1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-13 04:37:05 +01:00

Compare commits

...

28 Commits

Author SHA1 Message Date
dcfc4ed81f Merge 32e6d58356 into ba9bbe0221 2025-02-13 11:26:59 +00:00
ba9bbe0221 Bounce MPI through host 2025-02-12 19:34:59 +00:00
4c3dd82d84 CSHIFT with bounce throuhgh Host memory on MPI packets 2025-02-12 19:09:53 +00:00
44e911b5b7 Comment change 2025-02-12 17:37:55 +00:00
a7a16df9d0 GET not put has kinder barrier sequence for NVLINK type access as when
GET is done, I can use it without barrier. Moves a barrier to a nicer
place, overlapped with DtoH DMA
2025-02-12 14:59:28 +00:00
382e0abefd Was issueing a double fence -- the gather also fences 2025-02-12 14:57:28 +00:00
6fdefe5b90 Barrier sequencing if doing "GET" not "PUT" is different.
This is somewhat better timing for Barriers
2025-02-12 14:55:20 +00:00
4788dd8e2e More states in packet progression for GPU non aware MPI 2025-02-12 14:53:57 +00:00
1cc5f221f3 GET not put ordering is better as I know when I've got all MY data 2025-02-12 14:53:05 +00:00
93251bfba0 GET not put for better ordering in the downstream dependent kernels -- I
know when I'm done, so we can move a barrier / handshake between ranks
intranode to a point off critical path
2025-02-12 14:50:21 +00:00
18b79508b8 New line better for pretty print 2025-02-12 14:49:48 +00:00
4de5ed1613 Remove vector view. The std::vector will not inform Memory manager of
deletion and so a stale entry could be left. It is not and should not be
used.
2025-02-12 14:48:46 +00:00
0baaddbe98 Pipeline mode commit on Aurora. 5+ TF/s on 16^3x32 per tile at 384
nodes.
More concurrency/fine grained scheduling is possible.
2025-02-04 19:27:26 +00:00
b50fb34e71 Perf on Aurora 2025-02-01 18:39:34 +00:00
de84d730ff Fastest run config on Aurora to date 2025-02-01 18:08:40 +00:00
c74d11e3d7 PVdagM MG 2025-02-01 11:04:13 -05:00
c4fc972fec Merge branch 'feature/deprecate-uvm' into develop 2025-01-31 16:32:36 +00:00
3f3661a86f Heading towards PVdagM multigrid 2025-01-17 14:33:35 +00:00
5a4f9bf2e3 Force the ROCM version 2024-10-29 18:12:31 -04:00
f617468e04 Update Lattice_base.h 2024-10-11 10:39:16 -04:00
ee4046fe92 Added a dimension ordered column sum based reduction for scalar.
Removes dependence on MPI_Allreduce and allows for work around on
systems where this is bollox.
2024-09-27 09:26:03 -04:00
2a9cfeb9ea New files 2024-09-26 14:23:29 -04:00
1147b8ea40 Cheby poly setup 2024-09-26 14:20:32 -04:00
3f9119b39d Remove vectors used for the power spectrum table in paper 2024-09-26 14:19:41 -04:00
35e8225abd Verbose control 2024-09-26 14:18:35 -04:00
bdbfbb7a14 Merge branch 'develop' of https://github.com/paboyle/Grid into develop 2024-09-26 14:05:45 -04:00
f7d4be8d96 Calculate bytes correctly 2024-09-26 14:04:44 -04:00
32e6d58356 use accelerator for setCheckerboard in RHMC 2021-12-22 23:43:43 +00:00
25 changed files with 1952 additions and 463 deletions

View File

@ -144,11 +144,11 @@ public:
acceleratorCopyDeviceToDevice(&BLAS_Y[offset],&y_v[0],sizeof(scalar_object)*vol);
}
RealD t4 = usecond();
std::cout << "MulMatrix alloc took "<< t1-t0<<" us"<<std::endl;
std::cout << "MulMatrix preamble took "<< t2-t1<<" us"<<std::endl;
std::cout << "MulMatrix blas took "<< t3-t2<<" us"<<std::endl;
std::cout << "MulMatrix copy took "<< t4-t3<<" us"<<std::endl;
std::cout << "MulMatrix total "<< t4-t0<<" us"<<std::endl;
std::cout <<GridLogPerformance << "MulMatrix alloc took "<< t1-t0<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "MulMatrix preamble took "<< t2-t1<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "MulMatrix blas took "<< t3-t2<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "MulMatrix copy took "<< t4-t3<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "MulMatrix total "<< t4-t0<<" us"<<std::endl;
}
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y)
@ -242,16 +242,16 @@ public:
RealD flops = 8.0*M*N*K;
flops = flops/(t4-t3)/1.e3;
bytes = bytes/(t4-t3)/1.e3;
std::cout << "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
std::cout << "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
std::cout << "InnerProductMatrix cp t2 "<< t2-t1<<" us"<<std::endl;
std::cout << "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
std::cout << "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
std::cout << "InnerProductMatrix blas "<< flops<<" GF/s"<<std::endl;
std::cout << "InnerProductMatrix blas "<< bytes<<" GB/s"<<std::endl;
std::cout << "InnerProductMatrix gsum t5 "<< t5-t4<<" us"<<std::endl;
std::cout << "InnerProductMatrix cp t6 "<< t6-t5<<" us"<<std::endl;
std::cout << "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix cp t2 "<< t2-t1<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix blas "<< flops<<" GF/s"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix blas "<< bytes<<" GB/s"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix gsum t5 "<< t5-t4<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix cp t6 "<< t6-t5<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
#else
int nrhs;
GridBase *grid;
@ -358,17 +358,17 @@ public:
flops = flops/(t4-t3)/1.e3;
bytes = bytes/(t4-t3)/1.e3;
xybytes = 4*xybytes/(t2-t1)/1.e3;
std::cout << "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
std::cout << "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
std::cout << "InnerProductMatrix cp t2 "<< t2-t1<<" us "<<xybytes<<" GB/s"<<std::endl;
std::cout << "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
std::cout << "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
std::cout << "InnerProductMatrix blas "<< flops<<" GF/s"<<std::endl;
std::cout << "InnerProductMatrix blas "<< bytes<<" GB/s"<<std::endl;
std::cout << "InnerProductMatrix cp t5 "<< t5-t4<<" us"<<std::endl;
std::cout << "InnerProductMatrix lsum t6l "<< t6l-t5<<" us"<<std::endl;
std::cout << "InnerProductMatrix gsum t6 "<< t6-t6l<<" us"<<std::endl;
std::cout << "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix cp t2 "<< t2-t1<<" us "<<xybytes<<" GB/s"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix blas "<< flops<<" GF/s"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix blas "<< bytes<<" GB/s"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix cp t5 "<< t5-t4<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix lsum t6l "<< t6l-t5<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix gsum t6 "<< t6-t6l<<" us"<<std::endl;
std::cout <<GridLogPerformance<< "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
#endif
}
};

View File

@ -63,7 +63,12 @@ class TwoLevelCGmrhs
GridStopWatch SmoothTimer;
GridStopWatch InsertTimer;
/*
Field rrr;
Field sss;
Field qqq;
Field zzz;
*/
// more most opertor functions
TwoLevelCGmrhs(RealD tol,
Integer maxit,
@ -74,6 +79,12 @@ class TwoLevelCGmrhs
MaxIterations(maxit),
_FineLinop(FineLinop),
_Smoother(Smoother)
/*
rrr(fine),
sss(fine),
qqq(fine),
zzz(fine)
*/
{
grid = fine;
};
@ -81,8 +92,8 @@ class TwoLevelCGmrhs
// Vector case
virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
{
SolveSingleSystem(src,x);
// SolvePrecBlockCG(src,x);
// SolveSingleSystem(src,x);
SolvePrecBlockCG(src,x);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
@ -657,6 +668,8 @@ public:
CoarseField PleftProjMrhs(this->coarsegridmrhs);
CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
// this->rrr=in[0];
#undef SMOOTHER_BLOCK_SOLVE
#if SMOOTHER_BLOCK_SOLVE
this->SmoothTimer.Start();
@ -669,6 +682,7 @@ public:
this->SmoothTimer.Stop();
}
#endif
// this->sss=Min[0];
for(int rhs=0;rhs<nrhs;rhs++) {
@ -705,9 +719,11 @@ public:
this->_Projector.blockPromote(tmp,PleftMss_proj);// tmp= Q[in - A Min]
this->PromoteTimer.Stop();
this->FineTimer.Start();
// this->qqq=tmp[0];
for(int rhs=0;rhs<nrhs;rhs++) {
axpy(out[rhs],1.0,Min[rhs],tmp[rhs]); // Min+tmp
}
// this->zzz=out[0];
this->FineTimer.Stop();
}
};

View File

@ -74,7 +74,7 @@ public:
void operator() (const Field &src, Field &psi){
psi=Zero();
// psi=Zero();
RealD cp, ssq,rsq;
ssq=norm2(src);
rsq=Tolerance*Tolerance*ssq;

View File

@ -30,6 +30,8 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
/* END LEGAL */
#pragma once
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidualNonHermitian.h>
NAMESPACE_BEGIN(Grid);
inline RealD AggregatePowerLaw(RealD x)
@ -124,6 +126,53 @@ public:
}
}
virtual void CreateSubspaceGCR(GridParallelRNG &RNG,LinearOperatorBase<FineField> &DiracOp,int nn=nbasis)
{
RealD scale;
TrivialPrecon<FineField> simple_fine;
PrecGeneralisedConjugateResidualNonHermitian<FineField> GCR(0.001,30,DiracOp,simple_fine,12,12);
FineField noise(FineGrid);
FineField src(FineGrid);
FineField guess(FineGrid);
FineField Mn(FineGrid);
for(int b=0;b<nn;b++){
subspace[b] = Zero();
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|Op|n> "<<innerProduct(noise,Mn)<<std::endl;
for(int i=0;i<3;i++){
// void operator() (const Field &src, Field &psi){
#if 1
std::cout << GridLogMessage << " inverting on noise "<<std::endl;
src = noise;
guess=Zero();
GCR(src,guess);
subspace[b] = guess;
#else
std::cout << GridLogMessage << " inverting on zero "<<std::endl;
src=Zero();
guess = noise;
GCR(src,guess);
subspace[b] = guess;
#endif
noise = subspace[b];
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
}
DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|Op|f> "<<innerProduct(noise,Mn)<<std::endl;
subspace[b] = noise;
}
}
////////////////////////////////////////////////////////////////////////////////////////////////
// World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
// and this is the best I found
@ -160,14 +209,21 @@ public:
int b =0;
{
ComplexD ip;
// Filter
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
Cheb(hermop,noise,Mn);
// normalise
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
hermop.Op(Mn,tmp);
ip= innerProduct(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
hermop.AdjOp(Mn,tmp);
ip = innerProduct(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
b++;
}
@ -213,8 +269,18 @@ public:
Mn=*Tnp;
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
ComplexD ip;
hermop.Op(Mn,tmp);
ip= innerProduct(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
hermop.AdjOp(Mn,tmp);
ip = innerProduct(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
b++;
}
@ -228,6 +294,70 @@ public:
}
assert(b==nn);
}
virtual void CreateSubspacePolyCheby(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
int nn,
double hi,
double lo1,
int orderfilter,
double lo2,
int orderstep)
{
RealD scale;
FineField noise(FineGrid);
FineField Mn(FineGrid);
FineField tmp(FineGrid);
// New normalised noise
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
std::cout << GridLogMessage<<" CreateSubspacePolyCheby "<<std::endl;
// Initial matrix element
hermop.Op(noise,Mn);
std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
int b =0;
{
// Filter
std::cout << GridLogMessage << "Cheby "<<lo1<<","<<hi<<" "<<orderstep<<std::endl;
Chebyshev<FineField> Cheb(lo1,hi,orderfilter);
Cheb(hermop,noise,Mn);
// normalise
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|n> "<<norm2(Mn)<<std::endl;
}
// Generate a full sequence of Chebyshevs
for(int n=1;n<nn;n++){
std::cout << GridLogMessage << "Cheby "<<lo2<<","<<hi<<" "<<orderstep<<std::endl;
Chebyshev<FineField> Cheb(lo2,hi,orderstep);
Cheb(hermop,subspace[n-1],Mn);
for(int m=0;m<n;m++){
ComplexD c = innerProduct(subspace[m],Mn);
Mn = Mn - c*subspace[m];
}
// normalise
scale = std::pow(norm2(Mn),-0.5);
Mn=Mn*scale;
subspace[n]=Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<n<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
std::cout<<GridLogMessage << "filt ["<<n<<"] <n|n> "<<norm2(Mn)<<std::endl;
}
}
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
int nn,
double hi,

View File

@ -175,10 +175,11 @@ template<typename _Tp> inline bool operator!=(const devAllocator<_Tp>&, const d
// Template typedefs
////////////////////////////////////////////////////////////////////////////////
template<class T> using hostVector = std::vector<T,alignedAllocator<T> >; // Needs autoview
template<class T> using Vector = std::vector<T,uvmAllocator<T> >; //
template<class T> using Vector = std::vector<T,uvmAllocator<T> >; // Really want to deprecate
template<class T> using uvmVector = std::vector<T,uvmAllocator<T> >; // auto migrating page
template<class T> using deviceVector = std::vector<T,devAllocator<T> >; // device vector
/*
template<class T> class vecView
{
protected:
@ -214,6 +215,7 @@ template<class T> vecView<T> VectorView(Vector<T> &vec,ViewMode _mode)
#define autoVecView(v_v,v,mode) \
auto v_v = VectorView(v,mode); \
ViewCloser<decltype(v_v)> _autoView##v_v(v_v);
*/
NAMESPACE_END(Grid);

