;// local dimensions of array with processor images removed
Coordinate _rdimensions;// Reduced local dimensions with simd lane images and processor images removed
Coordinate _ostride; // Outer stride for each dimension
Coordinate _istride; // Inner stride i.e. within simd lane
int _osites; // _isites*_osites = product(dimensions).
int _isites;
int _fsites; // _isites*_osites = product(dimensions).
int _gsites;
Coordinate _slice_block;// subslice information
Coordinate _slice_stride;
Coordinate _slice_nblock;
Coordinate _lstart; // local start of array in gcoors _processor_coor[d]*_ldimensions[d]
Coordinate _lend ; // local end of array in gcoors _processor_coor[d]*_ldimensions[d]+_ldimensions_[d]-1
bool _isCheckerBoarded;
int LocallyPeriodic;
Coordinate _checker_dim_mask;
public:
////////////////////////////////////////////////////////////////
// Checkerboarding interface is virtual and overridden by
// GridCartesian / GridRedBlackCartesian
////////////////////////////////////////////////////////////////
virtual int CheckerBoarded(int dim)=0;
virtual int CheckerBoard(const Coordinate &site)=0;
virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0;
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0;
virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift,int cb)=0;
virtual int CheckerBoardFromOindex (int Oindex)=0;
virtual int CheckerBoardFromOindexTable (int Oindex)=0;
//////////////////////////////////////////////////////////////////////////////////////////////
// Local layout calculations
//////////////////////////////////////////////////////////////////////////////////////////////
// These routines are key. Subdivide the linearised cartesian index into
// "inner" index identifying which simd lane of object<vFcomplex> is associated with coord
// "outer" index identifying which element of _odata in class "Lattice" is associated with coord.
//
// Compared to, say, Blitz++ we simply need to store BOTH an inner stride and an outer
// stride per dimension. The cost of evaluating the indexing information is doubled for an n-dimensional
// coordinate. Note, however, for data parallel operations the "inner" indexing cost is not paid and all
// lanes are operated upon simultaneously.
virtual int oIndex(Coordinate &coor)
{
int idx=0;
// Works with either global or local coordinates
for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*(coor[d]%_rdimensions[d]);
return idx;
}
virtual int iIndex(Coordinate &lcoor)
{
int idx=0;
for(int d=0;d<_ndimension;d++) idx+=_istride[d]*(lcoor[d]/_rdimensions[d]);
return idx;
}
inline int oIndexReduced(Coordinate &ocoor)
{
int idx=0;
// ocoor is already reduced so can eliminate the modulo operation
// for fast indexing and inline the routine
for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*ocoor[d];
return idx;
}
inline void oCoorFromOindex (Coordinate& coor,int Oindex){
Lexicographic::CoorFromIndex(coor,Oindex,_rdimensions);
}
inline void InOutCoorToLocalCoor (Coordinate &ocoor, Coordinate &icoor, Coordinate &lcoor) {
lcoor.resize(_ndimension);
for (int d = 0; d < _ndimension; d++)
lcoor[d] = ocoor[d] + _rdimensions[d] * icoor[d];
}
//////////////////////////////////////////////////////////
// SIMD lane addressing
//////////////////////////////////////////////////////////
inline void iCoorFromIindex(Coordinate &coor,int lane)
{
Lexicographic::CoorFromIndex(coor,lane,_simd_layout);
}
inline int PermuteDim(int dimension){
return _simd_layout[dimension]>1;
}
inline int PermuteType(int dimension){
int permute_type=0;
//
// Best way to encode this would be to present a mask
// for which simd dimensions are rotated, and the rotation
// size. If there is only one simd dimension rotated, this is just
// a permute.
//
// Cases: PermuteType == 1,2,4,8
// Distance should be either 0,1,2..
//
if ( _simd_layout[dimension] > 2 ) {
for(int d=0;d<_ndimension;d++){
if ( d != dimension ) assert ( (_simd_layout[d]==1) );
}
permute_type = RotateBit; // How to specify distance; this is not just direction.
return permute_type;
}
for(int d=_ndimension-1;d>dimension;d--){
if (_simd_layout[d]>1 ) permute_type++;
}
return permute_type;
}
////////////////////////////////////////////////////////////////
// Array sizing queries
////////////////////////////////////////////////////////////////
inline int iSites(void) const { return _isites; };
inline int Nsimd(void) const { return _isites; };// Synonymous with iSites
inline int oSites(void) const { return _osites; };
inline int lSites(void) const { return _isites*_osites; };
inline int gSites(void) const { return _isites*_osites*_Nprocessors; };
inline int Nd (void) const { return _ndimension;};
inline const Coordinate LocalStarts(void) { return _lstart; };
inline const Coordinate &FullDimensions(void) { return _fdimensions;};
inline const Coordinate &GlobalDimensions(void) { return _gdimensions;};
inline const Coordinate &LocalDimensions(void) { return _ldimensions;};
inline const Coordinate &VirtualLocalDimensions(void) { return _ldimensions;};
////////////////////////////////////////////////////////////////
// Utility to print the full decomposition details
////////////////////////////////////////////////////////////////
void show_decomposition(){
std::cout << GridLogMessage << "\tFull Dimensions : " << _fdimensions << std::endl;
std::cout << GridLogMessage << "\tSIMD layout : " << _simd_layout << std::endl;
std::cout << GridLogMessage << "\tGlobal Dimensions : " << _gdimensions << std::endl;
std::cout << GridLogMessage << "\tLocal Dimensions : " << _ldimensions << std::endl;
std::cout << GridLogMessage << "\tReduced Dimensions : " << _rdimensions << std::endl;
std::cout << GridLogMessage << "\tOuter strides : " << _ostride << std::endl;
std::cout << GridLogMessage << "\tInner strides : " << _istride << std::endl;
std::cout << GridLogMessage << "\tiSites : " << _isites << std::endl;
std::cout << GridLogMessage << "\toSites : " << _osites << std::endl;
std::cout << GridLogMessage << "\tlSites : " << lSites() << std::endl;
std::cout << GridLogMessage << "\tgSites : " << gSites() << std::endl;
std::cout << GridLogMessage << "\tNd : " << _ndimension << std::endl;
}
////////////////////////////////////////////////////////////////
// Global addressing
////////////////////////////////////////////////////////////////
void GlobalIndexToGlobalCoor(int gidx,Coordinate &gcoor){
assert(gidx< gSites());
Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
}
void LocalIndexToLocalCoor(int lidx,Coordinate &lcoor){
assert(lidx<lSites());
Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
}
void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int & gidx){
gidx=0;
int mult=1;
for(int mu=0;mu<_ndimension;mu++) {
gidx+=mult*gcoor[mu];
mult*=_gdimensions[mu];
}
}
void GlobalCoorToProcessorCoorLocalCoor(Coordinate &pcoor,Coordinate &lcoor,const Coordinate &gcoor)
{
pcoor.resize(_ndimension);
lcoor.resize(_ndimension);
for(int mu=0;mu<_ndimension;mu++){
int _fld = _fdimensions[mu]/_processors[mu];
pcoor[mu] = gcoor[mu]/_fld;
lcoor[mu] = gcoor[mu]%_fld;
}
}
void GlobalCoorToRankIndex(int &rank, int &o_idx, int &i_idx ,const Coordinate &gcoor)
{
Coordinate pcoor;
Coordinate lcoor;
GlobalCoorToProcessorCoorLocalCoor(pcoor,lcoor,gcoor);
rank = RankFromProcessorCoor(pcoor);
/*
Coordinate cblcoor(lcoor);
for(int d=0;d<cblcoor.size();d++){
if( this->CheckerBoarded(d) ) {
cblcoor[d] = lcoor[d]/2;
}
}
*/
i_idx= iIndex(lcoor);
o_idx= oIndex(lcoor);
}
void RankIndexToGlobalCoor(int rank, int o_idx, int i_idx , Coordinate &gcoor)
{
gcoor.resize(_ndimension);
Coordinate coor(_ndimension);
ProcessorCoorFromRank(rank,coor);
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] = _ldimensions[mu]*coor[mu];
iCoorFromIindex(coor,i_idx);
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] += _rdimensions[mu]*coor[mu];
oCoorFromOindex (coor,o_idx);
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] += coor[mu];
}
void RankIndexCbToFullGlobalCoor(int rank, int o_idx, int i_idx, int cb,Coordinate &fcoor)
{
RankIndexToGlobalCoor(rank,o_idx,i_idx ,fcoor);
if(CheckerBoarded(0)){
fcoor[0] = fcoor[0]*2+cb;
}
}
void ProcessorCoorLocalCoorToGlobalCoor(Coordinate &Pcoor,Coordinate &Lcoor,Coordinate &gcoor)
{
gcoor.resize(_ndimension);
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] = Pcoor[mu]*_ldimensions[mu]+Lcoor[mu];
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,178 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/cartesian/Cartesian_full.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CARTESIAN_FULL_H
#define GRID_CARTESIAN_FULL_H
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////////////////////////////
// Grid Support.
/////////////////////////////////////////////////////////////////////////////////////////
class GridCartesian: public GridBase {
public:
int dummy;
Coordinate _checker_dim_mask;
virtual int CheckerBoardFromOindexTable (int Oindex) {
return 0;
}
virtual int CheckerBoardFromOindex (int Oindex)
{
return 0;
}
virtual int CheckerBoarded(int dim){
return 0;
}
virtual int CheckerBoard(const Coordinate &site){
return 0;
}
virtual int CheckerBoardDestination(int cb,int shift,int dim){
return 0;
}
virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift, int ocb){
return shift;
}
virtual int CheckerBoardShift(int source_cb,int dim,int shift, int osite){
return shift;
}
/////////////////////////////////////////////////////////////////////////
// Constructor takes a parent grid and possibly subdivides communicator.
/////////////////////////////////////////////////////////////////////////
GridCartesian(const Coordinate &dimensions,
const Coordinate &simd_layout,
const Coordinate &processor_grid,
const GridCartesian &parent) : GridBase(processor_grid,parent,dummy)
{
Init(dimensions,simd_layout,processor_grid);
}
GridCartesian(const Coordinate &dimensions,
const Coordinate &simd_layout,
const Coordinate &processor_grid,
const GridCartesian &parent,int &split_rank) : GridBase(processor_grid,parent,split_rank)
{
Init(dimensions,simd_layout,processor_grid);
}
/////////////////////////////////////////////////////////////////////////
// Construct from comm world
/////////////////////////////////////////////////////////////////////////
GridCartesian(const Coordinate &dimensions,
const Coordinate &simd_layout,
const Coordinate &processor_grid) : GridBase(processor_grid)
{
Init(dimensions,simd_layout,processor_grid);
}
virtual ~GridCartesian() = default;
void Init(const Coordinate &dimensions,
const Coordinate &simd_layout,
const Coordinate &processor_grid)
{
///////////////////////
// Grid information
///////////////////////
_isCheckerBoarded = false;
_ndimension = dimensions.size();
_fdimensions.resize(_ndimension);
_gdimensions.resize(_ndimension);
_ldimensions.resize(_ndimension);
_rdimensions.resize(_ndimension);
_simd_layout.resize(_ndimension);
_checker_dim_mask.resize(_ndimension);;
_lstart.resize(_ndimension);
_lend.resize(_ndimension);
_ostride.resize(_ndimension);
_istride.resize(_ndimension);
_fsites = _gsites = _osites = _isites = 1;
for (int d = 0; d < _ndimension; d++)
{
_checker_dim_mask[d]=0;
_fdimensions[d] = dimensions[d]; // Global dimensions
_gdimensions[d] = _fdimensions[d]; // Global dimensions
_simd_layout[d] = simd_layout[d];
_fsites = _fsites * _fdimensions[d];
_gsites = _gsites * _gdimensions[d];
// Use a reduced simd grid
_ldimensions[d] = _gdimensions[d] / _processors[d]; //local dimensions
//std::cout << _ldimensions[d] << " " << _gdimensions[d] << " " << _processors[d] << std::endl;
assert(_ldimensions[d] * _processors[d] == _gdimensions[d]);
_rdimensions[d] = _ldimensions[d] / _simd_layout[d]; //overdecomposition
assert(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]);
_lstart[d] = _processor_coor[d] * _ldimensions[d];
_lend[d] = _processor_coor[d] * _ldimensions[d] + _ldimensions[d] - 1;
_osites *= _rdimensions[d];
_isites *= _simd_layout[d];
// Addressing support
if (d == 0)
{
_ostride[d] = 1;
_istride[d] = 1;
}
else
{
_ostride[d] = _ostride[d - 1] * _rdimensions[d - 1];
_istride[d] = _istride[d - 1] * _simd_layout[d - 1];
}
}
///////////////////////
// subplane information
///////////////////////
_slice_block.resize(_ndimension);
_slice_stride.resize(_ndimension);
_slice_nblock.resize(_ndimension);
int block = 1;
int nblock = 1;
for (int d = 0; d < _ndimension; d++)
nblock *= _rdimensions[d];
for (int d = 0; d < _ndimension; d++)
{
nblock /= _rdimensions[d];
_slice_block[d] = block;
_slice_stride[d] = _ostride[d] * _rdimensions[d];
_slice_nblock[d] = nblock;
block = block * _rdimensions[d];
}
};
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,305 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/cartesian/Cartesian_red_black.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CARTESIAN_RED_BLACK_H
#define GRID_CARTESIAN_RED_BLACK_H
NAMESPACE_BEGIN(Grid);
static const int CbRed =0;
static const int CbBlack=1;
static const int Even =CbRed;
static const int Odd =CbBlack;
accelerator_inline int RedBlackCheckerBoardFromOindex (int oindex, Coordinate &rdim, Coordinate &chk_dim_msk)
{
int nd=rdim.size();
Coordinate coor(nd);
Lexicographic::CoorFromIndex(coor,oindex,rdim);
int linear=0;
for(int d=0;d<nd;d++){
if(chk_dim_msk[d])
linear=linear+coor[d];
}
return (linear&0x1);
}
// Specialise this for red black grids storing half the data like a chess board.
class GridRedBlackCartesian : public GridBase
{
public:
// Coordinate _checker_dim_mask;
int _checker_dim;
std::vector<int> _checker_board;
virtual int CheckerBoarded(int dim){
if( dim==_checker_dim) return 1;
else return 0;
}
virtual int CheckerBoard(const Coordinate &site){
int linear=0;
assert(site.size()==_ndimension);
for(int d=0;d<_ndimension;d++){
if(_checker_dim_mask[d])
linear=linear+site[d];
}
return (linear&0x1);
}
// Depending on the cb of site, we toggle source cb.
// for block #b, element #e = (b, e)
// we need
virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift,int ocb){
if(dim != _checker_dim) return shift;
int fulldim =_fdimensions[dim];
shift = (shift+fulldim)%fulldim;
// Probably faster with table lookup;
// or by looping over x,y,z and multiply rather than computing checkerboard.
if ( (source_cb+ocb)&1 ) {
return (shift)/2;
} else {
return (shift+1)/2;
}
}
virtual int CheckerBoardFromOindexTable (int Oindex) {
return _checker_board[Oindex];
}
virtual int CheckerBoardFromOindex (int Oindex)
{
Coordinate ocoor;
oCoorFromOindex(ocoor,Oindex);
return CheckerBoard(ocoor);
}
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite){
if(dim != _checker_dim) return shift;
int ocb=CheckerBoardFromOindex(osite);
return CheckerBoardShiftForCB(source_cb,dim,shift,ocb);
}
virtual int CheckerBoardDestination(int source_cb,int shift,int dim){
if ( _checker_dim_mask[dim] ) {
// If _fdimensions[checker_dim] is odd, then shifting by 1 in other dims
// does NOT cause a parity hop.
int add=(dim==_checker_dim) ? 0 : _fdimensions[_checker_dim];
if ( (shift+add) &0x1) {
return 1-source_cb;
} else {
return source_cb;
}
} else {
return source_cb;
}
};
////////////////////////////////////////////////////////////
// Create Redblack from original grid; require full grid pointer ?
////////////////////////////////////////////////////////////
GridRedBlackCartesian(const GridBase *base) : GridBase(base->_processors,*base)
{
int dims = base->_ndimension;
Coordinate checker_dim_mask(dims,1);
int checker_dim = 0;
Init(base->_fdimensions,base->_simd_layout,base->_processors,checker_dim_mask,checker_dim);
};
////////////////////////////////////////////////////////////
// Create redblack from original grid, with non-trivial checker dim mask
////////////////////////////////////////////////////////////
GridRedBlackCartesian(const GridBase *base,
const Coordinate &checker_dim_mask,
int checker_dim
) : GridBase(base->_processors,*base)
{
Init(base->_fdimensions,base->_simd_layout,base->_processors,checker_dim_mask,checker_dim) ;
}
virtual ~GridRedBlackCartesian() = default;
void Init(const Coordinate &dimensions,
const Coordinate &simd_layout,
const Coordinate &processor_grid,
const Coordinate &checker_dim_mask,
int checker_dim)
{
_isCheckerBoarded = true;
_checker_dim = checker_dim;
assert(checker_dim_mask[checker_dim] == 1);
_ndimension = dimensions.size();
assert(checker_dim_mask.size() == _ndimension);
assert(processor_grid.size() == _ndimension);
assert(simd_layout.size() == _ndimension);
_fdimensions.resize(_ndimension);
_gdimensions.resize(_ndimension);
_ldimensions.resize(_ndimension);
_rdimensions.resize(_ndimension);
_simd_layout.resize(_ndimension);
_lstart.resize(_ndimension);
_lend.resize(_ndimension);
_ostride.resize(_ndimension);
_istride.resize(_ndimension);
_fsites = _gsites = _osites = _isites = 1;
_checker_dim_mask = checker_dim_mask;
for (int d = 0; d < _ndimension; d++)
{
_fdimensions[d] = dimensions[d];
_gdimensions[d] = _fdimensions[d];
_fsites = _fsites * _fdimensions[d];
_gsites = _gsites * _gdimensions[d];
if (d == _checker_dim)
{
assert((_gdimensions[d] & 0x1) == 0);
_gdimensions[d] = _gdimensions[d] / 2; // Remove a checkerboard
_gsites /= 2;
}
_ldimensions[d] = _gdimensions[d] / _processors[d];
assert(_ldimensions[d] * _processors[d] == _gdimensions[d]);
_lstart[d] = _processor_coor[d] * _ldimensions[d];
_lend[d] = _processor_coor[d] * _ldimensions[d] + _ldimensions[d] - 1;
// Use a reduced simd grid
_simd_layout[d] = simd_layout[d];
_rdimensions[d] = _ldimensions[d] / _simd_layout[d]; // this is not checking if this is integer
assert(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]);
assert(_rdimensions[d] > 0);
// all elements of a simd vector must have same checkerboard.
// If Ls vectorised, this must still be the case; e.g. dwf rb5d
if (_simd_layout[d] > 1)
{
if (checker_dim_mask[d])
{
assert((_rdimensions[d] & 0x1) == 0);
}
}
_osites *= _rdimensions[d];
_isites *= _simd_layout[d];
// Addressing support
if (d == 0)
{
_ostride[d] = 1;
_istride[d] = 1;
}
else
{
_ostride[d] = _ostride[d - 1] * _rdimensions[d - 1];
_istride[d] = _istride[d - 1] * _simd_layout[d - 1];
}
}
////////////////////////////////////////////////////////////////////////////////////////////
// subplane information
////////////////////////////////////////////////////////////////////////////////////////////
_slice_block.resize(_ndimension);
_slice_stride.resize(_ndimension);
_slice_nblock.resize(_ndimension);
int block = 1;
int nblock = 1;
for (int d = 0; d < _ndimension; d++)
nblock *= _rdimensions[d];
for (int d = 0; d < _ndimension; d++)
{
nblock /= _rdimensions[d];
_slice_block[d] = block;
_slice_stride[d] = _ostride[d] * _rdimensions[d];
_slice_nblock[d] = nblock;
block = block * _rdimensions[d];
}
////////////////////////////////////////////////
// Create a checkerboard lookup table
////////////////////////////////////////////////
int rvol = 1;
for (int d = 0; d < _ndimension; d++)
{
rvol = rvol * _rdimensions[d];
}
_checker_board.resize(rvol);
for (int osite = 0; osite < _osites; osite++)
{
_checker_board[osite] = CheckerBoardFromOindex(osite);
}
};
protected:
virtual int oIndex(Coordinate &coor)
{
int idx = 0;
for (int d = 0; d < _ndimension; d++)
{
if (d == _checker_dim)
{
idx += _ostride[d] * ((coor[d] / 2) % _rdimensions[d]);
}
else
{
idx += _ostride[d] * (coor[d] % _rdimensions[d]);
}
}
return idx;
};
virtual int iIndex(Coordinate &lcoor)
{
int idx = 0;
for (int d = 0; d < _ndimension; d++)
{
if (d == _checker_dim)
{
idx += _istride[d] * (lcoor[d] / (2 * _rdimensions[d]));
}
else
{
idx += _istride[d] * (lcoor[d] / _rdimensions[d]);
}
}
return idx;
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,4 +0,0 @@
#include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid);
Vector<std::pair<int,int> > Cshift_table;
NAMESPACE_END(Grid);

View File

@ -1,472 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_ET.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
Author: Christoph Lehner <christoph@lhnr.de
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_ET_H
#define GRID_LATTICE_ET_H
#include <iostream>
#include <tuple>
#include <typeinfo>
#include <vector>
NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////
// Predicated where support
////////////////////////////////////////////////////
template <class iobj, class vobj, class robj>
accelerator_inline vobj predicatedWhere(const iobj &predicate, const vobj &iftrue,
const robj &iffalse) {
typename std::remove_const<vobj>::type ret;
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
const int Nsimd = vobj::vector_type::Nsimd();
ExtractBuffer<Integer> mask(Nsimd);
ExtractBuffer<scalar_object> truevals(Nsimd);
ExtractBuffer<scalar_object> falsevals(Nsimd);
extract(iftrue, truevals);
extract(iffalse, falsevals);
extract<vInteger, Integer>(TensorRemove(predicate), mask);
for (int s = 0; s < Nsimd; s++) {
if (mask[s]) falsevals[s] = truevals[s];
}
merge(ret, falsevals);
return ret;
}
/////////////////////////////////////////////////////
//Specialization of getVectorType for lattices
/////////////////////////////////////////////////////
template<typename T>
struct getVectorType<Lattice<T> >{
typedef typename Lattice<T>::vector_object type;
};
////////////////////////////////////////////
//-- recursive evaluation of expressions; --
// handle leaves of syntax tree
///////////////////////////////////////////////////
template<class sobj> accelerator_inline
sobj eval(const uint64_t ss, const sobj &arg)
{
return arg;
}
template <class lobj> accelerator_inline
const lobj & eval(const uint64_t ss, const LatticeView<lobj> &arg)
{
return arg[ss];
}
// What needs this?
// Cannot be legal on accelerator
// Comparison must convert
#if 1
template <class lobj> accelerator_inline
const lobj & eval(const uint64_t ss, const Lattice<lobj> &arg)
{
auto view = arg.View(AcceleratorRead);
return view[ss];
}
#endif
///////////////////////////////////////////////////
// handle nodes in syntax tree- eval one operand
///////////////////////////////////////////////////
template <typename Op, typename T1> accelerator_inline
auto eval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr)
-> decltype(expr.op.func( eval(ss, expr.arg1)))
{
return expr.op.func( eval(ss, expr.arg1) );
}
///////////////////////
// eval two operands
///////////////////////
template <typename Op, typename T1, typename T2> accelerator_inline
auto eval(const uint64_t ss, const LatticeBinaryExpression<Op, T1, T2> &expr)
-> decltype(expr.op.func( eval(ss,expr.arg1),eval(ss,expr.arg2)))
{
return expr.op.func( eval(ss,expr.arg1), eval(ss,expr.arg2) );
}
///////////////////////
// eval three operands
///////////////////////
template <typename Op, typename T1, typename T2, typename T3> accelerator_inline
auto eval(const uint64_t ss, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
-> decltype(expr.op.func(eval(ss, expr.arg1), eval(ss, expr.arg2), eval(ss, expr.arg3)))
{
return expr.op.func(eval(ss, expr.arg1), eval(ss, expr.arg2), eval(ss, expr.arg3));
}
//////////////////////////////////////////////////////////////////////////
// Obtain the grid from an expression, ensuring conformable. This must follow a
// tree recursion; must retain grid pointer in the LatticeView class which sucks
// Use a different method, and make it void *.
// Perhaps a conformable method.
//////////////////////////////////////////////////////////////////////////
template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
accelerator_inline void GridFromExpression(GridBase *&grid, const T1 &lat) // Lattice leaf
{
lat.Conformable(grid);
}
template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
accelerator_inline
void GridFromExpression(GridBase *&grid,const T1 &notlat) // non-lattice leaf
{}
template <typename Op, typename T1>
accelerator_inline
void GridFromExpression(GridBase *&grid,const LatticeUnaryExpression<Op, T1> &expr)
{
GridFromExpression(grid, expr.arg1); // recurse
}
template <typename Op, typename T1, typename T2>
accelerator_inline
void GridFromExpression(GridBase *&grid, const LatticeBinaryExpression<Op, T1, T2> &expr)
{
GridFromExpression(grid, expr.arg1); // recurse
GridFromExpression(grid, expr.arg2);
}
template <typename Op, typename T1, typename T2, typename T3>
accelerator_inline
void GridFromExpression(GridBase *&grid, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
{
GridFromExpression(grid, expr.arg1); // recurse
GridFromExpression(grid, expr.arg2); // recurse
GridFromExpression(grid, expr.arg3); // recurse
}
//////////////////////////////////////////////////////////////////////////
// Obtain the CB from an expression, ensuring conformable. This must follow a
// tree recursion
//////////////////////////////////////////////////////////////////////////
template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
inline void CBFromExpression(int &cb, const T1 &lat) // Lattice leaf
{
if ((cb == Odd) || (cb == Even)) {
assert(cb == lat.Checkerboard());
}
cb = lat.Checkerboard();
}
template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
inline void CBFromExpression(int &cb, const T1 &notlat) {} // non-lattice leaf
template <typename Op, typename T1> inline
void CBFromExpression(int &cb,const LatticeUnaryExpression<Op, T1> &expr)
{
CBFromExpression(cb, expr.arg1); // recurse AST
}
template <typename Op, typename T1, typename T2> inline
void CBFromExpression(int &cb,const LatticeBinaryExpression<Op, T1, T2> &expr)
{
CBFromExpression(cb, expr.arg1); // recurse AST
CBFromExpression(cb, expr.arg2); // recurse AST
}
template <typename Op, typename T1, typename T2, typename T3>
inline void CBFromExpression(int &cb, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
{
CBFromExpression(cb, expr.arg1); // recurse AST
CBFromExpression(cb, expr.arg2); // recurse AST
CBFromExpression(cb, expr.arg3); // recurse AST
}
//////////////////////////////////////////////////////////////////////////
// ViewOpen
//////////////////////////////////////////////////////////////////////////
template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
inline void ExpressionViewOpen(T1 &lat) // Lattice leaf
{
lat.ViewOpen(AcceleratorRead);
}
template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
inline void ExpressionViewOpen(T1 &notlat) {}
template <typename Op, typename T1> inline
void ExpressionViewOpen(LatticeUnaryExpression<Op, T1> &expr)
{
ExpressionViewOpen(expr.arg1); // recurse AST
}
template <typename Op, typename T1, typename T2> inline
void ExpressionViewOpen(LatticeBinaryExpression<Op, T1, T2> &expr)
{
ExpressionViewOpen(expr.arg1); // recurse AST
ExpressionViewOpen(expr.arg2); // recurse AST
}
template <typename Op, typename T1, typename T2, typename T3>
inline void ExpressionViewOpen(LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
{
ExpressionViewOpen(expr.arg1); // recurse AST
ExpressionViewOpen(expr.arg2); // recurse AST
ExpressionViewOpen(expr.arg3); // recurse AST
}
//////////////////////////////////////////////////////////////////////////
// ViewClose
//////////////////////////////////////////////////////////////////////////
template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
inline void ExpressionViewClose( T1 &lat) // Lattice leaf
{
lat.ViewClose();
}
template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
inline void ExpressionViewClose(T1 &notlat) {}
template <typename Op, typename T1> inline
void ExpressionViewClose(LatticeUnaryExpression<Op, T1> &expr)
{
ExpressionViewClose(expr.arg1); // recurse AST
}
template <typename Op, typename T1, typename T2> inline
void ExpressionViewClose(LatticeBinaryExpression<Op, T1, T2> &expr)
{
ExpressionViewClose(expr.arg1); // recurse AST
ExpressionViewClose(expr.arg2); // recurse AST
}
template <typename Op, typename T1, typename T2, typename T3>
inline void ExpressionViewClose(LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
{
ExpressionViewClose(expr.arg1); // recurse AST
ExpressionViewClose(expr.arg2); // recurse AST
ExpressionViewClose(expr.arg3); // recurse AST
}
////////////////////////////////////////////
// Unary operators and funcs
////////////////////////////////////////////
#define GridUnopClass(name, ret) \
template <class arg> \
struct name { \
static auto accelerator_inline func(const arg a) -> decltype(ret) { return ret; } \
};
GridUnopClass(UnarySub, -a);
GridUnopClass(UnaryNot, Not(a));
GridUnopClass(UnaryAdj, adj(a));
GridUnopClass(UnaryConj, conjugate(a));
GridUnopClass(UnaryTrace, trace(a));
GridUnopClass(UnaryTranspose, transpose(a));
GridUnopClass(UnaryTa, Ta(a));
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
GridUnopClass(UnaryReal, real(a));
GridUnopClass(UnaryImag, imag(a));
GridUnopClass(UnaryToReal, toReal(a));
GridUnopClass(UnaryToComplex, toComplex(a));
GridUnopClass(UnaryTimesI, timesI(a));
GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
GridUnopClass(UnaryAbs, abs(a));
GridUnopClass(UnarySqrt, sqrt(a));
GridUnopClass(UnaryRsqrt, rsqrt(a));
GridUnopClass(UnarySin, sin(a));
GridUnopClass(UnaryCos, cos(a));
GridUnopClass(UnaryAsin, asin(a));
GridUnopClass(UnaryAcos, acos(a));
GridUnopClass(UnaryLog, log(a));
GridUnopClass(UnaryExp, exp(a));
////////////////////////////////////////////
// Binary operators
////////////////////////////////////////////
#define GridBinOpClass(name, combination) \
template <class left, class right> \
struct name { \
static auto accelerator_inline \
func(const left &lhs, const right &rhs) \
-> decltype(combination) const \
{ \
return combination; \
} \
};
GridBinOpClass(BinaryAdd, lhs + rhs);
GridBinOpClass(BinarySub, lhs - rhs);
GridBinOpClass(BinaryMul, lhs *rhs);
GridBinOpClass(BinaryDiv, lhs /rhs);
GridBinOpClass(BinaryAnd, lhs &rhs);
GridBinOpClass(BinaryOr, lhs | rhs);
GridBinOpClass(BinaryAndAnd, lhs &&rhs);
GridBinOpClass(BinaryOrOr, lhs || rhs);
////////////////////////////////////////////////////
// Trinary conditional op
////////////////////////////////////////////////////
#define GridTrinOpClass(name, combination) \
template <class predicate, class left, class right> \
struct name { \
static auto accelerator_inline \
func(const predicate &pred, const left &lhs, const right &rhs) \
-> decltype(combination) const \
{ \
return combination; \
} \
};
GridTrinOpClass(TrinaryWhere,
(predicatedWhere<predicate,
typename std::remove_reference<left>::type,
typename std::remove_reference<right>::type>(pred, lhs,rhs)));
////////////////////////////////////////////
// Operator syntactical glue
////////////////////////////////////////////
#define GRID_UNOP(name) name<decltype(eval(0, arg))>
#define GRID_BINOP(name) name<decltype(eval(0, lhs)), decltype(eval(0, rhs))>
#define GRID_TRINOP(name) name<decltype(eval(0, pred)), decltype(eval(0, lhs)), decltype(eval(0, rhs))>
#define GRID_DEF_UNOP(op, name) \
template <typename T1, typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value,T1>::type * = nullptr> \
inline auto op(const T1 &arg) ->decltype(LatticeUnaryExpression<GRID_UNOP(name),T1>(GRID_UNOP(name)(), arg)) \
{ \
return LatticeUnaryExpression<GRID_UNOP(name),T1>(GRID_UNOP(name)(), arg); \
}
#define GRID_BINOP_LEFT(op, name) \
template <typename T1, typename T2, \
typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value,T1>::type * = nullptr> \
inline auto op(const T1 &lhs, const T2 &rhs) \
->decltype(LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs,rhs)) \
{ \
return LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs,rhs);\
}
#define GRID_BINOP_RIGHT(op, name) \
template <typename T1, typename T2, \
typename std::enable_if<!is_lattice<T1>::value&&!is_lattice_expr<T1>::value,T1>::type * = nullptr, \
typename std::enable_if< is_lattice<T2>::value|| is_lattice_expr<T2>::value,T2>::type * = nullptr> \
inline auto op(const T1 &lhs, const T2 &rhs) \
->decltype(LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs, rhs)) \
{ \
return LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs, rhs); \
}
#define GRID_DEF_BINOP(op, name) \
GRID_BINOP_LEFT(op, name); \
GRID_BINOP_RIGHT(op, name);
#define GRID_DEF_TRINOP(op, name) \
template <typename T1, typename T2, typename T3> \
inline auto op(const T1 &pred, const T2 &lhs, const T3 &rhs) \
->decltype(LatticeTrinaryExpression<GRID_TRINOP(name),T1,T2,T3>(GRID_TRINOP(name)(),pred, lhs, rhs)) \
{ \
return LatticeTrinaryExpression<GRID_TRINOP(name),T1,T2,T3>(GRID_TRINOP(name)(),pred, lhs, rhs); \
}
////////////////////////
// Operator definitions
////////////////////////
GRID_DEF_UNOP(operator-, UnarySub);
GRID_DEF_UNOP(Not, UnaryNot);
GRID_DEF_UNOP(operator!, UnaryNot);
GRID_DEF_UNOP(adj, UnaryAdj);
GRID_DEF_UNOP(conjugate, UnaryConj);
GRID_DEF_UNOP(trace, UnaryTrace);
GRID_DEF_UNOP(transpose, UnaryTranspose);
GRID_DEF_UNOP(Ta, UnaryTa);
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
GRID_DEF_UNOP(real, UnaryReal);
GRID_DEF_UNOP(imag, UnaryImag);
GRID_DEF_UNOP(toReal, UnaryToReal);
GRID_DEF_UNOP(toComplex, UnaryToComplex);
GRID_DEF_UNOP(timesI, UnaryTimesI);
GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
GRID_DEF_UNOP(abs, UnaryAbs); // abs overloaded in cmath C++98; DON'T do the
// abs-fabs-dabs-labs thing
GRID_DEF_UNOP(sqrt, UnarySqrt);
GRID_DEF_UNOP(rsqrt, UnaryRsqrt);
GRID_DEF_UNOP(sin, UnarySin);
GRID_DEF_UNOP(cos, UnaryCos);
GRID_DEF_UNOP(asin, UnaryAsin);
GRID_DEF_UNOP(acos, UnaryAcos);
GRID_DEF_UNOP(log, UnaryLog);
GRID_DEF_UNOP(exp, UnaryExp);
GRID_DEF_BINOP(operator+, BinaryAdd);
GRID_DEF_BINOP(operator-, BinarySub);
GRID_DEF_BINOP(operator*, BinaryMul);
GRID_DEF_BINOP(operator/, BinaryDiv);
GRID_DEF_BINOP(operator&, BinaryAnd);
GRID_DEF_BINOP(operator|, BinaryOr);
GRID_DEF_BINOP(operator&&, BinaryAndAnd);
GRID_DEF_BINOP(operator||, BinaryOrOr);
GRID_DEF_TRINOP(where, TrinaryWhere);
/////////////////////////////////////////////////////////////
// Closure convenience to force expression to evaluate
/////////////////////////////////////////////////////////////
template <class Op, class T1>
auto closure(const LatticeUnaryExpression<Op, T1> &expr)
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1)))>
{
Lattice<decltype(expr.op.func(eval(0, expr.arg1)))> ret(expr);
return ret;
}
template <class Op, class T1, class T2>
auto closure(const LatticeBinaryExpression<Op, T1, T2> &expr)
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1),eval(0, expr.arg2)))>
{
Lattice<decltype(expr.op.func(eval(0, expr.arg1),eval(0, expr.arg2)))> ret(expr);
return ret;
}
template <class Op, class T1, class T2, class T3>
auto closure(const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1),
eval(0, expr.arg2),
eval(0, expr.arg3)))>
{
Lattice<decltype(expr.op.func(eval(0, expr.arg1),
eval(0, expr.arg2),
eval(0, expr.arg3)))> ret(expr);
return ret;
}
#undef GRID_UNOP
#undef GRID_BINOP
#undef GRID_TRINOP
#undef GRID_DEF_UNOP
#undef GRID_DEF_BINOP
#undef GRID_DEF_TRINOP
NAMESPACE_END(Grid);
#endif

