1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-15 14:27:06 +01:00

Compare commits

..

14 Commits

Author SHA1 Message Date
a269a3d919 Merge pull request #358 from mmphys/feature/serialisation-test
Add a ragged std::vector to the serialisation test
2021-06-09 10:16:25 +01:00
0c4f585496 Test nested std::vector<grid tensor> 2021-06-08 00:05:35 +01:00
33d2df46a0 Merge branch 'develop' into feature/serialisation-test
* develop:
  Update README.md
  removing Travis CI constantly failing due to overtime (no way we can compile Grid on free time anymore)
2021-06-07 23:25:38 +01:00
2df308f649 Add a ragged vector to the serialisation tests. NB: Already had nested (regular) std::vector<std::vector<...>> 2021-06-07 23:25:07 +01:00
298a6ec51e Merge pull request #357 from mmphys/bugfix/ragged
Bugfix/ragged Multi-dimensional ragged vectors
2021-06-04 10:34:46 +01:00
e5dbe488a6 Merge branch 'develop' into bugfix/ragged
* develop:
  Remove synch
2021-06-03 08:25:56 +01:00
393727b93b Documentation update (briefly) covering serialisation changes. For review 2021-06-01 15:49:37 +01:00
2b1fcd78c3 Fixes post review with Peter: a) Correct bug in isRegularShape - detect 3d matrix where 1st slice is 2x2 and second slice is 2x1; b) Synchronisation of EigenResizeCounter done by checking we're the OMP primary thread; c) Move definition of EigenResizeCounter to new file, BaseIO.cc 2021-05-31 22:24:54 +01:00
0a4e0b49a0 BaseIO: Added "EigenResizeCounter" to keep track of any allocations/deallocations to Eigen tensors during readback. On read, if the tensor is resized, EigenResizeCounter += delta memory (in bytes) 2021-05-31 12:49:56 +01:00
76af169f05 Add global namespace to Writer<T> and Reader<T> inside GRID_SERIALIZABLE_CLASS_MEMBERS (so that "using Grid" not necessary).
Fix issue with output of Grid::iMatrix so that M<3>{{148,149,150,} {151,152,153,} {154155156}} becomes M<3>{{148,149,150} {151,152,153} {154,155,156}}
2021-05-31 08:43:02 +01:00
7b89232251 Extended HDF5 serialisation of std::vector<T> where T now also includes Grid scalar/vector/matrix
Changed VectorUtils element traits to is_flattenable, because: a) contract changed on what it does; and b) no other Grid dependencies on element. Needs review.
Initial tests work ... needs proper regression testing.
2021-05-30 20:27:53 +01:00
ef0ddd5d04 std::vector serialisation in hdf5 uses a different format if the vector is ragged. When reading back std::vector we need to check which format we're reading (since we don't know a priori) and this involves looking for attributes that may not exist. The c++ API: a) throws; and b) prints voluminous logging. Switched to non-throwing, non-logging, C version of the API after code review. 2021-05-24 18:43:55 +01:00
9b73dacf50 First row might still be ragged if multi dimensional. attrExists() doesn't throw, but easier to wrap in try ... catch than to explain in comment. 2021-05-22 04:34:32 +01:00
244b4aa07f Serialise std::vector of numeric types as multidimensional object if size is regular ... or individually if ragged 2021-05-21 20:08:56 +01:00
13 changed files with 477 additions and 198 deletions

1
.gitignore vendored
View File

@ -88,6 +88,7 @@ Thumbs.db
# build directory #
###################
build*/*
Documentation/_build
# IDE related files #
#####################