View File

@ -9,6 +9,7 @@ static char print_buffer [ MAXLINE ];
#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer << std::endl;
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug << print_buffer << std::endl;
//#define dprintf(...)
//#define mprintf(...)
////////////////////////////////////////////////////////////
// For caching copies of data on device
@ -109,7 +110,7 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
///////////////////////////////////////////////////////////
assert(AccCache.state!=Empty);
dprintf("MemoryManager: Discard(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
dprintf("MemoryManager: Discard(%lx) %lx",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
assert(AccCache.accLock==0);
assert(AccCache.cpuLock==0);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
@ -119,7 +120,7 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
DeviceBytes -=AccCache.bytes;
LRUremove(AccCache);
AccCache.AccPtr=(uint64_t) NULL;
dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);
dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);
}
uint64_t CpuPtr = AccCache.CpuPtr;
EntryErase(CpuPtr);
@ -139,7 +140,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
///////////////////////////////////////////////////////////////////////////
assert(AccCache.state!=Empty);
mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld\n",
mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld",
(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr,
(uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock);
if (AccCache.accLock!=0) return;
@ -153,7 +154,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
AccCache.AccPtr=(uint64_t)NULL;
AccCache.state=CpuDirty; // CPU primary now
DeviceBytes -=AccCache.bytes;
dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);
dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld ",(uint64_t)AccCache.AccPtr,DeviceBytes);
}
// uint64_t CpuPtr = AccCache.CpuPtr;
DeviceEvictions++;
@ -167,7 +168,7 @@ void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
assert(AccCache.AccPtr!=(uint64_t)NULL);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
mprintf("MemoryManager: acceleratorCopyFromDevice Flush size %ld AccPtr %lx -> CpuPtr %lx\n",(uint64_t)AccCache.bytes,(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
mprintf("MemoryManager: acceleratorCopyFromDevice Flush size %ld AccPtr %lx -> CpuPtr %lx",(uint64_t)AccCache.bytes,(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
DeviceToHostBytes+=AccCache.bytes;
DeviceToHostXfer++;
AccCache.state=Consistent;
@ -182,7 +183,7 @@ void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
DeviceBytes+=AccCache.bytes;
}
mprintf("MemoryManager: acceleratorCopyToDevice Clone size %ld AccPtr %lx <- CpuPtr %lx\n",
mprintf("MemoryManager: acceleratorCopyToDevice Clone size %ld AccPtr %lx <- CpuPtr %lx",
(uint64_t)AccCache.bytes,
(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
@ -210,7 +211,7 @@ void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache)
void MemoryManager::ViewClose(void* Ptr,ViewMode mode)
{
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
dprintf("AcceleratorViewClose %lx\n",(uint64_t)Ptr);
dprintf("AcceleratorViewClose %lx",(uint64_t)Ptr);
AcceleratorViewClose((uint64_t)Ptr);
} else if( (mode==CpuRead)||(mode==CpuWrite)){
CpuViewClose((uint64_t)Ptr);
@ -222,7 +223,7 @@ void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvis
{
uint64_t CpuPtr = (uint64_t)_CpuPtr;
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
dprintf("AcceleratorViewOpen %lx\n",(uint64_t)CpuPtr);
dprintf("AcceleratorViewOpen %lx",(uint64_t)CpuPtr);
return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint);
} else if( (mode==CpuRead)||(mode==CpuWrite)){
return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint);
@ -265,7 +266,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
assert(AccCache.cpuLock==0); // Programming error
if(AccCache.state!=Empty) {
dprintf("ViewOpen found entry %lx %lx : sizes %ld %ld accLock %ld\n",
dprintf("ViewOpen found entry %lx %lx : sizes %ld %ld accLock %ld",
(uint64_t)AccCache.CpuPtr,
(uint64_t)CpuPtr,
(uint64_t)AccCache.bytes,
@ -305,7 +306,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
AccCache.state = Consistent; // Empty + AccRead => Consistent
}
AccCache.accLock= 1;
dprintf("Copied Empty entry into device accLock= %d\n",AccCache.accLock);
dprintf("Copied Empty entry into device accLock= %d",AccCache.accLock);
} else if(AccCache.state==CpuDirty ){
if(mode==AcceleratorWriteDiscard) {
CpuDiscard(AccCache);
@ -318,21 +319,21 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
AccCache.state = Consistent; // CpuDirty + AccRead => Consistent
}
AccCache.accLock++;
dprintf("CpuDirty entry into device ++accLock= %d\n",AccCache.accLock);
dprintf("CpuDirty entry into device ++accLock= %d",AccCache.accLock);
} else if(AccCache.state==Consistent) {
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
AccCache.state = AccDirty; // Consistent + AcceleratorWrite=> AccDirty
else
AccCache.state = Consistent; // Consistent + AccRead => Consistent
AccCache.accLock++;
dprintf("Consistent entry into device ++accLock= %d\n",AccCache.accLock);
dprintf("Consistent entry into device ++accLock= %d",AccCache.accLock);
} else if(AccCache.state==AccDirty) {
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
AccCache.state = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty
else
AccCache.state = AccDirty; // AccDirty + AccRead => AccDirty
AccCache.accLock++;
dprintf("AccDirty entry ++accLock= %d\n",AccCache.accLock);
dprintf("AccDirty entry ++accLock= %d",AccCache.accLock);
} else {
assert(0);
}
@ -341,7 +342,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
// If view is opened on device must remove from LRU
if(AccCache.LRU_valid==1){
// must possibly remove from LRU as now locked on GPU
dprintf("AccCache entry removed from LRU \n");
dprintf("AccCache entry removed from LRU ");
LRUremove(AccCache);
}
@ -364,10 +365,10 @@ void MemoryManager::AcceleratorViewClose(uint64_t CpuPtr)
AccCache.accLock--;
// Move to LRU queue if not locked and close on device
if(AccCache.accLock==0) {
dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
LRUinsert(AccCache);
} else {
dprintf("AccleratorViewClose %lx AccLock decremented to %ld\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
dprintf("AccleratorViewClose %lx AccLock decremented to %ld",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
}
}
void MemoryManager::CpuViewClose(uint64_t CpuPtr)

View File

@ -33,6 +33,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
///////////////////////////////////
#include <Grid/communicator/SharedMemory.h>
#define NVLINK_GET
NAMESPACE_BEGIN(Grid);
extern bool Stencil_force_mpi ;
@ -127,7 +129,7 @@ public:
void GlobalSumVector(ComplexD *c,int N);
void GlobalXOR(uint32_t &);
void GlobalXOR(uint64_t &);
template<class obj> void GlobalSumP2P(obj &o)
{
std::vector<obj> column;
@ -192,6 +194,11 @@ public:
void *recv,
int recv_from_rank,int do_recv,
int xbytes,int rbytes,int dir);
// Could do a PollHtoD and have a CommsMerge dependence
void StencilSendToRecvFromPollDtoH (std::vector<CommsRequest_t> &list);
void StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list);
double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,int do_xmit,

View File

@ -30,6 +30,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
Grid_MPI_Comm CartesianCommunicator::communicator_world;
////////////////////////////////////////////
@ -362,8 +363,6 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
int bytes)
{
std::vector<MpiCommsRequest_t> reqs(0);
unsigned long xcrc = crc32(0L, Z_NULL, 0);
unsigned long rcrc = crc32(0L, Z_NULL, 0);
int myrank = _processor;
int ierr;
@ -379,9 +378,6 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
communicator,MPI_STATUS_IGNORE);
assert(ierr==0);
// xcrc = crc32(xcrc,(unsigned char *)xmit,bytes);
// rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
// printf("proc %d SendToRecvFrom %d bytes xcrc %lx rcrc %lx\n",_processor,bytes,xcrc,rcrc); fflush
}
// Basic Halo comms primitive
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
@ -399,6 +395,8 @@ double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
#ifdef ACCELERATOR_AWARE_MPI
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {};
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {};
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,int dox,
@ -561,53 +559,105 @@ double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequ
if (dox) {
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
#undef DEVICE_TO_HOST_CONCURRENT // pipeline
#ifdef DEVICE_TO_HOST_CONCURRENT
tag= dir+_processor*32;
host_xmit = this->HostBufferMalloc(xbytes);
acceleratorCopyFromDeviceAsynch(xmit, host_xmit,xbytes); // Make this Asynch
CommsRequest_t srq;
srq.ev = acceleratorCopyFromDeviceAsynch(xmit, host_xmit,xbytes); // Make this Asynch
// ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
// assert(ierr==0);
// off_node_bytes+=xbytes;
CommsRequest_t srq;
srq.PacketType = InterNodeXmit;
srq.bytes = xbytes;
// srq.req = xrq;
srq.host_buf = host_xmit;
srq.device_buf = xmit;
srq.tag = tag;
srq.dest = dest;
srq.commdir = commdir;
list.push_back(srq);
#else
tag= dir+_processor*32;
host_xmit = this->HostBufferMalloc(xbytes);
const int chunks=1;
for(int n=0;n<chunks;n++){
void * host_xmitc = (void *)( (uint64_t) host_xmit + n*xbytes/chunks);
void * xmitc = (void *)( (uint64_t) xmit + n*xbytes/chunks);
acceleratorCopyFromDeviceAsynch(xmitc, host_xmitc,xbytes/chunks); // Make this Asynch
}
acceleratorCopySynchronise(); // Complete all pending copy transfers
ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
assert(ierr==0);
off_node_bytes+=xbytes;
CommsRequest_t srq;
srq.PacketType = InterNodeXmit;
srq.bytes = xbytes;
srq.req = xrq;
srq.host_buf = host_xmit;
srq.device_buf = xmit;
list.push_back(srq);
#endif
}
}
return off_node_bytes;
}
/*
* In the interest of better pipelining, poll for completion on each DtoH and
* start MPI_ISend in the meantime
*/
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list)
{
int pending = 0;
do {
pending = 0;
for(int idx = 0; idx<list.size();idx++){
if ( list[idx].PacketType==InterNodeRecv ) {
int flag = 0;
MPI_Status status;
int ierr = MPI_Test(&list[idx].req,&flag,&status);
assert(ierr==0);
if ( flag ) {
// std::cout << " PollIrecv "<<idx<<" flag "<<flag<<std::endl;
acceleratorCopyToDeviceAsynch(list[idx].host_buf,list[idx].device_buf,list[idx].bytes);
list[idx].PacketType=InterNodeReceiveHtoD;
} else {
pending ++;
}
}
}
// std::cout << " PollIrecv "<<pending<<" pending requests"<<std::endl;
} while ( pending );
}
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list)
{
int pending = 0;
do {
pending = 0;
for(int idx = 0; idx<list.size();idx++){
if ( list[idx].PacketType==InterNodeXmit ) {
if ( acceleratorEventIsComplete(list[idx].ev) ) {
void *host_xmit = list[idx].host_buf;
uint32_t xbytes = list[idx].bytes;
int dest = list[idx].dest;
int tag = list[idx].tag;
int commdir = list[idx].commdir;
///////////////////
// Send packet
///////////////////
// std::cout << " DtoH is complete for index "<<idx<<" calling MPI_Isend "<<std::endl;
MPI_Request xrq;
int ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
assert(ierr==0);
list[idx].req = xrq; // Update the MPI request in the list
list[idx].PacketType=InterNodeXmitISend;
} else {
// not done, so return to polling loop
pending++;
}
}
}
} while (pending);
}
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
@ -644,69 +694,84 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
* - complete all copies
* - post MPI send asynch
*/
#ifdef NVLINK_GET
if ( dor ) {
// static int printed;
// if((printed<8) && this->IsBoss() ) {
// printf("dir %d doX %d doR %d Face size %ld %ld\n",dir,dox,dor,xbytes,rbytes);
// printed++;
// }
if ( ! ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) ) {
// Intranode
void *shm = (void *) this->ShmBufferTranslate(from,xmit);
assert(shm!=NULL);
CommsRequest_t srq;
srq.ev = acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
srq.PacketType = IntraNodeRecv;
srq.bytes = xbytes;
// srq.req = xrq;
srq.host_buf = NULL;
srq.device_buf = xmit;
srq.tag = -1;
srq.dest = dest;
srq.commdir = dir;
list.push_back(srq);
}
}
#else
if (dox) {
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
#ifdef DEVICE_TO_HOST_CONCURRENT
tag= dir+_processor*32;
// Find the send in the prepared list
int list_idx=-1;
for(int idx = 0; idx<list.size();idx++){
if ( (list[idx].device_buf==xmit)
&&(list[idx].PacketType==InterNodeXmit)
&&(list[idx].bytes==xbytes) ) {
list_idx = idx;
host_xmit = list[idx].host_buf;
}
}
assert(list_idx != -1); // found it
ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
assert(ierr==0);
list[list_idx].req = xrq; // Update the MPI request in the list
off_node_bytes+=xbytes;
#endif
} else {
if ( !( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) ) {
// Intranode
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
assert(shm!=NULL);
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
CommsRequest_t srq;
srq.ev = acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
srq.PacketType = IntraNodeXmit;
srq.bytes = xbytes;
// srq.req = xrq;
srq.host_buf = NULL;
srq.device_buf = xmit;
srq.tag = -1;
srq.dest = dest;
srq.commdir = dir;
list.push_back(srq);
}
}
#endif
return off_node_bytes;
}
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
{
int nreq=list.size();
// int nreq=list.size();
if (nreq==0) return;
std::vector<MPI_Status> status(nreq);
std::vector<MPI_Request> MpiRequests(nreq);
// if (nreq==0) return;
// std::vector<MPI_Status> status(nreq);
// std::vector<MPI_Request> MpiRequests(nreq);
for(int r=0;r<nreq;r++){
MpiRequests[r] = list[r].req;
}
// for(int r=0;r<nreq;r++){
// MpiRequests[r] = list[r].req;
// }
int ierr = MPI_Waitall(nreq,&MpiRequests[0],&status[0]);
assert(ierr==0);
// int ierr = MPI_Waitall(nreq,&MpiRequests[0],&status[0]); // Sends are guaranteed in order. No harm in not completing.
// assert(ierr==0);
for(int r=0;r<nreq;r++){
if ( list[r].PacketType==InterNodeRecv ) {
acceleratorCopyToDeviceAsynch(list[r].host_buf,list[r].device_buf,list[r].bytes);
}
}
// for(int r=0;r<nreq;r++){
// if ( list[r].PacketType==InterNodeRecv ) {
// acceleratorCopyToDeviceAsynch(list[r].host_buf,list[r].device_buf,list[r].bytes);
// }
// }
acceleratorCopySynchronise(); // Complete all pending copy transfers D2D
acceleratorCopySynchronise(); // Complete all pending copy transfers
list.resize(0); // Delete the list
this->HostBufferFreeAll(); // Clean up the buffer allocs
this->StencilBarrier();
#ifndef NVLINK_GET
this->StencilBarrier(); // if PUT must check our nbrs have filled our receive buffers.
#endif
}
#endif
////////////////////////////////////////////