View File

@ -1,258 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_arith.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_ARITH_H
#define GRID_LATTICE_ARITH_H
NAMESPACE_BEGIN(Grid);
//////////////////////////////////////////////////////////////////////////////////////////////////////
// avoid copy back routines for mult, mac, sub, add
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class obj1,class obj2,class obj3> inline
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
ret.Checkerboard() = lhs.Checkerboard();
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
conformable(ret,rhs);
conformable(lhs,rhs);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t = lhs_v(ss);
auto rhs_t = rhs_v(ss);
mult(&tmp,&lhs_t,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class obj1,class obj2,class obj3> inline
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,rhs);
conformable(lhs,rhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss);
auto rhs_t=rhs_v(ss);
mac(&tmp,&lhs_t,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class obj1,class obj2,class obj3> inline
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,rhs);
conformable(lhs,rhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss);
auto rhs_t=rhs_v(ss);
sub(&tmp,&lhs_t,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class obj1,class obj2,class obj3> inline
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,rhs);
conformable(lhs,rhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss);
auto rhs_t=rhs_v(ss);
add(&tmp,&lhs_t,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
}
//////////////////////////////////////////////////////////////////////////////////////////////////////
// avoid copy back routines for mult, mac, sub, add
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class obj1,class obj2,class obj3> inline
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
ret.Checkerboard() = lhs.Checkerboard();
conformable(lhs,ret);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
mult(&tmp,&lhs_v(ss),&rhs);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class obj1,class obj2,class obj3> inline
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,lhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss);
mac(&tmp,&lhs_t,&rhs);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class obj1,class obj2,class obj3> inline
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,lhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss);
sub(&tmp,&lhs_t,&rhs);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class obj1,class obj2,class obj3> inline
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
ret.Checkerboard() = lhs.Checkerboard();
conformable(lhs,ret);
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss);
add(&tmp,&lhs_t,&rhs);
coalescedWrite(ret_v[ss],tmp);
});
}
//////////////////////////////////////////////////////////////////////////////////////////////////////
// avoid copy back routines for mult, mac, sub, add
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class obj1,class obj2,class obj3> inline
void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
ret.Checkerboard() = rhs.Checkerboard();
conformable(ret,rhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( rhs_v , lhs, AcceleratorRead);
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto rhs_t=rhs_v(ss);
mult(&tmp,&lhs,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class obj1,class obj2,class obj3> inline
void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
ret.Checkerboard() = rhs.Checkerboard();
conformable(ret,rhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( rhs_v , lhs, AcceleratorRead);
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto rhs_t=rhs_v(ss);
mac(&tmp,&lhs,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class obj1,class obj2,class obj3> inline
void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
ret.Checkerboard() = rhs.Checkerboard();
conformable(ret,rhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( rhs_v , lhs, AcceleratorRead);
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto rhs_t=rhs_v(ss);
sub(&tmp,&lhs,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class obj1,class obj2,class obj3> inline
void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
ret.Checkerboard() = rhs.Checkerboard();
conformable(ret,rhs);
autoView( ret_v , ret, AcceleratorWrite);
autoView( rhs_v , lhs, AcceleratorRead);
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto rhs_t=rhs_v(ss);
add(&tmp,&lhs,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class sobj,class vobj> inline
void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y){
ret.Checkerboard() = x.Checkerboard();
conformable(ret,x);
conformable(x,y);
autoView( ret_v , ret, AcceleratorWrite);
autoView( x_v , x, AcceleratorRead);
autoView( y_v , y, AcceleratorRead);
accelerator_for(ss,x_v.size(),vobj::Nsimd(),{
auto tmp = a*x_v(ss)+y_v(ss);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class sobj,class vobj> inline
void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y){
ret.Checkerboard() = x.Checkerboard();
conformable(ret,x);
conformable(x,y);
autoView( ret_v , ret, AcceleratorWrite);
autoView( x_v , x, AcceleratorRead);
autoView( y_v , y, AcceleratorRead);
accelerator_for(ss,x_v.size(),vobj::Nsimd(),{
auto tmp = a*x_v(ss)+b*y_v(ss);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class sobj,class vobj> inline
RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)
{
return axpy_norm_fast(ret,a,x,y);
}
template<class sobj,class vobj> inline
RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
{
return axpby_norm_fast(ret,a,b,x,y);
}
NAMESPACE_END(Grid);
#endif

View File

@ -1,372 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_base.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#define STREAMING_STORES
NAMESPACE_BEGIN(Grid);
extern int GridCshiftPermuteMap[4][16];
/////////////////////////////////////////////////////////////////////////////////////////
// The real lattice class, with normal copy and assignment semantics.
// This contains extra (host resident) grid pointer data that may be accessed by host code
/////////////////////////////////////////////////////////////////////////////////////////
template<class vobj>
class Lattice : public LatticeAccelerator<vobj>
{
public:
GridBase *Grid(void) const { return this->_grid; }
///////////////////////////////////////////////////
// Member types
///////////////////////////////////////////////////
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_object scalar_object;
typedef vobj vector_object;
private:
void dealloc(void)
{
if( this->_odata_size ) {
alignedAllocator<vobj> alloc;
alloc.deallocate(this->_odata,this->_odata_size);
this->_odata=nullptr;
this->_odata_size=0;
}
}
void resize(uint64_t size)
{
if ( this->_odata_size != size ) {
alignedAllocator<vobj> alloc;
dealloc();
this->_odata_size = size;
if ( size )
this->_odata = alloc.allocate(this->_odata_size);
else
this->_odata = nullptr;
}
}
public:
/////////////////////////////////////////////////////////////////////////////////
// Can use to make accelerator dirty without copy from host ; useful for temporaries "dont care" prev contents
/////////////////////////////////////////////////////////////////////////////////
void SetViewMode(ViewMode mode) {
LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this),mode);
accessor.ViewClose();
}
/////////////////////////////////////////////////////////////////////////////////
// Return a view object that may be dereferenced in site loops.
// The view is trivially copy constructible and may be copied to an accelerator device
// in device lambdas
/////////////////////////////////////////////////////////////////////////////////
LatticeView<vobj> View (ViewMode mode) const
{
LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this),mode);
return accessor;
}
~Lattice() {
if ( this->_odata_size ) {
dealloc();
}
}
////////////////////////////////////////////////////////////////////////////////
// Expression Template closure support
////////////////////////////////////////////////////////////////////////////////
template <typename Op, typename T1> inline Lattice<vobj> & operator=(const LatticeUnaryExpression<Op,T1> &expr)
{
GridBase *egrid(nullptr);
GridFromExpression(egrid,expr);
assert(egrid!=nullptr);
conformable(this->_grid,egrid);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
auto exprCopy = expr;
ExpressionViewOpen(exprCopy);
auto me = View(AcceleratorWriteDiscard);
accelerator_for(ss,me.size(),1,{
auto tmp = eval(ss,exprCopy);
vstream(me[ss],tmp);
});
me.ViewClose();
ExpressionViewClose(exprCopy);
return *this;
}
template <typename Op, typename T1,typename T2> inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr)
{
GridBase *egrid(nullptr);
GridFromExpression(egrid,expr);
assert(egrid!=nullptr);
conformable(this->_grid,egrid);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
auto exprCopy = expr;
ExpressionViewOpen(exprCopy);
auto me = View(AcceleratorWriteDiscard);
accelerator_for(ss,me.size(),1,{
auto tmp = eval(ss,exprCopy);
vstream(me[ss],tmp);
});
me.ViewClose();
ExpressionViewClose(exprCopy);
return *this;
}
template <typename Op, typename T1,typename T2,typename T3> inline Lattice<vobj> & operator=(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr)
{
GridBase *egrid(nullptr);
GridFromExpression(egrid,expr);
assert(egrid!=nullptr);
conformable(this->_grid,egrid);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
auto exprCopy = expr;
ExpressionViewOpen(exprCopy);
auto me = View(AcceleratorWriteDiscard);
accelerator_for(ss,me.size(),1,{
auto tmp = eval(ss,exprCopy);
vstream(me[ss],tmp);
});
me.ViewClose();
ExpressionViewClose(exprCopy);
return *this;
}
//GridFromExpression is tricky to do
template<class Op,class T1>
Lattice(const LatticeUnaryExpression<Op,T1> & expr) {
this->_grid = nullptr;
GridFromExpression(this->_grid,expr);
assert(this->_grid!=nullptr);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
resize(this->_grid->oSites());
*this = expr;
}
template<class Op,class T1, class T2>
Lattice(const LatticeBinaryExpression<Op,T1,T2> & expr) {
this->_grid = nullptr;
GridFromExpression(this->_grid,expr);
assert(this->_grid!=nullptr);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
resize(this->_grid->oSites());
*this = expr;
}
template<class Op,class T1, class T2, class T3>
Lattice(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr) {
this->_grid = nullptr;
GridFromExpression(this->_grid,expr);
assert(this->_grid!=nullptr);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
this->checkerboard=cb;
resize(this->_grid->oSites());
*this = expr;
}
template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){
auto me = View(CpuWrite);
thread_for(ss,me.size(),{
me[ss]= r;
});
me.ViewClose();
return *this;
}
//////////////////////////////////////////////////////////////////
// Follow rule of five, with Constructor requires "grid" passed
// to user defined constructor
///////////////////////////////////////////
// user defined constructor
///////////////////////////////////////////
Lattice(GridBase *grid,ViewMode mode=AcceleratorWriteDiscard) {
this->_grid = grid;
resize(this->_grid->oSites());
assert((((uint64_t)&this->_odata[0])&0xF) ==0);
this->checkerboard=0;
SetViewMode(mode);
}
// virtual ~Lattice(void) = default;
void reset(GridBase* grid) {
if (this->_grid != grid) {
this->_grid = grid;
this->resize(grid->oSites());
this->checkerboard = 0;
}
}
///////////////////////////////////////////
// copy constructor
///////////////////////////////////////////
Lattice(const Lattice& r){
this->_grid = r.Grid();
resize(this->_grid->oSites());
*this = r;
}
///////////////////////////////////////////
// move constructor
///////////////////////////////////////////
Lattice(Lattice && r){
this->_grid = r.Grid();
this->_odata = r._odata;
this->_odata_size = r._odata_size;
this->checkerboard= r.Checkerboard();
r._odata = nullptr;
r._odata_size = 0;
}
///////////////////////////////////////////
// assignment template
///////////////////////////////////////////
template<class robj> inline Lattice<vobj> & operator = (const Lattice<robj> & r){
typename std::enable_if<!std::is_same<robj,vobj>::value,int>::type i=0;
conformable(*this,r);
this->checkerboard = r.Checkerboard();
auto me = View(AcceleratorWriteDiscard);
auto him= r.View(AcceleratorRead);
accelerator_for(ss,me.size(),vobj::Nsimd(),{
coalescedWrite(me[ss],him(ss));
});
me.ViewClose(); him.ViewClose();
return *this;
}
///////////////////////////////////////////
// Copy assignment
///////////////////////////////////////////
inline Lattice<vobj> & operator = (const Lattice<vobj> & r){
this->checkerboard = r.Checkerboard();
conformable(*this,r);
auto me = View(AcceleratorWriteDiscard);
auto him= r.View(AcceleratorRead);
accelerator_for(ss,me.size(),vobj::Nsimd(),{
coalescedWrite(me[ss],him(ss));
});
me.ViewClose(); him.ViewClose();
return *this;
}
///////////////////////////////////////////
// Move assignment possible if same type
///////////////////////////////////////////
inline Lattice<vobj> & operator = (Lattice<vobj> && r){
resize(0); // deletes if appropriate
this->_grid = r.Grid();
this->_odata = r._odata;
this->_odata_size = r._odata_size;
this->checkerboard= r.Checkerboard();
r._odata = nullptr;
r._odata_size = 0;
return *this;
}
/////////////////////////////////////////////////////////////////////////////
// *=,+=,-= operators inherit behvour from correspond */+/- operation
/////////////////////////////////////////////////////////////////////////////
template<class T> inline Lattice<vobj> &operator *=(const T &r) {
*this = (*this)*r;
return *this;
}
template<class T> inline Lattice<vobj> &operator -=(const T &r) {
*this = (*this)-r;
return *this;
}
template<class T> inline Lattice<vobj> &operator +=(const T &r) {
*this = (*this)+r;
return *this;
}
friend inline void swap(Lattice &l, Lattice &r) {
conformable(l,r);
LatticeAccelerator<vobj> tmp;
LatticeAccelerator<vobj> *lp = (LatticeAccelerator<vobj> *)&l;
LatticeAccelerator<vobj> *rp = (LatticeAccelerator<vobj> *)&r;
tmp = *lp; *lp=*rp; *rp=tmp;
}
}; // class Lattice
template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
typedef typename vobj::scalar_object sobj;
for(int g=0;g<o.Grid()->_gsites;g++){
Coordinate gcoor;
o.Grid()->GlobalIndexToGlobalCoor(g,gcoor);
sobj ss;
peekSite(ss,o,gcoor);
stream<<"[";
for(int d=0;d<gcoor.size();d++){
stream<<gcoor[d];
if(d!=gcoor.size()-1) stream<<",";
}
stream<<"]\t";
stream<<ss<<std::endl;
}
return stream;
}
NAMESPACE_END(Grid);

View File

@ -1,226 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_basis.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template<class Field>
void basisOrthogonalize(std::vector<Field> &basis,Field &w,int k)
{
// If assume basis[j] are already orthonormal,
// can take all inner products in parallel saving 2x bandwidth
// Save 3x bandwidth on the second line of loop.
// perhaps 2.5x speed up.
// 2x overall in Multigrid Lanczos
for(int j=0; j<k; ++j){
auto ip = innerProduct(basis[j],w);
w = w - ip*basis[j];
}
}
template<class VField, class Matrix>
void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
{
typedef decltype(basis[0]) Field;
typedef decltype(basis[0].View(AcceleratorRead)) View;
Vector<View> basis_v; basis_v.reserve(basis.size());
GridBase* grid = basis[0].Grid();
for(int k=0;k<basis.size();k++){
basis_v.push_back(basis[k].View(AcceleratorWrite));
}
View *basis_vp = &basis_v[0];
int nrot = j1-j0;
if (!nrot) // edge case not handled gracefully by Cuda
return;
uint64_t oSites =grid->oSites();
uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead
typedef typename std::remove_reference<decltype(basis_v[0][0])>::type vobj;
Vector <vobj> Bt(siteBlock * nrot);
auto Bp=&Bt[0];
// GPU readable copy of matrix
Vector<double> Qt_jv(Nm*Nm);
double *Qt_p = & Qt_jv[0];
thread_for(i,Nm*Nm,{
int j = i/Nm;
int k = i%Nm;
Qt_p[i]=Qt(j,k);
});
// Block the loop to keep storage footprint down
for(uint64_t s=0;s<oSites;s+=siteBlock){
// remaining work in this block
int ssites=MIN(siteBlock,oSites-s);
// zero out the accumulators
accelerator_for(ss,siteBlock*nrot,vobj::Nsimd(),{
decltype(coalescedRead(Bp[ss])) z;
z=Zero();
coalescedWrite(Bp[ss],z);
});
accelerator_for(sj,ssites*nrot,vobj::Nsimd(),{
int j =sj%nrot;
int jj =j0+j;
int ss =sj/nrot;
int sss=ss+s;
for(int k=k0; k<k1; ++k){
auto tmp = coalescedRead(Bp[ss*nrot+j]);
coalescedWrite(Bp[ss*nrot+j],tmp+ Qt_p[jj*Nm+k] * coalescedRead(basis_v[k][sss]));
}
});
accelerator_for(sj,ssites*nrot,vobj::Nsimd(),{
int j =sj%nrot;
int jj =j0+j;
int ss =sj/nrot;
int sss=ss+s;
coalescedWrite(basis_v[jj][sss],coalescedRead(Bp[ss*nrot+j]));
});
}
for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
}
// Extract a single rotated vector
template<class Field>
void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j, int k0,int k1,int Nm)
{
typedef decltype(basis[0].View(AcceleratorRead)) View;
typedef typename Field::vector_object vobj;
GridBase* grid = basis[0].Grid();
result.Checkerboard() = basis[0].Checkerboard();
Vector<View> basis_v; basis_v.reserve(basis.size());
for(int k=0;k<basis.size();k++){
basis_v.push_back(basis[k].View(AcceleratorRead));
}
vobj zz=Zero();
Vector<double> Qt_jv(Nm);
double * Qt_j = & Qt_jv[0];
for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k);
autoView(result_v,result,AcceleratorWrite);
accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
auto B=coalescedRead(zz);
for(int k=k0; k<k1; ++k){
B +=Qt_j[k] * coalescedRead(basis_v[k][ss]);
}
coalescedWrite(result_v[ss], B);
});
for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
}
template<class Field>
void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, std::vector<int>& idx)
{
int vlen = idx.size();
assert(vlen>=1);
assert(vlen<=sort_vals.size());
assert(vlen<=_v.size());
for (size_t i=0;i<vlen;i++) {
if (idx[i] != i) {
//////////////////////////////////////
// idx[i] is a table of desired sources giving a permutation.
// Swap v[i] with v[idx[i]].
// Find j>i for which _vnew[j] = _vold[i],
// track the move idx[j] => idx[i]
// track the move idx[i] => i
//////////////////////////////////////
size_t j;
for (j=i;j<idx.size();j++)
if (idx[j]==i)
break;
assert(idx[i] > i); assert(j!=idx.size()); assert(idx[j]==i);
swap(_v[i],_v[idx[i]]); // should use vector move constructor, no data copy
std::swap(sort_vals[i],sort_vals[idx[i]]);
idx[j] = idx[i];
idx[i] = i;
}
}
}
inline std::vector<int> basisSortGetIndex(std::vector<RealD>& sort_vals)
{
std::vector<int> idx(sort_vals.size());
std::iota(idx.begin(), idx.end(), 0);
// sort indexes based on comparing values in v
std::sort(idx.begin(), idx.end(), [&sort_vals](int i1, int i2) {
return ::fabs(sort_vals[i1]) < ::fabs(sort_vals[i2]);
});
return idx;
}
template<class Field>
void basisSortInPlace(std::vector<Field> & _v,std::vector<RealD>& sort_vals, bool reverse)
{
std::vector<int> idx = basisSortGetIndex(sort_vals);
if (reverse)
std::reverse(idx.begin(), idx.end());
basisReorderInPlace(_v,sort_vals,idx);
}
// PAB: faster to compute the inner products first then fuse loops.
// If performance critical can improve.
template<class Field>
void basisDeflate(const std::vector<Field> &_v,const std::vector<RealD>& eval,const Field& src_orig,Field& result) {
result = Zero();
assert(_v.size()==eval.size());
int N = (int)_v.size();
for (int i=0;i<N;i++) {
Field& tmp = _v[i];
axpy(result,TensorRemove(innerProduct(tmp,src_orig)) / eval[i],tmp,result);
}
}
NAMESPACE_END(Grid);

View File

@ -1,207 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_comparison.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_COMPARISON_H
#define GRID_LATTICE_COMPARISON_H
NAMESPACE_BEGIN(Grid);
//////////////////////////////////////////////////////////////////////////
// relational operators
//
// Support <,>,<=,>=,==,!=
//
//Query supporting bitwise &, |, ^, !
//Query supporting logical &&, ||,
//////////////////////////////////////////////////////////////////////////
typedef iScalar<vInteger> vPredicate ;
/*
template <class iobj, class vobj, class robj> accelerator_inline
vobj predicatedWhere(const iobj &predicate, const vobj &iftrue, const robj &iffalse)
{
typename std::remove_const<vobj>::type ret;
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
const int Nsimd = vobj::vector_type::Nsimd();
ExtractBuffer<Integer> mask(Nsimd);
ExtractBuffer<scalar_object> truevals(Nsimd);
ExtractBuffer<scalar_object> falsevals(Nsimd);
extract(iftrue, truevals);
extract(iffalse, falsevals);
extract<vInteger, Integer>(TensorRemove(predicate), mask);
for (int s = 0; s < Nsimd; s++) {
if (mask[s]) falsevals[s] = truevals[s];
}
merge(ret, falsevals);
return ret;
}
*/
//////////////////////////////////////////////////////////////////////////
// compare lattice to lattice
//////////////////////////////////////////////////////////////////////////
template<class vfunctor,class lobj,class robj>
inline Lattice<vPredicate> LLComparison(vfunctor op,const Lattice<lobj> &lhs,const Lattice<robj> &rhs)
{
Lattice<vPredicate> ret(rhs.Grid());
autoView( lhs_v, lhs, CpuRead);
autoView( rhs_v, rhs, CpuRead);
autoView( ret_v, ret, CpuWrite);
thread_for( ss, rhs_v.size(), {
ret_v[ss]=op(lhs_v[ss],rhs_v[ss]);
});
return ret;
}
//////////////////////////////////////////////////////////////////////////
// compare lattice to scalar
//////////////////////////////////////////////////////////////////////////
template<class vfunctor,class lobj,class robj>
inline Lattice<vPredicate> LSComparison(vfunctor op,const Lattice<lobj> &lhs,const robj &rhs)
{
Lattice<vPredicate> ret(lhs.Grid());
autoView( lhs_v, lhs, CpuRead);
autoView( ret_v, ret, CpuWrite);
thread_for( ss, lhs_v.size(), {
ret_v[ss]=op(lhs_v[ss],rhs);
});
return ret;
}
//////////////////////////////////////////////////////////////////////////
// compare scalar to lattice
//////////////////////////////////////////////////////////////////////////
template<class vfunctor,class lobj,class robj>
inline Lattice<vPredicate> SLComparison(vfunctor op,const lobj &lhs,const Lattice<robj> &rhs)
{
Lattice<vPredicate> ret(rhs.Grid());
autoView( rhs_v, rhs, CpuRead);
autoView( ret_v, ret, CpuWrite);
thread_for( ss, rhs_v.size(), {
ret_v[ss]=op(lhs,rhs_v[ss]);
});
return ret;
}
//////////////////////////////////////////////////////////////////////////
// Map to functors
//////////////////////////////////////////////////////////////////////////
// Less than
template<class lobj,class robj>
inline Lattice<vPredicate> operator < (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vlt<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator < (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vlt<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator < (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vlt<lobj,robj>(),lhs,rhs);
}
// Less than equal
template<class lobj,class robj>
inline Lattice<vPredicate> operator <= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vle<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator <= (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vle<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator <= (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vle<lobj,robj>(),lhs,rhs);
}
// Greater than
template<class lobj,class robj>
inline Lattice<vPredicate> operator > (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vgt<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator > (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vgt<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator > (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vgt<lobj,robj>(),lhs,rhs);
}
// Greater than equal
template<class lobj,class robj>
inline Lattice<vPredicate> operator >= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vge<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator >= (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vge<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator >= (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vge<lobj,robj>(),lhs,rhs);
}
// equal
template<class lobj,class robj>
inline Lattice<vPredicate> operator == (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(veq<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator == (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(veq<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator == (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(veq<lobj,robj>(),lhs,rhs);
}
// not equal
template<class lobj,class robj>
inline Lattice<vPredicate> operator != (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vne<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator != (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vne<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vPredicate> operator != (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vne<lobj,robj>(),lhs,rhs);
}
NAMESPACE_END(Grid);
#endif

View File

@ -1,55 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_coordinate.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template<class iobj> inline void LatticeCoordinate(Lattice<iobj> &l,int mu)
{
typedef typename iobj::scalar_type scalar_type;
typedef typename iobj::vector_type vector_type;
GridBase *grid = l.Grid();
int Nsimd = grid->iSites();
autoView(l_v, l, CpuWrite);
thread_for( o, grid->oSites(), {
vector_type vI;
Coordinate gcoor;
ExtractBuffer<scalar_type> mergebuf(Nsimd);
for(int i=0;i<grid->iSites();i++){
grid->RankIndexToGlobalCoor(grid->ThisRank(),o,i,gcoor);
mergebuf[i]=(Integer)gcoor[mu];
}
merge<vector_type,scalar_type>(vI,mergebuf);
l_v[o]=vI;
});
};
NAMESPACE_END(Grid);

View File

@ -1,87 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_local.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_LOCALREDUCTION_H
#define GRID_LATTICE_LOCALREDUCTION_H
///////////////////////////////////////////////
// localInner, localNorm, outerProduct
///////////////////////////////////////////////
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////
// Non site, reduced locally reduced routines
/////////////////////////////////////////////////////
// localNorm2,
template<class vobj>
inline auto localNorm2 (const Lattice<vobj> &rhs)-> Lattice<typename vobj::tensor_reduced>
{
Lattice<typename vobj::tensor_reduced> ret(rhs.Grid());
autoView( rhs_v , rhs, AcceleratorRead);
autoView( ret_v , ret, AcceleratorWrite);
accelerator_for(ss,rhs_v.size(),vobj::Nsimd(),{
coalescedWrite(ret_v[ss],innerProduct(rhs_v(ss),rhs_v(ss)));
});
return ret;
}
// localInnerProduct
template<class vobj>
inline auto localInnerProduct (const Lattice<vobj> &lhs,const Lattice<vobj> &rhs) -> Lattice<typename vobj::tensor_reduced>
{
Lattice<typename vobj::tensor_reduced> ret(rhs.Grid());
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
autoView( ret_v , ret, AcceleratorWrite);
accelerator_for(ss,rhs_v.size(),vobj::Nsimd(),{
coalescedWrite(ret_v[ss],innerProduct(lhs_v(ss),rhs_v(ss)));
});
return ret;
}
// outerProduct Scalar x Scalar -> Scalar
// Vector x Vector -> Matrix
template<class ll,class rr>
inline auto outerProduct (const Lattice<ll> &lhs,const Lattice<rr> &rhs) -> Lattice<decltype(outerProduct(ll(),rr()))>
{
typedef decltype(coalescedRead(ll())) sll;
typedef decltype(coalescedRead(rr())) srr;
Lattice<decltype(outerProduct(ll(),rr()))> ret(rhs.Grid());
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
autoView( ret_v , ret, AcceleratorWrite);
accelerator_for(ss,rhs_v.size(),1,{
// FIXME had issues with scalar version of outer
// Use vector [] operator and don't read coalesce this loop
ret_v[ss]=outerProduct(lhs_v[ss],rhs_v[ss]);
});
return ret;
}
NAMESPACE_END(Grid);
#endif

View File

@ -1,202 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_reduction.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/Grid_Eigen_Dense.h>
#ifdef GRID_WARN_SUBOPTIMAL
#warning "Optimisation alert all these reduction loops are NOT threaded "
#endif
NAMESPACE_BEGIN(Grid);
template<class vobj>
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
GridBase *FullGrid = X.Grid();
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
// Lattice<vobj> Xslice(SliceGrid);
// Lattice<vobj> Rslice(SliceGrid);
assert( FullGrid->_simd_layout[Orthog]==1);
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
int stride=FullGrid->_slice_stride[Orthog];
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
autoView( X_v , X, CpuRead);
autoView( Y_v , Y, CpuRead);
autoView( R_v , R, CpuWrite);
thread_region
{
std::vector<vobj> s_x(Nblock);
thread_loop_collapse2( (int n=0;n<nblock;n++),{
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
s_x[i] = X_v[o+i*ostride];
}
vobj dot;
for(int i=0;i<Nblock;i++){
dot = Y_v[o+i*ostride];
for(int j=0;j<Nblock;j++){
dot = dot + s_x[j]*(scale*aa(j,i));
}
R_v[o+i*ostride]=dot;
}
}});
}
};
template<class vobj>
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
GridBase *FullGrid = X.Grid();
assert( FullGrid->_simd_layout[Orthog]==1);
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
int stride=FullGrid->_slice_stride[Orthog];
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
autoView( X_v , X, CpuRead);
autoView( R_v , R, CpuWrite);
thread_region
{
std::vector<vobj> s_x(Nblock);
thread_loop_collapse2( (int n=0;n<nblock;n++),{
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
s_x[i] = X_v[o+i*ostride];
}
vobj dot;
for(int i=0;i<Nblock;i++){
dot = s_x[0]*(scale*aa(0,i));
for(int j=1;j<Nblock;j++){
dot = dot + s_x[j]*(scale*aa(j,i));
}
R_v[o+i*ostride]=dot;
}
}});
}
};
template<class vobj>
static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
GridBase *FullGrid = lhs.Grid();
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
int Nblock = FullGrid->GlobalDimensions()[Orthog];
// Lattice<vobj> Lslice(SliceGrid);
// Lattice<vobj> Rslice(SliceGrid);
mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
assert( FullGrid->_simd_layout[Orthog]==1);
// int nh = FullGrid->_ndimension;
// int nl = SliceGrid->_ndimension;
// int nl = nh-1;
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
int stride=FullGrid->_slice_stride[Orthog];
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
typedef typename vobj::vector_typeD vector_typeD;
autoView( lhs_v , lhs, CpuRead);
autoView( rhs_v , rhs, CpuRead);
thread_region {
std::vector<vobj> Left(Nblock);
std::vector<vobj> Right(Nblock);
Eigen::MatrixXcd mat_thread = Eigen::MatrixXcd::Zero(Nblock,Nblock);
thread_loop_collapse2((int n=0;n<nblock;n++),{
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
Left [i] = lhs_v[o+i*ostride];
Right[i] = rhs_v[o+i*ostride];
}
for(int i=0;i<Nblock;i++){
for(int j=0;j<Nblock;j++){
auto tmp = innerProduct(Left[i],Right[j]);
auto rtmp = TensorRemove(tmp);
ComplexD z = Reduce(rtmp);
mat_thread(i,j) += std::complex<double>(real(z),imag(z));
}}
}});
thread_critical {
mat += mat_thread;
}
}
for(int i=0;i<Nblock;i++){
for(int j=0;j<Nblock;j++){
ComplexD sum = mat(i,j);
FullGrid->GlobalSum(sum);
mat(i,j)=sum;
}}
return;
}
NAMESPACE_END(Grid);

View File

@ -1,215 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_peekpoke.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_PEEK_H
#define GRID_LATTICE_PEEK_H
///////////////////////////////////////////////
// Peeking and poking around
///////////////////////////////////////////////
NAMESPACE_BEGIN(Grid);
// FIXME accelerator_loop and accelerator_inline these
////////////////////////////////////////////////////////////////////////////////////////////////////
// Peek internal indices of a Lattice object
////////////////////////////////////////////////////////////////////////////////////////////////////
template<int Index,class vobj>
auto PeekIndex(const Lattice<vobj> &lhs,int i) -> Lattice<decltype(peekIndex<Index>(vobj(),i))>
{
Lattice<decltype(peekIndex<Index>(vobj(),i))> ret(lhs.Grid());
ret.Checkerboard()=lhs.Checkerboard();
autoView( ret_v, ret, AcceleratorWrite);
autoView( lhs_v, lhs, AcceleratorRead);
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] = peekIndex<Index>(lhs_v[ss],i);
});
return ret;
};
template<int Index,class vobj>
auto PeekIndex(const Lattice<vobj> &lhs,int i,int j) -> Lattice<decltype(peekIndex<Index>(vobj(),i,j))>
{
Lattice<decltype(peekIndex<Index>(vobj(),i,j))> ret(lhs.Grid());
ret.Checkerboard()=lhs.Checkerboard();
autoView( ret_v, ret, AcceleratorWrite);
autoView( lhs_v, lhs, AcceleratorRead);
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] = peekIndex<Index>(lhs_v[ss],i,j);
});
return ret;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
// Poke internal indices of a Lattice object
////////////////////////////////////////////////////////////////////////////////////////////////////
template<int Index,class vobj>
void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(vobj(),0))> & rhs,int i)
{
autoView( rhs_v, rhs, AcceleratorRead);
autoView( lhs_v, lhs, AcceleratorWrite);
accelerator_for( ss, lhs_v.size(), 1, {
pokeIndex<Index>(lhs_v[ss],rhs_v[ss],i);
});
}
template<int Index,class vobj>
void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(vobj(),0,0))> & rhs,int i,int j)
{
autoView( rhs_v, rhs, AcceleratorRead);
autoView( lhs_v, lhs, AcceleratorWrite);
accelerator_for( ss, lhs_v.size(), 1, {
pokeIndex<Index>(lhs_v[ss],rhs_v[ss],i,j);
});
}
//////////////////////////////////////////////////////
// Poke a scalar object into the SIMD array
//////////////////////////////////////////////////////
template<class vobj,class sobj>
void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){
GridBase *grid=l.Grid();
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nsimd = grid->Nsimd();
assert( l.Checkerboard()== l.Grid()->CheckerBoard(site));
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
int rank,odx,idx;
// Optional to broadcast from node 0.
grid->GlobalCoorToRankIndex(rank,odx,idx,site);
grid->Broadcast(grid->BossRank(),s);
// extract-modify-merge cycle is easiest way and this is not perf critical
ExtractBuffer<sobj> buf(Nsimd);
autoView( l_v , l, CpuWrite);
if ( rank == grid->ThisRank() ) {
extract(l_v[odx],buf);
buf[idx] = s;
merge(l_v[odx],buf);
}
return;
};
//////////////////////////////////////////////////////////
// Peek a scalar object from the SIMD array
//////////////////////////////////////////////////////////
template<class vobj,class sobj>
void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
GridBase *grid=l.Grid();
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nsimd = grid->Nsimd();
assert( l.Checkerboard() == l.Grid()->CheckerBoard(site));
int rank,odx,idx;
grid->GlobalCoorToRankIndex(rank,odx,idx,site);
ExtractBuffer<sobj> buf(Nsimd);
autoView( l_v , l, CpuWrite);
extract(l_v[odx],buf);
s = buf[idx];
grid->Broadcast(rank,s);
return;
};
//////////////////////////////////////////////////////////
// Peek a scalar object from the SIMD array
//////////////////////////////////////////////////////////
// Must be CPU read view
template<class vobj,class sobj>
inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
{
GridBase *grid = l.getGrid();
assert(l.mode==CpuRead);
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nsimd = grid->Nsimd();
assert( l.Checkerboard()== grid->CheckerBoard(site));
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
static const int words=sizeof(vobj)/sizeof(vector_type);
int odx,idx;
idx= grid->iIndex(site);
odx= grid->oIndex(site);
scalar_type * vp = (scalar_type *)&l[odx];
scalar_type * pt = (scalar_type *)&s;
for(int w=0;w<words;w++){
pt[w] = vp[idx+w*Nsimd];
}
return;
};
// Must be CPU write view
template<class vobj,class sobj>
inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site)
{
GridBase *grid=l.getGrid();
assert(l.mode==CpuWrite);
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nsimd = grid->Nsimd();
assert( l.Checkerboard()== grid->CheckerBoard(site));
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
static const int words=sizeof(vobj)/sizeof(vector_type);
int odx,idx;
idx= grid->iIndex(site);
odx= grid->oIndex(site);
scalar_type * vp = (scalar_type *)&l[odx];
scalar_type * pt = (scalar_type *)&s;
for(int w=0;w<words;w++){
vp[idx+w*Nsimd] = pt[w];
}
return;
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,231 +0,0 @@
NAMESPACE_BEGIN(Grid);
#ifdef GRID_HIP
extern hipDeviceProp_t *gpu_props;
#endif
#ifdef GRID_CUDA
extern cudaDeviceProp *gpu_props;
#endif
#define WARP_SIZE 32
__device__ unsigned int retirementCount = 0;
template <class Iterator>
unsigned int nextPow2(Iterator x) {
--x;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
return ++x;
}
template <class Iterator>
void getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &threads, Iterator &blocks) {
int device;
#ifdef GRID_CUDA
cudaGetDevice(&device);
#endif
#ifdef GRID_HIP
hipGetDevice(&device);
#endif
Iterator warpSize = gpu_props[device].warpSize;
Iterator sharedMemPerBlock = gpu_props[device].sharedMemPerBlock;
Iterator maxThreadsPerBlock = gpu_props[device].maxThreadsPerBlock;
Iterator multiProcessorCount = gpu_props[device].multiProcessorCount;
std::cout << GridLogDebug << "GPU has:" << std::endl;
std::cout << GridLogDebug << "\twarpSize = " << warpSize << std::endl;
std::cout << GridLogDebug << "\tsharedMemPerBlock = " << sharedMemPerBlock << std::endl;
std::cout << GridLogDebug << "\tmaxThreadsPerBlock = " << maxThreadsPerBlock << std::endl;
std::cout << GridLogDebug << "\tmaxThreadsPerBlock = " << warpSize << std::endl;
std::cout << GridLogDebug << "\tmultiProcessorCount = " << multiProcessorCount << std::endl;
if (warpSize != WARP_SIZE) {
std::cout << GridLogError << "The warp size of the GPU in use does not match the warp size set when compiling Grid." << std::endl;
exit(EXIT_FAILURE);
}
// let the number of threads in a block be a multiple of 2, starting from warpSize
threads = warpSize;
while( 2*threads*sizeofsobj < sharedMemPerBlock && 2*threads <= maxThreadsPerBlock ) threads *= 2;
// keep all the streaming multiprocessors busy
blocks = nextPow2(multiProcessorCount);
}
template <class sobj, class Iterator>
__device__ void reduceBlock(volatile sobj *sdata, sobj mySum, const Iterator tid) {
Iterator blockSize = blockDim.x;
// cannot use overloaded operators for sobj as they are not volatile-qualified
memcpy((void *)&sdata[tid], (void *)&mySum, sizeof(sobj));
__syncwarp();
const Iterator VEC = WARP_SIZE;
const Iterator vid = tid & (VEC-1);
sobj beta, temp;
memcpy((void *)&beta, (void *)&mySum, sizeof(sobj));
for (int i = VEC/2; i > 0; i>>=1) {
if (vid < i) {
memcpy((void *)&temp, (void *)&sdata[tid+i], sizeof(sobj));
beta += temp;
memcpy((void *)&sdata[tid], (void *)&beta, sizeof(sobj));
}
__syncwarp();
}
__syncthreads();
if (threadIdx.x == 0) {
beta = Zero();
for (Iterator i = 0; i < blockSize; i += VEC) {
memcpy((void *)&temp, (void *)&sdata[i], sizeof(sobj));
beta += temp;
}
memcpy((void *)&sdata[0], (void *)&beta, sizeof(sobj));
}
__syncthreads();
}
template <class vobj, class sobj, class Iterator>
__device__ void reduceBlocks(const vobj *g_idata, sobj *g_odata, Iterator n)
{
constexpr Iterator nsimd = vobj::Nsimd();
Iterator blockSize = blockDim.x;
// force shared memory alignment
extern __shared__ __align__(COALESCE_GRANULARITY) unsigned char shmem_pointer[];
// it's not possible to have two extern __shared__ arrays with same name
// but different types in different scopes -- need to cast each time
sobj *sdata = (sobj *)shmem_pointer;
// first level of reduction,
// each thread writes result in mySum
Iterator tid = threadIdx.x;
Iterator i = blockIdx.x*(blockSize*2) + threadIdx.x;
Iterator gridSize = blockSize*2*gridDim.x;
sobj mySum = Zero();
while (i < n) {
Iterator lane = i % nsimd;
Iterator ss = i / nsimd;
auto tmp = extractLane(lane,g_idata[ss]);
sobj tmpD;
tmpD=tmp;
mySum +=tmpD;
if (i + blockSize < n) {
lane = (i+blockSize) % nsimd;
ss = (i+blockSize) / nsimd;
tmp = extractLane(lane,g_idata[ss]);
tmpD = tmp;
mySum += tmpD;
}
i += gridSize;
}
// copy mySum to shared memory and perform
// reduction for all threads in this block
reduceBlock(sdata, mySum, tid);
if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}
template <class vobj, class sobj,class Iterator>
__global__ void reduceKernel(const vobj *lat, sobj *buffer, Iterator n) {
Iterator blockSize = blockDim.x;
// perform reduction for this block and
// write result to global memory buffer
reduceBlocks(lat, buffer, n);
if (gridDim.x > 1) {
const Iterator tid = threadIdx.x;
__shared__ bool amLast;
// force shared memory alignment
extern __shared__ __align__(COALESCE_GRANULARITY) unsigned char shmem_pointer[];
// it's not possible to have two extern __shared__ arrays with same name
// but different types in different scopes -- need to cast each time
sobj *smem = (sobj *)shmem_pointer;
// wait until all outstanding memory instructions in this thread are finished
acceleratorFence();
if (tid==0) {
unsigned int ticket = atomicInc(&retirementCount, gridDim.x);
// true if this block is the last block to be done
amLast = (ticket == gridDim.x-1);
}
// each thread must read the correct value of amLast
acceleratorSynchroniseAll();
if (amLast) {
// reduce buffer[0], ..., buffer[gridDim.x-1]
Iterator i = tid;
sobj mySum = Zero();
while (i < gridDim.x) {
mySum += buffer[i];
i += blockSize;
}
reduceBlock(smem, mySum, tid);
if (tid==0) {
buffer[0] = smem[0];
// reset count variable
retirementCount = 0;
}
}
}
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////
// Possibly promote to double and sum
/////////////////////////////////////////////////////////////////////////////////////////////////////////
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
{
typedef typename vobj::scalar_objectD sobj;
typedef decltype(lat) Iterator;
Integer nsimd= vobj::Nsimd();
Integer size = osites*nsimd;
Integer numThreads, numBlocks;
getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
Integer smemSize = numThreads * sizeof(sobj);
Vector<sobj> buffer(numBlocks);
sobj *buffer_v = &buffer[0];
reduceKernel<<< numBlocks, numThreads, smemSize >>>(lat, buffer_v, size);
accelerator_barrier();
auto result = buffer_v[0];
return result;
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////
// Return as same precision as input performing reduction in double precision though
/////////////////////////////////////////////////////////////////////////////////////////////////////////
template <class vobj>
inline typename vobj::scalar_object sum_gpu(const vobj *lat, Integer osites)
{
typedef typename vobj::scalar_object sobj;
sobj result;
result = sumD_gpu(lat,osites);
return result;
}
NAMESPACE_END(Grid);