View File

@ -6,8 +6,7 @@ Source file: ./lib/qcd/modules/plaquette.h
Copyright (C) 2017
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Chulwoo Jung <chulwoo@bnl.gov>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -36,7 +35,7 @@ template <class Gimpl>
class WilsonFlow: public Smear<Gimpl>{
unsigned int Nstep;
unsigned int measure_interval;
mutable RealD epsilon, taus,tolerance;
mutable RealD epsilon, taus;
mutable WilsonGaugeAction<Gimpl> SG;
@ -48,15 +47,13 @@ class WilsonFlow: public Smear<Gimpl>{
public:
INHERIT_GIMPL_TYPES(Gimpl)
explicit WilsonFlow(unsigned int Nstep, RealD epsilon, unsigned int interval = 1, RealD tol = 1e-3):
explicit WilsonFlow(unsigned int Nstep, RealD epsilon, unsigned int interval = 1):
Nstep(Nstep),
epsilon(epsilon),
tolerance(tol),
measure_interval(interval),
SG(WilsonGaugeAction<Gimpl>(3.0)) {
// WilsonGaugeAction with beta 3.0
assert(epsilon > 0.0);
assert(tolerance > 0.0);
LogMessage();
}
@ -67,8 +64,6 @@ public:
<< "[WilsonFlow] epsilon : " << epsilon << std::endl;
std::cout << GridLogMessage
<< "[WilsonFlow] full trajectory : " << Nstep * epsilon << std::endl;
std::cout << GridLogMessage
<< "[WilsonFlow] tolerance : " << tolerance << std::endl;
}
virtual void smear(GaugeField&, const GaugeField&) const;
@ -111,14 +106,11 @@ void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, Real
if (maxTau - taus < epsilon){
epsilon = maxTau-taus;
}
std::cout << GridLogMessage << "Integration epsilon : " << epsilon << std::endl;
//std::cout << GridLogMessage << "Integration epsilon : " << epsilon << std::endl;
GaugeField Z(U.Grid());
GaugeField Zprime(U.Grid());
GaugeField tmp(U.Grid()), Uprime(U.Grid()),Usave(U.Grid());
GaugeField tmp(U.Grid()), Uprime(U.Grid());
Uprime = U;
Usave = U;
SG.deriv(U, Z);
Zprime = -Z;
Z *= 0.25; // Z0 = 1/4 * F(U)
@ -136,33 +128,18 @@ void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, Real
Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
Gimpl::update_field(Z, U, -2.0*epsilon); // V(t+e) = exp(ep*Z)*W2
// Ramos arXiv:1301.4388
// Ramos
Gimpl::update_field(Zprime, Uprime, -2.0*epsilon); // V'(t+e) = exp(ep*Z')*W0
// Compute distance as norm^2 of the difference
GaugeField diffU = U - Uprime;
// Wrong
// RealD diff = norm2(diffU);
// std::cout << GridLogMessage << "norm2: " << diff << std::endl;
// RealD tol=1e-3;
RealD diff = real(rankInnerMax(diffU,diffU));
diff = sqrt(diff)/18.; // distance defined in Ramos
GridBase *grid = diffU.Grid();
std::cout << GridLogMessage << "max: " << diff << std::endl;
grid->GlobalMax(diff);
std::cout << GridLogMessage << "max: " << diff << std::endl;
RealD diff = norm2(diffU);
// adjust integration step
if(diff < tolerance) {
taus += epsilon;
// std::cout << GridLogMessage << "Adjusting integration step with distance: " << diff << std::endl;
} else {
U = Usave;
}
//std::cout << GridLogMessage << "Adjusting integration step with distance: " << diff << std::endl;
epsilon = epsilon*0.95*std::pow(tolerance/diff,1./3.);
std::cout << GridLogMessage << "Distance : "<<diff<<"New epsilon : " << epsilon << std::endl;
epsilon = epsilon*0.95*std::pow(1e-4/diff,1./3.);
//std::cout << GridLogMessage << "New epsilon : " << epsilon << std::endl;
}
@ -207,11 +184,8 @@ void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const {
template <class Gimpl>
void WilsonFlow<Gimpl>::smear_adaptive(GaugeField& out, const GaugeField& in, RealD maxTau){
out = in;
// taus = epsilon;
taus = 0.;
taus = epsilon;
unsigned int step = 0;
double measTau = epsilon*measure_interval;
std::cout << GridLogMessage << "measTau :"<< measTau << std::endl;
do{
step++;
//std::cout << GridLogMessage << "Evolution time :"<< taus << std::endl;
@ -219,12 +193,10 @@ void WilsonFlow<Gimpl>::smear_adaptive(GaugeField& out, const GaugeField& in, Re
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : "
<< step << " " << taus << " "
<< energyDensityPlaquette(out) << std::endl;
// if( step % measure_interval == 0){
if( taus > measTau ) {
if( step % measure_interval == 0){
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : "
<< step << " "
<< WilsonLoops<PeriodicGimplR>::TopologicalCharge(out) << std::endl;
measTau += epsilon*measure_interval;
}
} while (taus < maxTau);

View File

@ -0,0 +1,35 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/serialisation/BaseIO.h
Copyright (C) 2015
Author: Michael Marshall <michael.marshall@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid)
std::uint64_t EigenIO::EigenResizeCounter(0);
NAMESPACE_END(Grid)

View File

@ -9,6 +9,7 @@
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Michael Marshall <michael.marshall@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -30,6 +31,7 @@ Author: Guido Cossu <guido.cossu@ed.ac.uk>
#ifndef GRID_SERIALISATION_ABSTRACT_READER_H
#define GRID_SERIALISATION_ABSTRACT_READER_H
#include <atomic>
#include <type_traits>
#include <Grid/tensors/Tensors.h>
#include <Grid/serialisation/VectorUtils.h>
@ -110,6 +112,10 @@ namespace Grid {
template <typename ET>
inline typename std::enable_if<is_tensor_of_container<ET>::value, typename Traits<ET>::scalar_type *>::type
getFirstScalar(ET &eigenTensor) { return eigenTensor.data()->begin(); }
// Counter for resized EigenTensors (poor man's substitute for allocator)
// Defined in BinaryIO.cc
extern std::uint64_t EigenResizeCounter;
}
// Abstract writer/reader classes ////////////////////////////////////////////
@ -497,8 +503,14 @@ namespace Grid {
typename std::enable_if<EigenIO::is_tensor_variable<ETensor>::value, void>::type
Reader<T>::Reshape(ETensor &t, const std::array<typename ETensor::Index, ETensor::NumDimensions> &dims )
{
#ifdef GRID_OMP
// The memory counter is the reason this must be done from the primary thread
assert(omp_in_parallel()==0 && "Deserialisation which resizes Eigen tensor must happen from primary thread");
#endif
EigenIO::EigenResizeCounter -= static_cast<uint64_t>(t.size()) * sizeof(typename ETensor::Scalar);
//t.reshape( dims );
t.resize( dims );
EigenIO::EigenResizeCounter += static_cast<uint64_t>(t.size()) * sizeof(typename ETensor::Scalar);
}
template <typename T>