View File

@ -132,6 +132,8 @@ double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
{
return 2.0*bytes;
}
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {};
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {};
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,int dox,
@ -139,7 +141,7 @@ double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequ
int recv_from_rank,int dor,
int xbytes,int rbytes, int dir)
{
return xbytes+rbytes;
return 0.0;
}
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,

View File

@ -50,12 +50,30 @@ typedef MPI_Request MpiCommsRequest_t;
#ifdef ACCELERATOR_AWARE_MPI
typedef MPI_Request CommsRequest_t;
#else
enum PacketType_t { InterNodeXmit, InterNodeRecv, IntraNodeXmit, IntraNodeRecv };
/*
* Enable state transitions as each packet flows.
*/
enum PacketType_t {
FaceGather,
InterNodeXmit,
InterNodeRecv,
IntraNodeXmit,
IntraNodeRecv,
InterNodeXmitISend,
InterNodeReceiveHtoD
};
/*
*Package arguments needed for various actions along packet flow
*/
typedef struct {
PacketType_t PacketType;
void *host_buf;
void *device_buf;
int dest;
int tag;
int commdir;
unsigned long bytes;
acceleratorEvent_t ev;
MpiCommsRequest_t req;
} CommsRequest_t;
#endif

View File

@ -68,7 +68,7 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
if(Cshift_verbose) std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl;
return ret;
}
#if 1
template<class vobj> void Cshift_comms(Lattice<vobj>& ret,const Lattice<vobj> &rhs,int dimension,int shift)
{
int sshift[2];
@ -125,7 +125,11 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
static deviceVector<vobj> send_buf; send_buf.resize(buffer_size);
static deviceVector<vobj> recv_buf; recv_buf.resize(buffer_size);
#ifndef ACCELERATOR_AWARE_MPI
static hostVector<vobj> hsend_buf; hsend_buf.resize(buffer_size);
static hostVector<vobj> hrecv_buf; hrecv_buf.resize(buffer_size);
#endif
int cb= (cbmask==0x2)? Odd : Even;
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
RealD tcopy=0.0;
@ -156,16 +160,29 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
// int rank = grid->_processor;
int recv_from_rank;
int xmit_to_rank;
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
tcomms-=usecond();
grid->Barrier();
#ifdef ACCELERATOR_AWARE_MPI
grid->SendToRecvFrom((void *)&send_buf[0],
xmit_to_rank,
(void *)&recv_buf[0],
recv_from_rank,
bytes);
#else
// bouncy bouncy
acceleratorCopyFromDevice(&send_buf[0],&hsend_buf[0],bytes);
grid->SendToRecvFrom((void *)&hsend_buf[0],
xmit_to_rank,
(void *)&hrecv_buf[0],
recv_from_rank,
bytes);
acceleratorCopyToDevice(&hrecv_buf[0],&recv_buf[0],bytes);
#endif
xbytes+=bytes;
grid->Barrier();
tcomms+=usecond();
@ -226,12 +243,17 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
static std::vector<deviceVector<scalar_object> > recv_buf_extract; recv_buf_extract.resize(Nsimd);
scalar_object * recv_buf_extract_mpi;
scalar_object * send_buf_extract_mpi;
for(int s=0;s<Nsimd;s++){
send_buf_extract[s].resize(buffer_size);
recv_buf_extract[s].resize(buffer_size);
}
#ifndef ACCELERATOR_AWARE_MPI
hostVector<scalar_object> hsend_buf; hsend_buf.resize(buffer_size);
hostVector<scalar_object> hrecv_buf; hrecv_buf.resize(buffer_size);
#endif
int bytes = buffer_size*sizeof(scalar_object);
ExtractPointerArray<scalar_object> pointers(Nsimd); //
@ -283,11 +305,22 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
recv_buf_extract_mpi = &recv_buf_extract[i][0];
#ifdef ACCELERATOR_AWARE_MPI
grid->SendToRecvFrom((void *)send_buf_extract_mpi,
xmit_to_rank,
(void *)recv_buf_extract_mpi,
recv_from_rank,
bytes);
#else
// bouncy bouncy
acceleratorCopyFromDevice((void *)send_buf_extract_mpi,(void *)&hsend_buf[0],bytes);
grid->SendToRecvFrom((void *)&hsend_buf[0],
xmit_to_rank,
(void *)&hrecv_buf[0],
recv_from_rank,
bytes);
acceleratorCopyToDevice((void *)&hrecv_buf[0],(void *)recv_buf_extract_mpi,bytes);
#endif
xbytes+=bytes;
grid->Barrier();
@ -311,234 +344,6 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
}
}
#else
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
GridBase *grid=rhs.Grid();
Lattice<vobj> temp(rhs.Grid());
int fd = rhs.Grid()->_fdimensions[dimension];
int rd = rhs.Grid()->_rdimensions[dimension];
int pd = rhs.Grid()->_processors[dimension];
int simd_layout = rhs.Grid()->_simd_layout[dimension];
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
assert(simd_layout==1);
assert(comm_dim==1);
assert(shift>=0);
assert(shift<fd);
RealD tcopy=0.0;
RealD tgather=0.0;
RealD tscatter=0.0;
RealD tcomms=0.0;
uint64_t xbytes=0;
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
static cshiftVector<vobj> send_buf_v; send_buf_v.resize(buffer_size);
static cshiftVector<vobj> recv_buf_v; recv_buf_v.resize(buffer_size);
vobj *send_buf;
vobj *recv_buf;
{
grid->ShmBufferFreeAll();
size_t bytes = buffer_size*sizeof(vobj);
send_buf=(vobj *)grid->ShmBufferMalloc(bytes);
recv_buf=(vobj *)grid->ShmBufferMalloc(bytes);
}
int cb= (cbmask==0x2)? Odd : Even;
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
for(int x=0;x<rd;x++){
int sx = (x+sshift)%rd;
int comm_proc = ((x+sshift)/rd)%pd;
if (comm_proc==0) {
tcopy-=usecond();
Copy_plane(ret,rhs,dimension,x,sx,cbmask);
tcopy+=usecond();
} else {
int words = buffer_size;
if (cbmask != 0x3) words=words>>1;
int bytes = words * sizeof(vobj);
tgather-=usecond();
Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask);
tgather+=usecond();
// int rank = grid->_processor;
int recv_from_rank;
int xmit_to_rank;
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
tcomms-=usecond();
// grid->Barrier();
acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes);
grid->SendToRecvFrom((void *)&send_buf[0],
xmit_to_rank,
(void *)&recv_buf[0],
recv_from_rank,
bytes);
xbytes+=bytes;
acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes);
// grid->Barrier();
tcomms+=usecond();
tscatter-=usecond();
Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask);
tscatter+=usecond();
}
}
if(Cshift_verbose){
std::cout << GridLogPerformance << " Cshift copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
}
}
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
GridBase *grid=rhs.Grid();
const int Nsimd = grid->Nsimd();
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
int fd = grid->_fdimensions[dimension];
int rd = grid->_rdimensions[dimension];
int ld = grid->_ldimensions[dimension];
int pd = grid->_processors[dimension];
int simd_layout = grid->_simd_layout[dimension];
int comm_dim = grid->_processors[dimension] >1 ;
//std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
// << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout
// << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
assert(comm_dim==1);
assert(simd_layout==2);
assert(shift>=0);
assert(shift<fd);
RealD tcopy=0.0;
RealD tgather=0.0;
RealD tscatter=0.0;
RealD tcomms=0.0;
uint64_t xbytes=0;
int permute_type=grid->PermuteType(dimension);
///////////////////////////////////////////////
// Simd direction uses an extract/merge pair
///////////////////////////////////////////////
int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
// int words = sizeof(vobj)/sizeof(vector_type);
static std::vector<cshiftVector<scalar_object> > send_buf_extract; send_buf_extract.resize(Nsimd);
static std::vector<cshiftVector<scalar_object> > recv_buf_extract; recv_buf_extract.resize(Nsimd);
scalar_object * recv_buf_extract_mpi;
scalar_object * send_buf_extract_mpi;
{
size_t bytes = sizeof(scalar_object)*buffer_size;
grid->ShmBufferFreeAll();
send_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
recv_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
}
for(int s=0;s<Nsimd;s++){
send_buf_extract[s].resize(buffer_size);
recv_buf_extract[s].resize(buffer_size);
}
int bytes = buffer_size*sizeof(scalar_object);
ExtractPointerArray<scalar_object> pointers(Nsimd); //
ExtractPointerArray<scalar_object> rpointers(Nsimd); // received pointers
///////////////////////////////////////////
// Work out what to send where
///////////////////////////////////////////
int cb = (cbmask==0x2)? Odd : Even;
int sshift= grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
// loop over outer coord planes orthog to dim
for(int x=0;x<rd;x++){
// FIXME call local permute copy if none are offnode.
for(int i=0;i<Nsimd;i++){
pointers[i] = &send_buf_extract[i][0];
}
tgather-=usecond();
int sx = (x+sshift)%rd;
Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
tgather+=usecond();
for(int i=0;i<Nsimd;i++){
int inner_bit = (Nsimd>>(permute_type+1));
int ic= (i&inner_bit)? 1:0;
int my_coor = rd*ic + x;
int nbr_coor = my_coor+sshift;
int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors
int nbr_ic = (nbr_coor%ld)/rd; // inner coord of peer
int nbr_ox = (nbr_coor%rd); // outer coord of peer
int nbr_lane = (i&(~inner_bit));
int recv_from_rank;
int xmit_to_rank;
if (nbr_ic) nbr_lane|=inner_bit;
assert (sx == nbr_ox);
if(nbr_proc){
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
tcomms-=usecond();
// grid->Barrier();
acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes);
grid->SendToRecvFrom((void *)send_buf_extract_mpi,
xmit_to_rank,
(void *)recv_buf_extract_mpi,
recv_from_rank,
bytes);
acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes);
xbytes+=bytes;
// grid->Barrier();
tcomms+=usecond();
rpointers[i] = &recv_buf_extract[i][0];
} else {
rpointers[i] = &send_buf_extract[nbr_lane][0];
}
}
tscatter-=usecond();
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
tscatter+=usecond();
}
if(Cshift_verbose){
std::cout << GridLogPerformance << " Cshift (s) copy "<<tcopy/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) gather "<<tgather/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift (s) comm "<<tcomms/1e3<<" ms"<<std::endl;
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s"<<std::endl;
}
}
#endif
NAMESPACE_END(Grid);

View File

@ -466,6 +466,12 @@ public:
static deviceVector<vobj> recv_buf;
send_buf.resize(buffer_size*2*depth);
recv_buf.resize(buffer_size*2*depth);
#ifndef ACCELERATOR_AWARE_MPI
static hostVector<vobj> hsend_buf;
static hostVector<vobj> hrecv_buf;
hsend_buf.resize(buffer_size*2*depth);
hrecv_buf.resize(buffer_size*2*depth);
#endif
std::vector<MpiCommsRequest_t> fwd_req;
std::vector<MpiCommsRequest_t> bwd_req;
@ -495,9 +501,17 @@ public:
t_gather+=usecond()-t;
t=usecond();
#ifdef ACCELERATOR_AWARE_MPI
grid->SendToRecvFromBegin(fwd_req,
(void *)&send_buf[d*buffer_size], xmit_to_rank,
(void *)&recv_buf[d*buffer_size], recv_from_rank, bytes, tag);
#else
acceleratorCopyFromDevice(&send_buf[d*buffer_size],&hsend_buf[d*buffer_size],bytes);
grid->SendToRecvFromBegin(fwd_req,
(void *)&hsend_buf[d*buffer_size], xmit_to_rank,
(void *)&hrecv_buf[d*buffer_size], recv_from_rank, bytes, tag);
acceleratorCopyToDevice(&hrecv_buf[d*buffer_size],&recv_buf[d*buffer_size],bytes);
#endif
t_comms+=usecond()-t;
}
for ( int d=0;d < depth ; d ++ ) {
@ -508,9 +522,17 @@ public:
t_gather+= usecond() - t;
t=usecond();
#ifdef ACCELERATOR_AWARE_MPI
grid->SendToRecvFromBegin(bwd_req,
(void *)&send_buf[(d+depth)*buffer_size], recv_from_rank,
(void *)&recv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag);
#else
acceleratorCopyFromDevice(&send_buf[(d+depth)*buffer_size],&hsend_buf[(d+depth)*buffer_size],bytes);
grid->SendToRecvFromBegin(bwd_req,
(void *)&hsend_buf[(d+depth)*buffer_size], recv_from_rank,
(void *)&hrecv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag);
acceleratorCopyToDevice(&hrecv_buf[(d+depth)*buffer_size],&recv_buf[(d+depth)*buffer_size],bytes);
#endif
t_comms+=usecond()-t;
}