View File

@ -1,525 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_rng.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_RNG_H
#define GRID_LATTICE_RNG_H
#include <random>
#ifdef RNG_SITMO
#include <Grid/sitmo_rng/sitmo_prng_engine.hpp>
#endif
#if defined(RNG_SITMO)
#define RNG_FAST_DISCARD
#else
#undef RNG_FAST_DISCARD
#endif
NAMESPACE_BEGIN(Grid);
//////////////////////////////////////////////////////////////
// Allow the RNG state to be less dense than the fine grid
//////////////////////////////////////////////////////////////
inline int RNGfillable(GridBase *coarse,GridBase *fine)
{
int rngdims = coarse->_ndimension;
// trivially extended in higher dims, with locality guaranteeing RNG state is local to node
int lowerdims = fine->_ndimension - coarse->_ndimension;
assert(lowerdims >= 0);
for(int d=0;d<lowerdims;d++){
assert(fine->_simd_layout[d]==1);
assert(fine->_processors[d]==1);
}
int multiplicity=1;
for(int d=0;d<lowerdims;d++){
multiplicity=multiplicity*fine->_rdimensions[d];
}
// local and global volumes subdivide cleanly after SIMDization
for(int d=0;d<rngdims;d++){
int fd= d+lowerdims;
assert(coarse->_processors[d] == fine->_processors[fd]);
assert(coarse->_simd_layout[d] == fine->_simd_layout[fd]);
assert(((fine->_rdimensions[fd] / coarse->_rdimensions[d])* coarse->_rdimensions[d])==fine->_rdimensions[fd]);
multiplicity = multiplicity *fine->_rdimensions[fd] / coarse->_rdimensions[d];
}
return multiplicity;
}
// merge of April 11 2017
// this function is necessary for the LS vectorised field
inline int RNGfillable_general(GridBase *coarse,GridBase *fine)
{
int rngdims = coarse->_ndimension;
// trivially extended in higher dims, with locality guaranteeing RNG state is local to node
int lowerdims = fine->_ndimension - coarse->_ndimension; assert(lowerdims >= 0);
// assumes that the higher dimensions are not using more processors
// all further divisions are local
for(int d=0;d<lowerdims;d++) assert(fine->_processors[d]==1);
for(int d=0;d<rngdims;d++) assert(coarse->_processors[d] == fine->_processors[d+lowerdims]);
// then divide the number of local sites
// check that the total number of sims agree, meanse the iSites are the same
assert(fine->Nsimd() == coarse->Nsimd());
// check that the two grids divide cleanly
assert( (fine->lSites() / coarse->lSites() ) * coarse->lSites() == fine->lSites() );
return fine->lSites() / coarse->lSites();
}
// real scalars are one component
template<class scalar,class distribution,class generator>
void fillScalar(scalar &s,distribution &dist,generator & gen)
{
s=dist(gen);
}
template<class distribution,class generator>
void fillScalar(ComplexF &s,distribution &dist, generator &gen)
{
// s=ComplexF(dist(gen),dist(gen));
s.real(dist(gen));
s.imag(dist(gen));
}
template<class distribution,class generator>
void fillScalar(ComplexD &s,distribution &dist,generator &gen)
{
// s=ComplexD(dist(gen),dist(gen));
s.real(dist(gen));
s.imag(dist(gen));
}
class GridRNGbase {
public:
// One generator per site.
// Uniform and Gaussian distributions from these generators.
#ifdef RNG_RANLUX
typedef std::ranlux48 RngEngine;
typedef uint64_t RngStateType;
static const int RngStateCount = 15;
#endif
#ifdef RNG_MT19937
typedef std::mt19937 RngEngine;
typedef uint32_t RngStateType;
static const int RngStateCount = std::mt19937::state_size;
#endif
#ifdef RNG_SITMO
typedef sitmo::prng_engine RngEngine;
typedef uint64_t RngStateType;
static const int RngStateCount = 13;
#endif
std::vector<RngEngine> _generators;
std::vector<std::uniform_real_distribution<RealD> > _uniform;
std::vector<std::normal_distribution<RealD> > _gaussian;
std::vector<std::discrete_distribution<int32_t> > _bernoulli;
std::vector<std::uniform_int_distribution<uint32_t> > _uid;
///////////////////////
// support for parallel init
///////////////////////
#ifdef RNG_FAST_DISCARD
static void Skip(RngEngine &eng,uint64_t site)
{
/////////////////////////////////////////////////////////////////////////////////////
// Skip by 2^40 elements between successive lattice sites
// This goes by 10^12.
// Consider quenched updating; likely never exceeding rate of 1000 sweeps
// per second on any machine. This gives us of order 10^9 seconds, or 100 years
// skip ahead.
// For HMC unlikely to go at faster than a solve per second, and
// tens of seconds per trajectory so this is clean in all reasonable cases,
// and margin of safety is orders of magnitude.
// We could hack Sitmo to skip in the higher order words of state if necessary
//
// Replace with 2^30 ; avoid problem on large volumes
//
/////////////////////////////////////////////////////////////////////////////////////
// uint64_t skip = site+1; // Old init Skipped then drew. Checked compat with faster init
const int shift = 30;
////////////////////////////////////////////////////////////////////
// Weird compiler bug in Intel 2018.1 under O3 was generating 32bit and not 64 bit left shift.
////////////////////////////////////////////////////////////////////
volatile uint64_t skip = site;
skip = skip<<shift;
assert((skip >> shift)==site); // check for overflow
eng.discard(skip);
// std::cout << " Engine " <<site << " state " <<eng<<std::endl;
}
#endif
static RngEngine Reseed(RngEngine &eng)
{
std::vector<uint32_t> newseed;
std::uniform_int_distribution<uint32_t> uid;
return Reseed(eng,newseed,uid);
}
static RngEngine Reseed(RngEngine &eng,std::vector<uint32_t> & newseed,
std::uniform_int_distribution<uint32_t> &uid)
{
const int reseeds=4;
newseed.resize(reseeds);
for(int i=0;i<reseeds;i++){
newseed[i] = uid(eng);
}
std::seed_seq sseq(newseed.begin(),newseed.end());
return RngEngine(sseq);
}
void GetState(std::vector<RngStateType> & saved,RngEngine &eng) {
saved.resize(RngStateCount);
std::stringstream ss;
ss<<eng;
ss.seekg(0,ss.beg);
for(int i=0;i<RngStateCount;i++){
ss>>saved[i];
}
}
void GetState(std::vector<RngStateType> & saved,int gen) {
GetState(saved,_generators[gen]);
}
void SetState(std::vector<RngStateType> & saved,RngEngine &eng){
assert(saved.size()==RngStateCount);
std::stringstream ss;
for(int i=0;i<RngStateCount;i++){
ss<< saved[i]<<" ";
}
ss.seekg(0,ss.beg);
ss>>eng;
}
void SetState(std::vector<RngStateType> & saved,int gen){
SetState(saved,_generators[gen]);
}
void SetEngine(RngEngine &Eng, int gen){
_generators[gen]=Eng;
}
void GetEngine(RngEngine &Eng, int gen){
Eng=_generators[gen];
}
template<class source> void Seed(source &src, int gen)
{
_generators[gen] = RngEngine(src);
}
};
class GridSerialRNG : public GridRNGbase {
public:
GridSerialRNG() : GridRNGbase() {
_generators.resize(1);
_uniform.resize(1,std::uniform_real_distribution<RealD>{0,1});
_gaussian.resize(1,std::normal_distribution<RealD>(0.0,1.0) );
_bernoulli.resize(1,std::discrete_distribution<int32_t>{1,1});
_uid.resize(1,std::uniform_int_distribution<uint32_t>() );
}
template <class sobj,class distribution> inline void fill(sobj &l,std::vector<distribution> &dist){
typedef typename sobj::scalar_type scalar_type;
int words = sizeof(sobj)/sizeof(scalar_type);
scalar_type *buf = (scalar_type *) & l;
dist[0].reset();
for(int idx=0;idx<words;idx++){
fillScalar(buf[idx],dist[0],_generators[0]);
}
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
}
template <class distribution> inline void fill(ComplexF &l,std::vector<distribution> &dist){
dist[0].reset();
fillScalar(l,dist[0],_generators[0]);
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
}
template <class distribution> inline void fill(ComplexD &l,std::vector<distribution> &dist){
dist[0].reset();
fillScalar(l,dist[0],_generators[0]);
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
}
template <class distribution> inline void fill(RealF &l,std::vector<distribution> &dist){
dist[0].reset();
fillScalar(l,dist[0],_generators[0]);
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
}
template <class distribution> inline void fill(RealD &l,std::vector<distribution> &dist){
dist[0].reset();
fillScalar(l,dist[0],_generators[0]);
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
}
// vector fill
template <class distribution> inline void fill(vComplexF &l,std::vector<distribution> &dist){
RealF *pointer=(RealF *)&l;
dist[0].reset();
for(int i=0;i<2*vComplexF::Nsimd();i++){
fillScalar(pointer[i],dist[0],_generators[0]);
}
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
}
template <class distribution> inline void fill(vComplexD &l,std::vector<distribution> &dist){
RealD *pointer=(RealD *)&l;
dist[0].reset();
for(int i=0;i<2*vComplexD::Nsimd();i++){
fillScalar(pointer[i],dist[0],_generators[0]);
}
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
}
template <class distribution> inline void fill(vRealF &l,std::vector<distribution> &dist){
RealF *pointer=(RealF *)&l;
dist[0].reset();
for(int i=0;i<vRealF::Nsimd();i++){
fillScalar(pointer[i],dist[0],_generators[0]);
}
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
}
template <class distribution> inline void fill(vRealD &l,std::vector<distribution> &dist){
RealD *pointer=(RealD *)&l;
dist[0].reset();
for(int i=0;i<vRealD::Nsimd();i++){
fillScalar(pointer[i],dist[0],_generators[0]);
}
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
}
void SeedFixedIntegers(const std::vector<int> &seeds){
CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size());
std::seed_seq src(seeds.begin(),seeds.end());
Seed(src,0);
}
void SeedUniqueString(const std::string &s){
std::vector<int> seeds;
std::stringstream sha;
seeds = GridChecksum::sha256_seeds(s);
for(int i=0;i<seeds.size();i++) {
sha << std::hex << seeds[i];
}
std::cout << GridLogMessage << "Intialising serial RNG with unique string '"
<< s << "'" << std::endl;
std::cout << GridLogMessage << "Seed SHA256: " << sha.str() << std::endl;
SeedFixedIntegers(seeds);
}
};
class GridParallelRNG : public GridRNGbase {
private:
double _time_counter;
GridBase *_grid;
unsigned int _vol;
public:
GridBase *Grid(void) const { return _grid; }
int generator_idx(int os,int is) {
return is*_grid->oSites()+os;
}
GridParallelRNG(GridBase *grid) : GridRNGbase() {
_grid = grid;
_vol =_grid->iSites()*_grid->oSites();
_generators.resize(_vol);
_uniform.resize(_vol,std::uniform_real_distribution<RealD>{0,1});
_gaussian.resize(_vol,std::normal_distribution<RealD>(0.0,1.0) );
_bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
_uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
}
template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist){
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
double inner_time_counter = usecond();
int multiplicity = RNGfillable_general(_grid, l.Grid()); // l has finer or same grid
int Nsimd = _grid->Nsimd(); // guaranteed to be the same for l.Grid() too
int osites = _grid->oSites(); // guaranteed to be <= l.Grid()->oSites() by a factor multiplicity
int words = sizeof(scalar_object) / sizeof(scalar_type);
autoView(l_v, l, CpuWrite);
thread_for( ss, osites, {
ExtractBuffer<scalar_object> buf(Nsimd);
for (int m = 0; m < multiplicity; m++) { // Draw from same generator multiplicity times
int sm = multiplicity * ss + m; // Maps the generator site to the fine site
for (int si = 0; si < Nsimd; si++) {
int gdx = generator_idx(ss, si); // index of generator state
scalar_type *pointer = (scalar_type *)&buf[si];
dist[gdx].reset();
for (int idx = 0; idx < words; idx++)
fillScalar(pointer[idx], dist[gdx], _generators[gdx]);
}
// merge into SIMD lanes, FIXME suboptimal implementation
merge(l_v[sm], buf);
}
});
// });
_time_counter += usecond()- inner_time_counter;
}
void SeedUniqueString(const std::string &s){
std::vector<int> seeds;
seeds = GridChecksum::sha256_seeds(s);
std::cout << GridLogMessage << "Intialising parallel RNG with unique string '"
<< s << "'" << std::endl;
std::cout << GridLogMessage << "Seed SHA256: " << GridChecksum::sha256_string(seeds) << std::endl;
SeedFixedIntegers(seeds);
}
void SeedFixedIntegers(const std::vector<int> &seeds){
// Everyone generates the same seed_seq based on input seeds
CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size());
std::seed_seq source(seeds.begin(),seeds.end());
RngEngine master_engine(source);
#ifdef RNG_FAST_DISCARD
////////////////////////////////////////////////
// Skip ahead through a single stream.
// Applicable to SITMO and other has based/crypto RNGs
// Should be applicable to Mersenne Twister, but the C++11
// MT implementation does not implement fast discard even though
// in principle this is possible
////////////////////////////////////////////////
// Everybody loops over global volume.
thread_for( gidx, _grid->_gsites, {
// Where is it?
int rank;
int o_idx;
int i_idx;
Coordinate gcoor;
_grid->GlobalIndexToGlobalCoor(gidx,gcoor);
_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
// If this is one of mine we take it
if( rank == _grid->ThisRank() ){
int l_idx=generator_idx(o_idx,i_idx);
_generators[l_idx] = master_engine;
Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
}
});
#else
////////////////////////////////////////////////////////////////
// Machine and thread decomposition dependent seeding is efficient
// and maximally parallel; but NOT reproducible from machine to machine.
// Not ideal, but fastest way to reseed all nodes.
////////////////////////////////////////////////////////////////
{
// Obtain one Reseed per processor
int Nproc = _grid->ProcessorCount();
std::vector<RngEngine> seeders(Nproc);
int me= _grid->ThisRank();
for(int p=0;p<Nproc;p++){
seeders[p] = Reseed(master_engine);
}
master_engine = seeders[me];
}
{
// Obtain one reseeded generator per thread
int Nthread = 32; // Hardwire a good level or parallelism
std::vector<RngEngine> seeders(Nthread);
for(int t=0;t<Nthread;t++){
seeders[t] = Reseed(master_engine);
}
thread_for( t, Nthread, {
// set up one per local site in threaded fashion
std::vector<uint32_t> newseeds;
std::uniform_int_distribution<uint32_t> uid;
for(int l=0;l<_grid->lSites();l++) {
if ( (l%Nthread)==t ) {
_generators[l] = Reseed(seeders[t],newseeds,uid);
}
}
});
}
#endif
}
void Report(){
std::cout << GridLogMessage << "Time spent in the fill() routine by GridParallelRNG: "<< _time_counter/1e3 << " ms" << std::endl;
}
////////////////////////////////////////////////////////////////////////
// Support for rigorous test of RNG's
// Return uniform random uint32_t from requested site generator
////////////////////////////////////////////////////////////////////////
uint32_t GlobalU01(int gsite){
uint32_t the_number;
// who
int rank,o_idx,i_idx;
Coordinate gcoor;
_grid->GlobalIndexToGlobalCoor(gsite,gcoor);
_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
// draw
int l_idx=generator_idx(o_idx,i_idx);
if( rank == _grid->ThisRank() ){
the_number = _uid[l_idx](_generators[l_idx]);
}
// share & return
_grid->Broadcast(rank,(void *)&the_number,sizeof(the_number));
return the_number;
}
};
template <class vobj> inline void random(GridParallelRNG &rng,Lattice<vobj> &l) { rng.fill(l,rng._uniform); }
template <class vobj> inline void gaussian(GridParallelRNG &rng,Lattice<vobj> &l) { rng.fill(l,rng._gaussian); }
template <class vobj> inline void bernoulli(GridParallelRNG &rng,Lattice<vobj> &l){ rng.fill(l,rng._bernoulli);}
template <class sobj> inline void random(GridSerialRNG &rng,sobj &l) { rng.fill(l,rng._uniform ); }
template <class sobj> inline void gaussian(GridSerialRNG &rng,sobj &l) { rng.fill(l,rng._gaussian ); }
template <class sobj> inline void bernoulli(GridSerialRNG &rng,sobj &l){ rng.fill(l,rng._bernoulli); }
NAMESPACE_END(Grid);
#endif

View File

@ -1,71 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_trace.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_TRACE_H
#define GRID_LATTICE_TRACE_H
///////////////////////////////////////////////
// Tracing, transposing, peeking, poking
///////////////////////////////////////////////
NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////////////////////////////////////////////////////
// Trace
////////////////////////////////////////////////////////////////////////////////////////////////////
/*
template<class vobj>
inline auto trace(const Lattice<vobj> &lhs) -> Lattice<decltype(trace(vobj()))>
{
Lattice<decltype(trace(vobj()))> ret(lhs.Grid());
autoView(ret_v , ret, AcceleratorWrite);
autoView(lhs_v , lhs, AcceleratorRead);
accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), {
coalescedWrite(ret_v[ss], trace(lhs_v(ss)));
});
return ret;
};
*/
////////////////////////////////////////////////////////////////////////////////////////////////////
// Trace Index level dependent operation
////////////////////////////////////////////////////////////////////////////////////////////////////
template<int Index,class vobj>
inline auto TraceIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<Index>(vobj()))>
{
Lattice<decltype(traceIndex<Index>(vobj()))> ret(lhs.Grid());
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), {
coalescedWrite(ret_v[ss], traceIndex<Index>(lhs_v(ss)));
});
return ret;
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,70 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_transpose.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_TRANSPOSE_H
#define GRID_LATTICE_TRANSPOSE_H
///////////////////////////////////////////////
// Transpose
///////////////////////////////////////////////
NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////////////////////////////////////////////////////
// Transpose
////////////////////////////////////////////////////////////////////////////////////////////////////
/*
template<class vobj>
inline Lattice<vobj> transpose(const Lattice<vobj> &lhs){
Lattice<vobj> ret(lhs.Grid());
autoView( ret_v, ret, AcceleratorWrite);
autoView( lhs_v, lhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),vobj::Nsimd(),{
coalescedWrite(ret_v[ss], transpose(lhs_v(ss)));
});
return ret;
};
*/
////////////////////////////////////////////////////////////////////////////////////////////////////
// Index level dependent transpose
////////////////////////////////////////////////////////////////////////////////////////////////////
template<int Index,class vobj>
inline auto TransposeIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(transposeIndex<Index>(vobj()))>
{
Lattice<decltype(transposeIndex<Index>(vobj()))> ret(lhs.Grid());
autoView( ret_v, ret, AcceleratorWrite);
autoView( lhs_v, lhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),vobj::Nsimd(),{
coalescedWrite(ret_v[ss] , transposeIndex<Index>(lhs_v(ss)));
});
return ret;
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,80 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_unary.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_UNARY_H
#define GRID_LATTICE_UNARY_H
NAMESPACE_BEGIN(Grid);
template<class obj> Lattice<obj> pow(const Lattice<obj> &rhs_i,RealD y){
Lattice<obj> ret_i(rhs_i.Grid());
autoView( rhs, rhs_i, AcceleratorRead);
autoView( ret, ret_i, AcceleratorWrite);
ret.Checkerboard() = rhs.Checkerboard();
accelerator_for(ss,rhs.size(),1,{
ret[ss]=pow(rhs[ss],y);
});
return ret_i;
}
template<class obj> Lattice<obj> mod(const Lattice<obj> &rhs_i,Integer y){
Lattice<obj> ret_i(rhs_i.Grid());
autoView( rhs , rhs_i, AcceleratorRead);
autoView( ret , ret_i, AcceleratorWrite);
ret.Checkerboard() = rhs.Checkerboard();
accelerator_for(ss,rhs.size(),obj::Nsimd(),{
coalescedWrite(ret[ss],mod(rhs(ss),y));
});
return ret_i;
}
template<class obj> Lattice<obj> div(const Lattice<obj> &rhs_i,Integer y){
Lattice<obj> ret_i(rhs_i.Grid());
autoView( ret , ret_i, AcceleratorWrite);
autoView( rhs , rhs_i, AcceleratorRead);
ret.Checkerboard() = rhs_i.Checkerboard();
accelerator_for(ss,rhs.size(),obj::Nsimd(),{
coalescedWrite(ret[ss],div(rhs(ss),y));
});
return ret_i;
}
template<class obj> Lattice<obj> expMat(const Lattice<obj> &rhs_i, RealD alpha, Integer Nexp = DEFAULT_MAT_EXP){
Lattice<obj> ret_i(rhs_i.Grid());
autoView( rhs , rhs_i, AcceleratorRead);
autoView( ret , ret_i, AcceleratorWrite);
ret.Checkerboard() = rhs.Checkerboard();
accelerator_for(ss,rhs.size(),obj::Nsimd(),{
coalescedWrite(ret[ss],Exponentiate(rhs(ss),alpha, Nexp));
});
return ret_i;
}
NAMESPACE_END(Grid);
#endif

View File

@ -1,168 +0,0 @@
#pragma once
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////////////////////////////////
// Base class which can be used by traits to pick up behaviour
///////////////////////////////////////////////////////////////////
class LatticeBase {};
/////////////////////////////////////////////////////////////////////////////////////////
// Conformable checks; same instance of Grid required
/////////////////////////////////////////////////////////////////////////////////////////
void accelerator_inline conformable(GridBase *lhs,GridBase *rhs)
{
assert(lhs == rhs);
}
////////////////////////////////////////////////////////////////////////////
// Minimal base class containing only data valid to access from accelerator
// _odata will be a managed pointer in CUDA
////////////////////////////////////////////////////////////////////////////
// Force access to lattice through a view object.
// prevents writing of code that will not offload to GPU, but perhaps annoyingly
// strict since host could could in principle direct access through the lattice object
// Need to decide programming model.
#define LATTICE_VIEW_STRICT
template<class vobj> class LatticeAccelerator : public LatticeBase
{
protected:
//public:
GridBase *_grid;
int checkerboard;
vobj *_odata; // A managed pointer
uint64_t _odata_size;
ViewAdvise advise;
public:
accelerator_inline LatticeAccelerator() : checkerboard(0), _odata(nullptr), _odata_size(0), _grid(nullptr), advise(AdviseDefault) { };
accelerator_inline uint64_t oSites(void) const { return _odata_size; };
accelerator_inline int Checkerboard(void) const { return checkerboard; };
accelerator_inline int &Checkerboard(void) { return this->checkerboard; }; // can assign checkerboard on a container, not a view
accelerator_inline ViewAdvise Advise(void) const { return advise; };
accelerator_inline ViewAdvise &Advise(void) { return this->advise; }; // can assign advise on a container, not a view
accelerator_inline void Conformable(GridBase * &grid) const
{
if (grid) conformable(grid, _grid);
else grid = _grid;
};
// Host only
GridBase * getGrid(void) const { return _grid; };
};
/////////////////////////////////////////////////////////////////////////////////////////
// A View class which provides accessor to the data.
// This will be safe to call from accelerator_for and is trivially copy constructible
// The copy constructor for this will need to be used by device lambda functions
/////////////////////////////////////////////////////////////////////////////////////////
template<class vobj>
class LatticeView : public LatticeAccelerator<vobj>
{
public:
// Rvalue
ViewMode mode;
void * cpu_ptr;
#ifdef GRID_SIMT
accelerator_inline const typename vobj::scalar_object operator()(size_t i) const {
return coalescedRead(this->_odata[i]);
}
#else
accelerator_inline const vobj & operator()(size_t i) const { return this->_odata[i]; }
#endif
accelerator_inline const vobj & operator[](size_t i) const { return this->_odata[i]; };
accelerator_inline vobj & operator[](size_t i) { return this->_odata[i]; };
accelerator_inline uint64_t begin(void) const { return 0;};
accelerator_inline uint64_t end(void) const { return this->_odata_size; };
accelerator_inline uint64_t size(void) const { return this->_odata_size; };
LatticeView(const LatticeAccelerator<vobj> &refer_to_me) : LatticeAccelerator<vobj> (refer_to_me){}
LatticeView(const LatticeView<vobj> &refer_to_me) = default; // Trivially copyable
LatticeView(const LatticeAccelerator<vobj> &refer_to_me,ViewMode mode) : LatticeAccelerator<vobj> (refer_to_me)
{
this->ViewOpen(mode);
}
// Host functions
void ViewOpen(ViewMode mode)
{ // Translate the pointer, could save a copy. Could use a "Handle" and not save _odata originally in base
// std::cout << "View Open"<<std::hex<<this->_odata<<std::dec <<std::endl;
this->cpu_ptr = (void *)this->_odata;
this->mode = mode;
this->_odata =(vobj *)
MemoryManager::ViewOpen(this->cpu_ptr,
this->_odata_size*sizeof(vobj),
mode,
this->advise);
}
void ViewClose(void)
{ // Inform the manager
// std::cout << "View Close"<<std::hex<<this->cpu_ptr<<std::dec <<std::endl;
MemoryManager::ViewClose(this->cpu_ptr,this->mode);
}
};
// Little autoscope assister
template<class View>
class ViewCloser
{
View v; // Take a copy of view and call view close when I go out of scope automatically
public:
ViewCloser(View &_v) : v(_v) {};
~ViewCloser() { v.ViewClose(); }
};
#define autoView(l_v,l,mode) \
auto l_v = l.View(mode); \
ViewCloser<decltype(l_v)> _autoView##l_v(l_v);
/////////////////////////////////////////////////////////////////////////////////////////
// Lattice expression types used by ET to assemble the AST
//
// Need to be able to detect code paths according to the whether a lattice object or not
// so introduce some trait type things
/////////////////////////////////////////////////////////////////////////////////////////
class LatticeExpressionBase {};
template <typename T> using is_lattice = std::is_base_of<LatticeBase, T>;
template <typename T> using is_lattice_expr = std::is_base_of<LatticeExpressionBase,T >;
template<class T, bool isLattice> struct ViewMapBase { typedef T Type; };
template<class T> struct ViewMapBase<T,true> { typedef LatticeView<typename T::vector_object> Type; };
template<class T> using ViewMap = ViewMapBase<T,std::is_base_of<LatticeBase, T>::value >;
template <typename Op, typename _T1>
class LatticeUnaryExpression : public LatticeExpressionBase
{
public:
typedef typename ViewMap<_T1>::Type T1;
Op op;
T1 arg1;
LatticeUnaryExpression(Op _op,const _T1 &_arg1) : op(_op), arg1(_arg1) {};
};
template <typename Op, typename _T1, typename _T2>
class LatticeBinaryExpression : public LatticeExpressionBase
{
public:
typedef typename ViewMap<_T1>::Type T1;
typedef typename ViewMap<_T2>::Type T2;
Op op;
T1 arg1;
T2 arg2;
LatticeBinaryExpression(Op _op,const _T1 &_arg1,const _T2 &_arg2) : op(_op), arg1(_arg1), arg2(_arg2) {};
};
template <typename Op, typename _T1, typename _T2, typename _T3>
class LatticeTrinaryExpression : public LatticeExpressionBase
{
public:
typedef typename ViewMap<_T1>::Type T1;
typedef typename ViewMap<_T2>::Type T2;
typedef typename ViewMap<_T3>::Type T3;
Op op;
T1 arg1;
T2 arg2;
T3 arg3;
LatticeTrinaryExpression(Op _op,const _T1 &_arg1,const _T2 &_arg2,const _T3 &_arg3) : op(_op), arg1(_arg1), arg2(_arg2), arg3(_arg3) {};
};
NAMESPACE_END(Grid);

View File

@ -1,3 +0,0 @@
#include <Grid/GridCore.h>
int Grid::BinaryIO::latticeWriteMaxRetry = -1;