View File

@ -1,3 +1,34 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./Grid/serialisation/VectorUtils.h
Copyright (C) 2015
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Peter Boyle <paboyle@ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Michael Marshall <michael.marshall@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;

View File

@ -1,3 +1,34 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./Grid/serialisation/VectorUtils.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ed.ac.uk>
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Michael Marshall <michael.marshall@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_SERIALISATION_HDF5_H
#define GRID_SERIALISATION_HDF5_H
@ -34,11 +65,13 @@ namespace Grid
template <typename U>
void writeDefault(const std::string &s, const U &x);
template <typename U>
typename std::enable_if<element<std::vector<U>>::is_number, void>::type
void writeRagged(const std::string &s, const std::vector<U> &x);
template <typename U>
typename std::enable_if<is_flattenable<std::vector<U>>::value>::type
writeDefault(const std::string &s, const std::vector<U> &x);
template <typename U>
typename std::enable_if<!element<std::vector<U>>::is_number, void>::type
writeDefault(const std::string &s, const std::vector<U> &x);
typename std::enable_if<!is_flattenable<std::vector<U>>::value>::type
writeDefault(const std::string &s, const std::vector<U> &x) { writeRagged(s, x); }
template <typename U>
void writeMultiDim(const std::string &s, const std::vector<size_t> & Dimensions, const U * pDataRowMajor, size_t NumElements);
H5NS::Group & getGroup(void);
@ -64,11 +97,13 @@ namespace Grid
template <typename U>
void readDefault(const std::string &s, U &output);
template <typename U>
typename std::enable_if<element<std::vector<U>>::is_number, void>::type
void readRagged(const std::string &s, std::vector<U> &x);
template <typename U>
typename std::enable_if<is_flattenable<std::vector<U>>::value>::type
readDefault(const std::string &s, std::vector<U> &x);
template <typename U>
typename std::enable_if<!element<std::vector<U>>::is_number, void>::type
readDefault(const std::string &s, std::vector<U> &x);
typename std::enable_if<!is_flattenable<std::vector<U>>::value>::type
readDefault(const std::string &s, std::vector<U> &x) { readRagged(s, x); }
template <typename U>
void readMultiDim(const std::string &s, std::vector<U> &buf, std::vector<size_t> &dim);
H5NS::Group & getGroup(void);
@ -176,24 +211,30 @@ namespace Grid
}
template <typename U>
typename std::enable_if<element<std::vector<U>>::is_number, void>::type
typename std::enable_if<is_flattenable<std::vector<U>>::value>::type
Hdf5Writer::writeDefault(const std::string &s, const std::vector<U> &x)
{
// alias to element type
typedef typename element<std::vector<U>>::type Element;
// flatten the vector and getting dimensions
Flatten<std::vector<U>> flat(x);
std::vector<size_t> dim;
const auto &flatx = flat.getFlatVector();
for (auto &d: flat.getDim())
dim.push_back(d);
writeMultiDim<Element>(s, dim, &flatx[0], flatx.size());
if (isRegularShape(x))
{
// alias to element type
using Scalar = typename is_flattenable<std::vector<U>>::type;
// flatten the vector and getting dimensions
Flatten<std::vector<U>> flat(x);
std::vector<size_t> dim;
const auto &flatx = flat.getFlatVector();
for (auto &d: flat.getDim())
dim.push_back(d);
writeMultiDim<Scalar>(s, dim, &flatx[0], flatx.size());
}
else
{
writeRagged(s, x);
}
}
template <typename U>
typename std::enable_if<!element<std::vector<U>>::is_number, void>::type
Hdf5Writer::writeDefault(const std::string &s, const std::vector<U> &x)
void Hdf5Writer::writeRagged(const std::string &s, const std::vector<U> &x)
{
push(s);
writeSingleAttribute(x.size(), HDF5_GRID_GUARD "vector_size",
@ -229,7 +270,7 @@ namespace Grid
void Hdf5Reader::readMultiDim(const std::string &s, std::vector<U> &buf, std::vector<size_t> &dim)
{
// alias to element type
typedef typename element<std::vector<U>>::type Element;
using Scalar = typename is_flattenable<std::vector<U>>::type;
// read the dimensions
H5NS::DataSpace dataSpace;
@ -260,37 +301,44 @@ namespace Grid
H5NS::DataSet dataSet;
dataSet = group_.openDataSet(s);
dataSet.read(buf.data(), Hdf5Type<Element>::type());
dataSet.read(buf.data(), Hdf5Type<Scalar>::type());
}
else
{
H5NS::Attribute attribute;
attribute = group_.openAttribute(s);
attribute.read(Hdf5Type<Element>::type(), buf.data());
attribute.read(Hdf5Type<Scalar>::type(), buf.data());
}
}
template <typename U>
typename std::enable_if<element<std::vector<U>>::is_number, void>::type
typename std::enable_if<is_flattenable<std::vector<U>>::value>::type
Hdf5Reader::readDefault(const std::string &s, std::vector<U> &x)
{
// alias to element type
typedef typename element<std::vector<U>>::type Element;
if (H5Lexists (group_.getId(), s.c_str(), H5P_DEFAULT) > 0
&& H5Aexists_by_name(group_.getId(), s.c_str(), HDF5_GRID_GUARD "vector_size", H5P_DEFAULT ) > 0)
{
readRagged(s, x);
}
else
{
// alias to element type
using Scalar = typename is_flattenable<std::vector<U>>::type;
std::vector<size_t> dim;
std::vector<Element> buf;
readMultiDim( s, buf, dim );
std::vector<size_t> dim;
std::vector<Scalar> buf;
readMultiDim( s, buf, dim );
// reconstruct the multidimensional vector
Reconstruct<std::vector<U>> r(buf, dim);
x = r.getVector();
// reconstruct the multidimensional vector
Reconstruct<std::vector<U>> r(buf, dim);
x = r.getVector();
}
}
template <typename U>
typename std::enable_if<!element<std::vector<U>>::is_number, void>::type
Hdf5Reader::readDefault(const std::string &s, std::vector<U> &x)
void Hdf5Reader::readRagged(const std::string &s, std::vector<U> &x)
{
uint64_t size;