View File

@ -484,6 +484,12 @@ public:
this->face_table_computed=1;
assert(this->u_comm_offset==this->_unified_buffer_size);
accelerator_barrier();
#ifdef NVLINK_GET
#warning "NVLINK_GET"
this->_grid->StencilBarrier(); // He can now get mu local gather, I can get his
// Synch shared memory on a single nodes; could use an asynchronous barrier here and defer check
// Or issue barrier AFTER the DMA is running
#endif
}
};

View File

@ -504,7 +504,7 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
autoView(st_v , st,AcceleratorRead);
if( interior && exterior ) {
acceleratorFenceComputeStream();
// acceleratorFenceComputeStream();
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSite); return;}
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSite); return;}
#ifndef GRID_CUDA
@ -517,7 +517,7 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteInt); return;}
#endif
} else if( exterior ) {
// dependent on result of merge
// // dependent on result of merge
acceleratorFenceComputeStream();
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL_EXT(GenericDhopSiteExt); return;}
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL_EXT(HandDhopSiteExt); return;}

View File

@ -86,8 +86,13 @@ public:
assert(ForceE.Checkerboard()==Even);
assert(ForceO.Checkerboard()==Odd);
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
acceleratorSetCheckerboard(Force,ForceE);
acceleratorSetCheckerboard(Force,ForceO);
#else
setCheckerboard(Force,ForceE);
setCheckerboard(Force,ForceO);
#endif
Force=-Force;
delete forcecb;
@ -130,8 +135,13 @@ public:
assert(ForceE.Checkerboard()==Even);
assert(ForceO.Checkerboard()==Odd);
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
acceleratorSetCheckerboard(Force,ForceE);
acceleratorSetCheckerboard(Force,ForceO);
#else
setCheckerboard(Force,ForceE);
setCheckerboard(Force,ForceO);
#endif
Force=-Force;
delete forcecb;

View File

@ -363,12 +363,16 @@ public:
////////////////////////////////////////////////////////////////////////
void CommunicateBegin(std::vector<std::vector<CommsRequest_t> > &reqs)
{
// std::cout << "Communicate Begin "<<std::endl;
// _grid->Barrier();
FlightRecorder::StepLog("Communicate begin");
// All GPU kernel tasks must complete
// accelerator_barrier(); // All kernels should ALREADY be complete
// _grid->StencilBarrier(); // Everyone is here, so noone running slow and still using receive buffer
// But the HaloGather had a barrier too.
for(int i=0;i<Packets.size();i++){
// std::cout << "Communicate prepare "<<i<<std::endl;
// _grid->Barrier();
_grid->StencilSendToRecvFromPrepare(MpiReqs,
Packets[i].send_buf,
Packets[i].to_rank,Packets[i].do_send,
@ -376,8 +380,15 @@ public:
Packets[i].from_rank,Packets[i].do_recv,
Packets[i].xbytes,Packets[i].rbytes,i);
}
// std::cout << "Communicate PollDtoH "<<std::endl;
// _grid->Barrier();
_grid->StencilSendToRecvFromPollDtoH (MpiReqs); /* Starts MPI*/
// std::cout << "Communicate CopySynch "<<std::endl;
// _grid->Barrier();
acceleratorCopySynchronise();
// Starts intranode
for(int i=0;i<Packets.size();i++){
// std::cout << "Communicate Begin "<<i<<std::endl;
_grid->StencilSendToRecvFromBegin(MpiReqs,
Packets[i].send_buf,
Packets[i].to_rank,Packets[i].do_send,
@ -395,7 +406,14 @@ public:
void CommunicateComplete(std::vector<std::vector<CommsRequest_t> > &reqs)
{
// std::cout << "Communicate Complete "<<std::endl;
// _grid->Barrier();
FlightRecorder::StepLog("Start communicate complete");
// std::cout << "Communicate Complete PollIRecv "<<std::endl;
// _grid->Barrier();
_grid->StencilSendToRecvFromPollIRecv(MpiReqs);
// std::cout << "Communicate Complete Complete "<<std::endl;
// _grid->Barrier();
_grid->StencilSendToRecvFromComplete(MpiReqs,0); // MPI is done
if ( this->partialDirichlet ) DslashLogPartial();
else if ( this->fullDirichlet ) DslashLogDirichlet();
@ -483,6 +501,9 @@ public:
void HaloGather(const Lattice<vobj> &source,compressor &compress)
{
// accelerator_barrier();
//////////////////////////////////
// I will overwrite my send buffers
//////////////////////////////////
_grid->StencilBarrier();// Synch shared memory on a single nodes
assert(source.Grid()==_grid);
@ -496,7 +517,12 @@ public:
HaloGatherDir(source,compress,point,face_idx);
}
accelerator_barrier(); // All my local gathers are complete
// _grid->StencilBarrier();// Synch shared memory on a single nodes
#ifdef NVLINK_GET
#warning "NVLINK_GET"
_grid->StencilBarrier(); // He can now get mu local gather, I can get his
// Synch shared memory on a single nodes; could use an asynchronous barrier here and defer check
// Or issue barrier AFTER the DMA is running
#endif
face_table_computed=1;
assert(u_comm_offset==_unified_buffer_size);
}
@ -535,6 +561,7 @@ public:
coalescedWrite(to[j] ,coalescedRead(from [j]));
});
acceleratorFenceComputeStream();
// Also fenced in WilsonKernels
}
}
@ -663,7 +690,6 @@ public:
}
}
}
std::cout << "BuildSurfaceList size is "<<surface_list.size()<<std::endl;
surface_list.resize(surface_list_size);
std::vector<int> surface_list_host(surface_list_size);
int32_t ss=0;
@ -683,6 +709,7 @@ public:
}
}
acceleratorCopyToDevice(&surface_list_host[0],&surface_list[0],surface_list_size*sizeof(int));
std::cout << GridLogMessage<<"BuildSurfaceList size is "<<surface_list_size<<std::endl;
}
/// Introduce a block structure and switch off comms on boundaries
void DirichletBlock(const Coordinate &dirichlet_block)

View File

@ -343,9 +343,26 @@ inline void acceleratorFreeDevice(void *ptr){free(ptr,*theGridAccelerator);};
inline void acceleratorCopySynchronise(void) { theCopyAccelerator->wait(); }
inline void acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) { theCopyAccelerator->memcpy(to,from,bytes);}
inline void acceleratorCopyToDeviceAsynch(void *from,void *to,size_t bytes) { theCopyAccelerator->memcpy(to,from,bytes); }
inline void acceleratorCopyFromDeviceAsynch(void *from,void *to,size_t bytes){ theCopyAccelerator->memcpy(to,from,bytes); }
///////
// Asynch event interface
///////
typedef sycl::event acceleratorEvent_t;
inline void acceleratorEventWait(acceleratorEvent_t ev)
{
ev.wait();
}
inline int acceleratorEventIsComplete(acceleratorEvent_t ev)
{
return (ev.get_info<sycl::info::event::command_execution_status>() == sycl::info::event_command_status::complete);
}
inline acceleratorEvent_t acceleratorCopyDeviceToDeviceAsynch(void *from,void *to,size_t bytes) { return theCopyAccelerator->memcpy(to,from,bytes);}
inline acceleratorEvent_t acceleratorCopyToDeviceAsynch(void *from,void *to,size_t bytes) { return theCopyAccelerator->memcpy(to,from,bytes); }
inline acceleratorEvent_t acceleratorCopyFromDeviceAsynch(void *from,void *to,size_t bytes) { return theCopyAccelerator->memcpy(to,from,bytes); }
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { theCopyAccelerator->memcpy(to,from,bytes); theCopyAccelerator->wait();}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ theCopyAccelerator->memcpy(to,from,bytes); theCopyAccelerator->wait();}
inline void acceleratorMemSet(void *base,int value,size_t bytes) { theCopyAccelerator->memset(base,value,bytes); theCopyAccelerator->wait();}
@ -358,8 +375,10 @@ inline int acceleratorIsCommunicable(void *ptr)
else return 0;
#endif
return 1;
}
#endif
//////////////////////////////////////////////

View File

@ -52,7 +52,7 @@ int main (int argc, char ** argv)
int threads = GridThread::GetThreads();
int Ls=8;
int Ls=16;
for(int i=0;i<argc;i++) {
if(std::string(argv[i]) == "-Ls"){
std::stringstream ss(argv[i+1]); ss >> Ls;

View File

@ -175,8 +175,8 @@ public:
timestat.statistics(t_time);
dbytes=dbytes*ppn;
double xbytes = dbytes*0.5;
double bidibytes = dbytes;
double xbytes = dbytes;
double bidibytes = dbytes*2.0;
std::cout<<GridLogMessage << lat<<"\t"<<Ls<<"\t "
<< bytes << " \t "

View File

@ -0,0 +1,74 @@
#!/bin/bash
##PBS -q LatticeQCD_aesp_CNDA
#PBS -q debug-scaling
##PBS -q prod
#PBS -l select=16
#PBS -l walltime=00:20:00
#PBS -A LatticeQCD_aesp_CNDA
cd $PBS_O_WORKDIR
source ../sourceme.sh
cp $PBS_NODEFILE nodefile
export OMP_NUM_THREADS=4
export MPICH_OFI_NIC_POLICY=GPU
#export MPIR_CVAR_CH4_OFI_ENABLE_GPU_PIPELINE=1
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE
#unset MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE
#unset MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_D2H_ENGINE_TYPE=0
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_H2D_ENGINE_TYPE=0
#export MPIR_CVAR_GPU_USE_IMMEDIATE_COMMAND_LIST=1
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_BUFFER_SZ=1048576
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_THRESHOLD=131072
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_NUM_BUFFERS_PER_CHUNK=16
#export MPIR_CVAR_CH4_OFI_GPU_PIPELINE_MAX_NUM_BUFFERS=16
#
# Local vol 16.16.16.32
#
LX=16
LY=16
LZ=16
LT=32
NX=2
NY=2
NZ=4
NT=1
GX=2
GY=2
GZ=1
GT=3
PX=$((NX * GX ))
PY=$((NY * GY ))
PZ=$((NZ * GZ ))
PT=$((NT * GT ))
VX=$((PX * LX ))
VY=$((PY * LY ))
VZ=$((PZ * LZ ))
VT=$((PT * LT ))
NP=$((PX*PY*PZ*PT))
VOL=${VX}.${VY}.${VZ}.${VT}
AT=8
MPI=${PX}.${PY}.${PZ}.${PT}
CMD="mpiexec -np $NP -ppn 12 -envall \
./gpu_tile.sh ./Benchmark_dwf_fp32 --mpi $MPI --grid $VOL \
--shm-mpi 0 --shm 2048 --device-mem 32000 --accelerator-threads $AT --comms-overlap "
echo VOL $VOL
echo MPI $MPI
echo NPROC $NP
echo $CMD
$CMD

View File

@ -19,7 +19,7 @@ export ONEAPI_DEVICE_FILTER=gpu,level_zero
export SYCL_PI_LEVEL_ZERO_DEVICE_SCOPE_EVENTS=0
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE=0:3
export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE=0:4
export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE_FOR_D2D_COPY=1
#export SYCL_PI_LEVEL_ZERO_USE_COPY_ENGINE=0:2
#export SYCL_PI_LEVEL_ZERO_USM_RESIDENT=1
@ -30,8 +30,8 @@ echo "rank $PALS_RANKID ; local rank $PALS_LOCAL_RANKID ; ZE_AFFINITY_MASK=$ZE_A
if [ $PALS_RANKID = "0" ]
then
numactl -p $NUMAP -N $NUMAP unitrace --chrome-kernel-logging --chrome-mpi-logging --chrome-sycl-logging --demangle "$@"
# numactl -p $NUMAP -N $NUMAP "$@"
# numactl -p $NUMAP -N $NUMAP unitrace --chrome-kernel-logging --chrome-mpi-logging --chrome-sycl-logging --demangle "$@"
numactl -p $NUMAP -N $NUMAP "$@"
else
numactl -p $NUMAP -N $NUMAP "$@"
fi

View File

@ -2,7 +2,7 @@
spack load c-lime
module load emacs
module load PrgEnv-gnu
module load rocm
module load rocm/6.0.0
module load cray-mpich
module load gmp
module load cray-fftw