View File

@ -1,354 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/parallelIO/NerscIO.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <algorithm>
#include <iostream>
#include <iomanip>
#include <fstream>
#include <map>
#include <unistd.h>
#include <sys/utsname.h>
#include <pwd.h>
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////////////////////
// Precision mapping
///////////////////////////////////////////////////////
template<class vobj> static std::string getFormatString (void)
{
std::string format;
typedef typename getPrecision<vobj>::real_scalar_type stype;
if ( sizeof(stype) == sizeof(float) ) {
format = std::string("IEEE32BIG");
}
if ( sizeof(stype) == sizeof(double) ) {
format = std::string("IEEE64BIG");
}
return format;
};
////////////////////////////////////////////////////////////////////////////////
// header specification/interpretation
////////////////////////////////////////////////////////////////////////////////
class FieldNormMetaData : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(FieldNormMetaData, double, norm2);
};
class FieldMetaData : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(FieldMetaData,
int, nd,
std::vector<int>, dimension,
std::vector<std::string>, boundary,
int, data_start,
std::string, hdr_version,
std::string, storage_format,
double, link_trace,
double, plaquette,
uint32_t, checksum,
uint32_t, scidac_checksuma,
uint32_t, scidac_checksumb,
unsigned int, sequence_number,
std::string, data_type,
std::string, ensemble_id,
std::string, ensemble_label,
std::string, ildg_lfn,
std::string, creator,
std::string, creator_hardware,
std::string, creation_date,
std::string, archive_date,
std::string, floating_point);
// WARNING: non-initialised values might lead to twisted parallel IO
// issues, std::string are fine because they initliase to size 0
// as per C++ standard.
FieldMetaData(void)
: nd(4), dimension(4,0), boundary(4, ""), data_start(0),
link_trace(0.), plaquette(0.), checksum(0),
scidac_checksuma(0), scidac_checksumb(0), sequence_number(0)
{}
};
// PB disable using namespace - this is a header and forces namesapce visibility for all
// including files
//using namespace Grid;
//////////////////////////////////////////////////////////////////////
// Bit and Physical Checksumming and QA of data
//////////////////////////////////////////////////////////////////////
inline void GridMetaData(GridBase *grid,FieldMetaData &header)
{
int nd = grid->_ndimension;
header.nd = nd;
header.dimension.resize(nd);
header.boundary.resize(nd);
header.data_start = 0;
for(int d=0;d<nd;d++) {
header.dimension[d] = grid->_fdimensions[d];
}
for(int d=0;d<nd;d++) {
header.boundary[d] = std::string("PERIODIC");
}
}
inline void MachineCharacteristics(FieldMetaData &header)
{
// Who
struct passwd *pw = getpwuid (getuid());
if (pw) header.creator = std::string(pw->pw_name);
// When
std::time_t t = std::time(nullptr);
std::tm tm_ = *std::localtime(&t);
std::ostringstream oss;
// oss << std::put_time(&tm_, "%c %Z");
header.creation_date = oss.str();
header.archive_date = header.creation_date;
// What
struct utsname name; uname(&name);
header.creator_hardware = std::string(name.nodename)+"-";
header.creator_hardware+= std::string(name.machine)+"-";
header.creator_hardware+= std::string(name.sysname)+"-";
header.creator_hardware+= std::string(name.release);
}
#define dump_meta_data(field, s) \
s << "BEGIN_HEADER" << std::endl; \
s << "HDR_VERSION = " << field.hdr_version << std::endl; \
s << "DATATYPE = " << field.data_type << std::endl; \
s << "STORAGE_FORMAT = " << field.storage_format << std::endl; \
for(int i=0;i<4;i++){ \
s << "DIMENSION_" << i+1 << " = " << field.dimension[i] << std::endl ; \
} \
s << "LINK_TRACE = " << std::setprecision(10) << field.link_trace << std::endl; \
s << "PLAQUETTE = " << std::setprecision(10) << field.plaquette << std::endl; \
for(int i=0;i<4;i++){ \
s << "BOUNDARY_"<<i+1<<" = " << field.boundary[i] << std::endl; \
} \
\
s << "CHECKSUM = "<< std::hex << std::setw(10) << field.checksum << std::dec<<std::endl; \
s << "SCIDAC_CHECKSUMA = "<< std::hex << std::setw(10) << field.scidac_checksuma << std::dec<<std::endl; \
s << "SCIDAC_CHECKSUMB = "<< std::hex << std::setw(10) << field.scidac_checksumb << std::dec<<std::endl; \
s << "ENSEMBLE_ID = " << field.ensemble_id << std::endl; \
s << "ENSEMBLE_LABEL = " << field.ensemble_label << std::endl; \
s << "SEQUENCE_NUMBER = " << field.sequence_number << std::endl; \
s << "CREATOR = " << field.creator << std::endl; \
s << "CREATOR_HARDWARE = "<< field.creator_hardware << std::endl; \
s << "CREATION_DATE = " << field.creation_date << std::endl; \
s << "ARCHIVE_DATE = " << field.archive_date << std::endl; \
s << "FLOATING_POINT = " << field.floating_point << std::endl; \
s << "END_HEADER" << std::endl;
template<class vobj> inline void PrepareMetaData(Lattice<vobj> & field, FieldMetaData &header)
{
GridBase *grid = field.Grid();
std::string format = getFormatString<vobj>();
header.floating_point = format;
header.checksum = 0x0; // Nersc checksum unused in ILDG, Scidac
GridMetaData(grid,header);
MachineCharacteristics(header);
}
inline void GaugeStatistics(Lattice<vLorentzColourMatrixF> & data,FieldMetaData &header)
{
// How to convert data precision etc...
header.link_trace=WilsonLoops<PeriodicGimplF>::linkTrace(data);
header.plaquette =WilsonLoops<PeriodicGimplF>::avgPlaquette(data);
}
inline void GaugeStatistics(Lattice<vLorentzColourMatrixD> & data,FieldMetaData &header)
{
// How to convert data precision etc...
header.link_trace=WilsonLoops<PeriodicGimplD>::linkTrace(data);
header.plaquette =WilsonLoops<PeriodicGimplD>::avgPlaquette(data);
}
template<> inline void PrepareMetaData<vLorentzColourMatrixF>(Lattice<vLorentzColourMatrixF> & field, FieldMetaData &header)
{
GridBase *grid = field.Grid();
std::string format = getFormatString<vLorentzColourMatrixF>();
header.floating_point = format;
header.checksum = 0x0; // Nersc checksum unused in ILDG, Scidac
GridMetaData(grid,header);
GaugeStatistics(field,header);
MachineCharacteristics(header);
}
template<> inline void PrepareMetaData<vLorentzColourMatrixD>(Lattice<vLorentzColourMatrixD> & field, FieldMetaData &header)
{
GridBase *grid = field.Grid();
std::string format = getFormatString<vLorentzColourMatrixD>();
header.floating_point = format;
header.checksum = 0x0; // Nersc checksum unused in ILDG, Scidac
GridMetaData(grid,header);
GaugeStatistics(field,header);
MachineCharacteristics(header);
}
//////////////////////////////////////////////////////////////////////
// Utilities ; these are QCD aware
//////////////////////////////////////////////////////////////////////
inline void reconstruct3(LorentzColourMatrix & cm)
{
const int x=0;
const int y=1;
const int z=2;
for(int mu=0;mu<Nd;mu++){
cm(mu)()(2,x) = adj(cm(mu)()(0,y)*cm(mu)()(1,z)-cm(mu)()(0,z)*cm(mu)()(1,y)); //x= yz-zy
cm(mu)()(2,y) = adj(cm(mu)()(0,z)*cm(mu)()(1,x)-cm(mu)()(0,x)*cm(mu)()(1,z)); //y= zx-xz
cm(mu)()(2,z) = adj(cm(mu)()(0,x)*cm(mu)()(1,y)-cm(mu)()(0,y)*cm(mu)()(1,x)); //z= xy-yx
}
}
////////////////////////////////////////////////////////////////////////////////
// Some data types for intermediate storage
////////////////////////////////////////////////////////////////////////////////
template<typename vtype> using iLorentzColour2x3 = iVector<iVector<iVector<vtype, Nc>, 2>, Nd >;
typedef iLorentzColour2x3<Complex> LorentzColour2x3;
typedef iLorentzColour2x3<ComplexF> LorentzColour2x3F;
typedef iLorentzColour2x3<ComplexD> LorentzColour2x3D;
/////////////////////////////////////////////////////////////////////////////////
// Simple classes for precision conversion
/////////////////////////////////////////////////////////////////////////////////
template <class fobj, class sobj>
struct BinarySimpleUnmunger {
typedef typename getPrecision<fobj>::real_scalar_type fobj_stype;
typedef typename getPrecision<sobj>::real_scalar_type sobj_stype;
void operator()(sobj &in, fobj &out) {
// take word by word and transform accoding to the status
fobj_stype *out_buffer = (fobj_stype *)&out;
sobj_stype *in_buffer = (sobj_stype *)&in;
size_t fobj_words = sizeof(out) / sizeof(fobj_stype);
size_t sobj_words = sizeof(in) / sizeof(sobj_stype);
assert(fobj_words == sobj_words);
for (unsigned int word = 0; word < sobj_words; word++)
out_buffer[word] = in_buffer[word]; // type conversion on the fly
}
};
template <class fobj, class sobj>
struct BinarySimpleMunger {
typedef typename getPrecision<fobj>::real_scalar_type fobj_stype;
typedef typename getPrecision<sobj>::real_scalar_type sobj_stype;
void operator()(fobj &in, sobj &out) {
// take word by word and transform accoding to the status
fobj_stype *in_buffer = (fobj_stype *)&in;
sobj_stype *out_buffer = (sobj_stype *)&out;
size_t fobj_words = sizeof(in) / sizeof(fobj_stype);
size_t sobj_words = sizeof(out) / sizeof(sobj_stype);
assert(fobj_words == sobj_words);
for (unsigned int word = 0; word < sobj_words; word++)
out_buffer[word] = in_buffer[word]; // type conversion on the fly
}
};
template<class fobj,class sobj>
struct GaugeSimpleMunger{
void operator()(fobj &in, sobj &out) {
for (int mu = 0; mu < Nd; mu++) {
for (int i = 0; i < Nc; i++) {
for (int j = 0; j < Nc; j++) {
out(mu)()(i, j) = in(mu)()(i, j);
}}
}
};
};
template <class fobj, class sobj>
struct GaugeSimpleUnmunger {
void operator()(sobj &in, fobj &out) {
for (int mu = 0; mu < Nd; mu++) {
for (int i = 0; i < Nc; i++) {
for (int j = 0; j < Nc; j++) {
out(mu)()(i, j) = in(mu)()(i, j);
}}
}
};
};
template<class fobj,class sobj>
struct GaugeDoubleStoredMunger{
void operator()(fobj &in, sobj &out) {
for (int mu = 0; mu < Nds; mu++) {
for (int i = 0; i < Nc; i++) {
for (int j = 0; j < Nc; j++) {
out(mu)()(i, j) = in(mu)()(i, j);
}}
}
};
};
template <class fobj, class sobj>
struct GaugeDoubleStoredUnmunger {
void operator()(sobj &in, fobj &out) {
for (int mu = 0; mu < Nds; mu++) {
for (int i = 0; i < Nc; i++) {
for (int j = 0; j < Nc; j++) {
out(mu)()(i, j) = in(mu)()(i, j);
}}
}
};
};
template<class fobj,class sobj>
struct Gauge3x2munger{
void operator() (fobj &in,sobj &out){
for(int mu=0;mu<Nd;mu++){
for(int i=0;i<2;i++){
for(int j=0;j<3;j++){
out(mu)()(i,j) = in(mu)(i)(j);
}}
}
reconstruct3(out);
}
};
template<class fobj,class sobj>
struct Gauge3x2unmunger{
void operator() (sobj &in,fobj &out){
for(int mu=0;mu<Nd;mu++){
for(int i=0;i<2;i++){
for(int j=0;j<3;j++){
out(mu)(i)(j) = in(mu)()(i,j);
}}
}
}
};
NAMESPACE_END(Grid);

View File

@ -1,359 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/parallelIO/NerscIO.h
Copyright (C) 2015
Author: Matt Spraggs <matthew.spraggs@gmail.com>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_NERSC_IO_H
#define GRID_NERSC_IO_H
NAMESPACE_BEGIN(Grid);
using namespace Grid;
////////////////////////////////////////////////////////////////////////////////
// Write and read from fstream; comput header offset for payload
////////////////////////////////////////////////////////////////////////////////
class NerscIO : public BinaryIO {
public:
static inline void truncate(std::string file){
std::ofstream fout(file,std::ios::out);
}
static inline unsigned int writeHeader(FieldMetaData &field,std::string file)
{
std::ofstream fout(file,std::ios::out|std::ios::in);
fout.seekp(0,std::ios::beg);
dump_meta_data(field, fout);
field.data_start = fout.tellp();
return field.data_start;
}
// for the header-reader
static inline int readHeader(std::string file,GridBase *grid, FieldMetaData &field)
{
std::map<std::string,std::string> header;
std::string line;
//////////////////////////////////////////////////
// read the header
//////////////////////////////////////////////////
std::ifstream fin(file);
getline(fin,line); // read one line and insist is
removeWhitespace(line);
std::cout << GridLogMessage << "* " << line << std::endl;
assert(line==std::string("BEGIN_HEADER"));
do {
getline(fin,line); // read one line
std::cout << GridLogMessage << "* "<<line<< std::endl;
int eq = line.find("=");
if(eq >0) {
std::string key=line.substr(0,eq);
std::string val=line.substr(eq+1);
removeWhitespace(key);
removeWhitespace(val);
header[key] = val;
}
} while( line.find("END_HEADER") == std::string::npos );
field.data_start = fin.tellg();
//////////////////////////////////////////////////
// chomp the values
//////////////////////////////////////////////////
field.hdr_version = header["HDR_VERSION"];
field.data_type = header["DATATYPE"];
field.storage_format = header["STORAGE_FORMAT"];
field.dimension[0] = std::stol(header["DIMENSION_1"]);
field.dimension[1] = std::stol(header["DIMENSION_2"]);
field.dimension[2] = std::stol(header["DIMENSION_3"]);
field.dimension[3] = std::stol(header["DIMENSION_4"]);
assert(grid->_ndimension == 4);
for(int d=0;d<4;d++){
assert(grid->_fdimensions[d]==field.dimension[d]);
}
field.link_trace = std::stod(header["LINK_TRACE"]);
field.plaquette = std::stod(header["PLAQUETTE"]);
field.boundary[0] = header["BOUNDARY_1"];
field.boundary[1] = header["BOUNDARY_2"];
field.boundary[2] = header["BOUNDARY_3"];
field.boundary[3] = header["BOUNDARY_4"];
field.checksum = std::stoul(header["CHECKSUM"],0,16);
field.ensemble_id = header["ENSEMBLE_ID"];
field.ensemble_label = header["ENSEMBLE_LABEL"];
field.sequence_number = std::stol(header["SEQUENCE_NUMBER"]);
field.creator = header["CREATOR"];
field.creator_hardware = header["CREATOR_HARDWARE"];
field.creation_date = header["CREATION_DATE"];
field.archive_date = header["ARCHIVE_DATE"];
field.floating_point = header["FLOATING_POINT"];
return field.data_start;
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Now the meat: the object readers
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template<class vsimd>
static inline void readConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu,
FieldMetaData& header,
std::string file)
{
typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
GridBase *grid = Umu.Grid();
uint64_t offset = readHeader(file,Umu.Grid(),header);
FieldMetaData clone(header);
std::string format(header.floating_point);
int ieee32big = (format == std::string("IEEE32BIG"));
int ieee32 = (format == std::string("IEEE32"));
int ieee64big = (format == std::string("IEEE64BIG"));
int ieee64 = (format == std::string("IEEE64") || format == std::string("IEEE64LITTLE"));
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
// depending on datatype, set up munger;
// munger is a function of <floating point, Real, data_type>
if ( header.data_type == std::string("4D_SU3_GAUGE") ) {
if ( ieee32 || ieee32big ) {
BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>, LorentzColour2x3F>
(Umu,file,Gauge3x2munger<LorentzColour2x3F,LorentzColourMatrix>(), offset,format,
nersc_csum,scidac_csuma,scidac_csumb);
}
if ( ieee64 || ieee64big ) {
BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>, LorentzColour2x3D>
(Umu,file,Gauge3x2munger<LorentzColour2x3D,LorentzColourMatrix>(),offset,format,
nersc_csum,scidac_csuma,scidac_csumb);
}
} else if ( header.data_type == std::string("4D_SU3_GAUGE_3x3") ) {
if ( ieee32 || ieee32big ) {
BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>,LorentzColourMatrixF>
(Umu,file,GaugeSimpleMunger<LorentzColourMatrixF,LorentzColourMatrix>(),offset,format,
nersc_csum,scidac_csuma,scidac_csumb);
}
if ( ieee64 || ieee64big ) {
BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>,LorentzColourMatrixD>
(Umu,file,GaugeSimpleMunger<LorentzColourMatrixD,LorentzColourMatrix>(),offset,format,
nersc_csum,scidac_csuma,scidac_csumb);
}
} else {
assert(0);
}
GaugeStatistics(Umu,clone);
std::cout<<GridLogMessage <<"NERSC Configuration "<<file<<" checksum "<<std::hex<<nersc_csum<< std::dec
<<" header "<<std::hex<<header.checksum<<std::dec <<std::endl;
std::cout<<GridLogMessage <<"NERSC Configuration "<<file<<" plaquette "<<clone.plaquette
<<" header "<<header.plaquette<<std::endl;
std::cout<<GridLogMessage <<"NERSC Configuration "<<file<<" link_trace "<<clone.link_trace
<<" header "<<header.link_trace<<std::endl;
if ( fabs(clone.plaquette -header.plaquette ) >= 1.0e-5 ) {
std::cout << " Plaquette mismatch "<<std::endl;
}
if ( nersc_csum != header.checksum ) {
std::cerr << " checksum mismatch " << std::endl;
std::cerr << " plaqs " << clone.plaquette << " " << header.plaquette << std::endl;
std::cerr << " trace " << clone.link_trace<< " " << header.link_trace<< std::endl;
std::cerr << " nersc_csum " <<std::hex<< nersc_csum << " " << header.checksum<< std::dec<< std::endl;
exit(0);
}
assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
assert(fabs(clone.link_trace-header.link_trace) < 1.0e-6 );
assert(nersc_csum == header.checksum );
std::cout<<GridLogMessage <<"NERSC Configuration "<<file<< " and plaquette, link trace, and checksum agree"<<std::endl;
}
template<class vsimd>
static inline void writeConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu,
std::string file,
int two_row,
int bits32)
{
typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
typedef iLorentzColourMatrix<vsimd> vobj;
typedef typename vobj::scalar_object sobj;
FieldMetaData header;
///////////////////////////////////////////
// Following should become arguments
///////////////////////////////////////////
header.sequence_number = 1;
header.ensemble_id = "UKQCD";
header.ensemble_label = "DWF";
typedef LorentzColourMatrixD fobj3D;
typedef LorentzColour2x3D fobj2D;
GridBase *grid = Umu.Grid();
GridMetaData(grid,header);
assert(header.nd==4);
GaugeStatistics(Umu,header);
MachineCharacteristics(header);
uint64_t offset;
// Sod it -- always write 3x3 double
header.floating_point = std::string("IEEE64BIG");
header.data_type = std::string("4D_SU3_GAUGE_3x3");
GaugeSimpleUnmunger<fobj3D,sobj> munge;
if ( grid->IsBoss() ) {
truncate(file);
offset = writeHeader(header,file);
}
grid->Broadcast(0,(void *)&offset,sizeof(offset));
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
BinaryIO::writeLatticeObject<vobj,fobj3D>(Umu,file,munge,offset,header.floating_point,
nersc_csum,scidac_csuma,scidac_csumb);
header.checksum = nersc_csum;
if ( grid->IsBoss() ) {
writeHeader(header,file);
}
std::cout<<GridLogMessage <<"Written NERSC Configuration on "<< file << " checksum "
<<std::hex<<header.checksum
<<std::dec<<" plaq "<< header.plaquette <<std::endl;
}
///////////////////////////////
// RNG state
///////////////////////////////
static inline void writeRNGState(GridSerialRNG &serial,GridParallelRNG &parallel,std::string file)
{
typedef typename GridParallelRNG::RngStateType RngStateType;
// Following should become arguments
FieldMetaData header;
header.sequence_number = 1;
header.ensemble_id = "UKQCD";
header.ensemble_label = "DWF";
GridBase *grid = parallel.Grid();
GridMetaData(grid,header);
assert(header.nd==4);
header.link_trace=0.0;
header.plaquette=0.0;
MachineCharacteristics(header);
uint64_t offset;
#ifdef RNG_RANLUX
header.floating_point = std::string("UINT64");
header.data_type = std::string("RANLUX48");
#endif
#ifdef RNG_MT19937
header.floating_point = std::string("UINT32");
header.data_type = std::string("MT19937");
#endif
#ifdef RNG_SITMO
header.floating_point = std::string("UINT64");
header.data_type = std::string("SITMO");
#endif
if ( grid->IsBoss() ) {
truncate(file);
offset = writeHeader(header,file);
}
grid->Broadcast(0,(void *)&offset,sizeof(offset));
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
BinaryIO::writeRNG(serial,parallel,file,offset,nersc_csum,scidac_csuma,scidac_csumb);
header.checksum = nersc_csum;
if ( grid->IsBoss() ) {
offset = writeHeader(header,file);
}
std::cout<<GridLogMessage
<<"Written NERSC RNG STATE "<<file<< " checksum "
<<std::hex<<header.checksum
<<std::dec<<std::endl;
}
static inline void readRNGState(GridSerialRNG &serial,GridParallelRNG & parallel,FieldMetaData& header,std::string file)
{
typedef typename GridParallelRNG::RngStateType RngStateType;
GridBase *grid = parallel.Grid();
uint64_t offset = readHeader(file,grid,header);
FieldMetaData clone(header);
std::string format(header.floating_point);
std::string data_type(header.data_type);
#ifdef RNG_RANLUX
assert(format == std::string("UINT64"));
assert(data_type == std::string("RANLUX48"));
#endif
#ifdef RNG_MT19937
assert(format == std::string("UINT32"));
assert(data_type == std::string("MT19937"));
#endif
#ifdef RNG_SITMO
assert(format == std::string("UINT64"));
assert(data_type == std::string("SITMO"));
#endif
// depending on datatype, set up munger;
// munger is a function of <floating point, Real, data_type>
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
BinaryIO::readRNG(serial,parallel,file,offset,nersc_csum,scidac_csuma,scidac_csumb);
if ( nersc_csum != header.checksum ) {
std::cerr << "checksum mismatch "<<std::hex<< nersc_csum <<" "<<header.checksum<<std::dec<<std::endl;
exit(0);
}
assert(nersc_csum == header.checksum );
std::cout<<GridLogMessage <<"Read NERSC RNG file "<<file<< " format "<< data_type <<std::endl;
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,224 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/parallelIO/OpenQcdIO.h
Copyright (C) 2015 - 2020
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
struct OpenQcdHeader : Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(OpenQcdHeader,
int, Nt,
int, Nx,
int, Ny,
int, Nz,
double, plaq);
};
class OpenQcdIO : public BinaryIO {
public:
static constexpr double normalisationFactor = Nc; // normalisation difference: grid 18, openqcd 6
static inline int readHeader(std::string file, GridBase* grid, FieldMetaData& field) {
OpenQcdHeader header;
{
std::ifstream fin(file, std::ios::in | std::ios::binary);
fin.read(reinterpret_cast<char*>(&header), sizeof(OpenQcdHeader));
assert(!fin.fail());
field.data_start = fin.tellg();
fin.close();
}
header.plaq /= normalisationFactor;
// sanity check (should trigger on endian issues)
assert(0 < header.Nt && header.Nt <= 1024);
assert(0 < header.Nx && header.Nx <= 1024);
assert(0 < header.Ny && header.Ny <= 1024);
assert(0 < header.Nz && header.Nz <= 1024);
field.dimension[0] = header.Nx;
field.dimension[1] = header.Ny;
field.dimension[2] = header.Nz;
field.dimension[3] = header.Nt;
std::cout << GridLogDebug << "header: " << header << std::endl;
std::cout << GridLogDebug << "grid dimensions: " << grid->_fdimensions << std::endl;
std::cout << GridLogDebug << "file dimensions: " << field.dimension << std::endl;
assert(grid->_ndimension == Nd);
for(int d = 0; d < Nd; d++)
assert(grid->_fdimensions[d] == field.dimension[d]);
field.plaquette = header.plaq;
return field.data_start;
}
template<class vsimd>
static inline void readConfiguration(Lattice<iLorentzColourMatrix<vsimd>>& Umu,
FieldMetaData& header,
std::string file) {
typedef Lattice<iDoubleStoredColourMatrix<vsimd>> DoubleStoredGaugeField;
assert(Ns == 4 and Nd == 4 and Nc == 3);
auto grid = dynamic_cast<GridCartesian*>(Umu.Grid());
assert(grid != nullptr); assert(grid->_ndimension == Nd);
uint64_t offset = readHeader(file, Umu.Grid(), header);
FieldMetaData clone(header);
std::string format("IEEE64"); // they always store little endian double precsision
uint32_t nersc_csum, scidac_csuma, scidac_csumb;
GridCartesian* grid_openqcd = createOpenQcdGrid(grid);
GridRedBlackCartesian* grid_rb = SpaceTimeGrid::makeFourDimRedBlackGrid(grid);
typedef DoubleStoredColourMatrixD fobj;
typedef typename DoubleStoredGaugeField::vector_object::scalar_object sobj;
typedef typename DoubleStoredGaugeField::vector_object::Realified::scalar_type word;
word w = 0;
std::vector<fobj> iodata(grid_openqcd->lSites()); // Munge, checksum, byte order in here
std::vector<sobj> scalardata(grid->lSites());
IOobject(w, grid_openqcd, iodata, file, offset, format, BINARYIO_READ | BINARYIO_LEXICOGRAPHIC,
nersc_csum, scidac_csuma, scidac_csumb);
GridStopWatch timer;
timer.Start();
DoubleStoredGaugeField Umu_ds(grid);
auto munge = GaugeDoubleStoredMunger<DoubleStoredColourMatrixD, DoubleStoredColourMatrix>();
Coordinate ldim = grid->LocalDimensions();
thread_for(idx_g, grid->lSites(), {
Coordinate coor;
grid->LocalIndexToLocalCoor(idx_g, coor);
bool isOdd = grid_rb->CheckerBoard(coor) == Odd;
if(!isOdd) continue;
int idx_o = (coor[Tdir] * ldim[Xdir] * ldim[Ydir] * ldim[Zdir]
+ coor[Xdir] * ldim[Ydir] * ldim[Zdir]
+ coor[Ydir] * ldim[Zdir]
+ coor[Zdir])/2;
munge(iodata[idx_o], scalardata[idx_g]);
});
grid->Barrier(); timer.Stop();
std::cout << Grid::GridLogMessage << "OpenQcdIO::readConfiguration: munge overhead " << timer.Elapsed() << std::endl;
timer.Reset(); timer.Start();
vectorizeFromLexOrdArray(scalardata, Umu_ds);
grid->Barrier(); timer.Stop();
std::cout << Grid::GridLogMessage << "OpenQcdIO::readConfiguration: vectorize overhead " << timer.Elapsed() << std::endl;
timer.Reset(); timer.Start();
undoDoubleStore(Umu, Umu_ds);
grid->Barrier(); timer.Stop();
std::cout << Grid::GridLogMessage << "OpenQcdIO::readConfiguration: redistribute overhead " << timer.Elapsed() << std::endl;
GaugeStatistics(Umu, clone);
RealD plaq_diff = fabs(clone.plaquette - header.plaquette);
// clang-format off
std::cout << GridLogMessage << "OpenQcd Configuration " << file
<< " plaquette " << clone.plaquette
<< " header " << header.plaquette
<< " difference " << plaq_diff
<< std::endl;
// clang-format on
RealD precTol = (getPrecision<vsimd>::value == 1) ? 2e-7 : 2e-15;
RealD tol = precTol * std::sqrt(grid->_Nprocessors); // taken from RQCD chroma code
if(plaq_diff >= tol)
std::cout << " Plaquette mismatch (diff = " << plaq_diff << ", tol = " << tol << ")" << std::endl;
assert(plaq_diff < tol);
std::cout << GridLogMessage << "OpenQcd Configuration " << file << " and plaquette agree" << std::endl;
}
template<class vsimd>
static inline void writeConfiguration(Lattice<iLorentzColourMatrix<vsimd>>& Umu,
std::string file) {
std::cout << GridLogError << "Writing to openQCD file format is not implemented" << std::endl;
exit(EXIT_FAILURE);
}
private:
static inline GridCartesian* createOpenQcdGrid(GridCartesian* grid) {
// exploit GridCartesian to be able to still use IOobject
Coordinate gdim = grid->GlobalDimensions();
Coordinate ldim = grid->LocalDimensions();
Coordinate pcoor = grid->ThisProcessorCoor();
// openqcd does rb on the z direction
gdim[Zdir] /= 2;
ldim[Zdir] /= 2;
// and has the order T X Y Z (from slowest to fastest)
std::swap(gdim[Xdir], gdim[Zdir]);
std::swap(ldim[Xdir], ldim[Zdir]);
std::swap(pcoor[Xdir], pcoor[Zdir]);
GridCartesian* ret = SpaceTimeGrid::makeFourDimGrid(gdim, grid->_simd_layout, grid->ProcessorGrid());
ret->_ldimensions = ldim;
ret->_processor_coor = pcoor;
return ret;
}
template<class vsimd>
static inline void undoDoubleStore(Lattice<iLorentzColourMatrix<vsimd>>& Umu,
Lattice<iDoubleStoredColourMatrix<vsimd>> const& Umu_ds) {
conformable(Umu.Grid(), Umu_ds.Grid());
Lattice<iColourMatrix<vsimd>> U(Umu.Grid());
// they store T+, T-, X+, X-, Y+, Y-, Z+, Z-
for(int mu_g = 0; mu_g < Nd; ++mu_g) {
int mu_o = (mu_g + 1) % Nd;
U = PeekIndex<LorentzIndex>(Umu_ds, 2 * mu_o)
+ Cshift(PeekIndex<LorentzIndex>(Umu_ds, 2 * mu_o + 1), mu_g, +1);
PokeIndex<LorentzIndex>(Umu, U, mu_g);
}
}
};
NAMESPACE_END(Grid);

View File

@ -1,281 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/parallelIO/OpenQcdIOChromaReference.h
Copyright (C) 2015 - 2020
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <ios>
#include <iostream>
#include <limits>
#include <iomanip>
#include <mpi.h>
#include <ostream>
#include <string>
#define CHECK {std::cerr << __FILE__ << " @l " << __LINE__ << ": CHECK" << grid->ThisRank() << std::endl;}
#define CHECK_VAR(a) { std::cerr << __FILE__ << "@l" << __LINE__ << " on "<< grid->ThisRank() << ": " << __func__ << " " << #a << "=" << (a) << std::endl; }
// #undef CHECK
// #define CHECK
NAMESPACE_BEGIN(Grid);
class ParRdr {
private:
bool const swap;
MPI_Status status;
MPI_File fp;
int err;
MPI_Datatype oddSiteType;
MPI_Datatype fileViewType;
GridBase* grid;
public:
ParRdr(MPI_Comm comm, std::string const& filename, GridBase* gridPtr)
: swap(false)
, grid(gridPtr) {
err = MPI_File_open(comm, const_cast<char*>(filename.c_str()), MPI_MODE_RDONLY, MPI_INFO_NULL, &fp);
assert(err == MPI_SUCCESS);
}
virtual ~ParRdr() { MPI_File_close(&fp); }
inline void errInfo(int const err, std::string const& func) {
static char estring[MPI_MAX_ERROR_STRING];
int eclass = -1, len = 0;
MPI_Error_class(err, &eclass);
MPI_Error_string(err, estring, &len);
std::cerr << func << " - Error " << eclass << ": " << estring << std::endl;
}
int readHeader(FieldMetaData& field) {
assert((grid->_ndimension == Nd) && (Nd == 4));
assert(Nc == 3);
OpenQcdHeader header;
readBlock(reinterpret_cast<char*>(&header), 0, sizeof(OpenQcdHeader), MPI_CHAR);
header.plaq /= 3.; // TODO change this into normalizationfactor
// sanity check (should trigger on endian issues) TODO remove?
assert(0 < header.Nt && header.Nt <= 1024);
assert(0 < header.Nx && header.Nx <= 1024);
assert(0 < header.Ny && header.Ny <= 1024);
assert(0 < header.Nz && header.Nz <= 1024);
field.dimension[0] = header.Nx;
field.dimension[1] = header.Ny;
field.dimension[2] = header.Nz;
field.dimension[3] = header.Nt;
for(int d = 0; d < Nd; d++)
assert(grid->FullDimensions()[d] == field.dimension[d]);
field.plaquette = header.plaq;
field.data_start = sizeof(OpenQcdHeader);
return field.data_start;
}
void readBlock(void* const dest, uint64_t const pos, uint64_t const nbytes, MPI_Datatype const datatype) {
err = MPI_File_read_at_all(fp, pos, dest, nbytes, datatype, &status);
errInfo(err, "MPI_File_read_at_all");
// CHECK_VAR(err)
int read = -1;
MPI_Get_count(&status, datatype, &read);
// CHECK_VAR(read)
assert(nbytes == (uint64_t)read);
assert(err == MPI_SUCCESS);
}
void createTypes() {
constexpr int elem_size = Nd * 2 * 2 * Nc * Nc * sizeof(double); // 2_complex 2_fwdbwd
err = MPI_Type_contiguous(elem_size, MPI_BYTE, &oddSiteType); assert(err == MPI_SUCCESS);
err = MPI_Type_commit(&oddSiteType); assert(err == MPI_SUCCESS);
Coordinate const L = grid->GlobalDimensions();
Coordinate const l = grid->LocalDimensions();
Coordinate const i = grid->ThisProcessorCoor();
Coordinate sizes({L[2] / 2, L[1], L[0], L[3]});
Coordinate subsizes({l[2] / 2, l[1], l[0], l[3]});
Coordinate starts({i[2] * l[2] / 2, i[1] * l[1], i[0] * l[0], i[3] * l[3]});
err = MPI_Type_create_subarray(grid->_ndimension, &sizes[0], &subsizes[0], &starts[0], MPI_ORDER_FORTRAN, oddSiteType, &fileViewType); assert(err == MPI_SUCCESS);
err = MPI_Type_commit(&fileViewType); assert(err == MPI_SUCCESS);
}
void freeTypes() {
err = MPI_Type_free(&fileViewType); assert(err == MPI_SUCCESS);
err = MPI_Type_free(&oddSiteType); assert(err == MPI_SUCCESS);
}
bool readGauge(std::vector<ColourMatrixD>& domain_buff, FieldMetaData& meta) {
auto hdr_offset = readHeader(meta);
CHECK
createTypes();
err = MPI_File_set_view(fp, hdr_offset, oddSiteType, fileViewType, "native", MPI_INFO_NULL); errInfo(err, "MPI_File_set_view0"); assert(err == MPI_SUCCESS);
CHECK
int const domainSites = grid->lSites();
domain_buff.resize(Nd * domainSites); // 2_fwdbwd * 4_Nd * domainSites / 2_onlyodd
// the actual READ
constexpr uint64_t cm_size = 2 * Nc * Nc * sizeof(double); // 2_complex
constexpr uint64_t os_size = Nd * 2 * cm_size; // 2_fwdbwd
constexpr uint64_t max_elems = std::numeric_limits<int>::max(); // int adressable elems: floor is fine
uint64_t const n_os = domainSites / 2;
for(uint64_t os_idx = 0; os_idx < n_os;) {
uint64_t const read_os = os_idx + max_elems <= n_os ? max_elems : n_os - os_idx;
uint64_t const cm = os_idx * Nd * 2;
readBlock(&(domain_buff[cm]), os_idx, read_os, oddSiteType);
os_idx += read_os;
}
CHECK
err = MPI_File_set_view(fp, 0, MPI_BYTE, MPI_BYTE, "native", MPI_INFO_NULL);
errInfo(err, "MPI_File_set_view1");
assert(err == MPI_SUCCESS);
freeTypes();
std::cout << GridLogMessage << "read sum: " << n_os * os_size << " bytes" << std::endl;
return true;
}
};
class OpenQcdIOChromaReference : public BinaryIO {
public:
template<class vsimd>
static inline void readConfiguration(Lattice<iLorentzColourMatrix<vsimd>>& Umu,
Grid::FieldMetaData& header,
std::string file) {
typedef Lattice<iDoubleStoredColourMatrix<vsimd>> DoubledGaugeField;
assert(Ns == 4 and Nd == 4 and Nc == 3);
auto grid = Umu.Grid();
typedef ColourMatrixD fobj;
std::vector<fobj> iodata(
Nd * grid->lSites()); // actual size = 2*Nd*lsites but have only lsites/2 sites in file
{
ParRdr rdr(MPI_COMM_WORLD, file, grid);
rdr.readGauge(iodata, header);
} // equivalent to using binaryio
std::vector<iDoubleStoredColourMatrix<typename vsimd::scalar_type>> Umu_ds_scalar(grid->lSites());
copyToLatticeObject(Umu_ds_scalar, iodata, grid); // equivalent to munging
DoubledGaugeField Umu_ds(grid);
vectorizeFromLexOrdArray(Umu_ds_scalar, Umu_ds);
redistribute(Umu, Umu_ds); // equivalent to undoDoublestore
FieldMetaData clone(header);
GaugeStatistics(Umu, clone);
RealD plaq_diff = fabs(clone.plaquette - header.plaquette);
// clang-format off
std::cout << GridLogMessage << "OpenQcd Configuration " << file
<< " plaquette " << clone.plaquette
<< " header " << header.plaquette
<< " difference " << plaq_diff
<< std::endl;
// clang-format on
RealD precTol = (getPrecision<vsimd>::value == 1) ? 2e-7 : 2e-15;
RealD tol = precTol * std::sqrt(grid->_Nprocessors); // taken from RQCD chroma code
if(plaq_diff >= tol)
std::cout << " Plaquette mismatch (diff = " << plaq_diff << ", tol = " << tol << ")" << std::endl;
assert(plaq_diff < tol);
std::cout << GridLogMessage << "OpenQcd Configuration " << file << " and plaquette agree" << std::endl;
}
private:
template<class vsimd>
static inline void redistribute(Lattice<iLorentzColourMatrix<vsimd>>& Umu,
Lattice<iDoubleStoredColourMatrix<vsimd>> const& Umu_ds) {
Grid::conformable(Umu.Grid(), Umu_ds.Grid());
Lattice<iColourMatrix<vsimd>> U(Umu.Grid());
U = PeekIndex<LorentzIndex>(Umu_ds, 2) + Cshift(PeekIndex<LorentzIndex>(Umu_ds, 3), 0, +1); PokeIndex<LorentzIndex>(Umu, U, 0);
U = PeekIndex<LorentzIndex>(Umu_ds, 4) + Cshift(PeekIndex<LorentzIndex>(Umu_ds, 5), 1, +1); PokeIndex<LorentzIndex>(Umu, U, 1);
U = PeekIndex<LorentzIndex>(Umu_ds, 6) + Cshift(PeekIndex<LorentzIndex>(Umu_ds, 7), 2, +1); PokeIndex<LorentzIndex>(Umu, U, 2);
U = PeekIndex<LorentzIndex>(Umu_ds, 0) + Cshift(PeekIndex<LorentzIndex>(Umu_ds, 1), 3, +1); PokeIndex<LorentzIndex>(Umu, U, 3);
}
static inline void copyToLatticeObject(std::vector<DoubleStoredColourMatrix>& u_fb,
std::vector<ColourMatrixD> const& node_buff,
GridBase* grid) {
assert(node_buff.size() == Nd * grid->lSites());
Coordinate const& l = grid->LocalDimensions();
Coordinate coord(Nd);
int& x = coord[0];
int& y = coord[1];
int& z = coord[2];
int& t = coord[3];
int buff_idx = 0;
for(t = 0; t < l[3]; ++t) // IMPORTANT: openQCD file ordering
for(x = 0; x < l[0]; ++x)
for(y = 0; y < l[1]; ++y)
for(z = 0; z < l[2]; ++z) {
if((t + z + y + x) % 2 == 0) continue;
int local_idx;
Lexicographic::IndexFromCoor(coord, local_idx, grid->LocalDimensions());
for(int mu = 0; mu < 2 * Nd; ++mu)
for(int c1 = 0; c1 < Nc; ++c1) {
for(int c2 = 0; c2 < Nc; ++c2) {
u_fb[local_idx](mu)()(c1,c2) = node_buff[mu+buff_idx]()()(c1,c2);
}
}
buff_idx += 2 * Nd;
}
assert(node_buff.size() == buff_idx);
}
};
NAMESPACE_END(Grid);