View File

@ -118,13 +118,13 @@ static inline std::string SerialisableClassName(void) {return std::string(#cname
static constexpr bool isEnum = false; \
GRID_MACRO_EVAL(GRID_MACRO_MAP(GRID_MACRO_MEMBER,__VA_ARGS__))\
template <typename T>\
static inline void write(Writer<T> &WR,const std::string &s, const cname &obj){ \
static inline void write(::Grid::Writer<T> &WR,const std::string &s, const cname &obj){ \
push(WR,s);\
GRID_MACRO_EVAL(GRID_MACRO_MAP(GRID_MACRO_WRITE_MEMBER,__VA_ARGS__)) \
pop(WR);\
}\
template <typename T>\
static inline void read(Reader<T> &RD,const std::string &s, cname &obj){ \
static inline void read(::Grid::Reader<T> &RD,const std::string &s, cname &obj){ \
if (!push(RD,s))\
{\
std::cout << ::Grid::GridLogWarning << "IO: Cannot open node '" << s << "'" << std::endl; \

View File

@ -9,7 +9,8 @@
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Michael Marshall <michael.marshall@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
@ -236,21 +237,36 @@ namespace Grid {
}
}
// Vector element trait //////////////////////////////////////////////////////
template <typename T>
struct element
// is_flattenable<T>::value is true if T is a std::vector<> which can be flattened //////////////////////
template <typename T, typename V = void>
struct is_flattenable : std::false_type
{
typedef T type;
static constexpr bool is_number = false;
using type = T;
using grid_type = T;
static constexpr int vecRank = 0;
static constexpr bool isGridTensor = false;
static constexpr bool children_flattenable = std::is_arithmetic<T>::value or is_complex<T>::value;
};
template <typename T>
struct element<std::vector<T>>
struct is_flattenable<T, typename std::enable_if<isGridTensor<T>::value>::type> : std::false_type
{
typedef typename element<T>::type type;
static constexpr bool is_number = std::is_arithmetic<T>::value
or is_complex<T>::value
or element<T>::is_number;
using type = typename GridTypeMapper<T>::scalar_type;
using grid_type = T;
static constexpr int vecRank = 0;
static constexpr bool isGridTensor = true;
static constexpr bool children_flattenable = true;
};
template <typename T>
struct is_flattenable<std::vector<T>, typename std::enable_if<is_flattenable<T>::children_flattenable>::type>
: std::true_type
{
using type = typename is_flattenable<T>::type;
using grid_type = typename is_flattenable<T>::grid_type;
static constexpr bool isGridTensor = is_flattenable<T>::isGridTensor;
static constexpr int vecRank = is_flattenable<T>::vecRank + 1;
static constexpr bool children_flattenable = true;
};
// Vector flattening utility class ////////////////////////////////////////////
@ -259,23 +275,30 @@ namespace Grid {
class Flatten
{
public:
typedef typename element<V>::type Element;
using Scalar = typename is_flattenable<V>::type;
static constexpr bool isGridTensor = is_flattenable<V>::isGridTensor;
public:
explicit Flatten(const V &vector);
const V & getVector(void);
const std::vector<Element> & getFlatVector(void);
const std::vector<size_t> & getDim(void);
explicit Flatten(const V &vector);
const V & getVector(void) const { return vector_; }
const std::vector<Scalar> & getFlatVector(void) const { return flatVector_; }
const std::vector<size_t> & getDim(void) const { return dim_; }
private:
void accumulate(const Element &e);
template <typename W>
void accumulate(const W &v);
void accumulateDim(const Element &e);
template <typename W>
void accumulateDim(const W &v);
template <typename W> typename std::enable_if<!is_flattenable<W>::value && !is_flattenable<W>::isGridTensor>::type
accumulate(const W &e);
template <typename W> typename std::enable_if<!is_flattenable<W>::value && is_flattenable<W>::isGridTensor>::type
accumulate(const W &e);
template <typename W> typename std::enable_if< is_flattenable<W>::value>::type
accumulate(const W &v);
template <typename W> typename std::enable_if<!is_flattenable<W>::value && !is_flattenable<W>::isGridTensor>::type
accumulateDim(const W &e) {} // Innermost is a scalar - do nothing
template <typename W> typename std::enable_if<!is_flattenable<W>::value && is_flattenable<W>::isGridTensor>::type
accumulateDim(const W &e);
template <typename W> typename std::enable_if< is_flattenable<W>::value>::type
accumulateDim(const W &v);
private:
const V &vector_;
std::vector<Element> flatVector_;