View File

@ -0,0 +1,781 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_general_coarse_hdcg.cc
Copyright (C) 2023
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczosCoarse.h>
#include <Grid/algorithms/iterative/AdefMrhs.h>
#include <Grid/algorithms/iterative/PowerSpectrum.h>
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
using namespace std;
using namespace Grid;
template<class aggregation>
void SaveFineEvecs(aggregation &Agg,std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacWriter WR(Agg[0].Grid()->IsBoss());
WR.open(file);
for(int b=0;b<Agg.size();b++){
WR.writeScidacFieldRecord(Agg[b],record,0,Grid::BinaryIO::BINARYIO_LEXICOGRAPHIC);
}
WR.close();
#endif
}
template<class aggregation>
void SaveBasis(aggregation &Agg,std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacWriter WR(Agg.FineGrid->IsBoss());
WR.open(file);
for(int b=0;b<Agg.subspace.size();b++){
WR.writeScidacFieldRecord(Agg.subspace[b],record,0,Grid::BinaryIO::BINARYIO_LEXICOGRAPHIC);
// WR.writeScidacFieldRecord(Agg.subspace[b],record);
}
WR.close();
#endif
}
template<class aggregation>
void LoadBasis(aggregation &Agg, std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacReader RD ;
RD.open(file);
for(int b=0;b<Agg.subspace.size();b++){
RD.readScidacFieldRecord(Agg.subspace[b],record,Grid::BinaryIO::BINARYIO_LEXICOGRAPHIC);
// RD.readScidacFieldRecord(Agg.subspace[b],record,0);
}
RD.close();
#endif
}
template<class aggregation>
void LoadBasisSkip(aggregation &Agg, std::string file,int N,LatticeFermionF & tmp)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacReader RD ;
RD.open(file);
for(int b=0;b<Agg.subspace.size();b++){
for(int n=0;n<N;n++){
RD.readScidacFieldRecord(tmp,record,Grid::BinaryIO::BINARYIO_LEXICOGRAPHIC);
if(n==0) precisionChange(Agg.subspace[b],tmp);
}
// RD.readScidacFieldRecord(Agg.subspace[b],record,0);
}
RD.close();
#endif
}
template<class aggregation>
void LoadBasisSum(aggregation &Agg, std::string file,int N,LatticeFermionF & tmp)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacReader RD ;
LatticeFermionF sum(tmp.Grid());
RD.open(file);
for(int b=0;b<Agg.subspace.size();b++){
sum=Zero();
for(int n=0;n<N;n++){
RD.readScidacFieldRecord(tmp,record,Grid::BinaryIO::BINARYIO_LEXICOGRAPHIC);
sum=sum+tmp;
}
precisionChange(Agg.subspace[b],sum);
// RD.readScidacFieldRecord(Agg.subspace[b],record,0);
}
RD.close();
#endif
}
template<class CoarseVector>
void SaveEigenvectors(std::vector<RealD> &eval,
std::vector<CoarseVector> &evec,
std::string evec_file,
std::string eval_file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacWriter WR(evec[0].Grid()->IsBoss());
WR.open(evec_file);
for(int b=0;b<evec.size();b++){
WR.writeScidacFieldRecord(evec[b],record,0,0);
}
WR.close();
XmlWriter WRx(eval_file);
write(WRx,"evals",eval);
#endif
}
template<class CoarseVector>
void LoadEigenvectors(std::vector<RealD> &eval,
std::vector<CoarseVector> &evec,
std::string evec_file,
std::string eval_file)
{
#ifdef HAVE_LIME
XmlReader RDx(eval_file);
read(RDx,"evals",eval);
emptyUserRecord record;
Grid::ScidacReader RD ;
RD.open(evec_file);
assert(evec.size()==eval.size());
for(int k=0;k<eval.size();k++) {
RD.readScidacFieldRecord(evec[k],record);
}
RD.close();
#endif
}
// Want Op in CoarsenOp to call MatPcDagMatPc
template<class Field>
class HermOpAdaptor : public LinearOperatorBase<Field>
{
LinearOperatorBase<Field> & wrapped;
public:
HermOpAdaptor(LinearOperatorBase<Field> &wrapme) : wrapped(wrapme) {};
void Op (const Field &in, Field &out) { wrapped.HermOp(in,out); }
void HermOp(const Field &in, Field &out) { wrapped.HermOp(in,out); }
void AdjOp (const Field &in, Field &out){ wrapped.HermOp(in,out); }
void OpDiag (const Field &in, Field &out) { assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out) { assert(0); };
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
};
template<class Field> class FixedCGPolynomial : public LinearFunction<Field>
{
public:
using LinearFunction<Field>::operator();
typedef LinearOperatorBase<Field> FineOperator;
FineOperator & _SmootherOperator;
ConjugateGradientPolynomial<Field> CG;
int iters;
bool record;
int replay_count;
FixedCGPolynomial(int _iters, FineOperator &SmootherOperator) :
_SmootherOperator(SmootherOperator),
iters(_iters),
record(true),
CG(0.0,_iters,false)
{
std::cout << GridLogMessage<<" FixedCGPolynomial order "<<iters<<std::endl;
replay_count = 0;
};
void operator() (const Field &in, Field &out)
{
#if 1
GridBase *grid = in.Grid();
Field Mx0(grid);
Field r0(grid);
Field Minvr0(grid);
_SmootherOperator.HermOp(out,Mx0);
r0 = in - Mx0;
Minvr0 = Zero();
Minvr0.Checkerboard()=in.Checkerboard();
if ( record ) {
std::cout << " FixedCGPolynomial recording polynomial "<<std::endl;
CG.Solve(_SmootherOperator,r0,Minvr0);
record = false;
/*
std::cout << "P(x) = 0 "<<std::endl;
for(int i=0;i<CG.polynomial.size();i++){
std::cout<<" + "<< CG.polynomial[i]<<" * (x**"<<i<<")"<<std::endl;
}
*/
Field tmp(Minvr0.Grid());
CG.CGsequenceHermOp(_SmootherOperator,r0,tmp);
tmp = tmp - Minvr0;
std::cout << " CGsequence error "<<norm2(tmp)<<" / "<<norm2(out)<<std::endl;
} else {
std::cout << " FixedCGPolynomial replaying polynomial "<<std::endl;
CG.CGsequenceHermOp(_SmootherOperator,r0,Minvr0);
if ( replay_count %5== 0 ) record=true;
replay_count++;
}
out = out + Minvr0;
_SmootherOperator.HermOp(out,r0);
r0 = r0 - in;
RealD rr=norm2(r0);
RealD ss=norm2(in);
std::cout << " FixedCGPolynomial replayed polynomial resid "<<::sqrt(rr/ss)<<std::endl;
#else
out = Zero();
out.Checkerboard()=in.Checkerboard();
if ( record ) {
std::cout << " FixedCGPolynomial recording polynomial "<<std::endl;
CG.Solve(_SmootherOperator,in,out);
record = false;
std::cout << "P(x) = 0 "<<std::endl;
for(int i=0;i<CG.polynomial.size();i++){
std::cout<<" + "<< CG.polynomial[i]<<" * (x**"<<i<<")"<<std::endl;
}
Field tmp(in.Grid());
CG.CGsequenceHermOp(_SmootherOperator,in,tmp);
tmp = tmp - out;
std::cout << " CGsequence error "<<norm2(tmp)<<" / "<<norm2(out)<<std::endl;
} else {
std::cout << " FixedCGPolynomial replaying polynomial "<<std::endl;
CG.CGsequenceHermOp(_SmootherOperator,in,out);
if ( replay_count %5== 5 ) record=true;
replay_count++;
}
#endif
}
void operator() (const std::vector<Field> &in, std::vector<Field> &out)
{
for(int i=0;i<out.size();i++){
out[i]=Zero();
}
int blockDim = 0;//not used for BlockCGVec
BlockConjugateGradient<Field> BCGV (BlockCGrQVec,blockDim,0.0,iters,false);
BCGV(_SmootherOperator,in,out);
}
};
template<class Field> class CGSmoother : public LinearFunction<Field>
{
public:
using LinearFunction<Field>::operator();
typedef LinearOperatorBase<Field> FineOperator;
FineOperator & _SmootherOperator;
int iters;
CGSmoother(int _iters, FineOperator &SmootherOperator) :
_SmootherOperator(SmootherOperator),
iters(_iters)
{
std::cout << GridLogMessage<<" Mirs smoother order "<<iters<<std::endl;
};
void operator() (const Field &in, Field &out)
{
ConjugateGradient<Field> CG(0.0,iters,false); // non-converge is just fine in a smoother
out=Zero();
CG(_SmootherOperator,in,out);
}
};
RealD InverseApproximation(RealD x){
return 1.0/x;
}
template<class Field> class ChebyshevSmoother : public LinearFunction<Field>
{
public:
using LinearFunction<Field>::operator();
typedef LinearOperatorBase<Field> FineOperator;
FineOperator & _SmootherOperator;
Chebyshev<Field> Cheby;
ChebyshevSmoother(RealD _lo,RealD _hi,int _ord, FineOperator &SmootherOperator) :
_SmootherOperator(SmootherOperator),
Cheby(_lo,_hi,_ord,InverseApproximation)
{
std::cout << GridLogMessage<<" Chebyshev smoother order "<<_ord<<" ["<<_lo<<","<<_hi<<"]"<<std::endl;
};
void operator() (const Field &in, Field &out)
{
// Field r(out.Grid());
Cheby(_SmootherOperator,in,out);
// _SmootherOperator.HermOp(out,r);
// r=r-in;
// RealD rr=norm2(r);
// RealD ss=norm2(in);
// std::cout << GridLogMessage<<" Chebyshev smoother resid "<<::sqrt(rr/ss)<<std::endl;
}
};
template<class Field> class ChebyshevInverter : public LinearFunction<Field>
{
public:
using LinearFunction<Field>::operator();
typedef LinearOperatorBase<Field> FineOperator;
FineOperator & _Operator;
Chebyshev<Field> Cheby;
ChebyshevInverter(RealD _lo,RealD _hi,int _ord, FineOperator &Operator) :
_Operator(Operator),
Cheby(_lo,_hi,_ord,InverseApproximation)
{
std::cout << GridLogMessage<<" Chebyshev Inverter order "<<_ord<<" ["<<_lo<<","<<_hi<<"]"<<std::endl;
};
void operator() (const Field &in, Field &out)
{
Field r(in.Grid());
Field AinvR(in.Grid());
_Operator.HermOp(out,r);
r = in - r; // b - A x
Cheby(_Operator,r,AinvR); // A^{-1} ( b - A x ) ~ A^{-1} b - x
out = out + AinvR;
_Operator.HermOp(out,r);
r = in - r; // b - A x
RealD rr = norm2(r);
RealD ss = norm2(in);
std::cout << "ChebshevInverse resid " <<::sqrt(rr/ss)<<std::endl;
}
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
int sample=1;
if( GridCmdOptionExists(argv,argv+argc,"--sample") ){
std::string arg;
arg = GridCmdOptionPayload(argv,argv+argc,"--sample");
GridCmdOptionInt(arg,sample);
}
const int Ls=24;
const int nbasis = 62;
const int cb = 0 ;
RealD mass=0.00078;
if( GridCmdOptionExists(argv,argv+argc,"--mass") ){
std::string arg;
arg = GridCmdOptionPayload(argv,argv+argc,"--mass");
GridCmdOptionFloat(arg,mass);
}
RealD M5=1.8;
RealD b=1.5;
RealD c=0.5;
std::cout << GridLogMessage << " *************************** " <<std::endl;
std::cout << GridLogMessage << " Mass " <<mass<<std::endl;
std::cout << GridLogMessage << " M5 " <<M5<<std::endl;
std::cout << GridLogMessage << " Ls " <<Ls<<std::endl;
std::cout << GridLogMessage << " b " <<b<<std::endl;
std::cout << GridLogMessage << " c " <<c<<std::endl;
std::cout << GridLogMessage << " *************************** " <<std::endl;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
//////////////////////////////////////////
// Single precision grids -- lanczos + smoother
//////////////////////////////////////////
GridCartesian * UGridF = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
GridDefaultSimd(Nd,vComplexF::Nsimd()),
GridDefaultMpi());
GridRedBlackCartesian * UrbGridF = SpaceTimeGrid::makeFourDimRedBlackGrid(UGridF);
GridCartesian * FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridF);
GridRedBlackCartesian * FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridF);
///////////////////////// Configuration /////////////////////////////////
LatticeGaugeField Umu(UGrid);
FieldMetaData header;
std::string file("ckpoint_lat.1000");
NerscIO::readConfiguration(Umu,header,file);
//////////////////////// Fermion action //////////////////////////////////
MobiusFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,b,c);
SchurDiagMooeeOperator<MobiusFermionD, LatticeFermion> HermOpEO(Ddwf);
std::cout << "**************************************"<<std::endl;
std::cout << " Fine Power method "<<std::endl;
std::cout << "**************************************"<<std::endl;
{
LatticeFermionD pm_src(FrbGrid);
pm_src = ComplexD(1.0);
PowerMethod<LatticeFermionD> fPM;
fPM(HermOpEO,pm_src);
}
if(0)
{
std::cout << "**************************************"<<std::endl;
std::cout << " Fine Lanczos "<<std::endl;
std::cout << "**************************************"<<std::endl;
typedef LatticeFermionF FermionField;
LatticeGaugeFieldF UmuF(UGridF);
precisionChange(UmuF,Umu);
MobiusFermionF DdwfF(UmuF,*FGridF,*FrbGridF,*UGridF,*UrbGridF,mass,M5,b,c);
SchurDiagMooeeOperator<MobiusFermionF, LatticeFermionF> HermOpEOF(DdwfF);
const int Fine_Nstop = 200;
const int Fine_Nk = 200;
const int Fine_Np = 200;
const int Fine_Nm = Fine_Nk+Fine_Np;
const int Fine_MaxIt= 10;
RealD Fine_resid = 1.0e-4;
std::cout << GridLogMessage << "Fine Lanczos "<<std::endl;
std::cout << GridLogMessage << "Nstop "<<Fine_Nstop<<std::endl;
std::cout << GridLogMessage << "Nk "<<Fine_Nk<<std::endl;
std::cout << GridLogMessage << "Np "<<Fine_Np<<std::endl;
std::cout << GridLogMessage << "resid "<<Fine_resid<<std::endl;
Chebyshev<FermionField> Cheby(0.002,92.0,401);
// Chebyshev<FermionField> Cheby(0.1,92.0,401);