View File

@ -1,105 +0,0 @@
#ifndef _GRID_STAT_H
#define _GRID_STAT_H
#ifdef AVX512
#define _KNIGHTS_LANDING_ROOTONLY
#endif
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////////////////////////////////////////////
// Extra KNL counters from MCDRAM
///////////////////////////////////////////////////////////////////////////////
#ifdef _KNIGHTS_LANDING_
#define NMC 6
#define NEDC 8
struct ctrs
{
uint64_t mcrd[NMC];
uint64_t mcwr[NMC];
uint64_t edcrd[NEDC];
uint64_t edcwr[NEDC];
uint64_t edchite[NEDC];
uint64_t edchitm[NEDC];
uint64_t edcmisse[NEDC];
uint64_t edcmissm[NEDC];
};
// Peter/Azusa:
// Our modification of a code provided by Larry Meadows from Intel
// Verified by email exchange non-NDA, ok for github. Should be as uses /sys/devices/ FS
// so is already public and in the linux kernel for KNL.
struct knl_gbl_
{
int mc_rd[NMC];
int mc_wr[NMC];
int edc_rd[NEDC];
int edc_wr[NEDC];
int edc_hite[NEDC];
int edc_hitm[NEDC];
int edc_misse[NEDC];
int edc_missm[NEDC];
};
#endif
///////////////////////////////////////////////////////////////////////////////
class PmuStat
{
uint64_t counters[8][256];
#ifdef _KNIGHTS_LANDING_
static struct knl_gbl_ gbl;
#endif
const char *name;
uint64_t reads; // memory reads
uint64_t writes; // memory writes
uint64_t mrstart; // memory read counter at start of parallel region
uint64_t mrend; // memory read counter at end of parallel region
uint64_t mwstart; // memory write counter at start of parallel region
uint64_t mwend; // memory write counter at end of parallel region
// cumulative counters
uint64_t count; // number of invocations
uint64_t tregion; // total time in parallel region (from thread 0)
uint64_t tcycles; // total cycles inside parallel region
uint64_t inst, ref, cyc; // fixed counters
uint64_t pmc0, pmc1;// pmu
// add memory counters here
// temp variables
uint64_t tstart; // tsc at start of parallel region
uint64_t tend; // tsc at end of parallel region
// map for ctrs values
// 0 pmc0 start
// 1 pmc0 end
// 2 pmc1 start
// 3 pmc1 end
// 4 tsc start
// 5 tsc end
static bool pmu_initialized;
public:
static bool is_init(void){ return pmu_initialized;}
static void pmu_init(void);
static void pmu_fini(void);
static void pmu_start(void);
static void pmu_stop(void);
void accum(int nthreads);
static void xmemctrs(uint64_t *mr, uint64_t *mw);
void start(void);
void enter(int t);
void exit(int t);
void print(void);
void init(const char *regname);
void clear(void);
#ifdef _KNIGHTS_LANDING_
static void KNLsetup(void);
static uint64_t KNLreadctr(int fd);
static void KNLreadctrs(ctrs &c);
static void KNLevsetup(const char *ename, int &fd, int event, int umask);
#endif
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,529 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/QCD.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: neo <cossu@post.kek.jp>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
static constexpr int Xdir = 0;
static constexpr int Ydir = 1;
static constexpr int Zdir = 2;
static constexpr int Tdir = 3;
static constexpr int Xp = 0;
static constexpr int Yp = 1;
static constexpr int Zp = 2;
static constexpr int Tp = 3;
static constexpr int Xm = 4;
static constexpr int Ym = 5;
static constexpr int Zm = 6;
static constexpr int Tm = 7;
static constexpr int Nc=3;
static constexpr int Ns=4;
static constexpr int Nd=4;
static constexpr int Nhs=2; // half spinor
static constexpr int Nds=8; // double stored gauge field
static constexpr int Ngp=2; // gparity index range
//////////////////////////////////////////////////////////////////////////////
// QCD iMatrix types
// Index conventions: Lorentz x Spin x Colour
// note: static constexpr int or constexpr will work for type deductions
// with the intel compiler (up to version 17)
//////////////////////////////////////////////////////////////////////////////
#define ColourIndex (2)
#define SpinIndex (1)
#define LorentzIndex (0)
// Also should make these a named enum type
static constexpr int DaggerNo=0;
static constexpr int DaggerYes=1;
static constexpr int InverseNo=0;
static constexpr int InverseYes=1;
// Useful traits is this a spin index
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
const int SpinorIndex = 2;
template<typename T> struct isSpinor {
static constexpr bool value = (SpinorIndex==T::TensorLevel);
};
template <typename T> using IfSpinor = Invoke<std::enable_if< isSpinor<T>::value,int> > ;
template <typename T> using IfNotSpinor = Invoke<std::enable_if<!isSpinor<T>::value,int> > ;
// ChrisK very keen to add extra space for Gparity doubling.
//
// Also add domain wall index, in a way where Wilson operator
// naturally distributes across the 5th dimensions.
//
// That probably makes for GridRedBlack4dCartesian grid.
// s,sp,c,spc,lc
template<typename vtype> using iSinglet = iScalar<iScalar<iScalar<vtype> > >;
template<typename vtype> using iSpinMatrix = iScalar<iMatrix<iScalar<vtype>, Ns> >;
template<typename vtype> using iColourMatrix = iScalar<iScalar<iMatrix<vtype, Nc> > > ;
template<typename vtype> using iSpinColourMatrix = iScalar<iMatrix<iMatrix<vtype, Nc>, Ns> >;
template<typename vtype> using iLorentzColourMatrix = iVector<iScalar<iMatrix<vtype, Nc> >, Nd > ;
template<typename vtype> using iDoubleStoredColourMatrix = iVector<iScalar<iMatrix<vtype, Nc> >, Nds > ;
template<typename vtype> using iSpinVector = iScalar<iVector<iScalar<vtype>, Ns> >;
template<typename vtype> using iColourVector = iScalar<iScalar<iVector<vtype, Nc> > >;
template<typename vtype> using iSpinColourVector = iScalar<iVector<iVector<vtype, Nc>, Ns> >;
template<typename vtype> using iHalfSpinVector = iScalar<iVector<iScalar<vtype>, Nhs> >;
template<typename vtype> using iHalfSpinColourVector = iScalar<iVector<iVector<vtype, Nc>, Nhs> >;
template<typename vtype> using iSpinColourSpinColourMatrix = iScalar<iMatrix<iMatrix<iMatrix<iMatrix<vtype, Nc>, Ns>, Nc>, Ns> >;
template<typename vtype> using iGparitySpinColourVector = iVector<iVector<iVector<vtype, Nc>, Ns>, Ngp >;
template<typename vtype> using iGparityHalfSpinColourVector = iVector<iVector<iVector<vtype, Nc>, Nhs>, Ngp >;
// Spin matrix
typedef iSpinMatrix<Complex > SpinMatrix;
typedef iSpinMatrix<ComplexF > SpinMatrixF;
typedef iSpinMatrix<ComplexD > SpinMatrixD;
typedef iSpinMatrix<vComplex > vSpinMatrix;
typedef iSpinMatrix<vComplexF> vSpinMatrixF;
typedef iSpinMatrix<vComplexD> vSpinMatrixD;
// Colour Matrix
typedef iColourMatrix<Complex > ColourMatrix;
typedef iColourMatrix<ComplexF > ColourMatrixF;
typedef iColourMatrix<ComplexD > ColourMatrixD;
typedef iColourMatrix<vComplex > vColourMatrix;
typedef iColourMatrix<vComplexF> vColourMatrixF;
typedef iColourMatrix<vComplexD> vColourMatrixD;
// SpinColour matrix
typedef iSpinColourMatrix<Complex > SpinColourMatrix;
typedef iSpinColourMatrix<ComplexF > SpinColourMatrixF;
typedef iSpinColourMatrix<ComplexD > SpinColourMatrixD;
typedef iSpinColourMatrix<vComplex > vSpinColourMatrix;
typedef iSpinColourMatrix<vComplexF> vSpinColourMatrixF;
typedef iSpinColourMatrix<vComplexD> vSpinColourMatrixD;
// SpinColourSpinColour matrix
typedef iSpinColourSpinColourMatrix<Complex > SpinColourSpinColourMatrix;
typedef iSpinColourSpinColourMatrix<ComplexF > SpinColourSpinColourMatrixF;
typedef iSpinColourSpinColourMatrix<ComplexD > SpinColourSpinColourMatrixD;
typedef iSpinColourSpinColourMatrix<vComplex > vSpinColourSpinColourMatrix;
typedef iSpinColourSpinColourMatrix<vComplexF> vSpinColourSpinColourMatrixF;
typedef iSpinColourSpinColourMatrix<vComplexD> vSpinColourSpinColourMatrixD;
// SpinColourSpinColour matrix
typedef iSpinColourSpinColourMatrix<Complex > SpinColourSpinColourMatrix;
typedef iSpinColourSpinColourMatrix<ComplexF > SpinColourSpinColourMatrixF;
typedef iSpinColourSpinColourMatrix<ComplexD > SpinColourSpinColourMatrixD;
typedef iSpinColourSpinColourMatrix<vComplex > vSpinColourSpinColourMatrix;
typedef iSpinColourSpinColourMatrix<vComplexF> vSpinColourSpinColourMatrixF;
typedef iSpinColourSpinColourMatrix<vComplexD> vSpinColourSpinColourMatrixD;
// LorentzColour
typedef iLorentzColourMatrix<Complex > LorentzColourMatrix;
typedef iLorentzColourMatrix<ComplexF > LorentzColourMatrixF;
typedef iLorentzColourMatrix<ComplexD > LorentzColourMatrixD;
typedef iLorentzColourMatrix<vComplex > vLorentzColourMatrix;
typedef iLorentzColourMatrix<vComplexF> vLorentzColourMatrixF;
typedef iLorentzColourMatrix<vComplexD> vLorentzColourMatrixD;
// DoubleStored gauge field
typedef iDoubleStoredColourMatrix<Complex > DoubleStoredColourMatrix;
typedef iDoubleStoredColourMatrix<ComplexF > DoubleStoredColourMatrixF;
typedef iDoubleStoredColourMatrix<ComplexD > DoubleStoredColourMatrixD;
typedef iDoubleStoredColourMatrix<vComplex > vDoubleStoredColourMatrix;
typedef iDoubleStoredColourMatrix<vComplexF> vDoubleStoredColourMatrixF;
typedef iDoubleStoredColourMatrix<vComplexD> vDoubleStoredColourMatrixD;
// Spin vector
typedef iSpinVector<Complex > SpinVector;
typedef iSpinVector<ComplexF> SpinVectorF;
typedef iSpinVector<ComplexD> SpinVectorD;
typedef iSpinVector<vComplex > vSpinVector;
typedef iSpinVector<vComplexF> vSpinVectorF;
typedef iSpinVector<vComplexD> vSpinVectorD;
// Colour vector
typedef iColourVector<Complex > ColourVector;
typedef iColourVector<ComplexF> ColourVectorF;
typedef iColourVector<ComplexD> ColourVectorD;
typedef iColourVector<vComplex > vColourVector;
typedef iColourVector<vComplexF> vColourVectorF;
typedef iColourVector<vComplexD> vColourVectorD;
// SpinColourVector
typedef iSpinColourVector<Complex > SpinColourVector;
typedef iSpinColourVector<ComplexF> SpinColourVectorF;
typedef iSpinColourVector<ComplexD> SpinColourVectorD;
typedef iSpinColourVector<vComplex > vSpinColourVector;
typedef iSpinColourVector<vComplexF> vSpinColourVectorF;
typedef iSpinColourVector<vComplexD> vSpinColourVectorD;
// HalfSpin vector
typedef iHalfSpinVector<Complex > HalfSpinVector;
typedef iHalfSpinVector<ComplexF> HalfSpinVectorF;
typedef iHalfSpinVector<ComplexD> HalfSpinVectorD;
typedef iHalfSpinVector<vComplex > vHalfSpinVector;
typedef iHalfSpinVector<vComplexF> vHalfSpinVectorF;
typedef iHalfSpinVector<vComplexD> vHalfSpinVectorD;
// HalfSpinColour vector
typedef iHalfSpinColourVector<Complex > HalfSpinColourVector;
typedef iHalfSpinColourVector<ComplexF> HalfSpinColourVectorF;
typedef iHalfSpinColourVector<ComplexD> HalfSpinColourVectorD;
typedef iHalfSpinColourVector<vComplex > vHalfSpinColourVector;
typedef iHalfSpinColourVector<vComplexF> vHalfSpinColourVectorF;
typedef iHalfSpinColourVector<vComplexD> vHalfSpinColourVectorD;
// singlets
typedef iSinglet<Complex > TComplex; // FIXME This is painful. Tensor singlet complex type.
typedef iSinglet<ComplexF> TComplexF; // FIXME This is painful. Tensor singlet complex type.
typedef iSinglet<ComplexD> TComplexD; // FIXME This is painful. Tensor singlet complex type.
typedef iSinglet<vComplex > vTComplex ; // what if we don't know the tensor structure
typedef iSinglet<vComplexF> vTComplexF; // what if we don't know the tensor structure
typedef iSinglet<vComplexD> vTComplexD; // what if we don't know the tensor structure
typedef iSinglet<Real > TReal; // Shouldn't need these; can I make it work without?
typedef iSinglet<RealF> TRealF; // Shouldn't need these; can I make it work without?
typedef iSinglet<RealD> TRealD; // Shouldn't need these; can I make it work without?
typedef iSinglet<vReal > vTReal;
typedef iSinglet<vRealF> vTRealF;
typedef iSinglet<vRealD> vTRealD;
typedef iSinglet<vInteger> vTInteger;
typedef iSinglet<Integer > TInteger;
// Lattices of these
typedef Lattice<vColourMatrix> LatticeColourMatrix;
typedef Lattice<vColourMatrixF> LatticeColourMatrixF;
typedef Lattice<vColourMatrixD> LatticeColourMatrixD;
typedef Lattice<vSpinMatrix> LatticeSpinMatrix;
typedef Lattice<vSpinMatrixF> LatticeSpinMatrixF;
typedef Lattice<vSpinMatrixD> LatticeSpinMatrixD;
typedef Lattice<vSpinColourMatrix> LatticeSpinColourMatrix;
typedef Lattice<vSpinColourMatrixF> LatticeSpinColourMatrixF;
typedef Lattice<vSpinColourMatrixD> LatticeSpinColourMatrixD;
typedef Lattice<vSpinColourSpinColourMatrix> LatticeSpinColourSpinColourMatrix;
typedef Lattice<vSpinColourSpinColourMatrixF> LatticeSpinColourSpinColourMatrixF;
typedef Lattice<vSpinColourSpinColourMatrixD> LatticeSpinColourSpinColourMatrixD;
typedef Lattice<vLorentzColourMatrix> LatticeLorentzColourMatrix;
typedef Lattice<vLorentzColourMatrixF> LatticeLorentzColourMatrixF;
typedef Lattice<vLorentzColourMatrixD> LatticeLorentzColourMatrixD;
// DoubleStored gauge field
typedef Lattice<vDoubleStoredColourMatrix> LatticeDoubleStoredColourMatrix;
typedef Lattice<vDoubleStoredColourMatrixF> LatticeDoubleStoredColourMatrixF;
typedef Lattice<vDoubleStoredColourMatrixD> LatticeDoubleStoredColourMatrixD;
typedef Lattice<vSpinVector> LatticeSpinVector;
typedef Lattice<vSpinVectorF> LatticeSpinVectorF;
typedef Lattice<vSpinVectorD> LatticeSpinVectorD;
typedef Lattice<vColourVector> LatticeColourVector;
typedef Lattice<vColourVectorF> LatticeColourVectorF;
typedef Lattice<vColourVectorD> LatticeColourVectorD;
typedef Lattice<vSpinColourVector> LatticeSpinColourVector;
typedef Lattice<vSpinColourVectorF> LatticeSpinColourVectorF;
typedef Lattice<vSpinColourVectorD> LatticeSpinColourVectorD;
typedef Lattice<vHalfSpinVector> LatticeHalfSpinVector;
typedef Lattice<vHalfSpinVectorF> LatticeHalfSpinVectorF;
typedef Lattice<vHalfSpinVectorD> LatticeHalfSpinVectorD;
typedef Lattice<vHalfSpinColourVector> LatticeHalfSpinColourVector;
typedef Lattice<vHalfSpinColourVectorF> LatticeHalfSpinColourVectorF;
typedef Lattice<vHalfSpinColourVectorD> LatticeHalfSpinColourVectorD;
typedef Lattice<vTReal> LatticeReal;
typedef Lattice<vTRealF> LatticeRealF;
typedef Lattice<vTRealD> LatticeRealD;
typedef Lattice<vTComplex> LatticeComplex;
typedef Lattice<vTComplexF> LatticeComplexF;
typedef Lattice<vTComplexD> LatticeComplexD;
typedef Lattice<vTInteger> LatticeInteger; // Predicates for "where"
///////////////////////////////////////////
// Physical names for things
///////////////////////////////////////////
typedef LatticeHalfSpinColourVector LatticeHalfFermion;
typedef LatticeHalfSpinColourVectorF LatticeHalfFermionF;
typedef LatticeHalfSpinColourVectorF LatticeHalfFermionD;
typedef LatticeSpinColourVector LatticeFermion;
typedef LatticeSpinColourVectorF LatticeFermionF;
typedef LatticeSpinColourVectorD LatticeFermionD;
typedef LatticeSpinColourMatrix LatticePropagator;
typedef LatticeSpinColourMatrixF LatticePropagatorF;
typedef LatticeSpinColourMatrixD LatticePropagatorD;
typedef LatticeLorentzColourMatrix LatticeGaugeField;
typedef LatticeLorentzColourMatrixF LatticeGaugeFieldF;
typedef LatticeLorentzColourMatrixD LatticeGaugeFieldD;
typedef LatticeDoubleStoredColourMatrix LatticeDoubledGaugeField;
typedef LatticeDoubleStoredColourMatrixF LatticeDoubledGaugeFieldF;
typedef LatticeDoubleStoredColourMatrixD LatticeDoubledGaugeFieldD;
template<class GF> using LorentzScalar = Lattice<iScalar<typename GF::vector_object::element> >;
// Uhgg... typing this hurt ;)
// (my keyboard got burning hot when I typed this, must be the anti-Fermion)
typedef Lattice<vColourVector> LatticeStaggeredFermion;
typedef Lattice<vColourVectorF> LatticeStaggeredFermionF;
typedef Lattice<vColourVectorD> LatticeStaggeredFermionD;
typedef Lattice<vColourMatrix> LatticeStaggeredPropagator;
typedef Lattice<vColourMatrixF> LatticeStaggeredPropagatorF;
typedef Lattice<vColourMatrixD> LatticeStaggeredPropagatorD;
//////////////////////////////////////////////////////////////////////////////
// Peek and Poke named after physics attributes
//////////////////////////////////////////////////////////////////////////////
//spin
template<class vobj> auto peekSpin(const vobj &rhs,int i) -> decltype(PeekIndex<SpinIndex>(rhs,0))
{
return PeekIndex<SpinIndex>(rhs,i);
}
template<class vobj> auto peekSpin(const vobj &rhs,int i,int j) -> decltype(PeekIndex<SpinIndex>(rhs,0,0))
{
return PeekIndex<SpinIndex>(rhs,i,j);
}
template<class vobj> auto peekSpin(const Lattice<vobj> &rhs,int i) -> decltype(PeekIndex<SpinIndex>(rhs,0))
{
return PeekIndex<SpinIndex>(rhs,i);
}
template<class vobj> auto peekSpin(const Lattice<vobj> &rhs,int i,int j) -> decltype(PeekIndex<SpinIndex>(rhs,0,0))
{
return PeekIndex<SpinIndex>(rhs,i,j);
}
//colour
template<class vobj> auto peekColour(const vobj &rhs,int i) -> decltype(PeekIndex<ColourIndex>(rhs,0))
{
return PeekIndex<ColourIndex>(rhs,i);
}
template<class vobj> auto peekColour(const vobj &rhs,int i,int j) -> decltype(PeekIndex<ColourIndex>(rhs,0,0))
{
return PeekIndex<ColourIndex>(rhs,i,j);
}
template<class vobj> auto peekColour(const Lattice<vobj> &rhs,int i) -> decltype(PeekIndex<ColourIndex>(rhs,0))
{
return PeekIndex<ColourIndex>(rhs,i);
}
template<class vobj> auto peekColour(const Lattice<vobj> &rhs,int i,int j) -> decltype(PeekIndex<ColourIndex>(rhs,0,0))
{
return PeekIndex<ColourIndex>(rhs,i,j);
}
//lorentz
template<class vobj> auto peekLorentz(const vobj &rhs,int i) -> decltype(PeekIndex<LorentzIndex>(rhs,0))
{
return PeekIndex<LorentzIndex>(rhs,i);
}
template<class vobj> auto peekLorentz(const Lattice<vobj> &rhs,int i) -> decltype(PeekIndex<LorentzIndex>(rhs,0))
{
return PeekIndex<LorentzIndex>(rhs,i);
}
//////////////////////////////////////////////
// Poke lattice
//////////////////////////////////////////////
template<class vobj>
void pokeColour(Lattice<vobj> &lhs,
const Lattice<decltype(peekIndex<ColourIndex>(vobj(),0))> & rhs,
int i)
{
PokeIndex<ColourIndex>(lhs,rhs,i);
}
template<class vobj>
void pokeColour(Lattice<vobj> &lhs,
const Lattice<decltype(peekIndex<ColourIndex>(vobj(),0,0))> & rhs,
int i,int j)
{
PokeIndex<ColourIndex>(lhs,rhs,i,j);
}
template<class vobj>
void pokeSpin(Lattice<vobj> &lhs,
const Lattice<decltype(peekIndex<SpinIndex>(vobj(),0))> & rhs,
int i)
{
PokeIndex<SpinIndex>(lhs,rhs,i);
}
template<class vobj>
void pokeSpin(Lattice<vobj> &lhs,
const Lattice<decltype(peekIndex<SpinIndex>(vobj(),0,0))> & rhs,
int i,int j)
{
PokeIndex<SpinIndex>(lhs,rhs,i,j);
}
template<class vobj>
void pokeLorentz(Lattice<vobj> &lhs,
const Lattice<decltype(peekIndex<LorentzIndex>(vobj(),0))> & rhs,
int i)
{
PokeIndex<LorentzIndex>(lhs,rhs,i);
}
//////////////////////////////////////////////
// Poke scalars
//////////////////////////////////////////////
template<class vobj> void pokeSpin(vobj &lhs,const decltype(peekIndex<SpinIndex>(lhs,0)) & rhs,int i)
{
pokeIndex<SpinIndex>(lhs,rhs,i);
}
template<class vobj> void pokeSpin(vobj &lhs,const decltype(peekIndex<SpinIndex>(lhs,0,0)) & rhs,int i,int j)
{
pokeIndex<SpinIndex>(lhs,rhs,i,j);
}
template<class vobj> void pokeColour(vobj &lhs,const decltype(peekIndex<ColourIndex>(lhs,0)) & rhs,int i)
{
pokeIndex<ColourIndex>(lhs,rhs,i);
}
template<class vobj> void pokeColour(vobj &lhs,const decltype(peekIndex<ColourIndex>(lhs,0,0)) & rhs,int i,int j)
{
pokeIndex<ColourIndex>(lhs,rhs,i,j);
}
template<class vobj> void pokeLorentz(vobj &lhs,const decltype(peekIndex<LorentzIndex>(lhs,0)) & rhs,int i)
{
pokeIndex<LorentzIndex>(lhs,rhs,i);
}
//////////////////////////////////////////////
// Fermion <-> propagator assignements
//////////////////////////////////////////////
//template <class Prop, class Ferm>
template <class Fimpl>
void FermToProp(typename Fimpl::PropagatorField &p, const typename Fimpl::FermionField &f, const int s, const int c)
{
for(int j = 0; j < Ns; ++j)
{
auto pjs = peekSpin(p, j, s);
auto fj = peekSpin(f, j);
for(int i = 0; i < Fimpl::Dimension; ++i)
{
pokeColour(pjs, peekColour(fj, i), i, c);
}
pokeSpin(p, pjs, j, s);
}
}
//template <class Prop, class Ferm>
template <class Fimpl>
void PropToFerm(typename Fimpl::FermionField &f, const typename Fimpl::PropagatorField &p, const int s, const int c)
{
for(int j = 0; j < Ns; ++j)
{
auto pjs = peekSpin(p, j, s);
auto fj = peekSpin(f, j);
for(int i = 0; i < Fimpl::Dimension; ++i)
{
pokeColour(fj, peekColour(pjs, i, c), i);
}
pokeSpin(f, fj, j);
}
}
//////////////////////////////////////////////
// transpose array and scalar
//////////////////////////////////////////////
template<int Index,class vobj> inline Lattice<vobj> transposeSpin(const Lattice<vobj> &lhs){
return transposeIndex<SpinIndex>(lhs);
}
template<int Index,class vobj> inline Lattice<vobj> transposeColour(const Lattice<vobj> &lhs){
return transposeIndex<ColourIndex>(lhs);
}
template<int Index,class vobj> inline vobj transposeSpin(const vobj &lhs){
return transposeIndex<SpinIndex>(lhs);
}
template<int Index,class vobj> inline vobj transposeColour(const vobj &lhs){
return transposeIndex<ColourIndex>(lhs);
}
//////////////////////////////////////////
// Trace lattice and non-lattice
//////////////////////////////////////////
template<int Index,class vobj>
inline auto traceSpin(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<SpinIndex>(vobj()))>
{
return traceIndex<SpinIndex>(lhs);
}
template<int Index,class vobj>
inline auto traceColour(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<ColourIndex>(vobj()))>
{
return traceIndex<ColourIndex>(lhs);
}
template<int Index,class vobj>
inline auto traceSpin(const vobj &lhs) -> Lattice<decltype(traceIndex<SpinIndex>(lhs))>
{
return traceIndex<SpinIndex>(lhs);
}
template<int Index,class vobj>
inline auto traceColour(const vobj &lhs) -> Lattice<decltype(traceIndex<ColourIndex>(lhs))>
{
return traceIndex<ColourIndex>(lhs);
}
//////////////////////////////////////////
// Current types
//////////////////////////////////////////
GRID_SERIALIZABLE_ENUM(Current, undef,
Vector, 0,
Axial, 1,
Tadpole, 2);
NAMESPACE_END(Grid);

View File

@ -1,100 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/AbstractEOFAFermion.h
Copyright (C) 2017
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_QCD_ABSTRACT_EOFA_FERMION_H
#define GRID_QCD_ABSTRACT_EOFA_FERMION_H
#include <Grid/qcd/action/fermion/CayleyFermion5D.h>
NAMESPACE_BEGIN(Grid);
// DJM: Abstract base class for EOFA fermion types.
// Defines layout of additional EOFA-specific parameters and operators.
// Use to construct EOFA pseudofermion actions that are agnostic to
// Shamir / Mobius / etc., and ensure that no one can construct EOFA
// pseudofermion action with non-EOFA fermion type.
template<class Impl>
class AbstractEOFAFermion : public CayleyFermion5D<Impl> {
public:
INHERIT_IMPL_TYPES(Impl);
public:
// Fermion operator: D(mq1) + shift*\gamma_{5}*R_{5}*\Delta_{\pm}(mq2,mq3)*P_{\pm}
RealD mq1;
RealD mq2;
RealD mq3;
RealD shift;
int pm;
RealD alpha; // Mobius scale
RealD k; // EOFA normalization constant
virtual void Instantiatable(void) = 0;
// EOFA-specific operations
// Force user to implement in derived classes
virtual void Omega (const FermionField& in, FermionField& out, int sign, int dag) = 0;
virtual void Dtilde (const FermionField& in, FermionField& out) = 0;
virtual void DtildeInv(const FermionField& in, FermionField& out) = 0;
// Implement derivatives in base class:
// for EOFA both DWF and Mobius just need d(Dw)/dU
virtual void MDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag){
this->DhopDeriv(mat, U, V, dag);
};
virtual void MoeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag){
this->DhopDerivOE(mat, U, V, dag);
};
virtual void MeoDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag){
this->DhopDerivEO(mat, U, V, dag);
};
// Recompute 5D coefficients for different value of shift constant
// (needed for heatbath loop over poles)
virtual void RefreshShiftCoefficients(RealD new_shift) = 0;
// Constructors
AbstractEOFAFermion(GaugeField& _Umu, GridCartesian& FiveDimGrid, GridRedBlackCartesian& FiveDimRedBlackGrid,
GridCartesian& FourDimGrid, GridRedBlackCartesian& FourDimRedBlackGrid,
RealD _mq1, RealD _mq2, RealD _mq3, RealD _shift, int _pm,
RealD _M5, RealD _b, RealD _c, const ImplParams& p=ImplParams())
: CayleyFermion5D<Impl>(_Umu, FiveDimGrid, FiveDimRedBlackGrid, FourDimGrid, FourDimRedBlackGrid,
_mq1, _M5, p), mq1(_mq1), mq2(_mq2), mq3(_mq3), shift(_shift), pm(_pm)
{
int Ls = this->Ls;
this->alpha = _b + _c;
this->k = this->alpha * (_mq3-_mq2) * std::pow(this->alpha+1.0,2*Ls) /
( std::pow(this->alpha+1.0,Ls) + _mq2*std::pow(this->alpha-1.0,Ls) ) /
( std::pow(this->alpha+1.0,Ls) + _mq3*std::pow(this->alpha-1.0,Ls) );
};
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,196 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/CayleyFermion5D.h
Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/qcd/action/fermion/WilsonFermion5D.h>
NAMESPACE_BEGIN(Grid);
template<class Impl>
class CayleyFermion5D : public WilsonFermion5D<Impl>
{
public:
INHERIT_IMPL_TYPES(Impl);
public:
// override multiply
virtual void M (const FermionField &in, FermionField &out);
virtual void Mdag (const FermionField &in, FermionField &out);
// half checkerboard operations
virtual void Meooe (const FermionField &in, FermionField &out);
virtual void MeooeDag (const FermionField &in, FermionField &out);
virtual void Mooee (const FermionField &in, FermionField &out);
virtual void MooeeDag (const FermionField &in, FermionField &out);
virtual void MooeeInv (const FermionField &in, FermionField &out);
virtual void MooeeInvDag (const FermionField &in, FermionField &out);
virtual void Meo5D (const FermionField &psi, FermionField &chi);
virtual void M5D (const FermionField &psi, FermionField &chi);
virtual void M5Ddag(const FermionField &psi, FermionField &chi);
///////////////////////////////////////////////////////////////
// Physical surface field utilities
///////////////////////////////////////////////////////////////
virtual void Dminus(const FermionField &psi, FermionField &chi);
virtual void DminusDag(const FermionField &psi, FermionField &chi);
virtual void ExportPhysicalFermionSolution(const FermionField &solution5d,FermionField &exported4d);
virtual void ExportPhysicalFermionSource(const FermionField &solution5d, FermionField &exported4d);
virtual void ImportPhysicalFermionSource(const FermionField &input4d,FermionField &imported5d);
virtual void ImportUnphysicalFermion(const FermionField &solution5d, FermionField &exported4d);
///////////////////////////////////////////////////////////////
// Support for MADWF tricks
///////////////////////////////////////////////////////////////
RealD Mass(void) { return mass; };
void SetMass(RealD _mass) {
mass=_mass;
SetCoefficientsInternal(_zolo_hi,_gamma,_b,_c); // Reset coeffs
} ;
void P(const FermionField &psi, FermionField &chi);
void Pdag(const FermionField &psi, FermionField &chi);
/////////////////////////////////////////////////////
// Instantiate different versions depending on Impl
/////////////////////////////////////////////////////
void M5D(const FermionField &psi,
const FermionField &phi,
FermionField &chi,
Vector<Coeff_t> &lower,
Vector<Coeff_t> &diag,
Vector<Coeff_t> &upper);
void M5Ddag(const FermionField &psi,
const FermionField &phi,
FermionField &chi,
Vector<Coeff_t> &lower,
Vector<Coeff_t> &diag,
Vector<Coeff_t> &upper);
virtual void Instantiatable(void)=0;
// force terms; five routines; default to Dhop on diagonal
virtual void MDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
virtual void MoeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
virtual void MeoDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
// Efficient support for multigrid coarsening
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp);
virtual void MdirAll(const FermionField &in, std::vector<FermionField> &out);
void Meooe5D (const FermionField &in, FermionField &out);
void MeooeDag5D (const FermionField &in, FermionField &out);
// protected:
RealD mass;
// Save arguments to SetCoefficientsInternal
Vector<Coeff_t> _gamma;
RealD _zolo_hi;
RealD _b;
RealD _c;
// Cayley form Moebius (tanh and zolotarev)
Vector<Coeff_t> omega;
Vector<Coeff_t> bs; // S dependent coeffs
Vector<Coeff_t> cs;
Vector<Coeff_t> as;
// For preconditioning Cayley form
Vector<Coeff_t> bee;
Vector<Coeff_t> cee;
Vector<Coeff_t> aee;
Vector<Coeff_t> beo;
Vector<Coeff_t> ceo;
Vector<Coeff_t> aeo;
// LDU factorisation of the eeoo matrix
Vector<Coeff_t> lee;
Vector<Coeff_t> leem;
Vector<Coeff_t> uee;
Vector<Coeff_t> ueem;
Vector<Coeff_t> dee;
// Matrices of 5d ee inverse params
Vector<iSinglet<Simd> > MatpInv;
Vector<iSinglet<Simd> > MatmInv;
Vector<iSinglet<Simd> > MatpInvDag;
Vector<iSinglet<Simd> > MatmInvDag;
///////////////////////////////////////////////////////////////
// Conserved current utilities
///////////////////////////////////////////////////////////////
// Virtual can't template
void ContractConservedCurrent(PropagatorField &q_in_1,
PropagatorField &q_in_2,
PropagatorField &q_out,
PropagatorField &phys_src,
Current curr_type,
unsigned int mu);
void SeqConservedCurrent(PropagatorField &q_in,
PropagatorField &q_out,
PropagatorField &phys_src,
Current curr_type,
unsigned int mu,
unsigned int tmin,
unsigned int tmax,
ComplexField &lattice_cmplx);
void ContractJ5q(PropagatorField &q_in,ComplexField &J5q);
void ContractJ5q(FermionField &q_in,ComplexField &J5q);
///////////////////////////////////////////////////////////////
// Constructors
///////////////////////////////////////////////////////////////
CayleyFermion5D(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5,const ImplParams &p= ImplParams());
void CayleyReport(void);
void CayleyZeroCounters(void);
double M5Dflops;
double M5Dcalls;
double M5Dtime;
double MooeeInvFlops;
double MooeeInvCalls;
double MooeeInvTime;
protected:
virtual void SetCoefficientsZolotarev(RealD zolohi,Approx::zolotarev_data *zdata,RealD b,RealD c);
virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c);
virtual void SetCoefficientsInternal(RealD zolo_hi,Vector<Coeff_t> & gamma,RealD b,RealD c);
};
NAMESPACE_END(Grid);

View File

@ -1,105 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/ContinuedFractionFermion5D.h
Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_QCD_CONTINUED_FRACTION_H
#define GRID_QCD_CONTINUED_FRACTION_H
#include <Grid/qcd/action/fermion/WilsonFermion5D.h>
NAMESPACE_BEGIN(Grid);
template<class Impl>
class ContinuedFractionFermion5D : public WilsonFermion5D<Impl>
{
public:
INHERIT_IMPL_TYPES(Impl);
public:
// override multiply
virtual void M (const FermionField &in, FermionField &out);
virtual void Mdag (const FermionField &in, FermionField &out);
// half checkerboard operaions
virtual void Meooe (const FermionField &in, FermionField &out);
virtual void MeooeDag (const FermionField &in, FermionField &out);
virtual void Mooee (const FermionField &in, FermionField &out);
virtual void MooeeDag (const FermionField &in, FermionField &out);
virtual void MooeeInv (const FermionField &in, FermionField &out);
virtual void MooeeInvDag (const FermionField &in, FermionField &out);
// force terms; five routines; default to Dhop on diagonal
virtual void MDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
virtual void MoeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
virtual void MeoDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
// virtual void Instantiatable(void)=0;
virtual void Instantiatable(void) =0;
// Efficient support for multigrid coarsening
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp);
virtual void MdirAll(const FermionField &in, std::vector<FermionField> &out);
///////////////////////////////////////////////////////////////
// Physical surface field utilities
///////////////////////////////////////////////////////////////
// virtual void Dminus(const FermionField &psi, FermionField &chi); // Inherit trivial case
// virtual void DminusDag(const FermionField &psi, FermionField &chi); // Inherit trivial case
virtual void ExportPhysicalFermionSolution(const FermionField &solution5d,FermionField &exported4d);
virtual void ImportPhysicalFermionSource (const FermionField &input4d,FermionField &imported5d);
// Constructors
ContinuedFractionFermion5D(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD M5,const ImplParams &p= ImplParams());
protected:
void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale);
void SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata);;
// Cont frac
RealD dw_diag;
RealD mass;
RealD R;
RealD ZoloHiInv;
Vector<double> Beta;
Vector<double> cc;;
Vector<double> cc_d;;
Vector<double> sqrt_cc;
Vector<double> See;
Vector<double> Aee;
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,90 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/DomainWallEOFAFermion.h
Copyright (C) 2017
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/qcd/action/fermion/AbstractEOFAFermion.h>
NAMESPACE_BEGIN(Grid);
template<class Impl>
class DomainWallEOFAFermion : public AbstractEOFAFermion<Impl>
{
public:
INHERIT_IMPL_TYPES(Impl);
public:
// Modified (0,Ls-1) and (Ls-1,0) elements of Mooee
// for red-black preconditioned Shamir EOFA
Coeff_t dm;
Coeff_t dp;
virtual void Instantiatable(void) {};
// EOFA-specific operations
virtual void Omega (const FermionField& in, FermionField& out, int sign, int dag);
virtual void Dtilde (const FermionField& in, FermionField& out);
virtual void DtildeInv (const FermionField& in, FermionField& out);
// override multiply
virtual void M (const FermionField& in, FermionField& out);
virtual void Mdag (const FermionField& in, FermionField& out);
// half checkerboard operations
virtual void Mooee (const FermionField& in, FermionField& out);
virtual void MooeeDag (const FermionField& in, FermionField& out);
virtual void MooeeInv (const FermionField& in, FermionField& out);
virtual void MooeeInvDag(const FermionField& in, FermionField& out);
virtual void M5D (const FermionField& psi, FermionField& chi);
virtual void M5Ddag (const FermionField& psi, FermionField& chi);
/////////////////////////////////////////////////////
// Instantiate different versions depending on Impl
/////////////////////////////////////////////////////
void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi,
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi,
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
virtual void RefreshShiftCoefficients(RealD new_shift);
// Constructors
DomainWallEOFAFermion(GaugeField& _Umu, GridCartesian& FiveDimGrid, GridRedBlackCartesian& FiveDimRedBlackGrid,
GridCartesian& FourDimGrid, GridRedBlackCartesian& FourDimRedBlackGrid,
RealD _mq1, RealD _mq2, RealD _mq3, RealD _shift, int pm,
RealD _M5, const ImplParams& p=ImplParams());
protected:
void SetCoefficientsInternal(RealD zolo_hi, Vector<Coeff_t>& gamma, RealD b, RealD c);
};
NAMESPACE_END(Grid);