std::vector<size_t> dim_;
const V &vector_;
std::vector<Scalar> flatVector_;
std::vector<size_t> dim_;
};
// Class to reconstruct a multidimensional std::vector
@ -283,38 +306,57 @@ namespace Grid {
class Reconstruct
{
public:
typedef typename element<V>::type Element;
using Scalar = typename is_flattenable<V>::type;
static constexpr bool isGridTensor = is_flattenable<V>::isGridTensor;
public:
Reconstruct(const std::vector<Element> &flatVector,
Reconstruct(const std::vector<Scalar> &flatVector,
const std::vector<size_t> &dim);
const V & getVector(void);
const std::vector<Element> & getFlatVector(void);
const std::vector<size_t> & getDim(void);
const V & getVector(void) const { return vector_; }
const std::vector<Scalar> & getFlatVector(void) const { return flatVector_; }
const std::vector<size_t> & getDim(void) const { return dim_; }
private:
void fill(std::vector<Element> &v);
template <typename W>
void fill(W &v);
void resize(std::vector<Element> &v, const unsigned int dim);
template <typename W>
void resize(W &v, const unsigned int dim);
template <typename W> typename std::enable_if<!is_flattenable<W>::value && !is_flattenable<W>::isGridTensor>::type
fill(W &v);
template <typename W> typename std::enable_if<!is_flattenable<W>::value && is_flattenable<W>::isGridTensor>::type
fill(W &v);
template <typename W> typename std::enable_if< is_flattenable<W>::value>::type
fill(W &v);
template <typename W> typename std::enable_if< is_flattenable<W>::value && is_flattenable<W>::vecRank==1>::type
resize(W &v, const unsigned int dim);
template <typename W> typename std::enable_if< is_flattenable<W>::value && (is_flattenable<W>::vecRank>1)>::type
resize(W &v, const unsigned int dim);
template <typename W> typename std::enable_if<!is_flattenable<W>::isGridTensor>::type
checkInnermost(const W &e) {} // Innermost is a scalar - do nothing
template <typename W> typename std::enable_if< is_flattenable<W>::isGridTensor>::type
checkInnermost(const W &e);
private:
V vector_;
const std::vector<Element> &flatVector_;
std::vector<size_t> dim_;
size_t ind_{0};
unsigned int dimInd_{0};
V vector_;
const std::vector<Scalar> &flatVector_;
std::vector<size_t> dim_;
size_t ind_{0};
unsigned int dimInd_{0};
};
// Flatten class template implementation
template <typename V>
void Flatten<V>::accumulate(const Element &e)
template <typename W> typename std::enable_if<!is_flattenable<W>::value && !is_flattenable<W>::isGridTensor>::type
Flatten<V>::accumulate(const W &e)
{
flatVector_.push_back(e);
}
template <typename V>
template <typename W>
void Flatten<V>::accumulate(const W &v)
template <typename W> typename std::enable_if<!is_flattenable<W>::value && is_flattenable<W>::isGridTensor>::type
Flatten<V>::accumulate(const W &e)
{
for (const Scalar &x: e) {
flatVector_.push_back(x);
}
}
template <typename V>
template <typename W> typename std::enable_if<is_flattenable<W>::value>::type
Flatten<V>::accumulate(const W &v)
{
for (auto &e: v)
{
@ -323,11 +365,17 @@ namespace Grid {
}
template <typename V>
void Flatten<V>::accumulateDim(const Element &e) {};
template <typename W> typename std::enable_if<!is_flattenable<W>::value && is_flattenable<W>::isGridTensor>::type
Flatten<V>::accumulateDim(const W &e)
{
using Traits = GridTypeMapper<typename is_flattenable<W>::grid_type>;
for (int rank=0; rank < Traits::Rank; ++rank)
dim_.push_back(Traits::Dimension(rank));
}
template <typename V>
template <typename W>
void Flatten<V>::accumulateDim(const W &v)
template <typename W> typename std::enable_if<is_flattenable<W>::value>::type
Flatten<V>::accumulateDim(const W &v)
{
dim_.push_back(v.size());
accumulateDim(v[0]);
@ -337,42 +385,36 @@ namespace Grid {
Flatten<V>::Flatten(const V &vector)
: vector_(vector)
{
accumulate(vector_);
accumulateDim(vector_);
}
template <typename V>
const V & Flatten<V>::getVector(void)
{
return vector_;
}
template <typename V>
const std::vector<typename Flatten<V>::Element> &
Flatten<V>::getFlatVector(void)
{
return flatVector_;
}
template <typename V>
const std::vector<size_t> & Flatten<V>::getDim(void)
{
return dim_;
std::size_t TotalSize{ dim_[0] };
for (int i = 1; i < dim_.size(); ++i) {
TotalSize *= dim_[i];
}
flatVector_.reserve(TotalSize);
accumulate(vector_);
}
// Reconstruct class template implementation
template <typename V>