FunctionHermOp<FermionField> OpCheby(Cheby,HermOpEOF);
PlainHermOp<FermionField> Op (HermOpEOF);
ImplicitlyRestartedLanczos<FermionField> IRL(OpCheby,Op,Fine_Nstop,Fine_Nk,Fine_Nm,Fine_resid,Fine_MaxIt);
std::vector<RealD> Fine_eval(Fine_Nm);
FermionField Fine_src(FrbGridF);
Fine_src = ComplexF(1.0);
std::vector<FermionField> Fine_evec(Fine_Nm,FrbGridF);
int Fine_Nconv;
std::cout << GridLogMessage <<" Calling IRL.calc single prec"<<std::endl;
IRL.calc(Fine_eval,Fine_evec,Fine_src,Fine_Nconv);
std::string evec_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Subspace.phys48.evecF");
SaveFineEvecs(Fine_evec,evec_file);
}
//////////////////////////////////////////
// Construct a coarsened grid with 4^4 cell
//////////////////////////////////////////
Coordinate Block({4,4,6,4});
Coordinate clatt = GridDefaultLatt();
for(int d=0;d<clatt.size();d++){
clatt[d] = clatt[d]/Block[d];
}
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt,
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());;
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
///////////////////////// RNGs /////////////////////////////////
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
std::vector<int> cseeds({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds);
typedef HermOpAdaptor<LatticeFermionD> HermFineMatrix;
HermFineMatrix FineHermOp(HermOpEO);
////////////////////////////////////////////////////////////
///////////// Coarse basis and Little Dirac Operator ///////
////////////////////////////////////////////////////////////
typedef GeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LittleDiracOperator;
typedef LittleDiracOperator::CoarseVector CoarseVector;
NextToNextToNextToNearestStencilGeometry5D geom(Coarse5d);
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
Subspace Aggregates(Coarse5d,FrbGrid,cb);
////////////////////////////////////////////////////////////
// Need to check about red-black grid coarsening
////////////////////////////////////////////////////////////
std::string subspace_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Subspace.phys48.mixed.2500.60");
// // std::string subspace_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Subspace.phys48.new.62");
// std::string refine_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Subspace.phys48.evecF");
std::string refine_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Refine.phys48.mixed.2500.60");
std::string ldop_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/LittleDiracOp.phys48.mixed.60");
std::string evec_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/evecs.scidac");
std::string eval_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/eval.xml");
bool load_agg=true;
bool load_refine=true;
bool load_mat=false;
bool load_evec=false;
int refine=1;
if ( load_agg ) {
if ( !(refine) || (!load_refine) ) {
LoadBasis(Aggregates,subspace_file);
}
} else {
// Aggregates.CreateSubspaceMultishift(RNG5,HermOpEO,
// 0.0003,1.0e-5,2000); // Lo, tol, maxit
// Aggregates.CreateSubspaceChebyshev(RNG5,HermOpEO,nbasis,95.,0.01,1500);// <== last run
Aggregates.CreateSubspaceChebyshevNew(RNG5,HermOpEO,95.);
SaveBasis(Aggregates,subspace_file);
}
std::cout << "**************************************"<<std::endl;
std::cout << "Building MultiRHS Coarse operator"<<std::endl;
std::cout << "**************************************"<<std::endl;
ConjugateGradient<CoarseVector> coarseCG(4.0e-2,20000,true);
const int nrhs=24;
Coordinate mpi=GridDefaultMpi();
Coordinate rhMpi ({1,1,mpi[0],mpi[1],mpi[2],mpi[3]});
Coordinate rhLatt({nrhs,1,clatt[0],clatt[1],clatt[2],clatt[3]});
Coordinate rhSimd({vComplex::Nsimd(),1, 1,1,1,1});
GridCartesian *CoarseMrhs = new GridCartesian(rhLatt,rhSimd,rhMpi);
typedef MultiGeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> MultiGeneralCoarsenedMatrix_t;
MultiGeneralCoarsenedMatrix_t mrhs(geom,CoarseMrhs);
std::cout << "**************************************"<<std::endl;
std::cout << " Coarse Lanczos "<<std::endl;
std::cout << "**************************************"<<std::endl;
typedef HermitianLinearOperator<MultiGeneralCoarsenedMatrix_t,CoarseVector> MrhsHermMatrix;
Chebyshev<CoarseVector> IRLCheby(0.005,42.0,301); // 1 iter
MrhsHermMatrix MrhsCoarseOp (mrhs);
// CoarseVector pm_src(CoarseMrhs);
// pm_src = ComplexD(1.0);
// PowerMethod<CoarseVector> cPM; cPM(MrhsCoarseOp,pm_src);
int Nk=192;
int Nm=384;
int Nstop=Nk;
int Nconv_test_interval=1;
ImplicitlyRestartedBlockLanczosCoarse<CoarseVector> IRL(MrhsCoarseOp,
Coarse5d,
CoarseMrhs,
nrhs,
IRLCheby,
Nstop,
Nconv_test_interval,
nrhs,
Nk,
Nm,
1e-5,10);
int Nconv;
std::vector<RealD> eval(Nm);
std::vector<CoarseVector> evec(Nm,Coarse5d);
std::vector<CoarseVector> c_src(nrhs,Coarse5d);
///////////////////////
// Deflation guesser object
///////////////////////
MultiRHSDeflation<CoarseVector> MrhsGuesser;
//////////////////////////////////////////
// Block projector for coarse/fine
//////////////////////////////////////////
MultiRHSBlockProject<LatticeFermionD> MrhsProjector;
//////////////////////////
// Extra HDCG parameters
//////////////////////////
int maxit=300;
ConjugateGradient<CoarseVector> CG(5.0e-2,maxit,false);
ConjugateGradient<CoarseVector> CGstart(5.0e-2,maxit,false);
RealD lo=2.0;
int ord = 7;
// int ord = 11;
int blockDim = 0;//not used for BlockCG
BlockConjugateGradient<CoarseVector> BCG (BlockCGrQ,blockDim,5.0e-5,maxit,true);
DoNothingGuesser<CoarseVector> DoNothing;
// HPDSolver<CoarseVector> HPDSolveMrhs(MrhsCoarseOp,CG,DoNothing);
// HPDSolver<CoarseVector> HPDSolveMrhsStart(MrhsCoarseOp,CGstart,DoNothing);
// HPDSolver<CoarseVector> HPDSolveMrhs(MrhsCoarseOp,BCG,DoNothing);
// HPDSolver<CoarseVector> HPDSolveMrhsRefine(MrhsCoarseOp,BCG,DoNothing);
// FixedCGPolynomial<CoarseVector> HPDSolveMrhs(maxit,MrhsCoarseOp);
ChebyshevInverter<CoarseVector> HPDSolveMrhs(1.0e-2,40.0,120,MrhsCoarseOp); //
// ChebyshevInverter<CoarseVector> HPDSolveMrhs(1.0e-2,40.0,110,MrhsCoarseOp); // 114 iter with Chebysmooth and BlockCG
// ChebyshevInverter<CoarseVector> HPDSolveMrhs(1.0e-2,40.0,120,MrhsCoarseOp); // 138 iter with Chebysmooth
// ChebyshevInverter<CoarseVector> HPDSolveMrhs(1.0e-2,40.0,200,MrhsCoarseOp); // 139 iter
// ChebyshevInverter<CoarseVector> HPDSolveMrhs(3.0e-3,40.0,200,MrhsCoarseOp); // 137 iter, CG smooth, flex
// ChebyshevInverter<CoarseVector> HPDSolveMrhs(1.0e-3,40.0,200,MrhsCoarseOp); // 146 iter, CG smooth, flex
// ChebyshevInverter<CoarseVector> HPDSolveMrhs(3.0e-4,40.0,200,MrhsCoarseOp); // 156 iter, CG smooth, flex
/////////////////////////////////////////////////
// Mirs smoother
/////////////////////////////////////////////////
ShiftedHermOpLinearOperator<LatticeFermionD> ShiftedFineHermOp(HermOpEO,lo);
// FixedCGPolynomial<LatticeFermionD> CGsmooth(ord,ShiftedFineHermOp) ;
// CGSmoother<LatticeFermionD> CGsmooth(ord,ShiftedFineHermOp) ;
ChebyshevSmoother<LatticeFermionD> CGsmooth(2.0,92.0,8,HermOpEO) ;
if ( load_refine ) {
LoadBasis(Aggregates,refine_file);
// LatticeFermionF conv_tmp(FrbGridF);
// LoadBasisSum(Aggregates,refine_file,sample,conv_tmp);
} else {
Aggregates.RefineSubspace(HermOpEO,0.001,1.0e-3,3000); // 172 iters
SaveBasis(Aggregates,refine_file);
}
Aggregates.Orthogonalise();
std::cout << "**************************************"<<std::endl;
std::cout << "Coarsen after refine"<<std::endl;
std::cout << "**************************************"<<std::endl;
mrhs.CoarsenOperator(FineHermOp,Aggregates,Coarse5d);
std::cout << "**************************************"<<std::endl;
std::cout << " Recompute coarse evecs "<<std::endl;
std::cout << "**************************************"<<std::endl;
evec.resize(Nm,Coarse5d);
eval.resize(Nm);
for(int r=0;r<nrhs;r++){
random(CRNG,c_src[r]);
}
IRL.calc(eval,evec,c_src,Nconv,LanczosType::irbl);
std::cout << "**************************************"<<std::endl;
std::cout << " Reimport coarse evecs "<<std::endl;
std::cout << "**************************************"<<std::endl;
MrhsGuesser.ImportEigenBasis(evec,eval);
std::cout << "**************************************"<<std::endl;
std::cout << " Setting up mRHS HDCG"<<std::endl;
std::cout << "**************************************"<<std::endl;
MrhsProjector.Allocate(nbasis,FrbGrid,Coarse5d);
MrhsProjector.ImportBasis(Aggregates.subspace);
std::cout << "**************************************"<<std::endl;
std::cout << "Calling mRHS HDCG"<<std::endl;
std::cout << "**************************************"<<std::endl;
TwoLevelADEF2mrhs<LatticeFermion,CoarseVector>
HDCGmrhs(1.0e-8, 300,
FineHermOp,
CGsmooth,
HPDSolveMrhs, // Used in M1
HPDSolveMrhs, // Used in Vstart
MrhsProjector,
MrhsGuesser,
CoarseMrhs);
std::vector<LatticeFermionD> src_mrhs(nrhs,FrbGrid);
std::vector<LatticeFermionD> res_mrhs(nrhs,FrbGrid);
LatticeFermionD result_accurate(FrbGrid);
LatticeFermionD result_sloppy(FrbGrid);
LatticeFermionD error(FrbGrid);
LatticeFermionD residual(FrbGrid);
for(int r=0;r<nrhs;r++){
random(RNG5,src_mrhs[r]);
res_mrhs[r]=Zero();
}
HDCGmrhs(src_mrhs,res_mrhs);
result_accurate = res_mrhs[0];
#if 0
std::vector<RealD> bins({1.0e-3,1.0e-2,1.0e-1,1.0,10.0,100.0});
std::vector<int> orders({6000 ,4000 ,1000 ,500,500 ,500});
PowerSpectrum GraphicEqualizer(bins,orders);
std::cout << "**************************************"<<std::endl;
std::cout << GridLogMessage << " PowerSpectrum of rrr "<<std::endl;
std::cout << "**************************************"<<std::endl;
GraphicEqualizer(FineHermOp,HDCGmrhs.rrr);
std::cout << "**************************************"<<std::endl;
std::cout << GridLogMessage << " PowerSpectrum of sss "<<std::endl;
std::cout << "**************************************"<<std::endl;
GraphicEqualizer(FineHermOp,HDCGmrhs.sss);
std::cout << "**************************************"<<std::endl;
std::cout << GridLogMessage << " PowerSpectrum of qqq "<<std::endl;
std::cout << "**************************************"<<std::endl;
GraphicEqualizer(FineHermOp,HDCGmrhs.qqq);
std::cout << "**************************************"<<std::endl;
std::cout << GridLogMessage << " PowerSpectrum of zzz "<<std::endl;
std::cout << "**************************************"<<std::endl;
GraphicEqualizer(FineHermOp,HDCGmrhs.zzz);
std::vector<RealD> tols({1.0e-3,1.0e-4,1.0e-5});
for(auto tol : tols) {
TwoLevelADEF2mrhs<LatticeFermion,CoarseVector>
HDCGmrhsSloppy(tol, 500,
FineHermOp,
CGsmooth,
HPDSolveMrhs, // Used in M1
HPDSolveMrhs, // Used in Vstart
MrhsProjector,
MrhsGuesser,
CoarseMrhs);
// Solve again to 10^-5
for(int r=0;r<nrhs;r++){
res_mrhs[r]=Zero();
}
HDCGmrhsSloppy(src_mrhs,res_mrhs);
result_sloppy = res_mrhs[0];
error = result_sloppy - result_accurate;
FineHermOp.HermOp(result_sloppy,residual);
residual = residual - src_mrhs[0];
std::cout << "**************************************"<<std::endl;
std::cout << GridLogMessage << " Converged to tolerance "<< tol<<std::endl;
std::cout << GridLogMessage << " Absolute error "<<norm2(error)<<std::endl;
std::cout << GridLogMessage << " Residual "<<norm2(residual)<<std::endl;
std::cout << "**************************************"<<std::endl;
std::cout << "**************************************"<<std::endl;
std::cout << GridLogMessage << " PowerSpectrum of error "<<std::endl;
std::cout << "**************************************"<<std::endl;
GraphicEqualizer(FineHermOp,error);
std::cout << "**************************************"<<std::endl;
std::cout << GridLogMessage << " PowerSpectrum of residual "<<std::endl;
std::cout << "**************************************"<<std::endl;
GraphicEqualizer(FineHermOp,residual);
};
#endif
// Standard CG
#if 0
{
std::cout << "**************************************"<<std::endl;
std::cout << "Calling red black CG"<<std::endl;
std::cout << "**************************************"<<std::endl;
LatticeFermion result(FrbGrid); result=Zero();
LatticeFermion src(FrbGrid); random(RNG5,src);
result=Zero();
ConjugateGradient<LatticeFermionD> CGfine(1.0e-8,30000,false);
CGfine(HermOpEO, src, result);
}
#endif
Grid_finalize();
return 0;
}