View File

@ -1,216 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/FermionOperatorImpl.h
Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template<class S,class Representation = FundamentalRepresentation, class Options=CoeffReal>
class DomainWallVec5dImpl : public PeriodicGaugeImpl< GaugeImplTypes< S,Representation::Dimension> > {
public:
typedef PeriodicGaugeImpl<GaugeImplTypes<S, Representation::Dimension> > Gimpl;
INHERIT_GIMPL_TYPES(Gimpl);
static const int Dimension = Representation::Dimension;
static const bool isFundamental = Representation::isFundamental;
static const bool LsVectorised=true;
static const int Nhcs = Options::Nhcs;
typedef typename Options::_Coeff_t Coeff_t;
typedef typename Options::template PrecisionMapper<Simd>::LowerPrecVector SimdL;
template <typename vtype> using iImplSpinor = iScalar<iVector<iVector<vtype, Dimension>, Ns> >;
template <typename vtype> using iImplPropagator = iScalar<iMatrix<iMatrix<vtype, Dimension>, Ns> >;
template <typename vtype> using iImplHalfSpinor = iScalar<iVector<iVector<vtype, Dimension>, Nhs> >;
template <typename vtype> using iImplHalfCommSpinor = iScalar<iVector<iVector<vtype, Dimension>, Nhcs> >;
template <typename vtype> using iImplDoubledGaugeField = iVector<iScalar<iMatrix<vtype, Dimension> >, Nds>;
template <typename vtype> using iImplGaugeField = iVector<iScalar<iMatrix<vtype, Dimension> >, Nd>;
template <typename vtype> using iImplGaugeLink = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
typedef iImplSpinor<Simd> SiteSpinor;
typedef iImplPropagator<Simd> SitePropagator;
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
typedef iImplHalfCommSpinor<SimdL> SiteHalfCommSpinor;
typedef Lattice<SiteSpinor> FermionField;
typedef Lattice<SitePropagator> PropagatorField;
/////////////////////////////////////////////////
// Make the doubled gauge field a *scalar*
/////////////////////////////////////////////////
typedef iImplDoubledGaugeField<typename Simd::scalar_type> SiteDoubledGaugeField; // This is a scalar
typedef iImplGaugeField<typename Simd::scalar_type> SiteScalarGaugeField; // scalar
typedef iImplGaugeLink<typename Simd::scalar_type> SiteScalarGaugeLink; // scalar
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
typedef WilsonCompressor<SiteHalfCommSpinor,SiteHalfSpinor, SiteSpinor> Compressor;
typedef WilsonImplParams ImplParams;
typedef WilsonStencil<SiteSpinor, SiteHalfSpinor,ImplParams> StencilImpl;
typedef typename StencilImpl::View_type StencilView;
ImplParams Params;
DomainWallVec5dImpl(const ImplParams &p = ImplParams()) : Params(p){};
template <class ref>
static accelerator_inline void loadLinkElement(Simd &reg, ref &memory)
{
vsplat(reg, memory);
}
template<class _Spinor>
static accelerator_inline void multLink(_Spinor &phi, const SiteDoubledGaugeField &U,
const _Spinor &chi, int mu, StencilEntry *SE,
StencilView &St)
{
#ifdef GPU_VEC
// Gauge link is scalarised
mult(&phi(), &U(mu), &chi());
#else
SiteGaugeLink UU;
for (int i = 0; i < Dimension; i++) {
for (int j = 0; j < Dimension; j++) {
vsplat(UU()()(i, j), U(mu)()(i, j));
}
}
mult(&phi(), &UU(), &chi());
#endif
}
inline void DoubleStore(GridBase *GaugeGrid, DoubledGaugeField &Uds,const GaugeField &Umu)
{
SiteScalarGaugeField ScalarUmu;
SiteDoubledGaugeField ScalarUds;
GaugeLinkField U(Umu.Grid());
GaugeField Uadj(Umu.Grid());
for (int mu = 0; mu < Nd; mu++) {
U = PeekIndex<LorentzIndex>(Umu, mu);
U = adj(Cshift(U, mu, -1));
PokeIndex<LorentzIndex>(Uadj, U, mu);
}
autoView(Umu_v,Umu,CpuRead);
autoView(Uadj_v,Uadj,CpuRead);
autoView(Uds_v,Uds,CpuWrite);
thread_for( lidx, GaugeGrid->lSites(), {
Coordinate lcoor;
GaugeGrid->LocalIndexToLocalCoor(lidx, lcoor);
peekLocalSite(ScalarUmu, Umu_v, lcoor);
for (int mu = 0; mu < 4; mu++) ScalarUds(mu) = ScalarUmu(mu);
peekLocalSite(ScalarUmu, Uadj_v, lcoor);
for (int mu = 0; mu < 4; mu++) ScalarUds(mu + 4) = ScalarUmu(mu);
pokeLocalSite(ScalarUds, Uds_v, lcoor);
});
}
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde,FermionField &A, int mu)
{
assert(0);
}
inline void outerProductImpl(PropagatorField &mat, const FermionField &Btilde, const FermionField &A){
assert(0);
}
inline void TraceSpinImpl(GaugeLinkField &mat, PropagatorField&P) {
assert(0);
}
inline void extractLinkField(std::vector<GaugeLinkField> &mat, DoubledGaugeField &Uds){
assert(0);
}
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField &Atilde, int mu) {
assert(0);
// Following lines to be revised after Peter's addition of half prec
// missing put lane...
/*
typedef decltype(traceIndex<SpinIndex>(outerProduct(Btilde[0], Atilde[0]))) result_type;
unsigned int LLs = Btilde.Grid()->_rdimensions[0];
conformable(Atilde.Grid(),Btilde.Grid());
GridBase* grid = mat.Grid();
GridBase* Bgrid = Btilde.Grid();
unsigned int dimU = grid->Nd();
unsigned int dimF = Bgrid->Nd();
GaugeLinkField tmp(grid);
tmp = Zero();
// FIXME
// Current implementation works, thread safe, probably suboptimal
// Passing through the local coordinate for grid transformation
// the force grid is in general very different from the Ls vectorized grid
for (int so = 0; so < grid->oSites(); so++) {
std::vector<typename result_type::scalar_object> vres(Bgrid->Nsimd());
std::vector<int> ocoor; grid->oCoorFromOindex(ocoor,so);
for (int si = 0; si < tmp.Grid()->iSites(); si++){
typename result_type::scalar_object scalar_object; scalar_object = Zero();
std::vector<int> local_coor;
std::vector<int> icoor; grid->iCoorFromIindex(icoor,si);
grid->InOutCoorToLocalCoor(ocoor, icoor, local_coor);
for (int s = 0; s < LLs; s++) {
std::vector<int> slocal_coor(dimF);
slocal_coor[0] = s;
for (int s4d = 1; s4d< dimF; s4d++) slocal_coor[s4d] = local_coor[s4d-1];
int sF = Bgrid->oIndexReduced(slocal_coor);
assert(sF < Bgrid->oSites());
extract(traceIndex<SpinIndex>(outerProduct(Btilde[sF], Atilde[sF])), vres);
// sum across the 5d dimension
for (auto v : vres) scalar_object += v;
}
tmp[so].putlane(scalar_object, si);
}
}
PokeIndex<LorentzIndex>(mat, tmp, mu);
*/
}
};
typedef DomainWallVec5dImpl<vComplex ,FundamentalRepresentation, CoeffReal> DomainWallVec5dImplR; // Real.. whichever prec
typedef DomainWallVec5dImpl<vComplexF,FundamentalRepresentation, CoeffReal> DomainWallVec5dImplF; // Float
typedef DomainWallVec5dImpl<vComplexD,FundamentalRepresentation, CoeffReal> DomainWallVec5dImplD; // Double
typedef DomainWallVec5dImpl<vComplex ,FundamentalRepresentation, CoeffRealHalfComms> DomainWallVec5dImplRL; // Real.. whichever prec
typedef DomainWallVec5dImpl<vComplexF,FundamentalRepresentation, CoeffRealHalfComms> DomainWallVec5dImplFH; // Float
typedef DomainWallVec5dImpl<vComplexD,FundamentalRepresentation, CoeffRealHalfComms> DomainWallVec5dImplDF; // Double
typedef DomainWallVec5dImpl<vComplex ,FundamentalRepresentation,CoeffComplex> ZDomainWallVec5dImplR; // Real.. whichever prec
typedef DomainWallVec5dImpl<vComplexF,FundamentalRepresentation,CoeffComplex> ZDomainWallVec5dImplF; // Float
typedef DomainWallVec5dImpl<vComplexD,FundamentalRepresentation,CoeffComplex> ZDomainWallVec5dImplD; // Double
typedef DomainWallVec5dImpl<vComplex ,FundamentalRepresentation,CoeffComplexHalfComms> ZDomainWallVec5dImplRL; // Real.. whichever prec
typedef DomainWallVec5dImpl<vComplexF,FundamentalRepresentation,CoeffComplexHalfComms> ZDomainWallVec5dImplFH; // Float
typedef DomainWallVec5dImpl<vComplexD,FundamentalRepresentation,CoeffComplexHalfComms> ZDomainWallVec5dImplDF; // Double
NAMESPACE_END(Grid);

View File

@ -1,193 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/FermionOperator.h
Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: Vera Guelpers <V.M.Guelpers@soton.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////////////////
// Allow to select between gauge representation rank bc's, flavours etc.
// and single/double precision.
////////////////////////////////////////////////////////////////
template<class Impl>
class FermionOperator : public CheckerBoardedSparseMatrixBase<typename Impl::FermionField>, public Impl
{
public:
INHERIT_IMPL_TYPES(Impl);
FermionOperator(const ImplParams &p= ImplParams()) : Impl(p) {};
virtual ~FermionOperator(void) = default;
virtual FermionField &tmp(void) = 0;
GridBase * Grid(void) { return FermionGrid(); }; // this is all the linalg routines need to know
GridBase * RedBlackGrid(void) { return FermionRedBlackGrid(); };
virtual GridBase *FermionGrid(void) =0;
virtual GridBase *FermionRedBlackGrid(void) =0;
virtual GridBase *GaugeGrid(void) =0;
virtual GridBase *GaugeRedBlackGrid(void) =0;
// override multiply
virtual void M (const FermionField &in, FermionField &out)=0;
virtual void Mdag (const FermionField &in, FermionField &out)=0;
// half checkerboard operaions
virtual void Meooe (const FermionField &in, FermionField &out)=0;
virtual void MeooeDag (const FermionField &in, FermionField &out)=0;
virtual void Mooee (const FermionField &in, FermionField &out)=0;
virtual void MooeeDag (const FermionField &in, FermionField &out)=0;
virtual void MooeeInv (const FermionField &in, FermionField &out)=0;
virtual void MooeeInvDag (const FermionField &in, FermionField &out)=0;
// non-hermitian hopping term; half cb or both
virtual void Dhop (const FermionField &in, FermionField &out,int dag)=0;
virtual void DhopOE(const FermionField &in, FermionField &out,int dag)=0;
virtual void DhopEO(const FermionField &in, FermionField &out,int dag)=0;
virtual void DhopDir(const FermionField &in, FermionField &out,int dir,int disp)=0; // implemented by WilsonFermion and WilsonFermion5D
// force terms; five routines; default to Dhop on diagonal
virtual void MDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag){DhopDeriv(mat,U,V,dag);};
virtual void MoeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){DhopDerivOE(mat,U,V,dag);};
virtual void MeoDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){DhopDerivEO(mat,U,V,dag);};
virtual void MooDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){mat=Zero();}; // Clover can override these
virtual void MeeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){mat=Zero();};
virtual void DhopDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag)=0;
virtual void DhopDerivEO(GaugeField &mat,const FermionField &U,const FermionField &V,int dag)=0;
virtual void DhopDerivOE(GaugeField &mat,const FermionField &U,const FermionField &V,int dag)=0;
virtual void Mdiag (const FermionField &in, FermionField &out) { Mooee(in,out);}; // Same as Mooee applied to both CB's
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp)=0; // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
virtual void MdirAll(const FermionField &in, std::vector<FermionField> &out)=0; // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
virtual void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) { assert(0);};
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<Complex> boundary,std::vector<double> twist)
{
FFT theFFT((GridCartesian *) in.Grid());
typedef typename Simd::scalar_type Scalar;
FermionField in_k(in.Grid());
FermionField prop_k(in.Grid());
//phase for boundary condition
ComplexField coor(in.Grid());
ComplexField ph(in.Grid()); ph = Zero();
FermionField in_buf(in.Grid()); in_buf = Zero();
Scalar ci(0.0,1.0);
assert(twist.size() == Nd);//check that twist is Nd
assert(boundary.size() == Nd);//check that boundary conditions is Nd
for(unsigned int nu = 0; nu < Nd; nu++)
{
LatticeCoordinate(coor, nu);
double boundary_phase = ::acos(real(boundary[nu]));
ph = ph + boundary_phase*coor*((1./(in.Grid()->_fdimensions[nu])));
//momenta for propagator shifted by twist+boundary
twist[nu] = twist[nu] + boundary_phase/((2.0*M_PI));
}
in_buf = exp(ci*ph*(-1.0))*in;
theFFT.FFT_all_dim(in_k,in_buf,FFT::forward);
this->MomentumSpacePropagator(prop_k,in_k,mass,twist);
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
//phase for boundary condition
out = out * exp(Scalar(2.0*M_PI)*ci*ph);
};
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {
std::vector<Complex> boundary;
for(int i=0;i<Nd;i++) boundary.push_back(1);//default: periodic boundary conditions
std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
FreePropagator(in,out,mass,boundary,twist);
};
///////////////////////////////////////////////
// Updates gauge field during HMC
///////////////////////////////////////////////
virtual void ImportGauge(const GaugeField & _U)=0;
//////////////////////////////////////////////////////////////////////
// Conserved currents, either contract at sink or insert sequentially.
//////////////////////////////////////////////////////////////////////
virtual void ContractConservedCurrent(PropagatorField &q_in_1,
PropagatorField &q_in_2,
PropagatorField &q_out,
PropagatorField &phys_src,
Current curr_type,
unsigned int mu)
{assert(0);};
virtual void SeqConservedCurrent(PropagatorField &q_in,
PropagatorField &q_out,
PropagatorField &phys_src,
Current curr_type,
unsigned int mu,
unsigned int tmin,
unsigned int tmax,
ComplexField &lattice_cmplx)
{assert(0);};
// Only reimplemented in Wilson5D
// Default to just a zero correlation function
virtual void ContractJ5q(FermionField &q_in ,ComplexField &J5q) { J5q=Zero(); };
virtual void ContractJ5q(PropagatorField &q_in,ComplexField &J5q) { J5q=Zero(); };
///////////////////////////////////////////////
// Physical field import/export
///////////////////////////////////////////////
virtual void Dminus(const FermionField &psi, FermionField &chi) { chi=psi; }
virtual void DminusDag(const FermionField &psi, FermionField &chi) { chi=psi; }
virtual void ImportPhysicalFermionSource(const FermionField &input,FermionField &imported)
{
imported = input;
};
virtual void ImportUnphysicalFermion(const FermionField &input,FermionField &imported)
{
imported=input;
};
virtual void ExportPhysicalFermionSolution(const FermionField &solution,FermionField &exported)
{
exported=solution;
};
virtual void ExportPhysicalFermionSource(const FermionField &solution,FermionField &exported)
{
exported=solution;
};
};
NAMESPACE_END(Grid);

View File

@ -1,189 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/FermionOperatorImpl.h
Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
//////////////////////////////////////////////
// Template parameter class constructs to package
// externally control Fermion implementations
// in orthogonal directions
//
// Ultimately need Impl to always define types where XXX is opaque
//
// typedef typename XXX Simd;
// typedef typename XXX GaugeLinkField;
// typedef typename XXX GaugeField;
// typedef typename XXX GaugeActField;
// typedef typename XXX FermionField;
// typedef typename XXX PropagatorField;
// typedef typename XXX DoubledGaugeField;
// typedef typename XXX SiteSpinor;
// typedef typename XXX SitePropagator;
// typedef typename XXX SiteHalfSpinor;
// typedef typename XXX Compressor;
//
// and Methods:
// void ImportGauge(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
// void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
// void multLink(SiteHalfSpinor &phi,const SiteDoubledGaugeField &U,const SiteHalfSpinor &chi,int mu,StencilEntry *SE,StencilImpl::View_type &St)
// void InsertForce4D(GaugeField &mat,const FermionField &Btilde,const FermionField &A,int mu)
// void InsertForce5D(GaugeField &mat,const FermionField &Btilde,const FermionField &A,int mu)
//
//
// To acquire the typedefs from "Base" (either a base class or template param) use:
//
// INHERIT_GIMPL_TYPES(Base)
// INHERIT_FIMPL_TYPES(Base)
// INHERIT_IMPL_TYPES(Base)
//
// The Fermion operators will do the following:
//
// struct MyOpParams {
// RealD mass;
// };
//
//
// template<class Impl>
// class MyOp : public<Impl> {
// public:
//
// INHERIT_ALL_IMPL_TYPES(Impl);
//
// MyOp(MyOpParams Myparm, ImplParams &ImplParam) : Impl(ImplParam)
// {
//
// };
//
// }
//////////////////////////////////////////////
template <class T> struct SamePrecisionMapper {
typedef T HigherPrecVector ;
typedef T LowerPrecVector ;
};
template <class T> struct LowerPrecisionMapper { };
template <> struct LowerPrecisionMapper<vRealF> {
typedef vRealF HigherPrecVector ;
typedef vRealH LowerPrecVector ;
};
template <> struct LowerPrecisionMapper<vRealD> {
typedef vRealD HigherPrecVector ;
typedef vRealF LowerPrecVector ;
};
template <> struct LowerPrecisionMapper<vComplexF> {
typedef vComplexF HigherPrecVector ;
typedef vComplexH LowerPrecVector ;
};
template <> struct LowerPrecisionMapper<vComplexD> {
typedef vComplexD HigherPrecVector ;
typedef vComplexF LowerPrecVector ;
};
struct CoeffReal {
public:
typedef RealD _Coeff_t;
static const int Nhcs = 2;
template<class Simd> using PrecisionMapper = SamePrecisionMapper<Simd>;
};
struct CoeffRealHalfComms {
public:
typedef RealD _Coeff_t;
static const int Nhcs = 1;
template<class Simd> using PrecisionMapper = LowerPrecisionMapper<Simd>;
};
struct CoeffComplex {
public:
typedef ComplexD _Coeff_t;
static const int Nhcs = 2;
template<class Simd> using PrecisionMapper = SamePrecisionMapper<Simd>;
};
struct CoeffComplexHalfComms {
public:
typedef ComplexD _Coeff_t;
static const int Nhcs = 1;
template<class Simd> using PrecisionMapper = LowerPrecisionMapper<Simd>;
};
////////////////////////////////////////////////////////////////////////
// Implementation dependent fermion types
////////////////////////////////////////////////////////////////////////
#define INHERIT_FIMPL_TYPES(Impl)\
typedef typename Impl::Coeff_t Coeff_t; \
typedef Impl Impl_t; \
typedef typename Impl::FermionField FermionField; \
typedef typename Impl::PropagatorField PropagatorField; \
typedef typename Impl::DoubledGaugeField DoubledGaugeField; \
typedef typename Impl::SiteDoubledGaugeField SiteDoubledGaugeField; \
typedef typename Impl::SiteSpinor SiteSpinor; \
typedef typename Impl::SitePropagator SitePropagator; \
typedef typename Impl::SiteHalfSpinor SiteHalfSpinor; \
typedef typename Impl::Compressor Compressor; \
typedef typename Impl::StencilImpl StencilImpl; \
typedef typename Impl::ImplParams ImplParams; \
typedef typename Impl::StencilImpl::View_type StencilView; \
typedef typename ViewMap<FermionField>::Type FermionFieldView; \
typedef typename ViewMap<DoubledGaugeField>::Type DoubledGaugeFieldView;
#define INHERIT_IMPL_TYPES(Base) \
INHERIT_GIMPL_TYPES(Base) \
INHERIT_FIMPL_TYPES(Base)
NAMESPACE_END(Grid);
NAMESPACE_CHECK(ImplBase);
/////////////////////////////////////////////////////////////////////////////
// Single flavour four spinors with colour index
/////////////////////////////////////////////////////////////////////////////
#include <Grid/qcd/action/fermion/WilsonImpl.h>
NAMESPACE_CHECK(ImplWilson);
////////////////////////////////////////////////////////////////////////////////////////
// Flavour doubled spinors; is Gparity the only? what about C*?
////////////////////////////////////////////////////////////////////////////////////////
#include <Grid/qcd/action/fermion/GparityWilsonImpl.h>
NAMESPACE_CHECK(ImplGparityWilson);
/////////////////////////////////////////////////////////////////////////////
// Single flavour one component spinors with colour index
/////////////////////////////////////////////////////////////////////////////
#include <Grid/qcd/action/fermion/StaggeredImpl.h>
NAMESPACE_CHECK(ImplStaggered);
/////////////////////////////////////////////////////////////////////////////
// Single flavour one component spinors with colour index. 5d vec
/////////////////////////////////////////////////////////////////////////////
#include <Grid/qcd/action/fermion/StaggeredVec5dImpl.h>
NAMESPACE_CHECK(ImplStaggered5dVec);

View File

@ -1,238 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/FourierAcceleratedPV.h
Copyright (C) 2015
Author: Christoph Lehner (lifted with permission by Peter Boyle, brought back to Grid)
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template<typename M>
void get_real_const_bc(M& m, RealD& _b, RealD& _c) {
ComplexD b,c;
b=m.bs[0];
c=m.cs[0];
std::cout << GridLogMessage << "b=" << b << ", c=" << c << std::endl;
for (size_t i=1;i<m.bs.size();i++) {
assert(m.bs[i] == b);
assert(m.cs[i] == c);
}
assert(b.imag() == 0.0);
assert(c.imag() == 0.0);
_b = b.real();
_c = c.real();
}
template<typename Vi, typename M, typename G>
class FourierAcceleratedPV {
public:
ConjugateGradient<Vi> &cg;
M& dwfPV;
G& Umu;
GridCartesian* grid5D;
GridRedBlackCartesian* gridRB5D;
int group_in_s;
FourierAcceleratedPV(M& _dwfPV, G& _Umu, ConjugateGradient<Vi> &_cg, int _group_in_s = 2)
: dwfPV(_dwfPV), Umu(_Umu), cg(_cg), group_in_s(_group_in_s)
{
assert( dwfPV.FermionGrid()->_fdimensions[0] % (2*group_in_s) == 0);
grid5D = SpaceTimeGrid::makeFiveDimGrid(2*group_in_s, (GridCartesian*)Umu.Grid());
gridRB5D = SpaceTimeGrid::makeFiveDimRedBlackGrid(2*group_in_s, (GridCartesian*)Umu.Grid());
}
void rotatePV(const Vi& _src, Vi& dst, bool forward) const {
GridStopWatch gsw1, gsw2;
typedef typename Vi::scalar_type Coeff_t;
int Ls = dst.Grid()->_fdimensions[0];
Vi _tmp(dst.Grid());
double phase = M_PI / (double)Ls;
Coeff_t bzero(0.0,0.0);
FFT theFFT((GridCartesian*)dst.Grid());
if (!forward) {
gsw1.Start();
for (int s=0;s<Ls;s++) {
Coeff_t a(::cos(phase*s),-::sin(phase*s));
axpby_ssp(_tmp,a,_src,bzero,_src,s,s);
}
gsw1.Stop();
gsw2.Start();
theFFT.FFT_dim(dst,_tmp,0,FFT::forward);
gsw2.Stop();
} else {
gsw2.Start();
theFFT.FFT_dim(_tmp,_src,0,FFT::backward);
gsw2.Stop();
gsw1.Start();
for (int s=0;s<Ls;s++) {
Coeff_t a(::cos(phase*s),::sin(phase*s));
axpby_ssp(dst,a,_tmp,bzero,_tmp,s,s);
}
gsw1.Stop();
}
std::cout << GridLogMessage << "Timing rotatePV: " << gsw1.Elapsed() << ", " << gsw2.Elapsed() << std::endl;
}
void pvInv(const Vi& _src, Vi& _dst) const {
std::cout << GridLogMessage << "Fourier-Accelerated Outer Pauli Villars"<<std::endl;
typedef typename Vi::scalar_type Coeff_t;
int Ls = _dst.Grid()->_fdimensions[0];
GridStopWatch gswT;
gswT.Start();
RealD b,c;
get_real_const_bc(dwfPV,b,c);
RealD M5 = dwfPV.M5;
// U(true) Rightinv TMinv U(false) = Minv
Vi _src_diag(_dst.Grid());
Vi _src_diag_slice(dwfPV.GaugeGrid());
Vi _dst_diag_slice(dwfPV.GaugeGrid());
Vi _src_diag_slices(grid5D);
Vi _dst_diag_slices(grid5D);
Vi _dst_diag(_dst.Grid());
rotatePV(_src,_src_diag,false);
// now do TM solves
Gamma G5(Gamma::Algebra::Gamma5);
GridStopWatch gswA, gswB;
gswA.Start();
typedef typename M::Impl_t Impl;
//WilsonTMFermion<Impl> tm(x.Umu,*x.UGridF,*x.UrbGridF,0.0,0.0,solver_outer.parent.par.wparams_f);
std::vector<RealD> vmass(grid5D->_fdimensions[0],0.0);
std::vector<RealD> vmu(grid5D->_fdimensions[0],0.0);
WilsonTMFermion5D<Impl> tm(Umu,*grid5D,*gridRB5D,
*(GridCartesian*)dwfPV.GaugeGrid(),
*(GridRedBlackCartesian*)dwfPV.GaugeRedBlackGrid(),
vmass,vmu);
//SchurRedBlackDiagTwoSolve<Vi> sol(cg);
SchurRedBlackDiagMooeeSolve<Vi> sol(cg); // same performance as DiagTwo
gswA.Stop();
gswB.Start();
for (int sgroup=0;sgroup<Ls/2/group_in_s;sgroup++) {
for (int sidx=0;sidx<group_in_s;sidx++) {
int s = sgroup*group_in_s + sidx;
// int sprime = Ls-s-1;
RealD phase = M_PI / (RealD)Ls * (2.0 * s + 1.0);
RealD cosp = ::cos(phase);
RealD sinp = ::sin(phase);
RealD denom = b*b + c*c + 2.0*b*c*cosp;
RealD mass = -(b*b*M5 + c*(1.0 - cosp + c*M5) + b*(-1.0 + cosp + 2.0*c*cosp*M5))/denom;
RealD mu = (b+c)*sinp/denom;
vmass[2*sidx + 0] = mass;
vmass[2*sidx + 1] = mass;
vmu[2*sidx + 0] = mu;
vmu[2*sidx + 1] = -mu;
}
tm.update(vmass,vmu);
for (int sidx=0;sidx<group_in_s;sidx++) {
int s = sgroup*group_in_s + sidx;
int sprime = Ls-s-1;
ExtractSlice(_src_diag_slice,_src_diag,s,0);
InsertSlice(_src_diag_slice,_src_diag_slices,2*sidx + 0,0);
ExtractSlice(_src_diag_slice,_src_diag,sprime,0);
InsertSlice(_src_diag_slice,_src_diag_slices,2*sidx + 1,0);
}
GridStopWatch gsw;
gsw.Start();
_dst_diag_slices = Zero(); // zero guess
sol(tm,_src_diag_slices,_dst_diag_slices);
gsw.Stop();
std::cout << GridLogMessage << "Solve[sgroup=" << sgroup << "] completed in " << gsw.Elapsed() << ", " << gswA.Elapsed() << std::endl;
for (int sidx=0;sidx<group_in_s;sidx++) {
int s = sgroup*group_in_s + sidx;
int sprime = Ls-s-1;
RealD phase = M_PI / (RealD)Ls * (2.0 * s + 1.0);
RealD cosp = ::cos(phase);
RealD sinp = ::sin(phase);
// now rotate with inverse of
Coeff_t pA = b + c*cosp;
Coeff_t pB = - Coeff_t(0.0,1.0)*Coeff_t(c*sinp);
Coeff_t pABden = pA*pA - pB*pB;
// (pA + pB * G5) * (pA - pB*G5) = (pA^2 - pB^2)
ExtractSlice(_dst_diag_slice,_dst_diag_slices,2*sidx + 0,0);
_dst_diag_slice = (pA/pABden) * _dst_diag_slice - (pB/pABden) * (G5 * _dst_diag_slice);
InsertSlice(_dst_diag_slice,_dst_diag,s,0);
ExtractSlice(_dst_diag_slice,_dst_diag_slices,2*sidx + 1,0);
_dst_diag_slice = (pA/pABden) * _dst_diag_slice + (pB/pABden) * (G5 * _dst_diag_slice);
InsertSlice(_dst_diag_slice,_dst_diag,sprime,0);
}
}
gswB.Stop();
rotatePV(_dst_diag,_dst,true);
gswT.Stop();
std::cout << GridLogMessage << "PV completed in " << gswT.Elapsed() << " (Setup: " << gswA.Elapsed() << ", s-loop: " << gswB.Elapsed() << ")" << std::endl;
}
};
NAMESPACE_END(Grid);

View File

@ -1,346 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/FermionOperatorImpl.h
Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template <class S, class Representation = FundamentalRepresentation, class Options=CoeffReal>
class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Representation::Dimension> > {
public:
static const int Dimension = Representation::Dimension;
static const bool isFundamental = Representation::isFundamental;
static const int Nhcs = Options::Nhcs;
static const bool LsVectorised=false;
static const bool isGparity=true;
typedef ConjugateGaugeImpl< GaugeImplTypes<S,Dimension> > Gimpl;
INHERIT_GIMPL_TYPES(Gimpl);
typedef typename Options::_Coeff_t Coeff_t;
typedef typename Options::template PrecisionMapper<Simd>::LowerPrecVector SimdL;
template <typename vtype> using iImplSpinor = iVector<iVector<iVector<vtype, Dimension>, Ns>, Ngp>;
template <typename vtype> using iImplPropagator = iMatrix<iMatrix<iMatrix<vtype, Dimension>, Ns>, Ngp>;
template <typename vtype> using iImplHalfSpinor = iVector<iVector<iVector<vtype, Dimension>, Nhs>, Ngp>;
template <typename vtype> using iImplHalfCommSpinor = iVector<iVector<iVector<vtype, Dimension>, Nhcs>, Ngp>;
template <typename vtype> using iImplDoubledGaugeField = iVector<iVector<iScalar<iMatrix<vtype, Dimension> >, Nds>, Ngp>;
typedef iImplSpinor<Simd> SiteSpinor;
typedef iImplPropagator<Simd> SitePropagator;
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
typedef iImplHalfCommSpinor<SimdL> SiteHalfCommSpinor;
typedef iImplDoubledGaugeField<Simd> SiteDoubledGaugeField;
typedef Lattice<SiteSpinor> FermionField;
typedef Lattice<SitePropagator> PropagatorField;
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
typedef GparityWilsonImplParams ImplParams;
typedef WilsonCompressor<SiteHalfCommSpinor,SiteHalfSpinor, SiteSpinor> Compressor;
typedef WilsonStencil<SiteSpinor, SiteHalfSpinor, ImplParams> StencilImpl;
typedef typename StencilImpl::View_type StencilView;
ImplParams Params;
GparityWilsonImpl(const ImplParams &p = ImplParams()) : Params(p){};
// provide the multiply by link that is differentiated between Gparity (with
// flavour index) and non-Gparity
template<class _Spinor>
static accelerator_inline void multLink(_Spinor &phi,
const SiteDoubledGaugeField &U,
const _Spinor &chi,
int mu)
{
assert(0);
}
template<class _Spinor>
static accelerator_inline void multLink(_Spinor &phi,
const SiteDoubledGaugeField &U,
const _Spinor &chi,
int mu,
StencilEntry *SE,
StencilView &St)
{
int direction = St._directions[mu];
int distance = St._distances[mu];
int ptype = St._permute_type[mu];
int sl = St._simd_layout[direction];
Coordinate icoor;
#ifdef GRID_SIMT
_Spinor tmp;
const int Nsimd =SiteDoubledGaugeField::Nsimd();
int s = acceleratorSIMTlane(Nsimd);
St.iCoorFromIindex(icoor,s);
int mmu = mu % Nd;
if ( SE->_around_the_world && St.parameters.twists[mmu] ) {
int permute_lane = (sl==1)
|| ((distance== 1)&&(icoor[direction]==1))
|| ((distance==-1)&&(icoor[direction]==0));
if ( permute_lane ) {
tmp(0) = chi(1);
tmp(1) = chi(0);
} else {
tmp(0) = chi(0);
tmp(1) = chi(1);
}
auto UU0=coalescedRead(U(0)(mu));
auto UU1=coalescedRead(U(1)(mu));
mult(&phi(0),&UU0,&tmp(0));
mult(&phi(1),&UU1,&tmp(1));
} else {
auto UU0=coalescedRead(U(0)(mu));
auto UU1=coalescedRead(U(1)(mu));
mult(&phi(0),&UU0,&chi(0));
mult(&phi(1),&UU1,&chi(1));
}
#else
typedef _Spinor vobj;
typedef typename SiteHalfSpinor::scalar_object sobj;
typedef typename SiteHalfSpinor::vector_type vector_type;
vobj vtmp;
sobj stmp;
const int Nsimd =vector_type::Nsimd();
// Fixme X.Y.Z.T hardcode in stencil
int mmu = mu % Nd;
// assert our assumptions
assert((distance == 1) || (distance == -1)); // nearest neighbour stencil hard code
assert((sl == 1) || (sl == 2));
if ( SE->_around_the_world && St.parameters.twists[mmu] ) {
if ( sl == 2 ) {
ExtractBuffer<sobj> vals(Nsimd);
extract(chi,vals);
for(int s=0;s<Nsimd;s++){
St.iCoorFromIindex(icoor,s);
assert((icoor[direction]==0)||(icoor[direction]==1));
int permute_lane;
if ( distance == 1) {
permute_lane = icoor[direction]?1:0;
} else {
permute_lane = icoor[direction]?0:1;
}
if ( permute_lane ) {
stmp(0) = vals[s](1);
stmp(1) = vals[s](0);
vals[s] = stmp;
}
}
merge(vtmp,vals);
} else {
vtmp(0) = chi(1);
vtmp(1) = chi(0);
}
mult(&phi(0),&U(0)(mu),&vtmp(0));
mult(&phi(1),&U(1)(mu),&vtmp(1));
} else {
mult(&phi(0),&U(0)(mu),&chi(0));
mult(&phi(1),&U(1)(mu),&chi(1));
}
#endif
}
template<class _SpinorField>
inline void multLinkField(_SpinorField & out,
const DoubledGaugeField &Umu,
const _SpinorField & phi,
int mu)
{
assert(0);
}
template <class ref>
static accelerator_inline void loadLinkElement(Simd &reg, ref &memory)
{
reg = memory;
}
inline void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
{
conformable(Uds.Grid(),GaugeGrid);
conformable(Umu.Grid(),GaugeGrid);
GaugeLinkField Utmp (GaugeGrid);
GaugeLinkField U (GaugeGrid);
GaugeLinkField Uconj(GaugeGrid);
Lattice<iScalar<vInteger> > coor(GaugeGrid);
for(int mu=0;mu<Nd;mu++){
LatticeCoordinate(coor,mu);
U = PeekIndex<LorentzIndex>(Umu,mu);
Uconj = conjugate(U);
// This phase could come from a simple bc 1,1,-1,1 ..
int neglink = GaugeGrid->GlobalDimensions()[mu]-1;
if ( Params.twists[mu] ) {
Uconj = where(coor==neglink,-Uconj,Uconj);
}
{
autoView( U_v , U, CpuRead);
autoView( Uconj_v , Uconj, CpuRead);
autoView( Uds_v , Uds, CpuWrite);
autoView( Utmp_v, Utmp, CpuWrite);
thread_foreach(ss,U_v,{
Uds_v[ss](0)(mu) = U_v[ss]();
Uds_v[ss](1)(mu) = Uconj_v[ss]();
});
}
U = adj(Cshift(U ,mu,-1)); // correct except for spanning the boundary
Uconj = adj(Cshift(Uconj,mu,-1));
Utmp = U;
if ( Params.twists[mu] ) {
Utmp = where(coor==0,Uconj,Utmp);
}
{
autoView( Uds_v , Uds, CpuWrite);
autoView( Utmp_v, Utmp, CpuWrite);
thread_foreach(ss,Utmp_v,{
Uds_v[ss](0)(mu+4) = Utmp_v[ss]();
});
}
Utmp = Uconj;
if ( Params.twists[mu] ) {
Utmp = where(coor==0,U,Utmp);
}
{
autoView( Uds_v , Uds, CpuWrite);
autoView( Utmp_v, Utmp, CpuWrite);
thread_foreach(ss,Utmp_v,{
Uds_v[ss](1)(mu+4) = Utmp_v[ss]();
});
}
}
}
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A, int mu) {
// DhopDir provides U or Uconj depending on coor/flavour.
GaugeLinkField link(mat.Grid());
// use lorentz for flavour as hack.
auto tmp = TraceIndex<SpinIndex>(outerProduct(Btilde, A));
{
autoView( link_v , link, CpuWrite);
autoView( tmp_v , tmp, CpuRead);
thread_foreach(ss,tmp_v,{
link_v[ss]() = tmp_v[ss](0, 0) + conjugate(tmp_v[ss](1, 1));
});
}
PokeIndex<LorentzIndex>(mat, link, mu);
return;
}
inline void outerProductImpl(PropagatorField &mat, const FermionField &Btilde, const FermionField &A){
//mat = outerProduct(Btilde, A);
assert(0);
}
inline void TraceSpinImpl(GaugeLinkField &mat, PropagatorField&P) {
assert(0);
/*
auto tmp = TraceIndex<SpinIndex>(P);
parallel_for(auto ss = tmp.begin(); ss < tmp.end(); ss++) {
mat[ss]() = tmp[ss](0, 0) + conjugate(tmp[ss](1, 1));
}
*/
}
inline void extractLinkField(std::vector<GaugeLinkField> &mat, DoubledGaugeField &Uds){
assert(0);
}
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField &Atilde, int mu) {
int Ls = Btilde.Grid()->_fdimensions[0];
GaugeLinkField tmp(mat.Grid());
tmp = Zero();
{
autoView( tmp_v , tmp, CpuWrite);
autoView( Atilde_v , Atilde, CpuRead);
autoView( Btilde_v , Btilde, CpuRead);
thread_for(ss,tmp.Grid()->oSites(),{
for (int s = 0; s < Ls; s++) {
int sF = s + Ls * ss;
auto ttmp = traceIndex<SpinIndex>(outerProduct(Btilde_v[sF], Atilde_v[sF]));
tmp_v[ss]() = tmp_v[ss]() + ttmp(0, 0) + conjugate(ttmp(1, 1));
}
});
}
PokeIndex<LorentzIndex>(mat, tmp, mu);
return;
}
};
typedef GparityWilsonImpl<vComplex , FundamentalRepresentation,CoeffReal> GparityWilsonImplR; // Real.. whichever prec
typedef GparityWilsonImpl<vComplexF, FundamentalRepresentation,CoeffReal> GparityWilsonImplF; // Float
typedef GparityWilsonImpl<vComplexD, FundamentalRepresentation,CoeffReal> GparityWilsonImplD; // Double
typedef GparityWilsonImpl<vComplex , FundamentalRepresentation,CoeffRealHalfComms> GparityWilsonImplRL; // Real.. whichever prec
typedef GparityWilsonImpl<vComplexF, FundamentalRepresentation,CoeffRealHalfComms> GparityWilsonImplFH; // Float
typedef GparityWilsonImpl<vComplexD, FundamentalRepresentation,CoeffRealHalfComms> GparityWilsonImplDF; // Double
NAMESPACE_END(Grid);