void Reconstruct<V>::fill(std::vector<Element> &v)
template <typename W> typename std::enable_if<!is_flattenable<W>::value && !is_flattenable<W>::isGridTensor>::type
Reconstruct<V>::fill(W &v)
{
v = flatVector_[ind_++];
}
template <typename V>
template <typename W> typename std::enable_if<!is_flattenable<W>::value && is_flattenable<W>::isGridTensor>::type
Reconstruct<V>::fill(W &v)
{
for (auto &e: v)
{
e = flatVector_[ind_++];
}
}
template <typename V>
template <typename W>
void Reconstruct<V>::fill(W &v)
template <typename W> typename std::enable_if<is_flattenable<W>::value>::type
Reconstruct<V>::fill(W &v)
{
for (auto &e: v)
{
@ -381,14 +423,15 @@ namespace Grid {
}
template <typename V>
void Reconstruct<V>::resize(std::vector<Element> &v, const unsigned int dim)
template <typename W> typename std::enable_if<is_flattenable<W>::value && is_flattenable<W>::vecRank==1>::type
Reconstruct<V>::resize(W &v, const unsigned int dim)
{
v.resize(dim_[dim]);
}
template <typename V>
template <typename W>
void Reconstruct<V>::resize(W &v, const unsigned int dim)
template <typename W> typename std::enable_if<is_flattenable<W>::value && (is_flattenable<W>::vecRank>1)>::type
Reconstruct<V>::resize(W &v, const unsigned int dim)
{
v.resize(dim_[dim]);
for (auto &e: v)
@ -398,34 +441,31 @@ namespace Grid {
}
template <typename V>
Reconstruct<V>::Reconstruct(const std::vector<Element> &flatVector,
template <typename W> typename std::enable_if<is_flattenable<W>::isGridTensor>::type
Reconstruct<V>::checkInnermost(const W &)
{
using Traits = GridTypeMapper<typename is_flattenable<W>::grid_type>;
const int gridRank{Traits::Rank};
const int dimRank{static_cast<int>(dim_.size())};
assert(dimRank >= gridRank && "Tensor rank too low for Grid tensor");
for (int i=0; i<gridRank; ++i) {
assert(dim_[dimRank - gridRank + i] == Traits::Dimension(i) && "Tensor dimension doesn't match Grid tensor");
}
dim_.resize(dimRank - gridRank);
}
template <typename V>
Reconstruct<V>::Reconstruct(const std::vector<Scalar> &flatVector,
const std::vector<size_t> &dim)
: flatVector_(flatVector)
, dim_(dim)
{
checkInnermost(vector_);
assert(dim_.size() == is_flattenable<V>::vecRank && "Tensor rank doesn't match nested std::vector rank");
resize(vector_, 0);
fill(vector_);
}
template <typename V>
const V & Reconstruct<V>::getVector(void)
{
return vector_;
}
template <typename V>
const std::vector<typename Reconstruct<V>::Element> &
Reconstruct<V>::getFlatVector(void)
{
return flatVector_;
}
template <typename V>
const std::vector<size_t> & Reconstruct<V>::getDim(void)
{
return dim_;
}
// Vector IO utilities ///////////////////////////////////////////////////////
// helper function to read space-separated values
template <typename T>
@ -459,6 +499,64 @@ namespace Grid {
return os;
}
// In general, scalar types are considered "flattenable" (regularly shaped)
template <typename T>
bool isRegularShapeHelper(const std::vector<T> &, std::vector<std::size_t> &, int, bool)
{
return true;
}
template <typename T>
bool isRegularShapeHelper(const std::vector<std::vector<T>> &v, std::vector<std::size_t> &Dims, int Depth, bool bFirst)
{
if( bFirst)
{
assert( Dims.size() == Depth && "Bug: Delete this message after testing" );
Dims.push_back(v[0].size());
if (!Dims[Depth])
return false;
}
else
{
assert( Dims.size() >= Depth + 1 && "Bug: Delete this message after testing" );
}
for (std::size_t i = 0; i < v.size(); ++i)
{
if (v[i].size() != Dims[Depth] || !isRegularShapeHelper(v[i], Dims, Depth + 1, bFirst && i==0))
{
return false;
}
}
return true;
}
template <typename T>
bool isRegularShape(const T &t) { return true; }
template <typename T>
bool isRegularShape(const std::vector<T> &v) { return !v.empty(); }
// Return non-zero if all dimensions of this std::vector<std::vector<T>> are regularly shaped
template <typename T>
bool isRegularShape(const std::vector<std::vector<T>> &v)
{
if (v.empty() || v[0].empty())
return false;
// Make sure all of my rows are the same size
std::vector<std::size_t> Dims;
Dims.reserve(is_flattenable<T>::vecRank);
Dims.push_back(v.size());
Dims.push_back(v[0].size());
for (std::size_t i = 0; i < Dims[0]; ++i)
{
if (v[i].size() != Dims[1] || !isRegularShapeHelper(v[i], Dims, 2, i==0))
{
return false;
}
}
return true;
}
}
// helper function to read space-separated values