View File

@ -0,0 +1,355 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_general_coarse_hdcg.cc
Copyright (C) 2023
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczosCoarse.h>
#include <Grid/algorithms/iterative/AdefMrhs.h>
using namespace std;
using namespace Grid;
template<class aggregation>
void SaveFineEvecs(aggregation &Agg,std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacWriter WR(Agg[0].Grid()->IsBoss());
WR.open(file);
for(int b=0;b<Agg.size();b++){
WR.writeScidacFieldRecord(Agg[b],record,0,Grid::BinaryIO::BINARYIO_LEXICOGRAPHIC);
}
WR.close();
#endif
}
template<class aggregation>
void SaveBasis(aggregation &Agg,std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacWriter WR(Agg.FineGrid->IsBoss());
WR.open(file);
for(int b=0;b<Agg.subspace.size();b++){
WR.writeScidacFieldRecord(Agg.subspace[b],record,0,Grid::BinaryIO::BINARYIO_LEXICOGRAPHIC);
// WR.writeScidacFieldRecord(Agg.subspace[b],record);
}
WR.close();
#endif
}
template<class aggregation>
void LoadBasis(aggregation &Agg, std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacReader RD ;
RD.open(file);
for(int b=0;b<Agg.subspace.size();b++){
RD.readScidacFieldRecord(Agg.subspace[b],record,Grid::BinaryIO::BINARYIO_LEXICOGRAPHIC);
// RD.readScidacFieldRecord(Agg.subspace[b],record,0);
}
RD.close();
#endif
}
template<class aggregation>
void LoadFineEvecs(aggregation &Agg, std::string file,LatticeFermionF & conv_tmp)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacReader RD ;
RD.open(file);
for(int b=0;b<Agg.size();b++){
RD.readScidacFieldRecord(conv_tmp,record,Grid::BinaryIO::BINARYIO_LEXICOGRAPHIC);
precisionChange(Agg[b],conv_tmp);
}
RD.close();
#endif
}
template<class CoarseVector>
void SaveEigenvectors(std::vector<RealD> &eval,
std::vector<CoarseVector> &evec,
std::string evec_file,
std::string eval_file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacWriter WR(evec[0].Grid()->IsBoss());
WR.open(evec_file);
for(int b=0;b<evec.size();b++){
WR.writeScidacFieldRecord(evec[b],record,0,0);
}
WR.close();
XmlWriter WRx(eval_file);
write(WRx,"evals",eval);
#endif
}
template<class CoarseVector>
void LoadEigenvectors(std::vector<RealD> &eval,
std::vector<CoarseVector> &evec,
std::string evec_file,
std::string eval_file)
{
#ifdef HAVE_LIME
XmlReader RDx(eval_file);
read(RDx,"evals",eval);
emptyUserRecord record;
Grid::ScidacReader RD ;
RD.open(evec_file);
assert(evec.size()==eval.size());
for(int k=0;k<eval.size();k++) {
RD.readScidacFieldRecord(evec[k],record);
}
RD.close();
#endif
}
// Want Op in CoarsenOp to call MatPcDagMatPc
template<class Field>
class HermOpAdaptor : public LinearOperatorBase<Field>
{
LinearOperatorBase<Field> & wrapped;
public:
HermOpAdaptor(LinearOperatorBase<Field> &wrapme) : wrapped(wrapme) {};
void Op (const Field &in, Field &out) { wrapped.HermOp(in,out); }
void HermOp(const Field &in, Field &out) { wrapped.HermOp(in,out); }
void AdjOp (const Field &in, Field &out){ wrapped.HermOp(in,out); }
void OpDiag (const Field &in, Field &out) { assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out) { assert(0); };
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
};
template<class Field> class CGSmoother : public LinearFunction<Field>
{
public:
using LinearFunction<Field>::operator();
typedef LinearOperatorBase<Field> FineOperator;
FineOperator & _SmootherOperator;
int iters;
CGSmoother(int _iters, FineOperator &SmootherOperator) :
_SmootherOperator(SmootherOperator),
iters(_iters)
{
std::cout << GridLogMessage<<" Mirs smoother order "<<iters<<std::endl;
};
void operator() (const Field &in, Field &out)
{
ConjugateGradient<Field> CG(0.0,iters,false); // non-converge is just fine in a smoother
out=Zero();
CG(_SmootherOperator,in,out);
}
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
const int Ls=24;
const int nbasis = 62;
const int cb = 0 ;
RealD mass=0.00078;
RealD M5=1.8;
RealD b=1.5;
RealD c=0.5;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
// Construct a coarsened grid with 4^4 cell
Coordinate Block({4,4,6,4});
Coordinate clatt = GridDefaultLatt();
for(int d=0;d<clatt.size();d++){
clatt[d] = clatt[d]/Block[d];
}
//////////////////////////////////////////
// Double precision grids
//////////////////////////////////////////
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt,
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());;
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
//////////////////////////////////////////
// Single precision grids -- lanczos + smoother
//////////////////////////////////////////
GridCartesian * UGridF = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
GridDefaultSimd(Nd,vComplexF::Nsimd()),
GridDefaultMpi());
GridRedBlackCartesian * UrbGridF = SpaceTimeGrid::makeFourDimRedBlackGrid(UGridF);
GridCartesian * FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridF);
GridRedBlackCartesian * FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridF);
///////////////////////// RNGs /////////////////////////////////
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
std::vector<int> cseeds({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds);
///////////////////////// Configuration /////////////////////////////////
LatticeGaugeField Umu(UGrid);
FieldMetaData header;
std::string file("ckpoint_lat.1000");
NerscIO::readConfiguration(Umu,header,file);
//////////////////////// Fermion action //////////////////////////////////
MobiusFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,b,c);
SchurDiagMooeeOperator<MobiusFermionD, LatticeFermion> HermOpEO(Ddwf);
const int Fine_Nstop = 200;
const int Fine_Nk = 100;
const int Fine_Np = 100;
const int Fine_Nm = Fine_Nk+Fine_Np;
typedef LatticeFermion FermionField;
std::vector<RealD> Fine_eval;
std::vector<FermionField> Fine_evec;
LatticeFermionF conv_tmp(FrbGridF);
Fine_eval.resize(Fine_Nstop);
Fine_evec.resize(Fine_Nstop,FrbGrid);
std::string evec_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Subspace.phys48.evecF");
LoadFineEvecs(Fine_evec,evec_file,conv_tmp);
typedef HermOpAdaptor<LatticeFermionD> HermFineMatrix;
HermFineMatrix FineHermOp(HermOpEO);
////////////////////////////////////////////////////////////
///////////// Coarse basis and Little Dirac Operator ///////
////////////////////////////////////////////////////////////
typedef GeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LittleDiracOperator;
typedef LittleDiracOperator::CoarseVector CoarseVector;
NextToNextToNextToNearestStencilGeometry5D geom(Coarse5d);
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
Subspace Aggregates(Coarse5d,FrbGrid,cb);
////////////////////////////////////////////////////////////
// Need to check about red-black grid coarsening
////////////////////////////////////////////////////////////
// std::string subspace_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Subspace.phys48.mixed.2500.60");
// // std::string subspace_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Subspace.phys48.new.62");
// std::string refine_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Subspace.phys48.evec");
std::string refine_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Refine.phys48.mixed.2500.60");
// std::string ldop_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/LittleDiracOp.phys48.mixed.60");
// std::string evec_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/evecs.scidac");
// std::string eval_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/eval.xml");
bool load_agg=true;
bool load_refine=true;
//////////////////////////////////////////
// Block projector for coarse/fine
//////////////////////////////////////////
MultiRHSBlockProject<LatticeFermionD> MrhsProjector;
/////////////////////////////////////////////////
// Mirs smoother
/////////////////////////////////////////////////
int ord=8;
RealD lo=2.0;
RealD MirsShift = lo;
ShiftedHermOpLinearOperator<LatticeFermionD> ShiftedFineHermOp(HermOpEO,MirsShift);
CGSmoother<LatticeFermionD> CGsmooth(ord,ShiftedFineHermOp) ;
LoadBasis(Aggregates,refine_file);
Aggregates.Orthogonalise();
std::cout << "**************************************"<<std::endl;
std::cout << " Using filtered subspace"<<std::endl;
std::cout << "**************************************"<<std::endl;
MrhsProjector.Allocate(nbasis,FrbGrid,Coarse5d);
MrhsProjector.ImportBasis(Aggregates.subspace);
FermionField Ftmp(FrbGrid);
std::vector<FermionField> Fine_ev(1,FrbGrid);
std::vector<FermionField> Fine_ev_compressed(1,FrbGrid);
std::vector<CoarseVector> c_evec(1,Coarse5d);
for(int ev=0;ev<Fine_evec.size();ev++){
Fine_ev[0] = Fine_evec[ev];
MrhsProjector.blockProject(Fine_ev,c_evec);
MrhsProjector.blockPromote(Fine_ev_compressed,c_evec);
Ftmp = Fine_ev_compressed[0];
RealD div = 1.0/ sqrt(norm2(Ftmp));
Ftmp = Ftmp * div;
std::cout << GridLogMessage<<" "<<ev<<" uncomp "<< norm2(Fine_ev[0]) <<std::endl;
std::cout << GridLogMessage<<" "<<ev<<" comp "<< norm2(Ftmp) <<std::endl;
Ftmp = Fine_ev[0] - Ftmp;
std::cout << GridLogMessage<<" "<<ev<<" diff "<< norm2(Ftmp) <<std::endl;
CGsmooth(Fine_ev_compressed[0],Ftmp);
Ftmp = Ftmp *lo;
std::cout << GridLogMessage<<" "<<ev<<" smoothed "<< norm2(Ftmp) <<std::endl;
div = 1.0/ sqrt(norm2(Ftmp));
Ftmp=Ftmp*div;
Ftmp = Fine_ev[0]-Ftmp;
std::cout << GridLogMessage<<" "<<ev<<" diff "<< norm2(Ftmp) <<std::endl;
}
std::cout << "**************************************"<<std::endl;
std::cout << " Using eigenvector subspace "<<std::endl;
std::cout << "**************************************"<<std::endl;
for(int i=0;i<Aggregates.subspace.size();i++){
Aggregates.subspace[i] = Fine_evec[i];
}
Aggregates.Orthogonalise();
MrhsProjector.ImportBasis(Aggregates.subspace);
for(int ev=0;ev<Fine_evec.size();ev++){
Fine_ev[0] = Fine_evec[ev];
MrhsProjector.blockProject(Fine_ev,c_evec);
MrhsProjector.blockPromote(Fine_ev_compressed,c_evec);
Ftmp = Fine_ev_compressed[0];
RealD div = 1.0/ sqrt(norm2(Ftmp));
Ftmp = Ftmp * div;
std::cout << GridLogMessage<<" "<<ev<<" uncomp "<< norm2(Fine_ev[0]) <<std::endl;
std::cout << GridLogMessage<<" "<<ev<<" comp "<< norm2(Ftmp) <<std::endl;
Ftmp = Fine_ev[0] - Ftmp;
std::cout << GridLogMessage<<" "<<ev<<" diff "<< norm2(Ftmp) <<std::endl;
CGsmooth(Fine_ev_compressed[0],Ftmp);
Ftmp = Ftmp *lo;
std::cout << GridLogMessage<<" "<<ev<<" smoothed "<< norm2(Ftmp) <<std::endl;
div = 1.0/ sqrt(norm2(Ftmp));
Ftmp=Ftmp*div;
Ftmp = Fine_ev[0]-Ftmp;
std::cout << GridLogMessage<<" "<<ev<<" diff "<< norm2(Ftmp) <<std::endl;
}
// Standard CG
Grid_finalize();
return 0;
}