View File

@ -1,233 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/ImprovedStaggeredFermion5D.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: AzusaYamaguchi <ayamaguc@staffmail.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////////////////////////////////
// This is the 4d red black case appropriate to support
////////////////////////////////////////////////////////////////////////////////
class ImprovedStaggeredFermion5DStatic {
public:
// S-direction is INNERMOST and takes no part in the parity.
static const std::vector<int> directions;
static const std::vector<int> displacements;
const int npoint = 16;
};
template<class Impl>
class ImprovedStaggeredFermion5D : public StaggeredKernels<Impl>, public ImprovedStaggeredFermion5DStatic
{
public:
INHERIT_IMPL_TYPES(Impl);
typedef StaggeredKernels<Impl> Kernels;
FermionField _tmp;
FermionField &tmp(void) { return _tmp; }
////////////////////////////////////////
// Performance monitoring
////////////////////////////////////////
void Report(void);
void ZeroCounters(void);
double DhopTotalTime;
double DhopCalls;
double DhopCommTime;
double DhopComputeTime;
double DhopComputeTime2;
double DhopFaceTime;
///////////////////////////////////////////////////////////////
// Implement the abstract base
///////////////////////////////////////////////////////////////
GridBase *GaugeGrid(void) { return _FourDimGrid ;}
GridBase *GaugeRedBlackGrid(void) { return _FourDimRedBlackGrid ;}
GridBase *FermionGrid(void) { return _FiveDimGrid;}
GridBase *FermionRedBlackGrid(void) { return _FiveDimRedBlackGrid;}
// full checkerboard operations; leave unimplemented as abstract for now
void M (const FermionField &in, FermionField &out);
void Mdag (const FermionField &in, FermionField &out);
// half checkerboard operations
void Meooe (const FermionField &in, FermionField &out);
void Mooee (const FermionField &in, FermionField &out);
void MooeeInv (const FermionField &in, FermionField &out);
void MeooeDag (const FermionField &in, FermionField &out);
void MooeeDag (const FermionField &in, FermionField &out);
void MooeeInvDag (const FermionField &in, FermionField &out);
void Mdir (const FermionField &in, FermionField &out,int dir,int disp);
void MdirAll(const FermionField &in, std::vector<FermionField> &out);
void DhopDir(const FermionField &in, FermionField &out,int dir,int disp);
// These can be overridden by fancy 5d chiral action
void DhopDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
void DhopDerivEO(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
void DhopDerivOE(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
// Implement hopping term non-hermitian hopping term; half cb or both
void Dhop (const FermionField &in, FermionField &out,int dag);
void DhopOE(const FermionField &in, FermionField &out,int dag);
void DhopEO(const FermionField &in, FermionField &out,int dag);
///////////////////////////////////////////////////////////////
// New methods added
///////////////////////////////////////////////////////////////
void DerivInternal(StencilImpl & st,
DoubledGaugeField & U,
DoubledGaugeField & UUU,
GaugeField &mat,
const FermionField &A,
const FermionField &B,
int dag);
void DhopInternal(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U,
DoubledGaugeField &UUU,
const FermionField &in,
FermionField &out,
int dag);
void DhopInternalOverlappedComms(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U,
DoubledGaugeField &UUU,
const FermionField &in,
FermionField &out,
int dag);
void DhopInternalSerialComms(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U,
DoubledGaugeField &UUU,
const FermionField &in,
FermionField &out,
int dag);
// Constructors
////////////////////////////////////////////////////////////////////////////////////////////////
// Grid internal interface -- Thin link and fat link, with coefficients
////////////////////////////////////////////////////////////////////////////////////////////////
ImprovedStaggeredFermion5D(GaugeField &_Uthin,
GaugeField &_Ufat,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
double _mass,
RealD _c1, RealD _c2,RealD _u0,
const ImplParams &p= ImplParams());
////////////////////////////////////////////////////////////////////////////////////////////////
// MILC constructor ; triple links, no rescale factors; must be externally pre multiplied
////////////////////////////////////////////////////////////////////////////////////////////////
ImprovedStaggeredFermion5D(GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
double _mass,
RealD _c1=1.0, RealD _c2=1.0,RealD _u0=1.0,
const ImplParams &p= ImplParams());
// DoubleStore gauge field in operator
void ImportGauge (const GaugeField &_Uthin ) { assert(0); }
void ImportGauge(const GaugeField &_Uthin,const GaugeField &_Ufat);
void ImportGaugeSimple(const GaugeField &_UUU,const GaugeField &_U);
void ImportGaugeSimple(const DoubledGaugeField &_UUU,const DoubledGaugeField &_U);
// Give a reference; can be used to do an assignment or copy back out after import
// if Carleton wants to cache them and not use the ImportSimple
DoubledGaugeField &GetU(void) { return Umu ; } ;
DoubledGaugeField &GetUUU(void) { return UUUmu; };
void CopyGaugeCheckerboards(void);
///////////////////////////////////////////////////////////////
// Data members require to support the functionality
///////////////////////////////////////////////////////////////
public:
virtual int isTrivialEE(void) { return 1; };
virtual RealD Mass(void) { return mass; }
GridBase *_FourDimGrid;
GridBase *_FourDimRedBlackGrid;
GridBase *_FiveDimGrid;
GridBase *_FiveDimRedBlackGrid;
RealD mass;
RealD c1;
RealD c2;
RealD u0;
int Ls;
//Defines the stencils for even and odd
StencilImpl Stencil;
StencilImpl StencilEven;
StencilImpl StencilOdd;
// Copy of the gauge field , with even and odd subsets
DoubledGaugeField Umu;
DoubledGaugeField UmuEven;
DoubledGaugeField UmuOdd;
DoubledGaugeField UUUmu;
DoubledGaugeField UUUmuEven;
DoubledGaugeField UUUmuOdd;
LebesgueOrder Lebesgue;
LebesgueOrder LebesgueEvenOdd;
// Comms buffer
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf;
///////////////////////////////////////////////////////////////
// Conserved current utilities
///////////////////////////////////////////////////////////////
void ContractConservedCurrent(PropagatorField &q_in_1,
PropagatorField &q_in_2,
PropagatorField &q_out,
PropagatorField &src,
Current curr_type,
unsigned int mu);
void SeqConservedCurrent(PropagatorField &q_in,
PropagatorField &q_out,
PropagatorField &src,
Current curr_type,
unsigned int mu,
unsigned int tmin,
unsigned int tmax,
ComplexField &lattice_cmplx);
};
NAMESPACE_END(Grid);

View File

@ -1,205 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/MADWF.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template <class Fieldi, class Fieldo,IfNotSame<Fieldi,Fieldo> X=0>
inline void convert(const Fieldi &from,Fieldo &to)
{
precisionChange(to,from);
}
template <class Fieldi, class Fieldo,IfSame<Fieldi,Fieldo> X=0>
inline void convert(const Fieldi &from,Fieldo &to)
{
to=from;
}
struct MADWFinnerIterCallbackBase{
virtual void operator()(const RealD current_resid){}
virtual ~MADWFinnerIterCallbackBase(){}
};
template<class Matrixo,class Matrixi,class PVinverter,class SchurSolver, class Guesser>
class MADWF
{
private:
typedef typename Matrixo::FermionField FermionFieldo;
typedef typename Matrixi::FermionField FermionFieldi;
PVinverter & PauliVillarsSolvero;// For the outer field
SchurSolver & SchurSolveri; // For the inner approx field
Guesser & Guesseri; // To deflate the inner approx solves
Matrixo & Mato; // Action object for outer
Matrixi & Mati; // Action object for inner
RealD target_resid;
int maxiter;
//operator() is called on "callback" at the end of every inner iteration. This allows for example the adjustment of the inner
//tolerance to speed up subsequent iteration
MADWFinnerIterCallbackBase* callback;
public:
MADWF(Matrixo &_Mato,
Matrixi &_Mati,
PVinverter &_PauliVillarsSolvero,
SchurSolver &_SchurSolveri,
Guesser & _Guesseri,
RealD resid,
int _maxiter,
MADWFinnerIterCallbackBase* _callback = NULL) :
Mato(_Mato),Mati(_Mati),
SchurSolveri(_SchurSolveri),
PauliVillarsSolvero(_PauliVillarsSolvero),Guesseri(_Guesseri),
callback(_callback)
{
target_resid=resid;
maxiter =_maxiter;
};
void operator() (const FermionFieldo &src4,FermionFieldo &sol5)
{
std::cout << GridLogMessage<< " ************************************************" << std::endl;
std::cout << GridLogMessage<< " MADWF-like algorithm " << std::endl;
std::cout << GridLogMessage<< " ************************************************" << std::endl;
FermionFieldi c0i(Mati.GaugeGrid()); // 4d
FermionFieldi y0i(Mati.GaugeGrid()); // 4d
FermionFieldo c0 (Mato.GaugeGrid()); // 4d
FermionFieldo y0 (Mato.GaugeGrid()); // 4d
FermionFieldo A(Mato.FermionGrid()); // Temporary outer
FermionFieldo B(Mato.FermionGrid()); // Temporary outer
FermionFieldo b(Mato.FermionGrid()); // 5d source
FermionFieldo c(Mato.FermionGrid()); // PVinv source; reused so store
FermionFieldo defect(Mato.FermionGrid()); // 5d source
FermionFieldi ci(Mati.FermionGrid());
FermionFieldi yi(Mati.FermionGrid());
FermionFieldi xi(Mati.FermionGrid());
FermionFieldi srci(Mati.FermionGrid());
FermionFieldi Ai(Mati.FermionGrid());
RealD m=Mati.Mass();
///////////////////////////////////////
//Import source, include Dminus factors
///////////////////////////////////////
Mato.ImportPhysicalFermionSource(src4,b);
std::cout << GridLogMessage << " src4 " <<norm2(src4)<<std::endl;
std::cout << GridLogMessage << " b " <<norm2(b)<<std::endl;
defect = b;
sol5=Zero();
for (int i=0;i<maxiter;i++) {
///////////////////////////////////////
// Set up c0 from current defect
///////////////////////////////////////
PauliVillarsSolvero(Mato,defect,A);
Mato.Pdag(A,c);
ExtractSlice(c0, c, 0 , 0);
////////////////////////////////////////////////
// Solve the inner system with surface term c0
////////////////////////////////////////////////
ci = Zero();
convert(c0,c0i); // Possible precison change
InsertSlice(c0i,ci,0, 0);
// Dwm P y = Dwm x = D(1) P (c0,0,0,0)^T
Mati.P(ci,Ai);
Mati.SetMass(1.0); Mati.M(Ai,srci); Mati.SetMass(m);
SchurSolveri(Mati,srci,xi,Guesseri);
Mati.Pdag(xi,yi);
ExtractSlice(y0i, yi, 0 , 0);
convert(y0i,y0); // Possible precision change
//////////////////////////////////////
// Propagate solution back to outer system
// Build Pdag PV^-1 Dm P [-sol4,c2,c3... cL]
//////////////////////////////////////
c0 = - y0;
InsertSlice(c0, c, 0 , 0);
/////////////////////////////
// Reconstruct the bulk solution Pdag PV^-1 Dm P
/////////////////////////////
Mato.P(c,B);
Mato.M(B,A);
PauliVillarsSolvero(Mato,A,B);
Mato.Pdag(B,A);
//////////////////////////////
// Reinsert surface prop
//////////////////////////////
InsertSlice(y0,A,0,0);
//////////////////////////////
// Convert from y back to x
//////////////////////////////
Mato.P(A,B);
// sol5' = sol5 + M^-1 defect
// = sol5 + M^-1 src - M^-1 M sol5 ...
sol5 = sol5 + B;
std::cout << GridLogMessage << "***************************************" <<std::endl;
std::cout << GridLogMessage << " Sol5 update "<<std::endl;
std::cout << GridLogMessage << "***************************************" <<std::endl;
std::cout << GridLogMessage << " Sol5 now "<<norm2(sol5)<<std::endl;
std::cout << GridLogMessage << " delta "<<norm2(B)<<std::endl;
// New defect = b - M sol5
Mato.M(sol5,A);
defect = b - A;
std::cout << GridLogMessage << " defect "<<norm2(defect)<<std::endl;
double resid = ::sqrt(norm2(defect) / norm2(b));
std::cout << GridLogMessage << "Residual " << i << ": " << resid << std::endl;
std::cout << GridLogMessage << "***************************************" <<std::endl;
if(callback != NULL) (*callback)(resid);
if (resid < target_resid) {
return;
}
}
std::cout << GridLogMessage << "MADWF : Exceeded maxiter "<<std::endl;
assert(0);
}
};
NAMESPACE_END(Grid);

View File

@ -1,104 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/MobiusEOFAFermion.h
Copyright (C) 2017
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_QCD_MOBIUS_EOFA_FERMION_H
#define GRID_QCD_MOBIUS_EOFA_FERMION_H
#include <Grid/qcd/action/fermion/AbstractEOFAFermion.h>
NAMESPACE_BEGIN(Grid);
template<class Impl>
class MobiusEOFAFermion : public AbstractEOFAFermion<Impl>
{
public:
INHERIT_IMPL_TYPES(Impl);
public:
// Shift operator coefficients for red-black preconditioned Mobius EOFA
Vector<Coeff_t> Mooee_shift;
Vector<Coeff_t> MooeeInv_shift_lc;
Vector<Coeff_t> MooeeInv_shift_norm;
Vector<Coeff_t> MooeeInvDag_shift_lc;
Vector<Coeff_t> MooeeInvDag_shift_norm;
virtual void Instantiatable(void) {};
// EOFA-specific operations
virtual void Omega (const FermionField& in, FermionField& out, int sign, int dag);
virtual void Dtilde (const FermionField& in, FermionField& out);
virtual void DtildeInv (const FermionField& in, FermionField& out);
// override multiply
virtual void M (const FermionField& in, FermionField& out);
virtual void Mdag (const FermionField& in, FermionField& out);
// half checkerboard operations
virtual void Mooee (const FermionField& in, FermionField& out);
virtual void MooeeDag (const FermionField& in, FermionField& out);
virtual void MooeeInv (const FermionField& in, FermionField& out);
virtual void MooeeInv_shift (const FermionField& in, FermionField& out);
virtual void MooeeInvDag (const FermionField& in, FermionField& out);
virtual void MooeeInvDag_shift(const FermionField& in, FermionField& out);
virtual void M5D (const FermionField& psi, FermionField& chi);
virtual void M5Ddag (const FermionField& psi, FermionField& chi);
/////////////////////////////////////////////////////
// Instantiate different versions depending on Impl
/////////////////////////////////////////////////////
void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi,
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
void M5D_shift(const FermionField& psi, const FermionField& phi, FermionField& chi,
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper,
Vector<Coeff_t>& shift_coeffs);
void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi,
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper);
void M5Ddag_shift(const FermionField& psi, const FermionField& phi, FermionField& chi,
Vector<Coeff_t>& lower, Vector<Coeff_t>& diag, Vector<Coeff_t>& upper,
Vector<Coeff_t>& shift_coeffs);
virtual void RefreshShiftCoefficients(RealD new_shift);
// Constructors
MobiusEOFAFermion(GaugeField& _Umu, GridCartesian& FiveDimGrid, GridRedBlackCartesian& FiveDimRedBlackGrid,
GridCartesian& FourDimGrid, GridRedBlackCartesian& FourDimRedBlackGrid,
RealD _mq1, RealD _mq2, RealD _mq3, RealD _shift, int pm,
RealD _M5, RealD _b, RealD _c, const ImplParams& p=ImplParams());
protected:
void SetCoefficientsPrecondShiftOps(void);
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,77 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/MobiusFermion.h
Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_QCD_MOBIUS_FERMION_H
#define GRID_QCD_MOBIUS_FERMION_H
#include <Grid/qcd/action/fermion/FermionCore.h>
NAMESPACE_BEGIN(Grid);
template<class Impl>
class MobiusFermion : public CayleyFermion5D<Impl>
{
public:
INHERIT_IMPL_TYPES(Impl);
public:
virtual void Instantiatable(void) {};
// Constructors
MobiusFermion(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5,
RealD b, RealD c,const ImplParams &p= ImplParams()) :
CayleyFermion5D<Impl>(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5,p)
{
RealD eps = 1.0;
// std::cout<<GridLogMessage << "MobiusFermion (b="<<b<<",c="<<c<<") with Ls= "<<this->Ls<<" Tanh approx"<<std::endl;
Approx::zolotarev_data *zdata = Approx::higham(eps,this->Ls);// eps is ignored for higham
assert(zdata->n==this->Ls);
// Call base setter
this->SetCoefficientsTanh(zdata,b,c);
Approx::zolotarev_free(zdata);
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,78 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/MobiusZolotarevFermion.h
Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_QCD_MOBIUS_ZOLOTAREV_FERMION_H
#define GRID_QCD_MOBIUS_ZOLOTAREV_FERMION_H
#include <Grid/qcd/action/fermion/FermionCore.h>
NAMESPACE_BEGIN(Grid);
template<class Impl>
class MobiusZolotarevFermion : public CayleyFermion5D<Impl>
{
public:
INHERIT_IMPL_TYPES(Impl);
public:
virtual void Instantiatable(void) {};
// Constructors
MobiusZolotarevFermion(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5,
RealD b, RealD c,
RealD lo, RealD hi,const ImplParams &p= ImplParams()) :
CayleyFermion5D<Impl>(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5,p)
{
RealD eps = lo/hi;
Approx::zolotarev_data *zdata = Approx::zolotarev(eps,this->Ls,0);
assert(zdata->n==this->Ls);
std::cout<<GridLogMessage << "MobiusZolotarevFermion (b="<<b<<",c="<<c<<") with Ls= "<<this->Ls<<" Zolotarev range ["<<lo<<","<<hi<<"]"<<std::endl;
// Call base setter
this->SetCoefficientsZolotarev(hi,zdata,b,c);
Approx::zolotarev_free(zdata);
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,194 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/ImprovedStaggered.h
Copyright (C) 2015
Author: Azusa Yamaguchi, Peter Boyle
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_QCD_NAIVE_STAG_FERMION_H
#define GRID_QCD_NAIVE_STAG_FERMION_H
NAMESPACE_BEGIN(Grid);
class NaiveStaggeredFermionStatic {
public:
static const std::vector<int> directions;
static const std::vector<int> displacements;
static const int npoint = 8;
};
template <class Impl>
class NaiveStaggeredFermion : public StaggeredKernels<Impl>, public NaiveStaggeredFermionStatic {
public:
INHERIT_IMPL_TYPES(Impl);
typedef StaggeredKernels<Impl> Kernels;
FermionField _tmp;
FermionField &tmp(void) { return _tmp; }
////////////////////////////////////////
// Performance monitoring
////////////////////////////////////////
void Report(void);
void ZeroCounters(void);
double DhopTotalTime;
double DhopCalls;
double DhopCommTime;
double DhopComputeTime;
double DhopComputeTime2;
double DhopFaceTime;
///////////////////////////////////////////////////////////////
// Implement the abstract base
///////////////////////////////////////////////////////////////
GridBase *GaugeGrid(void) { return _grid; }
GridBase *GaugeRedBlackGrid(void) { return _cbgrid; }
GridBase *FermionGrid(void) { return _grid; }
GridBase *FermionRedBlackGrid(void) { return _cbgrid; }
//////////////////////////////////////////////////////////////////
// override multiply; cut number routines if pass dagger argument
// and also make interface more uniformly consistent
//////////////////////////////////////////////////////////////////
void M(const FermionField &in, FermionField &out);
void Mdag(const FermionField &in, FermionField &out);
/////////////////////////////////////////////////////////
// half checkerboard operations
/////////////////////////////////////////////////////////
void Meooe(const FermionField &in, FermionField &out);
void MeooeDag(const FermionField &in, FermionField &out);
void Mooee(const FermionField &in, FermionField &out);
void MooeeDag(const FermionField &in, FermionField &out);
void MooeeInv(const FermionField &in, FermionField &out);
void MooeeInvDag(const FermionField &in, FermionField &out);
////////////////////////
// Derivative interface
////////////////////////
// Interface calls an internal routine
void DhopDeriv (GaugeField &mat, const FermionField &U, const FermionField &V, int dag);
void DhopDerivOE(GaugeField &mat, const FermionField &U, const FermionField &V, int dag);
void DhopDerivEO(GaugeField &mat, const FermionField &U, const FermionField &V, int dag);
///////////////////////////////////////////////////////////////
// non-hermitian hopping term; half cb or both
///////////////////////////////////////////////////////////////
void Dhop (const FermionField &in, FermionField &out, int dag);
void DhopOE(const FermionField &in, FermionField &out, int dag);
void DhopEO(const FermionField &in, FermionField &out, int dag);
///////////////////////////////////////////////////////////////
// Multigrid assistance; force term uses too
///////////////////////////////////////////////////////////////
void Mdir(const FermionField &in, FermionField &out, int dir, int disp);
void MdirAll(const FermionField &in, std::vector<FermionField> &out);
void DhopDir(const FermionField &in, FermionField &out, int dir, int disp);
///////////////////////////////////////////////////////////////
// Extra methods added by derived
///////////////////////////////////////////////////////////////
void DerivInternal(StencilImpl &st,
DoubledGaugeField &U,
GaugeField &mat,
const FermionField &A, const FermionField &B, int dag);
void DhopInternal(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
void DhopInternalSerialComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
void DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
//////////////////////////////////////////////////////////////////////////
// Grid own interface Constructor
//////////////////////////////////////////////////////////////////////////
NaiveStaggeredFermion(GaugeField &_U, GridCartesian &Fgrid,
GridRedBlackCartesian &Hgrid, RealD _mass,
RealD _c1, RealD _u0,
const ImplParams &p = ImplParams());
NaiveStaggeredFermion(GridCartesian &Fgrid,
GridRedBlackCartesian &Hgrid, RealD _mass,
RealD _c1, RealD _u0,
const ImplParams &p = ImplParams());
// DoubleStore impl dependent
void ImportGauge (const GaugeField &_U );
DoubledGaugeField &GetU(void) { return Umu ; } ;
void CopyGaugeCheckerboards(void);
///////////////////////////////////////////////////////////////
// Data members require to support the functionality
///////////////////////////////////////////////////////////////
// protected:
public:
// any other parameters of action ???
virtual int isTrivialEE(void) { return 1; };
virtual RealD Mass(void) { return mass; }
RealD mass;
RealD u0;
RealD c1;
GridBase *_grid;
GridBase *_cbgrid;
// Defines the stencils for even and odd
StencilImpl Stencil;
StencilImpl StencilEven;
StencilImpl StencilOdd;
// Copy of the gauge field , with even and odd subsets
DoubledGaugeField Umu;
DoubledGaugeField UmuEven;
DoubledGaugeField UmuOdd;
LebesgueOrder Lebesgue;
LebesgueOrder LebesgueEvenOdd;
///////////////////////////////////////////////////////////////
// Conserved current utilities
///////////////////////////////////////////////////////////////
void ContractConservedCurrent(PropagatorField &q_in_1,
PropagatorField &q_in_2,
PropagatorField &q_out,
PropagatorField &src,
Current curr_type,
unsigned int mu);
void SeqConservedCurrent(PropagatorField &q_in,
PropagatorField &q_out,
PropagatorField &srct,
Current curr_type,
unsigned int mu,
unsigned int tmin,
unsigned int tmax,
ComplexField &lattice_cmplx);
};
typedef NaiveStaggeredFermion<StaggeredImplF> NaiveStaggeredFermionF;
typedef NaiveStaggeredFermion<StaggeredImplD> NaiveStaggeredFermionD;
NAMESPACE_END(Grid);
#endif

View File

@ -1,70 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/OverlapWilsonContfracTanhFermion.h
Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef OVERLAP_WILSON_CONTFRAC_TANH_FERMION_H
#define OVERLAP_WILSON_CONTFRAC_TANH_FERMION_H
#include <Grid/qcd/action/fermion/FermionCore.h>
NAMESPACE_BEGIN(Grid);
template<class Impl>
class OverlapWilsonContFracTanhFermion : public ContinuedFractionFermion5D<Impl>
{
public:
INHERIT_IMPL_TYPES(Impl);
public:
virtual void Instantiatable(void){};
// Constructors
OverlapWilsonContFracTanhFermion(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5,
RealD scale,const ImplParams &p= ImplParams()) :
// b+c=scale, b-c = 0 <=> b =c = scale/2
ContinuedFractionFermion5D<Impl>(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5,p)
{
assert((this->Ls&0x1)==1); // Odd Ls required
int nrational=this->Ls-1;// Even rational order
Approx::zolotarev_data *zdata = Approx::higham(1.0,nrational);// eps is ignored for higham
this->SetCoefficientsTanh(zdata,scale);
Approx::zolotarev_free(zdata);
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,72 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/OverlapWilsonContfracZolotarevFermion.h
Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef OVERLAP_WILSON_CONTFRAC_ZOLOTAREV_FERMION_H
#define OVERLAP_WILSON_CONTFRAC_ZOLOTAREV_FERMION_H
#include <Grid/qcd/action/fermion/FermionCore.h>
NAMESPACE_BEGIN(Grid);
template<class Impl>
class OverlapWilsonContFracZolotarevFermion : public ContinuedFractionFermion5D<Impl>
{
public:
INHERIT_IMPL_TYPES(Impl);
virtual void Instantiatable(void){};
// Constructors
OverlapWilsonContFracZolotarevFermion(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5,
RealD lo,RealD hi,const ImplParams &p= ImplParams()):
// b+c=scale, b-c = 0 <=> b =c = scale/2
ContinuedFractionFermion5D<Impl>(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5,p)
{
assert((this->Ls&0x1)==1); // Odd Ls required
int nrational=this->Ls;// Odd rational order
RealD eps = lo/hi;
Approx::zolotarev_data *zdata = Approx::zolotarev(eps,nrational,0);
this->SetCoefficientsZolotarev(hi,zdata);
Approx::zolotarev_free(zdata);
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,69 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/OverlapWilsonPartialFractionTanhFermion.h
Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef OVERLAP_WILSON_PARTFRAC_TANH_FERMION_H
#define OVERLAP_WILSON_PARTFRAC_TANH_FERMION_H
#include <Grid/qcd/action/fermion/FermionCore.h>
NAMESPACE_BEGIN(Grid);
template<class Impl>
class OverlapWilsonPartialFractionTanhFermion : public PartialFractionFermion5D<Impl>
{
public:
INHERIT_IMPL_TYPES(Impl);
public:
virtual void Instantiatable(void){};
// Constructors
OverlapWilsonPartialFractionTanhFermion(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5,
RealD scale,const ImplParams &p= ImplParams()) :
// b+c=scale, b-c = 0 <=> b =c = scale/2
PartialFractionFermion5D<Impl>(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5,p)
{
assert((this->Ls&0x1)==1); // Odd Ls required
int nrational=this->Ls-1;// Even rational order
Approx::zolotarev_data *zdata = Approx::higham(1.0,nrational);// eps is ignored for higham
this->SetCoefficientsTanh(zdata,scale);
Approx::zolotarev_free(zdata);
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,73 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/OverlapWilsonPartialFractionZolotarevFermion.h
Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef OVERLAP_WILSON_PARTFRAC_ZOLOTAREV_FERMION_H
#define OVERLAP_WILSON_PARTFRAC_ZOLOTAREV_FERMION_H
#include <Grid/qcd/action/fermion/FermionCore.h>
NAMESPACE_BEGIN(Grid);
template<class Impl>
class OverlapWilsonPartialFractionZolotarevFermion : public PartialFractionFermion5D<Impl>
{
public:
INHERIT_IMPL_TYPES(Impl);
virtual void Instantiatable(void){};
// Constructors
OverlapWilsonPartialFractionZolotarevFermion(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5,
RealD lo,RealD hi,const ImplParams &p= ImplParams()):
// b+c=scale, b-c = 0 <=> b =c = scale/2
PartialFractionFermion5D<Impl>(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5,p)
{
assert((this->Ls&0x1)==1); // Odd Ls required
int nrational=this->Ls;// Odd rational order
RealD eps = lo/hi;
Approx::zolotarev_data *zdata = Approx::zolotarev(eps,nrational,0);
this->SetCoefficientsZolotarev(hi,zdata);
Approx::zolotarev_free(zdata);
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,104 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/PartialFractionFermion5D.h
Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_QCD_PARTIAL_FRACTION_H
#define GRID_QCD_PARTIAL_FRACTION_H
#include <Grid/qcd/action/fermion/WilsonFermion5D.h>
NAMESPACE_BEGIN(Grid);
template<class Impl>
class PartialFractionFermion5D : public WilsonFermion5D<Impl>
{
public:
INHERIT_IMPL_TYPES(Impl);
const int part_frac_chroma_convention=1;
void Meooe_internal(const FermionField &in, FermionField &out,int dag);
void Mooee_internal(const FermionField &in, FermionField &out,int dag);
void MooeeInv_internal(const FermionField &in, FermionField &out,int dag);
void M_internal(const FermionField &in, FermionField &out,int dag);
// override multiply
virtual void M (const FermionField &in, FermionField &out);
virtual void Mdag (const FermionField &in, FermionField &out);
// half checkerboard operaions
virtual void Meooe (const FermionField &in, FermionField &out);
virtual void MeooeDag (const FermionField &in, FermionField &out);
virtual void Mooee (const FermionField &in, FermionField &out);
virtual void MooeeDag (const FermionField &in, FermionField &out);
virtual void MooeeInv (const FermionField &in, FermionField &out);
virtual void MooeeInvDag (const FermionField &in, FermionField &out);
// force terms; five routines; default to Dhop on diagonal
virtual void MDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
virtual void MoeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
virtual void MeoDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
virtual void Instantiatable(void) =0; // ensure no make-eee
// Efficient support for multigrid coarsening
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp);
virtual void MdirAll(const FermionField &in, std::vector<FermionField> &out);
///////////////////////////////////////////////////////////////
// Physical surface field utilities
///////////////////////////////////////////////////////////////
virtual void ExportPhysicalFermionSolution(const FermionField &solution5d,FermionField &exported4d);
virtual void ImportPhysicalFermionSource (const FermionField &input4d,FermionField &imported5d);
// Constructors
PartialFractionFermion5D(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD M5,const ImplParams &p= ImplParams());
protected:
virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale);
virtual void SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata);
// Part frac
RealD mass;
RealD dw_diag;
RealD R;
RealD amax;
RealD scale;
Vector<double> p;
Vector<double> q;
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,92 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/SchurRedBlack.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template<class Field>
class PauliVillarsSolverUnprec
{
public:
ConjugateGradient<Field> & CG;
PauliVillarsSolverUnprec( ConjugateGradient<Field> &_CG) : CG(_CG){};
template<class Matrix>
void operator() (Matrix &_Matrix,const Field &src,Field &sol)
{
RealD m = _Matrix.Mass();
Field A (_Matrix.FermionGrid());
MdagMLinearOperator<Matrix,Field> HermOp(_Matrix);
_Matrix.SetMass(1.0);
_Matrix.Mdag(src,A);
CG(HermOp,A,sol);
_Matrix.SetMass(m);
};
};
template<class Field,class SchurSolverType>
class PauliVillarsSolverRBprec
{
public:
SchurSolverType & SchurSolver;
PauliVillarsSolverRBprec( SchurSolverType &_SchurSolver) : SchurSolver(_SchurSolver){};
template<class Matrix>
void operator() (Matrix &_Matrix,const Field &src,Field &sol)
{
RealD m = _Matrix.Mass();
Field A (_Matrix.FermionGrid());
_Matrix.SetMass(1.0);
SchurSolver(_Matrix,src,sol);
_Matrix.SetMass(m);
};
};
template<class Field,class GaugeField>
class PauliVillarsSolverFourierAccel
{
public:
GaugeField & Umu;
ConjugateGradient<Field> & CG;
PauliVillarsSolverFourierAccel(GaugeField &_Umu,ConjugateGradient<Field> &_CG) : Umu(_Umu), CG(_CG)
{
};
template<class Matrix>
void operator() (Matrix &_Matrix,const Field &src,Field &sol)
{
FourierAcceleratedPV<Field, Matrix, typename Matrix::GaugeField > faPV(_Matrix,Umu,CG) ;
faPV.pvInv(src,sol);
};
};
NAMESPACE_END(Grid);

View File

@ -1,134 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/SchurRedBlack.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template<class Field,class PVinverter> class Reconstruct5DfromPhysical {
private:
PVinverter & PauliVillarsSolver;
public:
/////////////////////////////////////////////////////
// First cut works, 10 Oct 2018.
//
// Must form a plan to get this into production for Zmobius acceleration
// of the Mobius exact AMA corrections.
//
// TODO : understand absence of contact term in eqns in Hantao's thesis
// sol4 is contact term subtracted, but thesis & Brower's paper suggests not.
//
// Step 1: Localise PV inverse in a routine. [DONE]
// Step 2: Schur based PV inverse [DONE]
// Step 3: Fourier accelerated PV inverse [DONE]
//
/////////////////////////////////////////////////////
Reconstruct5DfromPhysical(PVinverter &_PauliVillarsSolver)
: PauliVillarsSolver(_PauliVillarsSolver)
{
};
template<class Matrix>
void PV(Matrix &_Matrix,const Field &src,Field &sol)
{
RealD m = _Matrix.Mass();
_Matrix.SetMass(1.0);
_Matrix.M(src,sol);
_Matrix.SetMass(m);
}
template<class Matrix>
void PVdag(Matrix &_Matrix,const Field &src,Field &sol)
{
RealD m = _Matrix.Mass();
_Matrix.SetMass(1.0);
_Matrix.Mdag(src,sol);
_Matrix.SetMass(m);
}
template<class Matrix>
void operator() (Matrix & _Matrix,const Field &sol4,const Field &src4, Field &sol5){
int Ls = _Matrix.Ls;
Field psi4(_Matrix.GaugeGrid());
Field psi(_Matrix.FermionGrid());
Field A (_Matrix.FermionGrid());
Field B (_Matrix.FermionGrid());
Field c (_Matrix.FermionGrid());
typedef typename Matrix::Coeff_t Coeff_t;
std::cout << GridLogMessage<< " ************************************************" << std::endl;
std::cout << GridLogMessage<< " Reconstruct5Dprop: c.f. MADWF algorithm " << std::endl;
std::cout << GridLogMessage<< " ************************************************" << std::endl;
///////////////////////////////////////
//Import source, include Dminus factors
///////////////////////////////////////
_Matrix.ImportPhysicalFermionSource(src4,B);
///////////////////////////////////////
// Set up c from src4
///////////////////////////////////////
PauliVillarsSolver(_Matrix,B,A);
_Matrix.Pdag(A,c);
//////////////////////////////////////
// Build Pdag PV^-1 Dm P [-sol4,c2,c3... cL]
//////////////////////////////////////
psi4 = - sol4;
InsertSlice(psi4, psi, 0 , 0);
for (int s=1;s<Ls;s++) {
ExtractSlice(psi4,c,s,0);
InsertSlice(psi4,psi,s,0);
}
/////////////////////////////
// Pdag PV^-1 Dm P
/////////////////////////////
_Matrix.P(psi,B);
_Matrix.M(B,A);
PauliVillarsSolver(_Matrix,A,B);
_Matrix.Pdag(B,A);
//////////////////////////////
// Reinsert surface prop
//////////////////////////////
InsertSlice(sol4,A,0,0);
//////////////////////////////
// Convert from y back to x
//////////////////////////////
_Matrix.P(A,sol5);
}
};
NAMESPACE_END(Grid);