View File

@ -417,7 +417,7 @@ public:
stream << "{";
for (int j = 0; j < N; j++) {
stream << o._internal[i][j];
if (i < N - 1) stream << ",";
if (j < N - 1) stream << ",";
}
stream << "}";
if (i != N - 1) stream << "\n\t\t";

Binary file not shown.

View File

@ -1787,7 +1787,7 @@ Hdf5Writer Hdf5Reader HDF5
Write interfaces, similar to the XML facilities in QDP++ are presented. However,
the serialisation routines are automatically generated by the macro, and a virtual
reader adn writer interface enables writing to any of a number of formats.
reader and writer interface enables writing to any of a number of formats.
**Example**::
@ -1814,6 +1814,91 @@ reader adn writer interface enables writing to any of a number of formats.
}
Eigen tensor support -- added 2019H1
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The Serialisation library was expanded in 2019 to support de/serialisation of
Eigen tensors. De/serialisation of existing types was not changed. Data files
without Eigen tensors remain compatible with earlier versions of Grid and other readers.
Conversely, data files containing serialised Eigen tensors is a breaking change.
Eigen tensor serialisation support was added to BaseIO, which was modified to provide a Traits class
to recognise Eigen tensors with elements that are either: primitive scalars (arithmetic and complex types);
or Grid tensors.
**Traits determining de/serialisable scalars**::
// Is this an Eigen tensor
template<typename T> struct is_tensor : std::integral_constant<bool,
std::is_base_of<Eigen::TensorBase<T, Eigen::ReadOnlyAccessors>, T>::value> {};
// Is this an Eigen tensor of a supported scalar
template<typename T, typename V = void> struct is_tensor_of_scalar : public std::false_type {};
template<typename T> struct is_tensor_of_scalar<T, typename std::enable_if<is_tensor<T>::value && is_scalar<typename T::Scalar>::value>::type> : public std::true_type {};
// Is this an Eigen tensor of a supported container
template<typename T, typename V = void> struct is_tensor_of_container : public std::false_type {};
template<typename T> struct is_tensor_of_container<T, typename std::enable_if<is_tensor<T>::value && isGridTensor<typename T::Scalar>::value>::type> : public std::true_type {};
Eigen tensors are regular, multidimensional objects, and each Reader/Writer
was extended to support this new datatype. Where the Eigen tensor contains
a Grid tensor, the dimensions of the data written are the dimensions of the
Eigen tensor plus the dimensions of the underlying Grid scalar. Dimensions
of size 1 are preserved.
**New Reader/Writer methods for multi-dimensional data**::
template <typename U>
void readMultiDim(const std::string &s, std::vector<U> &buf, std::vector<size_t> &dim);
template <typename U>
void writeMultiDim(const std::string &s, const std::vector<size_t> & Dimensions, const U * pDataRowMajor, size_t NumElements);
On readback, the Eigen tensor rank must match the data being read, but the tensor
dimensions will be resized if necessary. Resizing is not possible for Eigen::TensorMap<T>
because these tensors use a buffer provided at construction, and this buffer cannot be changed.
Deserialisation failures cause Grid to assert.
HDF5 Optimisations -- added June 2021
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Grid serialisation is intended to be light, deterministic and provide a layer of abstraction over
multiple file formats. HDF5 excels at handling multi-dimensional data, and the Grid HDF5Reader/HDF5Writer exploits this.
When serialising nested ``std::vector<T>``, where ``T`` is an arithmetic or complex type,
the Hdf5Writer writes the data as an Hdf5 DataSet object.
However, nested ``std::vector<std::vector<...T>>`` might be "ragged", i.e. not necessarily regular. E.g. a 3d nested
``std::vector`` might contain 2 rows, the first being a 2x2 block and the second row being a 1 x 2 block.
A bug existed whereby this was not checked on write, so nested, ragged vectors
were written as a regular dataset, with a buffer under/overrun and jumbled contents.
Clearly this was not used in production, as the bug went undetected until now. Fixing this bug
is an opportunity to further optimise the HDF5 file format.
The goals of this change are to:
* Make changes to the Hdf5 file format only -- i.e. do not impact other file formats
* Implement file format changes in such a way that they are transparent to the Grid reader
* Correct the bug for ragged vectors of numeric / complex types
* Extend the support of nested std::vector<T> to arbitrarily nested Grid tensors
The trait class ``element`` has been redefined to ``is_flattenable``, which is a trait class for
potentially "flattenable" objects. These are (possibly nested) ``std::vector<T>`` where ``T`` is
an arithmetic, complex or Grid tensor type. Flattenable objects are tested on write
(with the function ``isRegularShape``) to see whether they actually are regular.
Flattenable, regular objects are written to a multidimensional HDF5 DataSet.
Otherwise, an Hdf5 sub group is created with the object "name", and each element of the outer dimension is
recursively written to as object "name_n", where n is a 0-indexed number.
On readback (by Grid)), the presence of a subgroup containing the attribute ``Grid_vector_size`` triggers a
"ragged read", otherwise a read from a DataSet is attempted.
Data parallel field IO
-----------------------