View File

@ -36,28 +36,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
using namespace std;
using namespace Grid;
template<class Field>
class HermOpAdaptor : public LinearOperatorBase<Field>
{
LinearOperatorBase<Field> & wrapped;
public:
HermOpAdaptor(LinearOperatorBase<Field> &wrapme) : wrapped(wrapme) {};
void OpDiag (const Field &in, Field &out) { assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); };
void Op (const Field &in, Field &out){
wrapped.HermOp(in,out);
}
void AdjOp (const Field &in, Field &out){
wrapped.HermOp(in,out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
void HermOp(const Field &in, Field &out){
wrapped.HermOp(in,out);
}
};
template<class Matrix,class Field>
class PVdagMLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
@ -69,78 +47,169 @@ public:
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); };
void Op (const Field &in, Field &out){
std::cout << "Op: PVdag M "<<std::endl;
Field tmp(in.Grid());
_Mat.M(in,tmp);
_PV.Mdag(tmp,out);
}
void AdjOp (const Field &in, Field &out){
std::cout << "AdjOp: Mdag PV "<<std::endl;
Field tmp(in.Grid());
_PV.M(tmp,out);
_Mat.Mdag(in,tmp);
_PV.M(in,tmp);
_Mat.Mdag(tmp,out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
void HermOp(const Field &in, Field &out){
std::cout << "HermOp"<<std::endl;
std::cout << "HermOp: Mdag PV PVdag M"<<std::endl;
Field tmp(in.Grid());
// _Mat.M(in,tmp);
// _PV.Mdag(tmp,out);
// _PV.M(out,tmp);
// _Mat.Mdag(tmp,out);
Op(in,tmp);
AdjOp(tmp,out);
// std::cout << "HermOp done "<<norm2(out)<<std::endl;
}
};
template<class Matrix,class Field>
class ShiftedPVdagMLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
Matrix &_PV;
RealD shift;
public:
ShiftedPVdagMLinearOperator(RealD _shift,Matrix &Mat,Matrix &PV): shift(_shift),_Mat(Mat),_PV(PV){};
void OpDiag (const Field &in, Field &out) { assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); };
void Op (const Field &in, Field &out){
std::cout << "Op: PVdag M "<<std::endl;
Field tmp(in.Grid());
_Mat.M(in,tmp);
_PV.Mdag(tmp,out);
_PV.M(out,tmp);
_Mat.Mdag(tmp,out);
std::cout << "HermOp done "<<norm2(out)<<std::endl;
out = out + shift * in;
}
};
template<class Field> class DumbOperator : public LinearOperatorBase<Field> {
public:
LatticeComplex scale;
DumbOperator(GridBase *grid) : scale(grid)
{
scale = 0.0;
LatticeComplex scalesft(grid);
LatticeComplex scaletmp(grid);
for(int d=0;d<4;d++){
Lattice<iScalar<vInteger> > x(grid); LatticeCoordinate(x,d+1);
LatticeCoordinate(scaletmp,d+1);
scalesft = Cshift(scaletmp,d+1,1);
scale = 100.0*scale + where( mod(x ,2)==(Integer)0, scalesft,scaletmp);
}
std::cout << " scale\n" << scale << std::endl;
}
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {};
void OpDir (const Field &in, Field &out,int dir,int disp){};
void OpDirAll (const Field &in, std::vector<Field> &out) {};
void Op (const Field &in, Field &out){
out = scale * in;
}
void AdjOp (const Field &in, Field &out){
out = scale * in;
void AdjOp (const Field &in, Field &out){
std::cout << "AdjOp: Mdag PV "<<std::endl;
Field tmp(in.Grid());
_PV.M(tmp,out);
_Mat.Mdag(in,tmp);
out = out + shift * in;
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
void HermOp(const Field &in, Field &out){
double n1, n2;
HermOpAndNorm(in,out,n1,n2);
}
void HermOpAndNorm(const Field &in, Field &out,double &n1,double &n2){
ComplexD dot;
out = scale * in;
dot= innerProduct(in,out);
n1=real(dot);
dot = innerProduct(out,out);
n2=real(dot);
std::cout << "HermOp: Mdag PV PVdag M"<<std::endl;
Field tmp(in.Grid());
Op(in,tmp);
AdjOp(tmp,out);
}
};
template<class Fobj,class CComplex,int nbasis>
class MGPreconditioner : public LinearFunction< Lattice<Fobj> > {
public:
using LinearFunction<Lattice<Fobj> >::operator();
typedef Aggregation<Fobj,CComplex,nbasis> Aggregates;
typedef typename Aggregation<Fobj,CComplex,nbasis>::FineField FineField;
typedef typename Aggregation<Fobj,CComplex,nbasis>::CoarseVector CoarseVector;
typedef typename Aggregation<Fobj,CComplex,nbasis>::CoarseMatrix CoarseMatrix;
typedef LinearOperatorBase<FineField> FineOperator;
typedef LinearFunction <FineField> FineSmoother;
typedef LinearOperatorBase<CoarseVector> CoarseOperator;
typedef LinearFunction <CoarseVector> CoarseSolver;
Aggregates & _Aggregates;
FineOperator & _FineOperator;
FineSmoother & _PreSmoother;
FineSmoother & _PostSmoother;
CoarseOperator & _CoarseOperator;
CoarseSolver & _CoarseSolve;
int level; void Level(int lv) {level = lv; };
MGPreconditioner(Aggregates &Agg,
FineOperator &Fine,
FineSmoother &PreSmoother,
FineSmoother &PostSmoother,
CoarseOperator &CoarseOperator_,
CoarseSolver &CoarseSolve_)
: _Aggregates(Agg),
_FineOperator(Fine),
_PreSmoother(PreSmoother),
_PostSmoother(PostSmoother),
_CoarseOperator(CoarseOperator_),
_CoarseSolve(CoarseSolve_),
level(1) { }
virtual void operator()(const FineField &in, FineField & out)
{
GridBase *CoarseGrid = _Aggregates.CoarseGrid;
// auto CoarseGrid = _CoarseOperator.Grid();
CoarseVector Csrc(CoarseGrid);
CoarseVector Csol(CoarseGrid);
FineField vec1(in.Grid());
FineField vec2(in.Grid());
std::cout<<GridLogMessage << "Calling PreSmoother " <<std::endl;
// std::cout<<GridLogMessage << "Calling PreSmoother input residual "<<norm2(in) <<std::endl;
double t;
// Fine Smoother
// out = in;
out = Zero();
t=-usecond();
_PreSmoother(in,out);
t+=usecond();
std::cout<<GridLogMessage << "PreSmoother took "<< t/1000.0<< "ms" <<std::endl;
// Update the residual
_FineOperator.Op(out,vec1); sub(vec1, in ,vec1);
// std::cout<<GridLogMessage <<"Residual-1 now " <<norm2(vec1)<<std::endl;
// Fine to Coarse
t=-usecond();
_Aggregates.ProjectToSubspace (Csrc,vec1);
t+=usecond();
std::cout<<GridLogMessage << "Project to coarse took "<< t/1000.0<< "ms" <<std::endl;
// Coarse correction
t=-usecond();
Csol = Zero();
_CoarseSolve(Csrc,Csol);
//Csol=Zero();
t+=usecond();
std::cout<<GridLogMessage << "Coarse solve took "<< t/1000.0<< "ms" <<std::endl;
// Coarse to Fine
t=-usecond();
// _CoarseOperator.PromoteFromSubspace(_Aggregates,Csol,vec1);
_Aggregates.PromoteFromSubspace(Csol,vec1);
add(out,out,vec1);
t+=usecond();
std::cout<<GridLogMessage << "Promote to this level took "<< t/1000.0<< "ms" <<std::endl;
// Residual
_FineOperator.Op(out,vec1); sub(vec1 ,in , vec1);
// std::cout<<GridLogMessage <<"Residual-2 now " <<norm2(vec1)<<std::endl;
// Fine Smoother
t=-usecond();
// vec2=vec1;
vec2=Zero();
_PostSmoother(vec1,vec2);
t+=usecond();
std::cout<<GridLogMessage << "PostSmoother took "<< t/1000.0<< "ms" <<std::endl;
add( out,out,vec2);
std::cout<<GridLogMessage << "Done " <<std::endl;
}
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
const int Ls=2;
const int Ls=16;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
@ -151,7 +220,8 @@ int main (int argc, char ** argv)
// Construct a coarsened grid
Coordinate clatt = GridDefaultLatt();
for(int d=0;d<clatt.size();d++){
clatt[d] = clatt[d]/4;
clatt[d] = clatt[d]/2;
// clatt[d] = clatt[d]/4;
}
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());;
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
@ -173,15 +243,14 @@ int main (int argc, char ** argv)
FieldMetaData header;
std::string file("ckpoint_lat.4000");
NerscIO::readConfiguration(Umu,header,file);
//Umu = 1.0;
RealD mass=0.5;
RealD mass=0.01;
RealD M5=1.8;
DomainWallFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
DomainWallFermionD Dpv(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,1.0,M5);
const int nbasis = 1;
const int nbasis = 20;
const int cb = 0 ;
LatticeFermion prom(FGrid);
@ -193,25 +262,51 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage<<std::endl;
std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
std::cout<<GridLogMessage<<std::endl;
PVdagMLinearOperator<DomainWallFermionD,LatticeFermionD> PVdagM(Ddwf,Dpv);
HermOpAdaptor<LatticeFermionD> HOA(PVdagM);
typedef PVdagMLinearOperator<DomainWallFermionD,LatticeFermionD> PVdagM_t;
typedef ShiftedPVdagMLinearOperator<DomainWallFermionD,LatticeFermionD> ShiftedPVdagM_t;
PVdagM_t PVdagM(Ddwf,Dpv);
// ShiftedPVdagM_t ShiftedPVdagM(2.0,Ddwf,Dpv); // 355
// ShiftedPVdagM_t ShiftedPVdagM(1.0,Ddwf,Dpv); // 246
// ShiftedPVdagM_t ShiftedPVdagM(0.5,Ddwf,Dpv); // 183
// ShiftedPVdagM_t ShiftedPVdagM(0.25,Ddwf,Dpv); // 145
// ShiftedPVdagM_t ShiftedPVdagM(0.1,Ddwf,Dpv); // 134
// ShiftedPVdagM_t ShiftedPVdagM(0.1,Ddwf,Dpv); // 127 -- NULL space via inverse iteration
// ShiftedPVdagM_t ShiftedPVdagM(0.1,Ddwf,Dpv); // 57 -- NULL space via inverse iteration; 3 iterations
// ShiftedPVdagM_t ShiftedPVdagM(0.25,Ddwf,Dpv); // 57 , tighter inversion
// ShiftedPVdagM_t ShiftedPVdagM(0.25,Ddwf,Dpv); // nbasis 20 -- 49 iters
// ShiftedPVdagM_t ShiftedPVdagM(0.25,Ddwf,Dpv); // nbasis 20 -- 70 iters; asymmetric
// ShiftedPVdagM_t ShiftedPVdagM(0.25,Ddwf,Dpv); // 58; Loosen coarse, tighten fine
// ShiftedPVdagM_t ShiftedPVdagM(0.1,Ddwf,Dpv); // 56 ...
// ShiftedPVdagM_t ShiftedPVdagM(0.1,Ddwf,Dpv); // 51 ... with 24 vecs
// ShiftedPVdagM_t ShiftedPVdagM(0.1,Ddwf,Dpv); // 31 ... with 24 vecs and 2^4 blocking
// ShiftedPVdagM_t ShiftedPVdagM(0.1,Ddwf,Dpv); // 43 ... with 16 vecs and 2^4 blocking, sloppier
// ShiftedPVdagM_t ShiftedPVdagM(0.1,Ddwf,Dpv); // 35 ... with 20 vecs and 2^4 blocking
// ShiftedPVdagM_t ShiftedPVdagM(0.1,Ddwf,Dpv); // 35 ... with 20 vecs and 2^4 blocking, looser coarse
// ShiftedPVdagM_t ShiftedPVdagM(0.1,Ddwf,Dpv); // 64 ... with 20 vecs, Christoph setup, and 2^4 blocking, looser coarse
ShiftedPVdagM_t ShiftedPVdagM(0.01,Ddwf,Dpv); //
// Run power method on HOA??
PowerMethod<LatticeFermion> PM; PM(HOA,src);
// PowerMethod<LatticeFermion> PM; PM(PVdagM,src);
// Warning: This routine calls PVdagM.Op, not PVdagM.HermOp
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
Subspace AggregatesPD(Coarse5d,FGrid,cb);
/*
AggregatesPD.CreateSubspaceChebyshev(RNG5,
HOA,
PVdagM,
nbasis,
5000.0,
0.02,
100,
50,
50,
4000.0,
2.0,
200,
200,
200,
0.0);
*/
AggregatesPD.CreateSubspaceGCR(RNG5,
PVdagM,
nbasis);
LittleDiracOperator LittleDiracOpPV(geom,FGrid,Coarse5d);
LittleDiracOpPV.CoarsenOperator(PVdagM,AggregatesPD);
@ -257,6 +352,60 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage<<" ldop error: "<<norm2(c_proj)<<std::endl;
// std::cout<<GridLogMessage<<" error "<< c_proj<<std::endl;
/**********
* Some solvers
**********
*/
///////////////////////////////////////
// Coarse grid solver test
///////////////////////////////////////
std::cout<<GridLogMessage<<"******************* "<<std::endl;
std::cout<<GridLogMessage<<" Coarse Grid Solve -- Level 3 "<<std::endl;
std::cout<<GridLogMessage<<"******************* "<<std::endl;
TrivialPrecon<CoarseVector> simple;
NonHermitianLinearOperator<LittleDiracOperator,CoarseVector> LinOpCoarse(LittleDiracOpPV);
// PrecGeneralisedConjugateResidualNonHermitian<CoarseVector> L2PGCR(1.0e-4, 100, LinOpCoarse,simple,10,10);
PrecGeneralisedConjugateResidualNonHermitian<CoarseVector> L2PGCR(3.0e-2, 100, LinOpCoarse,simple,10,10);
L2PGCR.Level(3);
c_res=Zero();
L2PGCR(c_src,c_res);
////////////////////////////////////////
// Fine grid smoother
////////////////////////////////////////
std::cout<<GridLogMessage<<"******************* "<<std::endl;
std::cout<<GridLogMessage<<" Fine Grid Smoother -- Level 2 "<<std::endl;
std::cout<<GridLogMessage<<"******************* "<<std::endl;
TrivialPrecon<LatticeFermionD> simple_fine;
// NonHermitianLinearOperator<PVdagM_t,LatticeFermionD> LinOpSmooth(PVdagM);
PrecGeneralisedConjugateResidualNonHermitian<LatticeFermionD> SmootherGCR(0.01,1,ShiftedPVdagM,simple_fine,16,16);
SmootherGCR.Level(2);
LatticeFermionD f_src(FGrid);
LatticeFermionD f_res(FGrid);
f_src = one; // 1 in every element for vector 1.
f_res=Zero();
SmootherGCR(f_src,f_res);
typedef MGPreconditioner<vSpinColourVector, vTComplex,nbasis> TwoLevelMG;
TwoLevelMG TwoLevelPrecon(AggregatesPD,
PVdagM,
simple_fine,
SmootherGCR,
LinOpCoarse,
L2PGCR);
PrecGeneralisedConjugateResidualNonHermitian<LatticeFermion> L1PGCR(1.0e-8,1000,PVdagM,TwoLevelPrecon,16,16);
L1PGCR.Level(1);
f_res=Zero();
L1PGCR(f_src,f_res);
std::cout<<GridLogMessage<<std::endl;
std::cout<<GridLogMessage<<"*******************************************"<<std::endl;
std::cout<<GridLogMessage<<std::endl;