View File

@ -1,102 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: SchurDiagTwoKappa.h
Copyright (C) 2017
Author: Christoph Lehner
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
// This is specific to (Z)mobius fermions
template<class Matrix, class Field>
class KappaSimilarityTransform {
public:
INHERIT_IMPL_TYPES(Matrix);
Vector<Coeff_t> kappa, kappaDag, kappaInv, kappaInvDag;
KappaSimilarityTransform (Matrix &zmob) {
for (int i=0;i<(int)zmob.bs.size();i++) {
Coeff_t k = 1.0 / ( 2.0 * (zmob.bs[i] *(4 - zmob.M5) + 1.0) );
kappa.push_back( k );
kappaDag.push_back( conj(k) );
kappaInv.push_back( 1.0 / k );
kappaInvDag.push_back( 1.0 / conj(k) );
}
}
template<typename vobj>
void sscale(const Lattice<vobj>& in, Lattice<vobj>& out, Coeff_t* s) {
GridBase *grid=out.Grid();
out.Checkerboard() = in.Checkerboard();
assert(grid->_simd_layout[0] == 1); // should be fine for ZMobius for now
int Ls = grid->_rdimensions[0];
thread_for(ss, grid->oSites(),
{
vobj tmp = s[ss % Ls]*in[ss];
vstream(out[ss],tmp);
});
}
RealD sscale_norm(const Field& in, Field& out, Coeff_t* s) {
sscale(in,out,s);
return norm2(out);
}
virtual RealD M (const Field& in, Field& out) { return sscale_norm(in,out,&kappa[0]); }
virtual RealD MDag (const Field& in, Field& out) { return sscale_norm(in,out,&kappaDag[0]);}
virtual RealD MInv (const Field& in, Field& out) { return sscale_norm(in,out,&kappaInv[0]);}
virtual RealD MInvDag (const Field& in, Field& out) { return sscale_norm(in,out,&kappaInvDag[0]);}
};
template<class Matrix,class Field>
class SchurDiagTwoKappaOperator : public SchurOperatorBase<Field> {
public:
KappaSimilarityTransform<Matrix, Field> _S;
SchurDiagTwoOperator<Matrix, Field> _Mat;
SchurDiagTwoKappaOperator (Matrix &Mat): _S(Mat), _Mat(Mat) {};
virtual RealD Mpc (const Field &in, Field &out) {
Field tmp(in.Grid());
_S.MInv(in,out);
_Mat.Mpc(out,tmp);
return _S.M(tmp,out);
}
virtual RealD MpcDag (const Field &in, Field &out){
Field tmp(in.Grid());
_S.MDag(in,out);
_Mat.MpcDag(out,tmp);
return _S.MInvDag(tmp,out);
}
};
NAMESPACE_END(Grid);

View File

@ -1,175 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/FermionOperatorImpl.h
Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template <class S, class Representation = FundamentalRepresentation >
class StaggeredImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation::Dimension > >
{
public:
typedef RealD _Coeff_t ;
static const int Dimension = Representation::Dimension;
static const bool isFundamental = Representation::isFundamental;
static const bool LsVectorised=false;
typedef PeriodicGaugeImpl<GaugeImplTypes<S, Dimension > > Gimpl;
//Necessary?
constexpr bool is_fundamental() const{return Dimension == Nc ? 1 : 0;}
typedef _Coeff_t Coeff_t;
INHERIT_GIMPL_TYPES(Gimpl);
template <typename vtype> using iImplSpinor = iScalar<iScalar<iVector<vtype, Dimension> > >;
template <typename vtype> using iImplHalfSpinor = iScalar<iScalar<iVector<vtype, Dimension> > >;
template <typename vtype> using iImplDoubledGaugeField = iVector<iScalar<iMatrix<vtype, Dimension> >, Nds>;
template <typename vtype> using iImplPropagator = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
typedef iImplSpinor<Simd> SiteSpinor;
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
typedef iImplDoubledGaugeField<Simd> SiteDoubledGaugeField;
typedef iImplPropagator<Simd> SitePropagator;
typedef Lattice<SiteSpinor> FermionField;
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
typedef Lattice<SitePropagator> PropagatorField;
typedef StaggeredImplParams ImplParams;
typedef SimpleCompressor<SiteSpinor> Compressor;
typedef CartesianStencil<SiteSpinor, SiteSpinor, ImplParams> StencilImpl;
typedef typename StencilImpl::View_type StencilView;
ImplParams Params;
StaggeredImpl(const ImplParams &p = ImplParams()) : Params(p){};
static accelerator_inline void multLink(SiteSpinor &phi,
const SiteDoubledGaugeField &U,
const SiteSpinor &chi,
int mu)
{
mult(&phi(), &U(mu), &chi());
}
static accelerator_inline void multLinkAdd(SiteSpinor &phi,
const SiteDoubledGaugeField &U,
const SiteSpinor &chi,
int mu)
{
mac(&phi(), &U(mu), &chi());
}
template <class ref>
static accelerator_inline void loadLinkElement(Simd &reg, ref &memory)
{
reg = memory;
}
inline void InsertGaugeField(DoubledGaugeField &U_ds,
const GaugeLinkField &U,int mu)
{
PokeIndex<LorentzIndex>(U_ds, U, mu);
}
inline void DoubleStore(GridBase *GaugeGrid,
DoubledGaugeField &UUUds, // for Naik term
DoubledGaugeField &Uds,
const GaugeField &Uthin,
const GaugeField &Ufat) {
conformable(Uds.Grid(), GaugeGrid);
conformable(Uthin.Grid(), GaugeGrid);
conformable(Ufat.Grid(), GaugeGrid);
GaugeLinkField U(GaugeGrid);
GaugeLinkField UU(GaugeGrid);
GaugeLinkField UUU(GaugeGrid);
GaugeLinkField Udag(GaugeGrid);
GaugeLinkField UUUdag(GaugeGrid);
for (int mu = 0; mu < Nd; mu++) {
// Staggered Phase.
Lattice<iScalar<vInteger> > coor(GaugeGrid);
Lattice<iScalar<vInteger> > x(GaugeGrid); LatticeCoordinate(x,0);
Lattice<iScalar<vInteger> > y(GaugeGrid); LatticeCoordinate(y,1);
Lattice<iScalar<vInteger> > z(GaugeGrid); LatticeCoordinate(z,2);
Lattice<iScalar<vInteger> > t(GaugeGrid); LatticeCoordinate(t,3);
Lattice<iScalar<vInteger> > lin_z(GaugeGrid); lin_z=x+y;
Lattice<iScalar<vInteger> > lin_t(GaugeGrid); lin_t=x+y+z;
ComplexField phases(GaugeGrid); phases=1.0;
if ( mu == 1 ) phases = where( mod(x ,2)==(Integer)0, phases,-phases);
if ( mu == 2 ) phases = where( mod(lin_z,2)==(Integer)0, phases,-phases);
if ( mu == 3 ) phases = where( mod(lin_t,2)==(Integer)0, phases,-phases);
// 1 hop based on fat links
U = PeekIndex<LorentzIndex>(Ufat, mu);
Udag = adj( Cshift(U, mu, -1));
U = U *phases;
Udag = Udag *phases;
InsertGaugeField(Uds,U,mu);
InsertGaugeField(Uds,Udag,mu+4);
// PokeIndex<LorentzIndex>(Uds, U, mu);
// PokeIndex<LorentzIndex>(Uds, Udag, mu + 4);
// 3 hop based on thin links. Crazy huh ?
U = PeekIndex<LorentzIndex>(Uthin, mu);
UU = Gimpl::CovShiftForward(U,mu,U);
UUU= Gimpl::CovShiftForward(U,mu,UU);
UUUdag = adj( Cshift(UUU, mu, -3));
UUU = UUU *phases;
UUUdag = UUUdag *phases;
InsertGaugeField(UUUds,UUU,mu);
InsertGaugeField(UUUds,UUUdag,mu+4);
}
}
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A,int mu){
GaugeLinkField link(mat.Grid());
link = TraceIndex<SpinIndex>(outerProduct(Btilde,A));
PokeIndex<LorentzIndex>(mat,link,mu);
}
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField &Atilde,int mu){
assert (0);
// Must never hit
}
};
typedef StaggeredImpl<vComplex, FundamentalRepresentation > StaggeredImplR; // Real.. whichever prec
typedef StaggeredImpl<vComplexF, FundamentalRepresentation > StaggeredImplF; // Float
typedef StaggeredImpl<vComplexD, FundamentalRepresentation > StaggeredImplD; // Double
NAMESPACE_END(Grid);

View File

@ -1,190 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/FermionOperatorImpl.h
Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template <class S, class Representation = FundamentalRepresentation >
class StaggeredVec5dImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation::Dimension > > {
public:
static const int Dimension = Representation::Dimension;
static const bool isFundamental = Representation::isFundamental;
static const bool LsVectorised=true;
typedef RealD Coeff_t ;
typedef PeriodicGaugeImpl<GaugeImplTypes<S, Dimension > > Gimpl;
//Necessary?
constexpr bool is_fundamental() const{return Dimension == Nc ? 1 : 0;}
INHERIT_GIMPL_TYPES(Gimpl);
template <typename vtype> using iImplSpinor = iScalar<iScalar<iVector<vtype, Dimension> > >;
template <typename vtype> using iImplHalfSpinor = iScalar<iScalar<iVector<vtype, Dimension> > >;
template <typename vtype> using iImplDoubledGaugeField = iVector<iScalar<iMatrix<vtype, Dimension> >, Nds>;
template <typename vtype> using iImplGaugeField = iVector<iScalar<iMatrix<vtype, Dimension> >, Nd>;
template <typename vtype> using iImplGaugeLink = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
template <typename vtype> using iImplPropagator = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
// Make the doubled gauge field a *scalar*
typedef iImplDoubledGaugeField<typename Simd::scalar_type> SiteDoubledGaugeField; // This is a scalar
typedef iImplGaugeField<typename Simd::scalar_type> SiteScalarGaugeField; // scalar
typedef iImplGaugeLink<typename Simd::scalar_type> SiteScalarGaugeLink; // scalar
typedef iImplPropagator<Simd> SitePropagator;
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
typedef Lattice<SitePropagator> PropagatorField;
typedef iImplSpinor<Simd> SiteSpinor;
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
typedef Lattice<SiteSpinor> FermionField;
typedef StaggeredImplParams ImplParams;
typedef SimpleCompressor<SiteSpinor> Compressor;
typedef CartesianStencil<SiteSpinor, SiteSpinor, ImplParams> StencilImpl;
typedef typename StencilImpl::View_type StencilView;
ImplParams Params;
StaggeredVec5dImpl(const ImplParams &p = ImplParams()) : Params(p){};
template <class ref>
static accelerator_inline void loadLinkElement(Simd &reg, ref &memory)
{
vsplat(reg, memory);
}
static accelerator_inline void multLink(SiteHalfSpinor &phi,
const SiteDoubledGaugeField &U,
const SiteHalfSpinor &chi,
int mu)
{
SiteGaugeLink UU;
for (int i = 0; i < Dimension; i++) {
for (int j = 0; j < Dimension; j++) {
vsplat(UU()()(i, j), U(mu)()(i, j));
}
}
mult(&phi(), &UU(), &chi());
}
static accelerator_inline void multLinkAdd(SiteHalfSpinor &phi,
const SiteDoubledGaugeField &U,
const SiteHalfSpinor &chi,
int mu)
{
SiteGaugeLink UU;
for (int i = 0; i < Dimension; i++) {
for (int j = 0; j < Dimension; j++) {
vsplat(UU()()(i, j), U(mu)()(i, j));
}
}
mac(&phi(), &UU(), &chi());
}
inline void InsertGaugeField(DoubledGaugeField &U_ds,const GaugeLinkField &U,int mu)
{
assert(0);
}
inline void DoubleStore(GridBase *GaugeGrid,
DoubledGaugeField &UUUds, // for Naik term
DoubledGaugeField &Uds,
const GaugeField &Uthin,
const GaugeField &Ufat)
{
GridBase * InputGrid = Uthin.Grid();
conformable(InputGrid,Ufat.Grid());
GaugeLinkField U(InputGrid);
GaugeLinkField UU(InputGrid);
GaugeLinkField UUU(InputGrid);
GaugeLinkField Udag(InputGrid);
GaugeLinkField UUUdag(InputGrid);
for (int mu = 0; mu < Nd; mu++) {
// Staggered Phase.
Lattice<iScalar<vInteger> > coor(InputGrid);
Lattice<iScalar<vInteger> > x(InputGrid); LatticeCoordinate(x,0);
Lattice<iScalar<vInteger> > y(InputGrid); LatticeCoordinate(y,1);
Lattice<iScalar<vInteger> > z(InputGrid); LatticeCoordinate(z,2);
Lattice<iScalar<vInteger> > t(InputGrid); LatticeCoordinate(t,3);
Lattice<iScalar<vInteger> > lin_z(InputGrid); lin_z=x+y;
Lattice<iScalar<vInteger> > lin_t(InputGrid); lin_t=x+y+z;
ComplexField phases(InputGrid); phases=1.0;
if ( mu == 1 ) phases = where( mod(x ,2)==(Integer)0, phases,-phases);
if ( mu == 2 ) phases = where( mod(lin_z,2)==(Integer)0, phases,-phases);
if ( mu == 3 ) phases = where( mod(lin_t,2)==(Integer)0, phases,-phases);
// 1 hop based on fat links
U = PeekIndex<LorentzIndex>(Ufat, mu);
Udag = adj( Cshift(U, mu, -1));
U = U *phases;
Udag = Udag *phases;
InsertGaugeField(Uds,U,mu);
InsertGaugeField(Uds,Udag,mu+4);
// 3 hop based on thin links. Crazy huh ?
U = PeekIndex<LorentzIndex>(Uthin, mu);
UU = Gimpl::CovShiftForward(U,mu,U);
UUU= Gimpl::CovShiftForward(U,mu,UU);
UUUdag = adj( Cshift(UUU, mu, -3));
UUU = UUU *phases;
UUUdag = UUUdag *phases;
InsertGaugeField(UUUds,UUU,mu);
InsertGaugeField(UUUds,UUUdag,mu+4);
}
}
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A,int mu){
assert(0);
}
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField &Atilde,int mu){
assert (0);
}
};
typedef StaggeredVec5dImpl<vComplex, FundamentalRepresentation > StaggeredVec5dImplR; // Real.. whichever prec
typedef StaggeredVec5dImpl<vComplexF, FundamentalRepresentation > StaggeredVec5dImplF; // Float
typedef StaggeredVec5dImpl<vComplexD, FundamentalRepresentation > StaggeredVec5dImplD; // Double
NAMESPACE_END(Grid);

View File

@ -1,225 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonFermion5D.h
Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_QCD_WILSON_FERMION_5D_H
#define GRID_QCD_WILSON_FERMION_5D_H
#include <Grid/perfmon/Stat.h>
NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////////////////////////////////
// This is the 4d red black case appropriate to support
//
// parity = (x+y+z+t)|2;
// generalised five dim fermions like mobius, zolotarev etc..
//
// i.e. even even contains fifth dim hopping term.
//
// [DIFFERS from original CPS red black implementation parity = (x+y+z+t+s)|2 ]
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// This is the 4d red black case appropriate to support
//
// parity = (x+y+z+t)|2;
// generalised five dim fermions like mobius, zolotarev etc..
//
// i.e. even even contains fifth dim hopping term.
//
// [DIFFERS from original CPS red black implementation parity = (x+y+z+t+s)|2 ]
////////////////////////////////////////////////////////////////////////////////
class WilsonFermion5DStatic {
public:
// S-direction is INNERMOST and takes no part in the parity.
static const std::vector<int> directions;
static const std::vector<int> displacements;
static constexpr int npoint = 8;
};
template<class Impl>
class WilsonFermion5D : public WilsonKernels<Impl>, public WilsonFermion5DStatic
{
public:
INHERIT_IMPL_TYPES(Impl);
typedef WilsonKernels<Impl> Kernels;
PmuStat stat;
FermionField _tmp;
FermionField &tmp(void) { return _tmp; }
void Report(void);
void ZeroCounters(void);
double DhopCalls;
double DhopCommTime;
double DhopComputeTime;
double DhopComputeTime2;
double DhopFaceTime;
double DhopTotalTime;
double DerivCalls;
double DerivCommTime;
double DerivComputeTime;
double DerivDhopComputeTime;
///////////////////////////////////////////////////////////////
// Implement the abstract base
///////////////////////////////////////////////////////////////
GridBase *GaugeGrid(void) { return _FourDimGrid ;}
GridBase *GaugeRedBlackGrid(void) { return _FourDimRedBlackGrid ;}
GridBase *FermionGrid(void) { return _FiveDimGrid;}
GridBase *FermionRedBlackGrid(void) { return _FiveDimRedBlackGrid;}
// full checkerboard operations; leave unimplemented as abstract for now
virtual void M (const FermionField &in, FermionField &out){assert(0);};
virtual void Mdag (const FermionField &in, FermionField &out){assert(0);};
// half checkerboard operations; leave unimplemented as abstract for now
virtual void Meooe (const FermionField &in, FermionField &out){assert(0);};
virtual void Mooee (const FermionField &in, FermionField &out){assert(0);};
virtual void MooeeInv (const FermionField &in, FermionField &out){assert(0);};
virtual void MeooeDag (const FermionField &in, FermionField &out){assert(0);};
virtual void MooeeDag (const FermionField &in, FermionField &out){assert(0);};
virtual void MooeeInvDag (const FermionField &in, FermionField &out){assert(0);};
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp){assert(0);}; // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
virtual void MdirAll(const FermionField &in, std::vector<FermionField> &out){assert(0);}; // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
// These can be overridden by fancy 5d chiral action
virtual void DhopDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
virtual void DhopDerivEO(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
virtual void DhopDerivOE(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
void MomentumSpacePropagatorHt_5d(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
void MomentumSpacePropagatorHt(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
void MomentumSpacePropagatorHw(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
// Implement hopping term non-hermitian hopping term; half cb or both
// Implement s-diagonal DW
void DW (const FermionField &in, FermionField &out,int dag);
void Dhop (const FermionField &in, FermionField &out,int dag);
void DhopOE(const FermionField &in, FermionField &out,int dag);
void DhopEO(const FermionField &in, FermionField &out,int dag);
// add a DhopComm
// -- suboptimal interface will presently trigger multiple comms.
void DhopDir(const FermionField &in, FermionField &out,int dir,int disp);
void DhopDirAll(const FermionField &in,std::vector<FermionField> &out);
void DhopDirComms(const FermionField &in);
void DhopDirCalc(const FermionField &in, FermionField &out,int point);
///////////////////////////////////////////////////////////////
// New methods added
///////////////////////////////////////////////////////////////
void DerivInternal(StencilImpl & st,
DoubledGaugeField & U,
GaugeField &mat,
const FermionField &A,
const FermionField &B,
int dag);
void DhopInternal(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out,
int dag);
void DhopInternalOverlappedComms(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out,
int dag);
void DhopInternalSerialComms(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out,
int dag);
// Constructors
WilsonFermion5D(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
double _M5,const ImplParams &p= ImplParams());
// Constructors
/*
WilsonFermion5D(int simd,
GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
double _M5,const ImplParams &p= ImplParams());
*/
// DoubleStore
void ImportGauge(const GaugeField &_Umu);
///////////////////////////////////////////////////////////////
// Data members require to support the functionality
///////////////////////////////////////////////////////////////
public:
// Add these to the support from Wilson
GridBase *_FourDimGrid;
GridBase *_FourDimRedBlackGrid;
GridBase *_FiveDimGrid;
GridBase *_FiveDimRedBlackGrid;
double M5;
int Ls;
//Defines the stencils for even and odd
StencilImpl Stencil;
StencilImpl StencilEven;
StencilImpl StencilOdd;
// Copy of the gauge field , with even and odd subsets
DoubledGaugeField Umu;
DoubledGaugeField UmuEven;
DoubledGaugeField UmuOdd;
LebesgueOrder Lebesgue;
LebesgueOrder LebesgueEvenOdd;
// Comms buffer
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf;
};
NAMESPACE_END(Grid);
#endif

View File

@ -1,241 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/FermionOperatorImpl.h
Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////////////////
// Single flavour four spinors with colour index
/////////////////////////////////////////////////////////////////////////////
template <class S, class Representation = FundamentalRepresentation,class Options = CoeffReal >
class WilsonImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation::Dimension > > {
public:
static const int Dimension = Representation::Dimension;
static const bool isFundamental = Representation::isFundamental;
static const bool LsVectorised=false;
static const bool isGparity=false;
static const int Nhcs = Options::Nhcs;
typedef PeriodicGaugeImpl<GaugeImplTypes<S, Dimension > > Gimpl;
INHERIT_GIMPL_TYPES(Gimpl);
//Necessary?
constexpr bool is_fundamental() const{return Dimension == Nc ? 1 : 0;}
typedef typename Options::_Coeff_t Coeff_t;
typedef typename Options::template PrecisionMapper<Simd>::LowerPrecVector SimdL;
template <typename vtype> using iImplSpinor = iScalar<iVector<iVector<vtype, Dimension>, Ns> >;
template <typename vtype> using iImplPropagator = iScalar<iMatrix<iMatrix<vtype, Dimension>, Ns> >;
template <typename vtype> using iImplHalfSpinor = iScalar<iVector<iVector<vtype, Dimension>, Nhs> >;
template <typename vtype> using iImplHalfCommSpinor = iScalar<iVector<iVector<vtype, Dimension>, Nhcs> >;
template <typename vtype> using iImplDoubledGaugeField = iVector<iScalar<iMatrix<vtype, Dimension> >, Nds>;
typedef iImplSpinor<Simd> SiteSpinor;
typedef iImplPropagator<Simd> SitePropagator;
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
typedef iImplHalfCommSpinor<SimdL> SiteHalfCommSpinor;
typedef iImplDoubledGaugeField<Simd> SiteDoubledGaugeField;
typedef Lattice<SiteSpinor> FermionField;
typedef Lattice<SitePropagator> PropagatorField;
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
typedef WilsonCompressor<SiteHalfCommSpinor,SiteHalfSpinor, SiteSpinor> Compressor;
typedef WilsonImplParams ImplParams;
typedef WilsonStencil<SiteSpinor, SiteHalfSpinor,ImplParams> StencilImpl;
typedef typename StencilImpl::View_type StencilView;
ImplParams Params;
WilsonImpl(const ImplParams &p = ImplParams()) : Params(p){
assert(Params.boundary_phases.size() == Nd);
};
template<class _Spinor>
static accelerator_inline void multLink(_Spinor &phi,
const SiteDoubledGaugeField &U,
const _Spinor &chi,
int mu)
{
auto UU = coalescedRead(U(mu));
mult(&phi(), &UU, &chi());
}
template<class _Spinor>
static accelerator_inline void multLink(_Spinor &phi,
const SiteDoubledGaugeField &U,
const _Spinor &chi,
int mu,
StencilEntry *SE,
StencilView &St)
{
multLink(phi,U,chi,mu);
}
template<class _SpinorField>
inline void multLinkField(_SpinorField & out,
const DoubledGaugeField &Umu,
const _SpinorField & phi,
int mu)
{
autoView( out_v, out, AcceleratorWrite);
autoView( phi_v, phi, AcceleratorRead);
autoView( Umu_v, Umu, AcceleratorRead);
accelerator_for(sss,out.Grid()->oSites(),1,{
multLink(out_v[sss],Umu_v[sss],phi_v[sss],mu);
});
}
template <class ref>
static accelerator_inline void loadLinkElement(Simd &reg, ref &memory)
{
reg = memory;
}
inline void DoubleStore(GridBase *GaugeGrid,
DoubledGaugeField &Uds,
const GaugeField &Umu)
{
typedef typename Simd::scalar_type scalar_type;
conformable(Uds.Grid(), GaugeGrid);
conformable(Umu.Grid(), GaugeGrid);
GaugeLinkField U(GaugeGrid);
GaugeLinkField tmp(GaugeGrid);
Lattice<iScalar<vInteger> > coor(GaugeGrid);
////////////////////////////////////////////////////
// apply any boundary phase or twists
////////////////////////////////////////////////////
for (int mu = 0; mu < Nd; mu++) {
////////// boundary phase /////////////
auto pha = Params.boundary_phases[mu];
scalar_type phase( real(pha),imag(pha) );
int L = GaugeGrid->GlobalDimensions()[mu];
int Lmu = L - 1;
LatticeCoordinate(coor, mu);
U = PeekIndex<LorentzIndex>(Umu, mu);
// apply any twists
RealD theta = Params.twist_n_2pi_L[mu] * 2*M_PI / L;
if ( theta != 0.0) {
scalar_type twphase(::cos(theta),::sin(theta));
U = twphase*U;
std::cout << GridLogMessage << " Twist ["<<mu<<"] "<< Params.twist_n_2pi_L[mu]<< " phase"<<phase <<std::endl;
}
tmp = where(coor == Lmu, phase * U, U);
PokeIndex<LorentzIndex>(Uds, tmp, mu);
U = adj(Cshift(U, mu, -1));
U = where(coor == 0, conjugate(phase) * U, U);
PokeIndex<LorentzIndex>(Uds, U, mu + 4);
}
}
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A,int mu){
GaugeLinkField link(mat.Grid());
link = TraceIndex<SpinIndex>(outerProduct(Btilde,A));
PokeIndex<LorentzIndex>(mat,link,mu);
}
inline void outerProductImpl(PropagatorField &mat, const FermionField &B, const FermionField &A){
mat = outerProduct(B,A);
}
inline void TraceSpinImpl(GaugeLinkField &mat, PropagatorField&P) {
mat = TraceIndex<SpinIndex>(P);
}
inline void extractLinkField(std::vector<GaugeLinkField> &mat, DoubledGaugeField &Uds){
for (int mu = 0; mu < Nd; mu++)
mat[mu] = PeekIndex<LorentzIndex>(Uds, mu);
}
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField &Atilde,int mu){
int Ls=Btilde.Grid()->_fdimensions[0];
GaugeLinkField tmp(mat.Grid());
tmp = Zero();
{
autoView( tmp_v , tmp, AcceleratorWrite);
autoView( Btilde_v , Btilde, AcceleratorRead);
autoView( Atilde_v , Atilde, AcceleratorRead);
accelerator_for(sss,tmp.Grid()->oSites(),1,{
int sU=sss;
for(int s=0;s<Ls;s++){
int sF = s+Ls*sU;
tmp_v[sU] = tmp_v[sU]+ traceIndex<SpinIndex>(outerProduct(Btilde_v[sF],Atilde_v[sF])); // ordering here
}
});
}
PokeIndex<LorentzIndex>(mat,tmp,mu);
}
};
typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffReal > WilsonImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffReal > WilsonImplF; // Float
typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffReal > WilsonImplD; // Double
typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffRealHalfComms > WilsonImplRL; // Real.. whichever prec
typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffRealHalfComms > WilsonImplFH; // Float
typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffRealHalfComms > WilsonImplDF; // Double
typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffComplex > ZWilsonImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffComplex > ZWilsonImplF; // Float
typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffComplex > ZWilsonImplD; // Double
typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffComplexHalfComms > ZWilsonImplRL; // Real.. whichever prec
typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffComplexHalfComms > ZWilsonImplFH; // Float
typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffComplexHalfComms > ZWilsonImplDF; // Double
typedef WilsonImpl<vComplex, AdjointRepresentation, CoeffReal > WilsonAdjImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, AdjointRepresentation, CoeffReal > WilsonAdjImplF; // Float
typedef WilsonImpl<vComplexD, AdjointRepresentation, CoeffReal > WilsonAdjImplD; // Double
typedef WilsonImpl<vComplex, TwoIndexSymmetricRepresentation, CoeffReal > WilsonTwoIndexSymmetricImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, TwoIndexSymmetricRepresentation, CoeffReal > WilsonTwoIndexSymmetricImplF; // Float
typedef WilsonImpl<vComplexD, TwoIndexSymmetricRepresentation, CoeffReal > WilsonTwoIndexSymmetricImplD; // Double
typedef WilsonImpl<vComplex, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplF; // Float
typedef WilsonImpl<vComplexD, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplD; // Double
NAMESPACE_END(Grid);

View File

@ -1,144 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.h
Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Helper routines that implement Wilson stencil for a single site.
// Common to both the WilsonFermion and WilsonFermion5D
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
class WilsonKernelsStatic {
public:
enum { OptGeneric, OptHandUnroll, OptInlineAsm };
enum { CommsAndCompute, CommsThenCompute };
static int Opt;
static int Comms;
};
template<class Impl> class WilsonKernels : public FermionOperator<Impl> , public WilsonKernelsStatic {
public:
INHERIT_IMPL_TYPES(Impl);
typedef FermionOperator<Impl> Base;
public:
static void DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out,
int interior=1,int exterior=1) ;
static void DhopDagKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out,
int interior=1,int exterior=1) ;
static void DhopDirAll( StencilImpl &st, DoubledGaugeField &U,SiteHalfSpinor *buf, int Ls,
int Nsite, const FermionField &in, std::vector<FermionField> &out) ;
static void DhopDirKernel(StencilImpl &st, DoubledGaugeField &U,SiteHalfSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out, int dirdisp, int gamma);
private:
static accelerator_inline void DhopDirK(StencilView &st, DoubledGaugeFieldView &U,SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out, int dirdisp, int gamma);
static accelerator_inline void DhopDirXp(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirYp(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirZp(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirTp(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirXm(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirYm(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirZm(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirTm(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
// Specialised variants
static accelerator void GenericDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
static accelerator void GenericDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
static accelerator void GenericDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
static accelerator void GenericDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
static accelerator void GenericDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
static accelerator void GenericDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
static void AsmDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Nsite, const FermionFieldView &in,FermionFieldView &out);
static void AsmDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Nsite, const FermionFieldView &in, FermionFieldView &out);
static void AsmDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Nsite, const FermionFieldView &in,FermionFieldView &out);
static void AsmDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Nsite, const FermionFieldView &in, FermionFieldView &out);
static void AsmDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Nsite, const FermionFieldView &in,FermionFieldView &out);
static void AsmDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Nsite, const FermionFieldView &in, FermionFieldView &out);
// Keep Hand unrolled temporarily
static accelerator void HandDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
static accelerator void HandDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
static accelerator void HandDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
static accelerator void HandDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
static accelerator void HandDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
static accelerator void HandDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out);
public:
WilsonKernels(const ImplParams &p = ImplParams()) : Base(p){};
};
NAMESPACE_END(Grid);

View File

@ -1,74 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonTMFermion.h
Copyright (C) 2015
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/WilsonFermion.h>
NAMESPACE_BEGIN(Grid);
template<class Impl>
class WilsonTMFermion : public WilsonFermion<Impl>
{
public:
INHERIT_IMPL_TYPES(Impl);
public:
virtual void Instantiatable(void) {};
// Constructors
WilsonTMFermion(GaugeField &_Umu,
GridCartesian &Fgrid,
GridRedBlackCartesian &Hgrid,
RealD _mass,
RealD _mu,
const ImplParams &p= ImplParams()
) :
WilsonFermion<Impl>(_Umu,
Fgrid,
Hgrid,
_mass,p)
{
mu = _mu;
}
// allow override for twisted mass and clover
virtual void Mooee(const FermionField &in, FermionField &out) ;
virtual void MooeeDag(const FermionField &in, FermionField &out) ;
virtual void MooeeInv(const FermionField &in, FermionField &out) ;
virtual void MooeeInvDag(const FermionField &in, FermionField &out) ;
private:
RealD mu; // TwistedMass parameter
};
NAMESPACE_END(Grid);

View File

@ -1,154 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonTMFermion5D.h
Copyright (C) 2015
Author: paboyle <paboyle@ph.ed.ac.uk> ; NB Christoph did similar in GPT
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/WilsonFermion.h>
NAMESPACE_BEGIN(Grid);
template<class Impl>
class WilsonTMFermion5D : public WilsonFermion5D<Impl>
{
public:
INHERIT_IMPL_TYPES(Impl);
public:
virtual void Instantiatable(void) {};
// Constructors
WilsonTMFermion5D(GaugeField &_Umu,
GridCartesian &Fgrid,
GridRedBlackCartesian &Frbgrid,
GridCartesian &Ugrid,
GridRedBlackCartesian &Urbgrid,
const std::vector<RealD> _mass,
const std::vector<RealD> _mu,
const ImplParams &p= ImplParams()
) :
WilsonFermion5D<Impl>(_Umu,
Fgrid,
Frbgrid,
Ugrid,
Urbgrid,
4.0,p)
{
update(_mass,_mu);
}
virtual void Meooe(const FermionField &in, FermionField &out) {
if (in.Checkerboard() == Odd) {
this->DhopEO(in, out, DaggerNo);
} else {
this->DhopOE(in, out, DaggerNo);
}
}
virtual void MeooeDag(const FermionField &in, FermionField &out) {
if (in.Checkerboard() == Odd) {
this->DhopEO(in, out, DaggerYes);
} else {
this->DhopOE(in, out, DaggerYes);
}
}
// allow override for twisted mass and clover
virtual void Mooee(const FermionField &in, FermionField &out) {
out.Checkerboard() = in.Checkerboard();
//axpibg5x(out,in,a,b); // out = a*in + b*i*G5*in
for (int s=0;s<(int)this->mass.size();s++) {
ComplexD a = 4.0+this->mass[s];
ComplexD b(0.0,this->mu[s]);
axpbg5y_ssp(out,a,in,b,in,s,s);
}
}
virtual void MooeeDag(const FermionField &in, FermionField &out) {
out.Checkerboard() = in.Checkerboard();
for (int s=0;s<(int)this->mass.size();s++) {
ComplexD a = 4.0+this->mass[s];
ComplexD b(0.0,-this->mu[s]);
axpbg5y_ssp(out,a,in,b,in,s,s);
}
}
virtual void MooeeInv(const FermionField &in, FermionField &out) {
for (int s=0;s<(int)this->mass.size();s++) {
RealD m = this->mass[s];
RealD tm = this->mu[s];
RealD mtil = 4.0+this->mass[s];
RealD sq = mtil*mtil+tm*tm;
ComplexD a = mtil/sq;
ComplexD b(0.0, -tm /sq);
axpbg5y_ssp(out,a,in,b,in,s,s);
}
}
virtual void MooeeInvDag(const FermionField &in, FermionField &out) {
for (int s=0;s<(int)this->mass.size();s++) {
RealD m = this->mass[s];
RealD tm = this->mu[s];
RealD mtil = 4.0+this->mass[s];
RealD sq = mtil*mtil+tm*tm;
ComplexD a = mtil/sq;
ComplexD b(0.0,tm /sq);
axpbg5y_ssp(out,a,in,b,in,s,s);
}
}
virtual void M(const FermionField &in, FermionField &out)
{
out.Checkerboard() = in.Checkerboard();
this->Dhop(in, out, DaggerNo);
FermionField tmp(out.Grid());
for (int s=0;s<(int)this->mass.size();s++) {
ComplexD a = 4.0+this->mass[s];
ComplexD b(0.0,this->mu[s]);
axpbg5y_ssp(tmp,a,in,b,in,s,s);
}
axpy(out, 1.0, tmp, out);
}
// needed for fast PV
void update(const std::vector<RealD>& _mass, const std::vector<RealD>& _mu)
{
assert(_mass.size() == _mu.size());
assert(_mass.size() == this->FermionGrid()->_fdimensions[0]);
this->mass = _mass;
this->mu = _mu;
}
private:
std::vector<RealD> mu;
std::vector<RealD> mass;
};
typedef WilsonTMFermion5D<WilsonImplF> WilsonTMFermion5DF;
typedef WilsonTMFermion5D<WilsonImplD> WilsonTMFermion5DD;
NAMESPACE_END(Grid);

Some files were not shown because too many files have changed in this diff Show More