View File

@ -48,7 +48,9 @@ public:
std::vector<double>, array,
std::vector<std::vector<double> >, twodimarray,
std::vector<std::vector<std::vector<std::complex<double>> > >, cmplx3darray,
SpinColourMatrix, scm
SpinColourMatrix, scm,
std::vector<std::vector<std::vector<int> > >, ragged,
std::vector<std::vector<SpinColourMatrix> >, vscm
);
myclass() {}
myclass(int i)
@ -56,6 +58,10 @@ public:
, twodimarray(3,std::vector<double>(5, 1.23456))
, cmplx3darray(3,std::vector<std::vector<std::complex<double>>>(5, std::vector<std::complex<double>>(7, std::complex<double>(1.2, 3.4))))
, ve(2, myenum::blue)
, ragged( {{{i+1},{i+2,i+3}}, // ragged
{{i+4,i+5,i+6,i+7},{i+8,i+9,i+10,i+11},{i+12,i+13,i+14,i+15}}, // block
{{i+16,i+17},{i+18,i+19,i+20}}} ) //ragged
, vscm(3, std::vector<SpinColourMatrix>(5))
{
e=myenum::red;
x=i;
@ -68,6 +74,13 @@ public:
scm()(0, 2)(1, 1) = 6.336;
scm()(2, 1)(2, 2) = 7.344;
scm()(1, 1)(2, 0) = 8.3534;
int Counter = i;
for( auto & v : vscm ) {
for( auto & j : v ) {
j = std::complex<double>(Counter, -Counter);
Counter++;
}
}
}
};

View File

@ -33,7 +33,6 @@ namespace Grid{
GRID_SERIALIZABLE_CLASS_MEMBERS(WFParameters,
int, steps,
double, step_size,
double, tol,
int, meas_interval,
double, maxTau); // for the adaptive algorithm
@ -83,27 +82,13 @@ int main(int argc, char **argv) {
SU<Nc>::HotConfiguration(pRNG, Umu);
typedef Grid::XmlReader Serialiser;
// Serialiser Reader("input.xml");
// WFParameters WFPar(Reader);
// ConfParameters CPar(Reader);
// WFParameters WFPar;
int steps = 800;
double step_size=0.02;
double tol=1e-4;
int meas_interval=50;
double maxTau = 16;
// ConfParameters CPar;
// CPar. conf_prefix="configurations/ckpoint_lat";
// CPar. rng_prefix="rngs/ckpoint_rng";
// CPar. StartConfiguration=100,
// CPar. EndConfiguration=110,
// CPar. Skip=1;
// CheckpointerParameters CPPar(CPar.conf_prefix, CPar.rng_prefix);
CheckpointerParameters CPPar("configurations/ckpoint_lat","rngs/ckpoint_rng");
Serialiser Reader("input.xml");
WFParameters WFPar(Reader);
ConfParameters CPar(Reader);
CheckpointerParameters CPPar(CPar.conf_prefix, CPar.rng_prefix);
BinaryHmcCheckpointer<PeriodicGimplR> CPBin(CPPar);
// for (int conf = CPar.StartConfiguration; conf <= CPar.EndConfiguration; conf+= CPar.Skip){
for (int conf = 100; conf <= 110; conf+= 1){
for (int conf = CPar.StartConfiguration; conf <= CPar.EndConfiguration; conf+= CPar.Skip){
CPBin.CheckpointRestore(conf, Umu, sRNG, pRNG);
@ -111,10 +96,9 @@ int main(int argc, char **argv) {
std::cout << GridLogMessage << "Initial plaquette: "
<< WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu) << std::endl;
WilsonFlow<PeriodicGimplR> WF(steps, step_size, meas_interval);
WilsonFlow<PeriodicGimplR> WF(WFPar.steps, WFPar.step_size, WFPar.meas_interval);
// WF.smear_adaptive(Uflow, Umu, maxTau);
WF.smear(Uflow, Umu);
WF.smear_adaptive(Uflow, Umu, WFPar.maxTau);
RealD WFlow_plaq = WilsonLoops<PeriodicGimplR>::avgPlaquette(Uflow);
RealD WFlow_TC = WilsonLoops<PeriodicGimplR>::TopologicalCharge(Uflow);